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General Preface

In the early eighties, when Jacques-Louis Lions and | considered the ideldaidx
book of Numerical Analysisve carefully laid out specific objectives, outlined in the
following excerpts from the “General Preface” which has appeared at the beginning o
each of the volumes published so far:

During the past decades, giant needs for ever more sophisticated mathe-
matical models and increasingly complex and extensive computer simula-
tions have arisen. In this fashion, two indissociable activitiemthematical
modelingandcomputer simulatiorhave gained a major status in all aspects
of science, technology and industry.

In order that these two sciences be established on the safest possible
grounds, mathematical rigor is indispensable. For this reason, two compan-
ion sciencesNumerical AnalysiendScientific Softwarehave emerged as
essential steps for validating the mathematical models and the computer
simulations that are based on them.

Numerical Analysiss here understood as the parfidéithematicghat de-
scribes and analyzes all the numerical schemes that are used on computers;
its objective consists in obtaining a clear, precise, and faithful, representa-
tion of all the “information” contained in a mathematical model; as such, it
is the natural extension of more classical tools, such as analytic solutions,
special transforms, functional analysis, as well as stability and asymptotic
analysis.

The various volumes comprising tiéandbook of Numerical Analysis
will thoroughly cover all the major aspects of Numerical Analysis, by pre-
senting accessible and in-depth surveys, which include the most recent
trends.

More precisely, the Handbook will cover thasic methods of Numerical
Analysis gathered under the following general headings:

Solution of Equations ifR”,

Finite Difference Methods,

Finite Element Methods,
Techniques of Scientific Computing.



Vi General Preface

It will also cover thenumerical solution of actual problems of contempo-
rary interest in Applied Mathematicgathered under the following general
headings:

— Numerical Methods for Fluids,

— Numerical Methods for Solids.

In retrospect, it can be safely asserted that Volumes | to IX, which were edited by
both of us, fulfilled most of these objectives, thanks to the eminence of the authors an
the quality of their contributions.

After Jacques-Louis Lions’ tragic loss in 2001, it became clear that Volume 1X would
be the last one of the type published so far, i.e., edited by both of us and devoted to son
of the general headings defined above. It was then decided, in consultation with the pul
lisher, that each future volume will instead be devoted to a sirgpecific applicatioh
and called for this reason &pecial Volumk “ Specific applicatioriswill include Math-
ematical Finance, Meteorology, Celestial Mechanics, Computational Chemistry, Living
Systems, Electromagnetism, Computational Mathematics etc. It is worth noting that th
inclusion of such “specific applications” in thdandbook of Numerical Analysigas
part of our initial project.

To ensure the continuity of this enterprise, | will continue to act as Editor of each Spe-
cial Volume, whose conception will be jointly coordinated and supervised by a Guest
Editor.

P.G. GARLET
July 2002



Preface

The electronics industry has shown extremely rapid advances over the past 50 yea
and it is largely responsible for the economic growth in that period. It all started with
the invention of the bipolar transistor based on silicon at the end of the 1940s, and sinc
then the industry has caused another evolution for mankind. It is hard to imagine a worl
without all the achievements of the electronics industry.

In order to be able to continue these rapid developments, it is absolutely necessa
to perform virtual experiments rather than physical experiments. Simulations are in
dispensable in the electronics industry nowadays. Current electronic circuits are e
tremely complex, and its production requires hundreds of steps that altogether take se
eral months of fabrication time. The adagio is “first time right”, and this has its reper-
cussions for the way designers work in the electronics industry. Nowadays, they mak
extensive use of software tools embedded in virtual design environments. The so-calle
“virtual fab” has made an entry, and it is foreseen that its importance will only grow in
the future.

Numerical methods are a key ingredient of a simulation environment, whence it is no
surprising that the electronics industry has become one of the most fertile working envi
ronments for numerical mathematicians. Since the 1970s, there is a strong demand f
efficient and robust software tools for electronic circuit simulation. Initially, this devel-
opment started with the analysis of large networks of resistors, capacitors and inductor
but soon other components such as bipolar transistors and diodes were added. Spec
ists made models for these components, but the problems associated with the extrel
nonlinearities introduced by these models had to be tackled by numerical analysts.
was one of the first serious problems that were encountered in the field, and it initiate
research into damped Newton methods for extremely nonlinear problems. In the past :
years, electronic circuit simulation has become a very mature subject, with many beaut
ful results (both from the engineering and the mathematical point of view), and it still is
a very active area of mathematical research. Nowadays, hot topics are the research i
differential algebraic equations and the efficient calculation of (quasi-)periodic stead
states.

Although circuit simulation was one of the first topics to be addressed by numerica
mathematicians in the electronics industry, the simulation of semiconductor device
quickly followed at the end of the 1970s. Transistors rapidly became more complex, an

vii



Viii Preface

a multitude of different devices was discovered. Transistors of the MOS-type (metal
oxide-semiconductor) became much more popular, and are now mainly responsible fc
the rapid developments in the industry. In order to be able to simulate the behavio
of these devices, research into semiconductor device simulation was carried out. Sot
it became clear that this was a very demanding problem from the numerical point o
view, and it took many years and many conferences before some light was seen at tl
end of the tunnel. Applied mathematicians analyzed the famous drift-diffusion problem
and numerical mathematicians developed algorithms for its discretization and solutior
During the 1990s, extended models were introduced for the modelling of semiconductc
devices (hydrodynamic models, quantum effects), and nowadays this development
still continuing.

Parallel to these developments in the area of electronic circuits and devices, the mo
classical electromagnetics problems were also addressed. Design of magnets for lou
speakers and magnet design for MRI (magnetic resonance imaging) were importal
tasks, for which we can also observe a tendency towards heavy usage of simulatic
tools and methods. The field also generated many interesting mathematical and nume
ical results, whereas the role of the numerical mathematician was again indispensab
in this area.

Whether it is by coincidence or not, the fields of circuit/device simulation and the
more classical electromagnetics simulation, have come very close to each other in ri
cent years. Traditionally, researchers working in the two areas did not communicat
much, and separate conferences were organized with a minimum of cross-fertilizatior
However, owing to the increased operating frequencies of devices and the shrinking d
mensions of electronics circuits, electromagnetic effects have started to play an impo
tant role. These effects influence the behavior of electronic circuits, and it is foresee
that these effects may be dramatic in the future if they are not understood well an
precautions are taken. Hence, recent years show an increased interest in combined si
ulations of circuit behavior with electromagnetics that, in turn, has led to new problems
for numerical mathematicians. One of these new topics is model order reduction, whic
is the art of reducing large discrete systems to a much smaller model that neverthele
exhibits behavior similar to the large system. Model order reduction is a topic at many
workshops and conferences nowadays, with a multitude of applications also outside tt
electronics industry.

From the foregoing, it is clear that the electronics industry has always been, an
still is, a very fruitful area for numerical mathematics. On the one hand, numerical
mathematicians have played an important role in enabling the set-up of virtual desig
environments. On the other hand, many new methods have been developed as a res
of the work in this specialist area. Often, the methods developed to solve the electronic
problems can also be applied in other application areas. Therefore, the reason for th
special volume is twofold. The first aim is to give insight in the way numerical methods
are being used to solve the wide variety of problems in the electronics industry. The
second aim is to give researchers from other fields of application the opportunity tc
benefit from the results, which have been obtained in the electronics industry.

This special volume of the Handbook of Numerical Analysis gives a broad overview
of the use of numerical methods in the electronics industry. Since it is not assume
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that all readers are familiar with the concepts being used in the field, Chapter 1 give
a detailed overview of models being used. The starting point is the set of Maxwell
equations, and from this all models can be derived. The chapter serves as the ba
for the other chapters, so that readers can always go back to Chapter 1 for a physic
explanation, or a derivation of the models.

The remaining chapters discuss the use of numerical methods for different applice
tions within the electronics industry. We have attempted to organize the book in the
same way as numerical analysis is performed in practice: modelling, followed by dis:
cretization, followed by solution of nonlinear and linear systems. Unfortunately, our
attempts to obtain a chapter on nonlinear solution strategies have failed in the end. Tl
corresponding chapter would have been a very interesting one, with results on damps
Newton methods and nonlinear variable transformations. These methods will now b
discussed in a separate book, and the reader is referred to this or to the extensive lit
ature on the subject. Fortunately, all other aspects of numerical analysis are present
this volume, and in the following we give a short summary of the remaining chapters.

Chapter 2 is devoted to the more classical form of electromagnetics simulations, bt
as can be seen from the chapter, the field leads to beautiful mathematical results. Che
ter 3 also discusses methods for discretising the Maxwell equations, using the finit
difference time domain method that is extremely popular nowadays. The authors c
this chapter have widespread experience in applying the method to practical problem
and the chapter discusses a multitude of related topics. Chapters 4 and 5 are devo
to the simulation of the behavior of semiconductor devices, with an emphasis again o
discretization methods. Chapter 4 discusses the well known drift-diffusion model an
some extensions, whereas Chapter 5 concentrates on extended models.

Circuit simulation is the topic discussed in Chapter 6, where both the modelling anc
the discretization of these problems is addressed. The concept of differential-algebra
equations is discussed extensively, together with its importance for the analysis of cil
cuits. Furthermore, time discretization and the solution of periodic steady-state prok
lems can be found in this chapter. In Chapter 7, the first step towards coupled ci
cuit/device simulations with electromagnetic effects is made by considering the prob
lem of analyzing the electromagnetic behavior of printed circuit boards. The chapte
discusses in detail the efficient evaluation of the interaction integrals, and shows the u
of some numerical techniques that are not very well known.

Chapters 9 and 10 are of a more theoretical character, which does not mean th
their contents are less important. On the contrary, the solution techniques for linee
systems discussed in Chapter 9 are at the core of all simulation software, and hence it
extremely important to perform the solution of linear systems as efficiently as possible
The model order reduction methods discussed in Chapter 10 are equally important, sin
they provide a sound basis for enabling the coupled simulations required in presen
day design environments. Strangely enough, it turns out that the techniques used in t
area of model order reduction, are intimately related to the solution methods for linea
systems. In this respect, the last two chapters are closely related, though very differe
in character.

We hope that this volume will inspire readers, and that the presentation given in th
various chapters is of interest to a large community of researchers and engineers.
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is also hoped that the volume reflects the importance of numerical mathematics in th
electronics industry. In our experience, we could attach tags to almost all electroni
products with the statement: “Mathematics inside”. Let this be an inspiration for young
people to not only benefit from the developments of the electronics industry, but alsc
contribute physically to the developments in the future by becoming an enthusiasti
numerical mathematician!

Eindhoven, June 2004

Wil Schilders
Jan ter Maten
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List of symbols

A vector potential

AEx external vector potential

AN induced vector potential

B, Bin magnetic induction

C capacitance

c speed of light, concentration

dr line element

ds surface element

ds elementary distance in Riemannian geometry

dr volume element

Dn electron diffusion coefficient

Dp hole diffusion coefficient

D electric displacement vector

E energy

EF Fermi energy

Eq (W) electron energy

Numerical Methods in Electromagnetics Copyright © 2005 Elsevier B.V.
Special Volume (W.H.A. Schilders and E.J.W. ter Maten, Guest Editors) of  All rights reserved
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4 W. Magnus and W. Schoenmaker

e elementary charge

E electric field

Ec conservative electric field

Eex external electric field

Ein induced electric field

Enc non-conservative electric field

& unit vector along-axis

€ azimuthal unit vector

Fiv electromagnetic field tensor

£ fas fo (Boltzmann) distribution function
G conductance, generation rate
Go quantized conductance

8uv metric tensor

H Hamiltonian

Hpyp Hamiltonian scattering matrix element
h Planck’s constant

h reduced Planck constarit/27)

I electric current

i imaginary unit

Je gate leakage current

J,dn, Jp electric current density

H magnetic field intensity

k wavenumber

kg Boltzmann’s constant

k electron wave vector

L inductance, Lagrangian, length
Ly, Ly length

L total angular momentum

l subband index, angular momentum quantum number, length
m angular momentum quantum number
m,my, charge carrier effective mass

mo free electron mass
mn, Mggx, Mgay,

Myaz, M1 0X,01

m32 ox,a> M3,0X,05 + -+ »

Mex, Moy, Mgz electron effective mass

mp hole effective mass

M magnetization vector

m magnetic moment

N number of particles, coordinates or modes
Na acceptor doping density

n electron concentration

n unit vector

D, pi» P, Pi, P,

PP, P;,... generalized momenta
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p hole concentration

P total momentum, electric polarization vector

p momentum, electric dipole moment

4,4i-9,qi, O,

0i,0Q,Q;,... generalized coordinates

0 electric charge

qn carrier charge

()N electric charge residing in active area

R resistance, recombination rate

RH Hall resistance

Rk von Klitzing resistance

Ry lead resistance

Rqg guantized resistance

R Riemann tensor

R set of real numbers

(r, 0, ¢) spherical coordinates

r,ry position vector

S action, entropy

S(p,p) transition rate

S Poynting vector

S S energy flux vector

t time

T lattice temperature

Tn electron temperature

Ty hole temperature

T, Tep EM energy momentum tensor

Ug electric energy

Um magnetic energy

Uem EM energy

U®y),U(z) potential energy

UEM EM energy density

Vv scalar electric potential

VH Hall voltage

Ve gate voltage

v, carrier velocity

Vn, Vp drift velocity

v drift velocity, velocity field

W, Wy (W) subband energy

w, Wn, Wp carrier energy density

(x,y.,2) Cartesian coordinates
admittance
impedance

summation index, valley index, variational parameters
summation index, AkgT

= Q N ~
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boundary surface a2

boundary surface a2,
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1. Preface

Electromagnetism, formulated in terms of the Maxwell equations, and quantum me
chanics, formulated in terms of the Schrddinger equation, constitute the physical law
by which the bulk of natural experiences are described. Apart from the gravitationa
forces, nuclear forces and weak decay processes, the description of the physical fa
starts with these underlying microscopic theories. However, knowledge of these basi
laws is only the beginning of the process to apply these laws in realistic circumstance
and to determine their quantitative consequences. With the advent of powerful comput:
resources, it has become feasible to extract information from these basic laws with ur
precedented accuracy. In particular, the complexity of realistic systems manifests itse
in the non-trivial boundary conditions, such that without computers, reliable calculatior
are beyond reach.

The ambition of physicists, chemists and engineers, to provide tools for performing
calculations, does not only boost progress in technology but also has a strong impa
on the formulation of the equations that represent the physics knowledge and hen
provides a deeper understanding of the underlying physics laws. As such, computation
physics has become a cornerstone of theoretical physics and we may say that withc
a computational recipe, a physics law is void or at least incomplete. Contrary to wha
is sometimes claimed, that after having found the unifying theory for gravitation and
guantum theory, there is nothing left to investigate, we believe that physics has jus
started to flourish and there are wide fields of research waiting for exploration.

This volume is dedicated to the study of electrodynamic problems. The Maxwell
equations appear in the form

A(field) = source (1.1

whereA describes the near-by field variable correlation of the field that is induced by
a source or field disturbance. Near-by correlations can be mathematically expressed
differential operators that probe changes going from one location the a neighboring on
It should be emphasized that “near-by” refers to space and time.

One could “easily” solve these equations by construction the inverse of the differen
tial operator. Such an inverse is usually known as a Green function.

There are two main reasons that prevent a straightforward solution of the Maxwel
equations. First of all, realistic structure boundaries may be very irregular, and therefor
the corresponding boundary conditions cannot be implemented analytically. Secondl
the sources themselves may depend on the values of the fields and will turn the proble
in a highly non-linear one, as may be seen from Eqg. (1.1) that should be read as

A(field) = sourcefield). 1.2)

The bulk of this volume is dedicated to find solutions to equations of this kind. In partic-
ular, Chapters I, lll, IV and V are dealing with above type of equations. A considerable
amount of work deals with obtaining the details of the right-hand side of Eq. (1.2),
namely how the source terms, being charges and currents depend in detail on the valt
of the field variables.
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Whereas, the microscopic equation describe the physical processes in great dete
i.e., at every space—time point field and source variables are declared, it may be pro
itable to collect a whole bunch of these variables into a single basket and to declare fc
each basket a few representative variables as the appropriate values for the fields a
the sources. This kind of reduction of parameters is the underlying strategy of circui
modeling. Here, the Maxwell equations are replaced by Kirchhoff’'s network equations.
This is the starting point for Chapter VI.

The “basket” containing a large collection of fundamental degrees of freedom of
field and source variables, should not be filled at random. Physical intuition suggest
that we put together in one basket degrees of freedom that are “alike”. Field and sourc
variables at near-by points are candidates for being grabbed together, since physic
continuity implies that a all elements in the basket will have similar vatues.

The baskets are not only useful for simplifying the continuous equations. They are
vital to the discretization schemes. Since any computer has only a finite memory storag
the continuous or infinite collection of degrees of freedom must be mapped onto a finit:
subset. This may be accomplished by appropriately positioning and sizing of all the
baskets. This procedure is named “grid generation” and the construction of a good gri
is often of great importance to obtain accurate solutions.

After having mapped the continuous problem onto a finite grid one may establish ¢
set of algebraic equations connecting the grid variables (basket representatives) and ¢
plicitly reflecting the non-linearity of the original differential equations. The solution of
large systems of non-linear algebraic equations is based on Newton'’s iterative metho
To find the solution of the set of non-linear equatiéiig) = 0, an initial guess is made:

X = Xinit = Xo. Next the guess is (hopefully) improved by looking at the equation:

F(xo + AX) >~ F(Xp) + A - AX, (1.3)

where the matrix is

Ajj= <3F,-(X)) . (1.4)
X0

ax]'

In particular, by assuming that the correction brings us close to the solutionx;i=.,
Xo + AX >~ x*, whereF(x*) = 0, we obtain that

0=F(Xg) +A-AXx or
(X0) (15)

AX=—A"1. F(xp).

Next we repeat this procedure, until convergence is reached. A series of vegiots,

X0, X1, X2, . . ., Xu—1, Xn = Xiinal, IS generated, such thi(Xsina))| < €, wheree is some
prescribed error criterion. In each iteration a large linear matrix problem of the type
A|X) = |b) needs to be solved.

1it should be emphasized that such a picture works at the classical level. Quantum physics implies th
near-by field point may take any value and the continuity of fields is not required.
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2. Themicroscopic Maxwell equations
2.1. The microscopic Maxwell equations in integral and differential form

In general, any electromagnetic field can be described and characterized on a micr
scopic scale by two vector fields(r, ) andB(r, ¢) specifying respectively the electric
field and the magnetic induction in an arbitrary space ppiat an arbitrary time.

All dynamical features of these vector fields are contained in the well-known Maxwell
equations (MXWELL [1954a], MAXWELL [1954b], ACKSON [1975], FEYNMAN,
LEIGHTON and SANDS [1964a])

v.E=2 (2.1)
€0

V.B=0, (2.2)
B

VxE= —a—, (2.3)
ot

oE
V xB=pugd+ 80#05. (2.4)

They describe the spatial and temporal behavior of the electromagnetic field vector
and relate them to the sources of electric charge and current that may be present
the region of interest. Within the framework of a microscopic description, the electric
charge density and the electric current densifyare considered spatially localized
distributions residing in vacuum. As such they represent both mobile charges givin
rise to macroscopic currents in solid-state devices, chemical solutions, plasmas, etc., a
bound charges that are confined to the region of an atomic nucleus. In turn, the Maxwe
equations in the above presented form explicitly refer to the values takérahgB in
vacuum and, accordingly, the electric permittivityand the magnetic permeabilityy
appearing in Egs. (2.1) and (2.4) correspond to vacuum.

From the mathematical point of view, the solution of the differential equations (2.1)—
(2.4) together with appropriate boundary conditions in space and time, should in prin
ciple unequivocally determine the field@r, r) andB(r,¢). In practice however, an-
alytical solutions may be achieved only in a limited number of cases and, due to th
structural and geometrical complexity of modern electronic devices, one has to adoj
advanced numerical simulation techniques to obtain reliable predictions of electroma
netic field profiles. In this light, the aim is to solve Maxwell's equations on a discrete set
of mesh points using suitable discretization techniques which are often taking advantag
of integral form of Maxwell's equations. The latter may be derived by a straightforward
application of Gauss’ and Stokes’ theorems. In particular, one may integrate Egs. (2.
and (2.1) over a simply connected regiene R3 bounded by a closed surfase2 to
obtain

/ E(r,¢)-dS= iQ(t), (2.5)
) €0

f B(r,t)-dS=0, (2.6)
¥,
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whereQ(t) denotes the instantaneous charge residing in the volamee.,

o) = /Q p(r,t)dr. 2.7)

Eqg. (2.5) is nothing but Gauss’ law stating that the total outward flux of the electric field
threading the surfaces2 equals the total charge contained in the volufheaip to a
factoreg whereas Eq. (2.6) reflects the absence of magnetic monopoles.

Similarly, introducing an arbitrary, open and simply connected sufabeunded by
a simple, closed curve€', one may extract the induction law of Faraday and Ampére’s
law by integrating respectively Egs. (2.3) and (2.4) o¥er

yg E(r,t)-dr:—M, (2.8)

r dr

yg B(r,t) -dr = uo(l )+ sod¢E(t)>. (2.9)
r dr

The variablesbg(r) and @y () are representing the time-dependent electric and mag-
netic fluxes piercing the surfacg and are defined as:

De(2) =/ E(r,¢)-dS, (2.10)
X

Pm (1) = /Z B(r., 1) -dS, (2.11)

while the circulation of the electric field arourrd is the instantaneous electromotive
force V.(¢) along I is:

Ve(t) =5£ E(r,¢)-dr. (2.12)
r

The right-hand side of Eq. (2.9) consists of the total current flowing through the sur-
face X

I1(t) =/ J(r,1)-dS (2.13)
b

and the so-called displacement current which is proportional to the time derivative of the
electric flux. The sign of the above line integrals depends on the orientation of the close
loop I', the positive traversal sense of which is uniquely defined by the orientation of
the surfaceX’ imposed by the vectorial surface elemd® Apart from this restriction

it should be noted that the surfage can be chosen freely so as to extract meaningful
physical information from the corresponding Maxwell equation. In particular, though
being commonly labeled by the symbal, the surfaces appearing in Faraday’s and
Ampere’s laws (Egs. (2.8)—(2.9)) will generally be chosen in a different way as can
be illustrated by the example of a simple electric circuit. In the case of Faraday’s law
one usually want@y (¢) to be the magnetic flux threading the circuit and thereibre
would be chosen to “span” the circuit whilé would be located in the interior of the
circuit area. On the other hand, in order to exploit Ampére’s law, the sufashould

be pierced by the current density in the circuit in order to make the current flowing
through the circuit.
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2.2. Conservation laws

Although a complete description of the electromagnetic field requires the full solution
of the Maxwell equations in their differential form, one may extract a number of con-
servation laws may by simple algebraic manipulation. The differential form of the con-
servation laws takes the generic form

V-F~|—§=K, (2.14)

at

whereF is the generalized flow tensor associated with the fi@ldndK is related to
any possible external sources or sinks.

2.2.1. Conservation of charge — the continuity equation

Taking the divergence of Eq. (2.4) and the time derivative of Eq. (2.1) and combining the
resulting equations, one easily obtains the charge-current continuity equation expressi
the conservation of electric charge:

8,0_

vV.J+-—=0. 2.15
+3, (2.15)
Integration over a closed volunse yields
d
f J-dS:——/ pdr, (2.16)
982 ot Jo

which states that the total current flowing through the bounding suéf@cequals the
time rate of change of all electric charge residing witfin

2.2.2. Conservation of energy — Poynting’s theorem
The electromagnetic energy flow generated by a time dependent electromagnetic fie
is most adequately represented by the well-known Poynting vector given by

1
S=—E xB. (2.17)
H“o
Calculating the divergence & and using the Maxwell equations, one may relate the
Poynting vector to the electromagnetic energy density through the energy conser-
vation law

d
V.St “;M —_J.E, (2.18)
which is also known as the Poynting theorem. The energy demsijyis given by
1 B?
UEM = —<80E2 + —> (2.19)
2 Ko

The energy conservation expressed in Eq. (2.18) refers to the total energy of the ele
tromagnetic field and all charged particles contributing to the charge and current distri
butions. In particular, denoting the mechanical energy of the charged particles residin
in the volumes2 by Emech one may derive for both classical and quantum mechanical
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systems that the work done per unit time by the electromagnetic field on the charge
volume is given by

dE
—-MECH =/ J.Ede. (2.20)
dr Q

Introducing the total electromagnetic energy associated with the valarae Egy =
Jo uem dr one may integrate Poynting’s theorem to arrive at

dE(EMECH + Egm) = —/ S-ds. (2.21)
¢ ET)
It should be emphasized that the above result also covers most of the common situatio
where the energy of the charged particles is relaxed to the environment through diss
pative processes. The latter may be accounted for by invoking appropriate constitutiv
equations expressing the charge and current densities as linear or non-linear respon:
to the externally applied electromagnetic fields and other driving force fields. As ar
example, we mention Ohm'’s law, proposing a linear relation between the macroscopi
electric current density and the externally applied electric field in a non-ideal conductor

Im = o Eexr. (2.22)

Here, the conductivity is assumed to give an adequate characterization of all micro-
scopic elastic and inelastic scattering processes that are responsible for the macrosc
ically observable electric resistance. The derivation of constitutive equations will be
discussed in greater detail in Section 4.

2.3. Conservation of linear momentum — the electromagnetic field tensor

In an analogous way, an appropriate linear momentum densjiymay be assigned
to the electromagnetic field, which differs from the Poynting vector merely by a factor
gOM0 = 1/6‘22
1

7eM = &0E x B = ES. (2.23)
The time evolution oftgy is not only connected to the rate of change of the mechanical
momentum density giving rise to the familiar Lorentz force term, but also involves the
divergence of a second rank tenJowhich is usually called the Maxwell stress tensor
(JACKSON[1975], LANDAU and LIFSHITZ [1962]). The latter is defined most easily by
its Cartesian components

1 1/1
Tap = €0{ 5EI?Sap — EaEp ) + —( 5IBI?8up — BuBg (2.24)
2 no\ 2
withea, B =x,y, z.
A straightforward calculation yields:

OmEM
Jat

——pE—-JxB-V.T. (2.25)
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2.3.1. Angular momentum conservation
The angular momentum density of the electromagnetic field and its corresponding flu
may be defined respectively by the relations

AEm =T X TEM, r=rxT. (2.26)
The conservation law that governs the angular momentum, reads
oA
anz—rx(pEHxB)—v-r. (2.27)

3. Potentialsand fields, the Lagrangian

Not only the Maxwell equations themselves but also all related conservation laws hav
been expressed with the help of two key observables describing the microscopic ele
tromagnetic field, namel¥ and B. Strictly speaking, all relevant physics involving
electromagnetic phenomena can be described correctly and completely in terms of ti
variablesE andB solely, and from this point of view there is absolutely no need of
defining auxiliary potentials akin t& and B. Nevertheless, it proves quite beneficial
to introduce the scalar potenti®l(r, t) and the vector potentidgh(r, t) as alternative
electrodynamical degrees of freedom.

3.1. The scalar and vector potential

From the Maxwell equatiol¥ - B = 0 and Helmholtz’ theorem it follows that, within a
simply connected regiof?, there exists a regular vector fiedd- called vector potential
— such that

B=V x A, (3.1)

which allows us to rewrite Faraday'’s law (2.8) as

A
V x (E + 5) =0. (3.2)

The scalar potentidl emerges from the latter equation and Helmholtz’ theorem stating
that, in a simply connected regiagp there must exist a regular scalar functigrsuch
that

E=-VV - 3.3)
Although V andA do not add new physics, there are at least three good reasons to in
troduce them anyway. First, it turns out thad¢ksoN[1975], FEYNMAN, LEIGHTON
and S\NDS [1964a]) the two potentials greatly facilitate the mathematical treatment of
classical electrodynamics in many respects. For instance, the choice of an appropric
gauge? allows one to convert the Maxwell equations into convenient wave equations
for V andA for which analytical solutions can be derived occasionally. Moreover, the

2Gauge transformations will extensively be treated in Section 7.
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scalar potential/ provides an natural link to the concept of macroscopic potential dif-
ferences that are playing a crucial role in conventional simulations of electric circuits.

Next, most quantum mechanical treatments directly invoke the “potential” picture to
deal with the interaction between a charged particle and an electromagnetic field. |
particular, adopting the path integral approach, one accounts for the presence of elect
and magnetic fields by correcting the action functioheglated to the propagation from
(ro, 7o) to (r1, 1) along a world line, according to

r t
S[V,A]:S[0,0]—i-q(/ 2A.dr—/ldtV(r,z)>, (3.4)
r o

1
while the field-dependent Hamiltonian term appearing in the non-relativistic, one-
particle Schrédinger equatioh(@vr/0t) = Hr, takes the form

1 2
H=oo(p— gAY +qV (3.5)

with p = —iaV. Furthermore, the canonical quantization of the electromagnetic radia-
tion field leads to photon modes corresponding to the quantized transverse modes of t
vector potential.

Finally, the third motivation for adopting scalar and vector potentials lies in the per-
spective of developing new numerical simulation techniques. For example, it was ob
served recently (SHOENMAKER, MAGNUS and MeURIS [2002]) that the magnetic
field generated by a steady current distribution may alternatively be extracted from th
fourth Maxwell equation (Ampére’s law),

VxVxA=ugd (3.6)

by assigning discretized vector potential variables to lthks connecting adjacent
nodes. This will be discussed in Section 8.

3.2. Gauge invariance

In contrast to the electric field and the magnetic induction, neither the scalar nor the
vector potential are uniquely defined. Indeed, performing a so-called gauge transform:
tion

A'(r,t)=A(r, 1)+ Vx(r, 1,

ax(r,t)

ot
where the gauge fielg (r, r) is an arbitrary regular, real scalar field, one clearly ob-
serves that the potentials are modified while the electromagnetic t&ids) and
B(r, ) remain unchanged. Similarly, any quantum mechanical wave fungtionr)
transforms according to

W't ) =y(r 0y exp(igx (r. 1)),
Y, =g, o exp(—igx (r, 1),

whereas the quantum mechanical probability dengltyr, r)|? and other observable
guantities are invariant under a gauge transformation, as required.

(3.7)
Vi, )=V(,t)—
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3.3. Lagrangian for an electromagnetic field interacting with charges and currents

While the Maxwell equations are the starting point in the so-cafiddctive approach
one may alternatively adopt thrdeductive approacland try to “derive” the Maxwell
equations from a proper variational principle. As a matter of fact it is possible in-
deed to postulate a Lagrangian dendity, ) and an action functiona[L, 1o, t1] =

lgl L(r, t)dr such that the Maxwell equations emerge as the Euler—Lagrange equation
that make the action

55=0 (3.8)

stationary. While such a “derivation” is of utmost importance for the purpose of ba-
sic understanding from the theoretical point of view, the Lagrangian and Hamiltonian
formulation of electromagnetism may look redundant when it comes to numerical com
putations. However, we have quoted the Lagrangian density of the electromagnetic fiel
not only for the sake of completeness but also to illustrate the numerical potential of th
underlying variational principle.

The Lagrangian density for the interacting electromagnetic field is conventionally
postulated as a quadratic functional of the scalar and vector potential and their deriv:
tives:

2

1 oA

L= 580 VvV + E
where the field variableg andA are linearly coupled to the charge and current distri-
bution p andJ.

It is now straightforward to obtain the Maxwell equations as the Euler—Lagrange
equations corresponding to Eq. (3.9) provided that the set of field variables is chosen:
be eitherV or A,. The first possibility gives rise to

1
— —— |IVxAP+J-A—pV, (3.9)
2100

d [ oL } a[ oL L
B=x,y.z 0xp a(m) at a(a_t) v
Inserting all non-zero derivatives, we arrive at
d (V. dAp
B LAl Y 3.11
802%:8xﬁ (axﬂ LR ) P (3.11)
which clearly reduces to the first Maxwell equation
eoV-E=p (Gauss’ law) (3.12)
Similarly, the three Euler-Lagrange equations
d [ oL } d [ oL } oL
Z — =+t =|—= ==, a=x,y,z (3.13)
9Aq 3Aq
B=x,y,2 3)6/3 a(m) ot 8(7) IAq

lead to the fourth Maxwell equation

1 oE
— (V xB— go¥> =J (Ampére—Faraday’s law) (3.14)
1o
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It should be noted that, within the deductive approach, the electric and magnetic fiel
vectors araelefinedby the equations

aA
E=-VV-—"  B=VxA (3.15)

whereas the latter are directly resulting from the Maxwell equations in the inductive
approach. Mutatis mutandis, the two remaining Maxwell equatiénsB = 0 and
V x E = —9B/dr are a direct consequence of the operation of the vector identities
(A.34) and (A.35) on Egs. (3.15). It should also be noted that the Lagrangian density
may be written as
1 - 1

L= 2eoE 2MOB . (3.16)
So far, we have considered the Maxwell equations from the perspective that the charg
and the current densities are given and the fields should be determined. However,
was already mentioned in the introduction, the charge and current densities may als
be influenced by the fields. In order to illustrate the opposite cause—effect relation, w
consider the Lagrangian of charged particles moving in an electromagnetic field. The
Lagrangian is

N
1 1 1
Lzzémnvs+§/dr<eoE2—%Bz) —/dtpV—i—/er-A, (3.17)
n=1

where we defined the charge and current densities as

N
P, 1) =" qud(t —1p),
=1 (3.18)
N
I, =D qaVad(r 1)
n=1

and the particles’ velocities ag = dr,, /dt. Applying the Euler—Lagrange equations:

d /oL oL
- - =0, 3.19
dr (av,,) or, ( )
gives
d?r,,
mnm =an(rn,t)+q,,Vn X B(rn,[). (320)

The last term is recognized as the Lorentz force.
3.4. Variational calculus

Although the numerical implementation of the variational principle leading to the
Maxwell equations is not a common practice in numerical analysis, it may neverthe:
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less turn out to be a useful approximation technique for particular classes of prob
lems.

The exact solution of the Euler—Lagrange equations determines an extremum of tr
action functional which becomes stationary with respeetrty arbitrary variations of
the field functions that meet the boundary conditions invoked. On the other hand, bein
inspired by physical intuition or analogy with similar problems, one may be able to
propose a class of trial functions satisfying the boundary conditions and exhibiting the
expected physical behavior. If these trial functions can be characterized by one or mo
adjustable parametess, ..., «,, then one may calculate the valuesoaf ..., «, for
which the action integral becomes stationary. Although the corresponding numerice
value of the action will generally differ from the true extremum that is attained by
the exact solution, the resulting trial function may surprisingly lead to rather accurate
estimates of the physical quantities of interest. A nice example of this phenomeno
is given in FEYNMAN, LEIGHTON and SANDS [1964a] (Part Il, Chapter 19) where a
variational calculation of the capacitance of a cylindrical coaxial cable is presented an
compared with the exact formula for various values of the inner and outer radii of the
cable.

As an illustration, we have worked out the case of a long coaxial cable with a squar
cross section, for which the inductance is estimated within the framework of variationa
calculus.

Consider an infinitely long coaxial cable centered at#texis, consisting of a con-
ducting core, a magnetic insulator and a conducting coating layer. Both the core an
the coating layer have a square cross section of siz&sd b, respectively. The core
carries a current in the z-direction which is flowing back to the current source through
the coating layer, thereby closing the circuit as depicted in Fig. 3.1. Neglecting skir
effects we assume that the current density is strictly localized at the outer surface of tf
core and the inner surface of the coating layer, respectively. Moreover, the translation
symmetry in thez-direction reduces the solution of Maxwell’s equations essentially to a
two-dimensional problem whereas the square symmetry of the cable allows us to divid
an arbitrary cable cross-section into four identical triangles and to work out the solutior
for just one triangular area. In particular, we will focus on the reglo(see Fig. 3.2)
bounded by

x>0 —x<y<ax. (3.21)

=

_

FiG. 3.1. Infinitely long coaxial cable carrying a stationary surface current.
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y

\.
y=-=I

FIG. 3.2. Cross section of the coaxial cable.

Within this region, the current density takes the form

J(x, y) = J:(x)e&,

IT1 a 1 b
ro=g[5(v-3)-5(:-3))

where the factor 4 indicates that the regidnaccounts for only a quarter of the total
current flowing through the cable’s cross-section. The particular shape of the currer
density reflects the presence of perfect shielding requiring that the magnetic field b
vanishing forx < a/2 andx > b/2 whereasB, should abruptly jumpto a non-zero
value atr = a/2+¢ andx = b/2—¢ wheres — 0. The non-zero limiting values d,

are used to fix appropriate boundary ®y simply by integrating the-component of

the Maxwell equatiorV x B = 0 over the interval§a/2 — ¢,a/2 4+ ¢] and[b/2 — ¢,

b/2 + ¢], respectively. For instance, from

(3.22)

a/2+e
/ a0 [8By(x,y) B an(x,y)} _ kol (3.23)
aj2—e ax dy 4a
and
By(x,y)=0 forx <a/2, (3.24)
it follows that
. nuol
I By(x,y)=— 3.25
x%llr/ga‘*' J (x y) 4a ( )

3f the current density were smeared out, the magnetic field would gradually tend to zero inside the cor
and the coating layer.
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and similarly
. nol
lim B,(x,y)=—. 3.26
x—1/26— ° . ) 4b (3.26)

Finally, the boundary conditions reflecting the connection of adjacent triangular area
are directly dictated by symmetry considerations requiring that the magnetic field vecto
be orthogonal to the segmenté= x?:

b
By(x, £x) = B, (x, £x) for 6—21 <x<3z. (3.27)

Next, we propose a set of trial functions fB; and B, that meet the above boundary
conditions as well as the symmetry requirement #athange sign a = 0:

—pol [1 x2—y?
By(x,y) = S a2 | 3.28
(r.y)=—3 y[x2+a 7 (3.28)
1
By(x.y) = ‘;Lx, (3.29)

if (x,y) lies inside the trapezoid/2 < x < b/2,|y| < x and B, = B, = 0 elsewhere.
The parametew is a variational parameter that will be chosen such that the action
functional attains a minimum with respect to the class of trial functions generated by
Egs. (3.28) and (3.29). Since no dynamics is involved in the present problem, the tim
integral occurring in the action integral becomes irrelevant and the least action principl
amounts to the minimization of the magnetic energy stored in the insulator.

Anticipating the discussions of Chapter VI, we may calculate the inductarden
electric circuit by equating /2L 12 to the magnetic energy stored in the circuit:

1 1
—L12=UM=—/ dr |BJ?
2 210 Jo
4 b/2
_2,“0 a/2

where 2 refers to the volume of the insulator ahds the length of the cable and the
pre-factor 4 accounts for the identical contributions from the four identical trapezoidal
areas. From Eq. (3.30) we obtain the following expressiorfdhe inductance per unit
length:

dxf dy[BZ(x.y) + B5(x. )], (3.30)

L 4 b/2 X
£ET=

o2 )y ﬂdY[Bf(x,yHBf(x,y)]. (3.31)

Since the trial functions defined in Egs. (3.28) and (3.29) are chosen to meet the boun
ary conditions, the variational problem is reduced to the minimizatidief or equiv-
alently, £ with respect tax. The calculation of£(«) is elementary and here we only
guote the final result:

L@ 1 w*—1)

—lo
o 69" Z15040

[112¢ + (u* + 1)er?] (3.32)
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FiG. 3.3. Inductance per unit length: variational estimate (full line) versus numerical evalugtion (

with u = b/a. Clearly, the required minimum correspondingot6(«)/da = 0, is ob-
tained for
56
=— . 3.33

* 1+ ut ( )
Finally, inserting the above result into Eq. (3.31), we obtain the inductance per lengtt
as follows:

L_1. 7 (-1

w0 69" T 280wt + 1)

The variational result is plotted against the “exact” numerical evaluation of the induc-
tance in Fig. 3.3. Being a variational estimate, Eq. (3.34) provides a rigorous uppe
bound for the true inductance.

(3.34)

4. The macroscopic Maxwell equations
4.1. Constitutive equations

The Maxwell equations contain source terms being the charge densities and the cL
rents. In this section we will present the physics behind these terms and derive the
precise form. We will see that the charge and current formulas depend very much o
the medium in which these charges and currents are present. For solid media we ¢
distinguish between insulators, semiconductors and conductors. The corresponding €
pressions differ considerably for the different materials. Furthermore in the gas phas
or the liquid phase again other expressions will be found. In the latter case we ente
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the realm of plasma physics and magnetohydrodynamics. These topics are beyond t
present scope.

Before starting to derive the constitutive equations we need to address anoth
machinery, namely statistical physics. From a philosophical point of view, statistical
physics is a remarkable part of natural science. It does not contribute to a deeper unde
standing of the fundamental forces of nature, yet it introduces a fundamental constant «
nature, the Boltzmann constaii = 1.3805x 1073 J/K. Furthermore, there has been a
discussion over several generations of physicists, debating the reality of irreversibility
The dispute in a nutshell is whether the idea of entropy increase is a sensible one, co
sidering the fact that the microscopic dynamics is time-reversal invariant. As has bee
demonstrated in MGNUS and SSHOENMAKER [1993] the time reversal invariance is
broken in the limit of infinitely many degrees of freedom. In practice, ‘infinity’ is al-
ready reached for 30 degrees of freedom in the study a6 NUS and SSHOENMAKER
[1993]. Therefore, we believe that the dispute is settled and statistical physics is ‘soli
as arock’.

4.2. Boltzmann transport equation

In this section we will consider the assumptions that lead to the Boltzmann transpol
equation. This equation serves as the starting point for deriving the formules for the
constitutive equation for the currents in metals, semiconductors and insulators.

When describing the temporal evolution of many particles, one it not interested ir
the detailed trajectory of each individual particle in space and time. First of all, the
particles are identical and therefore their trajectories are interchangeable. Secondly, t!
individual trajectories exhibit stochastic motion on a short time scale that is irrelevan
on a larger time scale. In a similar way, the detailed knowledge at a short length scale
also not of interest for understanding the behavior at larger length scales. Thus we mu
obtain a procedure for eliminating the short-distance fluctuations from the descriptiot
of the many particle system. In fact, to arrive at a manageable set of equations such
procedure should also reduce the number of variables for which the evolution equatior
need to be formulated.

There are a number of schemes that allow for such a reduction. All methods appl
some kind of coarse graining, i.e., a number of microscopic variables are bundled ar
are represented by a single effective variable. In this section, we discuss the method tt
is due to Boltzmann and that leads to the Boltzmann transport equation.

ConsiderN particles with generalized coordinatgs i =1, ..., N, and generalized
momentap;, i = 1,..., N. Each particle can be viewed as a point of the so-called
u-space, a six-dimensional space, spanned by the coordimgtesn this light, theN
particles will trace outV curves in phase space as time evolves. Let us now subdivide
the phase space into cells of siag2 = A¢g3Ap3. Each cell can be labeled by a pair
of coordinatesQ; and momentd&;. The number of particles that is found in the cell
£2; is given by £ (P;, Q;, t). We can illustrate the role of the cell size settizng?. The
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function £ (P;, Q;, t) is given by

N
1@ =Y [ Epdas(p-pin)sa—am). (1)
i=1

We can illustrate the role of the coarse-graining scaling parametrif we take the

size of the cell arbitrary small then we will occasionally find a particle in the cell. Such a
choice of A$2 corresponds to a fully microscopic description of the mechanical system
and we will not achieve a reduction in degrees of freedom.

On the other hand, if we chooges2 arbitrary large, then all degrees of freedom
are represented by one (static) pojitand we have lost all knowledge of the system.
ThereforeA$2 must be chosen such that it acts as the “communicator” between the
microscopic and macroscopic worlds. This connection can be obtained by setting th
size of the cell large enough such that each cell contains a number of particles. Withi
each cell the particles are considered to be in a state of thermal equilibrium. Thus fo
each cell a temperatuf® and a chemical potential; can be given. The (local) thermal
equilibrium is realized if there occurs a thermalization, i.e., within the cell collisions
should occur within a time intervaz. Therefore, the cell should be chosen such that
its size exceeds at least a few mean-free path lengths.

On the macroscopic scale, the cell labR]sand Q; are smooth variables. The cell
size is the denoted by the differentiakd= d®p d®%;. Then we may denote the distribu-
tion functions asf (P, Q, 1) = f(p, g, t). From the distribution functiorf (p, q, ¢), the
particle density function can be obtained from

/ &p f(p,a.1)=p@,1). (4.2)

As time progresses fromto ¢ + §¢, all particles in a cell ap, q will be found in a cell
atp’, ', provided that no collisions occurred. Hence

f,q,0)dpdg = f(p+Fsr, q+vst, 1+ 8t)dp dq’. (4.3)

According to Liouville’s theorem (BWLER [1936], HUANG [1963]), the two volume
elements 8p d®q and #p’d®¢’ are equal, which may appear evident if there are no
external forces. If there are forces that do not explicitly depend on time, any cubic
element deforms into a parallelepiped but with the same volume as the original cube
Taking also into account the effect of collisions that may kick particles in or out of
the cube in the time interval, we arrive at the following equation for the distribution
function

ad a
(§+%-Vq+F.Vp>f(p,q,t)= (a—]:)c (4.4)
where the “collision term{df/dt). defineghe effects of scattering. A quantitative es-

timate of this term is provided by studying the physical mechanisms that contribute tc
this term. As carriers traverse, their motion is frequently disturbed by scattering due
to collisions with impurity atoms, phonons, crystal defects, other carriers or even with
foreign particles (cosmic rays). The frequency at which such events occur can be est
mated by assuming that these events take place in an uncorrelated way; in other wor
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two such events are statistically independent. Each physical mechanism is described
an interaction Hamiltonian or potential functiotig(r) that describes the details of the
scattering process. The matrix element that describes the transition from a carrier in
state with momentunp) to a state with momentunp’) is

1 i i
Hyp =& / dre 7P " Us(nerP”, (4.5)

wheres?2 is a box that is used to count the number of momentum states. This box is o
the sizeAq® as defined above.

The evaluation of the transition amplitude relies on Fermi's Golden Rule. The transi-
tion rate then becomes

21
S(E'.p) = 7|Hp’p|25(E(p/) — E(p) — AE), (4.6)

whereAE is the change in energy related to the transitiom\ K = 0, the collision is
elasticThe collision term is the result of the balance between kick-in and kick-out of
the transitions that take place per unit time:

of\ , S
(§>C—Z(S(p,p)f(q,p,r) S, ) (@, p,1)). 4.7)

o
Once more it should be emphasized that although this balance picture is heuristic, lool
reasonable and leads to a description of irreversibility it does not explain the latter. Th
collision term can be further fine-tuned to mimic the consequences of Pauli’s exclusiol
principle by suppression of multiple occupation of states:

af _ , ) ~
(%) = Zlse.pr@p.n@-s@p.n)

-S©.pf@.p.01- f@p.n)] (4.8)

4.3. Currents in metals

In many materials, the conduction current that flows due to the presence of an electr
field, E, is proportional tcE, so that

J=0E, (4.9)

where the electrical conductivity is a material parameter. In metallic materials,
Ohm’s law, Eqg. (4.9) is accurate. However, a fast generalization should be allowed fo
anisotropic conducting media. Moreover, the conductivity may depend on the frequenc
mode such that we arrive at

Ji(®) = 0ij(0)E(w) (4.10)

ando is a second-rank tensor. The derivation of Ohm’s law from the Boltzmann trans-
port equation was initiated by Drude. In Drude’s modelR(IDE [1900a], DRUDE
[1900D]), the electrons move as independent particles in the metallic region sufferin
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from scattering during their travel from the cathode to the anode. The distribution func-
tion is assumed to be of the following form:

£, p.0) = fo(q,p.1) + fa(@.p. 1), (4.11)

where fy is the equilibrium distribution function, being symmetric in the momentum
variablep, and fa is a perturbation due to an external field that is anti-symmetric in the
momentum variable. The collision term in Drude’s model is crudely approximated by
the following assumptions:

e only kick-out,

e all S(p, p’) are equal,

e no Pauli exclusion principle,

e no carrier heating, i.e., low-field transitions.
The last assumption implies that only the anti-symmetric part participates in the col
lision term (LUNDSTROM [1999]). Defining a characteristic timg, the momentum-
relaxation time, we find that

f\ _ fa 1 )
(§>c_ - and rp_%:S(p,p). (4.12)

Furthermore, assuming a constant electric fleldnd a spatially uniform charge elec-
tron distribution, the Boltzmann transport equation becomes

_qE'V(fO‘FfA):_{—A- (4.13)
p
Finally, if we assume thaf ~ fo « exp(—p2/2mkgT) then
T
fAzqtpE-foO::—pEovfo. (4.14)
gT

Another way of looking at this result is to considgr= fo + f4 as a Taylor series
for fo:

F(P = fo(p) + (q1pE) - Vp fo(p) + -+ - = fo(P + qTpE). (4.15)
This is adisplacedMaxwellian distribution function in the direction opposite to the
applied fieldE. The current density i8 = gnv follows from the averaged velocity

3 2
1 gl F2OIMI®) P
J&Bp fp) m

The electron mobilityu,,, is defined as the proportionality constant in the constitutive
relationd = gu,nE, such that

T
=10 (4.17)
m

(4.16)

So we have been able to “deduce” Ohm’s law from the Boltzmann transport equation.

It is a remarkable fact that Drude’s model is quite accurate, given the fact that nc
reference was made to Pauli's exclusion principle and the electron waves do not scatt
while traveling in a perfect crystal lattice. Indeed, it was recognized by Sommerfeld tha
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ignoring these effects will give rise to errors in the calculation of the order &f it

both these errors cancel. Whereas Drude’s model explains the existence of resistan
more advanced models are needed to accommodate for the non-linear current-volta
characteristics, the frequency dependence and the anisotropy of the conductance
some materials. A “modern” approach to derive conductance properties was initiate
by KuBo [1957]. His theory naturally leads to the inclusion of anisotropy, non-linearity
and frequency dependence. Kubo'’s approach also serves as the starting point to cal
late transport properties in the quantum theory of many particles at finite temperatur
(MAHAN [1981]). These approaches start from the quantum-Liouville equation and the
Gibb’s theory of assembles on phase space. The latter has a more transparent gene
ization to the many-particle Hilbert space of quantum states.

Instead of reproducing here text book presentations of these various domains «
physics, we intend to give the reader some sense of alertness, that the validity of son
relations is limited. In order to push back the restrictions, one needs to re-examine tt
causes of the limitations. Improved models camgbessedby widening the defining ex-
pression as in the foregoing case where the sealsas substituted by the conductivity
tensore. The consequences of these guesses can be tested in simulation experimer
Therefore, simulation plays an important role to obtain improved models.

In the process of purchasing model improvements a few guidelines will be of help
First of all, the resulting theory should respect some fundamental physical principles
Thecausalityprinciple is an important example. It states that there is a retarded tempora
relation between cause and effect. The causality principle is a key ingredient to deriv
the Kramers—Kronig relations, that put severe limitations on the real and imaginar
parts of the material parameters. Yet these relationships are not sufficient to determit
the models completely, but one needs to include additional physical models.

4.4. Charges in metals
Metallic materials are characterized as having an appreciable conductivity. Any exces

free charge distribution in the metal will decay exponentially to zero in a small time.
Combining Gauss’ law with the current continuity equation

a
V. (cE) = p, V-(oE):a—f (4.18)
and considering ando constant, we find
a o o
o =——p, p:poexp(——t>. (4.19)
at & £

In metallic materials, the decay time= ¢ /o is of the order of 10%8 s, such thap =0
at any instant.

For conducting materials one usually assuivie® = 0 and for constant andp, the
electric fieldE and current density are constant (GLLIN [1960]). A subtlety arises
whene andp are varying in space. Considering the steady-state version of above set c
equations, we obtain

V.eE)=p, V-.(E)=0. (4.20)
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The fieldE should simultaneously obey two equations. Posed as a boundary-value prot
lem for the scalar potential/, we may determiné/ from the second equation and
determineo as a “post-processing” result originating from the first equation.

4.5. Semiconductors

Intrinsic semiconductors are insulators at zero temperature. This is because the ba
structure of semiconductors consists of bands that are either filled or empty. At zer
temperature, the chemical potential falls between the highest filled band which is calle
the valence band and the lowest empty band which is named the conduction band. Tl
separation of the valance and conduction band is sufficiently small such that at sorr
temperature, there is an appreciable amount of electrons that have an energy above
conduction band onset. As a consequence these electron are mobile and will contribu
to the current if a voltage drop is put over the semiconducting material. The holes in the
valance band act as positive charges with positive effective mass and therefore they al
contribute to the net current. Intrinsic semiconductors are rather poor conductors bt
their resistance is very sensitive to the temperatwexp(— A/ T)). By adding dopants

to the intrinsic semiconductor, the chemical potential of the electrons and holes may b
shifted up or down with respect to the band edges. Before going into further description
of dopant distributions, we would like to emphasize the following f&etch thermo-
dynamic system in thermal equilibrium has constant intensive conjugated variables
particular, the temperaturd,, conjugated to the internal energy of the system and the
chemical potentialy, conjugated to the number of particles in the systems are constant
for a system in equilibrium. Therefore, if the dopant distribution varies in the device
and the distance between the chemical potential and the band edges is modulated, tt
for the device being in equilibrium, the band edges must vary in accordance with the
dopant variations, as illustrated in Fig. 4.1.

4.6. Currents in semiconductors

Whereas in metals the high conductivity prevents local charge accumulation at an de
tectable time scale, the situation in semiconductors is quite different. In uniformly dopec
semiconductors, the decay of an excess charge spot occurs by a diffusion process, tl
takes place on much longer time scale. In non-uniformly doped semiconductors, ther

N-type region P-type region

FiG. 4.1. Band edge modulation by doping.
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are depletion layers, or accumulation layers of charges that permanently exists even
thermal equilibrium.

The charge and current densities in semiconductors follow also from the gener:
Boltzmann transport theory, but this theory needs to be complemented with specifi
details such as the band gap, the dopant distribution, and the properties related to t
interfaces to other materials.

Starting from the Boltzmann transport equation, thement expansiononsiders
variables that are averaged quantities as far as the momentum dependence is concert
The generic expression for the moment expansion is

1 0
—}:mm( +—‘M+FV)fm%0=5§:@m(£), (4.21)
p Cc

whereQ (p) is an polynomial in the componentspfnd the normalization/k2 allows
for a smooth transition to integrate over all momentum states in the Brillouin zone

= Z d3k. (4.22)

47r3

The zeroth order expansion givesy(ADSTROM[1999])

on lV 3
or ¢ " (4.23)
ap 1

-V.Jy=U
8t+ P

and where the various variables are:

electrons holes
1 1
wm=5;ﬁmwx mn=5;ﬁmm»
In(r,t) = —gn(r,t)vn(r, 1), Jp(r, 1) =gp(r,H)vp(r, 1), (4.24)

1 1
vn(r,t)=5zn%fn(p,r,t), Vp(ra[)ZEZ%fp(per)
p p

and

1 of\ _ o
U_E;(EL_R G. (4.25)

The particle velocities give an expression for the current densities but by choosin
Q(p) = p, we obtain the first moment of the expansion that can be further approxi-
mated to give alternative expressions for the current densities. Defining the momentu
relaxation timerp as a characteristic time for the momentum to reach thermal equi-
librium from a non-equilibrium state and the electron and hole temperature tensor
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(FORGHIERI, GUERRRI, CIAMPOLINI, GNUDI and RUDAN [1988])

1kT~(rr)—121<- (P, ) (.1, 1)
2” Bin,jll, =0 - o pi —mun;)(pj —muvn ;) fn(P, I,

1
= —nkgTn(r, )i},
2 (4.26)

1 1 1
SPkBTpij (1,0 = = 3 o (pi = mvp ) (pj = mvp, ) fo(, T, )
P

1
= EPkBTp(r»t)(Sij,

where the last equality follows from assuming an isotropic behavior, then one arrives ¢
the following constitutive equation for the currents in semiconducting materials

J k
Jn+ntpn— (_n) =qHnn (E + —BVTn> +qDnVn,
n q (4.27)

d/J kg
Jp—i—ptppE(;p) :qupp<E — ?VTP> —qDpVp.

The momentum relaxation times, the electron and hole mobilities and the electron an
hole diffusivities are related through the Einstein relations

p_rel  _ kT (4.28)

The second terms on the left-hand sides of Eq. (4.27) aredheective currentsThe
procedure of taking moments of the Boltzmann transport equation always involves :
truncation, i.e., theith order equation in the expansion demands information of the
(n + Dth order moment to be supplied. For the second-order moment, one thus neec
to provide information on the third moment

1
o 2 PipiPef T, 0). (4.29)
p

In the above scheme the second-order expansion leads taythledynamic model
(FORGHIERI, GUERRRI, CIAMPOLINI, GNUDI and RUDAN [1988]). In this model the
carrier temperatures are determined self-consistently with the carrier densities. The cl
sure of the system of equations is achieved by assuming a model for the term (4.2
that only contains lower order variables. The thermal fipbeing the energy that gets
transported through thermal conductance can be expressed as

1 1
Q=3 otp (B —v) = v, (4.30)
p

wherex = kp, kp are the thermal conductivities.
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Besides the momentum flux, a balance equation is obtained for the energy flux:

W) 1y .5, E-Jn+”(%> :
o o Ve (4.31)
2 (pwp)

N R
dt S=E-dotr 7, .

The energy flux is denoted &andw is the energy density. In the isotropic approxima-
tion, the latter reads

3 1, 3 1,
Wnp = EkB Tn + Emnvn, Wp = EkB Tp + Empvp (432)

The energy flux can be further specified as

J
Sh=nVTh— (wn+ kBTn);n,
3 (4.33)
Just as for the momentum, one usually assumes a characteristicrginfier; a non-

equilibrium energy distribution to relax to equilibrium. Then the collision term in the
energy balance equation becomes

dwn wp — w*
nfl— ) =—n—— — Uwn,
ot c Ten

dwp wp — w*
o )= P U
t c Tep

andw™ is the carrier mean energy at the lattice temperature. In order to complete th
hydrodynamic model the thermal conductivities are given by the Wiedemann—Franz la
for thermal conductivity

(4.34)

kg \?
K = <;> To(T)A(T). (4.35)

Herein isA(T) a value obtained from evaluating the steady-state Boltzmann transpor
equation for uniform electric fields and(T) = g uc the electrical conductivityd =
n, p). If a power-law dependence for the energy relaxation times can be assumed, i.e.

w v
Te= TO(kBT*) : (4.36)

thenA(T) =5/2+v. Occasionallyy is considered to be a constant£ 0.5). However,
this results into too restrictive an expression for théw). ThereforeA(T) is often
tuned towards Monte-Carlo data.

Comparing the present elaboration on deriving constitutive equations from the Boltz
mann transport equation with the derivation of the currents in metals we note that w
did not refer to a displaced Maxwellian distribution. Such a derivation is also possible
for semiconductor currents. The method was used tyA$TON [1962]. A difference
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pops up in the diffusion term of the carrier current. For the above results we obtained

J(diffusive par) x uVT. (4.37)

In Stratton’s model one obtains

J(diffusive pary o« V(uT), (4.38)
the difference being a term
dlogu(T)
= —. 4.
§ alog(T) (4.39)

Stratton’s model is usually referred to as #reergy transpormodel.

For the semiconductor environment, the Scharfetter-Gummel scheme provides
means to discretize the current equations on a gridHERFETTER and GUMMEL
[1969]). In the case that no carrier heating effects are considéras ¢onstant) the
diffusion equations are

J=qucE+kTuVe, (4.40)

where the plus (minus) sign refers to negatively (positively) charged particles and
denotes the corresponding carrier density. It is assumed that both the cuarghthe
electric fieldE are constant along a link and that the potentiavaries linearly along
the link. Adopting a local coordinate axiswith u = 0 corresponding to node and

u = h;; corresponding to nodg we may integrate Eq. (4.40) along the lifkto obtain

dc
du’
which is a first-order differential equation in The latter is solved using the aforemen-

tioned boundary conditions and gives rise to a non-linear carrier profile. The cuyrent
can then be rewritten as

i:—i3< ﬁ”)Ci+iB<ﬁl>q, (4.42)
Wij hij o hij \ «

using the Bernoulli function

(4.41)

Vi-V;
Jij=quije\ — T kT wij
ij

B(x) = (4.43)

X
e —1
Furthermore, we used = +k7 andg;; = q(V; — V;).
Before turning to the consideration of insulating materials, we briefly discuss the
influence of strong magnetic fields on the currents. These fields will bend the trajectorie
due to the Lorentz force. In the derivation of the macroscopic current densities from the
Boltzmann transport equation, we should include this force. The result is that in the
constitutive current expression we must make the replacefaentE + gv x B. Since
J=gcv, we arrive at the followingmplicit relation forJ:

J=0E+pud xB, (4.44)
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whereo = guc is the conductivity ande is the mobility. This relation can be made
explicit by solving the following set of linear equations:

1 —uB; By Iy oE,
uB; 1 —uBx || Jy |=| 0E, (4.45)
—uBy  uBy 1 J; oE,

of which the solution is:
J=[0E+ 1oE x B+ u?o (E-B)B]/(1+ u?B?). (4.46)

Above considerations are required for the description of Hall sensors. Here we wil
not further elaborate on this extension, nor will we consider the consequences of ar
isotropic conductivity properties.

4.7. Insulators

So far, we have been rather sloppy in classifying materials as being an insulator, serr
conductor or metal. We have referred to the reader’s qualitative awareness of the co
duction quality of a material under consideration. For the time being we will sustain
in this practice and define insulators as having a negligible conductivity. Therefore, ir
an insulating material there are no conduction currents. The constitutive equatibn for
becomes trivial.

J=o0. (4.47)

Recently, there is an increased interest in currents in insulating materials. The gate c
electric material Si@that has been used in mainstream CMOS technology has a ban
gap of 3.9 eV and therefore acts as a perfect insulator for normal voltage operation col
ditions around 3 V and using 60 A thick oxides. However, the continuous down scaling
of the transistor architecture requires that the oxides thicknesses are also reduced. W
the current device generation (100 nm gate length), the oxide thickness should be le
than 20 A. For these thin layers, direct tunneling through the layer barrier becomes
dominating current leakage in integrated CMOS devices.

4.7.1. Subband states and resonances
A planar p-type silicon metal-insulator-semiconductor (MIS) capacitor consisting of a
gate electrode, a gate stack and a silicon substrate is considered. The gate stack he
thicknessT,y ranging from 15 to 40 A and containéoy layers of insulating material
such as SiQ, SisNis, etc. When a positive gate voltadf is applied to the gate elec-
trode, the electrons residing in the electron inversion layer formed near the Si/insulatc
interface, are coupled to both the gate and the gate stack through non-vanishing tunn
ing amplitudes. As a result, measurable tunneling currents are observed that involve
net migration of electrons from the leaky inversion layer to the gate electrode.

In this section, we have summarized the approach followed wGNUS and
SCHOENMAKER [2000a] and M\GNUS and SSHOENMAKER [2002] to calculate these
tunneling currents.
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FIG. 4.2. Conduction band profile of a MIS capacitor. (Figure reproduced by permission of the Americal
Institute of Physics and Springer Verlag.)

Thez-axis is chosen to be perpendicular to the Sitterface that is taken to be the
(x, y)-plane. The gate, gate stack and semiconductor region are definedoby 7z <
toxs —tox < z < 0 and 0< z < 400, respectively, as depicted in Fig. 4.2.

All electron energies including the chemical potential, are measured with respec
to the edge of the conduction band at the Si/insulator interface. The potential energ
takes a uniform value in the gate region whereas it approaches thé/gmitthe bulk
substrate.

The whole MIS capacitor can be treated as a single quantum mechanical entity fo
which the Schrédinger equation needs to be solved. Adopting the effective mass aj
proximation for the electrons in the different valleys, and the Hartree approximation to
describe the electron—electron interaction in the inversion layer, the three-dimension:
time-independent Schrédinger equation for the semiconductor region takes the form

m2/ 1 9?2 1 92 1 92
—;( )wa(r,zw[U(z)—E]wa(r,z):o,
(4.48)

wherer = (x, y), « is a valley index anah,, mq, andm,, denote the components of
the effective mass tensor along the principle directions of the silicon valleys. The sam
equation applies to the other regions upon insertion of appropriate effective masse
Assuming translational invariance in the lateral directions, one may write each one
electron wave function as a plane wave modulated by a one-dimensional envelope wa
functiong, (W, z) and the corresponding one-electron eigenené&igy(W) as follows:

Mgy 0X2 My 0y2  mgy, 972

o (W, 2),

1
VExLy (4.49)

RK B
Eotk(W):E — 4+ + W,

Mex Myy

Yak (W, r,2) =
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wherek = (ky, ky) and¢, (W, z) is an eigenfunction of the one-dimensional Schrodin-
ger equation

12 d2pe (W, 2)
2my,; dz2

corresponding to the energy eigenvaliie

Since the size of the whole system is assumed to be large in all directions, the ener
spectrum will be dense and in particular the eigenvaliiesan take all real values ex-
ceedingUc. Moreover, the complete set of wave functions solving Eq. (4.50) constitutes
an orthogonal, continuous basis for which a proper delta-normalization is invoked:

+[U@) — W]pa(W,2) =0 (4.50)

(¢a(W/)|¢a(W)>E/ dz ¢ (W, 2)¢pe (W, 2) = S(W' = W). (4.51)

Although the insulating layers are relatively thin, the energy barriers separating the
inversion layer from the gate electrode are generally high enough to prevent a floo
of electrons leaking away into the gate. In other words, in most cases of interest th
potential well, hosting the majority of inversion layer electrons, will be coupled only
weakly to the gate region. It follows from ordinary quantum mechanic€6GE
[1974]) that the relative probability of finding an electron in the inversion layer well
should exhibit sharply peaked maxima for a discrete sé¥e¥alues. The latter are
the resonant energies corresponding to a set of virtually bound states, also called qua
bound states, that may be regarded as the subband states of the coupled system. T
becomes intuitively clear when the thickness of the barrier region is arbitrarily increase
so that the coupling between the gate electrode and the semiconductor region vanishi
In this limiting case, the resonant energies will coincide with the true subband energie
of the isolated potential well while the resonant wave functions drop to zero at the
interface plane = 0. Similarly, the spectral widths of the resonant wave functions tend
to zero and the resonance peaks turn into genuine delta functid#s of

The above picture provides a way to investigate the subband structure of an inversic
layer. By applying a transfer matrix approach to a piecewise constant potential profile
and tracing the maxima of the squared wave function amplitudes as a functidn of
the continuous wave functions can be calculated. Once the sequence of resonant s
band energiegW,; |l =1, 2, ...} and the corresponding wave functions are found, one
may analytically determine the spectral widths that are directly related to the secon
derivative of the wave functions, with respectiig evaluated at the resonant energies.

Within the Hartree approximation, the potential energy prdfile) needs to be de-
termined by solving self-consistently the above mentioned Schrddinger equation (4.5(
and the one-dimensional Poisson equation

d’U 2
d;) - —Z—S[n(z) — p(2) + Na@], (4.52)

wheren(z), p(z), Na(z) andes denote, respectively, the electron, hole and acceptor
concentrations and the permittivity in the silicon part of the structure. In the presen
work we have not treated the occurrence of free charges in the gate and the gate sta
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On the other hand, charges trapped by interface states are incorporated through a surf:
charge density;;.

The potential energy is modeled by a piecewise constant profile defined on a one
dimensional mesh reflecting the gate stack layers and a user-defined number of substr
layers. In this light the self-consistent link betweegz) and U (z) is not provided for
each point in the inversion layer but rather for their averages over the subsequent cel
of the mesh. This approach is adequate whenever the number of cells is sufficientl
large and it has been successfully employed in the past$FJEN NOTEBORN and
LENSTRA[1990], NOTEBORN, JOOSTEN LENSTRA and Kaskl [1990]). In the fol-
lowing however, we focus on the procedure to extract the resonant energies and spect
widths.

The solutions to the Schrdédinger equation for the layered structure can now com
pactly be written as linear combinations:of andu», being generic basis functions in
each cell.

In order to trace the resonance peaks and spectral widths, a numerically stable pro
ability function scanning the presence of an electron in the inversion layer as a functiol
of W, needs to be determined. Rewriting the gate and substrate wave functions as

Cg,o SiN(kg o (z + tox) +6e)  for z < —tox,
= ’ ’ 4.53
fa(W.2) { Coo €XP(—ks o (z — a)) forz > a, (4.53)
one obtains the relative probability of an electron for being in the inversion layer:
Csa(W) 2
P,(W)= ‘— . 4.54
¢ Cga(W) (459

Emerging as resonance energies in the continuous energy spectrum, the subband er
gies W, correspond to distinct and sharply peaked maxima offh@V), or well de-
fined minima ofPa—l(W), even for oxide thicknesses as low as 10 A. As a consequence,
expandingP;l(W) in a Taylor series aroun® = W,;, we may replace?, (W) by a

sum of Lorentz-shaped functions:

2

r
Pa(W) = > Py(Wy o , 4.55
(W) le ( ”(W—Wal)2+r§, (4.55)

where the resonance width‘§°-l are related to the second derivative}gfl(W) through

2 1 2P, -
[ =2P;  (Wy) > (War) (4.56)
aw
and can be directly extracted from the transmission matrices and their derivatives, eva
uated at = W,;.

4.7.2. Tunneling gate currents

The subband structure ofiatype inversion layer channel may be seen to emerge from
an enumerable set of sharp resonances appearing in the continuous energy spectrun
the composed system consisting of the gate contact, the gate stack (insulating layer
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the inversion layer and the substrate contact. In particular, the discreteness of the su
band states is intimately connected with the presence of energy barriers in the gate sts
that restrict the coupling between the channel and the gate regions and therefore the a
plitude for electrons tunneling through the barriers (see Fig. 4.2). Clearly, the smallnes
of the above mentioned coupling is reflected in the size of the resonance width — ¢
equivalently, the resonance lifetimg; = #/2I,; — as compared to the resonance en-
ergy.

It is tempting to identify the gate leakage current as a moving ensemble of elec
trons originating from decaying subband states. However, before such a link can b
established, a conceptual problem should be resolved. Although intuition obviousl
suggests that an electron residing in a particular subbamdshould contribute an
amount—e/t,,; to the gate current, this is apparently contradicted by the observation
thatthe current density corresponding to each individual subband wave function identi-
cally vanishesThe latter is due to the nature of the resonant states. Contrary to the cas
of the doubly degenerate running wave states having energies above the bottom of t
conduction band in the substrate, the inversion layer resonant states are non-degenel
and virtually bound, and the wave functions are rapidly decaying into the substrate are
As a consequence, all wave functions are real (up to an irrelevant phase factor) and tl
diagonal matrix elements of the current density operator vanishes. The vanishing of tr
current for the envelope wave functions was also noteduRES OLIVIO and Rcco
[1991], MAGNUS and SSHOENMAKER[1999]. Therefore, we need to establish a sound
physical model (workaround) resolving the current paradox and connecting the resc
nance lifetimes to the gate current. Since we do not adopt a plane-wave hypothesis f
the inversion layer electrons in the perpendicular direction, our resolution of the parado
differs from the one that is proposed iw@e, OLIVIO and Rcco [1991].

The paradox can be resolved by noting that the resonant states, though diagonal
ing the electron Hamiltonian in the presence of the gate bias, are constitutiog-a
equilibrium state of the whole system which is not necessarily described by a Gibbs
like statistical operator, even not when the steady state is reached. There are at least t
alternatives to solve the problem in practice.

The most rigorous approach aims at solving the full time dependent problem startin
from a MIS capacitor that is in thermal equilibriun¥d = 0) until some initial time
t = 0. Beforet = 0, the potential profile is essentially determined by the gate stack
barriers and, due to the absence of an appreciable inversion layer potential well, &
eigen solutions of the time independent Schrddinger equation are linear combinatior
of transmitted and reflected waves. In other words, almost all states are carrying currer
although the thermal average is of course zero (equilibrium). However, it should be
possible to calculate the time evolution of the creation and annihilation operators relate
to the unperturbed states. The perturbed resonant states, defining the subband struct
for Vg > 0, would serve as a set of intermediate states participating in all transitions
between the unperturbed states caused by the applied gate voltage. Although such
approach is conceptually straightforward, it is probably rather cumbersome to be carrie
out in practice.

One may consider a strategy that is borrowed from the theory of nuclear deca
(MERZBACHER[1970], LANDAU and LIFSHITZ [1958]). The resulting model leads to a
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concise calculation scheme for the gate current. Under the assumption that the resonar
widths of the virtual bound states are much smaller than their energies, the correspon
ing real wave functions can be extended to the complex plane if the resonance energi
and the corresponding resonance widths are combined to form complex energy eige
values of the Schrédinger equation AEINUS and SSHOENMAKER [2000a]). Such an
extension enables us to mimic both the supply (creation) and the decay (disintegratior
of particles in a resonant bound state by studying the wave functions in those regions «
space where the real, i.e., non-complex, wave functions would be standing waves eith
asymptotically or exactly.

Within the scope of the this work, scattering by phonons, or any other material depen
dent interactions is neglected. Moreover, electron—electron interaction is treated in th
Hartree approximation that, in practice, amounts to a self-consistent solution of the one
particle Schrédinger equation and Poisson’s equation. Therefore, bearing in mind th:
normal transport through the gate stack is limited by tunneling events, the time-revers:
symmetry breaking between decaying and loading states can be inserted through t
boundary conditions for the statistical operator corresponding to the non-interacting Li
ouville equation. Consequently, the gate current density is given by

Z MaxMay g 1+ exp(ﬁ(E.: — Wa —eVi)) . (457)
1+ exp(B(Er — War))

fe= nhzﬂ
It is clear from Eg. (4.57) that the resonance lifetimes are the key quantities building
up the new formula for the gate leakage current. These variables apparently replace t
familiar transmission coefficients that would emerge from traveling states contributing
to the current in accumulation mode. This feature reflects the scope of nuclear dece
theory which is a fair attempt to resolve the leakage current paradox. Although the lat
ter theory produces a dynamical evolution of the one-particle wave functions, one ca
eventually insert a time independent, yet non-equilibrium, statistical operator to cal-
culate the averages. It would be desirable to verify the success of this procedure ¢
the grounds of sound time-dependent non-equilibrium theory. The same recommend
tion can be made regarding a more systematic investigation of the agreement betwe
the results of the present calculation and the simulations based on Bardeen’s approa
(BARDEEN [1961])).

The above considerations have been used to evaluate the gate current numerica
(MAGNUS and SSHOENMAKER [2000a], MagNUS and SSHOENMAKER [2000b]). In
Fig. 4.3 the simulation results are compared with a gate current characteristic the
was obtained from measurements on a large MIS transistor with a NO insulator an
grounded source and drain contacts. The latter serve as huge electron reservoirs cape
of replacing the channel electrons (inversion) that participate in the gate tunneling cur
rent, such that the assumption on instantaneous injection or absorption compensati
for migrating electrons is justified.

The following parameters are usé= 300 K, Tox = 25 A, mger = mgay = mga: =
0.32mq, Nox = 3, m1,0x.0 = M2,0x.a0 = M3.0x.a = 0.42mg. The barrier height and the
dielectric constant of the NO layer are taken to be 3.15 and 3.9 eV, respectively, while
the acceptor concentratiavi is 4 x 101" cm=3. Fig. 4.4 shows typical current-voltage
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Fic. 4.3. Gate tunneling current vs. gate voltage for a NO layer with thickness of 25 A. The doping is
4 x 1017 cm3 and T = 300 K. (Figure reproduced by permission of The American Institute of Physics and
Springer Verlag.)

10° T T T T
| T=300K
107 [ Ny=10"8cm™

104 | O-N-O gate stack

10° |
108 |
10-10 L
102 |
10" |
10718 |
10-18
0

Gate current [A u'z]

1 2 3 4 5
Gate voltage [V]

FiG. 4.4. Gate tunneling current vs. gate voltage for a NO layer with thickness of 15, 20 and 30 A, the
substrate doping being 3®cm3. All other parameters are the same as in Fig. 4.3. (Figure reproduced by
permission of The American Institute of Physics and Springer Verlag.)

characteristics for oxide thicknesses of 15, 20 and 30 Axne= 108 cm=3. The sim-
ulation results show a good agreement with the experimental data in the range 1-4°
It should be noted that the results are based on a set of “default” material parame
ters (BRAR, WILK and SEABAUGH [1996], DEPAS, VANMEIRHAEGHE, LAFLERE and
CARDON [1994]). In particular for the effective electron mass in &i@e used the re-
sults from Brar et al. The latter ones were obtained by measuremeatscamulation
layers. We suspect that the overestimation of the gate leakage currents for higher vo
ages is partly caused by the depletion layer in the poly-crystalline gate region (“poly-
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depletion”) such that a shift in the gate potential at the gate/insulator interface occurs
Another origin of the discrepancy may be found in the approximations that are use
in the method. The evaluation of the resonance lifetimes of the states using the Breit
Wigner expansion (BEIT and WIGNER [1936]) becomes less accurate if the overlap
increases.

4.8. Charges in insulators

Although there are no mobile charges in perfect insulators, static charges may b
present. Physically, these charges could be trapped during the processing of the insu
tor, or caused by radiation damage or stressing conditions. In the simulation of charge
in insulators one first has to determine which time scale one is interested in. On the tim
scale of the operation of device switching characteristics, one may safely assume th
the charges in insulators are immobile. However, on the time scale of the device life
time or accelerated stressing condition, one must consider tunneling currents and tr
generations that definitely can be traced to mobile charges.

4.9. Dielectric media

A dielectric material increases the storage capacity of a condenser or a capacitor t
neutralizing charges at the electrodes that would otherwise contribute to the extern:
field. Faraday identified this phenomenon as dielectric polarization. The polarization i
caused by a microscopic alignment of dipole charges with respect to the external fielc
Looking at the macroscopic scale, we may introduce a polarization vectorRield,

In order to give an accurate formulation of dielectric polarization we first consider an
arbitrary charge distribution localized around the origin. The electric potential in some
pointr, is

p(r)

V J—
"= 47'[80 |r—r|

(4.58)

Now letr be a point outside the localization region of the charge distribution]iie-,
Ir’|. From the completeness of the series of the spherical harmadnjc&), ¢), one
obtains

00 !
1 /
Z Z |l|[.|;,_1 lm(e/ ¢)Ylm(9 d)) (459)
=0m

where

204+1(1—m)! .

Yim©@.0) =\ =47 El+nm1;'P /" (cosp)e"? (4.60)

and

P (x) = (=)™ (1— xz)m/zd—m

S P10 (4.61)
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are the associated Legendre polynomials. Using above expansion, the potential of tl
charge distribution can be written as:

00 [
Y, (6,
V=g Z Z Gim lr,(+l¢) (4.62)
=0m
and
dim = / Yi (0, ¢) () p(r'y dr’ (4.63)

are themultipole momentsf the charge distribution. The zeroth-order expansion coef-
ficient

_1 _Q
wo= - [ oo =2 (4.64)

corresponds to total charge of the localized charge distribution. The total charge can |
referred to as the electrirmonopolemoment. The electric dipole moment

p=frp(r)dr (4.65)

and the first order expansion coefficients are related according to

q1.1= _\/g(px - ipy),
3 .
511,—1=\/;(Px +|Py)v (466)
F
q1,0= 4 Dz

The higher-order moments depend on the precise choice of the origin inside the chart
distribution and therefore their usage is mainly restricted to cases where a preferre
choice of the origin is dictated by the physical systénihe potential of the charge
distribution, ignoring second and higher order terms is

1 q p-r
e S 4.67
47180<r+ r3> (4.67)

and the electric field of a dipole located at the origin is

V()=

3np-n)—p

Er) =
® 4t eor3

(4.68)

andi = r/|r|. This formula is correct provided that# 0. An idealized dipole sheet at
x =0 is described by a charge distribution

p(r) = %8’@), (4.69)
T EQ

4For example, the center of a nucleus provides a preferred choice of the origin. The quadrupole moment
a nucleus is an important quantity in describing the nuclear structure.
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whereé’ is the derivative of the delta function. The corresponding electric field is

E(r) = ———8(x). (4.70)
4m g

We will now consider the polarization of dielectric media and derive the macroscopic
version of Gauss’ law. If an electric field is applied to a medium consisting of a large
number of atoms and molecules, the molecular charge distribution will be distorted
In the medium an electric polarization is produced. The latter can be quantitatively de
scribed as a macroscopic variable or cell variable suéh=ag\p/AV,i.e., as the dipole
moment per unit volume. On a macroscopic scale, we may consider the polarization ¢
a vector field, i.e.P(r). The potentialV (r) can be constructed by linear superposition
of the contributions from each volume elemen® located at’. Each volume element
gives a contribution originating from the net charge and a contributions arising from the
dipole moment.

1 r’ P’y -(r—r’
AV(r) = Fgo<|rpi r)/| AR %) 4.71)
Adding all contributions and using the fact that
1 r—r’
V/<|r—r’|>: [E @.72)
we obtain
V=t fdr’ ! (p(t) = V'-P(). (4.73)
4 eg r —r’|

This corresponds to the potential of a charge distribution V - P. Since the micro-
scopic equatiofV x E =0 does apply also on the macroscopic scale, we conclude that
E is still derivable from a potential fields = —VV, and

1
V.E=—(p—-V-P). (4.74)
€0

This result can be easily confirmed by using

v2<|r _1r,|> = —4ns(r —1'). (4.75)
The electric displacemerid, is defined as

D=¢gE+P (4.76)
and the first Maxwell equation becomes

V.D=p. (4.77)

If the response of the medium to the electric field is linear and isotropic then the coeffi
cient of proportionality is the electric susceptibilitys and the polarization reads

P = soxeE. (4.78)
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and consequently,

D =¢e0(1+ xe)E = eo&/E. (4.79)

This is aconstitutiverelation connectind andE, necessary to solve the field equa-
tions. Here we have limited ourselves to consider an elementary connection. Howeve
in general the connection can be non-linear and anisotropic, suck tad(E) will
involve a non-trivial expression.

It is instructive to apply above terminology to a parallel-plate capacitor. The storage
capacityC of two electrodes with chargesQ in vacuum isC = Q/V, whereV is
the voltage drop. Filling the volume between the plates with a dielectric material result:
into a voltage drop

O/er

V=" (4.80)

This equation may be interpreted as stating that of the total chardke free charge
Q/&r contributes to the voltage drop, whereaslibendcharge(1— 1/¢,) Q, is neutral-
ized by the polarization of the dielectric material. The electric susceptibyitgmerges
as the ratio of the bound charge and the free charge:

_A-1/en0Q
¢ Q/er

The displacement and the polarization both have the dimension [charge/area]. The:

variables correspond to electric flux densities. Given an infinitesimal area elei®ent

on an electrode, the normal componentotorresponds to the charggd= D - dS

on the area element and the normal componenP a&presents the bound charge

(1 —1/er)dQ on the area element. Finally, the normal componen&f corresponds

to the free charged/ ¢, residing on the area element. The question arises how the dis-

placemenD, the polarizatiorP andsgE can be associated to flux densities while there

is no flow. In fact, the terminology is justified by analogy or mathematical equivalence

with real flows. Consider for instance a stationary flow of wateRth There exists

a one-parameter family of mapgs : R® — RS that takes the molecule located at the

positionrg atzg to the positiorr1 atz;. Associated to the flow there exists a flux field

e — 1. (4.81)

Jr) = %. (4.82)

The velocity field describes the streamlines of the flow. For an incompressible stationar
flow we have that for any volume

?g J.-dS=0 or V.J=0. (4.83)
982

The number of water molecules that enter a volume exactly balances the number «
water molecules that leave the volume. Now suppose that it is possible that water mole
cules are created or annihilated, e.g., by a chemical reactio®2H O, + 2H> in
some volume. This process corresponds to a source/Sinitk the balance equation

V()= X(r). (4.84)
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Comparing this equation with the first Maxwell equation, we observe the mathematica
equivalence. The charge densityacts as a source/sink for the flux fiddd

4.10. Magnetic media

A stationary current densityl(r), generates a magnetic induction given by
!
| —r |3

This result is essentially the finding of Biot, Savart and Ampére. With the help of
Eqg. (4.72) we may write (4.85) as

B(r) = X0 /df (') x (4.85)

B(r) = Z_y‘sv X /dr’ |r3(_f’r)/|. (4.86)

An immediate consequence¥s- B = 0. Using the identittv x V x A=V (V-A) —
V2A =0, and the fact that = 0, as well as Eq. (4.75) one obtains that

V x B = pol. (4.87)

Helmholtz' theorem implies that there will be a vector fidlduch thaB = V x A and
a comparison with Eq. (4.86) shows that

/
Ar, 1) = @/df/ IO vy, (4.88)
4 r —r|
where x is an arbitrary scalar function. The arbitrariness in the solution (4.88)for
illustrates the freedom to perform gauge transformations. This freedom however is lifte
by fixing a gauge condition, i.e., by inserting an additional constraint that the componen
of A should obey, such that not all components are independent anymore. A particule
choice is the Coulomb gaug®, x A = 0. In that casey is a solution of Laplace’s
equationv2y = 0. Provided that there are no sources at infinity and space is unboundec
the unique solution fog is a constant, such that

ko [, J0)
A, 1) = ym /dr T (4.89)

We will now consider a localized current distribution around some ori@@jimhen we
may expand Eq. (4.89) far| > |r’| using

1 1 r.r
_ 4.90
r=rp e (450
as
Ar) = —/d J(r )+—/dr (r«r"HJ(r. (4.91)

The first integral is zero, i.ef; dr J(r) = 0, whereas the second integral gives

_ Homxr _1_
A(F)—4n a3 m_zfdrrxJ(r). (4.92)
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The variablem is themagnetic momerdf the current distribution. Following a similar
reasoning as was done for the dielectric media, we consider the macroscopic effects
magnetic materials. Sincé - B = 0 at the microscopic scale, this equation also is valid
at macroscopic scale. Therefore, Helmholtz’ theorem is still applicable. By dividing
space into volume elementsV, we can assign to each volume element a magnetic
moment

AmM=M(r)AV, (4.93)

whereM is the magnetization or magnetic moment density. For a substance consis
ing of k different atoms or molecules with partial densitigs(i =1, ..., k) and with
magnetic moment; for theith atom or molecule, the magnetization is

k
M) =" pi(r)ym;. (4.94)
i=1
The free-charge current density and the magnetization of the volume eleniesat
locationr’, give rise to a contribution to the vector potential at locatidreing

l l oy
AA(r):ﬂ J(r") A @M(r)x(r r
4 |r — 1| 4t r—r/|3

Adding all contributions

AV. (4.95)

o LI+ V X" M()
Ar)=—1d . 4.96
®) 471/ ‘ [r —r’| ( )
This corresponds to the vector potential of a current distribuielv x M and therefore
V xB=pugJ+V xM). (4.97)
The magnetidield is defined as
1
H=—B-M. (4.98)
H“o

Then the stationary macroscopic equations become
VxH=], V.B=0. (4.99)

If we follow a strict analogy with the discussion on electrical polarization we should
adopt a linear relation between the magnetizalbrand the inductiorB in order to
obtain a constitutive relation betweéh and B. However, historically it has become
customary to define thmagnetic susceptibilityy, as the ratio of the magnetization and
the magnetic field

M = xmH. (4.100)
Then we obtain

B=puoH+M)=pno(l+ xmH = pourH = uH. (4.101)

In here,u is thepermeabilityand i, is therelative permeability.
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Just as is the case for electrical polarization, the constitutive reldtiea,B(H),
can be anisotropic and non-linear. In fact, 8€éH) relation may be multiple-valued
depending on the history of the preparation of the material or the history of the appliec
magnetic fields (hysteresis).

In deriving the macroscopic field equations, we have so far been concerned witl
stationary phenomena. Both the charge distributions and the current distributions wel
assumed to be time-independent. The resulting equations are

V x E=0, (4.102)
V.B=0, (4.103)
V.-D=p, (4.104)
VxH=J. (4.105)

Faraday'’s law that was obtained from experimental observation, relates the circulatio
of the electric field to the time variation of the magnetic flux

fE.dr - —%/B-ds, (4.106)

or

B
V xE+ ?9_; —0. (4.107)

Magnetic monopoles have never been observed nor mimiced by time-varying fields
Therefore, the equatioN - B = 0 holds in all circumstances. Maxwell observed that

the simplest generalization of Egs. (4.104) and (4.105) that apply to time-depender
situations and that are consistent with charge conservation, are obtained by substitutir
Jin Eq. (4.105) byd+ aD/adt, since using the charge conservation and Gauss’ law gives

oD
V. (J + —> =0, (4.108)
ot
such that the left- and right-hand side of
oD

are both divergenceless. Eqgs. (4.103), (4.107), (4.104) and (4.109) are referred to
the (macroscopicMaxwell equationsFrom a theoretical point of view, the Maxwell
equations (4.103) and (4.107) found their proper meaning within the geometrical inter
pretation of electrodynamics, where they are identified as the Bianci identities for the
curvature (see Section 8).

5. Wave guides and transmission lines

An important application of the Maxwell theory concerns the engineering of physical
devices that are capable of transporting electromagnetic energy. This transport tak
place in a wave-like manner. The static limit does not take into account the wave behay
ior of the Maxwell equations. The easiest way to implement this feature is by confining
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the field in two dimensions, allowing it to move freely along the third dimension (i.e.,
longitudinal sections are much larger than transversal directions). In this way, guide
waves are recovered. A particular case of this model is the transmission line.

The wave guide consists of boundary surfaces that are good conductors. In practic
realizations these surfaces are metallic materials such that the ohmic losses will be lo
In the description of wave guides one usually assumes that the surfaces are perfec
conducting in a first approximation and that for large but finite conductivity, the ohmic
losses can be calculated by perturbative methods. Besides the (idealized) boundary s
faces, the wave guide consists of a dielectric medium with no internal charge®),
no internal currents)(= 0). Furthermore, for an idealized description it is assumed that
the conductivity of the dielectric medium vanishes=€ 0). Finally, a wave guide is
translational invariant in one direction. It has become customary, to choogesttie
parallel to this direction.

In order to solve the Maxwell equations for wave guides, one considers harmoni
fields (modes). The generic solution may be obtained as a superposition of differer
modes. The physical fields(r, t) andH(r, 7) are obtained from

E(r,n)=R(EME),  Hr, 0 =RHME), (5.1)

whereE(r) andH(r) are complex phasors. The Maxwell equations governing these
phasors are

V.-E=0, V.-H=0,
V xE=—iouH, V x H =liwsE.

Definingwu = k¢ andwe = k/¢ thenk = w. /e and¢ = /u/e. From Egs. (5.2) it
follows that the phasors satisfy the following equation:

(5.2)

(V2 +k?) { E } =0. (5.3)

The translational invariance implies thatk{r), H(r) is a solution of Eq. (5.3), then
E(r +a), H(r + a) with a = ae, is also a solution of Eq. (5.3). We may therefore
introduce a shift operato§;(a) such that

o JEM | _[EC+a)
S(“){H(r)}—{H(r +a)}' (5-4)

Performing a Taylor series expansion gives

2 a" " 9
E =y — = — |E 5.5
(r+a i e ) exp(a az> (r) (5.5)
and thereforeS(a) = exp(a 2) = eXp(Iak) with &k = —| . The Helmholtz operator

H = V2 + k? commutes Wlthk ie., [H k] 0.Asa consequence we can write the
solutions of Eq. (5.3) in such a way that they are simultaneously eigenfunctidtis of
andk. The eigenfunctions of are easily found to be

fx) = e'”, (5.6)
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since
.d
—'d—f(z) =« f(2). (5.7)
74

Thus from the translational invariance we may conclude that it suffices to consider so
lutions for E andH of the formE(x, y)€¥¢ andH(x, y)€**. Defining explicitly the
transversal and the longitudinal components of the fields

E(X»Y)ZET(X’)’)‘FEL(X,}’)a EL(X»}’)ZEz(an)ez’ (5 8)
H(x,y)=Hr(x, ) +Hi(x,y),  Hix,y) = H(x, y)e, '
and
0
2 2 2 2
\% ZVT+8—Z2:VT—K, (59)

where the subscript T stands for a transverse field inctheplane, while the subscript
L denotes the longitudinal fields along thexis, we obtain

2,2 2 BTG, | _
(Vi i ){Hﬂx,w}‘o’

(5.10)
(V2142 —«?) { E;(x,y) } —o

HZ(x’ y)

The transverse equations correspond to an eigenvalue problem with fields vanishing
the boundaries in the transverse directions. The characteristic equations that need
be solved are the Helmholtz equations resulting into eigenvalue problems, where th
eigenvalues arp? = k% — k2. The boundary conditions for the fields on the boundary
surfaces are

nxE=0, n-H=0. (5.11)

For the transverse components, going back to the full Maxwell equations, we get fron
Eq. (5.2)

a .
VT1E, - a_ET = —ilwue, x Ht (5.12)
Z
and
d .
V1H, — B_HT =lwee; x ET. (5.13)
z
Combining (5.12) and (5.13), gives
pZET —iopue; x VTH, +ikVTE_,
pZHT = —iwee, x VTE, +ikVTH,.
We may define the transversal fields as
Et x V(z)et(l), Ht I(Z)et(z), (5.14)

Whereet(l) andet(z) are transversal vectors independent .of
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FiG. 5.1. Contours for evaluating voltage drops and currents of a two-conductor system in a TEM mode.

5.1. TEM modes

Inspired by waves in free space, we might look for modes that have a transverse behavi
for both electric as magnetic field component, is.= H, = 0. These solutions are the
transverse electromagnetic or TEM modes.

[VZ+ p?]ET =0, [VZ+ p?]HT =0. (5.15)

For the TEM mode, the Maxwell equations result into= k. As a consequence
Egs. (5.15) are void. However, one also obtains from the Maxwell equations (5.12
and (5.13) that

1
V x ET =0, V.-Er=0, HT:EeZX ET. (5.16)

Therefore the TEM modes are as in an infinite medium. SiBice= 0, the surfaces

are equipotential boundaries and therefore at least two surfaces are needed to carry
wave. Since in any plane with constantve have a static potential, we can consider an
arbitrary path going from one conductor to another. The voltage drop will be

V(@) =/ Er.dr. (5.17)
rt

The current in one conductor can be evaluated by taking a closed contour around tt
conductor and evaluate the field circulation. This is illustrated in Fig. 5.1.

1) :y§ Hr-dr. (5.18)
r2

5.2. TM modes

When we look at solutions for which the longitudinal magnetic field vaniskles0
everywhere), the magnetic field is always in the transverse direction. These solutior
are the transverse magnetic or TM modes.

[VZ+ p?|E. =0, (5.19)
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p’ET =ik VTE,, (5.20)
p?HT = —iweey x VTE.. (5.21)

To find the solution of these equations, we need to solve a Helmholtz equatiéh,for
and from Egs. (5.20) and (5.21), the transverse field components are derived. Eq. (5.2

implies thatVt x Et =0 and also thaV 1 x e(Tl) = 0. Therefore, we may introduce a
(complex) transverse potentialsuch that
eV = Vi (5.22)
This potential is proportional t&, i.e.,
p?
Ee=—1-V(@9. (5.23)

Substitution of the (5.14) and (5.14) into (5.13) gives ﬂq@t: e x et(l) andV(z) =
—(k/we)I(z).

5.3. TE modes
Similarly, when we look at solutions for which the longitudinal electric field vanishes

(E, = 0 everywhere), the electric field is always in the transverse direction. These solu
tions are the transverse electric or TE modes.

[VZ+ p?]B.=0, (5.24)
p’Er =iwpe; x VTH,, (5.25)
p?H1 =ik VTH,. (5.26)

To find the solution of these equations, we need to solve a Helmholtz equati®n, for
and from Egs. (5.25) and (5.26), the transverse field components are derived. Since
this caseVt x Ht = 0 there exists a scalar potentialsuch that

e? =—vry. (5.27)
Following a similar reasoning as above we obtain that
2

P
H, =+
ST ke

V(). (5.28)
Furthermore, we find thaﬂfl) =—6, X et(z) andV(z) = —(wu/x)I ().

5.4. Transmission line theory — S parameters

The structure of the transverse components of the electric and magnetic fields give

rise to an equivalent-circuit description. In order to show this, we will study the TM
mode, but the TE description follows the same reasoning. By assuming the generi
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transmission-line solutions
V(z) = Vie ¥t 4 v_gkt, (5.29)
1) = Zic(v+e*i“ —v_é¥9), (5.30)

where Z. is the characteristic impedance of the transmission line or the “telegraph”
equations

V@ _ 0. (5.31)
dz

I _ yy (5.32)
dz

In these equations, the series impedance is denoteddndY is the shunt admittance
of the equivalent transmission line model. Each propagating mode corresponds to ¢
eigenvaluep and we find that

pZ _ k2

z=C"""  y-iee (5.33)
lwe

From these expressions, the resulting equivalent circuit can be constructed.

6. From macroscopic field theory to electric circuits
6.1. Kirchhoff’s laws

Electronic circuits consist of electronic components or devices integrated in a network
The number of components may range form a few to several billion. In the latter cas
the network is usually subdivided in functional blocks and each block has a unique func
tional description. The hierarchal approach is vital to the progress of electronic desig
and reuse of functional blocks (sometimes referred to as intellectual property) detel
mines the time-to-market of new electronic products. Besides the commercial value c
the hierarchical approach, there is also a scientific benefit. It is not possible to desig
advanced electronic circuits by solving the Maxwell equations using the boundary con
ditions that are imposed by the circuit. The complexity of the problem simply does not
allow such an approach taking into account the available compute power and the col
straints that are imposed on the design time. Moreover, a full solution of the Maxwell
equations is often not very instructive in obtaining insight into the operation of the cir-
cuit. In order to understand the operation or input/output response of a circulit, it is bene
ficial to describe the circuit in effective variables. These coarse-grained variables (in th
introduction we referred to these variables as “baskets”) should be detailed enough su
that a physical meaning can be given to them, whereas on the other hand they shot
be sufficiently “coarse” so as to mask details that are not relevant for understanding tr
circuit properties. The delicate balancing between these two requirements has result
into “electronic circuit theory”. The latter is based on the physical laws that are ex-
pressed by Maxwell's equations, and the laws of energy and charge conservation. Tl
purpose of this section is to analyze how the circuit equations may be extracted fror
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these microscopic physical laws. It should be emphasized that the extraction is not
rigorous derivation in the mathematical sense but relies on the validity of a number o
approximations and assumptions reflecting the ideal behavior of electric circuits. Thes
assumptions should be critically revised if one wishes to apply the circuit equations ir
areas that are outside the original scope of circuit theory. A simple example is a ca
pacitor consisting of two large, conducting parallel plates separated by a relatively thir
insulating layer: its capacity may be a suitable, characteristic variable for describing it:
impact in a circuit at low and moderately high frequencies. However, at extremely large
frequencies the same device may act as a wave guide or an antenna, partly radiating 1
stored electromagnetic energy.

Being aware of such pitfalls, we continue our search for effective formulations of
the circuit equations. In fact, the underlying prescriptions are given by the following
(plausible) statements:

e A circuit can be represented by a topological network that consists of branches an

nodes.

e Kirchhoff’s voltage law (KVL) — The algebraic sum of all voltages along any

arbitrary loop of the network equals zero at every instant of time.

e Kirchhoff's current law (KCL) — The algebraic sum of all currents entering or

leaving any particular network node equals zero at every instant of time.

In order to make sense out of these statements we first need to have a clear understanc
of the various words that were encountered; in particular, we must explain what is mear
by a node, a branch, a voltage and a current. For that purpose we consider the mc
elementary circuit: a battery and a resistor that connects the poles of the battery. Tt
circuit is depicted in Fig. 6.1. We have explicitly taken into account the finite resistance
of the leads. In fact, a more realistic drawing is presented in Fig. 6.2, where we accour
for the fact that the leads have a finite volume. In particular, we have divided the full
circuit volume into four different regions: (1) the battery regi@g, (2) the left lead
region$2y., (3) the right lead regiom2,,, and (4) the resistor regiaf2a .

We will now consider the power supplied by the battery to the circuit volume. The
work done by the electromagnetic field on all charges in the circuit volume per unit time

Rlcad JRlcad

gl
!
vemf

FIG. 6.1. Closed electric circuit containing a resistor connected to a DC power supply through two resistive
leads.
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FIG. 6.2. The electric circuit of Fig. 6.1, taking into account the spatial extension of the [Eags circuit
loop, i.e., an internal, closed loop encircling the “hole” of the circuit. (Figure reproduced by permission of the
American Physical Society and Springer Verlag.)

is given by

dE
MECH =/ J.Edr. (6.1)
dr Q

This corresponds to the dissipated power in steady-state conditions for @hich) =
0. As a consequencd - J = 0 and therefore we may apply tlde- E theorem (see
Appendix A). We obtain:

AJ-Edt:(iJ-dS)(ﬁE-W), (6.2)

where X' is an arbitrary cross section of the circuit andis a circuit loop, i.e., an
arbitrary closed path inside the circuit region. We identify the first integral of the right-
hand side of Eq. (6.2) as tleeirrentin the circuit. The second integral of the right-hand
side of Eg. (6.2) is identified as tredectromotive forcd EMF) or thevoltagethat is
supplied by the battery,. The latter is nothing but the work done per unit charge
by the electric field when the charge has made one full revolution around the circuit
Note the integralf. E - dr is non-zerg althoughV x E = 0. This is possible because
the circuit is not a simply connected regionlik3. More precisely, the topology of the
circuit is that of a manifold of genus one, say a torus or a toroidal region with one “hole”.
We may now consider the left-hand side of Eq. (6.2) and consider the contributions t
Eq. (6.2). For region (2) we obtain:

/J-Edr:— (VV)-Jdr:—/ V-(VJ)dr+f VV.Jdr. (6.3)
211 211 211 211

The first equality is valid sincE = —VV, in a simply-connected region such &3, ,
221, 2p or 2g. The last integral is equal to zero, sin€e J = 0 and the one-but-last
integral is

—/ V.(VY)dr = —f vJ.ds (6.4)
Q211 08211
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If we now assumehat the potential is constant on a cross-section of the circuit, then
this integral has two contributions:

—7§ VJ-dS:—Vngf J-dS—VglA/ J.ds. (6.5)
08211 1B 1A

Using Gauss’ theorem we may identify the two remaining surface integrals can be iden
tified as the total current. Indeed, in the steady state reginig (9 = 0) the divergence

of J vanishes whilg) is assumed to be tangential to the circuit bounde®y Therefore,

the vanishing volume integral & - J over £21, reduces to

0=/ J-dS:/ J.-dS— J-.dS, (6.6)
98211 DTN 21B
which justifies the identification
/ J.-dS= J.dS=1 (6.7)
21A 218
whence
—% V3-dS=1(Vs,, — Vzi)- (6.8)
08211

The regions (3) and (4) can be evaluated in a similar manner. As a consequence Vv
obtain:

[(Vsyg — Vion) + 1 (Vyp — Vi) + 1 (Vs — Vigg) +/ J.-Edr=1V,.
2B
(6.9)
The final integral that applies to the battery region, is also equal to zero. This is becaus
the electric field consists of two components: a conservative component and a nor
conservative component, i.€€,= Ec + Enc. The purpose of the ideabattery is to
cancel the conservative field, such that after a full revolution around the circuit a ne

energy supply is obtained from the electric field. Then we finally arrive at the following
result:

Ve = Vs — Vipg. (6.10)

Eq. (6.10) is not a trivial result: having been derived from energy considerations, it
relates the EMF of the battery, arising from a non-conservative field, to the potentia
difference at its terminals, i.e., a quantity characterizing a conservative field. Physically
it reflects the concept that an ideal battery is capable of maintaining a constant potenti
difference at its terminals even if a current is flowing through the circuit. This example
illustrates how Kirchhoff’s laws can be extracted from the underlying physical laws.
It should be emphasized that we achieved more than what is provided by Kirchhoff’s
laws. Often Kirchhoff’s voltage law is presented asiaial identity, i.e., by puttingVv

nodes on a closed path, as we have done by selecting a series of cross sections, i

5The internal resistance of a real battery is neglected here.
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always true that

(Vi—=Vo)+ (Vo—V3)+ -+ (Vy_1— VN)+ (Vy — V1) =0. (6.11)

Physics enters this identity (turning it into a useful equation) by relating the poten-
tial differences to their physical origin. In the example above, the potential difference.
Vs, — Vxig, is the result of a power supply.

By the in-depth discussion of the simple circuit, we have implicitly provided a de-
tailed understanding of what is understood to be a voltage, a current, a node and a bran
in a Kirchhoff network. The nodes are geometrically idealized regions of the circuit to
which network branches can be attached. The nodes can be electrically described |
a single voltage value. A branch is also a geometrical idealization. Knowledge of the
currentdensityinside the branch is not required. All that counts is the total current in
the branch. We also have seen that at some stages only progress could be made by
ing simplifying assumptions and finally that all variables are time independent. The las
condition is a severe limitation. In the next section we will discuss the consequence
of eliminating this restriction. We can insert more physics in the network description.
So far, we have not exploited Ohm’s law= o E. For a resistor with lengtli, cross
sectional areal and constant resistivity, we find that

Vson — Viia \2
f J-Edr:a/(VV)%r:oLA(%) =1 (Vi — Vi)
2
. (6.12)

As aresult, we can “define” the resistance as the ratio of the potential difference and th
current:
L

VEZA - VElA = RI, R == ﬁ (613)

6.2. Circuit rules

In the foregoing section we have considered DC steady-state currents, for Which

J =0 andaB/dt = 0, such that thel . E theorem could be applied. In general, these
conditions are not valid and the justification of using the Kirchhoff’s laws becomes more
difficult. Nevertheless, the guiding principles remain unaltered, i.e., the conservation o
charge and energy will help us in formulating the circuit equations. On the other hand, a
was already mentioned in the previous section, the idealization of a real circuit involve:
a number of approximations and assumptions that are summarized below in a — nol
exhaustive — list of circuit rules:

(1) An electric circuit, or more generally, a circuit network, is a manifold of genus
N > 1, i.e., amultiply connected region wifti holes. The branches of this man-
ifold consist of distinct circuit segments or devices, mainly active and passive
components, interconnecting conductors and seats of EMF.

(2) The active components typically include devices that are actively processing sig
nals, such as transistors, vacuum tubes, operational amplifiers, A/D converters.
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®3)

(4)

(®)

(6)
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Passive components refer to ohmic resistors, capacitors and inductors or coil
diodes, tunneling junctions, Coulomb blockade islands, etc. They are repre
senting energy dissipation, induction effects, quantum mechanical tunneling
processes and many other phenomena.

The seats of EMF include both DC and AC power supplies, i.e., chemical bat-
teries, EMFs induced by externally applied magnetic fields, all different kinds
of current and voltages sources and generators, etc. The electromagnetic pow
supplied by the EMF sources is dissipated entirely in the circuit. No energy is
released to the environment of the circuit through radiation or any other mecha:
nism.

In compliance with the previous rule, all circuit devices are assumed to behave ir
an ideal manner. First, all conductors are taken to be perfect conductors. Consic
ering perfect conduction as the infinite conductivity limit of realistic conduction
(J =oE), it is clear that no electric fields can survive inside a perfect conduc-
tor which therefore can be considered an equipotential volume. Clearly, from
V -E = p/e it follows that the charge density also vanishes inside the conductor.
Furthermore, a perfect conductor is perfectly shielded from any magnetic field.
Strictly speaking, this is not a direct consequence of Maxwell’s third equation,
sinceV x E = 0 would only imply dB/d¢ = 0 but the effect of static magnetic
fields on the circuit behavior will not be considered here. It should also be noted
that a perfect conductor is not the same as a superconductor. Although for bot
devices the penetration of magnetic fields is restricted to a very narrow boundan
layer, called penetration depth, only the superconductor hosts a number of “nor
mal” electrons (subjected to dissipative transport) and will even switch entirely
to the normal state when the supercurrent attains its critical value. Furthermore
a supercurrent can be seen as a coherent, collective motion of so-called Coop
pairs of electrons, i.ehosonswhile perfect conduction is carried by unpaired
electrons or holes, i.efermions Next, all energy dissipation exclusively takes
place inside the circuit resistors. This implies that all capacitors and inductors
are assumed to be made of perfect conductors. Inside the windings of an induc
tor and the plates of a capacitor, no electric or magnetic fields are present. Th
latter exist only in the cores of the inductBrahile the corresponding vector
potential and induced electric field are localized in the inductor. Similarly, the
electric charge on the plates of a capacitor are residing in a surface layer and th
corresponding, conservative electric field is strictly localized between the plates
while all stray fields are ignored. Finally, the ideal behavior of the seats of EMF
is reflected in the absence of internal resistances and the strict localization of th
non-conservative electric fields that are causing the EMFs.

The current density vectdrdefines a positive orientation of the circuit lodp

It corresponds the motion of a positive charge moving from the anode to the
cathode outside the EMF seat and from cathode to anode inside the EMF seat.

5Topo|ogica||y, the cores are not part of the circuit region



Introduction to electromagnetism 55

6.3. Inclusion of time dependence

The previous set of rules will guide us towards the derivation of the final circuit
equations. However, before turning to the latter, it is worth to have a second look a
Eqg. (6.11). In the continuum, this identity can be given in the following way:

yg dr-VV(r,t)=0, (6.14)
r

wherer" is an arbitrary closed loop. Note that above equation includes time-depender
fieldsV (r, r). In order to validate the first Kirchhoff law (KVL), we insertinto Eq. (6.14)
the potential that corresponds to

VV=-E— —. (6.15)
ot

Of course, if we were to plug this expression into Eq. (6.14), we would just arrive at
Faraday’s law. The transition to the circuit equations is realized by cutting the loop intc
discrete segments (rule 1) and assigning to each segment appropriate lumped variabl
To illustrate this approach we revisit the circuit of Fig. 6.1, where we have now folded
the resistor of the left lead into a helix and, according to the circuit rules, its resistanc
is taken to be zero whereas the top resistor is replaced by a capacitor. The resultin
idealized circuit depicted in Fig. 6.3 has four segments. The battery region, that nov
may produce a time-dependent EMF, and the right-lead region can be handled as w
done in the foregoing section. According to the circuit rules, it is assumed that all re-
sistance is concentrated in the resistor located between node 3 and node 4, while bc
the inductor and the capacitor are made of perfect conductors and no leakage current
flowing between the capacitor plates. Starting from the identities

Vi—Vo+Vo—V3+V3—Va+Vs4—V1=0, (6.16)
)
?gE-err—ng-dr:O, (6.17)
r ot Jr
we decompose the electric field into a conservative, an external and induced componel

E =Ec+ Egx + EN, (6.18)

2 3

R
. | .
, ! )
Velt)

FIG. 6.3. The electric circuit of Fig. 6.2 with a helix-shaped “resistor”.



56 W. Magnus and W. Schoenmaker

where

A =Apx +An, Ec=-VV,

) ) (6.19)
Eex = ——Aegx,  EN=——An.
EX 3¢ EX IN 3t IN

Since the battery and the inductor are perfect conductors, the total electric field in thes
devices is identically zero:

4

dr -E=0, (6.20)
1
1

dr -E=0. (6.21)
2

Following the circuit rules, we assume that the induced electric field and the externa
field are only present in the inductor region and the battery region, respectively. Thel
Eg. (6.21) can be evaluated as

/:dr -E:ledr “(Ec+EnN)= Vo — V1+/21dr .En=0 (6.22)
and therefore

Vi— Vg:/zldr -En. (6.23)
For the battery region we obtain:

4 4 4
/ dl’-EI/ dr-(Ec+EEx)=V1—V4+/ dr -Egx =0 (6.24)
1 1 1
and therefore
4
V4 — V1=/ dr -EExzfdl' -Eex =V,. (6.25)
1

Inside the capacitor, the induced and external fields are zero, and therefore we obtain

2 2
/ dr -EZ/ dr -Ec=V3— Vo (6.26)
3 3

On the other hand, the potential difference between the capacitor is assumed to be pr
portional to charge stored on one of the plates, i.€,= CV, whereC is thecapaci-
tance The resistor is treated in an analogous manner:

3
V4—V3=/ dr -Ec=1IR. (6.27)
4
Insertion of all these results into Eq. (6.16) gives:

2
/ E|N-dr=—V8+1R+%, (6.28)
1
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where we anticipated that the electric field between the capacitor plates is given b
Q/(Cd) andd is the thickness of the dielectric. The integral at the left-hand side of
Eq. (6.28) can be obtained by using Faraday’s law once again:

L 3 3
/ E|N-dl’2‘¢ E|N-dr=——y§ A|N-dl’=—— B|N-dS, (6.29)
2 r ot Jr ot Jsar

where S(I') is the area enclosed by the lodp Since the magnetic fiel® is only
appreciably different from zero inside the core of the inductor, the integral may be
identified as the magnetic self-flg, of the inductor. This flux is proportional to the
circuit current/ that also flows through the windings of the coil. Hendgy = L1,
whereL is theinductanceof the inductor and therefore Eq. (6.23) becomes:
dr

Vi—Vo=—L i (6.30)
We are now in the position to write down the circuit equation for the simple circuit of
Fig. 6.3. Starting from the identity of Eq. (6.16), we find

dr 0
Ldt +Ve—1IR s =0. (6.31)
So far, we have not considered energy conservation for the time-dependent circuit equ
tions. However, this conservation law is important for determining explicit expressions
for the inductances and capacitances. Integrating the electromagnetic energy dens
ugm over an arbitrarily large volume,, with a boundary surfacés2.,, we obtain the
total energy content of the electromagnetic field:
2
UEM=}/ dt(aEz—l—B—):} de (E-D+B-H). (6.32)
2/ w/)o 2oy

ReplacingE and B by —VV — 0A/dt and V x A, respectively, we may rewrite
Eq. (6.32) as

1 0A
UEMz—f dt[—(VV+—)-D+H-VxA]. (6.33)
2 Q00 ot

Next, exploiting the vector identity (A.40), we applying Gauss’ theorem to the volume
2 thereby neglecting all fields at the outer surface, i.e.,

/ dS. (VD) =0, (6.34)
9200
we obtain:
- drvv.D= drVV.D= dr oV, (6.35)
P20 200 Lc0

where the last equality follows from the first Maxwell equaténD = p.
Similarly, using the identity (A.39) and inserting the fourth Maxwell equation, we
may convert the volume integral &f - V x A appearing in Eq. (6.33):
oD

dtH.-VxA= drA-(J+—>. (6.36)
200 Q0o ot
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Putting everything together, we may express the total electromagnetic energy as follow:

1 9A aD
Ugm = = dr|pV — — .D+A-(J+— 6.37
EM 2/900 T[’O o o ( + ar)] (6.37)
1 9A aD
== dr|pV——-D+A-(I+—])| 6.38
2/9 T[p ot + <+8t>:| ( )

where the last integral is restricted to the circuit regi@rin view of the circuit rules
stating that all electromagnetic fields are vanishing outside the circuit region. Itis easy t
identify in Eq. (6.38) the “electric” and “magnetic” contributions respectively referring
to E2 and B2 in Eq. (6.32):

Uem = Ug + Upn, (6.39)
1 IA

Ue== [ de(pv—-"2.D), 6.40

: 2[9r<p - ) (6.40)
1 9D

Un== [ dcA-(3+Z2). 6.41

w=y [ (+at) (6.41)

Neglecting the magnetic field inside the ideal circuit conductors according to the circui
rules, we takev x A to be zero inside the circuit. Moreover, bearing in mind that the
identity

aD

V,(J+_>:o (6.42)

at
is generally valid, we may now apply the- E theorem to the combinatioA - (J +
aD/d1):

UM:%<?§Fdr-A)</2dS-<J+%—?)). (6.43)

The loop integral clearly reduces to the total magnetic flux, which consists of the self:
flux @y and the external fluey. Furthermore, due to Eq. (6.42), the surface integral of
Eq. (6.41) can be calculated for any cross-sectibtihat does not contain accumulated
charge. Takingz in a perfectly conducting lead, we hade= 0 and the integral reduces

to the total currenf = [, dS-J. On the other hand, if we were choosiigto cross the
capacitor dielectric, the current density would vanish and the integral would be equal t
dop(r)/dr where

&p (1) =/ ds-D(r, 1) (6.44)
b

is the flux of the displacement vector. Since both choiceE should give rise to iden-
tical results, we conclude that
dop (1)

dr

which confirms the observation that the circuit of Fig. 6.3 where the capacitor is in
series with the other components, can only carry charging and discharging currents. |

1(t) =

(6.45)
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any case, we are left with

Um = (v + Pex) ] (6.46)
or, reusing the “definition” of inductance, i.@y = L1,

Un = 3LI? + 3 beyd, (6.47)

where(1/2)L12 is the familiar expression for the magnetic energy stored in the core of
the inductor.

The electric energy may be rewritten in terms of capacitances in an analogous mann
The contribution ofdA /37 - D in EqQ. (6.40) vanishes becaugA/dr, representing the
non-conservative electric field, is non-zero only inside the inductor and the generatc
regions, where the total electric field reduces to zero. On the other hand, for perfectl
conducting leads that are also equipotential domains, the first term gives:

1
Ue= E;Qn‘/nv (648)

where V,, generally denotes the potential of théh (ideal) conductor, containing a
chargeQ,,. Being expressed in terms of bare potentials, the result of Eq. (6.48) seem
to be gauge dependent at a first glimpse. It should be noted however, that Eq. (6.48) h
been derived within the circuit approximation, which implies that the charged conduc-
tors are not arbitrarily distributed in space, but are all part of the — localized — circuit.
In particular, the charge@,, are assumed to be stored on the plates of the capacitors of
the circuit, and as such the entire §&%,} can be divided into pairs of opposite charges
{(Q;,—Q )} Hence, Eq. (6.48) should be read

1 1
Ue=73) Qj(Vij = Vo)) =5 Ci(Vaj = Va))%, (6.49)
J J

whereVy; — V»; is the gauge-invariant potential difference between the plates of the
jth capacitor.

The second Kirchhoff law (KCL), follows from charge conservation. The branches in
the network can not store charge, unless capacitors are included. The integrated chal
is denoted byD,, and

do; . '
- ds=3 (6.50)

where the surface integral is over a surface around charge-storage domdip, and

the current flowing from the charge-storage regjoimto the jth circuit branch. As in

the steady-state case, the Kirchhoff laws, in particular the expressions for the variou
voltage differences could only be obtained if some simplifying assumptions are made
For the inductor it was assumed that the induced magnetic field is only different fron
zero inside the core. For the capacitor, in a similar way it was assumed that the energy
storing the charge is localized completely between the plates. These assumptions ne
to be carefully checked before applying the network equations. As an illustration of
this remark we emphasize that we ignored the volume integrals that are not parts of tt
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circuits. In particular, the integral of the electric energy outside the circuit is the kinetic
part of the radiation energy:

1 A 1 dA 9A
Ulrzad:__/ dt—-DZ—S/ dr — . —, (6.51)
2 200\ 2 ot 2 260\ 2 at ot

and the potential energy of the radiation field:

1
Ud = ~5 dr (V xA)-(V x A) (6.52)
L J 2.\

are not considered at the level of circuit modeling.
7. Gauge conditions

The Maxwell theory of electrodynamics describes the interaction between radiation an
charged particles. The electromagnetic fields are described by six quantities, the vect
components ot andB. The sources of the radiation fields are represented by the charge
densityp and the current density. If the sources are prescribed functiogng, ) and
J(r, 1), then the evolution oE(r, r) andB(r, ¢) is completely determined. The fields
E and B may be obtained from a scalar potentldland a vector potentiah such
that

A

E=-VV-—-  B=VxA (7.1)

As was mentioned already in Section 3, the potentiels?A) are not unique. The choice

A
V—>V’:V—E, A->A=A+VA (7.2)
gives rise two the same fielisandB. A change in potential according to Eq. (7.2) is a

gauge transformation. The Lagrangian density

1 A2 1
L=Zg|VV+—) —=—(VxA?+I.-A—pV (7.3)
2 Jt 2140

gives rise to an action integral

S=/dt/d3r£(r,t) (7.4)

that is gauge invariant under the transformation (7.2). The gauge invariance of th
Maxwell equations has been found a posteriori. It was the outcome of a consistent the
ory for numerous experimental facts. In modern physics invariance principles play &
key role in order to classify experimental results. One often postulates some symme
try or some gauge invariance and evaluates the consequences such that one can
cide whether the supposed symmetry is capable of correctly ordering the experiment
data.
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The equations of motion that follow from the variation of the actioare

A
—so(v2v+v.¥> =p, (7.5)
1 ad A
—VXxVxA=J—g—|VV+—). (7.6)
"o at at

These equations may be written as

we[2]-[2)

where the matrix operatd¥ is defined as

—goV?2 —&oV - % :|

= E R L
|:80V-al 808t2+M0VXVX

(7.8)

This operator isingular, i.e., there exist non-zero field¥, Y) such that

Mm:m (7.9)

An example is the paitX,Y) = (—dA/dt, VA), where A(r,t) is an arbitrary scalar
field.

The matrixM corresponds to the second variation of the action integral and therefore
L corresponds to a singular Lagrangian density. The singularity ofplies that there
does not exist an unique inverse mathix ! and therefore, Eq. (7.7) cannot be solved
for the fields(V, A) for given sourcesp, J). The singularity of the Lagrangian density
also implies that not all the fieldd/, A) are independent. In particular, the canonical
momentum conjugated to the generalized coordiate ¢) vanishes

oL
2(%r)
In fact, Gauss’ law can be seen as a constraint for the field degrees of freedom and v
are forced to restrict the set of field configurations by a gauge condition.

A gauge condition breaks the gauge invariance but it should not effect the theon
such that the physical outcome is sensitive to it. In different words: the gauge conditiol
should not influence the results of the calculation of the fi€fldsnd B and, further-
more, it must not make any field configurationscodndB “unreachable”. Finally, the
gauge condition should result into a non-singular Lagrangian density such that the pc
tentials can be uniquely determined from the source distributions. We will now discus:
a selection of gauge conditions that can be found in the physics literature.

7.1. The Coulomb gauge

The Coulomb gauge is a constraint on the components of the vector potential such

C[A]=V-A=0. (7.10)
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The constraint can be included in the actiSnby adding a term to the Lagrangian that
explicitly breaks the gauge invariance of the action. The new action becomes “gauge
conditioned”. We set:

A
S— Sge.=So+— / dr dr C?[A], (7.11)
1o

whereSg . it the gauge-conditioned actiofig is the gauge-invariant action ands a
dimensionless parameter. Then the equations for the potentials are

d0A
1 A 0 0A
—VxVxA—2—V(V-A)=3—50—<VV+—>. (7.13)
Mo Mo at at

The parametei, can be chosen freely. Exploiting the constraint in Eqgs. (7.10) and
(7.12), we obtain

—£0V2V = p, (7.14)
2 1, 3
— — = V2)A=J—s0—(VV), 7.15
(Soat " > g0 (VV) (7.15)
V.A=0. (7.16)

Eq. (7.14) justifies the name of this gauge: the scalar potential is the instantaneot
Coulomb potential of the charge distribution.

Egs. (7.14) and (7.15) can be formally solved by Green functions. In general, a Gree
function corresponding to a differential operatois the solution of the following equa-
tion:

AxGr,ry=8(r —r"). (7.17)

We have already seen that the Coulomb problem can be solved by the Green functic
G(r,r")y = —(1/47)8(r — r’). It should be emphasized that the Green function is not
only determined by the structure of the differential operator but also by the boundary
conditions. The wave equation (7.15) can also be formally solved by a Green functiot
obeying

1 92
= —V2\G,t, 1 ) =80 —1)s(t — 1), 7.18
(62 572 ) ( ) =4( )8 ( ) ( )
such that
o0 0
A(r,t):f dt//dt/G(r,t,r/,t’)<\](r/,t/)—EEVV). (7.19)
—00

In free space the Green function is easily found by carrying out a Fourier expansion

1 * 3 . , )
20)’ /;wdw/d kG(w,k)eXF{I(a}([—[)_k,(r _r ))]
(7.20)

G t,r', )=
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Definingk? = (w/c)? — |k|2, the Green function i& (w, k) = k2. In order to respect
physical causality théw, k) — integration should be done in such a way thatr¢tarded
Green function is obtained. This can be done by adding an infinitesimal positive shif
to the poles of the Green function or propagator in the momentum representation, i.€
G(w,k) = 1/(k? — ie). Thew-integral then generates a step function in the difference
of the time arguments

got—t) i ,
/ dow —|0(t t')ewott=1) (7.21)

w — wo —
7.2. The Lorenz gauge

The next most commonly used gauge condition is the Lorenz gauge. In this gauge tt
scalar potential and vector potential are treated on an equal footing. The condition rea

10V
2 3t

wherec™! = /iogo is the (vacuum) speed of light. The generic equations of motion
(7.5) and (7.6) then lead to

CIA,V]=V.A+ =22 =0, (7.22)

(?ﬁ_v )V:a (7.23)
192 _,

The Lorenz gauge is very suitable for performing calculations in the radiation regime
First of all, the similar treatment of all potentials simplifies the calculations and next, the
traveling time intervals of the waves are not obscured by the “instantaneous” adaptio
of the fields to the sources as is done in the Coulomb gauge. This point is not manife:
for free-field radiation, since for sourceless field solutions the absence of charges lea
to V - E = 0 which is solved by (r, r) = 0. Therefore the Coulomb gauge is suitable
to handle plane electromagnetic waves. These waves have two transverse polarizati
modes. In the case of extended charge distributions, Gauss’ law gets modified and
a consequence the scalar potential cannot be taken identically equal to zero anymo
In the Lorenz gauge, there are four fields participating in the free-field solution. Defi-
nitely two of these fields are fictitious and, as such, they are called “ghost” fields. The
longitudinal polarization of an electromagnetic wave corresponds to a ghost field. Car
must be taken that these unphysical fields do not have an impact on the calculation
the physical quantitieE andB.

7.3. The Landau gauge
Various derivations of the integer quantum Hall effect (IQHE) are based on the Landau

gauge. The IQHE that was discovered bg VK LITZING, DORDA and FEPPER[1980]
may generally occur in two-dimensional conductors with a finite width, such as the
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conduction channel in the inversion layer of a metal-oxide-semiconductor field-effect
transistor (MOSFET) or the potential well of a semiconductor heterojunction.

Consider a two-dimensional electron gas (2DEG) confined to a ribbon & L,
ly| < W/2, z =0 carrying an electron currertin the x-direction. When a homoge-
neous magnetic fielB is applied perpendicularly to the strip, the electrons are deflected
by the Lorentz force-ev x B and start piling up at one side of the strip leaving a posi-
tive charge at the other side. As a result, a transverse Hall volfageises and prevents
any further lateral transfer of deflected electrons. This phenomenon is of course nothin
but the classical Hall effect for which the Hall field is probed by the Hall resistance
being defined as the ratio of the Hall voltage and the longitudinal cufrent

Ry = ? (7.25)

However, if the ribbon is cooled down to cryogenic temperatures and the density o
the 2DEG is systematically increased by changing the gate voltage, one may obser
subsequent plateaus in the Hall resistance, corresponding to a series of quantized vall

h Rk
22y v
whereRy = h/2¢? = 25812.8Q is the von Klitzing resistance andis a positive inte-
ger.

Moreover, each time the Hall resistance attains a plateau, the longitudinal resistanc
of the ribbon drops to zero, which is a clear indication of ballistic, scattering free trans-
port. For extensive discussions on the theory of the quantum Hall effect, we refer t
BUTCHER, MARCH and Tos1[1993], DATTA [1995], DITTRICH, HAENGGI, INGOLD,
KRAMER, SCHOEN and AVERGER[1997], Ezawa [2000] and all references therein.
Here we would merely like to sketch how the choice of a particular gauge may facili-
tate the description of electron transport in terms of spatially separated, current carryin
states (edge states).

The one-electron Hamiltonian reads

(p +eA)?
2m
whereA is the vector potential incorporating the external magnetic fieldlaacg de-
scribes the confining potential in the lateral direction. In view of the longitudinal, macro-
scopic current, it is quite natural to inquire whether the eigensolutiofs/ofx, y, z) =
Ey(x,y,z) are modulated by plane waves propagating along th&ection, i.e.,

1
VL
where the wave numbérwould be an integer multiple o2/ L to comply with periodic
boundary conditions. Clearly, the establishment of full translational invariance for the
Hamiltonian proposed in Eq. (7.27) is a prerequisite and so we need to construct
suitable gauge such that the non-zero componemigiaf not depend om. The simplest
gauge meeting this requirement is the Landau gauge, which presently takes the form

A =(—By,0,0), (7.29)

R (7.26)

H= + U, (7.27)

P(x,y) = = (), (7.28)
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FiG. 7.1. Effective confinement potential in a Hall bar (shaded area). The bare confinement is invoked by
“hard wall” restricting the lateral motion to the interval| < W/2.

thereby giving rise to the correct magnetic fiddx A = Be,. Combining Egs. (7.27),
(7.28) and (7.29), we obtain an effective Schrédinger equation for the “transverse” wav
functionsy (y):

h? Pxe(y) o~
5 d;Z +[0k(») — E]x(») =0 (7.30)
with
- 1
Up(y) =U(y) + émaf(y — w2 (7.31)

Ui (y) acts as an effective confinement potential, centered around its minimusa at
(see Fig. 7.1) where

hk
" ¢B
andw. = eB/m is the cyclotron frequency. For strong magnetic fields, the eigenfunc-
tions of Eq. (7.30) corresponding to a given wave nunibare strongly peaked around
y = yx Where the probability of finding an electron outside the effective potential well
falls off very rapidly. In particular, whelfk| increasesy; will become of the same or-
der of magnitude as the ribbon half-width or get even larger, so that the correspondin
eigenstates — the so-called “edge states” — are strongly localized near the edges of 1
Hall bar while states with positive momeriiéa have no significant lateral overlap with
states having negative momenta. The spatial separation of edge states with differe
propagation directions and the resulting reduction of scattering matrix elements is crt
cial for the occurrence of the quantized Hall plateaus and can obviously be investigate
most conveniently by adopting the Landau gauge since the latter ensures translatior
invariance in the direction of the current. It should be noted however that a full ana-
lytical solution cannot be given in terms of the familiar harmonic oscillator functions

Yk (7.32)
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(Hermite functions) because of the edge-related boundary condition
w
Xk <ﬂ:?> =0. (7.33)

7.4. The temporal gauge

The temporal gauge is given by the condition that the scalar Vieldnish identically.

V(r,t)=0. (7.34)
The electric field is then solely represented by the time derivative of the vector potential
dA(r,t)
ar

In particular, this implies that for a static field the vector potential grows unboundedly in
time. This gauge has the nice property that from a Lagrangian point of view the electric
field is just the canonical momentum conjugated to the vector field variables, i.e.,

E,t)=— (7.35)

1 [(0A\? 1 )
=Zeo[ — ) —==—(v : :
L 280( Y ) ZMO( x A) (7.36)

7.5. The axial gauge

The axial gauge is a variation of the theme above. In this gauge one component of tf
vector potential, e.gA; is set identically equal to zero.

A, =0. (7.37)
This gauge may be exploited if a cylindrical symmetry is present. This symmetry car
be inserted by setting
Alp,¢,2) = (Ap(p,$), Ap(p, $),0) (7.38)
in cylindrical coordinatesp, ¢, z). Then
1/0 dA
B:VxA:@—<—@A)——i> 7.39
o\ 3,04~ % (7.39)

An infinitely thin solenoid along the-axis corresponds to a magnetic field distribution
like a“needle”, i.e.B = ®#§(x)3(y)e;. Such a field can be represented by the following
vector potential:

@
_ane¢,

where® denotes the magnetic flux generated by the solenoid.

A (7.40)
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7.6. The 't Hooft gauge

The selection of a gauge should be done by first identifying the problem that one want
to solve. Experience has shown that a proper selection of the gauge condition is essent
to handle a particular issue. At all times it should be avoided that in the process o
constructing the solution one should jump ad-hoc from one gauge condition to anothe
There can be found examples in the literature, where this is done, e.g., a sudden jun
is taken from the Coulomb gauge to the temporal gauge, without defining the transitio
function that accompanies such a gauge transformation. Moreover, the demonstratic
that the physical results are insensitive to such transitions is often neither given. Th
gauge fixing method due ta’'HooFT[1971] carefully takes the above considerations
into account. It illustrates the freedom in choosing a gauge condition as well as th
sliding in going from one gauge condition to another. Whereas 't Hooft’s original work
deals with the theory of weak interactions, the ideas can also be applied to condens
matter physics. Suppose that the physical system consists of the electromagnetic fiel
(V,A) and some charged scalar fiegddFor the latter, there is a Lagrangian density

_ 1./ 8¢ agt\ R ‘
Lscalar= §|h<¢ ETE ¢ Y ) - %(Vfﬁ )+ (Vo) — W(p™9). (7.41)

The potentialW describes the (massive) mode of this scalar field and possible self-
interactions. If this potential has the form

W(@*¢) = c2l¢|? + c3lo|® + calp|* (7.42)

with ¢2 a positive number the fielg then this Lagrangian density describes massive
scalar particles and the vacuum corresponds00. On the other hand, if, < 0 then

the minimum of W occurs atj¢| = ¢o # 0. In condensed matter physics, the ground
state of a superconductor has non-zero expectation value for the presence of Coor
pairs. These Cooper pairs can be considered as a new particle having zero spin, i.e., i
a boson and its charge ig.2ZThe corresponding field for these bosons can be given by
¢ as above, and the ground state is characterized by some non-zero valdenef can

be realized by setting, < 0. The interaction of this scalar field with the electromag-
netic field is provided by the minimal substitution procedure and leads to the following
Lagrangian

L = Lem + Lscalart Lints
Lint=3-A—pV — < pAZ,
m
P = —€¢*¢,
ieh e
J=—|¢*V¢o — (Vo* —pA.
5 [9°Ve — (V¢I$] + —p
The complex field) = ¢1 + i¢2 can now be expanded around the vacuum expectation
value¢ = ¢o + x + i¢2. The interaction Lagrangian will contain terms being quadratic

in the fields that mix the electromagnetic potentials with the scalar fields. Such term
can be eliminated by choosing the gauge condition in such way that these terms canc

(7.43)
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i.e., by properly selecting the constantsanday in

10V
C[A,V,X,¢2]EV-A+;§+(¥1X+a2¢2=0- (7.44)

8. Thegeometry of electrodynamics

Electrodynamics was discovered as a phenomenological theory. Starting from early e;
periments with amber, permanent magnets and conducting wires, one finally arrive
after much effort at Gauss’ law. Biot—Savart’s law and Faraday’s law of induction. Only
Maxwell’s laws were obtained by theoretical reasoning being confirmed experimentally
later on by Herz. Maxwell's great achievement was later equalized by Einstein whc
proposed in the general theory of relativity that

gravity = curvature

Ever since Einstein’s achievement of describing gravity in terms of non-Euclidean
geometry, theoretical physics has witnessed a stunning development based on geom
rical reasoning. Nowadays it is generally accepted that the standard model of matte
based on gauge theories, is the correct description (within present-day experiment
accessibility) of matter and its interaction. These gauge theories have a geometrical i
terpretation very analogous to Einstein’s theory of gravity. In fact, we may widen our
definition of “geometry” such that gravity (coordinate covariance) and the standard the
ory (gauge covariance) are two realizations of the same mechanism. Electrodynamics
the low-energy part of the standard model. Being a major aspect of this book, it deserve
special attention and in this interpretation. Besides the esthetic beauty that results fro
these insights, there is also pragmatic benefit. Solving electrodynamic problems on tt
computer, guided by the geometrical meaning of the variables has been a decisive fact
for the success of the calculation. This was already realized hys®@n [1974] when

he performed computer calculations of the quantum aspects of gauge theories. In ord
to perform computer calculations of the classical fields, geometry plays an importan
role as is discussed in Chapter Il. However, the classical fleldedB as well as the
sourcesp andJ are invariant under gauge transformations and therefore their deepe
geometrical meaning is hidden. In fact, we can identify the proper geometric characte
for these variables, such as scalars (zero-forms), force fields (one-forms), fluxes (twc
forms) or volume densities (three-forms) as can be done for any other fluid dynamit
system, but this can be done without making any reference to the geometric nature «
electrodynamics in the sense tliatand B represent theurvaturein the geometrical
interpretation of electrodynamics. Therefore, in this section we will consider the scala
potential and vector potential fields that do depend on gauge transformations and «
such will give access to the geometry of electrodynamics.

8.1. Gravity as a gauge theory

The history of the principle of gauge invariance begins with the discovery of the princi-
ple of general covariance in general relativity. According to this principle the physical
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laws should maintain their form for all coordinate systems. In 1918, Hermann Weyl
made an attempt to unify electrodynamics with gravity ire¥Y [1918]. According

to the general theory of relativity, the gravitational field corresponds to curvature of
space—time, and therefore, if a vector is parallel transported along a closed loop, the a
gle between the starting vector and the final vector will differ from zero. Furthermore,
this angle is a measure for the curvature in space. Weyl extended the Riemann geome
in such a way that not only the angle changes but alstetigthof the vector. The rela-

tive change in length is described by an anti-symmetric tensor and this tensor is invariai
under changing the “unit of length”. This invariance is closely related to charge conser
vation. Weyl called this “Maszstab Invarianz”. The theory turned out to be contradictory
and was abandoned, but the term “Maszstab Invarianz” survived (Maszstadasure

= gauge). With the arrival of quantum mechanics the principle of gauge invariance ob
tained its final interpretation: gauge invariance should refer to the phase transformatior
that may be applied on the wave functions. In particular, the phase transformation ma
be applied with different angles for different points in space and time.

Y(r,t) — 1//(r,t)=exp<%ex(r,r))1p(r,t). (8.1)

At first sight it looks as if we have lost the geometrical connection and the link is only
historical. However, a closer look at gravity shows that the link is still present.

Starting from the idea that all coordinate systems are equivalent, we may consider
general coordinate transformation

xt = x"* = xH (). (8.2)
The transformation rule for coordinate differentials is
ax' I
o't = 2 gy, (8.3)
axV
An ordered set of functions transforming under a change of coordinates in the same wze
as the coordinate differentials is defined to matravariant vector

ax'H
="y, (8.4)
axV
A scalartransforms in an invariant way, i.e.,
P (x) = ¢'(x') = P (x). (8.5)
The derivatives of a scalar transform as
oxV
/
V,= mvv. (8.6)

Any ordered set of functions transforming under a change of coordinates as the deriv:
tives of a scalar function is @ovariant vector In generaltensorstransform according
to a multiple set of pre-factors, i.e.,

Ox'% gx'%2 gx¥1 9x“2

la1ep... _ ... yBiB2...
Viap " = dxP1 9xP2 gx'm1 gx' K2 Vigko."" ®.7)
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The principle of general coordinate covariance can be implemented by claiming that a
physical laws should be expressed as tensor equations. Since left- and right-hand sic
will transform with equal sets of pre-factors, the form invariance is guaranteed.

So far, we have only been concerned with the change from one arbitrary coordinat
system to another. One might argue that this will just hide well-known results in a thick
shell of notational complexity. In order to peal off these shells and to find the physical
implications one must refer to thetrinsic properties of the geometric structure. Occa-
sionally, the intrinsic structure is simple, e.g., flat space time, and the familiar relations
are recovered. It was Einstein’s discovery that space—timetiiat in the presence of
matter and therefore the physical laws are more involved.

Riemann geometry is a generalization of Euclidean geometry in the sense that locall
one can still find coordinate syster®% = (ict, x), such that the distance between two
near-by points is given by Pythagoras’ theorem, i.e.,

ds? =5, dgH d&V. (8.8)
In an arbitrary coordinate system the distance is given by
ds? = g, (x) Ak dx?, (8.9)
where
dE* JEP
gﬂv(x) = ax—ﬂmgaﬂ (810)

is the metric tensor of the coordinate system.
In the local coordinate systerf, the equation of motion of a freely falling particle is
given by

d?gr

—_ —0. 8.11

02 (8.11)
In an arbitrary coordinate system, this equation becomes

d /9&* dx¥

— — ) =0. 8.12

ds <8x°‘ ds ) ( )

This can be evaluated to
d2x¢ o Ox# dx? _0

— ——=0, 8.13
&2 TR ds (8.13)
wherel’j, is theaffine connection
o 28
o 0% 9% (8.14)

HY 9P dxmtaxy’
The affine connection transform under general coordinate transformations as

o OX'® 9xT ox? o 9x'® 3%x”

RV 9xp ax/m 9x’v T7 T xP dx'Hx'V
The second term destroys the covariance of the affine connection, i.e., the affine col
nection isnot a tensor.

(8.15)
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FiG. 8.1. Parallel displacement in the locally Euclidean coordinate system.

The metric tensog,,, (x) contains information on the local curvature of the Riemann
geometry. Now consider a vectd (r) along a curvec(z). In the locally Euclidean
coordinate systen), the change of the vector along the curve ¥&ddz. In another
coordinate systertx’), we find from the transformation rule (8.4)

dv/#  ax'mdvy  9%* ax?
dr ~ 9xV dr + axVox* 9t
The second derivative in the second term is an inhomogeneous term in the transform
tion rule that prevents¥* /dr from being a vector and contains the key to curvature.
This term is directly related to the affine connection. The combination
Dvk  dvr o dt
Dr = 4 + I, = \% (8.17)
transforms as a vector and is called tiowariantderivative along the curve. In the re-
stricted region where we can use the Euclidean coordinates may apply Euclidean
geometrical methods, and in particular we can shift a vector over an infinitesimal dis
tance from one base point to another and keep the initial and final vector parallel. Thi
is depicted in Fig. 8.1. The component of the vector do not alter by the shift operation
8VH* = 0. Furthermore, in the local frame* = é’ff , the affine connection vanishes,
i.e., I'7;, = 0. Therefore, the conventional operation of parallelly shifting a vector in the
locally Euclidean coordinate system can be expressed by the equauéri Dt = 0.
Being a tensor equation, this it true in all coordinate systems. A vector, whose covariar
derivative along a curve vanishes is said tqbeallel transported along the curve. The
coordinates satisfy the following first-order differential equations:
dv p ot
o = r, = |4 (8.18)
The parallel transport of a vectdt” over a small distancexd changes the components
of the vector by amounts

SVH =Tl vvext, (8.19)

In general, if we want to perform the differentiation of a tensor field with respect
to the coordinates, we must compare tensors in two nearby points. In fact, the con
parison corresponds to subtraction, but a subtraction is only defined if the tensors a

V(1) (8.16)
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FIG. 8.2. The covariant derivative of a vector field.

anchored to the same point. (In different points, we have different local coordinate sys
tems.) Therefore we must first parallel transport the initial tensor to the nearby poin
before the subtraction can be performed. This is illustrated in Fig. 8.2. For example, th
covariant differential of a vector field is
avH
DVHF =dVF —§VH = <— + I V") dxt = D, V# dx*. (8.20)
ax* A
So far, the general coordinate systems include both accelerations originating fror
non-uniform boosts of the coordinate systems as well as acceleration that may be caus
by gravitational field due to the presence of matter. In the first case, space—time is nc
really curved. In the second case space—time is curved. In order to find out whether gra
itation is present one must extract information about the intrinsic properties of space:
time. This can be done by the parallel transport of a vector field along a closed loop. |
the initial and final vector differ, one can conclude that gravity is present. The difference
that a closed loop (see Fig. 8.3) transport generates is given by
AVH =V — Viiap = Rbj, V78x"8x7, (8.21)

Y via

where

o 0T org
PrO T Hx0 ax*
is thecurvaturetensor or Riemann tensor. This tensor describes the intrinsic curvature
in a point.
We are now prepared to consider the geometrical basis of electrodynamics and oth
gauge theories but we will first summarize a few important facts:
e in each space—time point a local frame may be erected,
e the affine connection is a path-dependent quantity,
o the affine connection does not transform as a tensor,
¢ the field strength (curvature) may be obtained by performing a parallel transpor
along a closed loop.

+ FZA ry—=r Fk’f’ (8.22)
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FIG. 8.3. Determination of the curvature from a round trip along a closed loop.

8.2. The geometrical interpretation of electrodynamics

As for the local Euclidean coordinate systems, we will consider the possibility of setting
up in each space-time point a local frame for fixing the phase of the complex wave
functiony(r, 7) (see Fig. 8.4). Since the choice of such a local frame (gauge) is not
unique we may rotate the frame without altering the physical content of a frame fixing.

We can guarantee the latter by demanding appropriate transformation properties (s
the above section about tensors) of the variables. Changing the local frame for the pha
of a wave function amounts to

W) = exp(%x(r, r)>w<r, ),
(8.23)

W) = eXp(—%x(r, r))w*(r, ).

FiG. 8.4. Local frames for the phase of a wave function.
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These transformation rules are similar to the contravariant and covariant transformatio
rules for vectors in the foregoing section. We can similarly construct a “scalar” by taking
¥*yr. The derivative of the wave function transforms as

oy’ ie \ 0y e dx ie
A = exp(h X) o + o h exp(h X)W- (8.24)
The second term prevents the derivativeyofrom transforming as a “vector” under the
change of gauge. However, geometry will now be of help to construct gauge covarian
variables from derivatives. We must therefore postulate an “affine connection”, such the
a covariant derivative can be defined. For that purpose a connegtigris proposed

that transforms as

ax

A, =A . 8.25
n=Aut+ oo (8.25)
The covariant derivative is
0 ie
=—+ —A,. 8.26
n=gen T e (8.26)

Similar to the gravitational affine connection, the fiedg can be used to construct
“parallel” transport. Therefore, the field, must be assigned to tiathsalong which

the transport takes place. The curvature of the connection can also be constructed
making a complete turn around a closed loop. The result is

Fopdx8x” = 7§ e Ay, (8.27)
where
dA, A,
F/w = IxV - 9k (8.28)

is the electromagnetic field tensor.

In order to perform numerical computations starting from the fielgsit is neces-
sary to introduce a discretization grid. The simulation of a finite space or space—time
domain requires that each grid point be separated by a finite distance from its neigt
boring points. The differential operators that appear in the continuous field equation:
must be translated to the discretization grid by properly referencing to the geometrice
meaning of the variables. The connectiohg should be assigned to the links of the
grid, as depicted in Fig. 8.5. The geometrical interpretation suggests that this is the onl
correct scheme for solving field and potential problems on the computer.

The numerical consequences of above assignment will be considered in the followin
example. We will solve the steady-state equation

VxB=puol, B=VxA,
(8.29)
J=¢E, E=-VV,

by discretizing the set of equations on a regular Cartesian grid havingdes in each
direction. The total number of nodes I dimensions iSVnodes= N”. To each node



Introduction to electromagnetism 75
Vigmp A V¢ np

% /
V.. np I — Vv

-1 L. N,
A LB

LA

—_—
V,x.np A V% np

FiG. 8.5. The fundamental variables on the Cartesian grid.

we may associat® links along the positive directions, and therefore the grid has ap-
proximatelyD N ? links. There are ® sides with each a number 8P~ nodes. Half

the fraction of side nodes will not contribute a link in the positive direction. Therefore,
the precise number of links in the latticeMnks = DNP (1 — %).

As far as the description of the electromagnetic field is concerned, the counting o
unknowns for the full lattice results int#jinks variables @;;) for the links, andnoges
variables ;) for the nodes. Since each link (node) gives rise to one equation, the naive
counting is consistent. However, we have not yet implemented the gauge condition. T
conventional Coulomb gauge - A = 0, constraints the link degrees of freedom and
therefore not all link fields are independent. There avé@ — %) link variables and
3N3(1— %) + N3 equations, including the constraints. As a consequence, at first sigh
it seems that we are confronted with an overdetermined system of equations, since ea
node provides an extra equation forHowever, the translation of the Maxwell-Ampére
equation on the lattice leads to a singular matrix, i.e., not all rows are independent. Th
rank of the corresponding matrix isV§(1 — %), whereas there are\$(1 — %) + N3
rows and V3(1— %) columns. Such a situation is highly inconvenient for solving non-
linear systems of equations, where the non-linearity stems from the source terms beil
explicitly dependent on the fields. The application of the Newton—Raphson method re
quires that the matrices in the related Newton equation be non-singular and square.
fact, the non-singular and square form of the Newton—Raphson matrix can be recovere
by introducing the more general gauge A + V2x = 0, where an additional fielg,

i.e., one unknown per node, is introduced. In this way the number of unknowns and th
number of equations match again. In the continuum lilNit$ c0), the fieldy and one
component ofA can be eliminated. Though being irrelevant for theoretical understand-
ing, the auxiliary fieldy is essential for obtaining numerical stability on a discrete, finite
lattice. In other words, our specific gauge solely serves as a tool to obtain a discretiz:
tion scheme that generates a regular Newton—Raphson matrix, as explainedinsyl
SCHOENMAKER and MAGNUS [2001].
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It should be emphasized that the inclusion of the gauge-fixing fieddould not lead
to unphysical currents. As a consequence,¢Heeld should be a solution d¥ y = 0.
To summarize, instead of solving the problem

V XV xA=uoJA),

8.30
V-A=0, ( )
we solve the equivalent system of equations
VXV xA—yVy=ugdA),
(8.31)

V.-A+4V2y=0.

The equivalence of both sets of Egs. (8.30) and (8.31) can be demonstrated by consi
ering the action integral

1
S=——/dt|VxA|2+/er-A. (8.32)
2100
Functional differentiation with respect foyields the field equations
N 1
—=——VxVxA+J=0. (8.33)
SA Ko

The constraint corresponding to the Coulomb gauge can be taken into account by addir
a Lagrange multiplier term to the action integral

1
S=—2—/dt|VxA|2+fer-A+y/erV-A (8.34)
1o
and perform the functional differentiation with respecito
1)
5 _v.a=o. (8.35)
3x

Finally, the Lagrange multiplier fielg becomes a dynamical variable by adding a free-
field part to the action integral

1 1
S:——/dt|VxA|2+/er-A+y/dr)(V-A——y/dth)(|2
210 2
(8.36)

and functional differentiation with respect # and x results into the new system of
equations. Physical equivalence is guaranteed providedvthatloes not lead to an
additional current source. Therefore, it is required thiat = 0. In fact, acting with

the divergence operator on the first equation of (8.31) gives Laplace’s equatign for
The solution of the Laplace equation is identically zero if the solution vanishes at the
boundary.

We achieved to implement the gauge condition resulting into a unique solution anc
simultaneously to arrive at a system containing the same number of equations and u
knowns. Hence a square Newton—Raphson matrix is guaranteed while solving the fu
set of non-linear equations.
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8.3. Differential operators in Cartesian grids

Integrated over a test volumgV; surrounding a nodg the divergence operator, acting
on vector potential\, can be discretized as a combination of 6 neighboring links

6
f V.Adr :/ A-dS~ ) Sy Au. (8.37)
AV; AV X

The symbol~ represents the conversion to the grid formulation andV;) denotes
the boundary oA V;.

Similarly, the gradient operator acting on the ghost figlr any scalar fieldV,
can be discretized for a linki using the nodes and j. Integration over a surfac;
perpendicular to the linkj gives

/ Vy-ds~ X" Xig (8.38)
AS;j hij

whereh;; denotes the length of the link between the nadasd ;.
The gradient operator for a lin, integrated along the linkj, is given by

/ Vy-dr~x;—x. (8.39)
ALj;
The curl—curl operator can be discretized for a limk using a combination of 12

neighboring links and the linkj itself. As indicated in Fig. 8.6, the fieB; in the center
of the “wing” i, can be constructed by taking the circulation of the vector potetial

FIG. 8.6. The assembly of th€ x V x-operator using 12 contributions of neighboring links.
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V2

V5@

FiG. 8.7. The assembly of the - V-operator using 6 contributions of neighboring nodes.
around the wing (i =1, 4)

3
BiSi = Z Ajjhij + Aoho, (8.40)
j=1
whereh, is the length of the corresponding limk Integration over a surfact; per-
pendicular to the linkj yields a linear combination of different;;’s, the coefficients
of which are denoted by;;.

/ VxVxA.dS= VxA-dr:f B.dr
AS; A(AS;)) 9(AS;j)

12
~ AijAij+ Y Al Au. (8.41)
kl
The div-grad (Laplacian) operator can be discretized (see Fig. 8.7) being integrate
over a test volume\ V; surrounding a nodéas a combination of 6 neighboring nodes
and the nodé itself.

6
/ V-(Vx)dt:/ Vy-ds~ Y s X (8.42)
AV; 3(AV)) T hik

8.4. Discretized equations

The fields A, x) need to be solved throughout the simulation domain, i.e., for conduc-
tors, semiconducting regions as well as for the dielectric regions. The discretization ©
these equations by means of the box/surface-integration method gives

/ (VXVxA—yVyx —pupd)-dS=0, (8.43)
AS

/ V.Jdr =0, (8.44)
AV
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(V-A+V?x)dr =0 (8.45)
AV

leading for the independent variablesy to

12
AijAij+ Y AR Ay — noSijJij — v Sij & '_Xl =0, (8.46)
ki Y
6
> Sidik =0, (8.47)
k
6 —_ .
3 Si (A,»k 4 X X’) —0. (8.48)
p hik

Depending on the region under consideration, the source te@ins() differ. In a
conductor we implement Ohm’s law,= o E on a linki;:

Jij Z_Uij< J 1) (849)
h[j
and Q; is determined by charge conservation.

For the semiconductor environment we follow the Scharfetter—Gummel scheme
(ScHARFETTERaNd GQUMMEL [1969]). In this approach, the diffusion equations

J=qucE+kTuVe, (8.50)

where the plus (minus) sign refers to negatively (positively) charged particlesdad
notes the corresponding carrier density. It is assumed that both the cliaedtvector
potentialA are constant along a link and that the poteritigind the gauge fielg vary
linearly along the link. Adopting a local coordinate axisvith « = 0 corresponding to
nodei, andu = h;; corresponding to nodg we may integrate Eg. (8.50) along the link
ij to obtain

Vi—=V; de
Jij :q/L,'jC< hij ) ikBTMija (851)
which is a first-order differential equation in The latter is solved using the aforemen-
tioned boundary conditions and gives rise to a non-linear carrier profile. The cuyrent

can then be rewritten as

4:_13< 5’f)c,+ig<ﬁ4>c,, (8.52)
Mij hij o hij  \ «
whereB(x) is the Bernoulli function
X
B(x) = 8.53
W= (8.53)

and

o =+kgT, (8.54)

Bij =q (Vi — Vj). (8.55)
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8.5. Examples

We present a few examples demonstrating that the proposed potential formulation i
terms of the Poisson scalar field, the vector potential field and the ghost fielg,

is a viable method to solve the Maxwell field problem. All subtleties related to that
formulation, i.e., the positioning of the vector potential on links, and the introduction
of the ghost fieldy, are already encountered in constructing the solutions of the static
equations (BHOENMAKER and MEURIS[2002)).

8.5.1. Crossing wires
The first example concerns two crossing wires and thereby addresses the thre
dimensional features of the solver. The structure is depicted in Fig. 8.8 and has fou

g

M etal

Insulator

FIG. 8.8. Layout of two crossing wires in insulating environment.

TABLE 8.1
Some characteristic results for two crossing wires

Electric energy (J) Magnetic energy (J)
1 1 _
3e0 [ drE? 1.03984x 10718 715 o drB? 2.89503x 10~ 11
3 [ drpg 1.08573x 1018 3 [odtd-A 2.92924x 10-11
TABLE 8.2

Some characteristic results for a square coaxial cable

a b b/a L

pm pum (cylindrical) (nH) (square) (nH)
2 6 3 220 255

1 5 5 322 329

1 7 7 389 390

1 10 10 461 458
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ports. In the simulation we put one port at 0.1 V and kept the other ports grounded. Th
current is 4 A. The simulation domain is %010 x 14 pn?. The metal lines have a per-
pendicular cross section of>2 2 un?. The resistivity is 1068 Qm. In Tables 8.1-8.3,
some typical results are presented. The energies have been calculated in two differe
ways and good agreement is observed. This confirms that the new methods underlyi
the field solver are trustworthy. Thefield is zero within the numerical accuracy, i.e.,

x ~ 010714,

8.5.2. Square coaxial cable

To show that also inductance calculations are adequately addressed, we calculate 1
inductance per unit lengthj of a square coaxial cable as depicted in Fig. 8.9. The
inductance of such a system with inner dimensicmd outer dimensioh, was calcu-
lated from

Lot / 24qr = L / :
[ x 2LI 20 QB dr 5 erJ A (8.56)
with [ denoting the length of the cable. As expected, for large values of the ratig/a,

the numerical result for the square cable approaches the analytical result for a cylindric
cable,L = (uo/27)In(b/a).

TABLE 8.3
Some characteristic results for the spiral inductor

Electric energy (J) Magnetic energy (J)
3e0 [ dr E? 2.2202x 10718 710 Jo Ot B 3.8077x 10713
3 [ dt po 2.3538x 10718 3 [odtd-A 3.9072x 10713

0y \ﬁ = |

A

gl .
3 _AXIS

0" 20 x

FIG. 8.9. Layout of the square coax structure.
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20
23

FIG. 8.10. Layout of the spiral inductor structure.
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FIG. 8.11. Magnetic field strength in the plane of the spiral inductor.
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8.5.3. Spiral inductor

A spiral inductor, as shown in Fig. 8.10 was simulated. This structure also addresse
the three-dimensional features of the solver. The cross-section of the different line
is 1 pmx 1 pm. The overall size of the structure is 8 8 pm and the simula-
tion domain is 23x 20 x 9 un®. The resistance is evaluated Rs= V /I and equals
0.54 Q. In Fig. 8.11, the intensity of the magnetic field is shown at height 4.5 um.
From the results in Table 8.3 we obtain that the inductance of the spiral inductor i
4.23x 1011 Henry.

9. Outlook

The preceding sections have been meant to offer the reader a glimpse of the achie\
ments and the present activities in the field of numerical modeling of electromag:
netic problems within the framework of 19th century classical electromagnetism tha
was physically founded by MXweLL [1954a], MAXWELL [1954b], Faraday, Lenz,
Lorentz and many others, and mathematically shaped by the upcoming vector calcull
of those days (MRSEand FESHBACH[1953]).

The enormous predictive power of the resulting, “classical” electromagnetic theory
and the impressive technological achievements that have emerged from it, may cr
ate the false impression that, from the physics point of view, electromagnetism ha
come to a dead end where no new discoveries should be expected and all remaini
guestions are reduced to the numerical solubility of the underlying mathematical prob
lems.

Truly, after the inevitable compatibility of electromagnetism with the theory of rela-
tivity (EINSTEIN, LORENTZ, MINKOWSKI and WEYL [1952]) had been achieved and
the theory of quantum electrodynamics (QEDI(8VINGER[1958]) had been success-
fully established in the first half of the 20th century, neither new fundamental laws nor
extensions of the old Maxwell theory have been proposed ever since.

Nevertheless, as was pointed out already in Section 8, modern concepts borrow
from the theory of differential geometry turn out to provide exciting alternatives to
formulate the laws of electromagnetism and may gain new insights similar to the
understanding of the intimate link between gravity and geometrical curvature of the
Minkowski space. Moreover, recent technological developments in the fabrication o
nanometer-sized semiconductor structures and mesoscopic devisesA([1995])
have raised new as well as unanswered old questions concerning the basic quantt
mechanical features of carrier transport in solids and its relation to both externally ap
plied and induced electromagnetic fields. The topology of electric circuits such as mesc
scopic rings carrying persistent currents, mesoscopic devices with macroscopic leac
including quantum wires, quantum dots, quantum point contacts, Hall bars, etc. appea
to be a major component determining the transport properties. In particular, the spati:
localization of both the electromagnetic fields and the carrier energy dissipation play
an essential role in the quantum theory that governs carrier transport.

This section addresses just a few topics of the above mentioned research dome
in order to illustrate that quantum mechanics is invoked not only to provide a correc
description of the particles participating in the electric current but also to extend the
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theory of the electromagnetic field beyond the framework of Maxwell’s equations and
QED. As the corresponding research area is still being established and theoretical u
derstanding is often still premature, several statements presented in the remainder
this chapter, should be regarded as possible but not final answers to existing problen
thereby mainly reflecting the personal view of the authors. A more detailed treatmen
of the topics considered below can be found indhius and SSHOENMAKER [2000c¢]

and MAGNUS and SSHOENMAKER [2002].

9.1. Quantum mechanics, electric circuits and topology

Quantization of the electric conductance of quantum point contacts (QPC) is a strik
ing example of a transport phenomenon that cannot be accounted for by combinin
classical electrodynamics with conventional transport theory that inherently neglect
preservation of phase coherence. A typical QPC consists of a two-dimensional electrc
gas (2DEG) residing at in a high-mobility semiconductor structure near the interface of
say an AlGaAs/GaAs heterojunction, whereas a negatively biased gate provides a ne
row constriction hampering the electron flow in the direction perpendicular to the gate
arms (see Fig. 9.1). While the length of the gate arms (along the propagation directio
may be of the order of 1 um, the width is usually smaller than 250 nm. Experimen-
tally, conductance quantization was originally observed by the groups+ofRAM,
THORNTON, NEWBURY, PEPPER AHMED, FROST, HASKO, PEACOCK, RITCHIE

and DNES [1988] and \AN WEES, VAN HOUTEN, BEENAKKER, WILLIAMSON,
KOUWENHOVEN, VAN DER MAREL and FoxoN [1988] by connecting the QPC to an
external power sourcé/() through a couple of conducting leads as sketched in Fig. 9.2.
While the total resistanc® of the circuit was determined by measuring its ohmic re-
sponse to a given bias voltadg the resistanc®&q associated with the very QPC was
obtained by subtracting the resistarjeof the two leads:

Ro=R—2R,. (9.1)

L <1pum

e mmm > :§ZW<25[]nm

V<0 V=0

FIG. 9.1. Quantum point contact with length and width W, considered as a two-terminal device. The
source contact (left) is kept on a negative poteritiakith respect to the drain contact (right).
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FIG. 9.2. Closed electric circuit containing a QPC connected to a DC power supply through two resistive

leads.
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FiG. 9.3. Quantized conductance of a quantum point contact under cryogenic conditions.

After they had cooled down the QPC below 4 K, the experimentalists of both the Delft
and Cambridge groups measured the circuit curfesd a function of the gate voltage
Vi for a fixed bias voltage. As a result, they obtained a staircase-like pattern in the
profile of the electric conductand@q = R5* associated with the QPC, as indicated
schematically in Fig. 9.3. From this observation it follows that the conductéikgce
qguantized in units OREl = 2¢2/ h whereRk = h/e? = 251280 denotes von Klitzing’s
resistance. A quantitative description is provided by the well-known Landauer—Biittikel
formula

2¢2

Go= "N (9.2)

where N is the number of “conduction channels” that are open for ballistic electron
transport through the QPC, given a particular value of the gate volfgaggq. (9.2) is a
special case of a formula that was proposed hbAUER [1957], LANDAUER [1970]

to describe electron propagation through disordered materials, while it was recovere
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by BUETTIKER [1986] to cope with semiconductors with mesoscopic active areas. For
a two-terminal device the generalized conductance formula reads

202 Y

n=1
where the transmission probabiliti¢®,} reduce 1 for purely ballistic transport. Al-
though conductance quantization in a QPC does not reach the degree of exactness s
gested by the idealized drawing of Fig. 9.3, the stair-case profile has been repeated
observed by many other researchers in the field and, consequently one should be cc
fident in the experimental verification of this phenomenon. On the other hand, it is the
strong belief of the authors that, presently — when this manuscript is being written -
the commonly accepted theoretical explanation of conductance quantization runs fe
behind its experimental realization. It is commonly accepted that the absence of energ
dissipation and other decoherence effects and, correspondingly, the preservation of t
phase of the electron wave functions over a mesoscopic distance are major keys f
understanding the mechanism of quantum transport. Nevertheless, numerous questic
concerning the localization of energy dissipation are left unanswered by the underly
ing theories and a generalized, unifying transport theory connecting the macroscop
models based on the Drude-Lorenz model on one hand and the Landauer—Buttik
picture on the other hand, is still lacking. For a more extensive discussion on com
mon models and theories leading to the Landauer—Buttiker formula, we refemmD
[1995], BUTCHER, MARCH and TosI[1993], STONE and S AFER [1988], LENSTRA
and SWOKERS [1988], LENSTRA, VAN HAERINGEN and S10KERS [1990], STONE
[1992], IMRY and LANDAUER [1999]. Here we would like to summarize briefly the
main results of conventional theory and discuss an alternative approach which has be:
proposed recently by the authors ilmE@NUS and SSHOENMAKER [2000c].

In the case of conventional conductors one can easily trace back the macroscopi
electric resistance to dissipation of energy and decoherence effects that are due to va
ous elastic and inelastic scattering mechanisms. On the other hand, the question aris
why a mesoscopic, ballistic conductor the active region of which is supposed to be fre
of scattering, can still have a non-zero resistance. Moreover, as one may conclude fro
Eq. (9.3), this resistance merely depends on the fundamental cornstarits and a set
of quantum mechanical transmission coefficients. The latter are usually extracted fror
the single-electron Schrédinger equation, i.e., under the assumption that many-partic
interactions such as electron—electron and even electron—phonon scattering can be |
glected. Consequently, the resistance of a ballistic conductor appears to be expressil
in quantities that are not referring to neither decoherence nor energy dissipation. A
discussed extensively in the above references, a common explanation for this phenor
enon is provided by the concept of so-called contact resistance. The underlying pictur
considers the ballistic conductor as being connected on the “left” and the “right” to
two huge reservoirs that are kept on two different chemical potentialgir so as to
maintain between the reservoirs a net current of electrons propagating through one «
more channels of the ballistic conductor (such as a QPC or a quantum dot). Due to th
mismatch of the huge, macroscopic leads and the mesoscopic active area, two inte
face regions separating the active area from the “bulk” of the leads. Assuming furthe
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that electrons are entering and leaving the active area without undergoing any quantu
mechanical reflections in the interface regions, the latter emerge as the missing spc
where the phase coherence characterizing the transport in the ballistic region is broke
In other words, the resistance associated with a mesoscopic active areas should be ¢
sidered localized, being realized in the interface or “contact” regions while the main
electrostatic potential drop is still falling over the active area. Even when the notion of
non-local resistance is rather conceivable in a medium where phase-coherent transp
along nanometer-sized paths may demand that Ohm'd(eyw= o E(r) be generalized
toJ(r) = fd3r/o(r, r"E(r"), we feel that the reservoir picture does not satisfactorily
explain the phenomenon of quantized conductance. First, to the best of our knowledg
there is neither an unambiguous way of defining the contact regions interfacing be
tween an active area and a reservoir nor a trace of experimental evidence for it. Nex
invoking the chemical potentiajs; andur and the corresponding local thermal equi-
libria states for the two reservoirs already silently postulates the existence of a finit
current without providing explicitly a current limiting mechanism. Moreover, the equa-
tion eVapp= L — ur relating the applied bias to the chemical potential difference as
a crucial step in conventional treatments, is simply taken for granted (sometimes eve
taken as a definition of bias voltage!) whil&®RToON [1992], FENTON [1994] already
pointed out that it should be rigorously derived from quantum mechanical first princi-
ples. Finally, the topology of an electric circuit containing a ballistic conductor or any
mesoscopic device is not reflected in the reservoir concept that treats the circuit as
simply connected, open-ended region. The latter has severe consequences for the
scription of the driving electric field existing in the active area as will be discussed in
the following lines.

For the sake of simplicity, we will consider a DC power source providing the electric
circuit with the energy required to maintain a steady current of electrons flowing througt
a toroidal (doughnut-shaped, torus-like) circgit In addition, we will assume that no
external magnetic field is applied in the circuit region so that the only magnetic field
existing in the torus is the self-induced one which is constant in time. According to
the third Maxwell equation, the total electric field acting on the electrons in the circuit,
should therefore be irrotational, i.e.,

In spite of Eq. (9.4), the electric field is not conservative. Indeed, the electromotive
force or EMF characterizing the strength of the DC power source, is nothing but the
non-vanishing loop integral & around any closed cung lying in the interior of the
torus and encircling the hole of the torus once and only once (winding nusmbgr
According to Stokes’ theorem for multiply connected regions the cilihe arbitrary

as long as it is located in a region wheé¥ex E vanishes, so any internal curve of

will do. Physically, the EMF represents the work done by the electric field on a unit
charge that makes one complete turn around the circuit (moving dignés an im-
mediate consequence, we need to be most careful when dealing with innocent lookir
guantities such as electrostatic potential and the notion of potential difference. While a
irrotational fieldE(r) can always be derived from a scalar potenti@t) in anysimply-
connected subset of the torus (see the Helmholtz theorem), there exists no such sce
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potential doing the job along the entire circuit. Mathematically speaking, one could of
course imagine a brute force definition for such a potential anyway, namely the line inte
gral of the fieldE along a subset af' connecting some reference poigtwith the field
pointr. However, since the circulation &is non-zero when travels all around™, the
value of such a potential would unlimitedly increase (or decrease) wkeeps on trav-
eling around the circuit. This would give rise to a potential functiofx1, x2, x3) that
would be multivalued in the cyclic coordinate, say Such a function would clearly be
unacceptable from the physical point of view which requires all physically meaningful
functions to be periodic in3. It goes without saying that the concept of EMF is hardly
conceivable in a theory describing the electric circuit as an open-ended region. Suc
a simply-connected region exclusively leads to conservative, irrotational electric fields
that cannot give rise to a steady energy supply. The latter is therefore emulated by ir
troducing position dependent chemical potentials artificially keeping the lead reservoir
on different levels of electron supply.

It should be noted at this point that the above topology considerations have alread
given rise to at least two major conceptual differences between open-ended conductc
and closed electric circuits.

First, electrons entering the active area coming from one lead and moving to the othe
are never seen to return to their “origin” except when they are reflécedsuch, the
open-ended conductor is very similar to a system of two large water buckets, one c
them being emptied into the other through a narrow tube. Although the water flow re-
sembles a steady flow after the initial and before the final transient regime, the water i
not being pumped back into the first bucket and the flow trivially stops when the first
bucket is empty. On the contrary, although quantum mechanics does not allow an acc
rate localization of electrons in the transport direction when they reside in delocalized
current carrying states, the electrons are confined to the interior of the circuit regior
and will make a huge number of turns when a steady-state current is maintained on
macroscopic time scale. Next, in most cases the open-ended conductor model leads
an artificial, spatial division of the circuit into a finite active area and two infinite lead
regions. Indeed, position dependence is not only inferred for the chemical potential, i
various treatments such aaDra [1995] one also assigns separate sets of energy spec-
tra and their corresponding quantum states to the three distinct regions: two continuot
energy spectra representing the huge and wide leads and a discrete spectrum prov
ing a small number of conduction channels (referred t&vds the Landauer—Bdttiker
formula). Moreover, at both interfaces emerges a mismatch between the enumerak
discrete spectrum and the two continuous spectra and this very mismatch is even co
sidered the origin of the so-called “contact resistance” explaining the phenomenon c
conductance quantization.

However, it is known from elementary quantum mechanics that energy and position
being represented by non-commuting operators cannot be simultaneously measured.
other words, there is no physical ground for setting up different quantum mechanica
treatments of distinct spatial areas (unless they are completely isolated from each oth
thereby preventing any exchange of particles, which is obviously not the case). Treatin

“In principle electrons may undergo quantum mechanical reflections at the interfaces between the lead a
the active part of the device, but these reflections are explicitly ignored in most of the conventional theories.
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the complete circuit — including power source, conducting leads and mesoscopic activ
area — as a single quantum mechanical entity, a single spectrum of allowed energi
and corresponding eigenstates is to be assigned to the entire circuit, not to parts of
Clearly, unless we are discussing isolated microcircuits such as mesoscopic rings cart
ing persistent currents, the circuit inevitably becomes huge, due to the presence of t
huge leads. Consequently, the single energy spectrum turns out to be a continuous o
consisting virtually of all energies that are accessible by the circuit system. On the othe
hand, the influence of the active area with either its narrow spatial confinement (QPC
or its huge potential barriers is reflected in the occurrence of a discrete set of sharp
peaked resonances emerging in the quantum mechanical transmission coefficient a
function of energy. The corresponding states are genuine “conduction channel state
allowing an appreciable transmission of electrons, while the latter is negligible for any
other state. In this picture however, there is no “mismatch” between quantum state:
since all states simply pertain to the entire system and only the wave functions (nc
the energies) depend on position. Consequently, the notion of contact resistance rel
ing on the existence of a mismatch of states, looses its meaning and the basis quest
remains: what causes the resistance of a mesoscopic active area embedded in a clo
electric circuit and why does it take the form of Eq. (9.3)?

Being inspired by the experimental setup, we propose to consider the simplest po
sible, closed circuit, i.e., a torus-shaped regi@nconsisting of a DC power source
(“battery” regions2g), two ideally conducting lead®1, and$2, connecting the active
areaf2a, as depicted in Fig. 9.4. In general, the electric field in the circuit region may
be decomposed into a conservative and non-conservative part:

E(r) =Ec(r) + Enc(r), (9.5)

where the conservative componéty is derived from an appropriate scalar potential
which is periodic along any interior, closed lodp(see Fig. 9.5),

Ec(r)=-VV() (9.6)
with

7§ Ec(r)-dr =0, (9.7
r

D, Dop.

FIG. 9.4. Toroidal electric circuit. (Figure reproduced by permission of the American Physical Society and
Springer Verlag.)
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—eV(r)

Q4

Qp

FiG. 9.5. Electrostatic potential energy profile aloRg(Figure reproduced by permission of the American
Physical Society and Springer Verlag.)

whereas the EMF is entirely due to the non-conservative comp@&agnt

Ve = % Enc(r) - dr. (9.8)
r

Taking the leads to be ideal, dissipationless conductors (which corresponds to the su
traction of the lead resistances of the experimental result setup), we implicitly require
that the total electric field vanishes in the leads:

E(r)=0 forr e 21 or$2y. (9.9)

Furthermore, as we are looking for a universal mechanism that is able to limit the curren
in a mesoscopic circuit, we have explicitly omitted any source of incidental inelastic
scattering and hence neglected all energy dissipation in the circuit, including the interne
resistance of the power source. For the sake of simplicity we have also assumed that t
non-conservative electric field compondgyc is strictly localized in the seat of the
EMF, i.e., in the “battery regionf2g. This leaves us with a circuit where free electrons
can pile up only in the active region due to electrostatic confinement or the presence c
a potential barrier, while the leads appear to be equipotential volumes. Since the pow:
source has no internal resistance, the non-conservative comgegemd pumping all
electrons that arrived on the positive pole back to the negative pole at no energy cos
In other words, within the “battery regiorZnc exactly counteracts the effect of the
conservative field that would decelerate all electrons climbing up the potential hill in
28 (see Fig. 9.5):

—Ec(r) forr e 2g,

(9.10)
0 elsewhere

Enc(r) = {
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From Egs. (9.5)—(9.10) it follows that

p7N
Vszyg E.dr =/ Ec(r) -dr =V — Va. (9.11)
r PATN

In view of the permanently available power supply and the absence of energy dissipz
tion, one would expect the circuit current to grow unlimitedly. Indeed, the counteracting
electromotive force arising from the self-induced magnetic field generated by the cur
rent, though initially delaying the current increase because of Lenz’ law, would not be
capable of slowing down the electron flow in the long term. The latter of course fol-
lows directly from elementary, classical mechanics but also from the equation of ar
L—R-circuit where the circuit resistandetends to zero:

v, oV,
1 =—(1-e R 22 (9.12)

Clearly, this simple result does not hold if the current should become so large that re
diation losses can no longer be neglected. However, the corresponding radiation r
sistance is typically of the order of the vacuum impedance (sexsbN [1975])

Zo = pnoc ~ 1207 2, which is not only smaller than von Klitzing's resistance by
roughly two orders of magnitude, but also does not inherently contain the constant
e andh. We therefore believe that radiation resistance is not the appropriate mechanisi
to explain conductance quantization.

Although the idealized circuit under consideration should not be regarded as a supe
conductor, we might be inspired by the phenomenon of flux quantization governing the
electromagnetic response of type-l superconductors, as explained in various textboo
by many authors, such as®EL [1976], KITTEL [1963] and FEYNMAN, LEIGHTON
and SANDS [1964b]. In type-I superconducting rings with an appreciable thickness (ex-
ceeding the coherence length), flux quantization emerges from the Meissner effect a
cording to which all magnetic field lines are expelled from the interior of the ring, and
the requirement that the wave function describing Cooper pairs in the superconductin
state be single-valued when a virtual turn along an interior closed curve is made. Mor
precisely, as stated inABURAI [1976], the deflection of the magnetic field causes the
vector potential to be irrotational inside the ring which, in turn, allows one to fully
absorb the vector potential into the phase of the wave funétion:

w(r>=wo<r)exp<27ie/l)A -dr). (9.13)

The fieldsy (r) andyo(r) respectively denote the wave function in the presence and
absence of an irrotational vector potential @hdepresents an internal path connecting
an arbitrary reference point with the point Moving r all around the ring turns the
line integral ofA into the magnetic flux®> = ¢ A - dr trapped by some closed lodp.
Obviously, ¥ (r) becomes multi-valued unless the fldxequals an integer multiple of
the London flux quantun® = &/2e. In the case of our circuit however, we do not
consider external magnetic fields and the only magnetic field that may pierce the ci
cuit region$2 is the self-induced magnetic fieBl= V x A generated by the current

8The factor 2 in the phase factor reflects the char@e of a Cooper pair.
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flowing through the circuit. Though not vanishing everywhere ins¥d® is circulating
around the current density vectdrepresenting the current distribution in the circuit.
As a consequence, the azimuthal componef® (flongJ) will generally vanish, while
each transverse component changes sign in the region \@hemon-zero, i.e., inside

the circuit region. In other words, there exists a closed, internal cligweong which

B = 0 andA is irrotational. Hence, provided the poinis close enough to the curve,

we may repeat the above argument and approximately adsanto the phase of the
electron wave functions. Similarly, approximate flux quantization may be invoked, pro-
vided that the flux is now strictly defined as the loop integrahoéiround/p and the

flux quantum is taken to be the double of the previous one, i.e., the Dirac flux quantun
®g = h/e. Complying with the flux quantization constraint means that any increase of
the induced magnetic flux caused by an increase of the circuit current should be ste
wise. Within the scope of a semi-classical picture, one could propose that an electro
cannot extract energy from the power supply, unless the time slot during which it is ex:
posed to the external electric field, is large enough to generate one quantum of induce
magnetic flux. Indeed, if the energy extraction were continuous, the induced magneti
flux could be raised by an arbitrary small amount, thereby violating the (approximate’
flux quantization constraint. The characteristic timgarequired to add one flux quan-
tum, can easily be estimated by comparing the electron enefjy=cH., gained from

the external field during a time intervia), — %ro, t,+ %ro] with the corresponding mag-
netic energy increas& Uy of the circuit, where a flux jump occursat 1,. Integrating

the energy rate equation (2.20) fram— 3 5T0tot, + 110, we may expresa EMECH,»

as follows:

t,,+ 70

AEMECH,,,_/. dt/ dr J(r, 1) -E(r,1). (9.14)

7’70

During [#, — %ro, t, + %ro], the charge density remains unchanged before and after the
jump att = ¢, and consequently, the current density is solenoidal, while the external
electric field is irrotational. Hence, according to the recently deriveH integral the-
orem for multiply connected regions (see Appendix A.1 anddXus and SSHOEN-
MAKER [1998]), we may disentangle the right-hand side of Eq. (9.14):

ly,+ 70
f dt/ drJ(r,t) -E(r,1) = 2[1,, 1+ I,]1Ve10, (9.15)
l,lffro

wherel,, = fz J(r, t,) -dSis the net current entering the cross sectian at a timer,,.
On the other hand the flux changed,, associated with the jumpr, = I, — I,,_1, reads

A®, = LAI,, (9.16)

where L is the inductance of the circuit. Sinee®,, is to be taken equal t@q, we
obtain the increased magnetic energy of the circuit:

AUw = 3LIZ — 3LIZ | = (1,1 + 1) Po. (9.17)
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Combining Egs. (9.14), (9.15) and (9.17) and puttitdy = A EmecH.», We derive the
following result:
=
If an electron has been sufficiently accelerated such that the time it is exposed to tf
localized electric field becomes smaller thay) energy extraction is stopped and the
one-electron current will never exceetrg. For an electron ensemble carrying spin and
being distributed oveN ballistic channels, the total current predicted by the Landauer—
Buttiker formula (9.2) is therefore recovered:
2 2
I=2NS =% Ny, (9.19)
70 h
In spite of the naive calculation leading to Eq. (9.19), it is shown that the interplay
between circuit topology, flux quantization and the localized electric field may lead to
a kind of “selection rule” prohibiting the unlimited extraction of energy from a power
supply, even if all dissipative mechanisms are (artificially) turned off.

0 (9.18)

9.2. Quantum circuit theory

On the other hand, it goes without saying that a sound theory is required not only t
support and to refine the concept of flux quantization for non-superconducting circuits
but also to bridge the gap between the rigorous, microscopic transport description ar
the global circuit model that is to reflect the quantum mechanical features of coherer
transport through the electric circuit or part of it. Such a theory which could be called
“guantum circuit theory” (QCT) might emerge as an extension of the good old theory of
QED that would generalize the quantization of the electromagnetic field on two levels
not only should one address non-trivial topologies such as toroidal regions in whicl
finite currents may flow and finite charges may be induced, but also an appropriate s
of conjugate observables describing the global circuit properties should be defined. |
view of the previous considerations regarding the magnetic flux trapped by the circuit,
natural pair of variables could be the flux of the electric displacementBi¢ldough a
cross sectior¥g crossing the circuit in the interior of the active region and the magnetic
flux threaded by the loopp:

dp =/ D.dS, (9.20)
P

Dm =¢ A .dr. (9.21)
Io

Taking the electric displacement field instead of the electric field itself to construct &
“partner” for @y has mainly to do with the requirement that the product of two conju-
gate variables have the dimension of an actmri]. Assuming thaD vanishes outside

the active region2a, one may consider the latter as a leaky capacitor the plates of
which are separated b¥y such that, according to Gauss’ la@p would equal the
charge accumulated on one plate, 3y (see Fig. 9.6). Canonical quantization would
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+Qa —Qa

Z1a o oa

FIG. 9.6. Cross sectioy separating positive and negative charges in the active re@ion

then impose
[@p, Pm] =ik, ©0.22)
[®D, Pp] = [Pm, Pm] =0.
It is now tempting to propose a phenomenological expression like
3 @
=—+—+PpV, —DPul 9.23
oc T T¥PVe oM (9.23)

for a circuit Hamiltonian describing the interaction between the electromagnetic field
variables{®p, @\ } and the electron current operatos fxo J.dSunder the constraint

Oa = (Pp), and to derive the corresponding Heisenberg equations of motion with the
help of the commutation relations (9.22):

do i 0]
th(’) - —%[%(z), H]= ML(” —10), (9.24)
d®g”t(’) =—%[Q§M(t),H] =—¢Dc(t) V.. (9.25)

At first sight, the above equations are satisfied by meaningful steady-state solutions th
may be obtained by setting the long-time averages = lim;_, »(...); of d®p(z)/dr
and dby (¢)/dr equal to zero. Indeed, the resulting equations

(1) = @LW, (9.26)
Qa _ (o) _ (9.27)
c - c

are restating the familiar result that the steady-state of the circuit is determined by
current that is proportional to the magnetic flux, while the capacitor voltage tends to the
externally applied electromotive force.

However, in order to investigate whether the quantum dynamics generated by th
proposed Hamiltonian eventually leads to the Landauer—Buttiker formula or not, woulc
require us to give a meaningful definition of the inductance and capacitance coefficient
L and C as well as a recipe to calculate the statistical averages in a straightforware
manner. Clearly, this can only be accomplished if a full microscopic investigation of
the circuit is performed including both the self-consistent solution of the one-electron
Schrédinger equation and the fourth Maxwell equation, and a rigorous evaluation o
the dynamical, quantum-statistical ensemble averages. As such, this is quite an elak
rate task which, however, may open new perspectives in the boundary region betwee
electromagnetism and quantum mechanics.
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Appendix A.1. Integral theorems

Integral theorems borrowed from the differential geometry of curves, surfaces anc
connected regions (MRSE and FESHBACH [1953], MAGNUS and SSHOENMAKER
[1998]) turn out to be useful and perhaps even indispensible for a thorough understan
ing of elementary electromagnetic theory. Not only are they quite helpful in converting
the differential form of Maxwell's equations into their equivalent integral form, but they
also offer a convenient tool to define a discretized version of the field variables in the
framework of numerical simulation. Moreover, they naturally bridge the gap between
the microscopic interaction of the electromagnetic fields and charges in a solid-stat
conductor and the global circuit models envisaged on the macroscopic level.

The first three integral theorems that are summarized below, are extensively referre
to in Section 2. The fourth one is the Helmholtz theorem, which allows one to decom:-
pose any well-behaved vector field into a longitudinal and a transverse part.

THEOREM A.1 (Stokes’ theorem)Let X' be an open, orientable, multiply connected
surface inR3 bounded by an outer, closed cur§&y andn inner, closed curveg Xy,
..., 02X, definingn holes. IfX is oriented by a surface elemed® and if A is a differ-
entiable vector field defined an, then

/VXA.dszyg A-dr—Zyg A .dr, (A.1)
X X j=1 0X;

where the orientation of all boundary curves is uniquely determined by the orientation
of dS.

THEOREM A.2 (Gauss’ theorem)Let £2 be a closed, orientable, multiply connected

subset ofR3 bounded by an outer, closed surfag€y and n inner, closed surfaces
definingn holes. IfE is a differentiable vector field defined ok then

/V-Edr:/ E-dS—Z/ E.dS (A.2)
2 3820 =179,
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and

/VxEdr:/ deE—Z/ dSx E, (A.3)
2 3520 j=170%;

where all boundary surfaces have the same orientation as the outward pointing surfac
element of the outer surface.

The scalar Gauss theorem (A.2) reduce§teen’s Theoremvhen the vector field
takes the fornE= fVg — gV f

/ (V% — gV2f)dr = / (fVg—gVf)-dS
2 3820

- [ uve-gvp-as (A4)
io1/09,
where the scalar fieldg andg are differentiable om2.
THEOREMA.3 (J-E theorem).Let £2 be a closed, multiply connected, bounded subset

of R3 with one hole and boundary surfade2. If J andE are two differentiable vector
fields ons2, circulating around the hole and satisfying the conditions

V.J=0, (A.5)

VxE=0, (A.6)

J| 02 or J=0 ineachpointobs2, (A.7)
then

LJ-Edt:(LJ-dS)(ﬁE-dr) (A.8)

whereX is an arbitrary cross section, intersectimg only once and™ is a simple closed
curve, encircling the hole and lying withi®2 but not intersecting$2. The orientation
of X is uniquely determined by the positive orientationof

PrROOF Without any loss of generality one may define curvilinear coordinates
(x1,x2,x3) and a corresponding set of covariant basis vectaisa,, a3) and its
contravariant counterpart, which are compatible with the topology of the toroidal
(torus-like) regions2. More precisely,x!, x2 and x® may be chosen such that the
boundary surfac®s2 coincides with one of the coordinate surfaces & 0 while

the curves d! = dx? = 0 are closed paths encircling the hole only once add

is a cyclic coordinate. Then the inner volume contained witfinmay be conve-
niently parametrized by restricting the range.of,(x2, x3) to some rectangular interval
[t dY] x [¢?,d?] x [c3,d®]. Since$2 is multiply connected, the irrotational vector
field E cannot generally be derived from a scalar potential for the whole re@ion
However, for the given topology @2, it is always possible to assign such a potential to
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the “transverse” components Bfonly:

vV (x1, x2, x3)

El(xl,xz,x3) =— Py , (A.9)
BV(xl,xz,x3)
Ex(xt,x%,x%) = S (A.10)
but
PAY% 1’ 2’ 3
Ea(xt, a2, 5% 5 = VX0 (A.11)

9x3

whereV (x1, x2, x3) can be constructed straightaway by invoking the first two compo-
nents ofV x E=0:

)Cl Xz
Vit x2 x3) = Vet 2, x3) — / ds E1(s, x2, x3) — / dt Eo(ct, t,x3).

ot < (A.12)
The potential ternV/ (c1, ¢2, x3) naturally arises as an integration constant which, de-
pending onc® only, may be absorbed in the definition B{x!, x2, x3) and will there-
fore be omitted. Eqgs. (A.9) and (A.10) are now easily recovered by taking the derivative
of (A.12) with respect ta:1 andx2, and inserting the third component%fx E = 0.

Finally, taking also the derivative with respectit®, one obtains:

v (x1, x2, x3)
3x3
From Egs. (A.9), (A.10) and (A.13) arises a natural decompositidhiofo a conserv-

ative vector fieldEc and a non-conservative fielehc that is oriented alongs, thereby
depending only on the cyclic coordinaté:

E3(x1, x2, x3) = + E3(cl, cz, x3). (A.13)

E=Ec+ Enc (A.14)
with

Ec(xl, x2, x%) = —vv ! x2 x93, (A.15)

Encrh, x2,x%) = E3(ct, ¢, x%)a®. (A.16)

The conservative part & does not contribute to the volume integrallofE. Indeed,
from (A.15) it follows

/J-Ecdrzf J-VVdr:/ V-(VJ)dr—/ vV .Jdr. (A.17)
2 2 2 2

With the help of Gauss’ theorem — which is also valid for multiply connected regions —
the first term of the right-hand side of Eq. (A.17) can be rewritten as a surface integra
of VJ which is seen to vanish akis assumed to be tangential to the surfaczin all

of its points. Clearly, the second integral in the right-hand side of (A.17) is identically
zero due tov -J = 0 and one is therefore lead to the conclusion

/ J-Ecdr =0. (A.18)
2



98 W. Magnus and W. Schoenmaker

On the other hand, the contribution Bfyc can readily be evaluated in terms of the
curvilinear coordinates. Denoting the Jacobian determinang(by, x2, x3) one may
express the volume integral as a threefold integral over the basic infefval'] x
[c2,d?] x [¢3,d®], thereby exploiting the fact that the non-conservative contribution
merely depends ox®:

/ J-Edr
Q

=/ J-Encdr

2
d® dt d?

=f dx3 E3(ct, c2,x3)/ dxlf dng(xl,xz,x3)J3(x1,x2,x3). (A.19)
3 ol 2

The last integral can conveniently be interpreted as the fluxlafough the single cross
sectionX (x2) defined by

T3 = {(xl, ¥2, 3% |t <at <dl P <x?<d® 8 fixed}. (A.20)

Indeed, expanding the Jacobian determinant as a mixed product of the three basis ve
tors, i.e.,

g=aixaz-as (A.21)

and identifying the two-forna; x a> dx' dx? as a generic surface elemet8 perpen-
dicular to X (x3), one easily arrives at

dt d?
fl dx® , dng(xl,xz,x3)J3(x1,x2,x3)
C C

dt d?
= / dxlf dx?ag x az - I(xt, x%, x%) = [ dS-J=1(x3 (A.22)
cl 2 X(x3)

and
d3
/J-Edt: dx3 Es(ct, 2, x3)1 (3. (A.23)
2 3

The sign of the fluxz (x3) obviously depends on the orientation Bf(x3), which is
unequivocally determined by the surface elentSi= a1 x a»> dx1 dx?. As long as only
positive body volumes are concerned, one may equally require that each infinitesims
volume elementd= g dx! dx2dx3 be positive for positive incremental values'ddx?

and d3. Moreover, sincelr = dx3a3 is the elementary tangent vector of the coordinate
curve I'(x1, x2) = {(x1, x2, x3) | x1, x? fixed; ¢® < x® < 4%} orienting I' (x1, x?) in a
positive traversal sense through increasidgone easily arrives at

dr =dS-.dr > 0. (A.24)

In other words, the orientation of (x3) is completely fixed by the positive traversal
sense of " (x1, x2). However, sincd is solenoidal within? as well as tangential t@s2,
one may conclude from Gauss’ theorem that the value of the'flu%) does not depend
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on the particular choice of the cross sectibx3) which may thus be replaced by any
other single cross sectiab provided that the orientation is preserved. Consequently,
I1(x3) reduces to a constant vallieand may be taken out of the integral of Eq. (A.23)
which now simplifies to:

d3
/ J.-Edr =1 dx3 E3(ct, 2, x3). (A.25)
2 3

The remaining integral turns out to be the line integrakEaflong the coordinate curve
r(ct, c?:

/ J-Edr =1Vi(ct, ) (A.26)
2
with
Ve(cl, c?) = 7§ E.dr. (A.27)
r'(ct,c?)
SinceE is irrotational, according to Stokes’ theorem its circulation does not depend or
the particular choice of the circulation curve as was already discussed in more deta

in the previous section. Consequenifyc?, ¢2) may be replaced by any other interior
closed curvd™ encircling the hole region and sharing the traversal sensefwith, ¢?):

Ve(ct, c?) =V, Eyﬁ E.dr. (A.28)
r
Hence,
/J-Edt:lvg. (A.29)
2
This completes the proof. |

THEOREM A.4 (Helmholtz’ theorem).Let £2 be a simply connected, bounded subset
of R3. Then, any finite, continuous vector figtddefined ons2 can be derived from a
differentiable vector potentigh and a differentiable scalar potential such that

F=F_+F, (A.30)
FL=Vy, (A.31)
Fr=V xA. (A.32)

Due to the obvious properties

VXFLZO,

A.33
V.Fr=0. (A.33)

FL andFt are respectively called the longitudinal and transverse componehts of



100 W. Magnus and W. Schoenmaker

Appendix A.2. Vector identities

Let f, A andB represent a scalar field and two vector fields defined on a connectec
subset2 of R3, all being differentiable o2. Then the following (non-exhaustive) list
of identities may be derived using familiar vector calculus:

V-(VxA)=0, (A.34)
Vx(Vf)=0, (A.35)
V(A-B)=A(V-B)+B(V-A)+(A-V)B
+B-VV A+Ax(VxB)+Ax (VxB), (A.36)
Vx(AxB)=—-A(V-B)+B(V-A)—(A.V)B
+(B-VV A—AXx(VxB)+Ax(VxB), (A.37)
Vx(fA)=fVxA+VfxA, (A.38)
V-(AxB)=B-VxA—-A.V xB, (A.39)
V-(fA)=fV.-A+Vf.A, (A.40)
V x (VxA)=V(V-A)—V?A. (A.41)

It should be noted that Eq. (A.41) should be considered as a definition of the vectorie
Laplace operator (“Laplacian”), rather than a vector identity. Clearly, if one expands the
left-hand side of Eq. (A.41) in Cartesian coordinates, one may straightforwardly obtair

3
[Vx(VxA)], = 5V A = V24,, (A.42)

etc., which does indeed justify the identificati®f?A = (V2A,, V2A,, V2A,) for
Cartesian coordinates, but not for an arbitrary system of curvilinear coordinates.
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CHAPTERI

Preliminaries: Euclidean Space

What we shall do in this preliminary chapter (Sections 1-5, out of a total of 25) can
be described as “deconstructing Euclidean space”. Three-dimensional Euclidean spa
denoted byE3 here, is a relatively involved mathematical structure, made of an affine
3D space (more on this below), equipped with a metric and an orientation. By taking the
Cartesian product of that with another Euclidean space, one-dimensional and meant
represent Time, one gets the mathematical framework in which most of classical physic
is described. This framework is often taken for granted, and should not.

By this we do not mean to challenge the separation between space and (absolu
time, which would be getting off to a late start, by a good century. Relativity is not
our concern here, because we won't deal with moving conductors, which makes it a
right to adopt a privileged reference frame (the so-called laboratory frame) and a uniqu
chronometry. The problem we perceive is wih itself, too rich a structure in several
respects. For one thing, orientation of spacadsnecessary. (How could it be? How
could physical phenomena depend on this social convention by which we class righ
handed and left-handed helices, such as shells or staircases?) And yet, properties of
cross product, or of the curl operator, so essential tools in electromagnetism, cruciall
depend on orientation. As for metric (i.e., the existence of a dot product, from which
norms of vectors and distances between points are derived), it also seems to be involv
in the two main equation$,B + rotE= 0 (Faraday’s law) and-9;D + rotH = J (Am-
pére’s theorem), since the definition of rot depends on the metric. We shall discover th:
it plays no role there, actually, because a change of metric, in the description of som
electromagnetic phenomenon, would chahgthrot andthe vector fields BB, etc., in
such a way that the equations would stay unchanged. Metric is no less essential for th:
but its intervention is limited to the expression of constitutive laws, that is, to what will
replace in our notation the standard-BuH and D= ¢E 1

Our purpose, therefore, is to separate the various layers present in the structure
Es, in view of using exactly what is needed, and nothing more, for each subpart o
the Maxwell system of equations. That this can be done is no news: As reported b
PosT[1972], the metric-free character of the two main Maxwell equations was pointed
out by Cartan, as early as 1924, and also hyTKLER [1922] and VAN DANTZIG
[1934]. But the exploitation of this remark in the design of numerical schemes is

Iwe shall most often ignore Ohm’s law here, for shortness, and therefore, treat the current density J as

data. It would be straightforward to supplement the equations by the relatonEl + J, where only the
“source current” Jis known in advance.

109
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a contemporary thing, which owes much to (again, working independentyytT
[2001], Tonti (see ©ONTI [1996], MATTIUSSI [2000]) and Weiland (see HELING,
KLATT, KRAWCZYK, LAWINSKY, WEILAND, WIPF, STEFFEN, BARTS, BROWMAN,
CooPER DEAVEN and RODENZ[1989], WEILAND [1996]). See also 8RKIN [1975],
HYMAN and SHAsSHKOV [1997], TEIXEIRA and CHEw [1999]. Even more recent
(BossaviT and KETTUNEN [1999], MATTIUSSI [2000]) is the realization that such
attention to the underlying geometry would permit to soften the traditional distinctions
between finite-difference, finite-element, and finite-volume approaches. In particular
it will be seen here that a common approach to error analysis applies to the three ¢
them, which does rely on the existence of finite elements, but not on the variationa
methods that are often considered as foundational in finite element theory. These finif
elements, moreover, are not of the Lagrange (node based) flavor. They are differenti
geometric objects, created long ago for other purposes, the Whitney formis (A
[1957]), whose main characteristic is the interpretation they suggest of degrees of free
dom (DoF) as integrals over geometric elements (edges, facetsf the discretization
mesh.

As a preparation to this deconstruction process, we need to recall a few notions c
geometry and algebra which do not seem to get, in most curricula, the treatment the
deserve. First on this agenda is the distinction between vector space and affine space

1. Affine space

A vector spaceon the reals is a set of objects calleectors which one can (1) add
together (in such a way that they form an Abelian group, the neutral element bein
the null vector) and (2) multiply by real numbers. No need to recall the axioms which
harmonize these two groups of features. Our point is this: The three-dimensional vectc
space (for which our notation will bs) makes an awkward model of physical space,
unless one deals with situations with a privileged point, such as for instance a cente
of mass, which allows one to identify a spatial paintvith the translation vector that
sends this privileged point te. Otherwise, the idea to add points, or to multiply them
by a scalar, is ludicrous. On the other hand, taking the midpoint of two points, or more
generally, barycenters, makes sense, and is an allowed operation in affine space, as v
follow from the definition.

An affine spacés a set on which a vector space, considered as an additive group, act
effectively, transitively and regularly. Let’s elaborate.

A group G actson a setX if for eachg € G there is a map fronX to X, that we
shall denote by, such that:; is the identity map, and,;, = aga;,. (Symbol 1 denotes

2Most definitions will be implicit, with the defined term set, on first appearanciglios style. The same
style is also used, occasionally, for emphasis.

3Taking R3, the set of triples of real numbers, with all the topological and metric properties inherited
from R, is even worse, for this implies that some bdsig do, 93} has been selected iz, thanks to which
a vectorv writes asv = ) _; v!3;, hence the identification betweenand the triple{v'} of components (or
coordinates of the point stands for). In most situations which require mathematical modelling, no such basis
imposes itself. There may exist privileged directions, as when the device to be modelled has some kind
translational invariance, but even this does not always mandate a choice of basis.
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the neutral element, and will later double for the group made of this unique element.
The action iseffectiveif a, = 1 impliesg = 1, that is to say, if all nontrivial group
elements “do something” t&. Theorbit of x under the action is the sgt, (x): g € G}
of transforms ofx. Belonging to the same orbit is an equivalence relation between
points. One says the action tinsitiveif all points are thus equivalent, i.e., if there
is a single orbit. Thésotropy group(or stabilizer, or little group) ok is the subgroup
Gx = {g € G: as(x) = x} of elements ofG which fix x. In the case of a transitive
action, little groups of all points are conjugate (becagiseG, = G gxy, Wheregy,
is any group element whose action take® y), and thus “the same” in some sense.
A transitive action igegular (or freg) if it has no fixed point, that is, i, = 1 for all x.
If so is the caseX and G are in one-to-one correspondence, so they look very much
alike. Yet they should not be identified, for they have quite distinctive structures. Hence
the concept ohiomogeneous spack set, X here, on which some group acts transitively
and effectively. (A standard example is given by the two-dimensional spgheanader
the action of the grouQ; of rotations around its center.) If, moreover, the little group
is trivial (regular action), the only difference between the homogeneous Xpawd the
groupg lies in the existence of a distinguished elemenFirthe neutral one. Selecting
apoint 0 inX (the origin) and then identifying, (0) with g (and hence 0 iX with the
neutral element o&) providesX with a group structure, but the isomorphism with
thus established is not canonical, and this group structure is most often irrelevant, ju:
like the vector-space structure of 3D space.

Affine space is a case in point. Intuitively, take thxelimensional vector space,,
and forget about the origin: What remainsiig, the affine space of dimensian More
rigorously, a vector spaceg, considered as an additive group, acts on itself (now con-
sidered as just a set, which we acknowledge by calling its elenpairits instead of
vectors) by the mappinfs:, = x — x + v, calledtranslations This action is transi-
tive, because for any pair of points, y}, there is a vectov such thaty = x + v, and
regular, because + v # x if v # 0, whateverc. The structure formed by as a set
equipped with this group action is called thffine spaceA associated withV. Each
vector of V has thus become a point af, but there is nothing special any longer with
the vector 0, as a point iA. Reversing the viewpoint, one can say that an affine sgace
is a homogeneous space with respect to the action of some vectoriépeoesidered
as an additive group. (Points dfwill be denotedk, y, etc., andy — x will stand, by a
natural notational abuse, for the vector that cartiés y.) The most common example
is obtained by considering as equivalent, in some vector spat&o vectorsu andv
such that: — v belong to some fixed vector subspae Each equivalence class has an
obvious affine structurelf acts on it regularly by — v 4+ w). Such a class is called
anaffine subspacef V, parallel to W° (see Fig. 1.1) Of course, no vector in such an

4we'll find it convenient to denote a map by x — Expr(x), where Expr is the defining expression, and to
link name and definition by writingd = x — Expr(x). (The arrow is a “stronger link” than the equal sign in
this expression.) In the same spitif,— Y denotes the set of all maps “of type— Y”, that is, maps from
X to Y, not necessarily defined over &l Pointsx for which f is defined form itflomaindom(f) c X, and
their images form theodomaincod(f) C Y, also called theangeof f.

SNotice how the set of all affine subspaces parallefitalso constitutes an affine space under the action
of V, or more pointedly — because then the action is regular — of the quotient BpaiceA “point”, there, is
a whole affine subspace.
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FiG. 1.1. No point in the affine subspade parallel tow, can claim the role of “origin” there.

affine subspace qualifies more than any other as origin, and calling its elements “points
rather than “vectors” is therefore appropriate.

At this stage, we may introduce tharycenterof pointsx andy, with weightsx and
1— ), as the translate + A(y — x) of x by the vectoi.(y — x), and generalize to any
number of points. The concepts of affine independence, dimension of the affine spac
and affine subspaces follow from the similar ones about the vector Spaceentric
coordinateswith respect to: + 1 affinely independent pointay, ..., a,} in A, are the
weightsa’ (x) such that)_; A'(x) = 1 and)_; A (x)(x — a;) = 0, which we shall feel
free to writex = ; A (x)a;. Affine map®n A, are those that are linear with respect to
the barycentric coordinates.fis a point in affine space, vectors of the forny — x are
calledvectors atx. They form of course a vector space isomorphic to the assokiate
called thetangent space at, denotedr,. (1 will call freevectors the elements 6f, as
opposed to vectors “at” some point, dublimdind(or anchored)ectors. Be aware that
this usage is not universal.) The tangent space to a curve or a surface which centains
is the subspace df, formed by vectors at tangent to this curve or surfafeNote
that vector fields are maps of typOINT — BOUND VECTOR actually, subject to
the restriction that the value of at x, notatedv(x), is a vector atc. The distinction
between this and BOINT — FREE VECTORmMap, which may seem pedantic when
the point spans ordinary space, must obviously be maintained in the case of tange
vector fields defined over a surface or a curve.

Homogeneous space is a key concept: Here is the mathematical construct by whic
we can best model humankingdhysicalexperience of spatial homogeneity. Translat-
ing from a spatial location to another, we notice that similar experiments give similar
results, hence the concept of invariance of the structure of space with respect to tf
group of such motions. By taking as mathematical model of space a homogeneol
space relative to the action of this group (in which we recoghigzey observing how
translations compose), we therefore acknowledge an essehyisicalproperty of the
space we live in.

REMARK 1.1. In fact, translational invariance is only approximately verified, so one
should perhaps approach this basic modelling issue more cautiously: Imagine space

SFora piecewise smooth manifold (see below), such a subspace may fail to exist at some points, which wi
not be a problem.
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a seamless assembly (via smooth transition functions) of patches of affine space, ea
point covered by at least one of them, which is enough to capture the ideaabf
translational invariance of physical space. This idea gets realized with the concept c
smooth manifold (see below) of dimension 3. What we shall eventually recognize a
the metric-free part of the Maxwell’'s system (Ampére’s and Faraday’s laws) depend
on the manifold structure only. Therefore, postulating an affine structursdalling
decision one that goes a trifle beyond what would strictly be necessary to account fo
the homogeneity of space, but will make some technical discussions easier when (abc
Whitney forms) barycentric coordinates will come to the fore.

There is no notion of distance in affine space, but this doesn’t mean no topology
Taking the preimages of neighborhoodsRsf under any one-to-one affine map gives
a system of neighborhoods, hence a topology — the same for all such maps. (So v
shall talk loosely of a “ball” or a “half ball” in reference to an affine one-to-one image
of B={£ eR" Y ;(§))? <1} or of BN {&: €1 > 0}.) Continuity and differentiability
thus make sense for a functigiof type A, — A,. In particular, the derivative of atx
is the linear map ¥ (x), from V,, to V,, such that f (x +-v) — f(x) =D f (x)(W)|/|v] =
o(|v]), if such a map exists, which does not depend on which ndfros V, andV,
are used to check the property. The same symbgkxp, will be used for theangent
mapthat sends a vectaranchored at to the vector ¥ (x) (v) anchored aff (x).

2. Piecewise smooth manifolds

We will do without a formal treatment of manifolds. Most often, we shall just use the
word as a generic term for lines, surfaces, or regions of spacel(, 2, 3, respectively),
piecewise smooth (as defined in a moment), connected or not, with or without a bounc
ary. A 0-manifold is a collection of isolated points.

For the rare cases when the general concept is evoked, suffice it to sayptitht a
mensional manifold is a s&f equipped with a set of maps of typ¢ — R”, called
charts which makeM look, for all purposes, but only locally, likR? (and hence, like
p-dimensional affine spacegmoottmanifolds are those for which the so-calteahsi-
tion functionsp o ¢ 1, for any pair{, v} of charts, are smooth, i.e., possess derivatives
of all orders. (So-called’* manifolds obtain when continuous derivatives exist up to
orderk.) Then, if some property? makes sense for functions of tyf — X, where
X is some target spac¢, from M to X is reputed to have propert if all composite
functions f o ¢~ 1, now of typeR? — X, have it. A manifoldM with boundaryhas
points where it “looks, locally, like” a closed half-spacelof; these points form, taken
together, a (boundaryles§) — 1)-manifold 0 M, called theboundaryof M. Connect-
edness is not required: A manifold can be in several pieces, all of the same dimgnsion

In practice, our manifolds will be glued assembliexelis as follows.

First, let us define “reference cells” iR”, as illustrated on Fig. 2.1. These are
bounded convex polytopes of the form

P
K¢={teeR:E>0vi=1..,p ) doit ng:l,...,k}, (2.1)
j=1
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FIG. 2.1. Some cells im 3, of dimensions 0, 1, 2.

where thex'.’s form a rectangulark(x p)-matrix with nonnegative entries, and no re-
dundant rows.

Now, ap-cellin A,, with 0< p < n, is a smooth map from somek; into A, one-
to-one, and such that the derivative®) has rankp for all £ in K¢. (These restrictions,
which qualifyc as anembeddingare meant to exclude double points, and cusps, pleats,
etc., which smoothness alone is not enough to warrant.) The same symbloserve
for the map and for the imaggK%). Theboundarydc of the cell is the image under
of the topological boundary ot ;, i.e., of pointst for which at least one equality holds
in (2.1). Remark thadc is an assembly ofp — 1)-cells, which themselves intersect, if
they do, along parts of their boundaries.

Thus, a 0-cell is just a point. A 1-cell, or “path”, is a simple parameterized curve.
The simplest 2-cell is the triangular “patch”, a smooth embedding of the triangle
(€: £1>0, £2>0, €1 + £2 < 1}. The definition is intended to leave room for polyg-
onal patches as well, and for three-dimensional “blobs”, i.e., smooth embeddings ©
convex polyhedra.

We shall have use for th@pencell corresponding to a cell(then called alosedcell
for contrast), defined as the restrictioncdb the interior of its reference cell.

A subsetM of A, will be called apiecewise smootp-manifold if (1) there exists a
finite family C = {¢;: i =1, ..., m} of p-cells whose union 8/, (2) the open cell cor-
responding ta; intersects no other cell, (3) intersectians c¢; are piecewise smooth
(p — D-manifolds (the recursive twist in this clause disentanglgs-at0), (4) the cells
are properly joined at their boundariésg., in such a way that each point &f has a
neighborhood il homeomorphic to either a-ball or half ap-ball.

Informally, therefore, piecewise smooth manifolds are glued assemblies of cells, ob
tained by topological identification of parts of their respective boundaries. (Susfiace
Fig. 4.1, below, is typical.)

"This is regrettably technical, but it can’t be helpedyfis to be a manifold. The assemblytbfeecurves
with a common endpoint, for instance, is not a manifold. See akeUd [1994] for examples of 3D-spaces
obtained by identification of facets of some polyhedra, which fail to be manifolds. Condition (2) forbids
self-intersections, which is overly drastic and could be avoided, but will not be too restrictive in practice.
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Having introduced this category of objects — which we shall just call manifolds, from
now on —we should, as itis the rule and almost a reflex in mathematical work, deal witt
maps between such objects, calladrphismsthat preserve their relevant structures.
About cells, first: A map between two images of the same reference cell which is bijec
tive and smooth (in both directions) is calledliéeomorphismNow, about our mani-
folds: There is iecewise smooth diffeomorphigmtween two of them (and there too,
we shall usually dispense with the “piecewise smooth” qualifier) if they are homeomor-
phic and can both be chopped into sets of cells which are, two by two, diffeomorphic.

3. Orientation

To get oneself oriented, in the vernacular, consists in knowing where is South, whicl
way is uptown, etc. To orient a map, one makes its upper side face North. Pigeons, ar
some persons, have a sense of orientation. And so fédthingof this kind is implied

by the mathematical concept of orientation — which may explain why so simple a notior
may be so puzzling to many. Not that mathematical orientation has no counterpart i
everyday'’s life, it has, but in something else: When entering a roundabout or a circle
with a car, you know whether you should turn clockwise or counterclockwikat

is orientation, as regards the ground'’s surface. Notice how it depends on customs al
law. For the spatial version of it, observe what “right-handed” means, as applied to «
staircase or a corkscrew.

3.1. Oriented spaces

Now let us give the formal definition. Aamein V,, is an ordered-tuple of linearly in-
dependent vectors. Select a basis (which is thus a frame among others), and for eg
frame, look at the determinant of iis vectors, as expressed in this basis, hence a
FRAME — REAL function. This function is basis-dependent, but the equivalence re-
lation defined by f = f’ if and only if framesf and f’ have determinants of the same
sign” does not depend on the chosen basis, and is thus intrinsic to the structyre of
There are two equivalence classes with respect to this relation. Origitiegnsists

in designating one of them as the class of “positively oriented” frames. This amount:
to defining a function, which assigns to each frame a label, edtinect or skew two
equivalent frames getting the same label. There are two such functions, therefore tw
possible orientations. Aoriented vector spads thus a paifV, Or}, whereOr is one of

the two orientation classes &f. (Equivalently, one may define an oriented vector space
as a pair{vector spacgprivileged basi$, provided it's well understood that this basis
plays no other role than specifying the orientation.) We shall find convenient to extenc
the notion to a vector space of dimension O (i.e., one reduced to the single element C
to which also correspond, by convention, two oriented vector spaces, lakedlad—.

REMARK 3.1. Once a vector space has been oriented, there are direct anilaskes

but there is no such thing as direct or skezctors except, one may concede, in dimen-
sion 1. A vector does not acquire new features just because the space where it belon
has been oriented! Part of the confusion around the notion of “axial” (vs. “polar”) vec-
tors stems from this semantic difficulty (BsaviT [1998a, p. 296]). As axial vectors
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will not be used here, the following description should be enough to deal with the issue
Let’s agree that, iOr is one of the orientation classes'df the expressior-Or denotes

the other class. Now, form paif®, Or}, wherev is a vector andOr any orientation
class ofV, and consider two pairfg, Or} and{v’, Or’} as equivalent when' = —v and

Or’ = —Or. Axial vectorsare, by definition, the equivalence classes of such p&ota(
vectors is just a redundant name, inspired by a well-minded sense of equity, for vectol
of V.) Notice that axiabcalarscan be defined the same way: substitute a real number for
v. Hence axial vector fields and axial functions (more often called “pseudo-functions” in
physics texts). The point of defining such objects is to become able to express Maxwell’
equations imonoriented Euclidean space, i.&3 with a dot product but no specific
orientation. See BssAvIT[1998b] or [1999] for references and a discussion.

An affine space, now, is oriented by orienting its vector associdteuad frameat x
in A,, i.e., a set oz independent vectors at is direct (respectively skew) if these
vectors form a direct (respectively skew) framejp

Vector subspaces of a given vector space (or affine subspaces of an affin® space
can have their own orientation. Orienting a line, in particular, means selecting a vecto
parallel to it, called airectorvector for the line, which specifies the “forward” direction
along it.

Such orientations of different subspaces are a priori unrelated. Orienting 3D space &
the corkscrew rule, for instance, does not imply any orientation in a given plane. This
remark may hurt common sense, for we are used to think of the standard orientation «
space and of, say, a horizontal plane, as somehow related. And they are, indeed, but o
because we think of vertical lines as oriented, bottom up. This is the convention knowi
asAmpere’s rule To explain what happens there, suppose space is oriented, and som
privileged straightline is oriented too, on its own. Then, any ptaeresversdo this line
(i.e., thus placed that the intersection reduces to a single point) inherits an orientatiol
as follows: To know whether a frame in the plane is direct or skew, make a list of vectors
composed of, in this order, (1) the line’s director, (2) the vectors of the planar frame;
hence an enlarged spatial frame, which is either direct or skew, which tells us about th
status of the plane frame.

More generally, there is an interplay between the orientations of complementar
subspaces and those of the encompassing space. Recall that two sulbspackEd
of V arecomplementaryf their spanis all V (i.e., eaclv in V can be decomposed as
v=u+ w, withu in U andw in W) and if they ardransversqU N W = {0}, which
makes the decomposition unique). We shall refér tas the “ambient” space, and write
V = U+ W. If both U andW have orientation, this orientg, by the following conven-
tion: the frame obtained by listing the vectors of a direct fram# ifirst, then those of
a direct frame inW, is direct. Conversely, if bott/ andV are oriented, one may orient
W as follows: to know whether a given frameW is direct or skew, list its vectors be-
hind those of a direct frame @f, and check whether the enlarged frame thus obtained
is direct or skew inV. This is a natural generalization of Ampeére’s rule.

8An affine subspace is oriented by orienting the parallel vector subspace. A point, which is an affine sub
space parallel t¢0}, can therefore be oriented, which we shall mark by apposing a sigrtcit,—.
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FiG. 3.1. Left: Specifying a “crossing direction” through a plaieby inner-orienting a lindJ transverse
to it. Right: Outer-orientind/, i.e., giving a sense of going around it, by inner-orienti#ig

FiG. 3.2. Left: How an externally oriented line acquires inner orientation, depending on the orientation of

ambient space. (Alternative interpretation: if one knows both orientations, inner and outer, for a line, one

knows the ambient orientation.) Right: Assigning to a surface a crossing direction (here from region “

below to region %" above) will not by itself imply an inner orientation. But it does if ambient space is

oriented, as seen in (b) and YbFigs. 3.2(a) and 3.2(b) can be understood as an explanation of Ampére’s rule,
in which the ambient orientation is, by convention, the one shown here by the “right corkscrew” icon.

Now what if U is oriented, but ambient space is not's orientation of any rele-
vance to the complemefit ? Yes, as Fig. 3.1 suggests (left): For instanc#/ ihas di-
mensiom — 1, an orientation of the one-dimensional compleniéman be interpreted
as a crossing direction relative W, an obviously useful notion. (Flow of something
through a surface, for instance, presupposes a crossing direction.) Hence the conc
of external or outer orientationof subspaces o¥: Outer orientation of a subspace is,
by definition, an orientation of ofeof its complements. Outer orientation f itself
is thus a signi+ or —. (For contrast and clarity, we shall catiner orientation what
was simply “orientation” up to this point.) The notion (which one can trace back to Ve-
blen (VEBLEN and WHITEHEAD [1932]), cf. VAN DANTZIG [1954] and £HOUTEN
[1989]) passes to affine subspaces of an affine space the obvious way.

Note thatif ambient space is oriented, outer orientation determines inner orientatior
(Fig. 3.2). But otherwise, the two kinds of orientation are independent. As we shall see
they cater for different needs in modelling.

9Nothing ambiguous in that. There is a canonical linear map between two compleitieatsd W5 of the
same subspadé, namely, the “affine projectionty; alongU, thus defined: fop in Wy, setry (v) = v +u,
whereu is the unique vector iV such tha + u € W». Usery to transfer orientation froniy to W.
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3.2. Oriented manifolds

Orientation can be defined for other figures than linear subspaces. Connected parts
affine subspaces, such as polygonal facets, or line segments, can be oriented by ¢
enting the supporting subspace (i.e., the smallest one containing them). Smooth line
and surfaces as a whole are oriented by attributing orientations to all their tangents ¢
tangent planes in a consistent way.

“Consistent”? Let’s explain what that means, in the case of a surface. First, subspac
parallel to the tangent planes at all points in the neighborhéod of a given surface
point x have, if N (x) is taken small enough, a common complement, characterized by
a directorn(x) (not the “normal” vector, since we have no notion of orthogonality at
this stage, but the idea is the same). Théfx) is consistently oriented if all these
orientations correspond via the affine projection alatig) (cf. Note 9). But this is
only local consistency, which can always be achieved, and one wants miotzal
consistency, which holds if the surface can be covered by such neighborhoods, wit
consistent orientation in each non-empty intersecfigm) N N(y). This may not be
feasible, as in the case of a Mdbius band, hence the distinction between (internally
orientable and non-orientable manifolds.

Cells, as defined above, are inner orientable, thanks to the fact ¢hdad> not van-
ish. For instance (cf. Fig. 3.3), for a pathi.e., a smooth embedding— c(t) from
[0, 1] to A, the tangent vector& c(t) determine consistent orientations of their sup-
porting lines, hence an orientation of the path. (The other orientation would be obtaine:
by starting from the “reverse” path,— ¢(1—¢).) Same with a patcts, t} — S(s,7) on
the triangleT = {{s,t}: 0<s, 0<¢, s+t < 1}: The vectors;S(s, t) anda, S(s, 1), in
this order, form a basis &(s, #) which orients the tangent plane, and these orientations
are consistent.

As for piecewise smooth manifolds, finally, the problem is at paintshere cells
join, for a tangent subspace may not exist there. But according to our conventions, thel
must be a neighborhood homeomorphic to a ball or half-ball, wisiohientable, hence
a way to check whether tangent subspaces at regular points in the vicinithafe
consistent orientations, and therefore, to check whether the manifold as a whole is or
not orientable.

C
dett > S0, 1)

S(0, 0)
c(0)
e(l)

S(1, 0)

FIG. 3.3. A path and a patch, with natural inner orientations. Observe how their boundaries are themselve
assemblies of cellsic = ¢(0) — ¢(1) anddS = ¢1 — ¢2 + ¢3, with a notation soon to be introduced more
formally. Pathsc; arecy =s — S(s,0), co =1 — S(0,7), andcz =0 — S(1 — 0, 0), each with its natural

inner orientation.
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Similar considerations hold for external orientation. Outer-orienting a surface con-
sists in giving a (globally consistent) crossing direction through it. For a line, it's a way
of “turning around” it, or “gyratory sense” (Fig. 3.1, right). For a point, it's an orienta-
tion of the space in its neighborhood. For a connected region of space, it's just a sigr
+ or —.

3.3. Induced orientation

Surfaces which enclose a volunte (which one may suppose connected, though the
boundarydV itself need not be) can always be outer oriented, because the “inside out
crossing direction is always globally consistent. Let us, by convention, take this direc
tion as defining the canonical outer orientationddf. No similarly canonicainner
orientation of the surface results, as could already be seen on Fig. 3.2, since there a
in the neighborhood of each boundary point, two eligible orientations of ambient space
But if V is inner oriented, this orientation can act in conjunction with the outer one of
dV to yield a natural inner orientation df’s boundary about this point. For example,
on the left of Fig. 3.4, the 2-framfv1, v2} in the tangent plane of a boundary point
is taken as direct because, by listing its vectors behind an outward directed wector
one gets the direct 3-franfe, v1, v2}. Consistency of these orientations stems from the
consistency of the crossing direction. Heri¢s inner orientatiorinducesone on each
part of its boundary.

The same method applies to manifolds of lower dimengiphy working inside the
affine p-subspace tangent to each boundary point. See Fig. 3.4(b) for thepcage
The p-manifold, thus, serves as ambient space with respect to its own boundary, for th
purpose of inducing orientation.

In quite a similar way (Fig. 3.5)puter orientation of a manifold induces ayuter
orientation of each part of its boundary. (For a voluthethe induced outer orientation
of 8V is the inside-out or outside-in direction, depending on the outer orientation,
or—,of V.)

Y1

(a) (b) (c)

FIG. 3.4. Left: Induced orientation of the boundary of a volume of toroidal shaperfdvo are tangent to

aV, v points outwards). Middle: The same idea, one dimension below. The tangent to the boundary, bein

a complement of (the affine subspace that supperts)ith respect to the plane tangent to the surfadin

broken lines), inherits from the latter an inner orientation. Right: Induced orientation of the endpoints of an
oriented curve.
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FiG. 3.5. Left: To outer-oriend S is to (consistently) inner-orient complements of the tangent, one at each

boundary point. For this, take as direct the franfe;, v}, where{v1} is a direct frame in the complement of

the plane tangent t§ atx, andv an outward directed vector tangent$oThat{v4} is direct is known from

the outer orientation of. Right: Same idea about the boundary points of tinlotice thatv is now appended

behindthe list of frame vectors. Consistency stems from the consisteney tbe inside-out direction with

respect tas. The icons near the endpoints are appropriate, since outer orientation of a point is inner orientatiol
of the space in its vicinity.

FIG. 3.6. Mobius band, not orientable. As the middle lindoes not separate two regions, it cannot be
assigned any consistent crossing direction, so it has no outer orientation with respect to the “ambient” banc

3.4. Inner vs outer orientation of submanifolds

We might (but won't, as the present baggage is enough) extend these concepts to sL
manifolds of ambient manifolds other thag, including non-orientable ones. A two-

dimensional example will give the idea (Fig. 3.6): Take as ambient manifold a M&bius
bandM, and forget about the 3-dimensional space it is embedded in for the sake of th:
drawing. Then it’s easy to find i a line which (being a line) is inner orientable, but

cannot consistently be outer oriented. Note that the band by itself, i.e., considered as i
own ambient space, can be outer oriented, by giving it a sign: Indeed, outer orientatio
of the tangent plane at each point Mf, being inner orientation of this point, is such

a sign, so consistent orientation means attributing the same sign to all points. (By th
same token, any manifold is outer orientable, with respect to itself as ambient space.)
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D D D

(a) (b)

FIG. 3.7. Left: Non-orientable 3-manifold with boundary: Identify top and bottom by matching upper
with lower A, etc. Middle: Embedded Mébius band, with a globally consistent crossing direction. Right:
Embedded ribbon.

For completeness, let us give another example (Fig. 3.7), this time of an outer
orientable surface without inner orientation, owing to non-orientability of the ambient
manifold. The latter (whose boundary is a Klein bottle) is made by sticking together the
top and bottom sides of a vertical cube, according to the rule of Fig. 3.7(a). The ribbor
shown in (b) is topologically a Mébius band, a non-(inner)orientable surface. Yet, it
plainly has a consistent set of transverse vectors. (Follow the upper arrow as its anch
point goes up and reenters at the bottom, and notice that the arrow keeps pointing
the direction ofA B in the process. So it coincides with the lower arrow when this pas-
sage has been done.) Contrast with the ordinary ribbon in (c), orientable, but not oute
orientable with respect to this ambient space.

The two concepts of orientation are therefore essentially different.

In what follows, we shall use the word “twisted” (as opposed to “straight”) to connote
anything that is to do with outer (as opposed to inner) orientation.

4. Chains, boundary operator

It may be convenient at times to describe a maniféfdas an assembly of several
manifolds, even ifM is connected. Think for example of the boundary of a triangle,
as an assembly of three edges, and more generally of a piecewise smooth assembly
cells. But it may happen — so will be the case here, later — that these various manifolc
have beerindependentlyriented, with orientations which may or may not coincide
with the desired one foM. This routinely occurs with boundaries, in particular. The
concept of chain will be useful to deal with such situations.

A p-chainis a finite family M = {M;: i =1, ..., k} of oriented connecteg-mani-
folds 19 to which we shall loosely refer below as the “components” of the chain, each
loaded with a weight:’ belonging to some ring of coefficients, suchRasr Z (sayR
for definiteness, although weights will be signed integers in most of our examples). Suc
a chain is conveniently denoted by the “formal” sjn) WM =utMy+ -+ pk My,

10For instance, cells. But we don't request that. EA;hmay be a piecewise smooth manifold already.
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thus called because the signs do not mean “add” in any standard way. On the other
hand, chains themselves, as whole objects, can be added, and there the notation hel
To get the sumd_; ' M; + ) ; v/ N}, first merge the two families\{ and V, then
attribute weights by adding the weights each component has in each chain, making u:
of the convention that M’ is the same chain asu M whenM’ is the same manifold as
M with opposite orientation. If all weights are zero, we haverthl chain denoted 0.
All this amounts, as one sees, to handling chains according to the rules of algebra, whe
they are represented via formal sums, which is the point of such a notatidsted
chains are defined the same way, except that all orientations are external. (Twisted al
straight chains are not to be added, or otherwise mixed.)
If M is an oriented piecewise smooth manifold, all its cellsherit this orientation,
but one may have had reasons to orient them on their own, independeily (@he
same cell may well be part of several piecewise smooth manifolds, for instance.) Then,
is natural to associate withf the chain)_; +¢;, also denoted b/, with ith weight—1
when the orientations o¥f andc; differ. (Refer back to Fig. 3.3 for simple examples.)
Now, the boundary of an oriented piecewise smagtht 1)-manifold M is an as-
sembly of p-manifolds, each of which we assume has an orientation of its own. Let us
assign each of them the weightl, according to whether its orientation coincides with
the one inherited frond. (We say the two orientatiomaatchwhen this coincidence
occurs.) Hence a chain, also denodéd. By linearity, the operatod extends to chains:
X W M) =3, n*aM;. A chain with null boundary is called@ycle A chain which
is the boundary of another chain is called, appropriatelypandary Boundaries are
cycles, because of the fundamental property

300 =0, (4.1)

i.e., the boundary of a boundary is the null chain. A concrete example, as in Fig. 4.1
will be more instructive here than a formal proof.

REMARK 4.1. Beyond its connection with assemblies of oriented cells, no too defi-
nite intuitive interpretation of the concept of chain should be looked for. Perhaps, wher
p =1, one can think of the chaid_; y;¢;, with integer weights, as “running along
eachg;, in turn, |y;| times, in the direction indicated hy’s orientation, or in the re-
verse direction, depending on the signjef. But this is a bit contrived. Chains are
better conceived as algebraic objects, based on geometric ones in a useful way — as
example in Fig. 4.1 should suggest, and as we shall see later. However, we shall indulg
in language abuse, and say that a closed curve “is” a 1-cycle, or that a closed surfa
“is” a 2-cycle, with implicit reference to the associated chain.

So boundaries are cycles, after (4.1). Whether the converse is true is an essent
guestion. In affine space, the answer is positive: A closed surface encloses a volume
closed curve (even if knotted) is the boundary of some surface (free of self-intersection:
amagzing as this may appear), called a Seifert surfager€®RTand THRELFALL [1980],
ARMSTRONG[1979, p. 224]). But in some less simple ambient manifolds, a cycle need
not bound. In the case of a solid torus, for instance, a meridian circle is a boundary, bt
a parallel circle is not, because none of the disks it boundsiis entirely contained in
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FiG. 4.1. Piecewise smooth surfaSginner oriented (its orientation is taken to be that of the curved trian-

gle in the fore, markedt), represented as the chain— B — C based on the oriented curved triangles

B, C. (Note the minus signsB’s and C’s orientations don’t match that of.) One hasdA =a + b + ¢,

dB=e+a—d,dC=b+d+ f,wherea, b, ¢, d, e, f are the boundary curves, arbitrarily oriented as

indicated. Now,0S =9(A — B — C) =c — e — f: Observe how the “seamg/, b, ¢ automatically receive

null weights in this 1-chain, whatever their orientation, because they appear twice with opposite signs. Nex

sincedc =x —z, de = —y — z, anddf = x + y, owing to the (arbitrary) orientations assigned to points,

¥, z,0ne ha9dS = d(c — e — f) =0, by the same process of cancellation by pairs. The reader is invited to
work out a similar example involving twisted chains instead of straight ones.

the torus. Whether cycles are or aren’t boundaries is therefore an issue when investig:
ing the global topological properties of a manifold. Chains being algebraic objects thel
becomes an asset, for it makes possible to harness the power of algebra to the study
topology. This is the gist othomology(HENLE [1994], HILTON and WYLIE [1965]),

and of algebraic topology in general.

5. Metric notions

Now, let us equipV,, with a dot productu - v is a real number, linearly depending on
vectorsu andv, with symmetry - v = v - u) and strict positive-definiteness (u > 0 if

u # 0). Come from this, first the notions of orthogonality and angle, next a mofea
(u-u)¥? onV,, then a distancé(x, y) = |y — x|, translation-invariant by construction,
between points of the affine associatg.

DEeFINITION 5.1. Euclidean spacey,, is the structure composed df,, plus a dot
product on its associafé,, plus an orientation.

Saying “the” structure implies that two realizations of it (with two different dot
products and/or orientations) are isomorphic in some substantial way. This is so: Fc
any other dot product,-* say, there is an invertible linear transforin such that
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u-v = Lu - Lv. Moreover! one may havd “direct”, in the sense that it maps a frame
to another frame of the same orientation class, or “skew”. Therefore, two distinct Euclid-
ean structures oA, are linked by somé.. In the language of group actions, the linear
groupGL,, composed of the abowe’s, acts transitively on Euclidean structures, i.e.,
with a unique orbit, which is our justification for using the singular. (These structures
are said to baffine equivalent? a concept that will recur.) The point can vividly be
made by using the language of group actions: the isotropy grofip ©f} “cannot be
any larger”. (More precisely, it is maximal, as a subgroup, in the group of direct linear
transforms.)

In dimension 32 dot product and orientation conspire in spawningdfuss product
u x v is characterized by the equality

lu x 0|2+ (u - v)% = ul?|v|? (5.1)

and the fact that vectors v andu x v form, in this order, a direct frame. Thev®ume

of the parallelotope built on vectors v, w, defined by valu, v, w) = (1 x v) - w, IS
equal, up to sign, to the above volumic measure, with equality if the frame is dfrect.
Be well aware thaik doesn’t make any sensermon-oriented three-space.

We shall have use for the related notionwvefctorial areaof an outer oriented tri-
angleT, defined as the vectdr = aredT)n, wheren is the normal unit vector that
provides the crossing direction. (If an ambient orientation exists, two vegtarsl v
can be laid along two of the three sides, in such a way fhhat, n} is a direct frame.
Then,T = %u x v. Fig. 6.1 gives an example.) More generally, an outer oriented surface
of E3 has a vectorial area: Chop the surface into small adjacent triangular patches, ac
the vectorial areas of these, and pass to the limit. (This yields 0 for a closed surface.)

For later use, we state the relations between the structures induceddy and
{.,0r}, where Or = £0r, the sign being that of det). (There is no ambiguity
about “detL)”, understood as the determinant of the matrix representatiab: dts
value is the same in any basis.) The nomm«)Y/? will be denoted byj«|. The cor-
responding cross product (boldface) is defined byu x v|% + (4 -v)2 = |u|?|v|?
as in (5.1) (plus the request thét, v, u x v} be Or-direct), and the new volume is
vol(u, v, w) = (u x v) -w. It's a simple exercise to show that

lul =|Lu|, L@uxv)=Lux Lv, vol(u,v,w)=det(L)vol(u,v,w). (5.2)

(It all comes from the equality detu, Lv, Lw) = det(L) def(u, v, w), whenu, v, w,
and L are represented in some basis, a purely affine formula.) Notice that, fapany

117 is not unique, sinc& L, for anyunitary U (i.e., such thatU v| = [v] ¥v), will work as well. In particular,
one might forcel to be self-adjoint, but we won't take advantage of that.

12such equivalence is what sets Euclidean norms apart among all conceivable ndrfmdilkafor instance
vl=23; |vf|. As argued at more length ind&saviIT [1998a], choosing to work in a Euclidean framework
is an acknowledgment of another observed symmetry of the world we live iisoit®py,in addition to its
homogeneity.

13p binary operation with the properties of the cross product can exist only in dimensions 3 ardw (S
and YEADON [1989], ECKMANN [1999]).

14An n-volume could directly be defined o¥,, as a madvy, ..., vn} = vol(vq, . .., vy), multilinear and
null when two vectors of the list are equal. Givingrawolume implies an orientation (direct frames are those
with positiven-volumes), but no metric (unlegs= 1).
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one hasL’L(uxv)-w=L(u xv) - Lw=det(L)(u x v) - w, whereL? denotes the
adjointof L (defined byLu - v=u - L%v for all u, v), hence an alternative formula:

uxv=det(L)(L°L)  (u x v). (5.3)
As for the vectorial area, denoté&dn the “bold” metric, one will see that
7 = |detL)|(LL) T, (5.4)

with a factor|det(L)|, not detL), becaus& andT, both going along the crossing di-
rection, point towards the same sideTof

We shall also need a topology on the spacepafhains, in order to define differ-
ential forms ascontinuouslinear functionals on this space. As we shall argue later,
physical observables such as electromotive force, flux, and so forth, can be conceive
as the values of functionals of this kind, the chain operand being the idealization o
some measuring device. Such values don’t change suddenly when the measurement
paratus is slightly displaced, which is the rationale for continuity. But to make precise
what “slightly displaced” means, we need a notion of “nearness” between chains —
topology?®

First thing, nearness between manifolds. Let us define the distdnteN) between
two of them as the greatest lower bound (the infimumygfM, N) = supx € M:
lx — ¢ (x)|} with respect to all orientation-preserving piecewise smooth diffeomor-
phisms (OPD)p that exist betwee/ and N. There may be no such OPD, in which
case we take the distance as infinite, but otherwise there is symmetry bethvaethN
(considerg~! from N to M), positivity, d can't be zero ifM # N, and the trian-
gle inequality holds. Rroof: Take M, N, P, select OPDsp and vy from P to M
and N, and consider in P. Then|¢(x) — ¥ (x)| < |¢p(x) — x| + |x — ¥ (x)|, hence
dyop-1(M, N) <dyp(M, P)+dy (N, P), then minimize with respect ip andy.) Near-
ness of two manifolds, in this sense, does account for the intuitive notion of “slight dis-
placement” of a line, a surface, etc. The topology thus obtained does not depend on tl
original dot product, althougti does.

Next, on to chains. The notion of convergence we want to capture is clear enough:
sequence of chaing, =Y ;_; _; u,M;,: n € N} should certainly converge towards

.....

converge, in the sense of the previous distanc@/tpwhile the weightgu/: n € N}
converge too, towardg’. But knowing some convergent sequences is not enough to
know the topology. (For that matter, even the knowledgalbtonvergent sequences
would not suffice, see 8. BAUM and Q.MSTED [1964, p. 161].) On the other hand, the
finer the topology, i.e., the more open sets it has, the more difficult it is for a sequenci
to converge, which tells us what to do: Define the desired topology as the finest on
which (1) is compatible with the vector space structurgafhains (in particular, each
neighborhood of 0 should contain a convex neighborhood) (2) makes all sequences
the above kind converge.

15what follows is an attempt to bypass, rather than to face, this difficult problem, to which Harrison’s work
on “chainlet” spaces (nested Banach spaces which include chains and their limits with respect to variot
norms, HARRISON [1998]), provides a much more satisfactory solution.
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The space of straight [respectively twistedEhains, as equipped with this topology,
will be denoted byC, [respectivelyép]. Both spaces are purely affine constructs, inde-
pendent of the Euclidean structure, which only played a transient role in their definition

It now makes sense to ask whether the linear riais continuous fromC, to
Cp—1. The answer is by the affirmative, thanks to the linearity @ind the inequality
d(0M,dN) <d(M, N). [Proof: The restriction tdM of an OPD¢ is an OPD which
sends it todN, sod(0M,dN) < infgsupx € IM: |p(x) — x|} < infySupx € M:
lp(x) —x|} =d(M,N) ]



CHAPTERII

Rewriting the Maxwell Equations

Deconstruction calls for reconstruction: We now resettle the Maxwell system in the
environment just described, paying attention to what makes use of the metric structu
and what does not. In the process, differential forms will displace vector fields as basi
entities.

6. Integration: Circulation, flux, etc.

Simply said, differential forms are, among mathematical objects, those meant to b
integrated. So let us revisit Integration.

In standard integration theory @imos [1950], RUDIN [1973], YOSIDA [1980]),
one has a seX equipped with a measurkc. Then, to a paifA, f}, whereA is a part
of X and f a function, integration associates a number, dengtef(x) dx (or simply
[ f, if there is no doubt on the underlying measure), with additivity and continuity
with respect to both argumentd,and f. In what follows, we operate a slight change
of viewpoint: Instead of leaving the measute in background of a stage on which the
two obijects of interest would ba and f, we consider the whole integrantix) dx
as a single object (later to be given its proper name, “differential form”), Arab
some piecewise smooth manifold 4%. This liberates integration from its dependence
on the metric structure: The integral becomes a map of WA&IIFOLD x DIFFER-
ENTIAL FORM — REAL (by linearity, CHAIN will eventually replaceMANIFOLD
there), which we shall see is the right approach as far as Electromagnetics is concerne
The transition will be in two steps, one in which the Euclidean structure is used, one ir
which we get rid of it.

The dot product ofE,, induces measures on its submanifolds: By definition, the
Euclidean measure of the parallelotope builtpnectors{vs, ..., v,} anchored at,
i.e., of the seffx + > ;Alv;: 0< A <1, i=1,...,p}, is the square-root of the so-
called Gram determinant of the’s, whose entries are the dot produets v;, for all
i, j from 1 to p. One can build from this, by the methods of classical measure the-
ory (HALMOS [1950]), thep-dimensional measures, i.e., the lineal, areal, volumic, etc.,
measures of a (smooth, bounded) curve, surface, volume, etc. (what Whitney and h
followers call its “mass”, WAITNEY [1957]). Forp = 0 not to stand out as an exception
there, we attribute to an isolated point the measure 1. (This is the so-calleting
measurefor which the measure of a set of points is the number of its elements.)

127
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o

FiG. 6.1. Forming the terms of Riemann sums. Left: generic “curve segmentith associated sampling
pointxg and vectok. Right: generic triangular small patehwith sampling pointer. Observe how, with the
ambient orientation indicated by the icon, the vectorial arenlwppens to bt%u X v.

We shall consider, corresponding to the four dimensiprsO0, ..., 3 of manifolds
in E3, four kinds of integrals which are constantly encountered in Physics. Such inte-
grals will be defined on cells first, then extended by linearity to chains, which covers
the case of piecewise smooth manifolds.

First, p =0, a point,x say. The integral of a smooth functignis ther}® ¢ (x). If the
point is inner oriented, i.e., if it bears a sigix) = +1, the integral is by convention
e(x)@(x).

Next (p = 1), letc be a 1-cell. At pointc = ¢(¢), define theunit tangent vectot (x)
as the vector at equal tod,c(z)/|9;c(t)|, which inner-orientg. Given a smooth vector
field u, the dot product - u defines a real-valued function on the image: ofVWe call
circulation of u, alongc thus oriented, the integrd) = - u of this function with respect
to the Euclidean measure of lengths.

REMARK 6.1. Integrals (of smooth enough functions) are limits of Riemann sums. In
the present case, such a sum can be obtained as suggested by Fig. 6.1, left: Chop
curve into a finite familyS of adjacent curve segmentspick a pointx, in each of them,

and lets be the vector, oriented along that joins the extremities of. The Riemann
sum associated with is then) " s 5 - u(x,), and converges towardst - u whens is
properly refined.

Further up p = 2), let X be a 2-cell, to which a crossing direction has been as-
signed, and choose the parameterizationr} — X (s, t) in such a way that vectors
n(s,t) =9; X (s, t) x 9; X (s, t) point in this direction. Then sei(x) = n(s,1)/In(s, 1)|,
at pointx = X (s, t), to obtain the outer-orientingnit normal field Given a smooth
vector fieldu, we define thdlux through’, thus outer oriented, as the integfgln ‘u
of the real-valued function - u with respect to, this time, the Euclidean measure of

16This is also its integral over the sgt}, with respect to the counting measure, in the sense of Integration
Theory. The integral over finite set{xq, ..., x}, in this sense, would b&"; ¢ (x;). Notice the difference
between this and what we are busy defining right now, the integral on a 0-chain, which will turn out to be a
weighted sum of the reals(x;).
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areas (No ambiguity on this point, since the statusXfas a surface has been made
clear.)

REMARK 6.2. For Riemann sums, dissegt into a family 7 of small triangular
patchesrt, whose vectorial areas afe pick a pointxr in each of them, and consider

ZTET T u(xr).

Last, forp = 3, and a 3-celV with outer orientationt, the integral of a functiory is
the standard, f, integral of f over the image o¥ with respect to the Lebesgue mea-
sure. This is consistent with the frequent physical interpretatiqf;;g*f as the quantity,
in V, of something (mass, charge,) present with density in V. With outer orienta-
tion —, the integral is- [,, f. Thus, outer orientation helps fix bookkeeping conventions
when f is a rate of variation, like for instance, heat production or absorption. The inner
orientation ofV is irrelevant here.

Now, let us extend the notion to chains based on oriented cells. In dimension C
where an oriented point is a point-cum-sign pfgir e}, a 0-chainm is a finite col-
lection {{x;,&;}: i =1,...,k} of such pairs, each with a weigpt. The integralfm 10
is then defined a3, ,uisi(p(x,-).ﬂ In dimension 1, the circulation along the 1-chain
=Y s [ir-u=3u [, ©-u. The flux [5 n - u through thetwisted (beware!)
chain¥ =Y, 1’ %; is defined a$"; ' [y, n - u. As for dimension 3, a twisted chain
manifold V is a finite collectiod® {{V;,&;}: i = 1, ..., k} of 3D blobs-with-sign, with
weightsy', and [y, f is, by definition,y"; u'e; [, f.

Note that we have implicitly defined integrais on piecewise smooth manifolds there
since these can be considered as cell-based chains with “orientation matching weight
(1 if the cell’s orientation and the manifold’s matchl if they don't).

Thus the most common wal’to integrate things in three-space lead to the definition
of integrals ovelinner oriented manifolds or chains in casps= 0 and 1 andcouter
oriented one® in casesp = 2 and 3. An unpleasant asymmetry. But since we work
in orientedEuclidean space, where one may, as we have seen, derive outer from inn
orientation, and the other way round, this restores the balance, hencedigaliitinds
of integrals, depending on the dimension and on the nature (internal or external) of th
orientation of the underlying chain.

Thus we have obtained a series of maps of t@beAIN — REAL but in a pretty
awkward way, one must admit. Could there be an underlying unifying concept tha
would make it all simpler?

170ne might think, there, that orientation-signs and weights do double duty. Indeed, a convention could b
made that all points are positively oriented, and this would dispose af théVe won't do this, for the sake

of uniformity of treatment with respect to dimension.

18again, one might outer-orient such elementary volumes by giving them-alsign, reducing the redun-
dancy, and we refrain to do so for the same reason.

190thers reduce to one of these. For instance, when using Cartesian coordimates /. f (x,y,z)dx is
simply the circulation along, in the sense we have defined above, of the field-dfrected basis vectors
magnified by the scalar factgf.

204 tradition initiated in FRESTONE[1933] distinguishes between so-called “across” and “through” phys-
ical quantities (KOENIG and BLACKWELL [1960], BRANIN [1961]), expressible by circulations and fluxes,
respectively. As we shall see, this classification is not totally satisfying.
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7. Differential forms, and their physical relevance

Indeed, these maps belong to a category of objects that can be defined without recour
to the Euclidean structure, and have thus a purely affine nature:

DEFINITION 7.1. A straight [respectively twisted] differential form of degrpe

or p-form, is a real-valued map over the space of straight [respectively twisted]
p-chains, linear with respect to chain addition, and continuous in the sense of the abowv:
defined topology of chains (end of Section 5).

Differential forms, thus envisioned, are dual objects with respect to chains, which
prompts us to mobilize the corresponding machinery of functional analysisiGA
[1980]): Call 77 [respectivelyF?] the space of straight [respectively twistgdforms,
as equipped with its so-called “strong” topologfyThen C, and F? [respectively
C, and F7] are in duality via the bilinear bicontinuous mafe, w} — [, o, of type
p-CHAIN x p-FORM — REAL A common notation for such duality products being
(c; w), we shall use that as a convenient altern&tite J. ®. A duality product should
benon-degeneratg.e., (¢’; w) = 0 V¢’ impliesw = 0, and(c; ') = 0 Vo' forcesc = 0.

The former property holds true by definition, and the latter is satisfied becausé Of
one can construct an ad hoc smooth vector field or function with nonzero integral, henc
a nonzero formw such that{c; w) £ 0.

The above eight kinds of integrals, therefore, are instances of differential forms
which we shall denote (in their order of appearancefpyu (circulation ofu), %

(flux of u), 3@, and%@, i, 2u, 3¢. This is of course ad hoc notation, to be aban-
doned as soon as the transition from fields to forms is achieved. Note the use of th
pre-superscripp, accompanied or not by the tilde as the case may be, apam-

tor, that transforms functions or vector fields into differential forms (twisted ones, if
the tilde is there). This operator, being relative to a specific Euclidean structure is as
rule metric- and orientation-dependent. (We'll lseand”, versus?, and”, to distin-
guist?3 the{-, Or} and the{-, Or} structure.) For instance, the 24n means that, given

the straight 2-chair§, one uses both the inner orientation of each of its components

21pjfferential forms converge, in this topology, if their integrals converge uniformly on bounded sets of
chains. (Aboundedset B is one that isabsorbedby any neighborhood of 0, i.e., such that B c V for

somei > 0.) We won't have to invoke such technical notions in the sequel. (Again, s@®RI3SON [1998]

for normson (Banach) spaces of differential forms.) Note the generic use of “differential form” here: Whether
an object qualifies as differential form depends on the chosen topology on chain spaces.

227 line with the convention of Note 4, we shall denote dythe mape — (c; w), and feel free to write

w = c — {c; w). Of course, the symmetric construct w — (c; w) is just as valid. Maps of the latter kind,
from forms to reals, were calledlirrentsin DE RHAM [1960]. (SeebE RHAM [1936, p. 220], for the physical
justification of the term.) There are, a priori, much more currents than chains (or even chainksHN
[1998]), and one should not be fooled by the expression “in duality” into thinking that the du@f pf.e.,

the bidual ofC,, is C, itself.

23This play on styles is only a temporary device, not to be used beyond the present Chapter. Later we shz
revert to the received “musical” notation, which assumes a single, definite metric structure in backgrounc
and cares little about ambiguityz denotes the vector proxy of formy andbU is the form represented by the
vector field U.
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and the ambient orientation to define a crossing direction, then the metric in order t
build a normal vector field in this direction, over each component of the chain. Then,
(S; 2u) = [¢n - u defines?u, a straight 2-form indeed. (Notice th&s; 2u) doesnot
depend on the ambient orientation.)

REMARK 7.1. In the foregoing example, it would be improper to desctie’u) as

the flux of u “through” S, since the components ¢f, a straight chain, didn’t come
equipped with crossing directions. These were derived from the ambient orientatior
part of the Euclidean structure, instead of being given as an attribi§te cbmponents.

To acknowledge this difference, we shall referfgm -u as the flux “embraced bysS.

This is not mere fussiness, as will be apparent when we discuss magnetic flux.

One may wonder, at this point, whether substituting the single concept of differentia
form for those of point-value, circulation, flux, etc., has gained us any real generality
besides the obvious advantage of conceptual uniformity. Let us examine this point care
fully, because it's an essential part of the deconstruction of Euclidean space we ha\
undertaken.

On the one hand, the condition that differential forms should be continuous with re-
spect to deformations of the underlying manifolds doesn't leave room, in dimension 3
for other kinds of differential forms than the above eight. First, it eliminates many ob-
vious linear functionals from consideration. (For instaneeheing an outer-oriented
curve, theintersection numberdefined as the number of timgscrossesS, counted
algebraically (i.e., with sign — if orientations do not match), provides a linear map
S — S Ay, which is not considered as a bona fide differential form. Indeed, it lacks
continuity.) Second, it allows one, by using the Riesz representation theorem, to buil
vector fields or functions that reduce the given form to one of the eight types: For in-
stance, given a 1-forma, there i$* a vector field2 such thatc; w) = [.7-$2,whichis
our first example of what will later be referred to as a “proxy” field: A scalar or vector
field that stands for a differential form. For other degrees, forms in 3D are representabl
by vector fields p = 1 and 2) or by functionsy{= 0 and 3).

However, the continuity condition requires less regularity from the proxy fields than
the smoothness we have assumed up to now. Not to the point of allowing them to b
only piecewise smooth: What is required lies in between, and should be clear fron
Fig. 7.1, which revisits a well known topic from the present viewpoint. As one sees,
the contrived “transmission conditions”, about tangential continuity of this or normal
continuity of that, are implied by the very definition of forms as continuous maps.

Last, the generalization is genuine in spatial dimensions higher than 3: A two-forn
in 4-space, for instance, has no vector proxy, as a rule.

So, although differential forms do extend a little the scope of integration, this is but a
marginal improvement, at least in the 3D context. The real point lies elsewhere, and wil

24The proof is involved. From a vector field build a 1-chain; u;s;, akin to the graphic representation
of v by arrows, i.e.s; is an oriented segment that approximates a region of volumeu; . Apply » to this
chain, go to the limit. The real-valued linear map thus generated is then shown, thanks to the continpity of
to be continuous with respect to tié norm on vector fields. Hence a Riesz vector figldwhich turns out

to be a proxy fomw.
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FiG. 7.1. The interfaces, equipped with the unit normal field, separates two regions where the vector
field u is supposed to be smooth, except for a possible discontinuity astoSapposeX’ or ¢, initially
below S, is moved up a little, thus passing into region 2. Under such conditions, the fluthobughX (left)

and circulation ofx alongc (right) can yet bestable i.e., vary continuously with deformations ofand X,
providedu has some partial regularity: As is well known, and easily proven thanks to the Stokes theorem
normal continuity (zero jump(v - u] of the normal component across the interface) ensures continuity of
the flux [ n - u with respect toX (left), while tangentialcontinuity of u (zero jump[u] of the tangential
component across the interface) is required for continuity of the circulgfion « (right) with respect ta:.

Forms% and 0@ require a continuous. Piecewise continuity of the proxy functign is enough for3g
and3g.

now be argued: Which differential form is built from a given (scalar or vector) field de-
pends on the Euclidean structubeit the physical entity one purports to model via this
field does naqtas a rule. Therefore, the entity of physical significance is the form, con-
ceived as an affine object, and not the field. Two examples will suffice to settle this point

Consider an electric charg® coulombs strong, which is made to move along an
oriented smooth curve, in the direction indicated by the tangent vector fieldwe
mean atestcharge, withQ small enough to leave the ambient electromagnetic field
{E, B} undisturbed, andartual motion, which allows us to consider the field as frozen
at its present value. The work involved in this motiondstimes the quantit)fc T - E,
called theelectromotive forcde.m.f.)along ¢, and expressed in volts (i.e., joules per
coulomb). No unit of length is invoked in this description.

Then why is E expressed in volser meter(or whatever unit one adopts)? Only
because a vectar such thatv| = 1 is one meter long, which makes k, and the in-
tegralfc 7 - E as well, a definite amount eblts indeed. This physical data, of course,
only depends on the field and the curve, not on the metric structure. Yet, change th
dot product, from to - (recall thatu -v = Lu - Lv), which entails a change in the mea-
sure of lengths (hence a rescaling of the unitary vector, aanstead ofr), and the
circulation of E is now® f . 7-E= [ v - LLE, a different (and physically meaning-
less) number. On the other hand, thiere field E such thatf, 7 -E = [, 7 - E, namely
E = (L“L)~LE. ConclusionWhich vector field encodes the physical ddtere, e.m.f.s
along all curvesyepends on the chosen metric, although the data themselves.do no
This metric-dependence of E is the reason to call it a vagmimxy. It merely standsfor

250n the left of the equal sign, the integral and the symbasd = are boldface. (One should see the
difference, unless something is amiss in the visualization chain.) So the circulation of E is with respect tc
the “bold” measure of lengths on the left. The easiest way to verify this equality (and others like it to come)
is to work on the above Riemann suig, vs - E(xs) of the “bold” circulation of E: One has, for each term
(omitting the subscriptyy-E= Lv- LE=v - LY LE, hence the result.
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the real thing, which is the mapping— (e.m.f. alongc), i.e., a differential form of
degree 1, which we shall from now on denotecby
Thus, summoning all the equivalent notations introduced so far,

e=1E=1E=c— (c;e), Where(c;e)z/ezft-Ezfr-E. (7.2)

This (straight) 1-form is the right mathematical object by which to represent the electric
field, for it tells all about it: Electromotive forces along curves are, one may argue
(ToNTI [1996]), all that can be observed as regards the electric3%eld.the point that

one can get rid of all the vector-field-and-metric scaffolding, and introdutieectly,

by reasoning as follows: The-CHAIN — REALmap we call e.m.f. depends linearly
and continuouslyas can experimentally be establishe the chain over which it is
measured. But this is the very definition of a 1-form. Headgthe minimal, necessary
and sufficient, mathematical description of the (empirical) electric field.

REMARK 7.2. The chain/form duality, thus, takes on a neat physical meaning: While
the forme models the field, chains are abstractions ofglabes of more or less com-
plex structure, that one may place here and there in order to measure it.

The electric field is not the whole electromagnetic field: it only accounts for forces
(and their virtual work) exerted on non-moving electric charges. We shall deal latel
with the magnetic field, which gives the motion-dependent part of the Lorentz force,
and recognize it as a 2-form. But right now, an example involvihgisted2-form will
be more instructive.

So consider current density, classically a vector field J, whose purpose is to accoul
for the quantity of electric chargg,. n - J, that traverses, per unit of time, a surfate
in the direction of the unit normal field that outer-orients it. (Note again this quantity
is in ampéres, whereas the dimension of the proxy field4/i&2.) This map,~ —
(intensity through¥), a twisted 2-form (namely.J), is what we can measure and know
about the electric current, and the metric plays no role there. Yet, changewhich
affects the measure of areas, and the flux of J bec%fnﬁsn -J=|detL)| [yn-J.

The “bold” vector proxy, therefore, should Be= |det(L)|~1J, and theJ = 2J. Again,
different vector proxies, but the same twisted 2-form, which thus appears as the invarial
and physically meaningful object. It will be denoted py

This notational scheme will be systematized: Below, we shalkgéalld, b, j, a, etc.,
the differential forms that the traditional vector fields E, H, D, B, J, A, etc., represent.

26pgintwise values cannot directly be measured, which is why they are somewhat downplayed here, but «
course they do make sense, at points of regularity of the field: Takingtfoe segmentx, x + v], wherev

is a vector afx that one lets go to 0, generates at the limit a linear map w, (v). This map, an element of

the dual ofTy, is called acovectorat x. A 1-form, therefore, can be conceived as a (smooth enough) field of
covectors. In coordinates, covectors suchias v, wherev is theith component ob at pointx, form a

basis for covectors at. (They are what is usually denoted by’cdbut d makes better notation, that should

be used instead, on a par withfor basis vectors.)

27same trick, with Riemann sums of the forET'T'-J(xT). After (5.2) and (5.4),‘T’-J =LT LI=

LOLT -J=|dei(L)|T - J. Hencefy. n-J=|dei(L)| [5 n - J.
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8. The Stokestheorem

The Stokes “theorem” hardly deserves such a status in the present approach, for it r
duces to a mere

DEFINITION 8.1. The exterior derivativea of the (p — 1)-form w is the p-form
c— [y 0.

In plain words: To integrate«l over thep-chainc, integratew over its boundaryc.
(This applies to straight or twisted chains and forms equally. Note that d is well defined
thanks to the continuity of from C,_1 t0 C,.) In symbols:[, o = [. dw, which is the
common form of the theorem, or equivalently,

(dc; w) = (c; dw) Ve eCpandw e FPL (8.1)

(put tildes overC and F for twisted chains and forms), which better reveals what is
going on: d is thedual of 8 (Y0OSIDA[1980]). As a corollary of (4.1), one has

dod=0. (8.2)

A form w is closedif dw = 0, andexactif w = do for some formx. (Synonyms, perhaps
more mnemonic, areocycleandcoboundaryThe integral of a cocycle over a boundary,
or of a coboundary over a cycle, vanishes.)

REMARK 8.1. InA,, all closed forms are exact: this is known as Boéncaré Lemma
(see, e.g., BHUTZ [1980, p. 140]). But closed forms need not be exact in general man-
ifolds: this is the dual aspect of the “not all cycles bound” issue we discussed earlier
Studying forms, consequently, is another way, dual to homology, to investigate topol.
ogy. The corresponding theory is calledhomology(JANICH [2001], MADSEN and
TORNEHAVE [1997]).

In three dimensions, the d is the affine version of the classical differential operators
grad, rot, and div, which belong to the Euclidean structure. Let’s review this.

First, the gradient: Given a smooth functipnwe define gra¢ as the vector field
such that, for any 1-cell with unit tangent fieldr,

fc - (gradp) = /3 » (83)

the latter quantity being of courgg(c(1)) — ¢(c(0)). By linearity, this extends to any
1-chain. One recognizes (8.1) there. The relation between gradient and d, therefore,
L(grady) = d% = dy, the third term being what is called thfferential of ¢. (The
zero superscript can be dropped, because there is only one way to turn a function into
0-form, whatever the metric.) The vector field grat a proxy for the 1-form d.

Thus defined, grag depends on the metric. If the dot product is changed frdrno*
“.", the vector field whose circulation equals the right-hand side of (8.3) is a different
proxy, grad ¢, which relates to the first one, as one will see using (5.2), by gead

LeLgradg.
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Up in degree, rot and div are defined in similar fashion. Thus, all in all,

Ygradp) =d%, ?(rotu) =du, S3(divv)=d?. (8.4)

Be well aware that all forms here astraight Yet their proxies may behave in confusing
ways with respect to orientation, as we shall presently see.

About curl, (8.4) says that the curl of a smooth fielddenoted roi, is the vector
field such that, for any inner oriented surfage

/n-rotu:/ T-U. (8.5)
S BN

Here,z corresponds to the induced orientatiordsf, andn is obtained by the Ampere
rule. So the ambient orientation is explicitly used. Changing it reverses the sign:of rot
The curl behaves like the cross product in this respect. If, moreover, the dot product i
changed, the bold curl and the meager one relate as follows:

PROPOSITION8.1. Withu -v = Lu - Lv andOr = sign(det(L))Or, one has
rotu = (det(L))_lrot(L”Lu). (8.6)

PROOF Because of the hybrid character of (8.5), with integration over an outer ori-
ented surface on the left, and over an inner oriented line on the right, the compu
tation is error prone, so let's be careful. On the one hand (Note PR)r -u =

J35T - L*Lu = [¢n - rot(L*Lu). On the other hand (Note 27), settidg= rotu, we
know that f¢n.J = |det(L)| [¢n - J, hence... but wait! In Note 27, we had both
normalsr and n on the same side of the surface, but here (see Fig. 3.2, left), they
may point to opposite directions @r # Or. The correct formula is thug,n-rotu =
det(L) [gn-rotu= [¢n-rot(L*Lu), hence (8.6). O

As for the divergence, (8.4) defines diwas the function such that, for any volurite
with outgoing normak onaV,

/Vdinzfavwv. (8.7)

No vagaries due to orientation this time, because both integrals represent the same ki
of form (twisted). Moreoverdivv = divv, because the same factaletL)| pops up

on both sides off|, divu = f,,, n-v. (These integrals, as indicated by the boldface
summation sign, are with respect to the “bold” measure. For the one on the left, it's the
3D measurgvol|, andvol = det(L) vol after (5.2).)

REMARK 8.2. The invariance of div is consistent with its physical interpretation: if

is the vector field of a fluid mass, its divergence is the rate of change of the volume
occupied by this mass, and though volumes depend on the metric, vatiosedo not,
again after (5.2).
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0 1 2 3
., 0r o — grad—>» o — rot—>» o —— div—> o
) ) ) )
] LL det(L) det(L)
| | | |
o ,Or o — grad—>» o — rot—>» o — div-—> o

FIG. 8.1. Vertical arrows show how to relate vector or scalar proxies that correspond sarttestraight
form, of degree 0 to 3, in two different Euclidean structures. thgstedforms, use the same diagram, but
with |det(L)| substituted for d&t.).

For reference, Fig. 8.1 gathers and displays the previous results. This is a commut
tive diagram, from which transformation formulas about the differential operators can
be read off®

As an illustration of how such a diagram can be used, let us prove something the
reader has probably anticipated: the invariance of Faraday’s law with respect to a chan
of metric and orientation. Let two vector fields E and B be such d/Bt- rotE =0,
and setB = B/det(L), E = (L“L)1E, which represent the same differential forms
(call themb ande) in the {-, Or} framework, as B and E in thig, Or} one. Thery;B +
rot E = 0. We now turn to the significance of the single physical law underlying these
two relations.

9. Themagneticfield, asa 2-form

Electromagnetic forces on moving charges, i.e., currents, will now motivate the intro-
duction of the magnetic field. Consider a current lobpmpeéres strong, which is made
to move — virtual move, again — so as to span a surfa@ieig. 9.1). The virtual work
involved is ther? times [ n - B (“cut flux” rule), as explained in the caption. Experience
establishes the linearity and continuity of the facfor. - B, called theinduction flux
as a function ofS. Hence a 2-form, again the minimal description of the (empirical)
magnetic field, which we denote lByand callmagnetic induction

In spite of the presence afin the formula,b is not a twisted but a straight 2-form,
as it should, since ambient orientation cannot influence the sign of the virtual work in
any way. Indeed, what is relevant is the direction of the current along the loop, whict
inner-orientsc, and the inner orientation df is the one that matches the orientation
of the chainc¢’ — ¢ (“final position minus initial position” in the virtual move). The
intervention of a normal field, therefore, appears as the result of the will to repiesent
with help of a vector, the traditional B such that= 2B. No surprise, then, if this vector

28t should be clear that might depend on the spatial positionso this diagram is more general than what
we contracted for. It gives the correspondence between differential operators relative to different Riemannia
structures on the same 3D manifold.
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FIG. 9.1. Conventions for the virtual work due to B on a current loop, in a virtual move from position
positionc’. The normal: is the one associated, by Ampére’s rule, with the inner orientatich afsurface
such thaB§ = ¢’ — c. The virtual work of the X B force, with J= I, is then! times the flux/gn - B.

Nature of the proxy fora  straight or twisted DF of degree
function polar axial 0
vector field polar axial 1
vector field axial polar 2
function axial polar 3

FIG. 9.2. Nature of the proxies imon-oriented 3D space with dot product.

proxy “changes sign” with ambient orientation! Actually, it cannot do its job, that is,
represenb, without an ambient orientation.

If one insists on a proxy that can act to this effect in autonomy, this object has to carn
on its back, so to speak, an orientation of ambient space, i.e., it must be a faidlof
vectors. Even so, the dependence on metric is still there, so the benefit of using sut
objects is tiny. Yet, why not, if one is aware that (polar) vector field and axial vector
field are just mathematicabols2® which may be more or less appropriate, depending
on the background structures, to represent a given physical entity. In this respect, it me
be useful to have a synoptic guide (Fig. 9.2).

We can fully appreciate, now, the difference betwgeandb, between current flow
and magnetic flux. Current density, the twisted 2-fgrnis meant to be integrated over
surfacesX with crossing direction: its proxy J is independent of the ambient orienta-
tion. Magnetic induction, the straight 2-forbnis meant to be integrated over surfaes
with inner orientation: its proxy B changes sign if ambient orientation is changed. Cur-
rent, clearly, flows through a surface, so intensity is one of these “through variables” o

29Thus axiality or polarity is by no means a property of the physical objects. But the way physicists write
about it doesn'’t help clarify this. For instanceA® and MUNIAIN [1994, p. 61]): “In physics, the electric

field E is called a vector, while the magnetic field B is called an axial vector, because E changes sign und
parity transformation, while B does not”. Or elsed&N [1973]): “It is well known that under the space
inversion transformation? : (x, y, z) - (—x, —y, —z), the electric field transforms as a polar vector, while
the magnetic field transforms as an axial vector{ E — —E, B — B}". This may foster confusion, as some
passages in B.DOMIR and HAMMOND [1996] demonstrate.
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Note 20. But thinking of the magnetic flux as goitigough S is misleading. Hence the
expression used here, flexmbraced by surface’®

10. Faraday and Ampere

We are now ready to address Faraday’s famous experiment: variations of the flux en
braced by a conducting loop create an electromotive force. A mathematical statemel
meant to express this law with maximal economy will therefore establish a link betweer
the integral ofb over a fixed surfacd and the integral oé over its boundarysS. Here

it is: one has

8t/b+/ e=0 VYSely, (10.1)
S as

i.e., for any straight 2-chain, and in particular, any inner oriented susfaksembers in
(10.1) have dimension: webers for the first integral, and volts (i.e., Wb/s) for the seconc
one.Inner orientation ofdS (and hence, of itself) makes lots of physical sense: it
corresponds to selecting one of the two ways a galvanometer can be inserted in tt
circuit idealized byd S. Applying the Stokes theorem — or should we say, the definition
of d — we find the local, infinitesimal version of the global, integral law (10.1), as this:

b +de=0, (10.2)

the metric- and orientation-free version®B + rotE= 0.
As for Ampere’s theorem, the expression is similar, except that twisted forms are nov
involved:

—a[/d+/ h:/j VY eCo, (10.3)
b)) X X

i.e., for any twisted 2-chain, and in particular, any outer oriented suadés infini-
tesimal form is

—98,d 4+ dh = j, (10.4)

again the purely affine version of9,D + rotH = J. Since; is a twisted form,
d must be one, and as well?! which suggests that its proxy H will not behave
like E under a change of the background Euclidean structure. Indeed, ort¢ as
sign(det(L))(L4L)~tH in the now familiar notation. In non-oriented space with metric,
the proxy H would be an axial vector field, on a par with B. Vector proxies D and J
would be polar, like E.

At this stage, we may announce the strategy that will lead to a discretized form of
(10.1) and (10.3): Instead of requesting their validitydtirchainsS or X', we shall be

30This exposes the relative inadequacy of the “across vs. through” concept, notions which roughly matcl
those of straight 1-form and twisted 2-formKBNIN [1961]). Actually, between lines and surfaces on the
one hand, and inner or outer orientation on the other handoitisdifferent “vectorial” entities one may have

to deal with, and the vocabulary may not be rich enough to cope.

31A magnetomotive forcen.m.f.), therefore, is a real value (in ampéres) attached twuger oriented line

y, namely the integrafy h.
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content with enforcing them for fnite family of chains, those generated by the 2-cells
of an appropriate finite element mesh, hence a system of differential equations. But firs
we must deal with the constitutive laws linkildgandd to i ande.

11. The Hodge operator

For it seems a serious difficulty exists there: Sicandi, or d ande, are objects
of different types, simple proportionality relations between them, suéh=ag.z and

d = ge, won't make sense jf ande are mere scalar factors. To save this way of writing,
as it is of course desirable, we must properly redefirende asoperators of type 1-
FORM — 2-FORM, one of the forms twisted, the other one straight.

So let’s try to see what it takes to go franto d. It consists in being able to determine
/5 d over any given outer oriented surfagg knowing two things: the fornz on the
one hand, i.e., the valuﬁce for any inner oriented curve, and the relation D= ¢E
between the proxies, on the other hand. (Note ¢hzan depend on position. We shall
assume it's piecewise smooth.) How can that be done?

The answer is almost obvious ¥ is a smalt? piece of plane. Build, then, a small
segment meetingX orthogonally at a point whereg is smooth. Associate withthe
vector¢ of same length that points along the crossing direction thratighnd let this
vector also serve to inner-orientLet X stand for the vectorial area &f, and take note
thatf/ aredY) = ¢/lengthc). Now dot-multiply this equality by D on the leftE on
the right. The resultis

__aredy)
/Ed_g(x)ilengtf(c) Ce, (11.1)

which does answer the question.

How to lift the restrictive hypothesis thal be small? Riemann sums, again, are the
key. Divide X into small patches, as above (Fig. 6.1, right), equip each of them with a
small orthogonal segment, meeting it atvr, and such thafr = T. Next, definefz d
as the limit of the Riemann suﬁ?sZT e(xt) ch e. One may then define thaperatore,

with reuse of the symbol, as the map- d just constructed, fronFL to F2. A similar
definition holds foru, of type 71 — F2, and for the operators 1 and .~ going in
the other direction. (Later, we shall substitutéor ;. ~1.)

REMARK 11.1. We leave aside the anisotropic case, with a (symmetric) tefisior
stead of the scalar. In short: Among the variant “bold” metrics, there is one in which
¢ reduces to unity. Then apply what precedes, with “orthogonality”, “length”, and
“area” understood in the sense of this modified metric. (The latter may depend on pc
sition, however, so this stands a bit outside our present framework. Details are given i
BossaAvIT[2001b].)

3270 make up for the lack of rigor which this word betrays, one should treaid > as “p-vectors” (p =1

and 2 respectively), which are the infinitesimal avatarg-chains. See BssavIT[1998b] for this approach.
33Singular points ok, at whiche(xt) is not well defined, can always be avoided in such a process, unless
X coincides with a surface of singularities, like a material interface. But then, rhoadittle, and extend/

to such surfaces by continuity.
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REMARK 11.2. When the scalar or 1 equals 1, what has just been defined is the
classicalHodge operatorof differential geometry (BRKE [1985], SCHUTZ [1980]),
usually denoted by, which mapsp-forms, straight or twisted, t&: — p)-forms of the
other kind, withxx = +1, depending om and p. In dimensionn = 3, it's a simple
exercise to show that the above construction then reducelite- 2, which prompts
the following definition:x % = 3¢, «1u = 2, x2u =1 i1, 3p = %9@. Note thatks = 1
forall p in 3D.

The metric structure has played an essential role in this definition: areas, lengths, ar
orthogonality depend on it. So we now distinguish, in the Maxwell equations, the two
metric-free main ones,

0;b+de =0, (10.2)
—98,d +dh = j, (10.4)

and the metric-dependent constitutive laws

b= ph, (11.2)
d = ee, (11.3)

where ande are operators of the kind just described. To the extent that no metric
element is present in these equations, except for the openatarsl ¢, from which

one can show the metric can be inferred@AvIT[2001b]), one may even adopt the
radical point of view (D CARLO and TiERO [1991]) thatu ande encodethe metric
information.

12. The Maxwell equations: Discussion

With initial conditions one and# at timet = 0, and conditions about the “energy” of
the fields to which we soon return, the above system makes a well-posed problem. Y
a few loose ends must be tied.

First, recall thatj is supposed to be known. But reintroducing Ohm'’s law at this stage
would be no problem: replacgein (10.4) by j* + e, wherej* is a given twisted 2-form
(the source current), anda third Hodge-like operator on the modelsoénd .

12.1. Boundary conditions, transmission conditions

Second, boundary conditions, if any. Leaving aside artificial “absorbing” boundary con-
ditions (MITTRA, RAMAHI, KHEBIR, GORDON and Kouki [1989]), not addressed
here, there are essentially four basic ones, as follows.

Let’s begin with “electric walls”, i.e., boundaries of perfect conductors, inside which
E =0, hence the standardx E = 0 on the boundary. In terms of the formit means
that [ e = 0 for all curvesc contained in such a surface. This motivates the following
definition, stated in dimensionfor generality:S being an(n — 1)-manifold, callC, (S)
the space op-chains whose components are all supportes ithen,



SECTION 12 Rewriting the Maxwell Equations 141

DEFINITION 12.1. The tracest of the p-form w is the restriction ofv to C, (5), i.e.,
the mapr — | w restricted top-chains based on components which are containéd in

Of course this requirep < n. So the boundary condition at an electric wéil is
tsee = 0, which we shall rather write, for the sake of clarity, as=<t0 on §¢”. Sym-
metrically, the condition/t = 0 on S” corresponds to a magnetic walt.

The Stokes theorem shows that d, and t, commute =dtdw for any w of degree
not higher tham — 2. Therefored = 0 implies t& = 0, henced, (tb) = 0 by (10.2),
that is, b = 0 if one starts from null fields at time 0. For the physical interpretation of
this, observe thabt= 0 on §” means/ b = 0 for any surface piecé belonging tos?,
or else, in terms of the vector proxy,» - B = 0, which impliesn - B =0 on all §%:

a “no-flux” surface, called a “magnetic barrier” by some. We just proved anew, in the
present language, that electric walls are impervious to magnetic flux. One will see in th
same manner thaf = 0 corresponds to “insulating boundaries” {=0) and & = 0to
“dielectric barriers” ¢ - D = 0). If j is given with tj = 0 at the boundary of the domain

of interest (which is most often the case) thén=t0 on " implies t/ = 0 there. (In
eddy current problems, wheikis neglected, buj is only partially given, & =0 on S”
implies tj =0, i.e., no current through the surface.)

Conditions b = 0 or & = 0 being thus weaker thaa + 0 or t» = 0, one may well
want to enforce them independently. Many combinations are thereby possible. As
rule (but there are exceptions in non-trivial topologies, ses®avIT [2000]), well-
posedness in a domaid bounded by surfac# obtains if S can be subdivided a$ =
S€U ShU St with te = 0 on S¢ (electric wall), : = 0 on S* (magnetic wall), andoth
conditions t¢ = 0 and tck = 0 on $¢*, which corresponds tdt= 0 and # = 0 taken
together (boundary which is both a magnetic and a dielectric barrier, or, in the case
eddy-current problems, an insulating interface).

REMARK 12.1. It may come as a surprise that the standard Dirichlet/Neumann oppo
sition is not relevant here. It's because a Neumann condition is just a Dirichlet condi
tion composed with the Hodge and the trace operatocs@wvIT [2001c]): Take for
instance the standardx ;. ~1rot E = 0, which holds on magnetic walls in the E formu-
lation. This is (up to an integration with respect to time) the proxy fornhet 0, i.e.,

of the Dirichlet conditionn x H = 0. In short, Neumann conditions enare Dirich-

let conditions oz, and the other way round. They only become relevant when one
eliminates eithee or & in order to formulate the problem in terms of the other field ex-
clusively, thus breaking the symmetry inherent in Maxwell’'s equations (which we have
no intention to do unless forced to!).

Third point, what about the apparently missing equations, divQ and divB=0
in their classical form (Q is the density of electric charge)? These are not equation:
actually, but relations implied by the Maxwell equations, or at best, constraints tha
initial conditions should satisfy, as we now show.

Let’s first defingg, the electric charge, of which the above Q is the proxy scalar field.
Since j accounts for its flow, charge conservation impligg,, ¢ + [, j = 0 for all
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volumesV, an integral law the infinitesimal form of which is
dq +dj =0. (12.1)

Suppose botly and j were null before time = 0. Later, theng(¢) = —fé(dj)(s)ds.

Note thatg, like dj, is atwisted3-form, as should be the case for something that ac-
counts for the density of a substance. (Twisted forms are often called “densities”, by th
way, as in BJRKE [1985].)

Now, if one accepts the physical premise that no electromagnetic field exists unti
its sources (charges and their flow, i.g.and j) depart from zero, all fields are null
atr = 0, and in particular, after (10.4)(t) = d(0) + fé[(dh)(s) — j(s)]lds, hence,
by using (8.2), di(r) = —fé(dj)(s)ds = ¢ (1), at all times, hence the derived relation
dd = q. As for b, the same computation shows that=d 0.

So-called “transmission conditions”, classicgllyx E] =0, [n - B] = 0, etc., at ma-
terial interfaces, can be evoked at this juncture, for these too are not equations, in tt
sense of additional constraints that the unknowis etc., would have to satisfy. They
are satisfied from the outset, being a consequence of the very definition of differentia
forms (cf. Fig. 7.1).

12.2. Wedge product, energy

Fourth point, the notion of energy. The physical significance of such integrgi8 asl

or [ J-E is well known, and it's easy to show, using the relations displayed on Fig. 8.1,
that both are metric-independent. So they should be expressible in non-metric term
This is so, thanks to the notion wfedge produgtan operation which creates p+ ¢)-

form w A n (straight when both factors are of the same kind, twisted otherwise) out of
a p-form w and ag-form n. We shall only describe this in detail in the case of a 2-form
b and a 1-formi, respectively straight and twisted.

The result, a twisted 3-forrh A £, is known if integralsf;, b A h are known for all
volumesV. In quite the same way as with the Hodge map, the thing is easy When
is a small parallelepiped, as shown in Fig. 12.1. Observe that=if?B and/ = H,
then [, b A h = B - Hvol(V), if one follows the recipe of Fig. 12.1, confirming the
soundness of the latter. The extension to finite-size volumes is made by constructin
Riemann sums, as usual.

REMARK 12.2. Starting from the equalitfyb A »' = [ B - H', settingb = uh yields

Juh Al =[uH-H = [puH -H= [uh’ A h, asymmetryproperty of the Hodge
operator to which we didn’t pay attention till now. Note also tfiath Ah = [ wlH2 >

0, unless: = 0. Integrals such ag uh Ah’, or [ vb Ab/, etc., can thus be understood as
scalar producton spaces of forms, which can thereby be turned (after due completion)
into Hilbert spaces. The corresponding norms, i.e., the square rogtgbfA h, of

J vb A b, and other similar constructs eror d, will be denoted bya|,,, 4], etc.

Other possible wedge products dke A w = %(pw) (whatever the degree @é),
u A Tv=2u xv), 2u A Tv=3u-v). (If none or both factors are straight forms,
the product is straight.) It's an instructive exercise to work out the exterior derivative of

1
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w ¥ (w)

L\_) - J = = ¥ (v)
e u v

P S > ~

u ¥ (u) S(v, w) S(u, w)

FiG. 12.1. There are three ways, as shown, to see volni®iilt onu, v, w, as the extrusion of a surfade
along a line segment. A natural definition of the integral df A h is thenfy, b Ah = (fS(u.U) b)(fy(w) h) +

(fs(v w) b)([y(u) h) + (fs(u w) b)(fy(v) h). Note the simultaneous inner and outer orientations§ ahdy,
which should match (if the outer orientation @fis +, as assumed), but are otherwise arbitrary.

such products, using the Stokes theorem, and to look for the equivalents of the standa
integration by parts formulas, such as

/(H-rotE—ErotH):/ n-(ExH),
Q 302

/(D~gradl1/+l1/divD)=/ Yn-D.
2 082

They are, respectively,

/(de/\h—e/\dh):/ enh, (12.2)
2 082

/(dederdd): vd. (12.3)
2

982

Now, let us consider a physically admissible field, that is, a quartet of forins, d,
which may or may not satisfy Maxwell's equations when taken together, but are each c
the right degree and kind in this respect.

DEFINITION 12.2. The following quantities:

1 1 1 1
E/,u_lb/\b, E/uh/\h, 5/86/\6’ E/a_ld/\d, (12.4)

are called, respectivelynagnetic energymagnetic coenerglectric energyandelec-
tric coenergyof the field. The integral j A e is thepowerreleased by the field.

The latter definition, easily derived from the expression of the Lorentz force, is a
statement about field—matter energy exchanges from which the use of the word “energ;
could rigorously be justified, although we shall not attempt that here @ERBvIT
[1990a]). The definition entails the following relations:

1 1
—/u‘leb+—/uhAh>/bAh,
2 2

1 _ld/\d+1 ne> | dna
5 € 5 cene>= e,
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with equality if and only ifb = uh andd = ee. One may use this as a way to set up the
constitutive laws.

REMARK 12.3. The well-posedness evoked earlier holds if one restricts the searcl
to fields with finite energy. Otherwise, of course, nonzero solutions to (10.2), (10.4),
(11.2), (11.3) withj = 0 do exist (such as, for instance, plane waves).

The integrals in (12.4) concern the whole space, or at least, the whole region of ex
istence of the field. One may wish to integrate on some do2aamly, and to account
for the energy balance. This is again an easy exercise:

PROPOSITION 12.1 (Poynting’s theorem).If the field {b, i, e,d} does satisfy the
Maxwell equation$10.2), (10.4), (11.2), (11.3bne has

1 1
d,[—/u_lb/\b—}——/ee/\e]—i—/ e/\h:—/j/\e
2 /)0 2 )0 a0 2

for any fixed domai2.

PrROOF “Wedge multiply” (10.2) and (10.4), from the right, kyand —#k, add, use
(12.2) and Stokes. U

As one sees, all equalities and inequalities on which a variational approach tc
Maxwell’s theory can be based do have their counterparts with differential forms. We
shall not follow this thread any further, since what comes ahead is not essentially base
on variational methods. Let's rather close this section with a quick review of various
differential forms in Maxwell's theory and how they relate.

12.3. The “Maxwell house”

To the field quartet and the source péjr, j}, one may add thelectric potentialyr

and thevector potentiak, a straight 0-form and 1-form respectively, such that da

ande = —d;a + dyr. Also, themagnetic potentiap (twisted 0-form) and the twisted
1-form r such thath = t + dp, whose proxy is the T of Carpenter’s “T2* method
(CARPENTER[1977]). None of them is as fundamental as those in (10.2), (10.4), but
each can be a useful auxiliary at times. Thagnetic currenk andmagnetic chargen

can be added to the list for the sake of symmetry (Fig. 12.2), although they don't seer
to represent any real thing (EDHABER and TROWER[1990]).

For easier reference, Fig. 12.2 displays all these entities as an organized whole, ea
one “lodged” according to its degree and nature as a differential form. Since primitives
in time may have to be considered, we can group the differential forms of electromag
netism in four similar categories, shown as vertical pillars on the figure. Each pillar
symbolizes the structure made by spaces of forms of all degrees, linked together by t
d operator. Straight forms are on the left and twisted forms on the right. Differentiation
or integration with respect to time links each pair of pillars (the front one and the rear
one) forming the sides of the structure. Horizontal beams symbolize constitutive laws.
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FIG. 12.2. Structures underlying the Maxwell system of equations. For more emphasis on their symmetry

Faraday’s law is here taken to 3gb + de = —k, with k = 0. (The straight 2-formk would stand for the

flow of magnetic charge, if such a thing existed. Then, one would havemd, where the straight 3-form
represents magnetic charge, linked with its current by the conservatiohtaw dk = 0.)

As one can see, each object has its own room in the building:2-form, at level
2 of the “straight” side, the 1-form such thath = da just above it, etc. Occasional
asymmetries (e.g., the necessity to time-integtabefore lodging it, the bizarre lay-
out of Ohm’s law ...) point to waknesses which are less those of the diagram than
those of the received nomenclature or (more ominously) to some hitch about Ohm’
law (BossaviT [1996]). Relations mentioned up to now can be directly read off from
the diagram, up to sporadic sign inversions. An equation suchbas de = —k, for
instance, is obtained by gathering at the locatioi ttie contributions of all adjacent
niches, including’s, in the direction of the arrows. Note how the rules of Fig. 9.2, about
which scalar- or vector-proxies must be twisted or straight, are in force.

But the most important thing is probably the neat separation, in the diagram, betwee
“vertical” relations, of purely affine nature, and “horizontal” ones, which depend on
metric. If this was not drawing too much on the metaphor, one could say that a change ¢
metric, as encoded mandu (due for instance to a change in their local values, because
of a temperature modification or whatever) would shake the building horizontally but
leave the vertical panels unscathed.

This suggests a method fdiscretizingthe Maxwell equations: The orderly structure
of Fig. 12.1 should be preserved, if at all possible, in numerical simulations. Hence ir
particular the search for finite elememthkich fit differential formswhich will be among
our concerns in the sequel.






CHAPTERIII

Discretizing

It's a good thing to keep in mind a representative of the family of problems one wishes
to model. Here, we shall have wave-propagation problems in view, but heuristic consid
erations will be based on the much simpler case of static fields. The following exampls
can illustrate both things, depending on whether the exciting current, source of the fielc
is transient or permanent, and lends itself to other useful variations.

13. A model problem

In a closed cavity with metallic walls (Fig. 13.1), which has been free from any elec-
tromagnetic activity till timer = 0, suppose a flow of electric charge is created in an
enclosed antenna after this instant, by some unspecified agency. An electromagne
field then develops, propagating at the speed of light towards the walls which, as soc
as they are reached by the wavefront, begin to act as secondary antennas. Dielectric
magnetizable bodies inside the cavity, too, may scatter waves. Hence a complex evol
tion, which one may imagine simulating by numerical means. (How else?)

For the sake of generality, let's assume a symmetry plane, and a symmetrically dis
tributed current. (In that case, the plane acts as a magnetic wall.) The computation wi
thus be restricted to a spatial domdincoinciding with one half of the cavity, on the
left of the symmetry plane, say. Callingf and X", as Fig. 13.1 shows, the two parts

SC

A\;//ﬁq
p NS N

FiG. 13.1. Situation and notation (dimension 3). Regidris the left half of the cavity. Its boundary has

a partS¢ in the conductive wall and a paﬂh in the symmetry plane. Regia, the left “antenna”, is the

support of the given current density J (mirrored on the right), for which some generator, not represented ar
not included in the modelling, is responsible.
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of its surface, an electric wall and a magnetic wall respectively, we write the relevant
equations inD as

8lb+de=0, —8td+dh=],
d=zce, b= ph, (13.1)
te=0 ons®, th=0 onXx".

The coefficients and 1 which generate their Hodge namesakes are real, constant in
time, but not necessarily equal to their vacuum valggand o, and may therefore
depend orx. (They could even be tensors, as observed earlier.) The current dgnsity
is given, and assumed to satisfyr) = 0 for r < 0. All fields, besideg, are supposed

to be null beforer = 0, hence initial conditiong(0) = 0 and%(0) = 0. Notice that

dj = 0 isnot assumed: some electric charge may accumulate at places in the antenn
in accordance with the charge-conservation equation (12.1).

Proving this problem well-poséfiis not our concern. Let’s just recall that it is so,
under reasonable conditions gnwhen all fieldse and/ are constrained to have finite
energy.

Two further examples will be useful. Suppogéias reached a steady value for so
long that all fields are now time-independent. The magnetic part of the field, i.e., the
pair {b, h}, can then be obtained by solving, in doman

db =0, dh = j,
b= uh, (13.2)
th=0 onsSe, th=0 onx".

This is also a well-posed problem (magnetostatics), proviged @. As for the electric
part of the field, which has no reason to be zero since the asymptotic charge densi
q=¢qg(c0)=— f0°° dj (r) dr does not vanish, as a rule, one will find it by solving

dd =q, de = 0,
d=ce, (13.3)
te=0 onS’, ti=0 onXx”"

(electrostatics). The easy task of justifying the boundary conditions in (13.2) and (13.3
is left to the reader. One should recognize in (13.3), thinly veiled behind the presen
notation, the most canonical example there is of elliptic boundary-value préBlem.

Finally, let’s give an example of eddy-current problem in harmonic regime, assuming
a conductivitys > 0in D ando =0 in A. This time, all fields are of the forma(z, x) =

3its physical relevance has been challenged (lay 84 and SuyTH [1977]), on the grounds that assuming

a given current density (which is routinely done in such problems) neglects the reaction of the antenna t
its own radiated field. This is of course true — and there are other simplifications that one might discuss -
but misses the point of whamodellingis about. See MAN [1977] and BdssAvIT [1998b, p. 153], for a
discussion of this issue.

3SMere changes of symbols would yield the stationary heat equation, the equation of steady flow in porou
media, etc. Notice in particular how the steady current equation, with Ohm’s law, can be writtgn=a3, d

j =oe, de =0, plus boundary conditions (non-homogeneous, to include source terms).
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Reexp(iwt) U(x)], with U complex-valuedgMALL CAPITALS will denote such fields).
The given current inA, now denoted® (s for “source”), is solenoidal, displacement
currents are neglected, and Ohm’s law: o E + J° is in force, wheres is of course
understood as a Hodge-like operator, but positive semi-definite only. The problem i
then, with the same boundary conditions as above,

dH=0cE+ 7, H =B, dE = —iwB,
ands andH can be eliminated, hence a second-order equation in terms of

iwoE+ dvdE=—iwl, (13.4)

with boundary conditionset= 0 on §¢ and v de = 0 on X",

Nothing forbidso andu there to be complex-valued too. (Let’s however request them
to have Hermitian symmetry.) A complexcan sometimes serve as a crude but effective
way to model ferromagnetic hysteresis. And since theaezn be replaced by + i we,
we are not committed to drop out displacement currents, after all. Hence, (13.4) ca
well be construed as the general version of the Maxwell equations in harmonic regime
at angular frequency, with dissipative materials possibly present. In particular, (13.4)
can serve as a model for the “microwave oven” problem. Note that what we have here |
a Fredholm equation: Omitting the excitation tesirand replacings by iws gives the
“resonant cavity problem” irD, namely, to find frequencies at which d de = w?cE
has a nonzero solution

14. Primal mesh

Let’s define what we shall call a “cellular paving”. This is hardly different from a finite-
element mesh, just a bit more general, but we need to be more fussy than is usual abc
some details. We pretend to worksindimensional Euclidean spadg,, but of course
n = 3is the case in point. The cells we use here are those introduced &(ha. 2.1),
with the important caveat that they are all “open” cells, in the sense of Section 2, i.e., di
not include their boundaries. (The only exception is foe 0, nodes, which are both
open and closed.) The corresponding closed cell will be denoted with an overbar (als
used for the topological closure).

This being said, &ellular pavingof some regionR of space is a finite set of open
p-cells such that (1) two distinct cells never intersect, (2) the union of all cells is
(3) if the closures of two cells andc¢’ meet, their intersection is the closure of some
(unique) celle”. It may well happen that” is ¢, or ¢’. In such a case, e.g.,dfN ¢’ =¢,
we say that is a face of¢’. For instance, on Fig. 14.1, leftz is a face ofc4. If c is a
face ofc’ which itself is a face ot”, thenc is a face ofc”. Cells in ambient dimension
3 or lower will be calledhodes, edges, face@ndvolumeswith symbolsn, e, f, v to
match.

We'll say we have eclosedpaving if R is closed. (Fig. 14.1, left, gives a two-
dimensional example, wher® = D.) But it need not be so. Closed pavings are not

36Topologically simplesmootheells, therefore. But the latter condition is not strict and we shall relax it to
piecewisesmooth, in the sequel, without special warning.
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FiG. 14.1. Left: A few p-cells, contributing to a closed cellular paving bf. (This should be imagined

in dimension 3.) Right: A culled paving, now “closed relative t§. This is done in anticipation of the

modelling we have in mind, in which cells & would carry null degrees of freedom, so they won't be
missed.

necessarily what is needed in practice, as one may rather wish to discard some cells
order to deal with boundary conditions. Hence the relevance of the following notion of
“relative closedness”C being a closed part oR, we shall say that a paving @t is
closed modulaC if it can be obtained by removing, from some closed paving, all the
cells which map intaC. The case we shall actually need, of a pavingRof D — §¢
which is closed modul§®, is displayed on the right of Fig. 14.1. Informally said, “pave
D first, then remove all cells from the electric boundary”.

Each cell has its own inner orientation. These orientations are arbitrary and indeper
dent. In three dimensions, we shall denoteMy&, F, V, the sets of orienteg-cells
of the paving, and by, E, F, V the number of cells in each of these sets. (The general
notation, rarely required, will b&,, for the set ofp-cells andS,, for the number of such
cells.)

Two cellso andc, of respective dimensiors and p + 1, are assigned ancidence
number equal to+1 if o is a face ofc, and to O otherwise. As for the sign, recall
that each cell orients its own boundary (Section 4), so this orientation may or may no
coincide with the one attributed to. If orientations match, the sign is, else it's—.

Fig. 14.2 illustrates this point. (Also refer back to Fig. 4.1.)

Collecting these numbers in arrays, we obtain rectangular mat@cés D, called
incidence matrice®f the tessellation. For instance (Fig. 14.2), the incidence number
for edgee and facetf is denoted?ef, and makes one entry in matii¥ whose rows and
columns are indexed over facets and edges, respectively. The@hafyG is —1 in the
case displayed, becausepositively oriented, is at the start of edgécf. Fig. 3.4(c)).

And so on. Symbol$s, R, D are of course intentionally reminiscent of grad, rot, div,
but we still have a long way to go to fully understand the connection. Yet, one thing
should be conspicuous already: contrary to grad, rot, div, the incidence matrices at
metric-independengntities, so the analogy cannot be complete. Matr@eR, D are
more akin to the (metric-independent) operator d from this viewpoint, and the generic
symbold, indexed by the dimensiop if needed, will make cleaner notation in spatial
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FIG. 14.2. Sides: Individual oriented cells. Middle: The same, plus a 3-cell, as part of a paving, showing
respective orientations. Those ofand f match, those off ande, or of e andn, don't. SoG} = —1,

__ f
f— 1, andDy =1.
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FIG. 14.3. RelatiorDR = 0, and how it doesn’t depend on the cells’ individual orientations: In both cases,

one hasD{R‘}- + DR =0.

dimensions higher than 3, withhy = G, d1 = R, d2 = D. The mnemonic value d&, R,
D, however, justifies keeping them in use.

Just as rot grad= 0 and divo rot = 0, one haskG = 0 andDR = 0. Indeed, for an
edgee and a volumey, the {v, e}-entry of DR is Z foR" Nonzero terms occur,
in this sum over facets, only for those which both contaand are a face aof, which
happens only i belongs tov. In that case, there are exactly two facg¢tand ¢ of
v meeting along (Fig. 14.3), and hence two nonzero terms. As Fig. 14.3 shows, they
have opposite signs, whatever the orientations of the individual cells, hence the resu
DR = 0. By a similar argumenfG = 0, and more generally,1d, = 0.

REMARK 14.1. The answer to the natural question, “then, is the kerniBl @fual to

the range of3?”, is “yes” here, becausb — S¢ has simple topology. (See the remark
at the end of Section 4 about homology. This time, going further would lead us into
cohomology.) For the same reason, #@y = codR). This will be important below.

Itis no accident if this proof ofl o d = 0 evokes the one abobib 9 = 0 in Section 4,
and the caption of Fig. 4.1. The same basic observation, “the boundary of a boundary
zero” (TAYLOR and WHEELER [1992], KHEYFETSand WHEELER [1986]), underlies
all proofs of this kind. In fact, the above incidence matrices can be used to find the
boundaries, chainwise, of each cell. For instantdyeing understood as the 2-chain
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based on facef with weight 1, one ha8f =), ¢ R‘}e. Soif § is the straight 2-chain
> s w/ f with weightsw/ (which we shall call grimal 2-chain or “m-surface”, using
m as a mnemonic for the underlying mesh), its bountiaig/the 1-chain

8S:ZZR;wfe

e feF

More generally, let's writé,,, boldface3® for the transpose of the above matdy_1.
Then, ifc =3, s w0 is ap-chain, its boundary isc = 3 {s € Sp-1: (3,W)’s},
wherew stands for the vector of weights. Thusis to 3 whatd is to d. Moreover, the
duality between d andlis matched by a similar duality between their finite-dimensional
counterpartsl anda.

15. Dual mesh

A dual mesh, with respect ta, is also a cellular paving, though not of the same region
exactly, and withouterorientation of cells. Let's explain.

To eachp-cell ¢ of the primal mesh, we assign én— p)-cell, called thedual of ¢ and
denoted, which meets: at a single poink,.. (Ways to build¢c will soon be indicated.)
Hence a one-to-one correspondence between cells of complementary dimensions. Th
for instance, facef is pierced by the dual edgg (a line), nodex is inside the dual
volumerz, and so forth. Since the tangent spaces. @b ¢ and¢ are complementary, the
inner orientation ot provides an outer orientation fér(Fig. 15.1). Incidence matrices
G, R, D can then be defined, as above, the sign of each nonzero entry depending c
whether outer orientations match or not.

Moreover, it is required that, wheanis a face ofc’, the dual¢’ be a face of, and
the other way round. This has two consequences. First, we don't really need new nam
for the dual incidence matrices. Indeed, consider for instance €dgd facetf, and
supposeR‘}. =1, i.e.,eis aface off and their orientations match: Then the dual edge

f is a face of the dual facet whose outer orientations match, too. So what we would
otherwise denoté-éf is equal thjc. Same equality iR%. = —1, and same reasoning for

FiGc. 15.1. Inner orientations of edgeand facetf, respecti\fely, give crossing direction throughand
gyratory sense aroungl.

37More accurately, its boundarglative to .
38Boldface, from now on, connotes mesh-related things, such as DoF arrays, etc.
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FIG. 15.2. A dual paving, overlaid on the primal one.

other kinds of cells, from which we conclude that the would-be dual incidence matrices
G, R, D are just the transpos&, R?, G’ of the primal ones.

Second consequence, there is no gap between dual cells, which thus form a cellul
paving of a connected regioﬁ, the interior D of which is nearlyD, but not quite
(Fig. 15.2). A part of its boundary is paved by dual cells: We nan$&,ibwing to its
kinship with ¢ (not so obvious on our coarse drawing! but the finer the mesh, the close!
S¢ and S¢ will get). The other part is denotel”. So the cellular paving we now have
is closed modulcE", whereas the primal one was closed modsflo

Given the meshw, all its conceivable duals have the saomnbinatorialstructure
(the same incidence matrices), but can differ as regatsic, which leaves much lee-
way to construct dual meshes. Two approaches are noteworthy, which lead to the “bar
centric dual” and the “Voronoi—Delaunay dual”. We shall present them as special case
of two slightly more general procedures, the “star construction” and the “orthogonal
construction” of meshes in duality. For this we shall consider gallyhedralmeshes
(those with polyhedral 3-cells), which is not overly restrictive in practice.

The orthogonal construction consists in having each dual cell orthogonal to its pri
mal partner. (Cf. Figs. 15.3 and 15.5, left.) A particular case is the Voronoi—Delaunay
tessellation (DRICHLET [1850]), under the condition that dual nodes should be inside
primal volumes. Alas, as Fig. 15.4 shows, orthogonality can be impossible to enforce
if the primal mesh is imposed. If one starts from a simplicial primal for which all cir-
cumscribed spheres have their center inside the tetrahedron, and all facets are ac
triangles, all goes well. (One then takes these circumcenters as dual nodes.) But tf
property, desirable on many accounts, is not so easily obtained, and certainly not wa
ranted by common mesh generators.

Hence the usefulness of the star construction, more general, because it applies to &
primal mesh with star-shaped cells. A parbf A, is star-shapedf it contains a point
a, that we shall call @enter such that the whole segmeiat, [c] belongs toA whenx
belongs toA. Now, pick such a center in each primal cell (the center of a primal node
is itself), and join it to centers of all faces of the cell. This waiynplicial subcells
are obtained (tetrahedra and their faces, in 3D). One gets the dual mesh by rearrangi
them, as follows: for each primal cel] build its dual by putting together allsubcells,
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FIG. 15.3. Left: Orthogonal dual mesh. (Same graphic conventions as in Fig. 15.2, slightly simplified.) Right:
Star construction of a dual mesh (close enough, here, to a barycentric mesh, but not quite the same). Noti
the isolated dual edge, and the arbitrariness in shaping dual cells b&fbnd

FIG. 15.4. Left: How hopeless the orthogonal construction can become, even with a fairly regular primal
mesh. Right: Likely the simplest example of a 2D mesh without any orthogonal dual.

= b

FiG. 15.5. Left: A facet f and its dual edg¢ in the orthogonal constructior @nd?’ are the dual nodes

which lie inside the volumes andv’ just above and just below). From ¢, all boundary facets of can

directly be seen at right angle, but we don't require marés neitherv’s barycenter nor the center of its

circumscribed sphere, if there is such a sphere. Right: A dual facet and a dual edge, in the case of a simplici
primal mesh and of its barycentric dual. Observe the orientations.

k < n — p, which have one of their vertices a center, and other vertices at centers
of cells incident orc. Figs. 15.3 and 15.5, right, give the idea. If all primal cells are
simplices to start with, taking the barycenters of their faces as centers will give the
barycentricdual mesh evoked a bit earlier.
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REMARK 15.1. The recipe is imprecise about cells dual to thosE’bfwhose shape
outsideD can be as one fancies (provided the requirements about duality are satisfiec
Nothing there to worry about: Such choices are just as arbitrary as the selection ¢
the centers of cells. It’s all part of the unavoidable approximation error, which can be
reduced at will by refinemeri®

REMARK 15.2. If, as suggested above (“palefirst ..."), the primal mesh haseen
obtained by culling from a closed one, subcells built from the latter form a refinement
of boththe primal mesh and the dual mesh. The existence of this common “underlying
simplicial complex” will be an asset when designing finite elements.

16. A discretization kit

We are ready, now, to apply the afore-mentioned strategy: Satisfy the balance equatio
(10.1) and (10.3) for a selectéidite family of surfaces.

Let's first adopt a finite, approximate representation of the fields. Consider
instance. As a 2-form, it is meant to be integrated over inner oriented surfaces. So or
may consider the integralﬁf b, denotedby, for all facetsf, as a kind of “sampling”
of b, and take the array of such “degrees of freedom” (D)= b¢: f € F}, indexed
over primal facets, as a finite representatiorb ot his does not tell us about tivalue
of the field at any given point, of course. But is that the objective? Indeed, all we know
about a field is what we can measure, and we don’t measure point values. These &
abstractions. What we do measure is, indirectly,flineof 5, embraced by the loop of
a small enough magnetic probe, by reading off the induced e.m.f. The above samplir
thus consists in having each facet of the mesh play the role of such a probe, and ti
smaller the facets, the better we know the field. Conceivably, the mesh may be made :
fine that theb ¢’s aresufficient informatiorabout the field, in practice. (Anyway, we'll
soon see how to compute an approximation of the flux for any surface, knowing the
bs’s, hence an approximation &f) So one may be content with a method that would
yield the four meaningful arrays of degrees of freedom, listing

e theedge em.f'={e,: ec &},

o the facet fluxesh = {bs: f e F},

¢ the dual-edge m.m.f’4y = {h;: f € F},

¢ and the dual-facet displacement curredts; {d.: ¢ € £},
all that from a similar sampling, across dual facets, of the given cufresmcoded in
the DoF array = {j.: e € £}.

In this respect, considering the integral form (10.1) and (10.3) of the basic equation
will prove much easier than dealing with so-called “weak forms” of the infinitesimal
equations (10.2) and (10.4). In fact, this simple shift of emphasis (which is the gist of
Weiland’s “finite integration theory”, WILAND [1992], and of Tonti's “cell method”,
ToNTI [2001], MATTIUSSI [2000]) will so to speakorce on usthe right and unique
discretization, as follows.

39A refinemenbf a paving is another paving of the same region, which restricts to a proper cellular paving
of each original cell.



156 A. Bossavit CHAPTERIII

16.1. Network equations, discrete Hodge operator

Suppose the chaifi in (10.1) is the simplest possible in the present context, that is, a
singleprimal facet,f. The integral of alongdf is the sum of its integrals along edges
that maked f, with proper signs, which are precisely the signs of the incidence numbers
by their very definition. Therefore, Eq. (10.1) appliedftyields

abs+) R%e =0.
ec€
There is one equation like this for each facet of the primal mesh, that is — thanks for hav
ing discarded facets i, for which the flux is known to be 0 — one for each genuinely
unknown facet-flux ob. Taken together, in matrix form,

3:b + Re=0, (16.1a)

they form the first group of ounetworkdifferentialequations
The same reasoning about each dual facéhe simplest possible outer-oriented
surface that” in (10.3) can be) yields

_atde + Z R{}“hf Zje,
feF

forall e in &£, i.e., in matrix form,
-3, d+Rh=j, (16.1b)

the second group of network equations.
To complete this system, we need discrete counterpadisti andd = ee, i.e.,
network constitutive law®f the form

b=uh, d=-ee, (16.2)

wheree andpu are appropriate square symmetric matrices. Understanding how such me
trices can be built is our next task. It should be clear thatarwnicalconstruction can
exist — for sure, nothing comparable to the straightforward passage from (10.1), (10.3
to (16.1a), (16.1b) — because the metric of both meshes must intervene (Eqg. (11.1) givi
a clue in this respect). Indeed, the exact equivalent of (16.1), up to notational details, ce
be found in most published algorithms (including those based on the Galerkin methoc
see, e.g., EEand S\ncks [1995]), whereas a large variety of proposals exist as regards
e andu. These “discrete Hodge operators” are the real issue. Constructing “good” ones
in a sense we still have to discover, is the central problem.

Our approach will be as follows: First — just not to leave the matter dangling too long
— we shall giveone solution, especially simple, to this problem, which makeand
i diagonal a feature the advantages of which we shall appreciate by working out a
few examples. Later (in Section 20), a generic error analysis method will be sketchec
from which acriterion as to what makes a goed-u pair will emerge. Finite elements
will enter the stage during this process, and help find other solutions to the problen
conforming to the criterion.
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FIG. 16.1. The case of a discontinuous permeability &nd 5 in primal volumest, and 1o, separated

by facet ). We denote byf the vectorial area of and by f;, f>, the vectors along both parts gt Let
u andv be arbitrary vectors, respectively normal and tangent t@nd letH1 = u 4+ v in T1. Transmis-
sion conditions acrosg determine a unique uniform fieldB= j.1u + ppv in T2. Thenb s = py f - u and

ughy =pup ?1 U+ ?2 . As f, ;:1 and ?2 are collinearu disappears from the quotieht; /h ¢, yield-
ing (16.4).

The simple solution is available if one has been successful in building a dual mesh b
the orthogonal construction (Figs. 15.3 and 15.5, left). Then, in the case sndmahu
are uniform?® one setg® =0if e £ ¢/, u//" = 0if £ f/, and (cf. (11.1))

ce areé(é) ff _ areaf)

=&, — ~
length(e) . length( f)

which does provide diagonal matricesand i. (The inverse ofu will be denoted by

v.) The heuristic justification (ONTI [2001]) is thatif the various fields happened to

be piecewise constant (relative to the primal mesh), formulas (16.3) would exactly cor

respond to the very definition (11.1) of the Hodge operator. (Section 20 will present ¢

stronger argument.) In the case of non-uniform coefficients, formulas such as
ff_ pnipz ared f)
w2 length(f1) + pa length( £2)

where f1 and f> are the parts off belonging to the two volumes adjacent to apply
instead (Fig. 16.1). Observe the obvious intervention of metric elements (lengths, area
angles) in these constructions.

(16.3)

(16.4)

REMARK 16.1. Later, when edge element$ and facet elements/ will enrich the
toolkit, we shall consider another solution, that consists in setifig= [, cw® A w*

andv//" = [, u=tw/ A w/’. For reference, lets call this the “Galerkin approach” to
the problem. We shall use loose expressions such as “the Gaéérkin“the diagonal
hodge”, to refer to various brands of discrete Hodge operators.

16.2. The toolkit

At this stage, we have obtained discrete counterparts (Fig. 16.2) to most features of tt
“Maxwell building” of Fig. 12.2, but time differentiation and wedge product still miss

40y'|| yse “uniform” and “steady” for “constant in space” and “constant in time”, respectively.
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FIG. 16.2. A “discretization toolkit” for Maxwell's equations.

theirs. Some thought about how the previous ideas would apply in four dimension:
should quickly suggest the way to deal with time derivativgsbeing the time step,
call b¥, h¥, the values ob, h at timekst, for k =0, 1, ..., call jk+1/2, dk+1/2 gk+1/2
those ofj, d, e at time (k + 1/2)éz, and approximateé;b, at time (k + 1/2)8¢, by
(b1 — b*) /s8¢, and similarly,d,;d, now at timekst, by (d¥+1/2 — dk=1/2) /51,

As for the wedge product, tg, b A h corresponds the sufy_ ;. zbshy, which
we shall denote byb, h), with bold parentheses. Similarly,,d A e corresponds to
Y .cc o€, also denotedd, e). Hence we may define “discrete energy” quadratic
forms, 1/2(vb, b), 1/2(uh, h), 1/2(ee, €), and ¥2(e~1d, d), all quantities with, in-
deed, the physical dimension of energy (but be aware(thet is a power instead, like
[p j Ae). Some notational shortcuts: Square roots sudrlasb)*/2, or (ee, ©)*/2, etc.,
will be denoted bybl|,, or |el¢, in analogy with the abové|,, or |e|., and serve as
various, physically meaningfulormson the vector spaces of DoF arrays. We'll say the
“v-norm”, the “e-norm”, etc., for brevity.

ProOPOSITION16.1. If Egs.(16.1)—(16.2)are satisfied, one has
1 1 .
dt [E(va b)+ E(eea e)] :_(Jve)' (16.5)

PrRoOOF Take the bold scalar product of (16.1a) and (16.1bhland —e, add, and use
the equality(Re, h) = (e, R"h). O

REMARK 16.2. The analogue of 2 A ¢, whenS is somem-surface, is
2. Rihe.
fEF(S), ecE

whereF(S) stands for the subset of facets which comp&séNote how this sum van-
ishes if S is the domain’s boundary.) By exploiting this, the reader will easily modify
(16.5) in analogy with the Poynting theorem. In spite of such formal correspondences
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energy and discrete energy have, a priori, no relation. To establish one, we shall nes
“interpolants”, such as finite elements, enabling us to pass from degrees of freedoms
fields. For instance, facet elements will generate a magpigb, with b = Zf bfwf.

If v is the Galerkin hodge, thefi, vb A b = (vb, b). Such built-in equality between
energy and discrete energy is an exception, a distinctive feature of the Ritz—Galerki
approach. With other discrete hodges, ewenvergencef discrete energy, as the mesh

is refined, towards the true one, should not be expected.

17. Playing with thekit: Full M axwell

Now we have enough to discretize any model connected with Maxwell’s equations
Replacing, in (13.1), rot bR or R’, ¢ and« by € and u, andd, by the integral or
half-integral differential quotient, depending on the straight or twisted nature of the
differential form in consideration, we obtain this:

bk+1 — bk ek-‘rl/Z _ ek—l/2
—5 TRET=0 e

(wherej is the array of intensities through dual facets, at fitiesz), with initial con-
ditions

+ Rybk = j* (17.1)

=0, e¥2=o. (17.2)

In the simplest case where the primal and dual mesh are plain rectangular stagger
grids, (17.1) and (17.2) is the well known Yee scheme&Y1966]). So what we have
here is the closest thing to Yee’s scheme in the caselbflar meshes.

A similar numerical behavior can therefore be expected. Indeed,

PROPOSITION17.1. The schemél7.1)and (17.2)is stable forsr small enough, pro-
vided bothe andv are symmetric positive definite.

PrRoOOF For such a proof, one may assuime 0 and nonzero initial values in (17.2),
satisfyingDb® = 0. Eliminatinge from (17.1), one finds that
b¥+1 — 2b% 4+ A1 4 (81)°Re IR wb* = 0. (17.3)

Since DR = 0, the “loop invariant’Db* = 0 holds, so one may work in the cor-
responding subspace, kBY. Let’s introduce the (generalized) eigenvecterssuch
thatRe IR’v; = A; uv;, which satisfy(uv;,v;) =1 if i = j, 0if i # j. In this “u-
orthogonal” basish* = usz.‘vi, and (17.3) becomes

Nt — (2= 100k +0f =0

foralli. Thenfs, and hence thiets, stay bounded if the characteristic equation of each
of these recurrences has imaginary roots, which happens (Fig. 17.&)Aif;6r < 2 for
all ;. |

41For easier handling of Ohm's lay(kst) may be replaced b t1/2 4 jk=1/2 /2.
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FIG. 17.1. The white spot lies at the sum of roots of the characteristic equé’tiemz —Aj (St)z)r +1=0.
Stability is lost if it leaves the intervdl-2, 2].

In the case of the original Yee scheme, eigenvalues could explicitly be found, henc
the well-known relation (e [1966]) between the maximum possible valuesotind
the lengths of the cell sides. For general grids, we have no explicit formulas, but the
thumbrule is the samér should be small enough for a signal travelling at the speed of
light (in the medium under study) not to cross more than one cell during this lapse o
time.

This stringent stability condition makes the scheme unattractive if not fully explicit,
or nearly soe should bediagonal or at the very least, block-diagonal with most blocks
of size 1 and a few small-size ones, andhould be sparse. If so is the case, each time
step will only consist in a few matrix—vector products plus, perhaps, the resolution of
a few small linear systems, which makes up for the large number of time steps. Botl
conditions are trivially satisfied with the orthogonal construction (cf. (16.3), (16.4)),
but we have already noticed the problems this raises. Hence the sustained interest 1
so-called “mass-lumping” procedures, which aim at replacing the Galerkina di-
agonal matrix without compromising convergence: segieN, JoLY and TORDIMAN
[1993], ELMKIES and DLy [1997], HAuGAZEAU and LACOSTE[1993] (a coordinate-
free reinterpretation of which can be found imBsaviT and KETTUNEN [1999]).

REMARK 17.1. Obviously, there is another version of the schemdy and d, for
which what is relevant is sparsity ef * and diagonality ofe, i.e., ofv. Unfortunately,

the diagonal lumping procedure that worked for edge elements fails when applied t
the Galerkinw, i.e., to the mass-matrix of facet elementoo@AvIT and KETTUNEN
[1999)).

There are of course other issues than stability to consider, but we shall not dwel
on them right now. Forconvergencéto be treated in detail later, but only in statics),
cf. MONK and LI [1994], NiIcCOLAIDES and WANG [1998], BossAvIT and KET-
TUNEN [1999]. Ondispersionproperties, little can be said unless the meshes have
some translational symmetry, at least locally, and this is beyond our scope. As fo
conservatiorof some quantities, it would be nice to be able to say, in the case when
j = 0, that “total discrete energy is conserved”, but this is only almost true. Con-
served quantities, as one will easily verify, drgeh*1, h¥) + 3 (eef+1/2, &+1/2) and
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$(pht, hk)y 4 2(eef=1/2, &+1/2) poth independent of. So their half-sum, which can
suggestively be written as

Wi = %([Lhk+1/2, hk) + %(Sek, ek-l—l/z)7

if one agrees oh**t1/2 ande* as shorthands fgh* + h*t1)/2 and[ef—1/2 + &+1/2) /2,
is conservedNot the discrete energy, definitely, however close.

18. Playing with thekit: Statics

Various discrete models can be derived from (17.1) by the usual maneuvers (neglect tl
displacement current terge, omit time-derivatives in static situations), but it may be
more instructive to obtain them from scratch. Take the magnetostatic model (13.2), fo
instance: Replace formisandk by the DoF array® andh, the d by the appropriate
matrix, as read off from Fig. 16.2, and obtain

Db=0, h=vb, Rh=j, (18.1)

which automatically includes the boundary conditions, thanks for having dis¢&rded
“passive” boundary cells. Observe thatj = 0 must hold for a solution to exist: But
this is the discrete counterpart, as Fig. 16.2 shows,jet@, i.e., of divJ= 0 in vector
notation.

In the next section, we shall study the convergence of (18.1). When it holds, al
schemes equivalent to (18.1) that can be obtained by algebraic manipulations a
thereby equally valid — and there are lots of them. Firsthiebe one of the facet-
based arrays such thaR’hl =j. Thenh in (18.1) must be of the forrh = hi + D’¢.
Hence (18.1) becomes

DuD'¢ = —Dpuhl. (18.2)

This, which corresponds te div(u(grad® + H/)) = 0, the scalar potential formula-
tion of magnetostatics, is not interesting unless diagonal, or nearly so, singeis full
otherwise. So it requires the orthogonal construction, and is not an option in the case «
the Galerkinw. It's a well-studied scheme (cf.Bik and Rose[1987], COURBETand
CROISILLE [1998], GALLOUET and MiLA [1991], HEINRICH [1987], HUANG and Xi
[1998], SLI [1991]), called “block-centered” in other sectors of numerical engineering
(KAaAsscHIETERanNd HUlJBEN [1992], WEISErRand WHEELER[1988]), because de-
grees of freedom, assigned to thealnodes, appear as lying inside the primal volumes,

42pternatively (and this is how non-homogeneous boundary conditions can be handled), one may wor
with enlarged incidence matric&andD and enlarged DoF arrays, taking all cells into account, then assign
boundary values to passive cells, and keep only active DoFs on the left-hand side.

43There are such arrays, owing @j = 0, because ké&’) = codR!), by transposition of co@) =
ker(R), in the simple situation we consider. Finding one is an easy task, which does not require solving a lin
ear system. Also by transposition of ¢&) = ker(D), one has ke&R’) = codD’), and henc®’(h—h!) =0
impliesh=h 4 D g.
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or “blocks”. Uniqueness a is easily proved? which implies the uniqueness — not so
obvious, a priori — oh andb in (18.1).

Symmetrically, there is a scheme corresponding to the vector potential formulatior
(i.e., rotvrotA) = J):

R'vRa=j, (18.3)

obtained by settin = Ra, where the DoF arrag is indexed over (active) edges. df

is the Galerkin hodge, (18.3) is what one obtains when using edge elements to represe
the vector potential.) Existence in (18.3) stems fréfj = 0. No uniqueness this time,
because k&R) does not reduce to 0, but all solutioagjive the samé, and hence the
sameh = vb.

REMARK 18.1. Whether to “gaugel in this method, that is, to impose a condition
that would select a unique solution, such@sa = 0 for instance, remains to these
days a contentious issue. It depends on which method is used to solve (18.3), and ¢
how well the necessary conditidsfj = 0 is implemented. With iterative methods such
as the conjugate gradient and its variants, and if one takes care RShis@stead of]

in (18.3), then it's bettenotto gauge (RN [1996]).

This is not all. If we refrain to eliminath in the reduction from (18.1) to (18.3), but
still setb = Ra, we get an intermediate two-equation system,

(# -0

often called amixedalgebraic system (ANOLD and BrREzzI [1985]). (Again, little
interest ifu is full, i.e., unless was diagonal from the outset.) The same manipulation
in the other direction (eliminating by h =h + D¢, but keeping) gives

<_Dv %[>(Z>:<_(?j>' (18.5)

We are not yet through. There is an interesting variation on (18.5), known as the
mixed-hybrid approach. It's a kind of “maximal domain decomposition”, in the sense
that all volumes are made independent by “doubling” the degrees of freedoimnoth
(two distinct values on sides of each facet nogify). Let’s redefine the enlarged arrays
and matrices accordingly, and call théxyh, v, D, R. Constraints om (equality of up-
and downstream fluxes) can be expressedias: 0, whereN has very simple structure
(one 1x 2 block, with entries 1 and-1, for each facet). Now, introduce an array
of facet-based Lagrange multipliers, and &idNb) to the underlying Lagrangian of
(18.5). This gives a new discrete formulation (still equivalent to (18.1), if one ddrives

441t stems from kefD!) = 0. Indeed D’y = 0 means that, D{w//v = 0 for all primal facetsf. For some

facets (those irE"), there is bubnevolumev such thaD{f # 0, which forces),, = 0 for thisv. Remove all
such volumew, and repeat the reasoning and the process, thus spreading the valuew, & all
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andh from b andh the obvious way):

—5 D' N\ /by (-
D 0 O (<p>= 0
N O O A 0

Remark that the enlarged is block-diagonal (as well as its inverge), hence easy
elimination ofb. What then remains is a symmetric systenpiandA:

DD DEN'\(¢)__ (DER

NzD' NzN/J\A)™ \Nmh /)
The point of this manipulation is th@gD' is diagonal equal toK , say. So we may
again eliminatep, which leads to a system in terms of oily

N[ — D' K 'DEIN'A = N[ED'K Dz — mlh’. (18.6)

Contrived as it may look, (18.6) is a quite manageable system, with a sparse symmetr
matrix. (The bracketed term on the left is block-diagonal, Jikg

REMARK 18.2. In(A, Nb), eachx ; multiplies a term(Nb) s which is akin to a mag-
netic charge. Hence thers should be interpreted as facet-DoFs of a magnetic potential,
which assumes the values necessary to reestablish the equality between fluxes that |
been provisionally abandoned when passing fiomo the enlarged (double size) flux
vectorb. This suggests a way to “complementarity” (obtaining bilateral estimates of
some quantities) which is explored iroBsaviIT [2003].

There is a dual mixed-hybrid approach, starting from (18.4), wteatvolumes are
made independent, hence (in the case of a simplicial primal mesh) three DoFs per fact
for bothb andh, and two Lagrange multipliers to enforce their equality. This leads to
a system similar to (18.6) — but with twice as many unknowns, which doesn’t make it
attractive.

Systems (18.2), (18.3), (18.4), (18.5) and (18.6) all give the same solutiofbphjr
— the solution of (18.1). Which one effectively to solve, therefore, is uniquely a mat-
ter of algorithmics, in which size, sparsity, and effective conditioning should be con-
sidered. The serious contenders are the one-matrix semi-definite systems, i.e., (18..
(18.3), and (18.6). An enumeration of the number of off-diagonal terms (which is a
fair figure of merit when using conjugate gradient methods on such matrices), show
that (18.6) rates better than (18.3), as a rule. The block-centered scheme (18.2) ot
performs both (18.3) and (18.6), but is not avail4bMith the Galerkin hodge. Hence
the enduring interest (@avENT and ROBERTS[1991], KAASSCHIETERand HUIJBEN
[1992], MOSE, SIEGEL, ACKERER and CHAVENT [1994], HAMOUDA, BANDELIER
and Roux-DAaMIDAU [2001]) for the “mixed-hybrid” method (18.6).

Each of the above schemes could be presented as the independent discretization
a specific mixed or mixed-hybrid variational formulation, and the literature is replete

45Unless one messes up with the computation of the terms of the mass-matrix, by using ad-hoc approxima
integration formulas. This is precisely one of the devices used in mass-lumping.



164 A. Bossavit CHAPTERIII

with sophisticated analyses of this kind. Let’'s reemphasize that all these schemes a
algebraically equivalent, as regards and h. Therefore, an error analysis of one of
them applies to all: For instance,fis the Galerkin hodge, the standard variational
convergence proof for (18.3), or jf is the diagonal hodge of (16.4), the error analysis
we shall perform next section, on the symmetrical system (18.1).

19. Playing with thekit: Miscellanies

The advantage of working at the discrete level from the outset is confirmed by mos
examples one may tackle. For instance, the discrete version of the eddy-current proble
(13.4) is, without much ado, found to be

iwoE +R'WRE = —iwd’. (19.1)

As a rule,o vanishes outside of a closed regich= D — A of the domain,C for
“conductor”. (Assume, then, that, which is supF), is contained inA.) The system
matrix then has a non-trivial null space, key N ker(R), and uniqueness & is lost. It

can be restored by enforcing the constr&hé oE = 0, wheree 4 is derived frome by
setting to zero all rows and columns which correspond to edges borfiePlyysically,

this amounts to assume a zero electric charge density outside the conductive regit
C =suppfo). (Beware, the electric field obtained this way can be seriously wrong about
A, where this assumption is not warranted, in general. However, the electric fi€li$in
correct.) Mathematically, the effect is to limit the span of the unknewa a subspace
over whichiwe + R'wR is regular.

In some applications, however, the conductivity is nonzero inDgllbut may as-
sume values of highly different magnitudes, and the above matrix, though regular, i
ill-conditioned. One then will find in the kit the right tools to “regularize” such a “stiff”
problem. See CEMENS and WEILAND [1999] for an example of the procedure, some
aspects of which are studied iroBsaviT [2001a]. Briefly, it consists in adding to the
left-hand side of (19.1) a term, function af that vanishes when is one of the so-
lutions of (19.1), which supplements tRévR matrix by, so to speak, what it takes to
make it regular (and hence, to make the whole system matrix well conditioned, howeve
smallo can be at places). The modified system is

iwoE+R'WRE +0GSG'0E = —iwl®, (19.2)

where § is a Hodge-like matrix, node based, diagonal, whose entries§’dre=

P 1/p02. A rationale for this can be found indgssaviT [2001a]: In a nutshell, the
idea is to “load the null space” d®’vR, and dimensional considerations motivate the
above choice o8. Our sole purpose here is to insist that all this can be done at the
discrete level.

REMARK 19.1. Onanightmotivate this procedure by starting from the following equa-
tion, here derived from (19.2) by simply using the toolkit in the other direction (“dis-
crete” to “continuous”):

1
iwcE+rot(vrotE) — o grac(—2 div(oE)> =—ioy, (19.3)
no
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but which can be seen as a natural regularization of (13.4). (We revert to vector proxie
here to call attention on the use of a variant of tha = roto rot— grado div formula,
which is relevant when botp ando are uniform in (19.3).) This is a time-honored
idea (LEIS [1968]). Part of its present popularity may stem from its allowing standard
discretization vimode-basedector-valued elements (the discrete form is then of course
quite different® from (19.2)), because E in (19.3) has more a priori regularity than

in (13.4). Even if one has reasons to prefer using such elements, the advantage is ot
apparent, because the discrete solution may converge towards something else than
solution of (13.4) in some cases (e.g., reentrant corners, @&TEBEL and DAUGE
[1997]), where the solution of (19.3) haso muchregularity to satisfy (13.4). This
should make one wary of this approach.

Many consider the nullspace & vR as a matter of concern, too, as regards the
eigenmode problem,

R'vRE = w’¢E, (19.4)

becausa = 0 is an eigenvalue of multiplicityy (the number of active nodes). Whether
the concern is justified is debatable, but again, there are tools in the kit to address |
First, regularization, as above:

[R'WR + eG8G' e |E = w?eE, (19.5)

with §"" = fﬁ 1/ue? this time. Zero is not an eigenvalue any longer, but new eigen-
modes appear, those @iG§G'eE = w’¢cE under the restrictiore = Gyr. As re-
marked by WHITE and KONING [2000], we have here (again, assuming uniform co-
efficients) a phenomenon of “spectral complementarity” between the operaterstrot
and — grado div. The new modes, or “ghost modes” as they are called EIMAWND
[1985], have to be sifted out, which is in principle e¥sgevaluate the noriG’eEg|s),

or “swept to the right” by inserting an appropriate scalar factor in front of the regulariz-
ing term. Second solution @APR, MUNTEANU, SCHUHMANN, WEILAND and I0AN
[2002]): Restrict the search & to a complement of kéR’vR), which one can do by
so-called “tree-cotree” techniques (BANESE and RUBINACCI [1988], MUNTEANU
[2002]). This verges on the issue discrete Helmholtz decompositigrenother im-
portant tool in the kit, which cannot be given adequate treatment here (seeTR,
DuBols and BossaviIT [2002]).

46\Wheng andv are the Galerkin hodges, (19.2) corresponds to the edge-element discretization of (19.3).
4TThese ghost modes ametthe (in)famous “spurious modes” which were such a nuisance before the advent
of edge elements (cf. 8ssAvIT [1990b]). Spurious modes occur when one solves the eigenmode problem
rot(v rotE) = w?¢E by usingnodal vectorialelements. Then (barring exceptional boundary conditions) the
rot(v rot) matrix is regular (because the approximation space does not contain gradients, contrary to whe
happens with edge elements), but also — and for the same reason, as explaiosdaviB [1998a] — poorly
conditioned, which is the root of the evil. It would be wiset to take “ghost modes” and “spurious modes”

as synonyms, in order to avoid confusion on this tricky point.
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Finite Elements

We now tackle the convergence analysis of the discrete version of problem (13.2), mag
netostatics:

Db=0, h=vb, R'h=j. (18.1)

A preliminary comment on what that means is in order.

A few notational points before: The mesh is denoigahe dual mesh isz, and we
shall subscript byn, when necessary, all mesh-related entities. For instance, the larges
diameter of allp-cells, p > 1, primal and dual, will be denoteg, (with a mild abuse,
since it also depends on the metric of the dual mesh), and called the “grain” of the pal
of meshes. The computed solutifim h} will be {b,,, h,,} when we wish to stress its
dependence on the mesh-pair. And so on.

A first statement of our purpose is “study,,, h,,} wheny,, tends to 0”. Alas, this
lacks definiteness, because howshape®f the cells change in the process does matter
a lot. In the case of triangular 2D meshes, for instance, there are well-known counte
examples (BBUSKA and Aziz [1976]) showing that, if one tolerates too much “flat-
tening” of the triangles as the grain tends to 0, convergence may fail to occur. Hence th
following definition: A family M of (pairs of interlocked) meshes imiform if there
is afinite catalogue of “model cells” such that any cell in anyor m of the family is
the transform by similarity of one of them. The notation > 0” will then refer to a
sequence of meshes, all belonging to some definite uniform family, and such that the
vmS tend to zero. Now we redefine our objective: Show that the error incurred by taking
{b,,, h,,} as a substitute for the real fie{dl, 1} tends to zero whem — 0.

The practical implications of achieving this are well known. If, for a giventhe
computed solutiorib,,, h,,} is not deemed satisfactory, one musfinethe mesh and
redo the computation, again and again. If the refinement rule guarantees that all mesh
such a process can generate belong to some definite uniform family, then the conve
gence result means “you may get as good an approximation as you wish by refining th
way”, a state of affairs we are more or less happy to live with.

Fortunately, such refinement rules do exist (this is an active area of researcbcB
[1991], BEY [1995], DE COUGNY and SHEPHARD[1999], MAUBACH [1995]). Given
a pair of coarse meshes to start with, there are ways to subdivide the cells so as to ke
bounded the number of different cell-shapes that appear in the process, hence a poten
infinity of refined meshes, which do constitute a uniform family. (A refinement process
for tetrahedra is illustrated by Fig. 20.1. As one can see, at most five different shape

167
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FIG. 20.1. Subdivision rule for a tetrahedron= {k, [, m, n}. (Mid-edges are denoted, /m, etc., ando

is the barycenter.) A first halving of edges generates four small tetrahedra and a core octahedron, whi

itself can be divided into eight “octants” such @s= {o, ki, Im, mk}, of at most four different shapes. Now,

octants likeo should be subdivided as follows: divide the facet in fronb @fito four triangles, and join te,

hence a tetrahedron similar 1 and three peripheral tetrahedra. These, in turn, are halved, as shown for

the one hanging from edde, /m}. Its two parts are similar to and to the neighbor octat, kn, kI, mk}
respectively.

can occur, for each tetrahedral shape present in the original coarse mesh. In practic
not all volumes get refined simultaneously, so junction dissection schemes are neede
which enlarges the catalogue of shapes, but the latter is bounded nonetheless.)

For these reasons, we shall feel authorized to assume uniformity in this sense. W\
shall also posit that the hodge entries, whichever way they are built, only depend (u
to a multiplicative factor) on thehapesof the cells contributing to them. Although
stronger than necessary, these assumptions will make some proofs easier, and thus h
focus on the main ideas.

20. Consistency

Back to the comparison betweén,,, h,,} and{b, h}, a natural idea is to compare the
computed DoF arraydy,, andh,,, with arrays of the same kind,,,b = {ffb: fe
FYyandr,h ={[;h: f e F}, composed of the fluxes and m.m.fs of the (unknown)
solution{b, i} of the original problem (13.2). This implicitly defines two operators with
the same name,,: one that acts on 2-forms, giving an array of facet-fluxes, one that
acts on twisted 1-forms, giving an array of dual-edge m.m.f.'s. (No risk of confusion,
since the name of the operarddor %, reveals its nature.)

Since @ = 0, the flux ofb embraced by the boundary of any primal 3-aelnust
vanish, therefore the sum of facet qux§$f D'J ffb must vanish for alb. Similarly,
dh = j yields the relatior)_ , R f;h = [ j, by integration over a dual 2-cell. In ma-
trix form, all this becomes ‘

Drmb=0, R'rnh=j, (20.1)
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since the entries df are precisely the intensities across dual facets. Comparing with
(18.1), we obtain

D(bm —rpb) =0, Rt(hm —ruh) =0, (20-2)
and
(hy, — rh) —v(by, — rb) = (v — V)b =v(ry e — wrm)h. (20.3)

Let us compute the-norm of both sides of (20.3). (For this piece of algebra, we shall
use the notation announced in last chapterh) for a sum such ay_ ;. ~bshy, and

Ih|, for (uh, h)Y/2, the u-norm ofh, and other similar constructs.)

As this is done, “square” and “rectangle” terms appear. The rectangle term for the
left-hand side is—2(b,, — r,,b, h,, — rp,h), but sinceD(b,, — r,,b) = 0 implies the
existence of soma such thab,, — r,,b = Ra, we have

by — rmb, hy —ryh) = (Ra, hy, — rph) = (a» Rl(hm - th)) =0,
after (20.2). Only square terms remain, and we get
|hm - rmhli + |bm - rmblg
= |(vrm - rmv)b|i = |(;er - rmu)hli = (wrpmb — ryh, rpb — wryh). (20.4)

On the left-hand side, which has the dimension of an energy, we spot two plausible est
mators for the error incurred by takifb,,, h,,} as a substitute for the real fie{d, }:

the “error in (discrete) energy” [respectively coenergy], as regbyds r,,b [respec-
tively h,, — r,,h]. Components db,, — r,,,b are what can be called the “residual fluxes”
by — ff b, i.e., the difference between the computed flux embraced by faeed the

genuine (but unknown) fluxf b. Parallel considerations apply &gwith m.m.f.'s along

f instead of fluxes. It makes sense to try dmdindthese error terms by some func-
tion of y,,. So let us focus on the right-hand side of (20.4), for instance on its seconc
expression, the one in terms /of

By definition of r,,,, the f-component of-,, (uh) is the flux of b = uh embraced
by f. On the other hand, the flux arrawr, i is the result of applying the discrete
Hodge operator to the m.m.f. arrayh, so the compound operatotsu and ur, will
not be equal: they give different fluxes when applied to a gererihis contrasts with
the equalitiegDr,, — r,,d)b = 0 and(R'r,, — r,,d)h = 0, which stem from the Stokes
theorem. The mathematical word to express such equalities is “conjudaeyid d are
conjugate viar,,;, and so ardR’ and d, too. Thusy and . arenot conjugate viar,, —
and this is, of course, the reason why discretizing entails some error.

Yet, it may happen that, u andur,, docoincide forsomeis. This is so, for instance,
with piecewise constant fields, whenis the diagonal hodge of (16.3) and (16.4): in
fact, these formulas were motivated by the desire to achieve this coincidence for suc
fields. Also, as we shall prove latey, v andvr,, coincide on facet-element approxima-
tions ofb, i.e., on divergence-free fields of the fodm . ~ b w/ (which are meshwise
constant), whemw is the Galerkin hodge. Since all piecewise smooth fields differ from
such special fields by some small residual, and the finer the mesh the smaller, we m:
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FIG. 20.2. Asin Fig. 16.1f denotes the vectorial area of fagétthe vector of magnitude aref), normal

to f, that points away frony in the direction derived frony’s inner orientation by Ampére’s rule. By we
denote the vector that joins the end points of the associated dualfedge ambient orientation is assumed

here. One could do without it by treating bofhand f as axial vectors.) In caseis not the same on both
sides of f, understand f asv; f + v1 f1, where f> and f; are as suggested. Regidry is the volume

enclosed by the “tent” determined by the extremitieg @ind the boundary of . Note thatf andv ? always
crossf in the same direction, but only in the orthogonal construction are they parallel (cf. Fig. 16.1): In that
case, (20.6) can be satisfied bgiagonalhodge — cf. (16.3) and (16.4).

in such cases expect “asymptotic conjugacy”, in the sense that the right-hand side ¢
(20.4) will tend to O withm, for a piecewise smooth or 4. This property, which we
rewrite informally but suggestively as

v, —rmv— 0 whenm — 0, wry —rmu— 0 whenm — 0 (20.5)

(two equivalent statements), is calleohsistencyf the approximation oft andv by u
andv. Consistency, thus, implies asymptotic vanishing of the error in (discrete) energy
after (20.4).

Let’'s now take a heuristic step. (We revert to vector proxies for this. Fig. 20.2 explains

aboutf and f andn andt are normal and tangent unit vector fields, as earlier. The
norm of an ordinary vector ig.) Remark that the right-hand side of (20.4) is, according
to its rightmost avatar, a sum of terms, one for egthof the form

2 o el [ o]

.f/ f’//
which we’ll abbreviate a$B, f][H, f]. Each should be made as small as possible for
the sum to tend to 0. Supposés uniform, and that boundary conditions are such that

B and H are uniform. ThefB, f1=B- (3 v/ 7 — v £). This term vanishes if

Y v f=vry. (20.6)
fleF

(This implies)” /. » w/T'vf = . and hence, cancellation i, £1, t00.) We there-
fore adopt this geometric compatibility condition ariterion aboutv. Clearly, the
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diagonal hodge of (16.4) passes this test. But on the other hand, no diagoaal
satisfy (20.6) unles§ andv f are collinear.

PrRoOPOSITION20.1. If v is diagonal, withvfffz v};, as required by the criterion,
there is consistency.

ProoFE (All C’s, from now on, denote constants, not necessarily the same each time
possibly depending on the solution, but not on the mesh.) This time, the solution prox
B is only piecewise smooth, and possibly discontinuous i not uniform, but its
component parallel tg, say B, satisfieg5(x) — B(y)| < C|x — y| in the regioan

of Fig. 20.2. One hd4$ [;n-B=areaf)B(xy) and [;vt - B = lengthv f)B(x ),
for some averaging pombsf andx the distance of WhICh doesnt excegd, hence

[B, f1< Cynv/7 ared (), by factorlng outv// ared f) = length(v 1), and similarly,

H, 1< Cynpn'/ lengthv f) Noticing that are@f) length(v f) = 3fD v, and sum-
ming up with respect tg’, one finds that

10w — b |5 + 10w — rmbl3 < Cyf, (20.7)

the consistency result. O

Going back to (20.4), we conclude that both theorm of the residual flux array and
the u-norm of the residual m.m.f. array tend to 0 as faspasor faster!? a result we
shall exploit next.

One may wonder whether the proof can be carried out in the case of a hon-diagon
hodge, assuming (20.6). The author has not been able to do so on the basis of (20
only. The result is true under stronger hypotheses (stronger than necessary, perhar
When the construction of is a local one, i.e.y//" = 0 unless facetg and f’ belong
to a common volume, and when tiifimumg,,, of all cell diameters verifies,, > By,
with 8 independent ofz. Thenv has a band structure, and its terms behave,ih,
which makes it easy to prove th@, f]is in O(yz) Handling[H, f1 is more difficult,
becauseu is full, and the key argument about averaging points not being farther apar
thany,, breaks down. On the other hand, owing to the band structune ahd its
positive-definite characten,ff’ is small for distantf and f/, which allows one to also
bound[H, f] by Cy The number of faces being mﬂ?’ consistency ensues.

There is some way to go to turn such an argument into a proof, but this is enougl
to confirm (20.6) in its status of criterion as regasdsa criterion which is satisfied,
by construction (Fig. 16.1), in FIT (WiLAND [1996]) and in the cell method @NTI

48| casev is not the same on both sides pfunderstand length f) asvy Iengtf(?l) +volength f2). The
underlying measure of lengths is not the Euclidean one, but the one associated with the metric induced by tl
Hodge operatop.

49Convergence ir’y,,z1 is in fact often observed when the meshes have some regularity, such as crystal-like
symmetries, which may cancel out some terms in the Taylor expansions implicit in the above proof. Fo
instance, the distance between pointsandx ; may well be iny,f, rather thany,, . This kind of phenomenon

is commonplace in Numerical Analysis¢8ATz, SLOAN and WAHLBIN [1996]).
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[2001]), but allows a much larger choice. We'll see in a moment how and why it is
satisfied in the Galerkin approach.

21. Stability

So, the left-hand side of (20.4) tends to 0. Although this is considered by many a:
sufficient in practice, one cannot be satisfied with such “discrete energy” estimates
Fields should be compared with fields. To really prove convergence, one should buils
from the DoF array®,, andh,, an approximatiorb,,, h,,} of the pair of differential
forms {b, h}, and show that the discrepancigs — b andh,, — h tend to 0 withm in
some definite sense. So we are after some map, that we shall dengje thyat would
transform a flux arrayp into a 2-formp,,b and an m.m.f. arrah into a twisted 1-form
pmh. The map should behave naturally with respeat,toi.e.,

Vumb=b, rmpmh=h7 (211)
as well as
|pmtmb —bl, — 0 and |purph —h|, — 0 whenm — 0 (21.2)

(asymptotic vanishing of the “truncation errop},r,, — 1). A satisfactory result, then,
would be that bothb — p,,b,,|, and|h — p,h, |, tend to O withm (convergence “in
energy”). As will now be proved, this is warranted by the following inequalities:

05|pmb|v < Ibly, a|th|M < Ihlu (213)

for all b andh, where the constant > 0 does not depend on. Since|b|, and|h]|,
depend on the discrete hodge, (21.3) is a property of the approximation scheme, calle
stability.

PrRoOPOSITION21.1. Consistency20.5)being assumed?21.2)and (21.3) entail con-
vergence.

PROOF By consistency, the right-hand side of (20.4) tends to 0, whignge r,,,b|, —
0, and|p,,b,y, — pmrmbly — 0 by (21.3). Thereforg,,,b,, — b, “in energy”, thanks to
(21.2). Same argument abadut O

This is Lax’s celebrated folk theorem A and RCHTMYER [1956]): consistency-
stability = convergence

Below, we shall find a systematic way to constrpgt, the so-calledVhitney map
But if we don't insist right now on generality, there is an easy way to find a suitable
such map in the case of a simplicial primal mesh and of DoF arbatisat satisfy
Db = 0 (luckily, only these do matter in magnetostatics). The idea is to find a vector
proxy B uniform inside each tetrahedron with facet flu@s f equal tobs. (Then,
divB =0 all overD.) This, which would not be possible with cells of arbitrary shapes,
can be done with tetrahedra, for there are, for each tetrahedral veluhree unknowns
(the components d8) to be determined from four fluxes linked by one linear relation,

Zf D{fbf =0, so the problem has a solution, which we takgab.
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Then® p,r,b — b. As for the stability condition (21.3), one hdg,b|? =
/ D v|BJ?, a quadratic form with respect to the facet fluxes, which we may therefore
denote by(b, Nb), with N some positive definite matrix. Now, suppose firdiagle
tetrahedron in the mesh, and consider the Rayleigh-like quotight vb)/(b, Nb). Its
lower bound, strictly positive, depends only on 8tepeof the tetrahedron, not on its
size. Then, uniformity of the family of meshes, and of the construction aflows us
to take fore in (21.3) the smallest of these lower bounds, which is strictly positive and
independent ofz. We may thereby conclude tha, b, converges towards in energy.

No similar construction on the side #fis available, but this is not such a handicap:
if pmby — b, thenvp,b,, — h. This amounts to setting,, on the dual side equal to
vpm . The problem with that isp,, h fails to have the continuity properties we expect
from a magnetic field: its vector proxy H is not tangentially continuous across facets
S0 one cannot take its curl. But never mind, since this “non-conformal” approximation
converges in energy.

Yet, we need a more encompassipg map, if only becaus®b = 0 was just a
happy accident. Before turning to that, which will be laborious, let’s briefly discuss
convergence in the full Maxwell case.

22. Thetime-dependent case

Here is a sketch of the convergence proof for the generalized Yee scheme (17.1) al
(17.2) of last chapter.

First, linear interpolation in time between the values of the DoF arrays, as outpu
by the scheme, provides DoF-array-valued functions of time which converge,dvhen
tends to zero, towards the solution of the “spatially discretized” equations (16.1) anc
(16.2). This is not difficult.

Next, linearity of the equations allows one to pass from the time domain to the fre-
guency domain, via a Laplace transformation. Instead of studying (16.1) and (16.2]
therefore, one may examine the behavior of the solution of

—pD+R'H =7, pB+RE=0, (22.1)
D = &E, B=puH, (22.2)

whenm — 0. Here,p = £ + iw, with & > 0, and small capitals denote Laplace trans-
forms, which are arrays @omplexvalued DoFs. If one can prove uniform convergence
with respect taw (which the requiremerit > 0 makes possible), convergence of the so-
lution of (16.1) and (16.2) will ensue, by inverse Laplace transformation. The main
problem, therefore, is to compaee B, H, D, as given by (22.1) and (22.2), wiih,E,

rmB, rmH, r,, D, Where small capitals, again, denote Laplace transforms, but of differen-
tial forms this time.

50This is an exercise, for which the following hints should suffice. Start fbopiecewise smooth, such that
db =0, setb = r,, b, getB as above, and aim at finding an upper bound Bor- B|, where B is the proxy of
b, over a tetrahedrom. For this, evaluat&/x - fT(B — B), wherex is an affine function such tha¥i| = 1.
Integrate by parts, remark thﬁ} an-B= A(x p)b s, wherex s is the barycenter of . Taylor-expand: - B

aboutx 7, hence a bound iG'y; for [, An- (B —B), from which stems /(B —B)| < Cy;s. Use uniformity
to conclude thatB — B| < Cyj.
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The approach is similar to what we did in statics. First establish that

pi(H — 1y H) + R(E — rpE) = p(rmit — prm)H, (22.3)
—pe(E —rpE) + R'(H — ryH) = — p(rue — ery)E. (22.4)

Then, right-multiply (22.3) (in the sense 6f )) by (H — r,,H)* and the complex con-
jugate of (22.4) by—(E — r,,E), add. The middle terms (iR andR’) cancel out, and
energy estimates follow. The similarity between the right-hand sides of (20.3), on the
one hand, and (22.3), (22.4), on the other hand, shows that no further consistency r
qguirements emerge. Stability, thanks&to- 0, holds there if it held in statics. What is
a good discrete hodge in statics, therefore, is a good one in transient situations. Let
tentatively promote this remark to the rank of heuristic principle:

As regards discrete constitutive lawshat makes a convergent scheme $tatic
problems will, as a rule, make one for the Maxwell evolution equations

At this stage, we may feel more confident about the quality of the toolkit: If the
discrete hodges and the meshes are compatible in the sense of (20.6), so that consiste
can be achieved, if there is a way to pass from DoFs to fields which binds energy an
discrete energy tightly enough for stability (21.3) to hold, then convergence will ensue
So we need the,, operator. We would need it, anyway, to determine fluxes, e.m.f.'s,
etc., at a finer scale than what the mesh provides — motivation enough to search f
interpolants, but not the most compelling reason to do so: Field reconstruction from
the DoFs is needed, basicaltg, assess stabilifyin the above sense, and thereby, the
validity of the method. Whitney forms, which will now enter the scene, provide this
mechanism.

23. Whitney forms

Let's summarize the requirements about the generic magdt should map each kind

of DoF array to a differential form of the appropriate king,e, starting from an edge-
based DoF arrag, should be a 1-formp,,b, obtained from a facet-baséd should be

a 2-form, and so forth. Properties (21.1) and (21.2) should hold for all kinds, too, so in
short,

rmPm =1, pmrm —1 whenm — 0. (23.1)

The stability property (21.3) will automatically be satisfied in the case of a uniform
family of meshes. Moreover, we expeét ¢ 0 whenDb = 0, de = 0 whenRe =0, etc.
More generallyRa = b should entail d = b, and so forth. These are desirable features
of the toolkit. The neatest way to secure them is to enforce the structural property

dpm = pmd, (23.2)

atall levels (Fig. 23.1): d andishould be conjugate, via,,, or said differently, Fig. 23.1
should be @ommutative diagramRemarkably, these prescriptions will prove sufficient
to generate interpolants in an essentially unique way. Such interpolants are known :
Whitney formgWHITNEY [1957]), and we shall refer to the structure they constitute as
the Whitney complex
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0 1 2 3

Proxies - — grad—> -+ — rot—=> - —— div—™> -
# # # #
b 2 L 2

Forms o d —> o — d = o — d = o
Primal DoF arrays o — g —> o — R—> o — D—> o

FiG. 23.1. Diagrammatic rendering of (23.2), with part of Fig. 8.1 added. Flat and sharp symbols represer
the isomorphism between differential forms and their scalar or vector proxies.

23.1. Whitney forms as a device to approximate manifolds

We address the question by taking a detour, to see things from a viewpoint consiste
with our earlier definition of differential forms as maps from manifolds to numbers.
A differential form, say, for definiteness, maps ap-manifold S to the number/; b,

with p =2 here. Suppose we are able to approxin$aby a p-chain, i.e., here, a chain
based on facety)!,S = Zfef ¢/ f. Then a natural approximation g@b is fpﬁ,,Sb'

But this number we know, by linearity: singe r,,b = b, it equals the sun}_ c/by,
that we shall denotéc; b) (with boldface brackets). Hence an approximate knowledge
of the fieldb, i.e., of all its measurable attributes — the fluxes — from the DoF drray
In particular, fluxes embraced tsynall surfaces (small with respect to the grain of the
mesh) will be computable fror, which meets our expectations about interpolating to
local values ob. The question has thus become “how best to represbyta 2-chain?”.
Fig. 23.2 (wherep = 1, so a curve replacesS) gives the idea.

Once we know about the manifold-to-chain map, we know about Whitney forms:
For instance, the one associated with fageis, like the fieldb itself, a map from
surfaces to numbers, namely the mgap> ¢/ that assigns t¢ its weight with respect
to f. We denote this map by/ and its value atS by [;w/ or by (S; w/) as we
have done earlier. (The notational redundancy will prove useful.) Notd tha; b) =
[s X sbyw! = [ pub = (S; pub), which justifies the j;,” notation: A transposition
is indeed involved.

23.2. A generating formula

Now, let's enter the hard core of it. A simplicial primal mesh will be assumed until
further notice. (We shall see later how to lift this restriction.) Results will hold for any
spatial dimension and all simplicial dimensiong < n, but will be stated as it was 3
andp =1 or 2 (edge and facet elements). So we shall also write proofs, even recursiv
ones that are supposed to move frprto p + 1 (see, e.g., Proposition 23.1), agihad

a specific value (1 or 2), and thereby preferD, or R?, D, tod or 3. That the proof

has general validity notwithstanding should be obvious each time.
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FIG. 23.2. Representing curveby a weighted sum of mesh-edges, i.e., by a 1-chain. Graded thicknesses

of the edges are meant to suggest the respective weights assigned to them. Edges,swboses “control

domain” (shaded) doesn't intersagthave zero weight. (A weight can be negative, if the edge is oriented

backwards with respect t@) Which weights thus to assign is the central issue in our approach to Whitney
forms.

We useAr” (x) for the barycentric weight of point with respect to node, whenx
belongs to one of the tetrahedra which share nofeherwise " (x) = 0). We’ll soon
see thatw” = A" is the natural choice for nodal 0-forms, and again this dual notation
will make some formulas more readable. We defide= A™ + 1", when edgez =
{m,n}, as well ashf = Al + 1™ + A" for facet f = {I,m, n}, etc. Whene = {m, n}
andf = {I, m, n}, we denote nodeby f — e. Thusr/ ¢ refers to (in that casey, and
equals./ — A¢. The oriented segment from pointo pointy is xy, the oriented triangle
formed by pointsx, y, z, in this order, iscyz. And although node and its location,
should not be confused, we shall indulge in writing, for instarige,for the triangle
based on points;, x;, andx, wheni and; are node labels.

The weights in the case of a “small manifold”, such as a point, a segment} etc.,
will now be constructed, and what to use for non-small ones, i.e., the méaps/,
etc., from lines, surfaces, etc., to reals, will follow by linearity. The principle of this
construction is to enforce the following commutative diagram property:

3Py = Py, (23.3)

which implies, by transposition,;g, = p,.d, the required structural property (23%).

We shall not endeavor to prove, step by step, that our construction does satisfy (23.3
although that would be an option. Rather, we shall let (23.3) inspire the definition tha
follows, and then, directly establish thap,g = p,,d. This in turn will give (23.3) by
transposition.

DEFINITION 23.1. Starting fromw” = A", the simplicial Whitney forms are

wé = Z Gore™" dw", w! = Z R?)Lffe dw?, w'= Z D{f)»"if dw’
neN ee€ feF (23.4)

(and so on, recursively, to higher dimensions).

51The proper underlying concept, not used here, is thatufivectorat pointx.

52If moreover ke(dp) = cod(d, 1), i.e., in the case of a trivial topology, then ke§) = cod(d,, 1), just
as, by transposition, két,) = cod(d,_1). One says the Whitney spaces of forms, as linked by théatm
anexact sequence
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e n

FIG. 23.3. Left: With edgee = {m, n} and facetdm, n, k} and{m, n, [} oriented as shown, the 2-chain to
associate with the “joink Vv e, aliasmnx, can only be\* (x)mnk + 2! (x)mnli. This is what (23.5) says. Right:
Same relation between the joinv n and the 1-chain® (x)nk + A (x)nl + A" (x)nm.

Let us justify this statement, by showing how compliance with (23.3) suggests thes
formulas. The starting point comes from finite element interpolation theory, which
in our present stand consists in expressing a poidts a weighted sum of nodes,
the weightsw” (x) being the barycentric ones) (x). (Note how the standarg,, for
nodal DoFsp,¢ =), ¢,w", comes fromp!, x = > w"(x)n by transposition.) Re-
cursively, suppose we know the proper weights for a segmente., the bracketed
terms in the sunp!, yz = >, (yz; w)e, and let us try to findp/,xyz. By linearity,
phxyz =73 (yz;w)pl (x v e), where the “join"x Vv e is the triangle displayed in
Fig. 23.3, left. So the question is: which 2-chain best represents? As suggested by
Fig. 23.3, the only answer consistent with (23.3) is

phx Ve = Z R‘})\ff"(x)f. (23.5)
feF

Indeed, this formula expresses e as the average afnk andmnl (the only two facets
f for which Ref. # 0), with weights that depend on the relative proximityxatfo them.

Sop,xyz=3_, s R?Af_e(x)(yz; w) f=3pxyz; w!) f, hence

(ryz; wl) =Y R ) (yzs w), (23.6)

On the other hand, since a degenerate triangle suehxashould get zero weights, we
expect 0= (xzx; w/) =3, ch)»f*"(x)(zx; w?), and the same foxxy; w/). From
this (which will come out true after Proposition 23.1 below), we get

vz w!) =) R T vz + 2x + xy; w)
= Z R‘})\f*e(x)@(xyz); w) = Z RS A ) (xyz; dw®)

for any small triangleryz, by Stokes, and henae/ =Y, R;Af‘e dw®.

Thus, formulas (23.4) — which one should conceive as the unfolding of a unique
formula — are forced on us, as soon as we accept (23.5) as the right way, amply sugges!
by Fig. 23.3, to pass from the weights for a simpieto those for the joirnx v s. The
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reader will easily check that (23.4) describes the Whitney forms as they are more widel
known, that is, on a tetrahedrdh, [, m, n},

w" =A"
for noden,
wé = A" dA" — A dA”
for edgee = {m, n},
w =200 dA A dA 4+ A dA A dA AT dAL A dA™)
for facet f = {l, m, n}, and
w® = 6K dAL A dA A A+ AL A A dA A ALK 4 A7 A A dAF A dA!
+ A dAE A dAE A ™)

for volumev = {k, [, m, n}. In higher dimensions (WITNEY [1957]), the Whitney form
of a p-simplexs = {ng, n1, ..., np}, with inner orientation implied by the order of the
nodes, is

w® = p! Z (=D w" dw™ A -+ (i) - Adw"?,

where the(i) means “omit the termag””.
From now on, we denote by ? the finite-dimensional subspaces®f generated
by these basic forms.

REMARK 23.1. Tofind the vector proxies af* andw/, substitutev andx to d anda.
The scalar proxy ofv? is simply the function equal to/Aol(v) onv, O elsewhere. The
reader is invited to establish the following formulas:

W™ (x) = (kI x kx)/6vol(kimn), — w™*(x) = x1/3vol(v),

very useful when it comes to actual coding. (Other handy formulas, at this stage, ar
rot(x — v x ox) = 2v and diMx — ox) = 3, whereo is some origin point and a fixed
vector. As an exercise, one may use this to check on Proposition 23.3 below.)

REMARK 23.2. One may recognize in (23.6) the development of thd2leterminant
of the array of barycentric coordinates of pointsy, z, with respect to nodel m, n,
hence the geometrical interpretation of the weights displayed in Fig. 23.4.

23.3. Properties of Whitney forms
Thus in possession of a rationale for (23.4), we now derive from it a few formulas, for

their own sake and as a preparation for the proof of the all imporiapte p,,d result,
Proposition 23.3 below.
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k k

m m
FIG. 23.4. Just as the barycentric weight of paintwvith respect to node: is vol(kimx), if one takes

vol(klmn) as unit, the weight of the segmeny with respect to edgém, n} is vol(kixy), and the weight
of the trianglexyz with respect to facell, m, n} is vol(kxyz).

PrROPOSITION23.1. For eachp-simplex, there is one linear relation between Whitney
forms associated wittyp — 1)-faces of this simplex. For instance, for eagh

S ROt =0,

ecE

PROOF. By (23.4), 3, RsA/ ~w? =3, , A/ ~°A“7"R%G w" =0, thanks to the re-
lation RG = 0, because.” ~¢A¢~", which is the same for alt in 3f, can be factored
out. (]

As a corollary, and by using(@w) = di A w + A dw, we have

f_ _ e f—e e
w/ ==Y "R{dn/ ¢ Aws,
eef
and other similar alternatives to (23.4).

PrROPOSITION23.2. For eachp-simplexs, one has
i) Adw'=(p+1d’Aw’, (i) d’ Adw®=0. (23.7)
PROOF This is true forp = 0. Assume it forp = 1. Then

dw/ => RS ¢ Adw =D RE A Adw=diS ARG dw’
e e e

by (i), hence d/ A dw/ = 0. Next,

A dw! =S <Z R daf A dw"> =dxf A (Z R‘}Af dwé’)
e e

=dx/ A <wf + Z R?)f dwe>,
e
which thanks to (i) equals
dr/ A (wf + ZZ R% dA A w") =dr/ Aw/ —2d A Z RY Al A we
e e

=3/ A w/,
which proves (i) forp = 2. Hence (i) forp = 2 by taking the d. |
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Next, yet another variant of (23.4), but without summation this time. For any €dge
such thach # 0, one has

Réw/ =1/~ dw — 2dh/ ¢ A w®. (23.8)

This is proved by recursion, usingg,wf/ =2¢ " dw" — dA¢"w", wheren = e N ¢,
and the identityG’, G} = —RYR%. We may now conclude with the main result about
structural properties (cf. Fig. 23.1):

PROPOSITION23.3. One has
_ f
dw® = Z R?u) ,
feF

and hence, by linearitgp,, = p,d.

PrROOF Since both sides vanish out of the “star” @fi.e., the union sg) of vol-
umes containing it, one may do as if&st were the whole meshed region. Note that
s Rj,xf =1—1¢onsie). Then,

Y RGw! =) " dw — 2 T A wf] = (1— 2 dw’ — 2d(1— A) A w®
f f

=(1—- 29 dw® + 1° A dw’ =dw®,

by using (). Now, dp,a) = d(¥,aw) =¥, ;Réaw’ =¥ (Ra);w! =
pm(da)- O

As a corollary, &?~1 c wr, and if keld,) = cod(d,_1), then ketd;, W») =
dw?~1 theexact sequengeroperty of Whitney spaces in case of trivial topology.

23.4. “Partition of unity”

For what comes now, we revert to the standard vector analysis framework, where
denotes the proxy vector field (i.e(32VA™ x VA" + --.)) of the Whitney formw .

Recall that barycentric functions sum to 1, thus forming a “partition of unity”:
> nen w" = 1. We shall drop the ugly arrows in what follows, and use symigatot
only as a label, but also for the vectorial aregfdfFig. 20.2). Same dual use ¢t Same
convention forxyz, to be understood as a triangle or as its vectorial area, according to
the context.

ProPOSITION23.4. At all pointsx, for all vectorsv,

> (w/ @) v)f=v. (23.9)

fer
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Imn

m

FiG. 23.5. Why fT w¢ = ¢ in the barycentric construction of the dual mesh. First, the length of the

altitude fromn is 1/|Vw"|, therefore [; Vw" = klm/3. Next, the average of” or w” is 1/4. So

fT wé = fT[w'”Vw” —w"Vw™] is a vector equal t@kim/3 + kin/3)/4. As the figure shows (all twelve
triangles on the right have the same area), this is precisely the vectorial aea of

This is a case of something true of all simplices, and a consequence of the abo\
construction in which the weightsyz; w (x)) were assigned in order to havez =
Zf(xyz; w/ (x)) f. Replacing therev/ by its proxy, andvyz and f by their vectorial
areas, we do find (23.9). As a corollary (replatdy g, v by vw/ (x), and integrate
in x), the entries/¢ of the Galerkin facet elements mass matrix satisfy

vaggzvf,

geF

wherev f is as explained on Fig. 20.2, but with the important specification that here,
we are dealing with théarycentricdual mesh. Thaff vw/ = f is an exercise in

elementary geometry, and a similar formula holds for all Whitney forms (Fig. 23.5).
Now, compare this with (20.6), the compatibility condition that was brought to light by
the convergence analysis: We have proved, at last, that the Galerkin hodges do satisfy

24. Higher-degreeforms

Let's sum up: Whitney forms were built in such a way that the partition of unity property
(23.9) ensues. This property makes the mass matok facet elements satisfy, with
respect to the mesh and its barycentric dual, a compatibility criterion, (20.6), which we
earlier recognized as a requisite for consistency. Therefore, we may assgvtitrady
forms of higher polynomial degre®o, should satisfy23.9), and take this as heuristic
guide in the derivation of such forms.

Being a priori more numerous, higher-degree forms will make a finer partition. But
we have a way to refine the partition (23.9): Multiply it by thes, which themselves
form a partition of unity. This results in

Z (k"wf(x) . v)f =,
feF.neN

hence the recipe: Attach to edges, facets, etc., the prodtiets A" w/, etc., wheren
spansN. Instead of the usual Whitney spac#d’, with forms of polynomial degree
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FiG. 24.1. Left: “Small” edges, in one-to-one correspondence with the farhas’, and how they are la-
belled. Right: A variant where some small edges, suctkas, are broken lines. These three crooked small
edges, with proper signs, add up to the null chain, hence the compatibility condition of Note 53 is built in.

1 at most, we thus obtain larger spad¥§, with forms of polynomial degree 2 at
most. (For consistency¥” may now be denoterp.) As we shall prove in a moment
(under the assumption of trivial topology, but this is no serious restriction), the complex
they constitute enjoys the exact sequence property: If for inst@ﬁs{n!f bnfk"w«f'
satisfies @ = 0 (which means it has a divergence-free proxy) then there are BQFs
such thab = d(Zn’e QA" we). (How to defineW,f’, for polynomial degreek =3, ...,
should now be obvious.)

Note however that, because of Proposition 23.1, these new forms are not linearl
independent. For instance, the span of tHe°s, over a tetrahedron, has dimension
20 instead of the apparent 24, because Proposition 23.1 imposes one linear relati
per facet. Over the whole mesh, witti nodes,E edges,F facets, the two products
Amwe and A"w® for each edger = {m, n}, and the three products’ —¢w® for each
facet f, make a total of Z + 3F generators f0|W21. But with one relation per facet,
the dimension oW3 is only 2E + F). (The spans of the"w"s, ther"w/s, and the
A"w?s, have respective dimensions+ E, 3(F + V), and 4. The general formula
is dim(Wz”) = (p+1)(Sp + Sp+1), whereS,, is the number ofp-simplices. Note that
Zp(—l)” dim(WZ”) = ZP(—l)"Sp = x, the Euler—Poincaré constant of the meshed
domain.)

Owing to this redundancy, the main problem with these forms is, how to interpret
the DoFs. With standard edge elements, the BgHs the integral of the 1-forna =
> . a.w’ over edge’’. In different words, the square matrix of the circulatide’s w*)
is the identity matrix: edges and edge elementdrackiality in this precise sense (just
like the basis vectors and covect@sand d of Note 26). Here, we cannot expect to
find a family of 1-chains in such duality with the w¢s. The most likely candidates in
this respect, the “small edges” denofade}, etc., on Fig. 24.1, left, don’t pass, because
the matrix of the{{n’, ¢'}; A"w¢) is not the identity matrix. If at least this matrix was
regular, finding chains in duality with the basis forms, or the other way round, would be
straightforward. But regular it is not, because of the relations of Proposition 23.1. We
might just omit one small edge out of three on each facet, but this is an ugly solution
Better to reason in terms dflocksof DoF of various dimensions, and to be content
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with a rearrangement of chains that makes the matrix block-diagonal: Blocks of size !
for small edges which are part of the “large” ones, blocks of size three for small edge
inside the facets. Each of these 3-blocks corresponds to a subspace of dintension
owing to Proposition 23.1, be it the subspace of forms or of chains. The triple of degree
of freedom, therefore, is up to an additive constant. Yet, the circul@fatsdetermine
theform, if not the DoF, uniquely (“unisolvence” property).

The reader will easily guess about “small facets” (16 of them on a single tetrahedron
for a space of dimension(8 + T) = 3(4 + 1) = 15) and “small volumes” (four), in
both variants.

Which leaves us with the task of proving the exact sequence property, that is to sa
the validity of Poincaré’s Lemma in the complex of tVng: Show that @ =0 forb €

sz implies the existence, locally at least,m€& Wé’_l such thab = da. We'll treat the

very case this notation suggests, ife= 2, and assume trivial topology (“contractible”
meshed domain), which does no harm since only a local result is aimed at. We use r
and div rather than d for more clarity. First, two technical points:

LEMMA 24.1.1f >, s Bu)" (x) = o for all x, where thegs are real numbers, then
Bn = Bo for all nodesn e V.

ProOF Clear, sincé)_, A" = 1 is the only relation linking the.” (x)s. O
LEMMA 24.2. If a € W1, then2rot(A"a) — 31" rota € W2.

PROOF If a = w® andn = f — e, this results from (23.8). I is one of the end points
of e, e.g.,e = {m, n}, a direct computation, inelegant as it may be, will doA2d
(T dA" — A dA™) = —207 dA" A dA = A dwe. O

Now,

PrRoOPOSITION24.1. If the Wf sequence is exact, th@z” sequence is exact.

PROOF (at levelp = 2). Suppos® = b+ Y., s A"by, With b and all theb,, in W2,

and divb = 0. Taking the divergence of the sum and applying Lemma 24.1 in each
volume, one sees that diy is the same field for alt. So there is some commanin

W2 such that diyb, — b) = 0 for all n, and since thé¥? complex is exact, there is an

a, in Wt such thab, = b +rota,. Hencep = bg+ b+ )", A" rota,. By Lemma 24.2,
there is therefore soniein W2 such thaw = b + 3 rot(3", »"a,). Since divb = 0, the
solenoidab in Wz2 we started from is indeed the curl of some eIemerWéf a

Very little is needed to phrase the proof in such a way that the contractibility assump
tion becomes moot. Actually, the complex@%’ and Wf havethe same cohomology

53since the matrix has no maximal rank, small-edge circulations must satisfy compatibility conditions for
the form to exist. (Indeed, one will easily check that any elememY%)has a null circulation along the chain
made by the boundary of a facet minus four times the boundary of the small facet inside it.) This raises |
minor problem with the,, map, whose images need not satisfy this condition. The problem is avoided with
a slightly different definition of the small edgesAKEARI [1999]), as suggested on the right of Fig. 24.1.
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FiG. 25.1. The system of projections, in dimension 2.

whatever the topology of the domain and the culling of passive simplices (i.e., those
bearing a null DoF) implied by the boundary conditions.

25. Whitney formsfor other shapesthan simplices

This simple ideaapproximatep-manifolds byp-chains based op-cells of the mesh
is highly productive, as we presently see.

25.1. Hexahedra

First example, the well-known isoparametric elemenkR¢BTOUDIS, IRONS and
ZIENKIEWICZ [1968]) on hexahedra can thus be understood. A 2D explanation
(Fig. 25.1) will suffice, the generalization being easy. Let us take a convex quad-
rangle based on pointsgg, x10, X01, X11, and wonder about which weights” (x)
should be assigned to them (labeldesignates the generic node) in order to have
X =3 00101011 W' (¥)x, in @ sensible way. The weights are obvious Ifes on the
boundary. For instance,if= (1—&)xo0+£x10, @ point we shall denote by, weights
are{1—£&,£,0,0}. Were itx = xg1 = (1 — £)xo1 + §x11, we would take0,0, 1 — £, £}.

Now, eachx is part of some segmefitzoxz1]1, for auniquevalueé(x) of the weight

&, in which casex = (1 — n)xeo0 + nxe1, for somen = n(x), hence it seems natural to
distribute the previous weights in the same proportion:

x=(1-nx))(1—&@))xo0+ (1 — n(x))&(x)x10
+ () (1= &(x))x01+ 7€) x11, (25.1)

and we are staring at the basis functions. They form, obviously, a partition of unity.
Looking at what we have done, and generalizing to dimension 3 or higher, we notice :
system of projectiongssociated with a triline&f chart, x — {£(x), n(x), ¢(x)}, from

54Thus called becausg 7, and¢, though cubic polynomials in terms of the Cartesian coordinates afe
affine functions of each of them, taken separately.
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FIG. 25.2. Weightw® (xy) is the&n¢-volume of the “hinder region” of y with respect to edge.

a hexahedron to the unit cube§m¢-space. The successive projections (which can be
performed in any order) map a point=s xg,, to its imagescg,; andxy,; on opposite
facet§® £ = 0 and& = 1, then, recursively, send these images to points on opposite
edges, etc., until eventually a nodés reached. In the process, the weightw™) of x

is recursively determined by formulas such as (assuming for the sake of the examp
thatn belongs to the facet = 0)

(xgnes w") = (1= &) (xope; w").
The final weight ofc with respect ta: is thus the product of factors, such as h@re £),
collected during the projection process. (They measure the relative proximity of eacl
projection to the face towards which next projection will be done.) The last factor in
this product is 1, obtained when the projection reaché3bserve the fact, essential of
course, that whatever the sequence of projections, the partial weights encountered alc
the way are the same, only differently ordered, and hence the weighiviah respect
to noden is a well-defined quantity.

The viewpoint thus adopted makes the next move obvious. Now, instead of arpoint
we deal with a vectop atx, small enough for the segment (wherey = x + v) to be
contained in a single hexahedron. The above projectionssand y to facets, edges,
etc. Ending the downward recursion one step higher than previously, at the level c
edges, we get projectionsy, of xy onto all edges. The weight(xy; w¢) is the product
of weights ofx collected along the way, but the last factor is now the algebraic ratio
x.ve/e (Which makes obvious sense) instead of 1. Hence the analytical expression of th
corresponding Whitney form, for instance, in the case of Fig. 26°2- n¢ d¢. (Notice
the built-in “partition of unity” propertyxy = X, (xy; w¢)e.) The proxiesw® = n¢ V&
in this example, were proposed as edge elements for hexahedranoW¥L1J [1985].
55Be aware thaip-faces need not be “flat’, i.e., lie within an affipesubspace fop > 1, in dimension

higher than 2. To avoid problems this would raise, we assume here a mesh generation which enforces tt
extra requirement.
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n

" k
FiG. 25.3. There too, weight® (xy) is the relative volume of the hinder region.

One may wonder whether weights such(ag; w¢) have a geometric interpretation
there too. They dotxy; w®) is the relative volume, in theeference hexahedr8h H =
{€,n,¢}: 0<E<1,0<n<1,0<¢ <1, of the “hinder region” of Fig. 25.2, made
of points “behind”xy with respect to edge. This may seem fairly different from the
situation in Fig. 23.4, middle, but a suitable reinterpretation of the system of projection:
in the tetrahedron (Fig. 25.3) shows the analogy.

A similar reasoning gives facet elements: the last weight, for a small trianglds
xryrzr/f, which again makes sense: Take the ratio of the areas (an affine notion) of th
images of these surfaces in the reference cube, with-sigrorientations ofx ¢y z ¢
and f match,— otherwise. Whitney forms such as’ = & dpd¢ (when f is the facet
& = 1) result. The proxy of that particular oneg¥n x V¢.

25.2. Prisms

So, Cartesian coordinates and barycentric coordinates provide two systems of proje
tions which make obvious the weight allocation. These systems can be mixed: one c
them in use forp < n dimensions, the other one for the- p remaining dimensions.

In dimension 3, this gives only one new possibility, the prism (Fig. 25.4).

Such a variety of shapes makes the mesh generation more flexibles(D HoDY,
NICOLET, GENON and LEGROS[1994]). Yet, do the elements of a given degree, edge
elements say, fit together properly when one mixes tetrahedra, hexahedra, and prisir
Yes, because of the recursivity of the weight allocation: If a segmelies entirely in
the facet common to two volumes of different kind, say a tetrahedron and a prism, the
weights(xy; w¢) for edges belonging to this facet only depend on what happens in the
facet, i.e., they are the same as evaluated with both formulas“othe one valid in
the tetrahedron, the one valid in the prism. This is enough to guarantégnipential
continuityof such composite edge elements.

S6Recall that all tetrahedra are affine equivalent, which is why we had no need for a reference one. Th
situation is different with hexahedra, which form several orbits under the action of the affine group.
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FIG. 25.5. Projective systems for the same triangle, in the barycentric coordinates on the left, and by degel
eracy of the quadrilateral system on the right.

25.3. “Degeneracies”

Yet one may yearn for even more flexibility, and edge elementgyfmidshave been
proposed (©ULOMB, ZGAINSKI and MARECHAL [1997], GRADINARU and HPT-
MAIR [1999]). A systematic way to proceed, in this respect, is to recourse to “degener
ate” versions of the hexahedron or the prism, obtained by fusion of one or more pair ¢
nodes and or edges.

To grasp the idea, let's begin with the case of the degenerated quadrilateral, in tw
dimensions (Fig. 25.5). With the notations of the figure, wHere:, v} are the barycen-
tric coordinates in the left triangle, the mép, v} — {n, &€}, wheren =v/(u + v) and
& = u + v, sends the interior of the triangle to the interior of the right quadrilateral.
When, by deformation of the latter;g merges withxgg, the projective system of the
guadrilateral generates a new projective system on the triangle.
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FIG. 25.6. Projective systems in four degenerations of the hexahedron. Thick lines indicate the merged edge

The weights assigned to the nodes, and hence the nodal elements, are the same
both systems, foén = v for point C (cf. (25.1)),&£(1 — n) = n for B, and the sum
QL—-&@A—n) + (1 - &)n, attributed toA by adding the loads afgg and xp1, does
equali. But the edge elements differ: FaC, nds = —(1 — 1)~ dx on the right
instead of. dv — vdx on the left,— (1 — )1 dx for AB, and d + (1 — 1)~ 1v dx for
BC. (The singularity of shape functions at poinis never a problem, because integrals
where they appear always converge.)

In dimension 3, the principle is the same: When two edges merge, by degeneration «
a hexahedron or of a prism, the Whitney form of the merger is the sum of the Whitney
forms of the two contributors, which one may wish to rewrite in a coordinate system
adapted to the degenerate solid. Figs. 25.6 and 25.7 show seven degeneracies, all th
that one can obtain from a hexahedron or a prism with plane facets under the constrai
of not creating curved facets in the process. As one sees, the only novel shape is tli
pyramid, while the prism is retrieved once and the tetrahedron four times.

But, as was predictible from the 2-dimensional casengia\Whitney forms, on these
solids, that are produced by the merging, because the projection systems are different.
particular, we have noive distinct projective systems on the tetrahedron (and two on
the pyramid and the prism), and the equality of traces is not automatic any longer. On
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A

FIG. 25.7. Projective systems in three degenerations of the prism. Note how the pyramid has two ways t
degenerate towards the tetrahedron.

d
le)\ dAa Z;(dv—v (MIJ))
A
1] \ Cu
[« eh
wdg g
< 0] e
(1-0) 7 &

(1-9h

FiG. 25.8. Nodal and edge elements for the projective system of Fig. 25.5. One passes from the previous ¢
ordinate systenf¢, n, ¢} to the prism-adapteft, A, u, v} system by the formulas=p +v, n=v/(x+v),
withi +p+v=1.

must therefore care about correct assembly, in order to get the same projection syste
on each facet.

The advantage of having the pyramid available is thus marred by the necessity of &
extended shape-functions catalogue (on at least two triangular facets of a pyramid, tt
projection system cannot match the tetrahedron’s one), and by the existence of cur
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(1-%yv

FIG. 25.9. Degeneration of the prism of Fig. 25.8. Two edges disappear, and a new edge elemen
w(@—2)~1dx is created by the merging. The coordinate system is the same here as in Fig. 25,8,.90

should not be confused with barycentric coordinates of this tetranedron. Denoting the laifeibj, v},

and using the formulas= v + &k and¢ =9/(b +k),onehags =i+ v +k=1— A, n={ +&)/(1—1).

Thus, for instance, the shape functiel — A)*l dx rewrites agi(1 — X)*l dx in barycentric coordinates.

bersome assembly rules. Yet, finding the new shape-functions is not too difficult, a
exemplified by Figs. 25.8 and 25.9.

25.4. Star-shaped cells, dual cells

Let's end all this by an indication on how to build Whitney forms on any star-shaped
polyhedron.

Suppose eacp-cell of the meshn, for all p, has been provided with a “center”, in
the precise sense of Section 15, i.e., a point with respect to which the cell is star-shape
Then, join the centers in order to obtain a simplicial refinemargay, where the new
sets of p-simplices aregp, the old sets of cells bein§,. In similar style, letu and
U stand for DoF arrays indexed ovsy, and 3,, respectively, with the compatibility
relationu; = Xy Ty for all s in S, the sum running over all small simplices in the
refinement of celk, and the signs taking care of relative orientations. To defipe,
knowing whatp,; U is, we just take themallestin the energy norm, of thg;U’s, with
respect to alli's compatible withu.

The family of interpolants thus obtained is to the cellular mesh, for all purposes, wha
Whitney forms were to a simplicial mesh. Whether they deserve to be called “Whit-
ney forms” is debatable, however, because they are metric-dependent, unlike the sta
dard Whitney forms. The same construction on the dual side provides similar pseudc
Whitney forms on the dual mesh. (More precisely, there is, as we have observed at tt
end of Section 15, a common simplicial refinement of batandn. The process just
defined constructs forms on both, but it's easy to check that the pseudo-Whitneys on tf
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primal mesh are just the Whitney forms.) This fills a drawer in the toolkit, the emptiness
of which we took some pain to hide until now, although it was conspicuous at places
on Fig. 23.1, for instance.
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1. Introduction
1.1. Background

Prior to about 1990, the modeling of electromagnetic engineering systems was primaril
implemented using solution techniques for the sinusoidal steady-state Maxwell's eque
tions. Before about 1960, the principal approaches in this area involved closed-forn
and infinite-series analytical solutions, with numerical results from these analyses ot
tained using mechanical calculators. After 1960, the increasing availability of program:
mable electronic digital computers permitted such frequency-domain approaches to ri
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markedly in sophistication. Researchers were able to take advantage of the capabi
ties afforded by powerful new high-level programming languages such as Fortran, rapi
random-access storage of large arrays of numbers, and computational speeds order:
magnitude faster than possible with mechanical calculators. In this period, the prin
cipal computational approaches for Maxwell's equations included the high-frequency
asymptotic methods of KLLER [1962] and KOUYOUMJIAN and RTHAK [1974] and

the integral-equation techniques oARRINGTON [1968].

However, these frequency-domain techniques have difficulties and trades-off. For e
ample, while asymptotic analyses are well suited for modeling the scattering propertie
of electrically large complex shapes, such analyses have difficulty treating nonmetalli
material composition and volumetric complexity of a structure. While integral equation
methods can deal with material and structural complexity, their need to construct an
solve systems of linear equations limits the electrical size of possible models, especial
those requiring detailed treatment of geometric details within a volume, as opposed t
just the surface shape.

While significant progress has been made in solving the ultra-large systems o
equations generated by frequency-domain integral equations (see, for exampte, S
and GHEw [1998]), the capabilities of even the latest such technologies are ex-
hausted by many volumetrically complex structures of engineering interest. This als
holds for frequency-domain finite-element techniques, which generate sparse rath
than dense matrices. Further, the very difficult incorporation of material and de-
vice nonlinearities into frequency-domain solutions of Maxwell's equations poses
a significant problem as engineers seek to design active electromagnetic/electron
and electromagnetic/quantum-optical systems such as high-speed digital circuits, m
crowave and millimeter-wave amplifiers, and lasers.

1.2. Rise of finite-difference time-domain methods

During the 1970s and 1980s, a number of researchers realized the limitations c
frequency-domain integral-equation solutions of Maxwell's equations. This led to early
explorations of a novel alternative approach: direct time-domain solutions of Maxwell’s
differential (curl) equations on spatial grids or lattices. The finite-difference time-
domain (FDTD) method, introduced bye¥ [1966], was the first technique in this class,
and has remained the subject of continuous development fgee@VE and HAGNESS
[2000]).

There are seven primary reasons for the expansion of interest in FDTD and relate

computational solution approaches for Maxwell’s equations:

(1) FDTD uses no linear algebra. Being a fully explicit computation, FDTD avoids
the difficulties with linear algebra that limit the size of frequency-domain
integral-equation and finite-element electromagnetics models to generally fewe
than 16 field unknowns. FDTD models with as many as’ féld unknowns
have been run. There is no intrinsic upper bound to this number.

(2) FDTD is accurate and robust. The sources of error in FDTD calculations are wel
understood and can be bounded to permit accurate models for a very large varie
of electromagnetic wave interaction problems.
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(3) FDTD treats impulsive behavior naturally. Being a time-domain technique,
FDTD directly calculates the impulse response of an electromagnetic system
Therefore, a single FDTD simulation can provide either ultrawideband temporal
waveforms or the sinusoidal steady-state response at any frequency within th
excitation spectrum.

(4) FDTD treats nonlinear behavior naturally. Being a time-domain technique,
FDTD directly calculates the nonlinear response of an electromagnetic system.

(5) FDTD is a systematic approach. With FDTD, specifying a new structure to be
modeled is reduced to a problem of mesh generation rather than the potentiall
complex reformulation of an integral equation. For example, FDTD requires no
calculation of structure-dependent Green’s functions.

(6) Computer memory capacities are increasing rapidly. While this trend positively
influences all numerical techniques, it is of particular advantage to FDTD meth-
ods which are founded on discretizing space over a volume, and therefore inhe
ently require a large random access memory.

(7) Computer visualization capabilities are increasing rapidly. While this trend posi-
tively influences all numerical techniques, it is of particular advantage to FDTD
methods which generate time-marched arrays of field quantities suitable for us
in color videos to illustrate the field dynamics.

An indication of the expanding level of interest in FDTD Maxwell's equations
solvers is the hundreds of papers currently published in this area worldwide eac
year, as opposed to fewer than ten as recently as 1985 (geec8R and SHNEI-

DER [1998]). This expansion continues as engineers and scientists in non-traditione
electromagnetics-related areas such as digital systems and integrated optics beco
aware of the power of such direct solution techniques for Maxwell's equations.

1.3. Characteristics of FDTD and related space-grid time-domain techniques

FDTD and related space-grid time-domain techniques are direct solution methods fc
Maxwell’'s curl equations. These methods employ no potentials. Rather, they are base
upon volumetric sampling of the unknown electric and magnetic fields within and sur-
rounding the structure of interest, and over a period of time. The sampling in space i
at sub-wavelength resolution set by the user to properly sample the highest near-fie
spatial frequencies thought to be important in the physics of the problem. Typically,
10-20 samples per wavelength are needed. The sampling in time is selected to enst
numerical stability of the algorithm.

Overall, FDTD and related techniques are marching-in-time procedures that simulat
the continuous actual electromagnetic waves in a finite spatial region by sampled-da
numerical analogs propagating in a computer data space. Time-stepping continues as
numerical wave analogs propagate in the space lattice to causally connect the physi
of the modeled region. For simulations where the modeled region must extend to in
finity, absorbing boundary conditions (ABCs) are employed at the outer lattice trun-
cation planes which ideally permit all outgoing wave analogs to exit the region with
negligible reflection. Phenomena such as induction of surface currents, scattering at
multiple scattering, aperture penetration, and cavity excitation are modeled time-step &
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time-step by the action of the numerical analog to the curl equations. Self-consistenc
of these modeled phenomena is generally assured if their spatial and temporal vari
tions are well resolved by the space and time sampling process. In fact, the goal is t
provide a self-consistent model of the mutual coupling of all of the electrically small
volume cells constituting the structure and its near field, even if the structure span
tens of wavelengths in three dimensions and there are hundreds of millions of spac
cells.

Time-stepping is continued until the desired late-time pulse response is observed |
the field points of interest. For linear wave interaction problems, the sinusoidal respons
at these field points can be obtained over a wide band of frequencies by discrete Fouri
transformation of the computed field-versus-time waveforms at these points. Prolonge
“ringing” of the computed field waveforms due to a high Q-factor or large electrical size
of the structure being modeled requires a combination of extending the computations
window in time and extrapolation of the windowed data before Fourier transforma-
tion.

1.4. Classes of algorithms

Current FDTD and related space-grid time-domain algorithms are fully explicit solvers
employing highly vectorizable and parallel schemes for time-marching the six com-
ponents of the electric and magnetic field vectors at each of the space cells. The e
plicit nature of the solvers is usually maintained by employing a leapfrog time-stepping
scheme. Current methods differ primarily in how the space lattice is set up. In fact, grid
ding methods can be categorized according to the degree of structure or regularity in tt
mesh cells:

(1) Almost completely structured. In this case, the space lattice is organized so the
its unit cells are congruent wherever possible. The most basic example of such
mesh is the pioneering work of & [1966], who employed a uniform Cartesian
grid having rectangular cells. Staircasing was used to approximate the surface c
structural features not parallel to the grid coordinate axes. Later work showec
that it is possible to modify the size and shape of the space cells located im:
mediately adjacent to a structural feature to conformally fit its surface (see, for
example, JRGENS TAFLOVE, UMASHANKAR and MOORE[1992] and kY
and MITTRA [1997]). This is accurate and computationally efficient for large
structures because the number of modified cells is proportional to the surfact
area of the structure. Thus, the number of modified cells becomes progressivel
smaller relative to the number of regular cells filling the structure volume as its
size increases. As a result, the computer resources needed to implement a ful
conformal model approximate those required for a staircased model. However,
key disadvantage of this technique is that special mesh-generation software mu
be constructed.

(2) Surface-fitted. In this case, the space lattice is globally distorted to fit the shap
of the structure of interest. The lattice can be divided into multiple zones to
accommodate a set of distinct surface features (see, for exanyple(k3R,
MOHAMMADIAN and HaLL [1990]). The major advantage of this approach is
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that well-developed mesh-generation software of this type is available. The ma

jor disadvantage is that, relative to the Yee algorithm, there is substantial adde

computer burden due to:

(a) memory allocations for the position and stretching factors of each cell;

(b) extra computer operations to implement Maxwell’s equations at each cell anc
to enforce field continuity at the interfaces of adjacent cells.

Another disadvantage is the possible presence of numerical dissipation in th

time-stepping algorithm used for such meshes. This can limit the range of elec

trical size of the structure being modeled due to numerical wave-attenuation ar

tifacts.

(3) Completely unstructured. In this case, the space containing the structure of in
terest is completely filled with a collection of lattice cells of varying sizes and
shapes, but conforming to the structure surface (see, for examplesih and
ZIoLKOWSKI [1990]). As for the case of surface-fitted lattices, mesh-generation
software is available and capable of modeling complicated three-dimensiona
shapes possibly having volumetric inhomogeneities. A key disadvantage of thi
approach is its potential for numerical inaccuracy and instability due to the un-
wanted generation of highly skewed space cells at random points within the lat:
tice. A second disadvantage is the difficulty in mapping the unstructured mest
computations onto the architecture of either parallel vector computers or mas
sively parallel machines. The structure-specific irregularity of the mesh mandate
a robust pre-processing algorithm that optimally assigns specific mesh cells t
specific processors.

At present, the best choice of computational algorithm and mesh remains unclea

For the next several years, we expect continued progress in this area as various grot
develop their favored approaches and perform validations.

1.5. Predictive dynamic range

For computational modeling of electromagnetic wave interaction structures using
FDTD and related space-grid time-domain techniques, it is useful to consider the cor
cept of predictive dynamic range. Let the power density of the primary (incident) wave
in the space grid b&@, W/m?2. Further, let the minimum observable power density of
a secondary (scattered) wave Be W/m?, where “minimum observable” means that
the accuracy of the field computation degrades due to numerical artifacts to poorer the
n dB (some desired figure of merit) at lower levels th&n Then, we can define the
predictive dynamic range as 10lg@Po/ Ps) dB.
This definition is well suited for FDTD and other space-grid time-domain codes for
two reasons:
e It squares nicely with the concept of a “quiet zone” in an experimental anechoic
chamber, which is intuitive to most electromagnetics engineers;
e It succinctly quantifies the fact that the desired numerical wave analogs propaga
ing in the lattice exist in an additive noise environment due to nonphysical propa-
gating wave analogs caused by the imperfect ABCs.
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In addition to additive noise, the desired physical wave analogs undergo gradual prc
gressive deterioration while propagating due to accumulating numerical dispersion art
facts, including phase velocity anisotropies and inhomogeneities within the mesh.

In the 1980s, researchers accumulated solid evidence for a predictive dynamic rang
on the order of 40-50 dB for FDTD codes. This value is reasonable if one consider:
the additive noise due to imperfect ABCs to be the primary limiting factor, since the
analytical ABCs of this era (see, for examplepyR[1981]) provided outer-boundary
reflection coefficients in the range of about 0.3-3980 to —50 dB).

The 1990s saw the emergence of powerful, entirely new classes of ABCs including
the perfectly matched layer (PML) ofE RENGER[1994]; the uniaxial anisotropic PML
(UPML) of Sacks, KINGSLAND, LEE and LEE [1995] and GeDNEY [1996]; and the
complementary operator methods (COM) ofNRaHI [1997], RaMAHI [1998]. These
ABCs were shown to have effective outer-boundary reflection coefficients of better thai
—80 dB for impinging pulsed electromagnetic waves having ultrawideband spectra
Solid capabilities were demonstrated to terminate free-space lattices, multimoding an
dispersive waveguiding structures, and lossy and dispersive materials.

However, for electrically large problems, the overall dynamic range may not reach
the maximum permitted by these new ABCs because of inaccuracies due to acci
mulating numerical-dispersion artifacts generated by the basic grid-based solution c
the curl equations. Fortunately, by the end of the 1990s, this problem was being a
tacked by a new generation of low-dispersion algorithms. Examples include the wavele
based multi-resolution time-domain (MRTD) technique introduced RuidPHOLZ
and KATEHI [1996] and the pseudo-spectral time-domain (PSTD) technique introducec
by Liu, Q.H. [1996], Liu, Q.H. [1997]. As a result of these advances, there is emerg-
ing the possibility of FDTD and related space-grid time-domain methods demonstratin
predictive dynamic ranges of 80 dB or more in the first decade of the 21st century.

1.6. Scaling to very large problem sizes

Using FDTD and related methods, we can model electromagnetic wave interactio
problems requiring the solution of considerably more thahfléd-vector unknowns.
At this level of complexity, it is possible to develop detailed, three-dimensional models
of complete engineering systems, including the following:
e Entire aircraft and missiles illuminated by radar at 1 GHz and above;
e Entire multilayer circuit boards and multichip modules for digital signal propaga-
tion, crosstalk, and radiation;
e Entire microwave and millimeter-wave amplifiers, including the active and passive
circuit components and packaging;
e Entire integrated-optical structures, including lasers, waveguides, couplers, an
resonators.
A key goal for such large models is to achieve algorithm/computer-architecture scal
ing such that forN field unknowns to be solved oW processors, we approach an
order(N/M) scaling of the required computational resources.
We now consider the factors involved in determining the computational burden for
the class of FDTD and related space-grid time-domain solvers.
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(1) Number of volumetric grid cellsV. The six vector electromagnetic field compo-
nents located at each lattice cell must be updated at every time step. This yielc
by itself an orderd/) scaling.

(2) Number of time stepamax. A self-consistent solution in the time domain man-
dates that the numerical wave analogs propagate over time scales sufficient
causally connect each portion of the structure of interest. Therefgeg,must
increase as the maximum electrical size of the structure. In three dimensions,
can be argued thatnay is a fractional power function oWV such asv1/3. Fur-
ther, nmax must be adequate to step through “ring-up” and “ring-down” times
of energy storage features such as cavities. These features vary from problem
problem and cannot be ascribed a dependence relative to

(3) Cumulative propagation errorsAdditional computational burdens may arise
due to the need for either progressive mesh refinement or progressively highe
accuracy algorithms to bound cumulative positional or phase errors for propagat
ing numerical modes in progressively enlarged meshes. Any need for progressiv
mesh refinement would feed back to factor 1.

For most free-space problems, factors 2 and 3 are weaker functions of the size «
the modeled structure than factor 1. This is because geometrical features at increasi
electrical distances from each other become decoupled due to radiative losses by t
electromagnetic waves propagating between these features. Further, it can be sho
that replacing second-order accurate algorithms by higher-order versions sufficientl
reduces numerical dispersion error to avoid the need for progressive mesh refineme
for object sizes up to the order of 100 wavelengths. Overall, a computational burden c
order N - nmay) = ordeN*/3) is estimated for very large FDTD and related models.

2. Maxwell’sequations

In this section, we establish the fundamental equations and notation for the electroma
netic fields used in the remainder of this chapter.

2.1. Three-dimensional case

Using MKS units, the time-dependent Maxwell’s equations in three dimensions are
given in differential and integral form by

Faraday’'s Law

3B .-
- VxE-M, (2.1a)

ot

3 [ = .- L L
—//B~dA:—7§E~d£—//M~dA. (2.1b)
ot JJa ¢ A

Ampere’s Law

—— =VxH-J, (2.2a)



206 S.C. Hagness et al.

%/Aﬁ.dﬁzéﬁ-di—/ﬁf-dﬁ. (2.2b)
Gauss’ Law for the electric field

V.D=0, (2.3a)

#A D-dA=0. (2.3b)
Gauss’ Law for the magnetic field

V.-B=0, (2.4a)

#A B-dA=0. (2.4b)
In (2.1)—(2.4), the following symbols (and their MKS units) are defined:

electric field (volts/meter)

electric flux density (coulombs/metr
magnetic field (amperes/meter)
magnetic flux density (webers/meter

> ®omo o

arbitrary three-dimensional surface

1

o
>

differential normal vector that characterizes surfacgneter)
¢:  closed contour that bounds surfate

d¢: differential length vector that characterizes conto(meters)
J:  electric current density (amperes/méjer

M: equivalent magnetic current density (volts/méyer

In linear, isotropic, nondispersive materials (i.e., materials having field-independent
direction-independent, and frequency-independent electric and magnetic properties
we can relateD to E and B to H using simple proportions:

-

D:eE:srsoE; B:,uH:Mr,uoH, (2.5)

where

e.  electrical permittivity (farads/meter)

e relative permittivity (dimensionless scalar)

co. free-space permittivity8.854 x 1012 farads/meter
w:  magnetic permeability (henrys/meter)

wur:  relative permeability (dimensionless scalar)

no. free-space permeabilitdr x 10~ henrys/meter

Note that/ andM can act aindependent sourced E- and H -field energy,fsoumeand
Msource We also allow for materials with isotropic, nondispersive electric and magnetic
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losses that attenuafe- and H -fields via conversion to heat energy. This yields:

J = Jsource+ 0 E: M = Msource+ o* H, (2.6)
where

o: electric conductivity (siemens/meter)

o*: equivalent magnetic loss (ohms/meter)

Finally, we substitute (2.5) and (2.6) into (2.1a) and (2.2a). This yields Maxwell’s curl
equations in linear, isotropic, nondispersive, lossy materials:

9H 1_ - 1,- -
—=——VXE——(Msource+0*H)y (2.7
ot M 2

9E 1_ - 1,- ,

— =-VxH- —(Jsource+ UE) (28)
at £ £

We now write out the vector components of the curl operators of (2.7) and (2.8)
in Cartesian coordinates. This yields the following system of six coupled scalar equa
tions:

JoH. 1[0E JIE,
8tx T _a_zy dy ~ (Msourcq 071 )} (2:92)
3H, 1[0E, OE
o wl ox oz~ (Msourcs +0*Hy)}’ (2:95)
J0H. 1[0E, OE,
T wl ay 7r ~ (Msource + 0" H. )} (2:99)
0E, 1[0H, 8H
3: == %y e — (Jsourcg + 0 Ex )i| (2.10a)
0E, 1[0H, 0H,
5 s | oz o — (Jsourcg + UEy):| (2.10D)
oE 1[0H, 0H
Lo L= D1 (2.10c)
ot el ox ay

The system of six coupled partial differential equations of (2.9) and (2.10) forms the ba
sis of the FDTD numerical algorithm for electromagnetic wave interactions with genera
three-dimensional objects. The FDTD algorithm need not explicitly enforce the Gauss
Law relations indicating zero free electric and magnetic charge, (2.3) and (2.4). Thit
is because these relations are theoretically a direct consequence of the curl equatio
as can be readily shown. However, the FDTD space grid must be structured so that ti
Gauss’ Law relations arenplicit in the positions of thet- and H-field vector com-
ponents in the grid, and in the numerical space-derivative operations upon these cor
ponents that model the action of the curl operator. This will be discussed later in th
context of the Yee mesh.

Before proceeding with the introduction of the Yee algorithm, it is instructive to con-
sider simplified two-dimensional cases for Maxwell's equations. These cases demor
strate important electromagnetic wave phenomena and can yield insight into the analy
ical and algorithmic features of the general three-dimensional case.
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2.2. Reduction to two dimensions

Let us assume that the structure being modeled extends to infinity iadinection with

no change in the shape or position of its transverse cross section. If the incident wave
also uniform in thez-direction, then all partial derivatives of the fields with respect to
must equal zero. Under these conditions, the full set of Maxwell’s curl equations giver
by (2.9) and (2.10) reduces to two modes, tilamsverse-magnetic mode with respect to

z (TMy) and thetransverse-electric mode with respectzt¢TE,). The reduced sets of
Maxwell’s equations for these modes are as follows.

TM, mode(involving onlyH,, H,, and E;)

oH 1 0E
8tx - ;[_ ByZ — (Msource +”*Hx)}’ (2.11a)
oH 1[0E

0E. 1[9H, 0H,

ot el ox ay
TE; mode(involving onlyE,, E,, and H)

— (Jsource + UEz):|- (2.11c)

oE 1[0H,
£ _1 _ ayz ~ (Usoures +0 Ex)}, (2.12a)
oE 1[ 0H
a—;y ~ B sz — (Jsourcg + GEy)], (2.12b)
oH 1[0E oE
< = — = (Msource +U*Hz) . (2.120)
ot wl ay ax

The TM; and TE modes contain no common field vector components. Thus, these
modes can exist simultaneously with mutual interactions for structures composed of
isotropic materials or anisotropic materials having no off-diagonal components in the
constitutive tensors.

Physical phenomena associated with these two modes can be very different.;,The Tl
mode can support propagating electromagnetic fields bound closely to, or guided b
the surface of a metal structure (the “creeping wave” being a classic example for curve
metal surfaces). On the other hand, the;Tivbde sets up afA-field which must be neg-
ligible at a metal surface. This diminishes or eliminates bound or guided near-surfac
propagating waves for metal surfaces. The presence or absence of surface-type way
can have important implications for scattering and radiation problems.

3. TheYeealgorithm
3.1. Basic ideas

YEE [1966] originated a set of finite-difference equations for the time-dependent
Maxwell’s curl equations of (2.9) and (2.10) for the lossless materials€as® and



Finite-difference time-domain methods 209

= 0. This section summarizes Yee's algorithm, which forms the basis of the FDTD
technique. Key ideas underlying the robust nature of the Yee algorithm are as follows:

(1) The Yee algorithm solves for both electric and magnetic fields in time and space
using the coupled Maxwell’'s curl equations rather than solving for the electric
field alone (or the magnetic field alone) with a wave equation.

e This is analogous to the combined-field integral equation formulation of
the method of moments, wherein bakthand H boundary conditions are
enforced on the surface of a material structure.

e Using bothE and H information, the solution is more robust than using
either alone (i.e., it is accurate for a wider class of structures). Both elec-
tric and magnetic material properties can be modeled in a straightforwarc
manner. This is especially important when modeling radar cross sectior
mitigation. .

e Features unique to each field such as tangeftiaingularities near edges
and corners, azimuthal (loopingj singularities near thin wires, and ra-
dial E singularities near points, edges, and thin wires can be individually
modeled if both electric and magnetic fields are available.

(2) Asillustrated in Fig. 3.1, the Yee algorithm centershtand H components in
three-dimensional space so that evérgomponent is surrounded by four circu-
lating H components, and eveﬁ component is surrounded by four circulating
E components.

This provides a beautifully simple picture of three-dimensional space being
filled by an interlinked array of Faraday’s Law and Ampere’s Law contours.
For example, it is possible to identify Yel& components associated with dis-
placement current flux Ilnklng'-l loops, as well agi components associated
with magnetic flux IlnklngE loops. In effect, the Yee algorithm simultaneously
simulates the pointwise differential forand the macroscopic integral form of

(k) H

X

FiG. 3.1. Position of the electric and magnetic field vector components about a cubic unit cell of the Yee
space latticeAfter. K.S. Yee,|IEEE Trans. Antennas and Propagatjovol. 14, 1966, pp. 302-307, © 1966
IEEE.
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Maxwell's equations. The latter is extremely useful in specifying field boundary
conditions and singularities.

In addition, we have the following attributes of the Yee space lattice:

o The finite-difference expressions for the space derivatives used in the cur
operators are central-difference in nature and second-order accurate.

e Continuity of tangentialE and H is naturally maintained across an inter-
face of dissimilar materials if the interface is parallel to one of the lattice
coordinate axes. For this case, there is no need to specially enforce fiels
boundary conditions at the interface. At the beginning of the problem, we
simply specify the material permittivity and permeability at each field com-
ponent location. This yields a stepped or “staircase” approximation of the
surface and internal geometry of the structure, with a space resolution se
by the size of the lattice unit cell.

e The location of theE and H components in the Yee space lattice and
the central-difference operations on these components implicitly enforce
the two Gauss’ Law relations (see Section 3.6.9). Thus, the Yee mesh is
divergence-free with respect to its- and H-fields in the absence of free
electric and magnetic charge. B R

(3) As illustrated in Fig. 3.2, the Yee algorithm also centerstitand H compo-
nents in time in what is termed a leapfrog arrangement. All of Eheompu-
tations in the modeled space are completed and stored in memory for a pal
ticular time point using previously storeld data. Then all of thed computa-
tions in the space are completed and stored in memory using tteta just
computed. The cycle begins again with the recomputation ottitemponents
based on the newly obtaingd. This process continues until time-stepping is

concluded.
E E E E
I T T\ T t=2At
A A fi
t=1.5At
E E E E
| |
T T T i t=At
A A A
t=0.5At
E g g E
T ; T f T ‘ i t=0
x=0 X=AX X=2Ax X=3AX

FIG. 3.2. Space-time chart of the Yee algorithm for a one-dimensional wave propagation example showin
the use of central differences for the space derivatives and leapfrog for the time derivatives. Initial condition:
for both electric and magnetic fields are zero everywhere in the grid.
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o Leapfrog time-stepping is fully explicit, thereby avoiding problems involved
with simultaneous equations and matrix inversion.

e The finite-difference expressions for the time derivatives are central-
difference in nature and second-order accurate.

e The time-stepping algorithm is nondissipative. That is, numerical wave
modes propagating in the mesh do not spuriously decay due to a nonphysic:
artifact of the time-stepping algorithm.

3.2. Finite differences and notation

Y EE [1966] introduced the following notation for space points and functions of space
and time. A space point in a uniform, rectangular lattice is denoted as

(i, j. k) = (iAx, jAy, kA2). 3.1)

Here,Ax, Ay, andAz are, respectively, the lattice space increments incthe andz
coordinate directions, and j, andk are integers. Further, we denote any functioof
space and time evaluated at a discrete point in the grid and at a discrete pointin time |

u(iAx, jAy, kAz,nAr) = u?’j,k, 3.2

where At is the time increment, assumed uniform over the observation intervak and
is an integer.

Yee used centered finite-difference (central-difference) expressions for the space al
time derivatives that are both simply programmed and second-order accurate in tt
space and time increments. Consider his expression for the first partial space derivati
of u in thex-direction, evaluated at the fixed time=nAt:

“?+1/2,j,k - ”?—1/2,1',1(
Ax

We note thet1/2 increment in theé subscript £-coordinate) ofu, denoting a space
finite-difference over-1/2Ax. Yee’s goal was second-order accurate central differenc-
ing, but it is apparent that he desired to take data for his central differences to the rigt
and left of his observation point by onlyx/2, rather than a fulhx. _

Yee chose this notation because he wished to interleavg hisd H components in
the space lattice at intervals afx/2. For example, the difference of two adjacé?n
components, separated by and locatedt:1/2Ax on either side of aifl component,
would be used to provide a numerical approximationdéi/dx to permit stepping the
H component in time. For completeness, it should be added that a numerical approx
mation analogous to (3.3) féwu/dy or du/dz can be written simply by incrementing
the j or k subscript ofu by £1/2Ay or +£1/2Az, respectively.

Yee’s expression for the first time partial derivativeugfevaluated at the fixed space
point (i, j, k), follows by analogy:

+0[(Ax)?]. (3.3)

9
a—u(iAx,jAy,kAz,nAt) =
X

n+1/2  n-1/2

P u. - .
B—I:(iAx, jAy, kAzZ, nAL) = % +0[(an?]. (3.4)
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Now the+1/2 increment is in the superscript (time coordinate) of denoting a time
finite-difference over:1/2At. Yee chose this notation because he wished to interleave
his E and H components in time at intervals of 2A¢ for purposes of implementing a
leapfrog algorithm.

3.3. Finite-difference expressions for Maxwell’'s equations in three dimensions

We now apply the above ideas and notation to achieve a finite-difference numerice
approximation of the Maxwell's curl equations in three dimensions given by (2.9)
and (2.10). We begin by considering as an exampleRhdield-component equation
(2.10a). Referring to Figs. 3.1 and 3.2, a typical substitution of central differences for
the time and space derivatives in (2.10aFati, j + 1/2, k + 1/2, n) yields the follow-

ing expression:

n+1/2 n—1/2

Exl; ;Y1 20412 = Exli j¥1/2.041/2
At
1 Hol e Hel e B jppaia =Myl s
- . Ay Az
Gi.j+1/2k+1/2 \ = Jsource |y, jy1/2 k172 = Oi.j+1/2k+1/2Ex |} j 112 k4172

(3.5)
Note that all field quantities on the right-hand side are evaluated at timersitegiud-
ing the electric fieldE, appearing due to the material conductivitySinceE, values
at time-step: are not assumed to be stored in the computer’'s memory (only the previous
values ofE, at time-step: — 1/2 are assumed to be in memory), we need some way to
estimate such terms. A very good way is as follows, using what we saliva-implicit
approximation

n+1/2 n—1/2

n Exli Y12 k412 1 Exli jY1/2 04172 36
Exli jr120412= 5 . (3.6)

Here E, values at time-step are assumed to be simply the arithmetic average of the
stored values of, attime-stemp — 1/2 and the yet-to-be computed new value&fat
time-step: + 1/2. Substituting (3.6) into (3.5) and collecting terms yields the following
explicit time-stepping relation foE, (which is numerically stable for values affrom

zero to infinity):

1_ Oi, j+1/2.k+1/208
n+1/2 . 2¢i j+1/2.k+1/2 n—1/2
i,j+1/2,k+1/2 — <W) X|i,j+1/2,k+1/2
2¢; j1+1/2,k+1/2

Eq|
H|!

3 —H.|",
i,j+1,k+1/2 2li, jk+1/2
A 5

At 5
&0, j+1/2,k41/2 T
4 (%> . B Byl o

0, j+1/2,k+1/2At Az
26; j+1/2,k+1/2 n
— Jsource i, j 112 k4172

(3.7a)
Similarly, we can derive finite-difference expressions based on Yee's algorithm for
the E, and E, field components given by Maxwell's equations (2.10b) and (2.10c).
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Referring again to Fig. 3.1, we have:
n+1/2

Ey |i—1/2,j+1,k+1/2
_ 0i-1/2,j+1k+1/2A1
_ 26i-1/2,j+1.k+1/2 n—1/2
- l+ 0i—1/2,j+1k+1/2A1 Y1i-1/2,j+1,k+1/2
28i-1/2,j+1,k+1/2
el 10 jyras=Heli_12 11k
At Az
Y
+ i—1/2,j+1k+1/2 . Hol! s eao=Heli 1 jakqay2 , (3.7b)
0i-1/2,j+1k+1/2A1 - Ax
1+ 28i-1/2,j+1.k+1/2 n
— Jsourcg li_1/2 j 11 k4172
E n+1/2

z2li—1/2,j+1/2.k+1
1— 0i—1/2,j+1/2.k+1At

28i-1/2,j+1/2.k+1 n—1/2

0i-1/2,j+124+1A1 | TEli=1/2,j+1/2,k+1

1
+ 28i-1/2,j+1/2.k+1
Hyl! v r—Hyliq jr12441
At Ax
P
+ iZl/2. /2 ke . Heli 1o jyrir=Heli_yo juq1 | . (3.7¢)
1+ 0i—1/2,j+1/2,k+1A1 - Ay

28i-1/2,j+1/2.k+1
AR - JSOUFC%'?—l/Z,j+1/2,k+1

By analogy we can derive finite-difference equations for (2.9a)—(2.9c) to time-stey
H,, H,, andH,. Hereo* H represents a magnetic loss term on the right-hand side of
each equation, which is estimated using a semi-implicit procedure analogous to (3.6
Referring again to Figs. 3.1 and 3.2, we have for example the following time-stepping
expressions for thé/ components located about the unit cell:

n+1
i—1/2,j+Lk+1
1- 0712 j41h11 00
2i-1/2, j+1.k+1

H,|

n

= H,|. .
14 o 10 i1 O i—=1/2,j+1k+1
204i-1/2, j+1k+1
' ! E n+1/2 E n+1/2
vli—1/2 jr1ke32 = Evlicaj2 jr1k41/2
_ At Az
Hi—1/2,j+1k+1 n+1/2 n+1/2
+ '*/ ! il B EliZaj jraoue1=EeliZaya jpappnra |, (3.8a)
1+ %i_1/2,j+1k+121 - Ay
21i-1/2, j+1.k+1 M n+1/2
— Msource l;_1/2, j+1.4+1
n+1

H,y i,j+1/2,k+1
92k
20, jr1/2,k+1 n

e — V o .
14 0 oA |+ 2k
24 j+1/2.k+1

n+1/2 n+1/2

Eclivay jr12ue1 EeliZay2 jpa/2h41
At Ax
Wi, j+1/2.k+1 n+1/2 n+1/2
+ ﬁ . _Exli iV1pkrap Exli 112 | (3.8b)
1 i,j+1/2,k+1 Az
+ 20, j+1/2,k+1 n+1/2

- Msource;, |i,j+l/2,k+1
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}n—ﬁ—l
2li, j4+1,k+1/2
1— Ay
_ 204 j+1.k+1/2 |n
= —~—"—""|H,|. .
14 o i1 kr1/2D i,j+1k+1/2
24 j+1.k+1/2
n+1/2 n+1/2
Exli iv3ok+12— Exli j¥1/2. 04172
At Ay
Wi, j+1.k+1/2 n+1/2 n+1/2
+ llg—/m . ~ Evlijapjianre=Evlicap ke | (3.8C)
1+ %, j+1k+1/2 Ax
20, j+1.k+1/2 n+1/2

— Msourcel; j11k+1/2

With the systems of finite-difference expressions of (3.7) and (3.8), the new value o
an electromagnetic field vector component at any space lattice point depends only c
its previous value, the previous values of the components of the other field vector &
adjacent points, and the known electric and magnetic current sources. Therefore, at a
given time step, the computation of a field vector can proceed either one point at a time
or, if p parallel processors are employed concurrenptlgpints at a time.

3.4. Field updating coefficients

To implement the finite-difference systems of (3.7) and (3.8) for a region having a con
tinuous variation of material properties with spatial position, it is desirable to define anc
store the following updating coefficients for each field vector component:

Updating coefficients at the genergHield component locatiof, j, k):

kD kAL
Calijk = (1— Tiik >/<1+ l) (3.9a)
28,"]"1( 28,"]"1(
At i, j kAt
C |'.',k=< >/<1+—> 3.9b
v &i,j kA1 28 jk (3.95)
At 0i,j kAt
Cs |',',k=< )/(H—) 3.9¢
2 &ij kA2 28 jk (3.9¢)
Updating coefficients at the generdl-field component locatiott, j, k):
oF. At oF. At
Dalijx = (1— LIk )/(1+ Lk > (3.10a)
' 21ki,jk 21kij k
At o kAt
Dy, i, ',kZ( _>/<1+ s , 3.10b
v Mi j kA1 214,k ( )
At ai*j At
Dyl i = (7) / (1+ %) (3.10c)
2 Wi, j kA2 21kijk

In (3.9) and (3.10),A1 and Ay denote the two possible lattice space increments
used for the finite differences in each field-component calculation. For a cubic lattice
Ax = Ay = Az= A and thusA; = Ay = A. For this case(}, = Cp, and Dy, = Dy,,
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reducing the storage requirement to two updating coefficients per field vector compc
nent. Here, the approximate total computer storage neededNs WBere N is the
number of space cells in the FDTD lattice. The finite-difference expressions of (3.7
and (3.8) can now be rewritten more simply. For example, to upfiatee have:

E |n+l/2
*li, j+1/2,k+1/2
-1/2

=Ca,E,li,j+1/2,k+1/2Ex |l J11/2k41/2
n n
‘i J+Lk+1/2 H, ij.k+1/2 +H |, Lj+1/2.k

+ CoE i j+1/2.k+1/2 " _n, ; N
|z LJj+1/2,k4+1 ~ Usource |, j4+1/2,k+1/2
(3.11)
Similarly, to updatef/, we have:
n+1
Hy |i—1/2,j+l,k+l
n
= Da,Hx |i71/2,j+1,k+le |ifl/2,j+l,k+l
|n+l/2 _ |n+l/2
Yli—1/2, j+1.k+3/2 Yi-1/2,j+1,k+1/2
_ ' n+1/2 n+1/2
+ Do li-vzjvrkst |+ E 1 v main — Eelilya aunn
n+1/2
— Msource |i—l/2,j+1,k+l
(3.12)

For a space region with a finite number of media having distinct electrical properties
the computer storage requirement can be further reduced. This can be done by defini
an integer array, MEDIA( j, k), for each set of field vector components. This array
stores an integer “pointer” at each location of such a field component in the space lattict
enabling the proper algorithm coefficients to be extracted. For example, to upgdate
we have:

m=MEDIAE, |; j+1/2.k+1/2,
n+1/2

_ n—1/2 n n
Ey |i,j+1/2,k+1/2 =Ca(m)Ex[; ;15 11/0+ Colm) - (H; ; Jt1k412— He ; k412
+H |1 2.k — H, |z JAHL2k+1 T Jsource |z j+1/2, k+l/2A)
(3.13)
Similarly, to updatefl, we have:
m=MEDIAg, |i-1/2,j+1k+1,
n+1

Hy ’i—l/2,j+l,k+l

_ n n+1/2 n+1/2

= Dq(m) Hy |i71/2,j+1,k+1 + Dp(m) - (Ey|i71/2,j+l,k+3/2 - Ey|ifl/2,j+1,k+1/2

n+1/2 n+1/2 n+1/2
+ EZ‘i—l/Z,j+1/2,k+1 Rz |i—1/2,j+3/2,k+1 — Msource |i—l/2,j+1,k+lA)'

(3.14)
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We note that the coefficient arrayg, (m), Cp(m), D,(m), and D, (m) each contain
only M elements, wher@/ is the number of distinct material media in the FDTD space
lattice. Thus, if separate MEDIA(j, k) integer pointer arrays are provided for each
field vector component, the approximate total computer storage needed is reduced
12N, where N is the number of space cells in the FDTD lattice. This reduction in
computer storage comes at some cost, however, since additional computer instructio
must be executed at each field vector location to obtain the pointer inteffem the
associated MEDIA array and then extract then) or D(m) updating coefficients.

Taking advantage of the integer nature of the MEDIA arrays, further reduction in
computer storage can be achieved by bitwise packing of these integers. For example
64-bit word can be divided into sixteen 4-bit pointers. Such a composite pointer coulc
specify up to 2 = 16 distinct media at each of 16 locations in the grid. This provides
the means to reduce the overall computer storage for the MEDIA arrays by a factor o
15/16 (94%).

3.5. Space region with nonpermeable media

Many electromagnetic wave interaction problems involve nonpermeable media (
wo, o* = 0) and can be implemented on a uniform cubic-cell FDTD space lattice. For
such problems, the field updating expressions can be further simplified by defining th
proportlonalE andM vectors:

E — (At/uoA)E; (3.15a)
= (At/uo)M, (3.15b)

l)

whereA = Ax = Ay = Az is the cell size of the space lattice. Assuming thaf Ey,
andE, are stored in the computer memory, and further defining a seéfeld updat-
ing coefficientC, (m) as

Cp(m) = (At/1oA)Cp(m) (3.16)

we can rewrite (3.13) as:

m = MEDIA E, |i,j+l/2,/<+1/2’

o o|n+1/2
Ex‘i,j+1/2,k+1/2
_ ~o|n—1/2
= Ca(m)Ex |i,j+1/2 k+1/2 + Cb(m) ( i j+1 k+1/2 —H; \1 JJk+1/2
n
+ H)’|i,j+1/2k H |z LJ+1/2k+1 JSOU"CQL LJj+1/2, k+1/2A) (3'17)

Finite-difference expression (3.14) can now be rewritten very simply as:

n+1
Hy ’ifl/Z JHLk+1
n+1/2 & on+1/2
= Hy ‘z 1/2,j+1k+1 +E, |1 1/2,j+1,k+3/2 Ey’ifl/Z,j+l,k+l/2
~on+1/2 ~on+1/2 ~ n+1/2
+ Ez‘ifl/Z,j+l/2,k+1 TRz ’Fl/2,j+3/2,k+1 — Msource i—1/2,j+1,k+1" (3.18)



Finite-difference time-domain methods 217

This technique eliminates the multiplications previously needed to updaie tioen-
ponents, and requires storage of MEDIA arrays only forEheomponents. At the end
of the run, the desired values of the unscateélelds can be obtained simply by multi-
plying the storedE values by the reciprocal of the scaling factor of (3.15a).

3.6. Reduction to the two-dimensional T7&hd TE modes

The finite-difference systems of (3.7) and (3.8) can be reduced for the decoupled, twc
dimensional TM and TE modes summarized in Section 2.2. For convenience and con-
sistency, we again consider the field vector components in the space lattice represent
by the unit cell of Fig. 3.1. Assuming now that all partial derivatives of the fields with
respect t are equal to zero, the following conditions hold:
(1) The sets of E;, Hy, Hy) components located in each lattice cut plané + 1,
etc. are identical and can be completely represented by any one of these se
which we designate as the T\hode.
(2) The sets ofH,, E,, E,) components located in each lattice cut pléane 1/2,
k + 3/2, etc. are identical and can be completely represented by any one of thes
sets, which we designate as the,TRode.
The resulting finite-difference systems for the 7&hd TE modes are as follows:

TM_, mode, corresponding to the system(®f11)

9 At
+1 2ui-1/2,j+1 n Hi—1/2,j+1
H.|" o= ———|H,|. . _
x |zfl/2,j+1 1 Gi*—l/Z,jJrlAt X |lfl/2,j+1 + 1 Ui*—l/z‘jJrlAt
2pi-1/2,j+1 2ui-1/2,j+1
Fopty2 _ prtl2
lic1)2. 4172 zlic1)2,j4+3/2 n+1/2
X — Msource | ; )
Ay i—1/2,j+1

(3.19a)

_ 012 At
n+1 _ 21 j+1/2 n i, j+1/2
Hy i,j+1/2 7 (l 9712 Hy }i,j+l/2 T 1 9417281

21 j+1/2 21k j+1/2
EZ'?Ill//zz 12~ Ez|?—+11//22,j+1/2 u nt1/2 o
X Ax - SOUfC@|i,j+1/2 , (3.19D)

_ 0i-1/2,j+1/2A1 At
E n+1/2 _ 28i-1/2,j+1/2 E |n—l/2 + &i—1/2,j+1/2
tli-1/2,j+1/2 14 oi—1/2,j+120t | T2li=1/2,j+1/2 14 0i-1/2,j+1/241

28i-1/2,j+1/2 28i-1/2,j+1/2

Hy |7.j+1/2*Hy |,'"—1,j+1/2 + Hx ‘;’—1/2,j —Hx |lr'l—l/2,.1'+1
X Ax Ay . (3.19c¢)

J. |}
TJsourcel; 1,2 j4+1/2
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TE; mode, corresponding to the system(df12)
_ Oij+1/248 At
n+l1/2 2¢i j1+1/2 n—1/2 &i,j+1/2
E, |i,j+l/2 - (1 + i, j+1/2t E, |,‘,j+1/2 + 14 i, j+1/2t
2¢i,j11/2 2¢i j+1/2

HZl?,j-i—l - HZ'?,]
X e ———
Ay

— Jsoucal! 1 /2), (3.20a)

_ Oi-1/2,j+141 At
E. n+1/2 _ 28i-1/2,j+1 E ‘n—l/2 n £i—1/2,j+1
Y1i-1/2,j+1 1+ 0i-1/2,j+1At Yli-1/2,j+1 1+ 0i-1/2,j+1At

26i-1/2,j+1 Ty
H|! 41— HI!'.
li=1,j+1 zli j+1 n
* < Ax - Jsourc§|i_1/2,j+1 ) (3.20b)
_ Tijnbt Al
n+l 2ui,j+1 n I 1
Hz}i,jJrl - (l 07 H; |i,j+l + ) o T
n+1/2 n+1/2
A

E nKl/Z E n+1/2 . (3200)

+ slicyjzjn=Elivaajen _ oy, |n+1/2

Ax source |; i i1

3.7. Interpretation as Faraday’s and Ampere’s Laws in integral form

The Yee algorithm for FDTD was originally interpreted as a direct approximation of the
pointwise derivatives of Maxwell's time-dependent curl equations by numerical central
differences. Although this interpretation is useful for understanding how FDTD models
wave propagation away from material interfaces, it sheds little light on what algorithm
modifications are needed to properly model the electromagnetic field physics of fine
geometrical features such as wires, slots, and curved surfaces requiring subcell spat
resolution.

The literature indicates that FDTD modeling can be extended to such features by de
parting from Yee’s original pointwise derivative thinking (see, for exampheLOVE,
UMASHANKAR, BEKER, HARFOUSH and YEE [1988] and IRGENS TAFLOVE,
UMASHANKAR and MoORE[1992]). As shown in Fig. 3.3, the idea involves starting
with a more macroscopic (but still local) combined-field description based upon Am-
pere’'s Law and Faraday’s Law integral form, implemented on an array of electrically
small, spatially orthogonal contours. These contours mesh (intersect) in the manner
links in a chain, providing a geometrical interpretation of the coupling of these two laws.
This meshing results in the filling of the FDTD modeled space by a three-dimensiona
“chain-link” array of intersecting orthogonal contours. The presence of wires, slots,
and curved surfaces can be modeled by incorporating appropriate field behavior int
the contour and surface integrals used to implement Ampere’s and Faraday’s Laws
selected meshes, and by deforming contour paths as required to conform with surfac
curvature.
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E, (i-1/2,j+1,k+1/2)
(a)

-
i 1 E (i-1/2,j+312,k)
H, (i-1/2#1,k)
arn >
H, (i-1,j+1/2,k) T ]
’ by E,(i-1/2,j+1/2)k) H, (i§+112,k]
Aas, i s
§ Ax i I
e i
H, (i-1/2,j.k)
E, (iF112+1,k-112)
Hy (ij+1/2,k+1)
(b)
A
H, (i,j+1,k+112)
Az

_ E, (j#+1/2,k+1/2)

T dl

E, (-112jk4112) /) A
v+ H, (ij.k+1/2) E, (+1/2j,k+1/2]
ds,
s, !k | A
> ik
E, (ij-1/2,k+1/2) (1K)
H, (ij+1/2,k)

FiG. 3.3. Examples of chain-linked orthogonal contours in the free-space Yee mesh. (a) Ampere’s Law fo
time-steppingE;; (b) Faraday’s Law for time-steppingf;. Adapted from A. Taflove et al.|EEE Trans.
Antennas and Propagatioi988, pp. 247-257, © 1988 IEEE.

This approach is intuitively satisfying to an electrical engineer since it permits the
FDTD numerical model to deal with physical quantities such as:

e Electromotive forces (EMFs) and magnetomotive forces (MMFs) developed wher

completing one circuit about a Faraday’s or Ampere’s Law contour path;

e Magnetic flux and electric displacement current when performing the surface inte:

grations on the patches bounded by the respective contours.

In this section, we demonstrate the equivalence of the Yee and contour-path interpr
tations for the free-space case. For simplicity, FDTD time-stepping expressions are d
veloped for only on& and oneH field component. Extension to all the rest is straight-
forward. We further assume lossless free space with no electric or magnetic currel
sources. Applying Ampere’s Law along contady in Fig. 3.3(a), and assuming that
the field value at a midpoint of one side of the contour equals the average value of th:
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field component along that side, we obtain

3 L .
—/SlD~d51= H -deq, (3.21a)
at 1

d
3 / S160E;li-1/2,j+1/2.k AS1 = Hyli—1/2,jk Ax + Hyli j+1/2k Ay
— Hyli—1/2, j+1,6Ax — Hyli—1,j+1/2,k Ay.
(3.21b)
Now further assume théa;|;_1/2 j+1/2,« €quals the average value Bf over the sur-

face patchs; and that the time derivative can be numerically realized by using a central-
difference expression. Then (3.21b) yields

n+1/2
( EcliZ1p2 j41/2.

_E,|"TM2
g0AXAy < M 1—1/2,J+l/2,k)

= (Hy |, —1/2,jk Hx|;l—l/2,j+l,k)Ax+(H |lj+1/2k HY’?—l,j+l/2,k)Ay'

(3.21c)
Multiplying both sides byAt/(egAx Ay) and solving forE |7+11/22]+1/2 , provides

n—1/2

n+1/2
E | i—1/2, ]+l/2k+

2li—1/2,j4+1/2,k — E; |

(Hxl;_ 1/2,j.k Hx|?—1/2,j+l,k)At/(80Ay)

+( y|i,j+1/2,k_ Y|i—l,j+l/2,k)At/(80Ax)' (3.22)

Eq. (3.22) is simply the free-space version of (3.7¢), the Yee time-stepping equation fo
E. that was obtained directly from implementing the cﬁrbquation with finite differ-
ences. The only difference is that (3.22) is evaluated at1/2, j + 1/2, k) whereas
(3.7c) is evaluated &i — 1/2, j +1/2, k + 1) shown in Fig. 3.1.

In an analogous manner, we can apply Faraday’s Law along cofitdarFig. 3.3(b)
to obtain

3 .. .
— / SoB - dSo = —% E - déo, (3.233)
at Cy

0 ~
3 / SopoH; i ji41/2082 = — Exli j—1/2.k+1/28% — Eylit1/2 j k+1/2Ay
+ Exli,j+1/2,k+1/28x + Eyli—1/2,j k+1/2AY,

(3.23b)
/LoAxAy(HZ'ZﬁH/z - HZ'ﬁ/,k+1/2>
At
= ( x |:l,}r41r/12/2,k+1/2 — Ex |7j1/12/2 k+1/2)A
+(Ey |?j11//22,j,k+1/2 —Ey |:l:11//22.j,k+1/2)Ay' (3.23c)

Multiplying both sides byAt/(upAx Ay) and solving forHAZﬁfl/z provides

n+1

\ n+1/2
2li, jk+1/2 —

ijk+12 T (Ex |i,j+l/2,k+l/2

n+1/2 n+1/2
+(Eyi 1/2, j vz = Evlivayz jas1j2) At/ (0AX). (3.24)

n+1/2

= H,|; — Ex |i,j—l/2,k+1/2)At/(M0Ay)
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Eqg. (3.24) is simply the free-space version of (3.8c), the Yee time-stepping expressio
for H, that was obtained directly from implementing the cBrlequation with finite
differences. The only difference is that (3.24) is evaluated ,at k + 1/2) whereas
(3.8c) is evaluated &, j + 1, k + 1/2) shown in Fig. 3.1.

3.8. Divergence-free nature

We now demonstrate that the Yee algorithm satisfies Gauss’ Law for the electric field
Eqg. (2.3), and hence is divergence-free in source-free space. We first form the tim
derivative of the total electric flux over the surface of a single Yee cell of Fig. 3.1:

d

= D-dS
0t JJ vee cell

d
= EOE(Ex li,j+1/2.k+1/2 — Exli—1,j+1/2,k+1/2) Ay Az

Term 1

d
+ EOE(E—" li—1/2,j+1.k+1/2 — Eyli—1/2,j k+1/2) AxAz

Term 2

d
+ SOE(EZ|1'—1/2,,/’+1/2,k+1 — Eli—1/2.j+1/2.6) AxAy. (3.25)

Term 3
Using the Yee algorithm time-stepping relations for fixdield components according
to (3.7), we substitute appropriaté-field spatial finite differences for thE-field time
derivatives in each term:

Term 1
_ <Hz|i,j+1,k+1/2 — Helijaraz  Hylij+1/2k+1 — Hy|i,j+1/2,k>
N Ay Az
_ (Hz|i—1,j+l,k+1/2— Heli-1jkvy2  Hyli-1j+1/20+1— Hy|i—l,j+1/2,k>
Ay Az '
(3.26a)
Term 2
. (Hx|i—1/2,j+l,k+l — Hilicajzj+1k Helij+ik+12 — Hz|i—1,j+1,k+1/2)
B Az Ax
_( Hxlicyz s = Helicaz ke Helijkra2 — Hz|i—1,j,k+1/2>
< Az Ax ’
(3.26b)
Term 3
. (Hyli,j+1/2,k+1 — Hyli-aj+124+1  Hili-1/2,j+1k+1 — Hx|i—1/2,j,k+1>
- Ax Ay
_(Hylijvyzx = Hyli-vj+12k  Hali-a/2 j+10 = Hxli-1/2,)k
< Ax Ay '

(3.26¢)
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For all time steps, this results in
ad

— 5-d§‘=(Term DAyAz+ (Term QAxAz + (Term 3AxAy
0t JJ vee cell

—o. (3.27)

Assuming zero initial conditions, the constant zero value of the time derivative of the
net electric flux leaving the Yee cell means that this flux never departs from zero:

# 5(:)@3‘:# D(t=0)-dS =0. (3.28)
Yee cell Yee cell

Therefore, the Yee cell satisfies Gauss’ Law for fhéield in charge-free space and thus
is divergence-free with respect to sfield computations. The proof of the satisfaction
of Gauss’ Law for the magnetic field, Eq. (2.4), is by analogy.

4. Nonuniform Yeegrid
4.1. Introduction

The FDTD algorithm is second-order-accurate by nature of the central-difference ap
proximations used to realize the first-order spatial and temporal derivatives. This lead
to a discrete approximation for the fields based on a uniform space lattice. Unfortu
nately, structures with fine geometrical features cannot always conform to the edge
of a uniform lattice. Further, it is often desirable to have a refined lattice in localized
regions, such as near sharp edges or corners, to accurately model the local field pt
nomena.

A gquasi-nonuniform grid FDTD algorithm was introduced byEEN [1991]. This
method is based on reducing the grid size by exactly one-third. By choosing the suk
grid to be exactly one-third, the spatial derivatives of the fields at the interface betweel
the two regions can be expressed using central-difference approximations, resulting in
second-order-accurate formulation. This technique was successfully applied to a nun
ber of microwave circuit and antenna problems (see, for exampleg®[1991] and
TULINTSEFF[1992]). However, this method is limited to specific geometries that con-
form to this specialized grid.

It is clear that more general geometries could be handled by a grid with arbitrary
spacing. Unfortunately, central differences can no longer be used to evaluate the spat
derivatives of the fields for such a grid, leading to first-order error. However, it was
demonstrated by lNK and SuLI [1994] and MoNK [1994] that, while this formulation
does lead to first-order error locally, it results in second-order error globally. This is
known assupraconvergencésee also MNTEUFFEL and WHITE [1986] and KREISS
MANTEUFFEL, SCHWARTZ, WENDROFFand WHITE [1986]).

4.2. Supraconvergent FDTD algorithm

This section presents the supraconvergent FDTD algorithm based on nonuniform mes
ing that was discussed byEBNEY and LANSING [1995]. Following their notation, a
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three-dimensional nonuniform space lattice is introduced. The vertices of the lattice ar
defined by the general one-dimensional coordinates:

{xi;i =1, Ny} {yjsi=1 Ny} {zks k=1, N;}. (4.1)
The edge lengths between vertices are also defined as

{Axi =xj41—x;; i=1, N, —1};
{Ayj=yjt1—yj; j=1,Ny— 1} (4.2)
{Azk =zk41— 2k k=1, N, —1}.

Within the nonuniform space, a reduced notation is introduced, defining the cell anc
edge centers:

X412 =X;i + Ax;/2; Yi+12=Yy; +Ay;/2; Zk+12 =2k + Az /2.
(4.3)
A set of dual edge lengths representing the distances between the edge centers is tt
introduced:

{h} = (Axi + Axi—1)/2; i =2, Ni )
{n) = Ay +Ayj0)/2; j=2,N,}: (4.4)
{hi = Az + Az1)/2; k=2, N.}.

Finally, the E- and H -fields in the discrete nonuniform grid are denoted as in the fol-
lowing examples:

‘:1+1/2“ E,(Xi41/2, ¥}, 2k, nAL), (4.5a)
+1/2
% :j+1/