Linear Feedback Control
Analysis and Design with MATLAB

1
J _,."
X J
rardFi
P,
T
5 S
.::-'%;-"
|
i "I:-"'

Dingyu Xue
YangQuan Chen
Derek P. Atherton

W“‘ Advances in Design and Control
Sld1L.

Linear Feedback Control
Analysis and Design with MATLAB

dcld4_Xue_ FMl.gxp 9/21/2007 8:53 AM Page 2 $

Advances in Design and Control

SIAM’s Advances in Design and Control series consists of texts and monographs dealing with all
areas of design and control and their applications. Topics of interest include shape optimization,
multidisciplinary design, trajectory optimization, feedback, and optimal control. The series focuses
on the mathematical and computational aspects of engineering design and control that are usable
in a wide variety of scientific and engineering disciplines.

Editor-in-Chief
Ralph C. Smith, North Carolina State University

Editorial Board

Athanasios C. Antoulas, Rice University

Siva Banda, Air Force Research Laboratory

Belinda A. Batten, Oregon State University

John Betts, The Boeing Company

Stephen L. Campbell, North Carolina State University
Eugene M. Cliff, Virginia Polytechnic Institute and State University
Michel C. Delfour, University of Montreal

Max D. Gunzburger, Florida State University

J. William Helton, University of California, San Diego
Arthur J. Krener, University of California, Davis
Kirsten Morris, University of Waterloo

Richard Murray, California Institute of Technology
Ekkehard Sachs, University of Trier

Series Volumes

Xue, Dingyl, Chen, YangQuan, and Atherton, Derek P., Linear Feedback Control: Analysis and
Design with MATLAB

Hanson, Floyd B., Applied Stochastic Processes and Control for Jump-Diffusions: Modeling,
Analysis, and Computation

Michiels, Wim and Niculescu, Silviu-lulian, Stability and Stabilization of Time-Delay Systems:
An Eigenvalue-Based Approach

loannou, Petros and Fidan, Baris, Adaptive Control Tutorial

Bhaya, Amit and Kaszkurewicz, Eugenius, Control Perspectives on Numerical Algorithms and
Matrix Problems

Robinett Ill, Rush D., Wilson, David G., Eisler, G. Richard, and Hurtado, John E., Applied Dynamic
Programming for Optimization of Dynamical Systems

Huang, J., Nonlinear Output Regulation: Theory and Applications

Haslinger, J. and Makinen, R. A. E., Introduction to Shape Optimization: Theory, Approximation,
and Computation

Antoulas, Athanasios C., Approximation of Large-Scale Dynamical Systems

Gunzburger, Max D., Perspectives in Flow Control and Optimization

Delfour, M. C. and Zolésio, J.-P., Shapes and Geometries: Analysis, Differential Calculus, and
Optimization

Betts, John T., Practical Methods for Optimal Control Using Nonlinear Programming

El Ghaoui, Laurent and Niculescu, Silviu-lulian, eds., Advances in Linear Matrix Inequality Methods
in Control

Helton, J. William and James, Matthew R., Extending H>® Control to Nonlinear Systems: Control
of Nonlinear Systems to Achieve Performance Objectives

dcld4_Xue_ FMl.gxp 9/21/2007 8:53 AM Page 3 $

Linear Feedback Control
Analysis and Design with MATLAB

Dingyu Xue
Northeastern University
%% Shenyang, People’s Republic of China

YangQuan Chen

Utah State University
Logan, Utah, USA

Derek P. Atherton

University of Sussex
Brighton, United Kingdom

siam.

Society for Industrial and Applied Mathematics
Philadelphia

o

dcld4_Xue_ FMl.gxp 9/21/2007 8:53 AM Page 4 $

Copyright © 2007 by the Society for Industrial and Applied Mathematics.
10987654321

All rights reserved. Printed in the United States of America. No part of this book may be reproduced,
stored, or transmitted in any manner without the written permission of the publisher. For information,
write to the Society for Industrial and Applied Mathematics, 3600 Market Street, 6th floor, Philadelphia,
PA 19104-2688 USA.

Trademarked names may be used in this book without the inclusion of a trademark symbol. These
names are used in an editorial context only; no infringement of trademark is intended.

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. For product information,
please contact The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA, 508-647-7000,
Fax: 508-647-7101, info@mathworks.com, www.mathworks.com.

CtrILAB can be freely distributed “as-is,” i.e., in its unmodified form. Users are free to modify their own
copy of CtrlLAB without distributing a modified version or including it in any commercial product. The
authors hold the copyright of CtrlLAB in full. In no event will the authors or their departments be liable
for any special, incidental, indirect, or consequential damages of any kind, or damages whatsoever
resulting from the use of CtrlLAB.

Library of Congress Cataloging-in-Publication Data

Xue, Dingyd.
Linear feedback control : analysis and design with MATLAB / Dingyl Xue, YangQuan
Chen, Derek P. Atherton.
p. cm. - (Advances in design and control)
ISBN 978-0-898716-38-2 (alk. paper)
1. Engineering mathematics—Data processing. 2. Linear control systems. 3.
MATLAB. I. Chen, YangQuan. Il. Atherton, Derek P. IIl. Title.

TA345.784 2007
629.8'32—dc22 2007061804

Elanl. is a registered trademark.

o

Preface

1

Contents

Introduction to Feedback Control

1.1
1.2
1.3

Introduction.

Historical Background
Structure of the Book

1.4 A Survival Guide to MATLAB . .
1.4.1 ABriefOverviewof MATLAB
1.4.2 Standard MATLAB Statements and Functions
1.4.3 Graphics Facilitiesin MATLAB
1.4.4 On-Line Help Facilitiesin MATLAB.

Problems

1.4.5 MATLAB Toolboxes . . .

Mathematical Models of Feedback Control Systems
2.1 A Physical Modeling Example. .

2.2
2.3

2.4

2.5

2.6

The Laplace Transformation . .
Transfer Function Models

2.3.1 Transfer Functions of Control Systems
2.3.2 MATLAB Representations of Transfer Functions.
2.3.3 Transfer Function Matrices for Multivariable Systems
2.3.4 Transfer Functions of Discrete-Time Systems.
Other Mathematical Model Representations

2.4.1 State Space Modeling . .

2.4.2 Zero-Pole-Gain Description.
Modeling of Interconnected Block Diagrams

2.5.1 SeriesConnection e

2.5.2 Parallel Connection . . .
2.5.3 Feedback Connection . .

2.5.4 More Complicated Connections
Conversion Between Different Model Objects.
2.6.1 Conversionto Transfer Functions.
2.6.2 Conversion to Zero-Pole-GainModels.

2.6.3 State Space Realizations

11
11
12
14
14
14
16
16
17
17
19
20
20
20
21
22
24
25
26
27

2007/
pagev

vi Contents
2.6.4 Conversion Between Continuous and Discrete-Time Madels. . 34
2.7 AnIntroduction to System Identification. 35
2.7.1 Identification of Discrete-Time Systems 35
2.7.2 OrderSelection. 40
2.7.3 Generation of Identification Signals 41
2.7.4 ldentification of Multivariable Systems. 44
Problems 45
3 Analysis of Linear Control Systems 51
3.1 Properties of Linear Control Systems 52
3.1.1 StabilityAnalysis. 52
3.1.2 Controllability and Observability Analysis 55
3.1.3 Kalman Decomposition of Linear Systems 59
3.1.4 Time Moments and Markov Parameters. 62
3.1.5 Norm Measures of Signalsand Systems 64
3.2 Time Domain Analysis of Linear Systems. 66
3.2.1 Analytical Solutions to Continuous Time Responses. 66
3.2.2 Analytical Solutions to Discrete-Time Responses. 69
3.3 Numerical Simulation of Linear Systems 70
3.3.1 Step ResponsesofLinearSystems 70
3.3.2 Impulse Responses of Linear Systems 75
3.3.3 Time ResponsestoArbitrary Inputs 76
3.4 RootLocusofLinearSystems 78
3.5 Frequency Domain Analysis of Linear Systems. 84
3.5.1 Frequency Domain Graphs with MATLAB. 84
3.5.2 Stability Analysis Using Frequency Domain Methods 87
3.5.3 Gain and Phase MarginsofaSystem 88
3.5.4 Variations of Conventional NyquistPlots. 90
3.6 Introduction to Model Reduction Techniques 92
3.6.1 Padé Approximations and Routh Approximations. 92
3.6.2 Padé ApproximationstoDelay Terms 96
3.6.3 Suboptimal Reduction Techniques for Systems with Delays . . 98
3.6.4 State Space Model Reduction 101
Problems e 104
4 Simulation Analysis of Nonlinear Systems 111
4.1 Anintroductionto Simulink oo 111
4.1.1 Commonly Used SimulinkBlocks. 112
4.1.2 SimulinkModeling 115
4.1.3 Simulation Algorithms and Control Parameters. 116
4.2 Modeling of Nonlinear Systems by Examples. 118
4.3 Nonlinear Elements Modeling. 126
4.3.1 Modeling of Piecewise Linear Nonlinearities 126
4.3.2 Limit Cycles of Nonlinear Systems. 129
4.4 Linearization of NonlinearModels 131
Problems 135

2007
page\

Contents vii
5 Model-Based Controller Design 139
5.1 Cascade Lead-Lag Compensator Design. 140
5.1.1 Introduction to Lead-Lag Synthesis 140
5.1.2 Lead-Lag Synthesis by Phase Margin Assignment. 146
5.2 Linear Quadratic OptimalControl. 151
5.2.1 Linear Quadratic Optimal Control Strategies 151
5.2.2 Linear Quadratic Regulator Problems 152
5.2.3 Linear Quadratic Control for Discrete-Time Systems. 155
5.2.4 Selection of Weighting Matrices. 156
5.2.5 Observersand ObserverDesign. 159
5.2.6 State Feedback and Observer-Based Controllers 162
5.3 PolePlacementDesign e 165
5.3.1 The Bass-GuraAlgorithm. 166
5.3.2 Ackermann’s Algorithm 166
5.3.3 Numerically Robust Pole Placement Algorithm 167
5.3.4 Observer Design Using the Pole Placement Technique 169
5.3.5 Observer-Based Controller Design Using the Pole Placement
Technique 169
5.4 Decoupling Control of Multivariable Systems 171
5.4.1 Decoupling Control with State Feedback 171
5.4.2 Pole Placement of Decoupling Systems with State Feedback . 172
5.5 SISOTool: An Interactive Controller Design Toal 175
Problems 177
6 PID Controller Design 181
6.1 Introduction. 182
6.1.1 ThePIDActions 182
6.1.2 PID Control with Derivative in the Feedback Loop 184
6.2 Ziegler-Nichols TuningFormula 185
6.2.1 Empirical Ziegler-Nichols Tuning Formula 185
6.2.2 Derivative Action in the Feedback Path 189
6.2.3 Methods for First-Order Plus Dead Time Model Fitting. 191
6.2.4 A Modified Ziegler—Nichols Formula 194
6.3 Other PID Controller Tuning Formulae. 197
6.3.1 Chien—Hrones—Reswick PID Tuning Algorithm 197
6.3.2 Cohen—Coon Tuning Algorithm. 198
6.3.3 Refined Ziegler—Nichols Tuning. 200
6.3.4 The Wang—Juang—Chan Tuning Formula 203
6.3.5 Optimum PID ControllerDesign 203
6.4 PID Controller Tuning Algorithms for Other Types of Plants. 210
6.4.1 PD and PID Parameter Setting for IPDT Models 210
6.4.2 PD and PID Parameters for FOIPDT Models 211
6.4.3 PID Parameter Settings for Unstable FOPDT Models 213
6.5 PID_Tuner: A PID Controller Design Program for FOPDT Models. . . 213
6.6 Optimal Controller Design., 216
6.6.1 Solutions to Optimization Problems with MATLAB 216

2007/
pagev

2007/
pagev

—&
viii Contents
6.6.2 Optimal Controller Design. 218
6.6.3 A MATLAB/Simulink-Based Optimal Controller Designer and Its
Applications 221
6.7 More TopicsonPIDControl. 225
6.7.1 Integral Windup and Anti-Windup PID Controllers 225
6.7.2 Automatic Tuning of PID Controllers. 227
6.7.3 Control Strategy Selection. 230
Problems L 231
7 Robust Control Systems Design 235
7.1 Linear Quadratic GaussianControl. 236
7.1.1 LQGProblem. 236
7.1.2 LQG Problem Solutions Using MATLAB. 236
7.1.3 LQG Control with Loop Transfer Recovery 241
7.2 General Descriptions of the Robust Control Problems. 247
7.2.1 SmallGainTheorem., 247
7.2.2 Unstructured Uncertainties 248
7.2.3 RobustControl Problems 249
7.2.4 Model Representation Under MATLAB 250
7.2.5 Dealing with Poles on the ImaginaryAxis 251
7.3 FHs ControllerDesign. 253
7.3.1 Augmentations of the Model with Weighting Functions. 253
7.3.2 Model Augmentation with Weighting Function Under MATLAB . . 255
7.3.3 Weighted Sensitivity Problems: A Simple Case. 256
7.3.4 H Controller Design: The GeneralCase. 261
7.3.5 Optimal¥#, ControllerDesign. 267
7.4 Optimal#; ControllerDesign. 271
7.5 The Effects of Weighting Functions #., Control 273
Problems 281
8 Fractional-Order Controller: An Introduction 283
8.1 Fractional-Order Calculus and Its Computations. 284
8.1.1 Definitions of Fractional-Order Calculus. 285
8.1.2 Properties of Fractional-Order Differentiations 286
8.2 Frequency and Time Domain Analysis of Fractional-Order Linear Systems . 287
8.2.1 Fractional-Order Transfer Function Modeling. 287
8.2.2 Interconnections of Fractional-Order Blocks 288
8.2.3 Frequency Domain Analysis of Linear Fractional-Order Systems . . 289
8.2.4 Time Domain Analysis of Fractional-Order Systems 290
8.3 Filter Approximation to Fractional-Order Differentiations. 292
8.3.1 Oustaloup’s Recursive Filter. 292
8.3.2 ARefined OustaloupFilter. 294
8.3.3 Simulink-Based Fractional-Order Nonlinear Differential Equation
Solutions. 296
8.4 Model Reduction Techniques for Fractional-Order Systems. 298
8.5 Controller Design Studies for Fractional-Order Systems. 300
—&

2007
page:

—&
Contents iX
Problems 304
Appendix 307
CtrlLAB: A Feedback Control System Analysis and Design Tool 307
Al Introduction. e 307
A.1.1 WhatlIsCtrlLAB?. 307
A.1.2 Installation and Requirements. 308
A.1.3 Executionof CtrlLAB. 308
A.2 Model Entry and Model Conversion 309
A.2.1 Transfer FunctionEntry 309
A.2.2 Entering Other Model Representations 309
A.2.3 A More Complicated Model Entry. 310
A.3 Model Transformation and Reduction 311
A.3.1 ModelDisplay. 311
A.3.2 State Space Realizations 314
A.3.3 ModelReduction. 314
A.4 Feedback Control System Analysis. 316
A.4.1 Frequency DomainAnalysis. 316
A.4.2 Time DomainAnalysis., 318
A.4.3 System PropertiesAnalysis. 321
A.5 ControllerDesignExamples. 322
A5.1 Model-Based ControllerDesigns. 322
A5.2 DesignofPID Controllers 322
A.5.3 RobustControllerDesign 325
A.6 Graphical Interface-BasedTools 327
A.6.1 AMatrix Processor. 327
A.6.2 A Graphical Curve Processor. 331
Problems 334
Bibliography 337
Index of MATLAB Functions 345
Index 349
—&

2007
pagex

2007
pagex

Preface

It is well known that the benefits from the wise use of control engineering are numerous
and include improved product/life quality, minimized waste materials, reduced pollution,
increased safety, reduced energy consumption etc. One can observe that the notions of
feedback and control play important roles in most sociotechnological aspects. The phrase
“control will be the physics of the 21st centufyinplies that all engineering students should
take an introductory course on systems control.

It is widely accepted that control is more “engineering” than “science,” but it does
require a firm theoretical underpinning for it to be successfully applied to ever more chal-
lenging projects. This attention to theory in academia has led to discussions through the
years on the “theory/practice Gap” which culminated in a recent special issue l&ERe
Control Systems Magazirfgolume 19, Number 6, 1999).

The development of computer software for control has provided many benefits for
teaching, research, and the development of control systems design in industry. MATLAB
and Simulink® are considered the dominant software platforms for control system analysis
and design, with numerous off-the-shelf toolboxes dedicated to control systems and related
topics. As Confucius said, “The craftsman who wishes to work well has first to sharpen
his implements2 and it is clear that MATLAB provides a suitable implement for control
engineering. The major objective of this book is to provide information on how MATLAB
can be used in control system design by covering many methods and presenting additional
software routines. Many students today view control theory as difficult because of the
mathematics involved in evaluating frequency responses, plotting root loci, and doing the
many other calculations which can be easily accomplished in MATLAB, as shown in this
book. It is therefore our opinion that the educational objective today should be to give
students sufficient knowledge of these techniques to understand their relevance and teach
how to use them correctly without the burden of the calculations which MATLAB can
accomplish.

A distinguishing feature of the book is the organization and presentation of the
material. Based on our teaching, research, and industrial experience, we have chosen
to present the course materials in the following sequence: system models, time and fre-
guency domain analysis, introduction to various model reduction techniques, model-based
control design methods, PID techniques and robust control. In addition, a chapter is in-

1Doer J. C. A new physic®. plenary talk presented at the 40th IEEE Conference on Decision and Control
Orlando, FL, Dec. 2001.
2ntt p: / / www. conf uci us. org/ | unyu/ ed1509. ht m

Xi

2007
pagex

xii Preface

cluded on fractional-order control as an alternative for practical robustness trade-offs. MAT-
LAB scripts and plots are extensively used in this textbook to illustrate basic concepts and
examples. A dedicated toolbox called CtrILAB developed by the authors can be used as
an effective teaching and learning aid. CtrILAB was developed to support our objective of
enabling control studies to be done in MATLAB by students with no knowledge of MAT-
LAB, thus avoiding the need to replace less mathematics with the requirement of learning
a programming language (although this is not difficult). CtrlLAB is the most downloaded
package in the Control Systems category in the File Exchange of MATLAB Céhntral.

We hope that readers will enjoy playing with and changing the scripts as they gain
better understanding and accomplish deeper exploration with reduced effort. Additionally,
each chapter comes with a set of problems to strengthen the readers’ understanding of the
chapter contents.

This book can be used as a reference text in the introductory control course for under-
graduates in all engineering schools. The coverage of topics is broad, yet balanced, and
should provide a solid foundation for the subsequent control engineering practice in both
industry and research institutes. For graduates and researchers not majoring in control, this
textbook is useful for knowledge enhancement. The authors also believe that this book will
be a good desktop reference for control engineers.

The writing of this book started in the mid 1990s. In its evolving into the current
form, many researchers, professors, and students have provided useful feedback, comments,
and input. In particular, we thank the following professors: Xinhe Xu, Xingquan Ren,
Yuanwei Jing, Taicheng Yang, Shuzhi Sam Ge, Igor Podlubny, Ivo Petras, Istvan Kollar,
Alain Oustaloup, Jocelyn Sabatier, Blas M. Vinagre, J. A. Tenreiro Machado, and Kevin L.
Moore. Moreover, we are grateful to Elizabeth Greenspan, Acquisitions Editor of the Society
for Industrial and Applied Mathematics (SIAM), for her professional help. The “Book
Program” from The MathWorks Inc. is acknowledged for the latest MATLAB software.

Last, but not least, Dingyu Xue would like to thank his wife Jun Yang and his daughter
Yang Xue; YangQuan Chen would like to thank his wife Huifang Dou and his sons Duyun,
David, and Daniel, for their patience, understanding and complete support throughout this
work. Derek Atherton wishes to thank his wife Constance for allowing him hours of overtime
with many hardworking graduate students which included, in particular, many discussions
with Dingyl when he was at Sussex and the email exchanges or with Dingyi and YangQuan,
which led to this book.

Dingyl Xue Northeastern University, Shenyang, China.
YangQuan CherUtah State University, Logan, UT, USA.
Derek P. AthertonThe University of Sussex, Brighton, UK.

Sht t p: / / www. mat hwor ks. com mat | abcent ral /i ndex. sht m

2007/
pagel

Chapter 1

- Introduction to
- Feedback Control

1.1 Introduction

Feedback and control are almost everywhere. One can virtually link the powerful word

“control” to almost anything, such as “diet control,” “financial control,” “pest control,”
“motor control,” “robot control,” etc. One can also say that “power is nothing without
control,” which is believed to be correct in both social and technological contexts. Feedback
is an intuitive means for control. For example, when feei cold (sensing), you add one
more layer of cloth (decision and then control action) to keep yourself warm and comfortable
(objective). Thisis biological feedback due to a change in the environment. Intechnological
systems, the loop “sensing-feedback-decision-control” is implemented to change the system
behavior into a desirable one. In most cases in this book, we shall focus on the “feedback
control” for a given system described by ordinary differential equations (ODEs) with a single
input—single output (SISO). More specifically, we will mainly concentrate on analytical and
simulation methods for linear feedback control systems and a few aspects of simulation
for nonlinear systems. For multiple input—-multiple output (MIMO) linear systems, good
references are [1-7].

Figure 1.1 shows a typical feedback control structure with three blocks, namely, the
plant block, the controller block, and the feedback block. In this typical feedback control
structure, the plant and the controller blocks form the forward path and the feedback path
normally includes the sensor and, possibly, signal conditioning. This system structure is
quite commonly seen in process control and other control applications.

For simplicity, throughout the book only the paths with negative actions will be labeled
in the block diagram, and the ones with positive actions will have the plus sign omitted by
default, as in Figure 1.1.

If all three blocks are linear, the feedback control structure can be redrawn, as shown
in Figure 1.2. This model structure will be extensively used in the book.

In control systems, the concept of “feedback” is very important. If we assume that
there is no feedback path, the system will be driven solely by the input signal, and after
the effect of the control block, the output signal of the system will be generated. This kind
of system structure is usually referred to as an open-loop control structure. Under ideal

2 Chapter 1. Introduction to Feedback Control
input controller |] plant output
| model model .
feedback
model

Figure 1.1. Typical feedback structure.

i t
inpu Gots) H G output

Figure 1.2. Typical linear feedback structure.

circumstances, an open-loop control strategy will work, but this is based on having an
accurate plant model, which never exists in practice due to modeling errors and system
disturbances. Thus, for accurate control a closed-loop system structure must be used instead.
Closed-loop systems are often referred to as feedback control systems.

The objective of this book is to present methods for the analysis and design of feedback
control systems using the interactive language MATLAB and its Control Systems Toolbox.
Many methods are presented and details of the appropriate MATLAB routines given. For
the routines, emphasis is placed on the effectiveness, relevance, and appropriateness of the
different control design approaches covered. It is hoped that the reader will appreciate
these aspects from the large number of examples included and will also recognize that
practical specifications for a system’s performance may include many factors. A design
to meet these will invariably involve economic as well as technical considerations. This
can result in systems operating in a nonlinear mode, so Simulink is introduced to show the
value of simulation for these situations. Further, the technical specifications may require
solutions which are not obtainable analytically, so Simulink is also used to show how
numerical optimization solutions can be obtained. The appendix gives details of CtrlLAB,
which provides a graphical user interface (GUI) for solving control problems which fit the
structure of Figure 1.2. CtrILAB is a flexible and powerful tool for self-learning, teaching,
and engineering design and requires a minimum of user effort to obtain results. The features
used in CtrlLAB are described in several of the book’s chapters, but a reader with a basic
control background may wish to read the appendix early on and start to use CtrILAB for its
ease in obtaining solutions to many control problems.

In practical control system design, the more general feedback control structure shown
in Figure 1.3 is sometimes used with the feedback block simplified to 1. In Figure 1.3(a),
the two submodels, the prefilter and controller, can be adjusted independently in control
system design. This is often referred to as two-degrees-of-freedom control. In this book,
we will focused on one-degree-of-freedom control problems.

2007/
pagez

1.2. Historical Background 3

" prefilter +T> controller > plantmodelT

(a) two-degree-of-freedom control

y

r
Af‘ controller > plantmodelT

(b) one-degree-of-freedom control

Figure 1.3. Feedback control structures.

1.2 Historical Background

The early development of automatic control devices can be traced back to the ancient water
clock in Alexandria, Egypt, or to the ancient compass vehicle developed about 2,000 years
ago during the Han Dynasty in China.

According to [8], the fly ball governor invented by James Watt in 1788 is regarded as
the first widely used automatic feedback control system. Theoretical research on control
systems was initiated by the study of stability problems involving differential equations
pioneered by the work of Maxwell in 1868, Routh in 1874, and Hurwitz in 1895. Control
strategy design problems were first proposed by Minorsky in 1922 in [9], where the three-
term controller, or the PID (proportional integral derivative) controller, was first formulated.
Practical algorithms for PID controller adjustment presented by Ziegler and Nichols in
1942 [10] still have an influence today in the practice of control engineering.

The framework of frequency domain analysis of linear feedback control systems was
established in 1932 by the work of Nyquist [11], which was extended by Bode in 1945 [12]
and Nichols in 1947 [13]. The root locus analysis proposed by Evans in 1948 [14] was
another milestone in the study of linear feedback systems.

The introduction of the maximum principle proposed by Pontryagin in 1956 [15],
dynamic programming by Bellman in 1957 [16], and state space representation by Kalman
in 1959 [17] opened a new era of systems control which later became known as “modern
control theory.” Some of its significant achievements include the linear quadratic optimal
regulator by Kalman in 1959, optimal state observers by Kalman in 1960, and the linear
guadratic Gaussian (LQG) optimal controller also developed by Kalman [18, 19]. It was
later found by Doyle in 1979 [20] that the LQG controller may reduce the stability margins
of the system, which initiated interest in loop transfer recovery (LTR) design; see, e.g., [21].

Robust control is a very attractive new area in control systems design. Modern robust
control investigations were started by Zames in 1981 in [22], where optimal control problems
were formulated as the minimization of norms in Hardy spaces. The state space solution to
such problems by Doyle et al. in 1989 is a significant computational contribution [23].

As will be demonstrated in this book, most feedback system analysis and design tasks
can be solved easily using a computer. Therefore, suitable computer software is essential for
control system investigations. The first generation of computer-aided analysis and design
software includes the programs developed by Melsa and Jones [24] in 1970, in which a

2007/
pages

2007/
page

4 Chapter 1. Introduction to Feedback Control

significant amount of Fortran subroutines were provided. However, this required that the
main program for any specific problem must be prepared by the user, making the solution
procedure tedious and complicated.

The main feature of the second generation of the CACSD (computer-aided control sys-
tem design) software was the provision of a man—machine interactive environment. Good
examples of these software platforms are MATLAB, developed by Moler in 1980 [25],
and INTRAC, developed by Astrém in 1985 [26]. Currently, after generations of evo-
lution among various CACSD software packages, MATLAB is the most dominant and
widely used environment in engineering and nonengineering applications. In particular,
for systems control, MATLAB is the most popular tool in research, development, and
education. Furthermore, object-oriented programming techniques have been satisfacto-
rily implemented in both the MATLAB and Simulink environments on which this book is
based.

1.3 Structure of the Book

Broadly speaking, for systems control there are three major stepsnodeling,analyis
anddesign, also known as therfad” process. If one is given a system to control, one
probably has to go through thigrfad” process or loop to achieve a satisfactory control
performance. The structure of this book follows a similaxatl” process.

For a systematic analysis and design of a control system, mathematical models of the
components are usually required. For linear continuous-time system models, which will
be the central theme of this book, there are usually four kinds of mathematical models,
namely, the transfer function model, the state space model, the zero-pole-gain model, and
more generally, the block diagram model.

The transfer function model is based on the theoretical results of Laplace transforma-
tion, a clever way to map linear system models described by ordinary differential equations
(ODES) into corresponding algebraic equations. Many useful analysis and design tools
based on this type of model are available.

The state space model, on the other hand, describes the internal characteristics of the
system. When performing the analysis and design of control systems described by state
space models, matrix algebra is extensively used.

The other two types of models can be used to either describe some of the characteristics
of the system or describe more complicated systems. All the model types, although different
in appearance, can be converted into each other. The details of models and their conversions
are covered in Chapter 2.

In Chapter 2, we focus more on various model forms and their conversions rather than
on how to build a model from experimental results, which is a large subject area known as
“system identification,” that we will briefly introduce.

Mathematical models of physical processes may be of relatively high order. For con-
trol system design, low-order models are often used, primarily because before the existence
of modern computer software, calculations took a significant amount of time. This meant
that expertise had been gained in both the understanding and designing of controllers for
low-order models. It can therefore be useful to perform some form of model reduction in
various phases of system analysis and controller design. The topic of model reduction is
briefly introduced in the last section of Chapter 3.

2007/
page:

1.3. Structure of the Book 5

System analysis methods for linear time-invariant (LTI) feedback systems covered in
this book are briefly listed as follows:

« Parametric analysisThe characteristics of the system can be described by some
parameters. For instance, the robustness can normally be measured by certain
norm parameters of the system.

* Time domain analysisTypically, the system response to a step input signal is
often of direct interest and its properties may be a system specification. System
responses to other signals are also useful in system analysis tasks. Analytical and
numerical solutions to transient responses of linear control systems are covered.

« Frequency domain analysigrequency domain response tools are very useful in
feedback control systems analysis and design. The form of a frequency response
may also be a design specification. Based on the LTI model, the frequency re-
sponses can be easily evaluated with different graphical representations of the
behavior of the system available in MATLAB. The dynamic performance of the
system can be examined based on the graphical interpretations. There are basi-
cally two approaches to control system analysis, namely, time domain analysis
and frequency domain analysis, and both are fully studied in Chapter 3.

« Simulation analysisSimulation analysis of some nonlinear systems is covered in
Chapter 4.

Most controller design methods utilize a mathematical model. We will refer to these
as model-based design algorithms, and they provide the major content, which is summarized
below, of Chapters 5-7.

« Model-based approachesModel-based controller design approaches, includ-
ing classical lead/lag cascaded compensators, the linear quadratic optimal con-
troller, the pole placement controller, and decoupling controller, are presented in
Chapter 5.

« PID controllers PID controllers with different structures and parameter evaluation
algorithms are studied in Chapter 6. Comparisons between various algorithms are
presented. PID controllers are very widely used inindustry, and we discuss some of
their aspects such as consideration of integrator windup and relay automatic tuning.
Optimal PID controller design using numerical techniques within Simulink is also
discussed, as this approach allows consideration of multiple practical objectives.

« Robust controllersRobust controller design techniques, starting from the LQG/
LTR controller, are covered in Chapter 7 with a focus on Hardy space—based
control, such agit> and#,, controller design methods.

« Fractional-order controllers Fractional-order controllers are covered in Chapter 8
for the first time in a textbook. These controllers are receiving increasing attention
because of some of their more powerful properties. Again, MATLAB routines are
given for studying their performance.

The appendix, as already mentioned, gives details of CtrlLAB and includes many
examples of its use in feedback control system analysis and design.

Since this book is tightly coupled with MATLAB, a widely used computational
software platform, we provide the following MATLAB survival guide that will be useful
for beginners.

2007!
paget

6 Chapter 1. Introduction to Feedback Control

1.4 A Survival Guide to MATLAB
1.4.1 A Brief Overview of MATLAB

The MATLAB environment, also known as the MATLAB “language,” was pioneered by
Cleve Moler of the University of New Mexico in the early 1980s. A commercial version of
MATLAB was first released in 1984 by The MathWorks Inc. This language is very easy to
use and is a powerful tool for dealing with matrices. The graphical visualization utilities are
impressive and flexible. Compared with other software packages, MATLAB has received
outstanding merits in scientific computation and graphical visualization. MATLAB has now
become the most widely used software in the field of control systems analysis and design,
among other engineering and nonengineering areas. Numerous toolboxes have been written
by well-known professionals. The Control Systems Toolbox and the Simulink program
developed by The MathWorks Inc. will be extensively used in this book. All the examples
used in this book are compatible with MATLAB version 7.5 (Release 18 or 2007b). It
should also be noted that the material presented in the book does not rely too much on
specific versions of MATLAB. Almost all the materials can be executed on earlier versions
such as MATLAB 6.* or even MATLAB 5.*.

CtrILAB, developed by the authors, is a GUI which can be used to solve typical
problems in feedback control systems modeling, analysis, and design. CtrILAB can be
used as a companion for this book.

For a detailed description of MATLAB, please refer to [27, 28]. More comprehensive
coverage of Simulink-related topics is presented in the recent textbook [29].

1.4.2 Standard MATLAB Statements and Functions

Unlike many other programming languages, the basic element in MATLAB is a complex-
valued matrix, and powerful facilities have been provided for matrix manipulation and
graphical visualization. To enter a matrix

1 2
A=14 5
7 8

o o w

one can simply issue the statement
>> A=[1,2,3; 4 5,6; 7,8 0];

where>> is the MATLAB prompt automatically given by the MATLAB program, the semi-
colons within the square brackets are used to separate the matrix rows, and a comma or
a space is used to separate the elements in the same row. Vectors and scalars can also be
accepted by MATLAB with even simpler statements.

More data structures, such as multidimensional arrays, structural data, object classes,
and cell structures, are supported in MATLAB which makes the application of MATLAB
easy and convenient.

Compared to other programming languages, MATLAB functions can be called in a
special way. The syntax for a typical function call is

[list_of return_variabl es] =func_nane(input _|i st)

2007/
page?

S
1.4. A Survival Guide to MATLAB 7
where the left-hand-side arguments in square brackets are the list of returned variables and
the right-hand-side arguments are the input list used in the function. For instance, the
functionbode() can be called with the syntax
[mag, phase] =bode(G, w)
where the functioode() is used to draw the Bode diagram of the system given in variable
G, and the input variable is used to pass the frequency vector to the function. g
phase] variables, which are the magnitude and phase vectors of the frequency response
data, are then returned after the function call. One special feature of the MATLAB function
is that different syntax definitions can be used in the same function to perform different
manipulations. For instance, thede() function can be called in the following formats:
bode(G, w) % draw Bode diagram over frequency range
bode(G) % draw Bode diagram over default frequency range
bode(G1, G2, G3) % draw Bode diagrams for several systems together
where the state space model and transfer function model can both be used and the MATLAB
function can automatically detect which kind ofinput is provided. The advantage of using the
G object is that the same function syntax can be used to handle continuous- and discrete-
time systems, state space and transfer function models, single input—single output and
multiple input—multiple output models, and so on. A unified framework of functions can be
established, which greatly simplifies the task of system analysis and design.
1.4.3 Graphics Facilities in MATLAB
Two-dimensional curves can easily be drawn by calling the fungtibat () with the
syntax
pl ot (xlv Y1, X2, Y2, X3, 3, - -)
where 1,y1) is a pair of vectors (or matrices) holding theandy-axis data for the plots,
(x2,y2) is another pair, and so on. One may call other functions to enhance the plot, such as
(1) gri dto add or remove grids on the plot;
(2) xl abel () andyl abel () to add labels for the axes;
(3) title() toadd atitle to the plot;
(4) I egend, t ext () andgt ext () to add one or more legends to plots.
One can also enhance the graphs in a visual way using the graphics processor in
CtrILAB, which will be explained in the appendix.
Three-dimensional plots can also be obtained by cattesh () andsur f () functions.
Once correct variables are provided, the three-dimensional plot will be generated directly.
1.4.4 On-Line Help Facilities in MATLAB
In this book, MATLAB and its Control Systems Toolbox will be extensively used, and
it will not be possible or suitable to have all the functions fully described. This is also
S

2007/
paget

8 Chapter 1. Introduction to Feedback Control

the case in other MATLAB related books such as [28]. Readers are advised to make full
use of the MATLAB on-line help facilities for all the functions relevant to their specific
work. For instance, a user can start the help process by issuitgethe command in the
MATLAB environment or by clicking theHelp menu in the MATLAB interface, whence

all the contents in the related directories will be displayed. A typical help message provided
by the on-line help system is given below:

>> hel p |yap
The following message will be displayed:

LYAP Lyapunov equati on.
X = LYAP(A C) solves the special form of the Lyapunov
matri x equati on:

A*X + X*A = -C
X = LYAP(A B, C) solves the general form of the Lyapunov
matri x equati on:

A*X + X*B = -C
See al so DLYAP.

When thehel p utility is used, an explanation of its calling syntax will be displayed
for the functionl yap. Alternatively, the commandoc will display the on-line help
information in HTML format.

In addition, thel ookf or command can be used to search for a key word in the
functions. For instance, if one wants to find a function which can be used to perform
" Hankel ’ related manipulations, one can try

>> | ookf or hankel

and the following information can be obtained:

HANKEL Hankel natri x.

BESSELH Bessel function of the third kind (Hankel function).
HANK2SYS Convert a Hankel matrix to a |inear system nodel.

HSVOPTI ONS Creates option |list for Hankel singular value plot.
BHRDEMO Denpo of nodel reduction techni ques (Hankel, Bal anced, BST).
HKSV Hankel singul ar values and gramm ans P, Q

OHKAPP Opti mal Hankel norm approxi mati on (stable plant).

OHKDEMO Denp of optimal Hankel nodel reduction technique.

OHKLMR Opti mal Hankel norm approxi mati on (unstabl e plant).

From the above displayed results, one can decide which function may be suitable for
the intended task.

1.4.5 MATLAB Toolboxes

The Control Systems Toolbox is extensively used in this book to deal with the problems in
the area of feedback control system analysis and design. Most parts of the Control Systems
Toolbox are covered in this textbook together with CtrlLAB (see the appendix).
There are many toolboxes applicable to problems in control. Some of them are listed
(in alphabetical order) below:
« Chemometrics Toolbox, by Richard Kramer;

« Control Systems Toolbox, by Jack Little et al.;

2007/
pagec

1.4. A Survival Guide to MATLAB 9

e CtrILAB ToolKit, by Dingyl Xue (see the appendix);

* Frequency Domain Identification Toolbox, by I. Kollar and J. Schoukens;
« Fuzzy Logic Toolbox, by Ned Gulley et al.;

¢ LMI Control Toolbox, by Pascal Gahinet and Arkadi Nemirovski;

¢ Model Predictive Control Toolbox, by Manfred Morari and L. Ricker;

* Modified Maximum Likelihood Estimator Toolbox, by Wes Wang;

* u-Analysis and Synthesis Toolbox, by G. Balas, A. Packard, and J. Doyle;
* Multivariable Frequency Domain Toolbox by Jan Meciejowski et al.;

« Neural Network Based Control Toolkit, by Magnus Nggaard,;

« Neural Network Based Identification Toolkit, by Magnus Nggaard;

* Neural Network Toolbox, by Howard Demuth and Mark Beale;

« Nonlinear Control Design Blockset, by M. Yeddanapudi and A. Potvin;

« Polynomial Toolbox, by D. Henrion, F. Kraffer and H. Kwakernaak;

¢ QFT Control Design Toolbox, by Craig Borghesani, Yossi Cledigl.;

¢ RIOTS_95, by Adam L. Schwartz, YangQuan Chen and Elya Polak;

* Robotics Toolbox, by Peter Corke;

* Robust Control Toolbox, by Richard Chiang and Michael Sofanov;

« Signal Processing Toolbox, Jack Little and Loren Shure;

» System Identification Toolbox, by Lennart Ljung.

Moreover, there are other toolboxes which may be useful for mathematical solu-
tions to some problems in control systems, such as the Communications Toolbox, the
Genetic Algorithm Optimization Toolbox, the Image Processing Toolbox, the Optimiza-
tion Toolbox, the Partial Differential Equation Toolbox, the NAG Foundation Toolbox,
the Spline Toolbox, the Statistics Toolbox, the Symbolic Toolbox, the Wavelet Toolbox,
etc. Detailed information on the above mentioned MATLAB toolboxes can be found
online; readers can consult the following two Web sites to explore further and find more
information:

htt p: // ww. mat hwor ks. comf mat | abcent ral /i ndex. shtm

http://ww. mat ht ool s. net/i ndex. ht m
CtrlLAB and all the code used in this book can also be downloaded from

www. si am or g/ books/ dc14

Problems

1. Run the MATLAB demonstration program by typing theno command under the
MATLAB prompt and see the attractive aspects provided by MATLAB and its tool-
boxes.

2. Find out what MATLAB toolboxes have been installed on the computer system you
are using by typing théel p or ver command. Try to install other toolboxes such
as CtrlLAB and modify your own MATLAB search path.

10

2007/
pagel

Chapter 1. Introduction to Feedback Control

. Solve for the matrixXX in the Lyapunov equatiod X

. Prepare a MATLAB script to rotate the following matrice$ @@d then compute their

norms, traces, eigenvalues, pseudo-inverses, and characteristic polynomials:

(@ A= , (b) B=

P WEDNPRE
ONWWN
O© WO o1w
A ONNW
P NN
oo wh
O 01T ww
g w oo
A DO
W N b~ oo

XAT = C with

~ b

+
1 2 3 1 5
A=|4 5 6|, c=|5 6 7]|.
7 80 4 7 9

. Draw the function &*/2 sin(5¢) for ¢+ € (0, 27) using different functions such as

plot(),stairs(),ezplot(),andsten().

. Call the demonstration functiopeaks() by the command x, y, z] =peaks;

use the resulting x, y, z) to show different three-dimensional graphs through the
functionsmesh() ,surf (),andwaterfal | ().

2007/
pagel

Chapter 2

Mathematical Models
of Feedback Control
Systems

Most, but not all, of the existing design procedures for a control system make use of math-
ematical models. It is therefore important to try to obtain accurate mathematical models
for the system components. The system can then be analyzed and designed in a systematic
way and its properties assessed using the mathematical models as approximations of its true
behavior.

If the system model is not known, two methods can be used to build a model of the
system for the analysis and design tasks. The first method is to derive the system model
using existing physical laws or principles. The second method, more often used, is to find an
approximate mathematical model based on the observed response data of the system. The
former method is referred to as the physical modeling and the latter the system identification.
How to obtain a model of the system to be controlled is a large subject area and will not be
fully pursued in this book. Instead, we will focus on how to manipulate the models.

In this chapter, the physical modeling problem is illustrated through an example in
Sec. 2.1. In Sec. 2.2, the concept of the Laplace transformation is given with MATLAB-
based solutions. The transfer function representation of linear systems is described in
Sec. 2.3. Various descriptions of the standard transfer functions within MATLAB are pre-
sented. Other commonly used system descriptions, such as the state space representation
and the zero-pole-gain representation, are presented in Sec. 2.4. The modeling principles
for finding an overall system model from a given complicated interconnected submodel are
presented in Sec. 2.5. In Sec. 2.6, the equivalent conversion among different model types
for a given system is described. For instance, a given transfer function model can be con-
verted into an equivalent state space model, or a given state space model can be converted
into the transfer function form or the zero-pole-gain form. A comprehensive introduction
to the system identification problem will be given briefly in Sec. 2.7, with an emphasis on
discrete-time model identification and identification input signal selections.

2.1 A Physical Modeling Example

Consider the electric circuit shown in Figure 2.1, where a resi®t@n inductorL, and a
capacitorC are connected in series. For this dynamic system, the input signél)iand
the output signal ig. ().

11

2007/
pagel

S
12 Chapter 2. Mathematical Models of Feedback Control Systems
R L
f :I---m. /V\/_F\
u(t) i(D c T/uc(o
! R
Figure 2.1. AnRLC series circuit.
The current (¢) satisfies
du. (1)
i(t) =C 21
i(t) 4 (2.1)
and the voltage equation can be written as
di(z
u(t) = Ri(t)+L% (). 2.2)
Substituting (2.1) into (2.2), one has
d?u () du (1)
LC dtcz +RC ét +uc(t) = u(r). (2.3)
The second-order ordinary differential equation (ODE) given in (2.3) is called the
mathematical model of the electric circuit.
In general, the mathematical model of a continuous-time, lumped parameter dynamic
system can be represented by an ODE.
2.2 The Laplace Transformation
From the voltage equation (2.3), the voltagé€r) across the capacit@r can be represented
by a second-order linear ODE. A method used by engineers to solve linear differential
equations is the Laplace transformation method, which is reviewed, below.
Definition 2.1. The Laplace transformation of a time functigiir) is defined by
o
ZIf0] = / fne™'dr = F(s), (2.4)
0
where.Z[f (¢)] is shorthand notation for the Laplace integral transformation.
The result of the Laplace transformation is a function,ad complex variable, often
denoted byF (s). It should be noted thathas a unit of second.
For a given functiory (¢), it is usually possible to find its Laplace transformation via
a Laplace transformation table, or by the direct use of the relevant MATLAB functions.
Theorem 2.1. Some of the important properties of the Laplace transformation are listed
below without proofs.
1. Linearity: If a andb are scalars, then
Llaf @) £bg(D] = aZ[fO)] £ bL[gD)].
S

2007/
pagel

S
2.2. The Laplace Transformation 13

2. Translation intime: Z[f(t —a)] = € “ F(s).

3. Translation ins: Z[e" ()] = F(s +a).

4. Differentiation: .Z[df(¢)/dt] = sF(s) — f£(07). Thenth order derivative can be

evaluated from
d' . et n—20df(0F) d'~tf©h
K% [Wf(t)}:s F(s)—s""1f(0")—s e —g T (2.5)
When all the initial values off (¢) and its derivatives are zero, equation (2.5) can be
further simplified taZ[d" £ (¢) /dt"] = s" F (s).
5. Integration If zero initial conditions are assumeﬂf[fé f(r)dt] = F(s)/s. For the
n-th order integration of a given functiofi(r),
F(s
[/ /f(><d>} © 26)
6. Initial time and final time:
lim f() = lim sF(s), lim f(¢) = lim sF(s).
t—0 §—>00 t—00 s—0
7. Convolution Z[f(t) x g®)] = Zf()]-ZL[g(¢)], where the convolution operater
is defined as
t 1
OEF40) =/0 f(r)gt —)dr =/0 f@—1)g(r)dr. (2.7)
8. Others: an
2 o) = LY, [f (”} / / Fo)ds". (28)

A MATLAB function | apl ace(), provided in the Symbolic Toolbox, can be used
to evaluate the Laplace transform from a given functfan). The syntax of the function
is F=l apl ace(f) . Note that only a limited class of signaj§r) can be used with
I apl ace(f).

Example 2.1. If one wants to perform the Laplace transformation for the functtones(az +
¢), the following MATLAB statements can be used:
>> syms st a b c; F=laplace(exp(b*t)*cos(a*t+c))
and the Laplace form of the function is
F(s) = coqc)(s — b) B sin(c)a
Vo2 ta? 5-b2+al
Definition 2.2. The inverse Laplace transformation of a given functit@) is defined by
o+ joo
10 =2 HFO) = 5 / F(s)e'ds, (2.9)
whereo is greater than the real part of singularitiesiif).
S

2007/
pagel

14 Chapter 2. Mathematical Models of Feedback Control Systems

GivenF (s), its inverse Laplace transformation can be performed using a table or other
relevant tools. With the use of the Symbolic Toolbox, the inverse Laplace transform can be
evaluated fron f=i | apl ace(F) . Note again that only a limited class 6f(s) can be
used withi | apl ace(F).

2.3 Transfer Function Models

2.3.1 Transfer Functions of Control Systems

It is obvious that, applying the differentiation law of Laplace transformation to the voltage
equation, the differential equation (2.3) can be transformed into an “algebraic” equation as
follows:

LCU.(5)s%2 + RCU:(s)s + Uc(s) = U(s), (2.10)

whereU.(s) = ZLlu.@)], U(s) = ZL[u()], if zero initial conditions foru.(¢) and its
derivatives are assumed. Dividing both sidedhys) and taking the reciprocal yields

Ue(s) 1

= 2.11
U(s) LCs2+ RCs +1 ()

andU.(s)/ U (s) is referred to as the transfer function from the input sigig) to the output
signalu.(z).

The transfer function of a linear continuous system can be generally defined by a
rational function of the variablein the form

b1s™ + bps™ L+ -+ by + byt
st 4+ ars" Y aps" 24 -t a, 15 +a,

G(s) = (2.12)

If the coefficients;, (= 1,...,m + 1) anda;, i = 1, ..., n) are constants, the system

is referred to as a linear time invariant (LTI) system. The denominator is referred to as the
characteristic polynomial of the system. The highest ond&frthe denominator is referred

to as the order of the system. For a physically realizable system, it is often true that

In this case, the system is called propennl& n, the system is called strictly proper. The
valuen — m is sometimes called the relative degree/order or pole-zero excess of the system.

2.3.2 MATLAB Representations of Transfer Functions

A transfer function model can be easily entered into the MATLAB environment using the
following MATLAB statements:

nune[b1, by, ..., by, byy1l ; den=[1, a1, ap, ..., ay—1, an];
G=t f (num den)

i.e., itis required to enter the numerator and denominator polynomial coefficients separately
into two vector variablesumandden in the descending order of The variableGreturned
is the transfer function object.

2007/
pagel

S
2.3. Transfer Function Models 15
Example 2.2. The simple transfer function
s+5
G =
) s*+ 2534352 +45+5
can be represented in MATLAB as
>> nume[1,5]; den=[1,2,3,4,5]; G=tf(num den)
and the system objec¢t can then be used to uniquely describe the given transfer function.
Example 2.3. An even more complicated transfer function model
6(s +5)
GGis) = — 2 2
(s2+ 35 + 1)2%(s + 6)(s3 + 652+ 55 + 3)
can be entered into MATLAB using the statements
>> den=conv(conv(conv([1,3,1],[1,3,1]),[21,6]),[1,6,5,3]);
num=6*[1, 5] ; G=tf(num den)
and
Gs) 6s + 30
s) = s
§8 4+ 1857 4 12455 4 41755 + 74064 + 72%3 + 4372 4 1415 4 18
whereconv() is a standard MATLAB function used to evaluate the convolution of two
vectors. Note that the multiplication of polynomials can be equivalently performed by
callingconv(). Theconv() function can be nested arbitrarily. However, one should
make sure that the brackets are matched properly to avoid any possible error message.

Alternatively, a transfer function given in factorized form can be entered into MATLAB
by declarings, the Laplace complex variable, wi s=t f (* s’) , and the transfer function
can then be specified in a mathematical way:
>> s=tf(’'s’),;

G=6*(s+5)/(s"2+3*s+1) "2/ (s+6)/ (s" 3+6*s” 2+5*s+3)

Apart from the essential numerator and denominator variables, other fields are also de-
fined in the transfer function object. One can list all the possible fields usit set (t f)
command. The other useful fields in the transfer function object include, for instance,
i oDel ay andTs, which correspond, respectively, to the input-output delay and the sam-
pling interval; the latter is applicable only to discrete-time systems. TheMagld abl e is
defined as the operator symbol used in the transfer functionsaitldp for continuous-time
systems, and, z~* andg for discrete-time systems, whegés shorthand for .

If one wants to change the operator symbol in the transfer function representation to
p, and assign a transport delay of 0.5 seconds, either of the following two sets of MATLAB
commands can be used:

G Variable="p’; G ioDel ay=0.5;
set(G’'Variable ,'p' ,’ioDelay’,0.5);
The modelG is then displayed as
_05p 6p + 30
p8+ 18p7 + 124p8 + 417p5 + 740p* + 729p3 + 437p2 + 141p + 18
S

2007/
pagel

S
16 Chapter 2. Mathematical Models of Feedback Control Systems

2.3.3 Transfer Function Matrices for Multivariable Systems

Systems with one input and one output are referred to as single input-single output (SISO)

systems, while systems with more than one input and more than one output are referred

to as multiple input—multiple output (MIMO) systems. For an MIMO system, the transfer

function representation is in fact denoted by a matrix of transfer functions which is called

the transfer function matrix.

The transfer function objectf can also be used to represent MIMO transfer function
matrices. Note that, in this book, many MATLAB functions work for both SISO and MIMO
systems. However, our default is SISO if not otherwise stated.

Example 2.4. Assume that the transfer function matrix of an MIMO system is given by
0.1134¢ 072 0.924
Gis) = | L7&*+448 41 2.07s + 1
0.3378¢ 0% —0.318e712%
0.36152 + 1.095 + 1 293% +1
This model can be entered into the MATLAB workspace using the following commands:
>> gl1=tf(0.1134,[1.78 4.48 1], ioDelay’',0.72);
gl2=tf(0.924,[2.07 1]);
g21=tf(0.3378,[0.361 1.09 1], 'ioDelay’,0.3);
g22=tf(-0.318,[2.93 1],’ioDelay’, 1.29);
G=[011, g12; g21, g22];

In the above example, the individual transfer functions of the transfer function matrix
are entered first, and then these elements are grouped together to establish the whole transfer
function matrix object for the MIMO system.

The numerators and denominators of the system can be retrieved with the function call

[num den] =tfdata(G,’'v')
2.3.4 Transfer Functions of Discrete-Time Systems
The discrete-time transfer function
boz™ + b1z" 4+ by_1z+ b
H(z) = 0z" + 012 71+ + bm—12 + m —d (2.13)
a1z +ax?" "+t anz +any
which is obtained viaZ transforms from difference equations, can also be entered into
MATLAB with the similar statements
num=[bo, bl, ©oog bm_]_, bm] 3 den:[aj, az, - -+, dp, an—i—l] ;
H=tf(numden,’ Ts', T, ioDelay’,d);
S

2007/
pagel

2.4. Other Mathematical Model Representations 17

whereT is the sampling interval and is the transport delay. Alternatively, thevari-
able can be declared witz=t f (" 2’ , T) before specifying the transfer function in a
mathematical way.

Example 2.5. Assume that a discrete-time system model is given by
672 — 0.6z —0.12 _s5

2~ 3+ 0252+0.25 — 0125

whereT = 0.1 second, the following statement can be used:

>> numF[6 -0.6 -0.12]; den=[1 -1 0.25 0.25 -0.125];
H=tf (num den,’ Ts’, 0.1, ioDel ay’, 5)

H(z) =

Alternatively, one may specify the system by

>> z=tf(’z,0.1);
H=(6*z"2-0.6*z-0.12)/ (2" 4-2z"3+0. 25*z" 2+0. 25*z- 0. 125) ;
H. i oDel ay=5;

2.4 Other Mathematical Model Representations
2.4.1 State Space Modeling

State space representations of control system models have been widely used in control
theory since the 1960s, which was when the well-established, so-called “modern control
theory” was introduced. The state space is another way of describing a dynamic model of
the system, and it can be used to represent not only linear systems but also nonlinear
systems. The state space representation of a system is always referred to as the internal
model description because the internal variables, such as the states, are fully described in
such a model representation. In contrast, the transfer function representation is often called
the external model, or the input-output model, since only the input-output relationship of
the system is described.

Consider again the RLC circuit model given in (2.3). If one assumescthat u,
andx, = du./dr, a second-order ODE can be rewritten into the following form:

dxy
dr
dxo 1 R 1

=——X1— —Xx2+ —u.

dr LC L LC

In control theory, d&;/dz is often denoted by; and the matrix form of the above
equations is written as

X1 0 1 X1 0
|:5‘2] B [_1/(LC) —R/L:| [xz} + |:1/(LC):| u, (2.15)

wherex; andxy are referred to as the state variabless referred to as the input signal,
and (2.15) is called the state equation of the system. Note that the state variable selection

= X2,
(2.14)

2007/
pagel

18 Chapter 2. Mathematical Models of Feedback Control Systems

is not unique. Thus, the state equation is also not unique. For instance, if one selects the
voltageu,. and the current as the state variables, denotedAyandxy, respectively, the
state equation can then be written as

: 0 1/C 0
[g] N [—1/L —R/L} [iﬂ + [1/L} u. (2.16)

It is readily seen that there are differences in the above two state equations.

Suppose that there age inputsu;(¢), i = 1,..., p) andg outputsy;(¢), (i =
1,...,q), andthere are states which make up a state variable vegter [x1, x2, . .., x,]".
The state space expression of the general dynamic system can be written as

Xi = fi(x1, %2, ..., Xp, ULy -y Up), i=1...,n,
{ e " P (2.17)

yi:gi(x11x27"'1xnsu13""up)7 izla"'vq’

where f;(-) andg;(-) can be any nonlinear functions. For LTI systems, the state space
expression of the system can be simplified as
{ x(t) = Ax(t) + Bu(1),

(2.18)
y() = Cx(t) + Du(1),

whereu = [ug, ..., up]T andy = [y1, ..., yq]T are the input and output vectors, respec-
tively. The matricest, B, C, andD are compatible matrices. The term “compatible” means
that the related matrices have the correct dimensions. To be more specific, we shysthat
ann x n matrix, B is ann x p matrix, C is ag x n matrix, andD is ag x p matrix. The
dimensions under such conditions are called compatible dimensions.

As a side note, we mention that in robust control theory, the state space expression is

often denoted by
G(s) = [C‘D] (2.19)
as shorthand notation.

The representation of a state space expression in MATLAB is simple and straightfor-
ward. One can simply enter the coefficient matridesB, C, and D into the MATLAB

environment, and the state space object can be entel G=ss(A, B, C, D) .

Example 2.6. A two input—two output system in state space form given by

225 -5 —125 -05 4 6
225 —425 —-125 —0.25 2 4 000 1
025 -05 -125 -1 |*t|2 2|® yz[o 2 0 2]x
125 -175 -025 -0.75 0 2

X =

can be entered into the MATLAB workspace using the following MATLAB statements:

>> A=[2.25, -5, -1.25, -0.5; 2.25, -4.25, -1.25, -0.25;
0.25, -0.5, -1.25,-1; 1.25, -1.75, -0.25, -0.75];
B=[4, 6; 2, 4; 2, 2; 0, 2];
cs[0, O, O, 1; 0O, 2, 0, 2];
D=zeros(2,2); G=ss(A B,C, D

2007/
pagel

S
2.4. Other Mathematical Model Representations 19
If the system matrices entered are not compatible, the error messages will be given
automatically by thess (') function.
For discrete-time state space models
x[(k+1)T]= Fx(kT) + Gu(kT),
(2.20)
ykT)=Cx(kT)+ Du(kT)
with sampling intervalT, the statemen G=ss(A, B, C, D,’ Ts', T) can be used
directly.
2.4.2 Zero-Pole-Gain Description
The zero-pole-gain representation is another way to describe the transfer function of an SISO
LTI system. The zero-pole-gain model of a given transfer function is usually represented as
G(s) = K (S+Zl)(s+Z2)"'(s+Zm)’ 2.21)
(s +pU(s+p2)---(s+ pn)
whereK is referred to as the gain of the system. Note tkiais not the zero frequency
or DC (direct current) gair; (0). In (2.21),—z; (i = 1,...,m) are called the zeros and
—p; (i = 1,...,n) the poles of the system. It is noted that for real-coefficient transfer
function models, the poles and zeros are either real or in complex conjugate pairs. The zero-
pole-gain representation is immediately obtainable from the transfer function representation
of a given system.
To enter the zero-pole-gain model representation into the MATLAB workspace, issue
the following MATLAB statements:
z=-[z1; z20 --+5 zml: p=-[p1: p2; -5 pnl;
G=zpk(z, p, K)
Alternatively, the pole-zero-gain model can also be established by declaring first
s=zpk('s') .
Example 2.7. The zero-pole-gain model
G(s) = 6 (s + 1.9294 (s + 0.0353+ 0.9287)
S) =
(s +0.9567+ 1.2272 i (s — 0.0433+ 0.6412)
can easily be entered into the MATLAB workspace by the following:
>> z=[-1.9294; -0.0353+0.9287j; -0.0353-0.9287j];
p=[-0.9567+1. 2272 ; -0.9567-1.2272j;
+0. 0433+0. 6412j ; +0.0433-0.6412j];
G=zpk(z, p, 6)
and it can be displayed that
6s) 6(s + 1.929 (s? + 0.0706 + 0.8637)
S) = .
(s2 — 0.0866 + 0.413(s2 + 1.91% + 2.421)
S

2007/
pagez

20 Chapter 2. Mathematical Models of Feedback Control Systems

2.5 Modeling of Interconnected Block Diagrams

The model formats described above are usually directly obtainable for single block models.

In practical situations, a system model may be given by interconnected blocks, and the

overall system model for the interconnected system structures can be obtained using the
methods given in this section.

2.5.1 Series Connection

Consider the series connection of the two blocks shown in Figure 2.2(a). It can be seen
that the input signak () travels through the first bloc&1(s), and the output 061 (s) is

the input to the second blodkz(s), which generates the outpu(r) of the overall system.

This kind of connection is referred to as a series, or cascade, connection and it is assumed
that, in connecting a block, it does not “load” the previous block.

In the series connection, the overall transfer function of the whole system is given
by G(s) = G2(s)G1(s). For SISO systems, the two blocks (s) and Ga(s) are inter-
changeable,i.eG1G2 = G2G1. For MIMO systems, however, the two blocks are generally
not interchangeable.

Assume that the MATLAB description of the mod&h (s) is represented in an LTI
object G1, which is eithert f, ss, or zpk, and thatGx(s) is represented b,. The
overall system in a series connection can be simply obtained using the MATLAB statement

G=Gx* G .

If the modelsG1 andG» are given by symbolic variables, the above operation is also

valid.

2.5.2 Parallel Connection

A typical parallel connection of two block61(s) and G2(s) is shown in Figure 2.2(b),
where the two blocks are subjected to the same input sighal The outputs of the two
blocks are summed up to form the output) of the overall system. The overall transfer
function of the parallel connection is th€f(s) = G1(s) + G2a(s).

The LTI representation of the parallel connection can be obtained using the MATLAB
statemen G=G1+G> , whereG1 andG» are LTI objects{(f , ss, or zpk) of G1(s) and
G(s), respectively. They can also be symbolic variables.

Example 2.8. It should be noted that, ifi1(s) andG2(s) contain the same pole, then the
result of the parallel manipulation may be simplified further in this case. Consider the two

G1(s)
t (1) 1) ()
LN G1(s) Gals) " }—y

Ga(s)

() series connection (b) parallel connection

Figure 2.2. Interconnections of blocks.

2007,
page

2.5. Modeling of Interconnected Block Diagrams 21

t y(1) t y()
) G1(s) “) G1(s)

Go(s) Go(s)

(a) positive feedback (b) negative feedback

Figure 2.3. Feedback connections.

blocksG1(s) = 1/(s + 1)2 andG2(s) = 1/(s + 1). The result of calling the appropriate
MATLAB functions is given by the following MATLAB statements:

>> Gl=zpk([].[-1,-1],1); &@=zpk([].[-1],1); GGl+&

As a result, the overall system obtainedis= (s + 2)(s + 1)/(s + 1)3. In fact, the overall
transfer function can be simplified ©(s) = (s + 2)/(s + 1)2, since there is a common
factor(s + 1) in both the denominators @f1(s) andGa(s).

The minimum realization technique can be used to obtain the simplified model, and
details of the technique will be given later in this chapter.

2.5.3 Feedback Connection

The simple feedback connection of two blo€ks(s) andG» (s) is shown in Figures 2.3(a) and
(b), respectively. The two feedback connections in Figure 2.3 are different; the left one is
called a system with positive feedback and the right a system with negative feedback. The
overall transfer function of the positive feedbaclGis) = G1(s)[I — G2(s)G1(s)] %, and
for negative feedback it i€ (s) = G1(s)[I + G2(s)G1(s)] L.

A MATLAB function f eedback() is provided in the Control Systems Toolbox to
get the overall system model from the feedback connection with the syntax

G=f eedback(G1, G2, Si gn) ,

whereSi gn is used to identify the positive or negative feedback connectio8i ¢fn=- 1,
the negative feedback structure is indicated. Bhgn variable can be omitted in the
function call in a negative feedback connection. The LTI objects in the forward path and
feedback path are given lfy; and G, respectively.

A MATLAB function, f eedback() , is also written for the models represented by
symbolic variables:

function H=f eedback(Gl, &, key)
i f nargin==2; key=-1; end,
H=GLl/ (sym(1) - key*Gl* R); H=sinpl e(H);

This function should be placed under @y mdirectory under MATLAB path. This
function is useful in theoretically deriving the overall model from more complicated sub-
system configuration.

2007/
pagez

22 Chapter 2. Mathematical Models of Feedback Control Systems

Example 2.9. Consider again the models in Example 2.8. If a negative feedback connection
is assumed, one can find the overall transfer function by using the following MATLAB
statements:

>> Gl=tf(1,[1 2 1]); &@=tf(1,[1 1]); G=feedback(Gl, &)

and it can be found that
s+1

G(s) = .
() s34+ 352 +35+2

For a positive feedback connection, the overall system model can be obtained from
>> G=f eedback(Gl, &, +1)
where

s+1

G(s) = s34+ 3524+ 35

2.5.4 More Complicated Connections

In the real world, a system structure can be very complex. In this section, we illustrate how
to handle more complicated interconnections.

Consider the typical feedback control system structure shown in Figure 1.2. The
overall system can be evaluated by assuming first@héat) andG (s) are in series and then
that they are connected to a negative feedback btbek. The overall closed-loop transfer
function of the typical feedback control system is

G($)Ge(s)
1+ H($)G($)Ge(s)

Gal(s) = (2.22)

The overall system object can be obtained using the MATLAB statement
G ¢=f eedback(G*G., H) .

Example 2.10. If the three blocks in the above typical feedback structure are given by

3 2
s34+ 752 4 245 + 24 105 4+ 5
) G, =) H = S ~A A
103132150 1248 ¢ p ©) =5

G(s) =

the overall transfer function of the closed-loop system can be obtained by the following
MATLAB statements:

>> G=tf([1 7 24 24],[1,10,35,50,24]); Ge=tf([10,5],[1,0]);
H=tf([1],[0.01,1]); G cl=feedback(G Cc, H)

and it can be found that

0.15% + 10.75s% + 77.75s3 + 278652 + 36125 + 120
0.01s6 + 1.155 + 20.35s% + 110553 + 325252 + 384s + 120

Ge(s) =

2007/
pagez

S
2.5. Modeling of Interconnected Block Diagrams 23
g8(s)
L1 140.1% || 1 1+0.15 || 70 021 130 |,
1+0.0% | 0.085 || 1+0.0% | 0.051s 1+0.006% 1+0.15 s
81(s) 82(s) 83(5) 84(s) 85(5) 86(s) 87(5)
0.1
1+0.0%
0.0044 8o(s)
g10(s) | 1+0.0%
Figure 2.4. An example of DC electric drive system.

Unfortunately, the overall system evaluation is not always as simple as in this case,
where one can perform the calculation by hand. For more complicated structures, evalua-
tions by hand is laborious and computer aids are very useful.

Example 2.11. Consider the structure of the DC motor drive system, shown in Figure 2.4.
It can be seen that the overall system model is not easily evaluated. From the block
diagram, it can be seen that the difficulty lies in the interconnections among paths 6, 7,
8, and 9. Rearranging path 9 so that it starts from the output signal, we see that the equiv-
alent transfer function then becomgsi(s) = go/g7. The overall system can then be
constructed using the following MATLAB statements:
>> gl=tf(1,[0.01,1]); g2=tf([0.17,1],[0.085,0]); g3=gl;

g4=tf([0.15,1],[0.051,0]); g5=tf(70,[0.0067,1]); g7=tf(130,[1,0]);

g6=tf(0.21,[0.15,1]); ¢8=0.212; g9=tf(0.1,[0.01,1]); g91=g9/g7;

g10=0. 0044*gl; ggl=feedback(g7*g6,98); Ypaths 6-8

gg2=f eedback(ggl*g5*g4, g91); Y%paths 4-9

G=f eedback(gg2*g3*g2, g10)*gl; mnreal (zpk(G), %overall system
where the overall model can be simply obtained as

Gs) 111852502194808(s + 6.667)(s + 5.882

S) = .
(s +1809)(s + 84.1)(s + 48.2)(s2 + 15.25 + 74.3)(s2 + 27.57s + 354)

One can also perform symbolic manipulations to the models. When the following are
given, the results follow immediately.
>> synms gl g2 g3 g4 g5 g6 g7 g8 g9 glo

g91=9g9/ g7; ggl=feedback(g7*g6, g8); gg2=feedback(ggl*g5*g4, g91);

G=f eedback(gg2*g3*g2, g10) *g1
thus the overall model can then be obtained as

G(s) = 82838687858481
1+ g78688 + 86858489 + 848587868382810
Example 2.12. Consider the motor drive system shown in Figure 2.5, where there are two
inputsr(t), M(t), and one output(t).
S

2007/
pagez
24 Chapter 2. Mathematical Models of Feedback Control Systems

M(1)
r(t) 1/Rq 1/c 1] n)
c k
1 0 > TMI“L o
k L

L]

1]

Figure 2.5. Block diagram of a motor control system.

M) 1/c

o
" s+ 1

Figure 2.6. Equivalent block diagram wheM (¢) is applied alone.

Let us first consider the modeling problem with set-point ingut only. The overall
system model can be obtained easily with the following statements:

>> syns Ka Kr ¢l c2 ¢ Ra T1 T2 KmKb s % synbolic declaration
Ga=f eedback(1/Ra/ (T1*s+1) *Knt¥1/c/ (T2*s+1),Kb); % i nner | oop
gl=c1l*f eedback(Ka*Kr*Ga/s, c2); gl=collect(gl,s)
The transfer function is then derived from
crkmkaky
R,cT1Tos3 + (RycTh + RycTo)s2 + (kimkpy + Ryc)s + kokykpmeo”

If the load disturbanceé/(¢) is used alone, the original structure of the system can
be rearranged as shown in Figure 2.6, and the following statements can be used to find the
overall model
>> g2=f eedback(1l/c/(T2*s+1)/s, Km Ra/(T1l*s+1)*(Kb*s+c2*Ka*Kr));

g2=col l ect (sinmplify(g2),s)
and it can be found that

g1(s) =

(T1is + DR,
CcR ToT153 + (cR,T1 + cR,T2)s2 + (kpky, + cRy)s + kycokak,

The transfer function matrix of the systemGgs) = [g1(s), g2(s)].

g2(s) =

2.6 Conversion Between Different Model Objects

In the previous sections, three LTI model objects have been discussed. From the numerical
point of view, the state space object is the most suitable one, especially for high-order

2007/
pagez

S
2.6. Conversion Between Different Model Objects 25
systems. In fact, each of the model formats can be converted into another, since all of them
are equivalent. In this section, some of the typical model format conversions are discussed.
2.6.1 Conversion to Transfer Functions
Given a state space model, B, C, D)
X = Ax + Bu,
(2.23)
y=Cx+ Du
with zero initial conditions, one can take the Laplace transform to give
sIX(s) = AX(s) + BU(s),
(2.24)
Y(s) = CX(s) + DU (s),
wherel is the identity matrix, which has the same dimension as matriXhus, from the
first formula of the above equation, one has
X(s) = (sI — A)"TBU (). (2.25)
The equivalent transfer function model can then be obtained as
Gis)=Y()U s)=CsI—A) B+ D. (2.26)

In general, for MIMO systems, the transfer function maigs) can also be evaluated
from (2.26).

If the zero-pole-gain model of the system is given, one can expand the numerator and
denominator polynomials expressed in a factorized form and then multiply the numerator
by the gain to obtain the transfer function model.

In the Control Systems Toolbox, if an LTI object is given By one can use the
following command to get the equivalent transfer function obfecby G1=tf (G) .

Example 2.13. Suppose that a system model is described by a state space model
01 0 O 0
. 0 0-10 1
E0=0 0 o 1l*®+]| g |#®. y©®) =11,00 0.
0 0 5 0 -2
Using the MATLAB statements
>> A=[0,1,0,0; 0,0,-1,0; 0,0,0,1; 0,0,5,0];
B=[0;1;0;-2]; C5[1,0,0,0]; D=0; G=ss(A,B,C/D; Gl=tf(Q
the transfer function model can be obtained as
G1(s) = 524+ 1.11x 1075 -3
1= s4 — bs2
S

2007/
pagez

S
26 Chapter 2. Mathematical Models of Feedback Control Systems
Note that the transfer function (matrix) transformed from a given state space model
is unique.
Example 2.14. For a system given in zero-pole-gain form
(s+3s+7)
G = 6.8)
) (s + L8+ jL.63)(s + 1)2
one can use the following MATLAB statements to get the transfer function model,
>> z=[-3; -7]; p=[0; -1.8+1.63)j; -1.8-1.63j; -1; -1];
K=6.8; G=zpk(z,p,K); Gl=tf(Q§
It follows that
) 6.852 4 685 + 1428
s) = s
5%+ 5.65% + 14.153 + 15.3952 + 5.897s
and one can verify the results by hand.
2.6.2 Conversion to Zero-Pole-Gain Models
Having obtained the transfer function model, it is not a difficult task to get the equivalent
zero-pole-gain model. One can easily solve this problem if one represents the numerator
and denominator by their factorized forms. In the Control Systems Toolbox, one can use
the function G1=zpk(G) to convert an LTI objecG into its equivalent zero-pole-gain
objectG;.
Example 2.15. The state space model given in Example 2.13 can be converted into a zero-
pole-gain model using the following MATLAB statements:
>> A=[0,1,0,0; 0,0,-1,0; 0,0,0,1; 0,0,5,0];
B=[0;1;0;-2]; C5[1,0,0,0]; D=0; G=ss(A,B,C D; Gl=zpk(Q
where
(s —1.732(s + 1.732
G(s) = .
s2(s — 2.236)(s + 2.236)
Example 2.16. If one has obtained the transfer function model, it is easy to find the equiv-
alent zero-pole-gain model using MATLAB. For instance, the zero-pole-gain model of the
transfer function of Example 2.14 can be found using the following MATLAB statements:
>> 7Z=[-3; -7]; P=[0; -1.8+1.63); -1.8-1.63); -1, -1];
K=6.8; G=zpk(Z,P,K); Gl=tf(Q; &X=zpk(Gl)
where
6.8(s + (s +3)
Gao(s) = —)
s(s + 1)2(s= + 3.6s + 5.897)
If there are complex poles or zeros, a second-order polynomial will be used to represent the
complex conjugates.
S

2007/
pagez

S
2.6. Conversion Between Different Model Objects 27
For an MIMO state space model, the zeros of the system cannot be easily obtained.
However, one can rely on the MATLAB functic z=t zer o(G) provided in the Control
Systems Toolbox to find the transmission zeyas the systenG; see [5].
Example 2.17. Consider the state space expression for a two input—two output system
given by
225 -5 -125 -05 4 6
. 225 —-425 -125 -0.25 + 2 4 |00 0 1
*=lo2s —05 -125 -1 [*T|2 2|" YT|o 2 0 2|*
125 -175 —-025 -0.75 0 2
The transmission zeros can be easily obtained using
>> A=[2.25, -5, -1.25, -0.5; 2.25, -4.25, -1.25, -0.25;
0.25, -0.5, -1.25,-1; 1.25, -1.75, -0.25, -0.75];
B=[4, 6; 2, 4; 2, 2; 0, 2]; Cf[0, O, O, 1; O, 2, O, 2];
D=zeros(2,2); G=ss(A B CD); Z=tzero(Q
and the transmission zeros afig; = —0.6250+ j 0.7806.
2.6.3 State Space Realizations
Although, from a given state space model, the unique transfer function (matrix) can be
obtained, the inverse transformation, i.e., finding a state space expression or realization
from the given transfer function, is not unique. It has been shown through the RLC example
in Sec. 2.1 that the state space expression can be different if the state variables are selected
differently. The transformation process from a given transfer function to a state space
expression is referred to as a state space realization of the transfer function. It is equivalent
to saying that a given transfer function model may have an infinite number of different state
space realizations. The commonly used state space realization of an LTI Giadel be
obtained fron1G1 = ss(G) .
Example 2.18. Consider an SISO transfer function
665) 53+ 752 + 245 + 24
§) = .
s% 4 10s3 4 3562 4+ 505 + 24
Using the MATLAB statements
>> nune[1, 7, 24, 24]; den=[1, 10, 35, 50, 24]; G=tf(numden); Gl=ss(Q
the state space model of the system can be obtained:
—-10 —-4375 -3125 -15 2
. 8 0 0 0 0
0 0 1 0 0
y(r) = [0.5, 0.4375 0.75, 0.75]x (7).
S

2007/
pagez

28 Chapter 2. Mathematical Models of Feedback Control Systems

Example 2.19. An MIMO transfer function matrix can also be converted into a state space
model using the sames () function. Consider the MIMO transfer function matrix

o) 1/(s + 1) 0 (s —D/[(s + 1(s +2)]
S) = .
~1/(s—1) 1/(s+2) 1/(s +2)

Using the MATLAB statements

>> s=tf(’s’); hll=tf(1,[1,1]); h12=0; h1l3=(s-1)/(s+1)/(s+2);
h21=tf(-1,[1,-1]); h22=tf(1,[1,2]);: h23=tf(1,[1,2]);
H=[h11, h12, h13; h21, h22, h23]; G=ss(H)

one can get the state space model

|

o © O
©Soo
©Soo

x(t) = x(t) + u(t),

coocor o
ocooo

|

w

|

N
NOCPOoo
OO0 OoOR B
coor oo
RONOOO

C:)I:|x(t).

or
oo

1 0 0 Q5 —
YO=10 _1 1

o
o ©

Similarity transformation of state space models

Since the selection of state variables can be different, the realization of a given transfer
function model can also be different.

Definition 2.3. Suppose that there exists a nonsingular m&triDefine a new state variable
vectorz such that; = Tx. The new state space expression in vegtoan be written as

Z = Az + Bu,

(2.27)
y=Ciz+ Du, z(0) =Tx(0),

whereA, = TAT!, B,=TB, C,=CT L
The transformation under matrik is referred to as a similarity transformation.

The MATLAB function ss2ss() is provided in the Control Systems Toolbox to
perform a similarity transformation of state space models. The syntax of the function is
G1 = ss2ss(G, T) ,whereG is the original state space object, afds the similarity
transformation matrix. The transformed state space object Uhdereturned inG;.

2007/
pagez

e
2.6. Conversion Between Different Model Objects 29
Controllable canonical form
Suppose that the transfer function model is given as in (2.12). The controllable canonical
form can then be written as
0 1 0 0
0 0 0 0
xX=A.x+B.u ¢= : : .. : +
R ot IR Rl N (2.28)
y=C.x+Du 0 o .- 1 0
_al _a2 ce e _an 1
y = [b1, bo,..., bylx.
Observable canonical form
The observable canonical form of (2.12) is
00 0 —a b1
1 0 0 —a> b>
x=A,x+Bou x= 01 .- 0 -as x+ b3 u, (2.29)
y=Cy,x+Du Do e : :
00 --- 1 —a by,
y=1[0, O,..., 1]x.
It can be seen that the controllable and observable canonical forms are dual. That is,
A=Al B.=C!, c.=B, (2.30)
where(A., B., C., D) denotes the state space model of the controllable canonical realiza-
tion, and(4,, B,, C,, D) denotes the realization of the observable canonical form.
Jordanian canonical form
Assume that the eigenvalues of the matfixare A1, A2, ..., A, and itsith eigenvector
corresponding to th&h eigenvalue,; is denoted bw; such that
Av,-=A,-v,-, i=1,2,...,l’l. (2.31)
The modal matrixA of A is defined as
J1
1 J2
A =T AT = , (2.32)
Ji
where theJ;’s are referred to as the Jordanian matrices. Suppose that there exists a transfor-
mation matrixT, such that the given state space model can be transformed into a controllable
canonical form; then a transformation matfixcan be constructed &= U T, such thata
modal realization can be obtained, whé&fe= (U, U, ..., Ui]. The following two cases
e

30 Chapter 2. Mathematical Models of Feedback Control Systems

are considered for a Jordanian canonical form:

1. If A; ;+1is acomplex conjugate pair, such thai1 = —o; £jw;, the Jordanian block
takes the form

. . O wj
Ji = [o ‘”%} . U= : : . (2.33)
ReV ™ imp

2. If ; is a real eigenvalue with multiplicity ofi;, the Jordanian blocl; is

A 1 0 - 0
A 1 -0

A (2.34)
0 0 0 -+ &

and the transformation matrix blodk is

1 0 0 0]
Ai 1 0 0
A2 21 1 0
U=| . : : . : . (2.35)
' d ' 1 d2' 1 d'mf—l
)\{1—1 el)\'i:l—l - Aq—l - kn—l
: dAi(T dxl?(i) (mi — 1)!d/\;.”"‘1(a

A MATLAB function canon() is provided in the Control Systems Toolbox with
syntax [G1, T] =canon(G, t ype) , whereG is the state space object of the original
system, and7 is the state space object obtained after conversion. The arguryemet
can be either conpani on’ (for the companion form of realization) bnodal * (for the
modal form, i.e., the Jordanian realization). The transformation matrix is returried in

Example 2.20. Consider a system model given by

352+ 215 + 36

G(s) = .
6= Fs3 102+ 10+ 4

Using the MATLAB statements
>> G=tf([3 21 36],[1 5 10 10 4]); Gl=canon(G 'nodal)

the Jordanian realization of the system can be obtained:

2 0 0 0 40
0 -1 1 0 0

0 -1 -1 o0 |[¥D*]|40088]%"
0 0 0 -1 46

y(t) = [0.075 0 — 0.366 3913x (7).

x(@) =

2007/
pages

2007/
pages

2.6. Conversion Between Different Model Objects 31

Example 2.21. Consider the transfer function model given by
652 + 305 + 36
59 + 1254 + 5153 + 9852 + 98s + 40

The model can be entered into the MATLAB environment and the required realizations of
the system can also be obtained:

>> G=tf([6,30,36],[1,12,51,98,98,40]); Gss(O;
[GL, T1] =canon(G, ' nodal '), [Q&2, T2] =canon(G ' conpani on’)

G(s) =

It can be found that the Jordanian form can be written as

-5 0 0 0 O —23.049 —0.022969
0 -4 0 0 O —31.062 0.012878
A=l 0 0 -1 1 o0],B=|38582],cl =] 0036591
0 0 -1 -1 0 17.362 —0.073182
0O 0 0 0 -1 —15.334 —0.065216

with the conversion matrify,

—23.049 -20168 —-11525 -3.2413 -1.4406
—31.062 —-31.062 —-18443 -53387 —-2.4267
T1=| 3.8582 74754 10128 54106 33157
17.362 23391 19954 57723 211
—15334 -21084 -—-19167 -—-6.948 —-4.7917

The companion canonical form of the system is

0 0 —40
—-98
—-981|, B>
-51

-12

,cl=1 6
—42
234

0

0

Ay = 10
1

0

cocopr
o
roOoooo
Il
Oocoor

with the conversion matrify,

1 15 15938 (076563 076563
0 0125 Q375 039844 076563
In=|0 0 003125 009375 039844
0 0 0 Q0078125 Q09375
0 0 0 0 00078125

Balanced realization

Before discussing the balanced realization problem, we consider the following illustrative
system [30]:

. _ 6
-0 S]] so-u 0]

2007/
pages

32 Chapter 2. Mathematical Models of Feedback Control Systems

It can be seen that the two elements in Bh@ector and those of the corresponding values
in the C vector are significantly different. If a new pair of state variables= 10°x; and
72 = 107%x, are selected, the system can be transformed into

al_|-1 0la 1 _ 71
2=l S B vo-nnfz]

where the elements in the neBvand C vectors are of the same numeric order. One can
observe here that the introduced transformation matrix rescales the coordinates of the system
to form a set of new coordinates which look more balanced.
A MATLAB function bal r eal () is provided in the Control Systems Toolbox and

can be used to perform the balanced realization of a given stable state space model. The
actual algorithm for doing this transformation is given in the next chapter. The function

[G1, g, T] = balreal (G) can be used to find the balanced realized state space
objectG 1, where the existing state space object is givelby he transformation matrix is
returned inT" and the diagonals of the Gramians, which will be defined in the next chapter,

of the new system will be returned in vecigr

Example 2.22. Consider again the system model givenin Example 2.18, using the following
MATLAB statements:

>> nume[1, 7, 24, 24]; den=[1, 10, 35, 50, 24]; G=tf(num den);
[GL, Sig, T]=balreal (ss(Q);
the balanced realization of the system can be obtained as

—0.81996 —0.31463 073015 007656 0.92156
0.31463 —-0.44795 37879 023645 —0.16627
0.73015 -—-3.7879 —-7.109 -1.3934 20+ —0.42015 u(@),
0.07656 —0.23645 —1.3934 -1.6231 —0.04307

y(t) = [0.9216 0.1663 — 0.4201 — 0.0431z(r).

z2(t) =

It can be seen that in the balanced realization of an SISO system, the absolute values
of the corresponding elements in tBeand C vectors are the same. But for MIMO cases
the above argument may not be true [5].

Minimum realization

It has been shown in Example 2.8 that the order of the overall model obtained by a parallel
connection of blocks may be higher than the actual order of the system. In the real world,
the state space model established using other methods may also produce models with an
order higher than necessary or higher than the minimum.

This leads to the following question: What is the lowest possible order for a given
system? This is the problem of finding the minimum realization.

For an SISO transfer function or a zero-pole-gain representation, the minimum re-
alization solution is very simple and straightforward. If the poles and zeros at the same

2007/
pages

S
2.6. Conversion Between Different Model Objects 33
locations can be cancelled out (also called a pole-zero cancellation), the minimum realized
model can be obtained immediately.
The situation with the state space expression is not so straightforward. Fortunately,
a MATLAB function m nr eal () provided in the Control Systems Toolbox can be used
directly for solving the minimum realization problem. The syntax of the function is
Gi=m nreal (G) ,
where the original LTI object is given b§ and the minimum realized one is given in the
objectG;.
Example 2.23. Consider a fourth-order state space model given by
-5 8 0 O 4
. -4 7 0 O —
*=19 0 o 4x+ > u, y=[2 -2 -2 2x.
0 0 -2 6 1
Using the MATLAB statements
>> A-[-5,8,0,0; -4,7,0,0; 0,0,0,4; 0,0,-2,6]; B=[4; -2; 2; 1];
C[2,-2,-2,2]; D=0; G=ss(A B, C D); Grenminreal (G
we are prompted that “2 states removed,” and the minimum realized model can easily be
obtained as
(1) = -1 —4.4409% 10716 O+ 4.2426 o
2= 153291 10715 2 z 2.2361| """
y(t) = [2.8284 —0.89443z ().
Note that MATLAB may return very small numbers instead of the actual value of zero after
numerical operations. In fact, the zero-pole-gain model of the given fourth-order state space
model can be obtained with tlzgpk(G command as
10(s — 2.6)(s — 3)(s — 4)
G(s) = .
s+ -2 -3 —4
It can be seen that there are common pole-zero pairs=aB8 ands = 4. Canceling out
these two pairs yields a transfer function of
Ges) 10(s — 2.6)
§) = ———7F——,
(s+D(s—2)
which is the minimum realization of the system.
S

2007/
pages

34 Chapter 2. Mathematical Models of Feedback Control Systems

2.6.4 Conversion Between Continuous and Discrete-Time Models

If a model is described with a continuous LTI obje&t its discretized version under the
sampling intervall' can be easily obtained with the function ¢ Gy=c2d(G, T) . The
default discretization method used is the zero-order-hold (ZOH) method. If one wants to use
Tustin’s method, the functioncan be calledv G;=c2d(G, T, ’ Tusti n’) . Ofcourse
one can even use more conversion algorithms and details prompted hel p c2d
command.

If, on the other hand, a discrete-time objékt is known, the continuous version of it

can be obtained wit G=d2c(G,) , where no sampling intervdl is necessary, since the
information is already contained in the obje€g}.

Example 2.24. Consider again the multivariable system shown in Example 2.17. If one
chooses the sampling interval 8f = 0.1 second, the equivalent discrete-time version of
the system can be found with the statements

>> A=[2.25, -5, -1.25, -0.5; 2.25, -4.25, -1.25, -0.25;
0.25, -0.5, -1.25,-1; 1.25, -1.75, -0.25, -0.75];
B=[4, 6; 2, 4;, 2, 2; 0, 2]; Cf0, O, O, 1, O, 2, O, 2];
D=zeros(2,2); G=ss(A B, C D); Gd=c2d(G 0.1)

from which it is found that the matrices in the discrete-time system are

11915 —-0.4455 -0.1013 -0.04215 0.383253 05527

Fe 0.2008 06124 —0.1058 —-0.01884 G- 0.1906 03694
" 10.01526 —0.03499 08849 —0.09054(° ~ | 0.1879 Q1764|°

0.1147 -0.1622 -0.01973 09279 0.004833 01927

Example 2.25. If the continuous model is given by

and the sampling interval i¥ = 0.1 second, the following statements can be used to
discretize the system:

>> s=tf('s’); G=1/(s+2)"3; G ioDelay=2
If the ZOH and Tustin algorithms are used, one may use the statements

>> Gl=c2d(G 0.1) % ZOH net hod
&=c2d(G 0.1, Tustin’) % Tustin algorithm

and it can be found that

0.00014362 + 0.0004946 + 0.0001064 _,,
224562+ 201 — 05488

9.391x 107523 4 0.00028172 + 0.0002817% + 9.391x 107> _,,

23 — 2.45%2 4 2.00& — 0.5477 o

Gzou(2) =

Grustin(z) =

2007/
pages

S
2.7. An Introduction to System Identification 35

If inverse conversions are used, i.e.,
>> Glc=d2c(Gl), &Rc=d2c(XR)
it can be found that

1.736x 1071752 —5561x 107 s +1 5
G1c(s) = 3 2 e,
s34+ 6s¢+ 125+ 8
Ganls) 9.391x 10~°s3 4 0.0030962 + 0.04542 + 1.01 _,,
(5) = .
2 53+ 6.0252 + 12.08s + 8.081
2.7 An Introduction to System Identification
So far, the previous descriptions regarding linear control systems all assume that the system
model has been given. In real applications, not all the plant models can be derived with
existing physical laws. The internal structure of the plant may not even be known at all.
Thus, reconstructing the system model from the measured data, is referred to as system
identification.

System identification is a general term used to describe mathematical tools and algo-
rithms that build dynamical models from measured data. A dynamical model in this context
is a mathematical description of the dynamic behavior of a system or process.

In real applications, many directly measured data are useful in identifying the model
of the system, for instance, frequency response data, and input and output signals. In this
section, we focus on the identification of discrete-time transfer functions from the measured
input and output signals.

2.7.1 Identification of Discrete-Time Systems
A typical discrete-time transfer function is usually given by
B b1+boz 4+ by,
G(z1) = 2.36
<Z) 1—i-alZ*1—|—azZ*2—i--~—i-anz*”Z (2.30)
and it corresponds to the difference equation
y) +ary(t =) +axy(t =2) + -+ any(t —n) (2.37)
=bu(t—d)+bu(t —d -1+ +buu@t—d—m+1) +e@) '
wheree(¢) can be regarded as the identification residuals. Here the shorthand netation
is used for the output signalkT), andy(r — 1) can then be used to describe the output at
the previous sample, i.ey[(k — 1)T]. Suppose that a set of input and output signals has
been measured and writteruas= [(1), u(2), ..., u(M)]", y = [y(D), y(2), ..., y(M)]".
From (2.37), it can be found that
y) = —a1y(©0) — -+ —apy(l—n) + biu(l—d) + - - - + bju(2—m—d) + (1)
y(@2) = —a1y(D) — -+ —any(2—n) + bau(2—d) + - - + bpuB—m—d) + £(2)
yM) = —a1y(M—=1) —--- —apy(M —n) + bau(M —d)
+ o+ bypuM +1—m—d) +e(M)
S

2007/
pages

S
36 Chapter 2. Mathematical Models of Feedback Control Systems
wherey(#) andu(z) are assumed to be zero wherc 0. The matrix form of the above
equations can be written as
y=®0 +e, (2.38)
where
y(0) o yQ=n) wu@-d) -+ u@-m-—d
y@ o y@2=n) u@-d) --- u@-m-—d
- _) .) (2.39)
ym-1) --- yM~—-n) uM—d) --- uM+1-m—d)
0" = [—a1, —ap, ..., —an, b1, ...,bpl, € =[e),...,e(M)]. (2.40)
To minimize the sum of squared residuals, i.e.,
M
. 2.
min
in) %),
i=1
the optimum estimation to the undetermined elemenéisdan be written as
0=[® &) 0Ty (2.41)
Since the sum of squared residuals is minimized, the method is also known as the least
squares algorithm [31]. Note th&' ® might be ill-conditioned if the input excitation
signalu(t) is not properly designed for the identification experiments. This input signal
design issue will be discussed and illustrated in Sec. 2.7.3.

A function ar x() is provided in the System Identification Toolbox to identify the
discrete-time model from measured input and output data. If the measured input and output
signals are expressed by column vecterand y, and the orders of the numerator and
denominator are assumed to khe— 1 andn, respectively, and the delay termds the
following statement can be use H=ar x([y,u], [n,m,d]) .

The returned variablé/ is ani dpol y object, whereH A and H B represent the
numerator and denominator polynomials of the identified system, respectively.

Example 2.26. Assume that the measured input and output data are given as in Table 2.1.
One may assume that the order of the numerator and denominator is selected as 4, with a
delay of 1; then the following statements can be used to identify the system model:
>> u=[1. 4601, 0. 8849, 1. 1854, 1. 0887, 1. 413, 1. 3096, 1. 0651, 0. 7148, . ..
1.3571, 1. 0557, 1. 1923, 1. 3335, 1. 4374, 1. 2905, 0. 841, 1. 0245, . ..
1.4483, 1. 4335, 1. 0282, 1. 4149, 0. 7463, 0. 9822, 1. 3505, 0. 7078, . ..
0.8111, 0. 8622, 0. 8589, 1. 183,0.9177, 0. 859, 0. 7122, 1. 2974, . ..
1. 056, 1.4454,1. 0727, 1. 0349, 1. 3769, 1. 1201, 0. 8621, 1. 2377, . ..
1. 3704, 0. 7157, 1. 245, 1. 0035, 1. 3654, 1. 1022, 1. 2675, 1. 0431] ' ;
S

2007/
pages

—®
2.7. An Introduction to System Identification 37
Table 2.1. Measured input and output data.
t u(t) y(@) ! u(r) y(@®) t u(t) y()
0 1.4601 0 16 | 1.4483 | 16.411 | 3.2 | 1.056 11.871
0.1 | 0.8849 0 17 | 14335 | 14336 | 3.3 | 1.4454 | 13.857
0.2 | 1.1854 8.7606 | 1.8 | 1.0282 | 15746 | 3.4 | 1.0727 | 14.694
0.3 | 1.0887 | 13.194 19 | 1.4149 | 18.118 | 3.5 | 1.0349 | 17.866
04 | 1.413 17.41 2 0.7463 | 17.784 | 3.6 | 1.3769 | 17.654
05 | 1.3096 | 17.636 2.1 | 09822 | 18.81 37 | 1.1201 | 16.639
0.6 | 1.0651 | 18.763 22 | 1.3505 | 15.309 | 3.8 | 0.8621 | 17.107
0.7 | 07148 | 1853 23 | 07078 | 13.7 3.9 | 1.2377 | 16.537
0.8 | 1.3571 | 17.041 24 | 08111 | 14818 | 4 1.3704 | 14.643
0.9 | 1.0557 | 13.415 25 | 08622 | 13.235 | 4.1 | 07157 | 15.086
1 1.1923 | 14.454 26 | 08589 | 12299 | 4.2 | 1.245 16.806
1.1 | 1.3335 | 14.59 2.7 | 1.183 11.6 43 | 1.0035 | 14.764
1.2 | 14374 | 16.11 28 | 09177 | 11607 | 4.4 | 13654 | 15.498
1.3 | 1.2905 | 17.685 29 | 0.859 13.766 | 4.5 | 1.1022 | 14.679
1.4 | 0841 19.498 3 0.7122 | 14.195 | 4.6 | 1.2675 | 16.655
15 | 1.0245 | 19.593 3.1 | 1.2974 | 13.763 | 4.7 | 1.0431 | 16.63
y=[0, 0, 8. 7606, 13. 1939, 17. 41, 17. 6361, 18. 7627, 18. 5296, 17. 0414, . ..
13. 4154, 14. 4539, 14. 59, 16. 1104, 17. 6853, 19. 4981, 19. 5935, . ..
16. 4106, 14. 3359, 15. 7463, 18. 1179, 17. 784, 18. 8104, 15. 3086, . . .
13. 7004, 14. 8178, 13. 2354, 12. 2993, 11. 6001, 11. 6074, 13. 7662, . . .
14. 195, 13. 763, 11. 8713, 13. 8566, 14. 6944, 17. 8659, 17. 6543, . ..
16. 6386, 17. 1071, 16. 5373, 14. 643, 15. 0862, 16. 8058, 14. 7641, . ..
15. 4976, 14. 679, 16. 6552, 16. 6301] ' ;
tl=arx([y,u],[4, 4, 1])
The following results are obtained and displayed:
Discrete-tinme | DPOLY nodel : A(Q)y(t) = B(q)u(t) + e(t)
A(q) =1- g-1+0.259-2+0.259-3-0.125q9" -4
B(g) = 4.83e-008 q°-1 + 6 q°-2 - 0.5999 q*-3 - 0.1196 q -4
Esti mat ed usi ng ARX
Loss function 7.09262e-010 and FPE 9. 92966e-010
Sanpling interval: 1
From the displayed information, the identified model can be written as
G (_1> 4.83x 108,71 4 672~ 0.5999 3 — 0.1196 %
Z =)
1-z714+0252+02573—-012%*
ie.,
o) 4.83 x 107823 4 672 — 0.599% — 0.1196
) =
74— 234 0.252 + 0.25; — 0.125
In fact, the data were generated from the system in Example 2.5. It can be seen that
the model identified is rather close to the original model. Also, the sampling interval can be
found from Table 2.1, whergé = 0.1 second. A formal identification method is to establish
the data objedV with U=i ddat a(y, u, T) . Then the following statements can be used
to identify the system model:
>> U=iddata(y,u,0.1); T=arx(U,[4,4,1]); H=tf(T); GH1)
—®

2007/
pages

38 Chapter 2. Mathematical Models of Feedback Control Systems

Linear Simulation Results Linear Simulation Results
20

181
161
14
12

Amplitude
To:yl
Amplitude
To:yl

10

N oW
-

Time (sec) Time (sec)

@ withm =4,n=4,d=1 (bym=3,n=3,d=1
Figure 2.7. Comparisons of identification results.

It can then be found that

4.83x 107873 + 672 — 0.599% — 0.1196

G(z) =
@ 4 _ 3410252+ 025 — 0.125

The transfer function model converted from thi() function is in fact a double
input transfer function matrix. The first one is the expected transfer function model, and
the second is the transfer function from error sigrn&) to the output signal. This model is
discarded in the example.

To verify the identified model, the MATLAB functionsi n() can be usedto simulate
the system driven by the givansequence. Details of the function will be given later in
Sec. 3.3.3. The response is shown in Figure 2.7(a), superimposed as open circles by the
measured output sequengelt can be seen that the identified model is very accurate:

>> 1=0:0.1:4.7; Isim(Gu,t); hold on, plot(t,y,” 0" ,t,u,’0")

If the orders are improperly selectedras= 3,n = 3,d = 1, the identified model is

then obtained as
0.048862 + 6.017; + 2.806

73— 0.43622 — 0.214 + 0.2828
and the verification shown in Figure 2.7(b) illustrates that the fitting of the model is not so
good. Thus, the selection of the orders is also very crucial in the identification process:
>> T=arx(U,[3,3,1]); H=tf(T); Gl=H(1)

| sim Gl,u,t); hold on, plot(t,y, 0o ,t,u,’0")

Gi(z) =

The identification can be completed from (2.39) and (2.41) without the use of the
ar x() function. The following statements can be used to solve the same problem:

>> Phi=[[0;y(1l:end-1)] [0;0;y(1l:end-2)],...
[0;0;0; y(1:end-3)] [0;0;0;0;y(1l:end-4)],...
[0;u(l:end-1)] [0;0;u(l:end-2)],...
[0;0;0; u(l:end-3)] [0;0;0;0;u(l:end-4)]]
T=Phi\y; G&d=tf(ans(5:8),[1,-ans(1:4)], Ts',0.1)

2.7. An Introduction to System Identification 39

Jlident: Untitled

File Options Hindow Help
Import data v Impart models e
l Operations l
I:l I:l = Preprocess M ‘ H ‘ ‘ ‘ ‘ ‘
==an I
Data Views Model Views
To To
Tirme plot Wigrkspace || LTI Mewer Model output Transient resp
Diata spectra hodel resids Freguency resp
Frequency function l] |:| Zeros and poles
Exl Trash Validation Data LR
Cotnpiling ...

Figure 2.8. GUI for system identification.

The identified model is

—5.824x 107773 + 622 — 0.599% — 0.1196
74— 734 0.252 +0.25; — 0.125

G(z) =

A GUI ident is provided inthe System Identification Toolbox, which can be used
to identify discrete-time models in a visual way. If one typdgent command, an interface,
as shown in Figure 2.8, can be displayed.

To identify a system model, one should first provide the relevant data to the interface.
This can be done by clicking the upper lefiport Data list box. Select menu iteffime-
Domain Data. Then, a dialog box pops up, as shown in Figure 2.9(a), and the input and
output data can be entered into the interface by filling them intdripat and Output
columns, respectively. Theampling interval should also be filled in. Click themport
button to complete data input.

If one wants to identify the autoregressive exogenous (ARX) modeRdfaenetric
Models item in the Estimate list box should be selected, and the dialog box shown in
Figure 2.9(b) will be displayed. The expected orders of the system can be specified. Then,
click the Estimate button to initiate the identification process. When the identification
process is completed, the dialog box shown in Figure 2.10(a) will show the identification
results. It can be seen that the identification results obtained in the interface are exactly the
same as the result obtained usargx() function.

The final interface is shown in Figure 2.10(b). The user may further select other tasks
for the analysis of the identified model.

2007/
pages

Chapter 2. Mathematical Models of Feedback Control Systems

) Import Data

Data Format for Signals

Time-Domain Signals vl

Workspace Variable

Data Information
Diata name: iy data
Starting tirme

Sampling interval: 0

[Itrippiott]

Feszet

[Close]

Help

) Parametric Nodel=s

Structure:
Crrdlers:
Exjustian:
Methoc:

IHarme:

|ARIC [vl]

|441

Ay=Bu+e

@ ARX O

|arx441 |

Focus: Initial state: [a 40

Distmodel Estimate

Covariance: |popiate

fteration

Trace Stop kerstions

Fit: Impravemert

[Oroer Selection

] [Crdler Editar ...]

[Estimate

]

[Close] [Help]

(a) data input dialog box

) Data/model Info:

Colar: 00,11

(b) order selection dialog box

Figure 2.9. Dialog boxes for system identification.

) ident: Untitled

File Options Window Help

Import data L

Import models %

[Present] [Cloge] [Help]

Exit

Discrete-time IDPOLY model ()it = Bloiu A Choslons
Alr=1 -1 +025g%~2+0259™3-012
Bio) = 4 832-008 g1 + 6 -2 - 0.5999 o3 'm et <-Prepracess % %
Estimasted using ARX from data set mydsta Lt | 1.
Loss function 7.09262e-010 and FPE 9.92596¢ el el
Sammpling interval: 0.9 = r E
e mydata
< i | > Wiorking Data
[L] .
A Diata Views Model Yigwns
m To To
Flmport mydata [Time plat [madel output [Transient resp
arxdd = andmydata,[4 4 1]) [] Data spectra [] Madel resids [C] Frequency resp
= e
w [Frequency function m [[] zeros and poles
mydata

Trash “alickation Data

[[] Maize spectrum

Cormpiling

(a) identification results

2.7.2 Order Selection

The Akaike information criterion (AIC) is a statistical model fit measure defined by [31, 32]

M
1 ot k
AIC = Ig { det Miz:l:e(z,ﬂ)e 6|1+ (2.42)

(b) identification solutions
Figure 2.10. Dialog boxes for system identification.

2007/
page-

2.7. An Introduction to System Identification

41

Table 2.2. AIC for different order combinations.

The delayisi =1
n m=1 2 3 4 5 6 7
1 1.484 —0.25541 | —0.66303| —1.0494| -157 —2.6414 | —3.4085
2 1.346 —2.1263 —2.3685 —49326 | -5.2359| -7.4658| -7.6678
3 1.0658 —2.8886 —3.4758 —5.4795 —5.6407 | —7.7744| -7.9316
4 1.0329 —7.8839 | —10.53 —20.733 | —20.973 | —20.984 | —20.9737
5 1.0043 —10.034 —13.406 —20.971 | —21.002 | —21.037 | —21.0356
6 1.023 —13.694 —18.965 —20.982 | —21.037 | —21.148 | —21.1105
7 0.9909 —16.6423 | —20.7387 | —21.0160| —21.0324| —21.1105| —21.1115
The delay is? = 2
1| -0.29215| -0.70464 —1.0849 —1.6057 | —2.6827 | -—3.415 —3.5863
2| —2.1672 —2.4101 —4.9737 —-5.2763 | —-7.477 —7.7083 | —10.2034
3| —2.929 —3.5109 —5.5163 —-5.6663 | —7.8124| —-7.9722| —10.5894
4| -7.9075 | —10.57 —20.775 —21.013 | —21.026 —21.015 | —20.9850
5| —10.07 —13.438 —21.011 —21.036 | —21.079 —21.077 | —21.0617
6 | —13.71 —18.991 —21.023 —21.078 | —21.184 | —21.149 | —21.1646
7 | —16.6792 | —20.7794 —21.0574 | —21.0736 | —21.1488 | —21.1444| —21.1393

whereM is the number of measurement points, @hector contains the identified parame-
ters, andk is the number of parameters to be identified. The func v=ai c(H) , where

H is ani dpol y object calculated by thar x() function, can be used to evaluate the AIC
valuew. If the AIC value is very small, for instance, smaller tha0, which is equivalent

to a loss function of 1019, then, m, d values can be used as the orders of the identified
system.

Example 2.27. Consider again the identification problem in Example 2.26. For different
order combinations, the AIC values can be obtained as shown in Table 2.2. It can be seen

that the shaded items are acceptable, and thus the orders of these combinations can be used.

It can also be seen that even though the order can still be increased, it may not make much
of a contribution to the improvement of fitting quality. Thus, the lowest possible orders in
the shaded items, i.e., the (4,4,1) and (3,4,2) combinations in the example, are desirable for
the system:

>> for n=1:7, for nrl:7
T=arx(U,[n,m1]);
T=arx(U,[n,m2]);

end, end

TAi c1(n, mM=aic(T);
TAI c2(n, m=aic(T);

2.7.3 Generation of Identification Signals

In the previous example, it can be seen that a 48-point input sequence is generated, and the
original system can be excited by the sequence to generate the output signal. Based on these
signals, the discrete-time model can be identified. However, there may exist some error
in the identification results. This error could be contributed by the inadequately chosen
input signal. In principle, the input signal has to be “rich” enough (in spectrum, or in a
Fourier series expansion sense) to excite the system so that the output signal can reveal the

2007/
page

2007/
page

42 Chapter 2. Mathematical Models of Feedback Control Systems

-1 dJgurr ey g 4o ey bl

0 10 20 30 40 50 60

Figure 2.11. PRBS sequence.

unknown dynamics. A simple example, is when a constant DC signal is used to excite a
systemG (s). In the steady state, a constant output signal can be measured. Clearly, only
one point in the Nyquist plot (0), known as the DC gain, can be identified. Therefore, a
DC signal fails to excite the system dynamics and it cannot be used to excite the system for
system identification purposes. It is desirable to have an input signal that is “persistently
exciting.”

A pseudorandom binary sequence (PRBS) signal is a class of useful, “persistently
exciting” signals suitable for identification purposes. The signals can be generated with the
function u=i di nput (&, ’ prbs’) ,wherekisthelength of the sequence ane- 2" —1
with n an integer.

Example 2.28. To generate a PRBS sequence of length 63, the following statements can
be used:

>> u=idinput(63,’PRBS'); t=[0:.1:6.2]";
stairs(u), set(gca,’ XLim ,[0,63],"YLim,[-1.1 1.1])

The PRBS generated is shown in Figure 2.11.
With the PRBS signal of length 31, the input and output data can be calculated, from
which the discrete-time transfer function model can be identified as

>> nume[6 -0.6 -0.12]; den=[1 -1 0.25 0.25 -0.125];
G=tf(numden,’Ts’,0.1);
y=Isim{Gu,t); Tl=arx([y,u],[4 4 1])

with the identification results

Discrete-time | DPOLY nodel: A(Q)y(t) = B(q)u(t) + e(t)
A(q) =1- 9g-1+0.25q9-2+0.25q9q-3- 0.125 g9 -4
B(g) = -2.141e-015 q°-1 + 6 g°-2 - 0.6 9°-3 - 0.12 q° -4
Esti mat ed using ARX

Loss function 7.46734e-030 and FPE 1.2662e-029

Then the identified model is

—2.141x 10153 4 672 — 0.6z — 0.12
74— 734 0.252 4+ 0.25; — 0.125

It can be seen that the model identified is almost the same as the original model. It is
obvious that although much less input-output data are used than used in Example 2.26, the

G(z) =

2007/
page

2.7. An Introduction to System Identification 43

accuracy of the identification is much better. This is why the PRBS signal is a good input
signal to use for identification problems.

There exist many identification algorithms for continuous systems. For instance,
Levy's method can be used in frequency response fitting to the original model [33]. How-
ever, since the frequency response fitting may not be unique, the identification results may
sometimes not be usable. Indirect identification methods can be used instead. One may
identify the discrete-time transfer function, then convert the results into continuous systems
with thed2c () function.

Example 2.29. Consider the continuous model

s3+ 752+ 115 +5

G(s)= .
)= 7531 21,21 375 130

Let the sampling interval b& = 0.1 second. The following statements can be used to
excite the system with PRBS signals, and the input and output data can be generated:

>> G=tf([1,7,11,5],[1,7, 21,37, 30]);
t=[0:.2:6]"; u=idinput(31,’PRBS);
y=lsim(Gu,t); U=arx([y u],[4 4 1]);
Gl=tf(U); GL=Gl(1); GL.Ts=0.2; &R=d2c(Gl)

The identified model is then

s3+ 752+ 115 +5

G(s) = .
() s+ 753+ 2152+ 375+ 30

It can be seen that the identified model is very accurate.
If sinusoidal signals with 81 samples are used instead to excite the original system
model, the following statements can be used to identify the system:

>> t=[0:.21:8]"; u=sin(t); y=lsim(Gu,t); ul=iddata(y,u,0.1);
U=arx(ul,[4 4 1]); Gl=tf(U); Gl=Gl(1); G&2=d2c(Gl)

Thus the identified model is

0.01361%3 — 0.067932 + 9.897s — 2.564
s+ 753+ 2152+ 375+ 30

G(s) =

It can be seen that although more data are used, the identified model is not satisfactory. In
fact, the results may be misleading. It should be noted that the frequency spectrum of the
input data is very narrow. Thus it is not surprising that the sinusoidal signal gives erroneous
results. From this example, one can better appreciate the role of “persistent excitation.” In
fact,®' @ in (2.41) might be ill-conditioned if the input excitation sigmat) is not properly
designed for the identification experiments.

2007/
page

S
44 Chapter 2. Mathematical Models of Feedback Control Systems
2.7.4 Identification of Multivariable Systems
The ar x() function can also be used in the identification of multivariable systems. In
the system, suppose that there armputs and; outputs. The difference equation for the
multivariable system can be written as
AGC YY) = B Hu —d) +e(), (2.43)

whered is the delay matrixA (z 1) andB(z~1) are bothp x ¢ polynomial matrices, and

AE™Y = Tpxg + Azt 4+ Ay 27, (2.44)

B Y =1,y +Biz 4+ B,z '

With the use of thar x() function, the matriced; andB; can be obtained, and the

transfer function matrix can be extracted with tHe() function.
Example 2.30. Assume that the transfer function matrix is given by
0.5234 — 0.1235 3z +0.69
G) = 72+ 0.8864 + 0.4352 72 + 1.084; + 0.3974
v 1.2; — 054 3.4z — 1.469
72+ 1764 +0.9804 z2+0.24z + 0.2848
The two input signals can be individually set to PRBS sequences. To cancel out the corre-
lations of the two sets of signals, the two sequemngesndu- are arranged in reverse order.
The following statements can be used to identify the system model:
>> ul=idinput (31, PRBS); t=0:.1:3; u2=ul(end:-1:1);
gl1=tf([0.5234, -0.1235],[1, 0.8864, 0.4352],'Ts',0.1);
gl2=tf([3, 0.69],[1, 1.084, 0.3974],'Ts',0.1);
g21=tf([1.2, -0.54],[1, 1.764, 0.9804], Ts',0.1);
g22=tf([3.4, 1.469],[1, 0.24, 0.2848],'Ts',0.1);
G=[gl1, 912; @21, g22]; y=lsim(G [ul u2],t);
na=4*ones(2); nb=na; nc=ones(2);
U=i ddata(y, [ul,u2],0.1); T=arx(U,[na nb nc])

The difference equation identified is a multivariable equation, and it can be converted to
the required multivariable transfer function matrix. For instance, taking into consideration
the subtransfer function item, with the first input versus the first output, the subtransfer
functiongy1(z) can be extracted from
>> Hetf(T); gll=H(1,1)
and one finds that

0.5234%4-1.49%%+1.847:%+1.23%%+-0.5004 "+-0.09574°-0.0155 %>
- —0.0137%*-1.683x 107 16;3-3.582x 10717;2-4x 108, 4 5.362x 10719
Z =
s 2+ 3974 + 7.431,10 1 8.48%° + 6.585° + 3.6117 + 1.401:°

The order of the model is very high, and thus the minimum realization method to the
model should be used, with relatively large error tolerance ef 104, to find a closer
transfer function to the original one,

S

2007/
page

2.7. An Introduction to System Identification 45

>> Gl1=m nreal (gll, le-4)
and the subtransfer function
0.5234 — 0.1235
z2 4 0.8864 + 0.4352
can be identified. Using similar methods, the other subtransfer functions can be extracted
from the identified model. The transfer function matrix can also be obtained with

>> H=minreal (H(1:2,1:2), 1le-3)

g11(2) =

Since the state space equations are not unique, sometimes it is not a good choice to
identify the state space model of the system from measured input and output data, since
there are too many redundant parameters to be identified.

Problems
1. Enter the following system models into the MATLAB environment:

s34+ 4s% + 35+ 2
s2(s + DI(s + 42 + 4]

03 01 -005 2
© i)=| 1 01 0 |x(+|0|u@, y=1I12 3lx@).
~15 -89 -0.05 4

@ G(s)=

2. Suppose that the models in Problem 1 are all open-loop models. Using MATLAB,
evaluate the closed-loop models if unity negative feedback is assumed. Find all the
open-loop and closed-loop poles and zeros of the above models.

3. Assume that the linear ODEs describing a system are given by

x1(2) = —x1(t) + x2(1),

x2(t) = —x2(t) — 3x3(t) +u1(1)

x3(¢) = —x1(t) — Sx2(t) — 3x3(t) + u2(1),
andy = —x2(t) + u1(t) — Sua(1),

where there are two input signails(¢) andu>(r). Model the two-input single-output
(TISO) system in the MATLAB workspace.

4. An ODE is given by
Y& @) + 135(1) + 69(1) + 5y (1) = 2u(1).
Select a set of states and represent the equation in the MATLAB workspace.

5. Find the equivalent transfer function for the state space model

1 2 3 4
x=|4 5 6|x+|3|u, y=1[1,23Ix
7 8 0 2

and also find the poles and zeros of the model.

2007/
page-

46 Chapter 2. Mathematical Models of Feedback Control Systems

6. Assume that in the typical feedback control structure, the blocks are given by

21187s + 317.64

(s + 20)(s 4+ 94.34)(s + 0.1684°
Guis) 169.6s + 400 Hs)
(S) = _—, S) = —’
¢ s(s +4) 0.01s + 1
357867s + 108444 1 1

G161 206 17408 W =5 HO =507

Find state space models and transfer functions of the overall systems. Get the zero-
pole-gain representations of the systems.

(@ G(s) =

(b) G(s) =

7. Suppose that a typical feedback system is given such that

K, J L
G =5 Ge(s) = 1

T h o —, H(s) =sK,.
s2+ Bs + K, Lgs + R,) ’

Find the model.

8. Enter the following plant model into MATLAB:

1
§° 4854 4+195s3 + 1952 + 755 + 1

and evaluate the closed-loop model if unity positive or negative feedback is assumed.
Find and make comments on the closed-loop poles and zeros.

G(s) =

9. Find a state space realization of the plant model givegiy = 1/(s+1)3. Comment
on what may affect the Jordanian canonical form. Compare the computer results with
those obtained by direct manual calculations.

10. Consider the system models

—9 —26 —24 1800000
(@ x=|1 0 0 |x+ 0 u, y=1[0,1,15x10"°]x

0 1 0 1234

1.25x 10°s? + 505 + 1.33 x 1074
5% 4 10s3 + 3552 + 505 + 24
Perform balanced realizations for the systems.

(b) G(s)=

11. Assume that the models of the systems are given by

-9 -26 -24 O
@i |1 0 00
-1

x + u, y=1[011, 2]x

1

0
0 1 0 0
0 1 1 0
252 4+ 185 + 16

b) G(s) = .
b) G® 54+ 1053 + 3552 + 505 + 24

2007/
page

2.7. An Introduction to System Identification 47

Try to check whether these models are minimally realized. If not, find the minimally
realized models and give an explanation from the transfer function point of view.

12. Suppose that an overall system is composed from the series connection of two blocks
G1(s) andGa(s) given, respectively, by

s+1 and Ga(s) s24+ 3545
—_— S) = .
2+ 35+ 4 2 ¥+ 43132125 +1

Gi(s) =

If the state space representation for the overall system is required, compare the differ-
ence in the results using the following two approaches in MATLAB:

(a) Perform the series connection of the two transfer functions, and then find the state
space expression for the overall system model.

(b) Find the state space expressions of the two blocks, and then find the overall system

model.

13. Assume that the multivariable plafits) and its precontrolleG.(s) are given by

—0.252 0.43
(1+3.35)3(14+180%) (1+12s5)(1+1800%) ~-10 775
G(S)Z ’ GC(S):[O 50i| .
—0.0435 0.097

(1425.35)3(1+360s) (1+125)(1+360s)

Evaluate the closed-loop transfer function matrix under unity negative feedback, and
then find the state space realization.

14. Derive the overall system model frany) to y(z) as shown in the following block
diagram:

242
53414

15. Assume that the plant model is given by

G(s) = me

’

and the controller is
2s +3
G.(s) = P

For a unity negative feedback system, check whether it is possible to express the
closed-loop system by the MATLABf object. Please give reasons why.

48

2007/
page

Chapter 2. Mathematical Models of Feedback Control Systems

16. Draw the PRBS sequence for 127 points and draw the autocorrelation function of the
sequence with thecor r () function.

17. If the block diagram of a linear system is shown as below, derive the total system
model from the input (¢) to the outputy(z):

H4(S)

Ga(s) W’ Gats) Jﬂ Go(s) W Ge(s) k
H3<s>

H1(8)

()

18. Suppose that the measured input/output data of a discrete-time model is given in the
table below. Identify the transfer function model, based on the suitable order selection
with AIC values:

i uj Vi i uj Vi i uj Vi
1 09103 0 9 09910 545252| 17 06316 62.1589
2 07622 184984| 10 03653 659972| 18 0.8847 63.0000
3 0.2625 31.4285 11 0.2470 62.9181| 19 0.2727 68.6356
4 0.0475 32.3228 12 0.9826 57.5592| 20 0.4364 60.8267
5 07361 285690| 13 07227 67.6080| 21 0.7665 57.1745
6 03282 39.1704| 14 07534 70.7397| 22 0.4777 60.5321
7 06326 39.8825| 15 06515 73.7718| 23 02378 57.3803
8 0.7564 46.4963 16 0.0727 74.0165| 24 0.2749 49.6011
19. For a system model
2
G(s) = 45" —4

20.

21.

s4+ 753+ 1852 4225 + 12’

excite the system by different signals, for instance, step signal, sinusoidal signal, and
PRBS signal. Check how many samples are necessary to accurately identify the system

model.

Based on the AIC criterion, suitable orders can be found and the discrete-time model
can be identified. In control systems analysis and design, however, sometimes a low-
order approximate model may be needed. This is the topic of model reduction and
will be explored in Chapter 3. Try to find a good low-order approximation for the data
given in Problem 18 and test how good the reduced-order models are.

Suppose that the measured step response data of a continuous system are as shown
in the table below. Identify the transfer function model and, with the help of the AIC

2.7. An Introduction to System Identification

49

values, determine a suitable order combination for the system:

t

y(@)

t

y(@)

t

y(@)

t

Y@

t

y(@)

t

y(@)

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

11
1.2
13
1.4
15

0
0.08324
0.1404
0.1798
0.2072
0.2265
0.2402
0.2501
0.2574
0.2629
0.2673
0.2708
0.2737
0.2762
0.2784
0.2804

1.6
17
18
1.9
2

21
2.2
2.3
2.4
25
2.6
2.7
2.8
2.9
3

3.1

0.2822
0.2839
0.2855
0.287

0.2885
0.2899
0.2912
0.2925
0.2937
0.2949
0.2961
0.2973
0.2983
0.2994
0.3004
0.3014

3.2
3.3
3.4
35
3.6
3.7
3.8
3.9
4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

0.3024
0.3034
0.3043
0.3051
0.306

0.3068
0.3076
0.3084
0.3092
0.3099
0.3106
0.3113
0.312

0.3126
0.3133
0.3139

4.8
4.9
5

51
5.2
5.3
5.4
55
5.6
5.7
5.8
5.9
6

6.1
6.2
6.3

0.3145
0.315

0.3156
0.3161
0.3166
0.3172
0.3176
0.3181
0.3186
0.319

0.3195
0.3199
0.3203
0.3207
0.3211
0.3214

6.4
6.5
6.6
6.7
6.8
6.9
7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

0.3218
0.3222
0.3225
0.3228
0.3231
0.3235
0.3238
0.324

0.3243
0.3246
0.3249
0.3251
0.3254
0.3256
0.3258
0.3261

8

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
9

9.1
9.2
9.3
9.4
9.5

0.3263
0.3265
0.3267
0.3269
0.3271
0.3273
0.3275
0.3277
0.3278
0.328

0.3282
0.3283
0.3285
0.3286
0.3288
0.3289

2007/
page4

2007/
page:

2007/
page:

Chapter 3

- Analysis of Linear
- Control Systems

The most important property of a linear system is the well-known superposition principle.
Assume that the response of a system to a sign@) is y1(¢) and the response to a signal
ux(t) is y2(t). Then, the system is linear if for any constamtandb, the response for the
signalau(t) + bu>(t) can be represented lay1(¢) + by2 ().

The models discussed in the previous chapter, such as the transfer function model, the
zero-pole-gain model, the state space model (2.18), etc., are all linear time-invariant (LTI)
models. Given a mathematical model describing a linear system, we will discuss in this
chapter other properties which can be obtained about the linear system. First, the stability
and direct stability assessment of LTI systems are discussed in Sec. 3.1. The internal stability
property of feedback control systems will also be discussed. Properties of controllability,
observability, Gramians, Kalman decomposition, and norm evaluations of systems are also
coveredin Sec. 3.1. The canonical structural forms of linear control systems and the Kalman
decomposition are presented, and the definitions and evaluations of time moments and
Markov parameters of a linear system are also given.

Equipped with the properties in Sec. 3.1, we will present time domain analysis of
linear systems in Sec. 3.2 and numerical simulation in Sec. 3.3. This enables us to obtain
and sketch the step response, impulse response, and time transient response to any input
signal. This is proved to be an effective and straightforward way to describe the behavior of
the systems. In Sec. 3.4, the root locus of the system is studied which illustrates the behavior
of the system that might be expected from its poles in the compj#ane. In Sec. 3.5, the
frequency domain analysis of a linear system is performed, with different graphical analysis
tools presented, such as the Bode diagrams, Nyquist plots, and Nichols charts. Finally,
Sec. 3.6 is an introduction to various model reduction techniques for linear systems.

51

2007/
page:

52 Chapter 3. Analysis of Linear Control Systems

3.1 Properties of Linear Control Systems
3.1.1 Stability Analysis

Direct stability assessment

When feedback is used, a system could be either stable or unstable. That is, an open-
loop stable system could become unstable or destabilized after feedback control, which is
undesirable. Conversely, an open-loop unstable system could be stable or stabilized, which
is desirable. Therefore, stability is a fundamental requirement for any controlled system.

There are many different stability notions. Here, we first focus on the bounded input—
bounded output (BIBO) stability notion. Then, we discuss the internal stability. BIBO
stability of a system ensures that the output of the system remains bounded over any amount
of time if the input signal is bounded. In other words, if a dynamic system is BIBO stable,
the output signal cannot “blow up” if the input remains finite.

The easiest way to check the stability of a linear continuous system is to check the
pole locations in the complex plane. If there is a pole with a positive real part, the system is
said to be unstable and this pole is referred to as an unstable mode of the system. In other
words, if there is one or more poles on the right half plane (RHP), the system is unstable.
The system is stable if all poles have negative real parts, that is, all poles lie in the left half
plane (LHP).

For poles on the imaginary axis, there are two cases. If a specific pole on the imaginary
axis is simple, that is, multiplicity is only one or it is not repeating, this pole is a critically
stable pole. If a specific pole on the imaginary axis has multiplicity more than one, it is an
unstable pole. Note that BIBO is a stronger stability notion. For example, a pure integrator
is stable but not BIBO stable since, given a bounded input such as a unit step signal, the
output ist, which is unbounded.

The poles of a given LTI model; can be obtained directly witlei g(G) or

pol e(G) . If there is no right-hand-sideplane pole for a continuous syste&d) then
it is stable. IfG is a discrete model, however, the magnitudes of the poles, which can

be evaluated b abs(ei g(G)) or abs(pol e(G)) , are all smaller than 1, and the
systemG is stable. To keep the magnitudes of the poles smaller than 1 means that all the
poles are located within a unit circle.

The zeros of the systeid can be obtained with the functic zer o(G) , and the
poles and zeros af can be sketched with the functic pzmap(G) .

Example 3.1. Suppose the transfer function model of a system is given by
s3 752 4 245 + 24
5%+ 1053 + 3552 + 505 + 24
As illustrated below, the poles can be evaluated and sketched with the statements
>> G=tf([1,7,24,24],[1,10,35,50,24]); eig(Q, pzmap(Q

and it can be found that the poles are located &t—2, —3, —4, all on the left-hand side
of thes-plane, which means thét is stable. This can also be verified by the pole positions
shown in Figure 3.1.

G(s) =

2007/
page:

3.1. Properties of Linear Control Systems 53

Pole-Zero Map Pole-Zero Map
15

X

<unit circle

*O

Imaginary Axis
o
X
X
X
[e]

X
Imaginary Axis
o
[o]

(o]

-05

[
N

. . o, s
-4.5 -4 -35 -3 -2.5 -2 -15 -1 -0.5 0 -1 -0.5 0 0.5 1
Real Axis Real Axis

Figure 3.1. Example3.1. Figure 3.2. Example3.2.

Example 3.2. Suppose that in a discrete-time unity negative feedback system, the plant
model is given by
672 — 0.6z — 0.12

74— 73+ 0.25¢2 + 0.25z — 0.125’

with sampling intervall = 0.1, and the controller is

z—06

z+0.8

The stability of the closed-loop system can be assessed with the following statements:

H(z) =

G.(z) =03

>> nunE[6 -0.6 -0.12]; den=[1 -1 0.25 0.25 -0.125];
H=tf (num den,’ Ts’, 0. 1); % pl ant nodel
z=tf('z',’Ts’,0.1); CGc=0.3*(z-0.6)/(z+0.8); %controller nodel
GG=f eedback(H'Cc, 1); abs(eig(Gy), pzmap(GQH

It can be seen that the magnitudes of the poles are, respectivihi4l1.1644 0.5536,
0.3232 0.3232. Since the magnitudes of the first two poles are greater than 1, which means
that they are outside the unit circle, then the closed-loop system is unstable. The pole-zero
positions in Figure 3.2 also verify the result.

Well-posedness and internal stability

In terms of good control behavior in a feedback control system, the stability criteria given in
the previous sections are not sufficient since only the input-output stability of the system is
considered. In other words, the stability criteria ensures that if an input-output stable system
is driven by a bounded signal, the output is also bounded. However, it does not guarantee
that the other signals inside the system are bounded. If the signals inside the system are not
bounded, the internal physical structures of the system may be damaged.

Consider the general feedback system structure shown in Figure 3.3 which is an
immediate extension of the typical feedback system structure. In Figure 3.3, thedignal
often called the external disturbance and the sigrthe measurement noise.

Before introducing the concept of internal stability, the definition of well-posedness
will be presented first.

2007/
page:

54 Chapter 3. Analysis of Linear Control Systems

Figure 3.3. Linear feedback control structure with disturbances.

Definition 3.1. The feedback system shown in Figure 3.3 is said to be well-posed if all nine
closed-loop transfer functions from the input sign@ls?, »n) to the output signalé&, y, v)
exist.

Well-posedness can be determined by the following theorem.

Theorem 3.1.The system is well-posed if and only if thex33 matrix

1 0 H(s)
—G.(s) 1 0 (3.1)
0 -G@s) 1

is nonsingular, i.e., the determinant of the matrix G (s)G.(s) H (s) does not equal zero.

Definition 3.2. The system shown in Figure 3.3 is said to be internally stable if all nine
closed-loop transfer functions from the inputsd, n) to the internal signalgxs, x2, x3)
are stable.

The nine transfer functions can be described by

X1 1 1 —G(s)H(s) —H(s) r
X2 G.(s) 1 —G.(s)H(s)| |d]. (3.2)
G(s)G:(s) G(s) 1 n

T1+G ()G () H ()

Theorem 3.2. The system is internally stable if and only if the following two conditions
are satisfied:

(1) The transfer function + H(s)G(s)G.(s) has no zeros on Regl > 0.
(2) H(s)G(s)G.(s) has no pole-zero cancellation on [Re> 0.

The first condition is equivalent to saying that the closed-loop system is input-output
stable. So, one can concentrate on the second condition, which is also very easy to check
by using the MATLAB functioni nt st abl e():

function key=i ntstabl e(G Cc, H)
GG=mi nr eal (feedback(GCGc,H)); Go=H*G'Gc; Gol=mi nreal (Go); p=eig(GQ;
z0=ei g(Go); zl=eig(Gol); zz=setdiff(z0,z1); %find the cancell ations
if (GTs>1), %discrete-tinme system

key=any(abs(p)>1); if key==0, key=2*any(abs(zz)>1); end
el se, % continuous system

key=any(real (p)>0); if key==0, key=2*any(real (zz)>0); end
end

2007/
page:

3.1. Properties of Linear Control Systems 55

Its syntax is [V, ¢] =i nt st abl e(G, G., H) . In the function call, the returned vari-
ables are defined as follows:

(1) If the system is internally stabl&, = O is returned and is empty.

(2) If v =1, the system is input-output unstable and the unstable closed-loop poles are
returned in the vectar.

(3) If V = 2, the system is input-output stable, but not internally stable, and the internally
canceled unstable poles are returned.in

Example 3.3. Consider the typical feedback system with
5(s — 1)(s + 2) Guls) s2+3s5+4
s c\§) = s
s34+ 4524+ 35+ 4 (s —D(24+35+2)
The stability of the system can be tested by the following MATLAB statements:

>> s=tf('s’); G5*(s-1)*(s+2)/(s"3+4*s”2+3*s+4);
Ge=(s"2+3*s+4)/ ((s-1)*(s"2+3*s+2)); H=1,;
G a=mi nreal (ss(feedback(Gc*G H))); eig(G a)

G(s) = H(s) =1

The closed-loop poles of the system, after the two pairs of pole-zero cancellation, are
located at—0.2328+ j2.0546 —2.2672+ j0.6879, which are all on the left-hand side of
thes-plane. It can be seen that the closed-loop system is stable. However, by checking the
internal stability from the statement

>> [V, cc] =intstabl e(G Cc, H)

we conclude that the system is not internally stable with the canceled pole-zero having
positive real parts; = p; = 1 returned ircc.

3.1.2 Controllability and Observability Analysis
Controllability of linear systems

Controllability is an important property of a control system and plays a crucial role in many
control problems, such as stabilization of unstable systems by feedback control.

Definition 3.3. The statex; (¢) is said to be controllable if there is an input that in finite
time drives it to any specifieg} (/) from initial statex; (0). The system is said to be fully
controllable if all its states are controllable.

Since the full controllability of the system depends only uponah&nd B matrices
of the state space model, it is simply said th4t B) is controllable.
Construct a transformation matrik in the form

T.=[B,AB,..., A" B], (3.3)

wheren is the order of the system or the number of states. The mAtrix referred to as
the controllability matrix and it can be generated using the MATLAB functiom b() ,

2007/
page:

56 Chapter 3. Analysis of Linear Control Systems

provided in the Control Systems Toolbox, with the syn T.=ctr b(A, B) . The rank
of T, i.e., ranKT,), is called the controllability index of the system and equals the number
of controllable states in the system. If rafflk) = n, the system is fully controllable.

Under a suitably chosen transformation maffixthe state space model can be trans-
formed into the following canonical form, through the staircase transformation;

A; O 0 ~ ~
Ac = |:A\21 ch| s B, = |:§Li| s Cc = [CCs Cc] (34)

The above transformed state space representation is known as the controllability staircase
form. The eigenvalues of; are called the uncontrollable modes. If the system is control-
lable, the uncontrollable subspade will be empty. The simplified transfer function of the
system can be obtained from the controllable subspace

G(s) = Ce(sI —A) " B.+ D. (3.5)

A MATLAB function ct r bf (), provided in the Control Systems Toolbox, can be
used to perform the controllable staircase form transformation. The syntax of this function
is [A, B., C., T.] =ctrbf (A, B, C) ,where @,B,C) is the given state space model
and the returned state space modgl,B.,C.) has a staircase format which separates the
controllable and uncontrollable subspaces. The returned ni&tiix the transformation
matrix.

Example 3.4. Consider a state space model given by

o

0
1
x + 0 u, y=1[1,0,0,O]x.

|
H
oOr O o

=

|
coooo
coopr
oo

-2
One can use the following statements to check the controllability of the system:

>> A=[0,1,0,0; 0,0,-1,0; 0,0,0,1; 0,0,5,0]; B=[0; 1; 0; -2];
C=[1,0,0,0]; D=0; Tc=[B, A*B, A"2*B, A 3*B]; rank(Tc)

Since the rank of, is 4, which equals the order of the system, the system is fully
controllable.

Example 3.5. Let us consider another system model given by

X + u, y=1[1,0,0,Ox.

OSOooo

0 0
2 1
1 0
0 0

2007/
page:

3.1. Properties of Linear Control Systems 57

The controllability can be analyzed using the following MATLAB statements:

>> A=[0,1,0,0; 3,0,0,2; 0,0,0,1; 0,-2,0,0]; B=[0;1;0;0];
C=[1,0,0,0]; Tc=[B, A*B, A"2*B, A 3*B]; rank(Tc)
[Ac, Bc, Cc, T] =ctrbf (A B, O

The controllable index of the system is 3 since the rank.af 3. The controllable
staircase form can be written, in partitioned form, as

.0 0 0 o1 T 0
~0.447270-0.8944 0 0
0 {0 0 -2236 -

3577710 04472 0 -1

A= . C.=[—0.8944 0 04472 0]

and it can be observed that the uncontrollable modess=a0, which is the eigenvalue of
the Az matrix.

Observability of linear systems

Observability is a measure of how well internal states of a system can be inferred from
knowledge of its external inputs and outputs. The observability and controllability of a
system are mathematical duals.

Definition 3.4. A statex;(7) is said to be observable if for any > 0, the initial state

x; (0) can be determined from the time history of the inp@t) and the outpuy(z) in the
interval of [0, 7]. The system is said to be fully observable if all the states in the system
are observable.

Since the observability of the system depends only upomthadC matrices of the
state space model, one can simply say tHatC) is observable.
Construct a transformation matr in the following form:

C

CcA
T,=| . |, (3.6)

CA'n—l

wheren is the order of the systemT, is referred to as the observability matrix, which
can be generated using the MATLAB functiobsv () , provided in the Control Systems
Toolbox by T,=obsv(A, C) . rankT,) is called the observability index of the system
or the number of observable states. If réfiy = n, the system is then fully observable.

With a suitable transformation matrig,, the state space model can be transformed
into the following canonical form:

A; An
A: 0 - B:
5 3 oe-|

) &)

} ., C,=10,C,], (3.7)

(4

2007/
page:

e
58 Chapter 3. Analysis of Linear Control Systems
known as the observability staircase form. The eigenvalugs afe called the unobservable
modes. If the system is fully observable, the unobservable subgdgas#él be empty. The
transfer function of the system can be simply expressed by
G(s) = C,(sI — A,) 1B, + D. (3.8)

By comparing the controllability problem to the observability problem, it is not dif-
ficult to see that these problems are dual. That is, the observability problem of the sys-
tem (AT, CT, BT, D") is exactly the same as the controllability problem of the system
(A, B,C, D).

A MATLAB function obsvf () in the Control Systems Toolbox can be used to
perform the staircase form transformation. The syntax is

[Ao, By, C,, T,] =0bsvf (A, B, C)
and the arguments are similar to those ofd¢he bf () function.
Example 3.6. Consider again the uncontrollable system shown in Example 3.5. The ob-
servability index and the staircase form can be obtained by
>> rank([C CA CA2 CA3]) %or rank(obsv(A Q)
[Ao, Bo, Co, T, K] =obsvf (A B, C); Ao, Bo, Co
In the partitioned matrix form, the staircase form can be written as
0:1 00 0
0i0-20 0 ‘
A, = 02 0 3| B,=| | C=[0i00 1].
0:0 1 0 0

The unobservable mode issat= 0. In fact, it is not hard to verify that there are two

eigenvalues at = 0, with one uncontrollable and the other unobservable.
Controllability and observability Gramians
The controllability and observability Gramians are very important in the balanced realization
of a transfer function model and the related model reduction method [30]. In terms of
controllability and observability, one may ask how controllable and observable the system
is. The controllability and observability Gramians can be used to address this concern.
Definition 3.5. The controllability and observability Gramians of the systetn B, C, D)
are defined, respectively, as
* T AT: AT AT '
W, =/ eBB et 'di, W, =/ et 'cTeetdr. (3.9)
0 0

From the above definitior¥¥, and W, are symmetric positive semidefinite matrices

satisfying, respectively, the Lyapunov equations
AW, + W.AT = —-BB", ATW,+W,A=-C"C, (3.10)
e

2007/
page:

3.1. Properties of Linear Control Systems 59

where W, and W, can be easily solved by calling the corresponding Lyapunov equation
solvers W=l yap(A, B*B’) and W,=l yap(A’,C" *C) .
Moreover, the following properties for the Gramians hold:
(1) W, is positive definite if and only ifA, B) is controllable.
(2) W, is positive definite if and only ifA, C) is observable.

The singular values div,, which can be obtained by the standard MATLAB built-in
functionsvd() , characterize the contribution of the input signal to each of the states. The
larger theith singular value ofW,, the more the input contributes to tla state. The
singular values oW, on the other hand, corresponds to the contribution of each state to
the output of the system.

The realization of a transfer function model in state space form is not unique, as
discussed in the previous chapter. A specific realization may be more controllable but less
observable, or more observable but less controllable. A unique realiditiea W, = W,
known as the balanced realization, is clearly more desirable in some applications.

Inthe balanced realization, by dropping off the smaller singular values of the common
W, a reduced-order model can be obtained. This idea is exactly the balanced realization
model reduction technique which will be discussed in more details in Sec. 3.6.

The controllability and observability Gramians can also be computed usigg #rg()
function provided in the Control Systems Toolbox. The syntax of the function is

W=gran(G, type) .

wheregG is the state space model object. When the variallpe equals’ ¢’ , the con-
trollability Gramian is returned ifW. If t ype is’ o’ , the observability Gramian will be
returned.

3.1.3 Kalman Decomposition of Linear Systems

The two properties, controllability and observability, discussed previously imply that there
are four possible modes of a linear system: controllable and observable, uncontrollable and
observable, controllable and unobservable, and uncontrollable and unobservable. Given a
linear system, how to decompose it, via a similarity transformation, into these four modes
is the major topic of this section. This decomposition is called the Kalman decomposition.

It is useful in understanding the inherent inner structure of a linear system.

Kalman decomposition

Kalman pointed out that any state space model can be decomposed into the canonical form

z(t) =

y@) =

7777777777777777777777777777777

7777777777777777777777777777777

7777777777777777777777777777777

e (3.11)

2007!
paget

60 Chapter 3. Analysis of Linear Control Systems

input controllable output
observable

controllable uncontrollable
unobservable observable

uncontrollable
unobservable

Figure 3.4. lllustration of Kalman decomposition.

where the subspac(eig,;,, 0,0 is uncontrolIabIe/unobservabIeXg,a, 0, @,g\) is control-
lable/unobservablg(A. 5, B. 5, 0) is observable/uncontrollable, aid. ,, B:,, Cc) iS
controllable/observable. This is the so-called Kalman decomposition form. It can be illus-
trated by the block diagram shown in Figure 3.4.

Theorem 3.3. The properties such as controllability and observability cannot be changed
through any similarity transformation.

A MATLAB function kal mdec() is written which can be used to perform the
Kalman decomposition of a given system:

function [Gk, T, K] =kal ndec(G
G=ss(G; A=G a; B=G b; CGc; [Ac,Bc,Cc, Tc, Kc] =ctrbf (A B,C;
nc=rank(ctrb(A B), eps*100); n=length(A); ic=n-nc+l:n;
[Aol, Bol, Col, Tol, Kol] =obsvf (Ac(ic,ic),Bc(ic),Cc(ic));
if nc<n, inc=1:n-nc;

[Ao2, Bo2, Co2, To2, Ko2] =obsvf (Ac(i nc,inc), Bc(inc), Cc(inc));
end
[ml, n1] =si ze(Tol); [nR,n2]=size(To2); To=bl kdi ag(To2, Tol);
T=To*Tc; eO=eps*100; nl=rank(obsv(Ac(ic,ic),Cc(ic)),e0);
n2=r ank(obsv(Ac(inc,inc), Cc(inc)), e0);
K=[zeros(1, n-nc-n2), ones(1,n2), 2*ones(1,nc-nl), 3*ones(1,nl)];
AK=T*A*inv(T); Bk=T*B; Ck=C*inv(T); Gk=ss(Ak, Bk, Ck, Gd);

The syntax of the function i [G, Ty, k] =kal ndec(G) . The returned variable
Gy is the Kalman decomposition of the syst&m The variableT}, is the transformation
matrix, while the vectok returns a vector which holds the flags for the modes of each
state. If the flag is zero, the corresponding state is uncontrollable/unobservable. The flag
values of 1, 2, 3 correspond to the uncontrollable/observable, controllable/unobservable,
and controllable/observable modes, respectively.

Example 3.7. Consider a linear system model

1 0 0 0 O
-1 0 0 0 O
o -2 1 0 0
O 0 -2 0o ol*™" u, y=1[4,50,0,0,6] x.
0 1

0

0O 0 -3
0O 0O 0 -3

|
cocoooco |/
OwooNR

2007!
paget

3.1. Properties of Linear Control Systems 61

Its Kalman decomposition can be performed using the following MATLAB scripts:

>> A=[-1,1,0,0,0,0; 0,-1,0,0,0,0; 0,0,-2,1,0,0;
0,0,0,-2,0,0; 0,0,0,0,-3,1; 0,0,0,0,0,-3];
B=[1; 2; 3; 0; 4; 0]; C5[4,5,0,6,0,0]; G=ss(A B, C0);
[&k, Tk, K] =kal ndec(G,

which yield the following familiar mathematical format:

-3 0 0 o : 0 0 0

77

o : =2 0 o : 0 0 0

777

—0.0832 —0.9965 —2.007-0.08288; 0 0 . —-3.3223 "
—0.9965 00832 :-0.08288 —2.993; O 0 —3.7366

777

oo T 0 i-1.488 —0.6098 0.4685
o i o | o0 0 {03902 —0.5122 2.1864

=[0 {6 i O 0: 0 64031]x.

Contraryto (3.11), the partitioned state vector here isdefinefias[x! ., xT xT_ xT 1T,

c,0’ " ¢c,0° "c,0° " c,0

Minimum realization problems revisited

If all the initial states are zero, the output signél) of a linear continuous state space model
can be simplified to

o
y) = Cc,o/ eA("O(t_r)Bc,ou(T)dTv (3-12)
0

which is exactly the solution of the controllable/observable subspace. Therefore, in the
Kalman decomposition form, the subspade ,, B, ,, C.) is referred to as the minimum
realization of the original system. That is, the minimum realized model is always fully
controllable and observable. For transfer function models, the “minimum realized model”
is the one in which all the pole-zero pairs have the same value canceled out.
The procedures to obtain the minimum realization of a linear system are summarized
in the following:
1. Find a similarity transformation matrik~* to separate the controllable and uncon-
trollable parts:
-1 Az 0
A, =T AT, = [221 Zc] ,
0

B.=T 'B= [§] , C.=CT. = [65 60];
c

(3.13)

2. Find atransformation matr@ such that the controllable subsyst(aﬁ}, EC, 66) can
be further decomposed to find the observable part:

(3.14)

2007!
paget

62 Chapter 3. Analysis of Linear Control Systems

3. Construct a matrix

0 0 Tfl

f—l _ |:In—rank{;fc} AO]
o
Then, define the similarity transformation matix ! = To_ch_l to transform the
original system into the minimum realized fol. ,, B, ,, C.,). Under the similar-
ity transformation matrix’, the whole system can be transformed into the canonical
form as
Az 0 0
I z+| Bes | u, y=I[C:0C.,lz+Du. (3.15)
21

o Atz B
0 A

Example 3.8. Revisit the state space model in Example 2.23. The above three steps can be
implemented using the following MATLAB scripts to find the minimum realized model

>> A=[-5,8,0,0; -4,7,0,0; 0,0,0,4; 0,0,-2,6]; B=[4; -2; 2; 1];
C[2,-2,-2,2]; D=0; [Ac,Bc,Cc, Tc]=ctrbf(A B,O;
[Ao, Bo, Co, To] =obsvf (Ac, Bc, Cc); A r=Ao(3:4,3:4); B r=Bo(3:4);
Cr=Co(3:4); Gr=zpk(ss(Ar,Br,Cr,D)

The minimum realized model is obtained @g,(s) = 10(s — 2.6)/[(s — 2)(s + 1)]. It
can be seen from the above that we did not find the canonical form as in (3.15), since the
realized model has already been obtained and is the same as that given in Example 2.23.

3.1.4 Time Moments and Markov Parameters

Assume that the original transfer functi6i(s) is described by

bisk 4+ bos* 1+ bys + by

G(s) = :
(s) aps" +azs" 1+ -+ aps + aps1

n, (3.16)

where for simplicity, it is assumed that,; = 1.

Consider the initial and final value properties of the Laplace transformation. Itis seen
that the Taylor series, in particular the expansion arauad0 ands = oo, are useful in
describing the steady-state response and initial transient of the system behavior.

Expansion around s = O: the time moments

The Taylor series expansion@f(s) arounds = 0, or the Maclaurin series, can be written as

o
G(s) = Zcisi =co+c15 +cos? 4. (3.17)
i=0

If e=57 is expanded around = 0 in the Laplace transformation of the impulse response
functiong(z), G(s) can be written as

G(s)=/oog(t)e—”dz=/ g(t)z (z) 'dr _ZﬂM i (3.18)
0 0 :

i=0

2007!
paget

S
3.1. Properties of Linear Control Systems 63
whereM; = [OOO t'g(t)dr is referred to as théth time moment of the impulse response
functiong(z). From (3.17),
—1)¢
Cc = (N) M,'.
i!
Assume that the state space model is giveidyB, C, D). The transfer function of
the system can be equivalently obtained from
G(s) =C(sI — A~ 'B+ D. (3.19)
The time moments; of the system can then be evaluated from
1d'G .
e Y el N I R (3.20)
ilods' | o
A MATLAB function t i momnt () can be used to compute the time moments of a
given LTI model objectG:
function c=ti mont (G k)
G=ss(G; C=Grc; B=Gb; iA=inv(G a); iAl=iA
c=zeros(1,k); for i=1:k, c(i)=-CriAl*B; i Al=i A*i Al; end
The syntax of the functioni ¢=t i mont (G, k) , whereG is the LTI object model
andk is the number of time moments to be evaluated, and the returned varialdevector
containing the firsk time moments.
Example 3.9. Consider a fourth-order model
6s) = 53 4 752 + 245 + 24
VT 1103+ 352 + 505 + 24
The first seven time moments of the system can be obtained from the following MATLAB
scripts:
>> G=tf([1,7,24,24],[1, 10, 35,50, 24]);
c=timont (G 7); [n,d]=rat(c)
which indicates tha& (s) can be approximated by the Taylor series expansion
13 157, 609, 899, 128, 3864 7
Gis)=1— —s+ —s°— — — 5 = — — .
) 12° T 128 " 571 Teed’ 1z’ Taert T
Expansion around s = oo: the Markov parameters
The G(s) given in (3.16) can be expanded as a power seriegnfik.,
%) 1 i
G(s) = |- .
(=D 6 <s> : (3.21)
i=n—k
S

2007!
paget

64 Chapter 3. Analysis of Linear Control Systems

where the coefficients; are referred to as the Markov parameters. Alternatively, it is
equivalent to performing the Taylor series expansiorGgf) arounds = oo. For state
space modelA, B, C, D), the Markov parametei can be evaluated from

S5o=CB+D, ands; =CA'B, i=1,2,.... (3.22)

Recall the properties of the Laplace transformation. It is easily seen that the time
moments determine the steady-state time response of the system, while the Markov param-
eters determine the transient responses. In frequency response terms, the time moments
determine the response over the low- and mid-frequency ranges, while Markov parameters
determine the response over the mid- and high-frequency ranges.

A MATLAB function mar kovp() can be used to evaluate the Markov parameters
of a given transfer functiow (s):

functi on nrmar kovp(G k)
G=ss(G; A=G a; B=G b; C=Gc; D=G d; mr[C*B+D, zeros(1, k-1)];
Al=A; for i=1:k-1, n(i+1)=C*Al*B; Al=A*Al; end

The syntax of the function i m=mar kovp(G, k) , whereG is an LTI object and
k is the number of Markov parameters to be evaluated. The returned vatiabla vector
containing the firsk Markov parameters.

Example 3.10. For the system in Example 3.9, the first seven Markov parameters can be
evaluated using the following MATLAB statement:

>> Memar kovp(G, 7)
such that the Taylor series expansion abost co can be obtained as

Gioyo1_ 3,19 111 571 2703 12139 11
= S S2 S3 S4 S5 56 © S7 '

3.1.5 Norm Measures of Signals and Systems

Robustness of a feedback control system is very important in control engineering practice.

In actual control problems, there are always disturbances due to the environment and un-
certainties due to the imperfect model used in the controller design. Clearly, it is desirable
for the controlled system to have certain robustness against these disturbances and uncer-
tainties. To assess the robustness, first of all, a proper measure is needed. Norm measures
to signals and systems are introduced, which can be regarded as the basis of robust control.

Norm measures of signals

The size of a signal(¢) is usually measured in it§ ,-norm defined as

00 1/p
||u(r>||p:<f |u<t>|"dr) , (3.23)

2007!
paget

S
3.1. Properties of Linear Control Systems 65
wherep is a positive integer. The following norms are commonly used:
1. TheLy-norm: [lu(t)ll1 = (5, lu(t)|dr.
2. TheLz-norm, the measure of signal poweu(t)[l2 = /[, u?(t)dr.
3. TheL-norm, the least upper bound pf(#)|: ||u(t)|lcc = SUP |u(?)].
Norm measures of systems
The size of a system in a transfer function form is usually measured Bitsnd -
norms.
1. The#t>-norm is defined by
1 e,
N P L L (3.24)
27 —joo
The #f2-norm is in fact a measure of the square root of the integral squared value of
the output when the input is an impulse signal. In stochastic system terminology, the
Jtr-norm is the root mean square value of the output signal when the input is white
noise.
2. TheJH-norm is defined by
Iy (@)ll2
1G($)lloo = SUP ==, (3.25)
a0 lu(@®)|l2
whereu(t) andy(¢) are the input and output of the system, respectively. For stable
systems, theé#,,-norm of the system can be computed from
G ($)lloe = sUPIG (jw)I. (3.26)
w
It is readily seen that th&¢..-norm is in fact the peak value of the magnitude of the
frequency response.
The symbolst and # are due to Lebesgue and Hardy, respectively.
Properties of £- and #f-norms
Theorem 3.4.The following properties of norms are given without proofs:
Lolly®lz2 = IGS) oo llu(@®) 2.
2. lyDlloo = 1G () ll2]1u () lloo-
3. 1G1($)G2()loo = 1G1() e 1G2(8) 00
Fe2-norm and #,.-norm evaluations
If the system model is given by an LTI obje6t, the ||G(s)|2 and| G (s)|lc NOorms of the
system can be evaluated, respectively, from the MATLAB function « nor n{ G) and
nor m(G, i nf) . The norms of discrete-time systems can also be obtained with the same
functions.
S

2007!
paget

S
66 Chapter 3. Analysis of Linear Control Systems
Example 3.11. Consider the discrete-time system
-22 -07 15 -1 6 9
02 -63 6 -15 4 6
x[(k+DT]= 06 -09 -2 —05 x(kT) + 4 4 u(kT),
14 -01 -1 -35 8 4
ykT)=[1 2 3 4x(kT).
The #>- and #..- norms of the discrete-time system can be evaluated directly with the
following statements:
>> A=[-2.2,-0.7,1.5,-1; 0.2,-6.3,6,-1.5;
0.6,-0.9,-2,-0.5; 1.4,-0.1,-1,-3.5];
B=[6,9; 4,6; 4,4; 8,4]; C[1 2 3 4]; Gss(ABC[0 0]);
norm(G 2), norm G inf)
and it can be found thatG (z)|]2 = 32.8586 and |G (z)||sc = 28.4423.
3.2 Time Domain Analysis of Linear Systems
We remark that the time domain analytical solution to a linear system is always possible
given a typical input signal. For general input signals, however, the time domain analysis
has to be performed numerically.
3.2.1 Analytical Solutions to Continuous Time Responses
State space method
Consider an LTI system with its-dimensional state space model
x(t) = Ax(t) + Bu(t) e . _
{ y(t) = Cx(t) + Du(r) with initial conditionx (0) = xg. (3.27)
It has been stated in Chapter 2 that the time domain solution of (3.27) is
t
x() = e'xg +/ A=Y Bu(r)dr, (3.28)
0
where € is called the state transition matrix.
It can be seen from (3.28) that the most difficult part in the solution is the evaluation
of the integral. If a certain transformation is introduced to removeBttierm, the solution
to the original problem can be significantly simplified.
Assume that the input signal is a unit step signal; then an extraxstat€&) = u(r)
can be introduced. Clearly,+1(z) = 0. Thus, the state space equation can be rewritten as
x(t) A B x(1)
Rt = [SR] . 3.29
[xn+1(l)] [0 0} [xn+1(t)} (3.29)
S

2007!
paget

3.2. Time Domain Analysis of Linear Systems 67

So, the original state space equation can be converted into an autonomous system

{ X(1) = A% (1), (3.30)

y(1) =Cx(),

whereX" (1) = [xT(1), x,41(t)] andX" (0) = [xT(0), 1]. The analytical solution can be
easily found as _
X(r) = e''X(0). (3.31)

A class of commonly used input signals, which can be converted into an autonomous
system, is defined as

u(t) = ug(t) + uz(t) = Y it + €t [dz cosdat) + da sin(d4t)]. (3.32)
i=0

One may introduce some extra states, called augmented states, sugh,that
el coqdat), xpi2 = €1 SiN(dat), Xpi3 = u1(t), ..., Xpoms3 = u(lm_l)(t). It can be

shown that the augmented state space equations under such an input signal can be written as

_AidzBd:aBiBO"'o B x(t) T _x(o)_

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Xn4+1(7) 1
Xng2(t) 0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

17770l 5= 30 | F0=| c |, (333
0..-0 Xn+4(t) Cc1

1
Il

0 0 0 | Xn+m+3() | cmm! |

whose analytical solution is _
X(r) = eV'%(0). (3.34)

A MATLAB function ss_augnent () is written to establish the augmented state
space model for the typical input signal:

function [Ga, Xa] =ss_augnent (G cc, dd, X)
G=ss(GQ; Aa=G a; Ca=G c; Xa=X; Ba=G b; D=G d;
if (length(dd)>0 & sun(abs(dd))>1le-5),
if (abs(dd(4))>le-5),
Aa=[Aa dd(2)*Ba, dd(3)*Ba; ...
zeros(2,length(Aa)), [dd(1),-dd(4); dd(4),dd(1)]];
Ca=[Ca dd(2)*D dd(3)*D]; Xa=[Xa; 1; 0]; Ba=[Ba; 0; 0];
el se,
Aa=[Aa dd(2)*B; zeros(1,length(Aa)) dd(1)];
Ca=[Ca dd(2)*D]; Xa=[Xa; 1]; Ba=[B;0];
end, end
if (length(cc)>0 & sun{abs(cc))>1e-5), M=l ength(cc);
Aa=[Aa Ba zeros(length(Aa), M1); zeros(M1,I|ength(Aa)+1) ...
eye(M1); zeros(1,length(Aa)+M];
Ca=[Ca D zeros(1,M1)]; Xa=[Xa; cc(1)]; ii=1;
for i=2:M ii=ii*i; Xa(length(Aa)+i)=cc(i)*ii;
end, end
Ga=ss(Aa, zeros(size(Ca')),Ca,D);

2007!
paget

68 Chapter 3. Analysis of Linear Control Systems

The syntax of the function i [G, Xo] =ss_augnent (G, ¢, d, xp) , where the
vectorse = [co, c1, ..., ¢l @andd = [d1, do, d3, d4] are used to describe the input function
u(t) in (3.32). The argument& andxg are the model object and initial state vector,
respectively, while the returned variablésandxy are, respectively, the augmented state-
space model and its initial vector. Once the augmented system is established, the analytical
solutions to the system can be easily obtained using the Symbolic Toolbox.

Example 3.12. Assume that a state space model is given by

-19 -16 —-16 -19

1
21 16 17 19 0
1
2

x() = u(t),

20 17 16 20|*¥OF
20 16 -16 -19
y()=12,1,0,0] x(¢)

with initial statesx'(0) = [0,1,1,2]. If the input signal is defined as(t) = 2 +
2e¥ sin(2r), the functionss_augnent () can be used to construct the augmented state
space model:

>> cc=[2]; dd=[-3,0,2,2]; x0=[0; 1; 1; 2];
A=[-19,-16,-16,-19; 21,16,17,19; 20,17, 16, 20;
-20,-16,-16,-19];
B=[1; 0; 1; 2]; C[2 1 0 0]; D=0; G=ss(A,B,CD);
[Ga, xx0] =ss_augment (G cc, dd, x0); Ga.a, xx0’

and the augmented model is

[—19 16 —16 —19; 0
21 16 17 19} 0
, 20 17 16 20 O
X(t)=| -20 —16 —16 —19; 0

,,,

X(1), ¥(0) =

,,,

NORNRFRFPO

The following statements can be used to find the analytical solution of the system:
>> synms t; y=Ga.c*expnm(Ga. a*t) *xxO0;
The output signal of the system is obtained as
127 119 135 77 :
y(t) = =54+ —re ' +57e ¥+ ——e 442 — e ¥ cos 2+ —e ¥ sin 2.
4 8 8 4
Laplace transform method

Let us consider the equivalent transfer function model:

b1s™ + bos™ L+ -+ by + byt

n n—1 n—2 ! (335)
s+ ais + aszs + -4 a,—15 +a,

G(s) =

2007!
paget

3.2. Time Domain Analysis of Linear Systems 69

For any input signal (z) with U (s) as its Laplace transform, the output signal can be obtained
from Y(s) = G(s)U(s). Thus, in order to find(¢), an inverse Laplace transformation is
needed such that(r) = .Z~1[¥(s)]. The Symbolic Toolbox of MATLAB can be used to
evaluate the Laplace transform of given input signals, and the inverse Laplace transform
function can be used to evaluate the analytical solution of the system.

Example 3.13. Assume that

s34+ 752+ 35+ 4
sS4+ T7s3 4+ 17524+ 175 + 6

is the transfer function to be analyzed, and the input signal is giverrby= 2+2e~3 sin 2.
The analytical solution to the output signal can be evaluated using the statements

G(s) =

>> syns s t;
G=(s"3+7*s" 2+3*s+4)/ (S" 4+7*s" 3+17*s” 2+17*s+6) ;
u=2+2*exp(-3*t)*sin(2*t); W=l apl ace(u);
y=i | apl ace(G*U)

and the analytical solution can be written as

4 31 5 23 21 _, 18 , 103 5 .
)==-——e > ——e “cos2 6——t)e'——e“ ——e ¥sinz.
YW=3"13 20 + 4 5 20° ®

3.2.2 Analytical Solutions to Discrete-Time Responses

Similar to thes-domain approach to the analytical solution for continuous systems, the Z
transform can be used for discrete systems to evaluate the response to an inpuf &pgnal
Then, the analytical solution of the systdii(z) can be obtained by solving the inverse Z
transform such that(n) = 2~ 1[H (z)U (2)].

Example 3.14. Assume that
(z—1/3)
(z—1/2)(z —1/4)(z + 1/5)

is a discrete-time transfer function of the system. Also assume that the input signal is a unit
step signal. The analytical solution can be obtained using the statements

G(z) =

>> syns z; u=synm(1); U=ztrans(syn(u));
H=(z-1/3)/(z-1/2)/(z-1/4)/ (z+1/5);
y=i ztrans(H*U)

and the analytical solution can be written as

20 _80(1 "800 (1)" 40 (1)"
YW =57"81\1 567\ 5 21\2) -

If the sampling interval is given, the analytical solution can be rewritten as

(1) 40 _ 80 1"T+800 1\ a0 1\
Y =57"81\a 567\ 5 21\2) -

2007/
page?

70 Chapter 3. Analysis of Linear Control Systems

3.3 Numerical Simulation of Linear Systems

The analytical solutions to linear systems were studied in the previous section. In real
applications, one may prefer to have numerical solutions, and based on the results, the time
domain responses can be plotted. Graphical visualization of system responses is usually
more straightforward and informative for control engineers.

In this section, the numerical solution techniques to linear systems are presented, with
a focus on some common responses such as step responses, impulse responses, and more
generally, the time domain responses to arbitrary input signals.

3.3.1 Step Responses of Linear Systems

Step input signals and their responses are commonly used in control systems analysis and
design. The typical step response of a second-order system is studied and specifications are
given. Then, MATLAB-based evaluation of step responses are given.

Second-order system analysis

In classical control courses, second-order systems are often used as an example, where many
properties of the linear control systems are illustrated.

Theorem 3.5.The closed-loop unit step response of a second order system

2
n

52 4 2Cwpys + w?

G(s) = @

can be obtained easily by considering the following four cases:
1. When¢ = 0, the step responseyst) = 1 — coqw,1).
2. When O< ¢ < 1, the step response is

1 .
(i) =1- efﬁw,,t\/:z sin(wgt + 6),

wheref = tam /1 — ¢2/¢ andwg = w,y/1 — ¢2.
3. When¢ = 1, the step responseys$r) = 1 — (1 + w,1)e®!,
4. When¢ > 1, the step response is

wherex, = —¢ — /52_1,;@:_{_,_@.

Example 3.15. With the use of the powerful Symbolic Toolbox, the analytical solutions to
a second-order system can be easily derived:

>> syms z S, Syns wn positive
y=il apl ace(wn™ 2/ (s*(s” 2+2*z*wn*s+wn" 2)))

2007/
paget

3.3. Numerical Simulation of Linear Systems 71

18}
16} =01
14}
12}

0.8 =1
0.6
0.4r

0.2 <=5

c 2 4 6 8 10 1 0 o
(a) step response (b) three-dimensional representation

Figure 3.5. Step responses of second-order systems.

and it follows immediately from the results, with obvious simplifications, that

(3.36)

y(1) =1 — w,eton' [COSh(wdf) L8 smh(wd;)] |

wp wq

wherewy; = +/¢2 — lw,. It can be seen that the format of the new results is much more
concise than that givenin Theorem 3.5 if complex variables are allowed. The only restriction
in (3.36) is that # 1; otherwise zero may be used in the denominator. One may avoid this
particular case by defining= 1+ ¢, wheree is a very small number, and the problem can
be solved successfully.

The step response of the system can be evaluated easily as shown in Figure 3.5(a),
and the three-dimensional version is shown in Figure 3.5(b).

The following MATLAB commands show the step responses:

>> wn=1; yy=[]; t=0:.1:12; zet=[0:0.1:0.9, l+eps,2,3,5];
for z=zet
wd=sqgrt (z”2-1)*wn;
y=1l-wn*exp(-z*wn*t).*[cosh(wd*t)/wn+z*si nh(wd*t)/ wd] ;
yy=lyy: yI;
end
plot(t,yy), figure, surf(t, zet,yy)

It can be seen that whan = 0, the output is an undamped oscillation. Wheis
smaller than 1, there exists a damped oscillation and, with an increase in the valukef
oscillation tends to be less and the overshoot becomes smaller. When the valseqtial
to or greater than 1, there exists no oscillation in the output signal. With the increment of the
valueg, it may take longer to approach, but will never exactly reach the desired steady-state
value. The behavior of the output signal versus the changes ofyalebe better observed
on the three-dimensional surface in Figure 3.5(b).

72

2007/
page?

Chapter 3. Analysis of Linear Control Systems

y(t)
yMm A

y(00) —
90%y/(c0)

10%y(c) ¢
1 t ts

Figure 3.6. Typical step response specifications.

Quantitative specifications in step responses

From the typical step response curves, several useful quantitative specifications are
defined and shown in Figure 3.6. Details of these commonly used specifications are sum-
marized below:

1. The steady-state valug(co): The steady-state value of the system under the step

response is the output when— oco. For a transfer function model, using the final
value property of the Laplace transformation, the steady-state value of the system can
be easily obtained from

y(00) = IimosG(s)} =G0 = b—’". (3.37)
B S

an
If the system is given with state space mo@e| B, C, D), the steady-state value of
the system can be obtained from

: 1
y(00) = lim sG(s)= = —CA™B + D. (3.38)
s—0 s
The steady-state value of the systéhtan be evaluated using the function
K=dcgai n(G)

provided in the Control Systems Toolbox.

. The rise time,: The rise time is defined as = > — 11 with o andzq, respectively,

the time wheny(r) reaches 90% and 10% of its steady-state value.

. The settling time,: When the output signal(z) enters and is kept within the range

of [y(c0) — Ay, y(o0) + Ay], the moment (z) enters the range is referred to as the
settling time. According to different definitiongyy can be defined as either 2% or
5% of the steady-state valy€oco).

. The overshool , and the peak valugy,: M, is also known as the percent overshoot

which is defined as
_ M~ y(00)

x 100% (3.39)
y(00)

p

2007/
paget

3.3. Numerical Simulation of Linear Systems 73

Step Response

***** System: G
Peak amplitude: 1.16
= — :| Overshoot (%): 16.3 — . — . = = -—_ —
- - | Attime (sec): 3.64 ® - ===

System: G Settling Time (sec): 8.08
Rise Time (sec): 1.64
1

=
IS

=
N

N

o
o

Swstems L
I

Amplitude

Characteristics Fazk Response

Settling Time

o
>

Grid
Hormalize
v Full View

o
IS

Rize Time

Steady State

o
N

|

|

!

|

!

|
0 2 4 6 8 10 12
Time (sec)

o

Properties. ..

(a) pop up menu (b) with specifications
Figure 3.7. Step response with specifications.

In control systems design, one often expects to design a system which has short rise
time and settling time, with a small percentage of overshoot or no overshoot.

Example 3.16. Consider the second-order system wijtk= 0.5 andw,, = 1 rad./sec. The
st ep() function, which will be described later, provided in the Control Systems Toolbox
can be used directly to draw the step response curve

>> z=0.5; wn=1; Gtf(wn"2,[1,2*z*wn,wn"2]); step(Q.

Right click on the window that appears to see the pop-up menu shown in Figure 3.7(a). One
may select different specifications from the menu, and the corresponding specification will
be superimposed on the step response curve, as shown in Figure 3.7(b).

Step response evaluations with MATLAB

The step response of linear systems can be evaluated and drawn using the &inefi¢i ,
and the function can be called with a variety of syntaxes:

st ep(G) % automatic draw of step response curves
[y, t] =step(G) % evaluate the responses, but not drawn
[y t] =step(G,ty) % final simulation time s setting
y=step(G, t) % simulation on user defined time vector
[y, t, x] =step(G) % statex is returned, ifG is state space

In the function callG is an LTI model object, which can be either a transfer function,
state space, or pole-zero-gain model. This function applies to continuous systems and
discrete-time systems. It can also be used for SISO and MIMO systems and systems with or
without time delays. Thus the function provides a unified way of finding the step response
of linear systems. If no argument is returned in the function call, the step response will be
drawn automatically. If the response data are returned as output arguments, there will be
no response drawn. The data can be drawn later witpltlee () function. However, the
plain curves drawn bpl ot () may lose many useful properties, such as the pop-up menu
shown in Figure 3.7(a).

2007,
page

74 Chapter 3. Analysis of Linear Control Systems

Step Response Step Response

25 r
System: G
Time (sec): 6.04

2 Amplitude: 2.49 \/W

Amplitude
-
0
Amplitude

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (sec) Time (sec)

(a) automatically drawn step response (b) get the response information

Figure 3.8. Step response of a delayed continuous system.

The step response of more than one system model, for inst@acé€,2, andGs, can
be drawn under the same coordinate if the function is called as follows:

step(Gy, ' -', G2, -.0,G3,":1r’)

where the options are the same as the conventnat () function options. Inthe curves,
the step respongg; is shown by the solid line, fot 2 by the dashed-dotted blue lines, and
for G3 by the red dotted lines.

Example 3.17. If a continuous model
10s + 20 o
1054 +2353 426524235410

is a transfer function which contains a time delay, the following statements can be used to
enter the system model and draw the step response as shown in Figure 3.8(a).

>> G=tf([10 20],[10 23 26 23 10],'ioDelay’,1); % nodel input
step(G 30); %step response with terminate tine of 30 sec.

G(s)=

On the step response drawn, if one left clicks a point on the curve, the magnitude and
time will be displayed on the response curve, as shown in Figure 3.8(b). The overshoot,
settling time, and other specifications can be easily displayed on the curve, using the method
shown previously. One may easily investigate the response of the system with these flexible
auxiliary facilities.

Example 3.18. If a system is given by

1
G = €%,
©)= 2 omr1
with the sampling interval of" = 0.01, 0.1, 0.5, 1.2 seconds, respectively, the following
statements can be used to obtain the discrete-time models for different sampling intervals,
and the step responses are obtained as shown in Figure 3.9. It can be seen that the original
system information may be lost if the sampling interval is selected to be too large.

2007/
page

S
3.3. Numerical Simulation of Linear Systems 75
Step Response
1.8
16
14
12f
?D.S
0.6
04
0.2
0
0
Time (sec)
Figure 3.9. Step response comparisons of discretized systems.
>> G=tf(1,[1 0.2 1],’ioDelay’,1); Gl=c2d(G 0.01,’ zoh');
&@=c2d(G 0.1); G3=c2d(G 0.5); HA=c2d(G 1l.2);
step(G'-',&,’--",G&,":",A,"-.",10)
The discrete-time models thus obtained are, respectively,
4.997x107°744.993x 10°° 0.004963 +0.00493
G1(2) = ~——5 ¢ T Gao) = 5 0
74 —1.99& + 0.998 z¢—1.97z 4+ 0.9802
0.118% +0.1145 _, 0.0196%2 4 0.7277 + 0.3865
G3(2) = 5, Ga(z) = 3 5
z¢ —1.672 +0.9048 z° —0.6527~ + 0.786&

It should be noted that the step response curve of the discrete-time system is automat-
ically drawn in the stairs format. One can still read the response data and specifications by
clicking the points on the curves.

Example 3.19. Consider the system given in Example 2.4, which has two inputs and two
outputs. The following statements can be used and the step response of the multivariable
system obtained as shown in Figure 3.10.
>> gl1=tf(0.1134,[1.78 4.48 1], 'ioDelay’',0.72);

gl2=tf(0.924,[2.07 1]);

g21=tf(0.3378,[0.361 1.09 1],'ioDelay’,0.3);

g22=tf(-0.318,[2.93 1], ioDelay’', 1.29);

G=[gl11, 912; g21, g22]; step(Q

The first column of the curves contain the outputs of the system when the first channel
of inputs acts alone. The curves in the second column are the step response of the system,
if the second channel of input acts alone. From the step response curves, the interactions
between the input output pairs can easily be found.

3.3.2 Impulse Responses of Linear Systems
The impulse responses of the system can be drawn easily withniel se() function
provided in the Control Systems Toolbox, and the syntaxes of the function are exactly the
same as thet ep() function given earlier.
S

2007/
page?

76 Chapter 3. Analysis of Linear Control Systems

Step Response
From: In(1) From: In(2)

To: Out(1)
o
o

Amplitude
To: Out(2)
o o
o N b

|
o
[N

—

10 15 0 5 10 15
Time (sec)

|

I

IS
o
(3

Figure 3.10. Step response of a multivariable system.

Impulse Response

12

Amplitude

-0.6
0

.
5 10 15 20 25 30
Time (sec)

Figure 3.11. Impulse response of the system.

Example 3.20. Consider again the system model studied in Example 3.17. The impulse
response of the system can be obtained as shown in Figure 3.11:

>> G=tf([10 20],[10 23 26 23 10],’'ioDelay’,1); inmpulse(G 30);

3.3.3 Time Responses to Arbitrary Inputs

In the previous discussion, two types of input signals were studied. Here, two other types

of signals will be studied.

If the Laplace transforn® (s) of the input signal can be written as a rational function,
the output of the system can be expressad@s = G(s)R(s), whichis also rational. Thus,
the time response und@&t(s) can be equivalently evaluated with thepul se() function
if Y (s) is assumed to be the transfer function of a system.

2007/
page?

S
3.3. Numerical Simulation of Linear Systems 77
Step Response
140
120 -
100
§ 80t
g 60 -
40
20
0 ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70
Time (sec)
Figure 3.12. Ramp response of the system in Exangd4.
Example 3.21. Consider again
G(s) 10s + 20 o
S) = .
1054 4 2353 + 2652 + 235 + 10
The ramp response of the system can be obtained with the helpiafthd se() function.
It is known that the Laplace transform of a ramp function js?1 then the ramp
response of the system can be evaluated as either the step response ofGsg3tanor
the impulse response of the systérs)/s2. The following statements can then be used to
evaluate the ramp response of the system, as shown in Figure 3.12.
>> G=tf([10 20],[10 23 26 23 10],’'ioDelay’,1);
s=tf('s’); step(@s); %or use inpulse(dFs"2)
If the input signal cannot be expressed by mathematical equations, or the Laplace transform
cannot be a rational function, the above methods cannot be used. In this case, the function
I si m() can be used to evaluate the time domain response of the system. The syntax of
the functionl si () is similar to thest ep() function, and the difference is that the input
vectoru should be used such th | si n{ G, u, t) .
Example 3.22. Consider the multivariable system given in Example 2.4, where the two
inputs are defined ag (1) = 1— e’ sin(3¢ + 1) andux(t) = sin(z) cogt + 2). The system
response can then be evaluated with the following statements, and the system responses are
shown in Figure 3.13, where the dotted curves represent the two input signals.
>> gl1=tf(0.1134,[1.78 4.48 1], 'ioDelay’',0.72);
gl2=tf(0.924,[2.07 1]);
g21=tf(0.3378,[0.361 1.09 1],'ioDelay’,0.3);
g22=tf(-0.318,[2.93 1], ioDelay’, 1.29);
G=[gl1l, gl1l2; g21, @g22]; t=[0:.1:15]";
us[1-exp(-t).*sin(3*t+1),sin(t).*cos(t+2)]; IsimGu,t);
S

2007/
page?

78 Chapter 3. Analysis of Linear Control Systems

Linear Simulation Results

uy(t)

To: Out(1)

up(t)

0%\/\/\/\;

Amplitude

ug(r)
y2(1)

To: Out(2)

0) -) ‘uz(t) .

Time (sec)

Figure 3.13. Time domain response of a multivariable system.

3.4 Root Locus of Linear Systems

Assume that the feedback control system is established by a unity negative feedback system
whose forward path is defined as a static giiinfollowed by an open-loop mode¥ (s).
For each value oK, a set of closed-loop poles can be found by solving the characteristic
equation 1 K G(s) = 0. With continuous change in the gaknh the trajectories of closed-
loop pole positions can be constructed. The trajectories of the poles of the closed-loop
system can be obtained and are referred to as a root locus of the system. It should be noted
that the open-loop modél (s) should be used to draw the root locus, and the root locus can
be used to describe the pole positions of the closed-loop system.

A MATLAB function r | ocus() is provided in the Control Systems Toolbox to draw
the root locus of a given system. The function can be called in one of the following ways:

rl ocus(G) % automatic draw of the root locus

rl ocus(G, [kmin, kmax]) % root locus over the gain range

rl ocus(G, K) % root locus for a given gain vectdf

[R, K] =rl ocus(G) % evaluate the closed-loop pole positiaRs
rlocus(Gq, ' -',Go,' -.b" ,G3,:r") % root locus for several models

It should be noted that this function applies to both continuous- and discrete-time systems.
Only SISO LTI models can be processed in the function. It can also be used in drawing the
root locus for discrete-time transfer functions with pure time delays.

On the root locus of the system, one may left click any point on the locus to show the
gain, pole position, damping ratio, and overshoot of the system at the san¥.gaime can
easily find the values of the open-loop gainfor which the closed-loop system is stable.
The commandr i d can be used to superimpose the isodamping and isofrequency lines of
the system. These lines may provide useful information in control systems design.

Example 3.23. Let

s2+ 45+ 8

G(s)=
(®) 5°+1854+120353+357.552+4785s5+ 306

2007/
page?

3.4. Root Locus of Linear Systems 79

Root Locus Root Locus

_(
System: G
6 6 Gain: 772
Pole: -0.0213 + 7.5i
Damping: 0.00284
4 4 Overshoot (%): 99.1
Frequency (rad/sec): 7.5

2w “
),

Imaginary Axis
o
Imaginary Axis
o

-7 -6 -5 -4 -3 -2 -1 0 1 -7 -6 -5 -4 -3 -2 -1 0 1
Real Axis Real Axis

(a) root locus (b) find the critical point

Figure 3.14.Root locus analysis of the system and its inverse.

be an open-loop model of the system under investigation. Using the following MATLAB
scripts, the root locus of the system can be easily and accurately drawn, as shown in Fig-
ure 3.14(a).

>> nune[1 4 8]; den=[1, 18, 120. 3, 357.5, 478. 5, 306];
G=tf(numden); rlocus(Q

If one left clicks at the point on the intersection with the imaginary axis, the information
about the critical point is shown as in Figure 3.14(b), from which it is immediately seen that
the critical gain is 772. It can be concluded that when the gain 772, the closed-loop
system is unstable.

Example 3.24. If a discrete-time open-loop model is given by

0.52(z — 0.49)(z2 + 1.28; + 0.4385
(z—0.78)(z+0.29)(z24-0.7z+0.1586

G@)=

with a sampling interval off = 0.1 seconds, the following statements can be used to
input the open-loop system model and draw the root locus of the system, as shown in
Figure 3.15(a). Itcan be seen by clicking the relevant points that the critical gaig-i2.83.

>> z=tf('z',’Ts’,0.1);
G=0.52*(z-0.49)*(z" 2+1. 28*z+0. 4385) / (z+0. 29) / (z~ 2+0. 7*z+0. 1586) ;
riocus(GQ, grid

Ifthere exists a pure delay tern® in the original system, the root locus of the delayed
system can be redrawn, as shown in Figure 3.15(b):

>> G ioDel ay=6; rlocus(Q, grid

It can be found that the critical gain is reduced to 1.16. It can be seen from the example that
the delay term in the discrete-time model reduces the critical gain of the system.

80 Chapter 3. Analysis of Linear Control Systems

Root Locus Root Locus

0.6wT | 0.4WT

Imaginary Axis
Imaginary Axis

0.6T | 0.410T
-1
-15 -1 -0.5 0
Real Axis Real Axis
(a) root locus (b) root locus of the delayed system

Figure 3.15. Root locus of a discrete-time system.

Root Locus

3
System: untitled1
2 Gain: 13.6
0 Pole: 0.0142
21 Damping: -1]
> Overshoot (%): 0
.E 0 Frequency (rad/sec): 0.0142
j=2
[
£ .
-2
-3
-4 L L L L i . .
-5 -4 -3 -2 -1 0 1 2 3
Real Axis

Figure 3.16. Root locus for positive feedback systems.
Example 3.25. If
s24+55+6
55+ 13s% + 6553 + 15752 + 1845 + 80

is an open-loop model, the following statements can be used to draw the root locus for the
system with unity positive feedback, as shown in Figure 3.16. It can be seen that when
0 < K < 136, the closed-loop system is stable.

>> G=tf([1 5 6],[1 13 65 157 184 80]); rlocus(-0

G(s) =

Example 3.26. For the open-loop model

0.3(s + 2)(s? +2.1s + 2.23
s2(s2+35s+432(s +a) ’

G(s) =

if one wants to draw the root locus according to variablehe characteristic equation
1+ G(s) = 0 can be rewritten as

a(s® + 353 + 4.326%) + (s° + 3s* + 4.625° + 1.235% + 1.92% + 1.338 = 0

2007/
paget

2007/
paget

S
3.4. Root Locus of Linear Systems 81
Root Locus Root Locus
L5 & 08 0150007
0.6 0.6
1t 1 “lo.3a 05
041046 %
2 0.5¢ Q2 0.6 0‘2
5 hE o
5 0 5 0 F
g g 0.92 Z
= = 076 #
-0.5 i 0.2 06 02
—0.4/046 0-3
b 1 0.34 }g
0.6 0.6
& 24 0.150.00.7
-15 : : i -0.8 ‘ : : : :
-2 -15 -1 -0.5 0 0.5 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Real Axis Real Axis
(a) root locus (b) zoomed root locus
Figure 3.17. Root locus according to variable.
from which it can be seen that
5%+ 353 4 4.3252
l1+a =0
§% 4+ 354 + 4.6253 + 1.2352 + 1.92% + 1.338
Let
G6s) s* 4 353 +4.322
§) = .
§° 4 354 + 4.6253 + 1.23s2 + 1.92% + 1.338
The characteristic equation can be written asd@(s) = 0. The root locus according to
variablea can be drawn for th& (s) model. The following statements can be given, and the
root locus obtained is shown in Figure 3.17(a), and Figure 3.17(b) is the zoomed version:
>> Gl=tf([1,3,4.32,0,0],[1,3,4.62,1.23,1.929,1.338]); rlocus(Gl)
The root locus can be used in controller design to select an appropriate value for the
gain K. If there exists a pair of dominant complex poles on the root locus, which have a
relatively low damping ratio for a specific value &f, then selecting this value & may
be appropriate. It is assumed that if the complex poles are dominant and the effects of any
zeros can be ignored, then the resulting closed-loop response will approximate that of a
second-order system with these complex poles.
Example 3.27. Consider the open-loop model
Gs) 10
S) = .
s(s +3)(s2+ 25 +4)
The following statements can be entered into MATLAB, and the root locus of the system
can be drawn as shown in Figure 3.18(a). The isodamping lines are also superimposed on
the curves.
S

2007/
paget

82 Chapter 3. Analysis of Linear Control Systems

Root Locus Step Response

3 1.4
0.8 0.74 0.6 0.460.32 0.16
System: G

210.93 Gain: 0.526
Pole: -0.663 + 0.67i
Damping: 0.704
Overshoot (%): 4.46
Frequency (rad/sec): 0.943

I
)

[

Amplitude
o
©

o
o

Imaginary Axis
)

041

—210.93 o2l

3 0.8; 0.74 0.6 0.460.320.16 N N N N L " n L
%5 -4 -3 -2 -1 0 0 1 2 3 4 5 6 7 8 9
Real Axis Time (sec)

(a) root locus (b) closed-loop step response

Figure 3.18. Root locus and step response of the system in ExaBple

>> s=tf(’'s’); G=10/(s*(s+3)*(s”2+3*s+4));
rlocus(Q, grid
From the isodamping lines, it is easily found by clicking the pole position located
at the¢ = 0.707 line that the gain is abo = 1.68, as shown in Figure 3.18(a). It
is also seen that this pair of poles is dominant, so selecting thekjain1.68 gives the

closed-loop step response shown in Figure 3.18(b). This, as expected, is very similar to that
of the second-order system with these poles.

>> K=1.68; step(feedback(GK, 1))

Example 3.28. Consider a simple plant modél(s) = 1/(s + 1)3. The root locus of the
system can immediately be drawn as shown in Figure 3.19(a) with the following statements:
>> s=tf('s’); G1/(s+1)"3; rlocus(Q

However, the root locus drawn with default settings is not complete, since the intersection
of the root locus with the imaginary axis is not shown, due to the improper selection of
the gain range, by default. One should then enlarge the gain range, for instance, select a
range of(0, 20), to modify the root locus drawn. The modified root locus can be obtained

as shown in Figure 3.19(b).

>> rlocus(G [0, 20])

Example 3.29. Assume that
(s +5(?+25+8)
s+ D +2(s +3)(s2+6s +12

is an open-loop model. The root locus of the system is immediately obtained, as shown in
Figure 3.20(a).

G(s) =

2007/
paget

S
3.4. Root Locus of Linear Systems 83
Root Locus Root Locus
25
2
15
0 " 1
é\ i 0.5
% % ol.
£ E -0.5
-1
-1.5
-2
=2 -15 -1 05 2535 5 25 5 s 1 o5 o0 05
Real Axis Real Axis
(a) default root locus (b) modified root locus
Figure 3.19. Problems in automatic root locus drawing.
Root Locus Root Locus
6 6
4 4t
g 2 x/—B g 2 @ﬁ
< <
£ £
B f\@ Nl G\%
-4 -4+
6 ‘ ‘ ‘ ‘ 6 ‘ ‘ ‘ ‘
-8 -6 -4 -2 0 -8 -6 -4 -2 0 2
Real Axis Real Axis
(a) root locus (b) root locus of inverse system
Figure 3.20. Root locus of a system and its inverse system.
>> s=tf('s’);
G=(s+5)*(s"2+2*s+8)/s/ (s+1)/ (s+2)/ (s+3)/(s" 2+6*s+12)
Itis interesting to note that the root locus of its inverse systg@i(t) has exactly the
same shape as the origir@ls) if it is drawn with the command| ocus(1/ G) , shown
in Figure 3.20(b). In the inverse system, it is not surprising to note that the poles and zeros
are interchanged, and thus the directions of the root loci are all reversed.
Besides, if one reads the gain at a certain point on Figure 3.20(a), one will get the
reciprocal of the gain by clicking the same point on Figure 3.20(b).
S

2007/
paget

84 Chapter 3. Analysis of Linear Control Systems

3.5 Frequency Domain Analysis of Linear Systems

Frequency domain analysis methods make up a class of very important methods in control

systems analysis and design. In 1932, Nyquist presented a graphical method which can be
used to assess the stability of a control system. Within a few years a frequency domain

analysis and design framework had been set up. It was found to be a very useful approach
because component models were often available as frequency response data.

3.5.1 Frequency Domain Graphs with MATLAB

For a linear transfer functio@ (s), if the frequency domain variablejis used to substitute
for the complex variable, thenG (jw) can be regarded as the “complex gain” of the system,
which is complex and a function of the frequensy There are many different ways of
describing the complex quantity (jw). Based on these descriptions, different frequency
domain methods can be established as follows.

1. Real and imaginary part representatiohe complex gain can be represented as the
real part and imaginary part, such that

G(jw) = P(0) +]Q(w), (3.40)

and it can be seen th&(w) andQ (w) are functions of frequenay. If the horizontal
axis is used to represent the real part and the vertical axis the imaginary part, the
trajectory of the complex gai6 (jw) is referred to as a Nyquist plot. A drawback of
the traditional Nyquist plot is that the frequency dependence of the locus can only be
found if a limited number of points on the locus have their frequency marked.

A MATLAB function nyqui st () provided in the Control Systems Toolbox can
be used to draw the Nyquist plot of LTI modgl The syntaxes of the function are

nyqui st (G) % automatic drawing of Nyquist plot

nyqui st (G, { om, op}) % draw Nyquist plot over rangeu,, @ur)
nyqui st (G,) % draw Nyquist plot over frequency vectes
[R, I, w]=nyquist(G) % Nyquist response data evaluation
nyqui st(Gq,’' -’ ,Gp,'-.b ,Gg,":r’") % several systems

If one left clicks a point on the Nyquist plot drawn, the frequency information can
be displayed, together with the values of the complex gain. This facility provides an
extremely useful tool in the analysis and design of linear systems. The overloaded
command gri d can be used to superimpose iso-M circles on top of the Nyquist
curve.

2. Magnitude and phase representatidhicomplex quantityG (jw) can be expressed in
magnitude and phase form, that is,

G(jw) = A(w)e 9@, (3.41)

Thus, the frequency can be used as a horizontal axis, and the magnit(de and
phaseg (w) can be used separately as vertical axes. A new set of diagrams can be
constructed. If frequency is plotted on a logarithmic scale, the magnitude M plotted in

2007/
paget

3.5. Frequency Domain Analysis of Linear Systems 85

decibels (dB), that isM (w) = 20 Ig[A(w)], and the phase is in degrees, the diagram
is referred to as a Bode diagram.

The functionbode() is provided in the Control Systems Toolbox, and it can used
for drawing the Bode diagram of the linear systémThe syntaxes of the function are

bode(G) % automatic draw of the Bode diagram

bode(G, { wm, wp}) % draw Bode diagram over range{, @)
bode(G, w) % draw Bode diagram over frequency vecter

[A, ¢, »] =bode(G) % Bode diagram data evaluation
bode(G1,'-",Gp,'-.b" ,G3,":r") % several systems

3. Magnitude and phase representation in a single ;plidie magnitude and phase rep-
resentation to the complex gains is again used. Selecting magnitude and phase as
vertical and horizontal axes, respectively, we will get the well-known Nichols chart.

The functionni chol s() provided in the Control Systems Toolbox can be used
to draw the Nichols chart for the given systémand thegr i d command can be used
to superimpose the constant M and N contours on the chart.

For discrete-time systen#%(z), one may substitute= &®7 into the transfer function
model such that the relationship between the complex magnhi(§ie) and the frequency
can be established. The above-mentiongdui st (), bode(), andni chol s() can
be used in discrete-time models directly.

Example 3.30. Consider the continuous model

s+ 8

)= 201 D6 I D613

The Nyquist plot can be easily drawn with the following statements, with superimposed
contours:

>> s=tf(’'s’); G=(s+8)/(s*(s”2+0.2*s+4)*(s+1)*(s+3));
nyquist(GQG, grid, set(gca,’ Ylim,[-1.5 1.5])

Since one of the open-loop poles is located at 0, the magnitude may be very
large at low frequencies, and thus sometimes manual selection of the magnified range of
the plots should be used. For instance, the Nyquist plot of the above system under manual
zooming is shown in Figure 3.21(a).

With the Nyquist plot drawn by MATLAB, one may left click a point on the Nyquist
plot and the frequency information is displayed, together with accurate values of the axis
coordinates, as shown in Figure 3.21(b). This new facility is very useful in the analysis and
design of control systems.

If one wants to have the Bode diagram and Nichols chart, the following statements can
be used, and the Bode diagram and Nichols chart can be displayed as shown in Figure 3.22.

>> bode(Q; figure; nichols(Q@, grid

One may right click on the curves to get further facilities to analyze the curves. For
instance, if one right clicks the curves on the Bode diagram, a shortcut menu will appear,
and theCharacteristics item is displayed as shown in Figure 3.23(a). One may further

2007,
page

86 Chapter 3. Analysis of Linear Control Systems
Nyquist Diagram Nyquist Diagram
15 15
2ds 0B -2dB 2dB 0dB -2dB
/—_ 4,_
_4 a8 1 System: G 4B
4dB 4dB I: 0.
e/ BN TN PN
0.5 k } 0.5 (Frequency (rad/sec): -0.832)
2 10 dB’ -10 dB 2 10 dB’ 10dB
i 20 dB\\) 20 dB g 20 dB\\) ~20d8B
g /><> _< g o /><> —<
E e {/ \ g e {/ \
N J \ Reak ~0.414 J
= 1 Imag: -1.22
| _/ . Frequency (radisec): ~1.98 —
s -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 s -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
Real Axis Real Axis
(a) Nyquist plot (b) Extra data from Nyquist plot
Figure 3.21. Nyquist plot analysis of the system in Exanpz0.
Bode Diagram Nichols Chart
100
—~ 35 0dB
g
- 0 30
g >
§ e E B -1d8
o 15
-200 Q
-90 S 10
& -3.dB
é.‘, -180 é‘) 5 Zys‘en; e .
g -210 0 Pr?;\nsé (?e'gs)} -115
£ _360 -5 Frequency (rad/sec): 0.359
“10 ~12dB
480 -2 ‘—1 ‘D ‘1 2 -315 =270 -225 -180 -135 -90 -45 0
10 10 10 10
Frequency (rad/sec) Open-Loop Phase (deg)
(a) Bode diagram (b) Nichols chart
Figure 3.22. Frequency domain analysis of the system in Exar&3e.
100
@
£
Systems 4

Characteristics P Feals Response

Show b v Stability Minimum Crossing)

=l

g

v Stability (A1l Crossings) =

Grid 2

3

v Full View g

; -450 .
Froperties. ..
v 10 2 10 t 100 101 102

(a) Shortcut menu

(b) Bode diagram with key points

Figure 3.23. Frequency domain analysis results for ExamplgQ.

select theStability (All Crossings) item from it. The Bode diagram with all the stability
key points is shown in Figure 3.23(b). Thiaracteristics shortcut menus are supported
for all the frequency domain curves.

Example 3.31. Consider the continuous system studied in the previous example. One may
select the sampling interval @f = 0.1 second to find the discrete-time model. The Bode
diagram of the discrete-time model can be obtained as shown in Figure 3.24(a).

2007/
paget

S
3.5. Frequency Domain Analysis of Linear Systems 87
100 Bode D‘iagram 100 ‘ Bode D‘iagvam
% - | g_mr T=09 |TN]
= -100 1 = hlc
\\\ | I |
§ -360 1 § _3s0l L [
540 ~450p ‘ 7=09 T 7=91
1072 1071 Frequencl)?o(rad/sec) 101 102 1072 1071 Frequené)?o(rad/sec) 101 102
(a) Bode diagram of discrete-time model (b) Bode diagrams for differerft’s
Figure 3.24. Bode diagrams of the discrete-time models in ExarB3é.
>> s=tf('s’); G=(s+8)/(s*(s”2+0.2*s+4)*(s+1)*(s+3));
Gl=c2d(G 0.1); bode(Gl)

Selecting different sampling intervals, we see that the Bode diagrams are obtained as
shown in Figure 3.24(b), together with that of the original continuous model. It can be seen
that, if the sampling interval is large, the high-frequency part may not be satisfactory.
>> bode(G@, hold on; for T=[0.1:0.2:1], bode(c2d(G T)); end
3.5.2 Stability Analysis Using Frequency Domain Methods
The Nyquist plot, often drawn for the open-loop models, can be used to infer the closed-
loop behavior in terms of stability and even the time domain response. The stability can be
concluded using the well-known Nyquist Theorem.

Theorem 3.6. For the closed-loop system with an open-loop transfer funotigsn) to
be stable, the Nyquist plot @ (s) must encircle in a counterclockwise direction the point
(—1, j0) as many times as the number of pole&@f) located in the right half of the-plane.

The Nyquist Theorem can further be interpreted for the following two cases:

1. For a stable open-loop modgéls), the closed-loop system (with unity negative feed-
back) is stable if and only if the Nyquist plot @ (s) does not encircle the point
(—1,j0). If the full Nyquist plot encircles the point-1, jO) p times in a clockwise
direction, then there will b@ unstable closed-loop poles.

2. For an unstable open-loop model Gfs) with p unstable modes, the closed-loop
system is stable if and only if the Nyquist plot 6f(s) encircles the point—1, jO) p
times in a counterclockwise direction. If there greounterclockwise encirclements
of the point(—1, jO), then there will bey — p unstable closed-loop poles.

Example 3.32. Consider the open-loop model
66) 2.77785%240.192%+1.92)
S)= .
s(s+1)2(s2+0.3845+-2.56)
S

2007/
paget

88 Chapter 3. Analysis of Linear Control Systems

Nyquist Diagram Step Response

15 18
2d8 ods —2dB
4dB 16
1
“4dB 14
6dB _sdB

05 10dB _i-i5l0dB 2
20d8 (L —é} B
e
o

—
0.6

/
/*Z -15

Amplitude

08

Imaginary Axis
o

—

-1
0.2

-15
-25

-1 -05 0 0 100 200 300 400 500
Real Axis Time (sec)

(a) Nyquist plot (b) step response of closed-loop system

Figure 3.25. Analysis of the system in Exam3&2.

The model can be easily entered into MATLAB with the following statements, and the
Nyquist plot of the system can be drawn as shown in Figure 3.25(a):

>> s=tf('s’);
G=2. 7778*(s” 2+0. 192*s+1. 92) / (s*(s+1) " 2*(s" 2+0. 384*s+2. 56)) ;
nyqui st(G; axis([-2.5,0,-1.5,1.5]); grid
figure; step(feedback(G 1))

Itcan be seenthatalthough the trajectory is rather complicated, there is no encirclement
around the€—1, jO) point. Since there are no unstable poles in the open-loop model, it can be
shown by the use of the Nyquist Theorem that the closed-loop system under unity negative
feedback is stable. The step response of the closed-loop system is obtained as shown in
Figure 3.25(b).

Although the closed-loop system is stable, the step response has a strong oscillation,
so the system performance will probably not be satisfactory. In this case, a controller will
need to be designed to improve its performance.

3.5.3 Gain and Phase Margins of a System

It can be seen from the previous examples that, although the stability of the systems is
extremely important, it is not the only important factor in describing the behavior of the
systems. Frequency response margins are effective indicators in addressing relative stability
and performance problems.

In Figures 3.26(a) and (b), the sketches of gain and phase margins are illustrated,
respectively, on the Nyquist plot and Nichols chart. The gain and phase margins can also
be illustrated on the Bode diagram.

If for a system with a stable open-loop transfer function the Nyquist plot intersects
the negative real axis at frequenoy,, the gain margin is defined as the reciprocal of the
gain, i.e.,G,, = 1/A(wc,), and is often expressed in dBs. If the Nyquist plot intersects the
unit circle at frequency,,,, the phase margin is definedas= ¢ (w.,) — 180°.

It can be seen that, normally, the larger the value of gain maggjnthe faster the
closed-loop step response. Gf, < 1, the closed-loop system is unstable. Similarly, if

2007/
paget

3.5. Frequency Domain Analysis of Linear Systems 89

Nichols Chart

A ((ch)
—

phase margin

gain margin

Open-Loop Gain (dB)
AN
o

-225 -180 -135 -90
Open-Loop Phase (deg)

(a) Nyquist curve (b) Nichols chart
Figure 3.26. Graphical representations of gain and phase margins.

the open-loop frequency response is relatively smooth in the gain/phase margin region, the
larger the phase margin, the less the overshoot in the closed-loop step response. However,
if y < 0, the closed-loop system is unstable. The following special cases should also be
considered.

1. Ifthere is no intersection between the Nyquist plot and the negative real axis, the gain
margin is infinite.

2. If the Nyquist plot intersects many times the negative real axis betge#rj0) and
(0, jO), the one nearest to the poiptl, jO) can be regarded as the gain margin point.

3. If there is no intersection between the Nyquist plot with the unit circle, the phase
margin is infinite.

4. If the Nyquist plot intersects many times the unit circle in the third quadrant, the one
which is nearest to the negative real axis can be regarded as the phase margin point.

A function mar gi n() is provided in the Control Systems Toolbox to evaluate the
gain and phase margins. The syntax of the function is

[Gm, v, @cg, wcp] =mar gi n(G) ;

As a result, if a margin is infinite, the returned value will bef , while the corre-
sponding frequency will b&laN.

Example 3.33. Consider again the open-loop model in Example 3.32. The following state-
ments can be used to analyze the gain and phase margins of the system:

>> s=tf('s");
G=2. 7778*(s” 2+0. 192*s+1. 92) / (s*(s+1) " 2*(s" 2+0. 384*s+2. 56)) ;
[gm pm wg, wp] =nar gi n(G

The gain margin is 1.105 at frequency 0.9621 rad/sec, and the phase margin is’2.0985
at frequency 0.9261 rad/sec. Since they are both very small, the closed-loop system will
exhibit very strong oscillation, although it is stable.

2007/
pagec

90 Chapter 3. Analysis of Linear Control Systems

3.5.4 Variations of Conventional Nyquist Plots

It can be seen from the examples in the previous section that if the frequency range is not
selected properly, or if the gain of the system is too high, one cannot obtain any adequate
information about the actual and detailed behavior around the geiht jO), which is
crucial in assessing the stability of the closed-loop system. In this case, two nonlinear
transformation techniques can be applied to provide more information from the Nyquist plot
of the system, namely the arc tangent (atan) Nyquist plot and the logarithmic Nyquist plot.

Arc tangent transformations

From the ordinary Nyquist plots, if the phase angles are kept unchanged, one can perform
an arc tangent transformation on the magnitude such that

. 2 .
|Ghew(Jw)| = ;atanG(Ja))L (3.42)

Clearly, the nonlinearly transformed Nyquist plot is kept within a unit circle foealln
this case, the readability of the new Nyquist plot improves significantly. With the above
nonlinear transformation, the critical point in the Nyquist stability criterion is changed from
(—1,j0) to (—1/2,j0), and it is also very easy to check.
A MATLAB function at annyq() is prepared in the following to draw the trans-

formed Nyquist plot of the system:

function atannyq(G w)

if nargin==1, [X,y,w =nyquist(Q;

el sei f nargi n==2, [x,y]=nyquist(Gw; end

pp=at an2(y, x); H=2/pi *atan(x."~2+y."2).*exp(sqrt(-1)*pp);

nyqui st (frd(H w))

The syntax of the function i at annyq(G, w) , whereG is the open-loop model and
is the specified frequency vector, which is optional.

Example 3.34. Consider again the system in Examples 3.32. The ordinary Nyquist plot and
the atan Nyquist plot are obtained as shown, respectively, in Figures 3.27(a) and (b). Itis
obvious that information around ttie-1, jO) point in the ordinary Nyquist plot is not well
provided. However, the information around the0.5, jO) point is clearly given.

>> s=tf('s’);
G=2. 7778*(s” 2+0. 192*s+1. 92) / (s*(s+1) " 2*(s" 2+0. 384*s+2. 56)) ;
nyqui st(G, figure, atannyq(GQ

Logarithmic Nyquist plots

If the ordinary Nyquist plot can be regarded as the polar plot, where the complex gain
G(jw) can be represented agw)d? @, the logarithmic Nyquist plot can be drawn as
the new representation 2Ql(w)1€?@ . The improved Nyquist plot is referred to as the
logarithmic-amplitude polar diagram [34]. The functiogigl og() can be freely down-
loaded fromht t p: / / ww. mat hwor ks. cond mat | abcentral / fi | es/ 7444/ nyql og. zi p.

3.5. Frequency Domain Analysis of Linear Systems

2007/1
page ¢

—

91

Imaginary Axis

15

0.5

Imaginary Axis

5 Nyquist Diagram AT T ~o
1
’

ATAN Nyquist Plot

Nyquist Diagram

Imaginary axis

60 .)
-45 -4 -35 -3 -25 -2 -15 -1 -05 O -0.8 -0.6 -0.4 -0.2 0

Real Axis Real axis
(a) Ordinary Nyquist plot (b) Atan Nyquist plot

Figure 3.27. Transformed Nyquist plots (arc tangent).

-0.5
-1
-15
—1%000 —10000 -8000 -6000 -4000 -2000 0
Real Axis
(a) Ordinary Nyquist plot (b) Logarithmic Nyquist plot

Figure 3.28. Logarithmic transformed Nyquist plots.

Example 3.35. Consider a more challenging open-loop model

200(1 + 3s)(1 + 25)

G(s) = s(1450s5)(1+ 10s)(1+ 0.55)(1 + 0.13)’

where, with the following statements, the ordinary Nyquist plot and the logarithmic Nyquist
plot are both obtained, as shown in Figures 3.28(a) and (b), respectively.

2007/
pagec

92 Chapter 3. Analysis of Linear Control Systems

>> s=tf('s’);
G=200* (1+3*s) *(1+2*s)/ (s*(1+50*s) *(1+10*s) * (1+0. 5*s) *(1+0. 1*s)) ;
nyqui st (G, figure, nyqglog(Q

It can be seen that the ordinary Nyquist plot does not provide any information around the
critical point. Even if the original Nyquist plot is magnified, it may still lead to misleading
conclusions [34]. Inthis case, the new transformed Nyquist plot is more informative around
the critical point.

3.6 Introduction to Model Reduction Techniques

A model reduction technique was first introduced by Davison in 1966 [35]. The method
introduced was to reduce the dimension of the coefficient matrix of the system while pre-
serving some of the dominant eigenvalues or more influential states of the original system.
Transfer function model reduction techniques are sometimes referred to as “model simplifi-
cation” [36]. Here, the term “model reduction” will be used throughout the book since this
terminology appears more often in the literature; see, e.g., [37, 38]. In this section, model
reduction techniques for both the transfer function models and the state space models will
be introduced.

In what follows, the reduced-order model is denoted by

Bis" 4+ B2s" T+ + B
arsk +apsk=1 4 b ogs +oggr’

Gri(s) = (3.43)

wherek < n with n the order of the original system. Again, for simplicity, it is assumed
that()lk+l =1.

3.6.1 Padé Approximations and Routh Approximations
Suppose that the Taylor series of the original ma@él) can be written as
G(s) =co+c1s + czs2 + e, (3.44)

where the time moments can be computed from (3.20). A low-order transfer function can
be constructed to approximate the original model. If one wants to retain thefirgt + 1
time moments; (i =0, ..., r + k) of the original model, the following formulae can be
established:

Br+1 = co,

Br = c1+ akco,

B1=cr +oarcr—1+ -+ ar—ri1co,

(3.45)
0=cry1+axe, + -+ ag_rco,

0=cry2 +ogcrp1+ -+ + dg—r—1c0,

0= Chtr + OkChyr—1+ -+ - + @20, 41 + 210y

2007/
pagec

3.6. Introduction to Model Reduction Techniques 93

From the last: formulae in (3.45), the following algebraic equations can be obtained:

Cr Cr—1 ce . (673 Cr+l

Cr+1 Cr . Of—1 Cr42
N S (3.46)

Ck+r—1 Ck+r—-2 -+ Cr a1 Ck+r

from which the coefficients; of the denominator can be evaluated easily by solving the
linear algebraic equations. From the first 1 formulae of (3.45), the coefficiengs of the
numerator can be evaluated. The matrix form is given by

Br+1 c© 0 .- 0 1

ﬂr c1 co e 0 o
N : : (3.47)

B1 ¢ Cr—1 -+ Co| | Qk—r+1

The above algorithm is referred to as the Padé approximation technique. A MATLAB
functionpadenod() is written based on this model reduction technique:

functi on G red=padenod(G_Sys, r, k)
c=ti nmmont (G_Sys, r +k+1); G red=pade_app(c,r,k);

The function also calls a low-level functiggade_app() , where
functi on G =pade_app(c,r, k)
w=-c(r+2:r+k+1)'; vv=[c(r+1:-1:1)"; zeros(k-1-r,1)];
Wer ot 90(hankel (c(r+k: -1:r+1),vv)); V=rot90(hankel (c(r:-1:1)));
x=[1 (Ww)']; dred=x(k+1:-1:1)/x(k+1);
y=[c(1) x(2:r+1)*V +c(2:r+1)]; nred=y(r+1:-1:1)/x(k+1);
G =tf(nred,dred);

The syntax of thepadenod() function is G,=padenod(G, r, k) , whereG is the
transfer function object of the original plant model, arehdk are the desired orders of the
numerator and denominator, respectively. The returned varighles the reduced-order
model.

Example 3.36. Consider a fourth-order transfer function given by

s34+ 752 + 245 + 24

G0) = T 1031 352+ 50 + 24"

The time moments; and the second-order reduced model can be obtained using the
following MATLAB commands:

>> Getf([1 7 24 24],[1 10 35 50 24]); G =padenod(G 1, 2)
bode(G G), figure, step(G G)

and the second-order approximate model is

0.8544 + 0.6957

G, (s) = .
) = T T 00% £ 4174

2007/
pagec

94 Chapter 3. Analysis of Linear Control Systems

Bode Diagram Step Response

original 09
-20 model 08

Magnitude (dB)

-30 0.7
-40 0.6

-50

Amplitude
°
&

45 original 02
model

Phase (deg)

90 0

107 107 10° 10" 10° 0 1 2 3 4 5 8

Frequengy (rad/sec) Time (sec)

(a) Bode diagrams (b) Step responses

Figure 3.29. Bode diagram and step response comparisons.

The Bode diagram and step response comparisons are obtained as shown in Figures 3.29(a)
and (b), respectively. It can be seen that the reduced model may satisfactorily approximate
the original fourth-order system.

Example 3.37. Assume that the original model is given by

0.067s° + 0.65% + 1.55% 4 2.016s2 + 1.555 + 0.6
0.06756 + 0.7s5 4+ 354 + 6.67s3 + 7.9352 + 4.63s + 1
The poles ofG (s) are found as follows:

>> nume[0. 067, 0.6, 1.5,2.016, 1. 66, 0. 6] ;
den=[0.067 0.7 3 6.67 7.93 4.63 1]; G=tf(numden); zpk(Q

The zero-pole-gain format of the original model is

(s +5.92)(s + 1.221)(s + 0.897)(s® + 0.9171s + 1.381)
(s + 2.805 (s + 1.856)(s + 1.025) (s + 0.501)(s2 + 4.261s + 5.582)

It can be seen that the original model is stable. The third-order Padé approximation
of the original model can be obtained by

>> & =zpk(padenmod(G 1, 3))

The reduced model obtained is

G(s) =

G(s) =

—0.6328s + 0.7699
(s —2.598)(s2 + 1.108 + 0.3123°

and it is obvious that the reduced-order model is unstable. This means that the Padé ap-
proximation method may not preserve the stability of the original system.

Gr(s) =

Since the Padé approach may fail to preserve the stability of the original system, Routh
approximation techniques are sometimes used. The Routh approximation method proposed
by Hutton [39] was to find a stable reduced-order model for the original asymptotically
stable model.

2007/
pagec

3.6. Introduction to Model Reduction Techniques 95

A MATLAB function r out hnod() is written according to the Routh approximation
algorithm [39]:

function G =routhnmod(G nr)
num=G nun{ 1}; den=G den{1}; nO=l engt h(den); nl=l ength(num;
al=den(end:-1:1); bl=[nun{end:-1:1) zeros(1,n0-nl-1)];
for k=1:n0-1,

k1=k+2; al pha(k)=al(k)/al(k+1); beta(k)=bl(k)/al(k+1);

for i=kl:2:n0-1,

al(i)=al(i)-al pha(k)*al(i+1); bl(i)=bl(i)-beta(k)*al(i+1);

end, end
nn=[]; dd=[1]; nnl=beta(1); ddl=[al pha(1),1]; nred=nnl; dred=ddi;
for i=2:nr,

nred=[al pha(i)*nnl, beta(i)]; dred=[al pha(i)*ddl, O0];

n0=l engt h(dd); nl=l engt h(dred); nred=nred+[zeros(1, nl-n0), nn];

dr ed=dr ed+[zeros(1, n1-n0), dd] ; nn=nnl; dd=ddl; nnl=nred; ddl=dred;
end
G=tf(nred(nr:-1:1),dred(end:-1:1));

and it can be used to find the Routh approximant of a given plant model. The syntax of

this function is G,=r out hnod(G, k) , whereG and G, are the original and reduced
models, respectively, aridis the expected order of the Routh approximation. Note that in
the reduced-order model, the order of the numerator is one less than that of the denominator.

Example 3.38. Consider the model in Example 3.37. The third-order stable Routh approx-
imation can be obtained using the following MATLAB statements:

>> nume[0. 067, 0.6, 1.5, 2.016, 1. 66, 0. 6] ;
den=[0.067 0.7 3 6.67 7.93 4.63 1]; G=tf(num den);
G =routhnmod(G 3); zpk(G)
bode(G G'), figure, step(G @)

where the reduced-order model is

0.37792s2 + 0.947% + 0.3423

Gr = I
) = 50465802 1 115 + 0.463

and it can be seen that the model is stable. The Bode diagrams and step responses are
compared in Figure 3.30. Although the stability in the reduced-order system is retained, the
fitting results are not satisfactory.

However, it is usually claimed that although the Routh approximation method may
preserve the stability of the original system, the dynamic fitting of time domain and fre-
guency domain responses to those of the original systems may not be satisfactory. Thus,
other approaches, such as the dominant mode methods [40], impulse energy approximation
method and its variations [41], the stability equation—based methods [42], the multifrequency
fitting Padé approximation method [43, 44], and the optimal model reduction methods [45],
can be used to get a better fitting while preserving the stability of the original system. Arel-
atively complete summary on frequency domain model reduction techniques can be found
in [46].

2007/
pagec

96 Chapter 3. Analysis of Linear Control Systems

Bode Diagram Step Response

o
o
3

original
model |

)
°

o
@

Magnitude (dB)

o
IS

Amplitude
°
&

o
N

s original
model 01

Phase (deg)

—90 0

10° 107 10° 10" 10° 0 2 4 6 8 10 12

Frequeny (rad/sec) Time (sec)

(a) Bode diagrams (b) Step responses

Figure 3.30. Bode diagram and step response comparisons.

3.6.2 Padé Approximations to Delay Terms

Similar to the case of Padé approximation to transfer function models, the Padé technique
can also be used in the approximation of pure delay termatiqorder Padé approximation
to the delay term e can be written as

1—15/24 pa(t5)? — pa3(rs)3 4 - 4+ (=) p,(ts)"

P =
n,7(5) 14+ 15/2+ pa(15)2 + p3(Ts)3 + - - - + pu(Ts)™

(3.48)

A MATLAB function pade() is provided in the Control Systems Toolbox with the
syntax [np, dp] = pade(zt, n) , wheren is the order of Padé approximation. The
numerator and denominator of the rational Padé approximation are returmed uhp() for
Py < (5).

Now assume that the order of the numerator can be chosen arbitrarily. The Maclaurin
series expansion for the pure delay term can be written as

_ 1 1 1
e '’ zl—ﬂrs—i—z—!rzsz— 51:35 + .- (3.49)

which is similar to the time moment expansion of (3.44). Therefore, the same algorithm can
be used to find a Padé approximation of the delay term. A MATLAB fungtiader n)
is written

function [n,d] =padern(tau,r, k)

c(1)=1; for i=2:r+k+1, c(i)=-c(i-1)*tau/(i-1); end

Gr =pade_app(c, r,k); n=G.nun{1}(k-r+1:end); d=G.den{1};

which can be used to find a Padé approximation of a delay term. The syntax of this function
is [n,d] = paderm(z,r, k) , wherer andk are the orders of the numerator and

denominator, respectively. The numerator and denominator coefficients are returned in the
vectors f,d).

2007/
pagec

3.6. Introduction to Model Reduction Techniques 97

Step Response Step Response

T GS(S) ;) T T T 14

o8r — G2(s)
06
021
e

02y — G1(9)
0 05 1 15 2 25 3 5 10 15 20 25 30
Time (sec) Time (sec)

Figure 3.31. Example3.39. Figure 3.32. Example3.40.

I
N

— Gr(s)

-

Amplitude
°
IS
Amplitude
o o
>

o
=

< G(s)

o
N

o

)

Example 3.39. Consider a pure delay terdi(s) = e °. The following MATLAB state-
ments can be used to find its Padé approximation;

>> tau=l; [nl,dl] =pade(tau, 3); Gl=tf(nil,dl)
[n2, d2] =paderm(tau, 1, 3); &X=tf(n2,d2)
[n3, d3] =paderm(tau, 2,5); G3=tf(n3,d3);
[n4, d4] =paderm(tau, 3,7); G4=tf(n4,d4);
[n5, d5] =paderm(tau, 4,9); Gb=tf(n5,d5);
step(Gl, X, B, A, &), line([0O 1 1+eps 3],[0,0,1 1])

The approximate models using the two functions are, respectively,
—s3 41252 — 605 + 120 Gats) —6s + 24
’ §) =
s3+ 1252+ 60s + 120 ° 53+ 652+ 185 + 24

and the step response comparisons are shown in Figure 3.31. It can be seen that the fitting
to the pure delay term can be well approximated by rational terms if the order selected is
suitable.

Gai(s) =

Example 3.40. Consider a transfer function with a delay

Is+1
G(s) = ———€e 7,
)= G+13
The Maclaurin series expansion of the pure delay term can be evaluated as
>> cd=[1]; tau=2; for i=1:5, cd(i+l)=-tau*cd(i)/i; end

One can then obtain the time moments of the whole system by multiplying the two series to
find a Padé approximation model of the original system, which isillustrated in the following:

>> Gtf([3,1],]1,3,3,1],'iobelay’, 2); c=timom(G5);
c_hat =conv(c, cd); G =pade_app(c_hat,1,3), step(G G)

2007/
pagec

S
98 Chapter 3. Analysis of Linear Control Systems
and it can be found that
G, (s) 0.2012% + 0.009146
r S) = :
s3 +0.448%2 + 0.2195 + 0.009146
The step response fitting is shown in Figure 3.32, from which it can be seen that the approx-
imation is not satisfactory.
3.6.3 Suboptimal Reduction Techniques for Systems with Delays
Fitness measures on reduced-order models
There could be many measures on the quality of reduced-order models. Here, a simple and
commonly used measure is introduced. Consider the block diagram shown in Figure 3.33,
where the two blocks, namely the original model and the reduced model, are subject to the
same input signal(¢), and the error between the output of the original model and that of
the reduced-order model is denoteddgy).
Based on the error signal, many measures can be used, such as
o o o
IISE=/ (1)dr, 1ITAE:/ tle(t)|dt, IISTE=/ 12e%(1)ak. (3.50)
0 0 0
where ISE stands for integral of squared error, ITAE for integral of time-multiplied absolute
value of error, and ISTE for integral of time-multiplied squared error. The commonly used
ISE criterion will be used in the following discussions.
Suppose the original model is given by
bis" 14 ... 4p b
GiyeTs = 21—+ A b5 +bn (3.51)
s"+ars" 1+ tap_1s +ay
and the reduced-order model is given by
_ ﬂlsr+"'+,3r5+ﬂr+1 _
G e "= e . 3.52
r/k(s) Sk+alsk71+"'+ak_ls+ak ()
The Laplace transform of the error signal can be written as
Ee) = [G)e™ = Gue ™| Res), (3.53)
whereR(s) is the Laplace transform of the input signat). Therefore, if one considers
the input signal as an impulse functidiise equals the square>-norm of the difference
transfer function in the above equation. Some MATLAB functions from Sec. 3.1.5 can be
used to compute th#f>-norm.
G(s)e™Ts
r(t) e(t)
O—
Gr/k(s)e_m
Figure 3.33. Error for model reduction.
S

2007/
page

S
3.6. Introduction to Model Reduction Techniques 99
Introduction to suboptimal order reduction
The idea of optimization-based model reduction algorithms is straightforward. It is sim-
ply to transform the model reduction problem into a parameter optimization problem by
minimizing e(¢) via the ISE criterion.
It has been shown that the integral squared value of the signak w(¢)e(t) (w(z) is
the weighting function) is in fact the square of thfa-norm of H (s), the Laplace transform
of signala(z), i.e.,
o0 o0
o = / h2(t)dr = / w?(1)e?(1)dr = | H(s)||3. (3.54)
0 0
If H(s) is arational function of with no pole having any nonnegative real part, the integral
squared valuerh2 can also be obtained froinor m(H) . However, in our case, due to
the delay term, the above method cannot be used directly. Padé approximation for the time
delay can be used to maké(s) rational. In this sense, the optimization-based method
should be referred to as the suboptimal model reduction technique since the time delay term
is replaced by its Padé approximation.
Define a parameter vectéras
0 =lat,....00, iy ..., Brot, TI'. (3.55)
The model approximate error can be written explicitlyzés) for a given original model
and the input signal. An objective function for suboptimal model reduction can be defined
as
o
J = min U w?(1)e(r, 0)dt] . (3.56)
0
A MATLAB function opt _app() is written based on the numerical optimization
algorithms for the suboptimal model reduction:
functi on G r=opt_app(G Sys,r, k, key, Q0)
GS=tf (G_Sys); num=GS. nun{1}; den=GCS. den{1};
Td=t ot al del ay(GS); GS.i oDel ay=0; GS. | nput Del ay=0; GS. Qut put Del ay=0;
i f nargin<5,
n0=[1,1]; for i=1:k-2, nO=conv(n0,[1,1]); end
&=t f(n0, conv([1,1],n0));
end
bet a=Q). num{ 1} (k+1-r: k+1); al ph=&0.den{1}; Tau=1.5*Td;
x=[beta(1:r), al ph(2: k+1)]; if abs(Tau)<le-5, Tau=0.5; end
dc=dcgai n(GS); if key==1, x=[x, Tau]; end
y=opt _fun(x, GS, key, r, k,dc); x=fm nsearch(’ opt_fun',x,[],GS, key, r, k, dc);
al ph=[1, x(r+1:r+k)]; beta=x(1:r+1); if key==0, Td=0; end
bet a(r+1) =al ph(end) *dc; if key==1, Tau=x(end)+Td; el se, Tau=0; end
G r=tf(beta,al ph,’iobDelay’, Tau);
A subfunctionopt _f un(') , which is used to evaluate the objective function in the
model reduction process, is also written as
functi on y=opt _fun(x, G key, r, k, dc)
ff0=1e10; a=[1,x(r+1:r+k)]; b=x(1l:r+1); b(end)=a(end)*dc; g=tf(b,a);
if key==1,
tau=x(end); if tau<=0, tau=eps; end, [n,d]=pade(tau,3); gP=tf(n,d);
S

2007/
pagel

100 Chapter 3. Analysis of Linear Control Systems

el se, gP=1; end
G e=G g*gP; G e.nun{1}=[0, G e.nun{1}(1:end-1)]
[y,ierr]=geth2(Ge); if ierr==1, y=10*ff0; else, ffO=y; end
function [v,ierr]=geth2(G
Gtf(Q; nunG nun{1}; den=G den{1}; ierr=0; v=0; n=length(den)
if abs(num(1))>eps
di sp(’ System not strictly proper’);
ierr=1; return
el se, al=den; bl=nun{2:|ength(num); end
for k=1:n-1
if (al(k+l)<=eps), ierr=1; return
el se,
aa=al(k)/al(k+1l); bb=bi(k)/al(k+1l); v=v+bb*bb/aa; kl=k+2
for i=kl:2:n-1
al(i)=al(i)-aa*al(i+1); bl(i)=bl(i)-bb*al(i+1);
end, end, end
v=sqrt (0.5%v);

The syntax of the function i G,=opt _app(G, n,, ng, key, Go) , whereG andG, are

the original and the reduced-order model objeets;n,; are the expected orders of the
numerator and denominator, respectively. The argurkent indicates whether a delay
term is expected in the reduced mod@y; is the optional initial reduced-order model. This
function considers only the case of the ISE criterion with a step input, which is a simplified
version of [47].

Example 3.41. Consider the following transfer function studied in [43]:

1+ 8.8818 + 29.93392 + 67.087° + 80.378%* + 68.6131s°
1+ 7.6194 + 21761152 + 28.44723 + 16.5609* + 3.5338° + 0.04626"
Using the following MATLAB statements

>> num=[68. 6131, 80. 3787, 67. 087, 29. 9339, 8. 8818, 1];
den=[0. 0462, 3. 5338, 16. 5609, 28. 4472, 21. 7611, 7. 6194, 1] ;
G=tf(numden); G =zpk(opt_app(G 2,3,0)), step(G G, 8)

G(s) =

the optimal reduced model is obtained as

1523653652 + 0.3492 + 0.2482)
(s + 74.85)(s? + 3.871s + 5.052

The step response comparisons are shown in Figure 3.34, and it can be seen that the fitting
results are satisfactory.

Gr(s) =

Example 3.42. Consider the plant model given by [48],

432
T G+ D25+ D075+ D(s + 1)(0ds + 1)

G(s)
A suboptimal reduced model with a delay can be obtained using the following MAT-
LAB statements:

>> s=tf(’'s’); G=432/ ((5*s+1)*(2*s+1)*(0. 7*s+1)*(s+1)*(0. 4*s+1));
G =zpk(opt _app(G 0,2,1)), step(G G)

2007/
page !

—

3.6. Introduction to Model Reduction Techniques 101

Step Response Step Response
18 T T T T T T T 450

16 400 -
14

12

Amplitude
Amplitude

|
N O N A O ®

0 1 2 3 4 5 6 7 8 0 5 10 15 20 25 30
Time (sec) Time (sec)

Figure 3.34. Example3.41 Figure 3.35. Example3.42.

and the reduced model is
31.4907 o155
(s +0.3283 (s + 0.222

The step response comparisons are shown in Figure 3.35, and it can be seen that the original
high-order system can satisfactorily be approximated by the low-order one with a delay.

Gr(s) =

3.6.4 State Space Model Reduction
Balanced realization method

Suppose that the balanced realization of the original model can be partitioned as

X1| [Ann A1 [x1 B _ X1

|:"‘2i| = |:A21 A22i| [xz] + |:Bzi| u, y=1[C1 C7] |:x2i| + Du (3.57)
and assume that the states in subvegtaare to be chopped off. Then, the reduced model
is written as the following:

x1=[A11— A12A§21A21]X1 +[B1 — A12A£2132]u, (3.58)
y=I[C1- C2A2_21A21]x1 +[D — CzAglezlu.

A functionnodr ed() implementing the above algorithm is provided in the Control
Systems Toolbox with synte G,.=npdr ed(G, el i m) , whereG is the balanced realized
state space object amd i mcontains the states to be dropped off. The reduced m@gdel
is then returned.

Example 3.43. Consider again the system model in Example 2.22. To get a second-order
reduced model, the following MATLAB statements can be used to obtain the Gramian of
the balanced realized system model:

>> G=tf([1,7,24,24],[1, 10, 35,50, 24]); [Gb,g]=balreal (ss(Q)

where the Gramiang = [0.5179 0.0309 0.0124 0.0006". Clearly, the contribution
to the input-output relationship from the third and fourth states is not very important.
Thus, it is safe to eliminate them to get a second-order reduced model using the following

2007/
pagel

102 Chapter 3. Analysis of Linear Control Systems

Bode Diagram Step Response

-10
-20
Gr(s) 08
-30
-40 G (S)
-50
-60

0

Magnitude (dB)

Amplitude
o
&

Gr(s) 03
-45

Phase (deg)

G (S) 0.1

-90 0
10° 10" 10° 10" 10 10

Frequeny (rad/sec) Time (sec)

(a) Bode diagrams (b) Step responses

Figure 3.36.Bode diagram and step response comparisons.

MATLAB statements:
>> Gr=nodred(Cb, [3,4]); zpk(G), bode(G G), figure, step(G G)

The reduced model is then

0.025974s + 4.307) (s + 22.36)
(s + 1.078(s +2.319
The Bode diagram and step response comparisons are shown in Figure 3.36 and it can be

seen that the fitting is satisfactory. It should also be noted that the reduced-order system is
not strictly proper, and hence we have the small initial jump in the step response.

G (s) =

Schur’s balanced realization truncation method

Schur’s balanced realization truncation functgrhnr () provided in the Robust Control
Toolbox can perform a model reduction task similamair ed() . The difference between
the two techniques is that an unstable system can be handsechimr () . The syntax of
schnr () is G,=schnt (G, 1, n,) ,whereG is the original model object in state space
format, n, is the expected order of the reduced model, &hdeturns the reduced-order
model object also in the state space form.

Example 3.44. Consider again the plant model in Example 3.41. To apply the Schur model
reduction algorithm, the state space model of the system should be obtained first. This can
be done using the following MATLAB statements:

>> nunm¥[68. 6131, 80. 3787, 67. 087, 29. 9339, 8. 8818, 1] ;
den=[0. 0462, 3. 5338, 16. 5609, 28. 4472, 21. 7611, 7. 6194, 1] ;
G=ss(tf(numden)); G =zpk(schnr(G 1,3))

Itis indicated that three states are removed, and the third-order reduced model using Schur’s
method can be written as

148530762 + 0.178% + 0.2601)
(s + 7164)(s2 + 3.8815s + 4.188)

G,«(S) =

3.6. Introduction to Model Reduction Techniques 103

Bode Diagram

Step Response

Magnitude (dB)

Amplitude

Phase (deg)

Freguengy (rad/sec) Time (sec)

(a) Bode diagrams (b) Step responses

Figure 3.37.Bode diagram and step response comparisons.
Optimal Hankel norm approximation

Glover presented an algorithm to find the optimal Hankel approximation to a given state
space model [49]. The reduced-order model using the Hankel norm approximation algorithm
can be obtained with the MATLAB functioahkl nr () provided in the Robust Control
Toolbox. The syntax of the function G,=ohkl nr (G, 1, k) , whereG is the original
model object in state space formais the expected order of the reduced-order model, and
G, returns the reduced-order model object in state space.

Example 3.45. Consider again the plant model in Example 3.41. The third-order reduced
model using the optimal Hankel norm approximation method can be obtained as follows:

>> nun¥[68. 6131, 80. 3787, 67. 087, 29. 9339, 8. 8818, 1] ;
den=[0. 0462, 3. 5338, 16. 5609, 28. 4472, 21. 7611, 7. 6194, 1] ;
G=ss(tf(numden)); GCh=zpk(ohklnr(G1,3))

and it is indicated that three states are removed, and a reduced-order model is then returned
as
1527804852 + 0.2764s + 0.2892

(s + 73.93)(s2 + 3.855 + 4.585) °
For the same original model, the optimal approximation can also be obtained by

>> CGo=zpk(opt _app(G 2,3,0)),
bode(G Go, G, Gh, {0. 1,10000}), figure, step(G Go, G, Gh, 8)

where the reduced-order model is

15236536(s + 0.3492 + 0.2482)
(s + 74.85)(s2 + 3.871s + 5.052) °
The Bode diagram and step response comparisons are shown in Figure 3.37. It can be seen

that they all fit satisfactorily into the original model. Among all three models, the optimal
reduced-order model is significantly better than the other two reduced models.

Gp(s) =

Gy(s) =

2007/
pagel

2007/
pagel

e
104 Chapter 3. Analysis of Linear Control Systems
Problems
1. Check the stability for the following systems:
G($) = 5>,
@ G s34+252+5+2
1
b G ==)
®) GO =g 33275 +1
1
G(s) = ,
© G sA4s3—-32 542
3s+1
d G == b
(@ G6) = 73062 + 606 + 50 + 35 + 1
0.2(s + 2)
(e) G(s) = :
s(s + 0.5 (s +0.8)(s +3)+0.2(s + 2)
-3z+2
H(z) =
0 A& = 5552025 1005
3:2 - 0.39%; — 0.09
H(z) =
@ HG) = 4775 11042 + 0,268 1 0.024
2
z“+3z-0.13
() HG) = 5 z 3 2
z°+ 1.3524 + 0.4481:3 + 0.015%2 — 0.01102 — 0.001043
0 HE 2.12:2 411761 + 1501
¢ T 5 736& 4— 20153+ 1024z 21 803% 1 — 340
-0.2 05 0 0 0 0
0 -05 16 0 0 0
0 xt)=| 0 0 -143 858 O [x(®)+ | 0 |u(),
0 0 0 —-333 100 0
0 0 0 0 -10 30
y=1[1,0,0,0,0lx,
17 2454 1 8 15 1
2354 5 7 14 16 2
®) X = 4 6 1375 20 225889\ x+ (3 |u
10.8689 12900 19099 21896 3 4
11 18089799 25 2356 9 5
y=1[54,3, 2 1]x.
2. Find the poles and zeros of the multivariable system and check the stability of the
system. If unity negative feedback is assumed, check the stability of the closed-loop
e

2007/
pagel
S
3.6. Introduction to Model Reduction Techniques 105
system
-3 1 2 1 10
. 0 -4 -2 -1 0 2
XO=141 o _1 1|*O+|y 3/u®;
-1 -1 1 =2 11
(1 2 2 -1
() = 2 1 -1 2]x(t)-
3. Find the controllability index and observability index of the state space models in the
previous problem. Obtain the controllable and observable staircase forms.
4. Find the controllable and observable decompositions of the systems given by
1 -3 3 3 [0
. -5 -1 -5 5 0
(@ x = 2 0 -4 0 x + _q | y=1[1,21, -2]x,
-2 0 -2 4 |1
1 -2 -1 17
byx=|1 -2 -2|x+|0|u, y=I[1 -1, 0]x.
-1 1 2 1]
5. Perform the Kalman decomposition of the system model given by
-1 0 0 O 0
. 0O -2 0 O 1
X = 0 0 -3 0 X + 0 u, y=10,1,1,1]x
0O -2 0 -4 0
and write down the transformation matrix. From the Kalman decomposition of the
system, obtain the minimum realization in the state space model. Give an explanation
of the minimum realization from the transfer function point of view.
6. Compute the first three time moments and Markov parameters for the models given in
Problems 1 and 2.
7. Determine the#tz- and #H..-norms of the following systems:
@ Gi(s) 3s+5
s) = s
B T G D6+ 26+ + D
353 + 452 - 3545
(b) Gals) = > > ,
+D(2+35+8)(s +3)°(s +4)
-3 -4 -2/3 -1 1
. 1 0 0 0 0
(c) x = 1 1 —4/3 —2/3 x + ol y=10,0,2/3, 1]x.
0 O 1 0 0
S

2007/
pagel

S
106 Chapter 3. Analysis of Linear Control Systems
8. Find the analytical solution to the autonomous system
-5 2 0 O 1
. 0O -4 0 O 2
-3 2 0 -4 1
Compare the results with numerical results.
9. An eighth-order modefi (s) is given by
1857 45145% 4598254363804+ 1226643 +2220882+18576G +40320
5843657 +54655+4536:°+224494+ 672843+ 1181242+ 109584 +40320
Assume that the system has zero initial conditions. Find the analytical and numerical
solutions of the system under step and impulse inputs. Also assume that the input
signal is sinusoidak(r) = sin(3t + 5). Assume again the system has zero initial
conditions. Find the analytical solutions to the system response and verify the results
by graphical comparison.
10. Draw the step response of the system
-02 05 O 0 0 0
0 -05 16 O 0 0
x)=| 0 0 —143 858 0 |x(t)+ | 0 |u(),
0 0 0 —333 100 0
0 0 0 0 -10 30
andy(r) = [1,0,0,0,0]x(¢z). Draw also the step response of all the states. For dif-
ferent sampling intervals df, find the equivalent discrete-time system and compare
the overshoot and settling time.
11. Draw the root locus diagrams of the following systems and determine the rakge of
which stabilizes the open-loop system with unity negative feedback:
K(s +6)(s — 6)
(@) G(s) = . =,
s(s + 3 (s +4-4)) (s +4-4))
§2 42542
b G - K [l
(b) G(s) s4 4 §3 4+ 1452 4 85
© GG K
s) = ,
5(s2/2600+ 5/26+ 1)
800K (s + 1)
d) G(s) = ,
@ GO = 5T 1067+ 105 + 50
S

3.6. Introduction to Model Reduction Techniques 107

-15 -135 -13 O
10 0 0

(ol eNel

@) x(t) = 0 1 0 o x(t)+ K u(t),
0 0 1 0
y() =1[0,0,0, 1]x(1).
0 HG) =K !

(z+0.8)(z —0.8)(z — 0.99)(z — 0.368)'
(@) Hz) = H@)z 8.

12. Assume the plant model
K(s — e %
(s + 1>

Find the approximate range &f which stabilizes the closed-loop system with unity
negative feedback.

G(s) =

13. The open-loop transfer function is given by

K
(s+2)(s+4)(s2+65+25)°

G(s) =

Find the range ok to make the closed-loop system with unity negative feedback
stable. Also find the value oK which gives the closed-loop system a dominant
damping ratio of 0707.

14. Draw the Bode diagrams, Nyquist plots, and Nichols charts for the following systems,
and check the stability of the systems under unity negative feedback control from the
plots obtained. Mark the gain and phase margins on the plots obtained. Verify the
results through closed-loop step responses.

B 8s+1
(a) G(s) = SZ(S+15)(SZ+6S+1O)’
©) Gy - 4(s/3+ 1)

5(0.025 + 1)(0.05s + 1)(0.15 + 1)’

0o 2 1 4
x@)=]-3 =2 0|x(t)+|3|u(),
© 1 3 4 2

y(®) =1[1,2,3]x()

(z + 1.31)(z 4+ 0.054(z — 0.957)
2(z = D(z — 0.368)(z — 0.99)

(d) H(z) = 0.45

3

6(—s +4)
5200554+ 1)(0.1s+1)’

(e) G(s) =

2007/
pagel

108

2007/
pagel

Chapter 3. Analysis of Linear Control Systems

15.

16.

17.

18.

19.

1053 — 6052 + 1105 + 60
s4+17s3+4+82524+130s+100

) GG =

Draw nonlinearly transformed Nyquist plots for the systems containing integrators in
the previous problems and see whether the same conclusion can be obtained.

Assume that a plant model is given®ys) = 1/s2, and an optimal controller can be
expressed as

56208253 + 1993207652 + 7685697s + 725394
s4 4+ 77.40s3 + 28879052 + 28463885 + 281759

Also assume unity negative feedback. Draw the Nyquist and Nichols plots and super-

impose the M and N circles on the diagrams. Plot the closed-loop frequency response
of the system and confirm that the magnitude of the peak and its corresponding phase
are in agreement with the deductions from the Nyquist and Nichols plots.

GC(S) =

Assume that the plant model is

Gis) = 1000 +5/25)
Y = 51+ 5/05)/(1+s/50)°

and a cascade controller is given by

100Qs + 1)(s + 2.5)
(s + 0.5)(s + 50)

Assess the closed-loop behavior of the system under unity negative feedback control.
Verify the assessment by time domain analysis.

Ge(s) =

For the feedback system structures with

3.5(s + 6) 0.01s +6

(@) G(s) = CIDGI36T8 Ge(s) = (s +4)/s, H(s) = — —

’

3.5(s + 6)2 5s + 4

Oy 6O = o3 r6zra e VT a2 HW=L

6s + 2

By definition, the sensitivity of the feedback system can be definédsas= 1/[1 +
H(s)G(s)G(s)],and the complimentary sensitivity can be definefi@ég = 1—S(s).
Find the sensitivity and complementary sensitivity transfer functions.

Find reduced-order models for the following original models using different algorithms
presented in this chapter:

10+ 35 + 1352 4 352
1+ 5+ 252+ 1.553 + 0.554°

@ G(s) =

500+ 99843234 + 5066496752 + 81691337%°
500+ 10105 + 521012 + 105203 + 1004

(b) G(s) =

b

2007/
pagel

S
3.6. Introduction to Model Reduction Techniques 109
1+ 0.4s
1+ 2.283% + 1.875%2 + 0.7803° + 0.125% + 0.0083
A G() = 24.1467;3 — 67.7944? + 63.476& — 19.8209
Y= 4361037 + 491242 — 2.963% + 0.6703
20. Consider a high-order model given by
G(s) = (14 2.0587)(1 + 2.552% + 5.43422)(1 + 3.2648 + 2.1476:2)
V= (1+3.0092 +.7970:2)(1+6.8538 1 0.69652) (1+.1394 +0.6861s2) -
The (2/3)-order FF-Padé reduced model given in [43] is
GEE () = 1-1.425% + 4.3109?
2377 140.7003 + 0.86132 + 0.083%3

Meanwhile, a correspondence to the paper given by Stahl and Hippe [50] suggested

a (3/4)-order model
Gara(s) 62.85(s + 2.64)(s + 0.192+ 0.608j) (s + 0.192— 0.608;)
S) =
34 (s +809(s + 575 +01+j1.2)(s + 0.1—jL.2)
Using the optimum reduced-order model given in the chapter, compare the reduced-
order model with the above existing reduced-order models.
S

2007/
pagel

2007/
pagel

Chapter 4

- Simulation Analysis of
- Nonlinear Systems

In the previous chapters we have addressed modeling and analysis methods for linear sys-
tems. In the real world, however, control systems always contain nonlinear effects, which
may be inherent and unavoidable such as friction, or may be introduced intentionally to
provide better performance either technically or economically. A good example is the use
of a relay for on-off temperature control. Indeed one could argue that a control system
which does not operate under actuator saturation at some time is a bad design from an eco-
nomic perspective. MATLAB includes the simulation language Simulink, and although the
analysis of nonlinear systems is more difficult than that of linear systems, their simulation is
straightforward. It is not the intent of this book to present theoretical methods for studying
nonlinear systems, but in introducing Simulink it was felt appropriate to show some of its
facilities for simulating nonlinear feedback systems and to give the reader a small appreci-
ation of the effects of nonlinearity on system behavior. This is done through the discussion
of a few examples. Further, since initial designs for many nonlinear systems involve con-
sideration of linearized models, this important topic is also covered. A reader who wishes
to know more about nonlinear systems or indeed clearly understand all the unique effects
that might occur in these systems is referred to appropriate reference [51].

In Sec. 4.1, a brief overview of Simulink, and in particular, the model library of
Simulink, are presented. The procedures for Simulink-based modeling and simulation are
also given. Nonlinear system modeling problems are presented through examplesin Sec. 4.2,
where Simulink modeling of nonlinear differential equations, multivariable systems, com-
puter control systems, and time varying systems is illustrated. In Sec. 4.3, a systematic
way of modeling piecewise linear single-valued and double-valued nonlinearities is given,
and limit cycle problems are explored through simulation approaches. In Sec. 4.4, the
linearization of nonlinear systems is presented.

4.1 An Introduction to Simulink

Simulink was developed by the MathWorks in 1990. Its original name was SimuLAB, and
the name was changed to the current name in 1992. Two meanings are implied in its name,
“simu” and “link.” The word “link” means that the system block diagram can be established

111

2007/
pagel

112 Chapter 4. Simulation Analysis of Nonlinear Systems

with building blocks and links between the blocks. The word “simu” means its simulation
facilities. With the use of the powerful facilities provided in the Simulink program, different
systems can be simulated easily and straightforwardly.

4.1.1 Commonly Used Simulink Blocks

The modeling algorithms given in Chapters 2 and 3 cannot be directly applied for nonlinear
systems. In this case, the sophisticated Simulink environment can be used to represent such
nonlinear system models. Details of Simulink modeling are not given in this book but the
interested reader may refer to [28, 29, 52].

To model a nonlinear system, the block library of Simulink should be opened first. It
can be opened in one of the following two ways. We shall use the first way throughout the
book.

1. Type the open_syst en(’ si mul i nk’) command under the MATLAB prompt.

Then, the main window of Simulink will be shown (or brought to the front, whenitis

already started) as shown in Figure 4.1.

2. Initiate a block library by clicking the Simulink icon in the toolbar in the MATLAB
window, as shown in Figure 4.2.

It can be seen that a large number of model blocks are provided in Simulink. Here,
the commonly used blocks in control systems are summarized:

1. Linear system blocksl'he continuous transfer function model, state space model, and
zero-pole-gain model are provided in tBentinuous group as shown in Figure 4.3.
The integrator, differentiator, and time delay blocks are also provided in the group.
Moreover, in theDiscrete group, the discrete versions of tientinuous block set
are provided.

2. Nonlinear blocks The commonly used nonlinearities are provided inftigontinu-
ity group as shown in Figure 4.4, where nonlinearities such as saturation, dead-zone,
and others can be used directly.

E!Lihrary: zimulink |Z||Elrz|
File Edit Yiew Format Help

K o3 N e e S

Sources Sinks Continuous Discrete Dizscontinuities Signal Signal
Routing Attributes

Ix 1= y=flu} y=fitu) % &c Mise

il ath Logic and Bit Lookup UserDefined Model Forts & hlodel-iiide
Operations Operations Tables Funections “erification Subsystems Utilities

Toolboxes used blocks & Dizcrete Copyright () 1990-2008
The Mathiltodes, Ine.

Blocksets & |)‘ Commanly I} |Additional Mathl ‘ ey | Simulink Blodk Library 6.4

Figure 4.1. Simulink block library.

4.1. An Introduction to Simulink

113

E! Simulink Library Browser

File Edit ¥iew Help

D& 4 b |

Commonly Used Blocks: simulink/Commonly
Uzed Elocks

- Bl Simalink

----- E Commonly Used Flocks
----- 2‘ Contirmous

----- y Discontirmities Contimous
..... y Discraete
----- ;t]Logic and Fit Operations
----- E Loolup Tables
----- 2‘ Math Operations
..... 2] Model Verification
..... P Model-Wide Utilities

----- ¥+ Ports & Subsystems
< i} | >

[3

Discontimmities

Discrate

W7 LE

&

i1

Logic and Hit Operationsz

|

[

[

NI

Figure 4.2. Simulink block library browser.

Continuous-Time Linear Systems

=
Integrator Derivative

Continuous-Time Delays

s+1 s(s+1)
State-Space Transfer Fcn Zero-Pole

y = Cx+DJ

Transport variable Variable
X' = Ax+BU 1 (s-1) Delay Time Delafransport Delay

Figure 4.3. Linear continuous blocks.

Discontinuities

Saturation Dead Zone . .

Rate Limiter

lo
Saturation Dead Zone Rate Limiter
Dynamic Dynamic Dynamic

Crossing Viscous Friction

Backlash Relay Quantizer

=) [F) #

Coulomb & Wrap To Zero

Figure 4.4. Nonlinear blocks.

3. Input and output blocksThe input signals can be modeled using the blocks in the
Sources group, shown in Figure 4.5. The step input, pulse input, and other input

signals can be represented by the blocks in the group. In particuldnpbe block

can be used to model the input port of the system.

The output of the system can be displayed with the blocks ifiitile group, shown

in Figure 4.6. One may use tBeope block to show the curves of the selected signals
during simulation. Theutport block in the group may be used to indicate the output

port of the system.

2007/
pagel

114

Chapter 4. Simulation Analysis of Nonlinear Systems

Signal Generators
. . - @ Signal 1> .

Constant Signal Pulse Signal Builder Number Number White Noise

Model & Subsystem Inputs

= T
Ground From File From Counter Counter 12 #
Workspace Ramp Slne Wave Step Repeallng Free-Running Limited Digital Clock

Sequence

Repeating Repeating Clock
Chirp SlgnaIRandom Uniform RandonBand Limited Sequence Sequence
Generator Generator Stair Interpolated

Figure 4.5. Input (source) blocks.

Model & Subsystem Outputs

(D) >. untitled.ma

Outl Terminator To File To Workspace Simulation Control

Data Viewers
E |§| _ S

Scope Floatlng XY Graph Display
cope

Figure 4.6. Output (sink) blocks.

Math Operations Vector/Matrix Complex Vector
Operations Conversions
-
@ * - Ul->Y e £ lub
slim Add Subtract Sum of Bias Weighted U2 -> YEY P Lup
Elements Sample Time Complex to

Assignment pagnitude-Angle

> O} L) B A 1 {0

i Product Divide ~ Productof pot Product : Complex to
o SGI’Ig'?{ Elements Cohrqlcag:;nate ReaIEImag
P(u) I~
b b —u b b floor p b
B e ERNELE,
Sign Abs Unary Minus ~ Math Rounding Polynomial Magnitude-Angle
Function Function Reshape g Complexg
u
min(u,y)y) R
) J o S I
MinMax g:?n’\gﬁ\)(Trigonometric Sine Wave Algebralc Constramt Vector Real-Imag to
Resenagle Function Function Concatenate Complex

Figure 4.7. Math blocks.

4. Easy mathematical block$ he signals in the system should be computed using,

x, =, and other mathematical computations. The blocks irMhéh group shown in
Figure 4.7 can be used to model these operations.

To easily build up a simulation model for a dynamic system, the user should be
familiar with the blocks provided in the Simulink environment.
sections, the use of Simulink modeling will be illustrated through examples.

In the following

2007/
pagel

4.1.

2007/
pagel

An Introduction to Simulink 115

4.1.2 Simulink Modeling

Here we give brief, step-by-step guidelines to Simulink modeling as follows:

1.

Startup and initial preparationTo enter a model in Simulink format, one should first
start up the Simulink environment. One should also open a blank window for the new
system model by clicking thEile | New menu item.

. Draw blocks of the systenDpen the relevant model block library group so that the

components of the system can be copied from them. For instance, the icon labeled
Continuous in Figure 4.1 contains the blocks shown in Figure 4.3, whileQieon-
tinuities icon contains those shown in Figure 4.4. One can select the blocks in these
groups and then drag them into the new system model window.

. Specify parameterdt should be noted that the libraries as shown in Figure 4.3 contain

only default models of certain types. For instance, the linear transfer function icon
is contained in Figure 4.3, but only with a defaup(d + 1) model. To specify the
parameters of such a model, one should double click it to get the dialog box, as shown
in Figure 4.8, and then fill in the dialog box with the required parameters. It should
be noted that the numerators and denominators requested in the dialog box are with
the coefficients in the descending order of

. Draw links Once all the blocks needed are copied into the model window, one can

draw the links between the blocks to make the system complete. The links between
the blocks can be drawn by first clicking the output port of the starting block, and then
dragging the mouse to the input port of the ending block. A linkage between the two
blocks will then be internally established by Simulink.

. Input and output specification®©ne should use theport icon in theSources group

to get an input signal for the system and use@heport icon in theSinks group to
connect to the output of the system.

mFu.nc‘tion Block Parameters: Transfer Fecn §|
Transfer Fon

The numeratar cosfficient can be a vectar ar matrx expression. The denominatar
coefficient must be & vector. The output width equals the number of rows in the
rumerator coefficient. “'ou should specify the coefficients in descending order of
powers of g,

Parameters

Mumerator coefficient:

|

Denominator coefficient:
1] |

Abzolute tolerance:

|auto |

[o H Cancel ” Help] Spply

Figure 4.8. Transfer function parameters dialog box.

2007/
pagel

S
116 Chapter 4. Simulation Analysis of Nonlinear Systems
Example 4.1. Consider the nonlinear system model shown in Figure 4.9. It can be seen
that there are two nonlinear elements in the system. Using the Simulink program, one can
easily draw the block diagram of the nonlinear system, as shown in Figure 4.10.

Using the sophisticated Simulink program, the user can, in theory, draw the block
diagram of a control system of any complexity. The Simulink program also allows the
user to perform simulation analysis by its menu items or by relevant function calls. The
simulation results can be shown on the scopes provided within Simulink, or returned to the
MATLAB workspace so that they can be shown by the relevant MATLAB plotting facilities.
4.1.3 Simulation Algorithms and Control Parameters
When theSimulation menu in the Simulink model window is selected, it appears as in
Figure 4.11, where th€onfiguration Parameters menu item can be selected to further

| s+1
s2+45+3
u3
} v=1u-+ E "
Figure 4.9. An example of a nonlinear system.
0.707 [
Gain
4 > > s+l 1 ;:1
In1 s2+45+3 ° outl
Saturation Transfer Fcn Integrator
u+un3/6 |«
Fcn
Figure 4.10. The Simulink model (file:4mnl.mdl).

EEL GRS Format Tools Help

Start CirltT

Configuration Farameters. .. Ctrl+E
v Hormal

Aecelerator

External
Figure 4.11. Simulation menu.

S

4.1.

2007/
pagel

An Introduction to Simulink 117

specify the simulation algorithms and control parameters. The dialog box is shown in
Figure 4.12. The following parameters can be set from the dialog box.

1.

2.

5.

Start time andStop time edit boxes can specify the start and stop times of the simulation
process.

TheType list box in theSolver options column has two options, where “variable step”
and “fixed step” algorithms can be selected. In order to keep high simulation accuracy,
itis suggested to select variable step algorithms. Oftendled5 (Dormand-Prince)

and theode15s (stiff/NDF) algorithms are suitable for simulating control problems.

. The accuracy of the simulation results can be controlled bRéhetive Tolerance

option and thé\bsolute Tolerance option. The default error tolerancelis- 3, which

means that the relative error may reach to one thousandth. The default value is usually
too large and it is suggested to reduce L& 6 or 1e- 7. It should be noted that,
although the relative error tolerance is reduced significantly, the computation effort
required will not increase much, due to the use of the variable step algorithms.

. The minimum and maximum allowed computation step sizes can be set by filling in

the Min step size andMax step size edit boxes. If the actual step size goes beyond
the specified step size range in variable step simulation, an error message box will be
displayed.

The warning and error messages can be set bpilgnostics column.

After completing the specification of the control parameters, the Remulation/

Start can be selected to initiate the simulation process. A variable will be returned
automatically, and the matrixout can also be generated when the output port is used in the
Simulink model. The functiol pl ot (t out, yout) can be used to show the simulation
results.

Thesi m() function can also be used to initiate the simulation process. The syntax

of the function is

[¢, x, y] =si m(model_name 77, options)

E!Configutatiun Parameters: newmodel/Configuration

se]m—[Simulation time

Solver

Tata Import/Ezport
Optimization
[=-Diagnastics

- Sample TJM_ Trpe Tariable-step | Solwer: oded5 (Iormand-Frines) *
~Data Intezritr
-Conversion Maz step size: auto Relative tolerance: |te-3

~Connectivity

- o Min step size: auto dbsolute folerance: ,auto—
~Compatibility
-~Model Referencing Initial step =ize: auto

-Hardware Inplementation
. Model Refereneing Zero crossing control: |Use local setting ¥
[=-Real-Time Workshop

Comments

grmbols

Custon Code
-~ Debug
~Interface

! | B

Start time: [0.0 Stop time: [10.0

folver options

fild | Cancel | Help | Aoply |

Figure 4.12. Dialog box of control parameters.

2007/
pagel

118 Chapter 4. Simulation Analysis of Nonlinear Systems

where, the “model_name” is the file name of the Simulink model, with the suffikl
omitted. The argumen is the stopping time of simulation. The returned arguments
andy are, respectively, the time vector, state matrix, and output matrix of the system.

The control parameteopt i ons can be specified by the nset () function, whose
syntax is

opt i ons=si neet (property parameter 1 property 2 parameter? ---)

where the “property” is the name of the parameter, while the “parameter” is the value asso-
ciated with it. The relevant properties can be listed with the comn hel p si nset .
For instance, one may change the relative error tolerance by settiRglitfol prop-
erty to 10 by the statemer opt i ons=si nset (’ Rel Tol ’ , 1e-7) or simply by

opti ons. Rel Tol =le-7 .
When theopt i ons variable is modified, it can be used in the simulation process by
filling it to the si m() function.

4.2 Modeling of Nonlinear Systems by Examples

A series of examples related to control systems will be used to illustrate the use of the
Simulink program. A nonlinear ordinary differential equation, (ODE) example is used first,
followed by a multivariable system, a computer controlled system, and a time varying
system. It will be appreciated from these examples that systems with significant complexity
can be simulated using Simulink.

Example 4.2 (block diagram solution of nonlinear differential equations). Consider the
well-known Rdéssler chaotic equation, whose mathematical form is

x(t) =—y@) —z(@),
y(@) =x(@) +ay(?),
Z2(t) = b+ [x(t) — clz(2).

Selectingr = b = 0.2,¢ = 5.7, andx(0) = y(0) = z(0) = 0, the Simulink model can be
constructed and simulation analysis can be applied to the given system.

A simple trick for simulating ODESs is by assigning each integrator to a state variable to
represent the output as the staté); then the input to the integrator.is(z). The Simulink
model in Figure 4.13 can be easily established. The control parameters for simulation
can then be set accordingly. If one starts the simulation process, two variatlés
andyout will be returned. The time response of the three states are obtained with the

pl ot (tout, yout) command as shown in Figure 4.14(a).

If the statesc1(¢), x2(¢), andx3(z) are used as the three axes, the phase space trajec-
tories can be drawn as shown in Figure 4.14(b). The funatimmet 3() can further be
used to draw dynamically the trajectories of the phase space curve:

>> plot3(yout(:,1),yout(:,2),yout(:,3)) %or further using conmet3
conet 3(yout (:,1),yout(:,2),yout(:,3))

Many blocks in Simulink support vector operations, i.e., the block can easily process
the case when several inputs are placed into a vector signal by usikyithielock. If such

2007/
pagel

4.2. Modeling of Nonlinear Systems by Examples 119

Constantl

Integrator2

(a) time response of states (b) phase space curves

Figure 4.14. Simulation results of the Rossler equations.

> <

Outl

Integrator

b+(u[1]-c)*u[3]

u[1]+a*u[2]

-u[2]-u[3] —-u[2]-u[3]

(a) improved (file: c4mrossla.mdl) (b) thickened vectors (file: c4mross1b.mdl)

Figure 4.15. Another simulink description of the Rdssler equations.

a signal is put through an integrator block, the output signal is also a vector, whose channels
are the integrals of the input channels. Thus, the blocks in Figure 4.15(a) can be used to
rewrite the blocks in the Simulink model.

In the model, the blockcn is used to define the mathematical operation on the input
signals. The input to the block is the state of the system, and the input Earthgock is

120 Chapter 4. Simulation Analysis of Nonlinear Systems

double (3) [1 | double (3)
N

3 outl

Integrator

double|

double|
3 3
-u[2]-u[3] doublel —-u[2]-u[3]
(a) dimensions (c4mross2a.mdl) (b) data types (c4mross2b.mdl)

Figure 4.16. Enhancements of vector signal blocks.

denoted byi. If uis avectory[i{] can be used to denote the components aflitshannel.
Thus the model constructed is much easier than the one established in Figure 4.13, and itis
more easily maintained.

The vector signals can be visually enhanced in Simulink. For instanceothe
mat/Wide nonscalar lines menu in the model window allows the thickened line expression
for vector signals, as shown in Figure 4.15(b). If the user selectstineat/Signal dimen-
sions menu item, the dimensions of the signal will be displayed over the vector signals.
For instance, since the state variable is three-dimensional a “3” is displayed, as shown in
Figure 4.16(a). Th€ormat menu further provides the iteRormat/Port data types, which
allows the display of data types in the signals, as shown in Figure 4.16(b). These facilities
make the physical meanings more informative.

Example 4.3(simulation of multivariable delayed systems). Consider the multivariable
system in Example 3.19. Since there exists time delays in the transfer function matrix
of the open-loop system, the closed-loop function matrix cannot be expressed with the
f eedback() function. In Example 3.19, Padé approximations are used to approximate
the delay terms. There was no other way to verify the accuracy of the simulation results.
With the use of Simulink, the accurate model can be established as shown in Figure 4.17.
In the simulation model, the two input signals are assigned as the varigbksdu?2.

Recalling the Padé approximation used in Example 3.19, we can usg &1)
function to find the approximate simulation results for the multivariable system above when
each input acts individually:

>> gl11=tf(0.1134,[1.78 4.48 1], ' ioDelay’,0.72);
g21=tf(0.3378,[0.361 1.09 1],’'ioDelay’,0.3);
gl2=tf(0.924,[2.07 1]); 9¢g22=tf(-0.318,[2.93 1], ioDelay’, 1.29);
G=[911, gl1l2; g21, 9g22];
[n1, d1] =pader m(0. 72,0, 2); gll.ioDel ay=0; gll=tf(ni,dl)*glil;
[n1, d1] =pader m(0. 30, 0, 2); g21.ioDel ay=0; g21=tf(ni,dl)*g21;
[n1, d1] =paderm(1. 29,0, 2); g22.ioDel ay=0; g22=tf(nl, dl)*g22;
Gl=[911, gl2; g21, g22];
Kp=[0. 1134, 0. 924; 0.3378,-0.318]; &=ss(GL*Kp);
[yl,x1,tl]=step(XR.a, R.b, R.c, R.d, 1, 15);
[y2,x2,t2] =step(R.a, &.b, R.c, R.d, 2, 15);

2007/
pagel

2007/
pagel

S
4.2. Modeling of Nonlinear Systems by Examples 121
.| 01134
"|1.782 +4.48s+
Matrix G11(s)
Gain
.| 0924
u2 Tl 2.07s+1
G12(s)
N 0.3378
0.3612 +1.09s+
G21(s)
o -0.318
Tl 293s+1
G22(s) Delay 22
Figure 4.17. Simulink model of the multivariable systerdrfanimo.mdl).
Step Response
From: In(1) From: In(2)
0.4
g o2
3
g o r¥
é -0.2
_ 0.4
g 0.2
" 0
0 5 10 15 0 5 10 15
Time (sec)
Figure 4.18. Comparisons of the multivariable system simulation results.

By simulating the system with Simulink, we can obtain the step response of the system
driven by the two signals individually. They can be drawn together with the approximation
results, as shown in Figure 4.18:
>> ul=1; u2=0; [ttl,x1,yyl]=sin(’ cd4nm no’, 15);

ul=0; u2=1; [tt2,x2,yy2]=sin(’ c4mm no’, 15);

subpl ot (221), plot(tl,y1(:,1), :",tt1,yyl(:,1))
subpl ot (222), plot(tl,yl(:,2), :",tt1,yyl(:,2))
subpl ot (223), plot(t2,y2(:,1)," :’,tt2,yy2(:,1))
subpl ot (224), plot(t2,y2(:,2), :",tt2,yy2(:,2))

It can be seen from Figure 4.18 that the approximate simulation results are quite close
to the exact results.

Example 4.4(computer control system simulation). Consider the classical computer con-
trolled system [53] shown in Figure 4.19, where the controller is a discrete controller, with
sampling interval o seconds. The ZOH is the zero-order-hold, and the plant is given by
S

2007/
pagel

122 Chapter 4. Simulation Analysis of Nonlinear Systems

R Y(z)
— 4# ZOH H D(z) —% ZOH H G(s) E—
_ T T T

Figure 4.19. Block diagram of a computer controlled system.

Out2

K(z-z1)

[Ju > > [Lb = e L
= (z-p1) s(s+a) Ooutl
Step Zero-Order Discrete Zero—-Order zero—pole |Zero—Order
Hold Zero—-Pole Hold1 Hold2

Figure 4.20. Simulink model for a computer controlled systednfcompc.mdl).
a continuous model. Assume that the plant and controller are given, respectively, as

1l-e! 7—e01F
T 1_e01T ;_goT°

G(s) = D(z)

s(s+1)°
wherea = 0.1. It is not possible to write out the corresponding differential equation for
this system, since both continuous and discrete elements exist in the system.

Simulink has the advantage that it can solve this type of hybrid problem. From the
given block diagram of the system, the Simulink model can be easily established, as shown
in Figure 4.20. In the system model, a few variahied’, z1, p1, K are used, where the
former two should be specified by the user, while the latter three should be calculated. Inthe
first ZOH block, the sampling interval is setTg and for simplicity, the rest of the blocks
are assigned te 1, indicating that they inherit the sampling intervals of their input signals.

It is not necessary to put the value®fin each discrete block.

If @ = 0.1, and the sampling interval is given By= 0.2 seconds, the step response

of the closed-loop system can be obtained as shown in Figure 4.21(a):

>> T=0.2; a=0.1; zl=exp(-0.1*T); pl=exp(-T); K=(1-pl)/(1l-z1);
[t,x,y]=sim cd4ncompc’, 20);
plot(t,y(:,2)); hold on; stairs(t,y(:,1))

If the sampling interval is further increasedfo= 1 second, the step response of the
closed-loop system can be obtained as shown in Figure 4.21(b). It can be seen that when
the sampling interval increases, the difference between the continuous and discrete signals
increases:

>> T=1; zl=exp(-0.1*T); pl=exp(-T); K=(1-pl)/(1l-z1);
[t,x,y]=sinm cdnconpc’, 20);
plot(t,y(:,2)); hold on; stairs(t,y(:,1))

In fact, with the conversion algorithm given in Chapter 2, the discrete version of
the plant model can be found under sampling inte@al Thus the closed-loop discrete

2007/
pagel

4.2. Modeling of Nonlinear Systems by Examples 123

1.4 T T T 1.5

1.2

081
061
0.5
041

021

0 5 1‘0 1‘5 20 0 5 1‘0 iS 20
(@) T = 0.2 seconds (b) T = 1 second
Figure 4.21. Step responses for different sampling intervals.

J_L__’ K(z-z1) a »(D

(z-p1) s(s+a) Outl
Step Zero-Order D(2) G@)
Hold

Figure 4.22. Simplified computer control system (filethacomd.mdl).

system can be obtained. The step response of the system can be obtained with the following
statements:

>> T=0.2; zl=exp(-0.1*T); pl=exp(-T); K=(1l-pl)/(1-z1);
Dz=zpk(zl,pl,K 'Ts',T); G=zpk([],[0;-a],a); &=c2d(GT);
GG=zpk(feedback(Gz*Dz, 1)), step(GQH

The controller can be obtained as

G.(s) 0018187z +0.9939(~ 09802
& = (2 -09802(:2— 1.80L + 0.8368

The statements can be used to get the same results with the Simulink model, and they are
much simpler. However, this method has its own limitations.

Further investigation of the Simulink model shows that the ZOH after the controller
D(z) isredundant, since the outputb{z) is already a discrete signal and remains the same
within a sampling interval. Thus it can be removed. The ZOH on the output signal can also
be removed. The simulation model can finally be reduced to the one shown in Figure 4.22,
without causing any problems.

Of course, the system can be further simplified in the Simulink model, since all the
ZOHs can be removed, as shown in Figure 4.23. Although this is not an official method
from a theoretical aspect, the approximation is correct under Simulink.

Example 4.5(simulation of time varying systems). Assume that the plant model is given
by 5(t) + € %% y(r) + e sin(2t + 6)y(r) = u(r). Now consider a PI control system,
shown in Figure 4.24, wher€, = 200 andK; = 10. The width of the saturation element
isé =2.

It can be seen that, apart from the time varying block, the modeling of the rest of
system is very straightforward. In the time varying part, assume that the first-order explicit

2007/
pagel

S
124 Chapter 4. Simulation Analysis of Nonlinear Systems
K(z-z1) a
> »(1
(z-p1) s(s+a) %
Step D) G()
Figure 4.23. Further simplified Simulink model (file4Amcom&.mdl).
r(1) Kp+% L %/(S u(t) plant y(®)
Figure 4.24.Block diagram of the time varying system.
e 02 exp(-0.2*u) [« d @
Clock
Fcn
’_ Kp.s+Ki | u o x| 1 X1 ‘&)
Step Transfer Fcn Saturation Integratorl Integrator Outl
exp(—5*u)*sin(2*u+6
Productl
Fcnl
Figure 4.25. Simulink model (file: 4mtimv.mdl).
differential equations(¢) = y(t), x2(t) = y(¢) can be established as
x1(t) = x2(1),
x2(1) = —e 02 xo(t) — € sin(2t + 6)x1(t) + u(r).

Similar to the method in Example 4.2, an integrator should be assigned to each state
variable. The Simulink model in Figure 4.25 can be established, where the time varying
function can be set up with Simulink blocks.

Once the simulation model is established, the following MATLAB statements can be
issued to simulate the system. The step response of the time varying system can be obtained
as shown in Figure 4.26.
>> opt =si mset (" Rel Tol ', 1e-8); Kp=200; Ki =10;

[t,x,y]=sim(’cd4mim/’ ,10,0pt); plot(t,y)
S

2007/
pagel

4.2. Modeling of Nonlinear Systems by Examples 125

15

0.5r

0
0 2 4 6 8 10

Figure 4.26. Step response of the time varying system.

e 0.2

exp(-0.2*u}« ! @
Clock
y(®)

x1(1)
e
Outl

Fcn

Kp.s+Ki |
s Ll
Step Transfer FenSaturation

exp(—-5*u)*sin(2*u+6)&

Fcnl

Figure 4.27. Impulse response of a time varying systedm(@mva.mdl).

Example 4.6(impulse response). Consider again the time varying model of Example 4.5.
Assume that the input signal is a unit impulse signal. Here Simulink is used to find the
impulse response of the time varying system.

Since there is no unit impulse block provided in Simulink, the step input block can
be used instead to approximate it. If the step time isherea is an extremely small value,
the initial value of the step block can be set & ,land the final time can be set to 0. The
simulation model in Figure 4.27 can be used to model the whole system.

Theoretically, wheru — 0, the impulse signal can be approximated. In real sim-
ulation, a can be set to relatively large values, for instance= 0.001. The impulse
response of the system can be obtained with the following MATLAB statements, as shown
in Figure 4.28:

>> opt=si nset (' Rel Tol’, 1e-8); Kp=200; Ki =10; a=0.001;
[t,X,y]=sim(c4ntinva ,10,0pt); plot(t,y)

In fact, even though is selected as a large value, for instance 0.1, a very good
approximation to the results can still be obtained.

In real applications, the inputs with arbitrary periodic signals can be established as
well with the use of theRepeating Sequence block. Even more complicated signals or
system behaviors can be modeled with the use of the S-functions.

2007/
pagel

126 Chapter 4. Simulation Analysis of Nonlinear Systems

0.1

0.08 -

0.06

0.04

0.02

0

0 2 4 6 8 10

Figure 4.28. Impulse response of the time varying system.

4.3 Nonlinear Elements Modeling

A well-known technique for trying to predict limit cycles in nonlinear systems is the de-
scribing function method [51]. Since this is an approximate method, it is very useful for
comparative purposes when determining solutions by simulation. In this section nonlinear-
ity modeling is discussed in more detail and then a simple system possessing a limit cycle
is simulated.

4.3.1 Modeling of Piecewise Linear Nonlinearities

Static nonlinearities of any complexity can be constructed using existing Simulink blocks.
In this section, Simulink modeling of single-valued and double-valued nonlinearities is
presented.

The single-valued static nonlinearity can be easily established with the one-dimensional
look-up table block. For instance, consider the piecewise nonlinearity shown in Fig-
ure 4.29(a), for known turning pointsi, y1), (x2, ¥2), ..., (xXny—1, YN—1), (xy, yn). One
may select a pointg such thatxg < x3. The valueyg can be easily computed from the
nonlinear behavior. Also for another poitW 41 such thatey 1 > xy, the value ofyy 41
can be obtained. Thus the two vecterandy can be established such that

x:[X0, X1, X2, ---’xN7xN+l] ; y:[Y0, Y1, y2, "'ny’yN+l])

Double click the one-dimensionabok-Up Table block, to display the dialog box
as shown in Figure 4.29(b). One should specify inMbetor of input values andVector
of output values edit boxes, respectively, the vectorsand y, and then a single-valued
nonlinearity can be set up successfully.

The construction of a general doubled-valued nonlinearity is not as simple as con-
structing the single-valued case. For specific input signals it is possible to define these
nonlinearities in terms of the input and its derivative, since one path around the nonlinear
element will be taken when the input is increasing and another when it is decreasing. Thus,
the approach will be valid for a sinusoidal input but not for a random input, or indeed for an
input whose derivative changes within the double-valued region. An approach which can
be use for these restricted situations is given below.

4.3. Nonlinear Elements Modeling

127

X1 X2 X3

=

XN—-1 AN

(a) single-valued nonlinearity

Block Parameters: Look—Up Table =
Lool—lUp Table
FPerform 1-D linear interpolation of input walnes using the
specified table. Extrapolation iz performed cutside the
table boundaries.
Farameters
Vector of input walues:
Vector of cutput wvalues:
[
| s======c=====o Show additionsl parameters ——————-———-

0K | Cancel | Help | Apply

(b) Dialog box of parameters

Figure 4.29. Construction of single-valued nonlinearities.

‘ @1

(1,0 (2,0)

(a) relay loop

2)H 3D

|

i / (1,0 (2,0

(b) saturated relay loop

Figure 4.30. Loop function expression.

Example 4.7.When there exist loops in the nonlinearity, apart from a few existing blocks in

the Simulink block library, a general nonlinearity cannot be easily establishedbswileh
block can be used to tackle the problem.

Now consider the two double-valued loop nonlinearities shown in Figures 4.30(a) and
(b). First, consider the loop nonlinearity shown in Figure 4.30(a). It can be seen that the
loop function may be expressed by a single-valued nonlinearity when the input signal is
increasing and by another single-valued nonlinearity when decreasing. This means that the
single-valued nonlinearity is conditional. For instance, the two single-valued nonlinearities
in Figure 4.31 can be used to express the loop nonlinearity in Figure 4.29(a).

The Simulink blockMemory can be used to extract the input signal at the previous
time instance. Thus, the Simulink model shown in Figure 4.32 can be used to express
the double-valued loop nonlinearity. A comparative block is used to check whether the
input signal is increasing or not, i.e., by checking whether the current value is greater than
its previous value or not. A switch block can be used to control the single-valued block
selection, with th&hreshold set to 0.5. If it is increasing, the switch block is set to the
increasing block single-valued nonlinearity; otherwise the decreasing one is chosen. In this

way, the double-valued loop nonlinearity can be established.

The two single-valued nonlinearities can be expressed individually by two table-look-

up blocks given by

xl = [_39 _11 _1+ €, 27 2 + €, 3]7 yl = [_17 _19 01 07 11 1]9
x2=[-3,-2,-2+4+¢,1,1+4¢,3], y=[-1,-1,0,0,1, 1],

2007/
pagel

2007/
pagel

128 Chapter 4. Simulation Analysis of Nonlinear Systems

21 1

(-1,0 (=2,0)
2.0 2,0

—2 1
L1 (=2,-1

(a) when the input increases (b) when the input decreases

Figure 4.31. Loop function can be expressed as single-valued functions.

-

g

u(t) increases l_
»
Lad

ll

u(t) decreases
]

@D > .
i <
Relational Switch outl
Operator

Memory

Figure 4.32. Double-valued relay nonlinearity (file:4onloop.mdl).

wheree can be set to a very small number. For instance, it can be set to the MATLAB
reserved consta®ps.

Consider now the nonlinearity shown in Figure 4.30(b). The previously established
Simulink model can still be used to model the nonlinearity. The new sets of data should be
used to modify the table-look-up blocks

X1 = [_31 _21 _17 27 31 4]9 yl = [_19 _11 07 09 1a 1]1
x2=[-3,-2,-1,1,2,3], yo=[-1,-1,0,0,1,1].

The Simulink model for the new loop nonlinearity can be expressed as shown in
Figure 4.33.

It can be seen therefore that single-valued or double-valued static nonlinearities of
any complexity can easily be modeled by Simulink blocks using similar methods. The
nonlinearity can be used directly in simulation.

Example 4.8.Consider the double-valued nonlinearity shown in Figure 4.30(b). One may
observe the distortion in the sinusoidal signals through it. To observe this distortion, the
Simulink model can be established as shown in Figure 4.34.

If the magnitudeA of the sinusoidal signal is set to 2, 4, and 8, the output of the
nonlinearity can be obtained as shown in Figure 4.35.

4.3. Nonlinear Elements Modeling 129

7__£

u(t) increases

> —

u(t) decreases

Memory Operator

Figure 4.33. Double-valued nonlinearity (file:4mloopa.mdl).

J/

u increasing
»

u decreasing
\/ i} > >= | » I:I
Sine Wave |—> L] -
[] Relational Switch Scope

Memory Operator

Figure 4.34. Simulink model for sinusoidal distortions (file4rasin.mdl).

0 2 4 6 8 10

Figure 4.35. Nonlinear distortion of sinusoidal inputs.

4.3.2 Limit Cycles of Nonlinear Systems

Nonlinear systems can have behaviors which are not present in linear systems. One such

situation is the existence of a limit cycle, or self-oscillation, which can be attained when the
system is released from different initial conditions.

2007/
pagel

2007/
pagel

S
130 Chapter 4. Simulation Analysis of Nonlinear Systems
double-valued 1| a0 10 *2(t)
nonlinearity s s+1
Figure 4.36. Block diagram of a nonlinear feedback system in Exardle
1
u increasing
jn
"_l u decreasing M)
» = — (1
- . s+l Outl
Relational SWltchIntegrator Transfer Fcn
Operator
Memory /KL
\I‘
Figure 4.37. Simulink model for Exampk9 (file:c4mlimcy.mdl).
1
0.5r
ol
-3 ‘ ‘ : ‘ . ‘ . -05
0 5 10 15 20 25 30 35 40 -3 -2 -1 0 5
(a) time domain simulation (b) phase plane trajectory
Figure 4.38. Simulation result of nonlinear feedback system.
Example 4.9. Consider the typical nonlinear feedback system shown in Figure 4.36, with
the nonlinear element shown in Figure 4.30(a), whose Simulink model is established in
Figure 4.32. For such a feedback system, the Simulink model can be built up as shown in
Figure 4.37. In the simulation model, the initial value of the integrator is set to one.

Let the simulation terminate time be 40 seconds, and to keep a high accuracy set the
relative error toleranceRelative tolerance) to 10-8, or to an even smaller value. With the
following MATLAB code, the time response of the system, when there is no external input
signal, can be obtained as shown in Figure 4.38(a).
>> [t,x,y]=sin(’cdmincy’,40); plot(t,y)

It can be seen that the signalg(¢t) andx2(¢) reach steady-state oscillations after the
initial transients have died away. With the graphics funct pl ot (y(:, 1), y(:, 2))

S

2007/
pagel

4.4. Linearization of Nonlinear Models 131

provided in MATLAB, the phase plane trajectory appears as in Figure 4.38(b). It can be
seen that the phase plane trajectory settles down at a closed curve, which is referred to as a
limit cycle. A limit cycle is an interesting feature that may occur in a nonlinear system.

4.4 Linearization of Nonlinear Models

Linear systems are far easier to analyze and design than nonlinear ones. Unfortunately,
system models which must be dealt with in practice are rarely linear. In this case a linear
approximation of the system is often required to simplify the analysis and design procedures.
One procedure for doing this is the linearization process.

System linearization extracts an approximate linear model, i.e., a linear model in a
neighborhood of the operating point.

Consider the nonlinear dynamic system model

Xi(t) = fi(x1,x2,...,xp,u,t), i=21,2,...,n. (4.1)

Anoperating pointis defined as the values of the state and input variables when the derivatives
of the state variables approach zero. It can be obtained by solving the nonlinear equations
defined in (4.1) such that

filxe, x2, ..., xp,u, 1) =0, i=1,2,...,n, (4.2)

which can be solved numerically. Denotetythe operating point with an input signad.
The nonlinear system can be approximated by

A%, :2”: afi(x, u)

=1 8xj

Auj. (4.3)

p
ofi(x,u

iy + 3
j=1 !

X0,U0 X0,U0

Using the new state variable§) = Ax(¢) for the system model, the linearized model
can be obtained as follows:

2(t) = Aylyguo 2(E) + Bilyg uo v(1), (4.4)
wherev(r) = Au(t), and

af1/0x1 --- 9f1/0xn of1/ouy -+ 9f1/oup
A = , B = . (4.5)
fu/0x1 -+ Bfu/0xy Ofp/0us -+ 0fn/0u,
Useful functions for performing the linearization of nonlinear systems are provided

in Simulink. The user can use the i n() function to find the operating point. The syntax
ofthetri m() functionis

[x, u, y, z] =tri m(nodel _nane, xq, ug)

wherenodel _nane is the Simulink model name. The variables ug are the initial guess
for the states and input at the operating point. A constrained optimization technique is used

2007/
pagel

S
132 Chapter 4. Simulation Analysis of Nonlinear Systems
to obtain the operating point. For systems without nonlinear elements, the initial guess of
X0, uo can be omitted. The actual operating pointis returned in y, and the values of the
derivatives of the state variables are returnegd.ifheoretically speaking, the derivatives
of the state variables at the operating point should be equal to 0.
Example 4.10. Assume that the Simulink model of the nonlinear system is as given in
Figure 4.10 and the name of the Simulink model file4sml . ndl . Using the MATLAB
statements
>> [x0,u0,y,dx]=trim’cd4ml’,[],1)
the operating point of the system can be obtainesipas: [0.1281 0, 0.0905", 1o = 1.
Having obtained the operating point, we can obtain the linearized state space model of
the nonlinear system by the corresponding MATLAB function provided in Simulink. The
syntaxes of these function are
[A, B, C, D] =l i nnnd2(model_namexq, ug)
[A, B, C, D] =l i nnod(model_namexq, ug) , % delayed systems
[A, B, C, D] =dl i nnmod(model_namexg, ug) , % discrete-time systems
wherexg, ug denote the operating point. The linearized state space expression is returned
in (A,B,C,D). If one omits thexg, ug variables (operating point), the default linearized
model can be obtained. It should be noted that different types of systems can be linearized
with the different functions listed above.
Consider again the nonlinear system model analyzed above. Under the above operat-
ing point and, with the MATLAB statements
>> [x0,u0,y,dx]=trinm(’ c4ml’ ,[],1);
[A B, C D =linmd2(’ c4ml’, x0,u0); Gl=ss(A B, C D,
the state space expression of the linearized model of the original nonlinear system can be
obtained as
-0707 1 1 0
x(t) = -2 -4 -3|x@®) 4+ |1]|u@), y) =[1,0,0]x().
0 1 0 0
Example 4.11. Consider again the linear DC (direct current) motor problem given in
Example 2.11. The Simulink description is shown in Figure 4.39, and by using the MATLAB
commands
>> [a, b,c,d]=linnd2(’ c4dcnot’);
G=ss(a, b,c,d); minreal (zpk(Q)
the pole-zero-gain model can easily be obtained as
Gs) 1118525020491(s + 5.882) (s + 6.667)
S)=
(s + 1796)(s + 98.9)(s + 8.3)(s2 + 0.89s + 5.8)(s2 + 68265 + 2248
which is the same as the one obtained earlier in Example 2.11.
S

BbOOK

2007/1
page 1
4.4. Linearization of Nonlinear Models 133
0.212
Gain
[[Trerfae o2 ol o s S22 bl o oD 22 ey 2
Step Transfer Fen7 Transfer Fcn6 Transfer FenS Transfer Fcn3 Transfer Fen2 Transfer Fen] — Transfer Fcl
01 |4
0.01s+1 [
,ml‘ Transfer Fcnd
0.01s+1 [
Transfer Fcn8
Figure 4.39. Simulink model for the DC motor system (filddcmot.mdl).
. .| 01134
"1 den(s)
I G11(s)
Gain 0.924
Tl 207511
G12(s)
L,| 03378
den(s)
G21(s)
| -0318
"l 293s+1
G22(S) Delay 22
Figure 4.40. MIMO Simulink model (file: 4mmdiyi.mdl).
Example 4.12.Consider the multivariable system in Example 4.3. If a linearized model is
expected, the Padé approximation should be used in linearizing the delay terms. One may
set the edit box oPade order (for linearization) to 2 in the delay blocks, where second-
order Padé approximation can be used. The Simulink model for the multivariable system
can then be constructed as shown in Figure 4.40.

When the Simulink model is established, the following statements can be used in the
linearization process, and one can obtain the linear state space model. The exact simulation
results are obtained, together with the linearized model, as shown in Figure 4.41. It can be
seen that the simulation results of the linearized model are very accurate.
>> Kp=[0. 1134, 0. 924; 0.3378,-0.318];

[A B C D =linmd(’'cd4mmdl y1'), step(ss(A B, C D))
The state space model can be extracted from the Simulink system
r —833-2315 0 O 0 0 0 0 637 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0-04831 0 0 0 0 0 0 0 0 0
0 0 0-20 —-13333 0 0 0 0 0 357 0
0 0 0 1 0 0 0 0 0 0 0 0
A 0 0 0 0 0-4.6512 —7.2111 0 0 0 0-0.1085
- 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0-2.5169 —0.5618 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0-3.0194 —2.7701 0
0 0 0 0 0 0 0 0 0 1 0 0
L o0 0 0 0 0 0 0 0 0 0 0-0.3413

2007/
pagel

S
134 Chapter 4. Simulation Analysis of Nonlinear Systems
Step Response
From: In(1) From: In(2)
g O.Zﬁ
3
E 0
g -0z k_/l
g
< 0.4
g o3
3 02
E 0.1
0
0 5 10 15 0 5 10 15
Time (sec)
Figure 4.41. Comparisons of exact and approximate results.
K(z-z1) a
) = L L e — T
I e | e Pl
Step Zero-Order Discrete Zero—Order zero-Pole |Zero-Order
Hold Zero—Pole Hold1 Hold2
Figure 4.42. Another Simulink model (file:4oncomg@2.mdl).
pT_[0 0 03378 0 0 0 0 01134 0 01134 0 03378
] 0 0 -0318 0 0 0 0 M24 0 Q924 0 -0318 |’
¢ [—16667 0 044638 0 0 0 0 0 M63708 O 0 0
- 0 o0 0 —40 0-93023 0 O 0 0 ®3573 -0.10853 |
It should be noted that tHei nnod2() function cannot be used in the linearization
process, since the delay term cannot be handled correctly.
Example 4.13.Consider the computer controlled system studied in Example 4.4. For sim-
ulation analysis and linearization, the Simulink model can be constructed witmer t
andout port used inthe system model. The final Simulink model is shown in Figure 4.42.
The following statements can be used in the linearization problem, where the discrete-
time transfer function can finally be obtained:
>> T=0.2; a=0.1; zl=exp(-0.1*T); pl=exp(-T); K=(1-pl)/(1l-z1);
[A B, C D =dlinmd(’ c4nconp2’); zpk(ss(A B CD ’'Ts ,0.2))
The linearized model can be written as
Glo)= 0.018187z+0.9934(z—0.9802
© = (2=0.9802(:2—1.801: +0.8368
It can be seen that the results are exactly the same as those of Example 4.4. It should be
noted thadl i nnod() should be used rather tham nnmod2() .
S

2007/
pagel

S
4.4. Linearization of Nonlinear Models 135
Problems
1. Become familiar with the Simulink library groups and observe the use of the commonly
used blocks so that you can easily use them in solving simulation problems. A handy
new group which contains the frequently used blocks can be set up for later use.
2. Consider the linear differential equation
y@ 4+ 5y® 4 63§ + 4y + 2y = € + e ¥ sin(4r + 7/3).
If the initial conditions are given by(0) = 1, y(0) = 5(0) = 1/2, y®(0) = 0.2,
establish the Simulink model and plot the simulation results. The analytical solutions
to linear differential equations can be evaluated withdkel ve() function. Try to
find the analytical results with this function.
3. For the time varying differential equation
y@ +5iy® 4 625 + 4y + 267y = e + e sin(4r + 7/3),
assume that(0) = 1, y(0) = 5(0) = 1/2, y®(0) = 0.2. Draw the Simulink model
to study the time varying system.
4. The Apollo trajectory(x, y) can be described by the equations
.o wrx4+p) ople—pt) : wry py
X=2y+x- 3 g V=2 +y-—5 -,
n 2 " 2
wherep = 1/8245, p* = 1—pu, r1 = /(x + w2+ y2, r2 = /(x — 92+ y2.
Assume thatc(0) = 1.2, x(0) = 0, y(0) = 0, y(0) = —1.04935751. Try to
establish a Simulink model and draw the trajectory of Apollo.
5. Forthe well-known Van der Pol nonlinear differential equation describgay(y?—
1)y + y = 0, draw the phase plane trajectory and study its limit cycles for different
initial conditions.
6. For the famous chaotic Lorenz system
x1(t) = —Px1(t) + x2(t)x3(2),
x2(t) = —px2(t) + px3(1),
x3(t) = —x1(t)x2(t) + ox2(t) — x3(7)
with 8 = 18/3,0 = p = 10 andx1(0) = x2(0) = 0, x3(0) = 1010, try to establish
a Simulink model and draw the three-dimensional phase space trajectory of the results.
7. Consider the two input—two output system described by
225 -5 -125 -05 4 6
. _|225 —-425 -125 -0.25 + 2 4 {00 0 1
*Zlo2s —05 -125 -1 |*T|2 2" Y7o 2 0o 2/
125 -175 -025 -0.75 0 2
S

136

2007/
pagel

Chapter 4. Simulation Analysis of Nonlinear Systems

10.

11.

If the inputs are given by sinand cos, construct the Simulink model and draw the
simulation results.

. For a 4x 4 multivariable system given by

1/(1+4s) 0.7/(1+5s) 0.3/(1L+5s) 0.2/(1+5s)
0.6/(1+5s) 1/(1+4s) 0.4/(1+5s) 0.35/(1+ 5s)
0.35/(1+5s) 0.4/(1+5s) 1/(1+4s) 0.6/(1+5s)
0.2/(1+5s) 0.3/(1+5s) 0.7/(1+5s) 1/(1+4s)

G(s) =

construct its Simulink model and draw the simulation results when a unit step input
signal is applied to each input channel individually. Compare the results with the one
obtained with thest ep() function.

. For a given implicit differential equation

sinx1x1 + COSx2x2 + x1 = 1,

— COSx2xX1 + Sinx1x2 + x2 = 0,
if x1(0) = x2(0) = 0, numerically solve the differential equation using simulation
method.

Establish a Simulink model for the block diagram of a nonlinear system shown in
Figure 4.43. Observe the output signal for the unit step input.

51

~05 30 1
> —0.4s

_] ‘ 0.5 € 08s +1 s

- _25

30
s2 4655 +1

Figure 4.43.Block diagram in Problem.0.

Construct a Simulink model for the nonlinear block diagram shown in Figure 4.44. If
the amplitude of the input step signal is 1.1, observe the output signal.

10 y(@)
o 1 1 s(s +1)2
1]
1

Figure 4.44. Nonlinear system block diagram in Probleirh.

onN

r(t)

2007/
pagel

4.4. Linearization of Nonlinear Models 137

12. If the Simulink model of a nonlinear system is given in Figure 4.45, write down the
mathematical expression of the system from the Simulink model.

Integrator2 Integrator3

sin(u(1)*exp(2.3*(-u(2))))

Fcn

Product Clock
Figure 4.45. Simulink model for Problerh2.

13. Find the overall system model using MATLAB for the feedback systems shown in
Figure 4.46. Try to use Simulink to get the closed-loop system model. Is there any
problem in using Simulink, and if so, why? Obtain the overall system model by
hand calculation or by direct call of MATLAB functions such seri es() and

f eedback() .

s% 4453 + 552 + 105 + 8
. = s4 4 1053 + 3552 + 505 + 24

s+2
= s+1

SZ +55+4
(s+3)(s+8

@ (®)
Figure 4.46. The block diagrams for Probleds.

14. For a delayed differential equation

0.2y(t — 30)
1+ y10(z — 30
if y(0) = 0.1, model the equations with Simulink, and simulate the system to draw
they(¢) curve.

dy(s)/dt = —0.1y(1),

15. For the neutral-type delayed differential equation
x(t) = A1x(t — 11) + A2x(t — 12) + Bu(r),

wherer; = 0.15, o = 0.5 and

—13 3 -3 002 O 0 0
A; =106 -116 62|, A,=| 0 003 O |, B=|1],
207 —-207 113 0 0 004 2

try to establish a Simulink model to find the solutions of the system.

138 Chapter 4. Simulation Analysis of Nonlinear Systems

16. Represent the block diagram shown in Figure 4.47 in Simulink and then perform a
linearization to find the closed-loop transfer function and a state space model.

s+ 05 20
-
s+0.1 s(s+2)(s+10)

Figure 4.47.The block diagram for Problerh6.

17. Consider the well-known benchmark problem for testing a computer aided design en-
vironment (the F-14 airplane problem [54]). The linear model is shown in Figure 4.48.
The parameters in the diagram are given by

7, = 0.05, oy = 3.0, a = 25348 b = 64.13,
Vi, = 6904, 0, = 5.236x 1073, Z, = —63.9979 M), = —6.8847,
Uo = 6894, Z,, = —0.6385 M, = —0.6571 M,, = —5.92x 1073,

w1 = 2971 wp =4.144 1, =0.10, 7, = 0.3959

Kp =0.8156 K, =0677Q Ky =—-3.864 Kr =-1745

Select the input and output as= n(t) andy(t) = Nz, (¢) with

1
Nz,(t) = 35 1=w(®) + Uog (1) + 22.84(1)].

Try to show the state space expression and find all the poles and zeros of the system.

n(t)
—_—

s+ 1 L

ac(t)

s+ w1 q(t)
s+ w2

1 () 1
s +1 Upg

Figure 4.48.The F414 benchmark problem.

2007/
pagel

2007/
pagel

Chapter 5

\i: Model-Based
- Controller Design

For systems control, broadly speaking, there are three major stepmddeling,analyis
anddesign, also known as theriad” process. If you are given a system to control, you
probably have to go through this “mad” process, or loop, to achieve a satisfactory control
performance.

For modeling, in Chapter 2 we discussed mathematical models of linear feedback
control systems, where we focused more on various model forms and their conversions
rather than on how to build a model from experimental results, which is a large subject area
known as “system identification” only very lightly covered in Sec. 2.7.

For analysis, the available methods may typically be classified into time domain or
frequency domain analysis. Equipped with the techniques from Chapter 3, given models
of the plant and a controller, we can find in detail the time domain and frequency domain
properties.

Now, we are ready to discuss the design of controllers. Given a plant model, how
does one design or synthesize a controller so that the resulting system meets certain desired
specifications? Since the controller design is dependent on the given model, we call the
controller design “model-based.”

In this chapter, frequency domain model-based controller design methods will be
introduced for the cascade lead-lag compensator design (Sec. 5.1), followed by three time
domain model-based controller design methods. They are the popular linear quadratic (LQ)
optimal control method (Sec. 5.2), pole placement techniques (Sec. 5.3) and decoupling
methods (Sec. 5.4). We will also discuss state observers and observer-based control. In
Sec. 5.5, the SISOTool, an interactive controller design tool in the Control Systems Toolbox
used mainly for single input—and single output (SISO) systems, is briefly demonstrated.

It should be noted that the “mad” process, in practice, may be iterative; that is, achiev-
ing a successful control system design may need several rounds of modeling, analysis, and
design.

139

2007/
pagel

S
140 Chapter 5. Model-Based Controller Design

5.1 Cascade Lead-Lag Compensator Design

5.1.1 Introduction to Lead-Lag Synthesis

In the early days of control system design, controllers were usually implemented in analog

form. Due to its simplicity, the phase lead-lag compensator was a popular form of controller

since it can be easily implemented using a passive RC (resistor and capacitor) network or

an RC network with an operational amplifier.

Basically, there are three commonly used compensators, namely, the phase lead com-
pensator, phase lag compensator, and phase lead-lag compensator. Note that the compen-
sator, or the controlleiG . (s), is usually applied in cascade (series) connection to the plant
modelG (s).

Phase lead compensator
The equivalent RC network to realize a phase lead compensator is shown in Figure 5.1(a).
We denote the impedances By = R1/(1+ R1Cs) andZ> = R». The transfer function
of the phase lead network can be written as
Uy (s) Z 11+aTs
G = = =— , 5.1
=0 " 7142 a 14Ts ®1
where
R1R R R
L o k) (5.2)
R1+R> R2
Obviously,a > 1. In general, the phase lead compensator can be written as
1+aTs
Go(s) = Ko———. 5.3
c(8) c 1+Ts ()

The pole-zero location of the compensator is sketched in Figure 5.1(b). &iack,
the pole is always located on the left-hand side of the zero. For some diffésetite Bode
and Nyquist diagrams of the lead compensator With= 1 are shown in Figures 5.2(a)
and (b), respectively, through the following MATLAB statements:

z1 C 4 1m
C
Ry
© L T _1 _i
T oT Re
Zgi ~ >
uj Uo
Jr
(a) lead network (b) pole-zero positions
Figure 5.1. Lead compensator.
S

2007/
pagel

5.1. Cascade Lead-Lag Compensator Design 141

>> fi1=figure; f2=figure; T=1;
for al pha0=1.5:0.5:5
Gl=tf ([al phaO*T, 1]/al phaO, [T, 1]);
figure(fl), nyquist(Gl);hold on;figure(f2), bode(Gl); hold on
end

It can be observed that wheris large, the gain compensation is small but the phase
compensation is large.

Example 5.1. Consider a plant model given by

100

G =00k 11

The behavior of a feedback system with a lead compensator for the above plant model is
illustrated in the frequency domain through this example.

The gain and phase margins of the system with the plant alone in the loop are obtained
using the following MATLAB statements:

>> G=tf(100,[0.04,1,0]); [Gm Pm Wg, Wp]=nargi n(§, bode(Q

It is found that the phase margin is. 2843 at a frequency of 46.9701 rad/sec, with an
infinite gain margin. The Bode diagram of the open-loop model is shown in Figure 5.3(a),
where the phase margin is marked.

The phase margin can be increased by introducing a phase lead compensator given by
G.(s) = (0.0262% + 1)/(0.0106 + 1). The Bode diagram of the compensator is shown in
Figure 5.3(b). In this case, the gain and phase margins of the compensated system can be
obtained using the following MATLAB statements:

>> Gcl=tf([0.0262 1],[0.0106,1]); bode(Gcl)
[Gm Pm Wg, Wp] =nmar gi n(G Gcl)

Itis found that the phase margin of the compensated systemd3 df7a frequency of 60.3
rad/sec, again with an infinite gain margin. The magnitude and phase crossover frequencies

Bode Diagram Nyquist Diagram

Magnitude (dB)

Imaginary Axis

Phase (deg)

= = -0
10 10 1¢° 10" 1 0 0.2 04 06 0.8 1
Frequency (rad/sec) Real Axis

(a) Bode diagrams (b) Nyquist plots
Figure 5.2. Frequency domain representation of a lead compensator.

2007/
pagel

142 Chapter 5. Model-Based Controller Design

Bode Diagram
Bode Diagram

©

Magnitude (dB)
I

N

Magnitude (dB)

8o

System: G
Phase Margin (deg): 28
Delay Margin (sec): 0.0104|
At frequency (rad/sec): 47
Closed Loop Stable? Yes

Phase (deg)
n
(=]

[
=)

Phase (deg)
AN
@
&

10 10" 16 10° 10 10" 10 10° 1¢*
Frequency (rad/sec) Frequency (rad/sec)
(a) Plant Bode diagrams (b) Compensator Bode diagrams

Figure 5.3. Bode diagrams of the plant and the lead compensator.

Bode Diagram Step Response

50 15

< original system

< compensated
P system <\compensated system

o

|
@
S
[N

Magnitude (d8)

uncompensated system

Amplitude

-100 ~———————+—————— System: G_o —

=90, Phase Margin (deg): 47.6™™
Delay Margin (sec): 0.0138
At frequency (rad/sec): 60.3
Closed Loop Stable? Yes 0.5]

<« compensated

Phase (deg)
}L
w
&

-18(N . N . N . N N
10° 10" 1¢ 10 10* 0 005 01 015 02 025 03 035 04 045
Frequency (rad/sec) Time (sec)

(a) Bode diagrams comparison (b) step response comparison

Figure 5.4. Comparison of system responses.

in the compensated system, as expected, are both increased. The open-loop Bode diagrams
of the compensated system and the original system are compared in Figure 5.4(a) using the
following MATLAB statements:

>> G 0=Cc1*G bode(G G o); figure
G cl=feedback(G 1); G c2=feedback(G o, 1); step(G.cl, G c2)

The closed-loop step responses of the systems before and after phase lead compen-
sation are compared in Figure 5.4(b). The step response of the compensated system is
significantly improved, since the overshoot is reduced due to the increased phase margin,
and the speed of response is also increased, due to the increased crossover frequency.

Phase lag compensator

The equivalent RC network for a phase lag compensator is shown in Figure 5.5(a), with the
pole-zero positions sketched in Figure 5.5(b). Eet= Ry andZ; = Ry + 1/(Cs). The

2007/
page !

S
5.1. Cascade Lead-Lag Compensator Design 143
Im
zy R
,,,,, el ¢ 1 1
z oT _? Re
QRZ o V
uj Uo
T
(a) lag network (b) pole-zero positions
Figure 5.5. Lag compensator.
Bode Diagram Nyquist Diagram
20 5
@ 151 4
2 «~a=01 3
% 10F
1) w 2
S s E
g or +
A £,
£ »
& -4
162 1(;’1 160 161 152 10° S0 2 4 6 8 10 12
Frequency (rad/sec) Real Axis
(a) Bode diagrams (b) Nyquist plots
Figure 5.6. Frequency responses of lag compensators.
transfer function of the phase lag network can be written as
U, z 14+aTs
Gos) = 220 _ 22 _1tels (5.4)
Ui(s) Zi1+2Z> 1+Ts
where RoC = aT, @ = R2/(R1 + R2) < 1. In a more general form, the phase lag
compensator can be written as
1+aTs
G =K;————. 5.5
c(s) cq TTs (5.5)
The Bode diagrams and the Nyquist plots #6r = 1 andT = 1 are shown in
Figures 5.6(a) and (b), respectively, for different valuea.ofhese diagrams are obtained
using the following MATLAB statements:
>> fi1=figure; f2=figure; T=1;
for al pha0=0.9:-0.1:0.1
Gl=tf ([al phaO*T, 1]/al phaO, [T, 1]);
figure(fl), nyquist(Gl), hold on;figure(f2), bode(Gl), hold on
end
S

2007/
pagel

144 Chapter 5. Model-Based Controller Design

Bode Diagram Step Response

<« uncompensated system

< with lag
,,,,,,,,,,,, — compensator

compensatee>

50 < original system

o

Magnitude (dB)

|
a
=}

~10 .
=90, System: G_o h
Phase Margin (deg): 50.8
Delay Margin (sec): 0.0529)
Atfrequency (rad/sec): 16.
Closed Loop Stable? Yes 0.5

Amplitude

wijth lead compensator

original
-13§ system

Phase (deg)

-18
162 10t 1 10t 16 10 0 01 02 03 0.4 05
Frequency (rad/sec) Time (sec)

(a) Bode diagrams comparison (b) step response comparison

Figure 5.7. Comparison of system responses.

Example 5.2. Consider again the plant model in Example 5.1. If a phase lag compensator
G.(s) = (0.55s+1)/ (2.55 + 1) is now used, the gain and phase margins of the compensated
system can be obtained using the following MATLAB statements:

>> Gc2=tf([0.5 1],[2.5,1]); G=tf(100,[0.04,1,0]); G o=Gc2*G
[Gm Pm Wg, Wp] =mar gi n(G_o0); bode(G o, §
figure; step(feedback(G 1), feedback(G o, 1), feedback(CGc1*G 1), 0.5)

The phase marginis 51672 at a frequency of 16.7339 rad/sec, with an infinite gain margin.
The Bode diagram of the compensated system can be obtained as shown in Figure 5.7(a).
The basic idea of a lag compensator is to decrease the crossover frequency so as to
increase the phase margin of the system. However, since this technique reduces the open-
loop bandwidth, it also reduces the response speed of the system. However, it does have
the advantage, unlike lead compensation, that a solution can always normally be found.
The step responses of the phase lag compensated system, the original system, and
the phase lead compensated system, are all shown in Figure 5.7(b). As with the lead
compensator, the increased phase margin given by the lag compensator has reduced the
overshoot in the step response.
Now, let us fixa = 0.2 and changd’, i.e., the lag compensator &.(s) = (1 +
0.2Ts)/(1 + Ts). Let us see how affects the performance of the compensated system.
Using the MATLAB statements

>> G=tf(100,[0.04,1,0]); fl=figure; f2=figure;
for T=[0.5,1,2.5,5, 10, 20]
Ge2=tf([0.2*T 1],[T,1]); Go=GGc2; G c=feedback(G.o,1);
figure(fl), bode(G o), hold on;figure(f2),step(G.c,1), hold on
end

the superimposed Bode diagrams and step response are shown in Figures 5.8(a) and (b),
respectively. Among the phase lag compensators, it can be seen that the larger the value of
T, the better the performance of the compensated system.

2007/
pagel

S
5.1. Cascade Lead-Lag Compensator Design 145
Bode Diagram Step Response
150, 15
& ~ T =05
;;” o 1 T =20
«T =20 <
g 0.5
571357
[T=05-=
180 . . ‘ ‘ ‘ o ‘ ‘ ‘ ‘
16 102 10* 10 10 1¢? 10 0 02 0.4 0.6 038 1
Frequency (rad/sec) Time (sec)
(a) Bode diagrams comparison (b) step response comparison
Figure 5.8. The effect of changing.
2 G £ im
1 ﬁ 1
S ° IR
Zz§ \’Tl ¥ /STZ Re
ERZ V
uj Uo 1 1
Ch et T
(a) lead-lag network (b) pole-zero positions
Figure 5.9. Lead-lag compensator.
Phase lead-lag compensator
For a phase lead-lag compensator, its equivalent RC network is shown in Figure 5.9(a),
and its pole-zero map is shown in Figure 5.9(b). Dendte= R;/(1 + R1C1s) and
Z> = Rz + 1/(Czs). The transfer function of the phase lead-lag compensator can be
written as
U z 1+ aT1s)(1+ BT:
Guls) = o(s) _ 2 _(A+enis)A+A 28)7 (5.6)
Uils) Z1+22 1+ T1s)(A + Tos)
whereaTy = R1C1, BT2 = R2C2, e = 1, and clearlyR1C1 + R2C2 + R1C2 = Ty + 1>,
T1'T» = R1C1R2C2. Whena > 1 andg < 1, the first term in (5.6) exhibits the phase lead
property, while the second term has the phase lag characteristics.
As shown in Figure 5.10, witll, = 0.5, 7> = 0.005, ande = 3, 8 = 1/3, and
T, = 0.5, 71 = 0.005, the Bode diagrams of the lead-lag compensator and the lag-lead
compensators are obtained using the following MATLAB statements, respectively:
>> T1=0.5; T2=0.005; al pha=3; beta=1/3; s=zpk('s’');
Gl=(al pha*T1*s+1)*(beta*T2*s+1)/(T1l*s+1)/(T2*s+1);
T2=0.5; T1=0.005; al pha=3; beta=1/3;
G2=(al pha*T1*s+1) *(bet a* T2*s+1)/ (T1*s+1)/ (T2*s+1); bode(Gl, @)
S

2007/
pagel

S
146 Chapter 5. Model-Based Controller Design
Bode Diagram
10
g 5
g 4
K
% o0
a0l ‘ ‘ ‘ ‘ ‘
102 10t 10 10t 16 10° 10
Frequency (rad/sec)
Figure 5.10. The Bode diagrams of the lead-lag and lag-lead compensators.

It can be observed that in the phase lead-lag compensator, the phase is positive (lead)
before it becomes negative (lag). However, the phase lag action is taken first, followed by
the lead action for lag-lead compensator.

In practical applications, the lead-lag compensator is usually used. In what follows,
we will show a method for designing a phase lead-lag compensator.

5.1.2 Lead-Lag Synthesis by Phase Margin Assignment
The transfer function of a lead-lag compensator can be written as
Ke(s 4 ze) (s + 2c,)
Ge(s) = , ey £ Peys Zep = Pey)- 5.7
c 5+ P + pey) c1 = Pc1s Zc2 Z Per (5.7)
Denote bykK , the desired static position error constant which is defined as
K, = IimOGC(s)G(s)
s—

with G (s) the plant model.

If the phase angle of the plant modelkfis(w.) at the expected crossover frequency
w = w,, the phase angle of the compensatapashould bep.(w.) = y — 180 — ¢1(w,),
wherey is the expected phase margin of the compensated system. The magnitude of the
plant model ato. is denoted by (w.). The following synthesis procedure can be used.

Casel. Wheng.(w.) > 0, a lead compensation is required which can be designed as

1-—sin
De1 1+ sing.
and

2 2

z w V@t Py

Zcp = \/awm Py = == \/c_’ Kc = T (5-9)
Pa N Ju2 422 A
S

2007/
page !

—

5.1. Cascade Lead-Lag Compensator Design 147

The static position error constant of the system can be obtained as

. b, K
K1 = lim s"Go(s) = Im_Zcka (5.10)
Mg

dpn—y Pcy

wherev is the multiplicity of the pole = 0 of the plant modeG (s) with

bos™ +bis™ L+ -+ by_15 + by
sV(aps" U 4+ a1s" VT 4 a1 + apy)
and G, (s) is the open-loop transfer function with the compensator, Gg(s) =
Ge(s)G(s).
If K1 > K, the designed phase lead compensator is adequate according to the
phase margin assignment. Otherwise, a phase lead-lag compensation is required.

Case2. For phase lead-lag compensation, it is required to further specify

G(s) =

We Kz
ey = 1_6, Pey = K 2. (5.11)
P

Case 3.If ¢.(w.) < 0, the phase lag compensation is expected, and

1
Al
whereK1 = b, K./a,_y.

A MATLAB function | eadl agc() has been written to implement the three
cases in the above algorithm:

functi on Gec=l eadl agc(G W, Gam c, Kv, key)
G=tf(Q; [Gai, Pha] =bode(G W) ;
Phi _c=si n((Gam_c- Pha- 180) *pi / 180) ;
den=G den{1}; a=den(l ength(den):-1:1);
ii=find(abs(a)<=0); num=G nun{1}; G n=num(end);
if length(ii)>0, a=a(ii(1)+1); else, a=a(l); end,
al pha=sqrt ((1-Phi _c)/(1+Phi _c)); Zc=al pha*W; Pc=W/ al pha;
Ke=sqrt ((We*We+Pc*Pc) / (W*We+Zc*Zc))/ Gai ; K1=G _n*Kc*al pha/ a;
if nargi n==4, key=1;
if Phi_c<0, key=2; else, if Kl<Kv, key=3; end, end
end
switch key
case 1, Ce=tf([1 Zc]*Kc,[1 Pc]);
case 2, Kc=1l/Gai; Kl=G n*Kc/a; Cc=tf([1 0.1*W],[1 0.1*K1*W/Kv]);
case 3
Zc2=W*0. 1; Pc2=K1*Zc2/Kv; Gcn=Kc*conv([1l Zc],[1, Zc2]);
Ccd=conv([1 Pc],[1,Pc2]); Gec=tf(Cen, Gcd);
end

v 2o =wc/10, pe, = Kize,/Kp, (5.12)

c

The syntax of the function G .=l eadl agc(G, w., vy, K,, key) ,whereG isthe
LTI (linear time-invariant) object of the plant model, is the expected crossover frequency,
y is the expected phase margin of the compensated systenk aigithe static position
error constant. Ikey is provided, the controller will be designed according to the type
specified inkey with key = 1, 3, 2 for Cases 1, 2, 3, respectively, discussed in the above.
If key is not provided, the controller structure will be selected automatically. The returned
G is the transfer function object of the compensator.

2007/
pagel

148 Chapter 5. Model-Based Controller Design

Example 5.3. Consider the plant model in Example 5.1. Different phase margins are as-
signed with the crossover frequency.at= 100 rad/sec. The corresponding compensators
can be designed using the following MATLAB statements:

>> G=tf(100,[0.04,1,0]); we=100; fi=figure; f2=figure;
f or gamma=[30, 40, 50, 60, 70, 80, 90]
Ge=l eadl agc(G we, ganme, 10) ; G 0o=CGc*G G _c=feedback(G o, 1);
figure(fl), bode(G o), hold on;
figure(f2), step(G.c,0.1), hold on
end

The Bode diagrams of the systems under some differisrdan be obtained as shown
in Figure 5.11(a), and it can be seen that the phase margins of the compensated systems are
consistent with the predefined values. The closed-loop step responses of the systems are
shown in Figure 5.11(b), where it can be seen that when the specified phase margin increases,
the step response is improved in terms of a smaller overshoot. However, for this example,
if the phase margin is specified too large, for instancé, 8090°, the system responses
are not satisfactory. Because the integrator gives’g8@se lag, the bandwidth has to be
reduced considerably to obtain the high phase margin, and the result is a slow response.
This illustrates that the program needs to be used with a good physical understanding and
will not give results for poor assumptions. In this example, a good compensator can be
designed, when setting = 70°, as

s + 3061
o(5) = 13470822
Gels) = 134708 ——557

Now, let us fix the specified phase marginjto= 70° and change the values of
the crossover frequencies. The Bode diagrams and closed-loop step responses of the

compensated systems are compared in Figures 5.12(a) and (b), respectively, by using the
following MATLAB statements:

>> G=tf(100,[0.04,1,0]); gama=70; fi1=figure; f2=figure;
for we=[50, 100, 200, 300, 500]
Ge=l eadl agc(G we, gamma, 10); G o=CGc*G G _c=feedback(G o, 1);
figure(fl), bode(G.o), hold on;
figure(f2), step(G.c,0.1), hold on
end

Clearly, the overshoots under differant's are almost the same. However, whenin-
creases, the step response becomes faster.

Example 5.4. Consider the transfer function of the plant model given by

100

) = T D00125 1 1)

Setthe crossover frequencyat= 50 rad/sec and assign the expected phase margin of
the compensated systemytc= 50°. The compensatdr,. can be designed by calling in the
| eadl agc() function. The Nichols charts of the systems before and after compensation

2007/
pagel

5.1. Cascade Lead-Lag Compensator Design 149

Bode Diagram Step Response

<~y =30

Magnitude (dB)

Amplitude

—~90) <y =90° 054

- \
-18

10 10" 1 10° 10* 10° 0 0.02 0.04 0.06 0.08 0.1

Frequency (rad/sec) Time (sec)

(a) Bode diagrams comparison (b) step response comparison

Phase (deg)

Figure 5.11. The effect of the desired phase margin

Bode Diagram
100, T T T T 14

Step Response

1o @c= 500

Magnitude (dB)
$ o 8
IS
o
Il
u
o
Y
§
Il
al
o
o
-
—

|
AN
@
Amplitude

0.8

06 we =50

0.4
-135-

Phase (deg)

0.2

‘ ‘ ‘ o
10 10" 16 16° 10* 10 0 0.02 004 0.06 0.08 0.1
Frequency (rad/sec) Time (sec)

(a) Bode diagrams comparison (b) step response comparison

Figure 5.12. The effect of the desired crossover frequengy

are compared in Figure 5.13(a) using the following MATLAB statements:

>> s=zpk(’'s'); G=100/(s*(s+1)*(0.0125*s+1));
CGc=l eadl agc(G 50, 50, 100); zpk(Gc), Gl=CGc*G
ni chol s(G Gl); grid; axis([-360,0,-40,40])

The controller designed is

3688908s + 3.997)

G, =
() s + 6255

From the Nichols chart, the closed-loop uncompensated system is unstable. By introducing
the lead compensator, at high frequencies, the Nichols chart is kept away frafmth&dB
contour, which not only makes the closed-loop compensated system stable, but also ensures
a rather good time domain response of the compensated system.

To get an even larger phase margin by using the lead compensator, for instance,
y = 60° atw. = 80 rad/sec, a new design result can be obtained by using the following

150 Chapter 5. Model-Based Controller Design

Nichols Chart Nichols Chart

40, 40

30| 0.2p dB 30

g 2 18] 8 X -1dB
= £
T 10| S 10
(g. l6'dB =3.d4 ‘g. =3.d8
g 8
4\0 0]‘ ot ? 0 (wc=80,y= Go?%dE
g o original / (@c=50y =508 3 _10 original compensatory g
° system compensator ° system

_o0k ~20d 20 ~20d

-30+

-301 /
. =40 df . ~40d

-40L v - . -40 . e
-360 -315 -270 -225 -180 -135 -90 45 0 -360 -315 -270 -225 -180 -135 -90 45 0
Open-Loop Phase (deg) Open-Loop Phase (deg)

(a) expected. = 50, y = 50° (b) expectedv, = 50, y = 100°

Figure 5.13. Nichols charts for different controllers.

MATLAB statements:

>> CGc=l eadl agc(G 80, 60, 100); zpk(Gc)
&@=GCc; nichols(G &), grid; axis([-360,0,-40,40])
[GL, P1, wi, w2] =margi n(&) ; [GL, P1, wl, w2]

The controller is now
72240225 + 10.02)

s + 6385

It is found that the gain and phase margins aB3Q 31.4323 at frequencies 211766,
and 80 rad/sec, respectively. The Nichols charts of the systems are shown in Figure 5.13(b).
The actual phase margin under this newly designed controllgr4s 28.28°, which is,
surprisingly, well below the expected = 90°. It can be seen that although the system
is stabilized, the closed-loop behavior of the compensated system may not be very good,
due to the poor Nichols charts. Therefore, the prespecified phase margifi c&®®ot
be met and the requirements are too demanding for the implementation under a lead-lag
compensation.

Similarly, if one wishes to achieve a phase margiy gk 50° and, at the same time,
to have a crossover frequencyeat= 100 rad/sec, the following MATLAB statements can
be used:

G.(s) =

>> Cc=l eadl agc(G 100, 50, 100); zpk(Cc)
&B=GCc; nichols(G &), grid; axis([-360,0,-40,40])
[GL, P1L, wl, w2] =margi n(G3) ; [GL, P1, wl, w2]

The controller is designed as

169871535 + 9.424)
DGC = ’
) s + 1061

and the actual gain and phase margins &82®4 28.4655 at frequencies 274.3693 and 100
rad/sec, respectively. The Nichols charts are shown in Figure 5.14(a). Once more, it can be
seen that the prespecified properties of the desired system cannot be achieved. Therefore, the

2007/
pagel

2007/
pagel

S
5.2. Linear Quadratic Optimal Control 151
Nichols Chart Step Response
40 1.6
30 25 dB e 14 < (wc =50,y =90°)
g 2 P 12 < (@ =50,y =50°)
§ 308 8 1
§ 0 -6-dB E‘ 0.8
§ v :;Isgtlgr?: =/ (oe=t00725¢) 06 [f@e =100y =50°)
-20f compensator -204dl 0.4
-30+ 0.2
_l—lg(SO —3‘15 -270 -225 -180 -135 -90 —45_40 d0 O0 0.05 0.1 0.15 0.2
Open-Loop Phase (deg) Time (sec)
(a) expectedy. = 100, y = 50° (b) step response comparison
Figure 5.14. System responses comparisons.
controller design objective is overspecified. The closed-loop step responses of the systems
under the three compensators designed in the above are compared in Figure 5.14(b), with
the following MATLAB statements:
>> step(feedback(GlL, 1), feedback(&, 1), f eedback(G3, 1), 0. 3);
It can be seen that the closed-loop response comparison agrees with the analysis performed
earlier from the Nichols charts.

In fact, even if the expected crossover frequengynd the phase marginare both
assigned, the compensator designed using the approach given above may not guarantee a
compensated system satisfying all the specifications. Moreover, the closed-loop system
may not be even stable with the designed compensator. The closed-loop behavior of the
system should be examined before the controller can be used in practice.

Other lead-lag compensator design approaches, such as the root locus method, will
not be discussed in this book.

5.2 Linear Quadratic Optimal Control
5.2.1 Linear Quadratic Optimal Control Strategies
Consider an LTI system given by its state space model
x(t) = Ax(t) + Bu(z),
() (1) (1) (5.13)
y(@) = Cx(1) + Du(r).
Introduce the following performance index for the optimal controller design:
1+ 1 (Y1 ¢ T
J = SxT(tpSxip) + E/ [x O ONx(t) +u (t)R(t)u(t)]dt, (5.14)
10
where Q@ and R are weighting matrices for the state variables and the input variables,
respectively, and; is the terminal time for control action, which means that the control
S

2007/
pagel

152 Chapter 5. Model-Based Controller Design

action is in a finite time intervalS > 0 is the weighting matrix for the terminal states. This
optimal control problem is referred to as the linear quadratic (LQ) optimal control problem.
To solve this LQ optimal control problem, let us first construct a Hamiltonian function

1
H= —E[xT (1) Ox (1) + uT(t)Ru(t)] + xT(t)[Ax(z) + Bu(t)]. (5.15)
When there is no constraint on the input signal, the optimal (in this case, the minimum)
value can be solved by taking the derivativeBfwith respect tax and then solving the
following equation:

oH

ou
Denote byu*(¢) the optimal control signak(z). Then,u*(¢) can be explicitly written in
the following form:

= —Ru(t)+ B"A(t) = 0. (5.16)

u*(t) = R-IB"A (). (5.17)

On the other hand, it can be shown that the Lagrangian multip{igrcan be written
asi(t) = —P(t)x(r), whereP(¢) is the symmetrical solution matrix of the well-known
differential Riccati equation (DRE)

P()=—-PWOA—A"Pt)+ PO)BR*B"P(1)— Q (5.18)
with its final valueP (ty) = S. So, the optimal control signal can also be written as
u (1) = —R BT P1)x (). (5.19)

It is interesting to note that the solution of the finite time LQ optimal control problem
turns out to be a linear state feedback with a time varying gain matrix, which is equal to
—R7IBTP(1).

5.2.2 Linear Quadratic Regulator Problems

When ¢ isfinite, solving the LQ optimal control problem amounts to solving the DRE (5.18),
which is very difficult to solve. In many applications, one is more concerned with the
regulation performance, which implies that— oo, as in many process control systems.
If we consider this steady-state performance, the LQ optimal control problem is referred to
as an LQR (linear quadratic regulator) problem.

In the LQR problemys = oo and the closed-loop system will be asymptotically
stabilized. The solution matriR (r) to the DRE will tend to a constant matrix, i.@(7) = 0.
In this case, the DRE reduces to the so-called algebraic Riccati equation (ARE) as follows:

PA+A"P—-PBR 'B'P+Q=0. (5.20)

The above ARE can be easily solved by the MATLAB funct@ne() in the Control
Systems Toolbox, whel P=are(A’ , B*i nv(R) *B’, Q) . Then, the LOR problem
can be solved using a linear state feedback with a constant gain matrix, i.e.,

u(t)=—Kx(t), K=-R'B"P.

Clearly, the closed-loop system is simpid — BK), B, C, D].

2007/
pagel

S
5.2. Linear Quadratic Optimal Control 153

A MATLAB function | gr () provided in the Control Systems Toolbox can be used
to design an LQR for a given system with given weighting matrices. The syntax of the
functionis [K, P] =l ar (A, B, Q, R) , where (A,B) is the given state space model,
and Q andR are the weighting matriceX is the state feedback gain matrix, aRds the
solution matrix for the ARE.

Example 5.5. Consider the following plant in state space form:
-02 05 0 0 0 0
0 -05 16 0 0 0
xt)=| 0 0 -—-143 858 O |x(®+ |0 |u@), y=I[100,0,0]x.
0 0 0 —333 100 0
0 0 0 0 -10 30

Select the weighting matrices @& = diag{p, 0,0, 0,0} andR = 1. Whenp = 1,
the LQR problem can be easily solved using the following MATLAB statements:
>> A=[-0.2,0.5,0,0,0;0,-0.5,1.6,0,0;0,0,-14. 3, 85.8,0;

0,0,0,-33.3,100;0,0,0,0, -10];
B=[0; 0; 0; 0; 30]; Q=diag([1,0,0,0,0]); R=1;
C=[1,0,0,0,0]; D=0; [K P]=lgr(A B, QR
and it can be found that
0.926 0.3563 00326 00026 00056 00309
0.1678 0.0326 Q0044 000039 000088 00056
K"=|0.0157|, P = |0.00259 000039 35x10°° 7.95x10°° 0.00052|.
0.0371 0.0056 000088 795x107° 0.00018 00012
0.2653 0.0309 Q0056 000052 00012 00088
The closed-loop state matrik. under the LQR can be obtained with the following MATLAB
statements:
>> Ac=A-B*K; step(ss(Ac,B,C D))
The step response of the closed-loop system is shown in Figure 5.15(a).

For different values ofo, for example, 0 = 5, 10, 50, 100, the step responses of
closed-loop systems under the optimal LQR can be obtained using the following MATLAB
statements:
>> for rho=[1,5, 10, 50, 100]

Q1,1 =rho;[K Pl=lgr(A B, QR); step(ss(A-B*K,B,C,D)); hold on
end

The results are compared in Figure 5.15(b). Clearly, whertreases, the magnitude
of y(t) = x1(¢t) becomes smaller since the penaltyxalr) is heavier.

To see the step responses of the other states under the LQR, lejpus fb00. The
step response ab(t) to x5(t), obtained using the MATLAB statements
>> Q1,1)=100; [K P]=lgr(A B, QR); Ac=A-B*K;

[y,t,x]=step(ss(Ac,B,C, D)); plot(t,x(:,2:5))
S

2007/
pagel

154 Chapter 5. Model-Based Controller Design

Step Response Step Response

1.2
1r 1

0.8 0.8

Amplitude
Amplitude

0.6f 4 0.6

0.4r B 0.4

0.2 1 0.2

0

0
0 0.2 0.4 0.6 0.8 1 12 1.4 16 0 02 04 06 08 1 12 14 16 18
Time (sec) Time (sec)

(a) LQR design withp = 1 (b) LQR with differentp
Figure 5.15. Step responses of closed-loop systems.

0 01 02 03 04 05 06 07 08

Figure 5.16. Step responses of the states of closed-loop systems.

are shown in Figure 5.16, where it can be observed that since there is no penalty on other
state variables due to the special structure of@aatrix, all the other state variables except
x1 may become very large.

Now, let us put some penalties on the other states by redefining the weighting matrix
Q such thatQ = diag(10, 2, 6, 2, 1). By the following MATLAB statements:

>> Q=diag([10,2,6,2,1]); [K P]l=lqr(A B, QR); Ac=A-B*K;
step(ss(Ac,B,C D)), figure, [y,t,x]=step(ss(Ac,B,CD));
plot(t,x(:,2:5))

the step response of the system under the newly designed LQR is obtained as shown in
Figure 5.17(a), where it can be seen that the output response speed is significantly reduced.
However, from the step responses ofthe other states, obtained using the MATLAB statements

>> [y,t,x]=step(ss(Ac,B,C, D); plot(t,x(:,2:5))

as shown in Figure 5.17(b), the amplitudes of all the other states excap significantly
reduced due to the new weighting matiik

2007/
pagel

5.2. Linear Quadratic Optimal Control 155

Step Response

Amplitude

0 1 2 3 4 5 6 7
Time (sec) 0 1 2 3 4 5 6

(a) with a newQ (b) other states

Figure 5.17. Step responses of closed-loop systems.

Example 5.6. Consider a multivariable state space equation given by

8 -6 0 -2 1 -1
6 -14 -1 -6 0o 1
0 -1 -26 -2 |*®OF|_1 1 |*O-
2 6 -2 -20 0 o0

x(@) =

Selecting a diagonal matrig = diag(10, 8, 2, 0) and an identity matrix® = I, we can
obtain the state feedback matrix with the following statements

>> A=[-8,-6,0,-2; -6,-14,-1,-6; 0,-1,-26,-2; -2,-6,-2,-20];
B=[1,-1; 0,1; -1,1; 0,0]; Cs[1 00 0; 00 1 0];
Q=di ag([10,8,2,0]); Reeye(2); [K Pl=lar(A B QR, eig(A B*K)

The state feedback matrik and the Riccati equation solutidh can be obtained with the
previous statements

0.7208 —0.9919 0.7309 -0.2711 Q0101 00138
—0.2609 06705 p_ —0.2711 04096 —-0.0102 —0.0595
—0.0287 00185 |~ | 0.0101 -0.0102 00388 —0.00017|’

0.0140 -0.0735 0.0138 —-0.0595 -0.00017 00163

K" =

and the closed-loop poles are5.3396 —12.7427, —23.5384 —27.8096.

5.2.3 Linear Quadratic Control for Discrete-Time Systems
For discrete-time systems, the performance index in the quadratic form can be written as

N
J= % S [T 0 @x) +u” () Ru(w)] (5.21)

k=0

and its dynamic Riccati equation can be written as [53]

S(k) = FT [S(k +1) - Stk+1GR LGSk + 1)]F 10, (5.22)

2007/
pagel

156 Chapter 5. Model-Based Controller Design

whereS(N) = Q, N is the termination instance, afid’, G) is the state space model of
a discrete-time system. For the quadratic regulation probfima constant matrix. The
corresponding discrete-time ARE can be written as

S=FT [s — SGR’lGTS]F +0Q, (5.23)
and the state feedback matrix is
-1
K= [R " GTSG] BTSF. (5.24)

The discrete-time ARE can be solved by tte e() function, and the state feedback
matrix K can be evaluated by the functiah qr (), with the syntax [K, S] =dl qr

(F, G, O,R) .

Example 5.7. Consider a discrete-time state space equation

0.4725 02376 Q0589 01971 0.5711
0.1451 05669 02311 00439 —0.3999
0.0932 0119 05752 02319 x(k) + 0.6899
0.2628 00757 01406 04465 0.8156

x(k+1) = u(k).

Selecting the weighting matrica® = diag([0.5, 0.8, 2, 4]) andR = 1, we can design the
optimal controller with the following statements:

>> A=[0. 4725, 0. 2376, 0. 0589, 0. 1971; 0. 1451, 0.5669, 0. 2311, 0. 0439;
0.0932,0.119,0.5752, 0. 2319; 0.2628,0.0757, 0. 1406, 0. 4465] ;
B=[0.5711; -0.3999; 0.6899; 0.8156]; (Q=diag([0.5 0.8 2 4]); R=1,;
[K,Pl=dlgr(A B,QR, eig(A B*K)

The state feedback vectdr and the discrete-time ARE solutidh are obtained as

0.2582 0.8206 03661 01423 02302
KT — 0.13 p_ 0.3661 15025 04916 0233
103017 © ~ | 0.1423 04916 27702 01581]°

0.3932 0.2302 0233 01581 42852

and with the state feedback vecrthe closed-loop poles of the system ar&l® 7, 0.4603
0.1304+j0.0483.

5.2.4 Selection of Weighting Matrices

It can be seen from the previous subsection that the performance of the LQR system is
heavily dependent upon the selection of the weighting matrices. So, more precisely, we
should say that the LQR is optimal with respect to the cha@eand R weighting matrices.

Thus an LQR solution which is optimal with one choice@fand R will not normally be
optimal for other choices of th@ and R matrices. The problem is that the specification

for the performance of a practical control system will not be in term@a@ndR, so the

2007/
pagel

5.2. Linear Quadratic Optimal Control 157

designer is faced with the problem of trying to find valueg®énd R which will meet the
specifications.

In SISO cases, since the matixs a nonzero scalar, one can fix it to unity and adjust
only the matrix@. In this case, the original optimal control performance index in (5.14)
can be equivalently represented as

N
! [xT 020 + uT(t)u(t)]dt

J 1T(t)S (t)+1/
— = —-X) —X - —
R 20 VRV R

10
tr

(5.25)
—}Tt)Sx(t)—i-}/
=% WSl +5

[xT(t) Q1x(1) + uz(t)]dt,
10

whereS; = SRt and @1 = QRL. In what follows, for simplicity we will replaceQ;
andS$1 with Q ands, respectively. Several commonly used strategies for weighting matrix
selection are summarized [55] below.

Cheap control

The term “cheap control” here means that control effort is inexpensive and one can use any
large control signals to ensure the dynamic behavior of the system. In this case, the weight
onu(t) can be made very small, i.&,is very small. Equivalently, undet = 1, the weight
onx(t), i.e.,, @, should be very large. Usually, we use a single tuning knaluch that

0 = p Q. The effect of a cheap control LQR design is demonstrated through an example
below.

Example 5.8. Consider the plant model in Example 5.5. l@t= p diag(10, 20, § 2, 5).
For different values op, the LQ optimal controllers can be designed using the following
MATLAB statements:

>> A=[-0.2,0.5,0,0,0;0,-0.5,1.6,0,0;0,0,-14. 3,85. 8, 0;
o, o0,0,-33.3,100;0,0,0,0,-10]; B=[0O; O; 0O; 0O; 30];
Q=di ag([10, 20,6, 2,5]); R=1; C=[1,0,0,0,0]; D=0;
for rho=[1, 10, 100, 100, 10000]
[K,Pl=lgr(A B, rho*Q R); Ac=A-B*K; step(ss(Ac,B,C D)); hold on
end

The closed-loop step responses are shown in Figure 5.18.

It can be seen that whemincreases, which means that the penalty on the states is
increased, the magnitudes of the state responses are significantly reduced, which in turn
make the output signal smaller.

Expensive control

In contrast to the cheap control strategy, with an expensive control strategy, the control cost
is assumed to be quite large. Therefore, the control sigaglshould be made as small as
possible. In this case, a lardgeshould be used. Witk = 1, equivalently,Q should be

very small. Similarly,Q should be replaced byQ with p very small.

2007,
page

158 Chapter 5. Model-Based Controller Design

Step Response
0.35

0.3t
0.25} p=1

0.2r

Amplitude

0.15(

01} p=10

0.05 large value ofp

0 5 10 15
Time (sec)

Figure 5.18. Step responses of closed-loop systems.

Terminal control

“Terminal control” means that in the dynamic optimal control problem, the weighting matrix
S tends to infinity, which forces the terminal states to zero. A simple solution is to replace
S by pS and seng to oo or a very large number. In this case, one can@et 0to reduce

the DRE to the following form:

—P=A"P+PA-PBR 'B"P, where P(15) = pS. (5.26)

Degree-of-stability design

Ifinthe controller design all the closed-loop poles are located on the left-hand side efx
on thes-plane, wherex > 0, this is commonly referred to as the “degree-of-stability of
—a.” To achieve this, a new performance index for LQR problems can be defined as

J = / e (x" Ox + u?)dr, (5.27)
0

where Q is a constant matrix. By introducing a new state variable vegtor such that
&)= e"‘"x(t), and a new contral(r) = €’u(t), the original state space equation can be
written as§ = (A + «I)§ + Bv. Then, (5.27) becomes

J= / (67 (1) Q& (1) + v2(1)1dr. (5.28)
0
The modified ARE becomes
(A+a)'"P+P(A+al)+ Q—PBB'P=0 (5.29)

with the optimal control lawe* (r) = —BT Px(1).

Example 5.9. Consider again the plantmodelin Example 5.5. @et diag(10, 20, 6, 2, 5).
The closed-loop poles achieved under the normal LQR control strategy can be obtained
using the following MATLAB statements:

2007/
pagel

S
5.2. Linear Quadratic Optimal Control 159
Step Response
0.35
0.3}
0.25¢
3 normal LQR
g 0.2}
g.
< o015
0.1}
0.05 degree-of-stability LQR
0 ‘ ‘
0 5 10 15
Time (sec)
Figure 5.19. Step responses of the closed-loop systems.
>> A=[-0.2,0.5,0,0,0;0,-0.5,1.6,0,0;0,0, -14. 3, 85. 8, 0;
0,0,0,-33.3,100;0,0,0,0, -10];
B=[0; O; 0; 0; 30]; Q=diag([10,20,6,2,5]); R=1;
C=[1,0,0,0,0]; D=0; [K P]=lqgr(A B QR); eig(A BK)
where the closed-loop poles ard2.5275 —52.5576+ j63.957Q —2.9264 —0.4046. It
can be seen that there is one pole at —0.4 which is quite close to the imaginary axis.
If one wants all the closed-loop poles of the system to be on the left-hand side of the line
s = —1, the following MATLAB commands can be used to achieve this:
>> [K2, P2] =l gr (Ateye(si ze(A)),B, QR ; eig(A B*K2)
The closed-loop poles of the system are the&38.351Q0 —53.4023+ j64.1404,—3.9272
—1.8793. Clearly, by the “degree-of-stability design” of the LQR, all the closed-loop poles
have been moved to the left-hand side ef —1. To show this benefit, the step responses of
the closed-loop system before and after using the degree-of-stability design are compared
in Figure 5.19 by the following MATLAB statements:
>> step(ss(A-B*K,B,C,D),ss(A-B*K2,B,C,D));
5.2.5 Observer and Observer Design
In LQR design, we have explicitly assumed that
1. the plant model is perfectly known, and
2. all the states are directly measurable.

If assumption 1 is not true, that is, the model may contain uncertainty, we shall use
the robust control design framework, which is the subject of Chapter 7. In this section, we
focus on the case when assumption 2 is not true. Actually, in practice, the state variables are
usually not all measurable. If only the output signals rather than the states are measurable,
which is often the case in many applications, can we still use an LQR? The answer is “yes”
if we can design an observer to observe the states from the input and output information.
Of course, the system has to be observable.

S

2007/
pagel

160 Chapter 5. Model-Based Controller Design

u(t) y(®
plant modelG (s)

<]

4 B

A

state estimaté (¢)

Figure 5.20. A typical structure of state observers.

One obvious method is to create an extra copy of the state space model of the original
plantmodelA, B, C, D). When these two plants are subjected to the same input signal, the
state variables can be created or “observed” from the input signal alone. These states should
be exactly the same as the states of the original model. This intuitively simple “open-loop”
method for state observation is feasible only when the model is exact. However, when there
exist some disturbances or the parameters of the original model are not exactly known,
the created or “copied” system will fail to give a correct state observation for the original
system. Therefore, in practical applications, the output signal should also be used, together
with the input signal. This then allows a feedback loop to be implemented to correct any
errors.

The typical control structure of a state observer is shown in Figure 5.24., If') is
fully observable, the mathematical description of the state observer can be expressed by the
following state space model:

=A% +Bu—HC#+Du—y) =(A—HC)%+(B—HD)u+Hy, (530)

wherex (¢) is the observation or estimation of the true state veetoy, andH is a matrix
called the observer gain matrix, which is selected to make- HC) stable. From (5.30),
it can be further derived that

$—%=(A—HC)X%+Bu+Hy— Ax — Bu=(A— HC)(— x), (5.31)
which has an analytical solution
£(1) —x(r) = ATHOU=0) 12 10) — x(10)]. (5.32)

Since(A — HC) is stable, lim_ »[%(7) — x(¢)] = 0, which means that the observed state
x () asymptotically converges to the true state).
A MATLAB function si mobsv() is written
function [xh, x, t]=si mobsv(G L)
[y,t,x]=step(Q; G=ss(G; A=Ga; B=Gb; CGc; D=Gd;
[y1, xh1] =step((A-L*CO), (B-L*D),C, D, 1,t);
[y2,xh2] =l si{ (A-L*CO),L,C D y,t); xh=xhl+xh2;

which can be used to obtain the observed states of the system. The syntax of the function
is [%, x, t] =si nobsv(G, H) , whereG is an LTI object of the system model, and

2007/
pagel

S
5.2. Linear Quadratic Optimal Control 161

0.02 T T T T T 0.02

0.015F 1) andi (1) 0015 x1(1) andz1 (1)

0.01f] 0.01

0.005 1 0.005

0 x2(t) andxa(r)] 0 x2(1)
-0.005 -0.005
—0.01f -0.01
-0.015 -0.015
-0.02 R -0.02 R
x3(t) andx3(r) x3(r) andx3(r)
-0.025 -0.025
003, 1 2 3 4 5 6 0% 1 2 3 4 5 6
(a) with gainH1 (b) with gain Hy
Figure 5.21. Step responses of state observers.
H is the observer gain vector. The step responses of the observed or reconstructed states
are returned in matrix, and the original state vector is returnedvin The time vector is
returned ir¢, which is automatically determined by the function.
Example 5.10. Consider the following state space model:
—3.6994 06627 —2.3879 0
x=| 06627 —14220 04994 |x + 0 u,
—2.3879 04994 —-3.2736 —0.0449
y = [—0.7989 —0.7652 0.8617 x.

Design an observer with the observer gﬂtﬁ =[-12.627Q —1.0468 —4.0212,.
The eigenvalues of the observer are obtained using the following MATLAB statements:
>> A=[-3.6994, 0. 6627, - 2. 3879; 0. 6627, - 1. 4220, 0. 4994;

-2.3879,0. 4994, - 3. 2736] ;
B=[0; 0; -0.0449]; C=[-0.7989,-0.7652,0.8617]; D=0;
Hl=[- 29.9482; 7.2402; -27.2489]; eig(A HL*Q
[xh, x,t]=si nobsv(ss(A B, C, D),HLl); plot(t,x, -",t,xh,":")

The closed-loop poles are0.9819 —1.1305 —1.1877, and the step responses of the
true states and their observations are compared in Figure 5.21(a). If the observer gain is
changed tcHzT = [-65074, 217352, 135535], a different set of observer poles are shown
as follows:
>> H2=[-650.74; 2173.52; 1355.35]; eig(A H2*QC

[xh, x,t]=si nobsv(ss(A B, C, D) ,H); plot(t,x, -",t,xh,":")
The closed-loop poles are11.9613 —11.0561 —9.9814. The corresponding step re-
sponses are compared in Figure 5.21(b).

Clearly, a different choice of the observer gain will lead to a different transient behavior
of the observer dynamics. It is generally true that the further away the closed-loop poles
are from the imaginary axis, the quicker the transient responses vanish with time.

S

2007/
pagel

162 Chapter 5. Model-Based Controller Design

0.8

0.6
x3(1)

x2(1)

0.4

0.2

x1(1)

0 0.05 01 0.15 02 0.25 0.3 0 0.05 0.1 0.15 02 025 0.3 0.35
(a) states and reconstructed states (b) state errors with observers

Figure 5.22. State observers of unstable models.

Example 5.11. Consider an unstable state space model

1 2 3 0
¥=|4 5 6|x+|0|u, y=1I12 3.
7 80 1

An observer with the gain matriflT = [1.2222 2.4786 1.9402, which makes
A — HC stable, can be designed by the following MATLAB scripts:

> A=[1,2,3; 4,5,6; 7,8,0]; B=[0; O; 1]; C=[1,2,3]; D=0;
H=[1. 2222; 2.4786; 1.9402]; [xh,x,t]=sinobsv(ss(A B, C D),H;
plot(t,x,’ -",t,xh,”:"); figure; plot(t,x-xh)
plot(t,e(:,1),"-",t,e(:,2), --",t,e(:,3),":")

The step responses of the true states and the observed ones are compared in Fig-
ure 5.22(a), with the observer error signals shown in Figure 5.22(b).

Itis concluded that even if the original model is unstable, the designed state observer
can still reconstruct the states of the system satisfactorily, provided that a suitable observer
gain vector is designed. Of course, the original system, although unstable, has to be fully
observable.

5.2.6 State Feedback and Observer-Based Controllers

Having designed a suitable state observer, the state feedback control strategy with observers
can be implemented as shown in Figure 5.23.
Consider the feedback structure shown in Figure 5.20(a). The feedbackKig(ral
can be rewritten, using (5.30), as two subsystén&) andG2(s), driven only byu(¢) and
y(t), respectively. Therefordr1(s) can be described by

1) = (A — HO)#1(t) + (B — HD)u(t), y1 = K#1(¢), (5.33)

andGo(s) by)
X2(t) = (A — HC)X2(t) + Hy(t), y2 = K%2(t). (5.34)

5.2. Linear Quadratic Optimal Control 163
()]
r + o~ u(t) Ges) Y0
a(r) state ® state J
feedbackk observer

Figure 5.23. Feedback control with a state observer.

Ge(s) H G(s) k

(b)
Figure 5.24. Observer-based state feedback control.

The block diagram for the closed-loop system is represented in Figure 5.24(a), where with
some block manipulations, the closed-loop system can be equivalently expressed as shown
in Figure 5.24(b) withG.(s) = [I + G1(s)]"t and H(s) = G2(s), which is identical to

the typical feedback control system structure. The contréllgr) can be further derived

in the following form:

G.s)=1—-K(sI—A+BK+HC)'B (5.35)

with its state space realization

Gels) = [_+ . (5.36)

If the reference input(t) = 0, G.(s) can be further simplified into the following
state space representation:

Gels) = [ffffffffffffffffff = »0} . (5.37)

The above simplified form, witlr(z) = 0 and a unity negative feedback, will be used
throughout the book unless otherwise stated. The lumped conttgliey in (5.37) is often
referred to as the observer-based controller, since the structural information of the observer
is implicitly reflected within the controller.

The observer-based controller can also be obtained using the MATLAB function
reg() provided in the Control Systems Toolbox with the following syntax:

[A¢, Be, Ce, D] =reg(A, B, C, D, K, H)
G.=—reg(G, K, H)

where the state space model of the plaatK,C,D), the state feedback gain vect&r and
the observer gain vectd are then returned, respectively. The returngd, B.,C.,D.) is

2007/
pagel

2007/
pagel

164 Chapter 5. Model-Based Controller Design

the state space model of the observer-based contéalig. Inthe second statement of syn-
tax above, LTI models can be used directly. In faetg() is animmediate implementation
of (5.37).

Example 5.12. Consider the LQ optimal control problem in Example 5.5. If the weighting
matrix Q is selected ag) = diag([1, 0, 0, 0, 0]) with R = 1, and if an observer gain vector
is selected a#l = [—8.3, 97924, —1936761, 429385, 0]", with the following MATLAB
statements:

>> A=[-0.2,0.5,0,0,0;0,-0.5,1.6,0,0;0,0, -14. 3,85. 8, 0;
o,0,0,-33.3,100;0,0,0,0,-107];
B=[0; O; 0; 0; 30]; Q=diag([1,0,0,0,0]); R=1;
C=[1,0,0,0,0]; D=0; G=ss(A B, CD: [KP]=lgr(ABQR);
H=[-8.3, 979.24, -19367.61, 4293.85, 0] :
Ge=-reg(ss(A B, C D), K H); zpk(Ce)

then the resulting controller model can be obtained as

11.4839s + 33.34)(s + 14.3)(s + 10)(s + 1.792)
(s + 20.92)(s2 + 30.19s + 3281)(s2 + 6.845 + 120)°

Ge(s) =

The controllerG.(s) can be designed and it is a stable minimum phase model. To check the
time domain performance of the observer-based control, the following MATLAB statements
can be used:

>> GGl=f eedback(G Cc, 1); GG=ss(A-B*K,B,C,D);
Gl=ss(A-B*K-H'C, B, -K,1); &=ss(A-HC H K, 0);
GX2=f eedback(G*Gl, R); step(GG GGl G2, 2)

to get the closed-loop step response of the system under the above designed controller
as shown in Figure 5.25(a), where for comparison, the step response under the full state
feedback, i.e., all states are measurable, is also plotted. It can be observed that the response
under the observer-based controller is not exactly the same as the one under the direct full

Step Response Step Response
1.4

" observer based

<observer based regulator
regulator

1.4

1.2

1.2

0.8]

full state feedback

0.8 L
observer based controller

Amplitude
Amplitude

0.6 full state feedback

0.6

0.4]
0.4]

0.2 0.2]

0 0.5 1 15 2 0 0.5 1 15 2 25 3
Time (sec) Time (sec)

(a) LQ controller comparison (b) with anotherH

Figure 5.25. Step responses of LQ optimal control.

2007/
pagel

5.3. Pole Placement Design 165

state feedback control. It is worth mentioning that it is not fair to compare it with the direct
full state feedback, since in deriving the regulator, it has been assumed that the external
input signalr () = 0.
Let us continue the example with an adjusted observer gain vector
H = [4417, 14668924, 6670765515, 2866690238 86027098]" .

To design the new observer-based controller, the following MATLAB statements can be
used:

>> H=[441.7,146689. 24, 6670765. 515, 2866690. 238, 860270. 98] ' ;
G c=feedback(GCc, 1); step(ss(A-B*K,B,C, D), Gc,3)
The new regulator is
46435363885 + 33.3)(s + 14.48)(s + 8.953 (s + 4.973
(s + 157.4)(s2 4 104.3s + 5008 (s2 + 24625 + 1.814)

The step response comparison is shown in Figure 5.25(b). It can be seen that, as expected,
the performance of the observer-based regulator depends on the observer gairfvector
and, of course, the state feedback gain ve&tor

Ge(s) =

5.3 Pole Placement Design

It has been demonstrated that the dynamic behavior of a controlled system is influenced by
its closed-loop poles. If the system is fully controllable, the poles of the closed-loop system
can be arbitrarily shifted or placed in any prespecified positions. Given the desired pole
positions and the system model, in this section we show how to design the controller to shift
the original system poles to the desired positions. This is referred to as the pole placement
controller design method.

Consider the state space model of a plant given by

X =Ax+ Bu, y=Cx, (5.38)

where the(A, B, C) matrices have compatible dimensions. State feedback is to be used
with a constant gain matrik, and the external reference input to the system is denoted by
r. Then, the actual control signal applied to the plamt is r — Kx. The closed-loop state
space model can be written as

x=(A—-—BK)x+ Br, y=Cx. (5.39)

An important theorem regarding the state feedback and its use in pole placement is
given below.

Theorem 5.1. If the system(A, B) is fully controllable, the eigenvalues df — BK can
be freely assigned (with the restriction that complex eigenvalues are in conjugate pairs) by
a suitable matrixk .

From Theorem 5.1, if the given system is fully controllable, the closed-loop poles of
the system can be assigned arbitrarily through a static state feedback. In what follows, some
of the commonly used pole placement algorithms are introduced.

2007/
pagel

S
166 Chapter 5. Model-Based Controller Design
5.3.1 The Bass—-Gura Algorithm
Assume that the desired closed-loop poles of the system;are= 1, ..., n. Clearly, the
closed-loop characteristic equatiery) is simply
n
als) = l_[(s —p) ="+ a1 T aas" % 1S + o (5.40)
i=1
Denote bya(s) the open-loop characteristic equation of the original plant model,
which is written as
a(s) =detsI — A) = 5" +a1s" L+ as" 2 + - + ap_15 + an. (5.41)
If the original plant model is fully controllable, the state feedback gain vektaan be
obtained from [56] as R
K=[a—a'L7IC}, (5.42)
where
[« —al” =[(@—a1,.... (@ —a)], C=[B AB,...,A"'B],
and
ap-1 Aap-2 -+ di 1
an-2 ap-3 -+ 1
L= : :) (5.43)
ai 1
1
It can be seen thdt is a nonsingular Hankel matrix.
A MATLAB implementation of the above pole placement algorithm is given in
bass_pp(), where
function K=bass_pp(A B, p)
n=| engt h(B); al=poly(p); al pha=[al(n:-1:2),1];
a=pol y(A); aa=[a(n:-1:2),1]; L=hankel (aa); C=ctrb(A B);
K=(al(n+l:-1:2)-a(n+l:-1:2))*inv(L)*inv(C;

The syntax ofbass_pp() is K=bass_pp(A, B, p) , where @,B) is the state
space model ang is a vector containing the expected pole positions. The returned variable
K is the state feedback gain vector.

5.3.2 Ackermann’s Algorithm
The pole placement problem can alternatively be solved in a slightly different way using
Ackermann’s algorithm. The state feedback gain vekts given by the following formula:

K =—[0,0,...,0,1]C e, (5.44)
wherea” = [ag, a1, . . ., tp_1].

A MATLAB function acker (), provided in the Control Systems Toolbox, imple-
ments the above algorithm with its syntax the same as thiates_pp() .

S

2007/
pagel

5.3. Pole Placement Design 167

5.3.3 Numerically Robust Pole Placement Algorithm

It has been found that the above two pole placement algorithms may not be numerically
robust. A MATLAB functionpl ace() provided in the Control Systems Toolbox can be
used to find the feedback mati#using a numerically robust pole placement algorithm [57].
The syntax is

K=pl ace(A, B, p)

where @,B) is the state space model, apdis a vector containing the expected pole
positions. The returned variable is the state feedback gain matrix.

It should be pointed out that th ace() function can be used to deal with MIMO
(multiple input—multiple output) pole placement problems. Howevepliace(), the
expected pole positions have to be distinct, that is, the multiplicity of any desired pole
cannot be greater than 1. On the other haaxker (), although it cannot handle the
MIMO pole placement problem, can be used for pole placement with desired poles of any
multiplicity.

Example 5.13. Given the plant model

u, y=I[12 3, 4x,

design a state feedback controller to place the closed-loop polesan = —1, —2,
—1+j1. To design theK for pole placement, the following MATLAB statements can be
used:

>> A=[0,1,0,0; 0,0,-1,0; 0,0,0,1; 0,0,11,0]; B=[0;1;0;-1];
eig(A’', P[-1; -2; -1+sqrt(-1); -1-sqrt(-1)];
K=pl ace(A, B, P), eig(A B*K)’

It is found that the open-loop poles are0)+3.3166, indicating that the original
system is unstable. The state feedback vector for placing the poles at the expected location
is K =[-0.4, —1, —21.4, —6]. Since the original system is fully controllable, via the pole
placement technique, one is able to place the poles of the closed-loop system at the desired
positions.

Example 5.14. Consider the multivariable model

|

N

L o
|

R ON

x(t) = x(t) + 1 u(t).

ONOORO

OooRrON
Oo0oooo

O, wooo

roooo

Sooo

O0o0o0OoOR
=

|
-

2007/
pagel

S
168 Chapter 5. Model-Based Controller Design
If one wants to place the closed-loop poles-dt —2, —3, —4, —1 + |, the following
statements can be used:
>> A=[0,2,0,0,-2,0; 1,0,0,0,0,-1; 0,1,0,0,0,O0;
0,0,0,3,0,0; 2,0,0,1,0,0; 0,0,-1,0,1,0];
B=[1,2; 0,0; O0,1; O,-1; 0,1; 0,0];
p=[-1 -2 -3 -4 -1+1i -1-1i]; K=place(A B,p), eig(A B*K)’
The feedback control gain matrix can be obtained as
K — 79333 —18553 —-19.134 2065 18698 22126
T |—-0.36944 —2.0412 —2.3166 —9.5475 057469 15013
and it can be found that the poles are at the desired locations.
Example 5.15. Consider the fourth-order system
-5 8 0 O 4
. -4 7 0 O -2
x(t) = 0 0 0 4 x(t) + 2 u(t).
0 0 -2 6 1
To assign the poles of the closed-loop systemyt9z 4 = —1, —2, —1 + j1, the following
MATLAB statements can be applied:
>> A=[-5,8,0,0;-4,7,0,0;0,0,0,4;0,0,-2,6]; B=[4;-2;2;1];
Cl[2,-2,-2,2]; D=0; P=[-1; -2;-1+sqgrt(-1);-1-sqrt(-1)];
K=pl ace(A, B, P)
The user is then prompted that the system “can’t place eigenvalues there,” which means that
the closed-loop poles cannot be assigned to the prespecified positions. Let us check the
controllability of the system using
>> Tc=ctrb(A B); rank(Tc)
The rank ofT, is found to be 3 rather than 4, which means that the original system is
actually not fully controllable. Therefore, the poles of the closed-loop system cannot be
freely assigned.
Example 5.16. Consider the discrete-time state space model given by [53]
0 1 0 0 0
—091 -0.036 091 0036 0
xk+D=| 0 0 1 |[*®] g u®), yk) =x1k)
0.091 Q036 —-0.091 -0.036 1
with sampling intervall’ = 0.1 second. If one wants to place all the closed-loop poles at
0.9, the following statements can be used:
>> F=[0,1,0,0; -0.91 -0.036 0.91 0.036;
000 1; 0.091 0.036 -0.091 -0.036];
G=[0; O0; 0; 1]; C[1 0 0 0O]; W-ss(F,GC 0,'Ts’,0.1);
p=0. 9*ones(4, 1); K=acker(F, G p), eig(F-GK)
S

2007/
pagel

5.3. Pole Placement Design 169

The state feedback vectorks = [—3.2544 0.4391, 3.9754 —3.6720. Under such a state
feedback gain vector, it can be found that the poles of the closed-loop system are located at
0.9001 0.9000+ j0.0001 0.8999.

5.3.4 Observer Design Using the Pole Placement Technique

Using the pole placement technique discussed above, one can design a state observer by
assigning the observer poles to prespecified positions. Since pole placement in observer
design is simply a dual problem to the state feedback design, the problem can be solved using
the MATLAB functionpl ace() oracker (), as illustrated in the following example.

Example 5.17. Consider the fourth-order system in Example 5.13. The desired poles of
the observer are specified 8% 34 = —1, —2, —1 £ j1. To determine the observer gain
matrix H, the following MATLAB statements can be applied:

>> A=[O0,1,0,0; 0,0,-1,0; 0,0,0,1; 0,0,11,0]; B=[0;1;0;-1];
C[1,2,3,4]; P=[-1; -2; -1l+4sqrt(-1); -1l-sqrt(-1)];
H=pl ace(A',C ,P)’, eig(A-HCQ’
Itcan be found thatthe observer vectali$ = [—0.2203 —0.475Q 0.4238 1.2247),
and it can be seen that the poles of the observer can indeed be placed at the desired locations.

5.3.5 Observer-Based Controller Design Using the Pole Placement
Technique

We have discussed controller and observer design using the pole placement technique.
Clearly, the pole placement technigue can be used to design the observer-based controller.
This observer-based controller has been discussed in Sec. 5.2.6 for LQ optimal control prob-
lems. Under the typical feedback control system structure as shown in Figure 5@A®),

andH (s) can be represented A — BK — HC), B, — K, Iland[(A— HC), H, C, (],
respectively. With the referenee= 0, the observer-based regulator is then represented as

(5.45)

which can be obtained again using the MATLAB functioeg() provided in the Control
Systems Toolbox.

Example 5.18. Consider a plant model given by

-03 01 -0.05 2
x() = 1 0.1 0 x(@®)+ [0 u().
-15 -89 -0.05 4

Assume that the desired pole positions of the closed-loop systemlare2, —3, respec-

tively. From the following MATLAB statements:

>> A=[-0.3,0.1,-0.05; 1,0.1,0; -1.5,-8.9,-0.05]; B=[2; 0O; 4];
C[1,2,3]; D=0; P1=[-1,-2,-3]; Kpl=place(A B, Pl);
step(ss(A-B*Kp1,B,C D));

the step response of the output signal is obtained as shown in Figure 5.26(a).

2007/
pagel

170 Chapter 5. Model-Based Controller Design

Step Response Step Response

Amplitude
Amplitude

2 4 6 8 10
Time (sec) Time (sec)

(a) system poles &t-1, —2, —3) (b) system poles at-1, —1, —1)
Figure 5.26. Step responses of the compensated system with state feedback.

If one tries to place all the poles atl with the following MATLAB statements:
>> P2=[-1,-1,-1]; Kp2=pl ace(A, B, P2);

then the prompt “can’t place poles with multiplicity greater than r@)jk(s given. This
means that for the desired poles with multiplicity greater thanl Bce() fails to perform
the pole placement. In this case, the functamker () should be used. Let us try the
following MATLAB statements:

>> Kp2=acker (A, B, P2); step(ss(A-B*Kp2,B,C D));

One can perform the pole placement successfully. The closed-loop response is shown
in Figure 5.26(b), where it can be seen that, compared with Figure 5.26(a), the speed of
response is reduced and the magnitude of the output is increased.

Now, let us assume that the states are not directly measurable. One has to use
the observer-based controller. To design an observer with its desired poles located at
(-1, —2, —3), one can use the following MATLAB statements:

>> P4=[-1,-2,-3]; Kol=place(A ,C ,P4)'; Ac=A-B*Kpl-Kol*C
Ah=A- Kol*C, t=0:.1:20; G=ss(A B,C D); Cc=ss(Ac, Kol, Kpl, 0);
G c=feedback(GCc, 1); step(Gec,t)

with the closed-loop step response shown in Figure 5.27(a), which is completely different
than the one using the direct state feedback shown in Figure 5.26(a). Due to the observer
dynamics, the expected system behavior under the direct state feedback may change signif-
icantly. In Chapter 7 this issue will be discussed further.
Let us examine what will happen if the desired observer pole positions are chosen

further left, e.g.(—100, —200, —150). By the following MATLAB statements:
>> P5=[-100; - 200; - 150] ; Ko2=pl ace(A",C ,P5)’;

Ac=A- B*Kpl- Ko2*C, Ah=A-Ko2*C, t=0:.01:5; G=ss(A B, CD);

Gec=ss(Ac, Ko2, Kpl,0); G c=feedback(GCc,1l); step(G.ec,t)
the step response of the closed-loop system is shown in Figure 5.27(b), which is very
different to what is shown in Figure 5.27(a).

2007/
page

S
5.4. Decoupling Control of Multivariable Systems 171
Step Response Step Response
3, 10
o
-10]
o § =20
% ZE =30
A =40
=50
-60
0 5 10 15 20 % 1 2 3 4 5
Time (sec) Time (sec)
(a) observer poles at-1, —2, —3) (b) observer poles &t-100, —200, —150
Figure 5.27. Step responses of observed-based systems.
5.4 Decoupling Control of Multivariable Systems
5.4.1 Decoupling Control with State Feedback
Consider a plant described by the state space motleB, C, D) with m inputs andm
outputs. If the control signal is constructed by state feedback such that T'r — Kx,
the closed-loop transfer function matrix can be written as
G(s) = [(C _DK)(sI — A+ BK)"'B + D]I‘. (5.46)
Defining the ordet/; for eachj, j = 1,...,m, such thatitis the lowest order which
makeSchA’B #£0,i=01...,n—1, andc]T. is the jth row of matrixC.
Theorem 5.2.1f the m x m matrix
c]A“B
B = ; (5.47)
¢/ Adn B
is nonsingular, the closed-loop system defined in (5.46) can be dynamically decoupled if
the state feedback matrik can be established [56] as
cIAdl"‘l
K = : T, (5.48)
c;Adanl
wherel' = B L.
A MATLAB function decoupl er () is written using the above algorithm to design
the decoupler:
function [GL, K, d, Ganj =decoupl er (G
A=G a; B=G b; C=Gc; [n,nj=size(Gb); B1=[]; KO=[];
for j=1:m
S

2007/
pagel

S
172 Chapter 5. Model-Based Controller Design
for k=0:n-1
if norm(C(j,:)*A k*B)>eps, d(j)=k; break; end
end
dBl=[B1; C(j,:)*Ad(j)*B]; KO=[KO; C(j,:)*A (d(j)+1)];
en
Ganri nv(Bl); K=GantKO; Gl=minreal (tf(ss(A-B*K, B, C,Gd))*inv(Bl));
The function can be calle [Gy, K, d, T'] =decoupl er (G) , whereG is the
original multivariable state space modél; is the decoupled transfer function matrix, and
K is the state feedback matrix as in (5.48). The vedtoontains the values of; defined
above. MatrixI is the precompensation matrix.
Example 5.19. Consider the two input—two output system discussed in Example 2.6, which
is rewritten as
225 -5 -125 -05 4 6
. |225 —-425 -125 -0.25 n 2 4 |0 0 01
*=lo2s —05 -125 -1 |[*T|2 2" YT |0 2 o 2|
125 -175 —-025 -0.75 0 2
The state feedback gain matik can be designed and the system can be fully decoupled
by using the following:
>> A=[2.25, -5, -1.25, -0.5; 2.25, -4.25, -1.25, -0.25;
0.25, -0.5, -1.25,-1; 1.25, -1.75, -0.25, -0.75];
B=[4, 6; 2, 4; 2, 2; 0, 2]; Cf0, O, O, 1; 0O, 2, 0, 2];
D=zeros(2,2); G=ss(A B, CD); [GL,K d, Gan] =decoupl er(Q
The state feedback matrik and matrixI' can be obtained, and it can be seen that the
transfer function matrixG1(s) is fully decoupled:
! 0
- 1[-1 -3 -3 5 —-15 025
— S — —
Gils) = o 1 ’K—g[s 7 1 —3] r—[0.5 0 }
N
By introducing the state feedba&kand a precompensatbr the square multivariable
system can be fully decoupled. The decoupled transfer function matrix can usually be
expressed by
. 1 1
G]_:d|ag W,...,W .
By introducing the decoupling compensatét, IT'), the full feedback control structure
can be established as shown in Figure 5.28. Since the control system within the dashbox
can be fully decoupled, the outer controltér(s) can be easily designed for the system, on
an individual loop basis.
5.4.2 Pole Placement of Decoupling Systems with State Feedback
It is seen that the dynamic decoupling system presented previously can be used only to
decouple the multivariable system into integrator types of diagonal system, which makes
S

2007/
pagel

S
5.4. Decoupling Control of Multivariable Systems 173

| dynamic decoupler ‘

| |

| |

v controller | | % = Ax + Bu l y_
Ges) |] T { y = Cx + Du |
- | - |

| |

1 K

| x |

Figure 5.28. Decoupling and controller structure.

the closed-loop design difficult. If one can still assume that the decoupling law is state
feedback which can be written as= I'r — Kx, one may expect to have a decoupled
system in the form

1

shtlqqq 5B+ +ag g1
GK,r(S)Z y (5.49)
1
sty 15%n 4 - tam g, 41

whered;,i =1, ..., mare defined as previously. The parameters in each of the polynomials
st 4 g;15% 4 ... + a; 4,41 can be assigned by the pole placement method.

The expected polynomial can be defined as the standard transfer function. The stan-
dard transfer function of amth order system, with the integral of time-multiplied absolute
value of error (ITAE) optimal criterion, is defined in the form [58]

1
T(s) = , (5.50)
s" 4+ aps" 4 axs"2 4+ .. 4 a,_15 +ay
where the coefficienta; minimizing the ITAE criterion of the systerii(s) have been
precomputed, as summarized in Table 5.1.
Table 5.1. Standard models under ITAE criterion (type I).

n Overshoot | w1 Denominator, withz,, 1 = o]}

1 s+ wp

2 4.6% 6.0 52+1.410y s +w?2

3 2% 7.6 §3+1. 750, 52+2. 15025+

4 1.9% 5.4 s3+2. 1wy 53+2. 40252+ 2. Tw3s+ ol

5 2.1% 6.6 §9+2.80y 54+5.Qw253+5. 50352+ 2. 4vt s+

6 5% 7.8 | $542.250,55+6.6025%+8.60353+7.450352+2.9502 s +8

S

174 Chapter 5. Model-Based Controller Design

Thenth order standard transfer function model for the frequancygan be created
by the functionst d_t f (), written as
function G=std_tf(wn,n)
Me[1,1,0,0,0,0,0; 1,1.41,1,0,0,0,0;
1,1.75,2.15,1,0,0,0; 1,2.1,3.4,2.7,1,0,0;
1,2.8,5.0,5.5,3.4,1,0; 1,3.25,6.6,8.6,7.45,3.95,1];
G=tf(wn"n, M n, 1: n+1) . *(wn*ones(1,n+1))."[0:n]);

The functioncanbe calledt G=st d_t f (w,, n) , where the value, is the natural
frequencyy is the order, and; is the standard transfer function obtained.

Define a matrixE, where each row i8] = ¢] A% B, and each rowf,” in another
matrix F can be defined as

fT=d (Adf+1 Fai A% a,-,dl.+1l>. (5.51)
The state feedback matrik and compensation matrix can be defined as
K=E'F, T=E1 (5.52)

Based on the algorithm, the new dynamic decoupling function can be written. In the
function, the above-mentioned algorithm can be easily implemented.
function [GL, K, d, Gan] =decoupl e_pp(G, wn)
A=G a; B=G b; C=Gc; [n,ni=size(Gb); E=[]; F=[];
for j=1:m
for i=0:n-1
if norm(C(j,:)*A"i*B)>eps, d(j)=i; break, end
end,
gl=std_tf(wn,d(j)+1); [n,cc]=tfdata(gl,’Vv');
d F=[F; C(j,:)*polyvalm(cc,A]; E=[E C(j,:)*Ad(j)*B];
en
GanrFi nv(E); K=GantF; Gl=tf(ss(A-B*K B, C G d))*Gm

The function can be called £ [G1, K, d, T'] =decoupl e_pp(G, w,) , where
the arguments are the same as the ones idélo®upl e() function, andw, is the natural
frequency of the standard transfer function.

Example 5.20. Consider again the multivariable model in Example 5.19. If one selects a
natural frequency ab, = 5 rad/sec, the following statements can be used:

>> A=[2.25, -5, -1.25, -0.5; 2.25, -4.25, -1.25, -0.25;
0.25, -0.5, -1.25,-1; 1.25, -1.75, -0.25, -0.75];
B=[4, 6; 2, 4, 2, 2; 0, 2]; Cf[0O, O, O, 1; O, 2, O, 2];
D=zeros(2,2); G=ss(A B, CD); [GL,K d, Gan] =decoupl e_pp(G 5)

The system can be decoupled satisfactorily with the decoupling method and the state feed-

back matrixK and precompensation matixcan be evaluated as
1

1[-1 17 -3 -35 -15 025
_|s+5 _- —
Gs)= 1 ’K_g[s -7 -1 17],1“_[0’5 o]'

s+5

2007/
pagel

2007/
pagel

S
5.5. SISOTool: An Interactive Controller Design Tool 175
5.5 SISOTool: An Interactive Controller Design Tool
SISOTool is an interactive controller design tool provided in the Control Systems Toolbox
mainly for SISO systems. SISOTool is particularly useful for classroom use due to its nice
GUI (graphical user interface). In SISOTool, the root locus and Bode diagram methods
are implemented for model-based controller synthesis. We shall demonstrate the use of
SISOTool through an example.
Example 5.21. Consider the following open-loop plant model:
1
G(s) = .
5(0.1s + 1)(0.02s + 1)(0.01s + 1)(0.00% + 1)
First, let us enter this model into the workspace of MATLAB and then invoke the SISOTool
program using the following MATLAB statements:
>> s=zpk(’s’'); G=1/(s*(0.1*s+1)*(0. 02*s+1) *(0. 01*s+1) * (0. 005*s+1)) ;
si sot ool (G
A user interface window appears as shown in Figure 5.29, where the root locus and the Bode
diagram for the plant model are displayed.
The gain and phase margins are also displayed in the Bode diagram. The step response
obtained is shown in Figure 5.31, which is fairly satisfactory with a small overshoot and a
fast response speed.

Within the SISOTool interface, a toolbar is provided for the interactive controller
design with several utility icons. The leftmost icon in the toolbar is the “edit” mode. After
the edit icon, there are four icons for the user to add: a real pole, a real zero, a pair of

B] SIS0 Design for SISO Design Task (=<
E.e Edit ¥iew Design= Analysiz Tools Windew Help
Glxe s |@REM| N
Foot Locus Editar for Open-Loop 1 (2L1) Cpen-Loop Bode Editor for Open-Loop 1 (SL1)
: o - — = e e — o — -
a0 - ' 1 -100
! G 305 B
) 20| (1o 153 disee
-a0
A80 - — - —d— -5 —-— - — -
-s0r | -2
_3R0 [P M 523 deg
)))) : 450 Freo: 0.995 radfzec
-200 -150 100 =50 1] 10'3 100 103 10‘
Real Axis Frequency (radfsec)
Right-click on the plats for more desigh options.
Figure 5.29.The user interface of SISOTool.
S

176 Chapter 5. Model-Based Controller Design

B] S150 Design for SISO Design Task (=<
File Edit WYiew Designs Analysi= Tools Windew Help

[NEE NIRRT

Root Locus Editor for Cpen-Loop 1 (001 COpen-Loop Bode Editor for Open-Loop 1 (001
; 100

GM:o164dB
Freq: 11 Sradizec
. Stahle loop

P.M.: 566 degy
Freq: 3.4 radizec

10° 107 10

Real &xis Freguency (radizec)

Loop gain changed to 3.73
Right-click on plots for more design options.

Figure 5.30. A designed controller.

complex poles, and a pair of complex zeros for the controller. An “eraser” icon is provided
to remove the added zeros or poles. After the eraser icon, two other icons provide different
zooming facilities, which are useful to the user in designing a controller.

In what follows, we use SISOTool, to present an interactive method for tuning a phase
lead compensator. According to Figure 5.1(b), the phase lead controller should have a zero
to the right of the pole. Then, one can use the corresponding icons to add a real zero and a
real pole. It can be seen that the shape of the root locus and the Bode diagram will change
automatically for the new system with a phase lead controller. Then, clickingrthlgsis
| Response to Step Command menu item displaying the step response of the closed-loop
system in another window. For an interactive design, one should chedkethielime
Update box.

For an effective interactive design, one can place the step response window next to
the main interface. Furthermore, the zooming facilities can be applied to select an area
on the root locus axis to get more information around the imaginary axis. The controller
design task is done simply by dragging the pole, zero, and gain into the root locus plot until
a satisfactory step response is observed.

A sample design is shown in Figure 5.30. The gain and phase margins are also
displayed in the Bode diagram. The step response obtained is shown in Figure 5.31, which
is fairly satisfactory with a small overshoot and a fast response speed.

By interactively changing the positions of the zeros, poles, and the gain of the con-
troller, one may have a much better understanding of the qualitative relationship between
the pole and zero positions and the system step response.

Alternatively, Bode diagrams can also be used to design a cascade compensator. As
an example, let us design the phase lead controller again. One can add a real zero and a real
pole onto the Bode diagram. Zooming into the Bode diagram to focus on the area of interest,
one can interactively tune the pole position, zero position, and the gain of the controller by

2007/
pagel

2007/
pagel

5.5. SISOTool: An Interactive Controller Design Tool 177

BILII Viewer for SISO Design Tool =Jo/Ed

File Edit Hindow Help

nalaa B

Step Response

Amplitude

1] 0.5 1 1.5 2 25
Time (sec)

LTI Yigweet Real-Time Updste

Figure 5.31. Step response of the compensated system.

Figure 5.32. Other supported feedback structures in SISOTool.

dragging the magnitude response up and down. Finally, the controller can be designed
with
0.053 +1

— 37280 T~
C6)=3728) 0o 7 1

Apart from the typical feedback structure, other system structures are also supported
in SISOTool. Clicking therS button on the system structure icon, one can pick up one of
the feedback system structures, as shown in Figure 5.32. The rest of the controller design
is the same as described in the above.

Problems

1. Consider a plant model

Gis) = 210(s + 1.5)
VT L1756 + 166 + 15£)3)
and its controller 525 15
o(s + 1.
Ge®) == 1786
T !

2007/
pagel

S
178 Chapter 5. Model-Based Controller Design
Investigate the closed-loop dynamic behavior. Compare the gain and phase margins
of the original plant and the compensated plant. Suggest how to further improve the
control performance.
2. Given the following two transfer function models:
16
a G S) =]
@ G s(s+D(s+2)(s +8)
2(s +1)
b) G(s) = ,
) GO = G785 100625 1 12
design lead-lag compensators to ensure that the compensated systems have the ex-
pected phase margins and crossover frequencies. Try to change the expected margins
to improve the performances of the closed-loop systems. Use both time and frequency
domain analysis to characterize your closed-loop systems.
3. Suppose the plant model is given by
Gs) 1000
)= ———.
5(0.26s + 1)
Design a phase lead and a phase lead-lag controller.
4. Given the state space matrices
—-02 05 0 0 0 0
0 -05 16 0 0 0
A=| O 0 -—143 858 0|, B=1|0
0 0 0 —333 100 0
0 0 0 0 10 30
Q =diag([p,0,0,0,0]), R=1,
for different values op, solve the corresponding ARE. For eagldesign a state feed-
back controller and compare the closed-loop response. Comment on the comparison
results with frequency domain justifications.
5. Design a state observer for the plant model given by
0 010 O 1
1 00 0 O 2
x=(0 1 0 1 -1|x+|1|u, y=1I[000,1,1]x.
0111 0 0
0 010 O 1
Perform a simulation analysis of the designed observer. Comment on whether the
behavior of the observer is satisfactory. If not, redesign the observer until a satisfactory
result is obtained.
S

2007/
pagel

S
5.5. SISOTool: An Interactive Controller Design Tool 179
6. For the state space model
17 2454 1 8 15 1
2354 5 7 14 16 2
X = 4 6 1375 20 225889|x+ (3| u
108689 12900 19099 21896 3 4 ’
11 18089799 25 256 9 5
y=1547321]x,
if a state feedback vectdr = [0.0004 0.0004 —0.0035 0.3946 —1.4433 is used,
find the closed-loop state space model for the system. Find all the closed-loop poles
under this state feedback gain vector. Compute the controllability and observability
Gramians of the open-loop and closed-loop system models.
7. Consider a state space model given by
—-02 05 0 0 0 0
0 -05 16 0 0 0
x=| 0 0 —143 858 0 [x+]| 0 |u, y=[1,0,0,0,0]x.
0 0 0 —333 100 0
0 0 0 0 -10 30
Find the poles and zeros of the system. With the expected poles locafed=at
[—1, —2,—3,—4, —5], design a state feedback using the pole placement method. Try
other expected pole locations to further improve the dynamic behavior of the closed-
loop system. Design an observer-based controller for the original plant model and
investigate the closed-loop behavior of the new closed-loop system.
8. For a given multivariable system
-12 3 1 -8 -1 -11 O
-1 -12 O 7 4 -8 -7
xt)=| 2 -4 -12 6 0 [x(n+| 10 0 [u(),
5 -2 -6 -16 -12 0 0
5 -7 -6 7 -15 0 -10
design a state feedback mat#xwhich can place the closed-loop poles—t + j1,
-2, -3, —4.
9. For a discrete-time state space model
0.13 0154 Q328 -0.046 0
—0.126 Q085 -0.232 -0.319 —1.292
¥k+D=1 10128 —0376 a783 134 |[*®F| o |u®:
0.318 -—-0.081 Q117 Q044 —0.331
with y(k) = [—0.844, 0.497,1.488 —0.547)x (k) — 0.8468:(k), design a state feed-
back vectorK which places the closed-loop poles of the system@b +-j0.5, +-0.1.
Observe the output signal in the closed-loop system.
S

2007/
pagel

S
180 Chapter 5. Model-Based Controller Design
10. Given a plant model
21 0 O 0
. 1002 0 O n 1
Yoo -1 ol |1|"
0 0 0 -1 1
find a state feedback gain vect&rto place the closed-loop poles atZ, —2, —1,
—1). Check whether it is possible to place all the poles 2t If not, explain why.

11. For the plant models in the previous problems, design the observer-based controllers.
Compare the results with the existing direct state feedback approaches and comment
on the performance differences.

12. For the two input—two output system given by

225 -5 -125 -05 4 6
(1) 225 —-425 -125 -0.25 0+ 2 4 o
Wlo2s —05 -125 -1 | 2 2"
125 -175 -025 -0.75 0 2
0001
assume that the weighting matrix is selecteddas- diag([1, 4, 3, 2]), with R = I>.
Design an optimal LQR and observe the step response of the closed-loop system. If
one wants to further improve the step response of the system, the @aghould be
changed, for instance, with the trial-and-error method. Find a reasonable weighting
matrix Q for the system.
13. Design a dynamic decoupling compensator for the multivariable model
0.806s + 0.264 —15 —1.42
Ge) 52 +1.155 + 0.202 53+ 12852 + 13.65 + 2.36
S)=
1.9552 +2.125 + 0.49 7.152 + 25.85 + 9.35
s34+9.152 +9.39% +1.62 54420853+ 1164524 11165 + 18.8
The integral-type decoupling and the pole placement type can be tested. In the latter
type, different expected natural frequency can be tested. Find a good choice of the
natural frequency.
S

2007/
pagel

Chapter 6

~ PID Controller Design

PID (proportional integral derivative) control is one of the earlier control strategies [59].
Its early implementation was in pneumatic devices, followed by vacuum and solid state
analog electronics, before arriving at today’s digital implementation of microprocessors.
It has a simple control structure which was understood by plant operators and which they
found relatively easy to tune. Since many control systems using PID control have proved
satisfactory, it still has a wide range of applications in industrial control. According to a
survey for process control systems conducted in 1989, more than 90 percent of the control
loops were of the PID type [60]. PID control has been an active research topic for many
years; see the monographs [60—64]. Since many process plants controlled by PID controllers
have similar dynamics, it has been possible to set satisfactory controller parameters from
less plant information than a complete mathematical model. These techniques came about
because of the desire to adjust controller parameters in situ with a minimum of effort,
and also because of the possible difficulty and poor cost benefit of obtaining mathematical
models. The two most popular PID techniques were the step reaction curve experiment, and
aclosed-loop “cycling” experiment under proportional control around the nominal operating
point.

In this chapter, several useful PID-type controller design techniques will be presented,
and implementation issues for the algorithms will also be discussed. In Sec. 6.1, the pro-
portional, integral, and derivative actions are explained in detail, and some variations of the
typical PID structure are also introduced. In Sec. 6.2, the well-known empirical Ziegler—
Nichols tuning formula and modified versions will be covered. Approaches for identifying
the equivalent first-order plus dead time (FOPDT) model, which is essential in some of the
PID controller design algorithms, will be presented. A modified Ziegler—Nichols algorithm
is also given. Some other simple PID setting formulae, such as the Chien—Hrones—Reswick
formula, Cohen—Coon formula, refined Ziegler—Nichols tuning, Wang—Juang—Chan formula
and Zhuang—Atherton optimum PID controller will be presented in Sec. 6.3. In Sec. 6.4, the
PID tuning formulae for FOIPDT (first-order lag and integrator plus dead time) and IPDT
(integrator plus dead time) plant models, rather than the FOPDT model, will be given. A
graphical user interface (GUI) implementing hundreds of PID controllers tuning formulae
for FOPDT model will be given in Sec. 6.5. In Sec. 6.6, an optimization-based design algo-

181

2007/
page !

—

182 Chapter 6. PID Controller Design

rithm, together with a GUI for optimal controller design, is given. In Sec. 6.7, some of the
advanced topics on PID control will be presented, such as integrator windup phenomenon
and prevention, and automatic tuning techniques. Finally, some suggestions on controller
structure selections for practical process control are provided.

6.1 Introduction
6.1.1 The PID Actions

A typical structure of a PID control system is shown in Figure 6.1, where it can be seen
that in a PID controller, the error sign&(t) is used to generate the proportional, integral,
and derivative actions, with the resulting signals weighted and summed to form the control
signalu(t) applied to the plant model. A mathematical description of the PID controller is

! de(t):|

1
u) =K, [e(t) + f/o e(t)dr + Ty o (6.1)

whereu(t) is the input signal to the plant model, the error signa) is defined ag(¢) =
r(t) — y(t), andr(z) is the reference input signal.

The behavior of the proportional, integral, and derivative actions will be demonstrated
individually through the following example.

Example 6.1. Consider a third-order plant model given by(s) = 1/(s + 1)°. If a pro-
portional control strategy is selected, i.E.,—~ oo andT; = 0 in the PID control strategy,

for different values ofK ,, the closed-loop responses of the system can be obtained using
the following MATLAB statements:

>> G=tf(1,[1,3,3,1]);
for Kp=[0.1:0.1:1], H=feedback(Kp*G 1); step(H), hold on; end
figure; rlocus(G|[O0,15])

The closed-loop step responses are obtained as shown in Figure 6.2(a), and it can be seen
that whenk , increases, the response speed of the system increases, the overshoot of the
closed-loop system increases, and the steady-state error decreases. Howevdr, ighen

large enough, the closed-loop system becomes unstable, which can be directly concluded
from the root locus analysis in Sec. 3.4. The root locus of the example system is shown in
Figure 6.2(b), where it is seen that wh&m is outside the range g, 8), the closed-loop

system becomes unstable.

PID controller disturbancei(z)

*| controller [
: _ | um

plant y(@)
model

measure-
ment noise

Figure 6.1. A typical PID control structure.

2007/
pagel

6.1. Introduction 183
Step Response Root Locus
P — 1 25
p) /
08 15 System: G n
: = el
@ 2 05 Overshoot (%): 100
g ; Frequency (rad/sec): 1.73
g o3 g o
0.2
0.1 -15
0 -25
0 5 10 15 25 -2 -15 -1 -05 0 0.5
Time (sec) Real Axis
(a) closed-loop step response (b) root locus
Figure 6.2. Closed-loop step responses.
Step Response Step Response
2 T T 1. T T
18l «T = 0.7 al Ty = 0.1
1.61 T,=15
1l 1.2r <~ lg=1.
§ 120 § i
é- 1r é- 0.8F
< <
0.8 q 0.6-
0.6
oa J=T=15 o4r
0.2 0.21
0 - . - 0 . . -
0 5 10 15 20 0 5 10 15 20
Time (sec) Time (sec)
(a) PI control (b) PID control
Figure 6.3. Closed-loop step responses.
If we fix K, = 1 and apply a PI (proportional plus integral) control strategy for
different values off;, we can use the following MATLAB statements:
>> Kp=1; s=tf(’'s’);
for Ti=[0.7:0.1:1.5]
Ce=Kp*(1+1/Ti/s); G c=feedback(GCc,1); step(G.c), hold on
end
to generate the closed-loop step responses of the example system shown in Figure 6.3(a).
The most important feature of a Pl controller is that there is no steady-state error in the step
response if the closed-loop system is stable. Further examination showsTthatimaller
than 0.6, the closed-loop system will not be stable. It can be seen thatRvimreases,
the overshoot tends to be smaller, but the speed of response tends to be slower.

2007/
pagel

184 Chapter 6. PID Controller Design

Fixing bothK , andT; at 1, i.e.,T; = K, = 1, when the PID control strategy is used,
with different7;, we can use the MATLAB statements

>> Kp=1; Ti=1; s=tf('s’);
for Td=[0.1:0.2:2]
CGe=Kp* (1+1/ Ti / s+Td*s); step(feedback(G CGec,1)); hold on
end

to get the closed-loop step response shown in Figure 6.3(b). Clearly,Tyheoreases the
response has a smaller overshoot with a slightly slower rise time but similar settling time.

In practical applications, the pure derivative action is never used, due to the “derivative
kick” produced in the control signal for a step input, and to the undesirable noise amplifica-
tion. Itis usually cascaded by a first-order low pass filter. Thus, the Laplace transformation
representation of the approximate PID controller can be written as

1 sTy
UGs) =K, 1+T_‘S+ T
l 1+SW

The effect ofN is illustrated through the following example.

E(s). (6.2)

Example 6.2. Consider the plant model in Example 6.1. The PID controller parameters
areK, =1, T; = 1, andT; = 1. With different selections a¥, we can use the MATLAB
commands

>> Td=1; Cc=Kp*(1+1/Ti/s+Td*s); step(feedback(G Cc,1)), hold on
for N=[100, 1000, 10000, 1: 10]
Gec=Kp*(1+1/ Ti / s+Td*s/ (1+Td*s/ N)); step(feedback(GGCc,1));
end
figure; [y,t]=step(feedback(GCc,1)); err=1-y; plot(t,err)

to get the closed-loop step responses with the approximate derivative terms as shown in
Figure 6.4(a). The error signaft) whenN = 10 is shown in Figure 6.4(b). It can be seen
that with N = 10, the approximation is fairly satisfactory.

6.1.2 PID Control with Derivative in the Feedback Loop

From Figure 6.4(b), it can be seen that there exists a jump whe in the error signal
of the step response. This means that the derivative action may not be desirable in such a
control strategy.

Thus, in practice, the derivative term may be preferred in the feedback path. Since the
output does not change instantaneously, for a step input, a smoother signal is produced by
taking the derivative of the output. This PID control strategy, which will be denoted PI-D,
is shown in Figure 6.5.

Recall the typical feedback control structure shown in Figure 1.2. The controller and
feedback transfer functions can be equivalently written as

1
Ge(s) =K, <1+ ﬁ) , (6.3)

2007/
pagel

S
6.2. Ziegler-Nichols Tuning Formula 185
Step Response
1.4 1.2
Y2y o .
. 1 038
% 08 0.6
£
< 06 04
0.4
0.2
0.2
0
0
° ° “ime (SeC)15 20 ® 2 5 10 15 20
(a) output signal (b) error signal
Figure 6.4. PID control with approximate derivatives.
() 1 y(@©)
> er<1+E> t plant model >
Tys
1+T4s/N
Figure 6.5. PID control with derivative on output signal.
14+ K,/N)T;Tys?> + K,(T; + T4/N) + K
H(S)=(+ p/)T Tys“ + p(t+ d/N) + P (64)
Kp(Tis + 1)(Tas/N + 1)
The following example is designed to illustrate the consequence of using the derivative
in the feedback path.
Example 6.3. For the plant model in Example 6.1, by the following MATLAB statements:
>> G=tf(1,[1,3,3,1]); Ti=1; Td=1; Kp=1; N=10; s=tf(’s’);
Ge=Kp* (1+1/ Ti / s+Td*s/ (1+Td*s/ N)) ;
G c=feedback(G CGc, 1); Gcl=Kp*(1+1/s/Ti);
H=((1+Kp/ N) * Ti * Td* s~ 2+Kp* (Ti +Td/ N) *s+Kp) / (Kp* (Ti *s+1) * (Td/ N*s+1)) ;
G cl=feedback(G CGcl,H); step(G.c, G cl)
the closed-loop step responses for the system with PID and PI-D are obtained and compared
in Figure 6.6. By observation, the response with the PI-D controller is slower and the
overshoot larger for this particular example.
6.2 Ziegler-Nichols Tuning Formula
6.2.1 Empirical Ziegler-Nichols Tuning Formula
A very useful empirical tuning formula was proposed by Ziegler and Nichols in early 1942
[10]. The tuning formula is obtained when the plant model is given by a first-order plus
S

2007/
pagel

186 Chapter 6. PID Controller Design

Step Response

<« D in feedback
normal PID

Amplitude

051

0 5 10 15 20 25 30 35
Time (sec)

Figure 6.6. The closed-loop step responses comparison.

y(@)
_— _4 Imaginary

: timet \ /! /
fe N -

a /’»T 4 \\- —

N (a) time response (b) Nyquist plot

Figure 6.7. Sketches of the responses of an FOPDT model.

c
kM/”:

dead time (FOPDT) model expressed by

G(s) = k et (6.5)

In real-time process control systems, a large variety of plants can be approximately
modeled by (6.5). If the system model cannot be physically derived, experiments can be
performed to extract the parameters for the approximate model (6.5). For instance, if the
step response of the plant model can be measured through an experiment, the output signal
can be recorded as sketched in Figure 6.7(a), from which the parameteis,@ndT (or
a, wherea = kL /T) can be extracted by the simple approach shown. More sophisticated
curve fitting approaches can also be used. Witanda, the Ziegler—Nichols formula in
Table 6.1 can be used to get the controller parameters.

If a frequency response experiment can be performed, the crossover fregquency
and the ultimate gaiik. can be obtained from the Nyquist plot as shown in Figure 6.7(b).
Let 7. = 27 /w.. The PID controller parameters can also be retrieved from Table 6.1. It
should be noted that Table 6.1 applies for the design of P (proportional) and Pl controllers
in addition to the PID controller with the same set of experimental data from the plant.
Since only the 180point on the Nyquist locus is used in this approach, Ziegler and Nichols

2007/
pagel

6.2. Ziegler-Nichols Tuning Formula 187
suggested it can be found by putting the controller in the proportional mode and increasing
the gain until an oscillation takes place. The point is then obtained from measurement of
the gain and the oscillation frequency. This result, however, is based on linear theory, and
although the technique has been used in practice, it does have major problems.
A MATLAB function zi egl er () exists to design PI/PID controllers using the
Ziegler—Nichols tuning formulas:
function [Cc, Kp, Ti, Td, H =zi egl er (key, vars)
Ti=[]; Td=[]; H=1;
if | ength(vars)==4,
K=vars(1); L=vars(2); T=vars(3); N=vars(4); a=K*L/T;
if key==1, Kp=1/a;
el seif key==2, Kp=0.9/a; Ti=3.33*%L;
el seif key==3 | key==4, Kp=1l.2/a; Ti=2*L; Td=L/2; end
el sei f | ength(vars)==3,
K=vars(1l); Tc=vars(2); N=vars(3);
if key==1, Kp=0.5*K;
el sei f key==2, Kp=0.4*K; Ti =0.8*Tc;
el seif key==3 | key==4, Kp=0.6*K; Ti=0.5*Tc; Td=0.12*Tc; end
el sei f | ength(vars)==5,
K=vars(1l); Tc=vars(2); rb=vars(3); N=vars(5);
pb=pi *vars(4)/180; Kp=K*rb*cos(pb);
if key==2, Ti=-Tc/(2*pi*tan(pb));
el sei f key==3| key==4, Ti =Tc*(1+sin(pb))/(pi*cos(pb)); Td=Ti/4; end
end
[Gc, H=writepid(Kp, Ti, Td, N, key) ;
There is alow-level functiomr i t epi d() which can be used in the design function;
the content of the function is
function [Gc, H =writepid(Kp, Ti, Td, N, key)
switch key
case 1, Cc=Kp;
case 2, Ge=tf(Kp*[Ti,1],[Ti,0]); H=1;
case 3, nn=[Kp*Ti *Td*(N+1)/ N, Kp*(Ti +Td/ N), Kp] ;
dd=Ti *[Td/N, 1,0]; Ce=tf(nn,dd); H=1;
case 4, dO=sqrt(Ti*(Ti-4*Td)); TiO0=Ti; Kp=0.5*(Ti+d0)*Kp/Ti;
Ti =0. 5*(Ti +d0); Td=TiO-Ti; Ge=tf(Kp*[Ti,1],[Ti,0]);
nH=[(1+Kp/ N) *Ti *Td, Kp*(Ti +Td/ N), Kp];
H=t f (nH, Kp*conv([Ti,1],[Td/N, 1]));
case 5, Gec=tf(Kp*[Td*(N+1)/N,1],[Td/N, 1]); H=1;
end
It seems that this function is quite lengthy for the simple Ziegler—Nichols formula
given in Table 6.1. In fact, the MATLAB function also embeds a design formula discussed
Table 6.1. Ziegler—Nichols tuning formulae.
Controller from step response from frequency response
type Kp T; Ty Kp T; Ty
P 1/a 0.5K,
PI 0.9/a 3L 0.4K, 0.87,
PID 1.2/a 2L L/2 0.6K, 0.5T, 0.121,

2007/
pagel

188 Chapter 6. PID Controller Design

Step Response Step Response

04 PID controller
035 < Pl controller

Amplitude
Amplitude

11=076 =272

0 1 2 3 4 5 6 7 8 o 5 10 15 20
Time (sec) Time (sec)

(a) open-loop step response (b) closed-loop step response

Figure 6.8. Controller design and responses with time domain parameters.

later in this chapter. Here we shall consider only the syntax for the simple Ziegler—Nichols
tuning rule
[Ge, Kp, T;, Tg] =zi egl er (key, vars),

wherekey determines the controller type wikey = 1 for the P controllerkey = 2 for

the Pl controller, andey = 3 forthe PID controller. When step response data are available,
one should specifyars = [K, L, T, N], whilevar s = [K,, T., N] are designed for the
given frequency response data.

Example 6.4. Consider a fourth-order plant

10
CH+DE+DEs+Ds+4)

Enter the following MATLAB statements:

G(s) =

>> s=tf('s’); G=10/(s+1)/(s+2)/(s+3)/(s+4);
step(Q; k=dcgain(Q

The open-loop step response is shown in Figure 6.8(a), with a steady-state value of 0.4167.
From the step response, the parameters of the approximate FOPDT madet &2941,

L =0.76,andl = 2.72— 0.76 = 1.96, based on which the P, PI, and PID controllers can

be designed using the following MATLAB statements:

>> L=0.76; T=2.72-L; [Gcl,Kpl]=ziegler(l,[k,L, T,10])
[CGc2,Kp2, Ti 2] =ziegler(2,[k,L,T,10])
[Gc3, Kp3, Ti 3, Td3] =ziegler(3,[k, L, T, 10])

The P, PI1, and PID controllers designed are, respectively,

1 1

2007/
pagel

S
6.2. Ziegler-Nichols Tuning Formula 189

The closed-loop responses for these different controllers are obtained using the MAT-
LAB statements
>> G _cl=feedback(GCcl, 1l); G c2=feedback(GCc2,1);

G c3=feedback(GGc3,1); step(G.cl,Gc2, GCc3);
and they are shown in Figure 6.8(b). It can be observed that the steady-state error exists
when the P controller is used, and the response of the PID controller is faster than that of
the PI controller.

If the frequency response of the plant model can be measured, the ultimatg gain
and the crossover frequengy can be read from the Nyquist plot as shown in Figure 6.7(b).
With K. andw,, the parameters of different PID-type controllers can be obtained from
Table 6.1. In this case, the MATLAB functian egl er () can still be used.

In fact, since the crossover frequengyand the ultimate gaii . are the gain margin
of the open-loop plant model, one can directly obtain the parameters usingtige n()
function.

Example 6.5. Consider the plant model in Example 6.4. By the MATLAB statements
>> G=tf (10, [1, 10, 35,50, 24]);

nyqui st(Q; axis([-0.2,0.6,-0.4,0.4])

[Ke, pp, wg, wp] =mar gi n(G); [Kc,wg], Tc=2*pi/wg;

[Gel, Kpl] =ziegler(1,[Kc, Tc, 10]); Kpl

[Gc2, Kp2, Ti 2] =zi egler(2,[Kc, Tc, 10]); [Kp2, Ti 2]

[Gc3, Kp3, Ti 3, Td3] =zi egl er (3, [Kc, Tc, 10]); [Kp3, Ti 3, Td3]
the gain margin and its crossover frequency are found to be, respectively, 12.6, and 2.2361
rad/sec. The controllers are designed as

1

Gp(s)=63, G p|(s)=5.04(1+ 22479) , G p|D(S)=7.56(1+ 1205 + 0.3372s> .

The Nyquist plot of the system can be obtained and is shown in Figure 6.9(a). With
these different controllers, the closed-loop system responses can be obtained using the
MATLAB statements
>> G cl=feedback(GCcl, 1); G c2=feedback(GCc2,1);

G c3=feedback(G Gc3,1); step(G.cl,Gc2,GCc3);
and the step responses of the closed-loop system are shown in Figure 6.9(b).
6.2.2 Derivative Action in the Feedback Path
Assume that the derivative action is placed in the feedback path; then the normal PID
parametersk ,, 7;, T;) can be obtained from [65] as
T T/T),
K,=K, ([1+4), T, =T/ +7T), T)=—-"4_, 6.6
P [7<+Ti/>’ l+d’ d Tl/‘l‘Ta/v ()
where(K’, T/, T)) are the PID parameters with derivative in the feedback path.
S

2007/
pagel

S
190 Chapter 6. PID Controller Design
04 it iagram Step Response
s T PID controller
02 <« Pl controller
2 o1 s !
Y P controller
0.5
%2 o1 (; 01 02 03 04 05 06 % 2 4 6 8 10 12 14 16 18
Real Axis Time (sec)
(a) Nyquist plots (b) closed-loop step response
Figure 6.9. Controller design and responses.

In other words, if a PID controller, with derivative action in a forward path, is designed,
then an equivalent PID controller with the derivative action in the feedback path can be
obtained by solving the following algebraic equation:

T; = /T;(T; — 4T,
X —Tix+TTy=0 = X122 = ! 1(21 d). (6.7)

It is reasonable to assume in most PID controller designsfthat4T7,. In this case,
the above equation will have real roots,. Thus, from(K,, T;, Tz), the equivalent PID
parameters for the new structure, i.e., with derivative in the feedback path, can be computed
as follows:

T/ — Ti + VTi(T; — 4Ty) T = Ti — VTi(T; — 4Ty)
l 2 2 (6.8)
2T; K
K/ = £ .
P+ V(T — 4Ty)

The MATLAB functionzi egl er () can still be used to design such a PID controller.

The syntax of the function now becomes
[Ge, Kp, T;, Ty, H] =zi egl er (key, vars)

with key = 4 andH is the equivalent feedback transfer function object.
Example 6.6. Consider the plant model in Example 6.4. The normal PID controller can
be designed using the Ziegler—Nichols algorithm. An effective design of a PID controller
with a derivative in the feedback path can also be obtained with the following MATLAB
statements:
>> G=tf(10,[1, 10, 35,50, 24]); N=10; [Kc, Pmwc, wp] =nargi n(G ;

Tc=2*pi/wc; [Ccl, Kpl, Til, Tdl]=ziegler(3,[Kc, Tc,N),

[CGc2, Kp2, Ti 2, Td2, H =zi egl er (4, [Kc, Tc, N),

G cl=feedback(G Ccl,1); G c2=feedback(G Cc2, H);

step(G.cl, G c2)

S

6.2. Ziegler-Nichols Tuning Formula 191

Step Response

18

16 <« derivative in feedback

14
< normal PID

1.2

Amplitude

0.8

0.6

0.4

0.2

0 5 10 15
Time (sec)

Figure 6.10. PID controllers comparison.

The controllers designed atepp(s) = 7.5600(1 + 1/1.405Q + 0.3372), with K;, =
4.5360,7/ = 0.843Q T,; = 0.5620, and the step response comparison is shown in Fig-
ure 6.10(a).

It can be seen that although the PID controller with derivative in the feedback path
might be easier and faster to be implemented compared to the normal PID controller, its
performance may not be very satisfactory. Sometimes, such a PID controller should be
designed using a dedicated algorithm to ensure a good control performance.

6.2.3 Methods for First-Order Plus Dead Time Model Fitting

It can be seen that the model (6.5) is useful for designing a PID controller because of the
availability of a simple formula. The method in Sec. 6.2.1 for findirendT of a given plant

is simple to use with the graph of a plant step response. Although in modern computation
it is not necessary to reduce a model to this form to find suitable PID controller parameters,
which may be found by using the original model with one of many possible approaches,
nevertheless it can be useful. Given the plant transfer function, we can use one of the
model reduction methods described in Chapter 3. For example, the suboptimal reduction
method [47] is very effective at the expense of a heavy, but acceptable, computational load.
The optimal reduced-order model can be obtained with the funofxdn app() , covered

in Sec. 3.6. In this section, two other effective and frequently used algorithms will be
introduced.

Frequency response method
Consider the frequency response of a first-order model

k .
e ks e oL, (6.9)

G i = =
(jw) o Tiw+1

Ts+1

2007/
pagel

2007/
pagel

e
192 Chapter 6. PID Controller Design
The ultimate gairk . at the crossover frequeney. is actually the first intersection of
a Nyquist plot with the negative part of the real axis, i.e.,
k(cosw.L — w.T sinw.L) 1
1+ w2T? K (6.10)
sinw.L + w.T cosw.L = 0,
wherek is the steady-state value or DC (direct current) gain of the system which can be
directly evaluated from the given transfer function. Define two variables L andxy; = T
satisfying
f1(x1, x2) = kK (COSw.x1 — wex2 SiNwex1) + 1+ a)gxzz =0, (6.11)
fo(x1, x2) = SiNw¢x1 + wex2 COSwex1 = 0. .
The Jacobian matrix is that
J—|0A/0x1 0f1/dxz
af2/0x1 df2/dx2 6.12)
| Ko Sina)cxl—cha)cz.xz COSwX1 2w3xz—chwc Sinwex1 .
- @ COSw X1 —wfxz Sinwex1 W COSWeX1)
So, (x1, x2) can be solved using any quasi-Newton algorithm. The MATLAB function
[K, L, T] = getfod(G) iswrittenforsolvinge; andx;inordertofind the parameters
K, L, T of the system.
function [K L, T] =get f od(G net hod)
K=dcgai n(G ;
i f nargin==1
[Ke, Pm we, wep] =margi n(G ; ikey=0; L=1.6*pi/(3*wc); T=0.5*Kc*K*L;
if finite(Ke), xO0=[L;T];
whi |l e i key==0, u=wc*x0(1); v=wc*x0(2);
FF=[K*Kc*(cos(u)-v*sin(u))+1+v"2; sin(u)+v*cos(u)];
J=[- K*Kc*wc*si n(u) - K*Kc*we*v*cos(u), -KrKc*we*sin(u)+2*we*v;
we*cos(u)-we*v*sin(u), we*cos(u)l];
x1=x0-i nv(J) *FF;
if norm(x1-x0)<le-8, ikey=1; else, x0=x1;
end, end
L=x0(1); T=x0(2);
end
el sei f nargi n==2 & net hod==1
[n1,dl]=tfderv(G num{1}, G den{1}); [n2,d2]=tfderv(nl,dl);
Kl=dcgai n(nl, d1); K2=dcgai n(n2,d2);
Tar=-K1/K; T=sqrt(K2/K-Tar"2); L=Tar-T;
end
function [e,f]=tfderv(b,a)
f=conv(a, a); na=length(a); nb=length(b);
el=conv((nb-1:-1:1).*b(1:end-1), a);
e2=conv((na-1:-1:1).* a(l:end-1),b); maxL=nmax(length(el), | ength(e2));
e=[zeros(1, maxL-1 ength(el)) el]-[zeros(1, naxL-1ength(e2)) e2];
e

2007/
pagel

S
6.2. Ziegler-Nichols Tuning Formula 193
Transfer function method
Consider the first-order model with delay given by
kefLs
G = .
n(s) Ts+1
Taking the first- and second-order derivativegifs) with respect ta, one can immediate
find that
Gi(s) T G/ (s) (G; (s)>2 T2
Guls) 14+Ts" Guls) \Gul®)) — (1+Ts?%
Evaluating the values at= 0 yields
G, (0) 2 G, 2
= - =L+T, T-=-L—-T;, 6.13
=G0 T G, 0 (©.13)
whereTy, is also referred to as the average residence time. From the former equation, one
hasL = Ty — T. Again, the DC gairk can be evaluated frot@,, (0).

The solution for the FOPDT model is thus obtained by using the derivatives of its
transfer functionG (s) in the above formula.

The MATLAB function get f od() listed earlier can be used with the syntax

[K, L, T] = getfod(G, 1) tofindthe parameterk, L, T of the system.
Example 6.7. Consider the fourth-order model used in Example 6.4. The parameters of its
approximate FOPDT model can be obtained using the MATLAB statements
>> G=tf(10,[1, 10, 35, 50, 24]);
[k, L, T]=getfod(Q; Gl=tf(k,[T 1]); GL.ioDel ay=L;
[CGcl, Kp3, Ti 3, Td3] =ziegler(3,[k, L, T, 10])
[k, L, T]=getfod(G 1), &=tf(k,[T 1]); G2.ioDel ay=L;
nyquist(G'-',GL,"'--",&,":"); figure
[Gc2, Kp4, Ti 4, Td4] =ziegler (3, [k, L, T, 10])
G cl=feedback(G Ccl,1); G c2=feedback(GCc2,1); step(G.cl, G c2)
The Nyquist plot comparisons of the plant model and the two approximations are shown in
Figure 6.11(a).

With the frequency response method, fieL, T parameters are obtained as 0.4167,
0.7882, 2.3049. The PID controller designed with the Ziegler—Nichols formulas is) =
8.4219(1 + 1/1.5764 + 0.3941s). While the parameters using the transfer function method
are 0.4167, 0.8902, 1.1932, the PID controllerdg(s) = 3.860A1 + 1/1.7804s +
0.4451s). The closed-loop step responses with the above two PID controllers are shown in
Figure 6.11(b).

S

2007/
pagel

194 Chapter 6. PID Controller Design

Nyquist Diagram Step Response

05 1.4
0.4 <« frequency response fitting

03
0.2 1

0.1 0.8

Imaginary Axis
Amplitude

o 06 transfer function based fitting
-0.2 0.4

-0.3

0.2
-0.4

-05 0 0.5 0 1 2 3 4 5 6 7 8 9
Real Axis Time (sec)

(a) Nyquist plots (b) closed-loop step responses

Figure 6.11. PID controller responses.

It can be seen that although the PID controller designed with the transfer function
identification algorithm looks better, it does not reflect the usual overshoot characteristics
of Ziegler—Nichols tuning, presumably due to the inaccurately identified parameters of an
FOPDT model.

With the use of the suboptimal model reduction technique presented in Sec. 3.6.3, the
parameters can be extracted with the following statements and the controller can better be
designed:

G,=opt _app(G,0,1,1); [n,d]=tfdata(G,’Vv');
K=dcgai n(G); T=d(1)/d(2); L=Gr.iobDelay;

6.2.4 A Modified Ziegler-Nichols Formula

Consider the Nyquist frequency response shown in Figure 6.12(a), where for a selected
point A on the Nyquist plot, the control effects of the P, I, and D terms are shown in the
appropriate directions. Thus, with properly chodep 7;, and7y, it is possible to move
the given point A on the Nyquist curve of the uncontrolled plant to an arbitrary position on
the Nyquist plot of the controlled system. The typical Nyquist plot under PID control is
shown in Figure 6.12(b), wherei/&orresponds to the point A in Figure 6.12(a).

Denote point A in the complex plane &Xjwo) = r,é+%<). Suppose A is to be
moved to A whichiis represented b§1(jwo) = r» d™+®) Assume that the PID controller
at frequencywg is G.(s) = r.d%. Then, obviously,

pp T8 — T bato). (6.14)

Therefore,r. = rp/r, andg. = ¢p — ¢p4. S0, based on the above analysis, Pl and PID
controllers can be designed as follows:

¢ Pl control: The controller can be designed such that

_ rp COSPp — ¢a) T — 1

= , i =—mm—, 6.15
p Ta wotan(a — @p) (6.19)

2007/
pagel

S
6.2. Ziegler-Nichols Tuning Formula 195
4 Imaginary b Imaginary
4 N \ real real
I action \ L/ T T 7 >~
N ".Al
P action \\D action e
\‘\.. -,w/'// ‘
(a) original Nyquist plot (b) new Nyquist plot
Figure 6.12. Sketches of FOPDT model.
which means thap, > ¢, for a positiveT;.
As a special case, the Ziegler—Nichols algorithm design is by
K, = Kcrpcosgy, T _ L (6.16)
= 14 R ;= — . .
p = Relb B T T o tang,
whereT, = 2n/w¢, r, = 1/K., andg, = 0.
» PID control: The controller can be designed such that
rp COSPp — Pa) 1
K,=—"—"""" woTy— —— =tangy — ¢a). (6.17)
Ta woT;
Clearly, T; andT; are not unique according to (6.17). To get a unique PID design, it
is a usual practice to sé@; = aT;, wherew is a constant. Given am, T;, andT, can
be obtained uniquely from
1
T = 5 (@, —g)+da+ar(p—)), Ta=aTi. (618)
o wo
By inspection, itis seen that the Ziegler—Nichols tuning formulais a special case when
a = 1/4. The Ziegler—Nichols tuning formula can be rewritten as follows:
T, [1+sin T. (1+sin
Kp=Kerpcospy, T=-¢ (23000 1y Te (IS g 1)
7 \ CcoSgp 47 \ cosgp
wherer, = 1/K., ¢, = 0, anda = 1/4.

It can be seen that the Pl and PID controllers can be designed by a suitable chgice of
andg¢;,. The design problem is then one of selecting suitable values for these two parameters
to give the appropriate performance. This s called a modified Ziegler—Nichols PI/PID tuning
formula, which has been implemented in the MATLAB functibnegl er (), too. The
only difference is thavar s = [K,, T¢, rp, $p, N1

S

2007/
pagel

196 Chapter 6. PID Controller Design

Step Response Step Response
1.6 15

1.4 <« ¢p = 10° <« Ziegler-Nichols PID

1.2

Amplitude
Amplitude

0.8]
~ ¢p =70°
0.6|
0.5 —01
04 rp =0.

0.2

0 5 10 15 20 0 2 4 6 8 10
Time (sec) Time (sec)

(a) for differentg, (b) for differentr,
Figure 6.13. Closed-loop step responses.

Example 6.8. Consider the plant model given lgy(s) = 1/(s + 1)3. The PID controller
by the original Ziegler—Nichols tuning method can be obtained as follows:

>> G=tf(1,[1,3,3,1]); [Kc, pp, wg, wp] =margi n(G; Tc=2*pi/wgy;
[CGcl, Kpl, Ti 1, Td1] =zi egl er (3, [Kc, Tc, 10])

and the controlleiG(s) = 4.8007(1+ 1/1.8137% + 0.4353) is obtained. Now, let us
illustrate the flexibility of the modified Ziegler—Nichols PI/PID tuning formula. First, fix
r, = 0.5 and change;. By the following MATLAB statements:

>> G _c=feedback(GCcl,1); step(G.c,20); rb=0.5; hold on
for pb=[10:10: 70]
[Gc2, Kp2, Ti 2, Td2] =zi egl er (3, [Kc, Tc, rb, pb, 10]);
G c2=feedback(G CGc2,1); step(G.c2, 20);
end

the closed-loop step responses of the system for different valugs are shown in Fig-
ure 6.13(a). Clearly, when, increases, the overshoot and oscillation become smaller.
Whengy,, is larger than 69, there is no overshoot, but the response becomes too sluggish.
A good choice for the phase angle based on these responses is approxinfately 45

Now, fix ¢, at¢, = 45° and change,. By the MATLAB statements

>> G c=f eedback(G Cc1, 1); step(G.c, 10); pb=45; hold on;
for rb=[0.1:0.1:1]
[Gc2, Kp2, Ti 2, Td2] =zi egl er (3, [Kc, Tc, rb, pb, 10]);
G c2=feedback(G Gc2,1); step(G.c2,10);
end

the closed-loop step responses of the system for diffeyeare compared in Figure 6.13(b).

It can be seen that the smaller thethe smaller the overshoot and the slower the response.
Clearly,r, = 0.45, andp, = 45° can be considered as a good choice for this example with
almost no overshoot and with a reasonably fast response.

It can be concluded that the modified tuning method is advantageous over the original
Ziegler—Nichols PI/PID tuning technique.

2007/
pagel

6.3. Other PID Controller Tuning Formulae 197

6.3 Other PID Controller Tuning Formulae

Many variants of the traditional Ziegler—Nichols PID tuning methods have been proposed.
Several of these are given in the following section.

6.3.1 Chien-Hrones—-Reswick PID Tuning Algorithm

The Chien—Hrones—Reswick (CHR) method [66] emphasizes the set-point regulation or
disturbance rejection. In addition one qualitative specifications on the response speed and
overshoot can be accommodated. Compared with the traditional Ziegler—Nichols tuning
formula, the CHR method uses the time cons@f the plant explicitly.

The CHR PID controller tuning formulas are summarized in Table 6.2 for set-point
regulation. The more heavily damped closed-loop response, which ensures, for the ideal
plant model, the “quickest response without overshoot” is labeled “with 0% overshoot,” and
the “quickest response with 20% overshoot” is labeled “with 20% overshoot.”

Similarly, Table 6.3 is used to design controllers for disturbance rejection purposes.

A MATLAB function chr Pl D() is written which can be used to design different
controllers using the CHR algorithms:

function [CGc, Kp, Ti, Td, H =chr pi d(key, tt, vars)
K=vars(1l); L=vars(2); T=vars(3); N=vars(4); a=K*L/T; Ti=[]; Td=[];
ovshoot =vars(5); if tt==1, TT=T; else TT=L; tt=2; end
i f ovshoot ==0,

KK=[0.3,0.35,1.2,0.6,1,0.5; 0.3,0.6,4,0.95,2.4,0.42];
el se,

KK=[0.7,0.6,1,0.95,1.4,0.47; 0.7,0.7,2.3,1.2,2,0.42];
end
switch key
case 1, Kp=KK(tt,1)/a;
case 2, Kp=KK(tt,2)/a; Ti=KK(tt,3)*TT;
case {3,4}, Kp=KK(tt,4)/a; Ti=KK(tt,5)*TT; Td=KK(tt, 6)*L;
end
[Gc, H=writepid(Kp, Ti, Td, N, key) ;

Table 6.2. CHR tuning formulae for set-point regulation.

Controller with 0% overshoot with 20% overshoot
type K T; Ty Kp T; Ty
P 0.3/a 0.7/a
PI 0.35/a 1.2r 0.6/a T
PID 0.6/a T 0.5L 0.95/a 14T 0.47L

Table 6.3. CHR tuning formulae for disturbance rejection.

Controller with 0% overshoot with 20% overshoot
type Kp T; Ty Kp T; Ty
P 0.3/a 0.7/a
PI 0.6/a 4L 0.7/a 2.3L
PID 0.95/a 24L 0.42L 1.2/a 2L 0.42L

2007/
page

198 Chapter 6. PID Controller Design

The syntax of thehr pi d() function is
[Ge, Kp, T;, Tg] =chr Pl D(key, typ, vars)

where the returned variables are defined similar to thoge egl er (). key =1,2,3

is for P, PI, and PID controllers, respectively. The varighle denotes the type of criteria
used witht yp = 1 for set-point control and any other value for disturbance rejection.
vars = [k, L, T, N, Os] with O, = 0 denotes no overshoot, and any other value denotes
20% overshoot.

Example 6.9. Consider the plant model in Example 6.4. The Ziegler—Nichols PID con-
troller and the four CHR controllers for different controller types and specifications are
obtained using the following statements:

>> s=tf(’'s’); G=10/((s+1)*(s+2)*(s+3)*(s+4)); N=10;
[k,L, T]=getfod(Q; [Ccl,Kp, Ti, Td]=ziegler(3,[k,L, T,N])
[Gc2, Kp, Ti, Td] =chrpid(3,1,[k,L, T,N, 0])
[Ge3, Kp, Ti, Td] =chrpi d(3, 1, [k, L, T, N, 20])
[CGc4, Kp, Ti, Td] =chrpid(3,2,[k,L, T,N,0]);

The four PID controllers designed are, respectively,

1 1
G =84219 1+——-+0.39%4%L), G =42110 1+ ————+0.3941s
1(s) 9(+l.5764$+ > 2(s) 0(+2‘3049;+)

3.2268 1.8917

For the different controllers designed in the above, the step responses of the closed-
loop systems can be obtained using the following MATLAB statements:

>> step(feedback(G Ccl, 1), feedback(G G2, 1),
feedback(G&*Ge3, 1), ...
f eedback(G Gc4, 1), 10)

as summarized in Figure 6.14(a). It can be seen that the set-point regulation controller with
0% overshoot gives a satisfactory result. Similarly, with the following MATLAB statements:

>> step(feedback(G Ccl), f eedback(G Gc2), f eedback(G C&3), ...
f eedback(G Gc4), 30)

the closed-loop responses to a step disturbance signal can be obtained as shown in
Figure 6.14(b). Clearly, compared with the traditional Ziegler—Nichols controller, the effect
of the disturbance signal can be significantly reduced by a CHR controller.

1
Gs(s) = 6.6674(1+—+0.3704s> , Ga(s) = 6.6674(1+ +o.3310;) .

6.3.2 Cohen—Coon Tuning Algorithm

Another Ziegler—Nichols type tuning algorithm is the Cohen—Coon tuning formula [67].
Referring to the FOPDT model (6.5) approximately obtained from experiments, denote

2007/
pagel

6.3. Other PID Controller Tuning Formulae 199
Step Response Step Response
14 : : : ‘ 0.16
12 0.14]
0.12]
1
(] () 0.1
=] =]
2 08 2 008
g g
< 06 < 0.06
0.04
0.4
0.02]
0.2 o
0 -0.0:
0 2 4 6 8 10 0 5 10 15 20 25 30
Time (sec) Time (sec)
(a) set-point step response (b) disturbance step response

Figure 6.14. Closed-loop step responses of CHR controllers.

a=kL/T andt = L/(L + T). The different controllers can be designed by the direct use
of Table 6.4.

A MATLAB function cohenpi d() is written which can be used to design a PID
controller using the Cohen—Coon tuning formulas:

function [Gc, Kp, Ti, Td, H =cohenpi d(key, var s)
K=vars(1); L=vars(2); T=vars(3); N=vars(4);
a=K*L/ T, tau=L/(L+T); Ti=[]; Td=[];
switch key
case 1, Kp=(1+0.35*tau/ (1-tau))/a;
case 2,
Kp=0. 9*(1+0. 92*tau/ (1-tau))/a; Ti=(3.3-3*tau)*L/(1+1l.2*tau);
case {3,4}, Kp=1l.35*(1+0.18*tau/(1-tau))/a;
Ti =(2.5-2*tau)*L/ (1-0.39*tau); Td=0.37*(1-tau)*L/(1-0.81*tau);
case 5
Kp=1. 24* (1+0. 13*tau/ (1-tau))/a; Td=(0.27-0.36*tau)*L/(1-0.87*tau);
end
[Gc, H=writepid(Kp, Ti, Td, N, key) ;

The syntax is [G, K, T;, T;, H] =cohenpi d(key, vars) , where thevar s argu-
ments should be written asars = [k, L, T, N].

Table 6.4. Controller parameters of Cohen—Coon method.

Controller Kp T; Ty
1 .
P 1 <1 n 0.35¢)
a 1-1
Pl 0.9 14 0.92¢ 33— SrL
a 1-¢ 1+12t
124 0.13¢ 0.27 — 0.36t
PD — (1 _
a (+ 1-1) 1-087
PID 1.35 14 0.18¢ 25-2¢ L 0.37-0.37t
a 1-1¢ 1-0.39 1-0.81r

2007/
pagez

200 Chapter 6. PID Controller Design
Step Response
2
18- <~ Pl
1.6r
14 <« RID
[}
E 1.2} p
g 1
<
0.8r
0.6
0.4
0.21
0 ‘ ‘ ‘ ‘
0 2 4 6 8 10

Time (sec)

Figure 6.15. Step responses under controllers of the Cohen—Coon method.

Example 6.10. Consider the plant model given in Example 6.4 with its P, PI, PD, and PID
controllers designed using the following MATLAB statements:

>> G=tf(10,[1, 10,35,50,24]); [k,L, T]=getfod(Q;
[Gcl, Kpl] =cohenpid(1,[k,L, T, 10])
[Gc2, Kp2, Ti 2] =cohenpi d(2, [k, L, T, 10])
[Gec3, Kp3, Ti 3, Td3] =cohenpi d(5, [k, L, T, 10])
[Gc4, Kp4, Ti 4, Td4] =cohenpi d(3, [k, L, T, 10])

and the controllers are obtained as

G1(s) = 7.8583 Go(s) = 8.3036(1 + 1/1.5305)
G3(s) = 9.08951 + 0.1805), Ga(s) = 10.0579(1 + 1/1.741% + 0.2738) .

With the following MATLAB statements:

>> G cl=feedback(GCcl,1); G c2=feedback(GCc2,1);
G c3=f eedback(G &3, 1); G c4=feedback(GCc4, 1);
step(G.cl,G c2,G c3, G c4,10)

the closed-loop step responses of the systems with the different controllers are shown in
Figure 6.15.

6.3.3 Refined Ziegler-Nichols Tuning

Since the PID controller designed by the conventional Ziegler—Nichols tuning formulas
often exhibits rather strong oscillation in the set-point response and a large overshoot, a
refinement to such a PID controller tuning algorithm can be obtained with the use of set-
point weighting [68]:

dy

1
u(t) =K, |:(,8uc -y + f / edr — Td&} , (6.20)

2007/
page

S
6.3. Other PID Controller Tuning Formulae 201
uc(t) ; e(t) X, y
Figure 6.16. Refined PID control structure.
where the derivative action is performed on the output signal and a fraction of the input
signal is added to the control signal. Usuafly< 1. The control law can be rewritten as
1 dy
u(t) =K ﬁe—i—F edt | — K, (1—ﬂ)y+Tda . (6.21)
1
The block diagram representation of the control system can be constructed as shown in
Figure 6.16. Compared with the typical feedback control structure shown in Figure 1.2,
after some transfer function block manipulations, the contrallgts) and the feedback
H (s) can be easily obtained as follows:
G:(s) =K, | B+ 1 (6.22)
s) = —], .
c p T,'S
T;T4B(N + 2 — B)s?/N + (T; + Ty/N)s + 1
H(s) = TTBN +2=B)s?/N + (T, + Tu/N)s + 1. 6.23)
(TiBs + 1)(Tys/N + 1)
Define the normalized delay constanast = L/T and a constant by x = K k.
For different ranges of the variablesand«, PID controller parameters are suggested as
follows:
* 1f 2.25 < ¥ < 15 0r Q16 < © < 0.57, use the original Ziegler—Nichols design
parameters. To ensure that the overshoot is less than 10% or less thag 2086)d
be evaluated, respectively, from
15—« 36
= or 8=) 6.24
p 15+« p 27+ 5« ()
¢ If1.5 <k <2250rQ057 < t < 0.96, theintegral paramet&rin the Ziegler—Nichols
controller should be changed To = 0.5u T, where
4 8
=—k and B = —(u—1. 6.25
n=gK p=170-D (6.25)
e If 1.2 < k¥ < 1.5, in order to keep the overshoot less than 10%, the parameters of the
PID should be refined as
5/ 12+« 1/4
Ky==———),. 1 ==-(— 1). 6.26
r 6(15+14IC) ’ 5(15"+> (6-26)
S

2007/
pagez

S
202 Chapter 6. PID Controller Design
A MATLAB function r zi egl er () is written which can be used to design a refined
PID controller:
function [CGc, Kp, Ti, Td, bet a, H =r zi egl er (vars)
K=vars(1l); L=vars(2); T=vars(3); N=vars(4); a=K*L/T; Kp=1.2/a;
Ti =2*L; Td=L/2; Kc=vars(5); Tc=vars(6); kappa=Kc*K; tau=L/T, H[];
if (kappa > 2.25 & kappa<15) | (tau>0.16 & tau<0.57)
bet a=(15- kappa) / (15+kappa) ;
el sei f (kappa<2.25 & kappa>1.5) | (tau<0.96 & tau>0.57)
mu=4*j appa/ 9; beta=8*(nu-1)/17; Ti=0.5*nmu*Tc;
el sei f (kappa>1.2 & kappa<l.5),
Kp=5*(12+kappa) / (6* (15+14*kappa)); Ti =0.2*(4*kappa/15+1); beta=1;
end
Ge=tf (Kp*[beta*Ti, 1],[Ti,0]); nHE[Ti*Td*beta*(N+2-beta)/N, Ti +Td/ N, 1] ;
dH=conv([Ti *beta, 1], [Td/ N, 1]); H=tf(nH, dH);
The syntax ofthe function [G, K, T;, T;, 8, H] =r zi egl er (vars) ,wherevars
=[k,L,T,N, K., T.].
Example 6.11. Consider the plant model in Example 6.4. The refined PID controller can
be designed using the following MATLAB statements:
>> G=tf(10,[1, 10, 35,50, 24]); [k, L, T]=getfod(GQ;
[Ke,p,we, Ml =margin(QG; Tc=2*pi/wc;
[CGc, Kp, Ti, Td, beta, H =rziegler([k, L, T, 10, Kc, Tc])
[CGcl, Kpl, Til, Tdl] =ziegler(3,[k, L, T,10]);
G c=feedback(G Cc, H); G cl=feedback(G Cc1,1);
step(G.c, G cl);
The parameters of the refined PID controller should be takeR as= 8.42197T; =
15764 T; = 0.3941, 8 = 0.4815. The closed-loop step responses under the refined
Ziegler—Nichols PID controller are shown in Figure 6.17, with a comparison to the response
from the conventional Ziegler—Nichols PID controller. The response is significantly im-
proved but not as good as the responses using other tuning algorithms such as the modified
Ziegler—Nichols method with, = 0.45, andp, = 45°.
Step Response
1.4
<« Ziegler-Nichols tuning
12 < refined ZN tuning
1
g 0.8
£
< 06
0.4
0.2
o ‘ ‘ ‘ ‘
0 2 4 6 8 10
Time (sec)
Figure 6.17. Step responses under the original and the refined Ziegler—Nichols
controllers.
S

2007/
pagez

S
6.3. Other PID Controller Tuning Formulae 203
6.3.4 The Wang—Juang—Chan Tuning Formula
Based on the optimum ITAE criterion, the tuning algorithm proposed by Wang, Juang, and
Chan [69] is a simple and efficient method for selecting the PID parameters.f thel
parameters of the plant model are known, the controller parameters are given by
K — (0.7303+ 0.5307r/L)(T + 0.5L)
P — k]
K(T +L)
T, =T+05L, T; = OSLT e:20
a S T T rosL
A MATLAB function wj cpi d() is written for the PID controller design, using the
Wang—-Juang—Chan tuning formula:
function [Gc, Kp, Ti, Td] =wj cpi d(vars)
K=vars(1); L=vars(2); T=vars(3); N=vars(4); Td=0.5*L*T/(T+0.5*L);
Kp=(0. 7303+0. 5307* T/ L) * (T+0. 5*L) / (K*(T+L)); Ti =T+0.5*L;
s=tf(’'s’); Gc=Kp*(1+1/Ti/s+Td*s/(1+Td*s/N));
wherevars = [k, L, T, N].
6.3.5 Optimum PID Controller Design
Optimum setting algorithms for a PID controller were proposed by Zhuang and Atherton [70]
for various criteria. Consider the general form of the optimum criterion
o
Ju(0) = / [t"e(, 1)]?dr, (6.28)
0
wheree(0, t) is the error signal which enters the PID controller, witthe PID controller
parameter vector. For the system structure shown in Figure 6.1, two parameter setting
strategies are proposed: one for the set-point input and the other for the disturbance signal
d(t). In particular, three values of are discussed, i.e., for = 0,1, 2. These three
cases correspond, respectively, to three different optimum criteria: the integral squared
error (ISE) criterion, integral squared time weighted error (ISTE) criterion, and the integral
squared time-squared weighted error G&Y criterion [65]. The expressions given were
obtained by fitting curves to the optimum theoretical results.
Set-point optimum PID tuning
If the plant can be represented by the FOPDT model in (6.5), the typical PI controller can
be empirically represented as
L\" T
Kp=a—l =) Ti=—, (6.29)
k\T az +ba(L/T)
where the(a, b) pairs can be obtained from Table 6.5. When the first-order approximation
to the plant model can be obtained, the Pl controller can be designed easily by the direct
use of Table 6.5 and (6.29).
S

2007/
pagez

204 Chapter 6. PID Controller Design

Table 6.5. Set-point Pl controller parameters.

Range ofL/T 01-1 11-2
Criterion ISE ISTE IST2E ISE ISTE IST2E
a 0.980 0.712 0.569 1.072 0.786 0.628
b —0.892 -0.921 —0.951 —0.560 —0.559 —0.583
as 0.690 0.968 1.023 0.648 0.883 1.007
by —0.155 —0.247 —0.179 —0.114 —0.158 —0.167

Table 6.6. Set-point PID controller parameters.

Range ofL/T 01-1 11-2
Criterion ISE ISTE IST2E ISE ISTE IST2E
a 1.048 1.042 0.968 1.154 1.142 1.061
b —0.897 —0.897 —0.904 —0.567 —0.579 —0.583
as 1.195 0.987 0.977 1.047 0.919 0.892
by —0.368 —0.238 —0.253 —0.220 —0.172 —0.165
as 0.489 0.385 0.316 0.490 0.384 0.315
b3 0.888 0.906 0.892 0.708 0.839 0.832

Table 6.7. Set-point PID controller parameters with D in feedback path.

Range ofL/T 01-1 11-2
Criterion ISE ISTE IST2E ISE ISTE IST2E
a1 1.260 1.053 0.942 1.295 1.120 1.001
b1 —0.887 —0.930 —0.933 —0.619 —0.625 —0.624
as 0.701 0.736 0.770 0.661 0.720 0.754
b —0.147 —0.126 —0.130 —0.110 —0.114 —0.116
az 0.375 0.349 0.308 0.378 0.350 0.308
b3 0.886 0.907 0.897 0.756 0.811 0.813

For the PID controller, its gains can be set as follows:

L b1 T L bs
Kp — ﬂ _ , 7‘[= Td = Cl3T —_ N (6.30)
k \T az +ba(L/T) r

where for different ratiog./ T, the coefficientga, b) are defined in Table 6.6.
Toinclude the derivative action in the output signal, the corresponding PI-D is given by

_ 1 sTy

where the paramete(s, b) should be determined according to Table 6.7.

e

2007/
page

6.3. Other PID Controller Tuning Formulae 205

Disturbance rejection PID tuning

Sometimes one may want to design disturbance rejection PID controllers, i.e., to design a
controller having a good rejection performance on the disturbance gignalThe param-
eters of the PI controller should be set as

b1 b
a1 (L T (L
G=F(7) 1=5(7) (632

where the paramete(s, b) are obtained directly from Table 6.8.
Furthermore, for the PID controller,

b1 b2 b3
a1 (L T (L L
=7(7) n=5(F) me=ar(z) . w39

and the(a, b) parameters are determined from Table 6.9.
A MATLAB function opt pi d() is written which can be used to get the parameters
of the PID controller:

function [Gc, Kp, Ti, Td, H =opt PI D(key, typ, vars)

k=vars(1l); L=vars(2); T=vars(3); N=vars(4); Td=[];

if length(vars)==5, iC=vars(5);
switch key
case 2

A=[0. 980, 0. 712, 0. 569, 1. 072, 0. 786, 0. 628; 0.892, 0. 921, 0. 951, 0. 560, 0. 559, 0. 583
0. 690, 0. 968, 1. 023, 0. 648, 0. 883, 1. 007; 0. 155, 0. 247, 0. 179, 0. 114, 0. 158, 0. 167]
case 3

A=[1. 048, 1. 042, 0. 968, 1. 154, 1. 142, 1. 061; 0. 897, 0. 897, 0. 904, 0. 567, 0. 579, 0. 583

Table 6.8. Disturbance rejection PI controller parameters.

Range ofL/T 01-1 11-2
Criterion ISE ISTE IST2E ISE ISTE IST2E
ai 1.279 1.015 1.021 1.346 1.065 1.076
n —0.945 —0.957 —0.953 —0.675 —0.673 —0.648
ay 0.535 0.667 0.629 0.552 0.687 0.650
by 0.586 0.552 0.546 0.438 0.427 0.442

Table 6.9. Disturbance rejection PID controller parameters.

Range ofL/T 01-1 11-2
Criterion ISE ISTE IST2E ISE ISTE IST2E
ay 1.473 1.468 1.531 1.524 1.515 1.592
b1 —0.970 —0.970 —0.960 —0.735 —0.730 —0.705
as 1.115 0.942 0.971 1.130 0.957 0.957
b 0.753 0.725 0.746 0.641 0.598 0.597
az 0.550 0.443 0.413 0.552 0.444 0.414
b3 0.948 0.939 0.933 0.851 0.847 0.850

2007/
pagez

206 Chapter 6. PID Controller Design

1.195,0.987,0.977, 1. 047, 0. 919, 0. 892; 0. 368, 0. 238, 0. 253, 0. 220, 0. 172, 0. 165;
0. 489, 0. 385, 0. 316, 0. 490, 0. 384, 0. 315; 0.888, 0.906, 0. 892, 0. 708, 0. 839, 0. 832] ;
case 4
A=[1. 260, 1. 053, 0. 942, 1. 295, 1. 120, 1. 001; 0.887, 0.930, 0. 933, 0. 619, 0. 625, 0. 624;
0. 701, 0. 736, 0. 770, 0. 661, 0. 720, 0. 754; 0.147,0.126, 0. 130, 0. 110, 0. 114, 0. 116;
0. 375, 0. 349, 0. 308, 0. 378, 0. 350, 0. 308; 0.886, 0.907, 0. 897, 0. 756, 0. 811, 0. 813] ;
end
ii=0; if (L/T>1) ii=3; end; tt=L/T, al=A(1,ii+iC); bl=-A(2,ii+iO);
a2=A(3,ii+iC); b2=-A(4,ii+i Q; Kp=allk*tt"bl; Ti=T/(a2+b2*tt);
i f key==3| key==4
a3=A(5,ii+iC); b3=A(6,ii+i C; Td=a3*T*tt" b3;
end
el se,
Kc=vars(5); Tc=vars(6); k=vars(7);
switch key
case 2, Kp=0.361*Kc; Ti =0. 083*(1. 935*k+1) *Tc;
case 3, Kp=0.509*Kc; Td=0.125*Tc; Ti =0.051*(3.302*k+1) *Tc;
case 4, Kp=(4.437*k-1.587)/(8.024*k-1.435) *Kc;
Ti =0. 037*(5. 89*k+1) *Tc; Td=0.112*Tc;
end
end
[Ge, H =wri t epi d(Kp, Ti, Td, N, key) ;

The syntax of the function is
[Ge, Kp, T;, Ty, H] =opt pi d(key, typ, vars)

wherekey = 2,3, 4 for Pl, normal PID, and PID controllers with D in the feedback
path, respectively, anlyp = 1, 2 for set-point and disturbance rejection, respectively.
The variablevars = [k, L, T, N, C], whereC is the criterion type withC = 1,2,3

for ISE, ISTE, and IS?E criteria, respectively. The returned variables @ethe cascade
controller object, and ,,7;,7, are the PID controller paramete§.is returned, ikey = 4,

as the equivalent feedback transfer function for the structure with the derivative in the
feedback path.

Example 6.12. Consider the plant model in Example 6.4. The optimal Pl and PID con-
trollers can be designed using the following MATLAB statements:

>> G=tf(10,[1, 10, 35,50, 24]); N=10; [k, L, T]=getfod(Q;
f1=figure; f2=figure;
for iC=1:3
[Ge, Kp, Ti, Td] =optpid(2,1,[k, L, T,N,iC]);
figure(fl), G c=feedback(GCc,1); step(G.c, 10), hold on,
[Gc, Kp, Ti, Td] =optpi d(3,1,[k,L, T,NiQ);
figure(f2), G c=feedback(GCc,1); step(G.c, 10), hold on,
end

The relevant closed-loop step responses are shown in Figures 6.18(a) and (b).

2007/
pagez

S
6.3. Other PID Controller Tuning Formulae 207
Step Response Step Response
14 1.4
<« ISE control
12t < ISTE control — 12
« IST2E© I
1 1
g 0.8r g 0.8
g g
< o6f < o6
0.4r q 0.4]
0.2r q 0.2
0 : : : . 0 : : : .
0 2 4 6 8 10 0 2 4 6 8 10
Time (sec) Time (sec)
(a) PI control (b) PID control
Figure 6.18. Closed-loop step responses of optimal controllers.
PID controller design based on ultimate frequency and gain
When the crossover frequeney and the ultimate gaik, are known, withT, = 27 /w,,
three types of PID controllers are summarized in Table 6.10, whetek K, is the nor-
malized gain of the plant model [70]. The values given were deduced from the relationship
between the FOPDT plant parameters and the ultimate gain and frequency.
The corresponding values for the PI controller are given in Table 6.11.
When the relay automatic tuning strategy is used, which will be discussed later in
this chapter, the oscillation frequeney and the magnitudeg can be measured. Then,
Ty = 2 /wg andKq = 4h/(agm). Assume thakg = kKo. wg and Ko are approximations
to w. and K., but more accurate results can be obtained for the PID controller parameters
from Table 6.12.
The PI controllers for disturbance rejection can also be obtained with the direct use
of Table 6.13.
Table 6.10.PID controller parameters for ISTE criterion.
PID Set-point Disturbance rejection D in feedback
4.434¢ — 0.966 4.437c — 1.587
Kp 0-509K. 512 41734 ¢ 8.024c —1.435 ¢
1.75% — 0.612
T; 0.051(3.302 + 1T, 377605 1388 0.037(5.8% + DT,
Ty 0.1257, 0.1447, 0.112r,
Table 6.11.PI controller parameters for ISTE criterion.
PI Set-point Disturbance rejection
© 4.264— 0.148 1.892¢ + 0.244
P 12119— 0432 ¢ 3.249c +2.097 ¢
0.706¢ — 0.227
T; 0.083(1.935¢ + 1)T, 07229 1127361
S

208 Chapter 6. PID Controller Design

Table 6.12.PID controller parameters for ISTE criterion for autotuning.

PID Set-point Disturbance rejection D on output
6.068c0 — 4.273 2.354c — 0.696
K 0.604K _— ————— K|
P 0 5.758¢ — 1.058 ° 3363 + 0517 °
1.1622 — 0.748
T; 0.04(4.97 1T _—— 0.27 kg Ty
i 449720 + DTo 25165 — 0505 ' © ofo
T, 0.1307 0.15Tge 0.1162Tyc

Table 6.13.PI controller parameters for ISTE criterion for autotuning.

Pl Set-point Disturbance rejection
K 1.506¢p — 0.177 6.068¢p — 4.273
p 3.341 + 0.606 ° 5.758¢ — 1.058 °
5.352% — 2.926
T; § .61 T, _—
i 0.0553.616« + 1To 5539 + 5.536 °

Improved gain-phase approach

The gain-phase assignment algorithm can be used to design a PID controller

. m gos¢ _ K, cosp, Ty = tanp+/4/a+ tartg
| G(we) | 2w,

T, = aly, (6.34)

wherea = 0.413(3.302¢ + 1) or @« = 1.687g. The constant® andm can be obtained
from one of the following two cases:

 For the normalized gain,

¢ =338(1—0.976 %4%) m = 0.614(1 — 0.233 0347, (6.35)

« If the frequency and the gain under automatic tuning are measured, the following
approach can be used:

¢ =332°(1— 1389680y, = 0.6131 — 0.262 & 04%0), (6.36)

The MATLAB functionopt pi d() can be used again to solve for the PID controller
parameters with the improved gain-phase method. The syntax of the function, for the particu-
lar designtasks with this algorithm, [G¢, K, T;, T;, H] =opt pi d(key, typ, vars)

wherevars = [k, L, T, N, K., T,, k] are the relevant parameters of the plant model. As
before, if the value okey is selected akey = 4, the effective PID controller, with
derivative action in the feedback path, can be designed.

2007/
pagez

2007/
pagez

6.3. Other PID Controller Tuning Formulae 209

Step Response Nichols Chart
14 - - - - 40

12 30k

-1dB]

0.8¢ -3.dg

Amplitude

-6 d§
0.6F
-12.df

Open-Loop Gain (dB)

04r -20 dg

0.21

o ‘ ‘ ‘ ‘ _ag A VAN L -a0dB
0 2 4 6 8 10 -360 -315 -270 -225 -180 -135 -90 -45 0
Time (sec) Open-Loop Phase (deg)

(a) step responses (b) Nichols charts

Figure 6.19. Responses for the optimal gain-phase margins design.

Example 6.13. Consider again the plant model in Example 6.4. The PID controller can be
designed using the following MATLAB statements:

>> G=tf(10,[1, 10, 35,50, 24]); [Kc, pmwc, wr =margi n(G ;
Tc=2*pi /wc; kappa=dcgai n(GQ *Kc; [k, L, T] =getfod(G;
N=10; vars=[k, L, T, N, Kc, Tc, kappa] ;
[Gc, Kp, Ti, Td, H =opt pi d(3, 1, vars); step(feedback(GCc,1));
figure, nichols(GCe);grid;axis([-360,0,-40,40])

the controller is
2.6276

Geols) = 6.4134(1 + + 0.3513> .

The closed-loop step response and the Nichols chart of the system are obtained as shown
in Figures 6.19(a) and (b), respectively. It can be seen that the responses are satisfactory,
compared with the controllers designed using other approaches.

Example 6.14. Let us revisit the original Ziegler—Nichols tuning algorithm. We have seen

in Sec. 6.2 that the original Ziegler—Nichols parameter setting formula does not achieve a
very satisfactory PID control performance. In this example, we will show, via redesigning
the PID controller for the plant model in Example 6.4, a new Ziegler—Nichols parameter
setting procedure can give a much improved performance which is close to that achieved
by the optimum PID parameter setting method.

Before applying the original Ziegler—Nichols parameter setting formula, the optimal
reduced-order model is obtained first to extract the characteristics of the plant model. Then,
with this optimally reduced FOPDT model, a PID controller can be designed using the
Ziegler—Nichols algorithm. By the following MATLAB statements:

>> G=tf(10,[1, 10, 35,50, 24]); R=opt_app(G 0,1,1); L=R iobDelay;
T=R den{1} (1) /R den{1}(2); K=R nun{1}(2)/R den{1}(2);
CGe=ziegler(3,[K L, T,10]); Ccl=optpid(3,1,[K L, T, 10,2]);
st ep(feedback(G Cc, 1), feedback(G 1, 1))

the new Ziegler—Nichols PID controller and the optimum PID controller can be designed.
Their step responses are compared in Figure 6.20. We can see that the new Ziegler—Nichols

2007/
pagez

210 Chapter 6. PID Controller Design

Step Response
14

1.2r

1t

0.8} .
optimum controller

Amplitude

08 «— new Ziegler-Nichols tuning

0.4

0.2r

0 1 2 3 4 5 6 7 8 9
Time (sec)

Figure 6.20. Step responses comparison of two PID controllers.

parameter setting procedure gives a much improved performance compared with that pre-
sented in Example 6.4. In fact, this new Ziegler—Nichols PID controller performs similarly
to the optimum PID controller in terms of step response speed and overshoot.

6.4 PID Controller Tuning Algorithms for Other Types of
Plants

All the PID tuning algorithms discussed in the previous sections are based on the FOPDT
plant models; they cannot be used for many other plant models in practice. A great many PID
tuning algorithms have been collected in the handbook [71], where apart from the FOPDT-
based algorithms, tuning algorithms for other plant models are also given. Here only a few
PID controller algorithms are summarized, with their MATLAB implementations.

6.4.1 PD and PID Parameter Setting for IPDT Models

A widely encountered plant model is described by a mathematical descrigtion =
Ke~Ls /s, which is referred to as the integrator plus dead time (IPDT) model. This kind of
plant model cannot be controlled by the PD and PID controllers using the setting algorithms
given in the previous sections.

Since there already exists an integrator in the plant model, an extra integrator in the
controller is not required to remove a steady-state error to a step input, but it is needed to
remove the output error caused by a steady disturbance atthe plantinput. PD controllers may
also be used to avoid large overshoot. The mathematical models of PD and PID controllers
are, respectively,

1
Gpp(s) = Kp(1+Tys), Gpip(s) =K, (1+ TS + Tds> . (6.37)

2007/
pagez

S
6.4. PID Controller Tuning Algorithms for Other Types of Plants 211
Table 6.14.The coefficients of the controller for IPDT models.
criterion ay as as aq as
ISE 1.03 0.49 1.37 1.49 0.59
ITSE 0.96 0.45 1.36 1.66 0.53
ISTSE 0.9 0.45 1.34 1.83 0.49
PD and PID parameter setting algorithms were presented in [72], based on various
performance indices, and given as
PD controller K, = ﬁ, T; = ayL,
Kalé (6.38)
PID controller K, = —, T; =a4L, Tgy=asL,
KL
where for different criteria, the coefficients can be selected as shown in Table 6.14. The
following MATLAB function can be written to implement the above algorithms:
function [CGc, Kp, Ti, Td] =i pdtctrl (key, keyl, K, L, N)
a=[1.03, 0. 49, 1. 37, 1. 49, 0. 59; 0. 96, 0. 45, 1. 36, 1. 66, 0. 53;
0.9,0.45,1.34,1.83,0.49]; s=tf('s’); Ti=inf;
if key==1
Kp=a(keyl, 1)/ K/ L; Td=a(key1l, 2)*L; Cc=Kp*(1+Td*s/(1+Td/ Ns));
el se
Kp=a(keyl, 3)/K/'L; Ti=a(keyl, 4)*L; Td=a(keyl, 5)*L;
Cec=Kp* (1+1/ Ti / s+Td*s/ (1+Td/ N*s)) ;
end
In the functionkey is the switch for PD and PID controller selections, withy = 1 for
PD, 2 for PID. The argument fdrey 1 is setto 1, 2, 3 for ISE, ITAE, and ISTSE selections,
respectively.
6.4.2 PD and PID Parameters for FOIPDT Models
Another category of plant model is defined by a first-order lag and integrator plus dead time
(FOIPDT) whose mathematical model is
G() e—Ls
s s(Ts +1)
Since an integrator is contained in the model, an extra integrator is not necessary in the
controller to remove the steady-state error to a set point change. Thus, a PD controller may
be used if there is no steady-state disturbance at the plant. A PD controller setting algorithm
isincluded in[71, 73]
2
Ky=—-—, Ty=T. 6.39
P=3kL ¢ (6.39)
Also a PID setting algorithm is included in [71, 74] such that
1.1117 1 7\%%° T;
Kp==""73 5. T; = 2L [1+ (Z) Ta= 7. (6.40)
[1+(T/1)°%]
S

2007/
pagez

212 Chapter 6. PID Controller Design

Step Response
1.6 T T T T T

14k PID controller]

1.2 q

081 PD controller

Amplitude

0.6 q

0.4 q

0.2 i

0 L L L L L
0 20 40 60 80 100 120

Time (sec)

Figure 6.21. Comparisons of the PID and PD controllers.

A control design functiorf oi pdt () is written to implement the two algorithms,
wherekey is used to select the structure of the controller, i.e., 1 for PD and 2 for PID. If
the parameterk, L, T, N are known, the controller can immediately be designed.

function [CGc, Kp, Ti, Td] =f oi pdt (key, K, L, T, N)
s=tf('s’);
if key==1
Kp=2/3/ K/'L; Td=T; Ti=inf; Cc=Kp*(1+Td*s/(1+Td*s/N));
el se
a=(T/L)"0.65; Kp=1.111*T/ (K*L"2)/(1+a)"2;
Ti =2*L*(1+a); Td=Ti/4; Gc=Kp*(1+1/Ti/s+Td*s/ (1+Td*s/N));
end

Example 6.15. Consider the plant model

G(s) = ———,
) s(s + 14

where there exists an integrator and the rest of the model can be described by an FOPDT
model. Thus, the original model can be approximated by an FOIPDT model. The following
statements can be used to design PD and PID controllers. The step response of the closed-
loop systems are obtained as shown in Figure 6.21.

>> s=tf(’'s’); Gl=1/(s+1l)"4; G=Gl/s; R=opt_app(GL0,1,1);
K=R. nun{1}(2)/R den{1}(2); L=R ioDelay; T=1/R den{1}(2);
[Gcl, Kpl, Til, Tdl] =foi pdt (1, K, L, T, 10);
[Gc2, Kp2, Ti 2, Td2] =foi pdt (2, K, L, T, 10) ;
step(feedback(G Ccl, 1), feedback(G CGc2, 1))

The controllers are

2.3334% 1 1.9910%
GpD(s)=0.3631<1+) .

1+0.23334 7.9638 + 1+0.199%
It can be seen from the control results that the PD controller is significantly better than the

PID controller. This is because the T8@g given by two integrators makes good control
more difficult.

) , GP|D(S)=0.1635(1+

2007/
pagez

S
6.5. PID_Tuner: A PID Controller Design Program for FOPDT Models 213
Table 6.15.The coefficients of the controller for unstable FOPDT models.
Criterion ai by as by as b3 y
ISE 1.32 0.92 4 0.47 3.78 0.84 0.95
ITSE 1.38 0.9 412 0.9 3.62 0.85 0.93
ISTSE 1.35 0.95 4,52 1.13 3.7 0.86 0.97
6.4.3 PID Parameter Settings for Unstable FOPDT Models
In practical control systems, the plant model may approximate an unstable FOPDT model, i.e.,
Ke—LS
G(s) = .
) Ts —1
The following algorithms may be used to design the PID controller, [72].
K,= %Abl, T: = apT AP, Ty = a3T [1 - bgA_O'OZ] A7, (6.41)
whereA = L/T. For different criteria, the coefficients, b;, y of the PID controller can
be obtained in Table 6.15. Based on the algorithm, a PID controller design function for
unstable FOPDT models can be written such that
function [Cc, Kp, Ti, Td] =uf opdt (key, K, L, T, N)
Tab=[1.32, 0.92, 4.00, 0.47, 3.78, 0.84, 0.95;
1.38, 0.90, 4.12, 0.90, 3.62, 0.85, 0.93;
1.35, 0.95, 4.52, 1.13, 3.70, 0.86, 0.97];

al=Tab(key, 1); bl=Tab(key, 2); a2=Tab(key, 3); b2=Tab(key, 4);

a3=Tab(key, 5); b3=Tab(key, 6); ganrTab(key,7); A=L/T;

Kp=al*A bl/K; Ti=a2*T*A b2; Td=a3*T*(1-b3*A (-0.02))*A gam

s=tf('s’); Gc=Kp*(1+1/Ti/s+Td*s/ (1+Td/ N*s));

6.5 PID_Tuner: A PID Controller Design Program for

FOPDT Models
Hundreds of PID parameter tuning algorithms have been collected in the handbook [71].
Many of the methods are based on the FOPDT plant models. Thus, a GUI is designed,
which can be used to design PID-type controllers, and also a closed-loop simulation for the
designed controllers can be obtained. With the interface, the following procedures can be
used to design PID controllers:

1. Enter pi d_t uner under the MATLAB prompt. The interface in Figure 6.22 is
given, which can be used to design PID-type controllers.

2. Click thePlant model button; a dialog box will be given to prompt you to enter the
plant model. Any single input—single output (SISO) continuous model, with or without
time delays, can be defined. The buttddify Plant Model can be used to modify
the plant models.

3. Once the plant model is specified, tiet FOPDT parameters button can be clicked
to extract the FOPDT parameters, i.e., to find the paramg&iets 7. Many different

S

2007/
page:

214 Chapter 6. PID Controller Design

Chooze a controller type Applied to .
Plant rods]

Process Reaction [
PID contraller Regulator Tuning = :
Modified PID Serva turing - ey Pl el

Get FOLPD mode|

Tuning algorithm selection Design Contrafler

Ziegler & Michals
Hazebroek & Van der'wWaerden
£ i |

|[&[®

[izplay Controller

=

Clozed-oop Simulation
FOLPD model fitting algaorithm

Frequency rezponse baged
Transfer function based

9]

Figure 6.22. PID controller design interface.

methods can be used to extract the parameters, for instance, using the optimum fitting
methods. The fitting algorithms can be selected viaRBEDT model parameters
fitting list box.

4. With thek, L, T parameters, the controller can be designed. The controller type can
be selected by the combinations of the list bok&sose controller type, Apply to,
andTuning algorithm selection, which provides the algorithms in [75].

5. TheDesign Controller button can be used to design the relevant PID controller.

6. TheClosed-loop Simulation button can be used to show the closed-loop step response
of the system under the controllers designed.

Example 6.16. For the plant model

G(s) = —,
W= Gro

click Plant model to enter the model. The dialog box shown in Figure 6.23 is displayed, and

the numerator, denominator, coefficient vectors, and delay constant can be entered. Then

click theApply button to model the input procedure.

6.5. PID_Tuner: A PID Controller Design Program for FOPDT Models 215

J Enter the Plant Nodel (=]

X

Mumerator Array

| 1
Denominatar Aray Canicel
|[1 E1520156 1]

Help
Dielay Constant I 0

Apply

! |e]s

Figure 6.23. Dialog box of plant model input.

A PID Tuning Frogram

Chooze a controller type Applied tao ...
Plant rodel

Fl controller Process Reaction A
Regulatar Turir = "
M odified PID Se g > todify Plant Model

Get FOLFD madel

Tuning algorithm selection

Degign Controller |

M!nimum 1&E [Fovira et al) ~|
Minimum 14E [wang et al] — Dizplay Cantraller
Minirmum ISE [Wang et &l |
5 Clozed-loop Simulation
FOLPD model fitting algorithm
Frequency responze baszed | FD’J;E;D I[nf;lglgpﬁ;lameters:
Tranefer function baged | T-2 827

Step Response

0&r B

06+ B

Amplitude

04t .

nzr 1

£

Time (sec)

Figure 6.24.PID controller design and display.

To design a controller, the FOPDT parameters should be obtained first. The fitting
algorithms can be selected as théoptimal reduction item; the buttonGet FOPDT
model can then be clicked to extract the model parameters, as shown in Figure 6.24.

The controller can be obtained by thesign Controller button. For instance, the
Minimum IAE (Wang et al) item can be used to design the controller

1
—0936172(14+ ——
Ge(s) = 0.936 <+4.565340

+ 1.06246%) .

2007/
page:

2007,
page

216 Chapter 6. PID Controller Design

Click theClosed-loop Simulation button to show the closed-loop step response. One
may click theHold button to hold the results. The step responses under different controllers
can be displayed together. So, this feature can be used to compare different algorithms, as
shown in Figure 6.24.

6.6 Optimal Controller Design

Optimal control is defined as the optimization of certain predefined performance indices.
For instance, commonly used performance indices can be the ones in (3.50). Sometimes,
parametric objective functions may be used, for example, the linear quadratic optimal reg-
ulator problem, where the two weighting matrio@s R need to be defined. There is as yet

no universally accepted way to define these two matrices.

In this section, we first summarize and illustrate some solutions to unconstrained
and constrained optimization problems using MATLAB. Then the method can be applied
to optimal controller design problems. Finally, a MATLAB interface optimal controller
designer (OCD) for optimal controller design is presented.

6.6.1 Solutions to Optimization Problems with MATLAB

Unconstrained optimization problems

The mathematical formulation of the unconstrained optimization problem is

min F (x), (6.42)

wherex = [x1, x2, ..., x,1". The interpretation of the formula is: find the vectosuch
that the objective functior (x) is minimized. If a maximization problem is treated, the
objective function can be changed-td@ (x) such that it can be converted to a minimization
problem.

A MATLAB function f mi nsear ch() is provided using the well-established sim-
plex algorithm [76]. The syntax of the function is

[x, fopt, key, c] =f mi nsear ch(Fun, xg, OPT)

whereFun is a MATLAB function, an inline function, or an anonymous function to describe
the objective function. The variabbg is the starting point for the search method. The
argumeniOPT contains further control options for the optimization process.

Example 6.17. If afunction with two variablesis givenby= f (x, y) = (x2—2x)e‘x2‘y2‘xy
and the minimum point is required, one should first introduce a vacfor the unknown
variablesx andy. One may select; = x andx, = y. The objective function can be
rewritten asf (x) = (xf — le)e—xf‘xg—xm. The objective function can be expressed as
an anonymous function such that

>> f=@x) [(x(1)"2-2*x(1))*exp(-x(1)"2-x(2)"2-x(1)*x(2))];

2007/
pagez

6.6. Optimal Controller Design 217

If one selects an initial search point @ 0), the minimum point can be found with the
statements

>> x0=[0; 0]; x=fm nsearch(f, x0).
Then the solution obtained is= [0.611Q —0.3055" .

Constrained optimization problems
The general form of the unconstrained optimization problem is

min F(x) (6.43)
Ax < B
Aeg;x = By,
xsty X <X <Xy
Cix)<0
Ce(x) =0,

wherex = [x1, x2, ..., x,]". The constraints are classified as linear equality constraints
Ag;x = Bg,, linear inequality constraintdx < B, and nonlinear constraintg, (x) =0
andC(x) < 0. The upper and lower bounds of the optimization variables can also be
defined such that,, < x < x),.

The interpretation of the optimization problem is: find the vegtowhich minimizes
the objective functiorF (x), while satisfying all the constraints.

A MATLAB function f mi ncon() can be used to solve constrained optimization
problems. The syntax of the function is

[x, fopr,» key, c] =f mi ncon(Fun, xo, A, B, Aeg, Beg, Xm, x5, CFun, OPT)

whereFun again could be M-functions, inline functions, or anonymous functions for the
objective function, andy is the starting search point. The nonlinear constraints can be
described by the MATLAB functiofCFun.

Example 6.18. Consider the following nonlinear programming problem:
min 1000— x% - ng - xg — X1X2 — X1X3.
xf+x§+x§—25:0
x S.t. 8x1+14x2+7x3—56=0

x1,x2,x¥3>0

The objective function can be expressed with an anonymous function
>> f=@x) 1000- x(1) *x(1)-2*x(2)*x(2)-x(3)*x(3)-x(1)*x(2)-x(1)*x(3);

Also, the two constraints are equalities, one of which is nonlinear. The nonlinear
constraints can be described in the following MATLAB function, where two constraint
variablesceq andc are returned. Since there is no inequality constraint, the var@ble
returns an empty matrix.

function [c, ceq] =opt_con(x)
ceq=x(1)*x(1) +x(2) *x(2) +x(3) *x(3)-25; c=[];

2007/
pagez

218 Chapter 6. PID Controller Design

The linear equality constraint can be expressed bydthe B., matrices, while the
linear inequality matriced andB should be empty ones, since there is no linear inequalities
in the problem. Selecting an initial search positiowgt= [1, 1, 1], the problem can then
be solved using the following statements:

>> x0=[1;1;1]; xnme[0;0;0]; xM=[]; A=[]; B=[]; Aeq=[8, 14,7]; Beq=56;
[x,f_opt,c,d]=fm ncon(f, x0, A B, Aeq, Beq, xm xM ' opt _con’)

The optimum solution can then be found, whete= [3.5121 0.217Q 3.5522" and fopt =
9617151.

6.6.2 Optimal Controller Design

With the powerful tools provided in MATLAB, many optimal control problems can be
converted into conventional optimization problems. With the above-mentioned functions,
some optimal controller design problems can be easily solved. Although not allowing
elegant analytical solutions, numerical methods are extremely powerful practical techniques
for controller design.

Example 6.19. Assume that

10(s + 1) (s + 0.5)

) = T 06+ 2)6 + 106 120"

The phase lead-lag controllers can be designed using the method in Sec. 5.1. Here opti-
mal controller design is explored. Integral-type criteria are very suitable for servo control
problems. Given the plant model, a Simulink block diagram can be established as shown in
Figure 6.25(a), where the ITAE criterion can be evaluated as shown.

In order to minimize the ITAE criterion, the following MATLAB function can be
written to describe the objective function:
function y=c6optm (x)
assigni n(’ base’,’Z1’',x(1)); assignin(’base',’ P1',x(2));
assi gni n(’ base’,’ Z2',x(3)); assignin(’ base’,’'P2’,x(4));
assigni n(’ base’,’ K ,x(5)); % assign variable into MATLAB workspace
[t,xx,yy] =sinm(’cérmoptnl.ndl’, 3); y=yy(end); % evaluate objective function

K(s+Z1)(s+Z2) 4(s+1)(s+0.5)]
(s+P1)(s+P2) s(s+0.1)(s+10)(s+20)(s+2 = 0.4

Zero-Polel Zero—Pole

0 0.5 1 15 2 25 3
(a) Simulink model (file: c6moptm1.mdl) (b) closed-loop response

Figure 6.25. Phase lead-lag controller and system response.

2007/
pagez

6.6. Optimal Controller Design 219

Theassi gni n() function can be used to assign the variables in the MATLAB workspace,
and the model parameters can be defined in the optimization variable vedtoe following
MATLAB statements can be used to solve the optimization problem:

>> x0=20*ones(5, 1); x=fmi nsearch(’ c6optmnl’, x0)

and the parameters are returned in the variablieom which the controller model can be
written as
(s +53)(s + 66.58

G.(s) = 24377 .
) (s + 3828)(s 1 6209

Under this controller, the step response of the system is shown in Figure 6.25(b).

In practical calculation, when the zero of the controller is very small, the computation
may become extremely slow. To solve the problem, a suitable constraint to ensure that
all the five variables do not become smaller than 0.01 can be introduced. The following
statements can then be used to solve the problem:

>> x=fm ncon(’ c6optml’,x0,[],[],[].[],0.01*ones(5,1))

Based on the numerical optimization technique, an extra constraint can be introduced.
For instance, if one wants to reduce the overshoot suclrtkaB%, a new Simulink model
can be established as shown in Figure 6.26(a). The objective function can be rewritten as
functi on y=c6opt n2(x)
assigni n(’ base’,’Z1’ ,x(1)); assignin(’ base’,’ Pl ,x(2));
assigni n(’ base’,’Z2' ,x(3)); assignin(’ base',’ P2',x(4));
assi gni n(’ base’,’ K, x(5)); % Assign variables to MATLAB workspace
[t,xx,yy]=sin(’cérmoptnR. nmdl ', 3); y=yy(end, 1); % Evaluate objective function
if max(yy(:,2))>1.03, y=1.2*y; end % update objective function

It can be seen from the last line that if the overshoot is too large, one can increase the
objective function purposely as a penalty.

The following statements can be given to solve the problem, and the closed-loop step
response of the system is shown in Figure 6.26(b).

>> x=fmi ncon(’ c6optn?’,x0,[]1,[],[]1,[],0.01*ones(5,1))

L 14

timel 12

X —t 1 1

0.8

0.6
“ K(s+Z1)(s+Z2) N 4(s+1)(s+0.5) o]

= (s+P1)(s+P2) S(s+0.1)(s+10)(s+20)(s+2) | 0.4
Scope 0.2

Zero-Pole 0

(a) modified Simulink model (file:cémoptm2.mdl) (b) closed-loop step response

Step

Zero-Polel

0 05 1 15 2 25 3

Figure 6.26. Modified simulation model and response.

2007/
pagez

S
220 Chapter 6. PID Controller Design
timel
x 1
>
K(s+Z1)(s+22) o 4(s+1)(s+0.5) E
L] (s+P1)(s+P2) [7| s(s+0.1)(s+10)(s+20)(s+2)
Step Zero—Polel Saturation — Scope
ero—rPole
Figure 6.27. The Simulink model with saturation (file6moptn8.mdl).
The controller model
43.120 55734
Go(s) = 16149658 36+ 4
(s + 284749 (s + 61.0652
can be designed.

In ordinary control theory, hardware-related implementation of the PID controller is
often not considered; i.e., in theory, extremely large signals are acceptable. In real-time
control, however, the signal cannot be too large in order to avoid hardware failure. It can
be seen that for a unit step input, this controller gives an initial output of 200, which is too
high. It could cause hardware problems with a bad design and saturate the actuator leading to
nonlinear operation. However, if saturation is included in the actuator, the resulting response
can be easily solved using numerical methods, since one can simply add a saturation block
in the Simulink model.

Example 6.20. Consider again the controller design problem. Assuming that the control
signal should be kept withig-20, the Simulink model can be modified as shown in Fig-
ure 6.27, and the objective function can be rewritten as

functi on y=c6opt nB(x)

assigni n(’ base’,’Z1’ ,x(1)); assignin(’ base’,’ P1',x(2));

assi gni n(’ base’ ,’ 722’ ,x(3)); assignin(’base’,’P2’,x(4));

assigni n(’ base’,’ K ,x(5)); % assign variables in MATLAB workspace

[t,xx,yy] =sin(’cérmoptnB. ndl’, 15); y=yy(end, 1); % evaluate objective function

if max(yy(:,2))>1.03, y=1.4*y; end % update the objective function

The following statements can be used to search for the optimum controller for the
system:
>> x=fm ncon(’ c6optnB’,x0,[],[]1,[].,[],0.01*ones(5,1))
and the controller

142605 62.617
Guls) = 37.1595° T DG + 2
(s + 20.3824 (s + 27.6579
can be designed. The output signal and the control signal under such a controller can be
obtained as shown in Figure 6.28. It can be seen that the control results are satisfactory.
S

6.6. Optimal Controller Design

221

14

12

081

061

0.4r

021

0 5 10
(a) output signal

15

0 Ll': 1b 15
(b) control signal

Figure 6.28. Step response of the system when saturations are introduced.

) Optinal Control Designer |Z|_ rz|

Select & Simulink mocel

=

Creste File
Specify Variables to be optimized
| | Vigw File
Crptirnize:
Initial guess for optimization ot
|] Save File
Loweer bounds for the variables Cancel

l Help

Upper bounds far the variables

Clear Trash

WWhich Toolbox to use

Simulation terminate time

[Using fixed step simulation?

Optitnization Toalkox
Genetic Algorithm and Direct Search Toolbox
A& Optirnization Toolkbos

Pl

Figure 6.29. OCD interface.

6.6.3 A MATLAB/Simulink-Based Optimal Controller Designer and

Its Applications

From the examples inthe previous section, using numerical optimization algorithms, optimal
controller design can be made simple. Inthis section, we willintroduce a MATLAB/Simulink-

based optimal controller designer (OCD) with some application examples.
The procedures for applying the OCD program are as follows:

1. Type ocd atthe MATLAB prompt; the main interface is shown in Figure 6.29. The

program can be used in optimal controller design.

2007/
page:

2007/
pagez

222 Chapter 6. PID Controller Design

N

. A Simulink model can be established and the model should contain at least two
elements: the undetermined variable names and the outport reflecting the optimum
criterion. For instance, in the PI controller design problem, the two varidgblesnd
K; can be assigned. The ITAE criterion can be represented in the Simulink model as
outport 1.

3. Fillin the Simulink model name in thgelect a Simulink model edit box.

4. Fillin the variable names to be optimized in $ygecify Variables to be optimized
edit box, with variable names separated with commas.

5. Estimate the terminate time for the error to become zero and enter itSimtlodation
terminate time edit box.

6. Click Create File to automatically generate a MATLAB functiapt f un_*. mand
click Clear Trash to delete the temporary objective function files.

7. Click Optimize to start the optimization process. The optimal variables can be ob-
tained. Sometimes, the button should be clicked again to ensure more accurate opti-
mum solutions. The functiorfsmi nsear ch(), nonl i n() andf mi ncon() can
be called automatically for parameter optimization.

8. The upper and lower bounds to the variables can also be used, and an initial search
point can be specified, if necessary.

Example 6.21. Consider the FOIPDT-type plant model in Example 6.15; i.e., the plant
model is given by

The Simulink model for the PID control, with ITAE descriptions, is established as shown
in Figure 6.30(a), and it is saved in the fdénopt 4. md| .

Fillin the Simulink model name in thigelect a Simulink model edit box, for instance,
fillin c6ropt 4 for this example. The variable names to be optimizgd, Ki , Kd should
be entered in th&pecify Variables to be optimized edit box, and enter 30 in ttémulation
terminate time edit box. Then click theCreate File button to automatically generate the
MATLAB function to describe the objective function

1
x 1 R

PD controller

12 PID controller

1 g *
s(s+1)(s+1)(s+1)(s+1 :é 08
<

‘optimum controller

Zero-Pole

Kd.s
0.01s+1

[5 10 20 25 30

15
Time (sec)

(a) Simulink model (file: cémopt4.mdl) (b) comparisons

Figure 6.30. PID control model and response comparisons.

2007/
pagez

6.6. Optimal Controller Design 223

functi on y=optfun_2(x)

assi gni n(’ base’,’ Kp’', x(1));

assignin(’base’,’ Ki',x(2));

assi gni n(’ base’,’ Kd', x(3));

[t_tine,x_state,y_out]=sim’ c6nmopt4.ndl’,[0,30.000000]);
y=y_out (end);

where the second, third, and fourth lines in the code will assign the variables in wector
to the variablesk,,, K;, K4 in the MATLAB workspace. Simulation is then performed to
calculate the objective function.

Click the Optimize button to initiate the optimization process. In the meantime, the
scope window should be opened to visualize the optimization process. After optimization,
the optimum PID controller will be obtained as

0.0001+ 0.715%
s 0.01s+1

G.(s) = 0.2583+

which minimizes the ITAE criterion. It can be seen ti&at= 0.0001 is very small, which

can be neglected, and thus a PD controller is sufficient for the system. The closed-loop
step response is shown in Figure 6.30(b). It can be seen that the control response is highly
superior to the one obtained in Example 6.15.

Example 6.22. The OCD program is not restricted to simple PID controller problems. It
can also be used for complicated system models such as the cascade PI control system shown
in Figure 2.11.

To solve the problem, the Simulink model shown in Figure 6.31 can be established,
and saved as6nodel 2. ndl . Note that four undetermined parametipsl, Ki 1, Kp2,
Ki 2 should be optimized. The ITAE criterion can be defined. Starting the OCD, the model
namec6nmodel 2 should be entered into th&elect a Simulink model edit box, and in
the Specify Variables to be optimized edit box,Kp1, Ki 1, Kp2, Ki 2 should be filled
in. Also, in theSimulation terminate time edit box, one may fill in 0.6. Click th€reate
File to generate the MATLAB function. One may design the controllers by clicking the
Optimize button, and the controllers, which minimize the ITAE criterion, can be found as

© Ly

X P!
[ul >

wl=

Abs

’_ Kpl.s+Kil| 0.1 Kp2.s+Ki2 70 0.21
s 0.01s+1 s 0.0067s+1] 0.15s+1 s

Step Outer PI Filter Inner Pl Thyrister Scope
Controller Controller

0.1
0.01s+1
Current with filter

0.0044
0.01s+1
Speed with filter

&
<

Figure 6.31. Simulation model of cascade PI control (filsroodeR.mdl).

2007/
pagez

224 Chapter 6. PID Controller Design

250

200

150

100

50

0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 6.32. Optimal control of the system.

K, =379118,K;, = 121855,K,, = 10.8489, anK;, = 0.9591, i.e., the controllers are

12.1855 0.9591

Ge,(s) = 37.9118+ and Ge,(s) = 108489+ ———.
S

Under these controllers, the step response of the closed-loop system can be obtained
as shown in Figure 6.32. It can be seen that the response is satisfactory.

It can be seen from the previous examples that the OCD program is quite versatile
in finding the optimal controllers. However, in some applications, the OCD may not find
a solution due to the poorly posed problem or because a good initial search point has not
been found. This can be a drawback in conventional optimization algorithms, but many
such problems can be avoided by intelligent use based on an understanding of the system
behavior.

The genetic algorithm (GA) [77] allows the optimization search from many initial
points in a parallel manner. The Genetic Algorithm Optimization Toolbox (GAOT) [78]
provides a series of MATLAB-based functions for solving optimization problems using
genetic algorithms. This toolbox is used with the OCD program, and the facility is useful
in solving problems where conventional optimization methods cannot easily find an initial
feasible search point. THBA Optimization Toolbox is the last list box in Figure 6.29.

Example 6.23. Consider an unstable plant model
_ s+2
T s448s3+452— 5404
By the direct use of the OCD program, a feasible PID controller cannot be designed. How-
ever, one may still establish a Simulink model as shown in Figure 6.33, which is the same
as the previous examples.

In order to ensure that the control action is not too large, a saturation element can be

appended to the controller, with the saturation widthho& 5. From the OCD program,
with the GAOT selection, the optimal PID controller can be designed as

0.2041 55363%
0.0Ls + 1

G(s)

G (s) = 478313+

2007/
page:

6.7. More Topics on PID Control 225

C; B Us

[ul ITAE criterion

s+2 o1
H483 +48 —s+04 'D

Scope

Step Saturation

Kd.s unstable plant
0.02s+1

approximateX 4

Figure 6.33. Simulink model for PID control (file: @nunsta.mdl).

0.8

061

04r

0.2r

0

0 2 4 6 8 10

Figure 6.34. Simulation results for an unstable plant with a PID controller.

The step response of the closed-loop system under the optimal controller is shown in
Figure 6.34. It can be seen that the PID controller can still be designed, with the help of
GAs, and the transient response is satisfactory.

6.7 More Topics on PID Control
6.7.1 Integral Windup and Anti-Windup PID Controllers

A Simulink model for the study of the phenomenon of integrator windup is shown in Fig-
ure 6.35.
The plant model is given by

10

G(s) = ,
) = T 1057 352 1 505 7 24

2007/
page:

226 Chapter 6. PID Controller Design

1

Ti.s

> num(s) =®

den(s)
plant

A 4
A

Transfer Fcn Saturation

2
4 control signak(r)

0 1 2 38 4 5 6 7 8 9 10
integrator outpuy; (1)

ON MO

0 1 2 38 4 5 6 7 8 9 10

Figure 6.36. Integrator windup demonstration.

and the parameters for the PI controller are givenkgy= 5.04 and7; = 1.124. With

an actuator saturation nonlinear element giventfy= 3.5, the related signals in the PI
controlled system are shown in Figure 6.36. When there is an initial set-point change in
r(t), the error signal is initially so large that the control signé) quickly reaches its
actuator saturation limit. Even when the output signal reaches the reference value at the
time ¢1, which gives a negative error signal due to the large value of the integrator output,
the control signal still remains at the saturation valyg which causes the output of the
system to continuously increase until it reaches the tigneand the negative action of

the error signal begins to have effect. This phenomenon is referred to as the integrator
windup action, which is undesirable in control applications. Therefore, we need to briefly
introduce different antiwindup PID controllers for use in practice. We shall use Simulink
for illustration.

An antiwindup PID controller is provided as an icon in the Simulink environment, and
the internal structure is shown in Figure 6.37. The signal reflecting the actuator saturation
is fed into the integrator action, which is determined by a rafi@; 1 For instance, one
can simulate the PID control system in the previous example using the Simulink model as
shown in Figure 6.38(a). For differefit, the output signals are compared in Figure 6.38(b).

It can be seen that for smaller valuesZof the windup phenomenon can be reduced more
significantly.

2007/
page:

6.7. More Topics on PID Control 227

D L

- Tis
Set poi
r@ Integrator
system outpu RN <B
»b> L P>

f - + control signal
set point weighting | ModifiedProportional 9

PID action

-Tds
Td/N.s+1

Derivative

Figure 6.37. Anti-windup PID structure (file: @awpid.mdl).

1.4-
~ T; =10

’__> SP num(s)

= » »
ur—p»

Si P
Py y den(s) outl
Saturation Transfer Fcn 4

Auti-windup
PID controller

O 1 2 3 4 5 6 7 8 9 I
(a) Simulink model (c6fpid.mdl) (b) the effect ofT;
Figure 6.38. Effect of anti-windup PI controllers.

PID

controller control

uc(t) u(t)

/—> plant
relay Jtuning

element

y(0)

Figure 6.39. Structure of a relay automatic tuning PID controller.

6.7.2 Automatic Tuning of PID Controllers

An automatic tuning (also known as autotuning or autotuner) PID controller strategy is pro-
posed by Astrém and Hagglund [61]. Now the commercial automatic tuning PID controllers
are available from most hardware manufacturers.

The structure of the relay-type of automatic tuning is shown in Figure 6.39, and it can
be seen that the two modes are alternated by the use of switching. When the operator feels
the need to adjust the parameters of the PID controller, he or she can simply press a button

2007/
pagez

228 Chapter 6. PID Controller Design

lh

uc(t) e(t) relay u(t) lant y(@)
_ element P

< A >

(a) relay control block diagram (b) typical relay element

Figure 6.40. Nonlinear model of relay control.

to switch the process to the tuning mode, and the parameters can be tuned automatically.
When this tuning task is completed, the process can be switched back to normal feedback
control mode.

Under the tuning mode, the system s equivalentto the structure shownin Figure 6.40(a),
and the typical relay nonlinearity is shown in Figure 6.40(b). Several approaches can be used
to determine the crossover frequengyand the ultimate gai.. The describing function
approach is the theoretical basis for relay autotuning analysis, and Tsypkin's method (see
Atherton [51]) can also be applied as described below.

Determining o, and K, with the describing function method

In the describing function approach [51], one can approximately represent the static non-
linear element by an equivalent gain in analyzing the so-called limit cycles. Such a gain
is referred to as the describing function of the nonlinearity and is in fact input amplitude
dependent. For different nonlinear functions, the describing functions may also be different;
a comprehensive study of describing functions can be found in [51].

The limit cycle, or oscillation, can be approximately determined by finding the inter-
section of the Nyquist plot of the plant model with the negative reciprocal of the describing
function N (a), as illustrated in Figure 6.41(a), which means that the conditions when the
oscillation occurs are

1
N(@a)’
The describing function of the system with relay nonlinearity given in Figure 6.40(b)

is that a
N@) = —; (\/aZ — A2 jA) , (6.45)

from which the negative reciprocal of the describing functhofa) is simply

1 /4 TA
- =——Va?2 - A2 —j—, 6.46
Na ¥ an (6.46)
which is just a straight line as shown in Figure 6.41(b).
The crossover frequeney. and the ultimate gaik, can be obtained. For simplicity,
assume that = 0. Then, the describing function can be simplified\i@) = 4h/(wa).
So, immediately, one has

1+ N@G() [s=ju.=0, i€, G(jw) = —

(6.44)

4h 2
K.o=—2 1.=° (6.47)
ma W,

2007/
pagez

S
6.7. More Topics on PID Control 229
A Im Im
Re Re
S——
1 4h
" N
(a) determination of oscillations (b) describing function of relay
Figure 6.41. Determination of the magnitude and frequency of oscillations.
Determining w. and K, with Tsypkin’s method
The describing function method is essentially based on the principle of fundamental har-
monic equivalence. Tsypkin's method, on the other hand, can be used when more accurate
analysis of relay systems is required, where the higher-order harmonics need to be consid-
ered apart from the fundamental one, for relay nonlinearities.
The Fourier series expansion of the square wave signal, which is the output of the
relay action, can be written as
o0
an
y(t) = Z = sinnw(t — 1), (6.48)
nmw
n=1(2)
where (2)” represents a step of 2; i.e., only odd harmonics are considered since the relay
function is an odd function. The Fourier series expansion of the output signal can then be
written as
N 4h
ct)= Y —gusinno(— 1) + ¢ (6.49)
nmw
n=1(2)
with g, and¢, the magnitude and phase of the plant model, respectivelyG@jw) =
g.€%. If the external input to the system is 0, theft) = —c(¢), and the switching point
satisfiesc(r1) = 8, x(r1) < 0. The locusA (w) can be defined as
oo
ReAGEH,)] = Y [VG (n6) sin(nd) + Ug (nd) cos(n@)], (6.50)
n=1(2)
= [1
Im[Ag (0, w)] = Z [—VG(ne) cognb) — Ug(nb) sin(ne)} , (6.51)
n=1(2) n
whereG (njw) = Ug (nw) + Vg (nw). Assume that; = 0. The magnitude and frequency
of the limit cycles can be solved from
1)
IM[AG (0, @) + Ag(wAl, w)] = —g—h (6.52)
and with the constraints Rés (0, w)— Ag (wAt, w)] < 0. Ifthe relay elementis symmetrical,
then one has s
g
Im[AG(0, w)] = W (6.53)
S

2007/
pagez

230 Chapter 6. PID Controller Design
6.7.3 Control Strategy Selection
It has been pointed out in some references, such as [60], that PID controllers can be used
only for plants with relatively small time delay (or equivalent delays). When the delay
constant increases, the PID controller cannot guarantee good responses. In fact, apart from
the traditional PID control structure, other control strategies may also be used to deal with
such cases. This leaves us with the following question: In practical applications, what kind
of controller structure should be used to design a usable controller for a given plant model?
Such a question is well studied in [79], where the normalized parametens «
are introduced, from which different control strategies are suggested, as summarized in
Table 6.16, where apart from theandx parametersg, andk; are also introduced for the
plant model given by
K
G(s) = ———eL
s(1+4+sTy)
with the relations
. 2 2
lim sG(s) —+atan/«x5 — 1
_ _ s—0 _ 1 _T7
1n=—, kp=—————=—K,K:T,, and tp=*——————. (6.54)
T, wc|G(jo)| 2m 21
2
It can be seen that Table 6.16, in some sense, can be used as a guide for choosing a
suitable controller structure for a given plant model.
Table 6.16.Controller selection from the plant model.
Ranges of: or« No precise Precise control needed
control High Low Low measure-
necessary noise saturation ment noise
t>1k <15 | control 1+B+C PI+B+C PI+B+C
0.6 1
<T< I or A PIA PI+A+C or
15 <k < 2.25 Pl control PID+A+C
015<t <06
PI control PI Pl or PID PID
225<k <15
0.15, 150r
FERe PorPl Pl Pl or PID Pl or PID
17 >03,kp <2 control
70 < 0.3,k2 > 2 PD+E F PD+E PD+E
A represents forward compensation suggested
B represents forward compensation necessary
C represents dead-zone compensation suggested
D represents dead-zone compensation necessary
E represents set-point weighting necessary
F represents for pole placement

2007/
pagez

6.7. More Topics on PID Control 231

Problems

1. For the plant models
1 1 —15s+1
(@) Gals) = G (b) Gp(s) = G5 (©) Gels) = D3

design PID (or PI) controllers using different design algorithms from this chapter and
compare the closed-loop behaviors of the controlled systems.

2. Find the FOPDT approximations to the plant models given by

12(s%2 — 35 + 6)
S+DGE+5E2+35+6)($2+s+2)]
—b5s+2 _05s
(s +1)2(s + 3)3e
1.0569x 10~°(z+18.42)(z+1.841)(z+0.3406) (z +0.03405
(z—0.8025(z—0.7866)(z—0.7711) (z—0.7558 (—0.6703 °

using various algorithms discussed in this chapter. Compare the closeness of the
approximation using relevant time and frequency domain analysis techniques.

@G(s) =

(b) G(s) =

)

(€)G(z) = T=0.1,

3. Investigate the disturbance rejection properties of the controllers designed for the plants
in Problem 1. Assume that the disturbances are added in the steady-state responses.
If any of the controllers does not perform well for disturbance rejection, design a new
PID controller to improve the disturbance rejection performance and check whether
the new PID controller is suitable for set-point control.

4. For different PID controllers in problem 1, analyze the compensated systems with time
and frequency domain tools. When the derivative term in the controller is disabled,
what will happen with the control performance?

5. Using the PID tuner program, compare the PID controllers designed from different
design approaches for the plant model

1
G(s) = ——,
=G o
and find a good PID controller.
6. Construct a Simulink model for PID control system structures with the plant model

containing a pure delay term. Design different PID controllers for the plant models
given below:

_ ; —S _ 1 —30s
(a)Ga(S)_(S+1)(ZS+l)e ’ (b)Gh(S)_(17S+1)(6S+1)e)
_ s+2 o 001752 +0.01534 _,,
©) Ge(s)= (s +1)(4s + 1) ¢ o= 22— 1637 + 06703

Compare the simulation results with the approximate results when the pure delay term
is replaced by a Padé approximation.

T=0.2.

2007/
page:

e
232 Chapter 6. PID Controller Design
7. Design PID controllers for the plants
15 3(s —5)
a)G(s) = , B)GE) = —.
@6 = 1215 P00 = (753
8. Solve the unconstrained optimization problem
iy 1002 — X2 + (1 — x1)? + 90(xa — x3) + (1 — x3)2
x +10.1[(x2 — D? + (x4 — 1D?] + 19.8(x2 — D) (x4 — 1).
9. Solve the constrained optimization problems
(a) min €L (4x2 4 2x2 4 Ax1xp + 2x2 + 1),
x1+x2<0
st —x1x2+x1+x2>15
w x1x2>-—10
—10<x1,x2<10
315
(b) max [xlxz(l + x5) + x3%x4 (1 + —)] .
0.0030793:3xs—coSx6=0 2 COSX6 X5
0.101%3x3 —x2 cos’ x620
0.09939 1+x5)x$x3—coS x6=0
x sty 0.10763L5+xs)x3x2—x2 coS x6>0
x3x4(x54+31.5)—x5[2(x1+5) cosxg+x1x2x5]>0
0.2<x1<0.5,14<<x2<22,0.35<x3<0.6
16<x4<22,5.8<x5<6.5,0.14<x5<0.2618
10. Using ITAE, IAE, and ISE criteria, design optimal PID controllers for the open-loop
plants
1 1
8)Gyls) = ——————€". (0)Gy(s) = &30
@G = T 11 0o = D ® 1 D
and comment on which criterion will usually lead to the best control results.
11. For atime varying plant modglr) +e %%y (1) + e sin(2r +6)y (1) = u(z), design
an optimal PI control which minimizes the ITAE criterion. Analyze the closed-loop
behavior of the system.
e

2007/
pagez

e
6.7. More Topics on PID Control 233
12. For the plant model
3
G — s+1 i
(s) L
design an optimal PID controller and analyze the step response of the closed-loop
system.
13. Inthe OCD examples, the selection of simulation terminatejngequite important.
Please summarize how theshould be selected.
e

2007/
pagez

2007/
pagez

Chapter 7

- Robust Control
- Systems Design

So far, we have presented some model-based controller design techniques in Chapter 5 and
PID controller desigh methods in Chapter 6 which require only a rough model of the plant

to be controlled. It is natural and practically important to ask, “Is the designed controller
robust against the uncertainty and disturbance?”

We should note that the control system design methods discussed in Chapters 5 and 6
did not explicitly and quantitatively take into consideration the disturbance and uncertainty.

It was assumed in Chapter 5 that an accurate plant model is available. This is usually not
true in practice. The model is essentially an approximation of the actual physical plant.
There may exist modeling uncertainty, which is the difference between the model and
the actual plant property, also known as model mismatch. If the designed controller can
tolerate the model mismatch, the controller is called “robust.” This implies that the control
system performance will not degrade significantly in the presence of model mismatch using
the “robust controller.” In Chapter 6, to design a PID controller with a reasonably good
performance, an accurate model of the plant to be controlled was not required. There,
PID controllers were considered to have certain robustness in the sense of tolerating model
uncertainty. However, we must be clear that in the design of PID controllers, no quantitative
information about the model mismatch is used. Therefore, PID controllers sometimes may
not be robust.

In this chapter, we present a new framework within which uncertainty and distur-
bance can be explicitly and quantitatively taken into account during the design of the
controller. This is referred to as the robust controller design and has been the focus
of research for decades. We believe that robust control will continue to be a topic of
further research since the robustness issue of any controller design is an inherent prob-
lem that must always be addressed. Moreover, the research on robust control will be
multifaceted. The reason is obvious: different types of knowledge about uncertainty
and disturbance will lead to different robust controller design methods. In this chapter,
we cover some more advanced materials on robust control. Specifically, the presenta-
tion will be closely coupled with the Robust Control Toolbox for MATLAB. In Sec. 7.1,
we introduce the linear quadratic Gaussian (LQG) problem, and in particular, the loop

235

2007/
pagez

236 Chapter 7. Robust Control Systems Design

transfer recovery (LTR) techniquek,- and #,-norm design problems are summarized
in Sec. 7.2. In Sec. 7.3, we focus on th&, design technique with detailed MATLAB
solutions. The optimals, controller design technique will also be discussed. Sec. 7.4
covers the#o-norm controller design technique with relevant MATLAB solution methods.
More problems on#,, control, weighting function selections, and so on are presented
in Sec. 7.5.

7.1 Linear Quadratic Gaussian Control

LQG control is considered a robust control method since noise in the state and output
equations is explicitly considered. Furthermore, quantitative information about the noise is
used in the controller design.

7.1.1 LQG Problem

Consider the state space model of the plant
x(t)=Ax(@)+ Bu(t) + TE@®), y(@) =Cx(1) +6(1), (7.1)

whereé (r) and@(¢) are random noises in the state equation and the output measurements,
respectively. Assume thdtr) and@d(¢) are zero mean Gaussian random processes with
covariance matrices given by

ElE()E ()] =E >0, E[0(1)8" (1)l =0O >0, (7.2)

where Hx] denotes the mean value ofand Hxx'] is the covariance matrix of the zero
mean Gaussian signal The random signal§(z) and@(z) are further assumed to be
mutually independent, i.e.,[E(1)8" (r)] = 0. The performance index for optimal control
is defined as

J=E {/ [zT(z) 0z(1) + uT(t)Ru(t)]dt} : (7.3)
0

wherez(t) = Mx(¢) is the linear combination of state vecte¢t) with M defined by
the user to measure the performance. The constant weighting maficesd R are,
respectively, a symmetrical semipositive-definite and a symmetrical positive-definite matrix,
thatis,@ = QT >0, R = R" > 0. Note thatR is a scalar when (7.1) is a single input—
single output (SISO) feedback control system—the main theme of this book.

The LQG problem can be divided into the following two subproblems:

1. The LQ optimal state feedback control, as discussed in Sec. 5.2, and
2. the state estimation with disturbances.

7.1.2 LQG Problem Solutions Using MATLAB
LQG control with Kalman filters

The states can be estimated optimally if a Kalman filter, rather than an observer, is used.

7.1. Linear Quadratic Gaussian Control 237

u(t)

Figure 7.1. Kalman filter.

One can first find an optimal state estimation sigi(aJ, which minimizes the covari-
ance E(x — £)(x — £)T], and then use the estimated sigfél) to replace the actual state
variables such that the original problem can be reduced to an ordinary LQ optimal control
problem.

The block diagram of the Kalman filter is shown in Figure 7.1, where the Kalman
filter gain matrixK ; is given by

K;=PiCTO™, (7.4)
where Py satisfies the algebraic Riccati equation (ARE)
P;AT + AP, — P;CTOICP; +TETT =0, (7.5)

and P, is a symmetrical semipositive-definite matrix, i.B; = P > 0.
A MATLAB function kal man() provided in the Control Systems Toolbox can be
used to find thek ; matrix of the Kalman filter. The syntax of the function is

[G, Ky, Pf] =kal man(G, E, ©)

whereG is the extended state space model object with Gaussian disturbances, +e€.,
(A, B,C, D). G can be regarded as an extended model with two input matrices with
B =[B,T'landD = [D, D]. G, is the state space object of the Kalman filt&r is the
state feedback matrix anfl; is the solution of the Riccati equation of the Kalman filter
givenin (7.5).

Example 7.1. For the system given by

—-0.02 0005 24 -32 0.14 -0.12
= -014 044 -13 -30 x4 0.36 "+ —0.86 £1). y=x2+000)
0 0018 —-16 12 0.35 0.009 ’ ’
0 0 1 0 0 0

whereE = 102 and® = 1077, the Kalman filter can be designed using the following
MATLAB statements:

>> A=[-0.02,0.005,2.4,-32; -0.14,0.44,-1.3,-30;
0,0.018,-1.6,1.2; 0,0,1,0];
B=[0.14; 0.36; 0.35; 0]; Gf[-0.12; -0.86; 0.009; 0];Cf0,1,0,0];
G=ss(A, [B,G,C[0,0]); X =le-3; Theta=le-7;
[&, Kf, Pf]=kal man(G Xi , Thet a)

2007/
pagez

2007/
pagez

238 Chapter 7. Robust Control Systems Design

and it can be found thaR’} = [21533,87.371 —2.5369 —3.5741] and

0.0044357 21533x10°° —3.6456x10° —7.7729x10°°

2.1533x10°° 87371x10® —25369x10/ —3.5741x10°/
—3.6456x10°° —2.5369x10°/ 3.0037x10°’ 6.3871x10°’
—7.7729x10°°> —35741x10°7 6.3871x107 1.3623x10°©

Pf:

Separation principle for LQG design

When the optimal filter signal(z) is obtained, the block diagram of the LQG compensator
can be constructed, as shown in Figure 7.2, with the optimal casit(o) given by

u*(t) = —K.x() (7.6)
and the optimal state feedback matkx given by
K.=R'B'P., (7.7)
where the symmetrical semipositive-definite matrix satisfies the following ARE:
A"P.+ P.A—P.BR'B"P.+M" QM =0. (7.8)

From the above discussions, we can observe that, in the LQG optimal control problem,
the optimal estimation and optimal control problems are solved separately. This is the well-
known “separation principle.” That is, to design an LQG controller, one can first design a
state estimator and then use the estimated states, as if the states are exactly measurable, to
design the LQR state feedback controller.

Observer-based LQG controller

For the state space plant model

x(t) = Ax(t) + Bu(t) + £(1),

(7.9)
y(t) = Cx(t) + Du(r) + 6(1)

plant
noiseé () measurement
noised (1)

L)

Figure 7.2. LQG control structure.

2007/
pagez

7.1. Linear Quadratic Gaussian Control 239

and the optimization criterion

. iy N.
J:tflinooE{/o [xTuT][A% RHﬂdt}, (7.10)

whereN, can normally be selected as a zero matrix, the observer-based LQG controller is
illustrated in Figure 7.3. Suppose that the state feedback gain nitrand the Kalman

filter gain matrixK ; have been obtained via the separation principle. Then, the Kalman
filter dynamic equation is written as

X =A%+ Bu+ K/ (y— C% — Du). (7.11)

So, the observer-based LQG controller can be compactly formulated as follows:

Ge(s) = [,,,,,, } . (7.12)

A MATLAB function | qg() provided in the Robust Control Toolbox can be used to
design an observer-based LQG controller. The syntax of the function is

Gc = —lqg(G, W, V)
[Ay, Bf, Cy, Df] = 10g(A, B,C, D, W, V)

where @ ¢,By,Cr,Dy) is the state space model of the LQG controlie(s). Here,W and
V can be constructed as follows:

[e N TE Ny
W_[NCT Bl V= N e (7.13)

whereE and® are, respectively, the covariances of the plant ng{geand measurement
noised (), with N. and N often assumed to be zero matrices. It can be easily seen that
the matrixV is in fact the joint correlation function of signajsr) andé with

= N,
EH:;’:((?)} &) 0(1)]T} - [N} @f:|8(t —o). (7.14)

Note thatZ is the covariance df(z). If the plant model given in (7.1) is use&, should be
replaced byl ETT.

plant noiset (1) measurement noig&r)

C LQG controler
© G(s)

Figure 7.3. Observer-based LQG control structure.

2007/
pagez

240 Chapter 7. Robust Control Systems Design

Example 7.2. Consider the following system with Gaussian noisesdo:

0 1 0o 0 0 —1
_5000 —100/3 500 1003 25/3 0
0 —1/ 0 10 ¥+ o/ utl g |50
0 1003 -4 —60 ~1 0
y(t) =10,0,1,0]x 4+ 6(t)

x@) =

with covariancesE = 7 x 107* and® = 1078, Taking the weighting functiong) =
diag(500Q 0, 5000Q 1) andR = 0.001, the LQG problem can be solved using the following
MATLAB statements:

>> A=[0, 1, 0, 0; - 5000, - 100/ 3, 500, 100/ 3;0,-1,0,1; 0, 100/ 3, -4, - 60];
B=[0; 25/3; 0O0; -1]; C5[0,0,1,0]; D=0; Gs[-1; O; O; O];
Q=di ag([5000, 0, 50000, 1]); R=0.001; Sys=ss(A B,C D);

Xi =7e-4; Theta=le-8; WH[Q zeros(4,1); zeros(1,4),R;
V=[Xi *G*G , zeros(4,1); zeros(1,4), Theta];
G =-1qg(Sys, WV); Ge=zpk(G)

and the controller can be designed as

—12310490702s + 40.47)(s% 4 1055s + 5000

Go(s) = .
() = 2173917 1 8682) (2 1 49395 1 1234x 1)

Using the above designed LQG controller, the closed-loop step response of the system,
with the random signals neglected, can be obtained as shown in Figure 7.4(a) using the
following MATLAB statements:

>> st ep(feedback(Gec*Sys, 1)), figure, bode(Sys,’ :’,CGc*Sys,’ -")
[Gn Pm Wg, Wp] =mar gi n(Sys* Cc)

The gain and phase margins are, respectived 30 and 43440, at frequencies 323.2318
and 125.1567 rad/sec. The open-loop Bode diagrams for both the original and the compen-
sated systems are shown in Figure 7.4(b). It can be seen that the closed-loop behavior is
significantly improved with the LQG controller.

Now, let us assigmR with different values denoted hy. A series of LQG controllers
can be designed using the following MATLAB statements:

>> G=ss(A, B, C D); fl=figure; f2=figure;
for rho=[100, 10, 1, 0. 1, 0. 01, 0. 001]
WE[Q zeros(4,1); zeros(1,4),rho*R]; G=ss(A B, CD;
Ge=-1qg(G WV);figure(fl), step(feedback(GCc, 1),0.5),hold on
figure(f2), bode(G Gc,{0.1,10000}); hold on;
end

with the closed-loop step responses and open-loop Bode diagrams compared in Figures 7.5(a)
and (b), respectively. We can observe that wheatecreases, the dynamic behavior of the
closed-loop system improves. Meanwhile, the gain and phase margins, as well as the
crossover frequencies, tend to increase, which indicates the improvements in the dynamic
behavior of the controlled system.

2007/
pagez

7.1. Linear Quadratic Gaussian Control 241

7.1.3 LQG Control with Loop Transfer Recovery
LQG/LTR design algorithms

The story sounds good so far: with Kalman filters, the optimal LQG control design amounts
to solving two independent Riccati equations, (7.5) and (7.8), which, with MATLAB, is a
fairly easy task.

However, things are never as simple as that. It has been pointed out in [80] that the
controller thus designed may have very small stability margins, implying that if the system
is subjected to very small disturbance, the overall system may become unstable.

There is a seemingly correct intuition in control engineering practice that the dynamics
of the signal filtering block should be much faster than the plant dynamics. It would therefore
appear that if the dynamics of the Kalman filter were made fast, a satisfactory design would
be achieved. This is, unfortunately, not true. We will show, through analysis and examples,
that the LQG controller may not increase the stability margin of the overall system, but can
significantly reduce it.

Suppose that accurate state measurement is possible, as in the LQR case. With the
optimal LQR controller, the open-loop transfer function is sim@lypsr(s) = Kq(sI —
A)~1B. However, under LQG control, the open-loop transfer function becomes

GL.10G(s) = K.(sT — A+ BK + LC)"*LC(sI — A)~!B. (7.15)

The following example demonstrates the difference betw@egsr (s) andGr 1o (s).

Example 7.3. Consider the plant

—(9481253 4 303252 + 56482 + 12153)
56 + 64.55455 4 11674 + 3728653 — 5495452 + 110 + 7081
Its state space model can be obtained by the following MATLAB statements:

>> nume-[948. 12, 30325, 56482, 1215.3];
den=[1, 64. 554, 1167, 3728. 6, - 5495. 4, 1102, 708. 1] ; G=ss(t f (num den))

G(s) =

this model is the state space objétt

Step Response
From: yl To: Out(1)

50—

0 \,
1
-50 \
08 -100

-150

0.6

Amplitude

0.4 100

0.2 100 T
-200
0

0 0.05 0.1 0.15 0.2 0.25 -300
Time (sec) 108 102 10! 10° 100 1® 108 10¢

(a) step response (b) Bode diagram

Figure 7.4. System responses under LQG control.

2007/
page:

242 Chapter 7. Robust Control Systems Design

Step Response Bode Diagram
From: yl To: Out(1) From: y1 To: Out(1)

50|
p = 10000
-100;

p = 10000~

Magnitude (dB)
o

Amplitude

Phase (deg)

0 01 02 03 0.4 05 10° 1@ 10" 1¢ 10° 10*
Time (sec) Frequency (rad/sec)

(a) step response (b) Bode diagram

Figure 7.5. Closed-loop system responses with diffegant

N

o

Image Axis
Image Axis

5 0 5 %6 5 4 3 2 1 0 1 2
Real Axis Real Axis

(@) GLosF(s)) GL,LoG ()
Figure 7.6. Open-loop Nyquist plot comparison.

With the weighting matrice® = CTC andR = 1, the optimal LQ controller can
be obtained, and the open-loop Nyquist plot of the systamB, K, 0) can be drawn, as
shown in Figure 7.6(a), using the following MATLAB statements:

>> G c' *Gc;R=1;[Ke,Pl=lgqr(Ga,Gb,QR;
nyqui st (ss(G a, G b, Kec, 0))

It can be seen that the original system is closed-loop stable since there are two encirclements
around the point—1, j0), which equals the number of unstable polesin the open-loop model.

If Gaussian noises are present in the system,Ithector is defined a¥ = B,
andZ = 1074 and® = 10~°, then a Kalman filter can be obtained using the following
MATLAB statements:

>> Xi =le-4; Theta=le-5; Gl=ss(G a,[Gb, Gb],Gc,[Gd GAd]);
[K_Sys, L, P2] =kal man(GL, Xi , Theta); al=G a- G b*Kc-L*G c;
G o=G'ss(al, L,Kc,0); Nyquist(Go), [GmPmWg, Wp]=nargi n(G_o0)

7.1. Linear Quadratic Gaussian Control 243

The gain and phase margins are 2.6882 and3®3%, at frequencies 10.8799 and 4.4401
rad/sec, respectively. The resulting Nyquist plot@®f ; o (s), which can be regarded
as two subsysteméd — BK — LC, L, K, 0) and(A, B, C, 0) in series connections, is
different from that ofG_psr (s), as shown in Figure 7.6.

Clearly, if the weighting functions are not suitably chosen, there will be a difference,
possibly large, between the open-loop transfer functions as demonstrated in Figure 7.6.
To effectively reduce this difference, use the loop transfer recovery (LTR) technique. The
basic idea is to make the loop transfer function in the LQG structure approach as closely as
possible that using the direct full state feedback.

Let 2’ = ¢ E. It can be shown that when— oo, the open-loop transfer function of
the LQG control problem witt€” will approach that for the LQR problem, i.e.,

qleoo K.(sI — A+ BK+LC)"'LC(sI — A)™'B = K.(sI — A)"'B. (7.16)
Obviously, the key point in LQG/LTR controller design is to select a large
Alternatively, one can first solve the standard LQR problem to get a suitable state
feedback gain vector and then use the LTR technique to make the final system with the
open-loop transfer function, including the Kalman filter, approach that of the LQR system
as closely as possible. This leads to the following two-step algorithm:
 Design an optimal LQR controller with the specified weighting matri@eand R,
and adjust the matrice@ and R such that the open-loop transfer functio . (s I —
A)~1B is satisfactory. A common practice is to $t= CT C and chang® to make
the open-loop transfer function close to a target transfer function, with the sensitivity
and complementary sensitivity functions having the desired shapes.
* SetI' = B, W = Wo+qlI, andV = I. Increase the value af so that the
return difference of the compensated system approactesjwl — A)~1B. With
the selected, the observer Riccati equation is then changed to

PAT L APy pr,CcTv-lcpy N TWoI'T
q q q q

+Ter’ =o, (7.17)

wheregq is referred to as the fictitious-noise coefficient. When the original system
C(sI — A)~1B has no transmission zeros on the right-hand side oftpiant, the
filter gain matrix can then be evaluated from

K; — qY?BV~Y2 when ¢ — . (7.18)

In practiceg should not be too large. Too largg avill introduce numerical truncating
errors, which may in turn affect the robustness of the overall system.

Example 7.4. Consider again the problem in Example 7.3. Let us apply the LTR technique
with different values of; using the following MATLAB statements:

>> nunme-[948. 12, 30325, 56482, 1215.3]; marg=[];
den=[1, 64. 554, 1167, 3728. 6, - 5495. 4, 1102, 708. 1] ; G=ss(tf (num den));
Xi =1e-4; Theta=1le-5; @Gc *Gc; R=1; [Kc,P]=lgr(Ga,Gb,QR;

2007/
pagez

244 Chapter 7. Robust Control Systems Design

1.4

Amplitude
o I
fo'] L N

Image Axis
.
o
[o)]

I
>

0.2

5 0 5 0O 1 2 3 4_5 67
Real Axis Time (secs)

(a) Nyquist plots (b) closed-loop step response
Figure 7.7. LQG/LTR results.

nyqui st (ss(G a, G b,Kc,0)), hold on
for gqO0=[1, 1le4, 1e6, 1e8, 1e10, 1el2, 1el4]

Gl=ss(G a,[G b, Gb],Gc,[Gd Gd]);

[K_Sys, L, P2] =kal man(G1, q0* Xi , Thet a) ;

al=G a-G b*Kc-L*G c; G o=G'ss(al, L, Kc,0); nyquist(G.o)

[Gn Pm Wg, Wp] =margi n(G_o); rmarg=[marg; [Gm Pm Wg, Wp]];
end

The Nyquist diagrams of the open-loop system for different valugsat shown in Fig-

ure 7.7(a). It can be seen that when= 10'°, the loop transfer function can almost

be recovered. For this case, the closed-loop step response, obtained using the following
MATLAB statements, is shown in Figure 7.7(b).

>> gq=1el0; [K_Sys, L, P2] =kal man(Gl, g*Xi , Theta); al=G a-G b*Kc-L*G c;
G o=G'ss(al, L, Kc,0); G c=feedback(G o, 1);
t=0:0.01:10; figure; step(G.gc,t)

The phase margin and crossover frequency veyslets, drawn using the following
MATLAB statements:

>> q0=[1, 1e4, 1le6, 1e8, 1e10, 1el12, 1el4];
sem | ogx(q0, marg(:,2)), figure, sem |l ogx(qO0, marg(:,4))

are compared in Figure 7.8(a) and (b), respectively. It can be seen that by the LQG/LTR
controller, the phase margin and crossover frequency are significantly increased. Further
increasingg will not contribute much to the gain margin and the crossover frequency. For
this example, it is enough to sgt= 1010,

Linear quadratic Gaussian/loop transfer recovery problem solution using

MATLAB

Two functions,l tru() andl try(), are provided in the Robust Control Toolbox for
effective LQG/ LTR controller design.

2007,
page

S
7.1. Linear Quadratic Gaussian Control 245
70
651
60
55¢
50+
45¢
40
35},
N e 10 16 i 100 102 1o¢ AP 1@ iF 15 i 100 102 1o
(a) phase margin plots (b) crossover frequency plots
Figure 7.8. The phase margin and crossover frequency vegsus
The functionl t r u() performs the LTR design at the input of the plant model, while
I try() does so atthe output. Recovering the loop transfer function at the input side means
that
lim TK.(sI — A+ BK.+K;C)" 'Ky = K.(sI — A)"'B. (7.19)
q— 00
The recovery of the loop transfer function at the output implies that
lim TK.(sI — A+ BK.+ K;C)"'K; = C(sI — A)7'K;. (7.20)
qg—>o0
The syntax of functiom t r u() is
Ge=ltru(G, K¢, E, O, ¢q, w);
[Af, By, Cy, Df] =ltru(A,B,C,D, K., E, O, q, w);
wheregq is a vector containing the selected valuesydor the LTR process. The loop
transfer function can then be expressedsags)C(sI — A)~1B. In the function call, the
Nyquist plots of the open-loop transfer function for different specifiedll be displayed
automatically.
Similarly, the syntax for thét r y() function is
Ge=ltry(G, Ky, O, R, q, ®)
[Af, Bf, Cf, Df] =ltry(A, B, C, D, Kf, 0, R, q, w)
whereK ; is the Kalman filter gain matrix.
Example 7.5. Consider again the plant model in Example 7.3. With different values of
the corresponding LTR controller can be designed using the following MATLAB statements:
>> nume-[948. 12, 30325, 56482, 1215. 3];
den=[1, 64.554, 1167, 3728.6, -5495.4, 1102, 708.1];
G=ss(tf(numden)); Xi=le-4; Theta=le-5;
S

2007/
page:

246 Chapter 7. Robust Control Systems Design

NYQUIST LOCI - LQG/LTR (recov. gain ---> 1e+014)
15 1.4

=
N}

10

[N

IMAG
Amplitude

o

©

o
e}

o
>

0.2

) 5 0 5 0 1 2 3 4_5 6 7
REAL Time (secs)

(a) LTR for differentg (b) closed-loop step response
Figure 7.9. LQG/LTR control results.

Q&Gc' *Gcec; R=1; [Ke,Pl=lgr(Ga, Gb, QR;
q0=[1, 1e4, 1e6, 1e8, 1e10, 1lel2, 1e14]; w=l ogspace(-2, 2);
Ge=ltru(G Kc, Xi, Theta, q0,w) ; Cc=zpk(GCc))

and the controller designed is

—2202669707B516s +30.22) (s +29.71) (s +-6.763) (s +1.315) (s +0.0126 1)
(s+1.445x 10%) (s +30) (s +1.963) (s +0.0218 (s2+ 1.444x 10Ps +2.087x 108) "

The Nyquist plots for different values gfare compared in Figure 7.9(a). It can be observed
once again that wheq is relatively large, for instance, > 10, the loop transfer at the
input side of the plant approaches the LQR solutions asymptotically.

The closed-loop step response under the LQG/LTR controller can be obtained using
the following MATLAB statements:

>> g=10e10; Cc=ltru(G Kc, Xi, Theta, q,w) ;
G c=feedback(G*Cc, 1); figure; step(G_c, 10)

and is shown in Figure 7.9(b). It can be seen that the response is similar to the one shown
in Example 7.4.

G(s)=

Example 7.6. Now, let us consider a nonminimum phase unstable plant model

—948125° 4+ 303252 — 56482 — 12153
58 4+ 64.5545° + 11674 + 3728653 — 5495452 + 110 + 7081

withT = B,E = 1074, ® = 10°°. To design an LQG/LTR controller, the following
MATLAB statements can be issued:

>> nun¥[-948. 12, 30325, 56482, -1215. 3];
den=[1, 64. 554, 1167, 3728. 6, - 5495. 4, 1102, 708. 1] ; G=ss(tf (num den));
Xi =le-4; Th=le-5; Q=diag([100, 10, 20, 30, 40, 100]); R=1;
[Ke,Pl=lgr(Ga,Gb,QR); g0=[1, 1le4, 1e6, 1e8, 1e10, 1lel2, 1el4];
w=l ogspace(-2,2); Ce=ltru(G Ke, Xi, Th,g0,w); hold on; nyquist(Q;

G(s) =

2007/
pagez

7.2. General Descriptions of the Robust Control Problems 247

NYQUIST LOCI -- LQG/LTR (recov. gain ---> 1e+014)
15 expecte\ﬁj

Imag Axis
Imag Axis

-10

-1 - i
-10 -5 .0 5 -10 -5 0 5
Real Axis Real Axis

(a) results ofl t ru() function (b) LTR design results

Figure 7.10. LQG/LTR controller design using different methods.

The Nyquist plots for different values gfare shown in Figure 7.10(a). It can be seen that
wheng isincreased to a certain value, say*4 @he algorithm does not consistently converge
to the expected one, i.e., the LQR solution. It can also be seen that everywitrases
further, the converged shape of the Nyquist plot is in fact far away from the expected loop
transfer function. Thus, we may conclude that the loop recovery is not achievable in this
example.
We can perform a similar LTR design without using the u() function. Here, letus
use the simple computation procedures introduced in Sec. 7.1.3 by the following MATLAB
statements:
>> nyqui st (ss(G a, G b, Kc,0)); hold on;
for q0=[1, 1e8, 1lel2, 1el6, 1e18, 1e20]

Gl=ss(G a,[Gb,Gb],Gc,[Gd Gd]);

[K_Sys, L, P2] =kal man(G1, q0* Xi , Thet a) ;

al=G a-G b*Kc-L*G c; Ce=ss(al, L, Kc,0); G o=GCc; nyquist(G.o)

end

The resulting Nyquist diagrams for different valuesgadire shown in Figure 7.10(b). In-
terestingly, whery approaches £, a satisfactory LTR can be achieved which is different
than what is shown in Figure 7.10(a). This indicates thatu() may not be numeri-
cally reliable wheny is too large. Note that, however, in this example, with- 10°° the
closed-loop system may not be stable.

7.2 General Descriptions of the Robust Control Problems

The small gain theorem plays a pivot role in robust control. In this section, we will first
briefly introduce the small gain theorem and the uncertainty description. Then, the robust
controller structures and the model representation in MATLAB will be discussed.

7.2.1 Small Gain Theorem

A general description of robust control system structure is shown in Figure 7.11(a), where
P(s) is the augmented plant model afids) is the controller model. The transfer function

2007/
pagez

248 Chapter 7. Robust Control Systems Design

u1(t) y1(t) w2 €2
— —

P(s) M(s)

up(t) y2(1)

F(s) | A(s)

(a) standard feedback control (b) sketch for small gain theorem

Figure 7.11. General structure off> and J¢,, control.

from the inputu1(7) to the outputy1(¢) is denoted byl ., (s). It should be emphasized at
this point that the block diagram shown in Figure 7.11(a) is fairly general. The signal vector
u1(t) can include both reference and disturbance signls,) can include both the plant
model and the disturbance generation model. Moreover, uncertainties can also be included
in P(s). The key idea of robust control is to separate the known part and the uncertain
part from the knowledge about the uncertain system under investigation. This is illustrated
in Figure 7.11(b), wherd (s) denotes the known part of the uncertain system Ang
denotes the uncertain part. Usually, we have some limited knowledge Aboiguch as the
upper bound information. Note tha4 (s), after some transformations from Figure 7.11(a),
contains both the plant and the controller. By desigrt@), we can changdf (s). The
bottom line is how to desigh (s) such that the overall system is stable for all possiie).

This is the so-called small gain theorem summarized below.

Theorem 7.1 (small gain theoretn Suppose thad (s) is stable and leyy > 0. The
interconnected system shown in Figure 7.11(b) is well-posed and internally stable for all
stableA (s) if the small gain condition

IM($)lloollA()lloo < 1 (7.21)

is satisfied.

Clearly, if we know that|A(s)|l.c < ¥, we should properly desigR (s) to ensure
IM(s)|lo < 1/y such thatthe overall system is robustly stable, according to the small gain
theorem.

7.2.2 Unstructured Uncertainties

The unstructured uncertainties can be classified into the additive and multiplicative uncer-
tainties. The feedback system structure with uncertainties is shown in Figure 7.12. In
general, the uncertain model can be represented by

G,(s) =Aa(s) + G + Ay ()] (7.22)

If As(s) = 0, one hasG,(s) = G(s)[I + Au(s)], and the uncertainty is referred
to as the multiplicative uncertainty. Whexy, (s) = 0, the uncertainty is referred to as the
additive uncertainty with the modél ,(s) = G(s) + A4 (s).

Based on the discussions of the small gain theorem in the last subsection, starting
from here, with no loss of generality, if we assume that the uncertainty norm bound shown

2007/
pagez

7.2. General Descriptions of the Robust Control Problems 249

plant model

Figure 7.12. Feedback control with uncertainties.

in Figure 7.11(b) is unity, then we can concentrate on Figure 7.11(a) as if there were no
uncertainty inP (s). But now our control design task amounts to desigrit{g) such that
1Ty, ()l < 1. We should understand that it is always possible to s&&¢ such that
the scaled uncertainty bound is less than 1.

In what follows, we shall focus on the robust control problem based on Figure 7.11(a).
Our robust controller design task is simply to make the norfy,gf, (s) small. The popular
measures of the smallness areffig -norm and the#f>-norm. This leads to the two popular
robust controllers, the#¢,, controller and the#f, controller, which are the main topics of
this chapter. However, at this point, we should emphasize that different measures will lead
to different robust control design methods or even different frameworks. For example,
the u-synthesis technique, not covered in this book, is one of the other alternatives. For
more complete coverage of robust control, we refer to [81]. This chapter serves only as an
entry-level introduction to robust control techniques.

7.2.3 Robust Control Problems

Based on the above arguments, we now focus on the configuration shown in Figure 7.11(a),
where an augmented plant model can be constructed as

,,,,,,,,,,,,,,,,,,,,,

P(s)=| C1{ D11 D12 (7.23)
C2: D21 D2

with the augmented state space description as follows:

. u1 y1 C1 D11 Diz||uy
=A B1 B = . 7.24
esacemmp] [B)=[G)e[on wall] oo
Straightforward manipulations give the following closed-loop transfer function:
Typuy () = P1a(s) + Pra(s)[T — F(s) Pax(s)] 7 F (s) Paa(s). (7.25)

The above expression is also known as the linear fractional transformation (LFT) of the
interconnected system. The objective of robust control is to find a stabilizing controller
uz(s) = F(s)y2(s) such that|Ty,., (s)|| < 1. Based on (7.25), the following three robust
control problems are particularly interesting in control engineering practice:

e The #¢, optimal control problem:F|(”n)irnTy1,,1||2;
S

* the #, Optimal control problem:F|(’n)i|nTylul||oo;
S

* the standard#,, robust control:|| Ty, [l < 1.

2007/
pagez

250 Chapter 7. Robust Control Systems Design

7.2.4 Model Representation Under MATLAB

A MATLAB function nksys(), provided in the Robust Control Toolbox, can be used
to describe the system model with a single variable name. The syntax of the function is
S=nksys(A, B, C, D) ,where 4,B,C,D) is the state space model of the system. The
model variableS is also referred to as the tree variable in the Robust Control Toolbox.
The treeS can then be used directly throughout the robust control analysis and design
functions in the Robust Control Toolbox. Generaltitsys() can be called in the format
S=nksys(Vi, Vo,..., Vy, TY) ,where {1, Vo, ..., Vy) are the model parameters of
different types identified by the argumenY. The details of these variables are listed in
Table 7.1. Note that thet ss’ format uses the representation in (7.23). The descriptor
system takes a more general state space representation described as

{ Ex = Ax + Bu, (7.26)

y=Cx + Du,

where matrixE can be either singular or nonsingular; in the former case, the system is
referred to as the singular system. The details of the singular system will not be covered in
this book.

Apart from the model descriptions given in Table 7.1, some other model formats are
allowed, such as the multivariable transfer function model, impulse response model, and
the generalized state space model.

Example 7.7. Consider a two input—two output (TITO) state space model

x=|10 -2 O0|x+|2 3

-1 0 O 1 0
e
0O 0 -3 -3 -3

10 0
1 1 1|*

The model can be entered into MATLAB with the following statements and then packed
into a single tree variabls:

>> Al=[-1,0,0; 0,-2,0; 0,0,-3]; B1=[1,0; 2,3; -3,-3];
Cl=[1,0,0; 1,1,1]; Dl=zeros(2,2); S=nksys(Al,B1,Cl,D1,'ss’);

For a given transfer function model

§3+ 752 4+ 245 + 24

G(s) = ,
) = T 1051 352 1 505 1 24

Table 7.1. Variable description of theksys function.

TY Reserved names 6f;, Vo, ..., Vy Description

'ss’ a,b,c,d Standard state space (default)
' des’ a,b,c,d,e Descriptor system

"tss’ a,bl,b2,c1,c2,d11,d12,d21,d22 Two-port state space

Tt numden Transfer function

2007/
pagez

7.2. General Descriptions of the Robust Control Problems 251

it can be packed into a tree varial8& using the following MATLAB statements:

>> nune[1, 7, 24, 24]; den=[1, 10, 35, 50, 24]; Sl=nksys(numden,’'tf’);

A MATLAB function br anch() is provided to retrieve the variables from a given
model (tree) variables, [V1, Vo, ..., Vy] =branch(S) , wheresS is the existing tree
variable andvy, V>, ..., Vy are the variables packed infy as shown in Table 7.1. For
instance, the state space model can be retrieved from the tree strdcasdollows:

[a, b, c, d] =branch(S) . For the tree structur§y, the transfer function parameters

can be retrieved fror [n, d] =branch(S1) .

With tree variable structures to represent the plant models, we can call some of the
functions in the Robust Control Toolbox in alternative formats. For instdrtceyu() and
I try() can be called in the following way:

Gr=ltru(G, K, E, ©, 1, @, svk)
Gr=ltry(G, Ky, O, R, q, ®, SVK)

whereG andG ; are the tree variables for the plant and the controller, respectively.
Moreover, the individual parameter of the state space model can be retrieved by using

the samédr anch() function. For instance, theandc matrices within the tree variable

can be retrieved using the MATLAB stateme¢ [a, ¢] =branch(S, ' a, ¢’) . It should

be noted that although the original names C1 were used in packing the tree varialSie

one still needs to use, ¢ to retrieve them from the tree.

7.2.5 Dealing with Poles on the Imaginary Axis

If the plant model contains purely imaginary poles, the robust control design techniques
cannot be used directly. In this case, a new varialitan be introduced with = (oz +
8)/(yz+ B). Replace the term in the plant model and transform it into a transfer function
of z. This transformation is referred to as the bilinear transformation, also known as the
frequency domain or complex plane bilinear transformation.

With the bilinear transformation, the poles will be shifted away from the imaginary
axis. The basic idea is to take the shifted model as the new plant model and design a
robust controller based on it. Suppose that a contraliey is designed. Then, one can set
z = (—Bs + 38)/(ys + «) and substitute the term in the controllerF (z) to retrieve the
corresponding controlle@ . (s) for the system.

The bilinear transformation can simply be represented as

G(is)=CsI—A)'B+D = G@) =Cyzl — Ap) 1By + Dy, (7.27)

and the state space descriptieh B, C, D) under bilinear transformation can be written as

,,,

(BA—58I)(al —yA) L (@p —y8)(al —yA) B . (7.28)
Cal —yA)™t | D+yCwI—-yA) B

2007/
pagez

252 Chapter 7. Robust Control Systems Design

Table 7.2. Available bilinear transformation methods.

Method Method name Mathematical Variablesaug

s 2z—-1)

T TG+

‘= woz — 1
"7 tan(woT/2)(z + 1)

-1
" BmdRec’ Backward Rectangular s = ZT T
z

z—1

"Tustin’ Tustin Transform T

" P_Tust’ Prewarped Tustin [T, wol

" FwdRec’ Forward Rectangular s

T
2(z—-1
'S Tust’ Shifted Tustin s = Az [T, y]

TG/y+1

8
"GBili’ General Bilinear g B [, B, y, 4]
yz+ 8

A MATLAB function bi | i n(), provided in the Robust Control Toolbox, can be
used to perform the bilinear and the reversed bilinear transformations for a given system
model. The syntax is as follows:

Sp=bi l'i n(Sy, revs, met hod, aug)
[Ap, Bp, Cp, Dp] =bi lin(A, B, C, D, revs, net hod, aug)

where S, is the tree structure or state space object, of the original modelSaiithe
bilinearly transformed model tree as explained in the above. The variable is used to
describe the direction in the bilinear transformation, widvs=1 for s = z transformation
(the default one), and-1 for z = s. Thenet hod describes the bilinear transformation
method used as listed in Table 7.2.

Example 7.8. Consider a transfer function model

10

O erue e

Note that there is a pole at= 0. One can get a state space model frGi@) first and
then use the Tustin method to get the bilinear transformation uhde0.5. From the new
transfer function obtained using the following MATLAB statements:

>> s=tf('s’); G=10/s/(s+1)/(s+2); G=ss(G@; T=0.5;
G=bilin(G1 ' Tustin ,T), eig(QG, eig(d)

it can be seen that the poles of the original madelre Q —1, —2, with one of the poles on
the imaginary axis. Taking Tustin’s bilinear transformation, the poles pfire shifted to
1, 0.6000, 0.3333, all moved from the imaginary axis.

When callingbi | i n() with r evs setto—1, the model can be shifted back:

>> Gl=bilin(&,-1," Tustin ,T); &=tf(Gl)

2007/
pagez

7.3. Hs Controller Design 253

7.3 # Controller Design
7.3.1 Augmentations of the Model with Weighting Functions

In this section, we will focus on the weighted control structure shown in Figure 7.13, where
Wi(s), Wa(s), and W3(s) are weighting functions or weighting filters. We assume that
G(s), Wi(s), andW3(s)G(s) are all proper; i.e., they are bounded when- co. It can be

seen that the weighting functidis(s) is not required to be proper. By slightly rearranging
the block diagram in Figure 7.13, we obtain the control structure shown in Figure 7.14,
which agrees with the standard structure in Figure 7.11(a).

One may wonder why we need to use three weighting functions in Figure 7.13. First,
we note that the weighting functions are, respectively, for the three signals, namely, the
error, the input, and the output. In the two-port state space structure, the output vector
y1 = [y1a, Y1, y1c1" is not used directly to construct the control signal veatpr We
should understand thai is actually for the control system performance measurement. So,
it is not strange to include the filtered “input signal(z) in the “output signal’y; because
one may need to measure the control energy to assess whether the designed controller is
good or not. Clearly, Figure 7.13 represents a more general picture of optimal and robust
control systems. The weighting functions can also be regarded as filters. This type of

e(t) Yla

Y1

r(t)

F(s)

Figure 7.13. Block diagram of general weighted sensitivity functions.

augmented plant modé#(s)

uz

b o o e e e e e e J y2

Figure 7.14. Two-port diagram with weighting functions.

254 Chapter 7. Robust Control Systems Design

frequency-dependent weighting is more practical. For example, if one wishes to emphasize
the tracking error in the low frequency bani;(s) can be simply chosen as a low-pass
filter. We will show next that, given the weighting transfer functions, we can desigfi,an
by using the idea of the augmented state space model.
Assume thatthe state space representation of the plant model is giénByC, D).
Denote by (Aw,, Bw,, Cw,, Dw,) the state space representation ##(s) and by
(Aw,, Bw,, Cw,, Dw,) that for Wy(s). For Wa(s), which may possibly be improper,
it is denoted as follows:

W3(s) = Cws(sI — Aws) " Bws + Pps™ + -+ Pis + Po. (7.29)

Under the above setup, (7.24) can be written as

- A 0 0 0; 0! B
~Bw,C Aw, O O |Bw, —BwD

0 0 Aw, 0 | O | Bw,

Bw,C 0 0 AW3§ 0 Bw,D

PO =1 _py,c cw, 0 0 Dw, —DwD |’ (7.30)

0 0 Cw, 0 0| Dw,
C+Dy,C O O CW3§ 0 iD+ PyD
L -Cc 0 0 01 i -D

where
C=PC+PCA+---+P,CA™ 1,

- (7.31)
D= PyD+ P.CB+---+ P,CA"2B.

We remark that each weighting function can be assumed to be empty, i.e., in MATLAB

terminology,W; (s) = []. Among robust control problems, we focus on the following three
cases:

1. Sensitivity problemWa(s) andW3(s) are not specified.
2. Mixed robust stability and performancs3(s) is empty.

3. General mixed sensitivity problemAll three weighting functions are present. In
general, the augmented plant mod&ls) can be written in the following form:

Wli—WlG
0 W

PO=| 0w |° (7.32)
01 WG

which in #., design is called the general mixed sensitivity problem. The linear fractional
transformation representation of such a problem can be written as

W1iS
Tyu, = | WaFS |, (7.33)
W3T

2007/
pagez

2007/1
page ?

—

7.3. Hs Controller Design 255

whereF (s) is the controller to be designesi(s) is the sensitivity transfer function defined as
S(s) = E(s)R(s) = [I + F(5)G(s)]" 1, (7.34)
andT (s) is the complementary sensitivity transfer function defined as

T(s)=1—8(s)=F(s)G()I + F(s)G(s)™™. (7.35)

7.3.2 Model Augmentation with Weighting Function Under
MATLAB

First, the tree structures of the weighting functions should be created using $tyes ()
as follows:

Sw,=ksys(Aw,;, Bw;, Cw;, Dwy)

Swp=MKSYS(Awy, Bwy, Cwy, Duy)

Swz=nKsys(Awsz, Bws, Cws, Dws)

where the state space tree variables for the weighting funciaie), W»(s) and the proper

part of W3(s) can be established, respectively. The final plant augmentation is usually in
"tss’ (i.e., two-port state space model) format. This can be obtained usirgithes ()
function provided in the Robust Control Toolbox with syntax

STss=auUQSS(S, Swy, Swy, Sws, W3pol y)

wheresS is the plant tree variable, andpol y is the polynomial oWs(s) if it is not proper.

Of course, different ways of callirgugss () are allowed. If any of the weighting functions

is not provided, the variable in the function call can be replaced by an empty system. In
recent versions of MATLAB, the models and others can also be provided in state space
models.

Example 7.9. Consider the plant model in Example 7.2. The weighting functions are

selected adV1(s) = 100/(s + 1) andWs(s) = 5/1000. Then, the augmented plant model
can be constructed by the following MATLAB scripts:

>> A=[0, 1,0, 0; -5000, -100/ 3,500, 100/3; 0,-1,0,1; 0,100/3,-4,-60];
B=[0; 25/3; 0; -1]; C5[0,0,1,0]; D=0; S=nksys(A B, C D, 'ss’);
WLnume[100] ; Widen=[1, 1]; [a, b, c,d] =tf2ss(W.nhum WLden);
Sl=nmksys(a, b, c,d); S2=nksys([].[].[].[]); S3=nksys([].[].[].[]);
WBpol y=[1/ 1000] ; SysTss=augss(S, S1, S2, S3, W\Bpol y);

If the weighting functions are given in transfer function format, the MATLAB func-
tion augt f () provided in the Robust Control Toolbox can also be used. The syntax is
Sy=augt f (S, W1, Wo, W3) , whereSy is the tree variable of the plant model, aid,
W2, W3 are the transfer function representations of the weighting functions which can be
represented by two-row matrices, whose first row is the numerator and second row the
denominator. The transfer function augmentation accepts the improper transfer functions.
The returned variablg; is the two-port state space representation of the augmented system.
In new versions of the Robust Control Toolbox, the plant and weighting functions can also
be described by linear time-invariant (LTI) objects, thus the augmentation is even simpler.
In the following linear time-invariant examples, such augmentations are demonstrated.

2007/
pagez

256 Chapter 7. Robust Control Systems Design

Figure 7.15. Typical feedback control structure.

Example 7.10. Consider again the problem in Example 7.9. The augmented system can be
obtained with the following MATLAB statements:

>> A=[0, 1,0,0; -5000,-100/3,500,100/3; 0,-1,0,1; 0,100/3,-4,-60];
B=[0; 25/3; 0; -1]; C5[0,0,1,0]; D=0; G=ss(A, B, CD;
W=t f(100,[1,1]); ve=[]; wWs=tf([1 0], 1000);
SysTssl=augtf (G W, W2, WB) ;

It can be seen that the statements are quite straightforward.
The two-port format of the augmented system can be retrieved by the direct use of the

branch() function as demonstrated in the following:
>> [a, bl, b2, cl, c2,d11,d12, d21, d22] =br anch(SysTss1);

and the results can be represented mathematically as

[0 1 0 0 0
—5000 —100/3 500 1003 O |

0 -1 0 1 0}
0 1003 -4 -60 O]
0

o020
B
= O PX; o

P(s) =

,,,

,,,

7.3.3 Weighted Sensitivity Problems: A Simple Case

The weighted sensitivity problem is a simple cas&ff controller design. In the general
weighting case W»(s) and W3(s) are set tq] for this weighted sensitivity problem.
Denoting the sensitivity transfer function [8(s), and introducing a weighting function
W (s), our design objective is to find a controller such thBt(s)S(s)|lcc < 1.

A typical feedback control structure under discussion in this subsection is shown in
Figure 7.15. Before we go further into controller design, we present the following theorem.

Theorem 7.2.1f the plant modelG (s) is a stable and proper transfer function, the set of all
controllersF (s) which internally stabilize the open-loop system can be written as

F(s) = Q)T — G(s)Q(s)1 7, (7.36)

whereQ(s) is any stable proper transfer function. Equation (7.36) is also referred to as the
Youla parameterization formula.

2007/
pagez

S
7.3. Hs Controller Design 257
Thus, our controller design task is to pick up, from a set of controllers defined by
the above Youla parameterization, a subset of controllers ensurinf#h@S(s) |l < 1.
Note that, this subset consists of controllers that are all called robust controllers, as explained
earlierin Sec. 7.2.1. Her® (s) hastwo roles. Thefirstrole isthe scaling so {hf ., < 1.
The second, more practical role is tH&t(s) can be used in the frequency domain to put
a different emphasis on the shapeSgf), known as sensitivity shaping. If we can define
an optimal performance index so that we can pick up a unique controller from this subset
of robust controllers, this uniquely determined controller is then the robust and optimal
controller.
Stable minimum phase plant model considerations
Define akth-order transfer functiod (s) = 1/(zs + 1), with k a positive integer. For any
given stable and strictly proper transfer functiGiy), it can be shown that
lim |G(1 = J)|le = O. (7.37)
t—0
From (7.36),WS = W(1 — GQ). With the introduced/ (s), andk selected as the
pole-zero excess, of the plant model, set
0(s)=G1J (7.38)
such thatQ(s) is a stable proper transfer function. Thé#iS = W1 — J). Thus, for
relatively smallz, | W(s)S(s)|lco < 1.
A MATLAB function m nsens() iswritten which can be used to design a minimum
sensitivity stabilizing controller for stable minimum phase plant magg):
function [CGc, tau] =m nsens(G W options)
t1=options(1l); t2=options(2);Gtf(Q; Wtf(W; numG nun{1};
den=G den{1}; ii=find(abs(nunreps)); nunenun(ii(1):end);
k=l engt h(den) -1 ength(num; zr=roots(num; norms=[]; JJ=[];
tt=I ogspace(l 0g10(t1),10gl0(t2), 10);
if “any(real (zr)>=0)
for i=1:length(tt), Jden=1;
for j=1:k,Jden=conv(Jden,[tt(i),1]); end
nn=Jden-[zeros(1, k), 1]; JJ=[JJ; Jden]; gl=tf(nn,Jden);
g=ss(g1*W; norns=[norns, normhinf(g.a,g.b,g.c,g.d)];
end
end
nor s, key=input(’ Sel ect a nunber n=> ");
tau=tt (key); Quunrden; Qden=JJ(key,:); nn=JJ(key,:)-[zeros(1,k),1];
gl=tf(Qwum Qden); g2=tf(JJI(key,:),nn); Gc=m nreal (gl*g2);
The syntax of the functioni[G, t*] =ni nsens(G, W, Tau_r ange) , where
G is the transfer function object of the plant amid is the weighting functionW (s).
Tau_r ange is used to specify the minimum and maximum values of G, returned
is the stabilizing controlleF (s), andt* returns the best value of
Example 7.11. Consider a stable minimum phase plant model
Gs) 100
S)=—————=
§24+Ts+2
S

2007,
page

S
258 Chapter 7. Robust Control Systems Design
1=0.001
1.8 L8y 1=0.0046
1.6 1.6
1.4 1.4
9 12 g 1.2
E 0.8 E 0.8
0.6 0.6
0.4 0.4
0.2 0.2
O0 0.004 0.008 0.012 0.016 0.02 00 0.001 0.002 0.003 0.004 0.005
Time (secs) Time (secs)
(a) fort = 0.0022 (b) for different values of
Figure 7.16. Step responses for different
with a weighting function oW (s) = 100/(s + 1). The following MATLAB statements are
used to design a robust controller for the minimum sensitivity problem. The step response
under such a controller is shown in Figure 7.16(a):
>> G=tf(100,[1,7,2]); Wtf(100,[1,1]);
[Gc, tau] =mi nsens(G W[0.001,1]); tau, zpk(Ce)

As an intermediate result, a series of norm values 0.1996, 0.4294, 0.9221, 1.9722,
4.1836, 8.7499, 17.6146, 33.3642, 56.5321, 82.0190 is displayed. If 0.4294 is selected, the
optimum value ofr is 0.0022, and the optimal controller obtained is

Go(s) 215443469(s + 6.702) (s + 0.2984
S) = .
¢ s(s +9283)
The step response under the controller can be drawn with the following statements, as shown
in Figure 7.16(a):
>> G o=G"Cc; G c=feedback(G o, 1); step(G_c, 0:0.00005:0.02)

Now, let us check the other two valuesaf t = 0.0046 andr = 0.001. By the
following MATLAB statements:
>> [CGcl, tau] =m nsens(G W][0.001, 1]);

Sel ect a number n=> 3

>> G cl=feedback(GCGcl,1); [Cc2,tau]=m nsens(G W][0.001,1]);

Sel ect a nunber n=> 1

>> G c2=feedback(GCc2,1); step(G.cl, Gc2, 0.01);

the obtained step responses are compared in Figure 7.16(b). It can be seen that the smaller
ther, the quicker the response. However, too smallnaay induce the numerical roundoff
problem.

The following MATLAB statements can be used to perform the frequency domain
analysis:
>> gl=feedback(1, GCGc); [mL, pl,w =bode(gl);

g2=f eedback(1, G:Gcl); [nR, p2] =bode(g2,w);
S

7.3. Hs Controller Design 259
40 -10
10 4qs 148
20 . -20 -19. i
Wy(jw)] R
0 A 30 r=0.0022 100046 2598
-20 R -40
40 1=0.0022 0
60 \ ’ -60
-80 T=0.0046;,;-;::< £=0.001 70

-100

o

80l ':/’l, L

-90f - 4

-140 - -100
102 101 100 10t 107 108 10 102 10t 10° 10t 102 108 10

-z}

(a) sensitivity functions (b) weighted sensitivity functions

Figure 7.17. Bode magnitude plots for different controllers.

g3=f eedback(1, G*Gc2); [nB, p3]=bode(g3,w); [m p]=bode(WWw);
mLl=20*1 og10(niL(:)); nR2=20*10gl0(n2(:));

m8=20*1 0og10(nB(:)); mr20*1 0oglO(n(:));

sem logx(wm’'-",wml, --",wn2,’':" ,wnd ' '-."),

figure; sem |l ogx(w, mrml,’ --" ,w, mn2,’ 2", w, mnB, " -. ")

The magnitude Bode plot of the sensitivity functions, together with the weighting
functionW (s), is shown in Figure 7.17(a). The plots ol (jw) S (jw) || are also obtained
and shown in Figure 7.17(b). It can be seen that for all three contrd|Bi§w) S (jw) oo <
1 for all the frequencies, i.e., below the 0dB line. The peak values representid¢.the
norms are also labeled on the plots.

Coprime factorization of transfer functions

It is obvious that the above algorithm wit(s) = G~1J is applicable only for stable
minimum phase plants. & (s) is nonminimum phase2(s) = G~1J will contain unstable
poles which will cause the system to be internally unstable. The design algorithm for
nonminimum phase plants can be done using the coprime factorization technique.

Definition 7.1. For a given transfer function which can be written@g) = N(s)/M (s),
where N (s) and M (s) are stable proper transfer functions, if there exist two other stable
proper transfer functionX (s) andY (s) such that

N(s)X(s) + M()Y(s) = 1, (7.39)

the transfer function&/ (s) andM (s) are called coprime. Finding the four transfer functions
(N, M, X,Y)is called the coprime factorization 6f(s). Equation (7.39) is also called the
Bezout equation.

To understand the concept of coprimeness of two transfer funchignsand M (s),
we note the following:

(1) N(s) andM (s) are both stable proper transfer functions.

(2) The zeros, including the infinity ones, &f(s) cannot be canceled with those
of M(s).

2007/
pagez

2007/
pagez

260 Chapter 7. Robust Control Systems Design

If G(s) is stable, there is no need to perform coprime factorization. In this case, a
straightforward solution to the Bezout equation is that

N(G)=G(s), M(s)=Y(s)=1 X(s)=0. (7.40)

Example 7.12. Let us illustrate the concept of coprimeness through an example. Consider
an unstable transfer functiagh(s) = 1/(s — 1). If two transfer functiongV(s) = 1/(s + 1)
andM(s) = (s — 1)/(s + 1) are chosen, it is clear that the above two conditions are
satisfied. ThusV(s) and M(s) are coprime. Consider another two transfer functions
N1(s) = 1/(s +)% andM1(s) = (s — 1)/(s + 1)°. It can be seen that a zero by (s) is
ats = oo, which is the same as one zeroMf(s). Thus, the(N1, M1) pair is not coprime.

It should also be noted that the paii(s) = 1/(s +2) andM(s) = (s — 1)/(s + 2)
is also a coprime representation@fs). So, the coprime factorization of a given transfer
function is not unique.

From the above example, it is readily seen that obtaining a coprime representation
N (s)/M(s) is very simple. However, one may have difficulty finding the transfer functions
X (s) andY (s) satisfying the Bezout equation. From among different methods for coprime
factorization, we shall only present the state space approach.

Theorem 7.3.Let (A, B, C, D) be the state space representatiog&f). Pick a matrixF
stabilizingA + BF. Then, the state space representation® ¢f) and N (s) are given as

M(s) = [A+BF+B} NG = [A+BF+B} , (7.41)

Choose a matribH to ensure thad + HC is stable. Then, the state space represen-
tations ofX (s) andY (s) are as follows:

x@):[ffffff F+O] Y(s)=[ffffff [S] (7.42)

AMATLAB function copr i me() iswrittenfor coprime factorization given a transfer

function G (s), where the pole placement algorithm is used to deterrRia@d H

function [N, M X Y] =copri nme(G Ki1, K2)

G=ss(G; a=G a; b=G b; c=Gc; d=Gd;

if length(Kl)==1, Kl=Kl*ones(size(c)); end

if |ength(K2)==1, K2=K2*ones(size(c)); end

F=-acker(a, b, K1); H=-acker(a',c’',K2)'; M-ss(atb*F, b, F, 1);

N=ss(a+b*F, b, c+d*F, d); X=ss(at+H‘c, H F, 0); Y=ss(a+H'c, -b-Hd, F, 1);

The syntax of the functioni[N, M, X, Y] =copri ne(G, K1, K3) ,whereG is

the transfer function of; (s), and the returned variables are the transfer function objects for
N, M, X, Y, respectively. For SISO systenks;, K, are defined as follows:

(1) If K1 or K2 is a column vector, it contains the desired pole positions:

(2) If K1 or K> is a scalar, it will contain the expected repeated pole position of the
relevant stabilization problems.

2007/
pagez

S
7.3. Hs Controller Design 261
Example 7.13. Perform a coprime factorization for the unstable nonminimum phase system
— 1% —s+1
Gy = S D=5+ D)
(s —2)2(s + 1)3
To perform a coprime factorization @ (s), let us assume that the desired poles are all
located ak = —2 for F and ats = —0.1 for H. Then, the following MATLAB statements
can be used:
>> s=tf(’s’); G=(s-1)"2*(s"2-s+1)/((s-2)"2*(s+1)" 3);
[N, M X Y] =coprime(G-2,-0.1); zpk(N), zpk(M, zpk(X), zpk(Y)
It can then be found that
— D32 —s5+1 1)3(s — 2)?
PP Gl Vi Gl VP C Y e
(s +2)° (s +2)°
X(s) = —1905279s — 4.71)(s + 0.9637)(s2 + 2.036s + 1.039)
= (s + 0.1)5 ’
¥) (s — 0.823(s2 — 1.036s + 0.9908 (s + 13.365 + 2751)
§) = .
(s +0.1)°
To design arobust controller for an unstable minimum phase glant the following
steps can be used to ensure thdt(s)S(s)|lco < 1:
1. Perform a coprime factorization to g&¥, M, X, Y);
2. select & which is small enoughto makevV MY (1— J) |l < 1, withk in J(s) equal
to the pole-zero excess 6f(s);
3. setQg = YN1y;
4. get arobust controller frorA(s) = (X + MQ)/(Y — NQ).
Nonminimum phase plant model consideration
For a nonminimum phase system model, the following alternative design procedure [82],
which is slightly different from the design steps presented in the above, was proposed to
design a robust controller to achiey® (s)S(s)|lco < 1:
1. Perform coprime factorizatiofiv, M, X, Y);
2. find a stabledg such thafl WM (Y — NQo)lleo < 1;
3. find a relatively smalt such thalj WM Y — NQoJ)|lco < 1;
4. select aQ such thatQ = QoJ;
5. obtain a robust controller frofi(s) = (X + MQ)/(Y — NQ).
7.3.4 J Controller Design: The General Case
To consider the general case, let us focus on the two-port system structidte,foontrol
described in Figure 7.11(a). The design objective is to find a robust contipller guar-
anteeing the closed-loop system with.&h,-norm bounded by a given positive number
S

2007/
pagez

S
262 Chapter 7. Robust Control Systems Design
i.e., I Ty (8)lloo < y. The controller can be represented by
Api—ZL
Fo(s) = | i , 7.43
o= (7.4
where
A =A+y°Bi1B]X + BoF + ZLC>,
/ yomi 2 ? (7.44)
F=-BlX, L=-YC), Z=I-y2Yx)}
andX andY are, respectively, the solutions of the following two ARES:
ATX + XA+ X(y2B1B] — B2B))X + C1C] =0, (7.45)
AY + YAT +Y(y~2CTC1 — CICo)Y + BI By =0, '
The conditions for the existence of &f,, controller are as follows:
e Dj1is small enough such th#;; < y;
« the solutionX of the controller ARE is positive-definite;
« the solutionY of the observer ARE is positive-definite;
* xmax(XY) < y2, which indicates that the eigenvalues of the product of the two Riccati
equation solution matrices are all less theh

A MATLAB function hi nf () is provided in the Robust Control Toolbox féf
controller design for the general mixed stability and performance problem. The syntax
is [F., Gg] =hi nf (G) , whereG is the two-port state space description of the plant
model, including the specifications of the weighting functions. The returned tree variable
F. is the designedt,, controller in state space form ait; is the state space object of the
closed-loop system.

The existence of the¥,, controller is checked first. Then, aH,, controller is
designed if all the conditions are satisfied. Otherwise, the error messages will be given to
report the failure of the function call.

Example 7.14. Consider a plant model given by
Gs) 400
) = —5—"""—,
52 4 85 + 400
where the uncertain parametevaries within a certain range. The nominal valué of 2.
Define the weighting functions as
Wais) 100(0.005s + 1)2 Wats) 52
§) = ————, s) = .
! p(0.25 + 1)2 3 40000
Let us first considep = 1. The magnitude Bode diagrams of the weighting functions
W1(s) and W3(s) are shown in Figures 7.18(a) and (b), respectively, using the following
S

7.3. Hs Controller Design 263

Bode Diagram Bode Diagram

40 -50
30 -55
-60
_. 20
g g -
g 10 g 70
S % -75
2 : -80
-10
-85
-20
-90
=30 -95
10 10 10" 10 10° 10" 1 10t
Frequeng (rad/sec) Frequeng (rad/sec)
(@) W1(jw) (b) W3(jw)
Figure 7.18. Bode magnitude plots for weighting functions.
MATLAB statements:

>> num=400; den=[1, 2,400]; G=tf(numden); s=tf('s’);
WL=100* (0. 005*s+1) "2/ (0. 2*s+1)"2; WB=s" 2/ 40000;
bodemag(W); figure, bodemag(WB)

The two-port augmented system can be established, ant#ttheontroller can then
be designed by the direct use of thienf () function,

>> S T=augtf(G W, [],W8); Gcl=hinf(S_T); zpk(Gcl)

Then the following messages are displayed:

<< Hinf Optimal Control Synthesis >>
Conputing the 4-block Hinf optinal controller
using the S-L-C | oop-shifting/descriptor fornmulae
Solving for the Hinf controller F(s) using Us) = 0 (default)
Sol ving Riccati equations and performing Hinfinity existence tests:
1. |Is D11 small enough? (0.4
2. Solving state-feedback (P) Riccati
a. No Hamiltonian jw axis roots? (014
b. A-B2*F stable (P >= 0)? oK
3. Solving output-injection (S) Riccati
a. No Hamiltonian jw axis roots? (0.6
b. A-GC2 stable (S >= 0)? K
4. max eig(P*S) <1 ? (0.4
all tests passed -- conputing Hinf controller ...
DONE! !'!

We can see that all the existence conditions are satisfied and the design proces®¥gf the
controller is successful. The controllét.1(s) is obtained as in the following format:

8597.8554(s + 42.84)(s2 + 25 + 400
(s + 5)2(s2 + 3085s + 4.388x 10%)

Gei(s) =

2007/
pagez

2007/
pagez

264 Chapter 7. Robust Control Systems Design

Step Response

Step Response

14

12

1

0.8

Amplitude
Amplitude

0.6

0.4

0.2

0 0
0 001 002 0.03 0.04 0.05 0.06 0.07 0.08 0 0.01 0.02 0.03 0.04 0.05 0.06

Time (sec) Time (sec)
(@) withp =1 (b) with p = 0.5
Figure 7.19. Closed-loop step responses for differgnt

The closed-loop step response of the system obtained with the MATLAB statements
>> G 0=GCc; G c=feedback(G o, 1); step(G.c)

is shown in Figure 7.19(a). Let us see what will happem i reduced to 0.5. Using the
following MATLAB statements:

>> W=2*Wl; S Tl=augtf(G W, [],W8); F=hinf(S_T1);
Gc2=zpk(F), G o=GCc2; G c=feedback(G o,1); step(G.c);

we find that and the controller is

277512951(s + 51.54)(s2 + 25 + 400)
(s + 5)2(s2 + 5425 4+ 1.078x 10P)

Geo(s) =

The closed-loop step response under the pew shown in Figure 7.19(b). Clearly, by
decreasing, the step response of the system will be faster with the overshoot reduced
while keeping approximately the same shape in the dynamic response curves.

Now let us perturb the parametgre (—10, 10) in the plant model. Note that when
3 < 0, the open-loop plant model is unstable. The step response under thef&ame
controller F1(s) can be obtained using the following MATLAB statements:

>> f1=figure; f2=figure;
for delta=-10:1:10
den(2)=delta; G=tf(numden); Go=G*Gcl; Gc=feedback(Go, 1);
figure(fl);step(Ce), hold on;figure(f2); nichols(Go);hold on
end
figure(f1); xlim([0,0.2]); figure(f2),axis([-360,0,-40,40]),grid

The step responses of the controlled system with different valuésaoé compared in

Figure 7.20(a). It can be observed that although the plant model is greatly perturbed, e.g.,
from unstable to stable and with large change in pole positions, the step responses are rather
close. The controlled system is indeed robust.

2007,
page

7.3. Hs Controller Design 265

Step Response Nichols Chart

18
16
1.4

12

Amplitude

0.8
0.6

,_.
Open-Loop Gain (dB)

0.4
0.2

10 ‘ I I -40d
0 0.05 0.1 0.15 0.2 -360 -315 -270 -225 -180 -135 -90 -45 0
Time (sec) Open-Loop Phase (deg)

(a) step responses (b) Nichols charts

Figure 7.20. System responses for differént

To further appreciate of the robustness, see the Nichols charts for different values of
8 in Figure 7.20(b). In the display window, the Nichols chartsffer 0 have been splitinto
two segments. Obviously, despite the great variatio8, ¢fie Nichols charts are all kept
away from the 6dB constamf contour, which ensures the satisfactory dynamic behavior
of the closed-loop system.

Example 7.15. Consider the sensitivity problem for the nonminimum phase plant model
given byG(s) = (s — 1)/(s + 1)2, with

24125 +1
(s + 0.001) (s + 1.2)(0.001s + 1)

W(s) = 0.62

as the weighting function. Using the following MATLAB statements:

>> nume[1,-1]; den=[1,2,1]; Gtf(numden); s=tf(’'s’);
GWED. 62*(s™ 2+1. 2*s+1)/ (s+0.001)/ (s+1.2)/ (0. 001*s+1);
S T=augtf (G GWN[],[]); Fl=hinf(S_T);
it can be seen that an error message is given complaining that the rbarin (7.30) is

not full ranked. To meet the full rank requirement, it can be seen that at least one of the
following three conditions should be satisfied:

—DDw,D #0, —Dw, #0, D+ Dy,D #0. (7.46)

As a remedy, let us choose the weighting functiés(s) as a small constant valee
for instanceg = 107°. In this way, the problem can be solved as shown below:

>> S _Tl=augtf(G GW le-5,[]); Fl=hinf(S_T1); zpk(F1)

Therefore, an#t, controller can now be designed:

5132898087735 — 5.848)(s + 1.778)(s + 1)2

Fi(s) = (s + 1.014x 10%)(s + 1000 (s + 84.42)(s + 1.2)(s 4+ 0.001)

2007/1
page 1

—

266 Chapter 7. Robust Control Systems Design

Step Response Nichols Chart
1.2 40

0ds
1 30 0.25 dB

05dB

20 1dB -1dB

Amplitude
o
S
Open-Loop Gain (dB)

I

—40 . | -40 dB
2 4 6 8 10 -360 -315 -270 -225 -180 -135 -90 -45 0
Time (sec) Open-Loop Phase (deg)

(a) step responses (b) Nichols charts

Figure 7.21. System responses with &, controller.

The closed-loop step response and the open-loop Nichols chart of the system under
controller F1 are shown, respectively, in Figures 7.21(a) and (b) by using the following
MATLAB statements:

>> G 0=G*Fl; G c=feedback(G o, 1); step(G.c, 10),
figure, nichols(Go), grid; axis([-360,0,-40,40])

It can be seen that the dynamic behavior of the controlled system is satisfactory with
a small undershoot.

Example 7.16. Consider a double integrator plant modals) = 1/s2. Let the weighting
functions beWy(s) = 0.5(s + 4)/(s + 1) andWa(s) = s2/100. AnH, controller can be
designed using the following MATLAB statements:

>> G=tf(1,[1 0 0]); WA=tf([O0.5,2],[1,1]); WB=tf([1 O 0], 100);
S T=augtf (G W, [],WB); C=zpk(hinf(S_T)), step(feedback(GC 1))

and the controller designed is

1851325 +2.831x 107 8)(s — 2.831x 1079)

Ce) (s + 1)(s2 + 14.67s + 1053)

The step response of the closed-loop system is shown in Figure 7.22. Since the controller
just cancels the poles of the plantsat 0 directly, this is usually not suggested as a good
controller design. It can also be seen that the steady-state value of the closed-loop system
will never reach 1.

Since there exist poles at= 0, one may shift the poles away from the imaginary
axis and design at¥f,, controller for the shifted plant. Then, shift the design#d,
controller back. A common shift algorithm uses a special bilinear transformatien
(s + p1)/(s/p2 + 1), with pp = oo and p1 < 0. Then, the plant model will be shifted
from (A, B, C, D) to (A — p1l, B, C, D). After the controller design, use the inverse
bilinear transformation to convefiA , Br, Cr, D) backinto(Ar + p11, Br, Cp, Dp).

2007/
pagez

7.3. Hs Controller Design 267

Step Response
0.7

06

051

04r

Amplitude

03r

02r

0.1f

0

0 0.2 04 0.6 0.8 1 12 14 16 18
Time (sec)

Figure 7.22. System responses with &, controller.

Assumep; = —0.1. The #, controller can be designed using the following MATLAB
statements:

>> Gl=ss(Q; [a,b,c,d]=ssdata(Gl); pl=-0.1; al=a-pl*eye(size(a));
S shift=ss(al, b,c,d); WB=tf([1 0 0], 100);
TSS shift=augtf (S shift, W, [],W); Gc=hinf(TSS_shift);
af =Gc. atpl*eye(si ze(Cc.a)); Ce=zpk(ss(af,Cc.b,CGc.c, CGec.d))

The controller is then designed as

2426903s + 0.426)(s + 0.1241)

Go(s) = .
) = T 1162+ 1576s + 1187)

To compare the step responses and Nichols charts, use the following MATLAB state-
ments:

>> G 0=G"Cc; G c=feedback(G .o, 1); step(Gc,t),
figure, nichols(G.o), axis([-360,0,-40,40]), grid

The results are shown in Figures 7.23(a) and (b), respectively. It can be seen that the speed
of the responses, for this example, is rather slow.

7.3.5 Optimal #€,, Controller Design

Consider the case in Example 7.14. When the weighting function decreases, the system
response increases. This leaves us to question how small the vatueaafbe to ensure
that one gets the best response.

In optimal #, controller design, the optimal criterion is defined as

1 W1S 1
max| Ty, | < —, andingeneral max| WoFS | < —. (7.47)
Y y Y WaT y

2007/
pagez

268 Chapter 7. Robust Control Systems Design

Step Response Nichols Chart
40

20
0.8

10
0.6

Amplitude

0.4 -10

Open-Loop Gain (dB)

-20F -20dB
0.2
30}

_aolLLL. -40 dB
0 5 10 15 20 25 30 -360 -315 -270 -225 -180 -135 -90 -45 0
Time (sec) Open-Log Phase (dg)

(a) step responses (b) Nichols charts

Figure 7.23. System responses when the poles are shifted.

Even more generally, all three terms in the matrix on the left-hand side of (7.47) can be
individually weighted byy. An iteration method, known as theiteration method, can be
used in finding the optimat.

A MATLAB function hi nf opt (), provided in the Robust Control Toolbox, can be
used to perform the optima#,, controller design. A bisectional algorithm is used in the

iteration process. The syntax of the functior [y*, G ¢, Gg] =hi nf opt (G) , where

G is again the augmented two-port state space system, which can be either the tree structure
or an LTI model. The variablg* is the optimal value fop.

Example 7.17. Consider again the problem in Example 7.14. The following MATLAB
statements can be used to design an optifial controller:

>> G=tf(400,[1,2,400]); s=tf(’s’);
WL=100* (0. 005*s+1) "2/ (0. 2*s+1) " 2; WB=s" 2/ 40000;
G T=augtf (GW,[],W); [g,F, ccL]=hinfopt(G.T); Gc=zpk(F)

The intermediate iteration results are

<< HInfinity Optinmal Control Synthesis >>

No Ganmma Dl1<=1 P-Exist P>=0 S-Exist S>=0 lamPS)<l1l C L.
1. 0000e+000
2. 0000e+000
1. 5000e+000
1. 7500e+000
1. 8750e+000
1. 9375e+000
1. 9062e+000 FAI L
1. 8906e+000 K (0.¢ K
eration no. 8 is your best answer under the tolerance: 0. 0100.

FAI L

Sl P
JRIEARR AR
Sl P

and it is found thay* = 1.8906, and the controller can be written as

Gols) 5052491691(s + 48.42) (S2 + 2s + 400
c§) =
(s + 96179 (s + 2164)(s + 5)2

2007/
page:

7.3. Hs Controller Design 269

Step Response Nichols Chart

-1dB

=3d
-6d

Amplitude

=12d
0.5

Open-Loop Gain (dB)

-20d

_40 . Lo | L -40d
0 0.05) 0.1 0.15 0.2 -360 -315 -270 -225 -180 -135 -90 -45 0
Time (sec) Open-Loop Phase (deg)

(a) step responses (b) Nichols charts

Figure 7.24. System responses for differént

Now, let us investigate the effect of uncertain paramét&¥ith different values o8,
by using the following MATLAB statements:

>> f1=figure; f2=figure;
for delta=-10:1:10
G den{1}(2)=delta; G o=G"Cc; G c=feedback(G.o,1);
figure(fl); step(G.c), hold on;
figure(f2), nichols(G.o), hold on
end
figure(f2), axis([-360,0,-40,40]), grid

the closed-loop step responses and the open-loop Nichols charts can be obtained as compared
in Figures 7.24(a), and (b), respectively. It can be seen that the dynamic responses of the
system are improved compared to those shown in (7.20), where only a séhusbntroller

is employed.

Example 7.18. Assume that a multivariable system is given by

0.806s + 0.264 —15¢ —1.42

s2 + 1.155 + 0.202 §3 412852+ 1365 + 2.36
1.9552 + 2.125 + 0.49 7.1552 4+ 25.85 + 9.35

§349.152 +9.39% 4+ 1.62 544 20.8s3 4 116452 + 11165 4 188

The model can be entered easily into the MATLAB environment. Now consider the mixed
sensitivity problem, with the weighting functions chosen as

100 0 s 0
wis) = | $+05 100 |, Wae) = | 1000 o (7.48)
° 11 200

G(s) =

Let Wa(s) be an empty matrix. In fact, to avoid the singularity problem, one may still
assume thaWa(s) = diag([10~°, 107°]). Thus, the following statements can be used to

2007,
page

270 Chapter 7. Robust Control Systems Design

Step Response
From: In(1) From: In(2)

0.5

To: Out(1)

Amplitude

0.5

To: Out(2)

0 0.05 01 0 0.05 0.1
Time (sec)

Figure 7.25. Step response under the optinfék, controller.

augment the system to a two-port system. The optiffialcan then be designed. The step
response of the multivariable can be obtained as shown in Figure 7.25.

>> g11=tf([0.806 0.264],[1 1.15 0.202]); s=tf('s’);
gl2=tf([-15 -1.42],[1 12.8 13.6 2.36]);
g21=tf([1.95 2.12 0.49],[1 9.15 9.39 1.62]);
g22=tf([7.15 25.8 9.35],[1 20.8 116.4 111.6 18.8]):
G=[911, g¢12; g21, g22]; W=[100/(s+0.5),0; 0,100/ (s+1)];
ve=[tf(le-5),0;, 0,tf(le-5)]; WB=[s/1000,0; O,s/200];
Tss=augtf (G WL, W2, WB) ; [g, Cc]=hinfopt(Tss); zpk(Cc(1l,2))
step(feedback(G Cc, eye(2)),0.1)

It can be seen that the control results are satisfactory. The decoupling problem of
multivariable control was solved successfully and the performance of the responses are well
acceptable. Unfortunately, the orders of the designed controller are extremely high. For
instance, the off-diagonal tergio(s) in the controller is a 14-order model given by

15229688928s + 1222 (s + 763)(s + 11.54)(s + 8.096)
(s +8.002 (s + 0.9354 (s + 0.9336 (s + 0.9306
(s +0.5)(s +0.2175(s + 0.2164 (s + 0.2147) (s + 0.0951))

(s + 2.132x 10%) (s + 1677 (s + 657.8)(s + 1155)(s + 8.1)
(s + 1.052 (s + 1)(s + 0.9331 (s + 0.9218 (s + 0.5)
(s + 0.3369(s + 0.2467)(s + 0.2263 (s + 0.2167)

g12(s) =

It is also obvious from the result that the response ofyhr) signal is relatively slow,
compared with that of output;1(r). Weighting must be added 01 22(s) in W1(s). For
instance, lew 22(s) = 1000/(s + 1). A new optimal#, controller can be designed, and
the improved control result can be obtained as shown in Figure 7.26.

2007/
pagez

S
7.4. Optimal #¢, Controller Design 271
Step Response
From: In(1) From: In(2)
1
S 0s
g
R e
3 0.5 [
8
0
0 0.05 01 0 0.05 0.1
Time (sec)
Figure 7.26. New result with modified¥1 (s) function.
>> WL(2, 2) =1000/ (s+1); Tss=augtf (G W, W2, W) ;
[g, Gcl1] =hi nfopt (Tss); step(feedback(G CGcl, eye(2)),0.1);

Since the order of the controller is extremely high, which is not easily implemented in
real control applications, model reduction techniques should be used. The model reduction
technique in Chapter 3 cannot be used for each individual item of the multivariable controller
only. Instead, a closed-loop controller reduction technique should be used [83, 84].

7.4 Optimal #¢; Controller Design
The #¢2 optimal control problem is to find a stabilizing controllEs(s) for the augmented
system modeP (s) given by
A B By
P(s)=| C1iD11 D12 (7.49)
C2: D2 D2
such that the#f>-norm of the linear fractional transformatidy, , (s),
[Ty, () ll2 = | P1a(s) + Pr2(s)UI — F(s)P22(s)] " F (s) P2a(s) 2 < 1, (7.50)
is minimized. For SISO systems, th& optimal control problem can be represented as
. Y . .
min Ty 2 = min fo Ty (—j0) Ty 0o, (7.51)
S

2007/
pagez

S
272 Chapter 7. Robust Control Systems Design
The J¢, optimal control problem is equivalent to the LQG/LTR problem as explained
in the following:
* The Kalman filter is expressed by
=A% + Bouz + Ky(y2 — Cox — Doou) (7.52)
with
Ky = (2C; +Np)® ' = (2C] + B1D}))(Da1D) Y, (7.53)
whereX is a symmetrical matrix satisfying the ARE
AT + AX — (2C] + Np)O Y C2X + NJ) + E =0. (7.54)
* The full state feedback,; = —K_.x with
K.=RYB] + NI = (DL,D15)"Y(B) P + D],Cy), (7.55)
where
ATP+PA— (PB,+N)R Y BJP+N)+ Q=0 (7.56)
The observer-base#t, optimal controller can be compactly denoted by
Fus) = [A—Kfcz—BZKC+KfD22Kv+Kf] . (7.57)
K. i 0

Furthermore, it can be seen that by sending — 0, the#¢, optimal control problem
can be made equivalent to the LQG/LTR problem.

A MATLAB function h2l qg(), provided in the Robust Control Toolbox, is for the
design of the optimal, controller. It should be noted that this optimal controller is also
robust. The syntax of the function is

[Fe, Ga]=h2l qg (G)
where, as before; is the two-port state space description of the robust control problem,
and the returned variabldg and G are the state space representations of the controller
and the closed-loop system, respectively.
Example 7.19. Consider again the problem in Example 7.14. T#goptimal controller
can be designed by using the following MATLAB statements:
>> G=tf(400,[1,2,400]); s=tf('s’);
WL=100* (0. 005*s+1) "2/ (0. 2*s+1) " 2; WB=s" 2/ 40000;
G T=augtf (G WL, [],WB); [F,ccL]=h2lqg(G.T); Cc=zpk(F)
with the controller
60861502s + 40.73)(s% + 25 + 400)
G.(s) = s)
(s +5)2(s2 + 25845 + 3.339x 10%)
S

7.5. The Effects of Weighting Functions in #,, Control 273

Nichols Chart

Step Response

16

14
1.2 -1dB

-3df
=6 dB

Amplitude

0.8

06 -12dB

Open-Loop Gain (dB)

0.4 -20d

0.2

40 dB

—40 ‘
00 0.05 0.1 0.15 0.2 -360 -315 -270 -225 -180 -135 -90 -45 0
Time (sec) Open-Loop Phase (de
(a) step responses (b) Nichols charts

Figure 7.27. System responses for differént

With the #¢, controller designed in the above, the closed-loop step response of the system
with different values of can be obtained using the following MATLAB statements:

>> f1=figure; f2=figure;
for delta=-10:1:10
G den{1}(2)=delta; G 02=G"Cc2; G _c2=feedback(G 02,1);
figure(fl); step(G.c2,0.2), hold on;
figure(f2), nichols(G.o2), hold on
end
figure(f2), axis([-360,0,-40,40]), grid

The results are summarized in Figure 7.27(a), and the Nichols charts for different values of
§ are compared in Figure 7.27(b). It can be seen that the controller is robust to the changes
in the plant model. Unfortunately, yet interestingly, for this example the dynamic behavior
is not as good as th#,, optimal controller obtained in the previous section. However, we
remark that there is no definite conclusion that #fg, optimal controller is, in general,
better than the#¢> optimal controller under the same robust control setup.

7.5 The Effects of Weighting Functions in #, Control

In this section, via several examples we will illustrate how the weighting functions affect
the performance of a robust control system.

Example 7.20. Consider the system model given in [82]

—6.4750:2 + 4.030% + 1757700
5(5s3 4 3.5682%2 + 13950215 + 0.0929

For the sensitivity problem, select a weighting function as

G(s) =

0.9(s° +1.25 + 1)
1.021(s 4 0.001)(s + 1.2)(0.001s + 1)

Was) =

2007/1
page 2

—

2007/
pagez

S
274 Chapter 7. Robust Control Systems Design
Since thereis a pole at= 0, the shift technique should be used in the robust controller
design. We can easily design &fy, control with the following MATLAB statements:
>> G=tf([-6.4750,4.0302,175.77], [5, 3. 5682, 139. 5021, 0. 0929, 0]) ;
s=tf(’'s’); W=0.9*(s"2+1.2*s+1)(1.012*(s+1le-3)*(s+1.2)*(1le-3*s+1));
[a, b, c,d]=ssdata(ss(G); pl=-0.1; al=a-pl*eye(size(a));
S=nksys(al, b,c,d); TSS =augtf(S, W, le-5,[]);
C shift=hinf(TSS); [a2, bf,cf,df]=branch(C_shift);
af ma2+pl*eye(si ze(a2)); Gc=zpk(ss(af,bf,cf,df))
The user will be prompted that
" all tests passed -- computing Hinf controller ...
DONE! ! !
and the controller can be designed as
o) —765852109(s —72.32) (s +2.491) (s 4-0.3334 4-0.03009 (s°4-0.713 +27.9)
S)= .
¢ (s+1000 (s +41.05)(s+4.908) (s +1.3) (s +0.101) (52460595 +1.814x 10°)
With this controller, let us draw the open-loop Nichols chart and the closed-loop step
response of the system using the following MATLAB statements:
>> G o=G*Cc; G c=feedback(G.o,1); figure; step(G.c),
figure, nichols(Go), grid; axis([-360,0,-40,40])
The results are shown, respectively, in Figures 7.28(a) and (b).
To design the optima¥, controller, use the following MATLAB statements:
>> [gg, C_shopt] =hi nfopt (TSS) ;
[af 1, bf, cf, df] =branch(C_shopt);
af =af _shift+pl*eye(size(afl)); Gcl=zpk(ss(af, bf,cf,df))
1.4
g -1dh
] 8
s -3.db 2
3 -6.db g
5 <
8-- -12d
-20d
-4 . . AQ dl 0.
-360 -270 -180 -90 0 0o 1 2 4_5 6 7 8 9 1C
Open-Lom Phasddey) Time (sec3
(a) Nichols chart (b) step response
Figure 7.28. Dynamic behavior of a system under th, controller.
S

2007/
pagez

7.5. The Effects of Weighting Functions in #,, Control 275

The following message will be displayed

<< HInfinity Optinmal Control Synthesis >>
No Gamma D11<=1 P-Exist P>=0 S-Exist S>=0 |lan({PS)<1 C L.

6 3.2500e+000 K (0.¢ K (0.¢ K (0.¢ STAB
Iteration no. 6 is your best answer under the tol erance: 0.0100

and the controller can then be designed as

—356272571(s —604.2) (s +2.616) (s2+0.3342 +0.03021) (s2+0.713s + 27.9)
(s+1000 (s +197) (s +4.908) (s +1.3) (s +-0.101) (s2+ 516,55 + 1.521x 105)

Then, use the following MATLAB statements to perform system analysis:

GC(S):

>> G 0l1=G*Ccl; G cl=feedback(G ol,1); step(G.cl),
figure, nichols(Gol), grid; axis([-360,0,-40,40])

The obtained open-loop Nichols chart and the closed-loop step response of the system are
shown in Figures 7.29(a) and (b), respectively.

For the above two controllers, the magnitude Bode diagrams for the sensitivity func-
tions and the weighted sensitivity functions are obtained by the following MATLAB state-
ments:

>> w=l ogspace(-5,4); gl=feedback(l, GC);
g2=f eedback(1, GCGcl);
[m, p1] =bode(gl,w); ml=20*10gl0(ml(:));
[M2, p2] =bode(g2, w); nR2=20*| oglO(nR(:));
[m p] =bode(tf(nW, dW),w; m20*1 ogl0(m(:));
sem logx(wm’'-",wnml, --",wn2 '":"),
figure; semlogx(w, mrml, ' --",w, mnR, " ")

with the results compared in Figures 7.30(a) and (b), respectively. It can be seen that the
weighted sensitivity functions are all below the 0dB line, which means that the design
specifications are met.

N
o
[N

w
=

N
=

-1dh

i
e

-3.db)
-6 db

o
Amplitude

-12.db

Opend.oopGain (db)

N
Q

-20-dl

N
Q

&
=

A
o
&
3

270 -180 90 4_5 6 17
Open-Lom Phasedeq) Time (sec$

(a) Nichols chart (b) step response

Figure 7.29. Dynamic behavior of a system with the optingél, controller.

2007/
pagez

276 Chapter 7. Robust Control Systems Design

500 o R

20 /,’ N
Hoo Optimal - *

Hoo Optimal

P -a00
500 ~] / Hoo
’ 600 ’

-10¢
-80-

15052 102 100 1% ¢ 100—5e 102 100 17 o
(a) sensitivity (b) weighted sensitivity

Figure 7.30. Magnitude Bode diagrams with different controllers.

Example 7.21. Consider again the double integrator problem given in Example 7.16. Let
us change the weighting functions such that [85]

Blas? + 20101, /s + wi)

W- =
) = T tn, JBs + o

with ¢=1.5, $=100,w1,=3, {1 = £,=0.7.

Using the following MATLAB statements:

>> G=tf(1,[1,0,0]); s=tf(’'s’); [a,b,c,d]=ssdata(ss(Q§);
pl=-0.1; al=a-pl*eye(size(a)); G shift=ss(al,b,c,d);
bet a=100; al pha=1.5; wlc=3; zetal=0.7; zeta2=0.7;
wl=t f (bet a*[al pha 2*zetal*wlc*sqrt (al pha) wlc*wlic], ...
[beta 2*zeta2*wlc*sqrt(beta) wlc*wlc]);
TSS shift=augtf (G shift,wl,[],s”2/100);
[g9, ss_Fopt _shi ft]=hi nfopt (TSS _shift);
[a2, bf, cf,df] =branch(ss_Fopt _shift);
af =af _shi ft+pl*eye(si ze(a2)); Gc=zpk(ss(af, bf,cf,df))

the messages displayed are

<< HInfinity Optinmal Control Synthesis >>
No Gamma Dll<=1 P-Exist P>=0 S-Exist S>=0 Ilan(PS)<1l C. L.

7 5.7812e-001 K K K (014 K (0.4 STAB
Iteration no. 7 is your best answer under the tolerance: 0. 0100.

and the optimal#, controller can then be designed such that

4294487335 + 1.73)(s + 0.1798 (s + 0.2235

G =
) = =1 29796 1 27.19) (2 1 0.625 + 0.142

To check the time and frequency performance, use the following MATLAB commands:

>> G o=G"Cc; G c=feedback(G o, 1); step(G.c),
figure, nichols(G.o), grid; axis([-360,0,-40,40])

7.5. The Effects of Weighting Functions in #,, Control

2007/
pagez

277

1.4

1.2

o
©

Amplitude

[

(a) step responses

Figure 7.31. System responses with optin#él, controllers.

4_5 6 7
Time (secs)

N
o

w
o

N
o

o

Open-Loop Gain (db)
! =
o

[uy
(@]

N
o

-30

-40
-360

270

180 9
Open-Loop Phase (g%

(b) Nichols charts

<12 dlp
-20-db

-40d

-1dhb

-3'db
-6.dH

to getthe closed-loop step response and the open-loop Nichols chart shownin Figures 7.31(a)

and (b), respectively. It can be seen that with the newly assigned weighting functions, the

speed of the system responses is significantly increased.
Let us further changes. to different values. By the following MATLAB commands:

>> f1=figure;

f2=figure;

for wic=1:10

wl=t f (bet a*[al pha 2*zetal*wlc*sqrt(al pha) wlc*wlc], ...
[beta 2*zeta2*wlc*sqrt(beta) wlc*wlc]);

TSS shift=augtf (G shift,wl,[],s" 2/100);
[09, ss_Fopt _shift]=hi nfopt (TSS_shift);
[af _shift, bf, cf,df]=branch(ss_Fopt_shift);

af =af _shi ft +pl*eye(si ze(af_shift));
Cec=ss(af, bf, cf, df);
figure(fl);
figure(f2);

end

figure(f2),

hol d on;

hol d on

axi s([-360,0, -40,40]);

grid

the message for eaeh, is displayed and summarized as

. 6094e-
. 3750e-
. 1406e-
. 9062e-

001
001
001
001
001

<< HInfinity Optinal
Dl1<=1 P-Exi st
9 6.3672e-001
6. 0938e-
5. 7812e-
5. 4688e-
5. 1953e-
4.8828e-
4
4
4
3

Cont r ol
P>=0 S-Exi st

Synt hesi s >>

S>=0 |an(PS)<l C.

G 0=G"C&; G c=feedback(G o, 1);
step(G.c);
ni chol s(G_o),

The closed-loop step responses and the open-loop Nichols charts for different values of
w1, are compared in Figures 7.32(a) and (b), respectively. Note that the above displayed

2007/
pagez

278 Chapter 7. Robust Control Systems Design

messages about,, design are only for the converged valuedbr eachw;.. Clearly, with
a differentw., a different#., controller is designed using a different weighting function.
As shown in Figures 7.32(a) and (b), the dynamic behavior of the system is greatly improved.
Specifically, whenwy, increases, the dynamic response tends to be faster.

From the above examples, it can be concluded that the performance of the system is
largely dependent upon the selection of the weighting functions.

We have shown that the performance of the robust control system is largely dependent
upon the selection of the weighting functions. However, a proper choice of the weighting
functions is not an easy task. One has to embed certain design experience, intuition, and
domain knowledge in the robust controller design. In this section, we provide a practical
and useful method for determining the weighting functions.

Recall the “standard functions” defined in Sec. 5.4. Assume that the expected standard
functior)\, whichAminimizesAthe ITAE criterion, is representedy(s). Then, we can set
Gr = G/(1+ G), whereG is the equivalent open-loop model for the standard function
if the unity negative feedback is assumed. The sensitivity function can then be written
asSt =1/(1+ 5). From the above two formulae, it is readily seen that the “standard
sensitivity function”S7 (s) can be written a7 (s) = 1 — Gy (s), which is a proper transfer
function.

Toimprove the plant with a dynamic behavior similacig (s), areasonable weighting
function W1(s) can be selected 881 (s) = S;l(s).

It is worth mentioning that, theoretically, there is a poles at 0 in the weighting
function W1(s) thus selected. In the current version of the Robust Control Toolbox, this
will cause computational problem. A practical solution is to replace the constant term in
the denominator by a small positive constant, eags 0.001.

Example 7.22. Consider the unstable plant model given by

s+5
52— 25+ 4

Select a third-order standard transfer function with an ITAE criterion for the type | format
in Table 5.1. The weighting functioWy(s) with different specified natural frequencies

G(s) =

1.4, 40,

w1 =1

=

[N
w
o

w1, increase—

i
N
o

o

©
N
o

Amplitude
o

o
o

<— w1, increase
0.4 <« w1, increase

OpenioopGan (db)

N
=

o
o
)
e
g
S
]
=

-30

o

-40 |
35 4 45 5 -360 -270

o

05 1 15 2_25 3
Time (sec$
(a) step responses (b) Nichols charts

Figure 7.32. System responses with &, controller.

2007/
pagez

7.5. The Effects of Weighting Functions in #,, Control 279

can be obtained using the following MATLAB statements:

>> for wn=[1, 10, 50, 100],
Glr=std_tf(wn, 3); W=inv(1l-GI);
[m p,w] =bode(W); semnilogx(w, 20*1 og10(n(:)’)); hold on
end

The magnitude Bode diagrams for differest are shown in Figure 7.33(a), and it can be
seen that with larger values @f;, the penalties on the low frequency response are increased,
which will reduce the sensitivity of the system in low frequencies.

The optimal#, controllers with differenW1(s) under differentv,, can be designed
by using the following MATLAB statements:

>> G=tf([1,5],[21,-2,4]); [a,b,c,d] =ssdata(ss(Q);
for wn=[1, 10, 50, 100]
Glr=std_tf(wn, 3); W=inv(1l-GI); W.den{1}(end)=1e-3;
TSS =augtf (G W, 1e-5,[]); [99g, &]=hinfopt(TSS);
st ep(feedback(GGc,1),1); hold on
end
xlinm([0,1]), zpk(Gc)

The messages displayed are

<< HInfinity Optinal Control Synthesis >>
No Ganmma Dll<=1 P-Exist P>=0 S-Exist S>=0 l|anm(PS)<1 C. L.

8 9.9219%e-001 K oK (0.4 X (0.¢ (0.¢
8 9.9219%e-001 X oK (0.6 oK K (0.6
8 9.9219%-001 K oK (0.4 oK (0.4 (0.4 STAB
8 9.9219%e-001 X K (0.6 K K (0.6

The controller is then designed as
3207304399352 + 1.841s + 3.688)(s% 4+ 17355 + 2.712x 10°)
(s +8.018x10P) (s + 5)s(s2 + 175 + 2.15x 10%)

The closed-loop step responses are compared in Figure 7.33(b). It can be seen that for larger
wy, the system responses are more satisfactory.

G.(s) =

Step Response

15

wp =50

Amplitude

0.5

wp =100

5 = 5 1 3 . 0 02 04 06 08 1
10 10 10 10 10 10 Time (sec)

(a) Bode magnitude o1 (s) (b) step response
Figure 7.33. System responses with optin#k, controllers.

280

2007/
pagez

Chapter 7. Robust Control Systems Design

Example 7.23. Consider the double integrator problem again. Let us now use the second-
order standard ITAE type | system as its reference. For different values of natural frequen-
cies, with the following MATLAB statements:

>> G=tf(1,[1,0,0]);
[a, b, c,d] =ssdata(ss(Q);
Gl=ss(al, b, c,d);
Gr=std_tf(wn, 2);

f1=fi gure;

f2=figure;
al=a-pl*eye(size(a));
for wn=[10, 50, 100]

WL=i nv(1- GT);
TSS =augtf (GL, W, 1le-5,[]);

pl=-0. 1;

[af _shift, bf,cf,df]=branch(Gc_shift);
af =af _shi ft+pl*eye(size(af_shift));

Gec=ss(af, bf, cf, df);

figure(f2);

figure(fl);
end
figure(f2),

step(G.c, 2)

grid,

ni chol s(G_o);

hol d on;

axi s([-360, 0, -40, 40]),

zpk(&)

the message for eadh, is displayed and summarized as

<< HInfinity Optimal Control Synthesis >>

No Ganmma Dl1<=1 P-Exi st

P>=0 S-Exi st

S>=0 |an(PS)<1

WL. den{ 1} (end) =1e- 3;
[gg, Gc_shift]=hinfopt(TSS);

G 0=G"Cc; G c=feedback(Go,1);
hol d on;

C L.

8 9.9219e-001 (0,4 K K
8 9. 9219e-001 (0.4 oK (0.4
8 9.9219e-001 (0,4 K

The controller designed is

4335196783085 + 917)(s? + 0.398% + 0.03983

Ge(s) =

(s + 3218 (s + 1238 (s + 1411)(s + 0.1)

We can design a family of optima#t,, controllers. The closed-loop step responses and
open-loop Nichols charts with differeat, are compared, respectively, in Figures 7.34(a)

1.2
wy =100

wp =10
wn = 50 u

[

Ampiitude
o o o
.$‘> (o)) o

o
)

OpenL.oopGan (db)
5505888

@
Sk

-3.db
-6.db

-12.db
-20 db

A0 dk

0 01 02 03 04 05 06 07 08 09 1
Time (secs)
(a) step response

-4
-360

270

Open—_l_lgt% Phase(dé%?
(b) Nichols charts

Figure 7.34. System responses with optin#, controllers.

7.5. The Effects of Weighting Functions in #,, Control 281

and (b). Clearly, whemw, = 100 rad/sec, the response of the system is satisfactory. In this
case, the response is faster compared with that using the weighting fundtigsisand
Wa(s) given in Example 7.21.

Problems

1. Design a Kalman filter for the system given by

0 0 10 0
. 0 0 01 0
125 -125 0 O 0

y(@) =12,1,3,4]x(1) + 6(1),

where the variances of disturbance sigrigly ando (1) are, respectively, [E2] =
1.25 x 102 and BA?] = 2.25 x 10~°, and furthermores (1) andd (r) are mutually
independent.

2. Select a weighting matri@ and assume that = 1. Design an LQG controller for
the system given in the previous problem. Furthermore, design an observer-based
controller for the same plant and find the gain and phase margins of the compensated
system. Compare the time and frequency domain responses using MATLAB.

3. In the above problem, check whether the return difference transfer function with the
LQG controller matches that under direct state feedback. Ifthere is a mismatch, design
an LQG/LTR controller (find a suitable value @f and then compare the responses.

4. Create a tree variable in a MATLAB workspace for the following state space model:

1 0o -1 3
x=|10 -2 O |x+|2|u, y=I[12 3x +4u.
-1 0 2 1

5. Perform the coprime factorization for the following models:

55 +2
@ Gil9)= 5oe

s—1
) Gals) = =

—N2(¢2 _ g _
(©) Gals) = (s—2(sc—s—1

(s —D2(s+12+2
Find the transfer functionX (s) andY (s) satisfying the Bezout equation.

1
6. For the plant modet (s) = m with the weighting function®i(s) =
10 10s + 1 .
dw: = ————— do the foll :
1 252 1 25 11 2NdWel) = 55001 5 1) do the following

2007/
pagez

282

2007/
pagez

Chapter 7. Robust Control Systems Design

7.

10.

(a) Write the two-port description of the system with weighting functions.
(b) Design the optimalt,, controller.

(c) Draw the closed-loop step response and open-loop Nichols chart.

(d) Evaluate the dynamic performance of the controlled system.

(e) Design thef, optimal controller and compare the control performance.

Consider the following plant models:

10

CH+DE+DEs+Ds+4)’
10(—s + 3)
ss+D(s+2)°

@ G(s) =

(b) G(s)=

Design the optima¥#., controllers for the minimum sensitivity problems. (Note: The
standard target transfer functions can be used in the controller design.) Perform time
and frequency domain analyses for the system. Draw the magnitude Bode plots for
the sensitivity and complementary sensitivity functions.

. In Problem 7(b), if the optima¥¢,, controller is designed, check the stability if the

numerator in the plant model is changed t@s18 3). Verify the result using time and
frequency domain analysis tools.

. Using the weighting function based on the standard transfer functions, compare the

robust controller designed for the sensitivity problem for the plant models given in
Problem 7. Find qualitatively the effect of natural frequency of the standard transfer
functions.

Design#t,, and #> controllers for the plant models given in Problem 7.5 for the
sensitivity problem. Perform frequency domain analysis of the controlled system.

2007/
pagez

Chapter 8

Fractional-Order
Controller: An
Introduction

Using the notion of fractional-order may be a more realistic step because real processes
are generally “fractional” [86]. However, for many real processes, fractionality is very
low. A typical example of a noninteger, (fractional-) order system is the voltage—current
relationship of a semi-infinite lossy resistor and capacitor (RC) line or the diffusion of heat
in a semi-infinite solid, where the heat flay(z) is naturally equal to the semiderivative

of temperaturd (¢) [87], as described by the following simple fractional-order differential
equation (FODE):

d°7 (1)
g5 —40-

Clearly, using an integer-order ordinary differential equation (ODE) description for the
above system may differ significantly from the actual situation. However, the fact that
the integer-order dynamic models are more welcome is probably due to the absence of
solution methods for FODES. Details of past and present progress in the analysis of dynamic
systems modeled by FODEs can be found in [88-95]. For example, PID (proportional
integral derivative) controllers, which have been dominating industrial controllers, have
been modified using the notion of a fractional-order integrator and differentiator. It has
been shown that two extra degrees of freedom from the use of a fractional-order integrator
and differentiator make it possible to further improve the performance of traditional PID
controllers. In addition, the plant to be controlled can also be modeled as a dynamic system
described by an FODE. For fractional-order systems, the fractional controller CRONE was
developed in [96], while [89, 97, 98] presented the’RDntroller and [99] proposed the
PID? controller.

In theory, control systems can include both the fractional-order dynamic system or
plant to be controlled and the fractional-order controller. However, in control engineering,
it is a common practice to consider only the fractional-order controller. This is due to the
fact that the plant model may have already been obtained as an integer-order model in a
classical sense. In most cases, our objective is to apply fractional-order control (FOC) to
enhance system control performance. Therefore, in this chapter we will concentrate on the
scenario in which the controller is fractional-order.

283

2007/
pagez

284 Chapter 8. Fractional-Order Controller: An Introduction

This chapter serves as an introduction to the essentials of FOC for control engineering
practice, with an emphasis on how to analyze and realize fractional-order systems using
MATLAB. For a broader introductory coverage of fractional-order calculus and its applica-
tions in engineering, we refer the interested reader to the textbook [100].

This chapter is organized as follows. In Sec. 8.1, definitions and properties of
fractional-order calculus are briefly introduced, followed by frequency and time domain
analysis of fractional-order linear systems in Sec. 8.2. Then, in Sec. 8.3 filter approxima-
tions to fractional-order differentiators are introduced using Oustaloup’s recursive scheme
and its refined version. With this filter approximation, using Simulink, a simulation method
for a general nonlinear fractional-order dynamic system is proposed with an illustrative
example. Since the fractional-order controller after finite dimensional approximation is
usually of a very high order, controller order reduction is discussed and demonstrated in
Sec. 8.4. Finally, we present some controller design case studies for fractional-order systems
in Sec. 8.5.

Note that this chapter, like previous chapters, is designed so that the text and illustrative
MATLAB scripts flow in a natural and smooth manner. We hope that this design enables
readers to quickly get started on problem solving. It is worth mentioning that the design of
a MATLAB class for a fractional-order transfer function is demonstrated thoroughly in the
chapter.

8.1 Fractional-Order Calculus and Its Computations

In a letter to Hbpital in 1695, Leibniz raised the following question: Can the meaning of
derivatives with integer order'g(x)/dx" be generalized to derivatives with noninteger
orders, so that in generale ¥? (Here¥% is the set for all complex numbers.) Hopital
was a bit curious about this question and replied with another question to Leibniz: What if
n = 1/2? Leibniz, in a letter dated September 30, 1695, replied: It will lead to a paradox,
from which one day useful consequences will be drawn.

The question raised by Leibniz for a fractional-order derivative has been a topic of
ongoing study in the last 300 years. Several mathematicians contributed to this subject over
the years. People like Liouville, Riemann, and Weyl made major contributions to the theory
of fractional-order calculus. So, the term “fractional-order calculus” is by no means new.
It is a generalization of ordinary differentiation by noninteger derivatives. The subject is as
old as the calculus of differentiation and goes back to the 17th century when Leibniz and
Newton invented calculus. The theory of fractional-order derivatives was developed mainly
in the 19th century. For more information, see [91, 93, 101, 102].

In the development of fractional-order calculus, there appeared different definitions
of fractional-order differentiations and integrations. Some of the definitions extend di-
rectly from integer-order calculus. The well-established definitions include the Cauchy
integral formula, the Grinwald—Letnikov definition, the Riemann—Liouville definition, and
the Caputo definition. The definitions will be summarized first, and then properties will be
given.

2007/
pagez

S
8.1. Fractional-Order Calculus and Its Computations 285
8.1.1 Definitions of Fractional-Order Calculus
Definition 8.1 (Cauchy'’s fractional-order integration formulaThis definition is a general
extension of the integer-order Cauchy formula
'y+1 /(@)
D7 f@t) = . dr, 8.1
10 === | oot (8.2)
where C is the smooth curve encircling the single-valued funcfigi.
Definition 8.2 (Griinwald—Letnikov definitiogn The definition is defined as
lea/m
o7 f6) = lim o Zo (-1’ (j) fe—jh. (8.2)
]:
wherew;"‘) = (—1)/ (%) represents the coefficients of the polynoniiat- z)*. The coeffi-
cients can also be obtained recursively from
1
wl® =1, wj."’=<1—“f)wﬁ.“‘)l, j=12.... (8.3)
Based onthe Definition 8.2, the fractional-order differentiation can easily be calculated
from
[(t—a)/h] o [(t—a)/h] @
. i . A~ o .
70 f(0) = lim -5 Z (=1’ (i) fa—jh =5 Z w; f@t—jh). (8.4)
j=0 j=0
Assuming that the step siZeis small enough, we see that (8.4) can be used to
evaluate the differentiations of the given function. It can be shown [93] that the accuracy
of the method is @1). Thus, based on the Griinwald—Letnikov definition, the following
MATLAB function can be written to evaluate the fractional-order differentiation [103]:
function dy=gl fdiff(y,t,gam
h=t (2)-t(1); dy(1)=0; y=y(:); t=t(:);
w=1l; for j=2:length(t), w(j)=w(j-1)*(1-(gam+l)/(j-1)); end
for i=2:length(t), dy(i)=w(1l:i)*[y(i:-1:1)]/h"gam end
The syntax of the function i dy,=gl fdi ff (y, ¢, y) , wherey, ¢ are, respectively, the
vectors composed of the samples and the time instances. The time sectmsumed to
be evenly distributedy is the order of fractional-order differentiation. The returned vector
d, is the vector of the fractional-order derivatives.
Definition 8.3 (Riemann—Liouville fractional-order differentiatipyn The fractional-order
integration is defined as
D7f(t) = — t—1)*" dr, 8.5
aZ; " f () F(a)fa()" f(n)dr (8.5)
S

2007/
pagez

286 Chapter 8. Fractional-Order Controller: An Introduction

where O< a < 1, anda is the initial time instance, often assumed to be zero,d.e=,0.
The differentiation is then denoted &5 f (¢).

The Riemann-Liouville definition is the most widely used definition in fractional-
order calculus. The subscripts on both sidesZofepresent, respectively, the lower and
upper bounds in the integration [104].

Such a definition can also be extended to fractional-order differentiations when the
order satisfiea — 1 < 8 < n. The fractional-order differentiation is then defined as

1 ar T fo
‘r(n—ﬁ)@[. (r—r)ﬁ*“df] (8.6)

Definition 8.4 (Caputo’s definition of fractional-order differentiatipnCaputo’s definition
is given by

a’ (e
a‘@tﬁf(t)zﬁ I:a@t (ﬂ)f(t):l

t y(m+1) (T)

FA-y)Jo @—1)
wherea = m + y, m is an integer, and & y < 1. Similarly, Caputo’s fractional-order
integration is defined as

070y (1) = dr, (8.7)

1 Loy

Y _
T =TT b Gt

dr, y <O. (8.8)

It can be shown [93] that for a class of real functions, the fractional-order differenti-
ations from the Grinwald-Letnikov and Riemann—Liouville definitions are identical.

8.1.2 Properties of Fractional-Order Differentiations

The fractional-order differentiation has the following properties [105]:

1. The fractional-order differentiatiayZ f (), with respect ta of an analytic function
f(), is also analytical.

2. The fractional-order differentiation is exactly the same with integer-order one, when
a = nis aninteger. Als@2° f (1) = f(1).
3. The fractional-order differentiation is linear; i.e., for any constants one has

07" [af (1) + bg(D)] = a o} f (1) + b 0 g (1). (8.9)
4. Fractional-order differentiation operators satisfy the commutative-law, and also satisfy
07 |07 1] =02/ |07 f)] = 027 F (1) (8.10)

5. The Laplace transform of fractional-order differentiation is defined as
1=

n—1
Lozerw]=s"2tro1=Y s oz trow] . @1
k=1

In particular, if the derivatives of the functiofiz) are all equal to 0 at= 0, one has
Lo f(O)] =s*ZL[f®)].

2007/
pagez

S
8.2. Frequency and Time Domain Analysis of Fractional-Order Linear Systems 287
8.2 Frequency and Time Domain Analysis of
Fractional-Order Linear Systems
The fractional-order system is the direct extension of classical integer-order systems. The
fractional-order system is established upon the fractional-order differential equations, and
the fractional-order transfer function of a single variable system can be defined as
bis?t bos?2 e b, s¥m
G(s) = 157+ 0o ¥ O , (8.12)
a1s™ + azs™ + - - - + a, 151 + a, s
whereb;, a; are real numbers and the ordersn; of the numerator and the denominator can
also be real numbers. The analysis of the fractional-order Laplace transformations and their
inverse is very complicated. The closed-form solutions to the problems are not possible in
general.
8.2.1 Fractional-Order Transfer Function Modeling
For the fractional-order transfer function modelin (8.12), it can be seen that if the coefficients
and the orders of the numerator and denominator are given, the model can be established.
Thus, an f ot f " class can be constructed by creating @eot f directory and writing in
the directory arf ot f () function as follows:
function G=fotf(a, na, b, nb)
i f nargin==0,
G a=[]; Gna=[]; Gb=[]; Gnb=[]; G=class(G ' 'fotf’);
elseif isa(a,’ fotf'), G=a;
el seif nargin==1 & isa(a,’ double’), G=fotf(1,0,a,0);
el se,
ii=find(abs(a)<eps); a(ii)=[]; na(ii)=[];
ii=find(abs(b)<eps); b(ii)=[]; nb(ii)=[];
G a=a; G na=na; G b=b; G nb=nb; G=class(G'fotf’);
end
The syntax of the functioni G=f ot f (a, », b, ¥) , wherea andb are the coefficients of
the denominator and the numerator, respectively, whdedy are the order sequences in
the denominator and the numerator, respectively.
A display function should also be created for frat f class. The file should also be
saved in thed ot f directory such that
function display(G
sN=pol ydi sp(G b, G nb); sD=pol ydi sp(G a, G na); s=" ';
nmemex ([| engt h(sN), I ength(sD)]); nn=length(sN); nd=length(sD);
di sp([char(s*ones(1,floor((nmnn)/2))) sN), disp(char(’'-'*ones(1,nm));
di sp([char(s*ones(1,floor((nmnd)/2))) sD])
functi on strP=pol ydi sp(p, np)
P=""; [np,ii]=sort(np,’ descend'); p=p(ii);
for i=1:length(p), P=[P,’ + ,nunRstr(p(i)),’ s {",num@str(np(i)),’}']; end
P=P(2:end); P=strrep(P,’s"{0}',’'"); P=strrep(P,’+-"',"-");
P=strrep(P,’ "{1}',""); P=strrep(P,’ +1s’,'+s'); strP=strrep(P,’-1s’,’-s");
if length(strP)>=2, if strP(1l:2)=="1s’, strP=strP(2:end); end,end,
S

2007/
page

288 Chapter 8. Fractional-Order Controller: An Introduction

Example 8.1. Suppose that the fractional-order transfer function is given by

—25063 _4

G(s) = .
() = 538501 1 38,242 1 26,1798 1 25,131 1 15

With the following statement, the fractional-order transfer function can be entered into the
MATLAB environment:

>> b=[-2,-4]; nb=[0.63,0]; a=[2 3.8 2.6 2.5 1.5];
na=[3.501, 2.42,1.798,1.31,0]; G=fotf(a,na,b,nb)

The display of the fractional-order transfer function is

-25°{0.63}- 4

25" {3.501} +3. 85" {2. 42} +2. 65" { 1. 798} +2. 55" { 1. 31} +1. 5

A functionf ot f () can be written in the® f directory to convert an integer-order
transfer function to afiot f object:

function Gl=fotf (G

n=G nun{1}; d=G den{1}; i1=find(abs(n)<eps); i2=find(abs(d)<eps);
if length(il)>0 & i1(1)==1, n=n(i1(1)+1l:end); end

if length(i2)>0 & i2(1)==1, d=d(i2(1)+1:end); end
Gl=fotf(d,length(d)-1:-1:0,n, Il ength(n)-1:-1:0);

8.2.2 Interconnections of Fractional-Order Blocks

Based on the newly definedot f class, thepl us(), ntimes() andf eedback()
functions can be written as follows:

* Plus function pl us() for block parallel connections:

functi on G=pl us(Gl, &)

a=kron(Gl.a, @.a); b=[kron(Gl.a, &.b), kron(Gl.b,&.a)]; na=[]; nb=[];

for i=1:length(Gl.a), na=[na Gl.na(i)+Q&.na]; nb=[nb, Gl.na(i)+&.nb]; end
for i=1:length(GL.b), nb=[nb GL.nb(i)+G&.na]; end

G=uni que(fotf(a, na, b, nb));

 Multiplication function nt i mes() for block series connections:

function G=ntinmes(Gl, @)

@Q=fotf(&X); a=kron(Gl.a, R.a);

b=kron(Gl. b, @.b); na=[]; nb=[];

for i=1:length(Gl.na), na=[na, GlL.na(i)+Q&.na]; end
for i=1:1ength(Gl. nb), nb=[nb, Gl. nb(i)+Q&.nb]; end
G=uni que(fotf(a, na, b, nb));

 Feedback function f eedback() for block negative feedback connections:

functi on G=feedback(F, H
H=fotf (H);

2007/
page

8.2. Frequency and Time Domain Analysis of Fractional-Order Linear Systems 289

b=kron(F. b, H a); a=[kron(F.b, H b), kron(F.a,H a)]; na=[]; nb=[];

for i=1:length(F.b), nb=[nb F.nb(i)+H nb]; na=[na, F. nb(i)+H nb]; end
for i=1:length(F.a), na=[na F.na(i)+H na]; end

G=uni que(fotf(a, na, b,nb));

* Simplification function uni que():

functi on G=uni que(GQ

[a, n] =pol yuni q(G a, G na); G a=a; G na=n;

[a, n] =pol yuni q(G b, G nb); G b=a; G nb=n;

function [a, an] =pol yuni g(a, an)

[an,ii]=sort(an,’ descend’); a=a(ii); ax=diff(an); key=1;

for i=1:1ength(ax)
if ax(i)==0, a(key)=a(key)+a(key+1); a(key+1l)=[]; an(key+1)=[];
el se, key=key+1; end

end

Other functions should also be designed, suchiasus(), um nus(),inv(),
and the files should be placed in tfa#@ot f directory to overload the existing ones. The
listings of these functions are not given in this text but available from the book’s companion
Website.

Example 8.2. Suppose in the unity negative feedback system, the system models are given
by
0.85s12 + 2 Guls) = 125072 4 155033
11518 4 0813+ 1.9595+ 04)~ 308
The plant and controller can be easily entered and the closed-loop system can be
directly obtained with the commands

>> Gfotf([1.1,0.8 1.9 0.4],[1.8 1.3 0.5 0],[0.8 2],[1.2 0]);
Ge=fotf(3,[0.8],[1.2 1.5],[0.72 0.33]); H=fotf(1,0,1,0);
GG=f eedback(G Cc, H)

G(s) =

and the result is given by

B 0.9651-92 4 125193 4 245072 4 3,033
 3.352642.452140.96519241.251534 5751341250842 450724 350.33"
It can be seen from the above illustrations that, although the plant and controllers

are relatively simple, an extremely complicated closed-loop model may be obtained. This
makes the analysis and design of the fractional-order system a difficult task.

G(s)

8.2.3 Frequency Domain Analysis of Linear Fractional-Order
Systems

It can be seen that, whem jis used to substitute for the variablen the fractional-order
transfer function model, the frequency domain respafigey) can be easily evaluated.
Thus, the fractional-order Bode diagrams, Nyquist plots, and Nichols charts can be easily
evaluated with the functiobode() , which is written as an overload function for thet f

object

2007/
page

S
290 Chapter 8. Fractional-Order Controller: An Introduction

functi on H=bode(G w)

a=G a; eta=G na; b=G b; g=G nb; if nargi n==1, w=l ogspace(-4,4); end

for i=1:1ength(w)

P=b*((sqrt(-1)*w(i))."g."); Qa*((sart(-1)*w(i)). eta.’); HL(i)=P/Q

end

Hl=frd(HLl,w); if nargout==0, bode(Hl); else, H=Hl; end

The syntax of the function i H=bode(G, w) , whereG is the fractional-order
transfer function object and the optional argumeris the frequency vector.

If one wants to draw the Bode diagram, there is no need to return any variable. If
frequency domain response data are needed, the response results can be found in the returned
variableH. The variableH can be used in drawing the Nyquist plot and the Nichols chart
by using nyqui st (H) and ni chol s(H) , respectively.

8.2.4 Time Domain Analysis of Fractional-Order Systems
The evaluation of the time domain response of a fractional-order systemis more complicated.
Let us consider a special form of a fractional-order differential equation [93]

a1 y(0) + a2 2P y(t) + -+ + an1 9"y (1) + an 2" y (1) = u (1), (8.13)
whereu(t) can be represented by a certain function and its fractional-order derivatives.
Assume also that the output functiotr) has zero initial conditions. The Laplace transform
can be used to find the transfer function

1
G(s) = . (8.14)
ais™ 4+ axs"2 + - - - 4+ a,_18"-1 + g, s
Consider the Grunwald—Letnikov definition in (8.4). The discrete form of it can be
rewritten as
[(t—a)/h] o 1 [(t—a)/h] -
u.@,”’y(t) ~ W Z wjn’ Vi—jh = hT Yt + Z wj”' Yt—jh | » (815)
, Pt
Wherew(ﬁ’ can be evaluated recursively from the formula (8.3). By substituting it into
(8.13), the numerical solution to the fractional-order differential equation can be written as
no[t=a)/h] o
W= a0 a;_ Z i Z w/’h Yi—jh | - (816)
Z =1 h771 j=1 ’

For the general form of the fractional-order transfer function in (8.12), the right-hand
side can equivalently be evaluated first by using the numerical method discussed earlier.
The final solution can be obtained from (8.16). A MATLAB function can be written for the
f ot f object to evaluate the time domain response as follows:

function y=lsim{(Gu,t)
a=G a; eta=G na; b=G b; gamma=G nb; nA=l engt h(a);
h=t(2)-t(1); D=sum(a./[h."eta]); We[]; nT=length(t);
S

2007/
pagez

S
8.2. Frequency and Time Domain Analysis of Fractional-Order Linear Systems 291
vec=[eta gamma]; Dl=b(:)./h." gama(:);
yl=zeros(nT, 1); Wones(nT,|ength(vec));
for j=2:nT, Wj,:)=Wj-1,:).*(1-(vec+l)/(j-1)); end
for i=2:nT
A=[y1(i-1:-1:1)]"*W2:i,1:nA); yl1(i)=(u(i)-sum(A *a./[h."eta]))/D
end
for i=2:nT, y(i)=(W2:i,nA+l:end)*D1)’ *[y1(i:-1:1)]; end
The syntax of the function i y=I si m(G, u, t) , where the time vector and the input
vector are defined in the variablesand u, respectively. The returned vectgris the
solution to the equations. If there are more points in the equation, the computation may be
very slow.
An overloadedst ep() function can also be written, based on thed n{) function
given above, as
function y=step(Gt)
u=ones(size(t)); y=lsimGu,t);
if nargout==0, plot(t,y); end
with y=step(G, t) , whereG is anf ot f object, andt should be given as an evenly
distributed time vector. The step response of the system is returned in yector
It is possible to solve the above fractional-order differential equation analytically
by using the Mittag—Leffler function in two parameters, which is a generalization of the
exponential function® The Mittag—Leffler function in two parameters is defined as
oo Zk
Eup(z) = — (a,8>0). 8.17
w.p(2) ;}WM) (@, B> 0) (8.17)
Clearly, € is a particular case of the Mittag—Leffler function [92]:
oo Zk o0 Zk
éal,l(Z)ZZ— =Z— =¢.
= rk+1 = k!
Furthermore, one can get more particular cases for the Mittag—Leffler function in two pa-
rameters, for example,
e -1 sinh(y/z)
&2.1(2) = cosh(/z), 612(2) = . 622(2) = 7\/— (8.18)
£i21(V3) =~ Cerfc(— /) (8.19)
51/21(V/2) = N 7). .
The analytical solution of the-term FODE is given in general form [92] by
1 o0 (=™
Yy ==y = > (ko ki, ... ke2)
M oo M ko-+kg -ty _p=m
ko=0,....k,_2>0
n—2
nZ2 0 g\ Ba=Bu-Dm+But 3 (Bu1—Bk;~1
(—) t =0 (8.20)
i—0 \n
S

2007/
pagez

292 Chapter 8. Fractional-Order Controller: An Introduction

5(7’1) o (_an_ltﬁn_ﬁnl> ,
br=bu-1.But T (Bror= ks n
=

whered;, . (z) is the Mittag—Leffler function in two parameters as defined in (8.17) and

o0

dn (G +n)! y/
& =§ forn=0,1,2,.... 8.21
d yh)»,;L(y) = ITOJ +on+) n ()

&M (y) =

8.3 Filter Approximation to Fractional-Order
Differentiations

It can be seen that the Griinwald—Letnikov definition gives a very good fitting to the

fractional-order derivatives for given functions. However, in control system analysis and
design, the definition is not useful, since the samples of the function should be known. On-
line real-time fractional-order differentiation may be required in control systems. Using

filters is one of the best ways to solve the problems.

8.3.1 Oustaloup’s Recursive Filter

Some continuous filters have been summarized in [105]. Among the filters, the well-
established Oustaloup recursive filter has a very good fitting to the fractional-order dif-
ferentiators [106]. Assume that the expected fitting rang@is ;). The filter can be
written as

/
s+a)k

(8.22)

N
Gr(s) =K ,
f() kl__[Ns—i-a)k

where the poles, zeros, and gain of the filter can be evaluated from (8.23) such that

N+ 3 A—y) KN +3ty)

wp, 2N+1 wp 2N+1
w,/(=wp | — , wp =owp | — , K= wZ. (8.23)
wp wp

With the above algorithm, the following MATLAB functioaust af od() can be written
to design the continuous filter. Thus, thé&) signal can be filtered through the filter and
the output of the filter can be regarded as an approximation t&@ther) signal.

functi on G=oustafod(r, N, wb, wh)

mu=wh/wb; k=-N:'N, w_kp=(rmu)."” ((k+N+0.5-0.5%r)/ (2*N+1)) *wb;

w_k=(rmu) .~ ((k+N+0. 5+0. 5*r)/ (2* N+1)) *wb;

K=wh"r; G=tf(zpk(-w kp',-wk',K));

The function can be called wit G y=oust af od(y, N, wp, wy) , Wherey is the order

of the differentiation, &/ + 1 is the order of the filter, and the frequency fitting range is
given by (wy, wy,). The filterG ; can be designed such that it may fit very well within the
frequency range of the fractional order differentiator.

2007/
pagez

S
8.3. Filter Approximation to Fractional-Order Differentiations 293
Bode Diagram Step Response

g
 -50
§ -100 -1
§ -150 s
= 200 3 -2

-250 £ 5

360 g
2 o -35

=360 -4.5

e = o P 4 5 5 10 15 20 25 30

1 10 Frequenclx? (rad/sec) 1 10 Time (sec)
(a) Bode diagrams (b) step response
Figure 8.1. Time and frequency domain comparisons.
Example 8.3. Consider a fractional-order model
2,063 4
G(s) =)
2s3.501+ 3.85242 + 2.6s1~798+ 25131 +15

Since the original orders are all fractional, it may not be easy to design controllers for
them. Thus, a model reduction technique can be considered to reduce the order such that a
low integer-order approximation can be achieved. Suppose that one wants to approximate
the differentiators within the frequency ranggd®3, 10%); the high-order term can also be
approximated as>°01 = 359501 and the integer-order approximation can be obtained as
>> N=4; wl=le-3; w2=1e4; gl=oustafod(0.501, N, wl, w2);

s=tf('s’);

g2=oust af od(0. 42, N, w1, w2) ; g3=oust af od(0. 798, N, wl, w2) ;

g4=oust af od(0. 31, N, wl, w2) ; g5=oust af od(0. 63, N, wl, w2);

Gl=(-2*g5-4)/(2*s" 3*gl+3. 8*s™ 2*g2+2. 6*s*g3+2. 5*s*g4+1.5) ;
It is found that the order of the approximation reaches 48. The exact Bode diagram and
its 48th-order approximation are shown in Figure 8.1(a). The step responses of the system
is obtained as shown in Figure 8.1(b). With the following MATLAB statements, it can
be seen that the time response of the filter can accurately approximate the fractional-order
derivatives of the system.
>> b=[-2 -4]; nb=[0.63 0]; a=[2 3.8 2.6 2.5 1.5];

na=[3.501 2.42 1.798 1.31 0]; G=fotf(a, na,b, nb);

w=l ogspace(-4, 4,500); H=bode(G w); bode(Gl, H, {1e-4, 1e4d});

figure; t=0:0.004:30; y=step(Gt); step(GL, 30); line(t,y)

The open-loop Nyquist plots and Nichols charts can also be obtained as shown in
Figure 8.2. It can be seen that the Nyquist plot accurately fits the theoretical one, while the
Nichols chart is shifted by 360which means the two are identical:
>> H=bode(G w); nyquist(GH, {1le-4, 1e4});

figure; nichols(GH, {le-4,1e4}); grid
S

2007/
page:

294 Chapter 8. Fractional-Order Controller: An Introduction

Nyquist Diagram Nichols Chart

30 0.25dB

20 1dB _148

Imaginary Axis
+
Open-Loop Gain (dB)

)
+
+
I

)
o
@

-6 -4 -2 0 2 4 -360 -270 -180 -90 0 90 180 270
Real Axis Open-Loop Phase (deg)

(a) Nyquist plots (b) Nichols plots
Figure 8.2. Comparisons of other frequency domain plots.

8.3.2 A Refined Oustaloup Filter

Here we introduce a new approximate realization method for the fractional-order derivative
in the frequency range of interdst,, w;]. Our proposed method here gives a better approx-
imation than Oustaloup’s method with respect to both low frequency and high frequency.

Assume that the frequency range to be fit is definedeaswy). Within the pre-
specified frequency range, the fractional-order opergftocan be approximated by the
fractional-order transfer function as

1+ 2\
K(s) = - , (8.24)
1+ m

whereO< o <1, s =jw, b> 0, d >0, and

bs * —ds?+d *
KGs)=— 1+———) . 8.25
() <da)b) (+ ds? +bwhs) ()

In the frequency range, < w < wy, by using a Taylor series expansion, we obtain

K(s) = (dbjs;,) (1+ ap(s) + O{((XT_:L)pZ(s) + -) (8.26)

with
) —ds? +d
§) = ————.
P ds? + bwys

It is then found that

bs

ap—o 1+ «
@ (dwp)*b i| (dwb> . (8.27)

—1 ds
[rap+ 2D 0 | \F i

2007/
pagez

S
8.3. Filter Approximation to Fractional-Order Differentiations 295
Truncating the Taylor series to 1 leads to
dop)® (1+2\"
s n) (d;;b) . (8.28)
b (1+ ap(s)) + A

Thus, the fractional-order differentiator is defined as

o dap* ds? + bwys 14 L Tor . (6.29)

b d(1—a)s2 + bwys + da 1+b
wp

Expression (8.29) is stable if and only if all the poles are on the left-hand side of the

complexs-plane. Itis easy to check that expression (8.29) has three poles:
» One of the poles is located athwy, /d, which is a negative real pole sineg > 0,
b>0,d>0;
» The two other poles are the roots of the equation
d(1—a)s? + awps +da =0 (8.30)
whose real parts are negative since @ < 1.
Thus, all the poles of (8.29) are stable within the frequency réamgew;,).
The irrational fractional-order part of expression (8.29) can be approximated by the
continuous-time rational model
N
) 1+ s/a)k
K(s)= lim K I|m . 8.31
(s) = lim Ky(s) = 1‘[Trs/o0 (8.31)
According to the recursive distribution of real zeros and poles, the zero and pole df rank
can be written as
deon\ 3721 boon \ a1
, wp + wp +
- (== , === } 8.32
o (b) o (d) (632
Thus, the continuous rational transfer function model can be obtained [107] as
don * ds? + bwys Noos 1w
s [=2 I1 k. (8.33)
b d(1— a)s? + bowps + da Pt + wy

Through confirmation by experimentation and theoretical analysis, the synthesis ap-
proximation can obtain the good effect whiga= 10 andd = 9.

Through the approximation method, the fractional-order system may be approximated
as the very high integer-order system. The high integer-order rational transfer function could
be very tedious.

S

296 Chapter 8. Fractional-Order Controller: An Introduction

With the above algorithm, a MATLAB functionew _f od() is written
functi on G=new_fod(r, N, wb, wh, b, d)
if nargi n==4, b=10; d=9; end
mu=wh/ wb; k=-N: N, w_kp=(rmu). " ((k+N+0.5-0.5%r)/ (2*N+1)) *wb;
w_k=(mu) .~ ((k+N+0. 5+0. 5*r)/ (2*N+1)) *wb; K=(d*wh/b)"r;
G=zpk(-w_ kp', -w k', K)*tf([d, b*wh, 0], [d*(1-r), b*wh, d*r]);

with the syntax G r=new_f od(y, N, wpy, wp, b, d) .

Example 8.4. Consider a model

s+1
10532 + 18525 4 28807 + 1

whichis afractional-order model. The exact Bode diagram can be obtained witbdieg)
function. The approximations using the Oustaloup filter, and the refined Oustaloup filter,
can be obtained as shown in Figure 8.3(a). The approximations (thenodel are shown
in Figure 8.3(b). It can be seen that the refined method provides a much better fit:
>> b=[1 1]; a=[10, 185,288,1]; nb=[1 0]; na=[3.2,2.5,0.7,0];

w=|l ogspace(-4, 4,200); @D=fotf(a,na,b,nb); H=bode(G0,w);

s=zpk(’'s'); N=4; wl=le-3; w2=1e3; b=10; d=9;

gl=oust af od(0. 2, N, wl, w2); g2=oust afod(0.5, N, wl, w2); al=gil;

g3=oust af od(0. 7, N, wl, w2) ;

Gl=(s+1)/(10*s”3*gl+185*s” 2*g2+288*g3+1);

gl=new_fod(0.2, N, wl, w2, b,d); g2=new fod(0.5, N, wi, w2, b, d);

g3=new_fod(0.7, N wl, w2, b,d); bode(gl,al); figure

&=(s+1)/(10*s" 3*gl+185*s” 2*g2+288*g3+1); bode(H, Gl, &R)

G(s) =

8.3.3 Simulink-Based Fractional-Order Nonlinear Differential
Equation Solutions

From the previous discussions, it can be found that the refined Oustaloup recursive filter
is an effective way to compute the fractional-order derivatives. It should be noted that the

Bode Diagram Bode Diagram
20
— 0
@ 10 o)
g) T _so Oustaloup’s
o OrOustaloup’s P
S 10 3
= £ -100
-30 refined 150
-40! -200
90 0 -
<« Oustaloup’s
oy] S -45
g <« refined g
@ 45 g 90
& &
£ £ -135
o Oustaloup’s — 180
164 162 16 1 1" 1064 162 10 16 10"
Frequency (rad/sec) Frequency (rad/sec)
(a) sO-2 fittings (b) Bode diagram comparisons

Figure 8.3. Bode diagram comparisons.

2007/
pagez

8.3. Filter Approximation to Fractional-Order Differentiations 297

orders of the numerator and the denominator in the refined Oustaloup filter are the same,
which may cause algebraic loops in Simulink. To avoid the algebraic loops, the filter should
be followed by a low-pass filter, with a crossover frequetagy The constructed block is
shown in Figure 8.4(a).

With the mask facilities provided in Simulink, the fractional-order differentiator block
can be built, as shown in Figure 8.4(b). Double click the fractional-order differentiator block
to display the dialog box in Figure 8.4(c), which allows the user to enter parameters into the
refined Oustaloup filters:

wo=w\(1) ; wh=wM 2); G=new_fod(gam n, wb, wh, 10, 9);
numeG nun{ 1}; den=G den{1}; T=1/wh; str="Fractional\n’;
if isnuneric(gam
if ganr0, str=[str, 'Der s”' nun2str(gam];
else, str=[str, '"Int s°{’ nunBstr(gam '}']; end
el se, str=[str, 'Der s"gam]; end

In practical simulation processes, the model established could be made up of stiff
systems. Thusyde15s or ode23tb algorithms should be selected to ensure high efficiency
and accuracy. Examples will be given to demonstrate the solutions of FODEs.

Example 8.5. Consider the nonlinear FODE described by

3@0‘9y(t)
3+0.2998y(1) + 0.9292y (1)

1.5
+ (2@0-7y(t)) + gy(t) — 55sin(100).

It can be seen that solving the original FODE is very complicated. From the original
equation, the output signalz) can explicitly be expressed as

32%% 1)
3+ 0.2998y (1) + 0.9202y(r)

3 15
=7 [5 Sin(10r) — - ‘2@‘%(;)‘ } .
A Simulink model can then be established from the above equations, as shown in Fig-
ure 8.5(a). It can be seen from the model that each fractional-order differentiator can be
modeled with the above designed block. In Figure 8.5(b), the simulation results are shown,
with different parameters of the refined Oustaloup filter.

num(s 1 Subsystem [mask)
num(s)
Inl den(s) T.s+l Outl
Transfer Fen Transfer Fenl Lasneter s
Deriwative order gamma
.) .o
(a) fractional-order filter
Frequency range [wb, wh]
[[0. 001, 1000]
Fractional Apprizmation order
Der s”0.9 [+
(1):4 | Cancel | Help | |
(b) masked block (file: c7mfode.mdl)

(c) Dialog box of fractional-order differentiators
Figure 8.4. Fractional-order differentiator block design.

2007/
page:

2007/
page:

298 Chapter 8. Fractional-Order Controller: An Introduction

——D

Outl

y(® | Fractional
Der s70.9

Fractional
™ Der s%0.8

Fractional
™ Der 5%0.2

> Fractional d -2
Der s"0.7 > abs(u)"1.

Fcn -25
0

05 1 15 2 25 3 35 4

(a) Simulink model (file: c7mfod2.mdl) (b) simulation results

Figure 8.5. Simulink modeling and results of a nonlinear FODE.

It can be seen that the results are the same, and the only exception is the combination
of wp, = 0.001, w, = 100Q N = 2. However, even with this rough approximation, the
error is still acceptable.

8.4 Model Reduction Techniques for Fractional-Order
Systems

It has been shown that if the integer-order approximation is used to fit the fractional-order
transfer function models with the use of the refined Oustaloup recursive filter, the order of
the final system could be extremely high. Thus, a low-order approximation to the original
problem can be found using the optimal model reduction method.

Recall the expected reduced-order model given by

Bis" + -+ Brs + Brya e TS
st ars™ L a1 o '

Grim,(s) = (8.34)
An objective function for minimizing the>-norm of the reduction error signaft) can be
defined as

J = min Hé(s) — Grjme(s) (8.35)

)2’
whered is the set of parameters to be optimized such that

0=1I[B1,....8,01,...,0n, T]. (8.36)

For an easy evaluation of the criteridnthe delayed term in the reduced-order model
G/m,z(s) can be further approximated by a rational funct@yy,, (s) using the Padé ap-
proximation technique [47]. Thus, the revised criterion can then be defined by

J = min H@(s) - Gr/m(s)Hz (8.37)

and the#f,-norm computation can be evaluated recursively using the algorithmin [108]. The
functionopt _app() discussed in Sec. 3.6 can still be used for fractional-order systems.

8.4. Model Reduction Techniques for Fractional-Order Systems 299

Table 8.1. Comparisons of different order combinations.

r| m Reduced-order model Error

0.0314%2 — 0.8141s — 0.07206
2| 3 0.2286
s34+ 0.31682 + 0.258% + 0.02703

_ 2 .
| 4 0.01192 — 23215 — 2.035 0.2308
s4 + 287853 +9.2422 4 7.36% + 0.7634

_ 2_ _
| g 4.93252 — 0.8602 — 0.00386 0.1342
$5 4+ 5.7415% + 2.79453 + 1.59652 + 0.3134 + 0.001448

—2.327x 10%s2 — 4059 — 1821
2| 6 0.1342
s64+47195+4+2.709x 10454+ 1.318x 10453 +7534°2+147%+6.831

Step Response Bode Diagram

50

-50)
-100y
-150;
-2 ~200y

1
AN
Magnitude (dB)

Amplitude

- -25
2.5 570

180
90
0

4.5 -90

Phase (deg)

5 -18
0 5 10 15 20 25 30 10 102 10 1 10"

Time (sec) Frequency (rad/sec)

(a) step responses (b) Bode diagrams

Figure 8.6. Comparisons of the reduced-order models.

Example 8.6. Consider again the high-order fractional-order transfer function given in
Example 8.3, where a 48th-order model was obtained, and with the refined Oustaloup
filter, a 58th-order model can be obtained. Using optimal reduction techniques for different
order combinations, the reduced-order models can be found as shown in Table 8.1. It can
be seen that th&/5(s) model is the best one. The step responses and Bode diagrams are
compared in Figure 8.6. It can be seen that the approximation is satisfactory. It should
be noted that in the code, tlpt _app() function may be called several times since the
original model should be used in these cases.

>> N=4; wl=le-3; w2=1e3; s=tf(’'s’); gl=new fod(0.501, N,wl, w2, 9, 10);
g2=new_f od(0. 42, N, w1, w2, 9, 10); g3=new_f od(0. 798, N, wl, w2, 9, 10) ;
g4=new_f od(0. 31, N, wl, w2, 9, 10); g5=new_fod(0. 63, N, wl, w2, 9, 10) ;
G=(-2*g5-4)/(2*s” 3*gl+3. 8*s” 2*g2+2. 6*s*g3+2. 5*s*g4+1. 5) ;

G 1l=opt _app(G 2,3,0);norm G G 1), G 2=opt_app(G 2,4,0); norn(G G 2)
G 3=opt _app(G 2,5,0); G 3=opt_app(G 2,5,0,G3); norm G G 3)

G 4=opt _app(G, 2,6,0); G4=opt_app(G 2, 6,0, G4);

G 4=opt _app(G 2,6,0,G4); nornm(G G 4)

step(GG1,G2,G3,G4,30); figure; bode(GG1l, G2, G3 G4

2007/
pagez

2007/
pages

300 Chapter 8. Fractional-Order Controller: An Introduction

8.5 Controller Design Studies for Fractional-Order
Systems

From the analysis given previously, it can be seen that the behaviors of fractional-order
controllers may be different from their integer-order counterparts. For instance, if the
widely used PID controller is considered, its fractional-order versié®PIlcontroller can

be expressed by [99]

K;
Ge(s) =Kp+ — + Kgs*. (8.38)
s

In the illustration in Figure 8.7, the fractional-order PID controller is explained, with
the horizontal axis as the order of the integrator and the vertical axis the order of the
differentiator. It can be seen that the ordinary PI (proportional plus integral), PD, and PID
controllers are special cases of the fractional-order PID controller since the valuasof
u can be selected freely, which adds two more degree of freedom to the controller design. It
has been shown that the control behavior of the best fractional-order PID controller is quite
superior to the best conventional PID controller in some applications [109].

If the loop shaping technique is considered, it can be seen that the Bode magnitude
diagrams is no longer restricted tokiB/decade slopes. Thus the shape of the loop transfer
function can be set freely for better performance and robustness. In this section, several
examples will be given to show the design of an integer-order controller and fractional-order
controller for fractional-order plants.

Example 8.7. For a plant model

1
526+ 22515 4 29513 1 332509 + 1°

G(s) =

if an integer-order PID controller is expected, it is quite natural to first find an FOPDT
approximate model,

—Ls
Ts+1

and then design a PID controller for the FOPDT model. The designed controller can then
be used in closed-loop control of the fractional-order plaryt). For instance, the Wang—
Juang—Chan algorithm [69] in Sec. 6.3.4 can be used to design a PID controller for an

G,(s) =k

PD controller PID controller

Pl controller 2

Figure 8.7. Fractional-order PID controller.

2007/
pages

S
8.5. Controller Design Studies for Fractional-Order Systems 301
FOPDT model with an optimum ITAE criterion:
(0.73034 0.5307/L)(T + 0.5L) 0.5LT
= , I,=T+05L, Ty=———_ (839
P K(T + L) p=1 4=7080 39
The following statements can be used to extract the FOPDT model from the approxi-
mated high-order plant model:
>> N=4; wl=le-3; w2=1e3; s=tf(’'s’);
gl=new fod(0.6, N, wl, w2, 9, 10); g2=new fod(0.5, N,wl, w2, 9, 10);
g3=new_fod(0. 3, N, wl, w2, 9,10); g4=new_fod(0.9, N, wi, w2, 9, 10);
G=1/ (s~ 2*gl+2. 2*s*g2+2. 9*s*g3+3. 32*g4+1); G =opt_app(GO0, 1, 1)
The reduced plant model is then
G, (s) = ——— g 0b1%
8= 01702
The PID controller can be designed such that
>> K=0.1702/0.1702; T=1/0.1702; L=0.612;
Ti =T+0. 5*L; Kp=(0.7303+0.5307*T/L)*Ti/(K*(T+L));
Td=(0.5*L*T)/ (T+0.5*L); Gc=Kp*(1+1/ Ti/s+Td*s),
The integer-order PID controller is designed as
1 1.61452 + 5.55¢ + 0.8979
G =47960(1+ ———— +0.3076 | = .
c(s) (t 56315) s
Under such a controller, the closed-loop step response is obtained as shown in Figure 8.8. It
can be seen that the integer-order PID controller can still be used in the fractional-order plant
control. The control results are satisfactory. Itis also seen that the high-order approximation
to the closed-loop system is very accurate:
>> Gef=fotf(1,1,[1.614 5.55 0.8979],[2,1,0]); Hfotf(1,0,1,0);
a=[1 2.2 2.9 3.32 1]; an=[2.6,1.5,1.3 0.9 0]; 0=fotf(a,an,1,0);
GG=f eedback(Gcf *@0, H); t=0:0.005: 15;
st ep(feedback(G CGc,1),t); hold on, step(feedback(®@*CGcf,H),t);
Example 8.8. Consider a fractional-order plant model
G(s) = 10
VT 22
where the ordew is an undetermined parameter, within the intewvat (1.2, 1.6). The
nominal value of the variable igp = 1.4. In order to get a low-order robust controller, a
relatively smaller value aV can be selected, for instan@é,= 2. The following statements
can be used to approximate the original model by integer-order approximation such that
>> N=2; wl=le-3; w2=1e3; s=tf(’'s’);
gl=oustafod(0.4, N, wl, w2); G=1/(s*gl+2.2);
S

2007/
pages

302 Chapter 8. Fractional-Order Controller: An Introduction

Step Response
1.4

1.2

0.8r

Amplitude

0.6

0.4r

0.2r

0 5 10 15
Time (sec)

Figure 8.8. Integer-order PID control of fractional-order plant.

Select weighting functionsy(s) = 100/(s + 1) and wz(s) = 10/(0.01s 4+ 100). The
optimal #, controller can be designed such that

>> WL=100/ (s+1); WB=100/(0.01*s+100); Gc=m xsyn(G WL, [], WB);
The controller can be designed as

7187020%s + 1000 (s + 144.3)(s + 8.265)(s + 0.1116
(s + 0.006921(s2 + 1.73s + 2.388)
(s + 9499 (s + 9975 (s + 346.4)(s + 27.46)
(s +1.738 (s + 1)(s + 0.1096 (s + 0.006918

Ge(s) =

Under such a controller, the open-loop Bode diagrams and the closed-loop step response
are obtained as shown in Figures 8.9(a) and (b), respectively:

>> f1=figure; bode(GCc); hold on
f2=figure; step(feedback(GCc,1),0.1); hold on
for a=[0.2:0.05:0.6]
gl=oust af od(a, 4, wl, W2) ; Gl=1/(s*gl+2.2);
figure(fl); bode(Gl*Cc);
figure(f2); step(feedback(Gl*Gc, 1),0.1)
end

Example 8.9. Consider again the fractional-order plant model in Example 8.7. The integer-
order approximation can be obtained such that

>> N=4; wl=le-3; w2=1000; s=tf(’'s’);
gl=oust af od(0. 6, N, wl, w2); g2=oust af od(0.5, N, wl, w2);
g3=oust af od(0. 3, N, wl, w2); g4=oustafod(0.9, N, wl, w2)
G=1/ (s™ 2*gl+2. 2*s*g2+2. 9*s*g3+3. 32*g4+1) ;

Using the integer-order model, the Simulink model for optimal controller design with
an integer-order PID controller is established as shown in Figure 8.10(a). A saturation
actuator with limits5 is also included in the Simulink model.

8.5. Controller Design Studies for Fractional-Order Systems 303

Bode Diagram

Step Response

Magnitude (dB)

Amplitude

Phase (deg)
&
8

14

12

08

06

04

02

107 o 2
Frequency (radisec)

(a) Bode diagrams

o

0.02

004 0.06 0.08 01
Time (sec)

(b) closed-loop step responses

Figure 8.9. Time and frequency domain analysis under robust controller.

Step

Actuator LTI System
Saturation

(a) Simulink model (file: c8mfpid2.mdl)

C
(
@

2 4 6 8 10

(b) closed-loop response

Figure 8.10. Optimal PID controller design for fractional-order plant.

It can be found by using the Optimal Controller Designer (OCD) program that
the parameters of the PID controller akg, = 147681007 K; = 1.35636077K,; =
230639271. Under such a controller, the optimum step response of the closed-loop system
can be obtained as shown in Figure 8.10(b). It can be seen that the controller obtained with
the OCD is much better than the one obtained in Example 8.7. Also the control action is
restricted within the specific range.

Due to the robustness of the PID controllers, the errors in the controller parameters
may not cause any problem in the control results. For instance, if we had the erroneous
parametersK, = 1000Q K; = 1, K; = 2500, where the errors reach 35%, the control

results would be as shown in Figure 8.11(a). It can be seen that the system responses are

almost the same with the optimal PID controller:
>> Kp=10000; Ki=1; Kd=2500;

[t,x,y]=sinm(’c8nfpid2’, [0, 10]);
Assume that plant model is changed to
2

G(s)=

control results are as shown in Figure 8.11(b). It can be seen that, although the plant models

plot(t,y(:,2))

526455154 4513453250941
where the parameters are all perturbed. If the erroneous PID controller is still used, the

2007/
pages

2007/
pages

304 Chapter 8. Fractional-Order Controller: An Introduction

14 14

12 12

1 1

0.8 0.8

0.6 0.6

04 04

0.2 0.2

0 0
0 2 4 6 8 10 0 2 4 6 8 10
(a) controller parameters change (b) plant and controller change

Figure 8.11. The robustness of the PID controller.

change significantly, the PID controller can still behave perfectly. This demonstrates the
robustness of the PID controller in fractional-order plant models:

>> G=2/ (s” 2*gl+b*s*g2+4*s*g3+5. 32*g4+1) ;
[t,x,y]=sim(’ c8nfpid2’,[0,10]); plot(t,y(:,2))

Problems

1. Assume that a fractional-order linear differential equation is given by
0.8222y(1) + 0.52°%y(t) + y(t) = 1,

with initial valuesy(0) = y’(0) = y”(0) = 0. Solve numerically the FODE. If the
order of 2.2 is approximated by 2, and 0.9 is approximated by 1, the original fractional-
order differential equation can be approximated by an integer-order system. Compare
the accuracy of the approximated integer-order systems.

2. For afractional-order model given by

5

(@. Gls) = §23 4+ 1.3s09 4+ 125

and
5506 +2

533 + 31526 4 2.89519 4 2.5¢14 4 1.2

approximate the fractional-order models with low-order integer-order models, and
compare the accuracy of the frequency and time domain fittings. Discuss what order
combination is most suitable for the original model.

b). G(s) =

3. Suppose that the plant model is

1
§2642.251542.951343.32509+1"

G(s)=

2007/
pages

e
8.5. Controller Design Studies for Fractional-Order Systems 305
and an integer-order PID controller is
1.61452 + 5.555 + 0.8979
G.(s) = .
N
Find the closed-loop fractional-order model.

4. Write a function to find the solutions to the FODE using the algorithm in (8.17)—
(8.21), and compare the results with the Griinwald—Letnikov definition approach and
the block diagram algorithm.

5. Consider the linear FODE given by

o
t “x(t 1) =1,
Px() + <1+2/\> D%x(t) + x(1)
wherex = 0.5, ¢ = 0.25 andx(0) = 0. Solve the equation numerically.

6. Find a good approximation &7 with the revised Oustaloup filter and see whi¢h
can best fit the fractional-order differentiator.

7. Solve the following nonlinear FODE with the block diagram algorithm wii®) = O:

2
Z2x(t) + M5 (1) + [90-555x(t)] +x3(t) = sint.
8. For the plant model
5506 4 2
Gs) = 33 26 19 14 ’
§33 + 31546 + 28919 4 25514 4+ 1.2
design an integer-order PID controller and observe the control results.
9. For the fractional-order model
G = b
CasOT+ U
design an#, controller which can tolerate the parameter changes in the fractional-
order model, for instance, € (0.2, 5) andb € (0.2, 1.5).
e

2007/
pages

Appendix

CtrILAB: A Feedback
Control System Analysis
and Design Tool

A.1 Introduction
A.1.1 What Is CtrILAB?

CtrlLAB, a MATLAB-based toolkit with an integrated graphical user interface (GUI), was
designed by the authors for solving the modeling, analysis, and design problems in SISO
(single input—single output) feedback control systems. It is developed from the old Control
Kit by the authors [110]. CtrlLAB has become a flexible and powerful tool for both teaching
and engineering design and requires minimum user effort. It can be used as a companion
to this book.

CtrILAB, written and tested under MATLAB v4.2, was first made public on the
MathWorks anonymous ftp site as a user-contributed MATLAB program. Since then, much
useful feedback has been received. Over the years, CtrlLAB has been greatly improved. It
has already been used as a CAl (computer aided instruction) tool in control courses at many
universities worldwide. The latest version of CtrILAB can also run under other versions
of MATLAB, including MATLAB R2007b. It is still freely downloadable from MATLAB
Central at

htt p: // ww. mat hwor ks. conf mat | abcentral /i ndex. shtm

Currently, CtrlLAB is the most downloaded tool under the Controls and Systems Modeling
file exchange category at MATLAB Central.
The main facilities provided by CtrILAB are

» model entry, including Simulink model entry;

» model display;

» state space realizations;

» model reduction using various algorithms;

 system analysis in frequency and time domains;

« graphical display with figure editing and manipulation;
» a GUI matrix processor and editor;

307

2007/
pages

2007/
pages

308 Appendix. CtrILAB: A Feedback Control System Analysis and Design Tool

« many controller design modules such as the model-based approaches (lead-lag, LQ
(linear quadratic) optimal, pole-placement, etc.); PID (proportional integral derivative)
parameter setting and PID tuning schemes; and robust controller design approaches
(such as LQG (linear quadratic Gaussian), LQG/LTR (loop transfer recovity),

Hoo, €tC.).

A.1.2 Installation and Requirements

Withthe downloadedt r | | ab. zi pfile, unzipitto adirectory usingi nZi p orpkunzi p
software. Before running CtrILAB, the directory of CtrILAB should be added to the MAT-
LAB path. This can be set with thiéle | Set Path menu item in the MATLAB command
window.

CtrILAB is written for the PC Windows platform; however, it should also be able to
run on other platforms. Although CtrILAB has not been fully tested on other platforms,
with a MATLAB version newer than 4.2c, the cross platform compatibility will be much
better than what was experienced under MATLAB version 4.2c. We believe that CtrILAB
can run on any current version of other platforms with little modification.

A.1.3 Execution of CtrILAB

To run CtrlLAB, simply type ctrl | ab under the MATLAB prompt, and a GUI with
menus will pop up, as shown in Figure A.1. The user must first enter or to define the
models, which include the plant, the controller, and the feedback element. The default
models for the latter two are all unity. The possible time delay may also be specified. With
the specified models, the analysis and design tasks can be performed.

Menus and dialog boxes are provided to invoke relevant functions to fulfill the user’s
own analysis and design tasks. Note that all the functions provided in CtrILAB can be
accessed through the efficient and user friendly GUI. There is no need to call these functions

¥ CtrlLAE Feedback Contrel Systems Laboratory

File Model Analysis Design Help

D= 2] Bo| | ni| N AL 5t] im| =]

Figure A.1. The GUI of CtrILAB.

2007/
pages

S
A.2. Model Entry and Model Conversion 309
manually. CtrILAB is designed for linear feedback control system analysis and design using
only mouse clicks and numeric key strokes. Great effort has been made in CtrILAB to
minimize the user involvement in the analysis and design of feedback control systems.
A.2 Model Entry and Model Conversion

A.2.1 Transfer Function Entry

To quickly enter a default model, the user can click one of the model icons in the block
diagram shown in Figure A.1, and CtrlLAB will check whether the model exists in the work
space. If it does not exist, a dialog box, shown in Figure A.2, will appear by default, which
allows the user to enter the system model by specifying the numerator and denominator,
respectively, in the appropriate edit boxes.

The transfer function model can be entered in two ways. The first is by entering
the standard MATLAB vectors in descending order of the Laplace complex vatiable
The second is by representing the polynomials in a “natural way.” These two methods
are demonstrated in Table A.1. It can be seen that for the factorized polynomials, the
s polynomial representation is much more “natural” and simpler than a pure MATLAB
expression.

A.2.2 Entering Other Model Representations
The state space model, or zero-pole-gain model, can also be entered if the corresponding
item from the list box shown in Figure A.2 is selected.
Nu;r[n:;atorpolymmial Apely |
Denominator polynormial Cancel |
I[‘H] Help |
Clear Model |
Oither Type
State space
Pale-zero-gain
SIMULINE
Figure A.2. Dialog box for transfer function model entry.
Table A.1. Examples of polynomial representations.

Mathematical MATLAB commands s polynomial

s2+55+4 [1,5, 4] S2+55+4

s2(s +5)(s2+7) [conv([1,5],[1,0,7]),0,0] |s2(s+5)(s2+7)2

1.553(s3+752+65+2)12 | too complicated 1.553(s3+7s2+65+2) 12

S

2007/
pages

310 Appendix. CtrILAB: A Feedback Control System Analysis and Design Tool

¥ Enter system model

zeros of the system
I zeroz(0.1] ﬂl
poles of the swstem Cancel |
|

(Fain

| 1 Clear Model |

Other Type [{=

Help

Figure A.3. Dialog box for zero-pole-gain model entry.

Coefficient matrix &
[Apply |

WVector B Cancel |

|1

WVector C

K Clear Model |
D constant I] Other Type

Help

State space

Figure A.4. Dialog box for state space model entry.

In Figure A.2, if the menu itempole-zero (for zero-pole-gain model) is selected, the
dialog box shown in Figure A.3 will appear, where the zero-pole-gain model parameters
can be entered in the corresponding edit boxes. Then, presQkhesutton to confirm.
Internally, a transfer function object will be generated automatically from the user-specified
zero-pole-gain model. For ttetate space item, the dialog box shown in Figure A.4 will
appear, where thed, B, C, D) matrices of the system can be entered in the corresponding
edit boxes. Then, a transfer function object of the block can be generated automatically
from the given state space model.

A.2.3 A More Complicated Model Entry

If the system model under study has a more complicated structure, such as containing com-
plex block diagrams or nonlinearities, the Simulink program should be used to construct the
system model. Inthis case, the user can sele@ithelink item from the dialog box shown

in Figure A.2. A model name (an internal name) will be requested and then the Simulink
editing environment will appear, as shown in Figures A.5(a) and (b), where Figure A.5(a) is
the model library from which all the Simulink library models can be accessed. Figure A.5(b)

is a blank Simulink model editing window in which the user can draw the system model
between the input and output ports of the system. Once the model entry process is completed
in the Simulink edit window, as shown in Figure A.5(b), double clRekurn to CtrILAB

to return the user system model to CtrlLAB. If the user model in Simulink is nonlinear, the
linearized transfer function model of the user system will be created and saved, together with
the original Simulink model, for CtrlLAB use. A simple nonlinear model entry example in

A.3. Model Transformation and Reduction

um

Integrator Gain

du/dt
X' = Ax+Bu >
Derivative y =Cx+Du

State—Space

il ¢ ce))

oles(s;

Transfer Fcn P (=)
Zero-Pole

E)—| Simulink

Double click to
Nonlinear call Simulink

(a) model library

File Edit View Similation Format Tools

|JD|@E|@|3@@.\:M:

I

@

Input

Return

Tao CtiLaB

20

Output

Ready [

[ndeds

(b) model entering window
Figure A.5. Simulink model entering in CtrILAB.

myplant !E E
File Edit ¥Yiew Simulation Format Tools
|DE & HEe ==y =
Ss+4
Srdses M
Lnpuat Sum Saturation Gain T Chatput
Transfer Fen
)
I et
To CtlL 4B s+3
Transfer Fenl
Ready | | |0d245 7

Figure A.6. Complicated model entry in CtrILAB via Simulink.

CtrILAB is shown in Figure A.6 which uses Simulink to describe the nonlinear part. Note
theReturn to CtrlLAB button in Figure A.6 for returning a linearized transfer function object

for use with CtrlLAB.

A.3 Model Transformation and Reduction

A.3.1 Model Display

To display the model of a block in Figure A.1, selégbdel | Model Select in the menu
shown in Figure A.7, or simply click the relevant block button in the main interface shown

in Figure A.1.

2007/
pages

2007/
pages

S
312 Appendix. CtrILAB: A Feedback Control System Analysis and Design Tool
Model Analwysiz Dezign Help
Model Select 4 v Gis]
Model Type » Ge (=)
Model Dizplay 4 Hi=]
Bealization 4 Exp(-T=]
Reduction. ..
Show
Enter/Modi £
Show model library
4dd More Blocks 4
Figure A.7. Model selecting menu.
Information Display Window
Plant model
9+75%+ 245+ 24 x|
4 1057+355% 4502+ 24 Modify |
Figure A.8. Transfer function display.
Madel Di=play H| v Tran=fer Function
State Space
Fole—Zera
Factorized TF
Figure A.9. Display format selection.
As an example, consider the transfer function of the plant model given by
GGs) s34 752+ 245 + 24
S) = .
54+ 1053 + 3552 + 505 + 24
To display the transfer function model of the plant, simply pres€ifsgbutton in the main
interface shown in Figure A.1. The transfer function model will then be displayed in the
Information Display Window as shown in Figure A.8. The displayed model can also be
modified in the display window by pressing tModify button. The dialog box shown in
Figure A.2 will be displayed again for model parameter changes.

The block model can be displayed in various formats. This can be done by selecting
theModel | Model Display menu, shown in Figure A.9, with the transfer function format
as the default. Through tidodel | Model Display | Factorized TF menu item, the transfer
function in the factorized format will be displayed as shown in Figure A.10.

S

2007!
pages

O
A.3. Model Transformation and Reduction 313
Information Display Window
Figure A.10. Factorized transfer function display format.
Infermation Display Window
Figure A.11. State space model display format.
Matrix Processor
Dl{e| 1| =I=[=|od 2 I
Izl iz ine
Figure A.12. Display via the Matrix Processor.
Moreover, the state space model can be displayed bivithdel | Model Display |
state space menu item as demonstrated in Figure A.11. WherSth@y button is clicked,
the Matrix Processor is activated; the typical window is shown in Figure A.12. The zero-
pole-gain format of the system is displayed by Medel | Model Display | Pole-Zero
menu item which is shown in Figure A.13.
If the nonlinear system model is involved, only the linearized model will be displayed
as in Figure A.14. To display the original Simulink model, simply presst¢h€trILAB
button.
O

314 Appendix. CtrILAB: A Feedback Control System Analysis and Design Tool

% Information Display Window

Plant tnodel

Gaine 1.5 _ Clear|
Zeros: -5, -0.8 fl olify |

Poles: -5.553, -1.51620.5465, -0.4163

Figure A.13. Zero-pole-gain display format.

@ Information Display Window

Plant tnodel

155248 7s5+6 Clear |

405542352427 S5+6 Modify |

Figure A.14. Linearized model display.

A.3.2 State Space Realizations

Different state space realizations can be performed for a given transfer function plant model.
This can be done by thelodel | Realisation menu items shown in Figure A.15, and an
example of the Jordanian canonical form of the system is obtained, as shown in Figure A.16,
via the Matrix Processor interface.

A.3.3 Model Reduction

Reduced-order models of the system can also be obtained Wdtiel | Reduction menu
item. The model reduction dialog box will appear as in Figure A.17, where various model
reduction approaches are implemented such as the continued-fraction approach, the Padé
method, the Routh method, the dominant mode method, the balanced realization method,
the optimal reduction method, the FF-Padé method, the modal method, and the optimal
Hankel approximation method.

For example, if the Padé approximation method is chosen from the list box of model
reduction methods, the expected order of the reduced model can be specified as in Fig-
ure A.17. The reduced-order model is then obtained as shown in Figure A.18.

Bealisation Pl ¥ Controllable form

Obzerwable form
Jordan form
Minimal realisation

Balanced realization

Figure A.15. State space realization menu.

2007/
pages

2007/
pages

A.3. Model Transformation and Reduction 315
File Edit Formats Analysis StateSpace Help
Dl w1 ==l=lod 2] i
A tnatrix
4 010 0 :I iz
0 -3 0 0
D0 -2 0
000 -
B wector transpose
64.88 -127.1 -78.70 15.32
C wector
006165 0.04721 -0.0253%8 0.06526 Refresh |
D constant | Eui |
Figure A.16. Jordan realization.
Model Eeduction Farameters
Select a method Feduce |
|F'ade approximation ;I| Bl |
[~ with delay Help |
Expected reduction arder
Murnerator order I‘I—
Denorninator order |2—
Figure A.17. Model reduction dialog box.
Information Display Window
Feduced order model
§%+3.4435+2,504 Madity |
Cormpare Heductionl
Figure A.18. Model reduction result via the Padé approximation method.
To compare the reduced-order model with the original model, clicka@mpare re-
sponses in the model display window. A new dialog box pops up for choosing a comparison
plot from a list of responses which include the Bode diagrams, Nyquist plots, Nichols charts,
as well as the step and impulse responses between the original model and the reduced-order
model. For instance, the step response comparison, and the Bode diagram comparison, of
the original system and the reduced model via the Padé approximation method are shown in
Figures A.19(a) and (b), respectively, where the solid line represents for the original model
and the dotted line the reduced-order model. It can be seen that the responses of the two

2007/
pages

316 Appendix. CtrILAB: A Feedback Control System Analysis and Design Tool

0.9
0.8
0.7, -40
0.6 i}
0.5 102 10t 10° 10t 10
0.4 0
0.3
0.2 -50
0.1]

0 -100
0 1 2 3 4 5 6 7 8 9 10 102 101 10° 10t 102

-20

(a) step response comparison (b) Bode diagram comparison

Figure A.19. Comparisons of the reduced order and the original models.

models are quite close, especially in the step response comparison, where the two curves
are almost indistinguishable.

A.4 Feedback Control System Analysis

Various linear system analysis tasks covered in this book can be performed by the direct use
of CtrILAB. After performing the model entry from Sec. A.2, sel@ctalysis from the main

menu shown in Figure A.1. The system analysis menu will appear as shown in Figure A.20.
In this menu, plots for time domain, frequency domain, and root locus analysis can be
generated by just using mouse clicks. In what follows, some detailed instructions are given
in the subsections to follow.

A.4.1 Frequency Domain Analysis

The Bode diagram of the system can be obtained byAtieysis | Frequency Domain
Analysis | Bode Diagram menu item. The result is shown as in Figure A.21(a).

Via the Options | Show asymptotes sub-menu in the Bode diagram window, the
Bode plot asymptotes are drawn together with the exact Bode diagram, as demonstrated in
Figure A.21(b).

The properties of the graphs can be modified by @stions | Plot preference
sub-menu in the Bode diagram window, and a dialog box is then provided as shown in

Analysiz Design Help

Frequency Domain Analysis Bode Diagram

Eoot Locus Hyquist Flot
Time Domain Analysis 4 Hichols Chart

: ¥ Inwerse Hyquist Flot
Parametric Analwysis 4

Call Matrix Processor

Loop Specs and Signals 4

Figure A.20. System analysis menu in CtrILAB.

A.4. Feedback Control System Analysis 317
0
0
-20
-20
-40
-40
-60
6052 101 (] o i 102 10t 100 10t 10
0o 0 —
-50 \/ -50
—
19852 101 10° 10t 102 -100
102 101 10° 10t 1
(a) Bode diagram (b) with asymptotes

Figure A.21. Bode diagram of a given linear system.

ElPlat Preference Options

— [Grnid Bios Apply
Ch.
" On i+ On &l Figures SiEE
i [0ff i 0ff + Current Figure Default

44

Modify Color ——— Cancel

Background Color Pallete | Default Color | Help
Plat &xis Colar | Default Color |
Plat Colar Pallats | Default Calor |

I~ Compenzated

Combinations
’7 ¥ Uncompensated

Figure A.22. Graph properties setting dialog box.

Figure A.22, where some of the details on the graph can be modified such as the boxes, grid,
colors, etc. Moreover, the open-loop and closed-loop properties of the plots can also be
changed. If a controller model is available, thembinations group can be used to choose
theCompensated as well as théJncompensated frequency response. For instance, if the
user checks th€losed Loop box, the closed-loop Bode diagram can then be obtained as
shown in Figure A.23.

The Nyquist and Nichols charts can be obtained viaAhelysis | Nyquist Plot
and Analysis | Nichols Chart menu items. Results shown in Figures A.24(a) and (b),
respectively.

The root locus plot can be obtained by usifgalysis | Root Locus. For some
particular systems, the directly obtained root locus of the system may not be very informative
due to the poor quality of the automatically chosen plot ranges. In this case, the user can
change the axis of the plot via ti@ptions | Zoom | User Define menu item on the root
locus window. A dialog box then appears as shown in Figure A.25(a). The ranges of the
x and y axes can be changed until a good display result is obtained. For instance, with the
properly chosen axes, the more informative root locus of the system can then be redrawn,
as shown in Figure A.25(b).

2007/
pages

2007/
pages

318 Appendix. CtrILAB: A Feedback Control System Analysis and Design Tool
0
-10-
-20
-30+
107 100 10 10?
Figure A.23. The modified graph.
0. 40—
T _—0db
~ 30t 25db
04 AR /Lfgf% |
s/ f A Ldb\/g’*”'"”
0.2 O 10 \ B/ ~
=3 - >\ \i <
i 2
&
-0.2
| |
-0.4 | | ‘
: \
1 I O R B I
-0. 350 -300 -250 -200 -150 -100 -50 O
0 02 04 06 08 1 Open-Loop Phase (()g?)a
(a) Nyquist plots (b) Nichols chart
Figure A.24. Frequency responses.
3
2
| . " Current Ok | 1
s % Define Cancel |
| Lower I-'IEI Upper ID Help | o o
| € Current 1
¥ Az o 2
| Lowrer |_3_Upper |3_
10 8 6 4 2 0
(a) zoom dialog box (b) root locus
Figure A.25. Root locus analysis.
A.4.2 Time Domain Analysis
The step and impulse responses of the system can be obtained directly from the menu
Analysis | Step response, andAnalysis | Impulse response, respectively. Forinstance, the

A.4. Feedback Control System Analysis 319
0. ‘ ‘ ‘ ‘ ‘ 1
0.9
0.5 0g
od | o7
0.6
0.3 1 og
0.4
02 103
o1l | oz
0.1
% o5 1 15 2 25 3 "0 05 1 15 2 25 3 35 4 45 5
(a) closed-loop system (b) open-loop system

Figure A.26. Step response analysis.

Sirnul:iti-:m Parameters Setting ...

™ Simulation Algarithm Change | Drefault |
| 0de45 [defaults) LI| v Show Linearized

£ Fired step = Yariable step — Ilnput Signal —————
Sinel Sar | Sawl

— Simulation parameters

Teminate tire [5 PeakVahe [77
IIin step IW Itk Pt IT
Ilax step IT Pl |1—
Tuolerant error IW Freq Range IT

Figure A.27. Simulation parameter setting dialog box.

step response of the system can be obtained as shown in Figure A.26(a). This step response
shown in Figure A.26(a) is the closed-loop step response. One can obtain the open-loop step
response of the system by selecting the relevant submenu item Anthesis menu and
the open-loop step response of the system can then be redrawn in the step response window
as shown in Figure A.26(b).

For nonlinear systems, one can also specify the type of input signals, W@ptiens
| Simulation parameters menu item in the relevant graphics window. A dialog box will
appear as shown in Figure A.27 which prompts the user to specify the input signals as well
as the simulation parameters. For instance, when studying the system with the Simulink
model, to display the step response of the linearized system and that of the original system,

2007/
pages

320 Appendix. CtrILAB: A Feedback Control System Analysis and Design Tool

0.

0.7

0.6-

0.5

0.4

0.3

0.2

0.1

0
0 05 1 15 2 25 3 35 4 45 5
Figure A.28. Step responses of a nonlinear system with linearization.

1.2

Change Flot Range

== e
0.8
Change |
Cancel | 06
Siremlation Stop Time
Help | 0.4
Huraber of Points 10

0.2

Siremlation Start Time

1

= s SR EE = sz Pade Sppradimation

0
0 5 10 15 20 25 30 35 40 45 5C
(a) plot range setting (b) with a new time range

Figure A.29. Time range modifications.

check theShow Linearised box. The time response of the system can then be displayed as
shown in Figure A.28.

The plot range can also be set by tptions | Plot range menu item in the graphics
window. A dialog box, shown in Figure A.29(a), prompts the user to select a new plot range.
For instance, the user can set a new terminating time at 50, and the new system responses
are then obtained as shown in Figure A.29(b).

Other signal types apart from the step and impulse signals can also be applied. For
instance, the user can select square wave, saw tooth, wave and sine wave by using the
dialog box shown in Figure A.27. Other parameters such as the frequency of the signal can
also be changed. The time response to a square wave input is shown in Figure A.30(a).
To display other signals such as the error sigria), select theOptions | Other signals
menu item in the graphics window and click the error sigr@ in the block diagram of
the feedback system. The error signal for a step input can then be obtained as shown in
Figure A.30(b).

2007/
pages

A.4. Feedback Control System Analysis 321

0 5 10 15 20 25 30 35 40 45 50 2G5 1o 15 20 25 30 3 40 45 50
(a) square wave input response (b) error signal

Figure A.30. Time response of other signals.

@ Information Display Window

Gain Margin: Infat o=lald
S Clear |
Phase Margin: 101 6% at o=3.602

I iy |

Figure A.31. Gain and phase margins.

% Information Display Windew

=5t e toe A sats _ Cen |
I adify |

Figure A.32. Analytical closed-loop step response.

A.4.3 System Properties Analysis

The stability property, gain and phase margins, and the analytical solutions to step and im-
pulse signals can also be obtained through the menu system. For instance, for the nonlinear
system model, the gain and phase margins to the linearized model can be obtained as shown

in Figure A.31, and the analytical solutions to the step response of the system can then be
shown as in Figure A.32.

2007/
pages

322 Appendix. CtrILAB: A Feedback Control System Analysis and Design Tool
Design Help
Clas=ical compenszation Lead/Lag compensation
PID Controller L4 18 optimal control
Robust Control L4 Pole-placement

Model following

Figure A.33. System design menu.

Lead/Lag Controller Specifications !EB

Phase roargin ¢ |5U— Design |
Cross-frequeney @, I 1 Cancel |
Errar coefficient Ku I 10 Help |

Compensator Type
Lead

Lag M avimizs Wwio |
Leag-Lag ;I

Figure A.34. Lead-Lag compensator dialog box.

A.5 Controller Design Examples
A.5.1 Model-Based Controller Designs

We shall use the phase lead-lag controller design problem as an example to illustrate the
controller design for a given plant model via CtrILAB. The model-based controller design
menu is shown in Figure A.33, and it can be seen that several model-based design algorithms
can be selected within the menu, as discussed in Chapter 5. For instance, with a typical
lead-lag controller design dialog box, shown in Figure A.34, the user is requested to enter
the parameters such as the expected phase maydie crossover frequeney,, and the
steady-state error tolerané&g .

Let us try a plant model given b§ (s) = 1/[s(s + 1)(0.2s + 1)]. Set the expected
phase margiry = 50°, the crossover frequenay. = 5 rad/sec, and the steady-state
error tolerancek, = 100. Then, a lead-lag compensator can be designed as shown in
Figure A.35(a). With a proper menu selection, the controller can be shown in the factorized
form as in Figure A.35(a). The Bode diagrams of the system before and after lead-lag
compensation can be obtained usingAhelysis | Bode Diagram menu item, as shown in
Figure A.35(b).

Via CtrILAB, it is also very easy to design the LQ optimal controller and the pole-
placement controller with either full state feedback or observer-based structures. The
straightforward model-based controllers can also be designed with CtrILAB.

A.5.2 Design of PID Controllers

Consider the PID controller design problem with the plant magg) = 10/[(s + 1)(s +

2)(s + 3)(s + 4] entered via CtrILAB. By théDesign | PID Controller menu item, the
design menu will appear as shown in Figure A.36. It can be seen that different PID controller
design algorithms have been implemented within CtrlLAB. The “one-shot” submenu item

2007/
pages

A.5. Controller Design Examples

323

Controller model

(5+0.535+0. 2756

654.1
(s+00.713(s+0. 1303)

(a) lead-lag controller

102 107 100 1ot 107 108

(b) Bode diagram comparison

Figure A.35. A lead-lag compensator.

Design Help

Claz=zical compenzation F I

FID Controller One-shot design

Robust Contral L4 Specified param

Optimum Tuning

User Define. ..

Ziegler-Nichol=s Tuning
eters 4 Cohen—Coon tuning
4 Refined Ziegler—Hicholsz

Controller Type
First-order Mod

el Tdentification P

Figure A.36. Main men

PID controller
Gis) =756 1+

1
2053 +0.3372:2 7

PID controller

G =58422 p1y —L -
A8 T

F(s)=P+1+0.3941s, p=043143

(a) controller parameters

u for PID controller design.

1.4
Ziegler-Nichols

12 refined Ziegler-Nichols

1L\ AN
0.8
0.6

0.4
uncompensated

0.2

0

0O 2 4 6 8 10 12 14 16 18 20

(b) step response comparison

Figure A.37. Ziegler—Nichols PID controller.

in Figure A.36 means that the PID contro
model with no other extra specification

ller can be designed directly from the known plant
needed. One may design a PID controller using

the Ziegler—Nichols algorithm by selectifigesign | PID controller | One-shot design |

Ziegler—Nichols Tuning. This will immed

iately generate the PID controller as shown in

Figure A.37(a). Furthermore, the refined Ziegler—Nichols controller can be designed, as

also shown in Figure A.37(a), when time

-shot design | Refined Ziegler-Nichols menu

is selected. By thénalysis | Step response menu item, the closed-loop step response of

2007/
pages

324 Appendix. CtrILAB: A Feedback Control System Analysis and Design Tool

Controller Type P P Contral

PI Control
v Hormal FID
PID with Il in Fesdback

Figure A.38. PID controller structures.

First-order Model Identification P Optimal Reduction

¥ Frequency Responze—baszed

Transfer Funetion-based

Figure A.39. FOPDT model fitting methods.

Specified parameters M Chien (CHR) Tuning
Modified Ziegler-Nichols Tuning
Internal Model Control

Figure A.40. PID with specified parameters.

Optimum Tuning M| v ISE Setting
ISTE Setting
ISTZE Setting

Gain Phaze Tuning

Figure A.41. Optimum PID controller design.

the system will be obtained as in Figure A.37(b) where it is shown together with the step
response of the uncompensated system.

Apart from the standard PID controllers, other similar structures such as the P con-
troller, the PI controller, and the PID controller with D in the feedback loop, can also
be designed, which can be selected from frsign PID Controller | Controller Type
menu item as shown in Figure A.38. We know that the PID controller parameter setting is
based on the first-order plus dead time (FOPDT) model. Given a high-order plant model,
we can select different approaches to fit the original plant model by a standard first-order
model with dead time. The fitting algorithms can be selected from the menu shown in
Figure A.39.

PID controllers can also be designed with other algorithms usingSpleeified
parameters and Optimum Tuning menu items as shown in Figures A.40 and A.41,
respectively.

With the above different tuning algorithms, we can design PID controllers that have
better performance. For instance, the suboptimal first-order approximation to the plant
model can be obtained using menu it€ist-order model identification | Optimal re-
duction, and from this an optimum PID controller can be designed. Using these controllers,

2007/
pages

2007/
pages

A.5. Controller Design Examples 325

1.4 X .
Ziegler-Nichols

1.2 Optimum normal PID with freq ident
Optimum normal PID
1) SR Y S AN\ L

0.8

0.6 Optimum PID, with D in feedback
Refined Ziegler-Nichols

0.4
,,,,,,,,,,,,,,,,,,,,,, Original model
0.2

0

0 1 2 3 4 5 6 7 8 9 10

Figure A.42. Step response comparison of different PID controllers.

Robust Control LAG Control
LAG/LTR Control

H 2 Contral
H inf Contral
H inf Optimal Control

Figure A.43. Robust control design menu.

the closed-loop step responses are then compared as in Figure A.42. It can be seen that per-
formance can be significantly improved, compared to the results from other “one-shot” PID
controllers.

A.5.3 Robust Controller Design

In this section, only the#¢, controller design via CtrILAB will be demonstrated, although
other design problems can also be solved in CtrILAB. The example we shall use is the
double integrator plant model as given in Example 7.16. The design submenus for the
robust controllers can be obtained by selectinglesign | Robust Control menu item as
shown in Figure A.43.

To get an#,, optimal controller, select thBesign | Robust Control | H_inf Op-
timal Control menu item to obtain the dialog box shown in Figure A.44. Specify various
weighting functionsWy (s), Wa(s), and W3(s) in the dialog box. To design af#f,, con-
troller for the sensitivity problem, chedensitivity so that a new dialog box will appear
as shown in Figure A.45(a). In Figure A.45(a), the expected order and the natural fre-
guency for the ITAE standard reference model should be entered. For instance, if one
selects: = 2 andw,, = 10 rad/sec, an optima#,, controller can be designed as shown in
Figure A.45(b).

The Nichols charts and the closed-loop step response of the system can then be ob-
tained as shown in Figures A.46(a) and (b), respectively. Other types of robust controllers,
such as the#, controller and the LQG/LTR controllers, can also be designed and analyzed
with little effort using the menus and dialog boxes.

2007!
pages

326 Appendix. CtrILAB: A Feedback Control System Analysis and Design Tool
Figure A.44. #¢-norm-based dialog box.
EzlRobust Control Design
— Desn | o | _ Heb |
[0
Controller model
(5+10.6750.90)(s+0. 192240 026941
i 325X105(s+644.11643.?i)(s+8.85111.??i)(s+0.1)
Poptimal =0 7922
(a) dialog box for the sensitivity problem (b) optimal #~, controller
Figure A.45. Robust control design results.
2
18
1.6
14
-4 al 0
-350 -300 -250 -200 -150 -100 -50 O O 05 1 15 2 25 3 35 4 45 5
(a) Nichols charts (b) closed-loop step response
Figure A.46. Robust control system analysis.

2007/
pages

A.6. Graphical Interface-Based Tools 327

A.6 Graphical Interface-Based Tools

Two useful graphics-based tools are provided in CtrlLAB which can be used to process
matrices and figures, respectively. In the following subsections, detailed descriptions of
these two programs will be given.

A.6.1 A Matrix Processor

A matrix processorMat xPr oc() is developed which can be used to process and edit
matrices and state space models, and perform various kinds of matrix analyses in a visual
way. The GUI facilities are extensively used to make the matrix processor very flexible and
easy to use.

When Mat xPr oc is typed in the MATLAB prompt, a GUI will appear as shown
in Figure A.47. The program can also be called from within CtrILAB. In MATLAB,
Mat xProc() can be called using the form&tt xPr oc(A) , whereA is a given ma-
trix, or simply usingVat xPr oc.

The File | New matrix menu can be selected to create a new matrix. The dialog
box shown in Figure A.48 will appear to prompt the user to select from different matrix
templates. For instance, if one selectsitbert matrix with 3 rows, the matrix will then be
created bywat xPr oc as shown in Figure A.49.

Various display formats are allowed Mat xPr oc() . The user can select tter-
mat menu as shown in Figure A.50(a). It can be seen that the user can specify different
display precisions (high, normal, or rational), different alignment requirements (left, right,
or center), and different truncating thresholds. For instance, the high precision display is
given in Figure A.50(b), with part of the matrix elements hidden due to the limited size of
the window. The hidden part of the matrix can be displayed via the horizontal scroll bar.
The matrix can also be displayed in rational number format.

A matrix displayed can be analyzed and processed withinxPr oc(). For in-
stance, to analyze the matrix, simply select #relysis to obtain the menu appearing
in Figure A.51. To get the parameters of the given matrix, selecAthadysis | Matrix

Matrix Processar

File Edit Formats Analysis Help

Hew matrix. .. Fiedl
o izl
Save [ritze) erzite |

Save Az ...

Exit

E it |

Figure A.47. A matrix processor interface.

2007!
pages

328 Appendix. CtrlLAB: A Feedback Control System Analysis and Design Tool
¢ Hew Matrix Initialiszation
|dentity matrix
Hilbert matrix
M agic: matrix
R andam matris
Diagonal matrix
Companion matris
Harkel matrix
Wandermonde matris
Figure A.48. Matrix creating dialog box.
¥ Matrix Fro T
Dl = 1| =|==[od 2|
Figure A.49. Creating a new matrix.
Ivlatrix &
P o Trmmesie 1 0.5 033333333
0a 0.33333333 0.25
0.33333333 0.25 0.2
(a) format menu (b) high precision display
Figure A.50. Display formats of a matrix.

A.6. Graphical Interface-Based Tools 329
Analysiz Help
Matrix Parameters P Dleterminant
Manipulations 4 Banlk
Decomposition 4 Trace
Matrix Evalnation F Eizenwalues

Singular Values

Condition Humber

Horm 4
Characteristic Polynomial

Matrix Parameters

Figure A.51. Matrix analysis menu.

Information Display Window

Figenvralues of matris
001223, 0.002687, 1403
Singular values of matrix _ Cear |

1.408, 0.1223, 0.002687 b adify
det(A)=0.000463 tr(A)=1.533 cond(A)=524.1 rank(A=
Al =1.833 |l&ll,=1408 ||&)| =1.833 ||All=1414

Figure A.52. Matrix parameters display.

Manipulations Matrix A

Transpose

Inverse

Flip Horizomtal .I.'I:";-l

Flip Yertical g _36 3|:|

Botate 90 Degree

-3 197 -1&80

Orthonormal Basis

Hull Space 3':' 'ISD ISD
(a) manipulation menu (b) inverse matrix

Figure A.53. Matrix manipulations.

Parameters menu item. The analysis results will be obtained and displayed in the Infor-
mation Display Window as shown in Figure A.52. Other analysis tasks such as evaluating
the determinant, trace, norm, characteristic polynomial of the matrix can also be performed
using theAnalysis menu.

Matrix manipulation such as matrix inversion and rotation can be performed within
Mat xPr oc() . To manipulate the matrix, select tAmalysis | Manipulations menu as
shown in Figure A.53(a) to easily obtain, for example, the inversion of the matrix shown in
Figure A.53(b).

Different decompositions for a given matrix can also be obtained, such as the QR
decomposition, LU decomposition, singular value decomposition (SVD), etcAidlgsis
| Decomposition menu is shown in Figure A.54(a), where tbematrix of the Schur
decomposition can easily be obtained by selecting the relevant menu item, and the results
are shown in Figure A.54(b). In addition, the button labdledatrix in the GUI prompts
the user to display the other matrix, for example, Thmatrix, such thad = UTUT.

2007/
pages

330 Appendix. CtrILAB: A Feedback Control System Analysis and Design Tool

Decomposition P LU Decomposition

S¥D Decomposition L ..
T tnatriz in Schur decomposition

0.5474 01277 0.827

Schur Decomposition

G Decomposition

Hezz Form -0.5383 -07137 04599
Ealance Form -0.649 06887 0.3233
(a) decomposition menu (b) U matrix

Figure A.54. Matrix decompositions.

Matrix Evaluation P EDS(Q‘)
Sin(A) 04244 -0.3166 -0.2215
Cos () 03166 0.5206 -0.1272
Log(A]
Sart (A -0.2215 001372 0.9092
(a) matrix evaluation menu (b) cosine function

Figure A.55. Matrix function evaluations.

Matrix Processor

File Edit Formatz #nalysiz Help

Dl =4 ;| =|=[=lod 2]

EEapET: |
A e Ear |
I 03333
1 0.5 0.33532

0.5 03333 025
0.3333 0.25 0.2

Edit Formatz Analy=iz Help

Edit an Element

Show in MATLAR Format ...
Fefresh |
Show inm TeXl Format ...
Exit |

Show System Model

(a) matrix edit menu (b) matrix editing interface

Figure A.56. Matrix editing facilities.

Matrix function evaluations can be performed witihlat xPr oc() by selecting the
Analysis | Matrix Evaluation menu. Contents of the menu are displayed in Figure A.55(a).
When the user selects tk®s(A) function display, the cosine of matrix can be obtained
as shown in Figure A.55(b).

A matrix can be edited using thelit menu as shown in Figure A.56(a). By thdit |
Edit an Element menu item, the cursor will be changed to the cross sign, which prompts the
user to select a matrix element. Once the user has selected an element to edit, the value of
the element will be entered into the edit box for modification, as shown in Figure A.56(b).
Once the edit process is done, the user can pressdtipt button to confirm the change.

2007/
pages

A.6. Graphical Interface-Based Tools 331
<) Information Dizplay Window <) Information Display Window ==
Sleftfmatrisd [
1 405 & 03333 her 1,05,0.3333
005 4 03333 025 hor 05, 03332, 025
0333360254 0.2 13333 025, 02
Furight]]
(a) TeX format (b) MATLAB format

Figure A.57. Matrix display in other formats.

The matrix can be shown in other formats as well, such asgiefdrmat and the
MATLAB format. This is particularly useful in dealing with large and complicated matrices.
For instance, thegX format of the matrix can be obtained by selecting Edé | Show in
TeX Format menu item, and the result is as shown in Figure A.57(a), while the MATLAB
format of the matrix is shown in Figure A.57(b).

A.6.2 A Graphical Curve Processor

The graphical curve processor is not currently an independent MATLAB function. It has
been integrated into CtrlLAB. It is mainly used to “decorate” the graphs obtained using
CtrlLAB to any degree of complexity. It can be used to do simple things such as add or
remove grids, add arrows, add floating legends to the graph, etc. Most of the figures in this
book used this unique graphical curve processor within CtriILAB. We remark that, although
the current version of MATLAB has provided a plot editing toolbar for various graph editing
utilities, the graphical curve processor within CtrILAB has been working similarly and more
powerfully with earlier versions of MATLAB (since version 4.2c) and is compatible with
versions 5.x and 6.x. The ultimate objective of CtrlLab is to minimize user effort.

An Option menu in the standard MATLAB graphics window allows for some of the
useful facilities to be called; this menu is shown in Figure A.58(a). For instance, via the
Options | Axis and Grid | with Boxes off andOptions | Axis and Grid | with Grid off
menu items, the time response graph will then be changed to the display format shown in
Figure A.58(b), where the grids and boxes are turned off.

Note that, to turn off the grids, we cantygei d of f withinthe MATLAB command
line. However, our objective here is to avoid such a user involvement. At this point, we
remark again that CtrlLAB is designed for linear feedback control system analysis and
design byonly mouse clickeind some essential numeric key strokes. Great efforts have
been made to minimize the user involvement in the analysis and design of feedback control
systems. The Matrix Processor and Graph Processor described in this section are also part
of the efforts to achieve this goal.

To draw several curves together with a common coordinate, sele@yttiens | Axis
and Grid | Hold on menuitem to hold the current graph coordinate and then display another
curve on the current plot. This is demonstrated in Figure A.59(a).

2007/
pages

2007/
pages

S
332 Appendix. CtrILAB: A Feedback Control System Analysis and Design Tool
File Legend=z Zooming Curwes Help 1.2-
Hew
Open 1
Save 0g
Save Az
Amiz and Grids M| with Grids 0.6
Clear ¥ with Box
Hold Figure 04
Preferences. .. - — e
Print 4 0.2
Close Window 0
0 5 10 15 20 25 30 35 40 45 &€
(a) Options menu (b) curve without box and grid
Figure A.58. Graphics processor menu and results.
2- 1.2-

i':’ 1l 10.69,0.9829) (31.36,1)

1.4 /\ od (6.464,0.8743)

1.2 (4.352,0.7242)

ol : 0 29.79,0.5
od / \/ (4.192,0.4848) (29.79,0.5)
0.4

0.6 (1.76,0.3216)

04 v 0.2}

0.2

% 5 10 15 20 25 30 35 40 45 5 0 5 10 15 20 25 30 35 40 45 &
(a) graph holding (b) cursor positioning
Figure A.59. Screen hold and cursor.

To cancel the hold protection, select @ptions | Axis and Grid | Hold off menu
item. To locate the specific points on the graph, useG@meions | Cursor positions
menu item. For instance, the curves with some points selected and marked are shown in
Figure A.59(b).

Furthermore, various legends can be added to the graphsOptiens | Legends
menu is shown in Figure A.60, where one can select to add, move, or edit text strings on the
graphs, and also to draw lines or lines with arrows on the graph.

Two text legends are added on the graph shown in Figure A.61(a), and several lines
and arrows can be further added on the graph as shown in Figure A.61(b). It can be seen that
the legends (including lines and arrows) can be added or edited freely using the facilities
provided. The user can also remove the legends by sele@jiigns | Legends | Delete
a Legend to remove an existing legend.

The properties of the legends can be modified if the user seledtsgheds | Proper-
ties menu item, and a dialog box for assigning legend properties will be displayed as shown
in Figure A.62(a). With proper settings, the modified version of the graph with different
fonts, and line types will be obtained as shown in Figure A.62(b).

S

2007/
pages

A.6. Graphical Interface-Based Tools 333

Figure A.60. Legends menu.

1.2- 1.2

1t 1t
0.8 0.8

This is curve 1 This is curve 1

0.6+ 0.6
04 This is curve 2 04 This is curve 2
0.2 0.2

0

0 5 10 15 20 25 30 35 40 45 5 0 5 10 15 20 25 30 35 40 45 50
(a) examples of legends (b) examples of arrows and lines

Figure A.61. Adding more legends on graphs.

1.2

1t

|_| Legend/Curve Froperties

0.8+

+ sign 04 This i's curve 2

thinner 0.2

1\nlo 10 xupwe 1

0

0 5 10 15 20 25 30 35 40 45 50
(a) legend properties dialog box (b) modified legends
Figure A.62. Changing the properties of legends.

2007/
pages

S
334 Appendix. CtrILAB: A Feedback Control System Analysis and Design Tool
1t
0.9
Zooming Cwrwes H 0.8
0.7
E-axiz Zooming
Y-axiz Zooming 06
Full 0.5
User Define. .. 0.4)
2 4 6 8 10 12
(a) zoom menu (b) zoomed graphic display
Figure A.63. Zoom facilities.
0.
| Currert Ok 0.2
s % Diefine Cancel .
‘ Lower ID_ Tpper |5_ Help 0.2
0.1
‘ £ Current 01
¥ is 1+ Define 00
‘ Lower IU_Upper W '
% 05 1 15 2 25 3 35 4 45 5
(a) axis specification dialog box (b) zoomed graphic display
Figure A.64. Axis range specifications.
The user may also change the view in the graph window by selectin@phiens
| Zooming menu item as shown in Figure A.63(a), which allows the user to change the
current coordinates using a mouse. For instance, the user can redefine the range for display
by dragging the mouse, and the results can then be displayed as shown in Figure A.63(b).
Moreover, using th&ooming | User Define menu item, the dialog box shown in
Figure A.64(a) will pop up to allow the user to select a reasonable display range. If the
plot range in Figure A.64(a) is used, the zoomed output will be displayed as shown in
Figure A.64(b).
Problems
1. Use the following plant models to test the previously described analysis and design
tasks using CtrILAB:
50000
(@)G(s) = .
C+DE+2DE+DE+DE+DGE+6)s+7)(s+8)
S

2007/
pages

e
A.6. Graphical Interface-Based Tools 335
225 -5 -125 -05 4
. 225 —-425 -125 -0.25 2
O)*=1025 _05 —125 -1 |¥F|2|® Y=xtde
125 -175 -025 -0.75 0
(c) The DC drive system given in Example 2.11. Use both the direct method and the
Simulink method to create the system model.
2. Analyze the system matrix in problem 1(b). Find the norms, determinant, eigenvalues,
and characteristic polynomial &f, and do LU, QR, SVD decomposition df within
CtrlLAB. Find the matrices 4, sin(A), and bg(A).
3. Try to reproduce Figure 3.14(a) by using the graphics processor.
e

2007/
pages

Bibliography

[1] Callier F. M., Desoer C. AMultivariable Feedback Systeni¥ew York: Springer-
Verlag, 1982

[2] Freudenberg J. S., Looze D. Requency Domain Properties of Scalar and Mul-
tivariable Feedback Systemisecture Notes in Control and Information Sciences,
volume 104. Berlin: Springer-Verlag, 1988

[3] Maciejowski J. M.Multivariable Feedback DesigiVokingham, England: Addison-
Wesley, 1989

[4] Postlethwaite I., MacFarlane A. G. A.Complex Variable Approach to the Analysis
of Linear Multivariable Feedback SystenBerlin: Springer-Verlag, 1979

[5] Skogestad S., PostlethwaitéMultivariable Feedback ControlAnalysis and Design
Chichester, England: John Wiley & Sons, 1996

[6] Vardulakis A. I. G.Linear Multivariable Control— Algebraic Analysis and Synthesis
Methods Chichester, England: John Wiley & Sons, 1991

[7] Wonham W. M.Linear Multivariable Control— A Geometric ApproachLecture
Notes in Economics and Mathematical Systems, volume 101. Berlin: Springer-
Verlag, 1974

[8] Mayr O. The Origins of Feedback ContrdCambridge, MA: MIT Press, 1970

[9] Minorsky N. Directional stability of automatically steered bodiekurnal of the
American Society of Naval Engineering, 1922, 34(2):280-309

[10] Ziegler J. G., Nichols N. BOptimum settings for automatic controllefansactions
of the ASME, 1942, 64:759-768

[11] Nyquist H.Regeneration theorBell System Technology Journal, 1932, 11:126-147

[12] Bode H. W.Network Analysis and Feedback Amplifier Designinceton, NJ: Van
Nostrand, 1945

[13] JamesH. M., Nichols N. B., Phillips R. Bheory of ServomechanispI T Radiation
Laboratory Series, volume 25. New York: McGraw-Hill, 1947

337

2007/
pages

2007/
pages

338 Bibliography

[14] Evans W. RGraphical analysis of control systemEansactions of the AIEE, 1948,
67:547— 551

[15] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F. The Math-
ematical Theory of Optimal Processes. New York: Interscience Publishers, 1962.
Translated from the Russian by K. N. Trirogoff

[16] Bellman R.Dynamic ProgrammingPrinceton, NJ: Princeton University Press, 1957

[17] Kalman R. E.On the general theory of control systerfRE Transactions on Auto-
matic Control, 1959, 4(3):110. Abstract. Full paper published in Proceedings of the
1st IFAC Congress, Moscow, 1960

[18] Kalman R. EMathematical description of linear dynamical syste®g\M Journal
of Control, 1963, 1(2):152-192

[19] Kalman R. E.When is a linear control system optimalPransactions of ASME
Journal of Basic Engineering Series D, 1964, 86:51-60

[20] Doyle J. C., Stein GRobustness with observet& EE Transactions on Automatic
Control, 1979, AC-24:607-611

[21] zhang Z., Freudenberg J. Boop transfer recovery for nonminimum phase plants
IEEE Transactions on Automatic Control, 1990, 35(5):547-553

[22] zames GFeedback and optimal sensitivity: Model reference transformations, mul-
tiplicative seminorms and approximate inversesEE Transactions on Automatic
Control, 1981, AC-26(4):301-320

[23] Doyle J. C., Glover K., Khargoneckar P. P., Francis BS#ate space solutions to
standardH, and H,, control problemslEEE Transactions on Automatic Control,
1989, 34(8):831-847

[24] Melsa J. L., Jones S. KComputer Programmes for Computational Assistance in the
Study of Linear Control TheoryNew York: McGraw—Hill, 1973

[25] Moler C. B.MATLAB — An Interactive Matrix Laboratoryfechnical Report 369,
University of New Mexico, Albuquerque, NM, 1980

[26] Astrém K.J.Computer aided tools for control system desigrdamshidi M, Herget C,
eds.,Computer-Aided Control System EngineeriAgnsterdam: Elsevier Science
Publishers B. V, 1985, 3—-40

[27] Using MATLAB versio.1. The MathWorks, Natick, MA, 2001

[28] Xue D.Computer-aided Design of Control Systems with MATLBdjing: Tsinghua
University Press (in Chinese), 1996

[29] Xue D., ChenY. QMATLAB/Simulink Based System Simulation Technid@eggng:
Tsinghua University Press (in Chinese), 2002

2007/
pages

Bibliography 339

[30] Moore B.Principal componentanalysisinlinear systems: controllability, observabil-
ity, and model reductionEEE Transactions on Automatic Control, 1981, 26:17-32

[31] Ljung L. System ldentification — Theory for the Us2nd edition. Upper Saddle
River, NJ: PTR Prentice Hall, 1999

[32] Akaike H. A new look at the statistical model identificatidBEE Transactions on
Automatic Control, 1974, 19(6):716-723

[33] Levy E. C.Complex-curve fittingIRE Transactions on Automatic Control, 1959,
4:37-43

[34] Andresen TA logarithmic-amplitude polar diagramModeling, Identification and
Control, 2001, 22(2):65-72

[35] Davison E. JA method for simplifying linear dynamic systefi&EE Transactions
on Automatic Control, 1966, 11:93-101

[36] Atherton D. P., Borne RConcise Encyclopedia of Modelling and Simulatidlew
York: Pergamon Press, 1992

[37] Bultheel A., van Barel MPadé techniques for model reduction in linear system
theory: A surveyJournal of Computational and Applied Mathematics, 1986, 14:401—
438

[38] Decoster M., van Cauwenberghe A. Rcomparative study of different reduction
methods (Pag 1 & 2). Journal A, 1976, 17:68-74;125-134

[39] Hutton M. F.Routh approximation for high-order linear systerrs Proceedings of
the 9th Allerton Conference. 1971, 160-169

[40] Shamash YLinear system reduction using Padé approximation to allow retention of
dominant modednternational Journal of Control, 1975, 21:257-272

[41] Lucas T. N.Some further observations on the differential method of model reduction
IEEE Transactions on Automatic Control, 1992, 37:1389-1391

[42] Chen C. F.,, Chang C. Y., Han K. Wlodel reduction using the stability-equation
method and the continued fraction methduternational Journal of Control, 1980,
32:81-94

[43] Hu X. H. FF-Padé method of model reduction in frequency domi&@&E Transac-
tions on Automatic Control, 1987, 32:243-246

[44] Hwang C., Lee YMulti-frequency Padé approximation via Jordan continued-fraction
expansionlEEE Transactions on Automatic Control, 1989, 34:444-446

[45] Xue D., Atherton D. PAn optimal model reduction algorithm for linear systenms
Proceedings of the American Control Conference. Boston, MA, 1991, 2128-2129

[46] Xue D.Model Reduction Techniques and ApplicatioBienyang, China: Lecture
Notes of Northeastern University, 1996

2007/
pages

340 Bibliography

[47] Xue D., Atherton D. PA suboptimal reduction algorithm for linear systems with a
time delay International Journal of Control, 1994, 60(2):181-196

[48] GrucaA., Bertrand PApproximation of high-order systems by low-order models with
delays International Journal of Control, 1978, 28:953—965

[49] Glover K.All optimal Hankel-norm approximations of linear multivariable systems
and their.L>°-error bounds International Journal of Control, 1984, 39:1115-1193

[50] Stahl H., Hippe PComments on “FF-Padé method of model reduction in frequency
domain.” IEEE Transactions on Automatic Control, 1988, 33:415-416

[51] Atherton D. PNonlinear Control Engineering — Describing Function Analysis and
Design London: Van Nostrand Reinhold, 1975

[52] Using Simulink Versiod.1. The MathWorks, Natick, MA, 2001

[53] Franklin G. F., Powell J. D., Workman \Rigital Control of Dynamic System8rd
edition. Reading, MA: Addison Wesley, 1988

[54] Frederick D. K., Rimer MBenchmark problem for CACSD packagksAbstracts
of the Second IEEE Symposium on Computer-Aided Control System Design. Santa
Barbara, CA, 1985

[55] Dorato P.Linear Quadratic Control — An IntroductioiNew York: McGraw-Hill,
1995

[56] Balasubramanian RZontinuous Time Controller Desig8tevenage, UK: Peter Pere-
grinus Ltd., 1989

[57] Kautskey J., Nichols N. K., Van Dooren Robust pole-assignment in linear state
feedbackInternational Journal of Control, 1985, 41(5):1129-1155

[58] Dorf R. C., Bishop R. HModern Control System8th edition. Upper Saddle River,
NJ: Prentice-Hall, 2001

[59] Bennett SDevelopment of the PID controllerfEEE Control Systems Magazine,
1993, 13(2):58-65

[60] Astrom K. J., Hagglund TPID Controllers: Theory, Design and TuninResearch
Triangle Park: Instrument Society of America, 1995

[61] Astrom K. J., Hagglund TAutomatic Tuning of PID ControllerfResearch Triangle
Park: Instrument Society of America, 1988

[62] Yu C. C. Autotuning of PID Controllers: Relay Feedback Approagldvances in
Industrial Control. London: Springer-Verlag, 1999

[63] TanK.K.,Wang Q.-G., Hang C. C., HagglundAldvances in PID ControAdvances
in Industrial Control. London: Springer-Verlag, 2000

2007/
pages

Bibliography 341

[64] Wang L. P., Cluett W. RFrom Plant Data to Process Control: Ideas for Process
Identification and PID DesigrResearch Triangle Park: Taylor & Francis, 2000

[65] Zhuang M.Computer Aided PID Controller DesigRh.D. thesis, Sussex University,
UK, 1992

[66] Chien K.-L., Hrones J. A., Reswick J. Bin the automatic control of generalised
passive system$ransactions of the ASME, 1952, 175-185

[67] CohenG. H., Coon G. Alheoretical considerations of retarded contrbtansactions
of the ASME, 1953, 827-834

[68] Hang C.C.,AstromK. J., Ho W. RRefinement of the Ziegler—Nichols tuning formula
Proceedings of the IEE, Part D, 1991, 138:111-118

[69] Wang F. S., Juang W. S., Chan CQOptimal tuning of PID controllers for single and
cascade control loopsChemical Engineering Communications, 1995, 132:15-34

[70] Zhuang M., Atherton D. FAutomatic tuning of optimum PID controllelroceedings
of the IEE, Part D, 1993, 140:216-224

[71] O’'Dwyer A. Handbook of Pl and PID Controller Tuning Ruldsondon: Imperial
College Press, 2003

[72] Visioli A. Optimal tuning of PID controllers for integral and unstable processes
Proceedings of the IEE, Part D, 2001, 148(2):180-184

[73] Haalman AAdjusting controllers for a deadtime proce€ontrol Engineering, 1965,
71-73

[74] McMillan G. K. Control loop performancedn Proceedings of the ISA/84 International
Conference on Advances in Instrumentation. Houston, TX, 1984, 589-603

[75] O’DwyerA.Pland PID controller tuning rules for time delay processes: A summary
Parts 1 & 2. InProceedings of the Irish Signals and Systems Conference, 1999

[76] NelderJ.A., Mead RA simplex method for function minimizati@omputer Journal,
1965, 7:308-313

[77] Goldberg D. EGenetic Algorithms in Search, Optimization and Machine Learning
Reading, MA: Addison-Wesley, 1989

[78] Houck C.R., Joines J. A., Kay M. @.Genetic Algorithm for Function Optimization:
A MATLAB Implementatiorklectronic Version of the GAOT Manual, 1995

[79] Astrom K. J., Hang C. C., Persson P., Ho W.Fowards intellegient PID control
Automatica, 1992, 28(1):1-9

[80] Stein G., Athans MThe LQG/LTR procedure for multivariable feedback control
design IEEE Transactions on Automatic Control, 1987, 32(2):105-114

[81] Zhou K.Optimal and Robust ControUpper Saddle River, NJ: Prentice Hall, 1996

2007/
pages

342 Bibliography

[82] Doyle J. C., Francis B. A., Tannerbaum A. Reedback Control TheoryNew York:
MacMillan Publishing Company, 1991

[83] Anderson B. D. OController design: Moving from theory to practicé&EE Control
Systems Magazine, 1993, 13(4):16-25. Also, Bode Prize Lecture, CDC, 1992

[84] Anderson B. D. O., Liu YController reduction: Concepts and approach¢sSEE
Transactions on Automatic Control, 1989, AC-34(8):802-812

[85] Chiang R.Y., Sofanov M. QRobust Control Toolbox User’s GuidEhe MathWorks,
Natick, MA, 1992

[86] Torvik P. J., Bagley R. LOn the appearance of the fractional derivative in the
behavior of real materialsTransactions of the ASME, 1984, 51(4):294-298

[87] Podlubny I., Docak L., Misanek JApplication of fractional-order derivatives to
calculation of heat load intensity change in blast furnace waltansactions of the
Technical University of Kosice, 1995, 5(5):137-144

[88] Axtell M., Bise E. M. Fractional calculus applications in control systens Pro-
ceeding of the IEEE 1990 Natational Aerospace and Electronics Conference. New
York, 1990, 563-566

[89] Dorcék L.Numerical models for simulation the fractional-order control systeuis-
SAV, The Academy of Sciences Institute of Experimental Physics. Kosice, Slovak
Republic, 1994, 62—-68

[90] Matignon D.Stability result on fractional differential equations with applications to
control processingln IMACS-SMC Proceedings. Lille, France, 1996, 963-968

[91] Oldham K. B., Spanier Ihe Fractional CalculusNew York: Academic Press, 1974

[92] Podlubny I.The Laplace transform method for linear differential equations of the
fractional order. In Proceedings of the 9th International BERG Conference. Kosice,
Slovak Republic, 1997, 119-119 (in Slovak)

[93] Podlubny I.Fractional Differential EquationsSan Diego: Academic Press, 1999

[94] Woon S. CAnalytic continuation of operators — operators acting compkimes.
Applications: from number theory and group theory to quantum field and string
theories Reviews in Mathematical Physics, 1999, 11(4):463-501

[95] zavada POperator of fractional derivative in the complex plaf@mmunications
in Mathematical Physics, 1998, 192(2):261-285

[96] Oustaloup ALa Dérivation non EntiéreParis: HERMES, 1995

[97] Petrds I., Datak L., Kostial I. Control quality enhancement by fractional order
controllers Acta Montanistica Slovaca, 1998, 2:143-148

2007/
pages

Bibliography 343

[98] Podlubny I.Fractional-Order Systems and Fractional-Order ControlleFechnical
Report UEF-03-94, The Academy of Sciences Institute of Experimental Physics,
Kosice, Slovak Republic, 1994

[99] Podlubny I.Fractional-order systems and #fD*-controllers IEEE Transactions on
Automatic Control, 1999, 44(1):208-214

[100] Magin R. L. Fractional Calculus in BioengineeringRedding, CT: Begell House
Publishers, 2006

[101] Miller K. S., Ross B.An Introduction to the Fractional Calculus and Fractional
Differential EquationsNew York: Wiley, 1993

[102] Samko S. G., Kilbas A. A., Marichev O.Fractional Integrals and Derivatives and
Some of Their Applicationlinsk: Nauka i Technika, 1987

[103] Xue D., ChenY. QMATLAB Solutions to Advanced Applied Mathematical Problems
Beijing: Tsinghua University Press, 2004. (in Chinese)

[104] Hilfer R.Applications of Fractional Calculus in PhysicSingapore: World Scientific,
2000

[105] Petras I., Podlubny I., O’'Leary Rnalogue Realization of Fractional Order Con-
trollers. Fakulta BERG, TU KoSice, 2002

[106] Oustaloup A., Levron F., Mathiew B., NanotAfequency band complex noninteger
differentiator: Characterization and synthesl&EE Transactions on Circuits and
Systems |: Fundamental Theory and Applications, 2000, 47(1):25-39

[107] Xue D., Zhao C. N., ChenY. @ modified approximation method of fractional order
systemIn Proceedings of the IEEE Conference on Mechatronics and Automation.
Luoyang, China, 2006, 1043-1048

[108] Astrém K. J.Introduction to Stochastic Control Theoryondon: Academic Press,
1970

[109] Xue D., Zhao C. N., Chen Y. Qrractional order PID control of a DC-motor with
elastic shaft: A case studyn Proceedings of the American Control Conference.
Minneapolis, MN, 2006, 3182-3187

[110] Xue D., GoucemA., Atherton D. Rmenu-driven interface to PC-MATLAB for afirst
course on control systemsternational Journal of Electrical Engineering Education,
1991, 28(1):21-33

2007/
pages

2007/
pages

Index of MATLAB Functions

Bold page numbers indicate where to find the syntax explanation of the function

acker,166, 167, 169, 170

aic,41

are,152

arx, 36, 37-39, 41-44

atannyq90

augss255

augtf, 255 256, 263-268, 270, 272, 274,
276, 277, 279, 280

balreal,32, 101

bass_ppl66

bilin, 252

bode, 785,87, 95,102,103, 141, 143-145,
148, 240, 258, 275, 27289, 293, 296,
299, 302

bodemag, 263

branch,251, 256, 274, 276, 277, 280

c2d,34, 74, 87,123
canon,30, 31
chrpid, 197, 198
cohenpid199 200
collect, 24

comet3, 118
conv,15, 97, 309
coprime,260, 261
ctrb, 56, 168

ctrbf, 56, 57, 58, 62

d2c,34, 35, 43

dare,156

dcgain,72, 188, 194, 209
decouple_ppl174
decouplerl72

dlinmod, 132 134

345

digr, 156
dsolve, 135

eig, 52, 53, 55, 155, 156, 158, 159, 161,
167-169, 252

expm, 68

ezplot, 10

feedback21, 22-24, 53, 55, 82, 88, 120,
123,137,142,144,148,151, 164, 165,
170, 182-185, 189, 190, 193, 196, 198,
200, 202, 206, 209, 212, 240, 244, 246,
258, 264, 266, 267, 269, 270, 273-277,
279, 280,288, 289, 301, 302

fmincon,217, 218-220, 222

fminsearch216, 217, 219, 222

foipdt, 212

fotf, 287, 288 289, 293, 296, 301

getfod,192 193 198, 200, 202, 206, 209

glfdiff, 285

gram,59

grid, 7,78, 79, 81,84, 85, 88, 149, 150,
209, 264, 266, 267, 269, 273-277, 280,
293

h2iqg,272
hinf, 262 263-267, 274
hinfopt, 268,270, 274, 276,277,279, 280

iddata,37, 43, 44
ident,39
idinput, 42, 43, 44
ilaplace,14, 69, 70
impulse,75, 76, 77
intstable 54, 55

2007/
pages

—D
346 Index of MATLAB Functions
inv, 152, 279, 280, 289 pade_app93, 97
ipdtctrl, 211 pademod93, 94
iztrans, 69 paderm96, 97, 120
id_tuner213 213-216

kalman,237, 242244, 247 glage,167, 163'8—170
kalmdec 60, 61 plot, 7, 38, 71,73, 74, 117, 118, 121, 122,
aplace3, 14, 69, 70 124,125130,153, 154, 161, 162, 184,
leadlagc147, 148-150 plcigSllS
linmod, 132 133 ole ’52
linmod2,132, 134 po'e,
logspace, 245, 246, 275, 293, 296 pzmap .52, 53
lgg, 239 240
lgr, 153 154, 155, 157-159, 164, 242, rank, 56-58, 168, 170

243, 245, 246 reg,163 164, 165, 169
Isim, 38, 42, 4377, 291 rlocus,78, 79-83, 182
ltru, 244, 245, 246, 247251 routhmod,95
ltry, 244, 245, 251 rziegler,202
lyap, 59

_ schmr,102

margin,89, 141, 144, 150, 189, 190, 196, semilogx, 244, 258, 275, 279

2c|)(2, 20694, 240, 242, 243 sim, 117, 118, 121, 122, 124, 125, 130,
markovp, 4
minreal, 2333, 44, 55, 132 Sirﬁgﬁ;ﬁim 161, 162
mksys,250, 255 simset,118, 124, 125
modred,101, 102 sisotool, 139175, 177
new fod 206 299, 301 ss,18, 19, 25, 26,27, 28, 31-34, 55, 61,
nichols,85, 149, 150, 209, 264, 266, 267, 62, 66, 68, 102, 103, 120, 132-134,

260, 273-277, 28290 203 153, 154, 157, 159, 161, 162, 164, 165,
ol 292 168-170,172, 174, 237, 240-247, 252,
norm, 65, 66,99, 299 256, 267, 274, 276, 277, 279, 280
nyqglog,90, 91 $528528 7 68
nyquist,84, 85, 88, 90, 91, 141, 143, 189, :a:f;”;g;ﬁz’? 4 276. 279, 280

242, 243, 246, 2471290, 293 tairs. 10, 4. 122
obsv, 57, 58 std_tf,174, 279, 280
obsvf,58, 62 step,73, 74, 75, 77, 82, 88, 93, 95, 97,
ocd, 216221, 223, 224, 303 100,102,103, 120,123,133, 142, 144,
ohkimr, 103 148,151, 153, 154, 157, 159, 164, 165,
open_systent 12 169, 170, 182—185, 188—190, 193, 196,
opt_app, 100, 103, 209, 212, 299, 301 198, 200, 202, 206, 209, 212, 240, 244,
opt_fun,99 246, 258, 264, 266, 267, 269, 270,
optpid, 205, 206,208 209 273-277,279,28@91, 293, 299, 301,
oustafod 292, 293, 296, 301, 302 302

svd, 59
pade 96, 97 syms, 13, 23, 24, 68-70
—D

Index of MATLAB Functions

347

tf, 14, 15, 16, 17, 22, 23,25, 26-28,
30-32, 34, 37, 38, 42-44, 52, 53, 55,
63, 73-77, 79-82, 85, 86, 88-91,
93-95, 97, 100-103, 120, 141, 143,
144,148, 182-185,188-190, 193, 196,
198, 200, 202, 206, 209, 212, 241, 243,
245,246, 252, 256, 258, 261, 263-268,
270,272,274-277,279, 280, 293, 299,
301, 302

tfdata,16, 194

timmomt, 63, 97

trim, 131, 132

tzero,27

ufopdt,213

wijcpid, 203
writepid, 187

xlim, 264, 279

zero,52

ziegler,187,188, 189190,193,195 196,
198, 202, 209

zpk, 19, 21, 23,26, 33, 62, 94, 95, 100,
102,103, 123,132,134, 145, 149, 150,
164,165, 175, 240, 245, 258, 261, 263—
268, 270, 272, 274, 276, 279, 296

ztrans, 69

2007/
pages

2007/
pages

Index

Ackermann’s algorithm, 166

actuator saturation, 220, 226, 302

additive uncertainty, 248

AlC, 40, 41

Akaike’s information criterion, 337

algebraic Riccati equation (ARE), 152,
158, 237, 238, 262

analytical solution, 66-70, 135, 160, 291,
321

anti-windup, 5, 226

ARE (algebraic Riccati equation), 152,
158, 237, 238, 262

automatic tuning, 207, 208, 227-228
relay, 5, 128, 207, 228, 229
Tsypkin's method, 228-229

autonomous system, 67

balanced realization, 31-32, 58, 59,
101-103, 314
Schur’s, 102

Bass—Gura algorithm, 166

Bezout equation, 259, 260

bilinear transform, 251, 252, 266

block diagram, 1, 4, 20-24, 60, 111, 163,
201, 248, 309

Bode diagram, 7, 85-88, 317, 322
magnitude, 259, 262, 275, 279, 282,

300
bounded input-bounded output, 52

canonical form, 56, 57, 59, 62
controllable, 29
Jordanian, 29-31, 314
observable, 29
Caputo’s definition, 284, 286
cascade PI controller, 223
Cauchy'’s definition, 284, 285

349

2007/
pages
—®
Chien—Hrones—Reswick formula, 181,
197-198
class, 287, 288
Cohen—Coon formula, 181, 198—-200
complementary sensitivity function, 108,
243, 255
complex plane, 194, 251
connection
feedback, 21-22, 288
parallel, 20-21, 32, 288
series, 11, 20, 22, 288
constrained optimization, 131, 216, 217
control strategy, 2, 3, 157, 158, 162,
182-184, 230
Control Systems Toolbox, 2, 6, 8
controllability, 51, 55-60, 168
Gramian, 51, 58, 59, 179
staircase form, 56, 57
controllable canonical form, 29
controller
Hoo, 236, 249, 262, 263, 266, 270, 325
Ho, 272, 273, 325
fractional-order, 283, 284, 300
PD, 200, 210-212, 223, 300
PI, 123, 183, 186, 188, 189, 194-196,
198, 200, 203, 205207, 222, 226,
300, 324
PID, 181-233
coprime factorization, 259-261
crossover frequency, 142, 146-149, 186,
189, 192, 207, 228, 297, 322
CtrlLAB, 5-7, 9, 307
damping ratio, 78, 81
iso-, 78, 81, 82
DC (direct-current) gain, 42, 192, 193
—®

2007/
pages

—&
350 Index
decoupling, 5, 139, 171-174, 270 Caputo’s definition, 284, 286
dynamic, 172, 174 Cauchy’s definition, 284, 285
with state feedback, 171-174 Grunwald—Letnikov definition,
default discretization, 34 284-286, 290, 292
delayed system, 79, 120 Riemann-—Liouville definition,
describing function, 126, 228-229 284-286
descriptor system, 250 transfer function, 287—-289, 298, 299
difference equation, 44 frequencyresponses, 5,43, 64, 65, 84-92,
differential equation, 12, 14, 17, 283 186, 191-192, 194, 317
fractional-order, 283, 290, 291
differential Riccati equation, 152, 158 gain margin, 88-89, 141, 144, 189, 244
differentiation, 14, 284 general mixed sensitivity problem, 254
fractional-order, 285, 286, 292 genetic algorithm (GA), 224
direct-current (DC) gain, 42, 192, 193 Genetic Algorithm Optimization Toolbox
discrete-time Riccati equation, 156 (GAQT), 9, 224
discretization, 34 Grinwald—Letnikov definition, 284—-286,
disturbance, 53, 198, 203, 205, 235, 241, 290, 292
248
rejection, 197, 198, 205-207 J-norm, 65
dominant poles, 81 Ffr-norm, 65—-66, 98, 99, 236, 249
dual, 29, 58, 169 Hoo-nOrm, 236, 249, 259, 261
dynamic decoupling, 172, 174 #t2 controller, 272, 273, 325
Hoo controller, 236, 249, 262, 263, 266,
feedback connection, 21-22, 288 270, 325
filter optimal, 267, 270, 274, 276, 280, 302,
Kalman, 236-239, 241-243, 245, 272 325
low-pass, 184, 254, 297 standard, 249
Oustaloup’s, 292—-293, 298, 299 Hankel matrix, 166
refined Oustaloup’s, 294-299 Hankel norm, 103
first-order lag and integrator plus dead Hardy space, 3, 5, 65
time (FOIPDT), 211, 212, 222
first-order plus dead time (FOPDT), 181, identification
186, 188, 193, 198, 209, 324 system, 4, 11, 35-45, 139, 194
fixed step, 117 impulse response, 51, 62, 63, 70, 75-77,
FOIPDT (first-order lag and integrator plus 125, 250, 315, 319
dead time), 211, 212, 222 impulse signal, 65, 76, 77, 98, 125, 320,
FOPDT (first-order plus dead time), 181, 321
186, 188, 193, 198, 209, 324 integral of absolute error (IAE), 98, 173,
Fourier series expansion, 41, 229 203, 218, 223, 278, 301
fractional transformation representation, integral of squared error (ISE), 98-100,
249, 254 203-206
fractional-order, 283-305 integrator plusdeadtime (IPDT), 181, 210
calculus, 284, 286 internal stability, 51-55
controller, 283, 284, 300 internal structure, 4, 17, 35, 57, 226
differential equation, 283, 290, 291 inverse system, 83
differentiation, 285, 286, 292 inverse Z transform, 69
—&

2007/
pages

—®
Index 351
IPDT (integrator plusdeadtime), 181, 210 LTI (linear time invariant), 14, 18, 131,
ISE (integral of squared error) criterion, 133, 134, 138, 151
98-100, 203-206 LTR (loop transfer recovery), 3, 236, 243,
iso-damping, 78, 81, 82 245, 247
iso-frequency, 78 Lyapunov equation, 10, 58
ITAE (integral of absolute error) crite-
rion, 98, 173, 203, 218, 223, 278, 301 Maclaurin series, 62, 96, 97
Jordanian canonical form, 29-31, 314 magnitude Bode diagram, 259, 262, 275,
279, 282, 300
Kalman decomposition, 51, 59-61 Markov parameters, 51, 63—64
Kalman filter, 236-239, 241-243, 245, MATLAB toolbox
272 CtrlLAB, 5-7, 9, 307
Genetic Algorithm Optimization Tool-
£L-norm, 65 box (GAOT), 9, 224
L1-norm, 65 Optimal Controller Designer (OCD),
Lz-norm, 65 216, 221-225, 303
oonor, 05 PID_ Tuner, 213-216
Laplace transform, 11-14, 25, 62, 64, Robust Contral, 9, 235, 250-252, 255
68-69, 77, 98, 99, 286, 287, 290 Simulink, 111-135, 296-298
inversé, 1é, 69 Symbolic, 9, 13, 14, 68-70
lead-lag compensator, 139-151, 218, 308, System Ident|f|_cat|on, 9, 36,39
322 mgqsurement noise, 53, 239
Lebesgue space, 65 minimum
limit cycle, 111, 126, 129, 131, 228, 229 phase, 164, 257-259, 261
linear quadratic Gaussian control (LQG), realization, 21, 32-33, 44, 61, 62
3, 235-247 sensitivity problem, 257, 258
linear quadratic regulator (LQR), 3, 152, ~ Mittag-Leffler function, 291, 292
156, 180, 216 mixed stability, 262
linear system model conversion, 4, 11, 25, 26, 38, 43,
fractional-order, 283—-305 44,67
state space, 3, 4, 11, 17-19, 24-33,51, model mismatch, 235
55-57, 59, 62, 64, 101-103, 281 model reduction, 4, 51, 58, 59, 92-103,
transfer function, 4, 7, 11, 14-17, 194, 271, 293, 314-316
19-22, 24-28, 44, 288, 295 optimal Hankel norm approximation,
linear time invariant (LTI), 14, 18, 131, 103, 314
133, 134, 138, 151 Pade approximation, 92, 94, 96, 97, 99,
logarithmic Nyquist plotseeNyquist plot, 120, 133, 298, 314
logarithmic Routh approximation, 94, 95, 314
loop transfer recovery (LTR), 3, 236, 243, Schur’s balanced realization, 102
245, 247 suboptimal reduction, 191, 215, 298,
low-pass filter, 184, 254, 297 299, 314
LQG (linear quadratic Gaussian control), multiple input—-multiple output, 7, 16
3, 235-247 multiplicative uncertainty, 248
LQR (linear quadratic regulator), 3, 152, multivariable system, 16, 44-45, 120,
156, 180, 216 171-174
—®

2007/
pages

—®
352 Index
natural frequency, 174, 180, 282, 325 Oustaloup recursive approximation,
Nichols chart, 85, 148-151, 289 292-293, 298, 299
nominal value, 262, 301 refined, 294-299
nonminimum phase model, 246, 259, overshoot, 71, 72, 74, 196-198
261-267
nonlinear system, 5, 17, 111, 112, 116, Padé approximation, 92, 94, 96, 97, 99,
126, 129, 131-134, 136, 313, 319, 321 120, 133, 298, 314
nonlinearity, 111, 112, 127, 128, 228,310 Parallel connection, 20-21, 32, 288
double-valued, 111, 126128 PD controlle_r, 200, 210-212, 223, 300
e L e e
relay, 128, 228, 229 N ' y ’ ’ !
saturation, 112, 123, 224 assignment, 207
: ' ' ' Plcontroller, 183, 186, 188, 189, 194-196
smgle-valued, 111, 126-128 PID* controller, 300
static, 126, 128, 228 PID controller, 181-233
Nyquist plot, 42, 51, 84, 85, 87-90 anti-windup, 5, 226
atan,-90) Chien—Hrones—Reswick, 181, 197-198
logarithmic, 90-92 Cohen—Coon, 181, 198-200
Nyquist Theorem, 87, 88 for FOIPDT plant, 211, 212, 222
for IPDT plant, 181, 210
observability, 51, 57-60 fractional-order, 300
Gramian, 58, 59 modnﬁed Zlegler—NlchoIs, 181, 202
staircase form, 58 OEt'mum setting, 181, 20?[’ géj
; phase margin assignment,
ggzglerj,lg,C12n9o,ngl_ffég],'12694, 165, 169, reg’;egd Ziegler-Nichols, 181, 200-202,
obiitr‘)\,/:fsase d V_/ang—Jugng—Chan, 181, 203, 300
Ziegler—Nichols, 181, 185-198, 200-202,
controller, 139, 322 209 323
regulator, 165, 169 PID Tur’1er, 213-216
OCD (Optimal Controller Designer), 216, plan_t augmentation, 247, 249, 255
2217225' _303 plant model, 2, 53, 82
operating point, 131, 132 FOIPDT, 211, 212, 222
optlmal control, 181, 216, 218-225 FOPDT, 181, 186, 188, 193, 198, 209,
Optimal Controller Designer (OCD), 2186, 324
221-225, 303 IPDT, 181, 210
optimal Hankel norm approximation, 103, minimum phase, 164, 257-259, 261
314 nonminimum phase, 246, 259, 261-267
optimization, 99, 181, 216-219, 221, 223, unstable FOPDT, 213
224,239 pole placement, 139, 165-170, 173, 260
constrained, 131, 216, 217 Ackermann’s algorithm, 166
Genetic Algorithm Toolbox, 9, 224 Bass—Gura'’s algorithm, 166
unconstrained, 216-217 robust algorithm, 167-169
optimum PID controller, 181, 209, 324 prefilter, 2
ordinary differential equations (ODE), 12, pseudorandom binary sequence (PRBS),
14,17, 283 42-44
—®

2007/
pages

—&
Index 353
ramp response, 77 stability margins, 3, 241
realization, 58, 59, 61, 62, 101, 102, 163, stabilizing controller, 249, 257, 260, 271
307, 314 standard transfer function, 11, 173, 174,
balanced, 31-32, 58, 59, 101-103, 314 278
minimum, 21, 32-33, 44, 61, 62 state augmentation, 67, 68, 254
reduced-order model, 59, 92-95, 98, 298, state feedback, 152, 153, 155, 156,
299, 315 163-167,171-174, 236, 239, 243, 272
refined Oustaloup recursive approxima- decoupling with, 171-174
tion, 294299 state space, 3, 4, 11, 17-19, 24-33, 51,
refined Ziegler—Nicholstuning, 181, 200-202, 55-57, 59, 62, 64, 101-103
323 steady-state, 42
relay, 128, 228, 229 error, 183, 189, 210, 211, 322
autotuning, 5, 207, 228 response, 62, 64, 231
Riccati equation, 155, 156, 237, 241, 262 value, 71, 72, 152, 192, 266
algebraic, 152, 158, 237, 238, 262 step response, 70, 73-75, 121, 291, 299,
differential, 152, 158 301-303
discrete-time, 156 suboptimal reduction, 191, 215, 298, 299,
Riemann—Liouville definition, 284—286 314
rise time, 72, 73 Symbolic Toolbox, 9, 13, 14, 68—70
Robust Control Toolbox, 235, 250-252, System Identification Toolbox, 4, 9, 11,
255, 278 35-45, 139, 194
robust pole placementalgorithm, 167-169
root locus, 3, 51, 78-83, 316, 317 Taylor series expansion, 62—-64, 92, 294
Routh approximation, 94, 95, 314 time domain response, 77, 87, 290
impulseresponse, 51, 62,63, 70, 75-77,
sampling interval, 15, 17, 19, 39, 74, 87, 125, 250, 315, 319
122,123 ramp response, 77
saturation, 112, 123, 224 step response, 70, 73-75, 121, 291,
actuator, 220, 226, 302 299, 301-303
Schur decomposition, 329 time moment, 62—-63, 96
Schur’s balanced realization, 102 time varying system, 111, 118, 123-125,
sensitivity function, 243, 255, 256, 259, 152
275, 278 transfer function, 4, 7, 11, 14-17, 19-22,
sensitivity problem, 254, 256, 265, 325 24-28, 44, 288, 295
general mixed, 262 discrete-time, 16, 35, 39, 42, 43, 69,
minimum, 257, 258 79, 134
series connection, 11, 20, 22, 288 fractional-order, 287-289, 298, 299
settling time, 72, 74 matrix, 16, 24, 25, 28, 38, 44, 45, 120,
similarity transformation, 28, 59-62 172
Simulink, 111-135, 296298 standard, 11, 173, 174, 278
single input-single output, 7, 16 transmission zero, 27, 243
SISOTool, 175-177 tree variable, 250-252, 255, 262, 268
small gain theorem, 247-248 Tsypkin's method, 228-229
stability, 3, 51-55, 84, 86-88, 90, 94, 95 Tustin transform, 252
assessment, 51-53 bilinear, 251, 252, 266
internal, 51-55 two degrees-of-freedom control, 2
—&

2007/
pages
—®
354 Index
two-port state-space, 250, 253, 255, 256, weighting matrix, 152, 154, 157, 158,
261-263, 268, 270, 272 164, 180
well-posedness, 53-54, 248
uncertainty, 64,159, 235, 247, 248, 262, 269
additive, 248 Youla parameterization, 256, 257
multiplicative, 248
unstructured uncertainty, 248—249 Z transform, 16
unconstrained optimization, 216—217 inverse, 69
undershoot, 266 zero initial conditions, 13, 14, 25, 106
unity negative feedback, 53, 78, 87, 88, zero-order-hold (ZOH), 34, 121, 123
163, 289 zero-pole-gain model, 19, 25-27, 32, 94,
unstable FOPDT (first-order plusdeadtime), 112
213 Ziegler—Nichols formula, 181, 185-198,
200-202, 209, 323
variable step, 117 modified algorithm, 181, 202
refined, 181, 200-202, 323
Wang—Juang—Chanformula, 181,203,300 zOH (zero-order-hold), 34, 121, 123
weighting function, 99, 236, 243, 253256,
258, 262, 273-281, 302, 325
—®

