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General Preface

In the early eighties, when Jacques-Louis Lions and I considered the idea of aHand-
book of Numerical Analysis, we carefully laid out specific objectives, outlined in the
following excerpts from the “General Preface” which has appeared at the beginning of
each of the volumes published so far:

During the past decades, giant needs for ever more sophisticated mathe-
matical models and increasingly complex and extensive computer simula-
tions have arisen. In this fashion, two indissociable activities,mathematical
modelingandcomputer simulation, have gained a major status in all aspects
of science, technology and industry.

In order that these two sciences be established on the safest possible
grounds, mathematical rigor is indispensable. For this reason, two compan-
ion sciences,Numerical AnalysisandScientific Software, have emerged as
essential steps for validating the mathematical models and the computer
simulations that are based on them.

Numerical Analysisis here understood as the part ofMathematicsthat de-
scribes and analyzes all the numerical schemes that are used on computers;
its objective consists in obtaining a clear, precise, and faithful, representa-
tion of all the “information” contained in a mathematical model; as such, it
is the natural extension of more classical tools, such as analytic solutions,
special transforms, functional analysis, as well as stability and asymptotic
analysis.

The various volumes comprising theHandbook of Numerical Analysis
will thoroughly cover all the major aspects of Numerical Analysis, by pre-
senting accessible and in-depth surveys, which include the most recent
trends.

More precisely, the Handbook will cover thebasic methods of Numerical
Analysis, gathered under the following general headings:

– Solution of Equations inRn,
– Finite Difference Methods,
– Finite Element Methods,
– Techniques of Scientific Computing.
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vi General Preface

It will also cover thenumerical solution of actual problems of contempo-
rary interest in Applied Mathematics, gathered under the following general
headings:

– Numerical Methods for Fluids,
– Numerical Methods for Solids.

In retrospect, it can be safely asserted that Volumes I to IX, which were edited by
both of us, fulfilled most of these objectives, thanks to the eminence of the authors and
the quality of their contributions.

After Jacques-Louis Lions’ tragic loss in 2001, it became clear that Volume IX would
be the last one of the type published so far, i.e., edited by both of us and devoted to some
of the general headings defined above. It was then decided, in consultation with the pub-
lisher, that each future volume will instead be devoted to a single “specific application”
and called for this reason a “Special Volume”. “ Specific applications” will include Math-
ematical Finance, Meteorology, Celestial Mechanics, Computational Chemistry, Living
Systems, Electromagnetism, Computational Mathematics etc. It is worth noting that the
inclusion of such “specific applications” in theHandbook of Numerical Analysiswas
part of our initial project.

To ensure the continuity of this enterprise, I will continue to act as Editor of each Spe-
cial Volume, whose conception will be jointly coordinated and supervised by a Guest
Editor.

P.G. CIARLET

July 2002



Preface

The electronics industry has shown extremely rapid advances over the past 50 years,
and it is largely responsible for the economic growth in that period. It all started with
the invention of the bipolar transistor based on silicon at the end of the 1940s, and since
then the industry has caused another evolution for mankind. It is hard to imagine a world
without all the achievements of the electronics industry.

In order to be able to continue these rapid developments, it is absolutely necessary
to perform virtual experiments rather than physical experiments. Simulations are in-
dispensable in the electronics industry nowadays. Current electronic circuits are ex-
tremely complex, and its production requires hundreds of steps that altogether take sev-
eral months of fabrication time. The adagio is “first time right”, and this has its reper-
cussions for the way designers work in the electronics industry. Nowadays, they make
extensive use of software tools embedded in virtual design environments. The so-called
“virtual fab” has made an entry, and it is foreseen that its importance will only grow in
the future.

Numerical methods are a key ingredient of a simulation environment, whence it is not
surprising that the electronics industry has become one of the most fertile working envi-
ronments for numerical mathematicians. Since the 1970s, there is a strong demand for
efficient and robust software tools for electronic circuit simulation. Initially, this devel-
opment started with the analysis of large networks of resistors, capacitors and inductors,
but soon other components such as bipolar transistors and diodes were added. Special-
ists made models for these components, but the problems associated with the extreme
nonlinearities introduced by these models had to be tackled by numerical analysts. It
was one of the first serious problems that were encountered in the field, and it initiated
research into damped Newton methods for extremely nonlinear problems. In the past 30
years, electronic circuit simulation has become a very mature subject, with many beauti-
ful results (both from the engineering and the mathematical point of view), and it still is
a very active area of mathematical research. Nowadays, hot topics are the research into
differential algebraic equations and the efficient calculation of (quasi-)periodic steady
states.

Although circuit simulation was one of the first topics to be addressed by numerical
mathematicians in the electronics industry, the simulation of semiconductor devices
quickly followed at the end of the 1970s. Transistors rapidly became more complex, and
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viii Preface

a multitude of different devices was discovered. Transistors of the MOS-type (metal-
oxide-semiconductor) became much more popular, and are now mainly responsible for
the rapid developments in the industry. In order to be able to simulate the behavior
of these devices, research into semiconductor device simulation was carried out. Soon
it became clear that this was a very demanding problem from the numerical point of
view, and it took many years and many conferences before some light was seen at the
end of the tunnel. Applied mathematicians analyzed the famous drift-diffusion problem,
and numerical mathematicians developed algorithms for its discretization and solution.
During the 1990s, extended models were introduced for the modelling of semiconductor
devices (hydrodynamic models, quantum effects), and nowadays this development is
still continuing.

Parallel to these developments in the area of electronic circuits and devices, the more
classical electromagnetics problems were also addressed. Design of magnets for loud-
speakers and magnet design for MRI (magnetic resonance imaging) were important
tasks, for which we can also observe a tendency towards heavy usage of simulation
tools and methods. The field also generated many interesting mathematical and numer-
ical results, whereas the role of the numerical mathematician was again indispensable
in this area.

Whether it is by coincidence or not, the fields of circuit/device simulation and the
more classical electromagnetics simulation, have come very close to each other in re-
cent years. Traditionally, researchers working in the two areas did not communicate
much, and separate conferences were organized with a minimum of cross-fertilization.
However, owing to the increased operating frequencies of devices and the shrinking di-
mensions of electronics circuits, electromagnetic effects have started to play an impor-
tant role. These effects influence the behavior of electronic circuits, and it is foreseen
that these effects may be dramatic in the future if they are not understood well and
precautions are taken. Hence, recent years show an increased interest in combined sim-
ulations of circuit behavior with electromagnetics that, in turn, has led to new problems
for numerical mathematicians. One of these new topics is model order reduction, which
is the art of reducing large discrete systems to a much smaller model that nevertheless
exhibits behavior similar to the large system. Model order reduction is a topic at many
workshops and conferences nowadays, with a multitude of applications also outside the
electronics industry.

From the foregoing, it is clear that the electronics industry has always been, and
still is, a very fruitful area for numerical mathematics. On the one hand, numerical
mathematicians have played an important role in enabling the set-up of virtual design
environments. On the other hand, many new methods have been developed as a result
of the work in this specialist area. Often, the methods developed to solve the electronics
problems can also be applied in other application areas. Therefore, the reason for this
special volume is twofold. The first aim is to give insight in the way numerical methods
are being used to solve the wide variety of problems in the electronics industry. The
second aim is to give researchers from other fields of application the opportunity to
benefit from the results, which have been obtained in the electronics industry.

This special volume of the Handbook of Numerical Analysis gives a broad overview
of the use of numerical methods in the electronics industry. Since it is not assumed
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that all readers are familiar with the concepts being used in the field, Chapter 1 gives
a detailed overview of models being used. The starting point is the set of Maxwell
equations, and from this all models can be derived. The chapter serves as the basis
for the other chapters, so that readers can always go back to Chapter 1 for a physical
explanation, or a derivation of the models.

The remaining chapters discuss the use of numerical methods for different applica-
tions within the electronics industry. We have attempted to organize the book in the
same way as numerical analysis is performed in practice: modelling, followed by dis-
cretization, followed by solution of nonlinear and linear systems. Unfortunately, our
attempts to obtain a chapter on nonlinear solution strategies have failed in the end. The
corresponding chapter would have been a very interesting one, with results on damped
Newton methods and nonlinear variable transformations. These methods will now be
discussed in a separate book, and the reader is referred to this or to the extensive liter-
ature on the subject. Fortunately, all other aspects of numerical analysis are present in
this volume, and in the following we give a short summary of the remaining chapters.

Chapter 2 is devoted to the more classical form of electromagnetics simulations, but
as can be seen from the chapter, the field leads to beautiful mathematical results. Chap-
ter 3 also discusses methods for discretising the Maxwell equations, using the finite
difference time domain method that is extremely popular nowadays. The authors of
this chapter have widespread experience in applying the method to practical problems,
and the chapter discusses a multitude of related topics. Chapters 4 and 5 are devoted
to the simulation of the behavior of semiconductor devices, with an emphasis again on
discretization methods. Chapter 4 discusses the well known drift-diffusion model and
some extensions, whereas Chapter 5 concentrates on extended models.

Circuit simulation is the topic discussed in Chapter 6, where both the modelling and
the discretization of these problems is addressed. The concept of differential-algebraic
equations is discussed extensively, together with its importance for the analysis of cir-
cuits. Furthermore, time discretization and the solution of periodic steady-state prob-
lems can be found in this chapter. In Chapter 7, the first step towards coupled cir-
cuit/device simulations with electromagnetic effects is made by considering the prob-
lem of analyzing the electromagnetic behavior of printed circuit boards. The chapter
discusses in detail the efficient evaluation of the interaction integrals, and shows the use
of some numerical techniques that are not very well known.

Chapters 9 and 10 are of a more theoretical character, which does not mean that
their contents are less important. On the contrary, the solution techniques for linear
systems discussed in Chapter 9 are at the core of all simulation software, and hence it is
extremely important to perform the solution of linear systems as efficiently as possible.
The model order reduction methods discussed in Chapter 10 are equally important, since
they provide a sound basis for enabling the coupled simulations required in present-
day design environments. Strangely enough, it turns out that the techniques used in the
area of model order reduction, are intimately related to the solution methods for linear
systems. In this respect, the last two chapters are closely related, though very different
in character.

We hope that this volume will inspire readers, and that the presentation given in the
various chapters is of interest to a large community of researchers and engineers. It
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is also hoped that the volume reflects the importance of numerical mathematics in the
electronics industry. In our experience, we could attach tags to almost all electronic
products with the statement: “Mathematics inside”. Let this be an inspiration for young
people to not only benefit from the developments of the electronics industry, but also
contribute physically to the developments in the future by becoming an enthusiastic
numerical mathematician!

Eindhoven, June 2004

Wil Schilders
Jan ter Maten
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List of symbols

A vector potential
AEX external vector potential
AIN induced vector potential
B,BIN magnetic induction
C capacitance
c speed of light, concentration
dr line element
dS surface element
ds elementary distance in Riemannian geometry
dτ volume element
Dn electron diffusion coefficient
Dp hole diffusion coefficient
D electric displacement vector
E energy
EF Fermi energy
Eαk(W) electron energy
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4 W. Magnus and W. Schoenmaker

e elementary charge
E electric field
EC conservative electric field
EEX external electric field
EIN induced electric field
ENC non-conservative electric field
ez unit vector alongz-axis
eφ azimuthal unit vector
Fµν electromagnetic field tensor
f,fn, fp (Boltzmann) distribution function
G conductance, generation rate
GQ quantized conductance
gµν metric tensor
H Hamiltonian
Hp′p Hamiltonian scattering matrix element
h Planck’s constant
h̄ reduced Planck constant (h/2π)
I electric current
i imaginary unit
JG gate leakage current
J,Jn,Jp electric current density
H magnetic field intensity
k wavenumber
kB Boltzmann’s constant
k electron wave vector
L inductance, Lagrangian, length
Lx,Ly length
L total angular momentum
l subband index, angular momentum quantum number, length
m angular momentum quantum number
m,mn charge carrier effective mass
m0 free electron mass
mn,mgαx,mgαy ,
mgαz,m1,ox,α,
m2,ox,α,m3,ox,α, . . . ,

mαx,mαy,mαz electron effective mass
mp hole effective mass
M magnetization vector
m magnetic moment
N number of particles, coordinates or modes
NA acceptor doping density
n electron concentration
n unit vector
p,pi,p,pi , P ,
Pi,P,Pi , . . . generalized momenta
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p hole concentration
P total momentum, electric polarization vector
p momentum, electric dipole moment
q, qi,q,qi ,Q,
Qi,Q,Qi , . . . generalized coordinates
Q electric charge
qn carrier charge
QA electric charge residing in active area
R resistance, recombination rate
RH Hall resistance
RK von Klitzing resistance
RL lead resistance
RQ quantized resistance
R
µ
ρλσ Riemann tensor

R set of real numbers
(r, θ,φ) spherical coordinates
r, rn position vector
S action, entropy
S(p,p′) transition rate
S Poynting vector
Sn,Sp energy flux vector
t time
T lattice temperature
Tn electron temperature
Tp hole temperature
T,Tαβ EM energy momentum tensor
UE electric energy
UM magnetic energy
UEM EM energy
U(y),U(z) potential energy
uEM EM energy density
V scalar electric potential
VH Hall voltage
VG gate voltage
vn carrier velocity
vn,vp drift velocity
v drift velocity, velocity field
W,Wαl(W) subband energy
w,wn,wp carrier energy density
(x, y, z) Cartesian coordinates
Y admittance
Z impedance
α summation index, valley index, variational parameters
β summation index, 1/kBT
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∂Ω boundary surface ofΩ
∂Ω∞ boundary surface ofΩ∞
ε0 electric permittivity of vacuum
ε electric permittivity
εr, εS relative electric permittivity
Γ closed curve inside a circuit
Γαl resonance width
Γ αµν affine connection
κ wavenumber
κn, κp thermal conductivity
ΛEM EM angular momentum density
µ magnetic permeability, chemical potential
µ0 magnetic permeability of vacuum
µ,µn,µp carrier mobility
µr relative magnetic permeability
Ω connected subset ofR

3, volume, circuit region
Ω∞ all space
ω angular frequency
πEM EM momentum density
ρ electric charge density
(ρ,φ, z) cylindrical coordinates
σ electrical conductivity, spin index
τ, τ0, τe, τp,
τen, τep relaxation time
ταl resonance lifetime
χ gauge function
χe electric susceptibility
χk(y) wave function
χm magnetic susceptibility
ΦD electric flux (displacement)
ΦE electric flux (electric field)
Φex external magnetic flux
Φ,ΦM magnetic flux
ψ(r),ψα(r, z),
ψαk(r, z),
φα(W,z),ψ(x, y) wave function
∇ gradient
∇· divergence
∇× curl
∇2 vectorial Laplace operator
∇2 Laplace operator
L Lagrange density, inductance per unit length
Vε electromotive force
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1. Preface

Electromagnetism, formulated in terms of the Maxwell equations, and quantum me-
chanics, formulated in terms of the Schrödinger equation, constitute the physical laws
by which the bulk of natural experiences are described. Apart from the gravitational
forces, nuclear forces and weak decay processes, the description of the physical facts
starts with these underlying microscopic theories. However, knowledge of these basic
laws is only the beginning of the process to apply these laws in realistic circumstances
and to determine their quantitative consequences. With the advent of powerful computer
resources, it has become feasible to extract information from these basic laws with un-
precedented accuracy. In particular, the complexity of realistic systems manifests itself
in the non-trivial boundary conditions, such that without computers, reliable calculation
are beyond reach.

The ambition of physicists, chemists and engineers, to provide tools for performing
calculations, does not only boost progress in technology but also has a strong impact
on the formulation of the equations that represent the physics knowledge and hence
provides a deeper understanding of the underlying physics laws. As such, computational
physics has become a cornerstone of theoretical physics and we may say that without
a computational recipe, a physics law is void or at least incomplete. Contrary to what
is sometimes claimed, that after having found the unifying theory for gravitation and
quantum theory, there is nothing left to investigate, we believe that physics has just
started to flourish and there are wide fields of research waiting for exploration.

This volume is dedicated to the study of electrodynamic problems. The Maxwell
equations appear in the form

(1.1)�(field)= source,

where� describes the near-by field variable correlation of the field that is induced by
a source or field disturbance. Near-by correlations can be mathematically expressed by
differential operators that probe changes going from one location the a neighboring one.
It should be emphasized that “near-by” refers to space and time.

One could “easily” solve these equations by construction the inverse of the differen-
tial operator. Such an inverse is usually known as a Green function.

There are two main reasons that prevent a straightforward solution of the Maxwell
equations. First of all, realistic structure boundaries may be very irregular, and therefore
the corresponding boundary conditions cannot be implemented analytically. Secondly,
the sources themselves may depend on the values of the fields and will turn the problem
in a highly non-linear one, as may be seen from Eq. (1.1) that should be read as

(1.2)�(field)= source(field).

The bulk of this volume is dedicated to find solutions to equations of this kind. In partic-
ular, Chapters II, III, IV and V are dealing with above type of equations. A considerable
amount of work deals with obtaining the details of the right-hand side of Eq. (1.2),
namely how the source terms, being charges and currents depend in detail on the values
of the field variables.
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Whereas, the microscopic equation describe the physical processes in great detail,
i.e., at every space–time point field and source variables are declared, it may be prof-
itable to collect a whole bunch of these variables into a single basket and to declare for
each basket a few representative variables as the appropriate values for the fields and
the sources. This kind of reduction of parameters is the underlying strategy of circuit
modeling. Here, the Maxwell equations are replaced by Kirchhoff’s network equations.
This is the starting point for Chapter VI.

The “basket” containing a large collection of fundamental degrees of freedom of
field and source variables, should not be filled at random. Physical intuition suggests
that we put together in one basket degrees of freedom that are “alike”. Field and source
variables at near-by points are candidates for being grabbed together, since physical
continuity implies that a all elements in the basket will have similar values.1

The baskets are not only useful for simplifying the continuous equations. They are
vital to the discretization schemes. Since any computer has only a finite memory storage,
the continuous or infinite collection of degrees of freedom must be mapped onto a finite
subset. This may be accomplished by appropriately positioning and sizing of all the
baskets. This procedure is named “grid generation” and the construction of a good grid
is often of great importance to obtain accurate solutions.

After having mapped the continuous problem onto a finite grid one may establish a
set of algebraic equations connecting the grid variables (basket representatives) and ex-
plicitly reflecting the non-linearity of the original differential equations. The solution of
large systems of non-linear algebraic equations is based on Newton’s iterative method.
To find the solution of the set of non-linear equationsF(x)= 0, an initial guess is made:
x = xinit = x0. Next the guess is (hopefully) improved by looking at the equation:

(1.3)F(x0 +�x)� F(x0)+ A ·�x,

where the matrixA is

(1.4)Aij =
(
∂Fi(x)
∂xj

)
x0

.

In particular, by assuming that the correction brings us close to the solution, i.e.,x1 =
x0 +�x � x∗, whereF(x∗)= 0, we obtain that

(1.5)
0 = F(x0)+ A ·�x or

�x = −A−1 · F(x0).

Next we repeat this procedure, until convergence is reached. A series of vectors,xinit =
x0,x1,x2, . . . ,xn−1,xn = xfinal, is generated, such that|F(xfinal)|< ε, whereε is some
prescribed error criterion. In each iteration a large linear matrix problem of the type
A|x〉 = |b〉 needs to be solved.

1It should be emphasized that such a picture works at the classical level. Quantum physics implies that
near-by field point may take any value and the continuity of fields is not required.
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2. The microscopic Maxwell equations

2.1. The microscopic Maxwell equations in integral and differential form

In general, any electromagnetic field can be described and characterized on a micro-
scopic scale by two vector fieldsE(r, t) andB(r, t) specifying respectively the electric
field and the magnetic induction in an arbitrary space pointr at an arbitrary timet .
All dynamical features of these vector fields are contained in the well-known Maxwell
equations (MAXWELL [1954a], MAXWELL [1954b], JACKSON [1975], FEYNMAN ,
LEIGHTON and SANDS [1964a])

(2.1)∇ ·E = ρ

ε0
,

(2.2)∇ ·B = 0,

(2.3)∇ × E = −∂B
∂t
,

(2.4)∇ × B = µ0J + ε0µ0
∂E
∂t
.

They describe the spatial and temporal behavior of the electromagnetic field vectors
and relate them to the sources of electric charge and current that may be present in
the region of interest. Within the framework of a microscopic description, the electric
charge densityρ and the electric current densityJ are considered spatially localized
distributions residing in vacuum. As such they represent both mobile charges giving
rise to macroscopic currents in solid-state devices, chemical solutions, plasmas, etc., and
bound charges that are confined to the region of an atomic nucleus. In turn, the Maxwell
equations in the above presented form explicitly refer to the values taken byE andB in
vacuum and, accordingly, the electric permittivityε0 and the magnetic permeabilityµ0
appearing in Eqs. (2.1) and (2.4) correspond to vacuum.

From the mathematical point of view, the solution of the differential equations (2.1)–
(2.4) together with appropriate boundary conditions in space and time, should in prin-
ciple unequivocally determine the fieldsE(r, t) and B(r, t). In practice however, an-
alytical solutions may be achieved only in a limited number of cases and, due to the
structural and geometrical complexity of modern electronic devices, one has to adopt
advanced numerical simulation techniques to obtain reliable predictions of electromag-
netic field profiles. In this light, the aim is to solve Maxwell’s equations on a discrete set
of mesh points using suitable discretization techniques which are often taking advantage
of integral form of Maxwell’s equations. The latter may be derived by a straightforward
application of Gauss’ and Stokes’ theorems. In particular, one may integrate Eqs. (2.1)
and (2.1) over a simply connected regionΩ ∈ R

3 bounded by a closed surface∂Ω to
obtain

(2.5)
∫
∂Ω

E(r, t) ·dS = 1

ε0
Q(t),

(2.6)
∫
∂Ω

B(r, t) ·dS = 0,
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whereQ(t) denotes the instantaneous charge residing in the volumeΩ , i.e.,

(2.7)Q(t)=
∫
Ω

ρ(r, t)dτ.

Eq. (2.5) is nothing but Gauss’ law stating that the total outward flux of the electric field
threading the surface∂Ω equals the total charge contained in the volumeΩ up to a
factorε0 whereas Eq. (2.6) reflects the absence of magnetic monopoles.

Similarly, introducing an arbitrary, open and simply connected surfaceΣ bounded by
a simple, closed curveΓ , one may extract the induction law of Faraday and Ampère’s
law by integrating respectively Eqs. (2.3) and (2.4) overΣ :

(2.8)
∮
Γ

E(r, t) ·dr = −dΦM(t)

dt
,

(2.9)
∮
Γ

B(r, t) ·dr = µ0

(
I (t)+ ε0

dΦE(t)

dt

)
.

The variablesΦE(t) andΦM(t) are representing the time-dependent electric and mag-
netic fluxes piercing the surfaceΣ and are defined as:

(2.10)ΦE(t)=
∫
Σ

E(r, t) ·dS,

(2.11)ΦM(t)=
∫
Σ

B(r, t) ·dS,

while the circulation of the electric field aroundΓ is the instantaneous electromotive
forceVε(t) alongΓ is:

(2.12)Vε(t)=
∮
Γ

E(r, t) ·dr.

The right-hand side of Eq. (2.9) consists of the total current flowing through the sur-
faceΣ

(2.13)I (t)=
∫
Σ

J(r, t) ·dS

and the so-called displacement current which is proportional to the time derivative of the
electric flux. The sign of the above line integrals depends on the orientation of the closed
loop Γ , the positive traversal sense of which is uniquely defined by the orientation of
the surfaceΣ imposed by the vectorial surface elementdS. Apart from this restriction
it should be noted that the surfaceΣ can be chosen freely so as to extract meaningful
physical information from the corresponding Maxwell equation. In particular, though
being commonly labeled by the symbolΣ , the surfaces appearing in Faraday’s and
Ampère’s laws (Eqs. (2.8)–(2.9)) will generally be chosen in a different way as can
be illustrated by the example of a simple electric circuit. In the case of Faraday’s law,
one usually wantsΦM(t) to be the magnetic flux threading the circuit and thereforeΣ

would be chosen to “span” the circuit whileΓ would be located in the interior of the
circuit area. On the other hand, in order to exploit Ampère’s law, the surfaceΣ should
be pierced by the current density in the circuit in order to makeI (t) the current flowing
through the circuit.
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2.2. Conservation laws

Although a complete description of the electromagnetic field requires the full solution
of the Maxwell equations in their differential form, one may extract a number of con-
servation laws may by simple algebraic manipulation. The differential form of the con-
servation laws takes the generic form

(2.14)∇ ·F + ∂G
∂t

= K,

whereF is the generalized flow tensor associated with the fieldG andK is related to
any possible external sources or sinks.

2.2.1. Conservation of charge – the continuity equation
Taking the divergence of Eq. (2.4) and the time derivative of Eq. (2.1) and combining the
resulting equations, one easily obtains the charge-current continuity equation expressing
the conservation of electric charge:

(2.15)∇ ·J + ∂ρ

∂t
= 0.

Integration over a closed volumeΩ yields

(2.16)
∫
∂Ω

J ·dS = − ∂

∂t

∫
Ω

ρ dτ,

which states that the total current flowing through the bounding surface∂Ω equals the
time rate of change of all electric charge residing withinΩ .

2.2.2. Conservation of energy – Poynting’s theorem
The electromagnetic energy flow generated by a time dependent electromagnetic field
is most adequately represented by the well-known Poynting vector given by

(2.17)S = 1

µ0
E × B.

Calculating the divergence ofS and using the Maxwell equations, one may relate the
Poynting vector to the electromagnetic energy densityuEM through the energy conser-
vation law

(2.18)∇ ·S + ∂uEM

∂t
= −J ·E,

which is also known as the Poynting theorem. The energy densityuEM is given by

(2.19)uEM = 1

2

(
ε0E

2 + B2

µ0

)
.

The energy conservation expressed in Eq. (2.18) refers to the total energy of the elec-
tromagnetic field and all charged particles contributing to the charge and current distri-
butions. In particular, denoting the mechanical energy of the charged particles residing
in the volumeΩ byEMECH one may derive for both classical and quantum mechanical
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systems that the work done per unit time by the electromagnetic field on the charged
volume is given by

(2.20)
dEMECH

dt
=
∫
Ω

J ·E dτ.

Introducing the total electromagnetic energy associated with the volumeΩ asEEM =∫
Ω
uEM dτ one may integrate Poynting’s theorem to arrive at

(2.21)
d

dt
(EMECH +EEM)= −

∫
∂Ω

S ·dS.

It should be emphasized that the above result also covers most of the common situations
where the energy of the charged particles is relaxed to the environment through dissi-
pative processes. The latter may be accounted for by invoking appropriate constitutive
equations expressing the charge and current densities as linear or non-linear responses
to the externally applied electromagnetic fields and other driving force fields. As an
example, we mention Ohm’s law, proposing a linear relation between the macroscopic
electric current density and the externally applied electric field in a non-ideal conductor:

(2.22)JM = σEEXT.

Here, the conductivityσ is assumed to give an adequate characterization of all micro-
scopic elastic and inelastic scattering processes that are responsible for the macroscop-
ically observable electric resistance. The derivation of constitutive equations will be
discussed in greater detail in Section 4.

2.3. Conservation of linear momentum – the electromagnetic field tensor

In an analogous way, an appropriate linear momentum densityπEM may be assigned
to the electromagnetic field, which differs from the Poynting vector merely by a factor
ε0µ0 = 1/c2:

(2.23)πEM = ε0E × B = 1

c2
S.

The time evolution ofπEM is not only connected to the rate of change of the mechanical
momentum density giving rise to the familiar Lorentz force term, but also involves the
divergence of a second rank tensorT which is usually called the Maxwell stress tensor
(JACKSON [1975], LANDAU and LIFSHITZ [1962]). The latter is defined most easily by
its Cartesian components

(2.24)Tαβ = ε0

(
1

2
|E|2δαβ −EαEβ

)
+ 1

µ0

(
1

2
|B|2δαβ −BαBβ

)
with α,β = x, y, z.

A straightforward calculation yields:

(2.25)
∂πEM

∂t
= −ρE − J × B − ∇ ·T.
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2.3.1. Angular momentum conservation
The angular momentum density of the electromagnetic field and its corresponding flux
may be defined respectively by the relations

(2.26)ΛEM = r × πEM, Γ = r × T.

The conservation law that governs the angular momentum, reads

(2.27)
∂ΛEM

∂t
= −r × (ρE + J × B)− ∇ ·Γ .

3. Potentials and fields, the Lagrangian

Not only the Maxwell equations themselves but also all related conservation laws have
been expressed with the help of two key observables describing the microscopic elec-
tromagnetic field, namelyE and B. Strictly speaking, all relevant physics involving
electromagnetic phenomena can be described correctly and completely in terms of the
variablesE and B solely, and from this point of view there is absolutely no need of
defining auxiliary potentials akin toE andB. Nevertheless, it proves quite beneficial
to introduce the scalar potentialV (r, t) and the vector potentialA(r, t) as alternative
electrodynamical degrees of freedom.

3.1. The scalar and vector potential

From the Maxwell equation∇ ·B = 0 and Helmholtz’ theorem it follows that, within a
simply connected regionΩ , there exists a regular vector fieldA – called vector potential
– such that

(3.1)B = ∇ × A,

which allows us to rewrite Faraday’s law (2.8) as

(3.2)∇ ×
(

E + ∂A
∂t

)
= 0.

The scalar potentialV emerges from the latter equation and Helmholtz’ theorem stating
that, in a simply connected regionΩ there must exist a regular scalar functionV such
that

(3.3)E = −∇V − ∂A
∂t
.

AlthoughV andA do not add new physics, there are at least three good reasons to in-
troduce them anyway. First, it turns out that (JACKSON [1975], FEYNMAN , LEIGHTON

and SANDS [1964a]) the two potentials greatly facilitate the mathematical treatment of
classical electrodynamics in many respects. For instance, the choice of an appropriate
gauge2 allows one to convert the Maxwell equations into convenient wave equations
for V andA for which analytical solutions can be derived occasionally. Moreover, the

2Gauge transformations will extensively be treated in Section 7.
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scalar potentialV provides an natural link to the concept of macroscopic potential dif-
ferences that are playing a crucial role in conventional simulations of electric circuits.

Next, most quantum mechanical treatments directly invoke the “potential” picture to
deal with the interaction between a charged particle and an electromagnetic field. In
particular, adopting the path integral approach, one accounts for the presence of electric
and magnetic fields by correcting the action functionalS related to the propagation from
(r0, t0) to (r1, t1) along a world line, according to

(3.4)S[V,A] = S[0,0] + q

(∫ r2

r1

A · dr −
∫ t1

t0

dt V (r, t)
)
,

while the field-dependent Hamiltonian term appearing in the non-relativistic, one-
particle Schrödinger equation ih̄(∂ψ/∂t)=Hψ , takes the form

(3.5)H = 1

2m
(p − qA)2 + qV

with p = −ih̄∇. Furthermore, the canonical quantization of the electromagnetic radia-
tion field leads to photon modes corresponding to the quantized transverse modes of the
vector potential.

Finally, the third motivation for adopting scalar and vector potentials lies in the per-
spective of developing new numerical simulation techniques. For example, it was ob-
served recently (SCHOENMAKER, MAGNUS and MEURIS [2002]) that the magnetic
field generated by a steady current distribution may alternatively be extracted from the
fourth Maxwell equation (Ampère’s law),

(3.6)∇ × ∇ × A = µ0J

by assigning discretized vector potential variables to thelinks connecting adjacent
nodes. This will be discussed in Section 8.

3.2. Gauge invariance

In contrast to the electric field and the magnetic induction, neither the scalar nor the
vector potential are uniquely defined. Indeed, performing a so-called gauge transforma-
tion

(3.7)
A′(r, t)= A(r, t)+ ∇χ(r, t),

V ′(r, t)= V (r, t)− ∂χ(r, t)
∂t

,

where the gauge fieldχ(r, t) is an arbitrary regular, real scalar field, one clearly ob-
serves that the potentials are modified while the electromagnetic fieldsE(r, t) and
B(r, t) remain unchanged. Similarly, any quantum mechanical wave functionψ(r, t)
transforms according to

ψ ′(r, t)=ψ(r, t)exp
(
iqχ(r, t)

)
,

ψ ′ ∗(r, t)=ψ∗(r, t)exp
(−iqχ(r, t)

)
,

whereas the quantum mechanical probability density|ψ(r, t)|2 and other observable
quantities are invariant under a gauge transformation, as required.
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3.3. Lagrangian for an electromagnetic field interacting with charges and currents

While the Maxwell equations are the starting point in the so-calledinductive approach,
one may alternatively adopt thedeductive approachand try to “derive” the Maxwell
equations from a proper variational principle. As a matter of fact it is possible in-
deed to postulate a Lagrangian densityL(r, t) and an action functionalS[L, t0, t1] =∫ t1
t0
L(r, t)dτ such that the Maxwell equations emerge as the Euler–Lagrange equations

that make the action

(3.8)δS = 0

stationary. While such a “derivation” is of utmost importance for the purpose of ba-
sic understanding from the theoretical point of view, the Lagrangian and Hamiltonian
formulation of electromagnetism may look redundant when it comes to numerical com-
putations. However, we have quoted the Lagrangian density of the electromagnetic field
not only for the sake of completeness but also to illustrate the numerical potential of the
underlying variational principle.

The Lagrangian density for the interacting electromagnetic field is conventionally
postulated as a quadratic functional of the scalar and vector potential and their deriva-
tives:

(3.9)L= 1

2
ε0

∣∣∣∣∇V + ∂A
∂t

∣∣∣∣2 − 1

2µ0
|∇ × A|2 + J · A − ρV,

where the field variablesV andA are linearly coupled to the charge and current distri-
butionρ andJ.

It is now straightforward to obtain the Maxwell equations as the Euler–Lagrange
equations corresponding to Eq. (3.9) provided that the set of field variables is chosen to
be eitherV orAα . The first possibility gives rise to

(3.10)
∑

β=x,y,z

∂

∂xβ

[
∂L

∂
(
∂V
∂xβ

) i]+ ∂

∂t

[
∂L
∂
(
∂V
∂t

)]= ∂L
∂V

.

Inserting all non-zero derivatives, we arrive at

(3.11)ε0

∑
β

∂

∂xβ

(
∂V

∂xβ
+ ∂Aβ

∂t

)
= −ρ,

which clearly reduces to the first Maxwell equation

(3.12)ε0∇ ·E = ρ (Gauss’ law).

Similarly, the three Euler–Lagrange equations

(3.13)
∑

β=x,y,z

∂

∂xβ

[
∂L

∂
(
∂Aα
∂xβ

)]+ ∂

∂t

[
∂L

∂
(
∂Aα
∂t

)]= ∂L
∂Aα

, α = x, y, z

lead to the fourth Maxwell equation

(3.14)
1

µ0

(
∇ × B − ε0

∂E
∂t

)
= J (Ampère–Faraday’s law).
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It should be noted that, within the deductive approach, the electric and magnetic field
vectors aredefinedby the equations

(3.15)E = −∇V − ∂A
∂t
, B = ∇ × A,

whereas the latter are directly resulting from the Maxwell equations in the inductive
approach. Mutatis mutandis, the two remaining Maxwell equations∇ · B = 0 and
∇ × E = −∂B/∂t are a direct consequence of the operation of the vector identities
(A.34) and (A.35) on Eqs. (3.15). It should also be noted that the Lagrangian density
may be written as

(3.16)L = 1

2
ε0E2 − 1

2µ0
B2.

So far, we have considered the Maxwell equations from the perspective that the charge
and the current densities are given and the fields should be determined. However, as
was already mentioned in the introduction, the charge and current densities may also
be influenced by the fields. In order to illustrate the opposite cause–effect relation, we
consider the Lagrangian ofN charged particles moving in an electromagnetic field. The
Lagrangian is

(3.17)L=
N∑
n=1

1

2
mnv

2
n + 1

2

∫
dτ

(
ε0E2 − 1

µ0
B2
)

−
∫

dτ ρV +
∫

dτ J · A,

where we defined the charge and current densities as

(3.18)

ρ(r, t)=
N∑
n=1

qnδ(r − rn),

J(r, t)=
N∑
n=1

qnvnδ(r − rn)

and the particles’ velocities asvn = drn/dt . Applying the Euler–Lagrange equations:

(3.19)
d

dt

(
∂L

∂vn

)
− ∂L

∂rn
= 0,

gives

(3.20)mn
d2rn
dt2

= qnE(rn, t)+ qnvn × B(rn, t).

The last term is recognized as the Lorentz force.

3.4. Variational calculus

Although the numerical implementation of the variational principle leading to the
Maxwell equations is not a common practice in numerical analysis, it may neverthe-
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less turn out to be a useful approximation technique for particular classes of prob-
lems.

The exact solution of the Euler–Lagrange equations determines an extremum of the
action functional which becomes stationary with respect toany arbitraryvariations of
the field functions that meet the boundary conditions invoked. On the other hand, being
inspired by physical intuition or analogy with similar problems, one may be able to
propose a class of trial functions satisfying the boundary conditions and exhibiting the
expected physical behavior. If these trial functions can be characterized by one or more
adjustable parametersα1, . . . , αn, then one may calculate the values ofα1, . . . , αn for
which the action integral becomes stationary. Although the corresponding numerical
value of the action will generally differ from the true extremum that is attained by
the exact solution, the resulting trial function may surprisingly lead to rather accurate
estimates of the physical quantities of interest. A nice example of this phenomenon
is given in FEYNMAN , LEIGHTON and SANDS [1964a] (Part II, Chapter 19) where a
variational calculation of the capacitance of a cylindrical coaxial cable is presented and
compared with the exact formula for various values of the inner and outer radii of the
cable.

As an illustration, we have worked out the case of a long coaxial cable with a square
cross section, for which the inductance is estimated within the framework of variational
calculus.

Consider an infinitely long coaxial cable centered at thez-axis, consisting of a con-
ducting core, a magnetic insulator and a conducting coating layer. Both the core and
the coating layer have a square cross section of sizesa andb, respectively. The core
carries a currentI in thez-direction which is flowing back to the current source through
the coating layer, thereby closing the circuit as depicted in Fig. 3.1. Neglecting skin
effects we assume that the current density is strictly localized at the outer surface of the
core and the inner surface of the coating layer, respectively. Moreover, the translational
symmetry in thez-direction reduces the solution of Maxwell’s equations essentially to a
two-dimensional problem whereas the square symmetry of the cable allows us to divide
an arbitrary cable cross-section into four identical triangles and to work out the solution
for just one triangular area. In particular, we will focus on the region� (see Fig. 3.2)
bounded by

(3.21)x � 0; −x � y � x.

FIG. 3.1. Infinitely long coaxial cable carrying a stationary surface current.
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FIG. 3.2. Cross section of the coaxial cable.

Within this region, the current density takes the form

(3.22)
J(x, y)= Jz(x)ez,

Jz(x)= I

4

[
1

a
δ

(
x − a

2

)
− 1

b
δ

(
x − b

2

)]
,

where the factor 4 indicates that the region� accounts for only a quarter of the total
current flowing through the cable’s cross-section. The particular shape of the current
density reflects the presence of perfect shielding requiring that the magnetic field be
vanishing forx < a/2 andx > b/2 whereasBy should abruptly jump3 to a non-zero
value atx = a/2+ε andx = b/2−ε whereε→ 0+. The non-zero limiting values ofBy
are used to fix appropriate boundary forBy simply by integrating thez-component of
the Maxwell equation∇ × B = 0 over the intervals[a/2 − ε, a/2 + ε] and[b/2 − ε,

b/2+ ε], respectively. For instance, from

(3.23)
∫ a/2+ε

a/2−ε
dx

[
∂By(x, y)

∂x
− ∂Bx(x, y)

∂y

]
= µ0I

4a

and

(3.24)By(x, y)= 0 for x < a/2,

it follows that

(3.25)lim
x→1/2a+By(x, y)=

µ0I

4a

3If the current density were smeared out, the magnetic field would gradually tend to zero inside the core
and the coating layer.
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and similarly

(3.26)lim
x→1/2b−By(x, y)=

µ0I

4b
.

Finally, the boundary conditions reflecting the connection of adjacent triangular areas
are directly dictated by symmetry considerations requiring that the magnetic field vector
be orthogonal to the segmentsy2 = x2:

(3.27)By(x,±x)= ∓Bx(x,±x) for
a

2
< x <

b

2
.

Next, we propose a set of trial functions forBx andBy that meet the above boundary
conditions as well as the symmetry requirement thatBx change sign aty = 0:

(3.28)Bx(x, y)= −µ0I

8
y

[
1

x2
+ α

x2 − y2

a4

]
,

(3.29)By(x, y)= µ0I

8x
,

if (x, y) lies inside the trapezoida/2< x < b/2, |y| � x andBx = By = 0 elsewhere.
The parameterα is a variational parameter that will be chosen such that the action
functional attains a minimum with respect to the class of trial functions generated by
Eqs. (3.28) and (3.29). Since no dynamics is involved in the present problem, the time
integral occurring in the action integral becomes irrelevant and the least action principle
amounts to the minimization of the magnetic energy stored in the insulator.

Anticipating the discussions of Chapter VI, we may calculate the inductanceL of an
electric circuit by equating 1/2LI2 to the magnetic energy stored in the circuit:

1

2
LI2 =UM = 1

2µ0

∫
Ω

dτ |B|2

(3.30)= 4l

2µ0

∫ b/2

a/2
dx
∫ x

−x
dy
[
B2
x (x, y)+B2

y (x, y)
]
,

whereΩ refers to the volume of the insulator andl is the length of the cable and the
pre-factor 4 accounts for the identical contributions from the four identical trapezoidal
areas. From Eq. (3.30) we obtain the following expression forL, the inductance per unit
length:

(3.31)L≡ L

l
= 4

µ0I2

∫ b/2

a/2
dx
∫ x

−x
dy
[
B2
x (x, y)+B2

y (x, y)
]
.

Since the trial functions defined in Eqs. (3.28) and (3.29) are chosen to meet the bound-
ary conditions, the variational problem is reduced to the minimization ofUM , or equiv-
alently,L with respect toα. The calculation ofL(α) is elementary and here we only
quote the final result:

(3.32)
L(α)
µ0

= 1

6
logu+ (u4 − 1)

215040

[
112α+ (u4 + 1)α2]
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FIG. 3.3. Inductance per unit length: variational estimate (full line) versus numerical evaluation (•).

with u = b/a. Clearly, the required minimum corresponding to∂L(α)/∂α = 0, is ob-
tained for

(3.33)α = − 56

1+ u4
.

Finally, inserting the above result into Eq. (3.31), we obtain the inductance per length
as follows:

(3.34)
L
µ0

= 1

6
logu− 7

480

(u4 − 1)

(u4 + 1)
.

The variational result is plotted against the “exact” numerical evaluation of the induc-
tance in Fig. 3.3. Being a variational estimate, Eq. (3.34) provides a rigorous upper
bound for the true inductance.

4. The macroscopic Maxwell equations

4.1. Constitutive equations

The Maxwell equations contain source terms being the charge densities and the cur-
rents. In this section we will present the physics behind these terms and derive their
precise form. We will see that the charge and current formulas depend very much on
the medium in which these charges and currents are present. For solid media we can
distinguish between insulators, semiconductors and conductors. The corresponding ex-
pressions differ considerably for the different materials. Furthermore in the gas phase
or the liquid phase again other expressions will be found. In the latter case we enter
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the realm of plasma physics and magnetohydrodynamics. These topics are beyond the
present scope.

Before starting to derive the constitutive equations we need to address another
machinery, namely statistical physics. From a philosophical point of view, statistical
physics is a remarkable part of natural science. It does not contribute to a deeper under-
standing of the fundamental forces of nature, yet it introduces a fundamental constant of
nature, the Boltzmann constantkB = 1.3805× 1023 J/K. Furthermore, there has been a
discussion over several generations of physicists, debating the reality of irreversibility.
The dispute in a nutshell is whether the idea of entropy increase is a sensible one, con-
sidering the fact that the microscopic dynamics is time-reversal invariant. As has been
demonstrated in MAGNUS and SCHOENMAKER [1993] the time reversal invariance is
broken in the limit of infinitely many degrees of freedom. In practice, ‘infinity’ is al-
ready reached for 30 degrees of freedom in the study of MAGNUS and SCHOENMAKER

[1993]. Therefore, we believe that the dispute is settled and statistical physics is ‘solid
as a rock’.

4.2. Boltzmann transport equation

In this section we will consider the assumptions that lead to the Boltzmann transport
equation. This equation serves as the starting point for deriving the formules for the
constitutive equation for the currents in metals, semiconductors and insulators.

When describing the temporal evolution of many particles, one it not interested in
the detailed trajectory of each individual particle in space and time. First of all, the
particles are identical and therefore their trajectories are interchangeable. Secondly, the
individual trajectories exhibit stochastic motion on a short time scale that is irrelevant
on a larger time scale. In a similar way, the detailed knowledge at a short length scale is
also not of interest for understanding the behavior at larger length scales. Thus we must
obtain a procedure for eliminating the short-distance fluctuations from the description
of the many particle system. In fact, to arrive at a manageable set of equations such a
procedure should also reduce the number of variables for which the evolution equations
need to be formulated.

There are a number of schemes that allow for such a reduction. All methods apply
some kind of coarse graining, i.e., a number of microscopic variables are bundled and
are represented by a single effective variable. In this section, we discuss the method that
is due to Boltzmann and that leads to the Boltzmann transport equation.

ConsiderN particles with generalized coordinatesqi , i = 1, . . . ,N , and generalized
momentapi , i = 1, . . . ,N . Each particle can be viewed as a point of the so-called
µ-space, a six-dimensional space, spanned by the coordinatesq, p. In this light, theN
particles will trace outN curves in phase space as time evolves. Let us now subdivide
the phase space into cells of size�Ω = �q3�p3. Each cell can be labeled by a pair
of coordinatesQi and momentaPi . The number of particles that is found in the cell
Ωi is given byf (Pi ,Qi , t). We can illustrate the role of the cell size setting�Ω . The
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functionf (Pi ,Qi , t) is given by

(4.1)f (Pi ,Qi , t)=
N∑
i=1

∫
�Ω

d3p d3qδ
(
p − pi (t)

)
δ
(
q − qi (t)

)
.

We can illustrate the role of the coarse-graining scaling parameter�Ω . If we take the
size of the cell arbitrary small then we will occasionally find a particle in the cell. Such a
choice of�Ω corresponds to a fully microscopic description of the mechanical system
and we will not achieve a reduction in degrees of freedom.

On the other hand, if we choose�Ω arbitrary large, then all degrees of freedom
are represented by one (static) pointf , and we have lost all knowledge of the system.
Therefore�Ω must be chosen such that it acts as the “communicator” between the
microscopic and macroscopic worlds. This connection can be obtained by setting the
size of the cell large enough such that each cell contains a number of particles. Within
each cell the particles are considered to be in a state of thermal equilibrium. Thus for
each cell a temperatureTi and a chemical potentialµi can be given. The (local) thermal
equilibrium is realized if there occurs a thermalization, i.e., within the cell collisions
should occur within a time interval�t . Therefore, the cell should be chosen such that
its size exceeds at least a few mean-free path lengths.

On the macroscopic scale, the cell labelsPi andQi are smooth variables. The cell
size is the denoted by the differential dΩ = d3p d3q. Then we may denote the distribu-
tion functions asf (P,Q, t)≡ f (p,q, t). From the distribution functionf (p,q, t), the
particle density function can be obtained from

(4.2)
∫

d3pf (p,q, t)= ρ(q, t).

As time progresses fromt to t + δt , all particles in a cell atp, q will be found in a cell
at p′, q′, provided that no collisions occurred. Hence

(4.3)f (p,q, t)d3p d3q = f (p + Fδt,q + vδt, t + δt)d3p′ d3q ′.
According to Liouville’s theorem (FOWLER [1936], HUANG [1963]), the two volume
elements d3p d3q and d3p′ d3q ′ are equal, which may appear evident if there are no
external forces. If there are forces that do not explicitly depend on time, any cubic
element deforms into a parallelepiped but with the same volume as the original cube.
Taking also into account the effect of collisions that may kick particles in or out of
the cube in the time intervalδt , we arrive at the following equation for the distribution
function

(4.4)

(
∂

∂t
+ p
m

·∇q + F ·∇p

)
f (p,q, t)=

(
∂f

∂t

)
c
,

where the “collision term”(∂f/∂t)c definesthe effects of scattering. A quantitative es-
timate of this term is provided by studying the physical mechanisms that contribute to
this term. As carriers traverse, their motion is frequently disturbed by scattering due
to collisions with impurity atoms, phonons, crystal defects, other carriers or even with
foreign particles (cosmic rays). The frequency at which such events occur can be esti-
mated by assuming that these events take place in an uncorrelated way; in other words
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two such events are statistically independent. Each physical mechanism is described by
an interaction Hamiltonian or potential function,US(r) that describes the details of the
scattering process. The matrix element that describes the transition from a carrier in a
state with momentum|p〉 to a state with momentum|p′〉 is

(4.5)Hp′p = 1

Ω

∫
dτ e− i

h̄
p′·r
US(r)e

i
h̄

p·r
,

whereΩ is a box that is used to count the number of momentum states. This box is of
the size�q3 as defined above.

The evaluation of the transition amplitude relies on Fermi’s Golden Rule. The transi-
tion rate then becomes

(4.6)S(p′,p)= 2π

h̄
|Hp′p|2δ(E(p′)−E(p)−�E

)
,

where�E is the change in energy related to the transition. If�E = 0, the collision is
elasticThe collision term is the result of the balance between kick-in and kick-out of
the transitions that take place per unit time:

(4.7)

(
∂f

∂t

)
c
=
∑

p′

(
S(p′,p)f (q,p′, t)− S(p,p′)f (q,p, t)

)
.

Once more it should be emphasized that although this balance picture is heuristic, looks
reasonable and leads to a description of irreversibility it does not explain the latter. The
collision term can be further fine-tuned to mimic the consequences of Pauli’s exclusion
principle by suppression of multiple occupation of states:(

∂f

∂t

)
c
=
∑

p′

[
S(p′,p)f (q,p′, t)

(
1− f (q,p, t)

)
(4.8)− S(p′,p)f (q,p, t)

(
1− f (q,p′, t)

)]
.

4.3. Currents in metals

In many materials, the conduction current that flows due to the presence of an electric
field, E, is proportional toE, so that

(4.9)J = σE,

where the electrical conductivityσ is a material parameter. In metallic materials,
Ohm’s law, Eq. (4.9) is accurate. However, a fast generalization should be allowed for
anisotropic conducting media. Moreover, the conductivity may depend on the frequency
mode such that we arrive at

(4.10)Ji (ω)= σij (ω)Ej (ω)

andσ is a second-rank tensor. The derivation of Ohm’s law from the Boltzmann trans-
port equation was initiated by Drude. In Drude’s model (DRUDE [1900a], DRUDE

[1900b]), the electrons move as independent particles in the metallic region suffering
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from scattering during their travel from the cathode to the anode. The distribution func-
tion is assumed to be of the following form:

(4.11)f (q,p, t)= f0(q,p, t)+ fA(q,p, t),

wheref0 is the equilibrium distribution function, being symmetric in the momentum
variablep, andfA is a perturbation due to an external field that is anti-symmetric in the
momentum variable. The collision term in Drude’s model is crudely approximated by
the following assumptions:

• only kick-out,
• all S(p,p′) are equal,
• no Pauli exclusion principle,
• no carrier heating, i.e., low-field transitions.

The last assumption implies that only the anti-symmetric part participates in the col-
lision term (LUNDSTROM [1999]). Defining a characteristic timeτp, the momentum-
relaxation time, we find that

(4.12)

(
∂f

∂t

)
c
= −fA

τp
and

1

τp
=
∑

p′
S(p,p′).

Furthermore, assuming a constant electric fieldE and a spatially uniform charge elec-
tron distribution, the Boltzmann transport equation becomes

(4.13)−qE ·∇(f0 + fA)= −fA

τp
.

Finally, if we assume thatf � f0 ∝ exp(−p2/2mkBT ) then

(4.14)fA = qτpE ·∇pf0 = qτp

kBT
E ·vf0.

Another way of looking at this result is to considerf = f0 + fA as a Taylor series
for f0:

(4.15)f (p)= f0(p)+ (qτpE) ·∇pf0(p)+ · · · = f0(p + qτpE).

This is adisplacedMaxwellian distribution function in the direction opposite to the
applied fieldE. The current density isJ = qnv follows from the averaged velocity

(4.16)J = qn

∫
d3p (p/m)f (p)∫

d3pf (p)
= q2τp

m
nE.

The electron mobility,µn, is defined as the proportionality constant in the constitutive
relationJ = qµnnE, such that

(4.17)µn = qτp

m
.

So we have been able to “deduce” Ohm’s law from the Boltzmann transport equation.
It is a remarkable fact that Drude’s model is quite accurate, given the fact that no

reference was made to Pauli’s exclusion principle and the electron waves do not scatter
while traveling in a perfect crystal lattice. Indeed, it was recognized by Sommerfeld that
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ignoring these effects will give rise to errors in the calculation of the order of 102, but
both these errors cancel. Whereas Drude’s model explains the existence of resistance,
more advanced models are needed to accommodate for the non-linear current-voltage
characteristics, the frequency dependence and the anisotropy of the conductance for
some materials. A “modern” approach to derive conductance properties was initiated
by KUBO [1957]. His theory naturally leads to the inclusion of anisotropy, non-linearity
and frequency dependence. Kubo’s approach also serves as the starting point to calcu-
late transport properties in the quantum theory of many particles at finite temperature
(MAHAN [1981]). These approaches start from the quantum-Liouville equation and the
Gibb’s theory of assembles on phase space. The latter has a more transparent general-
ization to the many-particle Hilbert space of quantum states.

Instead of reproducing here text book presentations of these various domains of
physics, we intend to give the reader some sense of alertness, that the validity of some
relations is limited. In order to push back the restrictions, one needs to re-examine the
causes of the limitations. Improved models can beguessedby widening the defining ex-
pression as in the foregoing case where the scalarσ was substituted by the conductivity
tensorσ . The consequences of these guesses can be tested in simulation experiments.
Therefore, simulation plays an important role to obtain improved models.

In the process of purchasing model improvements a few guidelines will be of help.
First of all, the resulting theory should respect some fundamental physical principles.
Thecausalityprinciple is an important example. It states that there is a retarded temporal
relation between cause and effect. The causality principle is a key ingredient to derive
the Kramers–Kronig relations, that put severe limitations on the real and imaginary
parts of the material parameters. Yet these relationships are not sufficient to determine
the models completely, but one needs to include additional physical models.

4.4. Charges in metals

Metallic materials are characterized as having an appreciable conductivity. Any excess
free charge distribution in the metal will decay exponentially to zero in a small time.
Combining Gauss’ law with the current continuity equation

(4.18)∇ · (εE)= ρ, ∇ · (σE)= ∂ρ

∂t

and consideringε andσ constant, we find

(4.19)
∂ρ

∂t
= −σ

ε
ρ, ρ = ρ0 exp

(
−σ
ε
t

)
.

In metallic materials, the decay timeτ = ε/σ is of the order of 10−18 s, such thatρ = 0
at any instant.

For conducting materials one usually assumes∇ ·D = 0 and for constantε andρ, the
electric fieldE and current densityJ are constant (COLLIN [1960]). A subtlety arises
whenε andρ are varying in space. Considering the steady-state version of above set of
equations, we obtain

(4.20)∇ · (εE)= ρ, ∇ · (σE)= 0.
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The fieldE should simultaneously obey two equations. Posed as a boundary-value prob-
lem for the scalar potential,V , we may determineV from the second equation and
determineρ as a “post-processing” result originating from the first equation.

4.5. Semiconductors

Intrinsic semiconductors are insulators at zero temperature. This is because the band
structure of semiconductors consists of bands that are either filled or empty. At zero
temperature, the chemical potential falls between the highest filled band which is called
the valence band and the lowest empty band which is named the conduction band. The
separation of the valance and conduction band is sufficiently small such that at some
temperature, there is an appreciable amount of electrons that have an energy above the
conduction band onset. As a consequence these electron are mobile and will contribute
to the current if a voltage drop is put over the semiconducting material. The holes in the
valance band act as positive charges with positive effective mass and therefore they also
contribute to the net current. Intrinsic semiconductors are rather poor conductors but
their resistance is very sensitive to the temperature (∼exp(−A/T )). By adding dopants
to the intrinsic semiconductor, the chemical potential of the electrons and holes may by
shifted up or down with respect to the band edges. Before going into further descriptions
of dopant distributions, we would like to emphasize the following fact:Each thermo-
dynamic system in thermal equilibrium has constant intensive conjugated variables. In
particular, the temperature,T , conjugated to the internal energy of the system and the
chemical potential,µ, conjugated to the number of particles in the systems are constant
for a system in equilibrium. Therefore, if the dopant distribution varies in the device
and the distance between the chemical potential and the band edges is modulated, then
for the device being in equilibrium, the band edges must vary in accordance with the
dopant variations, as illustrated in Fig. 4.1.

4.6. Currents in semiconductors

Whereas in metals the high conductivity prevents local charge accumulation at an de-
tectable time scale, the situation in semiconductors is quite different. In uniformly doped
semiconductors, the decay of an excess charge spot occurs by a diffusion process, that
takes place on much longer time scale. In non-uniformly doped semiconductors, there

FIG. 4.1. Band edge modulation by doping.
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are depletion layers, or accumulation layers of charges that permanently exists even in
thermal equilibrium.

The charge and current densities in semiconductors follow also from the general
Boltzmann transport theory, but this theory needs to be complemented with specific
details such as the band gap, the dopant distribution, and the properties related to the
interfaces to other materials.

Starting from the Boltzmann transport equation, themoment expansionconsiders
variables that are averaged quantities as far as the momentum dependence is concerned.
The generic expression for the moment expansion is

(4.21)
1

Ω

∑
p

Q(p)
(
∂

∂t
+ p
m

·∇q + F ·∇p

)
f (p,q, t)= 1

Ω

∑
p

Q(p)
(
∂f

∂t

)
c
,

whereQ(p) is an polynomial in the components ofp and the normalization 1/Ω allows
for a smooth transition to integrate over all momentum states in the Brillouin zone

(4.22)
1

Ω

∑
p

→ 1

4π3

∫
BZ

d3k.

The zeroth order expansion gives (LUNDSTROM [1999])

(4.23)

∂n

∂t
− 1

q
∇ ·Jn = −U,

∂p

∂t
+ 1

q
∇ ·Jp =U

and where the various variables are:

(4.24)

electrons holes

n(r, t)= 1

Ω

∑
p

fn(p, r, t), p(r, t)= 1

Ω

∑
p

fp(p, r, t),

Jn(r, t)= −qn(r, t)vn(r, t), Jp(r, t)= qp(r, t)vp(r, t),

vn(r, t)= 1

Ω

∑
p

p
m
fn(p, r, t), vp(r, t)= 1

Ω

∑
p

p
m
fp(p, r, t)

and

(4.25)U = 1

Ω

∑
p

(
∂f

∂t

)
c
=R−G.

The particle velocities give an expression for the current densities but by choosing
Q(p) = p, we obtain the first moment of the expansion that can be further approxi-
mated to give alternative expressions for the current densities. Defining the momentum
relaxation timeτp as a characteristic time for the momentum to reach thermal equi-
librium from a non-equilibrium state and the electron and hole temperature tensors
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(FORGHIERI, GUERRRI, CIAMPOLINI , GNUDI and RUDAN [1988])

1

2
nkBTn,ij (r, t)= 1

Ω

∑
p

1

2m
(pi −mvn,i )(pj −mvn,j )fn(p, r, t)

(4.26)
= 1

2
nkBTn(r, t)δij ,

1

2
pkBTp,ij (r, t)= 1

Ω

∑
p

1

2m
(pi −mvp,i )(pj −mvp,j )fp(p, r, t)

= 1

2
pkBTp(r, t)δij ,

where the last equality follows from assuming an isotropic behavior, then one arrives at
the following constitutive equation for the currents in semiconducting materials

(4.27)
Jn + nτpn

d

dt

(
Jn

n

)
= qµnn

(
E + kB

q
∇Tn

)
+ qDn∇n,

Jp + pτpp
d

dt

(
Jp

p

)
= qµpp

(
E − kB

q
∇Tp

)
− qDp∇p.

The momentum relaxation times, the electron and hole mobilities and the electron and
hole diffusivities are related through the Einstein relations

(4.28)D = kBT

q
µ= kBT

m
τ.

The second terms on the left-hand sides of Eq. (4.27) are theconvective currents. The
procedure of taking moments of the Boltzmann transport equation always involves a
truncation, i.e., thenth order equation in the expansion demands information of the
(n+ 1)th order moment to be supplied. For the second-order moment, one thus needs
to provide information on the third moment

(4.29)
1

Ω

∑
p

pipjpkf (p, r, t).

In the above scheme the second-order expansion leads to thehydrodynamic model
(FORGHIERI, GUERRRI, CIAMPOLINI , GNUDI and RUDAN [1988]). In this model the
carrier temperatures are determined self-consistently with the carrier densities. The clo-
sure of the system of equations is achieved by assuming a model for the term (4.29)
that only contains lower order variables. The thermal fluxQ, being the energy that gets
transported through thermal conductance can be expressed as

(4.30)Q = 1

Ω

∑
p

1

2m
|p −mv|2

(
p
m

− v
)

= −κ∇T ,

whereκ = κn, κp are the thermal conductivities.
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Besides the momentum flux, a balance equation is obtained for the energy flux:

(4.31)

∂(nwn)

∂t
+ ∇ ·Sn = E · Jn + n

(
∂wn

∂t

)
c
,

∂(pwp)

∂t
+ ∇ ·Sp = E · Jp + p

(
∂wp

∂t

)
c
.

The energy flux is denoted asS andw is the energy density. In the isotropic approxima-
tion, the latter reads

(4.32)wn = 3

2
kBTn + 1

2
mnv

2
n, wp = 3

2
kBTp + 1

2
mpv

2
p.

The energy flux can be further specified as

(4.33)

Sn = κn∇Tn − (wn + kBTn)
Jn

q
,

Sp = κp∇Tp + (wp + kBTp)
Jp

q
.

Just as for the momentum, one usually assumes a characteristic time,τe, for a non-
equilibrium energy distribution to relax to equilibrium. Then the collision term in the
energy balance equation becomes

(4.34)

n

(
∂wn

∂t

)
c
= −nwn −w∗

τen
−Uwn,

p

(
∂wp

∂t

)
c
= −pwp −w∗

τep
−Uwp

andw∗ is the carrier mean energy at the lattice temperature. In order to complete the
hydrodynamic model the thermal conductivities are given by the Wiedemann–Franz law
for thermal conductivity

(4.35)κ =
(
kB

q

)2

T σ(T )�(T ).

Herein is�(T ) a value obtained from evaluating the steady-state Boltzmann transport
equation for uniform electric fields andσ(T ) = qµc the electrical conductivity (c =
n,p). If a power-law dependence for the energy relaxation times can be assumed, i.e.,

(4.36)τe = τ0

(
w

kBT ∗

)ν
,

then�(T )= 5/2+ν. Occasionally,ν is considered to be a constant (ν = 0.5). However,
this results into too restrictive an expression for theτe(w). Therefore�(T ) is often
tuned towards Monte-Carlo data.

Comparing the present elaboration on deriving constitutive equations from the Boltz-
mann transport equation with the derivation of the currents in metals we note that we
did not refer to a displaced Maxwellian distribution. Such a derivation is also possible
for semiconductor currents. The method was used by STRATTON [1962]. A difference
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pops up in the diffusion term of the carrier current. For the above results we obtained

(4.37)J(diffusive part)∝ µ∇T .
In Stratton’s model one obtains

(4.38)J(diffusive part)∝ ∇(µT ),
the difference being a term

(4.39)ξ = ∂ logµ(T )

∂ log(T )
.

Stratton’s model is usually referred to as theenergy transportmodel.
For the semiconductor environment, the Scharfetter–Gummel scheme provides a

means to discretize the current equations on a grid (SCHARFETTER and GUMMEL

[1969]). In the case that no carrier heating effects are considered (T is constant) the
diffusion equations are

(4.40)J = qµcE ± kT µ∇c,
where the plus (minus) sign refers to negatively (positively) charged particles andc

denotes the corresponding carrier density. It is assumed that both the currentJ and the
electric fieldE are constant along a link and that the potentialV varies linearly along
the link. Adopting a local coordinate axisu with u = 0 corresponding to nodei, and
u= hij corresponding to nodej , we may integrate Eq. (4.40) along the linkij to obtain

(4.41)Jij = qµij c

(
Vi − Vj

hij

)
± kT µij

dc

du
,

which is a first-order differential equation inc. The latter is solved using the aforemen-
tioned boundary conditions and gives rise to a non-linear carrier profile. The currentJij
can then be rewritten as

(4.42)
Jij

µij
= − α

hij
B

(−βij
α

)
ci + α

hij
B

(
βij

α

)
cj ,

using the Bernoulli function

(4.43)B(x)= x

ex − 1
.

Furthermore, we usedα = ±kT andβij = q(Vi − Vj ).
Before turning to the consideration of insulating materials, we briefly discuss the

influence of strong magnetic fields on the currents. These fields will bend the trajectories
due to the Lorentz force. In the derivation of the macroscopic current densities from the
Boltzmann transport equation, we should include this force. The result is that in the
constitutive current expression we must make the replacement:E → E + qv × B. Since
J = qcv, we arrive at the followingimplicit relation forJ:

(4.44)J = σE +µJ × B,
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whereσ = qµc is the conductivity andµ is the mobility. This relation can be made
explicit by solving the following set of linear equations:

(4.45)

 1 −µBz µBy
µBz 1 −µBx

−µBy µBx 1

 ·
JxJy
Jz

=
σExσEy
σEx


of which the solution is:

(4.46)J = [
σE +µσE × B +µ2σ(E · B)B

]
/(1+µ2B2).

Above considerations are required for the description of Hall sensors. Here we will
not further elaborate on this extension, nor will we consider the consequences of an-
isotropic conductivity properties.

4.7. Insulators

So far, we have been rather sloppy in classifying materials as being an insulator, semi-
conductor or metal. We have referred to the reader’s qualitative awareness of the con-
duction quality of a material under consideration. For the time being we will sustain
in this practice and define insulators as having a negligible conductivity. Therefore, in
an insulating material there are no conduction currents. The constitutive equation forJ
becomes trivial.

(4.47)J = 0.

Recently, there is an increased interest in currents in insulating materials. The gate di-
electric material SiO2 that has been used in mainstream CMOS technology has a band
gap of 3.9 eV and therefore acts as a perfect insulator for normal voltage operation con-
ditions around 3 V and using 60 Å thick oxides. However, the continuous down scaling
of the transistor architecture requires that the oxides thicknesses are also reduced. With
the current device generation (100 nm gate length), the oxide thickness should be less
than 20 Å. For these thin layers, direct tunneling through the layer barrier becomes a
dominating current leakage in integrated CMOS devices.

4.7.1. Subband states and resonances
A planarp-type silicon metal-insulator-semiconductor (MIS) capacitor consisting of a
gate electrode, a gate stack and a silicon substrate is considered. The gate stack has a
thicknessTox ranging from 15 to 40 Å and containsNox layers of insulating material
such as SiO2, Si3Ni5, etc. When a positive gate voltageVG is applied to the gate elec-
trode, the electrons residing in the electron inversion layer formed near the Si/insulator
interface, are coupled to both the gate and the gate stack through non-vanishing tunnel-
ing amplitudes. As a result, measurable tunneling currents are observed that involve a
net migration of electrons from the leaky inversion layer to the gate electrode.

In this section, we have summarized the approach followed in MAGNUS and
SCHOENMAKER [2000a] and MAGNUS and SCHOENMAKER [2002] to calculate these
tunneling currents.
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FIG. 4.2. Conduction band profile of a MIS capacitor. (Figure reproduced by permission of the Americal
Institute of Physics and Springer Verlag.)

Thez-axis is chosen to be perpendicular to the SiO2-interface that is taken to be the
(x, y)-plane. The gate, gate stack and semiconductor region are defined by−∞ � z <

tox, −tox � z < 0 and 0� z� +∞, respectively, as depicted in Fig. 4.2.
All electron energies including the chemical potential, are measured with respect

to the edge of the conduction band at the Si/insulator interface. The potential energy
takes a uniform value in the gate region whereas it approaches the limitUS in the bulk
substrate.

The whole MIS capacitor can be treated as a single quantum mechanical entity for
which the Schrödinger equation needs to be solved. Adopting the effective mass ap-
proximation for the electrons in the different valleys, and the Hartree approximation to
describe the electron–electron interaction in the inversion layer, the three-dimensional
time-independent Schrödinger equation for the semiconductor region takes the form

(4.48)

− h̄
2

2

(
1

mαx

∂2

∂x2
+ 1

mαy

∂2

∂y2
+ 1

mαz

∂2

∂z2

)
ψα(r, z)+

[
U(z)−E

]
ψα(r, z)= 0,

wherer = (x, y), α is a valley index andmαx , mαy andmαz denote the components of
the effective mass tensor along the principle directions of the silicon valleys. The same
equation applies to the other regions upon insertion of appropriate effective masses.
Assuming translational invariance in the lateral directions, one may write each one-
electron wave function as a plane wave modulated by a one-dimensional envelope wave
functionφα(W,z) and the corresponding one-electron eigenenergyEαk(W) as follows:

(4.49)

ψαk(W, r, z)= 1√
LxLy

eik·rφα(W,z),

Eαk(W)= h̄2

2

(
k2
x

mαx
+ k2

y

mαy

)
+W,
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wherek = (kx, ky) andφα(W,z) is an eigenfunction of the one-dimensional Schrödin-
ger equation

(4.50)− h̄2

2mαz

d2φα(W,z)

dz2
+ [
U(z)−W

]
φα(W,z)= 0

corresponding to the energy eigenvalueW .
Since the size of the whole system is assumed to be large in all directions, the energy

spectrum will be dense and in particular the eigenvaluesW can take all real values ex-
ceedingUG. Moreover, the complete set of wave functions solving Eq. (4.50) constitutes
an orthogonal, continuous basis for which a proper delta-normalization is invoked:

(4.51)
〈
φα(W

′)
∣∣φα(W)〉≡ ∫ ∞

−∞
dzφ∗

α(W,z)φα(W,z)= δ(W ′ −W).

Although the insulating layers are relatively thin, the energy barriers separating the
inversion layer from the gate electrode are generally high enough to prevent a flood
of electrons leaking away into the gate. In other words, in most cases of interest the
potential well, hosting the majority of inversion layer electrons, will be coupled only
weakly to the gate region. It follows from ordinary quantum mechanics (FLUEGGE

[1974]) that the relative probability of finding an electron in the inversion layer well
should exhibit sharply peaked maxima for a discrete set ofW -values. The latter are
the resonant energies corresponding to a set of virtually bound states, also called quasi-
bound states, that may be regarded as the subband states of the coupled system. This
becomes intuitively clear when the thickness of the barrier region is arbitrarily increased
so that the coupling between the gate electrode and the semiconductor region vanishes.
In this limiting case, the resonant energies will coincide with the true subband energies
of the isolated potential well while the resonant wave functions drop to zero at the
interface planez= 0. Similarly, the spectral widths of the resonant wave functions tend
to zero and the resonance peaks turn into genuine delta functions ofW .

The above picture provides a way to investigate the subband structure of an inversion
layer. By applying a transfer matrix approach to a piecewise constant potential profile
and tracing the maxima of the squared wave function amplitudes as a function ofW

the continuous wave functions can be calculated. Once the sequence of resonant sub-
band energies{Wαl | l = 1,2, . . .} and the corresponding wave functions are found, one
may analytically determine the spectral widths that are directly related to the second
derivative of the wave functions, with respect toW , evaluated at the resonant energies.

Within the Hartree approximation, the potential energy profileU(z) needs to be de-
termined by solving self-consistently the above mentioned Schrödinger equation (4.50)
and the one-dimensional Poisson equation

(4.52)
d2U(z)

dz2
= − e

2

εS

[
n(z)− p(z)+NA(z)

]
,

wheren(z), p(z), NA(z) andεS denote, respectively, the electron, hole and acceptor
concentrations and the permittivity in the silicon part of the structure. In the present
work we have not treated the occurrence of free charges in the gate and the gate stack.
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On the other hand, charges trapped by interface states are incorporated through a surface
charge densityDit .

The potential energy is modeled by a piecewise constant profile defined on a one-
dimensional mesh reflecting the gate stack layers and a user-defined number of substrate
layers. In this light the self-consistent link betweenn(z) andU(z) is not provided for
each point in the inversion layer but rather for their averages over the subsequent cells
of the mesh. This approach is adequate whenever the number of cells is sufficiently
large and it has been successfully employed in the past (JOOSTEN, NOTEBORN and
LENSTRA [1990], NOTEBORN, JOOSTEN, LENSTRA and KASKI [1990]). In the fol-
lowing however, we focus on the procedure to extract the resonant energies and spectral
widths.

The solutions to the Schrödinger equation for the layered structure can now com-
pactly be written as linear combinations ofu1 andu2, being generic basis functions in
each cell.

In order to trace the resonance peaks and spectral widths, a numerically stable prob-
ability function scanning the presence of an electron in the inversion layer as a function
of W , needs to be determined. Rewriting the gate and substrate wave functions as

(4.53)φα(W,z)=
{
Cg,α sin(kg,α(z+ tox)+ θα) for z <−tox,

Cs,α exp(−ks,α(z− a)) for z > a,

one obtains the relative probability of an electron for being in the inversion layer:

(4.54)Pα(W)≡
∣∣∣∣Cs,α(W)

Cg,α(W)

∣∣∣∣2.
Emerging as resonance energies in the continuous energy spectrum, the subband ener-
giesWαl correspond to distinct and sharply peaked maxima of thePα(W), or well de-
fined minima ofP−1

α (W), even for oxide thicknesses as low as 10 Å. As a consequence,
expandingP−1

α (W) in a Taylor series aroundW =Wαl , we may replacePα(W) by a
sum of Lorentz-shaped functions:

(4.55)Pα(W)→
∑
l

Pα(Wαl)
Γ 2
αl

(W −Wαl)2 + Γ 2
αl

,

where the resonance widthsΓ 2
αl are related to the second derivative ofP−1

α (W) through

(4.56)Γ 2
αl = 2P−1

α (Wαl)

[
∂2P−1

α

∂W2
(Wαl)

]−1

and can be directly extracted from the transmission matrices and their derivatives, eval-
uated atW =Wαl .

4.7.2. Tunneling gate currents
The subband structure of ap-type inversion layer channel may be seen to emerge from
an enumerable set of sharp resonances appearing in the continuous energy spectrum of
the composed system consisting of the gate contact, the gate stack (insulating layers),
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the inversion layer and the substrate contact. In particular, the discreteness of the sub-
band states is intimately connected with the presence of energy barriers in the gate stack
that restrict the coupling between the channel and the gate regions and therefore the am-
plitude for electrons tunneling through the barriers (see Fig. 4.2). Clearly, the smallness
of the above mentioned coupling is reflected in the size of the resonance width – or
equivalently, the resonance lifetimeταl = h̄/2Γαl – as compared to the resonance en-
ergy.

It is tempting to identify the gate leakage current as a moving ensemble of elec-
trons originating from decaying subband states. However, before such a link can be
established, a conceptual problem should be resolved. Although intuition obviously
suggests that an electron residing in a particular subband〉 αl should contribute an
amount−e/ταl to the gate current, this is apparently contradicted by the observation
thatthe current density corresponding to each individual subband wave function identi-
cally vanishes. The latter is due to the nature of the resonant states. Contrary to the case
of the doubly degenerate running wave states having energies above the bottom of the
conduction band in the substrate, the inversion layer resonant states are non-degenerate
and virtually bound, and the wave functions are rapidly decaying into the substrate area.
As a consequence, all wave functions are real (up to an irrelevant phase factor) and the
diagonal matrix elements of the current density operator vanishes. The vanishing of the
current for the envelope wave functions was also noted in SUNE, OLIVIO and RICCO

[1991], MAGNUS and SCHOENMAKER [1999]. Therefore, we need to establish a sound
physical model (workaround) resolving the current paradox and connecting the reso-
nance lifetimes to the gate current. Since we do not adopt a plane-wave hypothesis for
the inversion layer electrons in the perpendicular direction, our resolution of the paradox
differs from the one that is proposed in SUNE, OLIVIO and RICCO [1991].

The paradox can be resolved by noting that the resonant states, though diagonaliz-
ing the electron Hamiltonian in the presence of the gate bias, are constituting anon-
equilibrium state of the whole system which is not necessarily described by a Gibbs-
like statistical operator, even not when the steady state is reached. There are at least two
alternatives to solve the problem in practice.

The most rigorous approach aims at solving the full time dependent problem starting
from a MIS capacitor that is in thermal equilibrium (VG = 0) until some initial time
t = 0. Beforet = 0, the potential profile is essentially determined by the gate stack
barriers and, due to the absence of an appreciable inversion layer potential well, all
eigen solutions of the time independent Schrödinger equation are linear combinations
of transmitted and reflected waves. In other words, almost all states are carrying current,
although the thermal average is of course zero (equilibrium). However, it should be
possible to calculate the time evolution of the creation and annihilation operators related
to the unperturbed states. The perturbed resonant states, defining the subband structure
for VG > 0, would serve as a set of intermediate states participating in all transitions
between the unperturbed states caused by the applied gate voltage. Although such an
approach is conceptually straightforward, it is probably rather cumbersome to be carried
out in practice.

One may consider a strategy that is borrowed from the theory of nuclear decay
(MERZBACHER[1970], LANDAU and LIFSHITZ [1958]). The resulting model leads to a
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concise calculation scheme for the gate current. Under the assumption that the resonance
widths of the virtual bound states are much smaller than their energies, the correspond-
ing real wave functions can be extended to the complex plane if the resonance energies
and the corresponding resonance widths are combined to form complex energy eigen-
values of the Schrödinger equation (MAGNUS and SCHOENMAKER [2000a]). Such an
extension enables us to mimic both the supply (creation) and the decay (disintegration)
of particles in a resonant bound state by studying the wave functions in those regions of
space where the real, i.e., non-complex, wave functions would be standing waves either
asymptotically or exactly.

Within the scope of the this work, scattering by phonons, or any other material depen-
dent interactions is neglected. Moreover, electron–electron interaction is treated in the
Hartree approximation that, in practice, amounts to a self-consistent solution of the one-
particle Schrödinger equation and Poisson’s equation. Therefore, bearing in mind that
normal transport through the gate stack is limited by tunneling events, the time-reversal
symmetry breaking between decaying and loading states can be inserted through the
boundary conditions for the statistical operator corresponding to the non-interacting Li-
ouville equation. Consequently, the gate current density is given by

(4.57)JG = − e

πh̄2β

∑
αl

√
mαxmαy

ταl
log

1+ exp(β(EF −Wαl − eVG))

1+ exp(β(EF −Wαl))
.

It is clear from Eq. (4.57) that the resonance lifetimes are the key quantities building
up the new formula for the gate leakage current. These variables apparently replace the
familiar transmission coefficients that would emerge from traveling states contributing
to the current in accumulation mode. This feature reflects the scope of nuclear decay
theory which is a fair attempt to resolve the leakage current paradox. Although the lat-
ter theory produces a dynamical evolution of the one-particle wave functions, one can
eventually insert a time independent, yet non-equilibrium, statistical operator to cal-
culate the averages. It would be desirable to verify the success of this procedure on
the grounds of sound time-dependent non-equilibrium theory. The same recommenda-
tion can be made regarding a more systematic investigation of the agreement between
the results of the present calculation and the simulations based on Bardeen’s approach
(BARDEEN [1961]).

The above considerations have been used to evaluate the gate current numerically
(MAGNUS and SCHOENMAKER [2000a], MAGNUS and SCHOENMAKER [2000b]). In
Fig. 4.3 the simulation results are compared with a gate current characteristic that
was obtained from measurements on a large MIS transistor with a NO insulator and
grounded source and drain contacts. The latter serve as huge electron reservoirs capable
of replacing the channel electrons (inversion) that participate in the gate tunneling cur-
rent, such that the assumption on instantaneous injection or absorption compensating
for migrating electrons is justified.

The following parameters are used:T = 300 K,Tox = 25 Å,mgαx =mgαy =mgαz =
0.32m0, Nox = 3, m1,ox,α = m2,ox,α = m3,ox,α = 0.42m0. The barrier height and the
dielectric constant of the NO layer are taken to be 3.15 and 3.9 eV, respectively, while
the acceptor concentrationNA is 4× 1017 cm−3. Fig. 4.4 shows typical current-voltage
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FIG. 4.3. Gate tunneling current vs. gate voltage for a NO layer with thickness of 25 Å. The doping is
4× 1017 cm−3 andT = 300 K. (Figure reproduced by permission of The American Institute of Physics and

Springer Verlag.)

FIG. 4.4. Gate tunneling current vs. gate voltage for a NO layer with thickness of 15, 20 and 30 Å, the
substrate doping being 1018 cm−3. All other parameters are the same as in Fig. 4.3. (Figure reproduced by

permission of The American Institute of Physics and Springer Verlag.)

characteristics for oxide thicknesses of 15, 20 and 30 Å andNA = 1018 cm−3. The sim-
ulation results show a good agreement with the experimental data in the range 1–4 V.
It should be noted that the results are based on a set of “default” material parame-
ters (BRAR, WILK and SEABAUGH [1996], DEPAS, VANMEIRHAEGHE, LAFLERE and
CARDON [1994]). In particular for the effective electron mass in SiO2, we used the re-
sults from Brar et al. The latter ones were obtained by measurements onaccumulation
layers. We suspect that the overestimation of the gate leakage currents for higher volt-
ages is partly caused by the depletion layer in the poly-crystalline gate region (“poly-
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depletion”) such that a shift in the gate potential at the gate/insulator interface occurs.
Another origin of the discrepancy may be found in the approximations that are used
in the method. The evaluation of the resonance lifetimes of the states using the Breit–
Wigner expansion (BREIT and WIGNER [1936]) becomes less accurate if the overlap
increases.

4.8. Charges in insulators

Although there are no mobile charges in perfect insulators, static charges may be
present. Physically, these charges could be trapped during the processing of the insula-
tor, or caused by radiation damage or stressing conditions. In the simulation of charges
in insulators one first has to determine which time scale one is interested in. On the time
scale of the operation of device switching characteristics, one may safely assume that
the charges in insulators are immobile. However, on the time scale of the device life-
time or accelerated stressing condition, one must consider tunneling currents and trap
generations that definitely can be traced to mobile charges.

4.9. Dielectric media

A dielectric material increases the storage capacity of a condenser or a capacitor by
neutralizing charges at the electrodes that would otherwise contribute to the external
field. Faraday identified this phenomenon as dielectric polarization. The polarization is
caused by a microscopic alignment of dipole charges with respect to the external field.
Looking at the macroscopic scale, we may introduce a polarization vector field,P.

In order to give an accurate formulation of dielectric polarization we first consider an
arbitrary charge distribution localized around the origin. The electric potential in some
point r, is

(4.58)V (r)= 1

4πε0

∫
ρ(r′)

|r − r′| dτ ′.

Now let r be a point outside the localization region of the charge distribution, i.e.,|r|>
|r′|. From the completeness of the series of the spherical harmonics,Ylm(θ,φ), one
obtains

(4.59)
1

|r − r′| = 4π
∞∑
l=0

l∑
m=−l

1

2l + 1

|r′|l
|r|l+1

Y ∗
lm(θ

′, φ′)Ylm(θ,φ),

where

(4.60)Ylm(θ,φ)=
√

2l + 1

4π

(l −m)!
(l +m)!P

m
l (cosθ)eimφ

and

(4.61)Pml (x)= (−1)m(1− x2)m/2
dm

dxm
Pl(x)
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are the associated Legendre polynomials. Using above expansion, the potential of the
charge distribution can be written as:

(4.62)V (r)= 1

4πε0

∞∑
l=0

l∑
m=−l

4π

2l + 1
qlm

Ylm(θ,φ)

rl+1

and

(4.63)qlm =
∫
Y ∗
lm(θ

′, φ′)(r ′)lρ(r′)dτ ′

are themultipole momentsof the charge distribution. The zeroth-order expansion coef-
ficient

(4.64)q00 = 1

4π

∫
ρ(r)dτ = Q

4π

corresponds to total charge of the localized charge distribution. The total charge can be
referred to as the electricmonopolemoment. The electric dipole moment

(4.65)p =
∫

rρ(r)dτ

and the first order expansion coefficients are related according to

q1,1 = −
√

3

8π
(px − ipy),

(4.66)q1,−1 =
√

3

8π
(px + ipy),

q1,0 =
√

3

4π
pz.

The higher-order moments depend on the precise choice of the origin inside the charge
distribution and therefore their usage is mainly restricted to cases where a preferred
choice of the origin is dictated by the physical systems.4 The potential of the charge
distribution, ignoring second and higher order terms is

(4.67)V (r)= 1

4πε0

(
q

r
+ p · r

r3

)
and the electric field of a dipolep located at the origin is

(4.68)E(r)= 3n̂(p · n̂)− p
4πε0r3

andn̂ = r/|r|. This formula is correct provided thatr �= 0. An idealized dipole sheet at
x = 0 is described by a charge distribution

(4.69)ρ(r)= σ

4πε0
δ′(x),

4For example, the center of a nucleus provides a preferred choice of the origin. The quadrupole moment of
a nucleus is an important quantity in describing the nuclear structure.
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whereδ′ is the derivative of the delta function. The corresponding electric field is

(4.70)E(r)= − σ

4πε0
δ(x).

We will now consider the polarization of dielectric media and derive the macroscopic
version of Gauss’ law. If an electric field is applied to a medium consisting of a large
number of atoms and molecules, the molecular charge distribution will be distorted.
In the medium an electric polarization is produced. The latter can be quantitatively de-
scribed as a macroscopic variable or cell variable such asP =�p/�V , i.e., as the dipole
moment per unit volume. On a macroscopic scale, we may consider the polarization as
a vector field, i.e.,P(r). The potentialV (r) can be constructed by linear superposition
of the contributions from each volume element�Ω located atr′. Each volume element
gives a contribution originating from the net charge and a contributions arising from the
dipole moment.

(4.71)�V (r)= 1

4πε0

(
ρ(r′)

|r − r′|�Ω + P(r′) · (r − r′)
|r − r′|3

)
.

Adding all contributions and using the fact that

(4.72)∇′
(

1

|r − r′|
)

= r − r′

|r − r′|3 ,

we obtain

(4.73)V (r)= 1

4πε0

∫
dτ ′ 1

|r − r′|
(
ρ(r′)− ∇′ · P(r′)

)
.

This corresponds to the potential of a charge distributionρ − ∇ · P. Since the micro-
scopic equation∇ × E = 0 does apply also on the macroscopic scale, we conclude that
E is still derivable from a potential field,E = −∇V , and

(4.74)∇ ·E = 1

ε0
(ρ − ∇ ·P) .

This result can be easily confirmed by using

(4.75)∇2
(

1

|r − r′|
)

= −4πδ(r − r′).

The electric displacement,D, is defined as

(4.76)D = ε0E + P

and the first Maxwell equation becomes

(4.77)∇ ·D = ρ.

If the response of the medium to the electric field is linear and isotropic then the coeffi-
cient of proportionality is the electric susceptibility,χe and the polarization reads

(4.78)P = ε0χeE.
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and consequently,

(4.79)D = ε0(1+ χe)E = ε0εrE.

This is aconstitutiverelation connectingD andE, necessary to solve the field equa-
tions. Here we have limited ourselves to consider an elementary connection. However,
in general the connection can be non-linear and anisotropic, such thatP = P(E) will
involve a non-trivial expression.

It is instructive to apply above terminology to a parallel-plate capacitor. The storage
capacityC of two electrodes with charges±Q in vacuum isC = Q/V , whereV is
the voltage drop. Filling the volume between the plates with a dielectric material results
into a voltage drop

(4.80)V = Q/εr

C
.

This equation may be interpreted as stating that of the total chargeQ, the freecharge
Q/εr contributes to the voltage drop, whereas theboundcharge(1−1/εr)Q, is neutral-
ized by the polarization of the dielectric material. The electric susceptibility,χe emerges
as the ratio of the bound charge and the free charge:

(4.81)χe = (1− 1/εr)Q

Q/εr
= εr − 1.

The displacement and the polarization both have the dimension [charge/area]. These
variables correspond to electric flux densities. Given an infinitesimal area elementdS
on an electrode, the normal component ofD corresponds to the charge dQ = D · dS
on the area element and the normal component ofP represents the bound charge
(1 − 1/εr)dQ on the area element. Finally, the normal component ofε0E corresponds
to the free charge dQ/εr residing on the area element. The question arises how the dis-
placementD, the polarizationP andε0E can be associated to flux densities while there
is no flow. In fact, the terminology is justified by analogy or mathematical equivalence
with real flows. Consider for instance a stationary flow of water inR

3. There exists
a one-parameter family of mapsφt :R3 → R

3 that takes the molecule located at the
positionr0 at t0 to the positionr1 at t1. Associated to the flow there exists a flux field

(4.82)J(r)= dr
dt
.

The velocity field describes the streamlines of the flow. For an incompressible stationary
flow we have that for any volumeΩ

(4.83)
∮
∂Ω

J ·dS = 0 or ∇ ·J = 0.

The number of water molecules that enter a volume exactly balances the number of
water molecules that leave the volume. Now suppose that it is possible that water mole-
cules are created or annihilated, e.g., by a chemical reaction 2H2O ↔ O2 + 2H2 in
some volume. This process corresponds to a source/sink,Σ in the balance equation

(4.84)∇ ·J(r)=Σ(r).
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Comparing this equation with the first Maxwell equation, we observe the mathematical
equivalence. The charge densityρ acts as a source/sink for the flux fieldD.

4.10. Magnetic media

A stationary current density,J(r), generates a magnetic induction given by

(4.85)B(r)= µ0

4π

∫
dτ ′ J(r′)× r − r′

|r − r′|3 .
This result is essentially the finding of Biot, Savart and Ampère. With the help of
Eq. (4.72) we may write (4.85) as

(4.86)B(r)= µ0

4π
∇ ×

∫
dτ ′ J(r′)

|r − r′| .
An immediate consequence is∇ ·B = 0. Using the identity∇ × ∇ × A = ∇(∇ ·A)−
∇2A = 0, and the fact thatJ = 0, as well as Eq. (4.75) one obtains that

(4.87)∇ × B = µ0J.

Helmholtz’ theorem implies that there will be a vector fieldA such thatB = ∇ × A and
a comparison with Eq. (4.86) shows that

(4.88)A(r, t)= µ0

4π

∫
dτ ′ J(r′)

|r − r′| + ∇χ(r, t),
whereχ is an arbitrary scalar function. The arbitrariness in the solution (4.88) forA
illustrates the freedom to perform gauge transformations. This freedom however is lifted
by fixing a gauge condition, i.e., by inserting an additional constraint that the component
of A should obey, such that not all components are independent anymore. A particular
choice is the Coulomb gauge,∇ × A = 0. In that case,χ is a solution of Laplace’s
equation∇2χ = 0. Provided that there are no sources at infinity and space is unbounded,
the unique solution forχ is a constant, such that

(4.89)A(r, t)= µ0

4π

∫
dτ ′ J(r′)

|r − r′| .
We will now consider a localized current distribution around some origin,0. Then we

may expand Eq. (4.89) for|r|> |r′| using

(4.90)
1

|r − r′| = 1

|r| + r · r′

|r|3 + · · ·
as

(4.91)A(r)= µ0

4πr

∫
dτ ′ J(r′)+ µ0

4πr3

∫
dτ ′ (r · r′)J(r′).

The first integral is zero, i.e.,
∫

dτ J(r)= 0, whereas the second integral gives

(4.92)A(r)= µ0

4π

m × r
r3

, m = 1

2

∫
dτ r × J(r).
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The variablem is themagnetic momentof the current distribution. Following a similar
reasoning as was done for the dielectric media, we consider the macroscopic effects of
magnetic materials. Since∇ ·B = 0 at the microscopic scale, this equation also is valid
at macroscopic scale. Therefore, Helmholtz’ theorem is still applicable. By dividing
space into volume elements�V , we can assign to each volume element a magnetic
moment

(4.93)�m = M(r)�V,

whereM is the magnetization or magnetic moment density. For a substance consist-
ing of k different atoms or molecules with partial densitiesρi (i = 1, . . . , k) and with
magnetic momentmi for theith atom or molecule, the magnetization is

(4.94)M(r)=
k∑
i=1

ρi(r)mi .

The free-charge current density and the magnetization of the volume element�V at
locationr′, give rise to a contribution to the vector potential at locationr being

(4.95)�A(r)= µ0

4π

J(r′)
|r − r′|�V + µ0

4π

M(r′)× (r − r′)
|r − r′|3 �V.

Adding all contributions

(4.96)A(r)= µ0

4π

∫
dτ ′ J(r′)+ ∇ ×′ M(r′)

|r − r′| .

This corresponds to the vector potential of a current distributionJ+∇×M and therefore

(4.97)∇ × B = µ0(J + ∇ × M).

The magneticfield is defined as

(4.98)H = 1

µ0
B − M.

Then the stationary macroscopic equations become

(4.99)∇ × H = J, ∇ ·B = 0.

If we follow a strict analogy with the discussion on electrical polarization we should
adopt a linear relation between the magnetizationM and the inductionB in order to
obtain a constitutive relation betweenH and B. However, historically it has become
customary to define themagnetic susceptibilityχm as the ratio of the magnetization and
the magnetic field

(4.100)M = χmH.

Then we obtain

(4.101)B = µ0(H + M)= µ0(1+ χm)H = µ0µrH = µH.

In here,µ is thepermeabilityandµr is therelativepermeability.
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Just as is the case for electrical polarization, the constitutive relation,B = B(H),
can be anisotropic and non-linear. In fact, theB(H) relation may be multiple-valued
depending on the history of the preparation of the material or the history of the applied
magnetic fields (hysteresis).

In deriving the macroscopic field equations, we have so far been concerned with
stationary phenomena. Both the charge distributions and the current distributions were
assumed to be time-independent. The resulting equations are

(4.102)∇ × E = 0,

(4.103)∇ ·B = 0,

(4.104)∇ ·D = ρ,

(4.105)∇ × H = J.

Faraday’s law that was obtained from experimental observation, relates the circulation
of the electric field to the time variation of the magnetic flux

(4.106)
∮

E ·dr = − d

dt

∫
B ·dS,

or

(4.107)∇ × E + ∂B
∂t

= 0.

Magnetic monopoles have never been observed nor mimiced by time-varying fields.
Therefore, the equation∇ · B = 0 holds in all circumstances. Maxwell observed that
the simplest generalization of Eqs. (4.104) and (4.105) that apply to time-dependent
situations and that are consistent with charge conservation, are obtained by substituting
J in Eq. (4.105) byJ+∂D/∂t , since using the charge conservation and Gauss’ law gives

(4.108)∇ ·
(

J + ∂D
∂t

)
= 0,

such that the left- and right-hand side of

(4.109)∇ × H = J + ∂D
∂t

are both divergenceless. Eqs. (4.103), (4.107), (4.104) and (4.109) are referred to as
the (macroscopic)Maxwell equations. From a theoretical point of view, the Maxwell
equations (4.103) and (4.107) found their proper meaning within the geometrical inter-
pretation of electrodynamics, where they are identified as the Bianci identities for the
curvature (see Section 8).

5. Wave guides and transmission lines

An important application of the Maxwell theory concerns the engineering of physical
devices that are capable of transporting electromagnetic energy. This transport takes
place in a wave-like manner. The static limit does not take into account the wave behav-
ior of the Maxwell equations. The easiest way to implement this feature is by confining
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the field in two dimensions, allowing it to move freely along the third dimension (i.e.,
longitudinal sections are much larger than transversal directions). In this way, guided
waves are recovered. A particular case of this model is the transmission line.

The wave guide consists of boundary surfaces that are good conductors. In practical
realizations these surfaces are metallic materials such that the ohmic losses will be low.
In the description of wave guides one usually assumes that the surfaces are perfectly
conducting in a first approximation and that for large but finite conductivity, the ohmic
losses can be calculated by perturbative methods. Besides the (idealized) boundary sur-
faces, the wave guide consists of a dielectric medium with no internal charges (ρ = 0),
no internal currents (J = 0). Furthermore, for an idealized description it is assumed that
the conductivity of the dielectric medium vanishes (σ = 0). Finally, a wave guide is
translational invariant in one direction. It has become customary, to choose thez-axis
parallel to this direction.

In order to solve the Maxwell equations for wave guides, one considers harmonic
fields (modes). The generic solution may be obtained as a superposition of different
modes. The physical fieldsE(r, t) andH(r, t) are obtained from

(5.1)E(r, t)= �(E(r)eiωt), H(r, t)= �(H(r)eiωt),
whereE(r) and H(r) are complex phasors. The Maxwell equations governing these
phasors are

(5.2)
∇ ·E = 0, ∇ ·H = 0,

∇ × E = −iωµH, ∇ × H = iωεE.

Definingωµ = kζ andωε = k/ζ thenk = ω
√
µε andζ = √

µ/ε. From Eqs. (5.2) it
follows that the phasors satisfy the following equation:

(5.3)(∇2 + k2)

{
E
H

}
= 0.

The translational invariance implies that ifE(r),H(r) is a solution of Eq. (5.3), then
E(r + a), H(r + a) with a = aez, is also a solution of Eq. (5.3). We may therefore
introduce a shift operator,̂S(a) such that

(5.4)Ŝ(a)

{
E(r)
H(r)

}
=
{

E(r + a)

H(r + a)

}
.

Performing a Taylor series expansion gives

(5.5)E(r + a)=
∞∑
n=0

an

n!
∂n

∂zn
E(r)= exp

(
a
∂

∂z

)
E(r)

and thereforeŜ(a) = exp(a ∂
∂z
) = exp(iak̂) with k̂ = −i ∂

∂z
. The Helmholtz operator

Ĥ = ∇2 + k2 commutes withk̂, i.e., [Ĥ , k̂] = 0. As a consequence we can write the
solutions of Eq. (5.3) in such a way that they are simultaneously eigenfunctions ofĤ

andk̂. The eigenfunctions of̂k are easily found to be

(5.6)f (z)= eiκz,
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since

(5.7)−i
d

dz
f (z)= κf (z).

Thus from the translational invariance we may conclude that it suffices to consider so-
lutions for E and H of the form E(x, y)eiκz and H(x, y)eiκz. Defining explicitly the
transversal and the longitudinal components of the fields

(5.8)
E(x, y)= ET(x, y)+ EL(x, y), EL(x, y)=Ez(x, y)ez,

H(x, y)= HT(x, y)+ HL(x, y), HL(x, y)=Hz(x, y)ez,

and

(5.9)∇2 = ∇2
T + ∂

∂z2
= ∇2

T − κ2,

where the subscript T stands for a transverse field in thex–y-plane, while the subscript
L denotes the longitudinal fields along thez-axis, we obtain

(5.10)

(∇2
T + k2 − κ2){ET(x, y)

HT(x, y)

}
= 0,

(∇2
T + k2 − κ2){Ez(x, y)

Hz(x, y)

}
= 0.

The transverse equations correspond to an eigenvalue problem with fields vanishing at
the boundaries in the transverse directions. The characteristic equations that need to
be solved are the Helmholtz equations resulting into eigenvalue problems, where the
eigenvalues arep2 = k2 − κ2. The boundary conditions for the fields on the boundary
surfaces are

(5.11)n × E = 0, n ·H = 0.

For the transverse components, going back to the full Maxwell equations, we get from
Eq. (5.2)

(5.12)∇TEz − ∂

∂z
ET = −iωµez × HT

and

(5.13)∇THz − ∂

∂z
HT = iωεez × ET.

Combining (5.12) and (5.13), gives

p2ET = iωµez × ∇THz + iκ∇TEz,

p2HT = −iωεez × ∇TEz + iκ∇THz.

We may define the transversal fields as

(5.14)ET ∝ V (z)e
(1)
t , HT ∝ I (z)e

(2)
t ,

wheree
(1)
t ande

(2)
t are transversal vectors independent ofz.
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FIG. 5.1. Contours for evaluating voltage drops and currents of a two-conductor system in a TEM mode.

5.1. TEM modes

Inspired by waves in free space, we might look for modes that have a transverse behavior
for both electric as magnetic field component, i.e.,Ez =Hz = 0. These solutions are the
transverse electromagnetic or TEM modes.

(5.15)
[∇2

T + p2]ET = 0,
[∇2

T + p2]HT = 0.

For the TEM mode, the Maxwell equations result intoκ = k. As a consequence
Eqs. (5.15) are void. However, one also obtains from the Maxwell equations (5.12)
and (5.13) that

(5.16)∇ × ET = 0, ∇ ·ET = 0, HT = 1

ζ
ez × ET.

Therefore the TEM modes are as in an infinite medium. SinceEz = 0, the surfaces
are equipotential boundaries and therefore at least two surfaces are needed to carry the
wave. Since in any plane with constantz, we have a static potential, we can consider an
arbitrary path going from one conductor to another. The voltage drop will be

(5.17)V (z)=
∫
Γ 1

ET ·dr.

The current in one conductor can be evaluated by taking a closed contour around the
conductor and evaluate the field circulation. This is illustrated in Fig. 5.1.

(5.18)I (z)=
∮
Γ 2

HT ·dr.

5.2. TM modes

When we look at solutions for which the longitudinal magnetic field vanishes (Hz = 0
everywhere), the magnetic field is always in the transverse direction. These solutions
are the transverse magnetic or TM modes.

(5.19)
[∇2

T + p2]Ez = 0,
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(5.20)p2ET = iκ∇TEz,

(5.21)p2HT = −iωεez × ∇TEz.

To find the solution of these equations, we need to solve a Helmholtz equation forHz,
and from Eqs. (5.20) and (5.21), the transverse field components are derived. Eq. (5.20)
implies that∇T × ET = 0 and also that∇T × e

(1)
T = 0. Therefore, we may introduce a

(complex) transverse potentialφ such that

(5.22)e
(1)
t = −∇Tφ.

This potential is proportional toEz, i.e.,

(5.23)Ez = −p
2

iκ
V (z)φ.

Substitution of the (5.14) and (5.14) into (5.13) gives thate
(2)
t = ez × e

(1)
t andV (z)=

−(κ/ωε)I (z).

5.3. TE modes

Similarly, when we look at solutions for which the longitudinal electric field vanishes
(Ez = 0 everywhere), the electric field is always in the transverse direction. These solu-
tions are the transverse electric or TE modes.

(5.24)
[∇2

T + p2]Bz = 0,

(5.25)p2ET = iωµez × ∇THz,

(5.26)p2HT = iκ∇THz.

To find the solution of these equations, we need to solve a Helmholtz equation forBz,
and from Eqs. (5.25) and (5.26), the transverse field components are derived. Since in
this case∇T × HT = 0 there exists a scalar potentialψ such that

(5.27)e
(2)
t = −∇Tψ.

Following a similar reasoning as above we obtain that

(5.28)Hz = p2

ikζ
V (z)ψ.

Furthermore, we find thate(1)t = −ez × e
(2)
t andV (z)= −(ωµ/κ)I (z).

5.4. Transmission line theory – S parameters

The structure of the transverse components of the electric and magnetic fields gives
rise to an equivalent-circuit description. In order to show this, we will study the TM
mode, but the TE description follows the same reasoning. By assuming the generic
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transmission-line solutions

(5.29)V (z)= V+e−iκz + V−eiκz,

(5.30)I (z)= 1

Zc

(
V+e−iκz − V−eiκz),

whereZc is the characteristic impedance of the transmission line or the “telegraph”
equations

(5.31)
dV (z)

dz
= −ZI (z),

(5.32)
dI (z)

dz
= −YV (z).

In these equations, the series impedance is denoted byZ andY is the shunt admittance
of the equivalent transmission line model. Each propagating mode corresponds to an
eigenvaluep and we find that

(5.33)Z = p2 − k2

iωε
, Y = iωε.

From these expressions, the resulting equivalent circuit can be constructed.

6. From macroscopic field theory to electric circuits

6.1. Kirchhoff ’s laws

Electronic circuits consist of electronic components or devices integrated in a network.
The number of components may range form a few to several billion. In the latter case
the network is usually subdivided in functional blocks and each block has a unique func-
tional description. The hierarchal approach is vital to the progress of electronic design
and reuse of functional blocks (sometimes referred to as intellectual property) deter-
mines the time-to-market of new electronic products. Besides the commercial value of
the hierarchical approach, there is also a scientific benefit. It is not possible to design
advanced electronic circuits by solving the Maxwell equations using the boundary con-
ditions that are imposed by the circuit. The complexity of the problem simply does not
allow such an approach taking into account the available compute power and the con-
straints that are imposed on the design time. Moreover, a full solution of the Maxwell
equations is often not very instructive in obtaining insight into the operation of the cir-
cuit. In order to understand the operation or input/output response of a circuit, it is bene-
ficial to describe the circuit in effective variables. These coarse-grained variables (in the
introduction we referred to these variables as “baskets”) should be detailed enough such
that a physical meaning can be given to them, whereas on the other hand they should
be sufficiently “coarse” so as to mask details that are not relevant for understanding the
circuit properties. The delicate balancing between these two requirements has resulted
into “electronic circuit theory”. The latter is based on the physical laws that are ex-
pressed by Maxwell’s equations, and the laws of energy and charge conservation. The
purpose of this section is to analyze how the circuit equations may be extracted from
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these microscopic physical laws. It should be emphasized that the extraction is not a
rigorous derivation in the mathematical sense but relies on the validity of a number of
approximations and assumptions reflecting the ideal behavior of electric circuits. These
assumptions should be critically revised if one wishes to apply the circuit equations in
areas that are outside the original scope of circuit theory. A simple example is a ca-
pacitor consisting of two large, conducting parallel plates separated by a relatively thin
insulating layer: its capacity may be a suitable, characteristic variable for describing its
impact in a circuit at low and moderately high frequencies. However, at extremely large
frequencies the same device may act as a wave guide or an antenna, partly radiating the
stored electromagnetic energy.

Being aware of such pitfalls, we continue our search for effective formulations of
the circuit equations. In fact, the underlying prescriptions are given by the following
(plausible) statements:

• A circuit can be represented by a topological network that consists of branches and
nodes.

• Kirchhoff’s voltage law (KVL) – The algebraic sum of all voltages along any
arbitrary loop of the network equals zero at every instant of time.

• Kirchhoff’s current law (KCL) – The algebraic sum of all currents entering or
leaving any particular network node equals zero at every instant of time.

In order to make sense out of these statements we first need to have a clear understanding
of the various words that were encountered; in particular, we must explain what is meant
by a node, a branch, a voltage and a current. For that purpose we consider the most
elementary circuit: a battery and a resistor that connects the poles of the battery. The
circuit is depicted in Fig. 6.1. We have explicitly taken into account the finite resistance
of the leads. In fact, a more realistic drawing is presented in Fig. 6.2, where we account
for the fact that the leads have a finite volume. In particular, we have divided the full
circuit volume into four different regions: (1) the battery regionΩB, (2) the left lead
regionΩ1L, (3) the right lead regionΩ2L, and (4) the resistor regionΩA.

We will now consider the power supplied by the battery to the circuit volume. The
work done by the electromagnetic field on all charges in the circuit volume per unit time

FIG. 6.1. Closed electric circuit containing a resistor connected to a DC power supply through two resistive
leads.
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FIG. 6.2. The electric circuit of Fig. 6.1, taking into account the spatial extension of the leads.Γ is a circuit
loop, i.e., an internal, closed loop encircling the “hole” of the circuit. (Figure reproduced by permission of the

American Physical Society and Springer Verlag.)

is given by

(6.1)
dEMECH

dt
=
∫
Ω

J ·E dτ.

This corresponds to the dissipated power in steady-state conditions for which(∂ρ/∂t)=
0. As a consequence,∇ · J = 0 and therefore we may apply theJ · E theorem (see
Appendix A). We obtain:

(6.2)
∫
Ω

J ·E dτ =
(∮

Σ

J ·dS
)(∮

Γ

E ·dr
)
,

whereΣ is an arbitrary cross section of the circuit andΓ is a circuit loop, i.e., an
arbitrary closed path inside the circuit region. We identify the first integral of the right-
hand side of Eq. (6.2) as thecurrent in the circuit. The second integral of the right-hand
side of Eq. (6.2) is identified as theelectromotive force(EMF) or thevoltagethat is
supplied by the battery,Vε. The latter is nothing but the work done per unit charge
by the electric field when the charge has made one full revolution around the circuit.
Note the integral

∮
Γ

E · dr is non-zero, although∇ × E = 0. This is possible because
the circuit is not a simply connected region inR

3. More precisely, the topology of the
circuit is that of a manifold of genus one, say a torus or a toroidal region with one “hole”.
We may now consider the left-hand side of Eq. (6.2) and consider the contributions to
Eq. (6.2). For region (2) we obtain:

(6.3)
∫
Ω1L

J ·E dτ = −
∫
Ω1L

(∇V ) ·J dτ = −
∫
Ω1L

∇ · (V J)dτ +
∫
Ω1L

V∇ ·J dτ.

The first equality is valid sinceE = −∇V , in a simply-connected region such asΩ1L,
Ω2L, ΩA orΩB. The last integral is equal to zero, since∇ · J = 0 and the one-but-last
integral is

(6.4)−
∫
Ω1L

∇ · (V J)dτ = −
∮
∂Ω1L

V J ·dS.
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If we now assumethat the potential is constant on a cross-section of the circuit, then
this integral has two contributions:

(6.5)−
∮
∂Ω1L

V J ·dS = −VΣ1B

∫
Σ1B

J ·dS − VΣ1A

∫
Σ1A

J ·dS.

Using Gauss’ theorem we may identify the two remaining surface integrals can be iden-
tified as the total currentI . Indeed, in the steady state regime (∂ρ/∂t = 0) the divergence
of J vanishes whileJ is assumed to be tangential to the circuit boundary∂Ω . Therefore,
the vanishing volume integral of∇ ·J overΩ1L reduces to

(6.6)0 =
∫
∂Ω1L

J ·dS =
∫
Σ1A

J ·dS −
∫
Σ1B

J ·dS,

which justifies the identification

(6.7)
∫
Σ1A

J ·dS =
∫
Σ1B

J ·dS ≡ I

whence

(6.8)−
∮
∂Ω1L

V J ·dS = I (VΣ1A − VΣ1B).

The regions (3) and (4) can be evaluated in a similar manner. As a consequence we
obtain:

(6.9)

I (VΣ2B − VΣ2A)+ I (VΣ2A − VΣ1A)+ I (VΣ1A − VΣ1B)+
∫
ΩB

J ·E dτ = IVε.

The final integral that applies to the battery region, is also equal to zero. This is because
the electric field consists of two components: a conservative component and a non-
conservative component, i.e.,E = EC + ENC. The purpose of the ideal5 battery is to
cancel the conservative field, such that after a full revolution around the circuit a net
energy supply is obtained from the electric field. Then we finally arrive at the following
result:

(6.10)Vε = VΣ2B − VΣ1B.

Eq. (6.10) is not a trivial result: having been derived from energy considerations, it
relates the EMF of the battery, arising from a non-conservative field, to the potential
difference at its terminals, i.e., a quantity characterizing a conservative field. Physically,
it reflects the concept that an ideal battery is capable of maintaining a constant potential
difference at its terminals even if a current is flowing through the circuit. This example
illustrates how Kirchhoff’s laws can be extracted from the underlying physical laws.
It should be emphasized that we achieved more than what is provided by Kirchhoff’s
laws. Often Kirchhoff’s voltage law is presented as atrivial identity, i.e., by puttingN
nodes on a closed path, as we have done by selecting a series of cross sections, it is

5The internal resistance of a real battery is neglected here.
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always true that

(6.11)(V1 − V2)+ (V2 − V3)+ · · · + (VN−1 − VN)+ (VN − V1)= 0.

Physics enters this identity (turning it into a useful equation) by relating the poten-
tial differences to their physical origin. In the example above, the potential difference,
VΣ2B − VΣ1B, is the result of a power supply.

By the in-depth discussion of the simple circuit, we have implicitly provided a de-
tailed understanding of what is understood to be a voltage, a current, a node and a branch
in a Kirchhoff network. The nodes are geometrically idealized regions of the circuit to
which network branches can be attached. The nodes can be electrically described by
a single voltage value. A branch is also a geometrical idealization. Knowledge of the
currentdensityinside the branch is not required. All that counts is the total current in
the branch. We also have seen that at some stages only progress could be made by mak-
ing simplifying assumptions and finally that all variables are time independent. The last
condition is a severe limitation. In the next section we will discuss the consequences
of eliminating this restriction. We can insert more physics in the network description.
So far, we have not exploited Ohm’s law,J = σE. For a resistor with lengthL, cross
sectional areaA and constant resistivityσ , we find that

(6.12)

∫
ΩA

J ·E dτ = σ

∫
(∇V )2 dτ = σL ·A

(
VΣ2A − VΣ1A

L

)2

= I (VΣ2A − VΣ1A).

As a result, we can “define” the resistance as the ratio of the potential difference and the
current:

(6.13)VΣ2A − VΣ1A =RI, R = L

σA
.

6.2. Circuit rules

In the foregoing section we have considered DC steady-state currents, for which∇ ·
J = 0 and∂B/∂t = 0, such that theJ · E theorem could be applied. In general, these
conditions are not valid and the justification of using the Kirchhoff’s laws becomes more
difficult. Nevertheless, the guiding principles remain unaltered, i.e., the conservation of
charge and energy will help us in formulating the circuit equations. On the other hand, as
was already mentioned in the previous section, the idealization of a real circuit involves
a number of approximations and assumptions that are summarized below in a – non-
exhaustive – list of circuit rules:

(1) An electric circuit, or more generally, a circuit network, is a manifold of genus
N � 1, i.e., a multiply connected region withN holes. The branches of this man-
ifold consist of distinct circuit segments or devices, mainly active and passive
components, interconnecting conductors and seats of EMF.

(2) The active components typically include devices that are actively processing sig-
nals, such as transistors, vacuum tubes, operational amplifiers, A/D converters.
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(3) Passive components refer to ohmic resistors, capacitors and inductors or coils,
diodes, tunneling junctions, Coulomb blockade islands, etc. They are repre-
senting energy dissipation, induction effects, quantum mechanical tunneling
processes and many other phenomena.

(4) The seats of EMF include both DC and AC power supplies, i.e., chemical bat-
teries, EMFs induced by externally applied magnetic fields, all different kinds
of current and voltages sources and generators, etc. The electromagnetic power
supplied by the EMF sources is dissipated entirely in the circuit. No energy is
released to the environment of the circuit through radiation or any other mecha-
nism.

(5) In compliance with the previous rule, all circuit devices are assumed to behave in
an ideal manner. First, all conductors are taken to be perfect conductors. Consid-
ering perfect conduction as the infinite conductivity limit of realistic conduction
(J = σE), it is clear that no electric fields can survive inside a perfect conduc-
tor which therefore can be considered an equipotential volume. Clearly, from
∇ ·E = ρ/ε it follows that the charge density also vanishes inside the conductor.
Furthermore, a perfect conductor is perfectly shielded from any magnetic field.
Strictly speaking, this is not a direct consequence of Maxwell’s third equation,
since∇ × E = 0 would only imply ∂B/∂t = 0 but the effect of static magnetic
fields on the circuit behavior will not be considered here. It should also be noted
that a perfect conductor is not the same as a superconductor. Although for both
devices the penetration of magnetic fields is restricted to a very narrow boundary
layer, called penetration depth, only the superconductor hosts a number of “nor-
mal” electrons (subjected to dissipative transport) and will even switch entirely
to the normal state when the supercurrent attains its critical value. Furthermore,
a supercurrent can be seen as a coherent, collective motion of so-called Cooper
pairs of electrons, i.e.,bosonswhile perfect conduction is carried by unpaired
electrons or holes, i.e.,fermions. Next, all energy dissipation exclusively takes
place inside the circuit resistors. This implies that all capacitors and inductors
are assumed to be made of perfect conductors. Inside the windings of an induc-
tor and the plates of a capacitor, no electric or magnetic fields are present. The
latter exist only in the cores of the inductors6 while the corresponding vector
potential and induced electric field are localized in the inductor. Similarly, the
electric charge on the plates of a capacitor are residing in a surface layer and the
corresponding, conservative electric field is strictly localized between the plates
while all stray fields are ignored. Finally, the ideal behavior of the seats of EMF
is reflected in the absence of internal resistances and the strict localization of the
non-conservative electric fields that are causing the EMFs.

(6) The current density vectorJ defines a positive orientation of the circuit loopΓ .
It corresponds the motion of a positive charge moving from the anode to the
cathode outside the EMF seat and from cathode to anode inside the EMF seat.

6Topologically, the cores are not part of the circuit regionΩ .
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6.3. Inclusion of time dependence

The previous set of rules will guide us towards the derivation of the final circuit
equations. However, before turning to the latter, it is worth to have a second look at
Eq. (6.11). In the continuum, this identity can be given in the following way:

(6.14)
∮
Γ

dr ·∇V (r, t)= 0,

whereΓ is an arbitrary closed loop. Note that above equation includes time-dependent
fieldsV (r, t). In order to validate the first Kirchhoff law (KVL), we insert into Eq. (6.14)
the potential that corresponds to

(6.15)∇V = −E − ∂A
∂t
.

Of course, if we were to plug this expression into Eq. (6.14), we would just arrive at
Faraday’s law. The transition to the circuit equations is realized by cutting the loop into
discrete segments (rule 1) and assigning to each segment appropriate lumped variables.
To illustrate this approach we revisit the circuit of Fig. 6.1, where we have now folded
the resistor of the left lead into a helix and, according to the circuit rules, its resistance
is taken to be zero whereas the top resistor is replaced by a capacitor. The resulting,
idealized circuit depicted in Fig. 6.3 has four segments. The battery region, that now
may produce a time-dependent EMF, and the right-lead region can be handled as was
done in the foregoing section. According to the circuit rules, it is assumed that all re-
sistance is concentrated in the resistor located between node 3 and node 4, while both
the inductor and the capacitor are made of perfect conductors and no leakage current is
flowing between the capacitor plates. Starting from the identities

(6.16)V1 − V2 + V2 − V3 + V3 − V4 + V4 − V1 = 0,

(6.17)
∮
Γ

E ·dr + ∂

∂t

∮
Γ

A ·dr = 0,

we decompose the electric field into a conservative, an external and induced component:

(6.18)E = EC + EEX + EIN,

FIG. 6.3. The electric circuit of Fig. 6.2 with a helix-shaped “resistor”.
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where

(6.19)
A = AEX + AIN, EC = −∇V,

EEX = − ∂

∂t
AEX, EIN = − ∂

∂t
AIN .

Since the battery and the inductor are perfect conductors, the total electric field in these
devices is identically zero:

(6.20)
∫ 4

1
dr ·E = 0,

(6.21)
∫ 1

2
dr ·E = 0.

Following the circuit rules, we assume that the induced electric field and the external
field are only present in the inductor region and the battery region, respectively. Then
Eq. (6.21) can be evaluated as

(6.22)
∫ 1

2
dr ·E =

∫ 1

2
dr · (EC + EIN)= V2 − V1 +

∫ 1

2
dr ·EIN = 0

and therefore

(6.23)V1 − V2 =
∫ 1

2
dr ·EIN .

For the battery region we obtain:

(6.24)
∫ 4

1
dr ·E =

∫ 4

1
dr · (EC + EEX)= V1 − V4 +

∫ 4

1
dr ·EEX = 0

and therefore

(6.25)V4 − V1 =
∫ 4

1
dr ·EEX =

∮
dr ·EEX = Vε.

Inside the capacitor, the induced and external fields are zero, and therefore we obtain

(6.26)
∫ 2

3
dr ·E =

∫ 2

3
dr ·EC = V3 − V2.

On the other hand, the potential difference between the capacitor is assumed to be pro-
portional to chargeQ stored on one of the plates, i.e.,Q= CV , whereC is thecapaci-
tance. The resistor is treated in an analogous manner:

(6.27)V4 − V3 =
∫ 3

4
dr ·EC = IR.

Insertion of all these results into Eq. (6.16) gives:

(6.28)
∫ 2

1
EIN ·dr = −Vε + IR + Q

C
,
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where we anticipated that the electric field between the capacitor plates is given by
Q/(Cd) andd is the thickness of the dielectric. The integral at the left-hand side of
Eq. (6.28) can be obtained by using Faraday’s law once again:

(6.29)
∫ 1

2
EIN ·dr �

∮
Γ

EIN ·dr = − ∂

∂t

∮
Γ

AIN ·dr = − ∂

∂t

∫
S(Γ )

BIN ·dS,

whereS(Γ ) is the area enclosed by the loopΓ . Since the magnetic fieldB is only
appreciably different from zero inside the core of the inductor, the integral may be
identified as the magnetic self-fluxΦM of the inductor. This flux is proportional to the
circuit currentI that also flows through the windings of the coil. Hence,ΦM = LI ,
whereL is theinductanceof the inductor and therefore Eq. (6.23) becomes:

(6.30)V1 − V2 = −LdI

dt
.

We are now in the position to write down the circuit equation for the simple circuit of
Fig. 6.3. Starting from the identity of Eq. (6.16), we find

(6.31)−LdI

dt
+ Vε − IR − Q

C
= 0.

So far, we have not considered energy conservation for the time-dependent circuit equa-
tions. However, this conservation law is important for determining explicit expressions
for the inductances and capacitances. Integrating the electromagnetic energy density
uEM over an arbitrarily large volumeΩ∞ with a boundary surface∂Ω∞, we obtain the
total energy content of the electromagnetic field:

(6.32)UEM = 1

2

∫
Ω∞

dτ

(
εE2 + B2

µ

)
= 1

2

∫
Ω∞

dτ (E ·D + B ·H).

ReplacingE and B by −∇V − ∂A/∂t and ∇ × A, respectively, we may rewrite
Eq. (6.32) as

(6.33)UEM = 1

2

∫
Ω∞

dτ

[
−
(

∇V + ∂A
∂t

)
·D + H ·∇ × A

]
.

Next, exploiting the vector identity (A.40), we applying Gauss’ theorem to the volume
Ω∞ thereby neglecting all fields at the outer surface∂Ω∞, i.e.,

(6.34)
∫
∂Ω∞

dS · (VD)= 0,

we obtain:

(6.35)−
∫
Ω∞

dτ ∇V ·D =
∫
Ω∞

dτ V∇ ·D =
∫
Ω∞

dτ ρV,

where the last equality follows from the first Maxwell equation∇ ·D = ρ.
Similarly, using the identity (A.39) and inserting the fourth Maxwell equation, we

may convert the volume integral ofH ·∇ × A appearing in Eq. (6.33):

(6.36)
∫
Ω∞

dτ H ·∇ × A =
∫
Ω∞

dτ A ·
(

J + ∂D
∂t

)
.
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Putting everything together, we may express the total electromagnetic energy as follows:

(6.37)UEM = 1

2

∫
Ω∞

dτ

[
ρV − ∂A

∂t
·D + A ·

(
J + ∂D

∂t

)]
(6.38)= 1

2

∫
Ω

dτ

[
ρV − ∂A

∂t
·D + A ·

(
J + ∂D

∂t

)]
,

where the last integral is restricted to the circuit regionΩ in view of the circuit rules
stating that all electromagnetic fields are vanishing outside the circuit region. It is easy to
identify in Eq. (6.38) the “electric” and “magnetic” contributions respectively referring
toE2 andB2 in Eq. (6.32):

(6.39)UEM =UE +UM,

(6.40)UE = 1

2

∫
Ω

dτ

(
ρV − ∂A

∂t
·D
)
,

(6.41)UM = 1

2

∫
Ω

dτ A ·
(

J + ∂D
∂t

)
.

Neglecting the magnetic field inside the ideal circuit conductors according to the circuit
rules, we take∇ × A to be zero inside the circuit. Moreover, bearing in mind that the
identity

(6.42)∇ ·
(

J + ∂D
∂t

)
= 0

is generally valid, we may now apply theJ · E theorem to the combinationA · (J +
∂D/∂t):

(6.43)UM = 1

2

(∮
Γ

dr ·A
)(∫

Σ

dS ·
(

J + ∂D
∂t

))
.

The loop integral clearly reduces to the total magnetic flux, which consists of the self-
fluxΦM and the external fluxΦex. Furthermore, due to Eq. (6.42), the surface integral of
Eq. (6.41) can be calculated for any cross-sectionΣ that does not contain accumulated
charge. TakingΣ in a perfectly conducting lead, we haveD = 0 and the integral reduces
to the total currentI = ∫

Σ
dS ·J. On the other hand, if we were choosingΣ to cross the

capacitor dielectric, the current density would vanish and the integral would be equal to
dΦD(t)/dt where

(6.44)ΦD(t)=
∫
Σ

dS ·D(r, t)

is the flux of the displacement vector. Since both choices ofΣ should give rise to iden-
tical results, we conclude that

(6.45)I (t)= dΦD(t)

dt

which confirms the observation that the circuit of Fig. 6.3 where the capacitor is in
series with the other components, can only carry charging and discharging currents. In
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any case, we are left with

(6.46)UM = 1
2(ΦM +Φex)I

or, reusing the “definition” of inductance, i.e.,ΦM = LI ,

(6.47)UM = 1
2LI

2 + 1
2ΦexI,

where(1/2)LI2 is the familiar expression for the magnetic energy stored in the core of
the inductor.

The electric energy may be rewritten in terms of capacitances in an analogous manner.
The contribution of∂A/∂t · D in Eq. (6.40) vanishes because∂A/∂t , representing the
non-conservative electric field, is non-zero only inside the inductor and the generator
regions, where the total electric field reduces to zero. On the other hand, for perfectly
conducting leads that are also equipotential domains, the first term gives:

(6.48)UE = 1

2

∑
n

QnVn,

whereVn generally denotes the potential of thenth (ideal) conductor, containing a
chargeQn. Being expressed in terms of bare potentials, the result of Eq. (6.48) seems
to be gauge dependent at a first glimpse. It should be noted however, that Eq. (6.48) has
been derived within the circuit approximation, which implies that the charged conduc-
tors are not arbitrarily distributed in space, but are all part of the – localized – circuit.
In particular, the chargesQn are assumed to be stored on the plates of the capacitors of
the circuit, and as such the entire set{Qn} can be divided into pairs of opposite charges
{(Qj ,−Qj)}. Hence, Eq. (6.48) should be read

(6.49)UE = 1

2

∑
j

Qj (V1j − V2j )= 1

2

∑
j

Cj (V1j − V2j )
2,

whereV1j − V2j is the gauge-invariant potential difference between the plates of the
j th capacitor.

The second Kirchhoff law (KCL), follows from charge conservation. The branches in
the network can not store charge, unless capacitors are included. The integrated charge
is denoted byQn and

(6.50)
dQj

dt
= −

∫
J ·dS =

∑
k

Ijk,

where the surface integral is over a surface around charge-storage domain andIjk is
the current flowing from the charge-storage regionj into thej th circuit branch. As in
the steady-state case, the Kirchhoff laws, in particular the expressions for the various
voltage differences could only be obtained if some simplifying assumptions are made.
For the inductor it was assumed that the induced magnetic field is only different from
zero inside the core. For the capacitor, in a similar way it was assumed that the energy of
storing the charge is localized completely between the plates. These assumptions need
to be carefully checked before applying the network equations. As an illustration of
this remark we emphasize that we ignored the volume integrals that are not parts of the
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circuits. In particular, the integral of the electric energy outside the circuit is the kinetic
part of the radiation energy:

(6.51)U rad
E = −1

2

∫
Ω∞\Ω

dτ
∂A
∂t

·D = 1

2
ε

∫
Ω∞\Ω

dτ
∂A
∂t

· ∂A
∂t
,

and the potential energy of the radiation field:

(6.52)U rad
M = − 1

2µ

∫
Ω∞\Ω

dτ (∇ × A) · (∇ × A)

are not considered at the level of circuit modeling.

7. Gauge conditions

The Maxwell theory of electrodynamics describes the interaction between radiation and
charged particles. The electromagnetic fields are described by six quantities, the vector
components ofE andB. The sources of the radiation fields are represented by the charge
densityρ and the current densityJ. If the sources are prescribed functionsρ(r, t) and
J(r, t), then the evolution ofE(r, t) andB(r, t) is completely determined. The fields
E and B may be obtained from a scalar potentialV and a vector potentialA such
that

(7.1)E = −∇V − ∂A
∂t
, B = ∇ × A.

As was mentioned already in Section 3, the potentials(V ,A) are not unique. The choice

(7.2)V → V ′ = V − ∂Λ

∂t
, A → A′ = A + ∇Λ

gives rise two the same fieldsE andB. A change in potential according to Eq. (7.2) is a
gauge transformation. The Lagrangian density

(7.3)L = 1

2
ε0

(
∇V + ∂A

∂t

)2

− 1

2µ0
(∇ × A)2 + J ·A − ρV

gives rise to an action integral

(7.4)S =
∫

dt
∫

d3r L(r, t)

that is gauge invariant under the transformation (7.2). The gauge invariance of the
Maxwell equations has been found a posteriori. It was the outcome of a consistent the-
ory for numerous experimental facts. In modern physics invariance principles play a
key role in order to classify experimental results. One often postulates some symme-
try or some gauge invariance and evaluates the consequences such that one can de-
cide whether the supposed symmetry is capable of correctly ordering the experimental
data.
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The equations of motion that follow from the variation of the actionS are

(7.5)−ε0

(
∇2V + ∇ · ∂A

∂t

)
= ρ,

(7.6)
1

µ0
∇ × ∇ × A = J − ε0

∂

∂t

(
∇V + ∂A

∂t

)
.

These equations may be written as

(7.7)M ∗
[
V

A

]
=
[
ρ

J

]
,

where the matrix operatorM is defined as

(7.8)M =
[

−ε0∇2 −ε0∇ · ∂
∂t

ε0∇ · ∂
∂t

ε0
∂2

∂t2
+ 1

µ0
∇ × ∇×

]
.

This operator issingular, i.e., there exist non-zero fields(X,Y) such that

(7.9)M ∗
[
X

Y

]
=
[

0
0

]
.

An example is the pair(X,Y) = (−∂Λ/∂t,∇Λ), whereΛ(r, t) is an arbitrary scalar
field.

The matrixM corresponds to the second variation of the action integral and therefore
L corresponds to a singular Lagrangian density. The singularity ofM implies that there
does not exist an unique inverse matrixM−1 and therefore, Eq. (7.7) cannot be solved
for the fields(V ,A) for given sources(ρ,J). The singularity of the Lagrangian density
also implies that not all the fields(V ,A) are independent. In particular, the canonical
momentum conjugated to the generalized coordinateV (r, t) vanishes

∂L
∂
(
∂V
∂t

) = 0.

In fact, Gauss’ law can be seen as a constraint for the field degrees of freedom and we
are forced to restrict the set of field configurations by a gauge condition.

A gauge condition breaks the gauge invariance but it should not effect the theory
such that the physical outcome is sensitive to it. In different words: the gauge condition
should not influence the results of the calculation of the fieldsE andB and, further-
more, it must not make any field configurations ofE andB “unreachable”. Finally, the
gauge condition should result into a non-singular Lagrangian density such that the po-
tentials can be uniquely determined from the source distributions. We will now discuss
a selection of gauge conditions that can be found in the physics literature.

7.1. The Coulomb gauge

The Coulomb gauge is a constraint on the components of the vector potential such

(7.10)C[A] ≡ ∇ ·A = 0.
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The constraint can be included in the action,S, by adding a term to the Lagrangian that
explicitly breaks the gauge invariance of the action. The new action becomes “gauge-
conditioned”. We set:

(7.11)S → Sg.c. = S0 + λ

µ0

∫
dt dτ C2[A],

whereSg.c. it the gauge-conditioned action,S0 is the gauge-invariant action andλ is a
dimensionless parameter. Then the equations for the potentials are

(7.12)−ε0

(
∇2V + ∇ · ∂A

∂t

)
= ρ,

(7.13)
1

µ0
∇ × ∇ × A − 2

λ

µ0
∇(∇ ·A)= J − ε0

∂

∂t

(
∇V + ∂A

∂t

)
.

The parameterλ, can be chosen freely. Exploiting the constraint in Eqs. (7.10) and
(7.12), we obtain

(7.14)−ε0∇2V = ρ,

(7.15)

(
ε0
∂2

∂t
− 1

µ0
∇2
)

A = J − ε0
∂

∂t
(∇V ),

(7.16)∇ ·A = 0.

Eq. (7.14) justifies the name of this gauge: the scalar potential is the instantaneous
Coulomb potential of the charge distribution.

Eqs. (7.14) and (7.15) can be formally solved by Green functions. In general, a Green
function corresponding to a differential operator� is the solution of the following equa-
tion:

(7.17)� ∗G(r, r′)= δ(r − r′).

We have already seen that the Coulomb problem can be solved by the Green function
G(r, r′) = −(1/4π)δ(r − r′). It should be emphasized that the Green function is not
only determined by the structure of the differential operator but also by the boundary
conditions. The wave equation (7.15) can also be formally solved by a Green function
obeying

(7.18)

(
1

c2

∂2

∂t2
− ∇2

)
G(r, t, r′, t ′)= δ(r − r′)δ(t − t ′),

such that

(7.19)A(r, t)=
∫ ∞

−∞
dt ′
∫

dτ ′G(r, t, r′, t ′)
(

J(r′, t ′)− ε
∂

∂t
∇V

)
.

In free space the Green function is easily found by carrying out a Fourier expansion

(7.20)

G(r, t, r′, t ′)= 1

(2π)4

∫ ∞

−∞
dω
∫

d3kG(ω,k)exp
[
i
(
ω(t − t ′)− k · (r − r′)

)]
.
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Definingk2 = (ω/c)2 − |k|2, the Green function isG(ω,k)= k−2. In order to respect
physical causality the(ω,k) – integration should be done in such a way that theretarded
Green function is obtained. This can be done by adding an infinitesimal positive shift
to the poles of the Green function or propagator in the momentum representation, i.e.,
G(ω,k)= 1/(k2 − iε). Theω-integral then generates a step function in the difference
of the time arguments

(7.21)
1

2π

∫ ∞

−∞
dω

eiω(t−t ′)

ω−ω0 − iε
= iθ(t − t ′)eiω0(t−t ′).

7.2. The Lorenz gauge

The next most commonly used gauge condition is the Lorenz gauge. In this gauge the
scalar potential and vector potential are treated on an equal footing. The condition reads

(7.22)C[A,V ] ≡ ∇ ·A + 1

c2

∂V

∂t
= 0,

wherec−1 = √
µ0ε0 is the (vacuum) speed of light. The generic equations of motion

(7.5) and (7.6) then lead to

(7.23)

(
1

c2

∂2

∂t2
− ∇2

)
V = ρ

ε0
,

(7.24)

(
1

c2

∂2

∂t2
− ∇2

)
A = µ0J.

The Lorenz gauge is very suitable for performing calculations in the radiation regime.
First of all, the similar treatment of all potentials simplifies the calculations and next, the
traveling time intervals of the waves are not obscured by the “instantaneous” adaption
of the fields to the sources as is done in the Coulomb gauge. This point is not manifest
for free-field radiation, since for sourceless field solutions the absence of charges leads
to ∇ · E = 0 which is solved byV (r, t)= 0. Therefore the Coulomb gauge is suitable
to handle plane electromagnetic waves. These waves have two transverse polarization
modes. In the case of extended charge distributions, Gauss’ law gets modified and as
a consequence the scalar potential cannot be taken identically equal to zero anymore.
In the Lorenz gauge, there are four fields participating in the free-field solution. Defi-
nitely two of these fields are fictitious and, as such, they are called “ghost” fields. The
longitudinal polarization of an electromagnetic wave corresponds to a ghost field. Care
must be taken that these unphysical fields do not have an impact on the calculation of
the physical quantitiesE andB.

7.3. The Landau gauge

Various derivations of the integer quantum Hall effect (IQHE) are based on the Landau
gauge. The IQHE that was discovered by VON KLITZING , DORDA and PEPPER[1980]
may generally occur in two-dimensional conductors with a finite width, such as the
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conduction channel in the inversion layer of a metal-oxide-semiconductor field-effect
transistor (MOSFET) or the potential well of a semiconductor heterojunction.

Consider a two-dimensional electron gas (2DEG) confined to a ribbon 0� x � L,
|y| �W/2, z = 0 carrying an electron currentI in the x-direction. When a homoge-
neous magnetic fieldB is applied perpendicularly to the strip, the electrons are deflected
by the Lorentz force−ev × B and start piling up at one side of the strip leaving a posi-
tive charge at the other side. As a result, a transverse Hall voltageVH arises and prevents
any further lateral transfer of deflected electrons. This phenomenon is of course nothing
but the classical Hall effect for which the Hall field is probed by the Hall resistance
being defined as the ratio of the Hall voltage and the longitudinal currentI :

(7.25)RH = VH

I
.

However, if the ribbon is cooled down to cryogenic temperatures and the density of
the 2DEG is systematically increased by changing the gate voltage, one may observe
subsequent plateaus in the Hall resistance, corresponding to a series of quantized values

(7.26)RH = h

2e2ν
= RK

ν
,

whereRK = h/2e2 = 25812.8� is the von Klitzing resistance andν is a positive inte-
ger.

Moreover, each time the Hall resistance attains a plateau, the longitudinal resistance
of the ribbon drops to zero, which is a clear indication of ballistic, scattering free trans-
port. For extensive discussions on the theory of the quantum Hall effect, we refer to
BUTCHER, MARCH and TOSI [1993], DATTA [1995], DITTRICH, HAENGGI, INGOLD,
KRAMER, SCHOEN and ZWERGER[1997], EZAWA [2000] and all references therein.
Here we would merely like to sketch how the choice of a particular gauge may facili-
tate the description of electron transport in terms of spatially separated, current carrying
states (edge states).

The one-electron Hamiltonian reads

(7.27)H = (p + eA)2

2m
+U(y),

whereA is the vector potential incorporating the external magnetic field andU(y) de-
scribes the confining potential in the lateral direction. In view of the longitudinal, macro-
scopic current, it is quite natural to inquire whether the eigensolutions ofHψ(x,y, z)=
Eψ(x,y, z) are modulated by plane waves propagating along thex-direction, i.e.,

(7.28)ψ(x, y)= 1√
L

eikxχk(y),

where the wave numberk would be an integer multiple of 2π/L to comply with periodic
boundary conditions. Clearly, the establishment of full translational invariance for the
Hamiltonian proposed in Eq. (7.27) is a prerequisite and so we need to construct a
suitable gauge such that the non-zero components ofA do not depend onx. The simplest
gauge meeting this requirement is the Landau gauge, which presently takes the form

(7.29)A = (−By,0,0),
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FIG. 7.1. Effective confinement potential in a Hall bar (shaded area). The bare confinement is invoked by a
“hard wall” restricting the lateral motion to the interval|y|<W/2.

thereby giving rise to the correct magnetic field∇ × A = Bez. Combining Eqs. (7.27),
(7.28) and (7.29), we obtain an effective Schrödinger equation for the “transverse” wave
functionsχk(y):

(7.30)− h̄2

2m

d2χk(y)

dy2
+ [
Ũk(y)−E

]
χk(y)= 0

with

(7.31)Ũk(y)=U(y)+ 1

2
mω2

c (y − yk)
2.

Ũk(y) acts as an effective confinement potential, centered around its minimum aty = yk
(see Fig. 7.1) where

(7.32)yk = h̄k

eB

andωc = eB/m is the cyclotron frequency. For strong magnetic fields, the eigenfunc-
tions of Eq. (7.30) corresponding to a given wave numberk are strongly peaked around
y = yk where the probability of finding an electron outside the effective potential well
falls off very rapidly. In particular, when|k| increases,yk will become of the same or-
der of magnitude as the ribbon half-width or get even larger, so that the corresponding
eigenstates – the so-called “edge states” – are strongly localized near the edges of the
Hall bar while states with positive momentah̄k have no significant lateral overlap with
states having negative momenta. The spatial separation of edge states with different
propagation directions and the resulting reduction of scattering matrix elements is cru-
cial for the occurrence of the quantized Hall plateaus and can obviously be investigated
most conveniently by adopting the Landau gauge since the latter ensures translational
invariance in the direction of the current. It should be noted however that a full ana-
lytical solution cannot be given in terms of the familiar harmonic oscillator functions
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(Hermite functions) because of the edge-related boundary condition

(7.33)χk

(
±W

2

)
= 0.

7.4. The temporal gauge

The temporal gauge is given by the condition that the scalar fieldV vanish identically.

(7.34)V (r, t)= 0.

The electric field is then solely represented by the time derivative of the vector potential.

(7.35)E(r, t)= −∂A(r, t)
∂t

.

In particular, this implies that for a static field the vector potential grows unboundedly in
time. This gauge has the nice property that from a Lagrangian point of view the electric
field is just the canonical momentum conjugated to the vector field variables, i.e.,

(7.36)L = 1

2
ε0

(
∂A
∂t

)2

− 1

2µ0
(∇ × A)2.

7.5. The axial gauge

The axial gauge is a variation of the theme above. In this gauge one component of the
vector potential, e.g.,Az is set identically equal to zero.

(7.37)Az = 0.

This gauge may be exploited if a cylindrical symmetry is present. This symmetry can
be inserted by setting

(7.38)A(ρ,φ, z)= (
Aρ(ρ,φ),Aφ(ρ,φ),0

)
in cylindrical coordinates(ρ,φ, z). Then

(7.39)B = ∇ × A = ez
1

ρ

(
∂

∂ρ
(ρAφ)− ∂Aρ

∂φ

)
.

An infinitely thin solenoid along thez-axis corresponds to a magnetic field distribution
like a “needle”, i.e.,B =Φδ(x)δ(y)ez. Such a field can be represented by the following
vector potential:

(7.40)A = Φ

2πρ
eφ,

whereΦ denotes the magnetic flux generated by the solenoid.
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7.6. The ’t Hooft gauge

The selection of a gauge should be done by first identifying the problem that one wants
to solve. Experience has shown that a proper selection of the gauge condition is essential
to handle a particular issue. At all times it should be avoided that in the process of
constructing the solution one should jump ad-hoc from one gauge condition to another.
There can be found examples in the literature, where this is done, e.g., a sudden jump
is taken from the Coulomb gauge to the temporal gauge, without defining the transition
function that accompanies such a gauge transformation. Moreover, the demonstration
that the physical results are insensitive to such transitions is often neither given. The
gauge fixing method due to ’T HOOFT [1971] carefully takes the above considerations
into account. It illustrates the freedom in choosing a gauge condition as well as the
sliding in going from one gauge condition to another. Whereas ’t Hooft’s original work
deals with the theory of weak interactions, the ideas can also be applied to condensed
matter physics. Suppose that the physical system consists of the electromagnetic fields
(V ,A) and some charged scalar fieldφ. For the latter, there is a Lagrangian density

(7.41)Lscalar= 1

2
ih̄

(
φ∗ ∂φ
∂t

− φ
∂φ∗

∂t

)
− h̄2

2m
(∇φ∗) · (∇φ)−W(φ∗φ).

The potentialW describes the (massive) mode of this scalar field and possible self-
interactions. If this potential has the form

(7.42)W(φ∗φ)= c2|φ|2 + c3|φ|3 + c4|φ|4
with c2 a positive number the fieldφ then this Lagrangian density describes massive
scalar particles and the vacuum corresponds toφ = 0. On the other hand, ifc2< 0 then
the minimum ofW occurs at|φ| ≡ φ0 �= 0. In condensed matter physics, the ground
state of a superconductor has non-zero expectation value for the presence of Cooper
pairs. These Cooper pairs can be considered as a new particle having zero spin, i.e., it is
a boson and its charge is 2e. The corresponding field for these bosons can be given by
φ as above, and the ground state is characterized by some non-zero value ofφ. This can
be realized by settingc2 < 0. The interaction of this scalar field with the electromag-
netic field is provided by the minimal substitution procedure and leads to the following
Lagrangian

L= LEM +Lscalar+Lint,

(7.43)
Lint = J ·A − ρV − e

m
ρA2,

ρ = −eφ∗φ,

J = ieh̄

2m

[
φ∗∇φ − (∇φ∗)φ

]+ e

m
ρA.

The complex fieldφ = φ1 + iφ2 can now be expanded around the vacuum expectation
valueφ = φ0 + χ + iφ2. The interaction Lagrangian will contain terms being quadratic
in the fields that mix the electromagnetic potentials with the scalar fields. Such terms
can be eliminated by choosing the gauge condition in such way that these terms cancel,
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i.e., by properly selecting the constantsα1 andα2 in

(7.44)C[A,V ,χ,φ2] ≡ ∇ ·A + 1

c

∂V

∂t
+ α1χ + α2φ2 = 0.

8. The geometry of electrodynamics

Electrodynamics was discovered as a phenomenological theory. Starting from early ex-
periments with amber, permanent magnets and conducting wires, one finally arrived
after much effort at Gauss’ law. Biot–Savart’s law and Faraday’s law of induction. Only
Maxwell’s laws were obtained by theoretical reasoning being confirmed experimentally
later on by Herz. Maxwell’s great achievement was later equalized by Einstein who
proposed in the general theory of relativity that

gravity= curvature.

Ever since Einstein’s achievement of describing gravity in terms of non-Euclidean
geometry, theoretical physics has witnessed a stunning development based on geomet-
rical reasoning. Nowadays it is generally accepted that the standard model of matter,
based on gauge theories, is the correct description (within present-day experimental
accessibility) of matter and its interaction. These gauge theories have a geometrical in-
terpretation very analogous to Einstein’s theory of gravity. In fact, we may widen our
definition of “geometry” such that gravity (coordinate covariance) and the standard the-
ory (gauge covariance) are two realizations of the same mechanism. Electrodynamics is
the low-energy part of the standard model. Being a major aspect of this book, it deserves
special attention and in this interpretation. Besides the esthetic beauty that results from
these insights, there is also pragmatic benefit. Solving electrodynamic problems on the
computer, guided by the geometrical meaning of the variables has been a decisive factor
for the success of the calculation. This was already realized by WILSON [1974] when
he performed computer calculations of the quantum aspects of gauge theories. In order
to perform computer calculations of the classical fields, geometry plays an important
role as is discussed in Chapter II. However, the classical fieldsE andB as well as the
sourcesρ andJ are invariant under gauge transformations and therefore their deeper
geometrical meaning is hidden. In fact, we can identify the proper geometric character
for these variables, such as scalars (zero-forms), force fields (one-forms), fluxes (two-
forms) or volume densities (three-forms) as can be done for any other fluid dynamic
system, but this can be done without making any reference to the geometric nature of
electrodynamics in the sense thatE andB represent thecurvaturein the geometrical
interpretation of electrodynamics. Therefore, in this section we will consider the scalar
potential and vector potential fields that do depend on gauge transformations and as
such will give access to the geometry of electrodynamics.

8.1. Gravity as a gauge theory

The history of the principle of gauge invariance begins with the discovery of the princi-
ple of general covariance in general relativity. According to this principle the physical
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laws should maintain their form for all coordinate systems. In 1918, Hermann Weyl
made an attempt to unify electrodynamics with gravity in WEYL [1918]. According
to the general theory of relativity, the gravitational field corresponds to curvature of
space–time, and therefore, if a vector is parallel transported along a closed loop, the an-
gle between the starting vector and the final vector will differ from zero. Furthermore,
this angle is a measure for the curvature in space. Weyl extended the Riemann geometry
in such a way that not only the angle changes but also thelengthof the vector. The rela-
tive change in length is described by an anti-symmetric tensor and this tensor is invariant
under changing the “unit of length”. This invariance is closely related to charge conser-
vation. Weyl called this “Maszstab Invarianz”. The theory turned out to be contradictory
and was abandoned, but the term “Maszstab Invarianz” survived (Maszstab= measure
= gauge). With the arrival of quantum mechanics the principle of gauge invariance ob-
tained its final interpretation: gauge invariance should refer to the phase transformations
that may be applied on the wave functions. In particular, the phase transformation may
be applied with different angles for different points in space and time.

(8.1)ψ(r, t)→ψ ′(r, t)= exp

(
ie

h̄
χ(r, t)

)
ψ(r, t).

At first sight it looks as if we have lost the geometrical connection and the link is only
historical. However, a closer look at gravity shows that the link is still present.

Starting from the idea that all coordinate systems are equivalent, we may consider a
general coordinate transformation

(8.2)xµ → x′µ = x′µ(xν).

The transformation rule for coordinate differentials is

(8.3)dx′µ = ∂x′µ

∂xν
dxν.

An ordered set of functions transforming under a change of coordinates in the same way
as the coordinate differentials is defined to be acontravariant vector

(8.4)V ′µ = ∂x′µ

∂xν
V ν.

A scalartransforms in an invariant way, i.e.,

(8.5)φ(x)→ φ′(x′)= φ(x).

The derivatives of a scalar transform as

(8.6)V ′
µ = ∂xν

∂x′µ Vν.

Any ordered set of functions transforming under a change of coordinates as the deriva-
tives of a scalar function is acovariant vector. In general,tensorstransform according
to a multiple set of pre-factors, i.e.,

(8.7)V ′α1α2...
µ1µ2...

= ∂x′α1

∂xβ1

∂x′α2

∂xβ2

∂xν1

∂x′µ1

∂xν2

∂x′µ2
· · · V β1β2...

ν1ν2...
.
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The principle of general coordinate covariance can be implemented by claiming that all
physical laws should be expressed as tensor equations. Since left- and right-hand sides
will transform with equal sets of pre-factors, the form invariance is guaranteed.

So far, we have only been concerned with the change from one arbitrary coordinate
system to another. One might argue that this will just hide well-known results in a thick
shell of notational complexity. In order to peal off these shells and to find the physical
implications one must refer to theintrinsic properties of the geometric structure. Occa-
sionally, the intrinsic structure is simple, e.g., flat space time, and the familiar relations
are recovered. It was Einstein’s discovery that space–time isnot flat in the presence of
matter and therefore the physical laws are more involved.

Riemann geometry is a generalization of Euclidean geometry in the sense that locally
one can still find coordinate systemsξµ = (ict,x), such that the distance between two
near-by points is given by Pythagoras’ theorem, i.e.,

(8.8)ds2 = δµν dξµ dξν.

In an arbitrary coordinate system the distance is given by

(8.9)ds2 = gµν(x)dx
µ dxν,

where

(8.10)gµν(x)= ∂ξα

∂xµ

∂ξβ

∂xν
δαβ

is the metric tensor of the coordinate system.
In the local coordinate system,ξ , the equation of motion of a freely falling particle is

given by

(8.11)
d2ξµ

ds2
= 0.

In an arbitrary coordinate system, this equation becomes

(8.12)
d

ds

(
∂ξµ

∂xα

dxα

ds

)
= 0.

This can be evaluated to

(8.13)
d2xα

ds2
+ Γ αµν

dxµ

ds

dxν

ds
= 0,

whereΓ αµν is theaffine connection

(8.14)Γ αµν = ∂xα

∂ξβ

∂2ξβ

∂xµ∂xν
.

The affine connection transform under general coordinate transformations as

(8.15)Γ ′α
µν = ∂x′α

∂xρ

∂xτ

∂x′µ
∂xσ

∂x′ν Γ
ρ
τσ + ∂x′α

∂xρ

∂2xρ

∂x′µ∂x′ν .

The second term destroys the covariance of the affine connection, i.e., the affine con-
nection isnot a tensor.



Introduction to electromagnetism 71

FIG. 8.1. Parallel displacement in the locally Euclidean coordinate system.

The metric tensorgµν(x) contains information on the local curvature of the Riemann
geometry. Now consider a vectorV µ(τ) along a curvexµ(τ). In the locally Euclidean
coordinate system(ξ), the change of the vector along the curve is dV µ/dτ . In another
coordinate system(x′), we find from the transformation rule (8.4)

(8.16)
dV ′µ

dτ
= ∂x′µ

∂xν

dV ν

dτ
+ ∂2x′µ

∂xν∂xλ

∂xλ

∂τ
V ν(τ ).

The second derivative in the second term is an inhomogeneous term in the transforma-
tion rule that prevents dV µ/dτ from being a vector and contains the key to curvature.
This term is directly related to the affine connection. The combination

(8.17)
DVµ

Dτ
= dV µ

dτ
+ Γ

µ
νλ

dxλ

dτ
V ν

transforms as a vector and is called thecovariantderivative along the curve. In the re-
stricted region where we can use the Euclidean coordinates,ξ , we may apply Euclidean
geometrical methods, and in particular we can shift a vector over an infinitesimal dis-
tance from one base point to another and keep the initial and final vector parallel. This
is depicted in Fig. 8.1. The component of the vector do not alter by the shift operation:
δV µ = 0. Furthermore, in the local framexµ = ξ

µ

x(τ), the affine connection vanishes,
i.e.,Γ αµν = 0. Therefore, the conventional operation of parallelly shifting a vector in the
locally Euclidean coordinate system can be expressed by the equationDVµ/Dτ = 0.
Being a tensor equation, this it true in all coordinate systems. A vector, whose covariant
derivative along a curve vanishes is said to beparallel transported along the curve. The
coordinates satisfy the following first-order differential equations:

(8.18)
dV µ

dτ
= −Γ µνλ

dxλ

dτ
V ν.

The parallel transport of a vectorV µ over a small distance dxν changes the components
of the vector by amounts

(8.19)δV µ = −Γ µνλV νδxλ.
In general, if we want to perform the differentiation of a tensor field with respect

to the coordinates, we must compare tensors in two nearby points. In fact, the com-
parison corresponds to subtraction, but a subtraction is only defined if the tensors are
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FIG. 8.2. The covariant derivative of a vector field.

anchored to the same point. (In different points, we have different local coordinate sys-
tems.) Therefore we must first parallel transport the initial tensor to the nearby point
before the subtraction can be performed. This is illustrated in Fig. 8.2. For example, the
covariant differential of a vector field is

(8.20)DVµ = dV µ − δV µ =
(
∂V µ

∂xλ
+ Γ

µ
λκV

κ

)
dxλ =DλV

µ dxλ.

So far, the general coordinate systems include both accelerations originating from
non-uniform boosts of the coordinate systems as well as acceleration that may be caused
by gravitational field due to the presence of matter. In the first case, space–time is not
really curved. In the second case space–time is curved. In order to find out whether grav-
itation is present one must extract information about the intrinsic properties of space–
time. This can be done by the parallel transport of a vector field along a closed loop. If
the initial and final vector differ, one can conclude that gravity is present. The difference
that a closed loop (see Fig. 8.3) transport generates is given by

(8.21)�Vµ = V
µ
viaB − V

µ
viaD =R

µ
ρλσV

ρδxλδxσ ,

where

(8.22)R
µ
ρλσ = ∂Γ

µ
ρλ

∂xσ
− ∂Γ

µ
ρσ

∂xλ
+ Γ

η
ρλΓ

µ
ση − Γ ηρσΓ

µ
λη

is thecurvaturetensor or Riemann tensor. This tensor describes the intrinsic curvature
in a point.

We are now prepared to consider the geometrical basis of electrodynamics and other
gauge theories but we will first summarize a few important facts:

• in each space–time point a local frame may be erected,
• the affine connection is a path-dependent quantity,
• the affine connection does not transform as a tensor,
• the field strength (curvature) may be obtained by performing a parallel transport

along a closed loop.
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FIG. 8.3. Determination of the curvature from a round trip along a closed loop.

8.2. The geometrical interpretation of electrodynamics

As for the local Euclidean coordinate systems, we will consider the possibility of setting
up in each space–time point a local frame for fixing the phase of the complex wave
functionψ(r, t) (see Fig. 8.4). Since the choice of such a local frame (gauge) is not
unique we may rotate the frame without altering the physical content of a frame fixing.

We can guarantee the latter by demanding appropriate transformation properties (see
the above section about tensors) of the variables. Changing the local frame for the phase
of a wave function amounts to

(8.23)

ψ ′(r, t)= exp

(
ie

h̄
χ(r, t)

)
ψ(r, t),

ψ ′ ∗(r, t)= exp

(
− ie

h̄
χ(r, t)

)
ψ∗(r, t).

FIG. 8.4. Local frames for the phase of a wave function.
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These transformation rules are similar to the contravariant and covariant transformation
rules for vectors in the foregoing section. We can similarly construct a “scalar” by taking
ψ∗ψ . The derivative of the wave function transforms as

(8.24)
∂ψ ′

∂xµ
= exp

(
ie

h̄
χ

)
∂ψ

∂xµ
+ ie

h̄

∂χ

∂xµ
exp

(
ie

h̄
χ

)
ψ.

The second term prevents the derivative ofψ from transforming as a “vector” under the
change of gauge. However, geometry will now be of help to construct gauge covariant
variables from derivatives. We must therefore postulate an “affine connection”, such that
a covariant derivative can be defined. For that purpose a connection,Aµ, is proposed
that transforms as

(8.25)Aµ =Aµ + ∂χ

∂xµ
.

The covariant derivative is

(8.26)Dµ = ∂

∂xµ
+ ie

h̄
Aµ.

Similar to the gravitational affine connection, the fieldAµ can be used to construct
“parallel” transport. Therefore, the fieldAµ must be assigned to thepathsalong which
the transport takes place. The curvature of the connection can also be constructed by
making a complete turn around a closed loop. The result is

(8.27)Fµνδx
µδxν =

∮
dxµAµ,

where

(8.28)Fµν = ∂Aµ

∂xν
− ∂Aν

∂xµ

is the electromagnetic field tensor.
In order to perform numerical computations starting from the fieldsAµ it is neces-

sary to introduce a discretization grid. The simulation of a finite space or space–time
domain requires that each grid point be separated by a finite distance from its neigh-
boring points. The differential operators that appear in the continuous field equations
must be translated to the discretization grid by properly referencing to the geometrical
meaning of the variables. The connectionsAµ should be assigned to the links of the
grid, as depicted in Fig. 8.5. The geometrical interpretation suggests that this is the only
correct scheme for solving field and potential problems on the computer.

The numerical consequences of above assignment will be considered in the following
example. We will solve the steady-state equation

(8.29)
∇ × B = µ0J, B = ∇ × A,

J = σE, E = −∇V,
by discretizing the set of equations on a regular Cartesian grid havingN nodes in each
direction. The total number of nodes inD dimensions isMnodes= ND . To each node
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FIG. 8.5. The fundamental variables on the Cartesian grid.

we may associateD links along the positive directions, and therefore the grid has ap-
proximatelyDND links. There are 2D sides with each a number ofN(D−1) nodes. Half
the fraction of side nodes will not contribute a link in the positive direction. Therefore,
the precise number of links in the lattice isMlinks =DND(1− 1

N
).

As far as the description of the electromagnetic field is concerned, the counting of
unknowns for the full lattice results intoMlinks variables (Aij ) for the links, andMnodes

variables (Vi ) for the nodes. Since each link (node) gives rise to one equation, the naive
counting is consistent. However, we have not yet implemented the gauge condition. The
conventional Coulomb gauge∇ · A = 0, constraints the link degrees of freedom and
therefore not all link fields are independent. There are 3N3(1 − 1

N
) link variables and

3N3(1− 1
N
)+N3 equations, including the constraints. As a consequence, at first sight

it seems that we are confronted with an overdetermined system of equations, since each
node provides an extra equation forA. However, the translation of the Maxwell–Ampère
equation on the lattice leads to a singular matrix, i.e., not all rows are independent. The
rank of the corresponding matrix is 3N3(1− 1

N
), whereas there are 3N3(1− 1

N
)+N3

rows and 3N3(1− 1
N
) columns. Such a situation is highly inconvenient for solving non-

linear systems of equations, where the non-linearity stems from the source terms being
explicitly dependent on the fields. The application of the Newton–Raphson method re-
quires that the matrices in the related Newton equation be non-singular and square. In
fact, the non-singular and square form of the Newton–Raphson matrix can be recovered
by introducing the more general gauge∇ · A + ∇2χ = 0, where an additional fieldχ ,
i.e., one unknown per node, is introduced. In this way the number of unknowns and the
number of equations match again. In the continuum limit (N → ∞), the fieldχ and one
component ofA can be eliminated. Though being irrelevant for theoretical understand-
ing, the auxiliary fieldχ is essential for obtaining numerical stability on a discrete, finite
lattice. In other words, our specific gauge solely serves as a tool to obtain a discretiza-
tion scheme that generates a regular Newton–Raphson matrix, as explained in MEURIS,
SCHOENMAKER and MAGNUS [2001].



76 W. Magnus and W. Schoenmaker

It should be emphasized that the inclusion of the gauge-fixing fieldχ should not lead
to unphysical currents. As a consequence, theχ -field should be a solution of∇χ = 0.
To summarize, instead of solving the problem

(8.30)
∇ × ∇ × A = µ0J(A),

∇ ·A = 0,

we solve the equivalent system of equations

(8.31)
∇ × ∇ × A − γ∇χ = µ0J(A),

∇ ·A + ∇2χ = 0.

The equivalence of both sets of Eqs. (8.30) and (8.31) can be demonstrated by consid-
ering the action integral

(8.32)S = − 1

2µ0

∫
dτ |∇ × A|2 +

∫
dτ J ·A.

Functional differentiation with respect toA yields the field equations

(8.33)
δS

δA
= − 1

µ0
∇ × ∇ × A + J = 0.

The constraint corresponding to the Coulomb gauge can be taken into account by adding
a Lagrange multiplier term to the action integral

(8.34)S = − 1

2µ0

∫
dτ |∇ × A|2 +

∫
dτ J ·A + γ

∫
dτ χ∇ ·A

and perform the functional differentiation with respect toχ

(8.35)
δS

δχ
= ∇ ·A = 0.

Finally, the Lagrange multiplier fieldχ becomes a dynamical variable by adding a free-
field part to the action integral

(8.36)

S = − 1

2µ0

∫
dτ |∇ × A|2 +

∫
dτ J ·A + γ

∫
dτ χ∇ ·A − 1

2
γ

∫
dτ |∇χ |2

and functional differentiation with respect toA andχ results into the new system of
equations. Physical equivalence is guaranteed provided that∇χ does not lead to an
additional current source. Therefore, it is required that∇χ = 0. In fact, acting with
the divergence operator on the first equation of (8.31) gives Laplace’s equation forχ .
The solution of the Laplace equation is identically zero if the solution vanishes at the
boundary.

We achieved to implement the gauge condition resulting into a unique solution and
simultaneously to arrive at a system containing the same number of equations and un-
knowns. Hence a square Newton–Raphson matrix is guaranteed while solving the full
set of non-linear equations.
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8.3. Differential operators in Cartesian grids

Integrated over a test volume�Vi surrounding a nodei, the divergence operator, acting
on vector potentialA, can be discretized as a combination of 6 neighboring links

(8.37)
∫
�Vi

∇ ·A dτ =
∫
∂(�Vi)

A ·dS ∼
6∑
k

SikAik.

The symbol∼ represents the conversion to the grid formulation and∂(�Vi) denotes
the boundary of�Vi .

Similarly, the gradient operator acting on the ghost fieldχ or any scalar fieldV ,
can be discretized for a linkij using the nodesi andj . Integration over a surfaceSij
perpendicular to the linkij gives

(8.38)
∫
�Sij

∇χ ·dS ∼ χj − χi

hij
Sij ,

wherehij denotes the length of the link between the nodesi andj .
The gradient operator for a linkij , integrated along the linkij , is given by

(8.39)
∫
�Lij

∇χ ·dr ∼ χj − χi.

The curl–curl operator can be discretized for a linkij using a combination of 12
neighboring links and the linkij itself. As indicated in Fig. 8.6, the fieldBi in the center
of the “wing” i, can be constructed by taking the circulation of the vector potentialA

FIG. 8.6. The assembly of the∇ × ∇×-operator using 12 contributions of neighboring links.
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FIG. 8.7. The assembly of the∇ ·∇-operator using 6 contributions of neighboring nodes.

around the wingi (i = 1,4)

(8.40)BiSi =
3∑
j=1

Aij hij + A0h0,

wherehα is the length of the corresponding linkα. Integration over a surfaceSij per-
pendicular to the linkij yields a linear combination of differentAij ’s, the coefficients
of which are denoted byΛij .∫

�Sij

∇ × ∇ × A ·dS =
∫
∂(�Sij )

∇ × A ·dr =
∫
∂(�Sij )

B ·dr

(8.41)∼ΛijAij +
12∑
kl

ΛklijAkl.

The div-grad (Laplacian) operator can be discretized (see Fig. 8.7) being integrated
over a test volume�Vi surrounding a nodei as a combination of 6 neighboring nodes
and the nodei itself.

(8.42)
∫
�Vi

∇ · (∇χ)dτ =
∫
∂(�Vi)

∇χ ·dS ∼
6∑
k

Sik
χk − χi

hik
.

8.4. Discretized equations

The fields (A, χ ) need to be solved throughout the simulation domain, i.e., for conduc-
tors, semiconducting regions as well as for the dielectric regions. The discretization of
these equations by means of the box/surface-integration method gives

(8.43)
∫
�S

(∇ × ∇ × A − γ∇χ −µ0J) ·dS = 0,

(8.44)
∫
�V

∇ ·J dτ = 0,
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(8.45)
∫
�V

(∇ ·A + ∇2χ)dτ = 0

leading for the independent variablesA, χ to

(8.46)ΛijAij +
12∑
kl

ΛklijAkl −µ0Sij Jij − γ Sij
χj − χi

hij
= 0,

(8.47)
6∑
k

SikJik = 0,

(8.48)
6∑
k

Sik

(
Aik + χk − χi

hik

)
= 0.

Depending on the region under consideration, the source terms (Qi,Jij ) differ. In a
conductor we implement Ohm’s law,J = σE on a linkij :

(8.49)Jij = −σij
(
Vj − Vi

hij

)
andQi is determined by charge conservation.

For the semiconductor environment we follow the Scharfetter–Gummel scheme
(SCHARFETTERand GUMMEL [1969]). In this approach, the diffusion equations

(8.50)J = qµcE ± kT µ∇c,
where the plus (minus) sign refers to negatively (positively) charged particles andc de-
notes the corresponding carrier density. It is assumed that both the currentJ and vector
potentialA are constant along a link and that the potentialV and the gauge fieldχ vary
linearly along the link. Adopting a local coordinate axisu with u= 0 corresponding to
nodei, andu= hij corresponding to nodej , we may integrate Eq. (8.50) along the link
ij to obtain

(8.51)Jij = qµij c

(
Vi − Vj

hij

)
± kBT µij

dc

du

which is a first-order differential equation inc. The latter is solved using the aforemen-
tioned boundary conditions and gives rise to a non-linear carrier profile. The currentJij
can then be rewritten as

(8.52)
Jij

µij
= − α

hij
B

(−βij
α

)
ci + α

hij
B

(
βij

α

)
cj ,

whereB(x) is the Bernoulli function

(8.53)B(x)= x

ex − 1
and

(8.54)α = ±kBT ,

(8.55)βij = q(Vi − Vj ).
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8.5. Examples

We present a few examples demonstrating that the proposed potential formulation in
terms of the Poisson scalar fieldV , the vector potential fieldA and the ghost fieldχ ,
is a viable method to solve the Maxwell field problem. All subtleties related to that
formulation, i.e., the positioning of the vector potential on links, and the introduction
of the ghost fieldχ , are already encountered in constructing the solutions of the static
equations (SCHOENMAKER and MEURIS [2002]).

8.5.1. Crossing wires
The first example concerns two crossing wires and thereby addresses the three-
dimensional features of the solver. The structure is depicted in Fig. 8.8 and has four

FIG. 8.8. Layout of two crossing wires in insulating environment.

TABLE 8.1
Some characteristic results for two crossing wires

Electric energy (J) Magnetic energy (J)

1
2ε0

∫
Ω dτE2 1.03984× 10−18 1

2µ0

∫
Ω dτB2 2.89503× 10−11

1
2

∫
Ω dτρφ 1.08573× 10−18 1

2

∫
Ω dτJ · A 2.92924× 10−11

TABLE 8.2
Some characteristic results for a square coaxial cable

a b b/a L

µm µm (cylindrical) (nH) (square) (nH)

2 6 3 220 255
1 5 5 322 329
1 7 7 389 390
1 10 10 461 458
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ports. In the simulation we put one port at 0.1 V and kept the other ports grounded. The
current is 4 A. The simulation domain is 10× 10× 14 µm3. The metal lines have a per-
pendicular cross section of 2× 2 µm2. The resistivity is 10−8 �m. In Tables 8.1–8.3,
some typical results are presented. The energies have been calculated in two different
ways and good agreement is observed. This confirms that the new methods underlying
the field solver are trustworthy. Theχ -field is zero within the numerical accuracy, i.e.,
χ ∼ O(10−14).

8.5.2. Square coaxial cable
To show that also inductance calculations are adequately addressed, we calculate the
inductance per unit length (L) of a square coaxial cable as depicted in Fig. 8.9. The
inductance of such a system with inner dimensiona and outer dimensionb, was calcu-
lated from

(8.56)l × 1

2
LI2 = 1

2µ0

∫
Ω

B2 dτ = 1

2

∫
Ω

dτ J ·A

with l denoting the length of the cable. As expected, for large values of the ratior = b/a,
the numerical result for the square cable approaches the analytical result for a cylindrical
cable,L= (µ0/2π) ln(b/a).

TABLE 8.3
Some characteristic results for the spiral inductor

Electric energy (J) Magnetic energy (J)

1
2ε0

∫
Ω dτ E2 2.2202× 10−18 1

2µ0

∫
Ω dτ B2 3.8077× 10−13

1
2

∫
Ω dτ ρφ 2.3538× 10−18 1

2

∫
Ω dτ J · A 3.9072× 10−13

FIG. 8.9. Layout of the square coax structure.
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FIG. 8.10. Layout of the spiral inductor structure.

FIG. 8.11. Magnetic field strength in the plane of the spiral inductor.
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8.5.3. Spiral inductor
A spiral inductor, as shown in Fig. 8.10 was simulated. This structure also addresses
the three-dimensional features of the solver. The cross-section of the different lines
is 1 µm× 1 µm. The overall size of the structure is 8 µm× 8 µm and the simula-
tion domain is 23× 20× 9 µm3. The resistance is evaluated asR = V/I and equals
0.54�. In Fig. 8.11, the intensity of the magnetic field is shown at height 4.5 µm.
From the results in Table 8.3 we obtain that the inductance of the spiral inductor is
4.23× 10−11 Henry.

9. Outlook

The preceding sections have been meant to offer the reader a glimpse of the achieve-
ments and the present activities in the field of numerical modeling of electromag-
netic problems within the framework of 19th century classical electromagnetism that
was physically founded by MAXWELL [1954a], MAXWELL [1954b], Faraday, Lenz,
Lorentz and many others, and mathematically shaped by the upcoming vector calculus
of those days (MORSEand FESHBACH [1953]).

The enormous predictive power of the resulting, “classical” electromagnetic theory
and the impressive technological achievements that have emerged from it, may cre-
ate the false impression that, from the physics point of view, electromagnetism has
come to a dead end where no new discoveries should be expected and all remaining
questions are reduced to the numerical solubility of the underlying mathematical prob-
lems.

Truly, after the inevitable compatibility of electromagnetism with the theory of rela-
tivity (EINSTEIN, LORENTZ, MINKOWSKI and WEYL [1952]) had been achieved and
the theory of quantum electrodynamics (QED) (SCHWINGER[1958]) had been success-
fully established in the first half of the 20th century, neither new fundamental laws nor
extensions of the old Maxwell theory have been proposed ever since.

Nevertheless, as was pointed out already in Section 8, modern concepts borrowed
from the theory of differential geometry turn out to provide exciting alternatives to
formulate the laws of electromagnetism and may gain new insights similar to the
understanding of the intimate link between gravity and geometrical curvature of the
Minkowski space. Moreover, recent technological developments in the fabrication of
nanometer-sized semiconductor structures and mesoscopic devices (DATTA [1995])
have raised new as well as unanswered old questions concerning the basic quantum
mechanical features of carrier transport in solids and its relation to both externally ap-
plied and induced electromagnetic fields. The topology of electric circuits such as meso-
scopic rings carrying persistent currents, mesoscopic devices with macroscopic leads,
including quantum wires, quantum dots, quantum point contacts, Hall bars, etc. appears
to be a major component determining the transport properties. In particular, the spatial
localization of both the electromagnetic fields and the carrier energy dissipation plays
an essential role in the quantum theory that governs carrier transport.

This section addresses just a few topics of the above mentioned research domain
in order to illustrate that quantum mechanics is invoked not only to provide a correct
description of the particles participating in the electric current but also to extend the
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theory of the electromagnetic field beyond the framework of Maxwell’s equations and
QED. As the corresponding research area is still being established and theoretical un-
derstanding is often still premature, several statements presented in the remainder of
this chapter, should be regarded as possible but not final answers to existing problems,
thereby mainly reflecting the personal view of the authors. A more detailed treatment
of the topics considered below can be found in MAGNUS and SCHOENMAKER [2000c]
and MAGNUS and SCHOENMAKER [2002].

9.1. Quantum mechanics, electric circuits and topology

Quantization of the electric conductance of quantum point contacts (QPC) is a strik-
ing example of a transport phenomenon that cannot be accounted for by combining
classical electrodynamics with conventional transport theory that inherently neglects
preservation of phase coherence. A typical QPC consists of a two-dimensional electron
gas (2DEG) residing at in a high-mobility semiconductor structure near the interface of,
say an AlGaAs/GaAs heterojunction, whereas a negatively biased gate provides a nar-
row constriction hampering the electron flow in the direction perpendicular to the gate
arms (see Fig. 9.1). While the length of the gate arms (along the propagation direction
may be of the order of 1 µm, the width is usually smaller than 250 nm. Experimen-
tally, conductance quantization was originally observed by the groups of WHARAM ,
THORNTON, NEWBURY, PEPPER, AHMED, FROST, HASKO, PEACOCK, RITCHIE

and JONES [1988] and VAN WEES, VAN HOUTEN, BEENAKKER, WILLIAMSON ,
KOUWENHOVEN, VAN DER MAREL and FOXON [1988] by connecting the QPC to an
external power source (V ) through a couple of conducting leads as sketched in Fig. 9.2.
While the total resistanceR of the circuit was determined by measuring its ohmic re-
sponse to a given bias voltageV , the resistanceRQ associated with the very QPC was
obtained by subtracting the resistanceRL of the two leads:

(9.1)RQ =R − 2RL .

FIG. 9.1. Quantum point contact with lengthL and widthW , considered as a two-terminal device. The
source contact (left) is kept on a negative potentialV with respect to the drain contact (right).



Introduction to electromagnetism 85

FIG. 9.2. Closed electric circuit containing a QPC connected to a DC power supply through two resistive
leads.

FIG. 9.3. Quantized conductance of a quantum point contact under cryogenic conditions.

After they had cooled down the QPC below 4 K, the experimentalists of both the Delft
and Cambridge groups measured the circuit currentI as a function of the gate voltage
VG for a fixed bias voltage. As a result, they obtained a staircase-like pattern in the
profile of the electric conductanceGQ = R−1

Q associated with the QPC, as indicated
schematically in Fig. 9.3. From this observation it follows that the conductanceGQ is
quantized in units ofR−1

K = 2e2/hwhereRK = h/e2 = 25128� denotes von Klitzing’s
resistance. A quantitative description is provided by the well-known Landauer–Büttiker
formula

(9.2)GQ = 2e2

h
N,

whereN is the number of “conduction channels” that are open for ballistic electron
transport through the QPC, given a particular value of the gate voltageVG. Eq. (9.2) is a
special case of a formula that was proposed by LANDAUER [1957], LANDAUER [1970]
to describe electron propagation through disordered materials, while it was recovered
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by BUETTIKER [1986] to cope with semiconductors with mesoscopic active areas. For
a two-terminal device the generalized conductance formula reads

(9.3)G= 2e2

h

N∑
n=1

Tn,

where the transmission probabilities{Tn} reduce 1 for purely ballistic transport. Al-
though conductance quantization in a QPC does not reach the degree of exactness sug-
gested by the idealized drawing of Fig. 9.3, the stair-case profile has been repeatedly
observed by many other researchers in the field and, consequently one should be con-
fident in the experimental verification of this phenomenon. On the other hand, it is the
strong belief of the authors that, presently – when this manuscript is being written –
the commonly accepted theoretical explanation of conductance quantization runs far
behind its experimental realization. It is commonly accepted that the absence of energy
dissipation and other decoherence effects and, correspondingly, the preservation of the
phase of the electron wave functions over a mesoscopic distance are major keys for
understanding the mechanism of quantum transport. Nevertheless, numerous questions
concerning the localization of energy dissipation are left unanswered by the underly-
ing theories and a generalized, unifying transport theory connecting the macroscopic
models based on the Drude–Lorenz model on one hand and the Landauer–Büttiker
picture on the other hand, is still lacking. For a more extensive discussion on com-
mon models and theories leading to the Landauer–Büttiker formula, we refer to DATTA

[1995], BUTCHER, MARCH and TOSI [1993], STONE and SZAFER [1988], LENSTRA

and SMOKERS [1988], LENSTRA, VAN HAERINGEN and SMOKERS [1990], STONE

[1992], IMRY and LANDAUER [1999]. Here we would like to summarize briefly the
main results of conventional theory and discuss an alternative approach which has been
proposed recently by the authors in MAGNUS and SCHOENMAKER [2000c].

In the case of conventional conductors one can easily trace back the macroscopic,
electric resistance to dissipation of energy and decoherence effects that are due to vari-
ous elastic and inelastic scattering mechanisms. On the other hand, the question arises
why a mesoscopic, ballistic conductor the active region of which is supposed to be free
of scattering, can still have a non-zero resistance. Moreover, as one may conclude from
Eq. (9.3), this resistance merely depends on the fundamental constantse andh̄ and a set
of quantum mechanical transmission coefficients. The latter are usually extracted from
the single-electron Schrödinger equation, i.e., under the assumption that many-particle
interactions such as electron–electron and even electron–phonon scattering can be ne-
glected. Consequently, the resistance of a ballistic conductor appears to be expressible
in quantities that are not referring to neither decoherence nor energy dissipation. As
discussed extensively in the above references, a common explanation for this phenom-
enon is provided by the concept of so-called contact resistance. The underlying picture
considers the ballistic conductor as being connected on the “left” and the “right” to
two huge reservoirs that are kept on two different chemical potentialsµL, µR so as to
maintain between the reservoirs a net current of electrons propagating through one or
more channels of the ballistic conductor (such as a QPC or a quantum dot). Due to the
mismatch of the huge, macroscopic leads and the mesoscopic active area, two inter-
face regions separating the active area from the “bulk” of the leads. Assuming further
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that electrons are entering and leaving the active area without undergoing any quantum
mechanical reflections in the interface regions, the latter emerge as the missing spots
where the phase coherence characterizing the transport in the ballistic region is broken.
In other words, the resistance associated with a mesoscopic active areas should be con-
sidered localized, being realized in the interface or “contact” regions while the main
electrostatic potential drop is still falling over the active area. Even when the notion of
non-local resistance is rather conceivable in a medium where phase-coherent transport
along nanometer-sized paths may demand that Ohm’s lawJ(r)= σE(r) be generalized
to J(r) = ∫

d3r ′σ(r, r′)E(r′), we feel that the reservoir picture does not satisfactorily
explain the phenomenon of quantized conductance. First, to the best of our knowledge,
there is neither an unambiguous way of defining the contact regions interfacing be-
tween an active area and a reservoir nor a trace of experimental evidence for it. Next,
invoking the chemical potentialsµL andµR and the corresponding local thermal equi-
libria states for the two reservoirs already silently postulates the existence of a finite
current without providing explicitly a current limiting mechanism. Moreover, the equa-
tion eVapp= µL − µR relating the applied bias to the chemical potential difference as
a crucial step in conventional treatments, is simply taken for granted (sometimes even
taken as a definition of bias voltage!) while FENTON [1992], FENTON [1994] already
pointed out that it should be rigorously derived from quantum mechanical first princi-
ples. Finally, the topology of an electric circuit containing a ballistic conductor or any
mesoscopic device is not reflected in the reservoir concept that treats the circuit as a
simply connected, open-ended region. The latter has severe consequences for the de-
scription of the driving electric field existing in the active area as will be discussed in
the following lines.

For the sake of simplicity, we will consider a DC power source providing the electric
circuit with the energy required to maintain a steady current of electrons flowing through
a toroidal (doughnut-shaped, torus-like) circuitΩ . In addition, we will assume that no
external magnetic field is applied in the circuit region so that the only magnetic field
existing in the torus is the self-induced one which is constant in time. According to
the third Maxwell equation, the total electric field acting on the electrons in the circuit,
should therefore be irrotational, i.e.,

(9.4)∇ × E = 0.

In spite of Eq. (9.4), the electric fieldE is not conservative. Indeed, the electromotive
force or EMF characterizing the strength of the DC power source, is nothing but the
non-vanishing loop integral ofE around any closed curveΓ lying in the interior of the
torus and encircling the hole of the torus once and only once (winding number= 1).
According to Stokes’ theorem for multiply connected regions the curveΓ is arbitrary
as long as it is located in a region where∇ × E vanishes, so any internal curve ofΩ
will do. Physically, the EMF represents the work done by the electric field on a unit
charge that makes one complete turn around the circuit (moving alongΓ ). As an im-
mediate consequence, we need to be most careful when dealing with innocent looking
quantities such as electrostatic potential and the notion of potential difference. While an
irrotational fieldE(r) can always be derived from a scalar potentialV (r) in anysimply-
connected subset of the torus (see the Helmholtz theorem), there exists no such scalar
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potential doing the job along the entire circuit. Mathematically speaking, one could of
course imagine a brute force definition for such a potential anyway, namely the line inte-
gral of the fieldE along a subset ofΓ connecting some reference pointr0 with the field
pointr. However, since the circulation ofE is non-zero whenr travels all aroundΓ , the
value of such a potential would unlimitedly increase (or decrease) whenr keeps on trav-
eling around the circuit. This would give rise to a potential functionV (x1, x2, x3) that
would be multivalued in the cyclic coordinate, sayx3. Such a function would clearly be
unacceptable from the physical point of view which requires all physically meaningful
functions to be periodic inx3. It goes without saying that the concept of EMF is hardly
conceivable in a theory describing the electric circuit as an open-ended region. Such
a simply-connected region exclusively leads to conservative, irrotational electric fields
that cannot give rise to a steady energy supply. The latter is therefore emulated by in-
troducing position dependent chemical potentials artificially keeping the lead reservoirs
on different levels of electron supply.

It should be noted at this point that the above topology considerations have already
given rise to at least two major conceptual differences between open-ended conductors
and closed electric circuits.

First, electrons entering the active area coming from one lead and moving to the other
are never seen to return to their “origin” except when they are reflected.7 As such, the
open-ended conductor is very similar to a system of two large water buckets, one of
them being emptied into the other through a narrow tube. Although the water flow re-
sembles a steady flow after the initial and before the final transient regime, the water is
not being pumped back into the first bucket and the flow trivially stops when the first
bucket is empty. On the contrary, although quantum mechanics does not allow an accu-
rate localization of electrons in the transport direction when they reside in delocalized,
current carrying states, the electrons are confined to the interior of the circuit region
and will make a huge number of turns when a steady-state current is maintained on a
macroscopic time scale. Next, in most cases the open-ended conductor model leads to
an artificial, spatial division of the circuit into a finite active area and two infinite lead
regions. Indeed, position dependence is not only inferred for the chemical potential, in
various treatments such as DATTA [1995] one also assigns separate sets of energy spec-
tra and their corresponding quantum states to the three distinct regions: two continuous
energy spectra representing the huge and wide leads and a discrete spectrum provid-
ing a small number of conduction channels (referred to asN in the Landauer–Büttiker
formula). Moreover, at both interfaces emerges a mismatch between the enumerable
discrete spectrum and the two continuous spectra and this very mismatch is even con-
sidered the origin of the so-called “contact resistance” explaining the phenomenon of
conductance quantization.

However, it is known from elementary quantum mechanics that energy and position,
being represented by non-commuting operators cannot be simultaneously measured. In
other words, there is no physical ground for setting up different quantum mechanical
treatments of distinct spatial areas (unless they are completely isolated from each other
thereby preventing any exchange of particles, which is obviously not the case). Treating

7In principle electrons may undergo quantum mechanical reflections at the interfaces between the lead and
the active part of the device, but these reflections are explicitly ignored in most of the conventional theories.
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the complete circuit – including power source, conducting leads and mesoscopic active
area – as a single quantum mechanical entity, a single spectrum of allowed energies
and corresponding eigenstates is to be assigned to the entire circuit, not to parts of it.
Clearly, unless we are discussing isolated microcircuits such as mesoscopic rings carry-
ing persistent currents, the circuit inevitably becomes huge, due to the presence of the
huge leads. Consequently, the single energy spectrum turns out to be a continuous one,
consisting virtually of all energies that are accessible by the circuit system. On the other
hand, the influence of the active area with either its narrow spatial confinement (QPC)
or its huge potential barriers is reflected in the occurrence of a discrete set of sharply
peaked resonances emerging in the quantum mechanical transmission coefficient as a
function of energy. The corresponding states are genuine “conduction channel states”
allowing an appreciable transmission of electrons, while the latter is negligible for any
other state. In this picture however, there is no “mismatch” between quantum states,
since all states simply pertain to the entire system and only the wave functions (not
the energies) depend on position. Consequently, the notion of contact resistance rely-
ing on the existence of a mismatch of states, looses its meaning and the basis question
remains: what causes the resistance of a mesoscopic active area embedded in a closed
electric circuit and why does it take the form of Eq. (9.3)?

Being inspired by the experimental setup, we propose to consider the simplest pos-
sible, closed circuit, i.e., a torus-shaped regionΩ consisting of a DC power source
(“battery” regionΩB), two ideally conducting leadsΩ1L andΩ2L connecting the active
areaΩA, as depicted in Fig. 9.4. In general, the electric field in the circuit region may
be decomposed into a conservative and non-conservative part:

(9.5)E(r)= EC(r)+ ENC(r),

where the conservative componentEC is derived from an appropriate scalar potential
which is periodic along any interior, closed loopΓ (see Fig. 9.5),

(9.6)EC(r)= −∇V (r)
with

(9.7)
∮
Γ

EC(r) · dr = 0,

FIG. 9.4. Toroidal electric circuit. (Figure reproduced by permission of the American Physical Society and
Springer Verlag.)
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FIG. 9.5. Electrostatic potential energy profile alongΓ . (Figure reproduced by permission of the American
Physical Society and Springer Verlag.)

whereas the EMF is entirely due to the non-conservative componentENC:

(9.8)Vε =
∮
Γ

ENC(r) · dr.

Taking the leads to be ideal, dissipationless conductors (which corresponds to the sub-
traction of the lead resistances of the experimental result setup), we implicitly require
that the total electric field vanishes in the leads:

(9.9)E(r)= 0 for r ∈Ω1L orΩ2L.

Furthermore, as we are looking for a universal mechanism that is able to limit the current
in a mesoscopic circuit, we have explicitly omitted any source of incidental inelastic
scattering and hence neglected all energy dissipation in the circuit, including the internal
resistance of the power source. For the sake of simplicity we have also assumed that the
non-conservative electric field componentENC is strictly localized in the seat of the
EMF, i.e., in the “battery region”ΩB. This leaves us with a circuit where free electrons
can pile up only in the active region due to electrostatic confinement or the presence of
a potential barrier, while the leads appear to be equipotential volumes. Since the power
source has no internal resistance, the non-conservative componentENC is pumping all
electrons that arrived on the positive pole back to the negative pole at no energy cost.
In other words, within the “battery region”ENC exactly counteracts the effect of the
conservative field that would decelerate all electrons climbing up the potential hill in
ΩB (see Fig. 9.5):

(9.10)ENC(r)=
{−EC(r) for r ∈ΩB,

0 elsewhere.



Introduction to electromagnetism 91

From Eqs. (9.5)–(9.10) it follows that

(9.11)Vε =
∮
Γ

E ·dr =
∫ Σ2A

Σ1A

EC(r) ·dr = V1 − V2.

In view of the permanently available power supply and the absence of energy dissipa-
tion, one would expect the circuit current to grow unlimitedly. Indeed, the counteracting
electromotive force arising from the self-induced magnetic field generated by the cur-
rent, though initially delaying the current increase because of Lenz’ law, would not be
capable of slowing down the electron flow in the long term. The latter of course fol-
lows directly from elementary, classical mechanics but also from the equation of an
L–R-circuit where the circuit resistanceR tends to zero:

(9.12)I (t)= Vε

R

(
1− e−Rt/L)R→0−→ Vε

L
t.

Clearly, this simple result does not hold if the current should become so large that ra-
diation losses can no longer be neglected. However, the corresponding radiation re-
sistance is typically of the order of the vacuum impedance (see JACKSON [1975])
Z0 = µ0c ≈ 120π �, which is not only smaller than von Klitzing’s resistance by
roughly two orders of magnitude, but also does not inherently contain the constants
e andh. We therefore believe that radiation resistance is not the appropriate mechanism
to explain conductance quantization.

Although the idealized circuit under consideration should not be regarded as a super-
conductor, we might be inspired by the phenomenon of flux quantization governing the
electromagnetic response of type-I superconductors, as explained in various textbooks
by many authors, such as KITTEL [1976], KITTEL [1963] and FEYNMAN , LEIGHTON

and SANDS [1964b]. In type-I superconducting rings with an appreciable thickness (ex-
ceeding the coherence length), flux quantization emerges from the Meissner effect ac-
cording to which all magnetic field lines are expelled from the interior of the ring, and
the requirement that the wave function describing Cooper pairs in the superconducting
state be single-valued when a virtual turn along an interior closed curve is made. More
precisely, as stated in SAKURAI [1976], the deflection of the magnetic field causes the
vector potential to be irrotational inside the ring which, in turn, allows one to fully
absorb the vector potential into the phase of the wave function:8

(9.13)ψ(r)=ψ0(r)exp

(
2ie

h̄

∫
P

A ·dr
)
.

The fieldsψ(r) andψ0(r) respectively denote the wave function in the presence and
absence of an irrotational vector potential andP represents an internal path connecting
an arbitrary reference point with the pointr. Moving r all around the ring turns the
line integral ofA into the magnetic fluxΦ = ∮

A · dr trapped by some closed loopΓ .
Obviously,ψ(r) becomes multi-valued unless the fluxΦ equals an integer multiple of
the London flux quantumΦL = h/2e. In the case of our circuit however, we do not
consider external magnetic fields and the only magnetic field that may pierce the cir-
cuit regionΩ is the self-induced magnetic fieldB = ∇ × A generated by the current

8The factor 2 in the phase factor reflects the charge−2e of a Cooper pair.
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flowing through the circuit. Though not vanishing everywhere insideΩ , B is circulating
around the current density vectorJ representing the current distribution in the circuit.
As a consequence, the azimuthal component ofB (alongJ) will generally vanish, while
each transverse component changes sign in the region whereJ is non-zero, i.e., inside
the circuit region. In other words, there exists a closed, internal curveΓ0 along which
B = 0 andA is irrotational. Hence, provided the pointr is close enough to the curveΓ0,
we may repeat the above argument and approximately absorbA into the phase of the
electron wave functions. Similarly, approximate flux quantization may be invoked, pro-
vided that the flux is now strictly defined as the loop integral ofA aroundΓ0 and the
flux quantum is taken to be the double of the previous one, i.e., the Dirac flux quantum
Φ0 = h/e. Complying with the flux quantization constraint means that any increase of
the induced magnetic flux caused by an increase of the circuit current should be step-
wise. Within the scope of a semi-classical picture, one could propose that an electron
cannot extract energy from the power supply, unless the time slot during which it is ex-
posed to the external electric field, is large enough to generate one quantum of induced
magnetic flux. Indeed, if the energy extraction were continuous, the induced magnetic
flux could be raised by an arbitrary small amount, thereby violating the (approximate)
flux quantization constraint. The characteristic timeτ0 required to add one flux quan-
tum, can easily be estimated by comparing the electron energy�EMECH,n gained from
the external field during a time interval[tn− 1

2τ0, tn+ 1
2τ0] with the corresponding mag-

netic energy increase�UM of the circuit, where a flux jump occurs att = tn. Integrating
the energy rate equation (2.20) fromtn − 1

2τ0 to tn + 1
2τ0, we may express�EMECH,n

as follows:

(9.14)�EMECH,n =
∫ tn+ 1

2τ0

tn− 1
2τ0

dt
∫
Ω

dτ J(r, t) ·E(r, t).

During [tn − 1
2τ0, tn + 1

2τ0], the charge density remains unchanged before and after the
jump at t = tn and consequently, the current density is solenoidal, while the external
electric field is irrotational. Hence, according to the recently derivedJ · E integral the-
orem for multiply connected regions (see Appendix A.1 and MAGNUS and SCHOEN-
MAKER [1998]), we may disentangle the right-hand side of Eq. (9.14):

(9.15)
∫ tn+ 1

2τ0

tn− 1
2τ0

dt
∫
Ω

dτ J(r, t) ·E(r, t)= 1
2[In−1 + In]Vετ0,

whereIn = ∫
Σ1A

J(r, tn)·dS is the net current entering the cross sectionΣ1A at a timetn.
On the other hand the flux change�Φn associated with the jump�In ≡ In−In−1, reads

(9.16)�Φn = L�In,

whereL is the inductance of the circuit. Since�Φn is to be taken equal toΦ0, we
obtain the increased magnetic energy of the circuit:

(9.17)�UM = 1
2LI

2
n − 1

2LI
2
n−1 = 1

2(In−1 + In)Φ0.
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Combining Eqs. (9.14), (9.15) and (9.17) and putting�UM =�EMECH,n, we derive the
following result:

(9.18)τ0 = Φ0

Vε
.

If an electron has been sufficiently accelerated such that the time it is exposed to the
localized electric field becomes smaller thanτ0, energy extraction is stopped and the
one-electron current will never exceede/τ0. For an electron ensemble carrying spin and
being distributed overN ballistic channels, the total current predicted by the Landauer–
Büttiker formula (9.2) is therefore recovered:

(9.19)I = 2N
e

τ0
= 2e2

h
NVε.

In spite of the naive calculation leading to Eq. (9.19), it is shown that the interplay
between circuit topology, flux quantization and the localized electric field may lead to
a kind of “selection rule” prohibiting the unlimited extraction of energy from a power
supply, even if all dissipative mechanisms are (artificially) turned off.

9.2. Quantum circuit theory

On the other hand, it goes without saying that a sound theory is required not only to
support and to refine the concept of flux quantization for non-superconducting circuits,
but also to bridge the gap between the rigorous, microscopic transport description and
the global circuit model that is to reflect the quantum mechanical features of coherent
transport through the electric circuit or part of it. Such a theory which could be called
“quantum circuit theory” (QCT) might emerge as an extension of the good old theory of
QED that would generalize the quantization of the electromagnetic field on two levels:
not only should one address non-trivial topologies such as toroidal regions in which
finite currents may flow and finite charges may be induced, but also an appropriate set
of conjugate observables describing the global circuit properties should be defined. In
view of the previous considerations regarding the magnetic flux trapped by the circuit, a
natural pair of variables could be the flux of the electric displacement fieldD through a
cross sectionΣ0 crossing the circuit in the interior of the active region and the magnetic
flux threaded by the loopΓ0:

(9.20)ΦD =
∫
Σ0

D ·dS,

(9.21)ΦM =
∮
Γ0

A ·dr.

Taking the electric displacement field instead of the electric field itself to construct a
“partner” forΦM has mainly to do with the requirement that the product of two conju-
gate variables have the dimension of an action (∝ h̄). Assuming thatD vanishes outside
the active regionΩA, one may consider the latter as a leaky capacitor the plates of
which are separated byΣ0 such that, according to Gauss’ law,ΦD would equal the
charge accumulated on one plate, sayQA (see Fig. 9.6). Canonical quantization would
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FIG. 9.6. Cross sectionΣ0 separating positive and negative charges in the active regionΩA.

then impose

(9.22)
[ΦD,ΦM] = ih̄,

[ΦD,ΦD] = [ΦM,ΦM] = 0.

It is now tempting to propose a phenomenological expression like

(9.23)H = Φ2
D

2C
+ Φ2

M

2L
+ΦDVε −ΦMI

for a circuit Hamiltonian describing the interaction between the electromagnetic field
variables{ΦD,ΦM} and the electron current operatorI = ∫

Σ0
J ·dS under the constraint

QA = 〈ΦD〉, and to derive the corresponding Heisenberg equations of motion with the
help of the commutation relations (9.22):

(9.24)
dΦD(t)

dt
= − i

h̄

[
ΦD(t),H

]= ΦM(t)

L
− I (t),

(9.25)
dΦM(t)

dt
= − i

h̄

[
ΦM(t),H

]= −ΦD(t)

C
− Vε.

At first sight, the above equations are satisfied by meaningful steady-state solutions that
may be obtained by setting the long-time averages〈. . .〉 = limt→∞〈. . .〉t of dΦD(t)/dt
and dΦM(t)/dt equal to zero. Indeed, the resulting equations

(9.26)〈I 〉 = 〈ΦM〉
L

,

(9.27)
QA

C
= 〈ΦD〉

C
= −Vε

are restating the familiar result that the steady-state of the circuit is determined by a
current that is proportional to the magnetic flux, while the capacitor voltage tends to the
externally applied electromotive force.

However, in order to investigate whether the quantum dynamics generated by the
proposed Hamiltonian eventually leads to the Landauer–Büttiker formula or not, would
require us to give a meaningful definition of the inductance and capacitance coefficients
L andC as well as a recipe to calculate the statistical averages in a straightforward
manner. Clearly, this can only be accomplished if a full microscopic investigation of
the circuit is performed including both the self-consistent solution of the one-electron
Schrödinger equation and the fourth Maxwell equation, and a rigorous evaluation of
the dynamical, quantum-statistical ensemble averages. As such, this is quite an elabo-
rate task which, however, may open new perspectives in the boundary region between
electromagnetism and quantum mechanics.
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Appendix A.1. Integral theorems

Integral theorems borrowed from the differential geometry of curves, surfaces and
connected regions (MORSE and FESHBACH [1953], MAGNUS and SCHOENMAKER

[1998]) turn out to be useful and perhaps even indispensible for a thorough understand-
ing of elementary electromagnetic theory. Not only are they quite helpful in converting
the differential form of Maxwell’s equations into their equivalent integral form, but they
also offer a convenient tool to define a discretized version of the field variables in the
framework of numerical simulation. Moreover, they naturally bridge the gap between
the microscopic interaction of the electromagnetic fields and charges in a solid-state
conductor and the global circuit models envisaged on the macroscopic level.

The first three integral theorems that are summarized below, are extensively referred
to in Section 2. The fourth one is the Helmholtz theorem, which allows one to decom-
pose any well-behaved vector field into a longitudinal and a transverse part.

THEOREM A.1 (Stokes’ theorem).LetΣ be an open, orientable, multiply connected
surface inR

3 bounded by an outer, closed curve∂Σ0 andn inner, closed curves∂Σ1,
. . . , ∂Σn definingn holes. IfΣ is oriented by a surface elementdS and if A is a differ-
entiable vector field defined onΣ , then

(A.1)
∫
Σ

∇ × A ·dS =
∮
∂Σ0

A ·dr −
n∑
j=1

∮
∂Σj

A ·dr,

where the orientation of all boundary curves is uniquely determined by the orientation
of dS.

THEOREM A.2 (Gauss’ theorem).LetΩ be a closed, orientable, multiply connected
subset ofR3 bounded by an outer, closed surface∂Ω0 and n inner, closed surfaces
definingn holes. IfE is a differentiable vector field defined onΩ then

(A.2)
∫
Ω

∇ ·E dτ =
∫
∂Ω0

E ·dS −
n∑
j=1

∫
∂Ωj

E ·dS
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and

(A.3)
∫
Ω

∇ × E dτ =
∫
∂Ω0

dS × E −
n∑
j=1

∫
∂Ωj

dS × E,

where all boundary surfaces have the same orientation as the outward pointing surface
element of the outer surface.

The scalar Gauss theorem (A.2) reduces toGreen’s Theoremwhen the vector field
takes the formE = f∇g− g∇f∫

Ω

(f∇2g− g∇2f )dτ =
∫
∂Ω0

(f∇g − g∇f ) ·dS

(A.4)−
n∑
j=1

∫
∂Ωj

(f∇g− g∇f ) ·dS,

where the scalar fieldsf andg are differentiable onΩ .

THEOREM A.3 (J ·E theorem).LetΩ be a closed, multiply connected, bounded subset
of R

3 with one hole and boundary surface∂Ω . If J andE are two differentiable vector
fields onΩ , circulating around the hole and satisfying the conditions

(A.5)∇ ·J = 0,

(A.6)∇ × E = 0,

(A.7)J ‖ ∂Ω or J = 0 in each point of∂Ω,

then

(A.8)
∫
Ω

J ·E dτ =
(∫

Σ

J ·dS
)(∮

Γ

E ·dr
)
,

whereΣ is an arbitrary cross section, intersectingΩ only once andΓ is a simple closed
curve, encircling the hole and lying withinΩ but not intersecting∂Ω . The orientation
ofΣ is uniquely determined by the positive orientation ofΓ .

PROOF. Without any loss of generality one may define curvilinear coordinates
(x1, x2, x3) and a corresponding set of covariant basis vectors(a1,a2,a3) and its
contravariant counterpart, which are compatible with the topology of the toroidal
(torus-like) regionΩ . More precisely,x1, x2 and x3 may be chosen such that the
boundary surface∂Ω coincides with one of the coordinate surfaces dx1 = 0 while
the curves dx1 = dx2 = 0 are closed paths encircling the hole only once andx3

is a cyclic coordinate. Then the inner volume contained withinΩ may be conve-
niently parametrized by restricting the range of (x1, x2, x3) to some rectangular interval
[c1, d1] × [c2, d2] × [c3, d3]. SinceΩ is multiply connected, the irrotational vector
field E cannot generally be derived from a scalar potential for the whole regionΩ .
However, for the given topology ofΩ , it is always possible to assign such a potential to
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the “transverse” components ofE only:

(A.9)E1(x
1, x2, x3)= −∂V (x

1, x2, x3)

∂x1
,

(A.10)E2(x
1, x2, x3)= −∂V (x

1, x2, x3)

∂x2
,

but

(A.11)E3(x
1, x2, x3) �= −∂V (x

1, x2, x3)

∂x3
,

whereV (x1, x2, x3) can be constructed straightaway by invoking the first two compo-
nents of∇ × E = 0:

(A.12)

V (x1, x2, x3)= V (c1, c2, x3)−
∫ x1

c1
ds E1(s, x

2, x3)−
∫ x2

c2
dt E2(c

1, t, x3).

The potential termV (c1, c2, x3) naturally arises as an integration constant which, de-
pending onx3 only, may be absorbed in the definition ofV (x1, x2, x3) and will there-
fore be omitted. Eqs. (A.9) and (A.10) are now easily recovered by taking the derivative
of (A.12) with respect tox1 andx2, and inserting the third component of∇ × E = 0.

Finally, taking also the derivative with respect tox3, one obtains:

(A.13)E3(x
1, x2, x3)= −∂V (x

1, x2, x3)

∂x3
+E3(c

1, c2, x3).

From Eqs. (A.9), (A.10) and (A.13) arises a natural decomposition ofE into a conserv-
ative vector fieldEC and a non-conservative fieldENC that is oriented alonga3, thereby
depending only on the cyclic coordinatex3:

(A.14)E = EC + ENC

with

(A.15)EC(x
1, x2, x3)= −∇V (x1, x2, x3),

(A.16)ENC(x
1, x2, x3)=E3(c

1, c2, x3)a3.

The conservative part ofE does not contribute to the volume integral ofJ · E. Indeed,
from (A.15) it follows

(A.17)
∫
Ω

J ·EC dτ =
∫
Ω

J ·∇V dτ =
∫
Ω

∇ · (V J)dτ −
∫
Ω

V∇ ·J dτ.

With the help of Gauss’ theorem – which is also valid for multiply connected regions –
the first term of the right-hand side of Eq. (A.17) can be rewritten as a surface integral
of V J which is seen to vanish asJ is assumed to be tangential to the surface∂Ω in all
of its points. Clearly, the second integral in the right-hand side of (A.17) is identically
zero due to∇ ·J = 0 and one is therefore lead to the conclusion

(A.18)
∫
Ω

J ·EC dτ = 0.



98 W. Magnus and W. Schoenmaker

On the other hand, the contribution ofENC can readily be evaluated in terms of the
curvilinear coordinates. Denoting the Jacobian determinant byg(x1, x2, x3) one may
express the volume integral as a threefold integral over the basic interval[c1, d1] ×
[c2, d2] × [c3, d3], thereby exploiting the fact that the non-conservative contribution
merely depends onx3:∫

Ω

J ·E dτ

=
∫
Ω

J ·ENC dτ

(A.19)=
∫ d3

c3
dx3E3(c

1, c2, x3)

∫ d1

c1
dx1

∫ d2

c2
dx2g(x1, x2, x3)J 3(x1, x2, x3).

The last integral can conveniently be interpreted as the flux ofJ through the single cross
sectionΣ(x3) defined by

(A.20)Σ(x3)= {
(x1, x2, x3) | c1 � x1 � d1; c2 � x2 � d2; x3 fixed

}
.

Indeed, expanding the Jacobian determinant as a mixed product of the three basis vec-
tors, i.e.,

(A.21)g = a1 × a2 ·a3

and identifying the two-forma1 × a2 dx1 dx2 as a generic surface elementdS perpen-
dicular toΣ(x3), one easily arrives at∫ d1

c1
dx1

∫ d2

c2
dx2g(x1, x2, x3)J 3(x1, x2, x3)

(A.22)=
∫ d1

c1
dx1

∫ d2

c2
dx2 a1 × a2 ·J(x1, x2, x3)=

∫
Σ(x3)

dS ·J ≡ I (x3)

and

(A.23)
∫
Ω

J ·E dτ =
∫ d3

c3
dx3E3(c

1, c2, x3)I (x3).

The sign of the fluxI (x3) obviously depends on the orientation ofΣ(x3), which is
unequivocally determined by the surface elementdS = a1 ×a2 dx1 dx2. As long as only
positive body volumes are concerned, one may equally require that each infinitesimal
volume element dτ = g dx1 dx2 dx3 be positive for positive incremental values dx1, dx2

and dx3. Moreover, sincedr = dx3a3 is the elementary tangent vector of the coordinate
curveΓ (x1, x2) = {(x1, x2, x3) | x1, x2 fixed; c3 � x3 � d3} orientingΓ (x1, x2) in a
positive traversal sense through increasingx3, one easily arrives at

(A.24)dτ = dS ·dr> 0.

In other words, the orientation ofΣ(x3) is completely fixed by the positive traversal
sense ofΓ (x1, x2). However, sinceJ is solenoidal withinΩ as well as tangential to∂Ω ,
one may conclude from Gauss’ theorem that the value of the fluxI (x3) does not depend
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on the particular choice of the cross sectionΣ(x3) which may thus be replaced by any
other single cross sectionΣ provided that the orientation is preserved. Consequently,
I (x3) reduces to a constant valueI and may be taken out of the integral of Eq. (A.23)
which now simplifies to:

(A.25)
∫
Ω

J ·E dτ = I

∫ d3

c3
dx3E3(c

1, c2, x3).

The remaining integral turns out to be the line integral ofE along the coordinate curve
Γ (c1, c2):

(A.26)
∫
Ω

J ·E dτ = IVε(c
1, c2)

with

(A.27)Vε(c
1, c2)=

∮
Γ (c1,c2)

E ·dr.

SinceE is irrotational, according to Stokes’ theorem its circulation does not depend on
the particular choice of the circulation curve as was already discussed in more detail
in the previous section. Consequently,Γ (c1, c2) may be replaced by any other interior
closed curveΓ encircling the hole region and sharing the traversal sense withΓ (c1, c2):

(A.28)Vε(c
1, c2)= Vε ≡

∮
Γ

E ·dr.

Hence,

(A.29)
∫
Ω

J ·E dτ = IVε.

This completes the proof. �

THEOREM A.4 (Helmholtz’ theorem).LetΩ be a simply connected, bounded subset
of R

3. Then, any finite, continuous vector fieldF defined onΩ can be derived from a
differentiable vector potentialA and a differentiable scalar potentialχ such that

(A.30)F = FL + FT,

(A.31)FL = ∇χ,
(A.32)FT = ∇ × A.

Due to the obvious properties

(A.33)
∇ × FL = 0,

∇ ·FT = 0.

FL andFT are respectively called the longitudinal and transverse components ofF.
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Appendix A.2. Vector identities

Let f , A andB represent a scalar field and two vector fields defined on a connected
subsetΩ of R

3, all being differentiable onΩ . Then the following (non-exhaustive) list
of identities may be derived using familiar vector calculus:

(A.34)∇ · (∇ × A)≡ 0,

(A.35)∇ × (∇f )≡ 0,

∇(A ·B)= A(∇ ·B)+ B(∇ ·A)+ (A ·∇)B
(A.36)+ (B ·∇)A + A × (∇ × B)+ A × (∇ × B),

∇ × (A × B)= −A(∇ ·B)+ B(∇ ·A)− (A ·∇)B
(A.37)+ (B ·∇)A − A × (∇ × B)+ A × (∇ × B),

(A.38)∇ × (fA)= f∇ × A + ∇f × A,

(A.39)∇ · (A × B)= B ·∇ × A − A ·∇ × B,

(A.40)∇ · (fA)= f∇ ·A + ∇f ·A,

(A.41)∇ × (∇ × A)= ∇(∇ ·A)− ∇2A.

It should be noted that Eq. (A.41) should be considered as a definition of the vectorial
Laplace operator (“Laplacian”), rather than a vector identity. Clearly, if one expands the
left-hand side of Eq. (A.41) in Cartesian coordinates, one may straightforwardly obtain

(A.42)
[∇ × (∇ × A)

]
x

= ∂

∂x
∇ ·A − ∇2Ax,

etc., which does indeed justify the identification∇2A = (∇2Ax,∇2Ay,∇2Az) for
Cartesian coordinates, but not for an arbitrary system of curvilinear coordinates.
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CHAPTER I

Preliminaries: Euclidean Space

What we shall do in this preliminary chapter (Sections 1–5, out of a total of 25) can
be described as “deconstructing Euclidean space”. Three-dimensional Euclidean space,
denoted byE3 here, is a relatively involved mathematical structure, made of an affine
3D space (more on this below), equipped with a metric and an orientation. By taking the
Cartesian product of that with another Euclidean space, one-dimensional and meant to
represent Time, one gets the mathematical framework in which most of classical physics
is described. This framework is often taken for granted, and should not.

By this we do not mean to challenge the separation between space and (absolute)
time, which would be getting off to a late start, by a good century. Relativity is not
our concern here, because we won’t deal with moving conductors, which makes it all
right to adopt a privileged reference frame (the so-called laboratory frame) and a unique
chronometry. The problem we perceive is withE3 itself, too rich a structure in several
respects. For one thing, orientation of space isnot necessary. (How could it be? How
could physical phenomena depend on this social convention by which we class right-
handed and left-handed helices, such as shells or staircases?) And yet, properties of the
cross product, or of the curl operator, so essential tools in electromagnetism, crucially
depend on orientation. As for metric (i.e., the existence of a dot product, from which
norms of vectors and distances between points are derived), it also seems to be involved
in the two main equations,∂tB + rotE= 0 (Faraday’s law) and−∂tD + rotH = J (Am-
père’s theorem), since the definition of rot depends on the metric. We shall discover that
it plays no role there, actually, because a change of metric, in the description of some
electromagnetic phenomenon, would changebothrot and the vector fields E,B, etc., in
such a way that the equations would stay unchanged. Metric is no less essential for that,
but its intervention is limited to the expression of constitutive laws, that is, to what will
replace in our notation the standard B= µH and D= εE.1

Our purpose, therefore, is to separate the various layers present in the structure of
E3, in view of using exactly what is needed, and nothing more, for each subpart of
the Maxwell system of equations. That this can be done is no news: As reported by
POST[1972], the metric-free character of the two main Maxwell equations was pointed
out by Cartan, as early as 1924, and also by KOTTLER [1922] and VAN DANTZIG

[1934]. But the exploitation of this remark in the design of numerical schemes is

1We shall most often ignore Ohm’s law here, for shortness, and therefore, treat the current density J as a
data. It would be straightforward to supplement the equations by the relation J= σE + Js , where only the
“source current” Js is known in advance.

109
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a contemporary thing, which owes much to (again, working independently) TONTI

[2001], Tonti (see TONTI [1996], MATTIUSSI [2000]) and Weiland (see EBELING,
KLATT, KRAWCZYK, LAWINSKY, WEILAND , WIPF, STEFFEN, BARTS, BROWMAN,
COOPER, DEAVEN and RODENZ [1989], WEILAND [1996]). See also SORKIN [1975],
HYMAN and SHASHKOV [1997], TEIXEIRA and CHEW [1999]. Even more recent
(BOSSAVIT and KETTUNEN [1999], MATTIUSSI [2000]) is the realization that such
attention to the underlying geometry would permit to soften the traditional distinctions
between finite-difference, finite-element, and finite-volume approaches. In particular,
it will be seen here that a common approach to error analysis applies to the three of
them, which does rely on the existence of finite elements, but not on the variational
methods that are often considered as foundational in finite element theory. These finite
elements, moreover, are not of the Lagrange (node based) flavor. They are differential
geometric objects, created long ago for other purposes, the Whitney forms (WHITNEY

[1957]), whose main characteristic is the interpretation they suggest of degrees of free-
dom (DoF) as integrals over geometric elements (edges, facets,. . . ) of the discretization
mesh.

As a preparation to this deconstruction process, we need to recall a few notions of
geometry and algebra which do not seem to get, in most curricula, the treatment they
deserve. First on this agenda is the distinction between vector space and affine space.

1. Affine space

A vector space2 on the reals is a set of objects calledvectors, which one can (1) add
together (in such a way that they form an Abelian group, the neutral element being
the null vector) and (2) multiply by real numbers. No need to recall the axioms which
harmonize these two groups of features. Our point is this: The three-dimensional vector
space (for which our notation will beV3) makes an awkward model of physical space,3

unless one deals with situations with a privileged point, such as for instance a center
of mass, which allows one to identify a spatial pointx with the translation vector that
sends this privileged point tox. Otherwise, the idea to add points, or to multiply them
by a scalar, is ludicrous. On the other hand, taking the midpoint of two points, or more
generally, barycenters, makes sense, and is an allowed operation in affine space, as will
follow from the definition.

An affine spaceis a set on which a vector space, considered as an additive group, acts
effectively, transitively and regularly. Let’s elaborate.

A groupG actson a setX if for eachg ∈ G there is a map fromX to X, that we
shall denote byag , such thata1 is the identity map, andagh = agah. (Symbol 1 denotes

2Most definitions will be implicit, with the defined term set, on first appearance, initalics style. The same
style is also used, occasionally, for emphasis.

3Taking R
3, the set of triples of real numbers, with all the topological and metric properties inherited

from R, is even worse, for this implies that some basis{∂1, ∂2, ∂3} has been selected inV3, thanks to which
a vectorv writes asv =∑

i v
i∂i , hence the identification betweenv and the triple{vi } of components (or

coordinates of the pointv stands for). In most situations which require mathematical modelling, no such basis
imposes itself. There may exist privileged directions, as when the device to be modelled has some kind of
translational invariance, but even this does not always mandate a choice of basis.
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the neutral element, and will later double for the group made of this unique element.)
The action iseffectiveif ag = 1 impliesg = 1, that is to say, if all nontrivial group
elements “do something” toX. Theorbit of x under the action is the set{ag(x): g ∈G}
of transforms ofx. Belonging to the same orbit is an equivalence relation between
points. One says the action istransitive if all points are thus equivalent, i.e., if there
is a single orbit. Theisotropy group(or stabilizer, or little group) ofx is the subgroup
Gx = {g ∈ G: ag(x) = x} of elements ofG which fix x. In the case of a transitive
action, little groups of all points are conjugate (becausegxyGy = Gxgxy , wheregxy
is any group element whose action takesx to y), and thus “the same” in some sense.
A transitive action isregular (or free) if it has no fixed point, that is, ifGx = 1 for all x.
If so is the case,X andG are in one-to-one correspondence, so they look very much
alike. Yet they should not be identified, for they have quite distinctive structures. Hence
the concept ofhomogeneous space: A set,X here, on which some group acts transitively
and effectively. (A standard example is given by the two-dimensional sphereS2 under
the action of the groupSO3 of rotations around its center.) If, moreover, the little group
is trivial (regular action), the only difference between the homogeneous spaceX and the
groupG lies in the existence of a distinguished element inG, the neutral one. Selecting
a point 0 inX (the origin) and then identifyingag(0) with g (and hence 0 inX with the
neutral element ofG) providesX with a group structure, but the isomorphism withG
thus established is not canonical, and this group structure is most often irrelevant, just
like the vector-space structure of 3D space.

Affine space is a case in point. Intuitively, take then-dimensional vector spaceVn,
and forget about the origin: What remains isAn, the affine space of dimensionn. More
rigorously, a vector spaceV , considered as an additive group, acts on itself (now con-
sidered as just a set, which we acknowledge by calling its elementspoints, instead of
vectors) by the mappings4 av = x → x + v, calledtranslations. This action is transi-
tive, because for any pair of points{x, y}, there is a vectorv such thaty = x + v, and
regular, becausex + v �= x if v �= 0, whateverx. The structure formed byV as a set
equipped with this group action is called theaffine spaceA associated withV . Each
vector ofV has thus become a point ofA, but there is nothing special any longer with
the vector 0, as a point inA. Reversing the viewpoint, one can say that an affine spaceA

is a homogeneous space with respect to the action of some vector spaceV , considered
as an additive group. (Points ofA will be denotedx, y, etc., andy − x will stand, by a
natural notational abuse, for the vector that carriesx to y.) The most common example
is obtained by considering as equivalent, in some vector spaceV , two vectorsu andv
such thatu− v belong to some fixed vector subspaceW . Each equivalence class has an
obvious affine structure (W acts on it regularly byv → v + w). Such a class is called
anaffine subspaceof V , parallel toW 5 (see Fig. 1.1) Of course, no vector in such an

4We’ll find it convenient to denote a mapf by x → Expr(x), where Expr is the defining expression, and to
link name and definition by writingf = x → Expr(x). (The arrow is a “stronger link” than the equal sign in
this expression.) In the same spirit,X→ Y denotes the set of all maps “of typeX→ Y ”, that is, maps from
X to Y , not necessarily defined over allX. Pointsx for whichf is defined form itsdomaindom(f )⊂X, and
their images form thecodomaincod(f )⊂ Y , also called therangeof f .

5Notice how the set of all affine subspaces parallel toW also constitutes an affine space under the action
of V , or more pointedly – because then the action is regular – of the quotient spaceV/W . A “point”, there, is
a whole affine subspace.
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FIG. 1.1. No point in the affine subspaceA, parallel toW , can claim the role of “origin” there.

affine subspace qualifies more than any other as origin, and calling its elements “points”
rather than “vectors” is therefore appropriate.

At this stage, we may introduce thebarycenterof pointsx andy, with weightsλ and
1− λ, as the translatex + λ(y − x) of x by the vectorλ(y − x), and generalize to any
number of points. The concepts of affine independence, dimension of the affine space,
and affine subspaces follow from the similar ones about the vector space.Barycentric
coordinates, with respect ton+1 affinely independent points{a0, . . . , an} in An are the
weightsλi(x) such that

∑
i λ
i(x) = 1 and

∑
i λ
i(x)(x − ai) = 0, which we shall feel

free to writex =∑
i λ
i(x)ai . Affine mapsonAn are those that are linear with respect to

the barycentric coordinates. Ifx is a point in affine spaceA, vectors of the formy−x are
calledvectors atx. They form of course a vector space isomorphic to the associateV ,
called thetangent space atx, denotedTx . (I will call freevectors the elements ofV , as
opposed to vectors “at” some point, dubbedbound(or anchored)vectors. Be aware that
this usage is not universal.) The tangent space to a curve or a surface which containsx

is the subspace ofTx formed by vectors atx tangent to this curve or surface.6 Note
that vector fields are maps of typePOINT → BOUND_VECTOR, actually, subject to
the restriction that the value ofv at x, notatedv(x), is a vector atx. The distinction
between this and aPOINT → FREE_VECTORmap, which may seem pedantic when
the point spans ordinary space, must obviously be maintained in the case of tangent
vector fields defined over a surface or a curve.

Homogeneous space is a key concept: Here is the mathematical construct by which
we can best model humankind’sphysicalexperience of spatial homogeneity. Translat-
ing from a spatial location to another, we notice that similar experiments give similar
results, hence the concept of invariance of the structure of space with respect to the
group of such motions. By taking as mathematical model of space a homogeneous
space relative to the action of this group (in which we recognizeV3, by observing how
translations compose), we therefore acknowledge an essentialphysicalproperty of the
space we live in.

REMARK 1.1. In fact, translational invariance is only approximately verified, so one
should perhaps approach this basic modelling issue more cautiously: Imagine space as

6For a piecewise smooth manifold (see below), such a subspace may fail to exist at some points, which will
not be a problem.
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a seamless assembly (via smooth transition functions) of patches of affine space, each
point covered by at least one of them, which is enough to capture the idea oflocal
translational invariance of physical space. This idea gets realized with the concept of
smooth manifold (see below) of dimension 3. What we shall eventually recognize as
the metric-free part of the Maxwell’s system (Ampère’s and Faraday’s laws) depends
on the manifold structure only. Therefore, postulating an affine structure is amodelling
decision, one that goes a trifle beyond what would strictly be necessary to account for
the homogeneity of space, but will make some technical discussions easier when (about
Whitney forms) barycentric coordinates will come to the fore.

There is no notion of distance in affine space, but this doesn’t mean no topology:
Taking the preimages of neighborhoods ofR

n under any one-to-one affine map gives
a system of neighborhoods, hence a topology – the same for all such maps. (So we
shall talk loosely of a “ball” or a “half ball” in reference to an affine one-to-one image
of B = {ξ ∈ Rn:

∑
i (ξ

i)2 < 1} or of B ∩ {ξ : ξ1 � 0}.) Continuity and differentiability
thus make sense for a functionf of typeAp →An. In particular, the derivative off atx
is the linear map Df (x), fromVp toVn, such that|f (x+v)−f (x)−Df (x)(v)|/|v| =
o(|v|), if such a map exists, which does not depend on which norms| | on Vp andVn
are used to check the property. The same symbol, Df (x), will be used for thetangent
mapthat sends a vectorv anchored atx to the vector Df (x)(v) anchored atf (x).

2. Piecewise smooth manifolds

We will do without a formal treatment of manifolds. Most often, we shall just use the
word as a generic term for lines, surfaces, or regions of space (p = 1,2,3, respectively),
piecewise smooth (as defined in a moment), connected or not, with or without a bound-
ary. A 0-manifold is a collection of isolated points.

For the rare cases when the general concept is evoked, suffice it to say that ap-di-
mensional manifold is a setM equipped with a set of maps of typeM → R

p, called
charts, which makeM look, for all purposes, but only locally, likeRp (and hence, like
p-dimensional affine space).Smoothmanifolds are those for which the so-calledtransi-
tion functionsϕ ◦ψ−1, for any pair{ϕ,ψ} of charts, are smooth, i.e., possess derivatives
of all orders. (So-calledCk manifolds obtain when continuous derivatives exist up to
orderk.) Then, if some propertyP makes sense for functions of typeR

p →X, where
X is some target space,f fromM to X is reputed to have propertyP if all composite
functionsf ◦ ϕ−1, now of typeR

p → X, have it. A manifoldM with boundaryhas
points where it “looks, locally, like” a closed half-space ofR

p; these points form, taken
together, a (boundaryless)(p − 1)-manifold∂M , called theboundaryof M . Connect-
edness is not required: A manifold can be in several pieces, all of the same dimensionp.

In practice, our manifolds will be glued assemblies ofcells, as follows.
First, let us define “reference cells” inRp, as illustrated on Fig. 2.1. These are

bounded convex polytopes of the form

(2.1)Kα
p =

{
ξ ∈ R

p: ξ l � 0 ∀l = 1, . . . , p,
p∑
j=1

αij ξ
j � 1 ∀i = 1, . . . , k

}
,
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FIG. 2.1. Some cells inA3, of dimensions 0, 1, 2.

where theαij ’s form a rectangular (k × p)-matrix with nonnegative entries, and no re-
dundant rows.

Now, ap-cell in An, with 0� p � n, is a smooth mapc from someKα
p intoAn, one-

to-one, and such that the derivative Dc(ξ) has rankp for all ξ inKα
p . (These restrictions,

which qualifyc as anembedding, are meant to exclude double points, and cusps, pleats,
etc., which smoothness alone is not enough to warrant.) The same symbolc will serve
for the map and for the imagec(Kα

p). Theboundary∂c of the cell is the image underc
of the topological boundary ofKα

p , i.e., of pointsξ for which at least one equality holds
in (2.1). Remark that∂c is an assembly of(p− 1)-cells, which themselves intersect, if
they do, along parts of their boundaries.

Thus, a 0-cell is just a point. A 1-cell, or “path”, is a simple parameterized curve.
The simplest 2-cell is the triangular “patch”, a smooth embedding of the triangle
{ξ : ξ1 � 0, ξ2 � 0, ξ1 + ξ2 � 1}. The definition is intended to leave room for polyg-
onal patches as well, and for three-dimensional “blobs”, i.e., smooth embeddings of
convex polyhedra.

We shall have use for theopencell corresponding to a cellc (then called aclosedcell
for contrast), defined as the restriction ofc to the interior of its reference cell.

A subsetM of An will be called apiecewise smoothp-manifold if (1) there exists a
finite family C = {ci : i = 1, . . . ,m} of p-cells whose union isM , (2) the open cell cor-
responding toci intersects no other cell, (3) intersectionsci ∩ cj are piecewise smooth
(p− 1)-manifolds (the recursive twist in this clause disentangles atp = 0), (4) the cells
are properly joined at their boundaries,7 i.e., in such a way that each point ofM has a
neighborhood inM homeomorphic to either ap-ball or half ap-ball.

Informally, therefore, piecewise smooth manifolds are glued assemblies of cells, ob-
tained by topological identification of parts of their respective boundaries. (SurfaceS in
Fig. 4.1, below, is typical.)

7This is regrettably technical, but it can’t be helped, ifM is to be a manifold. The assembly ofthreecurves
with a common endpoint, for instance, is not a manifold. See also HENLE [1994] for examples of 3D-spaces
obtained by identification of facets of some polyhedra, which fail to be manifolds. Condition (2) forbids
self-intersections, which is overly drastic and could be avoided, but will not be too restrictive in practice.
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Having introduced this category of objects – which we shall just call manifolds, from
now on – we should, as it is the rule and almost a reflex in mathematical work, deal with
maps between such objects, calledmorphisms, that preserve their relevant structures.
About cells, first: A map between two images of the same reference cell which is bijec-
tive and smooth (in both directions) is called adiffeomorphism. Now, about our mani-
folds: There is apiecewise smooth diffeomorphismbetween two of them (and there too,
we shall usually dispense with the “piecewise smooth” qualifier) if they are homeomor-
phic and can both be chopped into sets of cells which are, two by two, diffeomorphic.

3. Orientation

To get oneself oriented, in the vernacular, consists in knowing where is South, which
way is uptown, etc. To orient a map, one makes its upper side face North. Pigeons, and
some persons, have a sense of orientation. And so forth.Nothingof this kind is implied
by the mathematical concept of orientation – which may explain why so simple a notion
may be so puzzling to many. Not that mathematical orientation has no counterpart in
everyday’s life, it has, but in something else: When entering a roundabout or a circle
with a car, you know whether you should turn clockwise or counterclockwise.That
is orientation, as regards the ground’s surface. Notice how it depends on customs and
law. For the spatial version of it, observe what “right-handed” means, as applied to a
staircase or a corkscrew.

3.1. Oriented spaces

Now let us give the formal definition. Aframein Vn is an orderedn-tuple of linearly in-
dependent vectors. Select a basis (which is thus a frame among others), and for each
frame, look at the determinant of itsn vectors, as expressed in this basis, hence a
FRAME→ REAL function. This function is basis-dependent, but the equivalence re-
lation defined by “f ≡ f ′ if and only if framesf andf ′ have determinants of the same
sign” does not depend on the chosen basis, and is thus intrinsic to the structure ofVn.
There are two equivalence classes with respect to this relation. OrientingVn consists
in designating one of them as the class of “positively oriented” frames. This amounts
to defining a function, which assigns to each frame a label, eitherdirect or skew, two
equivalent frames getting the same label. There are two such functions, therefore two
possible orientations. Anoriented vector spaceis thus a pair{V,Or}, whereOr is one of
the two orientation classes ofV . (Equivalently, one may define an oriented vector space
as a pair{vector space, privileged basis}, provided it’s well understood that this basis
plays no other role than specifying the orientation.) We shall find convenient to extend
the notion to a vector space of dimension 0 (i.e., one reduced to the single element 0),
to which also correspond, by convention, two oriented vector spaces, labelled+ and−.

REMARK 3.1. Once a vector space has been oriented, there are direct and skewframes,
but there is no such thing as direct or skewvectors, except, one may concede, in dimen-
sion 1. A vector does not acquire new features just because the space where it belongs
has been oriented! Part of the confusion around the notion of “axial” (vs. “polar”) vec-
tors stems from this semantic difficulty (BOSSAVIT [1998a, p. 296]). As axial vectors
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will not be used here, the following description should be enough to deal with the issue.
Let’s agree that, ifOr is one of the orientation classes ofV , the expression−Or denotes
the other class. Now, form pairs{v,Or}, wherev is a vector andOr any orientation
class ofV , and consider two pairs{v,Or} and{v′,Or′} as equivalent whenv′ = −v and
Or′ = −Or. Axial vectorsare, by definition, the equivalence classes of such pairs. (Polar
vectors is just a redundant name, inspired by a well-minded sense of equity, for vectors
of V .) Notice that axialscalarscan be defined the same way: substitute a real number for
v. Hence axial vector fields and axial functions (more often called “pseudo-functions” in
physics texts). The point of defining such objects is to become able to express Maxwell’s
equations innon-oriented Euclidean space, i.e.,V3 with a dot product but no specific
orientation. See BOSSAVIT [1998b] or [1999] for references and a discussion.

An affine space, now, is oriented by orienting its vector associate: abound frameatx
in An, i.e., a set ofn independent vectors atx, is direct (respectively skew) if thesen
vectors form a direct (respectively skew) frame inVn.

Vector subspaces of a given vector space (or affine subspaces of an affine space8)
can have their own orientation. Orienting a line, in particular, means selecting a vector
parallel to it, called adirectorvector for the line, which specifies the “forward” direction
along it.

Such orientations of different subspaces are a priori unrelated. Orienting 3D space by
the corkscrew rule, for instance, does not imply any orientation in a given plane. This
remark may hurt common sense, for we are used to think of the standard orientation of
space and of, say, a horizontal plane, as somehow related. And they are, indeed, but only
because we think of vertical lines as oriented, bottom up. This is the convention known
asAmpère’s rule. To explain what happens there, suppose space is oriented, and some
privileged straightline is oriented too, on its own. Then, any planetransverseto this line
(i.e., thus placed that the intersection reduces to a single point) inherits an orientation,
as follows: To know whether a frame in the plane is direct or skew, make a list of vectors
composed of, in this order, (1) the line’s director, (2) the vectors of the planar frame;
hence an enlarged spatial frame, which is either direct or skew, which tells us about the
status of the plane frame.

More generally, there is an interplay between the orientations of complementary
subspaces and those of the encompassing space. Recall that two subspacesU andW
of V arecomplementaryif their spanis all V (i.e., eachv in V can be decomposed as
v = u+w, with u in U andw in W ) and if they aretransverse(U ∩W = {0}, which
makes the decomposition unique). We shall refer toV as the “ambient” space, and write
V =U +W . If bothU andW have orientation, this orientsV , by the following conven-
tion: the frame obtained by listing the vectors of a direct frame inU first, then those of
a direct frame inW , is direct. Conversely, if bothU andV are oriented, one may orient
W as follows: to know whether a given frame inW is direct or skew, list its vectors be-
hind those of a direct frame ofU , and check whether the enlarged frame thus obtained
is direct or skew inV . This is a natural generalization of Ampère’s rule.

8An affine subspace is oriented by orienting the parallel vector subspace. A point, which is an affine sub-
space parallel to{0}, can therefore be oriented, which we shall mark by apposing a sign to it,+ or −.
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FIG. 3.1. Left: Specifying a “crossing direction” through a planeW by inner-orienting a lineU transverse
to it. Right: Outer-orientingU , i.e., giving a sense of going around it, by inner-orientingW .

FIG. 3.2. Left: How an externally oriented line acquires inner orientation, depending on the orientation of
ambient space. (Alternative interpretation: if one knows both orientations, inner and outer, for a line, one
knows the ambient orientation.) Right: Assigning to a surface a crossing direction (here from region “−”
below to region “+” above) will not by itself imply an inner orientation. But it does if ambient space is
oriented, as seen in (b) and (b′). Figs. 3.2(a) and 3.2(b) can be understood as an explanation of Ampère’s rule,

in which the ambient orientation is, by convention, the one shown here by the “right corkscrew” icon.

Now what ifU is oriented, but ambient space is not? IsU ’s orientation of any rele-
vance to the complementW? Yes, as Fig. 3.1 suggests (left): For instance, ifW has di-
mensionn− 1, an orientation of the one-dimensional complementU can be interpreted
as a crossing direction relative toW , an obviously useful notion. (Flow of something
through a surface, for instance, presupposes a crossing direction.) Hence the concept
of external, or outer orientationof subspaces ofV : Outer orientation of a subspace is,
by definition, an orientation of one9 of its complements. Outer orientation ofV itself
is thus a sign,+ or −. (For contrast and clarity, we shall callinner orientation what
was simply “orientation” up to this point.) The notion (which one can trace back to Ve-
blen (VEBLEN and WHITEHEAD [1932]), cf. VAN DANTZIG [1954] and SCHOUTEN

[1989]) passes to affine subspaces of an affine space the obvious way.
Note thatif ambient space is oriented, outer orientation determines inner orientation

(Fig. 3.2). But otherwise, the two kinds of orientation are independent. As we shall see,
they cater for different needs in modelling.

9Nothing ambiguous in that. There is a canonical linear map between two complementsW1 andW2 of the
same subspaceU , namely, the “affine projection”πU alongU , thus defined: forv in W1, setπU (v)= v+ u,
whereu is the unique vector inU such thatv+ u ∈W2. UseπU to transfer orientation fromW1 toW2.
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3.2. Oriented manifolds

Orientation can be defined for other figures than linear subspaces. Connected parts of
affine subspaces, such as polygonal facets, or line segments, can be oriented by ori-
enting the supporting subspace (i.e., the smallest one containing them). Smooth lines
and surfaces as a whole are oriented by attributing orientations to all their tangents or
tangent planes in a consistent way.

“Consistent”? Let’s explain what that means, in the case of a surface. First, subspaces
parallel to the tangent planes at all points in the neighborhoodN(x) of a given surface
point x have, ifN(x) is taken small enough, a common complement, characterized by
a directorn(x) (not the “normal” vector, since we have no notion of orthogonality at
this stage, but the idea is the same). ThenN(x) is consistently oriented if all these
orientations correspond via the affine projection alongn(x) (cf. Note 9). But this is
only local consistency, which can always be achieved, and one wants more:global
consistency, which holds if the surface can be covered by such neighborhoods, with
consistent orientation in each non-empty intersectionN(x) ∩ N(y). This may not be
feasible, as in the case of a Möbius band, hence the distinction between (internally)
orientable and non-orientable manifolds.

Cells, as defined above, are inner orientable, thanks to the fact that Dc does not van-
ish. For instance (cf. Fig. 3.3), for a pathc, i.e., a smooth embeddingt → c(t) from
[0,1] to An, the tangent vectors∂t c(t) determine consistent orientations of their sup-
porting lines, hence an orientation of the path. (The other orientation would be obtained
by starting from the “reverse” path,t → c(1− t).) Same with a patch{s, t} → S(s, t) on
the triangleT = {{s, t}: 0� s, 0� t, s+ t � 1}: The vectors∂sS(s, t) and∂tS(s, t), in
this order, form a basis atS(s, t) which orients the tangent plane, and these orientations
are consistent.

As for piecewise smooth manifolds, finally, the problem is at pointsx where cells
join, for a tangent subspace may not exist there. But according to our conventions, there
must be a neighborhood homeomorphic to a ball or half-ball, whichis orientable, hence
a way to check whether tangent subspaces at regular points in the vicinity ofx have
consistent orientations, and therefore, to check whether the manifold as a whole is or is
not orientable.

FIG. 3.3. A path and a patch, with natural inner orientations. Observe how their boundaries are themselves
assemblies of cells:∂c = c(0) − c(1) and∂S = c1 − c2 + c3, with a notation soon to be introduced more
formally. Pathsci arec1 = s → S(s,0), c2 = t → S(0, t), andc3 = θ → S(1 − θ, θ), each with its natural

inner orientation.
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Similar considerations hold for external orientation. Outer-orienting a surface con-
sists in giving a (globally consistent) crossing direction through it. For a line, it’s a way
of “turning around” it, or “gyratory sense” (Fig. 3.1, right). For a point, it’s an orienta-
tion of the space in its neighborhood. For a connected region of space, it’s just a sign,
+ or −.

3.3. Induced orientation

Surfaces which enclose a volumeV (which one may suppose connected, though the
boundary∂V itself need not be) can always be outer oriented, because the “inside out”
crossing direction is always globally consistent. Let us, by convention, take this direc-
tion as defining the canonical outer orientation of∂V . No similarly canonicalinner
orientation of the surface results, as could already be seen on Fig. 3.2, since there are,
in the neighborhood of each boundary point, two eligible orientations of ambient space.
But if V is inner oriented, this orientation can act in conjunction with the outer one of
∂V to yield a natural inner orientation ofV ’s boundary about this point. For example,
on the left of Fig. 3.4, the 2-frame{v1, v2} in the tangent plane of a boundary point
is taken as direct because, by listing its vectors behind an outward directed vectorν,
one gets the direct 3-frame{ν, v1, v2}. Consistency of these orientations stems from the
consistency of the crossing direction. HenceV ’s inner orientationinducesone on each
part of its boundary.

The same method applies to manifolds of lower dimensionp, by working inside the
affinep-subspace tangent to each boundary point. See Fig. 3.4(b) for the casep = 2.
Thep-manifold, thus, serves as ambient space with respect to its own boundary, for the
purpose of inducing orientation.

In quite a similar way (Fig. 3.5),outer orientation of a manifold induces anouter
orientation of each part of its boundary. (For a volumeV , the induced outer orientation
of ∂V is the inside-out or outside-in direction, depending on the outer orientation,+
or −, of V .)

FIG. 3.4. Left: Induced orientation of the boundary of a volume of toroidal shape (v1 andv2 are tangent to
∂V , ν points outwards). Middle: The same idea, one dimension below. The tangent to the boundary, being
a complement of (the affine subspace that supports)ν, with respect to the plane tangent to the surfaceS (in
broken lines), inherits from the latter an inner orientation. Right: Induced orientation of the endpoints of an

oriented curve.
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FIG. 3.5. Left: To outer-orient∂S is to (consistently) inner-orient complements of the tangent, one at each
boundary pointx. For this, take as direct the frame{v1, ν}, where{v1} is a direct frame in the complement of
the plane tangent toS at x, andν an outward directed vector tangent toS. That{v1} is direct is known from
the outer orientation ofS. Right: Same idea about the boundary points of linec. Notice thatν is now appended
behindthe list of frame vectors. Consistency stems from the consistency ofν, the inside-out direction with
respect toS. The icons near the endpoints are appropriate, since outer orientation of a point is inner orientation

of the space in its vicinity.

FIG. 3.6. Möbius band, not orientable. As the middle linel does not separate two regions, it cannot be
assigned any consistent crossing direction, so it has no outer orientation with respect to the “ambient” band.

3.4. Inner vs outer orientation of submanifolds

We might (but won’t, as the present baggage is enough) extend these concepts to sub-
manifolds of ambient manifolds other thatA3, including non-orientable ones. A two-
dimensional example will give the idea (Fig. 3.6): Take as ambient manifold a Möbius
bandM , and forget about the 3-dimensional space it is embedded in for the sake of the
drawing. Then it’s easy to find inM a line which (being a line) is inner orientable, but
cannot consistently be outer oriented. Note that the band by itself, i.e., considered as its
own ambient space, can be outer oriented, by giving it a sign: Indeed, outer orientation
of the tangent plane at each point ofM , being inner orientation of this point, is such
a sign, so consistent orientation means attributing the same sign to all points. (By the
same token, any manifold is outer orientable, with respect to itself as ambient space.)
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FIG. 3.7. Left: Non-orientable 3-manifold with boundary: Identify top and bottom by matching upperA

with lower A, etc. Middle: Embedded Möbius band, with a globally consistent crossing direction. Right:
Embedded ribbon.

For completeness, let us give another example (Fig. 3.7), this time of an outer-
orientable surface without inner orientation, owing to non-orientability of the ambient
manifold. The latter (whose boundary is a Klein bottle) is made by sticking together the
top and bottom sides of a vertical cube, according to the rule of Fig. 3.7(a). The ribbon
shown in (b) is topologically a Möbius band, a non-(inner)orientable surface. Yet, it
plainly has a consistent set of transverse vectors. (Follow the upper arrow as its anchor
point goes up and reenters at the bottom, and notice that the arrow keeps pointing in
the direction ofAB in the process. So it coincides with the lower arrow when this pas-
sage has been done.) Contrast with the ordinary ribbon in (c), orientable, but not outer
orientable with respect to this ambient space.

The two concepts of orientation are therefore essentially different.
In what follows, we shall use the word “twisted” (as opposed to “straight”) to connote

anything that is to do with outer (as opposed to inner) orientation.

4. Chains, boundary operator

It may be convenient at times to describe a manifoldM as an assembly of several
manifolds, even ifM is connected. Think for example of the boundary of a triangle,
as an assembly of three edges, and more generally of a piecewise smooth assembly of
cells. But it may happen – so will be the case here, later – that these various manifolds
have beenindependentlyoriented, with orientations which may or may not coincide
with the desired one forM . This routinely occurs with boundaries, in particular. The
concept of chain will be useful to deal with such situations.

A p-chain is a finite familyM = {Mi : i = 1, . . . , k} of oriented connectedp-mani-
folds,10 to which we shall loosely refer below as the “components” of the chain, each
loaded with a weightµi belonging to some ring of coefficients, such asR or Z (sayR

for definiteness, although weights will be signed integers in most of our examples). Such
a chain is conveniently denoted by the “formal” sum

∑
i µ

iMi ≡ µ1M1 + · · · +µkMk ,

10For instance, cells. But we don’t request that. EachMi may be a piecewise smooth manifold already.
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thus called because the+ signs do not mean “add” in any standard way. On the other
hand, chains themselves, as whole objects, can be added, and there the notation helps:
To get the sum

∑
i µ

iMi + ∑
j ν

jNj , first merge the two familiesM andN , then
attribute weights by adding the weights each component has in each chain, making use
of the convention thatµM ′ is the same chain as−µM whenM ′ is the same manifold as
M with opposite orientation. If all weights are zero, we have thenull chain, denoted 0.
All this amounts, as one sees, to handling chains according to the rules of algebra, when
they are represented via formal sums, which is the point of such a notation.Twisted
chains are defined the same way, except that all orientations are external. (Twisted and
straight chains are not to be added, or otherwise mixed.)

If M is an oriented piecewise smooth manifold, all its cellsci inherit this orientation,
but one may have had reasons to orient them on their own, independently ofM . (The
same cell may well be part of several piecewise smooth manifolds, for instance.) Then, it
is natural to associate withM the chain

∑
i ±ci , also denoted byM , with ith weight−1

when the orientations ofM andci differ. (Refer back to Fig. 3.3 for simple examples.)
Now, the boundary of an oriented piecewise smooth(p + 1)-manifoldM is an as-

sembly ofp-manifolds, each of which we assume has an orientation of its own. Let us
assign each of them the weight±1, according to whether its orientation coincides with
the one inherited fromM . (We say the two orientationsmatchwhen this coincidence
occurs.) Hence a chain, also denoted∂M . By linearity, the operator∂ extends to chains:
∂(
∑

i µ
iMi)=∑

i µ
i∂Mi . A chain with null boundary is called acycle. A chain which

is the boundary of another chain is called, appropriately, aboundary. Boundaries are
cycles, because of the fundamental property

(4.1)∂ ◦ ∂ = 0,

i.e., the boundary of a boundary is the null chain. A concrete example, as in Fig. 4.1,
will be more instructive here than a formal proof.

REMARK 4.1. Beyond its connection with assemblies of oriented cells, no too defi-
nite intuitive interpretation of the concept of chain should be looked for. Perhaps, when
p = 1, one can think of the chain

∑
i γici , with integer weights, as “running along

eachci , in turn, |γi | times, in the direction indicated byci ’s orientation, or in the re-
verse direction, depending on the sign ofγi ”. But this is a bit contrived. Chains are
better conceived as algebraic objects, based on geometric ones in a useful way – as the
example in Fig. 4.1 should suggest, and as we shall see later. However, we shall indulge
in language abuse, and say that a closed curve “is” a 1-cycle, or that a closed surface
“is” a 2-cycle, with implicit reference to the associated chain.

So boundaries are cycles, after (4.1). Whether the converse is true is an essential
question. In affine space, the answer is positive: A closed surface encloses a volume, a
closed curve (even if knotted) is the boundary of some surface (free of self-intersections,
amazing as this may appear), called a Seifert surface (SEIFERTand THRELFALL [1980],
ARMSTRONG[1979, p. 224]). But in some less simple ambient manifolds, a cycle need
not bound. In the case of a solid torus, for instance, a meridian circle is a boundary, but
a parallel circle is not, because none of the disks it bounds inA3 is entirely contained in
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FIG. 4.1. Piecewise smooth surfaceS, inner oriented (its orientation is taken to be that of the curved trian-
gle in the fore, markedA), represented as the chainA − B − C based on the oriented curved trianglesA,
B , C. (Note the minus signs:B ’s andC ’s orientations don’t match that ofS.) One has∂A = a + b + c,
∂B = e + a − d , ∂C = b + d + f , wherea, b, c, d , e, f are the boundary curves, arbitrarily oriented as
indicated. Now,∂S = ∂(A− B − C) = c − e − f : Observe how the “seams”a, b, c automatically receive
null weights in this 1-chain, whatever their orientation, because they appear twice with opposite signs. Next,
since∂c= x− z, ∂e= −y− z, and∂f = x+ y, owing to the (arbitrary) orientations assigned to pointsw, x,
y, z, one has∂∂S = ∂(c− e− f )= 0, by the same process of cancellation by pairs. The reader is invited to

work out a similar example involving twisted chains instead of straight ones.

the torus. Whether cycles are or aren’t boundaries is therefore an issue when investigat-
ing the global topological properties of a manifold. Chains being algebraic objects then
becomes an asset, for it makes possible to harness the power of algebra to the study of
topology. This is the gist ofhomology(HENLE [1994], HILTON and WYLIE [1965]),
and of algebraic topology in general.

5. Metric notions

Now, let us equipVn with a dot product:u · v is a real number, linearly depending on
vectorsu andv, with symmetry (u ·v = v ·u) and strict positive-definiteness (u ·u > 0 if
u �= 0). Come from this, first the notions of orthogonality and angle, next a norm|u| =
(u ·u)1/2 onVn, then a distanced(x, y)= |y−x|, translation-invariant by construction,
between points of the affine associateAn.

DEFINITION 5.1. Euclidean space,En, is the structure composed ofAn, plus a dot
product on its associateVn, plus an orientation.

Saying “the” structure implies that two realizations of it (with two different dot
products and/or orientations) are isomorphic in some substantial way. This is so: For
any other dot product, “·” say, there is an invertible linear transformL such that
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u ·v = Lu ·Lv. Moreover,11 one may haveL “direct”, in the sense that it maps a frame
to another frame of the same orientation class, or “skew”. Therefore, two distinct Euclid-
ean structures onAn are linked by someL. In the language of group actions, the linear
groupGLn, composed of the aboveL’s, acts transitively on Euclidean structures, i.e.,
with a unique orbit, which is our justification for using the singular. (These structures
are said to beaffine equivalent,12 a concept that will recur.) The point can vividly be
made by using the language of group actions: the isotropy group of{·,Or} “cannot be
any larger”. (More precisely, it is maximal, as a subgroup, in the group of direct linear
transforms.)

In dimension 3,13 dot product and orientation conspire in spawning thecross product:
u× v is characterized by the equality

(5.1)|u× v|2 + (u · v)2 = |u|2|v|2
and the fact that vectorsu, v andu× v form, in this order, a direct frame. The 3-volume
of the parallelotope built on vectorsu, v, w, defined by vol(u, v,w) = (u× v) · w, is
equal, up to sign, to the above volumic measure, with equality if the frame is direct.14

Be well aware that× doesn’t make any sense innon-oriented three-space.
We shall have use for the related notion ofvectorial areaof an outer oriented tri-

angle T, defined as the vector�T = area(T)n, wheren is the normal unit vector that
provides the crossing direction. (If an ambient orientation exists, two vectorsu andv
can be laid along two of the three sides, in such a way that{u,v,n} is a direct frame.
Then,�T = 1

2u× v. Fig. 6.1 gives an example.) More generally, an outer oriented surface
of E3 has a vectorial area: Chop the surface into small adjacent triangular patches, add
the vectorial areas of these, and pass to the limit. (This yields 0 for a closed surface.)

For later use, we state the relations between the structures induced by{·,Or} and
{·,Or}, where Or = ±Or, the sign being that of det(L). (There is no ambiguity
about “det(L)”, understood as the determinant of the matrix representation ofL: its
value is the same in any basis.) The norm(u ·u)1/2 will be denoted by|u|. The cor-
responding cross product× (boldface) is defined by|u×v|2 + (u ·v)2 = |u|2|v|2
as in (5.1) (plus the request that{u,v,u×v} be Or-direct), and the new volume is
vol(u, v,w)= (u×v) ·w. It’s a simple exercise to show that

(5.2)|u| = |Lu|, L(u×v)= Lu×Lv, vol(u, v,w)= det(L)vol(u, v,w).

(It all comes from the equality det(Lu,Lv,Lw) = det(L)det(u, v,w), whenu, v, w,
andL are represented in some basis, a purely affine formula.) Notice that, for anyw,

11L is not unique, sinceUL, for anyunitaryU (i.e., such that|Uv| = |v| ∀v), will work as well. In particular,
one might forceL to be self-adjoint, but we won’t take advantage of that.
12Such equivalence is what sets Euclidean norms apart among all conceivable norms onVn, like for instance

|v| =∑
i |vi |. As argued at more length in BOSSAVIT [1998a], choosing to work in a Euclidean framework

is an acknowledgment of another observed symmetry of the world we live in: itsisotropy,in addition to its
homogeneity.
13A binary operation with the properties of the cross product can exist only in dimensions 3 and 7 (SHAW

and YEADON [1989], ECKMANN [1999]).
14An n-volume could directly be defined onVn, as a map{v1, . . . , vn} → vol(v1, . . . , vn), multilinear and

null when two vectors of the list are equal. Giving ann-volume implies an orientation (direct frames are those
with positiven-volumes), but no metric (unlessn= 1).
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one hasLaL(u×v) · w = L(u×v) · Lw = det(L)(u × v) · w, whereLa denotes the
adjoint of L (defined byLu · v = u ·Lav for all u, v), hence an alternative formula:

(5.3)u×v = det(L)(LaL)−1(u× v).

As for the vectorial area, denoted�T in the “bold” metric, one will see that

(5.4)�T = ∣∣det(L)
∣∣(LaL)−1�T,

with a factor|det(L)|, not det(L), because�T and �T, both going along the crossing di-
rection, point towards the same side ofT.

We shall also need a topology on the space ofp-chains, in order to define differ-
ential forms ascontinuouslinear functionals on this space. As we shall argue later,
physical observables such as electromotive force, flux, and so forth, can be conceived
as the values of functionals of this kind, the chain operand being the idealization of
some measuring device. Such values don’t change suddenly when the measurement ap-
paratus is slightly displaced, which is the rationale for continuity. But to make precise
what “slightly displaced” means, we need a notion of “nearness” between chains – a
topology.15

First thing, nearness between manifolds. Let us define the distanced(M,N) between
two of them as the greatest lower bound (the infimum) ofdφ(M,N) = sup{x ∈ M:
|x − φ(x)|} with respect to all orientation-preserving piecewise smooth diffeomor-
phisms (OPD)φ that exist betweenM andN . There may be no such OPD, in which
case we take the distance as infinite, but otherwise there is symmetry betweenM andN
(considerφ−1 from N to M), positivity, d can’t be zero ifM �= N , and the trian-
gle inequality holds. (Proof: TakeM , N , P , select OPDsφ andψ from P to M

andN , and considerx in P . Then |φ(x) − ψ(x)| � |φ(x) − x| + |x − ψ(x)|, hence
dψ◦φ−1(M,N)� dφ(M,P )+dψ(N,P ), then minimize with respect toφ andψ .) Near-
ness of two manifolds, in this sense, does account for the intuitive notion of “slight dis-
placement” of a line, a surface, etc. The topology thus obtained does not depend on the
original dot product, althoughd does.

Next, on to chains. The notion of convergence we want to capture is clear enough: a
sequence of chains{cn =∑

i=1,...,k µ
i
nMi,n: n ∈ N} should certainly converge towards

the chainc = ∑
i=1,...,k µ

iMi when the sequences of components{Mi,n: n ∈ N} all
converge, in the sense of the previous distance, toMi , while the weights{µin: n ∈ N}
converge too, towardsµi . But knowing some convergent sequences is not enough to
know the topology. (For that matter, even the knowledge ofall convergent sequences
would not suffice, see GELBAUM and OLMSTED [1964, p. 161].) On the other hand, the
finer the topology, i.e., the more open sets it has, the more difficult it is for a sequence
to converge, which tells us what to do: Define the desired topology as the finest one
which (1) is compatible with the vector space structure ofp-chains (in particular, each
neighborhood of 0 should contain a convex neighborhood) (2) makes all sequences of
the above kind converge.

15What follows is an attempt to bypass, rather than to face, this difficult problem, to which Harrison’s work
on “chainlet” spaces (nested Banach spaces which include chains and their limits with respect to various
norms, HARRISON [1998]), provides a much more satisfactory solution.
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The space of straight [respectively twisted]p-chains, as equipped with this topology,
will be denoted byCp [respectivelyC̃p]. Both spaces are purely affine constructs, inde-
pendent of the Euclidean structure, which only played a transient role in their definition.

It now makes sense to ask whether the linear map∂ is continuous fromCp to
Cp−1. The answer is by the affirmative, thanks to the linearity of∂ and the inequality
d(∂M,∂N)� d(M,N). [Proof: The restriction to∂M of an OPDφ is an OPD which
sends it to∂N , so d(∂M,∂N) � infφ sup{x ∈ ∂M: |φ(x) − x|} � infφ sup{x ∈ M:
|φ(x)− x|} = d(M,N).]



CHAPTER II

Rewriting the Maxwell Equations

Deconstruction calls for reconstruction: We now resettle the Maxwell system in the
environment just described, paying attention to what makes use of the metric structure
and what does not. In the process, differential forms will displace vector fields as basic
entities.

6. Integration: Circulation, flux, etc.

Simply said, differential forms are, among mathematical objects, those meant to be
integrated. So let us revisit Integration.

In standard integration theory (HALMOS [1950], RUDIN [1973], YOSIDA [1980]),
one has a setX equipped with a measuredx. Then, to a pair{A,f }, whereA is a part
of X andf a function, integration associates a number, denoted

∫
A
f (x)dx (or simply∫

A
f , if there is no doubt on the underlying measure), with additivity and continuity

with respect to both arguments,A andf . In what follows, we operate a slight change
of viewpoint: Instead of leaving the measuredx in background of a stage on which the
two objects of interest would beA andf , we consider the whole integrandf (x)dx
as a single object (later to be given its proper name, “differential form”), andA as
some piecewise smooth manifold ofA3. This liberates integration from its dependence
on the metric structure: The integral becomes a map of typeMANIFOLD × DIFFER-
ENTIAL_FORM → REAL (by linearity, CHAIN will eventually replaceMANIFOLD
there), which we shall see is the right approach as far as Electromagnetics is concerned.
The transition will be in two steps, one in which the Euclidean structure is used, one in
which we get rid of it.

The dot product ofEn induces measures on its submanifolds: By definition, the
Euclidean measure of the parallelotope built onp vectors{v1, . . . , vp} anchored atx,
i.e., of the set{x +∑

i λ
ivi : 0 � λi � 1, i = 1, . . . , p}, is the square-root of the so-

called Gram determinant of thevi ’s, whose entries are the dot productsvi · vj , for all
i, j from 1 to p. One can build from this, by the methods of classical measure the-
ory (HALMOS [1950]), thep-dimensional measures, i.e., the lineal, areal, volumic, etc.,
measures of a (smooth, bounded) curve, surface, volume, etc. (what Whitney and his
followers call its “mass”, WHITNEY [1957]). Forp = 0 not to stand out as an exception
there, we attribute to an isolated point the measure 1. (This is the so-calledcounting
measure, for which the measure of a set of points is the number of its elements.)

127
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FIG. 6.1. Forming the terms of Riemann sums. Left: generic “curve segment”s, with associated sampling
pointxs and vector�s. Right: generic triangular small patchT, with sampling pointxT. Observe how, with the

ambient orientation indicated by the icon, the vectorial area ofT happens to be12u× v.

We shall consider, corresponding to the four dimensionsp = 0, . . . ,3 of manifolds
in E3, four kinds of integrals which are constantly encountered in Physics. Such inte-
grals will be defined on cells first, then extended by linearity to chains, which covers
the case of piecewise smooth manifolds.

First,p = 0, a point,x say. The integral of a smooth functionϕ is then16 ϕ(x). If the
point is inner oriented, i.e., if it bears a signε(x) = ±1, the integral is by convention
ε(x)ϕ(x).

Next (p = 1), letc be a 1-cell. At pointx = c(t), define theunit tangent vectorτ(x)
as the vector atx equal to∂t c(t)/|∂t c(t)|, which inner-orientsc. Given a smooth vector
field u, the dot productτ · u defines a real-valued function on the image ofc. We call
circulation of u, alongc thus oriented, the integral

∫
c
τ · u of this function with respect

to the Euclidean measure of lengths.

REMARK 6.1. Integrals (of smooth enough functions) are limits of Riemann sums. In
the present case, such a sum can be obtained as suggested by Fig. 6.1, left: Chop the
curve into a finite familyS of adjacent curve segmentss, pick a pointxs in each of them,
and let�s be the vector, oriented alongc, that joins the extremities ofs. The Riemann
sum associated withS is then

∑
s∈S �s · u(xs), and converges towards

∫
c
τ · u whenS is

properly refined.

Further up (p = 2), let Σ be a 2-cell, to which a crossing direction has been as-
signed, and choose the parameterization{s, t} → Σ(s, t) in such a way that vectors
η(s, t)= ∂sΣ(s, t)× ∂tΣ(s, t) point in this direction. Then setn(x) = η(s, t)/|η(s, t)|,
at pointx = Σ(s, t), to obtain the outer-orientingunit normal field. Given a smooth
vector fieldu, we define theflux throughΣ , thus outer oriented, as the integral

∫
Σ
n · u

of the real-valued functionn · u with respect to, this time, the Euclidean measure of

16This is also its integral over the set{x}, with respect to the counting measure, in the sense of Integration
Theory. The integral over afinite set {x1, . . . , xk}, in this sense, would be

∑
i ϕ(xi ). Notice the difference

between this and what we are busy defining right now, the integral on a 0-chain, which will turn out to be a
weighted sum of the realsϕ(xi ).
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areas. (No ambiguity on this point, since the status ofΣ as a surface has been made
clear.)

REMARK 6.2. For Riemann sums, dissectΣ into a family T of small triangular
patchesT, whose vectorial areas are�T, pick a pointxT in each of them, and consider∑

T∈T �T · u(xT).

Last, forp = 3, and a 3-cellV with outer orientation+, the integral of a functionf is
the standard

∫
V
f , integral off over the image ofV with respect to the Lebesgue mea-

sure. This is consistent with the frequent physical interpretation of
∫
V
f as the quantity,

in V , of something (mass, charge,. . .) present with densityf in V . With outer orienta-
tion−, the integral is− ∫

V
f . Thus, outer orientation helps fix bookkeeping conventions

whenf is a rate of variation, like for instance, heat production or absorption. The inner
orientation ofV is irrelevant here.

Now, let us extend the notion to chains based on oriented cells. In dimension 0,
where an oriented point is a point-cum-sign pair{x, ε}, a 0-chainm is a finite col-
lection {{xi, εi}: i = 1, . . . , k} of such pairs, each with a weightµi . The integral

∫
m
ϕ

is then defined as
∑

i µ
iεiϕ(xi).17 In dimension 1, the circulation along the 1-chainc

=
∑

i µ
ici is

∫
c
τ · u =

∑
i µ

i
∫
ci
τ · u. The flux

∫
Σ
n · u through thetwisted(beware!)

chainΣ =
∑

i µ
iΣi is defined as

∑
i µ

i
∫
Σi
n · u. As for dimension 3, a twisted chain

manifoldV is a finite collection18 {{Vi, εi}: i = 1, . . . , k} of 3D blobs-with-sign, with
weightsµi , and

∫
V
f is, by definition,

∑
i µ

iεi
∫
Vi
f .

Note that we have implicitly defined integrals on piecewise smooth manifolds there,
since these can be considered as cell-based chains with “orientation matching weights”
(1 if the cell’s orientation and the manifold’s match,−1 if they don’t).

Thus the most common ways19 to integrate things in three-space lead to the definition
of integrals overinner oriented manifolds or chains in casesp = 0 and 1 andouter
oriented ones20 in casesp = 2 and 3. An unpleasant asymmetry. But since we work
in orientedEuclidean space, where one may, as we have seen, derive outer from inner
orientation, and the other way round, this restores the balance, hence finallyeightkinds
of integrals, depending on the dimension and on the nature (internal or external) of the
orientation of the underlying chain.

Thus we have obtained a series of maps of typeCHAIN → REAL, but in a pretty
awkward way, one must admit. Could there be an underlying unifying concept that
would make it all simpler?

17One might think, there, that orientation-signs and weights do double duty. Indeed, a convention could be
made that all points are positively oriented, and this would dispose of theεis. We won’t do this, for the sake
of uniformity of treatment with respect to dimension.
18Again, one might outer-orient such elementary volumes by giving them all a+ sign, reducing the redun-

dancy, and we refrain to do so for the same reason.
19Others reduce to one of these. For instance, when using Cartesian coordinatesx–y–z,

∫
c f (x, y, z)dx is

simply the circulation alongc, in the sense we have defined above, of the field ofx-directed basis vectors
magnified by the scalar factorf .
20A tradition initiated in FIRESTONE[1933] distinguishes between so-called “across” and “through” phys-

ical quantities (KOENIG and BLACKWELL [1960], BRANIN [1961]), expressible by circulations and fluxes,
respectively. As we shall see, this classification is not totally satisfying.
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7. Differential forms, and their physical relevance

Indeed, these maps belong to a category of objects that can be defined without recourse
to the Euclidean structure, and have thus a purely affine nature:

DEFINITION 7.1. A straight [respectively twisted] differential form of degreep,
or p-form, is a real-valued mapω over the space of straight [respectively twisted]
p-chains, linear with respect to chain addition, and continuous in the sense of the above-
defined topology of chains (end of Section 5).

Differential forms, thus envisioned, are dual objects with respect to chains, which
prompts us to mobilize the corresponding machinery of functional analysis (YOSIDA

[1980]): CallFp [respectivelyF̃p] the space of straight [respectively twisted]p-forms,
as equipped with its so-called “strong” topology.21 Then Cp and Fp [respectively
C̃p and F̃p] are in duality via the bilinear bicontinuous map{c,ω} → ∫

c
ω, of type

p-CHAIN × p-FORM → REAL. A common notation for such duality products being
〈c;ω〉, we shall use that as a convenient alternative22 to

∫
c
ω. A duality product should

benon-degenerate, i.e.,〈c′;ω〉 = 0 ∀c′ impliesω= 0, and〈c;ω′〉 = 0 ∀ω′ forcesc= 0.
The former property holds true by definition, and the latter is satisfied because, ifc �= 0,
one can construct an ad hoc smooth vector field or function with nonzero integral, hence
a nonzero formω such that〈c;ω〉 �= 0.

The above eight kinds of integrals, therefore, are instances of differential forms,
which we shall denote (in their order of appearance) by0ϕ, 1u (circulation ofu), 2ũ

(flux of u), 3ϕ̃, and 0ϕ̃, 1ũ, 2u, 3ϕ. This is of course ad hoc notation, to be aban-
doned as soon as the transition from fields to forms is achieved. Note the use of the
pre-superscriptp, accompanied or not by the tilde as the case may be, as anopera-
tor, that transforms functions or vector fields into differential forms (twisted ones, if
the tilde is there). This operator, being relative to a specific Euclidean structure is as a
rule metric- and orientation-dependent. (We’ll usep, and˜, versusp, and˜, to distin-
guish23 the{·,Or} and the{·,Or} structure.) For instance, the 2 in2u means that, given
the straight 2-chainS, one uses both the inner orientation of each of its components

21Differential forms converge, in this topology, if their integrals converge uniformly on bounded sets of
chains. (AboundedsetB is one that isabsorbedby any neighborhoodV of 0, i.e., such thatλB ⊂ V for
someλ > 0.) We won’t have to invoke such technical notions in the sequel. (Again, see HARRISON [1998]
for normson (Banach) spaces of differential forms.) Note the generic use of “differential form” here: Whether
an object qualifies as differential form depends on the chosen topology on chain spaces.
22In line with the convention of Note 4, we shall denote byω the mapc → 〈c;ω〉, and feel free to write
ω = c→ 〈c;ω〉. Of course, the symmetric constructc = ω→ 〈c;ω〉 is just as valid. Maps of the latter kind,
from forms to reals, were calledcurrentsin DE RHAM [1960]. (SeeDE RHAM [1936, p. 220], for the physical
justification of the term.) There are, a priori, much more currents than chains (or even chainlets, HARRISON

[1998]), and one should not be fooled by the expression “in duality” into thinking that the dual ofFp , i.e.,
the bidual ofCp , is Cp itself.
23This play on styles is only a temporary device, not to be used beyond the present Chapter. Later we shall

revert to the received “musical” notation, which assumes a single, definite metric structure in background,
and cares little about ambiguity:�u denotes the vector proxy of formu, and�U is the form represented by the
vector field U.
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and the ambient orientation to define a crossing direction, then the metric in order to
build a normal vector fieldn in this direction, over each component of the chain. Then,
〈S; 2u〉 = ∫

S
n · u defines2u, a straight 2-form indeed. (Notice that〈S; 2u〉 doesnot

depend on the ambient orientation.)

REMARK 7.1. In the foregoing example, it would be improper to describe〈S; 2u〉 as
the flux of u “through” S, since the components ofS, a straight chain, didn’t come
equipped with crossing directions. These were derived from the ambient orientation,
part of the Euclidean structure, instead of being given as an attribute ofS ’s components.
To acknowledge this difference, we shall refer to

∫
S
n · u as the flux “embraced by”S.

This is not mere fussiness, as will be apparent when we discuss magnetic flux.

One may wonder, at this point, whether substituting the single concept of differential
form for those of point-value, circulation, flux, etc., has gained us any real generality,
besides the obvious advantage of conceptual uniformity. Let us examine this point care-
fully, because it’s an essential part of the deconstruction of Euclidean space we have
undertaken.

On the one hand, the condition that differential forms should be continuous with re-
spect to deformations of the underlying manifolds doesn’t leave room, in dimension 3,
for other kinds of differential forms than the above eight. First, it eliminates many ob-
vious linear functionals from consideration. (For instance,γ being an outer-oriented
curve, theintersection number, defined as the number of timesγ crossesS, counted
algebraically (i.e., with sign – if orientations do not match), provides a linear map
S → S ∧ γ , which is not considered as a bona fide differential form. Indeed, it lacks
continuity.) Second, it allows one, by using the Riesz representation theorem, to build
vector fields or functions that reduce the given form to one of the eight types: For in-
stance, given a 1-formω, there is24 a vector fieldΩ such that〈c;ω〉 = ∫

c
τ ·Ω , which is

our first example of what will later be referred to as a “proxy” field: A scalar or vector
field that stands for a differential form. For other degrees, forms in 3D are representable
by vector fields (p = 1 and 2) or by functions (p = 0 and 3).

However, the continuity condition requires less regularity from the proxy fields than
the smoothness we have assumed up to now. Not to the point of allowing them to be
only piecewise smooth: What is required lies in between, and should be clear from
Fig. 7.1, which revisits a well known topic from the present viewpoint. As one sees,
the contrived “transmission conditions”, about tangential continuity of this or normal
continuity of that, are implied by the very definition of forms as continuous maps.

Last, the generalization is genuine in spatial dimensions higher than 3: A two-form
in 4-space, for instance, has no vector proxy, as a rule.

So, although differential forms do extend a little the scope of integration, this is but a
marginal improvement, at least in the 3D context. The real point lies elsewhere, and will

24The proof is involved. From a vector fieldv, build a 1-chain
∑
i µisi , akin to the graphic representation

of v by arrows, i.e.,si is an oriented segment that approximatesv in a region of volumeµi . Apply ω to this
chain, go to the limit. The real-valued linear map thus generated is then shown, thanks to the continuity ofω,
to be continuous with respect to theL2 norm on vector fields. Hence a Riesz vector fieldΩ , which turns out
to be a proxy forω.
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FIG. 7.1. The interfaceS, equipped with the unit normal fieldν, separates two regions where the vector
field u is supposed to be smooth, except for a possible discontinuity acrossS. SupposeΣ or c, initially
belowS, is moved up a little, thus passing into region 2. Under such conditions, the flux ofu throughΣ (left)
and circulation ofu alongc (right) can yet bestable, i.e., vary continuously with deformations ofc andΣ ,
providedu has some partial regularity: As is well known, and easily proven thanks to the Stokes theorem,
normal continuity (zero jump[ν · u] of the normal component across the interface) ensures continuity of
the flux

∫
Σ n · u with respect toΣ (left), while tangentialcontinuity ofu (zero jump[uS ] of the tangential

component across the interface) is required for continuity of the circulation
∫
c τ · u (right) with respect toc.

Forms0ϕ and 0ϕ̃ require a continuousϕ. Piecewise continuity of the proxy functionϕ is enough for3ϕ
and3ϕ̃.

now be argued: Which differential form is built from a given (scalar or vector) field de-
pends on the Euclidean structure,but the physical entity one purports to model via this
field does not, as a rule. Therefore, the entity of physical significance is the form, con-
ceived as an affine object, and not the field. Two examples will suffice to settle this point.

Consider an electric charge,Q coulombs strong, which is made to move along an
oriented smooth curvec, in the direction indicated by the tangent vector fieldτ . We
mean atest charge, withQ small enough to leave the ambient electromagnetic field
{E,B} undisturbed, and avirtual motion, which allows us to consider the field as frozen
at its present value. The work involved in this motion isQ times the quantity

∫
c
τ · E,

called theelectromotive force(e.m.f.)along c, and expressed in volts (i.e., joules per
coulomb). No unit of length is invoked in this description.

Then why is E expressed in voltsper meter(or whatever unit one adopts)? Only
because a vectorv such that|v| = 1 is one meter long, which makes E· v, and the in-
tegral

∫
c
τ · E as well, a definite amount ofvolts, indeed. This physical data, of course,

only depends on the field and the curve, not on the metric structure. Yet, change the
dot product, from· to · (recall thatu ·v = Lu ·Lv), which entails a change in the mea-
sure of lengths (hence a rescaling of the unitary vector, nowτ instead ofτ ), and the
circulation of E is now25

∫
c
τ ·E = ∫

c
τ · LaLE, a different (and physically meaning-

less) number. On the other hand, thereis a fieldE such that
∫
c
τ ·E = ∫

c
τ · E, namely

E = (LaL)−1E. Conclusion:Which vector field encodes the physical data(here, e.m.f.’s
along all curves)depends on the chosen metric, although the data themselves do not.
This metric-dependence of E is the reason to call it a vectorproxy: It merelystandsfor

25On the left of the equal sign, the integral and the symbols· and τ are boldface. (One should see the
difference, unless something is amiss in the visualization chain.) So the circulation of E is with respect to
the “bold” measure of lengths on the left. The easiest way to verify this equality (and others like it to come)
is to work on the above Riemann sums

∑
s vs ·E(xs) of the “bold” circulation of E: One has, for each term

(omitting the subscript),v ·E = Lv ·LE= v ·LaLE, hence the result.
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the real thing, which is the mappingc → 〈e.m.f. alongc〉, i.e., a differential form of
degree 1, which we shall from now on denote bye.

Thus, summoning all the equivalent notations introduced so far,

(7.1)e= 1E= 1E = c→ 〈c; e〉, where〈c; e〉 ≡
∫
c

e=
∫
c

τ · E =
∫
c

τ ·E.

This (straight) 1-form is the right mathematical object by which to represent the electric
field, for it tells all about it: Electromotive forces along curves are, one may argue
(TONTI [1996]), all that can be observed as regards the electric field.26 To the point that
one can get rid of all the vector-field-and-metric scaffolding, and introducee directly,
by reasoning as follows: The1-CHAIN → REALmap we call e.m.f. depends linearly
and continuously,as can experimentally be established, on the chain over which it is
measured. But this is the very definition of a 1-form. Hencee is the minimal, necessary
and sufficient, mathematical description of the (empirical) electric field.

REMARK 7.2. The chain/form duality, thus, takes on a neat physical meaning: While
the forme models the field, chains are abstractions of theprobes, of more or less com-
plex structure, that one may place here and there in order to measure it.

The electric field is not the whole electromagnetic field: it only accounts for forces
(and their virtual work) exerted on non-moving electric charges. We shall deal later
with the magnetic field, which gives the motion-dependent part of the Lorentz force,
and recognize it as a 2-form. But right now, an example involving atwisted2-form will
be more instructive.

So consider current density, classically a vector field J, whose purpose is to account
for the quantity of electric charge,

∫
Σ
n · J, that traverses, per unit of time, a surfaceΣ

in the direction of the unit normal fieldn that outer-orients it. (Note again this quantity
is in ampères, whereas the dimension of the proxy field J isA/m2.) This map,Σ →
〈intensity throughΣ〉, a twisted 2-form (namely,2J̃), is what we can measure and know
about the electric current, and the metric plays no role there. Yet, change· to ·, which
affects the measure of areas, and the flux of J becomes27

∫
Σ

n ·J= |det(L)| ∫
Σ
n · J.

The “bold” vector proxy, therefore, should beJ = |det(L)|−1J, and then2J̃ = 2J̃. Again,
different vector proxies, but the same twisted 2-form, which thus appears as the invariant
and physically meaningful object. It will be denoted byj .

This notational scheme will be systematized: Below, we shall calle,h, d, b, j, a, etc.,
the differential forms that the traditional vector fields E, H, D, B, J, A, etc., represent.

26Pointwise values cannot directly be measured, which is why they are somewhat downplayed here, but of
course they do make sense, at points of regularity of the field: Taking forc the segment[x, x + v], wherev
is a vector atx that one lets go to 0, generates at the limit a linear mapv → ωx(v). This map, an element of
the dual ofTx , is called acovectorat x. A 1-form, therefore, can be conceived as a (smooth enough) field of
covectors. In coordinates, covectors such asv → vi , wherevi is the ith component ofv at pointx, form a
basis for covectors atx. (They are what is usually denoted by dxi ; but di makes better notation, that should
be used instead, on a par with∂i for basis vectors.)
27Same trick, with Riemann sums of the form

∑
T

�T ·J(xT). After (5.2) and (5.4),�T ·J = L�T · LJ =
LaL�T · J= |det(L)|�T · J. Hence

∫
Σ n ·J= |det(L)| ∫Σ n · J.
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8. The Stokes theorem

The Stokes “theorem” hardly deserves such a status in the present approach, for it re-
duces to a mere

DEFINITION 8.1. The exterior derivative dω of the (p − 1)-form ω is the p-form
c→ ∫

∂c
ω.

In plain words: To integrate dω over thep-chainc, integrateω over its boundary∂c.
(This applies to straight or twisted chains and forms equally. Note that d is well defined,
thanks to the continuity of∂ from Cp−1 to Cp.) In symbols:

∫
∂c
ω= ∫

c
dω, which is the

common form of the theorem, or equivalently,

(8.1)〈∂c;ω〉 = 〈c;dω〉 ∀c ∈ Cp andω ∈Fp−1

(put tildes overC andF for twisted chains and forms), which better reveals what is
going on: d is thedualof ∂ (YOSIDA [1980]). As a corollary of (4.1), one has

(8.2)d◦ d= 0.

A form ω is closedif dω= 0, andexactif ω= dα for some formα. (Synonyms, perhaps
more mnemonic, arecocycleandcoboundary. The integral of a cocycle over a boundary,
or of a coboundary over a cycle, vanishes.)

REMARK 8.1. InAn, all closed forms are exact: this is known as thePoincaré Lemma
(see, e.g., SCHUTZ [1980, p. 140]). But closed forms need not be exact in general man-
ifolds: this is the dual aspect of the “not all cycles bound” issue we discussed earlier.
Studying forms, consequently, is another way, dual to homology, to investigate topol-
ogy. The corresponding theory is calledcohomology(JÄNICH [2001], MADSEN and
TORNEHAVE [1997]).

In three dimensions, the d is the affine version of the classical differential operators,
grad, rot, and div, which belong to the Euclidean structure. Let’s review this.

First, the gradient: Given a smooth functionϕ, we define gradϕ as the vector field
such that, for any 1-cellc with unit tangent fieldτ ,

(8.3)
∫
c

τ · (gradϕ)=
∫
∂c

ϕ,

the latter quantity being of courseϕ(c(1))− ϕ(c(0)). By linearity, this extends to any
1-chain. One recognizes (8.1) there. The relation between gradient and d, therefore, is
1(gradϕ) = d0ϕ ≡ dϕ, the third term being what is called thedifferential of ϕ. (The
zero superscript can be dropped, because there is only one way to turn a function into a
0-form, whatever the metric.) The vector field gradϕ is a proxy for the 1-form dϕ.

Thus defined, gradϕ depends on the metric. If the dot product is changed from “·” to
“ ·”, the vector field whose circulation equals the right-hand side of (8.3) is a different
proxy, gradϕ, which relates to the first one, as one will see using (5.2), by gradϕ =
LaLgradϕ.
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Up in degree, rot and div are defined in similar fashion. Thus, all in all,

(8.4)1(gradϕ)= d0ϕ, 2(rotu)= d1u, 3(divv)= d2v.

Be well aware that all forms here arestraight. Yet their proxies may behave in confusing
ways with respect to orientation, as we shall presently see.

About curl, (8.4) says that the curl of a smooth fieldu, denoted rotu, is the vector
field such that, for any inner oriented surfaceS,

(8.5)
∫
S

n · rotu=
∫
∂S

τ · u.

Here,τ corresponds to the induced orientation of∂S, andn is obtained by the Ampère
rule. So the ambient orientation is explicitly used. Changing it reverses the sign of rotu.
The curl behaves like the cross product in this respect. If, moreover, the dot product is
changed, the bold curl and the meager one relate as follows:

PROPOSITION8.1. Withu ·v = Lu ·Lv andOr = sign(det(L))Or, one has

(8.6)rotu= (
det(L)

)−1 rot(LaLu).

PROOF. Because of the hybrid character of (8.5), with integration over an outer ori-
ented surface on the left, and over an inner oriented line on the right, the compu-
tation is error prone, so let’s be careful. On the one hand (Note 25),

∫
∂S

τ ·u =∫
∂S
τ · LaLu = ∫

S
n · rot(LaLu). On the other hand (Note 27), settingJ = rotu, we

know that
∫
S

n ·J = |det(L)| ∫
S
n · J, hence. . . but wait! In Note 27, we had both

normalsn and n on the same side of the surface, but here (see Fig. 3.2, left), they
may point to opposite directions ifOr �= Or. The correct formula is thus

∫
S

n ·rotu=
det(L)

∫
S
n · rotu≡ ∫

S
n · rot(LaLu), hence (8.6). �

As for the divergence, (8.4) defines divv as the function such that, for any volumeV
with outgoing normaln on ∂V ,

(8.7)
∫
V

divv =
∫
∂V

n · v.

No vagaries due to orientation this time, because both integrals represent the same kind
of form (twisted). Moreover,divv = divv, because the same factor|det(L)| pops up
on both sides of

∫
V

divv = ∫
∂V

n ·v. (These integrals, as indicated by the boldface
summation sign, are with respect to the “bold” measure. For the one on the left, it’s the
3D measure|vol|, andvol = det(L)vol after (5.2).)

REMARK 8.2. The invariance of div is consistent with its physical interpretation: ifv

is the vector field of a fluid mass, its divergence is the rate of change of the volume
occupied by this mass, and though volumes depend on the metric, volumeratiosdo not,
again after (5.2).
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FIG. 8.1. Vertical arrows show how to relate vector or scalar proxies that correspond to thesamestraight
form, of degree 0 to 3, in two different Euclidean structures. Fortwistedforms, use the same diagram, but

with |det(L)| substituted for det(L).

For reference, Fig. 8.1 gathers and displays the previous results. This is a commuta-
tive diagram, from which transformation formulas about the differential operators can
be read off.28

As an illustration of how such a diagram can be used, let us prove something the
reader has probably anticipated: the invariance of Faraday’s law with respect to a change
of metric and orientation. Let two vector fields E and B be such that∂tB + rotE= 0,
and setB = B/det(L), E = (LaL)−1E, which represent the same differential forms
(call themb ande) in the{·,Or} framework, as B and E in the{·,Or} one. Then∂tB +
rot E = 0. We now turn to the significance of the single physical law underlying these
two relations.

9. The magnetic field, as a 2-form

Electromagnetic forces on moving charges, i.e., currents, will now motivate the intro-
duction of the magnetic field. Consider a current loop,I ampères strong, which is made
to move – virtual move, again – so as to span a surfaceS (Fig. 9.1). The virtual work
involved is thenI times

∫
S
n ·B (“cut flux” rule), as explained in the caption. Experience

establishes the linearity and continuity of the factor
∫
S
n · B, called theinduction flux,

as a function ofS. Hence a 2-form, again the minimal description of the (empirical)
magnetic field, which we denote byb and callmagnetic induction.

In spite of the presence ofn in the formula,b is not a twisted but a straight 2-form,
as it should, since ambient orientation cannot influence the sign of the virtual work in
any way. Indeed, what is relevant is the direction of the current along the loop, which
inner-orientsc, and the inner orientation ofS is the one that matches the orientation
of the chainc′ − c (“final position minus initial position” in the virtual move). The
intervention of a normal field, therefore, appears as the result of the will to representb

with help of a vector, the traditional B such thatb= 2B. No surprise, then, if this vector

28It should be clear thatL might depend on the spatial positionx, so this diagram is more general than what
we contracted for. It gives the correspondence between differential operators relative to different Riemannian
structures on the same 3D manifold.
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FIG. 9.1. Conventions for the virtual work due to B on a current loop, in a virtual move from positionc to
positionc′. The normaln is the one associated, by Ampère’s rule, with the inner orientation ofS, a surface

such that∂S = c′ − c. The virtual work of the J× B force, with J= Iτ , is thenI times the flux
∫
S n · B.

FIG. 9.2. Nature of the proxies innon-oriented 3D space with dot product.

proxy “changes sign” with ambient orientation! Actually, it cannot do its job, that is,
representb, without an ambient orientation.

If one insists on a proxy that can act to this effect in autonomy, this object has to carry
on its back, so to speak, an orientation of ambient space, i.e., it must be a field ofaxial
vectors. Even so, the dependence on metric is still there, so the benefit of using such
objects is tiny. Yet, why not, if one is aware that (polar) vector field and axial vector
field are just mathematicaltools,29 which may be more or less appropriate, depending
on the background structures, to represent a given physical entity. In this respect, it may
be useful to have a synoptic guide (Fig. 9.2).

We can fully appreciate, now, the difference betweenj andb, between current flow
and magnetic flux. Current density, the twisted 2-formj , is meant to be integrated over
surfacesΣ with crossing direction: its proxy J is independent of the ambient orienta-
tion. Magnetic induction, the straight 2-formb, is meant to be integrated over surfacesS

with inner orientation: its proxy B changes sign if ambient orientation is changed. Cur-
rent, clearly, flows through a surface, so intensity is one of these “through variables” of

29Thus axiality or polarity is by no means a property of the physical objects. But the way physicists write
about it doesn’t help clarify this. For instance (BAEZ and MUNIAIN [1994, p. 61]): “In physics, the electric
field E is called a vector, while the magnetic field B is called an axial vector, because E changes sign under
parity transformation, while B does not”. Or else (ROSEN [1973]): “It is well known that under the space
inversion transformation,P : (x, y, z)→ (−x,−y,−z), the electric field transforms as a polar vector, while
the magnetic field transforms as an axial vector,P : {E → −E,B → B}”. This may foster confusion, as some
passages in BALDOMIR and HAMMOND [1996] demonstrate.
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Note 20. But thinking of the magnetic flux as goingthroughS is misleading. Hence the
expression used here, fluxembraced bya surface.30

10. Faraday and Ampère

We are now ready to address Faraday’s famous experiment: variations of the flux em-
braced by a conducting loop create an electromotive force. A mathematical statement
meant to express this law with maximal economy will therefore establish a link between
the integral ofb over a fixed surfaceS and the integral ofe over its boundary∂S. Here
it is: one has

(10.1)∂t

∫
S

b+
∫
∂S

e= 0 ∀S ∈ C2,

i.e., for any straight 2-chain, and in particular, any inner oriented surfaceS. Numbers in
(10.1) have dimension: webers for the first integral, and volts (i.e., Wb/s) for the second
one. Inner orientation of∂S (and hence, ofS itself) makes lots of physical sense: it
corresponds to selecting one of the two ways a galvanometer can be inserted in the
circuit idealized by∂S. Applying the Stokes theorem – or should we say, the definition
of d – we find the local, infinitesimal version of the global, integral law (10.1), as this:

(10.2)∂tb+ de= 0,

the metric- and orientation-free version of∂tB + rotE= 0.
As for Ampère’s theorem, the expression is similar, except that twisted forms are now

involved:

(10.3)−∂t
∫
Σ

d +
∫
∂Σ

h=
∫
Σ

j ∀Σ ∈ C̃2,

i.e., for any twisted 2-chain, and in particular, any outer oriented surfaceΣ . Its infini-
tesimal form is

(10.4)−∂td + dh= j,

again the purely affine version of−∂tD + rotH = J. Sincej is a twisted form,
d must be one, andh as well,31 which suggests that its proxy H will not behave
like E under a change of the background Euclidean structure. Indeed, one hasH =
sign(det(L))(LaL)−1H in the now familiar notation. In non-oriented space with metric,
the proxy H would be an axial vector field, on a par with B. Vector proxies D and J
would be polar, like E.

At this stage, we may announce the strategy that will lead to a discretized form of
(10.1) and (10.3): Instead of requesting their validity forall chainsS orΣ , we shall be

30This exposes the relative inadequacy of the “across vs. through” concept, notions which roughly match
those of straight 1-form and twisted 2-form (BRANIN [1961]). Actually, between lines and surfaces on the
one hand, and inner or outer orientation on the other hand, it’sfour different “vectorial” entities one may have
to deal with, and the vocabulary may not be rich enough to cope.
31A magnetomotive force(m.m.f.), therefore, is a real value (in ampères) attached to anouteroriented line
γ , namely the integral

∫
γ h.
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content with enforcing them for afinite family of chains, those generated by the 2-cells
of an appropriate finite element mesh, hence a system of differential equations. But first,
we must deal with the constitutive laws linkingb andd to h ande.

11. The Hodge operator

For it seems a serious difficulty exists there: Sinceb andh, or d and e, are objects
of different types, simple proportionality relations between them, such asb = µh and
d = εe, won’t make sense ifµ andε are mere scalar factors. To save this way of writing,
as it is of course desirable, we must properly redefineµ andε asoperators, of type 1-
FORM→ 2-FORM, one of the forms twisted, the other one straight.

So let’s try to see what it takes to go frome to d . It consists in being able to determine∫
Σ
d over any given outer oriented surfaceΣ , knowing two things: the forme on the

one hand, i.e., the value
∫
c
e for any inner oriented curvec, and the relation D= εE

between the proxies, on the other hand. (Note thatε can depend on position. We shall
assume it’s piecewise smooth.) How can that be done?

The answer is almost obvious ifΣ is a small32 piece of plane. Build, then, a small
segmentc meetingΣ orthogonally at a pointx whereε is smooth. Associate withc the
vector�c of same length that points along the crossing direction throughΣ , and let this
vector also serve to inner-orientc. Let �Σ stand for the vectorial area ofΣ , and take note
that �Σ/area(Σ)= �c/length(c). Now dot-multiply this equality by D on the left,εE on
the right. The result is

(11.1)
∫
Σ

d = ε(x)
area(Σ)

length(c)

∫
c

e,

which does answer the question.
How to lift the restrictive hypothesis thatΣ be small? Riemann sums, again, are the

key. DivideΣ into small patchesT, as above (Fig. 6.1, right), equip each of them with a
small orthogonal segmentcT, meeting it atxT, and such that�cT = �T. Next, define

∫
Σ
d

as the limit of the Riemann sums33∑
T ε(xT)

∫
cT
e. One may then define theoperatorε,

with reuse of the symbol, as the mape→ d just constructed, fromF1 to F̃2. A similar
definition holds forµ, of type F̃1 → F2, and for the operatorsε−1 andµ−1 going in
the other direction. (Later, we shall substituteν for µ−1.)

REMARK 11.1. We leave aside the anisotropic case, with a (symmetric) tensorεij in-
stead of the scalarε. In short: Among the variant “bold” metrics, there is one in which
εij reduces to unity. Then apply what precedes, with “orthogonality”, “length”, and
“area” understood in the sense of this modified metric. (The latter may depend on po-
sition, however, so this stands a bit outside our present framework. Details are given in
BOSSAVIT [2001b].)

32To make up for the lack of rigor which this word betrays, one should treatc andΣ as “p-vectors” (p = 1
and 2 respectively), which are the infinitesimal avatars ofp-chains. See BOSSAVIT [1998b] for this approach.
33Singular points ofε, at whichε(xT) is not well defined, can always be avoided in such a process, unless
Σ coincides with a surface of singularities, like a material interface. But then, moveΣ a little, and extendd
to such surfaces by continuity.
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REMARK 11.2. When the scalarε or µ equals 1, what has just been defined is the
classicalHodge operatorof differential geometry (BURKE [1985], SCHUTZ [1980]),
usually denoted by∗, which mapsp-forms, straight or twisted, to(n− p)-forms of the
other kind, with∗∗ = ±1, depending onn andp. In dimensionn = 3, it’s a simple
exercise to show that the above construction then reduces to∗ 1u= 2ũ, which prompts
the following definition:∗ 0ϕ = 3ϕ̃, ∗ 1u= 2ũ, ∗ 2u=1 ũ, 3ϕ = ∗ 0ϕ̃. Note that∗∗ = 1
for all p in 3D.

The metric structure has played an essential role in this definition: areas, lengths, and
orthogonality depend on it. So we now distinguish, in the Maxwell equations, the two
metric-free main ones,

(10.2)∂tb+ de= 0,

(10.4)−∂td + dh= j,

and the metric-dependent constitutive laws

(11.2)b= µh,

(11.3)d = εe,

whereµ and ε are operators of the kind just described. To the extent that no metric
element is present in these equations, except for the operatorsµ and ε, from which
one can show the metric can be inferred (BOSSAVIT [2001b]), one may even adopt the
radical point of view (DI CARLO and TIERO [1991]) thatµ andε encodethe metric
information.

12. The Maxwell equations: Discussion

With initial conditions one andh at timet = 0, and conditions about the “energy” of
the fields to which we soon return, the above system makes a well-posed problem. Yet
a few loose ends must be tied.

First, recall thatj is supposed to be known. But reintroducing Ohm’s law at this stage
would be no problem: replacej in (10.4) byj s +σe, wherej s is a given twisted 2-form
(the source current), andσ a third Hodge-like operator on the model ofε andµ.

12.1. Boundary conditions, transmission conditions

Second, boundary conditions, if any. Leaving aside artificial “absorbing” boundary con-
ditions (MITTRA, RAMAHI , KHEBIR, GORDON and KOUKI [1989]), not addressed
here, there are essentially four basic ones, as follows.

Let’s begin with “electric walls”, i.e., boundaries of perfect conductors, inside which
E = 0, hence the standardn× E = 0 on the boundary. In terms of the forme, it means
that

∫
c
e = 0 for all curvesc contained in such a surface. This motivates the following

definition, stated in dimensionn for generality:S being an(n−1)-manifold, callCp(S)
the space ofp-chains whose components are all supported inS; then,
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DEFINITION 12.1. The trace tSω of thep-form ω is the restriction ofω to Cp(S), i.e.,
the mapc→ ∫

c
ω restricted top-chains based on components which are contained inS.

Of course this requiresp < n. So the boundary condition at an electric wallSe is
tSee = 0, which we shall rather write, for the sake of clarity, as “te = 0 onSe”. Sym-
metrically, the condition th= 0 onSh corresponds to a magnetic wallSh.

The Stokes theorem shows that d, and t, commute: dtω = tdω for anyω of degree
not higher thann − 2. Therefore te = 0 implies tde = 0, hence∂t (tb) = 0 by (10.2),
that is, tb = 0 if one starts from null fields at time 0. For the physical interpretation of
this, observe that tb= 0 onSb means

∫
S
b= 0 for any surface pieceS belonging toSb,

or else, in terms of the vector proxy,
∫
S
n · B = 0, which impliesn · B = 0 on all Sb:

a “no-flux” surface, called a “magnetic barrier” by some. We just proved anew, in the
present language, that electric walls are impervious to magnetic flux. One will see in the
same manner that tj = 0 corresponds to “insulating boundaries” (n ·J= 0) and td = 0 to
“dielectric barriers” (n · D = 0). If j is given with tj = 0 at the boundary of the domain
of interest (which is most often the case) then th = 0 on Sh implies td = 0 there. (In
eddy current problems, whered is neglected, butj is only partially given, th= 0 onSh

implies tj = 0, i.e., no current through the surface.)
Conditions tb = 0 or td = 0 being thus weaker than te = 0 or th= 0, one may well

want to enforce them independently. Many combinations are thereby possible. As a
rule (but there are exceptions in non-trivial topologies, see BOSSAVIT [2000]), well-
posedness in a domainD bounded by surfaceS obtains ifS can be subdivided asS =
Se ∪ Sh ∪ Seh, with te= 0 onSe (electric wall), th= 0 onSh (magnetic wall), andboth
conditions tde = 0 and tdh= 0 onSeh, which corresponds to tb = 0 and td = 0 taken
together (boundary which is both a magnetic and a dielectric barrier, or, in the case of
eddy-current problems, an insulating interface).

REMARK 12.1. It may come as a surprise that the standard Dirichlet/Neumann oppo-
sition is not relevant here. It’s because a Neumann condition is just a Dirichlet condi-
tion composed with the Hodge and the trace operators (BOSSAVIT [2001c]): Take for
instance the standardn×µ−1 rotE= 0, which holds on magnetic walls in the E formu-
lation. This is (up to an integration with respect to time) the proxy form of th= 0, i.e.,
of the Dirichlet conditionn × H = 0. In short, Neumann conditions one are Dirich-
let conditions onh, and the other way round. They only become relevant when one
eliminates eithere or h in order to formulate the problem in terms of the other field ex-
clusively, thus breaking the symmetry inherent in Maxwell’s equations (which we have
no intention to do unless forced to!).

Third point, what about the apparently missing equations, div D= Q and divB= 0
in their classical form (Q is the density of electric charge)? These are not equations,
actually, but relations implied by the Maxwell equations, or at best, constraints that
initial conditions should satisfy, as we now show.

Let’s first defineq, the electric charge, of which the above Q is the proxy scalar field.
Sincej accounts for its flow, charge conservation impliesdt

∫
V
q + ∫

∂V
j = 0 for all
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volumesV , an integral law the infinitesimal form of which is

(12.1)∂tq + dj = 0.

Suppose bothq andj were null before timet = 0. Later, then,q(t)= − ∫ t0(dj)(s) ds.
Note thatq, like dj , is a twisted3-form, as should be the case for something that ac-
counts for the density of a substance. (Twisted forms are often called “densities”, by the
way, as in BURKE [1985].)

Now, if one accepts the physical premise that no electromagnetic field exists until
its sources (charges and their flow, i.e.,q and j ) depart from zero, all fields are null
at t = 0, and in particular, after (10.4),d(t) = d(0) + ∫ t

0 [(dh)(s) − j (s)]ds, hence,
by using (8.2), dd(t)= − ∫ t0(dj)(s) ds ≡ q(t), at all times, hence the derived relation
dd = q. As for b, the same computation shows that db= 0.

So-called “transmission conditions”, classically[n× E] = 0, [n · B] = 0, etc., at ma-
terial interfaces, can be evoked at this juncture, for these too are not equations, in the
sense of additional constraints that the unknownse, b, etc., would have to satisfy. They
are satisfied from the outset, being a consequence of the very definition of differential
forms (cf. Fig. 7.1).

12.2. Wedge product, energy

Fourth point, the notion of energy. The physical significance of such integrals as
∫

B · H
or
∫

J· E is well known, and it’s easy to show, using the relations displayed on Fig. 8.1,
that both are metric-independent. So they should be expressible in non-metric terms.
This is so, thanks to the notion ofwedge product, an operation which creates a (p+ q)-
form ω ∧ η (straight when both factors are of the same kind, twisted otherwise) out of
ap-form ω and aq-form η. We shall only describe this in detail in the case of a 2-form
b and a 1-formh, respectively straight and twisted.

The result, a twisted 3-formb ∧ h, is known if integrals
∫
V
b ∧ h are known for all

volumesV . In quite the same way as with the Hodge map, the thing is easy whenV

is a small parallelepiped, as shown in Fig. 12.1. Observe that, ifb = 2B andh = 1H̃,
then

∫
V
b ∧ h = B · H vol(V ), if one follows the recipe of Fig. 12.1, confirming the

soundness of the latter. The extension to finite-size volumes is made by constructing
Riemann sums, as usual.

REMARK 12.2. Starting from the equality
∫
b ∧ h′ = ∫

B · H′, settingb = µh yields∫
µh ∧ h′ = ∫

µH · H′ = ∫
µH′ · H = ∫

µh′ ∧ h, a symmetryproperty of the Hodge
operator to which we didn’t pay attention till now. Note also that

∫
µh∧h= ∫

µ|H|2>
0, unlessh= 0. Integrals such as

∫
µh∧h′, or

∫
νb∧b′, etc., can thus be understood as

scalar productson spaces of forms, which can thereby be turned (after due completion)
into Hilbert spaces. The corresponding norms, i.e., the square roots of

∫
µh ∧ h, of∫

νb ∧ b, and other similar constructs one or d , will be denoted by|h|µ, |b|ν , etc.

Other possible wedge products are0ϕ ∧ ω = 0(ϕω) (whatever the degree ofω),
1u ∧ 1v = 2(u × v), 2u ∧ 1v = 3(u · v). (If none or both factors are straight forms,
the product is straight.) It’s an instructive exercise to work out the exterior derivative of
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FIG. 12.1. There are three ways, as shown, to see volumeV , built onu, v, w, as the extrusion of a surfaceS
along a line segmentγ . A natural definition of the integral ofb∧ h is then

∫
V b∧ h= (

∫
S(u,v) b)(

∫
γ (w) h)+

(
∫
S(v,w) b)(

∫
γ (u) h)+ (

∫
S(u,w) b)(

∫
γ (v) h). Note the simultaneous inner and outer orientations ofS andγ ,

which should match (if the outer orientation ofV is +, as assumed), but are otherwise arbitrary.

such products, using the Stokes theorem, and to look for the equivalents of the standard
integration by parts formulas, such as∫

Ω

(H · rotE− E · rotH)=
∫
∂Ω

n · (E× H),∫
Ω

(D · gradΨ +Ψ divD)=
∫
∂Ω

Ψ n · D.

They are, respectively,

(12.2)
∫
Ω

(de ∧ h− e ∧ dh)=
∫
∂Ω

e ∧ h,

(12.3)
∫
Ω

(dψ ∧ d +ψ dd)=
∫
∂Ω

ψ d.

Now, let us consider a physically admissible field, that is, a quartet of formsb,h, e, d ,
which may or may not satisfy Maxwell’s equations when taken together, but are each of
the right degree and kind in this respect.

DEFINITION 12.2. The following quantities:

(12.4)
1

2

∫
µ−1b ∧ b, 1

2

∫
µh∧ h, 1

2

∫
εe ∧ e, 1

2

∫
ε−1d ∧ d,

are called, respectively,magnetic energy, magnetic coenergy, electric energy, andelec-
tric coenergyof the field. The integral

∫
j ∧ e is thepowerreleased by the field.

The latter definition, easily derived from the expression of the Lorentz force, is a
statement about field–matter energy exchanges from which the use of the word “energy”
could rigorously be justified, although we shall not attempt that here (cf. BOSSAVIT

[1990a]). The definition entails the following relations:

1

2

∫
µ−1b ∧ b+ 1

2

∫
µh∧ h�

∫
b ∧ h,

1

2

∫
ε−1d ∧ d + 1

2

∫
ε e ∧ e�

∫
d ∧ e,



144 A. Bossavit CHAPTER II

with equality if and only ifb= µh andd = εe. One may use this as a way to set up the
constitutive laws.

REMARK 12.3. The well-posedness evoked earlier holds if one restricts the search
to fields with finite energy. Otherwise, of course, nonzero solutions to (10.2), (10.4),
(11.2), (11.3) withj = 0 do exist (such as, for instance, plane waves).

The integrals in (12.4) concern the whole space, or at least, the whole region of ex-
istence of the field. One may wish to integrate on some domainΩ only, and to account
for the energy balance. This is again an easy exercise:

PROPOSITION 12.1 (Poynting’s theorem).If the field {b,h, e, d} does satisfy the
Maxwell equations(10.2), (10.4), (11.2), (11.3), one has

dt

[
1

2

∫
Ω

µ−1b ∧ b+ 1

2

∫
Ω

εe ∧ e
]

+
∫
∂Ω

e ∧ h= −
∫
Ω

j ∧ e

for any fixed domainΩ .

PROOF. “Wedge multiply” (10.2) and (10.4), from the right, bye and−h, add, use
(12.2) and Stokes. �

As one sees, all equalities and inequalities on which a variational approach to
Maxwell’s theory can be based do have their counterparts with differential forms. We
shall not follow this thread any further, since what comes ahead is not essentially based
on variational methods. Let’s rather close this section with a quick review of various
differential forms in Maxwell’s theory and how they relate.

12.3. The “Maxwell house”

To the field quartet and the source pair{q, j}, one may add theelectric potentialψ
and thevector potentiala, a straight 0-form and 1-form respectively, such thatb = da
ande = −∂ta + dψ . Also, themagnetic potentialϕ (twisted 0-form) and the twisted
1-form τ such thath = τ + dϕ, whose proxy is the T of Carpenter’s “T–Ω” method
(CARPENTER[1977]). None of them is as fundamental as those in (10.2), (10.4), but
each can be a useful auxiliary at times. Themagnetic currentk andmagnetic chargem
can be added to the list for the sake of symmetry (Fig. 12.2), although they don’t seem
to represent any real thing (GOLDHABER and TROWER[1990]).

For easier reference, Fig. 12.2 displays all these entities as an organized whole, each
one “lodged” according to its degree and nature as a differential form. Since primitives
in time may have to be considered, we can group the differential forms of electromag-
netism in four similar categories, shown as vertical pillars on the figure. Each pillar
symbolizes the structure made by spaces of forms of all degrees, linked together by the
d operator. Straight forms are on the left and twisted forms on the right. Differentiation
or integration with respect to time links each pair of pillars (the front one and the rear
one) forming the sides of the structure. Horizontal beams symbolize constitutive laws.
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FIG. 12.2. Structures underlying the Maxwell system of equations. For more emphasis on their symmetry,
Faraday’s law is here taken to be∂t b + de = −k, with k = 0. (The straight 2-formk would stand for the
flow of magnetic charge, if such a thing existed. Then, one would have db =m, where the straight 3-formm

represents magnetic charge, linked with its current by the conservation law∂tm+ dk = 0.)

As one can see, each object has its own room in the building:b, a 2-form, at level
2 of the “straight” side, the 1-forma such thatb = da just above it, etc. Occasional
asymmetries (e.g., the necessity to time-integrateτ before lodging it, the bizarre lay-
out of Ohm’s law . . . ) point to weaknesses which are less those of the diagram than
those of the received nomenclature or (more ominously) to some hitch about Ohm’s
law (BOSSAVIT [1996]). Relations mentioned up to now can be directly read off from
the diagram, up to sporadic sign inversions. An equation such as∂tb + de = −k, for
instance, is obtained by gathering at the location ofk the contributions of all adjacent
niches, includingk’s, in the direction of the arrows. Note how the rules of Fig. 9.2, about
which scalar- or vector-proxies must be twisted or straight, are in force.

But the most important thing is probably the neat separation, in the diagram, between
“vertical” relations, of purely affine nature, and “horizontal” ones, which depend on
metric. If this was not drawing too much on the metaphor, one could say that a change of
metric, as encoded inε andµ (due for instance to a change in their local values, because
of a temperature modification or whatever) would shake the building horizontally but
leave the vertical panels unscathed.

This suggests a method fordiscretizingthe Maxwell equations: The orderly structure
of Fig. 12.1 should be preserved, if at all possible, in numerical simulations. Hence in
particular the search for finite elementswhich fit differential forms, which will be among
our concerns in the sequel.





CHAPTER III

Discretizing

It’s a good thing to keep in mind a representative of the family of problems one wishes
to model. Here, we shall have wave-propagation problems in view, but heuristic consid-
erations will be based on the much simpler case of static fields. The following example
can illustrate both things, depending on whether the exciting current, source of the field,
is transient or permanent, and lends itself to other useful variations.

13. A model problem

In a closed cavity with metallic walls (Fig. 13.1), which has been free from any elec-
tromagnetic activity till timet = 0, suppose a flow of electric charge is created in an
enclosed antenna after this instant, by some unspecified agency. An electromagnetic
field then develops, propagating at the speed of light towards the walls which, as soon
as they are reached by the wavefront, begin to act as secondary antennas. Dielectric or
magnetizable bodies inside the cavity, too, may scatter waves. Hence a complex evolu-
tion, which one may imagine simulating by numerical means. (How else?)

For the sake of generality, let’s assume a symmetry plane, and a symmetrically dis-
tributed current. (In that case, the plane acts as a magnetic wall.) The computation will
thus be restricted to a spatial domainD coinciding with one half of the cavity, on the
left of the symmetry plane, say. CallingSe andΣh, as Fig. 13.1 shows, the two parts

FIG. 13.1. Situation and notation (dimension 3). RegionD is the left half of the cavity. Its boundaryS has
a partSe in the conductive wall and a partΣh in the symmetry plane. RegionA, the left “antenna”, is the
support of the given current density J (mirrored on the right), for which some generator, not represented and

not included in the modelling, is responsible.

147



148 A. Bossavit CHAPTER III

of its surface, an electric wall and a magnetic wall respectively, we write the relevant
equations inD as

∂tb+ de= 0, −∂td + dh= j,

(13.1)d = εe, b= µh,

te= 0 onSe, th= 0 onΣh.

The coefficientsε andµ which generate their Hodge namesakes are real, constant in
time, but not necessarily equal to their vacuum valuesε0 andµ0, and may therefore
depend onx. (They could even be tensors, as observed earlier.) The current densityj

is given, and assumed to satisfyj (t)= 0 for t � 0. All fields, besidesj , are supposed
to be null beforet = 0, hence initial conditionse(0) = 0 andh(0) = 0. Notice that
dj = 0 is not assumed: some electric charge may accumulate at places in the antenna,
in accordance with the charge-conservation equation (12.1).

Proving this problem well-posed34 is not our concern. Let’s just recall that it is so,
under reasonable conditions onj , when all fieldse andh are constrained to have finite
energy.

Two further examples will be useful. Supposej has reached a steady value for so
long that all fields are now time-independent. The magnetic part of the field, i.e., the
pair {b,h}, can then be obtained by solving, in domainD,

db= 0, dh= j,

(13.2)b= µh,

tb= 0 onSe, th= 0 onΣh.

This is also a well-posed problem (magnetostatics), provided dj = 0. As for the electric
part of the field, which has no reason to be zero since the asymptotic charge density
q = q(∞)= − ∫∞

0 dj (t) dt does not vanish, as a rule, one will find it by solving

dd = q, de= 0,

(13.3)d = εe,

te= 0 onSe, td = 0 onΣh

(electrostatics). The easy task of justifying the boundary conditions in (13.2) and (13.3)
is left to the reader. One should recognize in (13.3), thinly veiled behind the present
notation, the most canonical example there is of elliptic boundary-value problem.35

Finally, let’s give an example of eddy-current problem in harmonic regime, assuming
a conductivityσ � 0 inD andσ = 0 inA. This time, all fields are of the formu(t, x)=
34Its physical relevance has been challenged (by SMYTH and SMYTH [1977]), on the grounds that assuming

a given current density (which is routinely done in such problems) neglects the reaction of the antenna to
its own radiated field. This is of course true – and there are other simplifications that one might discuss –
but misses the point of whatmodellingis about. See UMAN [1977] and BOSSAVIT [1998b, p. 153], for a
discussion of this issue.
35Mere changes of symbols would yield the stationary heat equation, the equation of steady flow in porous

media, etc. Notice in particular how the steady current equation, with Ohm’s law, can be written as dj = 0,
j = σe, de= 0, plus boundary conditions (non-homogeneous, to include source terms).
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Re[exp(iωt)U(x)], with U complex-valued (SMALL CAPITALS will denote such fields).
The given current inA, now denotedJs (s for “source”), is solenoidal, displacement
currents are neglected, and Ohm’s lawJ = σE + Js is in force, whereσ is of course
understood as a Hodge-like operator, but positive semi-definite only. The problem is
then, with the same boundary conditions as above,

dH = σE + Js , H = νB, dE = −iωB,

andB andH can be eliminated, hence a second-order equation in terms ofE:

(13.4)iωσE + dν dE = −iωJs ,

with boundary conditions tE = 0 onSe and tν dE = 0 onΣh.
Nothing forbidsσ andµ there to be complex-valued too. (Let’s however request them

to have Hermitian symmetry.) A complexµ can sometimes serve as a crude but effective
way to model ferromagnetic hysteresis. And since the realσ can be replaced byσ+ iωε,
we are not committed to drop out displacement currents, after all. Hence, (13.4) can
well be construed as the general version of the Maxwell equations in harmonic regime,
at angular frequencyω, with dissipative materials possibly present. In particular, (13.4)
can serve as a model for the “microwave oven” problem. Note that what we have here is
a Fredholm equation: Omitting the excitation termJs and replacingσ by iωε gives the
“resonant cavity problem” inD, namely, to find frequenciesω at which dν dE = ω2εE

has a nonzero solutionE.

14. Primal mesh

Let’s define what we shall call a “cellular paving”. This is hardly different from a finite-
element mesh, just a bit more general, but we need to be more fussy than is usual about
some details. We pretend to work inn-dimensional Euclidean spaceEn, but of course
n= 3 is the case in point. The cells we use here are those introduced earlier36 (Fig. 2.1),
with the important caveat that they are all “open” cells, in the sense of Section 2, i.e., do
not include their boundaries. (The only exception is forp = 0, nodes, which are both
open and closed.) The corresponding closed cell will be denoted with an overbar (also
used for the topological closure).

This being said, acellular pavingof some regionR of space is a finite set of open
p-cells such that (1) two distinct cells never intersect, (2) the union of all cells isR,
(3) if the closures of two cellsc andc′ meet, their intersection is the closure of some
(unique) cellc′′. It may well happen thatc′′ is c, or c′. In such a case, e.g., ifc ∩ c′ = c,
we say thatc is a face ofc′. For instance, on Fig. 14.1, left,c3 is a face ofc4. If c is a
face ofc′ which itself is a face ofc′′, thenc is a face ofc′′. Cells in ambient dimension
3 or lower will be callednodes, edges, facets, andvolumes, with symbolsn, e, f , v to
match.

We’ll say we have aclosedpaving if R is closed. (Fig. 14.1, left, gives a two-
dimensional example, whereR = D.) But it need not be so. Closed pavings are not

36Topologically simplesmoothcells, therefore. But the latter condition is not strict and we shall relax it to
piecewisesmooth, in the sequel, without special warning.
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FIG. 14.1. Left: A fewp-cells, contributing to a closed cellular paving ofD. (This should be imagined
in dimension 3.) Right: A culled paving, now “closed relative to”Se . This is done in anticipation of the
modelling we have in mind, in which cells ofSe would carry null degrees of freedom, so they won’t be

missed.

necessarily what is needed in practice, as one may rather wish to discard some cells in
order to deal with boundary conditions. Hence the relevance of the following notion of
“relative closedness”:C being a closed part ofR, we shall say that a paving ofR is
closed moduloC if it can be obtained by removing, from some closed paving, all the
cells which map intoC. The case we shall actually need, of a paving ofR = D − Se

which is closed moduloSe, is displayed on the right of Fig. 14.1. Informally said, “pave
D first, then remove all cells from the electric boundary”.

Each cell has its own inner orientation. These orientations are arbitrary and indepen-
dent. In three dimensions, we shall denote byN , E , F , V , the sets of orientedp-cells
of the paving, and byN ,E, F , V the number of cells in each of these sets. (The general
notation, rarely required, will beSp for the set ofp-cells andSp for the number of such
cells.)

Two cellsσ andc, of respective dimensionsp andp + 1, are assigned anincidence
number, equal to±1 if σ is a face ofc, and to 0 otherwise. As for the sign, recall
that each cell orients its own boundary (Section 4), so this orientation may or may not
coincide with the one attributed toσ . If orientations match, the sign is+, else it’s−.
Fig. 14.2 illustrates this point. (Also refer back to Fig. 4.1.)

Collecting these numbers in arrays, we obtain rectangular matricesG, R, D, called
incidence matricesof the tessellation. For instance (Fig. 14.2), the incidence number
for edgee and facetf is denotedRe

f , and makes one entry in matrixR, whose rows and
columns are indexed over facets and edges, respectively. The entryGn

e of G is −1 in the
case displayed, becausen, positively oriented, is at the start of edgee (cf. Fig. 3.4(c)).
And so on. SymbolsG, R, D are of course intentionally reminiscent of grad, rot, div,
but we still have a long way to go to fully understand the connection. Yet, one thing
should be conspicuous already: contrary to grad, rot, div, the incidence matrices are
metric-independententities, so the analogy cannot be complete. MatricesG, R, D are
more akin to the (metric-independent) operator d from this viewpoint, and the generic
symbold, indexed by the dimensionp if needed, will make cleaner notation in spatial
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FIG. 14.2. Sides: Individual oriented cells. Middle: The same, plus a 3-cell, as part of a paving, showing
respective orientations. Those ofv and f match, those off and e, or of e and n, don’t. SoGne = −1,

Re
f

= −1, andDfv = 1.

FIG. 14.3. RelationDR = 0, and how it doesn’t depend on the cells’ individual orientations: In both cases,

one hasDfv Re
f

+ DgvReg = 0.

dimensions higher than 3, withd0 = G, d1 = R, d2 = D. The mnemonic value ofG, R,
D, however, justifies keeping them in use.

Just as rot◦grad= 0 and div◦ rot = 0, one hasRG = 0 andDR = 0. Indeed, for an
edgee and a volumev, the{v, e}-entry ofDR is

∑
f∈F Df

v Re
f . Nonzero terms occur,

in this sum over facets, only for those which both containe and are a face ofv, which
happens only ife belongs tov. In that case, there are exactly two facetsf andg of
v meeting alonge (Fig. 14.3), and hence two nonzero terms. As Fig. 14.3 shows, they
have opposite signs, whatever the orientations of the individual cells, hence the result,
DR = 0. By a similar argument,RG = 0, and more generally,dp+1dp = 0.

REMARK 14.1. The answer to the natural question, “then, is the kernel ofR equal to
the range ofG?”, is “yes” here, becauseD − Se has simple topology. (See the remark
at the end of Section 4 about homology. This time, going further would lead us into
cohomology.) For the same reason, ker(D)= cod(R). This will be important below.

It is no accident if this proof ofd ◦ d = 0 evokes the one about∂ ◦ ∂ = 0 in Section 4,
and the caption of Fig. 4.1. The same basic observation, “the boundary of a boundary is
zero” (TAYLOR and WHEELER [1992], KHEYFETS and WHEELER [1986]), underlies
all proofs of this kind. In fact, the above incidence matrices can be used to find the
boundaries, chainwise, of each cell. For instance,f being understood as the 2-chain
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based on facetf with weight 1, one has∂f =∑
e∈E Re

f e. So ifS is the straight 2-chain∑
f w

f f with weightswf (which we shall call aprimal 2-chain, or “m-surface”, using

m as a mnemonic for the underlying mesh), its boundary37 is the 1-chain

∂S =
∑
e∈E

∑
f∈F

Re
f w

f e.

More generally, let’s write∂p, boldface,38 for the transpose of the above matrixdp−1.
Then, if c =∑

σ∈Sp w
σσ is ap-chain, its boundary is∂c =

∑{s ∈ Sp−1: (∂pw)ss},
wherew stands for the vector of weights. Thus,∂ is to ∂ whatd is to d. Moreover, the
duality between d and∂ is matched by a similar duality between their finite-dimensional
counterpartsd and∂ .

15. Dual mesh

A dualmesh, with respect tom, is also a cellular paving, though not of the same region
exactly, and withouterorientation of cells. Let’s explain.

To eachp-cell c of the primal mesh, we assign an(n−p)-cell, called thedualof c and
denotedc̃, which meetsc at a single pointxc. (Ways to buildc̃ will soon be indicated.)
Hence a one-to-one correspondence between cells of complementary dimensions. Thus,
for instance, facetf is pierced by the dual edgẽf (a line), noden is inside the dual
volumeñ, and so forth. Since the tangent spaces atxc to c andc̃ are complementary, the
inner orientation ofc provides an outer orientation forc̃ (Fig. 15.1). Incidence matrices
G̃, R̃, D̃ can then be defined, as above, the sign of each nonzero entry depending on
whether outer orientations match or not.

Moreover, it is required that, whenc is a face ofc′, the dualc̃′ be a face of̃c, and
the other way round. This has two consequences. First, we don’t really need new names
for the dual incidence matrices. Indeed, consider for instance edgee and facetf , and
supposeRe

f = 1, i.e.,e is a face off and their orientations match: Then the dual edge

f̃ is a face of the dual facet̃e, whose outer orientations match, too. So what we would

otherwise denotẽRf̃

ẽ
is equal toRe

f . Same equality ifRe
f = −1, and same reasoning for

FIG. 15.1. Inner orientations of edgee and facetf , respectively, give crossing direction throughẽ and
gyratory sense around̃f .

37More accurately, its boundaryrelative toΣh.
38Boldface, from now on, connotes mesh-related things, such as DoF arrays, etc.
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FIG. 15.2. A dual paving, overlaid on the primal one.

other kinds of cells, from which we conclude that the would-be dual incidence matrices
G̃, R̃, D̃ are just the transposesDt , Rt , Gt of the primal ones.

Second consequence, there is no gap between dual cells, which thus form a cellular
paving of a connected regioñR, the interiorD̃ of which is nearlyD, but not quite
(Fig. 15.2). A part of its boundary is paved by dual cells: We name itS̃e, owing to its
kinship withSe (not so obvious on our coarse drawing! but the finer the mesh, the closer
S̃e andSe will get). The other part is denoted̃Σh. So the cellular paving we now have
is closed modulõΣh, whereas the primal one was closed moduloSe.

Given the meshm, all its conceivable duals have the samecombinatorialstructure
(the same incidence matrices), but can differ as regardsmetric, which leaves much lee-
way to construct dual meshes. Two approaches are noteworthy, which lead to the “bary-
centric dual” and the “Voronoi–Delaunay dual”. We shall present them as special cases
of two slightly more general procedures, the “star construction” and the “orthogonal
construction” of meshes in duality. For this we shall consider onlypolyhedralmeshes
(those with polyhedral 3-cells), which is not overly restrictive in practice.

The orthogonal construction consists in having each dual cell orthogonal to its pri-
mal partner. (Cf. Figs. 15.3 and 15.5, left.) A particular case is the Voronoi–Delaunay
tessellation (DIRICHLET [1850]), under the condition that dual nodes should be inside
primal volumes. Alas, as Fig. 15.4 shows, orthogonality can be impossible to enforce,
if the primal mesh is imposed. If one starts from a simplicial primal for which all cir-
cumscribed spheres have their center inside the tetrahedron, and all facets are acute
triangles, all goes well. (One then takes these circumcenters as dual nodes.) But this
property, desirable on many accounts, is not so easily obtained, and certainly not war-
ranted by common mesh generators.

Hence the usefulness of the star construction, more general, because it applies to any
primal mesh with star-shaped cells. A partA of An is star-shapedif it contains a point
a, that we shall call acenter, such that the whole segment [a, x] belongs toA whenx
belongs toA. Now, pick such a center in each primal cell (the center of a primal node
is itself), and join it to centers of all faces of the cell. This way,simplicial subcells
are obtained (tetrahedra and their faces, in 3D). One gets the dual mesh by rearranging
them, as follows: for each primal cellc, build its dual by putting together allk-subcells,
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FIG. 15.3. Left: Orthogonal dual mesh. (Same graphic conventions as in Fig. 15.2, slightly simplified.) Right:
Star construction of a dual mesh (close enough, here, to a barycentric mesh, but not quite the same). Notice

the isolated dual edge, and the arbitrariness in shaping dual cells beyondΣh.

FIG. 15.4. Left: How hopeless the orthogonal construction can become, even with a fairly regular primal
mesh. Right: Likely the simplest example of a 2D mesh without any orthogonal dual.

FIG. 15.5. Left: A facetf and its dual edgẽf in the orthogonal construction (ṽ andṽ′ are the dual nodes
which lie inside the volumesv andv′ just above and just belowf ). From ṽ, all boundary facets ofv can
directly be seen at right angle, but we don’t require more:ṽ is neitherv’s barycenter nor the center of its
circumscribed sphere, if there is such a sphere. Right: A dual facet and a dual edge, in the case of a simplicial

primal mesh and of its barycentric dual. Observe the orientations.

k � n− p, which have one of their vertices atc’s center, and other vertices at centers
of cells incident onc. Figs. 15.3 and 15.5, right, give the idea. If all primal cells are
simplices to start with, taking the barycenters of their faces as centers will give the
barycentricdual mesh evoked a bit earlier.
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REMARK 15.1. The recipe is imprecise about cells dual to those ofΣh, whose shape
outsideD can be as one fancies (provided the requirements about duality are satisfied).
Nothing there to worry about: Such choices are just as arbitrary as the selection of
the centers of cells. It’s all part of the unavoidable approximation error, which can be
reduced at will by refinement.39

REMARK 15.2. If, as suggested above (“paveD first . . . ”), the primal mesh hasbeen
obtained by culling from a closed one, subcells built from the latter form a refinement
of both the primal mesh and the dual mesh. The existence of this common “underlying
simplicial complex” will be an asset when designing finite elements.

16. A discretization kit

We are ready, now, to apply the afore-mentioned strategy: Satisfy the balance equations
(10.1) and (10.3) for a selectedfinite family of surfaces.

Let’s first adopt a finite, approximate representation of the fields. Considerb, for
instance. As a 2-form, it is meant to be integrated over inner oriented surfaces. So one
may consider the integrals

∫
f
b, denotedbf , for all facetsf , as a kind of “sampling”

of b, and take the array of such “degrees of freedom” (DoF),{b = bf : f ∈F}, indexed
over primal facets, as a finite representation ofb. This does not tell us about thevalue
of the field at any given point, of course. But is that the objective? Indeed, all we know
about a field is what we can measure, and we don’t measure point values. These are
abstractions. What we do measure is, indirectly, theflux of b, embraced by the loop of
a small enough magnetic probe, by reading off the induced e.m.f. The above sampling
thus consists in having each facet of the mesh play the role of such a probe, and the
smaller the facets, the better we know the field. Conceivably, the mesh may be made so
fine that thebf ’s aresufficient informationabout the field, in practice. (Anyway, we’ll
soon see how to compute an approximation of the flux for any surface, knowing the
bf ’s, hence an approximation ofb.) So one may be content with a method that would
yield the four meaningful arrays of degrees of freedom, listing

• the edge e.m.f.’s,e = {ee: e ∈ E},
• the facet fluxes,b = {bf : f ∈ F},
• the dual-edge m.m.f.’s,h = {hf : f ∈F},
• and the dual-facet displacement currents,d = {de: e ∈ E},

all that from a similar sampling, across dual facets, of the given currentj , encoded in
the DoF arrayj = {je: e ∈ E}.

In this respect, considering the integral form (10.1) and (10.3) of the basic equations
will prove much easier than dealing with so-called “weak forms” of the infinitesimal
equations (10.2) and (10.4). In fact, this simple shift of emphasis (which is the gist of
Weiland’s “finite integration theory”, WEILAND [1992], and of Tonti’s “cell method”,
TONTI [2001], MATTIUSSI [2000]) will so to speakforce on usthe right and unique
discretization, as follows.

39A refinementof a paving is another paving of the same region, which restricts to a proper cellular paving
of each original cell.
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16.1. Network equations, discrete Hodge operator

Suppose the chainS in (10.1) is the simplest possible in the present context, that is, a
singleprimal facet,f . The integral ofe along∂f is the sum of its integrals along edges
that make∂f , with proper signs, which are precisely the signs of the incidence numbers,
by their very definition. Therefore, Eq. (10.1) applied tof yields

∂tbf +
∑
e∈E

Re
f ee = 0.

There is one equation like this for each facet of the primal mesh, that is – thanks for hav-
ing discarded facets inSe, for which the flux is known to be 0 – one for each genuinely
unknown facet-flux ofb. Taken together, in matrix form,

(16.1a)∂tb + Re = 0,

they form the first group of ournetworkdifferentialequations.
The same reasoning about each dual facetẽ (the simplest possible outer-oriented

surface thatΣ in (10.3) can be) yields

−∂tde +
∑
f∈F

Re
f hf = je,

for all e in E , i.e., in matrix form,

(16.1b)−∂td + Rth = j,

the second group of network equations.
To complete this system, we need discrete counterparts tob = µh andd = εe, i.e.,

network constitutive laws, of the form

(16.2)b = µh, d = εe,

whereε andµ are appropriate square symmetric matrices. Understanding how such ma-
trices can be built is our next task. It should be clear that nocanonicalconstruction can
exist – for sure, nothing comparable to the straightforward passage from (10.1), (10.3)
to (16.1a), (16.1b) – because the metric of both meshes must intervene (Eq. (11.1) gives
a clue in this respect). Indeed, the exact equivalent of (16.1), up to notational details, can
be found in most published algorithms (including those based on the Galerkin method,
see, e.g., LEE and SACKS [1995]), whereas a large variety of proposals exist as regards
ε andµ. These “discrete Hodge operators” are the real issue. Constructing “good” ones,
in a sense we still have to discover, is the central problem.

Our approach will be as follows: First – just not to leave the matter dangling too long
– we shall giveonesolution, especially simple, to this problem, which makesε and
µ diagonal, a feature the advantages of which we shall appreciate by working out a
few examples. Later (in Section 20), a generic error analysis method will be sketched,
from which acriterion as to what makes a goodε–µ pair will emerge. Finite elements
will enter the stage during this process, and help find other solutions to the problem,
conforming to the criterion.
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FIG. 16.1. The case of a discontinuous permeability (µ1 andµ2 in primal volumesT1 and T2, separated

by facetf ). We denote by�f the vectorial area off and by
�
f1,

�
f2, the vectors along both parts of̃f . Let

u and v be arbitrary vectors, respectively normal and tangent tof , and letH1 = u + v in T1. Transmis-
sion conditions acrossf determine a unique uniform field B2 = µ1u+ µ2v in T2. Thenbf = µ1 �f · u and

µ2hf = µ2
�
f1 ·u+ µ1

�
f2 ·u. As �f ,

�
f1, and

�
f2 are collinear,u disappears from the quotientbf /hf , yield-

ing (16.4).

The simple solution is available if one has been successful in building a dual mesh by
the orthogonal construction (Figs. 15.3 and 15.5, left). Then, in the case whenε andµ
are uniform,40 one setsεee

′ = 0 if e �= e′, µff
′ = 0 if f �= f ′, and (cf. (11.1))

(16.3)εee = ε
area(ẽ)

length(e)
, µff = µ

area(f )

length(f̃ )
,

which does provide diagonal matricesε andµ. (The inverse ofµ will be denoted by
ν.) The heuristic justification (TONTI [2001]) is thatif the various fields happened to
be piecewise constant (relative to the primal mesh), formulas (16.3) would exactly cor-
respond to the very definition (11.1) of the Hodge operator. (Section 20 will present a
stronger argument.) In the case of non-uniform coefficients, formulas such as

(16.4)µff = µ1µ2 area(f )

µ2 length(f̃1)+µ1 length(f̃2)
,

wheref̃1 andf̃2 are the parts off̃ belonging to the two volumes adjacent tof , apply
instead (Fig. 16.1). Observe the obvious intervention of metric elements (lengths, areas,
angles) in these constructions.

REMARK 16.1. Later, when edge elementswe and facet elementswf will enrich the
toolkit, we shall consider another solution, that consists in settingεee

′ = ∫
D
εwe ∧we′

andνff
′ = ∫

D
µ−1wf ∧ wf ′

. For reference, let’s call this the “Galerkin approach” to
the problem. We shall use loose expressions such as “the Galerkinε”, or “the diagonal
hodge”, to refer to various brands of discrete Hodge operators.

16.2. The toolkit

At this stage, we have obtained discrete counterparts (Fig. 16.2) to most features of the
“Maxwell building” of Fig. 12.2, but time differentiation and wedge product still miss

40I’ll use “uniform” and “steady” for “constant in space” and “constant in time”, respectively.
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FIG. 16.2. A “discretization toolkit” for Maxwell’s equations.

theirs. Some thought about how the previous ideas would apply in four dimensions
should quickly suggest the way to deal with time derivatives:δt being the time step,
call bk , hk , the values ofb, h at timekδt , for k = 0,1, . . . , call jk+1/2, dk+1/2, ek+1/2

those ofj, d, e at time (k + 1/2)δt , and approximate∂tb, at time (k + 1/2)δt , by
(bk+1 − bk)/δt , and similarly,∂td, now at timekδt , by (dk+1/2 − dk−1/2)/δt .

As for the wedge product, to
∫
D
b ∧ h corresponds the sum

∑
f∈F bf hf , which

we shall denote by(b,h), with bold parentheses. Similarly,
∫
D
d ∧ e corresponds to∑

e∈E deee, also denoted(d, e). Hence we may define “discrete energy” quadratic
forms, 1/2(νb,b), 1/2(µh,h), 1/2(εe, e), and 1/2(ε−1d,d), all quantities with, in-
deed, the physical dimension of energy (but be aware that(j, e) is a power instead, like∫
D
j ∧ e). Some notational shortcuts: Square roots such as(νb,b)1/2, or (εe, e)1/2, etc.,

will be denoted by|b|ν , or |e|ε, in analogy with the above|b|ν , or |e|ε , and serve as
various, physically meaningfulnormson the vector spaces of DoF arrays. We’ll say the
“ν-norm”, the “ε-norm”, etc., for brevity.

PROPOSITION16.1. If Eqs.(16.1)–(16.2)are satisfied, one has

(16.5)dt

[
1

2
(νb,b) + 1

2
(εe, e)

]
= −(j, e).

PROOF. Take the bold scalar product of (16.1a) and (16.1b) byh and−e, add, and use
the equality(Re,h) = (e,Rth). �

REMARK 16.2. The analogue of
∫
S
h∧ e, whenS is somem-surface, is∑

f∈F(S), e∈E
Re
f hf ee,

whereF(S) stands for the subset of facets which composeS. (Note how this sum van-
ishes ifS is the domain’s boundary.) By exploiting this, the reader will easily modify
(16.5) in analogy with the Poynting theorem. In spite of such formal correspondences,



SECTION 17 Discretizing 159

energy and discrete energy have, a priori, no relation. To establish one, we shall need
“interpolants”, such as finite elements, enabling us to pass from degrees of freedoms to
fields. For instance, facet elements will generate a mappingb → b, with b=∑

f bf wf .
If ν is the Galerkin hodge, then

∫
D
νb ∧ b = (νb,b). Such built-in equality between

energy and discrete energy is an exception, a distinctive feature of the Ritz–Galerkin
approach. With other discrete hodges, evenconvergenceof discrete energy, as the mesh
is refined, towards the true one, should not be expected.

17. Playing with the kit: Full Maxwell

Now we have enough to discretize any model connected with Maxwell’s equations.
Replacing, in (13.1), rot byR or Rt , ε andµ by ε andµ, and∂t by the integral or
half-integral differential quotient, depending on the straight or twisted nature of the
differential form in consideration, we obtain this:

(17.1)
bk+1 − bk

δt
+ Rek+1/2 = 0, −ε

ek+1/2 − ek−1/2

δt
+ Rtνbk = jk

(wherejk is the array of intensities through dual facets, at time41 kδt), with initial con-
ditions

(17.2)b0 = 0, e−1/2 = 0.

In the simplest case where the primal and dual mesh are plain rectangular staggered
grids, (17.1) and (17.2) is the well known Yee scheme (YEE [1966]). So what we have
here is the closest thing to Yee’s scheme in the case ofcellular meshes.

A similar numerical behavior can therefore be expected. Indeed,

PROPOSITION17.1. The scheme(17.1)and (17.2) is stable forδt small enough, pro-
vided bothε andν are symmetric positive definite.

PROOF. For such a proof, one may assumej = 0 and nonzero initial values in (17.2),
satisfyingDb0 = 0. Eliminatinge from (17.1), one finds that

(17.3)bk+1 − 2bk + bk−1 + (δt)2Rε−1Rtνbk = 0.

Since DR = 0, the “loop invariant”Dbk = 0 holds, so one may work in the cor-
responding subspace, ker(D). Let’s introduce the (generalized) eigenvectorsvi such
that Rε−1Rtvi = λiµvi , which satisfy(µvi ,vj ) = 1 if i = j , 0 if i �= j . In this “µ-
orthogonal” basis,bk = µΣiη

k
i vi , and (17.3) becomes

ηk+1
i − (

2− λi(δt)
2)ηki + ηk−1

i = 0

for all i. Theηki s, and hence thebks, stay bounded if the characteristic equation of each
of these recurrences has imaginary roots, which happens (Fig. 17.1) if 0< λjδt < 2 for
all j . �
41For easier handling of Ohm’s law,j(kδt) may be replaced by(jk+1/2 + jk−1/2)/2.
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FIG. 17.1. The white spot lies at the sum of roots of the characteristic equationr2 − (2− λi(δt)
2)r + 1= 0.

Stability is lost if it leaves the interval[−2,2].

In the case of the original Yee scheme, eigenvalues could explicitly be found, hence
the well-known relation (YEE [1966]) between the maximum possible value ofδt and
the lengths of the cell sides. For general grids, we have no explicit formulas, but the
thumbrule is the same:δt should be small enough for a signal travelling at the speed of
light (in the medium under study) not to cross more than one cell during this lapse of
time.

This stringent stability condition makes the scheme unattractive if not fully explicit,
or nearly so:ε should bediagonal, or at the very least, block-diagonal with most blocks
of size 1 and a few small-size ones, andν should be sparse. If so is the case, each time
step will only consist in a few matrix–vector products plus, perhaps, the resolution of
a few small linear systems, which makes up for the large number of time steps. Both
conditions are trivially satisfied with the orthogonal construction (cf. (16.3), (16.4)),
but we have already noticed the problems this raises. Hence the sustained interest for
so-called “mass-lumping” procedures, which aim at replacing the Galerkinε by a di-
agonal matrix without compromising convergence: see COHEN, JOLY and TORDJMAN

[1993], ELMKIES and JOLY [1997], HAUGAZEAU and LACOSTE[1993] (a coordinate-
free reinterpretation of which can be found in BOSSAVIT and KETTUNEN [1999]).

REMARK 17.1. Obviously, there is another version of the scheme, inh and d, for
which what is relevant is sparsity ofε−1 and diagonality ofµ, i.e., ofν. Unfortunately,
the diagonal lumping procedure that worked for edge elements fails when applied to
the Galerkinν, i.e., to the mass-matrix of facet elements (BOSSAVIT and KETTUNEN

[1999]).

There are of course other issues than stability to consider, but we shall not dwell
on them right now. Forconvergence(to be treated in detail later, but only in statics),
cf. MONK and SÜLI [1994], NICOLAIDES and WANG [1998], BOSSAVIT and KET-
TUNEN [1999]. On dispersionproperties, little can be said unless the meshes have
some translational symmetry, at least locally, and this is beyond our scope. As for
conservationof some quantities, it would be nice to be able to say, in the case when
j = 0, that “total discrete energy is conserved”, but this is only almost true. Con-
served quantities, as one will easily verify, are1

2(µhk+1,hk) + 1
2(εek+1/2, ek+1/2) and
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1
2(µhk,hk) + 1

2(εek−1/2, ek+1/2), both independent ofk. So their half-sum, which can
suggestively be written as

Wk = 1
2(µhk+1/2,hk) + 1

2(εek, ek+1/2),

if one agrees onhk+1/2 andek as shorthands for[hk+hk+1]/2 and[ek−1/2 +ek+1/2]/2,
is conserved:Not the discrete energy, definitely, however close.

18. Playing with the kit: Statics

Various discrete models can be derived from (17.1) by the usual maneuvers (neglect the
displacement current termεe, omit time-derivatives in static situations), but it may be
more instructive to obtain them from scratch. Take the magnetostatic model (13.2), for
instance: Replace formsb andh by the DoF arraysb andh, the d by the appropriate
matrix, as read off from Fig. 16.2, and obtain

(18.1)Db = 0, h = νb, Rth = j,

which automatically includes the boundary conditions, thanks for having discarded42

“passive” boundary cells. Observe thatGt j = 0 must hold for a solution to exist: But
this is the discrete counterpart, as Fig. 16.2 shows, of dj = 0, i.e., of divJ= 0 in vector
notation.

In the next section, we shall study the convergence of (18.1). When it holds, all
schemes equivalent to (18.1) that can be obtained by algebraic manipulations are
thereby equally valid – and there are lots of them. First, lethj be one of the facet-
based arrays43 such thatRthj = j. Thenh in (18.1) must be of the formh = hj + Dtϕ.
Hence (18.1) becomes

(18.2)DµDtϕ = −Dµhj.

This, which corresponds to−div(µ(gradΦ + Hj )) = 0, the scalar potential formula-
tion of magnetostatics, is not interesting unlessν is diagonal, or nearly so, sinceµ is full
otherwise. So it requires the orthogonal construction, and is not an option in the case of
the Galerkinν. It’s a well-studied scheme (cf. BANK and ROSE[1987], COURBET and
CROISILLE [1998], GALLOUET and VILA [1991], HEINRICH [1987], HUANG and XI

[1998], SÜLI [1991]), called “block-centered” in other sectors of numerical engineering
(KAASSCHIETERand HUIJBEN [1992], WEISER and WHEELER [1988]), because de-
grees of freedom, assigned to thedualnodes, appear as lying inside the primal volumes,

42Alternatively (and this is how non-homogeneous boundary conditions can be handled), one may work
with enlarged incidence matricesR andD and enlarged DoF arrays, taking all cells into account, then assign
boundary values to passive cells, and keep only active DoFs on the left-hand side.
43There are such arrays, owing toGt j = 0, because ker(Gt ) = cod(Rt ), by transposition of cod(G) =

ker(R), in the simple situation we consider. Finding one is an easy task, which does not require solving a lin-
ear system. Also by transposition of cod(R)= ker(D), one has ker(Rt )= cod(Dt ), and henceRt (h − hj)= 0
impliesh = hj + Dtϕ.
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or “blocks”. Uniqueness ofϕ is easily proved,44 which implies the uniqueness – not so
obvious, a priori – ofh andb in (18.1).

Symmetrically, there is a scheme corresponding to the vector potential formulation
(i.e., rot(ν rotA)= J):

(18.3)RtνRa = j,

obtained by settingb = Ra, where the DoF arraya is indexed over (active) edges. (Ifν

is the Galerkin hodge, (18.3) is what one obtains when using edge elements to represent
the vector potential.) Existence in (18.3) stems fromGt j = 0. No uniqueness this time,
because ker(R) does not reduce to 0, but all solutionsa give the sameb, and hence the
sameh = νb.

REMARK 18.1. Whether to “gauge”a in this method, that is, to impose a condition
that would select a unique solution, such asGtεa = 0 for instance, remains to these
days a contentious issue. It depends on which method is used to solve (18.3), and on
how well the necessary conditionGt j = 0 is implemented. With iterative methods such
as the conjugate gradient and its variants, and if one takes care to useRthj instead ofj
in (18.3), then it’s betternot to gauge (REN [1996]).

This is not all. If we refrain to eliminateh in the reduction from (18.1) to (18.3), but
still setb = Ra, we get an intermediate two-equation system,

(18.4)

(−µ R
Rt 0

)(
h
a

)
=
(

0
j

)
,

often called amixedalgebraic system (ARNOLD and BREZZI [1985]). (Again, little
interest ifµ is full, i.e., unlessν was diagonal from the outset.) The same manipulation
in the other direction (eliminatingh by h = hj + Dtϕ, but keepingb) gives

(18.5)

(−ν Dt

D 0

)(
b
ϕ

)
=
(−hj

0

)
.

We are not yet through. There is an interesting variation on (18.5), known as the
mixed-hybrid approach. It’s a kind of “maximal domain decomposition”, in the sense
that all volumes are made independent by “doubling” the degrees of freedom ofb andh
(two distinct values on sides of each facet not inΣh). Let’s redefine the enlarged arrays
and matrices accordingly, and call themb, h, ν, D, R. Constraints onb (equality of up-
and downstream fluxes) can be expressed asNb = 0, whereN has very simple structure
(one 1× 2 block, with entries 1 and−1, for each facet). Now, introduce an arrayλ

of facet-based Lagrange multipliers, and add(λ,Nb) to the underlying Lagrangian of
(18.5). This gives a new discrete formulation (still equivalent to (18.1), if one derivesb

44It stems from ker(Dt )= 0. Indeed,Dtψ = 0 means thatΣvDfv ψv = 0 for all primal facetsf . For some

facets (those inΣh), there is butonevolumev such thatDfv �= 0, which forcesψv = 0 for thisv. Remove all
such volumesv, and repeat the reasoning and the process, thus spreading the value 0 to allψvs.
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andh from b andh the obvious way):−ν D
t

Nt

D 0 0
N 0 0

( b
ϕ

λ

)
=
−h

j

0
0

 .
Remark that the enlargedν is block-diagonal (as well as its inverseµ ), hence easy
elimination ofb. What then remains is a symmetric system inϕ andλ:(

DµD
t

DµNt

NµD
t

NµNt

)(
ϕ

λ

)
= −

(
Dµh

j

Nµh
j

)
.

The point of this manipulation is thatDµD
t

is diagonal, equal toK, say. So we may
again eliminateϕ, which leads to a system in terms of onlyλ:

(18.6)N[µ − µD
t
K−1Dµ]Ntλ = N[µD

t
K−1Dµ − µ]hj

.

Contrived as it may look, (18.6) is a quite manageable system, with a sparse symmetric
matrix. (The bracketed term on the left is block-diagonal, likeµ.)

REMARK 18.2. In(λ,Nb), eachλf multiplies a term(Nb)f which is akin to a mag-
netic charge. Hence theλf s should be interpreted as facet-DoFs of a magnetic potential,
which assumes the values necessary to reestablish the equality between fluxes that has
been provisionally abandoned when passing fromb to the enlarged (double size) flux
vectorb. This suggests a way to “complementarity” (obtaining bilateral estimates of
some quantities) which is explored in BOSSAVIT [2003].

There is a dual mixed-hybrid approach, starting from (18.4), wheredualvolumes are
made independent, hence (in the case of a simplicial primal mesh) three DoFs per facet,
for bothb andh, and two Lagrange multipliers to enforce their equality. This leads to
a system similar to (18.6) – but with twice as many unknowns, which doesn’t make it
attractive.

Systems (18.2), (18.3), (18.4), (18.5) and (18.6) all give the same solution pair{b,h}
– the solution of (18.1). Which one effectively to solve, therefore, is uniquely a mat-
ter of algorithmics, in which size, sparsity, and effective conditioning should be con-
sidered. The serious contenders are the one-matrix semi-definite systems, i.e., (18.2),
(18.3), and (18.6). An enumeration of the number of off-diagonal terms (which is a
fair figure of merit when using conjugate gradient methods on such matrices), shows
that (18.6) rates better than (18.3), as a rule. The block-centered scheme (18.2) out-
performs both (18.3) and (18.6), but is not available45 with the Galerkin hodge. Hence
the enduring interest (CHAVENT and ROBERTS[1991], KAASSCHIETERand HUIJBEN

[1992], MOSÉ, SIEGEL, ACKERER and CHAVENT [1994], HAMOUDA , BANDELIER

and RIOUX-DAMIDAU [2001]) for the “mixed-hybrid” method (18.6).
Each of the above schemes could be presented as the independent discretization of

a specific mixed or mixed-hybrid variational formulation, and the literature is replete

45Unless one messes up with the computation of the terms of the mass-matrix, by using ad-hoc approximate
integration formulas. This is precisely one of the devices used in mass-lumping.
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with sophisticated analyses of this kind. Let’s reemphasize that all these schemes are
algebraically equivalent, as regardsb and h. Therefore, an error analysis of one of
them applies to all: For instance, ifν is the Galerkin hodge, the standard variational
convergence proof for (18.3), or ifµ is the diagonal hodge of (16.4), the error analysis
we shall perform next section, on the symmetrical system (18.1).

19. Playing with the kit: Miscellanies

The advantage of working at the discrete level from the outset is confirmed by most
examples one may tackle. For instance, the discrete version of the eddy-current problem
(13.4) is, without much ado, found to be

(19.1)iωσ E + RtνRE = −iωJs .

As a rule,σ vanishes outside of a closed regionC = D − ∆ of the domain,C for
“conductor”. (Assume, then, thatA, which is supp(Js), is contained in∆.) The system
matrix then has a non-trivial null space, ker(σ )∩ ker(R), and uniqueness ofE is lost. It
can be restored by enforcing the constraintGtε∆E = 0, whereε∆ is derived fromε by
setting to zero all rows and columns which correspond to edges borne byC. Physically,
this amounts to assume a zero electric charge density outside the conductive region
C = supp(σ ). (Beware, the electric field obtained this way can be seriously wrong about
A, where this assumption is not warranted, in general. However, the electric field inC is
correct.) Mathematically, the effect is to limit the span of the unknownE to a subspace
over whichiωσ + RtνR is regular.

In some applications, however, the conductivity is nonzero in allD, but may as-
sume values of highly different magnitudes, and the above matrix, though regular, is
ill-conditioned. One then will find in the kit the right tools to “regularize” such a “stiff”
problem. See CLEMENS and WEILAND [1999] for an example of the procedure, some
aspects of which are studied in BOSSAVIT [2001a]. Briefly, it consists in adding to the
left-hand side of (19.1) a term, function ofE, that vanishes whenE is one of the so-
lutions of (19.1), which supplements theRtνR matrix by, so to speak, what it takes to
make it regular (and hence, to make the whole system matrix well conditioned, however
smallσ can be at places). The modified system is

(19.2)iωσ E + RtνRE + σGδGtσ E = −iωJs ,

where δ is a Hodge-like matrix, node based, diagonal, whose entries areδnn =∫
ñ

1/µσ 2. A rationale for this can be found in BOSSAVIT [2001a]: In a nutshell, the
idea is to “load the null space” ofRtνR, and dimensional considerations motivate the
above choice ofδ. Our sole purpose here is to insist that all this can be done at the
discrete level.

REMARK 19.1. Onemightmotivate this procedure by starting from the following equa-
tion, here derived from (19.2) by simply using the toolkit in the other direction (“dis-
crete” to “continuous”):

(19.3)iωσE+ rot(ν rotE)− σ grad

(
1

µσ 2
div(σE)

)
= −iωJs ,
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but which can be seen as a natural regularization of (13.4). (We revert to vector proxies
here to call attention on the use of a variant of the−∆= rot◦ rot−grad◦div formula,
which is relevant when bothµ andσ are uniform in (19.3).) This is a time-honored
idea (LEIS [1968]). Part of its present popularity may stem from its allowing standard
discretization vianode-basedvector-valued elements (the discrete form is then of course
quite different46 from (19.2)), because E in (19.3) has more a priori regularity thanE

in (13.4). Even if one has reasons to prefer using such elements, the advantage is only
apparent, because the discrete solution may converge towards something else than the
solution of (13.4) in some cases (e.g., reentrant corners, cf. COSTABEL and DAUGE

[1997]), where the solution of (19.3) hastoo muchregularity to satisfy (13.4). This
should make one wary of this approach.

Many consider the nullspace ofRtνR as a matter of concern, too, as regards the
eigenmode problem,

(19.4)RtνRE = ω2εE,

becauseω= 0 is an eigenvalue of multiplicityN (the number of active nodes). Whether
the concern is justified is debatable, but again, there are tools in the kit to address it.
First, regularization, as above:

(19.5)[RtνR + εGδGtε]E = ω2εE,

with δnn = ∫
ñ

1/µε2 this time. Zero is not an eigenvalue any longer, but new eigen-
modes appear, those ofεGδGtεE = ω2εE under the restrictionE = Gψ . As re-
marked by WHITE and KONING [2000], we have here (again, assuming uniform co-
efficients) a phenomenon of “spectral complementarity” between the operators rot◦ rot
and−grad◦div. The new modes, or “ghost modes” as they are called in WEILAND

[1985], have to be sifted out, which is in principle easy47 (evaluate the norm|GtεE|δ),
or “swept to the right” by inserting an appropriate scalar factor in front of the regulariz-
ing term. Second solution (TRAPP, MUNTEANU, SCHUHMANN, WEILAND and IOAN

[2002]): Restrict the search ofE to a complement of ker(RtνR), which one can do by
so-called “tree-cotree” techniques (ALBANESE and RUBINACCI [1988], MUNTEANU

[2002]). This verges on the issue ofdiscrete Helmholtz decompositions, another im-
portant tool in the kit, which cannot be given adequate treatment here (see RAPETTI,
DUBOIS and BOSSAVIT [2002]).

46Whenσ andν are the Galerkin hodges, (19.2) corresponds to the edge-element discretization of (19.3).
47These ghost modes arenot the (in)famous “spurious modes” which were such a nuisance before the advent

of edge elements (cf. BOSSAVIT [1990b]). Spurious modes occur when one solves the eigenmode problem
rot(ν rot E) = ω2εE by usingnodal vectorialelements. Then (barring exceptional boundary conditions) the
rot(ν rot) matrix is regular (because the approximation space does not contain gradients, contrary to what
happens with edge elements), but also – and for the same reason, as explained in BOSSAVIT [1998a] – poorly
conditioned, which is the root of the evil. It would be wisenot to take “ghost modes” and “spurious modes”
as synonyms, in order to avoid confusion on this tricky point.





CHAPTER IV

Finite Elements

We now tackle the convergence analysis of the discrete version of problem (13.2), mag-
netostatics:

(18.1)Db = 0, h = νb, Rth = j.

A preliminary comment on what that means is in order.
A few notational points before: The mesh is denotedm, the dual mesh is̃m, and we

shall subscript bym, when necessary, all mesh-related entities. For instance, the largest
diameter of allp-cells,p � 1, primal and dual, will be denotedγm (with a mild abuse,
since it also depends on the metric of the dual mesh), and called the “grain” of the pair
of meshes. The computed solution{b,h} will be {bm,hm} when we wish to stress its
dependence on the mesh-pair. And so on.

A first statement of our purpose is “study{bm,hm} whenγm tends to 0”. Alas, this
lacks definiteness, because how theshapesof the cells change in the process does matter
a lot. In the case of triangular 2D meshes, for instance, there are well-known counter-
examples (BABUŠKA and AZIZ [1976]) showing that, if one tolerates too much “flat-
tening” of the triangles as the grain tends to 0, convergence may fail to occur. Hence the
following definition: A family M of (pairs of interlocked) meshes isuniform if there
is afinite catalogue of “model cells” such that any cell in anym or m̃ of the family is
the transform by similarity of one of them. The notation “m→ 0” will then refer to a
sequence of meshes, all belonging to some definite uniform family, and such that their
γms tend to zero. Now we redefine our objective: Show that the error incurred by taking
{bm,hm} as a substitute for the real field{b,h} tends to zero whenm→ 0.

The practical implications of achieving this are well known. If, for a givenm, the
computed solution{bm,hm} is not deemed satisfactory, one mustrefine the mesh and
redo the computation, again and again. If the refinement rule guarantees that all meshes
such a process can generate belong to some definite uniform family, then the conver-
gence result means “you may get as good an approximation as you wish by refining this
way”, a state of affairs we are more or less happy to live with.

Fortunately, such refinement rules do exist (this is an active area of research: BÄNSCH

[1991], BEY [1995], DE COUGNY and SHEPHARD [1999], MAUBACH [1995]). Given
a pair of coarse meshes to start with, there are ways to subdivide the cells so as to keep
bounded the number of different cell-shapes that appear in the process, hence a potential
infinity of refined meshes, which do constitute a uniform family. (A refinement process
for tetrahedra is illustrated by Fig. 20.1. As one can see, at most five different shapes

167
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FIG. 20.1. Subdivision rule for a tetrahedronT = {k, l,m,n}. (Mid-edges are denotedkl, lm, etc., ando
is the barycenter.) A first halving of edges generates four small tetrahedra and a core octahedron, which
itself can be divided into eight “octants” such asO = {o, kl, lm,mk}, of at most four different shapes. Now,
octants likeO should be subdivided as follows: divide the facet in front ofo into four triangles, and join too,
hence a tetrahedron similar toT, and three peripheral tetrahedra. These, in turn, are halved, as shown for
the one hanging from edge{o, lm}. Its two parts are similar toO and to the neighbor octant{o, kn, kl,mk}

respectively.

can occur, for each tetrahedral shape present in the original coarse mesh. In practice,
not all volumes get refined simultaneously, so junction dissection schemes are needed,
which enlarges the catalogue of shapes, but the latter is bounded nonetheless.)

For these reasons, we shall feel authorized to assume uniformity in this sense. We
shall also posit that the hodge entries, whichever way they are built, only depend (up
to a multiplicative factor) on theshapesof the cells contributing to them. Although
stronger than necessary, these assumptions will make some proofs easier, and thus help
focus on the main ideas.

20. Consistency

Back to the comparison between{bm,hm} and{b,h}, a natural idea is to compare the
computed DoF arrays,bm and hm, with arrays of the same kind,rmb = {∫

f
b: f ∈

F} andrmh = {∫
f̃
h: f ∈ F}, composed of the fluxes and m.m.f.’s of the (unknown)

solution{b,h} of the original problem (13.2). This implicitly defines two operators with
the same name,rm: one that acts on 2-forms, giving an array of facet-fluxes, one that
acts on twisted 1-forms, giving an array of dual-edge m.m.f.’s. (No risk of confusion,
since the name of the operand,b or h, reveals its nature.)

Since db = 0, the flux ofb embraced by the boundary of any primal 3-cellv must
vanish, therefore the sum of facet fluxes

∑
f Df

v

∫
f
b must vanish for allv. Similarly,

dh= j yields the relation
∑

f Re
f

∫
f̃
h= ∫

ẽ
j , by integration over a dual 2-cell. In ma-

trix form, all this becomes

(20.1)Drmb= 0, Rt rmh= j,
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since the entries ofj are precisely the intensities across dual facets. Comparing with
(18.1), we obtain

(20.2)D(bm − rmb)= 0, Rt (hm − rmh)= 0,

and

(20.3)(hm − rmh)− ν(bm − rmb)= (νrm − rmν)b≡ ν(rmµ− µrm)h.

Let us compute theµ-norm of both sides of (20.3). (For this piece of algebra, we shall
use the notation announced in last chapter:(b,h) for a sum such as

∑
f∈F bf hf , and

|h|µ for (µh,h)1/2, theµ-norm ofh, and other similar constructs.)
As this is done, “square” and “rectangle” terms appear. The rectangle term for the

left-hand side is−2(bm − rmb,hm − rmh), but sinceD(bm − rmb) = 0 implies the
existence of somea such thatbm − rmb= Ra, we have

(bm − rmb,hm − rmh) = (Ra,hm − rmh) = (
a,Rt (hm − rmh)

) = 0,

after (20.2). Only square terms remain, and we get

|hm − rmh|2µ + |bm − rmb|2ν
(20.4)= ∣∣(νrm − rmν)b

∣∣2
µ

≡ ∣∣(µrm − rmµ)h
∣∣2
ν
≡ (νrmb− rmh, rmb− µrmh).

On the left-hand side, which has the dimension of an energy, we spot two plausible esti-
mators for the error incurred by taking{bm,hm} as a substitute for the real field{b,h}:
the “error in (discrete) energy” [respectively coenergy], as regardsbm − rmb [respec-
tively hm− rmh]. Components ofbm− rmb are what can be called the “residual fluxes”
bf − ∫

f
b, i.e., the difference between the computed flux embraced by facetf and the

genuine (but unknown) flux
∫
f
b. Parallel considerations apply toh, with m.m.f.’s along

f̃ instead of fluxes. It makes sense to try andboundthese error terms by some func-
tion of γm. So let us focus on the right-hand side of (20.4), for instance on its second
expression, the one in terms ofh.

By definition of rm, the f -component ofrm(µh) is the flux of b = µh embraced
by f . On the other hand, the flux arrayµrmh is the result of applying the discrete
Hodge operator to the m.m.f. arrayrmh, so the compound operatorsrmµ andµrm will
not be equal: they give different fluxes when applied to a generich. This contrasts with
the equalities(Drm − rmd)b = 0 and(Rt rm − rmd)h= 0, which stem from the Stokes
theorem. The mathematical word to express such equalities is “conjugacy”:D and d are
conjugate viarm, and so areRt and d, too. Thus,µ andµ arenot conjugate viarm –
and this is, of course, the reason why discretizing entails some error.

Yet, it may happen thatrmµ andµrm docoincide forsomehs. This is so, for instance,
with piecewise constant fields, whenµ is the diagonal hodge of (16.3) and (16.4): in
fact, these formulas were motivated by the desire to achieve this coincidence for such
fields. Also, as we shall prove later,rmν andνrm coincide on facet-element approxima-
tions ofb, i.e., on divergence-free fields of the form

∑
f∈F bf wf (which are meshwise

constant), whenν is the Galerkin hodge. Since all piecewise smooth fields differ from
such special fields by some small residual, and the finer the mesh the smaller, we may
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FIG. 20.2. As in Fig. 16.1,�f denotes the vectorial area of facetf : the vector of magnitude area(f ), normal

to f , that points away fromf in the direction derived fromf ’s inner orientation by Ampère’s rule. By
�
f we

denote the vector that joins the end points of the associated dual edgef̃ . (An ambient orientation is assumed

here. One could do without it by treating both�f and
�
f as axial vectors.) In caseν is not the same on both

sides off , understandν
�
f asν2

�
f2 + ν1

�
f1, where

�
f2 and

�
f1 are as suggested. RegionDf is the volume

enclosed by the “tent” determined by the extremities off̃ and the boundary off . Note that �f andν
�
f always

crossf in the same direction, but only in the orthogonal construction are they parallel (cf. Fig. 16.1): In that
case, (20.6) can be satisfied by adiagonalhodge – cf. (16.3) and (16.4).

in such cases expect “asymptotic conjugacy”, in the sense that the right-hand side of
(20.4) will tend to 0 withm, for a piecewise smoothb or h. This property, which we
rewrite informally but suggestively as

(20.5)νrm − rmν → 0 whenm→ 0, µrm − rmµ→ 0 whenm→ 0

(two equivalent statements), is calledconsistencyof the approximation ofµ andν by µ

andν. Consistency, thus, implies asymptotic vanishing of the error in (discrete) energy,
after (20.4).

Let’s now take a heuristic step. (We revert to vector proxies for this. Fig. 20.2 explains

about �f and
�
f , andn andτ are normal and tangent unit vector fields, as earlier. The

norm of an ordinary vector is| |.) Remark that the right-hand side of (20.4) is, according
to its rightmost avatar, a sum of terms, one for eachf , of the form[∑

f ′
νff

′
∫
f ′
n · B −

∫
f̃

ντ · B

][∫
f

µn · H −
∑
f ′′

µff
′′
∫
f̃ ′′
τ · H

]
,

which we’ll abbreviate as[B, f ][H, f ]. Each should be made as small as possible for
the sum to tend to 0. Supposeν is uniform, and that boundary conditions are such that

B and H are uniform. Then[B, f ] = B · (∑f ′ νff
′ �f ′ − ν

�
f ). This term vanishes if

(20.6)
∑
f ′∈F

νff
′ �f ′ = ν

�
f .

(This implies
∑

f ′∈F µff
′
ν

�
f ′ = �f , and hence, cancellation of[H, f ], too.) We there-

fore adopt this geometric compatibility condition as acriterion aboutν. Clearly, the
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diagonal hodge of (16.4) passes this test. But on the other hand, no diagonalν can

satisfy (20.6) unless�f andν
�
f are collinear.

PROPOSITION20.1. If ν is diagonal, withνff �f = ν
�
f , as required by the criterion,

there is consistency.

PROOF. (All C ’s, from now on, denote constants, not necessarily the same each time,
possibly depending on the solution, but not on the mesh.) This time, the solution proxy
B is only piecewise smooth, and possibly discontinuous ifν is not uniform, but its
component parallel to�f , sayB, satisfies|B(x)− B(y)| � C|x − y| in the regionDf

of Fig. 20.2. One has48
∫
f
n · B = area(f )B(xf ) and

∫
f̃
ντ · B = length(ν

�
f )B(x

f̃
),

for some averaging pointsxf andx
f̃

, the distance of which doesn’t exceedγm, hence

[B, f ] � Cγmνff area(f ), by factoring outνff area(f )≡ length(ν
�
f ), and similarly,

[H, f ] �Cγmµff length(ν
�
f ). Noticing that area(f ) length(ν

�
f ) = 3

∫
Df
ν, and sum-

ming up with respect tof , one finds that

(20.7)|hm − rmh|2µ + |bm − rmb|2ν � Cγ 2
m,

the consistency result. �

Going back to (20.4), we conclude that both theν-norm of the residual flux array and
theµ-norm of the residual m.m.f. array tend to 0 as fast asγm, or faster,49 a result we
shall exploit next.

One may wonder whether the proof can be carried out in the case of a non-diagonal
hodge, assuming (20.6). The author has not been able to do so on the basis of (20.6)
only. The result is true under stronger hypotheses (stronger than necessary, perhaps):
When the construction ofν is a local one, i.e.,νff

′ = 0 unless facetsf andf ′ belong
to a common volume, and when theinfimumδm of all cell diameters verifiesδm � βγm,
with β independent ofm. Thenν has a band structure, and its terms behave inγ−1

m ,
which makes it easy to prove that[B, f ] is in O(γ 2

m). Handling[H, f ] is more difficult,
becauseµ is full, and the key argument about averaging points not being farther apart
than γm breaks down. On the other hand, owing to the band structure ofν, and its
positive-definite character,µff

′
is small for distantf andf ′, which allows one to also

bound[H, f ] byCγ 2
m. The number of faces being inγ−3

m , consistency ensues.
There is some way to go to turn such an argument into a proof, but this is enough

to confirm (20.6) in its status of criterion as regardsν, a criterion which is satisfied,
by construction (Fig. 16.1), in FIT (WEILAND [1996]) and in the cell method (TONTI

48In caseν is not the same on both sides off , understand length(ν
�
f ) asν1 length(

�
f1)+ ν2 length(

�
f2). The

underlying measure of lengths is not the Euclidean one, but the one associated with the metric induced by the
Hodge operatorν.
49Convergence inγ 2

m is in fact often observed when the meshes have some regularity, such as crystal-like
symmetries, which may cancel out some terms in the Taylor expansions implicit in the above proof. For
instance, the distance between pointsxf andx

f̃
may well be inγ 2

m rather thanγm. This kind of phenomenon

is commonplace in Numerical Analysis (SCHATZ, SLOAN and WAHLBIN [1996]).
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[2001]), but allows a much larger choice. We’ll see in a moment how and why it is
satisfied in the Galerkin approach.

21. Stability

So, the left-hand side of (20.4) tends to 0. Although this is considered by many as
sufficient in practice, one cannot be satisfied with such “discrete energy” estimates.
Fields should be compared with fields. To really prove convergence, one should build
from the DoF arraysbm andhm an approximation{bm,hm} of the pair of differential
forms {b,h}, and show that the discrepanciesbm − b andhm − h tend to 0 withm in
some definite sense. So we are after some map, that we shall denote bypm, that would
transform a flux arrayb into a 2-formpmb and an m.m.f. arrayh into a twisted 1-form
pmh. The map should behave naturally with respect torm, i.e.,

(21.1)rmpmb = b, rmpmh = h,

as well as

(21.2)|pmrmb− b|ν → 0 and |pmrmh− h|µ → 0 whenm→ 0

(asymptotic vanishing of the “truncation error”pmrm − 1). A satisfactory result, then,
would be that both|b − pmbm|ν and|h− pmhm|µ tend to 0 withm (convergence “in
energy”). As will now be proved, this is warranted by the following inequalities:

(21.3)α|pmb|ν � |b|ν, α|pmh|µ � |h|µ
for all b andh, where the constantα > 0 does not depend onm. Since|b|ν and|h|µ
depend on the discrete hodge, (21.3) is a property of the approximation scheme, called
stability.

PROPOSITION21.1. Consistency(20.5)being assumed,(21.2)and (21.3)entail con-
vergence.

PROOF. By consistency, the right-hand side of (20.4) tends to 0, whence|bm−rmb|ν →
0, and|pmbm − pmrmb|ν → 0 by (21.3). Thereforepmbm → b, “in energy”, thanks to
(21.2). Same argument abouth. �

This is Lax’s celebrated folk theorem (LAX and RICHTMYER [1956]):consistency+
stability= convergence.

Below, we shall find a systematic way to constructpm, the so-calledWhitney map.
But if we don’t insist right now on generality, there is an easy way to find a suitable
such map in the case of a simplicial primal mesh and of DoF arraysb that satisfy
Db = 0 (luckily, only these do matter in magnetostatics). The idea is to find a vector
proxy B uniform inside each tetrahedron with facet fluxesB · �f equal tobf . (Then,
divB = 0 all overD.) This, which would not be possible with cells of arbitrary shapes,
can be done with tetrahedra, for there are, for each tetrahedral volumev, three unknowns
(the components ofB) to be determined from four fluxes linked by one linear relation,∑

f Df
v bf = 0, so the problem has a solution, which we take aspmb.
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Then,50 pmrmb → b. As for the stability condition (21.3), one has|pmb|2ν =∫
D
ν|B|2, a quadratic form with respect to the facet fluxes, which we may therefore

denote by(b,Nb), with N some positive definite matrix. Now, suppose first asingle
tetrahedron in the meshm, and consider the Rayleigh-like quotient(b,νb)/(b,Nb). Its
lower bound, strictly positive, depends only on theshapeof the tetrahedron, not on its
size. Then, uniformity of the family of meshes, and of the construction ofν, allows us
to take forα in (21.3) the smallest of these lower bounds, which is strictly positive and
independent ofm. We may thereby conclude thatpmbm converges towardsb in energy.

No similar construction on the side ofh is available, but this is not such a handicap:
if pmbm → b, thenνpmbm → h. This amounts to settingpm on the dual side equal to
νpmµ. The problem with that is,pmh fails to have the continuity properties we expect
from a magnetic field: its vector proxy H is not tangentially continuous across facets,
so one cannot take its curl. But never mind, since this “non-conformal” approximation
converges in energy.

Yet, we need a more encompassingpm map, if only becauseDb = 0 was just a
happy accident. Before turning to that, which will be laborious, let’s briefly discuss
convergence in the full Maxwell case.

22. The time-dependent case

Here is a sketch of the convergence proof for the generalized Yee scheme (17.1) and
(17.2) of last chapter.

First, linear interpolation in time between the values of the DoF arrays, as output
by the scheme, provides DoF-array-valued functions of time which converge, whenδt

tends to zero, towards the solution of the “spatially discretized” equations (16.1) and
(16.2). This is not difficult.

Next, linearity of the equations allows one to pass from the time domain to the fre-
quency domain, via a Laplace transformation. Instead of studying (16.1) and (16.2),
therefore, one may examine the behavior of the solution of

(22.1)−pD + RtH = J, pB + RE = 0,

(22.2)D = εE, B = µH,

whenm→ 0. Here,p = ξ + iω, with ξ > 0, and small capitals denote Laplace trans-
forms, which are arrays ofcomplex-valued DoFs. If one can prove uniform convergence
with respect toω (which the requirementξ > 0 makes possible), convergence of the so-
lution of (16.1) and (16.2) will ensue, by inverse Laplace transformation. The main
problem, therefore, is to compareE, B, H, D, as given by (22.1) and (22.2), withrmE,
rmB, rmH, rmD, where small capitals, again, denote Laplace transforms, but of differen-
tial forms this time.
50This is an exercise, for which the following hints should suffice. Start fromb, piecewise smooth, such that

db= 0, setb = rmb, getB as above, and aim at finding an upper bound for|B − B|, where B is the proxy of
b, over a tetrahedronT. For this, evaluate∇λ · ∫T(B − B), whereλ is an affine function such that|∇λ| = 1.
Integrate by parts, remark that

∫
f λn · B = λ(xf )bf , wherexf is the barycenter off . Taylor-expandn · B

aboutxf , hence a bound inCγ 4
m for

∫
∂T λn · (B−B), from which stems| ∫T(B−B)| �Cγ 4

m. Use uniformity
to conclude that|B − B| � Cγm.
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The approach is similar to what we did in statics. First establish that

(22.3)pµ(H − rmH)+ R(E − rmE)= p(rmµ− µrm)H,

(22.4)−pε(E − rmE)+ Rt (H − rmH)= −p(rmε− εrm)E.

Then, right-multiply (22.3) (in the sense of( , )) by (H − rmH)∗ and the complex con-
jugate of (22.4) by−(E − rmE), add. The middle terms (inR andRt ) cancel out, and
energy estimates follow. The similarity between the right-hand sides of (20.3), on the
one hand, and (22.3), (22.4), on the other hand, shows that no further consistency re-
quirements emerge. Stability, thanks toξ > 0, holds there if it held in statics. What is
a good discrete hodge in statics, therefore, is a good one in transient situations. Let’s
tentatively promote this remark to the rank of heuristic principle:

As regards discrete constitutive laws,what makes a convergent scheme forstatic
problems will, as a rule, make one for the Maxwell evolution equations.

At this stage, we may feel more confident about the quality of the toolkit: If the
discrete hodges and the meshes are compatible in the sense of (20.6), so that consistency
can be achieved, if there is a way to pass from DoFs to fields which binds energy and
discrete energy tightly enough for stability (21.3) to hold, then convergence will ensue.
So we need thepm operator. We would need it, anyway, to determine fluxes, e.m.f.’s,
etc., at a finer scale than what the mesh provides – motivation enough to search for
interpolants, but not the most compelling reason to do so: Field reconstruction from
the DoFs is needed, basically,to assess stability, in the above sense, and thereby, the
validity of the method. Whitney forms, which will now enter the scene, provide this
mechanism.

23. Whitney forms

Let’s summarize the requirements about the generic mappm. It should map each kind
of DoF array to a differential form of the appropriate kind:pme, starting from an edge-
based DoF arraye, should be a 1-form;pmb, obtained from a facet-basedb, should be
a 2-form, and so forth. Properties (21.1) and (21.2) should hold for all kinds, too, so in
short,

(23.1)rmpm = 1, pmrm → 1 whenm→ 0.

The stability property (21.3) will automatically be satisfied in the case of a uniform
family of meshes. Moreover, we expect db= 0 whenDb = 0, de= 0 whenRe = 0, etc.
More generally,Ra = b should entail da = b, and so forth. These are desirable features
of the toolkit. The neatest way to secure them is to enforce the structural property

(23.2)dpm = pmd,

at all levels (Fig. 23.1): d andd should be conjugate, viapm, or said differently, Fig. 23.1
should be acommutative diagram. Remarkably, these prescriptions will prove sufficient
to generate interpolants in an essentially unique way. Such interpolants are known as
Whitney forms(WHITNEY [1957]), and we shall refer to the structure they constitute as
theWhitney complex.
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FIG. 23.1. Diagrammatic rendering of (23.2), with part of Fig. 8.1 added. Flat and sharp symbols represent
the isomorphism between differential forms and their scalar or vector proxies.

23.1. Whitney forms as a device to approximate manifolds

We address the question by taking a detour, to see things from a viewpoint consistent
with our earlier definition of differential forms as maps from manifolds to numbers.
A differential form, say, for definiteness,b, maps ap-manifoldS to the number

∫
S
b,

with p = 2 here. Suppose we are able to approximateS by ap-chain, i.e., here, a chain
based on facets,ptmS = ∑

f∈F cf f . Then a natural approximation to
∫
S
b is

∫
ptmS

b.

But this number we know, by linearity: since
∫
f
rmb= bf , it equals the sum

∑
f cf bf ,

that we shall denote〈c;b〉 (with boldface brackets). Hence an approximate knowledge
of the fieldb, i.e., of all its measurable attributes – the fluxes – from the DoF arrayb.
In particular, fluxes embraced bysmallsurfaces (small with respect to the grain of the
mesh) will be computable fromb, which meets our expectations about interpolating to
local values ofb. The question has thus become “how best to representS by a 2-chain?”.
Fig. 23.2 (wherep = 1, so a curvec replacesS) gives the idea.

Once we know about the manifold-to-chain mapptm, we know about Whitney forms:
For instance, the one associated with facetf is, like the fieldb itself, a map from
surfaces to numbers, namely the mapS → cf that assigns toS its weight with respect
to f . We denote this map bywf and its value atS by

∫
S
wf or by 〈S;wf 〉 as we

have done earlier. (The notational redundancy will prove useful.) Note that〈ptmS;b〉 =∫
S

∑
f bf wf = ∫

S
pmb ≡ 〈S;pmb〉, which justifies the “ptm” notation: A transposition

is indeed involved.

23.2. A generating formula

Now, let’s enter the hard core of it. A simplicial primal mesh will be assumed until
further notice. (We shall see later how to lift this restriction.) Results will hold for any
spatial dimensionn and all simplicial dimensionsp � n, but will be stated as ifn was 3
andp = 1 or 2 (edge and facet elements). So we shall also write proofs, even recursive
ones that are supposed to move fromp top+1 (see, e.g., Proposition 23.1), as ifp had
a specific value (1 or 2), and thereby preferR,D, or Rt , Dt , to d or ∂ . That the proof
has general validity notwithstanding should be obvious each time.
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FIG. 23.2. Representing curvec by a weighted sum of mesh-edges, i.e., by a 1-chain. Graded thicknesses
of the edges are meant to suggest the respective weights assigned to them. Edges such ase, whose “control
domain” (shaded) doesn’t intersectc, have zero weight. (A weight can be negative, if the edge is oriented
backwards with respect toc.) Which weights thus to assign is the central issue in our approach to Whitney

forms.

We useλn(x) for the barycentric weight of pointx with respect to noden, whenx
belongs to one of the tetrahedra which share noden (otherwise,λn(x)= 0). We’ll soon
see thatwn = λn is the natural choice for nodal 0-forms, and again this dual notation
will make some formulas more readable. We defineλe = λm + λn, when edgee =
{m,n}, as well asλf = λl + λm + λn for facetf = {l,m,n}, etc. Whene = {m,n}
andf = {l,m,n}, we denote nodel by f − e. Thusλf−e refers to (in that case)λl , and
equalsλf −λe. The oriented segment from pointx to pointy is xy, the oriented triangle
formed by pointsx, y, z, in this order, isxyz. And although noden and its locationxn
should not be confused, we shall indulge in writing, for instance,ijx for the triangle
based on pointsxi , xj , andx, wheni andj are node labels.

The weights in the case of a “small manifold”, such as a point, a segment, etc.,51

will now be constructed, and what to use for non-small ones, i.e., the mapswe, wf ,
etc., from lines, surfaces, etc., to reals, will follow by linearity. The principle of this
construction is to enforce the following commutative diagram property:

(23.3)∂ptm = ptm∂,

which implies, by transposition, dpm = pmd, the required structural property (23.2).52

We shall not endeavor to prove, step by step, that our construction does satisfy (23.3),
although that would be an option. Rather, we shall let (23.3) inspire the definition that
follows, and then, directly establish that dpm = pmd. This in turn will give (23.3) by
transposition.

DEFINITION 23.1. Starting fromwn = λn, the simplicial Whitney forms are

(23.4)

we =
∑
n∈N

Gn
eλ
e−n dwn, wf =

∑
e∈E

Re
f λ

f−e dwe, wv =
∑
f∈F

Df
v λ

v−f dwf

(and so on, recursively, to higher dimensions).

51The proper underlying concept, not used here, is that ofmultivectorat pointx.
52If moreover ker(∂p) = cod(∂p+1), i.e., in the case of a trivial topology, then ker(dp) = cod(dp−1), just

as, by transposition, ker(dp)= cod(dp−1). One says the Whitney spaces of forms, as linked by the dp , form
anexact sequence.
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FIG. 23.3. Left: With edgee = {m,n} and facets{m,n, k} and{m,n, l} oriented as shown, the 2-chain to
associate with the “join”x∨e, aliasmnx, can only beλk(x)mnk+λl(x)mnl. This is what (23.5) says. Right:

Same relation between the joinx ∨ n and the 1-chainλk(x)nk + λl(x)nl + λm(x)nm.

Let us justify this statement, by showing how compliance with (23.3) suggests these
formulas. The starting point comes from finite element interpolation theory, which
in our present stand consists in expressing a pointx as a weighted sum of nodes,
the weightswn(x) being the barycentric ones,λn(x). (Note how the standardpm for
nodal DoFs,pmϕ =∑

n ϕnw
n, comes fromptmx =∑

n w
n(x)n by transposition.) Re-

cursively, suppose we know the proper weights for a segmentyz, i.e., the bracketed
terms in the sumptmyz = ∑

e〈yz;we〉e, and let us try to findptmxyz. By linearity,
ptmxyz = ∑

e〈yz;we〉ptm(x ∨ e), where the “join”x ∨ e is the triangle displayed in
Fig. 23.3, left. So the question is: which 2-chain best representsx ∨ e? As suggested by
Fig. 23.3, the only answer consistent with (23.3) is

(23.5)ptm(x ∨ e)=
∑
f∈F

Re
f λ

f−e(x)f.

Indeed, this formula expressesx∨ e as the average ofmnk andmnl (the only two facets
f for which Re

f �= 0), with weights that depend on the relative proximity ofx to them.

Soptmxyz =
∑

e,f Re
f λ

f−e(x)〈yz;we〉f ≡∑
f 〈xyz;wf 〉f , hence

(23.6)〈xyz;wf 〉 =
∑
e

Re
f λ

f−e(x)〈yz;we〉.

On the other hand, since a degenerate triangle such asxzx should get zero weights, we
expect 0= 〈xzx;wf 〉 = ∑

e Re
f λ

f−e(x)〈zx;we〉, and the same for〈xxy;wf 〉. From
this (which will come out true after Proposition 23.1 below), we get

〈xyz;wf 〉 =
∑
e

Re
f λ

f−e(x)〈yz+ zx + xy;we〉

=
∑
e

Re
f λ

f−e(x)
〈
∂(xyz);we〉=∑

e

Re
f λ

f−e(x)〈xyz;dwe〉

for any small trianglexyz, by Stokes, and hencewf =∑
e Re

f λ
f−e dwe.

Thus, formulas (23.4) – which one should conceive as the unfolding of a unique
formula – are forced on us, as soon as we accept (23.5) as the right way, amply suggested
by Fig. 23.3, to pass from the weights for a simplexs to those for the joinx ∨ s. The
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reader will easily check that (23.4) describes the Whitney forms as they are more widely
known, that is, on a tetrahedron{k, l,m,n},

wn = λn

for noden,

we = λm dλn − λn dλm

for edgee= {m,n},
wf = 2(λl dλm ∧ dλn + λm dλn ∧ dλl + λn dλl ∧ dλm)

for facetf = {l,m,n}, and

wv = 6(λk dλl ∧ dλm ∧ dλn + λl dλm ∧ dλn ∧ dλk + λm dλn ∧ dλk ∧ dλl

+ λn dλk ∧ dλl ∧ dλm)

for volumev = {k, l,m,n}. In higher dimensions (WHITNEY [1957]), the Whitney form
of ap-simplexs = {n0, n1, . . . , np}, with inner orientation implied by the order of the
nodes, is

ws = p!
∑

i=0,...,p

(−1)iwni dwn0 ∧ · · · 〈i〉 · · · ∧ dwnp,

where the〈i〉 means “omit the term dwni ”.
From now on, we denote byWp the finite-dimensional subspaces ofFp generated

by these basic forms.

REMARK 23.1. To find the vector proxies ofwe andwf , substitute∇ and× to d and∧.
The scalar proxy ofwv is simply the function equal to 1/vol(v) onv, 0 elsewhere. The
reader is invited to establish the following formulas:

wmn(x)= (kl × kx)/6 vol(klmn), wmnk(x)= xl/3 vol(v),

very useful when it comes to actual coding. (Other handy formulas, at this stage, are
rot(x → v× ox)= 2v and div(x → ox) = 3, whereo is some origin point andv a fixed
vector. As an exercise, one may use this to check on Proposition 23.3 below.)

REMARK 23.2. One may recognize in (23.6) the development of the 3×3 determinant
of the array of barycentric coordinates of pointsx, y, z, with respect to nodesl, m, n,
hence the geometrical interpretation of the weights displayed in Fig. 23.4.

23.3. Properties of Whitney forms

Thus in possession of a rationale for (23.4), we now derive from it a few formulas, for
their own sake and as a preparation for the proof of the all important dpm = pmd result,
Proposition 23.3 below.
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FIG. 23.4. Just as the barycentric weight of pointx with respect to noden is vol(klmx), if one takes
vol(klmn) as unit, the weight of the segmentxy with respect to edge{m,n} is vol(klxy), and the weight

of the trianglexyz with respect to facet{l,m,n} is vol(kxyz).

PROPOSITION23.1. For eachp-simplex, there is one linear relation between Whitney
forms associated with(p− 1)-faces of this simplex. For instance, for eachf ,∑

e∈E
Re
f λ

f−ewe = 0.

PROOF. By (23.4),
∑

e Re
f λ

f−ewe = ∑
e,n λ

f−eλe−nRe
fGn

ew
n = 0, thanks to the re-

lation RG = 0, becauseλf−eλe−n, which is the same for alle in ∂f , can be factored
out. �

As a corollary, and by using d(λω)= dλ∧ω+ λdω, we have

wf = −
∑
e∈E

Re
f dλf−e ∧we,

and other similar alternatives to (23.4).

PROPOSITION23.2. For eachp-simplexs, one has

(23.7)(i) λs dws = (p+ 1)dλs ∧ws, (ii ) dλs ∧ dws = 0.

PROOF. This is true forp = 0. Assume it forp = 1. Then

dwf =
∑
e

Re
f dλf−e ∧ dwe =

∑
e

Re
f dλf ∧ dwe ≡ dλf ∧

∑
e

Re
f dwe

by (ii), hence dλf ∧ dwf = 0. Next,

λf dwf = λf
(∑

e

Re
f dλf ∧ dwe

)
= dλf ∧

(∑
e

Re
f λ

f dwe
)

= dλf ∧
(
wf +

∑
e

Re
f λ

e dwe
)
,

which thanks to (i) equals

dλf ∧
(
wf + 2

∑
e

Re
f dλe ∧we

)
= dλf ∧wf − 2dλf ∧

∑
e

Re
f dλf−e ∧we

= 3dλf ∧wf ,
which proves (i) forp = 2. Hence (ii) forp = 2 by taking the d. �
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Next, yet another variant of (23.4), but without summation this time. For any edgee

such thatRe
f �= 0, one has

(23.8)Re
f w

f = λf−e dwe − 2 dλf−e ∧we.
This is proved by recursion, usingGn

e′w
e′ = λe

′−n dwn − dλe
′−nwn, wheren= e ∩ e′,

and the identityGn
e′G

n
e = −Re′

f Re
f . We may now conclude with the main result about

structural properties (cf. Fig. 23.1):

PROPOSITION23.3. One has

dwe =
∑
f∈F

Re
f w

f ,

and hence, by linearity,dpm = pmd.

PROOF. Since both sides vanish out of the “star” ofe, i.e., the union st(e) of vol-
umes containing it, one may do as if st(e) were the whole meshed region. Note that∑

f Re
f λ

f = 1− λe on st(e). Then,∑
f

Re
f w

f =
∑
f

[λf−e dwe − 2 dλf−e ∧we] = (1− λe)dwe − 2 d(1− λe)∧we

= (1− λe)dwe + λe ∧ dwe ≡ dwe,

by using (i). Now, d(pma) = d(
∑

e aewe) = ∑
e,f Re

f aewf = ∑
f (Ra)f wf =

pm(da). �

As a corollary, dWp−1 ⊂ Wp, and if ker(dp) = cod(dp−1), then ker(d;Wp) =
dWp−1, theexact sequenceproperty of Whitney spaces in case of trivial topology.

23.4. “Partition of unity”

For what comes now, we revert to the standard vector analysis framework, wherewf

denotes the proxy vector field (i.e., 2(λl∇λm × ∇λn + · · ·)) of the Whitney formwf .
Recall that barycentric functions sum to 1, thus forming a “partition of unity”:∑
n∈N wn = 1. We shall drop the ugly arrows in what follows, and use symbolf not

only as a label, but also for the vectorial area off (Fig. 20.2). Same dual use of̃f . Same
convention forxyz, to be understood as a triangle or as its vectorial area, according to
the context.

PROPOSITION23.4. At all pointsx, for all vectorsv,

(23.9)
∑
f∈F

(
wf (x) · v)f = v.
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FIG. 23.5. Why
∫

T w
e = ẽ in the barycentric construction of the dual mesh. First, the length of the

altitude from n is 1/|∇wn|, therefore
∫

T ∇wn = klm/3. Next, the average ofwn or wm is 1/4. So∫
T w

e ≡ ∫
T[wm∇wn − wn∇wm] is a vector equal to(klm/3 + kln/3)/4. As the figure shows (all twelve

triangles on the right have the same area), this is precisely the vectorial area ofẽ.

This is a case of something true of all simplices, and a consequence of the above
construction in which the weights〈xyz;wf (x)〉 were assigned in order to havexyz=∑

f 〈xyz;wf (x)〉f . Replacing therewf by its proxy, andxyz and f by their vectorial

areas, we do find (23.9). As a corollary (replacef by g, v by νwf (x), and integrate
in x), the entriesνfg of the Galerkin facet elements mass matrix satisfy∑

g∈F
νfgg = νf̃ ,

whereνf̃ is as explained on Fig. 20.2, but with the important specification that here,
we are dealing with thebarycentricdual mesh. That

∫
νwf = νf̃ is an exercise in

elementary geometry, and a similar formula holds for all Whitney forms (Fig. 23.5).
Now, compare this with (20.6), the compatibility condition that was brought to light by
the convergence analysis: We have proved, at last, that the Galerkin hodges do satisfy it.

24. Higher-degree forms

Let’s sum up: Whitney forms were built in such a way that the partition of unity property
(23.9) ensues. This property makes the mass matrixν of facet elements satisfy, with
respect to the mesh and its barycentric dual, a compatibility criterion, (20.6), which we
earlier recognized as a requisite for consistency. Therefore, we may assert thatWhitney
forms of higher polynomial degree, too,should satisfy(23.9), and take this as heuristic
guide in the derivation of such forms.

Being a priori more numerous, higher-degree forms will make a finer partition. But
we have a way to refine the partition (23.9): Multiply it by theλns, which themselves
form a partition of unity. This results in∑

f∈F ,n∈N

(
λnwf (x) · v)f = v,

hence the recipe: Attach to edges, facets, etc., the productsλnwe, λnwf , etc., wheren
spansN . Instead of the usual Whitney spacesWp, with forms of polynomial degree
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FIG. 24.1. Left: “Small” edges, in one-to-one correspondence with the formsλnwe , and how they are la-
belled. Right: A variant where some small edges, such as{k, e}, are broken lines. These three crooked small

edges, with proper signs, add up to the null chain, hence the compatibility condition of Note 53 is built in.

1 at most, we thus obtain larger spacesWp

2 , with forms of polynomial degree 2 at
most. (For consistency,Wp may now be denotedWp

1 .) As we shall prove in a moment
(under the assumption of trivial topology, but this is no serious restriction), the complex
they constitute enjoys the exact sequence property: If for instanceb =∑

n,f bnf λnwf

satisfies db = 0 (which means it has a divergence-free proxy) then there are DoFsane
such thatb= d(

∑
n,e aneλnwe). (How to defineWp

k , for polynomial degreesk = 3, . . . ,
should now be obvious.)

Note however that, because of Proposition 23.1, these new forms are not linearly
independent. For instance, the span of theλnwes, over a tetrahedron, has dimension
20 instead of the apparent 24, because Proposition 23.1 imposes one linear relation
per facet. Over the whole mesh, withN nodes,E edges,F facets, the two products
λmwe andλnwe for each edgee = {m,n}, and the three productsλf−ewe for each
facetf , make a total of 2E + 3F generators forW1

2 . But with one relation per facet,
the dimension ofW1

2 is only 2(E + F). (The spans of theλnwns, theλnwf s, and the
λnwvs, have respective dimensionsN + E, 3(F + V ), and 4V . The general formula
is dim(Wp

2 ) = (p + 1)(Sp + Sp+1), whereSp is the number ofp-simplices. Note that∑
p(−1)p dim(Wp

2 ) = ∑
p(−1)pSp ≡ χ , the Euler–Poincaré constant of the meshed

domain.)
Owing to this redundancy, the main problem with these forms is, how to interpret

the DoFs. With standard edge elements, the DoFae′ is the integral of the 1-forma =∑
e aewe over edgee′. In different words, the square matrix of the circulations〈e′;we〉

is the identity matrix: edges and edge elements arein duality in this precise sense (just
like the basis vectors and covectors∂i and dj of Note 26). Here, we cannot expect to
find a family of 1-chains in such duality with theλnwes. The most likely candidates in
this respect, the “small edges” denoted{n, e}, etc., on Fig. 24.1, left, don’t pass, because
the matrix of the〈{n′, e′};λnwe〉 is not the identity matrix. If at least this matrix was
regular, finding chains in duality with the basis forms, or the other way round, would be
straightforward. But regular it is not, because of the relations of Proposition 23.1. We
might just omit one small edge out of three on each facet, but this is an ugly solution.
Better to reason in terms ofblocksof DoF of various dimensions, and to be content
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with a rearrangement of chains that makes the matrix block-diagonal: Blocks of size 1
for small edges which are part of the “large” ones, blocks of size three for small edges
inside the facets. Each of these 3-blocks corresponds to a subspace of dimensiontwo,
owing to Proposition 23.1, be it the subspace of forms or of chains. The triple of degrees
of freedom, therefore, is up to an additive constant. Yet, the circulations53 do determine
theform, if not the DoF, uniquely (“unisolvence” property).

The reader will easily guess about “small facets” (16 of them on a single tetrahedron,
for a space of dimension 3(F + T ) = 3(4 + 1) = 15) and “small volumes” (four), in
both variants.

Which leaves us with the task of proving the exact sequence property, that is to say,
the validity of Poincaré’s Lemma in the complex of theWp

2 : Show that db = 0 for b ∈
W
p

2 implies the existence, locally at least, ofa ∈Wp−1
2 such thatb= da. We’ll treat the

very case this notation suggests, i.e.,p = 2, and assume trivial topology (“contractible”
meshed domain), which does no harm since only a local result is aimed at. We use rot
and div rather than d for more clarity. First, two technical points:

LEMMA 24.1. If
∑

n∈N βnλ
n(x)= β0 for all x, where theβs are real numbers, then

βn = β0 for all nodesn ∈ N .

PROOF. Clear, since
∑

n λ
n = 1 is the only relation linking theλn(x)s. �

LEMMA 24.2. If a ∈W1, then2 rot(λna)− 3λn rota ∈W2.

PROOF. If a =we andn= f − e, this results from (23.8). Ifn is one of the end points
of e, e.g.,e = {m,n}, a direct computation, inelegant as it may be, will do: 2 dλn ∧
(λm dλn − λn dλm)= −2λn dλn ∧ dλm = λn dwe. �

Now,

PROPOSITION24.1. If theWp

1 sequence is exact, theWp

2 sequence is exact.

PROOF(at levelp = 2). Supposeb= b0 +∑
n∈N λnbn, with b0 and all thebn in W2,

and divb = 0. Taking the divergence of the sum and applying Lemma 24.1 in each
volume, one sees that divbn is the same field for alln. So there is some common̄b in
W2 such that div(bn − b̄)= 0 for all n, and since theWp complex is exact, there is an
an inW1 such thatbn = b̄+ rotan. Hence,b= b0 + b̄+∑n λ

n rotan. By Lemma 24.2,
there is therefore somêb in W2 such thatb= b̂+ 2

3 rot(
∑

n λ
nan). Since divb̂= 0, the

solenoidalb in W2
2 we started from is indeed the curl of some element ofW1

2 . �

Very little is needed to phrase the proof in such a way that the contractibility assump-
tion becomes moot. Actually, the complexesWp

1 andWp

2 havethe same cohomology,

53Since the matrix has no maximal rank, small-edge circulations must satisfy compatibility conditions for
the form to exist. (Indeed, one will easily check that any element ofW1

2 has a null circulation along the chain
made by the boundary of a facet minus four times the boundary of the small facet inside it.) This raises a
minor problem with therm map, whose images need not satisfy this condition. The problem is avoided with
a slightly different definition of the small edges (KAMEARI [1999]), as suggested on the right of Fig. 24.1.
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FIG. 25.1. The system of projections, in dimension 2.

whatever the topology of the domain and the culling of passive simplices (i.e., those
bearing a null DoF) implied by the boundary conditions.

25. Whitney forms for other shapes than simplices

This simple idea,approximatep-manifolds byp-chains based onp-cells of the mesh,
is highly productive, as we presently see.

25.1. Hexahedra

First example, the well-known isoparametric element (ERGATOUDIS, IRONS and
ZIENKIEWICZ [1968]) on hexahedra can thus be understood. A 2D explanation
(Fig. 25.1) will suffice, the generalization being easy. Let us take a convex quad-
rangle based on pointsx00, x10, x01, x11, and wonder about which weightswn(x)
should be assigned to them (labeln designates the generic node) in order to have
x =∑

n∈{00,10,10,11}wn(x)xn in a sensible way. The weights are obvious ifx lies on the
boundary. For instance, ifx = (1−ξ)x00+ξx10, a point we shall denote byxξ0, weights
are{1− ξ, ξ,0,0}. Were itx ≡ xξ1 = (1− ξ)x01+ ξx11, we would take{0,0,1− ξ, ξ}.
Now, eachx is part of some segment[xξ0xξ1], for a uniquevalueξ(x) of the weight
ξ , in which casex = (1 − η)xξ0 + ηxξ1, for someη = η(x), hence it seems natural to
distribute the previous weights in the same proportion:

x = (
1− η(x)

)(
1− ξ(x)

)
x00 + (

1− η(x)
)
ξ(x)x10

(25.1)+ η(x)
(
1− ξ(x)

)
x01 + η(x)ξ(x) x11,

and we are staring at the basis functions. They form, obviously, a partition of unity.
Looking at what we have done, and generalizing to dimension 3 or higher, we notice a

system of projections, associated with a trilinear54 chart, x → {ξ(x), η(x), ζ(x)}, from

54Thus called becauseξ , η, andζ , though cubic polynomials in terms of the Cartesian coordinates ofx, are
affine functions of each of them, taken separately.
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FIG. 25.2. Weightwe(xy) is theξηζ -volume of the “hinder region” ofxy with respect to edgee.

a hexahedron to the unit cube inξηζ -space. The successive projections (which can be
performed in any order) map a pointx ≡ xξηζ to its imagesx0ηζ andx1ηζ on opposite
facets55 ξ = 0 andξ = 1, then, recursively, send these images to points on opposite
edges, etc., until eventually a noden is reached. In the process, the weight〈x;wn〉 of x
is recursively determined by formulas such as (assuming for the sake of the example
thatn belongs to the facetξ = 0)

〈xξηζ ;wn〉 = (1− ξ)〈x0ηζ ;wn〉.
The final weight ofx with respect ton is thus the product of factors, such as here(1−ξ),
collected during the projection process. (They measure the relative proximity of each
projection to the face towards which next projection will be done.) The last factor in
this product is 1, obtained when the projection reachesn. Observe the fact, essential of
course, that whatever the sequence of projections, the partial weights encountered along
the way are the same, only differently ordered, and hence the weight ofx with respect
to noden is a well-defined quantity.

The viewpoint thus adopted makes the next move obvious. Now, instead of a pointx,
we deal with a vectorv at x, small enough for the segmentxy (wherey = x + v) to be
contained in a single hexahedron. The above projections sendx andy to facets, edges,
etc. Ending the downward recursion one step higher than previously, at the level of
edges, we get projectionsxeye of xy onto all edgese. The weight〈xy;we〉 is the product
of weights ofx collected along the way, but the last factor is now the algebraic ratio
xeye/e (which makes obvious sense) instead of 1. Hence the analytical expression of the
corresponding Whitney form, for instance, in the case of Fig. 25.2,we = ηζ dξ . (Notice
the built-in “partition of unity” property:xy =Σe〈xy;we〉e.) The proxies,we = ηζ∇ξ
in this example, were proposed as edge elements for hexahedra by VAN WELIJ [1985].

55Be aware thatp-faces need not be “flat”, i.e., lie within an affinep-subspace forp > 1, in dimension
higher than 2. To avoid problems this would raise, we assume here a mesh generation which enforces this
extra requirement.
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FIG. 25.3. There too, weightwe(xy) is the relative volume of the hinder region.

One may wonder whether weights such as〈xy;we〉 have a geometric interpretation
there too. They do:〈xy;we〉 is the relative volume, in thereference hexahedron56 H =
{ξ, η, ζ }: 0 � ξ � 1, 0� η � 1, 0� ζ � 1, of the “hinder region” of Fig. 25.2, made
of points “behind”xy with respect to edgee. This may seem fairly different from the
situation in Fig. 23.4, middle, but a suitable reinterpretation of the system of projections
in the tetrahedron (Fig. 25.3) shows the analogy.

A similar reasoning gives facet elements: the last weight, for a small trianglexyz, is
xf yf zf /f , which again makes sense: Take the ratio of the areas (an affine notion) of the
images of these surfaces in the reference cube, with sign+ if orientations ofxf yf zf
andf match,− otherwise. Whitney forms such aswf = ξ dηdζ (whenf is the facet
ξ = 1) result. The proxy of that particular one isξ∇η× ∇ζ .

25.2. Prisms

So, Cartesian coordinates and barycentric coordinates provide two systems of projec-
tions which make obvious the weight allocation. These systems can be mixed: one of
them in use forp < n dimensions, the other one for then− p remaining dimensions.
In dimension 3, this gives only one new possibility, the prism (Fig. 25.4).

Such a variety of shapes makes the mesh generation more flexible (DULAR, HODY,
NICOLET, GENON and LEGROS[1994]). Yet, do the elements of a given degree, edge
elements say, fit together properly when one mixes tetrahedra, hexahedra, and prisms?
Yes, because of the recursivity of the weight allocation: If a segmentxy lies entirely in
the facet common to two volumes of different kind, say a tetrahedron and a prism, the
weights〈xy;we〉 for edges belonging to this facet only depend on what happens in the
facet, i.e., they are the same as evaluated with both formulas forwe, the one valid in
the tetrahedron, the one valid in the prism. This is enough to guarantee thetangential
continuityof such composite edge elements.

56Recall that all tetrahedra are affine equivalent, which is why we had no need for a reference one. The
situation is different with hexahedra, which form several orbits under the action of the affine group.
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FIG. 25.4. Projective system and edge elements for a prism. Observe the commutativity of the projections.

FIG. 25.5. Projective systems for the same triangle, in the barycentric coordinates on the left, and by degen-
eracy of the quadrilateral system on the right.

25.3. “Degeneracies”

Yet one may yearn for even more flexibility, and edge elements forpyramidshave been
proposed (COULOMB, ZGAINSKI and MARÉCHAL [1997], GRADINARU and HIPT-
MAIR [1999]). A systematic way to proceed, in this respect, is to recourse to “degener-
ate” versions of the hexahedron or the prism, obtained by fusion of one or more pair of
nodes and or edges.

To grasp the idea, let’s begin with the case of the degenerated quadrilateral, in two
dimensions (Fig. 25.5). With the notations of the figure, where{λ,µ, ν} are the barycen-
tric coordinates in the left triangle, the map{µ,ν} → {η, ξ}, whereη = ν/(µ+ ν) and
ξ = µ + ν, sends the interior of the triangle to the interior of the right quadrilateral.
When, by deformation of the latter,x10 merges withx00, the projective system of the
quadrilateral generates a new projective system on the triangle.
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FIG. 25.6. Projective systems in four degenerations of the hexahedron. Thick lines indicate the merged edges.

The weights assigned to the nodes, and hence the nodal elements, are the same in
both systems, forξη = ν for point C (cf. (25.1)),ξ(1 − η) = µ for B, and the sum
(1 − ξ)(1 − η) + (1 − ξ)η, attributed toA by adding the loads ofx00 andx01, does
equalλ. But the edge elements differ: ForAC, ηdξ ≡ −(1 − λ)−1µdλ on the right
instead ofλdν − ν dλ on the left,−(1− λ)−1µdλ for AB, and dν + (1− λ)−1ν dλ for
BC. (The singularity of shape functions at pointA is never a problem, because integrals
where they appear always converge.)

In dimension 3, the principle is the same: When two edges merge, by degeneration of
a hexahedron or of a prism, the Whitney form of the merger is the sum of the Whitney
forms of the two contributors, which one may wish to rewrite in a coordinate system
adapted to the degenerate solid. Figs. 25.6 and 25.7 show seven degeneracies, all those
that one can obtain from a hexahedron or a prism with plane facets under the constraint
of not creating curved facets in the process. As one sees, the only novel shape is the
pyramid, while the prism is retrieved once and the tetrahedron four times.

But, as was predictible from the 2-dimensional case, it’snewWhitney forms, on these
solids, that are produced by the merging, because the projection systems are different. In
particular, we have nowfivedistinct projective systems on the tetrahedron (and two on
the pyramid and the prism), and the equality of traces is not automatic any longer. One
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FIG. 25.7. Projective systems in three degenerations of the prism. Note how the pyramid has two ways to
degenerate towards the tetrahedron.

FIG. 25.8. Nodal and edge elements for the projective system of Fig. 25.5. One passes from the previous co-
ordinate system{ξ, η, ζ } to the prism-adapted{ζ,λ,µ, ν} system by the formulasξ = µ+ ν, η= ν/(µ+ ν),

with λ+µ+ ν = 1.

must therefore care about correct assembly, in order to get the same projection system
on each facet.

The advantage of having the pyramid available is thus marred by the necessity of an
extended shape-functions catalogue (on at least two triangular facets of a pyramid, the
projection system cannot match the tetrahedron’s one), and by the existence of cum-



190 A. Bossavit CHAPTER IV

FIG. 25.9. Degeneration of the prism of Fig. 25.8. Two edges disappear, and a new edge element,
µ(1− λ)−1 dλ is created by the merging. The coordinate system is the same here as in Fig. 25.8, so{λ,µ, ν}
should not be confused with barycentric coordinates of this tetrahedron. Denoting the latter by{κ̄, λ̄, µ̄, ν̄},
and using the formulasν = ν̄ + κ̄ andζ = ν̄/(ν̄ + κ̄), one hasξ = µ̄+ ν̄ + κ̄ = 1− λ̄, η = (ν̄ + κ̄)/(1− λ̄).
Thus, for instance, the shape functionµ(1− λ)−1 dλ rewrites asµ̄(1− λ̄)−1 dλ̄ in barycentric coordinates.

bersome assembly rules. Yet, finding the new shape-functions is not too difficult, as
exemplified by Figs. 25.8 and 25.9.

25.4. Star-shaped cells, dual cells

Let’s end all this by an indication on how to build Whitney forms on any star-shaped
polyhedron.

Suppose eachp-cell of the meshm, for all p, has been provided with a “center”, in
the precise sense of Section 15, i.e., a point with respect to which the cell is star-shaped.
Then, join the centers in order to obtain a simplicial refinement,m say, where the new
sets ofp-simplices areSp, the old sets of cells beingSp. In similar style, letu and
u stand for DoF arrays indexed overSp andSp respectively, with the compatibility
relationus =Σs′ ± us′ for all s in Sp, the sum running over all small simplices in the
refinement of cells, and the signs taking care of relative orientations. To definepmu,
knowing whatpm̄u is, we just take thesmallest, in the energy norm, of thepm̄u’s, with
respect to allu’s compatible withu.

The family of interpolants thus obtained is to the cellular mesh, for all purposes, what
Whitney forms were to a simplicial mesh. Whether they deserve to be called “Whit-
ney forms” is debatable, however, because they are metric-dependent, unlike the stan-
dard Whitney forms. The same construction on the dual side provides similar pseudo-
Whitney forms on the dual mesh. (More precisely, there is, as we have observed at the
end of Section 15, a common simplicial refinement of bothm andm̃. The process just
defined constructs forms on both, but it’s easy to check that the pseudo-Whitneys on the
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primal mesh are just the Whitney forms.) This fills a drawer in the toolkit, the emptiness
of which we took some pain to hide until now, although it was conspicuous at places,
on Fig. 23.1, for instance.
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1. Introduction

1.1. Background

Prior to about 1990, the modeling of electromagnetic engineering systems was primarily
implemented using solution techniques for the sinusoidal steady-state Maxwell’s equa-
tions. Before about 1960, the principal approaches in this area involved closed-form
and infinite-series analytical solutions, with numerical results from these analyses ob-
tained using mechanical calculators. After 1960, the increasing availability of program-
mable electronic digital computers permitted such frequency-domain approaches to rise
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markedly in sophistication. Researchers were able to take advantage of the capabili-
ties afforded by powerful new high-level programming languages such as Fortran, rapid
random-access storage of large arrays of numbers, and computational speeds orders of
magnitude faster than possible with mechanical calculators. In this period, the prin-
cipal computational approaches for Maxwell’s equations included the high-frequency
asymptotic methods of KELLER [1962] and KOUYOUMJIAN and PATHAK [1974] and
the integral-equation techniques of HARRINGTON [1968].

However, these frequency-domain techniques have difficulties and trades-off. For ex-
ample, while asymptotic analyses are well suited for modeling the scattering properties
of electrically large complex shapes, such analyses have difficulty treating nonmetallic
material composition and volumetric complexity of a structure. While integral equation
methods can deal with material and structural complexity, their need to construct and
solve systems of linear equations limits the electrical size of possible models, especially
those requiring detailed treatment of geometric details within a volume, as opposed to
just the surface shape.

While significant progress has been made in solving the ultra-large systems of
equations generated by frequency-domain integral equations (see, for example, SONG

and CHEW [1998]), the capabilities of even the latest such technologies are ex-
hausted by many volumetrically complex structures of engineering interest. This also
holds for frequency-domain finite-element techniques, which generate sparse rather
than dense matrices. Further, the very difficult incorporation of material and de-
vice nonlinearities into frequency-domain solutions of Maxwell’s equations poses
a significant problem as engineers seek to design active electromagnetic/electronic
and electromagnetic/quantum-optical systems such as high-speed digital circuits, mi-
crowave and millimeter-wave amplifiers, and lasers.

1.2. Rise of finite-difference time-domain methods

During the 1970s and 1980s, a number of researchers realized the limitations of
frequency-domain integral-equation solutions of Maxwell’s equations. This led to early
explorations of a novel alternative approach: direct time-domain solutions of Maxwell’s
differential (curl) equations on spatial grids or lattices. The finite-difference time-
domain (FDTD) method, introduced by YEE [1966], was the first technique in this class,
and has remained the subject of continuous development (see TAFLOVE and HAGNESS

[2000]).
There are seven primary reasons for the expansion of interest in FDTD and related

computational solution approaches for Maxwell’s equations:
(1) FDTD uses no linear algebra. Being a fully explicit computation, FDTD avoids

the difficulties with linear algebra that limit the size of frequency-domain
integral-equation and finite-element electromagnetics models to generally fewer
than 106 field unknowns. FDTD models with as many as 109 field unknowns
have been run. There is no intrinsic upper bound to this number.

(2) FDTD is accurate and robust. The sources of error in FDTD calculations are well
understood and can be bounded to permit accurate models for a very large variety
of electromagnetic wave interaction problems.
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(3) FDTD treats impulsive behavior naturally. Being a time-domain technique,
FDTD directly calculates the impulse response of an electromagnetic system.
Therefore, a single FDTD simulation can provide either ultrawideband temporal
waveforms or the sinusoidal steady-state response at any frequency within the
excitation spectrum.

(4) FDTD treats nonlinear behavior naturally. Being a time-domain technique,
FDTD directly calculates the nonlinear response of an electromagnetic system.

(5) FDTD is a systematic approach. With FDTD, specifying a new structure to be
modeled is reduced to a problem of mesh generation rather than the potentially
complex reformulation of an integral equation. For example, FDTD requires no
calculation of structure-dependent Green’s functions.

(6) Computer memory capacities are increasing rapidly. While this trend positively
influences all numerical techniques, it is of particular advantage to FDTD meth-
ods which are founded on discretizing space over a volume, and therefore inher-
ently require a large random access memory.

(7) Computer visualization capabilities are increasing rapidly. While this trend posi-
tively influences all numerical techniques, it is of particular advantage to FDTD
methods which generate time-marched arrays of field quantities suitable for use
in color videos to illustrate the field dynamics.

An indication of the expanding level of interest in FDTD Maxwell’s equations
solvers is the hundreds of papers currently published in this area worldwide each
year, as opposed to fewer than ten as recently as 1985 (see SHLAGER and SCHNEI-
DER [1998]). This expansion continues as engineers and scientists in non-traditional
electromagnetics-related areas such as digital systems and integrated optics become
aware of the power of such direct solution techniques for Maxwell’s equations.

1.3. Characteristics of FDTD and related space-grid time-domain techniques

FDTD and related space-grid time-domain techniques are direct solution methods for
Maxwell’s curl equations. These methods employ no potentials. Rather, they are based
upon volumetric sampling of the unknown electric and magnetic fields within and sur-
rounding the structure of interest, and over a period of time. The sampling in space is
at sub-wavelength resolution set by the user to properly sample the highest near-field
spatial frequencies thought to be important in the physics of the problem. Typically,
10–20 samples per wavelength are needed. The sampling in time is selected to ensure
numerical stability of the algorithm.

Overall, FDTD and related techniques are marching-in-time procedures that simulate
the continuous actual electromagnetic waves in a finite spatial region by sampled-data
numerical analogs propagating in a computer data space. Time-stepping continues as the
numerical wave analogs propagate in the space lattice to causally connect the physics
of the modeled region. For simulations where the modeled region must extend to in-
finity, absorbing boundary conditions (ABCs) are employed at the outer lattice trun-
cation planes which ideally permit all outgoing wave analogs to exit the region with
negligible reflection. Phenomena such as induction of surface currents, scattering and
multiple scattering, aperture penetration, and cavity excitation are modeled time-step by
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time-step by the action of the numerical analog to the curl equations. Self-consistency
of these modeled phenomena is generally assured if their spatial and temporal varia-
tions are well resolved by the space and time sampling process. In fact, the goal is to
provide a self-consistent model of the mutual coupling of all of the electrically small
volume cells constituting the structure and its near field, even if the structure spans
tens of wavelengths in three dimensions and there are hundreds of millions of space
cells.

Time-stepping is continued until the desired late-time pulse response is observed at
the field points of interest. For linear wave interaction problems, the sinusoidal response
at these field points can be obtained over a wide band of frequencies by discrete Fourier
transformation of the computed field-versus-time waveforms at these points. Prolonged
“ringing” of the computed field waveforms due to a high Q-factor or large electrical size
of the structure being modeled requires a combination of extending the computational
window in time and extrapolation of the windowed data before Fourier transforma-
tion.

1.4. Classes of algorithms

Current FDTD and related space-grid time-domain algorithms are fully explicit solvers
employing highly vectorizable and parallel schemes for time-marching the six com-
ponents of the electric and magnetic field vectors at each of the space cells. The ex-
plicit nature of the solvers is usually maintained by employing a leapfrog time-stepping
scheme. Current methods differ primarily in how the space lattice is set up. In fact, grid-
ding methods can be categorized according to the degree of structure or regularity in the
mesh cells:

(1) Almost completely structured. In this case, the space lattice is organized so that
its unit cells are congruent wherever possible. The most basic example of such a
mesh is the pioneering work of YEE [1966], who employed a uniform Cartesian
grid having rectangular cells. Staircasing was used to approximate the surface of
structural features not parallel to the grid coordinate axes. Later work showed
that it is possible to modify the size and shape of the space cells located im-
mediately adjacent to a structural feature to conformally fit its surface (see, for
example, JURGENS, TAFLOVE, UMASHANKAR and MOORE [1992] and DEY

and MITTRA [1997]). This is accurate and computationally efficient for large
structures because the number of modified cells is proportional to the surface
area of the structure. Thus, the number of modified cells becomes progressively
smaller relative to the number of regular cells filling the structure volume as its
size increases. As a result, the computer resources needed to implement a fully
conformal model approximate those required for a staircased model. However, a
key disadvantage of this technique is that special mesh-generation software must
be constructed.

(2) Surface-fitted. In this case, the space lattice is globally distorted to fit the shape
of the structure of interest. The lattice can be divided into multiple zones to
accommodate a set of distinct surface features (see, for example, SHANKAR ,
MOHAMMADIAN and HALL [1990]). The major advantage of this approach is
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that well-developed mesh-generation software of this type is available. The ma-
jor disadvantage is that, relative to the Yee algorithm, there is substantial added
computer burden due to:
(a) memory allocations for the position and stretching factors of each cell;
(b) extra computer operations to implement Maxwell’s equations at each cell and

to enforce field continuity at the interfaces of adjacent cells.
Another disadvantage is the possible presence of numerical dissipation in the
time-stepping algorithm used for such meshes. This can limit the range of elec-
trical size of the structure being modeled due to numerical wave-attenuation ar-
tifacts.

(3) Completely unstructured. In this case, the space containing the structure of in-
terest is completely filled with a collection of lattice cells of varying sizes and
shapes, but conforming to the structure surface (see, for example, MADSEN and
ZIOLKOWSKI [1990]). As for the case of surface-fitted lattices, mesh-generation
software is available and capable of modeling complicated three-dimensional
shapes possibly having volumetric inhomogeneities. A key disadvantage of this
approach is its potential for numerical inaccuracy and instability due to the un-
wanted generation of highly skewed space cells at random points within the lat-
tice. A second disadvantage is the difficulty in mapping the unstructured mesh
computations onto the architecture of either parallel vector computers or mas-
sively parallel machines. The structure-specific irregularity of the mesh mandates
a robust pre-processing algorithm that optimally assigns specific mesh cells to
specific processors.

At present, the best choice of computational algorithm and mesh remains unclear.
For the next several years, we expect continued progress in this area as various groups
develop their favored approaches and perform validations.

1.5. Predictive dynamic range

For computational modeling of electromagnetic wave interaction structures using
FDTD and related space-grid time-domain techniques, it is useful to consider the con-
cept of predictive dynamic range. Let the power density of the primary (incident) wave
in the space grid beP0 W/m2. Further, let the minimum observable power density of
a secondary (scattered) wave bePS W/m2, where “minimum observable” means that
the accuracy of the field computation degrades due to numerical artifacts to poorer than
n dB (some desired figure of merit) at lower levels thanPS. Then, we can define the
predictive dynamic range as 10 log10(P0/PS) dB.

This definition is well suited for FDTD and other space-grid time-domain codes for
two reasons:

• It squares nicely with the concept of a “quiet zone” in an experimental anechoic
chamber, which is intuitive to most electromagnetics engineers;

• It succinctly quantifies the fact that the desired numerical wave analogs propagat-
ing in the lattice exist in an additive noise environment due to nonphysical propa-
gating wave analogs caused by the imperfect ABCs.
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In addition to additive noise, the desired physical wave analogs undergo gradual pro-
gressive deterioration while propagating due to accumulating numerical dispersion arti-
facts, including phase velocity anisotropies and inhomogeneities within the mesh.

In the 1980s, researchers accumulated solid evidence for a predictive dynamic range
on the order of 40–50 dB for FDTD codes. This value is reasonable if one considers
the additive noise due to imperfect ABCs to be the primary limiting factor, since the
analytical ABCs of this era (see, for example, MUR [1981]) provided outer-boundary
reflection coefficients in the range of about 0.3–3% (−30 to−50 dB).

The 1990s saw the emergence of powerful, entirely new classes of ABCs including
the perfectly matched layer (PML) of BERENGER[1994]; the uniaxial anisotropic PML
(UPML) of SACKS, KINGSLAND, LEE and LEE [1995] and GEDNEY [1996]; and the
complementary operator methods (COM) of RAMAHI [1997], RAMAHI [1998]. These
ABCs were shown to have effective outer-boundary reflection coefficients of better than
−80 dB for impinging pulsed electromagnetic waves having ultrawideband spectra.
Solid capabilities were demonstrated to terminate free-space lattices, multimoding and
dispersive waveguiding structures, and lossy and dispersive materials.

However, for electrically large problems, the overall dynamic range may not reach
the maximum permitted by these new ABCs because of inaccuracies due to accu-
mulating numerical-dispersion artifacts generated by the basic grid-based solution of
the curl equations. Fortunately, by the end of the 1990s, this problem was being at-
tacked by a new generation of low-dispersion algorithms. Examples include the wavelet-
based multi-resolution time-domain (MRTD) technique introduced by KRUMPHOLZ

and KATEHI [1996] and the pseudo-spectral time-domain (PSTD) technique introduced
by LIU, Q.H. [1996], LIU, Q.H. [1997]. As a result of these advances, there is emerg-
ing the possibility of FDTD and related space-grid time-domain methods demonstrating
predictive dynamic ranges of 80 dB or more in the first decade of the 21st century.

1.6. Scaling to very large problem sizes

Using FDTD and related methods, we can model electromagnetic wave interaction
problems requiring the solution of considerably more than 108 field-vector unknowns.
At this level of complexity, it is possible to develop detailed, three-dimensional models
of complete engineering systems, including the following:

• Entire aircraft and missiles illuminated by radar at 1 GHz and above;
• Entire multilayer circuit boards and multichip modules for digital signal propaga-

tion, crosstalk, and radiation;
• Entire microwave and millimeter-wave amplifiers, including the active and passive

circuit components and packaging;
• Entire integrated-optical structures, including lasers, waveguides, couplers, and

resonators.
A key goal for such large models is to achieve algorithm/computer-architecture scal-
ing such that forN field unknowns to be solved onM processors, we approach an
order(N/M) scaling of the required computational resources.

We now consider the factors involved in determining the computational burden for
the class of FDTD and related space-grid time-domain solvers.
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(1) Number of volumetric grid cells,N . The six vector electromagnetic field compo-
nents located at each lattice cell must be updated at every time step. This yields
by itself an order(N ) scaling.

(2) Number of time steps, nmax. A self-consistent solution in the time domain man-
dates that the numerical wave analogs propagate over time scales sufficient to
causally connect each portion of the structure of interest. Therefore,nmax must
increase as the maximum electrical size of the structure. In three dimensions, it
can be argued thatnmax is a fractional power function ofN such asN1/3. Fur-
ther, nmax must be adequate to step through “ring-up” and “ring-down” times
of energy storage features such as cavities. These features vary from problem to
problem and cannot be ascribed a dependence relative toN .

(3) Cumulative propagation errors. Additional computational burdens may arise
due to the need for either progressive mesh refinement or progressively higher-
accuracy algorithms to bound cumulative positional or phase errors for propagat-
ing numerical modes in progressively enlarged meshes. Any need for progressive
mesh refinement would feed back to factor 1.

For most free-space problems, factors 2 and 3 are weaker functions of the size of
the modeled structure than factor 1. This is because geometrical features at increasing
electrical distances from each other become decoupled due to radiative losses by the
electromagnetic waves propagating between these features. Further, it can be shown
that replacing second-order accurate algorithms by higher-order versions sufficiently
reduces numerical dispersion error to avoid the need for progressive mesh refinement
for object sizes up to the order of 100 wavelengths. Overall, a computational burden of
order(N · nmax)= order(N4/3) is estimated for very large FDTD and related models.

2. Maxwell’s equations

In this section, we establish the fundamental equations and notation for the electromag-
netic fields used in the remainder of this chapter.

2.1. Three-dimensional case

Using MKS units, the time-dependent Maxwell’s equations in three dimensions are
given in differential and integral form by

Faraday’s Law:

(2.1a)
∂ �B
∂t

= −∇ × �E − �M,

(2.1b)
∂

∂t

∫∫
A

�B · d �A= −
∮
"

�E · d�"−
∫∫

A

�M · d �A.

Ampere’s Law:

(2.2a)
∂ �D
∂t

= ∇ × �H − �J ,
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(2.2b)
∂

∂t

∫∫
A

�D · d �A=
∮
"

�H · d�"−
∫∫

A

�J · d �A.
Gauss’ Law for the electric field:

(2.3a)∇ · �D = 0,

(2.3b)
∫∫

0

A

�D · d �A= 0.

Gauss’ Law for the magnetic field:

(2.4a)∇ · �B = 0,

(2.4b)
∫∫

0

A

�B · d �A= 0.

In (2.1)–(2.4), the following symbols (and their MKS units) are defined:

�E: electric field (volts/meter)

�D: electric flux density (coulombs/meter2)

�H : magnetic field (amperes/meter)

�B: magnetic flux density (webers/meter2)

A: arbitrary three-dimensional surface

d �A: differential normal vector that characterizes surfaceA (meter2)

": closed contour that bounds surfaceA

d�": differential length vector that characterizes contour" (meters)

�J : electric current density (amperes/meter2)

�M: equivalent magnetic current density (volts/meter2)

In linear, isotropic, nondispersive materials (i.e., materials having field-independent,
direction-independent, and frequency-independent electric and magnetic properties),
we can relate�D to �E and �B to �H using simple proportions:

(2.5)�D = ε �E = εrε0 �E; �B = µ �H = µrµ0 �H,
where

ε: electrical permittivity (farads/meter)

εr : relative permittivity (dimensionless scalar)

ε0: free-space permittivity(8.854× 10−12 farads/meter)

µ: magnetic permeability (henrys/meter)

µr : relative permeability (dimensionless scalar)

µ0: free-space permeability(4π × 10−7 henrys/meter)

Note that �J and �M can act asindependent sourcesof E- andH -field energy,�Jsourceand
�Msource. We also allow for materials with isotropic, nondispersive electric and magnetic
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losses that attenuateE- andH -fields via conversion to heat energy. This yields:

(2.6)�J = �Jsource+ σ �E; �M = �Msource+ σ ∗ �H,
where

σ : electric conductivity (siemens/meter)

σ ∗: equivalent magnetic loss (ohms/meter)

Finally, we substitute (2.5) and (2.6) into (2.1a) and (2.2a). This yields Maxwell’s curl
equations in linear, isotropic, nondispersive, lossy materials:

(2.7)
∂ �H
∂t

= − 1

µ
∇ × �E − 1

µ

( �Msource+ σ ∗ �H ),
(2.8)

∂ �E
∂t

= 1

ε
∇ × �H − 1

ε

( �Jsource+ σ �E).
We now write out the vector components of the curl operators of (2.7) and (2.8)

in Cartesian coordinates. This yields the following system of six coupled scalar equa-
tions:

(2.9a)
∂Hx

∂t
= 1

µ

[
∂Ey

∂z
− ∂Ez

∂y
− (

Msourcex + σ ∗Hx
)]
,

(2.9b)
∂Hy

∂t
= 1

µ

[
∂Ez

∂x
− ∂Ex

∂z
− (

Msourcey + σ ∗Hy
)]
,

(2.9c)
∂Hz

∂t
= 1

µ

[
∂Ex

∂y
− ∂Ey

∂x
− (

Msourcez + σ ∗Hz
)]
,

(2.10a)
∂Ex

∂t
= 1

ε

[
∂Hz

∂y
− ∂Hy

∂z
− (Jsourcex + σEx)

]
,

(2.10b)
∂Ey

∂t
= 1

ε

[
∂Hx

∂z
− ∂Hz

∂x
− (Jsourcey + σEy)

]
,

(2.10c)
∂Ez

∂t
= 1

ε

[
∂Hy

∂x
− ∂Hx

∂y
− (Jsourcez + σEz)

]
.

The system of six coupled partial differential equations of (2.9) and (2.10) forms the ba-
sis of the FDTD numerical algorithm for electromagnetic wave interactions with general
three-dimensional objects. The FDTD algorithm need not explicitly enforce the Gauss’
Law relations indicating zero free electric and magnetic charge, (2.3) and (2.4). This
is because these relations are theoretically a direct consequence of the curl equations,
as can be readily shown. However, the FDTD space grid must be structured so that the
Gauss’ Law relations areimplicit in the positions of theE- andH -field vector com-
ponents in the grid, and in the numerical space-derivative operations upon these com-
ponents that model the action of the curl operator. This will be discussed later in the
context of the Yee mesh.

Before proceeding with the introduction of the Yee algorithm, it is instructive to con-
sider simplified two-dimensional cases for Maxwell’s equations. These cases demon-
strate important electromagnetic wave phenomena and can yield insight into the analyt-
ical and algorithmic features of the general three-dimensional case.
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2.2. Reduction to two dimensions

Let us assume that the structure being modeled extends to infinity in thez-direction with
no change in the shape or position of its transverse cross section. If the incident wave is
also uniform in thez-direction, then all partial derivatives of the fields with respect toz

must equal zero. Under these conditions, the full set of Maxwell’s curl equations given
by (2.9) and (2.10) reduces to two modes, thetransverse-magnetic mode with respect to
z (TMz) and thetransverse-electric mode with respect toz (TEz). The reduced sets of
Maxwell’s equations for these modes are as follows.

TMz mode(involving onlyHx ,Hy , andEz)

(2.11a)
∂Hx

∂t
= 1

µ

[
−∂Ez
∂y

− (
Msourcex + σ ∗Hx

)]
,

(2.11b)
∂Hy

∂t
= 1

µ

[
∂Ez

∂x
− (

Msourcey + σ ∗Hy
)]
,

(2.11c)
∂Ez

∂t
= 1

ε

[
∂Hy

∂x
− ∂Hx

∂y
− (Jsourcez + σEz)

]
.

TEz mode(involving onlyEx , Ey , andHz)

(2.12a)
∂Ex

∂t
= 1

ε

[
∂Hz

∂y
− (Jsourcex + σEx)

]
,

(2.12b)
∂Ey

∂t
= 1

ε

[
−∂Hz
∂x

− (Jsourcey + σEy)

]
,

(2.12c)
∂Hz

∂t
= 1

µ

[
∂Ex

∂y
− ∂Ey

∂x
− (Msourcez + σ ∗Hz)

]
.

The TMz and TEz modes contain no common field vector components. Thus, these
modes can exist simultaneously withnomutual interactions for structures composed of
isotropic materials or anisotropic materials having no off-diagonal components in the
constitutive tensors.

Physical phenomena associated with these two modes can be very different. The TEz
mode can support propagating electromagnetic fields bound closely to, or guided by,
the surface of a metal structure (the “creeping wave” being a classic example for curved
metal surfaces). On the other hand, the TMz mode sets up anE-field which must be neg-
ligible at a metal surface. This diminishes or eliminates bound or guided near-surface
propagating waves for metal surfaces. The presence or absence of surface-type waves
can have important implications for scattering and radiation problems.

3. The Yee algorithm

3.1. Basic ideas

YEE [1966] originated a set of finite-difference equations for the time-dependent
Maxwell’s curl equations of (2.9) and (2.10) for the lossless materials caseσ = 0 and
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σ ∗ = 0. This section summarizes Yee’s algorithm, which forms the basis of the FDTD
technique. Key ideas underlying the robust nature of the Yee algorithm are as follows:

(1) The Yee algorithm solves for both electric and magnetic fields in time and space
using the coupled Maxwell’s curl equations rather than solving for the electric
field alone (or the magnetic field alone) with a wave equation.

• This is analogous to the combined-field integral equation formulation of
the method of moments, wherein both�E and �H boundary conditions are
enforced on the surface of a material structure.

• Using both �E and �H information, the solution is more robust than using
either alone (i.e., it is accurate for a wider class of structures). Both elec-
tric and magnetic material properties can be modeled in a straightforward
manner. This is especially important when modeling radar cross section
mitigation.

• Features unique to each field such as tangential�H singularities near edges
and corners, azimuthal (looping)�H singularities near thin wires, and ra-
dial �E singularities near points, edges, and thin wires can be individually
modeled if both electric and magnetic fields are available.

(2) As illustrated in Fig. 3.1, the Yee algorithm centers its�E and �H components in
three-dimensional space so that every�E component is surrounded by four circu-
lating �H components, and every�H component is surrounded by four circulating
�E components.

This provides a beautifully simple picture of three-dimensional space being
filled by an interlinked array of Faraday’s Law and Ampere’s Law contours.
For example, it is possible to identify Yee�E components associated with dis-
placement current flux linking�H loops, as well as�H components associated
with magnetic flux linking �E loops. In effect, the Yee algorithm simultaneously
simulates the pointwise differential formand the macroscopic integral form of

FIG. 3.1. Position of the electric and magnetic field vector components about a cubic unit cell of the Yee
space lattice.After: K.S. Yee,IEEE Trans. Antennas and Propagation, Vol. 14, 1966, pp. 302–307, © 1966

IEEE.



210 S.C. Hagness et al.

Maxwell’s equations. The latter is extremely useful in specifying field boundary
conditions and singularities.

In addition, we have the following attributes of the Yee space lattice:
• The finite-difference expressions for the space derivatives used in the curl

operators are central-difference in nature and second-order accurate.
• Continuity of tangential�E and �H is naturally maintained across an inter-

face of dissimilar materials if the interface is parallel to one of the lattice
coordinate axes. For this case, there is no need to specially enforce field
boundary conditions at the interface. At the beginning of the problem, we
simply specify the material permittivity and permeability at each field com-
ponent location. This yields a stepped or “staircase” approximation of the
surface and internal geometry of the structure, with a space resolution set
by the size of the lattice unit cell.

• The location of the�E and �H components in the Yee space lattice and
the central-difference operations on these components implicitly enforce
the two Gauss’ Law relations (see Section 3.6.9). Thus, the Yee mesh is
divergence-free with respect to itsE- andH -fields in the absence of free
electric and magnetic charge.

(3) As illustrated in Fig. 3.2, the Yee algorithm also centers its�E and �H compo-
nents in time in what is termed a leapfrog arrangement. All of the�E compu-
tations in the modeled space are completed and stored in memory for a par-
ticular time point using previously stored�H data. Then all of the�H computa-
tions in the space are completed and stored in memory using the�E data just
computed. The cycle begins again with the recomputation of the�E components
based on the newly obtained�H . This process continues until time-stepping is
concluded.

FIG. 3.2. Space–time chart of the Yee algorithm for a one-dimensional wave propagation example showing
the use of central differences for the space derivatives and leapfrog for the time derivatives. Initial conditions

for both electric and magnetic fields are zero everywhere in the grid.
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• Leapfrog time-stepping is fully explicit, thereby avoiding problems involved
with simultaneous equations and matrix inversion.

• The finite-difference expressions for the time derivatives are central-
difference in nature and second-order accurate.

• The time-stepping algorithm is nondissipative. That is, numerical wave
modes propagating in the mesh do not spuriously decay due to a nonphysical
artifact of the time-stepping algorithm.

3.2. Finite differences and notation

YEE [1966] introduced the following notation for space points and functions of space
and time. A space point in a uniform, rectangular lattice is denoted as

(3.1)(i, j, k)= (i�x, j�y, k�z).

Here,�x, �y, and�z are, respectively, the lattice space increments in thex, y, andz
coordinate directions, andi, j , andk are integers. Further, we denote any functionu of
space and time evaluated at a discrete point in the grid and at a discrete point in time as

(3.2)u(i�x, j�y, k�z,n�t)= uni,j,k,

where�t is the time increment, assumed uniform over the observation interval, andn

is an integer.
Yee used centered finite-difference (central-difference) expressions for the space and

time derivatives that are both simply programmed and second-order accurate in the
space and time increments. Consider his expression for the first partial space derivative
of u in thex-direction, evaluated at the fixed timetn = n�t :

(3.3)
∂u

∂x
(i�x, j�y, k�z,n�t)= uni+1/2,j,k − uni−1/2,j,k

�x
+ O

[
(�x)2

]
.

We note the±1/2 increment in thei subscript (x-coordinate) ofu, denoting a space
finite-difference over±1/2�x. Yee’s goal was second-order accurate central differenc-
ing, but it is apparent that he desired to take data for his central differences to the right
and left of his observation point by only�x/2, rather than a full�x.

Yee chose this notation because he wished to interleave his�E and �H components in
the space lattice at intervals of�x/2. For example, the difference of two adjacent�E
components, separated by�x and located±1/2�x on either side of an�H component,
would be used to provide a numerical approximation for∂E/∂x to permit stepping the
�H component in time. For completeness, it should be added that a numerical approxi-

mation analogous to (3.3) for∂u/∂y or ∂u/∂z can be written simply by incrementing
thej or k subscript ofu by ±1/2�y or ±1/2�z, respectively.

Yee’s expression for the first time partial derivative ofu, evaluated at the fixed space
point (i, j, k), follows by analogy:

(3.4)
∂u

∂t
(i�x, j�y, k�z,n�t)= u

n+1/2
i,j,k − u

n−1/2
i,j,k

�t
+ O

[
(�t)2

]
.
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Now the±1/2 increment is in then superscript (time coordinate) ofu, denoting a time
finite-difference over±1/2�t . Yee chose this notation because he wished to interleave
his �E and �H components in time at intervals of 1/2�t for purposes of implementing a
leapfrog algorithm.

3.3. Finite-difference expressions for Maxwell’s equations in three dimensions

We now apply the above ideas and notation to achieve a finite-difference numerical
approximation of the Maxwell’s curl equations in three dimensions given by (2.9)
and (2.10). We begin by considering as an example theEx field-component equation
(2.10a). Referring to Figs. 3.1 and 3.2, a typical substitution of central differences for
the time and space derivatives in (2.10a) atEx(i, j + 1/2, k+ 1/2, n) yields the follow-
ing expression:

Ex |n+1/2
i,j+1/2,k+1/2 −Ex |n−1/2

i,j+1/2,k+1/2

�t

(3.5)

= 1

εi,j+1/2,k+1/2
·
(
Hz|ni,j+1,k+1/2−Hz|ni,j,k+1/2

�y
− Hy |ni,j+1/2,k+1−Hy |ni,j+1/2,k

�z

− Jsourcex |ni,j+1/2,k+1/2 −σi,j+1/2,k+1/2Ex |ni,j+1/2,k+1/2

)
.

Note that all field quantities on the right-hand side are evaluated at time-stepn, includ-
ing the electric fieldEx appearing due to the material conductivityσ . SinceEx values
at time-stepn are not assumed to be stored in the computer’s memory (only the previous
values ofEx at time-stepn− 1/2 are assumed to be in memory), we need some way to
estimate such terms. A very good way is as follows, using what we call asemi-implicit
approximation:

(3.6)Ex |ni,j+1/2,k+1/2 = Ex |n+1/2
i,j+1/2,k+1/2 +Ex |n−1/2

i,j+1/2,k+1/2

2
.

HereEx values at time-stepn are assumed to be simply the arithmetic average of the
stored values ofEx at time-stepn−1/2 and the yet-to-be computed new values ofEx at
time-stepn+1/2. Substituting (3.6) into (3.5) and collecting terms yields the following
explicit time-stepping relation forEx (which is numerically stable for values ofσ from
zero to infinity):

Ex
∣∣n+1/2
i,j+1/2,k+1/2 =

(
1− σi,j+1/2,k+1/2�t

2εi,j+1/2,k+1/2

1+ σi,j+1/2,k+1/2�t

2εi,j+1/2,k+1/2

)
Ex
∣∣n−1/2
i,j+1/2,k+1/2

(3.7a)

+
( �t

εi,j+1/2,k+1/2

1+ σi,j+1/2,k+1/2�t

2εi,j+1/2,k+1/2

)
·


Hz|ni,j+1,k+1/2−Hz|ni,j,k+1/2

�y

− Hy |ni,j+1/2,k+1−Hy |ni,j+1/2,k
�z

− Jsourcex |ni,j+1/2,k+1/2

 .

Similarly, we can derive finite-difference expressions based on Yee’s algorithm for
theEy andEz field components given by Maxwell’s equations (2.10b) and (2.10c).
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Referring again to Fig. 3.1, we have:

Ey
∣∣n+1/2
i−1/2,j+1,k+1/2

=
(

1− σi−1/2,j+1,k+1/2�t

2εi−1/2,j+1,k+1/2

1+ σi−1/2,j+1,k+1/2�t

2εi−1/2,j+1,k+1/2

)
Ey
∣∣n−1/2
i−1/2,j+1,k+1/2

(3.7b)+
( �t

εi−1/2,j+1,k+1/2

1+ σi−1/2,j+1,k+1/2�t

2εi−1/2,j+1,k+1/2

)
·


Hx |ni−1/2,j+1,k+1−Hx |ni−1/2,j+1,k

�z

− Hz|ni,j+1,k+1/2−Hz|ni−1,j+1,k+1/2
�x

− Jsourcey |ni−1/2,j+1,k+1/2

 ,
Ez
∣∣n+1/2
i−1/2,j+1/2,k+1

=
(

1− σi−1/2,j+1/2,k+1�t

2εi−1/2,j+1/2,k+1

1+ σi−1/2,j+1/2,k+1�t

2εi−1/2,j+1/2,k+1

)
Ez
∣∣n−1/2
i−1/2,j+1/2,k+1

(3.7c)+
( �t

εi−1/2,j+1/2,k+1

1+ σi−1/2,j+1/2,k+1�t

2εi−1/2,j+1/2,k+1

)
·


Hy |ni,j+1/2,k+1−Hy |ni−1,j+1/2,k+1

�x

− Hx |ni−1/2,j+1,k+1−Hx |ni−1/2,j,k+1
�y

− Jsourcez |ni−1/2,j+1/2,k+1

 .
By analogy we can derive finite-difference equations for (2.9a)–(2.9c) to time-step

Hx , Hy , andHz. Hereσ ∗H represents a magnetic loss term on the right-hand side of
each equation, which is estimated using a semi-implicit procedure analogous to (3.6).
Referring again to Figs. 3.1 and 3.2, we have for example the following time-stepping
expressions for theH components located about the unit cell:

Hx
∣∣n+1
i−1/2,j+1,k+1

=
(

1− σ ∗
i−1/2,j+1,k+1�t

2µi−1/2,j+1,k+1

1+ σ ∗
i−1/2,j+1,k+1�t

2µi−1/2,j+1,k+1

)
Hx
∣∣n
i−1/2,j+1,k+1

(3.8a)+
( �t

µi−1/2,j+1,k+1

1+ σ ∗
i−1/2,j+1,k+1�t

2µi−1/2,j+1,k+1

)
·


Ey |n+1/2

i−1/2,j+1,k+3/2−Ey |n+1/2
i−1/2,j+1,k+1/2

�z

− Ez|n+1/2
i−1/2,j+3/2,k+1−Ez|n+1/2

i−1/2,j+1/2,k+1
�y

−Msourcex |n+1/2
i−1/2,j+1,k+1

 ,
Hy
∣∣n+1
i,j+1/2,k+1

=
(

1− σ ∗
i,j+1/2,k+1�t

2µi,j+1/2,k+1

1+ σ ∗
i,j+1/2,k+1�t

2µi,j+1/2,k+1

)
Hy
∣∣n
i,j+1/2,k+1

(3.8b)+
( �t

µi,j+1/2,k+1

1+ σ ∗
i,j+1/2,k+1�t

2µi,j+1/2,k+1

)
·


Ez|n+1/2

i+1/2,j+1/2,k+1−Ez|n+1/2
i−1/2,j+1/2,k+1

�x

− Ex |n+1/2
i,j+1/2,k+3/2−Ex |n+1/2

i,j+1/2,k+1/2
�z

−Msourcey |n+1/2
i,j+1/2,k+1

 ,
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Hz
∣∣n+1
i,j+1,k+1/2

=
(

1− σ ∗
i,j+1,k+1/2�t

2µi,j+1,k+1/2

1+ σ ∗
i,j+1,k+1/2�t

2µi,j+1,k+1/2

)
Hz
∣∣n
i,j+1,k+1/2

(3.8c)+
( �t

µi,j+1,k+1/2

1+ σ ∗
i,j+1,k+1/2�t

2µi,j+1,k+1/2

)
·


Ex |n+1/2

i,j+3/2,k+1/2−Ex |n+1/2
i,j+1/2,k+1/2

�y

− Ey |n+1/2
i+1/2,j+1,k+1/2−Ey |n+1/2

i−1/2,j+1,k+1/2
�x

−Msourcez |n+1/2
i,j+1,k+1/2

 .
With the systems of finite-difference expressions of (3.7) and (3.8), the new value of

an electromagnetic field vector component at any space lattice point depends only on
its previous value, the previous values of the components of the other field vector at
adjacent points, and the known electric and magnetic current sources. Therefore, at any
given time step, the computation of a field vector can proceed either one point at a time,
or, if p parallel processors are employed concurrently,p points at a time.

3.4. Field updating coefficients

To implement the finite-difference systems of (3.7) and (3.8) for a region having a con-
tinuous variation of material properties with spatial position, it is desirable to define and
store the following updating coefficients for each field vector component:

Updating coefficients at the generalE-field component location(i, j, k):

(3.9a)Ca|i,j,k =
(

1− σi,j,k�t

2εi,j,k

)/(
1+ σi,j,k�t

2εi,j,k

)
,

(3.9b)Cb1|i,j,k =
(

�t

εi,j,k�1

)/(
1+ σi,j,k�t

2εi,j,k

)
,

(3.9c)Cb2|i,j,k =
(

�t

εi,j,k�2

)/(
1+ σi,j,k�t

2εi,j,k

)
.

Updating coefficients at the generalH -field component location(i, j, k):

(3.10a)Da|i,j,k =
(

1− σ ∗
i,j,k�t

2µi,j,k

)/(
1+ σ ∗

i,j,k�t

2µi,j,k

)
,

(3.10b)Db1|i,j,k =
(

�t

µi,j,k�1

)/(
1+ σ ∗

i,j,k�t

2µi,j,k

)
,

(3.10c)Db2|i,j,k =
(

�t

µi,j,k�2

)/(
1+ σ ∗

i,j,k�t

2µi,j,k

)
.

In (3.9) and (3.10),�1 and�2 denote the two possible lattice space increments
used for the finite differences in each field-component calculation. For a cubic lattice,
�x =�y =�z=� and thus�1 =�2 =�. For this case,Cb1 = Cb2 andDb1 =Db2,
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reducing the storage requirement to two updating coefficients per field vector compo-
nent. Here, the approximate total computer storage needed is 18N , whereN is the
number of space cells in the FDTD lattice. The finite-difference expressions of (3.7)
and (3.8) can now be rewritten more simply. For example, to updateEx we have:

Ex
∣∣n+1/2
i,j+1/2,k+1/2

= Ca,Ex |i,j+1/2,k+1/2Ex
∣∣n−1/2
i,j+1/2,k+1/2

(3.11)

+Cb,Ex |i,j+1/2,k+1/2 ·
(
Hz
∣∣n
i,j+1,k+1/2 −Hz

∣∣n
i,j,k+1/2 +Hy

∣∣n
i,j+1/2,k

−Hy
∣∣n
i,j+1/2,k+1 − Jsourcex

∣∣n
i,j+1/2,k+1/2�

)
.

Similarly, to updateHx we have:

Hx
∣∣n+1
i−1/2,j+1,k+1

=Da,Hx |i−1/2,j+1,k+1Hx
∣∣n
i−1/2,j+1,k+1

(3.12)

+Db,Hx |i−1/2,j+1,k+1 ·


Ey
∣∣n+1/2
i−1/2,j+1,k+3/2 −Ey

∣∣n+1/2
i−1/2,j+1,k+1/2

+Ez
∣∣n+1/2
i−1/2,j+1/2,k+1 −Ez

∣∣n+1/2
i−1/2,j+3/2,k+1

−Msourcex

∣∣n+1/2
i−1/2,j+1,k+1�

 .

For a space region with a finite number of media having distinct electrical properties,
the computer storage requirement can be further reduced. This can be done by defining
an integer array, MEDIA(i, j, k), for each set of field vector components. This array
stores an integer “pointer” at each location of such a field component in the space lattice,
enabling the proper algorithm coefficients to be extracted. For example, to updateEx
we have:

m= MEDIAEx |i,j+1/2,k+1/2,

Ex
∣∣n+1/2
i,j+1/2,k+1/2 =Ca(m)Ex

∣∣n−1/2
i,j+1/2,k+1/2+Cb(m) ·

(
Hz
∣∣n
i,j+1,k+1/2−Hz

∣∣n
i,j,k+1/2

(3.13)

+Hy
∣∣n
i,j+1/2,k −Hy

∣∣n
i,j+1/2,k+1 − Jsourcex

∣∣n
i,j+1/2,k+1/2�

)
.

Similarly, to updateHx we have:

m= MEDIAHx |i−1/2,j+1,k+1,

Hx
∣∣n+1
i−1/2,j+1,k+1

=Da(m)Hx
∣∣n
i−1/2,j+1,k+1 +Db(m) ·

(
Ey
∣∣n+1/2
i−1/2,j+1,k+3/2 −Ey

∣∣n+1/2
i−1/2,j+1,k+1/2

(3.14)

+Ez
∣∣n+1/2
i−1/2,j+1/2,k+1 −Ez

∣∣n+1/2
i−1/2,j+3/2,k+1 −Msourcex

∣∣n+1/2
i−1/2,j+1,k+1�

)
.
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We note that the coefficient arraysCa(m), Cb(m), Da(m), andDb(m) each contain
onlyM elements, whereM is the number of distinct material media in the FDTD space
lattice. Thus, if separate MEDIA(i, j, k) integer pointer arrays are provided for each
field vector component, the approximate total computer storage needed is reduced to
12N , whereN is the number of space cells in the FDTD lattice. This reduction in
computer storage comes at some cost, however, since additional computer instructions
must be executed at each field vector location to obtain the pointer integerm from the
associated MEDIA array and then extract theC(m) orD(m) updating coefficients.

Taking advantage of the integer nature of the MEDIA arrays, further reduction in
computer storage can be achieved by bitwise packing of these integers. For example, a
64-bit word can be divided into sixteen 4-bit pointers. Such a composite pointer could
specify up to 24 = 16 distinct media at each of 16 locations in the grid. This provides
the means to reduce the overall computer storage for the MEDIA arrays by a factor of
15/16 (94%).

3.5. Space region with nonpermeable media

Many electromagnetic wave interaction problems involve nonpermeable media (µ =
µ0, σ ∗ = 0) and can be implemented on a uniform cubic-cell FDTD space lattice. For
such problems, the field updating expressions can be further simplified by defining the
proportional �E and �M vectors:

(3.15a)�̂E = (�t/µ0�) �E;
(3.15b)�̂M = (�t/µ0) �M,

where�=�x =�y =�z is the cell size of the space lattice. Assuming thatÊx , Êy ,
andÊz are stored in the computer memory, and further defining a scaledE-field updat-
ing coefficientĈb(m) as

(3.16)Ĉb(m)= (�t/µ0�)Cb(m)

we can rewrite (3.13) as:

m= MEDIAEx |i,j+1/2,k+1/2,

Êx
∣∣n+1/2
i,j+1/2,k+1/2

= Ca(m)Êx
∣∣n−1/2
i,j+1/2,k+1/2 + Ĉb(m) ·

(
Hz
∣∣n
i,j+1,k+1/2 −Hz

∣∣n
i,j,k+1/2

(3.17)+Hy
∣∣n
i,j+1/2,k −Hy

∣∣n
i,j+1/2,k+1 − Jsourcex

∣∣n
i,j+1/2,k+1/2�

)
.

Finite-difference expression (3.14) can now be rewritten very simply as:

Hx
∣∣n+1
i−1/2,j+1,k+1

=Hx
∣∣n
i−1/2,j+1,k+1 + Êy

∣∣n+1/2
i−1/2,j+1,k+3/2 − Êy

∣∣n+1/2
i−1/2,j+1,k+1/2

(3.18)+ Êz
∣∣n+1/2
i−1/2,j+1/2,k+1 − Êz

∣∣n+1/2
i−1/2,j+3/2,k+1 − M̂sourcex

∣∣n+1/2
i−1/2,j+1,k+1.
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This technique eliminates the multiplications previously needed to update theH com-
ponents, and requires storage of MEDIA arrays only for theE components. At the end
of the run, the desired values of the unscaledE-fields can be obtained simply by multi-
plying the storedE values by the reciprocal of the scaling factor of (3.15a).

3.6. Reduction to the two-dimensional TMz and TEz modes

The finite-difference systems of (3.7) and (3.8) can be reduced for the decoupled, two-
dimensional TMz and TEz modes summarized in Section 2.2. For convenience and con-
sistency, we again consider the field vector components in the space lattice represented
by the unit cell of Fig. 3.1. Assuming now that all partial derivatives of the fields with
respect toz are equal to zero, the following conditions hold:

(1) The sets of(Ez,Hx,Hy) components located in each lattice cut planek, k + 1,
etc. are identical and can be completely represented by any one of these sets,
which we designate as the TMz mode.

(2) The sets of(Hz,Ex,Ey) components located in each lattice cut planek + 1/2,
k+ 3/2, etc. are identical and can be completely represented by any one of these
sets, which we designate as the TEz mode.

The resulting finite-difference systems for the TMz and TEz modes are as follows:

TMz mode, corresponding to the system of(2.11)

(3.19a)

Hx
∣∣n+1
i−1/2,j+1 =

(
1− σ ∗

i−1/2,j+1�t

2µi−1/2,j+1

1+ σ ∗
i−1/2,j+1�t

2µi−1/2,j+1

)
Hx
∣∣n
i−1/2,j+1 +

( �t
µi−1/2,j+1

1+ σ ∗
i−1/2,j+1�t

2µi−1/2,j+1

)

×
(
Ez|n+1/2

i−1/2,j+1/2 −Ez|n+1/2
i−1/2,j+3/2

�y
−Msourcex

∣∣n+1/2
i−1/2,j+1

)
,

(3.19b)

Hy
∣∣n+1
i,j+1/2 =

(
1− σ ∗

i,j+1/2�t

2µi,j+1/2

1+ σ ∗
i,j+1/2�t

2µi,j+1/2

)
Hy
∣∣n
i,j+1/2 +

( �t
µi,j+1/2

1+ σ ∗
i,j+1/2�t

2µi,j+1/2

)

×
(
Ez|n+1/2

i+1/2,j+1/2 −Ez|n+1/2
i−1/2,j+1/2

�x
−Msourcey

∣∣n+1/2
i,j+1/2

)
,

(3.19c)

Ez
∣∣n+1/2
i−1/2,j+1/2 =

(
1− σi−1/2,j+1/2�t

2εi−1/2,j+1/2

1+ σi−1/2,j+1/2�t

2εi−1/2,j+1/2

)
Ez
∣∣n−1/2
i−1/2,j+1/2 +

( �t
εi−1/2,j+1/2

1+ σi−1/2,j+1/2�t

2εi−1/2,j+1/2

)

×
(
Hy |ni,j+1/2−Hy |ni−1,j+1/2

�x
+ Hx |ni−1/2,j−Hx |ni−1/2,j+1

�y

− Jsourcez

∣∣n
i−1/2,j+1/2

)
.



218 S.C. Hagness et al.

TEz mode, corresponding to the system of(2.12)

(3.20a)

Ex
∣∣n+1/2
i,j+1/2 =

(
1− σi,j+1/2�t

2εi,j+1/2

1+ σi,j+1/2�t

2εi,j+1/2

)
Ex
∣∣n−1/2
i,j+1/2 +

( �t
εi,j+1/2

1+ σi,j+1/2�t

2εi,j+1/2

)

×
(
Hz|ni,j+1 −Hz|ni,j

�y
− Jsourcex

∣∣n
i,j+1/2

)
,

(3.20b)

Ey
∣∣n+1/2
i−1/2,j+1 =

(
1− σi−1/2,j+1�t

2εi−1/2,j+1

1+ σi−1/2,j+1�t

2εi−1/2,j+1

)
Ey
∣∣n−1/2
i−1/2,j+1 +

( �t
εi−1/2,j+1

1+ σi−1/2,j+1�t

2εi−1/2,j+1

)

×
(
Hz|ni−1,j+1 −Hz|ni,j+1

�x
− Jsourcey

∣∣n
i−1/2,j+1

)
,

(3.20c)

Hz
∣∣n+1
i,j+1 =

(
1− σ ∗

i,j+1�t

2µi,j+1

1+ σ ∗
i,j+1�t

2µi,j+1

)
Hz
∣∣n
i,j+1 +

( �t
µi,j+1

1+ σ ∗
i,j+1�t

2µi,j+1

)

×
Ex |n+1/2

i,j+3/2−Ex |n+1/2
i,j+1/2

�y

+ Ey |n+1/2
i−1/2,j+1−Ey |n+1/2

i+1/2,j+1
�x

−Msourcez

∣∣n+1/2
i,j+1

 .
3.7. Interpretation as Faraday’s and Ampere’s Laws in integral form

The Yee algorithm for FDTD was originally interpreted as a direct approximation of the
pointwise derivatives of Maxwell’s time-dependent curl equations by numerical central
differences. Although this interpretation is useful for understanding how FDTD models
wave propagation away from material interfaces, it sheds little light on what algorithm
modifications are needed to properly model the electromagnetic field physics of fine
geometrical features such as wires, slots, and curved surfaces requiring subcell spatial
resolution.

The literature indicates that FDTD modeling can be extended to such features by de-
parting from Yee’s original pointwise derivative thinking (see, for example, TAFLOVE,
UMASHANKAR , BEKER, HARFOUSH and YEE [1988] and JURGENS, TAFLOVE,
UMASHANKAR and MOORE [1992]). As shown in Fig. 3.3, the idea involves starting
with a more macroscopic (but still local) combined-field description based upon Am-
pere’s Law and Faraday’s Law inintegral form, implemented on an array of electrically
small, spatially orthogonal contours. These contours mesh (intersect) in the manner of
links in a chain, providing a geometrical interpretation of the coupling of these two laws.
This meshing results in the filling of the FDTD modeled space by a three-dimensional
“chain-link” array of intersecting orthogonal contours. The presence of wires, slots,
and curved surfaces can be modeled by incorporating appropriate field behavior into
the contour and surface integrals used to implement Ampere’s and Faraday’s Laws at
selected meshes, and by deforming contour paths as required to conform with surface
curvature.
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FIG. 3.3. Examples of chain-linked orthogonal contours in the free-space Yee mesh. (a) Ampere’s Law for
time-steppingEz; (b) Faraday’s Law for time-steppingHz. Adapted from: A. Taflove et al.,IEEE Trans.

Antennas and Propagation, 1988, pp. 247–257, © 1988 IEEE.

This approach is intuitively satisfying to an electrical engineer since it permits the
FDTD numerical model to deal with physical quantities such as:

• Electromotive forces (EMFs) and magnetomotive forces (MMFs) developed when
completing one circuit about a Faraday’s or Ampere’s Law contour path;

• Magnetic flux and electric displacement current when performing the surface inte-
grations on the patches bounded by the respective contours.

In this section, we demonstrate the equivalence of the Yee and contour-path interpre-
tations for the free-space case. For simplicity, FDTD time-stepping expressions are de-
veloped for only oneE and oneH field component. Extension to all the rest is straight-
forward. We further assume lossless free space with no electric or magnetic current
sources. Applying Ampere’s Law along contourC1 in Fig. 3.3(a), and assuming that
the field value at a midpoint of one side of the contour equals the average value of that
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field component along that side, we obtain

(3.21a)
∂

∂t

∫
S1 �D · d�S1 =

∮
C1

�H · d�"1,

(3.21b)

∂

∂t

∫
S1ε0Ez|i−1/2,j+1/2,k dS1 ∼=Hx |i−1/2,j,k�x +Hy |i,j+1/2,k�y

−Hx |i−1/2,j+1,k�x −Hy |i−1,j+1/2,k�y.

Now further assume thatEz|i−1/2,j+1/2,k equals the average value ofEz over the sur-
face patchS1 and that the time derivative can be numerically realized by using a central-
difference expression. Then (3.21b) yields

ε0�x�y

(
Ez|n+1/2

i−1/2,j+1/2,k −Ez|n−1/2
i−1/2,j+1/2,k

�t

)

(3.21c)

= (
Hx
∣∣n
i−1/2,j,k −Hx

∣∣n
i−1/2,j+1,k

)
�x + (

Hy
∣∣n
i,j+1/2,k −Hy

∣∣n
i−1,j+1/2,k

)
�y.

Multiplying both sides by�t/(ε0�x�y) and solving forEz|n+1/2
i−1/2,j+1/2,k provides

Ez
∣∣n+1/2
i−1/2,j+1/2,k =Ez

∣∣n−1/2
i−1/2,j+1/2,k + (

Hx
∣∣n
i−1/2,j,k −Hx

∣∣n
i−1/2,j+1,k

)
�t/(ε0�y)

(3.22)+ (
Hy
∣∣n
i,j+1/2,k −Hy

∣∣n
i−1,j+1/2,k

)
�t/(ε0�x).

Eq. (3.22) is simply the free-space version of (3.7c), the Yee time-stepping equation for
Ez that was obtained directly from implementing the curl�H equation with finite differ-
ences. The only difference is that (3.22) is evaluated at(i − 1/2, j + 1/2, k) whereas
(3.7c) is evaluated at(i − 1/2, j + 1/2, k + 1) shown in Fig. 3.1.

In an analogous manner, we can apply Faraday’s Law along contourC2 in Fig. 3.3(b)
to obtain

(3.23a)
∂

∂t

∫
S2 �B · d�S2 = −

∮
C2

�E · d�"2,

(3.23b)

∂

∂t

∫
S2µ0Hz|i,j,k+1/2 dS2 ∼= −Ex |i,j−1/2,k+1/2�x −Ey |i+1/2,j,k+1/2�y

+Ex |i,j+1/2,k+1/2�x +Ey |i−1/2,j,k+1/2�y,

µ0�x�y

(
Hz|n+1

i,j,k+1/2 −Hz|ni,j,k+1/2

�t

)
= (

Ex
∣∣n+1/2
i,j+1/2,k+1/2 −Ex

∣∣n+1/2
i,j−1/2,k+1/2

)
�x

(3.23c)+ (
Ey
∣∣n+1/2
i−1/2,j,k+1/2 −Ey

∣∣n+1/2
i+1/2,j,k+1/2

)
�y.

Multiplying both sides by�t/(µ0�x�y) and solving forHz|n+1/2
i,j,k+1/2 provides

Hz
∣∣n+1
i,j,k+1/2 =Hz

∣∣n
i,j,k+1/2 + (

Ex
∣∣n+1/2
i,j+1/2,k+1/2 −Ex

∣∣n+1/2
i,j−1/2,k+1/2

)
�t/(µ0�y)

(3.24)+ (
Ey
∣∣n+1/2
i−1/2,j,k+1/2 −Ey

∣∣n+1/2
i+1/2,j,k+1/2

)
�t/(µ0�x).
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Eq. (3.24) is simply the free-space version of (3.8c), the Yee time-stepping expression
for Hz that was obtained directly from implementing the curl�E equation with finite
differences. The only difference is that (3.24) is evaluated at(i, j, k + 1/2) whereas
(3.8c) is evaluated at(i, j + 1, k + 1/2) shown in Fig. 3.1.

3.8. Divergence-free nature

We now demonstrate that the Yee algorithm satisfies Gauss’ Law for the electric field,
Eq. (2.3), and hence is divergence-free in source-free space. We first form the time
derivative of the total electric flux over the surface of a single Yee cell of Fig. 3.1:

∂

∂t

∫∫

0

Yee cell

�D · d�S

= ε0
∂

∂t
(Ex |i,j+1/2,k+1/2 −Ex |i−1,j+1/2,k+1/2)︸ ︷︷ ︸

Term 1

�y�z

+ ε0
∂

∂t
(Ey |i−1/2,j+1,k+1/2 −Ey |i−1/2,j,k+1/2)︸ ︷︷ ︸

Term 2

�x�z

(3.25)+ ε0
∂

∂t
(Ez|i−1/2,j+1/2,k+1 −Ez|i−1/2,j+1/2,k)︸ ︷︷ ︸

Term 3

�x�y.

Using the Yee algorithm time-stepping relations for theE-field components according
to (3.7), we substitute appropriateH -field spatial finite differences for theE-field time
derivatives in each term:

Term 1

=
(
Hz|i,j+1,k+1/2 −Hz|i,j,k+1/2

�y
− Hy |i,j+1/2,k+1 −Hy |i,j+1/2,k

�z

)

(3.26a)

−
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�y
− Hy |i−1,j+1/2,k+1−Hy |i−1,j+1/2,k

�z

)
,
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=
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�z
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)

(3.26b)
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−
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.
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For all time steps, this results in

∂

∂t

∫∫
0

Yee cell

�D · d�S = (Term 1)�y�z+ (Term 2)�x�z+ (Term 3)�x�y

(3.27)= 0.

Assuming zero initial conditions, the constant zero value of the time derivative of the
net electric flux leaving the Yee cell means that this flux never departs from zero:

(3.28)
∫∫

0

Yee cell

�D(t) · d�S =
∫∫

0
Yee cell

�D(t = 0) · d�S = 0.

Therefore, the Yee cell satisfies Gauss’ Law for theE-field in charge-free space and thus
is divergence-free with respect to itsE-field computations. The proof of the satisfaction
of Gauss’ Law for the magnetic field, Eq. (2.4), is by analogy.

4. Nonuniform Yee grid

4.1. Introduction

The FDTD algorithm is second-order-accurate by nature of the central-difference ap-
proximations used to realize the first-order spatial and temporal derivatives. This leads
to a discrete approximation for the fields based on a uniform space lattice. Unfortu-
nately, structures with fine geometrical features cannot always conform to the edges
of a uniform lattice. Further, it is often desirable to have a refined lattice in localized
regions, such as near sharp edges or corners, to accurately model the local field phe-
nomena.

A quasi-nonuniform grid FDTD algorithm was introduced by SHEEN [1991]. This
method is based on reducing the grid size by exactly one-third. By choosing the sub-
grid to be exactly one-third, the spatial derivatives of the fields at the interface between
the two regions can be expressed using central-difference approximations, resulting in a
second-order-accurate formulation. This technique was successfully applied to a num-
ber of microwave circuit and antenna problems (see, for example, SHEEN [1991] and
TULINTSEFF [1992]). However, this method is limited to specific geometries that con-
form to this specialized grid.

It is clear that more general geometries could be handled by a grid with arbitrary
spacing. Unfortunately, central differences can no longer be used to evaluate the spatial
derivatives of the fields for such a grid, leading to first-order error. However, it was
demonstrated by MONK and SULI [1994] and MONK [1994] that, while this formulation
does lead to first-order error locally, it results in second-order error globally. This is
known assupraconvergence(see also MANTEUFFEL and WHITE [1986] and KREISS,
MANTEUFFEL, SCHWARTZ, WENDROFFand WHITE [1986]).

4.2. Supraconvergent FDTD algorithm

This section presents the supraconvergent FDTD algorithm based on nonuniform mesh-
ing that was discussed by GEDNEY and LANSING [1995]. Following their notation, a
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three-dimensional nonuniform space lattice is introduced. The vertices of the lattice are
defined by the general one-dimensional coordinates:

(4.1){xi; i = 1,Nx}; {yj ; j = 1,Ny}; {zk; k = 1,Nz}.
The edge lengths between vertices are also defined as

{�xi = xi+1 − xi; i = 1, Nx − 1};
(4.2){�yj = yj+1 − yj ; j = 1,Ny − 1};

{�zk = zk+1 − zk; k = 1,Nz − 1}.
Within the nonuniform space, a reduced notation is introduced, defining the cell and
edge centers:

(4.3)
xi+1/2 = xi +�xi/2; yj+1/2 = yj +�yj/2; zk+1/2 = zk +�zk/2.

A set of dual edge lengths representing the distances between the edge centers is then
introduced:{

hxi = (�xi +�xi−1)/2; i = 2,Nx
};

(4.4)
{
h
y
j = (�yj +�yj−1)/2; j = 2,Ny

};{
hzk = (�zk +�zk−1)/2; k = 2,Nz

}
.

Finally, theE- andH -fields in the discrete nonuniform grid are denoted as in the fol-
lowing examples:

(4.5a)Ex
∣∣n
i+1/2,j,k

≡Ex(xi+1/2, yj , zk, n�t),

(4.5b)Hx
∣∣n+1/2

i,j+1/2,k+1/2
≡Hx

(
xi, yj+1/2, zk+1/2, (n+ 1/2)�t

)
.

The nonuniform FDTD algorithm is based on a discretization of Maxwell’s equations
in their integral form, specifically, Faraday’s Law and Ampere’s Law:

(4.6)
∮
C

�E · d�"= − ∂

∂t

∫∫
S

�B · d�s −
∫∫

S

�M · d�s,

(4.7)
∮
C′

�H · d�"= ∂

∂t

∫∫
S′

�D · d�s +
∫∫

S′
σ �E · d�s +

∫∫
S′

�J · d�s.
The surface integral in (4.6) is performed over a lattice cell face, and the contour integral
is performed over the edges bounding the face, as illustrated in Fig. 4.1(a). Similarly,
the surface integral in (4.7) is performed over a dual-lattice cell face.

Evaluating (4.6) and (4.7) over the cell faces using (4.5), and evaluating the time
derivatives using central-differencing leads to

Ex
∣∣n
i+1/2,j+1,k

�xi −Ex
∣∣n
i+1/2,j,k

�xi −Ey
∣∣n
i+1,j+1/2,k

�yj +Ey
∣∣n
i,j+1/2,k

�yj

= −
[
µi+1/2,j+1/2,k

(
Hz|n+1/2

i+1/2,j+1/2,k
−Hz|n−1/2

i+1/2,j+1/2,k

�t

)
+Mz

∣∣n+1/2

i+1/2,j+1/2,k

]
(4.8)×�xi�yj ,
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(a) (b)

FIG. 4.1. Lattice faces bounded by lattice edges defining surfaces of integration bounded by closed contours.
(a) Lattice cell face bounded by grid edges, showing a dual-lattice edge passing through its center. (b) The

dual-lattice face bounded by dual edges.Source:GEDNEY and LANSING [1995].

Hx
∣∣n+1/2

i,j+1/2,k+1/2
hxi −Hx

∣∣n+1/2

i,j−1/2,k+1/2
hxi −Hy

∣∣n+1/2

i+1/2,j,k+1/2
hyj +Hy

∣∣n+1/2

i−1/2,j,k+1/2
hyj

(4.9)=

εi,j,k+1/2

(
Ez|n+1

i,j,k+1/2
−Ez|n

i,j,k+1/2
�t

)
+ σi,j,k+1/2

2

(
Ez|n+1

i,j,k+1/2
+Ez|n

i,j,k+1/2
�t

)
+ Jz

∣∣n+1/2

i,j,k+1/2

hxi hyj ,
whereεi,j,k+1/2, σi,j,k+1/2, andµi+1/2,j+1/2,k are the averaged permittivity, conductiv-
ity, and permeability, respectively, about the grid edges. Subsequently, this leads to an
explicit update scheme:

Hz
∣∣n+1/2

i+1/2,j+1/2,k

=Hz
∣∣n−1/2

i+1/2,j+1/2,k
− �t

µi+1/2,j+1/2,k

(4.10)×
 1
�yj

(
Ex
∣∣n
i+1/2,j+1,k −Ex

∣∣n
i+1/2,j,k

)
− 1

�xi

(
Ey
∣∣n
i+1,j+1/2,k −Ey

∣∣n
i,j+1/2,k

)+Mz

∣∣n+1/2
i+1/2,j+1/2,k

 ,
Ez
∣∣n+1
i,j,k+1/2

=
(

2εi,j,k+1/2 − σi,j,k+1/2�t

2εi,j,k+1/2 + σi,j,k+1/2�t

)
Ez
∣∣n
i,j,k+1/2 +

(
2�t

2εi,j,k+1/2 + σi,j,k+1/2�t

)

(4.11)×
 1
hyj

(
Hx
∣∣n+1/2
i,j+1/2,k+1/2 −Hx

∣∣n+1/2
i,j−1/2,k+1/2

)
− 1

hxi

(
Hy
∣∣n+1/2
i+1/2,j,k+1/2 −Hy

∣∣n+1/2
i−1/2,j,k+1/2

)− Jz
∣∣n+1/2
i,j,k+1/2

 .
Similar updates for the remaining field components are easily derived by permuting the
indices in (4.10) and (4.11) in a right-handed manner.
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4.3. Demonstration of supraconvergence

The explicit updates for theH -fields in (4.10) are second-order-accurate in both space
and time, since the vertices of the dual lattice are assumed to be located at the cell
centers of the primary lattice. On the other hand, the explicit updates for theE-fields
in (4.11) are only first-order-accurate in space. This results in local first-order error in
regions where the grid is nonuniform.

However, via a numerical example, GEDNEY and LANSING [1995] showed that this
method is supraconvergent, i.e., it converges with a higher order accuracy than the local
error mandates. They considered calculation of the resonant frequencies of a fixed-size
rectangular cavity having perfect electric conductor (PEC) walls. A random, nonuni-
form grid spacing forxi , yj , andzk was assumed within the cavity such that

(4.12a)
{
xi = (i − 1)�x + 0.5��x; i = 1,Nx

}
,

(4.12b)
{
yj = (j − 1)�y + 0.5��y; j = 1,Ny

}
,

(4.12c)
{
zk = (k − 1)�z+ 0.5��z; k = 1,Nz

}
,

where−1/2� � � 1/2 denotes a random number. The interior of the cavity was excited
with a Gaussian-pulsed,z-directed magnetic dipole placed off a center axis:

(4.13)�M(t)= ẑe−(t−t0)2/T 2
.

The calculated time-varyingE-field was probed off a center axis (to avoid the nulls
of odd resonant modes), and the cavity resonant frequencies were extracted using a fast
Fourier transform (FFT). Spectral peaks resulting from this procedure corresponded to
the resonant frequencies of the cavity modes. Subsequently, the average grid cell sizeh

was reduced, and the entire simulation was run again.
Fig. 4.2 graphs the results of four such runs for the error of the nonuniform grid FDTD

model in calculating the resonant frequency of the TE110 mode relative to the exact
solution, as well as a generic order(h2) accuracy slope. We see that the convergence of
the resonant frequency is indeed second-order.

FIG. 4.2. Error convergence of the resonant frequency of the TE110 mode of a rectangular PEC cavity com-
puted using the nonuniform FDTD algorithm.Source: GEDNEY and LANSING [1995].



226 S.C. Hagness et al.

FIG. 4.3. Typical nonuniform grid used for a planar microwave circuit.

The nonuniform FDTD method is well suited for the analysis of planar microwave
circuits. The geometrical details of such circuits are typically electrically small, lead-
ing to small cell sizes. Further, microwave circuits are often located in an unbounded
medium, requiring absorbing boundaries to be placed a sufficient distance from the cir-
cuit to avoid nonphysical reflections. For uniform meshing, these two characteristics
can combine to produce very large space lattices. With nonuniform meshing, the local
cell size can be refined such that the circuit trace size, shape, and field behavior are ac-
curately modeled, while coarser cells are used in regions further from the metal traces.
Fig. 4.3 illustrates a typical nonuniform grid used for a microstrip circuit.

5. Alternative finite-difference grids

Thus far, this chapter has considered several fundamental aspects of the uniform Carte-
sian Yee space lattice for Maxwell’s equations. Since 1966, this lattice and its associated
staggered leapfrog time-stepping algorithm have proven to be very flexible, accurate,
and robust for a wide variety of engineering problems. However, Yee’s staggered, uncol-
located arrangement of electromagnetic field components is but one possible alternative
in a Cartesian coordinate system (see, for example, LIU, Y. [1996]). In turn, a Cartesian
grid is but one possible arrangement of field components in two and three dimensions.
Other possibilities include hexagonal grids in two dimensions and tetradecahedron/dual-
tetrahedron meshes in three dimensions (see again LIU, Y. [1996]).

It is important to develop criteria for the use of a particular space lattice and time-
stepping algorithm to allow optimum selection for a given problem. A key consideration
is the capability of rendering the geometry of the structure of interest within the space
lattice with sufficient accuracy and detail to obtain meaningful results. A second funda-
mental consideration is the accuracy by which the algorithm simulates the propagation
of electromagnetic waves as they interact with the structure.



Finite-difference time-domain methods 227

(a) (b)

FIG. 5.1. Two Cartesian grids that are alternatives to Yee’s arrangement (illustrated in two dimensions for the
TMz case). (a) Unstaggered, collocated grid. (b) Staggered, collocated grid.Source: Y. Liu, J. Computational

Physics, 1996, pp. 396–416.

5.1. Cartesian grids

Fig. 5.1 illustrates two Cartesian grids that are alternatives to Yee’s arrangement in two
dimensions for the TMz case, as discussed by LIU, Y. [1996]: (a) the unstaggered,
collocated grid, in which allE- andH -components are collocated at a single set of
grid-cell vertices; and (b) the staggered, collocated grid, in which allE-components
are collocated at a distinct set of grid-cell vertices that are spatially interleaved with a
second distinct set of vertices where allH -components are collocated.

Upon applying second-order-accurate central space differences to the TMz mode
equations of (2.11) for the unstaggered, collocated grid of Fig. 5.1(a) (with a lossless
material background assumed for simplicity), we obtain as per LIU, Y. [1996]:

(5.1a)
∂Hx |i,j
∂t

= − 1

µi,j
·
(
Ez|i,j+1 −Ez|i,j−1

2�y

)
,

(5.1b)
∂Hy |i,j
∂t

= 1

µi,j
·
(
Ez|i+1,j −Ez|i−1,j

2�x

)
,

(5.1c)
∂Ez|i,j
∂t

= 1

εi,j
·
(
Hy |i+1,j −Hy |i−1,j

2�x
− Hx |i,j+1 −Hx |i,j−1

2�y

)
.

Similarly, applying second-order-accurate central space differences to the TMz mode
equations of (2.11) for the staggered, collocated grid of Fig. 5.1(b) yields:

∂Hx |i+1/2,j+1/2

∂t

(5.2a)= − 0.5

µi+1/2,j+1/2
·
[
(Ez|i,j+1 +Ez|i+1,j+1)− (Ez|i,j +Ez|i+1,j )

�y

]
,

∂Hy |i+1/2,j+1/2

∂t

(5.2b)= 0.5

µi+1/2,j+1/2
·
[
(Ez|i+1,j +Ez|i+1,j+1)− (Ez|i,j +Ez|i,j+1)

�x

]
,



228 S.C. Hagness et al.

(5.2c)

∂Ez|i,j
∂t

= 0.5

εi,j
·
[
(Hy |i+1/2,j−1/2+Hy |i+1/2,j+1/2)−(Hy |i−1/2,j−1/2+Hy |i−1/2,j+1/2)

�x

− (Hx |i−1/2,j+1/2+Hx |i+1/2,j+1/2)−(Hx |i−1/2,j−1/2+Hx |i+1/2,j−1/2)

�y

]
.

LIU, Y. [1996] analyzed the Yee grid and the alternative Cartesian grids of
Figs. 5.1(a) and 5.1(b) for a key source of error: the numerical phase-velocity anisotropy.
This error, discussed in Section 6, is a nonphysical variation of the speed of a numerical
wave within an empty grid as a function of its propagation direction. To limit this error
to less than 0.1%, LIU, Y. [1996] showed that we require a resolution of 58 points per
free-space wavelengthλ0 for the grid of Fig. 5.1(a), 41 points perλ0 for the grid of
Fig. 5.1(b), and only 29 points perλ0 for the Yee grid. Thus, Yee’s grid provides more
accurate modeling results than the two alternatives of Fig. 5.1.

5.2. Hexagonal grids

LIU, Y. [1996] proposed using regular hexagonal grids in two dimensions to reduce the
numerical phase-velocity anisotropy well below that of Yee’s Cartesian mesh. Here, the
primary grid is composed of equilateral hexagons of edge length�s. Each hexagon can
be considered to be the union of six equilateral triangles. Connecting the centroids of
these triangles yields a second set of regular hexagons that comprises a dual grid.

Fig. 5.2 illustrates for the TMz case in two dimensions the two principal ways of
arrangingE andH components in hexagonal grids. Fig. 5.2(a) shows the unstaggered,
collocated grid in which CartesianEz, Hx , andHy components are collocated at the
vertices of the equilateral triangles. No dual grid is used. Fig. 5.2(b) shows the field
arrangement for the staggered, uncollocated grid and its associated dual grid, the latter
indicated by the dashed line segments. Here, onlyEz components are defined at the
vertices of the equilateral triangles, which are the centroids of the hexagonal faces of
the dual grid. Magnetic field componentsH1, H2, H3, etc. are defined to be tangential
to, and centered on, the edges of the dual-grid hexagons. These magnetic components

(a) (b)

FIG. 5.2. Two central-difference hexagonal grids that are alternatives to Yee’s arrangement (illustrated in two
dimensions for the TMz case). (a) Unstaggered, collocated grid, with no dual grid. (b) Staggered, uncollocated

grid and its associated dual grid.Source: Y. Liu, J. Computational Physics, 1996, pp. 396–416.
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are also perpendicular to, and centered on, the edges of the primary-grid triangles. We
note that the grid of Fig. 5.2(b) is a direct extension of Yee’s interleavedE andH
component topology from rectangular to hexagonal cells.

Upon applying second-order-accurate central space differences to the TMz mode
equations of (2.11) for the unstaggered, collocated hexagonal grid of Fig. 5.2(a) (with a
lossless material background assumed for simplicity), we obtain as per LIU, Y. [1996]:

(5.3a)
∂Hx |i,j
∂t

= −
√

3

µi,j6�s

(
Ez|i−1/2,j+0.5

√
3 +Ez|i+1/2,j+0.5

√
3

−Ez|i−1/2,j−0.5
√

3 −Ez|i+1/2,j−0.5
√

3

)
,

∂Hy |i,j
∂t

(5.3b)

= 1

µi,j6�s

(
2Ez|i+1,j − 2Ez|i−1,j +Ez|i+1/2,j+0.5

√
3

−Ez|i−1/2,j+0.5
√

3 +Ez|i+1/2,j−0.5
√

3 −Ez|i−1/2,j−0.5
√

3

)
,

∂Ez|i,j
∂t

(5.3c)

= 1

εi,j6�s


2Hy |i+1,j − 2Hy |i−1,j +Hy |i+1/2,j+0.5

√
3

−Hy |i−1/2,j+0.5
√

3 +Hy |i+1/2,j−0.5
√

3 −Hy |i−1/2,j−0.5
√

3

− √
3Hx |i+1/2,j+0.5

√
3 + √

3Hx |i+1/2,j−0.5
√

3

− √
3Hx |i−1/2,j+0.5

√
3 + √

3Hx |i−1/2,j−0.5
√

3

 .

Similarly, applying second-order-accurate central space differences to the TMz mode
equations for the staggered, uncollocated grid of Fig. 5.2(b) yields:

(5.4a)
∂H1|i+1/4,j−0.25

√
3

∂t
= 1

µ
i+1/4,j−0.25

√
3�s

(Ez|i+1/2,j−0.5
√

3 −Ez|i,j ),

(5.4b)
∂H2|i+1/2,j

∂t
= 1

µi+1/2,j�s
(Ez|i+1,j −Ez|i,j ),

(5.4c)
∂H3|i+1/4,j+0.25

√
3

∂t
= 1

µ
i+1/4,j+0.25

√
3�s

(Ez|i+1/2,j+0.5
√

3 −Ez|i,j ),
∂Ez|i,j
∂t

= 2

εi,j3�s

(5.4d)

×
(
H1|i+1/4,j−0.25

√
3 +H2|i+1/2,j +H3|i+1/4,j+0.25

√
3

−H1|i−1/4,j+0.25
√

3 −H2|i−1/2,j −H3|i−1/4,j−0.25
√

3

)
.

We note that the total number of field unknowns for the staggered, uncollocated grid
of Fig. 5.2(b) is 33% more than that for the unstaggered grid of Fig. 5.2(a), but the
discretization is simpler and the number of total operations is less by about 50%.

LIU, Y. [1996] showed that the numerical velocity anisotropy errors of the hexago-
nal grids of Figs. 5.2(a) and 5.2(b) are 1/200th and 1/1200th, respectively, that of the
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rectangular Yee grid for a grid sampling density of 20 points per free-space wavelength.
This represents a large potential advantage in computational accuracy for the hexagonal
grids. Additional details are provided in Section 6.

5.3. Tetradecahedron/dual-tetrahedron mesh in three dimensions

In three dimensions, the uniform Cartesian Yee mesh consists of an ordered array of
hexahedral unit cells (“bricks”), as shown in Fig. 3.1. This simple arrangement is at-
tractive since the location of every field component in the mesh is easily and compactly
specified, and geometry generation can be performed in many cases with paper and
pencil.

However, from the discussion of Section 5.2, it is clear that constructing a uni-
form mesh in three dimensions using shapes other than rectangular “bricks” may
lead to superior computational accuracy with respect to the reduction of the velocity-
anisotropy error. Candidate shapes for unit cells must be capable of assembly in a reg-
ular mesh to completely fill space. In addition to the hexahedron, space-filling shapes
include the tetradecahedron (truncated octahedron), hexagonal prism, rhombic dodeca-
hedron, and elongated rhombic dodecahedron (see LIU, Y. [1996]). We note that the
three-dimensional lattice corresponding to the two-dimensional, staggered, uncollo-
cated hexagonal grid of Fig. 5.2(b) is the tetradecahedron/dual-tetrahedron configura-
tion shown in Fig. 5.3. Here, the primary mesh is comprised of tetradecahedral units
cells having 6 square faces and 8 regular hexagonal faces. The dual mesh is comprised
of tetrahedral cells having isosceles-triangle faces with sides in the ratio of

√
3 to 2.

LIU, Y. [1996] reports a study of the extension of Yee’s method to the staggered
tetradecahedron/dual-tetrahedron mesh of Fig. 5.3. The algorithm uses a centered finite-
difference scheme involving 19 independent unknown field components, wherein 12

FIG. 5.3. Tetradecahedron and dual-tetrahedron unit cells for the extension of Yee’s method to a regular
non-Cartesian mesh in three dimensions. This mesh has very favorable numerical wave-velocity anisotropy
characteristics relative to the Cartesian arrangement of Fig. 3.1.Source: Y. Liu, J. Computational Physics,

1996, pp. 396–416.
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are defined on the edges of tetradecahedra, and 7 are defined on the edges of the dual
tetrahedra. Similar to the staggered, uncollocated hexagonal grid of Fig. 5.2(b), this
mesh has very favorable numerical wave-velocity anisotropy characteristics relative to
its Yee Cartesian counterpart, shown in Fig. 3.1.

Despite this advantage, the usage of the tetradecahedron/dual-tetrahedron mesh by
the FDTD community has been very limited. This is due to the additional complexity in
its mesh generation relative to Yee’s Cartesian space lattice.

6. Numerical dispersion

6.1. Introduction

The FDTD algorithms for Maxwell’s curl equations reviewed in Sections 3–5 cause
nonphysical dispersion of the simulated waves in a free-space computational lattice.
That is, the phase velocity of numerical wave modes can differ fromc by an amount
varying with the wavelength, direction of propagation in the grid, and grid discretiza-
tion. An intuitive way to view this phenomenon is that the FDTD algorithm embeds the
electromagnetic wave interaction structure of interest in a tenuous “numerical aether”
having properties very close to vacuum, but not quite. This “aether” causes propagat-
ing numerical waves to accumulate delay or phase errors that can lead to nonphysical
results such as broadening and ringing of pulsed waveforms, imprecise cancellation of
multiple scattered waves, anisotropy, and pseudorefraction. Numerical dispersion is a
factor that must be accounted to understand the operation of FDTD algorithms and their
accuracy limits, especially for electrically large structures.

This section reviews the numerical dispersion characteristics of Yee’s FDTD formu-
lation. Section 7 will review proposed low-dispersion FDTD methods, not necessarily
based on Yee’s space grid and/or the use of explicit central differences.

6.2. Two-dimensional wave propagation, Cartesian Yee grid

We begin our discussion of numerical dispersion with an analysis of the Yee algorithm
for the two-dimensional TMz mode, (3.19a)–(3.19c), assuming for simplicity no electric
or magnetic loss. It can be easily shown that the dispersion relation obtained is valid for
any two-dimensional TM or TE mode in a Cartesian Yee grid. The analysis procedure
involves substitution of a plane, monochromatic, sinusoidal traveling-wave mode into
(3.19a)–(3.19c). After algebraic manipulation, an equation is derived that relates the
numerical wavevector components, the wave frequency, the time step, and the grid space
increments. This equation, the numerical dispersion relation, can be solved for a variety
of grid discretizations, wavevectors, and wave frequencies to illustrate the principal
nonphysical results associated with numerical dispersion.

Initiating this procedure, we assume the following plane, monochromatic, sinusoidal
traveling wave for the TMz mode:

(6.1a)Ez|nI,J =Ez0ej(ωn�t−k̃x I�x−k̃yJ�y),

(6.1b)Hx |nI,J =Hx0ej(ωn�t−k̃x I�x−k̃yJ�y),
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(6.1c)Hy |nI,J =Hy0ej(ωn�t−k̃x I�x−k̃yJ�y),

wherek̃x andk̃y are thex- andy-components of the numerical wavevector andω is the
wave angular frequency. Substituting the traveling-wave expressions of (6.1) into the
finite-difference equations of (3.19) yields, after simplification, the following relations
for the lossless material case:

(6.2a)Hx0 = �tEz0

µ�y
· sin(k̃y�y/2)

sin(ω�t/2)
,

(6.2b)Hy0 = −�tEz0

µ�x
· sin(k̃x�x/2)

sin(ω�t/2)
,

(6.2c)Ez0 sin

(
ω�t

2

)
= �t

ε

[
Hx0

�y
sin

(
k̃y�y

2

)
− Hy0

�x
sin

(
k̃x�x

2

)]
.

Upon substitutingHx0 of (6.2a) andHy0 of (6.2b) into (6.2c), we obtain

(6.3)

[
1

c�t
sin

(
ω�t

2

)]2

=
[

1

�x
sin

(
k̃x�x

2

)]2

+
[

1

�y
sin

(
k̃y�y

2

)]2

,

wherec = 1/
√
µε is the speed of light in the material being modeled. Eq. (6.3) is the

general numerical dispersion relation of the Yee algorithm for the TMz mode.
We shall consider the important special case of a square-cell grid having�x =�y =

�. Then, defining theCourant stability factorS = c�t/� and thegrid sampling density
Nλ = λ0/�, we rewrite (6.3) in a more useful form:

(6.4)
1

S2
sin2

(
πS

Nλ

)
= sin2

(
� · k̃ cosφ

2

)
+ sin2

(
� · k̃ sinφ

2

)
,

whereφ is the propagation direction of the numerical wave with respect to the grid’s
x-axis. To obtain the numerical dispersion relation for the one-dimensional wave-
propagation case, we can assume without loss of generality thatφ = 0 in (6.4), yielding

(6.5a)
1

S
sin

(
πS

Nλ

)
= sin

(
k̃�

2

)
or equivalently

(6.5b)k̃ = 2

�
sin−1

[
1

S
sin

(
πS

Nλ

)]
.

6.3. Extension to three dimensions, Cartesian Yee lattice

The dispersion analysis presented above is now extended to the full three-dimensional
case, following the analysis presented by TAFLOVE and BRODWIN [1975]. We consider
a normalized, lossless region of space withµ = 1, ε = 1, σ = 0, σ ∗ = 0, andc = 1.
Letting j= √−1, we rewrite Maxwell’s equations in compact form as

(6.6a)j∇ × ( �H + j �E)= ∂

∂t
( �H + j �E)



Finite-difference time-domain methods 233

or more simply as

(6.6b)j∇ × �V = ∂ �V
∂t
,

where �V = �H + j �E. Substituting the vector-field traveling-wave expression

(6.7)�V ∣∣n
I,J,K

= �V0 ej(ωn�t−k̃x I�x−k̃yJ�y−k̃zK�z)

into the Yee space–time central-differencing realization of (6.6b), we obtain[
x̂

�x
sin

(
k̃x�x

2

)
+ ŷ

�y
sin

(
k̃y�y

2

)
+ ẑ

�z
sin

(
k̃z�z

2

)]
× �V ∣∣n

I,J,K

(6.8)= −j

�t
�V ∣∣n
I,J,K

sin

(
ω�t

2

)
,

wherex̂, ŷ, andẑ are unit vectors in thex-, y-, andz-coordinate directions. After per-
forming the vector cross product in (6.8) and writing out thex, y, andz vector compo-
nent equations, we obtain a homogeneous system (zero right-hand side) of three equa-
tions in the unknownsVx , Vy , andVz. Setting the determinant of this system equal to
zero results in[

1

�t
sin

(
ω�t

2

)]2

=
[

1

�x
sin

(
k̃x�x

2

)]2

+
[

1

�y
sin

(
k̃y�y

2

)]2

(6.9)+
[

1

�z
sin

(
k̃z�z

2

)]2

.

Finally, we denormalize to a nonunityc and obtain the general form of the numerical
dispersion relation for the full-vector-field Yee algorithm in three dimensions:[

1

c�t
sin

(
ω�t

2

)]2

=
[

1

�x
sin

(
k̃x�x

2

)]2

+
[

1

�y
sin

(
k̃y�y

2

)]2

(6.10)+
[

1

�z
sin

(
k̃z�z

2

)]2

.

This equation is seen to reduce to (6.3), the numerical dispersion relation for the two-
dimensional TMz mode, simply by letting̃kz = 0.

6.4. Comparison with the ideal dispersion case

In contrast to (6.10), the analytical (ideal) dispersion relation for a physical plane wave
propagating in three dimensions in a homogeneous lossless medium is simply

(6.11)

(
ω

c

)2

= (kx)
2 + (ky)

2 + (kz)
2.

Although at first glance (6.10) bears little resemblance to the ideal case of (6.11), we
can easily show that the two dispersion relations are identical in the limit as�x, �y,



234 S.C. Hagness et al.

�z, and�t approach zero. Qualitatively, this suggests that numerical dispersion can be
reduced to any degree that is desired if we only use fine enough FDTD gridding.

It can also be shown that (6.10) reduces to (6.11) if the Courant factorS and the
wave-propagation direction are suitably chosen. For example, reduction to the ideal dis-
persion case can be demonstrated for a numerical plane wave propagating along a diago-
nal of a three-dimensional cubic lattice (k̃x = k̃y = k̃z = k̃/

√
3 ) if S = 1/

√
3. Similarly,

ideal dispersion results for a numerical plane wave propagating along a diagonal of a
two-dimensional square grid (k̃x = k̃y = k̃/

√
2 ) if S = 1/

√
2. Finally, ideal dispersion

results for any numerical wave in a one-dimensional grid ifS = 1. These reductions to
the ideal case have little practical value for two- and three-dimensional simulations, oc-
curring only for diagonal propagation. However, the reduction to ideal dispersion in one
dimension is very interesting, since it implies that the Yee algorithm (based upon nu-
merical finite-difference approximations) yields anexactsolution for wave propagation.

6.5. Anisotropy of the numerical phase velocity

This section probes a key implication of numerical dispersion relations (6.3) and (6.10).
Namely, numerical waves in a two- or three-dimensional Yee space lattice have a prop-
agation velocity that is dependent upon the direction of wave propagation. The space
lattice thus represents an anisotropic medium.

Our strategy in developing an understanding of this phenomenon is to first calculate
sample values of the numerical phase velocityṽp versus wave-propagation directionφ
in order to estimate the magnitude of the problem. Then, we will conduct an appropriate
analysis to examine the issue more deeply.

6.5.1. Sample values of numerical phase velocity
For simplicity, we start with the simplest possible situation where numerical phase-
velocity anisotropy arises: two-dimensional TMz modes propagating in a square-cell
grid. Dispersion relation (6.4) can be solved directly fork̃ for propagation along the
major axes of the grid:φ = 0◦, 90◦, 180◦, and 270◦. For this case, the solution fork̃ is
given by (6.5b), which is repeated here for convenience:

(6.12a)k̃ = 2

�
sin−1

[
1

S
sin

(
πS

Nλ

)]
.

The corresponding numerical phase velocity is given by

(6.12b)ṽp = ω

k̃
= π

Nλ sin−1[ 1
S

sin
(
πS
Nλ

)]c.
Dispersion relation (6.4) can also be solved directly fork̃ for propagation along the
diagonals of the gridφ = 45◦, 135◦, 225◦, and 315◦, yielding

(6.13a)k̃ = 2
√

2

�
sin−1

[
1

S
√

2
sin

(
πS

Nλ

)]
,

(6.13b)ṽp = π

Nλ
√

2sin−1[ 1
S
√

2
sin
(
πS
Nλ

)]c.
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As an example, assume a grid havingS = 0.5 andNλ = 20. Then (6.12b) and (6.13b)
provide unequal̃vp values of 0.996892c and 0.998968c, respectively. The implication
is that a sinusoidal numerical wave propagating obliquely within this grid has a speed
that is 0.998968/0.996892= 1.00208 times that of a wave propagating along the major
grid axes. This represents a velocity anisotropy of about 0.2% between oblique and
along-axis numerical wave propagation.

TAFLOVE and HAGNESS [2000, pp. 115–117] demonstrated that this theoretical
anisotropy of the numerical phase velocity appears in FDTD simulations. Fig. 6.1
presents their modeling results for a radially outward-propagating sinusoidal cylindrical
wave in a two-dimensional TMz grid. Their grid was configured with 360× 360 square
cells with�x =�y =�= 1.0. A unity-amplitude sinusoidal excitation was provided

(a)

(b)

FIG. 6.1. Effect of numerical dispersion upon a radially propagating cylindrical wave in a 2D TM Yee grid.
The grid is excited at its center by applying a unity-amplitude sinusoidal time function to a singleEz field
component.S = 0.5 and the grid sampling density isNλ = 20. (a) Comparison of calculated wave propagation
along the grid axes and along a grid diagonal. (b) Expanded view of (a) at distances between 63 and 64 grid

cells from the source.
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to a singleEz component at the center of the grid. Choosing a grid-sampling density of
Nλ = 20 and a Courant factorS = 0.5 permitted direct comparison of the FDTD mod-
eling results with the theoretical results for the anisotropy ofṽp, discussed immediately
above.

Fig. 6.1(a) illustrates snapshots of theEz field distribution vs. radial distance from
the source at the center of the grid. Here, field observations are made along cuts through
the grid passing through the source point and either parallel to the principal grid axes
φ = 0◦, 90◦ or parallel to the grid diagonalφ = 45◦. (Note that, by the 90◦ rotational
symmetry of the Cartesian grid geometry, identical field distributions are obtained along
φ = 0◦ and φ = 90◦.) The snapshots are taken 328�t after the beginning of time-
stepping. At this time, the wave has not yet reached the outer grid boundary, and the
calculatedEz field distribution is free of error due to outer-boundary reflections.

Fig. 6.1(b) is an expanded view of Fig. 6.1(a) at radial distances between 63� and
64� from the source. This enables evaluation (with three-decimal-place precision) of
the locations of the zero-crossings of theEz distributions along the two observation
cuts through the grid. From the data shown in Fig. 6.1(b), the sinusoidal wave along the
φ = 45◦ cut passes through zero at 63.684 cells, whereas the wave along theφ = 0◦, 90◦
cut passes through zero at 63.559 cells. Taking the difference, we see that the obliquely
propagating wave “leads” the on-axis wave by 0.125 cells. This yields a numerical
phase-velocity anisotropy�ṽp/ṽp ∼= 0.125/63.6= 0.197%. This number is only about
5% less than the 0.208% value obtained using (6.12b) and (6.13b).

To permit determination of̃k andṽp for any wave-propagation directionφ, it would
be very useful to derive closed-form equations analogous to (6.12) and (6.13). However,
for this general case, the underlying dispersion relation (6.4) is a transcendental equa-
tion. TAFLOVE [1995, pp. 97–98] provided a useful alternative approach for obtaining
sample values of̃vp by applying the following Newton’s method iterative procedure
to (6.4):

(6.14a)k̃icount+1 = k̃icount− sin2(Ak̃icount)+ sin2(Bk̃icount)−C

Asin(2Ak̃icount)+B sin(2Bk̃icount)
.

Here,k̃icount+1 is the improved estimate of̃k, andk̃icount is the previous estimate ofk̃.
TheA, B, andC are coefficients given by

(6.14b)A= � · cosφ

2
, B = � · sinφ

2
, C = 1

S2
sin2

(
πS

Nλ

)
.

Additional simplicity results if� is normalized to the free-space wavelength,λ0. This
is equivalent to settingλ0 = 1. Then, a very good starting guess for the iterative process
is simply 2π . For this case,̃vp is given by

(6.15)
ṽp

c
= 2π

k̃final icount
.

Usually, only two or three iterations are required for convergence.
Fig. 6.2 graphs results obtained using this procedure that illustrate the variation of

ṽp with propagation directionφ. Here, for the Courant factor fixed atS = 0.5, three
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FIG. 6.2. Variation of the numerical phase velocity with wave propagation angle in a 2D FDTD grid for three
sampling densities of the square unit cells.S = c�t/�= 0.5 for all cases.

different grid sampling densitiesNλ are examined:Nλ = 5 points perλ0, Nλ = 10,
andNλ = 20. We see that̃vp < c and is a function of bothφ andNλ. ṽp is maximum
for waves propagating obliquely within the grid (φ = 45◦), and is minimum for waves
propagating along either grid axis (φ = 0◦, 90◦).

It is useful to summarize the algorithmic dispersive-error performance by defining
two normalized error measures: (1) the physical phase-velocity error�ṽphysical, and
(2) the velocity-anisotropy error�ṽaniso. These are given by

(6.16)�ṽphysical|Nλ = min[ṽp(φ)] − c

c
× 100%,

(6.17)�ṽaniso|Nλ = max[ṽp(φ)] − min[ṽp(φ)]
min[ṽp(φ)] × 100%.

�ṽphysical is useful in quantifying the phase lead or lag that numerical modes suffer
relative to physical modes propagating atc. For example, from Fig. 6.2 and (6.12b),
�ṽphysical= −0.31% forNλ = 20. This means that a sinusoidal numerical wave travel-
ing over a 10λ0 distance in the grid (200 cells) could develop a lagging phase error up
to 11◦. We note that�ṽphysicalis a function ofNλ. Since the grid cell size� is fixed, for
an impulsive wave-propagation problem there exists a spread of effectiveNλ values for
the spectral components comprising the pulse. This causes a spread of�ṽphysical over
the pulse spectrum, which in turn yields a temporal dispersion of the pulse evidenced in
the spreading and distortion of its waveform as it propagates.
�ṽaniso is useful in quantifying wavefront distortion. For example, a circular cylin-

drical wave would suffer progressive distortion of its wavefront since the portions prop-
agating along the grid diagonals would travel slightly faster than the portions travel-
ing along the major grid axes. For example, from Fig. 6.2 and (6.12b) and (6.13b),
�ṽaniso= 0.208% forNλ = 20. The wavefront distortion due to this anisotropy would
total about 2.1 cells for each 1000 cells of propagation distance.
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It is clear that errors due to inaccurate numerical velocities are cumulative, i.e., they
increase linearly with the wave-propagation distance. These errors represent a funda-
mental limitation ofall grid-based Maxwell’s equations’ algorithms, and can be trou-
blesome when modeling electrically large structures. A positive aspect seen in Fig. 6.2
is that both�ṽphysical and�ṽaniso decrease by approximately a 4:1 factor each time
the grid-sampling density doubles, indicative of the second-order accuracy of the Yee
algorithm. Therefore, finer meshing is one way to control the dispersion error.

As discussed in Section 7, there are proposed means to improve the accuracy of
FDTD algorithms to allow much larger structures to be modeled. Specifically,�ṽaniso
can be reduced to very low levels approaching zero. In this case, residual errors involve
primarily the dispersion of�ṽphysical with Nλ, which can be optimized by the proper
choice of�t . However, the new approaches presently have limitations regarding their
ability to model material discontinuities, and require more research.

6.5.2. Intrinsic grid velocity anisotropy
Following TAFLOVE and HAGNESS[2000, pp. 120–123], this section provides a deeper
discussion of the numerical phase-velocity errors of the Yee algorithm. We show that the
nature of the grid discretization, in a manner virtually independent of the time-stepping
scheme, determines the velocity anisotropy�ṽaniso.

Relation of the time and space discretizations in generating numerical velocity error.
In Section 6.5.1, we determined that�ṽaniso= 0.208% for a two-dimensional Yee al-
gorithm havingNλ = 20 andS = 0.5. An important and revealing question is: How is
�ṽanisoaffected by the choice ofS, assuming thatNλ is fixed at 20?

To begin to answer this question, we first choose (what will later be shown to be)
the largest possible value ofS for numerical stability in two dimensions,S = 1/

√
2.

Substituting this value ofS into (6.12b) and (6.13b) yields

ṽp(φ = 0◦)= 0.997926c
ṽp(φ = 45◦)= c

}
�ṽaniso= c− 0.997926c

0.997926c
× 100%= 0.208%.

To three decimal places, there is no change in�ṽanisofrom the previous value,S = 0.5.
We next choose a very small valueS = 0.01 for substitution into (6.12b) and (6.13b):

ṽp(φ = 0◦)= 0.995859c
ṽp(φ = 45◦)= 0.997937c

}
�ṽaniso= 0.997937c− 0.995859c

0.995859c
× 100%= 0.208%.

Again, there is no change in�ṽanisoto three decimal places.
We now suspect that, for a givenNλ,�ṽaniso is at most a weak function ofS, and

therefore is only weakly dependent on�t . In fact, this is the case. More generally,
L IU, Y. [1996] has shown that�ṽanisois only weakly dependent on the specific type of
time-marching scheme used, whether leapfrog, Runge–Kutta, etc. Thus, we can say that
�ṽanisois virtually an intrinsic characteristic of the space-lattice discretization. Follow-
ing LIU, Y. [1996], three key points should be made in this regard:
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• Numerical-dispersion errors associated with the time discretization are isotropic
relative to the propagation direction of the wave.

• The choice of time discretization has little effect upon the phase-velocity anisotropy
�ṽanisofor Nλ > 10.

• The choice of time discretization does influence�ṽphysical. However, it is not al-
ways true that higher-order time-marching schemes, such as Runge–Kutta, yield
less�ṽphysical than simple Yee leapfrogging. Errors in�ṽphysical are caused sep-
arately by the space and time discretizations, and can either partially reinforce or
cancel each other. Thus, the use of fourth-order Runge–Kutta may actually shift the
ṽp(φ) profile away fromc, representing an increased�ṽphysicalrelative to ordinary
leapfrogging.

The associated eigenvalue problem.LIU, Y. [1996] has shown that, to determine the
relative velocity anisotropy characteristic intrinsic to a space grid, it is useful to set up
an eigenvalue problem for the matrix that delineates the spatial derivatives used in the
numerical algorithm. Consider as an example the finite-difference system of (3.19) for
the case of two-dimensional TMz electromagnetic wave propagation. The associated
eigenvalue problem for the lossless-medium case is written as:

(6.18a)− 1

µ

(
Ez|i,j+1/2 −Ez|i,j−1/2

�y

)
=ΛHx |i,j ,

(6.18b)
1

µ

(
Ez|i+1/2,j −Ez|i−1/2,j

�x

)
=ΛHy |i,j ,

(6.18c)
1

ε

(
Hy |i+1/2,j −Hy |i−1/2,j

�x
− Hx |i,j+1/2 −Hx |i,j−1/2

�y

)
=ΛEz|i,j .

We note that, at any time stepn, the instantaneous values of theE- andH -fields
distributed in space across the grid can be Fourier-transformed with respect to thei and
j grid coordinates to provide a spectrum of sinusoidal modes. The result is often called
the two-dimensional spatial-frequency spectrum, or the plane-wave eigenmodes of the
grid. Let the following specify a typical mode of this spectrum havingk̃x and k̃y as,
respectively, thex- andy-components of its numerical wavevector:

Ez|I,J =Ez0ej(k̃xI�x+k̃yJ�y);
(6.19)Hx |I,J =Hx0ej(k̃xI�x+k̃yJ�y);

Hy |I,J =Hy0ej(k̃xI�x+k̃yJ�y)

Upon substituting the eigenmode expressions of (6.19) into (6.18a), we obtain

− 1

µ

(
Ez0ej[k̃x I�x+k̃y (J+1/2)�y] −Ez0ej[k̃x I�x+k̃y (J−1/2)�y]

�y

)
(6.20)=ΛHx0ej(k̃xI�x+k̃yJ�y).
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Factoring out the ej(k̃xI�x+k̃yJ�y) term that is common to both sides and then applying
Euler’s identity yields

(6.21a)Hx0 = − 2jEz0

Λµ�y
sin

(
k̃y�y

2

)
.

In a similar manner, substituting the eigenmode expressions of (6.19) into (6.18b) and
(6.18c) yields

(6.21b)Hy0 = 2jEz0

Λµ�x
sin

(
k̃x�x

2

)
,

(6.21c)Ez0 = 2j

Λε

[
Hy0

�x
sin

(
k̃x�x

2

)
− Hx0

�y
sin

(
k̃y�y

2

)]
.

SubstitutingHx0 of (6.21a) andHy0 of (6.21b) into (6.21c) yields

(6.22)Ez0 = 2j

Λε

 1
�x

· 2jEz0
Λµ�x

· sin
(
k̃x�x

2

)
· sin

(
k̃x�x

2

)
− 1

�y
· −2jEz0
Λµ�y

· sin
(
k̃y�y

2

)
· sin

(
k̃y�y

2

)
 .

Now factoring out the commonEz0 term, simplifying, and solving forΛ2, we obtain

(6.23)Λ2 = − 4

µε

[
1

(�x)2
sin2

(
k̃x�x

2

)
+ 1

(�y)2
sin2

(
k̃y�y

2

)]
.

From the elementary properties of the sine function (assuming thatk̃x and k̃y are real
numbers for propagating numerical waves), the right-hand side of (6.23) is negative.
Hence,Λ is a pure imaginary number given by

(6.24)Λ= j2c

[
1

(�x)2
sin2

(
k̃x�x

2

)
+ 1

(�y)2
sin2

(
k̃y�y

2

)]1/2

,

wherec = 1/
√
µε is the speed of light in the homogeneous material being modeled.

Finally, following the definition provided by LIU, Y. [1996], we obtain the “normalized
numerical phase speed”c∗/c intrinsic to the grid discretization, given by

(6.25)
c∗

c
= Λimag

ck̃
= 2

k̃

[
1

(�x)2
sin2

(
k̃x�x

2

)
+ 1

(�y)2
sin2

(
k̃y�y

2

)]1/2

.

A convenient closed-form expression forc∗/c can be written by using the approxima-
tion k̃ ∼= k. Then, assuming a uniform square-cell grid, we obtain

(6.26)
c∗

c
∼= Nλ

π

[
sin2

(
π cosφ

Nλ

)
+ sin2

(
π sinφ

Nλ

)]1/2

, Nλ > 10.
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The meaning ofc∗/c. The reader is cautioned thatc∗/c is not the same as̃vp/c. This
is because the derivation ofc∗/c utilizes no information regarding the time-stepping
process. Thus,c∗/c cannot be used to determine�ṽphysicaldefined in (6.16). However,
c∗/c does provide information regarding�ṽaniso defined in (6.17). Following LIU, Y.
[1996], we can expand (6.26) to isolate the leading-order velocity-anisotropy term. This
yields a simple expression for�ṽanisothat is useful forNλ > 10:

�ṽaniso|Yee∼= max
[ c∗(φ)

c

]− min
[ c∗(φ)

c

]
min

[
c∗(φ)
c

] × 100%

(6.27)∼= π2

12(Nλ)2
× 100%.

For example, (6.27) provides�ṽaniso∼= 0.206% forNλ = 20. This is very close to the
0.208% value previously obtained using (6.12b) and (6.13b), the exact solutions of the
full numerical dispersion relation forφ = 0◦ andφ = 45◦, respectively.

In summary, we can use (6.27) to estimate the numerical phase-velocity anisotropy
�ṽaniso of the Yee algorithm applied to a square-cell grid without having to resort to
the Newton’s method solution (6.14). This approach provides a convenient means to
compare the relative anisotropy of alternative space-gridding techniques, including the
higher-order methods and non-Cartesian meshes to be discussed in Section 7.

6.6. Complex-valued numerical wavenumbers

SCHNEIDER and WAGNER [1999] found that the Yee algorithm has a low-sampling-
density regime that allows complex-valued numerical wavenumbers. In this regime,
spatially decaying numerical waves can propagate faster than light, causing a weak,
nonphysical signal to appear ahead of the nominal leading edges of sharply defined
pulses. This section reviews the theory underlying this phenomenon.

6.6.1. Case 1: Numerical wave propagation along the principal lattice axes
Consider again numerical wave propagation along the major axes of a Yee space grid.
For convenience, we rewrite (6.12a), the corresponding numerical dispersion relation:

(6.28)k̃ = 2

�
sin−1

[
1

S
sin

(
πS

Nλ

)]
≡ 2

�
sin−1(ζ ),

where

(6.29)ζ = 1

S
sin

(
πS

Nλ

)
.

SCHNEIDER and WAGNER [1999] realized that, in evaluating numerical dispersion re-
lations such as (6.28), it is possible to chooseS andNλ such thatk̃ is complex. In the
case of (6.28), it can be shown that the transition between real and complex values ofk̃

occurs whenζ = 1. Solving forNλ at this transition results in

(6.30)Nλ|transition= πS

sin−1(S)
.
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For a grid sampling density greater than this value, i.e.,Nλ > Nλ|transition, k̃ is a real
number and the numerical wave undergoes no attenuation while propagating in the
grid. Here,ṽp < c. For a coarser grid-sampling densityNλ < Nλ|transition, k̃ is a com-
plex number and the numerical wave undergoes a nonphysical exponential decay while
propagating. Further, in this coarse-resolution regime,ṽp can exceedc.

Following SCHNEIDER and WAGNER [1999], we now discuss how̃k and ṽp vary
with grid samplingNλ, both above and below the transition between real and complex
numerical wavenumbers.

Real-numerical-wavenumber regime.ForNλ >Nλ|transitionwe have from (6.28)

(6.31a)k̃real= 2

�
sin−1

[
1

S
sin

(
πS

Nλ

)]
;

(6.31b)k̃imag= 0.

The numerical phase velocity is given by

(6.32)ṽp = ω

k̃real
= π

Nλ sin−1[ 1
S

sin
(
πS
Nλ

)]c.
This is exactly expression (6.12b). The wave-amplitude multiplier per grid cell of prop-
agation is given by

(6.33)ek̃imag� ≡ e−α� = e0 = 1.

Thus, there is a constant wave amplitude with spatial position for this range ofNλ.

Complex-numerical-wavenumber regime.ForNλ < Nλ|transition, we observe thatζ >
1 in (6.28). Here, the following relation for the complex-valued arc-sine function given
by CHURCHILL, BROWN and VERHEY [1976] is useful:

(6.34)sin−1(ζ )= −j ln
(
jζ +

√
1− ζ 2

)
.

Substituting (6.34) into (6.28) yields after some algebraic manipulation

(6.35a)k̃real= π

�
;

(6.35b)k̃imag= − 2

�
ln
(
ζ +

√
ζ 2 − 1

)
.

The numerical phase velocity is then

(6.36)ṽp = ω

k̃real
= ω

(π/�)
= 2πf�

π
= 2f λ0

Nλ
= 2

Nλ
c

and the wave-amplitude multiplier per grid cell of propagation is

(6.37)ek̃imag� ≡ e−α� = e−2 ln(ζ+
√
ζ2−1) = 1

(ζ +√
ζ 2 − 1)2

.

Sinceζ > 1, the numerical wave amplitude decays exponentially with spatial position.
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We now consider the possibility of̃vp exceedingc in this situation. Nyquist theory
states that any physical or numerical process that obtains samples of a time waveform
every�t seconds can reproduce the original waveform without aliasing for spectral
content up tofmax = 1/(2�t). In the present case, the corresponding minimum free-
space wavelength that can be sampled without aliasing is therefore

(6.38a)λ0,min = c/fmax= 2c�t.

The corresponding minimum spatial-sampling density is

(6.38b)Nλ,min = λ0,min/�= 2c�t/�= 2S.

Then from (6.36), the maximum numerical phase velocity is given by

(6.39a)ṽp,max= 2

Nλ,min
c= 2

2S
c= c

S
.

From the definition ofS, this maximum phase velocity can also be expressed as

(6.39b)ṽp,max= 1

S
c=

(
�

c�t

)
c= �

�t
.

This relation tells us that in one�t , a numerical value can propagate at most one�.
This is intuitively correct given the local nature of the spatial differences used in the Yee
algorithm. That is, a field point more than one� away from a source point that under-
goes a sudden change cannot possibly “feel” the effect of that change during the next
�t . Note thatṽp,max is independent of material parameters and is an inherent property
of the grid and its method of obtaining space derivatives.

6.6.2. Case 2: Numerical wave propagation along a grid diagonal
We next explore the possibility of complex-valued wavenumbers arising for oblique
numerical wave propagation in a square-cell grid. For convenience, we rewrite (6.13a),
the corresponding numerical dispersion relation:

(6.40)k̃ = 2
√

2

�
sin−1

[
1

S
√

2
sin

(
πS

Nλ

)]
≡ 2

√
2

�
sin−1(ζ ),

where

(6.41)ζ = 1

S
√

2
sin

(
πS

Nλ

)
.

Similar to the previous case of numerical wave propagation along the principal lattice
axes, it is possible to chooseS andNλ such thatk̃ is complex. In the specific case of
(6.40), the transition between real and complex values ofk̃ occurs whenζ = 1. Solving
for Nλ at this transition results in

(6.42)Nλ|transition= πS

sin−1(S
√

2)
.

We now discuss how̃k and ṽp vary with grid samplingNλ, both above and below the
transition between real and complex numerical wavenumbers.
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Real-numerical-wavenumber regime.ForNλ �Nλ|transitionwe have from (6.40)

(6.43a)k̃real= 2
√

2

�
sin−1

[
1

S
√

2
sin

(
πS

Nλ

)]
;

(6.43b)k̃imag= 0.

The numerical phase velocity is given by

(6.44)ṽp = ω

k̃real
= π

Nλ
√

2 sin−1[ 1
S
√

2
sin
(
πS
Nλ

)]c.
This is exactly expression (6.13b). The wave-amplitude multiplier per grid cell of prop-
agation is given by

(6.45)ek̃imag� ≡ e−α� = e0 = 1.

Thus, there is a constant wave amplitude with spatial position for this range ofNλ.

Complex-numerical-wavenumber regime.ForNλ < Nλ|transition, we observe thatζ >
1 in (6.40). Substituting the complex-valued arc-sine function of (6.34) into (6.40)
yields after some algebraic manipulation

(6.46a)k̃real= π
√

2

�
;

(6.46b)k̃imag= −2
√

2

�
ln
(
ζ +

√
ζ 2 − 1

)
.

The numerical phase velocity for this case is

(6.47)ṽp = ω

k̃real
= ω

(π
√

2/�)
=

√
2f λ0

Nλ
=

√
2

Nλ
c

and the wave-amplitude multiplier per grid cell of propagation is

(6.48)ek̃imag� ≡ e−α� = e−2
√

2 ln(ζ+
√
ζ2−1) = 1

(ζ +√
ζ 2 − 1)2

√
2
.

Sinceζ > 1, the numerical wave amplitude decays exponentially with spatial position.
We again consider the possibility ofṽp exceedingc. From our previous discussion of

(6.38a) and (6.38b), the minimum free-space wavelength that can be sampled without
aliasing isλ0,min = c/fmax = 2c�t , and the corresponding minimum spatial-sampling
density isNλ,min = λ0,min/� = 2S. Then from (6.47), the maximum numerical phase
velocity is given by

(6.49a)ṽp,max=
√

2

Nλ,min
c=

√
2

2S
c.

From the definition ofS, this maximum phase velocity can also be expressed as

(6.49b)ṽp,max=
√

2

2

(
�

c�t

)
c=

√
2�

2�t
.
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This relation tells us that in 2�t , a numerical value can propagate at most
√

2� along
the grid diagonal. We can show that this upper bound onṽp is intuitively correct given
the local nature of the spatial differences used in the Yee algorithm. Consider two near-
est neighbor field pointsPi,j andPi+1,j+1 along a grid diagonal, and how a sudden
change atPi,j could be communicated toPi+1,j+1. Now, a basic principle is that the
Yee algorithm can communicate field data only along Cartesian (x andy) grid lines, and
not along grid diagonals. Thus, at the minimum, 1�t would be needed to transfer any
part of the field perturbation atPi,j over a distance of 1� in thex-direction toPi+1,j .
Then, a second�t would be needed, at the minimum, to transfer any part of the resulting
field perturbation atPi+1,j over a distance of 1� in they-direction to reachPi+1,j+1.
Because the distance betweenPi,j andPi+1,j+1 is

√
2�, the maximum effective ve-

locity of signal transmission between the two points is
√

2�/2�t . By this reasoning,
we see that̃vp,max is independent of material parameters modeled in the grid. It is an
inherent property of the FDTD grid and its method of obtaining space derivatives.

6.6.3. Example of calculation of numerical phase velocity and attenuation
This section provides sample calculations of values of the numerical phase velocity
and the exponential attenuation constant for the case of a two-dimensional square-cell
Yee grid. These calculations are based upon the numerical dispersion analyses of Sec-
tions 6.6.1 and 6.6.2.

Fig. 6.3 graphs the normalized numerical phase velocity and the exponential attenu-
ation constant per grid cell as a function of grid sampling densityNλ. A Courant factor
S = 0.5 is assumed. From this figure, we note that:

• For propagation along the principal grid axesφ = 0◦, 90◦, a minimum value of
ṽp = (2/3)c is reached atNλ = 3. This sampling density is also the onset of at-
tenuation. AsNλ is reduced below 3,̃vp increases inversely withNλ. Eventually,
ṽp exceedsc for Nλ < 2, and reaches a limiting velocity of 2c asNλ → 1. In this
limit, as well, the attenuation constant approaches a value of 2.634 nepers/cell.

FIG. 6.3. Normalized numerical phase velocity and exponential attenuation constant per grid cell versus grid
sampling density for on-axis and oblique wave propagation.S = 0.5.
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FIG. 6.4. Percent numerical phase-velocity error relative to the free-space speed of light as a function of the
grid sampling density for on-axis and oblique wave propagation.S = 0.5.

• For propagation along the grid diagonal atφ = 45◦, a minimum value ofṽp =
(
√

2/2)c is reached atNλ = 2. This point is also the onset of exponential attenu-
ation. AsNλ is reduced below 2,̃vp increases inversely withNλ. Eventually,ṽp
exceedsc for Nλ <

√
2, and reaches a limiting velocity of

√
2c asNλ → 1. In this

limit, as well, the attenuation constant approaches a value of 2.493 nepers/cell.
Overall, for both the on-axis and oblique cases of numerical wave propagation, we
see that very coarsely resolved wave modes in the grid can propagate at superluminal
speeds, but are rapidly attenuated.

Fig. 6.4 graphs the percent error in the numerical phase velocity relative toc for loss-
less wave propagation along the principal grid axesφ = 0◦, 90◦. In the present example
whereinS = 0.5, this lossless propagation regime exists forNλ � 3. Fig. 6.4 also graphs
the percent velocity error for lossless wave propagation along the grid diagonalφ = 45◦.
This lossless regime exists forNλ � 2 for S = 0.5. AsNλ � 10, we see that the numeri-
cal phase-velocity error at each wave-propagation angle diminishes as the inverse square
of Nλ. This is indicative of the second-order-accurate nature of the Yee algorithm.

6.6.4. Examples of calculations of pulse propagation in a one-dimensional grid
Fig. 6.5(a) graphs examples of the calculated propagation of a 40-cell-wide rectangular
pulse in free space for two cases of the Courant factor:S = 1 (i.e.,�t is equal to
the value for dispersionless propagation in a one-dimensional grid); andS = 0.99. To
permit a direct comparison of these results, both “snapshots” are taken at the same
absolute time after the onset of time-stepping. There are three key observations:

(1) WhenS = 1, the rectangular shape and spatial width of the pulse are completely
preserved. For this case, the abrupt step discontinuities of the propagating pulse
are modeled perfectly. In fact, this is expected sinceṽp ≡ c for all numerical
modes in the grid.

(2) WhenS = 0.99, there is appreciable “ringing” located behind the leading and
trailing edges of the pulse. This is due to short-wavelength numerical modes in
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(a)

(b)

FIG. 6.5. Effect of numerical dispersion upon a rectangular pulse propagating in free space in a
one-dimensional grid for three different Courant factors:S = 1, S = 0.99, andS = 0.5. (a) Comparison
of calculated pulse propagation forS = 1 andS = 0.99. (b) Comparison of calculated pulse propagation for

S = 1 andS = 0.5.

the grid generated at the step discontinuities of the wave. These numerical modes
are poorly sampled in space and hence travel slower thanc, thereby lagging be-
hind the causative discontinuities.

(3) WhenS = 0.99, a weak superluminal response propagates just ahead of the lead-
ing edge of the pulse. This is again due to short-wavelength numerical modes
in the grid generated at the step-function wavefront. However, these modes have
spatial wavelengths even shorter than those noted in point (2), in fact so short that
their grid sampling density drops below the upper bound for complex wavenum-
bers, and the modes appear in the superluminal, exponentially decaying regime.

Fig. 6.5(b) repeats the examples of Fig. 6.5(a), but for the Courant factorsS = 1 and
S = 0.5. We see that the duration and periodicity of the ringing is greater than that
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(a)

(b)

FIG. 6.6. Effect of numerical dispersion upon a Gaussian pulse propagating in free space in a
one-dimensional grid for three different Courant factors:S = 1, S = 0.99, andS = 0.5. (a) Comparison
of calculated pulse propagation forS = 1 andS = 0.99. (b) Comparison of calculated pulse propagation for

S = 1 andS = 0.5.

for theS = 0.99 case. Further, the superluminal response is more pronounced and less
damped.

Figs. 6.6(a) and 6.6(b) repeat the above examples, but for a Gaussian pulse having
a 40-grid-cell spatial width between its 1/e points. We see that this pulse undergoes
much less distortion than the rectangular pulse. The calculated propagation forS = 0.99
shows no observable difference (at the scale of Fig. 6.6(a)) relative to the perfect prop-
agation case ofS = 1. Even forS = 0.5, the calculated pulse propagation shows only a
slight retardation relative to the exact solution, as expected becauseṽp < c for virtually
all modes in the grid. Further, there is no observable superluminal precursor. All of these
phenomena are due to the fact that, for this case, virtually the entire spatial spectrum of
propagating wavelengths within the grid is well resolved by the grid’s sampling process.
As a result, almost all numerical phase-velocity errors relative toc are well below 1%.
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(a)

(b)

FIG. 6.7. Effect of numerical dispersion upon a radially propagating cylindrical wave in a 2D TMz Yee grid.
The grid is excited at its center point by applying a unit-step time-function to a singleEz field component.
The Courant factor isS = √

2/2. (a) Comparison of calculated wave propagation along the grid axes and
along a grid diagonal. (b) Expanded view of (a) at distances between 120 and 180 grid cells from the source.

This allows the Gaussian pulse to “hold together” while propagating over significant
distances within the grid.

6.6.5. Example of calculation of pulse propagation in a two-dimensional grid
Fig. 6.7 presents an example of the calculation of a radially outward-propagating cylin-
drical wave in a two-dimensional TMz Yee grid. A 360× 360-cell square grid with
�x = �y = � = 1.0 is used in this example. The grid is numerically excited at its
center point by applying a unit-step time-function to a singleEz field component. We
assume the Courant factorS = √

2/2, which yields dispersionless propagation for nu-
merical plane-wave modes propagating along the grid diagonalsφ = 45◦, 135◦, 225◦,
and 315◦. In Fig. 6.7(a), we graph snapshots of theEz distribution vs. radial distance
from the source. Here, field observations are made along cuts through the grid passing
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through the source and either parallel to the principal grid axesφ = 0◦, 90◦ or parallel
to the grid diagonalφ = 45◦. The snapshots are taken 232�t after the beginning of
time-stepping. At this time, the wave has not yet reached the outer grid boundary.

Fig. 6.7(a) illustrates two nonphysical artifacts arising from numerical dispersion.
First, for both observation cuts, the leading edge of the wave exhibits an oscillatory
spatial jitter superimposed upon the normal field falloff profile. Second, for the obser-
vation cuts along the grid axes, the leading edge of the wave exhibits a small, spatially
decaying, superluminal component.

To more easily see these artifacts, Fig. 6.7(b) shows an expanded view in the vicin-
ity of the leading edge of the wave. Consider first the oscillatory jitter. Similar to the
results shown in Fig. 6.5, this is due to short-wavelength numerical modes in the grid
generated at the leading edge of the propagating step-function wave. According to our
dispersion theory, these numerical modes are poorly sampled in space and hence travel
slower thanc, thereby lagging behind the actual wavefront. While the jitter is most pro-
nounced along the grid axesφ = 0◦, 90◦, it is nonetheless finite alongφ = 45◦ despite
our choice ofS = √

2/2 (which implies dispersionless propagation along grid diago-
nals). This apparent conflict between theory and numerical experiment is resolved by
noting that numerical dispersion introduces a slightly anisotropic propagation charac-
teristic of the background “free space” within the grid versus azimuth angleφ. The
resulting inhomogeneity of the free-space background scatters part of the radially prop-
agating numerical wave into theφ-direction. Thus, no point behind the wavefront can
avoid the short-wavelength numerical jitter.

Consider next the superluminal artifact present at the leading edge of the wave shown
in Fig. 6.7(b) forφ = 0◦, 90◦ but not forφ = 45◦. This is again due to short-wavelength
numerical modes in the grid generated at the leading edge of the outgoing step-function
wave. However, these modes have spatial wavelengths so short that their grid sampling
density drops below the threshold delineated in (6.30), and the modes appear in the
superluminal, exponentially decaying regime. WithS = √

2/2 in the present example,
we conclude that the lack of a superluminal artifact along theφ = 45◦ cut (and the
consequent exact modeling of the step discontinuity at the leading edge of the wave) is
due to dispersionless numerical wave propagation along grid diagonals.

7. Algorithms for improved numerical dispersion

7.1. Introduction

The numerical algorithm for Maxwell’s equations introduced by YEE [1966] is very
robust. Evidence of this claim is provided by the existence of thousands of successful
electromagnetic engineering applications and refereed papers derived from the basic
Yee algorithm. However, it is clear from Section 6 that Yee’s approach is not perfect.
For certain modeling problems, numerical dispersion can cause significant errors to
arise in the calculated field.

This section reviews a small set of representative strategies aimed at mitigating the
effects of numerical dispersion. No attempt is made to provide a comprehensive sum-
mary because such an effort would require several sections. The intent here is to provide
the flavor of what may be possible in this area.
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7.2. Strategy 1: Center a specific numerical phase-velocity curve aboutc

We have seen from Fig. 6.2 that the Yee algorithm yields a family of numerical phase-
velocity curves contained in the rangeṽp < c. We also observe that each velocity curve
is centered about the value

(7.1)ṽavg= ṽp(φ = 0◦)+ ṽp(φ = 45◦)
2

,

whereṽp(φ = 0◦) andṽp(φ = 45◦) are given by (6.12b) and (6.13b), respectively. This
symmetry can be exploited if a narrowband grid excitation is used such that a specific
phase-velocity curve accurately characterizes the propagation of most of the numerical
modes in the grid. Then, it is possible to shift the phase-velocity curve of interest so
that it is centered about the free-space speed of lightc, thereby cutting�ṽphysical by
almost 3:1. Centering is implemented by simply scaling the free-space values ofε0 and
µ0 used in the finite-difference system of (3.19):

(7.2)ε′0 =
(
ṽavg

c

)
ε0; µ′

0 =
(
ṽavg

c

)
µ0.

This scaling increases the baseline value of the model’s “free-space” speed of light to
compensate for the too-slow value ofṽavg. By scaling bothε0 andµ0, the required shift
in ṽavg is achieved without introducing any changes in wave impedance.

There are three primary difficulties with this approach: (1) The phase-velocity
anisotropy error�ṽaniso remains unmitigated. (2) The velocity compensation is only
in the average sense over all possible directions in the grid. Hence, important numer-
ical modes can still have phase velocities not equal toc. (3) Propagating wave pulses
having broad spectral content cannot be compensated over their entire frequency range.
Nevertheless, this approach is so easy to implement that its use can be almost rou-
tine.

7.3. Strategy 2: Use fourth-order-accurate spatial differences

It is possible to substantially reduce the phase-velocity anisotropy error�ṽaniso for the
Yee algorithm by incorporating a fourth-order-accurate finite-difference scheme for the
spatial first-derivatives needed to implement the curl operator. This section reviews two
such approaches. The first, by FANG [1989], is an explicit method wherein a fourth-
order-accurate spatial central-difference is calculated at one observation point at a time
from two pairs of field values: a pair on each side of the observation point at distances
of �/2 and 3�/2. The second approach, by TURKEL [1998], is an implicit method
wherein a tridiagonal matrix is solved to obtain fourth-order-accurate spatial derivatives
simultaneously at all observation points along a linear cut through the grid.

7.3.1. Explicit method
Assuming that Yee leapfrog time-stepping is used, the fourth-order-accurate spatial-
difference scheme of FANG [1989] results in the following set of finite-difference ex-
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pressions for the TMz mode:

Hx |n+1/2
i,j+1/2 −Hx |n−1/2

i,j+1/2

�t

(7.3a)= − 1

µi,j+1/2

(−Ez|ni,j+2 + 27Ez|ni,j+1 − 27Ez|ni,j +Ez|ni,j−1

24�y

)
,

Hy |n+1/2
i+1/2,j −Hy |n−1/2

i+1/2,j

�t

(7.3b)= 1

µi+1/2,j

(−Ez|ni+2,j + 27Ez|ni+1,j − 27Ez|ni,j +Ez|ni−1,j

24�x

)
,

Ez|n+1
i,j −Ez|ni,j
�t

(7.3c)= 1

εi,j

−Hy |n+1/2
i+3/2,j+27Hy |n+1/2

i+1/2,j−27Hy |n+1/2
i−1/2,j+Hy |n+1/2

i−3/2,j
24�x

− −Hx |n+1/2
i,j+3/2+27Hx |n+1/2

i,j+1/2−27Hx |n+1/2
i,j−1/2+Hx |n+1/2

i,j−3/2
24�y

 .
The numerical dispersion relation for this algorithm analogous to (6.3) is given by[

1

c�t
sin

(
ω�t

2

)]2

= 1

(�x)2

[
27

24
sin

(
k̃x�x

2

)
− 1

24
sin

(
3k̃x�x

2

)]2

(7.4)+ 1

(�y)2

[
27

24
sin

(
k̃y�y

2

)
− 1

24
sin

(
3k̃y�y

2

)]2

.

By analogy with the development in Section 6.5.2 culminating in (6.26), it can be
shown that the intrinsic numerical phase-velocity anisotropy for a square-cell grid of
this type is given by

(7.5)
c∗

c
∼= Nλ

π

√√√√[27
24 sin

(π cosφ
Nλ

)− 1
24 sin

(3π cosφ
Nλ

)]2
+ [27

24 sin
(π sinφ

Nλ

)− 1
24 sin

(3π sinφ
Nλ

)]2
and the numerical phase-velocity anisotropy error (by analogy with (6.27)) is given by

(7.6)�ṽaniso|explicit 4th-order∼= π4

18(Nλ)4
× 100%.

7.3.2. Implicit method
TURKEL [1998] reported the Ty operator, an implicit fourth-order-accurate finite-
difference scheme defined on the Yee space lattice for calculating the spatial first-
derivatives involved in the curl. To see how the Ty operator is constructed, consider
anx-directed cut through the Yee lattice. At every sample point along this cut, we wish
to compute with fourth-order accuracy thex-derivatives of the general field compo-
nentV . By manipulating Taylor’s series expansions forV along this line, it was shown
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in TURKEL [1998, Eq. (2.23)] that

(7.7)
1

24

(
∂V

∂x

∣∣∣∣
i+1

+ ∂V

∂x

∣∣∣∣
i−1

)
+ 11

12

∂V

∂x

∣∣∣∣
i

= Vi+1/2 − Vi−1/2

�x
.

Here,{(∂V/∂x)i} represents the set of initially unknown fourth-order-accuratex-deriv-
atives ofV at all grid-points along the observation cut; and {Vi} represents the set of
known values ofV at the same grid-points. Upon writing (7.7) at each grid-point along
the cut, a system of simultaneous equations for the unknowns{(∂V/∂x)i} is obtained.
From the subscripts in (7.7), we see that this linear system has a tridiagonal matrix. This
can be efficiently solved to yield{(∂V/∂x)i} in one step.

It was shown in TURKEL [1998, Eq. (2.70b)] that the Ty operator results in the fol-
lowing intrinsic grid-velocity anisotropy for a two-dimensional square-cell grid:

(7.8)
c∗

c
= 12Nλ

π

√√√√[ sin
(π cosφ

Nλ

)
11+ cos

(2π cosφ
Nλ

)]2

+
[ sin

(π sinφ
Nλ

)
11+ cos

(2π sinφ
Nλ

)]2

.

From TURKEL [1998, Eq. (2.71b)], the phase-velocity anisotropy error is

(7.9)�ṽaniso|Ty 4th-order∼= 17· 3 · 2 · π4

2880(Nλ)4
× 100%∼= π4

28(Nλ)4
× 100%.

Fig. 7.1 compares the accuracy of the Ty method to the Yee algorithm for a generic
two-dimensional wave-propagation problem, a sinusoidal line source radiating in free
space after being switched on att = 0. Here, Ty(2,4) and Ty(4,4) refer to the im-
plicit spatial-differentiation scheme of (7.7) used in conjunction with second-order

FIG. 7.1. Comparison of high-resolution (Nλ = 40) Yee and low-resolution (Nλ = 5) Ty errors in theL2
norm for a radially propagating sinusoidal wave as a function of the simulated time.Source: E. Turkel,
Chapter 2 inAdvances in Computational Electrodynamics: The Finite-Difference Time-Domain Method,

A. Taflove, ed., © 1998 Artech House, Inc.
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Yee and fourth-order Runge–Kutta time-stepping, respectively. The two Ty approaches
are implemented on square-cell grids of sampling-densityNλ with separate, accuracy-
optimized Courant factors:S = 1/18 for Ty(2,4) andS = 1/4 for Ty(4,4).

From Fig. 7.1, we see that both Ty schemes run withNλ = 5 achieve accuracy com-
parable to that of the Yee algorithm run withNλ = 40 andS = 2/3. Under these
conditions, both Ty methods are much more efficient than Yee’s algorithm, requiring
(40/5)2:1 = 82:1 less computer storage and 23:1 less running-time. The permissible
coarseness of the Ty grid is decisive in reducing its running-time, more than compen-
sating for the extra operations required by its tridiagonal matrix inversions. These ad-
vantages in computer resources scale to the order of 83:1 in three dimensions.

7.3.3. Discussion
Consider comparing (6.27) with (7.6) and (7.9). This allows us to form approximate
ratios of the numerical phase-velocity anisotropy errors of the fourth-order-accurate
spatial-differencing schemes discussed above relative to the Yee algorithm:

(7.10)
�ṽaniso|explicit 4th-order

�ṽaniso|Yee

∼= 2π2

3(Nλ)2
; �ṽaniso|Ty 4th-order

�ṽaniso|Yee

∼= 3π2

7(Nλ)2
.

With the reminder that these ratios were derived based upon assumingNλ > 10, we see
that greatly reduced�ṽaniso error is possible for both fourth-order spatial-differencing
schemes. In addition, optimally choosing the Courant numberS for each fourth-order
spatial technique permits minimizing the overall error, including�ṽphysical. From a
growing set of published results similar to those of Fig. 7.1, we conclude that fourth-
order-accurate explicit and implicit spatial schemes allow modeling electromagnetic
wave-propagation and interaction problems that are at least 8 times the electrical size of
those permitted by the Yee algorithm. This is a very worthwhile increase in capability.

However, this improvement is not without cost. Although easy to set up in
homogeneous-material regions, the larger stencil needed to calculate fourth-order spa-
tial differences is troublesome when dealing with material interfaces. Metal boundaries
are especially challenging since they effectively cause field discontinuities in the grid.
Special boundary conditions required for such interfaces significantly complicate the
computer software used to render structures in the grid.

7.3.4. Fourth-order-accurate approximation of jumps in material parameters at
interfaces

As stated above, special boundary conditions must be derived and programmed to deal
with material discontinuities when implementing high-order-accuracy finite-difference
approximations of spatial derivatives. This is because the nonlocal nature of the numer-
ical space-differentiation process may convey electromagnetic field data across such
discontinuities in a nonphysical manner.

TURKEL [1998] reported a means to markedly reduce error due to abrupt dielectric
interfaces. This approach replaces the discontinuous permittivity functionε by a fourth-
order-accurate smooth implicit approximation. (A similar strategy can be applied to
jumps inµ.) Relative to the use of a polynomial approximation toε, this strategy avoids
the overshoot artifact. We note that, with an implicit interpolation,εvaries in the entire
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domain and not just near the interface. However, far from the interface, the variation is
small.

Consider a dielectric interface separating two regions defined along thex-axis of the
space lattice. Following TURKEL [1998, Eq. (2.82)], a fourth-order-accurate interpola-
tion of the permittivity distribution with grid positioni can be achieved using

1

8


10 −5 4 −1 · · 0
1 6 1 0 · · 0
0 1 6 1 0 · 0
· · · · · · ·
0 · · 0 1 6 1
0 · · −1 4 −5 10




ε1
ε2
·
·

εp−1



(7.11)= 1

2




ε3/2
ε5/2

·
εp−3/2
εp−1/2

+


ε1/2
ε3/2

·
εp−5/2
εp−3/2


 .

Here, [ε1, ε2, . . . , εp−1] is the initially unknown set of values of the smooth approxi-
mation to the abrupt dielectric interface; and [ε1/2, ε3/2, . . . , εp−1/2] is the known set
of permittivities for the original dielectric interface geometry. Inversion of the linear
system of (7.11) yields the desired smooth approximation, [ε1, ε2, . . . , εp−1].

TURKEL [1998] presented a comparative example (shown in Fig. 7.2) of the use
of this dielectric interface smoothing technique for both the Yee and Ty algorithms.
His example modeled the standing wave within a two-dimensional rectangular cavity
comprised of a block of lossless dielectric ofεr = 4 surrounded by free space. An
available exact solution for the sinusoidal space–time variation of the standing-wave
mode was used to specify the computational domain’s initial conditions and boundary
conditions for both the Yee and Ty simulations. It was also used to developL2-normed
errors of the calculated Yee and Ty fields as a function of the simulated time.

Fig. 7.2(a) compares the error of the Ty method with that of the Yee algorithm for
the case whereε at the dielectric interfaces of the cavity is simply set to the arithmetic
average of the values on both sides. Here, both the Yee and Ty grids use square unit
cells whereinNλ = 30 within the dielectric material. The Courant factors are selected
asSYee = 2/3 andSTy(2,4) = 1/18. We see from this figure that, while the Ty results
show less error than the Yee data, the error performance of the Ty scheme is clearly hurt
by the treatment of the interfaces, which gives only second-order accuracy.

Fig. 7.2(b) shows the corresponding numerical errors for the case where the permit-
tivity is smoothed as per (7.11). While there is a modest reduction in the error of the Yee
data, there is a much greater reduction in the error of the Ty results. In additional studies
discussed by TURKEL [1998], it was demonstrated that the Yee error can be reduced to
that of Ty by increasing the Yee-grid-sampling density to a level eight times that of Ty,
just what was observed for the free-space propagation example discussed previously
in the context of Fig. 7.1. Thus, we see that fourth-order-accurate smoothing of abrupt
permittivity jumps succeeds in preserving the fourth-order-accuracy advantage of Ty
versus Yee observed for the homogeneous-permittivity case.
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(a)

(b)

FIG. 7.2. Comparison of Yee and Ty errors (L2 norm) for the standing-wave fields within a
rectangular dielectric cavity. The same grid-sampling density (Nλ = 30) is used for both algo-
rithms. (a) Second-order-accurate arithmetic averaging of the permittivity at the dielectric interfaces.
(b) Fourth-order-accurate smoothing of the permittivity at the dielectric interfaces as per (4.86).Source:
E. Turkel, Chapter 2 inAdvances in Computational Electrodynamics: The Finite-Difference Time-Domain

Method, A. Taflove, ed., © 1998 Artech House, Inc.

7.4. Strategy 3: Use hexagonal grids

Regular hexagonal grids in two dimensions have been proposed to reduce the numerical
phase-velocity anisotropy well below that of Yee’s Cartesian mesh. Here, the primary
grid is composed of equilateral hexagons having edge length�s. Each hexagon can be
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considered to be the union of six equilateral triangles. Connecting the centroids of these
triangles yields a second set of regular hexagons that comprises a dual grid.

Fig. 5.2 illustrated for the TMz case in two dimensions the two principal ways of
arrangingE andH vector components about hexagonal grids, as discussed by LIU, Y.
[1996] and reviewed in Section 5.2. There, the finite-difference equations for the TMz
mode for the unstaggered, collocated hexagonal grid of Fig. 5.2(a) were given by (5.3),
and the finite-difference equations for the TMz mode for the staggered, uncollocated
hexagonal grid of Fig. 5.2(b) were given by (5.4).

Using the analysis method of Section 6.5.2, LIU, Y. [1996] obtained the following
expressions for the numerical phase-velocity anisotropy error for the hexagonal grids of
Fig. 5.2:

(7.12)�ṽaniso| hex.grid,
Fig. 5.2(a)

∼= 1 · 2 · π4

120(Nλ)4
× 100%= π4

60(Nλ)4
× 100%,

(7.13)�ṽaniso| hex.grid,
Fig. 5.2(b)

∼= 1 · 2 · π4

720(Nλ)4
× 100%= π4

360(Nλ)4
× 100%.

Interestingly, we note that�ṽaniso for both hexagonal grids exhibits afourth-orderde-
pendence on the grid-sampling densityNλ despite the second-order accuracy of each
spatial difference used. As shown by LIU, Y. [1996], this is because the leading second-
order error term becomes isotropic for the hexagonal gridding case, with a value exactly
equal to the average of itsφ-dependent Cartesian counterpart.

Comparison of�ṽaniso of the Yee algorithm given by (6.27) with�ṽaniso of the
hexagonal gridding given by (7.12) and (7.13) yields the following error ratios:

(7.14)
�ṽaniso|hex.grid, Fig. 5.2(a)

�ṽaniso|Yee
(Nλ)∼= π2

5(Nλ)2

and

(7.15)
�ṽaniso|hex.grid, Fig. 5.2(b)

�ṽaniso|Yee
(Nλ)∼= π2

30(Nλ)2
.

Hexagonal gridding is seen to yield velocity-anisotropy errors as little as 1/300th that
of the Yee grid at a sampling density of 10 points per wavelength.

We can also compare the velocity-anisotropy errors of hexagonal gridding with those
of the fourth-order gridding schemes discussed previously:

(7.16)

�ṽaniso|hex.grid, Fig. 5.2(a)

�ṽaniso|explicit 4th-order
(Nλ)∼= 3

10
; �ṽaniso|hex.grid, Fig. 5.2(a)

�ṽaniso|Ty 4th-order
(Nλ)∼= 7

15
;

(7.17)

�ṽaniso|hex.grid, Fig. 5.2(b)

�ṽaniso|explicit 4th-order
(Nλ)∼= 1

20
; �ṽaniso|hex.grid, Fig. 5.2(b)

�ṽaniso|Ty 4th-order
(Nλ)∼= 7

90
.

We see that hexagonal gridding yields less velocity-anisotropy error than the two fourth-
order-accurate Cartesian spatial-differencing techniques reviewed previously. In the
case of the hexagonal grid of Fig. 5.2(b), this dispersion error is lower by more than
one order-of-magnitude.
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Hexagonal gridding has a second advantage relative to the fourth-order spatial algo-
rithms: it uses only nearest-neighbor field data. Therefore, hexagonal grids can model
material discontinuities including metal boundaries as easily as the Yee algorithm. There
is no need to develop special boundary conditions.

What, if any, are the limitations in using hexagonal grid algorithms relative to Yee’s
method? The answer is: none very significant in two dimensions. This is because it
is only moderately more complicated to generate (even manually) uniform hexagonal
grids than it is to generate uniform Cartesian grids. The difficulty arises in attempting
to extend hexagonal gridding to three dimensions. As shown in Fig. 5.3, such an ex-
tension involves filling space with tetradecahedron and dual-tetrahedron unit cells. This
increases the complexity of the computational mesh to the point where sophisticated
computer-based mesh-generation techniques are mandatory.

7.5. Strategy 4: Use discrete Fourier transforms to calculate the spatial derivatives

The fourth and final approach reviewed here for reduction of the numerical dispersion
artifact is thepseudospectral time-domain(PSTD) method of LIU, Q.H. [1996], LIU,
Q.H. [1997]. This technique uses a discrete Fourier transform (DFT) algorithm to rep-
resent the spatial derivatives in the Maxwell’s equations’ computational lattice. The fast
Fourier transform (FFT) can also be applied to increase numerical efficiency.

7.5.1. Formulation
The PSTD method works on unstaggered, collocated Cartesian space lattices wherein
all field components are located at the same points. An example of such an arrangement
is the two-dimensional TMz grid of Fig. 5.1(a). To see how PSTD works, consider anx-
directed cut through this grid. At every sample point along this cut, we wish to compute
thex-derivatives of the general field componentV . Let {Vi} denote the set of initially
known values ofV at all grid-points along the observation cut, and let{(∂V/∂x)i}
denote the set of initially unknownx-derivatives ofV at the same grid-points. Then,
using the differentiation theorem for Fourier transforms, we can write:

(7.18)

{
∂V

∂x

∣∣∣∣
i

}
= −F−1(j k̃xF{Vi}

)
,

whereF andF−1 denote respectively the forward and inverse DFTs, andk̃x is the
Fourier transform variable representing thex-component of the numerical wavevector.
In this manner, the entire set of spatial derivatives ofV along the observation cut can be
calculated in one step. In multiple dimensions, this process is repeated for each obser-
vation cut parallel to the major axes of the space lattice.

According to the Nyquist sampling theorem, the representation in (7.18) isexactfor
|k̃x | � π/�x, i.e.,�x � λ̃/2. Thus, the spatial-differencing process here can be said to
be of “infinite order” for grid-sampling densities of two or more points per wavelength.
The wraparound effect, a potentially major limitation caused by the periodicity assumed
in the FFT, is eliminated by using the perfectly matched layer absorbing boundary con-
dition (to be discussed in Section 10). Finally, the time-differencing for PSTD uses
conventional second-order-accurate Yee leapfrogging.
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LIU, Q.H. [1996], LIU, Q.H. [1997], derived the following expressions for the
wavenumber and phase velocity of a sinusoidal numerical wave of temporal period
T = 2π/ω propagating in an arbitrary direction within a three-dimensional PSTD space
lattice:

(7.19)|�̃k| = 2

c�t
sin

(
ω�t

2

)
,

(7.20)ṽp = ω

k̃
= ω

2
c�t

sin
(
ω�t

2

) = ω�t/2

sin(ω�t/2)
c.

Eq. (7.20) implies that the numerical phase velocity isindependentof the propagation
direction of the wave, unlike any of the methods considered previously. Applying our
definitions of numerical phase-velocity error, we therefore have the following figures of
merit for the PSTD method:

(7.21)

�ṽphysical|PSTD=
[

ω�t/2

sin(ω�t/2)
− 1

]
× 100%=

[
π/NT

sin(π/NT )
− 1

]
× 100%,

(7.22)�ṽaniso|PSTD= 0,

where we define the temporal sampling densityNT = T/�t time samples per wave-
oscillation period.

7.5.2. Discussion
Remarkably,�ṽaniso is zero for the PSTD method forall propagating sinusoidal waves
sampled atNλ � 2. Therefore, to specify the gridding density of the PSTD simulation,
we need only a reliable estimate ofλmin, the fastest oscillating spectral component of
significance. This estimate is based upon the wavelength spectrum of the exciting pulse
and the size of significant structural details such as material inhomogeneities. Then,
the space-cell dimension is set at�= λmin/2, regardless of the problem’s overall elec-
trical size. This is because our choice of� assures zero�ṽaniso error, and thus, zero
accumulation of this error even if the number of space cells increases without bound.
Consequently, we conclude that:

• The density of the PSTD mesh-sampling is independent of the electrical size of the
modeling problem.

However, the fact that�ṽaniso= 0 doesnot mean that PSTD yields perfect results.
In fact, (7.21) shows that there remains a numerical phase-velocity error relative toc.
This residual velocity error is not a function of the wave-propagation directionφ, and
is therefore isotropic within the space grid. The residual velocity error arises from the
Yee-type leapfrog time-stepping used in the algorithm, and is a function only ofNT .
Table 7.1 provides representative values of this residual velocity error.

The key point from Table 7.1 is thatNT limits the accuracy of the PSTD technique
when modeling impulsive propagation. This is not an issue for a monochromatic wave
where there is only a single value ofNT , and�ṽphysical can be nulled in the manner
of Strategy 1. For a pulse, however, with�t a fixed algorithm parameter, there exists a
spread of equivalentNT values for the spectral components of the pulse which possess a
range of temporal periodsT . This causes a spread ofṽp over the pulse spectrum, which
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TABLE 7.1
Residual numerical phase-velocity error of the PSTD method versus its time-sampling

NT �ṽphysical NT �ṽphysical

2 +57% 15 +0.73%
4 +11% 20 +0.41%
8 +2.6% 25 +0.26%

10 +1.7% 30 +0.18%

in turn results in an isotropic progressive broadening and distortion of the pulse wave-
form as it propagates in the grid. To bound such dispersion, it is important to choose�t

small enough so that it adequately resolves the periodTmin of the fastest oscillating spec-
tral componentλmin. Because this dispersion is cumulative with the wave-propagation
distance, we have a second key point:

• The density of the PSTD time sampling must increase with the electrical size of
the modeling problem if we apply a fixed upper bound on the maximum total phase
error of propagating waves within the mesh.

Despite this need for a small�t , PSTD can provide a large reduction in computer
resources relative to the Yee algorithm for electrically large problems not having spa-
tial details or material inhomogeneities smaller thanλmin/2. Increased efficiency is ex-
pected even relative to the fourth-order-accurate spatial algorithms reviewed previously.
L IU, Q.H. [1996], LIU, Q.H. [1997] reported that, within the range of problem sizes
from 16–64 wavelengths, the use of PSTD permits an 8D : 1 reduction in computer
storage and running time relative to the Yee algorithm, whereD is the problem dimen-
sionality. While this savings is comparable to that shown for the fourth-order spatial
techniques, we expect the PSTD advantage to increase for even larger problems. In fact,
the computational benefit of PSTD theoretically increases without limit as the electrical
size of the modeling problem expands.

The second topic in our discussion is whether PSTD’s global calculation of space
derivatives along observation cuts through the lattice (similar to the Ty method) has dif-
ficulties at material interfaces. An initial concern is that PSTD might yield nonphysical
results for problems having abrupt jumps inε unless anε-smoothing technique such as
(7.11) is used. However, this is not the case. As reported by LIU, Q.H. [1996], LIU, Q.H.
[1997], the PSTD method is successful for dielectric interfaces because, at such discon-
tinuities, the normal derivatives that it calculates via DFT or FFT are implemented on
continuous tangential-field data across the interface.

However, structures having metal surfaces comprise a very important set of problems
where the required continuity of tangential fields within the PSTD space lattice is ef-
fectively violated. Depending upon the orientation and thickness of the metal surfaces,
tangential-field discontinuities could appear for two reasons:

(1) A space-cell boundary lies at a metal surface or within a metal layer. The tangen-
tial H -field within the space cell drops abruptly to zero at the metal surface, and
remains at zero for the remainder of the space cell.

(2) A metal sheet splits the space lattice so there exist distinct lit and shadow regions
within the lattice. Here, the tangentialH -field on the far (shadowed or shielded)
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side of the metal sheet may be physically isolated from the field immediately
across the metal sheet on its near (lit) side. Gross error is caused by the global
nature of PSTD’s spatial-derivative calculation which nonphysically transports
field information directly across the shielding metal barrier from the lit to the
shadow sides.

Until these problems are solved by the prescription of special boundary conditions,
PSTD will likely find its primary applications in Cartesian-mesh modeling of struc-
tures comprised entirely of dielectrics. We note that the PSTD usage of collocated field
components simplifies rendering such structures within the mesh. It is also ideal for
modeling nonlinear optical problems where the local index of refraction is dependent
upon a power of the magnitude of the local�E. Here, collocation of the vector com-
ponents of�E avoids the need for error-causing spatial interpolations of nearby electric
field vector components staggered in space.

8. Numerical stability

8.1. Introduction

In Section 6, we saw that the choice of� and�t can affect the propagation charac-
teristics of numerical waves in the Yee space lattice, and therefore the numerical error.
In this section, we show that, in addition,�t must be bounded to ensure numerical
stability. Our approach to determine the upper bound on�t is based upon the complex-
frequency analysis reported by TAFLOVE and HAGNESS[2000, pp. 133–140]. As noted
there, the complex-frequency approach is conceptually simple, yet rigorous. It also al-
lows straightforward estimates of the exponential growth rate of unstable numerical
solutions.

Subsequently, Section 9 will review a representative approach of a new class of algo-
rithms proposed to eliminate the need to bound�t . This class replaces Yee’s leapfrog
time-stepping with an implicit alternating-direction technique.

8.2. Complex-frequency analysis

We first postulate a sinusoidal traveling wave present in the three-dimensional FDTD
space lattice and discretely sampled at (xI , yJ , zK, tn), allowing for the possibility of a
complex-valued numerical angular frequency,ω̃= ω̃real+ jω̃imag. A field vector in this
wave can be written as

�V ∣∣n
I,J,K

= �V0ej[(ω̃real+jω̃imag)n�t−k̃x I�x−k̃yJ�y−k̃zK�z]

(8.1)= �V0e−ω̃imagn�tej(ω̃realn�t−k̃x I�x−k̃yJ�y−k̃zK�z),

wherek̃ is the wavenumber of the numerical sinusoidal traveling wave. We note that
(8.1) permits either a constant wave amplitude with time (ω̃imag = 0), an exponentially
decreasing amplitude with time (ω̃imag> 0), or an exponentially increasing amplitude
with time (ω̃imag< 0).
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Given this basis, we proceed to analyze numerical dispersion relation (6.10) allowing
for a complex-valued angular frequency:[

1

c�t
sin

(
ω̃�t

2

)]2

=
[

1

�x
sin

(
k̃x�x

2

)]2

+
[

1

�y
sin

(
k̃y�y

2

)]2

(8.2)+
[

1

�z
sin

(
k̃z�z

2

)]2

.

We first solve (8.2) for̃ω. This yields

(8.3)ω̃= 2

�t
sin−1(ξ),

where

(8.4)

ξ = c�t

√
1

(�x)2
sin2

(
k̃x�x

2

)
+ 1

(�y)2
sin2

(
k̃y�y

2

)
+ 1

(�z)2
sin2

(
k̃z�z

2

)
.

We observe from (8.4) that

(8.5)0 � ξ � c�t

√
1

(�x)2
+ 1

(�y)2
+ 1

(�z)2
≡ ξupper bound

for all possible real values of̃k, that is, those numerical waves having zero exponential
attenuation per grid space cell.ξupper boundis obtained when each sin2 term under the
square root of (8.4) simultaneously reaches a value of 1. This occurs for the propagating
numerical wave having the wavevector components

(8.6a)k̃x = ± π

�x
;

(8.6b)k̃y = ± π

�y
;

(8.6c)k̃z = ± π

�z
.

It is clear thatξupper boundcan exceed 1 depending upon the choice of�t . This yields
complex values of sin−1(ξ) in (8.3), and therefore complex values ofω̃. To investigate
further, we divide the range ofξ given in (8.5) into two subranges.

8.2.1. Stable range:0� ξ � 1
Here, sin−1(ξ) is real-valued and hence, real values ofω̃ are obtained in (8.3). With
ω̃imag= 0, (8.1) yields a constant wave amplitude with time.

8.2.2. Unstable range:1< ξ < ξupper bound

This subrange exists only if

(8.7)ξupper bound= c�t

√
1

(�x)2
+ 1

(�y)2
+ 1

(�z)2
> 1.
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The unstable range is defined in an equivalent manner by

(8.8)�t >
1

c
√

1
(�x)2

+ 1
(�y)2

+ 1
(�z)2

≡�t stable
limit-3D

.

To prove the claim of instability for the rangeξ > 1, we substitute the complex-valued
sin−1(ξ) function of (6.34) into (8.3) and solve for̃ω. This yields

(8.9)ω̃= −j2

�t
ln
(
jxi +

√
1− ξ2

)
.

Upon taking the natural logarithm, we obtain

(8.10)ω̃real= π

�t
; ω̃imag= − 2

�t
ln
(
ξ +

√
ξ2 − 1

)
.

Substituting (8.10) into (8.1) yields

�V ∣∣n
I,J,K

= �V0e2n ln(ξ+
√
ξ2−1)ej[(π/�t)(n�t)−k̃x I�x−k̃yJ�y−k̃zK�z]

(8.11)= �V0
(
ξ +

√
ξ2 − 1

)∗∗2nej[(π/�t)(n�t)−k̃x I�x−k̃yJ�y−k̃zK�z],

where∗∗2n denotes the 2nth power. From (8.11), we define the following multiplicative
factor greater than 1 that amplifies the numerical wave every time step:

(8.12)qgrowth≡ (
ξ +

√
ξ2 − 1

)2
.

Eqs. (8.11) and (8.12) define an exponential growth of the numerical wave with time-
step numbern. We see that the dominant exponential growth occurs for the most positive
possible value ofξ , i.e.,ξupper bounddefined in (8.5).

8.2.3. Example of calculating a stability bound: 3D cubic-cell lattice
Consider the practical case of a three-dimensional cubic-cell space lattice with�x =
�y =�z=�. From (8.8), numerical instability arises when

(8.13)�t >
1

c
√

1
(�)2

+ 1
(�)2

+ 1
(�)2

= 1

c
√

3
(�)2

= �

c
√

3
.

We define an equivalent Courant stability limit for the cubic-cell lattice case:

(8.14)S stability
limit-3D

= 1√
3
.

From (8.6), the dominant exponential growth is seen to occur for numerical waves prop-
agating along the lattice diagonals. The relevant wavevectors are

(8.15)�̃k = π

�
(±x̂ ± ŷ ± ẑ)→ |�̃k| = π

√
3

�
→ λ̃=

(
2
√

3

3

)
�,

wherex̂, ŷ, andẑ are unit vectors defining the major lattice axes. Further, (8.5) yields

(8.16)ξupper
bound

= c�t

√
1

(�)2
+ 1

(�)2
+ 1

(�)2
=
(
c�t

�

)√
3= S

√
3.
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From (8.12), this implies the following maximum possible growth factor per time step
under conditions of numerical instability:

(8.17)qgrowth≡ [
S
√

3+
√(
S
√

3
)2 − 1

]2 for S � 1√
3
.

8.2.4. Courant factor normalization and extension to 2D and 1D grids
It is instructive to use the results of (8.14) to normalize the Courant factorS in (8.17).
This will permit us to generalize the three-dimensional results for the maximum growth
factorq to two-dimensional and one-dimensional Yee grids. In this spirit, we define

(8.18)Snorm-3D ≡ S

S stability
limit-3D

= S

(1/
√

3)
= S

√
3.

Then, (8.17) can be written as

(8.19)qgrowth= [
Snorm-3D +

√
(Snorm-3D)2 − 1

]2 for Snorm-3D � 1.

Given this notation, it can be shown that analogous expressions for the Courant stability
limit and the growth-factor under conditions of numerical instability are given by:

Two-dimensional square Yee grid:

(8.20)S stability
limit-2D

= 1√
2
,

(8.21)Snorm-2D ≡ S

S stability
limit-2D

= S

(1/
√

2)
= S

√
2.

Here, dominant exponential growth occurs for numerical waves propagating along the
grid diagonals. The relevant wavevectors are

(8.22)�̃k = π

�
(±x̂ ± ŷ)→ |�̃k| = π

√
2

�
→ λ̃= √

2�.

This yields the following solution growth factor per time step:

(8.23)qgrowth= [
Snorm-2D +

√
(Snorm-2D)2 − 1

]2 for Snorm-2D � 1.

One-dimensional uniform Yee grid:

(8.24)S stability
limit-1D

= 1,

(8.25)Snorm-1D ≡ S

S stability
limit-1D

= S

1
= S.

Dominant exponential growth occurs for the wavevectors

(8.26)�̃k = ±π

�
x̂ → |�̃k| = π

�
→ λ̃= 2�.
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This yields the following solution growth factor per time step:

(8.27)qgrowth= (
S +

√
S2 − 1

)2 for S � 1.

We see from the above discussion that the solution growth factorq under conditions
of numerical instability is the same, regardless of the dimensionality of the FDTD space
lattice, if the same normalized Courant factor is used. A normalized Courant factor equal
to one yields no exponential solution growth for any dimensionality grid. However, a
normalized Courant factor only 0.05% larger, i.e.,

S = 1.0005 for a uniform, one-dimensional grid;
S = 1.0005× (1/

√
2)= 0.707460 for a uniform, square, two-dimensional grid;

S = 1.0005× (1/
√

3)= 0.577639 for a uniform, cubic, three-dimensional grid

yields a multiplicative solution growth of 1.0653 every time step for each dimensionality
grid. This is equivalent to a solution growth of 1.8822 every 10 time steps, 558.7 every
100 time steps, and 2.96× 1027 every 1000 time steps.

8.3. Examples of calculations involving numerical instability in a 1D grid

We first consider an example of the beginning of a numerical instability arising be-
cause the Courant stability condition is violated equally ateverypoint in a uniform
one-dimensional grid. Fig. 8.1(a) graphs three snapshots of the free-space propagation
of a Gaussian pulse within a grid having the Courant factorS = 1.0005. The exciting
pulse waveform has a 40�t temporal width between its 1/e points, and reaches its peak
value of 1.0 at time stepn= 60. Graphs of the wavefunctionu(i) versus the grid coor-
dinatei are shown at time stepsn= 200,n= 210, andn= 220. We see that the trailing
edge of the Gaussian pulse is contaminated by a rapidly oscillating and growing noise
component that does not exist in Fig. 6.6(a), which shows the same Gaussian pulse at
the same time but withS � 1.0. In fact, the noise component in Fig. 8.1(a) results from
the onset of numerical instability within the grid due toS = 1.0005> 1.0. Because this
noise grows exponentially with time-step numbern, it quickly overwhelms the desired
numerical results for the propagating Gaussian pulse. Shortly thereafter, the exponential
growth of the noise increases the calculated field values beyond the dynamic range of
the computer being used, resulting in run-time floating-point overflows and errors.

Fig. 8.1(b) is an expanded view of Fig. 8.1(a) between grid pointsi = 1 andi = 20,
showing a segment of the numerical noise on the trailing edge of the Gaussian pulse.
We see that the noise oscillates with a spatial period of 2 grid cells, i.e.,λ̃ = 2�x, in
accordance with (8.26). In addition, upon analyzing the raw data underlying Fig. 8.1(b),
it is observed that the growth factorq is in the range 1.058–1.072 per time step. This
compares favorably with the theoretical value of 1.0653 determined using (8.27).

We next consider an example of the beginning of a numerical instability arising be-
cause the Courant stability condition is violated at only asingle point in a uniform
one-dimensional grid. Fig. 8.2(a) graphs two snapshots of the free-space propagation of
a narrow Gaussian pulse within a grid having the Courant factorS = 1.0 at all points
except ati = 90, whereS = 1.2075. The exciting pulse has a 10�t temporal width be-
tween its 1/e points, and reaches its peak value of 1.0 at time stepn = 60. Graphs of
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(a)

(b)

FIG. 8.1. The beginning of numerical instability for a Gaussian pulse propagating in a uniform, free-space
1D grid. The Courant factor isS = 1.0005 at each grid point. (a) Comparison of calculated pulse propagation
at n = 200,210, and 220 time steps over grid coordinatesi = 1 throughi = 220. (b) Expanded view of (a)

over grid coordinatesi = 1 throughi = 20.

the wavefunctionu(i) versus the grid coordinatei are shown at time-stepsn= 190 and
n= 200. In contrast to Fig. 8.1(a), the rapidly oscillating and growing noise component
due to numerical instability originates at just a single grid point along the trailing edge
of the Gaussian pulse (i = 90) whereS exceeds 1.0, rather than along the entirety of the
trailing edge. Despite this localization of the source of the instability, the noise again
grows exponentially with time step numbern. In this case, the noise propagates sym-
metrically in both directions from the unstable point. Ultimately, the noise again fills
the entire grid, overwhelms the desired numerical results for the propagating Gaussian
pulse, and causes run-time floating-point overflows.

Fig. 8.2(b) is an expanded view of Fig. 8.2(a) between grid pointsi = 70 andi =
110, showing how the calculated noise due to the numerical instability originates at
grid point i = 90. Again, in accordance with (8.26), the noise oscillates with a spatial
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(a)

(b)

FIG. 8.2. The beginning of numerical instability for a Gaussian pulse propagating in a uniform, free-space
1D grid. The Courant factor isS = 1 at all grid points buti = 90, whereS = 1.2075. (a) Comparison of
calculated pulse propagation atn= 190 andn= 200 time steps over grid coordinatesi = 1 throughi = 160.

(b) Expanded view of (a) over grid coordinatesi = 70 throughi = 110.

period of 2 grid cells, i.e.,̃λ = 2�x. However, the rate of exponential growth here is
much less than that predicted by (8.27), whereinall grid points were assumed to violate
Courant stability. Upon analyzing the raw data underlying Fig. 8.2(b), a growth factor of
q ∼= 1.31 is observed per time step. This compares toq ∼= 3.55 per time step determined
by substitutingS = 1.2075 into (8.27). Thus, it is clear that a grid having one or just a
few localized points of numerical instability can “blow up” much more slowly than a
uniformly unstable grid having a comparable or even smaller Courant factorS.

8.4. Example of calculation involving numerical instability in a 2D grid

We next consider an FDTD modeling example where the Courant stability condition
is violated equally at every point in a uniform two-dimensional TMz grid. To allow
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(a)

(b)

FIG. 8.3. Effect of numerical instability upon a two-dimensional pulse-propagation model. (a) Visualization
of the two-dimensionalEz distribution atn= 40 forS = 1.005× (1/

√
2). (b)Ez distributions along the grid

axes and grid diagonal atn= 200 forS = 1.0005× (1/
√

2). The theoretical and measured growth factor is
qgrowth∼= 1.065 per time step.

direct comparison with a previous example of stable pulse propagation, the same grid
discussed in Section 6.6.5 and Fig. 6.7 is used. The overall grid size is again 360×
360 square cells with�x = �y = 1.0 ≡ �. Numerical excitation to the grid is again
provided by specifying a unit-step time-function for the centerEz component. The only
condition that differs from those assumed in Section 6.6.5 is that the Courant stability
factorS is increased just above the threshold for numerical instability given by (8.20).

Fig. 8.3(a) visualizes the two-dimensionalEz distribution atn = 40 time steps for
S = 1.005× (1/

√
2). This value ofS quickly generates a region of numerical instabil-

ity spreading out radially from the source, where the field amplitudes are large enough
to mask the normal wave propagation. This permits a high-resolution visualization of
individualEz components in the grid which are depicted as square pixels. We see that
the unstable field pattern has the form of a checkerboard wherein the dark and gray pix-
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els denote positive and negativeEz field values, respectively. Here, the pixel saturation
denotes the relative amplitude of its positive or negative value.

Fig. 8.3(b) graphs the variation ofEz versus radial distance from the source atn =
200 time steps forS = 1.0005× (1/

√
2). Two distinct plots are shown. The solid line

graph exhibits a rapid spatial oscillation with the period 2�. This is theEz behavior
along theφ = 0◦, 90◦ (and similar on-axis) cuts through the grid. The smooth dashed-
dotted curve with no spatial oscillation represents theEz behavior along theφ = 45◦
(and similar oblique) cuts through the grid. Analysis of the underlying data reveals
growth factors in the range 1.060 to 1.069 per time step along the leading edge of the
instability region. This agrees very well withqgrowth = 1.0653 calculated using (8.23),
and is an excellent validation of the Courant-factor-normalization theory.

An interesting observation in Fig. 8.3(b) is that the smoothEz variation along
φ = 45◦ forms the envelope of the oscillatoryEz distribution observed along the grid’s
major axes. This difference in behavior is confirmed in Fig. 8.3(a), which shows that
theφ = 45◦ cut lies entirely within a diagonal string of dark (positive) pixels, whereas
theφ = 0◦ cut passes through alternating dark (positive) and gray (negative) pixels. We
attribute this behavior to (8.22), which states that the exponential growth along the grid
diagonal has̃λ = √

2�. That is, the numerical wavelength along the 45◦ observation
cut for the unstable mode is exactly the diagonal length across one� × � grid cell.
Thus, there exists 2π (or equivalently, 0) phase shift of the unstable mode between ad-
jacent observation points along theφ = 45◦ cut. This means that adjacentEz values
alongφ = 45◦ cannot change sign. In contrast, (8.22) reduces tok̃ = π/�, i.e.,λ̃= 2�,
for the unstable mode along theφ = 0◦, 90◦ cuts. Therefore, there isπ phase shift of
the unstable mode between adjacent observation points alongφ = 0◦, 90◦; yielding the
point-by-point sign reversals (rapid spatial oscillations) seen in Fig. 8.3(b).

8.5. Linear instability when the normalized Courant factor equals 1

The general field vector postulated in (8.1) permits a numerical wave amplitude that
is either constant, exponentially growing, or exponentially decaying as time-stepping
progresses. Recently, MIN and TENG [2001] have identified a linear growth mode, i.e., a
linear instability, that can occur if the normalized Courant factor equals exactly 1. While
this growth mode is much slower than the exponential instability discussed previously,
the analyst should proceed with caution when usingSnorm= 1.

8.6. Generalized stability problem

The previous discussion focused on the numerical stability of the Yee algorithm. How-
ever, the stability of the entire FDTD procedure depends upon more than this. In fact,
a generalized stability problemarises due to interactions between the Yee algorithm
and any augmenting algorithms used to model boundary conditions, variable meshing,
and lossy, dispersive, nonlinear, and gain materials. Factors involved in the generalized
stability problem are now reviewed.
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8.6.1. Boundary conditions
Numerical realizations of electromagnetic field boundary conditions that require the
processing of field data located nonlocally in space or time can lead to instability of the
overall time-stepping algorithm. An important example of this possibility arises when
implementingabsorbing boundary conditions(ABCs) at the outermost space-lattice
planes to simulate the extension of the lattice to infinity for modeling scattering or radi-
ation phenomena in unbounded regions. ABCs have been the subject of much research
since the 1970s, with several distinct physics modeling approaches and numerical im-
plementations emphasized by the FDTD research community.

The nature of the numerical stability problem here is exemplified by one of the most
popular ABCs of the early 1990s, that reported by LIAO, WONG, YANG and YUAN

[1984]. This ABC implements a polynomial extrapolation of field data at interior grid
points and past time steps to the desired outer-boundary grid point at the latest time step.
However, the Liao ABC was found by later workers to be marginally stable. It requires
double-precision computer arithmetic and/or perturbation of its algorithm coefficients
away from the theoretical optimum to ensure numerical stability during prolonged time
stepping. Similar issues had previously arisen with regard to the ABCs of ENGQUIST

and MAJDA [1977] and HIGDON [1986]. More recently, the perfectly matched layer
ABC of BERENGER[1994] has come under scrutiny for potential numerical instabil-
ity.

Overall, operational experience with a wide variety of ABCs has shown that numeri-
cal stability can be maintained for many thousands of iterations, if not indefinitely, with
the proper choice of time step. A similar experience base has been established for the
numerical stability of a variety of impedance boundary conditions.

8.6.2. Variable and unstructured meshing
The analysis of numerical instability can become complicated when the FDTD space
lattice is generated to conformally fit a specific structure by varying the size, position,
and shape of the lattice cells, rather than using the uniform “bricks” postulated by Yee.
Groups working in this area have found that even if the mesh construction is so complex
that an exact stability criterion cannot be derived, a part-analytical/part-empirical upper
bound on the time step can be derived for each gridding approach so that numerical
stability is maintained for many thousands of time steps, if not indefinitely. This has
permitted numerous successful engineering applications for non-Cartesian and unstruc-
tured FDTD meshes.

8.6.3. Lossy, dispersive, nonlinear, and gain materials
Much literature has emerged concerning FDTD modeling of dispersive and nonlin-
ear materials. For linear-dispersion algorithms, it is usually possible to derive precise
bounds on numerical stability. However, stability analysis may not be feasible for dis-
persion models of nonlinear materials. Fortunately, substantial modeling experience has
shown that numerical stability can be maintained for thousands of time steps, if not in-
definitely, for linear, nonlinear, and gain materials with a properly chosen time step.
Again, this has permitted numerous successful engineering applications.
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9. Alternating-direction-implicit time-stepping algorithm for operation beyond
the Courant limit

9.1. Introduction

Section 8 showed that numerical stability of the Yee algorithm requires placing an upper
bound on the time step�t relative to the space increments�x, �y, and�z. This has
allowed the successful application of FDTD methods to a wide variety of electromag-
netic wave modeling problems of moderate electrical size and quality factor. Typically,
such problems require 103–104 time-steps to complete a single simulation.

However, there are important potential applications of FDTD modeling where the
Courant stability bounds determined in Sections 8.2.3 and 8.2.4 are much too restrictive.
Modeling problems that fall into this regime have the following properties:

• The cell size� needed to resolve the fine-scale geometric detail of the electromag-
netic wave interaction structure is much less than the shortest wavelengthλmin of
a significant spectral component of the source.

• The simulated timeTsim needed to evolve the electromagnetic wave physics to the
desired endpoint is related to the cycle timeT of λmin.

With� fixed by the need to resolve the problem geometry, the requirement for numer-
ical stability in turn specifies the maximum possible time step�tmax. This, in turn, fixes
the total number of time steps needed to complete the simulation,Nsim = Tsim/�tmax.
Table 9.1 lists parameters of two important classes of problems where this decision
process results in values ofNsim that are so large that standard FDTD modeling in three
dimensions is difficult, or even impossible.

If these classes of electromagnetics problems are to be explored using FDTD mod-
eling, we need an advancement of FDTD techniques that permits accurate and numer-
ically stable operation for values of�t exceeding the Courant limit by much more
than 10:1. A candidate, computationally efficient approach for this purpose is to use an
alternating-direction-implicit(ADI) time-stepping algorithm rather than the usual ex-
plicit Yee leapfrogging. In fact, work with ADI FDTD methods in the early 1980s by
HOLLAND [1984] and HOLLAND and CHO [1986] achieved promising results for two-
dimensional models. However, using these early ADI techniques, it proved difficult to
demonstrate numerical stability for the general three-dimensional case, and research in
this area was largely discontinued.

Recently, key publications by ZHENG, CHEN and ZHANG [2000] and NAMIKI

[2000] have reported the development of unconditionally stable three-dimensional ADI

TABLE 9.1
Two important classes of three-dimensional FDTD modeling problems made difficult or impossible by the

Courant limit on�t

Problem class � Tsim �tmax Nsim

Propagation of bioelectric signals ∼ 1 mm ∼ 100 ms ∼ 2 ps ∼ 5× 1010

Propagation of digital logic signals ∼ 0.25 µm ∼ 1 ns ∼ 0.5 fs ∼ 2× 106
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FDTD algorithms. This section reviews the work by ZHENG, CHEN and ZHANG [2000]
wherein for the first time unconditional numerical stability is derived for the full three-
dimensional case.

Note that, with any unconditionally stable ADI FDTD algorithm, the upper bound
on �t is relaxed to only that value needed to provide good accuracy in numerically
approximating the time derivatives of the electromagnetic field. Thus, in theory,�t

need only be small enough to provide about 20 or more field samples during the cycle
time T of the fastest oscillating significant spectral component of the exciting source.
For example, in Table 9.1,�t could be 10 µs rather than 2 ps for studies of signal
propagation within human muscles, yieldingNsim = 104 rather thanNsim = 5× 1010.

9.2. Formulation of the Zheng et al. algorithm

ZHENG, CHEN and ZHANG [2000] reported a new ADI time-stepping algorithm for
FDTD that has theoretical unconditional numerical stability for the general three-
dimensional case. While this technique uses the same Yee space lattice as conventional
FDTD, the six field-vector components are collocated rather than staggered in time. In
discussing the formulation of this algorithm, we assume that all of the field components
are known everywhere in the lattice at time stepn and stored in the computer memory.

9.2.1. Unsimplified system of time-stepping equations
The ADI nature of the Zheng et al. algorithm can be best understood by first consider-
ing its unsimplified form, and then proceeding to obtain the final simplified system of
field update equations. To advance a single time step fromn to n+ 1, we perform two
subiterations: the first fromn to n+ 1/2, and the second fromn+ 1/2 ton+ 1. These
subiterations are as follows.

Subiteration 1. Advance the 6 field components from time stepn to time stepn+1/2

(9.1a)
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(9.2b)
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In each of the above equations, the first finite-difference on the right-hand side is set up
to be evaluated implicitly from as-yet unknown field data at time stepn+ 1/2, while
the second finite-difference on the right-hand side is evaluated explicitly from known
field data at time stepn.

Subiteration 2. Advance the 6 field components from time stepn+ 1/2 ton+ 1

(9.3a)
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In each of the above equations, the second finite-difference on the right-hand side is set
up to be evaluated implicitly from as-yet unknown field data at time stepn+ 1, while
the first finite-difference on the right-hand side is evaluated explicitly from known field
data at time stepn+ 1/2 previously computed using (9.1) and (9.2).
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9.2.2. Simplified system of time-stepping equations
The system of equations summarized above for each subiteration can be greatly sim-
plified. For Subiteration 1, this is done by substituting the expressions of (9.2) for the
H -field components evaluated at time stepn + 1/2 into theE-field updates of (9.1).
Similarly, for Subiteration 2, this is done by substituting the expressions of (9.4) for the
H -field components evaluated at time stepn+ 1 into theE-field updates of (9.3). This
yields the following simplified system of time-stepping equations for the algorithm of
ZHENG, CHEN and ZHANG [2000]:

Subiteration 1. Advance the 6 field components from time stepn to time stepn+1/2[
1+ (�t)2

2µε(�y)2

]
Ex
∣∣n+1/2
i+1/2,j,k −

[
(�t)2

4µε(�y)2

](
Ex
∣∣n+1/2
i+1/2,j−1,k +Ex

∣∣n+1/2
i+1/2,j+1,k

)
=Ex

∣∣n
i+1/2,j,k + �t

2ε�y

(
Hz
∣∣n
i+1/2,j+1/2,k −Hz

∣∣n
i+1/2,j−1/2,k

)
− �t

2ε�z

(
Hy
∣∣n
i+1/2,j,k+1/2 −Hy

∣∣n
i+1/2,j,k−1/2

)−
[

(�t)2

4µε�x�y

]
(9.5a)× (

Ey
∣∣n
i+1,j+1/2,k −Ey

∣∣n
i,j+1/2,k −Ey

∣∣n
i+1,j−1/2,k +Ey

∣∣n
i,j−1/2,k

)
,[

1+ (�t)2

2µε(�z)2

]
Ey
∣∣n+1/2
i,j+1/2,k −

[
(�t)2

4µε(�z)2

](
Ey
∣∣n+1/2
i,j+1/2,k−1 +Ey

∣∣n+1/2
i,j+1/2,k+1

)
=Ey

∣∣n
i,j+1/2,k + �t

2ε�z

(
Hx
∣∣n
i,j+1/2,k+1/2 −Hx

∣∣n
i,j+1/2,k−1/2

)
− �t

2ε�x

(
Hz
∣∣n
i+1/2,j+1/2,k −Hz

∣∣n
i−1/2,j+1/2,k

)−
[

(�t)2

4µε�y�z

]
(9.5b)× (

Ez
∣∣n
i,j+1,k+1/2 −Ez

∣∣n
i,j,k+1/2 −Ez

∣∣n
i,j+1,k−1/2 +Ez

∣∣n
i,j,k−1/2

)
,[

1+ (�t)2

2µε(�x)2

]
Ez
∣∣n+1/2
i,j,k+1/2 −

[
(�t)2

4µε(�x)2

](
Ez
∣∣n+1/2
i−1,j,k+1/2 +Ez

∣∣n+1/2
i+1,j,k+1/2

)
=Ez

∣∣n
i,j,k+1/2 + �t

2ε�x

(
Hy
∣∣n
i+1/2,j,k+1/2 −Hy

∣∣n
i−1/2,j,k+1/2

)
− �t

2ε�y

(
Hx
∣∣n
i,j+1/2,k+1/2 −Hx

∣∣n
i,j−1/2,k+1/2

)−
[

(�t)2

4µε�x�z

]
(9.5c)× (

Ex
∣∣n
i+1/2,j,k+1 −Ex

∣∣n
i+1/2,j,k −Ex

∣∣n
i−1/2,j,k+1 +Ex

∣∣n
i−1/2,j,k

)
.

We see that (9.5a) yields a set of simultaneous equations forE
n+1/2
x when written for

eachj coordinate along ay-directed line through the space lattice. The matrix associ-
ated with this system is tridiagonal, and hence, easily solved. This process is repeated
for eachy-cut through the lattice whereEx components are located. Similarly, (9.5b)
yields a tridiagonal matrix system for eachz-cut through the lattice to obtainEn+1/2

y ,
and (9.5c) yields a tridiagonal matrix system for eachx-cut through the lattice to obtain
E
n+1/2
z .
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To complete Subiteration 1, we next apply (9.2a)–(9.2c). TheseH -field updating
equations are now fully explicit because all of their requiredE-field component data
at time stepn+ 1/2 are available upon solving (9.5a)–(9.5c) in the manner described
above.

Subiteration 2. Advance the 6 field components from time stepn+ 1/2 ton+ 1[
1+ (�t)2

2µε(�z)2

]
Ex
∣∣n+1
i+1/2,j,k −

[
(�t)2

4µε(�z)2

](
Ex
∣∣n+1
i+1/2,j,k−1 +Ex

∣∣n+1
i+1/2,j,k+1

)
=Ex

∣∣n+1/2
i+1/2,j,k + �t

2ε�y

(
Hz
∣∣n+1/2
i+1/2,j+1/2,k −Hz

∣∣n+1/2
i+1/2,j−1/2,k

)
− �t

2ε�z

(
Hy
∣∣n+1/2
i+1/2,j,k+1/2 −Hy

∣∣n+1/2
i+1/2,j,k−1/2

)−
[

(�t)2

4µε�x�z

]
(9.6a)× (

Ez
∣∣n+1/2
i+1,j,k+1/2 −Ez

∣∣n+1/2
i,j,k+1/2 −Ez

∣∣n+1/2
i+1,j,k−1/2 +Ez

∣∣n+1/2
i,j,k−1/2

)
,[

1+ (�t)2

2µε(�x)2

]
Ey
∣∣n+1
i,j+1/2,k −

[
(�t)2

4µε(�x)2

](
Ey
∣∣n+1
i−1,j+1/2,k +Ey

∣∣n+1
i+1,j+1/2,k

)
=Ey

∣∣n+1/2
i,j+1/2,k + �t

2ε�z

(
Hx
∣∣n+1/2
i,j+1/2,k+1/2 −Hx

∣∣n+1/2
i,j+1/2,k−1/2

)
− �t

2ε�x

(
Hz
∣∣n+1/2
i+1/2,j+1/2,k −Hz

∣∣n+1/2
i−1/2,j+1/2,k

)−
[

(�t)2

4µε�x�y

]
(9.6b)× (

Ex
∣∣n+1/2
i+1/2,j+1,k −Ex

∣∣n+1/2
i+1/2,j,k −Ex

∣∣n+1/2
i−1/2,j+1,k +Ex

∣∣n+1/2
i−1/2,j,k

)
,[

1+ (�t)2

2µε(�y)2

]
Ez
∣∣n+1
i,j,k+1/2 −

[
(�t)2

4µε(�y)2

](
Ez
∣∣n+1
i,j−1,k+1/2 +Ez

∣∣n+1
i,j+1,k+1/2

)
=Ez

∣∣n+1/2
i,j,k+1/2 + �t

2ε�x

(
Hy
∣∣n+1/2
i+1/2,j,k+1/2 −Hy

∣∣n+1/2
i−1/2,j,k+1/2

)
− �t

2ε�y

(
Hx
∣∣n+1/2
i,j+1/2,k+1/2 −Hx

∣∣n+1/2
i,j−1/2,k+1/2

)−
[

(�t)2

4µε�y�z

]
(9.6c)× (

Ey
∣∣n+1/2
i,j+1/2,k+1 −Ey

∣∣n+1/2
i,j+1/2,k −Ey

∣∣n+1/2
i,j−1/2,k+1 +Ey

∣∣n+1/2
i,j−1/2,k

)
.

We see that (9.6a) yields a set of simultaneous equations forEn+1
x when written for

eachk coordinate along az-directed line through the space lattice. The matrix associ-
ated with this system is tridiagonal, and hence, easily solved. This process is repeated
for eachz-cut through the lattice whereEx components are located. Similarly, (9.6b)
yields a tridiagonal matrix system for eachx-cut through the lattice to obtainEn+1

y ,
and (9.6c) yields a tridiagonal matrix system for eachy-cut through the lattice to ob-
tainEn+1

z .
To complete Subiteration 2, we next apply (9.4a)–(9.4c). TheseH -field updating

equations are now fully explicit because all of their requiredE-component data at time
stepn+ 1 are available upon solving (9.6a)–(9.6c) in the manner described above. This
completes the ADI algorithm.
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9.3. Proof of numerical stability

ZHENG, CHEN and ZHANG [2000] provided the following proof of the numerical sta-
bility of their ADI algorithm. Assume that for each time stepn, the instantaneous values
of theE- andH -fields are Fourier-transformed into the spatial spectral domain with
wavenumbers̃kx , k̃y , andk̃z along thex-, y-, andz-directions, respectively. Denoting
the composite field vector in the spatial spectral domain at time stepn as

(9.7)Fn =



Enx

Eny

Enz

Hn
x

Hn
y

Hn
z


then Subiteration 1 (consisting of the systems (9.5) and (9.2) can be written as

(9.8)Fn+1/2 = M1Fn,

where

(9.9)M1 =



1
Qy

WxWy

µεQy
0 0 jWz

εQy

−jWy

εQy

0 1
Qz

WzWy

µεQz

−jWz

εQz
0 jWx

εQz

WxWz

µεQx
0 1

Qx

jWy

εQx

−jWx

εQx
0

0 −jWz

µQz

jWz

µQz

1
Qz

0 WxWz

µεQz

jWz

µQx
0 −jWx

µQx

WxWy

µεQx

1
Qx

0

−jWy

µQy

jWx

µQy
0 0 WzWy

µεQy

1
Qy


and

(9.10)

Wx = �t

�x
sin

(
k̃x�x

2

)
; Wy = �t

�y
sin

(
k̃y�y

2

)
; Wz = �t

�z
sin

(
k̃z�z

2

)
,

(9.11)Qx = 1+ (Wx)
2

µε
; Qy = 1+ (Wy)

2

µε
; Qz = 1+ (Wz)

2

µε
.

Similarly, it can be shown that Subiteration 2 (consisting of the systems (9.6) and (9.4))
can be written as

(9.12)Fn+1 = M2Fn+1/2,
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where

(9.13)M2 =



1
Qz

0 WzWx

µεQz
0 jWz

εQz

−jWy

εQz

WxWy

µεQx

1
Qx

0 −jWz

εQx
0 jWx

εQx

0 WyWz

µεQy

1
Qy

jWy

εQy

−jWx

εQy
0

0 −jWz

µQy

jWy

µQy

1
Qy

WzWy

µεQy
0

jWz

µQz
0 −jWx

µQz
0 1

Qz

WzWy

µεQz

−jWy

µQx

jWx

µQx
0 0 WxWz

µεQx

1
Qx


.

Now, we substitute (9.8) into (9.12) to obtain in matrix form the complete single
time-step update expression in the spatial spectral domain:

(9.14)Fn+1 = M2M1Fn.

Using the software package MAPLE™, Zheng, Chen and Zhang found that the mag-

nitudes of all of the eigenvalues of the composite matrixM = M2M1 equal unity, re-
gardless of the time-step�t . Therefore, they concluded that their ADI algorithm is
unconditionally stablefor all �t , and the Courant stability condition is removed.

9.4. Numerical dispersion

ZHENG and CHEN [2001] derived the following numerical dispersion relation for their
ADI algorithm:

(9.15)

sin2(ωt)=
4µε

µε(Wx)
2 +µε(Wy)

2 +µε(Wz)
2

+ (Wx)
2(Wy)

2 + (Wy)
2(Wz)

2

+ (Wz)
2(Wx)

2

[(µε)3 + (Wx)
2(Wy)

2(Wz)
2
]

[µε+ (Wx)2]2[µε+ (Wy)2]2[µε+ (Wz)2]2 .

For�t below the usual Courant limit, the numerical dispersion given by (9.15) is quite
close to that of Yee’s leapfrog time-stepping algorithm. For�t above the usual Courant
limit, the dispersive error given by (9.15) increases steadily.

9.5. Additional accuracy limitations and their implications

GONZALEZ GARCIA, LEE and HAGNESS [2002] demonstrated additional accuracy
limitations of ADI-FDTD not revealed by previously published numerical dispersion
analyses such as that given in ZHENG and CHEN [2001]. They showed that some terms
of its truncation error grow with�t2 multiplied by the spatial derivatives of the fields.
These error terms, which are not present in a fully implicit time-stepping method such
as the Crank–Nicolson scheme, give rise to potentially large numerical errors as�t is
increased. Excessive error can occur even if�t is still small enough to highly resolve
key temporal features of the modeled electromagnetic field waveform.
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As a result, the primary usage of existing ADI-FDTD techniques appears to be for
problems involving a fine mesh needed to model a small geometric feature in an overall
much-larger structure that is discretized using a coarse mesh; and where, for compu-
tational efficiency, it is desirable to use a large time-step satisfying Courant stability
for the coarse mesh. While this limits the impact of the excess error introduced locally
within the fine mesh, this also limits the usefulness of ADI-FDTD when considering
how to model the key problem areas outlined in Table 9.1.

10. Perfectly matched layer absorbing boundary conditions

10.1. Introduction to absorbing boundary conditions

A basic consideration with the FDTD approach to solving electromagnetic wave in-
teraction problems is that many geometries of interest are defined in “open” regions
where the spatial domain of the field is ideally unbounded in one or more directions.
Clearly, no computer can store an unlimited amount of data, and therefore, the com-
putational domain must be bounded. However, on this domain’s outer boundary, only
outward numerical wave motion is desired. That is, all outward-propagating numeri-
cal waves should exit the domain with negligible spurious reflections returning to the
vicinity of the modeled structure. This would permit the FDTD solution to remain valid
for all time steps. Depending upon their theoretical basis, outer-boundary conditions of
this type have been called eitherradiation boundary conditions(RBCs) orabsorbing
boundary conditions(ABCs). The notation ABC will be used here.

ABCs cannot be directly obtained from the numerical algorithms for Maxwell’s equa-
tions reviewed earlier. Principally, this is because these algorithms require field data on
both sides of an observation point, and hence cannot be implemented at the outermost
planes of the space lattice (since by definition there is no information concerning the
fields at points outside of these planes). Although backward finite differences could
conceivably be used here, these are generally of lower accuracy for a given space dis-
cretization and have not been used in major FDTD software.

Research in this area since 1970 has resulted in two principal categories of ABCs for
FDTD simulations:

(1) Special analytical boundary conditions imposed upon the electromagnetic field
at the outermost planes of the space lattice. This category was recently reviewed
by TAFLOVE and HAGNESS[2000, Chapter 6].

(2) Incorporation of impedance-matched electromagnetic wave absorbing layers ad-
jacent to the outer planes of the space lattice (by analogy with the treatment of
the walls of an anechoic chamber). ABCs of this type have excellent capabilities
for truncation of FDTD lattices in free space, in lossy or dispersive materials,
or in metal or dielectric waveguides. Extremely small numerical-wave reflec-
tion coefficients in the order of 10−4 to 10−6 can be attained with an acceptable
computational burden, allowing the possibility of achieving FDTD simulations
having a dynamic range of 70 dB or more.
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This section reviews modern, perfectly matched electromagnetic wave absorbing lay-
ers (Category 2 above). The review is based upon the recent publication by GEDNEY

and TAFLOVE [2000].

10.2. Introduction to impedance-matched absorbing layers

Consider implementing an ABC by using an impedance-matched electromagnetic wave
absorbing layer adjacent to the outer planes of the FDTD space lattice. Ideally, the
absorbing medium is only a few lattice cells thick, reflectionless to all impinging
waves over their full frequency spectrum, highly absorbing, and effective in the near
field of a source or a scatterer. An early attempt at implementing such an absorbing
material boundary condition was reported by HOLLAND and WILLIAMS [1983] who
utilized a conventional lossy, dispersionless, absorbing medium. The difficulty with
this tactic is that such an absorbing layer is matched only to normally incident plane
waves.

BERENGER[1994] provided the seminal insight that a nonphysical absorber can be
postulated that is matched independent of the frequency, angle of incidence, and polar-
ization of an impinging plane wave by exploiting additional degrees of freedom arising
from a novel split-field formulation of Maxwell’s equations. Here, each vector field
component is split into two orthogonal components, and the 12 resulting field com-
ponents are then expressed as satisfying a coupled set of first-order partial differential
equations. By choosing loss parameters consistent with a dispersionless medium, a per-
fectly matched planar interface is derived. This strategy allows the construction of what
Berenger called aperfectly matched layer(PML) adjacent to the outer boundary of the
FDTD space lattice for absorption of all outgoing waves.

Following Berenger’s work, many papers appeared validating his technique as well
as applying FDTD with the PML medium. An important advance was made by CHEW

and WEEDON [1994], who restated the original split-field PML concept in a stretched-
coordinate form. Subsequently, this allowed TEIXEIRA and CHEW [1997] to extend
PML to cylindrical and spherical coordinate systems. A second important advance was
made by SACKS, KINGSLAND, LEE and LEE [1995] and GEDNEY [1995, 1996], who
re-posed the split-field PML as a lossy, uniaxial anisotropic medium having both mag-
netic permeability and electric permittivity tensors. The uniaxial PML, or UPML, is
intriguing because it is based on a potentially physically realizable material formulation
rather than Berenger’s non-physical mathematical model.

10.3. Berenger’s perfectly matched layer

10.3.1. Two-dimensional TEz case
This section reviews the theoretical basis of Berenger’s PML for the case of a TEz-
polarized plane wave incident from Region 1, the lossless material half-spacex < 0,
onto Region 2, the PML half-spacex > 0.

Field-splitting modification of Maxwell’s equations.Within Region 2, Maxwell’s
curl equations (2.12a)–(2.12c) as modified by Berenger are expressed in their time-
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dependent form as

(10.1a)ε2
∂Ex

∂t
+ σyEx = ∂Hz

∂y
,

(10.1b)ε2
∂Ey

∂t
+ σxEy = −∂Hz

∂x
,

(10.1c)µ2
∂Hzx

∂t
+ σ ∗

x Hzx = −∂Ey
∂x

,

(10.1d)µ2
∂Hzy

∂t
+ σ ∗

y Hzy = ∂Ex

∂y
.

Here,Hz is assumed to be split into two additive subcomponents

(10.2)Hz =Hzx +Hzy.

Further, the parametersσx andσy denote electric conductivities, and the parametersσ ∗
x

andσ ∗
y denote magnetic losses.

We see that Berenger’s formulation represents a generalization of normally modeled
physical media. Ifσx = σy = 0 andσ ∗

x = σ ∗
y = 0, (10.1a)–(10.1d) reduce to Maxwell’s

equations in a lossless medium. Ifσx = σy = σ and σ ∗
x = σ ∗

y = 0, (10.1a)–(10.1d)
describe an electrically conductive medium. And, ifε2 = ε1, µ2 = µ1, σx = σy = σ ,
σ ∗
x = σ ∗

y = σ ∗, and

(10.3)σ ∗/µ1 = σ/ε1 → σ ∗ = σµ1/ε1 = σ(η1)
2

then (10.1a)–(10.1d) describe an absorbing medium that is impedance-matched to Re-
gion 1 for normally incident plane waves.

Additional possibilities present themselves, however. Ifσy = σ ∗
y = 0, the medium can

absorb a plane wave having field components(Ey,Hzx) propagating alongx, but does
not absorb a wave having field components(Ex,Hzy) propagating alongy, since in the
first case propagation is governed by (10.1b) and (10.1c), and in the second case by
(10.1a) and (10.1d). The converse situation is true for waves(Ey,Hzx) and(Ex,Hzy)
if σx = σ ∗

x = 0. These properties of particular Berenger media characterized by the
pairwise parameter sets(σx, σ ∗

x ,0,0) and(0,0, σy, σ ∗
y ) are closely related to the fun-

damental premise of this novel ABC, proved later. That is, if the pairwise electric and
magnetic losses satisfy (10.3), then at interfaces normal tox andy, respectively, the
Berenger media have zero reflection of electromagnetic waves.

Now consider (10.1a)–(10.1d) expressed in their time-harmonic form in the Berenger
medium. Letting the hat symbol denote a phasor quantity, we write

(10.4a)jωε2

(
1+ σy

jωε2

)
Ĕx = ∂

∂y
(H̆zx + H̆zy),

(10.4b)jωε2

(
1+ σx

jωε2

)
Ĕy = − ∂

∂x
(H̆zx + H̆zy),

(10.4c)jωµ2

(
1+ σ ∗

x

jωµ2

)
H̆zx = −∂Ĕy

∂x
,

(10.4d)jωµ2

(
1+ σ ∗

y

jωµ2

)
H̆zy = ∂Ĕx

∂y
.
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The notation is simplified by introducing the variables

(10.5)sw =
(

1+ σw

jωε2

)
; s∗w =

(
1+ σ ∗

w

jωµ2

)
:w = x, y.

Then, (10.4a) and (10.4b) are rewritten as

(10.6a)jωε2syĔx = ∂

∂y
(H̆zx + H̆zy),

(10.6b)jωε2sxĔy = − ∂

∂x
(H̆zx + H̆zy).

Plane-wave solution within the Berenger medium.The next step is to derive the plane-
wave solution within the Berenger medium. To this end, (10.6a) is differentiated with
respect toy and (10.6b) with respect tox. Substituting the expressions for∂Ĕy/∂x and
∂Ĕx/∂y from (10.4c) and (10.4d) leads to

(10.7a)−ω2µ2ε2H̆zx = − 1

s∗x
∂

∂x

1

sx

∂

∂x
(H̆zx + H̆zy),

(10.7b)−ω2µ2ε2H̆zy = − 1

s∗y
∂

∂y

1

sy

∂

∂y
(H̆zx + H̆zy).

Adding these together and using (10.2) leads to the representative wave equation

(10.8)
1

s∗x
∂

∂x

1

sx

∂

∂x
H̆z + 1

s∗y
∂

∂y

1

sy

∂

∂y
H̆z +ω2µ2ε2H̆z = 0.

This wave equation supports the solutions

(10.9)H̆z =H0τe−j
√
sxs∗x β2x x−j

√
sys∗y β2y y

with the dispersion relationship

(10.10)(β2x )
2 + (β2y )

2 = (k2)
2 → β2x = [

(k2)
2 − (β2y )

2]1/2.
Then, from (10.6a), (10.6b), and (10.2), we have

(10.11)Ĕx = −H0τ
β2y

ωε2

√
s∗y
sy

e−j
√
sxs∗x β2x x−j

√
sys∗y β2y y,

(10.12)Ĕy =H0τ
β2x

ωε2

√
s∗x
sx

e−j
√
sxs∗x β2x x−j

√
sys∗y β2y y .

Despite the field splitting, continuity of the tangential electric and magnetic fields
must be preserved across thex = 0 interface. To enforce this field continuity, we have
sy = s∗y = 1, or equivalentlyσy = 0 = σ ∗

y . This yields the phase-matching condition
β2y = β1y = k1 sinθ . Further, we derive theH -field reflection and transmission coeffi-
cients

(10.13a)Γ =
(
β1x

ωε1
− β2x

ωε2

√
s∗x
sx

)
·
(
β1x

ωε1
+ β2x

ωε2

√
s∗x
sx

)−1

;
(10.13b)τ = 1+ Γ.
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Reflectionless matching condition.Now, assumeε1 = ε2, µ1 = µ2, andsx = s∗x . This
is equivalent tok1 = k2, η1 = √

µ1/ε1 = √
µ2/ε2, andσx/ε1 = σ ∗

x /µ1 (i.e.,σx andσ ∗
x

satisfying (10.3) in a pairwise manner). Withβ2y = β1y , (10.10) now yieldsβ2x = β1x .
Substituting into (10.13a) gives the reflectionless conditionΓ = 0 for all incident angles
regardless of frequencyω. For this case, (10.9), (10.11), (10.12), and (10.13b) specify
the following transmitted fields within the Berenger medium:

(10.14)H̆z =H0e−jsxβ1x x−jβ1y y =H0e−jβ1x x−jβ1y ye−σxxη1 cosθ ,

(10.15)Ĕx = −H0η1 sinθe−jβ1x x−jβ1y ye−σxxη1 cosθ ,

(10.16)Ĕy =H0η1 cosθe−jβ1x x−jβ1y ye−σxxη1 cosθ .

Within the matched Berenger medium, the transmitted wave propagates with the same
speed and direction as the impinging wave while simultaneously undergoing exponen-
tial decay along thex-axis normal to the interface between Regions 1 and 2. Further,
the attenuation factorσxη1 cosθ is independent of frequency. These desirable proper-
ties apply to all angles of incidence. Hence, Berenger’s coining of the term “perfectly
matched layer” makes excellent sense.

Structure of an FDTD grid employing Berenger’s PML ABC.The above analysis can
be repeated for PMLs that are normal to they-direction. This permitted Berenger to
propose the two-dimensional TEz FDTD grid shown in Fig. 10.1 which uses PMLs
to greatly reduce outer-boundary reflections. Here, a free-space computation zone is
surrounded by PML backed by perfect electric conductor (PEC) walls. At the left and
right sides of the grid (x1 and x2), each PML hasσx and σ ∗

x matched according to
(10.3) along withσy = 0= σ ∗

y to permit reflectionless transmission across the interface

FIG. 10.1. Structure of a two-dimensional TEz FDTD grid employing the J.P. Berenger PML ABC.After:
J.P. Berenger,J. Computational Physics, 1994, pp. 185–200.
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between the free-space and PML regions. At the lower and upper sides of the grid
(y1 andy2), each PML hasσy andσ ∗

y matched according to (10.3) along withσx = 0=
σ ∗
x . At the four corners of the grid where there is overlap of two PMLs, all four losses

(σx , σ ∗
x , σy , andσ ∗

y ) are present and set equal to those of the adjacent PMLs.

10.3.2. Two-dimensional TMz case
The analysis of Section 10.3 can be repeated for the case of a TMz-polarized incident
wave wherein we implement the field splittingEz = Ezx + Ezy . Analogous to (10.1),
Maxwell’s curl equations (2.11a)–(2.11c) as modified by Berenger are expressed in their
time-dependent form as

(10.17a)µ2
∂Hx

∂t
+ σ ∗

y Hx = −∂Ez
∂y

,

(10.17b)µ2
∂Hy

∂t
+ σ ∗

x Hy = ∂Ez

∂x
,

(10.17c)ε2
∂Ezx

∂t
+ σxEzx = ∂Hy

∂x
,

(10.17d)ε2
∂Ezy

∂t
+ σyEzy = −∂Hx

∂y
.

A derivation of the PML properties conducted in a manner analogous to that of the
TEz case yields slightly changed results. In most of the equations, the change is only a
permutation ofε2 with µ2, and ofσ with σ ∗. However, the PML matching conditions
are unchanged. This permits an absorbing reflectionless layer to be constructed adjacent
to the outer grid boundary, as in the TEz case.

10.3.3. Three-dimensional case
KATZ, THIELE and TAFLOVE [1994] showed that Berenger’s PML can be realized in
three dimensions by splitting all six Cartesian field vector components. For example,
the modified Ampere’s Law is given by

(10.18a)

(
ε
∂

∂t
+ σy

)
Exy = ∂

∂y
(Hzx +Hzy),

(10.18b)

(
ε
∂

∂t
+ σz

)
Exz = − ∂

∂z
(Hyx +Hyz),

(10.18c)

(
ε
∂

∂t
+ σz

)
Eyz = ∂

∂z
(Hxy +Hxz),

(10.18d)

(
ε
∂

∂t
+ σx

)
Eyx = − ∂

∂x
(Hzx +Hzy),

(10.18e)

(
ε
∂

∂t
+ σx

)
Ezx = ∂

∂x
(Hyx +Hyz),

(10.18f)

(
ε
∂

∂t
+ σy

)
Ezy = − ∂

∂y
(Hxy +Hxz).
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Similarly, the modified Faraday’s Law is given by

(10.19a)

(
µ
∂

∂t
+ σ ∗

y

)
Hxy = − ∂

∂y
(Ezx +Ezy),

(10.19b)

(
µ
∂

∂t
+ σ ∗

z

)
Hxz = ∂

∂z
(Eyx +Eyz),

(10.19c)

(
µ
∂

∂t
+ σ ∗

z

)
Hyz = − ∂

∂z
(Exy +Exz),

(10.19d)

(
µ
∂

∂t
+ σ ∗

x

)
Hyx = ∂

∂x
(Ezx +Ezy),

(10.19e)

(
µ
∂

∂t
+ σ ∗

x

)
Hzx = − ∂

∂x
(Eyx +Eyz),

(10.19f)

(
µ
∂

∂t
+ σ ∗

y

)
Hzy = ∂

∂y
(Exy +Exz).

PML matching conditions analogous to the two-dimensional cases discussed pre-
viously are used. Specifically, if we denotew = x, y, z, the matching condition at
a normal-to-w PML interface has the parameter pair (σw,σ

∗
w) satisfy (10.3). This

causes the transmitted wave within the PML to undergo exponential decay in the±w-
directions. All other (σw,σ ∗

w) pairs within this PML are zero. In a corner region, the
PML is provided with each matched (σw,σ ∗

w) pair that is assigned to the overlapping
PMLs forming the corner. Thus, PML media located in dihedral-corner overlapping
regions have two nonzero and one zero (σw,σ

∗
w) pairs. PML media located in trihedral-

corner overlapping regions have three nonzero (σw,σ
∗
w) pairs.

10.4. Stretched-coordinate formulation of Berenger’s PML

A more compact form of the split-field equations of (10.18) and (10.19) was introduced
by CHEW and WEEDON [1994]. Here, the split-field equations are re-posed in a non-
split form that maps Maxwell’s equations into a complex coordinate space. To this end,
the following coordinate mapping is introduced:

(10.20)x̃ →
∫

0xsx(x
′)dx′; ỹ →

∫
0ysy(y

′)dy′; z̃→
∫

0zsz(z
′)dz′.

In (10.20), we assume that the PML parameterssw are continuous functions along the
axial directions. The partial derivatives in the stretched coordinate space are then

(10.21)
∂

∂x̃
= 1

sx

∂

∂x
; ∂

∂ỹ
= 1

sy

∂

∂y
; ∂

∂z̃
= 1

sz

∂

∂z
.

Thus, the∇ operator in the mapped space is defined as

(10.22)∇̃ = x̂
∂

∂x̃
+ ŷ

∂

∂ỹ
+ ẑ

∂

∂z̃
= x̂

1

sx

∂

∂x
+ ŷ

1

sy

∂

∂y
+ ẑ

1

sz

∂

∂z
.
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The time-harmonic Maxwell’s equations in the complex-coordinate stretched space are
then expressed as

jωε �̆E = ∇̃ × �̆H
= x̂

(
1

sy

∂

∂y
H̆z − 1

sz

∂

∂z
H̆y

)
+ ŷ

(
1

sz

∂

∂z
H̆x − 1

sx

∂

∂x
H̆z

)
(10.23)+ ẑ

(
1

sx

∂

∂x
H̆y − 1

sy

∂

∂y
H̆x

)
,

−jωµ �̆H = ∇̃ × �̆E
= x̂

(
1

sy

∂

∂y
Ĕz − 1

sz

∂

∂z
Ĕy

)
+ ŷ

(
1

sz

∂

∂z
Ĕx − 1

sx

∂

∂x
Ĕz

)
(10.24)+ ẑ

(
1

sx

∂

∂x
Ĕy − 1

sy

∂

∂y
Ĕx

)
.

A direct relationship can now be shown between the stretched-coordinate form of
Maxwell’s equations and Berenger’s split-field PML. To demonstrate this, we first
rewrite the split-field equations of (10.18) for the time-harmonic case:

(10.25a)jωεsyĔxy = ∂

∂y
(H̆zx + H̆zy),

(10.25b)jωεszĔxz = − ∂

∂z
(H̆yx + H̆yz),

(10.25c)jωεszĔyz = ∂

∂z
(H̆xy + H̆xz),

(10.25d)jωεsxĔyx = − ∂

∂x
(H̆zx + H̆zy),

(10.25e)jωεsxĔzx = ∂

∂x
(H̆yx + H̆yz),

(10.25f)jωεsyĔzy = − ∂

∂y
(H̆xy + H̆xz).

Then, we add (10.25a)+ (10.25b); (10.25c)+ (10.25d); and (10.25e)+ (10.25f); and
use the relationshipsEx = Exy + Exz,Ey = Eyx + Eyz, andEz = Ezx + Ezy . This
yields

(10.26a)jωεĔx = 1

sy

∂

∂y
H̆z − 1

sz

∂

∂z
H̆y,

(10.26b)jωεĔy = 1

sz

∂

∂z
H̆x − 1

sx

∂

∂x
H̆z,

(10.26c)jωεĔz = 1

sx

∂

∂x
H̆y − 1

sy

∂

∂y
H̆x

which is identical to (10.23). This procedure is repeated for the split-field equations of
(10.19) rewritten for the time-harmonic case, leading exactly to (10.24). Specifically, we
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see that the stretched-coordinate form of the PML is equivalent to the split-field PML;
however, it re-poses it in a non-split form.

The principal advantage the complex stretched-coordinate formulation offers is the
ease of mathematically manipulating the PML equations, thereby simplifying the un-
derstanding of the behavior of the PML. It also provides a pathway to mapping the PML
into other coordinate systems such as cylindrical and spherical coordinates, as shown
by TEIXEIRA and CHEW [1997], as well as utilizing the split-field PML in frequency-
domain finite-element methods based on unstructured discretizations, as shown by RAP-
PAPORT[1995] and CHEW and JIN [1996].

10.5. An anisotropic PML absorbing medium

The split-field PML introduced by Berenger is a hypothetical, non-physical medium
based on a mathematical model. Due to the coordinate-dependence of the loss terms, if
such a physical medium exists, it must be anisotropic.

Indeed, a physical model based on an anisotropic, perfectly matched medium can be
formulated. This was first discussed by SACKS, KINGSLAND, LEE and LEE [1995]. For
a single interface, the anisotropic medium is uniaxial and is composed of both electric
and magnetic constitutive tensors. The uniaxial material performs as well as Berenger’s
PML while avoiding the non-physical field splitting. This section introduces the theo-
retical basis of the uniaxial PML and compares its formulation with Berenger’s PML
and the stretched-coordinate PML.

10.5.1. Perfectly matched uniaxial medium
We consider an arbitrarily polarized time-harmonic plane wave propagating in Region 1,
the isotropic half-spacex < 0. This wave is assumed to be incident on Region 2, the
half-spacex > 0 comprised of a uniaxial anisotropic medium having the permittivity
and permeability tensors

(10.27a)¯̄ε2 = ε2

a 0 0
0 b 0
0 0 b

 ,
(10.27b)¯̄µ2 = µ2

 c 0 0
0 d 0
0 0 d

 .
Here,εyy = εzz andµyy = µzz since the medium is assumed to be rotationally symmet-
ric about thex-axis.

The fields excited within Region 2 are also plane-wave in nature and satisfy
Maxwell’s curl equations. We obtain

(10.28a)�β2 × �̆E = ω ¯̄µ2
�̆H ;

(10.28b)�β2 × �̆H = −ω ¯̄ε2 �̆E
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where �β2 = x̂β2x + ŷβ2y is the wavevector in anisotropic Region 2. In turn, this permits
derivation of the wave equation

(10.29)�β2 × ( ¯̄ε−1
2

�β2
)× �̆H +ω2 ¯̄µ2

�̆H = 0.

Expressing the cross products as matrix operators, this wave equation can be expressed
in matrix form ask2

2c− (β2y )
2b−1 β2x β2y b

−1 0
β2x β2y b

−1 k2
2d − (β2x )

2b−1 0
0 0 k2

2d − (β2x )
2b−1 − (β2y )

2a−1


(10.30)×

 H̆xH̆y
H̆z

= 0,

wherek2
2 = ω2µ2ε2. The dispersion relation for the uniaxial medium in Region 2 is de-

rived from the determinant of the matrix operator. Solving forβ2x , we find that there are
four eigenmode solutions. Conveniently, these solutions can be decoupled into forward
and backward TEz and TMz modes, which satisfy the dispersion relations

(10.31)k2
2 − (β2x )

2b−1d−1 − (β2y )
2a−1d−1 = 0: TEz(H̆x, H̆y = 0),

(10.32)k2
2 − (β2x )

2b−1d−1 − (β2y )
2b−1c−1 = 0: TMz(H̆z = 0).

The reflection coefficient at the interfacex = 0 of Regions 1 and 2 can now be de-
rived. Let us assume a TEz incident wave in Region 1. Then, in isotropic Region 1, the
fields are expressed as a superposition of the incident and reflected fields as

(10.33)
�̆H 1 = ẑH0

(
1+ Γ e2jβ1x x

)
e−jβ1x x−jβ1y y,

�̆E1 =
[
−x̂ β1y

ωε1

(
1+ Γ e2jβ1x x

)+ ŷ
β1x

ωε1

(
1− Γ e2jβ1x x

)]
H0e−jβ1x x−jβ1y y .

The wave transmitted into Region 2 is also TEz with propagation characteristics gov-
erned by (10.31). These fields are expressed as

(10.34)
�̆H 2 = ẑH0τe−jβ2x x−jβ2y y,

�̆E2 =
(

−x̂ β2y

ωε2a
+ ŷ

β2x

ωε2b

)
H0τe−jβ2x x−jβ2y y,

whereΓ and τ are theH -field reflection and transmission coefficients, respectively.
These are derived by enforcing continuity of the tangentialE andH fields acrossx = 0,
and are given by

(10.35a)Γ = β1x − β2x b
−1

β1x + β2x b
−1

;

(10.35b)τ = 1+ Γ = 2β1x

β1x + β2x b
−1
.
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Further, for all angles of wave incidence we have

(10.36)β2y = β1y

due to phase-matching across thex = 0 interface. Substituting (10.36) into (10.31) and
solving forβ2x yields

(10.37)β2x =
√
k2

2bd − (β1y )
2a−1b.

Then, if we setε1 = ε2, µ1 = µ2, d = b, anda−1 = b, we havek2 = k1 and

(10.38)β2x =
√
k2

1b
2 − (β1y )

2b2 = b

√
k2

1 − (β1y )
2 ≡ bβ1x .

Substituting (10.38) into (10.35a) yieldsΓ = 0 for all β1x . Thus, the interface between
Regions 1 and 2 is reflectionless for angles of wave incidence.

The above exercise can be repeated for TMz polarization. Here, theE-field reflection
coefficient is the dual of (10.35a) and is found by replacingb with d (and vice versa),
anda with c. For this case, the reflectionless condition holds ifb= d andc−1 = d .

Combining the results for the TEz and TMz cases, we see that reflectionless wave
transmission into Region 2 occurs when it is composed of a uniaxial medium having
theε andµ tensors

(10.39a)¯̄ε2 = ε1 ¯̄s;
(10.39b)¯̄µ2 = µ1 ¯̄s;

(10.39c)¯̄s =
 s−1

x 0 0
0 sx 0
0 0 sx

 .
This reflectionless property is completely independent of the angle of incidence, po-
larization, and frequency of the incident wave. Further, from (10.31) and (10.32), the
propagation characteristics of the TE- and TM-polarized waves are identical. We call
this medium auniaxial PML(UPML) in recognition of its uniaxial anisotropy and per-
fect matching.

Similar to Berenger’s PML, the reflectionless property of the UPML in Region 2 is
valid for any sx . For example, choosesx = 1 + σx/jωε1 = 1 − jσx/ωε1. Then, from
(10.38) we have

(10.40)β2x = (1− jσx/ωε1)β1x .

We note that the real part ofβ2x is identical toβ1x . Combined with (10.36), this implies
that the phase velocities of the impinging and transmitted waves are identical for all
incident angles. The characteristic wave impedance in Region 2 is also identical to that
in Region 1, a consequence of the fact that the media are perfectly matched.

Finally, substituting (10.36) and (10.40) into (10.34) and (10.35b) yields the fields
transmitted into the Region-2 UPML for a TEz incident wave:

(10.41)
�̆H 2 = ẑH0e−jβ1x x−jβ1y ye−σxxη1 cosθ ,

�̆E2 = (−x̂sxη1 sinθ + ŷη1 cosθ)H0e−jβ1x x−jβ1y ye−σxxη1 cosθ .
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Here,η1 = √
µ1/ε1 and θ is the angle of incidence relative to thex-axis. Thus, the

transmitted wave in the UPML propagates with the same phase velocity as the incident
wave, while simultaneously undergoing exponential decay along thex-axis normal to
the interface between Regions 1 and 2. The attenuation factor is independent of fre-
quency, although it is dependent onθ and the UPML conductivityσx .

10.5.2. Relationship to Berenger’s split-field PML
Comparing theE- andH -fields transmitted into the UPML in (10.41) with the corre-
sponding fields for Berenger’s split-field PML in (10.14)–(10.16), we observe identi-
cal fields and identical propagation characteristics. Further examination of (10.8) and
(10.29) reveals that the two methods result in the same wave equation. Consequently,
the plane waves satisfy the same dispersion relation.

However, in the split-field formulation,Ex is continuous across thex = 0 boundary,
whereas for UPML,Ex is discontinuous andDx = s−1

x Ex is continuous. This implies
that the two methods host different divergence theorems. Within the UPML, Gauss’
Law for theE-field is explicitly written as

(10.42)∇ · �D = ∇ · (ε ¯̄s �E)= ∂

∂x

(
εs−1
x Ex

)+ ∂

∂y
(εsxEy)+ ∂

∂z
(εsxEz)= 0.

This implies thatDx = εs−1
x Ex must be continuous across thex = 0 interface since no

sources are assumed here. It was shown thatε must be continuous across the interface
for a perfectly matched condition. Thus,Dx and s−1

x Ex must be continuous across
x = 0. Comparing (10.41) with (10.33), this is indeed true for a TEz-polarized wave.

Next, consider Gauss’ Law for Berenger’s split-field PML formulation. The∇ oper-
ator in the stretched-coordinate space of interest is defined as

(10.43)∇ = x̂
∂

sx∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
.

Therefore, we can express the divergence of the electric flux density as

(10.44)
1

sx

∂

∂x
(εEx)+ ∂

∂y
(εEy)+ ∂

∂z
(εEz)= 0.

Sinceε is continuous across the boundary ands−1
x occurs outside the derivative, both

Ex andDx are continuous.
In summary, Berenger’s split-field PML and the UPML have the same propagation

characteristics since they both result in the same wave equation. However, the two for-
mulations have different Gauss’ Laws. Hence, theE- andH -field components that are
normal to the PML interface are different.

10.5.3. A generalized three-dimensional formulation
We now show that properly defining a general constitutive tensor¯̄s allows the UPML
medium to be used throughout the entire FDTD space lattice. This tensor provides
for both a lossless, isotropic medium in the primary computation zone,and individual
UPML absorbers adjacent to the outer lattice boundary planes for mitigation of spurious
wave reflections.
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For a matched condition, the time-harmonic Maxwell’s curl equations in the UPML
can be written in their most general form as

(10.45a)∇ × �̆H = jωε ¯̄s �̆E;
(10.45b)∇ × �̆E = −jωµ ¯̄s �̆H

where¯̄s is the diagonal tensor defined by

¯̄s =
 s−1

x 0 0
0 sx 0
0 0 sx

 sy 0 0
0 s−1

y 0
0 0 sy

 sz 0 0
0 sz 0
0 0 s−1

z



(10.46)=


syszs

−1
x 0 0

0 sxszs
−1
y 0

0 0 sxsys
−1
z

 .
Allowing for a nonunity real partκ , the multiplicative components of the diagonal ele-
ments of¯̄s are given by

(10.47a)sx = κx + σx

jωε
;

(10.47b)sy = κy + σy

jωε
;

(10.47c)sz = κz + σz

jωε
.

Now, given the above definitions, the following lists all of the special cases involved in
implementing the strategy of using¯̄s throughout the entire FDTD lattice.

Lossless, isotropic interior zone
¯̄s is the identity tensor realized by settingsx = sy = sz = 1 in (10.46). This requires

σx = σy = σz = 0 andκx = κy = κz = 1 in (10.47).

UPML absorbers atxmin andxmax outer-boundary planes
¯̄s is the tensor given in (10.39), which is realized by settingsy = sz = 1 in (10.46).

This requiresσy = σz = 0 andκy = κz = 1 in (10.47).

UPML absorbers atymin andymax outer-boundary planes
We setsx = sz = 1 in (10.46). This requiresσx = σz = 0 andκx = κz = 1 in (10.47).

UPML Absorbers atzmin andzmax outer-boundary planes
We setsx = sy = 1 in (10.46). This requiresσx = σy = 0 andκx = κy = 1 in (10.47).

Overlapping UPML absorbers atxmin, xmax andymin, ymax dihedral corners
We setsz = 1 in (10.46). This requiresσz = 0 andκz = 1 in (10.47).
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Overlapping UPML absorbers atxmin, xmax andzmin, zmax dihedral corners
We setsy = 1 in (10.46). This requiresσy = 0 andκy = 1 in (10.47).

Overlapping UPML absorbers atymin, ymax andzmin, zmax dihedral corners
We setsx = 1 in (10.46). This requiresσx = 0 andκx = 1 in (10.47).

Overlapping UPML absorbers at all trihedral corners
We use the complete general tensor in (10.46).

The generalized constitutive tensor defined in (10.46) is no longer uniaxial by strict
definition, but rather is anisotropic. However, the anisotropic PML is still referenced as
uniaxial since it is uniaxial in the nonoverlapping PML regions.

10.5.4. Inhomogeneous media
At times, we need to use the PML to terminate an inhomogeneous material region in the
FDTD space lattice. An example is a printed circuit constructed on a dielectric substrate
backed by a metal ground plane. A second example is a long optical fiber. In such cases,
the inhomogeneous material region extends through the PML to the outer boundary of
the FDTD lattice. GEDNEY [1998] has shown that the PML can be perfectly matched to
such a medium. However, care must be taken to properly choose the PML parameters
to maintain a stable and accurate formulation.

Consider anx-normal UPML boundary. Let an inhomogeneous dielectricε(y, z),
assumed to be piecewise constant in the transversey- and z-directions, extend into
the UPML. From fundamental electromagnetic theory,Dy = εEy must be continuous
across anyy-normal boundary, andDz = εEz must be continuous across anyz-normal
boundary. Then, from Gauss’ Law for the UPML in (10.42), we see thatsx must be
independent ofy and z to avoid surface charge at the boundaries of the discontinu-
ity.

In the previous discussions, the dielectric in the UPML was assumed to be homoge-
neous. For this case in (10.47a),sx = κx + σx/jωε was chosen. However, ifε = ε(y, z)

and is piecewise constant, thensx is also piecewise constant in the transverse direc-
tions. Thus, surface charge densities result at the material boundaries as predicted by
Gauss’ Law in (10.42) due to the derivative of a discontinuous function. This nonphys-
ical charge leads to an ill-posed formulation. To avoid this,sx must be independent ofy
andz. This holds only ifσx/ε is maintained constant. This can be done in a brute-force
manner by modifyingσx in the transverse direction such thatσx(y, z)/ε(y, z) is a con-
stant. A much simpler approach is to normalizeσx by the relative permittivity, rewriting
(10.47a) as

(10.48)sx = κx + σ ′
x/jωε0,

whereε0 is the free-space permittivity. In this case,σ ′
x is simply a constant in the trans-

versey- andz-directions, although it is still scaled along the normalx-direction. Now,
Gauss’ Law is satisfied within the UPML, leading to a well-posed formulation. This
also leads to a materially independent formulation of the UPML.
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Next, consider Berenger’s split-field PML. To understand the constraints of this tech-
nique in an inhomogeneous medium, it is simpler to work with its stretched-coordinate
representation. In stretched coordinates, Gauss’ Law is represented in (10.44). Here, it
appears that there are no further constraints onsx . However, conservation laws require
that the charge continuity equation be derived from Ampere’s Law and Gauss’ Law.
To this end, the divergence of Ampere’s Law in (10.23) is performed in the stretched
coordinates using (10.44). We see that the divergence of the curl of�H is zero only if
sx is independent of the transverse coordinatesy andz. This holds only ifσx/ε is in-
dependent ofy andz. Again, this can be easily managed by representingsx by (10.48),
thus leading to a material-independent PML.

In summary, an inhomogeneous medium that is infinite in extent can be terminated
by either a split-field PML or UPML medium. Both are perfectly matched to arbitrary
electromagnetic waves impinging upon the PML boundary. The method is accurate and
stable provided that the PML parameterssw (sx , sy , or sz) are posed to be independent
of the transverse directions. This can be readily accomplished by normalizingσw by the
relative permittivity, and hence posingsw = κw + σ ′

w/jωε0, whereσ ′
w is constant in the

transverse direction.

10.6. Theoretical performance of the PML

10.6.1. The continuous space
When used to truncate an FDTD lattice, the PML has a thicknessd and is terminated
by the outer boundary of the lattice. If the outer boundary is assumed to be a PEC wall,
finite power reflects back into the primary computation zone. For a wave impinging
upon the PML at angleθ relative to thew-directed surface normal, this reflection can
be computed using transmission line analysis, yielding

(10.49)R(θ)= e−2σwηd cosθ .

Here,η andσw are, respectively, the PML’s characteristic wave impedance and its con-
ductivity, referred to propagation in thew-direction. In the context of an FDTD simu-
lation,R(θ) is referred to as the “reflection error” since it is a nonphysical reflection
due to the PEC wall that backs the PML. We note that the reflection error is the same
for both the split-field PML and the UPML, since both support the same wave equa-
tion. This error decreases exponentially withσw andd . However, the reflection error
increases as exp(cosθ), reaching the worst case forθ = 90◦. At this grazing angle of
incidence,R = 1 and the PML is completely ineffective. To be useful within an FDTD
simulation, we wantR(θ) to be as small as possible. Clearly, for a thin PML, we must
haveσw as large as possible to reduceR(θ) to acceptably small levels, especially forθ
approaching 90◦.

10.6.2. The discrete space
Grading of the PML loss parameters.Theoretically, reflectionless wave transmission
can take place across a PML interface regardless of the local step-discontinuity inσ and
σ ∗ presented to the continuous impinging electromagnetic field. However, in FDTD or
any discrete representation of Maxwell’s equations, numerical artifacts arise due to the
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finite spatial sampling. Consequently, implementing PML as a single step-discontinuity
of σ andσ ∗ in the FDTD lattice leads to significant spurious wave reflection at the PML
surface.

To reduce this reflection error, BERENGER [1994] proposed that the PML losses
gradually rise from zero along the direction normal to the interface. Assuming such
a grading, the PML remains matched, as seen from the stretched-coordinate theory in
Section 10.4. Pursuing this idea, we consider as an example anx-directed plane wave
impinging at angleθ upon a PEC-backed PML slab of thicknessd , with the front pla-
nar interface located in thex = 0 plane. Assuming the graded PML conductivity profile
σx(x), we have from (10.20) and (10.14)–(10.16) or (10.41)

(10.50)R(θ)= e−2η cosθ
∫

0dσx(x)dx .

Polynomial grading. Several profiles have been suggested for gradingσx(x) (and
κx(x) in the context of the UPML). The most successful use a polynomial or geometric
variation of the PML loss with depthx. Polynomial grading is simply

(10.51a)σx(x)= (x/d)mσx,max;
(10.51b)κx(x)= 1+ (κx,max− 1) · (x/d)m.

This increases the value of the PMLσx from zero atx = 0, the surface of the PML, to
σx,max at x = d , the PEC outer boundary. Similarly, for the UPML,κx increases from
one atx = 0 toκx,max atx = d . Substituting (10.51a) into (10.50) yields

(10.52)R(θ)= e−2ησx,maxd cosθ/(m+1).

For a fixedd , polynomial grading provides two parameters:σx,max andm. A large
m yields aσx(x) distribution that is relatively flat near the PML surface. However,
deeper within the PML,σx increases more rapidly than for smallm. In this region, the
field amplitudes are substantially decayed and reflections due to the discretization error
contribute less. Typically, 3� m � 4 has been found to be nearly optimal for many
FDTD simulations (see, for example, BERENGER[1996]).

For polynomial grading, the PML parameters can be readily determined for a given
error estimate. For example, letm, d , and the desired reflection errorR(0) be known.
Then, from (10.52),σx,max is computed as

(10.53)σx,max= − (m+ 1) ln[R(0)]
2ηd

.

Geometric grading. The PML loss profile for this case was defined by BERENGER

[1997] as

(10.54a)σx(x)=
(
g1/�)xσx,0;

(10.54b)κx(x)=
(
g1/�)x,

whereσx,0 is the PML conductivity at its surface,g is the scaling factor, and� is the
FDTD space increment. Here, the PML conductivity increases fromσx,0 at its surface
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to gd/�σx,0 at the PEC outer boundary. Substituting (10.54a) into (10.50) results in

(10.55)R(θ)= e−2ησx,0�(gd/�−1)cosθ/ lng.

For a fixedd , geometric grading provides two parameters:g andσx,0. σx,0 must be
small to minimize the initial discretization error. Large values ofg flatten the conduc-
tivity profile nearx = 0, and steepen it deeper into the PML. Usually,g, d , andR(0)
are predetermined. This yields

(10.56)σx,0 = − ln[R(0)] ln(g)

2η�(gd/� − 1)
.

Typically, 2� g � 3 has been found to be nearly optimal for many FDTD simulations.

Discretization error. The design of an effective PML requires balancing the theoret-
ical reflection errorR(θ) and the numerical discretization error. For example, (10.53)
providesσx,max for a polynomial-graded conductivity given a predeterminedR(0) and
m. If σx,max is small, the primary reflection from the PML is due to its PEC backing,
and (10.50) provides a fairly accurate approximation of the reflection error. Now, we
normally chooseσx,max to be as large as possible to minimizeR(θ). However, ifσx,max
is too large, the discretization error due to the FDTD approximation dominates, and the
actual reflection error is potentially orders of magnitude higher than what (10.50) pre-
dicts. Consequently, there is an optimal choice forσx,max that balances reflection from
the PEC outer boundary and discretization error.

BERENGER [1996], BERENGER [1997] postulated that the largest reflection error
due to discretization occurs atx = 0, the PML surface. Any wave energy that penetrates
further into the PML and then is reflected undergoes attenuation both before and after
its point of reflection, and typically is not as large a contribution. Thus, it is desirable to
minimize the discontinuity atx = 0. As discussed earlier, one way to achieve this is by
flattening the PML loss profile nearx = 0. However, if the subsequent rise of loss with
depth is too rapid, reflections from deeper within the PML can dominate.

Through extensive numerical experimentation, GEDNEY [1996] and HE [1997] found
that, for a broad range of applications, an optimal choice for a 10-cell-thick, polynomial-
graded PML isR(0) ≈ e−16. For a 5-cell-thick PML,R(0) ≈ e−8 is optimal. From
(10.53), this leads to an optimalσx,max for polynomial grading:

(10.57)σx,opt ≈ − (m+ 1) · (−16)

(2η) · (10�)
= 0.8(m+ 1)

η�
.

This expression has proven to be quite robust for many applications. However, its
value may be too large when the PML terminates highly elongated resonant structures
or sources with a very long time duration, such as a unit step. For a detailed discussion,
the reader is referred to GEDNEY [1998].

10.7. Efficient implementation of UPML in FDTD

This section discusses mapping the UPML presented in Section 10.5 into the discrete
FDTD space. The FDTD approximation is derived from the time-harmonic Maxwell’s
curl equations within the generalized uniaxial medium as defined in (10.45)–(10.47).
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10.7.1. Derivation of the finite-difference expressions
Starting with (10.45a) and (10.46), Ampere’s Law in a matched UPML is expressed as

(10.58)


∂H̆z
∂y

− ∂H̆y
∂z

∂H̆x
∂z

− ∂H̆z
∂x

∂H̆y
∂x

− ∂H̆x
∂y

= jωε


sysz
sx

0 0
0 sxsz

sy
0

0 0 sxsy
sz


 ĔxĔy
Ĕz

 ,
wheresx , sy , andsz are defined in (10.47). Directly inserting (10.47) into (10.58) and
then transforming into the time domain would lead to a convolution between the tensor
coefficients and theE-field. This is not advisable because implementing this convo-
lution would be computationally intensive. As shown by GEDNEY [1995], GEDNEY

[1996], a much more efficient approach is to define the proper constitutive relationship
to decouple the frequency-dependent terms. Specifically, let

(10.59a)D̆x = ε
sz

sx
Ĕx;

(10.59b)D̆y = ε
sx

sy
Ĕy;

(10.59c)D̆z = ε
sy

sz
Ĕz.

Then, (10.58) is rewritten as

(10.60)


∂H̆z
∂y

− ∂H̆y
∂z

∂H̆x
∂z

− ∂H̆z
∂x

∂H̆y
∂x

− ∂H̆x
∂y

= jω

 sy 0 0
0 sz 0
0 0 sx

 D̆xD̆y
D̆z

 .
Now, we substitutesx , sy , andsz from (10.47) into (10.60), and then apply the inverse
Fourier transform using the identity jωf (ω) → (∂/∂t)f (t). This yields an equivalent
system of time-domain differential equations for (10.60):

(10.61)


∂Hz
∂y

− ∂Hy
∂z

∂Hx
∂z

− ∂Hz
∂x

∂Hy
∂x

− ∂Hx
∂y

= ∂

∂t

κy 0 0
0 κz 0
0 0 κx

DxDy
Dz

+ 1

ε

σy 0 0
0 σz 0
0 0 σx

DxDy
Dz

 .
The system of equations in (10.61) can be discretized on the standard Yee lattice. It

is suitable to use normal leapfrogging in time wherein the loss terms are time-averaged
according to the semi-implicit scheme. This leads to explicit time-stepping expressions
for Dx ,Dy , andDz. For example, theDx update is given by

Dx
∣∣n+1
i+1/2,j,k

=
(

2εκy − σy�t

2εκy + σy�t

)
Dx
∣∣n
i+1/2,j,k +

(
2ε�t

2εκy + σy�t

)
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×
(
Hz|n+1/2

i+1/2,j+1/2,k −Hz|n+1/2
i+1/2,j−1/2,k

�y

(10.62)− Hy |n+1/2
i+1/2,j,k+1/2 −Hy |n+1/2

i+1/2,j,k−1/2

�z

)
.

Next, we focus on (10.59a)–(10.59c). For example, we consider (10.59a). After mul-
tiplying both sides bysx and substituting forsx andsz from (10.47a), (10.47c), we have

(10.63)

(
κx + σx

jωε

)
D̆x = ε

(
κz + σz

jωε

)
Ĕx.

Multiplying both sides by jω and transforming into the time domain leads to

(10.64a)
∂

∂t
(κxDx)+ σx

ε
Dx = ε

[
∂

∂t
(κzEx)+ σz

ε
Ex

]
.

Similarly, from (10.59b) and (10.59c), we obtain

(10.64b)
∂

∂t
(κyDy)+ σy

ε
Dy = ε

[
∂

∂t
(κxEy)+ σx

ε
Ey

]
,

(10.64c)
∂

∂t
(κzDz)+ σz

ε
Dz = ε

[
∂

∂t
(κyEz)+ σy

ε
Ez

]
.

The time derivatives in (10.64) are discretized using standard Yee leapfrogging and
time-averaging the loss terms. This yields explicit time-stepping expressions forEx ,
Ey , andEz. For example, theEx update is given by

Ex
∣∣n+1
i+1/2,j,k =

(
2εκz − σz�t

2εκz + σz�t

)
Ex
∣∣n
i+1/2,j,k +

[
1

(2εκz + σz�t)ε

]

(10.65)

× [
(2εκx + σx�t)Dx

∣∣n+1
i+1/2,j,k − (2εκx − σx�t)Dx

∣∣n
i+1/2,j,k

]
.

Overall, updating the components of�E in the UPML requires two steps in sequence:
(1) obtaining the new values of the components of�D according to (10.62), and (2) us-
ing these new�D components to obtain new values of the�E-components according to
(10.65).

A similar two-step procedure is required to update the components of�H in the
UPML. Starting with Faraday’s Law in (10.45b) and (10.46), the first step involves de-
veloping the updates for the components of�B. A procedure analogous to that followed
in obtaining (10.62) yields, for example, the following update forBx :

Bx
∣∣n+3/2
i,j+1/2,k+1/2

=
(

2εκy − σy�t

2εκy + σy�t

)
Bx
∣∣n+1/2
i,j+1/2,k+1/2 −

(
2ε�t

2εκy + σy�t

)

(10.66)

×
(
Ez|n+1

i,j+1,k+1/2 −Ez|n+1
i,j,k+1/2

�y
− Ey |n+1

i,j+1/2,k+1 −Ey |n+1
i,j+1/2,k

�z

)
,
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The second step involves updating the�H components in the UPML using the values of
the �B components just obtained with (10.66) and similar expressions forBy andBz.
For example, employing the dual constitutive relationB̆x = µ(sz/sx)H̆x , a procedure
analogous to that followed in obtaining (10.65) yields the following update forHx :

Hx
∣∣n+3/2
i,j+1/2,k+1/2

=
(

2εκz − σz�t

2εκz + σz�t

)
Hx
∣∣n+1/2
i,j+1/2,k+1/2 +

[
1

(2εκz + σz�t)µ

]

(10.67)

× [
(2εκx + σx�t)Bx

∣∣n+3/2
i,j+1/2,k+1/2 − (2εκx − σx�t)Bx

∣∣n+1/2
i,j+1/2,k+1/2

]
.

Similar expressions can be derived forHy andHz.
NEHRBASS, LEE and LEE [1996] showed that such an algorithm is numerically sta-

ble within the Courant limit. Further, ABARBANEL and GOTTLIEB [1997] showed that
the resulting discrete fields satisfy Gauss’ Law, and the UPML is well posed.

10.7.2. Computer implementation of the UPML
Each �E and �H component within the UPML is computed using an explicit two-step
time-marching scheme as illustrated in (10.62) and (10.65) forEx , and in (10.66) and
(10.67) forHx . Based on these updates, the UPML is easily and efficiently implemented
within the framework of existing FDTD codes. We now illustrate this in FORTRAN
using the time-stepping expressions forEx given in (10.62) and (10.65). First, we pre-
compute six coefficient arrays to be used in the field updates:

(10.68a)C1(j)= 2εκy(j)− σy(j)�t

2εκy(j)+ σy(j)�t
,

(10.68b)C2(j)= 2ε�t

2εκy(j)+ σy(j)�t
,

(10.68c)C3(k)= 2εκz(k)− σz(k)�t

2εκz(k)+ σz(k)�t
,

(10.68d)C4(k)= 1

[2εκz(k)+ σz(k)�t]ε ,
(10.68e)C5(i)= 2εκx(i)+ σx(i)�t,

(10.68f)C6(i)= 2εκx(i)− σx(i)�t.

Defining the field-updating coefficients in this manner permits a unified treatment
of both the lossless interior working volume and the UPML slabs. In effect, UPML is
assumed to fill the entire FDTD space lattice. We setσw = 0 andκw = 1 in the working
volume to model free space. However, in the UPML slabs,σw andκw are assumed to
have the polynomial-graded profile given in (10.51), or the geometric-graded profile
given in (10.54), along the normal axes of the UPML slabs. As a result, the coefficients
in (10.68) vary in only one dimension.

When defining the coefficient arrays specified in (10.68), it is critical to assign
the proper value to the UPML loss parameters. To this end,σw and κw are com-
puted at a physical coordinate using (10.51) or (10.54). The appropriate choice of
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the physical coordinate is at the edge center of the discrete fieldEx(i, j, k), which is
[(i+1/2)�x, j�y, k�z]. Thus, in (10.68e) and (10.68f),σx(i) andκx(i) are computed
at the physical coordinate(i + 1/2)�x. Similarly, in (10.68a) and (10.68b),σy(j) and
κy(j) are computed at the physical coordinatej�y; and in (10.68c) and (10.68d),σz(k)
andκz(k) are computed at the physical coordinatek�z. This is similarly done for the
updates ofEy andEz.

The UPML loss parameters for theH -fields are chosen at the lattice face centers.
For example, the physical coordinate of the discrete fieldHx(i, j, k) is [i�x, (j +
1/2)�y, (k + 1/2)�z]. Thus, for the update ofHx(i, j, k), σx(i) andκx(i) are com-
puted at the physical coordinatei�x; σy(j) andκy(j) are computed at the physical
coordinate(j + 1/2)�y; andσz(k) andκz(k) are computed at the physical coordinate
(k + 1/2)�z. This is similarly done for the updates ofHy andHz.

Given the above “all-UPML” strategy, and assuming that the infinite region extend-
ing out of the space lattice has homogeneous material properties, then the FORTRAN
program segment that executes the time-stepping ofEx everywherein the FDTD space
lattice can be written as a simple triply-nested loop:

(10.69)

do 10 k=2,nz-1
do 10 j=2,ny-1

do 10 i=1,nx-1
dstore = dx(i,j,k)
dx(i,j,k) = C1(j)*dx(i,j,k)

+ C2(j)*( (hz(i,j,k) - hz(i,j-1,k)) / deltay -
(hy(i,j,k) - hy(i,j,k-1)) / deltaz )

ex(i,j,k) = C3(k)*ex(i,j,k)
+ C4(k)*( C5(i)*dx(i,j,k) - C6(i)*dstore )

10 continue

Assuming UPML throughout the entire FDTD lattice in this manner has the limitation
that the flux densitiesDx andBx must be stored everywhere in the lattice. However, this
approach offers the significant advantage of simplifying the modification of existing
FDTD codes. An alternative is to write a triply-nested loop for the interior fields and
separate loops for the various UPML slabs (segregating the corner regions). In this case,
the auxiliary variables need to be stored only in the UPML region, leading to memory
savings. Further, in this circumstance, the UPML requires considerably less storage than
Berenger’s split-field PML since only the normal fields require dual storage, as opposed
to the two tangential fields. The memory requirement (real numbers) for the UPML
truncation on all six outer lattice boundaries totals

6NxNyNz + 8NUPML(NxNy +NyNz +NzNx)

(10.70)− 16NUPML(Nx +Ny +Nz)+ (24NUPML)
2,

whereNUPML is the thickness (in space cells) of the UPML. In contrast, approximately
6NxNyNz real numbers must be stored when using FDTD with a local ABC. With
these measures, it is straightforward to calculate the percentage of additional memory
required to implement the UPML ABC in a cubic lattice (Nx = Ny = Nz) relative to
the primary field storage. For 4-cell UPML, the storage burden drops below 10% for
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Nx > 90; and for 10-cell UPML, this burden drops below 10% forNx > 240. Note also
that, without the use of the reflection-cancellation techniques of RAMAHI [1998], local
ABCs must be placedmuchfurther out than the UPML, requiring even larger lattices.
Consequently, the UPML ABC can lead to an overall decrease in the required memory
to achieve a given desired outer-boundary reflectivity.

If we assume UPML throughout the entire FDTD space lattice as in (10.68) and
(10.69), the computer memory requirement is 12NxNyNz real numbers. This option is
suitable when coding simplicity is desired and memory is not a constraint.

10.8. Numerical experiments with Berenger’s split-field PML

10.8.1. Outgoing cylindrical wave in a two-dimensional open-region grid
We first review the numerical experiment of KATZ, THIELE and TAFLOVE [1994] which
used Berenger’s split-field PML in a two-dimensional square-cell FDTD grid to absorb
an outgoing cylindrical wave generated by a hard source centered in the grid. Using the
methodology of MOORE, BLASCHAK, TAFLOVE and KRIEGSMANN [1988], the accu-
racy of the Berenger’s PML ABC was compared with that of the previously standard,
second-order accurate, analytical ABC of MUR [1981]. The PML loss was assumed to
be quadratically graded with depth from the interface of the interior free-space compu-
tation region. This allowed a direct comparison with the computed results reported by
BERENGER[1994].

Fig. 10.2 graphs the global error power within a 100×50-cell TEz test grid for both
the Mur ABC and a 16-cell Berenger PML ABC. Atn = 100 time steps, the global
reflection error in the PML grid is about 10−7 times the error in the Mur grid, dropping
to a microscopic 10−12 times the global error in the Mur grid atn= 500 time steps.

We next consider the performance of Berenger’s PML ABC for this open-region ra-
diation problem as a function of frequency. Here, the local PML reflection coefficient
versus frequency is obtained by using the discrete Fourier transform to calculate the

FIG. 10.2. Global error power within a 100× 50-cell 2D TEz test grid for both the second-order Mur ABC
and a 16-cell quadratically graded Berenger PML ABC, plotted as a function of time-step number on a loga-
rithmic vertical scale.Source: D.S. Katz et al.,IEEE Microwave and Guided Wave Letters, 1994, pp. 268–270,

©1994 IEEE.
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FIG. 10.3. PML reflection coefficient versus frequency for the order-2 (baseline quadratic grading) and or-
der-4 grading cases. Two-dimensional grid with 16-cell-thick PML havingR(0) = 10−6 used for these cal-

culations.

incident and reflected pulse spectra observed at the midpoint of the 100-cell air/PML
interface, and dividing the reflected spectrum by the incident spectrum. The numerical
procedure is otherwise similar to that used above, with the exception that the grading of
the PML loss is either order 2 or order 4.

Fig. 10.3 graphs the results of this study, comparing the local PML reflection from
0–10 GHz. Here, the PML thickness is 16 cells withR(0)= 10−6, and a uniform grid
space increment of 1.5 mm (equivalent toλ0/20 at 10 GHz) is used.

Fig. 10.3 shows that the local PML reflection coefficient isvirtually flat from 0–
10 GHz. Therefore, Berenger’s PML is effective for absorbing ultrawideband pulses.
We also observe that the order-4 PML loss grading has 10–24 dB less reflectivity than
the baseline quadratic case. Additional studies of this type have shown similar results
for a variety of FDTD models. These indicate that the optimum grading of the PML loss
is generally not quadratic. It is apparent that a simple grading optimization provides a
no-cost means of achieving the widest possible dynamic range of the PML ABC.

The reader is cautioned that double-precision computer arithmetic may be required
to achieve the full benefit of PML grading. Simply shifting the test code from a Unix
workstation to the Cray C-90 permitted the grading improvement of Fig. 10.3 to be
observed. The improvement was not observed on the workstation.

10.8.2. Outgoing spherical wave in a three-dimensional open-region lattice
In this numerical experiment, KATZ, THIELE and TAFLOVE [1994] used quadratically
graded Berenger PML in a three-dimensional cubic-cell FDTD lattice to absorb an im-
pulsive, outgoing spherical wave generated by a Hertzian dipole. The Hertzian dipole
was simply a single, hard-sourcedEz field component centered in the lattice. Otherwise,
the experimental procedure was the same as in Section 10.8.1.

Fig. 10.4 compares the localE-field error due to the second-order Mur and 16-cell
PML ABCs for a 100× 100× 50-cell three-dimensional test lattice. The observation
was made along thex-axis at the outer boundary of the test lattice at time stepn= 100,
the time of maximum excitation of the PML by the outgoing wave. We see that the error
due to the PML is on the order of 10−3 times that of the Mur ABC.

KATZ, THIELE and TAFLOVE [1994] determined that, if one fixes the PML thick-
ness, increasing the PML loss can reduce both the local and global reflection errors.
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FIG. 10.4. Local E-field error at time-stepn = 100 along thex-axis at the outer boundary of a
100× 100× 50-cell three-dimensional test lattice for Mur’s second-order ABC and 16-cell quadratically
graded PML, plotted on a logarithmic vertical scale.Source: D.S. Katz et al.,IEEE Microwave and Guided

Wave Letters, 1994, pp. 268–270, © 1994 IEEE.

TABLE 10.1
Tradeoff of error reduction for quadratically graded PML relative to Mur’s second-order abc versus computer
resources for a three-dimensional test lattice of 100×100×50 cells.Source: D.S. Katz et al.,IEEE Microwave

and Guided Wave Letters, 1994, pp. 268–270, © 1994 IEEE

ABC Avg. local field error
reduction relative to
second-order Mur

Computer resources one
CPU, Cray C-90

If free-space buffer is
reduced by 10 cells

Mur 1 (0 dB) 10 Mwords, 6.5 s –
4-cell PML 22 (27 dB) 16 Mwords, 12 s 7 Mwords, 10 s
8-cell PML 580 (55 dB) 23 Mwords, 37 s 12 Mwords, 27 s
16-cell PML 5800 (75 dB) 43 Mwords, 87 s 25 Mwords, 60 s

However, this benefit levels off whenR(0) drops to less than 10−5. Similarly, the local
and global error can drop as the PML thickness increases. Here, however, a tradeoff
with the computer burden must be factored.

Table 10.1 compares for the test case of Fig. 10.4 the error reduction and computer
resources of Mur’s second-order ABC with a quadratically graded Berenger PML of
varying thickness. Here, the arithmetic average of the absolute values of theE-field er-
rors over a complete planar cut through the 100× 100 × 50-cell lattice aty = 0 and
n= 100 is compared for the Mur and PML ABCs. The last column indicates the effect
of reducing the free-space buffer between the interior working zone and the PML inter-
face by 10 cells relative to that needed for Mur, taking advantage of the transparency
of the PML ABC. From these results, a PML that is 4–8 cells thick appears to present
a good balance between error reduction and computer burden. Relative to the outer-
boundary reflection noise caused by Mur’s ABC, PMLs in this thickness range improve
the FDTD computational dynamic range by 27–55 dB.

In summary, these results show that Berenger’s split-field PML achieves orders-of-
magnitude less outer-boundary reflection than previous ABCs when used to model ra-
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diating sources in open regions. Depending upon the grading order of the PML loss,
16-cell PML is 60–80 dB less reflective than the second-order Mur ABC. Berenger’s
PML is also effective over ultrawideband frequency ranges. Unlike previous analyti-
cal ABCs (see TAFLOVE and HAGNESS[2000, Chapter 6]) used without the reflection
cancellation techniques of RAMAHI [1998], the PML ABC can realize close to its the-
oretical potential.

10.8.3. Dispersive wave propagation in metal waveguides
FDTD is being used increasingly to model the electromagnetic behavior of not only
open-region scattering problems, but also propagation of waves in microwave and op-
tical circuits. An outstanding problem here is the accurate termination of guided-wave
structures extending beyond the FDTD lattice boundaries. The key difficulty is that the
propagation in a waveguide can be multimodal and dispersive, and the ABC used to ter-
minate the waveguide must be able to absorb energy having widely varying transverse
distributions and group velocitiesvg .

REUTER, JOSEPH, THIELE, KATZ and TAFLOVE [1994] used Berenger’s split-
field PML to obtain an ABC for an FDTD model of dispersive wave propagation in
a two-dimensional, parallel-plate metal waveguide. This paper assumed a waveguide
filled with air and having perfectly conducting walls separated by 40 mm (fcutoff =
3.75 GHz). The waveguide was assumed to be excited by a Gaussian pulse of temporal
width 83.3 ps (full width at half maximum – FWHM) modulating a 7.5-GHz carrier.
This launched a+x-directed TM1 mode having the field componentsEx , Ey , andHz
towards an 8-cell or 32-cell PML absorber. In effect, the waveguide plunged into the
PML, which provided an absorbing “plug”. The two waveguide plates continued to
the outer boundary of the FDTD grid, where they electrically contacted the perfectly
conducting wall backing the PML medium. For the 8-cell PML trial, a quadratic loss
grading was assumed withR(0)= 10−6; cubic loss grading withR(0)= 10−7 was used
for the 32-cell PML trial.

Fig. 10.5(a) shows the spectrum of the input pulse used by REUTER, JOSEPH,
THIELE, KATZ and TAFLOVE [1994] superimposed upon the normalized group velocity
for the TM1 mode. The incident pulse contained significant spectral energy below cut-
off, and the group velocity of the pulse’s spectral components varied over an enormous
range from zero atfcutoff to about 0.98c well abovefcutoff. Because of this huge range,
REUTER, JOSEPH, THIELE, KATZ and TAFLOVE [1994] allowed the wave reflected
from the PML to fully evolve over many thousands of time steps before completing
the simulation. This properly modeled the very slowly propagating spectral compo-
nents nearfcutoff, which generated an equally slowly decaying impulse response for
the PML termination. Using a discrete Fourier transformation run concurrently with the
FDTD time-stepping, this allowed calculation of the PML reflection coefficient versus
frequency by dividing the reflected spectrum by the incident spectrum as observed at
the air/PML interface.

Fig. 10.5(b) graphs the resulting reflection coefficient of the waveguide PML ABC
versus frequency. For the 8-cell PML, reflections were between−60 dB and−100 dB
in the frequency range 4–20 GHz. For the 32-cell PML, the reflection coefficient was
below −100 dB in the frequency range 6–18 GHz. (Note that Cray word precision
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(a)

(b)

FIG. 10.5. Test of PML ABC for two-dimensional PEC parallel-plate waveguide propagating an ultrawide-
band pulsed TM1 mode. (a) Excitation spectrum superimposed upon the group velocity versus frequency
(cutoff= 3.75 GHz). (b) PML reflection coefficient versus frequency.Adapted from: C.E. Reuter et al.,IEEE

Microwave and Guided Wave Letters, 1994, pp. 344–346, © 1994 IEEE.

was used for these studies.) This example demonstrates the ability of the PML ABC to
absorb ultrawideband energy propagating in a waveguide having strong dispersion.

10.8.4. Dispersive and multimode wave propagation in dielectric waveguides
REUTER, JOSEPH, THIELE, KATZ and TAFLOVE [1994] also reported numerical ex-
periments using Berenger’s split-field PML to terminate the FDTD model of a two-
dimensional, asymmetric, dielectric-slab optical waveguide. This consisted of a 1.5-µm
film of permittivity εr = 10.63 sandwiched between an infinite substrate ofεr = 9.61
and an infinite region of air. The excitation introduced at the left edge of the three-layer
system was a 17-fs FWHM Gaussian pulse modulating a 200-THz carrier. Fig. 10.6(a)
shows the spectrum of this excitation superimposed upon the normalized propagation
factors of the three modes supported by the optical waveguide in the frequency range
100–300 THz. We see that the incident pulse contained significant spectral energy over
this entire range. Therefore, all three of the waveguide modes were launched. The model
of the optical waveguiding system was terminated by extending each of its three dielec-
tric layers into matching PML regions at the right side of the grid. The PML was 16
cells thick with (σx,σ ∗

x ) varying quadratically in thex-direction. Further, the PML loss
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(a)

(b)

FIG. 10.6. Test of PML ABC for 2D asymmetric three-layer dielectric optical waveguide propagating a
pulsed tri-modal wave: (a) excitation spectrum superimposed upon propagation factors for the three modes;
(b) PML reflection coefficient versus frequency.Source: C.E. Reuter et al.,IEEE Microwave and Guided

Wave Letters, 1994, pp. 344–346, © 1994 IEEE.

parameter was chosen such thatsx was constant in the transverse direction, as described
in Section 10.5.4.

Fig. 10.6(b) graphs the composite reflection coefficient representing the total retrodi-
rected energy in all three regions, as computed at the PML interface. The PML ABC
exhibited reflections below−80 dB across the entire spectrum of the incident field.
This demonstrates the absorptive capability of the PML ABC for dispersive multimodal
propagation.

In summary, these results show that Berenger’s split-field PML can achieve highly
accurate, ultrawideband terminations of PEC and dielectric waveguides in FDTD space
lattices. The PML ABC can provide broadband reflection coefficients better than
−80 dB, absorbing dispersive and multimodal energy. Relative to previous approaches
for this purpose, the PML ABC has the advantages of being local in time and space,
extremely accurate over a wide range of group velocities, and requiring no a priori
knowledge of the modal distribution or dispersive nature of the propagating field. PML
provides a combination of broadband effectiveness, robustness, and computational effi-
ciency that is unmatched by previous ABCs for FDTD models.
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10.9. Numerical experiments with UPML

In this section, the UPML termination of FDTD grids is presented for a number of sam-
ple applications. The goal is to provide an understanding of how the UPML parameters
and grading functions impact its effectiveness as an ABC. In this manner, the reader can
better understand how to properly choose these parameters.

10.9.1. Current source radiating in an unbounded two-dimensional region
Fig. 10.7 illustrates the first example, as reported by GEDNEY and TAFLOVE [2000].
This involves an electric current source�J centered in a 40× 40-cell FDTD grid. The
source is vertically directed and invariant along the axial direction. Hence, it radiates
two-dimensional TE waves. It has the time signature of a differentiated Gaussian pulse

(10.71)Jy(x0, y0, t)= −2
[
(t − t0)/tw

]
exp

{−[(t − t0)/tw
]2}
,

wheretw = 26.53 ps andt0 = 4tw.
The grid has 1-mm square cells and a time step of 0.98 times the Courant limit. The

E-field is probed at two points,A andB, as shown in the figure. PointA is in the same
plane as the source and two cells from the UPML, and pointB is two cells from the
bottom and side UPMLs. Time-stepping runs over 1000 iterations, well past the steady-
state response. Both 5-cell and 10-cell UPML ABCs are used with polynomial grading
m= 4.

For this case, the reference solutionEref|ni,j is obtained using a 1240×1240-cell grid.
An identical current source is centered within this grid, and the field-observation point
(i, j ) is at the same position relative to the source as in the test grid. The reference grid
is sufficiently large such that there are no reflections from its outer boundaries during
the time stepping. This allows a relative error to be defined as

(10.72)Rel.error
∣∣n
i,j

= ∣∣E∣∣n
i,j

−Eref
∣∣n
i,j

∣∣/∣∣Eref max
∣∣
i,j

∣∣,

FIG. 10.7. Vertically directed electric current source centered in a 2D FDTD grid. The working volume of
40× 40 mm is surrounded by UPML of thicknessd.E-fields are probed at pointsA andB .
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FIG. 10.8. Relative error at pointsA andB of Fig. 10.7 over 1000 time steps for 5-cell and 10-cell UPMLs
with σmax= σopt andκ = 1.

FIG. 10.9. Maximum relative error due to 5-cell and 10-cell UPML ABCs in the grid of Fig. 10.7 versus
σmax/σopt over a 1000-time-step observation period.

whereE|ni,j is the field value at grid location (i, j ) and time stepn in the test grid, and
Eref max|i,j is the maximum amplitude of the reference field at grid location (i, j ), as
observed during the time-stepping span of interest.

Fig. 10.8 graphs the relative error calculated using (10.72) at pointsA andB of
Fig. 10.7 over the first 1000 time steps of the FDTD run for 5-cell and 10-cell UPMLs.
Here, the key UPML parameters areσmax = σopt, whereσopt is given by (10.57), and
κmax = 1. We note that the error atA is always less than that atB. This is because
the wave impinging on the UPML nearA is nearly normally incident and undergoes
maximum absorption. AtB, while the amplitude of the outgoing wave is smaller due to
the radiation pattern of the source, the wave impinges on the UPML obliquely at 45◦.
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(a)

(b)

FIG. 10.10. Contour plots of the maximum relative error in dB in the grid of Fig. 10.7 versusσmax/σopt and
polynomial orderm for a 10-cell UPML: (a) at point A; (b) at point B.

Fig. 10.9 provides additional information by graphing as a function ofσmax/σopt the
maximum relative error at pointsA andB during the 1000-time-step simulation. As
before, polynomial grading is used withm = 4, and the sameσmax is used for each
of the four UPML absorbers at the outer boundary planes of the grid. We see that the
optimal choice forσmax is indeed close toσopt. Again, the maximum error atB is about
an order of magnitude larger than that atA.

Figs. 10.10(a) and 10.10(b) are contour plots resulting from a comprehensive para-
metric study of the 10-cell UPML. These figures map the maximum relative error atA

andB, respectively, during the 1000-time-step simulation. The horizontal axis of each
plot provides a scale forσmax/σopt, and the vertical axis provides a scale for the poly-
nomial orderm, not necessarily an integer. The minimum error is found for 3<m< 4
andσmax∼= 0.75σopt, and is approximately−95 dB atA and−80 dB atB.
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GEDNEY and TAFLOVE [2000] reported a similar study involving geometric grading
of the UPML parameters. Forg = 2.2, about−85 dB of reflection error was realized at
bothA andB for ln[R(0)] between−12 and−16. It was observed that the effectiveness
of the UPML is quite sensitive to the choice ofg.

10.9.2. Highly elongated domains
In the previous example, the incident angle of the wave impinging on the UPML never
exceeded 45◦. However, for highly oblique incidence angles approaching 90◦, the re-
flectivity of the UPML increases markedly and its performance as an ABC degrades.

Fig. 10.11 illustrates an example reported by GEDNEY and TAFLOVE [2000] of just
such a situation, a highly elongated 435× 15-cell (working volume) TEz grid. Here,
the relative error in theE-field was computed at pointsA (10 mm from the source),B
(50 mm from the source),C (100 mm from the source),D (200 mm from the source),
andE (400 mm from the source). The current source was polarized such that the ra-
diated signal impinging on the long grid boundary was maximum in amplitude. From
the problem geometry, we see that the specularly reflected wave from the long-grid-

FIG. 10.11. Current element�J radiating in an elongated FDTD grid (not to scale) terminated by UPML.
Distance of each observation point from the source:A, 10 mm;B , 50 mm;C, 100 mm;D, 200 mm; andE,

400 mm.

FIG. 10.12. Maximum relative error at pointsA, B , C, D, andE in the grid of Fig. 10.11 due to a polyno-
mial-scaled 10-cell PML vs.σmax/σopt. Parametersm= 4 andκ = 1 are fixed.
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boundary UPML arriving atE was incident on the UPML at 89◦, implying that the
reflection error atE should be degraded from that observed atA.

The model of Fig. 10.11 used 1-mm square grid cells and�t set at 0.98 times
the Courant limit. The source had the same differentiated Gaussian-pulse waveform
used previously. A 10-cell UPML absorber with polynomial spatial scaling (m= 4 and
κmax= 1) was used on all sides.

Fig. 10.12 graphs the maximum relative error recorded at each of the observation
points over the initial 1000 time-steps as a function ofσmax/σopt. While the error at

(a)

(b)

FIG. 10.13. Contour plots of the maximum relative error in dB in the grid of Fig. 10.11 vs.κy-max and
σy-max/σopt for a polynomial-scaled 10-cell UPML: (a) at pointA; (b) at pointE.
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A can be less than 0.0001, or−80 dB, the error progressively worsens atB–E. We
expect that larger values ofσmax could reduce the reflection error. However, larger val-
ues ofσmax lead to larger step discontinuities in the UPML profile, and hence, a larger
discretization error.

We note that the radiation due to the current source is characterized by a spectrum
of waves containing evanescent as well as propagating modes. However, the evanescent
modes are not absorbed by the UPML whenκ = 1. Increasingκ should help this sit-
uation. To investigate this possibility, Figs. 10.13(a) and 10.13(b) plot contours of the
maximum relative error atA andE, respectively, as a function ofσmax/σopt andκmax.
We see that increasingκmax causes the reflection error atE to decrease by two orders of
magnitude to less than−65 dB in the vicinity ofσmax ≈ 1.6σopt andκmax ≈ 25. While
this strategy degrades the reflection error atA, the error atA is still less than−65 dB.

10.9.3. Microstrip transmission line
Our final numerical example, reported by GEDNEY and TAFLOVE [2000], involves the
use of UPML to terminate a three-dimensional FDTD model of a 50�microstrip trans-
mission line. This is a case wherein an inhomogeneous dielectric medium penetrates
into the UPML, and ultralow levels of wave reflection are required.

Fig. 10.14 illustrates the cross-section of the microstrip line. The metal trace was
assumed to be 254 µm wide with a negligible thickness compared to its width. This
trace was assumed printed on a 254 µm thick alumina substrate havingεr = 9.8, with
the region above the substrate being air. The line was assumed to be excited at one end
by a voltage source with a Gaussian profile and a 40-GHz bandwidth.

A uniform lattice discretization�x = �y = 42.333 µm was used in the transverse
(x, y)-plane of the microstrip line, while�z = 120 µm was used along the direc-
tion of wave propagationz. Polynomial-graded UPML backed by perfectly conducting
walls terminated all lattice outer boundary planes. The metal trace extended completely
through thez-normal UPML and electrically contacted the backing wall. In addition,
the substrate, ground plane, and air media each continued into their respective adjacent
UPMLs, maintaining their permittivities and geometries.

The wave impinging on thez-normal boundary was a quasi-TEM mode supported
by the microstrip line. Even though the media were inhomogeneous, the UPML was

FIG. 10.14. Cross section of a 50� microstrip line printed on a 254 µm thick alumina substrate terminating
in UPML. The FDTD lattice sidewalls are also terminated by UPML.
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FIG. 10.15. Reflection error (in dB) of a 10-cellz-normal UPML in the microstrip line of Fig. 10.14 as a
function of the polynomial grading orderm and the normalized conductivity.

perfectly matched to this wave. The goal was to study the reflection behavior of the
UPML as a function of its loss profile when used to terminate this line.

Because the conductivity within the UPML was polynomial graded, the optimal value
of σzmax could be predicted by (10.57). However, an ambiguity existed because the
dielectric penetrating into thez-normal UPML was inhomogeneous. Thus, as recom-
mended in Section 10.5.4, the UPML conductivity was scaled by the relative permittiv-
ity as defined in (10.48). This yielded

(10.73)σz,opt = 0.8(m+ 1)

η0�
√
εeff

,

whereεeff is the effective relative permittivity for the inhomogeneous media extending
into the UPML. For the microstrip line,εeff could be estimated via quasistatic theory
(see, for example, POZAR [1998]), and in the case of Fig. 10.14 equals 6.62.

Fig. 10.15 illustrates the results of a parametric study of the reflection-error perfor-
mance of a 10-cell UPML at thez-normal lattice outer boundary. The parameters inves-
tigated wereσzmax and the polynomial grading orderm. We see that the optimal value
of σzmax was well predicted by (10.73), and further choosingm in the range of 3–5 was
sufficient for minimizing the reflection error. Additional studies showed that the UPML
reflection was better than−100 dB from 0–50 GHz form= 4 andσz,opt.

10.10. UPML terminations for conductive and dispersive media

For certain applications, it is necessary to simulate electromagnetic wave interactions
within conductive or frequency-dispersive media of significant spatial extent. Exam-
ples include wave propagation within microwave circuits printed on lossy dielectric
substrates, and impulsive scattering by objects buried in the earth or embedded within
biological tissues. In such cases, it is desirable to simulate the lossy or dispersive ma-
terial extending to infinity through the use of a PML absorbing boundary. The reader
is referred to the work of GEDNEY and TAFLOVE [2000], which discusses in detail the
extension of the UPML formulation presented previously in this section for purposes of
terminating conductive and dispersive media.
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11. Summary and conclusions

This chapter reviewed key elements of the theoretical foundation and numerical imple-
mentation of finite-difference time-domain (FDTD) solutions of Maxwell’s equations.
The chapter included:

• Introduction and background
• Review of Maxwell’s equations
• The Yee algorithm
• The nonuniform Yee grid
• Alternative finite-difference grids
• Theory of numerical dispersion
• Algorithms for improved numerical dispersion properties
• Theory of numerical stability
• Alternating-direction implicit time-stepping algorithm for operation beyond the

Courant limit
• Perfectly matched layer (PML) absorbing boundary conditions, including Beren-

ger’s split-field PML, the stretched-coordinate PML formulation, and the uniaxial
anisotropic PML (UPML).

With literally hundreds of papers on FDTD methods and applications published each
year, it is clear that FDTD is one of the most powerful and widely used numerical
modeling approaches for electromagnetic wave interaction problems. With expanding
developer and user communities within an increasing number of disciplines in science
and engineering, FDTD technology is continually evolving in terms of its theoretical ba-
sis, numerical implementation, and technological applications. The latter now literally
approach the proverbial spectral range from dc to light.
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1. Fluid models for transport in semiconductors

In this section we recall the Drift-Diffusion model, already but quickly addressed in
Chapter 1, and we describe the initial/boundary conditions which complete the model.
We also consider in more detail the Energy-Balance transport model. For a more
complete discussion of these issues we suggest the books by MARKOWICH [1986],
MARKOWICH, RINGHOFERand SCHMEISER[1990], JEROME[1996], JÜNGEL [2001]
and SELBERHERR[1984].

1.1. The Drift-Diffusion model

It is possible to view classical or semiclassical modelling of transport in semiconductors
as a hierarchical structure, sweeping from the Boltzmann Transport Equation (BTE)
down to the Drift-Diffusion (DD) model, passing through all the systems derived from
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the moments of the BTE with respect to increasing powers of the carrier group velocity
(cf. Section 4.6 of Chapter 1). The Hydrodynamic (HD) model and its inertial limit,
that is a type of Energy-Transport (ET) model, are examples, among others, of these
intermediate steps. The ET model will be briefly presented in Section 1.4. For the HD
model we refer to Chapter 5 and to the references therein.

The DD model is by far the best understood of the above models. It was introduced
by VAN ROOSBROECK [1950] back in 1950 as a conservation system for electron
and hole carriers, along with the electric field determined from the Poisson equation
in a self-consistent fashion. Other derivations of the model are also possible, start-
ing from the BTE and making use of the diffusion approximation, see, e.g., (COW-
ELL [1967], RODE [1995], DEGOND, GUYOT-DELAURENS, MUSTIELES and NIER

[1990]). For a mathematical theory on the subject we refer to (POUPAUD [1991, 1992],
POUPAUD and SCHMEISER [1991], GOLSE and POUPAUD [1992], MARKOWICH and
SCHMEISER[1997], MARKOWICH, POUPAUD and SCHMEISER[1995]). As a general
comment, the DD model is a good approximation of the underlying physical phenomena
when

• All of the scattering processes are elastic. The spatial variation of the relaxation
times and of the band structure of the semiconductor are neglected, i.e., slow vari-
ations of the doping profile are assumed.

• Degeneration effects in the approximation of the collision integral are neglected.
• The electric field depends mildly on the spatial position and the magnetic induction

vanishes.
• The carrier temperature coincides with the lattice temperature, which is constant.

This prevents simulating hot carrier and velocity overshoot phenomena.
• The energy bands are parabolic.

From a mathematical viewpoint, when appropriate scalings are employed for the quan-
tities appearing in the DD system, one finds that the conservation part of the system
is convection dominated. In particular, there is a scaling which makes the order of
magnitude of the electron and hole concentrations equal to 1. The convection dom-
ination arises from the potential, solving Poisson equation, which can be singularly
perturbed. This issue will be addressed in Section 1.3. Major breakthroughs in the
solution of the model occurred during the 1960s thanks to the pioneering work by
H.K. Gummel and D.L. Scharfetter. Gummel introduced in [1964] the system decou-
pling through a nonlinear Gauss–Seidel iteration, and Scharfetter and Gummel pro-
vided an exponential fitting approximation for the continuity equations in 1-d (SCHAR-
FETTER and GUMMEL [1969]) (this scheme had been previously introduced in flui-
dynamics applications by ALLEN and SOUTHWELL [1955]). The nonlinear map (or
family of maps) that arises from the Gauss–Seidel iteration is a compact continuous
map whose fixed point characterizes the solution of the DD model, and is since then
called Gummel’s map. It will be the object of Section 2. The exponentially fitted dif-
ference scheme proposed in the one-dimensional case in SCHARFETTER and GUM-
MEL [1969] will be the object of multidimensional extension in Sections 4.1, 4.2, 5.1.1
and 6.2.



Discretization of semiconductor device problems (I) 319

1.2. The DD system

The geometrical model of a semiconductor device consists of a bounded and simply
connected portionΩ of R

d (d = 1,2,3), which is constituted by a semiconductor part,
denoted byΩS , and, in the case of Metal-Oxide-Semiconductor (MOS) devices, also
by one or more subdomains of thin oxide adjacent toΩS and whose union we denote
by ΩO . We also denote byx ∈ R

d the independent spatial variable and byt ∈ (0, tf )
the time variable.

The DD model is given by the following set of equations for the electric field
E [V cm−1], and the electron and hole current densitiesJ n, J p [A cm−2], respectively:

(1.1)


div(εE)= ρ in Q :=Ω × (0, tf ),

q ∂n
∂t

− divJ n = −qR in QS :=ΩS × (0, tf ),

q
∂p
∂t

+ divJ p = −qR in QS :=ΩS × (0, tf ),

whereq [A s] is the (positive) electron charge,ε [A sV−1 cm−1] is the dielectric con-
stant of the materials, and the following constitutive relations hold:

E = −∇ψ in Q,

(1.2)ρ =
{
q(p− n+C(x))= q(p− n+N+

D −N−
A ) in QS,

0 inQO.

In (1.1)–(1.2)ψ [V] is the electrostatic potential,n, p [cm−3] are the electron and hole
concentrations inside the semiconductor (n|ΩO ≡ p|ΩO ≡ 0), ρ [A scm−3] is the net
charge density in the device and is zero inside the oxide, which is assumed to be neutral,
C(x)=N+

D −N−
A [cm−3] is the so-called doping profile, which is assumed to be a given

datum of the problem in terms of the ionized donors and acceptors concentrationsN+
D

andN−
A , respectively. Moreover, the oxide is assumed as a perfect insulator; thus we

haveJ n|ΩO ≡ J p|ΩO ≡ 0.
The next step towards the completion of the DD system is to provide constitutive

relations forJ n, J p in the semiconductor and for the source termR [cm−3 s−1]. This
last one can be interpreted as the net generation/recombination rate of carriers in unit
time and volume:R > 0 means net recombination,R < 0 means net generation. More
details about the modeling ofR will be given in Section 1.2.1.

Physically, the current density is the product of the elementary chargeq, the carrier
density, and the mean velocity (drift velocity), i.e.,

J n = −qnv n, J p = qpvp,

wherev n, v p [cms−1] are the drift velocities of the carriers. We have then to determine
some relations which link these velocities to the electric field and to the carrier concen-
trations. This can be done from the BTE. Another approach consists in carrying out a
singular perturbation expansion of the current densities with respect to relaxation times.
Actually, introducing the mobilitiesµn, µp [cm2 V−1 s−1]

µn = qτn/m
∗
n, µp = qτp/m

∗
p,
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in terms of the effective massesm∗
n, m

∗
p [kg] and of the relaxation timesτn, τp [s], we

obtain (see SELBERHERR[1984])

τn
∂J n

∂t
+ J n = qµnn

(
E + 1

n
∇(nKBT/q)

)
,

τp
∂J p

∂t
+ J p = qµpp

(
E − 1

p
∇(pKBT/q)

)
,

whereKB [V A s K−1] is the Boltzmann constant andT [K] denotes the lattice tempera-
ture. Given that the relaxation times are “very small” we can proceed with an expansion
where the singular perturbation parameters are the relaxation times

J n(τn)=
∞∑
j=0

J nj τ
j
n , J p(τp)=

∞∑
j=0

J pj τ
j
p .

Truncating at the first term (j = 0), assuming that the temperatureT of the crystal is
constant, and assuming Einstein’s relations

(1.3)Dn = µn
KBT

q
, Dp = µp

KBT

q
,

for the diffusion coefficients of the carriersDn,Dp [cm2 s−1], we obtain eventually the
classical DD relation forJ n, J p

(1.4)
J n = qµnnE + qDn∇ n= −qµnn∇ψ + qDn∇ n,
J p = qµppE − qDp∇ p = −(qµpp∇ψ + qDp∇ p),

in which we can recognize two different contributions to the current densities: a drift
term proportional tonE (pE), and a diffusion term proportional to∇ n (∇ p).

Let us recall the Maxwell–Boltzmann statistics relating the carrier concentrations to
the electrostatic potential and the quasi-Fermi levelsϕn, ϕp

(1.5)n= ni exp

(
ψ − ϕn

Vth

)
, p = ni exp

(
ϕp −ψ

Vth

)
,

whereVth =KBT/q is the thermal voltage andni is the intrinsic concentration of the
semiconductor (see, e.g., SZE [1981]). Substituting relations (1.5) into (1.4) we obtain
the following alternative expression of the current densities:

(1.6)J n = −qµnn∇ ϕn, J p = −qµpp∇ ϕp.
These can be interpreted as two drift currents where electron and holes are driven by the
effective fields

En = −∇ ϕn, Ep = −∇ ϕp.
Looking back at (1.5), a new set of independent variables can be derived by setting

(1.7)ρn = exp

(
− ϕn

Vth

)
, ρp = exp

(
ϕp

Vth

)
.
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The new unknownsρn andρp have been first introduced by SLOTBOOM [1973], and
therefore are usually denoted as theSlotboomvariables associated with electron and
hole densitiesn andp. Substituting (1.7) into (1.5) we get

(1.8)n= niρn exp

(
ψ

Vth

)
, p = niρp exp

(
− ψ

Vth

)
,

and the current densities become

(1.9)J n = qDnni exp

(
ψ

Vth

)
∇ ρn, J p = −qDpni exp

(
− ψ

Vth

)
∇ ρp.

These can be interpreted as two diffusion currents of the equivalent concentrationsniρn
andniρp with diffusion coefficientsDn exp( ψ

Vth
) andDp exp(− ψ

Vth
), respectively.

Three sets of dependent variables have been introduced so far: the primitive variables
(ψ,n,p), the set including the Slotboom variables(ψ,ρn,ρp) and the set compris-
ing the potentials(ψ,ϕn,ϕp). The first set is the most widely used in computations,
although the three unknowns have different physical meaning and attain strongly vary-
ing numerical ranges. The second one is useful for analytical purposes, as will be seen
in Section 2, since the current continuity equations (1.1)2–(1.1)3 become self-adjoint.
However, the set(ψ,ρn,ρp) can be used in numerical simulation only for low-bias
applications due to the enormous dynamic range required by the evaluation on the com-
puter of the Slotboom variables. Compared with the two previous sets of variables,
the set(ψ,ϕn,ϕp) has the advantage of collecting physically homogeneous quantities
which have the same order of magnitude, at the price of introducing an exponentially
nonlinear diffusion coefficient in the current continuity equations. Moreover, strictly
positive concentrations are a priori guaranteed due to (1.5). For further details on a
comparison between the various sets of dependent variables (including other possible
choices that have not been addressed here) we refer to SELBERHERR[1984], Section 5.2
and to POLAK , DEN HEIJER, SCHILDERS and MARKOWICH [1987].

1.2.1. Boundary conditions and physical modeling
In this section we provide the DD model with appropriate boundary conditions in the
case of steady state problems. Let us assume thatΩ ≡ΩS ∪ΩO ⊂ R

d (d � 2) is an
open bounded set. A two-dimensional example of domain for semiconductor simula-
tion is shown in Fig. 1.1 where the cross-section of a MOS transistor is schematically
represented.

The boundary of a semiconductor device can be subdivided in two disjoint parts
∂ΩP and∂ΩA, respectively. The first one is a physical boundary, e.g., the metal con-
tacts where the external potentials are applied. The second one is an artificial boundary
which separates several devices on the same chip by symmetry axes or internal inter-
faces, or adjacent parts of a same device but with very different properties, e.g., the
oxide-semiconductor interfaces. Both parts of the device boundary can be subdivided
into disjoint portions pertaining to the semiconductor and to the oxide respectively,
so that we have∂ΩP ≡ ∂ΩP,S ∪ ∂ΩP,O and∂ΩA ≡ ∂ΩA,S ∪ ∂ΩA,O ∪ ∂ΩI , where
∂ΩI denotes the oxide-semiconductor interface. In the example of Fig. 1.1 we have
∂ΩP,S ≡ AB ∪EF ∪GH , ∂ΩP,O ≡ CD, ∂ΩA,S ≡ AH ∪ FG, ∂ΩA,O ≡ BC ∪DE
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FIG. 1.1. Cross-section of a MOS transistor.

and∂ΩI ≡ BE. We shall consider Dirichlet–Neumann boundary conditions, typically
nonhomogeneous Dirichlet conditions for (ψ,n,p) on the segments∂ΩP (ideal ohmic
contacts) while on the remaining parts

we shall let the fluxes of the electric field and of the current densities vanish, i.e., ho-
mogeneous Neumann conditions for (ψ,n,p). For a more exhaustive survey of bound-
ary conditions, see MARKOWICH [1986], SELBERHERR[1984], MOCK [1983a].

We start by describing the boundary conditions on∂ΩP and consider first the part
∂ΩP,S . This is made by ohmic contacts where external voltages are applied to electri-
cally drive the semiconductor device. From a mathematical viewpoint, an ideal ohmic
contact is a Dirichlet segment where thermodynamic equilibrium is assumed, i.e., the
mass-action law

(1.10)np|∂ΩP,S = n2
i ,

and the charge neutrality

(1.11)ρ|∂ΩP,S = q(p− n+C)|∂ΩP,S = 0

hold. By combining (1.10) and (1.11) and denoting byCoh the restriction of the doping
profile to the ohmic contact we obtain the following valuesnD andpD for the concen-
trations of the carriers

(1.12)
n|∂ΩP,S = nD :=

√
C2

oh + 4n2
i +Coh

2
,

p|∂ΩP,S = pD :=
√
C2

oh + 4n2
i −Coh

2
.
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Concerning the boundary conditions for the electrostatic potentialψ , the value ofψ at
the contacts is obtained by summing the external applied voltageVext with the so-called
built-in potential between the metal and the semiconductor

(1.13)ψ|∂ΩP,S =ψD|∂ΩP,S := Vext|∂ΩP,S +ψbi|∂ΩP,S .
The built-in potentialψbi is computed in order that the semiconductor is in thermal equi-
librium when all the applied external voltages are zero. This amounts to assuming that
the energy levels of the semiconductor in the neighborhood of the contact are horizontal
(flat band approximation).

From the Maxwell–Boltzmann statistics (1.5) we obtain the following relations for
the built-in potential (see (1.11))

ni exp

(
−ψbi

Vth

)
− ni exp

(
ψbi

Vth

)
+Coh = 0,

from which it follows

(1.14)ψbi|∂ΩP,S = Vth sinh−1
(
Coh

2ni

)
= Vth sinh−1

(
N+
D −N−

A

2ni

∣∣∣∣
∂ΩP,S

)
.

In the case when one of the two dopant species is dominant over the other, (1.14) sim-
plifies into

ψbi|∂ΩP,S � Vth ln

(
N+
D |∂ΩP,S
ni

)
, N+

D �N−
A ,

ψbi|∂ΩP,S � −Vth ln

(
N−
A |∂ΩP,S
ni

)
, N−

A �N+
D .

Let us now consider the boundary conditions on the part∂ΩP,O . This is made by gate
contacts which are located over the oxide regionΩO and where external voltages are
applied to control the current flow between the input-output contacts of the MOS tran-
sistor. Sincen= p = 0 within the oxide, only a boundary condition for the electrostatic
potentialψ can be prescribed on∂ΩP,O and reads

(1.15)ψ|∂ΩP,O =ψD|∂ΩP,O := Vext|∂ΩP,O −Φms,

Φms= Φm − Φs being the metal-semiconductor work function difference, referred to
an intrinsic semiconductor, i.e., such that

Φs = χ + Ec −Ei

q
,

χ being the semiconductor affinity,Ec the conduction-band edge, andEi the intrin-
sic Fermi level within the semiconductor (see BACCARANI, RUDAN, GUERRIERI and
CIAMPOLINI [1986]).

As for the Neumann data, we assume homogeneous conditions on∂ΩA,S ∪ ∂ΩA,O ,
i.e., vanishing fluxes of the electric field and of the current densities

(1.16)
∂ψ

∂n

∣∣∣∣
∂ΩA,S

≡ ∂ψ

∂n

∣∣∣∣
∂ΩA,O

≡ J n · n|∂ΩA,S ≡ J p · n|∂ΩA,S ≡ 0,
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wheren is the unit outward normal vector to the boundaries.
The so-called material interfaces deserve a special treatment. We denote them by

∂ΩI , e.g., the interface between the oxide and the semiconductor, which in the example
of Fig. 1.1 is∂ΩI ≡ BE. In this case the Neumann condition for the electrical potential
is a consequence of the Gauss law. Assuming for simplicity that the surface charge
density is zero and letting[·] denote the jump function, andεox, εsem the dielectric
constants of the oxide and of the semiconductor, respectively, we have

(1.17)[ψ]∂ΩI = 0,

[
ε
∂ψ

∂n

]
∂ΩI

= 0, ε(x)≡
{
εsem, x ∈ΩS,

εox, x ∈ΩO.

In order to complete the description of system (1.1), we provide some constitutive
relations for the functionR and the mobilitiesµn, µp. We recall that in thermal equi-
librium the mass-action law (1.10) holds. When the device works under nonequilibrium
conditions, e.g., when some external voltages are applied, the carrier concentrations
move away from their equilibrium values. In this case some recombination/generation
mechanisms arise in order to bring the system back to equilibrium. The mechanisms
typically considered in the simulations are the Shockley-Hall-Read, Auger, and Impact
Ionization phenomena (for a physical description, see, e.g., SZE [1981]). The mathe-
matical expressions of these mechanisms are

(1.18)RSHR= pn− n2
i

τ ∗
n (p+ ni)+ τ ∗

p(n+ ni)
,

(1.19)RAU = (pn− n2
i )(Cnn+Cpp),

(1.20)RII = −(αn(|E |)|J n|/q + αp
(|E |)|J p|/q),

whereτ ∗
n , τ ∗

p are the carrier lifetimes,Cn, Cp are the Auger coefficients, andαn, αp are
the ionization rates for electrons and holes, respectively. The recombination/generation
rate is eventually computed as

R =RSHR+RAU +RII .

As for the carrier mobilities, the modeling has to take into account that, for high electric
field, the drift velocities (|vn,p| = µn,p|∇ψ |) saturate. A commonly employed model
is the one suggested by CAUGHEY and THOMAS [1967]

(1.21)µn,p =
(

µ0
n,p

1+ (µ0
n,p |∇ψ |
vsatn,p

)βn,p
)1/βn,p

,

wherevsat
n,p are the carrier saturation velocities,βn = 2, βp = 1 andµ0

n,p are the low-
field mobilities. For the details about the modeling of all the above coefficients we refer
to SELBERHERR[1984], Chapter 41.

The analysis of the multi-dimensional boundary-value problem in steady-state is not
trivial because of the presence of mixed boundary conditions. Actually, this is a situ-
ation in which gradient singularities may occur at the boundary transition points. This
issue has been addressed in the literature for the case of linear elliptic equations (see
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WIGLEY [1970], KELLOGG[1972], AZZAM and KREYSZIG[1982], GRISVARD [1985]
for asymptotic expansions and MURTHY and STAMPACCHIA [1972] for gradient inte-
grability). A study of asymptotic behavior in the two-dimensional case has been carried
out in GAMBA [1993], where the case of a singularity at a corner formed by the oxide
region of a MOS device is also considered. As for the transient model, some develop-
ments can be found in COUGHRAN and JEROME [1990], JEROME [1987].

The first mathematical study of the DD model is due to MOCK [1972], who dealt
with the steady-state case. He used a decoupling map acting on the potential (the quasi-
Fermi levels are computed as an intermediate step). Since then, many variants of such an
approach have been introduced in the literature, all defined by an appropriate decoupling
procedure, and they are referred to as Gummel fixed point maps. Complicate geometries
or parameter models affect the structure of the fixed point map. An example of such map
will be discussed in Section 2. We refer the reader to the literature for existence results
(SEIDMAN [1980], MOCK [1983a], MARKOWICH [1984], GAJEWSKI [1985], JEROME

[1985], MARKOWICH [1986]). Global uniqueness of the solution of the DD system
cannot be expected in the general case, since there are devices, such as thyristors, whose
performance is based explicitly on the existence of multiple steady-state solutions (SZE

[1981]). However, there are uniqueness results close to thermal equilibrium (MOCK

[1983a], MARKOWICH [1986]). For the analysis of the transient problem we refer to
MOCK [1983a].

1.3. Scaling

The physical quantities in system (1.1) have different physical dimensions and, in order
to compare their orders of magnitude, these quantities have to be made dimensionless
first by appropriate scalings. We introduce for system (1.1) two closely related scalings,
and we shall refer to these scalings as the De Mari and the Unit scalings.

1. De Mari scaling (see DEMARI [1968]):
• Potentials scaled byVth;
• Concentrations scaled by the intrinsic concentrationni ;
• Length scaled by a characteristic Debye lengthLD = √

εVth/(qni).
2. Unit scaling (see SELBERHERR[1984] and MARKOWICH [1986]):

• Potentials scaled byVth;
• Concentrations scaled byC = supx∈Ω |C(x)|;
• Length scaled by a characteristic device dimensionl.

After any of the above scalings, the scaled dimensionless DD system reads

(1.22)



div(λ2E)= p− n+C(x),

∂n
∂t

− divJ n = −R,
∂p
∂t

+ divJ p = −R,
E = −∇ψ,
J n = µn(∇ n− n∇ψ),
J p = −µp(∇ p+ p∇ψ),
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TABLE 1.1
De Mari and Unit scaling factors

Quantity De Mari
factor

De Mari
factor value

Unit
factor

Unit
factor value

ψ Vth 0.0258 V Vth 0.0258 V

n, p ni 1.482× 1010 cm−3 C 1018 cm−3

x LD 3.357× 10−3 cm l 10−4 cm

µn, µp D0V
−1
th 38.68 cm2 V−1 s−1 µ 1000 cm2 V−1 s−1

Dn,Dp D0 1 cm2 s−1 µVth 25.8 cm2 s−1

J n, J p qD0ni/LD 0.71× 10−6 Acm−2 qVthµC/l 4.13× 106 Acm−2

R D0ni/L
2
D

1.314× 1015 cm−3 s−1 VthµC/l
2 2.58× 1029 cm−3 s−1

t L2
D
/D0 1.127× 10−5 s l2/(Vthµ) 4× 10−10 s

where for simplicity we used the same unscaled symbols for the variables, the mobility
coefficients and the recombination/generation term. For either scalings we have

(1.23)λ2 = εVth

l2scalqCscal
, lscal= LD or l, Cscal= ni orC.

The entire list of scaling factors used to deduce (1.22) is reported in Table 1.1, whereµ

denotes the maximum mobility. Moreover, numerical values of the physical quantities
in the case of Silicon at 300 K are given.

In the case of the De Mari scalingλ2 = 1, whereas in the case of the Unit scaling,
λ2 � 10−1÷10−7 (for instance, with the choices of Table 1.1 we haveλ2 � 10−6). With
the De Mari scaling the doping is of the order 107 ÷ 1010 and the carrier concentrations
are expected to have these values too. In the Unit scaling all the concentrations are ex-
pected to be maximally of order 1. The scaled Debye lengthλ acts as a singular perturba-
tion parameter and the behavior of the solution of (1.22) asλ→ 0+ (quasi-neutral limit)
can be analyzed. We refer to MARKOWICH [1984], ALABEAU [1984], MARKOWICH

and RINGHOFER [1984], HENRI and LOURO [1989], MARKOWICH and SCHMEISER

[1986] for studies in the stationary case and to MARKOWICH [1986], MARKOWICH,
RINGHOFER and SCHMEISER [1990] for an overview. The study of the quasi-neutral
limit in the transient case is more intricate and still a subject of active research (see Ring-
hofer [1987a, 1987b], GASSER, HSIAO, MARKOWICH and WANG [2002], GASSER,
LEVERMORE, MARKOWICH and SCHMEISER[2001], GASSER[2001], e.g.).

A different form of scaling is more appropriate forpn-junctions (which are the
boundaries betweenp-regions andn-regions) under extreme reverse biasing condi-
tions. In that case a so-called depletion region forms about the junction, where very
few carriers exist andn,p � 0 holds. By changing the scaling factor of the potential to
ql2C/ε, the singular perturbation parameter (still the scaled Debye lengthλ) appears
in the current continuity equations, rather than in the Poisson equation, and in the de-
pletion region�ψ � −C holds. Consequently, the depletion region does not disappear
in the limit whenλ → 0. Actually, the limiting problem is a free boundary problem
where the free boundaries coincide with the edges of the depletion region. We refer to
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BREZZI and GASTALDI [1986], BREZZI, CAPELO and GASTALDI [1989], CAF-
FARELLI and FRIEDMAN [1987], SCHMEISER [1989, 1990], MONTARNAL and
PERTHAME [1997] and to MARKOWICH, RINGHOFER and SCHMEISER [1990] for
an overview.

1.4. The Energy-Transport model

As already pointed out in Section 1.1, the DD model provides a good description of the
electrical behavior of the semiconductor devices only close to thermal equilibrium, but
it is not accurate enough for sub-micron device modeling, owing to the rapidly changing
fields and temperature effects. In the last years, various models, either of kinetic or of
macroscopic type, have been derived in order to improve the physical description of
the transport in semiconductor devices. The semiconductor Boltzmann equation gives
quite accurate simulation results, but the numerical methods to solve this equation (for
instance, with Monte-Carlo methods) are too costly and time consuming to model real
problems in semiconductor production mode where simulation results are needed in
hours or minutes. Extended drift-diffusion models able to describe temperature effects
in sub-micron devices are the so-called Energy-Transport (or Energy-Balance) models.
They consist of the conservation laws of mass and energy, together with constitutive
relations for the particle and energy currents.

The first Energy-Transport model has been presented by STRATTON [1962]. In
the physical literature, Energy-Transport equations have been derived from Hydrody-
namic (HD) models usually by neglecting the inertia terms in the momentum transport
equation (see, e.g., RUDAN, GNUDI and QUADE [1993], SOUISSI, ODEH, TANG and
GNUDI [1994] and references therein). This approach can be made mathematically rig-
orous by considering a diffusion time scaling (GASSERand NATALINI [1999]). For HD
models, which can be regarded as the Euler equations of gas and fluid dynamics for a
gas of charged and colliding particles in an electric field, we refer to Chapter 5 where
they are extensively discussed.

Another approach is to derive the Energy-Transport model from the semiconductor
Boltzmann equation in the diffusive limit, by means of the Hilbert expansion method
(BEN ABDALLAH and DEGOND [1996], BEN ABDALLAH , DEGOND and GÉNIEYS

[1996]). In this derivation, the dominant scattering mechanisms are assumed to be
electron-electron and elastic electron-phonon scattering. The Energy-Transport model
for electrons reads as follows:

(1.24)



div(εE )= q(C − n),

q ∂n
∂t

− divJ n = 0,

∂U
∂t

− divS n =E · J n +W(n,Tn),

E = −∇ψ,
J n = L11

(∇ n
n

− q∇ ψ
KBTn

)+ (
L12
KBTn

− 3
2L11

)∇Tn
Tn
,

qS n = L21
(∇ n
n

− q∇ ψ
KBTn

)+ (
L22
KBTn

− 3
2L21

)∇Tn
Tn
.
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The variables are the electron densityn, the electron temperatureTn, and the elec-
trostatic potentialψ . Furthermore,U = 3

2nKBTn is the internal energy,J n, S n are
the particle current and energy flux densities, respectively. The diffusion coefficients
Lij = Lij (n,Tn) and the energy relaxation termW(n,Tn) are non-linear functions of
n andTn, depending on the physical assumptions (distribution functionansatz, energy
band diagram and so on). For instance, if we assume the parabolic band approximation,
non-degenerate Boltzmann statistics (the distribution function being a Maxwellian) and
a special form of momentum relaxation time, the diffusion matrix takes the form

(1.25)L= (Lij )= µnKBT
eqn

(
1 3

2KBTn
3
2KBTn

15
4 (KBTn)

2

)
,

and the energy relaxation term is given by

(1.26)W(n,Tn)= −3

2
nKB(Tn − T eq)/τwn,

whereT eq denotes the lattice temperature (assumed to be constant) andτwn denotes the
energy relaxation time. This corresponds to the model introduced in CHEN, KAN, RA-
VAIOLI , SHU and DUTTON [1992]. More general diffusion coefficients, including non-
parabolic energy band cases, are computed in BEN ABDALLAH and DEGOND [1996],
DEGOND, JÜNGEL and PIETRA [2000] and corresponding numerical simulations are
shown in Section 7.4.

When the diffusion matrix is taken as

(1.27)L= (Lij )= µnKBTnn

(
1 5

2KBTn
5
2KBTn (25

4 + κ0)(KBTn)
2

)
,

with κ0> 0, system (1.24) corresponds to the model known in the literature as Energy-
Balance model. It reads

(1.28)



div(εE )= q(C − n),

q ∂n
∂t

− divJ n = 0,

∂U
∂t

− divS n =E · J n − 3
2nKB

(Tn−T eq)
τwn

,

E = −∇ψ,
J n = qDn∇ n− qµnn∇

(
ψ − KBTn

q

)
,

S n = κn∇Tn + 5
2
KBTn
q
J n,

whereDn is the non-constant diffusion coefficient given byDn = µnKBTnq
−1, and

κn is the non-constant heat conductivity coefficient corresponding to the Wiedemann–
Franz lawκn = κ0K

2
Bµnq

−1nTn.
We complement the equations with physically motivated mixed Dirichlet–Neumann

boundary conditions

(1.29)n= nD, Tn = TD, ψ =ψD onΓD,

(1.30)J n · n= S n · n= ∇ψ · n= 0 onΓN,
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modeling the contactsΓD and the insulating boundary partsΓN . We have assumed that
∂Ω = ΓD ∪ ΓN andΓD ∩ ΓN = ∅. The boundary conditions are usually taken as for
the DD model: at ohmic contacts,nD is defined by (1.12),ψD is given by (1.13) and
TD = T eq. Moreover, initial conditions forn andTn are prescribed.

We point out that these models reduce to the classical DD model under the simplify-
ing assumption of vanishing relaxation time (i.e.,τwn → 0) which amounts to consider-
ing the carriers in thermal equilibrium with the crystal lattice,Tn = T eq, yielding

(1.31)J n = qDn∇ n− qµnn∇ψ.
The mathematical analysis of Eqs. (1.24) has been recently carried out in DEGOND,

GÉNIEYS and JÜNGEL [1997], DEGOND, GÉNIEYS and JÜNGEL [1998], under the as-
sumption of uniformly bounded diffusion coefficients. The existence and uniqueness of
weak solutions to both the stationary and the time-dependent (initial) boundary-value
problems have been proved. For an overview, we refer also to JÜNGEL [2001]. Ex-
istence results under different assumptions (for instance, near-equilibrium situations)
have been shown in ALLEGRETTO and XIE [1994], GRIEPENTROG[1999], JEROME

and SHU [1996].

2. A nonlinear block iterative solution of the semiconductor device equations:
the Gummel map

In this section we introduce the so-calledGummel map, a nonlinear block iterative algo-
rithm that splits the DD semiconductor device equations into the successive solution of
a nonlinear Poisson equation for the electric potentialψ and two linearized continuity
equations for the electron and hole densitiesn andp.

The basic form of the iterative map was first proposed by GUMMEL [1964]. Since
then, the map has become the most established approach in computer simulations due
to its good convergence properties (even in case of a badly chosen initial guess), ease
of implementation, and reduced computational effort (compared, for instance, to a fully
coupled solution of the DD system using Newton’s method).

Due to its successful use in semiconductor device simulation, a considerable amount
of mathematical work has been carried out to analyze the convergence of Gummel’s it-
eration (see, e.g., the papers KERKHOVEN[1986, 1988] and the books by MARKOWICH

[1986], MARKOWICH, RINGHOFERand SCHMEISER [1990] and JEROME [1996]). In
the following, we review the basic formalism and notation needed for a mathematically
consistent presentation of the algorithm.

With this aim, the scaled DD system is formulated in Section 2.1 in terms of the
Slotboom variables introduced in Section 1.1. Using these new unknowns, the linearized
carrier continuity equations assume a self-adjoint form which is convenient in view of
the analysis.

Sections 2.2 and 2.3 are devoted to the presentation and discussion of the Gummel
map as a fixed-point iteration. In Section 2.2 the Gummel map is used as an abstract
tool for constructively proving the existence of a (weak) solution to the DD system in
the stationary case. In Section 2.3 it is shown how to utilize the Gummel map as an
iteration scheme for the approximate computation of the solution of the semiconductor



330 F. Brezzi et al.

device problem. In particular, we summarize the main theoretical convergence results
for the iteration and briefly address the delicate matter of its acceleration, referring for
more details on this subject to Chapter 7 of this book.

Finally, in Section 2.4 the differential subproblems involved in the decoupled iterative
solution of the DD equations are cast into the unified framework of a reaction-diffusion
model problem. This will be the object of the discretization techniques discussed in the
forthcoming sections of this chapter.

2.1. The drift-diffusion equations in self-adjoint form

We will use henceforth the Unit scaling introduced in Section 1.3. Under this assump-
tion the scaled Slotboom variables are

(2.1)ρn = e−ϕn, ρp = eϕp ,

while the scaled Maxwell–Boltzmann statistics and the current densities become

(2.2)n= δ2ρne
ψ, p = δ2ρpe

−ψ,
and

(2.3)J n = δ2µne
ψ∇ ρn, J p = −δ2µpe

−ψ∇ ρp,
where δ2 = ni/C. Notice that in thermal equilibrium conditions (i.e., zero external
applied biases)ϕn = ϕp = 0 and correspondinglyρn = ρp = 1 which clearly implies
J n = J p = 0. Moreover, by definitionρn andρp are strictly positive quantities.

Using the triplet(ψ,ρn,ρp), and assuming for simplicity thatΩO = ∅, the DD sys-
tem (1.22), can be written inQS ≡Q as

(2.4)



−div(λ2E)= δ2ρpe
−ψ − δ2ρne

ψ +C(x),

δ2 ∂(ρneψ )
∂t

− divJ n = −R,
δ2 ∂(ρpe

−ψ)
∂t

+ divJ p = −R,
E = −∇ψ,
J n = δ2µne

ψ∇ ρn,
J p = −δ2µpe

−ψ∇ ρp,
ψ =ψD, ρn = ρnD, ρp = ρpD onΓD,

E · n= ∇ ρn · n= ∇ ρp · n= 0 onΓN,

whereΓD andΓN denote the Dirichlet and Neumann portions of the boundary, respec-
tively, with ∂Ω =: Γ = ΓD ∪ΓN , and the strictly positive Dirichlet boundary dataρnD
andρpD are related to the corresponding data forn andp through (1.8) as

(2.5)nD = δ2ρnDe
ψD, pD = δ2ρpDe

−ψD,
wherenD , pD are computed according to (1.12). The advantage of working with the
Slotboom variables is that the spatial part of the continuity equations is, for givenR,
in self-adjoint form, which greatly facilitates the mathematical analysis. On the other
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hand, for givenρn andρp the Poisson equation becomes nonlinear in the unknownψ ,
so that a suitable linearization technique (for example, Newton’s method) is required to
carry out its abstract analysis as well as its discretization.

2.2. The Gummel map in the stationary case

In this section we introduce the Gummel map for the solution of the semiconductor de-
vice equations. Without loss of generality, only the stationary case will be considered
since a semidiscretization in time (using for instance the Backward Euler method) mod-
ifies the continuity equations by the addition of a zero-order term proportional to the
reciprocal of the time-step#t in the right and left-hand sides. The presentation follows
the guidelines of MARKOWICH [1986], Chapter 3, and JEROME [1996], Chapter 4, to
which we refer the interested reader for more details and for the proofs of the results.
We also refer to Section 3.1 for the definition of the functional spaces that will be used
in the sequel.

Assume that there exist two positive constantsρmin, ρmax such that

0< ρmin � ρn(x)|ΓD , ρp(x)|ΓD � ρmax, ∀x ∈ ΓD,
and let

K = max
{∣∣log(ρmin)

∣∣, ∣∣log(ρmax)
∣∣}.

Let (ρ(0)n , ρ
(0)
p ) ∈ (L∞(Ω))2 be a given pair of positive essentially bounded functions

such that

(2.6)e−K � ρ(0)n (x), ρ(0)p (x)� eK a.e. inΩ.

The Gummel abstract fixed point iteration consists of:
(1) solving the semilinear Poisson equation

(2.7)

{
−div(λ2∇ψ)= δ2ρ

(0)
p e−ψ − δ2ρ

(0)
n eψ +C(x) in Ω,

ψ =ψD onΓD, ∇ψ · n= 0 onΓN,

for ψ =ψ(1):
(2) solving the two decoupled continuity equations

(2.8)

{
−div(µneψ

(1)∇ ρn)= −R(x,ψ(1), ρn, ρ(0)p ) in Ω,

ρn = ρnD onΓD, ∇ ρn · n= 0 onΓN,

for ρn = ρ
(1)
n , and

(2.9)

{
−div(µpe−ψ

(1)∇ ρp)= −R(x,ψ(1), ρ(1)n , ρp) in Ω,

ρp = ρpD onΓD, ∇ ρp · n= 0 onΓN,

for ρp = ρ
(1)
p .

Let

N = {
(u, v) ∈ (L2(Ω)

)2 | e−K � u(x), v(x)� eK a.e. inΩ
}
.
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It can be checked thatρ(1)n , ρ
(1)
p ∈N . Steps (1)–(2) implicitly define an operator

T :N →N

such that

T
(
ρ(0)n , ρ(0)p

)= (
ρ(1)n , ρ(1)p

)
.

Under suitable assumptions on the doping profileC, on the mobilitiesµn andµp, and
on the net recombination rateR (see MARKOWICH [1986], p. 34), it can be shown that
T admits a fixed point(ρ∗

n, ρ
∗
p) ∈ (H 1(Ω) ∩ L∞(Ω))2 with ρ∗

n, ρ
∗
p ∈ N . This in turn

allows us to prove that there exists a solutionw∗ = (ψ∗, ρ∗
n, ρ

∗
p) ∈ (H 1(Ω)∩L∞(Ω))3

of the DD system (2.4). Explicit bounds forψ∗ can be found in MARKOWICH [1986].
The decoupling abstract procedure described above is the basic Gummel iteration that
is commonly employed in semiconductor device simulation. Its actual implementation
is the object of the next section.

2.3. A fixed-point iteration for the approximate solution of the drift-diffusion system

In the following we use the Gummel fixed-point iteration introduced in the previous sec-
tion to construct a sequence of approximate solutions of the semiconductor DD system
(2.4) in the stationary case. For ease of presentation the algorithm will be described “on
the continuous level”, although it can be applied to discrete schemes or, conversely, the
“continuous” iterative scheme can be discretized appropriately (see, e.g., BANK , ROSE

and FICHTNER [1983] or JEROME [1996], Chapter 5).
Let k � 0 be a fixed integer; for given(ψ(k), ρ(k)n , ρ

(k)
p ) the Gummel map consists of

solving successively the following boundary-value subproblems:

(2.10)

{
−div(λ2∇ψ)= δ2ρ

(k)
p e−ψ − δ2ρ

(k)
n eψ +C(x) in Ω,

ψ =ψD onΓD, ∇ψ · n= 0 onΓN,

for ψ =ψ(k+1);

(2.11)

{
−div(µneψ

(k+1)∇ ρn)= −R(x,ψ(k+1), ρn, ρ
(k)
p ) in Ω,

ρn = ρnD onΓD, ∇ ρn · n= 0 onΓN,

for ρn = ρ
(k+1)
n , and

(2.12)

{
−div(µpe−ψ

(k+1)∇ ρp)= −R(x,ψ(k+1), ρ
(k+1)
n , ρp) in Ω,

ρp = ρpD onΓD, ∇ ρp · n= 0 onΓN,

for ρp = ρ
(k+1)
p . Steps (2.10)–(2.12) can be simply written asT (ρ(k)n , ρ

(k)
p )= (ρ

(k+1)
n ,

ρ
(k+1)
p ). We prefer to use the triplet(ψ(k), ρ(k)n , ρ

(k)
p ), instead of the pair(ρ(k)n , ρ

(k)
p ), in

order to emphasize the fact thatψ(k) is used as an initial guess for solving the nonlinear
problem (2.10).

Looking at the structure of the Gummel map, we recognize a nonlinear block Gauss–
Seidel iteration which can be subdivided into two main loops: (i) a nonlinear inner
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iteration for solving the semilinear Poisson equation (2.10); (ii) two iterations for solv-
ing the continuity equations (2.11) and (2.12), which will be suitably linearized in the
following. Typically, a damped Newton method is used for dealing with (i) (see BANK

and ROSE[1981]); this leads to the following inner nonlinear iteration:
(A) setu(0) =ψ(k);

then, forj = 0,1, . . . until convergence execute the following steps (B)–(D):
(B) set

n(j) = δ2ρ(k)n eu
(j)

, p(j) = δ2ρ(k)p e−u(j);
(C) solve

(2.13)

{−div(λ2∇ φ)+ (n(j) + p(j))φ = −Rψ(u
(j)) in Ω,

φ = 0 onΓD, ∇ φ · n= 0 onΓN,

(D) and set

u(j+1) = u(j) + tj φ, tj ∈ (0,1].
The right-hand side in (2.13) is the residual of the Poisson equation at thej th step of
Newton’s iteration and is defined as

Rψ(V )= −div(λ2∇V )+ δ2ρ(k)n eV − δ2ρ(k)p e−V −C(x).

The damping coefficientstj can be chosen as suggested in BANK and ROSE[1981] in
such a way to ensure a monotonical reduction of the norm of the residual. As for the so-
lution of step (ii) of Gummel’s iteration, suitable exponentially-fitted box-like schemes
are usually employed for a stable and accurate discretization (see, e.g., SELBERHERR

[1984], Chapter 6).
A convergence proof of iteration (2.10)–(2.12) has been first given in KERKHOVEN

[1986] under the assumption of vanishing recombination/generation rate (i.e.,R = 0).
Using contraction-type arguments, and always assumingR = 0, it is possible to prove
the convergence of the Gummel map only close to thermal equilibrium, i.e., for small
values of the applied external biasesψD (see MARKOWICH [1986], Theorem 3.6.5 and
JEROME [1996], Theorem 4.1.1). Convergence results under less restrictive conditions
do not exist, although numerical experiments show that the iteration is always rapidly
converging (even if a bad initial guess is chosen) whenever the magnitude of the current
densities and of the recombination-generation rate is not too large (see MARKOWICH

[1986], formula (3.6.56)). On the contrary, the convergence of the decoupled iteration
becomes very slow in the case of high injection, or in the presence of impact ionization
phenonema. This prompts for devising suitable acceleration techniques that improve the
performance of Gummel’s map.

This latter issue will be more extensively addressed in Chapter 7. Here we just men-
tion the vectorial acceleration methods proposed in GUERRIERI, RUDAN, CIAMPOLINI

and BACCARANI [1985] that produce a superlinear asymptotic rate of convergence
without excessively increasing the CPU time and the memory resources. A different
approach has been pursued in MICHELETTI, QUARTERONI and SACCO [1995] where a
variant of Gummel’s map based on the use of BI-CGSTAB method has been developed.
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Acceleration methods based on Newton–Krylov subspace iterations have been recently
proposed in KERKHOVEN and SAAD [1992], and an extension of their techniques to
the simulation of optoelectronic semiconductor devices under high voltage operation
conditions has been carried out in BOSISIO, MICHELETTI and SACCO [2000].

2.4. The decoupled drift-diffusion system

Each differential subproblem that has to be solved at each step of the Gummel iterative
procedure (2.10)–(2.12) can be cast under the following general form of a reaction-
diffusion problem

(2.14)


−div(a∇u)+ γ u= f in Ω,

u= g onΓD,

a∇u · n= 0 onΓN.

Actually, the linearized Poisson equation that has to be solved within the Newton inner
iteration (2.13) can be recovered from (2.14) (after dividing byλ2) by lettingu= φ and
taking

a = 1, γ = (n(j) + p(j))/λ2, f = −Rψ(u
(j))/λ2, g = 0.

As for the solution of the linearized continuity equations, assume, as in Section 1.2.1,
that the recombination-generation termR can be written as

R(x,ψ,ρn,ρp)= F(x,ψ,ρn,ρp)(ρnρp − 1)−G
(
x, |∇ψ |, |J n|, |J p|

)
for a positive functionF(·, ·, ·, ·) in (Ω × R × (0,+∞)2) and a nonnegative function
G(·, ·, ·, ·) in (Ω × (0,+∞)3). The first term at right-hand side models the Shockley-
Read-Hall and Auger recombination rates while the second one is a net generation
rate modelling impact ionization phenomena (see (1.18)–(1.20)). Namely,−G is the
(scaled) term defined in (1.20), and

(2.15)FSHR= δ2

(τ ∗
n (ρpe

−ψ + 1)+ τ ∗
p(ρne

ψ + 1))
,

(2.16)FAU = δ2(Cnρne
ψ +Cpρpe

−ψ).

Finally, we have

F(x,ψ,ρn,ρp)= FSHR+ FAU.

Then we can recover problems (2.11) and (2.12) from (2.14) by setting

u= ρn, a = µne
ψ(k+1)

, γ = F
(
x,ψ(k+1), ρ(k)n , ρ(k)p

)
ρ(k)p

f = F
(
x,ψ(k+1), ρ(k)n , ρ(k)p

)+G
(
x, |∇ψ(k+1)|, |J (k)n |, |J (k)p |), g = ρnD,

and

u= ρp, a = µpe
−ψ(k+1)

, γ = F
(
x,ψ(k+1), ρ(k+1)

n , ρ(k)p
)
ρ(k+1)
n ,

f = F
(
x,ψ(k+1), ρ(k+1)

n , ρ(k)p
)+G

(
x, |∇ψ(k+1)|, |J (k+1)

n |, |J (k)p |), g = ρpD.
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As anticipated in Section 1.2, the use of the Slotboom variables in numerical computa-
tion is typically restricted to low-bias applications due to possible overflow/underflow
problems. For this reason it is convenient to formulate the Gummel map in terms of the
variables(ψ,n,p). By doing so, the linearized Poisson equation remains in the form of
the model problem (2.14), while the linearized current continuity equations can be cast
in the form of linear advection-diffusion-reaction problems, where the advective term is
represented by the electric field (see for the details MARKOWICH [1986], Section 3.6).
The discretization of these latter problems using mixed methods will be addressed in
Sections 4.1 and 6.2. Next section will address the mixed finite element discretization
of the reaction-diffusion problem (2.14).

3. Mixed formulation of second order elliptic problems

We shall introduce here the mixed formulation of the second order elliptic model prob-
lem (2.14). From now on,Ω is assumed to be a convex polygonal domain inR

2, with
unitary measure, andf, g are given functions, withf ∈ L2(Ω), andg ∈ H 1/2(ΓD).
Moreover,a = a(x) andγ = γ (x) are given regular functions onΩ , bounded from
above and below, i.e.,

(3.1)∃a0, aM such that aM � a(x)� a0> 0,

(3.2)∃γ0, γM such that γM � γ (x)� γ0 � 0.

The key point for deriving the mixed formulation of (2.14) is to introduce the fluxσ =
a∇u as an independent variable, so that (2.14) becomes

(3.3)


a−1σ − ∇u= 0 inΩ,

−divσ + γ u= f in Ω,

u= g onΓD,

σ · n= 0 onΓN.

When treating the (scaled) Poisson equation (2.13), the fluxσ , from the physical point
of view, will represent the (scaled) electric displacement. When taking into account the
(scaled) continuity equations (2.11) and (2.12),σ will represent the (scaled) current
density for electrons and holes, respectively.

We have now to introduce the proper functional setting for writing the variational
formulation of (3.3). For that, let us first set a few notation. Some of the functional
spaces have been previously used without precise definitions.

3.1. Notation

We shall constantly use Sobolev spaces onΩ ⊂ R
2, for which we refer to ADAMS

[1975], LIONS and MAGENES[1968], NEČAS [1967]. They are based on

(3.4)L2(Ω) :=
{
v
∣∣ ∫

Ω

|v|2dx = ‖v‖2
L2(Ω)

<+∞
}
,
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the space of square integrable (and measurable) functions onΩ . The scalar product in
L2(Ω) is denoted by

(3.5)(u, v)=
∫
Ω

uv dx.

We then define, form integer� 0,

(3.6)Hm(Ω) := {
v |Dαv ∈ L2(Ω), ∀|α| �m

}
,

where

(3.7)Dαv = ∂ |α|v
∂x

α1
1 ∂x

α2
2

, |α| = α1 + α2,

these derivatives being taken in the sense of distributions. On this space we shall use the
seminorm

(3.8)|v|2m,Ω =
∑

|α|=m
‖Dαv‖2

L2(Ω)
,

and the norm

(3.9)‖v‖2
m,Ω =

∑
k�m

|v|2k,Ω.

The spaceL2(Ω) is thenH 0(Ω), and we shall usually write‖v‖0,Ω to denote its norm
‖v‖L2(Ω). We shall also use the space of traces onΓ = ∂Ω of functions inH 1(Ω):

(3.10)H 1/2(Γ ) := (
H 1(Ω)

)
|Γ ,

with the norm

(3.11)‖g‖1/2,Γ = inf
v∈H1(Ω), v|Γ =g

‖v‖1,Ω .

The spaceH 1
0 (Ω) will denote, as usual, the space of functions inH 1(Ω) vanishing on

the boundary:

(3.12)H 1
0 (Ω) :=

{
v | v ∈H 1(Ω), v|Γ = 0

}
.

For v ∈ H 1
0 (Ω), or v ∈ H 1(Ω) and vanishing on a part of the boundary, the Poincaré

inequality holds

(3.13)‖v‖0,Ω � C(Ω)|v|1,Ω,
and the seminorm|.|1,Ω is therefore a norm inH 1

0 (Ω), equivalent to the‖.‖1,Ω norm.
We denote, for 1� p <+∞,

(3.14)Lp(Ω) :=
{
v
∣∣ ∫

Ω

|v|p dx =: ‖v‖pLp(Ω) <+∞
}
.

As usual,L∞(Ω) denotes the space of essentially bounded functions, with norm

(3.15)‖v‖∞,Ω = supess
x∈Ω

∣∣v(x)∣∣.
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For 1� p � +∞ let

(3.16)W1,p(Ω) := {
v |Dαv ∈ Lp(Ω), ∀|α| � 1

}
,

equipped with the norm

(3.17)‖v‖p
W1,p(Ω)

=
∑

|α|�1

‖Dαv‖pLp(Ω).

Finally, we denote byH(div;Ω) the space of vector-valued functions

(3.18)H(div;Ω) := {
τ ∈ (L2(Ω)

)2 | div τ ∈ L2(Ω)
}
,

equipped with the graph norm

(3.19)‖τ‖2
H(div;Ω) = ‖τ‖2

0,Ω + ‖div τ‖2
0,Ω,

where the symbol‖.‖0,Ω denotes as well theL2-norm for vector valued functions.

3.2. Mixed formulation

We are now ready to write the variational formulation of system (3.3). For that, define
the spaces

(3.20)Σ = {
τ ∈ (L2(Ω)

)2 | div τ ∈ L2(Ω), τ · n= 0 onΓN
}⊂H(div;Ω),

(3.21)V = L2(Ω),

with norms

(3.22)‖ τ ‖2
Σ = ‖τ‖2

H(div;Ω),
(3.23)‖v‖V = ‖v‖0,Ω .

Next, we introduce the following bilinear forms

(3.24)a(σ , τ )=
∫
Ω

a−1σ · τ dx, σ , τ ∈Σ,

(3.25)b(v, τ )=
∫
Ω

v div τ dx, v ∈ V, τ ∈Σ,

(3.26)c(u, v)=
∫
Ω

γuv dx, u, v ∈ V.
Then, the mixed formulation of (2.14) is

(3.27)


Find ( σ ,u) ∈Σ × V such that

a(σ , τ )+ b(u, τ )= 〈g, τ · n 〉, ∀τ ∈Σ,
b(v,σ )− c(u, v)= −(f, v), ∀v ∈ V,

where the bracket〈. , .〉 denotes the duality betweenH 1/2(∂Ω) and its dual space
H−1/2(∂Ω). Following BREZZI [1974] and BREZZI and FORTIN [1991], in order to
prove existence, uniqueness and stability for problem (3.27) the following properties
are needed
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(i) the bilinear forma(., .) is bounded onΣ ×Σ and coercive on KerB, that is,

(3.28)∃Ma > 0 such that
∣∣a(σ , τ )∣∣�Ma‖σ‖Σ‖τ‖Σ, ∀τ , σ ∈Σ,

(3.29)∃α > 0 such that a( τ , τ )� α‖τ‖2
Σ, ∀τ ∈ KerB,

whereB :Σ → V ′ is the operator associated with the bilinear formb(., .), and

(3.30)KerB = {
τ ∈Σ | b(v, τ )= 0 ∀v ∈ V };

(ii) the bilinear formb(. , .) is bounded onV ×Σ , and satisfies the inf-sup condition,
that is,

(3.31)∃Mb>0 such that
∣∣b(v, τ )∣∣�Mb‖v‖V ‖τ‖Σ, ∀v∈V, τ ∈Σ,

(3.32)∃β > 0 such that inf
v∈V sup

τ∈Σ
b(v, τ )

‖v‖V ‖τ‖Σ � β;

(here and in the following the inf is obviously taken over functionsv not identi-
cally zero, and we will omit to specify‖v‖V �= 0);

(iii) the bilinear formc(. , .) is symmetric, bounded onV × V and positive semidef-
inite, that is

(3.33)∃Mc > 0 such that
∣∣c(u, v)∣∣�Mc‖u‖V ‖v‖V , ∀u,v ∈ V,

(3.34)c(v, v)� 0, ∀v ∈ V.
Let us recall the abstract Theorem 1.2 of Chapter II in BREZZI and FORTIN [1991].

THEOREM 3.1. Let Σ , V be two Hilbert spaces with norms‖ · ‖Σ , ‖ · ‖V , and let
f ∈ V ′, g ∈ Σ ′, (V ′, Σ ′ being the dual spaces ofV , Σ , respectively). Consider the
problem

(3.35)


Find ( σ ,u) ∈Σ × V such that

a(σ , τ )+ b(u, τ )= 〈g, τ 〉Σ ′×Σ, ∀τ ∈Σ,
b(v,σ )− c(u, v)= 〈f, v〉V ′×V , ∀v ∈ V,

where 〈·, ·〉 denotes the duality brackets. Under assumptions(3.28)–(3.34), problem
(3.35)has a unique solution for allf ∈ V ′, g ∈ Σ ′. Moreover, there exists a positive
constantM, depending nonlinearly onMa ,Mb,Mc, α, β, such that

(3.36)‖σ ‖Σ + ‖u‖V � M
(‖g‖Σ ′ + ‖f ‖V ′

)
,

where

(3.37)‖g‖Σ ′ = sup
τ∈Σ

〈g, τ 〉
‖ τ ‖Σ , ‖f ‖V ′ = sup

v∈V
〈f, v〉
‖v‖V .

Let us now check that the abstract hypotheses of Theorem 3.1 are verified for problem
(3.27). Boundedness of the bilinear form (3.24) follows trivially from (3.1) withMa =
a−1

0 . Next, notice that KerB is characterized by elements ofΣ ⊂H(div;Ω) with null
divergence, so that‖τ ‖Σ ≡ ‖τ ‖0,Ω for τ ∈ KerB. Then property (3.29) holds with
α = a−1

M (see (3.1)).
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Symmetry, boundedness, and property (3.34) for the bilinear form (3.26) follow
immediately from definition and assumptions (3.2); in particular (3.33) holds with
Mc = γM . Boundedness of the bilinear form (3.25) holds trivially, withMb = 1, by
definition. In order to prove (3.32), we consider,∀v ∈ L2(Ω), the following auxiliary
problem:

(3.38)


−�ϕ = v in Ω,

ϕ = 0 onΓD,

∇ ϕ · n= 0 onΓN.

Problem (3.38) has a unique solutionϕ ∈ H 1(Ω), and‖ϕ‖1,Ω � C‖v‖0,Ω . Then, the
vectorτ = −∇ ϕ verifiesτ ∈Σ , divτ = v and‖τ‖Σ �

√
C2 + 1‖v‖V . Therefore, the

inf-sup condition (3.32) holds withβ = (C2 + 1)−1/2.

REMARK 3.1. The solutionϕ of the auxiliary problem (3.38) actually belongs to
W1,p(Ω) for somep > 2, and

(3.39)‖ϕ‖W1,p(Ω) � C‖v‖0,Ω .

(See, e.g., GRISVARD [1985].) Hence, setting

(3.40)Σ∗ = {
τ ∈ (Lp(Ω))2 | div τ ∈ L2(Ω), τ · n= 0 onΓN

}
,

we see that theinf-supcondition (3.32) holds withΣ replaced byΣ∗:

(3.41)∃β∗ > 0 such that inf
v∈V sup

τ∈Σ∗
b(v, τ )

‖v‖V ‖τ‖Σ∗
� β∗.

We also notice that theinf-supcondition (3.32) implies that

(3.42)the operatorB is surjective inV (∀v ∈ V, ∃τ ∈Σ such that divτ = v).

Moreover, (3.41) implies that

(3.43)the operatorB has a continuous lifting fromV intoΣ∗.

We can then restate Theorem 3.1 applied to problem (3.27).

THEOREM 3.2. For everyg ∈ H 1/2(ΓD), and for everyf ∈ L2(Ω), there exists a
unique (σ ,u) ∈ Σ∗ × V solution of problem(3.27). Moreover, the following bound
holds

(3.44)‖σ ‖Σ + ‖u‖V � M
(‖g‖H1/2(ΓD)

+ ‖f ‖L2(Ω)

)
with M dependent nonlinearly ona0, γM , α, β.

REMARK 3.2. We explicitly point out that the solution of (3.27) is such thatu coincides
with the solution of (2.14), andσ ≡ a∇u. Thereforeu, a priori seeked inL2(Ω), is
actually more regular (at leastu ∈H 1(Ω)), according to the regularity of the solution
of (2.14).
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3.3. Discretization schemes: an abstract framework

Let {Th}h be a family of regular decompositions ofΩ into elementsK , with boundary
∂K , made in such a way that there is always a vertex ofTh on the interface between
ΓD andΓN . Following CIARLET [1978], a family of decompositions is regular if there
exists a constantK∗ such that

(3.45)
DK

ρK
� K∗, ∀K ∈ Th,

whereDK is the diameter of the smallest circumscribed circle ofK and ρK is the
diameter of the largest inscribed circle inK . Inequality (3.45) immediately implies that

(3.46)DK � K∗ρK � KhK, ∀K ∈ Th,

wherehK denotes the diameter ofK , andK denotes, here and in the sequel, a generic
constant depending only onK∗. Finally, we seth= maxK hK . For every triangulation
Th we define

(3.47)Σ̃ =
{
τ ∈ L2(Ω) | τ ∈

∏
K

H(div;K), τ · n= 0 on∂K ∩ ΓN, ∀K ∈ Th
}
,

with the norm

(3.48)‖τ‖2
Σ̃

= ‖τ‖2
0,Ω +

∑
K

‖div τ‖2
0,K,

and we notice that

(3.49)‖τ‖Σ̃ ≡ ‖τ‖Σ, ∀τ ∈Σ.
For allK ∈ Th, we introduce finite dimensional spacesQ(K) for vector functions and
P(K) for scalar functions. For the sake of simplicity, we might assume that there exists
an integerk � 0 such that, on eachK ,Q(K) andP(K) consist of polynomials of degree
� k. Let us define the following discrete spaces

(3.50)Σ̃h = {
τ h ∈ Σ̃ | τ h|K ∈Q(K), ∀K ∈ Th

}
,

(3.51)Vh = {
vh ∈ V | vh|K ∈ P(K), ∀K ∈ Th

}
.

As we shall see, the discrete solution will be seeked in a more regular space

(3.52)Σh ⊂ Σ̃h,

still equipped with the norm‖ · ‖Σ̃ . Σh will include ‘some’ continuity of the normal
component across the interelements but, in general, a nonconforming approximation
will be allowed, withΣh not included inΣ . The abstract formulation which we in-
troduce here includes the well known RAVIART and THOMAS [1977] and BREZZI,
DOUGLAS JRand MARINI [1985] elements, and the elements introduced in MARINI

and PIETRA [1989]. Actual choices ofQ(K) andP(K) will be given in Section 3.5.
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Definition (3.47) makes the bilinear form (3.25) meaningless onΣ̃ . For this reason
we introduce the discrete bilinear form

(3.53)bh(v, τ )=
∑
K

∫
K

v div τ dx, v ∈ V, τ ∈ Σ̃,

and we notice that

(3.54)bh(v, τ )≡ b(v, τ ), v ∈ V, τ ∈Σ.
Accordingly, instead of (3.30) the following weaker definition will be used from now
on

(3.55)KerB̃ = {
τ ∈ Σ̃ | bh(v, τ )= 0 ∀v ∈ V },

B̃ being the operator̃Σ → V ′ associated with the bilinear formbh(. , .). Definition
(3.55) implies that Ker̃B is made of vectors which are divergence-free element by ele-
ment

(3.56)τ ∈ KerB̃ ⇒ div τ = 0 inK, ∀K ∈ Th.

Similarly we define

(3.57)KerBh = {
τ h ∈ Σ̃h | bh(vh, τ h)= 0 ∀vh ∈ Vh

}
.

The discrete formulation of (3.27) is then:

(3.58)


Find ( σ h,uh) ∈Σh × Vh such that

a(σ h, τ h)+ bh(uh, τ h)= 〈g, τ h · n〉|ΓD , ∀τ h ∈Σh,
bh(vh, σ h)− c(uh, vh)= −(f, vh), ∀vh ∈ Vh.

In order to prove existence and uniqueness of the solution of (3.58), and optimal error
bounds, we need to state, at this very abstract level, the assumptions on the spacesΣh,
Vh that allow to derive optimal error estimates. The following two assumptions are
crucial guidelines to introduce proper discretizations:

(3.59)KerBh ⊂ KerB̃;
there exists an operatorΠh :Σ∗ →Σh such that

(3.60)bh(vh, τ −Πhτ )= 0, ∀vh ∈ Vh,
and

(3.61)‖Πhτ‖Σ̃ � C‖τ ‖Σ∗, ∀τ ∈Σ∗,

with C a constant independent ofh.
We note that (3.60)–(3.61) imply that the finite dimensional spacesΣh andVh verify

a discrete inf-sup condition (see FORTIN [1977]):

(3.62)∃β > 0: inf
vh∈Vh

sup
τ h∈Σh

bh(vh, τ h)

‖vh‖V ‖τ h‖Σ̃
� β.
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Indeed, as a consequence of the inf-sup condition (3.41), which holds for the continuous
problem, forvh ∈ Vh ⊂ V there existsτ ∈Σ∗ such that

(3.63)
b(vh, τ )

‖vh‖V ‖ τ‖Σ∗
� β∗.

Due to (3.60), (3.61), and (3.54), from (3.63) we obtain

(3.64)
bh(vh,Πhτ )

‖vh‖V ‖Πhτ‖Σ̃
� C−1 bh(vh, τ )

‖vh‖V ‖τ‖Σ∗
= C−1 b(vh, τ )

‖vh‖V ‖ τ‖Σ∗
� C−1β∗.

Hence, (3.62) holds withβ = C−1β∗.
We have the following result.

THEOREM 3.3. Under assumptions(3.59) and (3.62), problem(3.58) has a unique
solution.

PROOF. For the proof we could apply the abstract Theorem 3.1. However, the problem
being finite dimensional, uniqueness implies existence, and the proof can be simplified.
For the convenience of the reader we report it here. Let( σ ∗

h,u
∗
h) ∈ Σh × Vh be the

solution of the homogeneous discrete problem associated with (3.58). Takingτ h = σ ∗
h

in the first equation of (3.58), and using the second equation withvh = u∗
h we obtain

(3.65)a(σ ∗
h, σ

∗
h)+ c(u∗

h,u
∗
h)= 0.

This implies thatσ ∗
h = 0, and, ifγ0> 0, u∗

h = 0. Instead, ifγ0 = 0, we make use of the
first equation of (3.58), which reduces to

(3.66)bh(u
∗
h, τ h)= 0, ∀τ h ∈Σh.

Thanks to (3.62), this impliesu∗
h = 0. �

REMARK 3.3. A direct consequence of (3.59) and (3.56) is that

(3.67)
∫
K

vh div τ h dx = 0, ∀vh ∈ P(K) ⇒ div τ h|K = 0, ∀K ∈ Th,

so that dim(P (K))� dim(div(Q(K))). On the other hand, from (3.62) it follows

(3.68)
∫
K

vh div τ h dx = 0, ∀τ h ∈Q(K) ⇒ vh|K = 0, ∀K ∈ Th,

and consequently dim(div(Q(K))) � dim(P (K)). Therefore, assumptions (3.59) and
(3.62) imply

(3.69)dim
(
div
(
Q(K)

))≡ dim
(
P(K)

)
.

Moreover, for any choice of basis functions{v1, . . . , vr}, and{d1, . . . , dr} in P(K) and
div(Q(K)) respectively, the matrix

(3.70)
∫
K

divj dx, i, j = 1, r,

is nonsingular.
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3.4. Error estimates in the abstract framework

In order to derive error estimates we introduce an interpolation operatorPh from V

to Vh, which can be defined locally by

(3.71)
∫
K

(v − Phv)div τ h dx = 0, ∀τ h ∈Q(K).
In order to see thatPh is well defined, thanks to (3.69) it is sufficient to check unique-
ness, that is,

(3.72)
∫
K

Phv div τ h dx = 0, ∀τ h ∈Q(K) ⇒ Phv = 0.

This is an immediate consequence of the (3.70). Next, for anyv ∈H 1(Ω) we introduce

(3.73)Nh(v, τ h)=
∑
K

〈v, τ h · n 〉|∂K − 〈v, τ h · n 〉|ΓD , τ h ∈Σh,

and we notice that foru solution of (3.27), which belongs toH 1(Ω) (see Remark 3.2),
we have

(3.74)Nh(u, τ h)=
∑
K

〈u, τ h · n 〉|∂K − 〈g, τ h · n 〉|ΓD , τ h ∈Σh.

It is easy to see that the solution(σ ,u) of (3.27) verifies

(3.75)

{
a(σ , τ h)+ bh(u, τ h)−Nh(u, τ h)= 〈g, τ h · n 〉|ΓD , ∀τ h ∈Σh,
bh(vh, σ )− c(u, vh)= −(f, vh), ∀vh ∈ Vh.

The termNh(u, τ h) is a measure of the possible nonconformity of the spaceΣh, and it
will be zero, due to the regularity ofu, for conforming choices ofΣh. By subtracting
(3.58) from (3.75), and using (3.71) and (3.60), we obtain the error equations

(3.76)

{
a(σ − σ h, τ h)+ bh(Phu− uh, τ h)−Nh(u, τ h)= 0, ∀τ h ∈Σh,
bh(vh,Πhσ − σ h)− c(u− uh, vh)= 0, ∀vh ∈ Vh.

We can prove the following result.

THEOREM3.4. Let ( σ ,u) be the solution of(3.27)and( σ h,uh) that of (3.58). Under
assumptions(3.28)–(3.34), (3.59)and(3.62)there exists a constantC independent ofh,
such that the following estimate holds

‖Πhσ − σ h‖Σ̃ + ‖Phu− uh‖0,Ω

� C

(
‖σ −Πhσ ‖0,Ω + ‖u− Phu‖0,Ω + sup

τ h∈Σh
Nh(u, τ h)

‖τ h‖Σ̃

)
.

PROOF. We add and subtracta(Πhσ , τ h), with Πhσ defined in (3.60)–(3.61), in the
first equation of (3.76), andc(Phu, vh), with Phu defined in (3.71), in the second equa-
tion of (3.76), thus obtaining

(3.77)


a(Πhσ − σ h, τ h)+ bh(Phu− uh, τ h)

= a(Πhσ − σ, τ h)+Nh(u, τ h), ∀τ h ∈Σh,
bh(vh,Πhσ − σ h)− c(Phu− uh, vh)= c(u− Phu, vh), ∀vh ∈ Vh.
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Problem (3.77) has the form (3.35) and verifies the hypotheses of Theorem 3.1. Hence,
from (3.36) we get

‖Πhσ − σ h‖Σ̃ + ‖Phu− uh‖0,Ω

� M
(

sup
τ h∈Σh

a(Πhσ − σ, τ h)

‖τ h‖Σ̃
+ sup
τ h∈Σh

Nh(u, τ h)

‖τ h‖Σ̃
+ sup
vh∈Vh

c(u− Phu, vh)

‖vh‖0,Ω

)
.

Then, the result follows. �

REMARK 3.4. Under the same assumptions of Theorem 3.4, we immediately deduce,
via triangle inequality and the obvious observation that‖ · ‖0,Ω � ‖ · ‖Σ̃ ,

(3.78)
‖σ − σ h‖0,Ω + ‖u− uh‖0,Ω

� C

(
‖σ −Πhσ ‖0,Ω + ‖u− Phu‖0,Ω + sup

τ h∈Σh
Nh(u, τ h)

‖τ h‖Σ̃

)
.

Similarly, whenever an estimate for‖σ −Πhσ ‖Σ̃ is available, we also deduce

(3.79)
‖σ − σ h‖Σ̃ + ‖u− uh‖0,Ω

� C

(
‖σ −Πhσ ‖Σ̃ + ‖u− Phu‖0,Ω + sup

τ h∈Σh
Nh(u, τ h)

‖τ h‖Σ̃

)
.

3.5. Examples of mixed finite elements

We shall provide here examples of finite elements which fit the abstract framework in-
troduced above. The first four examples refer to well known families of mixed finite
elements, namely, the Raviart–Thomas (RT) and Brezzi–Douglas–Marini (BDM) fami-
lies, while the last two examples were introduced in MARINI and PIETRA [1989].

EXAMPLE 1. The Raviart–Thomas elements (RAVIART and THOMAS [1977]) over a
triangular decomposition ofΩ . For any integerk � 0, and for any triangleK ∈ Th,
define

(3.80)Q(K)= (
Pk(K)

)2 + xPk(K),

(3.81)P(K)= Pk(K),

wherex = (x1, x2), andPk(K) denotes the set of polynomials of degree� k in K .

EXAMPLE 2. The Raviart–Thomas elements (RAVIART and THOMAS [1977]) over a
rectangular decomposition ofΩ . For any integerk � 0, and for any rectangleK ∈ Th,
define

(3.82)Q(K)= (
Qk(K)+ x1Qk(K)

)× (
Qk(K)+ x2Qk(K)

)
,

(3.83)P(K)=Qk(K),

whereQk(K) denotes the set of polynomials of degree� k in each variablex1 andx2.
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EXAMPLE 3. The Brezzi–Douglas–Marini elements (BREZZI, DOUGLAS JRand MA-
RINI [1985]) over a triangular decomposition ofΩ . For any integerk � 1, and for any
triangleK ∈ Th, define

(3.84)Q(K)= (
Pk(K)

)2
,

(3.85)P(K)= Pk−1(K).

EXAMPLE 4. The Brezzi–Douglas–Marini elements (BREZZI, DOUGLAS JRand MA-
RINI [1985]) over a rectangular decomposition ofΩ . For any integerk � 1, and for any
rectangleK ∈ Th define

(3.86)Q(K)= (
Pk(K)

)2 ⊕ {
curl

(
x1x

k+1
2

)}⊕ {
curl

(
x2x

k+1
1

)}
,

(3.87)P(K)= Pk−1(K),

where curlϕ = (∂2ϕ,−∂1ϕ), for ϕ ∈H 1(Ω).

The choice ofP(K) identifies the space of scalarsVh defined in (3.51), while the
choice ofQ(K) identifies only the space of vectors̃Σh. In order to define the space
Σh ⊂ Σ̃h, where the solution of (3.75) is seeked, the regularity assumption must be
specified. We shall show that, with the above choices of polynomial spaces, it is possible
to define degrees of freedom, and consequently to construct local bases, that guarantee
continuity of the normal component of vectors inΣh across interelement boundaries,
thus giving rise to a conforming approximation:

(3.88)Σh = {
τ h ∈H(div;Ω) | τ h|K ∈Q(K), ∀K ∈ Th, τ h · n= 0 onΓN

}
.

Indeed, for eachk that identifies the pair(Q(K),P (K)) in the above families, let us
introduce the spaces of polynomials on the edges ofK

(3.89)R(e)= Pk(e) for each edgee of K, R(∂K)=
∏
e∈∂K

R(e).

Notice that, in all the previous examples,

(3.90)τ ∈Q(K) ⇒ τ · n |∂K ∈R(∂K).
Moreover,

(3.91)divQ(K)= P(K).

Next, letD be the space

(3.92)D = {
q ∈Q(K) | divq |K = 0, q · n |∂K = 0

}
,

and notice thatD = {0} for the low elements of the four families.

PROPOSITION3.1. For anyq ∈Q(K), the following relations implyq = 0:

(3.93)
∫
e

µq · nds = 0, ∀ edgee of K, ∀µ ∈R(e),
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(3.94)
∫
K

q · ∇v dx = 0, ∀v ∈ P(K),

(3.95)
∫
K

q · ϕ dx = 0, ∀ϕ ∈D.

PROOF. For any fixedk, we have thatq ·n |e ∈R(e). Hence, (3.93) impliesq ·n |∂K = 0.
Moreover, the trace of a functionv ∈ P(K) belongs toR(∂K) in all the examples.
Hence, integration by parts and (3.93)–(3.94) give

(3.96)
∫
K

divqv dx = −
∫
K

q · ∇v dx +
∫
∂K

vq · nds = 0, ∀v ∈ P(K),
which implies divq = 0, due to (3.91). Then, (3.93)–(3.94) implyq ∈D. Reciprocally,
it is obvious that (3.93)–(3.94) hold forϕ ∈D. Hence, (3.93)–(3.94) are equivalent to
q ∈D, and (3.95) givesq = 0. �

To see that (3.93)–(3.95) can be used as degrees of freedom, after choosing local
bases, it remains to check that (3.93)–(3.94) are linearly independent. For this we re-
fer, e.g., to BREZZI and FORTIN [1991] Section III.3, Lemma 3.1. It is then possible
to useτ · n among the degrees of freedom, and then to impose continuity at the in-
terelements, thus constructing a conforming approximation. In particular, for the lowest
order Raviart–Thomas triangular elements (RT0) of Example 1 a local basis forQ(K)
is uniquely defined by the following degrees of freedom

(3.97)
∫
ej
τ i · nj ds = δij , i, j = 1,3.

Conformity, together with relation (3.91) (which is a stronger property than (3.69)), will
allow to simplify (and somewhat improve) the abstract results. In particular, conformity
implies that the discrete bilinear formbh(. , .) defined in (3.53) is not needed here, since
it will always be applied to elements ofΣ . Hence, it can be replaced by the bilinear
form b(. , .) defined in (3.25):

(3.98)bh(vh, τ h)≡ b(vh, τ h), ∀vh ∈ Vh, τ h ∈Σh ⊂Σ.

From property (3.91) it is immediate to check that the first abstract hypothesis (3.59) is
fulfilled. An important consequence of (3.91) is that the operatorPh defined fromV to
Vh in (3.71) coincides with as the usualL2-projection

(3.99)
∫
K

(v − Phv)w dx = 0, ∀w ∈ P(K).
It remains to define uniquely the elementΠhτ ∈Q(K) verifying (3.60)–(3.61). Propo-
sition 3.1 implies that,∀τ ∈ Σ∗, Πhτ ∈ Σh can be uniquely defined locally through
(3.93)–(3.94)–(3.95) as:

(3.100)
∫
e

µ( τ −Πhτ ) · nds = 0, ∀ edgee of K, ∀µ ∈R(e),

(3.101)
∫
K

( τ −Πhτ ) · ∇v dx = 0, ∀v ∈ P(K),
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(3.102)
∫
K

( τ −Πhτ ) · q dx = 0, ∀q ∈D.

Conditions (3.100)–(3.102) define an interpolation operatorΠh fromΣ∗ toΣh which
is uniformly bounded fromΣ∗ toΣh ⊂Σ , that is,

(3.103)‖Πhτ‖Σ � C‖τ‖Σ∗,

with C independent ofh and of τ , as shown, e.g., in BREZZI and FORTIN [1991].
Moreover, since the trace of a functionv ∈ P(K) belongs toR(∂K), integration by
parts, and (3.100)–(3.101) imply, for allv ∈ P(K),

(3.104)

∫
K

div( τ −Πhτ )v dx = −
∫
K

( τ −Πhτ ) · ∇v dx +
∫
∂K

( τ −Πhτ ) · nv ds = 0.

Collecting the various properties (3.104), (3.98), and (3.99) we deduce that the com-
muting diagram property (DOUGLAS JRand ROBERTS[1985]) holds

(3.105)

Σ∗ div

Πh

V

Ph

0

Σh
div

Vh 0

This means, in other words, that for everyτ ∈Σ∗ one has

(3.106)div(Πhτ )= Ph div τ .

Therefore, the discrete inf-sup condition (3.62) holds. This, together with (3.59) allows
to apply the abstract theory of Sections 3.3 and 3.4. In particular, error estimates (3.78)–
(3.79) hold withNh ≡ 0, due to the regularity ofu and to the continuity of the normal
component of elements inΣh.

Since in the next sections the lowest order Raviart–Thomas elementRT0 will be ex-
tensively used, we report here, for the reader convenience, the definition of the discrete
spaces

(3.107)Vh = {
vh ∈ L2(Ω) | vh|K ∈ P0(K), ∀K ∈ Th

}
,

(3.108)Σh = {
τ h ∈H(div;Ω) | τ h|K ∈Q(K), ∀K ∈ Th, τ h · n= 0 onΓN

}
,

with Q(K) = (P0(K))
2 + xP0(K). Notice that dim(Vh) = # of elements inTh, and

dim(Σh)= # of edges not belonging toΓN . According to (3.97), a basis functionτ r ∈
Σh is defined requiring that, for each edgees not belonging toΓN ,

(3.109)
∫
es
τ r · ns ds = δrs,

wherens is the normal unit vector toes , whose orientation is chosen once and for all.
Consequently, considering the two elements havinges in common,ns is outward for
one triangle and inward for the other one. Error estimate (3.79) gives

(3.110)‖σ − σ h‖Σ + ‖u− uh‖0,Ω �Ch
(|σ |1,Ω + |divσ |1,Ω + |u|1,Ω

)
.
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Indeed, the interpolation errors are (see CIARLET [1978], BREZZI and FORTIN [1991])

(3.111)

‖σ −Πhσ ‖Σ � Ch
(|σ |1,Ω + |divσ |1,Ω

)
, ‖u− Phu‖0,Ω �Ch|u|1,Ω .

The key properties to obtain the commuting diagram property are conformity and (3.91).
We provide now an example, taken from MARINI and PIETRA [1989], of conforming
approximation which violates (3.91), though remaining in the abstract framework.

EXAMPLE 5. Consider a triangular decomposition ofΩ . For each triangleK ∈ Th, we
choose the finite-dimensional polynomial sets as follows

(3.112)Q(K)= span{ τ1, τ2, τ3},
(3.113)P(K)= P0(K),

where

(3.114)τ1 = (1,0), τ2 = (0,1), τ3 = (ψ1,ψ2).

The choice forψ1 andψ2 is

(3.115)ψ1,ψ2 ∈ P2(K),

and, having chosen an edgeẽ of K , τ3 = (ψ1,ψ2) is defined through the following
degrees of freedom

(3.116)


τ3 · n |ẽ = 1,

τ3 · n |e = 0, e �= ẽ,∫
K
ψ1dx = ∫

K
ψ2dx = 0,

τ3 · t(m̃)= 0,

wherem̃ is the midpoint ofẽ, andt denotes the unit tangent vector.

PROPOSITION3.2. The degrees of freedom(3.116)uniquely defineτ3.

PROOF. Sinceτ3 is seeked in a space of dimension 12 (see (3.115)), and the number of
degrees of freedom (3.116) is precisely 12, it is sufficient to check uniqueness. Let then
τ = (τ1, τ2) be a vector verifying

(i) τ · n |e = 0, ∀e,
(ii )

∫
K

τ1dx =
∫
K

τ2dx = 0,

(iii ) τ · t(m̃)= 0.

From (i) we deduceτ · n |∂K = 0. From (ii), after integration by parts, we have

(3.117)0 =
∫
K

τ · ∇ p1dx = −
∫
K

div τ p1dx, ∀p1 ∈ P1(K),
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which gives divτ = 0. Hence,

(3.118)τ = curlϕ, with ϕ ∈ P3(K) and
∂ϕ

∂s
= 0 on∂K,

where∂ϕ/∂s denotes the tangential derivative ofϕ along∂K . Consequently,ϕ = con-
stant on∂K , i.e.,ϕ = a(λ1λ2λ3 + c), andτ = a curl(λ1λ2λ3), whereλi , i = 1,3, being
the barycentric coordinates. Condition (iii) becomesa(∂(λ1λ2λ3)/∂n)(m̃)= 0, imply-
ing a = 0, since(∂(λ1λ2λ3)/∂n)(m̃) �= 0. �

With this choice, condition (3.91) is violated, since divτ3 is not constant onK . How-
ever, we have

(3.119)dim
(
div
(
Q(K)

))= 1= dim
(
P(K)

)
,

and

(3.120)
∫
K

div τ3dx =
∫
∂K

τ3 · nds = 1.

Hence
∫
K

div τ h dx = 0, with τ h ∈ Q(K), implies divτ h = 0, and the first abstract
hypothesis (3.59) is fulfilled.

The spaceΣh can be taken as in (3.88), and an interpolation operatorΠh fromΣ∗ to
Σh verifying (3.60)–(3.61) can be defined locally by

(3.121)
∫
e

( τ −Πhτ ) · nds = 0, ∀e edge ofK.

Πh is well defined, since the matrix
∫
ei
τ j · ni ds, with i, j = 1,2,3, is nonsingular, as

can be easily seen by construction. Moreover, it can be proved that

(3.122)‖Πhτ‖Σ̃ � C‖τ‖Σ∗ .

The second abstract hypothesis is then fulfilled and the abstract theory applies. In par-
ticular, since we are using a conforming approximation, error estimate (3.78) holds true
with Nh = 0. In this case, (3.79) is not applicable since only an interpolation estimate
in L2(Ω) can be proved

(3.123)‖τ −Πhτ‖0,Ω � Ch‖τ‖1,Ω .

We explicitly point out that, in contrast with the previous examples, in this case the
operatorPh, as defined in (3.71), is not theL2-projection. Consequently, the commut-
ing diagram property (3.105) does not hold true for this element, but the interpolation
estimate foru in (3.111) still applies. Hence, for this element (3.78) gives

(3.124)‖σ − σ h‖0,Ω + ‖u− uh‖0,Ω � Ch
(|σ |1,Ω + |u|1,Ω

)
.

The last example we present here has also been introduced in MARINI and PIETRA

[1989] and it is an example of nonconforming mixed finite element: the continuity of
the normal component of the vector variable is imposed only in weak form and the
inclusion ofΣh in Σ is violated. In contrast with the previous case, for this example
property (3.91) will be satisfied.
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EXAMPLE 6. Consider a triangular decomposition ofΩ . For each triangleK ∈ Th we
choose the finite-dimensional polynomial sets as follows

(3.125)Q(K)= span{τ1, τ2, τ3},
(3.126)P(K)= P0(K),

where

(3.127)τ1 = (1,0), τ2 = (0,1), τ3 = (ψ1,ψ2).

The choice forψ1 andψ2 is

(3.128)ψ1,ψ2 ∈ P1(K),

and, for a chosen edgẽe of K , τ3 = (ψ1,ψ2) is defined through the following degrees
of freedom

(3.129)


τ3 · n |ẽ = 1/|ẽ|,∫
e
τ3 · nds = 0, e �= ẽ,∫

K
ψ1dx = ∫

K
ψ2dx = 0.

PROPOSITION3.3. The degrees of freedom(3.129)uniquely defineτ3.

PROOF. Sinceτ3 is seeked in a space of dimension 6 (see (3.128)), and the number
of degrees of freedom (3.129) is precisely 6, it is sufficient to check uniqueness. To fix
ideas, lete1 be the special edgẽe, and lete2, e3 be the other two edges (see Fig. 3.1).
Let thenτ = (τ1, τ2) be a vector verifying

(i) τ · n1
|e1 = 0,

(ii)
∫
ej
τ · nj ds = 0, j �= 1,

(iii)
∫
K

τ1dx =
∫
K

τ2dx = 0.

FIG. 3.1. Local numbering of edges and vertices.
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Since divτ is constant, from (i)–(ii) we deduce divτ = 0. From this and (iii), after
integration by parts, we have, for allp1 ∈ P1(K),

(3.130)0=
∫
K

τ · ∇ p1dx =
∫
∂K

τ · np1ds =
∫
e2
τ · n2p1ds +

∫
e3
τ · n3p1ds,

where in the last step we used (i). Takingp1 = λ2 in (3.130) (λ2 being the barycentric
coordinates verifyingλ2|e2 ≡ 0, λ2(P2)= 1) we obtain

(3.131)
∫
e3
τ · n3λ2ds = 0.

Using Simpson’s rule and (ii) we deduceτ ·n3(P2)= 0. This, together with (ii), implies
τ · n3 = 0 one3. With the same argument we deduceτ · n2 = 0 one2. Hence,τ · n= 0
on ∂K , together with (3.128), ends the proof. �

Due to the choice ofQ(K), dim(Q(K))= 3, butτ ·n |e ∈ P1(e); hence, forτ ∈Q(K)
continuity of τ · n on the interelement edges cannot be imposed, as for the previous
examples. However, a weak continuity can be required. More precisely, denoting byEh
the set of edges ofTh, we define

Σh =
{
τ h ∈ (L2(Ω)

)2 ∣∣ τ h|K ∈Q(K), ∀K ∈ Th,

(3.132)
∫
e

[ τ h · n ]ds = 0, ∀e ∈ Eh \ ΓD
}
,

where[ τ h · n ] denotes the jump ofτ h · n across the edgee whene is an internal edge,
and, whene belongs toΓN , [ τ h · n ] simply denotesτ h · n.

Note that (3.129) implies that

(3.133)
∫
K

div τ3dx =
∫
ẽ

τ3 · nds = 1 ⇒ div τ3|K = 1/|K|,

where|K| denotes the area ofK . Therefore, (3.91) is satisfied, and the first abstract
hypothesis (3.59) is fulfilled; moreover, the operatorPh defined fromV to Vh in (3.71)
is the usual orthogonalL2-projection.

An interpolation operatorΠh fromΣ∗ toΣh, verifying (3.60)–(3.61), can be defined
locally by

(3.134)
∫
e

( τ −Πhτ ) · nds = 0, ∀e edge ofK.

Πh is well defined, since the matrix
∫
ei
τ j · ni ds, with i, j = 1,2,3, is nonsingular, as

can be easily seen by construction. We notice that (3.134) implies

(3.135)divΠhτ |K = Ph div τ |K, ∀τ ∈Σ∗.

Therefore,

(3.136)‖Πhτ‖Σ̃ � C‖τ‖Σ∗,
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and the second abstract hypothesis is satisfied. Moreover, the following interpolation
estimates hold

(3.137)‖τ −Πhτ‖0,Ω � Ch| τ |1,Ω,
(3.138)

∑
K

∥∥div( τ −Πhτ )
∥∥2

0,K � Ch2|div τ |21,Ω .

In contrast with the previous examples, the termNh is no longer zero, due to the non-
conformity of the discrete spaceΣh, and has to be bounded properly.

PROPOSITION3.4. LetΣh be the space defined in(3.132), and letw ∈H 1(Ω). Then

(3.139)sup
τ h∈Σh

Nh(w, τ h)

‖τ h‖Σ̃
� Ch|w|1,Ω,

whereNh is defined in(3.73).

PROOF. Let E ′ be the set of edges ofTh not belonging toΓD . We can rewrite (3.73) as

(3.140)Nh(w, τ h)=
∑
e∈E ′

∫
e

w[ τ h · n ]ds.

Let P eh be the piecewise constant interpolant ofw defined as

(3.141)
∫
e

(w− P ehw)ds = 0, ∀e ∈ E ′.

According to (3.132), we have

(3.142)Nh(w, τ h)=
∑
e∈E ′

∫
e

(
w− P ehw

)[ τ h · n ]ds.

Any τ h ∈Σh can be split asτ h = τ ′ + τ ′′, with τ ′ ∈ span{τ1, τ2}, andτ ′′ ∈ span{τ3}
in K , ∀K ∈ Th. Therefore, using (3.141), (3.142) reads

(3.143)Nh(w, τ h)=
∑
e∈E ′

∫
e

(
w− P ehw

)[ τ ′′ · n ]ds.

Since divτ ′′ = 0 in K if and only if τ ′′ = 0 in K due to (3.133), then‖div τ ′′‖0,K
is a norm. A simple scaling argument in (3.143), classical interpolation estimates, and
Cauchy–Schwarz inequality give

(3.144)Nh(w, τ h)�C
∑
K

∥∥w− P ehw
∥∥

0,∂K‖div τ ′′‖0,Kh
1/2
K

(3.145)�C
∑
K

hK |w|1,K‖div τ ′′‖0,K

(3.146)�Ch|w|1,Ω‖τ h‖Σ̃ ,
and the proof is concluded. �
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Using (3.137), (3.138), the interpolation estimate foru in (3.111), and (3.139) in
(3.79) we deduce

(3.147)‖σ − σ h‖Σ̃ + ‖u− uh‖0,Ω �Ch
(|σ |1,Ω + |divσ |1,Ω + |u|1,Ω

)
.

3.6. Hybridization of the mixed formulation

It is well known that problem (3.58) leads to a final linear system whose matrix can
be indefinite (this is the case, for instance, when the zeroth-order term is not present
in (2.14)). A way to circumvent this problem is to relax the continuity of the normal
component of the vectors at the interelement boundaries (even the weak one of the
nonconforming case) and to enforce it back through the use of Lagrange multipliers.
This technique, introduced in FRAEIJS DEVEUBEKE [1965] in a different context, was
used successfully as a trick to deal with the algebraic system. In ARNOLD and BREZZI

[1985] it was also studied from the theoretical point of view in the context of mixed
formulations for the Raviart–Thomas elements. Error estimates were derived for the
Lagrange multipliers, which proved to give an approximation of the scalar variable at
the interelements better than that given directly byuh. In BREZZI, DOUGLAS JRand
MARINI [1985] error estimates were proved for theBDM-family, while in MARINI

and PIETRA [1989] the elements of Examples 5–6 of Section 3.5 were analyzed. In
order to describe this procedure, we then introduce a new space of vectors, made of
discontinuous piecewise polynomial functions (without boundary conditions) defined
as

(3.148)Σ̂h = {
τ h ∈ (L2(Ω)

)2 | τ h|K ∈Q(K), ∀K ∈ Th
}
,

equipped with the norm

(3.149)‖τ‖2
h = ‖τ‖2

0,Ω +
∑
K

h2
K‖div τ ‖2

0,K, τ ∈ Σ̂h.

To enforce continuity across interelement boundaries of the normal component of vec-
tors in Σ̂h we need to define a space for the multipliers. LetEh be the set of all edges
of the decompositionTh, and letE ′

h be the set of edges not belonging toΓD . For every
edgee ∈ Eh we introduce a finite dimensional space of scalarsR(e). For the sake of
simplicity, we assume that, on each edgee,R(e) consists of polynomials of degree� k.
We set

(3.150)Λh = {
µh ∈ L2(Eh) | µh|e ∈R(e), ∀e ∈ Eh

}
,

and

(3.151)Λh,0 = {
µh ∈Λh | µh|e = 0, ∀e ∈ Eh ∩ ΓD

}
,

equipped with the norm

(3.152)‖µh‖2
1/2,h =

∑
e∈Eh

h−1
e ‖µh‖2

0,e,
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wherehe denotes the length of the edgee. The norm (3.152) is a sort ofH 1/2-norm,
which is natural for a space “of traces”. We also have to introduce a bilinear form on
Σ̂h ×Λh:

(3.153)dh(µh, τ h)=
∑
K

∫
∂K

µhτ h · nds, µh ∈Λh, τ h ∈ Σ̂h.

We denote by[ τ ·n ]|e the jump ofτ ·n across the edgee whene is internal; for boundary
edges,[ τ · n ]|e simply denotesτ · n. Then, (3.153) can be equivalently written as

(3.154)dh(µh, τ h)=
∑
e

∫
e

µh[ τ · n ]ds, µh ∈Λh, τ h ∈ Σ̂h.

We define

(3.155)KerDh = {
τ h ∈ Σ̂h | dh(µh, τ h)= 0, ∀µh ∈Λh,0

}
,

having denoted byDh the operator fromΣ̂h → (Λh,0)
′ associated with the bilinear

form dh(. , .). Using (3.154) and the definition ofΛh,0 it is easy to see that

(3.156)τ ∈ KerDh ⇒
∫
e

µh[ τ · n ]ds = 0, ∀µh ∈R(e) ∀e ∈ E ′
h.

Together with the abstract assumptions (3.59) and (3.62), we need two additional hy-
potheses:

(3.157)Σh = KerDh,

and a discrete inf-sup condition for the bilinear formdh(. , .)

(3.158)∃δ > 0: inf
µh∈Λh

sup
τ h∈Σ̂h

dh(µh, τ h)

‖µh‖1/2,h‖τ h‖h
� δ.

A direct consequence of (3.158) is that, for alle ∈ Eh,

(3.159)
∫
e

µhτ h · nds = 0, ∀τ h ∈Q(K) with e⊂ ∂K ⇒ µh|e = 0.

For every functionξ ∈ L2(ΓD), define now

(3.160)

Λh,ξ =
{
µh ∈Λh

∣∣ ∫
e

(µh − ξ)τ h · nds = 0, ∀τ h ∈ Σ̂h, ∀e ∈ Eh ∩ ΓD
}
.

Note that, thanks to (3.159), condition
∫
e
(µh − ξ)τ h · nds = 0 ∀τ h ∈ Σ̂h determines

uniquelyµh on e. The affine manifoldΛh,ξ can be seen as the subset ofΛh made of
functionsµh which satisfyµh = ξ onΓD in a weak sense.

The discrete formulation of (3.27) is then:

(3.161)


Find ( σ̂ h, ûh, λh) ∈ Σ̂h × Vh ×Λh,g such that

a( σ̂ h, τ h)+ bh(ûh, τ h)− dh(λh, τ h)= 0, ∀τ h ∈ Σ̂h,
bh(vh, σ̂ h)− c(ûh, vh)= −(f, vh), ∀vh ∈ Vh,
dh(µh, σ̂ h)= 0, ∀µh ∈Λh,0.
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THEOREM 3.5. Problem (3.161) has a unique solution( σ̂ h, ûh, λh), and ( σ̂ h, ûh)
coincides with( σ h,uh), solution of Problem(3.58).

PROOF. Let (σ ∗
h,u

∗
h, λ

∗
h) ∈ Σ̂h×Vh×Λh,0 be the solution of the homogeneous discrete

problem associated with (3.161). Takingτ h = σ ∗
h in the first equation of (3.161), and

using the second equation withvh = u∗
h and the third equation withµh = λ∗

h we obtain

(3.162)a(σ ∗
h, σ

∗
h)+ c(u∗

h,u
∗
h)= 0.

This implies thatσ ∗
h = 0, and, ifγ0> 0, u∗

h = 0. Instead, ifγ0 = 0, the first equation of
(3.161) withτ h ∈ KerDh reduces to

(3.163)bh(u
∗
h, τ h)= 0, ∀τ h ∈ KerDh.

Thanks to (3.62) and (3.157), this impliesu∗
h = 0. Hence, we are left with the equation

(3.164)dh(λ
∗
h, τ h)= 0, ∀τ h ∈ Σ̂h,

which impliesλ∗
h = 0, due to (3.158). Therefore, uniqueness is proved.

The third equation of problem (3.161) givesσ̂ h ∈ KerDh, and hence, due to (3.157),

(3.165)σ̂ h ∈Σh.
Notice that forτ h ∈Σh the bilinear formdh(λh, τ h) simplifies to

(3.166)dh(λh, τ h)=
∑
e⊂ΓD

∫
e

λhτ h · nds = 〈g, τ h · n 〉|ΓD ,

sinceλh ∈Λh,g . Hence, the first equation of (3.161) withτ h ∈Σh reads

(3.167)a( σ̂ h, τ h)+ bh(ûh, τ h)= 〈g, τ h · n 〉|ΓD , ∀τ h ∈Σh.
Collecting (3.165), (3.167) and the second equation of problem (3.161) we see that
( σ̂ h, ûh) is solution of problem (3.58). �

From now on the superscriptˆ will be dropped from the variables.
A projectionP eh from L2(Eh) to Λh can be defined locally as the usual orthogonal

L2-projection

(3.168)
∫
e

µh
(
u− P ehu

)
ds = 0, ∀e⊂ ∂K, ∀µh ∈R(e).

Let us give now the abstract error estimate for the Lagrange multipliers.

THEOREM 3.6. Let (σ ,u) be the solution of(3.27), and( σ h,uh,λh) that of (3.161).
The following estimate holds∥∥λh − P ehu

∥∥
1/2,h

(3.169)� C

(
‖σ − σ h‖0,Ω + ‖Phu− uh‖1,h + sup

τ∈Σ̂h

dh(u− P ehu, τ )

‖τ‖h
)
,
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where‖ · ‖1,h is defined as

(3.170)‖vh‖2
1,h =

∑
K

h−2
K ‖vh‖2

0,K, ∀vh ∈ Vh,

andPh is defined in(3.71).

PROOF. Takingµ= λh − P ehu, from (3.158) we deduce

δ
∥∥λh − P ehu

∥∥
1/2,h � sup

τ∈Σ̂h

dh(λh − P ehu, τ )

‖τ‖h
(3.171)� sup

τ∈Σ̂h

dh(λh − u, τ )

‖τ‖h + sup
τ∈Σ̂h

dh(u− P ehu, τ )

‖τ‖h .

Next, let us observe that( σ ,u) solution of (3.27) verifies

(3.172)a(σ , τ )+ bh(u, τ )− dh(u, τ )= 0, ∀τ ∈ Σ̂h.
Then, subtracting the first equation of (3.161) from (3.172) and using definition (3.71)
we obtain

(3.173)dh(u− λh, τ )= a(σ − σ h, τ )+ bh(Phu− uh, τ ) ∀τ ∈ Σ̂h.
Using (3.53) and the Cauchy–Schwarz inequality

bh(Phu− uh, τ )�
∑
K

hK‖div τ‖0,Kh
−1
K ‖Phu− uh‖0,K

� ‖τ‖h
(∑

K

h−2
K ‖Phu− uh‖2

0,K

)1/2

(3.174)= ‖τ‖h‖Phu− uh‖1,h.

Hence, from (3.173), (3.174) we have

(3.175)sup
τ∈Σ̂h

dh(λh − u, τ )

‖τ‖h � C
(‖σ − σ h‖0,Ω + ‖Phu− uh‖1,h

)
.

Using (3.175) in (3.171) gives (3.169). �

COROLLARY 3.1. Under the same assumptions as in Theorem3.6, if the decomposition
Th is quasi-uniform, we have∥∥λh − P ehu

∥∥
0,Eh �C

(
h1/2‖σ − σ h‖0,Ω + h−1/2‖Phu− uh‖0,Ω

(3.176)+ h1/2 sup
τ∈Σ̂h

dh(u− P ehu, τ )

‖τ‖h
)
.

PROOF. The result follows multiplying (3.169) byh1/2 and using the quasi-uniformity
assumption. �



Discretization of semiconductor device problems (I) 357

REMARK 3.5. In all practical cases, the spacêΣh will be made of piecewise polyno-
mials of some given degree. This implies that the following inequality will easily hold

(3.177)‖τ · n‖2
0,e � Ch−1

K ‖τ ‖2
0,K, ∀τ ∈ Σ̂h, ∀K, ∀e⊂ ∂K,

whereC denotes a constant depending on the degree of polynomials. In these cases we
have, using (3.177) and Cauchy–Schwarz inequality,

(3.178)
dh(u− P ehu, τ )

‖τ‖h �C‖u− P ehu‖1/2,h,

so that (3.169) becomes∥∥λh − P ehu
∥∥

1/2,h �C
(‖σ − σ h‖0,Ω + ‖Phu− uh‖1,h

(3.179)+ ∥∥u− P ehu
∥∥

1/2,h

)
.

Moreover, if the decomposition is quasi-uniform, (3.176) becomes

(3.180)

∥∥λh − P ehu
∥∥

0,Eh �C
(
h1/2‖σ − σ h‖0,Ω + h−1/2‖Phu− uh‖0,Ω

+ h1/2
∥∥u− P ehu

∥∥
1/2,h

)
.

REMARK 3.6. The above estimates on the multipliers, as (3.169) and (3.176), or
(3.179) and (3.180), could be used in order to estimate the error for suitable lifting
of λh. For instance, ifλh is piecewise constant on the edges, one can introduce a new
approximationu∗

h to u defined as theP1-nonconforming function that, on each edgee,
verifies

(3.181)
∫
e

(
u∗
h − λh

)
ds = 0.

Similarly, one can introduce theP1-nonconforming interpolant ofu, that we denote
by u∗

I , defined as

(3.182)
∫
e

(
u∗
I − u

)
ds = 0.

It is immediate to check that, for eachK ∈ Th

(3.183)
∥∥u∗

h − u∗
I

∥∥
0,K � C

∑
e⊂∂K

h
1/2
e

∥∥λh − P ehu
∥∥

0,e,

that allows to use the above estimates in order to obtain suitable bounds for‖u∗
h −

u∗
I‖0,Ω (and then for‖u− u∗

h‖0,Ω by the triangle inequality).

We shall discuss now how the hybridization of the mixed formulation, presented
above in the abstract framework, can be applied to the examples of Section 3.5. For
this, we associate with each pair(Q(K),P (K)) suitable spaces of polynomials defined
on the edgesEh.
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EXAMPLE 1. For any integerk � 0, and for any triangleK ∈ Th, define

(3.184)k � 0


Q(K)= (Pk(K))

2 + xPk(K),

P (K)= Pk(K),

R(e)= Pk(e), ∀e edge ofK.

EXAMPLE 2. For any integerk � 0, and for any rectangleK ∈ Th, define

(3.185)k � 0


Q(K)= (Qk(K)+ x1Qk(K))× (Qk(K)+ x2Qk(K)),

P (K)=Qk(K),

R(e)= Pk(e), ∀e edge ofK.

EXAMPLE 3. For any integerk � 1, and for any triangleK ∈ Th, define

(3.186)k � 1


Q(K)= (Pk(K))

2,

P (K)= Pk−1(K),

R(e)= Pk(e), ∀e edge ofK.

EXAMPLE 4. For any integerk � 1, and for any rectangleK ∈ Th, define

(3.187)k � 1


Q(K)= (Pk(K))

2 ⊕ {curl(x1x
k+1
2 )} ⊕ {curl(x2x

k+1
1 )},

P (K)= Pk−1(K),

R(e)= Pk(e), ∀e edge ofK.

EXAMPLE 5. For each triangleK ∈ Th, define

(3.188)


Q(K)= span{τ1, τ2, τ3} (see (3.114)–(3.116)),

P (K)= P0(K),

R(e)= P0(e), ∀e edge ofK.

EXAMPLE 6. For each triangleK ∈ Th, define

(3.189)


Q(K)= span{τ1, τ2, τ3} (see (3.127)–(3.129)),

P (K)= P0(K),

R(e)= P0(e), ∀e edge ofK.

Denoting byR(∂K)=∏
e∈∂K R(e), we see that all the triplets(Q(K),P (K),R(∂K))

of the examples above are such that KerDh coincides with the spaceΣh used in Problem
(3.58), so that assumption (3.157) is fulfilled. Indeed, for Example 6 definition (3.132)
of Σh clearly coincides with that of (3.155), as it can be easily seen using (3.156).
For Examples 1–5 the spaceΣh is defined in (3.88), andτh ∈ Σh iff τh ∈ Σ̂h and
[ τ · n ]|e = 0, ∀e ∈ E ′

h, that is,τ · n is continuous across the internal edges andτ · n=
0 onΓN . Moreover, we have thatτ ∈ Q(K) ⇒ τ · n |∂K ∈ R(∂K), and in particular,
[ τ · n ]|e ∈ R(e). Then, according to (3.156),τ ∈ KerDh implies that[ τ · n ]|e = 0,
∀e ∈ E ′

h. Therefore, KerDh =Σh.
We check now that the inf-sup condition (3.158) holds for the bilinear formdh(. , .)

in all the examples.
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PROPOSITION3.5. For the mixed finite elements of Examples1–6 it holds

(3.190)∃δ > 0: inf
µh∈Λh

sup
τ h∈Σ̂h

dh(µh, τ h)

‖µh‖1/2,h‖τ h‖h
� δ.

PROOF. Let us considerµ∗ ∈ Λh. Let e be an edge inEh and letK = K(e) be an
element ofTh havinge as an edge. Takeτ e ∈ Σ̂h such thatτ e = 0 inΩ \K , and inK
is the vectorτ e ∈Q(K) which satisfies

(3.191)
∫
e

µτe · nds = h−1
e

∫
e

µ∗µds, ∀µ ∈R(e),

(3.192)
∫
∂K\e

µτe · nds = 0, ∀µ ∈R(∂K),

(3.193)
∫
K

τe · ∇v dx = 0, ∀v ∈ P(K),

(3.194)
∫
K

τe · ϕ dx = 0, ∀ϕ ∈D,
whereD = {q ∈ Q(K) | divq = 0, q · n |∂K = 0} as defined in (3.92). Such a vector
τ e exists and is unique inQ(K) since (3.191)–(3.194) are a set of degrees of freedom
for all Q(K) considered here, as discussed in Section 3.5. Notice that the degrees of
freedom (3.191), (3.192) are always present and allow us to impose conditions on the
normal component of vectors inQ(K); (3.193) and (3.194) are needed for higher order
elements.

A usual scaling argument gives

(3.195)‖τ e‖2
0,K + h2

K‖div τ e‖2
0,K � Ch−1

e ‖µ∗‖2
0,e.

Define nowτ ∗ =∑
e τ

e. Sinceτ ∗ on a single elementK is the sum of at most threeτ e,
summing (3.195) over allK ∈ Th gives

(3.196)‖τ∗‖h � C

(∑
e

h−1
e ‖µ∗‖2

0,e

)1/2

= C‖µ∗‖1/2,h.

Using the definition ofτ ∗ and (3.191) we obtain

(3.197)
∫
e

µ[ τ ∗ · n ]ds =
∫
e

µ[ τ e · n ]ds =
∫
e

µτe · nds = h−1
e

∫
e

µ∗µds,

and consequently we have

(3.198)dh(τ
∗,µ)=

∑
e

∫
e

µ[ τ ∗ · n ]ds =
∑
e

h−1
e

∫
e

µ∗µds.

Hence, takingµ= µ∗ in (3.198) and using (3.196) we have

(3.199)
dh( τ

∗,µ∗)
‖τ ∗‖h � C−1

∑
e h

−1
e ‖µ∗‖2

0,e

(
∑

e h
−1
e ‖µ∗‖2

0,e)
1/2

= C−1‖µ∗‖1/2,h,

and the proof is concluded withδ = C−1. �
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Due to Proposition 3.5 the abstract error estimate (3.169) holds, (together with
(3.176), if the decomposition is quasi-uniform). Notice that, when conforming approxi-
mations are considered, the termdh(u−P ehu, τ ), with τ ∈ Σ̂h, vanishes. This is the case
for all the Examples 1–5. In particular, for theRT0 element, using (3.110) in (3.176) we
obtain

(3.200)

∥∥λh − P ehu
∥∥

0,Eh � C
(
h1/2‖σ − σ h‖0,Ω + h−1/2‖Phu− uh‖0,Ω

)
� Ch1/2.

The same estimate applies to the element of Example 5, using (3.124) in (3.176). For
the nonconforming element of Example 6 we give the following

PROPOSITION3.6. Let Σ̂h andΛh be the spaces defined in(3.148)and (3.150)asso-
ciated with the element(3.189). For w ∈H 1(Ω) it holds

(3.201)sup
τ∈Σ̂h

dh(w− P ehw, τ )

‖τ‖h �C|w|1,Ω,

whereP eh is defined in(3.168).

PROOF. We can use a scaling argument on each edgee ∈ Eh and obtain forτ ∈ Σ̂h
(3.202)

∫
e

(
w− P ehw

)
τ · nds � Ch

1/2
K |w|1,K‖τ · n‖0,e � C|w|1,K‖τ‖0,K .

Then, (3.201) easily follows. �

Consequently, using (3.147) and (3.201) in (3.176) we deduce∥∥λh − P ehu
∥∥

0,Eh �C
(
h1/2‖σ − σ h‖0,Ω + h−1/2‖Phu− uh‖0,Ω + h1/2|u|1,Ω

)
(3.203)�Ch1/2.

REMARK 3.7. The orderO(h1/2) in estimates (3.200), (3.203) is not in disagreement
with the estimates for the scalar variableu. Indeed, (3.200) (or (3.203)) in (3.183)
gives back theO(h) order of convergence proved for these elements. Moreover, for the
RT0 element we can use the superconvergence result (see DOUGLAS JRand ROBERTS

[1985])

(3.204)‖Phu− uh‖0,Ω � Ch2,

thus obtaining in (3.200)

(3.205)‖λh − P ehu‖0,Eh � Ch3/2.

This, in turns, using (3.183), gives

(3.206)
∥∥u∗

h − u∗
I

∥∥
0,Ω � Ch2,

which is an optimal error bound. Estimate (3.204) (and then, in the end, (3.206)) can
also be proved for the lowest order elements of the families of the first four examples
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presented here. Actually, one can consider other values ofk as well, obtaining better
convergence estimates, analogous to (3.204), (3.205), and finally (3.206), for suitably
defined higher order interpolants (instead ofu∗

I ) and liftings (instead ofu∗
h). We refer for

that, e.g., to ARNOLD and BREZZI [1985], BREZZI, DOUGLAS JRand MARINI [1985].
Finally, we recall that for all the examples presented here estimates for‖λh −P ehu‖0,Eh
can be obtained directly, case by case, dropping the quasi-uniformity assumption on the
mesh. We refer to ARNOLD and BREZZI [1985], BREZZI, DOUGLAS JRand MARINI

[1985], MARINI and PIETRA [1989] for the proofs.

3.7. Algebraic treatment of problem (3.161)

Problem (3.161) is easier to deal with than (3.75). Indeed, the linear system associated
with (3.161) takes the matrix form

(3.207)

 A B −D
Bt −C 0

−Dt 0 0

σ huh
λh

=
 0

−F
0

 ,
with obvious meaning of the notation. The matrixA is now a block-diagonal matrix,
each block being a matrix of dimension equal to the dimension ofQ(K), easy to invert.
Hence, the variableσ h can be eliminated by static condensation,

(3.208)σ h =A−1(Dλh −Buh),

leading to the new system

(3.209)

(
BtA−1B +C −BtA−1D

−DtA−1B DtA−1D

)(
uh
λh

)
=
(
F

0

)
.

Since no continuity assumption is made onVh, the matrixBtA−1B + C is also block-
diagonal, so that the variableuh can be eliminated by static condensation,

(3.210)uh = (BtA−1B +C)−1(F +BtA−1Dλh).

This leads to a final system, acting on the unknownλh only, of the form

(3.211)Mλh = G,
whereM andG are given by

(3.212)M =DtA−1D −DtA−1B(BtA−1B +C)−1BtA−1D,

(3.213)G =DtA−1B(BtA−1B +C)−1F.

We present in detail the structure of the matrixM and of the right-hand sideG defined in
(3.212) and (3.213). Since for applications to semiconductor device simulation the low
regularity of the solution makes the use of high order elements unsuitable, we discuss
here only the case of lowest order elements, namely, the lowest order Raviart–Thomas
element on triangles (RT0) and the two elements of Examples 5–6. We construct the
element matrixMK and the element right-hand sideGK associated with the current
elementK . In order to give a compact presentation, we set some common notation
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and recall the definition of the triplet(Q(K),P (K),R(∂K)) for the three cases under
consideration.

Q(K)= span{τ1, τ2, τ3},
(3.214)P(K)= P0(K),

R(∂K)=
∏
e∈∂K

P0(e),

where

(3.215)τ1 = (1,0), τ2 = (0,1), τ3 = (ψ1,ψ2).

The choice forψ1 andψ2 makes the difference of the three cases. ForRT0 we take

(3.216)τ3 = x − xB, xB = coordinates of the centroid ofK.

The reason for this choice is that
∫
K
ψ1dx = ∫

K
ψ2dx = 0, and therefore each block

of A becomes diagonal. We refer to the definition (3.115)–(3.116) for the element of
Example 5 and to (3.128)–(3.129) for the element of Example 6.

As basis function inP0(K) we make the natural choicev = 1 in K , and as basis
function inR(∂K) we takeµ= 1 on one edgee andµ= 0 on the others.

The functionsa−1(x) andγ (x) appearing in the bilinear forms (3.24) and (3.26) are
approximated by piecewise constant functions defined in each elementK by

(3.217)α := 1

|K|
(∫

K

a−1(x) dx

)
,

(3.218)γ := 1

|K|
(∫

K

γ (x)dx

)
.

We introduce the following notation

(3.219)νi = ni |ei |, i = 1,3,

(3.220)δ =
∫
K

(
ψ2

1 +ψ2
2

)
dx,

(3.221)β =
∫
K

div τ3dx,

(3.222)ηi =
∫
ei
τ3 · nds, i = 1,3.

Then the element matrices are

(3.223)AK = α

 |K| 0 0
0 |K| 0
0 0 δ

 , BK =
 0

0
β

 ,
(3.224)DK =

ν1
1 ν2

1 ν3
1

ν1
2 ν2

2 ν3
2

η1 η2 η3

 , CK = γ |K|, FK =
∫
K

f dx.
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The coefficients of the matrixMK are then given by

(3.225)mKij = (α )−1ν
i · νj
|K| + γ |K|

β2 + αδγ |K|ηiηj , i, j = 1,3,

and the right-hand side by

(3.226)gKi = βηi

β2 + αδγ |K|
∫
K

f dx, i = 1,3.

If γ (x)= 0 in (2.14), the coefficients ofMK reduce to

(3.227)mKij = (α )−1ν
i · νj
|K| .

The matrixM thus corresponds to a nonconforming piecewise linear approximation of
(2.14), where the functiona(x) is approximated by its harmonic average:

(3.228)a(x)|K � |K|∫
K
a−1(x) dx

.

The final matrixM is then symmetric and positive definite. Moreover, if the decompo-
sition is of weakly acute type (i.e., every angleθ of every triangle isθ � π/2), then

(3.229)mKii > 0, mKij � 0, i �= j, i, j = 1,3.

Hence, in this case,M is anM-matrix. In the general caseγ (x) � 0, we see that the
quantityγ |K|/(β2 + αδγ |K|) is always nonnegative. As far as theηi are concerned,
we have to discuss separately what happens in the three cases considered above. For the
RT0 element, a simple computation shows that

(3.230)ηi = 2|K|
3

> 0, i = 1,3.

Therefore, the off-diagonal coefficients ofMK might be positive even if the triangula-
tion is weakly acute, and the final matrix is not, in general, anM-matrix.

Instead, the other two elements are designed to guarantee a finalM-matrix. Indeed,
to fix ideas, lete1 be the special edge (ẽ in the definitions (3.116) or (3.129)). Then,

(3.231)ẽ= e1 ⇒ η1> 0, η2 = η3 = 0,

with η1 = |e1| for Example 5, andη1 = 1 for Example 6. Incidentally we also notice
that, for both elements, definition (3.221) givesβ = η1. Hence, the coefficients ofMK

are given by

(3.232)mKij =


(α )−1 ν1·ν1

|K| + γ |K|
β2+αδγ |K|η

2
1, for i = j = 1,

(α )−1 νi ·νj
|K| , otherwise,

and the right-hand side is given by

(3.233)gKi =
{

η2
1

β2+αδγ |K|
∫
K
f dx, for i = 1,

0, otherwise.
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It is then clear that the final matrix is, for both elements, always anM-matrix, if the
decomposition is of weakly acute type, since the zeroth-order term gives contribution,
with the positive sign, only to the coefficientm11. For an example of a mixed finite ele-
ment over rectangles satisfying theM-matrix property we refer to MARINI and PIETRA

[1991].
Another approach which yields theM-matrix property for theRT0 element, even in

the caseγ (x)� 0, will be examined in the following Section 3.8.

3.8. Numerical quadrature: towards finite volumes

In this section we analyze the family of mixed finite volume methods proposed in
MICHELETTI, SACCO and SALERI [2001] for the approximation of the reaction-
diffusion problem (2.14). All of the methods are a suitable discretization of the dual
mixed formulation (3.27) and employ the lowest-order Raviart–Thomas (RT0) finite
element spaces (3.107)–(3.108) plus a suitable quadrature formula for the matrix corre-
sponding toa(σ h, τ h). This allows the use of different averages of the inverse diffusion
coefficienta−1 to enforce the constitutive law (3.3)1 for the fluxes at the interelement
boundaries in a finite volume fashion.

The mixed finite volume formulation (MFV) addressed in this section is to be viewed
as an alternative approach to the hybridization procedure discussed in Section 3.6, and
has been the object of several researches in the recent literature. The central issue of the
MFV formulation is to perform alumpingof the matrixA associated witha(σ h, τ h)
in (3.58) through some suitable quadrature formula. In the case of rectangular grids,
this strategy has been first proposed in POLAK , SCHILDERS and COUPERUS[1988]
in the casea(x) = 1. Theoretical and implementational issues that link “nodal” finite
elements, mesh-centered finite differences and mixed-hybrid finite elements have been
addressed in HENNART andDEL VALLE [1993, 1996]. In MOLENAAR [1995] a theo-
retical analysis shows that, under appropriate smoothness assumptions, the quadrature
error (in the evaluation ofA and of the right-hand side in (3.58)) does not spoil the
accuracy of the mixed method with exact integration.

In the case of triangular elements, similar conclusions have been drawn in BARAN-
GER, MAITRE and OUDIN [1994], BARANGER, MAITRE and OUDIN [1996], where,
in the case of the Laplace operator, a quadrature formula to diagonalize the matrix
A is proposed and analyzed following HAUGAZEAU and LACOSTE [1993]. An ex-
tension of this latter lumping procedure has been carried out in AGOUZAL, BARAN-
GER, MAITRE and OUDIN [1995], SACCO and SALERI [1997a], SACCO and SALERI

[1997b], MICHELETTI and SACCO [1999] for diffusion and convection-diffusion prob-
lems. In particular, in AGOUZAL, BARANGER, MAITRE and OUDIN [1995] a(x) is
approximated by its harmonic average over each triangle. In this section we analyze a
family of averages, all characterized by being piecewise constant over the dual tessella-
tion of the domain. Moreover we also include in the analysis the zeroth-order term.

The case of an elliptic problem wherea(x) is a symmetric positive definite tensor has
been studied in ARBOGAST, WHEELER and YOTOV [1997], CAI , JONES, MCCOR-
MICK and RUSSELL [1996], whereRT0 mixed finite elements with numerical integra-
tion are considered on both rectangular and logically rectangular grids. Another nu-
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merical scheme on this subject has been proposed in ARBOGAST, DAWSON, KEENAN,
WHEELER and YOTOV [1998], where an expanded mixed finite element method capa-
ble to handle the case of a discontinuous tensora(x) and general shape elements and
geometry is derived. It can be checked that in the special case of a reference equilateral
triangle andRT0 finite elements, the quadrature rule proposed in ARBOGAST, DAW-
SON, KEENAN, WHEELER and YOTOV [1998] to diagonalize the mass matrix yields
the same result as the lumping formula of BARANGER, MAITRE and OUDIN [1994].
However, the resulting method in ARBOGAST, DAWSON, KEENAN, WHEELER and
YOTOV [1998] gives a ten-point finite difference stencil while the method we are going
to analyze in this section gives a four-point finite difference stencil.

The common feature of the approaches based on a lumping procedure is that the
mixed formulation usingRT0 finite elements can be interpreted as a finite volume
method acting on the scalar unknownuh. This connection has been also recently in-
vestigated in EWING, SAEVAREID and SHEN [1998], where cell-centered finite dif-
ference schemes are constructed on triangular grids of regular shape (equilateral, and
isosceles right triangles). In this respect we also mention VASSILEVSKI, PETROVA and
LAZAROV [1992] where finite difference schemes on triangular cell-centered grids are
derived under the assumption of weakly acute triangulation. In this case, and using
the harmonic average ofa(x) along the Voronoi edge, the methods of VASSILEVSKI,
PETROVA and LAZAROV [1992] and of the present section coincide, although the error
analysis in VASSILEVSKI, PETROVA and LAZAROV [1992] is carried out only in the
casea(x)= 1.

Let us now give a brief outline of the contents of this section. The dual tessellationLh
associated withTh is first introduced in Section 3.8.1. Notice thatTh is only required
to be a Delaunay triangulation, while previous schemes in the literature assume that
Th must be a weakly acute triangulation (see BREZZI, MARINI and PIETRA [1989a],
MARINI and PIETRA [1989], BANK , BÜRGLER, FICHTNER and SMITH [1990], VAS-
SILEVSKI, PETROVA and LAZAROV [1992]). The Delaunay property allows for the
presence of obtuse triangles in the mesh while in a weakly acute triangulation all the
angles are required to be� π/2. Next, the mixed finite volume schemes are derived
in Section 3.8.2. The methods are based on the combined use of a piecewise constant
approximationα of α ≡ a−1 overLh and of the quadrature formula proposed in BA-
RANGER, MAITRE and OUDIN [1994]. The resulting discretization is a cell-centered
finite volume scheme where the degrees of freedom foruh are taken at the circumcen-
ters of each element ofTh, while the interelement fluxes are computed using the values
of uh at the circumcenters of two neighboring triangles ofTh.

The error analysis is carried out in Section 3.8.3, where we proved the (optimal)
O(h) convergence of this family of methods with respect to theH(div;Ω)× L2(Ω)-
norm, which is the standard norm for the analysis of dual mixed methods. It is worth
noting that the derivation of the methods, as well as their convergence analysis, allows
us in every respect to call them “mixed finite volume schemes” or, equivalently, “mixed
finite element schemes with numerical integration”. In Section 3.8.4 we consider three
choices ofα: two averages are suitable approximations of theharmonic averageof a
(see BABUŠKA and OSBORN[1983]) while the third one is the trapezoidal rule.
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3.8.1. Geometry and notation
In view of the mixed finite volume discretization of problem (3.27) we introduce the
following

DEFINITION 3.1. Th is a Delaunay triangulation if, for everyK ∈ Th, the closed cir-
cumcircle ofK contains no other vertices than those belonging toK . Moreover,Th is a
degenerate Delaunay mesh when the above property only holds for the open circumcir-
cle (cf. DELAUNAY [1934]).

We assume henceforth thatTh is a Delaunay triangulation. Moreover, we shall indi-
cate byNE andNT the total number of edges and triangles ofTh, respectively. Through-
out this section, any geometrical entity will be always understood as being an open
bounded subset ofR2 or R.

For any pair of neighboring trianglesKi andKj of Th, i, j = 1, . . . ,NT, let l be the
common edge. We also consider the dual tessellationLh of Th and denote its elements
by “lumping regions” (see Fig. 3.2, left). The lumping regionLl corresponding to edge
l is obtained by joining the common vertices and the two circumcentersCi andCj (see
Fig. 3.3). We set alsoLlk = Ll ∩Kk , for k = i, j .

Throughout this section it is understood that any geometrical entity referred to by a
superscript, sayr , and/or a subscript, sayk, has the following meaning: the superscript
and the subscript refer to an edge and a triangle, respectively. When both the superscript
and the subscript appear, we are referring to an entity depending on the edgeer that
shares the triangleKk . Moreover,T (r) is the index set of the triangles shared by the
edgeer , and it is understood that the cardinality ofT (r) is one or two depending on
whether or not the edgeer ∈ ∂Ω . By E(k) we denote the index set of the edges of the
triangleKk . For any triangleKk we have: three indices of the edges ofKk (sayr, i, j ),
three corresponding edgeser , ei, ej and the vectorserk, e

i
k, e

j
k obtained by orienting the

boundary ofKk counterclockwise. Observe thater
k′ = −erk for k′, k ∈ T (r).

We assume the regularity assumptions (3.45)–(3.46) onTh, namely (see Fig. 3.2,
right):

(3.234)
DK

ρK
� K∗, ∀K ∈ Th, DK � K∗ρK � KhK, ∀K ∈ Th,

FIG. 3.2. Primal triangulationTh with the corresponding lumping regionsLl (left), mesh parameters (right).
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FIG. 3.3. Examples of lumping regions for acute (left) and obtuse (right) triangles.

where we recall thatK denotes, here and in the sequel, a generic constant depending
only onK∗. It follows that the triangulationTh satisfies

hLl �D � Kh, ∀Ll ∈ Lh,

whereD = maxK DK , h= maxK hK andhLl is the diameter ofLl (see Fig. 3.2, left).

3.8.2. A family of finite volume methods
Let us now deal with the saddle-point problem (3.58) using the lowest-order Raviart–
Thomas approximation spaces (see (3.107)–(3.109)). For anyKk ∈ Th and for any inte-
grable functionϕ, define its mean value as

(3.235)ϕk = 1

|Kk|
∫
Kk

ϕ dx, ∀Kk ∈ Th.

Takingvh equal to the characteristic functionχk of the triangleKk in the second equa-
tion of (3.58) we obtain

(3.236)
∑
r∈E(k)

∫
er
σ h · nrk ds −

∫
Kk

γ uh dx = −
∫
Kk

f dx, ∀Kk ∈ Th,

wherenrk is the outward unit normal vector to edgeer . Eq. (3.236) can be rewritten as

(3.237)
∑
r∈E(k)

Φr
k − ukγk|Kk| = −fk|Kk|, ∀Kk ∈ Th,

whereΦr
k is the outward flux ofσ h from the triangleKk through the edgeer :

(3.238)Φr
k :=

∫
er
σ h · nrk ds, with Φr

k = 0 oner ∈ ΓN.

Clearly, (3.237) is a genuine finite volume discretization for (2.14), provided that we
are able to express each fluxΦr

k in terms of the valuesuj , j ∈ T (r), only. With this
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aim, let us consider the first equation in (3.58), and denote byer an internal edge ofKk
and byKj the element ofTh such thatk, j ∈ T (r), i.e., ∂Kk ∩ ∂Kj = er . Let τ rh be
the basis function defined in (3.109), where the normal is taken outward toKk , so that
div τ rh|Kk = 1/|Kk| and divτ rh|Kj = −1/|Kj |. Takingτ h = τ rh in the first equation of
problem (3.58), we get

(3.239)
∫
Kk

ασ h · τ rh dx +
∫
Kj

ασ h · τ rh dx + uk − uj = 0,

where we have setα := a−1. For anyKk ∈ Th let now r, r ′ ∈ E(k); we introduce the
following exact and approximate bilinear forms restricted overKk

(3.240)

aKk
(
τ r

′
h, τ

r
h

)= (
ατ r

′
h, τ

r
h

)
0,Kk

=
∫
Kk

ατ r
′
h · τ rh dx,

a
Kk
h

(
τ r

′
h, τ

r
h

)= α r
(
τ r

′
h, τ

r
h

)
h,0,Kk

= α rδrr ′ω
r
k,

where the expression forωrk is provided in the next proposition, andα r is a suitable
average ofα overLr .

PROPOSITION3.7. Let τ rh, τ r
′
h be two basis functions inΣh associated with two edges

ofKk ∈ Th. The quadrature formula

(3.241)
∫
Kk

τ rh · τ r ′h dx ∼ δrr ′ω
r
k

is exact on constant vectorsiff theωrk ’s are chosen as

(3.242)ωrk = −e
i
k · ejk

4|Kk| , i, j ∈E(k), i �= j �= r.

PROOF. We provide in the following an alternative proof to the original one given in
BARANGER, MAITRE and OUDIN [1994]. For ease of exposition let us switch to a
local numbering of the indices of the geometrical quantities. In particular, we shall use
the local indices 1, 2, 3 in place of the global ones. Then letK be a generic triangle
with edgese1, e2, e3, and lett i andni (i = 1,2,3) be the unit tangent and normal
vectors to edgeei (see Fig. 3.4 for the local numbering and orientation). Finally, let
ei = t i |ei |, νi = ni |ei | (i = 1,2,3), where|ei | denotes the length of edgeei . We require
the numerical quadrature to be exact for constant vectors, i.e., we require the formula to
integrate exactly

(3.243)
∫
K

τ · σ dx, ∀ constant vectorsτ , σ .

For this, let us first considerσ = τ = c, c being any constant vector. Letτ i , i = 1,3, be
the local basis forRT0 elements, defined by the following choice of degrees of freedom
(see (3.97)):

(3.244)
∫
ej
τ i · nj ds = δij , i, j = 1,3.
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FIG. 3.4. Local numbering and orientation of the edges of a triangle.

Thenc can be expressed as

c=
3∑
i=1

ciτ
i ,

where the coefficientsci can be easily obtained using (3.244):

( c, νj )= ( c, nj )|ej | =
∫
ej
c · nj ds =

∫
ej

(
3∑
i=1

ciτ
i

)
· nj ds = cj .

By imposing the quadrature formula to be exact on constant vectorsτ = c we obtain

(3.245)

| c |2|K| ≡
∫
K

c · c dx =
∫
K

(
3∑
i=1

ciτ
i

)
·
(

3∑
j=1

cj τ
j

)
dx

=
3∑
j=1

c2
jω

j =
3∑
j=1

( c, νj )2ωj .

Choosing nowc = ei , i = 1,2,3, and observing that|( ei, νj )| = 2(1 − δij )|K|, from
(3.245) we obtain

|ei |2|K| = 4|K|2
3∑
j=1

(1− δij )
2ωj , i = 1,2,3,

that is, the linear system

3∑
j=1

(1− δij )ω
j = |ei |2

4|K| , i = 1,2,3,

using the obvious fact that(1− δij )
2 ≡ 1− δij . The solution to this system, given by

(3.246)ωi =
∑3

j=1(1− 2δij )|ej |2
8|K| ,

can be further simplified by noting that, with the orientation of Fig. 3.4,e1+e2+e3 = 0,
so that, for instance,|e1|2 = |e2|2 + |e3|2 + 2( e2, e3), and analogous relations hold
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cyclically. Therefore, from (3.246) we have

(3.247)ω1 = − ( e
2, e3)

4|K| , ω2 = − ( e
3, e1)

4|K| , ω3 = − ( e
1, e2)

4|K| .

Notice that these quantities are not necessarily all positive, as their sign depends on the
angles of the triangle. It remains to prove that (3.247) gives a solution to (3.245) also for
all possible choices of the constant vectorc. First, since (3.245) is homogeneous inc,
this can be taken of length 1. Second, lettingc= (cosθ,sinθ), θ ∈ R and substituting in
(3.245) leads to a homogeneous polynomial of degree 2 in cosθ , sinθ that must vanish
identically inθ . Thus, it suffices to require that this occurs only for three different values
of θ . Since the triangle is not degenerate,ei (i = 1,2,3) are three independent vectors
which correspond to three different values forθ .

To conclude, we have to check that the formula is exact for any pair of constant
vectorsτ = c1 �= σ = c2. To this end, we observe that the bilinear form

(3.248)Φ(c1, c2) := ( c1, c2)|K| −
3∑
j=1

( c1, νj )( c2, νj )ωj

is symmetric and verifies, forωj as in (3.247),Φ(c, c ) = 0. Using this, for everyc1

andc2 we can writeΦ(c1 + c2, c1 + c2)= 0, and deriveΦ(c1, c2)≡ 0. �

REMARK 3.8. For each triangleKk and for each edgeer , the quantitiesωrk can also be
computed using the formula

(3.249)ωrk = drk

|er | ,
wheredrk is the “distance” betweenCk and the edgeer , in a sense that will be made clear
in a while. For the moment we notice that these quantities are positive when the angle
opposite to the edgeer is acute, and negative when it is obtuse. This expression is very
important in view of the finite volume interpretation of the numerical method obtained
with the quadrature formula (3.240)2. However, we point out that expression (3.242) is
easier to compute, and it is actually used for the implementation of the method.

To prove (and explain) (3.249) note that, referring to Fig. 3.5, the scalar product
in the numerator of (3.242) can be written as|ei ||ej |cosθr , where 0< θr < π is the

FIG. 3.5. Geometrical quantities of a triangle.
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angle (opposite to the edgeer ) between edgesei andej ; on the other hand, 2|Kk| =
|ei ||ej |sinθr . This gives 2ωrk = cotθr and, sinceCk is the circumcenter of the triangle,
θr is also half the angle opposite to the edgeer seen byCk . This finally yields cotθr =
2drk /|er | and thus relation (3.249), where it is understood thatdrk is positive whenθr is
acute (Ck insideKk) and it is negative whenθr is obtuse (Ck outside ofKk).

The construction of the piecewise constant functionα r will be fully discussed in Sec-
tions 3.8.3 and 3.8.4; here we just emphasize the two basic properties of the average:

(i) α r is constant on each lumping regionLr ;
(ii) α r is some average ofα on a suitable subset of each lumping regionLr .

We notice that in the caseα = 1, the approximate bilinear formaKh coincides with the
quadrature formula proposed in BARANGER, MAITRE and OUDIN [1994], where it is
shown that the quadrature error isO(hK). Let then( σ ∗

h,u
∗
h) ∈Σh ×Vh be the solution

of the dual mixed system (3.58) in the presence of some quadrature error.
Using (3.240)2 in (3.239) and recalling thatα r is constant over thewhole lumping

regionLr , we end up with the following equation for the approximate interelement flux
through the edgeer /∈ ΓN ,

(3.250)Φ
r,∗
k = (α r)−1

(
u∗
j − u∗

k

dr

)
|er |, dr = drk + drj , k, j ∈ T (r).

Eq. (3.250 holds for any edgeer in the interior ofΩ ; if er lies onΓD , it is understood
that the valueu∗

j is set equal to the averagegr of the Dirichlet datumg over er and
that dr = drk is the “distance” between the circumcenter ofKk ander (see BOSISIO,
MICHELETTI and SACCO [2000]).

Substituting the exact fluxesΦr
k in (3.237) with the corresponding approximations

(3.250), we finally obtain the family of cell-centered finite volume schemes in the new
unknownu∗

h

(3.251)
∑
r∈E(k)
er /∈ΓN

(α r)−1
(
u∗
k − u∗

j (r)

dr

)
|er | + u∗

kγk|Kk| = fk|Kk|, ∀Kk ∈ Th,

where, for an internaler , j (r) ∈ T (r) is the index of the triangle shared by the edgeer

opposite to the triangleKk , andu∗
j (r) is the unknown on such a triangle. For an edge

er ∈ ΓD , we setu∗
j (r) = gr . In this last case,gr is theL2-projection ofg on the space of

the constant functions overer , as in (3.160). Finally, we recall thatΦr,∗
k = 0 oner ∈ ΓN .

The set of linear algebraic equations (3.251) can be written in matrix form as

(3.252)W ∗u∗ = f∗,
where theith component off∗ is fi |Ki | and theij th nonzero entries of theNT × NT
matrixW ∗ are

(3.253)W ∗
ij =


∑

r∈E(i)
er /∈ΓN

(α r)−1 |er |
dr

+ γi |Ki |, if i = j,

−(α r(j))−1 |er(j)|
dr(j)

, if j ∈ T (E(i)), j �= i,

wherer(j)=E(j)∩E(i) refers to the edge shared by the trianglesKi andKj .
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LEMMA 3.1. Assume thatTh is a Delaunay triangulation. Then, the matrixW ∗ in
(3.252)is a symmetric, positive definite and irreducibly diagonally dominantM-matrix.

PROOF. We first notice that the Delaunay property forTh implies that the quantities
dr ’s in (3.253) are positive. As a consequence,W ∗

ii > 0 andW ∗
ij � 0 in (3.253), for

i = 1, . . . ,NT andj ∈ T (E(i)), j �= i. The expressions (3.253) show thatW ∗ is a sym-
metric matrix with at most four nonzero entries on each row. Letsi denote the sum of
the entries of each rowi of W ∗; then

si =

γi |Ki |, if ∂Ki ∩ ΓD = ∅,∑

r∈E(i)
er∈ΓD

(α r)−1 |er |
dr

+ γi |Ki |, if ∂Ki ∩ ΓD �= ∅.

We see that the sum of the entries of the rows corresponding to triangles intersecting
ΓD is strictly positive while it is nonnegative for the rows corresponding to internal
triangles. Thus,W ∗ is a symmetric, positive definite irreducibly diagonally dominant
M-matrix (see VARGA [1962], Corollary 1, p. 85). �

REMARK 3.9. TheM-matrix property ensures that system (3.252) is uniquely solv-
able. This property along with the fact thatW ∗ is also positive definite and irreducibly
diagonally dominant ensures that the family of finite volume schemes (3.251) verifies
a discrete maximum principle (see VARGA [1962], CIARLET and RAVIART [1973],
ROOS, STYNES and TOBISKA [1996]). In particular, providedf∗ � 0, the solutionu∗
of system (3.252) turns out to be nonnegative.

TheM-matrix property is very desirable in applications. As an example, consider the
case where (2.14) is the linearized current continuity equation using the drift-diffusion
or energy-balance transport models. In such a case, the unknownu is the scaled con-
centration and therefore it must be nonnegative.

REMARK 3.10 (Extension to the3D case). Let us briefly comment about the extension
of the finite volume formulation at hand to the case whereΩ is a polygonal domain
in R

3.
The extension is straightforward ifΩ is of the formΩ =Ωxy × (0,H) with Ωxy ⊂

R
2 andH > 0, andTh is a partition ofΩ into prisms obtained as “tensor product”

of a decomposition ofΩxy and a decomposition of[0,H ]. We refer to ARBOGAST

and CHEN [1995] for the definition and to MIGLIO, QUARTERONI and SALERI [1999]
for the use of mixed approximations with Raviart–Thomas finite elements on prismatic
triangulations.

The extension of the mixed finite volume method analyzed in this section to the case
whereTh is a decomposition ofΩ into simplices is less straightforward. In particular,
if the finite element mesh is made of tetrahedra a consistent diagonalization of the mass
matrix has been provided in BARANGER, MAITRE and OUDIN [1996], in the case of the
Laplace operator, under restrictive conditions on the mesh. Under the same assumptions,
the present mixed finite volume scheme can be formulated also in three dimensions.
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In the case of a general 3D triangulation the method of this section as well as
the related approaches proposed in BARANGER, MAITRE and OUDIN [1994, 1996],
AGOUZAL, BARANGER, MAITRE and OUDIN [1995] cannot be extended, as pointed
out in THOMAS and TRUJILLO [1997].

3.8.3. Analysis of the finite volume scheme
In this section we analyze the finite volume scheme defined in (3.251) by setting it
into an abstract framework of Galerkin methods with numerical quadratures for the ap-
proximation of saddle point problems of the form (3.35). Concerning this issue, error
estimates and analysis can be found in BREZZI and FORTIN [1991], Section II.2.4 and
ROBERTSand THOMAS [1991], Chapter 3, Section 11. For the case under considera-
tion, the choice ofRT0 finite element spaces forΣh, Vh is such that the family of finite
volume schemes (3.251) can be written in the form:

(3.254)


Findσ h ∈Σh anduh ∈ Vh such that

ah(σ h, τ h)+ bh(uh, τ h)= 〈g, τ h〉h, ∀τ h ∈Σh,
bh(vh, σ h)− ch(uh, vh)= −〈f, vh〉h, ∀vh ∈ Vh,

whereah(·, ·), bh(·, ·), ch(·, ·) and〈·, ·〉h are suitable approximations of the correspond-
ing continuous counterparts through the use of numerical quadratures. In this case we
have

ah(σ h, τ h)=
∑
Kk∈Th

a
Kk
h (σ h, τ h), bh(vh, τ h)= b(vh, τ h),

(3.255)ch(uh, vh)=
∑
Kk∈Th

γk (uh, vh)0,Kk ≡ c(uh, vh),

〈f, vh〉h =
∑
Kk∈Th

fk(vh,1)0,Kk ≡ (f, vh), 〈g, τ h〉h = 〈g, τ h · n 〉|ΓD .

(See (3.25)–(3.27) and Section 3.8.2 for notation and definitions.) Hypotheses (3.31)–
(3.34) are all verified, while (3.28) and (3.29) forah(·, ·) need to be checked in order to
apply the abstract Theorem 3.1. For that we recall that definition (3.57) of KerBh reads
in this case

(3.256)KerBh = {
τ h ∈Σh | b(vh, τ h)= 0, ∀vh ∈ Vh

}
.

LEMMA 3.2. There exist positive constantsA andA, independent ofh, such that

(3.257)

∣∣ah(σ h, τ h)∣∣�A‖σ h‖Σ‖τ h‖Σ, ∀σ h, τ h ∈Σh,
ah( τ h, τ h)� A‖ τ h‖2

Σ, ∀τ h ∈ KerBh.

PROOF. To prove (3.257)1, let us first observe that,ah(σ h, τ h) being symmetric and
positive semidefinite, we have

(3.258)ah(σ h, τ h)�
(
ah(σ h, σ h)ah( τ h, τ h)

)1/2
, ∀σ h, τ h ∈Σh.
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Then it is sufficient to prove that

(3.259)ah( τ h, τ h)� A‖ τ h‖2
Σ, τ h ∈Σh.

Consider a triangleKk ∈ Th and setτ h|Kk =∑
i∈E(k) Φi

τ h
τ ih andωik = dik/|ei |, where

Φi
τ h

is the flux ofτ h across the edgeei , anddik is the “distance” between the circum-

centerCk of Kk and the edgeei (see Section 3.8.2). We also setRKk = ⋃
i∈E(k)Li .

For brevity, the subscriptk will be dropped. On the elementK the approximate bilinear
form can be written as

aKh ( τ h, τ h)=
∑
i∈E(k)

α i
(
Φi
τ h

)2
ωik.

Notice that, using (3.234), we have

(3.260)max
i∈E(k)

|ωik| �
DK

ρK
� K∗,

which holds both for acute and obtuse triangles. Therefore, sinceα is an average ofα

(3.261)
∣∣aKh ( τ h, τ h)∣∣� ‖α‖∞,RK

∑
i∈E(k)

∣∣Φi
τ h

∣∣2|ωik| � K∗‖α‖∞,Ω

∑
i∈E(k)

∣∣Φi
τ h

∣∣2.
Recalling the definition of flux through an edgeei of τ h ∈Σh

Φi
τ h

=
∫
ei
τ h · ni ds,

Cauchy–Schwarz inequality gives

(3.262)
∣∣Φi

τ h

∣∣2 � |ei |‖τ h · ni‖2
0,ei .

Using (3.177), i.e.,‖τ h · ni‖2
0,ei

� Ch−1
K ‖τ h‖2

0,K , we deduce

(3.263)
∣∣Φi

τ h

∣∣2 � C‖τ h‖2
0,K, ∀τ h ∈Σh.

It can be easily checked that, in the present case ofRT0 elements,C � 6. Substituting
in (3.261) gives

(3.264)
∣∣aKh ( τ h, τ h)∣∣� 18K∗‖α‖∞,Ω‖τ h‖2

0,K,

from which, summing over all the triangles ofTh, the estimate (3.257)1 follows with
A = 18K∗‖α‖∞,Ω .

Let us now prove (3.257)2. We remark that, in this case, it is not possible to work
at the element level since the geometric quantitiesωrk ’s associated with an elementKk
are not, a priori, both positive. Actually, we are dealing with a Delaunay mesh and this
guarantees only that

∑
k∈T (r) ωrk � 0, the equal sign holding in the case of a degenerate

Delaunay mesh. Thus, we are led to working with the full bilinear form. Since any func-
tion τ h ∈ KerBh is such thatτ h|K ∈ (P0(K))

2, ∀K ∈ Th, we have‖ τ h‖Σ = ‖ τ h‖0,Ω .
Moreover, Proposition 3.7 ensures that the quadrature formula is exact on piecewise
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constant vectors, that is,∑
i∈E(k)

(
Φi
τ h

)2
ωik = ‖ τ h‖2

0,K, τ h ∈ KerBh.

Thus

ah( τ h, τ h)=
NE∑
r=1

∑
k∈T (r)

α r
(
Φr
τ h

)2
ωrk � α0

NE∑
r=1

∑
k∈T (r)

(
Φr
τ h

)2
ωrk

= α0

NT∑
k=1

∑
r∈E(k)

(
Φr
τ h

)2
ωrk = α0

NT∑
k=1

‖ τ h‖2
0,K = α0‖ τ h‖2

0,Ω,

whereα0 = infx∈Ω α(x). We finally get (3.257)2 with A = α0. �

We are in position to state the main result of this section.

THEOREM 3.7. For everyg ∈ H 1/2(ΓD), and for everyf ∈ L2(Ω) problem(3.254)
has a unique solution( σ h,uh), and the following a priori error estimate holds

‖σ − σ h‖Σ + ‖u− uh‖V �M inf
wh∈Σh
vh∈Vh

{
‖σ −wh‖Σ + ‖u− vh‖V

(3.265)+ sup
τ h∈Σh

|a(wh, τ h)− ah(wh, τ h)|
‖τ h‖Σ

}
,

with ( σ ,u) solution of problem(3.27), andM a constant independent ofh.

PROOF. It is an extension of the proof of Proposition 2.11, BREZZI and FORTIN [1991],
which holds in the case of exact integration and it is here omitted. The interested reader
can consult MICHELETTI, SACCO and SALERI [2001]. �

Let us deal now with the quadrature errors occurring in the approximate bilinear
form ah(·, ·). We recall thatK denotes a generic constant depending only on the local
geometrical properties of the mesh, namely onK∗ (see (3.45)–(3.46)). With a slight
change of notation, we letK be a generic triangle andCK its circumcenter. We shall
use the following result:

PROPOSITION3.8. LetRK be the union ofK and of the three lumping regions asso-
ciated with its edges. Then under assumptions(3.45)–(3.46)on the meshTh, for every
x ∈RK we have

(3.266)sup
x∈RK

∣∣v(x)− v(x̄)
∣∣� KhK |v|1,∞,RK

, ∀v ∈ C1(RK).

Inequality (3.266) follows immediately from the mean-value theorem. For more gen-
eral inequalities of this type see, e.g., CIARLET [1991], Section 15, e.g., Theorem 15.3.
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Let us now give a bound for the quadrature error associated withah(·, ·). With this
aim, letwh and τ h be any two functions inΣh. For anyKk ∈ Th we setwh|Kk =∑

r∈E(k) Φr
wh
τ rh andτ h|Kk =∑

r∈E(k) Φr
τ h
τ rh. Dropping subscriptk, we recall the re-

sult proved in BARANGER, MAITRE and OUDIN [1994]

(3.267)
∣∣(wh, τ h)0,K − (wh, τ h)h,0,K

∣∣�KhK‖wh‖H(div;K)‖ τ h‖H(div;K).

Let α̃K be a suitable average of the functionα overK , for instance equal to the value of
α at the centroid ofK . This choice clearly satisfies (3.266) wherev = α. The quadrature
erroraK(wh, τ h)− aKh (wh, τ h) can then be split as

aK(wh, τ h)− aKh (wh, τ h)= E1(wh, τ h)+ E2(wh, τ h)+ E3(wh, τ h)

where

E1(wh, τ h)= (αwh, τ h)0,K − (α̃Kwh, τ h)0,K =
∫
K

(α − α̃K)wh · τ h dx,
E2(wh, τ h)= (α̃Kwh, τ h)0,K − (α̃Kwh, τ h)h,0,K

=
∫
K

α̃Kwh · τ h dx −
∑
r∈E(k)

α̃KΦ
r
wh
Φr
τ h
ωrk,

E3(wh, τ h)= (α̃Kwh, τ h)h,0,K − aKh (wh, τ h)=
∑
r∈E(k)

(α̃K − α r)Φr
wh
Φr
τ h
ωrk.

Using the Cauchy–Schwarz inequality and bounding the termα − α̃K overK ⊂ RK

using (3.266) we get∣∣E1(wh, τ h)
∣∣� ChK |α|1,∞,RK

‖wh‖H(div;K)‖ τ h‖H(div;K)

while (3.267) yields∣∣E2(wh, τ h)
∣∣� α̃KKhK‖wh‖H(div;K)‖ τ h‖H(div;K).

Recalling thatα̃K andα r are averages ofα overK ⊂ RK andLr ⊂ RK , respectively,
we can immediately conclude that∣∣E3(wh, τ h)

∣∣� (
max
x∈RK

α(x)− min
x∈RK

α(x)
) ∑
r∈E(k)

∣∣Φr
wh

∣∣∣∣Φr
τ h

∣∣|ωrk|
� |α|1,∞,RK

KhK
∑
r∈E(k)

∣∣Φr
wh

∣∣∣∣Φr
τ h

∣∣|ωrk|
�K|α|1,∞,RK

hK‖wh‖H(div;K)‖ τ h‖H(div;K),

where we have used (3.266), (3.260), Cauchy–Schwarz inequality and (3.263). Gather-
ing the previous estimates yields,∀K ∈ Th∣∣aK(wh, τ h)− aKh (wh, τ h)

∣∣
� K

(|α|1,∞,Ω + ‖α‖∞,Ω

)
hK‖wh‖H(div;K)‖ τ h‖H(div;K).
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Summing over all triangles and using the Cauchy–Schwarz inequality finally gives

(3.268)sup
τ h∈Σh

|a(wh, τ h)− ah(wh, τ h)|
‖ τ h‖Σ

� Ch‖wh‖H(div;Ω), ∀wh ∈Σh,

withC = K(|α|1,∞,Ω+‖α‖∞,Ω). In particular, taking in (3.268)wh =Πhσ , as defined
in (3.100), and recalling that (see, ROBERTSand THOMAS [1991], p. 583)

‖Πhσ ‖Σ �C
(
h|σ |1,Ω + ‖σ ‖Σ

)
,

we get

(3.269)sup
τ h∈Σh

|a(Πhσ , τ h)− ah(Πhσ , τ h)|
‖ τ h‖Σ

� Ch
(
h|σ |1,Ω + ‖σ ‖Σ

)
.

Taking in (3.265)vh = Phu, as defined in (3.99),wh =Πhσ , and using the interpolation
estimates (3.110) and (3.269), we finally obtain the convergence result

(3.270)‖σ − σ h‖Σ + ‖u− uh‖V � Ch
(|u|1,Ω + |σ |1,Ω + |divσ |1,Ω

)
.

We have proved the following

THEOREM 3.8. Assume that the solution( σ ,u) of problem(3.27)is such that( σ ,u) ∈
(H 1(Ω))2 × H 1(Ω) and divσ ∈ H 1(Ω), and thata ∈ W1,∞(Ω). Then, there exists
a positive constantC, independent ofh, such that the solution( σ h,uh) of problem
(3.254), with the choices(3.255), satisfies

(3.271)‖σ − σ h‖Σ + ‖u− uh‖V � Ch.

We emphasize that Theorem 3.8 holds irrespectively of the choice of the averageα r

in (3.251), the only requirement being that

(3.272)min
x∈Lr

α(x)� α r � max
x∈Lr

α(x), ∀Lr ∈ Lh.

REMARK 3.11. We remark that theO(h) convergence proved above for the mixed
finite volume methods (3.251) is optimal and that it has been obtained without giv-
ing up theM-matrix property of the schemes. This feature, together with the reduced
computational cost, makes these methods quite attractive and competitive with respect
to the standard dual mixed approaches with exact integration analyzed in Section 3.5
and to dual mixed schemes with numerical integration recently proposed for the ap-
proximation of problem (3.27) in the caseγ = 0 (BARANGER, MAITRE and OUDIN

[1994, 1996]). Finally, the genuine finite volume flavor of these methods allows for
the basic conservation properties (mass and interelement fluxes) to be satisfied, even
in the presence of jumps in the coefficient of the problem (as happens for instance in
porous media flows governed by Darcy’s law (EWING, SAEVAREID and SHEN [1998]))
or steep internal/boundary layers in the scalar unknownu (as happens in semiconduc-
tor device simulation using the drift-diffusion model (JEROME [1996], MARKOWICH

[1986], MOLENAAR [1995], SACCO and SALERI [1997a])).
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3.8.4. Several choices of the averages
In this section we characterize the choice of the averageα of the inverse diffusion co-
efficientα. Being this matter one-dimensional, we restrict our attention on the affine-
equivalent intervalI = [0,L], for anyL> 0.

The obvious candidate forα is the mean value ofα overI. Since we are interested
in the inverse ofα (see (3.251)) andα = a−1, it follows that

(3.273)α−1 =
(∫ L

0 a
−1(x) dx

L

)−1

=:HI(a)

whereHI(a) denotes theharmonic averageof a over the intervalI.
Use of harmonic averaging for the diffusion coefficienta is quite natural in mixed

methods (see BABUŠKA and OSBORN [1983], BREZZI and FORTIN [1991]) and has
been proved in one dimension to provide better results than the mean value, in particular
whena exhibits sharp variations onI or is even discontinuous. Typical instances of such
a behavior are flows in porous media (see EWING, SAEVAREID and SHEN [1998] and
the references cited therein) or electron and hole carrier flow in a semiconductor device.

It is clear that, except for special cases, the evaluation of (3.273) cannot be carried
out. This, of course, demands for the use of a suitable quadrature formula. With this
aim, define for any functionφ :I → R

+ theexponential interpolantto φ as

(3.274)EIφ(x) := exp
{[

ln
(
φ(x)

)]
I

}= φ0

(
φL

φ0

)x/L
, x ∈ I,

whereφ0 = φ(0), φL = φ(L) andvI is theP1-interpolant tov. The quadrature formula
approximating (3.273) can then be defined as

α−1 �
(∫ L

0 EIa−1(x) dx

L

)−1

= ln(1/aL)− ln(1/a0)

1/aL − 1/a0

(3.275)=
(

ln(a0)− ln(aL)

a0 − aL

)
a0aL

which clearly satisfies (3.272). Assumingα ∈W1,∞(I), it is easy to prove the following
bound for the interpolation error

‖α − EIα‖∞,I � Ch
αM

αm
|α|1,∞,I

whereαM andαm are the maximum and the minimum values ofα overI, respectively.
We remark that (3.275) isexactif a(x)= elx+m, l,m ∈ R, x ∈ I, which is the case of the
numerical approximation of the drift-diffusion semiconductor device equations when
the self-adjoint form (1.9) is used for the current densities and when a linear variation of
the (scaled) electric potentialψ is assumed overI. The resulting discretization scheme
will be addressed in Section 4.2.

Our second choice forα−1 is the harmonic average of the piecewise constant exten-
sion ofa overI

(3.276)α−1 �
(∫ x̄

0 a
−1
0 dx + ∫ L

x̄
a−1
L dx

L

)−1

= a0aL

aLx̄/L+ a0(1− x̄/L)
,
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where x̄ ∈ I. In our application,I will be the segment joining the circumcenters of
two adjacent trianglesK andK ′ andx̄ will be the intersection betweenI and the edge
common toK andK ′. The average (3.276) seems to be quite promising in presence of
discontinuities ofa.

The last choice that we consider forα−1 employs linear interpolation fora. This
leads to the trapezoidal quadrature formula

(3.277)α−1 �
∫ L

0 aI (x) dx

L
= a0 + aL

2
.

Numerical experiments using the three averages introduced above will be presented in
Section 7.

4. Application to continuity equations

We shall describe in this section mixed discretizations of the scaled current continuity
equations (1.22)2, (1.22)3. For simplicity, we shall deal only with the scaled continuity
equation (1.22)3 for the positive charge densityp. Moreover, we shall consider the
stationary case and a constant mobilityµp ≡ 1. The problem under investigation has
the form

(4.1)


Findp ∈H 1(Ω) such that

−div(∇ p+ p∇ψ)= −R(p,n) in Ω ⊂ R
2,

p = g := pD onΓD ⊂ ∂Ω,

(∇ p+ p∇ψ) · n= 0 onΓN ⊂ ∂Ω,

and the current is given by

(4.2)J = −(∇ p+ p∇ψ).
In the simulation of the DD model the solution of (4.1) is an intermediate step inside an
iterative process, as presented in Section 2, and we shall assume thatψ andn are known.
Moreover, during the iterative solution procedure, Eq. (4.1)1 is usually linearized (see
Section 2.4) so that problem (4.1) becomes

(4.3)


Findp ∈H 1(Ω) such that

−div(∇ p+ p∇ψ)+ cp = f in Ω,

p = g onΓD,

(∇ p+ p∇ψ) · n= 0 onΓN,

wheref = f (x) is a function independent ofp, andc= c(x) is a nonnegative function
independent ofp, which can be assumed piecewise constant. Finally,ψ is assumed to be
piecewise linear (resulting from a discretization of the Poisson equation). Problem (4.3)
is not directly suited to the application of the schemes described in Section 3 because it
is not self-adjoint. Using the Slotboom variableρ (see (1.8))

(4.4)p = ρe−ψ,
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(4.3) can be written in the symmetric form as

(4.5)


Findρ ∈H 1(Ω) such that

−div(e−ψ∇ ρ)+ ce−ψρ = f in Ω,

ρ = χ := eψg onΓD,

∇ ρ · n= 0 onΓN,

and the current is now given by

(4.6)J = −e−ψ∇ ρ.
The symmetric problem (4.5) is now of the form (2.14) witha = e−ψ andγ = ce−ψ .
We point out that other approaches, based on the use of the quasi-Fermi potentials de-
fined in (1.5), also lead to self-adjoint problems. However, in this case the equations are
exponentially nonlinear. For mixed approximations of the quasi-Fermi potential formu-
lation we refer to HECHT, MARROCCO, CAQUOT and FILOCHE [1991], HECHT and
MARROCCO[1994].

Problem (4.5) will not be discretized directly because the presence of the exponential
functions can be a source of numerical troubles in many relevant situations. The idea of
the schemes presented here is to discretize the symmetric equation (4.5) with a mixed
finite element scheme in the hybridization form presented in Section 3.6 or with a mixed
finite volume schemes presented in Section 3.8, to write the system in matrix form as in
(3.211)–(3.213) or in (3.251)–(3.253), to go back to the original variablep by using a
suitable discrete version of transformation (4.4), and then to solve forp.

4.1. Exponential fitting mixed finite elements

We shall describe in this section a mixed approximation to the scaled current continuity
equations (4.3). For the casec = 0 a mixed scheme based on the lowest order Raviart–
Thomas elementRT0 has been introduced in BREZZI, MARINI and PIETRA [1987] and
extensively discussed in BREZZI, MARINI and PIETRA [1989a, 1989b]. For the case
c �= 0 mixed schemes based on the elements of Examples 5–6, introduced and ana-
lyzed in MARINI and PIETRA [1989], have been applied and discussed in MARINI and
PIETRA [1990]. In the following we shall give a compact presentation which includes
the three different elements.

The presence of the exponentials in the definition ofa andγ requires special care.
For the approximation ofa−1 = eψ , following (3.217), we defineψ as the piecewise
constant function given in each elementK by

(4.7)e
ψ
|K := 1

|K|
∫
K

eψ dx,

and we take

(4.8)α = eψ .

The approximation ofγ = ce−ψ suggested in (3.218) is not suited here for reasons
which will be made clear at the end of this section. We proceed as follows. Letψ̃ denote
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the piecewise constant function defined in each elementK via a harmonic average on
a special edgẽe. In order to definẽe, let Vmax, andVmin be the vertices ofK whereψ
assumes maximum and minimum value respectively, and letVmed be the third vertex.
The edgẽe is taken as the edge connectingVmax andVmed, andψ̃ is computed by

(4.9)e
−ψ̃
|K := |ẽ|

/(∫
ẽ

eψ ds

)
, ẽ= VmaxVmed,

or, with the notation of (3.273), bye−ψ̃|K := Hẽ(e
ψ). Therefore, instead of (3.218), we

have

(4.10)γ = ce−ψ̃ .

For the reader’s convenience, we recall the definition of the finite dimensional spaces
already introduced in (3.148), (3.51), (3.160)

Σ̂h = {
τ h ∈ (L2(Ω)

)2 | τ h|K ∈Q(K), ∀K ∈ Th
}
,

Vh = {
vh ∈ V | vv|K ∈ P0(K), ∀K ∈ Th

}
,

Λh,ξ =
{
µh ∈L2(Eh) | µh|e ∈P0(e), ∀e∈Eh,

∫
e

(µh− ξ) ds=0, ∀e∈Eh ∩ ΓD
}
,

where, as usual,P0(D) denotes the set of constant functions in the domainD. Moreover,
Q(K) denotes here a set of polynomial vectors withQ(K) = span{ τ1, τ2, τ3}. In the
three casesτ1 = (1,0), τ2 = (0,1); insteadτ3 is defined by (3.216) for theRT0 element,
by (3.115)–(3.116) for the element of Example 5 and by (3.128)–(3.129) for the element
of Example 6.

Specializing (3.161) to this case, the discrete formulation of (4.5), withJ defined as
in (4.6), becomes

(4.11)



Find ( J h,ρh,λh) ∈ Σ̂h × Vh ×Λh,χ such that∫
Ω
eψJ h · τ h dx −∑

K

∫
K
ρh div τ h dx

+∑
K

∫
∂K
λhτ h · nds = 0, ∀τ h ∈ Σ̂h,

−∑K

∫
K
vh divJ h dx −∑

K

∫
K
ce−ψ̃ρhvh dx

= − ∫
Ω
f vh dx, ∀vh ∈ Vh,∑

K

∫
∂K
µhJ h · nds = 0, ∀µh ∈Λh,0.

Performing the elimination ofJ h andρh by static condensation as in Section 3.7, we
obtain a final matrixM acting only on the Lagrange multipliersλh, which we recall
to be an approximation ofρ on the edges. In the present case, the coefficients of the
element matrixMK defined in (3.225) take the form

(4.12)mKij = e−ψ ν
i · νj
|K| + ce−ψ̃ |K|

β2 + δceψ−ψ̃ |K|ηiηj , i, j = 1,3,
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and the right-hand side takes the form

(4.13)gKi = βηi

β2 + δceψ−ψ̃ |K|
∫
K

f dx, i = 1,3,

whereδ, β, ηi are defined in (3.220)–(3.222). We are now ready to introduce an ap-
proximation of the original variablep. Sinceλh lives on the edges, a discrete version
of the inverse transformation of (4.4) must be defined edge by edge. For this, for every
ζ ∈ L2(Eh), we defineζ I to be theL2-projection ofζ ontoΛh,ζ , that is,

(4.14)ζ I |e = 1

|e|
∫
e

ζ ds, ∀e ∈ Eh.

The discrete change of variable is then

(4.15)λh = (eψ)Iph,

and (4.11) becomes

(4.16)



Find ( J h,ρh,ph) ∈ Σ̂h × Vh ×Λh,g such that∫
Ω
eψJ h · τ h dx −∑

K

∫
K
ρh div τ h dx

+∑
K

∫
∂K
(eψ)Iphτ h · nds = 0, ∀τ h ∈ Σ̂h,

−∑K

∫
K
vh divJ h dx −∑

K

∫
K
ce−ψ̃ρhvh dx

= − ∫
Ω
f vh dx, ∀vh ∈ Vh,∑

K

∫
∂K
µhJ h · nds = 0, ∀µh ∈Λh,0,

whereph is an approximation ofp on the edges. We point out that (4.15) is intended
on Eh\ΓD only, unlessg is piecewise constant onΓD (which is the case in most appli-
cations). In that case,λh ∈Λh,χ andph ∈Λh,g are equivalent.

Performing transformation (4.15) at the matrix level (for the nodes not belonging to
ΓD) amounts to multiplying the matrixM columnwise by the value of(eψ)I on the
corresponding edge, thus giving rise to the matrix̃M acting on the variableph. The
algebraic system to be solved is then

(4.17)M̃ph = G.

The matrixM̃ is not symmetric anymore (as expected, since it corresponds to the non
symmetric problem (4.1)), but ifM is anM-matrix this property is preserved iñM,
since(eψ)I is always positive. The coefficients of the stiffness matrix̃M take the form

(4.18)

m̃Kij = (eψ)I |ej e−ψ
νi · νj
|K|

+ (eψ)I |ej e−ψ̃
c|K|

β2 + δceψ−ψ̃ |K|ηiηj , i, j = 1,3.

In the case of the elements of Examples 5–6, formula (4.18) can be simplified. Indeed,
taking the special edgẽe (denoted also bye1 in (3.231)) appearing in the definition of
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these elements ((3.116), (3.129)) as the edgeVmaxVmed (see (4.9)), one can see that

(4.19)(eψ)I |e1e
−ψ̃ = 1,

and (4.18) reduces to (see also (3.232))

(4.20)m̃Kij =


(eψ)I |e1e−ψ ν

1·ν1

|K| + c|K|
β2+δceψ−ψ̃ |K|η

2
1, for i = j = 1,

(eψ)I |ej e−ψ
νi ·νj
|K| , otherwise,

with η1 = |e1| for Example 5, andη1 = 1 for Example 6. Using the results presented at
the end of Section 3.7, if the triangulation is of weakly acute type, the two elements of
Examples 5–6 provide a final matrix̃M which is anM-matrix for all c � 0. Instead,
the elementRT0 guarantees theM-matrix property only ifc= 0.

REMARK 4.1. Few remarks on numerical “tricks”. For the computation of
∫
K
f dx in

(4.13) a quadrature formula which is exact for constantf can be used. Exact integration
can be used for computingeψ , eψ̃ defined in (4.7), (4.9), sinceψ is piecewise linear.
The choice ofẽ as the edge which connects the vertex with the largest potential value
and the vertex with the second largest potential value takes care of all possible cases for
the potential:ψ ≡ constant onK , ψ = constant= ψM on one edge, andψ having the
maximum in one vertex only.

As already pointed out, the electric fieldE (= −∇ψ ) can be quite large in a portion
of the domain, so that the presence of exponentials in the coefficients might be a source
of numerical problems. A (rough) analysis of the behaviour of the coefficients when the
electric field becomes larger and larger will be performed. It is more convenient to set

(4.21)ψ = ψ0

l
,

and assume that∇ψ0 is smooth everywhere andl is a small number. Accordingly,
Eq. (4.3) becomes

(4.22)−div

(
∇ p+ p

∇ψ0

l

)
+ cp = f.

The nature of Eq. (4.22) is such that, asl → 0, the differential term behaves likel−1,
while the zeroth-order term is of order 1. Hence, for very smalll (sayl ' |∇ψ0|hK ),
our discrete scheme must reproduce the behavior of the continuous equation (4.22).
To check that, recall thatψ (and thenψ0) is assumed piecewise linear, and denote by
ψM the maximum ofψ on K and byψMj the maximum ofψ on the edgeej . We
only consider the generic case where the maximum is reached at one vertex. When
l ' |∇ψ0|hK , a simple computation shows that

(4.23)eψ = 1

|K|
∫
K

eψ0/l dx � l2eψ
M
0 /l = l2eψ

M

,

(4.24)(eψ)I |ej = 1

|ej |
∫
ej
eψ0/l ds � leψ

Mj
0 /l = leψ

Mj
.
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Moreover, recalling that̃e= VmaxVmed, we have

(4.25)eψ̃ � leψ
M

.

Then, we obtain

(4.26)(eψ)I |ej e−ψ �
{
l−1, if ψMj =ψM,

0, otherwise,

(4.27)(eψ)I |ej e−ψ̃ �
{

1, if ψMj =ψM,

0, otherwise,

(4.28)eψe−ψ̃ � l.

Hence, coefficients (4.18) behave as

(4.29)m̃Kij �
{
l−1 νi ·νj

|K| + c|K|
β2+δcl|K|ηiηj , if ψMj =ψM,

0, otherwise.

The reason for the choice (4.9) is now clear. The expected behaviour in terms of the
order of magnitude with respect tol is preserved and, moreover, no bad blow-up occurs.
Different (and maybe more natural) choices fore−ψ̃ could lead to a coefficient for the
zeroth-order term in which(eψ)I |ej e−ψ̃ is not of order 1 whenψMj = ψM . Then,
the presence of this factor could give rise to schemes whose structure does not fit the
structure of the continuous problem and which produce poor results, unless the mesh
size is very small.

To conclude this section, we summarize the main features of the discretization
schemes presented here.

• Current conservation.
The discretization schemes presented here are based on mixed finite elements

and enforce some continuity of the normal component of the current at the in-
terelements. As extensively discussed in Section 3, strong continuity is imposed
when conforming approximations ofH(div;Ω) are considered (RT0 or the ele-
ment of Example 5), weak continuity (in the sense that the jump of the normal
component of the current has zero mean value at the interelements) is imposed
for the element of Example 6. This property is particularly relevant here, since the
current is possibly the most important output of device simulation.

• Automatic upwinding effects.
The expression (4.29) tells us that whenever|∇ψ | is large, the coefficient cor-

responding to the node on the edge whereψ does not reach its maximum is zero
(with respect to the machine precision). Such a node can be regarded as down-
wind node (wind= −∇ψ ) and the scheme as an upwind scheme. In a sense, the
scheme automatically adapts to the changed nature of the problem when advec-
tion becomes bigger than diffusion, and chooses the upwind nodes with no extra
computational cost. The numerical tests presented in Section 7.3 will show that
the numerical diffusion introduced by the schemes is very small in applications to
semiconductor device problems.
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• M-matrix property.
The two elements of Examples 5–6 provide a final matrix̃M which is an

M-matrix for all c � 0. Instead, the elementRT0 guarantees theM-matrix prop-
erty only if c = 0. TheM-matrix property implies a sort of discrete maximum
principle, and this entails, in particular, that the discrete solution is nonnegative if
the boundary data are nonnegative. This is highly desirable in this case since, on
the one hand, the variables we are dealing with (charge densities) are intrinsically
nonnegative. On the other hand, the possible development of spurious oscillations
might heavily pollute the nonlinear Gauss–Seidel iterations, thus seriously com-
promising the results.

4.2. MFV approximation of the continuity equation

In this section we address the discretization of the current continuity equation (4.3)
using the MFV method discussed in Section 3.8.2. Using the symmetric form (4.5) of
(4.3), the MFV discrete formulation (3.251) reads in the present case

(4.30)


∑

r∈E(k) e−ψr
(ρ∗

k−ρ∗
j (r)

dr

)|er | + ρ∗
k cke

−ψk |Kk| = fk|Kk|, ∀Kk ∈ Th,

ρ∗
j (r) = χr = eψr gr , ∀er ∈ ΓD,

wherej (r) = T (r)\k. We note that in the formulation (3.251)vk denotes the mean
value of the functionv over the triangleKk . However, in practical implementation it is
easier to use, instead of the mean value, the value ofv at the circumcenterCk of every
Kk ∈ Th. Similarly,χr = eψr gr is taken as the value of the functioneψg at the midpoint
of each edgeer ∈ ΓD . The quantitye−ψr could be set equal to one of the three averages
discussed in Section 3.8.4. In the context of semiconductor device simulation, the more
appropriate choice is the harmonic average (3.275) ofeψ along the segmentdr joining
the circumcentersCk andCj(r).

With this choice we obtain

(4.31)e−ψr = e−ψk
ψj(r) −ψk

eψj(r)−ψk − 1
≡ e−ψkB(ψj(r) −ψk), ∀r ∈E(k),

where

(4.32)B(t)=
{

t
et−1, t �= 0,

1, t = 0,

is the Bernoulli function. Substituting (4.31) into (4.30) leaves us with solving the fol-
lowing symmetric and positive definite linear system acting on the variableρ∗

(4.33)W ∗ρ∗ = f∗,
whose nonzero matrix entries are

(4.34)W ∗
ij =


∑

k∈T (E(i))
k �=i

e−ψiB(ψk −ψi)
|er(k)|
dr(k)

+ cie
−ψi |Ki |, if i = j,

−e−ψiB(ψr(j) −ψi)
|er(j)|
dr(j)

, if j ∈ T (E(i)), j �= i,
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wherer(k)= E(k) ∩E(i) andr(j)= E(j) ∩E(i). As already pointed out in the pre-
vious section, the presence of the exponential terms in (4.34) is a source of trouble in
numerical computations due to potential occurrence of overflow/underflow problems.
Therefore, we go back to the primitive variablep by applying (4.4) at the discrete level,
i.e.,

(4.35)ρ∗
m = pme

ψm, ∀Km ∈ Th.

Using (4.35) into system (4.33)–(4.34) amounts to multiplying the matrixW ∗ colum-
nwise by the value ofeψm on the corresponding triangleKm and leads to solving the
following linear system acting on the variablep∗

(4.36)W̃ ∗p∗ = f∗.

Noting that

(4.37)etB(t)= B(−t), ∀t ∈ R,

the nonzero entries of matrix̃W ∗ are given by

(4.38)W̃ ∗
ij =


∑

k∈T (E(i))
k �=i

B(ψk −ψi)
|er(k)|
dr(k)

+ ci |Ki |, if i = j,

−B(−(ψr(j) −ψi))
|er(j)|
dr(j)

, if j ∈ T (E(i)), j �= i.

The matrixW̃ ∗ is no longer symmetric and positive definite; however, under the as-
sumption thatTh is a Delaunay triangulation,̃W ∗ turns out to be anM-matrix with
strictly positive inverse. As a consequence, a sort of discrete maximum principle holds
for the discrete formulation andp∗ > 0 provided thatf∗ > 0, as it is desirable since the
variablep has the physical meaning of a (scaled) hole density.

REMARK 4.2. The mixed finite volume (4.36)–(4.38) can be regarded as a two-
dimensional generalization of the exponentially fitted Scharfetter–Gummel method
SCHARFETTER and GUMMEL [1969] for the discretization of the current continuity
equation (4.3), which will be object of investigation of Section 5. To check this asser-
tion, let us integrate (4.3) over a single elementKk ∈ Th; using the divergence theorem,
we obtain∫

∂Kk

J · nds +
∫
Kk

cp dx =
∫
Kk

f dx,

where the currentJ is defined in (4.2). The approximate evaluation of the net flux
throughout the control volumeKk can be performed as

(4.39)
∑
r∈E(k)

Jk,j (r)|er | + ckpk|Kk| = fk|Kk|, ∀Kk ∈ Th,

where, for any couple of adjoining trianglesKk ,Kj(r), Jk,j (r) is theconstanthole cur-
rent density flowing along the “pipeline” linking the circumcentersCk , Cj(r) of the
two elements and evaluated according to the classical Scharfetter–Gummel formula
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(SCHARFETTERand GUMMEL [1969])

(4.40)Jk,j (r) = pkB(ψj(r) −ψk)− pj(r)B(−(ψj(r) −ψk))

dr
.

Substituting (4.40) into (4.39) we exactly get the mixed-finite volume discretization
(4.36).

REMARK 4.3. The mixed-finite volume scheme (4.36) can be proved to recover the
exactsolution (p,J ) at the circumcenters ofTh whenc = 0, f = 0, ψ is linear inΩ ,
and suitable Dirichlet–Neumann boundary conditions are assumed in problem (4.3) in
such a way thatJ = const(see for the proof SACCO and SALERI [1997b] andVAN

NOOYEN [1995] in the case of triangles and rectangles, respectively). This nice prop-
erty is a special instance of the “patch-test” (see ROBERTSand THOMAS [1991], Chap-
ter V, Section 34 and HENNART andDEL VALLE [1996]) and turns out to be a sound
indication for good behavior of a numerical scheme to deal with advection-dominated
flow problems, as previously remarked inVAN NOOYEN [1995], SACCO, GATTI and
GOTUSSO[1995].

REMARK 4.4. The expression (4.31) used to compute the average ofeψ has been cho-
sen by observing that its use in the one-dimensional case leads to a proper exponential
fitting interpolation for the carrier concentrationp. This gives rise to difference schemes
of optimal order (see ROOS, STYNESand TOBISKA [1996] for a complete survey of this
subject). At the same time, the Bernoulli weights in (4.38) ensure robustness and sta-
bility of the approximation irrespectively of the potential dropψr(j) −ψk acrosser and
provide automatically the suitable upwinding effect, exactly as happens for the standard
mixed formulation discussed in Section 4.1.

5. Other approaches

In this section we shall discuss a number of other finite element methods for the semi-
conductor device equations. We shall start with the Scharfetter–Gummel box scheme
which is very popular in the community of semiconductor device modelling. We shall
then discuss some extensions of the box scheme and other stable finite element meth-
ods.

5.1. The Scharfetter–Gummel box/finite volume scheme

The key idea of the Scharfetter–Gummel box or finite volume method is to approxi-
mate the flux of a boundary value problem along each edge in a mesh by a constant,
which yields an exponential approximation to the potential function of the problem.
Therefore, it is also called an exponentially fitted method. This method was proposed by
Scharfetter and Gummel for a one-dimensional problem (SCHARFETTERand GUMMEL

[1969]). The same idea was earlier introduced by ALLEN and SOUTHWELL [1955] in
a different context. The one-dimensional Scharfetter–Gummel scheme approximation
has been combined with higher dimensional box scheme by several authors to form
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the so-called Scharfetter–Gummel box method. (cf., for example, BUTURLA, COT-
TRELL, GROSSMAN and SALSBURG [1981], MCCARTIN [1985], BANK , BÜRGLER,
FICHTNER and SMITH [1990], MILLER and WANG [1994b]). In what follows we dis-
cuss the method in two dimensions. The extension to three dimensions is straightfor-
ward.

Let us consider the decoupled and linearized equations in the Slotboom variables
given in Section 2. These equations are of the form (2.14) in whicha = λ2 for the
Poisson equation,a = µne

ψ for the continuity equation forρn, anda = µpe
−ψ for

the continuity equation forρp. Without loss of generality, we assume thatg = 0 on
ΓD . The case of non-homogeneous Dirichlet boundary conditions can be transformed
into this one by subtracting from both sides of (2.14) a known function satisfying a
given non-homogeneous boundary condition. We now discuss the discretization of this
boundary value problem by the box method. We shall first formulate it as a finite el-
ement method and then we present a stability and error analysis for the method. For
brevity, we only consider the case thata = eψ , and we letσ = eψ∇u. The discretiza-
tion for the other two cases and for the case thatµn is not constant are similar to this
one.

5.1.1. Formulation of the method
Classically, the Scharfetter–Gummel box method can be formulated as a finite volume
method with a constant approximation to the flux projected on each of the mesh edges.
This formulation can be found, for example, in BUTURLA, COTTRELL, GROSSMAN

and SALSBURG [1981], MCCARTIN [1985], BANK , BÜRGLER, FICHTNER and SMITH

[1990]. Though the formulation is easy to understand, it is not very suitable for stability
and error analysis. In what follows, we shall formulate it as a non-conforming Petrov–
Galerkin finite element method as described in MILLER and WANG [1994a]. This can
be viewed as a generalized finite element method and is closely related to a mixed finite
element formulation (cf. BABUŠKA and OSBORN [1983]). It can also be viewed as a
lumped form of a primal mixed finite element method proposed in MILLER and WANG

[1991] and MILLER and WANG [1994c]. Alternative analysis can be found in MOCK

[1983b].
To discuss the method we first define primal and dual decompositions ofΩ . Let Th

be a Delaunay triangulation ofΩ (see Definition 3.1). We also letXh = {xi}N1 denote
the vertices ofTh andEh = {ei}M1 the edges ofTh. We assume that the nodes inXh and

the edges inEh are numbered in such a way thatX ′
h = {xi}N ′

1 andE ′
h = {ei}M ′

1 are the set
of nodes inXh not onΓD and the set of edges inEh not onΓD , respectively. The first
nontriangular mesh, dual toTh, is the tessellation denoted byLh in Section 3.8.1 (see
Fig. 3.2, left). For convenience, we repeat here the definition with a slight change of
notation more suited for our purposes. With each edgeei,j ∈ Eh connecting two vertices
xi , xj we associate an open boxBi,j which is the interior of the polygon having as its
verticesxi , xj , and the circumcenters of the triangles havingei,j as a common edge.
If ei,j is not on∂Ω the regionBi,j consists of two triangles, otherwise of only one
triangle. A second nontriangular mesh, also dual toTh, is defined as follows.
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DEFINITION 5.1. The Dirichlet tessellationDh, corresponding to the triangulationTh,
is defined byDh =⋃

Di , i = 1,N , where, for eachxi ∈Xh, the tileDi is given by

(5.1)Di =
{
x ∈Ω: |x − xi |< |x − xj |, ∀xj ∈ Xh, j �= i

}
.

We remark that for eachxi ∈ Xh, the boundary∂Di of the tileDi is the polygon
having as its vertices the circumcenters of all triangles with the common vertexxi .
Each segment of∂Di is perpendicular to one of the edges sharing the vertexxi . The
subset ofDh corresponding toX′

h is denoted byD′
h =⋃

Di , for i = 1,N ′.
With the two meshesTh andDh we associate a trial spaceVh ⊂ L2(Ω) and a test

spaceQh ⊂ L2(Ω), respectively, each of dimensionN ′.
To constructQh we define a set of piecewise constant basis functionsξi (i =

1,2, . . . ,N ) corresponding to the meshDh as follows

ξi =
{

1, onDi,

0, otherwise.

We then defineQh = span{ξi}N ′
1 . To constructVh we proceed as follows.

DEFINITION 5.2. For each edgeei,j ∈ E ′
h, let v be a regular function onei,j . We define

v̂ the extension ofv to the boxBi,j taken constant along all the perpendiculars toei,j .

For each edgeei,j ∈ E ′
h connecting the verticesxi andxj we define an exponential

functionφi,j on ei,j solution of{
d
ds
(eψ

dφi,j
ds
)= 0, on ei,j ,

φi,j (xi)= 1, φi,j (xj )= 0,

whered/ds denotes the derivative along the edgeei,j from xi to xj . We then extend
φi,j toBi,j as in Definition 5.2. Finally, the basis functionsφi(x)’s in Vh are taken as

φi(x)=
{
φ̂i,j , onBi,j , ∀j ∈ Ii,
0, elsewhere,

where

(5.2)Ii = {j �= i: ∃ei,j ∈ E ′
h connectingxi andxj }

denotes the index set of all neighbouring vertices ofxi . The support ofφi is star-shaped
(see Fig. 3.2, left). SettingVh = span{φi}N ′

1 , we obviously haveVh ⊂ L2(Ω).
For simplicity we make the following assumption.

ASSUMPTION5.1. For everyK ∈ Th the functionψ is linear onK .

Assumption 5.1 is true in practice. Indeed, the system of equations is normally solved
iteratively using the Gummel method discussed in Section 2 of this chapter, and thusψ

is the numerical solution of the decoupled Poisson equation. Therefore, we can always
use the piecewise linear interpolant of this numerical solution.
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We notice that anyvh ∈ Vh has the formvh(x)=∑
φi(x)vi , with vi = vh(xi). Con-

sequentlyvh satisfies{
d
ds
(eψ

dvh
ds
)= 0, on ei,j ,

vh(xi)= vi, vh(xj )= vj .

Solving this two-point boundary value problem, and thanks to Assumption 5.1, we have
the following flux representation onei,j

(5.3)σi,j (vh) := eψ
dvh

ds
= eψiB(ψi −ψj )

vj − vi

|ei,j | ,

whereψi =ψ(xi), and B(x) denotes the Bernoulli function defined in (4.32). The con-
stant value (5.3) is then extended to the whole boxBi,j . For any sufficiently smooth
functionw we can define theVh-interpolantwI of w, given bywI (x)=∑

φi(x)w(xi).
Let σ(w) := eψ∇w be the flux associated withw, and letσ i,j (wI ) the flux associated
with wI as in (5.3). Denoting bye i,j the unit tangent vector onei,j , oriented fromxi
to xj , it is easy to see thatσi,j (wI ) is the projection ofσ(w) · e i,j ∈ L2(ei,j ) onto
the space of constant polynomials onei,j with respect to the weighted inner product∫
ei,j
e−ψfg ds, f,g ∈ L2(ei,j ). Thus, using Taylor expansion we easily obtain∥∥σ(w) · e i,j − σi,j (wI )

∥∥∞,ei,j
� C|ei,j |

∣∣σ(w) · e i,j ∣∣1,∞,ei,j
.

Moreover, sinceei,j ⊂ Bi,j , a continuity argument gives

(5.4)
∥∥σ(w) · e i,j − σi,j (wI )

∥∥∞,Bi,j
� Ch

∣∣σ(w)∣∣1,∞,Bi,j
,

whereC is a positive constant, independent ofh andw.
We introduce the mass lumping operatorP :C0(Ω̄) (→Qh such that

(5.5)P(v)(x)=
∑
xi∈Xh

v(xi)ξi(x), for all x ∈Ω.

Using the trial and test spacesVh andQh, we now define the following Petrov–Galerkin
problem corresponding to (2.14)

PROBLEM 5.1. Finduh ∈ Vh such that for allqh ∈Qh

(5.6)a(uh, qh)+
(
P(γ uh), qh

)= (f̂ , qh)

wheref̂ is an approximation tof anda(·, ·) denotes the bilinear form onVh ×Qh

defined by

(5.7)a(uh, qh)= −
N ′∑
i=1

∫
∂Di\∂Ω

eψ̂∇uh · nqh ds,

whereψ̂ is taken as in Definition 5.2, andn is the unit outward normal vector on∂Di .
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We shall prove that Problem 5.1 has a unique solution by showing that the associated
linear system is nonsingular. The solution we are looking for will have the formuh(x)=∑N ′

i=1uiφi(x). Takingqh = ξj in (5.6), we get

−
∫
∂Dj \∂Ω

eψ̂∇uh · nds + γjuj |Dj | =
∫
Dj

f̂ dx, j = 1,2, . . . ,N ′,

whereγj = γ (xj ). Let the line segmentlj,k = ∂Dj ∩ ∂Dk , so that∂Dj =⋃
k∈Ij lj,k ,

whereIj is the index set defined in (5.2). It is easy to check that

(5.8)|lj,k| = 2|Bj,k|
|ej,k| , j, k = 1, . . .N ′, j �= k.

Therefore, we have from the above equality

−
∑
k∈Ij

∫
lj,k

eψ̂∇uh · nds + γjuj |Dj | =
∫
Dj

f̂ dx, j = 1,2, . . . ,N ′.

Noticing thatn = e j,k , andeψ̂|lj,k = constant= value ofeψ in the midpoint ofej,k , we
can use (5.3) to obtain

(5.9)

∑
k∈Ij

eψjB(ψj −ψk)
uj − uk

|ej,k| |lj,k| + γjuj |Dj | =
∫
Dj

f̂ dx, j = 1,2, . . . ,N ′.

The coefficient matrix of this linear system is a symmetric and positive-definiteM-
matrix, since it is diagonally dominant with positive diagonal elements and negative
off-diagonal elements (cf., for example, VARGA [1962], p. 85). Each element of this
coefficient matrix depends exponentially onψi for somei. Therefore, the matrix may be
computationally very stiff as the values may vary by several orders of magnitude across
an element. This drawback can be overcome by transforming the Slotboom variables
back to the original ones (electron density in this case) at the discrete level, as done in
Section 4. Setting

ui = e−ψiwi, i = 1,2, . . . ,N,

and substituting into (5.9) we have(∑
k∈Ij

B(ψj −ψk)
|lj,k|
|ej,k| + γj e

−ψj |Dj |
)
wj

−
∑
k∈Ij

e(ψj−ψk)B(ψj −ψk)
|lj,k|
|ej,k|wk =

∫
Dj

f̂ dx.

Thanks to (4.37) the above reduces to(∑
k∈Ij

B(ψj −ψk)
|lj,k|
|ej,k| + γj e

−ψj |Dj |
)
wj

−
∑
k∈Ij

B(ψk −ψj)
|lj,k|
|ej,k|wk =

∫
Dj

f̂ dx,
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for j = 1,2, . . . ,N ′. Obviously the entries of the coefficient matrix of the above are
more balanced than those of (5.9), although the matrix is not symmetric anymore, un-
lessψ is constant. However, it is diagonally dominant with respect to its columns. Fur-
thermore, it can be shown that the system matrix is anM-matrix (cf. MILLER and
WANG [1994a, 1994b]), and thus can be solved by a preconditioned conjugate gradient
method, for example the CGS method or the Bi-CGSTAB as discussed in Chapter 9 of
this handbook.

5.1.2. Convergence of the approximate solution
We now show stability and convergence of the method just described with respect to a
suitable discrete norm defined onVh. For this it is convenient to rewrite Problem 5.1 in
an equivalent form where trial and test spaces coincide. Letb(·, ·) be a bilinear form on
Vh × Vh defined by

(5.10)b(uh, vh)= a
(
uh,P (vh)

)+ (
P(γ uh),P (vh)

)
.

Consider the following Bubnov–Galerkin problem:

PROBLEM 5.2. Finduh ∈ Vh such that for allvh ∈ Vh
(5.11)b(uh, vh)=

(
f̂ ,P (vh)

)
.

It is easy to prove the following lemma:

LEMMA 5.1. The mass lumping operator defined in(5.5) is surjective fromVh toQh.

It is obvious from this lemma that Problem 5.2 is equivalent to Problem 5.1, hence
we shall concentrate on Problem 5.2. OnVh we define the discrete energy norm

(5.12)‖vh‖2 = ‖vh‖2
h +

N ′∑
i=1

γiv
2
i |Di |, ∀vh =

N ′∑
i=1

viφi ∈ Vh,

where

(5.13)‖vh‖2
h =

∑
ei,j∈E ′

h

(
vj − vi

|ei,j |
)2

|Bi,j |, ∀vh ∈ Vh.

It is trivial to check that‖ · ‖h is a norm onVh, and so is‖ · ‖. Let

(5.14)β = min
ei,j∈E ′

h

|ei,j |∫
ei,j
e−ψ ds

.

Since|ψ | is bounded, there exists aβ0> 0 such thatβ � β0> 0. It is also easy to verify
thatβ = minei,j∈E ′

h
eψiB(ψi −ψj) because of Assumption 5.1. The following theorem

shows the coercivity of the bilinear formb(·, ·) with respect to the norm (5.12).

THEOREM 5.1. For all vh ∈ Vh we have

(5.15)b(vh, vh)� min{1,2β}‖vh‖2.
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PROOF. If vh = 0, then (5.15) holds. Letvh �= 0. Using the method for the derivation
of (5.9) we have

a
(
vh,P (vh)

)= −
N ′∑
i=1

∫
∂Di\∂Ω

eψ̂∇vh · nP (vh) ds

=
∑
ei,j∈E ′

h

(vj − vi)

∫
li,j

eψ̂∇vh · e i,j ds

=
∑
ei,j∈E ′

h

(vj − vi)e
ψiB(ψi −ψj )

vj − vi

|ei,j | |li,j | � 2β‖vh‖2
h,

where in the last step we used the relation (5.8). From (5.10) and (5.12) we finally have

b(vh, vh)= a
(
vh,P (vh)

)+ (
P(γ vh),P (vh)

)
� 2β‖vh‖2

h +
N ′∑
i=1

γiv
2
i |Di | � min{1,2β}‖vh‖2. �

Theorem 5.1 implies that the solution to Problem 5.2 is stable with respect to the
norm‖ · ‖.

LEMMA 5.2. For anyvh ∈ Vh, there is a constantC > 0, independent ofh andvh, such
that

(5.16)
∥∥P(vh)∥∥0,Ω � C‖vh‖h.

PROOF. The proof of this can be found in MILLER and WANG [1991], Lemma 3.4.�

For anyp ∈ (W1,∞(Ω))2 we define

(5.17)|p |1,∞,h =
( ∑
ei,j∈E ′

h

|p |21,∞,Bi,j
|Bi,j |

)1/2

.

Obviously| · |1,∞,h is only a seminorm on(W1,∞(Ω))2. The following theorem estab-
lishes the convergence of the approximate solutionuh to theVh-interpolant ofu.

THEOREM 5.2. Letuh be the solution of Problem5.2and letuI be theVh-interpolant
of the solution of problem(2.14). Then there is a constantC > 0, independent ofh, u
andψ , such that

(5.18)‖uh − uI‖ � C

min{1,2β}
(
h|σ |1,∞,h + ∥∥γ u− P(γ u)

∥∥
0 + ‖f − f̂ ‖0

)
.

PROOF. For the proof we refer the interested reader to MILLER and WANG [1994a].�
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We remark that depending on the decoupling technique used for the two continuity
equations, we may haveγ = 0 in the above (as the case in Gummel’s original work).
In such cases the error estimate (5.18) depends only on the seminorm of the fluxσ and
the approximation error of the source term, while error bounds in the energy norm for
classical linear finite element methods depend on‖u‖2,Ω .

Finally we remark that the approximate fluxσ h := eψ̂∇uh does not converge to
the exact fluxσ = eψ∇u. This is because in each boxBi,j , σ h ≡ σi,j (uh)e i,j which
converges locally only toσ · e i,j (see (5.4)). However, by post processing it is easy
to define an approximate flux which converges to the exact one. For example, we can
define

σ h|Bi,j = σi,j (uh)e i,j +
∫
li,j

∇uh · l i,j ds∫
li,j
e−ψ ds

l i,j

for all ei,j ∈ E ′
h, wherel i,j denotes the unit tangential vector alongli,j . Moreover the

computed ohmic contact currents are convergent, as is shown in the next subsection.

5.1.3. The evaluation of the ohmic contact currents
The ultimate goal of device simulation is to find the terminal currents. We now consider
the evaluation of the ohmic contact currents. For simplicity, we restrict our attention to
a device with a finite number of ohmic contacts, and soΓD is a finite set of separated
contactsΓc ’s. For anyΓc ⊂ ΓD , let {xci }Nc1 denote the mesh nodes onΓc.

Let ξc be a piecewise constant function satisfying

(5.19)ξc(x)=
{

1, x ∈⋃Nc
i=1D

c
i ,

0, otherwise,

whereDc
i denotes the element inDh containingxci . Taking, for simplicity,γ = 0 in

(2.14), multiplying byξc and integrating by parts we have

−
∫
Γc

σ · nds −
Nc∑
i=1

∫
∂Dci \Γc

σ · nds = (f, ξc).

Thus, the (scalar) outflow current throughΓc is

(5.20)Jc :=
∫
Γc

σ · nds = −
Nc∑
i=1

∫
∂Dci \Γc

σ · nds − (f, ξc).

Replacingσ by the approximate fluxσ h = eψ̂∇uh andf by the approximationf̂ , we
define the following approximate outflow current throughΓc

(5.21)Jc,h := −
Nc∑
i=1

∫
∂Dci \Γc

σ h · nds − (f̂ , ξ c).
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From (5.19), (5.3) and the argument used in the derivation of (5.9), we obtain

Jc,h = −
Nc∑
j=1

[∫
∂Dcj \Γc

σ h · nds +
∫
Dcj

f̂ dx

]

=
Nc∑
j=1

[ ∑
k∈Ij , xk /∈Γc

eψjB(ψj −ψk)
2|Bj,k|
|ej,k|

uj − uk

|ej,k| −
∫
Dcj

f̂ dx

]
whereIj is the index set of neighbouring nodes ofxj as defined in (5.2).

The convergence and the conservation of the computed ohmic contact currents are
established in the following theorem.

THEOREM5.3. LetJc andJc,h be the exact and the computed outflow currents through
Γc ⊂ ΓD , respectively. Then, there exists a constantC > 0, independent ofh, ψ andu,
such that

|Jc − Jc,h| � C
(
h|σ |1,∞,Bh + ‖f − f̂ ‖0

)
.

Furthermore∑
Γc⊂ΓD

Jc,h = −
∫
Ω

f̂ dx.

PROOF. The proof is omitted and we refer the interested reader to MILLER and WANG

[1994a]. �

5.2. Finite element methods based on ad hoc chosen basis functions

The key idea of Scharfetter–Gummel box method is to approximate the flux by a con-
stant on each mesh line. This is in contrast to classic approaches in which a potential
function is approximated by a piecewise polynomial. Physically, a flux is better be-
haved than the corresponding potential function. It is often bounded with respect to the
singular perturbation parameter, though this is not proved. Thus, approximation of a
flux by piecewise polynomials such as piecewise constant provides a more stable and
accurate numerical scheme for the semiconductor device equations. From the construc-
tion of the basis functions in the previous section we see that, in each box element in
Lh, the Scharfetter–Gummel method is based on a ‘divergence-free’ approximation of
the flux along the mesh edge and its perpendiculars. A more general choice is to seek
divergence-free basis functions on the elements, i.e., seek solutions to divσ = 0 in each
element with appropriate boundary condition. However, solving this problem is equiv-
alent to solving the original problem (2.14). Note that if we only require that such a
basis function is unity at one node and zero at all other nodes of the element, it is rather
arbitrary. So, we may restrict ourselves to the case that

∂σx

∂x
= 0= ∂σy

∂y
,
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whereσx andσy denote the two components ofσ . This also courses the problem that
there are only two degrees of freedom so that only two of the three vertices in each
triangle are needed to determine this basis function. Therefore, on each triangle one
can define three hat functions which are unity at one vertex and zero at the other two
vertices of the triangle, though the difference between any two of them is small. Of
course we may choose only one hat function or the average of the three as our ba-
sis. In BANK , BÜRGLER, FICHTNER and SMITH [1990] the authors proposed such
a divergence-free flux approximation on triangular elements. An improvement of this
divergence-free basis function on triangles is given in SACCO and STYNES [1998]. All
these basis functions may be non-conforming, i.e., they are not continuous across ele-
ment boundaries. A similar approach can also be found in MARKOWICH and ZLÁMAL

[1988] in which a rigorous analysis of the method is also given. A novel flux approxima-
tion technique based on that of the Scharfetter–Gummel was proposed in SEVER[1988],
which makes use of three degrees of freedom on each triangle. This technique has the
property that, at each point in a triangle, the approximate flux is constant along each
of the lines connecting the vertices of the triangle and the point. The same idea was
also proposed independently in SACCO, GATTI and GOTUSSO[1995]. Based on this
idea, a set of conforming basis functions is proposed in WANG [1997] and a rigorous
analysis for the method applied to semiconductor device equations is given in WANG

[1999]. This analysis is based on a weightedL2(Ω) inner product weak formulation
which coincides with that in GATTI , MICHELETTI and SACCO [1998], while the finite
element basis functions used in WANG [1999] coincide with those in SACCO, GATTI

and GOTUSSO[1995]. It is interesting to note that the method can also be formulated
as a mixed finite element method. In what follows we shall discuss the formulation and
analysis of the method. For brevity, we shall omit most of the proofs and refer the reader
to the relevant references.

5.2.1. The weak formulation
For brevity we only consider the discretization of the scaled current continuity equation
for the electron density. The corresponding convection-diffusion problem is of the form

(5.22)


−divσ + γ u= f in Ω,

u= g onΓD,

σ · n= 0 onΓN.

with the flux defined by

σ = ∇u− u∇ψ.
Without loss of generality, we assume thatg = 0 as in the previous section. Now, we
define a weighted inner product(·, ·)ψ onL2(Ω) and on(L2(Ω))2 by

(5.23)(v,w)ψ = (e−ψv,w).

TheL2(Ω)-norm corresponding to this weighted inner product is denoted by‖ · ‖0,ψ .
Using this inner product we define the following variational problem corresponding
to (5.22):
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PROBLEM 5.3. Findu ∈ H 1
D(Ω) := {v ∈ H 1(Ω) | v|ΓD = 0} such that for allv ∈

H 1
D(Ω)

(5.24)Aψ(u, v)= (f, v)ψ,

whereAψ(·, ·) is the bilinear form on(H 1(Ω))2 defined by

(5.25)Aψ(u, v)= (∇u− ∇ψu,∇v − ∇ψv)ψ + (γ u, v)ψ .

SinceAψ(·, ·) is symmetric and positive definite onH 1
D(Ω), we can associate with

Aψ the norm

(5.26)‖v‖2
1,ψ =Aψ(v, v), v ∈H 1

D(Ω).

Existence and uniqueness of the solution of (5.24) follow immediately from (5.26).

5.2.2. The finite element method
Let {Th}h be a regular sequence of decompositions ofΩ into triangles (see (3.45)). As
in the previous section we denote byXh = {xi}N1 the set of vertices ofTh, numbered in

such a way that{xi}N ′
1 is the set of vertices not onΓD . As before, we make Assump-

tion 5.1, so that the vectora = ∇ψ is constant on each triangleK ∈ Th.
Corresponding to the meshTh, we now construct a spaceSh ⊂H 1

D(Ω) of dimension

N ′ using the basis functions{φi}N ′
1 defined below. LetK ∈ Th be a triangle with vertices

xi , xj andxk . We define a local functionφi(x) onK associated withxi as follows. For
any pointx ∈K we denote byl m (m= i, j, k) the vector of length|lm| connectingxm
to x, and byem := l m/|lm| (m= i, j, k) the unit vector fromxm to x (cf. Fig. 5.1). We
now consider the following two-point boundary value problem on the segmentlm: find
gi(s) such that{

d
ds
(p

i
· em) := d

ds

( dgi (s)
ds

− a · emgi(s)
)= 0, s ∈ (0, |lm|),

gi(0)= δim, gi(|lm|)= φi(x)

for m= i, j, k (i.e.,p
i
· em is constant onlm), whereδim denotes the Kronecker delta

andφi(x) is yet to be determined. Solving the above boundary value problem yields

p
i
· em = 1

|lm|
[
B(am)φi(x)− B(−am)δim

]
, ∀x ∈ lm, m= i, j, k,

FIG. 5.1. Notation associated with the triangleK .
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wheream = a · l m and B(z) denotes the Bernoulli function defined in (4.32). The above
equation motivates us to define the following problem.

PROBLEM 5.4. Find, for allx ∈K , φi(x) andp
i
= (pi,1,pi,2) such that

(5.27)D(x)

 pi,1
pi,2
φi(x)

=
−B(−ai)

0
0


whereD(x) is a 3× 3 matrix defined by

(5.28)D(x)=
 li,1 li,2 −B(ai)
lj,1 lj,2 −B(aj )
lk,1 lk,2 −B(ak)

 .
Solving Problem 5.4 for allx ∈K defines the point values of the functionφi and an

auxiliary flux p
i
. Similarly we can define functionsφj andφk associated withxj and

xk respectively. The following theorem shows that Problem 5.4 is uniquely solvable for
all x ∈K , and thatφi , φj andφk form a system of local basis functions.

THEOREM 5.4. Let K ∈ Th. Then, for anyx ∈ K , there exists a unique solution to
Problem5.4. Furthermore, we have

(5.29)φi(xi)= 1, φi(x)= 0, ∀x ∈ xjxk,
(5.30)φi + φj + φk = 1, p

i
+ p

j
+ p

k
= −a in K,

wherexjxk denotes the edge ofK connectingxj andxk .

PROOF. To prove that Problem 5.4 is uniquely solvable we need only to show that for
any x ∈ K the system matrixD(x) is non-singular, or detD(x) �= 0. From (5.28) we
have, by direct computation,

detD(x)= B(ak)(lj,1li,2 − lj,2li,1)+ B(ai)(lk,1lj,2 − lk,2lj,1)

+ B(aj )(li,1lk,2 − li,2lk,1)

(5.31)

= −[B(ak)e z · ( l i × l j )+ B(ai)e z · ( l j × l k)+ B(aj )e z · ( l k × l i )
]

with e z = (0,0,1) the unit vector perpendicular toK . From the orientations ofl i , l j ,
l k ande z (cf. Fig. 5.1) we see thate z · ( l i × l j ), e z · ( l j × l k) ande z · ( l k × l i ) are
all nonnegative, and at least two of them are positive. Furthermore, since B(·) is always
positive and at least two of|li |, |lj | and|lk| are not zero, we have detD(x) �= 0.

Solving (5.27) we obtain, in particular, the explicit expression forφi(x):

(5.32)φi(x)=
−B(−ai)e z · ( l j × l k)

detD(x)
.

Whenx = xi we have|li | = 0,ai = 0, and thus detD(xi)= −B(0)e z · ( l j × l k). Hence,
from (5.32) we deduceφi(xi) = 1. Whenx ∈ xjxk , we havel j × l k = 0 and (5.32)
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givesφi(x) = 0. Thus, (5.29) is proved. In order to show that (5.30) is verified, let
φ = φi + φj + φk and(p1,p2) := p = p

i
+ p

j
+ p

k
. Sinceφm andp

m
satisfy (5.27)

for m= i, j, k, summing the three linear systems yields

D(x)

p1
p2
φ

=
−B(−ai)

−B(−aj )
−B(−ak)

 .
We now show thatφ = 1 andp = −a satisfy the above linear system. Using (4.37) and
substitutingφ = 1 into the above linear system we have, form= i, j, k,

l m · p = B(am)− B(−am)= B(am)(1− eam)= −l m · a.
Therefore we havep = −a, proving (5.30). �

For each triangle havingxi as a vertex we have defined a local functionφi and an
auxiliary flux p

i
associated withφi as above. Combining all the local functions as-

sociated withxi we obtain a hat functionφi defined on the union of all the triangles
sharingxi , denoted byΩi . From Theorem 5.4 we see that thisφi is unity atxi and 0
on ∂Ωi . This hat functionφi can then be extended toΩ by definingφi(x) = 0 for all
x ∈Ω \Ωi . If we can show thatφi is continuous across inter-element boundaries inΩi ,
thenφi ∈ C0(Ω) ∩H 1

D(Ω). On the edgexixj we havel i × l j = 0 andl i = −|li |ej .
Hence, forx ∈ xixj (5.31) becomes

(5.33)detD(x)= −(B(ai)|lj | + B(aj )|li |
)
e z · ( e j × l k),

which, substituted in (5.32), gives

(5.34)φi(x)= B(−ai)|lj |
B(ai)|lj | + B(aj )|li | .

Hence the functionφi(x) on the edgexixj depends only on the edge and not on the
triangle. We comment that the continuity of the basis functionφi does not depend on the
continuity ofa, but depends on the continuity of its tangent component along each edge
havingxi as a vertex. Althougha = ∇ψ is not continuous across element edges, its
tangent component along each edge is continuous, sinceψ is assumed piecewise linear
and continuous. To visualize this kind of hat functions, we divide[0,1]×[0,1] into four
triangles by the two diagonals of this square and solve (5.27) on these triangles. The
computed hat functions associated with the mid-point of the square corresponding to
a = (5,1) anda = (1,10) are shown in Fig. 5.2. From this we see that the hat functions
are 1 at the mid-point and zero along the boundary. They are also continuous across the
inter-element boundaries.

We remark that whena ≡ 0, the basis functionφi reduces to the standard piecewise
linear basis function. We comment that although (5.27) defines an auxiliary fluxp

i
, in

general,p
i
�= σ φi := ∇ φi − aφi on a triangleK havingxi as one vertex. Nevertheless,

it can be shown thatp
i
= σ φi at the three vertices ofK (WANG [1999]).

We now setSh = span{φi}N ′
1 ; from the above discussion we see thatSh ⊂ C0(Ω) ∩

H 1
D(Ω). Using the finite element spaceSh we define the following discrete problem.
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FIG. 5.2. Hat functions for different values ofa.

PROBLEM 5.5. Finduh ∈ Sh such that for allvh ∈ Sh
(5.35)Aψ(uh, vh)= (f, vh)ψ,

whereAψ(·, ·) is the bilinear form defined by (5.25).

Problem 5.5 is a discrete problem corresponding to Problem 5.3. SinceSh ⊂H 1
D(Ω),

existence and uniqueness of the solution of this problem follows immediately.
We define a seminorm| · |1,∞,ψ,h on (W1,∞(Ω))2 by

|p |1,∞,ψ,h =
(∑
K∈Th

∫
K

e−ψ dx|p |21,∞,K

)1/2

.

The convergence of the solution to Problem 5.5 to that of Problem 5.3 is established in
the following theorem.

THEOREM 5.5. Let u and uh be the solutions to Problems5.5 and 5.3 respectively,
and letσ andσ uh be the respective associated fluxes(σ = ∇u− ∇ψu andσ uh|K =
(∇uh − ∇ψuh)|K ). Then there exists a constantC > 0, independent ofh andu, such
that

‖u− uh‖1,ψ � Ch|σ |1,∞,ψ,h,

‖σ − σ uh‖0,ψ � Ch|σ |1,∞,ψ,h.
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PROOF. The proof of this theorem can be found in WANG [1999]. �

This theorem shows that the solution of Problem 5.3 and its associated flux con-
verge to the exact ones with the convergence rate of orderO(h). The error estimates
depend only on the weighted first order seminorms of the exact flux, in contrast with
the standard piecewise linear finite element method in which the error bound depends
on ‖u‖2,Ω . Also, the variable used in this analysis is the electron or hole concentration
rather than one of the Slotboom variables. The latter is physically less interesting than
the former.

5.2.3. Evaluation of terminal currents
We now consider the evaluation of the ohmic contact currents, which is often the final
goal of device simulation. For simplicity, we restrict again our attention to a device with
a finite number of ohmic contacts, and soΓD is a finite set of separated contacts. We
assume that the meshTh is such that the end-points of any contact are mesh nodes ofTh.
From the definition of ohmic contacts we know that the potential drop within a contact
is negligible (cf. SZE [1981], p. 304). Thusψ is constant on each ohmic contact. Let
Vh := span{φi}N1 ⊂ C0(Ω) ∩H 1(Ω). Obviously, ifv ∈ Vh andv|ΓD = 0, thenv ∈ Sh.
For anyΓc ⊂ ΓD , we chooseφc ∈ Vh satisfying

φc(x)=
{
eψc , x ∈ Γc,
0, x ∈ ΓD \ Γc,

whereψc denotes the (constant) value ofψ on Γc. Takingγ = 0 in (5.22) (withσ =
∇u− ∇ψu), multiplying bye−ψφc and integrating by parts we have

−
∫
Γc

σ · nds + ( σ ,σ φc )ψ = (f,φc)ψ,

whereσ φc = ∇ φc − ∇ψφc. Thus, the outflow current throughΓc is

Jc :=
∫
Γc

σ · nds = ( σ ,σ φc )ψ − (f,φc)ψ .

Replacingσ by the approximate fluxσ uh we obtain the following approximate outflow
current throughΓc

Jc,h := ( σ uh, σ φc )ψ − (f,φc)ψ .

The convergence and the conservation of the computed ohmic contact currents are
established in the following theorem.

THEOREM5.6. LetJc andJc,h be respectively the exact and the computed outflow cur-
rents throughΓc ⊂ ΓD defined above. Then, there exists a constantC > 0, independent
of h andu, such that

|Jc − Jc,h| � Ch|σ |1,∞,ψ,h‖φc‖1,ψ .

Furthermore,∑
Γc⊂ΓD

Jc,h = −
∫
Ω

f dx.
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PROOF. For the proof we refer to WANG [1999]. �

5.3. Stabilized finite element methods

Solutions to the boundary value problem (2.14) normally show sharp interior layers so
that the application of a conventional finite element method to the problem often yields
numerical solutions with non-physical spurious oscillations. This is because classical
methods are numerically not stable, or the discretized diffusion term is too small so
that the corresponding system matrix is almost singular. To overcome this difficulty,
stabilized finite elements have been developed. The simplest case is to add to the sys-
tem an artificial diffusion term with a coefficient of the orderO(h). However, although
this technique stabilizes the discretization, it introduces much artificial/computational
diffusion, especially in the direction perpendicular to the characteristic or streamline
direction (called cross-wind direction), and thus yields a substantial cross-wind dissipa-
tion so that a sharp interior layer is smeared out. Furthermore, the resulting scheme is
of first order accuracy at most. A better approach is to add a diffusion term with a pos-
itive coefficientδ to the streamline direction only. This forms the base of the so called
streamline diffusion method. This approach, of course, introduces less cross-wind dif-
fusion. The artificial streamline diffusion term is rather arbitrary and can be conforming
or non-conforming. It can also be used in a Galerkin or Petrov–Galerkin formulation.
Several methods have been developed for semiconductor device equations. For exam-
ple, BANK , BÜRGLER, FICHTNER and SMITH [1990], SHARMA and CAREY [1989a,
1989b], MICHELETTI [2001]. In particular, the streamline upwind Petrov–Galerkin
(SUPG) method used in SHARMA and CAREY [1989a], originally proposed in HUGHES

and BROOKS[1982], BROOKSand HUGHES[1982] has been very successful for solv-
ing fluid flow problems with layers. We now give a brief account of the method for
problem (5.22). For discussion brevity we assumeγ = 0, and, as before,g = 0.

Multiplying Eq. (5.22) byv ∈ H 1
D(Ω), integrating by parts, and usingσ = ∇u −

∇ψu gives the usual variational formulation: findu ∈H 1
D(Ω) such that

(5.36)
∑
K∈Th

∫
K

(∇u− ∇ψu) · ∇v dx =
∑
K∈Th

∫
K

f v dx, ∀v ∈H 1
D(Ω).

We then add a stabilizing term, which does not alter consistency, and write∑
K∈Th

∫
K

(∇u− ∇ψu) · ∇v dx +
∑
K∈Th

δ

∫
K

(
f + div(∇u− ∇ψu))∇ψ · ∇v dx

=
∑
K

∫
K

f v dx,

for all v ∈H 1
D(Ω), whereδ is a positive stabilizing parameter to be chosen. At the con-

tinuous level we are not modifying the formulation, as we are adding a term containing
the residual on the exact solution, which is zero. LetVh ⊂H 1

D(Ω) be the finite element
space with the conventional piecewise linear basis functions constructed onTh. The



Discretization of semiconductor device problems (I) 403

approximate problem reads finduh ∈ Vh such that∑
K∈Th

∫
K

(∇uh − ∇ψuh) · ∇vh dx −
∑
K∈Th

δ

∫
K

(∇ψ · ∇uh)(∇ψ · ∇vh) dx

=
∑
K∈Th

∫
K

f (vh − δ∇ψ · ∇vh) dx

for all vh∈Vh. Indeed, sinceuh andψ are piecewise linear,�uh=0, and div(∇ψuh)=
∇ψ∇uh in K , ∀K ∈ Th.

This approach has the merit that it can reduce numerical cross-wind dissipation, and
thus it is expected that it can capture sharp interior layers. However, the discretized
system does not satisfy the maximum principle, or the system matrix is no longer anM-
matrix. So, non-physical oscillations may occur near the layers. One way to improve the
numerical stability of this formulation is to add a so-called shock-capturing term which
may be non-linear. Analysis of this type methods can be found in HUGHESand BROOKS

[1982], BROOKS and HUGHES [1982], JOHNSON, NAVERT and PITKARANA [1984],
just to name a few. An overview of streamline diffusion type methods for convection-
diffusion equations is given in JOHNSON[1987] in which a list of further readings can
also be found.

5.4. Combinations of various numerical methods

Several combinations of finite element and other methods have been developed by var-
ious authors for the semiconductor device equations. In what follows we give a brief
review of these methods.

In COCKBURNand TRIANDAF [1994] a numerical method for one-dimensional time-
dependent semiconductor device equations with zero diffusion coefficient was pro-
posed. This method combines a mixed finite element method for the electric field with
an explicit upwind finite element method for the electron continuity equation. A rigor-
ous analysis of the method is given. The same method is analyzed in CHEN and COCK-
BURN [1994] for the case that the electron concentration does not have discontinuity,
and an improved error bound was obtained. The relevance of these methods is mostly
theoretical, as the system under consideration is over-simplified. In CHEN and COCK-
BURN [1995] the author proposed a combined numerical method for a two-dimensional
system containing the Poisson equation forψ and the continuity equation forn. The
method is a combination of a mixed finite element discretization for the Poisson equa-
tion and a discontinuous upwind finite element discretization for the continuity equa-
tion. A mathematical analysis was given and some numerical results were presented.
Similar combinations of methods, using the finite element method only for the dis-
cretization of Poisson’s equation to obtain a global representation of the electric field,
have also been described for some particular types of semiconductor device simulations.
For example, in HECHT, MARROCCO, CAQUOT and FILOCHE [1991], a combination
of a mixed finite element method with an alternating direction implicit (ADI) method is
presented for the modelling of semiconductor heterojunction structures.
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6. Discretization schemes for Energy-Transport and Energy-Balance models

In the physical literature, the Energy-Transport equations have been investigated numer-
ically for several years (APANOVICH, BLAKEY, COTTLE, LYUMKIS , POLSKY, SHUR

and TCHERNIAEV [1995], CHEN, KAN, RAVAIOLI , SHU and DUTTON [1992], CHEN,
SANGIORGI, PINTO, KAN, RAVAIOLI and DUTTON [1992], SOUISSI, ODEH, TANG

and GNUDI [1994], VISOCKY [1994]), usually using Scharfetter–Gummel-type dis-
cretizations. Entropy-based finite difference schemes have been proposed in RING-
HOFER [2001]; JEROME and SHU [1994] solved the equations employing ENO (es-
sentially non-oscillatory) methods, while mixed finite element discretization for the
dual entropy formulation has been used in MARROCCO and MONTARNAL [1996],
MARROCCO, MONTARNAL and PERTHAME [1996], LAB and CAUSSIGNAC [1999].
In Section 6.1 we briefly present a mixed exponential fitting discretization for Energy-
Transport models. These schemes are an extension of the schemes presented in Sec-
tions 3 and 4.1 for the Drift-Diffusion continuity equation, referring to DEGOND, JÜN-
GEL and PIETRA [2000], HOLST, JÜNGEL and PIETRA [2003] for a complete discus-
sion. In Section 6.2 we address the extension of the MFV scheme discussed in Sec-
tion 4.2 to the case of the Energy-Balance transport model (1.28).

6.1. Mixed finite element discretization for Energy-Transport models

We consider here the stationary Energy-Transport equations in a scaled and dimension-
less form. Moreover, in order to simplify the subsequent presentation, we drop the sub-
scriptn appearing in equations (1.24) and we redefine the current and energy densities
as

(6.1)J 1 := J n; J 2 := S n.

We use the Unit scaling of Table 1.1 of Section 1.3 and the lattice temperatureT eq as
scaling factor for the electron temperature

n→ Cn, C → CC, T → T eqT , ψ → Vthψ, µ→ µµ,

x → lx, J 1 → (qµVthC/l)J
1, J 2 → (qµV 2

thC/l)J
2,

Lij → (
(qVth)

i+j−1µC
)
Lij , W → (qµV 2

thC/l
2)W.

System (1.24) in the stationary case takes now the form

(6.2)



λ2�ψ = n−C,

−divJ 1 = 0,

−divJ 2 = −∇ψ · J 1 +W(n,T ),

J 1 = L11
(∇ n
n

− ∇ψ
T

)+ (
L12
T

− 3
2L11

)∇T
T
,

J 2 = L21
(∇ n
n

− ∇ψ
T

)+ (
L22
T

− 3
2L21

)∇T
T
,

whereλ2 = εVth/(qCl
2) denotes, as usual, the square of the scaled Debye length.
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The starting point for the numerical discretization of the Energy-Transport system
(6.2) is the observation that a suitable choice of variables allows to write the current and
the energy densities (6.2)4–(6.2)5 in a Drift-Diffusion form in a very general context.
More precisely, the following physical assumptions are imposed

• The energy band diagram is spherically symmetric and monotone with respect to
the modulus of the wave vector�k.

• The electron density is given by non-degenerate Boltzmann statistics.
• The energy relaxation term is given by a Fokker–Planck approximation (see

DEGOND, JÜNGEL and PIETRA [2000], Section 2.2).
Under these assumptions, explicit expressions for the diffusion matrixL= (Lij ) and the
energy relaxation termW in terms ofn, T can be given. We refer to DEGOND, JÜNGEL

and PIETRA [2000] for details of the computation, which goes through the derivation
of a so-calledspherical harmonic expansion(SHE) model (derived from the Boltzmann
equation in the diffusion limit, under the assumption of dominant elastic scattering) and,
afterwards, through a diffusion approximation, making electron-electron or electron-
phonon scattering large.AnyEnergy-Transport model derived in this way allows for a
Drift-Diffusion formulation of the form

(6.3)J i = ∇ gi(n,T )− gi(n,T )
∇ψ
T
, i = 1,2,

whereg1 andg2 are nonlinear functions ofn andT . (In fact,g1 = L11 andg2 = L21.)
For constant temperature, this expression reduces to the standard drift-diffusion current
definition.

Moreover, the energy relaxation term can be written in the form

(6.4)W = c1g1 − c2g2, with ci = ci(g1, g2)� 0,

and the continuity equation (6.2)3, (6.3) in the variablesg1 andg2 reads as follows

−divJ 2 + c2g2 = f, J 2 = ∇ g2 − g2 ∇ψ
T (g1, g2)

,

wheref contains the Joule heating termJ 1 · ∇ψ and the termc1g1. Finally,T can be
defined in terms ofg1, g2, whenever the diffusion matrixL= (Lij ) is positive definite
(see DEGOND, JÜNGEL and PIETRA [2000], Lemma 2.1). Notice that this property has
to be satisfied in order to get a well-posed mathematical problem.

The particular expression ofg1, g2, c1 andc2 clearly depends on the actual choice
of the energy band diagram and of the time relaxation model. For the parabolic band
case and a special choice of the relaxation term (corresponding to the model studied in
CHEN, KAN, RAVAIOLI , SHU and DUTTON [1992]), the diffusion matrixL= (Lij ) is
given by the scaled version of (1.25) and we have

(6.5)g1(n,T )= n, g2(n,T )= 3

2
nT .

The energy relaxation term is of the form (see (1.26))

(6.6)W = −3

2

n(T − T eq)

τ0
= 1

τ0

(
3

2
g1 − g2

)
.
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Here,τ0 is the (scaled) energy relaxation time. In the general case,τ0 depends on the
temperatureT (see DEGOND, JÜNGEL and PIETRA [2000]).

In the following, we shall consider the discretization of the Energy-Transport model
in the(g1, g2,ψ) variables:

(6.7)



λ2�ψ = n(g1, g2)−C(x),

−divJ 1 = 0,

−divJ 2 + c2(g1, g2)g2 = c1(g1, g2)g1 − J 1 · ∇ψ in Ω,

J i = ∇ gi − gi
∇ψ

T (g1,g2)
, i = 1,2,

g1 = g1
D, g2 = g2

D, ψ =ψD onΓD,

J 1 · n= J 2 · n= ∇ψ · n= 0 onΓN,

wheregiD = gi(nD,TD), i = 1,2, and

(6.8)c1(g1, g2)= 3

2τ0
, c2(g1, g2)= 1

τ0
,

(6.9)T (g1, g2)= 2g2

3g1
, n(g1, g2)= g1,

when (6.5) and (6.6) are chosen. Although in the example given hereg1 coincides with
n and the relaxation timeτ0 does not depend onT , we prefer to write (6.7) in the
general setting, which includes other choices of energy band diagrams and relaxation
time models. In particular, when a non-parabolic band in the sense of KANE [1957] is
chosen, the dependence onT is non-local, but the discretization scheme presented here
can be used without changes (the computation ofc1(g1, g2), c2(g1, g2), T (g1, g2), and
n(g1, g2) requires, of course, more effort than in the case (6.8) and (6.9)).

The Drift-Diffusion form (6.3) of the fluxes in the Energy-Transport system suggests
that numerical schemes developed for the linear (in the charge variable) Drift-Diffusion
continuity equation might be employed here. In DEGOND, JÜNGEL and PIETRA [2000],
HOLST, JÜNGEL and PIETRA [2003] extensions of the exponential fitting mixed finite
element methods presented in Section 4.1 have been developed (in the one-dimensional,
and the two-dimensional case, respectively). We refer also to JÜNGEL and PIETRA

[1997] for a variant of these schemes in the case of a nonlinear (in the charge vari-
able) Drift-Diffusion model (JÜNGEL [2001]). In the following, we shall describe in
detail the discretization of the energy flux continuity equation (6.7)3. The discretization
of equations (6.7)2 is similar but simpler (since the zeroth-order term and the right-hand
side of (6.7)2 are zero). For the Poisson equation (6.7)1,P1-nonconforming elements are
used (see CROUZEIX and RAVIART [1973]). Therefore, in the forthcoming, we assume
ψ to be linear on each element.

We recall that the numerical scheme of Section 4.1 is based on the following ingredi-
ents: transform the problem by means of the Slotboom change of variable to a symmetric
form, then discretize the symmetric form with mixed finite elements, and, finally, use
a suitable discrete change of variable to return to the original density variable. Due to
the non-constant electron temperature, aglobal Slotboom variable does not exist in the
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present case. However, we can define alocal “Slotboom variable”ρ, assuming that the
temperatureT = T (g1, g2) is a prescribed piecewise constant function, calledT , and
defined in the global iteration process which solves the entire system (6.7). Therefore,
∇ψ/T is constant on each elementK ∈ Th, and we can define (see (4.4))

(6.10)ρ = e−ψ/T g, in K,

under the assumptionT > 0. For simplicity of notation, here and in the following the
superscript2 is dropped. Eqs. (6.7)4 and (6.7)3 can be rewritten on each triangleK as
follows:

(6.11)e−ψ/T J − ∇ ρ = 0,

(6.12)−divJ + ceψ/T ρ = −J 1 · ∇ψ + c1g1,

wherec1 = c1(T ), andc= c2(T ). In order to approximate the exponential functions in
(6.11), (6.12), following (4.7) and (4.9), we defineψ as the piecewise constant function
given in each elementK by

(6.13)e−ψ/T |K := 1

|K|
∫
K

e−ψ/T dx,

and we definẽψ as the piecewise constant function defined in each elementK by

(6.14)eψ̃/T |K := |ẽ|
/(∫

ẽ

e−ψ/T |K ds

)
, ẽ= VminVmed,

where the special edgẽe is the edge connecting the vertices with the smallest values of
ψ in K .

SinceT is piecewise constant and it might take different values in two triangles hav-
ing an edgee in common,

∫
e
e−ψ/T ds is not uniquely defined one. Therefore, formula

(4.14) cannot be used in the present case. Here, for each elementK , we introduce on
each edgee⊂ ∂K the following constant function

(6.15)
(
e−ψ/T

)IK
|e := 1

|e|
∫
e

e−ψ/T |K ds.

Notice that the change of sign ofψ with respect to the analogous formulas of Section 4.1
is due to the different sign ofψ in Eq. (6.7)4 (given for negative charges) and in Eq. (4.2)
(given for positive charges).

Due to the presence of the zeroth-order term in (6.7)3 we shall use, instead of the
well knownRT0 element, the mixed finite element of Example 5 (Section 3.5), which
guarantees positivity of the solution, and, in contrast with the element of Example 6,
gives a conforming approximation ofH(div;Ω), i.e., the discrete current vector has
continuous normal component across the interelement boundaries.

For the reader’s convenience, we recall the definition of the finite dimensional spaces
already introduced in (3.148), (3.51), (3.160),

Σ̂h = {
τ h ∈ (L2(Ω)

)2 | τ h|K ∈Q(K), ∀K ∈ Th
}
,

Vh = {
vh ∈ V | vv|K ∈ P0(K), ∀K ∈ Th

}
,
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Λh,ξ =
{
µh ∈L2(Eh) | µh|e ∈P0(e), ∀e∈Eh,

∫
e

(µh− ξ) ds=0, ∀e∈Eh ∩ ΓD
}
,

where, as usual,P0(D) denotes the set of constant functions in the domainD. More-
over,Q(K) denotes here the set of polynomial vectors with dim(Q(K))= 3 defined by
(3.112), (3.114)–(3.116), where the special edgeẽ is the edge connecting the vertices
with the smallest values ofψ in K (see also (6.14)).

Specializing (4.16) to this case, the discrete formulation of (6.7)3, (6.7)4, becomes

(6.16)



Find ( J h,ρh, gh) ∈ Σ̂h × Vh ×Λh,gD such that∑
K

(∫
K
(e−ψ/T J h · τ h + ρh div τ h) dx

− ∫
∂K
(e−ψ/T )IK ghτ h · nds)= 0,

−∑K

∫
K
(vh divJ h dx + ceψ̃/T ρhvh) dx

=∑
K

∫
K
(−J 1

h · ∇ψ + c1g1
h)vh dx,∑

K

∫
∂K
µhJ h · nds = 0,

for all τ h ∈ Σ̂h, vh ∈ Vh, andµh ∈Λh,0, respectively. The vectorJ 1
h ∈Σ ∩ Σ̂h is the

approximation of the current densityJ 1 (Σ being defined in (3.20)) andg1
h ∈ Vh is

a piecewise constant approximation ofg1 provided by an analogous discretization of
(6.7)2, (6.7)4. The first equation in (6.16) is a weak discrete version of (6.11), the sec-
ond equation corresponds to a discrete version of (6.12), and the third equation imposes
a continuity requirement of the normal component ofJ h at the interelement bound-
aries. Notice thatρ has been introduced as a “trick” and its computation is of no interest
(actually it will be eliminated by static condensation). The “density” variableg is ap-
proximated bygh on the edges.

Performing the elimination ofJ h andρh by static condensation as in Section 3.7 and
in Section 4.1, we obtain an algebraic system in the variablegh of the form

(6.17)M̃gh = G.
When computing the element matrix̃MK , the edges ofK are numbered counter–

clockwise starting frome1, chosen as the special edgeẽ= VminVmed, used in (6.14) and
in the definition ofQ(K) (see (3.116)). As in (4.19) one can see that

(6.18)
(
e−ψ/T

)IK
|e1e

ψ̃/T = 1.

The coefficients of̃MK have the form (see also (3.232) and (4.18))

(6.19)m̃Kij =


(e−ψ/T )IK|e1e

ψ/T ν
1·ν1

|K| + c|K|
β2+δce(ψ̃−ψ)/T |K|γ

2
1 , for i = j = 1,

(e−ψ/T )IK|ej e
ψ/T ν

i ·νj
|K| , otherwise,

for i, j = 1,3, and the coefficients of the element right-hand sideGK are given by (see
also (3.233))

(6.20)gKi =
{

βγ1

β2+δce(ψ̃−ψ)/T |K|
∫
K
f dx, for i = 1,

0, otherwise,
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with f = −J 1
h · ∇ψ + c1g1

h. The definition ofδ, β, γ1 is given in (3.220)–(3.222), and
it is related toQ(K). As for (4.17) with (4.20), the matrix̃M is anM-matrix, if the
decomposition is of weakly acute type.

For the definition ofT and a description of the global iteration process we refer
to HOLST, JÜNGEL and PIETRA [2003], where a generalization of the Gummel map
presented in Section 2 has been proposed, together with a Newton-type algorithm.

6.2. MFV discretization of the Energy-Balance model

In this section we shall consider the discretization of the Energy-Balance (EB) model
(1.28) introduced in Section 1.4.

The fundamental constraints for the discretization are the conservation of electric
field, current and energy fluxes, and the nonnegativity of the concentrations and of the
temperatures of the carriers. With this aim, we propose an efficient and accurate solver
for the EB equations in steady-state conditions. The Gummel decoupled algorithm in-
troduced in Section 2 is employed to solve iteratively the full system, which consists of
a linearized Poisson equation and of a linearized current continuity and energy-balance
equations. The discretization of these linearized equations is based on the use of the
cell-centered MFV method discussed in Section 3.8.

In the case of the linearized Poisson equation, this leads to solving a linear system
whose coefficient matrix is symmetric, positive definite and diagonally dominant, while
in the case of the linearized current continuity and energy-balance equations a stabi-
lization procedure is developed by adding a suitable artificial diffusion term to the dis-
cretization of the constitutive laws (1.28)5 and (1.28)6. The artificial diffusion is asso-
ciated with each edge of the finite element triangulation and can be written in terms
of the jumps of the approximate scalar unknown across the edge and of the convective
flux.

A special choice of the artificial diffusion term is considered which yields the ex-
ponentially-fitted upwinded Scharfetter–Gummel (SG) scheme (SCHARFETTER and
GUMMEL [1969]). This method provides anoptimal upwinding approximation of the
interelement fluxes and is employed in numerical computations. The resulting matri-
ces in the discretization of (1.28)2 and (1.28)3 turn out to be diagonally dominantM-
matrices with respect to the columns.

The outline of the section is as follows. The dual mixed formulation of a convection-
diffusion model problem is considered in Section 6.2.1. The approximation of the model
problem usingRT0 finite elements of lowest degree is then carried out in Section 6.2.2,
while a detailed description of the stabilization procedure and of the stability analysis of
the method are addressed in Sections 6.2.3 and 6.2.4, respectively. In this latter section,
sufficient conditions for the stiffness matrix of the scheme to be a nonsingularM-matrix
and a coercivity result in a discrete energy norm are provided. In Section 6.2.5 we spe-
cialize the general stabilization approach to both the DD and EB transport models, pro-
viding the expressions of the interelement fluxes which extend the SG discretization to
the two-dimensional case. The section is concluded with a summary of the linear alge-
braic systems that must be solved in the case of a bipolar model (comprising electrons
and holes) at each step of the Gummel algorithm.
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6.2.1. The mixed formulation
In this section we address the dual mixed formulation of the differential subproblems
obtained applying the iterative Gummel method described in Section 2 to the EB sys-
tem (1.28) in the stationary case. We shall focus our attention on the discretization of
the electron current continuity and energy equations only, since the treatment of the lin-
earized Poisson equation has already been dealt with in Section 3.8. Moreover, since
similar equations hold for the holes, we shall supplement the current equation (1.28)2
and the energy-balance equation (1.28)3 with nonvanishing right-hand sides.

At each step of the Gummel loop the following problems must be solved forn̂= qn

andφn =KBTn/q:

(6.21)−div
(
Dn∇n̂−µnn̂∇(ψ − φn)

)+ p̂Rn̂=G

and

(6.22)

−div

(
λn∇ φn + J n

5

2
φn

)
+ 3

2

(
p̂n̂R + n̂

τwn

)
φn

=E · J n + 3

2

(
Gχn + n̂

τwn
Vth

)
,

wherep̂ = qp andλn = q
KB
κn is the modified thermal conductivity. In Eq. (6.21)n̂

is the unknown whereasψ , φn, p̂, R andG are given functions corresponding to the
previous Gummel iteration, namely

R = 1

τ ∗
n (p̂+ n̂i )+ τ ∗

p(n̂+ n̂i )
+ 1

q2
(Cnn̂+Cpp̂),

G= n̂2
i R+ αn

(|E |)|J n| + αp
(|E |)|J p|,

wheren̂i = qni . Notice thatR andG are strictly positive functions since they are the
recombination and the generation terms, respectively, constructed according to the pro-
cedure discussed in Section 2.4, provided that then, p variables are employed.

In Eq. (6.22) the only unknown isφn, whileχn denotes the functionφn at the previous
Gummel step.

Eqs. (6.21) and (6.22) can be cast in the form of a stationary convection-diffusion-
reaction problem

(6.23)

{−divσ + γ u= f,

σ = a∇u− βu,

whereσ andu are the vector and scalar unknowns, respectively. System (6.23) is sup-
plemented with suitable boundary conditions, depending on the problem we are dealing
with, of the type

(6.24)u= g onΓD, σ · n= 0 onΓN.

It is clear that the model problem (2.14) extensively discussed in previous sections can
be recovered from (6.23) by simply settingβ = 0. Comparing (6.23) with (6.21) we see
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thatu = n̂, a =Dn, β = µn∇(ψ − φn), γ = p̂R, f =G, and the boundary condition
is g = qnD (see (1.29)). Comparing (6.23) with (6.22) yieldsu = φn, a = λn, β =
−(5/2)J n, γ = (3/2)(p̂n̂R + n̂/τwn), f = E · J n + (3/2)(Gχn + n̂Vth/τwn), and the
boundary condition isg =KBTD/q (see (1.29)).

Referring to the model problem (6.23), we remark that the choice of the decoupling
splitting in (6.21) and (6.22) aims at ensuring thatu is positive through guaranteeing
thatγ andf are positive. It is worth noticing that the sign of the first term at the right-
hand side in (6.22) is not a priori established, although from a physical standpoint it is
expected to be nonnegative since it represents the dissipative Joule effect.

In analogy with the presentation of Section 3.2, the mixed formulation of (6.23) reads

(6.25)


Find ( σ ,u) ∈Σ × V such that

(ασ , τ )+ (αuβ, τ )+ (div τ ,u)= 〈g, τ · n 〉|ΓD , ∀τ ∈Σ,
(divσ, v)− (γ u, v)= −(f, v), ∀v ∈ V,

where the spacesΣ andV are defined in (3.20)–(3.21), andα := a−1. Notice that set-
ting β = 0 we recover the mixed formulation (3.27) that has been thoroughly analyzed
in Section 3. A way to show existence and uniqueness of the solution of problem (6.25)
is to check that a solution of (6.23) (in the distributional sense) is a solution of (6.25) and
viceversa. Uniqueness then follows from uniqueness of the solution of (6.23), which is
guaranteed if the usual coercivity conditions hold

(6.26)γ + 1

2
divβ � b0 � 0 a.e. inΩ, β · n� 0 onΓN.

A sufficient condition (though not always applicable) to obtain uniqueness for (6.25)
is ‖β ‖2∞ < 4γ0a0/aM wherea0, aM , andγ0 are defined in (3.1) and (3.2).

6.2.2. Mixed finite element discretization
The discrete form of (6.25) reads:

(6.27)


Find ( σ h,uh) ∈Σh × Vh such that

(ασ h, τ h)+ (αuhβ, τ h)+ (div τ h,uh)= 〈g, τ h · n 〉|ΓD , ∀τ h ∈Σh,
(divσ h, vh)− (γ uh, vh)= −(f, vh), ∀vh ∈ Vh,

where(Σh,Vh) is the RT0 mixed finite element space given in (3.107)–(3.108). For
future purposes it is convenient to assume that the convective fieldβ in (6.27) has con-
tinuous normal components across each edge of the triangulation. We therefore assume
thatβ is itself anRT0 finite element vector field. The algebraic form of (6.27) reads

(6.28)

(
A B

C D

)(
Φh
Uh

)
=
(
Gh
Fh

)
,

whereΦh is the vector of the unknown fluxes ofσ h across each edge ofTh, andUh is
the vector of the unknown values ofuh on eachK ∈ Th. EliminatingΦh leads to the
following scheme forUh

(D −CA−1B)Uh = Fh −CA−1Gh.
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The matrixM ≡ D − CA−1B is full and, in general, neither symmetric nor positive
definite, so that solving this system can be quite expensive. Moreover, it is well known
thatM is not anM-matrix for any value ofγ , as pointed out in BREZZI and FORTIN

[1991], MARINI and PIETRA [1990] in the case of the numerical approximation of the
DD current continuity equations.

The stabilization procedure developed in the forthcoming sections will allow us to
circumvent the drawbacks of theRT0 approximation, leading to a family of stable cell-
centered finite volume methods that preserve the good approximation properties forσ h
provided by the mixed approach, though at a reduced computational cost.

6.2.3. Mixed finite volume stabilization
In this section we apply the MFV formulation considered in Section 3.8 to the
convection-diffusion-reaction problem (6.23). With this aim, we shall extend the stabi-
lization procedure for convection-diffusion problems proposed in SACCO and SALERI

[1997b] to the case of a varying diffusion coefficienta. Without loss of generality, from
now on we shall assumeg ≡ 0 in order to simplify the exposition.

Throughout, we shall adopt the same notation as in Section 3.8, with the following
extension: for eachKk ∈ Th and for any edgeer , with r ∈E(k), we definenr as the unit
normal vector chosen to ensure that

(6.29)βr :=
∫
er
β · nr ds � 0.

Let us consider the second equation in (6.27); takingvh = χk (the characteristic func-
tion of triangleKk) and proceeding as in Section 3.8.2, we get the discrete conservation
law (see (3.237))

(6.30)
∑
r∈E(k)
er /∈ΓN

Φr
k − γkuk|Kk| = −fk|Kk|, ∀Kk ∈ Th.

We recall thatΦr
k = 0 on er ∈ ΓN . To end up with a finite volume scheme we must

write the fluxΦr
k as a function of the valuesuj , j ∈ T (r), only. With this aim, we

diagonalize the first two bilinear forms in (6.27)1 using the quadrature formula (3.240)2.
In particular, in order to apply to the convective term the same diagonalization procedure
used for the diffusive term, auniquevalue foruh needs to be defined at each edge. For
this purpose, for any edgeer we define

(6.31)ur = uk + uj

2
, on er /∈ Γ, ur = uk

2
, on er ∈ ΓD,

where the indexj ∈ T (r)\k. Taking in the first equation of (6.27)τ h = τ rh as theRT0

basis function associated with edgeer and such thatτ rh · nr > 0, we get the following
constitutive equation for the edge advective flux

(6.32)
∑

m∈T (r)

∫
Km

αuhβ · τ rh dx � α rur
∑

m∈T (r)

∫
Km

β · τ rh dx � α rurβr
dr

|er | .
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After diagonalizing the diffusive term as done in Section 3.8.2 and using (6.32) we
obtain

(6.33)Φr
k = (α r)−1uj − uk

dr
|er | − βrurSrk , ∀er /∈ΓN, Φr

k =0 oner ∈ΓN,
where we set

Srk = nrk · nr .
Substituting the above expression into (6.30) yields a finite volume scheme foruh
of cell-centered type. This is easily checked to become unstable in the advection-
dominated case, so that a stabilization procedure is required.

In order to stabilize (6.27) or, equivalently, to introduce flux upwinding, we consider a
generalartificial diffusionfunctionρh :Lh → R, such thatρh is piecewise constant over
Lh and for every lumping regionLr ∈ Lh, ρrh � 0 and limh→0ρ

r
h = 0, (ρrh := ρh|Lr ).

Next, we introduce the stabilized dual mixed discretization

(6.34)


Findσ ∗

h ∈Σh, u∗
h ∈ Vh such that∀(τ h, vh) ∈Σh × Vh

(ασ ∗
h, τ h)+ (αu∗

hβ, τ h)+ (div τ h,u
∗
h)

+∑
Kk∈Th

∫
∂Kk

ρhu
∗
hτ h · nk ds = 0,

(divσ ∗
h, vh)− (γ u∗

h, vh)= −(f, vh),
wherenk is the unit outward normal vector along∂Kk .

Our goal is to chooseρh in such a way that problem (6.34) becomes stable irrespec-
tively of the strength of thelocal Péclet number

(6.35)Per = 1

2
α r β̂rdr ,

whereβ̂r := βr/|er | � 0. Proceeding analogously as in the nonstabilized case, we get
the following expression for the fluxes

(6.36)
Φr
k = (α r)−1(1+ ρrh)

uj − uk

dr
|er | − βrurSrk , ∀er /∈ ΓN,

Φr
k = 0, on er ∈ ΓN.

Substituting the above expression into (6.30) yields the following cell-centered finite
volume scheme foru∗

h

(6.37)


∑

r∈E(k)
er /∈ΓN

(α r)−1(1+ ρrh)
(u∗

k−u∗
j (r)

dr

)|er |
+ βrurSrk + u∗

kγk|Kk| = fk|Kk|, ∀Kk ∈ Th,
u∗
j (r) = 0, ∀er ∈ ΓD,

wherej (r) = T (r)\k. The set of linear algebraic equations (6.37) can be written in
matrix form as

(6.38)W ∗u∗ = f∗,
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where theith component off∗ is fi |Ki | and theij th nonzero entries of theNT × NT
matrixW ∗ are

(6.39)W ∗
ij =


∑

r∈E(i)
er /∈ΓN

(α r)−1(1+ ρrh)
|er |
dr

+ 1
2β

rSri + γi |Ki |, if i = j,

−(α r(j))−1(1+ ρ
r(j)
h )

|er(j)|
dr(j)

+ 1
2β

rSri , if j ∈ T (E(i)), j �= i,

wherer(j)=E(j)∩E(i) refers to the edge shared between trianglesKi andKj .

6.2.4. Stability analysis
In this section we prove stability of the MFV method (6.38)–(6.39). With this aim, let
us write system (6.38) in the abstract form{

Finduh ∈ Vh such that

aSh (uh, vh)= (f, vh), ∀vh ∈ Vh,
where the discrete stabilized bilinear formaSh (uh, vh) : Vh × Vh → R is defined as

(6.40)

{
aSh (uh, vh)=

∑
Kk∈Th

∫
Kk
(−divσSh(uh)+ γ uh)vh dx,

σSh(uh)|Kk =∑
r∈E(k) Φr

k τ
r
k,

where the fluxesΦr
k are given in (6.36), andτ rk = Srkτ

r
h|Kk . Moreover, we denote byE ′′

h

the set of all edges not belonging toΓN .

THEOREM 6.1. For eachρrh � 0, we have

(6.41)aSh (vh, vh)�
∑
er∈E ′′

h

κr |Lr |
(
vk − vj

dr

)2

+ b0‖vh‖2
0,Ω,

with

(6.42)κr = 2(α r)−1(1+ ρrh
)
.

PROOF. Let vh be a function inVh. With a (minor) abuse of notation we denote, for
every edgeer ∈ E ′′

h , by vk andvj (instead ofvk(r), vj (r)) the values ofvh in the trian-
gles sharing edgeer , with the convention thatvj (r) = 0 whener ∈ ΓD (as in (6.37)).
Multiplying the left-hand-side of (6.37) byvk and summing overk, we have:

aSh (vh, vh)

=
∑
Kk∈Th

( ∑
r∈E(k)
er /∈ΓN

[
(α r)−1(1+ρrh

)(vk −vj
dr

)
|er |+βrvrSrk

]
vk

)
+

∑
Kk∈Th

γkv
2
k |Kk|

=
∑
er∈E ′′

h

(
1+ ρrh

) (α r)−1|er |
dr

[
(vk − vj )vk + (vj − vk)vj

]
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(6.43)+
∑
Kk∈Th

∑
r∈E(k)
er /∈ΓN

βrvrSrkvk +
∑
Kk∈Th

γkv
2
k |Kk|

=
∑
er∈E ′′

h

(1+ ρrh)
(α r)−1|er |

dr
(vk − vj )

2

︸ ︷︷ ︸
+
∑
Kk∈Th

∑
r∈E(k)
er /∈ΓN

βrvrSrkvk

︸ ︷︷ ︸
+
∑
Kk∈Th

γkv
2
k |Kk|︸ ︷︷ ︸

I + II + III .

Recalling definition (6.31) ofvr , and observing thatβrSrk = ∫
er
β · nrk , we deduce

II = 1

2

∑
Kk∈Th

v2
k

∑
r∈E(k)
er /∈ΓN

∫
er
β · nrk ds + 1

2

∑
Kk∈Th

vk
∑
r∈E(k)
er /∈Γ

vj

∫
er
β · nrk ds

(6.44)= 1

2

∑
Kk∈Th

v2
k

∫
∂Kk

β · nk ds − 1

2

∑
Kk∈Th

v2
k

∑
r∈E(k)
er∈ΓN

∫
er
β · nrk ds

� 1

2

∑
Kk∈Th

∫
Kk

v2
k divβ dx,

where in the last step we used the fact thatβ · n � 0 onΓN (see (6.26)). Then, using
again (6.26) we obtain

(6.45)II + III =
∑
Kk∈Th

∫
Kk

(
γ + 1

2
divβ

)
v2
k dx � b0‖vh‖2

0,Ω .

By multiplying and dividing bydr each term inI , and usingdr |er | = 2|Lr | we obtain

(6.46)I = 2
∑
er∈E ′′

h

(
1+ ρrh

)
(α r)−1|Lr |

(
vk − vj

dr

)2

.

Finally, using (6.46), and (6.45) in (6.43) we deduce

(6.47)aSh (vh, vh)� 2
∑
er∈E ′′

h

(
1+ ρrh

)
(α r)−1|Lr |

(
vk − vj

dr

)2

+ b0‖vh‖2
0,Ω .

�

As a consequence of Theorem 6.1 it is easily seen that the diagonal entries of matrix
(6.39) are strictly positive. Therefore, by requiring the off-diagonal entries to be nonpos-
itive, anM-matrix is obtained. The conditions onρh which enforce such a property are
stated in the following proposition, which extends the analogous result given in SACCO

and SALERI [1997b].

PROPOSITION6.1. Let the edge artificial viscosityρrh be chosen in such a way that for
eachLr ∈ Lh we have

(6.48)ρrh � max{0,Per − 1}.
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Then the stiffness matrixW ∗ of the stabilized dual mixed finite volume scheme turns out
to be an irreducible diagonally dominantM-matrix with respect to its columns.

A consequence of Proposition 6.1 is that the elemental valuesUk are nonnegative,
providedf∗ � 0, irrespectively of the strength of the local Péclet number.

We notice that, by taking

(6.49)ρrh = max{0,Per − 1},
(6.42) becomes

(6.50)κr = max
{
2(α r)−1, β̂rdr

}
.

On the other hand, by taking

(6.51)ρrh = Per = 1

2
α r β̂rdr ,

we have

(6.52)κr = 2(α r)−1 + β̂rdr ,

which, inserted into (6.41), produces an estimate similar to those that are typically ob-
tained for stabilized formulations of advection-diffusion problems (see, for instance
ROOS, STYNES and TOBISKA [1996]). For a detailed analysis we refer to BREZZI,
MARINI , MICHELETTI, PIETRA and SACCO [submitted for publication].

REMARK 6.1. We note that the choice (6.51) gives the same scheme as the one that
would be obtained, starting from the non stabilized MFV scheme (i.e., (6.34) with
ρh = 0), using classical upwind for the convective term. Indeed, let us rewrite the non
stabilized fluxes (6.33)

(6.53)Φr
k = (α r)−1uj − uk

dr
|er | − βrurSrk , ∀er /∈ ΓN.

Taking, instead of (6.31), the upwind choice

(6.54)uruw =
{
uk, if Srk = 1,

uj , if Srk = −1,

it is easy to see that

(6.55)βruruwS
r
k = βrurSrk + βr

uk − uj

2
.

Hence, takinguruw instead ofur in (6.53) amounts to adding the term

βr
uj − uk

2
.

On the other hand, taking instead of (6.53):

(6.56)Φr
k = (α r)−1(1+ Per )

uj − uk

dr
|er | − βrurSrk , ∀er /∈ ΓN,
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corresponds to adding to (6.53) the term

(α r)−1
Per

uj − uk

dr
|er | = (α r)−1 1

2
α r β̂rdr

uj − uk

dr
|er | = βr

uj − uk

2
.

REMARK 6.2. The presence of the factor 2 multiplying|Lr | in (6.46) should not be
surprising. Indeed, it can be checked that, taking for the sake of simplicity a uniform
mesh made of equilateral triangles of edgeh, we have, for a smooth enough functionv,

∑
er∈Eh

(
vk − vj

dr

)2

2|Lr | �
∫
Ω

|∇v|2dx for h→ 0.

6.2.5. The Scharfetter–Gummel stabilization
We provide in this section a choice ofρh that fulfils the stability requirement (6.48) and
extends to the two-dimensional case the Scharfetter–Gummel (SG) exponentially fitted
difference scheme (SCHARFETTERand GUMMEL [1969]) that is widely employed in
contemporary semiconductor device simulation. We shall consider in the following both
the DD and EB cases (in unscaled forms).

The DD case. The classical SG method, hereafter denoted by SG-MFV, can be recov-
ered by setting in the flux expression in (6.40)

(6.57)ρrh = Per − 1+ B(2Per ), ∀Lr ∈ Lh,

where for anyz ∈ R, B(z) is the Bernoulli function defined in (4.32). It is worth noting
that for high Péclet numbers the SG mixed finite volume scheme degenerates into the
standard Engquist–Osher (EO) upwinding procedure, which is well-known to be first-
order accurate. However, asPer → 0, the amount of extra viscosity introduced by the
SG flux approximation isO(h2), whilst the EO one isO(h). After some algebra the
flux across edgeer reads

(6.58)Φr
k = qDn

ujB(�ψ̂)− ukB(−�ψ̂)
dr

|er |,

where�z = zj − zk andψ̂ = ψ/Vth. As for the analysis of the SG-MFV method, the
convergence estimate (3.271) has been proved in MICHELETTI, SACCO and SALERI

[2001] under the assumption curlβ = 0, which is actually the case here, sinceβ is the
gradient of a potential. We finally mention that the SG-MFV scheme gives theexact
solutionat the circumcenters whena = const,γ = f = 0, ψ is linear inΩ , and suit-
able boundary conditions are assumed foru andσ . In this case the method passes the
Constant-Current Patch-Test (SACCO and SALERI [1997b]), which is a sound indica-
tion for a good behaviour of the numerical method in presence of steep layers arising in
advection-dominated flows (see alsoVAN NOOYEN [1995]).

The EB case. Here we address the generalization of the SG method to the EB model.
In particular we introduce two different expressions for the edge fluxes of the electron
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current (see also FORGHIERI, GUERRIERI, CIAMPOLINI , GNUDI, RUDAN and BAC-
CARANI [1988]).

As usual for this approach, we consider a one-dimensional reference interval[0,L]
(which can be mapped into the segment joining the circumcentersKk andKj ) and set
R =G= 0, so that the continuity equation reads

d

dx

[
qµnφn

(
dn

dx
− n

φn

d(ψ − φn)

dx

)]
= 0.

Supposingµn constant and bothψ and φn linearly varying, after some algebra we
obtain

(6.59)Jn = qµn

(
�φn −�ψ

L

)[
n0
(
φn(L)
φn(0)

)(�ψ/�φn−1) − nL(
φn(L)
φn(0)

)(�ψ/�φn−1) − 1

]
,

whereJn is the one-dimensional electron current density andnL = n(L), n0 = n(0).
Similarly as what is done in the heat exchanger theory, we introduce theaverage loga-
rithmic temperature

T "mn = Tn(L)− Tn(0)

ln
(
Tn(L)
Tn(0)

) = �Tn

ln
(
Tn(L)
Tn(0)

) ,
and theaverage logarithmic thermal potentialφ"mn =KbT

"m
n /q. Using these definitions

we can rewrite the expression of the current as

(6.60)Jn = qµnφ
"m
n

L

[
nLB

(
�ψ −�φn

φ"mn

)
− n0 B

(
−�ψ −�φn

φ"mn

)]
.

Comparing this expression with (6.58) we note that:
• the thermal potentialVth has been replaced by the average logarithmic thermal

potentialφ"mn ;
• the argument of the Bernoulli functions is the difference between the electric and

thermal potentials instead of being simply the potential drop across the interval.
This guarantees that if the electron temperature is constant then we exactly recover the
DD expression.

An alternative form of the EB current can be provided by assuming the validity of the
mobility model as in RUDAN, GNUDI and QUADE [1993]. It turns out that the diffusion
coefficient is independent ofTn since

(6.61)Dn = µn(Tn)φn =
(
µn0

T0

Tn

)
φn = µn0Vth =Dn0.

The electron current can thus be written as

(6.62)Jn = qDn0

(
dn

dx
− n

φn

d(ψ − φn)

dx

)
.

As above, assuming thatJn is constant on[0,L] and that both potentials are linearly
varying we eventually get

(6.63)Jn= qDn0

L
φ"mn

[
nL

φn(L)
B

(
�ψ−2�φn

φ"mn

)
− n0

φn(0)
B

(
−�ψ−2�φn

φ"mn

)]
.
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Abstract
Enhanced functional integration in modern electron devices and the ensuing de-

vice miniaturization requires an accurate modeling of transient energy transport in
semiconductors in order to describe high-field phenomena such as hot electrons,
impact ionization and high frequency oscillations. For these reasons macroscopic
models like the drift-diffusion equations (and the augmented ones) are no longer
adequate and it has became almost mandatory to resort to a set of moment equations
obtained from the semiconductor Boltzmann transport equation, which form a sys-
tem of hyperbolic equations. From a computational point of view this has prompted
the use of suitable numerical schemes which are able to cope with the dominantly
hyperbolic nature of the problem, the coupling with the Poisson equation and the
stiffness of the source term.

Introduction

Enhanced functional integration in modern electron devices requires an accurate mod-
eling of energy transport in semiconductors in order to describe high-field phenom-
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ena such as hot electron propagation, impact ionization and heat generation in the bulk
material. The standard drift-diffusion models cannot cope with high-field phenomena
because they do not comprise energy as a dynamical variable.

Furthermore for many applications in optoelectronics one needs to describe the tran-
sient interaction of electromagnetic radiation with carriers in complex semiconductor
materials and since the characteristic times are of order of the electron momentum or
energy flux relaxation times, some higher moments of the distribution function are nec-
essarily involved. Therefore these phenomena cannot be described within the frame-
work of the drift-diffusion equations (which are valid only in the quasi-stationary limit).
Generalizations of the drift-diffusion equations have been sought, which would incorpo-
rate energy as a dynamical variable and also would not be restricted to quasi-stationary
situations. These models are loosely speaking called hydrodynamical models. They are
obtained from the infinite hierarchy of the moment equations of the Boltzmann transport
equation by a suitable truncation procedure. This requires making suitable assumptions
on: (i) closing the hierarchy by finding appropriate expressions for theN + 1 order mo-
ment in terms of the previous ones; (ii) modeling the production terms on the right-hand
side of the moment equations which arise from the moments of the collision terms in
the Boltzmann transport equation.

One of the earliest hydrodynamical models currently used in applications was orig-
inally put forward by BLOTEKJAER [1970] and subsequently investigated by BAC-
CARANI and WORDEMAN [1982] and by other authors (see references in RUDAN and
BACCARANI [2001]). This model is implemented in simulation codes currently used in
the microelectronic industry. It consists of a set of balance equations for carrier den-
sity, momentum and energy obtained from the Boltzmann transport equation in the par-
abolic band approximation, closed by a postulated Fourier law as constitutive equation
for the heat flux. The production terms for momentum and energy are assumed to be
of the relaxation type and the relaxation times are obtained by phenomenological ar-
guments. Other models have also been investigated, some including also nonparabolic
band approximation effects (HÄNSCH [1991], THOMA, EDMUNDS, MEINERZHAGEN,
PEIFER and ENGL [1991], STETTLER, ALAM and LUNDSTROM [1993], BORDOLON,
WANG, MAZIAR and TASCH[1991], WOOLARD, TIAN , TREW, LITTLEJOHNand KIM

[1991]).
Most implemented hydrodynamical models suffer from serious theoretical drawbacks

due to thead hoctreatment of the closure problem (lacking a physically convincing
motivation) and the modeling of the production terms (usually assumed to be of the re-
laxation type and this, as we shall see, leads to serious inconsistencies with the Onsager
reciprocity relations). These difficulties are overcome by the Extended Hydrodynam-
ical Models, obtained by applying the Maximum Entropy Principle to the closure of
the moment equations (ANILE and PENNISI [1992], ANILE, MUSCATO, MACCORA

and PIDATELLA [1996], ANILE, ROMANO and RUSSO[1998], ANILE and ROMANO

[1999], ANILE, JUNK, ROMANO and RUSSO[2000], ROMANO [2000]).
From the mathematical viewpoint the equations of the Extended Models have the

structure of a quasi-linear hyperbolic system with source terms. The latter contains a
relaxation term and a nonlocal drift term, which is due to a self consistent electric field,
coupled to a Poisson equation. Most numerical methods which have been used to solve
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the equations of hydrodynamical models are simply an adaptation of methods used for
the drift-diffusion equations, e.g., methods appropriate for parabolic systems. However,
unless some special (and usually unwarranted) approximations are made, the evolution
equations of hydrodynamical models form a hyperbolic system. This is for instance the
case when one is interested in the oscillations induced by interaction with electromag-
netic waves of sufficiently high frequency. Therefore, in general, the methods which
should be employed for the numerical solution of the governing equations must have
certain features to ensure that thecorrectweak solution is captured at the correct point
in space and time. Moreover the numerical scheme should not introduce spurious fea-
tures, like unphysical oscillations in the vicinity of strong gradients.

The final goal of the Extended Hydrodynamical Models is the accurate multidimen-
sional calculations of the full time dependent Extended Models equations applied to
simulate the behaviour of realistic devices (BJT, MOSFET, resonant diode, etc.) in both
transient and steady state regimes. In this context accuracy means being able to capture
small scale wave features (e.g., related to Gunn type oscillations), as well as the bulk
behaviour. This implies that it is mandatory to use methods which do not suffer from
excess numerical diffusion or spurious oscillations in the vicinity of steep gradients
(otherwise the viscosity inherent in a lower-order method would corrupt the solution at
late times). Furthermore, a high order of accuracy is required if the numerical simula-
tions are to be extended to the two-dimensional case (otherwise the required number of
grid points would be prohibitively large).

Also although there are “source terms” the conservation properties of the hyperbolic
left-hand side must be maintained. These requirements point us to the high resolution
methods for hyperbolic systems. One of the aims of the present work is to report on
the application for the numerical simulation of hydrodynamical models of a technique
that has shown itself to be very useful in the area of computational fluid dynamics:
the adaptive mesh refinement (AMR) approach originally introduced by BERGERand
OLIGER [1984]. The AMR method allows the local spatial resolution to increase or
decrease dynamically according to the requirements of the evolving solution; there-
fore computational resources are not wasted in maintaining uninteresting parts of the
solution at unnecessarily high resolutions and this is a crucial features for 2D or 3D
simulations. The AMR method has usually been applied to systems of partial differen-
tial equations which are purely hyperbolic in character. Its application to hydrodynami-
cal semiconductor models is straightforward because these models involve also elliptic
(arising from Poisson’s equation), sometimes also parabolic modes (if heat conduction
is approximately described by appropriate generalizations of Fourier’s law) as well as
hyperbolic modes.

The plan of the article is the following. Section 1 (written by A.M. Anile and V. Ro-
mano) consists of a general overview of the theory underlying hydrodynamical models
for carrier transport in semiconductors with a special emphasis on the Extended Hydro-
dynamical Models. Section 2 (written by V. Romano and G. Russo) is a self-contained
exposition of some recently introduced numerical methods for solving hyperbolic sys-
tems of conservation laws with particular regard to the hyperbolic models of semicon-
ductors. These methods are then employed in Section 3 (written also by V. Romano and
G. Russo) for solving numerically the extended hydrodynamical models previously in-
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troduced for the benchmark problems of the ballistic diode and the MESFET. Section 4
(written by A.M. Anile and N. Nikiforakis) consists of a full report of very recent works
on the applications of adaptative mesh refinement to the solution of hydrodynamical
equations.

1. Introduction to the hydrodynamical models of silicon semiconductors

1.1. Semiclassical kinetic model

Semiconductors are characterized by a sizable energy gap between the valence and the
conduction bands, which are almost fully filled at thermal equilibrium. Upon thermal
excitation electrons from the valence band can jump to the conduction band leaving
behind holes (in the language of quasi-particles). Therefore the transport of charge is
achieved through both negatively charged (electrons) and positively charged (holes)
carriers.

The energy band structure of crystals can be obtained by the quantum theory of solids
(ASHCROFTand MERMIN [1976]) at the cost of intensive numerical calculations. How-
ever, in order to describe electron transport, for most applications, a simplified descrip-
tion is adopted which is based on a simple analytical model. This is the so-called par-
abolic band and effective mass approximation, where the energy curve corresponding
to a given energy band is approximated by a parabola near its minimum. In the sequel,
for the sake of simplicity, only one conduction band will be considered.

In the parabolic band approximation, if we denote byE the energy of the considered
conduction band measured from the band minimum, we have that the first Brillouin
zone,B, coincides withR3 and

(1.1)E = h̄2|k|2
2m∗ ,

withm∗ the effective electron mass (for siliconm∗ = 0.32me, withme the electron mass
in vacuum),h̄k thecrystal momentumandh̄ the Planck constanth divided by 2π .

In the approximation of the Kane dispersion relation (JACOBONI and REGGIANI

[1983], JACOBONI and LUGLI [1989]), which takes into account the nonparabolicity
at high energy,E still depends only onk, the modulus ofk, B = R

3, but

(1.2)E(k)
[
1+ αE(k)

]= h̄2k2

2m∗ , k ∈ B,

whereα is the nonparabolicity parameter (for siliconα = 0.5 eV−1).
The electron velocityv(k) in a generic band depends on the energyE measured from

the conduction band minimum by the relation

v(k)= 1

h̄
∇kE .

Explicitly we get for parabolic band

(1.3)vi = h̄ki

m∗ ,
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while in the approximation of the Kane dispersion relation

(1.4)vi = h̄ki

m∗[1+ 2αE(k)] .
In silicon the conduction band with lower energy has six equivalent valleys located
along the main crystallographic directions� at about 85% from the center of the first
Bruillouin zone near the X point (see ASHCROFTand MERMIN [1976] for details about
crystal theory).

The above description of electron motion is valid for an ideal perfectly periodic crys-
tal. Real semiconductors cannot be considered as ideal periodic crystals for several rea-
sons. In fact strict periodicity is destroyed by:

• doping with impurities (which is done in order to control the electrical conductiv-
ity);

• thermal vibrations of the ions off their equilibrium positions in the lattice;
• electron–electron interactions.

These effects can be taken into account in a perturbative way by describing the interac-
tion of the electrons with the lattice of ions as being only approximately periodic. The
weak deviations from periodicity are treated as small perturbations of the background
periodic ion potential. In particular the effect of the thermal vibrations of the ions on
the electron dynamics can be described quantum mechanically asscattering with quasi-
particles (phonons) representing the thermal lattice vibrations.

In a semiclassical kinetic description the electron wave packets are considered highly
localized and the effects destroying the perfect periodicity are taken into accountby
introducing a nonzero right-hand side in the semiclassical Vlasov equation. In this way
one obtains thesemiclassical Boltzmann equation for electrons in the conduction band
in semiconductors

(1.5)
∂f

∂t
+ vi(k)

∂f

∂xi
− eEi

h̄

∂f

∂ki
= C[f ],

whereC[f ] represents the effects due to scattering with phonons, impurities and with
other electrons. Hereafter we assume summation over repeated indices. A similar equa-
tion can be deduced for electrons in the valance bands (holes).

The electric field is calculated by solving the Poisson equation for the electric poten-
tial φ

(1.6)Ei = − ∂φ

∂xi
,

(1.7)∇ · (ε∇φ)= −e(ND −NA − n),

ND andNA being the donor and acceptor density, respectively (which are fixed ions
implanted in the semiconductors and depending only on the position) andn the electron
number density

n=
∫
B

f d3k.

The expression of the collision term has been investigated in the quantum theory of
scattering.
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The main scattering mechanisms in a semiconductor are the electron–phonon interac-
tion, the interaction with impurities, electron–electron scatterings and interaction with
stationary imperfections of the crystal as vacancies, external and internal crystal bound-
aries. In many situations the electron–electron collision term can be neglected since the
electron density is not too high and one can linearize the collision operator by neglect-
ing the degeneracy terms. Under the above approximation, for each type of interaction
mechanism, the collision operator can be schematically written as

(1.8)C[f ] =
∫
B

[
P(k′,k)f (k′)− P(k,k′)f (k)

]
d3k′

with P(k,k′) the scattering probability per unit time from a statek to a statek′. The
first term in (1.8) represents the gain and the second one the loss.

From the principle of detailed balance (see MARKOWICH, RINGHOFERand SCHMEIS-
ER [1990]) it follows that

(1.9)P(k′,k)= P(k,k′)exp

(
−E − E ′

kBTL

)
,

whereE = E(k) andE ′ = E(k′), kB being the Boltzmann constant andTL being the
lattice temperature which will be taken as constant.

In the case of acoustic phonon scattering in the elastic approximation we have (JA-
COBONI and REGGIANI [1983], JACOBONI and LUGLI [1989])

(1.10)P(k,k′)= kBTLΞ
2
d

4π2h̄ρv2
s

δ(E − E ′),

whereδ is the Dirac delta function,Ξd is the deformation potential of acoustic phonons,
ρ the mass density of the material andvs the sound speed of the longitudinal acoustic
mode.

In the case of nonpolar optical phonon interaction (which is very important in Sil-
icon), the scattering rate reads (JACOBONI and REGGIANI [1983], JACOBONI and
LUGLI [1989])

(1.11)P±(k,k′)= (DtK)
2

8π2ρω

(
nB + 1

2 ∓ 1
2

)
δ(E ′ − E ∓ h̄ω),

whereDtK is the deformation potential for nonpolar optical phonons,h̄ω is the longi-
tudinal optical phonon energy andnB is the phonon equilibrium distribution according
to the Bose–Einstein statistics

nB = 1

exp(h̄ω/kBTL)− 1
.

The upper sign refers to absorption processes and the lower sign refers to emission
processes. The total scattering rate is given by the sum of these two terms

(1.12)P(k,k′)= (DtK)
2

8π2ρω

[
nBδ(E ′ − E − h̄ω)+ (nB + 1)δ(E ′ − E + h̄ω)

]
.

In this article the contribution due to the impurities will be neglect.
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1.2. Macroscopic models

Macroscopic models are obtained from the moment equations of the Boltzmann trans-
port equation suitably truncated at a certain orderN . The truncation procedure requires
solving the following two important problems:

(i) the closure for higher order fluxes;
(ii) the closure for the production terms.

If a N -moment model is considered, the closure problem consists in finding an appro-
priate expression for the higher order moments and the production terms as suitable
functions (constitutive relations) of the firstN moments.

The macroscopic balance equations are deduced as moment equations of the Boltz-
mann transport equation as in gasdynamics. By multiplying Eq. (1.5) by a functionψ(k)
and integrating overB, one finds themoment equation

∂Mψ

∂t
+
∫
B
ψ(k)vi(k)

∂f

∂xi
d3k − eEj

∫
B
ψ(k)

∂

∂kj
f d3k

(1.13)=
∫
B
ψ(k)C[f ]d3k,

with

Mψ =
∫
B
ψ(k)f d3k,

the moment relative to the weight functionψ .
Since∫

B
ψ(k)

∂f

∂kj
d3k =

∫
∂B
ψ(k)f nj dσ −

∫
B
f
∂ψ(k)
∂kj

d3k,

with n outward unit normal field on the boundary∂B of the domainB and dσ surface
element of∂B, Eq. (1.13) becomes

∂Mψ

∂t
+ ∂

∂xi

∫
B
fψ(k)vi(k)d3k + eEj

[∫
B
f
∂ψ(k)
∂kj

d3k −
∫
∂B
ψ(k)f nj dσ

]
(1.14)=

∫
B
ψ(k)C(f )d3k.

The term∫
∂B
ψ(k)f n dσ

vanishes either whenB is expanded toR3 (because in order to guarantee the integrabil-
ity conditionf must tend to zero sufficiently fast ask (→ ∞) or whenB is compact and
ψ(k) is periodic and continuous on∂B. This latter condition is a consequence of the
periodicity off onB and the symmetry ofB with respect to the origin.

Various models employ different expression ofψ(k) and number of moments. More-
over a unipolar or bipolar version can be formulated. In the sequel only the motion of
electrons in the valence bands will be considered and the motion of the holes neglected.
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1.3. Hydrodynamical models: the BBW model

The energy bands are assumed to be of parabolic type and the classical moment equa-
tions are considered: continuity equation and the balance equations of linear momentum
(particle flux) and energy1

(1.15)
∂n

∂t
+ ∂(nVi)

∂xj
= 0,

(1.16)
∂(nVi)

∂t
+ ∂(nPij )

∂xj
+ neEi

m∗ = nCPi,

(1.17)
∂(nW)

∂t
+ ∂(nSj )

∂xj
+ neVkE

k = nCW,

where

(1.18)n=
∫
B
f d3k is the electron density,

(1.19)Vi = 1

n

∫
B
vif d3k is the average electron velocity,

(1.20)W = 1

n

∫
B
E(k)f d3k is the average electron energy,

(1.21)Si = 1

n

∫
B
f viE(k)d3k is the energy flux,

(1.22)Pij = 1

n

∫
B
f vivj d3k is the pressure tensor,

(1.23)CPi = 1

n

∫
B
C[f ]vi d3k is the linear momentum production,

(1.24)CW = 1

n

∫
B
C[f ]E(k)d3k is the energy production.

This approach dates back to the pioneering work of BLOTEKJAER[1970] and then BAC-
CARANI and WORDEMAN [1982]. Because of its widespread popularity we denote this
model by BBW (Blotekjaer–Baccarani–Wordeman).

Let us introduce the random componentm∗c of h̄k, then

h̄k =m∗(V + c),

and one can decompose the tensorPij as

nPij = nViVj +
∫

d3kf cicj .

1Unless otherwise stated, summation over repeated indices is assumed.
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If one splits the tensor̂θij = ∫
d3k cicjf into an isotropic and traceless part2

θ̂ij = 1
3 θ̂
k
k δij + θ̂〈ij〉 whereθ̂ kk =

∫
d3kf c2,

then

(1.25)Pij = nViVj + 1
3 θ̂
k
k δij + θ̂〈ij〉.

In the model of Baccarani and Wordeman the anisotropic tensorθ̂〈ij〉 is neglected,
θ̂〈ij〉 = 0. For the energy density one finds

nW = m∗

2

(
nV 2 + θ̂ kk

)
.

Now we define the electron temperatureT (distinct from the lattice temperatureTL) by
assuming, in analogy with kinetic energy of monatomic gas, the equation of state for
ideal gas

(1.26)nW − nm∗V2

2
= 3nkBT

2

whence

θ̂ kk = 3nkBT

m∗ and θ̂ij = nkBT

m∗ δij .

Concerning the productions, the momentum rate of change is assumed to be of the
relaxation time type

(1.27)CPi = −Vi
τp

hence the momentum equation (1.16) rewrites

(1.28)
∂(nVi)

∂t
+ ∂

∂xj

[
nViVj + nkBT

m∗ δij

]
+ nqEi

m∗ = −nVi
τp
.

Furthermore we can decompose the energy flowS as

(1.29)S =WV + kBTV + q,

whereq is the heat flow vector

(1.30)nq = m∗

2

∫
d3kf c2c.

In the BBW model it is assumed thatthe heat flow vector is given by the Fourier law
(closure assumption)

(1.31)q = −κ∇T .
2For a second order symmetric tensor of componentsAij one hasA〈ij〉 = Aij − 1

3A
k
k
δij , Ak

k
being the

trace ofA.
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In the original Baccarani and Wordeman model the Fourier law is simply assumed as
a phenomenological law. A better justification (which however leads to a more com-
plicated expression) has been given by several authors (HÄNSCH [1991], ANILE and
PENNISI [1992]). The closure assumptions of the BBW model for fluxes are open to
criticism. In particular the assumption that the heat flow is described by the Fourier law
is rather questionable (STETTLER, ALAM and LUNDSTROM[1993], CHENG, LIANGY-
ING, FITHEN and YANSHENG [1997]).

Modeling the relaxation times is also a rather delicate question. In the original Bac-
carani and Wordeman formulationτp is determined by the following consideration. One
introduce the electron mobilityµn, related to the momentum relaxation time by

µn = eτp

m∗
and assumes that the Einstein relation relating mobility to diffusivity

Dn = kBT µn

holds also outside thermal equilibrium and thatDn is constant and equal to the low field
diffusivity D0. Hence

D0 = kBTLµn0 = kBT µn,

whereµn0 is the low field mobility, whence

τp = m∗µn0TL

eT
.

The energy production term is also assumed to be of relaxation type

CW = −nW −W0

τw
,

whereτw is the energy relaxation time andW0 = 3kBTL
2 is the equilibrium energy.

The relaxation timeτw is obtained by approximating it with the corresponding ex-
pression of the stationary and homogeneous case

τw = W −W0

e|E|V
and by expressing the electric field|E| as a function of temperature by using the
Caughey–Thomas formula for the high-field mobility (see SELBERHERR[1984])

µn = µn0

[
1+

(
µn0|E|
vs

)2]−1/2

,

wherevs = 1.0× 107 cm/s is the saturation velocity. Since in the homogeneous case

Vi = τpeEi

m∗ = µnEi,

then

τw = m∗µn0TL

2eT
+ 3kBµn0T TL

2ev2
s (T + TL)

.
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The modeling of the thermal conductivity coefficient is obtained from the Wiedemann–
Franz law (which is justified only near thermal equilibrium)

(1.32)κ =
(

5

2
+ c

)(
kB

e

)2

nqµnT ,

where the constantc is related to the exponent in the expression for the relaxation time

τ(E)= τ0

( E
E0

)c
.

In the original model of Baccarani and Wordeman the choicec= −1 is made and there-
fore

κ = 3

2

(
kB

e

)2

neµnT .

The BBW hydrodynamical model for electrons consists then of the following equa-
tions.

– continuity equation

(1.33)
∂n

∂t
+ ∇ · (nV)= 0;

– momentum equation

(1.34)
∂(nVi)

∂t
+ ∂

∂xj

(
nViVj + nkBT

m∗ δij

)
+ nqEi

m∗ = −nVi
τp

;

– energy equation

∂

∂t

(
1

2
nm∗V2 + 3

2
nkBT

)
+ ∇ ·

[(
1

2
nm∗V 2 + 5

2
nkBT

)
V

(1.35)− κ∇T
]

+ neE · V = −W −W0

τw
;

– Poisson’s equation

(1.36)∇ · (ε∇φ)= e(NA −ND + n− p).

These equations, were not for the collision terms, would be the same as the balance
equations for a charged heat conducting fluid coupled to Poisson’s equation.

GARDNER, JEROME and ROSE [1989] and GARDNER [1991], GARDNER [1993]
numerically integrated the BBW model for the ballistic diode in the stationary case. In
GARDNER [1991] the system of equations was discretized by using central differences
(if the flow is everywhere subsonic) or second order upwind method (for transonic flow).
The discretized system is then linearized by using Newton’s method with a damping
factor. In this way Gardner was able to show evidence for an electron shock wave in
the diode. In ANILE, MACCORA and PIDATELLA [1995] Gardner’s results have been
recovered by using a viscosity method.
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Numerical solutions in the nonstationary case have been obtained in FATEMI ,
JEROME and OSHER [1991] by using an ENO scheme. The same results have been
obtained in ROMANO and RUSSO[2000] by using a central scheme.

We remark that, as proved in ANILE and MUSCATO [1995], ANILE and MUSCATO

[1996] the Onsager conditions do not hold for the BBW model and this highlights the
poor physical consistency of such a closure.

1.4. The extended hydrodynamical model

In a series of articles (ANILE and PENNISI [1992], ANILE and MUSCATO [1995],
ANILE and MUSCATO [1996], ANILE, ROMANO and RUSSO [1998], ANILE, JUNK,
ROMANO and RUSSO [2000], ANILE and ROMANO [1999], ANILE and ROMANO

[2000], ROMANO [2000]) a general framework for getting closure relation is proposed.
At variance with previous treatments, it is not anad hocprocedure but it is based on
the application of the entropy principle within the framework of Extended Thermody-
namics (MÜLLER and RUGGERI [1998], JOU, CASAS-VAZQUEZ and LEBON [1993])
or equivalently the Maximum Entropy Principle or the moment theory of LEVERMORE

[1995], LEVERMORE[1996]. Apart from the usual balance equations for carriers den-
sity, momentum and energy, this class of models comprises evolution equations for the
heat flux and shear stress.

The resulting system is hyperbolic in a suitable domain of the space of variables. In
the stationary case, by linearizing the heat flux equation for small temperature gradi-
ents (Maxwellian iteration) one obtains an extension of the Fourier law which includes
also a convective term. With the addition of this term, the Onsager relations for small
deviations from thermodynamical equilibrium are verified (at variance with the BBW
model). Furthermore the heat conductivity turns out to be directly related to the energy-
flux relaxation time and does not contain any undetermined free parameters (at variance
with the BBW model).

We illustrate the main guidelines upon which to construct the model. Then specific
results will be presented in the case of the Kane dispersion relation and, as limiting case,
in the parabolic band approximation.

Concerning the moment equations, several choices of the weight functionψ can be
made and they lead to different balance equations for macroscopic quantities. We take
the following set of weight functions: 1,̄hk, E andEv.

By considering such expressions forψ one obtains the continuity equation (indeed
a term due to the generation-recombination mechanism should appear in the right-hand
side, but this effect is relevant for times of order 10−9 s and in most applications can
be neglected because the characteristic times are of order of a fraction of picosecond),
the balance equation for the crystal momentum, the balance equation for the electron
energy, and the balance equation for the electron energy flux. Since only the Kane dis-
persion relation or the parabolic case will be considered in the sequel, we neglect the
boundary integral terms in the moment equations. Then the explicit form of the macro-
scopic balance equations reads

(1.37)
∂n

∂t
+ ∂(nVi)

∂xi
= 0,
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(1.38)
∂(nPi)

∂t
+ ∂(nUij )

∂xj
+ neEi = nCPi,

(1.39)
∂(nW)

∂t
+ ∂(nSj )

∂xj
+ neVkE

k = nCW,

(1.40)
∂(nSi)

∂t
+ ∂(nFij )

∂xj
+ neEjGij = nCWi,

where

n=
∫
B
f d3k is the electron density,

Vi = 1

n

∫
B
f vi d

3k is the average electron velocity,

W = 1

n

∫
B
E(k)f d3k is the average electron energy,

Si = 1

n

∫
B
f viE(k)d3k is the energy flux,

Pi = 1

n

∫
B
f h̄ki d

3k is the average crystal momentum,

Uij = 1

n

∫
B
f vikj d3k is the flow of crystal momentum,

Gij = 1

n

∫
B

1

h̄
f
∂

∂kj
(Evi)d3k,

Fij = 1

n

∫
B
f vivjE(k)d3k is the flux of energy flux,

CP i = 1

n

∫
B
C[f ]h̄ki d3k is the production of the crystal momentum

balance equation,

CW = 1

n

∫
B
C[f ]E(k)d3k is the production of the energy balance equation,

CWi = 1

n

∫
B
C[f ]viE(k)d3k is the production of the energy flux

balance equation.

Analogous equations can be written for holes if a two component charge carrier model
is employed.

We remark that in general the average crystal momentumPi does not coincide with
the average electron momentum, but it is related to the latter by

(1.41)Pi =m∗(Vi + 2αSi).

As remarked several times, the moment equations do not constitute a set of closed re-
lations because of the fluxes and production terms. Now we will present a physically
sound procedure for getting the required closure relations.
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If we assume as fundamental variablesn, Vi ,W andSi , which have a direct physical
interpretation, the closure problem consists in expressingPi , Uij , Fij andGij and the
moments of the collision termCPi , CW andCWi as functions ofn, Vi ,W andSi .

We stress that the role of the mean velocityVi here is radically different from that
played in gas dynamics. In fact, for a simple gas the explicit dependence of fluxes on the
velocity can be predicted by requiring Galilean invariance of the constitutive functions.
Instead Eqs. (1.37)–(1.40) are not valid in an arbitrary Galilean reference frame, but they
hold only in a frame where the crystal is at rest (in the applications it can be considered
as inertial and it is possible to neglect the inertial forces). ThereforeVi is the velocity
relative to the crystal and the dependence on it in the constitutive functions cannot be
removed by a Galilean transformation.

The Maximum Entropy Principle (hereafter MEP) leads to a systematic way for ob-
taining constitutive relations on the basis of information theory (see MÜLLER and RUG-
GERI [1998], JOU, CASAS-VAZQUEZ and LEBON [1993], LEVERMORE[1995], LEV-
ERMORE[1996], DREYER [1987] for a review).

According to the MEP, if a given number of momentsMA are known, the distribution
functionfME which can be used to evaluate the unknown moments off corresponds
to the extremal of the entropy functional under the constraints that it yields exactly the
known momentsMA

(1.42)
∫
B
ψAfME d3k =MA.

Since the electrons interact with the phonons describing the thermal vibrations of the
ions placed at the points of the crystal lattice, in principle we should deal with a two
component system (electrons and phonons). However, if one considers the phonon gas
as a thermal bath at constant temperatureTL, only the electron component of the entropy
must be maximized. Moreover, by considering the electron gas as sufficiently dilute, one
can take for the electron gas the expression of the entropy obtained as limiting case of
that arising in the Fermi statistics

(1.43)s = −kB
∫
B
(f logf − f )d3k.

If we introduce the Lagrange multipliersΛA, the problem to maximizes under the
constraints (1.42) is equivalent to maximize the Legendre transform ofs,

s′ =ΛAMA − s,

without constraints,

δs′ = 0.

This gives[
logf + ΛAψA

kB

]
δf = 0.

Since the latter relation must hold for arbitraryδf , it follows

(1.44)fME = exp

[
− 1

kB
ΛAψA

]
.
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If n, Vi ,W andSi are assumed as fundamental variables, then

ψA = (1,v,E,Ev)

and

ΛA = (
λ, kBλi, kBλ

W , kBλ
W
i

)
with λ Lagrange multiplier relative to the densityn, λW Lagrange multiplier relative
to the energyW , λi Lagrange multiplier relative to the velocityvj andλWi Lagrange
multiplier relative to the energy fluxSj . Therefore the maximum entropy distribution
function reads

(1.45)fME = exp

[
−
(

1

kB
λ+ λWE + λivi + λWi viE

)]
,

with ΛA functions of the momentsMA.
In order to get the dependence of theΛA’s from theMA, one has to invert the con-

straints (1.42). Then by taking the moments offME andC[fME] one finds the closure
relations for the fluxes and the production terms of the system (1.37)–(1.40). On account
of the analytical difficulties this can be achieved only with a numerical procedure. For
example, in the case of gas dynamics, in LE TALLEC and PERLAT [1997] the multi-
pliers have been used as independent unknowns, and the conserved field and the flux
have been computed by performing a numerical integration in velocity space. Here we
overcome the problem looking for an asymptotic form offME as follows.

At equilibrium the distribution function is isotropic

(1.46)fEQ = exp

[
−
(

1

kB
λE + E

kBT0

)]
,

that is at equilibrium

λWE = 1

kBT0
, λiE = 0, λWiE = 0.

Monte Carlo simulations for electron transport in Si show that the anisotropy off is
small even far from equilibrium.

Upon such a consideration we make theansatzof small anisotropy forfME , as mea-
sured by the small anisotropy parameterδ.

For details about the closure relations see ANILE and ROMANO [1999], ROMANO

[2000]. Here we summarize the results up to first order inδ. Concerning the tensors
Uij , Fij andGij , one has

(1.47)Uij =Uδij , Fij = Fδij , Gij =Gδij ,

with

(1.48)U = 2

3d0

∫ ∞

0

[
E(1+ αE)

]3/2 exp
(−λW(0)E)dE,

(1.49)F = 2

3m∗d0

∫ ∞

0
exp

(−λW(0)E)E[E(1+ αE)]3/2
1+ 2αE dE,

(1.50)G= 1

m∗d0

∫ ∞

0
exp

(−λW(0)E)[1+ 2(1+ αE)
3(1+ 2αE)2

]
E3/2

√
1+ αE dE .
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λW(0) is the expression of the Lagrange multipliers relative to the energy up to first order
in δ (see ANILE and ROMANO [1999]).
CPi andCWi have the form(

CPi

CWi

)
=
(
c11 c12
c21 c22

)(
Vi

Si

)
.

The production terms are the sum of the term due to the elastic scatterings (acoustical
phonon scattering) and that due to inelastic phonon scatterings. Therefore the produc-
tion matrixC = (cij ) is given by the sumC = C(ac) +C(np).

Concerning the acoustic phonon scattering, the contribution to the energy balance
equation is zero while the production matrixC(ac) = (c

(ac)
ij ) can be written asC(ac) =

A(ac)B. The coefficientsbij of the matrixB are given by ANILE and ROMANO [1999]

b11 = a22

�
, b12 = −a12

�
, b22 = a11

�

with

a11 = − 2p0

3m∗d0
, a12 = − 2p1

3m∗d0
, a22 = − 2p2

3m∗d0
, �= a11a22 − a2

12,

d0 =
∫ ∞

0

√
E(1+ αE) (1+ 2αE)exp

(−λW(0)E)dE,

pk =
∫ ∞

0

[E(1+ αE)]3/2Ek
1+ 2αE exp

(−λW(0)E)dE, k = 0,1, . . . .

The coefficients of the matrixA(ac) read

a
(ac)
11 = Kac

d0

∫ ∞

0
E2(1+ αE)2(1+ 2αE)exp

(−λW(0)E)dE,

a
(ac)
12 = Kac

d0

∫ ∞

0
E3(1+ αE)2(1+ 2αE)exp

(−λW(0)E)dE,

a
(ac)
21 = Kac

m∗d0

∫ ∞

0
E3(1+ αE)2 exp

(−λW(0)E)dE,

a
(ac)
22 = Kac

m∗d0

∫ ∞

0
E4(1+ αE)2 exp

(−λW(0)E)dE,

where

Kac = 8π
√

2(m∗)3/2Kac
3h̄3

, Kac = kBTLΞ
2
d

4π2h̄ρv2
s

.

Concerning the nonpolar phonon scattering the production term of the energy balance
equation is given byCW =∑6

A=1CWA
, where for each valley (ROMANO [2001])

CWA
= 3

2

Knp

d0

∑
±

(
nB + 1

2
∓ 1

2

)[
exp

(
± h̄ωnp

kBTL
∓ λW(0)h̄ωnp

)
− 1

]
η±,
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with

η± =
∫ ∞

h̄ωnpH(1∓1)

√
E(1+ αE)(1+ 2αE)exp

(−λW(0)E)dE,

N± =
√
(E ± h̄ωnp)[1+ α(E ± h̄ωnp)]

[
1+ 2α(E ± h̄ωnp)

]
,

and

Knp = 8π
√

2(m∗)3/2Knp
3h̄3

, Knp = Zf
(DtK)

2

8π2ρωnp
.

H is the Heaviside function

H(x)=
{

1 if x > 0,
0 otherwise.

The coefficients of the production matrixC(np) = (c
(np)
ij ) are given byc(np)ij =∑6

A=1 c
(np)
Aij

. For each valley one hasC(np) =A(np)B, where the matrixA(np) has com-
ponents (see ROMANO [2001])

a
(np)

11 = Knp

d0

∑
±

(
nB + 1

2
∓ 1

2

)∫ ∞

h̄ωnpH(1∓1)
N±E3/2(1+ αE)3/2

× exp
(−λW(0)E)dE,

a
(np)

12 = Knp

d0

∑
±

(
nB + 1

2
∓ 1

2

)∫ ∞

h̄ωnpH(1∓1)
N±E5/2(1+ αE)3/2

× exp
(−λW(0)E)dE,

a
(np)

21 = Knp

m∗d0

∑
±

(
nB + 1

2
∓ 1

2

)∫ ∞

h̄ωnpH(1∓1)
N±

E5/2(1+ αE)3/2
1+ 2αE

× exp
(−λW(0)E)dE,

a
(np)

22 = Knp

m∗d0

∑
±

(
nB + 1

2
∓ 1

2

)∫ ∞

h̄ωnpH(1∓1)
N±

E7/2(1+ αE)3/2
1+ 2αE

× exp
(−λW(0)E)dE .

In order to speed up the computation, in the numerical code we do not evaluateτW and
the coefficientscij at each time step by using the above formulas. Instead we calculate in
advance a numerical table of the variables as functions of the energyW and during the
simulation we determine particular values by interpolation. In Table 1.1 we report the
values of the physical parameters used in the simulations. The coupling constants and
the values of the energy phonons for each valley are reported in Table 1.2 (JACOBONI

and REGGIANI [1983]).
The parabolic band limit of the closures for the production terms is recovered from

the results obtained in the case of Kane dispersion relation asE (→ 0 (see ANILE and
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TABLE 1.1
Values of the physical parameters used for silicon

me electron rest mass 9.1095× 10−28 g
m∗ effective electron mass 0.32me
TL lattice temperature 300 K
ρ density 2.33 g/cm3

vs longitudinal sound speed 9.18× 105 cm/sec
Ξd acoustic-phonon deformation potential 9 eV
α nonparabolicity factor 0.5 eV−1

εr relative dielectric constant 11.7
ε0 vacuum dieletric constant 8.85× 10−18 C/V µm

TABLE 1.2
Coupling constants and phonon energies for the inelastic scatterings in silicon

A Zf h̄ω (meV) DtK (108 eV/cm)

1 1 12 0.5
2 1 18.5 0.8
3 4 19.0 0.3
4 4 47.4 2.0
5 1 61.2 11
6 4 59.0 2.0

ROMANO [1999], ROMANO [2000] for more details). Concerning the fluxes one has

UPij = 2

3
Wδij , m∗FPij = 10

9
W2δij , Gij = 1

m∗ (Uij +Wδij ).

Concerning the production terms one finds what follows.
For the acoustic phonon scattering we have

a
(ac)
11 = 32

3

√
2πKac
h̄3

(m∗)3/2
(

2

3
W

)3/2

,

a
(ac)
12 = 32

√
2πKac
h̄3

(m∗)3/2
(

2

3
W

)5/2

,

a
(ac)
21 = a

(ac)
12

m∗ ,

a
(ac)
22 = 128

√
2πm∗Kac
h̄3

(
2

3
W

)7/2

.

For the nonpolar optical phonon scattering one obtains

CW =
(

2

3
W

)−1/2 2
√

2π(m∗)3/2(h̄ωnp)2

h̄3
Knp

∑
±

(
nB + 1

2
∓ 1

2

)
e±ζ

×
[
exp

(
± h̄ωnp

kBTL
∓ 2ζ

)
− 1

][
K2(ζ )∓K1(ζ )

]
,



Discretization of semiconductor device problems (II) 461

a
(np)

11 = 4

3

(
2

3
W

)−1/2√
2π(m∗)3/2(h̄ωnp)2

h̄3
Knp

∑
±

(
nB + 1

2
∓ 1

2

)
e±ζ

× [
K2(ζ )∓K1(ζ )

]
,

a
(np)

12 = 4

3

√
2

3
W

√
2π(m∗)3/2(h̄ωnp)2

h̄3
Knp

∑
±

(
nB + 1

2
∓ 1

2

)
e±ζ

× {
3K2(ζ )+ 2ζ

[
K1(ζ )∓K2(ζ )

]}
,

a
(np)

21 = a
(np)

12

m∗ ,

a
(np)

22 = 4

3

(
2

3
W

)3/2√
2πm∗(h̄ωnp)2

h̄3
Knp

∑
±

(
nB + 1

2
∓ 1

2

)
e±ζ

× [
K2(ζ )(12∓ 9ζ + 4ζ 2)+K1(ζ )(3ζ ∓ 4ζ 2)

]
,

with ζ = 3h̄ωnp/(4W) and

Kν =
√
π(z/2)ν

Γ (ν + 1
2)

∫ ∞

0
exp(−zcosht)sinh2ν t dt, z, ν > 0,

the modified Bessel functions of second kind.Γ is the Gamma function.

1.5. The formal properties of the hydrodynamical model

In this section we will investigate (ROMANO [2000]) the formal properties of the system
(1.37)–(1.40). We will prove that it forms a hyperbolic system in the physically relevant
region of the space of the dependent variables.

Let us consider the quasilinear system of PDEs

(1.51)
∂

∂t
F (0)(U)+

3∑
i=1

∂

∂xi
F (i)(U)= B(U),

with

F :Ω (→ R
m

sufficiently smooth function andΩ ⊂ Rm. If we consider a smooth solution, we can
introduce the Jacobian matrices

A(β) = ∇UF
(β), β = 0,1,2,3.

We recall that the system (1.51) is saidhyperbolic in the t-directionif det(A(0)(U)) �= 0
and the eigenvalue problem

(1.52)det

(
3∑
i=1

niA
(i)(U)− λA(0)(U)

)
= 0

has real eigenvalues and the eigenvectors spanR
m for all unit vectorsn = (n1, n2, n3).
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In the case of the system (1.37)–(1.40) we have (indeed it is computationally more
convenient to substitute the equation forPi with a linear combination of Eqs. (1.38) and
(1.40) in order to have an equation fornVi )

U =

n

V
W

S

 , F (0) = n


1

m∗V
W

S

 , F (i) = n


Vi

(U − 2αm∗F)ei
Si
nFei

 ,
i = 1, . . . ,3,

whereei is theith column of the 3× 3 identity matrix, and the Jacobian matrices are
given by

A(0) =


1 0 0 0
m∗V m∗nI3 0 0
W 0 n 0
S 0 0 nI3

 ,

A(n) =
3∑
i=1

niA
(i) =


n · V nnT 0 0

(U − 2αm∗F)n 0 n(U ′ − 2αm∗F ′)n 0
n · S 0 0 nnT

Fn 0 nF ′n 0

 ,
where the prime denote partial derivation with respect toW .

Let us introduce the region̂Ω = {U ∈ R
8: n > 0, W > 0} and the functions

g1(W)=
(
U +m∗F ′ −WU ′ + 2αm∗(WF ′ − F)

)2
(1.53)− 4m∗(UF ′ −U ′F),
(1.54)g2(W)=U +m∗F ′ −WU ′ + 2αm∗(WF ′ − F)−√

g1(W),

(1.55)g3(W)= (U − 2αm∗F)F ′ − (U ′ − 2αm∗F ′)F.

In ROMANO [2001] the following algebraic lemma has been proved

PROPOSITION1. If the inequalities

(1.56)g1(W) > 0, g2(W) > 0, g3(W) > 0

are satisfied, in the region̂Ω the system(1.37)–(1.40)is hyperbolic and the eigenvalues
are given by

(1.57)λ1,2,3,4 = 0,

(1.58)

λ±± = ±
√

2
2

{
U +m∗F ′ −WU ′ + 2αm∗(WF ′ − F)

± [(
U +m∗F ′ −WU ′ + 2αm∗(WF ′ − F)

)2
− 4m∗(UF ′ −U ′F)

]1/2}1/2
.

We remark that in the one-dimensional case the system becomes strictly hyperbolic
with eigenvaluesλ±±.
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Now let us check the conditions (1.56). In the parabolic band limit one has

g1(W)= 160

81
W2, g2(W)= 4

9
(5− √

10)W, g3(W)= 20

27
W2

and the conditions (1.56) are trivially satisfied in̂Ω . The eigenvalues are

(1.59)λ1,2,3,4 = 0 and λ±± = ±
√
(10± 2

√
10)W.

In the case of the Kane dispersion relation we have numerically evaluated the func-
tion g1(W), g2(W) andg3(W) for the range of values ofW typically encountered in
the electron devices. Fig. 1.1 shows that the relations (1.56) are satisfied also in the
nonparabolic case.

FIG. 1.1. The functionsg1(W), g2(W) andg3(W) versus the energyW (eV) in the parabolic case (dashed
line) and for the Kane dispersion relation (continuous line).
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Therefore we can conclude thatat least for the values ofW of practical interest the
system(1.37)–(1.40)is hyperbolic.

2. Numerical methods

The numerical solution of hydrodynamical models is a delicate problem, and it requires
suitable techniques. Hydrodynamical models have the mathematical structure of hyper-
bolic systems with a source term of the form given by Eq. (1.51).

The source termB(U) generically represents relaxation terms and drift terms con-
taining the electric field. The latter is related to the charge density through the Poisson
equation.

In some reduced hydrodynamical models, the termB(U) may contain second order
derivatives, describing diffusion and shear stress effects, and therefore the system has a
degenerate parabolic character.

In spite of its mixed character, however, the system is dominantly hyperbolic, and the
numerical techniques appropriate for its discretization are derived from those used in
the context of hyperbolic systems of conservation laws.

In this section we focus our attention on the description of modern shock capturing
methods for conservation laws, in one and several space dimensions. At the end of the
section we show how these methods can be combined with Poisson solvers and with
a proper treatment of the source, in order to obtain accurate numerical solutions of
systems of the form (1.51).

Applications will be presented in the next section.

2.1. General description

Let us consider system (1.51). Let us choose the conservative variables as unknown field
vector. Then the system writes

(2.1)
∂

∂t
U +

3∑
i=1

∂

∂xi
Fi(U)= B(U),

Several strategies can be used to discretize with respect to time.
The simplest one is a fractional step method. The equation is subdivided into simpler

steps, each of which can be solved separately. This approach has the advantage of being
modular, and therefore each step can be solved with the most appropriate technique.
Given the numerical solution at time stepn, Un, the solution after one time step�t can
be obtained by solving the two following steps

(2.2)
∂Ũ
∂t

= B(Ũ), Ũ(0)= Un,

(2.3)
∂Û
∂t

+
3∑
i=1

∂

∂xi
Fi(Û)= 0, Û(0)= Ũ(�t)

and then assignUn+1 = Û(�t). This splitting strategy is called simple splitting, and it
is first order accurate in time, even if the two steps are solved exactly. A better splitting
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strategy is the so-called Strang splitting (STRANG [1968]), which guarantees second
order accuracy, if both steps are not stiff, and if each of them is solved with at least
second order accuracy. Strang splitting consists in solving Eq. (2.2) for half time step.
Then Eq. (2.3) is solved for a time step�t , and finally Eq. (2.2) is solved again for a
time step�t/2. A different second order splitting scheme will be considered later, when
we discuss the applications.

As an alternative to splitting, nonsplitting schemes will be also presented in Sec-
tion 2.8.

The convection step consists in the solution of a hyperbolic system of conservation
laws. The solution of such system may develop discontinuities, such as shocks, in finite
time. Suitable methods, known asshock capturing methods, have been developed for
the numerical approximation of conservation laws.

2.2. Shock capturing schemes

Solutions of conservation laws may develop jump discontinuities in finite time. To un-
derstand how to obtain numerical approximations that converge to the (discontinuous)
solution has been a nontrivial task. The mathematical theory of a quasilinear hyperbolic
systems of conservation laws has been used as a guideline in the development of modern
numerical schemes for conservation laws (LAX [1973]). Such schemes can be divided
into two broad classes: front tracking and shock capturing schemes. In front tracking
schemes the surface of discontinuity is computed explicitly, and the evolution of the
field on the two sides of the surface is followed by computing the flow in the smooth
regions, with additional sets of boundary conditions on the surface. It is not necessary to
compute derivatives of the field across the discontinuity surface, and therefore the prob-
lem of spurious oscillations across it is overcome. Although such schemes can provide
an accurate description of the shock motion, they are not very popular, since in general
they require some “a priori” knowledge of the flow, and they are more complicated to
treat, especially for complex flows (CHERN, GLIMM , MCBRYAN, PLOHR and YANIV

[1986]).
In shock capturing schemes, on the contrary, the location of the discontinuity iscap-

turedautomatically by the scheme as a part of the solution where sharp fronts develop.
Although shock capturing schemes for conservation laws may be based on finite ele-

ment methods (see, for example, the review papers by C. Johnson and by B. Cockburn
in COCKBURN, JOHNSON, SHU and TADMOR [1998] or the recent book COCKBURN,
KARNIADAKIS and SHU [2000] and references therein), most shock capturing schemes
are based on finite volume or finite difference discretization in space.

A good introductory book which deals with wave propagation and shock capturing
schemes (mainly upwind schemes, in one space dimension) is the book by LEVEQUE

[1990]. A mathematically oriented reference book on the numerical solutions of conser-
vation laws is the book by GODLEWSKI and RAVIART [1996]. Several schemes, mainly
based on Riemann solver, with a lot of numerical examples are considered in the book
by TORO [1999]. A good review of modern numerical techniques for the treatment of
hyperbolic systems of conservation laws is given in the lecture notes of a CIME course
held in 1998 (COCKBURN, JOHNSON, SHU and TADMOR [1998]).
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Most schemes for the numerical solution of conservation laws are based on the Go-
dunov scheme, and on the numerical solution of the Riemann problem (LAX [1973]).
For numerical purpose it is often more convenient to resort to approximate solvers, such
as the one proposed by Roe for gas dynamics (ROE [1981]). Although such solution or
its numerical approximation is known in many cases of physical relevance, in the case
of hydrodynamical models of semiconductors the eigenvalues and eigenvectors of the
matrix of the system are not known analytically for some models, and even if they are
known, the solution to the Riemann problem or its numerical approximation is hard to
compute. In such cases it is desirable to use schemes that do not require the knowledge
of the solution of the Riemann problem.

We call such schemes “central schemes”. The prototype central scheme is Lax–
Friedrichs scheme. It is well known that Lax–Friedrichs scheme is more dissipative
than first order upwind scheme, however it is simpler to use, since it does not require
the knowledge of the sign of the flux derivative or the eigenvector decomposition of
the system matrix (see, for example, LEVEQUE [1990] for a comparison between Lax–
Friedrichs and upwind schemes).

Second order central schemes have been introduced in NESSYAHU and TADMOR

[1990] and SANDERS and WEISER [1989]. After that, central schemes have devel-
oped in several directions. We mention here the improvement of second order central
scheme and the development of semidiscrete central scheme in one space dimension
(KURGANOV and TADMOR [2000]), the development of high order central schemes in
one space dimension (LIU and TADMOR [1998], BIANCO, PUPPOand RUSSO[1999],
LEVY, PUPPOand RUSSO[2001]), central schemes in several space dimensions on rec-
tangular grids (ARMINJON and VIALLON [1995], ARMINJON, VIALLON and MAD-
RANE [1997], JIANG and TADMOR [1998], LEVY, PUPPOand RUSSO[2000], LEVY,
PUPPO and RUSSO [2001]), and on unstructured grids (ARMINJON and VIALLON

[1999]), the development of central schemes to hyperbolic systems with source term
(BEREUX and SAINSAULIEU [1997], LIOTTA, ROMANO and RUSSO[1999], LIOTTA,
ROMANO and RUSSO[2000], PARESCHI [2001]). Central schemes have been applied
to a variety of different problems. Here we mention the application to the hydrodynam-
ical models of semiconductors (ANILE, JUNK, ROMANO and RUSSO[2000], ANILE,
NIKIFORAKIS and PIDATELLA [1999], ANILE, JUNK, ROMANO and RUSSO[2000],
ROMANO and RUSSO[2000], TROVATO and FALSAPERLA [1998]).

Closely related to the above mentioned central schemes are finite volume and finite
difference schemes which do not make use of the characteristic structure of the system,
or which do not require (exact or approximate) Riemann solvers. Such schemes are,
for example, conservative schemes which use the local Lax–Friedrichs flux function.
High order schemes of this type have been developed mainly by Shu, using Essentially
Non-Oscillatory (ENO) and Weighted Essentially Non-Oscillatory space discretization
(COCKBURN, JOHNSON, SHU and TADMOR [1998] and references therein, and JIANG

and SHU [1996]). The semi-discrete central scheme developed by Kurganov and Tad-
mor for conservation laws is equivalent to a the second order finite-volume scheme
which uses a local Lax–Friedrichs flux function. ENO and WENO type schemes have
been used in the context of hydrodynamical models of semiconductors (see, for ex-
ample, FATEMI , JEROME and OSHER[1991], JEROME and SHU [1994]), however the
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structure of the hyperbolic part of the model they considered was very similar to that of
compressible Euler equations of gas dynamics, and therefore Riemann-based schemes
could be used.

Finally we mention that a comparison between modern finite element, finite differ-
ence and finite volume schemes can be found in the papers SHU [2001], ZHOU, LI and
SHU [2001].

2.3. Conservative schemes

We start by considering conservation laws in one space dimension of the form

(2.4)
∂u

∂t
+ ∂f (u)

∂x
= 0.

Let us discretize the equation by dividing space into cellsIj = [xj−1/2, xj+1/2], and
time in discrete levelstn. In finite difference schemes, the unknown is an approximation
of the pointwise value of the fieldu at the center of the cells. In finite volume schemes,
the unknown represents an approximation of the cell average of the field:

ūnj ≈ 1

�xj

∫ xj+1/2

xj−1/2

u(x, tn)�x.

Finite difference schemes are more efficient for multidimensional computation, when
high order accuracy is required. On the other hand, they require a regular grid with
constant (or at least smoothly varying) grid spacing. Finite volume schemes, on the
other hand, are very flexible, and they can be implemented on unstructured grids. We
shall mainly consider here finite volume schemes.

For simplicity we assume that the cells are all of the same size�x = h, so that the
center of cellj is xj = x0 + jh. This assumption is not necessary for finite volume
schemes.

Integrating the conservation law over a cell in space–timeIj ×[tn, tn+1] (see Fig. 2.1)
one has∫ xj+1/2

xj−1/2

u(x, tn+1)=
∫ xj+1/2

xj−1/2

u(x, tn)

(2.5)−
∫ tn+1

tn

(
f
(
u(xj+1/2, t)

)− f
(
u(xj−1/2, t)

))
dt.

FIG. 2.1. Integration over a cell and Godunov methods.
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This (exact) relation suggests the use of numerical scheme of the form

(2.6)ūn+1
j = ūnj − �t

h
(Fj+1/2 − Fj−1/2),

whereūnj denotes an approximation of the cell average of the solution on cellj at time
tn, andFj+1/2, which approximates the integral of the flux on the boundary of the cell,
is the so-callednumerical flux, and depends on the cell average of the cells surrounding
pointxj+1/2. In the simplest case it is

Fj+1/2 = F(ūj , ūj+1)

with F(u,u)= f (u) for consistency. Such schemes, called conservative schemes, have
the properties that they satisfy a conservation property at a discrete level. This is es-
sential in providing the correct propagation speed for discontinuities, which depends
uniquely on the conservation properties of the system.

Furthermore, Lax–Wendroff theorem (LAX and WENDROFF[1960]) ensures that if
u(x, t) is the limit of a sequence of discrete solutionsūnj of a consistent conservative
scheme, obtained as the discretization parameterh vanishes, thenu(x, t) is a weak
solution of the original equation.

Lax–Wendroff theorem assumes that the sequence of numerical solutions converges
strongly to a functionu(x, t). Convergence of numerical schemes is studied through the
TVD (Total Variation Diminishing) property. A discrete entropy condition is used to
guarantee that the numerical solution converges to the unique entropic weak solution of
Eq. (2.4) (in the scalar case). For a discussion on these issues see the book by LEVEQUE

[1990] and GODLEWSKI and RAVIART [1996].

2.4. Godunov scheme

The numerical flux function identifies the conservative scheme. A class of widely devel-
oped methods is that ofupwind schemes(see, for example, LEVEQUE[1990]), in which
the numerical flux takes into account the characteristic structure of the system.

The prototype of upwind schemes for conservation laws is the Godunov scheme. It is
based on two fundamental ideas. The first is that the solution is reconstructed from cell
averages at each time step as a piecewise polynomial inx. In its basic form, the solution
is reconstructed as a piecewise constant function

(2.7)u(x, tn)≈R(x; ūn)=
∑
j

ūnjχj (x),

whereχj (x) is the indicator function of intervalIj = [xj−1/2, xj+1/2]. The second is
that for a piecewise constant function, the solution of the system, for short time, can be
computed as the solution of a sequence of Riemann problems.

A Riemann problem is a Cauchy problem for a system of conservation laws, where
the initial condition is given by two constant vectors separated by a discontinuity

(2.8)u(x,0)=
{
u− x < 0,
u+ x > 0.
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For the scalar equation the solution to the Riemann problem is known analytically. For
a system of conservation laws, the solution consists of a similarity solution that depends
on the variablex/t . In several cases of interest, such as gas dynamics with polytropic
gas, the solution to the Riemann problem is known analytically (LAX [1973]).

Sometimes, for efficiency reason, it is more convenient to use approximate solutions
to the Riemann problem (ROE [1981]).

Once the solution to the Riemann problem is known, it can be used for the construc-
tion of the Godunov scheme.

Let us denote byu∗(u−, u+) the solution of the Riemann problem atx = 0. Then the
exactsolution of Eq. (2.4) can be computed from Eq. (2.5):

(2.9)ūn+1
j = ūnj − �t

�x

(
f
(
u∗(ūj−1, ūj )

)− f
(
u∗(ūj , ūj+1)

))
.

This relation is exact if the Riemann fan does not reach the boundary of the cell (see
Fig. 2.1), i.e., if the following CFL condition (COURANT, FRIEDRICHS and LEWY

[1967]) is satisfied

(2.10)�t <
�x

ρ(A)
,

whereρ(A)= max1�i�d |λi(A)| is the spectral radius of the Jacobian matrixA= ∇uf ,
λi denoting theith eigenvalue.

If this condition is not satisfied then oscillatory instabilities develop.
Once the cell averages are computed at the new timetn+1, then the solution at this

time is again approximated by a piecewise constant solution of the form (2.7).
Godunov scheme is first order accurate, it is Total Variation Diminishing, and it sat-

isfies a discrete entropy inequality. When applied to a linear system, Godunov method
is equivalent to first order upwind scheme (see LEVEQUE [1990]).

Higher order version of Godunov scheme can be constructed. They are based on
high order nonoscillatory reconstruction and on the solution to the generalized Riemann
problem.

High order nonoscillatory reconstruction is a crucial step. It can be obtained by using
either ENO or WENO techniques. We shall briefly mention them later.

For the moment, we assume we are able to compute such reconstruction of the form

(2.11)u(x, tn)≈R(x; ūn)=
∑
j

Rj (x)χj (x).

Then high order Godunov-type schemes are obtained by solving the system

(2.12)
dūj
dt

= −f (u
∗(u−

j+1/2, u
+
j+1/2))− f (u∗(u−

j−1/2, u
+
j−1/2))

h
,

whereu−
j+1/2 = Rj (xj+1/2), u

+
j+1/2 = Rj+1(xj+1/2). Because the valuesu−

j+1/2 and

u+
j+1/2 depend on the reconstruction, which depends on the cell averages, it turns out

that system (2.13) is a system of ordinary differential equations for the evolution of cell
averages.
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Such system may be solved by a suitable ODE solver, for example, a Runge–Kutta
method, which maintains the accuracy of the spatial discretization (see the paper by Shu
in COCKBURN, JOHNSON, SHU and TADMOR [1998] and references therein).

These methods are based on the (exact or approximate) solution to the Riemann prob-
lem. Such solution is not always available or inexpensive. As an alternative to these high
order extension of the Godunov method, simpler schemes can be constructed, which
make use of less expensive numerical flux function.

The general structure of such schemes is given by

(2.13)
dūj
dt

= −F(u
−
j+1/2, u

+
j+1/2)− F(u−

j−1/2, u
+
j−1/2)

h
,

where u−
j+1/2 and u+

j+1/2 are defined as above, and the numerical flux function
F(u−, u+) defines the scheme. The simplest choice of the numerical flux function is
the so-called Local Lax–Friedrichs flux:

(2.14)F(u−, u+)= 1
2

(
f (u−)+ f (u+)− α(u+ − u−)

)
,

whereα = max(ρ(A(u−)), ρ(A(u+))), andρ(A) denotes the spectral radius of ma-
trix A. The advantage of the local Lax–Friedrichs flux is that it does not require the
knowledge of the solution to the Riemann problem, nor the exact knowledge of the
eigenvalues and eigenvectors of the Jacobian matrix. Only an estimate of the largest
eigenvalue is needed.

The disadvantage of this flux with respect to the Riemann solver is that it introduces
a larger numerical dissipation.

Other flux functions are available. Common requirements that they have to satisfy are
the following: they have to be

(i) locally Lipschitz continuous in both argument;
(ii) nondecreasing in the first argument and nonincreasing in the second argument

(symbolicallyF(↑,↓));
(iii) consistent with the flux function, i.e.,F(u,u)= f (u).

Popular flux functions (for scalar equation), besides the local Lax–Friedrichs described
above, are the Godunov flux

F(a, b)=
{

mina�u�b f (u) if a � b,

maxb�u�a f (u) if a > b

and the Engquist–Osher flux (HARTEN, ENGQUIST, OSHER and CHAKRAVARTHY

[1987]):

F(a, b)=
∫ a

0
max

(
f ′(u),0

)
du+

∫ b

0
min

(
f ′(u),0

)
du+ f (0).

Godunov flux is the least dissipative, and the Lax–Friedrichs the most dissipative among
the three.

Notice, however, that the numerical dissipation is proportional to the jumpu+ − u−,
which is extremely small for high order schemes and smooth solution. For a scheme of
orderp, in fact, it isu+ − u− = O(hp). Therefore the numerical dissipation becomes
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FIG. 2.2. Integration on a staggered grid.

large only near discontinuities, i.e. where it is most needed. As a result, the difference
between exact Riemann flux and local Lax–Friedrichs flux is very pronounced for low
order schemes, but it is not so dramatic for very high order schemes (COCKBURN,
JOHNSON, SHU and TADMOR [1998]).

Another family of schemes, which are intrinsically central, can be derived as follows.
Let us integrate Eq. (2.1) on a staggered grid, as shown in Fig. 2.2.
Integrating on the staggered grid one obtains

(2.15)

∫ xj+1

xj

u(x, tn+1)=
∫ xj+1

xj

u(x, tn)−
∫ tn+1

tn

(
f
(
u(xj+1, t)

)− f
(
u(xj , t)

))
dt.

Once again, this formula isexact. In order to convert it into a numerical scheme one has
to approximate the staggered cell average at timetn, and the time integral of the flux on
the border of the cells.

Let us assume that the functionu(x, tn) is reconstructed form cell averages as a piece-
wise polynomial function. Then the function is smooth at the center of the cell and its
discontinuities are at the edge of the cell. If we integrate the equation on a staggered
cell, then there will be a fan of characteristics propagating from the center of the stag-
gered cell, while the function on the edge (dashed vertical lines in the figure) will remain
smooth, provided the characteristic fan does not intersect the edge of the cell, i.e. pro-
vided a suitable CLF condition of the form

(2.16)�t <
�x

2ρ(A)

is satisfied.
The simplest central scheme is obtained by piecewise constant reconstruction of the

function, and by using a first order quadrature rule in the evaluation of the integrals. The
resulting scheme is

(2.17)unj+1/2 = 1
2

(
unj + unj+1

)− λ
(
f (unj+1)− f (unj )

)
,

whereλ=�t/�x denotes the mesh ratio. Such scheme is just Lax–Friedrichs scheme
on a staggered grid.
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2.5. The Nessyahu–Tadmor central scheme

A second order scheme is obtained by using a piecewise linear approximation for the
reconstruction of the function, and a second order quadrature rule (for example, the
midpoint rule) for the computation of the time integral of the flux on the edges of the
cell.

Such scheme has been proposed by NESSYAHU and TADMOR [1990], and indepen-
dently by SANDERS and WEISER[1989].

The staggered cell average is given by

unj+1/2 = 1

h

∫ xj+1

xj

R(x;un)dx = 1

h

(∫ xj+1

xj+1/2
Lj (x)dx +

∫ xj+1/2

xj

Lj+1(x)
′ dx

)
= 1

2

(
unj + unj+1

)− 1

8

(
u′
j+1 − u′

j

)
,

whereLj (x) = unj + u′
j (x − xj )/h is the linear reconstruction in cellIj . Hereu′

j /h

denotes a first order approximation of the derivative of the function in the cell. The
value of the fieldu at the node of the midpoint rule,un+1/2

j , can be computed by first
order Taylor expansion, which is equivalent to forward Euler scheme,

u
n+1/2
j = unj − (λ/2)f ′

j .

Heref ′
j /h denotes a first order approximation of the space derivative of the flux.

In order to prevent spurious oscillations in the numerical solution, it is essential that
these derivatives are computed by using a suitableslope limiter. Several choices are
possible for the slope limiter. The simplest one is the MinMod limiter. It is defined
according to

MM (a, b)=
{

min(a, b) if a < 0 andb < 0,
max(a, b) if a > 0 andb > 0,
0 if ab < 0.

Such simple limiter, however, degrades the accuracy of the scheme near extrema.
A better limiter is the so-called UNO (Uniform Non-Oscillatory) limiter, proposed by
HARTEN, ENGQUIST, OSHERand CHAKRAVARTHY [1987].

Such limiter can be written as

(2.18)u′
j = MM

(
dj−1/2 + 1

2MM (Dj−1,Dj ), dj+1/2 − 1
2MM (Dj ,Dj+1)

)
,

where

dj+1/2 = uj+1 − uj , Dj = uj+1 − 2uj + uj−1.

Other limiters are possible (see NESSYAHU and TADMOR [1990]).
The quantityf ′

j can be computed either by applying a slope limiter tof (unj ) or by
using the relation

f ′
j =A

(
unj
)
u′
j .
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After one time step, one finds the solution{un+1
j+1/2} on the staggered cells. Then one

repeats a similar step, and after the second step, the solution at timetn+2, {un+1
j } is

determined on the original grid.
Theoretical properties of the scheme, such as TVD property and the so-called “cell

entropy inequality” are discusses in NESSYAHU and TADMOR [1990].

2.6. Multidimensional central schemes

Central schemes can be extended to problems in several dimensions. Second order cen-
tral schemes on rectangular grids have been considered by JIANG and TADMOR [1998],
SANDERSand WEISER[1989], and by ARMINJON and VIALLON [1995], ARMINJON,
VIALLON and MADRANE [1997]. They have been extended to unstructured grids by
ARMINJON and VIALLON [1999]. High order central schemes in two dimensions have
been considered in the papers LEVY, PUPPO and RUSSO [1999], LEVY, PUPPO and
RUSSO[2000], LEVY, PUPPOand RUSSO[2001].

Consider the two-dimensional system of conservation laws

(2.19)ut + f (u)x + g(u)y = 0,

subject to the initial values

u(x, y, t = 0)= u0(x, y),

and to boundary conditions, which we do not specify at this point. The flux functionsf

andg are smooth vector valued functions,f,g :Rd → R
d . The system (2.19) is assumed

to be hyperbolic in the sense that for any unit vector(nx, ny) ∈ R
2, the matrixnx∇uf +

ny∇ug has real eigenvalues and its eigenvectors form a basis ofR
d . In order to integrate

numerically (2.19), we introduce a rectangular grid which for simplicity will be assumed
to be uniform with mesh sizesh=�x =�y in both directions. We will denote byIi,j
the cell centered around the grid point(xi, yj ) = (i�x, j�y), i.e., Ii,j = [xi − h/2,
xi +h/2]×[yj −h/2, yj +h/2]. Let�t be the time step and denote byuni,j the approx-
imated point-value of the solution at the(i, j)th grid point at timetn = n�t . Finally, let
ūni,j denote the cell average of a functionu evaluated at the point(xi, yj ),

ūni,j = 1

h2

∫
Ii,j

u(x, y, tn)dx dy.

Given the cell-averages{ūni,j } at time tn, Godunov-type methods provide the cell-

averages at the next time-step,tn+1, in the following way: first, a piecewise-polynomial
reconstruction is computed from the data{ūni,j } resulting with

(2.20)un(x, y)=
∑
i,j

Ri,j (x, y)χi,j (x, y).

Here,Ri,j (x, y) is a suitable polynomial (which has to satisfy conservation, accuracy
and nonoscillatory requirements), whileχi,j (x, y) is the characteristic function of the
cell Ii,j . Thus, in general, the functionun(x, y) will be discontinuous along the bound-
aries of each cellIi,j .
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FIG. 2.3. The two-dimensional stencil.

In order to proceed, the reconstruction,un(x, y), is evolved according to some ap-
proximation of (2.19) for a time step�t . We will use the fact that the solution remains
smooth at the vertical edges of the staggered control volume,Ii+1/2,j+1/2 × [tn, tn+1],
provided that the time-step�t satisfies the CFL condition

�t <
h

2

1

max(|σx |, |σy |) .

Here,Ii+1/2,j+1/2 = [xi, xi+1]×[yj , yj+1] (see Fig. 2.3; the edges at which the solution
remains smooth are denoted by dotted vertical lines), andσx andσy are the largest (in
modulus) eigenvalues of the Jacobian off andg, respectively.

An exact integration of the system (2.19) with dataun(x, y) over the control volume
Ii+1/2,j+1/2 × [tn, tn+1] results with

ūn+1
i+ 1

2 ,j+ 1
2

= 1

h2

∫ ∫
I
i+ 1

2 ,j+ 1
2

un(x, y)dx dy

− 1

h2

∫ tn+1

τ=tn

{∫ yj+1

y=yj

[
f
(
u(xi+1, y, τ )

)− f
(
u(xi, y, τ )

)]
dy

}
dτ

(2.21)

− 1

h2

∫ tn+1

τ=tn

{∫ xi+1

x=xi

[
g
(
u(x, yj+1, τ )

)− g
(
u(x, yj , τ )

)]
dx

}
dτ.

The first integral on the RHS of (2.21) is the cell-average of the functionun(x, y) on
the staggered cellIi+1/2,j+1/2. Given the reconstructed functionun(x, y), (2.20), this
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term can be computed exactly: it will consist of a contribution of four terms, result-
ing from averagingRi+1,j+1(x, y), Ri,j+1(x, y), Ri+1,j (x, y), andRi,j (x, y), on the
corresponding quarter-cells.

The advantage of the central framework appears in the evaluation of the time
integrals appearing in (2.21). Since the solution remains smooth on the segments
(xi, yj ) × [tn, tn+1], we can evaluate the time integrals with a quadrature rule using
only nodes lying in these segments.

A second order scheme is obtained by approximating the integral of the fluxf as

(2.22)
∫ tn+1

τ=tn

∫ yj+1

y=yj
f (xi, y, τ )dy dτ ≈ h�t

2

(
f (u

n+1/2
i,j )+ f (u

n+1/2
i,j+1 )

)
and likewise for the integral of the fluxg. By applying the same discretization used for
the Nessyahu–Tadmor scheme, one obtains its two-dimensional counterpart, which has
been introduced in ARMINJON and VIALLON [1999] and, independently, in JIANG and
TADMOR [1998]. First, in each cell(i, j) the fieldu is reconstructed by a piecewise
linear approximation,

Li,j (x, y)= uni,j + u′
i,j

x − xi

h
+ u′

i,j

y − yj

h
,

whereu′/h andu′/h denote, respectively, first order approximations ofx- andy-par-
tial derivatives, and can be computed by using a suitable slope limiter, as in the one-
dimensional case. The resulting scheme has a compact form similar to the one-dimen-
sional one, and can be written as

un+1
i+1/2,j+1/2 = uni+1/2,j+1/2

− λ

2

(
f (u

n+1/2
i+1,j )+ f (u

n+1/2
i+1,j+1)− f (u

n+1/2
i,j )− f (u

n+1/2
i,j+1 )

)
(2.23)− λ

2

(
g(u

n+1/2
i,j+1 )+ g(u

n+1/2
i+1,j+1)− g(u

n+1/2
i,j )− g(u

n+1/2
i+1,j )

)
,

whereλ=�t/h, and

uni+1/2,j+1/2 = 1

4

(
uni,j + uni+1,j + uni+1,j+1 + uni,j+1

)+ 1

16

(
u′
i,j − u′

i+1,j

(2.24)+ u′
i,j+1 − u′

i+1,j+1 + u′
i,j − u′

i,j+1 + u′
i+1,j − u′

i+1,j+1

)
and the predictor values are evaluated as

(2.25)u
n+1/2
i,j = uni,j − λ

2
f ′
i,j − λ

2
f ′
i,j .

Once again, the first order approximationf ′
i,j andg′

i,j can be computed either by a
slope limiter acting onf (ui,j ) andg(ui,j ) or by

f ′ =A(ui,j )u
′
i,j , g′ = B(ui,j )u

′
i,j ,

whereA andB are the Jacobian matricesA= ∇uf , B = ∇ug.
Application of this method to hydrodynamical models of semiconductors will be de-

scribed later.
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2.7. Relaxation step

The integration of the relaxation equations has to be performed by an implicit scheme
(fully implicit or linearly implicit). Sometimes the equations can be integrated analyti-
cally.

The simple splitting scheme is only first order accurate. A more accurate splitting
strategy has been proposed (LIOTTA, ROMANO and RUSSO[1999], LIOTTA, ROMANO

and RUSSO[2000]). The resulting scheme is second order accurate for nonstiff source
and reduces to first order in the stiff case.

In developing the numerical scheme we keep in mind the following guidelines:
• truncation error analysis is used to obtain second order accuracy in the rarefied

regime (ε = O(1));
• the collision step is well posed∀ε > 0 and its solution relaxes to a local Maxwellian

asε→ 0;
• the scheme should be unconditionally stable in the collision step;
• the limiting scheme obtained asε → 0 is a consistent numerical scheme for the

equilibrium subsystem.
Truncation error analysis is performed on the following linear system

(2.26)∂tU +AU +BU = 0,

whereU ∈ Rm andA, B are constant matrices which represent the discrete operator of
the flux and source, respectively. We assume thatA is a second order discretization (in
the applications of the next section we will take the Nessyahu–Tadmor scheme).

The convection step solves the equation

(2.27)∂tU +AU = 0.

If we indicate byT the discrete operator associated to the convection step scheme, after
performing the convection step (2.27) starting fromUn one obtains

T Un =Un −A�tUn + 1
2A

2�t2Un + O(�t3).

Following the approach used in CAFLISCH, RUSSOand JIN [1997], we write our split-
ting scheme as a combination of relaxation steps (implicit Euler) and convection steps,
which are suitably assembled to give a second order accurate solution. We stress that
at variance of what done in CAFLISCH, RUSSO and JIN [1997], we assume that the
convection step is discretized by a second order scheme.

Neglecting higher order terms in the expansion, we write the scheme as

(2.28)U1 =Un − α�tBU1,

(2.29)U2 =U1 − α̃�tAU1 + 1
2α̃

2�t2A2U1,

(2.30)U3 =U2 − β�tBU3 − γ�tBU1,

(2.31)U4 =U3 − β̃�tAU3 + 1
2β̃

2�t2A2U3,

(2.32)U5 = ξU1 + ηU4,

(2.33)Un+1 =U5 −µ�tBUn+1,

where the parametersα,β, α̃, β̃, ξ, η,µ have to be determined.
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The exact solution of (2.26) at timet =�t is given by

(2.34)U(�t)= e−(A+B)�tU(0).
By applying scheme (2.28)–(2.33) to Eq. (2.26) and writing the difference equation in
the compact form

(2.35)Un+1 = CUn,
we achieve a second order accuracy if we impose that

(2.36)CU(0)− e−(A+B)�tU(0)= O(�t3).

This gives the following constraints on the parameters

(2.37)η+ ξ = 1,

(2.38)η(α̃+ β̃)= 1,

(2.39)η(α+ β + γ )+µ(ξ + η)+ αξ = 1,

(2.40)η(α̃+ β̃)2 = 1,

(2.41)2η(αα̃+ αβ̃ + β̃γ + β̃β)= 1,

(2.42)2η(α̃β +µα̃ +µβ̃)= 1,

2η(α2 + αγ + αβ + βγ + β2)+ 2µη(α+ β + γ )+ 2(ξ + η)µ2

(2.43)+ 2αξ(µ+ α)= 1.

The real solutions of the previous nonlinear algebraic equations can be expressed in
terms of the parameterβ,

α̃ = 0, β̃ = 1, ξ = 0, η= 1,

µ= 1

2
, α = β

2β − 1
, γ = 1

2
− β

2β − 1
− β.

Because some coefficients are zero, it is possible to put the splitting scheme in the
simpler form

(2.44)U1 =Un − α�tBU1,

(2.45)U2 =U1 − β�tBU2 − γ�tBU1,

(2.46)U3 = T (U2),

(2.47)Un+1 =U3 − 1
2�tBU

n+1.

A set of parameters satisfying (2.37)–(2.43) is given by

(2.48)β = 1, α = 1, γ = −3
2.

We remark that the Strang splitting is not included as particular case of our scheme
because here the relaxation steps are only first order accurate. Moreover the obtained
splitting scheme is valid in any spatial dimension.

The scheme is not optimal, because it uses three relaxation steps in order to obtain a
second order scheme. However in this case the relaxation step is not the most expensive
one, and therefore the cost of the extra step is negligible.



478 A.M. Anile et al.

2.8. Nonsplitting schemes

There are several cases where the splitting approach is not very effective. When the
relaxation term is stiff, for example, Strang splitting loses second order accuracy, and
more sophisticated splitting techniques are necessary to obtain a second order scheme.

In CAFLISCH, RUSSOand JIN [1997], a second order scheme for hyperbolic systems
with relaxation is derived, which maintain second order accuracy both in the stiff and
nonstiff limit. These methods have been developed in the context of upwind schemes.

The same approach used in CAFLISCH, RUSSOand JIN [1997] cannot be straightfor-
wardly extended to central schemes.

A natural way to treat source term in central scheme is to include the source in the
integration over the cell in space–time.

Let us consider a general system of balance laws of the form

(2.49)
∂u

∂t
+ ∂f (u)

∂x
= 1

ε
g(u).

The parameterε represents the relaxation time. If it is very small than we say the relax-
ation term isstiff.

Integrating Eq. (2.49) over the space–time (see Fig. 2.2) one has∫ xj+1

xj

u(x, tn+1)=
∫ xj+1

xj

u(x, tn)−
∫ tn+1

tn

(
f
(
u(xj+1, t)

)− f
(
u(xj , t)

))
dt

(2.50)+
∫ tn+1

tn

∫ xj+1

xj

g(x, t)dx dt.

Numerical schemes are obtained by a suitable discretization of the integrals.
Here we only consider second order schemes.
We use a piecewise linear reconstruction in each cell, as in the Nessyahu–Tadmor

scheme, and midpoint rule for the computation of the flux integral.
Different schemes are obtained, according to the discretization of the integral of the

source term. If the source is not stiff, then a fully explicit time discretization can be
used, resulting in the following scheme (see Fig. 2.4)

un+1
j+1/2 = unj+1/2 + �t

�x

(
f (u

n+1/2
j )− f (u

n+1/2
j+1 )

)
(2.51)+ �t

2ε

(
g(u

n+1/2
j )+ g(u

n+1/2
j+1 )

)
,

where

(2.52)unj+1/2 = 1

2

(
unj + unj+1

)+ 1

8

(
u′
j − u′

j+1

)
and the predictor valuesun+1/2

j are computed by

(2.53)u
n+1/2
j = unj − λ

2
f ′
j + �t

2ε
g
(
unj
)
.



Discretization of semiconductor device problems (II) 479

FIG. 2.4. Nodes in space time for the second order Uniform Central Scheme.

Note that this scheme is fully explicit, therefore it is subject to stability restriction due to
both the flux and the source term. If the stability restriction of the source term is more
severe than the one due to the flux, then not only efficiency, but also accuracy of the
calculation will be affected. In this case, in fact, one has to use a Courant number much
smaller than the one allowed by the CFL restriction. It is well known that in this case
the numerical dissipation will be larger than necessary, and the accuracy of the scheme
will be poor. This problem can be partially circumvented, for moderately stiff source,
by the use of semidiscrete schemes. For a discussion of this issue see, for example,
KURGANOV and TADMOR [2000]. When the stiffness increases it is better to treat the
source implicitly. This can be done at the stage of the predictor, as

(2.54)u
n+1/2
j = unj − λ

2
f ′
j + �t

2
g
(
u
n+1/2
j

)
.

The time discretization used for the source is the midpoint implicit scheme, which is
a Gauss-collocation scheme with one level. Such scheme isA-stable, but notL-stable,
and therefore it is not suitable for very stiff source (see HAIRER and WANNER [1987]).
A numerical scheme which is stable and accurate even for very stiff source has been
proposed in LIOTTA, ROMANO and RUSSO[2000]. It is obtained by using two predictor
stages, one for the flux, and one which is needed for the source. The nodes for the source
are chosen according to stability requirements. The scheme can be written in the form

u
n+1/2
j = unj − λ

2
f ′
j + �t

2ε
g
(
u
n+1/2
j

)
,

u
n+1/3
j = unj − λ

3
f ′
j + �t

3ε
g
(
u
n+1/3
j

)
,

un+1
j+1/2 = ūnj+1/2 − λ

(
f (u

n+1/2
j+1 )− f (u

n+1/2
j )

)
(2.55)+ �t

8ε

(
3g(un+1/3

j )+ 3g(un+1/3
j+1 )+ 2g(un+1

j+1/2)
)
,

whereunj+1/2 is computed by (2.52). We shall call the above scheme Uniformly accurate
Central Scheme of order 2 (UCS2).

Such scheme has the following properties. When applied to hyperbolic systems with
relaxation, it is second order accurate in space and time both in the nonstiff case (i.e.,
ε = 1) and in the stiff limit (i.e.,ε = 0). A small degradation of accuracy is observed for
intermediate values of the relaxation parameterε.
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The time discretization used in the above scheme is a particular case of Runge–Kutta
Implicit–Explicit (IMEX) scheme. Such schemes are particularly important when one
has to solve systems that contain the sum of a nonstiff (possibly expensive to compute)
and a stiff term. These systems may be convection-diffusion equations, or hyperbolic
systems with stiff relaxation. In these cases it is highly desirable to use a scheme which
is explicit in the nonstiff term, and implicit in the stiff term.

Runge–Kutta IMEX schemes have been studied in ASCHER, RUUTH and SPITERI

[1997] and in PARESCHI and RUSSO[2000].

3. Applications to 1D problems

The numerical method is based on the splitting technique described in the previous
section. Here we use the one-dimensional version of the scheme. The 2D extension will
be employed in the next section.

Let us consider the system (1.51) in the one-dimensional case

(3.1)
∂

∂t
U + ∂

∂x
F (U)= B(U,E),

whereF = F (1).
Each convective step has the form of predictor–corrector NT scheme on a staggered

grid, derived in Section 2.5.
In order to couple the convection step with the relaxation step, it is convenient to

make two convection steps of step size�t/2, so that the solution is computed on the
same grid. A complete convection step of step size�t is obtained as a sequence of two
intermediate steps of step size�t/2.

The values ofU′
j /�x andF ′

j /�x used in the two steps of NT scheme are a first order
approximation of the space derivatives of the field and of the flux, computed from cell
averages by using a Uniform Non-Oscillatory reconstruction (2.18).

The electric potential is calculated by the discretized Poisson equation

ε(φi+1 − 2φi + φi−1)= −e(ND(xi)−NA(xi)− ni
)

with Dirichlet boundary conditions. The tridiagonal system is solved by a standard pro-
cedure. We assume that the dielectric constant is the same in the whole computational
domain.

The relaxation step requires to solve the system of ODEs

dn

dt
= 0,

dV

dt
= −eE

m∗ + 2αeEG+
(
c11

m∗ − 2αc21

)
V +

(
c12

m∗ − 2αc22

)
S,

dW

dt
= −eVE − W −W0

τW
,

dS

dt
= −eEG+ c21V + c22S.
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Here we dropped the subscript 1 inV , E, andS, and we omitted the grid indexj , since
all the quantities are computed at the same cell centerxj .

By freezing the energy relaxation time, the coefficientsclp and the electric field at
t = tn, we discretize the previous equations for each nodej in a semi-implicit form as

nn+1 − nn

�t
= 0,

V n+1 − V n

�t
= eEn

m∗ + 2αeEnGn +
(
cn11

m∗ − 2αcn21

)
V n+1 +

(
cn12

m∗ − 2αcn22

)
Sn+1,

Wn+1 −Wn

�t
= −eV nEn − Wn+1 −W0

τW
,

Sn+1 − Sn

�t
= −eEnGn + cn21V

n+1 + cn22S
n+1.

The equations can be solved for the quantities at the new time step, yielding

nn+1 = nn,

V n+ 1= 1

�n

[(
1− cn22�t

)
dn1 + dn2�t

(
cn12

m∗ − 2αcn22

)]
,

Wn+1 =
(

1+ �t

τnW

)−1[
Wn +

(
−eEnV n + W0

τnW

)
�t

]
,

Sn+1 = 1

�n

{
cn21d

n
1�t + dn2

[
1−

(
cn11

m∗ − 2αcn21

)
�t

]}
.

where

�n = (1− c22�t)

[
1−

(
cn11

m∗ − 2αcn21

)
�t

]
− c21

(
cn12

m∗ − 2αcn22

)
(�t)2,

dn1 = V n +
(

−eE
n

m∗ + 2αeEnGn
)
�t,

dn2 = Sn − eEnGn�t.

Second order accuracy in time is obtained by using the splitting scheme (2.44)–(2.47)
taking into account also the Poisson solver.

Given the fields at timetn, (Un,En), the fields at timetn+1 are obtained by

U1 = Un −R(U1,E
n,�t),

U2 = 3
2Un − 1

2U1,

U3 = U2 −R(U3,E
n,�t),

(3.2)U4 = C�tU3,

En+1
1 =P(U4),

Un+1 = U4 −R(Un+1,En+1,�t/2),
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FIG. 3.1. Schematic representation of an+-n-n+ diode.

TABLE 3.1
Length of the channel, doping concentration and applied voltage in the test cases for the diode

Test # Channel length
Lc (µm)

N+
D

(×1017 cm−3)

ND

(×1017 cm−3)

Vb
(V)

1 0.4 5 0.02 2
2 0.3 10 0.1 1
3 0.2 10 0.1 1

whereR represents the discrete operator corresponding to the relaxation step,C�t is the
discrete operator corresponding to NT scheme andP(U) gives the solution to Poisson’s
equation.

We remark here that the relaxation step does not alter the densityn, and therefore the
electric field has to be computed only just after the convection step.

As first problem we simulate a ballisticn+-n-n+ silicon diode (Fig. 3.1) (see RO-
MANO [2001] for more details). Then+ regions are 0.1 µm long while the channel
has different length. Moreover several doping profiles will be considered according to
Table 3.1.

Initially the electron temperature is equal to the lattice temperatureTL, the charges
are at rest and the density is equal to the doping concentration

n(x,0)= n0(x), W(x,0)= 3
2kBTL, V (x,0)= 0, S(x,0)= 0.

Regarding the boundary conditions, in principle the number of independent conditions
on each boundary should be equal to the number of characteristics entering the do-
main. However, we impose, in analogy with similar cases (ANILE, JUNK, ROMANO

and RUSSO[2000], FATEMI , JEROME and OSHER[1991]) a double number of bound-
ary conditions. More precisely, we give conditions for all the variables in each boundary,
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located atx = 0 andx = L,

(3.3)n(0, t)= n(L, t)=N+
D,

(3.4)
∂

∂x
W(0, t)= ∂

∂x
W(L, t)= 0,

(3.5)
∂

∂x
V (0, t)= ∂

∂x
V (L, t)= 0,

(3.6)
∂

∂x
S(0, t)= ∂

∂x
S(L, t)= 0,

(3.7)φ(0)= 0 and φ(L)= Vb,

whereVb is the applied bias voltage. In all the numerical solutions there is no sign of
spurious oscillations near the boundary, indicating that the conditions (3.3)–(3.6) are in
fact compatible with the solution of the problem.

The doping profile is regularized according to the function

n0(x)= n0 − d0

(
tanh

x − x1

s
− tanh

x − x2

s

)
,

wheres = 0.01 µm,n0 = n0(0), d0 = n0(1−ND/N
+
D)/2, x1 = 0.1 µm, andx2 = x1 +

Lc with Lc channel length. The total length of the device isL= Lc+0.2 µm. In Fig. 3.2
the doping profile for the test case 1 is plotted.

A grid with 400 nodes has been used. The stationary solution is reached within a few
picoseconds (about five), after a short transient with wide oscillations.

FIG. 3.2. Doping profile for the test case 1.



484 A.M. Anile et al.

FIG. 3.3. Time dependent numerical result for the velocity of the test case 1 with the Kane dispersion relation.

As first case we consider the test problem 1 (length of the channel 0.4 micron) with
Vb = 2 V. In Fig. 3.3 the time dependent solution for the velocity is plotted. The station-
ary solution (after 5 ps) is shown in Fig. 3.4 (continuous line) along with the numerical
results for the other variables. At variance with the numerical results obtained in ANILE,
JUNK, ROMANO and RUSSO[2000] for the parabolic band case by using a quadratic
closure inδ, the new numerical solutions do not present irregularities. This can be prob-
ably ascribed to the absence of the nonlinearities in the dissipative variables.

The simulation for the parabolic band approximation is also shown (Fig. 3.4, dashed
line), but it is evident, like in the bulk case, that the results are rather poor.

The other test cases have been numerically integrated withVb = 1 V (Figs. 3.5, 3.6).
The behaviour of the solution looks again physically reasonable and encouraging: the
spurious spike across the second junction is here less apparent than several other hydro-
dynamical models. The results with the parabolic band are again rough when compared
with those obtained in the nonparabolic case.

As further example of application we present the simulation of ananoscaledevice
(see also MUSCATO and ROMANO [2001], ROMANO [2001]): a one-dimensional Si
n+-n-n+ diode of length 0.25 µm with a channel of 0.05 µm. The donor densityND
is a stepwise function with values 5× 1018 cm−3 in then+-region and 1015 cm−3 in
then-region. Moreover a constant concentration of acceptorsNA = 5 × 1016 cm−3 is
considered. In Figs. 3.7, 3.8, 3.9 we show the numerical result for the velocity, energy
and electric field in the stationary regime (after about five picoseconds) with aVb =
0.6 V.
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FIG. 3.4. Numerical results of the test case 1 after 5 ps in the parabolic band case (dashed line) and for the
Kane dispersion relation (continuous line).

3.1. Simulation of a silicon MESFET

In this section we check the validity of our hydrodynamical model and the efficiency
of the numerical method by simulating a two-dimensional Metal Semiconductor Field
Effect Transistor (MESFET) (for more details see ROMANO [2002]).

We need to extend the scheme to the two-dimensional case starting from the two-
dimensional version of the Nessyahu and Tadmor scheme (JIANG and TADMOR [1998])
and employing the splitting scheme (2.44)–(2.47).
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FIG. 3.5. Numerical results of the test case 2 after 5 ps in the parabolic band case (dashed line) and for the
Kane dispersion relation (continuous line).

If one introduces an uniform grid(xi, yj ), with xi+1 − xi = �x = constant and
yi+1 − yi =�y = constant, and denote by�t = tn+1 − tn the time step, then the con-
vective part of the scheme is given by Eqs. (2.23)–(2.25).

In order to couple the convection step with the relaxation step, it is convenient, as
in the 1D case, to make two convection steps of step size�t/2, so that the solution is
computed on the same grid. A complete convection step is obtained as a sequence of
two intermediate steps of time step size�t/2.
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FIG. 3.6. Numerical results of the test case 3 after 5 ps in the parabolic band case (dashed line) and for the
Kane dispersion relation (continuous line).

The electric potential is calculated from the Poisson (1.7) equation by central differ-
encing and by resorting to the conjugate gradient method to solve the resulting linear
system.

In Fig. 3.10 we show an example of the discretization used for the Poisson equation.
All the cells are numbered from 1 to the total numberN of cells. The potential is defined
at the center of each cell. The computational domain is extended by including a certain
number of ghost cells, whose center is denoted by a cross. The value of the potential in
the ghost cells is determined by the boundary conditions. For example (see Fig. 3.10),
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FIG. 3.7. Numerical result of velocity versus position for the for the nanoscale device after 5 ps.

FIG. 3.8. Numerical result of for the energy versus position for the nanoscale device after 5 ps.

Dirichlet boundary condition above cell 1 gives

φ1N − φ1

2
= φs, ⇒ φ1N = 2φs − φ1

and Neumann null condition to the left of cell one givesφ1W = φ1, therefore the equa-
tion for the first cell becomes

4φ1 − φ2 − φ5 = h2ρ1 + 2φs,
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FIG. 3.9. Numerical result of for the electric field versus position for the nanoscale device after 5 ps.

FIG. 3.10. Cell-centered discretization for the numerical solution of the Poisson equation for the electric
potential. Cells 1 and 5 are adjacent to the source contact, cells 17, 21, 15, 29 to the gate, and cells 41, 45 to

the drain. We denote byφs,φg , andφd respectively the source, gate, and drain voltage.

whereρ = e(ND −NA− n)/ε. The equation for the second point becomes

3φ2 − φ1 − φ3 − φ6 = h2ρ2.

By this procedure, the linear system for theN -dimensional vectorΦ = (φ1, . . . , φN) is
written in the form

AΦ = b,

where theA is sparse, symmetric and positive definite. In the example shown in
Fig. 3.10 matrixA is given by
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FIG. 3.11. Schematic representation of a two-dimensional MESFET.

A=


G1 −I 0 · · · 0
−I G2 −I · · · 0
...

. . .
. . .

. . .
...

0 · · · −I G11 −I
0 · · · 0 −I G12

 ,
whereI denotes the 4× 4 identity matrix, and the matricesG1, . . . ,G12 are given by

G1 =G12 =


4 −1 0 0
−1 3 −1 0
0 −1 3 −1
0 0 −1 2

 ,

G3 =G4 =G9 =G10 =


3 −1 0 0
−1 4 −1 0
0 −1 4 −1
0 0 −1 3

 ,

G2 =G5 =G6 =G7 =G8 =G11 =


5 −1 0 0
−1 4 −1 0
0 −1 4 −1
0 0 −1 3

 .
The symmetry of the matrix is evident. The matrix is diagonally dominant, with posi-
tive elements on the main diagonal. The fact that the matrix is positive definite can be
deduced as a consequence of first and second Gershgorin theorems (see, for example,
SAAD [1996], pp. 109–111).

The system can be efficiently solved by an iterative scheme such as the conjugate
gradient method (see, for example, GOLUB, VAN LOAN and CHARLES [1996]). We
remark that because we are solving a time dependent problem, the electric potential at
the new time step is only a small perturbation of the electric potential at the previous
time step, and therefore one starts the iterative process with a good initial guess.

The scheme we have shown makes use of a fixed grid. A multigrid approach will be
present in the next section.
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FIG. 3.12. Stationary solution (after 5 ps) for the density forφb = 1 V.

In the relaxation step one has to solve the following system of ODEs

dn

dt
= 0,

dVk
dt

= −eEk
m∗ + 2αeEkG+

(
c11

m∗ − 2αc21

)
Vk +

(
c12

m∗ − 2αc22

)
Sk, k = 1,2,

dW

dt
= −e

2∑
l=1

VlEl − W −W0

τW
,

dSk
dt

= −eEkG+ c21Vk + c22Sk, k = 1,2.

By freezing the energy relaxation time, the coefficientsclp and the electric field att =
tn, we can integrate numerically these equations for each grid point(xi, yj ) in a semi-
implicit way, exactly as in the one-dimensional case

nn+1 = nn,

V n+1
k = 1

�n

[(
1− cn22�t

)
dn1k + dn2k�t

(
cn12

m∗ − 2αcn22

)]
, k = 1,2,
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FIG. 3.13. Stationary solution (after 5 ps) for the energy density forφb = 1 V.

Wn+1 =
(

1+ �t

τnW

)−1[
Wn +

(
−e

2∑
l=1

Enl V
n
l + W0

τnW

)
�t

]
,

Snk = 1

�n

{
cn21d

n
1k�t + dn2k

[
1−

(
cn11

m∗ − 2αcn21

)
�t

]}
, k = 1,2,

where

�n = (1− c22�t)

[
1−

(
cn11

m∗ − 2αcn21

)
�t

]
− c21

(
cn12

m∗ − 2αcn22

)
(�t)2,

dn1k = V nk +
(

−eE
n
k

m∗ + 2αeEnkG
n

)
�t, k = 1,2,

dn2k = Snk − eEnkG
n�t, k = 1,2.

Since the field quantities refer to the same gridpointi, j , we omit to write it.
In order to get a full second order scheme we combine the relaxation and convective

steps in the same way as in the previous subsection because the analysis of the splitting
accuracy does not really depend on the dimension of the space. Given the fieldUn and
En at timetn, the field at timetn+1 is obtained by the splitting scheme.
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FIG. 3.14. Stationary solution (after 5 ps) for thex-component andy-component of the velocity forφb = 1 V.

The shape of the device is taken as rectangular and it is pictured in Fig. 3.11.
The axes of the reference frame are chosen parallel to the edges of the device. We

take the dimensions of the MESFET to be such that the numerical domain is

Ω = [0,0.6] × [0,0.2],
where the unit length is the micron.

The regions of high dopingn+ are the subset

[0,0.1] × [0.15,0.2] ∪ [0.5,0.6] × [0.15,0.2].
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FIG. 3.15. Stationary solution (after 5 ps) for the energy-flux forφb = 1 V.

The contacts at the source and drain are 0.1 µm wide and the contact at the gate is 0.2 µm
wide. The distance between the gate and the other two contacts is 0.1 µm. A uniform
grid of 96 points in thex direction and 32 points in they direction is used. The same
doping concentration as in JEROMEand SHU [1994], SHEN, CHENG and LIOU [2000],
YIP, SHEN and CHENG [2000] is considered

nD(x)− nA(x)=
{

3× 1017 cm−3 in then+ regions,
1017 cm−3 in then region,

with abrupt junctions.nD andnA are the number densities of donors and acceptors,
respectively.
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FIG. 3.16. Stationary solution (after 5 ps) for thex-component andy-component of the electric field for
φb = 1 V.

We denote byΓD that part of∂Ω , the boundary ofΩ , which represents the source,
gate and drain

ΓD =
{
(x, y): y = 0.2,0� x � 0.1,0.2� x � 0.4,0.5� x � 0.6

}
.

The other part of∂Ω is labelled asΓN . The boundary conditions are assigned as fol-
lows:

(3.8)n=
{
n+ at source and drain,
ng at gate,
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FIG. 3.17. Stationary solution (after 5 ps) for the electric potential forφb = 1 V.

(3.9)φ =
{0 at the source,
φg at the gate,
φb at the drain,

(3.10)

{
W =W0, V · t = 0,
∇Vi · n = 0, ∇Si · t = 0, ∇Si · n = 0

i = 1,2 onΓD,

(3.11)

{∇n · n = 0, ∇W · n = 0, ∇φ · n = 0,
∇Vi · n = 0, ∇Si · n = 0

i = 1,2 onΓN.

Here∇ is the two-dimensional gradient operator whilen and t are the unit outward
normal vector and the unit tangent vector to∂Ω , respectively.n+ is the doping concen-
tration in then+ region andng is the density at the gate, which is considered to be a
Schottky contact (see SELBERHERR[1984]),

ng = 3.9× 105 cm−3.

φb is the bias voltage andφg is the gate voltage. In all the simulations we setφg = −0.8
while φb varies.

In the standard hydrodynamical model considered in the literature (e.g., Blotekjaer,
Baccarani et al.), the energy fluxS is not a field variable and it is not necessary to pre-
scribe boundary conditions for it. The relations (3.10)5,6 and (3.11)5 have no theoretical
justification. They are assumed because they seem physically reasonable. Of course a
more thorough investigation of this point would be worth-while.
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FIG. 3.18. Stationary solution (after 5 ps) for the energy density forφb = 2 V.

We start the simulation with the following initial conditions:

n(x, y,0)= nD(x, y)− nA(x, y), W =W0 = 3
2kBTL,

Vi = 0, Si = 0, i = 1,2.

TL is the room temperature of 300 K.
The main numerical problems in this work arise from the discontinuous doping and

the boundary conditions at the Schottky barrier which gives rise there to sharp changes
in the density of several orders of magnitude. The use of ashock-capturingscheme is
almost mandatory for this problem.

In the first case we takeφb = 1 V. The stationary solution is reached in a few picosec-
onds (less than five). After the initial restless behaviour the solution becomes smooth
and no signs of spurious oscillations are present. The numerical scheme seems suitably
robust and is able to capture the main features of the solution. Only the Kane dispersion
relation will be considered here because the results obtained in the parabolic band ap-
proximation are rather unsatisfactory when high electric fields are involved as shown in
ROMANO [2001] for a siliconn+-n-n+ diode.

The density is plotted in Fig. 3.12. As expected there is a depletion region beneath
the gate. Moreover one can see that the drain is less populated than the source.
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FIG. 3.19. Stationary solution (after 5 ps) for thex-component andy-component of the velocity forφb = 2 V.

Concerning the energy (Fig. 3.13) there are sudden variations near the gate edges.
The mean energy of the electrons reaches a maximum value of about 0.35 eV in the part
of the gate closest to the source.

The results for the velocity are shown in Fig. 3.14. The higher values of thex-com-
ponent are at the edges of the gate contact. This happens also for they-component, but
with a huge peak at the gate edge closest to the source.

The shape of the energy flux (Fig. 3.15) is qualitatively similar to that of the velocity.
Very large tangential and normal components of the electric field (Fig. 3.16) are

present again at the edges of the gate. For completeness the electric potential is also
presented in Fig. 3.17.
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FIG. 3.20. Stationary solution (after 5 ps) for the energy-flux forφb = 2 V.

As a second test we takeφb = 2 V. There are not significant differences to the case
φb = 1 V for density and electric field. Concerning the other variables, the behaviour of
the solution is qualitatively similar to that of the caseφb = 1 V, but with higher values
of the fields. The stationary solution for energy, velocity and energy flux is shown in
Figs. 3.18–3.20.

If we compare our results with those obtained in SHEN, CHENG and LIOU [2000],
where the standard model BBW with relaxation times extracted from Monte Carlo data
has been employed, one notes that the numerical solutions for density and electric field
are very similar while the solutions for velocity and energy present some qualitative and
quantitative differences.



500 A.M. Anile et al.

4. Application of adaptive mesh refinement

4.1. Overview of variable-resolution techniques

Variable resolution, or adaptive computational grids, bypass the problem of reaching the
limit of current computer hardware memory by making better use of a smaller number
of computational cells. These techniques recognize the fact that there are parts of a
solution which need an increased population of cells in order to be captured accurately,
while at the same time there are large areas where a coarser grid would be sufficient.

There are a number of underlying considerations to be taken into account when it
comes to selecting a type of grid, even before we consider variable resolution. These
include viability of generating a good grid, implications for the method of solution,
generality of use, treatment of boundaries (especially in complex geometries) and the
associated computational expense (regarding overall memory storage requirement and
speed of setting-up the grid). Adaptive grids are meant to increase the efficiency of the
simulation, so there are some additional issues to be taken into consideration. These
include independence of the adaptive software from the numerical method, temporal
as well as spacial adaption, efficient implementation on modern computer architectures
and the size of the algorithm-related overheads (CPU time for the management and
storage of the adaptive grids as compared to the cost of solving on a nonadapted, but
finer grid of the same resolution).

The various adaptive meshing techniques can be broadly classified by considering a
number of their distinguishing features like time dependence, locality, cell structure and
hierarchical logic. Some of the main types are shown in Fig. 4.1 (see also the review by
MAVRIPLIS [1996]).

Time dependenceof the grid structure is a fundamental attribute of any technique,
i.e., whether there is a temporal distribution of the population of the computational cells
as well as spatial; the corresponding techniques are referred to as dynamic or static.
An obvious application of the static techniques are steady flows, where the grid density
may be defined at the beginning of the integration in anticipation of demanding areas of
the flow. In unsteady flows, dynamic adaptive methods alter in time the position, size,
shape and number of regions of high grid node density in response to evolving flow
field structures. Continuous mesh adaption is achieved by automatic refinement and
coarsening of the grid according to a set of rules derived from the dynamics or other
features of the flow, e.g., a steep gradient of one or more dependent variables.

Thelocality of the refinement distinguishes the various techniques into global or local
ones. Global techniques redistribute a given number of cells or grid nodes (Fig. 4.1B, C
and D), while local ones add and subtract cells as required (Fig. 4.1E, F). A shortcoming
of global techniques when used for simulations where features may appear, disappear or
merge, is that it has to be known in advance how many cells will be needed at the most
demanding time of the integration. Also, these methods are difficult to extend to three
dimensions and the shape of the computational cells dictates the need for specialist
numerical schemes. Local techniques on the other hand add and subtract cells to suit
the evolution of flow features; no special methods are required for the integration of
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FIG. 4.1. A selection of different approaches to adaptive space discretization. A: the feature that needs high
resolution in physical space, B and C: global structured grids, D: global unstructured grid, E: local structured

(cell subdivision) grid, F: local structured (AMR) meshes (NIKIFORAKIS [1998]).

the governing equation of flow and extensions to the third dimension are, as a rule,
derivatives of their unadapted versions.

Thecell structureprovides a further underlying classification to structured, unstruc-
tured and hybrid methods. Care has to be taken in all cases to produce an optimal pop-
ulation of grid cells at the important regions, so that there are no cells with high aspect
ratio, which may reduce computational efficiency and/or accuracy.

Another fundamental attribute of any technique is itshierarchical logic. To illus-
trate what we mean by that, let us consider a structured grid consisting of rectangular
cells. The obvious way to increase and decrease the resolution locally is to subdivide a
number of cells at a certain area(s) of the grid, a process which lends its name to this
technique: cell subdivision. An alternative way would be to create separate fine mesh
patches which co-exist overlaying a coarse mesh. These overlaying mesh patches are
part of a hierarchical system, the latter being a distinguishing feature of a class of meth-
ods known asadaptive mesh refinement(AMR). A unique feature of AMR is that the
meshes can be integrated separately and at a different timestep, thus facilitating adaption
in timeas well as in space.

AMR is our preferred technique for semiconductor applications because time, as
well as space refinement has a significant impact on the efficiency of the computational
code. Also it is highly desirable to retain the structured character of the computational
cells, because of the implications on existing peripheral but vital issues of parametriza-
tions, data structures, graphics, etc. This technique is inherently suitable for running on
massively parallel processing computers, by the fact that operations are carried out on
standalone discrete meshes.
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4.2. Adaptive Mesh Refinement

In this chapter the basic principles behind Adaptive Mesh Refinement (AMR) algo-
rithms are outlined; detailed technical descriptions of this technique as it applies to
hyperbolic systems can be found in the articles by Berger and co-workers (BERGER

and OLIGER [1984], BERGERand COLELLA [1989], BELL, BERGER, SALTZMAN and
WELCOME [1994]) and in the articles by various researchers who continued develop-
ment (e.g., QUIRK and HENEBUTTE [1993], SKAMAROCK and KLEMP [1993] and
NIKIFORAKIS, BILLETT, BODEN and PYLE [2001]).

AMR is a technique that dynamically alters the resolution of the computational do-
main in response to evolving flow-features which are difficult to capture at low resolu-
tions. These features are identified by criteria based on flow properties.

In principle, the computational domain is discretised by a set of embedded meshes
(each one forming a rectangular patch), which can be thought of as hierarchical set of
grids. At the bottom of the hierarchy lies a coarse, base grid, which completely covers
the computational domain in a fundamental way. The resolution of this grid is not al-
tered during the computation, and should be fine enough to capture the bulk of the flow
features. Additional, offspring, finer grid patches (noted as G1 and G2 in Fig. 4.2) are
nested within the internal boundaries of this underlying grid to increase the resolution
locally.

We will reserve the termgrid to refer to the underlying grid, and use the termmesh
for the grid patches. A collection of meshes of the same resolution is known as grid
level. The size, location and number of these meshes can automatically evolve in time.
The area(s) flagged for refinement are determined by using time-dependent information
from the solution. The regions which need refinement are the ones where truncation er-
rors are high; various studies (QUIRK [1991], BODEN [1997]) have shown that simple
dependent-variable-based criteria (e.g., density jumps or vorticity) will reflect the distri-
bution of truncation error, if chosen appropriately. The hierarchical grid approach allows
flow features to transfer smoothly from a coarse domain to a finer one (and vice versa).
The grid structure adapts to the evolving flow, resulting in the gliding of fine grids
along the underlying coarser ones to cover continuously the evolution of the tracked
flow features. More grid patches are automatically added or taken away in response to
the changes of the flow topology.

FIG. 4.2. A three-level grid hierarchy as used by Adaptive Mesh Refinement (NIKIFORAKIS [1998]).
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The governing equations are integrated from the coarser to the finer grids in succes-
sion; a solution exists on all levels at all time, so that the boundary conditions for the
finer meshes may be provided by the underlying coarser ones or ultimately the base
grid. The solution is interpolated in time from the coarser grids to the finer grid bound-
aries, which absorb the information via rows of additional cells, known as ghost cells.
These are not specific toAMR, but relate to the treatment of computational boundaries
by finite volume methods. AMR utilizes them to facilitate internal (mesh connectivity)
boundaries. Meshes on a particular grid level are defined in terms of the underlying
coarse mesh only as an integer subdivision of the coarse cells, which implies that all
meshes are aligned to thex- andy-directions. Early algorithms allowed meshes to be
nonaligned (BERGERand OLIGER [1984], SKAMAROCK and KLEMP [1993]), but this
is thought to unnecessarily increase computational costs and code complexity. The latter
can be further reduced if there is no mesh overlap on a particular level.

For purely hyperbolic systems of equations, the size of the maximum allowable
timestep (by the CFL condition required for stability) on the fine grids is smaller than
that on the coarse grid. In every other adaptive technique the allowable timestep of the
finest mesh would determine the timestep of the complete integration. AMR is unique in
the respect that it allows every grid level to advance at its own timestep, which is larger
for the coarse ones. For a given large timestep determined by the base grid, which is
the timestep of the iteration, the finer meshes match it by a number of smaller ones, a
process known assub-cycling. This effectively allows forrefinement in time as well as
in space, i.e., the presence of a few extremely fine computational cells in a small part
of the flow domain will not severely restrict the rate at which the rest of the solution is
advancing.

Additional complications arise when a mixed elliptic/parabolic/hyperbolic system
has to be simultaneously solved on the same computational grid, as the case is with
hydrodynamical models of semiconductors. We will elaborate on this and other aspects
related to these models in the following sections.

4.3. Application of AMR to semiconductor simulations

Our main aim is to present the application of AMR to the hydrodynamical semiconduc-
tor models described in the previous chapters of this handbook. Although the technique
is fairly mature, there are a number of difficulties introduced by the nature of these
models.

To illustrate the technique in practice and highlight the additional difficulties encoun-
tered in semiconductor hydrodynamical simulations we consider a representative sys-
tem of the general form (in the case of the parabolic band approximation):

(4.1)u(t, x, y)= [n,nv,E, . . .]T, E = 1
2m

∗nv2 + 3
2p, p = kBnT ,

(4.2)
∂u

∂t
+ ∂f (u)

∂x
+ ∂g(u)

∂y
= s(u,Ef )+ ∂

∂x

(
κ̂
∂T

∂x

)
+ ∂

∂y

(
κ̂
∂T

∂y

)
,

(4.3)
∂2φ

∂x2
+ ∂2φ

∂y2
= −∂Ef x

∂x
− ∂Ef y

∂y
= e

ε
(n− nD),
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where the variables comprising the state vectoru may vary between models but usually
include the number densityn of electrons, a momentum analognv (wherev is the mean
electron velocity), and the total electron energy per unit volumeE. The energy density
is related to the temperatureT and pressurep of the ‘electron gas’ through Eq. (4.1)
(wherekB is the Boltzmann constant andm∗ is the effective electron mass).

The evolution for the unknown variablesu is represented by the system described
by Eqs. (4.2). The flux vectorf and the source vectors are functions of the unknown
variables (although they do not have any dependence on the spatial or temporal deriv-
atives of the variables). The left-hand side of Eq. (4.2) has the form of a system of
conservation laws and describes the transport of the unknown variables. The source part
of the system is a mixture of forcing terms, based on the electric fieldEf , and terms
describing scattering processes. The final terms in Eq. (4.2) account for heat conduc-
tion. The vectorκ̂ of conduction coefficients is either identically zero or has only one
nonzero component which may depend on the values of the variablesu. The evolution
system (4.2) is typically either hyperbolic in character (ifκ̂ is identically zero) or mixed
hyperbolic-parabolic (if̂κ has a nonzero component). The electric fieldEf and the elec-
tric potentialφ are related to the electron densityn through the Poisson equation (4.3)
in whiche is the magnitude of the electron charge,ε is the dielectric constant of silicon,
andnD(x) is the number density of donor atoms in the material.

The issues that have to be addressed are the positioning of the grids, the timestep
management over the domain, the coupling of the elliptic to the hyperbolic (or hyper-
bolic/parabolic) mode and the selection of suitable numerical methods for the solution
of the hyperbolic or hyperbolic-parabolic evolution system (4.2) and the elliptic equa-
tion (4.3).

4.4. Refinement criteria and time-adaption

Before we consider suitable schemes to solve this system of equations, the regions of
high resolution have to be positioned on the computational domain; this is achieved
automatically during every iteration by an internal inference procedure which is based
on a number of user-defined standards, known asrefinement criteria. The selection of
appropriate refinement criteria when using AMR (and other variable grid approaches)
is an issue which needs particular care in the area of hydrodynamic semiconductor sim-
ulations. There is not as yet a reliable theory to suggest in which regions of the compu-
tational domain a low density of grid cells can be used without adversely affecting the
solution accuracy, or conversely in which regions a high resolution is desirable. This
is also true for AMR applications in general; while early work (BERGERand OLIGER

[1984]) suggested that an estimate of the local truncation error of the numerical solution
could be used to predict an appropriate level of resolution, in practice heuristic criteria
(such as having an increased resolution near to shock waves) have proved to be more
effective.

For hydrodynamics semiconductor simulations, the velocity variablev can be used
as an indicator of where complex behaviour is present, and the AMR algorithm refines
any region in which the gradient or the curvature of the velocity variablev is large (that
is, where either of the quantities|vn+1 − vn| or |vn+1 − 2vn+ vn−1| has a value above a
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specified threshold). In addition, it is found that a modest degree of refinement is needed
in the highly doped regions of the device during the early stages of the simulation in
order to produce an acceptable degree of accuracy there. The second derivative of the
solution is also a useful indicator of when increased resolution is desirable: large values
suggest that additional points in the solution cannot be inferred by linear interpolation.
It may also be noted that these refinement criteria tend to increase the resolution in
regions where the solution has steep gradients or extrema, and these are also the regions
where integration methods are known to lose accuracy.

The fact that the solution exists separately on every grip patch, lends itself to timestep
management for individual-meshes, i.e., adaption in time, as mentioned before. To il-
lustrate this concept, consider the case of one coarse grid and one fine grid, as shown in
Fig. 4.3. Stability requirements impose a maximum size on the time steps used to ad-
vance the numerical solution, this being proportional to the cell size used to discretize
the domain. One way to ensure stability would be to advance all of the grids in the AMR
grid structure at the same time step, the smallest time step required by the finest grid.
This is obviously inefficient, since more work must be done to advance coarse grids
than is necessary. Also, because of numerical diffusion (see, for example, LEVEQUE

[1990] or TORO[1999]) there is typically a loss of accuracy involved when a numerical
solution is advanced at time steps much smaller than the maximum value.

This problem can be bypassed within the AMR framework because different time step
sizes can be used for different grids; for example, a sub-grid which is finer by a factor
of two than the base grid will use time steps of half the size. This is implemented by
sub-cycling the advancement of the grids so that finer grids are advanced multiple times
compared to coarse grids, as shown in Fig. 4.3. For the situation shown in Fig. 4.3, ifu

is the numerical solution, then initially the value ofu(t0) is known both on the coarse
grid and the fine grid. The algorithm first advances the solution on the coarse grid to
give a value foru(t1) there, and then advances the solution on the fine grid by one step
to getu(t1/2). In order for the second step on the fine grid to be taken, boundary data for
it must be prescribed; this is achieved by interpolation of the coarse grid valuesu(t0)

FIG. 4.3. Sub-cycling in time of an AMR grid structure. (a) A simple compound grid consisting of a coarse
base grid partially covered by a sub-grid which is finer by a factor of two. In this figure, a two-dimensional
spatial domain is pictured since the relationship between the grids is most clear in this case. (b) Advancement
of the grid structure in time fromt = t0 to t = t1. The coarse grid is advanced in one single step of size�t ,
whereas the fine grid is sub-cycled, taking two steps of size�t/2 such that it exists at an intermediate time

t = t1/2 ≡ (t0 + t1)/2.
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andu(t1), that is,

u(t1/2)≈ 1
2

(
u(t0)+ u(t1)

)
on the coarse grid.

Following this approach, a numerical solution can be advanced to the same time
throughout the AMR grid structure, with recursion being used for situations more com-
plicated than the example of Fig. 4.3; full details are given by BERGERand OLIGER

[1984]. In doing so, there is an underlying assumption that the numerical scheme used
to advance the solution is expected to use a single, explicit step. This assumption is only
valid when the equations solved are purely hyperbolic.

4.5. An operator splitting approach

When the system is mixed hyperbolic/elliptic, errors give rise at the boundaries of the
coarse/fine mesh patches. To rectify this problem, a splitting approach is used to time
step the equations by separating them into four components which are treated in turn.
Full sub-cycling of the AMR algorithm is possible for the hydrodynamical models pro-
vided that the electric field is slow changing and the component parts of the evolution
system are advanced in a particular order.

Each update of the solution data by one time step is broken into four stages: first,
Poisson’s equation is solved to determine the electric field; second, the solution is up-
dated taking into account only the scattering and forcing terms; third, the solution is
updated based only on the conservation law part of the system; finally, the heat con-
duction terms in the energy equation (whenever are present) are accounted for. This is
a simple first-order splitting method, while higher-order ones can be derived (see, for
example, ROMANO and RUSSO[2000]), experimentation suggests that there is only a
small loss in accuracy when first-order splitting is used, and furthermore sub-cycling
of the AMR algorithm is easier to achieve in this case. For the splitting approach im-
plemented here, a numerical solutionu0 at timet0 is advanced to a solutionu1 at time
t1 = t0 +�t according to

(4.4)Ef = P(u0),

(4.5)u% = S(u0,Ef ;�t),
(4.6)u%% = T(u%;�t),
(4.7)u1 = H(u%%;�t),

whereEf is the electric field. The operator P solves the Poisson equation (4.3). The
source terms in Eq. (4.2) which represent forcing and scattering processes comprise
the operator S, while the transport terms in that equation comprise the operator T. If
parabolic heat conduction terms are present in the model, then they are incorporated in
the operator H.

One of the benefits of this splitting numerical approach is that any model that fits
the general form of Eqs. (4.1), (4.2) and (4.3) can be implemented in this algorithm.
Also, reliable numerical schemes can be used on each component of the system (which
can be updated as new methods appear), and there is not a strong dependence of the



Discretization of semiconductor device problems (II) 507

numerical code on the equations being solved. The different stages of this operator-
splitting approach are discussed separately in the subsections below.

4.6. The Poisson equation for the electric field

The first stage of the update procedure solves Poisson’s equation (4.3) subject to bound-
ary conditions on the electric potentialφ. This equation must be solved simultaneously
over all component meshes in the simulation domain (or sometimes a subset of the do-
main if full AMR sub-cycling is used). This contrasts with how the AMR algorithm
tackles hyperbolic problems by updating each component mesh individually. To solve
Poisson’s equation a multigrid method can be employed, not least because this class of
methods has some similarities with AMR and are very efficient.

For the purposes of this exercise, the approach of MINION [1996] is followed, who
had to solve a Poisson’s equation as part of an AMR projection scheme for incom-
pressible Euler flows. For a single uniform grid, the scheme constructs a sequence of
auxiliary grids, the first a factor of two coarser than the initial one, the second a fac-
tor of four coarser, and so on. Given an approximation to the solution on the original
grid, Poisson’s equation is cast into residual form, and the problem is coarsened (or
‘restricted’) and solved recursively on the next grid in the sequence. When the coarsest
grid is reached, Poisson’s equation is solved exactly using a single grid scheme, and
error corrections are interpolated (or ‘prolongated’) back up the sequence of grids. At
each level, Gauss–Seidel relaxation steps with red-black ordering are used to ‘smooth’
the solution. The complete multigrid cycle is iterated until the residual is smaller than
some specified tolerance.

Within an AMR framework, multiple grid levels already exist, and (provided that the
AMR refinement factors are powers of two) a multigrid arrangement can be constructed
straightforwardly by filling in intermediate and coarser levels. The multigrid algorithm
becomes more complicated however because fine grids do not in general completely
cover coarser grids. Relaxation operations and residual calculations may need to be
performed over several levels simultaneously, and special treatment must be given to
the internal boundaries between coarse and fine meshes (in a similar way to the use of
‘flux corrections’ in AMR simulations of hyperbolic systems).

Although full sub-cycling of the AMR code has been found to produce accurate
results, in practice the nature of the multigrid solver means that a simulation will be
very much faster if Poisson’s equation is solved across the entire domain (interpolating
source values in time as necessary) on every time step. In fact, since the electric poten-
tial varies only very slowly after the early stages of a simulation, typically few iterations
of the multigrid cycle are needed to update its value, and so Poisson’s equation works
out as relatively inexpensive to solve, even without full sub-cycling.

4.7. Scattering and forcing terms

If the simulation variablesu(t, x, y)= [n,nv,E, . . .]T are updated only using the terms
on the right-hand sides of Eqs. (4.2) (which model collision processes and acceleration
due to the electric field), then the evolution equations reduce to a system of ordinary
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differential equations,

(4.8)
∂u

∂t
= s(u,Ef ).

Solution of this system (with the electric fieldEf fixed at the value determined by the
solution of Poisson’s equation) comprises the second stage of the update procedure for
the hydrodynamical model.

The solution in each grid cell is advanced using a second-order explicit Runge–
Kutta method (see, for example, PRESS, TEUKOLSKY, VETTERLING and FLANNERY

[1992]). To ensure stability, multiple Runge–Kutta steps may be employed: for a time
step�t , the solution is advanced by takingk sub-steps of size�t/k. (Typically k = 4
in this work.)

4.8. The nonlinear hyperbolic system

For the third stage of the update procedure, the solutionu at the end of the second stage
is used as initial data for the solution of a system of conservation laws

(4.9)
∂u

∂t
+ ∂f (u)

∂x
+ ∂g(u)

∂y
= 0, u= [n,nv,E, . . .]T

formed from the transport part of the hydrodynamical equations (4.2).
The evolution system (4.9) is hyperbolic and it is solved using directional splitting:

the solution is advanced by a time step�t by solving first one then the other of the two
directional sub-systems

(4.10)
∂u

∂t
+ ∂f (u)

∂x
= 0 and

∂u

∂t
+ ∂g(u)

∂y
= 0,

with the order of the updates reversing on each step. The use of splitting to solve
Eq. (4.9) is not a part of the overall splitting scheme used to advance the hydrodynami-
cal model; an unsplit method could equally be used. However, directional splitting has
been found to be reliable in the past, and it has the advantage over multi-dimensional
methods that it is very simple to implement.

The one-dimensional transport systems are solved using the SLIC (Slope Limiter
Centred – TORO [1999]), which was previously used in ANILE, NIKIFORAKIS and
PIDATELLA [1999], ANILE, JUNK, ROMANO and RUSSO[2000], HERN, ANILE and
NIKIFORAKIS [2001]. The scheme is conservative, explicit and second-order accurate
on smooth regions of the solution, and it accurately resolves discontinuities without
introducing unphysical oscillations.

The SLIC method is considered particularly useful in the present work because (in
contrast to Riemann problem-based schemes) it does not require characteristic informa-
tion about the system of equations being solved. This means that only minor changes
need to be made to the code to allow it to solve different hydrodynamical models, and
furthermore there are no difficulties in evolving solutions to those hydrodynamical mod-
els for which characteristic information cannot easily be obtained.
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4.9. Heat conduction

The final stage of the update procedure advances the energy variableE by a time step�t
based on the heat conduction term in Eq. (4.2),

(4.11)
∂E

∂t
= ∂

∂x

(
κ
∂T

∂x

)
+ ∂

∂y

(
κ
∂T

∂y

)
.

Assuming the conduction coefficientκ to be fixed during the time step, and recall-
ing the relationship between energyE and temperatureT , Eq. (4.11) is seen to have
the form of a linear scalar diffusion equation with space-dependent coefficients. The
equation is parabolic, and is most effectively solved using implicit methods. There are
many standard methods for solving diffusion equations, and the ADI (alternating di-
rection implicit) scheme is adopted here. This has the advantage that it only requires
implicit equations to be solved in one dimension at a time, which makes it very much
less computationally expensive than a fully multi-dimensional implicit approach. The
ADI method is stable for any size of time step; however (because it does nothing to
damp high-frequency modes) it may still cause oscillatory behaviour at discontinuities
in the temperature variable. On the occasions when this has proved problematic, an al-
ternative solution scheme has been used: Eq. (4.11) can be solved through directional
splitting in the same way as described for Eq. (4.9), with fully implicit steps being used
to solve each of the one-dimensional component equations. While the latter method is
resilient against oscillations, this is at the expense of the formal order of accuracy of the
solution.

Additional boundary data must be specified when using implicit schemes compared
to explicit ones. The implications this has for internal mesh boundaries within the AMR
framework is discussed in HERN, ANILE and NIKIFORAKIS [2001].

4.10. Numerical simulations

The AMR approach described in the previous sections is designed primarily for solving
time-dependent problems, but it can also be used to produce solutions to steady state
problems. In this section we consider two case studies, in one and two space dimensions,
to demonstrate the use of AMR for hydrodynamic semiconductor simulations.

It should be noted that although the accuracy of these simulations has been checked
(for the steady-state) against other numerical studies, the purpose of this exercise is to
demonstrate the efficient use of the AMR technique, not to make any claims regarding
the details of the solutions.

4.11. A silicon diode

The salient features of the approach are best illustrated by considering a one-
dimensional problem. To this end the ballisticn+-n-n+ silicon diode is used here. This
is a standard test problem for numerical semiconductor simulations in one dimension.
The sub-micron device can be considered as a model for a channel in a MOSFET. The
numerical results shown here are for the extended hydrodynamical model introduced
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in Section 1.4 suitably simplified by considering the parabolic band limit and also by
expressing the production terms as simple relaxation type terms. This simplified model
we call the reduced hyperbolic model. In this case the vectorsU,F(U) andS(U) are:

(4.12)U =


n

nv

3p/m∗
2q/m∗

 ,

(4.13)F(U)=


nv

p/m∗
2q/m∗
8
15q/m

∗
5p2/n(m∗)2

 ,

(4.14)S(U)=


0

−nv/τp − neEf /m
∗

−2(E −E0)/m
∗τW − 2nevEf /m∗

1/τq(2q/m∗)
−eEf /m∗(5p/m∗)

 .
Heren is the electron density,v is the electron velocity,p is the electron fluid pressure,
m∗ is the effective electron massq is the energy flux,τp is the relaxation time for
momentum,τw is the relaxation time for energy,τq is the relaxation time for the energy
flux, e is the absolute value of the electron charge,Ef is the electric field,E is the
energy density

E = (1/2)m ∗ v2 + (3/2).

E0 is the thermal equilibrium energy density.
We remark that for this reduced hyperbolic model the interpretation ofq is not that

of heat flux but of total energy flux.
Still for the sake of simplicity the relaxation times are obtained as functions of energy

E from fitting to MC simulation for the same benchmark device (see ANILE, JUNK,
ROMANO and RUSSO[2000]).

The sub-micronn+-n-n+ device simulated here has a total length ofL = 0.6 µm
divided up into a source region of length 0.1 µm, a channel of length 0.4 µm, and a
drain region of length 0.1 µm. The device is doped with donor atoms in a profile

(4.15)nD(x)=
1018 for x < 0.1 µm,

1016 for 0.1 µm� x � 0.5 µm, (donors/cm3)
1018 for 0.5 µm< x.

The values used for the lattice temperature, the dielectric constant, and the effective
electron mass in the silicon device are

(4.16)T0 = 300 K, ε = 11.7ε0, m∗ = 0.32me,

whereε0 is the vacuum dielectric constant, andme is the electron mass.
It may be noted that the doping profile of Eq. (4.15) is a discontinuous function, in

contrast to the profiles used in much of the literature which are smooth across the device
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junctions. (The discontinuous profile (4.15) is the same as the doping used by ANILE,
JUNK, ROMANO and RUSSO[2000].) A discontinuous doping profile is adopted here
to highlight the ability of the numerical code (in particular the SLIC scheme), to ac-
curately evolve solutions which include steep gradients without producing unphysical
oscillations. It should be observed however that slight differences in the doping profile
for the n+-n-n+ device (such as the degree of smoothness at the junctions) can have
significant effects on the form of the solution.

As initial data for the simulations that follow, the following choice is made:

(4.17)n= nD, v = 0, T = T0, q = 0 at timet = 0,

where the energy fluxq is only needed in the reduced model, and the values for the
energy densityE and the pressurep are derived from the temperatureT via Eq. (4.1).

The simulations use ‘transmissive’ boundary conditions for the unknown variablesu.
(At the right boundary, ghost cellsuN+1, uN+2, . . . are given the values ofuN ,
uN−1, . . . , with the leftboundary being treated similarly.) The electric field across the
device is calculated based on a specified voltage change between the terminals:

(4.18)φ|x=0.6 µm− φ|x=0.0 µm= Vbias,

whereVbias can vary between simulations. These boundary conditions are found to be
stable in practice and have been observed to allow waves to leave the domain of the
simulation cleanly without introducing spurious reflections. In particular, if the extent
of the computational domain is increased by moving the boundaries outwards by 0.3 µm
(while applying the potential difference (4.18) across the same region as before) then
the solution at the original edges of the domain is found to be almost unchanged, both
for time-dependent and steady state solutions.

Results are shown in Figs. 4.4 and 4.5. For a constant applied voltageVbias, complex
transient behaviour is seen in the solution during the first few pico-seconds, after which
time the solution gradually settles down to a steady state which is largely independent
of the transient behaviour that has gone before. Since the transient features often appear
on small spatial scales, the ability of the AMR code to locally increase the resolution of
the numerical solution is well tested by this problem, and an improvement in efficiency
is seen compared to simulations based on unrefined grids. The simulation is run up to a
time of t = 1 ps, which is sufficient in which to observe the most complex behaviour of
the transient phase of the solution.

A uniform base grid of resolution�x = L/200 (whereL= 0.6 µm is the length of
the device) is used by the simulation, and grid refinement is by a factor of 2 at each
level. A maximum resolution of�x = L/1600 is used during the simulation.

Fig. 4.4 shows how the different levels of refinement used in the AMR simulation
adapt in time to follow evolving features of the transient solution. The figure shows the
spatial and temporal domain of the simulation shaded according to the degree of re-
finement used, from white at the coarsest resolution(�x = L/200) to black where the
resolution is at its maximum(�x = L/1600). The figure illustrates the overall behav-
iour of the transient solution, with complex features originating at the device junctions
and then spreading out into the rest of the domain.
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FIG. 4.4. Spatial and temporal variations in resolution for an AMR simulation of transient behaviour in a
silicon diode. The space–time domain is shaded to indicate the degree of refinement used, with white at one
extreme indicating the base resolution of�x = L/200 (whereL = 0.6 µm is the length of the device) and
black at the other indicating the maximum resolution of�x =L/1600. Numerical results from this simulation

are shown at the timet = 0.4 ps in Fig. 4.5.

The value of the AMR approach is that it can produce results which are of a com-
parable accuracy to those produced using traditional methods, but at a reduced com-
putational cost. It has been found that for simulations in which the mesh refinement
capabilities of the code are not used, an accurate solution for the transient behaviour
of the n+-n-n+ device can be obtained by using a single uniform grid of resolution
�x = L/1600. (The solution is considered as ‘accurate’ because there is no discernible
difference between the plotted results at this resolution and those at a higher resolu-
tion of �x = L/3200.) The test of the AMR simulation is then whether its results are
comparable in accuracy to those of the high resolution unrefined simulation, and, if so,
whether an improvement in computational efficiency is seen.

In Fig. 4.5 the velocity variablev is plotted at a timet = 0.4 ps for the AMR simula-
tion and also for two unrefined simulations having resolutions the same as the maximum
and the minimum AMR resolutions. The AMR results can be seen to be in very good
agreement with the results from the high resolution unrefined simulation, and this level
of agreement is present throughout the simulation for all of the evolved variables. The
results from the low resolution unrefined simulation provide a contrast with this: while
they capture the overall form of the solution adequately, the details are not well resolved.

Returning to the issue of the efficiency of the AMR method, as a measure of the
amount of computational work performed during a simulation, the total number of
grid cell advancements is used. For the high resolution unrefined simulation shown
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FIG. 4.5. Results at different resolutions for the electron velocityv in simulations of transient semiconductor
behaviour. The problem set-up is the same as in Fig. 4.4. Results from an AMR simulation with minimum
resolution�x = L/200 and maximum resolution�x = L/1600 are plotted as circles, with one circle for each
computational point. Results from two unrefined simulations with resolutions the same as the maximum and
minimum AMR resolutions are plotted as black and grey lines, respectively. The grid arrangement throughout

the AMR simulation is plotted in Fig. 4.4.

in Fig. 2.3, 1921 time steps are taken to reach timet = 1 ps, and multiplying this by
the 1600 cells in the grid gives a total work load of 3 073 600 units. For the AMR simu-
lation which produces similar results the work load is found to be 739 174 units, smaller
by a factor 4.2. The work load gives a reasonable estimate of the CPU time used by a
simulation, but does not take into account the time taken performing grid management
operations (which may usually be assumed to be small compared to the grid integration
time) or computer hardware effects such as memory cache behaviour. In terms of actual
running time, the improvement of the AMR simulation over the unrefined simulation is
estimated to be closer to a factor of 3.

The results of this section demonstrate that, by locally varying the resolution used,
the AMR method can produce accurate numerical solutions more efficiently than a tra-
ditional single grid approach. The gain in efficiency is most significant if small features
of the solution are of particular interest. For example, if the AMR code is used to repro-
duce Fig. 4.5 but with a resolution of�x = L/3200 in the neighbourhood of the shock
front, then the work load is found to be around 14 times smaller than for a simulation
using a single grid of uniform high resolution.

4.12. A MESFET Device

To demonstrate the technique in two space dimensions, a two-dimensional silicon MES-
FET (Metal-Semiconductor Field-Effect Transistor) is used here. The device, the speci-
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fications of which are taken from the paper by JEROME and SHU [1994], has been used
by a number of researchers for testing numerical methods and carrier transport models.

The BBW hydrodynamical model, which has been discussed in Section 1.3 of this
volume, is adopted for describing electron transport in the MESFET device. Although
it has many shortcomings from the theoretical viewpoint (addressed by alternative hy-
drodynamical models which have recently been developed), the BBW model is widely
used in practice.

The MESFET device is 0.6 µm by 0.2 µm in the(x, y)-plane, with symmetry assumed
along thez-direction. Along the top edge of the device (y = 0.2 µm) there are three
contacts: the source (0� x � 0.1 µm), the gate (0.2 µm� x � 0.4 µm), and the drain
(0.5 µm� x � 0.6 µm). The geometry of the device is shown in Fig. 4.6.

The device is doped with donor atoms according to

(4.19)ndope(x, y)=
{
nhigh for (x � 0.1 µm orx � 0.5 µm) andy � 0.15 µm,
nlow otherwise,

to give highly-doped(n+) regions next to the source and drain (see Fig. 4.6). Note that
the profile is discontinuous between regions of high and low doping. The initial data for
the simulation is taken as

(4.20)n= ndope, v = 0, T = T0.

The boundary conditions vary around the perimeter of the device. At the contacts
(source, gate and drain) the velocity and temperature satisfy

(4.21)vx = 0,
∂vy

∂y
= 0, T = T0,

while the density and electric potential are set differently for each contact;

(4.22)Source: n= nhigh, φ = kBT0

e
ln(n/ni),

(4.23)Gate: n= ngate, φ = kBT0

e
ln(n/ni)+ φgate,

(4.24)Drain: n= nhigh, φ = kBT0

e
ln(n/ni)+ φbias.

At all other points on the boundary, the variables (including the potential) are set to have
zero derivatives in the direction normal to the boundary.

The density values used in the simulation are

(4.25)

nhigh = 3× 1023 m−3, nlow = 1× 1023 m−3, ngate= 3.9× 1011 m−3,

where the extremely low density at the gate compared to elsewhere in the device should
be noted. The potential differences applied between the three contacts are

(4.26)φgate= −0.8 V, φbias= 2 V.

For fixed applied voltages, this MESFET device reaches a steady state in a time of
5–10 ps.
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FIG. 4.6. Pattern of refinement and hydrodynamical variables for the MESFET simulation at timet = 7.5 ps
(steady state). The number density and electron temperature are shown together with the magnitudes of the
velocity and electric field vectors. Every grid cell is plotted for the pattern of refinement, but not for the
hydrodynamical variables, where data is plotted on a coarse mesh of 96× 32 points, and consequently much
of the detail in the refined regions of the simulation is not visible here. The edges of then+ doping regions

are indicated on the lower face of the plotting domain together with the positions of the contacts.

The results presented in Fig. 4.6 are from an AMR simulation using a base grid of
96× 32 cells and three levels of refinement, each by a factor×2. This means that in the
most highly refined regions of the simulation, the cell size is the same as for a single
uniform grid of 768× 256 cells.

Criteria for deciding where regions of refinement should be positioned are based both
on the geometry of the device and the instantaneous behaviour of the solution. Two
levels of refinement are always used to cover the discontinuity in the device’s doping
profile, Eq. (4.19). This ensures that the initial data for the simulation, Eq. (4.20), is well
resolved, and it also captures the nonsmooth behaviour in the electric field caused by
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the source term in Poisson’s equation. In addition, two levels of refinement are always
used along the top (y = 0.2 µm) edge of the device where the contacts are located, since
this is where the most complex behaviour of the solution is observed to take place.

Two indicators based on the behaviour of the solution are used to position additional
regions of refinement. The first indicator,ε1, is the maximum gradient of|v|, the mag-
nitude of the velocity vector, taken over all directions:

ε1 = |∇v| wherev = |v|.
The second indicator,ε2, is the curvature of the temperature variableT , defined as the
spectral radius (maximum absolute eigenvalue) of the matrix

C =
(
∂2T/∂x2 ∂2T/∂x∂y

∂2T/∂y∂x ∂2T/∂y2

)
,

normalized by the maximum current temperature value:

ε2 = radius(C)× h2/Tmax,

whereh is the grid step size. In both cases, finite differences are used to evaluate the
spatial derivatives. The base grid is refined ifε1 exceeds a value of 0.3 × 1013 or ε2
exceeds a value of 0.5× 1014 (where the tolerance values are in standard units). Higher
tolerance values are used when refining finer grids: the tolerance forε1 is increased by
a factor 1.4 for each level of refinement, while the tolerance forε2 is increased by a
factor 8.

4.13. Conclusions

Various grid-refinement techniques have been outlined in this chapter and one of them,
namely adaptive mesh refinement (AMR), has been discussed in more detail. One- and
two-dimensional AMR schemes for numerically solving hydrodynamical semiconduc-
tor models have been developed and tested. The results demonstrate the potential of
this technique for improving the efficiency of numerical simulations of hydrodynamical
semiconductor models.

The flexible integration scheme (based on operator splitting) implemented within the
AMR codes enable them to be used with a wide range of hydrodynamical models. As
evidence of this, results are presented from simulations of two models (the Bløtekjær
model, and the reduced hyperbolic model of Anile et al.).

The AMR approach is considered to be more effective than other approaches for
varying the resolution of simulations. In particular, the ability to sub-cycle the solution
in time leads to an improvement in efficiency of the AMR algorithm and may also re-
duce the amount of numerical diffusion in the results. However, this sub-cycling causes
difficulties when the problem being solved is not purely hyperbolic, and in this work
attention is paid to the solution of systems which include elliptic and parabolic modes.

If there is a weak point in the AMR approach, however, it is that currently there
is no theoretical basis for predicting what an effective refinement criteria will be for
a particular problem. In most work with AMR such criteria are determined through
trial and error, and, in fact, one aim of the present one-dimensional study has been to
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experiment with and calibrate different refinement criteria which could be used when
setting up two-dimensional simulations.

The extent to which a simulation benefits from the use of AMR very much depends on
the nature of the problem being investigated. For the one-dimensional example problem
demonstrated here, the computational work load of an AMR simulation is found to be
about four times smaller than for an unrefined simulation of comparable accuracy, but
the improvement in efficiency is shown to increase to around an order of magnitude if
the requirements of the problem are well suited to a variable grid approach. The massive
computational needs of simulations in higher dimensions makes the use of some sort of
variable grid approach highly desirable.
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Preface

Microelectronics is the core technology for numerous industrial innovations. Progress
in microelectronics is highlighted by milestones in chip technology, i.e., microproces-
sor and memory chips. This ongoing increase in performance and memory density –
accompanied with decreasing prices – would not have been possible without extensive
use of computer simulation techniques, especially circuit simulation.

An important analysis type in circuit simulators is time domain analysis, which cal-
culates the time-dependent (transient) behaviour of electrical signals in a circuit re-
sponding to time-varying input signals. A network description of the circuit is gener-
ated automatically in computer-aided electronics-design systems from designer’s drafts
or fabrication data files. An input processor translates this network description into a
data format reflecting the mathematical model of the system. The mathematical network
equations are based on the application of basic physical laws like energy or charge con-
servation onto network topology and characteristic equations for the network elements.
This automatic modeling approach preserves the topological structure of the network
and does not aim at systems with a minimal set of unknowns. Hence an initial-value
problem of differential-algebraic equations (DAEs) is generated which covers charac-
teristic time constants of several orders of magnitude (stiff equations) and suffers from
poor smoothness properties of modern transistor model equations.

In the first part of this article (Chapters I–III) we aim at filtering out the numerical
analysis aspects time domain analysis is based on: The numerical integration of the
very special differential-algebraic network equations. This task comprises the simula-
tion core of all simulation packages. Although modelling, discretization and numerical
integration can be clearly distinguished as different steps, all these levels are strongly
interwoven (and therefore also somehow hidden) in commercial packages.

In Chapter I we discuss how these mathematical models are generated on the basis of
a network approach with compact (lumped) models. The structural properties of these
DAE models can be described by the DAE-index concept. We will learn in Chapter II
that these properties are fixed by the topological structure of the network model in most
cases. However, if more general models for the network elements are incorporated, or
refined models are used to include second order and parasitic effects then special circuit
configurations may be built, which render ill-conditioned problems. These investiga-
tions form the basis for constructing numerical integration schemes that are tailored to
the respective properties of the network equations. In Chapter III we describe the direct
integration approach based on multi-step schemes, which is used in the extremely wide-
spread simulator SPICE (NAGEL [1975]) and has become a standard since almost 30
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years. We include in our discussion a comparison with one-step methods, since recent
developments have revealed an interesting potential for such schemes.

The second part (Chapters IV and V) deals with two challenges circuit simulation is
faced actually in industry: The simulation of very large circuits with up to millions of
transistors such as memory chips on the one hand, and oscillatory circuits with eventu-
ally widely separated time constants, appearing in radio frequency (RF) design on the
other hand. For the reason of efficiency and robustness, and to make numerical simula-
tion feasible at all, the time domain approach discussed in the first part has to be adapted
in both cases. These fields are very much driven by actual industrial needs, and hence are
rapidly evolving. So we can in the second part only describe the state of the art, rather
than present an established mathematical theory, as is meanwhile available for numer-
ical integration of DAE systems. Nevertheless we hope that the second part as well as
the first one helps to get some feeling about the nature of the underlying problems and
the attempts to solve them, and may be useful for both mathematical researchers and
the users of the codes.



CHAPTER I

DAE-Systems – the Modelling Aspect

In computational engineering the network modelling approach forms the basis for
computer-aided analysis of time-dependent processes in multibody dynamics, process
simulation or circuit design. Its principle is to connect compact elements via ideal nodes,
and to apply some kind of conservation rules for setting up equations. The mathematical
model, a set of so-called network equations, is generated automatically by combining
network topology with characteristic equations describing the physical behaviour of
network elements under some simplifying assumptions. Usually, this automatic mod-
elling approach tries to preserve the topological structure of the network and does not
take care to get systems with a minimal set of unknowns. As a result, coupled systems
of implicit differential and nonlinear equations, shortly, differential-algebraic equations
(DAEs), of the general type

f (x, ẋ, t)= 0 with det

(
∂f

∂ẋ

)
≡ 0

may be generated. From a mathematical point of view, these systems may represent
ill-posed problems, and hence are more difficult to solve numerically than systems of
ordinary differential equations (ODEs).

In this first chapter we have to answer the questions onhowandwhy: How does one
generate the differential-algebraic network equations that model the circuits? And why
using at all a DAE approach with a redundant set of network variables, and not an ODE
model?

In the subsequent Chapters II and III answers are given to the remaining questions:
What are the structural properties of the arising DAE systems? Do they have an impact
on numerical discretization? Which integration schemes are used to solve the systems
numerically in a robust and efficient manner?

Let us start our discussion with

1. The Schmitt trigger – an introductory example

The Schmitt trigger (KAMPOWSKY, RENTROPand SCHMIDT [1992]) shown in Fig. 1.1
is used to transform analogue ones into digital signals. The circuit is characterized by
two stable states: If the input signalVin exceeds a certain threshold, then the associated
stable state is obtained as an output signal at node 5. The circuit consists of five linear re-
sistors with conductancesG1, . . . ,G5 between the input voltage sourceVin and node 1,

529
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FIG. 1.1. Schmitt trigger circuit.

the power supply voltage sourceVDD and nodes 2 and 5, between node 3 and ground,
and between nodes 2 and 4. The dynamic behaviour of the circuit is caused by the linear
capacitor with capacitanceC0 between nodes 2 and 4. The nonlinear characteristic is
introduced by two bipolar transistors of npn type at nodes 1,2,3 and 4,5,3.

To derive a mathematical model for the Schmitt trigger that determines the time-
dependent voltage courses of the five node potentialsu1, . . . , u5 at nodes 1, . . . ,5, we
may build up the current balances for all nodes except ground. To apply this so-called
nodal analysis, we first have to replace all branch currents by voltage-depending func-
tions. For the one-port elementscapacitorandresistor, the characteristic equation relat-
ing branch currentI (t) and branch voltageU(t) is given in admittance form, i.e.,I (t)
is given explicitly as a function ofU(t):

• Ohm’s law for a linear resistor: I (t)=GU(t) with conductanceG.
• Faraday’s law for a linear capacitor: I (t)= CU̇(t) with capacitanceC.
Using a compact model, the multi-port elementbipolar transistor of npn-typeshown

in Fig. 1.2 can be described by three branch currentsIB(t), IC(t) andIE(t) entering the
base, collector and emitter terminal of the transistor with corresponding node potentials
UB(t), UC(t) andUE(t). If UC(t) > UB(t) > UE(t) then the three currents are given

FIG. 1.2. Bipolar transistor of npn type.
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in a first order model by

IB(t)= g
(
UB(t)−UE(t)

)
,

IC(t)= α · g(UB(t)−UE(t)
)
,

IE(t)= −(1+ α) · g(UB(t)−UE(t)
)
,

with the characteristic exponential currentg(U) := β · [exp(U/UT ) − 1] of a pn-
junction. The parameterα denotes the amplification factor,β the saturation current
andUT the thermal voltage at room temperature. For more details see GÜNTHER and
FELDMANN [1999a], KAMPOWSKY, RENTROPand SCHMIDT [1992].

Now we have collected all ingredients to apply nodal analysis (i.e., apply Kirchhoffs’
current law) to nodes 1–5. We get:

1 0=G1 · (u1 − Vin)+ g(u1 − u3),

2 0=G2 · (u2 − VDD)+C0 · (u̇2 − u̇4)+G4 · (u2 − u4)+ α · g(u1 − u3),

3 0= −(1+ α) · g(u1 − u3)+G3 · u3 − (1+ α) · g(u4 − u3),

4 0=G4 · (u4 − u2)+C0 · (u̇4 − u̇2)+ g(u4 − u3),

5 0=G5 · (u5 − VDD)+ α · g(u4 − u3).

Reformulated as a linear implicit system, we have
0 0 0 0 0
0 C0 0 −C0 0
0 0 0 0 0
0 −C0 0 C0 0
0 0 0 0 0

 ·


u̇1
u̇2
u̇3
u̇4
u̇5



(1.1)+


G1 · (u1 − Vin)+ g(u1 − u3)

G2 · (u2 − VDD)+G4 · (u2 − u4)+ α · g(u1 − u3)

G3 · u3 − (1+ α) · g(u1 − u3)− (1+ α) · g(u4 − u3)

G4 · (u4 − u2)+ g(u4 − u3)

G5 · (u5 − VDD)+ α · g(u4 − u3)

= 0.

The 5× 5 capacitance matrix is not regular and has only rank 1: Thenetwork equations
(1.1) are a mixed system of one differential equation (difference of lines 2 and 4) and
four algebraic equations (line 1, sum of lines 2 and 4, line 3, line 5). Hence, it is impos-
sible to transform this system ofdifferential-algebraic equations(DAEs) analytically to
a system of ordinary differential equations (ODEs) by pure algebraic transformations.

With this example in mind, we can now inspect the mathematical modelling of elec-
trical circuits – the set-up of differential-algebraic network equations – in the general
case.

2. Principles and basic equations

In contrast to a field theoretical description based on Maxwell’s equations, which is not
feasible due to the large complexity of integrated electric circuits, the network approach
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is based on integral quantities – the three spatial dimensions of the circuit are translated
into the network topology. The time behaviour of the system is given by the network
quantitiesbranch currentsI (t) ∈ R

nI , branch voltagesU(t) ∈ R
nI andnode voltages

u(t) ∈ R
nu , the voltage drop of the nodes versus the ground node. As will be seen

later, it may be convenient to include more physical quantities likeelectrical charges
q(t) ∈ R

nq andmagnetic fluxesφ(t) ∈ R
nφ into the set of variables as well.

Network topology laws. The network model consists of elements and nodes, and the
latter are assumed to be electrically ideal. The composition of basic elements is gov-
erned by Kirchhoff’s laws which can be derived by applying Maxwell’s equations in
the stationary case to the network topology:

– Kirchhoff ’s voltage law(KVL). The algebraic sum of voltages along each loop of
the network must be equal to zero at every instant of time. Often this law is used
only for getting a relation between branch voltagesU(t) and node voltagesu(t) in
the form:

(2.1)A. · u(t)=U(t)

with an incidence matrixA ∈ {−1,0,1}nu×nI , which describes the branch-node
connections of the network graph.

– Kirchhoff ’s current law(KCL). The algebraic sum of currents traversing each cut-
set of the network must be equal to zero at every instant of time. As a special case
we get that the sum of currents leaving any circuit node1 is zero:

(2.2)A · I (t)= 0.

When applying KCL to the terminals of an element, one obtains by integration
over time the requirement ofcharge neutrality, that is the sum of chargesqkl over
all terminalsk of an elementl must be constant:

(2.3)
∑
k(l)

qkl = const.

Hereby the constant can be set to zero without loss of generality.

Basic elements and their constitutive relations.Besides these purely topological re-
lations additional equations are needed for the subsystems to fix the network variables
uniquely. These so-called characteristic equations describe the physical behaviour of
the network elements.

One-portor two-terminalelements given in Fig. 2.1 are described by equations re-
lating their branch currentI and branch voltageU = u+ − u−. Here the arrows in the
figure indicate that the branch current is traversing from the “+”-node of higher poten-
tial u+ to the “−”-node of lower potentialu−. The characteristic equations for the basic
elements resistor, inductor and capacitor are derived by field theoretical arguments from
Maxwell’s equations assuming quasistationary behaviour (MEETZ and ENGL [1980]).
In doing so, one abstracts on Ohmic losses for a resistor, on generation of magnetic

1The sign is only a matter of convention.
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FIG. 2.1. Basic network elements: Linear resistor(I = U/R = G · U), capacitor(I = C · U̇ ), inductor
(U = L · İ ), independent current source(I = s1(t)) and independent voltage source(U = s2(t)).

fluxes for an inductor, and on charge storage for a capacitor, by neglecting all other
effects. The set of basic elements is completed by ideal independent, i.e., purely time-
dependent current and voltage sources.

Interconnects and semiconductor devices (i.e., transistors) are modelled by multi-
terminal elements (multi-ports), for which the branch currents entering any terminal
and the branch voltages across any pair of terminals are well-defined quantities. One
should note that also for these elements Kirchhoff’s laws are valid, i.e., the sum of
all branch currents flowing into the element is zero, and the sum of branch voltages
along an arbitrary closed terminal loop is zero. Hence,n-terminal elements are uniquely
determined byn − 1 branch currents inton − 1 terminals andn − 1 branch voltages
between thesen − 1 terminals, and a reference pole. Controlled current sources are
used to describe the static branch current; alternatively, controlled voltage sources may
be used to describe branch voltages, see Fig. 2.2 for the symbols. Dynamic behaviour is
described by inserting capacitive or inductive branches between the terminals.

These constitutive relations describe the terminal characteristic, which in theclassical
approachis a relation between terminal currentsI and branch voltagesU and/or their
time derivatives for each terminal. If the terminal currents are explicitly given, then
the element equations are said to be inadmittance form(independent current source,
voltage/current controlled current source, linear resistor and linear capacitor); if the
branch voltages are explicitly given, then the equations are said to be inimpedance
form (independent voltage source, voltage/current controlled voltage source and linear
inductor).

As a more flexible and universal approach acharge/flux-oriented formulationcan
be taken for energy storing elements which reflects better the underlying physics of
the circuit devices, see, e.g., CALAHAN [1968], CHUA and LIN [1975], WARD and
DUTTON [1978]. It requires the inclusion of terminal chargesq and branch fluxesφ
into the set of network variables.

FIG. 2.2. Controlled sources: Voltage/current controlled current source(I = ı(Ucontrol, Icontrol)), volt-
age/current controlled voltage source(U = v(Ucontrol, Icontrol)).
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3. Conventional versus charge/flux oriented formulation

At this point the reader may pose the question why charges and fluxes are introduced
at all to model characteristic equations of energy storing elements in a charge/flux ori-
ented way – and not the classical capacitors and inductors are used. The answer to this
question contains modelling, numerical and software engineering aspects. We will now
focus on the first two aspects. Arguments for the latter will be addressed in the next
section.

Modelling. The use of a charge/flux-oriented formulation can be motivated by inspect-
ing the case of nonlinear capacitors and inductors:C = C(U), L= L(I). The problem
here is that there is no generic way to get the capacitor current and inductor voltage in
this case. Rather there exist different approaches in the literature. We discuss them for
capacitors here, the relations for inductors are similar. See Table 3.1 for an overview.

The most popular is an interpretation ofC asdifferential capacitance, with

I = C(U) · U̇
as capacitor current. However also an interpretation ofC asgeneral nonlinear capaci-
tancewith

I = d

dt

(
C(U) ·U)

can be found. This interpretation can be transformed into the first one by using

C̃(U)= ∂C(U)

∂U
·U +C(U)

as differential capacitance.
A more natural access for the handling of nonlinear capacitances would be to intro-

duce the terminal charges

q = qC(U)

and apply the formula

I = dq

dt

TABLE 3.1
Constitutive relations for energy storing elements

Conventional formulation Charge/flux-oriented formulation

Linear capacitor Charge/current defining element
I =C · U̇ q = qC(U, I), I = µ(U) · q + q̇ = Idc + q̇

Linear inductor Flux/voltage defining elements
U = L · İ φ = φL(U, I), U = φ̇
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for getting the capacitor current. Another argument for this approach is, that for the clas-
sical capacitance definition the controlling branch voltageU is restricted to be the volt-
age drop over the capacitor itself, which is too much restrictive to handle large classes of
circuits. Hence charge-oriented models are highly desirable, not only for getting more
flexibility but also since they are consistent with the physical reality: Both static and
dynamic behaviour can be derived from one single set of equations, see the equation
for the current in the second column of Table 3.1 (MIURA-MATTAUSCH, FELDMANN ,
RAHM , BOLLU and SAVIGNAC [1996]). Unfortunately, it is in practice often too dif-
ficult to develop such models for real circuit elements with sufficient accuracy. So this
ideal principle is often violated in practice, and static and dynamic behaviour are mod-
eled separately.

Charge conservation. A mixture of modelling and numerical aspects is the possibility
to correctly model and analyse the charge flow in the circuit. In the following, we will
concentrate on the latter item.

The original intent of the charge/flux-oriented formulation was to assurecharge con-
servation. This property is crucial for the analysis of many analog circuits like switched
capacitor filters, charge pumps, dynamic memories etc., which work on the basis of
properly balanced charge flow.

In the following we merely look at charge conservation. The relations for flux con-
servation are similar. Ideally, charge conservation is assured if

• the principle (2.3) of charge neutrality is observed for each charge storing element,
and

• during numerical integration of the network equations no erroneous charges are
“created”.

In practice, the latter condition can be replaced by the weaker requirement that
• the charge error due to numerical procedures can be made arbitrarily small if the

network equations are solved with increasing accuracy.
How can charge conservation be obtained with the different formulations? First we
look at theconventional approach. Here charges are obtained indirectly via numerical
integration of capacitancesC = C(u):

q(t)= q(t0)+
∫ u(t)

u(t0)

C(v)dv.

Here t0 is the starting time, andt is the actual time point. The numerically computed
voltageu will differ from the exact valueu∗:

u(t)= u∗(t)+�u(t).

So we obtain as a first-order approximation from the capacitance-oriented formula-
tion

q(t)≈ q(t0)+
∫ u(t)

u(t0)

C(v∗)dv+
∫ u(t)

u(t0)

∂C

∂v
�v dv,
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while the exact value for the charge is given by

q∗(t)= q(t0)+
∫ u∗(t)

u(t0)

∂q(v∗)
∂v

dv.

Insertion yields

q(t)≈ q∗(t)+
∫ u∗(t)

u(t0)

[
C(v∗)− ∂q(v∗)

∂v

]
dv

+
(∫ u(t)

u(t0)

−
∫ u∗(t)

u(t0)

)
C(v∗)dv +

∫ u(t)

u(t0)

∂C

∂v
�v dv.

The latter two integrals can be made arbitrarily small by improving the accuracy of the
numerical procedures. However the first integral is independent of numerical accuracy,
and hence the charge obtained from the conventional formulation will approximate the
exact value only if

(3.1)C(u∗)− ∂qC(u
∗)

∂u
= 0

holds. This requirement concerns the capacitance model. It means that with the conven-
tional formulation charge conservation can only be obtained if thecapacitance matrix
is the Jacobian of a charge vector, i.e.,has a generic function. A sufficient condition is
that the capacitance is controlled only by the branch voltage of the capacitor itself. So in
these cases there is a chance to get charge conservation even with a capacitance-oriented
formulation, provided that the numerical solution is sufficiently accurate. However, in
many models developed so far, the requirement (3.1) is violated – because it implies
additional restrictions on the capacitor model for real circuit devices, which is difficult
to develop anyway. A well known counterexample is the model of Meyer for MOS
capacitances, which has been discussed extensively in the literature, since it has been
found that it violates the charge conservation requirement (MEYER[1971], SAKALLAH ,
YEN and GREENBERG[1990], WARD and DUTTON [1978]). See GÜNTHERand FELD-
MANN [1999b] for more details.

With thecharge/flux-oriented formulationit is not difficult to obtain charge conser-
vation. The first requirement is automatically met with the construction, that for each
charge storing element one terminal charge is just the negative sum of all others. To
check the second requirement, we expand the numerical approximation of the charge
vector around the exact solution:

q(t)= qC
(
u(t)

)= qC
(
u∗(t)

)+ ∂qC(u
∗(t))

∂u
·�u+ O(�u2)

= q∗(t)+ ∂qC(u
∗)

∂u
·�u+ O(�u2).

Henceq(t) will approximate the exact charge, as�u becomes smaller with increasing
numerical accuracy.
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4. Modified nodal analysis

The electrical network is now fully described by both Kirchhoff’s laws and the charac-
teristic equations in charge/flux oriented formulation. Based on these relations, most
computer programs employ one of three schemes to set up the network equations:
Sparse Tableau Approach(STA, see HACHTEL, BRAYTON and GUSTAVSON [1971]),
Nodal Analysis(NA, see CHUA and LIN [1975], or Modified Nodal Analysis(MNA,
see HO, RUEHLI and BRENNAN [1975]).

STA is rather canonical: All basic equations are set up explicitly in a system which
contains all network variables as unknowns, i.e., node voltagesu, branch voltagesU
and branch currentsI . However, even for small circuits, a very large number of mainly
short equations is generated.

We should mention that for theoretical investigations mostly an even more flexible
extension of STA calledHybrid Analysisis used, which takes Kirchhoff’s equations
in their general form for loops of branch voltages and cutsets of branch currents rather
than (2.1), (2.2).

NA. Contrary to STA, the aim of NA is to keep the network equations as compact
as possible, so the vector of unknownsx contains only node voltagesu. Since voltage
sources have no admittance representation, they need a special treatment (CHUA and
LIN [1975]) by which the number of KCL equations and of components ofx is reduced
by one for each voltage source. Hence the componentsu1 of x are a subset of the node
voltagesu.

Current-controlled sources are difficult to implement, and inductors may lead to
integro-differential network equations. Thus NA is not well suited for modelling cir-
cuits which contain these elements.

MNA represents a compromise between STA and NA, combining the advantages of
both methods. It shares the universality with STA, but has the advantage of a smaller
number of unknowns and equations: In addition to the node voltages, the branch currents
V and L of just those elements are included into the vectorx of unknowns which
have no simple characteristic equations in admittance form, i.e., voltage sources and
inductors/flux sources. Therefore it is most commonly used in industrial applications to
generate the network equations.

Charge/flux oriented formulation of MNA.To set up the MNA network equations,
KCL (2.2) is applied to each node except ground, and the admittance form representa-
tion for the branch current of resistors, current sources, capacitors and charge sources
is directly inserted. The impedance form equations of voltage sources, inductors, and
flux sources are explicitly added to the system of equations. They implicitly define the
branch currents of these elements. Finally, all branch voltages are converted into node
voltages with the help of KVL (2.1). Splitting the incidence matrixA into the ele-
ment related incidence matricesAC , AL, AR , AV andAI for charge and flux storing
elements, resistors, voltage and current sources, one obtains from MNA the network
equations in charge/flux oriented formulation (ESTÉVEZSCHWARZ and TISCHENDORF

[2000]):

(4.1a)ACq̇ +ARr(A
.
Ru, t)+ALL +AV V +AI ı(A

.u, q̇, L, V , t)= 0,
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(4.1b)φ̇ −A.
Lu= 0,

(4.1c)v(A.u, q̇, L, V , t)−A.
V u= 0,

(4.1d)q − qC(A
.
Cu)= 0,

(4.1e)φ − φL(L)= 0

with

node voltagesu,

branch currents through voltage and flux controlled elementsV andL,

charges and fluxesq andφ,

voltage dependent resistorsr,

voltage and current dependent charge and flux sourcesqC andφL,

controlled current and voltage sourcesı andv.

For an illustration ofAC , AL, AR , AV andAI we refer to the following example.

The Schmitt trigger again. Let us now return to the Schmitt trigger introduced in Sec-
tion 1. To apply Modified Nodal Analysis, we have to introduce additional nodes 6 and
7 as terminals of the voltage sourcesVin andVDD. This yields additional node poten-
tialsu6, u7 and branch currentsV1, V2 through the voltage sourcesVin andVDD as new
network variables. Withu := (u1, . . . , u7)

. andV := (V1, V2)
., the network equa-

tions (1.1) for the Schmitt trigger can be written in the charge/flux-oriented form (4.1a),
(4.1c), (4.1d) by defining

AC =



0
1
0

−1
0
0
0


, AR =



1 0 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

−1 0 0 0 0
0 −1 0 0 −1


,

AV =



0 0
0 0
0 0
0 0
0 0
1 0
0 1


, AI =



1 0 0 0
0 1 0 0

−1 −1 −1 −1
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


,

C = C0, qC(A
.
Cu)= CA.

Cu,

G= diag(G1, . . . ,G5), r(A.
Ru, t)=GA.

Ru,

v(A.u, q̇, L, V , t)=
(
Vin(t)

VDD(t)

)
,
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ı(A.u, q̇, L, V , t)=


g(u1 − u3)

α · g(u1 − u3)

g(u4 − u3)

α · g(u4 − u3)

 .
Note that the circuit does not contain inductors. HenceL = {}, and the contribution
ALL does not appear in (4.1a).

Conventional formulation of MNA. Inserting flux and charge relations (4.1d), (4.1e)
into the first equations, one achieves the analytically equivalentconventional formula-
tion of MNA

ACC(A
.
Cu)A

.
C u̇+ARr(A

.
Ru, t)+ALL

(4.2a)+AV V +AI ı(A
.u, q̇C(A.

Cu), L, V , t)= 0,

(4.2b)L(L, t)̇L −A.
Lu= 0,

(4.2c)A.
V u− v(A.u, q̇C(A.

Cu), L, V , t)= 0,

with generalized capacitance, inductance and conductance matrices

C(w) := ∂qC(w)

∂w
, L(w) := ∂φL(w)

∂w
and G(w, t) := ∂r(w, t)

∂w
.

These matrices are positive-definite, but not necessarily symmetrical, in contrast to the
capacitance, inductance and conductance matrices gained from the two-terminal ele-
ments capacitor, inductor and resistor used, for example, in the Schmitt trigger example.

Structure of MNA network equations.Generally, the following properties hold: The
matrices

C̃(A.
Cu) :=ACC(A

.
Cu)A

.
C, and G̃(A.

Ru, t) :=ARG(A
.
Ru, t)A

.
R

are usually very sparse and have structural symmetry.
In some respect, the fine structure of the network equations depends on the type of

network elements, on the network topology and on the modelling level:
Type of network elements. There are the trivial conclusions, that the system degen-

erates to a purely algebraic one if the circuit contains neither capacitors nor inductors
(energy storing elements), and that the system is homogeneous if there are no time-
dependent elements. If there are no controlled sources, then the Jacobian matrix

(4.3)D(A.
Ru, t) :=

 G̃(A.
Ru, t) AL AV

−A.
L 0 0

−A.
V 0 0


with respect tou, L andV has structural symmetry.

Network topology. Due to Kirchhoff’s laws, cutsets of current sources and loops of
voltage sources are forbidden. This implies that the matrix(AC,AR,AV ,AL) has full
row rank and the matrixAV has full column rank. If there is a loop of independent volt-
age sources and/or inductors, or a cutset of independent current sources and/or capaci-
tors, the Jacobian matrixD(A.

Ru, t) is singular. In these cases no steady-state solution
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can be computed, and so most circuit analysis programs check and refuse these con-
ditions, which are purely topological. But note that in the nonlinear case the Jacobian
matrix also may become numerically singular, e.g., due to vanishing partial derivatives
or in the case of bifurcation (in the autonomous case this deals with free oscillators).

The matrix C̃(A.
Cu) is singular, if there are nodes which have no path to ground

via energy storing elements. If the circuit contains voltage sources, the MNA network
equations contain algebraic relations of type (4.1c) and (4.2c), respectively. This is true
in most circuits, and so mostly the equations are DAEs, i.e., the Jacobian matrix

B(A.
Cu, t) :=

(
C̃(A.

Cu) 0 0
0 L(L) 0
0 0 0

)
,

with respect tȯu, ̇L and̇V is singular.
Modelling level. Additionally, the modelling level defines some properties of the sys-

tems.C̃(A.
Cu) is symmetrical in case of linear or nonlinear differential capacitances,

but symmetry may be lost in case of general nonlinear capacitances or nonlinear charge
models, as are used for example in MOS transistor models (GÜNTHER and FELDMANN

[1999a], GÜNTHER and FELDMANN [1999b]).

Charge/flux oriented or conventional MNA?On which formulation – charge/flux ori-
ented or conventional – should the numerical discretization be based, if MNA is used
for the automatic generation of network equations? From a structural aspect, the con-
ventional MNA formulation yields a standard form of numerical integration problems,
while the charge/flux oriented formulation does not. There are however several reasons,
not to transform (4.1) into (4.2) before applying numerical discretization schemes, al-
though they are analytically equivalent:

Structure. (4.1) is of linear-implicit nonlinear form, while (4.2) is of nonlinear-
implicit nonlinear form. This may have an impact on the choice of a suitable integrator.

Numerics. Information on the charge/flux level is lost in the conventional approach,
and charge conservation may only be maintained approximately in numerical integra-
tion schemes.

Implementation. Implicit numerical integration schemes for the conventional MNA
equations (4.2) require second partial derivatives ofqC andφL. These derivative infor-
mations, however, are not available in circuit simulation packages, may even not exist
because of the lack of smoothness in transistor models.

5. Why differential-algebraic equations?

The charge/flux-oriented formulation of energy storing elementsand MNA network
equations supply us with a first argument for using differential-algebraic equations in
electrical circuit modelling. In the following we will assemble more arguments why
using a DAE approach with a redundant set of network variables, and not an ODE
model.

First of all, one has to distinguish between two different ways to obtain ODE
models:
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• Generating a state-space model with a minimal set of unknowns. Drawbacks of
this approach include software engineering, modelling, numerical and designer-
oriented arguments. The state-space form cannot be generated in an automatic way,
and may exist only locally. The use of independent subsystem modelling, which is
essential for the performance of todays VLSI circuits, is limited, and the advantage
of sparse matrices in the linear algebra part is lost. Finally, the topological infor-
mation of the system is hidden for the designer, with state variables losing their
technical interpretation.

• Regularizing the DAE to an ODE model by including parasitic effects. It is com-
monly believed that the DAE character of the network equations is only caused by
a high level of abstraction, based on simplifying modelling assumptions and ne-
glection of parasitic effects. So one proposal is to regularize a DAE into an ODE
model by including parasitic effects. However, this will yield singularly perturbed
problems, which will not at all be preferable to DAE models in numerical respect.
Beyond it, refined models obtained by including parasitics may make things worse
and lead to problems which are more ill-posed.

So we have to inspect feasibility of state-space formulation, subcircuit partitioning and
regularization based on including parasitic effects.

State-space formulation: State equations.It is well known that for a large class of
nonlinear circuits it is possible to write the network equations as an explicit system of
ordinary differential equations of first order, the so-calledState Equations(CHUA and
LIN [1975]). For this purpose the vectorx1 of unknowns is constructed only from ca-
pacitor voltages and inductor currents2 – respectively of capacitor charges and inductor
fluxes, if a charge/flux-oriented formulation is preferred. In case of special circuit con-
figurations like loops of capacitors or cutsets of inductors, algebraic constraints on the
state variables have to be observed (refer also to Section 7), so perhaps not all of them
are included intox1. The resulting system of equations is:

ẋ1 = f1
(
x1, s(t), ṡ(t)

)
,

x2 = f2
(
x1, s(t), ṡ(t)

)
.

Heres describes independent sources, andx2 contains those network variables which
are not included inx1, e.g., voltages of nodes to which no capacitive element is con-
nected, or branch currents of voltage sources. The second equation serves for comput-
ing x2, once the set of explicit differential equations (first part) has been solved forx1
(BOWERSand SEDORE [1971]). Note that the equations may contain time derivatives
of the input source waveforms.

However, as we can conclude from an extensive literature, the existence of this form
is not at all trivial for general classes of nonlinear circuits (CHUA [1984], CHUA and
LIN [1975], MATHIS [1987]), and therefore the algorithms for setting up the equations
are difficult to program and time consuming. Furthermore, compared to NA or MNA,
the number of unknowns is extremely large for actual integrated circuits containing a

2Note that in network theory just the latter variables are calledstate variables, which is somewhat different
from the use of this notation in numerics.
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large number of parasitic capacitors. And most important, the structure of the equations
does not reflect the structure of the circuit. Therefore this formulation is no longer used
in actual circuit simulation programs.

Subcircuit partitioning. The design of memory chips and advanced digital/analog cir-
cuits demands the numerical simulation of networks with several ten thousand transis-
tors. Parallel simulation is then valuable to reduce runtime, which otherwise would be
prohibitive for such large applications. For this purpose, domain decomposition meth-
ods may be employed, requiring to partition the circuit into subblocks which are de-
coupled by introducing virtual voltage and/or current sources as coupling units at the
boundaries (WEVER and ZHENG [1996], ARNOLD and GÜNTHER [2001]) (see Sec-
tion 15).

Regard now, for example, two subcircuits only connected by resistive paths, with
only linear energy storing elements and resistors, and without any sources. With the
partitioned vectors of node voltagesu= (u1, u2)

. and branch currents through induc-
torsL = (L1, L2)

., the network equations read

(5.1a)ACq̇ +ARr(A
.
Ru)+ALL +AV V = 0,

(5.1b)φ̇ −A.
Lu= 0,

(5.1c)A.
V u= 0,

where

AC := diag(AC1,AC2), q = qC(A
.
Cu) := diag(C1,C2)A

.
Cu,

AL := diag(AL1,AL2), φ = φL(L) := diag(L1,L2)L,

r(A.
Ru)=GA.

Ru

and (5.1c) describes the virtual voltage sources andV are their branch currents. We
will have to deal with DAE models even if the designers assure that all subcircuits
are represented by ODE models! This is easily explained by the fact that the network
equations (5.1) correspond to Lagrange equations of the first kind: Defining the electric
and magnetic energies of both networks by

V (u)= 1

2

2∑
i=1

u.
i ACiCiA

.
Ci
ui, T (L)= 1

2

2∑
i=1

.
Li
LiLi

yields the Lagrangian

L := T (L)− V (u)+ λ.(A.
V u− 0

)
,

where the characteristic equations for the virtual voltage sources are added via La-
grangian multipliersλ. L fulfills the equation

d

dt

∂L
∂ẋ

− ∂L
∂x

= ∂W
∂ẋ
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for x = {q,φ,λ}, ẋ = {L,u, V }, with the dissipative functionW given by

W :=
2∑
i=1

.
Li
A.
Li
ui + 1

2
u.ARGA.

Ru.

Here we used the integral quantities charges and fluxes as state variables and Lagrangian
multipliers:

q(t) :=
∫ t

0
L(τ)dτ, φ(t) :=

∫ t

0
u(τ)dτ, λ(t) :=

∫ t

0
V (τ )dτ.

One notes that the Lagrangian depends only on derivatives of the state variables. This
is caused by the fact that the characteristic equations for energy storing elements are
differential equations of first order in the state variablesu andL.

Regularization based on including parasitic effects.In general, regularization is based
on the assumption that the differential-algebraic form of the network equations is caused
by a too high level of simplification in the modelling process, and therefore an ODE for-
mulation can be reached by adding proper “parasitic” effects or elements to the circuit
model (FELDMANN and GÜNTHER [1999]). One rule-of-thumb is to include parasitic
capacitors to ground at each node to get a regular capacitance matrix, and thus an ODE
model for the circuit. However, this approach fails, if, for example, a cutset of current
source and inductor with inductanceL is regularized by adding a small capacitor with
capacitanceC bridging the cutset (GÜNTHER and FELDMANN [1999b]).

The drawback is that we are confronted with a singularly-perturbed ODE system ifC

is too small: An additional oscillation with frequencyω1 = 1/
√
LC, the eigenfrequency

of the regularized system, is invoked through regularization, which overlays the princi-
ple voltage courses, and the numerical problems even increase. One example for such
an inappropriate regularization is given by the ring modulator, whose numerical prob-
lems have been discussed extensively in the literature (DENK and RENTROP [1991],
HORNEBER[1985], KAMPOWSKY, RENTROPand SCHMIDT [1992]): Parasitic capac-
itances in the proposed range of some pF yield additional high-frequency oscillations
in the GHz-range, which drastically slows down numerical simulation. Numerical regu-
larization effects become visible only for capacitances thousand times larger, which are
not realistic (FELDMANN and GÜNTHER [1999]). On the other hand, the DAE model
without parasitic capacitors leads to physically correct results, without any numerical
problems, if appropriate integration schemes are used.

Besides that, it is not trivial to make sure that a refined modelling based on including
parasitic effects will always yield ODE models. Even worse, the numerical problems
may increase with the refinement of the model, as will be shown in Section 9 for dif-
ferent levels in the refined modelling of a bipolar ring oscillator. This result can be
explained easily by the fact that the DAE index, a measure for the structural properties
of DAE systems, increases.





CHAPTER II

DAE-index – the Structural Aspect

So we are faced with network equations of differential-algebraic type when simulating
electrical circuits. Before attacking them numerically, we have to reveal the analytical
properties of DAEs. In a first step we inspect linear systems and apply, in a second
step, the results to nonlinear systems. We will see that for a rather general class of
circuits the network topology determines the structural properties of the DAE network
equations. However, if more general models for the network elements are incorporated,
special circuit configurations apply or refined models are used to include second order
and parasitic effects, one may have to cope with ill-conditioned problems.

6. The index concept for linear systems

If a circuit contains only linear elements – or if the system is linearized at an operating
point (x(t0), ẋ(t0)), in order to investigate the system behaviour for small signal exci-
tations from that operating point – then the corresponding network equations represent
differential-algebraic equations in linear implicit form:

(6.1)Bẋ +Dx = s(t), x(t0)= x0.

If we further assume MNA form thenx = (u, L, V )
. and

B =
(
ACCA

.
C 0 0

0 L 0
0 0 0

)
, D =

ARGA.
R AL AV

−A.
L 0 0

−A.
V 0 0

 ,
s =

(−AI ı(t)
0

−v(t)

)
.

Such linear-implicit systems constitute the starting point to classify differential-
algebraic equations by a structural property known as the index. In the linear case,
this property depends only on the structure ofB andD:

ODE-case:B regular. This holds, iff the circuit contains no voltage sources and there
are no nodes which have no path to ground via capacitors. In this case, system (6.1)
represents a linear-implicit system of ODEs, and can be transformed into the explicit
ODE system

ẋ = B−1(−D · x + s(t)
)
.

545
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DAE-case:B singular. In the following we will assumeD to be regular. This re-
quirement allows for computing equilibria solutions by an operating point analysis to
determine initial values, and can be assured by proper demands on the network topology
(GÜNTHER and FELDMANN [1999a], GÜNTHER, HOSCHEK and RENTROP [2000]).
Thus multiplying (6.1) withD−1 from the left-hand side leads to

(6.2)D−1B · ẋ + x =D−1 · s(t).
By Jordan decomposition of

D−1B = T −1
(
B̃ 0
0 N

)
T

with a regular, time independent, matrixT , Eq. (6.2) can be written after multiplication
by T from the left-hand side as

(6.3)

(
B̃ 0
0 N

)
T ẋ + T x = TD−1s(t)

with a regular matrix̃B and a nilpotent matrixN . N belongs to the eigenvalue 0 and
is of nilpotencyν, i.e.,ν is the smallest number such thatNν = 0, butNν−1 �= 0. The
transformation(

y

z

)
:= T x, and

(
η(t)

δ(t)

)
:= TD−1s(t)

with differential variablesy and algebraic variablesz decouples this system into an
explicit ODE and a nilpotent part:

(6.4)ẏ = B̃−1(η(t)− y
)
,

(6.5)Nż= δ(t)− z.

The nilpotent part has to be investigated further:
• Index-1 case: ν = 1, i.e., N = 0

Now the nilpotent part reads

(6.6)z= δ(t);
the algebraic variables are explicitly given by the input signal. After one differen-
tiation an explicit ODE system forz is obtained.

• Higher-index case: ν � 2
The algebraic variables are only given explicitly after a differentiation process:
Differentiation of (6.5) and multiplication withN from the left-hand side yields

N2z̈+Nż=Nδ̇(t) ⇒ z= δ(t)−Nδ̇(t)+N2z̈.

If ν = 2 holds, we cease the process, otherwise it has to be repeated untilNν = 0:

(6.7)z= δ(t)−Nδ̇(t)+N2δ̈(t)− · · · + (−1)ν−1Nν−1δ(ν−1)(t).

Now the solution depends not only on the input signal, but also on its derivatives!
A last differentiation (i.e., theνth one) leads to the desired explicit ODE system

(6.8)ż= δ̇(t)−Nδ̈(t)+N2δ(3)(t)− · · · + (−1)ν−1Nν−1δ(ν)(t).
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Here we have assumed thatδ is (ν − 1)-times differentiable to get a continuous
solutionz. On the other hand, if we allow discontinuous input signals, solutions
may only exist in the sense of distributions (RABIER and RHEINBOLDT [1996]).

Summing up, the solution behaviour of a linear-implicit system of differential equations
differs from standard ODE theory in the following sense:

• The solution has to fulfill an algebraic constraint, sincez(t0) is fixed by δ and
its higher derivatives at the initial time pointt0. Especially, the solutions do not
depend continuously differentiable on the initial values. Forν = 1, this constraint
is explicitly given by (6.6). In the higher-index case, however, the constraint is
hidden: A differentiation process is necessary to obtain (6.7).

• The system is sensitive to perturbations. Take as example a signal noise, modelled
by the input signalδ: Although δ may be very small, its higher derivatives may
be arbitrarily large. A severe amplification of perturbations may occur for higher-
index problems: We are faced with ill-posed problems.

These analytical results suggest that no severe numerical problems arise in index-1 sys-
tems: The algebraic constraint is explicitly given; hence implicit numerical integration
schemes for stiff systems such as BDF (GEAR [1971]) or ROW-type methods (REN-
TROP, ROCHE and STEINEBACH [1989]) (see Chapter III), which contain a nonlinear
equation solver, are suitable to treat these problems. Additionally, no amplification of
round-off errors is to be expected since the system is not sensitive to perturbations.

However, severe numerical problems may arise for systems with nilpotencyν � 2:
There are hidden algebraic constraints, which can be resolved only by an unstable dif-
ferentiation process. Regarding perturbationsδ entering the right hand side due to inac-
curate solutions or due to roundoff errors, terms of orderδ/hν−1 will enter the solution,
whereh is the small time discretization parameter.

Since the value ofν defines the behaviour of the system (6.1), both in theoretical and
numerical respect,ν is called thealgebraic indexof the linear implicit system (6.1).
Additionally, the observations made above motivate three different point of views:

Differential index: To obtain an explicit differential system instead of the linear-
implicit system (6.1), we had to differentiate the nilpotent part (6.5). Since numerical
differentiation is an unstable procedure, the number of differentiation steps needed to
get an explicit ODE system is a measure for the numerical problems to be expected
when solving systems of type (6.1). Hence the minimum number of differentiations
required is called thedifferential indexνd of the linear-implicit linear system (6.1).

Perturbation index: We have seen that derivatives of the perturbation enter the solu-
tion of (6.1). This observation leads to a new kind of index, which measures the sen-
sitivity of the solutions to perturbations in the equations: The linear-implicit system
(6.1) hasperturbation indexνp, if derivatives of perturbations up to degreeνp enter the
derivative of the solution.

Tractability index: Finally it was shown that the decomposition of a DAE system into
the part governed by regular ODEs, the algebraic part, and the part which can only be
solved by performing a differentiation process gives much insight into the nature of
the problem. This is especially helpful for analysis and construction of new methods.
Griepentrog and März developed a calculus for doing this by using properly constructed
chains of projectors, which led to the tractability index concept (GRIEPENTROGand
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MÄRZ [1986], MÄRZ [1992]). We restrict here to the definition of index 1 and 2. To
this end we introduce

N := kerB, S := {z: Dz ∈ imB}
and define: The system (6.1) withB being singular has tractability index 1, ifN ∩ S =
{0}, i.e.,B1 := B +DQ is nonsingular for a constant projectorQ ontoN .

If it is not of index 1 then we introduce

P := I −Q, N1 := kerB1, S1 := {z: DPz ∈ imB1}
and define: The system has tractability index 2, ifN1∩S1 = {0}, i.e.,B2 := B1+DPQ1

is nonsingular for a constant projectorQ1 ontoN1.
In the index-2 case,N∩S comprises just those components, which can be solved only

by a differentiation process. An outcome of this index notation is an exact identification,
which part of the DAE system needs which smoothness condition to be solvable.

Although the different index concepts were developed for different purposes, it turns
out that in most nonpathological cases all of them yield the same number, or differ at
most by one. So we are free to select one of them which suits best to our actual item of
interest, or is the easiest to compute.

All definitions can be generalized in a straightforward way to nonlinear DAE systems
(GEAR [1988, 1990], HAIRE, LUBICH and ROCHE [1989], GRIEPENTROGand MÄRZ

[1986]).
It remains to determine the index of the charge/flux-oriented network equations (4.1).

Due to the charge and flux defining equations (4.1d), (4.1e), the index is always� 1 if
the circuit contains energy storing elements at all.

7. Network topology and DAE-index for RLC networks

In the linear case, the two-terminal elements capacitor, inductor and resistor are de-
scribed by linear functions withpositivecapacitance, inductance and resistance. Hence
the matrices

C := ∂qC(w)

∂w
, L := ∂φL(w)

∂w
, G := ∂r(w)

∂w

of capacitances, inductances and resistances are symmetrical positive-definite. In other
words, the elements are strictly passive.

Generalizing this property to the nonlinear case, the local strict passivity of nonlin-
ear capacitors, inductors and resistors corresponds to the positive-definiteness (but not
necessarily symmetry) of the so-called generalized capacitance, inductance and conduc-
tance matrices

C(w) := ∂qC(w)

∂w
, L(w) := ∂φL(w)

∂w
and G(w, t) := ∂r(w, t)

∂w
.

already introduced in Section 4. If this property of positive-definiteness holds, the net-
work is called an RLC-network.



SECTION 7 DAE-index – the Structural Aspect 549

Topological conditions. Let us first investigate RLC-networks with independent volt-
age and current sources only. To obtain the perturbation index of (4.1), we perturb
the right-hand side of (4.1a)–(4.1c) with a slight perturbationδ = (δC, δL, δV )

. on
the right-hand side. The corresponding solution of the perturbed system is denoted by
xδ := (uδ,  δL, 

δ
V )

.. One can show that the differencexδ − x between perturbed and
unperturbed solution is bounded by the estimate∥∥xδ(t)− x(t)

∥∥ � const· (∥∥xδ(0)− x(0)
∥∥ + max

τ∈[0,t]
‖δ‖

(7.1)+ max
τ∈[0,t]

∥∥Q.
CRV δ̇C

∥∥ + max
τ∈[0,t]

∥∥Q̄.
V−Cδ̇V

∥∥)
using orthogonal projectorsQC , QCRV andQ̄V−C onto kerA.

C , ker(ACARAV ). and
kerQ.

CAV , respectively TISCHENDORF[1999]. SinceQ.
CRV AC = 0 holds, the index

does not raise, if also perturbationsδq andδφ are allowed in the charge and flux defining
Eqs. (4.1d)–(4.1e).

Thus the index of the network equations is one, iff the following two topological
conditions hold:

T1: There are no loops of only charge sources (capacitors) and voltage sources (no
VC-loops): kerQ.

CAV = {0} and thusQCRV = 0.
T2: There are no cutsets of flux sources (inductors) and/or current sources (no LI-

cutsets): ker(ACARAV ). = {0} and thus/QV−C = 0.
In this case, we are faced with well-posed problems. If howeverT1 or T2 is violated then
we have to cope with ill-posed problems of index 2. The generic index-2 configurations
for such a violation are shown in Fig. 7.1: A VC-loop consisting of voltage source and
capacitor, and an LI-cutset of current source and inductor3.

VC loops. Let us investigate one important case of networks with VC-loops. As we
have seen in Section 5, one rule-of-thumb is to regularize a circuit by adding at each
node parasitic capacitors to ground. This approach yields kerA.

C = {0}, and condition
T2 is fulfilled. However,T1 is violated due toQC = 0 iff the network contains voltage
sources: Every voltage source leads to a loop of capacitors and this voltage source.

We determine now the index for both cases. After differentiating the characteristic
equations for charge, flux and voltage sources, we get withC̃(w) := ACC(w)A

.
C a

system of the type

(7.2)

 C̃(A.
Cu

δ) 0 AV

0 L(δL) 0
A.
V 0 0

( u̇δ

̇L
δ

 δV

)
+ f (u, L, t)=

(
δC(t)+ACδ̇q(t)

δL(t)+ δ̇φ(t)

δ̇V (t)

)

with uδ,  δL, 
δ
V being the solution of (4.1), perturbed withδ = (δC, δL, δV , δq, δφ)

. on
the right-hand side. With Kirchhoff’s voltage law we have kerAV = 0, and thus the
system can be resolved for(u̇δ, ̇ δL, 

δ
V ). For networks without voltage sources the index

is one, otherwise two.

3The conductance is only inserted in the figures as a representative to show possible augmentations of the
circuit without having an impact on the index.
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FIG. 7.1. Index-2 generic configurations.

One notes that system (5.1) generated by subcircuit partitioning in Section 4 repre-
sents a special linear case of (7.2):C(A.

Cu) = C andL(L) = L. In this case, we can
derive sharper perturbation estimates than (7.1). The difference between the differential
party := (u, L) andyδ := (uδ,  δL) of unperturbed and perturbed solution is bounded
by ∥∥y(t)− yδ(t)

∥∥ � const·
(∥∥y(0)− yδ(0)

∥∥ + max
τ∈[0,t]

‖δ1‖ + max
τ∈[0,t]

∥∥∥∥∫ τ

0
δ0(τ )dτ

∥∥∥∥)
with δ0 = (δL, δC) andδ1 = (δV , δq, δφ) – no derivatives of perturbations enter the es-
timate for the differential variables. But for the algebraic componentsV one gets with
the sharp estimate∥∥V (t)− δV (t)

∥∥ � const· (∥∥y(0)− yδ(0)
∥∥ + max

τ∈[0,t]
‖δ‖ + max

τ∈[0,t]
‖δ̇1‖

)
an index-2 behaviour, as expected. In general however, derivatives of perturbations can-
not be neglected in the bounds of both differential and algebraic components (ARNOLD

[1997]).

Generalization. A generalization of these results for RLC-networks with independent
voltage and current sources to special linear controlled sources is given in REISSIG

[1998], where linear active networks are considered of capacitors, inductors, resistors,
ideal transformers and gyrators. The results hold also for RLC-networks with a rather
large class of nonlinear voltage and current sources: The index depends only on the
topology; in general, the index is one, and two only for special circuit configurations
(GÜNTHERand FELDMANN [1999b], ESTÉVEZSCHWARZ and TISCHENDORF[2000],
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TISCHENDORF[1999]). This class of sources contains, for example, controlled current
sources not being part ofVC-loops that are controlled by(ACAVAR).u, V andt .

One example for such an RLC-network is given by the Schmitt trigger already intro-
duced in Section 1. Inspecting the charge-/flux-oriented network equations (4.1) derived
for the Schmitt trigger in Section 4, we see that the current sourcesIB , IC andIE de-
scribing the bipolar transistors are only controlled by the branch voltagesA.

V u and
A.
Ru. Since kerQ.

CAV = {0} due to

QC =



1 0 0 0 0 0 0
0 1/2 1/2 0 0 0 0
0 0 1 0 0 0 0
0 1/2 1/2 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


and ker(ACARAV ). = {0} hold, the Schmitt trigger yields an index-1 problem.

These results obtained for RLC circuits rest on two different types of assumptions:
Positive-definiteness of generalized capacitance, inductance and conductance matrices
on the one hand, and no arbitrary controlled sources on the other hand. If one of these
demands is violated, the index may depend not only on whether the topology conditions
T1 and T2 hold or not, but also on circuit and model parameters and – for circuits
containing nonlinear elements – on their bias conditions. In addition, the index can be
larger than two.

Violation of positive-definiteness.Independent charge and flux sources, which may
modelα-radiation or external magnetic fields in a somewhat higher level of abstraction,

FIG. 7.2. Index-3 configurations:ΦC-loop and QL-cutset.
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can destroy the positive-definiteness of generalized capacitance and inductance matri-
ces. Generic examples for this case are the circuits of Fig. 7.2:ΦC-loop and QL-cutsets.
We see thatu1 andu2 (respectivelyV ) are index-3 variables in the cutset (loop) cir-
cuit. It has to be checked whether this mechanism may also lead to index-3 problems in
case of MOS circuits with charge models whose derivatives vanish under certain bias
conditions.

8. Networks with controlled sources

Higher index can also be generated by controlled sources. One example is the coupling
of index-2 problems via controlled sources. Another example is that although both topo-
logical conditionsT1 andT2 hold, circuit parameters may have an impact on the struc-
tural properties of the network equations if a network contains controlled sources, even
it is linear. First we discuss the effects of coupling circuits with controlled sources; then
we analyze adifferentiator circuitand aMiller integrator, for illustration of the second
phenomenon.

Before doing this we should note that controlled sources are indispensable elements
in circuit simulation, which are extensively used in semiconductor models as well as
in macro models of a somewhat higher level of abstraction, and for modelling signal
propagation on and between interconnects. An instructive example for the latter use and
its effects on the index is discussed in Section 9.

Coupling of higher-index configurations via controlled sources mayraise the index
of the driven circuit part by one or two per controlled source, if the controlling network
variable itself is of higher index. The question, in which cases the index gets higher, is
difficult to answer. Below we will give some simple generic cases. Surprisingly, much
sophisticated research in this field was done twenty years ago, although the index notion
was not yet introduced at all. The motivation was to develop algorithms for setting up
network equations in theState Variableapproach (GÜNTHER and FELDMANN [1999a])
for general classes of networks including controlled sources, and the methods developed
for this purpose aimed just to capture as many circuit configurations as possible, which
in our notation are of index� 2. Most of them start from properly constructednormal
treesspanning the network graph. An overview can be found in CALAHAN [1972],
CHUA and LIN [1975].

There are eight possibilities to couple cutsets of current sources/inductors (JL cut-
sets) and loops of voltage sources/capacitors (VC loops) via either a voltage-controlled
element or a current-controlled element. It turns out that only those configurations will
have an increased index where the controlling variable itself is of higher index. These
configurations are listed in Table 8.1. Here the subscriptC (D) denotes network el-
ements and variables of the controlling (driven) circuit. The argumentt characterizes
the input variable, and a prime′ indicates the derivative with respect to the controlling
variable.

Extensions are possible by replacing in the VC loops and JL cutsets the inductor or
voltage source by a flux source, and the current source or capacitor by a charge source.
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TABLE 8.1
Index-3 coupling of index-2 circuits via controlled sources

Case Controlling
circuit

Input
variable

Driven
circuit

Controlled
source

Output
variable

Index

1 JL cutset J (t) JL cutset JD(uC) uD = LCLDJ
′
D
J̈ (t) 3

2 JL cutset J (t) VC loop VD(uC) ID = LCCDV
′
D
J̈ (t) 3

3 VC loop V (t) VC loop VD(IC) ID = CCCDV
′
D
V̈ (t) 3

4 VC loop V (t) JL cutset JD(IC) uD = CCLDJ
′
D
V̈ (t) 3

These extensions lead to 32 further high-index configurations, and one can get a circuit
configuration of index 5 with only 4 elements (GÜNTHER and FELDMANN [1999b]).
Further extensions are possible by replacing the sources by norators.

The higher-index configurations described here may be recursively used, thus obtain-
ing circuit configurations of arbitrary high index.

Differentiator circuit. We must expect a higher-index problem if the circuit itself acts
as a differentiator. A differentiator circuit with input sourcev(t) and output voltageu3
is given in Fig. 8.1 where the operational amplifier (see Fig. 8.2) with amplification
factora is a special case for a voltage-controlled voltage source.

From its MNA equations

ARGA
.
Ru+ALL +AV V = 0,

FIG. 8.1. Differentiator circuit.

FIG. 8.2. Operational amplifier: Network symbol and characteristic equations.



554 M. Günther et al. CHAPTER II

φ̇ −A.
Lu= 0,

A.
V u−

(
v(t)

au2

)
= 0,

φ −L · L = 0

with G :=G1 and

AR =
( 1

−1
0

)
, AL =

( 0
1

−1

)
and AV =

(1 0
0 0
0 1

)
one obtains index 1.

For the limit case of an ideal operational amplifier, i.e.,a→ ∞, the element relation
hasUcontrol = 0 (u2 = 0) as a limiting case, and neither the output voltageU (u3) nor the
output currentI (V 2) are determined by the characteristic equations. So, its controlling
nodes are connected by anullator (i.e., an element with vanishing branch voltage and
branch current), and its output nodes are connected by anorator (i.e., an element with
arbitrary branch voltage and branch current).

In this case, the MNA structure (4.1) is destroyed, since

A.
V u−

(
v(t)

au2

)
= 0

is replaced by

Ã.
V u−

(
v(t)

0

)
= 0 with Ã.

V =
(

1 0 0
0 1 0

)
�=A.

V .

We recognize that thestatic elements, whose element equations are independent of
the output variables (here: The degenerated controlled source), are responsible for the
higher index, because now the output variable is determined only via differential equa-
tions of thedynamicelements. We haveu3 = −L ·G · v̇(t) for the differentiator circuit,
i.e., the output voltage is the time derivative of the input voltage, and the problem is of
index 2. This situation is typical for higher-index problems and is merely an electrical
interpretation of the mathematical condition for index� 2.

Any extension of the differentiator circuit, which does not shortcut the inductor in
Fig. 8.1, will keep the index� 2. By inserting LC-, LR- or RC-circuits into the feedback
loop between ideal operational amplifier and inductor of the differentiator circuit, the
index can be raised by 2, 1 or 1, respectively (REISSIGand FELDMANN [1996]).

Miller integrator. When we replace the inductor of the differentiator circuit by a ca-
pacitor then the circuit turns into an integrator. Fig. 8.3 shows such a circuit, which is
called Miller integrator. The capacitorC2 is mandatory for the circuit, whileC1 is added
as a parasitic grounded capacitance, which may vanish.

We take this circuit to illustrate that due to the use of controlled sources the circuit
parameters may have an impact on the structural properties of the network equations:
Index, sensitivity of the solution with respect to input signals, and degree of freedom
for assigning initial values. This is true even for linear circuits.
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FIG. 8.3. Miller integrator circuit.

The function of this time-continuous version of an integrator is to integrate an input
signal over time. Such integrators are important parts of integrated filter circuits, since
they are used to substitute inductors of arbitrary inductanceL, which are expensive
to obtain otherwise in integrated technologies. Hereby the inductor relation is taken in
admittance form

 = 1

L

∫
udt,

which requires the integration of the branch voltageu. For the sake of simplicity we use
an ideal operational amplifier element with limited amplificationa here.

Using Modified Nodal Analysis, the network equations read

ACCA
.
C · u̇+ARGA

.
R · u+AV V = 0,

A.
V u− v(u, t)= 0,

with

AC =
(0 0

1 −1
0 1

)
, AR =

( 1
−1
0

)
, AV =

(1 0
0 0
0 1

)
,

C = diag(C1,C2), G=G1, v(u, t)=
(
v(t)

au2

)
.

If the amplification factora tends to infinity thenu2 = 0, and for the capacitor cur-
rent we getC2 · u̇3 = −V 2 = −G · u1 = −G · v(t), from which follows the integrator
function of the circuit:

u3 = − G

C2

∫
v(t)dt.

Fora �= 1+C1/C2, one can solve foṙu2 by inserting the last equation into the second:
u̇2 =G(v(t)− u2)/C with C = C1 +C2(1− a). All components are now fixed byu2,
the only degree of freedom:

u1 = v(t), u3 = au2, V 1 =G(u2 − v(t)),

V 2 = C2

C
G(1− a)

(
v(t)− u2

)
.
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TABLE 8.2
Miller integrator circuit: Impact of technical parameters on index, degree of

freedom and sensitivity with respect to input signal

Technical parameter Index Degree of freedom Sensitivity w.r.t.v(t)

C1> 0
a �= 1+C1/C2 2 onlyu2 only v(t)
a = 1+C1/C2 3 – v(t) and v̇(t)

C1 = 0
a �= 1 1 onlyu2 only v(t)
a = 1 2 – onlyv(t)

For a = 1+C1/C2, however,u2 is fixed by the hidden algebraic relationu1 − u2 = 0.
Now the solution is given at every time point by the input signal and its derivatives:

u1 = u2 = v(t), u3 = av(t), V 1 = 0, V 2 = C2(1− a)V̇ (t).

This reflects the impact of the technical parametersC1, C2 anda on the system w.r.t.
input signals and degree of freedom for assigning initial values, see Table 8.2 for an
overview. It remains to discuss the influence on the index:

First case: C1 > 0. The derivative of the algebraic part with respect to the algebraic
components(u1, L, V )

. is singular, since the element relation for the amplifieru3 =
au2 does not depend onV 2. After one differentiation we get by inserting the formulae
for the differential variablesu2 andu3 the linear algebraic relation

(8.1)

( −(1− a)G1/C1
(1− a)G1/C1

(1− a)/C1 + 1/C2

).( u1
u2
V 2

)
= 0

in u1, u2, V 2, which can be solved forV 2 iff a �= 1 + C1/C2; in this case, the index
is two. This is not surprising, since together withC1 andC2 the operational amplifier
forms a loop of voltage source and capacitors.

For the exceptional casea = 1+C1/C2 relation (8.1) reads

u1 = u2,

and a second differentiation is necessary to solve forV 2: The index is now three.
Second case: C1 = 0. The partial derivative of the algebraic part with respect to the

algebraic components(u1, u2 + u3, V 1, V 2)
. now reads

G −G/2 1 0
−G G/2 0 1
1 0 0 0
0 (1− a)/2 0 0

 .
The matrix is regular, and correspondingly the index is 1, iffa �= 1 holds. Fora = 1,
however, the matrix has only rank 3. The last algebraic relation becomesu2 − u3 = 0,
which fixes the differential component, too. To get the remaining differential relation
from this equation, two differentiations are necessary. Hence the index is 2.
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Conclusion. These results for controlled sources have an important practical conse-
quence: It is not sufficient to rely only on structural aspects when trying to cope with
higher-index problems in circuit simulation. This will be further elaborated when look-
ing at stepwise refinements of a bipolar ringoscillator model in the following section.
Possible solutions to this problem are discussed in Section 10.

9. Effects of refined modelling – a bipolar ringoscillator

The task of a ringoscillator is to generate autonomously an oscillating signal, which
may be used for driving other parts of a circuit, but in many cases serves only for mea-
suring the maximal clock rates which can be achieved with a given technology. The
basic principle is to connect an odd number of inverter stages in a loop. Compared to
standard MOS technologies, bipolar technologies are faster (by approximately an order
of magnitude, such that frequencies of 10 GHz and higher are possible) due to a very
small signal swing and high driving capabilities, but the circuits are not as compact and
have a higher power consumption.

The basic model. A circuit diagram of our bipolar ringoscillator is shown in Fig. 9.1.
Since it is simplified as far as possible it may look somewhat strange for an experienced
circuit designer. On the other hand it has still its basic functionality, and can be extended
in such a way that we observe the effects we want to discuss here.

Circuit description. The dashed box contains the core of the circuit and will be used
as an icon in the extensions discussed later. It consists of three differential stages.
The nodes between the resistors and the collector of the bipolar transistors (e.g., the
nodes 1 and 2 for the left stage) are the outputs of each stage, while the nodes con-
nected to the base of the bipolar transistors (e.g., the nodes 7 and 8 for the left
stage) are its inputs. Each output of a stage is connected to the corresponding in-
put of the next stage, thus forming a loop. Basically the circuit works in acurrent
mode: The differential stages are driven by current sources, and due to the exponen-
tial characteristic of the bipolar transistor just that branch of each differential stage
will take over almost all of the current, whose input node is at a higher voltage level.
Since the Ohmic resistors cause a larger voltage drop for the branch carrying the
larger current, its output will be at a lower voltage level, thus inverting the input sig-
nal.

In principle, one input of each differential stage may be fixed at a constant reference
voltage. For speed advantages, often the complementary technique shown here is used,
where both the original signal and its inverse are generated in each stage and propagated
to the inputs of the next. Note that the circuit operates with negative voltages, which
reduces the sensitivity of the signals with respect to perturbations of the power supply.
First-order formulas for designing such an oscillator can be found in the textbooks (see
e.g. HOFFMANN [1996]).

Network equations. With u := (u1, . . . , u10)
., being the vector of node voltages at

nodes 1, . . . ,10, andV = JSS being the current through the only voltage source, the
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FIG. 9.1. Bipolar ringoscillator.

charge oriented MNA network equations read:

ACq̇ +AR diag(G1,G2,G3,G4,G5,G6)A
.
Ru+AV V +AI ı(A

.u, t)= 0,

A.
V u+ VSS(t)= 0,

q − qC(A
.
Cu)= 0,

with

AC =



1 0 0 0 0 0
0 1 0 0 0 0

−1 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 −1 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 −1 −1
0 0 0 0 0 0


,
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AR =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0


, AV =



0
0
0
0
0
0
0
0
0
1


,

AI =



1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 −1 −1 0 0 0 0 −1 −1 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 −1 −1 0 0 0 0 −1 −1 0 0 1
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

−1 −1 0 0 0 0 −1 −1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0−1 −1 −1


,

qC(A
.
Cu)= diag(c13, c23, c46, c56, c79, c89) ·A.

Cu,

ı(A.u, t)= (
IC1, . . . , IC6, IB1, . . . , IB6, J1(t), J2(t), J3(t)

).
.

HereICj andIBj are the collector and base current of the bipolar transistorTj (j =
1, . . . ,6) introduced in Section 1. The capacitancescij between nodesi andj may be
linear, or modelled in a nonlinear way:cij = cij (A

.
Cu) (GÜNTHER and FELDMANN

[1999b]).
The index. With the projector

QC =



1/3 1/3 1/3 0 0 0 0 0 0 0
1/3 1/3 1/3 0 0 0 0 0 0 0
1/3 1/3 1/3 0 0 0 0 0 0 0
0 0 0 1/3 1/3 1/3 0 0 0 0
0 0 0 1/3 1/3 1/3 0 0 0 0
0 0 0 1/3 1/3 1/3 0 0 0 0
0 0 0 0 0 0 1/3 1/3 1/3 0
0 0 0 0 0 0 1/3 1/3 1/3 0
0 0 0 0 0 0 1/3 1/3 1/3 0
0 0 0 0 0 0 0 0 0 1


onto kerA.

C one shows that kerQ.
CAV = {0} and ker(ACARAV ). = {0} hold. Since all

sources are either independent or current sources that are not part of any VC loop and
which are driven by branch voltages of capacitive paths, this model yields an index-1
problem. We only have to require that the charge model used for the capacitors in the
nonlinear case yields a positive-definite generalized capacitance matrix.
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Refined modelling. Eventually our basic circuit model has to be refined in order to
get a higher degree of accuracy and to take nonideal operating conditions into account.
Basically this is achieved by

• replacing idealized network elements by real circuits. As an example we will dis-
cuss the substitution of the current sources by transistor configurations,

• a more detailed modelling with respect to parasitic effects (see Table 9.1 for an
overview).

The impact of a model refinement on the index is not a priori clear: Regularization to
lower index, no change, and even an increase of the index may happen. In GÜNTHER

and FELDMANN [1999b] some circuit configurations are reviewed which may yield
higher-index problems. This will be illustrated in the following with some extensions
of our basic ringoscillator model. Hereby it is sufficient for our purpose to modify only
the circuit frame, while the core symbolized by a dashed box (see Fig. 9.1) remains
unchanged.

Inductance of interconnect. Since power supply and ground line conduct a significant
and rapidly changing current, it may be necessary to take their inductance into account
(see Table 9.1). For the sake of simplicity we insert only an inductor with inductanceL

into the ground line of Fig. 9.1. The inclusion of an inductor into the power supply line
gives no further insight here.

The differential index is raised from one to two, since the circuit now contains a
cutset of an inductor and current sources. All node voltages in the cutset depend on the
first derivatives ofJ1(t), . . . , J3(t), i.e., are index-2 variables. Numerically, this may
not cause problems as far as the sourcesJi(t) are smooth. However it becomes apparent
if the Ji(t) are slightly perturbed with a ‘noisy’ signal of small amplitude and high
frequency.

Realistic model for current sources. The sources providing the current for the dif-
ferential stages in our basic ringoscillator model of Fig. 9.1 are in practice realized by
bipolar transistors of npn-type, which are biased with a positive base-emitter voltage
and a negative base-collector voltage. In this case the collector current is approximately
given by

IC ≈ β · (e UBE
UT − 1

)
(see Section 1), which definesvBias= UBE in order to get the same value forIC as was
provided by the current sourcesJ1 . . . J3 in the basic model.

Formally, the cutset of current sources and inductors is broken, and the index is re-
duced to 1. Numerically however, the bipolar transistors still act as current sources,
and so one has to deal with a singularly perturbed index-2 problem if the regularizing
capacitancescij at the three transistors acting as real current sources are small.

Modelling of crosstalk. If the interconnects are long parallel wires in the layout, then
it may become necessary to take crosstalk between them into account (see Table 9.1).
We restrict here to the simple case of crosstalk between the interconnect nodes 9 and 10
in our circuit of Fig. 9.1. Usually, crosstalk is modeled by adding a coupling capacitor
between the nodes. However, sometimes also controlled sources are used for this pur-
pose, especially in higher order models. We will focus here on the latter model since it
may have a negative impact on the index, while the first one has a regularizing effect.
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TABLE 9.1
Important parasitic effects in integrated circuit designs

Effect Important for Example Impact on index

Nonideal element high performance, limited output
characteristics analog circuits conductance of transistors eventually decreasing

Resistance
of diffusions standard designs emitter resistance of

bipolar transistors
eventually decreasing

of interconnects long interconnects, high
currents

resistance of power
supply, via holes

eventually decreasing

Capacitance
of diffusions standard designs capacitive load usually no change
of interconnects large interconnects signal cross-coupling usually no change

Inductance
of interconnects, high currents, inductance of eventually increasing
package, etc. fast switching power supply

Temperature effects large temperature range temperature dependence
of mobility

no change

high power self-heating of power
transistors

eventually increasing

Distributed
(noncompact) elements

very fast switching
signals

delay time of
transmission lines

eventually increasing

charge sensitive circuits nonquasistationary
element equations

usually no change

Parasitic semiconductor
devices

compact design rules,
unusual operating
conditions

bipolar latchup in CMOS
circuits

usually no change

External
electromagnetic flux or charge α-radiation in eventually increasing
noise, sensitive designs dynamic memory
radiation cells

Node 10 is split into a pair 10 and 10a which are connected by a voltage-controlled
voltage sourceECross. The controlling branch voltage is the voltage drop between nodes
9 and 10:

ECross= u10a − u10 = αE · (u9 − u10).

A reasonable value for the crosstalk factorαE is between 1 and 10%. Note that here the
mutual crosstalk from node 10 to node 9 is one order of magnitude smaller and can be
neglected. Now the power supply voltage of node 10 is no longer constant. In our case,
this will not have an effect on the oscillating waveforms, since the current provided by
the sourcesJ1, J2, J3 is independent ofu10. But now the parasitic capacitorc10 of node
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10 versus ground has to be included, since it is de- and upcharged simultaneously and
such causes an additional load for the power supply currentJSS.

With JL andJE being the currents through the inductor and the controlled voltage
sourceECross, respectively, a first order approximation yields

JSS= −JE = c10 · u̇10 − J1 − J2 − J3

≈�JSS− J1 − J2 − J3,

where

�JSS= −αEc10u̇9

is caused by the crosstalk effect. The relative additional current∣∣∣∣ �JSS

J1 + J2 + J3

∣∣∣∣
is not very significant for smooth current sources, but it may increase dramatically if the
current sourcesJ1, J2, J3 are somewhat noisy. The reason is, thatu9 is of index 2 due
to the cutset of current sources/inductor. Since this variable controls the voltage source
ECross, which is enclosed in a loop of voltage sources/capacitor anyway, its current
JE and therefore also the currentJSS of the power supply sourceVSS are of index 3
(GÜNTHER and FELDMANN [1999b]). SoJSSdepends on the second derivatives of the
current sourcesJ1(t), J2(t), J3(t).

Note that for the latter model the numerical integration schemes in standard simula-
tion packages will fail in general if a noisy signal is applied to the input sources. Not
even the startup behaviour of this circuit, where the power supply and input signals are
ramped up to their final value, can be analysed in general due to the nonsmooth form of
the ramp-up signals.

A detailed discussion of the bipolar ringoscillator and its refinement levels, including
all technical parameters and models, derivation of network equations, and waveforms,
can be found in GÜNTHER and FELDMANN [1999a].

After setup and analysis of the DAE network equations modelling electrical circuits
in time domain, it remains to discuss the third step in circuit simulation: Numerical
integration using DAE discretization schemes, which are tailored to the structure and
index of the network equations.



CHAPTER III

Numerical Integration Schemes

The numerical integration of the network equations defines (at least from a mathemat-
ical point of view) the kernel of simulation packages in circuit design. This chapter
does not aim at an introduction into numerical integration schemes for DAE systems:
Neither in theory (convergence and stability) nor in general aspects of implementation
(adaptivity, solution of nonlinear and linear systems). For this, the reader may consult
a bunch of excellent textbooks (ASCHERand PETZOLD [1998], BRENAN, CAMPBELL

and PETZOLD [1996], HAIRER and WANNER [1996]) or the survey article (RABIER

and RHEINBOLDT [2002]).
In the following we first describe the conventional approach based on implicit linear

multi-step methods, discuss the basic algorithms used, and how they are implemented
and tailored to the needs of circuit simulation. Special care is demanded of index-2
systems. In addition, we introduce an alternative approach based on one-step methods.
This recently developed scheme is compatible to the conventional one with respect to
efficiency and robustness, and shows interesting numerical damping properties.

Throughout this chapter we will assume that the network equations correspond to
RLC networks, and the only allowed controlled sources are those which keep the index
between 1 and 2, depending on the network structure.

10. The conventional approach: Implicit linear multi-step formulas

To simplify notation, we first rewrite the network equations (4.1) in charge/flux oriented
formulation

0=
(
AC 0
0 I

0 0

)
︸ ︷︷ ︸

A:=

·
(
q̇

φ̇

)
︸ ︷︷ ︸
ẏ:=

+
ARr(A.

Ru, t)+ALL +AV V +AI ı(u, L, V , t)

−A.
Lu

v(u, L, V , t)−A.
V u


︸ ︷︷ ︸

f (x,t):=

,

(
q

φ

)
︸ ︷︷ ︸
y:=

=
(
qC(A

.
Cu)

φL(L)

)
︸ ︷︷ ︸

g(x,t):=
in a more compact linear-implicit form:

(10.1a)0=F
(
ẏ(t), x(t), t

) :=A · ẏ(t)+ f
(
x(t), t

)
,

(10.1b)0= y(t)− g
(
x(t)

)
563
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with x := (u, L, V )
. being the vector of unknown network variables.

The basic algorithm. The conventional approach can be split into three main steps:
Computation of consistent initial values, numerical integration ofẏ based on multi-step
schemes, transformation of the DAE into a nonlinear system and its numerical solution
by Newton’s procedure. Since the third step is usually performed with methods which
are not very specific for circuit simulation, we will not discuss it further here.

Let us assume for the moment that the network equations are of index 1 – the index-2
case will be discussed later.

Consistent initial values. The first step in the transient analysis is to compute consis-
tent initial values(x0, y0) for the initial time pointt0. In the index-1 case, this can be
done by performing a steady state (DC operating point) analysis, i.e., to solve

(10.2)F(0, x0, t0)= 0

for x0 and then sety0 := g(x0). If there are no controlled sources, the Jacobian∂F/∂x
of (10.2) with respect tox0 reads

∂F
∂x

=
 G̃(A.

Ru0, t0) AL AV

−A.
L 0 0

−A.
V 0 0


with the definitionG̃(A.

Ru, t) := ARG(A
.
Ru, t)A

.
R already introduced in Section 4.

Since ker(∂F/∂x)= ker(AR,AL,AV ). × ker(AL,AV ) holds, the matrix is only regu-
lar, if there are neither loops of independent voltage sources and/or inductors, nor cutsets
of independent current sources and/or capacitors. If these topological conditions are vi-
olated, no steady state solution can be computed, and so most circuit analysis programs
check and refuse these circuit configurations. Additional assumptions are implied in the
case of controlled sources. But note that in the nonlinear case the Jacobian matrix also
may become numerically singular, e.g., due to vanishing partial derivatives or in the
case of bifurcation.

An approach always feasible in the index-1 case is to extract the algebraic constraints
using the projectorQC onto kerA.

C :

Q.
C

(
ARr(A

.
Ru, t)+ALL +AV V +AI ı(u, L, V , t)

)= 0,

v(u, L, V , t)−A.
V u= 0.

If the index-1 topological conditions hold, this nonlinear system uniquely defines for
t = t0 the algebraic componentsQCu0 andV,0 for given (arbitrary) differential com-
ponents(I − QC)u0 and L,0. The derivativesẏ0 have then to be chosen such that
Aẏ0 + f (x0, t0)= 0 holds.

Numerical integration. Starting from consistent initial values, the solution of the net-
work equations is computed at discrete time pointst1, t2, . . . , by numerical integration
with implicit linear multi-step formulas.

The direct approach, which is shortly described here, was first proposed by GEAR

[1971] for backward differentiation formulas(BDF methods): For a timestephk from
tk−1 to tk = tk−1+hk the derivativėy(tk) in (10.1) is replaced by a linearρ-step operator
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ρk for the approximatėyk , which is defined by

(10.3)ρk = 1

hk

ρ∑
i=0

γk,iyk−i −
ρ∑
i=1

βk,i ẏk−i := αkyk + rk

with yk−i := g(xk−i ), i = 0,1, . . . , ρ, andẏk−i , i = 1, . . . , ρ, already computed by pre-
vious operatorsρk−i . The indexk in the method coefficientsβk,i andγk,i indicate their
dependence on the step size history in the case of variable step size implementations (see
the paragraph about adaptivity below). The remainderrk contains values ofy andẏ for
previous time points.

Transformation into a nonlinear system of equations. The numerical solution of the
DAE system (10.1) is thus reduced to the solution of a system of nonlinear equations

(10.4)F
(
αkg(xk)+ rk, xk, tk

)= 0,

which is solved iteratively forxk by applying Newton’s method in a predictor-corrector
scheme. Starting with a predictor stepx(0)k (xk−1 or some kind of extrapolated value
from previous timepoint may be a reasonable choice), a new Newton correction
�x

(l)
k := x

(l)
k − x

(l−1)
k is computed from a system of linear equations

(10.5)DF (l−1)�x
(l)
k = −F (l−1), F (l−1) := F(αkg(x(l−1)

k )+ rk, x
(l−1)
k , tk)

directly by sparse LU decomposition and forward backward substitution. Due to the
structure of the nonlinear equations the JacobianDF (l−1) for Newton’s scheme is

DF (l−1) = αk ·F (l−1)
ẋ +F (l−1)

x

with F (l−1)
ẋ =A · ∂g(x

(l−1)
k )

∂x
, F (l−1)

x = ∂f (x
(l−1)
k , tk)

∂x
.

If the step sizeh is sufficiently small, the regularity ofDF (l−1) follows from the reg-
ularity of the matrix pencil{A · ∂g(x)/∂x, ∂f/∂x} that is given at least for index-1
systems.

Implementation: Element stamps and cheap Jacobian.The implementation of the di-
rect approach for one timestep into the analysis kernel of circuit simulation packages
such as SPICE is outlined in Fig. 10.1.

In every Newton step (10.5), two main steps have to be performed:
• LOAD part: First the right-hand side−F (l−1) of (10.5) and the JacobianDF (l−1)

have to be computed;
• SOLVE part: The arising linear system is solved directly by sparse LU decomposi-

tion and forward backward substitution.
A characteristic feature of the implementation is that modelling and numerical integra-
tion (10.3) are interwoven in theLOAD part: First the arrays for right-hand side and
Jacobian are zeroed. In a second step, these arrays are assembled by adding the contri-
butions toF andDF element by element: So-calledelement stampsare used to evaluate
the time-discretized models for network elements.
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FIG. 10.1. The direct approach in SPICE like simulators.

Let us consider, for example, a linear capacitor with capacitanceC between the nodes
“+” and “−” with node potentialsu+ andu− at time pointtk . Its characteristic equa-
tion readsIC(tk)= q̇C(tk), qC(tk)= C · (u+ −u−). After incorporating the approxima-
tion (10.3) forq̇C one gets the approximate element relation

IC = αkC · (u+ − u−)+ rk,

which gives the following contributions to the Jacobian matrix for the rows correspond-
ing to nodes “+” and “−” and columns corresponding to node potentialsu+ andu−,
and to the right-hand side (rhs) at nodes “+” and “−”:

u+ u− rhs

+ αkC −αkC −IC
− −αkC αkC IC

One consequence of using element stamps is the cheap availability of the Jacobian: For
highly integrated circuits with a very sparse Jacobian, it is only slightly more expensive
to evaluate both right-hand side and Jacobian than to evaluate only the right-hand side
by its own. So, if not linear algebra aspects are dominant (which may happen for very
large circuits) then the use of full rather than modified Newton may be appropriate in
many cases.

BDF schemes and trapezoidal rule.It remains to answer the question which types
of implicit linear multi-step formulae (10.3) are actually used. Since SPICE2 (NAGEL

[1975]), most circuit simulators solve the network equations either with thetrapezoidal



SECTION 10 Numerical Integration Schemes 567

rule (TR)

(10.6)ρk = −ẏk−1 + 2

h
(yk − yk−1) (ρ = 1, βk,1 = 1, γk,0 = −γk,1 = 2)

or with BDF schemes:

(10.7)ρk = 1

hk

ρ∑
i=0

γk,iyk−i (βk,1 = · · · = βk,ρ = 0).

For the BDF methods no derivatives ofy at previous time points are needed. The first
timestep is always performed by BDF1 (implicit Euler scheme) as starting procedure.

Why BDF schemes? The most appealing argument is to save function evaluations as
much as possible, since they are extremely expensive in circuit simulation – see Gear’s
article (GEAR [1971]) which was explicitly dedicated for solving circuit equations, and
consequently had been published in an electrical engineering journal. A second one is
that the use of higher order methods does not require much extra cost. And the third
one is a settled convergence and stability theory for fully-implicit (and not only semi-
explicit) index-1 systems. Nonlinear index-1 network equations fit into this class of
problems. For such systems the following convergence result for BDF schemes can
be found in any textbook on DAEs: Theρ-step BDF method of fixed sizeh for ρ <
7 is feasible and converges toO(hρ) if all initial values are correct toO(hρ) and if
the Newton process at each timestep is solved to accuracyO(hρ+1). This convergence
result has also been extended to variable stepsize BDF methods, provided that they are
implemented in such a way that the method is stable for standard ODEs, i.e., the ratio
of two succeeding stepsizes is bounded.

It should be noted that BDF schemes with order greater 3 are rarely used in practice
because of the low smoothness properties of the transistor model equations. Stability
properties give an additional argument for BDF1 and BDF2 schemes anyway: They are
A-stable, i.e., for Dahlquist’s linear test equatioṅx = λx the numerical solution with
arbitrary stepsizeh is bounded for all{λ;Re(λ) < 0} in the left half planeC−. In other
words, no stability problems occur for stiff systems with decaying solutions. In contrast,
convergent BDF schemes with higher order(3 � ρ � 6) cannot beA-stable because of
the second Dahlquist barrier. However, they areA(α)-stable with 0< α < π/2, i.e.,
stable in the sectorial{λ; |arg(−λ)| < α,λ �= 0} of the left half plane; and at least for
BDF3α ≈ 86· π

180 is large enough to yield no serious stability problems in practice.
In addition toA-stability – andA(α)-stability, respectively – the numerical solutions

of BDF tend to zero (for fixed stepsizeh) in the very stiff limit Re(λ)→ −∞. Thisstiff
decayproperty (which is equivalent to theL-stability property for one-step methods)
allows to skip rapidly varying solution details and still maintain a decent description of
the solution on a coarse level in the very stiff case. Hence they are suitable for network
equations that are generally very stiff because of the widely separated time constants in
electrical circuits.

One consequence forA stable methods with stiff decay is numerical damping along
the imaginary axis. This behaviour defines a serious shortcoming for BDF1 and BDF2
schemes: The solution is damped so strongly, that even for rather small timesteps oscil-
lations may be damped out, and after some cycles a circuit seems to be quiescent even
though it oscillates in reality.
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A natural alternative to BDF2 is the trapezoidal rule TR, since it is the A-stable linear
multi-step method of order 2 with smallest leading error coefficient. Due to its energy
conserving property, it avoids the shortcoming of BDF methods: Oscillations are not
damped at all – unfortunately, not even instabilities of highest frequency caused by
numerical noise. This weak instability can be seen directly from (10.6): Errors ofẏk−1
are propagated tȯyk = ρk without being damped, and errors ofẏk propagate directly to
the respective components ofxk .

One conclusion might be that TR would be a desirable integration rule, if it were
damped sufficiently, but not as strongly as BDF. For this purpose several approaches are
described to construct a combination of TR and BDF schemes (FELDMANN , WEVER,
ZHENG, SCHULTZ and WRIEDT [1992]), so-called TR-BDF schemes. This name was
first used in a paper by BANK , COUGHRAN, FICHTNER, GROSSE, ROSE and SMITH

[1985]. The aim is to combine the advantages of both methods: Large timesteps and no
loss of energy of the trapezoidal rule (TR) combined with the damping properties of
BDF. An interesting interpretation of TR-BDF as a one-step method was presented in
HOSEA and SHAMPINE [1996].

When looking for alternatives to TR-BDF, we will return in Section 12 for a more
detailed discussion to the problem of preserving physical oscillations, while damping
out artificial ones very efficiently.

Adaptivity: Stepsize selection and error control.Variable integration stepsizes are
mandatory in circuit simulation since activity varies strongly over time. A simple crite-
rion for timestep control can be obtained from the Newton process itself: The stepsize is
reduced/increased, if the number of Newton iterations per timestep is larger/smaller than
a given threshold (for example, 8 and 3); otherwise, the stepsize remains unchanged.
This criterion is cheap to compute, but not very reliable: Linear problems converge with
one single Newton step and hence would always be integrated with maximal stepsize.

The conventional strategy: Estimating the local truncation error iṅy. A more reliable
and still efficient stepsize prediction is based on estimating the local truncation error
εẏ = ẏ(tk+1)− ρk+1 of the next step to be performed, i.e., the residual of the implicit
linear multi-step formulas if the exact solution is inserted (βk+1,0 = 1):

εẏ :=
ρ∑
i=0

βk+1,i ẏ(tk+1−i ) −
1

hk+1

ρ∑
i=0

γk+1,ig
(
x(tk+1−i )

)
.

Usually the accuracy oḟy is controlled rather than that ofy, becausey itself is no
quantity of interest for the user. This implies the loss of one integration order, as we will
see now. After Taylor expansion aroundtk the leading error term inεẏ turns out to be

εẏ ≈


1
2hk+1

d2

dt2
g(x(tk)) for BDF1,

1
6hk+1(hk+1 + hk)

d3

dt3
g(x(tk)) for BDF2,

1
6h

2
k+1

d3

dt3
g(x(tk)) for TR.

The higher order time derivatives ofg are usually estimated via divided differences
based onyk, . . . , yk−1−ρ . This is rather inaccurate, since only backward information is
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used to get the derivatives at the actual timepoint. So timestep control is always some-
what “behind” the actual timepoint, which makes it unstable and gives rise to overreac-
tions, especially when the timesteps are large. This is another argument – besides that of
low order smoothness of the element models – why BDF schemes of order greater than
3 are seldom used in practice. To improve the estimates for the higher order derivatives
of g, it was suggested in KLAASSEN and PAAP [1987] to replace the divided differences
by a higher order scheme – e.g., the trapezoidal rule – and to employρk, . . . , ρk−p for
its evaluation. This improves accuracy, needs less backward stages, and is surely more
consistent since the time derivatives entering the solution are either used for timestep
control, and not any further approximations of them.

A new stepsize can be predicted by matchingεẏ with a user defined error tolerance
TOL. If hk+1 is not different fromhk , then TR allows due to its smaller error constant a
timestep which is approximately 40% larger than for BDF2.

For an a-posteriori error check, the inequality‖εẏ‖ � TOL has to be evaluated with
updated function evaluations for the higher order derivatives. Furthermore, an order
control for variable order BDF schemes can be constructed very easily: The stepsize
predictions for orderρ − 1, ρ andρ + 1 are computed, and that order is chosen which
gives the maximal timestep. In practice, the difference between the converged solution
at t = tk and the initial value provided by a suitable predictor polynomial is a key value
for the local truncation error estimation.

Modified timestep control. The main flaw of controllingεẏ is that the user has no di-
rect control on the really interesting circuit variables, i.e., node potentialsu and branch
currentsL, V . In order to overcome this disadvantage associated with charge/flux ori-
ented integration, DENK [1990] used

ġ
(
x(t)

)= ∂g(x(t))

∂x
ẋ(t),

which means to assemble the terminal charges/branch fluxes in circuit nodes/branches
and to perform classical integration onx rather thany. This method works well if New-
ton’s procedure is started from a low order predictor. However, it requires the computa-
tion of the second derivatives ofg, which are hard to get in practice or do not even exist
due to poor smoothness properties of transistor models.

An alternative approach (SIEBER, FELDMANN , SCHULTZ and WRIEDT [1994]) is
based on the idea not to transform the whole network equations as done by Denk, but
only the local truncation errorεẏ for q̇ into a (cheap) estimate for the local errorεx :=
x(tk)−xk of x(t). By expandingF(ẏ(t), x(t), t) at the actual time pointtk into a Taylor
series around the approximate solution(ẏk, xk) and neglecting higher order terms, one
obtains

F
(
ẏ(tk), x(tk), tk

)≈ F(ẏk, xk, tk)+ ∂F
∂ẏ

(
ẏ(t)− ẏk

)+ ∂F
∂x

(
x(t)− xk

)
.

With the difference of exact and approximate value forẏ(tk)

ġ
(
x(tk)

)− ġ(xk)= αk
(
g
(
x(tk)

)− g(xk)
)+ εẏ ≈ αk

∂g

∂x

(
x(tk)− xk

)+ εẏ
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follows:

F
(
ẏ(tk), x(tk), tk

)≈ F(ẏk, xk, tk)+ ∂F
∂ẏ
εẏ +

(
αk
∂F
∂ẏ

∂g

∂x
+ ∂F
∂x

)
εx.

As F is zero for both the exact and the approximate solution, the desired error estimate
εx for x(tk) can be computed from the linear system

(10.8)

(
αkA

∂g

∂x
+ ∂f

∂x

)
εx = −Aεẏ

of which the coefficient matrix is the Jacobian of Newton’s procedure! Since the local
error εx can be interpreted as a linear perturbation ofx(tk), if F is perturbed with the
local truncation errorεẏ , the choice ofεx is justified as an error estimate for numerical
integration. The idea to weight the local truncation error via Newton’s method was
already proposed by SACKS-DAVIS [1972] for stiff ordinary differential equations and
by GUPTA, GEAR and LEIMKUHLER [1985] and LEIMKUHLER [1986] for nonlinear
DAEs of index 2. They key motivation pursued in the literature was to damp the impact
of the stiff components on timestep control – which otherwise would yield very small
timesteps. While this aspect can be found in the textbooks, a second aspects comes from
the framework of charge oriented circuit simulation: Newton’s matrix brings system
behaviour into account of timestep control, such mapping integration errors of single
variables onto those network variables, which are of particular interest for the user.

Because ofαk = O(h−1), the first term in Newton’s iteration matrix may become
dominant if the timestep is sufficiently small. Hence for high accuracy requirements
– which force the timesteps to be small – we can expect to get back one order of ac-
curacy, which was lost by directly controlling the truncation errorεẏ . However, the
a-posteriori test is more rigorous than with the conventional strategy because of the in-
clusion of an updated iteration matrix. This leads in principle to a loss in robustness
since more timesteps are likely to be refused. In such a situation more conservative
a-priori timesteps should be chosen, but overall this may degrade efficiency either.

Timestep control as an optimal control problem. How can we determine an optimal
compromise between large a-priori timesteps and only a few number of a-posteriori
refused timesteps? An interesting approach pursued by GUSTAFSSON, LUNDH and
SÖDERLIND [1988] is to look at this problem from the viewpoint of control theory,
and to build a linear PI-controller for this purpose: Its P-term is proportional to the
difference between the desired toleranceTOL and the actual a-posteriori error, and its I-
term integrates (sums up) the past values of these values. An increase/decrease of them
gives rise to a more conservative/relaxed a-priori choice of timesteps. This approach has
for the first time opened timestep control to a rigorous mathematical analysis, and con-
sequently has found entrance into the textbooks (HAIRER and WANNER [1996], DEU-
FLHARD and BORNEMANN [2002]). An actual survey is given in SÖDERLIND [2001].
Since practical experience shows that it is difficult to find a fixed set of parameters for
the controller, which applies well to all circuit simulation problems (APPEL [2000]),
it was suggested to employ adaptive control mechanisms for this purpose (MATHIS,
MAURITZ and ZHUANG [1994]). Although looking very interesting and promising, this
kind of timestep control still needs improvements in details, which would make it prac-
tical for standard applications in an industrial environment. One reasonable extension
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might be to include the number of Newton iterations per timestep into the controller
(APPEL[2000]).

Note. In practice, in some circuit simulators attention to the local discretization error
is restricted to the voltage unknowns inx (KUNDERT [1995]).

The index-2 case.Since most applications of practical interest yield network equations
of index 2, numerical integration must be enabled to cope with this kind of problems.
As they are not of Hessenberg type, it is not a-priori clear whether the BDF approach
can be generalized to such problems. Fortunately, the fine structure of the network equa-
tions derived in Chapter II helps to answer this question. It turns out that the BDF can
be used to solve such systems, provided that consistent initial values are available, a
weak instability associated with an index-2 non-Hessenberg system is fixed, and some
problems with timestep control are solved.

The latter item was already mentioned before: It can be solved by using Newton’s
iteration matrix for weighting the local truncation errorεẏ , thus gettingεx for timestep
control, see Eq. (10.8). The first items can be solved by using information from an index
monitor, as will be shown in the following.

An index monitorhas following tasks: It determines the index, identifies critical parts
of the circuit and invokes special treatment for them in order to avoid failures of the
numerical integration, gives hints to the user how to regularize the problem in case of
trouble, and which network variables may be given initial values, and which must not.
And of course the index monitor must be fast enough to cope with the large size of
problems which are standard in industrial applications.

Such an index monitor has been developed by TISCHENDORF [1999], ESTÉVEZ

SCHWARZ and TISCHENDORF[2000]4 and successfully implemented into an indus-
trial circuit simulator (ESTÉVEZ SCHWARZ, FELDMANN , MÄRZ, STURTZEL and TIS-
CHENDORF[2003]). It aims at characterizing a charge oriented network model in MNA
formulation to be of index 0,1,2, or possibly larger than 2. This diagnosis tool con-
sists of a graph oriented part, which checks topological criteria about position and – in
case of networks with controlled sources – control of the network elements, and of a
numerical part, which checks positive definiteness of element relations during analysis.
The combination oftopologicaland local numericalchecks makes the monitor very
efficient: A 30000 transistor circuit can be handled in a few seconds. In case of circuit
configurations which may yield an index> 2, the critical circuit parts are identified, and
suggestions for regularization are issued.

One essential outcome of this work is that industry has learned how to construct
future device and circuit models in order to avoid numerical problems due to high DAE
index as far as possible.

Computing consistent initial values. The usual way in circuit simulation to compute
initial values by solving a DC steady state problem (10.2) may yield inconsistent initial
values in the index-2 case, since the hidden constraints – relating parts of the solution
to the time derivatives of the time dependent elements – are not observed. A simple

4Based on thegeneric indexconcept, alternative algorithms were suggested in REISSIG and FELDMANN

[1996], REISSIG[1998]. The same approach can also be used to smooth results when restarting from discon-
tinuities, which otherwise show some initial wiggles.
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example is the VC-loop of Fig. 7.1, where the currentV depends on the time derivative
v̇(t) of the input signal. This raises two questions for index-2 problems:

• How can we get consistent initial values?
• What happens when integration is started from nonconsistent initial values?

The standard method for the first problem consists of three steps (PANTELIDES [1988],
ESTÉVEZ SCHWARZ and LAMOUR [1999]):

1. Select variables which can be given initial values, and initialize them;
2. setup equations for hidden constraints;
3. solve an augmentednonlinearsystem which includes the hidden constraints.

In ESTÉVEZ SCHWARZ [1999a] it was shown that the first and the second step can be
done efficiently in circuit simulation by using the results of the previously described
index monitor. However, a problem with this approach is that it is very much different
from the handling of initial conditions in the lower index case. So an alternative was
developed in ESTÉVEZ SCHWARZ [2000], which aims at being as near as possible to
the standard algorithm for low index:

1. Find a solution without hidden constraints from solving Eq. (10.2);
2. setup and solve alinear system for corrections to this solution, such that the hidden

constraints are fulfilled;
3. add the corrections to the initial values found in step 1 to get consistent ones.

Again the hidden constraints can be easily derived from the information provided by
the index monitor. When the algorithm is applicable then the variables to be corrected
turn out to be branch currents in VC-loops and node voltages in LI-cutsets; details can
be found in ESTÉVEZ SCHWARZ [2000].

As an example we look at the circuit given in Fig. 10.2. It contains a VC-loop and is
of index 2. The unknowns are the node voltages and the branch current of the voltage
source, if an MNA formulation is used:x = (u1, u2, u3, V )

.. The network equations
are given by:

KCL1: V +C1 · (u̇1 − u̇2)+ 1

R1
u1 = 0,

KCL2: C1 · (u̇2 − u̇1)+ 1

R2
u2 +C2u̇2 + 1

R3
· (u2 − u3)= 0,

KCL3:
1

R3
· (u3 − u2)+C3u̇3 = 0,

V-Source: u1 = V (t).

FIG. 10.2. An index-2 circuit.
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The steady state DC solution

u̇1 = 0, u̇2 = 0, u̇3 = 0,

u1 = V (0), u2 = 0, u3 = 0,

V = − 1

R1
· V (0)

solves the network equations, but violates the hidden constraint

u̇1 = V̇ (t).

To make it consistent, we need an additional current�V in the VC-loop, which we can
compute from:

KCL1: �V +C1 · (u̇1 − u̇2)= 0,

KCL2: C1 · (u̇2 − u̇1)+C2u̇2 = 0,

V-Source: u̇1 = V̇ (0).

(Node 3 is not part of the VC-loop, and can be omitted here.) Its solution is added to the
previous one to get the following consistent initial values:

u̇1 = V̇ (0), u̇2 = C1

C1 +C2
· V̇ (0), u̇3 = 0,

u1 = V (0), u2 = 0, u3 = 0,

V = − 1

R1
· V (0)− C1 ·C2

C1 +C2
· V̇ (0).

In case of a charge/flux oriented formulation the procedure is similar.
To answer the second question, we note that transient analysis may abort or yield

wrong results if it is started from an inconsistent initial value. An example is given
in ESTÉVEZ SCHWARZ [2000]. Fortunately, the multi-step methods are mostly started
with a backward Euler step, and thanks to the special structure of the network equa-
tions this is sufficient in many cases to bring the solution back onto the right mani-
fold, although integration was started from an inconsistent value (ESTÉVEZ SCHWARZ

[2000]).5 Note however that this is not true if integration is started with the trapezoidal
rule; even with stiffly-accurate one-step methods it may take some timesteps to get back
to the correct solution, if the initial values are not consistent.

Fixing the weak instability. The variable order, variable stepsize BDF for the index-2
network equations (10.1) reads

A
1

hk

ρ∑
i=0

γk,ig(xk−i )+ f (xk−i , tk−i )= δk.

Here, the defectδk represents the perturbations in thekth step caused by the rounding
errors and the defects arising when solving the nonlinear equations numerically. MÄRZ

5Some authors exploit this feature to get consistent initial values by performing some Eulersteps backward
and then again forward in time (VALSA and VLACH [1995], BRACHTENDORFand LAUR [2001]).
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and TISCHENDORF[1997] have shown that if the ratio of two succeeding stepsizes is
bounded and the defectδk is small enough, then the BDF approach is feasible – i.e., the
nonlinear equations to be solved per integration step are locally uniquely solvable with
Newton’s method – and convergent. However, a weakly instable term of the type

max
k�0

1

hk
‖Dkδk‖

arises on the right-hand side for the error estimate of maxk�ρ ‖xk − x(tk)‖. HereDk
denotes a projector that filters out the higher-index components of the defect. In contrast
to Hessenberg-type index-2 systems, this instability may affect all solution components,
and may cause trouble for the timestep and error control. Remember, that the stepsize
is decreased if the a-posteriori error check fails. For small stepsizes however, the weak
instability is reflected by an error growth if the stepsize is decreased – the usual timestep
and error control must fail!

Since all solution components may be affected, an appropriate error scaling – as
done for Hessenberg systems – is no remedy. However, the instability can be fixed by
reducing the most dangerous part of the defectδk , that is, those parts belonging to the
range ofDk . This defect correction can be done by generalizing the back propagation
technique, since the projector can be computed very cheaply by pure graphical means
with the use of an index monitor.

We finish this section with some remarks on a new BDF-based approach to integrate
the network equations numerically, which shows some potential for the future: Modified
Extended BDF.

In 1983, J. Cash proposed the Modified Extended BDF (MEBDF) method, which
combines better stability properties and higher order of convergence than BDF, but
requires more computations per step (CASH [1983, 2000]). One timestep with the
MEBDF method consists of three BDF steps and an evaluation step. This results in
more work compared to BDF, but the order of convergence increases with one for most
circuits (BRUIN [2001]). This implies that for convergence order 3 we normally apply
the 3-step BDF method, while with the MEBDF method a 2-step method suffices.

The k-step MEBDF-methods are A-stable (HAIRER, NØRSETT and WANNER

[1987]) for k � 3, while for BDF this is restricted to the casek � 2 (CASH [1983]).
Thus these MEBDF-methods ‘break’ Dahlquist’s Law (HAIRER, NØRSETTand WAN-
NER [1987]) that applies to real multistep methods: we have higher order methods with
unconditional stability.

The approach looks attractive because implementation may re-use existing BDF-
based datastructures efficiently. In the Modified version, also the number of needed
LU-factorizations is reduced to only 1. Variants also allow parallelism (FRANK and
VAN DER HOUWEN [2000]).

11. A second approach: One-step methods

Up to now, only multi-step methods have been used for the numerical discretization
in professional packages. These conventional methods have achieved a high degree of
maturity, and have proven to be efficient and very robust in an extremely large variety of
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applications. Nevertheless there is some motivation to look at alternative schemes also
from an industrial point of view:

• The BDF methods are applicable to much more general classes of nonlinear DAEs;
can methods be superior, which are definitely constructed for the special linear-
implicit nonlinear form (10.1) of the circuit equations?

• In the charge/flux oriented form of conventional codes, timestep control is difficult,
since charge/flux tolerances are not of interest for the user, and extra effort is nec-
essary to derive charge/flux tolerances from the desirable user given node voltage
or current tolerances.

Are there methods with a more natural embedding of timestep control even in
charge oriented formulation?

• The fully implicit methods used so far require in each timestep a nonlinear system
to be solved. Can semi-implicit methods be employed, which need only linear
systems to be solved?

Recently, a class of one-step methods was developed that give a positive answer to
the three questions above. They are based on embedded Rosenbrock–Wanner (ROW)
schemes, which have been used successfully for solving classical network equations
(RENTROP[1990]), and

• are tailored to the special structure of charge/flux oriented network equations
(10.1), and do not aim at solving arbitrary DAEs of non-Hessenberg type;

• enable a natural timestep control which applies directly on node potentials and
branch currents;

• define linearly-implicit methods that need only linear systems to be solved.
Since these schemes turned out to be competitive with the standard multi-step methods
even in an industrial environment, it seems worthwhile to introduce them in more detail
here.

Charge/flux-oriented ROW schemes.In a first step, we apply a standard Rosenbrock–
Wanner method to the linear-implicit DAE system (10.1) (HAIRE, LUBICH and ROCHE

[1989], RENTROP, ROCHE and STEINEBACH [1989]). To simplify notation, we as-
sume for the moment that the network equations do not explicitly depend on time, i.e.,
f (x(t), t)≡ f (x(t)). For this homogeneous case, the numerical approximation for one
ROW step reads

(11.1a)x1 = x0 + b.k,
(11.1b)y1 = y0 + b.l,

with weightsb := (b1, . . . , bs)
. and incrementsk := (k1, . . . , ks)

., l := (l1, . . . , ls)
.

defined by(
A γh

∂f (x0)
∂x

−γ I γ
∂g(x0)
∂x

)
·
(
li
ki

)

(11.1c)=
( −hf (∑i−1

j=1αij kj )− h
∂f (x0)
∂x

∑i−1
j=1γij kj

y0 − g(
∑i−1

j=1αij kj )+
∑i−1

j=1(αij + γij )lj − ∂g(x0)
∂x

∑i−1
j=1γij kj

)
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whereαij = 0 for i � j , γij = 0 for i > j andγii = γ �= 0, i, j = 1, . . . , s. x1 andy1 are
the approximations to the solution at timeh with x(0)= x0, y(0)= y0. The increments
are uniquely defined by the linear system (11.1c): The matrix(

0 A
∂g(x0)
∂x

+ γ h
∂f (x0)
∂x

−γ I γ
∂g(x0)
∂x

)
obtained after one block Gaussian elimination step is nonsingular for sufficient small
stepsizesh, since the matrix pencil{A∂g(x)/∂x, ∂f/∂x} is regular at least for index-1
systems.

In a second step, we use the special structure of (10.1) to eliminate the differential
componentsy from the computation ofx1. The linear structure of the charge constraint
(10.1b) allows forki to be computed independently froml1, . . . , li−1. To fulfill charge
conservation during integration, the differential variablesy are projected at each grid
point ti in the integration interval[0, T ] on the charge constraint:

(11.1d)yi := g(xi), ∀i with ti ∈ [0, T ].
In the end, the computation ofx1 does only depend onx0, and we have defined a class
of charge/flux oriented ROW schemes by (11.1a), (11.1c) and (11.1d).

One notes that the same Jacobian information is needed in both multi-step schemes
and charge/flux oriented ROW methods, but for different reasons: As iteration matrix
for the multi-step schemes in the first case, and as system matrix of the linear equa-
tions which serve for getting the stage increments in the latter case. Note that the same
Jacobian is used here for all stage equations. It is however possible to construct effi-
cient higher order methods which exploit the fact that in circuit simulation the Jacobian
is rather cheap to get (GÜNTHER and HOSCHEK [1997], GÜNTHER, HOSCHEK and
WEINER [1999]); in this case the Jacobian would be different at each stage.

Convergence and order conditions. As shown in GÜNTHER [1998], classical con-
vergence theory for semi-explicit index-1 problems can be applied to the ROW
method (11.1a), (11.1c), (11.1d). Owing to the projection (11.1d), the local error
g(x1)− g(x(h)) must beO(hp+1) to obtain convergence orderp. For arbitrary charge
functions, this conditions leads to the requirementx1 − x(h)= O(hp+1), and we have
the following convergence result: To obtain orderp for the network equations (10.1) of
index-1, the coefficients of the Rosenbrock method (11.1a), (11.1c), (11.1d) have to ful-
fill all order conditions for the algebraic variables up to orderp in semi-explicit index-1
systems. This result applies also for a large class of index-2 network equations of the
form (10.1).

The coefficients of the method are free to fulfil order conditions for a given method
and to guarantee A- and L-stability, respectively. In contrast to multi-step methods, one
can construct A- and L-stable methods of arbitrary order.

CHORAL – an embedded method of order (2)3.On account of the low smoothness
properties of transistor models, as well as of the low accuracy demands usually re-
quired in practice, an embedded method of order (2)3 seems to be suitable. The cor-
responding scheme, CHORAL, has four stages and only three function evaluations. To
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avoid a constant term in the error estimate due to inconsistent initial values, both meth-
ods are chosen as stiffly accurate (HAIRER and WANNER [1996]), and in particular
L-stable.

For the general nonhomogeneous case of (10.1), the numerical approximationxk after
one timestep fromtk−1 to tk = tk−1 + hk , together with an embedded approximationx̂k
of lower order for error control and timestep prediction, is now given by

xk = xk−1 +
s∑
i=1

diκi, x̂k = xk−1 +
s∑
i=1

d̂iκi ,

where the incrementsκi are computed from linear systems(
1/γ

hk
F 0
ẋ +F 0

x

)
κi = 1/γ

hk
A
(
g(xk−1)− g(ai)

)−
i∑

j=1

β̃ij f (aj )

(11.2)−
i−1∑
j=1

β̃ij
∂f

∂x
(xk−1, tk−1)κj − hτ̃i

∂f

∂t
(xk−1, tk−1),

whose right-hand sides can be setup after evaluating the functionsf (ai) andg(ai) at
internal stage values

ai := xk−1 +
i−1∑
j=1

σij κj .

The corresponding coefficient set of CHORAL with̃βij := βij /γ and τ̃i := τi/γ is
given in Table 11.1. Since the usual error estimate‖x1 − x̂1‖ = ‖κ4‖ for stiffly-accurate
embedded ROW methods is used, a reliable error control and stepsize selection are of-
fered that are based on node potentials and branch currents only. This makes timestep
control very elegant, especially in comparison with the techniques discussed in the pre-
vious section for multi-step methods.

TABLE 11.1
Coefficients for CHORAL

γ = 0.5728160624821349 β21 = −2.0302139317498051
d1 = d̂1 = σ21 = σ31 = σ41 = 1/γ β31 = 0.2707896390839690
d2 = d̂2 = σ32 = σ42 = 0.0 β32 = 0.1563942984338961
d3 = d̂3 = σ43 = 1.0 β41 = 2/3
d4 = 1.0 β42 = 0.08757666432971973
α2 = 1.0 β43 = −0.3270593934785213
α3 = 1.0 γ1 = γ

α4 = 1.0 γ2 = −2.457397870
τ1 = 0.3281182414375370 γ3 = 0
τ2 = −2.57057612180719 γ4 = 0
τ3 = −0.229210360916031
τ4 = 1/6
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TABLE 11.2
CPU times: CHORAL versus BDF2 on HP workstation C200

Circuit # transistors # equations CPU time

CHORAL BDF2

LC oscillator 0 3 0.57s 0.33s
MOS ringoscillator 134 73 30.13s 27.61s
16 bit adder 544 283 2m41.32s 2m30.1s
1 Mbit DRAM 2005 1211 10m16.18s 8m29.15s
16 Mbit DRAM 5208 3500 23m37.18s 12m5.11s
ALU 13005 32639 97m31.64 82m21.03s

FIG. 11.1. One output nodal voltage for the 16 bit adder: Integration steps of CHORAL(0) vs. BDF2 (+).

Practical experience. The implementation of CHORAL in an industrial circuit simu-
lation package opened the possibility to gain experience not only with simple standard
benchmark examples like an LC oscillator and MOS ringoscillator, but also for numer-
ous real life problems (HOSCHEK [1999]). Some of them are included in Table 11.2:
A 16 bit adder, critical path circuits of dynamic memory (DRAM) circuits, and an arith-
metic logical unit ALU, which is the core of a central processing unit.

We see that CHORAL can cope even with large problems, and is competitive with
BDF not only with respect to CPU times (Table 11.2) but also with respect to accuracy,
see Fig. 11.1.

One reason for the efficiency of CHORAL seems to be the stepsize and error control
that allow large stepsizes by only a few failures of the stepsize predictions. These re-
sults are confirmed by numerical tests reported in GÜNTHER [1998] for digital circuits,
NAND gate and 2 bit adder: For nonstringent accuracy demands required in network
analysis, CHORAL turned out to be as powerful and efficient as DASSL (BRENAN,
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CAMPBELL and PETZOLD [1996]), the latter being a standard code for BDF integration
of low index DAEs.

Particularly appealing are CHORAL’s damping properties: Excitations and oscilla-
tions with physical significance are tracked, but perturbations are damped. This behav-
iour will be discussed in more detail in the following section.

12. Oscillatory circuits and numerical damping: A comparison

Dealing with oscillatory behaviour, we have to distinguish between two types of oscil-
lations. The first type is given by oscillations of physical significance which reflect the
behaviour of the mathematical model and the circuit, and should be preserved during
numerical integration. The LC oscillator shown in Fig. 12.1 (left side) can serve as a
basic example. This linear circuit consists of one capacitanceC = 4 pF and inductance
L = 1 nH in parallel driven by an initial current sourceI0 = 6 A. Numerical approx-
imations obtained by CHORAL and BDF2 are given in Fig. 12.1 (right side) for the
branch current through the inductor. The current oscillates with the amplitude given by
I0 and frequencyω= 1/

√
LC, which corresponds to a period ofT = 2π/ω≈ 0.4 nsec.

While an error becomes visible both in phase and amplitude for BDF2, both phase and
amplitude are preserved by CHORAL.

The second type is given by high frequent numerical noise, which should be attenu-
ated by the integrator. It may be due to failures of stepsize and error control, or due to
an inappropriate semidiscretization of a PDE model with respect to space (GÜNTHER

[2001]). A third possible origin are discontinuities of the solution, which might be in-
voked by nonsmooth transistor models or input stimuli. In the latter case no problems
should occur if integration is stopped at these points, and restarted with consistent ini-
tial values. Here the algorithms discussed in Section 10 for consistent initialization can
be used efficiently for CHORAL, too. However, if integration is not stopped at these
points, one may have to deal with inconsistent initial values. An example for such an

FIG. 12.1. LC oscillator (left) and simulation results (right) for BDF2 (- -) and CHORAL (–).
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FIG. 12.2. Operational amplifier circuit: Simulation results for trapezoidal rule (- - -) and CHORAL (· · ·).

effect is the current waveform of an operational amplifier circuit, for which the numer-
ical results of the trapezoidal rule and CHORAL are shown in Fig. 12.2. At≈ 1 nsec
there is a sharp spike, which is invoked by traversing a discontinuity of a MOS capaci-
tance model. Due to its energy conserving property, the trapezoidal rule maintains this
perturbation, turning it into an oscillation with the actual timestep as period. This yields
an impression that the circuit is unstable and oscillates.

In contrast, the perturbation is damped immediately by CHORAL, and only a few
steps are necessary to get back to the smooth solution. The results with TR-BDF are not
given here, but are similar to those of CHORAL.

Model equation: Harmonic oscillator. To explain these results for both physical and
artificial oscillations, we investigate the model equation

(12.1)ẍ +ω2x = 0

of a harmonic oscillator with frequencyω over one period[0, T := 2π/ω]. With initial
valuesx(0)= x0, ẋ(0)= ẋ0, the solution reads

x(t)= r · Re exp(iϕ)

with

r :=
√
x2

0 + ẋ2
0/ω

2, ϕ := ωt − arctan
(
ẋ0/(ωx0)

)
.

Note that the LC oscillator discussed above corresponds to a harmonic oscillator with
frequencyω= 1/

√
LC.

The results obtained on model equation (12.1) with initial values(x(0), ẋ(0)). =
(1, 0). for BDF2 and the trapezoidal rule, the integration schemes TR-BDF is based
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FIG. 12.3. Numerical approximation of BDF2(�), trapezoidal rule(©) and CHORAL(×) for model equa-
tion (12.1) after one periodT = 2π/ω. The results are plotted for stepsizesh= T/n (n= 1,2, . . . ,1000) in

phase spacex = r exp(iϕ).

FIG. 12.4. Zoom into numerical approximation of BDF2(�), trapezoidal rule(©) and CHORAL(×) on
model equation (12.1) in phase space with sample ratesn= 10,11, . . . ,20.
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on, and CHORAL are given in Figs. 12.3 and 12.4. For each method one period was
resolved withsample raten= 1,2, . . . ,1000 steps of equidistant stepsizeh= T/n.

Comparing the numerical approximations with the exact solution(x(T ), ẋ(T )). =
(1, 0). after one period, we see the following: Due to its energy conserving property,
the trapezoidal rule generates no magnitude error for anyn; however, for small sample
rates one has to deal with rather large phase errors. BDF2 acts much worse: In addition
to a phase error, one has to deal with amplitude errors, if one period is sampled too
roughly. CHORAL, however, has only slight amplitude and phase errors even for rather
small sample rates.

These results become more visible, if we zoom into the results forn= 10,11, . . . ,20.
As a rule-of-thumb in circuit simulation, one has to sample one oscillation with ap-
proximately 10–20 points to get results which are accurate enough. Thus oscillations
of physical significance which are approximated numerically using sample rates in the
range of 10–20 yield rather large phase errors (trapezoidal rule) or both amplitude and
phase errors (BDF2). CHORAL, however, is highlighted by only slight errors in phase
and amplitude.

Analysis of one-step methods.These good properties of CHORAL applied to oscilla-
tory circuits can be explained by investigating the model equation in more detail. Be-
sides that, this analysis can illustrate its excellent damping properties as well. As a first
step, we scale and rewrite (12.1) as an ODE system of first order. Withy := [x, ẋ/ω].
we have

(12.2)ẏ = Jy, y(0)=
(

x0
ẋ0/ω

)
,

where

J =
(

0 ω

−ω 0

)
.

For one-step methods such as trapezoidal rule and CHORAL, the numerical solutionyhn
after one period withn equidistant steps of sizeh= T/n reads

yhn = [
R(hJ )

]n( x0
ẋ0/ω

)
.

The stability matrixR(hJ ) has eigenvaluesR(±iωh) which are given by evaluating
the scalar stability functionR(z) for imaginary argumentsz = ±iωh. Furthermore, its
eigenvectors are(1, i). and(1, −i)., and thus it holds[

R(hJ )
]n =U

(
R(z)n 0

0 R(−z)n
)
U−1, U =

(
1 1
i −i

)
.

Therefore the numerical properties of a one-step method applied to the model equation
is fixed by its stability function along the imaginary axis:

yhn =U

(
R(z)n 0

0 R(−z)n
)
U−1

(
x0
ẋ0/ω

)
,
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FIG. 12.5. Decay of stability functions along the imaginary axis (from left to right: Implicit Euler, CHORAL,
RADAU5, RODAS, and trapezoidal rule with|R(z)| ≡ 1).

see Fig. 12.5. Note that we have

lim
z→0

R(z)= 1

for convergent methods, and

lim
z→±∞R(z)= 0,

for L-stable methods (HAIRER and WANNER [1996]). Thus there is a range of small
stepsizes where|R(z)| is close to one and information is almost preserved, and another
range where|R(z)| tends to zero and strong damping prevails.

Depending on the type of oscillation, we demand different properties:
• Oscillations of physical significance. These should be preserved. Assuming a

sample rate of 10–20 steps for oscillations of physical significance, we demand
|R(z)| ≈ 1 in the range of|z| ∈ [0.1π, 0.2π].

Having a look at Fig. 12.5, we see that this demand is fulfilled by all methods
but the implicit Euler scheme.

• Perturbations. Such oscillations of high frequency, either numerical noise caused
by timestep and error control, inconsistent initial values or by an inappropriate
semidiscretization of a PDE model, should be damped as much and soon as pos-
sible. Hence a slight damping should already occur for|z| larger than 0.2π , the
limit for oscillations of physical significance, and|R(z)| ≈ 0 for highly oscillatory
signals, i.e.,|z|> 100.
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Except the trapezoidal rule, which is not L-stable, all methods show good damp-
ing properties for highly oscillatory signals(|z|> 100). But only the implicit Euler
scheme and CHORAL damp already for|z|> 0.2π .

Summing up, CHORAL shows all the desired properties of a (nonideal) numerical low
pass filter: Physical oscillations of low frequency are preserved, but highly oscillatory
perturbations are efficiently damped.

The corresponding analysis for multi-step methods can be found in GÜNTHER, REN-
TROPand FELDMANN [2001].



CHAPTER IV

Numerical Treatment of Large Problems

Due to their reliability and robustness software codes employing the standard algorithms
are established as workhorses, which are inevitable when designing electronic circuits.
Especially for integrated circuit design one can distinguish two different steps in the
design flow, where these tools are used:

• The electrical designstage comprises standard applications for characterization
and optimization of functional building blocks, such as gates, operational ampli-
fiers, oscillators etc. These analyses are run excessively in order to make sure that
the functional units meet their specifications under a large variety of load and bias
conditions and temperatures, and with different parameter sets representing the
fluctuations of the technological processes in the fabrication lines.

• In the verification stageoverall functionality of the circuit is checked. For this
purpose the circuit parts containing the critical path inclusive parasitics – like ca-
pacitances and resistances of junctions and interconnects – are re-extracted from
layout. This yields accurate but very large circuit models with many input nodes,
which have to be biased with rather lengthy input stimuli in order to verify overall
functionality of the circuit.

Typical data for these different kinds of application are given in Table 12.1. The
dimension of the mathematical circuit model corresponds approximately to its number
of transistors. Since the transistor models are fairly complex, most time in standard
applications is spent for setting up the matrix and right hand side of the resulting linear
system (‘Load’). Due to the overlinear increase of the time spent for sparse Gaussian
elimination, the computational expense for the linear solver becomes dominant for large

TABLE 12.1
Typical data for standard and large applications in circuit simulation

Standard application Large application

No of transistors 101 . . .103 103 . . .105(. . .106)

No of equations 101 . . .103 103 . . .105(. . .106)

No of timesteps 102 . . .103 103 . . .106

CPU times (on workstation or PC) sec. . . min hours. . . days

Load 85% 85%. . . < 50%
Lin. solver 10% 10%. . . > 50%
Overhead 5% 5%. . .2%

585
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TABLE 12.2
How to speedup circuit simulation

Source of expense Speedup possible by

Complexity of device models – higher level of abstraction, using functional
modelling with languages like VHDL-AMS

– use oftable modelsfor devices or subblocks like
gates

Overlinear expense for Gauss solver decomposition

– typicallyn1.2 . . . n1.8

(n: number of circuit nodes)

– decoupling into smaller blocks
– use of iterative methods

Lack of adaptivity
– global timestep control
– global convergence control

decomposition
– higher degree of adaptivityby exploiting differ-

ent activity of different circuit parts at different
times

Large number of devices parallelization

applications. The overhead spent for timestep and convergence control etc. is usually
below 5%.

Since the turnaround times for large applications are often beyond desirable limits,
i.e., significantly more than 5. . .8 hours, it is of a major interest to obtain speedups
without sacrificing accuracy, universality and robustness too much.

Many attempts are pursued in the literature to overcome the computational limitations
of circuit simulation. Table 12.2 shows the basic principles of these approaches, and
which kind of problem they aim to improve.

The first row of Table 12.2 concerns modelling issues, which are not to be discussed
here. The remaining rows of Table 12.2 roughly characterize the main aspects of our
further discussion. First a glance at a simple MOS ringoscillator example will illustrate
typical properties of the mathematical circuit models, which offer potentials for getting
improvements.

13. Numerical properties of an MOS ringoscillator model

The task of a ringoscillator in bipolar technology and its basic principles were already
explained in Section 9. Most of the very complex integrated circuits challenging circuit
simulation however are fabricated in MOS technologies. As a typical representative we
will now consider a simple ringoscillator in complementary MOS (CMOS) technology,
and highlight some interesting properties of this circuit class.

Fig. 13.1 shows a circuit diagram of a CMOS ringoscillator consisting of 11 inverter
stages, which are connected in a feedback loop. Each inverter is composed of a P-type
MOS transistor – which is connected to power supply VDD – and of an N-type MOS
transistor connected to ground. Furthermore a parasitic wiring capacitance to ground is
added. When the input signal at the gate nodes of both transistors of an inverter is higher
than a certain threshold voltage then the P-channel transistor is OFF, and the N-channel
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FIG. 13.1. CMOS ringsoscillator.

FIG. 13.2. CMOS ringoscillator – Waveforms (in Volt) over time (in sec): Nodes 1 (—-), 6 (– – –) and
11 (· · ·).

transistor is conducting, thus pulling the output signal at the common drain node to
ground. Inversely, a low level input signal switches the N-channel transistor OFF and
the P-channel transistor ON, such that the output node is loaded up to power supply
voltage VDD. The inverted output signal drives the next inverter, and after passing all
stages of the closed loop, it arrives with a certain time delay as input signal of the first
one. This invokes an oscillation, and its period is usually just 2· 11 times the average
switching delay of one inverter stage. The waveforms of nodes 1, 6, and 11 are shown
in Fig. 13.2; the other waveforms are identical – if the design is regular – but shifted in
time.

Multirate. When looking at the waveforms of node 1 and 11 in Fig. 13.2 we recognize
that the first inverter in the loop is only active in fairly small parts of an oscillation cycle,
and more or less quiescent else. The same is true for all other inverters; but they are ac-
tive at different time windows, since the signal is continuously propagating through the
circuit. So the varying degree of activity for different circuit parts has usually no com-
putational effect: Timestep control always has to take care about the smallest timestep
in the whole circuit, unless multirate integration is being used.

In order to get an estimate for the potential benefit of multirate integration, we relate
the global timestephglob to the timestephloc needed for accurate numerical integration
of the first inverter, see Fig. 13.3. We see thathloc determines the global timestep just
when the first inverter is switching, and becomes much larger else. Obviously the re-
lations are quite similar for all inverter stages. Using a slightly modified version of a
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FIG. 13.3. CMOS ringoscillator – Timestep ratiohglob/hloc for the first inverter, over time.

FIG. 13.4. CMOS ringoscillator – Iteration count rationcloc/ncglob for node 1, over time.

formula given in BARTEL, GÜNTHER and KVÆRNØ [2001], we can estimate the pos-
sible speedup in this case to be:

speedup= n ·m
nL + nA ·m ≈ 1

mean value(hglob/hloc)

wheren is the number of devices,nA is the average number of active devices,nL =
n− nA the average number of inactive devices, andm is the average number of global
timesteps within a timestep in case of no activity. Measuring the mean value from
Fig. 13.3, we get

speedup≈ 1

0.24
≈ 4.2,

or with a more practical restriction of the local timesteps to� 5 · hglob still a speedup
factor of approximately 3.

In reality this figure will become smaller due to inevitable overhead; on the other
hand it may further increase for larger circuits. So we conclude that multirate integration
seemingly offers significant speedup potential for circuit simulation.

Latency. Another effect of the varying degree of activity is the different rate of conver-
gence for different circuit parts, when applying fully implicit integration methods like
BDF. Fig. 13.4 shows as an example the rationcloc/ncglob over time, wherencloc counts
the number of Newton iterations needed per timestep to get convergence of node 1, and
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ncglob is the global iteration count per timestep. Similar to the multirate formula we get
a rough estimate

speedup= n

nL ·µ+ nA

for an algorithm which exploits the different rate of convergence for different circuit
parts. Here,µ is an average ratio of iteration counts for the inactive and the active circuit
parts. For our ringoscillator, an approximation follows which can be directly measured
from Fig. 13.4:

speedup≈ 1

mean value(ncloc/ncglob)
≈ 1

0.48
≈ 2.1.

A special case would be to omit re-evaluation of circuit parts which do not change from
one timestep to the next (µ= 0 → ‘latency’). This gives an estimatedspeedup= n/nA
in this case, making the exploitation of latency an interesting alternative to multirate
integration.

Unidirectional signal flow. An inherent property of MOS transistors is to have – al-
most – no static current flow from the gate node into the device. So, when the signal
flow in a circuit is passing the gate of an MOS transistor then it is mainly unidirectional
in a local sense, and only dynamic effects can cause local feedback. This is illustrated
in Fig. 13.5, where static and capacitive coupling in forward and backward direction
is shown for the first inverter of the CMOS ringoscillator. Static backward coupling is
negligible. Note that although capacitances are small, their coupling effect is compara-
ble to static coupling, which is due to the high switching speed of 109 . . .1012 Volt per
sec.

Unfortunately, those circuit configurations which propagate signals between source
and drain node of the MOS transistors – like bus structures – donot exhibit unidi-
rectional signal flow. Furthermore,global feedback coupling principles are extensively
applied in circuit design.

FIG. 13.5. CMOS ringoscillator – Forward (—-) and backward (- - -) coupling coefficients for the first
inverter, over time. Static/capacitive coupling is shown in the left/right diagram.
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Parallelism. Finally we see that the circuit schematic consists of a large number of
identical primitives (here: MOS transistors and capacitors), thus offering speedup po-
tential by handling them in parallel. Since the model equations of transistors are usually
very complex and contain many if-then-else branches, their evaluation is well suited for
a medium or coarse grain type of parallelization.

14. Classification of existing methods

In the literature there is a rich variety of attempts to overcome the computational lim-
itations of standard circuit simulation. A rough overview is given in Fig. 14.1. We see
that decomposition techniques (HACHTEL and SANGIOVANNI -VINCENTELLI [1981],
DE MICHELI, HSIEH and HAJJ [1987]) are applied at almost all stages of the standard
algorithms, in order to

• apply relaxation methods,
• introduce a higher degree of adaptivity, and
• improve performance on parallel computers.

Single boxes (with larger fonts) in Fig. 14.1 represent single but large systems, while
double boxes (with smaller fonts) indicate sets of decomposed, smaller subsystems.

The three columns on the left (ROW, MLN and standard) characterize algorithms
which are sufficiently general to cope with any circuit of not too high DAE index. While
standard TR-BDF as well as ROW integration has been discussed in Chapter III, the
multi-level Newton method (MLN) will be described in more detail later on. A multi-
level direct linear solver (block Gauss solver) is not included in the figure, since it can be
seen as a special case of the multi-level Newton solver. Furthermore, modifications of
the Newton method in the standard solver – as are described in ENGL, LAUR and DIRKS

[1982], EICKHOFF and ENGL [1995] – are not included due to space limitations.
The right five columns (ITA, WR, WRN, PWL and Exp.Fit) describe approaches

which can be efficiently used only for a restricted class of circuits, e.g., for more or
less digital MOS circuits. These methods are shortly reviewed below; more details can
be found in the survey papers (NEWTON and SANGIOVANNI -VINCENTELLI [1984],
DE MICHELI, HSIEH and HAJJ [1987]) and in the book (WHITE and SANGIOVANNI -
VINCENTELLI [1987]). Further developments are reviewed in URUHAMA [1988],
SALEH and WHITE [1990], and their specific strengths and limitations are compared.

The formulas given below refer to network equations given in the compact form
(10.1a). We assume that variables and equations are partitioned and reordered, such
that each subblocki is characterized by just one entry in

x = (x1, . . . xi, . . . xm)
., f = (f1, . . . fi, . . . fm)

.,
A= (A1, . . .Ai, . . .Am)

.,
with m being the number of subblocks. Furthermore we assume that implicit multi-step
methods

ẏ = αy + β

are applied withα as leading integration coefficient andβ giving the contributions of
previous timepoints.
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FIG. 14.1. Existing methods for circuit analysis in the timedomain. (ROW: Rosenbrock Wanner method; MLN: multi-levelNewton; ITA: iterated timing analysis;
WR: waveform relaxation; WRN: waveform relaxation Newton;PWL: piecewise linear analysis; Exp.Fit: exponential fitting.)
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ITA – iterated timing analysis. Historically, timing simulation was the first attempt
to compute approximate waveforms for very large digital MOS circuits (CHAWLA ,
GUMMEL and KOZAK [1975]). Here the nonlinear systems were completely decom-
posed into single equations, which were approximately solved by performing one single
Gauss–Jacobi or Gauss–Seidel step. In iterated timing analysis ITA the applicability of
the method is significantly extended by blockwise decomposition, where the subblocks
are solved with conventional methods (SALEH, KLECKNER and NEWTON [1983], DE

MAN, ARNOUT and REYNAERT [1981]). Hence for each relaxation sweepj a sequence
i = 1, . . . ,m of subsystems

Ai ·
(
αy(xj )+ β

)+ fi(x
j , t)= 0

has to be solved forxji with

(14.1)xj =
 (x

j−1
1 , x

j−1
2 , . . . , x

j−1
i−1 , x

j
i , x

j−1
i+1 , . . . , x

j−1
m ). for Gauss–Jacobi

relaxation,
(x
j

1, x
j

2, . . . , x
j
i , x

j−1
i+1 , . . . , x

j−1
m ). for Gauss–Seidel relaxation.

The lth iteration of the inner Newton process is described by

x
j,l+1
i = x

j,l
i +�x

j,l
i ,

where�xj,li is computed from(
αAi · ∂y

∂x

∣∣∣∣
x=xj,l

+ ∂f

∂x

∣∣∣∣
x=xj,l

)
�x

j,l
i = −Ai ·

(
αy(xj,l)+ β

)− fi(x
j,l, t).

The particular Newton iterate reads, e.g., for Gauss–Seidel relaxation as

xj,l = (x
j

1, . . . , x
j

i−1, x
j,l
i , x

j−1
i+1 , . . . , x

j−1
m )..

A convergence proof of ITA is given in URUHAMA [1987] for circuits with strictly
diagonal dominant capacitance matrix and Lipschitz continuous conductance matrix,
provided that the timesteps are sufficiently small.

For efficiency reasons, often only one single Newton step is performed per relaxation
sweep in ITA. This may cause some loss of accuracy and reliability, which is however
acceptable in many cases. Adaptivity can be improved by exploiting the different ac-
tivity of different circuit partitions. This is implemented in some kind of event control:
Only those partitions of the system are scheduled for computation, which are activated
by changing signals at their borders.

WR – waveform relaxation.This method is basically an application of Picard iteration
to the network equations. The method can also be characterized as a block Gauss–
Seidel–Newton or block Gauss–Jacobi–Newton method in the function space, since af-
ter decomposition of the circuit into subblocks the subsystems are solved for a whole
waveform with standard methods, while their coupling is handled with relaxation meth-
ods. That means that for each relaxation sweepj a sequence of subsystems

Ai · ẏ(xj )+ fi(x
j , t)= 0, i = 1, . . . ,m
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has to be solved forxji (t) in the time interval 0� t � tend with xj being defined by
(14.1).

WR was first discussed in LELARASMEE, RUEHLI and SANGIOVANNI -VINCEN-
TELLI [1982], and a global convergence proof was given for circuits with a grounded
capacitor at each node, provided that some Lipschitz conditions hold and the time win-
dows used are sufficiently small.

The method has found much interest in the literature, since it offers a very natural
way to improve adaptivity in form of multirate by integrating each subblock with its
own timestep:

ẏ = α
j
i y + β

j
i .

A survey including many practical aspects of WR methods is given in the book edited
by DEBEVFE, ODEH and RUEHLI [1985]. Efficient parallelization of WR is described
in ODENT, CLAESEN and DE MAN [1990]. Recent convergence theorems given in
GRISTEDE, ZUKOWSKI and RUEHLI [1999] extend the class of feasible circuits and
provide insight how to decompose the circuit for getting good convergence rates. The
latter aspect has turned out to be a key issue for the performance of WR. Since simple
partitioning schemes based on circuit topology sometimes give no satisfactory results,
information about the entries of the Jacobian is often used for this purpose. This may
even require repartitions from time to time, especially in case of strongly nonlinear
circuits (ZECEVIC and GACIC [1999]).

Most of the literature published about WR deals with ordinary differential equations
and therefore requires to have a grounded capacitor at each node, at least at the de-
coupling subblock borders. Extensions to DAEs with nondifferential – i.e., algebraic –
coupling equations are discussed in ARNOLD and GÜNTHER [2001]; it is shown that
certain contractivity conditions additionally must hold in order to ensure convergence
in these cases.

WRN – waveform relaxation Newton.If the Newton process is applied directly in the
function space, before time discretization, then we get the waveform Newton method
WN:

Compute

xl+1(t)= xl(t)+�xl(t)

in the time interval 0� t � tend from solving

A · d

dt

(
∂y

∂x

∣∣∣∣
x=xl(t)

·�xl
)

+ ∂f

∂x

∣∣∣∣
x=xl(t)

·�xl = −A · ẏ(xl)− f (xl, t)

for �xl(t). With

Cl(t)=A · ∂y
∂x

∣∣∣∣
x=xl(t)

, Gl(t)= ∂f

∂x

∣∣∣∣
x=xl(t)

this reads as

Cl(t) · d�x
l

dt
+ (

Gl(t)+ Ċl(t)
)
�xl = −A · ẏ(xl)− f (xl, t).
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Note that�xl(0)= 0 if xl(0)= x0.
A convergence proof of WN is given in SALEH and WHITE [1990] for very general

circuit classes.
At a first glance, this method seems not to be very attractive for circuit simulation,

since one cannot expect that initial waveforms are close to the solution. Its main ad-
vantage is that it yields systems oflinear DAEs. These can eventually be solved with
discretization methods which are more efficient than standard integration (PALUSIN-
SKI, GUARINI and WRIGHT [1988]). The main motivation for presenting this method
here is however, that it serves as a base for waveform relaxation Newton WRN.

If the nonlinear DAE subsystems of the WR method are solved with the WN method,
then we get the WRN method:

Solving

Ai · ẏ(xj )+ fi(x
j , t)= 0, i = 1, . . . ,m

with WN means to compute

x
j,l+1
i (t)= x

j,l
i (t)+�x

j,l
i (t)

in the interval 0� t � tend from solving

C
j,l
i (t) ·

d�x
j,l
i

dt
+ (

G
j,l
i (t)+ Ċ

j,l
i (t)

) ·�xj,li = −Aiẏ(xj,l)− fi(x
j,l , t)

for �xj,li (t), wherexj,l is given by (14.1) and

C
j,l
i (t)=Ai

∂y

∂x

∣∣∣∣
x=xj,l

, G
j,l
i (t)=

∂fi

∂x

∣∣∣∣
x=xj,l

.

We see again that here the DAEs are linear time variant.
A convergence proof for this method can be derived from the convergence of the WR

and WN methods, from which it is composed (URUHAMA [1987], SALEH and WHITE

[1990]). The adaptivity of this method is high due to its natural support of multirate
integration. For efficiency reasons timesteps should be coarse in early stages of the re-
laxation process, and become finer only when it approaches convergence. The method is
reported to be superior over WR for circuits which do not have a strongly unidirectional
signal flow. For efficiency often only one Newton step is performed per relaxation; the
price of slightly reduced accuracy and reliability seems to be acceptable in many appli-
cations. Finally, WRN allows for an efficient parallelization (SALEH, WEBBER, XIA

and SANGIOVANNI -VINCENTELLI [1987]).

PWL – piecewise linear analysis.In an alternative approach, the nonlinear device
characteristics are approximated by piecewise linear models. The resulting linear DAE
systems are only piecewise valid. When they are solved with conventional time dis-
cretization schemes like BDF, then timestep control has to take care that their region
of validity is not left within the timestep. This may slow down efficiency, if the model
resolution is fine. For finding a solution, improved versions of Katzenelson’s algorithm
are used in general (KATZENELSON[1965], VLACH [1988a], YU and WING [1984]).
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If the validity regions are explicitly included as constraints for the piecewise lin-
earized network equations, then extra “state variables” have to be introduced, which
define for which particular region a certain linear relation is valid. Thispiecewise linear
mappingleads to systems of the following form:

A · ẏ + F · x +B · z+ f0(t)= 0 piecewise linearization off (x, t);
y =G · x +E · z+ y0 piecewise linearization ofy(x);
z̄=H · x +D · z+ z0 definition of region of validity;
z� 0; z̄� 0;
z. · z̄= 0 complementarity of state variables.

The dimension of the state variablesz, z̄ ∈ R
nz defines the maximal number of different

regions of validity to be 2nz , since each component ofz can be selected to be either= 0
or> 0, and the corresponding component ofz̄ is then defined from the complementarity
condition. The crossing of a border between two regions of validity is characterized by
just one component ofz or z̄ to become zero. Fortunately, this crossing can be performed
by a rank one update of the system matrix; and if a hierarchical LU decomposition
method is used for solving the linear system, this does not require much extra effort.
A review of these techniques can be found in VAN BOKHOVEN [1987].

In LIN, KUH and MAREK-SADOWSKA [1993] piecewise linear circuit equations are
obtained by mapping nonlinear conductances and capacitances into time variant linear
conductances and capacitances, respectively.

The most appealing aspects of piecewise linear analysis PWL are, that no Newton
iterations are necessary (LIN, KUH and MAREK-SADOWSKA [1993]), strong global
convergence properties, and a uniform kind of modelling, based on tabulated data (VAN

EIJNDHOVEN [1984]).

Exp.Fit – exponential fitting. If a PWL circuit model is decomposed into small sub-
blocks then each subsystem can be solved analytically for a certain time interval, until
the solution crosses the border of the particular linear model section. These techniques
are known as exponential fitting methods (SARKANI and LINIGER [1974]). They have
shown to offer high simulation speed, especially in timing simulators, where only one
relaxation step is performed (ODRYNA and NASSIF [1986], VIDIGAL , NASSIFand DI-
RECTOR [1986], BAUER, FANG and BRAYTON [1988]). A mathematical analysis of
exponential fitting methods in circuit simulation is presented in SILVEIRA , WHITE,
NETO and VIDIGAL [1992]. It starts from the piecewise linearized version of (10.1a)

C · ẋ +G · x + f0(t)= 0,

which is discretized with an explicit exponential formula of order 1:

x(tl+1)= x(tl)+D−1(1− e−Dh
)
ẋ(tl).

The solution is of the matrix exponential form

x(t)= e−Dtx0 −G−1f0(t),
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whereD is given byD = C−1G. A standard method for solving this kind of equations
is asymptotic waveform evaluation AWE (PILLAGE and ROHRER [1990], RATZLAFF

and PILLAGE [1994]), which is based on moment matching methods. Unfortunately, the
methods work only for regular

C =A · ∂y
∂x

∣∣∣∣
x=xtl

,

i.e., ODEs. For the DAE case the Drazin inverse might come into play (WILKINSON

[1982]). Since numerical evaluation of the matrix exponential containing the Drazin
inverse turns out to be cumbersome (RENTROP [1990]), exponential fitting was only
applicable to a restricted class of circuits up to now.

Concluding remarks.
• Surprisingly, iterative solvers for the linear equations of the standard or ROW ap-

proach are not included in Fig. 14.1. Although numerous attempts were made in
the past to substitute direct Gaussian elimination by iterative solvers in general pur-
pose circuit simulation programs, no one was really successful yet. Basically this
is due to a lack of favourable numerical properties of the linearized circuit equa-
tions, in combination with restrictive accuracy requirements. Roughly speaking,
the use of iterative linear solvers requires very good preconditioners, which are not
much cheaper to get than direct LU factors. Furthermore, the widespread use of
quasi Newton methods – taking Jacobians and their LU-factors from earlier itera-
tions – alleviates the need for iterative solvers, if the circuit size is not too large,
say less than 105 nodes. Only recently, promising approaches for iterative linear
solvers were presented (SCHILDERS [2000], BOMHOF [2001]); both of them are
particularly tailored to the specific structure of the network equations.

• As an interesting alternative to implicit integration adaptively controlled explicit
integration has been suggested (DEVGAN and ROHRER [1994]) for fast timing
analysis. Here explicit integration is stabilized by using the fact, that the signals
saturate more or less rapidly, e.g., at the power supply or at the ground voltage
level.

• Today software codes employing ITA or WR or exponential fitting algorithms or
adaptively controlled explicit integration have obtained a high degree of maturity
and robustness, which allows them to be successfully used even in industrial en-
vironments. Especially when exploiting hierarchical concepts on highly repetitive
circuits, these codes can simulate several clocks of 107 . . .109 transistor circuits on
transistor level with reasonable accuracy in some hours.

Note however that although these codes are often one or two orders of magnitude
faster than standard circuit simulation packages, they cannot really substitute the
latter. This is due to their restriction to time domain analysis as well as some lack
of accuracy and universality and – even worse – reliability. So we will focus in
the remaining part of this chapter on methods to speed up the standard transient
analysis algorithms without sacrificing their universality and robustness. One is
parallelization, and another one deals with multirate integration.
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15. Parallelization

At a first glance, parallel circuit simulation offers a high speedup potential due to
• a large number of devices with fairly complex, but identical characteristic equa-

tions;
• large systems of linear equations to be solved;
• a small amount of purely serial overhead.

In practice however, the speedup of parallel versus serial simulation often saturates at a
low level – say 2 to 4 – even on very powerful parallel computers. Further improvements
can only be obtained by carefully adapting the granularity of parallelism to the particular
computer architecture, which has an impact on both algorithms and coding.

A rough classification identifies three different granularity levels of parallelism (COX,
BURCH, HOCEVAR, YANG and EPLER [1991]):

• Fine grain parallelism for single instruction multiple data or pipelining architec-
tures like vector supercomputers, which were the workhorses for large industrial
circuit simulation tasks in the past. Parallelization is basically achieved by vector-
ization.

• Medium grainparallelism for multiprocessor machines with shared memory. Such
systems are presently often installed in industry for complex design tasks. Paral-
lelization here is based on thread concepts.

• Coarse grainparallelism on loosely coupled clusters of workstations or PCs. Here
it is essential to take care for a minimum data traffic over the local network. Paral-
lelization is based on message passing systems like PVM or MPI. This level may
also be useful for shared memory multiprocessors.

Due to reasons of cost effectiveness and flexibility, vector supercomputers are no longer
used for circuit simulation. So vectorization will not be further considered here; litera-
ture can be found in (EICKHOFF [1991], FELDMANN , WEVER, ZHENG, SCHULTZ and
WRIEDT [1992], EICKHOFF and ENGL [1995]).

While the levels of fine and medium grain parallelism directly aim at the classical
circuit simulation algorithms, the coarse grain is best realized with a multi-level New-
ton method for solving the network equations at a particular timepoint. This method
will be described in the following subsection, before we come back to parallel circuit
simulation.

15.1. Multi-level Newton method

Originally, the multi-level Newton MLN method was developed to solve large nonlin-
ear systems by decomposition without loosing the quadratic convergence of Newton’s
algorithm (RABBAT, SANGIOVANNI -VINCENTELLI and HSIEH [1979]). If a proper de-
composition can be found then the method offers a good speedup potential by parallel
execution on clusters of fast processors, but relatively slow interconnect network.

Our further discussion restricts on a two-level Newton method; an extension to more
levels is possible, but not common practice.

We assume that the nonlinear system of equationsf (x)= 0 with x ∈ R
n, f :Rn →

R
n has a regular Jacobian∂f /∂x. Further we assume thatf is decomposed intom
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subsystemsfi (i = 1 . . .m) and one master systemfm+1, andx is reordered such that

x. = (x1, x2, . . . , xm, xm+1), f. = (f1, f2, . . . , fm,fm+1),

wherexi (i = 1 . . .m) contain the inner variables offi andxm+1 contains the outer
variables. Then

fi = fi(xi, xm+1) (i = 1 . . .m),

fm+1 = fm+1(x1, x2, . . . , xm, xm+1),

and the Jacobian off has bordered block diagonal form:

∂f

∂x
=



∂f1
∂x1

∂f1
∂xm+1

∂f2
∂x2

∂f2
∂xm+1

. . .
...

∂fm
∂xm

∂fm
∂xm+1

∂fm+1
∂x1

∂fm+1
∂x2

. . .
∂fm+1
∂xm

∂fm+1
∂xm+1


.

Finally it is assumed that all submatrices∂fi/∂xi (i = 1 . . .m) are regular; otherwise
the decomposition has to be changed. Then the two-level Newton method contains a
Newton loop for the master system, where for each outer iterationk the inner systems
are solved forxi with fixed outer variablesxkm+1, see Fig. 15.1.6

Fig. 15.2 shows an example in two dimensions, i.e.,m = 1, with the notationS :=
1, M := m + 1 = 2. The inner Newton steps starting from the point(x0

S, x
0
M) yield a

solution on the curvefS = 0 with fixed outer variablex0
M . Then a Newton step is done

into xM direction to get the point(x1
S, x

1
M); the latter may be further improved intoxS

direction by adding the tangent correction, such that the next inner Newton cycle can
start from the point(xT 1

S , xT 1
M ).

The two-dimensional example illustrates how the two-level Newton scheme can be
derived: The subsystemfS = 0 defines an implicit relationxS = xS(xM), and the outer
Newton method solvesfM(xS(xM), xM) for xM .

The MLN approach can be characterized as follows:
• Quadratic convergence of the method is shown in RABBAT, SANGIOVANNI -

VINCENTELLI and HSIEH [1979] under standard assumptions, if the inner non-
linear systems are solved with higher accuracy than the outer ones:

‖�xi‖ � ‖�xm+1‖2 (i = 1 . . .m).

This may become difficult to achieve, especially for MLN methods with more than
two levels. Methods for reducing the number of inner iterations without affecting
quadratic convergence are described in ZHANG, BYRD and SCHNABEL [1992].
A simple practical rule to get sufficiently superlinear convergence is to solve the
inner systems just somewhat more accurately than the actual norm of the outer

6In the linear case, the Schur matrixSi and residuumRi of Fig. 15.1 can be easily explained to be the Gauss
updates for eliminatingxi in fm+1, i.e., to transform the system into upper triangular form.



SECTION 15 Numerical Treatment of Large Problems 599

• Initialization:
– get start vectorsx0

1, x
0
2, . . . x

0
m,x

0
m+1

– set iteration indicesk = 0, ji = 0 (i = 1. . .m)
• Outer Newton process:

do until convergence
– do for all subsystemsi = 1. . .m

∗ Inner Newton process:
do until convergence

· solve:∂fi/∂xi ·�xjii = −fi
· add Newton correction:xji+1

i
= x

ji
i

+�x
ji
i· update inner iteration index:ji = ji + 1

enddo
∗ compute Schur matrix:Si = ∂fm+1

∂xi
· ( ∂fi
∂xi
)−1 · ∂fi

∂xm+1

∗ compute residuum:Ri = ∂fm+1
∂xi

· ( ∂fi
∂xi
)−1 · fi

enddo
– solve:( ∂fm+1

∂xm+1
−∑m

i=1Si) ·�xkm+1 = −fm+1 +∑m
i=1Ri

– add Newton correction:xk+1
m+1 = xk

m+1 +�xk
m+1

– update master iteration index:k = k + 1
– Tangent correction:

do for all subsystemsi = 1. . .m

∗ update inner variables:xji+1
i

= x
ji
i

−( ∂fi
∂xi
)−1 · ∂fi

∂xm+1
·�xk

m+1
∗ update inner iteration index:ji = ji + 1
enddo

enddo

FIG. 15.1. The two-level Newton method.

FIG. 15.2. Two-level Newton scheme for solvingfS(xS, xM)= 0,fM(xS, xM)= 0. Index S: inner Newton,
on subsystem; index M: outer Newton, on master system.

Newton process, e.g.:

‖�xi‖ � α‖�xm+1‖ (i = 1 . . .m) with α = 10−1 . . .10−2.

• A single-level Newton method is obtained, when only one inner iteration is per-
formed and the solution is updated with the tangent correction (ZHANG [1989]).
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This is useful for combining global and multi-level Newton steps, which may im-
prove efficiency and robustness in certain cases (HONKALA , ROOS and VALTO-
NEN [2001]).

• Due to additional inner Newton iterations one should expect that the multi-level
method is more expensive than the standard Newton process. However in practice
often nonlinearity can be shifted into the smaller subsystems, thus reducing the
number of outer iterations and getting even better efficiency than with the single-
level algorithm (FRÖHLICH, RIESS, WEVER and ZHENG [1998]).

• Originally, the tangent correction is not included in the MLN algorithm. Mainly it
serves for getting a good start vector for the next inner iteration cycle (HOYER and
SCHMIDT [1984], ZHANG [1989], WIEDL [1994]). In practice it turns out that the
tangent correction should be omitted as long as the outer process is still far away
from convergence.

• In case of sufficiently decreasing norms, quasi Newton steps may be employed for
the outer iteration process by taking the Schur matrices of earlier iterations, and
eventually avoiding expensive LU factorization of the outer system (FRÖHLICH,
RIESS, WEVER and ZHENG [1998]).

In HONKALA , ROOS and VALTONEN [2001], HONKALA , KARANKO and ROOS

[2002] a variant is described in which the Schur matrix actions and the tangent cor-
rective actions are replaced by introducing a simple global Newton–Raphson step as
outerloop action: in fact their method is Newton–Raphson in which each iteration is
solved bym-parallel Newton–Raphson sub-processes, each of at mostJ -iterations (with
J � 5) for the subsystems.

15.2. Parallel multi-level Newton: Loop over hierarchies

If the circuit is decomposed into a set of subblocks which are interconnected via a
carrier network, then the MLN method described in Fig. 15.1 is a natural choice for
parallelization at a coarse grain level: For each timestep, each subblock is solved in an
inner Newton loop by a slave process on a separate processor unit, and then the master
process performs an outer iteration for getting the carrier network solution. An ideal data
flow for parallel MLN is shown in Fig. 15.3: The master sends the values of the carrier
circuit variablesxm+1 and the actual timestep to the slaves; then each slave performs its
tangent correction, solves its subblock equations, computes Schur matrixSi , residuum
Ri and timestep control information, and sends all back to the master. The black boxes
in Fig. 15.3 indicate when the particular process is busy. Of course, the relative time for
data transmission should be much smaller than suggested in Fig. 15.3.

Decoupling. If the branch currents flowing from the slave subnets into the master car-
rier circuit are introduced as additional variables in the vector of unknowns, then the
network equations are well decoupled, and the term∂fm+1/∂xi arising in the Schur
matrix

Si = ∂fm+1

∂xi
·
(
∂fi

∂xi

)−1

· ∂fi

∂xm+1
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FIG. 15.3. Ideal data flow for parallel MLN.

FIG. 15.4. Circuit decoupling with controlled sources. Pin currentsIBi and pin voltagesxBi are introduced
for each subblocki.

and the residuum

Ri = ∂fm+1

∂xi
·
(
∂fi

∂xi

)−1

· fi
is simply a constant incidence matrix. Before showing more details, we make a further
extension of the vector of unknowns: The pin voltages of the slave subblocks at the
border to the master circuit are duplicated, and the new voltages are assigned to the
slave subnets (FRÖHLICH, RIESS, WEVER and ZHENG [1998]). This is not necessary
in principle for efficient parallelization; however there are two advantages:

• Circuits can be easily decoupled using controlled sources, as shown in Fig. 15.4
(WING and GIELCHINSKY [1972], WU [1976]). Since the latter are standard el-
ements in any circuit simulator, no extra programming efforts are necessary for
decoupling.7

7Decoupling by imposing pin voltages to the subblocks – as illustrated in Fig. 15.4 – is called “node tear-
ing” in the literature (SANGIOVANNI -VINCENTELLI, CHEN and CHUA [1977]), and is mostly applied when
simulating integrated circuits. This is surely adequate from a numerical aspect, as long as the circuit is voltage
driven, i.e., its functionality is described in terms of voltage waveforms; an example is standard CMOS logic.
For current driven circuits like some analog building blocks or power circuits with switches, “branch tearing”
may be preferable (HACHTEL and SANGIOVANNI -VINCENTELLI [1981]). In this case the subcircuit pins are
driven by controlled current sources, and the pin voltages are fed back into the master circuit.
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• Numerical robustness of the MLN method can be improved by applying particular
damping strategies for the controlled voltages sources, which drive the pins of the
slave subcircuit blocks (WALLAT [1997]).

With these extensions, the vectorsxi and functionsfi, fm+1 of the standard MLN
scheme (Fig. 15.1) have to be replaced by

xi ⇒
(
xSi
xBi
IBi

)
, fi(xi, xm+1)⇒

(
fSi(xSi, xBi)

fBi(xSi, xBi)+ IBi
xBi −Ai · xm+1

)
(i = 1, . . . ,m)

fm+1(xi, xm+1)⇒ fm+1(xm+1)−
m∑
i=1

A.
i · IBi,

where the variablesxSi ∈ R
nSi , xBi ∈ R

nBi , IBi ∈ R
nBi andxm+1 ∈ R

nm+1 denote the
inner network variables of subblocki, the pin voltages of subblocki, the pin currents
leaving subblocki and the network variables of the master circuit, respectively.Ai ∈
{0,1}nBi×nm+1 are incidence matrices, projecting the nodes of the master system to the
pin nodes of subblocki. Hereby arem the number of subblocks (slaves),nSi andnBi
the number of inner network variables and pins of subblocki, andnm+1 the dimension
of the master system.

The network equations can be characterized as follows:
– fSi :RnSi × R

nBi → R
nSi are the inner network equations of subblocki;

– fBi :RnSi × R
nBi → R

nBi capture the currents flowing from the inner nodes of
subblocki into its pins;

– fm+1 :Rnm+1 → R
nm+1 are the network equations of the master circuit without the

slave contributions;
Consequently, the Jacobians∂fi/∂xi, ∂fi/∂xm+1, and∂fm+1/∂xi of the MLN scheme
given in Fig. 15.1 have to be replaced by

∂fi

∂xi
⇒ Ji :=


∂fSi
∂xSi

∂fSi
∂xBi

0

∂fBi
∂xSi

∂fBi
∂xBi

I

0 I 0

 , ∂fi

∂xm+1
⇒
( 0

0
−Ai

)
,

∂fm+1

∂xi
⇒ (0 0 −A.

i ),

whereI is anBi × nBi unity matrix. With this decoupling, we get the following form
for the Schur matrix:

(15.1)Si =A.
i ·
(
∂fBi

∂xSi
·
(
∂fSi

∂xSi

)−1

· ∂fSi
∂xBi

− ∂fBi

∂xBi

)
·Ai (i = 1, . . . ,m).

The second factor can be shown to be just∂IBi/∂xBi , if the inner system is solved
exactly. Since the latter is not possible in general, we conclude that the Schur matrix is
a more or less good approximation for the admittance matrix of the particular subblock:

Si ≈A.
i · ∂IBi

∂xBi
·Ai =A.

i · ∂IBi

∂xm+1
.
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For its numerical computation we can use Eq. (15.1), which requires to calculate the
inverse of∂fSi/∂xSi . This may become expensive sincenSi is large in general, and so
it is more economic to exploit that the Schur matrix is just the lower right part ofJ−1

i ,
whereJi is the inner iteration matrix:

J−1
i =


( ∂fSi
∂xSi

)−1 0 −( ∂fSi
∂xSi

)−1 ∂fSi
∂xBi

0 0 I

− ∂fBi
∂xSi

( ∂fSi
∂xSi

)−1
I

∂fBi
∂xSi

( ∂fSi
∂xSi

)−1 ∂fSi
∂xBi

− ∂fBi
∂xBi

 .
This submatrix can be computed columnwise, using the original system from the inner
Newton process

Ji ·
(
�xSi
�xBi
�IBi

)
= −

(
fSi

fBi + IBi
xBi −Ai · xm+1

)
,

but taking different right hand sides: Solve

Ji ·
(
. . .

. . .

ski

)
= −

( 0
0
eki

)
(k = 1, . . . , nBi)

for ski , whereeki is the kth column of annBi × nBi dimensional unity matrix. This
requires one LU decomposition ofJi and onlynBi forward backward substitutions,
which can be done locally on each slave processor. Theski then form the columns of the
Schur matrix, which has to be transferred to the master processor for being assembled
into the outer iteration matrix.

If the inner Newton loops are truncated after some iterations then there remains a
defect of the subblock equations which enters the outer Newton process in form of the
residuumRi , see Fig. 15.1. In the decoupled formulation we get:

Ri = −A.
i ·
(

−∂fBi
∂xSi

(
∂fSi

∂xSi

)−1

I

− ∂fBi

∂xSi

(
∂fSi

∂xSi

)−1
∂fSi

∂xBi
− ∂fBi

∂xBi

)
·
(

fSi
fBi + IBi

xBi −Ai · xm+1

)
=A.

i ·�IBi (i = 1, . . . ,m).

Here is�IBi an error term for the pin currents which is induced from truncating the
inner Newton loop, and which can be computed from solving

Ji ·
(
. . .

. . .

�IBi

)
= −

(
fSi

fBi + IBi
xBi −Ai · xm+1

)
.

This can be done locally on each slave processor, and after being transferred to the
master processor, the�IBi must be assembled into the right hand side for the next outer
Newton step.
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Finally the tangent correction has to be computed, before the next inner Newton loop
is started. It is easy to see that this can be done locally either, as soon as the actual state
of the master variablesxm+1 is available on the slave processors.

Some remarks can be given on how to improve parallel performance:
• For the master circuit the linear solver is the most time critical part. Since the Schur

matrices tend to be dense, a sparse block or even dense linear solver is adequate.
• We see from Fig. 15.3 that the master process is idle when the slaves are working,

and vice versa. So, one slave process can be assigned to the master processor;8

and on a shared memory machine aparallel linear solver utility should be used,
which includes the slave processors for solving the large interconnect network of
the master.

• A performance model for parallel MLN is described in GRÄB, GÜNTHER, WEVER

and ZHENG [1996]. It can be used for dynamically adopting numerical parame-
ters of the MLN method – like the maximal number of inner iterations – to the
computer- and network-configuration and its actual load.

Partitioning. In an industrial environment an automatic tool is indispensable, which –
by applying tearing methods – partitions a given circuit netlist into subnets, inserts the
controlled sources for proper decoupling, and assigns the subnets for being solved in a
particular process (→ static assignment). The number of partitions is prescribed by the
user. Hereby two different strategies can be applied: One makes the number of partitions
just equal to the number of processors, which are actually available. In this case the
partitions have to be equally balanced with respect to their computational load, and
latency effects – i.e., the different rate of convergence for different partitions – cannot
be exploited. The other strategy makes the number of partitions much larger than the
number of processors, and assigns several subnets to one processor. This alleviates the
needs to get partitions of equal workload, and opens a chance to exploit latency effects.
Unfortunately, in real life applications it turned out, that a large number of partitions
tends to increase the interconnect network significantly, which has to be solved in the
master process DENK [2002]. This is a critical issue for the performance of MLN, and
so in practice a small number of partitions is often more efficient than a large one.

The most essential requirements for the partitioner are (WALLAT [1997], FRÖHLICH,
RIESS, WEVER and ZHENG [1998]):

1. prescribed number of partitions;
2. small number of interconnects between each partition and master;
3. small total number of interconnects;
4. equal computational weight (workload) for each partition;
5. solvability for each partition and carrier network;
6. small runtime;
7. all nonlinear elements put into partitions.

The second requirement is for keeping the dimensionnBi of the Schur matrices small,
which is desirable for reducing both the expense to calculate the Schur matrix and the

8More precisely: The master can start collecting data as soon as the fastest slave has finished its task; so the
slave task with the smallest workload should be assigned to the master processor.
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amount of data to be sent to the master. The third requirement is extremely important
for the workload of the master process since the interconnect net mainly determines
the dimension of the master system, which isnot sparse in general. The 4th require-
ment takes care of a well balanced load of the slave processors, which is essential if
each processor gets just one partition. The 5th requirement concerns that unsolvable
circuit structures – like the loops of inductors and/or voltage sources discussed in Sec-
tion 7 – may be generated due to insertion of controlled sources at the partition borders,
which must be avoided. The runtime requirement is obvious, but hard to meet since
partitioning problems are NP complete (GAREY and JOHNSON[1979], HACHTEL and
SANGIOVANNI -VINCENTELLI [1981]). Hence heuristics have to be found which pro-
duce near optimal solutions in a short time. Finally, the last requirement is desirable to
shift nonlinearity into the slaves, thus reducing the number of expensive outer iterations.

In Section 5 it was shown that decomposition may have an impact on the DAE index
of the system. This is not a critical issue as long as the index does not get greater than
2 for the decomposed system, since state of the art integrators usually can cope with
index-2 problems. However, in case of DAE index> 2 most integrators may run into
severe numerical problems, and to avoid that should be a further requirement for the
partitioner. Unfortunately, it may be difficult to find out for a certain circuit configu-
ration if insertion of controlled sources would raise the index beyond 2, see ESTÉVEZ

SCHWARZ and TISCHENDORF[2000]. So this requirement is not (yet) observed in any
partitioning tool.

We will now shortly consider partitioning algorithms as far as they are suited for
coarse grain parallelization of classical circuit simulation. Special partitioners for wave-
form relaxation or for placement tools, e.g., are not included here, since their objectives
are different.

Since partitioning is closely related with the task to transform a given matrix into
bordered block diagonal form (HACHTEL and SANGIOVANNI -VINCENTELLI [1981]),
the methods suggested for the latter problem may be useful for partitioning as well. One
of them is nested dissection. In its original form it provides partitions of decreasing size
(HACHTEL and SANGIOVANNI -VINCENTELLI [1981]); it has to be checked if variants
like that in GEORGE[1974] provide better balanced partitions (REISSIG[2001]).

In SANGIOVANNI -VINCENTELLI, CHEN and CHUA [1977] alocal clustering algo-
rithm was proposed, which turned out in practice to be efficient and to generate parti-
tions of almost equal size. It starts from a vertex of a weighted network graph, and adds
that neighbour vertex to the cluster, which provides the minimal number of edges to the
vertices outside the cluster. If the cluster size is somewhat beyond its “optimal” value,
then a backtracking step takes care that the number of edges crossing the border be-
comes minimal within a certain interval. This cluster is selected as a first partition, and
the cluster process is restarted. The computational complexity of this method isO(n2

V ),
wherenV is the number of vertices (SANGIOVANNI -VINCENTELLI, CHEN and CHUA

[1977]).
A more accurate weight model for the computational cost of a partition is suggested in

WALLAT [1997]. To this end, each circuit element is given a specific weight – depending
on its computational complexity – and the cost of a partition is just the sum of the
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weights of its elements, plus a certain weight for each of its nodes, since the latter gives
rise to one more circuit equation.

This model requires to formulate the cluster problem on hypergraphs which are
weighted on both vertices and edges. It is however possible to extend the local clus-
tering algorithm of SANGIOVANNI -VINCENTELLI, CHEN and CHUA [1977] properly,
such that partitions with very well balanced computational cost can be generated even
for large industrial designs in a reasonable time (WALLAT [1997]).

Partitions with even smaller numbers of interconnects can be expected from algo-
rithms with a moreglobal view. These operate usually in two steps: The first step
provides an initial partitioning under global aspects, in order to meet the require-
ments 3 and 4. For this purpose bisection methods (COX, BURCH, HOCEVAR, YANG

and EPLER [1991]), analytical placement (FRÖHLICH, RIESS, WEVER and ZHENG

[1998]), or simply the hierarchy of the network description are used. In the second step
the cut cost of each partition is reduced (→ requirement 2) by shifting circuit nodes
or branches between partitions. This is done using Fiduccia–Mattheyses like methods
(COX, BURCH, HOCEVAR, YANG and EPLER [1991], ONOZUKA, KANH, MIZUTA ,
NAKATA and TANABE [1993]), minimizing ratio-cut (FRÖHLICH, RIESS, WEVER and
ZHENG [1998]), or with some other heuristics (KAGE, KAWAFUJI and NIITSUMA

[1994]).
Global partitioning methods often suffer from prohibitive runtimes when being ap-

plied to very large problems. As an alternative, a clustering algorithm was recently de-
veloped, which keeps global aspects in mindandaims at a very high computational effi-
ciency (FRÖHLICH, GLÖCKEL and FLEISCHMANN [2000]). Basically it forms clusters
by merging adjacent vertices (circuit elements) of an edge (circuit node) in a weighted
modified network graph. For clustering, the simple edge weight criterion is replaced
by a more sophisticated coupling measure, which takes care that adjacent vertices with
only a few edges are preferred for clustering, and that the cluster size is well balanced.
For each merging step the whole circuit is inspected; this brings the global aspects
into account and finally enables excellent partitioning results in a reasonable time, as is
demonstrated with a large number of actual designs from industry (FRÖHLICH [2002]).
The method has a complexity ofO(nR · nV · log(nR · nV )), wherenR is an average
number of edges per vertex, andnV is the number of vertices.

Dynamic assignmenttechniques were explored in an experimental paper (COX,
BURCH, HOCEVAR, YANG and EPLER [1991]), in order to check how far latency ef-
fects can be exploited, and which maximal degree of parallelism can be obtained. To this
end the number of partitions was made quite large, and by using partial LU factorization
and dynamic subtask allocation,≈ 95% of the total job could be executed in parallel,
which is hard to obtain with static assignment. As a conclusion, dynamic resource al-
location was recommended on shared memory machines, while static assignment fits
better to clusters with distributed memory and slow interconnect network. It would be
interesting to check if these results still hold for very large actual designs. Furthermore,
it should be noted that dynamic allocation schemes require considerable programming
efforts for the simulator itself, while partitioning requirements are less ambitious.
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TABLE 15.1
Typical speedups with parallel MLN versus

serial standard Newton

No of processors Speedup

4 2.5. . .3
8 3.5. . .5

12 5. . .7
16 > 7

Results. The speedup obtainable with this kind of parallelization depends primarily on
the circuit structure and on the quality of partitioning. In the best cases – with partitions
providing equal workload and a small number of pins – almost linear speedups were re-
ported, e.g., a factor 7.79 on 8 CPU’s (FRÖHLICH, RIESS, WEVER and ZHENG [1998]).
Sometimes even superlinear speedups can be observed, which is due to the shift of non-
linearity into smaller circuit blocks, or due to reduced memory needs. In the worst case
of unbalanced partitions and large interconnect to the master circuit, the speedup may
not be much larger than 1. Fortunately, the user can see in advance whether it makes
sense to start parallel simulation with a given partitioning.

Typical speedups for real life applications are given in Table 15.1 (WEVER and
ZHENG [1996], WALLAT [1997], FRÖHLICH, RIESS, WEVER and ZHENG [1998],
FRÖHLICH, GLÖCKEL and FLEISCHMANN [2000]). Note that it often does not make
much difference if the problem is run on a shared memory multiprocessor system or on
a cluster of processors with relatively slow interconnect network. The latter aspect is of
commercial interest, since it allows to set up a very cheap cluster of fast PCs for running
large circuit simulations efficiently.

A reasonable number of processors is actually between 4 and 16. Each processor
should have a fairly large load, since otherwise there is a risk to get a poor ratio of in-
terconnect to partition size, making parallelization inefficient. Therefore scalability is
limited: Increasing speedups can only be expected for an increasing number of proces-
sors, if the problem size is increasing as well (WEVER and ZHENG [1996]).

The runtime of an advanced partitioning tool is 1. . .10 min for circuits containing
15k . . .150k transistors. This makes its possible to run several partitioning trials with
different options, and to select the best partition found for performing the analysis.

Even more important than exact speedups is the chance to handle problems of a size
which is almost one order of magnitude larger than with serial simulation. An actual
example is a 500k transistor circuit including parasitics, which can be simulated over
night on a 12 processor machine, giving full confidence in its functionality to the de-
signer DENK [2002].

Note that the results reported here were obtained with a fully implicit integration
method like BDF or TR-BDF. Semiimplicit numerical integration schemes – like the
ROW method – do not require a parallel MLN method. However they can utilize the
multi-level linear solver (VLACH [1988b]), which is naturally included in MLN, and so
parallelization of the ROW method is achieved at almost no extra cost if a parallel MLN
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solver is available for fully implicit integration rules. Even partitioning is not affected
by the particular choice for numerical integration.

15.3. Thread based parallelization: Loop over processes (threads)

This kind of parallelization is targeted for multiprocessor systems with a large shared
memory. Hence interchange of data between processes is not of major concern. How-
ever cache effects are of great importance, and so it is essential to take care of data
locality. We restrict on systems with a limited number of processors, as are commonly
used in industrial environments.

From Table 12.1 we see that parallelization should focus on the load and on the linear
solver part of a circuit simulator. Parallelization of the rest either does not impose any
difficulties, or does not make sense due to its serial character and small runtimes.

Load. The load part consists of three tasks:
1. Evaluation of the device characteristicsand their derivatives: This is an expensive,

but perfectly parallelizable task, since all evaluations are independent from each other.
Furthermore there are always many elements of the same kind (transistors, capacitors,
. . . ); hence load balancing is trivial.

2. Numerical integrationin case of BDF like methods; this is easy to parallelize as
well.

3. Stamping, i.e., adding the element contributions to matrix and right hand side:
This is some kind of protected operation, since different elements may stamp into the
same entry of matrix or right hand side. Nevertheless, parallelization is necessary, since
otherwise parallelization effects saturate already for 4. . .6 processors (SADAYAPPAN

and VISVANATHAN [1988]). Possible solutions are (SADAYAPPAN and VISVANATHAN

[1988], EICKHOFF [1991]):
• Edge colouring techniques can be applied: Circuit elements of the same kind shar-

ing the same node are marked with different colours. Then all elements with iden-
tical colour can be stamped in parallel.

• The circuit is partitioned into equally sized subblocks with minimal number of in-
terconnects between them. Elements of different subblocks not being at the border
then can be stamped in parallel; the border elements can be stamped blockwise
sequentially, partition per partition.

• Thestamp-intooperation is replaced by afetch-fromoperation: Each entry of ma-
trix and right hand side knows from which element it gets a contribution, and
fetches it from there. All entries can act in parallel. If the number of elements
connected to one node is very unbalanced, then some refinements of this method
may be useful, e.g., the generation of subtasks.

In sum, parallelization of the load part can be done very efficiently, and good scalability
can be expected.

Linear solver. The focus is here on parallel LU factorization, since forward backward
substitution is far less expensive and easier to parallelize (FISCHER[2001]). Two main
directions are pursued:
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Tearing: The first approach is to partition the circuit with tearing methods into well
balanced subblocks, and LU factorize the subblocks in parallel (SADAYAPPAN and VIS-
VANATHAN [1988], VLACH [1988a], COX, BURCH, HOCEVAR, YANG and EPLER

[1991]). This technique is closely related to the parallel multi-level Newton method
described above. So we will not further discuss it here.

Clustering Gauss operations: The second approach is to cluster the Gauss operations
of sparse LU factorization into sets of independent tasks, and perform all tasks of a set
in parallel. These concepts are rapidly evolving at present due to their importance in a
much more general framework. On overview can be found in Chapter 9 of this Hand-
book; an actual code is described in SCHENK [2000]. Note that in this framework the
notation of parallel granularity (see, e.g., HEATH, NG and PEYTON [1990]) is different
from what we have introduced at the beginning of this section.

We end with some comments on the second approach which directly concern circuit
simulation aspects.

TABLE 15.2
Aspects of parallelization

Aspect Thread based Multi-level Newton

hardware shared memory – cluster of workstations or PCs
multiprocessor – shared memory multiprocessor

hardware cost moderate cheap . . . moderate

memory needs large small
(eventually large for partitioner)

communication overhead large small

user handling easy . . . moderate easy . . . moderate . . . difficult
(depending on partitioner)

complex on workstation cluster:
data flow simple – scatter partitions to slave processors

– gather/merge resulting waveforms
– restart and error management

scalability
– small problems good no
– large problems good. . . moderate moderate

– static assignment:
spatial adaptivity low low . . . moderate
(exploitation of latency) – dynamic load balancing: high

algorithmic overhead small – Schur matrix
– interconnect solver

algorithmic benefit none shift nonlinearity into subsystem

algorithmic challenge partitioner: split partitioner: split circuit
Gauss operations

programming effort moderate – static assignment: low . . . moderate
– dynamic load balancing: high
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Mixed direct/iterative linear solver: Parallelization of a mixed sparse direct/iterative
linear solver was recently suggested in an interesting alternative, which directly aims
at circuit simulation problems (BOMHOF [2001]), see Chapter 9 of this Handbook for
details.

Adaptive partitioning: In the course of a transient analysis the linear solver is called
quite often with an identical zero/nonzero pattern of the matrix. So it may be worthwhile
to provide some learning phase in the algorithms, where partitioning is adapted until
optimal speedups are obtained. In FISCHER[2001] such an adaptive partitioning method
is described, which does not only provide significant speedup improvements, but also
requires less CPU time than a conventional partitioner.

Ordering: The sparse LU factorization needs preordering of the matrix for minimal
generation of fillins. Circuit simulation codes mostly employ the Markowitz method
(MARKOWITZ [1957]), which is a variant of the minimum degree algorithms (DIRKS,
FISCHER and RÜDIGER [2001]). For parallel LU factorization other methods may be
better suited (BOMHOF [2001], REISSIG[2001]), although first experiments with nested
dissection methods were not successful yet (FISCHER[2001]).

Thread based parallelization and parallel multi-level Newton MLN – a conclusion.
Both schemes are realized in codes, which are used since some time in industrial en-
vironments, but there is no direct comparison available at present. As a first step, we
try to compare them in Table 15.2 with respect to the most important aspects of paral-
lelization, without giving numbers or assessments. If run on a shared memory system,
MLN may be somewhat less efficient than a dedicated thread based version. The merits
of MLN are an excellent performance/cost ratio and its flexibility, which even makes
distributed simulation via Internet possible. One surprising fact is, that the most critical
issue in both approaches is the partitioner, even if its objectives are somewhat different.

16. Hierarchical simulation

Very often the design of an electronic circuit is characterized by a hierarchical orga-
nization of models and submodels with active and passive components as final leafs.
Compact transistor models (devices) are treated as building blocks in the modular de-
sign of the circuit. Submodels and devices are linked to the hierarchy by their terminal
unknowns to the enclosing model. A device is a leaf of the tree. The top model is the
circuit-level, which has only one terminal, the ground node (whose voltage is set to 0).
Models and devices may have their own internal unknowns. The behaviour of the so-
lution of a model at all nodes is completely determined by the values at the terminals
(together with the internal sources) and the nonlinear interaction with its containing
submodels and devices.

A hierarchically organized algorithm allows a datastructure of the circuit that is
very close to the original design (RABBAT and HSIEH [1981], TER MATEN [1999],
WEHRHAHN [1989], WEHRHAHN [1991]). A hierarchical formulation corresponds to
a particular block partitioning of the problem that allows for parallelism in a natural
way (BORCHARDT, GRUND and HORN [1997]). Even in a sequential approach partic-
ular algorithms can be pursued, starting with the observation that the overall matrix and
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for all i = 0, . . . , I − 1 (Time step iteration)do
for k = 0, . . . ,K − 1 (Newton iteration)do

Recursion I: Bottom-Up Matrix Assembly[Axn+1 = b ≡ −F(xn)+Axn]
and Decomposition [A=UL, Lxn+1 = c ≡U−1b]
Recursion II: Top-Down Linear Solution[xn+1 = L−1c]
Recursion III: Bottom-Up error estimation

end for
Recursion III: Bottom-Up discretization-error estimation

end for

FIG. 16.1. The main hierarchical recursions.

the solution can be distributed over all hierarchical levels. Algorithms are usually de-
fined recursively (see algorithm in Fig. 16.1). Depending on actions being done before
or after the recursions and passing data to or lifting data from a submodel, or device,
one can speak of Top-Down and of Bottom-Up recursions.

In the algorithm above Gaussian elimination is used because it nicely fits a hierar-
chical algorithm. This is in contrast to several iterative linear solvers in which needed
preconditioners disturb the assumed block structure (however, for a collection of some
recent results by some hierarchical-friendly methods, see SCHILDERS [2000]).

Bypass mechanisms.Each hierarchical branch normally depends continuously on the
values of the terminals at some top-level, in addition to values of internal sources and
values of time-derivatives. This allows for several forms ofbypassingwhere we satisfy
ourselves not to update results obtained previously in some part of a process.

• Newton-level bypassing: In a Newton–Raphson iteration one can decide to bypass
a complete hierarchical branch starting from submodelS when its terminals do not
change that much.

(16.1)xn+1
S,j = xnS,j if

∥∥xn+1
M,i − xnM,i

∥∥< ε
whereS denotes a submodel or device, andM the encompassing model. At this
highest leveli ranges from 1 tonMt (number of terminal unknowns ofS at levelM).
At each sublevelS, j ranges from 1 tonSt + nSi (wherenSt , n

S
i are the number of

terminal and internal unknowns at levelS, respectively).
Clearly, by this one can re-use matrix-contributions and right-hand side contri-

butions from all submodels of which the tree starts at modelM . Depending on the
type of linear solver one also can re-use the localLU -decompositions.

• Transient step bypassing: The bypass approach may be extended to a transient step,
when the extrapolated values (or the result of the predictor) indicate results close
to the final one at the previous time level.

• Cross-tree bypassing: The above bypass approaches are examples ofin-tree by-
passing: one can only bypass a remainder of the hierarchical branch by comparing
it to a previous approximation to the solution of the same branch.



612 M. Günther et al. CHAPTER IV

A generalization to this might be calledcross-tree bypassing. For this one identi-
fies branches that formally have identical datastructures, for instance because each
branch starts at different occurrences of a same model or device definition.

When one has determined the solution of one branch, its results may be copied
to the other branch (when needed, one might postpone this). Note that this applies
to the Newton as well as to the Transient step level (in Transient analysis one might
also apply cross-tree bypassing during the stepsize determination).

The HSIM simulator, developed by Nassda Corporation (HSIM DATASHEET

[2002]), exploits this type of bypassing. It efficiently stores repeated instances of
the same subcircuit, providing by this “unlimited” design capacity (compared to
flat-based simulators). It takes advantage of hierarchical structures operating under
the same conditions in the design to dynamically reuse computed results (WANG

and DENG [2001]). In mixed-signal analysis the bulk of the circuit is of a digital
nature and only a minor part is a true analog part. In the digital part, a lot of branch
matchings may occur, and also their boundary (terminal) values may be identical
(in fact because of the digital nature, only very few different stages will be pos-
sible). Good speedups are reported when compared to conventional analog circuit
simulators. In addition to bypassing, a hierarchical RC reduction algorithm com-
presses parasitic resistances and capacitances in the hierarchical database. Finally,
a coupling decomposition algorithm efficiently models submodel couplings, such
as crosstalk noises, as submodel interface currents and conductances.

17. Multirate integration

From our CMOS ringoscillator example in Section 13 we have seen that multirate inte-
gration offers significant speedup potential for circuit simulation. Waveform relaxation
WR exploits the multirate behaviour in a very natural way: Subblocks are decoupled,
and each of them can be integrated with its own local timestep. In standard circuit sim-
ulation however the subsystems are not decoupled. So when we solve a certain circuit
part at a particular timepoint, we need information about the contribution of all other
circuit parts, which is not available due to their different integration stepsize.

To get accurate, controllable, and cheap to compute estimates for these contributions
has been a key problem in multirate integration.

Let us for the sake of simplicity assume that the circuit at a timepointt can be sepa-
rated into an active partxA – which has to be integrated with a small timesteph – and
a less active (“latent”) partxL, being integrated with a much larger timestepH � h.
Then there are two different strategies to compute a solution in the time betweent and
t +H (GEAR and WELLS [1984], SKELBOE [1984]):

• Fastest first: IntegratexA with small stepsizeh from t to t+H , using extrapolated
values forxL;
then perform one integration step forxL from t to t+H , taking interpolated values
from xA, if necessary.

• Slowest first: IntegratexL with one step of sizeH , wherexA(t +H) is extrapo-
lated;
then integratexA with small stepsizesh, taking interpolated values fromxL.
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Both approaches are pursued in different implementations. While the first one seems to
be straightforward – since it relies on the assumption that the slowly varying variables
can be well extrapolated into future – offers the second computational advantages.

Roughly two directions can be recognized in the literature: One tries to extend stan-
dard circuit simulation techniques using multi-step integration methods; the second is
oriented towards one-step methods. Both of them have in common, that for reducing
overhead the circuit is partitioned into subblocks, each of which is handled with its own
local timestep.

Multi-step methods. All multi-step methods known so far employ the fastest first prin-
ciple, and make use of some kind of event control, see Fig. 17.1: Based on conventional
timestep control, each subblock computes its next timepoint and puts it into an event
list. The global timesteph is determined from the next entry of this event list, and de-
pending on their own local stepsizehi , the subblocks are marked to be active – ifhi
is not much larger thanh – or to be latent else. The active subblocks are evaluated in
a conventional way, but the latent subblocks are replaced by some simple substitutes,
which aim at extrapolating their terminal behaviour. With these substitutes, the reduced
system is solved, and after getting convergence the latency assumption has to be veri-
fied a posteriori. The latter step is important to maintain the reliability of the standard
algorithm. It may give rise to roll back the simulation for several timesteps, which is
very critical since it degrades performance significantly.

• Initialization:
– partition circuit into subblocks
– compute initial values
– setup and initialize event list

• Transient simulation:
for each entry of event list do
– mark subblocks to be active or latent
– Newton loop:

until convergence do
∗ load matrix and right hand side for active subblocks as usual
∗ load matrix and right hand side for substitute circuits of latent subblocks
∗ solve reduced linear system
∗ add Newton correction to active part of circuit variables
∗ check convergence

– timestep control and verification step:
for all active subblocks do
∗ perform timestep control
enddo
for all latent subblocks do
∗ check latency assumption
enddo
update event list

enddo

FIG. 17.1. Event controlled multirate integration with multi-step methods.
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FIG. 17.2. Substitute circuits at the pins of latent subblocks (a) (FELDMANN , WEVER, ZHENG, SCHULTZ

and WRIEDT [1992]) (left), (b) COX, BURCH, YANG and HOCEVAR [1989]) (right).

Alternatives for the substitute circuits are shown in Fig. 17.2. In (a) the value ofR

is fixed, andV is determined such that the extrapolated values for both pin current
and voltage are consistent. (b) is just the Norton equivalent of the subblock at the pin
node, i.e.,G= 1/R andC are its static and dynamic entry in the Jacobian, andI is the
right hand side entry from the last iteration in active mode. Another approach suggests
independent sources with extrapolated values for pin currents or voltages (SAKALLAH

and DIRECTOR[1985]).
The speedup potential for this kind of multirate integration is mainly determined by

savings of expensive device evaluations for the latent parts, and by solving a smaller
system of equations. On the other hand there is slowdown due to roll back steps and
due to overhead of event control. Overall speedup factors 2. . .20 have been reported
(SAKALLAH and DIRECTOR [1985], FELDMANN , WEVER, ZHENG, SCHULTZ and
WRIEDT [1992], COX, BURCH, YANG and HOCEVAR [1989]), but obviously methods
and codes are not yet mature enough to be used in standard industrial environments.

One-step methods.Multirate one-step schemes so far have aimed at systems where
the whole dynamics can be described by an initial value problem of ordinary differential
equations

(17.1)ẏ = f (t, y), y(t0)= y0, y ∈ R
n.

For the sake of simplicity, we concentrate our investigations on autonomous initial value
problems, whose state vectory ∈ R

n is partitioned into only two parts: Latent compo-
nentsyL ∈ R

nL and a small number of active componentsyA ∈ R
nA with nA + nL = n

andnA ' nL,

(17.2a)ẏA = fA(yA, yL), yA(t0)= yA0,

(17.2b)ẏL = fL(yA, yL), yL(t0)= yL0.

The active componentsyA are integrated with a small stepsizeh, the latent components
yL with a large stepsizeH =mh. The realisation of multirate one-step schemes now de-
pends not only on the underlying numerical scheme, but also on which part is integrated
first and, crucially, how the coupling is done.

One origin of these method are the split Runge–Kutta schemes by RICE [1960]. Mul-
tirate extrapolation (ENGSTLER and LUBICH [1997a]) and Runge–Kutta (ENGSTLER

and LUBICH [1997b]) schemes are successfully used in stellar problems by Engstler
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and Lubich. In GÜNTHER and RENTROP[1993, 1994] multirate Rosenbrock–Wanner
(MROW) methods are used for VLSI applications of electrical networks. One short-
coming of all these multirate methods derived so far is the coupling between active and
latent components by interpolating and extrapolating state variables, which inevitably
decompose the underlying one-step method in a two-step procedure, and thus makes
their implementation very difficult into existing simulation packages. Recently, a new
answer on how to realize the coupling, was given by KVÆRNØ and RENTROP[1999]
for explicit Runge–Kutta schemes: The internal stages are used to compute the coupling
terms, too. Meanwhile, this so-calledgeneralized multirateapproach was extended to
implicit schemes, e.g., ROW- and W-methods, to manage also stiff problems as arise
in network analysis. One should note that the coefficients of all these one-step schemes
can be chosen such that one gets stable methods of any prescribed order of convergence.

We start to give the outline of a somewhat generic generalized multirate one-step
method: The approximate solutionyHL (t0 +H) of yL at time pointt0 +H andyhA(t0 +
(λ+ 1)h) of yA at time pointst0 + (λ+ 1)h are given by

yHL (t0 +H)= yL,0 +
s∑
i=1

b̃ikL,i ,

yhA
(
t0 + (λ+ 1)h

)= yhA(t0 + λh)+
s∑
i=1

bik
λ
A,i (λ= 0, . . . ,m− 1),

where the increments are computed via the linear systems

kL,i =HfL

(
yL,0 +

i−1∑
j=1

α̃ij kL,j , ȲA,i

)

+H
∂fL

∂yL

∣∣∣∣
y0

i∑
j=1

γ̃ij kL,j +mH
∂fL

∂yA

∣∣∣∣
y0

i∑
i=1

ν̃ij k
0
A,j ,

kλA,i = hfA

(
Ȳ λL,i , yA,λ +

i−1∑
j=1

αij k
λ
A,j

)

+ h
∂fA

∂yA

∣∣∣∣
y0,λ

i∑
j=1

γij k
λ
A,j + h

m

∂fA

∂yL

∣∣∣∣
y0,λ

i∑
j=1

νij kL,j .

Still, the coupling terms need to be defined, where we aim at
• active to latent:ȲA,i ≈ yA(t0 + α̃i ·H),
• latent to active:Ȳ λL,i ≈ yL(t0 + λ · h+ αi · h),

with αi :=∑i−1
j=1αij . Depending on the way how coupling terms are computed, we get

different types of multirate formulae:
MROW (GÜNTHER and RENTROP [1993]): The coupling terms are defined by the

usage of rational extrapolationsyextra
A andyextra

L , respectively:

• active to latent: ȲA,i = yextra
A (t0 + α̃iH);
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• latent to active: Ȳ λL,i = yextra
L (t0 + (λ+ αi)h).

FurthermoreN := (νij )i,j=1,...,s = 0, Ñ := (ν̃ij )i,j=1,...,s = 0; the coefficient ma-
trices A := (αij )i,j=1,...,s , Ã := (αij )i,j=1,...,s are strict lower triangular, andG :=
(γij )i,j=1,...,s , G̃ := (γ̃ij )i,j=1,...,s are lower diagonal with nonvanishing diagonals.
Last, the Jacobian is evaluated at:y0,λ = (yextra

L (t0 + λh), yh
A(t0 + λh)), λ = 0, . . . ,

m− 1. Thus the computation over each macro step is decoupled, a kind of weakened
slowest first strategy (GEAR and WELLS [1984]).

Generalized Multirate(KVÆRNØ and RENTROP [1999]): The coupling terms are
computed by their ‘own’ RK-like methods,

ȲA,i = yA,0 +m

i−1∑
j=1

δ̃ij k
0
A,j , and

Ȳ λL,i = yL,0 + 1

m

i−1∑
j=1

(
δij + Fj (λ)

)
kL,j ,

which gives us a genuine one-step method. Fixing, where to evaluate the Jacobian and
some finer structure of the coefficient matrices, yields different kinds of methods:

• explicit Runge–Kutta(KVÆRNØ and RENTROP [1999]): G = N = G̃ = Ñ = 0;
thus no Jacobian is coupled.

• partitioned Runge–Kutta(GÜNTHER, KVÆRNØand RENTROP[2001]):G=N =
Ñ = 0; G̃ with nonvanishing diagonal.

• W-method(BARTEL [2000]):G,G̃,N andÑ have constant diagonals, which differ
from zero at least for the first two matrices; in additiony0,λ = y0, i.e., the Jacobian
is lagged over a single macro step in order to compute the micros.

• ROW-method(BARTEL [2000]): Conditions like W-method, plus evaluation of the
Jacobian on the fine grid.

Generalized multirate schemes yield a compound step of macro and first micro step,
and decouple all later micro steps. By the linear implicitness, we may sequentially com-
pute the incrementskL,i andk0

A,i . If at least one diagonal element ofN, Ñ vanishes, a
block triangular form of the system matrix for the increments is obtained, such that the
increments may be computed in an interleaved mode:kL,1, k

0
A,1, kL,2, k

0
A,2, . . . . Fur-

thermore, we have ROW-type coefficients, i.e., we need just one decomposition per
timestep.

Combining both coupling approaches leads to a hybrid scheme (BARTEL, GÜNTHER

and KVÆRNØ [2001]): Whereas the latent and the first active step are computed simul-
taneously in a compound step, the remaining active steps within one macro step can be
computed by an arbitrary stiff method, iff dense output formulae of enough accuracy are
used for evaluating the latent part. First steps have now been made to generalize this idea
of “mixed multirating” to the charge/flux oriented DAE network equations (STRIEBEL

and GÜNTHER [2002]). Although multirate one-step schemes show promising features
to gain speedup in circuit simulation, the reliability and robustness of these schemes
does not yet allow to use them in standard packages.
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Periodic Steady-State Problems

Periodic Steady-State (PSS) Problems have received special attention for simulating
analog circuits. The aim was to efficiently study solutions of problems where a highly
oscillating signal (carrier) was modulated by another signal. Due to nonlinear compo-
nents the response to a single tone may give rise to higher harmonics, which in general
is considered as (harmonic) distortion. When two tones are considered, intermodulation
distortion may arise. Then an IC-designer is interested in detecting the (group of) com-
ponents that contribute most to the distortion. The same analyses also allow study of
Electromagnetic Compatibility Immunity.

The above problems were studied by techniques in the time domain, in the fre-
quency domain, or by mixed time-frequency domain methods. In the last years, Ra-
dio Frequency (RF) simulation initiated renewed focussing on simulating PSS prob-
lems, especially in the time-domain (DUNLOP, DEMIR, FELDMANN , KAPUR, LONG,
MELVILLE and ROYCHOWDHURY [1998], KUNDERT [1997], TELICHEVESKY, KUN-
DERT and WHITE [1996], TELICHEVESKY, KUNDERT, ELFADEL and WHITE [1996]).

This section describes several algorithms for simulating PSS problems. This will in-
clude forced problems (i.e., periodicity caused by external sources) as well as free os-
cillator problems. However, we will point out also that the separate algorithms are a
step in a larger process: distortion analysis, immunity analysis, noise analysis. A com-
plete algorithm shows a cascading sequence of basic simulation methods (for instance
for providing initial approximative solutions). Another feature is that algorithms are
favoured that exploit re-use of existing implementations.

18. RF simulation

In the past decade there has been an exponential growth in the consumer market for
wireless products. Products like pagers, cordless and cellular phones are now common
products for consumers all over the world. But also computers are no longer connected
to other computers and their peripherals by copper wires only: wireless computer net-
works are used more and more. Not yet very common but growing steadily are the
wireless home systems, connecting all kinds of equipment present in peoples homes.
Furthermore there are promising markets in the automotive area in vehicular navigation
and inter-vehicular communication.

The change from mainly professional wireless applications (military, private mobile
radio, etc.) to a consumer market has severe implications for the total design process.

617
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Where in the past there was time to build and measure several prototypes, nowadays
the demands on time-to-market, time-to-quality, price, production volume, etc. are so
severe that designers have to resort to simulation. In a marketing window of only a few
months there clearly is no time for several iterations of these systems-on-silicon.

Although the RF part of these systems constitutes only a minor part of the total design
area, it presents a major challenge in the total design cycle. This challenge is caused by
the analogue/RF nature of the design but also by the lack of appropriate tools, models
and design flows. Because the demand for RF simulation tools on this scale is rela-
tively new, the developments of tools (the underlying principles and the commercial
implementation there of) are lagging behind the designers needs. It is clear that we are
only in the start-up phase of RF tooling and RF design flow development. Neverthe-
less, recently a lot of progress has been made in the research of mathematical principles
for RF simulation. A number of these new ideas are already available in industrial and
commercial software.

18.1. RF circuit and signal characteristics

An RF circuit forms the link between some baseband information signal and an antenna.
A transmitter modulates the baseband signal on a high frequency carrier (sinusoid) and
the task of the receiver is to retrieve the baseband signal from the modulated carrier.
Thus, as compared to baseband circuits, RF circuits are special in the sense that they
process modulated carriers. In the frequency domain a modulated carrier is a narrow
band signal where the absolute bandwidth is related to the frequency of the carrier signal
and the relative bandwidth is related to the modulating baseband signal. Practically, the
ratio of the two frequencies is in the order of 100 or 1000.

Another major difference is that in RF systems, noise is a major issue. Noise consists
of the (usually) small unwanted signals in a system. One can think of several forms of
device noise (thermal noise, shot noise, flicker noise) but also of interferers like neigh-
bouring channels, mirror frequencies, etc. All noise sources are of major importance
because they directly translate to bit-error-rates of the transmitted data. Therefore it is
imperative that RF designers can predict the overall noise quickly and accurately.

When dealing with narrow band signals in a noisy environment two mechanisms are
of major importance. Firstly, if a narrow band signal is passed through a nonlinearity, the
spectrum will be repeated about integer multiples of the carrier frequency resulting in a
very wide but sparse spectrum. Secondly, the signal will interact with other signals in the
circuit leading to wanted and unwanted frequency shifts. Although both mechanisms are
always present and even interact, the first mechanism is less important for small signal
levels (e.g., noise).

18.2. RF building blocks

RF systems are typically built from a limited number of different building blocks: oscil-
lators, mixers, amplifiers/filters, dividers and power amplifiers. When building or dis-
cussing special RF circuit simulation functionality it is important to first determine the
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characteristics of each building block and the information which should be obtained
during simulation:

• Oscillators are autonomous circuits which serve as a frequency reference signal
often of very high accuracy. Therefore the frequency itself must be determined
accurately but it is also important to be able to determine the frequency behaviour
over time, i.e., the phase noise. Physically the phase noise is caused by the device
noise of the oscillator’s components.

• Mixers perform a frequency shift on the input spectrum. Because of unwanted non-
linearities the input signal will not only be shifted but also distorted. Furthermore,
the mixer will add noise to the signal, again generated by the devices in the circuit.

• Amplifiers and filters also suffer from unwanted nonlinearities and add noise to the
signal.

• Dividers are used to modify a frequency reference signal for example coming from
an oscillator. They are strongly nonlinear and they add phase noise to the signal.

• Power amplifiers are much like small signal amplifiers. However, depending on
the modulation type and efficiency requirements they may be strongly nonlinear.
Assessing the nonlinearity, especially in the frequency domain is important.

18.3. Requirements for simulating RF circuits

As mentioned earlier, noise is of major importance in RF circuit design. Depending on
the required accuracy and application area the noise can be seen as a small, independent
signal in the circuit. Much more often, however, the small noise signals interact with
the large signals in the circuit resulting in frequency shifts of the noise spectra (noise
folding). In a few cases the noise can not even be considered as a small signal but
interacts with the other (noise) signals in a nonlinear manner. The RF designer must be
able to simulate all these different views on noise but the second one is considered the
most important.

Nonlinearity (harmonic distortion and intermodulation distortion) is mainly a mea-
sure for the behaviour of a circuit under unwanted strong disturbances which enter the
system.

RF designers must be able to extract this information by simulating a design with
reasonable turn-around times. This has to do with the actual computing time required
for a simulation job but also addresses the robustness of the software. Equally important,
however, is that the results are accurate and hence reliable.

19. The basic two-step approach

From the above it is clear that conventional SPICE-like simulators are not sufficient:
transient simulation of RF circuits suffers from excessive CPU times because they have
to deal with the absolute bandwidth of the signals and will therefore only be used when
no alternatives are available (e.g., full nonlinear noise simulation including time domain
transient noise sources). AC analysis can easily deal with the high bandwidths but does
neither take into account nonlinearities nor frequency shifts.
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The newly developed RF simulation methods all somehow exploit the ‘sparsity’ of
the signal spectra. The basic method is that of determining the periodic steady-state
(PSS) solution of a circuit. Conceptually this can be seen as a generalisation of the
well-known DC operating point: for baseband circuits the spectral content around 0 Hz
(the DC point) is important. For RF circuits the (narrow) spectral content around spe-
cific frequencies (of the PSS solution) is of interest. This PSS solution can be obtained
in the frequency domain (f.i. by applying the harmonic balance method) or in the time
domain (by methods, like shooting, based on transient simulation methods). With base-
band simulation, after determining the DC point, additional simulations like AC, noise,
etc. can be done to obtain more information about the circuit. Similarly, based on the
PSS solution several other simulations can be done like periodic AC, periodic noise,
etc. In view of the RF circuit and signal characteristics, the PSS solution determines the
nonlinear behaviour of the circuit while the periodic AC, etc. deals with the frequency
shift.

The main difference between the time domain and frequency domain methods to ob-
tain the PSS solution is that the former can easily deal with strongly nonlinear circuits
and discontinuities and have good convergence properties while the latter deal naturally
with components characterised in the frequency domain. Over the years combinations
of both basic methods were developed resulting in mixed time-frequency domain ap-
proaches each with their own advantages and drawbacks.

A two-step approachappears to be powerful as well as practical for simulatingRF
mixing noise:

• Determine thenoiseless Periodic Steady-State(PSS) solutionas large-signal so-
lution. This can be done in the time domain, the frequency domain or by using
mixed time-frequency methods. The time-domain representation is a time-varying
solution.

Of course, a noiseless PSS-analysis (with or without determining the oscillation
frequency), has value on its own for RF simulations.

• Apply a linearisation around the PSS-solution and study noise as asmall signal
perturbation. The noise sources may have frequencies that are different from the
PSS-solution.

For simulatingRF phase noise, or timing jitter (i.e., shifts in zero crossings of the so-
lution) in the case of free oscillators, to apply as second step a linearisation around the
PSS-solution and study noise as small signal perturbation is of limited use (DEMIR,
MEHROTRA and ROYCHOWDHURY [2000]). In fact, the results are only usefull for
smallt , because the resulting perturbations may grow large with time. But it allows that
the noise sources may have frequencies that are different from the PSS-solution.

The nonlinear perturbation analysis, proposed in DEMIR, MEHROTRA and ROY-
CHOWDHURY [2000], is an alternative to the second step. Also in this approach, the
first step is necessary. The nonlinear perturbation analysis results in a correct phase
deviation. For the orbital deviation, again a linearisation around the PSS-solution (but
including phase deviation) can be used. This implies that periodicity of the coefficients
of the linear time varying differential equation can not be assumed. It also implies that,
in general, the phase deviation is a time varying function.
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After defining the PSS problem mathematically, we describe in the next two sections
some methods for these phases in some more detail.

20. The PSS problem

For the charge/flux oriented network equations (10.1) in compact form, the Periodic
Steady-State (PSS) problem for one overall periodT > 0 is defined as:

(20.1)
d

dt
q(t, x)+ j (t, x)= 0∈ R

N,

(20.2)x(0)− x(T )= 0

with q(t) := A · g(x) denoting charges assembled at the respective nodes and fluxes,
andj (t, x) := f (x, t) including the static part and sources as well. This implies that
for all t ∈ R, x(t)= x(t + T ). A functionx :R → R

n is called aPeriodic Steady-State
Solutionif there is aT > 0 such thatx satisfies (20.1)–(20.2). Note that according to this
definition, a stationary solution (called the DC, direct current, solution), i.e., a solution
of the formx(t)≡ x0, is also a PSS solution.

To define precisely the PSS problem, we have to introduce the concept oflimit cycles
and to definestability for PSS solutions and limit cycles.

The limit cycleC(x) of a PSS solutionx is the range of the functionx(t),
i.e.,

(20.3)C(x)= {
x(t) | t ∈ R

}
.

A setC is called a limit cycle of (20.1) if there is a PSS solutionx of (20.1)
so thatC = C(x).
A PSS solutionx is calledstable(some authors prefer the termstrongly
stable) if there is aδ > 0 such that for every solutionx∗ to (20.1) which has
the property that

(20.4)∃τ1>0
∥∥x∗(0)− x(τ1)

∥∥< δ,
there exists aτ2> 0 such that

(20.5)lim
t→∞

∥∥x∗(t)− x(t + τ2)
∥∥= 0.

A limit cycle is called stable when all of its periodic steady-states are stable.

Periodic steady-states solutions that are not stable are not interesting for the IC designer,
since they do not correspond to any physical behaviour of the modelled circuit. In fact,
we want to actively avoid nonstable periodic steady-states solutions for this reason.

An exception to the above might be the DC solution, which is the most well-known
unstable solution. Also numerically the DC solution is of interest because it provides
a way to find (approximate, initial) solutions for finding stable solutions, by perturbing
the DC solution.

For forced, or driven, (i.e., nonautonomous) problems all explicity time-dependent
coefficients and sources are periodic with a common (known) periodT . When dealing
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with autonomous circuits (also called free-running oscillator circuits) the functionsq

andj do not explicitly depend on time andj does not involve time-dependent external
sources

(20.6)
d

dt
q(x)+ j (x)= 0∈ R

N,

(20.7)x(0)− x(T )= 0.

Despite this, a time-varying periodic steady-state solution may exist for some particular
value ofT . When this solution is nontrivial, i.e., different from the DC-solution, we will
call this solution the oscillation solution andωosc andfosc, given byωosc= 2πfosc=
2π
T

, the angular and ‘normal’ oscillation frequency, respectively. In the autonomous
case, solution and oscillation frequency have to be determined both. Mathematically,
the problem is a nonlinear eigenproblem.

In the autonomous case, it is clear that whenx(t) is a solution of (20.6)–(20.7), an-
other solution can simply be constructed by making a time-shift:x̃(t) = x(t − t0). To
make the problem unique, in practice one gauges the solution by requiring that

(20.8)e.i x(t0)= c

(for some coordinatei and constantc) [clearly c should be determined in the range of
x, but not equal to a DC-value], or by imposing a condition on the time-derivative9

(20.9)e.i x′(t0)= c.

Now the system (20.6), (20.7) and (20.8), respectively, (20.9) defines a nonlinear prob-
lem with a “unique” solution for the unknownsx,T : i.e., small time shifts are excluded.

Rescaling the time by writingt = sT , with s ∈ [0,1], we have

d

dt
q
(
x(t)

)+ j
(
x(t)

)= 1

T

d

ds
q
(
x(sT )

)+ j
(
x(sT )

)
(20.10)= 1

T

d

ds
q
(
x̂(s)

)+ j
(
x̂(s)

)
wherex̂(s)= x(sT ). Note thatx̂(1)= x(T ). Hence, the problem (20.6)–(20.7) can also
be studied on the unit interval for the functionx̂(s) after scaling thes-derivative by a
factor 1/T .

In fact,T can be nicely added to the system as well

(20.11)
1

T

d

ds
q
(
x̂(s)

)+ j
(
x̂(s)

)= 0,

(20.12)
d

ds
T = 0,

(20.13)x̂(0)= x̂(1),

(20.14)e.i x̂(0)= c.

(Clearly,T automatically fulfills the periodicity condition.)

9In the following, the prime′ will denote differentiation w.r.t. time.
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21. Perturbation analysis

Before describing algorithms for solving a PSS-problem, in this section we will consider
the problem for a subsequent perturbation analysis. The PSS-solution of (20.1) will be
denoted byxPSS. It will also be called the noiseless time-varying large signal solution.
Now we perturb the left-hand side of (20.1) by adding some small (noise) functionn

(21.1)
d

dt
q(x)+ j (t, x)+ n(t)= 0∈ R

N,

which results in a solution

(21.2)x(t)= xPSS
(
t + α(t)

)+ xn(t),

in which the phase-shift functionα(t) still has to be prescribed andxn(t) is small.

21.1. Linear perturbation analysis for forced systems

Linearising (21.1) aroundxPSS(i.e., considering the caseα(t)= 0), results in a Linear
Time Varying (LTV) differential equation forxn

(21.3)
d

dt

(
C(t)xn

)+G(t)xn + n(t)= 0∈ R
N,

(21.4)C(t)= ∂q(x)

∂x

∣∣∣∣
xPSS

, G(t)= ∂j (t, x)

∂x

∣∣∣∣
xPSS

.

In practical applications, a basic noise term has the form

(21.5)n(t)= B(t)b(t),

(21.6)B(t)= B
(
xPSS(t)

)
that consists of a normalized perturbation functionb(t), which is modulated by the
periodical functionB(t) = B(xPSS(t)). Hereb(t) may be defined most conveniently
in the frequency domain, while theB(xPSS(t)) is defined by expressions in the time
domain.

The validity of this approach has been discussed by DEMIR, MEHROTRA and ROY-
CHOWDHURY [2000]. For forced systems the perturbed solutionx(t) can be approxi-
mated by (21.2) withα being identically zero andxn the solution of (21.3). However,
when dealing with free oscillators a nontrivial choice for the phase-shift functionα(t)

has to be made too.
We note that the coefficients in (21.3) are periodic int with periodT . Thus, they can

be expanded in exponentialseiωkt , in whichωk = 2πk/T . It is instructive to consider
the case for a simple sine-wave source, i.e., when

(21.7)n(t)=Ueiνt ,

in which U does not depend on time, andν = 2πfn, wherefn may be interpreted as
a noise frequency, that may be different from theωk . Introducingyn(t) ≡ e−iνt xn(t)
results in a linear DAE of which source term and (complex) coefficients (that depend
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on the parameterν) are periodical with periodT

(21.8)
d

dt

(
C(t)yn

)+ [
G(t)+ iνC(t)

]
yn +U = 0∈ R

N.

WhenxPSS(t)≡ xDC, and[G(t)+ iνC(t)] is regular (and time-independent), the solu-
tion yn is time-independent and simply equals the well-known AC-solution. For the
general case, we find thatyn and xn have expansions of the form (see also OKU-
MURA, TANIMOTO, ITAKURA and SUGAWARA [1993], TELICHEVESKY, KUNDERT

and WHITE [1995])

(21.9)yn(t)=
∞∑

k=−∞
y
(ν)
n,ke

iωkt ,

(21.10)xn(t)=
∞∑

k=−∞
y
(ν)
n,ke

i(ν+ωk)t .

Because of the periodic coefficients in (21.3) and (21.8), the determination of they
(ν)
n,k

is called Periodic AC (PAC) analysis. The expansion ofxn(t) implies that

(21.11)xn(t + T )= β(ν)xn(t), or

(21.12)xn(0)= β(−ν)xn(T ), where

(21.13)β(ν)= eiνT .

It is clear that, for a single input frequencyν, the solutionxn(t) contains frequencies
of the form(ν + ωk), i.e., frequency folding occurs. If we allow for several input fre-
quenciesνi , we can also say that a certain output frequency might originate from a large
number of possible input frequencies. Hence, noise components at a certain frequency
might end up in a different frequency band. This is why, for example, 1/f noise which
has its main energy at low frequencies, still plays an important role in RF circuits.

It is important to note that we described alinear perturbation analysis and we will
not find contributions with frequencies, like(ν1 + ν2 + ωk), (ν1 + 2ν2 + ωk) etc. This
assumption is in general not a severe limitation when simulating noise in RF circuits.

In OKUMURA , TANIMOTO, ITAKURA and SUGAWARA [1993], TELICHEVESKY,
KUNDERT and WHITE [1995] one considers the integration of (21.3) in which case
the factorβ easily allows adaptive re-usage of linear algebra used for solving the PSS-
problem (see also BOMHOF and VAN DER VORST[2001], BOMHOF [2001]). However,
the integration of (21.8) also gives rise to elegant algorithms.

21.2. Floquet theory

When dealing with perturbedoscillatorysystems

(21.14)
d

dt
q(x)+ j (x)+ n(t)= 0∈ R

N

it is no longer possible to assume that small perturbationsn(t) lead to small deviations
in xPSS(t) (an instructive example is provided by consideringy′(t)+cos(t)y(t)−1= 0,
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of which the inhomogeneous solution is not periodic at all; however, note thaty(t+2π)
still satisfies the differential equation). The main reason is that theperiod of the large
signal solution is influenced byn(t). This can lead to large (momentary) frequency
deviations such that the difference between the noiseless and noisy solution can no
longer be considered to be small.

This section gives the necessary background of Floquet Theory when applied to oscil-
latory problems and which provides a way to a proper perturbation approach (DEMIR,
MEHROTRA and ROYCHOWDHURY [2000], DEMIR [1998], LAMOUR, MÄRZ and
WINKLER [1998a], LAMOUR [1998]). We start by noting thatx′

PSS(t) satisfies the ho-
mogeneous part of (21.3)

(21.15)
d

dt

(
C(t)x

)+G(t)x = 0.

We assume the case of index 1 DAEs. At the end of the section the higher index case is
considered.

Independent solutions.Let,

(21.16)S(t)=
{
z ∈ R

N
∣∣∣(G(t)+ d

dt
C(t)

)
z ∈ Im

(
C(t)

)}
,

(21.17)N(t)= Ker
(
C(t)

)
.

Then one has

(21.18)S(t)∩ N(t)= 0,

(21.19)S(t)⊕ N(t)= R
N,

in the index-1 case. We assume thatS(t) is m-dimensional. There areN independent
solutions of the homogeneous problem:u1(t)e

µ1t , . . . , um(t)e
µmt , um+1(t), . . . , uN(t).

The firstu1(t), . . . , um(t) are a basis ofS(t); the last,um+1(t), . . . , uN(t), are a basis of
N(t). Theµ1, . . . ,µm are so-called Floquet exponents; theeµ1T , . . . , eµmT are Floquet
multipliers. For a stable autonomous index 1 problem we can assume thatµ1 = 0 and
that Re(µi) < 0 for i = 2, . . . ,m. In this case we can chooseu1(t)= x′

PSS(t).

Adjoint problem. The homogeneous adjoint (or dual) system corresponding to (21.3)
is

(21.20)C.(t) d

dt
y −G.(t)y = 0.

Similar to the not-adjoint case we introduce

(21.21)S.(t)= {
z ∈ R

n |G.(t)z ∈ Im
(
C.(t)

)}
,

(21.22)N.(t)= Ker
(
C.(t)

)
,

which have the properties

(21.23)S.(t)∩ N.(t)= 0,

(21.24)S.(t)⊕ N.(t)= R
N.
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Also S. is m-dimensional. The adjoint problem hasN independent solutions:
v1(t)e

−µ1t , . . . , vm(t)e
−µmt , vm+1(t), . . . , vN(t), wherev1(t), . . . , vm(t) are a basis of

S.(t) and the last,vm+1(t), . . . , vN(t), are a basis ofN.(t).

Bi-orthogonality. It is easy to verify that ifx and y are solutions of (21.15) and
(21.20), respectively, the inner-productsy.(t)C(t)x(t) are constant, thusy.(t)C(t)x(t)
= y.(0)C(0)x(0), for all t � 0. More specifically, the basesu1(t), . . . , uN(t) and
v1(t), . . . , vN(t) can be chosen such that, theN × N matrix U(t) with as columns
theui(t) and theN × N matrix v(t) with as rows thevi(t) satisfy a bi-orthogonality
relation w.r.t.C(t) and a nearly one w.r.t.G(t)

(21.25)v(t)C(t)U(t)=
(
Im 0
0 0

)
,

(21.26)v(t)G(t)U(t)=
(
J 1
m 0
J 2
m J 3

m

)
.

HereIm is am×m identity matrix.J 1
m is am×m block matrix.J 2

m andJ 3
m are just

suitable block matrices.

State-transition matrix, monodromy matrix.Assuming a consistent initial condition
x(0)= x0 ∈ S(0), the solutionxH (t) of (21.15) can be written as

(21.27)xH (t)=
m∑
i=1

ui(t)exp(µit)v
.
i C(0)x0,

(21.28)=Φ(t,0)x0,

(21.29)Φ(t, s)=Θ(t, s)C(s),

(21.30)Θ(t, s)=U(t)D(t − s)v(s),

(21.31)D(t − s)= diag
(
exp

(
µ1(t − s)

)
, . . . ,exp

(
µm(t − s)

)
,0, . . . ,0

)
.

If x0 is not a consistent initial value, one can writex0 = x
(S)
0 + x

(N)
0 , wherex(S)0 ∈ S(0)

andx(N)0 ∈ N(0). ClearlyC(0)x0 = C(0)x(S)0 , andxH (t) depends onx(S)0 , rather then
on x0. For calculating consistent initial values we refer to BRACHTENDORF, WELSCH

and LAUR [1995].
An inhomogeneous solution of (21.3) can be written as

xP (t)= xH (t)+
m∑
i=1

ui(t)

∫ t

0
exp

(
µi(t − s)

)
v.
i (s)B(s)b(s)ds

(21.32)+ Γ (t)B(t)b(t),

(21.33)= xH (t)+
∫ t

0
Θ(t, s)B(s)b(s)ds + Γ (t)B(t)b(t).

HereΓ (t) is a matrix with Ker(Γ (t))= span(C(t)u1(t), . . . ,C(t)um(t)).
The monodromy matrix is the matrixΦ(t,0) after one period, i.e.,Φ(T ,0) (this

matrix one naturally studies when one considers shooting methods or applies Floquet



SECTION 21 Periodic Steady-State Problems 627

theory for analyzing stability of a limit cycle). Because of the periodicity of theui , we
see that theui(0), for i = 1, . . . ,m are eigenvectors of the monodromy matrix with cor-
responding eigenvalues exp(µiT ), and that the remainingui(0), for i =m+ 1, . . . ,N ,
are eigenvectors for the(N − (m− 1))-fold eigenvalue 0.

The adjoint problem (21.20) has the state-transition matrix

(21.34)Ψ (t, s)= v.(t)D(s − t)U.(s)C.(s),

(21.35)=
m∑
i=1

exp
(−µi(t − s)

)
vi(t)u

.
i (s)C

.(s).

Similar to the not-adjoint case, thevi(0) are eigenvectors of the associated monodromy
matrixΨ (T ,0).

The higher index case.The index-2 case is discussed in LAMOUR, MÄRZ and WIN-
KLER [1998b] for quasilinear problems, which is sufficient here. It turns out that not
only the algebraic but also the hidden constraints (see the discussion in Section 10)
have to be observed when setting up the state transition and monodromy matrix. Espe-
cially they have to start from consistent initial values. The latter can either be computed
with the methods sketched in Section 10, or columnwise as eigenvectors of a generalized
eigenvalue problem. Of course the Floquet multipliers are only those of the independent
part of the monodromy matrix. The stability criterion is again that all Floquet multipli-
ers have magnitude< 1, except that one which has magnitude 1 in case of autonomous
oscillation.

REMARK. Sometimes the monodromy matrix in the higher index case is defined to
comprise only the linear independent parts ofΦ(T ,0) i.e., the basis vectors ofS(t)
SELTING and ZHENG [1997]. This delivers the same information as before, but may
save some memory space and computational effort for its calculation.

21.3. Phase noise by nonlinear perturbation analysis

Phase-shift functionα(t). We will take u1(t) = x′
PSS(t). Let α(t) be a (sufficiently

smooth) phase- or time-shift function and lets = t +α(t) be the shifted time. IfxPSS(t)

is the PSS-solution of (20.6) then the phase-shifted functiony(t)≡ xPSS(s)= xPSS(t +
α(t)) satisfies

d

dt
q(y)+ j (y)= d

ds
q
(
xPSS(s)

) · ds

dt
+ j

(
xPSS(s)

)
= d

dxPSS
q
(
xPSS(s)

)dxPSS

ds
α′(t)

(21.36)=C
(
t + α(t)

)
u1
(
t + α(t)

)
α′(t).

Hence, the phase shifted functiony satisfies a perturbed DAE in which the right-hand
side has a particular form. Hereu1 is the tangent to the orbit.



628 M. Günther et al. CHAPTER V

We now consider perturbations of the formB(x(t))b(t) (cf. also (21.3)) to the original
DAE (20.6)

(21.37)
d

dt
q(x)+ j (x)+B

(
x(t)

)
b(t)= 0

and expressB(x(t + α(t)))b(t) into its components using the basis{C(t + α(t))u1(t +
α(t)), . . . ,C(t+α(t))um(t+α(t)),G(t+α(t))um+1(t+α(t)), . . . ,G(t+α(t))uN(t+
α(t))}

(21.38)

B
(
x
(
t + α(t)

))
b(t)=

m∑
i=1

ci
(
x,α(t), t

)
C
(
t + α(t)

)
ui
(
t + α(t)

)
+

N∑
i=m+1

ci
(
x,α(t), t

)
G
(
t + α(t)

)
ui
(
t + α(t)

)
,

(21.39)ci
(
x,α(t), t

)= ṽi
(
t + α(t)

)
b(t),

(21.40)ṽi (t)= v.
i (t)B

(
x(t)

)
.

Here the scalar functions̃vi(t) are periodical int with periodT .
The first component ofB(x(t + α(t)))b(t) will be used to determineα(t). We define

α(t) to satisfy the nonlinear, scalar, differential equation

(21.41)α′(t)= −v.
1

(
t + α(t)

)
B
(
xPSS

(
t + α(t)

))
b(t), α(0)= 0

(21.42)= −ṽ1
(
t + α(t)

)
b(t), α(0)= 0.

(See also already KÄRTNER [1989, 1990] where a first start was made to treat the phase
noise problem in the time-domain.) In DEMIR, MEHROTRA and ROYCHOWDHURY

[2000], DEMIR [1998] it is argued that, in first order, (21.37) has a solution of the form
y(t)+ z(t), with α determined by (21.42), and where the orbital deviationz(t) satisfies
‖z‖∞ < Const.‖b‖∞ (and evenz(t)→ 0 (t → ∞)). However, the phase shift function
α(t) may increase with time (clearly, ifN = 1, B ≡ 1, b(t) ≡ ε, andv.

1 (t) ≡ κ , then
α(t)= κεt ).

Determination ofv1. Note that for findingα, we clearly have to knowv1. In DEMIR,
LONG and ROYCHOWDHURY [2000] this crucial vector is calledPerturbation Projec-
tion Vector, or PPV. It represents a transfer between the perturbation of the DAE and
the resulting phase shift.

In DEMIR, MEHROTRAand ROYCHOWDHURY [2000]v1 is determined by perform-
ing first an eigenvalue/eigenvector analysis of the monodromy matrix of the adjoint
problem to obtainv1(0), and followed by time integration (backward in time). For dis-
tincting the proper initial valuev1(0) from other eigenvectors that have eigenvalues
close to 0, one can exploit the bi-orthogonality relation (21.25), becausev1(0) must
have a nontrivialC-inner-product withu1(0).

Another, direct, approach is found in DEMIR, LONG and ROYCHOWDHURY

[2000]. It nicely fits a Finite Difference Method approach and again exploits the bi-
orthogonality relation (21.25) in an elegant way.
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Phase noise analysis.For deterministic perturbations one has to integrate (21.42). Be-
cause of this action in the time domain, all Fourier components ofn(t) are treated in a
combined way.

However, for stochastic noise, such a detail is not necessary. In DEMIR, MEHRO-
TRA and ROYCHOWDHURY [2000], DEMIR [1998] expressions for the power due to
the noise are derived that depend on the asymptotic behaviour (i.e., for larget) of the
variance var[α(t)]. The authors derive power spectrum expressions that depend on the
Fourier components of the PSS-solutionxPSS, on the DC-component ofv1(t), and on
the power spectrum ofb. The power of thej th harmonic ofxPSS is preserved in the
power of the ‘asymptotic’j th harmonic ofy (i.e., the shiftedxPSS). Consequently, by
summing overj , we see that also the total power is preserved.

Orbital deviation. In fact, the orbital deviation functionz can be analysed by a proper
linear perturbation analysis (but with linearised equations which now have nonperiodic
coefficients!). Becausen also affects the phase shifted function, around which one lin-
earises for studying the orbital deviations, there is no simple summation formula known
for cumulative noise contributions.

Other approaches. Finally, we briefly mention some alternative approaches for deter-
mining phase noise. In DE SMEDT and GIELEN [1997] a technique based on careful
sampling is described to find phase noise effects due to specific noise sources. In DE

SMEDT and GIELEN [1997] phase noise is considered from a parameter dependency
point of view and an averaging technique is described that works well on (but is also re-
stricted to) finite time intervals and is of interest in behavioural modeling. In HAJIMIRI

and LEE [1998] a less accurate, but faster phase noise model is described that neglects
the occurrence ofα at the right-hand side in (21.42).

22. Algorithms for the PSS problem

In this section we describe some algorithms for solving PSS problems (i.e., for solving
the noiseless, time varying, large signal). A general overview of numerical methods for
highly oscillating problems can be found in PETZOLD, JAY and YEN [1997].

As time integrator we restrict ourselves to aθ -method(0 � θ � 1): for the explicit
ODE systemẏ(t)= f (x(t), t), one step to compute the approximateyn+1 at time point
tn + h from the previous approximateyn at tn reads

yn+1 − yn

h
= θf (yn+1, tn + h)+ (1− θ)f (yn, tn).

This class of methods includes the explicit Euler-forward method(θ = 0), the Trape-
zoidal Rule(θ = 0.5) and the implicit Euler-backward scheme(θ = 1). For other meth-
ods, f.i. BDF-like ones, see WELSCH [1998], WELSCH, BRACHTENDORF, SABEL-
HAUS and LAUR [2001].
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22.1. Direct time integration methods

Ordinary time integration usually starts from the DC solution. For forced (nonau-
tonomous) problems the time integration usually is very slow, because the step-size
will be determined by the highest oscillating component of the solution. For these prob-
lems, the Finite Difference Method (FDM), the Shooting Method (SM), the Harmonic
Balance (HB), or the Envelope approach provide much more efficient alternatives. How-
ever, in analysing autonomous, free oscillating, problems, time integration also shows a
nice property in securing to find stable limit cycles. For this reason, in this subsection,
we will concentrate on finding a free oscillating solution, by exploiting time integration.
With extrapolation techniques one can speed up convergence. In the past this approach
has been applied by SKELBOE [1982] (even already for circuit problems) and PETZOLD

[1981]. In SMITH , FORD and SIDI [1987] extrapolation techniques were generalized to
sequences of vectors and has resulted in methods like Minimal Polynomial Extrapola-
tion (MPE) and Reduced Rank Extrapolation (RRE). It is worth noting that all these
methods can be implemented very elegantly within existing circuit simulators.

The basic Poincaré method.The basic method for solving (20.6)–(20.7) is called the
Poincaré-map method. First we note that the length of the period can be estimated by
looking for periodic recurring features in the computed circuit behaviour. A possible
recurring feature is the point at which a specific condition is satisfied. This is equiv-
alent to carrying out a Poincaré-map iteration, see HAIRER, NØRSETTand WANNER

[1987], Section I.16. The idea is to cut the transient solutionx(t) by a hyperplane. The
hyperplane is defined by an affine equation of the formx.(t)n = α, for some vector
n and scalarα. This equation is called theswitch equation. The situation is visualised
in Fig. 22.1. The basic Poincaré-map method can now be described as follows. Let an
approximate solutionx0 and a required accuracy toleranceε > 0 be given. The approx-
imated solutioñx and period̃T is computed by:

i := 0, t0 := 0, x0 := some initial guess forx

FIG. 22.1. The trajectory of a solution, cut with a hyperplane.
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repeat
Starting witht = ti , x(ti)= xi , integrate (19.6) until(x(t), n)= α and
d(x(t), n)/dt > 0.
xi+1 := x(t), ti+1 := t

δ := ‖xi+1 − xi‖
i := i + 1

until δ � ε

T̃ := ti − ti−1, x̃ := xi

The MPE accelerated Poincaré-map method.Let x(t) be the solution of (20.6) with
x(0) = x0, andT0 is the smallestt > 0 such that(x(t), n) = α and d(x(t), n)/dt > 0.
ThusT0 depends onx0 as well.

Now we can define a functionF :Rn → Rn by

(22.1)F(x0) := x(T0).

The successive approximations of the Poincaré-map method satisfy the recursion rela-
tion

(22.2)xn+1 = F(xn).

This recursion is only in terms of the circuit statex; the periodT does not appear ex-
plicitly in this iteration. Suppose that the sequence (22.2) converges linearly to some
fixed pointx̃ of F . A vector-extrapolation method to accelerate the basic method oper-
ates on the firstk vectors of a sequence{xn}, and produces an approximationy to the
limit of {xn}. This approximation is then used to restart (22.2) withy0 = y and the basic
method generates a new sequencey0, y1, y2, . . . . Again, the acceleration method can
be applied to this new sequence, resulting in a new approximationz of the limit. The
sequencex0, y, z, . . . converges much faster to the limit of{xn} than the sequence{xn}
itself. Typically, if {xn} converges linearly, then{x0, y, z, . . .} converges super-linearly.

A well-known acceleration method is minimal polynomial extrapolation (MPE).
Rather than describing MPE here in detail, the reader is referred to SMITH , FORD

and SIDI [1987]. For results with this approach we refer to HOUBEN and MAUBACH

[2000, 2001], HOUBEN, TER MATEN, MAUBACH and PETERS[2001].

22.2. Finite difference method

The Finite Difference Method (FDM) solves the problem on a fixed time grid. Given is
a numberM , a series ofM stepsizes{�ti}, implying a set of intermediate time-levels
{ti} (0 � i �M − 1), where eachti is the end point of the interval with length{�ti}.
(See Fig. 22.2.) We assume that allti are contained in an interval of lengthT , that starts

FIG. 22.2. Discretization of interval of lengthT , starting atA.
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atA= kT (for somek � 0). Thus

(22.3)t0 =A+�t0, A= kT ,

(22.4)tM−1 =A+ T ,

(22.5)ti =A+
i∑

k=0

�tk, i = 1, . . . ,M − 1,

(22.6)�k =�tk = tk − tk−1, k = 1, . . . ,M − 1,

(22.7)�0 =�t0 = t0 − (tM−1 − T ).

Note that in generalM will be available just at the start of the PSS-analysis. The peri-
odicity is reflected in the definition of�0.

We will write �i = �si T , for �si ∈ [0,1]. Then
∑M−1

k=0 �sk = 1. Clearly, withti =
siT , solutionsx̂(s) of the rescaled problem satisfyx̂(si)= x(ti). Thus we will drop the
ˆ and simply include the factor 1/T in the expressions when needed.

In the Finite Difference Method,M and the{�si } will remain fixed during a complete
(PSS-) Newton iteration.

For the next subsections we define

(22.8)C(x) := ∂q(x)/∂x, G(t, x) := ∂j (t, x)/∂x

and we will write

(22.9)Ci = C
(
x(ti)

)
, C

(m)
i = C

(
x(m)(ti)

)
,

(22.10)Gi =G
(
ti , x(ti)

)
, G

(m)
i =G

(
ti , x

(m)(ti)
)
.

22.2.1. The basic FD-method
The resulting discrete system of equations can be written as

(22.11)FD(x,T )= 0,

(22.12)p.x − c= 0,

whereFD :RMN ×R→ R
MN is given by

FD0(x, T )= q(x(t0))− q(x(tM−1))

�0
+ [
θj
(
x(t0)

)+ (1− θ)j
(
x(tM−1)

)]
,

= 1

T

q(x(t0))− q(x(tM−1))

�s0

(22.13)+ [
θj
(
x(t0)

)+ (1− θ)j
(
x(tM−1)

)]
,

FDi(x, T )= q(x(ti))− q(x(ti−1))

�i
+ [
θj
(
x(ti)

)+ (1− θ)j
(
x(ti−1)

)]
,

= 1

T

q(x(ti))− q(x(ti−1))

�si

(22.14)+ [
θj
(
x(ti)

)+ (1− θ)j
(
x(ti−1)

)]
, 1� i �M − 1.
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In (22.12),p ∈ R
MN is some given vector, usually a unit vector, in which case (22.12)

only affects one time level. This last equation will only be imposed when dealing with
free oscillators.

The above also offers the option to consider the frequency,f = 1/T , as natural un-
known, rather thanT . In that case

(22.15)FD(x,f )= 0,

(22.16)p.x − c= 0,

whereFD :RMN → RMN is given by

FD0(x, f )= f
q(x(t0))− q(x(tM−1))

�s0

(22.17)+ [
θj
(
x(t0)

)+ (1− θ)j
(
x(tM−1)

)]
,

FDi(x, f )= f
q(x(ti))− q(x(ti−1))

�si

(22.18)+ [
θj
(
x(ti)

)+ (1− θ)j
(
x(ti−1)

)]
, 1� i �M − 1.

In the RF-case, one hasf � 1 and thus 1
T 2 � 1. Hence, thef -variant behaves better

scaled and we will restrict ourselve to that formulation.
Applying Newton–Raphson yields

(22.19)

(
Y (k) F (k)

p. 0

)(
xk+1 − xk

f k+1 − f k

)
= −

(
FD(xk, f k)

p.xk − c

)
in which

(22.20)F (k) = ∂

∂f
FD

(
xk, f k

)
,

(22.21)Y (k) = ∂

∂x
FD

(
xk, f k

)= L+B.

HereL andB are given by

L=



C
(k)
0
�t0

+ θG
(k)
0

−C
(k)
0
�t1

+ (1− θ)G
(k)
0

C
(k)
1
�t1

+ θG
(k)
1

. . .
. . .

− C
(k)
M−2

�tM−1
+ (1− θ)G

(k)
M−2

C
(k)
M−1

�tM−1
+ θG

(k)
M−1

 ,

(22.22)B =


0 . . . 0 −C

(k)
M−1
�t0

+ (1− θ)G
(k)
M−1

0 0
. . .

. . .

0 0

 .
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For the fixed period problem, i.e., the nonautonomous case, we just drop the row forp.
and the column forF and come to

(22.23)Y (k)
(
xk+1 − xk

)= −FD(xk).
Some simple remarks apply:

• C ≡ 0 andθ = 1: ThenB = 0 andL is a block-diagonal matrix. The subsystems
for each time level are decoupled and the solutions are the solutions obtained at an
ordinary time integration, where the time dependent sources are evaluated at the
proper time level. It is clear that whenC ≡ 0, no oscillation can occur.

• In ordinary transient analysis the DAE character implies the necessary requirement
θ �= 0. However, for the PSS-problem with the Finite Difference Method,θ = 0 is
a valid choice (because it is quite similar toθ = 1, but viewed from the opposite
time direction). For example: chooseM = 2,�i = T/2,Ci =�iC,Gi =G, then
the matrixL+B looks like

(22.24)L+B =
[

C −C +G

−C +G C

]
.

For commutingC,G (for instanceC = diag(1,0),G= diag(1,1)), the matrixL+
B has (nonzero) eigenvaluesλC + iλ−C+G.

• However, the DAE nature forbids to chooseθ = 0.5, because it makes the lin-
ear system singular! For seeing this, assumeCi ≡ C, Gi ≡ G (constant), and
an equidistant discretization with stepsize� (and withM odd). DefineC′ = C

�
,

G′ = 0.5G. Then

(22.25)L=


C′ +G′

−C′ +G′ C′ +G′
. . .

. . .

−C′ +G′ C′ +G′

 ,

(22.26)B =


0 . . . 0 −C′ +G′
0 0

. . .
. . .

0 0

 .
WhenC′ is singular there is a nontrivial vectorv such thatC′v = 0. Then also the
large system is singular because(L+B)w = 0 for

(22.27)w = (v,−v, v− v, . . . , v,−v)..
The trapezoidal rule looks to the mean of two subsequent function values and for
this reason one can always add a zig-zag solution to such a “mean” value.

Hence in practice one will have to takeθ > 0.5 and the choice is a trade-off
between a better time-integration, but a nearly singular matrix, and more damping
(and less order of time-integration), but with a better conditioned matrix.

We can rewrite the system (22.23) as

(22.28)(L+ βB)x = y,
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in which β = 1. When studying linearizations around a PSS-solution responses to
Fourier source terms give rise to linear systems in whichβ is complex, but satisfies
|β| = 1 (see Section 21).

Block-Gaussian elimination allows to re-use direct solver modules from a circuit sim-
ulator. This way of decomposing the matrix meets a requirement that only memory for a
limited number of full block matrices is used. In this way it is a sparse method. However,
it may not be the most optimal LU-decomposition from the point of view of numerical
stability, because not the most optimal pivots may be used. For several ideas we refer
to ASCHER, MATTHEIJ and RUSSELL[1998] (Chapter 7), and BOMHOF and VAN DER

VORST [2001], BOMHOF [2001] (for parallelizable algorithms).
The (block) lower-triangular matrixL is nonsingular and can be used as precon-

ditioner for the matrix(L + B) when using a Krylov space method (SAAD [1996]).
For this case one needs to be able to determineL−1Bp for some vectorp. For an
iterative Krylov space method, the Krylov space can be extended by re-using the LU-
decompositions ofCi

�t
+Gi at each time-level.

For flat matrix circuit simulators, an efficient parallelizable GMRES-algorithm is de-
scribed in BOMHOF and VAN DER VORST[2001].

22.2.2. FD for oscillator problem
For the oscillator problem, the sub-matrixY in (22.21) is the same that one also en-
counters when applying the Finite-Difference Method to a forced Periodic Steady-State
problem (with a fixed periodT ). From a software design point of view one would like
to re-use software as much as possible. Indeed, when solving (22.19) a Block-Gaussian
elimination procedure that usesY−1 is attractive. Note that the complete Newton-matrix
is nonsingular. In the limit, however, the sub-matrixY in (22.21) becomes singular and
one really needs (22.12) to gauge the complete problem.

In BRACHTENDORF, WELSCH and LAUR [1995], GOURARY, ULYANOV, ZHAROV,
RUSAKOV, GULLAPALLI and MULVANEY [1998], WELSCH [1998] this problem was
solved (in the frequency-domain) by introducing an artificial element in the circuit, a
voltage source, of which the applied voltageEosc had to be determined in such a way
that the current through this source became 0. In that case the artificial element can be
eliminated from the circuit and the solution on the remaining circuit gives the oscillator
solution.

It is clear that such a voltage source can only be applied successfully at specific
locations of the circuit. It is a requirement that for each valueE �=Eosc a unique circuit
solution results. WhenE → Eosc, this unique circuit solution has to converge to the
oscillator solution. In practice the user has to indicate where the oscillation will be
perceived. This is not a drawback, because an IC-designer knows very well to choose a
node where the oscillation occurs (as second node one can always use the ground node).

The approaches in BRACHTENDORF, WELSCH and LAUR [1995], WELSCH [1998]
were considered more closely in BRACHTENDORF, LAMPE and LAUR [2000], LAMPE,
BRACHTENDORF, TER MATEN, ONNEWEERand LAUR [2001]. Here also recommen-
dations for increasing robustness were derived. In HOUBEN [1999], a similar approach
was followed in the time-domain. We will consider these approaches more closely in
the next subsections.
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Artificial voltage source in the time-domain.The additional voltage source will be put
between the nodesa andb. We assume the circuit unknowns to be ordered in such a
way that at each time levelx(t)= (. . . , xa(t), xb(t), i(E)(t))., wherexa(t), xb(t) are
the voltage values at time levelt at the nodesa andb respectively, andi(E)(t) is the
current through the artificial elementE(a,b) (thusi(E) is the(N +1)th unknown). Let
E(a, b)(ti) = εi . Theεi have to be determined in such a way that when the time pro-
file of the voltage difference between the nodesa andb is identical to the time-varying
voltage difference of the oscillator solution, the time profile of the current through the
element is identically 0. In that casex(t) = (. . . , xa(t), xb(t),0)., in which the part
with the firstN coordinates is identical to the oscillator solution at time levelt . Be-
cause the artificial sourceE is added to the circuit,i(E) does not occur as a controlling
electrical variable in the user defined expressions. This implies that on each time levelti

(22.29)Gi =


...

0 1
−1

. . . 1 −1 0

 , Ci =


...

0 0
0

. . . 0 0 0


and

(22.30)
∂j (x(ti), εi)

∂εi
= −1,

∂q(x(ti), εi)

∂εi
= 0.

In addition, the added equation on time levelti is

(22.31)i(E)= 0.

When the complete set of unknowns is written as(x.(t0), . . . , x.(tM−1), f,E
.)., in

whichE = (ε0, . . . , εM−1)
., Newton–Raphson can be formulated as

(22.32)

(
Y (k) F (k) Ẽ
p. 0 0
E 0 0

)(
xk+1 − xk

f k+1 − f k

Ek+1 −Ek

)
= −

(
FD(xk, f k,Ek)
p.xk − c

Exk

)
.

Here

(22.33)F (k) =
((

∂

∂f
FD0 (x

k, f k)

).
, . . . ,

(
∂

∂f
FDM−1(x

k, f k)

).).
,

(22.34)Ẽ =


−θeN+1 0 . . . −(1− θ)eN+1

−(1− θ)eN+1 −θeN+1 0
...

. . .
. . .

...

0 −(1− θ)eN+1 −θeN+1

 ,
(22.35)E = diag

(
e.N+1, . . . , e

.
N+1

)
.

Herex andp have lengthM(N + 1). FurthermoreY is a nonsingularM(N + 1) ×
M(N + 1) matrix that has a structure like in (22.21)–(22.22), but now based on the
matricesGi andCi in (22.29), respectively.F is a vector of lengthM(N + 1), Ẽ is
a rectangular matrix of sizeM(N + 1) × M , andE is a rectangular matrix of size
M ×M(N + 1) (M columns andM row-blocks of lengthN + 1 each). Note that, for
θ = 1, one has̃E = −E..
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Similar to (22.19), the linear system (22.32) can be solved using Block-Gaussian
elimination that exploits the LU-decomposition ofY .

It seems natural to add the artificial voltage source to the same node as used for
the gauge condition (20.8). This might indicate a possible source for conflicting re-
quirements, because the gauge equation in its most simple form is a voltage or current
condition (at a specific time level).

• Let us first consider the situation of a voltage condition. The basic point is that
the (artificial) voltagesεi are part of the Newton process and they will be tuned
automatically such that in the limit they will not violate the gauge equation. More
detailedly, thep. in (22.32) might appear as a rowm in Y . Then the corresponding
entryFm is zero. However, iñE we will find a (minus) one in the same row. This
causes both rows to be independent. The correspondingεm will converge in one
iteration, because of the linear dependency.

• Considering the situation of a current condition for the gauge equation, we remark
that nowp. can not occur as row inY . There is also no conflict with̃E , because
p. addresses real circuit unknowns known by the user, whileE addresses the ad-
ditional (artificial) circuit unknowni(E). Hencep. is also independent from the
rows ofE .

In practice, one will put a resistorR in series with the artificial sourceE: the complete
elementÊ(a, b) will act like a (linear) resistorR(a, a′) (of valueR) andE(a′, b). Be-
cause of the linearity ofR(a, a′), we can easily eliminate the unknownxa

′
(t) from the

system. The effective Kirchhoff Voltage Law at time levelti yields

(22.36)xa − xb −Ri(E)− εi = 0.

The effect is thatGi in (22.29) simply changes into

(22.37)Gi =


...

0 1
−1

. . . 1 −1 −R

 .
The series resistance assures that no artificial voltage-shorts-inductor-loops are gen-
erated in the circuit. Note that the equation fori(E) always has a nonzero diagonal
element as pivot. In practice,R = 1.

Two-step approach. The two-step approach (BRACHTENDORF, WELSCH and LAUR

[1995], GOURARY, ULYANOV, ZHAROV, RUSAKOV, GULLAPALLI and MULVANEY

[1998], WELSCH[1998]) assumes that for given parametersf,Ek , the driven nonlinear
problemFD(x(f,Ek)) = 0 is solved. For updatingf,Ek , Newton–Raphson can be
used (“outer loop”) in which one can exploit the Jacobian-matrix of the inner Newton–
Raphson process for solvingFD(x(f,Ek))= 0

(22.38)

(
p. ∂x

∂f
p. ∂x

∂E

E ∂x
∂f

E ∂x
∂E

)(
f k+1 − f k

Ek+1 −Ek

)
= −

(
p.x − c

Ex

)
in which∂x/∂f and∂x/∂E are obtained by applying an ordinary sensitivity analysis to
the inner, driven, problem. Here the Jacobian-matrixY = ∂FD/∂x of the inner Newton–
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Raphson process is re-used in solving the systems

(22.39)
∂FD

∂f
+ Y

∂x

∂f
= 0,

(22.40)
∂FD

∂E
+ Y

∂x

∂E
= 0.

22.2.3. Normal projection of the Newton correction
In BRAMBILLA , D’A MORE and SANTOMAURO [1995] the idea is recalled to project
the Newton correction for the circuit solution to become perpendicular to the orbit of
the solution in some pointt0. Because the time derivative is the tangential derivative,
this means that

(22.41)�x(t0)⊥ x′(t0).
More generally, we may require that the overall inner product of�x andx′(t) is zero.
This is similar to requiring

(22.42)
∑
i

(
�x(ti), x

′(ti)
)= 0.

In BRAMBILLA , D’A MORE and SANTOMAURO [1995] (22.41) is used to gauge the
free oscillator problem rather than (22.12). Clearly, the algorithm has to find at0 where
x′(t0) �= 0 (which will have to be approximated in practice). Near the limit solution
this gauge excludes (small) time shifts. However, the algorithm does not exclude the
DC-solution.

22.2.4. Initialization
For the driven problem, an initial timeprofile for the Finite Difference Method can be
found by applying ordinary transient integration over several periods and collecting
results at specific timepoints.

For the oscillator problem, the (Accelerated) Poincaré Method can be used to deter-
mine approximations forf and for a circuit solution as well – from these also initial
values for the voltages as well as for the gauging value can be used. Note that FD uses
a gauge value that may be different from the one used as switch value in Poincaré.

Alternatives can be found from pole-zero analysis and determining the eigenvector
solutions of the dominant complex poles.

In Section 22.5, we will describe additional options when using Harmonic Balance.

22.3. Shooting Method

For the Shooting Method (SM), we defineFS :RN → R
N by

FS(x0)= x(T ),

with x : [0, T ] → R
N the solution of

(22.43)
d

dt
q(x)+ j (t, x)= 0, for 0� t � T ,

(22.44)x(0)= x0.
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For (single) shooting (‘shooting-Newton’ in TELICHEVESKY, KUNDERT, ELFADEL

and WHITE [1996]) one has to solve

FS(x0)− x0 = 0.

Using the Newton method (PSS Newton Process), one needs to evaluateFS(x0) and the
(monodromy) matrixΦ(x0), defined by

Φ(x0) := dFS(x0)

dx0
∈ R

N×N.

The calculation ofFS(x0) is in fact the result of a time integration. For instance, apply-
ing Euler-backward yields discrete equations at each time level, that are solved by an
internal Newton method (Time-Level Newton Process):(

1

�t
C
(m−1)
i+1 +G

(m−1)
i+1

)(
x
(m)
i+1 − x

(m−1)
i+1

)
(22.45)= −

{
q(ti+1, x

(m−1)
i+1 )− q(ti , xi)

�t
− j

(
ti+1, x

(m−1)
i+1

)}
.

Hence, this requires the solution of a system of linear equations with coefficient ma-
trix 1

�t
C + G. In fact this is a familiar process that is available in each conventional

analog circuit simulator. The Newton matrixΦ(x0) for the PSS Newton Process can be
determined using a recursive procedure for the (matrix) quantities∂xi/∂x0

(22.46)

(
1

�t
C(ti+1, xi+1)+G(ti+1, xi+1)

)
∂xi+1

∂x0
= 1

�t
C(ti , xi)

∂xi

∂x0
,

(22.47)Φ(x0)= ∂x(T )

∂x0
= ∂xM

∂x0
.

The matricesC andG are rather sparse in contrast to the matrixΦ(x0) that is rather
full. In K UNDERT [1997], TELICHEVESKY, KUNDERT and WHITE [1995, 1996],
TELICHEVESKY, KUNDERT, ELFADEL and WHITE [1996] the linear equations for the
PSS-Newton are solved by means of a matrix-free method, by exploiting a Krylov-space
method (GMRES or CGS). Here one needs to determine the result ofΦ(x0)p, for some
vectorp, in order to extend the Krylov space. This can elegantly be done by a similar re-
cursive procedure as above in (22.46), but now for a sequence of vectors. The charm of
this recursion is that it re-uses the existing LU-decompositions of the Time-Level New-
ton Process; in addition the matricesC are needed. For GMRES a final least squares
problem has to be solved. In fact, this has to be done in some flat-matrix structure. As-
suming ak-dimensional Krylov space, the least squares problem is of orderkN , where
N is the number of unknowns in a flat circuit.

We collect some differences between the Shooting Method and the Finite Difference
Method.

• In contrast to the Finite Difference Method, for the Shooting Method the time dis-
cretization can be chosen adaptively in a natural way, using the ordinary transient
integration.
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• The Shooting Method only needs an initial value to start from. But it may diverge
rather fast in case of poles that cause instabilities.

• The FDM always assures periodicity for each iterand; in the limit also the dis-
cretized equations are satisfied. To contrast: each iterand of the Shooting Method
satisfies the discretized equations, while reaching periodicity is the target of the
method.

• In practice, the FDM is more stable than the Shooting Method, but – per iterand
– it is much slower. The stability properties of shooting methods can be increased
by applying multiple shooting that can be applied to the free oscillator problem as
well (WELSCH [1998]).

The higher index case.From the remark concerning the higher index case at the end
of Section 21.2, it follows that the shooting matrix should start from consistent initial
values. Fortunately it can be shown (NEUBERT and SCHWARZ [2001]), that it is suffi-
cient to start the calculation ofFS(x0) with 1(2) Backward Euler steps in case of DAE
index 1(2). Alternatively, if the independent eigenvectors of the shooting matrix are
known in the beginning, it is sufficient to calculate only the rectangular part comprising
them (SELTING and ZHENG [1997], NEUBERT and SCHWARZ [2001], BAIZ [2003]).

Improving global convergence.Since the region of attraction for the PSS Newton
Process is usually fairly small (see at the remarks concerning the differences between
SM and FDM above), it is desirable to apply continuation methods which ensure global
convergence under not too restrictive assumptions. A key issue here is that along the
continuation path no bifurcations occur, which would make it difficult to track the
“proper” solution branch. In BAIZ [2003] it is argued that this is best possible with
an artificial homotopy

ρ(x,λ, a) := λ · (FS(x)− x
)+ (1− λ) · (x − a),

whereλ, 0� λ� 1, is the homotopy parameter, anda is a start vector for the homotopy.
Using a theorem of Sard (see, e.g., CHOW, MALLET-PARET and YORKE [1978]) it

is shown in BAIZ [2003] that under some reasonable assumptions for circuit models up
to DAE index 2 the continuation path is smooth for almost any initial valuea. So it can
be traced with some kind of predictor-corrector techniques, starting fromλ = 0 until
the desired fixpointFS(x)= x is obtained forλ= 1. The start vectora is obtained here
from running a standard transient analysis over one cycle. For autonomous systems a
gauging phase condition is added, while the frequency is an additional unknown.

22.4. Waveform Newton

In KEVENAAR [1994] the Waveform Newton Method has been described (for solving
forced problems). Here one linearizes each time around a previously calculated periodic
waveformx(i). This results in a linear DAE for the correction, in which the coefficients
are periodic and depend on the last calculated waveform. From this we derive, that the
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next iterandx(i+1) satisfies

d

dt

[
C
(
x(i)

)
x(i+1)]+G

(
t, x(i)

)
x(i+1)

(22.48)= −
{

d

dt

[
q
(
x(i)

)−C
(
x(i)

)
x(i)

]+ [
j
(
t, x(i)

)−G
(
t, x(i)

)
x(i)

]}
.

Similar to the Shooting Method case one can solve this linear DAE easily for an initial
value of x(i+1) such that we have a periodic solution. Note that we can start with a
nonperiodic waveform. All next iterands will automatically be periodic.

One can show, that, on a fixed grid, the Finite Difference Method and the above
approach can generate the same solutions. However, the above approach, using the
Shooting Method, allows to use adaptive integration. In this way both nice features
of FDM (always periodic iterands) and of SM (adaptivity) are combined. As in FDM,
each iterand is periodic, but only the limit satisfies the differential equations.

A nice feature is that the algorithm very elegantly extends to a Periodic AC analysis
(see Section 21).

22.5. Harmonic Balance

Harmonic Balance (HB) is a nonlinear frequency-domain method for determining a
periodic steady-state solution. The Fourier coefficients of the PSS are the solution of
a nonlinear algebraic system of equations, that is usually solved by applying Newton’s
method. In the next we describe the method in some detail.

We assumed independent fundamental (angular) frequenciesλj . Let (. , .) denote the
complex inner-product andZ be the set of integers. We writex (and similarlyj andq)
in an expansion of complex exponentials

(22.49)x =
∑
ωk∈Λ

Xke
ιωkt , with ωk ∈Λ≡ {

ω | ω= (k, λ)
}
,

(22.50)k ≡ (k1, k2, . . . , kd)
. ∈K ⊂ Zd, λ≡ (λ1, λ2, . . . , λd)

., λi > 0,

where the (complex)Xk satisfiesX−k =Xk .
Hereλ andk are uniform for each component ofx. The setK , containing integer

tuples, is symmetrical about 0, while also 0∈K .K is assumed to be finite. WithK we
denote the number of nonnegative (angular) frequencies (i.e.,ωk with ωk � 0). We also
assume that allωk are different andω0 = 0.

The choice of the fundamental frequenciesλj will depend on the kinds of (modified)
sine-wave sources used. We note thatΛ should contain a sufficiently rich set of inter-
distortion frequenciesωk like 2λ1, λ1 ± λ2, that are required in a distortion analysis. In
practice, too restrictive a choice of the finite set ofK may give rise to aliasing problems
when compared with the analytical problem. For some sine-wave sources, a 1-D set of
frequencies will be sufficient.

LetX = (X1,X2, . . . ,XN). be the Fourier transform ofx. More specifically, using a
real notation,Xj = (X

j,R

0 , [Xj,R1 ,X
j,I

1 ], . . . , [Xj,RK−1,X
j,I

K−1])., in whichXjk ≡X
j,R
k +

ιX
j,I
k represents thekth Fourier coefficient ofxj .
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With F , we denote the mapping of the Fourier transform, thusX = Fx and x =
F−1X. TheF -transform ofj (and similarly forq) is defined byJ (X)= Fj (F−1X)=
Fj (x). By this Galerkin approach, the frequency-domain equivalent of (20.1) simply
becomes

(22.51)J (X)+ΩQ(X)= 0, in which

(22.52)Ω = Block_Diag(ΩK, . . . ,ΩK),

(22.53)ΩK = Block_Diag

(
0,

∣∣∣∣ 0 −ω1
ω1 0

∣∣∣∣ , . . . , ∣∣∣∣ 0 −ωK−1
ωK−1 0

∣∣∣∣) .
In the terminology of circuit analysis, the method of solving (20.1) by solving (22.51)
is called the Harmonic Balance method. It is clear that the system given by (22.51) is a
nonlinear algebraic set of equations in the frequency-domain.

In general, the system is solved by performing a Newton–Raphson iteration. A DC-
analysis provides an initialization for the basic harmonic. For the other harmonics one
can solve a set of AC-problems in parallel, each being linearised around the same DC-
solution. Because each AC-problem is linear, this is very efficient. Note that this ap-
proach may be interpreted as the first iteration of a nonlinear block Gauss–Jacobi ap-
proach, using partitions between the components of different harmonics.

Clearly, in HB, a Newton–Raphson matrix is much larger than in ordinary DC or
Transient Analysis. However, it still has a similar sparse structure as in the last two
cases. Hence it is not surprisingly that quite some attention is made in literature con-
cerning iterative methods applied to the linear system of equations arising in Harmonic
Balance (BRACHTENDORF [1994], BRACHTENDORF, WELSCH and LAUR [1995],
MELVILLE , FELDMANN and ROYCHOWDHURY [1995], RÖSCH [1992], RÖSCH and
ANTREICH [1992], ROYCHOWDHURY and FELDMANN [1997]).

Sources. The choice of the fundamental frequenciesλj depends on the kinds of
sources used. For standard amplitude, frequency or phase modulated sources, a 2-D
block of frequencies will usually be necessary, as explained below.

We assume voltage and current sources. The DC-sources are time-independent, the
AC-sources may involve a simple sum of (co)sine-waves (SW-source). For Harmonic
Balance the sources may also show amplitude modulation (SWAM), frequency modu-
lation (SWFM) or phase modulation (SWPM) behaviour. Denoting a source bys(t) and
the carrier frequency and the signal frequency byωc andωs , respectively, the following
cases can be distinguished (hereθ simply denotes a phase shift).

Modulation x(t)=A(t)cos(ψ(t)+ θ) Kmin = block[n,m]
A(t) ψ(t)

AM a + b sin(ωs t) ωct [1,1]
FM a

∫ t
0 ωc + c cos(ωs t)dt [1,m],m� c/ωs

PM a ωct + d sin(ωs t) [1,m],m� d
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In the last column we have added the minimum rectangular subset ofK in order to
avoid obvious errors due to aliasing (assumingλ1 = ωc, λ2 = ωs ). In generalωc � ωs .
The following result, of which the proof is elementary, will be used in the sequel:
SWAM, SWFM and SWPM sources have a Fourier expansion with respect to the ex-
ponentialseι(nωc+mωs)t . For SWAM and SWPM the coefficients are independent ofωc
andωs . For SWFM the coefficients depend onc/ωs .

A more careful evaluation of the coefficients reveals that the only nonzero harmonics
are for (k1, k2) = (1,m). For SWAM m is also restricted tom � 1, showing that a
finite expansion is obtained. For SWFM and SWPM the dominant part of the infinite
expansions depends onc/ωs andd , respectively.

Discrete Fourier transform. LetFη,µ denote the Fourier transform using fundamental
frequenciesη,µ. We observe that in general, by the nonlinearity ofi andq, I (V ) and
Q(V ) depend on the specificλ1, λ2 mentioned previously. However, in practice,I (V )
andQ(V ) appear to be rather independent onλ1, λ2. This surprising phenomenon al-
lows an efficient evaluation ofI (v) andq(v). To be more specific, letλ3, λ4 be two
other fundamental frequencies that satisfy the same assumptions as imposed onλ1, λ2,
i.e. the corresponding set of frequencies generated byK andλ3, λ4 should not contain
multiple values. In practice the nonlinearity ini (and similarly inq) with respect tov is
only ‘algebraic’ in the following sense

(22.54)I (V )k = (
Fλ1,λ2i

([Fλ1,λ2]−1V
))
k
,

(22.55)= (
Fλ3,λ4i

([Fλ3,λ4]−1V
))
k
,

for all λ1, λ2, λ3, λ4, which means that the Fourier coefficients are frequency indepen-
dent. Nonlinear resistors are algebraic in the above sense when using the variablesi

andv; nonlinear capacitors when dealing withq andv (note thati = dq/dt); and non-
linear inductors when dealing withφ and i (note thatv = dφ/dt). The expansions in
eι(nωc+mωs)t of the SWAM, SWFM, SWPM sources show that they also exhibit this
algebraic behaviour.

The algebraic nonlinearity offers a way to exploitλ3, λ4 which are different from
the fundamental analysis frequenciesλ1, λ2, in determiningI (V ) and its partial deriv-
atives in an efficient and stable way using the Discrete Fourier Transform. For de-
tails we refer to BRACHTENDORF [1994], KUNDERT, WHITE and SANGIOVANNI -
VINCENTELLI [1990], TER MATEN [1999], RÖSCH [1992]. In SEVAT [1994] several
bijective mappings between (enveloping sets of) higher dimensional spectral setsK and
a 1-dimensional equivalent (with no gaps) are considered that allow for proper usage of
the DFT.

Numerical aspects of Harmonic Balance.Although HB is being successfully used for
a wide range of applications, there are still some mathematical issues which have to be
solved. One of them is error control and adaptivity, another one concerns DAE aspects.

• Accuracy of the HB solution is mainly determined by the setsk andλ in (22.50),
which have to be provided by the user, or are determined from the type of sources,
as is described above. In case of too few – or a not adequate set of – frequencies,
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alias effects may occur, or HB does not even converge. Harmonic Balance is useful
only for mildly nonlinear problems, i.e., when all quantities have a Fourier expan-
sion that can be well approximated by some finite one of limited length. Aliasing
can be reduced by applying oversampling (TER MATEN [1999]). A rigorous math-
ematical adaptivity concept is not implemented, in general. A proposal is given
in FRIESE[1996]; unfortunately, adaptivity here involves to reorganize the system
matrix from time to time, which does not fit well into existing implementations.

• In practice, HB has been applied successfully even for index-2 problems, and no
severe drawbacks or errors have been reported yet. There are however no theoreti-
cal investigations about the feasibility of this usage, and which impact may have a
higher index on numerics.

HB oscillator algorithm. In BRACHTENDORF, WELSCHand LAUR [1995], GOURARY,
ULYANOV, ZHAROV, RUSAKOV, GULLAPALLI and MULVANEY [1998], LAMPE,
BRACHTENDORF, TER MATEN, ONNEWEER and LAUR [2001], WELSCH [1998] os-
cillator algorithms are given for Harmonic Balance that resemble the approach de-
scribed in Section 22.2.2 for the time domain. However, there are some modifications:

• The gauge condition is replaced by the requirement that the imaginary part of the
first harmonic at some predefined node has to be zero. Note that this allows the
DC solution to be solution of the system. Indeed, the DC solution appears to be a
strong attractor for the Newton process. Hence algorithms apply some additional
deflation technique to exclude this solution.

• In practice the artificial element is defined directly in the frequency domain. For
all harmonics but the first one the element acts as an ‘open’, i.e., the harmonic of
the current is set to 0. For the first harmonic it acts as a voltage source in series
with a resistor. For all analyses other than Harmonic Balance (that might be used
for initialization), the current through the element is set to zero too.

• For initialization the equations are linearized around the DC-solution like in AC
analysis. Kurokawa’s method (KUROKAWA [1969]) calculates the response solu-
tion for an ordinary sinusoidal source with unit amplitude that replaces the artificial
element and considers the admittance for the source element. The result is consid-
ered as a function of the frequencyf . Where the imaginary part of the admittance
becomes zero while the real part remains positive a good approximation for the
oscillator can be found (the equation itself can be solved by applying for instance
Newton–Raphson). For the circuit solution one uses the DC-solution plus the AC
solution for the first harmonic. All other harmonics are set to 0.

Alternatively one can solve a generalized eigenvalue problem (in practice
one will consider the inverse eigenvalue problem) for the linearized equations
(BRACHTENDORF, LAMPE and LAUR [2000]). Because an autonomous circuit
can only start up oscillating when the DC-solution is unstable (Andronov–Hopf
bifurcation theorem), one looks for eigenvaluesλ= δ ± jω, whereδ > 0. The as-
sociated eigenvector also indicates where the artificial element may be attached. In
addition it provides an estimate for the initial circuit solution. However, in practice,
thef estimated by Kurokawa’s method appears to be more accurate.
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• The applied value of the artificial element is initialized by optimization techniques
(GOURARY, ULYANOV, ZHAROV, RUSAKOV, GULLAPALLI and MULVANEY

[1998], JOKUNEN [1997], WELSCH [1998]). In BRACHTENDORF, LAMPE and
LAUR [2000], LAMPE, BRACHTENDORF, TER MATEN, ONNEWEER and LAUR

[2001] techniques using affine damping improved convergence. Initial Global Op-
timization techniques improved robustness even more by providing much better
initial estimates (LAMPE and LAUR [2002]). Note that the algorithm can be for-
mulated as a full Newton process, but also as a two-step process. In the latter case
for each applied value as internal step a driven Harmonic Balance process is ex-
ecuted until convergence. For updating the applied value and the frequency, the
Jacobian matrix of the Harmonic Balance process can be reused for determining
the sensitivities of the solution with respect to variations of the applied value and
the frequency. In fact, this very elegantly reuses options for parameter sensitivity
analysis.

Global convergence – a three stage approach.For getting global convergence prop-
erties, the application of a continuation method is adequate. In case of nonautonomous
(forced) systems it is natural for this purpose to track a parameter dependent path in the
frequency domain with some path-following methods, as is done in the DC domain by
performing a DC transfer analysis. The parameter here may be a circuit parameter or the
bias value of an independent source, either. In case of local parametrization along the
solution path, even turning points in the parameter space can be tracked; and by watch-
ing the sign and magnitude of Floquet multipliers, circuit stability properties along the
solution path can be analyzed (SELTING and ZHENG [1997]).

For autonomous oscillators the problem is more difficult since a good estimate for the
frequency is important. So it is suggested in NEUBERT, SELTING and ZHENG [1998] for
this case to start path-following from Hopf’s bifurcation point. The latter is computed
from a path-following procedure in the DC-domain, such that there is a three-stage
approach for solving the whole problem:

1. Follow a path of DC steady states over a parameterλ – λ being a circuit parameter
or the value of an independent source – until a Hopf bifurcation point is found.
The latter is characterized by a sign change of the real part of a complex conjugate
pair of generalized eigenvalues.

2. These eigenvalues and the corresponding eigenvectors provide first order informa-
tion about frequency and Fourier coefficients of the oscillatory branch emanating
from the DC path in Hopf’s point. Since this information is not very accurate,
an alternative method for getting the latter was developed ZHENG and NEUBERT

[1997].
3. From this start point, follow the path of periodic steady states overλ, until the

final value ofλ is obtained.
Again it is worth to note that all these additional algorithmic steps can be implemented
elegantly using Schur complement techniques, once the basic types of analysis are avail-
able.

Recently, homotopy approaches were considered in BRACHTENDORF, WELSCHand
LAUR [1998], MA, TRAJKOVĆ and MAYARAM [2002].
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22.6. Envelope methods

In TROYANOVSKY [1997] an envelope method is described in some detail. The enve-
lope method is a generalisation of the Harmonic Balance method. It allows for mul-
titone treatments, but in fact one of the periods may be infinite. The method mixes
time-domain and frequency-domain approaches.

We write (22.49) as

(22.56)x(t)=
∑
ωk∈Λ

Xk(t)e
ιωkt , with ωk ∈Λ≡ {

ω | ω= (k, λ)
}
,

where the enveloping Fourier coefficientsXk(t) represent modulation on top of the
carrier sinusoids at frequenciesωk . In order to describe the effect ofq(x) (and similarly
of j (x)) we introduce

(22.57)x̃(τ1, τ2)=
∑
ωk∈Λ

Xk(τ1)e
ιωkτ2,

(22.58)=F−1
τ2
X(τ1)

(which in fact is a multivariate formulation; see also the next subsection). HereX(τ1)

is the Fourier transform inτ2 of x̃(τ1, τ2). Thusx(t)= x̃(t, t). For fixedτ1, the Fourier
coefficientsQk(x(τ1)) of q, when applied tox̃(τ1, τ2), can be determined using the
Fourier Transform in theτ2 variable

(22.59)q
(
x̃(τ1, τ2)

)=
∑
ωk∈Λ

Qk

(
X(τ1)

)
eιωkτ2,

(22.60)Qk(X)= Fτ2q(F−1
τ2
X).

Clearly, q(x(t)) = q(x̃(t, t)). We will collect all Qk(X) in q(x) (and similarly for
J (X)). If we put the expansions ofq andj in (20.1) we find a DAE for theX(t)

(22.61)J
(
X(t)

)+ d

dt
Q
(
X(t)

)+ΩQ(X)(t)= 0,

which can be solved using ordinary time integration methods. Stepping forward in time
at each time level a nonlinear set of (complex-valued) algebraic equations has to be
solved, that has the size of a Harmonic Balance problem. In RF applications, the enve-
lope solution of the DAE (22.61) behaves much less oscillating (or is not oscillating at
all) than that of (20.1). Hence, despite the larger nonlinear system of equations that has
to be solved at each time level for (22.61), much larger time steps can be used than for
(20.1).

Because of the separation of modes inτ1 andτ2 variables, different scaling effects
can be separated. This is also the subject of the next subsection.

Analysis of high-quality oscillator circuits.Another kind of envelope following meth-
ods has been suggested for analysis of oscillatory circuits whose quality factorQ is
so high that conventional methods like those described in PETZOLD [1981], SKELBOE
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[1982] failed. These circuits exchange a very small amount of energy per cycle be-
tween the oscillator core and the driven, energy supplying circuit part, which makes
the problem extremely stiff. In a state space diagram, the trajectories of one cycle are
almost closed, even though the circuit is not yet in a steady state. So it seems reason-
able to approximate the trajectory for this cycle by a really closed one, which can be
computed by solving a PSS problem. Once this approximative trajectory is found, a
transient analysis over a few cycles would correct this one into the real solution. From
its dynamics a new estimate for a later cycle can be extrapolated, and the next step of
this “envelope” method can be started ZHENG [1994]. In fact this method is again a
mixed time-frequency approach.

A successful application of this idea is the startup analysis of quartz driven circuits
(SCHMIDT-KREUSEL [1997], MATHIS [1998]). Since the quartz resonator oscillates
very much like a harmonic oscillator, it can be substituted for one PSS step by a sinu-
soidal current source of a certain magnitude. Its phase can be arbitrarily set to zero, and
a first guess for the frequency is just the resonator frequency of the quartz crystal. Once
the PSS solution is found, and is “corrected” by a subsequent transient analysis over a
few – 2, . . . ,4, say, – cycles, the dynamic behaviour can be extrapolated over several
hundred to thousand cycles, yielding a new value for the magnitude and the frequency of
the substitute current source. So this method cannot only be seen as some kind of con-
tinuation method for the PSS problem, but also yields reasonable timing information
about the startup process of the circuit.

22.7. Multivariate extension

In BRACHTENDORF, WELSCH, LAUR and BUNSE-GERSTNER[1996], BRACHTEN-
DORF and LAUR [2000], ROYCHOWDHURY [1997], ROYCHOWDHURY, LONG and
FELDMANN [1998], ROYCHOWDHURY [2001a, 2001b] multivariate extensions are de-
scribed that apply to multitone situations. In fact, one introduces two or more indepen-
dent time parameters,τ1, τ2 say. Then (20.1) is rewritten to

(22.62)
d

dτ1
q(x̂)+ d

dτ2
q(x̂)+ j (x̂)= b(τ1, τ2) ∈ R

N,

(22.63)x̂(0, τ2)= x̂(T1, τ2),

(22.64)x̂(τ1,0)= x̂(τ1, T2).

After solving this partial differential problem (22.62) (hyperbolic for dq/dx regular) on
[0, T1] ∗ [0, T2] for x̂, the solutionx(t) is found byx(t)= x̂(t (modT1), t (modT2)).

It is clear that the above separation in two or more independent time parameters re-
stricts one in formulating expressions. The aim is that on[0, T1] ∗ [0, T2] the solution
x̂ behaves smoothly and that only one period is met in each direction. In ROYCHOWD-
HURY [2001b] the problem of frequency modulation (FM) is considered more closely
for the case of an oscillatory DAE

(22.65)ω(τ2)
d

dτ1
q(x̂)+ d

dτ2
q(x̂)+ j (x̂)= b(τ2),



648 M. Günther et al. CHAPTER V

(22.66)φ(t)=
∫ t

0
ω(τ2)dτ2,

(22.67)x(t)= x̂
(
φ(t), t

)
.

When (22.65) is solved, also the local frequencyω(τ2) is obtained (see also BRACHT-
ENDORF and LAUR [2000]). The derivative,ω(τ2), of the ‘warping’ functionφ, gives
the extend of the stretch of the timescale inτ2. For time integration methods of charac-
teristics were studied recently (BRACHTENDORFand LAUR [2000], PULCH and GÜN-
THER [2002]).

Optimal sweep following. An open question remains howω(τ2) in (22.65) should
be determined. One way to proceed is to observe that the differential equation (22.65)
defines a two-dimensional manifold (called thesweep) in the state spaceRN . The choice
of ω does not influence the sweep; however, it does influence the parametrisation of the
sweep in terms of the coordinatesτ1 andτ2.

In HOUBEN [2003], it is suggested to chooseω in such a way that

(22.68)
∫ T

0

∥∥∥∥ d

dτ2
q(x̂)

∥∥∥∥2

dτ1

becomes as small as possible. The rationale is that this will allow the largest stepsizes
in the (slowly varying)τ2-direction, thereby reducing computation time. It is shown in
HOUBEN [2003] that this is the case for

(22.69)φ̇(τ2)= ω(τ2)=
∫ T

0 (b(τ2)− j (x̂), d
dτ2
q(x̂))dτ1∫ T

0 ‖ d
dτ2
q(x̂)‖2 dτ1

.

Since this choice ofω is optimal with respect to the minimization of (22.68), the result-
ing method is calledOptimal Sweep Following.
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1. Introduction

In this chapter we describe methods that have been used to perform simulations of the
electromagnetic behaviour of multilayer interconnection systems. Such a system con-
sists of a number of planar conductors immersed in a configuration of homogeneous
media of different permittivity bound by parallel planes. Examples of such systems
are printed circuit boards, IC packages, filters and passive IC’s. The program Fasterix,
developed within Philips Research, has been used to simulate the electromagnetic be-
haviour of a variety of such systems (seeDU CLOUX, MAAS and WACHTERS[1994]).
One of the reasons for developing this programme were the strict regulations as far as
electromagnetic compatibility are concerned. Electronic devices influence each other,
but this influence should be kept to a minimum. This explains the large interest in sim-
ulations of EMC behaviour in the past 10 years. The present chapter is devoted to this
subject, and gives a very detailed impression of how these simulations are enabled in
practice. The development of numerical algorithms to solve the EMC problems is rather
involved. A strong interplay is required between analytical and numerical techniques in
order to obtain an efficient way of simulating devices. Evaluating fourfold integrals
with singularities is not a trivial task, and requires a lot of tedious work. The chapter
also shows that, even in rather elementary tasks like numerical integration, sophisticated
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algorithms must be used to handle the complexity of the problem. This is characteristic
for the present chapter: several methods that are not very well known will be discussed,
such as the Kronrod and Patterson quadrature rules, and Orden’s method for solving
indefinite linear systems.

The structure of this chapter is as follows. Section 2 contains a derivation of theKirch-
hoff equationsfrom theMaxwell equations(also see Chapter 1 in this book), whereas
Sections 3–7 contain the numerical methods required for the evaluation of the four-
fold integrals that form the matrix elements in these equations. These matrix elements
represent the resistors, inductors and capacitors in the equivalent circuit model for the
interconnection system.

Section 8 presents an improvement of the method, treated in Section 5, for the analyt-
ical integration of the inner integrals for vector valued basis functions for a quadrilateral
element. This improvement makes it possible to use non-planar conducting structures,
such as bond wires, screens and boxes in a simulation. The analytical integration of the
inner integrals over a triangular element for scalar and vector valued basis functions is
discussed in Section 9.

Section 10 presents the solution methods used for the Kirchhoff equations. The linear
algebra methods used for the solution of the linear system of equations and the general-
ized eigenvalue problems involved are discussed in Section 11. An efficient method for
solving equations with large matrices is given in Section 12.

2. Derivation of Kirchhoff equations

In this section a derivation will be given of the Kirchhoff equations which describe
the behaviour of an equivalent circuit of a PCB. For this purpose an equivalent bound-
ary value problem will be derived from the Maxwell’s equations. Next, we present a
variational formulation of this problem and the function spaces that contain its weak
solutions. To be able to compute these solutions the problem domain is subdivided into
quadrilateral elements and the solutions are approximated by linear combinations of ba-
sis functions in finite dimensional subspaces of the original function spaces. We obtain
a linear set of equations, which correspond to theKirchhoff equations, the solutions of
which represent the currents, charges and potentials in an electronic circuit. The matrix
elements belonging to this set of equations are integrals. The fourfold integrals that rep-
resent the electromagnetic interaction between charges and currents in two elements of
the discrete domain will be calledinteraction integrals.

Since in this chapter our attention is restricted to the evaluation methods for the inter-
action integrals, the derivation of the Kirchhoff equations will be given in a simplified
form. For a more rigorous derivation seeDU CLOUX, MAAS and WACHTERS [1994],
or Chapter 1 in this volume.

2.1. Introduction

A PCB consists of a set of thin metal layers separated by dielectric layers. The metal
layers are the conductors (see Fig. 2.1) that connect the external electronic components
mounted on the PCB. By currents through the conductors electromagnetic fields will
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FIG. 2.1. A printed circuit board viewed from above. The patterns of the conductors are described by poly-
gons, which are divided into quadrilaterals.

be generated that can cause crosstalk between the parts of an electronic system. This
crosstalk often interferes with the desired signals and manifests itself as noise. For high
frequencies this disturbance can sometimes be significantly large. A study of these elec-
tromagnetic fields may provide understanding of this disturbing interference between
parts of an electronic system.

As will be demonstrated later in this chapter, the electromagnetic properties of a PCB
can be translated into an equivalent circuit model (see also Chapter 9 in this volume for
more general techniques). By putting such model, together with those for the external
components, in a circuit analysis program, the potentials at the circuit nodes can be
obtained. From these potentials the currents through the conductors and the radiated
electromagnetic fields can be calculated. In fact, this provides a way of performing a
coupled analysis of circuit behaviour and electromagnetics effects.

2.2. Maxwell’s equations

The electromagnetic field in this electronic system can be described by theMaxwell’s
equations:

∇ × E = −∂B
∂t
,

∇ × H = J + ∂D
∂t
,

∇ · B = 0,

∇ · D = ρ,
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whereE denotes the electric field,D = εE the electric displacement,H the magnetic
field, B = µH the magnetic induction,J the current density andρ the charge density.
The ε andµ (real and positive constants) denote the permittivity and permeability,
respectively, of the homogeneous dielectric layers of the stratified medium.

The vectors in the above system are real. For the time-periodic case, which we are
interested in, the electromagnetic field is assumed to vary sinusoidally with time, with
angular frequencyω� 0. This periodic behaviour of the field can be expressed by com-
plex vectors. It is customary (see RAMO [1984, Section 3.8]) to consider the fields as
the real parts of complex vectors, for example

E(x, t)= Re
[
E(x,ω)e−iωt ],

where thevector phasorE(x,ω) is complex. In the following, the argumentsx andω of
the complex quantities will be omitted, so thatE = E(x,ω). The derivative with respect
to the time parametert becomes

∂

∂t
Ee−iωt = −iωE.

Hence, for harmonic fields the Maxwell equations are given by

(2.1)∇ × E = iωB,

(2.2)∇ × H = J − iωD,

(2.3)∇ · B = 0,

(2.4)∇ · D = ρ.

Since∇ · (∇ × H)= 0, from (2.2) and (2.4) thecurrent continuity equationfollows:

(2.5)∇ · J − iωρ = 0.

Further the following relations hold:

(2.6)J = σE (Ohm’s law),

(2.7)D = εE,

(2.8)B = µH,

where the material propertiesσ andε are assumed to be constant for each layer andµ

is constant for the whole problem region.

2.3. Equations to be solved

The Maxwell equations form a set of coupled first order partial differential equations
which give relations between electric and magnetic fields. In view of later applications it
is convenient to introduce potentials (see JACKSON [1975, Section 6.4, pp. 219–220]) to
obtain a smaller number of (second-order) equations, equivalent to the Maxwell equa-
tions.

The properties∇ · (∇ ×u)= 0 and∇ × (∇u)= 0 for anyu ∈ R
3 lead to the following

observations.
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Since∇ · B = 0, the magnetic inductionB can be defined in terms of a magnetic
vector potential that satisfies

(2.9)B = ∇ × A.

Then, Eq. (2.1) can be rewritten as

∇ × (E − iωA)= 0.

The argument of the rotation (∇×) can be written as the gradient of some scalar func-
tion, namely the electric potentialϕ, so that

(2.10)E − iωA = −∇ϕ.
These definitions of the potentials are consistent with (2.1) and (2.3). By the other
Maxwell’s equations, (2.2) and (2.4), restrictions are imposed on these potentials. From
(2.8) and (2.2) it follows that

∇ × B = µ(∇ × H)= µJ − iωµD.

After substitution of (2.9), (2.7), (2.10) and property

∇ × (∇ × A)= ∇(∇ · A)−�A,

in this expression and

D = εE = ε(−∇ϕ + iωA),

in (2.4) one obtains

(2.11)∇(∇ · A)−�A − iωµε∇ϕ −ω2µεA = µJ,

(2.12)−∇ · (ε∇ϕ)+ iωε∇ · A = ρ.

Hence, the eight Maxwell equations have been reduced to four equations. However, the
potentialsA andϕ are still not uniquely defined. If(A, ϕ) is a solution of (2.11) and
(2.12), then(A + ∇f,ϕ + iωf ) for an arbitrary scalar functionf is also a solution. To
expressA andϕ uniquely, an extra condition must be added. One possibility is to use
theLorentz gauge condition

(2.13)∇ · A − iωµεϕ = 0.

After substitution of condition (2.13) in (2.11) and (2.12) one obtains theHelmholtz
equations

(2.14)(�+ k2)A = −µJ,

(2.15)∇ · (ε∇ϕ)+ εk2ϕ = −ρ,
where k = ω

√
εµ. It can be shown that the solutions of Helmholtz equations are

unique for appropriate Dirichlet and Neumann boundary conditions (see COLTON and
KRESS[1992, Section 3]).
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In summary, the total system of equations to be solved forA, ϕ, J andρ is as follows:

(2.16)(�+ k2)A = −µJ,

(2.17)∇ · (ε∇ϕ)+ εk2ϕ = −ρ,
(2.18)J = σE = σ(−∇ϕ + iωA),

(2.19)∇ · J − iωρ = 0,

including appropriate boundary conditions.

2.4. The boundary value problem

In this subsection an equivalent boundary value problem will be posed. First, we will in-
troduce the Green’s functions, which are the solutions of an inhomogeneous Helmholtz
equation for a homogeneous medium. Let the Green’s functionG(x′,x; k) be defined
as the solution of the following equation

(2.20)(�+ k2)G(x′,x; k)= −δ(x′ − x), x ∈Ω,
for a fixed pointx′ in a domainΩ ⊂ R

3 and theDirichlet condition

G(x′,x; k)= g(x) on δΩ.

Here,δ(x′ − x) is theDirac delta functionwith the properties:

δ(x′ − x)= 0, if |x′ − x|> 0,∫
BR(x)

δ(x′ − x)dx′ = 1,∫
BR(x)

δ(x′ − x)ξ(x′)dx′ = ξ(x),

where the “sphere”BR(x) = {x′ ∈ R
3; |x′ − x| � R; x ∈ R

3}, andξ(x) is an arbitrary
function overBR(x). The fundamental solution of Eq. (2.20) is

G0(x′,x; k)= eik|x′−x|

4π |x′ − x| .
Thus, restricting the domainΩ to the conductors, the solutions of the Helmholtz equa-
tions (2.16) and (2.17) can be formulated as:

(2.21)A(x,ω)=
∫
Ω

GA(x′,x; k)µJ(x′,ω)dx′ + A0(x,ω),

(2.22)ϕ(x,ω)=
∫
Ω

Gϕ(x′,x; k)ρ(x
′,ω)
ε

dx′ + ϕ0(x,ω),

whereA0 andϕ0 are solutions of the homogeneous problem and

Gϕ = eik|x′−x|

4π |x′ − x| , GA =
1 0 0

0 1 0
0 0 1

 eik|x′−x|

4π |x′ − x| ,
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the fundamental solutions of the Helmholtz equations (2.16) and (2.17) for a homoge-
neous medium.

For a stratified inhomogeneous medium it is more difficult to obtain the Green’s func-
tion. For k|x′ − x| ' 1, known as thequasi-staticcase, the method of images (see
JACKSON [1975, Section 2.1, pp. 54–55]) can be used. Then the Green’s function for
the scalar potential becomes

Gϕ =
∑

j∈Images(ϕ)

cj
eik|x′

j−x|

4π |x′
j − x| , for x′

j = (x′, y′, z′j ).

The images forϕ are due to reflections at the dielectric interfaces and the ground plane,
all of which are perpendicular to thez-axis. The constantscj only depend on the di-
electric constants of the layers. If there are two or more of such reflection planes, the
number of images is infinite. The Green’s function for the vector potential has the form

GA =
∑

j∈Images(A)

Mj

eik|x′
j−x|

4π |x′
j − x| , for x′

j = (x′, y′, z′j ).

Sinceµ is constant, the images forA are only due to reflections at the groundplane, i.e.,
for each source pointx′ there is only one image point. If all metal layers are parallel to
the ground layer and the ground plane is a perfect conductor, then

M1 = −M2 =
(

1 0
0 1

)
,

otherwise

M1 =
1 0 0

0 1 0
0 0 1

 , M2 =
−1 0 0

0 −1 0
0 0 1

 .
Now, we can formulate the following boundary value problem. LetΩ be the interior

of the finite conductor regions, letΓ = δΩ be the boundary of these regions, and letΓV
be that part ofΓ that is restricted to theconnection ports, where the external wires are
connected to the conductors. For more details seeDU CLOUX, MAAS and WACHTERS

[1994]. After substitution of (2.21) in (2.18) the following boundary value problem can
be formulated:

(2.23)
J
σ

+ ∇ϕ − iω
∫
Ω

GAµJ dx′ = E0,

(2.24)∇ · J − iωρ = 0,

(2.25)ϕ −
∫
Ω

Gϕ
ρ

ε
dx′ = ϕ0,

under the boundary conditions

ϕ(x)= Vfixed, x ∈ ΓV ,
J · n = 0, x ∈ Γ,
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whereϕ, J andρ are elements of the function spaces

ρ ∈ L2(Ω),

ϕ ∈H 1(Ω)= {
u ∈ L2(Ω) | ∇u ∈ L2(Ω)3

}
,

J ∈H div(Ω)= {
v ∈ L2(Ω)3 | ∇ · v ∈ L2(Ω)

}
,

whereL2(Ω) = {u | ∫
Ω
u2 dx < ∞}. Further,E0 andϕ0 are due to irradiation from

external sources, associated with the homogeneous solutionsA0 andϕ0, respectively, of
the Helmholtz equations, andn is the unit normal vector perpendicular to the boundary
surface. The physical meaning of the boundary conditions is that no current will flow
through the boundary, except through the connection ports.

2.5. Variational formulation

Assuming that the irradiation is zero, i.e.,E0 ≡ 0 andϕ0 ≡ 0, the variational formula-
tion of the boundary value problem is obtained by multiplying (2.23)–(2.25) with test
functions (denoted by a tilde over the symbol) and integrating over the domainΩ of the
conductors:

(2.26)
∫
Ω

{
J
σ

+ ∇ϕ − iω
∫
Ω

GAµJ dx′
}

· J̃ dx = 0,

(2.27)
∫
Ω

{∇ · J − iωρ}ϕ̃ dx = 0,

(2.28)
∫
Ω

{
ϕ −

∫
Ω

Gϕ
ρ

ε
dx′
}
ρ̃ dx = 0,

whereJ̃, ϕ̃ andρ̃ are test functions in the infinite dimensional function spaces associated
with J, ϕ andρ, respectively:

ρ, ρ̃ ∈ L2(Ω),

ϕ, ϕ̃ ∈H 1(Ω)= {
u ∈ L2(Ω) | ∇u ∈ L2(Ω)3

}
,

J, J̃ ∈H div
0 (Ω)= {

v ∈ L2(Ω)3 | ∇ · v ∈ L2(Ω); v · n = 0 onΓ
}
.

After integration by parts, which is allowed sinceJ̃ ∈H div
0 (Ω), and substitution of the

boundary conditioñJ · n = 0, the following relation holds:∫
Ω

J̃ · ∇ϕ dx = −
∫
Ω

ϕ∇ · J̃ dx.

Substituting this expression in (2.26) gives the following weak formulation of the
boundary value problem:

ρ(x), ϕ(x) ∈ L2(Ω), and J(x) ∈H div
0 (Ω),

(2.29)
∫
Ω

{
J
σ

· J̃ − ϕ∇ · J̃ − iω
∫
Ω

GAµJ dx′ · J̃
}

dx = 0 for all J̃ ∈H div
0 (Ω),



Simulation of EMC behaviour 669

(2.30)
∫
Ω

{∇ · J − iωρ}ϕ̃ dx = 0 for all ϕ̃ ∈ L2(Ω),

(2.31)
∫
Ω

{
ϕ −

∫
Ω

Gϕ
ρ

ε
dx′
}
ρ̃ dx = 0 for all ρ̃ ∈ L2(Ω).

We assume that the conductors are planar and very thin so that, for the frequencies we
are interested in, the quantitiesJ, ϕ andρ are constant in the direction perpendicular to
the conductors. Therefore, the dependence of the above expressions on the coordinate
direction perpendicular to the layers may be separated from the dependence in parallel
direction. Hence, the 3D integrals over the volume of the conductors may be replaced
by 2D integrals over the surfaces, that result when the thickness of the conductor layers
becomes zero. In the followingΩ will be considered as a 2D manifold embedded inR

3.
The system of Eqs. (2.23)–(2.25) is called theoperational formulationof the problem

and (2.29)–(2.31) is thevariational formulation. It is easily seen that if(J, ϕ,ρ) is a
solution of (2.23)–(2.25), it is also a solution of (2.29)–(2.31). Conversely, it can be
shown (see AUBIN [1972, Section 1.5, p. 27]) that if the material constantsσ−1, ω,
µ andε−1 are bounded, and(J, ϕ,ρ) satisfy the variational formulation (2.29)–(2.31)
for all (J̃, ϕ̃, ρ̃) in the associated function spaces, the functions (J, ϕ,ρ) also satisfy the
operational formulation of the boundary value problem.

2.6. Discretisation

To find an approximating solution of Eqs. (2.29)–(2.31), the function spaces are approx-
imated by finite dimensional subspaces. Let us assume that the planar regions to which
the conductors reduce when their thickness becomes zero consist of polygons, and let
the domain of these regions be denoted byΩh. Then, the domain can be subdivided into
convex quadrilateralsΩj as illustrated in Fig. 2.1. Since the planar conductor regions
often have quadrilateral shapes with large aspect ratios, we have chosen quadrilateral
elements instead of triangles. The set of quadrilaterals is referred to as the set of el-
ementsΩj , j = 1, . . . ,Nelem. The edges of the quadrilaterals inside the domainΩh,
i.e., excluding the element edges in the boundary, are referred to as the set of edgesEl ,
l = 1, . . . ,Nedge. On the domainΩh finite dimensional subspacesUh, Wh andH div

h,0 of

the infinite dimensional function spacesL2 andH div
0 are taken. Thediscrete formulation

associated with the problem (2.29)–(2.31) is to find the functions (ϕh,Jh, ρh) for which

(2.32)

∫
Ωh

{
Jh
σ

· J̃h − ϕh∇ · J̃h − iω
∫
Ωh

GAµJh dx′ · J̃h

}
dx = 0 for all J̃h ∈H div

h,0,

(2.33)
∫
Ωh

{∇ · Jh − iωρh}ϕ̃h dx = 0 for all ϕ̃h ∈Uh,

(2.34)
∫
Ωh

{
ϕh −

∫
Ωh

Gϕ
ρh

ε
dx′
}
ρ̃h dx = 0 for all ρ̃h ∈Wh.

The functionsϕh, Jh andρh are expanded in terms of basis functions, which span the
finite dimensional subspaces defined above.
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The scalar potential is expanded as

ϕh(x)=
Nelem∑
j=1

Vjbj (x),

whereVj is the potential of elementj , andbj (x) is defined by

bj (x)=
{

1 for x ∈Ωj,

0 elsewhere.

The surface charge density is expanded as

ρh(x)=
Nelem∑
j=1

Qjcj (x),

whereQj is the charge of elementj , while cj (x) are basis functions on the elements,
adapted to include the singularity of the charge density (see Appendix A) near the con-
ductor edge

cj (x)= f (x)bj (x).

The functionf (x) is defined in Appendix A. It satisfies the following condition

(2.35)
∫
Ωj

f (x)dx = |Ωj |,

where|Ωj | is defined as the area ofΩj .
Finally, the surface current density is expanded as

Jh(x)=
Nedge∑
l=1

Ilw̃l(x),

whereIl is the current through edgel, andw̃l(x) is defined by

(2.36)w̃l (x)=
{
f (x)wl (x) for x ∈Ωi ∪Ωj andEl =Ωi ∩Ωj,

0 otherwise.

The form and properties of the basis functionswl are defined in Appendix B. Note that
the component ofwl normal to the edge is continuous atx ∈ El when passing fromΩi

toΩj .
After substitution of the expansions ofϕh, Jh andρh in (2.29)–(2.31) we obtain the

following linear system of equations:

Nedge∑
l=1

(Rkl − iωLkl)Il −
Nelem∑
j=1

PkjVj = 0,

iω
Nelem∑
j=1

MijQj −
Nedge∑
l=1

PliIl = 0,
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Nelem∑
j=1

(MijVj −DijQj )= 0.

The matrix elements ofR, L, P, M andD (k, l = 1 . . .Nedgeandi, j = 1 . . .Nelem) are
given by

Rkl =
∫
Ωh

1

σ
w̃l(x) · w̃k(x)dx,

(2.37)Lkl =
∫
Ωh

w̃l(x) ·
{∫

Ωh

GA(x,x′)µw̃k(x′)dx′
}

dx,

Pkj =
∫
Ωj

bj (x)∇ · w̃k(x)dx,

Mij =
∫
Ωj

cj (x)bi(x)dx,

(2.38)Dij =
∫
Ωj

cj (x)
{∫

Ωi

Gϕ(x,x′)ci(x
′)

ε
dx′
}

dx.

R is a sparse matrix andL andD are symmetrical, full matrices. From the definition of
the basis functionsbi andcj and Eq. (2.35) it follows that

Mij = δij |Ωj |, δij =
{

1 if i = j,

0 if i �= j

so thatM is a diagonal matrix of which the elements are the areas of theΩj .

LEMMA 2.1. Let J be the Jacobian defined by the transformation(B.1) for x ∈ Ωj .
For one of the following conditions

(1) f (x)≡ 1,

(2) ∇f · wk = 0, and J = |Ωj |,
the matrixP has the form

Pkj =
{±1 if Ek ⊂Ωj,

0 otherwise.

PROOF. Let Ek ⊂Ωj , then Lemma B.2 shows that∇ · wk = ±1
J

.
If condition (1) holds

Pkj =
∫
Ωj

bj (x)∇ · w̃k(x)dx =
∫
Ωj

∇ · wk(x)dx =
∫
Ωj

±1

J
dx = ±1.

If ∇f · wk = 0 of condition (2) holds

Pkj =
∫
Ωj

bj (x)∇ · (f (x)wk(x)
)
dx =

∫
Ωj

f (x)∇ · wk(x)dx = ±1
∫
Ωj

f (x)
J

dx,
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thus ifJ = |Ωj | it follows from (2.35) that

Pkj = ±1

|Ωj |
∫
Ωj

f (x)dx = ±1.

If Ek �⊂Ωj , then the supports ofbj and∇ · w̃k(x) are disjoint so thatPkj = 0. �

Condition (2) is fulfilled if the elementΩj is rectangular and has two opposite edges
lying in the boundary.

2.7. The Kirchhoff ’s equations

If Lemma 2.1 holds matrixP is an incidence matrix. Therefore, the elements and edges
may be associated with the nodes and branches of a directed graph, so that our quasi-
static electromagnetic model of a PCB is equivalent to a circuit of which the behaviour
is described by the following set ofNbranches+ 2Nnodesequations:

(R − iωL)I − PV = 0,

−PTI + iωMQ= 0,

MTV − DQ= 0,

and at particular nodesj , corresponding to elementsΩj ⊂ ΓV , the excitation conditions

Vj = Vfixed,j .

These equations are theKirchhoff ’s equations, which are used in classical circuit theory.
The meaning of the quantities in these equations is given below:

V ∼ Potentials at nodes,

I ∼ Currents over branches,

P ∼ Incidence matrix between nodes and branches,

R ∼ Resistance (of branches),

L ∼ Inductance (of branches),

MD−1MT ≡ C ∼ Capacitance (between nodes).

After elimination ofQ we obtain a system ofNbranches+Nnodesequations for the un-
knownI andV :

(R − iωL)I − PV = 0 (Kirchhoff ’s voltage law),

−PTI + iωCV = 0 (Kirchhoff ’s current law).

If NV,fixed is the number of potentials for which

Vj = Vfixed,j ,

andNV =Nnodes−NV,fixed the final system of equations hasNbranches+NV unknowns.
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3. Interaction integrals

The Kirchhoff equations, which have been derived in Section 2, describe the behaviour
of an equivalent circuit of a PCB. This system of equations is linear and the coefficients
of the matrices associated with this system are integrals. The fourfold integrals that
represent an electromagnetic interaction between charges and currents in two elements
are calledinteraction integrals. These are the subject of the following sections.

There are two types of interaction integrals: the scalar-type interaction integral (2.38),
representing thecapacitivecoupling between charges on the elements, and the vector-
type interaction integral (2.37), representing theinductivecoupling between currents
flowing through the element edges. Since edges lie in two adjacent quadrilaterals the
vector-type interaction integral (2.37) is an assemblage of four integrals over quadri-
laterals. The integrals, defined on the quadrilateralsΩj andΩi , are of the following
form

(3.1)I =
∫
Ωj

ψ̃j (x) · Ii (x)dx,

where the inner integralIi , called thesource integral, is

(3.2)Ii (x)=
∫
Ωi

G(x′,x)ψ̃i(x′)dx′.

Hereψ̃i andψ̃j are vector valued edge functions (cf.w̃k , w̃l in Section 2.6) for vector-
type integrals and scalar valued element functions (cf.ci , cj ) for scalar-type integrals.
Theψ̃i andψ̃j contain a factorf (x)= 1√

d(s1,s2)
, defined in Appendix A. This function

is singular on the boundary of the domain of the conductors.G is the Green’s function,
which is singular if|x′ − x| = 0, i.e., in the case of self-interaction (Ωi =Ωj ) or if the
integration elements are neighbours. In the following sections it will be assumed that
k|x′ − x| ' 1 so that the expressions of Green’s functions given in Section 2.4 reduce
to thequasi-staticform

(3.3)G(x′,x)=
N∑
k=1

ck|x′
k − x|−1,

whereck is a scalar or matrix depending on the type of the integral, andN the number
of images. Further, the factor 4π in the denominator ofG(x′,x) is omitted.

In some special cases (a part of) the integral can be evaluated analytically. For con-
stantψ̃j and ψ̃i and rectangular quadrilateralsΩj andΩi with corresponding edges
in parallel the integralI can be evaluated analytically. For constantψ̃j and ψ̃i and
arbitrary, convex, quadrilateralsΩj andΩi the inner integralIi can be evaluated ana-
lytically. For the vector valued̃ψj andψ̃i with constantf only the inner integral ofIi
can be evaluated analytically. The analytical approach for these integrals is discussed in
Sections 5 (scalar case) and 8 (vector-valued case).

In all other cases the integralI has to be evaluated numerically. For the numeri-
cal integrationquadrature rulesare needed. Several quadrature rules are discussed in



674 A.J.H. Wachters and W.H.A. Schilders

Section 4, in particular thePatterson’s quadrature rules, which have the fastest con-
vergence rates. However, as will be shown in that section, quadrature rules only reach
fast convergence if the integrand is smooth enough, i.e., the integrand must ben times
differentiable over the whole integration interval, forn large enough. Singularity of the
integrand leads to very slow convergence. Therefore, methods to regularise or eliminate
these singularities have to be investigated.

In Section 6 some methods are discussed by which the inner integrand is regularised
such that it is smooth enough for integration by a quadrature process. The sources of
the singularities in the inner integral are the Green’s function and the factor for the
boundary singularity. Regularisation of the Green’s function is done by transformation
to polar coordinates. For this purpose the element has to be divided into triangles, each
of which has one edge of the element as base and the projection of the quadrature point
of the outer integralI on the source element as vertex. The regularisation of the factor
for the boundary singularity has to be treated in a special way. In particular, the treatment
of the ‘flat’ triangles deserves special attention.

After numerical evaluation of the inner integral the outer integral only contains a
factor for the boundary singularity. Regularisation of this singularity is done by a simple
substitution, which is discussed in the last subsection of Section 6.

Throughout this chapter the integration domain of the outer integral,Ωj , is referred
to as theobject elementand the integration domain of the inner integral,Ωi , as the
source element. If the “distance” between the source and object element is large enough,
then the Green’s function can be approximated satisfactorily with aTaylor expansion.
In Section 7 an error estimate of the Taylor expansion dependent on the distance will
be given. In the same section themoment integralsare introduced. These aretwofold
integrals which, possibly, still contain the boundary singularity. After regularisation of
this singularity, which can be done by an analogous substitution as discussed for the
outer integral in the last subsection of Section 6, the moment integral can be evaluated
by Patterson’s quadrature process. The interaction integralI can be written as a linear
combination of products of these moments.

This method has the advantage that, instead of a large number (quadratic with the
number of elements or edges) of fourfold integrals, only a small number (linear with
the number of elements or edges) of twofold moment integrals has to be evaluated.
Moreover, these moment integrals can be evaluated in advance. Since it saves a lot of
computer time, this method is preferred as an alternative for the numerical treatment of
Section 6, if the distance between the source and object element is sufficiently large.

4. Numerical integration

Since most of the integrals, discussed in the previous chapters, cannot be evaluated
analytically, we have to rely on numerical integration methods. For a detailed discussion
of these methods see DAVIS and RABINOWITZ [1984].

In this chapter several numerical integration methods are discussed, in particularPat-
terson’squadrature formulae. Because special transformations are needed to regularise
the singularity of the integrand, only one-dimensional Patterson’s rules are used. First
follows a short introduction toquadrature formulae.
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4.1. Quadrature formulae

The essence of numerical quadrature is the approximation of an integral by a linear
combination of the values of the integrand. Consider the integral

I (f )=
∫ b

a

f (x)dx,

which has to be numerically evaluated. A quadrature formula is given by

(4.1)K(f )=
n−1∑
i=0

wif (xi),

wheref (x) is an arbitrary (smooth) function,xi are different abscissae in the integration
interval andwi are the corresponding weights.

Often, we choose the weights and abscissae such that the rule is exact for polynomials
up to a certain degree. Given an arbitrary set ofn distinct abscissaexi ∈ [a, b], the
corresponding weights can be determined by solving the linear system

(4.2)
n−1∑
i=0

wixi
k =

∫ b

a

xk dx, for k = 0, . . . , n− 1.

Note that the coefficient matrix(xki ) of the above system is a Vandermonde matrix, and
therefore, non-singular ifxi �= xj for i �= j . Hence, there is always a unique solution.

If the nodesa = x0 < · · ·< xn−1 = b are equidistant, these quadrature formulae are
calledNewton–Cotesformulae.

For thewi ’s obtained by solving the system (4.2) the integration formula (4.1) is at
leastexactfor polynomials of degreen−1. If f is sufficiently smooth, sayf ∈ Cn[a, b],
then the error is given by∣∣I (f )−K(f )

∣∣= Cf (n)(ξ)(b− a)n+1, ξ ∈ (a, b),
whereC is a constant andf (n) denotes thenth derivative off .

When the behaviour of the function to be integrated is very distinct on different parts
of the integration interval, it is advantageous to subdivide the interval. A Newton–Cotes
formula can be applied to each subinterval. If the subdivision of the interval is done
automatically it is called anadaptivesubdivision. Anon-adaptivesubdivision is char-
acterised by a predetermined choice of subdivision points.

Some examples of quadrature rules.Some integration formulae of the Newton–Cotes
type, that approximate the integral

∫ b
a
f (x)dx, and the corresponding error formulae

are given below:

KM = (b− a)f

(
b+ a

2

)
,

I −KM = 1

24
(b− a)3f ′′(ξM) (Midpoint rule),
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KT = b− a

2

{
f (a)+ f (b)

}
,

I −KT = −1

12
(b− a)3f ′′(ξT ) (Trapezoidal rule),

KS = b− a

6

{
f (a)+ 4f

(
b+ a

2

)
+ f (b)

}
,

I −KS = −1

90

(
b− a

2

)5

f (4)(ξS) (Simpson’s rule),

where theξM , ξT , ξS are points in the interval(a, b) depending on the functionf to be
integrated.

Forn-point Newton–Cotes formulae (n� 8) the associated weights are positive. The
next theorem shows that these formulae are stable.

THEOREM 4.1 (Stability). Consider then-point quadrature formula

K(f )=
n∑
i=1

wif (xi),

to approximate the integral
∫ b
a
f (x)dx. If the weights are all nonnegative, i.e.,wi � 0,

the quadrature formula is stable.

PROOF. Let ε(x) be a perturbation off (x) and letεf be a constant such that|ε(x)| �
εf for all x ∈ [a, b]. Then, from the positivity of the weights it follows that∫ b

a

dx = (b− a)=
n∑
i=1

wi =
n∑
i=1

|wi |,

hence,

n∑
i=1

wiε(xi)� (b− a)εf . �

A reason not to use higher order Newton–Cotes formulae (n > 8) is the possible in-
stability due to negative weights. Instead one could use lower order formulae on subin-
tervals of[a, b].

Repeated quadrature.The successive application of a quadrature formula on ever
smaller subintervals of[a, b] to obtain an increasingly better approximation of the inte-
gral is calledrepeated quadrature. Here, we give an example for the trapezoidal rule.

Divide the interval[a, b] in n equal subintervals[xi−1, xi] of length h, such that
a = x0 < x1 < · · · < xn−1 < xn = b and whereh = b−a

n
. Repeated application of the

trapezoidal rule gives

Tn = h
{1

2f (x0)+ f (x1)+ · · · + f (xn−1)+ 1
2f (xn)

}
.
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Assuming thatf is sufficiently differentiable, the error is given by (for a proof see
DAVIS and RABINOWITZ [1984, Section 2.9])

I − Tn = C1h
2 +C2h

4 + · · · +Cnh
2n +O(h2n+2),

where the constantsCi depend onf , but are independent ofh. The following applica-
tion of repeated quadrature is based on this error formula.

Romberg integration. Suppose one has a functionf ∈ C2(n+2)[a, b], where[a, b] is
an interval of lengthh0 in R, and the approximationsT (0)0 , T

(0)
1 , . . . , T

(0)
n of the inte-

gral of f over [a, b]. TheseT (0)i have been obtained by applying repeated trapezoidal
rules on the 2i subintervals of lengthhi , wherehi = 2−ih0. Again, the errors for the
approximations are given by

I − T
(0)
i =C1h

2
i +C2h

4
i + · · · +O

(
h

2(n+2)
i

)
=C1h

2
02−2i +C2h

4
02−4i + · · · +O

(
h

2(n+2)
i

)
.

Since the first terms inI−T (0)i−1 andI−T (0)i areC1h
2
i−1 andC1(2−1hi−1)

2 = 1
4C1h

2
i−1,

respectively, one can eliminate these terms by applyingRichardson extrapolationto the
sequenceT (0)0 , . . . , T

(0)
n :

T
(1)
i = 4T (0)i − T

(0)
i−1

3
, for i = 1, . . . , n.

The errors for the newly obtained sequence of approximations are

I − T
(1)
i =D2h

4
i +D3h

6
i + · · · +O

(
h

2(n+2)
i

)
=D2h

4
02−4i +D3h

6
02−6i + · · · +O

(
h

2(n+2)
i

)
,

whereDi = 22−22i

22−1
Ci . This process can be applied recursively on the sequences by

T
(k)
i = 22kT

(k−1)
i − T

(k−1)
i−1

22k − 1
, for i = k, . . . , n,

and the error forT (n)i is

I − T
(n)
i = 2n(n+1)Cn+1h

2(n+1)
i +O

(
h

2(n+2)
i

)= O
(

2n(n+1)

4i(n+1)
h

2(n+1)
0

)
.

Thus, byrepeatedRichardson extrapolation, we get theRomberg integration method,
so that the following theorem holds.

THEOREM 4.2. Supposef ∈ C∞[a, b], then for i → ∞ the sequencesT (k)i , con-

structed as described above, converge towards
∫ b
a
f (x)dx for everyk = 0,1, . . . with

error O(h2k+2
i ).

Moreover, the diagonalT (n)n converges with errorO(h2n+2
n ).
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TABLE 4.1
Romberg integration of the exponential function

i T
(0)
i

T
(1)
i

T
(2)
i

T
(3)
i

T
(4)
i

0 2.03663128
1 1.28898621 1.03977118
2 1.06215961 0.98655075 0.98300272
3 1.00205141 0.98201534 0.98171298 0.98169251
4 0.98679198 0.98170551 0.98168485 0.98168441 0.98168437

EXAMPLE. Table 4.1 shows the results of the Romberg method for the integral∫ 4
0 e−x dx (≈ 0.98168436). We can see thatT (n)n for n > 0 gives a much more accu-

rate approximation thanT (0)n . For the calculation ofT (0)0 , . . . , T
(0)
n a total of 2n + 1

function evaluations are needed.
Note, that these function evaluations are only necessary for the calculation ofT

(0)
i , so

that by repeated Richardson extrapolation with little extra cost an even better approx-
imation can be obtained. It can also be proven that the sequence(T

(k)
i )∞i=k converges

faster towards
∫ b
a
f (x)dx than(T (k−1)

i )∞i=k−1.

4.1.1. The Gaussian quadrature formulae
Gauss has proven that ann-point quadrature formula can be found which is exact for
polynomials up to degree 2n− 1 and that this is the highest possible degree. This will
be shown after the following definitions.

DEFINITION 4.1. Letw(x) be a continuous function on(a, b), withw(x)� 0 on[a, b].
We define theinner productwith respect to the weight functionw(x) as

〈f,g〉 =
∫ b

a

w(x)f (x)g(x)dx, f, g ∈ C[a, b].

DEFINITION 4.2. Let{Fi(x), i = 0, . . . , n} be a set of nonzero polynomials withFi of
degreei. The polynomials are said to beorthogonalon [a, b] with respect to the inner
product〈 , 〉 if they satisfy

〈Fi,Fj 〉 = 0 if i �= j.

SupposeF2n−1(x) is an arbitrary polynomial of degree 2n−1. This can be expressed
as

F2n−1(x)= Pn(x)Qn−1(x)+Rn−1(x),

where Pn is an nth degree polynomial withn distinct roots in [a, b]. Let these
roots be the abscissae of a new quadrature formula. Then, this formula will integrate
Pn(x)Qn−1(x) to zero and, by construction of the corresponding weights (see (4.2)),
it will integrateRn−1(x) exactly, since this is a polynomial of degreen− 1. Hence, if
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Pn(x) satisfies

(4.3)
∫ b

a

Pn(x)Qn−1(x)dx = 0

for any polynomialQn−1(x) of degreen−1,F2n−1(x)will be integrated exactly by this
quadrature formula. SincePn(x)2 � 0 is not integrated exactly, this is also the highest
possible degree.

We must find aPn(x) such that condition (4.3) will be satisfied. This is the same as∫ b

a

Pn(x)

n−1∑
i=0

aix
i dx = 0, for arbitraryai,

so that for each individual term:

(4.4)
∫ b

a

Pn(x)x
i dx = 0, for i = 0, . . . , n− 1.

If the ith degree polynomialsPi(x), i = 0, . . . , n, form an orthogonal set these condi-
tions are satisfied, because any(n−1)th degree polynomial can be expressed as a linear
combination ofPi(x), i = 0, . . . , n− 1.

Consider the inner product

〈f,g〉 =
∫ b

a

f (x)g(x)dx,

and takea = −1 andb= 1. TheLegendre-polynomials (see Appendix C) are polynomi-
als, that are mutually orthogonal with respect to this inner product, and therefore, they
satisfy property (4.4). Hence, the quadrature formulae, of which the abscissae are the
roots of the Legendre polynomials and the weights are constructed by solving Eqs. (4.2),
have the property of integratingF2n−1(x) exactly on[−1,1]. The following theorems
hold. Theorem 4.4 proves the stability of Gaussian quadrature formulae.

THEOREM 4.3. Then-point quadrature formulaK(n)
G , with abscissae the roots of the

Legendre polynomialPn(x) (the Gaussian quadrature formula), is exact for all polyno-
mials inΠ2n−1[−1,1]. If f (x) ∈ C2n[−1,1], the error incurred in integratingf (x) is
given by

I (f )−KG(f )= 22n+1(n!)4
(2n+ 1)((2n)!)3f

(2n)(ξ), ξ ∈ (−1,1).

PROOF. For the error estimate see DAVIS and RABINOWITZ [1961, pp. 428–437]. �

THEOREM 4.4. The weightswi for a Gaussian formulaK(n)
G are positive.

PROOF. Let

li (x)=
n∏
j=1
j �=i

(x − xj ) (∈Πn−1).

Then,li (xj ) �= 0 for i = j andli (xj )= 0 for i �= j .
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The Gaussian formula certainly is exact forli (x)2. Hence, from

0<
∫ 1

−1
li (x)

2 dx =
n∑
j=1

wj li(xj )
2 =wili(xi)

2

it follows thatwi > 0 for all i = 1, . . . , n. �

In aquadrature processquadrature rules of increasing order are applied successively,
until the (estimated) relative error is smaller than a given tolerance. The absolute error
can be estimated by taking the difference between the last two integral approximations,
so that the relative error is estimated by the ratio of the absolute error to the last approx-
imation. The following corollary holds.

COROLLARY 4.1. The Gaussian quadrature processK(n)
G is convergent for every func-

tion f (x) which is Riemann-integrable in[−1,1], i.e.,

lim
n→∞K

(n)
G (f )=

∫ 1

−1
f (x)dx.

PROOF. See DAVIS and RABINOWITZ [1984, Section 2.7.8]. �

Unfortunately, all the roots of the different Legendre polynomials, except zero, are
different. Thus, the Gaussian quadrature process is rather inefficient, since in a step of
the process no use is made of the integrands evaluated in the preceding steps. In the next
subsection a more efficient method will be discussed.

4.2. Kronrod’s extension of quadrature formulae

KRONROD[1965, p. 597] has suggested an extension of ann-point quadrature formula,
by addingn+1 new abscissae to the original set, to yield a quadrature formula of degree
3n+ 1 (n even) or 3n+ 2 (n odd). This has the advantage that integrand evaluations
needed for ann-point quadrature rule can be used again for the(2n+ 1)-point quadra-
ture rule. In the discussion of the Kronrod scheme we will restrict ourself to integrals
with integration interval[−1,1]. However, the results are applicable to integrals with
an arbitrary finite interval[a, b].

Let p be the number of points added to the original set of points and letFn+2p−1 be
an arbitrary polynomial of degreen+ 2p − 1. After division with remainder, this can
be expressed as

Fn+2p−1 = P̃n+pQp−1 +Rn+p−1.

HereP̃n+p is a polynomial whose roots are then+ p abscissae of the new, extended
quadrature formula. SinceRn+p−1 is some polynomial of degreen + p − 1, it can
always be exactly integrated by a(n + p)-point formula. Furthermore,Qp−1 can be
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expressed as

Qp−1 =
p−1∑
i=0

cix
i .

Therefore, ifP̃n+p satisfies∫ 1

−1
P̃n+pxi dx = 0, for everyi = 0, . . . , p− 1,

then∫ 1

−1
P̃n+pQp−1 dx = 0.

Since
∫ 1
−1Fn+2p−1 dx = ∫ 1

−1 P̃n+pQp−1 dx + ∫ 1
−1Rn+p−1 dx, the quadrature formula

is exact for all polynomials inΠn+2p−1.

4.2.1. Application to Gauss–Legendre
Takep = n+1 andPn thenth degree Legendre polynomial. This choice ofp yields the
number of points required to subdivide the intervals spanned by then original Gauss
points and the boundaries (see next subsection). Let

P̃n+p =Kn+1Pn,

thenKn+1 can be determined by expanding it as a polynomial,

Kn+1(x)= xn+1 +
n∑
i=0

aix
i .

The coefficientsai are calculated by solving the linear system∫ 1

−1
Kn+1(x)Pn(x)x

k dx = 0, k = 0, . . . , n.

As a result we can construct a quadrature formula, of which the abscissae are then

Gauss-points and then+ 1 roots ofKn+1. The corresponding weights are determined
by solving the system (4.2), the method described earlier. The obtained formula is exact
for F3n+1. From ann′-point quadrature formula, withn′ = 2n + 1, a new quadrature
formula can be constructed by applying Kronrod’s method to thesen′ points. The ab-
scissae of this formula are the originaln′ points and then′ + 1 added points. The re-
sulting quadrature formulae is exact forF3n′+1. Since the formulae are symmetrical in
the range interval[−1,1] (if xi is a root, also−xi is a root) odd functions are always
integrated exactly. Hence, the effective degree can be increased to 3n+2 whenn is odd.

4.2.2. Patterson’s quadrature formulae
PATTERSON [1968] has applied the Kronrod’s method successively, starting with a 3-
point Gaussian quadrature formula and developed a stable algorithm to calculate the
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nodes and corresponding weights of these quadrature formulae. Thus, he has derived
a sequence of quadrature formulae of degreesn= 7,15,31,63,127,255 and 511. The
great advantage of these formulae compared to the Gaussian formulae is that all function
evaluations of ann-point formula can be used in the extended(2n+ 1)-point formula.
The condition for Patterson’s quadrature formulae to be stable is the positivity of the
weights.

First we will give a justification for the choice of addingn+1 points to then original
Gauss-points.

LEMMA 4.1. Letx(n)1 , . . . , x
(n)
n be the zeros of the Legendre polynomialPn(x) of degree

n and lety(n)1 , . . . , y
(n)
p bep > n

2 new points within the interval(−1,1). LetK(f ) be
an extended quadrature formula

(4.5)K(f )=
n∑
j=1

w
(n)
j f

(
x
(n)
j

)+
p∑
i=1

w̃
(n)
i f

(
y
(n)
i

)
to approximateI (f ) = ∫ 1

−1f (x)dx. If this formula is exact forf ∈ Πn+2p−1, then
p > n.

PROOF. For k ∈ {1, . . . , p} defineP ∗
n (x) =∏n

j=1(x − x
(n)
j ), thenth degree Legendre

polynomial with leading coefficient 1, andsk(x)=∏p

i=1
i �=k

(x − y
(n)
i ). Let

gk(x)= P ∗
n (x)sk(x), P ∗

n ∈Πn, sk ∈Πp−1.

If p � n

I (gk)=
∫ 1

−1
gk(x)dx =

∫ 1

−1
P ∗
n (x)sk(x)dx = 0,

sinceP ∗
n ⊥ sk ∈Πn−1. But sincegk ∈Πn+p−1, it follows that

0 = I (gk)=K(gk)

=
n∑
j=1

w
(n)
j gk

(
x
(n)
j

)+
p∑
i=1

w̃
(n)
i gk

(
y
(n)
i

)
= 0+ w̃

(n)
k gk

(
y
(n)
k

)
.

Sincegk(y
(n)
k ) �= 0 we find thatw̃(n)k = 0. This holds for allk � p, which means that

we haveK(f ) =∑n
j=1w

(n)
j f (x

(n)
j ), which is the original Gauss formula. Therefore,

Pn(x)
2 ∈Π2n would be integrated to zero. However, ifp > n

2, the formula should be
exact forf ∈Π2n+1. But sincePn(x)2 � 0 we have a contradiction. Hencep > n. �

From this lemma it follows that for exact integration of functionsf ∈Πn+2p−1 the
conditionp � n+ 1 is necessary. Let us considerp = n+ 1. MONEGATO [1976a] has
proven the following theorem.
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THEOREM 4.5. Let (4.5)be an extended Gauss–Legendre rule, then allw̃
(n)
i > 0 if and

only if the nodesx(n)j andy(n)i interlace.

SZEGÖ [1934] has proven that the nodesx(n)j andy(n)i interlace. Hence, the previous

theorem shows that the weightsw̃(n)i are all positive. Furthermore, MONEGATO[1976b]
has proven the next theorem.

THEOREM 4.6. The weightsw(n)j of the extended Gauss–Legendre rules are positive.

It should be noted that the weightsw(n)j arenot the original Gauss weights. Although
the weights of the extended Gauss–Legendre rules are all positive, the positivity of the
weights ofall successively obtained Patterson’s rules has not been proven yet. However,
from the tables it follows that the weights associated with the successive Patterson’s
quadrature rules (based on the 3-point Gauss–Legendre rule) until order 511 are all
positive. Hence, the quadrature process by these quadrature rules is stable. Looking at
Fig. 4.1 the conjecture might raise that the weights for higher order formulae are also
positive.

Furthermore, tests have shown that the Patterson’s rules convergefaster to the true
values of the integrals than the Gauss–Legendre rules for the same number of quadrature
points. This was a reason for PATTERSON[1968] to state the following conjecture.

FIG. 4.1. The nodesxi plotted against the weightswi of the Patterson’s 63-point formula in(−1,0] and the
15-point formulae in[0,1). The weights are scaled such that they can be compared.



684 A.J.H. Wachters and W.H.A. Schilders

CONJECTURE 4.1. The quadrature process by Patterson’s rules is stable anduni-
formly convergent for every functionf (x) which is Riemann-integrable in[−1,1].

4.3. Comparison of integration methods

Next, we will compare the following four integration methods for some typical exam-
ples:

1. Romberg’s rule
Repeated trapezoidal rules and Richardson extrapolation until a certain accuracy
has been reached. Error:O(( b−a

2k
)2(1+k)) for depthk, i.e., 2k + 1 function evalua-

tions.
2. Adaptive, recursive Simpson’s rule

Repeated Simpson’s rules on each subinterval recursively, until a certain tolerance
level has been reached on each of the subintervals. Error:O(( b−a

2k
)4) for depthk

(the smallest subinterval has length(b− a)2−k).
3. Adaptive, recursive Newton–Cotes 8 panel rule

Repeated Newton–Cotes rules, where each interval is divided into 8 subintervals,
recursively, until a certain accuracy has been reached on the subintervals. Error:
O(( b−a

2k
)9) for depthk.

4. Patterson’s quadrature rules
Successive extension of the Gauss–Legendre rule, up to degree 63.

The benefit of the Romberg’s rule is its high theoretical convergence rate and the
simplicity of the algorithm, and of an adaptive method its local refinement in the neigh-
bourhood of a singularity. The first three methods use a 2-, 3- and 9-point Newton–Cotes
formulae, and therefore, are only exact up to the corresponding degrees. For polynomial
functions Patterson’s rules of sufficiently high degree are exact. Therefore, we have cho-
sen irregular integrands for comparison of the methods, so that none of these methods
will be exact, but all converge to the exact values of integrals.

A measure for the convergence rate of the different methods is the number of nec-
essary function evaluations to obtain a result with a given accuracy. In Table 4.2 the
number of function evaluations is given for several tolerance levels for the relative er-
ror.

From the tables it is obvious that for the integrands chosen the Patterson’s method is
always the best choice. Compared to the other methods the number of function evalua-
tions is very small. Since the Romberg’s algorithm available to us makes use of global
refinement for a singularity somewhere on the interval, the number of evaluation points
becomes very large over the complete interval. Since Simpson’s rule is a low order
formula, it needs many subdivisions to obtain a sufficiently small error.

It appears that the available Romberg’s algorithm and the adaptive Simpson’s method
are too expensive to obtain a satisfactory result. The adaptive Newton–Cotes 8 panel
method is globally quite good, but the number of iterations, and therefore, the number
of function evaluations is still quite large, because of its low order formula.
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TABLE 4.2
Comparisons of the number of function evaluations needed for the different methods discussed, tested for

several irregular functions. The tolerance is an upper bound for the absolute relative error

I = ∫ 1
0 ex dx I = ∫ 1

0
1

1+x2 dx

Tol. 10−3 10−6 10−9 10−12 Tol. 10−3 10−6 10−9 10−12

Romb 5 9 17 33 Romb 9 33 65 129
AdSi 9 33 513 4097 AdSi 9 89 937 7885
ANC8 33 33 33 33 ANC8 33 33 49 113
Patt 7 7 15 15 Patt 7 15 31 31

I = ∫ 1
0 x

√
x dx I = ∫ π

0
1

5+4cosx dx

Romb 9 129 2049 32769 Romb 17 129 129 513
AdSi 61 269 1965 6765 AdSi 37 321 3625 8193
ANC8 33 177 273 497 ANC8 33 65 129 289
Patt 7 31 63 63 Patt 15 31 63 63

4.3.1. Analysis of Patterson’s quadrature rules
In this subsection two extra examples will be shown, that are of special interest for the
study of the interaction integrals. The performance of the Patterson’s quadrature rules
for these integrals will be compared with two other quadrature rules.

The two integrals are:

I1(ε)=
∫ 1

ε

1√
x

dx,

I2(ε)=
∫ 1−ε

ε

1√
x(1− x)

dx.

The smallerε becomes, the better the integration interval approximates the interval
[0,1], and the more irregular the integrands become. Note that the singular behaviour
nearx = 0 for both integrals is about the same. Therefore, only the results forI2(ε) are
shown. Those forI1(ε) are similar.

Table 4.3 shows the fast convergence rate of Patterson’s quadrature rules compared to
the other two methods. The results show that the number of function evaluations for the
available Romberg’s algorithm is too large to get a satisfactory result and that also the
adaptive NC8 method needs too many evaluations. Although the number of evaluations
for Patterson’s rules is restricted to 63, the approximation of the integral is still quite
accurate.

Next, we will compare the integrating power of Patterson’s quadrature rules with that
of the regular Gauss–Legendre rules. Fig. 4.2 shows the results obtained when these
methods are applied to the integrand ofI2(ε), which is not expected to be integrated
exactly by these methods. The relative error is plotted againstε, which determines the
integration bounds. For comparison this figure also shows the results for the Gauss–
Legendre formula using the same number of points. Since ann-point Gauss rule is
exact for polynomials of degree 2n− 1 and ann-point Patterson rule is ‘only’ exact for
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TABLE 4.3
(Absolute) relative errors(|I2 −K|)/|I2| for differentε and the number of function evaluations needed. The
maximum number of function evaluations for the different methods has been set to respectively 63, 8193 and

1048577

ε Patterson Adaptive NC8 Romberg

10−10 3.3 · 10−3 (63) 2.6 · 10−0 (8189) 1.8 · 10−2 (1048577)
10−7 3.0 · 10−3 (63) 7.3 · 10−2 (8181) 1.4 · 10−4 (1048577)
10−5 7.7 · 10−4 (63) 2.6 · 10−3 (8185) 1.3 · 10−11 (1048577)
10−4 2.1 · 10−5 (63) 5.5 · 10−5 (8189) 1.0 · 10−14 (524289)
10−3 1.6 · 10−8 (63) 4.7 · 10−8 (8185) 7.4 · 10−16 (65537)
10−2 exact∗ (63) 1.6 · 10−11 (8189) 4.4 · 10−15 (8193)

∗Exact indicates an accuracy in excess of 16 digits.

FIG. 4.2. Relative error in evaluatingI2(ε) using Patterson-63. The dashed line shows the corresponding
result for Gauss-63. The dotted line (rel. error= 0) indicates an accuracy in excess of 15 digits.

polynomials of3
2n+ 1, one might expect that the Gauss–Legendre rules are better for

higher degree polynomials. However, this is not the case. Tests have been performed,
which show that integrals of high powers ofx are better approximated by Patterson’s
rules than by Gauss–Legendre rules using the same number of points.

Apparently, the performance of Patterson’s rules is superior to that of Gauss–
Legendre rules. Tests on other almost singular integrands, show also that Patterson’s
rules are more accurate than the Gauss–Legendre rules for the same number of quadra-
ture points. In summary, the advantages of the Patterson’s rules above the Gauss–
Legendre rules are
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• All function evaluations of a quadrature rule can be used again in higher order
quadrature rules,

• The relative error can be easily estimated, by taking the difference between two
successive approximations.

5. Analytical integration

As we have already mentioned in Section 3, there are several cases where (a part of)
the integral can be evaluated analytically. Basically, this is the case when the edges of
the interaction domains are not a part of the boundary of the conductor region. A very
special situation occurs when the quadrilateral elements are rectangular and parallel to
the axes of the coordinate system. In that case the interaction integral with scalar valued
basis functions can be evaluated completely analytically. For quadrilaterals which are
not necessarily rectangular the partly analytical evaluation of the integrals is discussed
in this section.

5.1. Analytical formula for scalar inner integral

In this subsection we consider the interaction integral with scalar valued basis functions.
If none of the edges of the source element lie in the boundary of the conductor region,
the factor for the boundary singularity is constant, therefore, the scalar basis functions
are constant. In that case the inner part of the interaction integral can be evaluated com-
pletely analytically. According to expression (3.2) the inner integral has the form

Ii =
∫
Ωi

G(x′,x)dx′,

wherex = (x, y, z) is a fixed point of the interior of the object element. In this section
only one term of the Green’s function,G(x′,x), of expression (3.3) will be taken into
account.

The source quadrilateralΩi can be divided into triangles, of which the projection of
x on the plane of theΩi is the common vertex (cf. Fig. 6.1). After transformation to
polar coordinates, the inner integralIi can be written as the sum of the four integrals
over the triangles:∫

Ωi

1

|x − x′| dx′ =
4∑
j=1

∫ ϕ2j

ϕ1j

∫ hj /cosϕ

0

r√
r2 + z2

dr dϕ,

whereϕ1j and ϕ2j are the polar angles corresponding to thej th edge ofΩi , r2 =
(x − x′)2 + (y − y′)2 andz stands forz− z′ (see Fig. 5.1).

Integration overr gives us

Ii =
4∑
j=1

{∫ ϕ2j

ϕ1j

√
h2
j

cos2ϕ
+ z2 dϕ − |z|(ϕ2j − ϕ1j )

}
· sign(hj ).
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FIG. 5.1.

Finally, after the introduction ofp2
j = z2

h2
j+z2 , tj =

√
1− p2

j sin2ϕ andqj =
√

1− p2
j ,

we obtain

Ii =
4∑
j=1

{√
h2
j + z2

∫ ϕ2j

ϕ1j

√
1− p2

j sin2ϕ

cosϕ
dϕ − |z|(ϕ2j − ϕ1j )

}
· sign(hj )

=
4∑
j=1

{√
h2
j + z2

[
1

2
qj ln

tj + qj sinϕ

tj − qj sinϕ
+ pj arcsin(pj sinϕ)

]ϕ2j

ϕ1j

− |z|(ϕ2j − ϕ1j )

}
· sign(hj ).

Note that ifhj = 0, then cosϕ1j = cosϕ2j = 0, pj = 1, qj = 0 andt1j = t2j = 0, so
that {|z|arcsin(sinϕ)

∣∣ϕ2j
ϕ1j

− |z|(ϕ2j − ϕ1j )
} · sign(hj )= 0.

If z= 0, then

Ii =
4∑
j=1

[
1

2
hj ln

1+ sinϕ

1− sinϕ

]ϕ2j

ϕ1j

.

5.2. Analytical formula for vector valued inner integral

Let us now consider the interaction integrals with vector valued basis functions, with a
constant factor for the boundary singularity. In that case only the inner integral ofIi can
be evaluated analytically. For this purpose we have to define some auxiliary quantities.

5.2.1. Definitions of some auxiliary quantities
Consider the quadrilateralx1 . . .x4, with the vectorsv1 = x12 − (x12 + x34)s2 and
v2 = −x41 − (x12 + x34)s1 for xij = xj − xi , andwi as defined in Appendix B. Af-
ter transformation to the isoparametric coordinatess1 ands2, the integrals over the edge
functionswi of the source elementΩi , for a fixed object pointxm = (xm, ym, zm), have
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the form∫ 1

0

∫ 1

0

wi (s1, s2)

|xm − x′| J (s1, s2)ds1 ds2,

whereJ is the Jacobian|v1 × v2|. This can be rewritten as

(5.1)
∫ 1

0

∫ 1

0

qi (s1, s2)
|xm − x′| ds1 ds2,

whereqi , for j = 1, . . . ,4 are the quadratic functions

(5.2)q1 = (1− s2)v2, q2 = −s1v1, q3 = −s2v2, q4 = (1− s1)v1.

Further, we introduce the vectorv0 = (1− s2)x1 + s2x4 − xm.
Sincex′(s1, s2)= x1+x12s1−x41s2− (x12+x34)s1s2, the square of the denominator

of the integrand of (5.1) can be rewritten as

|xm − x′|2 =Q(s1, s2)= a(s2)+ b(s2)s1 + c(s2)s
2
1,

wherea, b, c are quadratic functions ofs2:

a(s2) = v0 · v0,

= |x41|2s2
2 − 2x41 · xm1s2 + |xm1|2,

b(s2) = 2v1 · v0,

= 2
{
(x12 + x34) · x41s

2
2 − {

(x12 + x34) · xm1 + x12 · x41
}
s2 + x12 · xm1

}
,

c(s2) = v1 · v1,

= |x12 + x34|2s2
2 − 2(x12 + x34) · x12s2 + |x12|2.

5.2.2. Form of the integrals
Since the functionsqi in the expressions (5.2) are linear with respect tos1 ands2, the
integral (5.1) is a linear combination of two integrals of the form:∫ 1

0

1√
Q(s1, s2)

ds1 =
∫ 1

0

1√
a + bs1 + cs2

1

ds1,

∫ 1

0

s1√
Q(s1, s2)

ds1 =
∫ 1

0

s1√
a + bs1 + cs2

1

ds1,

whereQ(s1, s2) is quadratic with respect tos1 ands2 anda(s2), b(s2) andc(s2) are the
quadratic functions as defined above. The integrals can be readily evaluated:

1√
c

ln

(√
c
√
a + b+ c+ c+ 1

2b√
c
√
a + 1

2b

)
,

√
a + b+ c− √

a

c
− b

2c
I0.

After substitution of these integrals in (5.1) we obtain∫ 1

0

∫ 1

0

qi (s1, s2)
|xm − x′| ds1 ds2 =

∫ 1

0
F i ln

(√
c
√
a + b+ c+ c+ 1

2b√
c
√
a + 1

2b

)
ds2

+
∫ 1

0
Gi
(√
a + b+ c− √

a
)
ds2,
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where the vector valued functionsF i andGi are defined by:

F1(s2)= (1− s2)
1√
c

{
−x41 + b

2c
(x12 + x34)

}
,

G1(s2)= −1

c
(1− s2)(x12 + x34),

F2(s2)= b

2c
√
c

{
x12 − s2(x12 + x34)

}
,

G2(s2)= −1

c

{
x12 − s2(x12 + x34)

}
,

F3(s2)= −s2 1√
c

{
−x41 + b

2c
(x12 + x34)

}
,

G3(s2)= 1

c
s2(x12 + x34),

F4(s2)= 1√
c

(
1+ b

2c

){
x12 − s2(x12 + x34)

}
,

G4(s2)= −1

c

{
x12 − s2(x12 + x34)

}
.

After substitution of the expressions fora, b andc in the integrands, we obtain∫ 1

0

∫ 1

0

qi (s1, s2)
|xm − x′| ds1 ds2 =

∫ 1

0
F i ln

( |v1||v1 + v0| + v1 · (v1 + v0)

|v1||v0| + v1 · v0

)
ds2

(5.3)+
∫ 1

0
Gi
(|v1 + v0| − |v0|

)
ds2.

5.2.3. Evaluation for non-singular integrand
If the object pointxm is not in the source element, which means that eitherzm �= 0 or
the projection point lies outside the element, the integrands of (5.3) are non-singular.
Therefore, the integral (5.3) can be evaluated numerically with a satisfactory accuracy.
However, if the distance,h, of xm to the lines2 = constant through the integration point
(s1, s2), which intersects the edgesx23 andx41 of the source element, is almost zero,
the integrand of the first integral of (5.3) is irregular and has to be analysed separately.

Behaviour of the integrand forh→ 0. Let d be defined as illustrated in Fig. 5.2. For
α < π

2 it holds thatd < 0, and forα > π
2 thatd > 0. Note that|v1| > 0, sincev1 is a

convex combination of the edgesx12 andx34, which are both nonzero.
An analysis of the argumentL of the logarithm in the first integral of (5.3) shows that

L= |v1||v1 + v0| + v1 · (v1 + v0)

|v1||v0| + v1 · v0
= |v1 + v0| − d

|v0| − |v1| − d

(5.4)=
√
h2 + d2 − d√

h2 + (|v1| + d)2 − |v1| − d
.
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sinα = h

|v1 + v0| , sinβ = h

|v0|
h= |v0 × v1|

|v1| , d = −v1 · (v0 + v1)

|v1|

FIG. 5.2. For the analysis of the integrand of the first integral of (5.3) a plane has been drawn throughxm
and the lines2 = constant. Note that this line is in the plane of the quadrilateral, butxm is not, if zm �= 0.

For d < 0, L is singular if
√
h2 + (|v1| − |d|)2 = |v1| − |d|, i.e.,h= 0 and|d| � |v1|,

so that forh→ 0 formula (5.4) can only be used ford <−|v1|. Ford = 0,L is singular
if h= 0.

If d > 0 andh→ 0, then|v1 + v0| → d and|v0| − |v1| → d , so that the two terms
in the numerator and the denominator ofL have opposite signs and their value may
become inaccurate due to cancellation of significant digits. This may affect the accuracy
of L. However,L can be reformulated as follows:

L= |v1||v0| − v1 · v0

|v1||v1 + v0| − v1 · (v1 + v0)
= |v0| + |v1| + d

|v1 + v0| + d

(5.5)=
√
h2 + (|v1| + d)2 + |v1| + d√

h2 + d2 + d
.

Since ford > 0 all terms in the numerator and in the denominator of the right-hand
side are positive, both the numerator and denominator do not vanish, so thatL can be
evaluated accurately. Ifd � 0 andh→ 0, then|v0| − |v1| → −d , so thatL is singular.

In summary, ford <−|v1| formula (5.4) must be used and ford > 0 formula (5.5).
However, for−|v1| � d � 0,L is singular forh= 0. In this case the first integral of (5.3)
has to be handled differently as will be shown in the next subsection.

5.2.4. Evaluation for singular integrand
If the integrand of the first integral of (5.3) is singular, some more provisions have to be
made. Note that, ifzm = 0, xm can also be written in isoparametric coordinatess

(m)
i .

The first integral of (5.3),∫ 1

0
F i ln

(√
c
√
a + b+ c+ c+ 1

2b√
c
√
a + 1

2b

)
ds2,

can be rewritten as∫ 1

0
F i ln

((√
c
√
a + b+ c+ c+ 1

2b
)(√

c
√
a − 1

2b
))

ds2

−
∫ 1

0
F i ln

(
ca − (1

2b
)2)ds2,
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the last term of which is singular. After partial integration this integral becomes∫ 1

0
F i ln

(
ca − (1

2b
)2)ds2 = [

F i (s2)L(s2)
]1
0 −

∫ 1

0
F ′
i (s2)L(s2)ds2,

where

(5.6)L(s2)=
∫

ln
(
ca − (1

2b
)2)ds2.

After reformulation of the expressions forxm, v0 andv1:

xm = x1 + x12s
(m)
1 − x41s

(m)
2 − (x12 + x34)s

(m)
1 s

(m)
2 ,

v0 = (1− s2)x1 + s2x4 − xm = x1 − x41s2 − xm

= −x12s
(m)
1 + x41

(
s
(m)
2 − s2

)+ (x12 + x34)s
(m)
1 s

(m)
2

= c0
(
s
(m)
2 − s2

)− ds(m)1 ,

v1 = x12(1− s2)− x34s2

= {
x12
(
1− s

(m)
2

)− x34s
(m)
2

}+ (x12 + x34)
(
s
(m)
2 − s2

)
= d + c1

(
s
(m)
2 − s2

)
,

wherec0 = x41, c1 = x12 + x34 and d = x12(1 − s
(m)
2 ) − x34s

(m)
2 , we obtain for the

argument of the logarithm of integral (5.6):

ca − (1
2b
)2 = |v0|2|v1|2 − (v0 · v1)

2 = |v0|2|v1|2
(
1− (cosβ)2

)
= |v0|2|v1|2(sinβ)2 = |v0 × v1|2
= ∣∣(c0 × c1)

(
s
(m)
2 − s2

)2 + (
c0 + c1s

(m)
1

)× d
(
s
(m)
2 − s2

)∣∣2
= (

s
(m)
2 − s2

)2{
C2(s(m)2 − s2

)2 +B
(
s
(m)
2 − s2

)+A2},
where

C = |c0 × c1|, B = 2(c0 × c1) ·
((

c0 + c1s
(m)
1

)× d
)
,

A= ∣∣(c0 + c1s
(m)
1

)× d
∣∣.

Since the vectorsc0, c1 andd all lie in the same plane,c0 × c1 ‖ (c0 + c1s
(m)
1 )× d, so

that

ca − (1
2b
)2 = y2(Cy + sign(B)A

)2
,

wherey = s
(m)
2 − s2. Therefore, the integral (5.6) becomes∫

lny2 ds2 +
∫

ln
(
Cy + sign(B)A

)2 ds2.

Since dy = −ds2, the first integral becomes∫
lny2 ds2 = −

∫
lny2 dy = −y(lny2 − 2),



Simulation of EMC behaviour 693

and the second integral:∫
ln
(
Cy + sign(B)A

)2 ds2 = −
∫

ln
(
Cy + sign(B)A

)2 dy

= − 1

C

(
Cy + sign(B)A

)(
ln
(
Cy + sign(B)A

)2 − 2
)
.

Hence,

L(s2)= −y{lny2(Cy + sign(B)A
)2 − 4

}
− sign(B)

A

C

(
ln
(
Cy + sign(B)A

)2 − 2
)
.

If C = 0 the integral becomes:

L(s2)= −y(ln(yA)2 − 2
)
.

6. Regularisations

In the previous section, integrands were discussed that did not contain a factor for the
boundary singularity. These could be integrated partly analytically. For integrals with a
factor for boundary singularity numerical methods must be used. As shown in Section 4
a very important condition for the numerical integration to give a satisfactory result
is the smoothness of the integrand. So if the integrand contains singularities quadrature
rules can give very inaccurate results. Since the interaction integral contains the Green’s
singularity as well as the boundary singularity, straightforward numerical integration is
rather unreliable. In this section we will treat the elimination of the singularities by
regularisation of the integrands. The Green’s singularity and the boundary singularity
will be treated separately.

6.1. The inner part of the interaction integral

As shown in Section 3 the interaction integral has the general form:∫
Ωj

ψj (x)√
dj

{∫
Ωi

G(x′,x)ψi(x
′)√
di

dx′
}

dx,

with dj anddi the distance functionsdj (s1, s2) anddi(s′1, s′2), the specific form of which
is given in Appendix A. Without any loss of generality we will assume that thez-co-
ordinate ofx′ is always zero.

The first four subsections of this section deal with theinner part of the interaction
integral

(6.1)Ii =
∫
Ωi

G(x′,x)ψi(x
′)√
di

dx′,

the last subsection with the outer part. In this section only one term of the Green’s
function,G(x′,x), of expression (3.3) will be taken into account.
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FIG. 6.1. Source quadrilateral divided into triangles, determined by the projectionA′ of the object pointA.

Let A be the object pointx, andA′ = (x, y,0), the projection ofA on the source
element plane (see Fig. 6.1). Letr(x, y) = √

(x′ − x)2 + (y′ − y)2, thenG(x′,x) can
be written as|x′ − x|−1 = 1/

√
r2 + z2. Then (6.1) becomes∫ ∫

Ωi

1√
r2 + z2

ψi(x′)√
di

dx′.

This integral has two sources of singularities: the Green’s function(r2+z2)−1/2 and the
boundary singularityd−1/2

i = di(s1, s2)
−1/2. First we will concentrate on the former.

6.2. The Green’s singularity

The expression(r2 + z2)−1/2 depends on the distancez between the planes of the inter-
acting quadrilaterals; forz= 0 it has a singularity inr = 0.

To remove the source of singularity, the quadrilateral will be divided into four trian-
gles, each of which has an edge of the quadrilateral as base and midpointA′ as vertex
(see Fig. 6.1). After transformation to polar coordinates the integral for one of four
triangles becomes:

(6.2)
∫ ϕ2

ϕ1

∫ R(ϕ)

0

r√
r2 + z2

ψi√
d

dr dϕ.

For example, for the triangle#A′CD, ϕ1 andϕ2 are the polar angles corresponding to
A′D andA′C, andR(ϕ)= |A′P |, with P the point on the boundaryCD corresponding
to the angleϕ (see also Fig. 6.3). From the expression (6.2) one can see that ifz= 0, i.e.,
x andx′ are in the same plane, the Green’s singularity has been completely eliminated.
Even forz �= 0 the functionr/

√
r2 + z2 is regular.

6.3. The boundary singularity

To regularize the boundary singularity due tod in (6.2) is much more complicated. In
Appendix Ad is given as a function of the isoparametric coordinates(s1, s2). But the
integrand of (6.2) must be integrated over the variablesr andϕ. Therefore, we need an
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expression of̃si(r, ϕ) as function ofr , ϕ, or an expressionsi(r, ϕ), since the expressions
x′(r, ϕ) andy′(r, ϕ) are well known. An unique expressionsi(r, ϕ) only exists for points
(x′, y′) inside and at the edges of the source quadrilateral, because an extra condition,
0� si � 1, must also be fulfilled.

Before deriving the expressionsi(x′, y′)we will first define some auxiliary quantities.
Having the quadrilateralx1x2x3x4 (in counterclockwise order), the edges can be defined
asxij ≡ (xj − xi ), for j = i mod 4+ 1.

The transformation can be given by

(6.3)x′(s1, s2)= x1 + x12s1 − x41s2 − (x12 + x34)s1s2,

or

x′ − x1 − x12s1 = −{(x12 + x34)s1 + x41
}
s2.

Taking the outer product of the left-hand side with the right-hand side, we obtain an
implicit expression fors1 in terms ofx′ = (x′, y′):

f (s1)ez = (x12 × x34)s
2
1 + {

(x12 × x41)−
(
(x′ − x1)× (x12 + x34)

)}
s1

− (
(x′ − x1)× x41

)= 0,

whereez is the unit vector in thez-direction and(a × b)= (axby − aybx)ez, since the
z-coordinates were assumed to be zero.

Note thatf (0)ez = −((x′ − x1)× x41) andf (1)ez = ((x′ − x2)× x23). For a point
x′ inside or at the edges of the source quadrilateral Fig. 6.2 shows thatf (0) � 0 and
f (1)� 0, and that iff (0)= 0, thenf (1) �= 0, and iff (1)= 0, thenf (0) �= 0. Thus,f
has exactly one root for 0� s1 � 1. For a pointx′ outside the source quadrilateral there
are generally two roots! From (6.3) it follows now

(6.4)s2 = − x′ − x1 − x12s1

x41 + (x12 + x34)s1
= − y′ − y1 − y12s1

y41 + (y12 + y34)s1
.

FIG. 6.2. x′ inside the quadrilateralx1x2x3x4: f has one root for 0� s1 � 1.
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Hence we have an expressionsi(x′, y′) for both isoparametric coordinates in terms of
x′ andy′. As a function of polar coordinates we have

s̃i (r, ϕ)= si
(
x′(r, ϕ), y′(r, ϕ)

)
,

so that the boundary singularity, in polar coordinates, has the form

d
(
s̃1(r, ϕ), s̃2(r, ϕ)

)−1/2
.

The expression ford is too complicated for an analysis of the behaviour of the boundary
singularity. Althoughd is a linear function ofs1 or s2, generally, it is not the geometric
distance from pointx′ to the boundary. Lets′ = |x′(s1, s2) − x′(0, s̃2)| represent the
distance fromx′ to the boundary of the conductor region. The following lemma holds:

LEMMA 6.1. Let s′ be defined as the distance|x′(s1, s2)− x′(0, s̃2)| to the boundary,
wheres̃2 corresponds to the projection ofx′ to the boundary, and letd be the isopara-
metric distance to the boundary in the unit square. Then, ifx′ approaches the boundary,
s′ is approximately proportional tod , i.e.,s′ ≈ Cd , whereC is a constant.

PROOF. Since the source for the boundary singularity is not constant, it may be as-
sumed that the quadrilateral is rectangular. Supposed = s2. Let then x(s1, s2) =
a(s1)s2 +b(s1), for linear functionsa andb. Since the line ‘s1 = constant’ is perpendic-
ular to the boundary, the point on the boundary with the shortest distance tox(s1, s2) is
x(s1,0). Sos′ = |x(s1, s2)− x(s1,0)| = |{a(s1)s2 + b(s1)} − b(s1)| = |a(s1)s2| = Cs2,
sincea(s1) is independent ofs2, hence constant for fixeds1. The proof is analogous for
other boundary singularities. �

The lemma says that, except for a constant,s′ andd are equivalent functions. There-
fore, in the followingd will be represented ass′.

6.3.1. Transformations for one boundary
In order to evaluate the integrals over the triangles, we have to determine the integration
bounds explicitly, in the particular cases. In Fig. 6.1 it can be seen that if one or more of
the edges of the quadrilateral is a boundary of the domain, we have different situations
for the integration triangles. We will first consider the case where the quadrilateral has
only one boundary.

Triangle tangent to the boundary.The integrand with the boundary singularity has,
after transformation to polar coordinates, the general form∫ ϕ2

ϕ1

∫ R(ϕ)

0

ψi√
s′

dr dϕ,

whereR(ϕ) = |A′P |, as can be seen in Fig. 6.3. Here we have the situation that one
edge of the triangle is a boundary.

We want to regularise the boundary singularity by a certain substitution. So we have
to find an expression fors′ in terms of the integration variables. In the picture one
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A′ ≡ (x, y), CD = boundary

r ≡ |A′x′|, R(ϕ)≡ |A′Q|
t2 ≡ |x′Q|, s′ = t2 cosϑ

FIG. 6.3. #A′CD with polar coordinates, where the edgeCD is a boundary of the source domain.

can see that we have chosent2 such thatr = R(ϕ) − t2. To eliminate the
√
s′ sin-

gularity, which is now dependent ont andϕ, we may substitutes′ = t2 cosϑ , where
ϑ = π

2 − � A′QC is dependent onϕ, since the position ofQ is. Thus finally, with these
substitutions the integral becomes∫ ϕ2

ϕ1

∫ √
R(ϕ)

0

ψi√
cosϑ

2t dt dϕ.

Sinceϑ < π
2 , this is a regular integral, which could be evaluated rather accurate by

Patterson, unless the triangle is very flat, i.e.,|π2 − ϑ | small, then we will approach this
integrand in a special way (see Section 6.4).

Triangle without tangent to the boundary.The latter case was a situation where one
edge of the triangle is a boundary. The treatment changes a little if none of the edges
is a boundary. Take, for instance,#A′DE, whereP , which is the intersubsection point
of A′x′ with the edgeDE, is not a boundary point andQ is the intersubsection point
of A′P with the boundaryCD. We will use the same kind of substitutions, but for that
purpose some adaptions have to be made: letq(ϕ) = |A′Q| andR(ϕ) = |A′P |, so we
may substituter = q(ϕ)− t2. Then the inner integral becomes∫ √

q(ϕ)

√
q(ϕ)−R(ϕ)

ψi√
cosϑ

2t dt.

At first sight this seems satisfactory. However, ifA′P ‖CD thenϑ becomes zero, or
at least small if approximatelyA′P ‖CD. This would introduce another singularity,
namely(cosϑ)−1/2. Yet, if ϑ might become small then substitution won’t be necessary
anymore, for in that case

√
s′ changes hardly alongAP , which means that it behaves

very much like a constant. So here we would simply have the original integral∫ R(ϕ)

0

ψi√
s′

dr dϕ.
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A′ ≡ (x, y), CD = boundary

r ≡ |A′x′|, R(ϕ)≡ |A′P |
t2 ≡ |x′Q|, s′ = t2 cosϑ

q(ϕ)≡ |A′Q|

FIG. 6.4. Integration over#A′DE, with boundary edgeCD.

Suppose (see Fig. 6.4)P comes in the neighbourhood ofE, thenQ lies at the other
side ofD so thatA′ lies in betweenP andQ. This means that the substitution becomes
r = t2 − q(ϕ). So the integration bounds will be influenced differently as in the former
case. The actual integral becomes then∫ √

q(ϕ)+R(ϕ)
√
q(ϕ)

ψi√
cosϑ

2t dt.

To distinguish the different cases we could split up the triangle in wedges, as illustrated
in Fig. 6.5, such that we may use the former (or latter) substitution if the angle between
A′P andCD becomes larger than, sayε, or if |cosϑ |> ε, and otherwise we will use
no substitution. Hence for#A′DE we finally have the sum over the integrals.

For the remaining triangles we can use analogous substitutions to these.
Still leaves us the case where the projectionA′ of the object point lies outside the

quadrilateral.

A′ outside the quadrilateral. Suppose now thatA is situated in such a way thatA′
lies outside the quadrilateral. The main difference from the previous cases is that, if we
divide the quadrilateral into triangles, these triangles will overlap and we only want to
integrate over the parts of the triangles that are inside the quadrilateral. If we consider
the integral over#A′BC, then even the whole triangle lies outside the quadrilateral, and
so does#A′CD. So we only have to integrate over the triangles#A′ED and#A′BE.
Let us consider the latter. In Fig. 6.6 we can see that a part of the triangle lies out-
side the quadrilateral. We only want to integrate over the part that intersects with the
quadrilateral, so instead of the bounds 0 andR(ϕ) for integration overr , we will use



Simulation of EMC behaviour 699

I1 =
∫ ϕD

ϕ−ε

∫ √
q(ϕ)

√
q(ϕ)−R(ϕ)

ψi√
cosϑ

2t dt dϕ,

I2 =
∫ ϕ−ε

ϕ+ε

∫ R(ϕ)

0

ψi√
s′

dr dϕ,

I3 =
∫ ϕ+ε

ϕE

∫ √
q(ϕ)+R(ϕ)

√
q(ϕ)

ψi√
cosϑ

2t dt dϕ.

FIG. 6.5.

A′ ≡ (x, y), CD = boundary

r ≡ |A′x′|, q(ϕ)≡ |A′Q|
t2 ≡ |x′Q|, s′ = t2 cosϑ

Rlow ≡ |A′P ′|, Rup ≡ |A′P |

FIG. 6.6. A situation whereA′ lies outside the quadrilateral, where both#A′BC and#A′CD lie completely
outside the quadrilateral, so only integration over#A′ED and#A′BE, therefore the lower integration bound

for r has to be calculated.

the lower boundRlow and the upper boundRup (see the legend with Fig. 6.6), so that
after substitution ofr = t2 + q(ϕ) we obtain the integral∫ ϕE

ϕB

∫ √
Rup−q(ϕ)

√
Rlow−q(ϕ)

ψi√
cosϑ

2t dt dϕ.

The further approach is the same as in the previous subsections.
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A′ ≡ (x, y), rl ∼A′

m1 ≡ �BC, m2 ≡ �DE
xeh= 1

2(m2 −m1)

aeh= d(A′, xeh)

FIG. 6.7. Quadrilateral with two boundaries. On the left side ofxeh the singularity inm1 dominates, on the
right sidem2.

6.3.2. Transformations for two boundaries
In the case that the quadrilateral has two opposite boundariesm1 andm2, the approach
for the boundary singularity{si(1 − si)}−1/2 is almost the same as for one boundary,
except that we distinct the left-hand and the right-hand side ofxeh, wherexeh is the
isoparametric midline betweenBC andDE. The picture shows a particular case, but
we consider the general case, whereA′ can be anywhere, so also outside the quadri-
lateral. Consider#A′CD and we want to integrate over the lineA′Q. Then we have
the integration boundariesrl (∼ A′) andru (this means thatx′ goes from 0 toru). In
Fig. 6.7 it can be seen that the lineA′Q intersects withxeh in the pointrh and that this
intersubsection point lies in betweenrl andru.

Over the line segmentrlrh them1-singularity dominates and over the line segment
rhru them2-singularity dominates. So we can split the integral into a lower and upper
part. For the lower part we use a substitution form =m1, which means: approach the
integrand as ifm1 were the only boundary. For the upper part we will usem = m2,
which means: use the same treatment as with one boundarym2. That is, if we lets′1 ≡
dist(x′,m2) andt22 ≡ |x′Q|, then we use the substitutions′1 = t22 cosϑ . The substitution
for t in r is completely analogue to the previous cases.

If aeh, defined as the distance ofA′ to the midlinexeh, might become zero (A′ lies
on the midline) and the angleϕeh ≈ π

2 , then we will not use a substitution, since the
contribution of the singularity is nearly constant.
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FIG. 6.8. Very flat triangle of heighth.

6.4. Flat triangles

Sometimes we are dealing with flat triangles, which means that they have a very wide
(half) top angle, or, which is the same, a small height compared to the base. Numerical
integration over these kind of triangles (see e.g. Fig. 6.8) to the polar coordinates is not
very accurate, since the inner integral of∫ ϕt

−ϕt

∫ h/cosϕ

0
f (r,ϕ)dr dϕ

varies very rapidly forϕ ≈ ±π
2 . First let us examine this problem in general.

It may be clear that for flat triangles the inner integral of

I =
∫ ϕ2

ϕ1

∫ Ru

Rl

f (r,ϕ)dr dϕ,

as function ofϕ, varies very rapidly. The reason for this is that the range forr , or the
length of the radius over which is integrated, changes fast. A remedy for this would be
adapting the inner integral, such that it becomes a function ofϕ expressing the average
along the radius. Such an integralF(ϕ) could be the following:

F(ϕ)=
(∫ Ru

Rl

f (r,ϕ)dr

)/
(Ru −Rl),

so that we can rewrite

I =
∫ ϕ2

ϕ1

F(ϕ)(Ru −Rl)dϕ.

For the polar radii we haveRl = k′
cosϕ′ andRu = k

cosϕ , wherek′ andk are the distances
of the origin to the intersecting edges,ϕ′ andϕ are the angles with the normal of the
corresponding edge (see Fig. 6.9). So the integral becomes

I =
∫ ϕ2

ϕ1

F(ϕ)

(
k

cosϕ
− k′

cosϕ

)
dϕ.

Since
∫ 1

cosϕ = 1
2 ln 1+sinϕ

1−sinϕ , we can eliminate the factors1
cosϕ by the substitution

(6.5)u= 1
2k ln

(
1+ sinϕ

1− sinϕ

)
− 1

2k
′ ln
(

1+ sinϕ′

1− sinϕ′

)
,

for which du
dϕ = k

cosϕ − k′
cosϕ′ . After this substitution the integral has the form∫ u(ϕ2)

u(ϕ1)

F (ϕ)du.
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For integration overA′P :

Rl ∼A′Q Ru ∼A′P

ϕ1 ∼A′E ϕ2 ∼A′D

FIG. 6.9. Integration over#A′DE in a situation thatA′ near to the edgeBE: if the polar angleϕ goes from
ϕ1 to ϕ2, the intersubsection pointQ goes in the neighbourhood ofE very rapidly alongEB , so that the

lower bound for the polar radiusRl also changes very rapidly.

FIG. 6.10. Flat triangle of heighth in a rectangular element of heightk: for small enoughh the integral over
the triangle can be neglected.

In general this substitution can be used for any triangle, if the range of the polar radius
changes rapidly.

However, in the case that one of the integration bounds for the polar angle is absolute
approximatelyπ2 , we have another tedious situation. When integrating overϕ, the polar
angle goes along the edge opposite to the origin. The intersubsection point with this
edge goes very rapidly in the neighbourhood of the absolute anglesπ

2 (cf. Figs. 6.8 and
6.11). This will result in a functionF , that does not depend very nicely onϕ. We will
discuss this situation in the following subsections.

6.4.1. Triangles inside the quadrilateral
If the origin (the integration point of the object domain) of the polar coordinate system
lies inside the quadrilateral, we have the following situation: suppose the triangleABC

has baseBC, a boundary of the quadrilateralBCDE which is a rectangle of heightk
(cf. Fig. 6.10). Assuming that the base of the triangle has length 2, the heighth depends
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on the size of the half top angleϕt , for which holds:|1 − sinϕt | = ε. Then we can
expressh(ε)= tan(arcsin(1− ε))−1 and for very smallε holdsh(ε)' 1.

In particular we want to examine the singularitys−1/2, wheres is the normalized
distance to the boundaryBC. For the rectangle (size 2× k) the integral becomes then

Ir =
∫ k

0

∫ 1

−1

√
k√

k − y
dx dy =

∫ k

0
2

√
k√

k − y
dy = [−4

√
k
√
k − y

]k
0 = 4k,

and for the triangle (Fig. 6.8) the integral becomes, ifr goes fromA to a point onBC,

It =
∫ ϕt

−ϕt

∫ h/cosϕ

0

r
√
k√

h− r cosϕ
dr dϕ =

∫ ϕt

−ϕt
4

3

h
√
hk

cos(ϕ)2
dϕ = 8

3
h
√
hk tanϕt ,

whereϕt is the half top angle, so tanϕt = 1
h
.

Hence we can give the ratio of the two integrals,It
Ir

, for differenth, to get an idea
of the contribution of the integral over the triangle to the integral over the complete
quadrilateral:

It

Ir
=

8
3

√
hk

4k
= 2

3

√
h

k
.

What we have here is a formula for the rate of contribution of the integral over the
triangle to the integral over the rectangle. Forh small enough the contribution will be
significantly small and can therefore be neglected.

6.4.2. Triangle partly outside the quadrilateral
If the origin of the polar coordinate system lies outside the quadrilateral, but very near
to the edge, we would have a situation that leads to a very unsmooth functionF(ϕ), to
be considered as the average for a certainϕ, as defined above. So here the approach will
be different. Suppose we have a situation as illustrated in Fig. 6.11, whereε is small.
For the new integration variable we will choose a pointu that goes alongVM ′. In order
to determine such anu a few relations have to be looked at. Assume first that we have
anu as described. Then we have

MS =MV + V S =MV + uVM ′,

and we can give an expression for tanϕ (for readability the vectors will now be denoted
without an overline):

tanϕ = yMS

xMS
= yMV + uyVM ′

xMV + uxVM ′
= yMV + uyVM ′

xMV (1− u)
= tanϕl − u tanβ

1− u
,

sincexVM ′ = −xMV . From this we can determineu:

u= 1− tanϕl − tan(ϕl − ε)

tanϕ − tan(ϕl − ε)
,

so that

du

dϕ
= (1− u)2 + (tanϕl − u tan(ϕl − ε))2

tanϕl − tan(ϕl − ε)
.
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I =
∫ ϕu

ϕl

∫ |MQ|
|MS|

f (r,ϕ)dr dϕ

ϕ′ ≡ ϕ + α |MS| = h′
cosϕ′

β ≡ ϕl − ε |MQ| = h

cosϕ

FIG. 6.11. Flat triangle with originM outside the quadrilateral and very smallε: for integration over
#MVT , the polar angleϕ is substituted such thatu becomes the new integration variable, that goes along

the edgeVM ′.

If u goes alongVM ′, and comes in the neighbourhood ofM ′, we have the same diffi-
culty again. To prevent this we can split up the triangle in wedges such that on the lower
wedge (sayu ∈ [0,0.9]) we use the latter method and on the other wedge, the method
discussed in Section 6.4, the substitution (6.5). Unless the lower integration bound of
the polar angle of the upper wedge is still too flat; in that case we do again an analogue
splitting up of the upper wedge, and so on.

6.5. The outer integral

Now that we have a method to evaluate the inner integral for an arbitrary object point
x, we are able to evaluate the outer part of interaction integral. This has the following
form:

I =
∫
Ωj

ψ̃j (x) · Ii (x)dx,

where the inner integralIi is

Ii (x)=
∫
Ωi

G(x′,x)ψ̃i(x′)dx′.
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After transformation to isoparametric coordinates the outer integral has the form

I =
∫ 1

0

∫ 1

0
ψ̃j (s1, s2)J (s1, s2) · Ii (s1, s2)ds1 ds2

=
∫ 1

0

∫ 1

0

ψ(s1, s2)√
d(s1, s2)

ds2 ds1.

The boundary singularities can be divided in three cases and are for each case regu-
larised as follows:

If none of the edges of the corresponding element is a part of the boundary, then there
is no boundary singularity. In that case we simply have:

I =
∫ 1

0

∫ 1

0
ψ(s1, s2)ds2 ds1,

so no substitution is used here.
The approach for an integrand with a factor for the boundary singularity is quite

simple and divided into two cases:
With one edge in the boundary there are four possibilities, wheret = √

d is substi-
tuted:

d = s2 1⇒ I = 2
∫ 1

0

∫ 1

0
ψ
(
s1, s2(t)

)
dt ds1, wheres2 = t2,

d = 1− s1 1⇒ I = 2
∫ 1

0

∫ 1

0
ψ
(
s1(t), s2

)
ds2 dt, wheres1 = 1− t2,

d = 1− s2 1⇒ I = 2
∫ 1

0

∫ 1

0
ψ
(
s1, s2(t)

)
dt ds1, wheres2 = 1− t2,

d = s1 1⇒ I = 2
∫ 1

0

∫ 1

0
ψ
(
s1(t), s2

)
ds2 dt, wheres1 = t2.

With two boundary edges,d has the formsi(1 − si), since the boundaries are always
opposite to each other. Here we substitutet = arcsin(2si − 1):

d = s2(1− s2) 1⇒ I =
∫ 1

0

∫ 1/2π

−1/2π
ψ
(
s1, s2(t)

)
dt ds1,

wheres2 = 1
2(1+ sint),

d = s1(1− s1) 1⇒ I =
∫ 1/2π

−1/2π

∫ 1

0
ψ
(
s1(t), s2

)
ds2 dt,

wheres1 = 1
2(1+ sint).

After these substitutions we have obtained non-singular integrals, which can be evalu-
ated numerically by the method described in Section 4.

It is clear that the complete numerical integration takes a lot of function evaluations,
namelyO(k4), if k is the average number of function evaluations needed for the quadra-
ture with respect to each of the four integration variables. Totally, there areN2 of such
interaction integrals, whereN = n+m is the number of elements and edges, so for the
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evaluation of these integrals a total ofO(N2k4) function evaluations would be needed.
This number grows very rapidly ifn is of order 103 or 104, andk might be 15 or 31 for
irregular integrands. For a great part of the integrals an alternative method can be used.
This is discussed in the next section.

7. Taylor expansion

In the previous section we have seen that the evaluation of the fourfold interaction in-
tegrals by numerical quadrature can take very much computer time. If the “distance”
between two elements is larger than a given tolerance, the Green’s function in the inte-
grand of the interaction integral can be approximated byTaylor expansion. This method
will be discussed in this section. In Section 7.7 a relation will be derived between the
distance and the relative error made in the evaluation of the integral by this method.

7.1. Interaction integral in general form

The interaction integrals (2.37) and (2.38) belonging to the matricesL andD have the
general form

(7.1)I =
∫
Ωi

ψ̃i(x) ·
∫
Ωj

ψ̃j (x′)G(x′ − x)dx′ dx.

Hereψ̃i(x), ψ̃j (x) are vector valued basis functions (cf.w̃k, w̃l in (2.37)) or scalar val-
ued basis functions (cf.ci, cj in (2.38)) belonging toΩi andΩj , respectively, possibly
containing a factor for singularity. Further,x andx′ represent points in the object domain
Ωi and the source domainΩj , respectively.

Thedistancebetween two disjoint elementsΩi andΩj (see Fig. 7.1) will be defined
by

rmin(Ωi,Ωj )= min
{|x′ − x|; x ∈Ωi, x′ ∈Ωj

}
.

If the distance is large enough we can apply Taylor expansion to the Green’s function
G with respect to(x′ − x′

m) and(x − xm), wherex′
m andxm are the midpoints of the

source and object element, respectively.

FIG. 7.1. Interaction between quadrilateral elements,Ωi 2 x andΩj 2 x′. These domains must be disjunct.
x′
m andxm are the midpoints of the elements.
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7.2. Taylor expansion of a one-term Green’s function

Consider the one-term Green’s function

G(x′ − x)= 1

|x′ − x| .

After the substitutiony = x′ − x and the second order Taylor expansion ofG(y) with
respect toym = x′

m − xm:

G(y)=G(ym)+ (∇G)(ym)T[y − ym]
(7.2)+ 1

2[y − ym]T(∇(∇G))(ym)[y − ym] +O
(|y − ym|3),

where the expressions for the gradient and the Hessian are given by

(∇G)(ym)= −G3(ym)ym,(∇(∇G))(ym)= −G3(ym)I + 3G5(ym)(ym ⊗ ym).

I is the identity matrix andu⊗v stands foruvT. Using the following shorthand notation

gm =G(ym), gm = (∇G)(ym), Gm = (∇(∇G))(ym),
the Taylor approximation for the one-term Green’s function becomes

(7.3)G(y)≈ gm + gT
m(y − ym)+ 1

2(y − ym)TGm(y − ym).

7.3. Taylor expansion of a multiple-term Green’s function

In this subsection we consider the multi-term Green’s function

G(x′ − x)=
N∑
i=0

ci

|x′
i − x| ,

whereN is the number of images. Analogously to Section 7.2 we substituteyi = x′
i − x

andyim = x′
im

− xm. If yi − yim = y − ym, the Taylor expansion for images becomes

(7.4)G(y)≈ gm + gT
m(y − ym)+ 1

2(y − ym)TGm(y − ym),

where forri = |yim|

(7.5)gm =
N∑
i=0

Gi(yim)=
N∑
i=0

ci

ri
,

(7.6)gm =
N∑
i=0

(∇Gi)(yim)=
N∑
i=0

−ci
r3
i

yim,

(7.7)Gm =
N∑
i=0

(∇(∇Gi))(yim)= N∑
i=0

−ci
r3
i

I + 3
ci

r5
i

(yim ⊗ yim).

Note, that the sum of images only contributes to the expansion coefficients.
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Special attention has to be paid to the evaluation of the sums. If the value of a sum
is relatively small compared to the individual terms, straightforward evaluation might
result in a cancellation of significant digits. This occurs, for example, when

∑
ci ≈ 0

and theri ’s are large, but their range is very small, i.e.,(ri − r0)' r0. By using the
following identity for the sum in the expression ofgm∑ ci

ri
−→

∑ ci(r0 − ri)

rir0
+ 1

r0

∑
ci,

the terms in the first sum are much smaller than the terms in the original sum, so that
less cancellation will occur. A similar treatment can be used for the derivatives.

7.4. Substitution of the Taylor expansion in the interaction integral

After substitution of the Taylor approximation (7.3) ofG(x′ − x) in (7.1) one obtains

Ĩ =
∫
Ωi

ψ̃i(x) ·
∫
Ωj

ψ̃j (x′)gm dx′ dx

+
∫
Ωi

ψ̃i(x) ·
∫
Ωj

ψ̃j (x′)gT
m(y − ym)dx′ dx

+ 1

2

∫
Ωi

ψ̃i(x) ·
∫
Ωj

ψ̃j (x′)(y − ym)TGm(y − ym)dx′ dx,

wherey = x′ − x andym = x′
m − xm. Sincegm, gm andGm are independent ofx and

x′, they appear as constant terms in the integral, so that it may be rewritten as

Ĩ = gm

∫
Ωi

ψ̃i(x) ·
∫
Ωj

ψ̃j (x′)dx′ dx

− g3
m

∫
Ωi

ψ̃i(x) ·
∫
Ωj

ψ̃j (x′)
{
yT
m(y − ym)

}
dx′ dx

− 1

2
g3
m

∫
Ωi

ψ̃i(x) ·
∫
Ωj

ψ̃j (x′)
{
I · [(y − ym)⊗ (y − ym)

]}
dx′ dx

+ 3

2
g5
m

∫
Ωi

ψ̃i(x) ·
∫
Ωj

ψ̃j (x′)
{[

ym ⊗ ym
] · [(y − ym)⊗ (y − ym)

]}
dx′ dx.

The expressions between brackets{. . .} are scalar. For the⊗-notation and the definition
of inner products for matrices see Appendix D. The integralĨ can be written in terms
of moment integralsMαβ

Ĩ = gmM00M
′
00 − g3

m

{
M00 ·

∑
α�1

{ym}αM ′
0α −M ′

00 ·
∑
α�1

{ym}αM0α

}
− 1

2
g3
m

{
M00 ·

∑
α�1

M ′
αα +M ′

00 ·
∑
α�1

Mαα − 2
∑
α�1

M0α ·M ′
0α

}
+ 3

2
g5
m

{
M00 ·

∑
α,β�1

{ym}α{ym}βM ′
αβ +M ′

00 ·
∑
α,β�1

{ym}α{ym}βMαβ

(7.8)− 2
∑
α�1

{ym}αM0α ·
∑
β�1

{ym}βM ′
0β

}
.



Simulation of EMC behaviour 709

The moment integrals are defined by

Mαβ =
∫
Ωi

ψ̃i(x){x − xm}α{x − xm}β dx,

M ′
αβ =

∫
Ωj

ψ̃j (x′){x′ − x′
m}α{x′ − x′

m}β dx′,

where{x − xm}α = 1, (x − xm), (y − ym) or (z − zm) for α = 0, 1, 2 or 3. They are
scalars for scalar valued functionsψ̃i , and vectors for vector valued functionsψ̃i . Let
nx be the upper bound ofα. In general,nx = 3. However, if all elements are parallel to
the x, y-plane thenz − zm = 0, so thatnx = 2. After transformation to isoparametric
coordinates the moment integrals have the form

M =
∫ 1

0

∫ 1

0
µ̃(s1, s2)ds2 ds1.

If one or more of the edges of the integration domain are a part of a boundary, the
functionµ̃ contains a factor for boundary singularityd−1/2, and the general form of the
moment integrals becomes

M =
∫ 1

0

∫ 1

0

µ(s1, s2)√
d(s1, s2)

ds2 ds1,

whereµ is a smooth function. For the regularisation of this boundary singularity a
similar method can used as for that of the outer integral described in Section 6.5. The
integrals obtained can be evaluated numerically by the Patterson’s method described in
Section 4.

If N is the number of elements andk is the average number of function evaluations
for the quadrature with respect to each of the isoparametric parameterss1 ands2, the
total number of function evaluations for calculating the moment integrals is of the order
of Nk2. Since the moment integrals can be evaluated in advance, the computer time for
the evaluation of the interaction integrals is reduced considerably.

7.5. Efficiency improvement of the algorithm

In this subsection we concentrate on the efficiency of the algorithm to evaluate the
interaction integral by expression (7.8) for a given set of moment integrals. Assuming
that two identical terms are computed only once, the number of operations to evaluate
the expression (7.8) with scalar moment integrals is

Nscalar= nsno
[{1} + {

2(nx + 1)
}+ {

2(nx + 1)
}+ {3

2nx(nx + 1)+ 3
}+ 4

]
= nsno

[
(nx + 1)

(3
2nx + 4

)+ 4+ 4
]
,

wherens andno are the number of different basis functions on the source and object
quadrilaterals, i.e.,ns = no = 1. If nx = 2, thenNscalar= 29.

For the expression (7.8) with vector moment integrals the number of operations is

Nvector= nxnsno
{
(nx + 1)

(3
2nx + 4

)+ 5
}+ 4nsno,
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where the first factornx is due to taking the inner product. The maximum value ofns
andno is 2. This is because for a vector-type interaction integral the source or object
domain usually consists of two adjacent elements with an edge in common. Ifnx = 2,
thenNvector= 56nsno.

These numbers of operations can be reduced by calculating the inner products be-
tween the vectors and matrices which occur in expression (7.8) beforehand. Using the
following shorthand notation for the moments due to the source element:

S00 =M ′
00, s0 =

 M ′
01
...

M ′
0nx

 , S =
 M ′

11 · · · M ′
1nx

...
. . .

...

M ′
nx1 · · · M ′

nxnx

 ,
and an analogous notationm0 andM for the object element, we obtain a compact ex-
pression for the integral of (7.8)

Ĩ =M00
(
gmS00 + gm · s0 + 1

2Gm · S
)

+ S00
(−gm · m0 + 1

2Gm · M
)− Gm · (m0 ⊗ s0)

=M00
(
gmS00 + gm · s0 + 1

2Gm · S
)

(7.9)+ m0 · (−gmS00 − Gms0
)+ M · 1

2GmS00,

wheregm, gm andGm are defined in Sections 7.2 and 7.3. For the definition of⊗ see
Appendix D.

The numbers of operations for the evaluation of expression (7.9) are:

Nscalar= nons + ns
{
1+ nx + 1

2nx(nx + 1)
}

+ nonsnx + ns
(
nx + n2

x

)+ (1
2nx(nx + 1)+ 1

)
nons

= ns
{
(nx + 1)

(3
2nx + 1

)+ no(nm + 1)
}
,

Nvector= nxns
{
(nx + 1)

(3
2nx + 1

)+ no(nm + 1)
}
,

wherenm = 1+ nx + 1
2nx(nx + 1). Thus, fornx = 2, 3

Nscalar= 19,33 (ns = no = 1)

Nvector� 104,264 (ns = no = 2).

7.6. Moment integrals in local coordinate system

So far, we have applied Taylor expansion with respect to midpoints of the elements in a
global coordinate system. If all elements are on the same layer, or on parallel layers, the
evaluation of the moment integrals is restricted tonx = 2, otherwisenx = 3. However,
if the moment integral of each element is calculated in a local coordinate system for
which thez-axis is perpendicular to the plane of that element, againnx = 2. But for
the evaluation of an interaction integral between an object and a source element, the
moment integrals of the object element have to be transformed from the local coordinate
system of the object element to the local coordinate system of the source element.
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7.6.1. Transformation matrix
Let Q andR be the transformation matrices from a local to a global coordinate system
of the source and object element, respectively, then

x = xs + Qη̄, QQT = I,

x = xo + Rξ̄ , RRT = I,

so that

η̄= QT(xo − xs + Rξ̄ ),

where η̄ = (ηx, ηy,0) and ξ̄ = (ξx, ξy,0) are the local coordinates in the source and
object coordinate system, respectively, of pointx with coordinates in the global coor-
dinate system. Let̄ξm = (ξm,x, ξm,y,0) andξ̄ = (ξx, ξy,0) be points in the local object
coordinate system, then

η̄m = QT(xo − xs + Rξ̄m),

η̄= QT(xo − xs + Rξ̄ )= η̄m + QTR(ξ̄ − ξ̄m)

= η̄m + T(ξ̄ − ξ̄m)

are the coordinates of these points in the local source coordinate system, whereT =
QTR is a rotation matrix.

7.6.2. Taylor expansion with transformation
Let η̄′ = (η′

x, η
′
y,0) andη̄ = η̄m + T(ξ̄ − ξ̄m) be arbitrary points inside the source and

object element, respectively, with coordinates in the local source coordinate system. Let
�η̄′ = η̄′ − η̄′

m and�ξ̄ = ξ̄ − ξ̄m, then�η̄= T�ξ̄ , and

G(η̄′ − η̄)=
∑
i

ciR
−1
i ,

Ri =
∣∣η̄′
i − η̄m − T�ξ̄

∣∣
= {

(η′
x − ηm,x − T11�ξx − T12�ξy)

2 + (η′
y − ηm,y − T21�ξx − T22�ξy)

2

+ (η′
i,z − η′

m,z − T31�ξx − T32�ξy)
2}−1/2

.

Let y = η̄′ − η̄ andym = η̄′
m − η̄m. The Taylor expansion ofG(y) is similar to that of

expression (7.2)

G(y) =G(ym)+ (∇G)(ym)T[y − ym]
+ 1

2[y − ym]T(∇(∇G))(ym)[y − ym] +O
(|y − ym|3),

= gm + gmT(�η̄′ − T�ξ̄)+ 1
2(�η̄

′ − T�ξ̄)TGm(�η̄
′ − T�ξ̄),

where

gm =G(ym), gm = (∇G)(ym), Gm = (∇(∇G))(ym).
∇ refers to derivatives with respect to the local source coordinates. Note that, in contrast
to the expansion in Sections 7.2 and 7.3 fornx = 2, all three elements ofgm and all nine
elements ofGm are generally non-zero.
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Let

s0 = (S01, S02,0)
T, m0 = (M01,M02,0)

T,

S =
S11 S12 0
S21 S22 0
0 0 0

 , M =
M11 M12 0
M21 M22 0

0 0 0

 .
Then, similar to expression (7.9)

Ĩ =M00
(
gmS00 + gm · s0 + 1

2Gm · S
)

+ (−gmS00 − Gms0) · Tm0 + (TMTT) · 1
2GmS00.

For the evaluation of̃I , the quantitiesm0, M andT may be redefined as follows:

m0 = (M01,M02)
T, M =

(
M11 M12
M21 M22

)
, T =

T11 T12
T21 T22
T31 T32

 .
SinceT is a 3× 2-matrix andGm is a full 3× 3-matrix, a complete reduction to two
dimensions as in the previous subsection fornx = 2 is not possible. An operation count
for this transformed integral gives us:

Nscalar= nons + ns
(
1+ 2+ 1

2 · 2 · 3
)+ 3nons + ns(3+ 3 · 2)

+ no(3 · 2)+ nons
(1

2 · 3 · 4+ 1
)+ no(12+ 18)

= 15ns + 36no + 10nons = 61,

Nvector= 2(35ns + 72)= 284,

which is larger than the number of operations for the untransformed case withnx = 3 of
Section 7.5. This is due to the large number of operations needed for the transformation
of m0 andM.

7.7. Error estimates

To estimate the error in the second order Taylor expansion of (7.2) we have derived the
following expression for the third order terms:

1
6Gm · [y − ym]3,

wheretα = t ⊗ · · · ⊗ t︸ ︷︷ ︸
α

, and

Gm = 3g5
m

[
I ⊗ ym + ∇H

]− 15g7
mT,

with the Hessian matrixH = ym ⊗ ym and tensorT = H ⊗ ym. For the definition of⊗
see Appendix D.

For anyy there exists a point̄ξ = ym + ϑ[y − ym] for 0< ϑ < 1 such that

G(y)= gm + gm · [y − ym] + 1
2Gm · [y − ym]2 + 1

6G(ξ̄ ) · [y − ym]3,
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where

G(ξ̄ )= 3G5(ξ̄ )
[
I ⊗ ξ̄ + ∇H(ξ̄ )

]+ 15G7(ξ̄ )T(ξ̄ ),

H(ξ̄ )= ξ̄ ⊗ ξ̄ ,

T(ξ̄ )= H(ξ̄ )⊗ ξ̄ .

Let

rmin = min
x∈Ωi
x′∈Ωj

‖x′ − x‖

be the smallest distance between two elements and

d = max
y

‖y − ym‖

the upper bound for‖y−ym‖, wherey ∈ {x′ −x | x′ ∈Ωj,x ∈Ωi}. Note, thatd depends
on the choice of the midpoints,xm andx′

m. The following theorem states the relation
that holds betweend , rmin and the upper bound for the relative error in the second order
Taylor expansion.

THEOREM 7.1. Let G̃ be an approximation ofG with the second order Taylor expan-
sion(7.3), then for everyε > 0 we have

d

rmin
� 3

√
ε

2
1⇒ ‖G̃(x′ − x)−G(x′ − x)‖∞

|G(x′ − x)| � ε,

for everyx′ ∈Ωj,x ∈Ωi.

PROOF. Let

δG = |G− G̃| = ∣∣1
6G(ξ̄ ) · [y − ym]3∣∣

be the absolute error in the Taylor expansion and let furthery = (x′ − x) and�y =
(y − ym). We have

I ⊗ ξ̄ + ∇H(ξ̄ )=
 (3ξx, ξy, ξz) (ξy, ξx,0) (ξz,0, ξx)
(ξy, ξx,0) (ξx,3ξy, ξz) (0, ξz, ξy)
(ξz,0, ξx) (0, ξz, ξy) (ξx, ξy,3ξz)

 .
If we multiply this by�y3 = �y ⊗ �y ⊗ �y and lety = (x, y, z), we obtain (see
Appendix D)(

I ⊗ ξ̄ + ∇H(ξ̄ )
) ·�y3 = 3(�x2 +�y2 +�z2)(ξx�x + ξy�y + ξz�z)

= 3‖�y‖2〈ξ̄ ,�y〉.
Further, we have

T(ξ̄ ) ·�y3 = (ξx�x + ξy�y + ξz�z)
3 = 〈ξ̄ ,�y〉3.
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An upper boundary for the error can be given by

δG = ∣∣1
6

{
3G5(ξ̄ )

[
I ⊗ ξ̄ + ∇H(ξ̄ )

]− 15G7(ξ̄ )T(ξ̄ )
} ·�y3

∣∣
� max

∣∣∣∣9‖�y‖2〈ξ̄ ,�y〉
6‖ξ̄‖5

− 15〈ξ̄ ,�y〉3

6‖ξ̄‖7

∣∣∣∣
= max

∣∣∣∣〈ξ̄ ,�y〉
(

9‖�y‖2

6‖ξ̄‖5
− 15〈ξ̄ ,�y〉2

6‖ξ̄‖7

)∣∣∣∣
= max

∣∣∣∣〈ξ̄ ,�y〉9‖ξ̄‖2‖�y‖2 − 15〈ξ̄ ,�y〉2

6‖ξ̄‖7

∣∣∣∣
= max

∣∣∣∣‖ξ̄‖3‖�y‖3

‖ξ̄‖7
· cosϕ

9− 15 cos2ϕ

6

∣∣∣∣
� max

∣∣∣∣‖�y‖3

‖ξ̄‖4

∣∣∣∣.
To compute the latter maximum we need to know the range ofξ̄ , which is the setΞ =
{x′ − x | x′ ∈Ωj,x ∈ Ωi}. This region can be obtained as follows. TranslateΩj over
−xm, such that its midpoint is mapped ontoym. Move−Ωi with its midpointxm along
the edges of the translatedΩj , as illustrated in Fig. 7.2.

From the definitions ofrmin andd it follows thatrmin is the lower bound of‖ξ̄‖ and
d the upper bound of‖�y‖, for ξ̄ ,y ∈Ξ , so that

δG � d3

r4
min

.

Let ymin be the point for which‖ymin‖ = rmin, then

‖y‖ = ‖ymin + y − ymin‖ � ‖ymin‖ + ‖y − ymin‖ � rmin + d.

FIG. 7.2. Allowed region (Ξ =Ωj −Ωi ) for ξ̄ , obtained by shifting the midpoint of−Ωi along the edge of
Ωj . Hered = maxy∈Ξ ‖y − ym‖ andrmin = minξ̄∈Ξ ‖ξ̄‖.
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SinceG(y)= ‖y‖−1, we have for the relative errorρG = δG
G

:

ρG � α3(1+ α)

(
α = d

rmin

)
.

Therefore,ρG � ε if

α3(1+ α)� ε, or α3 � ε

2
, or

d

rmin
� 3

√
ε

2
, for ε < 1. �

With somewhat more effort it can be shown that for a third order Taylor expansion
the conditionα4 � ε

2 should be satisfied in order to keep the error small enough. Hence,
we might state the following conjecture.

CONJECTURE7.1. Let G̃ be an approximation ofG with thenth order Taylor expan-
sion, then for everyε > 0 holds

α � n+1

√
ε

2
1⇒ ‖G̃−G‖∞

G
� ε.

8. Analytical integration of the inner integrals for vector valued basis functions

This section presents an improvement of the method, treated in Section 5 for the deriva-
tion of analytical expressions for the inner integral over a quadrilateral source element,
of which the integrand is irregular and contains vector valued basis functions.

The integral is the sum of the integrals

(8.1)
∫ 1

0
F i (s2) ln

(√
c
√
a + b+ c+ c+ 1

2b√
c
√
a + 1

2b

)
ds2,

and

(8.2)
∫ 1

0
Gi (s2)

(√
a + b+ c− √

a
)
ds2,

wherea, b and c are quadratic functions ofs2. If the integration point of the outer
integral, over the object element, lies in the interior or on the boundary of the source el-
ement, the integrand of the first integral is irregular. The integrand of the second integral
has no singularity. In Section 5.2.4 the integral (8.1) is rewritten as∫ 1

0
F i (s2) ln

(√
c
√
a + b+ c+ c+ 1

2b
)(√

c
√
a − 1

2b
)
ds2

(8.3)−
∫ 1

0
F i ln

(
ca − (1

2b
)2)

ds2.

Only the last term has a singular integrand. After partial integration this integral be-
comes

(8.4)
∫ 1

0
F i (s2) ln

(
ca − (1

2b
)2)ds2 = [

F i (s2)L(s2)
]1
0 −

∫ 1

0
F ′
i (s2)L(s2)ds2,
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where

(8.5)L(s2)=
∫

ln
(
ca − (1

2b
)2)ds2.

In Section 5.2.4 an analytical expression for the integral (8.5) is derived. However, the
integral in the right-hand side of (8.4) is evaluated numerically. Since the derivative of
the integrand of (8.4) is singular, the numerical evaluation of this integral, by Patterson’s
rules, can become slowly convergent. Besides, the integral (8.5) can only be evaluated
analytically if the integration point over the object element lies in the plane of the source
element (see Section 5.2.4).

This section introduces another method, that allows for arbitrary orientation of object
and source element. In this method the integration domain of the integrals (8.1) and (8.2)
is split into at most three parts, for only one of which the integrand of (8.1) is singular.
The domain of this singular part is chosen so that the approximation of (8.1) over it by
an analytical expression is sufficiently accurate, and the integrals over the other parts
can be evaluated by Patterson’s rules. Letv1 = x12(1 − s2)− x34s2 for xij = xj − xi ,
wherex1 . . .x4 are the vertices of the source element, and wheres2 is one of the iso-
parametric coordinates of the integration point. It can be shown that only if the vector
v1 is independent ofs2, the integral (8.1) can be calculated analytically over the full
integration domain. This is the case for a source element withx12+ x34 = 0. In all other
cases the integral (8.1) must be approximated. The approximation method makes use of
the Taylor expansion of the vectorv1 around the vectord = x12(1 − s

(m)
2 )− x34s

(m)
2 ,

wheres(m)2 is the iso-parametric coordinate,s2, of the projection of the object integration

point in the plane of the source element. Ifs(m)2 − s2 = 0, the integrand of (8.1) is
singular.

8.1. Definition of auxiliary quantities

In this subsection the quantities are defined that will be used in the evaluation of inte-
grals (8.1) and (8.2). Let us define the following quantities:

c0 = x41, ĉ0 = −x23, c1 = x12 + x34,

d = x12 − c1s
(m)
2 , y = s

(m)
2 − s2, x = c1y,

v0(y)= ṽ0(y)+ xOM, ṽ0(y)= c0y − ds(m)1 ,

(ṽ0 + v1)(y)= ĉ0y+d
(
1− s(m)1

)
, v1(x)= d + x,

a(y)= ∣∣v0(y)
∣∣2, 1

2b(y,x)=v1(x)Tṽ0(y), c(x)= ∣∣v1(x)
∣∣2.

Note that for a element with parallel opposite edgesx = 0. The vector valued functions
F i (y,x) andGi (y,x) can be written in terms of the above quantities as follows :

F1(y,x)= − c0

|d|
{
f000(y,x)+ f010(y,x)

}+ c1

|d|
{
f001(y,x)+ f011(y,x)

}
,

F2(y,x)= d
|d|f001(y,x)+ c1

|d|f101(y,x),
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F3(y,x)= − c0

|d|f010(y,x)+ c1

|d|f011(y,x),

F4(y,x)= d
|d|
{
f000(y,x)+ f001(y,x)

}+ c1

|d|
{
f100(y,x)+ f101(y,x)

}
,

G1(y,x)= − c1

|d|
{
g00(y,x)+ g01(y,x)

}
,

G2(y,x)= − d
|d|g00(y,x)− c1

|d|g10(y,x),

G3(y,x)= − c1

|d|g01(y,x),

G4(y,x)= G2(y,x),

where

(8.6)fjkl(y,x)= |d|yj (y − s
(m)
2

)k
f̃l(y,x),

(8.7)f̃l(y,x)= 1√
c(x)

(
b(y,x)
2c(x)

)l
= 1

|v1(x)|
(

v1(x)Tṽ0(y)

|v1(x)|2
)l
,

(8.8)gjk(y,x)= |d|yj (y − s
(m)
2

)k
g̃(y,x),

(8.9)g̃(y,x)= 1

|v1(x)|2 .
Further, the arguments of the logarithm in the integrand of the integral (8.1) and the
arguments in the integrand of the integral (8.2) are

(8.10)
(√
c
√
a + 1

2b
)
(y,x)= ∣∣v1(x)

∣∣|d|R(y)+ v1(x)Tṽ0(y),

(8.11)
(√
c
√
a + b+ c+ c+ 1

2b
)
(y,x)= ∣∣v1(x)

∣∣|d|R̂(y)+ v1(x)T(ṽ0 + v1)(y),

(8.12)
(√
a
)
(y)= |d|R(y),

(8.13)
(√
a + b+ c

)
(y)= |d|R̂(y),

where

R(y)=
√

|ṽ0(y)|2
|d|2 + |xOM |2

|d|2 ,

R̂(y)=
√

|(ṽ0 + v1)(y)|2
|d|2 + |xOM |2

|d|2 .

The derivatives with respect tox of the quantities depending onx are

∇v1(x)= I,

∇∣∣v1(x)
∣∣n = n

∣∣v1(x)
∣∣n−2v1(x),

∇(v1(x)Tṽ0(y)
)= ṽ0(y),

∇∣∣v1(x)Tṽ0(y)
∣∣2 = 2v1(x)Tṽ0(y)ṽ0(y),



718 A.J.H. Wachters and W.H.A. Schilders

∇(v1(x)T(ṽ0 + v1)(y)
)= (ṽ0 + v1)(y),

∇∣∣v1(x)T(ṽ0 + v1)(y)
∣∣2 = 2v1(x)T(ṽ0 + v1)(y)(ṽ0 + v1)(y).

The inner products ofx with the first order derivatives with respect tox of the expres-
sions in (8.7) forl = 0,1 and (8.9) are

xT(∇f̃0)(y,x)= −xTv1(x)
|v1(x)|3 ,

xT(∇f̃1)(y,x)= xTṽ0(y)

|v1(x)|3 − 3
v1(x)Tṽ0(y)

|v1(x)|2
xTv1(x)
|v1(x)|3 ,

xT(∇g̃)(y,x)= −2
xTv1(x)
|v1(x)|4 ,

and with the second order derivatives with respect tox of the expressions in (8.7) for
l = 0,1 and (8.9) are

xT(∇(∇f̃0)
)
(y,x)x = − 1

|v1(x)|3
{

xTx − 3
(xTv1(x))2

|v1(x)|2
}
,

xT(∇(∇f̃1)
)
(y,x)x = − 6

(xTṽ0(y))(xTv1(x))
|v1(x)|5

− 3
v1(x)Tṽ0(y)

|v1(x)|5
{

xTx − 5
(xTv1(x))2

|v1(x)|2
}
,

xT(∇(∇g̃))(y,x)x = − 2

|v1(x)|4
{

xTx − 4
(xTv1(x))2

|v1(x)|2
}
.

Those with the first order derivatives with respect tox of the expressions in (8.10) and
(8.11) are

xT(∇√
c
√
a + 1

2b
)
(y,x)= |d|R(y)xTv1(x)

|v1(x)| + xTṽ0(y),

xT(∇√
c
√
a + b+ c+ c+ 1

2b
)
(y,x)= |d|R̂(y)xTv1(x)

|v1(x)| + xT(ṽ0 + v1)(y),

and with the second order derivatives with respect tox of the expressions in (8.10) and
(8.11) are

xT(∇(∇√
c
√
a + 1

2b
))
(y,x)x = |d|R(y)

|v1(x)|
{

xTx − (xTv1(x))2

|v1(x)|2
}
,

xT(∇(∇√
c
√
a + b+ c+ c+ 1

2b
))
(y,x)x = |d|R̂(y)

|v1(x)|
{

xTx − (xTv1(x))2

|v1(x)|2
}
.

Whenv1(x) approachesd, the expressions in (8.6) and (8.8), and the inner products of
x with their derivatives with respect tox become:

fjkl(y)= yj
(
y − s

(m)
2

)k(dTṽ0(y)

|d|2
)l

= yj
(
y − s

(m)
2

)k(
αy − s

(m)
1

)l
,
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gjk(y)= 1

|d|y
j
(
y − s

(m)
2

)k
,

xT(∇fjk0)(y)= −yj (y − s
(m)
2

)k xTd
|d|2 = −yj+1(y − s

(m)
2

)k
ε,

xT(∇fjk1)(y)= yj
(
y − s

(m)
2

)k{xTṽ0(y)

|d|2 − 3
dTṽ0(y)

|d|2
xTd
|d|2

}
= yj+1(y − s

(m)
2

)k{(
γy − εs

(m)
1

)− 3
(
αy − s

(m)
1

)
ε
}
,

xT(∇gjk)(y)= −2

|d| y
j
(
y − s

(m)
2

)k xTd
|d|2 = −2

|d| y
j+1(y − s

(m)
2

)k
ε,

xT(∇(∇fjk0))(y)x = −yj (y − s
(m)
2

)k(xTx
|d|2 − 3

(xTd)2

|d|4
)

= −yj+2(y − s
(m)
2

)k
(δ2 − 3ε2),

xT(∇(∇fjk1))(y)x
= yj

(
y − s

(m)
2

)k{−6
xTṽ0(y)

|d|2
xTd
|d|2 − 3

dTṽ0(y)

|d|2
(

xTx
|d|2 − 5

(xTd)2

|d|4
)}

= yj+2(y − s
(m)
2

)k{−6
(
γy − εs

(m)
1

)
ε− 3

(
αy − s

(m)
1

)
(δ2 − 5ε2)

}
,

xT(∇(∇gjk))(y)x = −2

|d| y
j
(
y − s

(m)
2

)k(xTx
|d|2 − 4

(xTd)2

|d|4
)

= −2

|d| y
j+2(y − s

(m)
2

)k
(δ2 − 4ε2),

the expressions in (8.10) and (8.11), and the inner products ofx with their derivatives
with respect tox become:

(√
c
√
a + 1

2b
)
(y)= |d|2

{
R(y)+ dTṽ0(y)

|d|2
}

= |d|2{R(y)+ αy − s
(m)
1

}
,(√

c
√
a + b+ c+ c+ 1

2b
)
(y)= |d|2

{
R̂(y)+ dT(ṽ0 + v1)(y)

|d|2
}

= |d|2{R̂(y)+ α̂y + (
1− s

(m)
1

)}
,

xT(∇√
c
√
a + 1

2b
)
(y)= |d|2

{
xTd
|d|2R(y)+

xTṽ0(y)

|d|2
}

= |d|2y{εR(y)+ γy − εs
(m)
1

}
,

xT(∇√
c
√
a + b+ c+ c+ 1

2b
)
(y)= |d|2

{
xTd
|d|2 R̂(y)+

xT(ṽ0 + v1)(y)

|d|2
}

= |d|2y{εR̂(y)+ γ̂ y + ε
(
1− s

(m)
1

)}
,
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xT(∇(∇√
c
√
a + 1

2b
))
(y)x = |d|2R(y)

{
xTx
|d|2 − (xTd)2

|d|4
}

= |d|2y2R(y)(δ2 − ε2),

xT(∇(∇√
c
√
a + b+ c+ c+ 1

2b
))
(y)x = |d|2R̂(y)

{
xTx
|d|2 − (xTd)2

|d|4
}

= |d|2y2R̂(y)(δ2 − ε2),

where

(8.14)
R(y)=

√
β2y2 − 2αs(m)1 y + (s

(m)
1 )2 + ζ 2,

R̂(y)=
√
β̂2y2 + 2α̂(1− s

(m)
1 )y + (1− s

(m)
1 )2 + ζ 2,

and

α = dTc0

|d|2 , β = |c0|
|d| , γ = cT

1c0

|d|2 ,

α̂ = dTĉ0

|d|2 , β̂ = |ĉ0|
|d| , γ̂ = cT

1 ĉ0

|d|2 ,

ε = dTc1

|d|2 , δ = |c1|
|d| , ζ = |xOM |

|d| .

8.2. Taylor expansion of the integrals for the functionsfjkl , gjk

The integrals for scalar functionsfkl andgk are as follows:

(8.15)Ijkl(y,x)=
∫
fjkl(y,x) lnF(y,x)dy,

(8.16)Ijk(y,x)=
∫
gjk(y,x)G(y)dy,

where

F(y,x)= (
√
c
√
a + 1

2b)(y,x)

(
√
c
√
a + b+ c+ c+ 1

2b)(y,x)
,

G(y)= (√
a
)
(y)− (√

a + b+ c
)
(y)= |d|(R(y)− R̂(y)

)
.

The second order Taylor expansions of (8.15) and (8.16) with respect tox gives

Ijkl(y,x)= Ijkl(y)+ xT(∇Ijkl)(y)+ 1
2xT(∇(∇Ijkl))(y)x +O

(|x|3),
Ijk(y,x)= Ijk(y)+ xT(∇Ijk)(y)+ 1

2xT(∇(∇Ijk))(y)x +O
(|x|3),

where

Ijkl(y)=
∫
fjkl(y) lnF(y)dy,
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xT(∇Ijkl)(y)=
∫

xT(∇fjkl)(y) lnF(y)dy +
∫
fjkl(y)xT(∇ lnF)(y)dy,

xT(∇(∇Ijkl))(y)x =
∫

xT(∇(∇fjkl))(y)x lnF(y)dy

+ 2
∫

xT(∇fjkl)(y)xT(∇ lnF)(y)dy

+
∫
fjkl(y)xT(∇(∇ lnF)

)
(y)x dy,

Ijk(y)=
∫
gjk(y)G(y)dy,

xT(∇Ijk)(y)=
∫

xT(∇gjk)(y)G(y)dy,

xT(∇(∇Ijk))(y)x =
∫

xT(∇(∇gjk))(y)xG(y)dy,
and

lnF(y)= ln
(
R(y)+ αy − s

(m)
1

)− ln
(
R̂(y)+ α̂y + (

1− s
(m)
1

))
,

xT(∇ lnF)(y)= y

{
εR(y)+ γy − εs

(m)
1

R(y)+ αy − s
(m)
1

− εR̂(y)+ γ̂ y + ε(1− s
(m)
1 )

R̂(y)+ α̂y + (1− s
(m)
1 )

}
,

xT(∇(∇ lnF)
)
(y)x

= y2
{
−
(
εR(y)+ γy − εs

(m)
1

R(y)+ αy − s
(m)
1

)2

+
(
εR̂(y)+ γ̂ y + ε(1− s

(m)
1 )

R̂(y)+ α̂y + (1− s
(m)
1 )

)2

+ R(y)(δ2 − ε2)

R(y)+ αy − s
(m)
1

− R̂(y)(δ2 − ε2)

R̂(y)+ α̂y + (1− s
(m)
1 )

}
.

Therefore, the integrals to be evaluated are

Ij00(y)=Kj(y),

Ij10(y)= Ij+1,00(y)− s
(m)
2 Ij00(y),

Ij01(y)= αKj+1(y)− s
(m)
1 Kj(y),

Ij11(y)= Ij+1,01(y)− s
(m)
2 Ij01(y),

xT(∇Ij00)(y)= −ε(Kj+1(y)−L
(1)
j+1(y)

)
,

xT(∇Ij10)(y)= xT(∇Ij+1,00)(y)− s
(m)
2 xT(∇Ij00)(y),

xT(∇Ij01)(y)= (γ − 3αε)Kj+2(y)+ αεL
(1)
j+2(y)+ s

(m)
1 ε

(
2Kj+1 −L

(1)
j+1(y)

)
,

xT(∇Ij11)(y)= xT(∇Ij+1,01)(y)− s
(m)
2 xT(∇Ij01)(y),
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xT(∇(∇Ij00)
)
(y)x

= −(δ2 − 3ε2)Kj+2(y)− 2ε2L
(1)
j+2(y)− ε2L

(2)
j+2(y)+ (δ2 − ε2)Λj+2(y),

xT(∇(∇Ij10)
)
(y)x = xT(∇(∇Ij+1,00)

)
(y)x − s

(m)
2 xT(∇(∇Ij00)

)
(y)x,

xT(∇(∇Ij01)
)
(y)x = −3

{
2γ ε+ α(δ2 − 5ε2)

}
Kj+3(y)+ 2(γ − 3αε)εL(1)j+3(y)

+ α
{−ε2L

(2)
j+3(y)+ (δ2 − ε2)Λj+3(y)

}
+ s

(m)
1

{
3(δ2 − 3ε2)Kj+2(y)+ 4ε2L

(1)
j+2(y)+ ε2L

(2)
j+2(y)

− (δ2 − ε2)Λj+2(y)
}
,

xT(∇(∇Ij11)
)
(y)x = xT(∇(∇Ij+1,01)

)
(y)x − s

(m)
2 xT(∇(∇Ij01)

)
(y)x,

Ij0(y)=Mj(y),

Ij1(y)= Ij+1,0(y)− s
(m)
2 Ij0(y),

xT(∇Ij0)(y)= −2εMj+1(y),

xT(∇Ij1)(y)= xT(∇Ij+1,0)(y)− s
(m)
2 xT(∇Ij0)(y),

xT(∇(∇Ij0)
)
(y)x = −2(δ2 − 4ε2)Mj+2(y),

xT(∇(∇Ij1)
)
(y)x = xT(∇(∇Ij+1,0)

)
(y)x − s

(m)
2 xT(∇(∇Ij0)

)
(y)x,

where the auxiliary integralsKi(y), L
(n)
i (y),Λi(y), andMi(y) are

Ki(y)= Ki (y)− K̂i (y),

L
(n)
i (y)= L(n)i

(
y; γ
ε
,1

)
− L̂(n)i

(
y; γ̂
ε
,1

)
,

Λi(y)= L(1)i (y;0,0)− L̂(1)i (y;0,0),

Mi(y)= Mi (y)− M̂i (y),

(8.17)Ki (y)=
∫
yi ln

(
R(y)+ αy − s

(m)
1

)
dy,

(8.18)K̂i (y)=
∫
yi ln

(
R̂(y)+ α̂y + (

1− s
(m)
1

))
dy,

(8.19)L(n)i (y;ρ,σ )=
∫
yi
(R(y)+ ρy − σs

(m)
1

R(y)+ αy − s
(m)
1

)n
dy,

(8.20)L̂(n)i (y;ρ,σ )=
∫
yi
(R̂(y)+ ρy + σ(1− s

(m)
1 )

R̂(y)+ α̂y + (1− s
(m)
1 )

)n
dy,

(8.21)Mi (y)=
∫
yiR(y)dy,

(8.22)M̂i (y)=
∫
yiR̂(y)dy.

Note that the integralL(n)i (y) need only to be calculated ifε �= 0.
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8.3. Analytical evaluation of the auxiliary integrals

In this subsection the analytical expressions are obtained for the auxiliary integrals de-
fined by (8.17), (8.19) and (8.21). Those for the integrals defined by (8.18), (8.20) and
(8.22) are similar.

The expression (8.14) can be rewritten as follows:

R(y)=
√
β2y2 − 2αs(m)1 y + (s

(m)
1 )2 + ζ 2

=
√
z̃2 + f 2,

where

z̃= βy − α

β
s
(m)
1 ,

f =
√(

1− α2

β2

)
(s
(m)
1 )2 + ζ 2.

Since|α
β
|< 1, ands(m)1 andζ are not equal to zero simultaneously,f > 0, so that

y = f

β
(z+ h),

R(y)+ αy − s
(m)
1 = f

(√
z2 + 1+ pz+ q

)
,

where

z= z̃

f
, h= p

s
(m)
1

f
, p = α

β
, q = (p2 − 1)

s
(m)
1

f
,

and|p|< 1 and|q| � 1.
Similarly, one can write:

R(y)+ ρy − σs
(m)
1 = f

(√
z2 + 1+ rz+ s

)
,

where

r = ρ

β
, s = (pr − σ)

s
(m)
1

f
.

Therefore, the auxiliary integrals defined by (8.17), (8.19) and (8.21) can be written as
follows:

(8.23)Ki (y)=
(
f

β

)i+1( ln(f )

i + 1
(z+ h)i+1 +

i∑
k=0

(
i

k

)
hi−kKk(z)

)
,

(8.24)L(n)i (y;ρ,σ )=
(
f

β

)i+1 i∑
k=0

(
i

k

)
hi−kL(n)k (z; r, s),

(8.25)Mi (y)= f

(
f

β

)i+1 i∑
k=0

(
i

k

)
hi−kMk(z),
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where

(8.26)Kk(z)=
∫
zk ln

(
pz+ q +

√
z2 + 1

)
dz,

(8.27)L(n)k (z; r, s)=
∫
zk
(
rz+ s + √

z2 + 1

pz+ q + √
z2 + 1

)n
dz,

(8.28)Mk(z)=
∫
zk
√
z2 + 1dz.

The expression for the integrals (8.26), (8.27) and (8.28) fork = 0 and the recursion
formulaek > 0 are given in the following subsection.

8.4. Analytical expressions and recursion formulae

Forp = q = 0 the formulae for the integrals (8.26) are

K0(z)= −z+ arctanz+ 1
2z ln(z2 + 1),

K1(z)= 1
4(z

2 + 1)
(
ln(z2 + 1)− 1

)
,

Kk(z)= 1

k + 1

{
− zk+1

k + 1
+ 1

2(z
k+1 + zk−1) ln(z2 + 1)− (k − 1)Kk−2(z)

}
.

Forp �= 0 orq �= 0 the formulae for the integrals (8.26) are

Kk(z)= 1

(k + 1)(p2 + q2)

{
−q

2zk+1

k+ 1
+ (p2 + q2)zk+1 ln

(
pz+ q +

√
z2 + 1

)
− pIk+1(z)+ qIk(z)− p(p2 − 1)Jk+1(z)+ q(q2 − 1)Jk(z)

}
,

where

I0(z)=
∫

1√
z2 + 1

dz= ln
(
z+

√
z2 + 1

)
,

(8.29)I1(z)=
∫

z√
z2 + 1

dz=
√
z2 + 1,

Ik(z)=
∫

zk√
z2 + 1

dz= 1

k

{
zk−1

√
z2 + 1− (k − 1)Ik−2(z)

}
,

and

(8.30)Jj (z)=
∫

zj

pz+ q + √
z2 + 1

dz.

After the substitutionz= 1
2(t − t−1), so that

√
z2 + 1 = 1

2(t + t−1), dz= 1
2(t + t−1) ·

t−1 dt , andt = z+ √
z2 + 1 the integral (8.30) can be written as follows:

Jk(t)=
(

1

2

)k ∫
(t + t−1)(t − t−1)k

at2 + bt + c
dt,=

(
1

2

)k k∑
j=0

(−1)j
(
k

j

)
Tk−2j (t),
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Ti(t)= J̃ (1)
i+1(t)+ J̃ (1)

i−1(t),

where

a = 1+ p, b= 2q, c= 1− p, −k � i � k,

and

(8.31)J̃ (n)
j (t)=

∫
tj

(at2 + bt + c)n
dt.

Let constantτ ' 1, then the formulae for this integral are

J̃ (1)
0 (t)=



2√
4ac−b2

(
arctan 2at+b√

4ac−b2
− π

2

)
, for b2 − 4ac <−τ(2at + b)2,

1√
b2−4ac

ln
(2at+b−

√
b2−4ac

2at+b+
√
b2−4ac

)
, for b2 − 4ac > τ(2at + b)2,

−2
2at+b

∑∞
k=0

1
2k+1

(
b2−4ac
(2at+b)2

)k
, for |b2 − 4ac|< τ(2at + b)2,

i.e.,p2 + q2 ≈ 1,

J̃ (2)
0 (t)=


−1

b2−4ac

( 2at+b
at2+bt+c + 2aJ̃ (1)

0 (t)
)
, for |b2 − 4ac|> τ(2at + b)2,

−8a
3(2at+b)3

∑∞
k=0

k+1
2k+3

(
b2−4ac
(2at+b)2

)k
, for |b2 − 4ac|< τ(2at + b)2,

J̃ (n)
0 (t)=


−1

(n−1)(b2−4ac)

( 2at+b
(at2+bt+c)n−1 + 2(2n− 3)aJ̃ (n−1)

0 (t)
)
, for b2 �= 4ac,

−22n−1an−1

(2n−1)(2at+b)2n−1 , for b2 = 4ac,

J̃ (1)
+1 (t)=

1

2a

(
ln(at2 + bt + c)− bJ̃ (1)

0 (t)
)
,

J̃ (1)
−1 (t)=

1

2c

(
ln

t2

at2 + bt + c
− bJ̃ (1)

0 (t)

)
,

J̃ (n)
−1 (t)=

1

c

(
1

2(n− 1)(at2 + bt + c)n−1
− b

2
J̃ (n)

0 (t)+ J̃ (n−1)
−1 (t)

)
,

J̃ (n)
2n−1(t)=

1

a

(
J̃ (n−1)

2n−3 (t)− bJ̃ (n)
2n−2(t)− cJ̃ (n)

2n−3(t)
)
,

J̃ (n)
j (t)=



1
(j−2n+1)a

(
tj−1

(at2+bt+c)n−1 − (j − n)bJ̃ (n)
j−1(t)− (j − 1)cJ̃ (n)

j−2(t)
)
,

for 0< j �= 2n− 1,

1
(j+1)c

(
tj+1

(at2+bt+c)n−1 − (j −n+2)bJ̃ (n)
j+1(t)− (j −2n+3)aJ̃ (n)

j+2(t)
)
,

for j <−1,

wheren > 1.
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After the substitutionz= 1
2(t− t−1), so that

√
z2 + 1= 1

2(t+ t−1), dz= 1
2(t+ t−1) ·

t−1 dt , andt = z+ √
z2 + 1 the integral (8.27) can be written as follows:

L(n)k (z; r, s)

=
(

1

2

)k+1∫
(t + t−1)t−1(t − t−1)k

(
r(t − t−1)+ 2s + (t + t−1)

p(t − t−1)+ 2q + (t + t−1)

)n
dt

=
(

1

2

)k+1 k∑
j=0

(−1)j
(
k

j

)
T
(n)
k−2j (t; r, s),

(8.32)T
(n)
i (t; r, s)=

∫
(t + t−1)t i−1

(
ăt2 + b̆t + c̆

at2 + bt + c

)n
dt,

where

a = 1+ p, b= 2q, c= 1− p,

ă = 1+ r, b̆= 2s, c̆= 1− r, −k � i � k.

The integral (8.32) can be rewritten as follows:

T
(n)
i (t; r, s)=

∫
(t + t−1)t i−1

(
A+ Bt +C

at2 + bt + c

)n
dt,

where

A= ă

a
, B = b̆− bA, C = c̆− cA.

For n = 1,2 the integral (8.32) can be expressed in terms of the integrals (8.31) as
follows:

T
(1)
i (t;0,0)= J̃ (1)

i+2(t)+ J̃ (1)
i−2(t)+ 2J̃ (1)

i (t),

T
(1)
i (t; r, s)=A

(
Ui(t)+Ui−2(t)

)+B
(
J̃ (1)
i+1(t)+ J̃ (1)

i−1(t)
)

+C
(
J̃ (1)
i (t)+ J̃ (1)

i−2(t)
)
,

T
(2)
i (t; r, s)=A2(Ui(t)+Ui−2(t)

)+ 2AB
(
J̃ (1)
i+1(t)+ J̃ (1)

i−1(t)
)

+ 2AC
(
J̃ (1)
i (t)+ J̃ (1)

i−2(t)
)+B2(J̃ (2)

i+2(t)+ J̃ (2)
i (t)

)
+ 2BC

(
J̃ (2)
i+1(t)+ J̃ (2)

i−1(t)
)+C2(J̃ (2)

i (t)+ J̃ (2)
i−2(t)

)
,

where

Ui(t)=
∫
t i dt =

{
ln(t), for i = −1,

1
i+1t

i+1, for i �= −1.

The formulae for the integrals (8.28) are as follows:

Mk(z)= Ik+2(z)+ Ik(z),

whereIk(z) are the integrals (8.29).
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9. Analytical integration of integrals over a triangle for scalar and vector valued
basis functions

This section presents the analytical evaluation of the inner and moment integrals for
a quadrilateral source element with scalar valued basis functions, and for a triangular
source element with scalar or vector valued basis functions. For scalar valued basis
functions the analytical evaluation of the inner integrals are already described in Sec-
tion 5.2.4. For vector valued basis functions on a triangular element the integrals are
decomposed into a sum of integrals, some of which are of the same type as those for the
scalar valued basis functions. Therefore, in this section all the integrals over triangles
will be treated.

Let x be the coordinates of the object point,O, the integration point of the outer inte-
gral. Let the source element withn edges be divided into triangles#k for k = 1, . . . , n,
and let each#k be the triangle with as top the point M and as base,ek , thekth edge
of the element. For the inner integral the point M is the projection of point,O, in the
plane of the element, for the moment integral the point M is the midpoint of the ele-
ment.

The inner and moment integrals are, respectively:

(9.1)Ij (x)=
∑
k

∫
#k

ψj (x′)
|x′ − x| dx′,

(9.2)Mj,αβ =
∑
k

∫
#k

ψj (x′){x′ − xM}α{x′ − xM}β dx′.

For scalar valued basis functionsψj (x′)= 1, and vector valued basis functionsψj (x′)=
(x′
j −x′)/2J , wherex′

j is thej th vertex of the element, andJ is the area of the element.
The expression{x′ − xM}α = 1, (x′ − xM ), (y′ − yM ) or (z′ − zM ) for α = 0, 1, 2 or 3.

Let xi,k for (i = 1,2) be the vertices ofek , n be the normal to the plane of the element,
hk the perpendicular fromM to ek , ϕ the angle betweenx′ − xM andhk , andϕi,k the
angle betweenxi,k − xM andhk . Let Pk be the intersubsection ofx′ − xM andek , and
Mk the projection ofM on ek . Let â be the unit vector along vectora. Then

d = |OM|, hk = |hk|,
hk =MMk = (x1,k − xM)−

(
(x1,k − xM) · êk

)
êk,

x′ − xM = (
(
x′ − xM) · ĥk

)
ĥk + (

(x′ − xM) · êk
)
êk.

9.1. Analytical formulae for the inner integrals

After transformation to the polar coordinatesr = |x′ − xM | andϕ, the inner integrals
for scalar and vector valued basis functions become, respectively:

(9.3)I (x)=
∑
k

Ik(x),

(9.4)Ij (x)= 1

2J

{
I (x)f x(x′

j − xM)−
∑
k

(
I(c)k (x)+ I(s)k (x)

)}
,
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where

(9.5)Ik(x)= I(ϕ2,k, hk)− I(ϕ1,k, hk),

(9.6)I(c)k (x)=
{
Ic(ϕ2,k, hk)− Ic(ϕ1,k, hk)

}
ĥk,

(9.7)I(s)k (x)=
{
Is(ϕ2,k, hk)− Is(ϕ1,k, hk)

}
êk,

andϕi,k = arctan{ 1
hk
(xi,k − xM) · êk}.

Dropping the indicesk the integralI (ϕ,h) is defined by:

I(ϕ,h)=
∫ ∫ h/cosϕ

0

r√
r2 + d2

dr dϕ

=
∫ [√

r2 + d2
]h/cosϕ
0 dϕ = h

q

∫ √
1+ q2x2

1+ x2
dx − dϕ

= h log
(
qx +

√
1+ q2x2

)+ d arctan

(
dq

h
√

1+ q2x2

)
− dϕ

= h log

(
h tanϕ + s(ϕ)√

d2 + h2

)
+ d arctan

(
d tanϕ

s(ϕ)

)
− dϕ

(9.8)= h log

(
h tanϕ + s(ϕ)√

d2 + h2

)
+ d arctan

(
(d − s(ϕ)) tanϕ

s(ϕ)+ d tan2ϕ

)
,

wherex = tanϕ, q = h√
d2+h2

ands(ϕ)= |OP| =
√
( h

cosϕ )
2 + d2 = h

q

√
1+ q2x2.

The integralsIc(ϕ,h) andIs(ϕ,h) are defined by:

Ic(ϕ,h)=
∫ ∫ h/cosϕ

0

r2 cosϕ√
r2 + d2

dr dϕ

= 1

2

∫
cosϕ

[
r
√
r2 + d2 − d2 log

(√
r2 + d2 + r

)]h/cosϕ
0 dϕ

= −1

2
d2 sinϕ log

(
s(ϕ)+ h/cosϕ

d

)
+ h2

2q

∫
1√

1+ q2x2
dx

(9.9)

= −1

2
d2 sinϕ log

(
s(ϕ)+ h/cosϕ

d

)
+ 1

2
(h2 + d2) log

(
h tanϕ + s(ϕ)√

h2 + d2

)
,

Is(ϕ,h)=
∫ ∫ h/cosϕ

0

r2 sinϕ√
r2 + d2

dr dϕ

= 1

2

∫
sinϕ

[
r
√
r2 + d2 − d2 log

(√
r2 + d2 + r

)]h/cosϕ
0 dϕ

= 1

2
d2 cosϕ log

(
s(ϕ)+ h/cosϕ

d

)
+ 1

2
h2q

∫
x√

1+ q2x2
dx

(9.10)= 1

2
d2 cosϕ log

(
s(ϕ)+ h/cosϕ

d

)
+ 1

2
hs(ϕ),

wherex = tanϕ, q = h√
d2+h2

ands(ϕ)= |OP| =√
(h/cosϕ)2 + d2 = h

q

√
1+ q2x2.
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9.2. Analytical formulae for the moment integrals

After transformation to the polar coordinatesr = |x′ − xM | andϕ, the moment integrals
for scalar and vector valued basis functions become, respectively:

(9.11)Mαβ =
∑
k

Mk,αβ,

(9.12)Mj,αβ = 1

2J

{
Mαβ (x′

j − xM)−
∑
k

(
M(c)
k,αβ + M(s)

k,αβ

)}
,

where

(9.13)Mk,αβ = Mαβ(ϕ2,k, hk)−Mαβ(ϕ1,k, hk),

(9.14)M(c)
k,αβ = {

M(c)
αβ (ϕ2,k, hk)−M(c)

αβ (ϕ1,k, hk)
}
ĥk,

(9.15)M(s)
k,αβ = {

M(s)
αβ (ϕ2,k, hk)−M(s)

αβ (ϕ1,k, hk)
}
êk,

andϕi,k = arctan{ 1
hk
(xi,k − xM) · êk}.

Dropping the indicesk the integralsMαβ(ϕ,h), M(c)
αβ (ϕ,h) andM(s)

αβ (ϕ,h) are de-
fined by:

(9.16)M00(ϕ,h)=
∫ ∫ h/cosϕ

0
r dr dϕ = 1

2h
2
∫

1

cos2ϕ
dϕ = 1

2h
2 tanϕ,

M0α(ϕ,h)=
∫ ∫ h/cosϕ

0

(
ĥα cosϕ + êα sinϕ

)
r2 dr dϕ

= 1
3h

3
∫

1

cos3ϕ

(
ĥα cosϕ + êα sinϕ

)
dϕ

(9.17)= 1
3h

3(ĥα tanϕ + 1
2 êα tan2ϕ

)
,

Mαβ(ϕ,h)=
∫ ∫ h/cosϕ

0

(
ĥα cosϕ + êα sinϕ

)(
ĥβ cosϕ + êβ sinϕ

)
r3 dr dϕ

= 1
4h

4
∫

1

cos4ϕ

(
ĥα cosϕ + êα sinϕ

)(
ĥβ cosϕ + êβ sinϕ

)
dϕ

(9.18)

= 1
4h

4{ĥβ(ĥα tanϕ + 1
2 êα tan2ϕ

)+ êβ
(1

2ĥα tan2ϕ + 1
3 êα tan3ϕ

)}
,

(9.19)M(c)
00 (ϕ,h)=

∫ ∫ h/cosϕ

0
cosϕr2 dr dϕ = 1

3h
3
∫

1

cos2ϕ
dϕ = 1

3h
3 tanϕ,

M(c)
0α (ϕ,h)=

∫ ∫ h/cosϕ

0
cosϕ

(
ĥα cosϕ + êα sinϕ

)
r3 dr dϕ

= 1
4h

4
∫

1

cos3ϕ

(
ĥα cosϕ + êα sinϕ

)
dϕ

(9.20)= 1
4h

4(ĥα tanϕ + 1
2 êα tan2ϕ

)
,
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M(c)
αβ (ϕ,h)=

∫ ∫ h/cosϕ

0
cosϕ

(
ĥα cosϕ + êα sinϕ

)(
ĥβ cosϕ + êβ sinϕ

)
r4 dr dϕ

= 1
5h

5
∫

1

cos4ϕ

(
ĥα cosϕ + êα sinϕ

)(
ĥβ cosϕ + êβ sinϕ

)
dϕ

(9.21)

= 1
5h

5{ĥβ(ĥα tanϕ + 1
2 êα tan2ϕ

)+ êβ
(1

2ĥα tan2ϕ + 1
3 êα tan3ϕ

)}
,

(9.22)M(s)
00 (ϕ,h)=

∫ ∫ h/cosϕ

0
sinϕr2 dr dϕ = 1

3h
3
∫

sinϕ

cos3ϕ
dϕ = 1

6h
3 tan2ϕ,

M(s)
0α (ϕ,h)=

∫ ∫ h/cosϕ

0
sinϕ

(
ĥα cosϕ + êα sinϕ

)
r3 dr dϕ

= 1
4h

4
∫

sinϕ

cos4ϕ

(
ĥα cosϕ + êα sinϕ

)
dϕ

(9.23)= 1
4h

4(1
2ĥα tan2ϕ + 1

3 êα tan3ϕ
)
,

M(s)
αβ (ϕ,h)=

∫ ∫ h/cosϕ

0
sinϕ

(
ĥα cosϕ + êα sinϕ

)(
ĥβ cosϕ + êβ sinϕ

)
r4 dr dϕ

= 1
5h

5
∫

sinϕ

cos5ϕ

(
ĥα cosϕ + êα sinϕ

)(
ĥβ cosϕ + êβ sinϕ

)
dϕ

(9.24)

= 1
5h

5{ĥβ(1
2ĥα tan2ϕ + 1

3 êα tan3ϕ
)+ êβ

(1
3ĥα tan3ϕ + 1

4 êα tan4ϕ
)}
,

whereĥα = ĥx , ĥy or ĥz, andêα = êx , êy or êz, for α = 1, 2 or 3.

10. Solution of Kirchhoff’s equations

10.1. Kirchhoff ’s equations

This section presents the solution methods for solving theKirchhoff ’s equationsde-
scribing the behaviour of a circuit which forms the electronic equivalent of an inter-
connection system consisting of a number of planar conductors immersed in a stratified
medium. A derivation of Kirchhoff’s equations fromMaxwell’s equationscan be found
in DU CLOUX, MAAS and WACHTERS[1994], and in Chapter 1 of the present volume.
In these references, a weak formulation and discretisation of a mixed potential, bound-
ary value problem is presented. Care is taken that, in the quasi-static approximation, the
discretised equations admit an electronic circuit interpretation. The conductor surfaces
are subdivided into a number of sufficiently small elements. The topology of the sur-
faces is described by the set of elements, the index set of which is denoted byN , and
a set of edges between adjacent elements, the index set of which is denoted byE . The
electric surface current, surface charge and scalar potential, defined on the conductor
surfaces, are expanded in a number of basis functions, defined on the elements.
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The Kirchhoff equations are:

(10.1)(R + sL)I − PV = 0,

(10.2)PTI + sQ= J,

(10.3)DQ= V,

whereI collects the edge currents,Q the element charges,V the element potentials and
J the external currents flowing into the interconnection system. Further,R denotes the
resistance matrix,L the inductance matrix andD the elastance matrix. The matrixP
denotes the incidence matrix. It consists of entries 0 and± 1, and represents the topol-
ogy. Finally,s denotes the complex frequency. Its imaginary part is−ω. It is assumed
that |ω| �Ω , whereΩ is the maximum frequency for which the generated equivalent
circuit should be valid. The matricesR, L, D andP are independent ofs.

Elimination of the charges from (10.1)–(10.3) gives

(10.4)(R + sL)I − PV = 0,

(10.5)PTI + sCV = J.

The charges are obtained from the potentials according to

(10.6)Q = CV,

whereC = D−1 denotes the capacitance matrix.
The set of circuit nodes is defined to be a non-empty subset of the set of elements. Let

N denote the index set of the set of circuit nodes, andN ′ the index set of its complement
in N . Introduction of this partitioning of the set of elements leads to the following
equations

(10.7)(R + sL)I − PN ′VN ′ = PNVN,

(10.8)−PT
N ′I − sCN ′N ′VN ′ = sCN ′NVN,

and

(10.9)JN = PT
N I + sCNN ′VN ′ + sCNNVN,

whereVN is the collection of prescribed vectors of circuit node voltages.
Let R andC be the sets of real and complex numbers, respectively, and|.| denote the

length of a set. From the discretisation it follows that the matrices

R ∈ R|E |×|E |, L ∈ R|E |×|E |, PN ′ ∈ RE |×|N ′|, PN ∈ RE |×|N |,
CN ′N ′ ∈ R

|N ′|×|N ′|, CN ′N ∈ R
|N ′|×|N |, CNN ′ ∈ R

|N |×|N ′|, CNN ∈ R
|N |×|N |,

I ∈ C
|E |×|N |, VN ′ ∈ C

|N ′|×|N |, VN ∈ R
|N |×|N |, JN ∈ C

|N |×|N |.
The matricesR, L andC are symmetric and positive definite. The matrixPN ′ has full
column rank. From Eqs. (10.7)–(10.9) it follows thatJN is linearly related toVN , i.e.,

(10.10)JN = Y VN,

whereY is the admittance matrix of the interconnection system when observed from its
circuit nodes.
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10.2. Construction of the admittance matrix

Elimination ofI from (10.7) and (10.8) gives

(10.11)

−(PT
N ′(R + sL)−1PN ′ + sCN ′N ′

)
VN ′ = (

PT
N ′(R + sL)−1PN + sCN ′N

)
VN,

(10.12)I = (R + sL)−1(PN ′VN ′ + PNVN).

Let h be the mesh size, andk0 = ω
√
ε0µ0 the free-space wavenumber, whereε0 and

µ0 denote the free-space permittivity and permeability, respectively. Whenk0h' 1, it
follows from the expressions for the matrix elements ofC, L andR (seeDU CLOUX,
MAAS and WACHTERS[1994]), that the orders of the matrix elements are

iωCij = Z−1
0 O(ik0h), iωLkl = Z0O(ik0h), Rkl = ZsO(1),

wherei, j ∈ N andk, l ∈ E , Z0 = √
µ0/ε0, andZs denotes the surface impedance of

the conductors.
Therefore, the ratio between a matrix element of the second term and a corresponding

matrix element of the first term in the left-hand side of (10.11) isO((ik0h)
2), if Z = 0,

andO(ik0h), if Z �= 0. Returning to (10.11),VN ′ may be expanded in powers ofik0h,
which is then substituted into (10.12) to obtainI. Neglecting higher order term in ik0h,
it follows that

(10.13)VN ′ = V0 + V1, I = I0 + I1,

where(V0, I0) and(V1,V1) may be obtained from two sets of equations,

(10.14)(R + sL)I0 − PN ′V0 = PNVN,

(10.15)−PT
N ′I0 = 0,

(10.16)(R + sL)I1 − PN ′V1 = 0,

(10.17)−PT
N ′I1 = s(CN ′N ′V0 + CN ′NVN).

Let VN be a unit matrix, then it follows from (10.10) that the admittance matrixY = JN .
Substitution of (10.13) into (10.9) leads to

(10.18)Y = PT
N(I0 + I1)+ sCNN ′V0 + sCNN +O

(
(ik0h)

2).
From (10.18) it follows that treating capacitive effects as a perturbation is consistent

with the quasi-static modelling of the interconnection system (seeDU CLOUX, MAAS

and WACHTERS[1994]).
Depending on the frequency range of interest, four different methods can be distin-

guished to obtain a solution for these sets of equations. If one is only interested in the
solution for a high (low) frequency range, it can be obtained by an expansion of(V0, I0)

and(V1, I1) in s for relatively high (low) values of|s|.
However, if one is interested in the solution for the full frequency range there are two

options. The first option is to solve Eqs. (10.14)–(10.17) for an appropriately chosen set
of s values. The second option is to combine the solutions obtained for the high and low
frequency ranges.
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10.2.1. Admittance matrix for the high frequency range
In the high frequency range theR term in Eqs. (10.14) and (10.16) is considered as
a perturbation of thesL term. Introducing the following expansions of(V0, I0) and
(V1,V1)

V0 = V0,0 + s−1V0,1, I0 = s−1I0,0 + s−2I0,1,

V1 = s2V1,0 + sV1,1, I1 = sI1,0 + I1,1,

and collecting the coefficients ofs0, s−1, s2 ands, respectively, the pairs(Vi,j , Ii,j ) for
(i, j = 0,1) may be obtained from the following four sets of equations

(10.19)LI0,0 − PN ′V0,0 = PNVN,

(10.20)−PT
N ′I0,0 = 0,

(10.21)LI0,1 − PN ′V0,1 = −RI0,0,

(10.22)−PT
N ′I0,1 = 0,

(10.23)LI1,0 − PN ′V1,0 = 0,

(10.24)−PT
N ′I1,0 = CN ′N ′V0,0 + CN ′NVN,

(10.25)LI1,1 − PN ′V1,1 = −RI1,0,

(10.26)−PT
N ′I1,1 = CN ′N ′V0,1.

The expansions of(V0, I0) and(V1,V1) are introduced to extend the validity of the high
frequency range to lower frequencies. After substitution into the expression (10.18) and
collection of the coefficients of powers ofs one obtains

(10.27)Y = s−2YR + s−1YL + YG + sYC + · · · ,
where

(10.28)
YL = PT

N I0,0, YC = CNN ′V0,0 + CNN + PT
N I1,0,

YR = PT
N I0,1, YG = CNN ′V0,1 + PT

N I1,1.

An equivalent circuit that represents the admittance matrix consists of branches between
every pair of circuit nodes. For a circuit with frequency independent components each
branch can be approximated by a series resistorR and inductorL, in parallel with a
capacitorC and a resistor of conductanceG, so that for the branch between the circuit
nodesi andj

(10.29)R = −yR,ijy−2
L,ij , L= y−1

L,ij , C = yC,ij , G= yG,ij ,

where the branch admittance matrix element,yij , is related to the admittance matrix
elementsYij through(i, j ∈N)

(10.30)yij = −Yij (i �= j),

(10.31)yii =
∑
j∈N

Yij .
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The diagonal element,yii , represents the branch between the circuit nodei and the
ground plane or some reference at infinity. From Eqs. (10.19)–(10.22) it follows that
yR,ii = yL,ii = 0.

If frequency dependent resistors are allowed each branch consists of a resistorR =
s2y−1

R in parallel with an inductorL, a capacitorC and a resistor of conductanceG
given in (10.29). For passive IC’s it can be shown that this is a good approximation for
the frequency range of interest.

10.2.2. Admittance matrix for the low frequency range
In the low frequency range thesL term in Eqs. (10.14) and (10.16) is considered as
a perturbation of the termR. Introducing the following expansions of(V0, I0) and
(V1,V1)

V0 = V0,0 + sV0,1, I0 = I0,0 + sI0,1,

V1 = sV1,0, I1 = sI1,0,

and collecting the coefficients of powers ofs, the pairs(Vi,j , Ii,j ) for (i, j = 0,1) may
be obtained from the following three sets of equations

(10.32)RI0,0 − PN ′V0,0 = PNVN,

(10.33)−PT
N ′I0,0 = 0,

(10.34)RI0,1 − PN ′V0,1 = −LI0,0,

(10.35)−PT
N ′I0,1 = 0,

(10.36)RI1,0 − PN ′V1,0 = 0,

(10.37)−PT
N ′I1,0 = CN ′N ′V0,0 + CN ′NVN,

The expansions of(V0, I0) and(V1,V1) are introduced to extend the validity of the low
frequency range to higher frequencies. After substitution of them into the expression
(10.18) and collection of the coefficients of powers ofs one obtains

(10.38)Y = YR + sYC + · · · ,
where

YR = PT
N I0,0, YC = CNN ′V0,0 + CNN + PT

N(I1,0 + I1,0).

An equivalent circuit that represents the admittance matrix consists of branches between
every pair of circuit nodes. Each branch consists of a resistorR, in parallel with a
capacitorC, so that for the branch between the circuit nodesi andj

R = y−1
R,ij , C = yC,ij ,

where the branch admittance matrix elementyij is defined by the expressions (10.30)
and (10.31) of Section 10.2.1. From Eqs. (10.32) and (10.33) it follows thatyR,ii = 0.
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10.2.3. Approximate admittance matrix for the full frequency range
Returning to (10.14) and (10.15), an expression forI0 can be obtained by introducing
the null space ofPT

N ′ . Let C ∈ R
|E |×(|E |−|N ′|) and

(10.39)PT
N ′C = 0, CTPN ′ = 0,

then it follows from (10.14) that

(10.40)I0 = C
(
CT(R + sL)C

)−1CTPNVN.

Let A = CTRC, B = CTLC andA,B ∈ R
n×n, wheren= |E | − |N ′|. Consider the gen-

eralized eigenvalue problemAx = λBx. SinceR andL are symmetric and positive def-
inite, andC has full column rank,A andB are symmetric and positive definite. Pencils
A − λB of this variety are referred to as symmetric-definite pencils. For such pencils
there exists a nonsingular matrixX = [x1, . . . ,xn] such that

(10.41)XTAX = diag(a1, . . . , an), XTBX = diag(b1, . . . , bn).

Moreover,Axi = λixi , for i = 1, . . . , n, whereλi = ai
bi
> 0 (see GOLUB andVAN LOAN

[1986], Section 8.6).
From this it follows that

(10.42)(A + sB)−1 =
n∑
i=1

xixT
i

ai + sbi
.

Let YRL = PT
N I0 be the contribution ofI0 to the admittance matrixY of (10.18) then

after substitution of (10.42) into (10.40) it follows that

(10.43)YRL =
n∑
i=1

Hi

λi + s
,

where

(10.44)Hi = b−1
i PT

NCxixT
i CTPN.

Let for the contributions ofV0 andI1 to Y of (10.18) the high frequency approximation
of (10.27) be taken, then

(10.45)Y = YRL + YG + sYC + · · · .
The numerical computation of all eigenvalues and eigenvectors of the generalized eigen-
value problem becomes prohibitively expensive as soon asn becomes larger than a few
hundred. Therefore, the only practical way to obtain an expression for the admittance
matrix Y is through approximation. In view of the expression (10.45), it is natural to
look for an approximation ofYRL with a number of terms,m' n.

In a computer program this is accomplished by calculatingm, low and high, eigen-
values,λi , of the generalized eigenvalue problem, and some admittance matrices,
Yk , for an appropriately chosen set ofm + 2, negative, real values ofs. The set of
these match frequencies,sk , consists of some large negative values between−Ω and
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−max(λ1, . . . , λm), and some small negative values between−min(λ1, . . . , λm) and 0.
They are chosen to be real, so that the components of the equivalent circuit will be real.

There are two options to obtain theYk ’s. The first option, the sampling method, is to
solve Eqs. (10.14)–(10.17) for eachsk . The second option, the perturbation method, is to
calculate theYk ’s for the large negativesk values by the high frequency approximation
(10.27), and those for the small negativesk values by the low frequency approximation
(10.38).

An element of the branch admittance matrix, defined by the (10.30) and (10.31) of
Section 10.2.1, is approximated by

(10.46)yij (s)= yG,ij + s yC,ij +
m∑
l=1

Hl,ij

λl + s
,

where the coefficientsyG,ij , yC,ij andHl,ij are obtained by solving the following set of
m+2 equations

(10.47)yG,ij + syC,ij +
m∑
l=1

Hl,ij

λl + sk
= yk,ij , for k = 1, . . . ,m+ 2.

An equivalent circuit which represents the admittance matrix consists of branches be-
tween every pair of circuit nodes. Each branch consists ofm parallel connections of a
series resistorR and inductorL, in parallel with a capacitorC, and a resistor of con-
ductanceG, so that for the branch between the circuit nodesi andj

Rl = λlH
−1
l,ij , Ll = H−1

l,ij , C = yC,ij , G= yG,ij .

Since the componentsG are very small, and often introduce instabilities in the transient
analysis of the equivalent circuit, in practice they are left out, so that instead ofm+ 2,
onlym+ 1 match frequencies are needed.

10.3. Solution

The equivalent circuit for the interconnection system is submitted to a circuit analysis
program, together with a description of the external components connected by the sys-
tem, the bias conditions, and the frequency range or time domain for AC or transient
analysis, respectively.

For AC analysis the output of the circuit analysis program is a list of nodal voltages
for a number of frequencies. From these data the program can calculate the current
density in the interconnection system by using the calculated transfer matrix. Next, the
electromagnetic radiation can be calculated in the space around the system.

11. Linear algebra

This section presents linear algebra methods that can be used to solve the linear systems
of equations obtained after discretisation. Particularly, the methods used for the solution
of the linear system of equations and of the generalized eigenvalue problem will be
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discussed. The discussion is relatively brief, more details can be found in Chapter 8 of
this volume.

Complex geometries of the interconnection system imply that a relatively large num-
ber of elements have to be used for a proper discretisation. As a result, the dimension
of the coefficient matrices encountered in the linear system of equations is also large.
This has a dramatic impact on the performance of the direct solution techniques: both
the amount of storage needed and the time required to solve the linear system become
prohibitively large. The former is often decisive, since it limits the size of problems
which can be solved given the amount of memory space.

11.1. Solution of the linear systems of equations

In the solution of the Kirchhoff equations, discussed in Section 10, there are two types
of linear system of equations.

In the first type of equation, e.g.,DQ = V (see (10.3)), the matrixD is symmetric
and positive definite. The solution of these systems can be performed by using the well
known incomplete Cholesky conjugate gradient method, ICCG (see, e.g., BARRETT

[1994]). For systems of a large dimension,n, it is often possible to perform the matrix
vector multiplication in each iteration step in an efficient way. Therefore, the matrixD
is approximated by the sum of a sparse matrix,S, and a remainder matrix,R = VR̃V,
whereR̃ is of dimensionm' n, andV is ann×m prolongation matrix. Thismatrix
condensationmethod will be discussed in Section 12. When there is a perfect ground
plane present, as in the case of high frequency filter design,R̃ is approximated by zero.

The second type of equations, e.g., (10.14) and (10.15), or (10.16) and (10.17), are of
the form

(11.1)

(
A P
PT 0

)(
I

V

)
=
(
BI
BV

)
,

whereA ∈ R
n×n is symmetric positive definite andP ∈ R

n×m such that

Pij ∈ {−1,0,1}, ∀1�i�n,1�j�m.

Each row ofP contains at most two non zero elements, which are of opposite sign:

m∑
j=1

|Pij | � 2, −1�
m∑
j=1

Pij � 1.

Finally, rank(P)=m.
The coefficient matrix in (11.1) can be decomposed into the following form:(

A P
PT 0

)
=
(

A 0
PT I

)(
A−1 0

0 −PTA−1P

)(
A P
0 I

)
,

which shows that there aren positive andm negative eigenvalues. Unfortunately, most
iterative techniques can only be applied to the solution of positive definite systems. For
systems with both positive and negative eigenvalues, such methods may break down.
Furthermore, convergence will often be extremely slow since the polynomials generated
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in the methods have to locate both positive and negative eigenvalues. Because of these
problems, direct solution techniques are often preferred.

A solution to the problems sketched in the above is to transform (11.1) into a number
of linear systems which can be solved using standard iterative techniques. The latter
is often more attractive than using direct solution techniques, for a number of reasons.
Firstly, the amount of memory space needed is much smaller. Secondly, approximations
to the coefficient matrix can be used in the matrix vector products occurring in iterative
methods rather than the entire matrix (see Section 12). Hence, there is no need to fully
assemble the matrix.

As noted in the above, if iterative methods are to be used it is desirable that the
coefficient matrices involved are positive definite. There are essentially two ways of
achieving this, namely either using therange space methodor thenull space. Often,
the use of the latter method is ruled out because of the need to construct a basis for
the null space of a large matrix. However, for interconnection systems, the null space
method appears to be extremely useful. In the following, the method will be described
and advantages will be listed.

11.1.1. Null space method
The basis for the null space method is the observation that the solution of the second set
of equations in (11.1), i.e.,PTI = BV , can be cast into the form

(11.2)I = PṼ + CX,
whereṼ ∈ R

m, X ∈ R
n−m, C ∈ R

n×(n−m), andPṼ is a special solution of the second
set of equations, satisfying

PTPṼ = BV ,

andC is a matrix whose columns form a basis for the null space ofPT. Note that (11.2)
is the most general form of solutions of the second set of equations in (11.1).

After substitution of (11.2) into the first set of equations, one obtains

ACX+ PV = BI − APX,

which, on multiplying byCT yields

CTACX+ CTPV = CT(BI − APX).

Since the columns ofC constitute a basis of the null space ofPT, it holds thatPTC = 0
or, equivalently,CTP = 0. Hence, the equation just derived is actually equal to

(11.3)CTACX = CT(BI − APṼ ).

The conclusion is that there are three steps involved in solving the original system:
1. First solve the systemPTPṼ = BV to obtainṼ and, subsequently calculatePṼ ,

which is a special solution of the second set of equations.
2. Next determine the unknown vectorX by solving the system (11.3). Combining

the result with the special solution obtained in step 1 leads to the vector of un-
known currentsI .
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3. Having found the current vectorI , determine the vector of unknown potentials,
V , by solvingPTPV = PT(BI − AI ).

The first and third step involve solving systems with a coefficient matrixPTP which,
by the special structure ofP, is a positive definite symmetric matrix. In fact, it is an
M-matrix, meaning that the diagonal entries are positive, the off-diagonal entries are
non-positive and the inverse is positive. The solution of these systems can be performed
by using the ICCG method. Note thatPTP is a sparsem×m matrix.

Crucial is the solution of the system in step 2 of the above procedure. Observe that,
sinceA is a positive definite matrix,CTAC, is also positive definite. Hence, standard
numerical solution techniques can be applied to the system (11.3). Thus, the problem of
indefiniteness is avoided by using this approach. Note thatCTAC is an(n−m)×(n−m)
matrix.

11.1.2. Construction of the null space matrixC
The only problem is the construction of the null space matrix,C. Fortunately, the matrix
C only depends on the topology of the problem. Hence, the construction of the matrix
C only has to be done once. A fortunate fact is that the elements of the null space can
actually be interpreted physically. They are combinations of currents through branches
constituting closed loops, the exterior of the problem area being considered as one node.
This means that a considerable number of basis vectors can be constructed easily, by
just finding all closed loops in the topology of the problem. Note that, in this way, a
sparse basis is obtained. Most basis elements will consist of only a few non-zero entries.
This is of importance when constructing the coefficient matrixCTAC, because it saves
computer time. Since, for most topologies, this procedure does not lead to all elements
of the null space, the set of basis functions found needs to be completed. This can be
done in a fairly simple way. Suppose the matrixPT is of the form

PT = (
FG

)
,

whereF is anm×m matrix andG anm× (n−m) matrix. Since rank(P) = m, it is
possible to choose a suitable permutation of unknown currents and voltages, so that the
matrixF is non singular. It is even possible to have an upper triangularF . Since every
column ofF contains at most two non-zeroes, a simple elimination process leads to the
situation whereF is the identity matrix.

Now assume that the matrixC is of the form

C =
(
M

N

)
,

withM anm×(n−m)matrix andN an(n−m)×(n−m)matrix. Then the requirement
PTC = 0 implies that

FM +GN = 0,

so that, ifN is given,M follows from

M = −F−1GN.
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Orden (see ORDEN [1964]) already used this technique in 1964 to determine the null
space. He choseN the identity matrix. Since a large number of basis elements are
known, Orden’s choice is not very efficient. Instead, we write

C =
(
M1 M2
N1 N2

)
,

such that the first set of columns(
M1
N1

)
correspond to the basis elements already generated. Suppose that this sub-matrix con-
tainsk columns. Thek columns of the matrixN1 constitute a subspace ofR

n−m, which
is at mostk-dimensional. This means that there are at leastn−m− k unit vectors from
R
n−m that are not in this subspace. In other words, it is possible to fill the matrixN2

with unit vectors that are not in the span of the columns ofN1. Having constructed the
matrixN2, the matrixM2 can be produced simply by

M2 = −F−1GN2.

If F is the identity matrix, the entries ofM2 are all in the set−1,0,1 (since this also
holds for the elements ofG). In this way, a complete set of basis vectors for the null
space can be found.

11.2. The calculation of a subset of the eigenvalues of a generalized eigenvalue
problem

The smallest and largest eigenvalues,λ, of the generalized eigenvalue problem,Ax =
λBx, mentioned in Section 10.2.3, can be calculated by dedicated routines available in
many software libraries. An effective procedure is to use a generalization of an algo-
rithm, developed by PARLETT and REID [1981] for large symmetric eigenvalue prob-
lems. This algorithm is a reliable and efficient method for finding all or part of the spec-
trum of a large symmetric matrixM, based on the Lanczos algorithm, by tracking the
progress of the eigenvalues of the Lanczos tridiagonal matrices towards the eigenvalues
of M.

VAN DER VORST [1982] has generalized this algorithm for the computations of
eigenvalues of the product matrix,M = AB−1, whereA is symmetric, andB is symmet-
ric positive definite. The method allows for the computation of the eigenvalues ofB−1A
which are equal to thoseAB−1, without the explicit need for anLLT-factorization of
the matrixB. This makes the generalized scheme very attractive, especially ifB has a
sparse structure. The method is attractive if fast solvers are available for the solution of
linear systems of the formBy = z.

Since the small eigenvalues of the partially solved eigenvalue problem,AB−1x = λx,
obtained by the above method, are often not accurate enough, they are obtained by
partially solving the inverse eigenvalue problem,A−1Bx = µx, whereµ= λ−1.

In recent years, the computation of eigenvalues and the solution of generalized eigen-
value problems has received much attention. A very effective method has been described
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in the work by Van der Vorst and his co-workers: the Jacobi–Davidson method. For more
details, we refer the reader to the recent literature on this subject.

12. Matrix condensation

This section presents an efficient method for solving equations with large matrices,A,
of the type discussed in the previous sections. In Section 7 it was shown that in the in-
tegrand of an interaction integral between an object and a source element that are suffi-
ciently apart, the Green function can be approximated by Taylor expansion. In that case,
the integral can be expressed as a sum of the products of a moment integral,Mαβ(xm),
corresponding to the object element, and a moment integral,Mαβ(x′

m), corresponding to
the source element, and a factor resulting from the Green function,G(x′

m − xm), where
xm andx′

m are the midpoints of the object and source element. The indicesα andβ refer
to the terms in the Taylor expansion. For more details see also Section 12.1.

In thematrix condensationmethod treated in this section the elements are clustered
into cells. Letn be the total number of elements andm be the number of cells (m' n).
Let the interaction integrals between elements belonging to adjacent cells form a sparse
n× n matrix S with Ns non-zero elements (Ns ' n2). Let the interaction between the
non-adjacent cells form anm×mmatrix,R̃, the non-zero coefficients of which describe
some kind of averaged interaction between the elements of one cell with the elements
of another cell.

The matrix,R̃, may be considered as the product matrixWMT :G :MWT. The ma-
trix W is anm×n restriction matrix, theith row of which has only non-zero coefficients
for the elements belonging to theith cell. The matrixMT :G :M is ann× n matrix,
whereM is annT × n matrix (nT is the number of Taylor terms), andG is annT × nT
matrix. MatrixG results from the Green function,G(x′

m−xm), and is different for each
combination of a column ofMT and a row ofM , which represent the moments of an
object element with midpointxm and the moments of a source element with midpoint
x′
m, respectively. This special matrix product is denoted by “:”.
In the matrix condensation method the matrix,A, is approximated by matrix̃A =

S + V R̃ V T, whereV is ann × m prolongation matrix thej th column of which has
only non-zero coefficients for the elements belonging to thej th cell. The non-zero
coefficients ofV are set equal to 1. Hence, the total number of matrix coefficients of
matrix,A, to be calculated is reduced fromn2 toNs +m2.

For the solution of the equations with these large matrices an iterative method is used.
In each iteration step a matrix vector multiplicationv =Au is performed. In the matrix
condensation method the vectorv after multiplication isv1 + v2, wherev1 = Su and
v2 = V R̃ V Tu. Hence, the total number of operations in a matrix vector multiplication
is reduced fromO(n2) to O(n).

There are two different methods to obtain the vectorv2. One method is to construct
the matrix,R̃, in advance. Therefore, thenT × m cell momentsMWT are calculated
from thenT × n element momentsM assuming that the non-zero elements in a row of
W are all equal, and their sums equal to 1. Physically, this meaning that the elements
belonging to a particular cell will all have the same charge. Since it is not always pos-
sible to compose the cells so that this is a good approximation, an alternative method



742 A.J.H. Wachters and W.H.A. Schilders

is to use in each iteration step the vectoru to construct anm× n restriction matrixU
and to calculate thenT ×m source cell momentsMUT. Each row of matrixU contains
the elements ofu belonging to the corresponding cell completed with zeroes. Next, the
matrixMUT is multiplied by them×m matrixWMT :G : E, whereE is annT ×m

matrix with elements equal to 1. The matrixWMT : G : E can be calculated in ad-
vance. This method allows the elements in a cell to have different charges. Note that
the matrix,R̃, is no longer symmetric, so that instead of the ICCG method an iterative
solution method must taken that can handle non-symmetric matrices, e.g., BICGSTAB
(see BARRETT [1994]).

In the next subsection the coefficients of matrixR̃ will be derived.

12.1. Calculation of coefficients of matrix̃R

It has been shown that the interaction integrals belonging to the matrixD have the form:

(12.1)I =
∫
Ωi

ψ̃i(x) ·
∫
Ωj

ψ̃j (x′)G(x′ − x)dx′ dx.

Here,ψ̃i(x) andψ̃j (x) are basis functions belonging to the object domainΩi and the
source domainΩj , respectively. Further,x andx′ represent points inΩi andΩj , re-
spectively.

Let the Green function be of the form:

G(x′ − x)=
N∑
i=0

ci

|x′
i − x| ,

whereN is the number of images.
If the distance between two disjoint elementsΩi andΩj , defined by

min
{|x′ − x|; x ∈Ωi, x′ ∈Ωj

}
,

is large enough one can apply Taylor expansion to the Green functionG with respect
to (x′ − x′

m) and(x − xm), wherex′
m andxm are the midpoints of the source and object

element, respectively. After the substitutionsyi = x′
i − x, yim = x′

im
− xm and yi −

yim = y − ym, the second order Taylor expansion becomes:

(12.2)G(y)= gm + gT
m(y − ym)+ 1

2(y − ym)TGm(y − ym)+O
(|y − ym|3),

where forri = |yim|

(12.3)gm =
N∑
i=0

Gi(yim)=
N∑
i=0

ci

ri
,

(12.4)gm =
N∑
i=0

(∇Gi)(yim)=
N∑
i=0

−ci
r3
i

yim,

(12.5)Gm =
N∑
i=0

(∇(∇Gi))(yim)= N∑
i=0

−ci
r3
i

I + 3
ci

r5
i

(yim ⊗ yim).
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For the definition of⊗ see Appendix D. After substitution of the Taylor approxima-
tion (12.2) ofG(x′ − x) into the expression (12.1) one obtains

(12.6)Ĩ (ym)=
∫
Ωi

ψ̃i(x) ·
∫
Ωj

ψ̃j (x′)gm dx′ dx

(12.7)+
∫
Ωi

ψ̃i(x) ·
∫
Ωj

ψ̃j (x′)gT
m(y − ym)dx′ dx

(12.8)+ 1

2

∫
Ωi

ψ̃i(x) ·
∫
Ωj

ψ̃j (x′)(y − ym)TGm(y − ym)dx′ dx,

wherey = x′ − x andym = x′
m − xm.

Sincegm, gm andGm are independent ofx andx′, they appear as constant terms in
the integral. Let the moment integrals be defined by

Mαβ(xm)=
∫
Ωi

ψ̃i(x){x − xm}α{x − xm}β dx,

where{x − xm}α = 1, (x − xm), (y − ym) or (z− zm) for α = 0, 1, 2 or 3.
After substitution into (12.8)

(12.9)Ĩ (ym)=MTGM,

where thenT -dimensional vectorM contains the elementsMαβ in the row-wise order
αβ = {00,01, . . . ,33}. ThenT × nT matrixG is of the form

G=
 gm gT

m
1
2G̃T

m

−gm −Gm 0
1
2G̃m 0 0

 ,
where the scalargm, the 3-dimensional vectorgm, and the 3× 3 matrixGm are defined
by (12.3)–(12.5).̃Gm is a 9-dimensional vector that contains the matrix elements ofGm

in row-wise orderαβ = {11,12, . . . ,33}.
The moment integrals are calculated in advance. Next, the cell moments are calcu-

lated, defined by:

Mαβ(xmcell)=
∑
i∈cell

wiMαβ(xmi ),

wherexmi are the midpoints of the elements belonging to the cell with midpointxmcell ,
andwi are weight factors.

An expression for the coefficients of matrix̃R is obtained after substituting in (12.9)
the momentsM by M, and the matrixG by a similar matrix with the Green functions
gm, gm, Gm of yimcell

, whereymcell = x′
mcell

−xmcell , andxmcell andx′
mcell

are the midpoints
of the object and source cell, respectively.
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Appendix A. Boundary singularities

In this appendix we study the behavior of the potential, the fields and the surface charge
densities in the neighbourhood of sharp “corners” or edges. We shall assume that they
are infinitely sharp so that we can look at them closely enough that the behaviour of the
fields is determined in functional form solely by the properties of the “corner” being
considered and not by the details of the overall configuration.

The general situation in two dimensions is shown in Fig. A.1. The two conducting
planes intersect at an angleβ. The planes are assumed to be held at potentialV . Since
we are interested in the functional behaviour of the fields near the origin, we leave the
“far away” behaviour unspecified as much as possible.

The geometry of Fig. A.1 suggests the use of polar coordinates. In terms of the polar
coordinates(r, ϕ), the Laplace equation for the potentialΦ, in two dimensions is

1

r
dr
(
r

dΦ

dr

)
+ 1

r2

d2Φ

dϕ2
= 0.

Using the separation of variables approach, we substitute

Φ(r,ϕ)=R(r)F (ϕ).

This leads, upon multiplication byr2/Φ, to

r

R
dr
(
r

dR

dr

)
+ 1

F

d2F

dϕ2
= 0.

FIG. A.1. Intersubsection of two conducting planes, with potentialV , defining a corner with opening angleβ .
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Since the two terms are separately function ofr andϕ, respectively, they each must be
constant:

r

R
dr
(
r

dR

dr

)
= ν2,

1

F

d2F

dϕ2
= −ν2.

The solutions to these equations are

(A.1)
R(r)= arν + br−ν,
F (ϕ)=Acos(νϕ)+B sin(νϕ)

}
and for the special circumstance ofν = 0, the solutions are

(A.2)
R(r)= a0 + b0 ln r,
F (ϕ)=A0 +B0ϕ.

}
These are the building blocks with which we construct the potential by linear superpo-
sition. For our situation the azimuthal angle is restricted to the range 0� ϕ � β. The
boundary conditions are thatΦ = V for all r � 0 whenϕ = 0 andϕ = β. This requires
that b0 = B0 = 0 in (A.2) andb = A = 0 in (A.1). Furthermore, it requires thatν be
chosen to make sin(νβ)= 0. Hence

ν = mπ

β
, m= 1,2, . . .

and the general solution becomes

Φ(r,ϕ)= V +
∞∑
m=1

amr
mπ/β sin(mπϕ/β).

Since the series involves positive powers ofrπ/β , for small enoughr only the first term
in the series will be important. Thus, nearr = 0, the potential is approximately

Φ(r,ϕ)� V + a1r
π/β sin(πϕ/β).

The electric field components are

Er(r,ϕ)= −dΦ

dr
� −πa1

β
r(π/β)−1 sin(πϕ/β),

Eϕ(r,ϕ)= −1

r

dΦ

dϕ
� −πa1

β
r(π/β)−1 cos(πϕ/β).

The surface charge densities atϕ = 0 andϕ = β are equal and are approximately

ρ(r)= Eϕ(r,0)

4π
� − a1

4β
r(π/β)−1.

The components of the field and the surface charge density nearr = 0 all vary with
distance asr(π/β)−1. This dependence onr gives us forβ = 2π (the edge of a thin
sheet) the singularity asr−1/2. This is still integrable so that the charge within a finite
distance from the edge is finite, but it implies that field strengths become very large at
the edges of conducting sheets.
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FIG. A.2. Transformation of the unit square to the quadrilateral in terms of the isoparametric coordinatess1
ands2, with the edge functionw1.

To account for this boundary singularity the basis functions of the charge and the cur-
rents for the elements, of which one or more edges lie in the boundary of the 2D conduc-
tor region, will be adapted by the functionf (x) introduced in Section 2.6. Therefore,
this function has the formd−1/2. If one of the edges of the element lies in the boundary

d = si or d = 1− si ,

wheresi is one of the isoparametric coordinates (see Fig. A.2). If two opposite edges of
the element lie in the boundary

d = si(1− si).

Appendix B. Basis functions

In this appendix the vector valued basis functions for the currentJ on the edges of a
quadrilateral element are defined. They span the function spaceH div

h . For these basis
functions some lemmas will be proven.

The mapping from a unit square with isoparametric coordinatess1 and s2 to the
quadrilateralx1 . . .x4, shown in Fig. A.2, is given by

(B.1)x(s1, s2)= (1− s2)
[
(1− s1)x1 + s1x2

]+ s2
[
(1− s1)x4 + s1x3

]
.

For a particular elementΩi the edge functionswk are (seeVAN WELIJ [1986, p. 371])

w1 = (1− s2)v2

|v1 × v2| , w2 = −s1v1

|v1 × v2| ,

(B.2)
w4 = (1− s1)v1

|v1 × v2| , w3 = −s2v2

|v1 × v2| ,
v1 = (x2 − x1)+ s2(x1 − x2 + x3 − x4),

v2 = (x4 − x1)+ s1(x1 − x2 + x3 − x4).

For these basis functions the following lemmas hold:
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LEMMA B.1. Let wk , k = 1, . . . ,4, be defined as in(B.2) and let J0(s1, s2) =∑4
k=1 Ikwk(s1, s2) for certainI1, . . . , I4. Then, for(s1, s2) ∈ [0,1] × [0,1]:

4∑
k=1

Ik = 0 1⇒ ∇ · J0 = 0.

PROOF. Consider the mapping (B.1) from the unit square to the quadrilateral. Let the

vectorsvj andv12 be defined asvj = ∂x
∂sj

, andv12 = ∂2x
∂s1∂s2

. Then, we get the following
relations:

v1 = (x2 − x1)+ s2v12,

v2 = (x4 − x1)+ s1v12,

v12 = (x1 − x2 + x3 − x4).

In the following we will need the gradients∇si (i = 1,2). These gradients are the rows
of the inverse of the Jacobian matrix{ ∂x

∂si
}, which hasvj (j = 1,2) as columns. Hence

vj · ∇si = δij . Let J = (v1 × v2) · v3, wherev3 = v1×v2|v1×v2| is the unit normal vector to
the quadrilateral, then the expressions for the gradients are:

∇s1 = v2 × v3

J
, ∇s2 = v3 × v1

J
.

Now, letf = I4(1− s1)− I2s1 andg = I1(1− s2)− I3s2, then

J0 = (
f v1 + gv2

)
/J,

and hence

∇ · J0 = 1

J
(∇f · v1 + ∇g · v2)+ 1

J 2

{
f (J∇ · v1 − v1 · ∇J )

+ g(J∇ · v2 − v2 · ∇J )}.
Since∇si · vj = δij ,

∇f · v1 = df

ds1
(∇s1 · v1)= −I2 − I4,

∇g · v2 = dg

ds2
(∇s2 · v2)= −I1 − I3,

J∇ · v1 = J (∇s2 · v12)= (v3 × v1) · v12 = v3 · (v1 × v12)

= v3 · ((x2 − x1)× v12
)
,

J∇ · v2 = J (∇s1 · v12)= (v2 × v3) · v12 = v3 · (v12 × v2)

= v3 · (v12 × (x4 − x1)
)
,

v1 · ∇J = (v1 · ∇s1)
(
(x2 − x1)× v12

) · v3 = v3 · ((x2 − x1)× v12
)= J∇ · v1,

v2 · ∇J = (v2 · ∇s2)
(
v12 × (x4 − x1)

) · v3 = v3 · (v12 × (x4 − x1)
)= J∇ · v2,

so that∇ · J0 = −(I1 + I2 + I3 + I4)/J . �
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LEMMA B.2. Let w1 for a particular element analogously be defined as in(B.2):

w1 = ∓ (1− s2)v2

J
,

then

∇ · w1 = ±1

J
= ±1

|v1 × v2| .
Further

w1 · n = ±1

|x2 − x1| .

PROOF.

∇ · w1 = ±∇s2 · v2

J
∓
(
1− s2

)
J 2

(J∇ · v2 − v2 · ∇J )= ±1

J
,

since in the proof of Lemma B.1 we have shown that∇si ·vj = δij andvl ·∇J = J∇ ·vl .
Let n be the outward normal on edge 1 in the plane of the quadrilateral, then for

s2 = 0

w1 · n = ∓v2 · n
((x2 − x1)× v2) · v3

= ∓v2 · n
(v3 × (x2 − x1)) · v2

= ∓v2 · n
−|x2 − x1|v2 · n

= ±1

|x2 − x1| ,
i.e.,w1 · n depends only on the length of edge 1. �

By similar reasoning it can be shown that the same holds forw2, w3 andw4.
In the following lemma it will be shown that, ifJh(x)=∑4

k=1 Ikw̃k(x), wherew̃k(x)
is defined by Eq. (2.36) and

∑4
k=1 Ik = 0, which means that all the currents that enter

an elementΩi will leave the element, then∇ · Jh(x)= 0 will also hold for allx ∈Ωi .

LEMMA B.3. If the following conditions hold: ∇f (x)= an for somea ∈ R, f (x) �= 0,
the JacobianJ (x) is bounded for allx ∈Ωi , andJh · n = 0, then

4∑
k=1

Ik = 0 ⇐⇒ ∇ · Jh = 0.

PROOF. DefineJ0(x) =∑4
k=1 Ikwk(x). From Lemma B.1 it follows thatJ0 is diver-

gence free,∇ · J0 = 0. Moreover, by the product rule

∇ · Jh = ∇ · (f J0)= ∇f · J0 + f∇ · J0

= ∇f · J0 + 0.

From J0 · n = 0 and∇f (x) = an for somea ∈ R, if follows that ∇f · J0 = 0. Hence
∇ · Jh = 0.
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Conversely, if∇ · Jh = 0, then

∇f · J0 + f

4∑
k=1

Ik∇wk = 0.

From J0 · n = 0 and∇f (x) = an, it follows that ∇f · J0 = 0. Using Lemma B.2, it
follows that

−f (x)
J (x)

4∑
k=1

Ik = 0.

Sincef (x)
J (x) �= 0 for all x ∈Ωi , it follows that

∑4
k=1 Ik = 0. �

Appendix C. Legendre polynomials

DEFINITION C.1. ByΠn[a, b] we denote the linear space of polynomials on[a, b] of
degree� n.

Consider the inner product〈 , 〉 on [a, b] with respect to the continuous weight func-
tionw(x) > 0 on(a, b):

〈f,g〉 =
∫ 1

−1
w(x)f (x)g(x)dx.

Then, one can build up a system of orthogonal polynomials by the Gram–Schmidt
process:

THEOREM C.1. Suppose one has orthogonal polynomialsP0,P1, . . . ,Pn−1 of degree
0,1, . . . , n− 1 respectively, thenPn, constructed by(Gram–Schmidt)

Pn = xn − 〈P0, x
n〉

〈P0,P0〉P0 − · · · − 〈Pn−1, x
n〉

〈Pn−1,Pn−1〉Pn−1,

is also orthogonal toP0, . . . ,Pn−1. Moreover, the orthogonal polynomialsPn are
unique apart from a multiplicative constant.

PROOF. From the orthogonality ofP0, . . . ,Pn−1 and Gram–Schmidt follows:

〈Pk,Pn〉 = 〈
Pk, x

n
〉− 〈Pk, xn〉

〈Pk,Pk〉 〈Pk,Pk〉 = 0, ∀k,0� k � n− 1,

so thatP0, . . . ,Pn form a system of orthogonal polynomials.
Uniqueness: Let̃Pn,Pn ∈Πn and letP0, . . . ,Pn−1 be an orthogonal system. Suppose

furthermore thatP̃n,Pn ⊥ P0, . . . ,Pn−1. Then,P̃n =∑n
j=0βjPj implies thatβj = 0,

for j �= n. �

THEOREM C.2. All zeros ofPn are real, simple and contained in(a, b).
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PROOF. LetPn �= 0.Pn changes sign at the distinct pointsx1, . . . , xk only, whilek < n
andx1, . . . , xk ∈ (a, b). Then,s(x), defined as

s(x)=w(x)Pn(x)

k∏
i=1

(x − xi),

does not change sign on(a, b). Hence
∫ b
a
s(x)dx �= 0.

Since
∏k
i=1(x − xi)=∑k

i=0βiPi for some{βi}, we also have, however,∫ b

a

s(x)dx =
k∑
i=0

βi〈Pn,Pi〉 = 0,

which is a contradiction. SincePn ∈Πn we havek = n. �

For the weight functionw(x) ≡ 1 and[a, b] = [−1,1] the polynomials are called
Legendre polynomials. These polynomials are uniquely determined by a multiplicative
constant such that the leading coefficient is 1. All zeros ofPi (i = 1,2, . . .) are simple,
real and contained within(−1,1). Moreover, ifx̃ is a zero ofPi , then−x̃ is also a zero.

THEOREM C.3. A set of orthonormal polynomialsP ∗
n (x), i.e., with leading coeffi-

cient1, satisfy a three-term recurrence relationship

P ∗
n (x)= (anx + bn)P

∗
n−1(x)− cnP

∗
n−2(x), n= 2,3, . . . .

PROOF. See DAVIS and RABINOWITZ [1961, pp.167–168, 234–255]. �

The Legendre polynomials (see Fig. C.1),Pn, can be defined by the three-term recur-
sion

P0(x)= 1,

FIG. C.1. The Legendre polynomialsP0(x), . . . ,P4(x).
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P1(x)= x,

nPn(x)= (2n− 1)xPn−1(x)− (n− 1)Pn−2(x).

Appendix D. Inner products

We define the following inner products:

A · B =
n∑

i1=1

· · ·
n∑

id=1︸ ︷︷ ︸
d

Ai1...id Bi1...id , where


d = 1 for vectors,

d = 2 for matrices,

d = 3 for tensors,
...

Let x1 ⊗ · · · ⊗ xα be defined as

x1 ⊗ · · · ⊗ xα = {
(x1)i1(x2)i2 · · · (xα)iα

}
i1,i2,...,iα

,

so that, for example, in the two-dimensional case forx = x1, y = x2, and i1, i2 =
1, . . . , n

x ⊗ y =
x1
...

xn

 (y1 . . . yn)=
x1y1 . . . x1yn

...
. . .

...

xny1 . . . xnyn

 .
LEMMA D.1. If x andy are vectors of dimensionn andA is a (n× n)-matrix, then

(Ay)Tx = A · (x ⊗ y).

PROOF.

Ay =


A11y1 + · · · +A1nyn
A21y1 + · · · +A2nyn

...

An1y1 + · · · +Annyn

 ,

(Ay)Tx = xT(Ay)= (x1A11y1 + · · · + x1A1nyn + x2A21y1 + · · · + xnAnnyn)

=
n∑
i=1

n∑
j=1

Aijxiyj

= A · (x ⊗ y).
�

We have, analogously to the lemma, for tensorsT

T · (x ⊗ y ⊗ z)= (
(Tz)y

)Tx

whereTz = {Tij1z1 + Tij2z2 + · · · + Tijnzn}i×j . This follows directly from the lemma.
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In general, the following theorem holds.

THEOREM D.1. Let Mα be an× · · · × n︸ ︷︷ ︸
α

-Tensor and letx1, . . . ,xα be vectors of di-

mensionn. Then,(
. . . (Mαxα) . . .x3)x2

)Tx1 = Mα · (x1 ⊗ · · · ⊗ xα).

PROOF. Analogously to the lemma. �
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Solution of Linear Systems
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1. What to expect in this chapter?

Linear systems of large dimensions arise in various applications including circuit sim-
ulation, semiconductor problems, and electro magnetic modeling. In this chapter we
will discuss state of the art numerical methods for the solution of these linear systems.
These methods fall belong to the traditional two different classes: direct solution meth-
ods based on Gaussian elimination techniques and iterative methods.

Over the past two decades, impressive progress has been made in the design of effi-
cient implementations for Gaussian elimination. These improvements are achieved by
clever ordering techniques in order to keep nonzero fill in the usually sparse matrices
of the linear systems limited. Furthermore, blocking techniques are exploited in order
to realize high computational throughput on computers with a memory hierarchy. Sec-
tion 2 gives an overview of the various techniques, with emphasis on those techniques
that have been incorporated in the sparse direct solver PARDISO. This solver has been
successfully and routinely used for large semiconductor device equations.

In Section 3 we consider the alternative for direct methods when these become too
expensive, either in memory space requirements or in CPU time: iterative methods. The
methods that we will discuss are the so-called Krylov subspace methods. This class of
methods contains the currently most effective general purpose methods, like GMRES,
CG, and Bi-CGSTAB. These iterative methods usually lead to inefficient computation
when applied in a straight forward manner to the given linear system and the common
remedy to this ispreconditioning. Preconditioning is often based on some sort of incom-
plete Gaussian elimination and can be viewed as the bridge between the world of direct

Numerical Methods in Electromagnetics Copyright © 2005 Elsevier B.V.
Special Volume (W.H.A. Schilders and E.J.W. ter Maten, Guest Editors) of All rights reserved
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P.G. Ciarlet (Editor) DOI 10.1016/S1570-8659(04)13008-1
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methods and of iterative methods. Section 4 discusses some of the more effective forms
of preconditioning. In that section we pay also attention to techniques for improving the
degree of parallelism in preconditioning.

We conclude with a numerical example that gives some idea of the effectiveness of
PARDISO (the direct approach) and preconditioned Bi-CGSTAB(") (a Krylov subspace
iterative solver).

We have included many pointers to the literature for further details on the methods
that we touch on in this chapter.

2. Direct solution method

2.1. Introduction

Developing an efficient parallel, or even serial, direct solver for sparse systems of lin-
ear equations is a challenging task that has been a subject of research for the past four
decades. Several breakthroughs have been made during this time. Especially, the re-
search on general unsymmetric sparse systems of linear equations was a very active
area during the past few years. Recent algorithmic improvements alone have reduced
the time required for the sequential direct solution of unsymmetric sparse systems of
linear equations by almost an order of magnitude. Combined with significant advances
in the performance to cost ratio of parallel computing hardware during this period, cur-
rent sparse direct solver technology makes it possible to solve problems quickly and
easily that might been considered impractically large until recently.

The main purpose of this chapter is to give a general overview over different sparse
direct methods and the related literature. In particular the algorithms implemented in
PARDISO – a high-performance and robust software for solving general sparse linear
systems – will be described. The solver has been developed by SCHENK and GÄRT-
NER [2002a, 2002b], SCHENK, GÄRTNER and FICHTNER [2000], SCHENK, GÄRT-
NER, FICHTNER and STRICKER [2001] and successfully used for solving large semi-
conductor device equations. The algorithms employed in the package are also suitable
for other application areas such as electromagnetic, circuit, fluid or structural engineer-
ing problems.

Typical direct solvers for general sparse systems of linear equations of the formAx =
b have four distinct phases, namely,Analysiscomprising ordering for fill-in reduction
and symbolic factorization,Numerical Factorizationof the sparse coefficient matrix
A into triangular factorsL andU using Gaussian elimination with or without partial
pivoting,Forward and Backward Eliminationto solve forx using the triangular factors
L andU and the right-hand side vectorb, and Iterative Refinementof the computed
solution.

There is a vast variety of algorithms associated with each step. The review papers
by DUFF [1998], GUPTA [2001], and HEATH, NG and PEYTON [1990] can serve as
excellent reference of various algorithms. The two main books discussing direct solution
of sparse linear systems are those by GEORGEand LIU [1981] and DUFF, ERISMAN and
REID [1986]. The first focuses on the discussion of symmetric positive definite systems
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TABLE 2.1
The serial computational complexity of the various phases of solving a sparse
system of linear equations arising from two- and three-dimensional constant

node-degree graphs withn vertices

Phase Dense 2-D complexity 3-D complexity

Ordering: – O(n) O(n)
Symbolic factorization – O(n logn) O(n4/3)

Numerical factorization O(n3) O(n3/2) O(n2)

Forward/backward elimination O(n2) O(n logn) O(n4/3)

and emphasizes graph theoretic aspects, while the latter considers both symmetric and
unsymmetric systems.

Usually the analysis phase involve only graphs of the matrices, and hence only integer
operations. The numerical factorization, the forward/backward elimination and iterative
refinement involve floating-point operations. Nevertheless, as shown in Table 2.1, the
numerical factorization is the most time consuming phase and the forward and backward
elimination is about an order of magnitude faster.

Sparse direct solver technologies are important because of their generality and ro-
bustness. For many linear systems arising in semiconductor device and process simula-
tions direct methods are often preferred because the effort involved in determining and
computing a good preconditioner for an iterative solution may outweigh the cost of di-
rect factorizations. Furthermore, direct methods provide an effective means for solving
multiple systems with the same coefficient matrix and different right-hand side vectors
because the factorization needs to be performed only once.

2.2. Reordering matrices to reduce fill

The process of elimination introduces fill into the factors of a sparse matrix.1 The
amount of fill can be controlled by reordering rows and columns of the matrix. The
rows and columns of the matrix can be reordered to reduce the fill-in. Reducing fill re-
duces the amount of memory that the factorization uses and the number of floating-point
operations that it performs.

Choosing an ordering of the unknownsx is equivalent to the columns of the coeffi-
cient matrix and then eliminating the unknowns in the natural order, and choosing an
ordering of the equations is equivalent to permuting the rows of the matrix. For example,
factoring the matrix

(2.1)


x x x x x x

x x

x x

x x

x x

x x

 ,
1WhenA is sparse, most of its elements are zero. The factorization tends to produce additional nonzero

elements in the factors, which are called fill-in entries.
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(wherex ’s represent nonzeros) results in completely filled factors. Reversing the order
of both rows and columns yields a matrix whose factors do not fill at all.

(2.2)


x x

x x

x x

x x

x x

x x x x x x

 .

This section focuses on fill reduction for sparse symmetric matrices.2 Therefore, only
symmetric permutation are considered that preserve symmetry. Symmetry is preserved
by applying the same permutation to both the rows and the columns of a symmetric
matrix. Ordering the rows and columns in Eq. (2.1) corresponds to eliminating the cen-
ter of the star first. The elimination adds edges to make its neighbors, which are all
the remaining vertices, into a clique, thereby completely filling the graph. The reversed
ordering shown in Eq. (2.2) eliminates the center of the star last, so no fill edges are
introduced.

Factoring a permuted matrixPAPT , whereP is the permutation matrix, may dra-
matically reduce the amount of work required for the factorization (DUFF, ERISMAN

and REID [1986]). There is no efficient algorithm for finding an optimal ordering. This
problem has been shown by YANNAKAKIS [1981] to be NP-complete.3 Furthermore, no
algorithm that provides a provably good approximation has been discovered, although
the existence if such an algorithm has not been ruled out. There are, however, several
classes of algorithms that work well ll in practice and two of them will be sketched in
the next section.

One of the most commonly applied heuristics for performing reorderings is the mul-
tiple minimum degree algorithm proposed by GEORGE and LIU [1989], LIU [1985].
This method has been almost exclusively used in direct methods and has been found to
produce very good orderings. The alternative approach, vertex-separator based order-
ings, also called nested dissection, was first proposed by GEORGE[1973] for regular
element meshes. The method is strongly related to graph partitioning and quality and
runtime of the algorithm has been significantly improved recently for irregular prob-
lems, for example by BARNARD and SIMON [1995], GUPTA [1996], HENDRICKSON

and ROTHBERG[1996], and KARYPIS and KUMAR [1998a].
The two most popular techniques for reordering sparse matrices, minimum degree

and vertex based separator orderings, are reviewed next and their effectiveness of these
reordering approaches will be evaluated in this section for a wide range of sparse matri-
ces from real-world applications Integrated Systems Engineering AG [1998a, 1998b].

2.2.1. Minimum degree algorithms
The method of the minimum degree algorithm is first considered. The intuition behind
the method is elementary. Since the elimination of a vertexx causes its neighbors to

2Fill reduction orderings for general unsymmetric matricesA is commonly applied to the structure sym-
metric extensionÃ=A+AT .

3The complexity of the algorithm is not bounded by a polynomial inn.
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S = {}
while S �= V do

for x ∈ V \ S do
δ(x)= |adj(x)|

end for
pick z ∈ T = {y ∈ V \ S | δ(y)= minx∈V \S δ(x)}
order z next
S = S ∪ {z}
eliminatez and determine the resulting graph

end

FIG. 2.1. The minimum degree algorithm.

become adjacent,4 minimum degree always chooses a vertex of minimum degree5 from
the elimination graph to be eliminated next. Unfortunately, this very simple method
has historically proven to be quite difficult to implement efficiently GEORGEand LIU

[1989]. Early implementations of the minimum degree algorithm required enormous
runtime. But fortunately, several variants have since been developed, whose runtimes
are quite reasonable in comparison to the cost of the factorization. The first, the multiple
minimum degree algorithm (MMD) LIU [1985], reduces the runtime of the algorithm
by eliminating a set of vertices of minimum degree simultaneously. This multiple elim-
ination technique dramatically reduces the cost of updating the degrees of the neighbors
of eliminated vertices, which is the main cost of the algorithm. Whereas the minimum
degree algorithm must update the neighbors’ degrees each time a vertex is eliminated,
the multiple minimum degree will often eliminate many neighbors of a vertex before
updating that vertex’s degree. A second method, suggested by AMESTOY, DAVIS and
DUFF [1996] to reduce the runtime, is a recent variant of minimum degree, called ap-
proximate minimum degree (AMD). AMD further reduces the runtime by computing
an inexpensive upper bound on a vertex’s degree rather than the true degree.

Fig. 2.1 implements the minimum degree algorithm. This algorithm mainly consists
of a single loop which is executedn times wheren= |V |.6 First, the degreeδ(x) of all
nodesx in the current elimination graph is determined. Next, a nodez is selected from
the set of nodes with minimum degree in the current elimination graph. Once a nodez

with minimum degree is selected, it is added to the setS containing all reordered nodes,
andz is eliminated from the current elimination graph. For the next step, it is necessary
to recompute the degree of the remaining nodes and the new elimination graph.

Due to the degree approach, the minimum degree is a local algorithm. The algorithm
adds a vertex at each step to the elimination tree (LIU [1990]) based on local degree
information and it combines two or more subtrees together to form a larger subtree. As

4In other words, deleting a vertex/nodesx from the graphG(A)/the matrixA causes all incident edges of
x to be removed fromG(A); new edges (fill-in) are introduced into the new elimination graph such that all
adjacent vertices ofx become pair-wise adjacent.

5The degree of a nodex is defined by the number of adjacent nodes in the elimination graphG(A).
6V is the set of all vertices/nodes in the graphG(A)/matrixA.
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a result, in the minimum degree algorithm the elimination tree grows from the bottom
up.

The elimination trees produced by the multiple minimum degree algorithm are high
and unbalanced. These elimination trees exhibit little concurrency so that a subtree map-
ping leads to significant load imbalances. However, LIU [1988, 1989] considered a
method that preserves the operation count and the fill-in of the graph ofG(PAPT ) and
at the same time it is more appropriate for parallel elimination.

Due to the degree approach, the minimum degree is a greedy algorithm. The mini-
mum degree heuristic is greedy in the sense that it makes reasonable local choices, but
without considering their global impact.

For an example of the effects of this ordering, see Fig. 2.2.

2.2.2. Vertex-separator-based orderings
Another important family of ordering algorithms is based on vertex separators, or dis-
section of the graph. The basic idea is simple. A small subset of the vertices of the
graph is chosen which splits the graphG(A)= (V ,E) of the matrixA into two discon-
nected componentsV1 andV2. The small subset of vertices is called separator and each
connected component is called a domain. In the vertex-separator based orderings,V1 is
ordered first,V2 second, while the separator inS are numbered last.

It has not yet been specified how to order the vertices within one domain or within
the separator. The vertices of the domain are typically ordered using the same algorithm
recursively, by finding a separator that breaks the domain into subdomains and ordering
the separator last. The vertices of a separator are usually ordered using a variant of the
minimum degree algorithm.

Dissection orderings use a more global view of the elimination process, compared to
the minimum degree orderings. Ordering the separator last ensures that there are no fill
edge created between a vertexv in one domain and a vertexu in another domain. The
effect of ordering the separator last, therefore is to ensure that an entire block of zeros
in the original matrix does not fill. By requiring that no domain is very large (does not
contain more that 2/3 of the number of vertices in the graph, for example), it is ensured
that the zero blocks are large.

If the separator breaks the graph into two domains, then once the domains are elim-
inated, the separator’s vertices form one large clique. If there are more domains, the
graph of the trailing submatrix may remain sparse.

The best separator of an
√
n-by-

√
n mesh consists of

√
n vertices and dissects the

mesh into two equal domains. Each domains can be dissected into
√
n/2-by-

√
n/2 sub-

domains using a
√
n/2 separator. Now four square subdomains have been obtained,

similar to the original graph and the algorithm continues recursively. It can be shown
that the number of nonzeros in the factors in�(n logn), and that this is optimal for
this class of graphs. In fact, there are algorithms that order any matrix whose graph is a
planar graph (can be drawn on the place with no crossing edge) such that the factor has
�(n logn) nonzeros. Theses algorithms uses a dissection strategy similar the one that
has been outlined for regular meshes.

In the vertex-separator based ordering algorithm, the vertex separatorS can be com-
puted from an edge separator of a 2-way graph partitioning. The vertexS separator can
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FIG. 2.2. The impact of ordering of a sparse matrix on fill in its Cholesky factor. The upper left figure
shows the nonzero structure of a matrix whose graph is a 15-by-15-by-5 mesh. The ordering of the matrix
corresponds to a natural row-by-row ordering of the mesh’s vertices. The upper right figure shows the nonzero
structure of the factors of the matrix. In the lower figures, the matrix (on the left) has been ordered using a

minimum degree algorithm. Reordering reduces the number of nonzeros in the factor by 85%.

be computed from this edge separator by finding the minimum vertex cover (PAPADIM -
ITRIOU and STEIGLITZ [1982], POTHEN and FAN [1990]) which has been found to
compute small vertex separators from edge separators. Research on graph partitioning
was a very active area in the last few years and has recently resulted into state-of-the art
ordering codes, e.g., HENDRICKSONand LELAND [1995], HENDRICKSONand ROTH-
BERG [1996], KARYPIS and KUMAR [1998b], WALSHAW and CROSS[1999].

Graph partitioning. The 2-way graph partitioning problem is defined as follows:
Given a graphG= (V ,E) with |V | = n, partitionV into two subsetsV1, andV2 such
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thatV1 ∩V2 = ∅, |V1| = |V2| = n/2 andV1 ∪V2 = V , so that the number of edges ofE
whose incident vertices belong to different subsets is minimized. The effectiveness and
the complexity of a nested dissection scheme depends on the quality/size of the separa-
tor and the effort to compute it. In general, small separators result in a small fill-in.

There are two classes of heuristics to solve the separator problem, depending on the
information available about the graphG. The first class uses geometric information for
each vertexvi , such asvi = (xi, yi, zi) coordinates (MILLER, TENG, THURSTONand
VAVASIS [1998], GILBERT, MILLER and TENG [1998]). The second heuristic computes
a partitioning without geometric information; only these methods are applicable for re-
ordering sparse matrices. The Kernighan–Lin algorithm (KERNIGHAN and LIN [1970])
is one of the earliest graph partitioning methods without geometric information. It takes
an initial partitioning and iteratively improves it by trying to swap groups of vertices be-
tweenV1 andV2, greedily picking the group to swap that best minimizes the number of
edge crossings at each step. In practice, it converges quickly to a local optimum if it has
a good starting partition. Nowadays, this algorithm is used to improve partitions found
by other methods. Due to the local view it is a nicely complement to algorithms which
have a more global view of the problem but tend to ignore local characteristics. Until
recently, one of the most prominent global algorithms has been the spectral partition-
ing method (BARNARD and SIMON [1995], FIEDLER [1973, 1975], POTHEN, SIMON

and LIOU [1990]). However, these methods are expensive since they require the com-
putation of the eigenvector corresponding to the smallest nonzero eigenvalue (Fiedler
vector). Furthermore, it has recently turned out that variants of multilevel Kernighan–
Lin algorithms have a smaller edge-cut compared with spectral methods KARYPIS and
KUMAR [1998a]. The multilevel technique is used to accelerate the graph partition-
ing in HENDRICKSON and LELAND [1995], HENDRICKSON and ROTHBERG [1996],
KARYPIS and KUMAR [1998b], WALSHAW and CROSS[1999].

2.2.3. Multilevel nested dissection algorithms
The various phases of the multilevel nested dissection (MLND) are shown in Fig. 2.3.
During the coarsening phase, the size of the graph is successively decreased; during the
initial partitioning phase, a bisection of the smaller graph is computed; and during the
uncoarsening phase, the bisection is successively refined as it is projected to the larger
graphs. During the uncoarsening phase the light lines indicate projected partitions, and
dark lines indicate partitions that were produced after the refinement. Formally, the
algorithm works onG= (V0,E0) as follows (see also Fig. 2.4):

Coarsening phase.The graph is transformed in the coarsening phase into a sequence
of smaller graphsG1,G2, . . . ,Gm such that|V0|> |V1|> |V2|> · · ·> |Vm|. Given the
graphGi = (Vi,Ei), the coarser graphGi+1 can be obtained by collapsing adjacent
vertices. Thus, the edge between two vertices is collapsed and a multinode consisting of
these two vertices is created. This edge collapsing idea can be formally defined in terms
of matchings. A matching ofGi = (Vi,Ei) is a subset of edges no two of which share
an endpoint. A matching is called maximal, if no other edge fromEi can be added.
Thus, the next level coarser graphGi+1 is constructed fromGi by finding a maximal
matching ofGi and collapsing the vertices being matched into multinodes. Since the
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FIG. 2.3. The various phases of the multilevel graph bisection (KARYPIS and KUMAR [1998a]).

Function ML-Partition(G0)

if G0 is small enoughthen
Find partition(V1,V2) of G0.

else
Coarsening Phase to obtainG1.
(V ′

1,V
′
2)= ML-Partition(G1).

Uncoarsening Phase to obtain(Ṽ1, Ṽ2).
Kernighan-Lin Refinement to obtain(V1,V2).

endif

FIG. 2.4. A multilevel graph bisection algorithm.

goal of collapsing vertices using matchings is to decrease the size of the graphGi , the
matching should be as large as possible.

The main difference between the various ordering packages (GUPTA [1996], HEN-
DRICKSON and LELAND [1995], HENDRICKSON and ROTHBERG [1996], KARYPIS

and KUMAR [1998b], WALSHAW and CROSS[1999]) is the construction of the max-
imal matching. One of the most popular methods are random matching (HENDRICK-
SON and LELAND [1993]), heavy edge matching (KARYPIS and KUMAR [1998a]), and
heaviest edge matching (GUPTA [1996]).

Partitioning phase. A 2-way partitionPm of the graphGm = (Vm,Em) is computed
that splitsVm into two parts, each containing half the vertices ofGm. The partition of
Gm can be obtained by using various algorithms such as spectral bisection (BARNARD

and SIMON [1993], HENDRICKSONand LELAND [1995], POTHEN, SIMON and LIOU

[1990]) or combinatorial methods (BARNES [1985], BUI, CHAUDHURI, LEIGHTON

and SIPSER[1987], GEORGE[1973], GEORGEand LIU [1981], KERNIGHAN and LIN
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[1970], GÖHRING and SAAD [1994], HAMMOND [1992]). It is shown in KARYPIS and
KUMAR [1998a] that combinatorial methods generally finds smaller edge-cut separators
compared with spectral bisection for partitioning the coarse graph. However, since the
size of the coarsest graphGm is small (i.e.,|Vm|< 100), this step takes a small amount
of time.

Uncoarsening phase.The partitionPm of Gm is projected back toG0 by going
through intermediate partitionsPm−1,Pm−2, . . . ,P1,P0. Each vertexv of Gi+1 con-
tains a distinct subset of verticesV vi of Gi . ObtainingPi from Pi+1 is done by simply
assigning the set of verticesV vi collapsed tov ∈ Gi+1 to the appropriate partition in
Gi . AlthoughPi+1 is a local minimum partition ofGi+1, the projected partitionPi
will not be, e.g., a local minimum with respect toGi . SinceGi is finer, it has more
degrees of freedom that can be used to improvePi , and decrease the edge-cut of the
partition. Hence, it may still be possible to improve the projected partition ofGi by
local refinement heuristics. The refinement is usually done by using one of the vari-
ants of the Kernighan–Lin partition algorithm (FIDUCCIA and MATTHEYSES [1982],
KERNIGHAN and LIN [1970]).

2.2.4. The impact of the preprocessing algorithms
The impact of the two preprocessing algorithms, minimum degree and vertex sep-
arator based orderings, is evaluated on a wide range of sparse matrices arising in
two- and three-dimensional semiconductor process and device simulation problems
(INTEGRATED SYSTEMS ENGINEERING AG [1998a, 1998b]). The characteristics of
these matrices are described in Table 2.2. All matrices are structurally symmetric or
have been extended to a structurally symmetric one. The purpose of the collection
was to cover a wide range from small two-dimensional problems, up to larger three-
dimensional matrices.

The quality of the ordering produced by the multilevel dissection algorithm from
METIS (KARYPIS and KUMAR [1998a]) compared to that of multiple minimum degree

TABLE 2.2
Characteristics of the test matrices from semiconductor process and device simulation

# Matrix Rows Nonzeros inA Nonzeros/Row

1 2D eth-points 151’389 1’046’105 6.91
2 2D eth-load.motodop 35’804 221’938 6.19
3 2D eth-load.bic.hv15h 56’941 393’415 6.91
4 2D eth-big 13’209 91’465 6.92
5 2D ise-mosfet-1 12’024 250’740 20.85
6 2D ise-mosfet-2 24’123 504’765 20.92
7 3D eth-3d-eeprom 12’002 630’002 52.49
8 3D ise-igbt-coupled 18’668 412’674 22.10
9 3D eth-3d-eclt 25’170 1’236’312 49.11

10 3D ise-soir-coupled 29’907 2’004’323 67.01
11 3D eth-3d-mosfet 31’789 1’633’499 51.38
12 3D eth-3d-eclt-big 59’648 3’225’942 54.08
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TABLE 2.3
The number of operations in Mflops required to factor the test
matrices when ordered with multiple minimum degree MMD
LIU [1985] and multilevel nested dissection MLND from the

METIS package 4.0 (KARYPIS and KUMAR [1998a])

# Matrix MMD MLND

s 2D eth-points 239.7 259.1
2 2D eth-load.motodop 51.2 52.1
3 2D eth-load.bic.hv15h 123.1 120.0
4 2D eth-big 36.3 35.0
5 2D ise-mosfet-1 167.8 169.2
6 2D ise-mosfet-2 370.7 380.4
7 3D eth-3d-eeprom 5’723.9 3’105.4
8 3D ise-igbt-coupled 8’048.3 3’866.8
9 3D eth-3d-eclt 27’042.3 12’079.5

10 3D ise-soir-coupled 55’476.8 23’430.6
11 3D eth-3d-mosfet 53’026.9 22’339.8
12 3D eth-3d-eclt-big 245’261.3 75’102.6

is shown in Table 2.3. It can be seen that MLND produces better orderings in terms
of floating point performance for 7 out of the 12 sparse matrices. Interestingly, MLND
performs consistently better than MMD if sparse matrices from three-dimensional ap-
plications are considered. When all six three-dimensional cases are considered, MMD
produces orderings that require a total of 394’576 Mflops, whereas the produced or-
derings by MLND require only 139’921 Mflops. On the other hand, when the two-
dimensional cases are considered, the factorization algorithms that use orderings from
MMD require generally less fill-in and less floating point operations – but the difference
in 2-D cases is a minor one.

The main conclusions that can be drawn from this study are: (1) the multilevel nested
dissection algorithm used to find a fill-in reducing ordering is substantially better than
multiple minimum degree for three-dimensional irregular matrices, and (2) the multiple
minimum degree method performs better for most of the two-dimensional problems.

2.3. Fast sparse matrix factorization on modern workstations

2.3.1. Two primary approaches to factorization: left-looking and multifrontal methods
This section provides a brief description of the process of factorization of a sparse lin-
ear system. For simplicity of the notations, the Cholesky factorization is considered.
The goal is to factor a matrixA into the formLLT . The equations which govern the
factorization are:

(2.3)lj,j =
(
aj,j −

j−1∑
k=1

l2j,k

)1/2

,

(2.4)li,j = ai,j −
j−1∑
k=1

li,k · lj,k/ lj,j .
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1: for j = 1 to n do
2: f =A(j : n, j);
3: for eachk with L(j, k) �= 0 do
4: f = f −L(j, k) ·L(:, k);
5: end for;
6: L(j : n, j)= f ;
7: L(j, j)= √

L(j, j);
8: for eachi with L(i, j) �= 0 do
9: L(i, j)= L(i, j)/L(j, j);

10: end for;
11: end for;

FIG. 2.5. Pseudo-code of the left-looking factorization method.

1: set L=A;
2: for k = 1 to n do
3: L(k, k)= √

L(k, k);
4: for eachi with L(i, k) �= 0 do
5: L(i, k)= L(i, k)/L(k, k);
6: end for;
7: for eachj with L(j, k) �= 0 do
8: L(:, j)= L(:, j)−L(j, k) ·L(:, k);
9: end for;

10: end for;

FIG. 2.6. Pseudo-code of the multifrontal factorization method.

Since the matrixA is sparse, many of the entries inL will be zero. Therefore, it is only
necessary to sum over thosek for which lj,k �= 0. The above Eqs. (2.3) and (2.4) lead to
two primary approaches to factorization: the left-looking method and the multifrontal
method.

The left-looking method can be described by the pseudo-code7 given in Fig. 2.5. In
this method, a columnj of L is computed by gathering all contributions toj from pre-
viously computed columnsk. Since step 4 of the pseudo-code involves two columns,
j and k, with potentially different nonzero structures, the problem of matching cor-
responding nonzeros must be resolved. In the left-looking method, the nonzeros are
matched by scattering the contribution of each columnk into a dense vectorf . Once all
k’s have been processed, the net contribution is gathered from the dense vectorf and
added into columnj . The classical form of this method is, e.g., employed in SPARSPAK
(GEORGEand LIU [1980]).

The multifrontal method can be roughly described by the pseudo-code given in
Fig. 2.6. In the multifrontal method, once a columnk is completed it immediately gen-
erates all contributions which it will make to subsequent columns. In order to solve the

7Matlab notation is used for integer ranges:(r : s) is the range of integers(r, r + 1, . . . , s).
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problem of matching nonzeros from columnj andk in step 8, this set of contributions
is collected into a dense lower triangular matrix, called the frontal matrix. This matrix
is then stored in a separate storage area, called the update matrix stack. When a later
columnk of L is to be computed, all update matrices which affectk are removed from
the stack and combined in a step called assembly. Columnk is then completed, and
its update matrices which affectk are removed from the stack. The update matrices
are combined with the as yet unapplied updates matrices which modifiedk, and a new
update matrix is placed on the stack. The columns are processed such that the needed
update matrices are always at the top of the update matrix stack. This method was origi-
nally developed DUFF and REID [1983] to increase the percentage of vectorizable work
in sparse factorization. Is has the disadvantage that it requires more storage than the
left-looking method, since the update matrix stack must be maintained in addition to
the storage forL.

2.3.2. Supernode sparse factorization: reducing the number of memory references
The concept of supernode elimination, which was first proposed in EISENSTAT,
SCHULTZ and SHERMAN [1981] and successfully exploited by Ashcraft and others
in ASHCRAFT, GRIMES, LEWIS, PEYTON and SIMON [1987], is important because
it allows a high vector utilization and it is one key concept to decrease the number of
memory references during sparse factorization.

In the process of sparse factorization8 when columnk of L modifies columnj ,
the nonzeros of columnk form nonzeros in corresponding positions of columnj . As
the factorization proceeds, this unioning of sparsity structures tends to create sets of
columns with the same structures. These sets of columns are called supernodes. A su-
pernode is a set of contiguous columns in the factor whose nonzero structure consists
of a dense triangular block in the diagonal, and an identical set of nonzeros for each
column below the diagonal block.9 For example, in Fig. 2.7, the following supernodes
can be identified:{A,B}, {D,E}, {G,H, I}, {K,L}, {M,N}, and{P,Q,R}. Supernodes
arise in any sparse factor, and they are typically quite large.

Supernode elimination is a technique whereby the structure of a matrix’s supernode
is exploited in order to replace sparse vector operations (BLAS-1 operations) by dense
matrix operations (BLAS-3 operations). When a column from a supernode is to update
another column, then every column in that supernode will also update that column, since
they all have the same structure. In the example matrix, the three columns{G,H, I} all
update columns{K,L}, {M,N}, and{Q,R}.

Both sparse factorization methods, the left-looking and the multifrontal method, ben-
efit from the supernode structure. The left-looking supernode method, e.g., exploits su-
pernodes in the following way. Instead of scattering the contribution of each column of
the supernodes into the dense vector, as it would ordinarily be done in general sparse
factorization, the contribution of all columns in the supernode are first combined into
a single dense vector, and that vector is then scattered. Since the storage of the nonze-

8A matrixA with a symmetric nonzero structure is considered.
9In EISENSTAT, GILBERT and LIU [1993] several possible ways have been considered to generalize the

symmetric definition of supernodes to unsymmetric factorization.



768 O. Schenk and H.A. van der Vorst

FIG. 2.7. The nonzero structure of a matrix A and its factors L and U.

ros of a single column is contiguous and all the columns have the same structure, this
combination can be done as a series of dense vector operations.

Supernodes substantially decrease the number of memory references when perform-
ing sparse factorization. The supernode technique replaces a sequence of indirect vector
operations with a sequence of direct vector operations followed by a single indirect op-
eration. Each indirect operation requires the loading into the processor registers of both
the index vector and the values vector. The pseudo-code and the supernode structure of
a supernode-supernode Cholesky factorization is given in Fig. 2.8. In the next section
it is shown how to organize a sparse left-lookingLU factorization in order to compute
the factors essentially by Level-3 BLAS (DONGARRA, DUCROZ, DUFF and HAM -
MARLING [1990]) and LAPACK (DONGARRA and DEMMEL [1991]) routines. A more
detailed discussion of the advantages of supernode factorization on high-performance
workstations can be found in SCHENK and GÄRTNER [2001].

2.3.3. Level-3 BLAS sparse factorization: the benefits of rectangular blocking
One key objective forLU factorization is to take advantage of the memory hierarchy on
modern microprocessor workstations. These machines typically have multiple pipelined
functional units, pipelined floating-point units, and a fast, but relatively small cache
memory. Block algorithms are often used on these architectures, because positive cache
effects and therefore a high floating-point performance can be expected. Basic concepts
of block partitioning are adopted in the BLAS and LAPACK packages and many other
standard benchmarks are designed with block partitioning in order to exploit the number
crunching capabilities of these systems. A brief review of the block Gaussian elimina-
tion on dense linear systems is given in the next section and it is shown how a BLAS-3
supernodeLU factorization can be organized on high-end workstations.

Block LU factorization of dense linear systems.BlockLU or JIK-SDOT factorization
is often used for the solution of a dense system of linear equations on modern work-
stations and vector supercomputers (DONGARRA [1998]). This is one feasible method
on architectures with a hierarchical-memory system. Therefore, this factorization algo-
rithm and some of its basic properties are reviewed in this section. A detailed descrip-
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for each destination supernode(r2 : s2) do
for j = r2 to s2 do
f =A(j : n, j);
for each supernode(r1 : s1) < (r2 : s2) with L(j, r1 : s1) �= 0 do

for k = r1 to s1 do
for i = j to n with L(i, k) �= 0 do
f = f −L(i, k) ·L(j, k);

end for;
end for;

end for;
L(j : n, j)= f ;

end for;
Inner dense factorization forL(r2 : n, r2 : s2);

end for;

FIG. 2.8. Left-looking sparse Cholesky factorization with supernode-supernode updates.

tion of all possible forms of denseLU factorization can be found in DAYDÉ and DUFF

[1989].
Each block containsnb columns and rows. At thekth step of the elimination process,

one block column ofL and one block row ofU are computed. A block partitioning of
A, L, andU is depicted in Fig. 2.9. The computation of one block column ofL and one
block row ofU requires at each step the following operations:

1. The external modification of the block columns ofL and the rows ofU :

(2.5)Ck ← Ck −
(
A1
k

A2
k

)
Bk, U2

k ←U2
k −A1

kEk.

2. The internal factorization of the diagonal block ofCk , using the factorization in
the left part of Fig. 2.9, to obtain the factorsL1

k andU1
k .
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FIG. 2.9. Dense blockLU factorization. The diagonal blocksL1
k

andU1
k

are stored together in one square
block.

3. The internal factorization of the block columns ofL and the rows ofU :

(2.6)L2
k ← L2

k(U
1
k )

−1, U2
k ← (L1

k)
−1U2

k .

Having all external block updates processed in (2.5), the diagonal block can be fac-
torized internally to obtain the factorsL1

k andU1
k . Finally, after the diagonal block is

decomposed into the triangular matricesL1
k andU1

k , the other blocksL2
k andU2

k can be
determined.

In Section 2.3.4 the block technique is extended to sparse linear systems in order to
compute the sparseLU factorization essentially by Level-3 BLAS routines.

2.3.4. Block LU factorization of sparse linear systems
The key idea on modern workstations deals with the data representation of the factors
L andU . As it was discussed in the previous section, one important feature of the
dense blockLU factorization is the rectangular block structure ofCk in Fig. 2.9. The
supernode diagonal portionU1

k of U is stored together with the supernode columns
L1
k andL2

k of L. This supernode block numerical factorization involves mainly dense
matrix-matrix multiplications resulting in high computational performance on modern
computer architectures.

The impact of the rectangular supernode block structure is now discussed in detail.
Fig. 2.7 depicts an example matrixA, the nonzero structure of the factorsL andU and
the left-looking factorization of an example supernode is represented in Fig. 2.10. The
rectangular storage scheme ofL andU is shown with two different types of shading in
these figures.

In order to provide a more detailed picture of how the factorization schemes interact
with the BLAS-3 routines, Figs. 2.11 and 2.12 present the external numerical factoriza-
tion of the supernode{G,H, I} with the left-looking supernode-supernode approach. In
the left-looking approach, the factorization of supernode{G,H, I} is performed by gath-
ering all contributions to{G,H, I} from previously computed supernodes:{A,B}, {C},
{D,E}, and{F}. It is assumed that the nonzeros are stored continuously in an increasing
order by columns on L and rows on U. Hence, the multiplication can be done with-
out an index vector inside the DGEMM loop. Once one external supernode-supernode
multiplication has been performed, the result is assembled in the destination supernode.
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FIG. 2.10. The left-looking numerical factorization of supernode S(G,H, I). Nodes below node I in the
elimination tree are involved in the left-looking factorization of supernode S(G,H, I).

FIG. 2.11. The external numerical factorization of the factor L and the upper triangular dense diagonal block
of the factor U.

It is important to note that the floating point operation phase is completely separated
from the assembling phase and no indirectly accessed operands are required to perform
the external supernode-supernode updates. The result is substantially fewer memory
operations, since all elements are stored contiguously in the memory and O(m3) oper-
ations are performed with O(m2) operands if the two supernodes arem×m matrices.
An assembly phase after the update with supernode{A,B} is not necessary since both
supernodes share essentially the same nonzero structure. For the other three updates
the temporary block TP contains the intermediate results of the supernode updates. The
results are then scattered in the appropriate entries ofL andU .

In examining Fig. 2.13, the question arises, which factorization method is used for the
internal factorization of supernode{G,H, I}. In the example matrix, the three columns
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FIG. 2.12. The external numerical factorization of the remaining part of the factor U.

FIG. 2.13. The internal numerical factorization of the supernode dense diagonal block with Level-3 LA-
PACK routines.

and rows in supernode{G,H, I} are factorized by the LAPACK subroutines DGETRF.
Finally, after the diagonal block is decomposed into the supernode triangular matrices,
the remaining rows and columns ofL andU can be determined by substitution with the
routine DTRSM.10

2.3.5. Block sparse factorization performance on modern workstations
Any performance data given today will be invalid tomorrow – hence the typical patterns
are illustrated by measurement data due to one main development platform: the COM-
PAQ Alpha workstation with an Alpha 21164 processor which is quite representative of
the general class of modern high performance workstations. The 21164 is a four-way

10The LAPACK routines DGETRF computes anLU factorization of a general denseM-by-N matrix A
using partial pivoting with row interchanges. DTRSM solves one of the dense matrix equationsAX =
αB,AT X = αB,XA = αB , or XAT = αB , whereα is a scalar,X andB areM-by-N matrices,A is a
unit, or nonunit, upper or lower triangular matrix.
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TABLE 2.4
Performance of the numerical factorization for PARDISO on one CPU of

a COMPAQ AlphaServer 4100

COMPAQ AlphaServer 4100, 600 MHz EV5.6 (21164A)

Matrix nnz(LU) nnz(LU)
nnz(A)

# Mflops Seconds Mflop/s

7 7’614’492 18.45 3’866.8 9.11 424.36
9 17’914’354 14.49 12’079.5 25.96 465.29

10 28’342’865 14.14 23’430.6 46.21 507.03
11 26’732’577 16.36 22’339.8 44.89 497.63
12 63’785’130 19.77 75’102.6 146.45 512.99

superscalar RISC processor. The Alpha processor has an extremely fast clock rate of
600 MHz. It has an 8-KB first-level instruction cache, an 8-K first-level data cache,
and a 96-K second-level cache on chip. Off the chip is a 8 MB direct-mapped third-
level cache. The processor has one floating point add pipeline and one floating point
multiply pipeline with a throughput of one floating point operation each per cycle. The
peak floating rate is therefore 1’200 Mflop/s. By measurements, the DGEMM11 routine
from the DXML library achieves about 856 Mflop/s and the LINPACK12 performance
is reported to be 764 Mflop/s.

In order to evaluate the computational performance of the sparse blockLU factoriza-
tion algorithm, Table 2.4 gives the run-times in seconds and the Mflop/s rate for some
matrices of Table 2.2 on an Alpha EV5.6 21164 processor. The described sparse Level-
3 BLAS algorithm has been implemented into the PARDISO package SCHENK [2000].
The PARDISO performance ranges from 50% to 70% of the DGEMM performance
showing that good use of the Level-3 BLAS can be obtained due to the rectangular
supernode structure.

2.4. Pivoting strategies to control accuracy

So far only fill-in minimizing strategies and Level-3 BLAS numerical factorization
methods with diagonal pivoting have been considered. It is well known that, e.g., for
a special class of problems where A is symmetric and positive definite, pivots can be
chosen down the diagonal (GOLUB and VAN LOAN [1996]). These diagonal pivots then
are always nonzero and the element growth is limited. Symmetric permutationsPAPT

can therefore be chosen solely on sparsity reasons.13 Similar to the symmetric positive
case, there exists another subclass of matrices for which Gaussian elimination without
pivoting is stable. This subclass contains matrices that are diagonally dominant14 but

11This is the Level-3 BLAS matrix-matrix multiplication routineC = AB + C, whereA,B andC are
rectangular dense matrices.
12This is a 1′000× 1′000 matrix solution ofAx = b using Gaussian elimination with code changes allowed

for increased performance (such as Level-3 BLAS manufacturer-supplied numerical linear algebra libraries).
13The property of symmetric and positive definiteness is obviously preserved under symmetric permutations.
14A matrixA ∈ Rnxn is said to be diagonally dominant if|ai,i | �

∑n
j=1,j �=i |ai,j |, i = 1, . . . , n.
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are not positive definite. Permutations can also be chosen for such matrices with respect
only to the sparsity.

However, there are also classes of sparse matrices that require pivoting in order to
ensure numerical stability. Gaussian elimination, e.g., of a general sparse unsymmet-
ric matrix or a sparse indefinite matrices, must be combined with pivoting. For these
matrices it is possible to encounter arbitrarily small pivots on the diagonal. If still diag-
onal pivoting is used, large element growth may occur, yielding an unstable algorithm.
This problem can be alleviated by pivoting on the element with the largest magnitude
in each submatrix or column, interchanging rows and columns when needed. Generally,
there are four pivoting strategies referred to ascomplete and partial pivoting, Bunch
and Kaufman, static, andsupernodepivoting that are widely used in sparse Gaussian
elimination.

Complete and partial pivoting. Complete pivoting selects at each stepk the ele-
ment with the largest absolute value in the reduced submatrix (STOER and BULIRSCH

[1983]). On the other hand, partial pivoting involves only a search for the element with
the largest absolute value in either the row or the column. It is not as stable as complete
pivoting, but in practice it gives good results for a lower computational cost (WILKIN -
SON[1961]). However, complete pivoting can produce a stable factorization where par-
tial pivoting fails (WRIGHT [1993]).

At each partial pivoting elimination stepk a pivot element has to be chosen as the
largest element in the column to be eliminated,

(2.7)
∣∣a(k)l,k ∣∣= max

i=k,...,n
∣∣a(k)i,k ∣∣.

Here,a(k)i,j refers to elements in the matrix obtained after(k − 1) elimination steps.
It is fairly straightforward to implement a dense partial pivoting algorithm. For a

sparse matrix, however, off-diagonal pivoting is tremendously difficult to implement
mainly due to the following reason. If the elementa(k)l,k is chosen as a pivot element in
the kth elimination step, it will modify a number of elements during the elimination.
This is the reason why the nonzero pattern inL andU depends on the row interchanges
and cannot be predetermined precisely from the structure ofA. Consider, for example,
the following unsymmetric sparse matrix given by GILBERT [1994]

(2.8)A=
(1

2
• • 3

)
.

Depending on the relative magnitudes of the nonzero entries, pivoting could cause the
structure ofU to be any of the four structures:

(2.9)

(1
2

3

)
,

(1 •
2 •

3

)
,

(1 •
2

3

)
,

(1 •
2 •

3

)
.

Consequently, one disadvantage of complete or partial pivoting during the numerical
factorization is that the amount of fill-in cannot be determined a priori. Hence, the sym-
bolic nonzero structure prediction cannot be treated as a separate process decoupled
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from the numerical factorization. Moreover, additional fill-in due to numerical pivoting
occurs during the elimination. A threshold criterion is often used to restrict the partial
pivoting rule and to balance sparsity and stability. Thus, a pivot candidatea

(k)
l,k is only

accepted if it satisfies the Markovitz inequality (MARKOWITZ [1957])

(2.10)
∣∣a(k)l,k ∣∣� u · max

i=k,...,n
∣∣a(k)i,k ∣∣.

The threshold valueu balances sparsity and numerical stability. Only sparsity consider-
ations are made foru= 0, whileu= 1 gives partial pivoting in (2.7). The valueu= 0.1
has been recommended by many authors. It is remarkable that a smallu sometimes in-
troduces more fill-in than a larger one. An example is discussed in DUFF, ERISMAN

and REID [1986], where the number of elements in the factor are almost the same for
u= 10−10 andu= 1, while a minimum is attained foru= 0.1.

The effect of threshold partial pivoting inLU numerical factorization is analyzed by
AMESTOY [1990] and the number of operations withLU factorization are compared
with the diagonal pivoting method. It is observed that the increase in the number of
operations due to numerical threshold partial pivoting is significant and lies between 7%
and 200% for sparse matrices from the Harwell–Boeing test collection (DUFF, GRIMES

and LEWIS [1989]).

Bunch and Kaufman pivoting.An efficient strategy for symmetric matrices has been
proposed by BUNCH and KAUFMANN [1977]. LetA be symmetric, but indefinite(−c <
xT Ax < c, c > 0). AlthoughA may have anLDLT factorization, the entries in the
factors can have arbitrary magnitude. Pivoting along the diagonal15 may, for general
indefinite matrices, be insufficient. The small pivot candidates would cause excessive
growth and rounding; they must therefore be rejected. Thus,LDLT with symmetric
pivoting cannot be recommended as a reliable approach to solve symmetric indefinite
systems. The challenge is to involve the off-diagonal entries in the pivoting process
while maintaining a large portion of the symmetry.

One way to control the element growth and to preserve symmetry at the same time
is to use the combination of 1× 1 and 2× 2 pivots. These block pivots correspond to
the simultaneous elimination of two columns inA. If there are no appropriate diagonal
pivots, the hope is to find a suitable 2×2 submatrix with not too small determinants. The
elimination procedure leads to the generalizedLDLT factorization, where the matrix
D is a block diagonal with either 1× 1 or 2× 2 diagonal elements. In absence of large
diagonal elementsai,i , optimal pivot blocks

D =
(
ai,i ai,j
aj,i aj,j

)
,

are instead to be found and be permuted into pivot position. The large number of can-
didate blocks16 makes it necessary to restrict the considered pivot blocks to smaller

15Symmetric pivotingPAPT always selects the pivots from the diagonal and small diagonal entries cause
large nonzero entries in the factors.
16In thekth elimination of a supernode withns rows and columns there are(ns − k + 1)(ns − k) possible

candidates.
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subsets. For simplicity of notation, the first elimination step is considered. The proce-
dure can then be described by the following steps:

1. Let|ar,1| be the largest element in magnitude in the first column. If|a1,1| � ρ|ar,1|,
then choosea1,1 as a 1× 1 pivot block.

2. Otherwise, determine the largest off-diagonal element in magnitudear,s in ther th
row. If |a1,1ar,s | � ρa2

r,1, then choosea1,1 as a 1× 1 pivot block.
3. Otherwise, if|ar,r | � ρ|ar,s | choosear,r as a 1× 1 pivot block. Else, choose

D =
(
a1,1 a1,r
ar,1 ar,r

)
,

as a 2× 2 pivot block.
The parameterρ = (

√
17+ 1)/8 is chosen to minimize the element growth. With this

choice, the element growth afterk steps is bounded by the factor(2.57)k−1. Increasing
ρ would decrease the growth but would also increase the cost for the pivot search.
The choice of strategy must be a balance between stability and computational effort.
A nice feature of the scheme is the fact that symmetric positive definite matrices pass
the procedure without pivoting. The Cholesky factorization is therefore obtained in the
formLDLT .

Static pivoting. Static pivoting as an alternative to partial pivoting to stabilize sparse
Gaussian elimination is proposed by LI and DEMMEL [1999]. The main advantage of
static pivoting over partial pivoting is the possibility to permit a priori computation of
the nonzero structure of the factors, which makes the factorization potentially more scal-
able on distributed-memory machines than factorizations in which the communications
tasks only become apparent during the elimination process.

The original matrixA is permuted and scaled before the factorization to make the
diagonal entries large compared to the off-diagonal entries by using the algorithm of
DUFF and KOSTER[1997, 1999]. The magnitude of any tiny pivot, which is encoun-
tered during the factorization, is tested against a threshold ofε1/2‖A‖, whereε is the
machine precision and‖A‖ is the norm ofA. If it is less than this value it is immedi-
ately set to this value (with the same sign) and the modified entry is used as pivot. This
corresponds to a half-precision perturbation to the original matrix entry. As a result, the
factorization is not exact and iterative refinement may be needed. However, numerical
experiments demonstrate that the method is as stable as partial pivoting for a wide range
of problems (AMESTOY, DUFF, L’E XCELLENT and LI [2000], SCHENK and GÄRTNER

[2001]).

Supernode pivoting. In the previous Section 2.3 it was shown that significant gains
in the execution times can be obtained by a Level-3 BLAS factorization method. The
advantage of a Level-3 BLAS update is especially large for symmetric and structurally
symmetric linear systems. Unfortunately, partial pivoting destroys the symmetric struc-
ture of the factorsL andU . Due to the resulting unsymmetric structure of the factors L
and U, an unsymmetric factorization concept has to be chosen. A supernode algorithm
for these linear systems with partial pivoting has been developed in DEMMEL, GILBERT

and LI [1999]. The kernel operation is based on a Level-2 BLAS supernode-column
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update and it is extended to a Level-2.5 BLAS algorithm. However, the computational
performance of the Level-2.5 BLAS implementation achieves only 39% of the Level-
3 performance on a COMPAQ Alpha 21164 (LI [1996]). To summarize, performance
degradation with partial pivoting or threshold pivoting is due to:

1. additional fill-in during the numerical factorization,
2. the unsymmetric structure ofL andU and a degradation from a Level-3 BLAS

method to a Level-2.5 BLAS method,
3. the merging of symbolic and numerical factorization.

Consequently, one primary goal in Level-3 BLAS sparseLU factorization is to choose a
pivot which will not create additional fill-in during the elimination and which allows to
treat the symbolic factorization as a separate process. An alternative to Gaussian elim-
ination with threshold partial pivoting is Gaussian elimination with complete pivoting
in the diagonal block of the supernode (SCHENK and GÄRTNER [2000]). This strategy
allows Level-3 BLAS updates and does not create any fill-in during the factorization.
It chooses a tentative ordering for the nodes that reduces the fill-in without worrying
about the possibility of instability. The tentative ordering may then be modified in the
factorization phase to increase stability during the numerical factorization. This implies
strong regularity assumptions on small supernodes and weak ones for the large supern-
odes. The supernode pivoting scheme has been successfully applied to unsymmetric
matrices arising in semiconductor device and process simulations in SCHENK, GÄRT-
NER and FICHTNER [1999], SCHENK, GÄRTNER, SCHMIDTHÜSEN and FICHTNER

[1999].

2.5. Parallel strategies

In this section, parallelism and granularity in the factorization process will be identi-
fied. In general, two important critical issues must be addressed in designing a parallel
algorithm. It is necessary to exploit as much concurrency as possible and to maintain on
the other hand, a sufficient level of per-processor efficiency by choosing an appropriate
granularity for each task. For the parallel direct solution of sparse linear systems, the
following four possible types of parallelism can be identified:

Node level parallelism. The first type of parallelism, called node level parallelism
or type 0 parallelism, traverses the supernodes in the natural sequential ordering and
solves each supernode factorization in parallel. The node level parallelism is obtained by
simply running the uniprocessor algorithm under parallel multiplication routines form
the BLAS and LAPACK library. Acceptable efficiency in parallel factorization requires
sufficiently large matrices. However, for sparse matrix factorization, parallelism in the
dense matrix kernels is quite limited, because the dense submatrices are typically small.

Elimination tree parallelism. The second source of parallelism, the elimination tree
parallelism or type 1 parallelism, is generally exploited in all parallel sparse direct solver
packages. Nodes in different subtrees correspond to independent tasks that can be ex-
ecuted in parallel. However, if only this type of parallelism is used, the speedups are
very disappointing. Obviously it depends on the problem, but typically the maximum
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speedup is bounded by a factor of three or four. Is has been observed by AMESTOY and
DUFF [1993] that often more than 75% of the computations are performed in the top
three levels of the tree. It is thus necessary to obtain further parallelism within the large
nodes near the root of the tree. The additional parallelism is based on parallel blocked
versions of the numerical factorization.

1-d blocking/2-d blocking parallelism.Further parallelism can be obtained by a one-
dimensional (1-d) blocking of the rows of the supernodes that are not nodes of type 1 –
in the 1-d partition, each block column ofL resides on only one process. Finally, if the
supernode blocks close to the root are large enough, then a 2-d blocking of the rows and
columns can be applied. The factors are decomposed into blocks of submatrices and
these blocks are mapped onto a processor grid, in both row and column dimensions.
Such a 2-d layout strikes a good balance among locality (by blocking), load balance (by
cyclic mapping), and lower communication volume (by 2-d mapping). 2-d layouts were
used in scalable implementation of sparse Cholesky factorization by GUPTA, KARYPIS

and KUMAR [1997] and ROTHBERG[1996], and unsymmetric factorization by LI and
DEMMEL [1999].

Pipelining parallelism. Another type of parallelism, called pipelining parallelism, is
also suitable for a larger number of processors. Having studied the parallelism arising
from different subtrees and a blocking of the supernodes, the relation between ancestors
and descendants can be exploited with the pipelining parallelism. When the elimination
process proceeds to a stage where there are more processors than independent subtrees,
then the processors must work cooperatively on dependent columns.

Consider a left-looking algorithm and a simple situation with only two processors.
Processor 1 gets a task 1 containing supernodej , processor 2 gets another task 2 con-
taining supernodek, and nodej is a descendant of nodek in the tree. The dependency
says that task 2 cannot finish its execution before taskj finishes. However, processor
2 can start right away with the computations not involving supernodej – this includes
the accumulation of the numerical updates using the already finished descendants in the
elimination tree. Although a pipelining mechanism is complicated to implement, it is
essential to achieve higher concurrency.

Demmel, Gilbert, and Li employed pipelining parallelism within a left-looking su-
pernode algorithm in DEMMEL, GILBERT and LI [1999] while Schenk, Gärtner, and
Fichtner exploited this type of parallelism in SCHENK, GÄRTNER and FICHTNER

[2000] with a left-right looking strategy.

Parallel sparse direct solver packages.Parallel implementations of Cholesky and LU
factorization have been treated by several authors. The benefit of using blocking tech-
niques, higher level BLAS kernels, coupled with an increase in local cache memory
and the communication speed of parallel processors, have made the parallel direct solu-
tion of sparse linear systems feasible on shared and distributed memory multiprocessing
architectures.

Some recent performance results from several different parallel implementations are
now reviewed. GUPTA, KARYPIS and KUMAR [1997] implemented a multifrontal al-
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gorithm using two-dimensional blocking and obtained a performance of 15 Gflop/s
on 1024 nodes of the CRAY T3D for large sparse symmetric problems from struc-
tural analysis. A mixed 1-d/2-d distribution with static scheduling is used by HENON,
RAMET and ROMAN [2002]. Their solver PaStiX performed sparse matrix factorization
up to 33.3 Gflop/s on a 64 processor IBM SP3. Also recently, Amestoy, Duff, Excellent,
and Li analyzed in an extensive comparison (AMESTOY, DUFF, L’E XCELLENT and
LI [2000]) the performance characteristics of their two state-of-the art solvers for dis-
tributed memory machines. One is the multifrontal solver called MUMPS, the other
is a supernodal solver called SuperLU, both targeted for message passing architec-
tures. Schenk and Gärtner developed the supernode solver PARDISO based on a left-
right looking approach to utilize shared memory multiprocessing systems with up to
64 processors and their experimental results show that the left-right looking algorithm
is capable of using a moderate numbers of processors very efficiently (SCHENK and
GÄRTNER [2000]). The algorithm delivers substantial speedup already for moderate
problem sizes. Their approach has been tested on a wide range of architectures and they
obtained, e.g., 117 Gflop/s on a 16 CPUs NEC SX5 (312 MHz) for an irregular sparse
unsymmetric matrix from semiconductor laser device simulation at ETH Zurich.

In Table 2.5, the major characteristics of these full supported parallel sparse direct
codes are summarized. The features and the methods of these packages have been pre-
sented at a minisymposium on parallel sparse direct methods at the tenth SIAM Confer-
ence on Parallel Processing for Scientific Computing. Some packages are targeted for
special matrices such as symmetric and positive definite while others are targeted for the
most general cases. This is reflected in column 3 (“scope”) of the table. The matrices
can be symmetric positive definite (“SPD”), symmetric and may be indefinite (“SYM”)
or unsymmetric (“UNS”). The sparse direct solver packages are further categorized in
a parallel shared memory version (“OpenMP”, “Threads”) or a distributed memory ver-
sion (“MPI”). The pivoting strategy is either diagonal pivoting (“No”), diagonal pivoting

TABLE 2.5
A selection of full supported parallel sparse direct solver packages

Code Algorithm Scope Technique Pivoting Author

PARDISO Left-right looking SYM/ OpenMP supernode
SCHENK, GÄRTNER and
FICHTNER [2000]

UNS
SuperLU-MT Left-looking UNS Threads partial

DEMMEL, GILBERT and LI

[1999]
MUMPS Multifrontal SYM/ MPI partial

AMESTOY, DUFF and
L’E XCELLENT [2000]

UNS
PaStiX Multifrontal SPD MPI No

HENON, RAMET and
ROMAN [2002]

SuperLU-DIST Right-looking UNS MPI static
L I and DEMMEL [1999]
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with a ordering (“static”), supernode pivoting (“supernode”) or partial threshold pivot-
ing (“partial”). The sixth column (“Author”) reflects the contact person for the solver. It
should be stressed that only fully supported packages are referred to. A comprehensive
list of sparse direct solvers is also given in AMESTOY, DUFF, L’E XCELLENT and LI

[2000].

3. Iterative solution methods

3.1. Introduction

The basic idea behind iterative methods is to replace the given systemAx = b by a
nearby simpler to solve systemKx0 = b, and takex0 as an approximation forx. The
iteration comes from the systematic way in which the approximation can be improved.
Indeed, we want the correctionz that satisfies

A(x0 + z)= b.

This leads to a new linear system

Az= b−Ax0,

and we replace this system again by a nearby system, and oftenK is taken again:

Kz0 = b−Ax0.

This leads to the new approximationx1 = x0 + z0. The correction procedure can be
repeated forx1, and so on, which gives an iterative method. In some iteration methods
one selects a cycle of different approximationsK , as, for instance, in ADI (VARGA

[1962]) or SIP (STONE [1968]). In such cases one can regard the approximation for
x after one cycle, as being obtained from the approximation prior to the cycle with an
implicitly constructedK that represents the full cycle. This observation is of importance
for the construction of preconditioners.

For the basic iteration, that we have introduced above, it follows that

xi+1 = xi + zi

= xi +K−1(b−Axi)

(3.1)= xi + b̃− Ãxi,

with b̃=K−1b andÃ=K−1A. We writeK−1 for ease of notation; we (almost) never
compute inverses of matrices explicitly. When we speak ofK−1b, we mean the vector
b̃ that is solved fromKb̃= b, and likewise forK−1Axi .

The formulation in (3.1) can be interpreted as the basic iteration for the precondi-
tioned linear system

(3.2)Ãx = b̃,

with approximationK = I for Ã=K−1A.
In order to simplify the introduction of more advanced iteration methods, we will

from now on assume that with some available preconditionerK the iterative schemes
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are applied to the (preconditioned) system (3.2), and we will skip the superscipt·̃. This
means that we iterate forAx = b with approximationK = I for A. In some cases it
will turn out to be more convenient to incorporate the preconditioner explicitly in the
iteration scheme, but that will be clear from the context.

We have so arrived at the well-known Richardson iteration:

(3.3)xi+1 = b+ (I −A)xi = xi + ri ,

with the residualri = b−Axi .
Because relation (3.3) containsxi as well asri , it cannot easily be analysed. Multi-

plication by−A and addingb gives

b−Axi+1 = b−Axi −Ari

or

(3.4)ri+1 = (I −A)ri

= (I −A)i+1r0

(3.5)= Pi+1(A)r0.

In terms of the error, we get

A(x − xi+1)= Pi+1(A)A(x − x0),

so that, for nonsingularA:

x − xi+1 = Pi+1(A)(x − x0).

In these expressionsPi+1 is a (special) polynomial of degreei + 1. Note that
Pi+1(0)= 1.

The expressions (3.4) and (3.5) lead to interesting observations. From (3.4) we con-
clude that

‖ri+1‖ � ‖I −A‖ri‖,
which shows we have guaranteed convergence for all initialr0 if ‖I − A‖ < 1. This
puts restrictions on the preconditioner (remember thatA represents the preconditioned
matrix). We will see later that it is not necessary that‖I −A‖< 1 for convergence of
more advanced iterative schemes.

Eq. (3.5) is also of interest, because it shows that all residuals can be expressed in
terms of powers ofA times the initial residual. This observation will be crucial for the
derivation of methods like the Conjugate Gradients method. It shows something more.
Let us assume thatA hasn eigenvectorswj , with corresponding eigenvectorsλj . Then
we can expressr0 in terms of the eigenvector basis as

r0 =
n∑
j=1

γjwj ,
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and we see that

ri = Pi(A)r0 =
n∑
j=1

γjPi(λj )wj .

This formula shows that the error reduction depends on how well the polynomialPi
damps the initial error components. It would be nice if we could construct iterative
methods for which the corresponding error reduction polynomialPi has better damping
properties than for the standard iteration (3.3).

From now on we will also assume thatx0 = 0, which will help to make future formu-
las more simple. This does not mean a loss of generality, because the situationx0 �= 0
can be transformed, through the simple linear transformationy = x − x0, to the system

Ay = b−Ax0 = b̄

for which obviouslyy0 = 0.
With the simple Richardson iteration, we can proceed in different ways. One way is

to include iteration parameters, for instance, by computingxi+1 as

(3.6)xi+1 = xi + αiri .

This leads to the error reduction formula

ri+1 = (I − αiA)ri .

It follows that the error reduction polynomialPi in this case can be expressed as

Pi =
i∏

j=1

(I − αjA).

An important consequence of this polynomial interpretation is that it is not longer nec-
essary thatI −A has all its eigenvalues in the unit ball. The eigenvalues may, in prin-
ciple, be anywhere as long as we see chance to construct iteration methods for which
the corresponding iteration polynomials damp the unwanted error components. This is
precisely what the modern Krylov subspace iteration methods attempt to do. As we will
see, these methods proceed in an automatic manner and do not require user-specified
parameters (such as theαi ).

We are now in the position to derive these advanced iterative methods. First we have
to identify the subspace in which the successive approximate solutions are located. By
repeating the simple Richardson iteration, we observe that

(3.7)xi+1 = r0 + r1 + r2 + · · · + ri

(3.8)=
i∑

j=0

(I −A)j r0

(3.9)∈ span{r0,Ar0, . . . ,Air0}
(3.10):=Ki+1(A; r0).
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Them-dimensional space spanned by a given vectorv, and increasing powers ofA
applied tov, up to the(m− 1)th power, is called them dimensional Krylov subspace,
generated withA andv, denoted byKm(A;v).

Apparently, the Richardson iteration, as it proceeds, delivers elements of Krylov sub-
spaces of increasing dimension. This is also the case for the Richardson iteration (3.6)
with parameters. Including local iteration parameters in the iteration would lead to other
elements of the same Krylov subspaces. Let us write such an element still asxi+1. Since
xi+1 ∈Ki+1(A; r0), we have that

xi+1 =Qi+1(A)r0,

with Qi+1 an arbitrary polynomial of degreei + 1. It follows that

(3.11)ri+1 = b−Axi+1 = (
I −AQi+1(A)

)
r0 = P̃i+1(A)r0,

with, just as in the standard Richardson iteration,P̃i+1(0)= 1.
The standard iteration (3.3) is characterized by the polynomialPi+1(A) = (I −

A)i+1.
The consequence of this is, that if we want to make better combinations of the gener-

ated approximations, then we have to explore the Krylov subspace.

3.2. The Krylov subspace approach

Methods that attempt to generate better approximations from the Krylov subspace are
often referred to as Krylov subspace methods. Because optimality usually refers to some
sort of projection, they are also called Krylov projection methods. The most popular
Krylov subspace methods, for identification of a goodxk ∈ Kk(A; r0), can be distin-
guished in four different classes (we will still assume thatx0 = 0):

1. TheRitz–Galerkin approach: Construct thexk for which the residual is orthogonal
to the current subspace:b−Axk ⊥Kk(A; r0).

2. Theminimum residual approach: Identify thexk for which the Euclidean norm
‖b−Axk‖2 is minimal overKk(A; r0).

3. ThePetrov–Galerkin approach: Find anxk so that the residualb−Axk is orthog-
onal to some other suitablek-dimensional subspace.

4. Theminimum error approach: Compute thexk ∈ x0 +AKk(A; r0) such that‖x−
xk‖ is minimal.

The Ritz–Galerkin approach leads to well-known methods as Conjugate Gradients,
the Lanczos method, FOM, and GENCG. The minimum residual approach leads to
methods like GMRES, MINRES, and ORTHODIR. The main disadvantage of these
two approaches is that, for most unsymmetric systems, they lead to long, and therefore
expensive, recurrence relations for the approximate solutions. This can be relieved by
selecting other subspaces for the orthogonality condition (the Galerkin condition). If
we select thek-dimensional subspace in the third approach asKk(AT ; s0), then we
obtain the Bi-CG and QMR methods, and these methods work with short recurrences
indeed. The SYMMLQ method (PAIGE and SAUNDERS [1975]) belongs to the fourth
class. Also hybrids of these approaches have been proposed, like CGS, Bi-CGSTAB,
BiCGSTAB("), FGMRES, and GMRESR.
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The choice for a method is a delicate problem. If the matrixA is symmetric positive
definite, then the choice is easy: Conjugate Gradients. For other types of matrices the sit-
uation is very diffuse. GMRES, proposed in 1986 by SAAD and SCHULTZ [1986], is the
most robust method, but in terms of work per iteration step it is also relatively expensive.
Bi-CG, which was suggested by Fletcher (FLETCHER [1976]), is a relatively inexpen-
sive alternative, but it has problems with respect to convergence: the so-called break-
down situations. This aspect has received much attention. PARLETT, TAYLOR and LIU

[1985] introduced the notion of look-ahead in order to overcome breakdowns and this
was further perfected by FREUND, GUTKNECHT and NACHTIGAL [1993]. Other con-
tributions to overcome specific breakdown situations were made by BANK and CHAN

[1993], and FISCHER[1994]. We will discuss these approaches in Section 3.5.
The development of hybrid methods started with CGS, published in 1989 by SON-

NEVELD [1989], and was followed by Bi-CGSTAB, byVAN DER VORST[1992a], and
others. The hybrid variants of GMRES: Flexible GMRES and GMRESR, in which GM-
RES is combined with some other iteration scheme, have been proposed in the mid-
1990s.

Simple algorithms and unsophisticated software for some of these methods is pro-
vided in BARRETT, BERRY, CHAN, DEMMEL, DONATO, DONGARRA, EIJKHOUT,
POZO, ROMINE and VAN DER VORST [1994]. This was complemented, with respect
to theoretical aspects, by a very elegant textbook written by GREENBAUM [1997b]. It-
erative methods with much attention to various forms of preconditioning have been de-
scribed in AXELSSON[1994]. Another useful book on iterative methods was published
by SAAD [1996]; it is very algorithm oriented, with, of course, a focus on GMRES
and preconditioning techniques, like threshold ILU, ILU with pivoting, and incomplete
LQ factorizations. A nice introduction for Krylov subspace methods, viewed from the
standpoint of polynomial methods, can be found in FISCHER[1996].

An annotated entrance to the vast literature on preconditioned iterative methods is
given in BRUASET [1995].

3.2.1. The Krylov subspace
In order to identify the approximations corresponding to the three different approaches,
we need a suitable basis for the Krylov subspace; one that can be extended in a meaning-
ful way for subspaces of increasing dimension. The obvious basisr0, Ar0, . . . ,Ai−1r0,
for Ki(A; r0), is not very attractive from a numerical point of view, since the vectors
Ajr0 for increasingj point more and more in the direction of the eigenvector corre-
sponding to the in modulus largest eigenvalue. For that reason the basis vectors become
dependent in finite precision arithmetic. It does not help to compute this nonorthogonal
generic basis first and to orthogonalize it afterwards. The result would be that we have
orthogonalized a very ill-conditioned set of basis vectors, which is numerically still not
an attractive situation.

ARNOLDI [1951] has proposed to compute an orthogonal basis as follows. Start with
v1 := r0/‖r0‖2. Then computeAv1, make it orthogonal tov1 and normalize the result,
which givesv2. The general procedure is as follows. Assume that we have already an
orthonormal basisv1, . . . , vj for Kj(A; r0), then this basis is expanded by computing
t = Avj , and by orthonormalizing this vectort with respect tov1, . . . , vj . In principle
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v1 = r0/‖r0‖2;
for j = 1, . . . ,m− 1

t =Avj ;
for i = 1, . . . , j
hi,j = vT

i
t ;

t = t − hi,j vi ;
end;
hj+1,j = ‖t‖2;
vj+1 = t/hj+1,j ;

end

FIG. 3.1. Arnoldi’s method with modified Gram–Schmidt orthogonalization.

the orthonormalization process can be carried out in different ways, but the most com-
monly used approach is to do this by a modified Gram–Schmidt procedure (GOLUB and
VAN LOAN [1996]).

This leads to an algorithm for the creation of an orthonormal basis forKm(A; r0), as
in Fig. 3.1. It is easily verified thatv1, . . . , vm form an orthonormal basis forKm(A; r0)
(that is, if the construction does not terminate at a vectort = 0). The orthogonalization
leads to relations between thevj , that can be formulated in a compact algebraic form.
Let Vj denote the matrix with columnsv1 up tovj , then it follows that

(3.12)AVm−1 = VmHm,m−1.

Them bym− 1 matrixHm,m−1 is upper Hessenberg, and its elementshi,j are defined
by the Arnoldi algorithm, withhij = 0 for i > j + 1.

From a computational point of view, this construction is composed from three basic
elements: a matrix vector product withA, inner products, and vector updates. We see
that this orthogonalization becomes increasingly expensive for increasing dimension of
the subspace, since the computation of eachhi,j requires an inner product and a vector
update.

Note that ifA is symmetric, then so isHm−1,m−1 = V Tm−1AVm−1, so that in this sit-
uationHm−1,m−1 is tridiagonal. This means that in the orthogonalization process, each
new vector has to be orthogonalized with respect to the previous two vectors only, since
all other inner products vanish. The resulting three term recurrence relation for the basis
vectors ofKm(A; r0) is known as theLanczos method(LANCZOS [1950]) and some
very elegant methods are derived from it. In this symmetric case the orthogonalization
process involves constant arithmetical costs per iteration step: one matrix vector prod-
uct, two inner products, and two vector updates.

3.2.2. The Ritz–Galerkin approach
The Ritz–Galerkin conditions imply thatrk ⊥ Kk(A; r0), and this is equivalent to

V Tk (b−Axk)= 0.
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Sinceb = r0 = ‖r0‖2v1, it follows thatV Tk b = ‖r0‖2e1 with e1 the first canonical unit
vector inR

k . With xk = Vky we obtain

V Tk AVky = ‖r0‖2e1.

This system can be interpreted as the systemAx = b projected onto the subspace
Kk(A; r0).

Obviously we have to construct thek× k matrixV Tk AVk , but this is, as we have seen,
readily available from the orthogonalization process:

V Tk AVk =Hk,k,

so that thexk for whichrk ⊥ Kk(A; r0) can be easily computed by first solvingHk,ky =
‖r0‖2e1, and then formingxk = Vky. This algorithm is known as FOM or GENCG
(SAAD and SCHULTZ [1986]).

WhenA is symmetric, thenHk,k reduces to a tridiagonal matrixTk,k , and the result-
ing method is known as theLanczosmethod (LANCZOS[1952]). WhenA is in addition
positive definite then we obtain, at least formally, theConjugate Gradientsmethod.
In commonly used implementations of this method, one implicitly forms anLU fac-
torization forTk,k , without generatingTk,k itself, and this leads to very elegant short
recurrences for thexj and the correspondingrj , see Section 3.3.

The positive definiteness is necessary to guarantee the existence of theLU factor-
ization, but it allows also for another useful interpretation. From the fact thatri ⊥
Ki(A; r0), it follows thatA(xi − x) ⊥ Ki(A; r0), or xi − x ⊥A K

i(A; r0). The latter
observation expresses the fact that the error isA−orthogonal to the Krylov subspace
and this is equivalent to the important observation that‖xi − x‖A is minimal.17 For an
overview of the history of CG and main contributions on this subject, see GOLUB and
O’L EARY [1989].

3.2.3. The minimum residual approach
The creation of an orthogonal basis for the Krylov subspace, with basis vectors
v1, . . . , vi+1, leads to

(3.13)AVi = Vi+1Hi+1,i ,

whereVi is the matrix with columnsv1 to vi . We look for anxi ∈ Ki(A; r0), that is
xi = Viy, for which‖b−Axi‖2 is minimal. This norm can be rewritten as

‖b−Axi‖2 = ‖b−AViy‖2 = ∥∥‖r0‖2Vi+1e1 − Vi+1Hi+1,iy
∥∥

2.

Now we exploit the fact thatVi+1 is an orthonormal transformation with respect to the
Krylov subspaceKi+1(A; r0):

‖b−Axi‖2 = ∥∥‖r0‖2e1 −Hi+1,iy
∥∥

2,

and this final norm can simply be minimized by solving the minimum norm least squares
problem for thei + 1 by i matrixHi+1,i and right-hand side‖r0‖2e1.

The GMRES method is based upon this approach, see Section 3.4.

17TheA-norm is defined by‖y‖2
A

= (y, y)A := (y,Ay), and we need the positive definiteness ofA in order
to get a proper inner product(·, ·)A.
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3.2.4. The Petrov–Galerkin approach
For unsymmetric systems we can, in general, not reduce the matrixA to a symmet-
ric system in a lower-dimensional subspace, by orthogonal projections. The reason is
that we can not create an orthogonal basis for the Krylov subspace by a 3-term recur-
rence relation (FABER and MANTEUFFEL [1984]). We can, however, obtain a suitable
nonorthogonal basis with a 3-term recurrence, by requiring that this basis is orthogonal
with respect to some other basis.

We start by constructing an arbitrary basis for the Krylov subspace:

(3.14)hi+1,ivi+1 =Avi −
i∑

j=1

hj,ivj ,

which can be rewritten in matrix notation asAVi = Vi+1Hi+1,i . The coefficientshi+1,i
define the norm ofvi+1, and a natural choice would be to select them such that
‖vi+1‖2 = 1. In Bi-CG implementations, a popular choice is to selecthi+1,i such that
‖vi+1‖2 = ‖ri+1‖2.

Clearly, we cannot useVi for the projection, but suppose we have aWi for which
WT
i Vi = Di (an i by i diagonal matrix with diagonal entriesdi ), and for which

WT
i vi+1 = 0.
Then

(3.15)WT
i AVi =DiHi,i ,

and now our goal is to find aWi for whichHi,i is tridiagonal. This means thatV Ti A
TWi

should be tridiagonal too. This last expression has a similar structure as the right-hand
side in (3.15), with onlyWi andVi reversed. This suggests to generate thewi with AT .

We start with an arbitraryw1 �= 0, such thatwT1 v1 �= 0. Then we generatev2
with (3.14), and orthogonalize it with respect tow1, which means thath1,1 =
wT1Av1/(w

T
1 v1). SincewT1Av1 = (AT w1)

T v1, this implies thatw2, generated with

h2,1w2 =ATw1 − h1,1w1,

is also orthogonal tov1.
This can be continued, and we see that we can create bi-orthogonal basis sets{vj },

and{wj }, by making the newvi orthogonal tow1 up towi−1, and then by generating
wi with the same recurrence coefficients, but withAT instead ofA.

Now we have thatWT
i AVi =DiHi,i , and also thatV Ti A

TWi =DiHi,i . This implies
thatDiHi,i is symmetric, and henceHi,i is a tridiagonal matrix, which gives us the
desired 3-term recurrence relation for thevj ’s, and thewj ’s. Note thatv1, . . . , vi form
a basis forKi(A;v1), andw1, . . . ,wi form a basis forKi(AT ;w1).

3.3. The Conjugate Gradients method

As explained in Section 3.2.2, the conjugate gradient method can be viewed as a variant
of the Lanczos method. The method is based on relation (3.12), which for symmetric
A reduces toAVi = Vi+1Hi+1,i with tridiagonalHi+1,i . For thekth column ofVk , we
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have that

(3.16)Avk = hk+1,kvk+1 + hk,kvk + hk−1,kvk−1.

In the Galerkin approach, the new residualb − Axk+1 is orthogonal to the subspace
spanned byv1, . . . , vk , so thatrk+1 is in the direction ofvk+1. Therefore, we can also
select the scaling factorhk+1,k so thatvk+1 coincides withrk+1. This would be conve-
nient, since the residual gives useful information on our solution, and we do not want to
work with two sequences of auxiliary vectors.

From the consistency relation (3.11) we have thatrk can be written as

rk = (
I −AQk−1(A)

)
r0.

By inserting the polynomial expressions for the residuals in (3.16), and comparing the
coefficient forr0 in the new relation, we obtain

hk+1,k + hk,k + hk−1,k = 0,

which defineshk+1,k .
At the end of this section we will consider the situation where the recurrence relation

terminates.
With Ri we denote the matrix with columnsrj :

Ri = (r0, . . . , ri−1),

then we have

(3.17)ARi =Ri+1Ti+1,i ,

whereTi+1,i is a tridiagonal matrix (withi+ 1 rows andi columns) with elementshi,j .
Since we are looking for a solutionxi in Ki(A; r0), that vector can be written as a

combination of the basis vectors of the Krylov subspace, and hence

xi =Riy.

(Note thaty hasi components).
Furthermore, the Ritz–Galerkin condition says that the residual forxi is orthogonal

with respect tor0, . . . , ri−1:

RTi (Axi − b)= 0,

and hence

RTi ARiy −RTi b= 0.

Using Eq. (3.17), we obtain

RTi RiTi,iy = ‖r0‖2
2e1.
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SinceRTi Ri is a diagonal matrix with diagonal elements‖r0‖2
2 up to ‖ri−1‖2

2 we find
the desired solution by solvingy from

Ti,iy = e1 ⇒ y ⇒ xi =Riy.

So far we have only used the fact thatA is symmetric and we have assumed that the
matrix Ti is not singular. The Krylov subspace method that has been derived here is
known as the Lanczos method for symmetric systems (LANCZOS [1952]).

Note that for somej � n−1 the construction of the orthogonal basis must terminate.
In that case we have thatARj+1 = Rj+1Tj+1,j+1. Let y be the solution of the reduced
systemTj+1,j+1y = e1, andxj+1 =Rj+1y. Then it follows thatxj+1 = x, i.e., we have
arrived at the exact solution, sinceAxj+1 − b=ARj+1y − b= Rj+1Tj+1,j+1y − b=
Rj+1e1 − b= 0 (we have assumed thatx0 = 0).

The Conjugate Gradients method (HESTENESand STIEFEL [1952]), CG for short, is
a clever variant on the above approach, which saves storage and computational effort. If
we follow naively the above sketched approach, when solving the projected equations,
then we see that we have to save all columns ofRi throughout the process in order to
recover the current iteration vectorsxi . This can be done in a more memory friendly
way. If we assume that the matrixA is in addition positive definite then, because of the
relation

RTi ARi =RTi RiTi,i ,

we conclude thatTi,i can be transformed by a rowscaling matrixRTi Ri into a positive
definite symmetric tridiagonal matrix (note thatRTi ARi is positive definite fory ∈ R

i ).
This implies thatTi,i can beLU decomposed without any pivoting:

Ti,i = LiUi,

with Li lower bidiagonal, andUi is upper bidiagonal with unit diagonal. This leads to
two two-term recurrences for the update vector and for the residual vector.

It is not necessary to generateTi,i explicitly: we can obtain the required information
in an easier way. For details on this see, for instance, GOLUB and VAN LOAN [1996],
Chapter 10.2. The resulting method is known as the conjugate gradients method. The
name stems from the property that the update vectorspi , areA-orthogonal.

Note that the positive definiteness ofA is only exploited for the flawless decomposi-
tion of the implicitly generated tridiagonal matrixTi,i . This suggests that the conjugate
gradients method may also work for certain nonpositive definite systems, but then at our
own risk (PAIGE, PARLETT andVAN DER VORST[1995]).

3.3.1. Computational notes
The standard (unpreconditioned) Conjugate Gradients algorithm for the solution of
Ax = b can be represented by the following scheme:

CG is most often used in combination with a suitable approximationK for A; thisK
is called the preconditioner. We will assume thatK is also positive definite. However,
we cannot apply CG straight away for the explicitly preconditioned systemK−1Ax =
K−1b, as we suggested to do in the introduction, becauseK−1A is most likely not
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x0 is initial guess,r0 = b−Ax0
for i = 1,2, . . .

ρi−1 = rT
i−1ri−1

if i = 1
pi = ri−1

else
βi−1 = ρi−1/ρi−2
pi = ri−1 + βi−1pi−1

endif
qi =Api ;
αi = ρi−1/p

T
i
qi

xi = xi−1 + αipi
ri = ri−1 − αiqi
if xi accurate enoughthen quit

end

FIG. 3.2. Conjugate Gradients without preconditioning.

symmetric. One way out is to apply the preconditioner differently. Assume thatK is
given in factored form:

K = LLT ,

as is the case for ILU preconditioners.
We then apply CG for the symmetrically preconditioned system

L−1AL−T y = L−1b,

with x = L−T y.
This approach has the disadvantage thatK must be available in factored form and that

we have to backtransform the approximate solution afterwards. There is a more elegant
alternative. Note first that the CG method can be derived for any choice of the inner
product. In our derivation we have used the standard inner product(x, y)=∑

xiyi , but
we have not used any specific property of that inner product. Now we make a different
choice:

[x, y] := (x,Ky).

It is easy to verify thatK−1A is symmetric positive definite with respect to[ , ]:
[K−1Ax,y] = (K−1Ax,Ky)= (Ax,y)

(3.18)= (x,Ay)= [x,K−1Ay].
Hence, we can follow our CG procedure for solving the preconditioned system
K−1Ax =K−1b, using the new[ , ]-inner product.

Apparently, we now are minimizing[
xi − x,K−1A(xi − x)

]= (
xi − x,A(xi − x)

)
,
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x0 is initial guess,r0 = b−Ax0
for i = 1,2, . . .

Solve Kwi−1 = ri−1
ρi−1 = rT

i−1wi−1
if i = 1
pi =wi−1

else
βi−1 = ρi−1/ρi−2
pi =wi−1 + βi−1pi−1

endif
qi =Api
αi = ρi−1/p

T
i
qi

xi = xi−1 + αipi
ri = ri−1 − αiqi
if xi accurate enoughthen quit

end

FIG. 3.3. Conjugate Gradients with preconditioningK .

which leads to the remarkable (and known) result that for this preconditioned system
we still minimize the error inA-norm, but now over a Krylov subspace generated by
K−1r0 andK−1A.

In the computational scheme for preconditioned CG, in Fig. 3.3, for the solution of
Ax = b with preconditionerK , we have replaced the[ , ]-inner product again by the
familiar standard inner product. E.g., note that withr̃i+1 =K−1Axi+1 −K−1b we have
that

ρi+1 = [r̃i+1, r̃i+1]
= [K−1ri+1,K

−1ri+1] = [ri+1,K
−2ri+1]

= (ri+1,K
−1ri+1),

andK−1ri+1 is the residual corresponding to the preconditioned systemK−1Ax =
K−1b.

The coefficientsαj andβj , generated by the Conjugate Gradients algorithms, as in
Figs. 3.2 and 3.3, can be used to build the matrixTi,i in the following way:

(3.19)Ti,i =



. . .

. . . −βj−1
αj−1

. . . 1
αj

+ βj−1
αj−1

. . .

− 1
αj

. . .

. . .


.
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Sinceαj > 0 andβj > 0, we see that the above matrix is similar to the following sym-
metric tridiagonal matrix:

T̃i,i =



. . .

. . . −
√
βj−1

αj−1

. . . 1
αj

+ βj−1
αj−1

. . .

−
√
βj

αj

. . .

. . .


.

The eigenvalues of the leadingith order minor of this matrix are the Ritz values of
A (for Fig. 3.2) or the preconditioned matrixK−1A (for Fig. 3.3) with respect to the
i-dimensional Krylov subspace spanned by the firsti residual vectors. The Ritz val-
ues approximate the (extremal) eigenvalues of the (preconditioned) matrix increasingly
well. These approximations can be used to get an impression of the relevant eigenvalues.
They can also be used to construct upperbounds for the error in the delivered approxi-
mation with respect to the solution (KAASSCHIETER[1988], HAGEMAN and YOUNG

[1981]). According to the results inVAN DER SLUIS andVAN DER VORST[1986], the
eigenvalue information can also be used in order to understand or explain delays in the
convergence behaviour.

The local convergence behavior of CG, and especially the occurrence of super-
linear convergence, was first explained in a qualitative sense in CONCUS, GOLUB and
O’L EARY [1976], and later in a quantitative sense inVAN DER SLUIS and VAN DER

VORST [1986]. In both papers it was linked to the convergence of eigenvalues (Ritz
values) ofTi,i towards eigenvalues ofA, for increasingi. The global convergence can
be bounded with expressions that involve condition numbers, for details see for instance
CONCUS, GOLUB and O’LEARY [1976], GOLUB and VAN LOAN [1996], AXELSSON

[1977]. In AXELSSON[1977] the situation is analysed where the eigenvalues ofK−1A

are in disjunct intervals.

3.4. GMRES

As we have seen in Section 3.2.3, the minimal residual approach leads to a small mini-
mum least squares problem that has to be solved:

Hi+1,iy = ‖r0‖2e1.

In GMRES (SAAD and SCHULTZ [1986]) this is done efficiently with Givens rotations,
that annihilate successively the subdiagonal elements in the upper Hessenberg matrix
Hi+1,i .

In order to avoid excessive storage requirements and computational costs for the or-
thogonalization, GMRES is usually restarted after eachm iteration steps. This algorithm
is referred to as GMRES(m); the not-restarted version is often called ‘full’ GMRES.
There is no simple rule to determine a suitable value form; the speed of convergence
may vary drastically for nearby values ofm.
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r = b−Ax0, for a given initial guessx0
for j = 1,2, . . .

β = ||r||2, v1 = r/β; b̂= βe1;
for i = 1,2, . . . ,m

w =Avi ;
for k = 1, . . . , i

hk,i = vT
k
w; w =w− hk,ivk ;

hi+1,i = ‖w‖2; vi+1 =w/hi+1,i ;
r1,i = h1,i ;
for k = 2, . . . , i

γ = ck−1rk−1,i + sk−1hk,i ;
rk,i = −sk−1rk−1,i + ck−1hk,i ;
rk−1,i = γ ;

δ =
√
r2
i,i

+ h2
i+1,i ; ci = ri,i/δ; si = hi+1,i/δ

ri,i = ciri,i + sihi+1,i
b̂i+1 = −si b̂i ; b̂i = ci b̂i ;
ρ = |b̂i+1| (= ‖b−Ax(j−1)m+i‖2))
if ρ is small enoughthen

(nr = i; gotoSOL);
nr =m, ynr = b̂nr /rnr ,nr

SOL: for k = nr − 1, . . . ,1
yk = (b̂k −∑nr

i=k+1 rk,iyi )/rk,k
x =∑nr

i=1yivi ; if ρ small enough quit
r = b−Ax

FIG. 3.4. unpreconditioned GMRES(m) with modified Gram–Schmidt.

We present in Fig. 3.4 the modified Gram–Schmidt version of GMRES(m) for the
solution of the linear systemAx = b. The application to preconditioned systems, for
instance,K−1Ax =K−1b is straight-forward.

For complex valued systems, the scheme is as in Fig. 3.5. Note that the complex
rotation is the only difference with respect to the real version.

The eigenvalues ofHi,i are the Ritz values ofA with respect to the Krylov sub-
space spanned byv1, . . . , vi . They approximate eigenvalues ofA increasingly well for
increasing dimensioni.

There is an interesting and simple relation between the Ritz–Galerkin approach
(FOM and CG) and the minimum residual approach (GMRES and MINRES). In GM-
RES the projected system matrixHi+1,i is transformed by Givens rotations to an upper
triangular matrix (with last row equal to zero). So, in fact, the major difference between
FOM and GMRES is that in FOM the last(i + 1)th row is simply discarded, while in
GMRES this row is rotated to a zero vector. Let us characterize the Givens rotation,
acting on rowsi andi+ 1, in order to zero the element in position(i+ 1, i), by the sine
si and the cosineci . Let us further denote the residuals for FOM with an superscriptF

and those for GMRES with superscriptG. Then we have the following relation between
FOM and GMRES:
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r = b−Ax0, for a given initial guessx0
for j = 1,2, . . .

β = ||r||2, v1 = r/β; b̂= βe1;
for i = 1,2, . . . ,m

w =Avi ;
for k = 1, . . . , i

hk,i = v∗
k
w; w =w− hk,ivk ;

hi+1,i = ||w||2; vi+1 =w/hi+1,i ;
r1,i = h1,i ;
for k = 2, . . . , i

γ = ck−1rk−1,i + s̄k−1hk,i ;
rk,i = −sk−1rk−1,i + ck−1hk,i ;
rk−1,i = γ ;

δ =
√

|ri,i |2 + |hi+1,i |2;

if |ri,i |< |hi+1,i |
then µ= ri,i/hi+1,i ; τ = µ̄/|µ|;
else µ= hi+1,i/ri,i ; τ = µ/|µ|;
ci = |ri,i |/δ; si = |hi+1,i |τ/δ;
ri,i = ciri,i + s̄ihi+1,i ;
b̂i+1 = −si b̂i ; b̂i = ci b̂i

ρ = |b̂i+1| (= ‖b−Ax(j−1)m+i‖2))
if ρ is small enoughthen

(nr = i; gotoSOL);
nr =m, ynr = b̂nr /rnr ,nr

SOL: for k = nr − 1, . . . ,1
yk = (b̂k −∑nr

i=k+1 rk,iyi)/rk,k
x =∑nr

i=1yivi ; if ρ small enough quit
r = b−Ax

FIG. 3.5. Unpreconditioned GMRES(m) for complex systems.

If ck �= 0 then the FOM and the GMRES residuals are related by

(3.20)‖rFk ‖2 = ‖rGk ‖2√
1− (‖rGk ‖2/‖rGk−1‖2)2

(CULLUM and GREENBAUM [1996], Theorem 3.1). From this relation we see that when
GMRES has a significant reduction at stepk, in the norm of the residual (i.e.,sk is small,
andck ≈ 1), then FOM gives about the same result as GMRES. On the other hand when
FOM has a breakdown(ck = 0), then GMRES does not lead to an improvement in the
same iteration step. Because of these relations we can link the convergence behaviour
of GMRES with the convergence of Ritz values (the eigenvalues of the “FOM” part of
the upper Hessenberg matrix). This has been exploited inVAN DER VORST and VUIK

[1993], for the analysis and explanation of local effects in the convergence behaviour of
GMRES.
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There are various methods that are mathematically equivalent with FOM or GMRES.
We will say that two methods are mathematically equivalent if they produce the same
approximations{xk} in exact arithmetic. Among those that are equivalent to GMRES
are: Orthomin (VINSOME [1976]), Orthodir (JEA and YOUNG [1980]), GENCR (EL-
MAN [1982]), and Axelsson’s method (AXELSSON [1980]). These methods are often
more expensive than GMRES per iteration step, and in some cases also less robust.
Orthomin is still in use because this variant can be easily truncated (Orthomin(s)), in
contrast to GMRES. The truncated and restarted versions of these algorithms are not
necessarily mathematically equivalent.

Methods that are mathematically equivalent to FOM are: Orthores (JEA and YOUNG

[1980]) and GENCG (CONCUSand GOLUB [1976], WIDLUND [1978]). In these meth-
ods the approximate solutions are constructed such that they lead to orthogonal residuals
(which form a basis for the Krylov subspace; analogously to the CG method). A good
overview of all these methods and their relations is given in SAAD [1996].

The GMRES method and FOM are closely related to vector extrapolation methods,
when the latter are applied to linearly generated vector sequences. For a discussion on
this, as well as for implementations for these matrix free methods, see SIDI [1991].

Note that whenA is Hermitian (but not necessarily positive definite), the upper Hes-
senberg matrixHi+1,i reduces to a tridiagional system. This simplified structure can be
exploited in order to avoid storage of all the basis vectors for the Krylov subspace, in a
way similar as has been pointed out for CG. The resulting method is known as MINRES
(PAIGE and SAUNDERS [1975]).

See Fig. 3.6 for an algorithmic formulation of MINRES. The formulation is derived
from a MATLAB routine published in FISCHER[1996].

The usage of the 3-term recurrence relation for the columns ofWi makes MINRES
very vulnerable for rounding errors, as has been shown in SLEIJPEN, VAN DER VORST

and MODERSITZKI [2000]. It has been shown that rounding errors are propagated to the
approximate solution with a factor proportional to the square of the condition number
of A, whereas in GMRES these errors depend only on the condition number itself.
Therefore, one should be careful with MINRES for ill-conditioned systems. If storage
is no problem then GMRES should be preferred for ill-conditioned systems; if storage
is a problem then one might consider the usage of SYMMLQ (PAIGE and SAUNDERS

[1975]). SYMMLQ, however, may converge a good deal slower than MINRES for ill-
conditioned systems. For more details on this, see SLEIJPEN, VAN DER VORST and
MODERSITZKI [2000].

3.4.1. GMRESR and related approaches
In VAN DER VORSTand VUIK [1994] it has been shown that the GMRES-method can
be effectively combined (or rather preconditioned) with other iterative schemes. The
iteration steps of GMRES (or GCR) are called outer iteration steps, while the iteration
steps of the preconditioning iterative method are referred to as inner iterations. The
combined method is called GMRES%, where% stands for any given iterative scheme;
in the case of GMRES as the inner iteration method, the combined scheme is called
GMRESR (VAN DER VORSTand VUIK [1994]).
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Computev1 = b−Ax0 for some initial guessx0
β1 = ‖v1‖2; η= β1;
γ1 = γ0 = 1; σ1 = σ0 = 0;
v0 = 0;w0 =w−1 = 0;
for i = 1,2, . . .

The Lanczos recurrence:
vi = 1

βi
vi ; αi = vT

i
Avi ;

vi+1 =Avi − αivi − βivi−1
βi+1 = ‖vi+1‖2

QR part:
old Givens rot’s on new column ofT :

δ = γiαi − γi−1σiβi ; ρ1 =
√
δ2 + β2

i+1
ρ2 = σiαi + γi−1γiβi ; ρ3 = σi−1βi

New Givens rotation for subdiag elt:
γi+1 = δ/ρ1; σi+1 = βi+1/ρ1

Update of solution(with Wi = ViR
−1
i,i

)
wi = (vi − ρ3wi−2 − ρ2wi−1)/ρ1
xi = xi−1 + γi+1ηwi
||ri ||2 = |σi+1|‖ri−1‖2
check convergence; continue if necessary
η= −σi+1η

end

FIG. 3.6. The unpreconditioned MINRES algorithm.

A similar approach has been followed for FGMRES (SAAD [1993]). In this method,
the update directions for the approximate solution are preconditioned, whereas in
GMRES% the residuals are preconditioned. The latter approach offers more control over
the reduction in the residual, in particular break-down situations can be easily detected
and remedied.

In exact arithmetic GMRES% is very close to the Generalized Conjugate Gradients
method (AXELSSON and VASSILEVSKI [1991]); GMRES%, however, leads to a more
efficient computational scheme.

The GMRES% algorithm can be described by the computational scheme in Fig. 3.7.
A sufficient condition to avoid break-down in this method(‖c‖2 = 0) is that the norm

of the residual at the end of an inner iteration is smaller than the right-hand residual:
‖Az(m) − ri‖2< ‖ri‖2. This can easily be controlled during the inner iteration process.
If stagnation occurs, i.e., no progress at all is made in the inner iteration, then it is
suggested byVAN DER VORSTand VUIK [1994] to do one (or more) steps of the LSQR
method, which guarantees a reduction (although this reduction is often only small).

The idea behind these inner-outer iteration methods is that we explore parts of high-
dimensional Krylov subspaces, hopefully localizing the same approximate solution that
full GMRES would find over the entire subspace, but now at much lower computational
costs. The alternatives for the inner iteration could be either one cycle of GMRES(m),
since then we have also locally an optimal method, or some other iteration scheme,
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x0 is an initial guess;r0 = b−Ax0;
for i = 0,1,2,3, . . .

Let z(m) be the approximate solution ofAz= ri
obtained afterm steps of an iterative method.
c=Az(m) (often available from the iterative method)
for k = 0, . . . , i − 1
α = (ck, c)

c= c− αck
z(m) = z(m) − αuk

ci = c/‖c‖2; ui = z(m)/‖c‖2
xi+1 = xi + (ci , ri )ui
ri+1 = ri − (ci , ri )ci
if xi+1 is accurate enough then quit

end

FIG. 3.7. The GMRES% algorithm.

like for instance Bi-CGSTAB. As has been shown byVAN DER VORST [1992b] there
are various situations for which we may expect stagnation or slow convergence for
GMRES(m). In such cases it does not seem wise to use this method.

On the other hand it may also seem questionable whether a method like Bi-CGSTAB
should lead to success in the inner iteration. This method does not satisfy a useful global
minimization property and large part of its effectiveness comes from the underlying Bi-
CG algorithm, which is based on bi-orthogonality relations. This means that for each
outer iteration the inner iteration process has to build a bi-orthogonality relation again.
It has been shown for the related Conjugate Gradients method that the orthogonality
relations are determined largely by the distribution of the weights at the lower end of
the spectrum and on the isolated eigenvalues at the upper end of the spectrum (VAN DER

SLUIS andVAN DER VORST [1990]). By the nature of these kind of Krylov processes
the largest eigenvalues and their corresponding eigenvector components quickly do en-
ter the process after each restart, and hence it may be expected that much of the work is
lost in rediscovering the same eigenvector components in the error over and over again,
whereas these components may already be so small that further reduction in those di-
rections in the outer iteration is waste of time, since it hardly contributes to a smaller
norm of the residual.

This heuristic way of reasoning may explain in part our rather disappointing experi-
ences with Bi-CGSTAB as the inner iteration process for GMRES%.

DE STURLER and FOKKEMA [1993] propose to prevent the outer search directions
explicitly from being reinvestigated again in the inner process. This is done by keeping
the Krylov subspace that is build in the inner iteration orthogonal with respect to the
Krylov basis vectors generated in the outer iteration. The procedure works as follows.

In the outer iteration process the vectorsc0, . . . , ci−1 build an orthogonal basis for
the Krylov subspace. LetCi be then by i matrix with columnsc0, . . . , ci−1. Then the
inner iteration process at outer iterationi is carried out with the operatorAi instead of
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A, andAi is defined as

(3.21)Ai = (I −CiC
T
i )A.

It is easily verified thatAiz ⊥ c0, . . . , ci−1 for all z, so that the inner iteration process
takes place in a subspace orthogonal to these vectors. The additional costs, per iteration
of the inner iteration process, arei inner products andi vector updates. In order to save
on these costs, one should realize that it is not necessary to orthogonalize with respect to
all previousc-vectors, and that “less effective” directions may be dropped, or combined
with others.DE STURLER and FOKKEMA [1993] make suggestions for such strategies.
Of course, these strategies are only effective in situations where we see too little residual
reducing effect in the inner iteration process in comparison with the outer iterations of
GMRES%.

3.5. Bi-Conjugate Gradients

We may proceed in a similar way as in the symmetric case:

(3.22)AVi = Vi+1Ti+1,i ,

but here we use the matrixWi = [w1,w2, . . . ,wi] for the projection of the system

WT
i (b−Axi)= 0,

or

WT
i AViy −WT

i b= 0.

Using (3.22), we find thatyi satisfies

Ti,iy = ‖r0‖2e1,

and xi = Viy. The resulting method is known as the Bi-Lanczos method LANCZOS

[1952].
We have assumed thatdi �= 0, that iswTi vi �= 0. The generation of the bi-orthogonal

basis breaks down if for somei the value ofwTi vi = 0, this is referred to in literature as
a serious breakdown. Likewise, whenwTi vi ≈ 0, we have a near-breakdown. The way
to get around this difficulty is the so-called Look-ahead strategy, which comes down
to taking a number of successive basis vectors for the Krylov subspace together and to
make them blockwise bi-orthogonal. This has been worked out in detail in PARLETT,
TAYLOR and LIU [1985], FREUND, GUTKNECHT and NACHTIGAL [1993], FREUND

and NACHTIGAL [1990], FREUND and NACHTIGAL [1991].
Another way to avoid breakdown is to restart as soon as a diagonal element gets

small. Of course, this strategy looks surprisingly simple, but one should realise that at
a restart the Krylov subspace, that has been built up so far, is thrown away, and this
destroys the possibility of faster (i.e., superlinear) convergence. Moreover,the restarted
process may suffer from break-down again. If this (rare) event happens then it is usually
more effective to consider a look-ahead variant of the process.
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We can try to construct an LU-decomposition, without pivoting, ofTi,i . If this decom-
position exists, then, similar to CG, it can be updated from iteration to iteration and this
leads to a recursive update of the solution vector, which avoids saving all intermediater

andw vectors. This variant of Bi-Lanczos is usually called Bi-Conjugate Gradients, or
for short Bi-CG (FLETCHER [1976]). In Bi-CG, thedi are chosen such thatvi = ri−1,
similarly to CG.

Of course one can in general not be certain that an LU decomposition (without pivot-
ing) of the tridiagonal matrixTi,i exists, and this may lead also to breakdown (a break-
down of thesecond kind), of the Bi-CG algorithm. Note that this breakdown can be
avoided in the Bi-Lanczos formulation of the iterative solution scheme, e.g., by making
an LU-decomposition with 2 by 2 block diagonal elements (BANK and CHAN [1993]).
It is also avoided in the QMR approach (see Section 3.5.1).

Note that for symmetric matrices Bi-Lanczos generates the same solution as Lanczos,
provided thatw1 = r0, and under the same condition Bi-CG delivers the same iterands
as CG for positive definite symmetric matrices. However, the Bi-orthogonal variants do
so at the cost of two matrix vector operations per iteration step.

For a computational scheme for Bi-CG, without provisions for breakdown, see BAR-
RETT, BERRY, CHAN, DEMMEL, DONATO, DONGARRA, EIJKHOUT, POZO, ROMINE

andVAN DER VORST[1994].
The scheme in Fig. 3.8 may be used for numerical experiments with the Bi-CG

method. In the scheme the equationAx = b is solved with a suitable preconditionerK .
The scheme has no provisions to prevent or cure break down.

As with conjugate gradients, the coefficientsαj andβj , j = 0, . . . , i − 1, build the
matrixTi , as given in formula (3.19). This matrix is, for Bi-CG, in general not similar to
a symmetric matrix. Its eigenvalues can be viewed as Petrov–Galerkin approximations,
with respect to the spaces{r̃j } and{rj }, of eigenvalues ofA. For increasing values ofi
they tend to converge to eigenvalues ofA. The convergence patterns, however, may be
much more complicated and irregular than in the symmetric case.

3.5.1. QMR
The QMR method (FREUND and NACHTIGAL [1991]) relates to Bi-CG in a similar way
as MINRES relates to CG. We start with the recurrence relations for thevj :

AVi = Vi+1Ti+1,i .

We would like to identify thexi , with xi ∈Ki(A; r0), or xi = Viy, for which

‖b−Axi‖2 = ‖b−AViy‖2 = ‖b− Vi+1Ti+1,iy‖2

is minimal, but the problem is thatVi+1 is not orthogonal. However, we pretend that the
columns ofVi+1 are orthogonal. Then

‖b−Axi‖2 = ∥∥Vi+1
(‖r0‖2e1 − Ti+1,iy

)∥∥
2 = ∥∥(‖r0‖2e1 − Ti+1,iy

)∥∥
2,

and in FREUND and NACHTIGAL [1991] it is suggested to solve the projected minimum
norm least squares problem‖(‖r0‖2e1 − Ti+1,iy)‖2. The minimum value of this norm
is called the quasi residual and will be denoted by‖rQi ‖2.
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x0 is an initial guess;r0 = b−Ax0
Choosẽr0 such that(w0, r̃0) �= 0;
usually one chooses̃r0 = r0 or r̃0 =w0
for i = 1,2, . . .

SolveKwi−1 = ri−1
SolveKT w̃i−1 = r̃i−1
ρi−1 =wT

i−1w̃i−1
if ρi−1 = 0 method fails
if i = 1

pi =wi
p̃i = w̃i

else
βi−1 = ρi−1/ρi−2
pi =wi−1 + βi−1pi−1
p̃i = w̃i−1 + βi−1p̃i−1

endif
zi =Api
z̃i =AT p̃i
αi = ρi−1/(p̃

T
i
zi )

xi = xi−1 + αipi
ri = ri−1 − αizi
r̃i = r̃i−1 − αi z̃i
if xi is accurate enoughthen quit

end

FIG. 3.8. Bi-CG algorithm.

Since, in general, the columns ofVi+1 are not orthogonal, the computedxi = Viy

does not solve the minimum residual problem, and therefore this approach is referred to
as a Quasi-minimum residual approach (FREUND and NACHTIGAL [1991]). It can be
shown that the norm of the residualrQMR

i of QMR can be bounded in terms of the quasi
residual

‖rQMR
i ‖2 �

√
i + 1‖rQi ‖2.

The sketched approach leads to the simplest form of the QMR method. A more general
form arises if the least squares problem is replaced by a weighted least squares problem
(FREUND and NACHTIGAL [1991]). No strategies are yet known for optimal weights.

In FREUND and NACHTIGAL [1991] the QMR method is carried out on top of a
look-ahead variant of the bi-orthogonal Lanczos method, which makes the method more
robust. Experiments indicate that although QMR has a much smoother convergence be-
haviour than Bi-CG, it is not essentially faster than Bi-CG. This is confirmed explicitly
by the following relation for the Bi-CG residualrBk and the quasi residualrQk (in exact
arithmetic):

‖rBk ‖2 = ‖rQk ‖2√
1− (‖rQk ‖2/‖rQk−1‖2)2
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(see CULLUM and GREENBAUM [1996], Theorem 4.1). This relation, which is similar
to the relation for GMRES and FOM, shows that when QMR gives a significant reduc-
tion at stepk, then Bi-CG and QMR have arrived at residuals of about the same norm
(provided, of course, that the same set of starting vectors has been used).

It is tempting to compare QMR with GMRES, but this is difficult. GMRES really
minimizes the 2-norm of the residual, but at the cost of increasing the work of keep-
ing all residuals orthogonal and increasing demands for memory space. QMR does not
minimize this norm, but often it has a convergence comparable to GMRES, at a cost of
twice the amount of matrix vector products per iteration step. However, the generation
of the basis vectors in QMR is relatively cheap and the memory requirements are limited
and modest. QMR is preferred to Bi-CG in all cases because of its much smoother con-
vergence behaviour, and also because QMR removes one break-down condition (even
when implemented without look-ahead). Several variants of QMR, or rather Bi-CG,
have been proposed, which increase the effectiveness of this class of methods in certain
circumstances.

ZHOU and WALKER [1994] have shown that the Quasi-Minimum Residual approach
can be followed for other methods, such as CGS and Bi-CGSTAB, as well. The main
idea is that in these methods the approximate solution is updated as

xi+1 = xi + αipi,

and the corresponding residual is updated as

ri+1 = ri − αiApi.

This means thatAPi =WiRi+1, withWi a lower bidiagonal matrix. Thexi are combi-
nations of thepi , so that we can try to find the combinationPiyi for which‖b−APiyi‖2
is minimal. If we insert the expression forAPi , and ignore the fact that theri are not
orthogonal, then we can minimize the norm of the residual in a quasi-minimum least
squares sense, similar to QMR.

3.5.2. CGS
It is well known that the bi-conjugate gradient residual vector can be written asrj (=
ρjvj ) = Pj (A)r0, and, likewise, the so-called shadow residualr̂j (= ρjwj ) can be
written asr̂j = Pj (A

T )r̂0. Because of the bi-orthogonality relation we have that

(rj , r̂i )= (Pj (A)r0,Pi(A
T )r̂0)

= (Pi(A)Pj (A)r0, r̂0)= 0,

for i < j . The iteration parameters for bi-conjugate gradients are computed from inner-
products like the above. SONNEVELD [1989] observed that we can also construct the
vectorsr̃j = P 2

j (A)r0, using only the latter form of the innerproduct for recovering the
bi-conjugate gradients parameters (which implicitly define the polynomialPj ). By do-
ing so, the computation of the vectorsr̂j can be avoided and so can the multiplication
by the matrixAT .

The resulting CGS (SONNEVELD [1989]) method works in general very well for
many unsymmetric linear problems. It converges often much faster than Bi-CG (about
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x0 is an initial guess;r0 = b−Ax0;
r̃0 is an arbitrary vector, such that
(r0, r̃0) �= 0,
e.g.,r̃0 = r0;ρ0 = (r0, r̃0);
β−1 = ρ0;p−1 = q0 = 0;
for i = 0,1,2, . . .

ui = ri + βi−1qi ;
pi = ui + βi−1(qi + βi−1pi−1);
solvep̂ fromKp̂ = pi ;
v̂ =Ap̂;
αi = ρi

(r̃0,v̂)
;

qi+1 = ui − αi v̂;
solveû fromKû= ui + qi+1
xi+1 = xi + αi û;
if xi+1 is accurate enough then quit;
ri+1 = ri − αiAû;
ρi+1 = (r̃0, ri+1);
if ρi+1 = 0 then method fails to converge!;
βi = ρi+1

ρi
;

end

FIG. 3.9. CGS algorithm.

twice as fast in some cases) and has the advantage that fewer vectors are stored than
in GMRES. These three methods have been compared in many studies (see, e.g.,
RADICATI DI BROZOLO and ROBERT [1989], BRUSSINOand SONNAD [1989], POM-
MERELL and FICHTNER [1991], NACHTIGAL , REDDY and TREFETHEN[1992]).

CGS, however, usually shows a very irregular convergence behaviour. This behav-
iour can even lead to cancellation and a “spoiled” solution (VAN DER VORST[1992a]);
see also Section 3.6. FREUND [1993] suggested a squared variant of QMR, which was
called TFQMR. His experiments show that TFQMR is not necessarily faster than CGS,
but it has certainly a much smoother convergence behavior.

The scheme in Fig. 3.9 represents the CGS process for the solution ofAx = b, with
a given preconditionerK .

In exact arithmetic, theαj andβj are the same constants as those generated by BiCG.
Therefore, they can be used to compute the Petrov–Galerkin approximations for eigen-
values ofA.

CGS may be attractive in the context of Newton iterations for nonlinear systems,
where the new iteration requires the solution of a linear system with the Jacobian of the
nonlinear system.

3.5.3. Bi-CGSTAB
Bi-CGSTAB (VAN DER VORST[1992a]) is based on the following observation. Instead
of squaring the Bi-CG iteration polynomial, as has been done in CGS, we can construct
other iteration methods, by whichxi are generated so thatri = P̃i(A)Pi(A)r0 with other
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x0 is an initial guess;r0 = b−Ax0;
r̄0 is an arbitrary vector, such that

(r̄0, r0) �= 0, e.g.,r̄0 = r0;
ρ−1 = α−1 = ω−1 = 1;
v−1 = p−1 = 0;
for i = 0,1,2, . . .

ρi = (r̄0, ri );βi−1 = (ρi/ρi−1)(αi−1/ωi−1);
pi = ri + βi−1(pi−1 −ωi−1vi−1);
Solvep̂ fromKp̂ = pi ;
vi =Ap̂;
αi = ρi/(r̄0, vi);
s = ri − αivi ;
if ‖s‖ small enoughthen
xi+1 = xi + αip̂; quit;

Solvez fromKz= s;
t =Az;
ωi = (t, s)/(t, t);
xi+1 = xi + αip̂+ωiz;
if xi+1 is accurate enoughthen quit;
ri+1 = s −ωit ;

end

FIG. 3.10. The Bi-CGSTAB algorithm.

ith degree polynomials̃P . An obvious possibility is to take for̃Pj a polynomial of the
form

(3.23)Qi(x)= (1−ω1x)(1−ω2x) . . . (1−ωix),

and to select suitable constantsωj . This expression leads to an almost trivial recurrence
relation for theQi .

In Bi-CGSTABωj in thej th iteration step is chosen as to minimizerj , with respect
to ωj , for residuals that can be written asrj =Qj(A)Pj (A)r0.

The preconditioned Bi-CGSTAB algorithm for solving the linear systemAx = b,
with preconditioningK reads as in Fig. 3.10.

The matrixK in this scheme represents the preconditioning matrix and the way of
preconditioning (VAN DER VORST [1992a]). The above scheme in fact carries out the
Bi-CGSTAB procedure for the explicitly postconditioned linear system

AK−1y = b,

but the vectorsyi and the residual have been backtransformed to the vectorsxi andri
corresponding to the original systemAx = b. Compared to CGS two extra innerprod-
ucts need to be calculated.

In exact arithmetic, theαj andβj have the same values as those generated by Bi-
CG and CGS. Hence, they can be used to extract eigenvalue approximations for the
eigenvalues ofA (see Bi-CG).
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Bi-CGSTAB can be viewed as the product of Bi-CG and GMRES(1). Of course,
other product methods can be formulated as well. GUTKNECHT [1993] has proposed
BiCGSTAB2, which is constructed as the product of Bi-CG and GMRES(2). A more
general concept was described by SLEIJPEN and FOKKEMA [1993], under the name
Bi-CGSTAB(").

3.5.4. The Bi-CGSTAB(") methods
In BiCGSTAB, the factorQk has only real roots by construction. It is well-known that
optimal reduction polynomials for matrices with complex eigenvalues may have com-
plex roots as well. If, for instance, the matrixA is real skew-symmetric, then GCR(1)
stagnates forever, whereas a method like GCR(2) (or GMRES(2)), in which we min-
imize over two combined successive search directions, may lead to convergence, and
this is mainly due to the fact that then complex eigenvalue components in the error can
be effectively reduced.

This point of view was taken in GUTKNECHT [1993] for the construction of the
BiCGSTAB2 method. SLEIJPEN and FOKKEMA [1993] generalized this idea to the
combination of Bi-CG with GCR("), which leads to BI-CGSTAB("). In this approach
one carries out" successive steps with Bi-CG, and one uses the additional" matrix
vector products for the construction of a GCR(") factor.

There are variants of this approach in which more stable bases for the Krylov sub-
spaces are generated (SLEIJPEN, VAN DER VORSTand FOKKEMA [1994]), but for low
values of" a standard basis satisfies, together with a minimum norm solution obtained
through solving the associated normal equations (which requires the solution of an"

by " system. In most cases BiCGSTAB(2) will already give nice results for problems
where BiCGSTAB fails.

Bi-CGSTAB(2) can be represented by the scheme in Fig. 3.11.
For the GCR(2) part we note that the 5 inner products can be taken together, in

order to reduce start-up times for their global assembling. This gives the method
BiCGSTAB(2) a (slight) advantage over BiCGSTAB. Furthermore we note that the up-
dates in the GCR(2) may lead to more efficient code than for BiCGSTAB, since some
of them can be combined.

3.6. Accurate updating techniques

Bi-CG and methods derived from Bi-CG can display rather irregular convergence be-
haviour. By irregular convergence we refer to the situation where successive residual
vectors in the iterative process differ in orders of magnitude in norm, and some of these
residuals may be even much bigger in norm than the starting residual. In particular the
CGS method suffers from this phenomenon. We will show why this is a point of con-
cern, even if eventually the (updated) residual satisfies a given tolerance.

In the Bi-CG algorithms, as well as in CG, we see in the algorithm typically a state-
ment for the update ofxi , like

(3.24)xi+1 = xi +wi
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x0 is an initial guess;r0 = b−Ax0;
r̂0 is an arbitrary vector, such that(r, r̂0) �= 0,

e.g.,r̂0 = r;
ρ0 = 1;u= 0;α = 0;ω2 = 1;
for i = 0,2,4,6, . . .

ρ0 = −ω2ρ0
even BiCG step: ρ1 = (r̂0, ri );β = αρ1/ρ0;ρ0 = ρ1

u= ri − βu;
v =Au

γ = (v, r̂0);α = ρ0/γ ;
r = ri − αv;
s =Ar

x = xi + αu;
odd BiCG step: ρ1 = (r̂0, s);β = αρ1/ρ0;ρ0 = ρ1

v = s − βv;
w =Av

γ = (w, r̂0);α = ρ0/γ ;
u= r − βu

r = r − αv

s = s − αw

t =As

GCR(2)-part: ω1 = (r, s);µ= (s, s);ν = (s, t); τ = (t, t);
ω2 = (r, t); τ = τ − ν2/µ;ω2 = (ω2 − νω1/µ)/τ ;
ω1 = (ω1 − νω2)/µ

xi+2 = x +ω1r +ω2s + αu

ri+2 = r −ω1s −ω2t

if xi+2 accurate enoughthen quit
u= u−ω1v−ω2w

end

FIG. 3.11. The Bi-CGSTAB(2) algorithm.

and a statement for the update ofri , of the form

(3.25)ri+1 = ri −Awi.

We see that, in exact arithmetic, the relationri+1 = b−Axi+1 holds, just as expected.
A further inspection of these algorithms reveals thatxi is not used at other places in the
basic algorithm, whereas theri is also used for the computation of the search direction
and for iteration parameters. The important consequence of this is that rounding errors
introduced by the actual evaluation ofri+1 through Eq. (3.25) will influence the further
iteration process, but rounding errors in the evaluation ofxi+1 by (3.24) will have no
effect on the iteration. This would not be much of a problem if the rounding error

δri+1 := f l(ri −Awi)− (ri −Awi)

would match the rounding error

δxi+1 := f l(xi +wi)− (xi +wi),
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in the sense thatδri+1 = −Aδxi+1, since that would keep the desired relationri+1 =
b − Axi+1 intact. However, it will be obvious that this is idle hope, and the question
remains how serious a possible deviation betweenrj andb−Axj can be.

Of course, we make rounding errors in (3.24) and (3.25) through the vector addition,
but usually these errors will be small in comparison with the rounding errors introduced
in the multiplication ofwi with A. Therefore, we will here consider only the effect of
these errors. In this case, we can write the computedri+1 as

(3.26)ri+1 = rj −Awi −∆Aiwi,

where∆A is ann× n matrix for which|∆Ai | 6 nAξ̄ |A|: nA is the maximum number
of nonzero matrix entries per row ofA, |B| := (|bij |) if B = (bij ), ξ̄ is the relative
machine precision, the inequality6 refers to element-wise�.

It then simply follows that

rk − (b−Axk)=
k∑
j=1

∆Ajwj

(3.27)=
k∑
j=1

∆Aj (ej−1 − ej ),

ej is the approximation error in thej th approximation:ej := x − xj . Hence,∣∣‖rk‖ − ‖b−Axk‖
∣∣� 2knAξ̄

∥∥|A|∥∥max
j

‖ej‖

(3.28)� 2knAξ̄
∥∥|A|∥∥‖A−1‖max

j
‖rj‖.

Except for the factork, the first upper–bound appears to be rather sharp. We see that
an approximation with a large approximation error (and hence a large residual) may
lead to inaccurate results in the remaining iteration process. Such large local approxi-
mation errors are typical for CGS, andVAN DER VORST[1992a] describes an example
of the resulting numerical inaccuracy. If there are a number of approximations with
comparable large approximation errors, then their multiplicity may replace the factork,
otherwise it will be only the largest approximation error that makes up virtually all of
the bound for the deviation.

For more details we refer to SLEIJPENandVAN DER VORST[1996], SLEIJPEN, VAN

DER VORSTand FOKKEMA [1994].
It is of course important to maintain a reasonable correspondence betweenrk and

b −Axk , and the easiest way to do this would be to replace the vectorrk by b −Axk .
However, the vectorsrk steer the entire iterative process and their relation defines the
projected matrixTi,i . If we replace these vectors then we ignore the rounding errors to
these vectors and it will be clear that the iteration process cannot compensate for these
rounding errors. These rounding errors may be significant at iteration steps where the
update torj is relatively large and the above sketched naive replacement strategy may
then not be expected to work well. Indeed, if we replaceri+1 in CGS byb−Axi , instead
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z= x0; x̂ = 0; rmin = ‖r0‖2;
. . .

for j = 0,2, . . . until convergence
. . .

x̂ = x̂ +wj (instead of update ofxi )
if ‖rj‖2< rmin (i.e., group update)
z= z+ x̂

x̂ = 0
rj = b−Az

rmin = ‖rj‖2
end if

end for

FIG. 3.12. The groupwise update strategy.

of updating it fromri , then we observe stagnation in the convergence in many important
situations. This means that we have to be more careful.

Neumaier (see SLEIJPEN andVAN DER VORST [1996] and references therein) sug-
gested to replacerj by b − Axj in CGS only at places where‖rj‖2 is smaller than
the smallest norm of the residual in the previous iteration history and to carry out a
groupwise update for the iterates in between. Schematically, the groupwise update and
residual replacement strategy of Neumaier can be described as in Fig. 3.12.

This scheme was further analysed and refined, in particular with a flying restart strat-
egy, in SLEIJPENandVAN DER VORST[1996]. Note that the errors in the evaluation of
wj itself are not so important: it is the different treatment ofwj in the updating ofxj
and ofrj that causes the two vectors to loose their wanted relation. In this respect we
may consider the vectorswj as exact quantities.

At a replacement step we perturb the recurrence relation for the basis vectors of the
Krylov subspace and we want these errors to be as small as possible. The updateswj
usually vary widely in norm in various stages of the iteration process, for instance in
an early phase these norms may be larger than‖r0‖2, whereas they are small in the fi-
nal phase of the iteration process. Specially in a phase between two successive smallest
values of‖rj‖2, the norms of the updates may be a good deal larger than in the next in-
terval between two smallest residual norms. Grouping the updates in groups of updates
avoids that rounding errors within one group spoil the result for another group. More
specifically, if we denote the sum ofwj ’s for the groups bySi , and the total sum of
updates byS, then groupwise updating leads to errors of the magnitude ofξ |Si |, which
can be much smaller thanξ |S|.

Now we have to determine how much we can perturb the recurrence relations for the
Lanczos vectorsrj . This has been studied in much detail in TONG and YE [2000]. It
has been observed by many authors that the driving recurrencesrj = rj−1−αj−1Aqj−1
andqj = rj +βj−1qj−1 are locally satisfied almost to machine precision and this is one
of the main properties behind the convergence of the computed residuals (GREENBAUM

[1997a], TONG and YE [2000], SLEIJPENandVAN DER VORST[1996]). TONG and YE

[2000] observed that these convergence is maintained even when we perturb the recur-
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Input: an initial approximationx = x0;
a residual replacement thresholdε = √

ξ ; an estimate ofN‖A‖;
Setr0 = b−Ax0; x̂0 = 0; dinit = d0 = ξ(‖r0‖ +N‖A‖‖x0‖),
for j = 1,2, . . . , until convergence

Generate a correction vectorqj by the Iterative Method;
x̂j = x̂j−1 + qj
rj = rj−1 −Aqj
dj = dj−1 + ξN‖A‖‖x̂j‖ + ξ‖rj‖
if dj−1 � ε‖rj−1‖, dj > ε‖rj‖ anddj > 1.1dinit
z= z+ x̂j
x̂j = 0
rj = b−Az

dinit = dj = ξ(‖rj‖ +N‖A‖‖z‖)
end if

end for
z= z+ x̂j

FIG. 3.13. The reliable updating strategy.

rence relations with perturbations that are significantly greater than machine precision,
say of the order of the square root of the machine precisionξ , in a relative sense.

The idea, presented inVAN DER VORSTand YE [2000], is to compute an upper bound
for the deviation inrj , with respect tob−Axj , in finite precision, and to replacerj by
b−Axj as soon as this upper bound reaches the relative level of

√
ξ . This upper bound

is denoted bydj and it is computed from the recurrence

dj = dj−1 + ξN‖A‖‖x̂j‖ + ξ‖rj‖,
with N the maximal number of nonzero entries per row ofA.

The replacement strategy for reliable updating is then implemented schematically as
in Fig. 3.13.

REMARK. For this reliable implementation, we need to put a value forN (the maximal
number of nonzero entries per row ofA) and‖A‖. The number of nonzero entries may,
in applications, vary from row to row, and selecting the maximum number may not be
very realistic. In our experience with sparse matrices, the simple choiceN = 1 still leads
to a practical estimatedn for ‖δn‖. For‖A‖, we suggest to take simply‖A‖∞.

In any case, we note that precise values are not essential, because the replacement
thresholdε can be adjusted. We also need to choose thisε. Extensive numerical testing
(seeVAN DER VORST and YE [2000]) suggests thatε ∼ √

ξ is a practical criterion.
However, there are examples where this choice leads to stagnating residuals at some
unacceptable level. In such cases, choosing a smallerε will regain the convergence to
O(ξ).

The presented implementation requires one extra matrix-vector multiplication when
a replacement is carried out. Since only a few steps with replacement are required, this
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extra cost is marginal relative to the other costs. However, some savings can be made
by selecting a slightly smallerε and carrying out residual replacement at the step next
to the one for which the residual replacement criterion is satisfied (cf. SLEIJPEN and
VAN DER VORST [1996]). It also requires one extra vector storage for the groupwise
solution update (forz) and computation of a vector norm‖x̂n‖ for the update ofdn
(‖rn‖ is usually computed in the algorithm for stopping criteria).

4. Preconditioning

4.1. Introduction

There are many occasions and applications where iterative methods fail to converge or
converge very slowly. The usual remedy is to apply a preconditioner, that is instead of
Ax = b, one solvesKAx =Kb or a spectrally equivalent system, for example,AKy =
b. The general problem of finding an efficient preconditioner, is to identify a linear
operatorK (thepreconditioner) with the properties that:

1. K is a good approximation toA in some sense.
2. The cost of the construction ofK is not prohibitive.
3. The systemKy = z is much easier to solve than the original system.

By efficient, we mean that the iteration method converges much faster, in terms of CPU
time, for the preconditioned system.

The choice ofK varies from purely “black box” algebraic techniques which can be
applied to general matrices to “problem dependent” preconditioners which exploit spe-
cial features of a particular problem class. Although problem dependent preconditioners
can be very powerful, there is still a practical need for efficient preconditioning tech-
niques for large classes of problems. We refer the reader to AXELSSON[1994], CHAN

andVAN DER VORST[1997], SAAD [1996] for further discussions on this. In this sec-
tion, we will not go in details about preconditioning but rather give a sketch of important
ideas for the construction of parallel preconditioners. For more details on implementa-
tion for high performance computers, see DONGARRA, DUFF, SORENSENand VAN

DER VORST[1998].
Originally, preconditioners were based on direct solution methods in which part of the

computation is skipped. This leads to the notion ofIncomplete LU(or ILU) factorization
(MEIJERINK andVAN DER VORST[1977], AXELSSON[1994], SAAD [1996]).

4.2. Incomplete LU factorizations

Standard Gaussian elimination is equivalent to factoring the matrixA asA= LU , where
L is lower triangular andU is upper triangular. In actual computations these factors
are explicitly constructed. The main problem in sparse matrix computations is that the
factors ofA are often a good deal less sparse thanA, which makes solution expensive,
The basic idea in the point ILU preconditioner is to modify Gaussian elimination to
allow fill-ins at only a restricted set of positions in the LU factors. Let the allowable
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fill-in positions be given by the index setS, i.e.,

li,j =0 if j > i or (i, j) /∈ S,
(4.1)ui,j=0 if i > j or (i, j) /∈ S.

A commonly used strategy is to defineS by:

(4.2)S = {
(i, j) | ai,j �= 0

}
.

That is, the only nonzeros allowed in theLU factors are those for which the corre-
sponding entries inA are nonzero. Before we proceed with different strategies for the
construction of effective incomplete factorizations we consider the question whether
these factorizations exist. It can be shown that they exist for so-calledM-matrices.18

The theory ofM-matrices for iterative methods is very well covered by VARGA

[1962]. These matrices occur frequently after discretisation of PDE’s, and forM-
matrices one can identify all sorts of approximating matricesK for which the basic
splitting leads to a convergent iteration (3.1). For preconditioners for Krylov subspace
methods it is not important that the basic iteration converges; primarily we want reduced
condition numbers and/or better eigenvalue distributions for the preconditioned matri-
ces. These latter properties are very difficult to prove. In fact, some of these effects have
been proved only for very special model problems (VAN DER VORST and SLEIJPEN

[1993], VAN DER VORST[1982]).
We now consider the actual construction of the incomplete decomposition. Let the

preconditionerM be defined by the product of the incompleteLU factors, i.e.,M =
LU . ForM to be a good preconditioner, it must be a good approximation toA in some
measure. A typical strategy is to require the entries ofM to match those ofA on the
setS:

(4.3)mi,j = ai,j if (i, j) ∈ S.
Even though the conditions (4.1) and (4.3) together are sufficient (for certain classes of
matrices) to determine the nonzero entries ofL andU directly, it is more natural and
simpler to compute these entries based on a simple modification of the Gaussian elimi-
nation algorithm; see Fig. 4.1. The main difference from the usual Gaussian elimination
algorithm is in the inner-mostj -loop where an update toai,j is computed only if it is
allowed by the constraint setS.

After the completion of the algorithm, the incompleteLU factors are stored in the
corresponding lower and upper triangular parts of the arrayA. It can be shown that the
computedLU factors satisfy (4.3).

The incomplete factors̃L and Ũ define the preconditionerK = (L̃Ũ )−1. In the
context of an iterative solver, this means that we have to evaluate expressions like
z = (L̃Ũ )−1y for any given vectory. This is done in two steps: first obtainw from
the solution of̃Lw = y and then computez from Ũz= w. Straightforward implemen-
tation of these processes leads to recursions, for which vector and parallel computers
are not ideally suited. This sort of observation has led to reformulations of the precon-
ditioner, for example, with reordering techniques or with blocking techniques. It has

18The nonsingular matrixA is anM-matrix if ai,j � 0, for i �= j , andA−1 � 0.
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ILU for ann by n matrixA (cf. AXELSSON[1994]):
for k = 1,2, . . . , n− 1

d1/ak,k
for i = k + 1, k + 2, . . . , n

if (i, k) ∈ S
e= dai,k;ai,k = e

for j = k + 1, . . . , n
if (i, j) ∈ S and(k, j) ∈ S
ai,j = ai,j − eak,j

end if
end j

end if
end i

end k

FIG. 4.1. ILU for a general matrixA.

also led to different types of preconditioners, including diagonal scaling, polynomial
preconditioning, and truncated Neumann series. These approaches may be useful in
certain circumstances, but they tend to increase the computational complexity, because
they often require more iteration steps or make each iteration step more expensive. Di-
agonal scaling can be done explicitly, without any further complications for parallel
processing. This can be done before and in addition to the construction of another pre-
conditioning.

4.3. An example of incomplete decompositions

We shall illustrate the above sketched process for a popular preconditioner for sparse
positive definite symmetric matrices, namely, theIncomplete Cholesky factorization
(GOLUB and VAN LOAN [1996], MEIJERINK and VAN DER VORST [1977, 1981],
VARGA [1960]) with no fill-in. We will denote this preconditioner as IC(0). CG in
combination with IC(0) is often referred to as ICCG(0). We shall consider IC(0) for
the matrix with five nonzero diagonals, that arises after the 5-point finite-difference dis-
cretization of the two-dimensional Poisson equation over a rectangular region, using a
grid of dimensionsnx by ny . If the entries of the three nonzero diagonals in the upper
triangular part ofA are stored in three arraysa(·,1) for the main diagonal,a(·,2) for the
first co-diagonal, anda(·,3) for thenx th co-diagonal, then theith row of the symmetric
matrixA can be represented as in (4.4).

(4.4)A=

. . .

. . .
. . .

. . .
. . .

ai−nx,3 ai−1,2 ai,1 ai,2 ai,3
. . .

. . .
. . .

. . .
. . .

 .
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This corresponds to the unknowns over a grid as shown below:

. . . . . .

. . . . . .

↓
. . . → . ← . .

↑
. . . . . .

. . . . . .

. . . . . .

If we writeA as

A= LA + diag(A)+LA
T ,

in whichLA is the strictly lower triangular part ofA, then the IC(0)-preconditioner can
be written as

K = (LA +D)D−1(LTA +D).

This relation only holds if there are no corrections to off-diagonal nonzero entries in
the incomplete elimination process forA and if we ignore all fill-in outside the nonzero
structure ofA. It is easy to do this for the 5-point Laplacian. For other matrices, we
can force the relation to hold only if we ignore also Gaussian elimination corrections
at places whereA has nonzero entries. This may decrease the effectiveness of the
preconditioner, because we then neglect more operations in the Gaussian elimination
process.

For IC(0), the entriesdi of the diagonal matrixD can be computed from the relation

diag(K)= diag(A).

For the 5-diagonalA, this leads to the following relations for thedi :

(4.5)di = ai,1 − a2
i−1,2/di−1 − a2

i−nx,3/di−nx .
Obviously this is a recursion in both directions over the grid. This aspect will be dis-
cussed later when considering the application of the preconditioner in the context of
parallel and vector processing.

The so-calledmodified incomplete decompositions(DUPONT, KENDALL and RACH-
FORD JR [1968], GUSTAFSSON[1978]) follow from the requirement that

(4.6)rowsum(K)= rowsum(A)+ ch2.

The termch2 is for grid-oriented problems with mesh-sizeh. Although in many appli-
cations this term is skipped (that is, one often takesc = 0), this may lead to ineffective
preconditioning or even break-down of the preconditioner, see EIJKHOUT [1992]. In
our context, the rowsum requirement in (4.6) amounts to an additional correction to the
diagonal entriesdi , compared to those computed in (4.5).

For the solution of systemsKw = r , given by

K−1r = (LTA +D)−1D(LA +D)−1r,
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it will almost never be advantageous to determine the matrices(LTA +D)−1 and(LA +
D)−1 explicitly, since these matrices are usually dense triangular matrices. Instead, for
the computation of, say,y = (LA +D)−1r , y is solved from the linear lower triangular
system(LA +D)y = r . This step then leads typically to relations for the entriesyi , of
the form

yi = (ri − ai−1,2yi−1 − ai−nx,3yi−nx )/di,
which again represents a recursion in both directions over the grid, of the same form as
the recursion for thedi .

For differently structured matrices, we can also perform incompleteLU factoriza-
tions. For efficient implementation, often many of the ideas, shown here for Incomplete
Cholesky factorizations, apply. For more general matrices with the same nonzero struc-
ture as the 5-point Laplacian, some other well known approximations lead to precisely
the same type of recurrence relations as for IncompleteLU and Incomplete Cholesky:
for example, Gauss–Seidel, SOR, SSOR (HAGEMAN and YOUNG [1981]), and SIP
(STONE [1968]). Hence these methods can often be made vectorizable or parallel in the
same way as for Incomplete Cholesky preconditioning.

Since vector and parallel computers do not lend themselves well to recursions in a
straightforward manner, the recursions just discussed may seriously degrade the effect
of preconditioning on a vector or parallel computer, if carried out in the form given
above. This sort of observation has led to different types of preconditioners, includ-
ing diagonal scaling, polynomial preconditioning, and truncated Neumann series. Such
approaches may be useful in certain circumstances, but they tend to increase the compu-
tational complexity (by requiring more iteration steps or by making each iteration step
more expensive). On the other hand, various techniques have been proposed to vector-
ize the recursions, mainly based on reordering the unknowns or changing the order of
computation. For regular grids, such approaches lead to highly vectorizable code for
the standard incomplete factorizations (and consequently also for Gauss-Seidel, SOR,
SSOR, and SIP). If our goal is to minimize computing time, there may thus be a trade-
off between added complexity and increased vectorization. However, before discussing
these techniques, we shall present a method of reducing the computational complexity
of preconditioning.

4.4. Reordering the unknowns

A standard trick for exploiting parallelism is to select all unknowns that have no direct
relationship with each other and to number them first. For the 5-point finite-difference
discretization over rectangular grids, this approach is known as ared-black ordering. For
elliptic PDEs, this leads to very parallel preconditioners. The performance of the pre-
conditioning step is as high as the performance of the matrix-vector product. However,
changing the order of the unknowns leads in general to a different preconditioner. DUFF

and MEURANT [1989] report on experiments that show that most reordering schemes
(for example, the red-black ordering) lead to a considerable increase in iteration steps
(and hence in computing time) compared with the standard lexicographical ordering.
For the red-black ordering associated with the discretized Poisson equation, it can be
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shown that the condition number of the preconditioned system is only about one quar-
ter that of the unpreconditioned system for ILU, MILU and SSOR, with no asymptotic
improvement as the gridsizeh tends to zero (KUO and CHAN [1990]).

One way to obtain a better balance between parallelism and fast convergence, is to
use more colours (DOI [1991]). In principle, since there is not necessarily any inde-
pendence between different colours, using more colours decreases the parallelism but
increases the global dependence and hence the convergence. In DOI and HOSHI [1992],
up to 75 colours are used for a 762 grid on the NEC SX-3/14 resulting in a 2 Gflop/s per-
formance, which is much better than for the wavefront ordering. With this large number
of colours the speed of convergence for the preconditioned process is virtually the same
as with a lexicographical ordering (DOI [1991]).

The concept ofmulti-colouring has been generalized to unstructured problems by
JONESand PLASSMANN [1994]. They propose effective heuristics for the identification
of large independent subblocks of a given matrix. For problems large enough to get
sufficient parallelism in these subblocks, their approach leads to impressive speedups
compared to the natural ordering on a single processor.

For a discussion of these techniques see DONGARRA, DUFF, SORENSENandVAN

DER VORST[1998].

4.5. Hybrid techniques

In the classical incomplete decompositions one ignores fill-in right from the start of the
decomposition process. However, it might be a good idea to delay this until the matrix
becomes too dense. This leads to a hybrid combination of direct and iterative techniques.
One of such approaches has been described in BOMHOF andVAN DER VORST[2000];
we will describe it here in some detail.

We first permute the given matrix of the linear systemAx = b to a doubly bordered
block diagonal form:

(4.7)Ã= PT AP =



A00 0 · · · 0 A0m

0 A11
. . .

... A1m
...

. . .
. . . 0

...

0 · · · 0 Am−1m−1
...

Am0 Am1 · · · · · · Amm

 .
Of course, the parallelism in the eventual method depends on the value ofm, and some
problems lend themselves more to this than others. Many circuit simulation problems
can be rewritten in an effective way, as a circuit is often composed of components that
are only locally coupled to others.

We permute the right-hand sideb as well tob̃= PT b, which leads to the system

(4.8)Ãx̃ = b̃,

with x = Px.
The parts of̃b andx̃ that correspond to the block ordering, will be denoted byb̃i and

x̃i . The first step in the (parallelizable) algorithm will be to eliminate the unknown parts
x̃0, . . . , x̃m−1, which is done by the algorithm in Fig. 4.2.
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Parallel_for i = 0,1, . . . ,m− 1
DecomposeAii : Aii = LiiUii

Lmi =AmiU
−1
ii

Uim = L−1
ii
Aim

yi = L−1
ii
b̃i

Si = LmiUim
zi = Lmiyi

end
S =Amm −∑m−1

i=0 Si

ym = b̃m −∑m−1
i=0 zi

SolveSxm = ym
Parallel_for i = 0,1, . . . ,m− 1

xi =U−1
ii
(yi −Uimxm)

end

FIG. 4.2. Parallel elimination.

Note thatS in Fig. 4.2 denotes the Schur complement after the elimination of the
blocks 0,1, . . . ,m−1. In many relevant situations, direct solution of the reduced system
Sxm = ym requires the dominating part of the total computational costs, and this is
where we bring in the iterative component of the algorithm.

The next step is to construct a preconditioner for the reduced system. This is based on
discarding small elements inS. The elements larger than some threshold value define
the preconditionerC:

(4.9)cij =
{
sij if |sij > t |sii | or |sij |> t |sjj |,
0 elsewhere

with a parameter 0� t < 1. In the experiments, reported in BOMHOF and VAN DER

VORST[2000] the valuet = 0.02 turned out to be satisfactory, but this may need some
experimentation for specific problems.

When we takeC as the preconditioner, then we have to solve systems likeCv = w,
and this requires decomposition ofC. In order to prevent too much fill-in, it is sug-
gested to reorderC with a minimum degree ordering. The systemSxm = ym is then
solved with, for instance, GMRES with preconditionerC. For the examples described
in BOMHOF andVAN DER VORST[2000] it turns out that the convergence of GMRES
was not very sensitive to the choice oft . The preconditioned iterative solution approach
for the reduced system offers also opportunities for parallelism, although in BOMHOF

and VAN DER VORST [2000] it is shown that even in serial mode the iterative solu-
tion (too sufficiently high precision) is often more efficient than direct solution of the
reduced system.

In BOMHOF andVAN DER VORST[2000] heuristics are described for the decision on
when the switch from direct to iterative should take place. These heuristics are based on
mild assumptions on the speed of convergence of GMRES. The paper also reports on
a number of experiments for linear systems, not only from circuit simulation, but also
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for some matrix problems taken from Matrix Market.19 These experiments indicate that
attractive savings in computational costs can be achieved, even in serial computation
mode.

5. Example

In this section we compare the computational performance of the direct solver PAR-
DISO and the iterative method BiCGSTAB(").20 We have applied these methods for
systems that arise in a Newton iteration (for the update with the Jacobian) of nonlin-
ear systems. These nonlinear systems are related to the simulation of the behavior of a
3D MOS transistor with a doping profile and a mesh as is shown in Figs. 5.1 and 5.2,
respectively.

The sizes of the various meshes for the comparisons are shown in Table 5.1. The
systems were solved for a typical computation of a IdVg curve using the coupled Pois-
son, electron, and hole equations. The computations were carried out on a Compaq
AlphaServer ES40, 4x667 MHz EV6.7, with 4GB of memory. The results are displayed

FIG. 5.1. 3D doping profile (red n+, blue p+) and geometry of the MOS transistor.

TABLE 5.1
Name and size of meshes used

Mesh name Number of vertices

2D1 3836
2D2 37429
3D1 42302

TABLE 5.2
Name of mesh and Wall-clock time in seconds

Mesh BiCGstab(") PARDISO

2D1 170.79 171.76
2D2 9768 3677
3D1 9219 34512

19Collection of testmatrices available at ftp://ftp.cise.ufl.edu/cis/tech-reports/tr98/tr98-016.ps.
20The data and description for this example were provided by D. Fokkema, Philips Semiconductors, Nij-

megen, The Netherlands.

ftp://ftp.cise.ufl.edu/cis/tech-reports/tr98/tr98-016.ps


Solution of linear systems 817

FIG. 5.2. The 3D discretization contains over 40’000 grid points.

in Table 5.2. This kind of performance behavior is typical for many problems in device
simulation and the following observations can be made. For the small 2D1 mesh iter-
ative and direct perform comparable, while for the larger 2D2 mesh the direct method
is faster. For the 3D1 problem the iterative method has usually the advantage over the
direct method.
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Abstract
In recent years, reduced-order modeling techniques have proven to be power-

ful tools for various problems in circuit simulation. For example, today, reduction
techniques are routinely used to replace the large RCL subcircuits that model the
interconnect or the pin package of VLSI circuits by models of much smaller dimen-
sion. In this chapter, we review the reduced-order modeling techniques that are most
widely employed in VLSI circuit simulation.

1. Introduction to the problem of model reduction

Roughly speaking, the problem of model reduction is to replace a given mathematical
model of a system or process by a model that is much “smaller” than the original model,
but still describes – at least approximately – certain aspects of the system or process.
Clearly, model reduction involves a number of interesting issues. First and foremost
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is the issue of selecting appropriate approximation schemes that allow the definition
of suitable reduced-order models. In addition, it is often important that the reduced-
order model preserves certain crucial properties of the original system, such as stabil-
ity or passivity. Other issues include the characterization of the quality of the models,
the extraction of the data from the original model that is needed to actually generate
the reduced-order models, and the efficient and numerically stable computation of the
models.

In this paper, we discuss reduced-order modeling techniques for large-scale linear
dynamical systems, especially those that arise in the simulation of electronic circuits
and of microelectromechanical systems.

We begin with a brief description of reduced-order modeling problems in circuit sim-
ulation. Electronic circuits are usually modeled as networks whose branches correspond
to the circuit elements and whose nodes correspond to the interconnections of the circuit
elements. Such networks are characterized by three types of equations. TheKirchhoff ’s
current law (KCL) states that, for each node of the network, the currents flowing in
and out of that node sum up to zero. TheKirchhoff ’s voltage law(KVL) states that, for
each closed loop of the network, the voltage drops along that loop sum up to zero. The
branch constitutive relations(BCRs) are equations that characterize the actual circuit
elements. For example, the BCR of a linear resistor is Ohm’s law. The BCRs are linear
equations for simple devices, such as linear resistors, capacitors, and inductors, and they
are nonlinear equations for more complex devices, such as diodes and transistors. Fur-
thermore, in general, the BCRs involve time-derivatives of the unknowns, and thus they
are ordinary differential equations. On the other hand, the KCLs and KVLs are linear
algebraic equations that only depend on the topology of the circuit.

The KCLs, KVLs, and BCRs can be summarized as a system of first-order, in general
nonlinear,differential-algebraic equations(DAEs) of the form

(1.1)
d

dt
q(x̂, t)+ f (x̂, t)= 0,

together with suitable initial conditions. Here,x̂ = x̂(t) is the unknown vector of cir-
cuit variables at timet , the vector-valued functionf (x̂, t) represents the contributions
of nonreactive elements such as resistors, sources, etc., and the vector-valued function
d
dt q(x̂, t) represents the contributions of reactive elements such as capacitors and induc-
tors. There are a number of established methods, such as sparse tableau, nodal formu-
lation, modified nodal analysis, etc. (see VLACH and SINGHAL [1994]), for generating
a system of equations of the form (1.1) from a so-callednetlist description of a given
circuit. The vector functionŝx, f , q, as well as their dimension, depend on the chosen
formulation method. The most general method is sparse tableau, which consists of just
listing all the KCLs, KVLs, and BCRs. The other formulation methods can be inter-
preted as starting from sparse tableau and eliminating some of the unknowns by using
some of the KCL or KVL equations.

For all the standard formulation methods, the dimension of the system (1.1) is of the
order of the number of elements in the circuit. Since today’s VLSI circuits can have
up to hundreds of millions of circuit elements, systems (1.1) describing such circuits
can be of extremely large dimension. Reduced-order modeling allows to first replace
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large systems of the form (1.1) by systems of smaller dimension and then tackle these
smaller systems by suitable DAE solvers. Ideally, one would like to apply nonlinear
reduced-order modeling directly to the nonlinear system (1.1). However, since nonlinear
reduction techniques are a lot less developed and less well-understood than linear ones,
today, almost always linear reduced-order modeling is employed. To this end, one either
linearizes the system (1.1) or decouples (1.1) into nonlinear and linear subsystems; see,
e.g., FREUND [1999b] and the references given there.

For example, the first case arises insmall-signal analysis; see, e.g., FREUND and
FELDMANN [1996b]. Given aDC operating point, say x̂0, of the circuit described
by (1.1), one linearizes the system (1.1) aroundx̂0. The resulting linearized version
of (1.1) is of the following form:

(1.2)E
dx

dt
=Ax +Bu(t),

(1.3)y(t)= CTx(t).

Here,A= Dxf andE = Dxq are the Jacobian matrices off andq, respectively, at the
DC operating point̂x0, x(t)= x̂(t)− x̂0, u(t) is the vector of excitations applied to the
sources of the circuit, andy(t) is the vector of circuit variables of interest. Eqs. (1.2)
and (1.3) represent atime-invariant linear dynamical system. Its state-space dimension,
N , is the length of the vectorx of circuit variables. For a circuit with many elements,
the system (1.2) and (1.3) is thus of very high dimension. The idea of reduced-order
modeling is then to replace the original system (1.2) and (1.3) by one the same form,

En
dz

dt
=Anz+Bnu(t),

y(t)= CT
n z(t),

but of much smaller state-space dimensionn'N .
Time-invariant linear dynamical systems of the form (1.2) and (1.3) also arise when

equations describing linear subcircuits of a given circuit are decoupled from the sys-
tem (1.1) that characterizes the whole circuit; see, e.g., [FREUND, 1999b]. For exam-
ple, the interconnect or the pin package of VLSI circuits are often modeled as large
linear RCL networks. Such linear subcircuits are described by systems of the form (1.2)
and (1.3), wherex(t) is the vector of circuit variables associated with the subcircuit, and
the vectorsu(t) andy(t) contain the variables of the connections of the subcircuit to
the, in general nonlinear, remainder of the whole circuit. By replacing, in the nonlinear
system (1.1), the linear subsystem (1.2) and (1.3) by a reduced-order model of much
smaller state-space dimension, the dimension of (1.1) can be reduced significantly be-
fore a DAE solver is then applied to such a smaller version of (1.1).

The remainder of this paper is organized as follows. In Section 2, we review some
basic facts about time-invariant linear dynamical systems. In Section 3, we discuss
reduced-order modeling of linear dynamical systems via Krylov-subspace techniques.
In Section 4, we describe the use of Schur interpolation for various reduced-order mod-
eling problems. In Section 5, we discuss Hankel-norm model reduction. Sections 6 and 7
are concerned with reduced-order modeling of second-order and semi-second-order dy-
namical systems. Finally, in Section 8, we make some concluding remarks.
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2. Time-invariant linear dynamical systems

In this section, we review some basic facts about time-invariant linear dynamical sys-
tems and introduce reduced-order models defined by Padé or Padé-type approximants.
We also discuss stability and passivity of linear dynamical systems.

2.1. State-space description

We considerm-inputp-output time-invariant linear dynamical systems given by astate-
space descriptionof the form

(2.1)E
dx

dt
=Ax +Bu(t),

(2.2)y(t)= CTx(t)+Du(t),

together with suitable initial conditions. Here,A, E ∈ R
N×N , B ∈ R

N×m, C ∈ R
N×p,

andD ∈ R
p×m are given matrices,x(t) ∈ R

N is the vector of state variables,u(t) ∈ R
m

is the vector of inputs,y(t) ∈ R
p the vector of outputs,N is the state-space dimension,

andm andp are the number of inputs and outputs, respectively. Note that systems of
the form (1.2) and (1.3) are just a special case of (2.1) and (2.2) withD = 0.

The linear system (2.1) and (2.2) is calledregular if the matrixE in (2.1) is nonsin-
gular, and it is calledsingular or adescriptor systemif E is singular. Note that, in the
regular case, the linear system (2.1) and (2.2) can always be re-written as

dx

dt
= (

E−1A
)
x + (

E−1B
)
u(t),

y(t)= CTx(t)+Du(t),

which is just a system (2.1) and (2.2) withE = I .
The linear dynamical systems arising in circuit simulation are descriptor systems in

general. Therefore, in the following, we allowE ∈ R
N×N to be a general, possibly

singular, matrix. The only assumption on the matricesA, E ∈ R
N×N in (2.1) is that the

matrix pencilA − sE is regular, i.e., the matrixA − sE is singular for only finitely
many values ofs ∈ C.

In the case of singularE, Eq. (2.1) represents a system of DAEs. Solving DAEs
is significantly more complex than solving systems of ordinary differential equations
(ODEs). Moreover, there are constraints on the possible initial conditions that can be
imposed on the solutions of (2.1). For a detailed discussion of DAEs and the structure
of their solutions, we refer the reader to CAMPBELL [1980], CAMPBELL [1982], DAI

[1989], VERGHESE, LÉVY and KAILATH [1981]. Here, we only present a brief glimpse
of the issues arising in DAEs.

We start by bringing the matricesA andE in (2.1) to a certain normal form. For any
regular pencilA− sE, there exist nonsingular matricesP andQ such that

(2.3)P(A− sE)Q=
[
A(1) − sI 0

0 I − sJ

]
,
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where the submatrixJ is nilpotent. The matrix pencil on the right-hand side of (2.3) is
called theWeierstrass formof A− sE. Assuming that the matricesA andE in (2.1) are
already in Weierstrass form, the system (2.1) can be decoupled as follows:

(2.4)
dx(1)

dt
=A(1)x(1) +B(1)u(t),

(2.5)J
dx(2)

dt
= x(2) +B(2)u(t).

The first subsystem, (2.4), is just a system of ODEs. Thus for any given initial con-
dition x(1)(0) = x̂(1), there exits a unique solution of (2.4). Moreover, the so-called
free-responseof (2.4), i.e., the solutionsx(t) for t � 0 whenu≡ 0, consists of combi-
nations of exponential modes at the eigenvalues of the matrixA(1). Note that, in view
of (2.3), the eigenvalues ofA(1) are just the finite eigenvalues of the pencilA − sE.
The solutions of the second subsystem, (2.5), however, are of quite different nature. In
particular, the free-response of (2.5) consists ofki − 1 independent impulsive motions
for eachki × ki Jordan block of the matrixJ ; see VERGHESE, LÉVY and KAILATH

[1981].
For example, consider the case that the nilpotent matrixJ in (2.5) is a singlek × k

Jordan block, i.e.,

J =


0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . 1
0 · · · · · · 0 0

 ∈ R
k×k.

Thek components of the free-responsex(2)(t) of (2.5) are then given by

x
(2)
1 (t)= −x(2)2 (0−)δ(t)− x

(2)
3 (0−)δ(1)(t)− · · · − x

(2)
k (0−)δ(k−2)(t),

x
(2)
2 (t)= −x(2)3 (0−)δ(t)− x

(2)
4 (0−)δ(1)(t)− · · · − x

(2)
k (0−)δ(k−3)(t),

... = ...

x
(2)
k−1(t)= −x(2)k (0−)δ(t),
x
(2)
k (t)= 0.

Here, δ(t) is the delta function andδ(i)(t) is its ith derivative. Moreover,x(2)i (0−),
i = 2,3, . . . , k, are the components of the initial conditions that can be imposed on (2.4).
Note that there are onlyk−1 degrees of freedom for the initial condition and that it is not
possible to prescribex(2)1 (0−). In particular, the free-response of (2.5) corresponding to
an 1× 1 Jordan blocks ofJ is just the zero solution, and there is no degree of freedom
for the selection of an initial value corresponding to that block.

Finally, we remark that, in view of (2.3), the eigenvalues of the matrix pencilA− sE

corresponding to the subsystem (2.5) are just the infinite eigenvalues ofA− sE.
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2.2. Reduced-order models and transfer functions

The basic idea of reduced-order modeling is to replace a given system by a system of
the same type, but with smaller state-space dimension. Thus, areduced-order modelof
state-space dimensionn of a given linear dynamical system (2.1) and (2.2) of dimension
N is a system of the form

(2.6)En
dz

dt
=Anz+Bnu(t),

(2.7)y(t)= CT
n z(t)+Dnu(t),

whereAn, En ∈ R
n×n, Bn ∈ R

n×m, Cn ∈ R
n×p,Dn ∈ R

p×m, andn <N .
The challenge then is to choose the matricesAn,En,Bn,Cn, andDn in (2.6) and (2.7)

such that the reduced-order model in some sense approximates the original system. One
possible measure of the approximation quality of a reduced-order model is based on the
concept of transfer function.

If we assume zero initial conditions, then by applying the Laplace transform to the
original system (2.1) and (2.2), we obtain the following algebraic equations:

sEX(s)=AX(s)+BU(s),

Y (s)= CTX(s)+DU(s).

Here, the frequency-domain variablesX(s), U(s), andY(s) are the Laplace transforms
of the time-domain variables ofx(t), u(t), andy(t), respectively. Note thats ∈ C. Then,
formally eliminatingX(s) in the above equations, we arrive at the frequency-domain
input–output relationY(s)=H(s)U(s). Here,

(2.8)H(s) :=D +CT(sE −A)−1B, s ∈ C,

is the so-calledtransfer functionof the system (2.1) and (2.2). Note that

(2.9)H :C (→ (C ∪ ∞)p×m,

is anp×m-matrix-valued rational function.
Similarly, the transfer function,Hn, of the reduced-order model (2.6) and (2.7) is

given by

(2.10)Hn(s) :=Dn +CT
n (sEn −An)

−1Bn, s ∈ C.

Note thatHn is a also anp×m-matrix-valued rational function.

2.3. Padé and Padé-type models

The concept of transfer functions allows to define reduced-order models by means of
Padé or Padé-type approximation.

Let s0 ∈ C be any point such thats0 is not a pole of the transfer functionH given
by (2.8). In practice, the points0 is chosen such that it is in some sense close to the
frequency range of interest. We remark that the frequency range of interest is usually
a subset of the imaginary axis in the complexs-plane. Sinces0 is not a pole ofH , the
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functionH admits the Taylor expansion

(2.11)H(s)=M0 +M1(s − s0)+M2(s − s0)
2 + · · · +Mj(s − s0)

j + · · ·
abouts0. The coefficientsMj , j = 0,1, . . . , in (2.11) are called themomentsofH about
the expansion points0. Note that theMj ’s arep×m matrices.

A reduced-order model (2.6) and (2.7) of state-space dimensionn is called annth
Padé model(at the expansion points0) of the original system (2.1) and (2.2) if the
Taylor expansions abouts0 of the transfer functionsH andHn of the original system
and the reduced-order system agree in as many leading terms as possible, i.e.,

(2.12)H(s)=Hn(s)+O
(
(s − s0)

q(n)
)
,

whereq(n) is as large as possible. In FELDMANN and FREUND [1995b], FREUND

[1995], it was shown that

q(n)�
⌊
n

m

⌋
+
⌊
n

p

⌋
,

with equality in the “generic” case. The meaning of “generic” will be described more
precisely in Section 3.2.

Even though Padé models are defined via the local approximation property (2.12),
in practice, they usually are excellent approximations over large frequency ranges. The
following single-input single-output example illustrates this statement. The example is
a circuit resulting from the so-called PEEC discretization RUEHLI [1974] of an electro-
magnetic problem. The circuit is an RCL network consisting of 2100 capacitors, 172
inductors, 6990 inductive couplings, and a single resistive source that drives the circuit.
Modified nodal analysis is used to set up the circuit equations, resulting in a linear dy-
namical system of dimensionN = 306. In turns out that a Padé model of dimension
n = 60 is sufficient to produces an almost exact transfer function in the relevant fre-
quency ranges = 2π iω, 0 � ω � 5 × 109. The corresponding curves for|H(s)| and
|H60(s)| are shown in Fig. 2.1.

It is very tempting to compute Padé models directly via the definition (2.12). More
precisely, one would first explicitly generate theq(n) momentsM0,M1, . . . ,Mq(n)−1,
and then computeHn and the system matrices in the reduced-order model (2.6) and (2.7)
from these moments. However, computing Padé models directly from the moments is
extremely ill-conditioned, and consequently, such a procedure is not viable; we refer
the reader to FELDMANN and FREUND [1994], FELDMANN and FREUND [1995a] for
a detailed discussion and numerical examples.

The preferred way to compute Padé models is to use Krylov-subspace techniques,
such as a suitable Lanczos-type process, as we will describe in Section 3. This becomes
possible after the transfer function (2.8) is rewritten in terms of a single matrixM ,
instead of the two matricesA andE. To this end, let

(2.13)A− s0E = F1F2, whereF1, F2 ∈ C
N×N,

be any factorization ofA− s0E. For example, the matricesA− s0E arising in circuit
simulation are large, but sparse, and are such that a sparse LU factorization is feasible.
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FIG. 2.1. The PEEC transfer function, exact and Padé model of dimensionn= 60.

In this case, the matricesF1 andF2 in (2.13) are the lower and upper triangular fac-
tors, possibly with rows and columns permuted due to pivoting, of such a sparse LU
factorization ofA− s0E. Using (2.13), the transfer function (2.8) can be rewritten as
follows:

(2.14)H(s)=D +CT(sE −A)−1B

=D −CT(A− s0E − (s − s0)E
)−1

B

=D −LT(I − (s − s0)M
)−1

R,

where

(2.15)M := F−1
1 EF−1

2 , R := F−1
1 B, and L := F−T

2 C.

Note that (2.14) only involves oneN ×N matrix, namelyM , instead of the twoN ×N

matricesA andE in (2.8). This allows to apply Krylov-subspace methods to the single
matrixM , with theN ×m matrixR and theN ×p matrixL as blocks of right and left
starting vectors.

While Padé models often provide very good approximations in frequency domain,
they also have undesirable properties. In particular, in general, Padé models do not
preserve stability or passivity of the original system. However, by relaxing the Padé-
approximation property (2.12), it is often possibly to obtain stable or passive models.
More precisely, we call a reduced-order model (2.6) and (2.7) of state-space dimen-
sionn annth Padé-type model(at the expansion points0) of the original system (2.1)
and (2.2) if the Taylor expansions abouts0 of the transfer functionsH andHn of the
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original system and the reduced-order system agree in a number of leading terms, i.e.,

(2.16)H(s)=Hn(s)+O
(
(s − s0)

q ′)
,

where 1� q ′ < q(n).

2.4. Stability

An important property of linear dynamical systems is stability. An actual physical sys-
tem needs to be stable in order to function properly. If a linear dynamical system (2.1)
and (2.2) is used as a description of such a physical system, then clearly, it should also
be stable. Moreover, when (2.1) and (2.2) is replaced by a reduced-order model that is
then used in a time-domain analysis, the reduced-order model also needs to be stable.

In this subsection, we present a brief discussion of stability of linear descriptor
systems. For a more general survey of the various concepts of stability of dynamical
systems, we refer the reader to ANDERSONand VONGPANITLERD [1973], WILLEMS

[1970].
A descriptor system of the form (2.1) and (2.2) is said to bestableif its free-response,

i.e., the solutionsx(t), t � 0, of

E
dx

dt
=Ax, x(0)= x0,

remain bounded ast → ∞ for any possible initial vectorx0. Recall from the discussion
in Section 2.1 that for singularE, there are certain restrictions on the possible initial
vectorsx0.

Stability can easily be characterized in terms of the finite eigenvalues of the matrix
pencilA− sE; see, e.g., MASUBUCHI, KAMITANE , OHARA and SUDA [1997]. More
precisely, we have the following theorem.

THEOREM 2.1. The descriptor system(2.1) and (2.2) is stable if, and only if, the fol-
lowing two conditions are satisfied:

(i) All finite eigenvaluesλ ∈ C of the matrix pencilA− sE satisfyReλ� 0;
(ii) All finite eigenvaluesλ of the matrix pencilA− sE with Reλ= 0 are simple.

We stress that, in view of Theorem 2.1, the infinite eigenvalues of the matrix pen-
cil A− sE have no effect on stability. The reason is that these infinite eigenvalues result
only in impulsive motions, which go to zero ast → ∞.

Recall that the transfer functionH of the descriptor system (2.1) and (2.2) is of the
form

(2.17)H(s)=D +CT(sE −A)−1B, where

(2.18)A,E ∈ R
N×N, B ∈ R

N×m, C ∈ R
N×m, and D ∈ R

p×m.

Note that any pole ofH is necessarily an eigenvalue of the matrix pencilA − sE.
Hence, it is tempting to determine stability via the poles ofH . However, in general,
not all eigenvalues ofA − sE are poles ofH . For example, consider the following
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system

dx

dt
=
[

1 0
0 −1

]
x +

[
0
1

]
u(t),

y(t)= [ 1 1] x(t),

which is taken from p. 128 of ANDERSONand VONGPANITLERD [1973]. The pencil
associated with this system is

A− sI =
[

1− s 0
0 −1− s

]
.

Its eigenvalues are±1, and hence this system is unstable. The transfer functionH(s)=
1/(s + 1), however, only has the “stable” pole−1. Therefore, checking conditions
(i) and (ii) of Theorem 2.1 only for the poles ofH is, in general, not enough to
guarantee stability. In order to infer stability of the system (2.1) and (2.2) from the
poles of its transfer function, one needs an additional condition, which we formulate
next.

Let H be a givenm × p-matrix-valued rational function. Any representation ofH

of the form (2.17) with matrices (2.18) is called arealization of H . Furthermore, a
realization (2.17) ofH is said to beminimal if the dimensionN of the matrices (2.18)
is as small as possible. We will also say that the state-space description (2.1) and (2.2)
is a minimal realization if its transfer function (2.18) is a minimal realization.

The following theorem is the well-known characterization of minimal realizations in
terms of conditions on the matrices (2.18); see, e.g., VERGHESE, LÉVY and KAILATH

[1981]. We also refer the reader to the related results on controllability, observability,
and minimal realizations of descriptor systems given in Chapter 2 of DAI [1989].

THEOREM 2.2. LetH be am× p-matrix-valued rational function given by a realiza-
tion (2.17). Then,(2.17)is a minimal realization ofH if, and only if, the matrices(2.18)
satisfy the following five conditions:

(i) rank[A− sE B ] =N for all s ∈ C;
(Finite controllability)

(ii) rank[E B ] =N ;
(Infinite controllability)

(iii) rank [AT − sET C ] =N for all s ∈ C;
(Finite observability)

(iv) rank[ET C ] =N ;
(Infinite observability)

(v) Aker(E)⊆ Im(E).
(Absence of nondynamic modes)

For descriptor systems given by a minimal realization, stability can indeed be checked
via the poles of its transfer function.

THEOREM2.3. Let (2.1)and(2.2)be a minimal realization of a descriptor system, and
letH be its transfer function(2.17). Then, the descriptor system(2.1)and(2.2) is stable
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if, and only if, all finite polessi of H satisfyResi � 0 and any pole withResi = 0 is
simple.

2.5. Passivity

In circuit simulation, reduced-order modeling is often applied to large passive linear
subcircuits, such as RCL networks consisting of only resistors, inductors, and capaci-
tors. When reduced-order models of such subcircuits are used within a simulation of the
whole circuit, stability of the overall simulation can only be guaranteed if the reduced-
order models preserve the passivity of the original subcircuits; see, e.g., CHIRLIAN

[1967], ROHRERand NOSRATI [1981]. Therefore, it is important to have techniques to
check passivity of a given reduced-order model.

Roughly speaking, a system ispassiveif it does not generate energy. For descriptor
systems of the form (2.1) and (2.2), passivity is equivalent to positive realness of the
transfer function. Moreover, such systems can only be passive if they have identical
numbers of inputs and outputs. Thus, for the remainder of this subsection, we assume
thatm = p. Then, a system described by (2.1) and (2.2) is passive, i.e., it does not
generate energy, if, and only if, its transfer function (2.17) ispositive real; see, e.g.,
ANDERSONand VONGPANITLERD [1973]. A precise definition of positive realness is
as follows.

DEFINITION 2.1. Anm×m-matrix-valued functionH :C (→ (C ∪ ∞)m×m is called
positive realif the following three conditions are satisfied:

(i) H is analytic inC+ := {s ∈ C | Res > 0};
(ii) H(s)=H(s) for all s ∈ C;

(iii) H(s)+ (H(s))H 8 0 for all s ∈ C+.

In Definition 2.1 and in the sequel, the notationM 8 0 means that the matrixM is
Hermitian positive semi-definite. Similarly,M 6 0 means thatM is Hermitian negative
semi-definite.

For transfer functionsH of the form (2.17), condition (ii) of Definition 2.1 is always
satisfied since the matrices (2.18) are assumed to be real. Furthermore, condition (i)
simply means thatH cannot have poles inC+, and this can be checked easily. For the
special casem= 1 of scalar-valued functionsH , condition (iii) states that the real part
of H(s) is nonnegative for alls with nonnegative real part. In order to check this con-
dition, it is sufficient to show that the real part ofH(s) is nonnegative for all purely
imaginarys. This can be done by means of relatively elementary means. For example,
in BAI and FREUND [2000], a procedure based on eigenvalue computations is pro-
posed. For the general matrix-valued case,m� 1, however, checking condition (iii) is
much more involved. One possibility is to employ a suitable extension of the classi-
cal positive real lemma (see, e.g. ANDERSON [1967], Chapter 5 of ANDERSON and
VONGPANITLERD[1973], or Section 13.5 of ZHOU, DOYLE and GLOVER [1996]) that
characterizes positive realness of regular linear systems via the solvability of certain
linear matrix inequalities (LMIs). Such a version of the positive real lemma for general
descriptor systems is stated in Theorem 2.4 below.



836 Z. Bai et al.

We remark that any matrix-valued rational functionH has an expansion abouts = ∞
of the form

(2.19)H(s)=
j0∑

j=−∞
Mjs

j ,

wherej0 � 0 is an integer. Moreover, the functionH has a pole ats = ∞ if, and only
if, j0 � 1 andMj0 �= 0 in (2.19).

The positive real lemma for descriptor systems can now be stated as follows.

THEOREM 2.4 (Positive real lemma for descriptor systems (FREUND and JARRE

[2004a])). LetH be a realm×m-matrix-valued rational function of the form(2.17)
with matrices(2.18).

(a) (Sufficient condition)
If the LMIs

(2.20)

[
ATX+XTA XTB −C

BTX−CT −D−DT

]
6 0 and ETX =XTE 8 0

have a solutionX ∈ R
N×N , thenH is positive real.

(b) (Necessary condition)
Suppose that(2.17) is a minimal realization ofH and that the matrixM0 in the
expansion(2.19)satisfies

(2.21)(D −M0)+ (D −M0)
T 8 0.

If H is positive real, then there exists a solutionX ∈ R
N×N of the LMIs(2.20).

The result of Theorem 2.4 allows to check positive realness by solving the semi-
definite programming problems of the form (2.20). Note that there areN2 unknowns
in (2.20), namely the entries of theN × N matrix X. Problems of the form (2.20)
can be tackled with interior-point methods; see, e.g., BOYD, EL GHAOUI, FERON and
BALAKRISHNAN [1994], FREUND and JARRE [2004a]. However, the computational
complexity of these methods grows quickly withN , and thus, these methods are viable
only for rather small values ofN .

For the special caseE = I , the result of Theorem 2.4 is just the classical positive
real lemma. In this case, (2.20) reduces to the problem of finding a symmetric positive
semi-definite matrixX ∈ RN×N such that[

ATX+XA XB −C

BTX−CT −D−DT

]
6 0.

Moreover, ifE = I , the condition (2.21) is always satisfied, since in this caseM0 = 0
andD+DT 8 0.

2.6. Linear RCL subcircuits

In circuit simulation, an important special case of passive circuits is linear subcircuits
that consist of only resistors, inductors, and capacitors. Such linear RCL subcircuits



Reduced-order modeling 837

arise in the modeling of a circuit’s interconnect and package; see, e.g., FREUND and
FELDMANN [1997], FREUND and FELDMANN [1998], KIM , GOPAL and PILLAGE

[1994], PILEGGI [1995].
The equations describing linear RCL subcircuits are of the form (2.1) and (2.2) with

D = 0 andm= p. Furthermore, the equations can be formulated such that the matrices
A, E ∈ R

N×N in (2.1) are symmetric and exhibit a block structure; see FREUND and
FELDMANN [1996a], FREUND and FELDMANN [1998]. More precisely, we have

(2.22)A=AT =
[−A11 A12
AT

12 0

]
and E =ET =

[
E11 0
0 −E22

]
,

where the submatricesA11, E11 ∈ R
N1×N1 andE22 ∈ R

N2×N2 are symmetric positive
semi-definite, andN = N1 + N2. Note that, except for the special caseN2 = 0, the
matricesA andE are indefinite. The special caseN2 = 0 arises for RC subcircuits that
contain only resistors and capacitors, but no inductors.

If the RCL subcircuit is viewed as anm-terminal component withm= p inputs and
outputs, then the matricesB andC in (2.1) and (2.2) are identical and of the form

(2.23)B = C =
[
B1
0

]
with B1 ∈ R

N1×m.

In view of (2.22) and (2.23), the transfer function of such anm-terminal RCL subcircuit
is given by

(2.24)H(s)= BT(sE −A)−1B, whereA=AT, E =ET.

We call a transfer functionH symmetricif it is of the form (2.24) with real matricesA,
E, andB.

We will also use the following nonsymmetric formulation of (2.24). LetJ be the
block matrix

(2.25)J =
[
IN1 0
0 −IN2

]
,

whereIN1 andIN2 is theN1 ×N1 andN2 ×N2 identity matrix, respectively.
Note that, by (2.23) and (2.25), we haveB = JB. Using this relation, as well

as (2.22), we can rewrite (2.24) as follows:

H(s)= BT(sẼ − Ã
)−1

B, where

(2.26)Ã=
[−A11 A12

−AT
12 0

]
, Ẽ =

[
E11 0
0 E22

]
.

In this formulation, the matrixÃ is no longer symmetric, but now

(2.27)Ã+ ÃT 6 0 and Ẽ 8 0.

It turns out that the properties are the key to ensure positive realness. Indeed, the fol-
lowing result was established as Theorem 13 in FREUND [2000b].
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THEOREM 2.5. Let Ã, Ẽ ∈ R
N×N , and B ∈ R

N×m. Assume thatÃ and Ẽ satisfy
(2.27), and that the matrix pencil̃A − sẼ is regular. Then, them × m-matrix-valued
function

H(s)= BT(sẼ − Ã
)−1

B

is positive real.

3. Krylov-subspace techniques

In this section, we discuss the use of Krylov-subspace methods for the construction of
Padé and Padé-type reduced-order models of time-invariant linear dynamical systems.
We also point the reader to FREUND [2003] for a more extended survey of Krylov-
subspace methods for model reduction.

3.1. Block Krylov subspaces

We consider general descriptor systems of the form (2.1) and (2.2). The key to using
Krylov-subspace techniques for reduced-order modeling of such systems is to first re-
place the matrix pairA andE by a single matrixM . To this end, lets0 ∈ C be any given
point such that the matrixA− s0E is nonsingular. Then, withM , R, andL denoting
the matrices defined in (2.15), the linear system (2.1) and (2.2) can be rewritten in the
following form:

(3.1)M
dx

dt
= (I + s0M)x +Ru(t),

(3.2)y(t)= LTx(t)+Du(t).

Note thatM ∈ C
N×N , R ∈ C

N×m, andL ∈ C
N×p, whereN is the state-space dimen-

sion of the system,m is the number of inputs, andp is the number of outputs.
The transfer functionH of the rewritten system (3.1) and (3.2) is given by (2.14). By

expanding (2.14) abouts0, we obtain

(3.3)H(s)=D −
∞∑
j=0

LTMjR(s − s0)
j .

Recall from Section 2.3 that Padé and Padé-type reduced-order models are defined via
the leading coefficients of an expansion ofH abouts0. In view of (3.3), thej th coeffi-
cient of such an expansion can be expressed as follows:

(3.4)−LTMjR = −((Mj−i )TL
)T
(MiR), i = 0,1, . . . , j.

Notice that the factors on the right-hand side of (3.4) are blocks of theright and left
block Krylov matrices

[R MR M2R · · · MiR · · · ] and

(3.5)
[
L MTL (MT)2L · · · (MT)kL · · · ],



Reduced-order modeling 839

respectively. As a result, all the information needed to generate Padé and Padé-type
reduced-order models is contained in the block Krylov matrices (3.5). However, sim-
ply computing the blocksMiR and (MT)iL in (3.5) and then generating the leading
coefficients of the expansion (3.3) from these blocks is not a viable numerical proce-
dure. The reason is that, in finite-precision arithmetic, asi increases, the blocksMiR

and(MT)iL quickly contain only information about the eigenspaces of the dominant
eigenvalue ofM . Instead, one needs to employ suitable Krylov-subspace methods that
generate numerically better basis vectors for the subspaces associated with the block
Krylov matrices (3.5).

Next, we give a formal definition of the subspaces induced by (3.5). Note that each
blockMiR consists ofm column vectors of lengthN . By scanning these column vectors
of the right block Krylov matrix in (3.5) from left to right and by deleting any column
that is linearly dependent on columns to its left, we obtain thedeflatedright block
Krylov matrix

(3.6)
[
R1 MR2 M2R3 · · · Mimax−1Rimax

]
.

This process of detecting and deleting the linearly dependent columns is calledexact
deflation. We remark that the matrix (3.6) is finite, since at mostN of the column vectors
can be linearly independent. Furthermore, a columnMir being linearly dependent on
columns to its left in (3.5) implies that any columnMi′r , i′ � i, is linearly dependent
on columns to its right. Therefore, in (3.6), for eachi = 1,2, . . . , imax, the matrixRi is
a submatrix ofRi−1, where, fori = 1, we setR0 =R.

Letmi denote the number of columns ofRi . The matrix (3.6) thus has

n(r)max :=�m1 +m2 + · · · +mimax,

columns. For each integern with 1 � n � n
(r)
max, we define thenth right block Krylov

subspaceKn(M,R) (induced byM andR) as the subspace spanned by the firstn

columns of the deflated right block Krylov matrix (3.6).
Analogously, by deleting the linearly independent columns of the left block Krylov

matrix in (3.5), we obtain a deflated left block Krylov matrix of the form

(3.7)
[
L1 MTL2 (MT)2L3 · · · (MT)imax−1Lkmax

]
.

Let n(l)max be the number of columns of the matrix (3.7). Then for each integern with
1� n� n

(l)
max, we define thenth left block Krylov subspaceKn(MT,L) (induced byMT

andL) as the subspace spanned by the firstn columns of the deflated left block Krylov
matrix (3.7).

For a more detailed discussion of block Krylov subspaces and deflation, we refer the
reader to ALIAGA , BOLEY, FREUND and HERNÁNDEZ [2000], FREUND [2000b].

3.2. Approaches based on Lanczos and Lanczos-type methods

In this section, we discuss reduced-order modeling approaches that employ Lanczos and
Lanczos-type methods for the construction of suitable basis vectors for the right and left
block Krylov subspacesKn(M,R) andKn(MT,L).
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3.2.1. The MPVL algorithm
For the special casem= p = 1 of single-input single-output linear dynamical systems,
each of the “blocks”R andL only consists of a single vector, sayr andl, andKn(M, r)
andKn(MT, l) are just the standardnth right and left Krylov subspaces induced by sin-
gle vectors. The classical Lanczos process (LANCZOS [1950]) is a well-known proce-
dure for computing two sets of bi-orthogonal basis vectors forKn(M, r) andKn(MT, l).
Moreover, these vectors are generated by means of three-term recurrences the coef-
ficients of which define a tridiagonal matrixTn. It turns out thatTn contains all the
information that is needed to set up annth Padé reduced-order model of a given single-
input single-output time-invariant linear dynamical system. The associated computa-
tional procedure is called thePadé via Lanczos(PVL) algorithm in FELDMANN and
FREUND [1994], FELDMANN and FREUND [1995a].

Here, we describe in some detail an extension of the PVL algorithm to the case
of generalm-input p-output time-invariant linear dynamical systems. The underlying
block Krylov subspace method is thenonsymmetric band Lanczos algorithm(FREUND

[2000a]) for constructing two sets of right and left Lanczos vectors

(3.8)v1, v2, . . . , vn and w1,w2, . . . ,wn,

respectively. These vectors span thenth right and left block Krylov subspaces (induced
byM andR, andMT andL, respectively):

span{v1, v2, . . . , vn} = Kn(M,R) and

(3.9)span{w1,w2, . . . ,wn} = Kn(MT,L).

Moreover, the vectors (3.8) are constructed to be bi-orthogonal:

(3.10)wT
j vk =

{
0 if j �= k,

δj if j = k,
for all j, k = 1,2, . . . , n.

It turns out that the Lanczos vectors (3.8) can be constructed by means of recurrence
relations of length at mostm+ p + 1. The recurrence coefficients for the firstn right
Lanczos vectors define ann × n matrix T (pr)

n that is “essentially” a band matrix with
total bandwidthm + p + 1. Similarly, the recurrence coefficients for the firstn left
Lanczos vectors define ann × n band matrixT̃ (pr)

n with total bandwidthm + p + 1.
For a more detailed discussion of the structure ofT

(pr)
n andT̃ (pr)

n , we refer the reader to
ALIAGA , BOLEY, FREUND and HERNÁNDEZ [2000], FREUND [2000a].

Algorithm 3.1 below gives a complete description of the numerical procedure that
generates the Lanczos vectors (3.8) with properties (3.9) and (3.10). In order to obtain
a Padé reduced-order model based on this algorithm, one does not need the Lanczos
vectors themselves, but rather the matrix of right recurrence coefficientsT

(pr)
n , the ma-

tricesρ(pr)
n andη(pr)

n that contain the recurrence coefficients from processing the starting
blocksR andL, respectively, and the diagonal matrix

∆n = diag(δ1, δ2, . . . , δn),

whose diagonal entries are theδj ’s from (3.10). The following algorithm produces the

matricesT (pr)
n , ρ(pr)

n , η(pr)
n , and∆n as output.
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ALGORITHM 3.1 (Nonsymmetric band Lanczos algorithm).
INPUT: A matrixM ∈ C

N×N ;
A block ofm right starting vectorsR = [ r1 r2 · · · rm ] ∈ C

N×m;
A block of p left starting vectorsL= [ l1 l2 · · · lp ] ∈ C

N×p.
OUTPUT: Then× n Lanczos matrixT (pr)

n , and the matricesρ(pr)
n , η(pr)

n , and∆n.
(0) Fork = 1,2, . . . ,m , setv̂k = rk .

For k = 1,2, . . . , p, setŵk = lk .
Setmc =m, pc = p, andIv = Iw = ∅.

Forn= 1,2, . . . , until convergence ormc = 0 orpc = 0 or δn = 0 do:
(1) (If necessary, deflatêvn.)

Compute‖v̂n‖2.
Decide if v̂n should be deflated. If yes, do the following:
(a) Setv̂defl

n−mc
= v̂n and store this vector. SetIv = Iv ∪ {n−mc}.

(b) Setmc =mc − 1.
If mc = 0, setn= n− 1 and stop.

(c) Fork = n,n+ 1, . . . , n+mc − 1, setv̂k = v̂k+1.
(d) Repeat all of Step (1).

(2) (If necessary, deflatêwn.)
Compute‖ŵn‖2.
Decide ifŵn should be deflated. If yes, do the following:
(a) Setŵdefl

n−pc
= ŵn and store this vector. SetIw = Iw ∪ {n− pc}.

(b) Setpc = pc − 1.
If pc = 0, setn= n− 1 and stop.

(c) Fork = n,n+ 1, . . . , n+ pc − 1, setŵk = ŵk+1.
(d) Repeat all of Step (2).

(3) (Normalizev̂n andŵn to obtainvn andwn.)
Set

tn,n−mc = ‖v̂n‖2, t̃n,n−pc = ‖ŵn‖2,

vn = v̂n

tn,n−mc

, and wn = ŵn

t̃n,n−pc

.

(4) (Computeδn and check for possible breakdown.)
Setδn =wT

nvn. If δn = 0, setn= n− 1 and stop.
(5) (Orthogonalize the right candidate vectors againstwn.)

For k = n+ 1, n+ 2, . . . , n+mc − 1, set

tn,k−mc = wT
n v̂k

δn
and v̂k = v̂k − vntn,k−mc.

(6) (Orthogonalize the left candidate vectors againstvn.)
For k = n+ 1, n+ 2, . . . , n+ pc − 1, set

t̃n,k−pc = ŵT
k vn

δn
and ŵk = ŵk −wn t̃n,k−pc.

(7) (Advance the right block Krylov subspace to getv̂n+mc.)
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(a) Setv̂n+mc =Mvn.
(b) Fork ∈ Iw (in ascending order), set

σ̃ = (
ŵdefl
k

)T
vn, t̃n,k = σ̃

δn
,

and, ifk > 0, set

tk,n = σ̃

δk
and v̂n+mc = v̂n+mc − vktk,n.

(c) Setkv = max{1, n− pc}.
(d) Fork = kv, kv + 1, . . . , n− 1, set

tk,n = t̃n,k
δn

δk
and v̂n+mc = v̂n+mc − vk tk,n.

(e) Set

tn,n = wT
n v̂n+mc

δn
and v̂n+mc = v̂n+mc − vn tn,n.

(8) (Advance the left block Krylov subspace to getŵn+pc.)
(a) Setŵn+pc =MTwn.
(b) Fork ∈ Iv (in ascending order), set

σ =wT
n v̂

defl
k , tn,k = σ

δn
,

and, ifk > 0, set

t̃k,n = σ

δk
and ŵn+pc = ŵn+pc −wkt̃k,n.

(c) Setkw = max{1, n−mc}.
(d) Fork = kw, kw + 1, . . . , n− 1, set

t̃k,n = tn,k
δn

δk
and ŵn+pc = ŵn+pc −wkt̃k,n.

(e) Set

t̃n,n = tn,n and ŵn+pc = ŵn+pc −wn t̃n,n.

(9) Set

T
(pr)
n = [ ti,k ]i,k=1,2,...,n ,

ρ
(pr)
n = [ ti,k−m ]i=1,2,...,n;k=1,2,...,kρ , wherekρ =m+ min{0, n−mc},
η
(pr)
n = [ t̃i,k−p ]i=1,2,...,n;k=1,2,...,kη , wherekη = p+ min{0, n− pc},
∆n = diag(δ1, δ2, . . . , δn).

(10) Check ifn is large enough. If yes, stop.
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REMARK 3.1. When applied to single starting vectors, i.e., for the special casem =
p = 1, Algorithm 3.1 reduces to the classical nonsymmetric Lanczos process (LANC-
ZOS [1950]).

REMARK 3.2. It can be shown that, at stepn of Algorithm 3.1, exact deflation of a
vector in the right, respectively left, block Krylov matrix (3.5) occurs if, and only if,
v̂n = 0, respectivelyŵn = 0, in Step (1), respectively Step (2). Therefore, to run Algo-
rithm 3.1 with exact deflation only, one deflatesv̂n if ‖v̂n‖2 = 0 in Step (1), and one
deflatesŵn if ‖ŵn‖2 = 0 in Step (2). In finite-precision arithmetic, however, so-called
inexact deflationis employed. This means that in Step (1),v̂n is deflated if‖v̂n‖2 � ε,
and in Step (2),ŵn is deflated if‖ŵn‖2 � ε, whereε = ε(M) > 0 is a suitably chosen
small constant.

REMARK 3.3. The occurrence ofδn = 0 in Step (4) of Algorithm 3.1 is called a
breakdown. In finite-precision arithmetic, in Step (4) one should also check fornear-
breakdowns, i.e., if δn ≈ 0. In general, it cannot be excluded that breakdowns or near-
breakdowns occur, although they are very unlikely. Furthermore, by using so-called
look-aheadtechniques, it is possible to remedy the problem of possible breakdowns
or near-breakdowns. For the sake of simplicity, we have stated the band Lanczos algo-
rithm without look-ahead only. A look-ahead version of Algorithm 3.1 is described in
ALIAGA , BOLEY, FREUND and HERNÁNDEZ [2000].

The matrix-Padé via Lanczos(MPVL) algorithm, which was first introduced in
FELDMANN and FREUND[1995b], FREUND[1995], consists of applying Algorithm 3.1
to the matricesM , R, andL defined in (2.15), and running it forn steps. The matrices
T
(pr)
n , ρ(pr)

n , η(pr)
n , and∆n produced by Algorithm 3.1 are then used to set up a reduced-

order model of the original linear dynamical system (2.1) and (2.2) as follows:

(3.11)T
(pr)
n

dz

dt
= (

s0T
(pr)
n − I

)
z+ ρ

(pr)
n u(t),

(3.12)y(t)= (
η
(pr)
n

)T
∆nz(t)+Du(t).

Note that the transfer function of this reduced-order model is given by

(3.13)Hn(s)=D + (
η
(pr)
n

)T
∆n
(
I − (s − s0)T

(pr)
n

)−1
ρ
(pr)
n .

The reduced-order model (3.11) and (3.12) is indeed a matrix-Padé model of the original
system.

THEOREM 3.1 (Matrix-Padé model (FELDMANN and FREUND [1995b], FREUND

[1995])). Suppose that Algorithm3.1 is run with exact deflation only and thatn �
max{m,p}. Then, the reduced-order model(3.11)and (3.12) is a matrix-Padé model
of the linear dynamical system(2.1) and (2.2). More precisely, the Taylor expansions
abouts0 of the transfer functions,H , (2.8) and,Hn, (3.13)agree in as many leading
coefficients as possible, i.e.,

H(s)=Hn(s)+O
(
(s − s0)

q(n)
)
,
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whereq(n) is as large as possible. In particular,

q(n)�
⌊
n

m

⌋
+
⌊
n

p

⌋
.

A disadvantage of Padé models is that, in general, they do not preserve the stability
and possibly passivity of the original linear dynamical system. In part, these problems
can be overcome by means of suitable post-processing techniques, such as the ones de-
scribed in BAI , FELDMANN and FREUND [1998], BAI and FREUND [2001a]. However,
the reduced-order models obtained by post-processing of Padé models are necessarily
no longer optimal in the sense of Padé approximation. Furthermore, post-processing
techniques are not guaranteed to always result in stable and possibly passive reduced-
order models.

For special cases, however, Padé models can be shown to be stable and passive. In
particular, this is the case for linear dynamical systems describing RC subcircuits, RL
subcircuits, and LC subcircuits; see BAI and FREUND [2001b], FREUND and FELD-
MANN [1996a], FREUND and FELDMANN [1997], FREUND and FELDMANN [1998].

Next, we describe the SyMPVL algorithm (FREUND and FELDMANN [1996a], FRE-
UND and FELDMANN [1997], FREUND and FELDMANN [1998]), which is a special
version of MPVL tailored to linear RCL subcircuits.

3.2.2. The SyMPVL algorithm
Recall from Section 2.6 that linear RCL subcircuits can be described by linear dynami-
cal systems (2.1) and (2.2) withD = 0, symmetric matricesA andE of the form (2.22),
and matricesB = C of the form (2.23). Furthermore, the transfer function,H , (2.24) is
symmetric.

We now assume that the expansion points0 for the Padé approximation is chosen
to be real and nonnegative, i.e.,s0 � 0. Together with (2.22) it follows that the matrix
A− s0E is symmetric indefinite, withN1 nonpositive andN2 nonnegative eigenvalues.
Thus,A− s0E admits a factorization of the following form:

(3.14)A− s0E = −F1JF
T
1 ,

whereJ is the block matrix defined in (2.25). Instead of the general factorization (2.13),
we now use (3.14). By (3.14) and (2.15), the matricesM , R, andL, are then of the
following form:

M = F−1
1 EF−T

1 J, R = F−1
1 B, and L= −JF−1

1 C.

SinceE =ET andB = C, it follows that

JM =MTJ and L= −JR.
This means thatM is J -symmetric and the left starting blockL is (up to its sign) the
J -multiple of the right starting blockR. These two properties imply that all the right
and left Lanczos vectors generated by the band Lanczos Algorithm 3.1 areJ -multiples
of each other:

wj = Jvj for all j = 1,2, . . . , n.



Reduced-order modeling 845

Consequently, Algorithm 3.1 simplifies in that only the right Lanczos vectors need to be
computed. The resulting version of MPVL for computing matrix-Padé models of RCL
subcircuits is just the SyMPVL algorithm. The computational costs of SyMPVL are
half of that of the general MPVL algorithm.

LetH(1)
n denote the matrix-Padé model generated by SyMPVL aftern Lanczos steps.

For general RCL subcircuits, however,H(1)
n will not preserve the passivity of the origi-

nal system.
An additional reduced-order model that is guaranteed to be passive can be obtained

as follows, provided that all right Lanczos vectors are stored. Let

Vn = [ v1 v2 · · · vn ]

denote the matrix that contains the firstn right Lanczos vectors as columns. Then, by
projecting the matrices in the representation (2.26) of the transfer functionH of the
original RCL subcircuit onto the columns ofVn, we obtain the following reduced-order
transfer function:

(3.15)H(2)
n (s)= (

V T
n B

)T(
sV T

n ẼVn − V T
n ÃVn

)−1
V T
n B.

The passivity of the original RCL subcircuit, together with Theorem 2.5 implies that
the reduced-order model defined byH(2)

n is indeed passive. Furthermore, in FREUND

[2000b], it is shown thatH(2)
n is a matrix-Padé-type approximation of the original trans-

fer function and that, at the expansion points0, H(2)
n matches half as many leading

coefficients ofH as the matrix-Padé approximantH(1)
n .

Next, we illustrate the behavior of SyMPVL with two circuit examples.

3.2.3. A package model
The first example arises is the analysis of a 64-pin package model used for an RF inte-
grated circuit. Only eight of the package pins carry signals, the rest being either unused
or carrying supply voltages. The package is characterized as a passive linear dynami-
cal system withm = p = 16 inputs and outputs, representing 8 exterior and 8 interior
terminals. The package model is described by approximately 4000 circuit elements, re-
sistors, capacitors, inductors, and inductive couplings, resulting in a linear dynamical
system with a state-space dimension of about 2000.

In FREUND and FELDMANN [1997], SyMPVL was used to compute a Padé-based
reduced-order model of the package, and it was found that a modelH

(1)
n of ordern= 80

is sufficient to match the transfer-function components of interest. However, the model
H
(1)
n has a few poles in the right half of the complex plane, and therefore, it is not

passive.
In order to obtain a passive reduced-order model, we ran SyMPVL again on the

package example, and this time, also generated the projected reduced-order modelH
(2)
n

given by (3.15). The expansion points0 = 5π ×109 was used. Recall thatH(2)
n is only a

Padé-type approximant and thus less accurate than the Padé approximantH
(2)
n . There-

fore, one now has to go to ordern = 112 to obtain a projected reduced-order model
H
(2)
n that matches the transfer-function components of interest. Figs. 3.1 and 3.2 show
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FIG. 3.1. Package: Pin no. 1 external to Pin no. 1 internal, exact, projected model, and Padé model.

FIG. 3.2. Package: Pin no. 1 external to Pin no. 2 internal, exact, projected model, and Padé model.
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FIG. 3.3. Relative error of projected model and Padé model.

the voltage-to-voltage transfer function between the external terminal of Pin no. 1 and
the internal terminals of the same pin and the neighboring Pin no. 2, respectively. The
plots show results with the projected modelH(2)

n and the Padé modelH(2)
n , both of

ordern= 112, compared with an exact analysis.
In Fig. 3.3, we compare the relative error of the projected modelH

(2)
112 and the Padé

modelH(1)
112 of the same size. Clearly, the Padé model is more accurate. However, out

of the 112 poles ofH(1)
112, 22 have positive real parts, violating the passivity of the Padé

model. On the other hand, the projected model is passive.

3.2.4. An extracted RC circuit
This is an extracted RC circuit with about 4000 elements andm= 20 ports. The expan-
sion points0 = 0 was used. Since the projected model and the Padé model are identical
for RC circuits, we only computed the Padé model via SyMPVL.

The point of this example is to illustrate the usefulness of the deflation procedure
built into SyMPVL. It turned out that sweeps through the first two Krylov blocks,R

andMR, of the block Krylov matrix (3.5) were sufficient to obtain a reduced-order
model that matches the transfer function in the frequency range of interest. During the
sweep through the second block, 6 almost linearly dependent vectors were discovered
and deflated. As a result, the reduced-order model obtained with deflation is only of size
n= 2m− 6= 34. When SyMPVL was rerun on this example, with deflation turned off,
a reduced-order model of sizen = 40 was needed to match the transfer function. In
Fig. 3.4, we show theH1,11 component of the reduced-order model obtained with de-
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FIG. 3.4. ImpedanceH1,11.

flation and without deflation, compared to the exact transfer function. Clearly, deflation
leads to a significantly smaller reduced-order model that is as accurate as the bigger one
generated without deflation.

3.3. Approaches based on the Arnoldi process

The Arnoldi process (ARNOLDI [1951]) is another widely-used Krylov-subspace
method. A band version of the Arnoldi process that is suitable for multiple starting
vectors can also be used for reduced-order modeling. However, the models generated
from the band Arnoldi process are only Padé-type models.

In contrast to the band Lanczos algorithm, the band Arnoldi process only involves
one of the starting blocks, namelyR, and it only uses matrix–vector products withM .
Moreover, the band Arnoldi process only generates one set of vectors,v1, v2, . . . , vn,
instead of the two sequences of right and left vectors produced by the band Lanczos
algorithm. The Arnoldi vectors span thenth right block Krylov subspace (induced by
M andR):

span{v1, v2, . . . , vn} = Kn(M,R).
The Arnoldi vectors are constructed to be orthonormal:

V Hn Vn = I, whereVn := [ v1 v2 · · · vn ] .

After n iterations, the Arnoldi process has generated the firstn Arnoldi vectors,
namely then columns of the matrixVn, as well as ann× n matrixG(pr)

n of recurrence
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coefficients, and, provided thatn � m, ann×m matrix ρ(pr)
n . The matricesG(pr)

n and
ρ
(pr)
n are projections of the matricesM andR onto the subspace spanned by the columns

of Vn, which is just the block Krylov subspaceKn(M,R). More precisely, we have

(3.16)G
(pr)
n = V Hn MVn and ρ

(pr)
n = V Hn R.

The band Arnoldi process can be stated as follows.

ALGORITHM 3.2 (Band Arnoldi process).
INPUT: A matrixM ∈ Cn×n;

A block of m right starting vectorsR = [ r1 r2 · · · rm ] ∈ C
n×m.

OUTPUT: Then× n Arnoldi matrixG(pr)
n .

The matrixVn = [ v1 v2 · · · vn ] containing the firstn Arnoldi vectors,
and the matrixρ(pr)

n .
(0) Fork = 1,2, . . . ,m , setv̂k = rk .

Setmc =m andI = ∅.
Forn= 1,2, . . . , until convergence ormc = 0 do:

(1) (If necessary, deflatêvn.)
Compute‖v̂n‖2.
Decide if v̂n should be deflated. If yes, do the following:
(a) Setv̂defl

n−mc
= v̂n and store this vector. SetI = I ∪ {n−mc}.

(b) Setmc =mc − 1. If mc = 0, setn= n− 1 and stop.
(c) Fork = n,n+ 1, . . . , n+mc − 1, setv̂k = v̂k+1.
(d) Repeat all of Step (1).

(2) (Normalizev̂n to obtainvn.)
Set

gn,n−mc = ‖v̂n‖2 and vn = v̂n

gn,n−mc

.

(3) (Orthogonalize the candidate vectors againstvn.)
For k = n+ 1, n+ 2, . . . , n+mc − 1, set

gn,k−mc = vHn v̂k and v̂k = v̂k − vn gn,k−mc.

(4) (Advance the block Krylov subspace to getv̂n+mc.)
(a) Setv̂n+mc =Mvn.
(b) Fork = 1,2, . . . , n, set

gk,n = vHk v̂n+mc and v̂n+mc = v̂n+mc − vk gk,n.

(5) (a) Fork ∈ I, setgn,k = vHn v̂
defl
k .

(b) Set

G
(pr)
n = [ gi,k ]i,k=1,2,...,n ,

ρ
(pr)
n = [ gi,k−m ]i=1,2,...,n;k=1,2,...,kρ ,

wherekρ =m+ min{0, n−mc}.
(6) Check ifn is large enough. If yes, stop.
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Note that, in contrast to the band Lanczos algorithm, the band Arnoldi process re-
quires the storage of all previously computed Arnoldi vectors.

Like the band Lanczos algorithm, the band Arnoldi process can also be employed
to reduced-order modeling. LetM , R, andL be the matrices defined in (2.15). After
running Algorithm 3.2 (applied toM andR) for n steps, we have obtained the matrices
G
(pr)
n andρ(pr)

n , as well as the matrixVn of Arnoldi vectors. The transfer functionHn of
a reduced-order modelHn can now be defined as follows:

Hn(s)=
(
V Hn L

)H (
I − (s − s0)V

H
n MVn

)−1(
VHn R

)
.

Using the relations (3.16) forG(pr)
n andρ(pr)

n , the formula forHn reduces to

(3.17)Hn(s)=
(
V Hn L

)H (
I − (s − s0)G

(pr)
n

)−1
ρ
(pr)
n .

The matricesG(pr)
n andρ(pr)

n are directly available from Algorithm 3.2. In addition, one
also needs to compute the matrix

η
(pr)
n = VHn L.

It turns out that the transfer function (3.17) defines a matrix-Padé-type reduced-order
model.

THEOREM 3.2 (Matrix-Padé-type model (FREUND [2000b], ODABASIOGLU [1996])).
Suppose that Algorithm3.2 is run with exact deflation only and thatn�m. Then, the
reduced-order model associated with the reduced-order transfer function(3.17) is a
matrix-Padé-type model of the linear dynamical system(2.1)and (2.2). More precisely,
the Taylor expansions abouts0 of the transfer functions,H , (2.8)and,Hn, (3.17)agree
in at least

q ′(n)�
⌊
n

m

⌋
leading coefficients:

(3.18)H(s)=Hn(s)+O
(
(s − s0)

q ′(n)).
REMARK 3.4. The numberq ′(n) is the exact number of terms matched in the expan-
sion (3.18) provided that no exact deflations occur in Algorithm 3.2. In the case of exact
deflations, the number of matching terms is somewhat higher, but so is the number
of matching terms for the matrix-Padé model of Theorem 3.1; see FREUND [2000b].
In particular, the matrix-Padé model is always more accurate than the matrix-Padé-type
model obtained from Algorithm 3.2. On the other hand, the band Arnoldi process is cer-
tainly simpler than the band Lanczos process. Furthermore, the true orthogonality of the
Arnoldi vectors in general results in better numerical behavior than the bi-orthogonality
of the Lanczos vectors.

REMARK 3.5. For the special case of RCL subcircuits, the algorithm PRIMA proposed
in ODABASIOGLU [1996], ODABASIOGLU, CELIK and PILEGGI [1997] can be inter-
preted as a special case of the Arnoldi reduced-order modeling procedure described
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here. Furthermore, in FREUND [1999a], FREUND [2000b] it is shown that the reduced-
order model produced by PRIMA is mathematically equivalent to the additional passive
model produced by SyMPVL. In contrast to PRIMA, however, SyMPVL also produces
a true matrix-Padé model, and thus PRIMA does not appear to have any real advantage
over or be even competitive with SyMPVL.

REMARK 3.6. An improved variant of PRIMA is the SPRIM reduction algorithm,
which was recently proposed by FREUND [2004c]. While PRIMA generates provably
passive reduced-order models, it does not preserve other structures, such as reciprocity
or the block structure of the circuit matrices, inherent to RCL circuits. This has moti-
vated the development of algorithms such as ENOR (SHEEHAN [1999]) and its variants
(CHEN, LUK and CHEN [2003]) that generate passive and reciprocal reduced-order
models, yet still match as many moments as PRIMA. However, the moment-matching
property of the PRIMA models is not optimal. SPRIM overcomes these disadvantages
of PRIMA. In particular, SPRIM generates provably passive and reciprocal macromod-
els of multi-port RCL circuits, and the SPRIM models match twice as many moments
as the corresponding PRIMA models obtained with identical computational work. For
a detailed description of SPRIM and its properties, we refer the reader to FREUND

[2004c]. Here, we only present one example, which is taken from FREUND [2004c].
The example is a circuit resulting from the so-called PEEC discretization (RUEHLI

[1974]) of an electromagnetic problem. The circuit is an RCL network consisting of

FIG. 3.5. |H2,1| for PEEC circuit.
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2100 capacitors, 172 inductors, 6990 inductive couplings, and a single resistive source
that drives the circuit. The circuit is formulated as a 2-port. We compare the PRIMA
and SPRIM models corresponding to the same dimensionn of the underlying block
Krylov subspace. The expansion points0 = 2π × 109 was used. In Fig. 3.5, we plot
the absolute value of the(2,1) component,H2,1, of the 2× 2-matrix-valued transfer
function over the frequency range of interest. The dimensionn = 120 was sufficient
for SPRIM to match the exact transfer function. The corresponding PRIMA model of
the same dimension, however, has not yet converged to the exact transfer function in
large parts of the frequency range of interest. Fig. 3.5 clearly illustrates the better ap-
proximation properties of SPRIM due to the matching of twice as many moments as
PRIMA.

4. Schur interpolation

4.1. The setting

The modeling of physical effects often produces large, positive definite Hermitian ma-
trices. For example, the modeling of interconnects in an integrated circuit produces in
first instance a full elastance matrixG from which a sparse approximating capacitance
matrix C has to be derived. Likewise, the behavior of the substrate of an integrated
circuit is modeled by a conductivity matrix, and the inductive behavior of the inter-
connects by an inductance matrix. These matrices are positive definite, because they
express either conservation of energy or dissipation. It is a non-trivial problem to find
low-complexity approximations to a positive definite matrix, which are positive definite
in their own right. For example, ifG = [Gi,j ] is positive definite, then the matrixGa
obtained by putting elements outside a given band equal to zero, i.e.,(Ga)i,j =Gi,j for
|i − j | < n somen, and zero otherwise, will not necessarily be positive definite. If a
matrix is diagonally dominant, then putting some off-diagonal elements equal to zero
while keeping the Hermitian property would preserve the dominance and hence also the
positive definiteness. We shall analyze some of the properties of such schemes soon. An
important observation is that properties such as “banded” and “diagonally dominant”
are not preserved under inversion: the inverse of a banded matrix is not banded (except
when the matrix is block diagonal) and the inverse of a diagonally dominant matrix is
not diagonally dominant. Consider for example the matrix (for reala)

Ma =
[ 1 a a2

a 1 a

a2 a 1

]
.

It is positive definite for|a|< 1 with inverse

M−1
a = 1

1− a2

[ 1 −a 0
−a 1+ a2 −a
0 −a 1

]
.

If we truncateMa by putting(Ma)1,3 = (Ma)3,1 = 0, then the resulting matrix will be
positive definite only when in additiona � 1/

√
2. We see that the inverse ofMa is
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diagonally dominant for|a| < 1 while that is only the case forMa whena < (
√

5 −
1)/2. So, why would it be better to truncate a matrix rather than its inverse? A related
issue is whether the inverse of a banded matrix has the same computational complexity
as the original. Further in this section we shall develop a nice theory that is capable of
answering such questions.

Another approach would be to perform the approximation on a Cholesky factorR

whereG = RHR, R is upper triangular andRH represents the Hermitian conjugate
of R, rather than on the original matrix. Assuming that the off-diagonal elements of
R become small the farther they are located from the main diagonal, it makes sense
to approximateR by a banded matrix. Also, approximatingR by some approximant
Ra will produce automatically an approximantGa = RHa Ra that is positive definite.
At first sight it would appear that it is not any better to approximate the square root
than the original – anε relative error on the square root of a scalar quantity would
roughly produce a 2ε error on the square. The situation with matrices is, however, vastly
different, since the condition number of the square root of a (positive definite) matrix,
or of its Cholesky factor is just the square root of the original. Still the question arises
whether a direct, element-wise approximation of the square root would be a “good”
approximation technique, in the sense of either strong norms or complexity? What we
need is a theory to gauge both complexity and approximation error. In addition, we
would like the approximation procedure to be as simple as possible, for example, it
should use a minimal amount of computations in its own right.

We start out this section with the celebrated theory of maximum-entropy interpolation
of positive definite matrices. It gives a good stronghold on low-complexity approxima-
tion when “low-complexity” is understood as minimizing the number of independent
algebraic parameters, e.g., by putting a sufficient number of elements in the matrix or
its inverse zero. Immediately the question arises when the sparsity pattern of a positive
definite matrix is preserved in its Cholesky factors. This question also has a very neat
answer, namely when the matrix entries exhibit a “chordal pattern”. In that case, the
maximum-entropy interpolant can be found directly, in a minimal number of compu-
tations equal to the number of non-zero entries in the matrix, by a matrix interpola-
tion algorithm that is a matrix version of the celebrated Schur interpolation algorithm
of complex function analysis. The approximating properties of Schur’s algorithm are
known and we shall spend a few words explaining them. Finally, we shall show ways
of generalizing Schur’s algorithm to a more complex situation, namely the so-called
“multiple band case”.

4.2. Maximum-entropy interpolation of strictly positive definite matrices

Suppose that the following information on an otherwise unknown strictly positive defi-
nite (and of course Hermitian) matrixG of sizeN ×N is given:

• The diagonal elementsGk,k for all k = 1,2, . . . ,N ;
• Some off-diagonal elements, characterized by a setS : if (i, j) ∈ S thenGi,j is

known. SinceG is Hermitian, we restrict elements ofS to be in the strictly upper
triangular zone wherei < j .
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This information is known as “interpolating conditions”. The question we ask is:is it
possible to find a positive definite matrixGa which has the assigned element values on
the main diagonal and the setS , and is otherwise in some sense “of minimal complex-
ity”?

It turns out that this question has a nice definite answer if “complexity” here is un-
derstood to mean: “the value of the off-diagonal elements(G−1)i,j is zero for(i, j)
not in S”. A comfortable treatment of the theory leading to this result requires the in-
troduction of the notion of “entropy of a strictly positive matrixH ”, originating from
stochastic system theory and which is given by the (finite) quantity:

E(H)= log detH.

The following theorem is valid.

THEOREM 4.1. Suppose that the diagonal elementsGk,k and some off-diagonal ele-
ments belonging to an off-diagonal set of indicesS of a strictly positive definite matrix
G are given. Then, there exists a unique strictly positive definite matrixGa such that
Ga interpolates the given entries, i.e.,(Ga)i,j = Gi,j for i = j and (i, j) ∈ S , and
which is such that(G−1

a )i,j = 0 for (i, j) not inS . ThisGa also maximizes the entropy
E(H)= log detH over allH that meet the interpolation conditions.

SKETCH OF PROOF. Suppose thatH is a strictly positive definite matrix depending on
some parameterξ . The differential of the entropy with respect toξ is then given by

∂

∂ξ
logdetH = 1

detH

∂ detH

∂ξ
.

Let us observe that the dependency of detH on a given entryHi,j can be expressed
using the Cramer minor expansion based on the rowi:

detH =
N∑
k=1

Hi,kMi,k,

whereMi,k is the minor corresponding to the element at the position(i, k). The minor
Mi,k does not depend on any element in theith row of H , in particular it does not
depend onHi,j – the determinant is linear in that element. Let nowξ =Gi,j for some
(i, j) not in S , corresponding to the position of an element that must be determined.
Since the logdetH surface is smooth over the space of parameters to be determined,
an extremum will only occur if each possibleξ is chosen so that the variation of the
entropy with respect toξ is zero (or else at the border of feasibility, but that situation
cannot lead to a maximum since the border corresponds to matrices whose determinant
is zero). The variation forξ =Gi,j onG is now given by:

∂

∂ξ
logdetG= 1

detG

∂ detG

∂ξ
= Mi,j

detG
= (G−1)j,i .

Hence the top of the entropy surface in the parameter space of the unknown entries of
the matrixGa , i.e., the entries not inS , must correspond to a strictly positive definite
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extensionGa of G for which (G−1
a )i,j = 0. The proof now terminates by showing that

this top exists and is unique. This must be reasonable in view of the fact that there is a
uniform upper bound on the entropy, namely

N∑
k=1

logGk,k.

This bound can be obtained through recursive evaluation via Cholesky decomposition,
and the fact that the interpolating set is convex, ifH1 andH2 are strictly positive definite
and interpolating, so iskH1 + (1− k)H2 for 0� k � 1. �

Hence the maximum-entropy extension of entries of a strictly positive definite matrix
does exist, and it produces a sparse inverse matrix! This is already a very useful result for
model reduction of, for example, capacitive models of IC interconnects, as we shall soon
see. However, it is a theoretical result in that the proof of existence does not produce a
direct algorithm to compute the result. One may resort to dynamic optimization, and,
indeed, that should lead to a solution, but maybe a problematic one, first because it
leads to complex computations involving all the elements outside the interpolating set,
and second because the entropy surface is most likely very flat, making the optimum
hard to find even though there are very good algorithms for convex optimization. Hence
it pays to find a way of computing the solution directly on the basis of the known data,
if possible. This question is related to the question whether a sparsity pattern in an
original, strictly positive definite matrixG is preserved in the Cholesky factorL, where
G= LLH , a question which we now address.

4.3. Chordal systems

Assume that we are given a strictly positive definite matrixG whose diagonal elements
are known and which is otherwise sparse with upper triangular sparsity patternS , i.e.,
Gi,j = 0 for (i, j) with i < j not belonging toS (G is of course Hermitian). Connected
to S there is asparsity graphdefined as follows:

• Nodes: there areN nodes corresponding to theN rows of the matrix;
• Edges: there is an edge between nodei and nodej iff (i, j) ∈ S , assumingi < j .

For example, a matrix with fillings

(4.1)


∗ ∗ · ∗ ·
∗ ∗ ∗ · ∗
· ∗ ∗ ∗ ·
∗ · ∗ ∗ ∗
· ∗ · ∗ ∗


has the sparsity graph shown in Fig. 4.1.

We say that a sparsity graph ischordalwhen there is no loop of more than three nodes
that has no chord in the graph, a chord being a direct connection between two nodes
(with reference to a polygone). The graph shown in Fig. 4.1 is non-chordal, the loop
1-2-3-4-1 has no chords (and there are more such loops). It turns out that the Cholesky
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FIG. 4.1. Sparsity graph of the matrix template (4.1).

factorization of a positive definite matrix with chordal sparsity graph will suffer no fill-
ins provided it is executed in the right order. To find that order we need another property
of chordal graphs.

We shall say that a node of a graph has anadjacent cliqueif the subgraph consisting
of that node and the nodes directly connected to it together with the edges connecting
these nodes form a clique, i.e., are fully connected. A chordal graph now has the two
following properties:

• The graph obtained by deleting one node with the edges connected to it is chordal;
• It has at least one node which has an adjacent clique.

The first property is almost evident, while the second property can be proven recursively
on the number of nodes. Hence, a reordering and peeling off of the nodes of a chordal
graph is possible whereby each node in turn has an adjacent clique in the remaining
graph: start with such a node in the original graph, remove it with its connecting edges
and continue recursively. Finding a node with an adjacent clique can be done in less
thanN2 steps, hence the complexity of the reordering is certainly polynomial inN .

With this reordering of nodes, performing the Cholesky factorization in the order of
peeling will not produce any fill-ins, exactly because of the adjacent clique property at
each step. The converse is “generically” true as well, if a Cholesky factorization does
not result in fill-insgenerically(an element might accidentally become zero), then the
sparsity graph must be chordal as well. It turns out that the maximum-entropy inter-
polant of a matrix with chordal sparsity pattern can be computed directly on the given
entries, the famous algorithm to do so is the generalized Schur algorithm described
in the next subsection. Unfortunately, many problems in modeling or reduced mod-
eling of integrated circuits involve strictly positive definite matrices that do not have
chordal sparsity patterns. In particular, multiband patterns are almost essentially non
chordal and hence will need additional, non-exact techniques for reduced modeling.
This question is treated in the section on multiband generalization. A special case of
a chordal graph is a graph representing a staircase filling, i.e., a filling correspond-
ing to a non-regular band. One would obtain such a graph if in the order of nodes
with adjacent cliques, each node in turn belongs to the adjacency set of its predeces-
sor.
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4.4. Schur’s algorithm in the chordal case

We are now ready to introduce the generalized matrix Schur algorithm, originally pre-
sented as an estimation algorithm in DEPRETTERE[1981], and whose matrix properties
were analyzed in DEWILDE and DEPRETTERE[1987]. The application of the algorithm
to reduced modeling of integrated circuits was given in DEWILDE [1988]. We utilize the
algebraic framework of the latter paper, slightly generalizing it to cover chordal spar-
sity in addition to staircases. Let the original,N ×N strictly positive definite matrix be
G= [Gi,j ] and letD be its main diagonal:

D = diag(G1,1,G2,2, . . . ,GN,N).

It is advantageous to work with a normalized version ofG, for theoretical purposes if
not for numerical ones. Hence, let

g =D−1/2GD−1/2.

The matrixg will have all its diagonal elements equal to one (the situation could be
generalized to the case where all the entries inG are in fact matrices, the block case,
but for simplicity of explanation we keep the procedures scalar and shall indicate later
on how to handle the block-matrix case). Let us assume, moreover, that the nodes are
put in a correct adjacent-clique order, the staircase order will do if available.

4.4.1. A side excursion: the classical Schur parametrization case
Before engaging in the description of the matrix Schur algorithm, let us make a brief
side excursion to the original algorithm involved in Schur’s parametrization of a contrac-
tive, analytic function on the unit discD = {z: |z|< 1} of the complex plane. Suppose
that

s(z)= s0 + s1z+ s2z
2 + · · ·

is such a function, represented by its MacLaurin series. The question answered by the
Schur parametrization is whether the given MacLaurin series does indeed correspond to
a contractive function. To start, either|s0| = 1 ands(z) reduces to a constant of modulus
one (by the maximum modulus theorem of complex analysis), or|s0|< 1 and then a new
contractive function which is analytic inD may be derived froms(z) via the recipe:

s(1)(z)= s(z)− s0

z(1− s0s(z))
= s

(1)
0 + s

(1)
1 z+ · · · .

Notice that the transformation

s (→ s − s0

1− s0s

maps the unit disc onto itself. The procedure may be repeated ons(1)(z), yielding a
criterion ons(0)0 and a news(2)(z), and then recursively continued further. Letρ0 = s0,

ρ1 = s
(1)
0 , . . . be the so-called “Schur parameters” fors(z). In an inverse scattering con-

text where they often appear, theρk ’s are also called reflection coefficients. The se-
quence of Schur parameters of a contractive function that is analytic inD is either finite,
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in which case the last coefficient is of unit modulus, or infinite, and then all Schur para-
meters are less than one in modulus. The Schur parameters determines(z) uniquely, just
as thesk ’s do, one series can be converted into the other and vice versa. In his famous
1917 paper, SCHUR [1917] demonstrates thats(z) is contractive in the unit disc iff the
Schur parametrization satisfies one of these two properties – this is the Schur criterion
for contractivity (the proof is in fact pretty straightforward). The transformation that
leads froms(k)(z) to s(k+1)(z) is obviously bilinear. It can be linearized if it is put in
matrix form. Let us write for that purpose

s(n)(z)= δ(n)(z)

γ (n)(z)
.

Then the following linear recursion produces the same effect as the original Schur para-
metrization

z
[
γ (n+1)(z) δ(n+1)(z)

]= [
γ (n)(z) δ(n)(z)

] 1√
1− |ρn|2

[
z −ρn

−ρn 1

]
when the Schur parameter chosen as

ρn = δ(n)(0)

γ (n)(0)

is less than one in magnitude (the square roots are included for normalization purposes,
they may be dispensed with in practical computations). The recursion is started with
[γ (0)(z) δ(0)(z)] = [1 s(z)]. Aside from a shift represented byz, the Schur recursion
involves transformations with a hyperbolic matrix, sometimes called a Halmos transfor-
mation and defined as

H(ρ)= 1√
1− |ρ|2

[
1 −ρ

−ρ 1

]
.

Let us define the signature matrix

J =
[

1
−1

]
.

Then, we compute easily thatH(ρ)J (H(ρ))H = (H(ρ))HJH(ρ) = J , which repre-
sents the hyperbolic property.

The original Schur theory works on a contractive functions(z). Alternatively, one
could start from what is known as apositive real functionφ(z), i.e., a function that is
analytic inD and such that Re(φ(z))= (φ(z)+φ(z))/2 � 0 in D. The Cayley transfor-
mation relates a contractive functions(z) to apositive real functionφ(z) (i.e., a function
with positive real part Re(φ(z)) for all z in the unit disc):

s(z)= φ(z)− 1

φ(z)+ 1
.

Schur’s parametrization provides a test for positive reality on the sequence de-
fined by the MacLaurin expansion ofφ, the linearized recursion can now be started
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with [
γ (0)(z) δ(0)(z)

]= 1
2

[
φ(z)+ 1 φ(z)− 1

]
.

After n+ 1 steps it will yield

1
2

[
φ(z)+ 1 φ(z)− 1

]
θ0(z)θ2(z) · · · θn(z)= zn

[
γ (n)(z) δ(n)(z)

]
with eachθi(z) representing an elementary Schur step. Let us introduce the para-
Hermitian conjugate of a function ofz asf ∗(z)= f (1/z). In the Schur parametrization
theory (see, e.g., DEWILDE, VIEIRA and KAILATH [1978]), one deduces that the over-
all Schur matrixΘn(z)= θ0(z)θ1(z) · · · θn(z) has the form

Θn(z)= 1

2

[
(1+ φ∗

n(z))T
−∗
rn (z) (1− φn(z))T

−1
f n (z)

(1− φ∗
n(z))T

−∗
rn (z) (1− φn(z))T

−1
f n (z)

]
in whichφn(z) is also PR inD, Trn(z) andTfn(z) are analytic inD and

φn(z)+ φ∗
n(z)

2
= Trn(z)T

∗
rn(z)= T ∗

f n(z)Tf n(z).

(Notice that the para-Hermitian conjugate is equal to the Hermitian conjugate only
on the unit circle.) Outside the unit circle it is its analytic continuation, when de-
finable. Often in the engineering literature, the para-Hermitian conjugate is de-
noted by a sub-star, in contrast to the upper star, which is often interpreted as
equal to complex conjugation. Here we use upper star, to indicate that the upper-
stared quantity corresponds in fact to the analytic continuation of the adjoint in the
Fourier domain on the unit circle). One of the central properties ofφn(z), result-
ing from the Schur parametrization, is that it interpolates the originalφ(z) to or-
dern:

φ(z)= φn(z)+ zn+1r(z)

in which r(z) is analytic inD. Remark also thatφ−1
n (z) is polynomial henceφn(z)

is of the “autoregressive type”. The theory of maximum entropy interpolation is well
developed in complex function theory, and it is satisfied byφn(z) as a maximum en-
tropy interpolant of ordern for φ(z), whereby the entropy measure now must be taken
as ∫ π

−π
logRe

(
φ(ξ)

) dξ

2π
.

4.4.2. The matrix case
In the matrix case, the hyperbolic transformation will play a role similar to the complex
case. We embed the Halmos transformation in an otherwise unitary matrix and index its
position, much as is done in the classical QR algorithm based on Jacobi transformations.
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This leads to 2N × 2N hyperbolic matricesθi,j (ρ) of the form



1 0
. . .

. . .

1 0
1√

1−|ρ|2 0 . . . 0 · · · 0 − ρ√
1−|ρ|2

0 1 0 0
...

. . .
. . .

...

1 0
1 0

1 0
. . .

. . .

1 0
0 1
. . .

. . .

0 1
0 1

0 1
...

. . .
. . .

...

0 0 1 0
− ρ∗√

1−|ρ|2 0 · · · 0 0 · · · 0 1√
1−|ρ|2

0 1
. . .

. . .

0 1


in which the elements of the elementary hyperbolic transformation are on the intersec-
tions of rowsi andN + j with columnsi andN + j . Similar as in the complex case
we will use it to eliminate entries in an appropriate linearization. We give the analog
for Schur’s algorithm in the matrix case first before motivating it. This simplifies the
discussion, but an alert reader will recognize the similarities with the complex case.
First we define the equivalent of the functionφ(z) (as announced earlier we work on a
normalized version ofG, although this is not strictly necessary):

Φ =


1 2g1,2 2g1,3 · · · 2g1,N
0 1 2g2,3 · · · 2g2,N
0 0 1 · · · 2g3,N
...

...
...

. . .
...

0 0 0 · · · 1

 .
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Henceg = 1
2(Φ +ΦH), whereAH indicates the Hermitian conjugate of the matrixA.

We define as initial data

Γ0 =


1 g1,1 · · · g1,N
0 1 · · · g2,N
...

...
. . .

...

0 0 · · · 1

 , ∆0 =


0 g1,1 · · · g1,N
0 0 · · · g2,N
...

...
. . .

...

0 0 · · · 0

 .
Hence we have

[ Γ0 ∆0 ] = 1
2 [Φ + I Φ − I ] .

Let S0 = Γ −1
0 ∆0. We see that

g = Φ +ΦH

2
= 1

4(Φ + I )
(
I − S0S

H
0

)(
ΦH + I

)
,

and henceS0 is a contractive matrix in the sense thatS0S
H
0 6 I . We shall say that

a couple ofN × N upper triangular matrices[Γ ∆] are (strictly) admissibleif Γ is
invertible andΓ −1∆ is (strictly) contractive. Define the 2N × 2N signature matrix

J =
[
IN

−IN
]
,

whereIN is the unit matrix of dimensionN . If Θ is a 2N × 2N is aJ -unitary matrix,
i.e.,

ΘJΘH =ΘHJΘ = J,

then any transformation of an admissible[Γ ∆] on the right withΘ will yield a new
matrix

[ Γ ′ ∆′ ] = [ Γ ∆ ]Θ,

which is (strictly) admissible when the original is (strictly) admissible. A product of
J -unitary matrices will itself beJ -unitary as well.

The Schur elimination procedure based on the chordal setS will consist in apply-
ing a sequence of elementary Halmos transformations on recursively computed ad-
missible matrices, starting with[Γ0 ∆0], in the adjacent-clique order on the inter-
polation data. Each Halmos transformation is intended to eliminate one off-diagonal
entry corresponding to a position in the setS . Let the matricesG, g, Γ0, ∆0 be or-
dered in the adjacent-clique order, and suppose that the elements ofS in row i are
given by(i, ni,1), (i, ni,2), . . . , (i, ni,mi ) wherei < ni,1 < · · ·< ni,mi (the set may even
be empty of course). We shall perform the elimination procedure in the strict order
(1, n1,1), (1, n1,2), . . . , (2, n2,1), . . . . Let us number these steps by the integerK . At
stepK corresponding to, say, the predecessor of(i, ni,k), we have available an admis-
sible pair[ΓK ∆K ], which is such that the elements(∆K)i,j have been annihilated for
all pairs(i, j)’s in the elimination list preceding(i, ni,k). The new step will annihilate
(∆K)i,ni,k and use for that purpose an elimination matrix of the Halmos type, namely
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Hi,ni,k (ρi,ni,k ) with

ρi,ni,k = (ΓK)
−1
i,ni,k

(∆K)i,ni,k .

At least three remarks are important here:
• The element(∆K+1)i,ni,k is set equal to zero by the elimination procedure;
• The elements that were put to zero in previous steps remain zero in all the subse-

quent eliminations because of the adjacent-clique order;
• There are no fill-ins, also due to the adjacent-clique property at each step.

After completion of all the steps, an overall elimination matrixΘt results given by

Θt = θ1,n1,1θ1,n1,2 · · · θN,nN,mN
and finally

[ Γt ∆t ] = [ Γ0 ∆0 ]Θt

are obtained, in which all the elements belonging to the setS in ∆t have been annihi-
lated (as well as all the diagonal elements due to the initial normalization). In parallel,
the entries inΘt are essentially constrained to the diagonal, the setS and its reflection.
To make this statement more precise, let

Θt =
[
Θ1,1 Θ1,2
Θ2,1 Θ2,2

]
.

Then, the non-zero entries ofΘ1,1 are restricted to diagonals andS∗, those ofΘ2,2
to diagonals andS while the non-zero entries ofΘ1,2 are restricted toS and those
of Θ2,1 are restricted toS∗. This follows also from the special structure ofS and the
order in which the eliminations have been done. We shall call such aJ -unitary matrix
“S-based”. The following theorem from DEWILDE and DEPRETTERE[1987] holds.

THEOREM 4.2. AnS-basedJ -unitary matrixΘt has the form

1

2

[
(I +ΦH

t )L
−H
t (I −Φt)M

−1
t

(I −ΦH
t )L

−H
t (I +Φt)M

−1
t

]
in whichΦt , Lt andMt are upper triangular matrices,Φt has unit main diagonal,Lt
andMt are invertible, and in addition

Φt +ΦH
t

2
= LtL

H
t =MH

t Mt .

The Schur procedure executed as detailed above yields the following interpolation
result.

THEOREM 4.3 (DEWILDE and DEPRETTERE[1987]). Let gt = 1
2(Φt + ΦH

t ) be the
result of the Schur elimination procedure based on the chordal setS . Then,

(g − gt )i,j = 0 for (i, j) ∈ S



Reduced-order modeling 863

and, in particular,

Φ −Φt = 2∆tMt ,

where∆t is defined by[Γ0 ∆0]Θt = [Γt ∆t ].

Given the theory developed so far, the two theorems are not too hard to prove. The
Schur recursion necessitates a number of elementary Halmos transformations precisely
equal to the number of elements in the interpolation setS , and it produces the desired
maximum-entropy interpolant, due to the fact that the appropriate entries in the inverse
matrix are zero. Notice also thatL−1

t andM−1
t have supports onS and the diagonal,

while Lt , Mt andΦt are full matrices, which in practical calculations will never be
computed – a banded computational scheme exists for vector–matrix multiplication with
bothLt andL−1

t , see DEWILDE and DEPRETTERE[1987].

4.5. Generalizations

The preceding theory works only for matrices with a chordal sparsity pattern. Can the
theory be extended to more general types of matrices, in particular to matrices with
multiple bands, as often occur in 2D or 3D finite element or finite difference problems.
We give an indication on how an approximate technique may yield satisfactory results.
We refer the reader to the literature (NELIS, DEWILDE and DEPRETTERE[1989]) for
further information. A first remark is that in some, quite common cases, a double banded
(or even multibanded) matrix can be chordal. For example, a 2n× 2n matrix with four
n× n blocks with filling pattern as in

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


is actually of chordal type and can be solved exactly using Schur matrix interpolation
(more general forms can easily be derived using the theory of adjacent cliques described
above). This result can be used to factorize more general matrices approximatively. For
example, a (positive definite) block matrix of the type[

A11 A12
A21 A22 A23

A32 A33

]
in which all the non-zero blocks are only sparsely specified and which is such that the
two submatrices

A1 :=
[
A11 A12
A21 A22

]
, A2 :=

[
A22 A23
A32 A33

]
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have chordal filling specifications has a sparse approximant for its inverse which can be
constructed from sparse approximants ofA1,A2, andA22 as follows. LetAME indicate
the maximum-entropy approximant of a sparsely specified matrixA, thenA−1

ME has
corresponding sparse fillings according to the theory developed above. In addition, let
us introduce one more bit of notation: by “�A” we mean the operation of fitting the
matrixA in a larger matrix that extends its range of indices while padding it with zeros.
A “good” approximant for the ME inverse ofA is then given by

(4.2)A−1
ME ≈ �(A1)

−1
ME + �(A2)

−1
ME − �(A22)

−1
ME.

The significance of this formula is that the inverse of the maximum-entropy interpolant
for the matrixA based on the given non-chordal definition pattern is expressed in terms
of maximum interpolants of submatrices whose definition pattern is presumably chordal
and which can hence be computed by a fast algorithm such as the Schur parametrization
given in the previous section. We give a short motivation for this result, a complete
theory with proofs is given in NELIS [1989]. The main property used is the fact that
for reasonably well-conditioned positive definite matrices with entries specified on a
given pattern, the inverse of the ME approximant of a principal submatrix is actually a
good approximation of the restriction of the inverse of the ME approximant to the same
indices as the submatrix – in matrix notation, letA(i, j) be the principal submatrix
obtained by restrainingA to the index rangei · · · j then, utilizing the same pattern of
specified entries,

(4.3)
(
A(i, j)

)−1
ME

≈ (
A−1
ME

)
(i, j).

Notice that the two matrices now have the same sparsity pattern corresponding to the
pattern given, but they are not numerically the same. This opens the way for a “calculus
of sparse inverse matrices” of the ME type. The formula (4.2) can now be interpreted as
defining block-wise approximations on the ME inverse of the original matrix, whereby
the middle matrix (corresponding to the “22” block) is repeated trice, each time with
a different approximant. There is no guarantee that (4.2) actually defines a positive
definite matrix, but since the approximants are assumed close, the approximation should
be good when the original matrix is well conditioned, a detailed error analysis can be
found in the already cited thesis by NELIS [1989]. The reason why (4.3) holds is the
fact that ME approximants actually define strong norm approximants on the Cholesky
factors. This seems to have been remarked first in DEWILDE and DYM [1981]. Formula
(4.2) generalizes to large matrices with intricate block sparsity patterns and has been
used successfully in the modern finite-element modeling program for interconnects of
integrated circuits SPACE (seeVAN DER MEIJS[1992]).

5. Hankel-norm model reduction

5.1. The setting

In this section we are interested in linear operators – of the typeT whereT induces
a linear mapy = T u – and whereT is represented by a “model”, more precisely a
model that represents the linear computations the computer actually executes, based on
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its sequential intake of data, use of memory and sequential production of results. Such
a model is called a “state-space model” because it is an instance of a classical model
for a time-varying dynamical system adapted to the computational context. We start
out with a simple but computationally intensive representation of the desired function
and we shall proceed to reduce that representation to another one with much lower
computational complexity. The model we start with will be a direct derivative of all
the known data and will therefore be of much too high complexity, called a “model of
high complexity”. Our goal will be to reduce that model to one of smallest possible
computational complexity, given a specified and acceptable tolerance on the accuracy.
Here,T may be a matrix, but it may also be an infinite-dimensional operator, the theory
that we shall present is not restricted to finite operators. In our basic framework,T will
be a lower triangular operator, it represents a “causal” transfer between the vectorsu and
y viewed as time series. If it so happens thatT does not satisfies this property, e.g., when
T is a full matrix, then we would decomposeT first either additively or multiplicatively
into lower/upper operators:T = L+U or T = LU and then approximateL and dually
U separately, but it may also be useful to move the main diagonal up so that the whole
matrix becomes lower triangular, see the special case treated later. Our theory does not
really become more complicated if we assume thatT is in fact a block matrix, i.e.,
that the entries inT are actually matrices themselves, provided dimensions in rows and
columns match. HenceT will look as follows:

T =



. . .

. . . 0 0

. . . T−1,−1 0

. . . T0,−1 T0,0 0

. . . T1,−1 T1,0 T1,1
. . .

. .
. . . .

. . .
. . .


.

Here, theTi,j block has dimensionni ×mj and represents a partial map of the vector
entryuj to an additive component ofyi in the output vector in the map:

. . .

. . . 0 0

. . . T−1,−1 0

. . . T0,−1 T0,0 0

. . . T1,−1 T1,0 T1,1
. . .

. .
. . . .

. . .
. . .





...

u−2
u−1
u0
u1
u2
...


=



...

y−2
y−1
y0
y1
y2
...


.

We identify the 0th (block-)element in a matrix by putting a square around it, and simi-
larly for the(0,0)th element of a matrix of operator for orientation purposes. The (lin-
ear) computation defined byy = T u as executed by a computer that takes the input data
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FIG. 5.1. A causal state-space realization of an operatorT : the state represents the data available for com-
putation at a given stage.

sequenceu and produces the output sequencey can be represented by a “causal model”
for T . The transfer from the input vectoru to the output vectory can indeed be written
in terms of an intermediate sequence{xk} of data which the computer stores in memory,
and so-calledrealization matricesrepresenting the computations at the sequence point
k, as:

xk+1 =Akxk +Bkuk,

yk = Ckxk +Dkuk.

This is called a “time-varying state-space representation” of the computation. The di-
mensionδk of the vectorxk is called the state dimension at pointk, and the dimensions
of the realization matricesAk ,Bk ,Ck ,Dk are respectivelyδk+1×δk , δk+1×mk , nk×δk ,
nk ×mk . A graphical representation of the state representation is shown in Fig. 5.1.

We callAk thestate transition matrixat pointk, while the other matricesBk , Ck , and
Dk stand for partial local maps input–state, state–output, and input–output, respectively,
at pointk. The system will be strictly causal whenDk = 0. It may happen that some
of the vectors and matrices are not present. For example, if a matrix is represented by
a state model, then the initial state in the representation (e.g.,x0) will not be present.
In that case we say that the dimension of the respective vector is zero, it is represented
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FIG. 5.2. The signal flow in an anticausal system.

by a place holder “·”, but there is no numerical value present (not even zero). Similarly,
the last state will also not be present when a finite matrix is represented, and disappears
accordingly.

An anticausal system – represented by an upper block matrix – may similarly have
an anticausal state realization as follows:

x′
k =A′

kx
′
k+1 +B ′

kuk,

yk =C′
kX

′
k+1 +D′

kuk.

Here, we have chosen to make the realization strictly anticausal by puttingD′
k = 0.

A graphical representation of an anticausal linear system is shown in Fig. 5.2.
It is convenient for notational purposes to assemble the realization matrices in diago-

nal matrices or operators with appropriate dimensions. So we define:

A=


. . .

A−1

A0
A1

. . .

 , B =


. . .

B−1
B0

B1
. . .

 ,
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and so forth. Introducing also the causal shift matrix:

Z =


. . .
. . . 0

I 0
I 0

. . .
. . .

 ,
we see that the original operatorT can be expressed in terms of these diagonal matrices
as follows:

T =D+C(I −ZA)−1ZB.

This generalizes the classical representation matrix for stationary discrete time systems,
whereZ now replaces the classical causal shiftz (notice, however, that the unit matrices
in Z may have different dimensions and thatZ does not commute with matrices in the
sense thatZA �=AZ, as the scalar shift “z” would). Some care must be exercised when
one interprets these formulas in the case of finite matrices. The block diagonals,A, B,
C,D, andZ are all block matrices or operators with appropriate dimensions. So,A will
map a state sequence of dimensions. . . , δ−1, δ0 , δ1, . . . to . . . , δ0, δ1 , δ2, . . . , andZ

applied to the same state sequence will map to. . . , δ−2, δ−1 , δ0, . . . . Numerically,Z
will be a perfect unit matrix in the finite case, but its block decomposition will make it
look like the shift matrix that it is, for a shift on a finite sequence will keep the numerical
values of that sequence, but will shift their indices! The inverse in the formula forT can
be interpreted in a purely formal sense as meaning(I−AZ)−1 = I+AZ+(AZ)2+· · ·,
but the series will of course also converge in the operator sense, ifAZ is idempotent
(which would be the case with finite matrices) or if(AZ)k converges to zero quickly
enough. To make the notion of convergence more precise, we introduce a norm on the
input and output spaces, namely the"2 or quadratic norm:

‖u‖ =
√∑

j

‖uj‖2,

where the‖uj‖ is the usual Euclidean norm on a vector (square root of the sum of
magnitudes square of the entries). In this paper we treat operatorsT that are bounded
as maps between input and output spaces endowed with the quadratic norm (this corre-
sponds to theL∞ norm on the unit circle in the classical case). A sufficient condition
for this is that the spectral radius ofAZ is strictly less than one, in which case the Neu-
mann seriesI +AZ+ (AZ)2 +· · · converges in norm. If that is the case we say that the
realization forT is uniformly exponentially stableor ues(exponential stability of time-
varying systems is extensively treated in the time-varying literature). To characterize
this case further we define:

"A = σ(ZA)= lim
n→∞

∥∥(ZA)n∥∥1/n

and a system realization will be ues if"A < 1. The “Z” can be taken out of the for-
mula for"A if we define the South-East diagonal shift (with “∗” indicating the adjoint
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operator):

A(1) = ZAZ∗

so that

"A = lim
n→∞‖AA(1)A(2) · · ·A(n−1)‖1/n.

The “continuous product” that appears in the formula is useful for other purposes.
In particular, if we express the block entries inT in terms of a realization, we obtain,
for i > j , Ti,j = CiAi−1 · · ·Aj+1Bj , and we see that the entries become (uniformly)
exponentially small for largei − j when"A < 1. In a later section, we shall see how
we can recover a realization from the entries inT , but before doing so we turn to some
more definitions and properties in the basic framework.

5.1.1. Lyapunov transformations
A state realization for an operator or matrix is not unique, even when it is minimal.
In fact, we can permit ourselves a state transformation that introduces at each pointk a
transformed statex′

k related to the original viaxk =Rkx
′
k where the state transformation

matrixRk is non-singular for eachk. In the case of infinite systems we usually require
even more, namelyRk andR−1

k should be uniformly bounded overk. Such transfor-
mations we call “Lyapunov transformations”. They have the nice property that they are
preserving the exponential stability of the realization. Under the state transformation, a
causal realization transforms as follows:

(5.1)

[
Ak Bk
Ck Dk

]
(→
[
R−1
k+1AkRk R−1

k+1Bk
CkRk Dk

]
,

or, when expressed in the global diagonal notation:[
A B

C D

]
(→
[
(R(−1))−1AR (R(−1))−1B

CR Dk

]
.

State transformations are very important not only to achieve canonical representations
discussed below, but also to obtain algebraically minimal calculations – see Chapter 14
of DEWILDE andVAN DER VEEN [1998].

5.1.2. Input/output normal forms
We say that a realization is inoutput normal formwhen

A∗A+C∗C = I

i.e.,A∗
kAk +C∗

kCk = I for eachk. From (5.1) and puttingMk = R−∗
k R−1

k , we see that
a realization can be brought to output normal form if a bounded and invertible solution
exists to the recursive set ofLyapunov–Steinequations

A∗
kMk+1Ak +C∗

kCk =Mk,

or, equivalently, ifA∗M(−1)A+C∗C =M has a boundedly invertible diagonal operator
M as a solution. The existence of the solution has been much studied in Lyapunov
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stability theory, we suffice here with some facts. If the original realization is ues (i.e.,
if "A < 1), then the Lyapunov–Stein equation always has a bounded solutionM . The
solutionM can be expressed as the so-called observability Gramian:

M =
∞∑
k=0

(
A{k})∗(C∗C)(−k)

(
A{k}),

where we have put

A{k} =A(−k+1) · · ·A(−1)A

and the sum converges in norm because of the ues assumption. The state transformation
needed to bring the system in output normal is then obtained fromM−1 = RR∗. The
problem with its existence is whetherM is boundedly invertible. We shall say that the
system isstrictly observableif that is the case. In the sequel we shall normally assume
this property to be valid.

5.1.3. Realization theory and canonical spaces
One may wonder when a causal transfer operatorT has a finite-dimensional realization
at each time pointk. It turns out (see DEWILDE andVAN DER VEEN [1998]) that this
will be the case iff eachkth order operator

Hk :=


Tk+1,k Tk+1,k−1 Tk+1,k−2 · · ·
Tk+2,k Tk+2,k−1 Tk+2,k−2 · · ·
Tk+3,k Tk+3,k−1 Tk+3,k−2 · · ·
...

...
...


has finite rankδk . We call these operators local Hankel matrices, and their rankδk actu-
ally gives the minimal state dimension needed at pointk. The here defined Hankel op-
erators do not have the classical Hankel structure (elements equal along anti-diagonals),
but they do fit the general functional definition of Hankel operators as exemplified in
Fig. 5.3, where the matrices are shown in a graphical way (notice that the columns in
the picture are in reverse order, the definition of theHk fits the classical matrix repre-
sentation).

Realization theory shows that any collection of minimal factorizations of allHk will
produce a minimal realization. If we express the Hankel operators in terms of a state



. . .
. . .

. . . Tk,k
Tk+1,k−1 Tk+1,k Tk+1,k+1
Tk+2,k−1 Tk+2,k Tk+2,k+1 Tk+2,k+2

. . .
. . .


FIG. 5.3. Generalized Hankel operators in a matrix or operator.
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space representation we have:

Hk = OkRk =
 Ck
Ck+1Ak

...

 [Bk−1 Ak−1Bk−2 · · · ] ,

and the “realization theory” is reduced to reading theAk , Bk , Ck , Dk from the factor-
ization. The columns ofOk form a basis for the columns of the Hankel matrixHk while
the rows ofRk form a basis for its rows. We shall obtain a realization in output normal
form iff the columns ofOk have been chosen orthonormal for eachk. The realization
derived from the factorization is then given by:

Bk−1 = (Rk)1, Ck = (Ok)0, Ak = O†
k+1O

↓
k ,

where(Rk)1 is the first element of the “reachability” matrixRk , (Ok)0 the top element
of the “observability” matrixOk , the “†” indicates the Moore–Penrose inverse, and the
“downarrow” onOk indicates a matrix equal toOk except for its first block-element,
which has been deleted. The matrixAk is uniquely defined because of the minimality
of the factorization, even when any general inverse is used.

5.1.4. Balanced realization
It is also possible to define a balanced realization, by using a factorization based on a
singular value decomposition of the Hankel operator:

Hk =Uk


√
σ1

. . . √
σk

 ·


√
σ1

. . . √
σk

Vk.
However, balanced realizations and approximations are only of limited use in time-
varying theory, they are unable to handle transfer operators of low rank with sparse en-
tries far from the main diagonal adequately (see DEWILDE andVAN DER VEEN [1998]).
We give them here for the sake of completeness.

5.1.5. Reachability/observability bases in terms of realizations
It is easy to produce a direct relation between realizations and reachability or controlla-
bility bases, in particular we find:

F0 = C(I −ZA)−1 =



. . .

. . . C−1

. . . C0A−1 C0 · · ·

. . . C1A0A−1 C1A0 C1

. . .
. . .

. . .
. . .

. . .


and dually

F = B∗Z∗(I −A∗Z∗)−1.
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Each block column ofF0 or F forms the basis for a local observability or controllability
space.

5.2. Hankel-norm model reduction

We are given a lower (block-)operatorT (we write:T ∈ L) that we wish to approximate
by a lower operatorTa of minimal complexity and that meets a certain pre-assigned
complexity. First we make the notion “complexity” and “meeting a pre-assigned norm”
more concrete.

5.2.1. Complexity
We identify “complexity” with “local state dimension”. Suppose indeed that at stagek

the state dimension (the total number of floating-point numbers the system has stored in
memory from its past) isδk . Then it can be shown that number, together with the dimen-
sions of the local input and output space determines the local computational complexity.
It turns out that the number of floating point operations needed at stagek is given by
1
2(mk + nk + δk)(mk + nk + δk+1 + 1) (see DEWILDE and VAN DER VEEN [1998]),
exactly equal to the number of “algebraically free parameters” at that stage.

5.2.2. Norm
What is an adequate approximating norm? In the classical model reduction context an
L∞-type norm is known to be too strong (because the polynomials or rationals are not
dense in such a space), while anL2 norm is usually too weak, because it gives rise to
undesirable phenomena like the Gibbs phenomenon. A good compromise, one that also
offers quite a bit of flexibility, is provided by the Hankel norm, i.e., the supremum of
the norms of the local Hankel operators we defined before. This is the norm we shall be
using, hence we define

‖T ‖H = sup
k

‖Hk‖.
We still need to characterize the approximation accuracy needed. We take as measure for
precision a Hermitian, strictly positive diagonal operatorΓ – in fact it could be taken as
Γ = ε · I for some small epsilon, but we may need the extra freedom of accommodating
the precision at each time point.

5.2.3. High-order model
As described earlier, we start out our model reduction by selecting an appropriate rep-
resentation of the desired computation as a high-complexity or high-order model that
can be used computationally. An example of such a high-order model is given by a trun-
cated Taylor-like series of high-enough order so that the truncation error has hardly any
impact, but other, more convenient high-order representations may be adequate as well.
If

T ≈ T0 +ZT1 +Z2T2 + · · · +ZnTn

(with n sufficiently large and where eachTk represents a shifted diagonal ofT ), then
a simple but high-complexity realization forT is given by the generalized companion
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form (in formal output normal form)

(5.2)

[
A B

C D

]
=


0 Tn
I 0 Tn−1
. . .

. . .
...

I 0 T1

0 · · · 0 I T0

 .
Expression (5.2) should be interpreted as a matrix consisting of block diagonals. At time
point k the local realization has the form

[
Ak Bk
Ck Dk

]
=


0 Tn,k
I 0 Tn−1,k
. . .

. . .
...

I 0 T1,k

0 · · · 0 I T0,k

 .
Also the shift matrixZ must be interpreted in a block fashion and now has the form

Z

Z
.. .

Z


conformal with the block-diagonal decomposition ofA. Given the higher model forT
and the precisionΓ , the model reduction problem becomes:

Find a causal operatorTa of minimal state complexity such that∥∥(T − Ta)Γ
−1
∥∥
H

� 1,

i.e.,Ta approximatesT up to a precision given byΓ . It is customary to take the higher
modelT so that it is strictly causal, i.e.,T0 = 0 and to require the same of the low-order
approximation. We follow that habit since it does not impair generality and simplifies
some properties. Before embarking on the solution and its properties, we introduce the
main ingredients needed.

5.2.4. Ingredient #1: Nehari reduction
The Nehari theorem adapted to our context is as follows.

THEOREM 5.1. For any bounded, strictly causal operatorT ,

‖T ‖H = min
T ′′∈U

‖T + T ′′‖,

where the norm in the second member is the operator norm andT ′′ is a bounded,
anticausal operator.

A proof of the Nehari theorem in the general context of nest algebras (to which our
setup conforms) goes back to the work of ARVESON[1975]. For a proof restricted to our
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specific context, see DEWILDE andVAN DER VEEN [1998]. Application of the Nehari
theorem reduces the problem to:Find a (general) bounded operatorT ′ so that its causal
partTa = PT ′ is of minimal complexity and∥∥(T − T ′)Γ −1

∥∥� 1.

5.2.5. Ingredient #2: external factorization
We are givenT ∈ L. An “external factorization” consists of finding∆ ∈ L andU ∈ L
unitary such thatT =U∆∗ (a more general type relaxes the requirement onU , see fur-
ther). This type of factorization is reminiscent of the coprime factorization of classical
system theory, whereU is an all-pass function that collects the “poles” ofT and∆∗ is
obtained asU∗T − U∗ pushes the poles ofT to anticausality. It is easy to perform an
external factorization on the state-space representation ofT , especially when it is given
in output normal form. So suppose that the realizations are given as (we use the≈ sign
to represent realizations).

Tk ≈
[
Ak Bk
Ck Dk

]
in which, for allk,

A∗
kAk +C∗

kCk = I.

Then, thekth realization matrix forU is found by completing the first block column to
form unitary matrices:[

Ak BUk
Ck DUk

]
thereby producingBUk andDUk as completing matrices. The “remainder”∆k is then
given by

∆k ≈
[

Ak BUk
B∗
k Ak +D∗

kCk
B∗
k BUk +D∗

kDUk

]
.

Algorithmically, a simplified “Householder-type” algorithm will provide the missing
data. Numerical analysts would write, somewhat equivocally[

BUk
DUk

]
=
[
Ak
Ck

]⊥
.

5.2.6. Ingredient #3:J -unitary operators
In interpolation and approximation theory,J -unitary operators of various types play
a central, if not crucial role. CausalJ -unitary operators map input spaces of the type
"
M1
2 × "

M2
2 to output spaces of the type"N1

2 × "
N2
2 , hence they are of the block type:

Θ =
[
Θ11 Θ12
Θ21 Θ22

]
.
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These spaces are endowed with a non-definite metric. We denote

JM =
[
IM1 −IM2

]
, JN =

[
IN1 −IN2

]
.

TheJ -unitary operators that we shall use will all be bounded and causal. TheJ -unitarity
means

ΘJNΘ
∗ = JM, Θ∗JMΘ = JN .

It has important consequences for the block entries ofΘ :
• Θ22 is boundedly invertible and‖Θ−1

22 ‖ ' 1;
• ‖Θ−1

22 Θ21‖ ' 1.
The operatorΘ−1

22 turns out to be of great importance in model-reduction theory. It is
most likely of mixed type (causal/anticausal). We return later to its state-space analysis.

5.2.7. Method of solution
With the ingredients previously detailed, the actual method to generate the solution
appears very straightforward. It consists of two steps:

Step 1: Perform a coprime external factorization:

(5.3)T =U∆∗

with ∆ ∈ L andU ∈ L.
Step 2: Perform an external factorization of the type:

(5.4)Θ

[
U∗

−Γ −1T ∗
]

=
[
A′

−B ′
]
.

Here,Θ is a block lower-triangularJ -unitary operator of dimensions conforming
to
[

U∗
−Γ −1T ∗

]
, A′ ∈ L, andB ′ ∈ L. The solution of the interpolation problem is now

given by

(5.5)
T ′ = B′ ∗Θ−∗

22 Γ,

Ta = strictly lower part ofT ′.
Before embarking on computational issues, we show first that this recipe indeed pro-
duces aT ′ and aTa that satisfies the norm and the minimality conditions. The norm
condition is easy to treat directly. As to the study of complexity, it will be based on
the state-space properties of the operatorΘ appearing in the specialJ -unitary external
factorization that have to be studied first.

5.2.8. The norm condition
From the second block row in (5.5), we obtain

Θ21U
∗ − Γ −1Θ22T

∗ = −B ′,

and sinceΘ22 is invertible, it follows immediately by reordering of terms that

(T − T ′)Γ −1 = [
Θ−1

22 Θ21U
∗]∗,
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where we have putT ′ = B ′ ∗Θ−∗
22 Γ . Hence,∥∥(T − T ′)Γ −1

∥∥< 1

since‖U∗‖ = 1 and‖Θ−1
22 Θ21‖< 1.

5.2.9. The construction of the specialJ -external factorization
We are looking for a minimalΘ that meets the factorization condition expressed in
(5.4). As is the case of the regular external factorization, it will be based on the com-
pletion of appropriate reachability operators. A realization for[U −T Γ −1] is given
by [

A BU −BΓ −1

C DU 0

]
whose reachability part is given by[A BU −BΓ −1], based on the realization[

A BU
C DU

]
for U (notice that in case one starts out with a companion form as detailed above, this
part of the procedure is actually trivial, we simply haveU = Zn). From the realization
theory we can deduce next that a bounded, causal uesJ -unitary operator has the prop-
erty that it possesses a realization which isJ -unitary for some, still to be determined
state signature

(5.6)JB =
[
IB+ −IB−

]
.

Hence, an appropriate state transformation should be able to produce the desiredJB and
J -unitarity based on such a signature matrix on the state. As is the case for the regu-
lar external factorization, a somewhat special reachability Gramian will play a central
role in finding this transformation. Indeed, let{Rk} be the set of state-transformation
matrices needed. Then the reachability matrices transform as[

R−1
k+1AkRk R−1

k+1(BU )k −R−1
k+1BΓ

−1
]
,

and we wish each of these matrices to be part of aJ -unitary matrix, i.e., they have
each to beJ -isometric for an adequate local signature matrix. Suppose that we already
have the signature matrices(JB)k , and letΛk =Rk(JB)kR∗

k , then theJ -unitarity of the
Gramian can be expressed as follows:

(5.7)AkΛkA
∗
k + (BU )k(BU)

∗
k −BkΓ

−2
k B∗

k =Λk+1.

A solution forΛ will exist if this Lyapunov–Stein equation has a definite solution that
is also boundedly invertible. Note that because of the ues condition onA, the equation
has a unique bounded solution; the question is whether the solution is also boundedly
invertible. The existence of the solution can be studied directly in terms of the original
data by eliminatingBU , since

AA∗ +BUB
∗
U = I.
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FIG. 5.4. The dataflow in a Theta section is shown with normal arrows, the “energy flow” indicating the sign
of the quadratic norms is indicated with fat arrows.

SettingM = I −Λ the equation turns into

Mk+1 =AkMkA
∗
k +BkΓ

−2
k B∗

k .

Here,M is the reachability Gramian ofT Γ −1, and we find that a solution to theJ -
unitary embedding problem exists iff(I − M)−1 exists and is bounded, i.e., iff the
eigenvalues ofMk are bounded away from 1, uniformly overk. In the case the solution
is not definite, a “borderline” solution may exist, and thus the case becomes singular.
Although that singular case is beyond the present treatment, we shall devote some words
to it in the discussion at the end of this section. Let us now assume that a strictly definite
solution does exist and analyze it further. Let the inertia ofΛk be given by

Λk =Rk

[
(IB+)k −(IB−)k

]
R∗
k .

After application of the state transformationR−1
k+1 · · ·Rk , the dataflow forΘ looks as in

Fig. 5.4.
Associated with the various signature matrices, we can also imagine an “energy flow”

representing the conservation of quadratic norm or energy which follows from theJ -
unitarity imposed onΘ . The energy flow corresponding to the signature is shown by fat
arrows in Fig. 5.4.

5.2.10. Complexity analysis
We have as proposed solution

Ta = strictly causal part ofB ′ ∗Θ−∗
22 Γ.

In this expression,B ′ ∗ is anticausal whileΘ−∗
22 is of mixed causality. We first establish

that the complexity ofTa is essentially determined by the (strictly) causal part ofΘ−∗
22 .
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Next we shall analyze the complexity of the latter. Let

B ′ = d + cZ(I − aZ)−1b, causal part of

Θ−∗
22 =D2 +C2Z(I −A2Z)

−1B2,

be minimal realizations forB ′ and the causal part ofΘ−∗
22 , respectively (for the exis-

tence of the latter, see further). The computation of the causal part for the product is
straightforward:

causal part ofB ′ ∗Θ−∗
22 Γ

= d∗D2Γ + d∗C2Z(I −A2Z)
−1B2Γ

+ causal part ofb∗(I −Z∗a∗)−1(c∗C2)
(−1)(I −A2Z)

−1B2Γ.

The computation reduces to the “generalized partial-fraction decomposition” of the last
part. This is handled in the following generic lemma.

LEMMA 5.1. Let a andA2 be transition operators with"a � 1, "A2 � 1 and at least
one less than one, then

(I −Z∗a∗)−1(c∗C2)
(−1)(A−A2Z)

−1

= (I −Z∗a∗)−1Z∗a∗m+m+mA2Z(I −A2Z)
−1,

wherem is the unique bounded solution of the Lyapunov–Stein equation

m(1) = c∗C2 + a∗mA2.

PROOF. The proof of the lemma is by direct computation, after chasing the denomina-
tors and identifying the entries. �

Applying the lemma to the product that definesTa , we obtain

Ta = (
d∗D2Γ + b∗mB2Γ

)+ (
d∗C2 + b∗m

)
Z(I −A2Z)

−1B2Γ.

We see thatTa inherits the complexity ofΘ−∗
22 , at least essentially (further cancellations

are theoretically possible but not very likely). In fact, they have the same reachability
space based on{A2,B2Γ }. The complexity analysis hence proceeds with the analysis of
the complexity ofΘ−∗

22 . This can be done in a particularly elegant way by studying the
strict-past/future decomposition of the operatorΘ . We decompose an arbitrary signal
(saya belonging to some"2-space) in its strict-past part and its future part(ak = apk +
af k). Let the corresponding operators be denoted byPk for the projection on the future
andP′

k = I − Pk for the projection on the strict past, then the splitting of the operatorΘ

happens as shown in Fig. 5.5, where we also have indicated the sign decomposition of
the state discussed earlier. The arrows in Fig. 5.5 indicate flow of energy in the sense that
each block satisfies the energy balance with respect to incoming and outgoing energetic
contributions (isometric orJ -isometric depending on whether a signal is considered an
input or an output in the formulation at hand). The causal part ofΘ−∗

22 will of course
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FIG. 5.5. The figure shows the signal flow for(Θ−1
22 )k . The energy flow of Fig. 5.4 applies, here the relevant

signal propagation is indicated with fat arrows.

correspond to the anticausal part ofΘ−1
22 . Writing out

Θ−1
22 = B∗

2Z
∗(I −A∗

2Z
∗)−1

C∗
2 +D∗

2 + causal part,

we see that the relevant state dimension is given by the state dimension needed for the
operator represented by the first term that produces the mapb2f to b1p with a1 = 0 and
b2p = 0 sinceΘ−1

22 mapsb2 to b1 under the assumptiona1 = 0 and the portionb1f in
b1 is to be neglected by the restriction to the lower part of the result (with a slight abuse
of notation we can handle all time pointsk in the same global formula – see DEWILDE

andVAN DER VEEN [1998] for details). With reference to the situation in Fig. 5.5, let
us define two new diagonal operatorsS :x− (→ x+ (in the past) andR : x+ (→ x− (in
the future). It is not hard to see (and a more detailed analysis would show) that both
these operators are causal and strictly contractive. Withb2f as only non-zero input in
this configuration, and with energy conservation in vigor, we see that bothb1p andx+
are solely dependent onx−. In fact, we have

x− = (I −RS)−1C2b2f ,

b1p = O2x−,
x+ = Sx−,

whereC2 andO2 are appropriate reachability and observability maps derived from the
anticausal part ofΘ−1

22 (and which we do not detail any further here). The map from
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b2f to b1p then factors as

b2p = O2 · (I −RS)−1R2b2f ,

and its state complexity is determined by the dimension of the “anticausal” statex−.
Hence,Ta has the same complexity as the strict lower part ofΘ−∗

22 , which is locally
equal to the dimensionδk− of x−. This dimension is now easy to gauge from the original
construction ofΘ and is given by the following theorem.

THEOREM 5.2. Assuming that there exists anε so that all singular values of allHk ,
Hankel matrices ofT Γ −1, are at leastε distant from1, the dimensionδk− is given by
the number of singular values ofHk larger than one. This is also the minimal dimension
of any strictly causal approximantTa satisfying‖(T − Ta)Γ

−1‖< 1.

PROOF. Recall that the dimension ofxk− is given by the number of eigenvalues ofMk

larger than one, whereMk satisfies

Mk+1 =AkMkA
∗
k +BkΓ

−2
k B∗

k .

Since we started out with a system in output normal form, andHk = OkRk , we have

H ∗
k Hk = R∗

kO∗
kOkRk = R∗

kRk =Mk,

whereO∗
kOk = I since we assumed the system in output normal form, and the singular

values ofHk equal the eigenvalues ofMk . This proves the first statement. As for the
second assertion, its proof is much more complex, and based on the fact that all approx-
imants which meet the norm condition can be generated by loadingΘ in a contractive
and causal operatorSL, more precisely, allT ′ have the form

T ′ = T +US∗Γ.

Here,

S = (SLΘ21 +Θ22)
−1(SLΘ11 +Θ12),

andU is as defined earlier. It turns out that the complexity of its lower part is then at
least equal to the complexity of the lower part ofΘ−∗

22 . For a complete treatment, see
Chapter 10 of DEWILDE andVAN DER VEEN [1998], in particular Theorem 10.18.�

These are the basic results on Hankel-norm approximation of a lower operator. Many
more properties can be derived on this new and interesting method, in particular, state-
space representations for the approximants are relatively easy to derive, for details we
refer to the literature cited.

5.3. The recursive Schur algorithm for Hankel-norm approximation

A low-complexity Hankel-norm approximation to a strictly upper but otherwise general
matrix can be derived from an elementary Schur-type elimination algorithm using both
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orthogonal and hyperbolic elementary matrices. It is a direct application of the previ-
ous theory to finite matrices and was first presented in DEWILDE andVAN DER VEEN

[1998]. Here, we present the result without proof.
Suppose that the original matrix to be approximated is given by

T =


0
t21 0
...

. . .

tn1 tn2 · · · 0

 ,
then a trivial external factorization forT =U∆∗ is given by

U =


1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 , ∆=


0 t∗21 · · · t∗n1

0 · · · t∗n2
. . .
...

0

 .
According to the theory in the previous sections, theΘ matrix necessary for the Hankel-
norm approximation must now have the following three properties:

1. It must beJ -unitary for appropriate signature matrices;
2. It must be block lower;
3. It must make the product

Θ

[
U∗

−T ∗
]

lower. (Point 1 may seem cryptic but will be partly justified in the sequel.)
The right-hand side signature ofΘ is certainly given byJ2 = In⊕−In, in accordance

with the right factor, the left-hand side signature will follow from the construction and
will differ case by case. It is possible at this point to determine the local arrow dimen-
sions ofΘ but not yet the signs of the state and output arrows. To illustrate the point,
let us assume that the entries inT are scalar. Because of the structure ofU∗ andT ∗, the
first block in a realization forΘ will have n positive inputs (fromU∗) and one negative
input (from−T ∗), and it will haven− 1 states going to the next stage. This means that
this first stage must have two outputs (the signs of the outgoing states and outputs are
yet to be determined – see Fig. 5.5 for extra information).

The matrix to be block lowered using elementary operations is given by:

[
U∗

−T ∗
]

=

+
+
...

+
−
−
...

−



1
0
...

0

0
1
...

0

. . .

· · · 1

−t11
∗ −t∗21 · · · −t∗n1

0 −t∗22 · · · −t∗n2
...

. . .
...

0 0 · · · −t∗nn


.
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The elimination procedure now starts with the elimination of−t∗n1 in the first row of the
second block, using the last row in the first block. We indicate this state of affairs with
the pair of indices〈n,1〉. Since the sign of the last row of the first block is positive, and
that of the first row of the second block negative, a hyperbolic rotation must be used,
which can be of two forms, depending on the magnitude of−t∗n1. One possibility is

1√
1− |ρn1|2

[
1 ρn1
ρn1 1

]
,

in which caseρn1 = tn1 has to be smaller than one in magnitude and the target signature
is 〈+,−〉, while the other possibility, when|tn1|> 1, is

1√
1− |ρn1|2

[
ρn1 1
1 ρn1

]
,

in which caseρn1 = 1/tn1, again of magnitude smaller than one. The case where
|tn1| = 1 is not allowable in the present state of the theory (for an extension, see
DEWILDE [1995]), the respective coefficient inΓ then has to be adapted (the condi-
tion on the singular values of the Hankel operator is not satisfied). It may happen that in
the course of the elimination procedure, a signature of the type〈+,+〉 or 〈−,−〉 is en-
countered. In that case a regular (unitary) Jacobi rotation will do, and if〈−,+〉 as initial
signature is found, then the mirror case of the case detailed above holds. The type of
rotations used in the scheme will determine the actual flow of energy between the stages
of the realization forΘ . The resulting complexity can also be deduced directly from the
signature resulting at the output. For example, if the output sequence is〈+,−〉, 〈+,−〉,
. . ., then all state transitions have positive signs andΘ22 is causally invertible. The low-
complexity approximant then reduces to a diagonal matrix. At the opposite side, and
taking for example the 4× 4 case, the output sequence〈+,+〉, 〈+,+〉, 〈−,−〉, 〈−,−〉
will result in a state sequence given by〈+,+,−〉, 〈−,−〉, 〈−〉, resulting in an “approx-
imant” of maximal complexity. The principle involved is that at each state there must
be an equal number of incoming and outgoing arrows on the one hand, and an equal
number of incoming and outgoing energy arrows as well. A connection will bear a “+”
sign if the two arrows point in the same direction and a “−” sign in the opposite case.
From the resulting diagram, a realization forΘ−∗

22 can be derived, and from there a re-
alization for the approximantTa , we refer to the literature cited for details. Although
the algorithm does provide for an optimal solution, the computational details are still
somewhat extensive.

6. Second-order linear dynamical systems

Second-order models arise naturally in the study of many types of physical systems,
such as electrical and mechanical systems; see, e.g., BAI [2002] and the references
given there. Atime-invariant multi-input multi-output second-order systemis described
by equations of the form

(6.1)M
d2q

dt2
+D

dq

dt
+Kq = Pu(t),

(6.2)y(t)= LTq(t),
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together with initial conditionsq(0)= q0 and dq
dt (0)= q̇0. Here,q(t) ∈ R

N is the vec-
tor of state variables,u(t) ∈ R

m is the input force vector, andy(t) ∈ R
p is the output

measurement vector. Moreover,M , D, K ∈ R
N×N are system matrices, such as mass,

damping, and stiffness matrices in structural dynamics,P ∈ R
N×m is the input dis-

tribution matrix, andL ∈ R
N×p is the output measurement matrix. Finally,N is the

state-space dimension, andm andp are the number of inputs and outputs, respectively.
In most practical cases,m andp are much smaller thanN .

The second-order system (6.1) and (6.2) can be reformulated as an equivalent linear
first-order system in many different ways. We will use the following equivalent linear
system:

(6.3)E
dx

dt
=Ax +Bu(t),

(6.4)y(t)=CTx(t),

where

x =
[
q
dq
dt

]
, A=

[−K 0
0 W

]
, E =

[
D M

W 0

]
,

B =
[
P

0

]
, C =

[
L

0

]
.

Here,W ∈ RN×N can be any non-singular matrix. A common choice is the identity
matrix,W = I . If the matricesM , D, andK are all symmetric andM is nonsingular,
as it is often the case in structural dynamics, we can chooseW = M . The resulting
matricesA andE in the linearized system (6.3) are then symmetric, and thus preserve
the symmetry of the original second-order system.

Assume that, for simplicity, we have zero initial conditions, i.e.,q(0)= q0, dq
dt (0)=

0, andu(0) = 0 in (6.1) and (6.2). Then, by taking the Laplace transform of (6.1)
and (6.2), we obtain the following system:

s2MQ(s)+DQ(s)+KQ(s)= PU(s),

Y (s)= LTQ(s).

Eliminating Q(s) results in the frequency-domain input–output relationY(s) =
H(s)U(s), where

H(s) := LT(s2M + sD +K
)−1

P

is the transfer function. In view of the equivalent linearized system (6.3) and (6.4), the
transfer function can also be written as

H(s)= CT(sE −A)−1B.

If the matrixK in (6.1) is nonsingular, thens0 = 0 is guaranteed not to be a pole ofH .
In this case,H can be expanded abouts0 = 0 as follows:

H(s)=M0 +M1s +M2s
2 + · · · ,
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where the matricesMj are the so-calledlow-frequency moments. In terms of the matri-
ces of the linearized system (6.3) and (6.4), the moments are given by

Mj = −CT(A−1E
)j
A−1B, j = 0,1,2, . . . .

6.1. Frequency-response analysis methods

In this subsection, we describe the use of eigensystem analysis to tackle the second-
order system (6.1) and (6.2) directly.

We assume that the input force vectoru(t) of (6.1) is time-harmonic:

u(t)= ũ(ω)eiωt ,

whereω is the frequency of the system. Correspondingly, we assume that the state
variables of the second-order system can be represented as follows:

q(t)= q̃(ω)eiωt .

The problem of solving the system of second-order differential equations (6.1) then
reduces to solving the parameterized linear system of equations

(6.5)
(−ω2M + iωD+K

)
q̃(ω)= P ũ(ω)

for q̃(ω). This approach is called thedirect frequency-response analysis method. For
a given frequencyω0, one can use a linear system solver, either direct or iterative, to
obtain the desired vector̃q(ω0).

Alternatively, we can try to reduce the cost of solving the large-scale parameterized
linear system of Eq. (6.5) by first applying an eigensystem analysis. This approach is
called themodal frequency-response analysisin structural dynamics. The basic idea is
to first transfer the coordinatesq̃(ω) of the state vectorq(t) to new coordinatesp(ω) as
follows:

q(t)∼=Wkp(ω)e
iωt .

Here,Wk consists ofk selected modal shapes to retain the modes whose resonant fre-
quencies lie within the range of forcing frequencies. More precisely,Wk consists ofk
selected eigenvectors of the underlying quadratic eigenvalue problem(λ2M + λD +
K)w = 0. Eq. (6.5) is then approximated by(−ω2MWk + iωDWk +KWk

)
p(ω)= P ũ(ω).

Multiplying this equation from the left byWT
k , we obtain ak × k parameterized linear

system of equations forp(ω):(−ω2(WT
k MWk)+ iω(WT

k DWk)+ (WT
k KWk)

)
p(ω)=WT

k P (ω).

Typically, k ' n. The main question now is how to obtain the desired modal shapes
Wk . One possibility is to simply extractWk from the matrix pair(M,K) by ignoring
the contribution of the damping term. This is called themodal superposition methodin
structural dynamics. This approach is applicable under the assumption that the damping
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term is of a certain form. For example, this is the case for so-called Rayleigh damp-
ing D = αM + βK , whereα andβ are scalars (see CLOUGH and PENZIEN [1975]).
In general, however, one may need to solve the full quadratic eigenvalue problem
(λ2M + λD+K)w = 0 in order to obtain the desired modal shapesWk . Some of these
techniques have been reviewed in the recent survey paper by TISSEURand MEERBER-
GEN [2001] on the quadratic eigenvalue problem.

6.2. Reduced-order modeling based on linearization

An obvious approach to constructing reduced-order models of the second-order sys-
tem (6.1) and (6.2) is to apply any of the model-reduction techniques for linear sys-
tems to the linearized system (6.3) and (6.4). In particular, we can employ the Krylov-
subspace techniques discussed in Section 3.

The resulting approach can be summarized as follows:
(1) Linearize the second-order system (6.1) and (6.2) by properly defining the 2N ×

2N matricesA andE of the equivalent linear system (6.3) and (6.4). Select an
expansion points0 “close” to the frequency range of interest and such that the
matrixA− s0E is nonsingular.

(2) Apply a suitable Krylov process, such as the nonsymmetric band Lanczos al-
gorithm described in Section 3.2, to the matrixM := (A − s0E)

−1E and the
blocks of right and left starting vectorsR := (A− s0E)

−1B andL := C to ob-
tain bi-orthogonal Lanczos basis matricesVn andWn for thenth right and left
block-Krylov subspacesKn(M,R) andKn(MT,L).

(3) Approximate the state vectorx(t) by Vnz(t) wherez(t) is determined by the
following linear reduced-order model of the linear system (6.3) and (6.4):

En
dz

dt
=Anz+Bnu(t), y(t)= CT

n z(t).

Here,En = Tn, An =∆n + s0Tn, Bn = ρ
(pr)
n , Cn = η

(pr)
n , andTn,∆n, ρ

(pr)
n , η(pr)

n

are the matrices generated by the nonsymmetric band Lanczos algorithm.
In Fig. 6.1, we show the results of this approach applied to the linear-drive multi-

mode resonator structure described in CLARK , ZHOU and PISTER [1998]. The solid
lines are the Bode plots of the frequency response of the original second-order system,
which is of dimensionN = 63. The dashed line in the left, respectively right, plot is the
Bode plot of the frequency response of the reduced-order model of dimensionn = 8,
respectivelyn = 12. The relative error between the transfer functions of the original
system and the reduced-order model of dimensionn = 12 is less than 10−4 over the
frequency range shown in Fig. 6.1.

There are a couple of advantages of the linearization approach. First, one can directly
employ existing reduced-order modeling techniques developed for linear systems. Sec-
ond, one can also exploit the structures of the linearized system matricesA andE in a
Krylov process to reduce the computational cost. However, the linearization approach
also has disadvantages. In particular, it ignores the physical meaning of the original
system matrices, and more importantly, the reduced-order models are no longer in a
second-order form. For engineering design and control of structural systems, it is often
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FIG. 6.1. Bode plots for the original system and the reduced-ordermodel of dimensionn= 8 (left) and n= 12 (right).
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desirable to have reduced-order models that preserve the second-order form; see, e.g.,
SU and CRAIG [1991].

While the straightforward linearization approach has the above disadvantages, it is
possible to exploit the inherent structure of the Krylov subspaces associated with the lin-
earized system to construct reduced-order models of second-order, or even higher-order,
systems that preserve the higher-order structure. Such structure-preserving linearization
approaches are described in FREUND [2004a], FREUND [2004b].

6.3. Reduced-order modeling based on second-order systems

In this section, we discuss a Krylov-subspace technique that produces a reduced-order
model of second-order form. This approach is based on the work of SU and CRAIG

[1991].
The key observation is the following. In view of the linearization (6.3) and (6.4) of

the second-order system (6.1) and (6.2), the desired Krylov subspace for reduced-order
modeling is

span
{
B̃, (A−1E)B̃, (A−1E)2B̃, . . . , (A−1E)n−1B̃

}
.

Here,B̃ := −A−1[B C]. Moreover, we have assumed that the matrixA in (6.3) is non-
singular. Let us set

Rj =
[
Rdj

Rvj

]
:= (−A−1E

)j
B̃,

whereRdj is the vector of lengthN corresponding to the displacement portion of the
vectorRj , andRvj is the vector of lengthN corresponding to the velocity portion of the
vectorRj , see SU and CRAIG [1991]. Then, in view of the structure of the matricesA
andE, we have[

Rdj

Rvj

]
= (−A−1E

)[Rdj−1

Rvj−1

]
=
[
K−1DRdj−1 +K−1MRdj−1

−Rdj−1

]
.

Note that thej th velocity-portion vectorRvj is the same (up to its sign) as the(j − 1)st

displacement-portion vectorRdj−1. In other words, the second portionRvj of Rj is the

“one-step” delay of the first portionRdj−1 of Rj . This suggests that one may simply
choose

(6.6)span
{
Rd0 ,R

d
1 ,R

d
2 , . . . ,R

d
n−1

}
as the projection subspace used for reduced-order modeling.

In practice, for numerical stability, one may opt to employ the Arnoldi process to
generate an orthonormal basisQn of the subspace (6.6). The resulting procedure can be
summarized as follows.

ALGORITHM 6.1 (Algorithm by Su and Craig Jr.).
(0) (Initialization)
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SetRd0 =K−1[P L], Rv0 = 0,U0S0V
T
0 = (Rd0)

TKRd0 (by computing an SVD),

Qd
1 =Rd0U0S

−1/2
0 , andQv

1 = 0.

(1) (Arnoldi loop)
For j = 1,2, . . . , n− 1 do:

SetRdj =K−1(DQd
j−1 +MQv

j−1) andRvj = −Qd
j−1.

(2) (Orthogonalization)
For i = 1,2, . . . , j do:

SetTi = (Qd
i )

TKRdj , Rdj =Rdj −Qd
i Ti , andRvj =Rvj −Qv

i Ti .
(3) (Normalization)

SetU0S0V
T
0 = (Rdj )

TKRdj (by computing an SVD),

Qd
j+1 =Rdj U0S

−1/2
0 , andQv

j+1 =RvjU0S
−1/2
0 .

An approximation of the state vectorq(t) can then be obtained by constrainingq(t) to
the subspace spanned by the columns ofQn, i.e.,q(t)≈Qnz(t). Moreover, the reduced-
order state vectorz(t) is defined as the solution of the following second-order system:

(6.7)Mn

d2q

dt2
+Dn

dq

dt
+Knq = Pnu(t),

(6.8)y(t)=LT
nq(t),

FIG. 6.2. Frequency-response analysis (top plot) and relative errors (bottom plot) of a finite-element model
of a shaft.
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whereMn :=QT
nMQn,Dn :=QT

nDQn,Kn :=QT
nKQn,Pn :=QT

nP , andLn :=QT
nL.

Note that (6.7) and (6.8) is a reduced-order model in second-order form of the original
second-order system (6.1) and (6.2).

In SU and CRAIG [1991], a number of advantages of this approach are described.
Here, we present some numerical results of a frequency-response analysis of a second-
order system of orderN = 400, which arises from a finite-element model of a shaft
on bearing support with a damper. In the top of Fig. 6.2, we plot the magnitudes of the
transfer functionH computed exactly, approximated by the model-superposition (MSP)
method, and approximated by the Krylov-subspace technique (ROM). For the MSP
method, we used the 80 modal shapesW80 from the matrix pencil(M,K). The reduced-
order model (6.7) and (6.8) is also of dimensionn = 80. The bottom plot of Fig. 6.2
shows the relative errors between the exact transfer function and its approximations
based on the MSP method (dash-dotted line) and the ROM method (dashed line). The
plots indicate that no accuracy has been lost by the Krylov subspace-based method.

7. Semi-second-order dynamical systems

In some applications, in particular in the simulation of MEMS devices (SENTURIA,
ALURU and WHITE [1997]), the underlying mathematical models are second-order sys-
tems with nonlinear excitation forces of the following type:

(7.1)
M

d2q

dt2
+D

dq

dt
+Kq = Pu

(
q,

dq

dt
, t

)
,

y(t)=LTq(t).

Here, the system matricesM , D, K , P , andL have the same interpretation as in the
standard second-order system (6.1) and (6.2). However, excitation forceu is now a
nonlinear function ofq, and possiblydq

dt .
Systems of the form (7.1) and (7.1) are calledsemi-second-ordertime-invariant

multi-input multi-output linear dynamical systems. Such systems are used as the un-
derlying mathematical models in SUGAR [2001], which is a system-level simula-
tion package for MEMS devices. For example, Fig. 7.1 shows a simple electrostatic
gap-closing actuator, which is used as a demo in SUGAR. In this case, the excitation
force u includes the electrostatic potential between the plates and is proportional to
(v(t)/gap(q))2, wherev(t) is the voltage between electrodes and gap(q) is a scalar
function ofq for the distance between the two place electrodes. For mode details about
the model used for the electrostatic gap-closing actuator, see BAI , BINDEL, CLARK ,
DEMMEL, PISTER and ZHOU [2000].

Instead of treating the semi-second-order system (7.1) and (7.1) as a general nonlinear
system, we can exploit the structure of the system and apply the idea of “nonlinear dy-
namics using linear modes”. This approach is suggested in ANANTHASURESH, GUPTA

and SENTURIA [1996], where a non-damped system, i.e.,D = 0 is considered and the
eigenmodes ofM andK are used to extract a reduced-order model. In BAI , BINDEL,
CLARK , DEMMEL, PISTER and ZHOU [2000], we described a Krylov-subspace based
reduced-order modeling technique for systems (7.1) and (7.1). The idea is to first ignore
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FIG. 7.1. Electrostatic gap-closing actuator.

the nonlinearity in the force termu, and treat the system as a second-order system. Us-
ing the approach discussed in Section 6.2, a projection spaceVn is constructed, which
may be regarded as thelinear Krylov modes. The vectorq is then expanded in terms of
the constructed subspace, namelyq(t)≈ Vnz(t), and we obtain the following reduced-
order model in terms of the vectorz(t):

En
dz

dt
=Anx +Bnu

(
Vnz(t), t

)
,

y(t)=CT
n z(t).

Here, the definitions ofEn,An, Bn, andCn are the same as in Section 6.2. Note that the
excitation force termu(q, t) of the full-order system is replaced byu(Vnz(t), t) in the
reduced-order model. When the reduce-order model is solved by a numerical method,
it is necessary thatu(Vnzj , t) can be evaluated for the givenzj , which may be regarded
as the approximation ofz(t) at time stept = tj .

In Fig. 7.2, we illustrate this approach for the transient analysis of the electrosta-
tic gap-closing actuator shown in Fig. 7.1. The first plot shows the outputy(t) of
the original system and the outputỹ(t) of the reduced-order system of dimension
n = 6. The original systems has dimensionN = 30. The second plot shows the ac-
curacy of the reduced-order model of dimensionn = 6 in terms of the relative error
‖y(t)− ỹ(t)‖/‖y(t)‖.

We remark that, as indicated in GABBAY, MEHNERand SENTURIA [2000], the use of
linear (eigen or Krylov) modes may not adequately capture all the features of nonlinear
behavior. It is the subject of current research to further understand the approach sketched
in this section and its limitations.
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FIG. 7.2. Transient responses of the gap-closing actuator.

8. Concluding remarks

We presented a survey of the most common techniques for reduced-order modeling of
large-scale linear dynamical systems. By and large, the area of linear reduced-order
modeling is fairly well explored, and we have a number of efficient techniques at our
disposal. Still, some open problems remain. One such problem is the construction of
reduced-order models that preserve stability or passivity and at the same time, have op-
timal approximation properties. In particular in circuit simulation, reduced-order mod-
eling is used to substitute large linear subsystems within the simulation of even larger,
in general nonlinear systems. It would be important to better understand the effects of
these substitutions on the overall nonlinear simulation.

Finally, the systems arising in the simulation of electronic circuits are nonlinear in
general, and it would be highly desirable to apply nonlinear reduced-order modeling
techniques directly to these nonlinear systems. However, the area of nonlinear reduced-
order modeling is in its infancy compared to the state-of-the-art of linear reduced-order
modeling. We expect that further progress in model reduction will mainly occur in the
area of nonlinear reduced-order modeling.
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– forms, 125, 127, 130
– – of higher degree, 181
– geometry, 83, 95
– index, 547, 560
– of a function, 134
– operator, 62, 74
– stages, 557
– variables, 546, 550
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differential-algebraic equation (DAE), 529, 531,
540

differential-algebraic network equations, 529
differentiator circuit, 552, 553
diffusion, 26
– equation, 30
dipole charges, 38
dipole moment, 40
Dirac delta function, 666
direct frame, 115, 116
direct linear transform, 124
direct tunneling, 31
director, 116
Dirichlet condition, 141
discrete energy, 160, 169
discrete formulation, 669
discrete Fourier transform (DFT), 258
discretization, 8, 78
– grid, 74
– Scharfetter–Gummel scheme, 79
disordered materials, electron propagation

through, 85
dispersion, 160
displaced Maxwellian distribution, 24, 29
displacement, 41
– current, 10
dissipative function, 543
dissipative processes, 12
distance, between near-by points, 70
distortion, 617
distribution function, 22, 24
distributions, 547
divergence, 135
divergence-free basis function, 395, 396
divided differences, 568
domain decomposition methods, 542
domain (of a map), 111
dot product, 127
DRAM, 578
Drazin inverse, 596
drift-diffusion, 317
Drude’s model, 23–25, 86
dual
– mesh, 152
– of a cell, 152
– of a face, 152
– of operator, 134
– system, 625
– Whitney forms, 190
duality (of cells and W. forms), 182
duality product, 130
dynamic assignment, 606
dynamic elements, 554

edge state, 64, 65
effective group action, 111
effective mass, 26, 32
– approximation, 32
efficiency, 570
eigenproblem, 622
eigenvalue, 735
eigenvector, 735
Einstein, 70
– general theory of relativity, 68
– relation, 28, 452
– relations, 320
– theory of gravity, 68
elastance, 731
elastic collision, 23
elastic scattering, 12
electric
– charge, 7, 9, 141
– – density, 9, 12, 20
– circuit, 10, 14, 19, 84, 87, 90, 93
– – topology of, 83, 84, 87
– conductance
– – quantization of, 84
– current, 7, 9–11, 83
– – density, 9, 10, 12, 20, 24, 30
– displacement, 40, 93, 664
– field, 9, 10, 14, 30, 66, 664
– – circulation, 88
– – conservative, 87–89
– – external, 92
– – irrotational, 87, 88, 92
– – localized, 93
– – non-conservative, 89
– flux, 10, 41
– monopole, 39
– permittivity, 9
– potential, 665
– susceptibility, 40, 41
electrical
– charges, 532
– conductance, 25
– conductivity, 23, 29
– polarization, 43
electrodynamics, 44, 60, 69
– geometrical interpretation, 73
– geometry of, 68
electromagnetic
– compatibility, 661
– effects, 663
– energy, 12, 44
– field, 9, 11–15, 67, 75, 83, 84, 95
– – quantization of, 93
– – spatial localization of, 83
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– – tensor, 12, 74
– potentials, 67
– radiation, 14
– waves, 63
electromagnetism, 7, 15, 83, 94
electromotive force, 10, 51, 87, 91, 94, 132
electron diffusivity, 28
electron mobility, 28
electron–electron interaction, 32, 36
electrostatic
– confinement, 90
– potential, 87
– – drop, 87
element stamps, 565
element, charge storing, 535
elements
– dynamic, 554
– energy storing, 533
– one-port, 532
– static, 554
– two-terminal, 532
embedded method, 576
embedding, 114
embraced flux, 131
EMC, 661
energy, 142, 143
– balance equation, 29
– barrier, 33, 35
– conservation of, 160
– conserving, 568, 580
– dissipation, 83, 86, 90, 91
– flux, 29
– norms, 158
– rate equation, 92
– relaxation time, 29
– spectrum, 33
– – continuous, 88
– – discrete, 88
– storing elements, 533
energy-balance model, 328, 409
energy-transport model, 30, 327, 404
Engquist–Osher flux, 470
ensemble average, 94
entropy, 21, 456
envelope, 630
– method, 646
– wave function, 32, 35
equations of motion, 61, 63
equipotential volume, 90
equivalent circuit, 49, 733, 736
– model, 663
error
– control, 568, 577

– estimate, 343, 347, 355, 360, 375, 394, 401,
570

– scaling, 574
– tolerance, 569
Euclidean
– coordinate system, 73
– geometry, 70
– space, 109, 123
Euler–Lagrange equations, 15, 17
Euler-backward method, 629
Euler-forward method, 629
event control, 592, 613
exact form, 134
exact sequence, 180, 183
explicit integration
– adaptively controlled, 596
exponential fitting, 387, 406, 595
extended hydrodynamical model, 454
exterior derivative, 134
external orientation, 117
extrapolation, 630

face, 149
Faraday, 138
Faraday’s law, 10, 13, 44, 68, 205, 530
fast Fourier transform (FFT), 225, 258
Fasterix, 661
fastest first, 612
FDM, 630, 631, 641
feedback loop, 554
Fermi’s Golden Rule, 23
Fiduccia–Mattheyses, 606
field equations, 74, 76
finite difference method (FDM), 630, 631, 641
– θ -method, 629
finite difference schemes, 467
finite differences, 211
finite-difference time-domain (FDTD) method,

199, 200
– alternating-direction-implicit (ADI), 271
first Maxwell equation, 15, 42
first order approximation, 562
Floquet exponents, 625
Floquet multipliers, 625
Floquet theory, 624, 625
flux, 128, 131, 132
– conservation, 535
– quantization, 91–93
formulation
– capacitance-oriented, 535
– charge/flux-oriented, 533, 536
formulation of energy storing elements
– charge/flux-oriented, 534
– conventional, 534
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forward backward substitution, 565
forward biased, 429
Fourier expansion, 62
Fourier law, 451
fourth Maxwell equation, 15, 94
fourth-order-accurate finite-difference scheme,

251, 252
fractional step method, 464
frame, 115
free group action, 111
free vector, 112
frequency folding, 624
frequency modulation, 642
fully implicit methods, 575
fully-implicit index-1 systems, 567
functional, 15
– differentiation, 76
– modelling, 586

Galerkin, 642
Galerkin Hodge, 157
Gamma function, 461
gate, 84
– arms, 84
– current, 34–36
– – density, 36
– electrode, 31, 33
– leakage current, 35–37
– length, 31
– stack, 31, 33–36
– tunneling current, 36
– voltage, 31, 64, 85
gauge, 13, 60, 62, 64, 67, 73, 75
– condition, 60, 61, 67, 75, 76, 665
– covariance, 68
– covariant variables, 74
– field, 14, 79
– invariance, 14, 60, 61, 68
– – principle of, 69
– theories, 68, 72
– transformation, 14, 42, 60, 67
gauging, 162
Gauss’ law, 10, 25, 40, 44, 61, 63, 68, 93
– for the electric field, 206
– for the magnetic field, 206
Gauss’ theorem, 52, 95, 97, 98
Gauss–Legendre quadrature rule, 681
Gauss–Legendre rule, 683, 685, 686
Gaussian quadrature, 680, 682
– formula, 678, 679
general nonlinear capacitance, 534
general relativity, 68
general theory of relativity, 68, 69
generalized coordinates, 21, 61

generalized eigenvalue problem, 662, 735, 740
generalized momenta, 21
generalized multirate, 615
generic function, 536
geometric grading, 293
geometrical interpretation, 68, 74
geometry, 68, 83
– non-Euclidean, 68
ghost field, 63, 80
ghost modes, 165
Gibbs’ ensemble, 25
Godunov flux, 470
Godunov method, 470
Godunov scheme, 466, 468, 469
grain (of mesh), 167
granularity of parallelism, 597
gravitational field, 69
gravitational forces, 7
gravity, 69, 83
Green’s function, 7, 62, 666, 667, 687, 706, 741
– free space, 62
– poles, 63
Green’s theorem, 96
grid
– Cartesian, 74, 77
– generation, 8
– links of a, 74, 75, 77, 78
– nodes, 74, 77
– sampling density, 232
– staggered, collocated, 227
– staggered, uncollocated, 209, 226
gridding methods, 202, 226
ground line, 560
group action, 110
gyrators, 550

Hall bar, 83
Hall resistance, 64
Hall voltage, 64
Hamiltonian, 14, 15, 94
– of a closed electric circuit, 94
harmonic
– average, 378, 381, 385
– balance (HB), 620, 630, 638, 641
– modes, 45
– oscillator, 580
– – functions, 65
Hartree approximation, 32, 33, 36
heat flow, 451
Heisenberg equations of motion, 94
Helmholtz
– decomposition, 165
– equation, 46, 48, 665–668



904 Subject Index

– operator, 45
– theorem, 13, 42, 87, 95, 99
Hermite functions, 66
Hessenberg type, 571
Hessenberg-type index-2 systems, 574
heterojunction, 64, 84
hexagonal grids, 228, 256
hexahedral elements, 184
hidden constraints, 571, 572
– algebraic, 547
hierarchical simulation, 610
high-quality oscillator circuits, 646
higher index, 552, 627, 640, 644
higher-index case, 546
higher-index components, 574
higher-index problems, 547, 554, 560
highly oscillatory perturbations, 584
Hilbert space, 25
Hodge operator, 139, 140
hole, 26
– diffusivity, 28
– mobility, 28
homogeneous magnetic field, 64
homogeneous space, 111, 112
homology, 123
hybrid analysis, 537
hydrodynamic model, 28, 29
hyperbolic system, 461, 464, 465
hypergraphs, 606
hysteresis, 44

ICCG, 742
icon, 117
ideal operational amplifier, 554, 555
idealized network elements, 560
ill-posed problems, 529
impedance, 49
– form, 533
implicit
– Euler scheme, 567
– linear multi-step methods, 563
– numerical integration schemes, 540
impurities, 36
inappropriate regularization, 543
incidence matrix, 150, 672, 731
incidence number, 150
incompressible stationary flow, 41
inconsistent initial values, 579
indefinite linear systems, 662
index, 545
– algebraic, 547
– differential, 547, 560
– perturbation, 547, 549
– tractability, 547

index monitor, 571, 572, 574
index-1
– case, 546
– problem, 551
– systems
– – fully-implicit, 567
index-2, 644
– configurations, 549
– problem
– – singularly perturbed, 560
– systems
– – of Hessenberg-type, 574
index-3 variables, 552
induced orientation, 119
inductance, 17, 19, 20, 81, 83, 92, 94, 551, 672,

731
– generalized matrix of, 539, 551
induction, 136
inductive coupling, 673
inductor, 56, 532, 662
inelastic scattering, 12
inf-sup condition, 338, 339, 341, 347, 354, 358
initial values
– consistent, 564
– inconsistent, 579
inner orientation, 116, 117
insulator, 19–21, 26, 31, 38
integral, 128
integral theorem, 95
interacting electromagnetic field, 15
interaction
– Hamiltonian, 23
– integral, 662, 673, 693, 705, 706
– Lagrangian, 67
interconnection system, 731, 732, 736, 737
interconnects, 552, 560
interface, 27
– state, 34
intermediate state, 35
internal energy, 26
internal orientation, 116
internal resistance, 90
intrinsic concentration, 320
intrinsic grid velocity anisotropy, 238
intrinsic semiconductors, 26
inversion layer, 31–35
inverter stages, 557
irradiation, 668
irreversible processes, 21
irrotational field, 87
isoparametric elements, 184
isotropy, 124
– group, 111
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iterated timing analysis, 592
iteration matrix, 570
iterative linear solvers, 596

J ·E theorem, 51, 53, 58, 92, 96
Jacobian, 98, 565, 566, 570
– sparse, 566
Jacobian matrix, 539, 540, 564
JL cutsets, 552
Jordan decomposition, 546

Kane dispersion relation, 446
Kane model, 429
Katzenelson, 594
Kirchhoff, 8
– current law (KCL), 532, 672
– equations, 662, 672, 673, 730, 731, 737
– laws, 50, 532, 533, 537
– voltage law (KVL), 532, 672
Klein bottle, 121
Kramers–Kronig relations, 25
Kronrod quadrature rule, 662, 680, 681
Kubo’s theory, 25
Kurokawa’s method, 644

L–R-circuit, 91
L-stability, 567
L-stable, 577, 583
Lagrange equations of the first kind, 542
Lagrange multiplier, 76, 353, 355, 381, 456
Lagrangian, 13, 15, 60, 66, 542, 543
– density, 15, 67
– electromagnetic field, 15
– multipliers, 542, 543
Lanczos algorithm, 740
Landau gauge, 64, 65
Landauer–Büttiker formula, 85, 86, 88, 93, 94
Laplace equation, 744
Laplace transformation, 173
Laplace’s equation, 76
Laplacian, 78, 100
large signal solution, 623
latency, 588
latent, 613, 614
lattice temperature, 29
Lax theorem, 172
Lax–Friedrichs flux, 470, 471
LC oscillator, 579
lead, 88–90
– resistance, 90
Legendre polynomial, 39, 679, 682, 749, 750
Lenz’ law, 91
LI-cutsets, 549, 572
limit cycle, 621

line integral, 10
linear
– algebra, 736
– capacitor, 530
– momentum, 12
– perturbation analysis, 624
– PI-controller, 570
– resistors, 529
– response, 12
– system solution, 736, 737
Linear Time Varying (LTV), 623
linearly-implicit methods, 575
link, 79
– variables, 75
Liouville’s theorem, 22
little group, 111
local error, 569
local truncation error, 568, 569
longitudinal
– component, 99
– current, 64
– electric field, 48
– magnetic field, 47
– polarization, 63
– resistance, 64
loops, 539
– of capacitors, 541
Lorentz force, 12, 16, 64
Lorentz gauge condition, 665
Lorenz gauge, 63
low pass filter
– numerical, 584
low-dispersion algorithms, 204
low-dispersion FDTD algorithms, 250
LU decomposition, sparse, 565

M-matrix, 363, 372, 382, 383, 385, 392, 409,
416, 739

macro models, 552
macroscopic
– field equations, 44
– leads, 83, 86
– Maxwell equations, 20, 44
magnetic
– charge, 144
– energy, 19, 92
– field, 14, 18, 43, 44, 65, 136, 664
– – external, 91
– – induced, 87, 91
– – lines, 91
– flux, induced, 10, 44, 91, 93
– fluxe, 532
– induction, 9, 14, 136, 664, 665
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– media, 42
– moment, 43
– – density, 43
– monopoles, 10, 44
– permeability, 9
– susceptibility, 43
– vector potential, 665
magnetization, 43
magnetohydrodynamics, 21
magnetomotive force, 138
magnets, 68
manifold, 113
– with boundary, 113
mass, 127
massive scalar particles, 67
Maszstab Invarianz, 69
matching orientations, 122
matrix
– condensation, 741
– exponential form, 595
– nilpotent, 546
– pencil, 565, 576
matrix-free method, 639
matter, 68
maximum entropy distribution, 457
Maximum Entropy Principle (MEP), 456
Maxwell
– equations, 7–9, 13, 15–17, 20, 44–47, 60, 84,

95, 140, 205, 662–665, 730
– – differential form of, 11
– – integral form, 9
– laws, 68
– stress tensor, 12
– theory, 83
Maxwell–Ampère law, 75
Maxwell–Boltzmann statistics, 320, 323, 330
measure, 127
mechanical energy, 11
MESFET, 485, 493, 513, 514
mesoscopic active area, 86, 89
mesoscopic device, 83, 87
mesoscopic ring, 83, 89
Metal Semiconductor Field Effect Transistor

(MESFET), 485, 493, 513, 514
metal-oxide-semiconductor field-effect

transistor, 64
metals, 21, 25, 29
method of images, 667
methods
– fully implicit, 575
– linearly-implicit, 575
– semi-implicit, 575
metric tensor, 70, 71

microcircuit, 89
Miller integrator, 552, 554
Minimal Polynomial Extrapolation (MPE), 630,

631
Minkowski space, 83
MinMod limiter, 472
MIS capacitor, 31, 32, 35
MIS transistor, 36
mixed scheme, 162
mixed-hybrid scheme, 164
MLN, 597
MNA, 537, 538, 555
– charge/flux oriented formulation of, 537
– conventional formulation of, 539
mobile charges, 38
mobility, 24
Möbius band, 118, 120, 121
model parameters, 551
model refinement, 560
modelling, functional, 586
models, charge-oriented, 535
modified Bessel functions of second kind, 461
Modified Extended BDF, 574
Modified Nodal Analysis (MNA), 537, 538, 555
modified timestep control, 569
molecular charge distribution, 40
moment
– equations, 449, 454
– expansion, 27
– integral, 674, 709, 710, 743
– matching, 596
momentum flux, 29
momentum relaxation time, 28
momentum representation, 63
monodromy, 639
– matrix, 626
morphisms, 115
MOS transistor, 321, 432
MPE, 630, 631
MROW, 615
multi-level Newton, 597
multi-ports, 533
multi-resolution time-domain (MRTD)

technique, 204
multi-step methods, 573
– implicit linear, 563
multiply connected, 96
– region, 92, 97
– surface, 95
multipole moments, 39
multirate, 587, 593, 612
– generalized, 615
multirate extrapolation, 614
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multirate Rosenbrock–Wanner, 615
multivector, 176

NAND gate, 578
Nessyahu–Tadmor scheme, 472, 475, 476, 478,

485
nested dissection, 605
network approach, 531
network elements, 529
– idealized, 560
network equations, 529, 531, 563
– charge oriented, 558
– charge/flux oriented formulation of, 537, 563
– differential-algebraic, 529
– in charge/flux oriented formulation, 537
– stiff, 567
network topology, 529, 532, 545
– laws, 532
networks, active, 550
Neumann condition, 141
Newton correction, 565
Newton–Cotes quadrature rules, 675, 676, 684
Newton–Raphson matrix, 75, 76
Newton–Raphson method, 8, 75
Newton’s method, 565
Newton’s procedure, 564
nilpotency, 546
nilpotent matrix, 546
nilpotent part, 546
Nodal Analysis (NA), 530, 531, 537
node tearing, 601
node voltages, 532
noise, 617
– 1/f , 624
– device, 618
– flicker, 618
– frequency, 623
– phase, 619, 620
– shot, 618
– thermal, 618
– timing jitter, 620
noiseless, 623, 625
noiseless solution, 620
noisy solution, 625
non-commuting operators, 88
non-equilibrium state, 27
non-interacting Liouville equation, 36
non-linear response, 12
non-local resistance, 87
non-singular Lagrangian density, 61
nonconformity, 343, 352
nonlinear perturbation analysis, 620
nonpolar optical phonon

– interaction, 448
– scattering, 460
nonpolar phonon scattering, 458
nonsplitting schemes, 478
nonuniform Yee grid, 222
norator, 553, 554
normal continuity, 132
normal field, 128
normal projection, 638
normal trees, 552
normalized perturbation function, 623
nuclear decay, 35, 36
null space, 739, 740
– method, 738
nullator, 554
numerical
– accuracy, 536
– damping, 567
– dispersion, 231, 250
– flux, 468
– instability, 261
– integration, 563, 674, 705
– integration schemes
– – implicit, 540
– low pass filter, 584
– noise, 568, 579
– phase velocity, 234
– regularization, 543
– simulation, 95
– stability, 75, 261
numerically singular, 540, 564

ODE model, 540, 542
ohmic contacts, 322
ohmic loss, 45
ohmic response, 84
Ohm’s law, 12, 23, 24, 79, 87, 140, 530, 664
one-electron Hamiltonian, 64
one-particle Schrödinger equation, 14, 36
one-particle wave function, 36
one-port elements, 532
one-step methods, 563
– stiffly-accurate, 573
open cell, 114
open-ended conductor, 88
open-ended region, 87, 88
operational amplifier, 553
– circuit, 580
– ideal, 554, 555
operational formulation, 669
Optimal Sweep Following, 648
orbit, 627
– of group action, 111, 186
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Orden’s method, 662, 740
order conditions, 576
ordinary differential equations (ODEs), 529, 531
orientable
– manifold, 118
– surface, 95
orientation, 95, 115
– of vector space, 115
orthogonal construction (of dual mesh), 153
orthogonal polynomials, 678, 749
oscillation frequency, 622
oscillation solution, 622
oscillations, physical, 584
outer orientation, 117
oxide thickness, 31, 34, 37

PAC, 620, 624
parabolic band, 446
– limit, 459
parallel, 635
parallel transport, 69, 74
parallel-plate capacitor, 41
parallelism, 589
parallelization, 586, 597
– thread based, 608
parasitic effects, 560
partition of unity, 180, 181
partitioning, 604
– adaptive, 610
– dynamic, 606
– of circuits, 542
– requirements, 604
– static, 604
passive IC, 734
passive, strictly, 548
path integral, 14
Patterson quadrature
– formulae, 674
– rule, 662, 674, 681–686, 709
Pauli’s exclusion principle, 23, 24
paving, 149
PCB, 662, 663
Péclet number, 413
perfect conductor, 54
perfectly matched layer (PML), 204, 279
– absorbing boundary conditions, 278
periodic
– AC, 620, 624
– boundary conditions, 64
– noise, 620
– steady-state, 617, 620, 621
– – solution, 621
permeability, 43, 664, 732
permittivity, 33, 664, 732

persistent current, 83, 89
perturbation index, 547, 549
Perturbation Projection Vector, 628
perturbations, highly oscillatory, 584
perturbative methods, 45
perturbed oscillatory systems, 624
Petrov–Galerkin formulation, 402
phase
– coherence, 84, 87
– modulation, 642
– noise, 620
– – analysis, 629
– space, 21, 25
phase-coherent transport, 87
phase-shift, 623
– function, 627
phenomenological theory, 68
phonons, 22, 36
photon modes, 14
physical oscillations, 584
PI-controller, linear, 570
Picard iteration, 592
piecewise linear analysis, 594
piecewise linear mapping, 595
piecewise smooth manifold, 114
piecewise-polynomial reconstruction, 473
placement, analytical, 606
plane waves, 64
plasma physics, 21
pn-diode, 421, 428
Poincaré, 638
Poincaré lemma, 134
Poincaré-map, 630
Poisson equation, 33, 36, 447, 480, 487, 507
polar coordinates, 744
polar vector, 115
polarization, 40, 41
poly-depletion, 38
polynomial grading, 293
positive-definite, 539, 731, 735
positive-definiteness, 551
potential, 13, 144, 662
– barrier, 89, 90
– difference, 14, 87
– hill, 90
– well, 33, 35, 64, 65
power supply, 560
Poynting theorem, 11, 12, 144
Poynting vector, 11, 12
predictor step, 565
predictor-corrector scheme, 565
principle of least action, 19
printed circuit boards, 661
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prismatic elements, 186
probes (as modelled by chains), 133
problems
– autonomous, 622
– driven, 621
– forced, 621
– free-running, 622
– ill-posed, 529, 541
– nonautonomous, 621
– oscillator, 622
projective system, 184
properties of DAE
– analytical, 545
– structural, 545
properties, structural, 552
proxy (vector, field), 132
pseudo-spectral time-domain (PSTD)
– method, 258
– technique, 204
PSS, 617, 620, 621
pyramidal elements, 190
Pythagoras’ theorem, 70

QL-cutsets, 552
quadrature
– formula, 368, 412, 675
– repeated, 676
– rule, 673
quadrilateral element, 662, 669
quadrupole moment, 39
quality factor, 646
quantized conductance, 87
quantum
– circuit theory, 93
– dot, 83, 86
– dynamics, 94
– electrodynamics, 83, 84, 93
– Hall effect, 63
– point contact, 83, 84, 86
– wire, 83
quantum mechanical
– probability density, 14
– reflection, 87
quantum mechanics, 7, 8, 69, 83, 84, 88, 94
quantum-Liouville equation, 25
quasi-Fermi levels, 320
quasi-neutral limit, 326
quasi-static, 667, 732
– approximation, 730
– form, 673
quasistationary behaviour, 532

radiation, 60, 63
– boundary conditions (RBCs), 278

– field, 14
– loss, 91
– resistance, 91
Radio Frequency (RF), 617, 618
range (of a map), 111
range space method, 738
ratio-cut, 606
Raviart–Thomas element, 344, 380
recombination-generation, 324, 334
Reduced Rank Extrapolation (RRE), 630
refinement, 155
– criteria, 504
regular group action, 111
regularization, 543, 560, 693
– by including parasitic effects, 543
– inappropriate, 543
– numerical, 543
– of curl–curl system, 164
regularizing effect, 560
relative boundary, 152
relaxation methods, 590
repeated quadrature, 676, 677
requirements, 604
reservoir, 86–88
resistance, 25, 26, 84, 86, 91, 672, 731
resistivity, 81
resistor, 530, 532, 662
– linear, 529
resonance, 31, 33–35, 89
– energies, 34, 36
– lifetime, 35, 36, 38
– width, 36
resonant
– bound state, 36
– energies, 33, 34
– state, 35
retarded Green function, 63
reverse biased, 428
RF, 617, 618
Richardson extrapolation, 677, 678
Riemann geometry, 69–71
Riemann problem, 468, 469
ringoscillator, 557, 586
– bipolar, 557
RLC-network, 548, 550, 551
robustness, 570
roll back, 613
Romberg integration, 677, 678, 684
Rosenbrock–Wanner (ROW) schemes, 575
– charge/flux-oriented, 575
Runge–Kutta, 614
– split, 614
running wave, 35
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S parameters, 48
sample rate, 582
sampling, 629
scalability, 607
scalar, 69
– field, 14, 61, 67, 80, 96
– – charged, 67
– potential, 13–15, 48, 62, 63, 68, 87, 96, 99
– product (of forms), 142
scattering, 22, 36
– in a semiconductor, 448
scattering mechanisms
– elastic, 86
– electron–electron, 86
– electron–phonon, 86
– inelastic, 86, 90
scattering processes, 23
Scharfetter–Gummel scheme, 30
Schmitt trigger, 529, 538, 551
Schottky contact, 496
Schrödinger equation, 7, 32–36, 65, 94
Schur matrix, 599, 602
second Dahlquist barrier, 567
second-order accurate central differencing, 211
self-interaction, 67
semi-implicit approximation, 212
semi-implicit methods, 575
semiclassical Boltzmann equation, 447
semiconducting materials, 28
semiconductor, 20, 21, 26, 27, 32, 78, 446, 447,

503
– structure
– – high-mobility, 84
– – nanometer-sized, 83
series impedance, 49
shielding, 18
shock capturing methods, 465
shooting, 620
– method, 626, 630, 638, 641
shunt admittance, 49
signal flow, unidirectional, 589
signal frequency, 642
silicon, 31
– diode, 482, 484, 509–511
– dioxide, 31
– substrate, 31
simplices, 154
simplifying assumptions, 529
simply connected region, 9, 13, 87, 88
Simpson’s quadrature rule, 684
single-electron Schrödinger equation, 86
singular Lagrangian, 61
singular matrix, 75
singular operator, 61

singularly perturbed index-2 problem, 560
singularly-perturbed ODE, 543
skew frame, 115, 116
skew linear transform, 124
skin effect, 17
SLIC method, 508, 511
Slotboom variable, 321, 330, 379, 391
slowest first, 612
SM, 630
small signal perturbation, 620
smooth manifold, 113
solenoid, 66
source integral, 673
span, 116
sparse, 539
sparse Jacobian, 566
sparse LU decomposition, 565
Sparse Tableau Approach (STA), 537
spatial confinement, 89
spectral width, 33, 34
speed of light, 63
spherical harmonics, 38
spiral inductor, 83
split Runge–Kutta, 614
splitting approach, 506
splitting strategy, 476
spurious modes, 165
stability, 567, 621
– function, 582
– matrix, 582
– of scheme, 172, 174
stabilizer, 111
stable, 621
– strongly, 621
staggered, collocated grid, 227
staggered, uncollocated grid, 209, 226
stamping, 608
standing waves, 36
star construction (of dual mesh), 153
star (of cell), 180
star-shaped, 153
state equations, 541
State Variable approach, 552
state-space model, 541
static assignment, 604
static condensation, 361, 381, 408
static elements, 554
statistical operator, 36
statistical physics, 21
steady state, 564
step function, 63
step size, 565
stepsize selection, 568, 577
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stiff decay, 567
stiffly accurate, 577
stiffly-accurate one-step methods, 573
Stokes theorem, 95, 99, 134
– multiply connected regions, 87
straight form, 130
stratified inhomogeneous medium, 667
streamline diffusion, 402
stressing conditions, 38
stretched-coordinate formulation of Berenger’s

PML, 284
strictly passive, 548
strongly stable, 621
structural properties, 552
– of the DAE network equations, 545
structural symmetry, 539
subband energies, 33, 34
subband state, 31, 33, 35
subcircuit partitioning, 542, 550
substitute circuits, 614
substrate, 34, 35
superconducting ring, 91
superconductor, 54, 67, 91
– type-I, 91
supraconvergent FDTD algorithm, 222
surface charge, 34
surface element, 10, 98
surface integral, 97
symmetric, 735
symmetry (of Hodge map), 142

’t Hooft gauge, 67
table model, 586
tangent, 627
– correction, 599
– map, 113
– space, 112
– vector, 98
tangential continuity, 132
Taylor expansion, 674, 706, 710–712, 715, 720,

741
TE modes, 48
telegraph equation, 49
TEM modes, 47
temperature, 22, 26
temporal gauge, 66
tensor, 69
– equations, 70
terminal charges, 533
test function, 668
tetradecahedron/dual-tetrahedron mesh, 230
theory of relativity, 83
thermal
– conductance, 28

– conductivity, 28, 29
– equilibrium, 22, 26, 27, 35
– – local, 87
– flux, 28
– voltage, 320
third Maxwell equation, 87
thread based parallelization, 608
through (quantity), 129, 137
time reversal invariance, 21
time-reversal symmetry breaking, 36
timestep control, 568, 569, 577
– modified, 569
timing jitter, 620
timing simulation, 592
TM modes, 47
topological
– conditions, 549, 552, 564
– criteria, 571
– structure, 529
topology, 88, 96
toroidal circuit, 87
toroidal region, 93, 96
TR-BDF, 580
– schemes, 568
trace (of a form), 141
tractability index, 547
transfer matrix, 33
transistor, 31
transitive function, 113
transitive group action, 111
translational invariance, 32, 45, 46, 64, 65
translational symmetry, 17
transmission
– coefficient, 36, 86, 89
– conditions, 131, 141, 142
– line, 44, 49
– – theory, 48
– matrix, 34
– probability, 86
transverse
– component, 99
– potential, 48
– subspaces, 116
Trapezoidal Rule (TR), 567, 568, 580, 629, 676
traveling state, 36
trial function, 19
triangular element, 662
tunneling, 34–36, 54
– currents, 31, 38
twisted chain, 122, 129
twisted form, 130, 133
two-dimensional electron gas, 64, 84
two-step approach, 637
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two-terminal device, 86
two-terminal elements, 532

unconditional stability, 271
uniaxial perfectly matched layer (UPML), 204,

279, 286
unidirectional signal flow, 589
uniform electric field, 29
uniform mesh, 167
uniform nonoscillatory reconstruction, 480
uniform refinement, 167
uniformly accurate central scheme of order 2,

479
unifying theory, 7
unisolvence, 183
UNO limiter, 472
unstable, 621
unstaggered, collocated grid, 227
upwind, 384, 416
upwind schemes, 468

vacuum, 9, 67
– expectation value, 67
– impedance of, 91
valence band, 26
valley, 32
– index, 32
variable step size implementations, 565
variables
– algebraic, 546
– differential, 546, 550
variational calculus, 16
variational formulation, 668, 669
variational principle, 15, 16
VC loops, 549, 551, 552, 572, 573
vector at a point, 112
vector calculus, 83, 100
vector extrapolation, 630

vector field, 66, 95, 96, 99
– conservative, 97
– irrotational, 96
– longitudinal part, 95
– non-conservative, 97
– transverse part, 95
vector phasor, 664
vector potential, 13–15, 43, 63, 64, 66, 68, 79,

80, 91, 99
– irrotational, 91
vector-extrapolation, 631
vectorial area, 124, 181
velocity field, 41
voltage sources, 533
volume (form), 124
volume integral, 97
von Klitzing resistance, 64, 85, 91
Voronoi–Delaunay dual, 153

warping function, 648
wave equation, 13
wave function, 14, 32, 33, 35, 74, 89, 92
wave guide, 44
waveform evaluation, asymptotic, 596
waveform Newton, 640
waveform relaxation, 592
– Newton, 593
weak decay, 7
weak instability, 568, 573
wedge product, 142
Whitney complex, 174
Whitney forms, 174, 176
Whitney map, 172
Wiedemann–Franz law, 29, 453

Yee algorithm, 208
– divergence-free nature, 221
Yee scheme, 159




