

Numerical
Linear

Approximation
in C

© 2008 by Taylor & Francis Group, LLC

CHAPMAN & HALL/CRC
Numerical Analysis and Scientific Computing

Aims and scope:
Scientific computing and numerical analysis provide invaluable tools for the sciences and engineering.
This series aims to capture new developments and summarize state-of-the-art methods over the
whole spectrum of these fields. It will include a broad range of textbooks, monographs and
handbooks. Volumes in theory, including discretisation techniques, numerical algorithms, multiscale
techniques, parallel and distributed algorithms, as well as applications of these methods in multi-
disciplinary fields, are welcome. The inclusion of concrete real-world examples is highly encouraged.
This series is meant to appeal to students and researchers in mathematics, engineering and
computational science.

Choi-Hong Lai
School of Computing and
Mathematical Sciences

University of Greenwich

Frédéric Magoulès
Applied Mathematics and

Systems Laboratory
Ecole Centrale Paris

Editors

Mark Ainsworth
Mathematics Department

Strathclyde University

Todd Arbogast
Institute for Computational
Engineering and Sciences

The University of Texas at Austin

Craig C. Douglas
Computer Science Department

University of Kentucky

Ivan Graham
Department of Mathematical Sciences

University of Bath

Peter Jimack
School of Computing
University of Leeds

Takashi Kako
Department of Computer Science

The University of Electro-Communications

Peter Monk
Department of Mathematical Sciences

University of Delaware

Francois-Xavier Roux
ONERA

Arthur E.P. Veldman
Institute of Mathematics and Computing Science

University of Groningen

Editorial Advisory Board

Proposals for the series should be submitted to one of the series editors above or directly to:
CRC Press, Taylor & Francis Group
24-25 Blades Court
Deodar Road
London SW15 2NU
UK

© 2008 by Taylor & Francis Group, LLC

Numerical
Linear

Approximation
in C

Nabih N. Abdelmalek, Ph.D.

William A. Malek, M.Eng.

© 2008 by Taylor & Francis Group, LLC

Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2008 by Taylor & Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-58488-978-6 (Hardcover)

This book contains information obtained from authentic and highly regarded sources Reason-
able efforts have been made to publish reliable data and information, but the author and publisher
cannot assume responsibility for the validity of all materials or the consequences of their use. The
Authors and Publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC)
222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that
provides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Abdelmalek, Nabih N.
Numerical linear approximation in C / Nabih Abdelmalek and William A.

Malek.
p. cm. -- (CRC numerical analysis and scientific computing)

Includes bibliographical references and index.
ISBN 978-1-58488-978-6 (alk. paper)
1. Chebyshev approximation. 2. Numerical analysis. 3. Approximation theory.

I. Malek, William A. II. Title. III. Series.

QA297.A23 2008
518--dc22 2008002447

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

© 2008 by Taylor & Francis Group, LLC

http://www.copyright.com
http://www.copyright.com
http://www.copyright.com
http://www.taylorandfrancis.com
http://www.crcpress.com

v

Contents

List of figures . xvii
Preface . xix
Acknowledgements. xxiii
Warranties . xxiii
About the authors . xxv

PART 1

Preliminaries and Tutorials

Chapter 1 Applications of Linear Approximation

1.1 Introduction . 3
1.2 Applications to social sciences and economics 5

1.2.1 Systolic blood pressure and age 6
1.2.2 Annual teacher salaries . 6
1.2.3 Factors affecting survival of island species 7
1.2.4 Factors affecting fuel consumption. 8
1.2.5 Examining factors affecting the mortality rate 8
1.2.6 Effects of forecasting . 9
1.2.7 Factors affecting gross national products 9

1.3 Applications to industry . 10
1.3.1 Windmill generating electricity 10
1.3.2 A chemical process . 11

1.4 Applications to digital images . 12
1.4.1 Smoothing of random noise in digital images 12
1.4.2 Filtering of impulse noise in digital images 14
1.4.3 Applications to pattern classification 15

© 2008 by Taylor & Francis Group, LLC

vi Numerical Linear Approximation in C

1.4.4 Restoring images with missing high-frequency
components . 16

1.4.5 De-blurring digital images using the Ridge equation . . 18
1.4.6 De-blurring images using truncated eigensystem 19
1.4.7 De-blurring images using quadratic programming 20

Chapter 2 Preliminaries

2.1 Introduction . 25
2.2 Discrete linear approximation and solution of overdetermined

linear equations . 26
2.3 Comparison between the L1, the L2 and the L∞ norms by a

practical example. 30
2.3.1 Some characteristics of the L1 and the Chebyshev

approximations . 32
2.4 Error tolerances in the calculation. 32
2.5 Representation of vectors and matrices in C 33
2.6 Outliers and dealing with them . 34

2.6.1 Data editing and residual analysis. 36

Chapter 3 Linear Programming and the Simplex Algorithm

3.1 Introduction . 39
3.1.1 Exceptional linear programming problems. 41

3.2 Notations and definitions. 44
3.3 The simplex algorithm. 45

3.3.1 Initial basic feasible solution . 47
3.3.2 Improving the initial basic feasible solution 48

3.4 The simplex tableau. 51
3.5 The two-phase method . 55

3.5.1 Phase 1 . 55
3.5.2 Phase 2 . 56
3.5.3 Detection of the exceptional cases 56

3.6 Duality theory in linear programming. 57
3.6.1 Fundamental properties of the dual problems. 59
3.6.2 Dual problems with mixed constraints 60
3.6.3 The dual simplex algorithm . 61

3.7 Degeneracy in linear programming and its resolution 62
3.7.1 Degeneracy in the simplex method. 62
3.7.2 Avoiding initial degeneracy in the simplex algorithm . 63

© 2008 by Taylor & Francis Group, LLC

Contents vii

3.7.3 Resolving degeneracy resulting from equal θmin 63
3.7.4 Resolving degeneracy in the dual simplex method. . . . 64

3.8 Linear programming and linear approximation. 64
3.8.1 Linear programming and the L1 approximation 64
3.8.2 Linear programming and Chebyshev approximation . . 66

3.9 Stability of the solution in linear programming 67

Chapter 4 Efficient Solutions of Linear Equations

4.1 Introduction . 71
4.2 Vector and matrix norms and relevant theorems. 72

4.2.1 Vector norms. 72
4.2.2 Matrix norms. 73
4.2.3 Hermitian matrices and vectors 73
4.2.4 Other matrix norms . 76
4.2.5 Euclidean and the spectral matrix norms 77
4.2.6 Euclidean norm and the singular values 78
4.2.7 Eigenvalues and the singular values of the sum and

the product of two matrices. 79
4.2.8 Accuracy of the solution of linear equations 80

4.3 Elementary matrices . 83
4.4 Gauss LU factorization with complete pivoting 84

4.4.1 Importance of pivoting . 85
4.4.2 Using complete pivoting . 86
4.4.3 Pivoting and the rank of matrix A. 88

4.5 Orthogonal factorization methods . 90
4.5.1 The elementary orthogonal matrix H 90
4.5.2 Householder�s QR factorization with pivoting. 90
4.5.3 Pivoting in Householder�s method 92
4.5.4 Calculation of the matrix inverse A�1. 93

4.6 Gauss-Jordan method . 94
4.7 Rounding errors in arithmetic operations 95

4.7.1 Normalized floating-point representation 95
4.7.2 Overflow and underflow in arithmetic operations 96
4.7.3 Arithmetic operations in a d.p. accumulator 97
4.7.4 Computation of the square root of a s.p. number 100
4.7.5 Arithmetic operations in a s.p. accumulator 100
4.7.6 Arithmetic operations with two d.p. numbers. 101
4.7.7 Extended simple s.p. operations in a d.p. accumulator 101
4.7.8 Alternative expressions for summations and inner-

product operations. 104

© 2008 by Taylor & Francis Group, LLC

viii Numerical Linear Approximation in C

4.7.9 More conservative error bounds 104
4.7.10 D.p. summations and inner-product operations 105
4.7.11 Rounding error in matrix computation 106
4.7.12 Forward and backward round-off error analysis. 107
4.7.13 Statistical error bounds and concluding remarks 109

PART 2

The L1 Approximation

Chapter 5 Linear L1 Approximation

5.1 Introduction . 113
5.1.1 Characterization of the L1 solution 116

5.2 Linear programming formulation of the problem 116
5.3 Description of the algorithm . 118
5.4 The dual simplex method . 120
5.5 Modification to the algorithm . 124
5.6 Occurrence of degeneracy . 126
5.7 A significant property of the L1 approximation 129
5.8 Triangular decomposition of the basis matrix 130
5.9 Arithmetic operations count . 132
5.10 Numerical results and comments. 134
5.11 DR_L1 . 140
5.12 LA_L1 . 145
5.13 DR_Lone . 165
5.14 LA_Lone . 170

Chapter 6 One-Sided L1 Approximation

6.1 Introduction . 183
6.1.1 Applications of the algorithm 186
6.1.2 Characterization and uniqueness. 186

6.2 A special problem of a general constrained one 186
6.3 Linear programming formulation of the problem 187
6.4 Description of the algorithm . 188

6.4.1 Obtaining an initial basic feasible solution 188
6.4.2 One-sided L1 solution from above 191

© 2008 by Taylor & Francis Group, LLC

Contents ix

6.4.3 The interpolation property . 191
6.5 Numerical results and comments. 191
6.6 DR_Loneside. 195
6.7 LA_Loneside . 203

Chapter 7 L1 Approximation with Bounded Variables

7.1 Introduction . 213
7.1.1 Linear L1 approximation with non-negative

parameters (NNL1) . 216
7.2 A special problem of a general constrained one 216
7.3 Linear programming formulation of the problem 217

7.3.1 Properties of the matrix of constraints 220
7.4 Description of the algorithm . 221
7.5 Numerical results and comments. 222
7.6 DR_Lonebv . 225
7.7 LA_Lonebv . 233

Chapter 8 L1 Polygonal Approximation of Plane Curves

8.1 Introduction . 245
8.1.1 Two basic issues . 245
8.1.2 Approaches for polygonal approximation 246
8.1.3 Other unique approaches. 248
8.1.4 Criteria by which error norm is chosen. 249
8.1.5 Direction of error measure . 249
8.1.6 Comparison and stability of polygonal

approximations . 250
8.1.7 Applications of the algorithm 251

8.2 The L1 approximation problem . 251
8.3 Description of the algorithm . 252
8.4 Linear programming technique . 253

8.4.1 The algorithm using linear programming 255
8.5 Numerical results and comments. 255
8.6 DR_L1pol . 261
8.7 LA_L1pol . 267

© 2008 by Taylor & Francis Group, LLC

x Numerical Linear Approximation in C

Chapter 9 Piecewise L1 Approximation of Plane Curves

9.1 Introduction . 275
9.1.1 Applications of piecewise approximation. 276

9.2 Characteristics of the piecewise approximation 276
9.3 The discrete linear L1 approximation problem 278
9.4 Description of the algorithms . 279

9.4.1 Piecewise linear L1 approximation with pre-assigned
tolerance . 279

9.4.2 Piecewise linear approximation with near-balanced
L1 norms . 280

9.5 Numerical results and comments. 281
9.6 DR_L1pw1 . 285
9.7 LA_L1pw1 . 289
9.8 DR_L1pw2 . 294
9.9 LA_L1pw2 . 298

PART 3

The Chebyshev Approximation

Chapter 10 Linear Chebyshev Approximation

10.1 Introduction . 307
10.1.1 Characterization of the Chebyshev solution 309

10.2 Linear programming formulation of the problem 310
10.2.1 Property of the matrix of constraints 311

10.3 Description of the algorithm . 315
10.4 A significant property of the Chebyshev approximation 320

10.4.1 The equioscillation property of the Chebyshev norm. 321
10.5 Numerical results and comments. 321
10.6 DR_Linf. 325
10.7 LA_Linf. 334

Chapter 11 One-Sided Chebyshev Approximation

11.1 Introduction . 347
11.1.1 Applications of the algorithm 349

© 2008 by Taylor & Francis Group, LLC

Contents xi

11.2 A special problem of a general constrained one 350
11.3 Linear programming formulation of the problem 351

11.3.1 Properties of the matrix of constraints 353
11.4 Description of the algorithm . 356

11.4.1 One-sided Chebyshev solution from below 360
11.5 Numerical results and comments. 361

11.5.1 Simple relationships between the Chebyshev and
one-sided Chebyshev approximations 362

11.6 DR_Linfside . 365
11.7 LA_Linfside . 373

Chapter 12 Chebyshev Approximation with Bounded Variables

12.1 Introduction . 387
12.1.1 Linear Chebyshev approximation with non-negative

parameters (NNLI) . 389
12.2 A special problem of a general constrained one 389
12.3 Linear programming formulation of the problem 390

12.3.1 Properties of the matrix of constraints 392
12.4 Description of the algorithm . 394
12.5 Numerical results and comments. 396
12.6 DR_Linfbv. 399
12.7 LA_Linfbv. 408

Chapter 13 Restricted Chebyshev Approximation

13.1 Introduction . 419
13.1.1 The semi-infinite programming problem 421
13.1.2 Special cases . 421
13.1.3 Applications of the restricted Chebyshev algorithm. . 422

13.2 A special problem of general constrained algorithms 422
13.3 Linear programming formulation of the problem 423

13.3.1 Properties of the matrix of constraints 425
13.4 Description of the algorithm . 427
13.5 Triangular decomposition of the basis matrix 428
13.6 Arithmetic operations count . 429
13.7 Numerical results and comments. 430
13.8 DR_Restch. 435
13.9 LA_Restch. 446

© 2008 by Taylor & Francis Group, LLC

xii Numerical Linear Approximation in C

Chapter 14 Strict Chebyshev Approximation

14.1 Introduction . 469
14.2 The problem as presented by Descloux. 471
14.3 Linear programming analysis of the problem 472

14.3.1 The characteristic set R1 and how to obtain it 473
14.3.2 Calculating matrix (DT)�1 . 475
14.3.3 The case of a rank deficient coefficient matrix. 476

14.4 Numerical results and comments. 476
14.5 DR_Strict . 481
14.6 LA_Strict . 489

Chapter 15 Piecewise Chebyshev Approximation

15.1 Introduction . 517
15.1.1 Applications of piecewise approximation. 519

15.2 Characteristic properties of piecewise approximation 519
15.3 The discrete linear Chebyshev approximation problem 519
15.4 Description of the algorithms . 520

15.4.1 Piecewise linear Chebyshev approximation with
pre-assigned tolerance. 520

15.4.2 Piecewise linear Chebyshev approximation with
near-balanced Chebyshev norms 521

15.5 Numerical results and comments. 521
15.6 DR_Linfpw1 . 525
15.7 LA_Linfpw1 . 529
15.8 DR_Linfpw2 . 534
15.9 LA_Linfpw2 . 538

Chapter 16 Solution of Linear Inequalities

16.1 Introduction . 545
16.1.1 Linear programming techniques 548

16.2 Pattern classification problem . 549
16.3 Solution of the system of linear inequalities Ca > 0 551
16.4 Linear one-sided Chebyshev approximation algorithm 551
16.5 Linear one-sided L1 approximation algorithm 552
16.6 Numerical results and comments. 553
16.7 DR_Chineq . 560
16.8 DR_L1ineq . 566

© 2008 by Taylor & Francis Group, LLC

Contents xiii

PART 4

The Least Squares Approximation

Chapter 17 Least Squares and Pseudo-Inverses of Matrices

17.1 Introduction . 575
17.2 Least squares solution of linear equations. 576

17.2.1 Minimal-length least squares solution 578
17.3 Factorization of matrix A . 579

17.3.1 Gauss LU factorization . 579
17.3.2 Householder�s factorization . 581
17.3.3 Givens� transformation (plane rotations) 582
17.3.4 Classical and modified Gram-Schmidt methods. 582

17.4 Explicit expression for the pseudo-inverse 583
17.4.1 A+ in terms of Gauss factorization 584
17.4.2 A+ in terms of Householder�s factorization 584

17.5 The singular value decomposition (SVD) 585
17.5.1 Spectral condition number of matrix A 587
17.5.2 Main properties of the pseudo-inverse A+ 587

17.6 Practical considerations in computing. 588
17.6.1 Cholesky�s decomposition . 588
17.6.2 Solution of the normal equation 588
17.6.3 Solution via Gauss LU factorization method 589
17.6.4 Solution via Householder�s method 589
17.6.5 Calculation of A+ . 589
17.6.6 Influence of the round-off error 590

17.7 Linear spaces and the pseudo-inverses . 591
17.7.1 Definitions, notations and related theorems 591
17.7.2 Subspaces and their dimensions 592
17.7.3 Gram-Schmidt orthogonalization 594
17.7.4 Range spaces of A and AT and their orthogonal

complements . 596
17.7.5 Representation of vectors in Vm 598
17.7.6 Orthogonal projection onto range and null spaces . . . 599
17.7.7 Singular values of the orthogonal projection

matrices . 601
17.8 Multicollinearity, collinearity or the ill-conditioning of

matrix A. 601
17.8.1 Sources of multicollinearity . 603

© 2008 by Taylor & Francis Group, LLC

xiv Numerical Linear Approximation in C

17.8.2 Detection of multicollinearity 604
17.9 Principal components analysis (PCA) . 605

17.9.1 Derivation of the principal components 605
17.10 Partial least squares method (PLS) . 607

17.10.1 Model building for the PLS method 609
17.11 Ridge equation. 612

17.11.1 Estimating the Ridge parameter 613
17.11.2 Ridge equation and variable selection 614

17.12 Numerical results and comments. 614
17.13 DR_Eluls . 621
17.14 LA_Eluls . 630
17.15 DR_Hhls . 645
17.16 LA_Hhls . 654

Chapter 18 Piecewise Linear Least Squares Approximation

18.1 Introduction . 671
18.1.1 Preliminaries and notation . 673

18.2 Characteristics of the approximation. 673
18.3 The discrete linear least squares approximation problem 673
18.4 Description of the algorithms . 674

18.4.1 Piecewise linear L2 approximation with pre-assigned
tolerance . 675

18.4.2 Piecewise linear L2 approximation with near-
balanced L2 norms . 675

18.5 Numerical results and comments. 675
18.6 The updating and downdating techniques 677

18.6.1 The updating algorithm. 678
18.6.2 The downdating algorithm . 679
18.6.3 Updating and downdating in the L1 norm. 680

18.7 DR_L2pw1 . 682
18.8 LA_L2pw1 . 686
18.9 DR_L2pw2 . 691
18.10 LA_L2pw2 . 695

Chapter 19 Solution of Ill-Posed Linear Systems

19.1 Introduction . 703
19.2 Solution of ill-posed linear systems . 704
19.3 Estimation of the free parameter . 708

© 2008 by Taylor & Francis Group, LLC

Contents xv

19.4 Description of the new algorithm . 709
19.4.1 Steps of the algorithm . 709

19.5 Optimum value of the rank . 714
19.5.1 The parameters TOLER and EPS 714

19.6 Use of linear programming techniques . 715
19.7 Numerical results and comments. 717
19.8 DR_Mls . 724
19.9 LA_Mls . 730

PART 5

Solution of Underdetermined Systems
Of Linear Equations

Chapter 20 L1 Solution of Underdetermined Linear Equations

20.1 Introduction . 739
20.1.1 Applications of the algorithm 740

20.2 Linear programming formulation of the problem 741
20.2.1 Properties of the matrix of constraints 742

20.3 Description of the algorithm . 744
20.4 Numerical results and comments. 747
20.5 DR_Fuel . 749
20.6 LA_Fuel. 755

Chapter 21 Bounded and L1 Bounded Solutions of
Underdetermined Linear Equations

21.1 Introduction . 765
21.1.1 Applications of the algorithms 767

21.2 Linear programming formulation of the two problems. 767
21.2.1 Properties of the matrix of constraints 769

21.3 Description of the algorithms . 771
21.3.1 Occurrence of degeneracy. 771
21.3.2 Uniqueness of the solution . 772

21.4 Numerical results and comments. 772
21.5 DR_Tmfuel . 776
21.6 LA_Tmfuel . 783

© 2008 by Taylor & Francis Group, LLC

xvi Numerical Linear Approximation in C

Chapter 22 Chebyshev Solution of Underdetermined Linear
Equations

22.1 Introduction . 799
22.1.1 Applications of the algorithm 801

22.2 The linear programming problem . 801
22.2.1 Properties of the matrix of constraints 803

22.3 Description of the algorithm . 806
22.3.1 The reduced tableaux . 811

22.4 Numerical results and comments. 812
22.5 DR_Effort . 815
22.6 LA_Effort . 822

Chapter 23 Bounded Least Squares Solution of
Underdetermined Linear Equations

23.1 Introduction . 833
23.1.1 Applications of the algorithm 834

23.2 Quadratic programming formulation of the problems. 836
23.3 Solution of problem (E0). 837
23.4 Solution of problem (E). 840

23.4.1 Asymmetries in the simplex tableau 841
23.4.2 The condensed tableau for problem (E) 842
23.4.3 The dual method of solution . 843
23.4.4 The reduced tableau for problem (E) 844
23.4.5 The method of solution of problem (E) 844

23.5 Numerical results and comments. 845
23.6 DR_Energy . 848
23.7 LA_Energy . 852

Appendices

Appendix A References . 869
Appendix B Main Program . 893
Appendix C Constants, Types and Function Prototypes 897
Appendix D Utilities and Common Functions. 917

© 2008 by Taylor & Francis Group, LLC

xvii

List of Figures

Figure 1-1: Relative coordinates of pixels inside a 3 by 3 window 12
Figure 1-2: Pixel labels inside the 3 by 3 window 12
Figure 2-1: Curve fitting a set of 8 points, including a wild point,

using the L1, L2 and L∞ norms . 31
Figure 3-1: Feasibility Region . 41
Figure 3-2: Unbounded Solution . 42
Figure 3-3: Inconsistent Constraints. 43
Figure 4-1: General floating-point format . 95
Figure 6-1: Curve fitting with vertical parabolas of a set of 8 points

using L1 approximation and one-sided L1 approximations 184
Figure 7-1: Curve fitting with vertical parabolas of a set of 8 points

using L1 approximation and L1 approximation with
bounded variables between �1 and 1. 215

Figure 8-1: L1 polygonal approximation for a waveform. The L1
norm in any segment is ≤ 0.6. 256

Figure 8-2: L1 polygonal approximation for a contour. The L1
norm in any segment is ≤ 0.4. 256

Figure 9-1: Disconnected linear L1 piecewise approximation with
vertical parabolas. The L1 residual norm in any segment
≤ 6.2 . 282

Figure 9-2: Connected linear L1 piecewise approximation with
vertical parabolas. The L1 residual norm in any segment
≤ 6.2 . 282

Figure 9-3: Near-balanced residual norm solution. Disconnected
linear L1 piecewise approximation with vertical
parabolas. Number of segments = 4 283

Figure 11-1: Curve fitting with vertical parabolas of a set of 8
points using Chebyshev and one-sided Chebyshev
approximations . 349

Figure 12-1: Curve fitting a set of 8 points using Chebyshev
approximation and Chebyshev approximation with
bounded variables between �1 and 1. 389

© 2008 by Taylor & Francis Group, LLC

xviii Numerical Linear Approximation in C

Figure 13-1: Curve fitting a set of 8 points using restricted
Chebyshev approximations with arbitrary ranges 422

Figure 15-1: Disconnected linear Chebyshev piecewise approximation
with vertical parabolas. Chebyshev residual norm in any
segment ≤ 1.3. 522

Figure 15-2: Connected linear Chebyshev piecewise approximation
with vertical parabolas. Chebyshev residual norm in
any segment ≤ 1.3 . 522

Figure 15-3: Near-balanced residual norm solution. Disconnected linear
Chebyshev piecewise approximation with vertical parabolas.
Number of segments = 4 . 523

Figure 16-1: Two curves that each separate the patterns of class A
from the patterns of class B . 555

Figure 18-1: Disconnected linear L2 piecewise approximation with
vertical parabolas. The L2 residual norm in any
segment ≤ 3 . 676

Figure 18-2: Connected linear L2 piecewise approximation with
vertical parabolas. The L2 residual norm in any
segment ≤ 3 . 676

Figure 18-3: Near-balanced residual norm solution. Disconnected linear
L2 piecewise approximation with vertical parabolas.
Number of segments = 4 . 677

© 2008 by Taylor & Francis Group, LLC

xix

Preface

Discrete linear approximation is one of the most frequently used
techniques in all areas of science and engineering. Linear
approximation of a continuous function is typically done by digitizing
the function, then applying discrete linear approximation to the
resulting data. Discrete linear approximation is equivalent to the
solution of an overdetermined system of linear equations in an
appropriate measure or norm, with or without some constraints.

This book describes algorithms for the solution of overdetermined
and underdetermined systems of linear equations. Software
implementations of the algorithms and test drivers, all written in the
programming language C, are provided at the end of each chapter.
Also included are piecewise linear approximations to plane curves in
the three main norms, as well as solutions of overdetermined linear
inequalities and of ill-posed linear systems.

It is assumed that the reader has basic knowledge of elementary
functional analysis and the programming language C.

All the algorithms in this book are based on linear programming
techniques, except the least squares ones. In addition, Chapter 23 uses
a quadratic programming technique.

Linear programming proved to be a powerful tool in solving linear
approximation problems. The solution, if it exists, is obtained in a
finite number of iterations, and no conditions are imposed on the
coefficient matrix, such as the Haar condition or the full rank
condition. The issue of the uniqueness of the solution is determined by
methods that use linear programming. Characterization of the solution
may also be deduced from the final tableau of the linear programming
problem.

The algorithms presented in this book are compared with existing
algorithms and are found to be the best or among the best of them.

The first author developed and published almost all the algorithms
presented in this book while he was with the National Research
Council of Canada (NRC), in Ottawa, Canada. While at the NRC, the
algorithms were applied successfully in several engineering projects.
Since then, the software was converted to FORTRAN 77, and then to
C for this book.

© 2008 by Taylor & Francis Group, LLC

xx Numerical Linear Approximation in C

The second author is the son of the first author. He has been
instrumental in converting the software from FORTRAN 77 to C. He
has worked for over 25 years as a software engineer in the high-tech
industry in Ottawa, and has spent 4 years teaching courses in software
engineering at Carleton University in Ottawa, Canada.

This book may be considered a companion to the books,
Numerical Recipes in C, the Art of Scientific Computing, second
edition, W.H. Press et. al, Cambridge University Press, 1992 and
A Numerical Library in C for Scientists and Engineers, H.T. Lau,
CRC Press, 1994. Except for solving the least squares approximation
by the normal equation and by the Singular Value Decomposition
methods (Section 15.4 in the former and 3.4.2 in the latter), they lack
the subject of Numerical Linear Approximation. Also, the generic
routine on linear programming and the simplex method in the former
reference (Section 10.8) has little or no application to linear
approximation. Standard Subroutine Packages, such as LINPACK,
LAPACK, IMSL and NAG, may contain few linear approximation
routines, but not in C.

This book is divided into 5 main parts. Part 1 includes
introductory chapters 1 and 2, and tutorial chapters 3 and 4. Chapter 1
describes some diverse applications of linear approximation. In
Chapter 2, the relationship between Discrete Linear Approximation in
a certain norm and the solution of overdetermined linear equations in
the same norm is established. The L1, the least squares (L2) and the
Chebyshev (minimax or L∞) norms are considered. A comparison is
made between the approximations in the three norms, using a simple
example. An explanation of single- and double-precision compu-
tation, tolerance parameters and the programmatic representation of
vectors and matrices is also given. The chapter concludes with a study
of outliers or odd points in data, how to identify them, and some
methods of dealing with them. Chapter 3 gives an overall description
of the subject of linear programming and the simplex method. Also,
the (ordinary or two-sided) L1 and the (ordinary or two-sided)
Chebyshev approximation problems are formulated as linear
programming problems. Chapter 4 starts with the familiar subject of
vector and matrix norms and some relevant theorems. Then,
elementary matrices, which are used to perform elementary operations
on a matrix equation, are described. The solution of square linear

© 2008 by Taylor & Francis Group, LLC

Preface xxi

systems using the Gauss LU factorization method with complete
pivoting and the Householder�s QR factorization method with
pivoting follows. A note on the Gauss-Jordan elimination method for
a set of underdetermined system of linear equations is given. This
chapter ends with a presentation of rounding error analysis for simple
and extended arithmetic operations. Chapter 4 serves as an
introduction to Chapter 17 on the pseudo-inverses of matrices and the
solution of linear least squares problems.

Part 2 of this book includes chapters 5 through 9. Chapters 5, 6
and 7 present the ordinary L1 approximation problem, the one-sided
L1 approximation, and the L1 approximation with bounded variables,
respectively. Chapters 8 and 9 present, respectively, the L1 polygonal
approximation and the linear L1 piecewise approximation of plane
curves.

Part 3 contains chapters 10 through 16. Chapters 10 through 15
present, respectively, the ordinary Chebyshev approximation problem,
the one-sided Chebyshev approximation, the Chebyshev approxi-
mation with bounded variables, the Restricted Chebyshev approxi-
mation, the Strict Chebyshev approximation and the piecewise
Chebyshev approximation of plane curves. Chapter 16 presents the
solution of overdetermined linear inequalities and its application to
pattern classification, using the one-sided Chebyshev and the
one-sided L1 approximation algorithms.

Part 4 contains chapters 17 through 19. Chapter 17 introduces the
pseudo-inverses of matrices and the minimal length least squares
solution. It then describes the least squares approximation by the
Gauss LU factorization method with complete pivoting and by
Householder�s QR factorization method with pivoting. An
introduction of linear spaces and the pseudo-inverses is given next.
The interesting subject of multicollinearity, or the ill-conditioning of
the coefficient matrix, is presented. This leads to the subject of
dealing with multicollinearity via the Principal Components Analysis
(PCA), the Partial Least Squares (PLS) method and the Ridge
equation technique. Chapter 18 presents the piecewise approximation
of plane curves in the L2 norm. Chapter 19 presents the solution of
ill-posed systems such as those arising from the discretization of the
Fredholm integral equation of the first kind.

Part 5 contains Chapters 20 through 23. They present the solution

© 2008 by Taylor & Francis Group, LLC

xxii Numerical Linear Approximation in C

of underdetermined systems of consistent linear equations subject to
different constraints on the elements of the unknown solution vector
(not on the residuals, since the residuals are zeros). Chapter 20
constitutes the L1 approximation problem for the elements of the
solution vector. Chapter 21 describes (a) the solution of
underdetermined linear equations subject to bounds on the elements
of the solution vector and (b) the L1 approximation problem for these
elements that satisfy bounds on them. Chapter 22 describes the L∞
approximation problem for the elements of the solution vector.
Finally, Chapter 23 describes the bounded L2 approximation problem
for the elements of the solution vector.

Chapters 5 through 23 include the C functions that implement the
linear approximation algorithms, along with sample drivers. Each
driver contains a number of test case examples. The results of one or
more of the test cases are given in the text. Most of these chapters also
include a numerical example solved in detail.

To use the software provided in this book, it is not necessary to
understand the theory behind each one of the functions. The examples
given in each driver act as a guide to their usage. The code was
compiled and tested using MicrosoftTM Visual C++TM 6.0, Standard
Edition. To ensure maximum portability, only the most basic features
of the ANSI C standard were used, and no C++ features were
employed.

It is hoped that this book will be of benefit to scientists, engineers
and university students.

© 2008 by Taylor & Francis Group, LLC

xxiii

Acknowledgments

The first author wishes to thank his friends and colleagues at the
Institute for Informatics of the National Research Council of Canada,
particularly, Stuart Baxter, Brice Wightman, Frank Farrell, Bert
Lewis and Tom Bach for their unfailing help during his stay with the
Institute. From the Institute for Information Technology, he wishes to
thank his friend and colleague Tony Kasvand, who got him interested
in the fields of image processing and computer vision to which
numerical techniques were applied.

We also wish to sincerely thank Robert B. Stern, Executive Editor
at Taylor & Francis Group, Chapman and Hall, and CRC Press for his
support and interest in this book. Our thanks also go to the reviewers
for their constructive comments.

Last but not least, we thank our families for their love and
encouragement.

Warranties

The authors and the publisher of this book do not assume any
responsibility for any damage to person or property caused directly or
indirectly by the use, misuse or any other application of any of the
algorithms contained in this book.

We also make no warranties, in any way or form that the programs
contained in this book are free of errors or are consistent or
inconsistent with any type of machine.

The contents of this book including the software on a CD are
subject to Copyright laws. The individual owner of this book may
copy the contents of the CD to their own Personal Computer for their
own exclusive use, but they should not allow it to be copied by any
third parties.

© 2008 by Taylor & Francis Group, LLC

xxv

About the authors

Nabih N. Abdelmalek

The first author was born in Egypt in 1929. He received a B.Sc. in
electrical engineering in 1951, a B.Sc. in mathematics in 1954, both
from Cairo University, Egypt, and a Ph.D. in mathematical physics in
1958 from Manchester University, England.

From 1959 to 1965 he was an associate professor of mathematics
in the faculty of engineering, Cairo University, Egypt. From 1965 to
1967 he was a member of Scientific Staff at Northern Electric (now
Nortel Networks) in Ottawa, Canada. From 1967 until his retirement
in 1990, he was with the National Research Council of Canada, in
Ottawa, where he was a senior research officer. His interest was in the
application of numerical analysis techniques to image processing,
particularly image restoration, data compression, pattern classification
and segmentation of 3-D range images.

William A. Malek

The second author was born in Egypt in 1960. He received a
B.Eng. in electrical engineering in 1982 and an M.Eng. in computer
engineering in 1984, both from Carleton University in Ottawa
Canada.

From 1984 to 1988 he was a lecturer in the Department of
Systems and Computer Engineering at Carleton University, teaching
undergraduate and graduate courses in software engineering and
real-time systems. Since 1982, he has worked in Ottawa as a software
engineer for networking, avionics and military applications.

© 2008 by Taylor & Francis Group, LLC

xxvi

�Every good gift and every perfect gift is from above,
and comes down from the Father of lights.�
(James 1:17 NKJV)

© 2008 by Taylor & Francis Group, LLC

PART 1

Preliminaries and Tutorials

© 2008 by Taylor & Francis Group, LLC

2 Numerical Linear Approximation in C

Chapter 1 Applications of Linear Approximation 3

Chapter 2 Preliminaries 25

Chapter 3 Linear Programming and the Simplex Algorithm 39

Chapter 4 Efficient Solutions of Linear Equations 71

© 2008 by Taylor & Francis Group, LLC

3

Chapter 1

Applications of Linear Approximation

1.1 Introduction

In this chapter, we present a number of everyday life problems
whose solutions need the application of linear approximation, which
is the subject of this book. The problems presented here occur in
social sciences, economics, industry and digital image processing. In
the following, we assume that mathematical models have been agreed
upon, that observed data have been collected constituting the columns
of a matrix A, and that the response data constitute vector b. The
solution of the problem, vector x, is the solution vector of the matrix
equation

Ax = b

The n by m, n > m, matrix A consists of n observations in m
parameters. Because of measuring errors in the elements of matrix A
and in the response n-vector b, a larger number of observations than
the number of parameters are collected. Thus system Ax = b is an
overdetermined system of linear equations.

Equation Ax = b may also be written as

x1a1 + x2a2 + � + xmam = b

where a1, a2, �, am are the m columns of matrix A and the (xi) are
the elements of the solution m-vector x.

In many instances, the mathematical model represented by Ax = b
is an approximate or even incorrect one. In other instances, matrix A
is badly conditioned and needs to be stabilized. A badly conditioned
matrix results in a solution vector x that would be inaccurate or even
wrong.

© 2008 by Taylor & Francis Group, LLC

4 Numerical Linear Approximation in C

Since Ax = b is an overdetermined system, in most cases it has no
exact solution, but it may have an approximate solution. For
calculating an approximate solution, usually, the residual, or the error
vector

r = Ax � b

is minimized in a certain norm. The p-vector norm of the residual r is
given by

, 1 ≤ p ≤ ∞

There are three main vector-norms, namely for p = 1 (the L1
approximation), p = 2 (the L2 or the least squares approximation) and
for p = ∞ (the L∞, the minimax or the Chebyshev approximation).
This notion of norms is repeated in Chapter 2.

The approximate solution of Ax = b may be achieved as follows:
(a) One may minimize the norm of the residual vector r.
(b) One may also minimize the norm of the residual vector r

subject to the condition that all the elements of r are either
non-negative; that is, ri ≥ 0, or non-positive; ri ≤ 0,
i = 1, 2, �, n. This is known as the linear one-sided
approximation problem.

(c) The solution of Ax = b may also be obtained by minimizing
the norm of r subject to constraints on the solution vector x.
The elements (xi) may be required to be bounded

bi ≤ xi ≤ ci, i = 1, 2, �, m

where (bi) and (ci) are given parameters. This problem is
known as the linear approximation with bounded variables.
If all the ci are very large positive numbers and all the bi are
0�s, then the approximation has a non-negative solution
vector a.

(d) One may also minimize the norm of the residual vector r in the
L∞ norm subject to the constraints that the l.h.s. Ax is
bounded; that is

l ≤ Ax ≤ u

r p r xi() p

i 1=

n

∑
1 p⁄

=

© 2008 by Taylor & Francis Group, LLC

Chapter 1: Applications of Linear Approximation 5

where l and u are given n-vectors. This approximation is
known as the restricted Chebyshev approximation. If vector
l is 0 and all the elements of vector u are very large numbers,
the approximation is known to be with non-negative
functions.

(e) Instead of solving an overdetermined system of linear
equations, we may have an overdetermined system of linear
inequalities in the form

Ax ≥ b or Ax ≥ 0

where 0 is a zero n-vector. Such systems of linear inequalities
have applications to digital pattern classification.

(f) Once more, in some cases, particularly in control theory,
equation Ax = b is an underdetermined system; that is, n < m.
The residual vector r = 0 and system Ax = b has an infinite
number of solutions. In this case, one minimizes the norm of
the solution vector x (not the residual vector r, since r = 0),
and may set bounds on the elements of x.

In Section 1.2, applications to social sciences and economics are
presented. In Section 1.3, we present two applications to industrial
problems and in Section 1.4, applications are presented to digital
image processing.

For all the problems in Section 1.2, the matrix equations are
overdetermined and are solved in the least squares sense. However,
they may also be solved in the L1 or in the Chebyshev sense. These
problems are taken from published literature.

1.2 Applications to social sciences and economics

Let the response vector be b and the columns of matrix A be (ai),
i = 1, 2, �, m. As mentioned before, in all of these applications, the
linear model Ax = b is a convenient way to formulate the problem
mathematically. In no way is this model assumed to be the right one.
Whenever possible, for each problem, comments are provided on the
given data and/or on the obtained solution.

Note 1.1
The minimum L2 norm ||r||2 of a given problem is of importance

in assessing the quality of the least squares fit. Obviously, if this norm

© 2008 by Taylor & Francis Group, LLC

6 Numerical Linear Approximation in C

is zero, there is a perfect fit by the approximating curve (surface) for
the given data. On the other hand, if ||r||2 is too large, there might be
large errors in the measured data that cause this norm to be too high,
or the used model may not be suitable for the given data and a new
model is to be sought.

1.2.1 Systolic blood pressure and age

The data of this problem is given in Kleinbaum et al. ([18], p. 52).
It gives the observed systolic blood pressure (SBP) and the age for a
sample of n = 30 individuals.

b = The observed systolic blood pressure (SBP)
a1 = 1
a2 = The ages

Equation Ax = b is of the form

x0a1 + x1a2 = b

where 1 is an n-column of 1�s and x0 and x1 are the elements of x.
The straight line fit reflects the trend that the SBP increases with

age. It is observed that one of the given points seems to be an odd
point to the other points. This is known as an outlier. Because outliers
can affect the solution parameters x0 and x1, it is important to decide
if the outlier should be removed from the data and a new least squares
solution be calculated. In this problem, the outlier was removed and
the new line fit was slightly below the one obtained by using all the
data.

On the other hand, if this example is solved in the L1 norm instead
of the least squares, the fitted straight line would have ignored the odd
point and would have interpolated (passed through) two of the given
data points (Section 2.3).

1.2.2 Annual teacher salaries

The data of this problem is given in Gunst and Mason
([16], p. 221) and it gives the average annual salaries of particular
teachers in the USA during the 11 year periods from 1964-65 to
1974-75. By examining the average salaries vs. time, three different
curve fitting methods were used. Here, we consider only the first two;

© 2008 by Taylor & Francis Group, LLC

Chapter 1: Applications of Linear Approximation 7

a linear fit and a quadratic fit

x01 + x1t = b

and

x01 + x1t + x2t2 = b

where b is the average salary, a1 = 1, an n-column of 1�s and
a2 = (t1, t2, �, t11)T, represent the time (years). For the quadratic fit,
b, a1 and a2 are the same and a3 = (t12, t22, �, t11

2)T.
The quadratic equation gives the better fit since the residuals are

the smallest for almost all the points and are randomly centered
around zero. The linear fit is not as good as it offers larger residuals
and are not distributed as randomly well around the zero value.
Hence, the quadratic fit seems the best. However, it is observed that
the quadratic curve is an inverted parabola. It reaches a maximum
value and decreases after this value. This is unrealistic, as after this
maximum, the salaries of teachers decrease in the latest years!

1.2.3 Factors affecting survival of island species

The Galapagos, 29 islands off the coast of Ecuador, provide data
for studying the factors that influence the survival of different life
species. The data of this problem is given in Weisberg ([26], pp. 224,
225).

b = Number of species
a1 = Endemics
a2 = Area of the island in square km
a3 = Elevation of the island in meters
a4 = Distance in km from nearest island
a5 = Distance in km from Santa Cruz
a6 = Area of adjacent island in square km

In this data, one complicating factor is that the elevations of 6 of
the islands (elements of a3) were not recorded, so provisions must be
made for this; delete these 6 islands from the data or substitute a
plausible value for the missing data.

© 2008 by Taylor & Francis Group, LLC

8 Numerical Linear Approximation in C

1.2.4 Factors affecting fuel consumption

For a whole year, the fuel consumption in millions of gallons was
measured in 48 states in the United States as a function of fuel tax,
average income and other factors. The data of this problem is given in
Weisberg ([26], pp. 35, 36). The model Ax = b is as follows:

b = Fuel consumption in millions of gallons
a1 = 1, an n-column of 1�s
a2 = Fuel tax in cents per gallon
a3 = Percentage of population with drivers licenses
a4 = Average income in thousands of dollars
a5 = Length in miles of the highway network

In this problem all the variables have been scaled to be roughly of
the same magnitude. This scaling does not affect the relationship
between the measured values. For example, it does not matter if the
elements of column a3 are expressed as fractions or as percentages.

1.2.5 Examining factors affecting the mortality rate

In 1973, a study was conducted to examine the effect of air
pollution, environmental and other factors, 15 of them, on the death
rate for (60) sixty metropolitan areas in the United States. The data is
given in Gunst and Mason ([16], Appendix B, pp. 368-372). In this
problem

b = Age adjusted mortality rate, or death per 100,000
population

a1 = Average annual precipitation in inches
a2 = Average January temperature in degrees F
a3 = Average July temperature in degrees F
a4 = Percentage of 1960 population 65 years and older
a5 = Population per household, 1960
a6 = Median school years completed to those over 22 years
a7 = Percentage of housing units that are sound
a8 = Population per square mile in urbanized area, 1960
a9 = Percentage of 1960 urbanized non-white population
a10 = Percentage employed in white collar in 1960
a11 = Percentage of families with annual income < $3000

© 2008 by Taylor & Francis Group, LLC

Chapter 1: Applications of Linear Approximation 9

a12 = Relative pollution potential of Hydrocarbons
a13 = Relative pollution potential of Oxides of Nitrogen
a14 = Relative pollution of Sulfur Dioxide
a15 = Percentage relative humidity, annual average at 1 pm

One purpose of this study was to determine whether the pollution
variables defined by a12, a13 and a14 were influential in the results,
once the other factors (other ai) were included.

1.2.6 Effects of forecasting

This example displays a case of mild multicollinearity
(ill-conditioning of matrix A). For the subject of multicollinearity, see

production, stock formation and domestic consumption of the
imports, all measured in millions of French francs, from the years
1949 through 1966. The data for this problem is given in Chatterjee
and Price ([14], p. 152).

b = Imports
a1 = 1, an n-column of 1�s
a2 = Domestic production
a3 = Stock formation
a4 = Domestic consumption

Statistically, this model is not well specified. The solution of this
problem gives a negative value to x1, the coefficient of a2. The reason
is that the problem has collinear data. In other words, matrix A is
badly conditioned. It means that one or more of the columns of matrix
A are mildly dependent on the others.

This example is solved again as Example 17.5 in Section 17.11,
using the Ridge equation.

1.2.7 Factors affecting gross national products

This example displays case of strong multicollinearity. The
gross national products for 49 countries were presented as a function
of six socioeconomic factors. The data for this problem is given in
Gunst and Mason ([16], Appendix A, p. 358).

b = Gross national products

© 2008 by Taylor & Francis Group, LLC

Section 17.8. The problem discusses the factors of domestic

10 Numerical Linear Approximation in C

a1 = Infant dearth rate
a2 = Physician/population ratio
a3 = Population density
a4 = Density as a function of agricultural land area
a5 = Literacy measure
a6 = An index of higher education

The results of this data indicate a strong multicollinearity
(dependence) between the population density and density as a
function of agricultural land area (columns a3 and a4).

Mason and Gunst ([16], pp. 253-259) solved this example and
gave the results for few options, of which we report the following:
(1) They obtained the least squares solution for the full data by

ignoring the strong multicollinearity (dependence) between a3
and a4, and as a result, matrix (ATA) is nearly singular.

(2) They used a Ridge technique (Section 17.11) to overcome the
near singularity of matrix (ATA); reasonable results were
obtained.

(3) Two points that influenced the outcome of the results were
deleted. These two points were outliers (odd points) and their
influences masked one another in one of the statistical tests.
When these two points were deleted from the data, satisfactory

Once more, solving this example in the L1 sense instead of the
least squares sense would resolve the issue of the odd points.

1.3 Applications to industry

1.3.1 Windmill generating electricity

A research engineer was investigating the use of a windmill to
generate DC (direct current) electricity. The data is the DC output vs.
wind velocity and is given in Montgomery and Peck ([21], p. 92). The
suggested model was

(1.3.1) x11 + x2V = DC

where DC is the current output, 1 is an n-column of 1�s and V is the
wind velocity.

© 2008 by Taylor & Francis Group, LLC

results for certain estimates were obtained. See Mason and
Gunst [20].

Chapter 1: Applications of Linear Approximation 11

Inspection of the plot of DC (the y-axis) and V (the x-axis)
suggests that as the velocity of the wind increases, the DC output
approaches an upper limit and the linear model of (1.3.1) is not
suitable.

A quadratic model (inverted parabola) was then suggested,
namely

x01 + x1V + x2V2 = DC

However, this model is also not suitable because the inverted parabola
will eventually reach a maximum point and will bend downwards.

A third model was suggested which is

x01 + x1V' = DC

Here, V' = (1/V). A plot of DC (y-axis) and V' (x-axis) is a straight
line with negative slope and it seems more appropriate.

1.3.2 A chemical process

This example displays a case of severe multicollinearity. This
example concerns the percentage of conversion of n-Heptane to
acetylene P. It is given in Montgomery and Peck ([21], pp. 311, 312).
There are three main factors; reactor temperature T, ratio of H2 to
n-Heptane H and contact time C. Data is collected for 16
observations. The given model is quadratic, as follows

(1.3.2) P = x01 + x1T + x2H + x3C + x4TH + x5TC + x6HC
+ x7T2 + x8H2 + x9C2

That is, in (1.3.2), b = P, a1 = 1, a2 = T, a3 = H, �, etc. TH
means each element of T is multiplied by the corresponding element
of H. Similarly, T2 means each element of T is squared, etc. In this
example, matrix A is highly ill-conditioned, or one says, there is
severe multicollinearity due to strong near linear dependency in the
data. Column a2 = T is highly interrelated with a4 = C, the longer the
time of operation, the higher is the temperature. There are also
quadratic terms and cross product terms.

Model (1.3.2) was replaced by 5 other models which are 5 subsets
of (1.3.2). We cite two of them here: (a) Linear model, where the first
4 columns of A are kept and the other 6 columns were eliminated and
(b) All the columns with C were eliminated and the equation is full

© 2008 by Taylor & Francis Group, LLC

12 Numerical Linear Approximation in C

quadratic in T and H only. The first model still maintains
multicollinearity. The second model appears more satisfactory, since
the causes of ill-conditioning of matrix A are eliminated. This
problem is studied further in Example 17.6 of Section 17.11, using the
Ridge equation.

1.4 Applications to digital images

1.4.1 Smoothing of random noise in digital images

Digital images are usually corrupted by random noise. A gray
level image may be enhanced by a smoothing operation. Each pixel in
the image is replaced by the average of the pixel values of all the
pixels inside a square window or a mask centered at the pixel. Let the
window be of size L by L, where L is an odd integer.

We show here that the smoothing operation is equivalent to fitting
a plane in the least squares sense to all the pixels in the window. The
ordinate of the fitting plane at the centre of the window is the new
pixel value in the enhanced image, which equals the average of the
pixel values inside the window.

This idea was given first by Graham [15] and was rediscovered
later by Haralick and Watson [17]. We present here this idea and
elaborate on it.

Let N = L2 be the number of pixels inside the window. Let us take
N = 9, i.e., L = 3. Let the coordinate of the pixel at hand be (0, 0). Let
the pixels around the centre have coordinates as shown in Figure 1-1.
Let these pixels be labeled 1 to 9 as shown in Figure 1-2.

→ j
↓ (�1, �1) (�1, 0) (�1, 1)
i (0, �1) (0, 0) (0, 1)

(1, �1) (1, 0) (1, 1)
Figure 1-1: Relative coordinates of pixels inside a 3 by 3 window

1 2 3
4 5 6
7 8 9

Figure 1-2: Pixel labels inside the 3 by 3 window

© 2008 by Taylor & Francis Group, LLC

Chapter 1: Applications of Linear Approximation 13

 Let the pixel values inside the window be given by zk,
k = 1, 2, �, 9 and let the fitting plane for the pixels be

(1.4.1) x11 + x2i + x3j = z

where 1 is an 9-column of 1�s, i and j are the coordinates of the pixels,
and x1, x2 and x3 are to be calculated. By substituting the pixel
coordinates from Figures 1.1 and 1.2, into (1.4.1) we get the equation

(1.4.2) Ax = z

which is

The least squares solution of this equation is obtained by solving
the so-called normal equation to equation (1.4.2), which is obtained
by pre-multiplying equation (1.4.2) by AT, the transpose of A
(equation (17.2.3)), namely (ATAx = ATz), which gives

where

Z1 = (z1 + z2 + � + z9)
Z2 = (�z1 � z2 � z3 + z7 + z8 + z9)
Z3 = (�z1 + z3 � z4 + z6 � z7 + z9)

1 1� 1�
1 1� 0
1 1� 1
1 0 1�
1 0 0
1 0 1
1 1 1�
1 1 0
1 1 1

x1

x2

x3

z1

z2

z3

z4

z5

z6

z7

z8

z9

=

9 0 0
0 6 0
0 0 6

x1

x2

x3

Z1

Z2

Z3

=

© 2008 by Taylor & Francis Group, LLC

14 Numerical Linear Approximation in C

From equation (1.4.1), x1 is the value at the centre of the window,
(0, 0), which is

or for any other size of window N = L2

The obtained result proves the argument concerning smoothing of
random noise in digital images.

Smoothing random noise by applying non-square masks, such as
pentagonal and hexagonal windows were suggested by Nagao and
Matsuyama [22]. Such operations are explained in a similar manner to
the above in [3].

1.4.2 Filtering of impulse noise in digital images

Another type of noise that contaminates a gray level digital image
is the impulse noise known as salt and/or pepper noise. The noisy
image, in this case, has white and/or black dots, investing the whole
image. Filtering the impulse noise may be done by applying a simple
technique using L1 approximation. The noise salt and pepper dots are
identified as follows. If the gray level intensity of the image be
measured from 0 to 256. A white (salt) noise pixel has the intensity
zero and a black (pepper) noise pixel has the intensity 256.

The L1 approximation has an interesting property that the L1
approximating curve to a given point set interpolates (passes through)
a number of points of the given point set. The number of interpolated
points equals at least the number of the unknown parameters of the
approximating curve. As a result, the L1 approximation of a given
point set that contains an odd (wild) point, almost entirely ignores the
odd point. See Figure 2-1. Each of the salt and the pepper points in the
gray image is an odd or a wild point.

Let us have a set of three points in the x-y plane of which the
middle point is a wild point. Let us fit the straight line y = a1 + a2x in

zk 9⁄
k 1=

9

∑

zk N⁄
k 1=

N

∑

© 2008 by Taylor & Francis Group, LLC

Chapter 1: Applications of Linear Approximation 15

the L1 norm to these three points. According to the property described
above, the best fit in the L1 norm would be the straight line that
interpolates the first and the third points. In this case, the
approximated y value on the straight line of the middle (wild) point
= (y1 + y3)/2, where y1 and y3 are the y-coordinates of the first and
third points respectively. This idea is now utilized to filter the impulse
noise corrupting a digital gray level image.

Let the image in the x-y plane be of size N by M pixels. We first
scan the digital noisy image horizontally, one row at a time and
identify the impulse noise pixels (that have gray intensity zero or
256). We scan the image from row 1 to row N, starting from the
second pixel to the last pixel but one in each row. A horizontal
window of size 1 by 3 is centered at each noise pixel. Let the three
pixel values inside the window be denoted in succession by
z1, z2 and z3. An L1 fit of the three pixel values would interpolate
pixels 1 and 3 of the window. The approximated pixel value of the
middle (noise) pixel would be z2 = (z1 + z3)/2. This would filter the
impulse noise pixel.

At the end of this process, the noisy image is only partially filtered
as the impulse noise pixels may not all be removed. Any two adjacent
white pixels or any two adjacent black pixels in any row would not be
filtered.

We then reapply the same process to the partially filtered image in
a column-wise manner. At the end of the second process, most of the
impulse noise pixels are filtered. Experimental results [3] show that
this technique is powerful in filtering impulse noise.

1.4.3 Applications to pattern classification

We solve here overdetermined systems of linear inequalities. This
problem is discussed in detail in Chapter 16. We describe it here for
completion. Given is a class A of s patterns and a class B of t patterns,
where each pattern is a point in an m-dimensional Euclidean space.
Let n = (s + t). Usually n >> m.

It is required to find a surface in the m-dimensional space such
that all points of class A be on one side of this surface and all points of
class B be on the other side of the surface. Let the equation of this
separating surface be

© 2008 by Taylor & Francis Group, LLC

16 Numerical Linear Approximation in C

a1φ1(x) + a2φ2(x) + � + am+1φm+1(x) = 0

where a = (a1, a2, � am+1)T is a vector of parameters or weights to be
calculated and {φ1(x), φ2(x), �, φm+1(x)} is a set of linearly
independent functions to be specified according to the geometry of the
problem. Following Tou and Gonzalez ([25], pp. 40-41, 48-49), a
decision function d(x) of the form

d(x) = a1φ1(x) + a2φ2(x) + � + am+1φm+1(x)

is established. This function has the property that

(1.4.3a) d(xi) < 0, xi ∈ A

(1.4.3b) d(xi) > 0, xi ∈ B

By multiplying the first set of inequalities by a �ve signs, we get

(1.4.3c) �d(xi) > 0, xi ∈ A

The problem may now be posed as follows. Using (1.4.3c) and
(1.4.3b), let C be an n by (m + 1) matrix whose ith row Ci is

Ci = (�φ1(xi), �φ2(xi), �, �φm(xi), �φm+1(x)), 1 ≤ i ≤ s

and

Ci = (φ1(xi), φ2(xi), �, φm(xi), φm+1(x)), (s + 1) ≤ i ≤ n

It is required to calculate the elements of the (m + 1)-vector a that
satisfies the inequalities

Ca > 0

We now have a system of linear inequalities and is solved by linear
one-sided approximation algorithms [2]. See Chapter 16.

1.4.4 Restoring images with missing high-frequency
components

We solve here a constrained underdetermined system of linear
equations. Let the algebraic image restoration problem in the
one-dimension case be defined by the system of linear equations

(1.4.4) Ax = b

where A is the discrete Fourier transform low-pass filter matrix and b

© 2008 by Taylor & Francis Group, LLC

Chapter 1: Applications of Linear Approximation 17

is the observed image vector. Matrix A is an N by L matrix, N ≥ L.
Equation (1.4.4) is an inconsistent equation and thus has no exact

solution as vector b is often contaminated with noise. By inconsistent,
we mean rank(A|b) > rank(A). It is made consistent by pre-
multiplying it by matrix AT the transpose of A. We get

(1.4.5) ATAx = ATb

This equation may be written as

Cx = c

where C = (ATA) and c = (ATb).
If matrix A is of rank L, equation (1.4.5) is the normal equation

and its solution is the least squares solution of Ax = b and is given by
x = (ATA)�1ATb (Chapter 17).

However, in general, matrix A is a rank deficient matrix and is of
rank k, k ≤ L. As a result, matrix (ATA) is singular and has no inverse.
In other words, system (1.4.5) or equation Cx = c has k ≤ L linearly
independent equations and (L � k) redundant equations. Let these k
linearly independent equations be given by (see also equation (1.4.13)

(1.4.5a) C(k)x = c(k)

which is an underdetermined system of k equations in L unknowns.
One may obtain equation (1.4.5a) from equation Cx = c by

applying Gauss-Jordan elimination steps (Section 4.6) to matrix C and
its updates with partial pivoting. Since C = (ATA) is symmetric
positive semi-definite, one may pivot on the diagonal elements of
matrix C and its updates and exchange (permute) the equations of
Cx = c and the columns of C. After k ≤ L steps, the pivot elements
become small enough and would be replaced by 0�s. We thus get the k
linearly independent equations (1.4.5a).

The physical problem identifies the solution vector x of (1.4.5a) as
having non-negative and bounded elements

(1.4.6) 0 ≤ xi ≤ xmax, i = 1, 2, �, L

The underdetermined system (1.4.5a) may now be solved by
minimizing its solution vector x in the L1 norm subject to the
constraints (1.4.6). This problem is known as the minimum fuel
problem for discrete linear admissible control systems and it is

© 2008 by Taylor & Francis Group, LLC

in Section 1.4.7)

18 Numerical Linear Approximation in C

solved in [9] by the algorithm described in Chapter 21.
One may also solve equation (1.4.5a) subject to the constraints

(1.4.6) in the least squares sense (L2 norm) [1]. This problem is
known as the minimum energy problem for discrete linear
admissible control systems and it is solved by the algorithm

It was found, however, that solving equation (1.4.5a) in the L1
norm subject to the constraints (1.4.6) is much faster than obtaining
the solution in the L2 norm [10].

1.4.5 De-blurring digital images using the Ridge equation

In the linear model for image restoration of digital images, the
problem is described by the Fredholm integral equation of the first
kind (Chapter 19). The discretization of this equation gives a system
of linear equations of the form

(1.4.7) [H]f = g

where g is a stacked real m-vector representing the known or given
degraded (blurred) image, f is a stacked real n-vector representing the
unknown or un-degraded image. [H] is an n by m real matrix.

If the degraded image g is represented by an I by J matrix,
n = I × J. Also, if the unknown un-degraded image f is represented by
a K by L matrix, m = K × L. Without loss of generality, we assume
that n ≥ m.

It is common to solve equation (1.4.7) in the least squares sense.
However, this equation is ill-posed in the sense that small error in
vector g may cause large error in the solution vector f. A successful
technique for overcoming the ill-posedness of equation (1.4.7) is to
regularize or dampen its least squares solution. This method is also
known as the Ridge technique (Section 17.11). Variations of the
Ridge equation were given by some authors, such as Phillips [23].

The dampened least squares solution to system (1.4.7) is obtained
from the normal equation

(1.4.8) ([H]T[H] + ε[I])f = [H]Tg

[H]T is the transpose of [H] and [I] is an m-unit matrix. The parameter
ε, 0 ≤ ε ≤ 1, is known as the regularization parameter. Adding the
term ε[I] in the above equation results in adding the positive quantity

© 2008 by Taylor & Francis Group, LLC

described in Chapter 23. See Section 1.4.7.

Chapter 1: Applications of Linear Approximation 19

ε to each of the diagonal elements of [H]T[H] which are themselves
non-negative and real. Also it means adding the positive quantity ε to
each of the eigenvalues of [H]T[H].

Hence, assuming that the matrix on the l.h.s. of (1.4.8) is
non-singular, an approximate solution to (1.4.8) is given by

f = ([H]T[H] + ε[I])�1[H]Tg

The parameter ε is increased or decreased, and a new solution is
calculated each time. This is usually done a few times until a visually
acceptable solution is obtained. The cost of these repeated solutions in
terms of computation time is prohibitive if the problem is to be solved
from scratch each time. However, in this problem, the regularization
parameter for the best or near-best solution may be obtained by an
inverse interpolation method. This is explained in detail in [8]. The
inverse interpolation method is described by Ralston ([24], p. 657).

1.4.6 De-blurring images using truncated eigensystem

As in the previous example, in the linear model for image
restoration of digital images, the problem is described by the
Fredholm integral equation of the first kind. The discretization of this
equation gives a system of linear equations of the form

(1.4.9) [H]f = g

The definitions and the dimensions of matrix [H] and vectors g
and f are exactly as are given at the beginning of the previous
example. We consider here the case where matrix [H] is the
discretization of the so-called space-invariant point-spread function
(SIPSF).

Equation (1.4.9) is ill-posed in the sense that small changes in
vector g result in large changes in the solution vector f. There are two
main approaches for obtaining a numerically stable and physically
acceptable solution to this equation, using direct (non-iterative)
methods. The first approach is demonstrated by the Ridge technique
described in Section 1.4.5.

The second approach is the technique of a truncated singular value
decomposition (SVD � Chapter 17), or truncated eigensystem of
matrix [H]. A major drawback to using the SVD expansion is the high
cost in terms of the number of arithmetic operations of computing the

© 2008 by Taylor & Francis Group, LLC

20 Numerical Linear Approximation in C

singular value system, especially for large size matrices.
However, in this example, an efficient method is used since matrix

[H] has a structure similar to that of the so-called circulant matrix.
Circulant matrices have special properties [13]. Hence, [H] may be
replaced by its approximate circulant matrix. As a result, the border
regions are the only regions in the unknown image that are affected.
The obtained system of linear equations may be solved efficiently by
using the Fast Fourier Transform (FFT) techniques. See for example,

Matrix [H] in (1.4.9) should be a square and symmetric one, so as
to have real eigenvalues. If [H] is not square and symmetric, we
pre-multiply (1.4.9) by [H]T, and get a square symmetric coefficient
matrix of the equation [H]T[H]f = [H]Tg.

Without loss of generality, we assume that the coefficient matrix
in (1.4.9) is m by m and symmetric. We now replace matrix [H] in
(1.4.9) by its approximate circulant matrix, denoted by [Hc]. We get

[Hc]f = g

Once more, following the approach of Baker et al. [12], matrix
[Hc] may be approximated by another circulant matrix of smaller rank
r. This is done by retaining the largest r diagonal elements in absolute
value, in the eigensystem of [Hc], r ≤ m, and replacing the remaining
(m � r) diagonal elements by 0�s. Hence, this is called the truncated
eigensystem technique.

A method for finding out the optimum value of the rank r of
matrix [Hc] is described in detail in [7]. Also in [7], analysis is
provided for the case when the point-spread function is
spatially-separable. That is, matrix [Hc] may be written in the form
[Hc] = [A]⊗[B], where ⊗ is the Kronecker product operator.

We note here that some experimentation was done with a
truncated LU factorization for restoring blurred images [5]. However,
results were not as successful as with the truncated eigensystem
technique.

1.4.7 De-blurring images using quadratic programming

As in the previous two examples, in the linear model for image
restoration of digital images, the problem is described by the

© 2008 by Taylor & Francis Group, LLC

Andrews and Hunt ([11], Chapter 8).

Chapter 1: Applications of Linear Approximation 21

Fredholm integral equation of the first kind. The discretization of this
equation gives a system of linear equations of the form

(1.4.10) [H]f = g

The definitions and the dimensions of matrix [H] and vectors g
and f are exactly as those given in the previous two examples.
However, in this example, for a realistic solution, equation (1.4.10) is
solved under the conditions that the elements of vector f satisfy

(1.4.11) 0 ≤ fj ≤ fmax

where fmax is a specified pixel value, usually equal to 256.
Equation (1.4.10) is ill-posed. As in the previous example, the

ill-posedness of equation (1.4.10) is dealt with by one of two ways.
The first is by a dampening technique such as that demonstrated by
the Ridge technique described in Section 1.4.5. The second approach
is by using a rank reduction technique to matrix [H] or equivalently to
matrix [H]T[H]. One way of doing this is to use a truncated
eigensystem of matrix [H], as demonstrated by the previous example.
In this method, we apply another rank reduction technique to matrix
[H]T[H]. That is besides taking into account the physical conditions
(1.4.11).

To start, convert system (1.4.10) to a consistent system of linear
equations by pre-multiplying by [H]T. We get

(1.4.12) [H]T[H]f = [H]Tg

Let [D] = [H]T[H] and b = [H]Tg. Then (1.4.12) becomes

(1.4.13) [D]f = b

Assume the m by m matrix [H] in (1.4.12) is of rank r. Then
system (1.4.13) has r linearly independent equations and (m � r)
dependent (redundant) equations.

Assume that the equations in (1.4.13) are permuted such that the
first r equations are linearly independent and the last (m � r) are the
linearly dependent equations. Let the first r equations be given by

(1.4.14) [C]f = p

where [C] is an r by m matrix r ≤ m, and p is an r-vector. Equation
(1.4.14) is a consistent underdetermined system of linear equations
and thus the residual r = [C]f � p = 0 and it has an infinite number of

© 2008 by Taylor & Francis Group, LLC

22 Numerical Linear Approximation in C

solutions (Chapter 4).
In order to obtain a unique least squares solution, the problem is

formulated as find f that minimizes (f, f), subject to the condition
[C]f � p = 0. This is known as the minimal length least squares
solution of (1.4.14) (Theorem 17.3).

Let us now take condition (1.4.11) into account. Let

ai = fi/fmax, i = 1, 2, �, m

and

dj = pj/fmax, j = 1, 2, �, r

where ai and dj are the elements of vectors a and d respectively.
This problem is now formulated as a quadratic programming

problem with bounded variables, as follows

minimize aTa

subject to

0 ≤ ai ≤ 1, i = 1, 2, �, m

and

[C]a = d

As in Section 1.4.4, this problem is also known as the Minimum
energy problem for discrete linear admissible control systems
(Chapter 23). In the current example, for estimating the rank r of
system [C]a =d, which gives a best or near-best solution, we may use
a special technique, based on the knowledge of the unbiased estimate
of the variance and the mean of the noise in the blurred image. The
detail of this method is given in [6].

The above cited applications are a small fraction of those in the
field of linear approximation. The author also applied linear
approximation to segmentation of 3-D range images [4, 19] and
similar problems.

© 2008 by Taylor & Francis Group, LLC

Chapter 1: Applications of Linear Approximation 23

References

1. Abdelmalek, N.N., Restoration of images with missing
high-frequency components using quadratic programming,
Applied Optics, 22(1983)2182-2188.

2. Abdelmalek, N.N., Linear one-sided approximation algo-
rithms for the solution of overdetermined systems of linear
inequalities, International Journal of Systems Science,
15(1984)1-8.

3. Abdelmalek, N.N., Noise filtering in digital images and
approximation theory, Pattern Recognition, 19(1986)417-424.

4. Abdelmalek, N.N., Heuristic procedure for segmentation of
3-D range images, International Journal of Systems Science,
21(1990)225-239.

5. Abdelmalek, N.N. and Kasvand, T., Image restoration by
Gauss LU decomposition, Applied Optics, 18(1979)1684-
1686.

6. Abdelmalek, N.N. and Kasvand, T., Digital image restoration
using quadratic programming, Applied Optics, 19(1980)3407-
3415.

7. Abdelmalek, N.N., Kasvand, T. and Croteau, J.P., Image
restoration for space invariant pointspread functions, Applied
Optics, 19(1980)1184-1189.

8. Abdelmalek, N.N., Kasvand, T., Olmstead, J. and Tremblay,
M.M., Direct algorithm for digital image restoration, Applied
Optics, 20(1981)4227-4233.

9. Abdelmalek, N.N. and Otsu, N., Restoration of Images with
missing high-frequency components by minimizing the L1
norm of the solution vector, Applied Optics, 24(1985)1415-
1420.

10. Abdelmalek, N.N. and Otsu, N., Speed comparison among
methods for restoring signals with missing high-frequency
components using two different low-pass-filter matrix
dimensions, Optics Letters, 10(1985)372-374.

11. Andrews, H.C. and Hunt, B.R., Digital Image Restoration,
Prentice-Hall, Englewood Cliffs, NJ, 1977.

© 2008 by Taylor & Francis Group, LLC

24 Numerical Linear Approximation in C

12. Baker, C.T.H., Fox, L., Mayers, D.F. and Wright, K.,
Numerical solution of Fredholm integral equations of the first
kind, Computer Journal, 7(1964)141-148.

13. Bellman, R., Introduction to Matrix Analysis, McGraw-Hill,
New York, 1970.

14. Chatterjee, S. and Price, B., Regression Analysis by Example,
John Wiley & Sons, New York, 1977.

15. Graham, R.E., Snow removal � A noise-stripping process for
picture signals, IEEE Transactions on Information Theory,
IT-8(1962)129-144.

16. Gunst, R.F. and Mason, R.L., Regression Analysis and its
Application: A Data Oriented Approach, Marcel Dekker, Inc.,
New York, 1980.

17. Haralick, M.R. and Watson, L., A facet model for image data,
Computer Graphics and Image Processing, 15(1981)113-129.

18. Kleinbaum, D.G., Kupper, L.L. and Muller, K.E., Applied
Regression Analysis and Other Multivariate Methods, Second
Edition, PWS-Kent Publishing Company, Boston, 1988.

19. Kurita, T. and Abdelmalek, N.N., An edge based approach for
the segmentation of 3-D range images of small industrial-
like objects, International Journal of Systems Science,
23(1992)1449-1461.

20. Mason, R.L. and Gunst, R.F., Outlier-induced collinearities,
Technometrics, 27(1985)401-407.

21. Montgomery, D.C. and Peck, E.A., Introduction to Linear
Regression Analysis, John Wiley & Sons, New York, 1992.

22. Nagao, M. and Matsuyama, T., Edge preserving smoothing,
Computer Graphics and Image Processing, 9(1979)394-407.

23. Phillips, D.L., A technique for the numerical solution of
certain integral equations, Journal of ACM, 9(1962)84-97.

24. Ralston, A., A First Course in Numerical Analysis,
McGraw-Hill, New York, 1965.

25. Tou, J.L. and Gonzalez, R.C., Pattern Recognition Principles,
Addison-Wesley, Reading, MA, 1974.

26. Weisberg, S., Applied Linear Regression, John Wiley & Sons,
Second Edition, New York, 1985.

© 2008 by Taylor & Francis Group, LLC

25

Chapter 2

Preliminaries

2.1 Introduction

Each algorithm described in this book is implemented by a C
function that typically has several child functions to perform sub-tasks
in the computation. Every algorithm is accompanied by a driver
function that provides examples of how to use the algorithm. All code
is provided at the end of each chapter.

For naming convention, algorithm and child function names are
prefixed with �LA_� (for Linear Approximation) and driver function
names are prefixed with �DR_�. Source file naming follows a similar
convention. For example, the Linear L1 approximation algorithm
(Chapter 5) is implemented by LA_L1() and its child functions, all of
which are in the source file LA_L1.c. Similarly, DR_L1() is in the
source file DR_L1.c. For ease of use, the header file hierarchy is kept
to a minimum. An application that exercises these algorithms must
include the header file LA_Prototypes.h to access all the algorithms.

In this book, we adopt vector-matrix notation and use bold letters
for vectors and matrices. In this chapter, we discuss the following
issues:
(1) To start with, we show that the discrete linear approximation

in a certain residual (error) norm is equivalent to the solution
of an overdetermined system of linear equations in the same
norm [1, 2].

(2) A comparison is made between approximation in the 3 main
residual norms, the L1, the L2 and the L∞, using a simple
practical example. We also describe some main properties
concerning the L1 and the L∞ approximations.

© 2008 by Taylor & Francis Group, LLC

26 Numerical Linear Approximation in C

(3) In dealing with approximation problems using digital
computers with finite word length, we have to specify
tolerance parameters to account for round-off error. The
values of the tolerance parameters are set according to the
word lengths of single- and double-precision numbers.

(4) The C implementation of vectors and matrices in this book
facilitates array indexing from 1 to n, instead of from
0 to (n � 1), the latter being the convention in C. This allows
indexing, such as that found in �for� loops (�DO� loops in
FORTRAN), to match the mathematical convention used to
describe the algorithms. The algorithms dynamically allocate
vectors and matrices according to the size of the data passed to
them, then relinquish that memory upon termination.

(5) Outlier, spikes, wild or odd points in a given data are
identified and some methods of dealing with them are
described.

2.2 Discrete linear approximation and solution of
overdetermined linear equations

To clarify the relationship between discrete linear approximation
and the solution of overdetermined systems of linear equations,
consider the following example.

Let us have the set of 8 points in the x-y plane: (1, 2), (2, 2.5),
(3, 2), (4, 6.5), (5, 3.5), (6, 4.5), (7, 6), (8, 7). It is required to
approximate this discrete set of points by the vertical parabola

(2.2.1) y = a1 + a2x + a3x2

where a1, a2 and a3 are unknowns to be calculated. If we substitute the
8 given points in equation (2.2.1), we get

a1 + a2 + a3 = 2
a1 + 2a2 + 4a3 = 2.5
a1 + 3a2 + 9a3 = 2

(2.2.2) a1 + 4a2 + 16a3 = 6.5
a1 + 5a2 + 25a3 = 3.5
a1 + 6a2 + 36a3 = 4.5
a1 + 7a2 + 49a3 = 6
a1 + 8a2 + 64a3 = 7

© 2008 by Taylor & Francis Group, LLC

Chapter 2: Preliminaries 27

In vector-matrix form, the set of equations in (2.2.2) is written as

(2.2.3) Ca = f

C is the matrix on the l.h.s. of (2.2.2), a is the solution vector and f is
the vector on the right hand side r.h.s., as in

This set of 8 equations in the 3 the unknowns (a1, a2, a3) has no
exact solution and can only be solved approximately. The
approximate solution is done with respect to a certain measure or
norm of the error vector. The error, or the residual vector, is the
difference between the l.h.s. and the r.h.s. in (2.2.3)

r = Ca � f

As indicated in Chapter 1, the (approximate) solution vector a of
problem (2.2.2) or (2.2.3) requires that the norm of vector r be as
small as possible. The p-measure or p-norm of vector r, is denoted by
Lp or by ||r||p and is given by

, 1 ≤ p ≤ ∞

where n is the number of elements of vector r.
Let r = (r(xi)), where r(xi) are the elements of vector r. In (2.2.2) it

is given by

r(xi) = a1 + a2xi + a3xi
2 � yi, i = 1, 2, �, n

Then for p = 1, the approximate solution of (2.2.2) or (2.2.3) requires
that the norm z

1 1 1
1 2 4
1 3 9
1 4 16
1 5 25
1 6 36
1 7 49
1 8 64

a1

a2

a3

2
2.5
2

6.5
3.5
4.5
6
7

=

z r p r xi() p

i 1=

n

∑
1/p

==

© 2008 by Taylor & Francis Group, LLC

28 Numerical Linear Approximation in C

be as small as possible, where for this example n = 8. We call the
obtained (approximate) solution vector a, the L1 solution of system
(2.2.2).

For p = 2, the approximate solution of (2.2.2) require function z be
as small as possible

The obtained solution vector a is the L2 or the least squares solution
of system (2.2.2).

For p = ∞, we require that

z = max|r(xi)| = max|a1 + a2 xi + a3 xi
2 � yi|, i = 1, 2, �, n

be as small as possible. We call the solution vector a the Chebyshev,
the L∞, or the minimax solution to system (2.2.2) or (2.2.3).

Now consider the following two problems and assume that all the
functions are real valued.

Problem (a)

Let f(x) be a given function defined on a finite subset
X = {x1, x2, �, xn} of an interval I on the real line. Let the set of
arbitrary linearly independent continuous functions {φ1(x), φ2(x), �,
φm(x)}, m < n, be defined on I. We define the polynomial
P(a1, a2, �, am, x) as

(2.2.4) P(a1, a2, �, am, x) = a1φ1(x) + � + amφm(x)

or simply the function P(a, x), where a denotes the parameter vector
(a1, �, am)T in the Em space. By comparing (2.2.4) and (2.2.1),
φ1(x) = 1, an n-vector of 1�s, φ2(x) = x and φ3(x) = x2.

The linear L1 approximation problem for f(x) on X is to determine
vector a that minimizes the function

z r xi()
i 1=

n

∑ a1 a2xi a3xi
2 yi�+ +

i 1=

n

∑= =

z sqrt r xi()[]2

i 1=

n

∑ sqrt a1 a2xi a3xi
2 yi�+ +[]

2

i 1=

n

∑= =

© 2008 by Taylor & Francis Group, LLC

Chapter 2: Preliminaries 29

where the residuals r(xi) are given by

(2.2.5) r(xi) = P(a, xi) � f(xi), i = 1, 2, �, n

The linear L2 or the linear least squares approximation problem
for f(x) on X is to determine vector a that minimizes the function

The linear Chebyshev, L∞ or minimax approximation problem for
f(x) on X is to determine vector a that minimizes the function

z = max|r(xi)|, i = 1, 2, �, n

Problem (b)

Consider now the overdetermined system of linear equations

c11a1 + c12a2 + � + c1mam = f1
(2.2.6) � � �

cn1a1 + cn2a2 + � + cnmam = fn

where C = (cij) is an n by m constant matrix of rank m, m < n, and
f = (fi) and a = (ai) are n- and m-vectors in the Euclidean m- and
n-spaces respectively.

The linear L1 solution to system (2.2.6) is to determine vector a
that minimizes the function

where

(2.2.7) ri = ci1a1 + � + cimam � fi, i = 1, 2, �, n

In the same manner, the L2 and the L∞ approximations for the system
of linear equations (2.2.6) are defined.

The symbols used for problem (b) are chosen to match those of

z r xi()
i 1=

n

∑=

z sqrt r xi()[]2

i 1=

n

∑=

z ri
i 1=

n

∑=

© 2008 by Taylor & Francis Group, LLC

30 Numerical Linear Approximation in C

problem (a). In (2.2.6), f = (fi) and a = (ai) correspond to (f(xi)) and
(ai) of problem (a) respectively. Also, matrix C = (cij) corresponds to
(φj(xi)). Consequently (ri) of (2.2.7) corresponds to (r(xi)) of (2.2.5).

It is clear, as demonstrated, that problem (a) is equivalent to
problem (b); that is, the discrete linear approximation problem in a
certain norm is equivalent to the solution of an overdetermined system
of linear equations in the same norm. Throughout this book, the
above-mentioned 3 norms are used.

Note 2.1
The approximation for each of the 3 norms is called linear

because the residuals in (2.2.5) or in (2.2.7) depend linearly on the
solution vector a.

Note 2.2
In most algorithms in this book, we define the residuals r(xi), as in

(2.2.5), or ri, as in (2.2.7). In some algorithms, the residuals are
defined as the negative of the r.h.s. of (2.2.5) or (2.2.7). This choice is
arbitrary and does not affect the analysis of the algorithm. Hence, if
r = Ca � f, then Ca = f + r, and if r = f � Ca, then Ca = f � r.

Note 2.3
From now on, the expressions discrete linear approximation in a

certain norm and the solution of an overdetermined system of linear
equations in the same norm, would be used alternatively.

2.3 Comparison between the L1, the L2 and the L∞ norms by a
practical example

The motivation behind this section is summarized by the
following. Suppose we are given a set of experimental data points in
the x-y plane that contains spikes, odd or wild points. Let this data be
approximated by a curve in the Lp norm, where p ≥ 1.

It is known that the L1 norm is recommended over other norms for
fitting a curve to a data that contains odd or wild points [11]. We are
given the set of 8 points of Section 2.2, which contains the wild point
(4, 6.5). This set is approximated by vertical parabolas of the form
y = a1 + a2x + a3x2 in the L1, the L2 and the L∞ norms. The
parameters a1, a2 and a3 are calculated for each case. The results are
shown in Figure 2-1.

© 2008 by Taylor & Francis Group, LLC

Chapter 2: Preliminaries 31

We observe in this figure that the L1 approximation almost
entirely ignores the wild point (4, 6.5), while the L2 and especially the
L∞ approximation curves bend towards the wild point.

Barrodale [4] presented numerical evidence showing that the L1
approximation is superior to the L2 approximation for data that
contains some very inaccurate points. Rosen et al. [12], in a practical
application of signal identification, also illustrated the robustness of a
solution based on minimizing the L1 error norm over minimizing the
L2 error norm.

The wild point (4, 6.5) is called an outlier, since its residual in the
L1 approximation is very large, compared with the residuals of the
other points. As explained in the next section, the fitting curve in the
L1 norm passes through at least m points of the given set, where
m = rank(C). On the other hand, the Chebyshev approximation curve
bends towards the wild point since (m + 1) residuals in the L∞
approximation, have the same absolute maximum L∞ norm. The least
squares approximation curve also curves towards the wild point but
not as much as the Chebyshev approximation curve.

Figure 2-1: Curve fitting a set of 8 points, including a wild point, using
the L1, L2 and L∞ norms

In Figure 2-1, the solid curve is the L1 approximation. The dashed

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9

© 2008 by Taylor & Francis Group, LLC

32 Numerical Linear Approximation in C

curve is the L2 (least squares) approximation and the dotted curve is
the L∞ (Chebyshev) approximation.

2.3.1 Some characteristics of the L1 and the Chebyshev
approximations

(a) The L1 approximation

A main property is that the L1 approximation curve (see Figure
2-1) passes through m of the given points, where m is the number of
unknowns of the approximating curve. Here, y = a1 + a2x + a3x2,
m = 3. It passes through points 1, 6 and 8. This is known as the
interpolatory characteristic of the L1 approximation. This
property is explained further in Chapter 5. If the coefficient matrix in
(2.2.2) is of rank k, k < m, the fitting curve will pass through at least k
point. In fact, the interpolatory characteristic of the L1 approximation
results in making the L1 approximation curve be far away from the
wild point(s). See also Sposito et al. [14].

(b) The Chebyshev approximation

A main property of the Chebyshev approximation is that each of
the (m + 1) residuals for the given points equals ±z, where z is the
optimum Chebyshev norm and m is the number of unknowns of the
approximating curve, which equals 3 in this example. We observe in
Figure 2-1 that the 4 residuals for the points 3, 4, 5 and 8 are equal in
magnitude and oscillating in sign; that is, r3 = +z, r4 = �z, r5 = +z and
r8 = �z. This characteristic is known as the equioscillatory
characteristic of the Chebyshev approximation. This property will
be discussed further in Chapter 10.

2.4 Error tolerances in the calculation

Since the programs in this book are for linear approximation, two
tolerance parameters named �PREC� and �EPS� are specified in
LA_Defs.h.

PREC stands for precision, or the round-off error that occurs in
simple floating-point arithmetic operations [15]. Single-precision
(s.p.) floating-point numbers typically have a precision of around 6
decimal places. This means that the figure after the 6th decimal place

© 2008 by Taylor & Francis Group, LLC

Chapter 2: Preliminaries 33

is either truncated if it is < 5, or rounded up if it is ≥ 5. Hence, for s.p.
computation we set PREC = 1.0E�06.

EPS is the tolerance to be used during computation. A calculated
number x is considered to be 0 if |x| < EPS. For s.p. computation we
set EPS = 1.0E�04.

Double-precision (d.p.) floating-point numbers typically have a
precision of around 16 decimal places. Thus the figure after the 16th

decimal place is either truncated or rounded up. For d.p. computation
we set PREC = 1.0E�16 and EPS = 1.0E�11. See Section 4.7.1 for a
description of normalized floating-point representation.

The values of the parameters PRES and EPS are controlled by
conditional compile variable DOUBLE_PRECISION, which is used
to toggle PREC and EPS between single- and double-precision values.

The formats of s.p. and d.p numbers can vary between computer
systems, so the values of PREC and EPS need to be adjusted
accordingly.

Floating-point processors perform all simple arithmetic operations
in at-least double-precision (often higher than d.p.), regardless of
whether the result is stored in single- or double-precision.

All computation in our C implementation is performed in d.p. To
simulate s.p. computation, as indicated in several sample problems in
the book, we change PREC and EPS to s.p. values.

Note 2.4
Some programs in this book do not employ PREC, but all employ

EPS.

2.5 Representation of vectors and matrices in C

Arrays in C are zero-offset, or zero-origin, meaning that an array
of size n is indexed from [0] to [n � 1]). In FORTRAN (and the
mathematical convention of linear approximation), arrays are indexed
from [1] to [n]. In C, a vector v = (1, 2, 3, 4)T of length 4 is accessed
as v[0] = 1, v[1] = 2, v[2] = 3 and v[3] = 4, whereas in FORTAN (and
the mathematical notation), it is accessed as v[1] = 1, �, v[4] = 4.

In order to counteract the zero-origin nature of C, after memory
for a vector variable has been allocated (via malloc()), the pointer to
the memory is decremented to allow indexing to start from 1 instead
of 0. Statically-initialized vectors (used only for initial data in drivers)

© 2008 by Taylor & Francis Group, LLC

34 Numerical Linear Approximation in C

cannot have their pointers manipulated, so the value at the 0th index is
set to 0 and ignored, and data initialization is from indices [1] to [n]
such that v = (0, 1, 2, 3, 4)T, or v[1] = 1, � v[4] = 4. See also [8] and
[10].

An n by m matrix variable is allocated using similar pointer
manipulation such that it can be indexed from [1][1] to [n][m].
However, unlike statically-initialized vectors, statically-initialized
matrices (also used only for initial data in drivers) are not padded with
0 elements, as this would necessitate the entire first column and the
entire first row of each matrix to be set to 0�s. Instead, a
statically-initialized matrix, indexed from [0][0] to [n � 1][m � 1], is
copied to a dynamically-allocated matrix variable indexed from [1][1]
to [n][m].

LA_Utils.c contains a collection of utility functions for dynamic
allocation, deallocation, copying and printing of vector and matrix
data. See any driver function for examples of how these utilities are
used.

2.6 Outliers and dealing with them

In Section 2.2, we have given 8 data points, with one of them
being an odd point, or outlier. When the L1 approximation was used to
fit this data (Figure 2-1), the residual of the fourth point was much
larger than the residuals of the other 7 points, so we denoted this point
as an outlier. The L1 curve fitting almost entirely ignores the outliers.
As mentioned earlier, the reason is that in the L1 curve fitting, the
curve has to interpolate (passes through) at least k of the given points,
k is the rank of the coefficient matrix.

On the other hand, in the L∞ (Chebyshev) approximation for the
same data, (k + 1) residuals have the same absolute maximum value
and the curve bends towards this outlier. The L2 (the Least squares)
approximation also leans towards the outlier, not as much as the L∞
approximation curve. As a result, the identification of these outliers is
difficult as their residuals in the L2 norm have been made small.

Hence, for the L1 approximation, the fourth point of this data set is
an outlier, while for the L∞ approximation, this fourth point is not, and
thus the notion of outliers depends on the fitting strategy. Statisticians
mostly use the L2 (the Least squares) approximation for which an

© 2008 by Taylor & Francis Group, LLC

Chapter 2: Preliminaries 35

outlier has a larger residual, compared with the residuals of the other
points. They would like to use statistical measures to detect the
outliers and discard them before the curve fitting takes place.

It is important to detect outliers, but it is equally important to
realize that outliers should be discarded only if it is determined that
they are not valid data points. Outliers that are valid data points
usually suggest that the used model is incorrect. If the model is
correct, an outlier that is a valid point might be given a smaller weight
to suit the model. Deleting odd points as outliers from the data should
be done if their presence can be attributed to a provable error in the
data collection.

Ryan ([13], p. 408) gives an example of 10 data points that were
fitted by a least squares method, in which the last point was an outlier.
When using only the first 9 points, the residual estimator was reduced
by 50%. The last point caused high correlation (dependence) between
two of the columns of the coefficient matrix.

However, it is reasonable to discard the outlier that does not
suggest the unsuitability of the model. Consider the fourth point in
Figure 2-1. This point is not extreme in either its x-coordinate nor in
its y-coordinate, but it has an influence on the equation of the L2 and
the L∞ fit. In fact, when this outlier is removed, both the L2 and the L∞
curve fits for the remaining 7 points, almost coincide on the L1 curve

According to Ryan ([13], p. 350), there are 5 types of outliers:
(1) Regression outlier: a point that deviates from the rest of the

points or at least from the majority of them.
(2) Residual outlier: a point that has a large calculated residual,
(3) x-outlier: a point that is outlying in regards to the x-coordinate

only.
(4) y-outlier: a point that is outlying in regards to its y-coordinate

only.
(5) x- and y-outlier: a point that is outlying in both coordinates.

Each one of these types of outliers may severely distort the
coefficients of the approximating curve. These types of outliers may
also be detected by statistical tests, which are outside the scope of this
book. For statistical study of the problem, see for example, Belsley et
al. [5], Cook and Weisberg [6] and Ryan [13].

© 2008 by Taylor & Francis Group, LLC

fit (see an almost identical example in [3], p. 420).

36 Numerical Linear Approximation in C

2.6.1 Data editing and residual analysis

As suggested by Gunst and Mason [7], data screening before
approximation calculations may get rid of costly errors that computer
calculation may not detect. Because the approximating curve attempts
to fit all the data points, the residuals might all be large, while if one
or two odd points were eliminated before the calculation, that would
give a better fit with smaller residuals.

One of the easiest ways for spotting irregularities in a given data is
to visually scan the given data. Also, by routinely plotting the given
data, one may specify the approximating curve, would it be a straight
line or maybe better a quadratic, or a higher degree polynomial. By
plotting the given data points, one may distinguish the outlier in the
data and determine if it belongs to any one of the types described
above.

One important point when examining plots of data points is to
look at the overall trend of the data, not at small perturbations of few
points. In some problems, plotting the data points does not clearly
identify the pattern of the data. Eliminating the variability of the data
may be done by a smoothing technique. This results in enabling the
recognition of the trend of the data.

Gunst and Mason ([7], pp. 39-41) presented an example where
they did just that. Given is the raw data of a set of points; the y-value
of each data point (apart of the first and the last ones) is replaced by
the median of the y-values of three points. These are the point itself
and the points before and after it. This kind of smoothing technique
may be repeated once or twice. Even after smoothing, one should
examine the overall trend of the smoothed data rather than the
localized trends. Median smoothing is not the only type of smoothing
to reduce the variability of the raw data. Moving averages and
exponential smoothing have also been used effectively.

Residual analysis is an important task in the approximation of
given data. It means examining the differences between the residuals
of the scanned or the plotted given data and the calculated residuals
from the fitted curves. This kind of examination assists the detection
of large residuals such as those of the outliers. A certain pattern may
be observed and suggests actions to be taken, such as using a different
approximation equation, eliminating some points from, or adding

© 2008 by Taylor & Francis Group, LLC

Chapter 2: Preliminaries 37

other points to the data.
Montgomery and Peck ([9], pp. 74-79) suggest plotting the

residuals against the calculated values of y (or against x). If the plot
indicates that the residuals are contained in a horizontal band, then
there are no obvious model defects. Otherwise there might be
symptomatic model deficiencies. Also, the effect of outliers on the
fitting equation may be easily checked by dropping the outliers and
re-calculating the fitting equation again. If the coefficients of the
fitting equation are over sensitive to the removal of the outliers, then
the chosen fitting equation may not be suitable for the given data, or
that the outliers are to be removed to give a better fit for the remaining
data points.

References

1. Abdelmalek, N.N., Linear L1 approximation for a discrete
point set and L1 solutions of overdetermined linear equations,
Journal of ACM, 18(1971)41-47.

2. Abdelmalek, N.N., On the discrete L1 approximation and L1
solutions of overdetermined linear equations, Journal of
Approximation Theory, 11(1974)38-53.

3. Abdelmalek, N.N., Noise filtering in digital images and
approximation theory, Pattern Recognition, 19(1986)417-424.

4. Barrodale, I., L1 approximation and analysis of data, Applied
Statistics, 17(1968)51-57.

5. Belsley, D.A., Kuh, E. and Welch, R.E., Regression
Diagnostics Identifying Influential Data and Sources of
Collinearity, John Wiley & Sons, New York, 1980.

6. Cook, R.D. and Weisberg, S., Residuals and Influence in
Regression, Chapman-Hall, London, 1982.

7. Gunst, R.F. and Mason, R.L., Regression Analysis and its
Application: A Data Oriented Approach, Marcel Dekker, Inc.,
New York, 1980.

8. Lau, H.T., A Numerical Library in C for Scientists and
Engineers, CRC Press, Ann Arbor, 1995.

9. Montgomery, D.C. and Peck, E.A., Introduction to Linear
Regression Analysis, John Wiley & Sons, New York, 1992.

© 2008 by Taylor & Francis Group, LLC

38 Numerical Linear Approximation in C

10. Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling,
W.T., Numerical Recipes in C, The Art of Scientific
Computing, Second Edition, Cambridge University Press,
Cambridge, 1992.

11. Rice, J.R. and White, J.S., Norms for smoothing and
estimation, SIAM Review, 6(1964)243-256.

12. Rosen, J.B., Park, H. and Glick, J., Signal identification using
a least L1 norm algorithm, Optimization and Engineering,
1(2000)51-65.

13. Ryan, T.P., Modern Regression Methods, John Wiley & Sons,
New York, 1997.

14. Sposito, V.A., Kennedy, W.J. and Gentle, J.E., Useful
generalized properties of L1 estimators, Communications in
Statistics-Theory and Methods, A9(1980)1309-1315.

15. Wilkinson, J.H., Rounding Errors in Algebraic Processes,
Prentice-Hall, Englewood Cliffs, NJ, 1963.

© 2008 by Taylor & Francis Group, LLC

39

Chapter 3

Linear Programming and the Simplex Algorithm

3.1 Introduction

This chapter is a tutorial one. Its purpose is to introduce the reader
to the subject of Linear Programming, which is used as the main tool
for solving all the approximation problems in this book, with the
exception of some least squares approximation problems.

In general, linear programs deal with optimization problems in
real life, such as those found in industry, transportation, economics,
numerical analysis and other fields [6, 8, 10, 11].

A linear programming problem is an optimization problem in
which a linear function of a set of variables is to be maximized (or
minimized) subject to a set of linear constraints. It may be formulated
as follows.

Find the n variables x1, x2, �, xn that maximize the linear
function

(3.1.1) z = c1x1 + c2x2 + � + cnxn

subject to the m linear constraints (conditions)

a11x1 + a12x2 + � + a1nxn η1 b1
a21x1 + a22x2 + � + a2nxn η2 b2

(3.1.2) � � �
am1x1 + am2x2 + � + amnxn ηm bm

where ηi, i = 1, 2 �, m, is a ≤, ≥, or = sign. The following n
constraints are also specified

(3.1.3) x1 > 0, x2 > 0, �, xn > 0

The following is a common linear programming problem that

© 2008 by Taylor & Francis Group, LLC

40 Numerical Linear Approximation in C

occurs in industry. The so-called simplex method solves the problem
via Gauss-Jordan elimination processes.

Example 3.1

A firm has 3 workshops, one for parts, one for wiring and one for
testing. The firm produces 2 different products A and B. Each product
has to undergo an operation in each workshop consecutively.

One unit of product A requires 1, 1, and 2 hours in the 3
workshops respectively. One unit of product B requires 1, 3, and 1
hours in the 3 workshops respectively. The workshops are available
20, 50 and 30 hours per week respectively.

The profit in selling one unit of product A is $20 and in selling one
unit of product B is $30. What is the number of weekly output units x1
and x2 of products A and B respectively that will maximize profit?

The formulation of the problem is

maximize z = 20x1 + 30x2

subject to the constraints

x1 + x2 ≤ 20
(3.1.4) x1 + 3x2 ≤ 50

2x1 + x2 ≤ 30

and

(3.1.5) x1 ≥ 0 and x2 ≥ 0

Conditions (3.1.5) indicate that we cannot produce a negative number
of goods.

This problem has two independent variables x1 and x2 and may be
solved graphically. It is known that a straight line, say
ax1 + bx2 + c = 0, divides the Euclidean plane into two halves. The
quantity (ax1 + bx2 + c) < 0, in one half of the plane and
(ax1 + bx2 + c) > 0 in the other half.

The intersection of the five half planes satisfying the above five
inequalities (3.1.4) and (3.1.5) constitute the feasibility region for the
solution (x1, x2). For this problem, it is a polygonal region that has 5
sides and 5 corners as shown in Figure 3-1.

The value z = 20x1 + 30x2 defines a straight line that moves
parallel to itself as z increases or decreases. The maximum value of z,
zmax, will be obtained when this line touches the region of feasible

© 2008 by Taylor & Francis Group, LLC

Chapter 3: Linear Programming and the Simplex Algorithm 41

solution. That is when the line z = 20x1 + 30x2 passes through the
furthest corner of this region. The solution of the problem is (x1, x2) =
(5, 15) and zmax = 550, depicted in Figure 3-1.

Figure 3-1: Feasibility Region

In this example, the region of feasible solution has as boundaries
the lines given by the set of constraints (3.1.4) and (3.1.5). One vertex
(corner) of this region is the optimal solution. This result is always
true for any general linear programming problem with the number of
variables ≥ 2.

We see from this example that since all the functions in linear
programming problems are linear, the feasible region defined by
problem (3.1.1-3) is a convex set. Thus the linear programming
problem is convex. Again, the optimizer of linear programming must
lie on the boundary of the feasible region.

In this problem the solution is said to be feasible and unique.
However, there are some exceptional cases, which are discussed next.

3.1.1 Exceptional linear programming problems

Various possibilities may arise in linear programming problems.
A problem may have a unique solution, an infinite number of
solutions or no solution at all. In the last case, the problem may have

2x 1 + x 2 = 30

x 1 + 3x 2 = 50

20x 1 + 30x 2 = 550

x 1 + x 2 = 20

(5 , 15)

x 1

x 2

P

Q

20x 1 + 30x 2 = 0

30

2010

10

20

2x 1 + x 2 = 30

x 1 + 3x 2 = 50

20x 1 + 30x 2 = 550

x 1 + x 2 = 20

(5 , 15)

x 1

x 2

P

Q

20x 1 + 30x 2 = 0

30

2010

10

20

© 2008 by Taylor & Francis Group, LLC

42 Numerical Linear Approximation in C

an unbounded solution or it may have inconsistent constraints. In both
cases, we say that the problem has no solution. Consider the following
examples.

Example 3.2: (non-unique solution)

Example 3.1, illustrated by Figure 3-1, has the unique solution
(x1, x2) = (5, 15). Consider the same example and assume instead that
z is given by z = 20x1 + 20x2. Again, zmax is obtained when the line
z = 20x1 + 20x2 touches the region of feasible solution. However, in
this case, this line coincides with one of the constraint lines, namely
the line x1 + x2 = 20 (Figure 3-1). Any point on the portion PQ of this
line is a solution to this problem. The solution is thus not unique.

Example 3.3: (unbounded solution)

Consider the example

maximize z = x1 + x2

subject to the conditions
x1 � x2 ≥ �1

�x1 + 3x2 ≤ 5

x1 ≥ 0, x2 ≥ 0

Figure 3-2: Unbounded Solution

For this example the region of feasible solution is given by the
shaded area in Figure 3-2. The line representing z can be moved
parallel to itself in the direction of increasing z and z can be made as

-x1 + 3x2 = 5

x 1 - x 2 = -1

z = x 1 + x 2

x 1

x 2

2

21

1

-x1 + 3x2 = 5

x 1 - x 2 = -1

z = x 1 + x 2

x 1

x 2

2

21

1

© 2008 by Taylor & Francis Group, LLC

Chapter 3: Linear Programming and the Simplex Algorithm 43

large as one wishes. The problem thus has no solution as the solution
is unbounded.

Example 3.4: (inconsistent constraints)

Consider the example

maximize z = x1 � x2

subject to the constraints
x1 + 2x2 ≤ 2
x1 + 2x2 ≥ 3

x1 ≥ 0, x2 ≥ 0

Figure 3-3: Inconsistent Constraints

In this example the constraints are inconsistent as there is no
common feasibility region between them, as shown in Figure 3-3.

In Section 3.2, some notations and definitions are given. In
Section 3.3, a well-known version of the simplex method is described
and in Section 3.4 the simplex tableau is illustrated with a solved
example. In Section 3.5, the two-phase method of the simplex
algorithm is introduced.

In Section 3.6, the duality theory in linear programming is
presented and in Section 3.7, degeneracy, which often occurs in linear
programming, is described and its resolution discussed. In Section
3.8, the relationships between linear programming and the discrete
linear L1 and Chebyshev approximations are established. Finally, in
Section 3.9, the stability of linear programs is considered.

x1

x2

x1 + 2x2 = 3

x1 + 2x2 = 2

1

1 2 3 x1

x2

x1 + 2x2 = 3

x1 + 2x2 = 2

1

1 2 3

© 2008 by Taylor & Francis Group, LLC

44 Numerical Linear Approximation in C

3.2 Notations and definitions

Let us recall the linear programming problem formulated by
(3.1.1-3). The following are well-known notations and definitions:
(a) The objective function: Function z of (3.1.1) is known as the

objective function.
(b) The prices: Constants (ci) in (3.1.1) are known as the prices

associated with the variables (xi).
(c) The requirement vector: Vector b, whose elements are

(b1, �, bm) of (3.1.2), is often known as the requirement
vector. It is preferable to have the bi all positive. If one or
more of the bi is negative, the corresponding inequality might
be multiplied by �1 and the inequality sign reversed.

(d) Slack and surplus variables: The simplex method described
in Section 3.2, in effect, deals with constraints in the form of
equalities, not in the form of inequalities as those of (3.1.4) for
example. It is thus necessary to convert these inequalities into
equalities. This is done by using the slack and surplus
variables.
A slack variable: An inequality of the form

ai1x1 + ai2x2 + � + ainxn ≤ bi

is transferred to the equality

ai1x1 + ai2x2 + � + ainxn + xi+n = bi

by adding to the l.h.s. a new variable, say xi+n > 0, known as a
slack variable.
A surplus variable: Also, the inequality

ai1x1 + ai2x2 + � + ainxn ≥ bi

is transferred to the equality

ai1x1 + ai2x2 + � + ainxn � xi+n = bi

by subtracting from the l.h.s. a new variable, say xi+n ≥ 0,
known as a surplus variable.

(e) Artificial variables: It is sometimes desirable, as in the
two-phase method of Section 3.5, to add other variables to the
problem. Such variables are neither slack nor surplus. They
are known as artificial variables.

© 2008 by Taylor & Francis Group, LLC

Chapter 3: Linear Programming and the Simplex Algorithm 45

(f) A hyper plane: Anyone of the resulting equalities in (3.1.2) is
known as a hyper plane. This is the generalization of a plane
when it has more than three variables.

(g) A solution: Any set of variables x1, x2, �, xn that satisfies the
sets of constraints (3.1.2) is known as a solution to the given
programming problem.

(h) A basic solution: Let us now assume that the m constraints
(3.1.2) are converted, by using the slack and surplus variables,
to m equations in the form Ax = b, where A is an m by N
matrix, m < N of rank m. Then a basic solution to this set is
obtained by equating (N � m) variables (xj) to 0�s and solving
for the remaining m variables (xi). These m variables are
known as basic variables, or the basic solution.

(i) Basis matrix: The m linearly independent columns of matrix
A, in the system Ax = b, associated with the m basic variables
form an m by m matrix, known as the basis matrix. If the basis
matrix is denoted by B, the basic solution xB is given by

xB = B�1b

and each of the other (N � m) variables (xj) is 0.
(j) A basic feasible solution: Any basic solution that also

satisfies the non-negativity constraints (3.1.3) is called a basic
feasible solution.

(k) A vertex in the region of feasible solution: It is easy to show
that a basic feasible solution is a vector whose elements are the
coordinates of a vertex (or a corner) in the region of feasible
solution.

(l) Degenerate solution: If one or more basic variables xi is 0,
then the basic solution to Ax = b is known as a degenerate
solution. Often degeneracy in linear programming should be
resolved. See Section 3.7.

(m) Optimal basic feasible solution: Any basic feasible solution
that maximizes (or minimizes) the function z of (3.1.1) is
called an optimal basic feasible solution.

3.3 The simplex algorithm

By adding the necessary slack variables and by subtracting the

© 2008 by Taylor & Francis Group, LLC

46 Numerical Linear Approximation in C

necessary surplus variables in the set of constraints (3.1.2), we get an
underdetermined set of linear equations. Problem (3.1.1-3) might be
reformulated as follows.

Maximize the objective function

(3.3.1) z = c1x1 + � + cnxn + 0xn+1 + � + 0xN

subject to the constraints

= bp, p = 1, 2, �, w

(3.3.2) = bj, j = 1, 2, �, u

= bk, k = 1, 2, �, v

and

(3.3.3) x1, �, xn ≥ 0, xn+1, �, xN ≥ 0

In writing (3.3.1-3), we have assumed that in (3.1.2) there are w
equalities, u inequalities with ≤ 0 signs and v inequalities with ≥ 0
signs. Also in (3.3.1), N = n + u + v. Note that the coefficients (the
prices) of the slack and surplus variables in (3.3.1) are 0�s.

In vector-matrix notation, this formulation reduces to

(3.3.4) maximize z = (c, x)

subject to the constraints

(3.3.5) Ax = b

and

(3.3.6) x ≥ 0

Vector c in (3.3.4) is vector c appearing in (3.3.1), namely

c = (c1, �, cn, 0, �, 0)T

and vector b in (3.3.5) is the requirement vector (bi) of (3.3.2) which
is assumed to have non-negative elements. Matrix A is an m by N
matrix given by (assume that u = 3, v = 1 and w = 1)

apixi
i 1=

n

∑

ajixi xn j++
i 1=

n

∑

akixi xn u k+ +�
i 1=

n

∑

© 2008 by Taylor & Francis Group, LLC

Chapter 3: Linear Programming and the Simplex Algorithm 47

(3.3.7)

Problem (3.3.4-6) is solved by the simplex algorithm, described next.
The simplex algorithm is an iterative one. It starts by calculating

the coordinates of one of the vertices (corners) of the region of
feasible solution. It then goes from one vertex to a neighboring one in
such a way that at each step the objective function z increases (or
decreases), until the optimal solution is reached. This process takes a
finite number of steps, usually between m and 2m steps, where m is
the number of constraints in (3.3.2).

If the programming problem has an unbounded solution or if it has
an inconsistent set of constraints, the simplex algorithm will detect
this in the course of the solution. The simplex method will also
indicate whether the solution is unique. Another important merit is
that the simplex algorithm detects any redundancy in the set of
constraints (3.1.2). It removes such redundant constraints and
proceeds to find the solution after discarding them. By redundant
constraints, we mean that one or more equations in (3.3.5) are linearly
dependent on other equations in (3.3.5).

Consider the linear programming problem given by (3.3.4-6). Let
us further assume that rank(A|b) = rank(A), where matrix (A|b)
denotes the m by (N + 1) matrix with b as the (N + 1)th column of
matrix A.

3.3.1 Initial basic feasible solution

As indicated, the simplex method solves the problem by first
finding any basic feasible solution to the problem, i.e., by first finding
m non-negative coordinates of a vertex of the region of feasible
solution.

In the case where a slack variable exists in each constraint

A

a11 a12 a13 a14 ... a1 n 1�, a1 n, 1 0 0 0
a21 a22 a23 a24 ... a2 n 1�, a2 n, 0 1 0 0
a31 a32 a33 a34 ... a3 n 1�, a3 n, 0 0 1 0
a41 a42 a43 a44 ... a4 n 1�, a4 n, 0 0 0 1�
a51 a52 a53 a54 ... a5 n 1�, a5 n, 0 0 0 0

=

© 2008 by Taylor & Francis Group, LLC

48 Numerical Linear Approximation in C

equation in (3.3.5), matrix A of (3.3.7) has the form

(3.3.8) A = (R|I)

where I is an m-unit matrix. In this case, the slack variables
themselves form an initial basic feasible solution. Let us write
x = (x0, xs)T, where x0 contains the original variables and xs contains
the m slack variables. Then it is obvious that by setting x0 = 0, we
have

Ixs = b

The slack variables xs = b and they form an initial basic feasible
solution.

The parameters of interest in the simplex algorithm are
(i) Vectors (yj), given by

yj = B�1aj = aj, j = 1, 2, �, n

since B�1 = I here
(ii) Scalars (zj � cj), known as the marginal costs, given by

zj � cj = (cB, yj) � cj = �cj, j = 1, 2, �, n

as the prices associated with the slack variables (elements of
cB here) are 0�s. See (3.3.13) and (3.3.14).

Hence, for this initial basic feasible solution, no computation is
needed to obtain the initial parameters of interest in the simplex
algorithm.

3.3.2 Improving the initial basic feasible solution

Once an initial vertex is available, one iteration in the simplex
algorithm is used to find a neighboring vertex associated with a larger
value of z. This is done in a straightforward manner using what is
known as the simplex tableau.

Let the columns of matrix A in (3.3.5) be denoted by
a1, a2, �, aN. Then equation (3.3.5) may be written as

(3.3.9) x1a1 + x2a2 + � + xmam + � + xNaN = b

Let the initial basic feasible solution be the m non-negative (xi)
denoted by x1

(1), x2
(1), �, xm

(1). The superscripts on the xi denote
that the xi are those of the first vertex. Let the columns ai associated

© 2008 by Taylor & Francis Group, LLC

Chapter 3: Linear Programming and the Simplex Algorithm 49

with the xi be denoted by ai
(1). These columns form the initial basis

matrix B.
The initial basic solution is given by

(3.3.10) x1
(1)a1

(1) + x2
(1)a2

(1) + � + xm
(1)am

(1) = b

The initial value z of (3.3.4), denoted by z(1) is also given by

(3.3.11) z(1) = c1
(1)x1

(1) + c2
(1)x2

(1) + � + cm
(1)xm

(1)

The columns in (3.3.10) are assumed to be linearly independent.
Thus these columns (vectors) form a basis for an m-dimensional real
space Em, and therefore any other m-dimensional real vector can be
expressed as a linear combination of the m-vectors ai

(1). In particular
the (N � m) non-basic columns aj in (3.3.9) may be expressed in terms
of the basis columns ai

(1) of (3.3.10) in the form

(3.3.12) aj
(1) = y1j

(1)a1
(1) + y2j

(1)a2
(1) + � + ymj

(1)am
(1)

j = m+1, m+2, �, N

where the yij
(1) are none other than the elements of vector yj

(1) given
by

(3.3.13) yj
(1) = B�1aj

(1), j = m+1, m+2, �, N

where B is the basis matrix whose columns are (a1
(1), a2

(1), �, am
(1)).

For j = m+1, m+2, �, N, let us denote the scalar product zj
(1) by

zj
(1) = (cB, yj

(1))

or

(3.3.14) zj
(1) = c1

(1)y1j
(1) + c2

(1)y2j
(1) + � + cm

(1)ymj
(1)

where the elements of cB are those of (3.3.11), associated with the
basic columns (a1

(1), a2
(1), �, am

(1)).
Our task now is to replace one of the basic columns ai

(1) by a
non-basic column aj

(1) in such a way that the new basic variables xi
(2)

will all be non-negative and also that the new value z(2) will be greater
than z(1). This is done by manipulating equations (3.3.10-14).

Let us multiply (3.3.12) and (3.3.14) by a positive parameter θ and
subtract the resulting equations from (3.3.10) and (3.3.11)
respectively. We thus get

(3.3.15) (x1
(1) � θy1j

(1))a1
(1) + (x2

(1) � θy2j
(1))a2

(1) + � +

© 2008 by Taylor & Francis Group, LLC

50 Numerical Linear Approximation in C

(xm
(1) � θymj

(1))am
(1) + θaj

(1) = b

and

(3.3.16) (x1
(1) � θy1j

(1))c1
(1) + � + (xm

(1) � θymj
(1))cm

(1) + θcj
(1)

= z(1) + θ(cj
(1) � zj

(1)), j = m+1, m+2, �, N

All the coefficients but one of ak
(1) in (3.3.15) will form the new

basic variables. Also, the r.h.s. of (3.3.16) will be the value z(2).
Therefore, to achieve our goal, we search for an index j for which
(cj

(1) � zj
(1)) in the r.h.s. of (3.3.16) is positive. Also, for this value of

j, θ is chosen so that

(3.3.17) θ = θmin = mini(xi
(1)/yij

(1)) = xu
(1)/yuj

(1) (say), yij
(1) > 0

This choice of θ, reduces one of the coefficients in (3.3.15) to 0
and leaves the remaining m coefficients positive. Such coefficients are
the coordinates of the new vertex, and are denoted by
x1

(2), x2
(2), �, xm

(2). The value z(2) is now greater than z(1) and is
given by

(3.3.18) z(2) = z(1) + θmin(cj
(1) � zj

(1))

In general, there may be several values of j for which
(cj

(1) - zj
(1)) > 0. It would be reasonable to choose θ for which z(2) in

(3.3.18) yields the greatest increase over z(1). However, this requires
some extra computational efforts.

Instead, one usually selects j for which (cj
(1) � zj

(1)) is the largest
and thus the increase in z(1) will be

δz = (mini(xi
(1)/yij

(1)))maxj(cj
(1) � zj

(1)), (cj
(1) � zj

(1)) > 0, yij
(1) > 0

The coordinates of the new vertex are now the coefficients of the
vectors ai

(1) in (3.3.15), where θ is given by (3.3.17).
The new values of (cj

(2) � zj
(2)) are given by

(cu
(2) � zu

(2)) = 0

(cj
(2) � zj

(2)) = (cj
(1) � zj

(1)) � θ (cu
(1) � zu

(1)), j ≠ u

where u is defined in (3.3.17).
This iteration is repeated several times until the optimal value zmax

is obtained. The value zmax is achieved when (cj � zj) ≤ 0 for all j.
The above calculation is greatly simplified if we arrange the

parameters of interest in the form of a table called the simplex tableau.

© 2008 by Taylor & Francis Group, LLC

Chapter 3: Linear Programming and the Simplex Algorithm 51

3.4 The simplex tableau

Without loss of generality, let the basis matrix B consist of the
first m columns of matrix A in (3.3.5) and let us pre-multiply (3.3.5)
by B�1. We shall then get the equation (for m = 5)

and xm+1 = xm+2 = � = xN = 0.
In this matrix equation, it is obvious that the bi

(1) are the basic
variables. Also, for the non-basic vectors, aij

(1) = yij
(1), from which

the parameters zj
(1) may be calculated. In other words, this equation

gives the information needed for the next iteration.
Once an iteration has been performed, it would be advantageous to

obtain a new set of parameters from which the information needed for
the next iteration is obtained. These concepts of the simplex tableau
are best illustrated by an example.

Consider Example 3.1, which was solved geometrically in Section
3.1. By adding the slack variables to the inequalities (3.1.4), we get
the formulation

(3.4.1a) maximize z = 20x1 + 30x2 + 0x3 + 0x4 + 0x5

subject to the constraints

x1 + x2 + x3 = 20
(3.4.1b) x1 + 3x2 + x4 = 50

2x1 + x2 + x5 = 30

(3.4.1c) x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0

1 0 0 0 0 y1 m 1+,
1() ... y1 N,

1()

0 1 0 0 0 y2 m 1+,
1() ... y2 N,

1()

0 0 1 0 0 y3 m 1+,
1() ... y3 N,

1()

0 0 0 1 0 y4 m 1+,
1() ... y4 N,

1()

0 0 0 0 1 y5 m 1+,
1() ... y5 N,

1()

x1
1()

x2
1()

.

.

xN
1()

b1
1()

b2
1()

b3
1()

b4
1()

b5
1()

=

© 2008 by Taylor & Francis Group, LLC

Tableau 3.4.1 is the simplex tableau for the first iteration.

52 Numerical Linear Approximation in C

Tableau 3.4.1

cT 20 30 0 0 0
cB B bB a1 a2 a3 a4 a5 θi

 ������������� ����������������������
0 a3 20 1 1 1 0 0 20
0 a4 50 1 (3) 0 1 0 (50/3)
0 a5 30 2 1 0 0 1 30

 ������������� ����������������������
z = 0 (zi � ci) �20 (�30) 0 0 0

The second column from the left shows the vectors forming the
current basis matrix B, namely a3, a4 and a5. The first column on the
left shows the parameters cB associated with these vectors, namely
0, 0 and 0. The third column from the left gives the initial basic
feasible solution, i.e., the coordinates of the initial vertex, namely
x3 = 20, x4 = 50 and x5 = 30.

The inner product of the column cB with each of the non-basic
columns, namely a1 and a2, is obtained. The zi, calculated as in
(3.3.14) are subtracted from the top row of the tableau, and the result
is written in the bottom row; the (ci � zi) row.

However, in this book we adopt the opposite notation and record
the values (zi � ci) instead. Lastly, the value of z is entered in the last
row, namely z = (cB, bB) = 0 in this tableau.

In Tableau 3.4.1, it is shown that the basic feasible solution is
associated with the unit (vectors) a3, a4 and a5. The entries in columns
a1 and a2 are simply y1 and y2.

It is expected that one iteration in the simplex algorithm is used to
find a new feasible basic solution (a neighboring vertex) associated
with a larger value of z. This is done as follows.

From the last row in Tableau 3.4.1, it is found that maximum
(cj � zj), or minimum (zj � cj) is (z2 � c2). Then if a2 replaces one of
the basic columns a3, a4 or a5, the resulting value of z will be larger
than the current one. This is done by first calculating the parameters
θi, where θi are obtained by dividing the elements of column bB by
the corresponding elements of a2 which have the minimum (zj � cj).

Since we are interested in the parameters θi that have positive
values, and that the elements of bB are non-negative, the elements of
a2 used in the divisions are the positive elements, which they are in

© 2008 by Taylor & Francis Group, LLC

Chapter 3: Linear Programming and the Simplex Algorithm 53

this case. The possible θi are recorded in the last column to the right
of the tableau, from which it is found that θ2 is the minimum of the θi.

Therefore, if a2 replaces a4 in the basis, the new basis matrix will
have a3, a2 and a5 as its columns. The new basic solution will be
feasible (all its elements are non-negative) and the value of z will
increase.

The so-called pivotal entry in the tableau is now decided by the
intersection of the key column (of minimum (zj � cj)) and the key row
(of minimum θi). The pivotal entry is then used to establish the
simplex tableau for the next iteration, which results in a larger value
of z.

Step (1)

Divide all the entries in the key row by the pivotal entry. This
step is equivalent to dividing one of the equations in a linear
set of equations by a constant and it does not result in any
change in the solution.

Step (2)

Reduce all the entries in the key column, except the pivotal
entry itself, which is now unity, to zero. This is done by
subtracting an appropriate multiplier of the altered key row
from each of the other rows of the column bB and the ai. This
step is equivalent to one step of the Gauss-Jordan (elimination
step) method, outlined in Section 4.6.

The calculated entries in the (zi � ci) row of the simplex tableau,
including the z entry, are obtained by extending step (2) to the (zi � ci)
row also. This is done by subtracting an appropriate multiplier of the
altered key row from the (zi � ci) row that reduces the (zj � cj) entry of
the key column to 0. The results are recorded in Tableau 3.4.2.

In Tableau 3.4.2, the key column is that of a1 and the key row is
the first row, and thus the pivotal entry is determined. It is used to
construct the next tableau and this is done by observing the two steps
described above. The tableau for the next iteration is Tableau 3.4.3.

The end row of Tableau 3.4.3 contains non-negative entries and
this indicates that no further improvement to the solution is possible
and the programming problem is now solved. The optimal solution is
x1 = 5, x2 = 15 and zmax = 550.

© 2008 by Taylor & Francis Group, LLC

54 Numerical Linear Approximation in C

Tableau 3.4.2

cT 20 30 0 0 0
cB B bB a1 a2 a3 a4 a5 θi

 ������������� ����������������������
0 a3 10/3 (2/3) 0 1 �1/3 0 (5)
30 a2 50/3 1/3 1 0 1/3 0 50
0 a5 40/3 5/3 0 0 �1/3 1 8

 ������������� ����������������������
z = 500 (zi � ci) (�10) 0 0 10 0

Tableau 3.4.3

cT 20 30 0 0 0
cB B bB a1 a2 a3 a4 a5

 ������������� ����������������������
20 a1 5 1 0 3/2 �1/2 0
30 a2 15 0 1 �1/2 1/2 0
0 a5 5 0 0 �5/2 1/2 1

 ������������� ����������������������
z = 550 (zi � ci) 0 0 15 5 0

It is easy to see that the increase in the value of z after each
iteration is given by [�θmin(zi � ci)min]. That is, if z(1) and z(2) are the
values of z in tableaux k and (k + 1) respectively

z(2) = z(1) � θmin(zi � ci)min

where θmin and (zi � ci)min are those of tableau k.
In this example, if z(1) and z(2) are those of Tableaux 3.4.1 and

3.4.2 respectively

z(2) = 0 + (50/3)×30 = 500

Also

z(3) = z(2) + (5)×10 = 550

where z(3) is that in Tableau 3.4.3.
In this example, we found that because of the slack variables, an

identity matrix appears in matrix A and as a result, the initial
calculation is an easy task. However, in many cases no identity matrix
appears in A. This will be the case when some constraints have

© 2008 by Taylor & Francis Group, LLC

Chapter 3: Linear Programming and the Simplex Algorithm 55

equality signs or ≥ signs. In such cases, the initial basic feasible
solution is constructed by the so-called two-phase method, which is
described in the next section.

3.5 The two-phase method

In this method, artificial variables are added first to every equality
constraint and also to every constraint having a surplus variable, so
that matrix A of (3.3.5) may have the form (3.3.8).

The problem is solved in two-phases. In phase 1, we try to derive
all the artificial variables to 0. In phase 2, we try to maximize the
actual objective function z, starting from a basic feasible solution that
either contains no artificial vectors or that contains some artificial
vectors at zero level; that is, whose associated xi = 0.

3.5.1 Phase 1

In phase 1, we assign to each artificial variable a price ci = �1. To
all other variables, which include the original n variables, the slack
and surplus variables, we assign the price ci = 0. We then use the
simplex method techniques to maximize the function

z = � 1x1a � 1x2a � � � 1xka

where the xia are the artificial variables.
Since in the simplex method any variable is not allowed to be

negative, the xia are also non-negative and hence z would be
non-positive. The maximum value of z will be 0. If there is no
redundancy in the constraints, maximum z = 0 and no artificial
variable will appear in the basis.

Furthermore, z may become 0 before the optimality criterion is
satisfied. In this case, some artificial vectors appear in the basis at a
zero level. This case may result from the presence of redundancy in
the original constraints. In any case, if z is 0 before the optimality
criterion is satisfied, we end phase 1 and start working on phase 2.

On the other hand, if maximum z < 0, then the artificial variables
in the basis cannot be driven to 0 and the original problem has no
feasible solution.

© 2008 by Taylor & Francis Group, LLC

56 Numerical Linear Approximation in C

3.5.2 Phase 2

In phase 2, we assign the actual prices ci to each legitimate
variable and a price 0 to each slack and surplus variable. Also, we
assign 0 to each artificial variable that may appear in the basis at zero
level. The simplex method is then used to maximize the original
function z. The first tableau in phase 2 is itself the last tableau in
phase 1. The only difference is that the (zi � ci) for the last tableau in
phase 1 are altered to account for change in the prices.

If at the beginning of phase 2, one or more artificial variables
appear at zero level, we ensure that such artificial variables remain at
zero level at each iteration in phase 2. See the second example in
Hadley ([7], pp. 154-158).

3.5.3 Detection of the exceptional cases

In Section 3.1, different exceptional cases of a linear
programming problem were described. Such cases are detected easily
from the simplex tableaux in the course of the solution of the problem.
At the end of phase 1, we found that the following possibilities exist:
(a) The presence of redundancy in the original constraints.
(b) The possibility of inconsistent constraints.
(c) Feasible problem.

If no artificial vectors appear in the basis, then we have found
an initial basic feasible solution, and thus the original problem
is feasible. The original constraints are consistent and none of
them is redundant.

However, in phase 2, the following may occur:
(d) An unbounded solution.

Suppose that in a simplex tableau in phase 2, it was found that
for some non-basic variable j, (zj � cj) is negative, but all the
elements of the corresponding yj are non-positive. Then the
solution to this problem is unbounded. See Hadley ([7], pp. 93,
94).

(e) Non-unique optimal solution.
If the optimal solution is degenerate, i.e., one or more
elements in the basic feasible solution is 0, then we may have a
non-unique optimal solution.

© 2008 by Taylor & Francis Group, LLC

Chapter 3: Linear Programming and the Simplex Algorithm 57

3.6 Duality theory in linear programming

The dual problem

If a problem has a dual, the dual problem is usually given in terms
of the same variables of the original problem, with the roles of certain
variables being interchanged. The original problem, in this case, is
known as the primal problem.

Consider the primal problem

(3.6.1a) maximize z = (c, x)

subject to the constraints

(3.6.1b) Ax ≤ b

and

(3.6.1c) x ≥ 0

The dual problem to (3.6.1) is

(3.6.2a) minimize Z = (b, w)

subject to the constraints

(3.6.2b) ATw ≥ c

and

(3.6.2c) w ≥ 0

Note in (3.6.1) and (3.6.2) that the roles of b and c are
interchanged and the matrices of the constraints are the transpose of
one another. Hence, if we consider Example 3.1, also given in (3.4.1),
as a primal problem, its dual will be

(3.6.3a) minimize Z = 20w1 + 50w2 + 30w3

subject to the constraints

w1 + w2 + 2w3 ≥ 20
(3.6.3b) w1 + 3w2 + w3 ≥ 30

and

(3.6.3c) w1 ≥ 0, w2 ≥ 0 and w3 ≥ 0

The solution of a dual problem is related in some defined way to

© 2008 by Taylor & Francis Group, LLC

58 Numerical Linear Approximation in C

the solution of its primal problem. We convert (3.6.3a) to a
maximization problem and also subtract surplus variables in (3.6.3b).
We get

(3.6.4a) maximize Z = �20w1 � 50w2 � 30w3

subject to the constraints
w1 + w2 + 2w3 � w4 = 20

(3.6.4b) w1 + 3w2 + w3 � w5 = 30
and

(3.6.4c) w1 ≥ 0, w2 ≥ 0, w3 ≥ 0, w4 ≥ 0 and w5 ≥ 0

We only write the initial and final tableaux for each of the primal
and the dual and also omit the rows and the columns corresponding to
the artificial variables.

The primal problem (3.4.1) is

 Initial Final

cT 20 30 0 0 0 cT 20 30 0 0 0
 ������� ������������������ ������� ������������������

0 20 1 1 1 0 0 20 5 1 0 3/2 �1/2 0
0 50 1 3 0 1 0 30 15 0 1 �1/2 1/2 0
0 30 2 1 0 0 1 0 5 0 0 �5/2 1/2 1

 ������� ������������������ ������� ������������������
z = 0 �20 �30 0 0 0 z = 550 0 0 15 5 0

The dual problem (3.6.4) is

 Initial Final

bT �20 �50 �30 0 0 bT �20 �50 �30 0 0
 ������� ������������������ ������� ������������������

0 20 1 1 2 �1 0 �20 15 1 0 5/2 �3/2 1/2
0 30 1 3 1 0 �1 �50 5 0 1 �1/2 1/2 �1/2

 ������� ������������������ ������� ������������������
Z = 0 20 50 30 0 0 Z = �550 0 0 5 5 15

Let us examine the final tableaux of the two problems. We notice
that the basic variables for the dual, namely 15 and 5, appear in the
last row of the primal. Also, the basic variables in the primal, namely
5, 15 and 5, appear in the last row of the primal.

© 2008 by Taylor & Francis Group, LLC

Chapter 3: Linear Programming and the Simplex Algorithm 59

Also, the columns of the non-basic vectors in the dual are found in
the rows of the primal with negative signs.

It is sometimes easier to solve the dual problem rather than the
primal. If a linear programming problem contains many constraints
and only a few variables, then the dual to this problem contains only a
few constraints and many variables. In this case, it is much easier to
solve the dual problem, which has a smaller basis matrix. For this
reason, for all the algorithms of the L1 and Chebyshev solutions of
overdetermined linear equations in this book, we found that solving
the dual forms of the linear programming problems are easier than
solving the primal forms.

Moreover, a knowledge of the properties of the dual problems also
leads to a much better understanding of all aspects of linear
programming theory. It led, for example, to the discovery of the dual
simplex algorithm and to the primal dual algorithm. See for example,
Hadley [7].

3.6.1 Fundamental properties of the dual problems

Theorem 3.1

The dual of the dual is the primal.

Theorem 3.2

If x is any feasible solution to (3.6.1) and w is any feasible
solution to (3.6.2), then

(c, x) ≤ (b, w), that is, z ≤ Ζ

Theorem 3.3

If x is a feasible solution to (3.6.1) and w is a feasible solution to
(3.6.2) such that

(c, x) = (b, w)

then x is an optimal solution to (3.6.1) and w is an optimal solution to
(3.6.2).

Theorem 3.4

If one of the set of problems (3.6.1) and (3.6.2) has an optimal
solution, then the other also has an optimal solution.

© 2008 by Taylor & Francis Group, LLC

60 Numerical Linear Approximation in C

Theorem 3.5

If the maximum value of z is unbounded, then the dual has no
feasible solution.

Note 3.1
The converse of Theorem 5.5 is not true; that is, if the dual has no

feasible solution, this does not imply that maximum z is unbounded.
Neither problem has a feasible solution.

3.6.2 Dual problems with mixed constraints

The primal problem (3.6.1) has all its constraints in (3.6.1b) with
the same ≤ sign. Consequently all the constraints in the dual in
(3.6.2b) have the ≥ signs. However, a primal problem may have both
kinds of inequality signs and also may have some equality signs. We
first observe that an ≥ sign in the primal is reversed by multiplying the
whole inequality by �1.

We also observe that a constraint with an equality sign

Σaijxj = bi

may be replaced by the two inequalities

(3.6.5a) Σaijxj ≤ bi

Σaijxj ≥ bi

When the last inequality is multiplied by �1, it is converted to

(3.6.5b) �Σaijxj ≤ �bi

In other words, a constraint with an equality sign is replaced by
two constraints each having ≤ signs. Therefore, a programming
problem with mixed constraints may always be converted to the
constraints with ≤ signs.

Theorem 3.6

An equality constraint in the primal corresponds to an unrestricted
(in sign) variable in the dual.

Proof:

An unrestricted (in sign) variable say w, may be written as the
difference of two non-negative variables

© 2008 by Taylor & Francis Group, LLC

Chapter 3: Linear Programming and the Simplex Algorithm 61

(3.6.6) w = w1 � w2, where w1 ≥ 0 and w2 ≥ 0

On the other hand, an equality constraint in the primal, may be
replaced by the two inequalities (3.6.5a) and (3.6.5b), which yield two
variables w1 and w2 in the dual. The dual column and the dual price
corresponding to w1 are the negative to those of w2. Thus w1 and w2

may be replaced by one unrestricted variable w, as in (3.6.6).
We conclude that the column corresponding to an unrestricted

variable is the one obtained had the original equation in the primal
was not replaced by two inequalities.

3.6.3 The dual simplex algorithm

It is observed in the simplex algorithm that any basic feasible
solution with all the (zi � ci) ≥ 0 is an optimal solution. It is also
observed that the zi are completely independent of the requirement
vector bB. These observations present an interesting alternative to the
method of solution.

We may start the simplex tableau in the dual with a basic, but not
feasible solution (not all the elements of bB are non-negative) to the
linear programming problem which has all the (zi � ci) ≥ 0. If we then
move from this basic solution to another by changing one basic vector
at a time in such a way that we keep all the (zi � ci) ≥ 0, an optimal
solution would be obtained in a finite number of steps. This
constitutes the idea of the dual simplex algorithm.

The dual simplex algorithm does not have the general
applicability of the simplex algorithm because it is not always easy to
start with all the (zi � ci) ≥ 0. The algorithm is given this name since
the criterion for changing the basis is that for the dual, not for the
primal problem.

In the dual simplex algorithm, one first determines the vector that
leaves the basis and then the vector that enters the basis. This is the
reverse of what is done in the simplex algorithm. The criteria for
changing the basis are as follows:
(a) For the vector to remove from the basis, choose

bBr = mini(bBi), bBi < 0

Column ar is removed from the basis and xBr is driven to 0.
(b) For the vector to enter the basis, choose

© 2008 by Taylor & Francis Group, LLC

62 Numerical Linear Approximation in C

θ = (zk � ck)/yrk = maxj((zj � cj)/yrj), yrj < 0

The increase in z is z = bBr(zk � ck)/yrk.

This algorithm is particularly useful in solving bounded linear
programming problems, as it eliminates the necessity for the
introduction of the artificial variables. A bounded linear programming
problem has the elements of its vector x bounded between upper and
lower bounds. Instead of x ≥ 0 in (3.6.1c), we have

di ≥ xi ≥ 0, i = 1, 2, ..., n

where the (di) are given constants.
A numerical example is solved in detail in Chapter 5; Example

5.1, for a bounded linear programming problem using the dual
simplex algorithm.

3.7 Degeneracy in linear programming and its resolution

3.7.1 Degeneracy in the simplex method

It is noted that in the simplex method, if one or more of the
elements of the basic solution bB is 0, then the solution is known to be
degenerate. Degeneracy may occur in the initial basic feasible
solution, or it may occur in the course of the solution.

The initial basic feasible solution is degenerate if and only if one
or more of the elements in the initial bB column is 0. Degeneracy
occurs in the course of the solution if there are two or more values of i
which have the same

θmin = mini(xi/yij), yij > 0

In this case, in view of (3.3.17), two or more of the nonzero xBi of
the current solution are reduced to zero for the next iteration, while
only one of the xi that is zero in the current solution becomes positive
for the next iteration.

When degeneracy occurs, the value of θmin for the iteration that
follows will certainly be 0 and in view of (3.3.18), the new solution
z(2) = z(1); that is, the objective function does not increase. Moreover,
as noted earlier, this degeneracy may persist for several successive
iterations and there is a possibility of cycling; that is, a set of bases
may be introduced again every few iterations. Hadley ([7], p. 190)

© 2008 by Taylor & Francis Group, LLC

Chapter 3: Linear Programming and the Simplex Algorithm 63

presents an (artificial) example in which cycling occurred. In that
example there were two equal θmin and the wrong basis vector was
removed. Hadley however states that no actual problem has ever
cycled.

Resolution of degeneracy is done, in effect, by perturbing the
elements of the bB column as explained next. In the next two sections
we deal with degeneracy in the simplex method. In the third section
we mention two cases where degeneracy was resolved in the dual
simplex algorithm.

3.7.2 Avoiding initial degeneracy in the simplex algorithm

Assume that k elements in the initial bB column are 0�s. Select a
small number ε such that kε << 1. Replace the first zero element in bB
by ε, the second zero element by 2ε, � and the kth zero element in bB
by kε. At the end of the problem, if necessary let ε → 0. This would
resolve the problem of initial degeneracy.

3.7.3 Resolving degeneracy resulting from equal θmin

We replace the set of variables xi by another set xi', as follows

x1' = x1 � ε1
x2' = x2 � ε2
� � �
xN' = xN � εN

where ε1, ε2, �, εN are very small positive numbers and that

ε1 ≠ ε2 ≠ � ≠ εN

We might instead make this procedure systematic by taking ε1 = ε,
ε2 = ε2, �, εN = εN and define the variables

xj' = xj � ε
j, j = 1, 2, �, N

The ith constraint now becomes

bi = ai1x1' + ai2x2' + � + aiNxN'

or

bi = ai1(x1 � ε) + ai2(x2 � ε2) + � + aiN(xN � εN)

© 2008 by Taylor & Francis Group, LLC

64 Numerical Linear Approximation in C

Or in terms of the original variables, the new variables bi' are

bi' = bi + ai1ε + ai2ε2 + � + ainεn

This means that the perturbation, in effect, is to the bB column and the
degeneracy is resolved.

In practice, it is not necessary to follow this procedure literally. It
is observed that the biggest change in the elements bBi is caused by
the ε term in (3.7.1), as the higher orders of ε have negligible effects.
We can thus predict how the tie in θmin will be broken without
actually calculating bBi'.

3.7.4 Resolving degeneracy in the dual simplex method

In the dual simplex algorithm, degeneracy occurs when one or
more of the marginal costs is zero. A method for resolving this kind of
degeneracy is described in Section 5.6. This method is also used in
Section 21.3 for resolving the same kind of degeneracy.

3.8 Linear programming and linear approximation

Wagner [13] was the first to successfully formulate both the linear
L1 and the Chebyshev approximation problems as linear
programming problems in both the primal and dual forms. Given, as
usual, is the overdetermined system of linear equations

Ca = f

C = (cij) is a given real n by m matrix of rank k, k ≤ m < n and f = (fi)
is a given real n-vector. The residual vector r is

r = Ca � f

Its ith element, ri is given by

, i = 1, 2, �, n

3.8.1 Linear programming and the L1 approximation

The L1 approximation problem is defined as to find the solution
vector a for the equation Ca = f such that the L1 norm of the residual r

ri cijaj
j 1=

m

∑ fi�=

© 2008 by Taylor & Francis Group, LLC

Chapter 3: Linear Programming and the Simplex Algorithm 65

be as small as possible. That is

Since the residuals (ri) are unrestricted in sign; that is, ri may be
>, = or < 0, i = 1, 2, �, n, we write

ri = ui � vi

Hence

|ri| = ui + vi

(ui) and (vi) are the elements of the n-vectors u and v respectively and
that

ui > 0 and vi > 0, i = 1, 2, �, n

The primal form of the linear programming problem for the L1
approximation problem is now

(3.8.1a)

subject to the constraints

r = u � v = Ca � f

or

Ca � u + v = f

(3.8.1b) ai unrestricted in sign, i = 1, 2, �, m

(3.8.1c) ui ≥ 0, vi ≥ 0, i = 1, 2, �, n

From Section 3.6, the dual form to problem (3.8.1) is given by

(3.8.2a) maximize z = fTw

subject to

(3.8.2b) CTw = 0

wi ≤ 1, i = 1, 2, �, n

wi ≥ �1, i = 1, 2, �, n

minimize Z ri
i 1=

n

∑=

minimize Z ui
i 1=

n

∑ vi
i 1=

n

∑+=

© 2008 by Taylor & Francis Group, LLC

66 Numerical Linear Approximation in C

where CT is the transpose of C and the n-vector w = (wi). The last two
sets of constraints reduce to the constraints

(3.8.2c) �1 ≤ wi ≤ 1, i = 1, 2, �, n

Problem (3.8.2) is a linear programming problem with bounded
variables (wi). That is, by defining bi = wi + 1, i = 1, 2, �, n, we get
the following formulation of the problem

(3.8.3a) maximize z = fT(b � e)

subject to the constraints

(3.8.3b) CTb = CTe

(3.8.3c) 0 ≤ bi ≤ 2, i = 1, 2, �, n

e is an n-vector of 1�s and the elements of the vector b = (bi) are
bounded. Problem (3.8.3) is a linear programming problem with
non-negative bounded variables [7]. In Chapter 5, this problem is
solved by the dual simplex algorithm.

3.8.2 Linear programming and Chebyshev approximation

The Chebyshev approximation problem is defined as to find the
solution vector a for the equation Ca = f such that the L∞ norm of the
residual r be as small as possible. Let

z = maxi|ri|, i = 1, 2, �, n

Let h ≥ 0, be the value z = maxi|ri|. Hence, since ri is unrestricted in
sign, i = 1, 2, �, n, the primal form of the linear programming
problem is

minimize h

subject to
ri ≤ h
ri ≥ �h

The above two inequalities reduce to

, i = 1, 2, �, nh� cijaj
j 1=

m

∑ fi� h≤ ≤

© 2008 by Taylor & Francis Group, LLC

Chapter 3: Linear Programming and the Simplex Algorithm 67

In vector-matrix form, these inequalities become

Ca + he ≥ f
�Ca + he ≥ �f

h ≥ 0 and aj, j = 1, 2, �, m, unrestricted in sign.

From Section 3.6, the dual form of this formulation is

(3.8.4a) maximize z = [fT �fT]b

subject to

(3.8.4b)

(3.8.4c) bi > 0, i = 1, 2, �, 2n

em+1 is an (m + 1)-vector, which is the last column in an (m + 1)-unit
matrix. The 2n-vector b = (bi). In Chapter 10, problem (3.8.4) is
solved by the simplex method.

Relevant linear programming formulations are also made for other
problems in this book, such as the one-sided and the bounded L1 and
Chebyshev solutions of overdetermined linear equations and the
formulations for the solutions of the underdetermined linear equations
of Chapters 20-23.

3.9 Stability of the solution in linear programming

In practice, it is common to solve linear programming problems
that have several hundred equations. Consequently, round-off error
plays a significant role in the accuracy of the result.

The basis matrix for a simplex tableau differs from that of a
preceding tableau in only one column. The inverse of the basis matrix
is updated at each simplex step by the Gauss-Jordan method rather
than by inverting a new matrix.

While this generally gives satisfactory results, it is susceptible to
round-off error in two respects. First, if the basis matrix is continually
updated, computational errors are propagated in the problem from
step to step. Second, because the Gauss-Jordan method is applied
without pivoting, inaccurate results are obtained when small pivots

CT C� T

eT eT
b em 1+=

© 2008 by Taylor & Francis Group, LLC

68 Numerical Linear Approximation in C

are met.
Wolfe [15] described some methods of round-off control. This

include (1) conditioning of the linear programming problem and (2)
precautions to observe in using the simplex algorithm.

Pierre [10] described in detail some scaling techniques applied to
the linear programming problem before the simplex algorithm is
applied. This process has the effect of conditioning the problem; that
is, by minimizing the condition number of the basis matrix. In this
respect, see also Noble ([9], Section 13.5).

Clasen [5] gave a criterion by which tolerances in linear
programming problems are calculated. Any number that is smaller in
absolute value than a specified tolerance is considered as round-off
error and is replaced by 0.

Storoy [12] described a simple method for error control in the
simplex algorithm. He also presented a method for improving the
obtained solutions.

Bartels [1] discussed the stability of Gauss-Jordan elimination
method by a round-off error analysis. He then implemented the
simplex method based on the Hessenberg LU decomposition of the
basis matrices.

In order to be able to select large pivots, Bartels and Golub [2]
implemented the LU factorization method with row interchanges of
the basis matrix. Additional accuracy is obtained by iteratively
refining the optimal solution, using a technique due to Wilkinson [14].

Bartels, Golub and Saunders [3] described computational methods
for updating the inverse of the basis matrix by both the LU
decomposition method and by the orthogonalization method of
Householder�s transformation.

Bartels, Stoer and Zenger [4] used a triangular decomposition
method for the basis matrix, which ensures numerical stability of the
results for ill-conditioned problems. A variation of this technique has
been used in the algorithm for calculating the L1 approximation
problem in Chapter 5 and another variation has been used in the
algorithm for the restricted Chebyshev approximation problem in
Chapter 13.

© 2008 by Taylor & Francis Group, LLC

Chapter 3: Linear Programming and the Simplex Algorithm 69

References

1. Bartels, R.H., A stabilization of the simplex method,
Numerische Mathematik, 16(1971)414-434.

2. Bartels, R.H. and Golub, G.H., The simplex method of linear
programming using LU decomposition, Communications of
ACM, 12(1969)266-268.

3. Bartels, R.H., Golub, G.H. and Saunders, M.A., Numerical
techniques in mathematical programming, Nonlinear Prog-
ramming, Rosen, J.B., Mangasarian, O.L. and Ritter, K. (eds.),
Academic Press, New York, pp. 123-176, 1970.

4. Bartels, R.H, Stoer, J. and Zenger, Ch., A realization of the
simplex method based on triangular decomposition, Handbook
for Automatic Computation, Vol. II: Linear Algebra, Wilkin-
son, J.H. and Reinsch, C. (eds.), Springer-Verlag, New York,
pp. 152-190, 1971.

5. Clasen, R.J., Techniques for automatic tolerance control in
linear programming, Communications of ACM, 9(1966)802-
803.

6. Faigle, U., Kern, W. and Still, G., Algorithmic Principles of
Mathematical Programming, Kluwer Academic Publishers,
London, 2002.

7. Hadley, G., Linear Programming, Addison-Wesley, Reading,
MA, 1962.

8. Ignizio, J.P. and Cavalier, T.M., Linear Programming,
Prentice Hall, Englewood Cliffs, NJ, 1993.

9. Noble, B., Applied Linear Algebra, Prentice-Hall, Englewood
Cliffs, NJ, 1969.

10. Pierre, D.A., Optimization Theory with Applications, John
Wiley & Sons, New York, 1969.

11. Sierksma, G., Linear and Integer Programming, Theory and
Practice, Second Edition, Marcel Dekker Inc., New York,
2002.

12. Storoy, S., Error control in the simplex technique, BIT,
7(1967)216-225.

© 2008 by Taylor & Francis Group, LLC

70 Numerical Linear Approximation in C

13. Wagner, H.M., Linear programming techniques for regression
analysis, Journal of American Statistical Association,
54(1959)206-212.

14. Wilkinson, J.H., Rounding Errors in Algebraic Processes,
Prentice-Hall, Englewood Cliffs, NJ, 1963.

15. Wolfe, P., Error in the solution of linear programming
problems, Proceedings of a symposium conducted by the MRC
and the University of Wisconsin, Vol. 2, Rall, L.B., (ed.), John
Wiley, New York, pp. 271-284, 1966.

© 2008 by Taylor & Francis Group, LLC

71

Chapter 4

Efficient Solutions of Linear Equations

4.1 Introduction

This is another tutorial chapter. It deals with the solution of real
non-singular systems of linear equations and inversion of matrices.
This chapter is intended to be an introduction to Chapter 17, on the
least squares problem and the pseudo-inversion of matrices.

It is required to solve the system of linear equations

Ax = b

A = (aij) is an n by n real non-singular matrix, b = (bi) an n-real vector
and x = (xj) is the solution n-vector. We assume that matrix A is of a
reasonable size, and that it is not sparse.

We start in Section 4.2 with the familiar subject of vector and
matrix norms and some relevant theorems. A norm for either a vector
or a matrix gives an assessment to the size of the vector or the matrix.

In Section 4.3, elementary matrices, which are used to perform
elementary operations on a matrix equation, are introduced. In
Sections 4.4 and 4.5, two of the direct methods for solving linear
equations, which are among the most efficient known methods are
described. These are the Gauss LU factorization method with
complete pivoting and the Householder's QR factorization method
with pivoting. These two methods have been studied extensively by
many authors. However, we adopt here the approach of Wilkinson
[16]. The inverse of a square non-singular matrix is calculated.

In Section 4.6, a note on the Gauss-Jordan elimination method for
a set of underdetermined system of linear equations is given.
Gauss-Jordan method is the key elimination method for updating
simplex tableaux in linear programming. We end this chapter with

© 2008 by Taylor & Francis Group, LLC

72 Numerical Linear Approximation in C

Section 4.7, where a presentation of rounding error analysis for simple
and extended arithmetic operations is given.

4.2 Vector and matrix norms and relevant theorems

Given an n-dimensional vector x, real or complex, it is useful in
mathematical analysis to have a single non-negative number which
gives an assessment of the size of x. This number is known as the
norm of x and is denoted by ||x||. We already defined and used vector
norms in Chapter 2. We elaborate here on this subject.

4.2.1 Vector norms

Let vector x = (x1, x2, �, xn)T. The norm of x plays the same role
as the modulus in the case of a complex number. It satisfies
(i) ||x|| > 0, unless x = 0; ||x|| = 0 implies x = 0,
(ii) ||cx|| = |c| ||x||, c is a complex scalar, and
(iii) ||x + y|| ≤ ||x|| + ||y|| (known as the triangle inequality) and as

a result, ||x � y|| ≥ ||x|| � ||y||.

As described in Chapter 2, there are three vector norms in
common use. They are derived from the p or the Holder�s norm

(4.2.1) , 1 ≤ p ≤ ∞

Then for p = 1, the L1 norm of x is

(4.2.2)

For p = 2, the L2 or the Euclidean vector norm of x is

(4.2.3)

Again, for p = ∞, the L∞ or the Chebyshev vector norm of x is

(4.2.4) ||x||∞ = max|xi|, i = 1, 2, �, n

x p xi
p

i 1=

n

∑
1 p⁄

=

x 1 xi
i 1=

n

∑=

x 2 sqrt xi
2

i 1=

n

∑=

© 2008 by Taylor & Francis Group, LLC

Chapter 4: Efficient Solutions of Linear Equations 73

It is easy to show that these three norms are related by the
following inequalities

(1/sqrt(n))||x||1 ≤ ||x||2 ≤ ||x||1, (1/n)||x||1 ≤ ||x||∞ ≤ ||x||1
||x||∞ ≤ ||x||1 ≤ n ||x||∞, ||x||∞ ≤ ||x||2 ≤ sqrt(n)||x||∞
(1/sqrt(n))||x||2 ≤ ||x||∞ ≤ ||x||2, ||x||2 ≤ ||x||1 ≤ sqrt(n)||x||2

A useful inequality known as Schwartz�s inequality is

|(x, y)| ≤ ||x||2 ||y||2
where (x, y) denotes the inner product of vectors x and y.

4.2.2 Matrix norms

Similarly, given an n by n real or complex matrix A = (aij), the
norm of A satisfies the conditions
(i) ||A|| > 0, unless A = 0; ||A|| = 0 implies A = 0,
(ii) ||cA|| = |c| ||A||; c is a complex scalar,
(iii) ||A + B|| ≤ ||A|| + ||B||; (A and B are of the same size), and
(iv) ||AB|| ≤ ||A|| ||B||.

There are matrix norms that are said to be natural norms, i.e.,
that are associated with (subordinate to or induced by) vector norms.
Since for any vector norm, we expect that ||Ax|| ≤ ||A|| ||x||, the
subordinate matrix norm associated with a vector norm is defined by

||A||p = max(||Ax||p/||x||p), x ≠ 0

or equally

||A||p = max||Ax||p, ||x||p = 1

4.2.3 Hermitian matrices and vectors

Definition 4.1

A square matrix A is known as a Hermitian matrix if AH = A,
where AH is the complex conjugate transpose of A. This class of
matrices includes symmetric matrices when the elements of A are
real. The following are Hermitian matrices

© 2008 by Taylor & Francis Group, LLC

74 Numerical Linear Approximation in C

where a, b, c and d are real elements and i = sqrt(�1).
Similarly let x be a column vector whose elements are complex.

Then xH is a row vector whose elements are the complex conjugates
of those of x. It follows that

(xH)H = x, (AH)H = A and (AB)H = BHAH

and xHx is real and positive, x ≠ 0. Ιn other words, Hermitian
transposes have similar properties to those of ordinary transposes.

Theorem 4.1

Let A be a Hermitian matrix. Then
(i) A has real eigenvalues
(ii) AHA has real non-negative eigenvalues.

Proof:

Let λ be an eigenvalue of a Hermitian matrix A and x the
corresponding eigenvector

Ax = λx

Hence

xHAx = λxHx

Now xHx is real and positive, for x ≠ 0. Again, xHAx is scalar and thus
real, since

(xHAx)H = xHAHx = xHAx

proving (i) that is λ real.
The proof of (ii) follows since

(4.2.5) xHAHAx = (Ax, Ax) = xHAHAx

= (Ax)H(Ax) = λ2xHx = σxHx

Let the eigenvalues of (AHA) be σi(AHA). Then sqrt(σi(AHA)) are
known as the singular values of A and are denoted by si(A), i.e.,

si
2(A) = sqrt(σi(AHA)), i = 1, 2, �, n

a b
b d

and a b ci+
b ci� d

© 2008 by Taylor & Francis Group, LLC

Chapter 4: Efficient Solutions of Linear Equations 75

Theorem 4.2

Let A be an n by n matrix. Corresponding to the given vector
norms of Section 4.2.1, there are matrix norms ||A||p, for p =1, 2 and
∞, that are subordinate norms:
(i) ||A||1 = maximum absolute column sum of A
(ii) ||A||2 = maxi si(A) (maximum singular value of A)
(iii) ||A||∞ = maximum absolute row sum of A.

Proof:

To prove (i), from (4.2.2)

and by re-arranging the summations

Since the summation of the far right = ||x||1

Suppose that the maximum sum is for column k. Choose xk = 1
and xi = 0, for i ≠ k. For this choice of x, equality is obtained.

To prove (ii), pre-multiply matrix A by AH. Then (AHA), being
Hermitian, has an orthogonal set of n eigenvectors {yi}, each
associated with a non-negative eigenvalue (Theorem 4.1 (ii)). Let x be
written as a linear combination of (yi), i.e.,

where the cj are constants. Then from (4.2.5)

||Ax||22 / ||x||22 = (xHAHAx) / (x, x)

Ax 1 aijxj
j 1=

n

∑
i 1=

n

∑ aij xj
j 1=

n

∑
i 1=

n

∑≤=

Ax 1 aij
i 1=

n

∑ xj
j 1=

n

∑ maxj aij
i 1=

n

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

xj
j 1=

n

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

≤ ≤

A 1 max Ax 1 x 1⁄() maxj aij
i 1=

n

∑≤=

x cjyj
j 1=

n

∑=

© 2008 by Taylor & Francis Group, LLC

76 Numerical Linear Approximation in C

or

||Ax||2 / ||x||2 ≤ smax(A)

Moreover, by choosing x = yi associated with σmax(AHA), an equality
is obtained.

To prove (iii), from (4.2.4)

Hence

Again, assume that i = k gives the maximum sum on the right.
Construct a vector x with xj = 1 if akj > 0 and xj = �1 if akj < 0. For
this x, an equality is attained. The theorem is thus proved.

As a result of this theorem

||I|| = 1

where I is an n-unit matrix and the norm is any natural norm.

4.2.4 Other matrix norms

There are other matrix norms [9, 11] that satisfy the four
conditions of Section 4.2.2 and are defined by

, 1 < q < 2

For the case q = 2, the norm is known as the Schur or the
Euclidean matrix norm. It is easily calculated and hence often used

cj
2sj

2 A()
j 1=

n

∑ cj
2

j 1=

n

∑⁄=

A ∞ maxi aijxj
j 1=

n

∑ maxi aij xj
j 1=

n

∑≤ maxi aij
j 1=

n

∑ max xj≤=

A ∞ max Ax ∞ x ∞⁄ maxi aij
j 1=

n

∑≤=

A q aij
q

i,j
∑

1 q⁄
=

© 2008 by Taylor & Francis Group, LLC

Chapter 4: Efficient Solutions of Linear Equations 77

This matrix norm is consistent with the Euclidean vector norm ||x||2
but it is not subordinate to any vector norm, since for an n-unit matrix
I, ||I||E = sqrt(n).

4.2.5 Euclidean and the spectral matrix norms

An important property shared by both the Euclidean and spectral
matrix norms is given by the following.

Theorem 4.3

The Euclidean matrix norm and the 2 (the spectral) matrix norm
have invariant properties under unitary transformation. The same is
true for the 2-vector norm. For unitary matrices U and V, we have

||x||2 = ||Ux||2
||A|| = ||UAV|| = ||UA|| = ||AV||

(U is said to be unitary if UHU = UUH = I; that is, UH = U�1. A real
unitary matrix is called orthonormal).

Proof:

To prove the first part of the theorem, since U is unitary,
||UHU||2 = ||I||2 = 1

||Ux||22 = (Ux)H(Ux) = xHUHUx = xHx = ||x||22

To prove the second part of the theorem, we have for example

||UA||22 = ||(UA)HUA||2 = ||AHUHUA||2 = ||AHA||2 = ||A||22

For the Euclidean matrix norm, again consider for example UA,
then

||UA||E = ||A||E
The proof follows from the fact that the Euclidean length of each
column of UA equals the Euclidean length of that column and the
theorem is proved.

A E aij
2

i,j
∑

1 2⁄
=

© 2008 by Taylor & Francis Group, LLC

78 Numerical Linear Approximation in C

4.2.6 Euclidean norm and the singular values

Definition 4.2

The trace of an n square matrix A, denoted by tr(A), is the sum of
its diagonal elements. For two square matrices A and B,
tr(AB) = tr(BA).

As a result:
(i) tr(A) = the sum of the eigenvalues of A.
(ii) The sum of the eigenvalues of AB = sum of the eigenvalues of

BA. In fact, AB and BA have identical eigenvalues. See also
Theorem 4.10.

(iii) ||A||E2 = tr(AHA).

Since ||A||E2 equals the trace of AHA which equals the sum of the
eigenvalues of (AHA), Σi σi(AHA), and again, since σi(AHA) = si

2(A),
we have

Then since ||A||2 = s1(A), the largest singular value of A, we have the
relations

(4.2.6) ||A||2 ≤ ||A||E ≤ sqrt(n)||A||2
Theorem 4.4

Let ||A||α and ||A||β be any two matrix norms. Then there exist
positive numbers a and b such that

a ≤ ||A||α / ||A||β ≤ b

Assume that A is an n by n matrix. The following relations
between matrix norms exist
(1/sqrt(n))||A||E≤||A||2≤||A||E, (1/sqrt(n))||A||E≤||A||∞≤sqrt(n)||A||E
(1/sqrt(n))||A||E≤||A||1≤sqrt(n)||A||E, (1/sqrt(n))||A||2≤||A||1≤sqrt(n)||A||2
(1/sqrt(n))||A||2≤||A||∞ ≤sqrt(n)||A||2, (1/n)||A||∞≤||A||1≤n||A||∞
Theorem 4.5 ([13], p. 133)

||AB||E ≤ ||A||E ||B||2 and ||AB||E ≤ ||A||2 ||B||E

A E
2 si

2 A()
i 1=

n

∑=

© 2008 by Taylor & Francis Group, LLC

Chapter 4: Efficient Solutions of Linear Equations 79

Theorem 4.6

For any matrix norm, we have

|| I || ≥ 1, ||A�1|| ≥ 1/||A||, ||Ak|| ≤ ||A||k

4.2.7 Eigenvalues and the singular values of the sum and the
product of two matrices

Theorem 4.7: Wielandt-Hoffman theorem ([16], p. 104)

Let C = A + B, where A, B and C are real symmetric n-matrices
having eigenvalues αi, βi and γi respectively, arranged in a
non-increasing order; that is, α1 ≥ α2 ≥ ...≥ αn, etc. Then

This theorem relates the perturbations in the eigenvalues to the
Euclidean norm of the perturbation matrix B.

Theorem 4.8

Let C = A + B, where A, B and C are real symmetric n-matrices
having singular values si(A), si(B) and si(C) respectively, arranged in
a non-decreasing order; α1 ≤ α2 ≤ � ≤ αn. Then

si(A) � s1(B) ≤ si(C) ≤ si(A) + sn(B), i = 1, 2, �, n

In particular, since ||B||2 = sn(B) and since from (4.2.6), ||B||2 ≤ ||B||E
si(C) ≤ si(A) + ||B||E, i = 1, 2, �, n

Definitions 4.3

Given an n by m matrix A, then ([11], p. 25)
(i) A k(≤n) by s(≤m) submatrix of A is obtained from A by

deleting certain rows and columns from A.
(ii) A principal submatrix of A is a submatrix, the diagonal

elements of which are diagonal elements of A.
(iii) A leading submatrix of A is a submatrix (not necessary a

square one) that lies in the upper left hand corner of A.
(vi) A leading principal submatrix of A is a square submatrix that

lies in the upper left hand corner of A.

γi αi�()2

i 1=

n

∑ B E
2≤ βi

2

i 1=

n

∑=

© 2008 by Taylor & Francis Group, LLC

80 Numerical Linear Approximation in C

Theorem 4.9 ([11], p. 317)

Let A be a real symmetric n-matrix and B be a principal
(n � 1)-submatrix of A. Let (αi) be the eigenvalues of A and (βi) be
the eigenvalues of B, arranged in a non-decreasing order. Then

α1 ≤ β1 ≤ α2 ≤ β2 � ≤ αn�1 ≤ βn�1 ≤ αn

Theorem 4.10 ([16], p. 54)

(i) Let A and B be square real n-matrices. Then the eigenvalues of
AB and of BA are identical,

(ii) Let A and B be an n by m and an m by n real martices
respectively, n ≥ m. Then AB and BA have m identical
eigenvalues and the extra (n � m) eigenvalues of AB are 0�s.

4.2.8 Accuracy of the solution of linear equations

Theorem 4.11

Assume that ||dA|| < 1, where dA is a perturbation to matrix A.
Then (I + dA) is non-singular and

Proof:

Let us write

(4.2.7) I = (I + dA)(I + dA)�1

Then by taking norms

1 ≤ ||(I + dA)|| ||(I + dA)�1|| ≤ (1 + ||dA||)||(I + dA)�1||

which proves the left inequality of the theorem.

To prove the right inequality, write (4.2.7) in the form

(I + dA)�1 = I � dA(I + dA)�1

By taking norms, we get

||(I + dA)�1|| ≤ 1 + ||dA(I + dA)�1|| ≤ 1 + ||dA|| ||(I + dA)�1||

By dividing by ||(I + dA)�1|| and arranging the terms, we get the right
inequality of the theorem.

1
1 dA+()

-------------------------- I dA+() 1� 1
1 dA�()

--------------------------≤ ≤

© 2008 by Taylor & Francis Group, LLC

Chapter 4: Efficient Solutions of Linear Equations 81

Suppose that in a certain problem a small change dα in the data α
causes a change dx in the result x. If it is possible to write

|dx/x| = K|dα/α|

then K is called the condition number for the relative change in x
caused by a relative change in α. Let us consider the matrix equation

Ax = b

If vector b is perturbed by db and matrix A is perturbed by dA, the
solution has to be given by

(4.2.8) (A + dA)(x + dx) = (b + db)

Theorem 4.12

Assume that A is a square non-singular matrix and that
||A�1|| ||dA|| < 1. Then if x ≠ 0

where C = 1 / [1 � K(A)||dA||/||A||] and K(A) is the condition number
of A. The spectral condition number of A is given by

K(A) = ||A||2 ||A�1||2
See also Section 17.5.1.

Proof:

Subtract Ax = b, from (4.2.8)

(4.2.9) (A + dA)dx = db � dA x

Then

dx = (A + dA)�1(db � dA x) = (I + A�1dA)�1A�1(db � dA x)

and by taking norms

||dx|| ≤ ||(I + A�1dA)�1|| ||A�1||(||db|| + ||dA|| ||x||)

By using the right inequality of Theorem 4.11, after replacing dA
A�1dA and since ||A�1|| ||dA|| < 1

dx
x

----------- CK A() dA
A

------------ db
b

-----------+≤

© 2008 by Taylor & Francis Group, LLC

82 Numerical Linear Approximation in C

Since ||A�1|| ||dA|| = K(A)||dA||/||A||, we get

||(I + A�1dA)�1|| ≤ C

where C is defined above. Then by dividing by ||x|| and noting that
||b|| ≤ ||A|| ||x||, the theorem is proved.

Again, since in the denominator of C, the quantity
K(A)||dA||/||A|| = ||A�1|| ||dA||, if ||A�1|| ||dA|| << 1, C ≈ 1 and we get

(4.2.10)

If db = 0, we get from (4.2.9)

dx = �(I + A�1dA)�1A�1dA x

Then by taking norms and using the right inequality of Theorem 4.11,
after replacing dA by A�1dA

||dx|| ≤ ||(I + A�1dA)�1|| ||A�1dA|| ||x||

and

This inequality is used in estimating the relative error in the
solution vector x, due to rounding error in some matrix computations,
using backward error analysis. It is itself inequality (4.7.12) below.

Note 4.1

It is noted that if the set of equations Ax = b is ill-conditioned,
resulting in a large relative error ||dx||/||x||, we expect K(A) in (4.2.10)
to be large. Yet, the converse is not necessarily true. A large K(A)
does not necessarily imply that Ax = b is ill-conditioned. The reason
for this is that Theorem 4.12 gives an upper bound for the ratio
||dx||/||x|| and this upper bound may not be attained.

I A 1� dA+()
1� 1

1 A 1� dA�()
----------------------------------- 1

1 A 1� dA�()
--≤ ≤

dx
x

----------- K A() dA
A

------------ db
b

-----------+≤

dx
x

----------- A 1� dA
1 A 1� dA�
------------------------------≤

© 2008 by Taylor & Francis Group, LLC

Chapter 4: Efficient Solutions of Linear Equations 83

4.3 Elementary matrices

Elementary operations to a given matrix equation involving
matrix A are mostly based on pre-multiplying and/or post-multiplying
A progressively by one or more of the matrices known as elementary
matrices. We describe here 3 of the elementary matrices.
(a) Diagonal matrix: A diagonal matrix D = diag(α, β, γ, �) is an

elementary matrix. Pre-multiplying matrix A by D results in
multiplying each element of the first row of A by α and each
element of the second row of A by β, �, etc. Post-multiplying
A by D results in multiplying each element of the first column
of A by α and each element of the second column of A by
β, �, etc.

(b) Permutation matrix: A permutation matrix Pij is an n-unit
matrix I, except that its i and j columns are interchanged.
Pre-multiplying A by Pij results in the interchange of rows i
and j of A. Post-multiplying A by Pij results in the interchange
of columns i and j of A. We note that Pij = Pij

T = Pij
�1 and

PijPij = I.
(c) A matrix Mi, which is an n-unit matrix I, except for its

column i which has the form (for the case n = 5 and i = 2)

(m12, 1, m32, m42, m52)T

is another elementary matrix. Pre-multiplying A by M2 results
in a matrix B, B = M2A. The second row of B equals the
second row of A. But the first row of B is the first row of
A + m12 times the second row of A. The third row of B is the
third row of A + m32 times the second row of A, �, etc.
Post-multiplying A by M2

T, where the superscript T refers to
the transpose, gives a similar result with the columns of A
instead.

Note 4.2
It is noted that the elementary matrices described above are never

stored in the computer. They are described here in order to elucidate
the operations that equation Ax = b undergoes.

In particular, the operations of the permutation matrices are
recorded by index vectors. For example, an index vector
IR(j) = (1, 2, 5, 4, 3) indicates that rows 3 and 5 of matrix A have

© 2008 by Taylor & Francis Group, LLC

84 Numerical Linear Approximation in C

been interchanged.

Note 4.3
Elementary operations on matrices are performed on matrices of

any size, not only on square matrices (Chapter 17).

4.4 Gauss LU factorization with complete pivoting

Given a system of linear equations Ax = b, the Gauss elimination
method or the Gauss LU factorization is described as follows. The
method applies elementary operations successively to matrix A and
vector b, which finally reduce matrix A to an upper triangular matrix
U while vector b becomes vector L�1b, where L is a unit lower
triangular matrix (its diagonal elements are 1�s).

Gauss LU factorization without pivoting is as follows. Let
A = A(1) and b = b(1). Then
(i) Add multiples of the first row of equation A(1)x = b(1) to each

of the second, third, �, nth rows of equation A(1)x = b(1) so as
to eliminate x1 from such equations. This results in the
equation A(2)x = b(2).

(ii) Add multiples of the second row of the new equation
A(2)x = b(2) to each of the new third, forth, �, etc. rows of
A(2)x = b(2), so as to eliminate x2 from such equations. This
results in the equation A(3)x = b(3).

(iii) Continue this process until an upper triangular set of equations
is obtained as shown (for n = 4)

a11
(1)x1 + a12

(1)x2 + a13
(1)x3 + a14

(1)x4 = b1
(1)

a22
(2)x2 + a23

(2)x3 + a24
(2)x4 = b2

(2)

(4.4.1) a33
(3)x3 + a34

(3)x4 = b3
(3)

a44
(4)x4 = b4

(4)

In (4.4.1) the a1j
(1) are the elements of the first row of A(1) and

a2j
(2) are the elements of the second row of A(2) and so on. Again,

b1
(1) is the first element of b(1) and so on. The solution is obtained by

back substitution in the triangular system (4.4.1) starting with x4.
The first element a11

(1) of matrix A(1) is the pivot element in
process (i) above. Likewise the element a22

(2) of matrix A(2) is the
pivot element in process (ii) above and so on.

We now show that this method gives the factorization

© 2008 by Taylor & Francis Group, LLC

Chapter 4: Efficient Solutions of Linear Equations 85

A = LU

As indicated above, U is the upper triangular matrix appearing on the
l.h.s. of (4.4.1) and L�1b is the vector appearing on the r.h.s. of
(4.4.1).

4.4.1 Importance of pivoting

In the Gauss elimination method, complete pivoting is achieved
by means of interchanging the rows of the system of equations
A(i)x = b(i), and/or the columns of the matrices A(i), where
i = 1, 2, �, n � 1 such that the pivot element a11

(1) is the largest
element in absolute value in the whole of matrix A(1), while a22

(2) is
the largest element in absolute value among the current aij

(2) of A(2),
with i, j ≥ 2, �, and so on.

Partial pivoting is achieved by interchanging the columns of
A(1), A(2), � such that a11

(1) is the largest element in absolute value in
first row of A(1), a22

(2) is the largest element in absolute value among
the current a2j

(2) of A(2), with j ≥ 2�, and so on. By doing this, we
avoid pivots that are small in absolute value. Otherwise, due to the
finite precision of the computer word, inaccurate or even incorrect
results are obtained.

Example 4.1

This is a well-known classical example [3] which illustrates the
importance of pivoting in the Gauss elimination process. Assume that
all the results are rounded to four decimal places. Let us solve the
system of two equations

0.0001x1 + 1.00x2 = 1.00
(4.4.2) 1.00x1 + 1.00x2 = 2.00

The true result rounded to 4 decimals is

x1 = 10000/9999 = 1.0001 and x2 = 0.9999

Yet, Gauss elimination without partial pivoting (without exchanging
columns) is done by using the first equation in (4.4.2) to eliminate x1
from the second equation. That is by subtracting 10000 times the first
equation from the second equation and rounding the result to 4
decimal places, which gives

© 2008 by Taylor & Francis Group, LLC

86 Numerical Linear Approximation in C

0.0001x1 + 1.00x2 = 1.00
�9999x2 = �9998

from which x2 = 1.0 and x1 = 0.0 (wrong result).
On the other hand, with pivoting (by first exchanging the two

columns on the l.h.s. of (4.4.2)), and subtracting the first equation
from the second, we get the triangular system

1.00x2 + 1.00x1 = 1.00
(1.0 � 0.0001)x1 = 1.00

giving x1 = 1.00/0.9999 = 1.0001 and x2 = 0.9999 (correct result).

4.4.2 Using complete pivoting

Let (A|b) denote the n by (n + 1) matrix with vector b situated to
the right side of matrix A.

The Gauss elimination process with complete pivoting consists of
(n � 1) major steps in which matrix (A|b) = (A(1)|b(1)) is reduced
successively to (A(2)|b(2)), (A(3)|b(3)), �, (A(n)|b(n)) as follows:
(i) Choose the element of aij

(1) of matrix A(1) of maximum
absolute value among all the elements of A(1), as the pivot.
Suppose this element is auv

(1). Interchange rows 1 and u in the
complete n by (n + 1) matrix (A(1)|b(1)) and interchange
columns 1 and v of A(1). This may be done by pre-multiplying
(A(1)|b(1)) by a permutation matrix S1 and post-multiplying
A(1) by another permutation matrix P1.

(ii) Calculate and record the (n � 1) multipliers mi1

mi1 = ai1
(1)/a11

(1), i = 2, 3, �, n

where ai1
(1) and a11

(1) are the elements of the permuted matrix
A(1).

(iii) Calculate the matrix (A(2)|b(2)) as follows

 for i = 2, �, n

aij
(2) = aij

(1) � mi1a1j
(1)

, j = 2, 3, �, n

bi
(2) = bi

(1) � mi1b1
(1)

We remark that

(4.4.3) S1 = S1
T

 = S1
�1, P1 = P1

T = P1
�1, S1S1 = I, P1P1 = I

© 2008 by Taylor & Francis Group, LLC

Chapter 4: Efficient Solutions of Linear Equations 87

Then in vector-matrix notation, step (i) is equivalent to changing
equation A(1)x = b(1) to

S1A(1)P1P1x = S1b(1)

Or in terms of the permuted matrix A(1) and permuted vectors x and
b(1), where A(1) = S1A(1)P1, x = P1x and b(1) = S1b(1)

A(1)x = b(1)

Step (iii) is equivalent to pre-multiplying (A(1)|b(1)) by matrix M1
in order to obtain matrix (A(2)|b(2)). M1 is a unit matrix, except for its
first column, which is given by

(1, �m21, �m31, �, �mn1)T

where m21, m31, �, mn1 are given in step (ii) above. Hence, we get

(A(2)|b(2)) = M1(A(1)|b(1))

Or in other words

A(2) = M1S1A(1)P1 and b(2) = M1S1b(1)

The second major operation is similar. Determine the element of
maximum absolute value among the current aij

(2) with i, j ≥ 2.
Suppose this element is ars

(2). Interchange rows 2 and r in the
complete n by (n + 1) matrix (A(2)|b(2)) and columns 2 and s of A(2).
Calculate the (n � 2) multipliers

mi2 = ai2
(2)/a22

(2), i = 3, 4, �, n

Again ai2
(2) and a22

(2) are the elements of the permuted matrix A(2).
Calculate the elements of (A(3)|b(3)) in the same manner as before.

This is equivalent to changing equation A(2)x = b(2) to

S2A(2)P2P2x = S2b(2)

Then we pre-multiply it by M2, where M2 is a unit matrix, except for
its second column, which is given by

(0, 1, �m32, �m42, �, �mn2)T

The subsequent operations follow easily until we finally get

Ux = A(n)x = b(n)

where

© 2008 by Taylor & Francis Group, LLC

88 Numerical Linear Approximation in C

(4.4.4) M(n�1)S(n�1) � M2S2M1S1AP1P2 � P(n�1) = U

By pre-multiplying (4.4.4) successively by M(n�1)
�1

, S(n�1), �,
M2

�1, S2, M1
�1, S1, �, and making use of (4.4.3), we get

(4.4.5) AP1P2 � P(n�1) = S1M1
�1S2M2

�1 � S(n-1)M(n�1)
�1U

It is not difficult to show that
(a) Mi

�1 is simply Mi with the signs of the off-diagonal elements
reversed, and

(b) S1M1
�1S2M2

�1
 � S(n�1)M(n�1)

�1

= S1S2 � S(n�1)M1
�1M2

�1 � M(n�1)
�1

(c) Also, M1
�1M2

�1
 � M(n�1)

�1 = L, a unit lower triangular
matrix, whose diagonal elements are 1�s and the sub-diagonal
elements are the calculated mij elements. Hence

S1M1
�1S2M2

�1
 � S(n�1)M(n�1)

�1 = S1S2 � S(n�1)L

We may thus write (4.4.5) in the form

AP = SLU

where S = S1S2 � S(n�1) and P = P1P2 � P(n�1) and by
pre-multiplying by S we get

(4.4.6) A = SAP = LU

As a result of pivoting, the LU factorization in (4.4.6) is not for
matrix A but for matrix A = SAP, which is the permuted matrix A.
Equation Ax = b thus reduces to

(4.4.7) LUx = b

where

x = Px and b = Sb

The solution of (4.4.7) is obtained in two steps, i.e., by solving the
two triangular systems, Ly = b and Ux = y, from which x is obtained.
Finally, the solution of Ax = b is x = Px.

4.4.3 Pivoting and the rank of matrix A

We noted earlier that elementary operations may be performed on

© 2008 by Taylor & Francis Group, LLC

Chapter 4: Efficient Solutions of Linear Equations 89

any matrix systems, not only on square non-singular systems. Besides
the importance of pivoting illustrated by Example 4.1, an equally
important purpose of pivoting is to determine the rank of matrix A.

Let us assume that complete pivoting has been used in deriving
the triangular equations (4.4.1) from the given set of equations
Ax = b. If rank(A) < n, we expect one or more rows of A to be
linearly dependent on the other rows. However, after each step of the
Gauss elimination method, such dependent rows will depend on one
row less than in the previous step. Hence, if rank(A) = k < n, after step
k in the Gauss elimination method, the set of equations (4.4.1) will
instead have the form (for n = 4 and k = 2)

a11
(1)x1 + a12

(1)x2 + a13
(1)x3 + a14

(1)x4 = b1
(1)

a22
(2)x2 + a23

(2)x3 + a24
(2)x4 = b2

(2)

(4.4.8) 0 + 0 = b3
(3)

0 = b4
(4)

In (4.4.8), if b3
(2) and b4

(2) are 0�s, then rank(A|b) = rank(A) = 2
and system (4.4.8), being an underdeterminerd system, has an infinte
number of solutions But if b3

(2) and/or b4
(2 is not 0,

rank(A|b) > rank(A), and (4.4.8) is inconsistent and has no solution.

Theorem 4.13 ([10], Section 3.5)

Let A be an n by n matrix and b be an n-vector. Then:
(i) System Ax = b has a solution if and only if rank(A|b) =

rank(A).
(ii) If rank(A|b) = rank(A) = n, the solution is unique.
(iii) If rank(A|b) = rank(A) < n, the solution is not unique.
(iv) If rank(A|b) > rank(A), system Ax = b is inconsistent and it

has no solution.

Example 4.2

A simple example of inconsistent set of two equations is

4x1 + 6x2 = 6
2x1 + 3x2 = 4

A Gauss elimination step produces

4x1 + 6x2 = 6
0 = 1

© 2008 by Taylor & Francis Group, LLC

90 Numerical Linear Approximation in C

The l.h.s. of the second equation is half the l.h.s. of the first equation.
That is, rank(A) = 1, while rank(A|b) = 2. The two equations
represent two parallel lines that will never intersect. This system is
inconsistent and has no solution.

The following is a special case of the previous theorem.

Theorem 4.14

Consider the solution of the homogeneous set of equations Ax = 0
(i.e., b = 0), where A is an n by n matrix. Then:
(i) If rank(A) = n, the equations have the unique solution x = 0,
(ii) If rank(A) = k < n, the solution is not unique.

4.5 Orthogonal factorization methods

Orthogonal factorization methods are used in factorizing an n by n
matrix A in the form of A = QR. They include Householder, Givens
and the Gram-Schmidt methods [5, 6, 8]. We shall consider here the
first method only and also assume that A and b are real. For
Householder's method, we introduce the following elementary
orthogonal matrices.

4.5.1 The elementary orthogonal matrix H

Let

(4.5.1) H = I � 2wwT

where w is an n-dimensional vector such that (w, w) = wTw = 1. Then
H is symmetric and also orthonormal; HTH = I, since

HTH = (I � 2wwT)(I � 2wwT)

= I � 4wwT + 4w(w, w)wT

= I

H is known as an elementary orthogonal matrix.

4.5.2 Householder�s QR factorization with pivoting

This method gives the factorization of a square matrix A into

© 2008 by Taylor & Francis Group, LLC

Chapter 4: Efficient Solutions of Linear Equations 91

(4.5.2) A = QR

Q is an orthonormal matrix, QTQ = I, and R an upper triangular. The
transformation of matrix A into an upper triangular matrix R is done
by pre-multiplying A respectively by the (n � 1) elementary
orthogonal matrices H(1), H(2), �, H(n�1).

Let A = A(1) and let A(2), A(3), �, A(n) be defined by

A(k+1) = H(k)A(k), k = 1, 2, �, n � 1

The transformation A(2) = H(1)A(1) produces (n � 1) 0�s below the
first element in column 1 of A(2). Likewise, the transformation
A(3) = H(2)A(2), produces (n � 2) 0�s below the second element in
column 2 of A(3) and also leaves the 0�s obtained in the previous step
unchanged. The process continues until we obtain an upper triangular
matrix A(n). To illustrate this process, we consider the 4 by 4 matrix
A = (aij).

We wish to determine the elements of the vector
w(1)= (w1

(1), w2
(1), w3

(1), w4
(1))T such that A(2) = H(1)A(1) has zero

elements in the positions (2, 1), (3, 1) and (4, 1). We have from (4.5.1)

A(2) = A(1) � 2w(1)w(1)TA(1)

Let w(1)TA(1) = (d1, d2, d3, d4). The elements in the first column of
A(2) are thus

(4.5.3) (a11
(1) � 2w1

(1)d1), (a21
(1) � 2w2

(1)d1), (a31
(1) � 2w3

(1)d1),

and (a41
(1) � 2w4

(1)d1)

Each of the last 3 elements in (4.5.3) is equated to 0

a21
(1) � 2w2

(1)d1 = 0

(4.5.4) a31
(1) � 2w3

(1)d1 = 0

a41
(1) � 2w4

(1)d1 = 0

We also observe that since H(1) is orthogonal, the sum of the
squares of the elements of any column of A(1) is invariant. Thus from
(4.5.3) and (4.5.4), (a11

(1) � 2w1
(1)d1)2 + 0 + 0 + 0 = the sum of the

squares of the 4 elements of the first column of A(1) = C2. Hence

(4.5.5) a11
(1) � 2w1

(1)d1 = ±C or 2w1
(1)d1 = a11

(1) ± C

By squaring equation (4.5.5) as well as the three equations of (4.5.4)

© 2008 by Taylor & Francis Group, LLC

92 Numerical Linear Approximation in C

and adding the results, we get

(4.5.6) 2d1
2 = C2 ± 2Ca11

(1)

To ensure numerical stability, the + or � sign in (4.5.6) is chosen
according to whether a11

(1)
 is > 0 or < 0 respectively. The elements of

w(1) are thus obtained from (4.5.5) and (4.5.4) by substituting d1 from
(4.5.6), from which H(1) is easily calculated.

To calculate the elements of w(2) of H(2) = I � 2w(2)w(2)T, we
proceed in the same manner. We observe that the first element of w(2)

is 0, i.e.,

w(2) = (0, w2
(2), w3

(2), w4
(2))T

This will ensure that the first row and also the 0�s in the first column
of A(2) are left unaltered in the transformation A(3) = H(2)A(2).

Likewise, in calculating w(3), its first two elements are 0�s. This
also ensures that the first two rows as well as the 0�s obtained in the
first two columns of A(3) are left unaltered in the subsequent
transformation, and so on.

For computational purposes, to summarize and simplify the above
calculation of w(k) and H(k) for k = 1, 2, �, n � 1, let

H(k) = I � βkw(k)w(k)T

For k = 1, 2, �, n � 1, H(k) and A(k+1) are generated as follows [1]

σk = sqrt(Σi |aik
(k)|2) (sum from i = k to n)

βk = [σk(σk + |akk
(k)|)]�1

(4.5.7) wi
(k) = 0, for i < k

wk
(k) = sgn(akk

(k))(σk + |akk
(k)|)

wi
(k) = aik

(k)
, for i > k

H(k) may thus be computed from (4.5.7) and consequently
A(k+1) = H(k)A(k) is computed.

4.5.3 Pivoting in Householder�s method

At the beginning of the kth step, k = 1, 2, �, n � 1, we compute
σj

2 from (4.5.7) for each value of j from k to n. If σp
2 is the maximum

sum, interchange columns k and p of A(k) in the full array. This is

© 2008 by Taylor & Francis Group, LLC

Chapter 4: Efficient Solutions of Linear Equations 93

done by post-multiplying A(k) by the permutation matrix Pk, and in
order not to change the structure of the equation A(k)x = b(k) we
pre-multiply x by Pk. That is

A(k)PkPkx = b(k)

This equation is then pre-multiplied by H(k). Hence, at the end of
the (n � 1)th step we get

(4.5.8) A(n)x = b(n)

By denoting R as an upper triangular matrix

A(n) = HAP = R, x = Px and b(n) = Hb

Equation (4.5.8) is re-written as

(4.5.9) HAPx = Rx = Hb

where H = H(n�1) � H(2)H(1) and P = P1P2 � Pn�1

Since H is orthonormal, H�1 = HT, and by pre-multiplying (4.5.9)
by HT we get QRx = b, where Q = HT is an orthonormal matrix. The
QR factorization is thus not for matrix A but for the permuted matrix
A = AP. The solution x is obtained by solving the triangular system
Rx = QTb, and finally x is obtained from x = Px.

4.5.4 Calculation of the matrix inverse A�1

We may use either Gauss� or Householder�s method in calculating
A�1. In the equation Ax = b, we take successively b = e1, e2, �, en,
where ei is the ith column of the n-unit matrix I. The calculated
solution xi is the ith column of the inverse A�1.

Proof:

Let

Ax1 = e1, Ax2 = e2, Axn = en

Then since [e1 e2 � en] = I

[x1 x2 � xn] = A�1

© 2008 by Taylor & Francis Group, LLC

94 Numerical Linear Approximation in C

4.6 Gauss-Jordan method

Gauss-Jordan elimination method is of importance in the solution
of linear programming problems [3, 7]. This method proceeds as in
the Gauss elimination method, described at the beginning of Section
4.4, but without pivoting. The only difference is that at the kth step, xk
is eliminated not only from all equations below the kth equation, but
also from all equations above the kth equation. If we have a system of
n equations in n unknowns, after step n, we get (for n = 4)

a11
(1)x1 = b1

(1)

a22
(2)x2 = b2

(2)

a33
(3)x3 = b3

(3)

a44
(4)x4 = b4

(4)

Then the solution of the system is obtained by dividing equation i by
the coefficient aii

(i), i = 1, 2, �, n.
We are interested here in the solutions of an underdetermined

system of linear equations by the Gauss-Jordan elimination method.
Let us suppose that we have applied this method to a system of 4
equation in 6 unknown and that the system is of rank 4. Let us assume
that we have also divided each equation i by the coefficient aii

x1 + a15x5 + a16x6 = b1
(1)

x2 + a25x5 + a26x6 = b2
(2)

(4.6.1) x3 + a35x5 + a36x6 = b3
(3)

x4 + a45x5 + a46x6 = b4
(4)

Hence, if we assign any prescribed values to x5 and x6, 0�s say, x1, x2,
x3 and x4 in (4.6.1) are known.

Let us assume now that we want to solve the given system not for
x1, x2, x3 and x4 but for x1, x2, x6 and x4 instead. Rather than solving
the original set of equations from the beginning, one iteration of the
Gauss-Jordan method is enough to give us the required result. This is
done in two steps, as follows:
(1) Divide the third equation (which contains x3) by a36, so that

the coefficient of x6 in this equation is unity,
(2) Subtract a suitable multiple of the obtained equation from each

of the other three equations so that x6 is eliminated from such
equations. That is, apply a Gauss-Jordan elimination step to
eliminate x6 from all equations except the third one.

© 2008 by Taylor & Francis Group, LLC

Chapter 4: Efficient Solutions of Linear Equations 95

The new set of equations will now have the form

x1 + a13x3 + a15x5 = b1
(1)

x2 + a23x3 + a25x5 = b2
(2)

(4.6.2) a33x3 + a35x5 + x6 = b3
(3)

a43x3 + x4 + a45x5 = b4
(4)

from which the solution for x1, x2, x6 and x4 is obtained. Obviously,
the coefficients and the r.h.s. of (4.6.1) and of (4.6.2) are not the same.
The method described above is that of changing basis in the simplex
algorithm, which is used for solving linear programming problems.

Note 4.4
We observe in (4.6.1), by assigning 0�s to x5 and x6, the values of

x1, x2, x3 and x4 are themselves the r.h.s. of these equations,
namely = b1

(1), b2
(2), b3

(3) and b4
(4) respectively. Hence, we name

vector b as the basic solution.

We end this chapter with an analysis of rounding errors in
arithmetic operations.

4.7 Rounding errors in arithmetic operations

4.7.1 Normalized floating-point representation

The general format of a normalized floating-point number consists
of a sign bit, an exponent and a mantissa, as shown in Figure 4-1.
Single- and double-precision numbers differ only in the number of
bits allocated to their exponent and mantissa.

Figure 4-1: General floating-point format

Most present day implementations use the IEEE (Institute of
Electrical and Electronics Engineers) normalized floating-point
representation. The single-precision type �float� in C occupies 32 bits
(binary digits), consisting of a sign bit, an 8-bit exponent and a 23-bit
mantissa. The double-precision type �double� occupies 64 bits,
consisting of a sign bit, an 11-bit exponent and a 52-bit mantissa.
There is an implied leading �1.� in the mantissa, so s.p and d.p.
mantissas are actually 24 and 53 bits long respectively (even though

± MantissaExponent

© 2008 by Taylor & Francis Group, LLC

96 Numerical Linear Approximation in C

the most-significant bit is not stored in memory) resulting in
1 ≤ mantissa < 2.

We will simplify our examination of round-off error in
floating-point arithmetic operations by eliminating the implied
leading bit in the mantissa. Instead, the mantissa is normalized by
constraining the most-significant bit to be nonzero. This format was
typical of pre-IEEE floating-point implementations.

We can generalize the normalized floating-point representation to
any base, such as binary, octal, decimal, hexadecimal, etc. We denote
the base by β = 2, 8, 10, 16, etc. [2, 3, 15]. Let t1 be the number of
digits in a s.p. mantissa and t2 be the number of digits in a d.p.
mantissa. A normalized s.p. floating-point number x is interpreted as

x = ±βb(0.d1d2 � dt1)

where b is the exponent, the �.� is the decimal point and d1, d2, �, dt1
are the digits of the mantissa. Because d1 ≠ 0, we get

(4.7.1) (1/β) ≤ 0.d1d2�dt1 < 1

so (½) ≤ 0.d1d2�dt1 < 1 (binary), (1/10) ≤ 0.d1d2�dt1 < 1 (decimal),
(1/16) ≤ 0.d1d2�dt1 < 1 (hexadecimal), etc. The value of x is thus
calculated by

For example, the decimal numbers 4983 and 0.004983 are expressed
in normalized floating-point representation as 104(0.4983) and
10�2(.4983) respectively.

Due to the finite length of floating-point representation, numbers
are rounded-off or truncated after each arithmetic operation. In this
chapter, round-off error is calculated for simple floating-point
arithmetic operations. Bounds for round-off errors are then obtained
for extended simple operations and for simple matrix calculations.
Backward round-off error analysis is introduced by an example.

4.7.2 Overflow and underflow in arithmetic operations

In an IEEE-format s.p. number, the exponent b has the range
-127 ≤ b ≤ 128, the stored value of which is offset by 127. This means

x βb d1
β

d2

β2
----- ...

dt1

βt1
-------+ + +

⎝ ⎠
⎜ ⎟
⎛ ⎞

±=

© 2008 by Taylor & Francis Group, LLC

Chapter 4: Efficient Solutions of Linear Equations 97

that a s.p. number has a range of the order of 2-127 ≤ x ≤ 2128;
specifically, 1.175494351×10-38 ≤ x ≤ 3.402823466×1038. A d.p.
number has a range of the order of 2-1023 ≤ x ≤ 21024; specifically,
2.2250738585072014×10-308 ≤ x ≤ 1.7976931348623158×10308.

Beyond the bounds of the given floating-point representation,
overflow or underflow occurs.

4.7.3 Arithmetic operations in a d.p. accumulator

Floating-point processors perform all simple arithmetic operations
in at-least double-precision (often higher than d.p.), regardless of
whether the result is stored in single- or double-precision.

Consider the following simplified examples in which we assume a
s.p. representation supporting 4 decimal places of precision, a d.p. of 8
decimal places and a d.p. accumulator also of 8 decimal places:
(a) Addition (subtraction) of two s.p. floating-point numbers.

Let x and y each be a 4-digit floating-point decimal number
and let us calculate z = (x + y). Before the arithmetic
operation, the smaller number is given an exponent equal to
that of the larger number. In the following three examples, we
show how round-off error can be affected by the numerical
signs and the relative magnitudes of the two numbers.
(1a) Consider 10�6(0.1015) � 10�7(0.9852):

10�6(0.1 0 1 5 0 0 0 0)
�10�6(0.0 9 8 5 3 0 0 0)
�������������������

10�6(0.0 0 2 9 7 0 0 0)

We denote the difference z, normalized in d.p. and then
stored in single-precision as

z = fl(x � y) = 10�8(0.2970)

where fl denotes the floating point calculation in s.p. In
this example, we see that there is no round-off error.

(1b) Consider the same numbers as above, but in an
addition operation rather than a subtraction:

© 2008 by Taylor & Francis Group, LLC

98 Numerical Linear Approximation in C

10�6(0.1 0 1 5 0 0 0 0)
+10�6(0.0 9 8 5 3 0 0 0)
�������������������

10�6(0.2 0 0 0 3 0 0 0)

The rounded sum is stored in single-precision as

z = fl(x + y) = 10�6(0.2000)

giving a round-off error of 10�10(0.3000), which was
realized by simply changing the sign of the arithmetic
operation.

(2) Consider 104(0.8314) + 101(0.5241):
There is a difference of 3 between the exponents of the
two numbers. Hence, the second number is shifted to
the right 3 places before the addition takes place

104(0.8 3 1 4 0 0 0 0)
+104(0.0 0 0 5 2 4 1 0)

�������������������
104(0.8 3 1 9 2 4 1 0)

The rounded sum z = fl(x + y) = 104(0.8319), giving a
round-off error of 10�4(0.2410).

(3) Consider 10�6(0.3145) + 104(0.6758):
The difference in exponent between the two numbers
is 10, (i.e., > the 8 decimal places in the accumulator),
and thus the computed sum z = fl(x + y) = 104 (0.6758)
= y, giving a round-off error equal to the whole of the
smaller number.

(b) Multiplication (division) of two s.p. floating-point
numbers.
Let x and y each be a 4-digit floating-point decimal number
and let us calculate z = xy. Let us consider the following two
examples:
(1) Consider two numbers of similar magnitude:

10�4(0.1714) × 10�3(0.1213) = 10�8(0.20790820)

The computed result z = fl(xy) = 10�8(0.2079), giving
a round-off error of 10�13(0.8200).

(2) Consider two numbers of dissimilar magnitude:

© 2008 by Taylor & Francis Group, LLC

Chapter 4: Efficient Solutions of Linear Equations 99

10�4(0.8204) × 106(0.3325) = 102(0.27278300)

The product is then rounded to z = fl(xy)
= 102(0.2728). The least-significant digit is rounded up
from 7 to 8, giving a round-off error of 10�2(0.1700),
which is much greater than the smaller number.

Theorem 4.15

Let us take two normalized floating-point s.p. numbers x and y
and let �op� denote any of the arithmetic operations +, �, × or /. Let
(x�op�y) be computed in d.p. before rounding it back to s.p. Let the
calculated result be denoted by z. Then

z = fl(x�op�y) = (x�op�y)(1 + ε)

|ε| ≤ (1/2)β(1�t1)

Proof:

Let z before and after rounding be respectively

βb(0.d1d2�dt1dt1+1�) and βb(0.d1d2�dt1)

where dt1 is the rounded digit. Hence, the error resulting from the
rounding operation is

error = βb|0.d1d2�dt1dt1+1� � 0.d1d2�dt1| ≤ βb[(1/2)β�t1]

The relative error (R.E.) = error/true value, is given by

R.E. ≤ βb[(1/2)β�t1)]/βb(0.d1d2�dt1dt1+1�)

Yet, we know from (4.7.1) that (1/β) ≤ (0.d1d2�dt1dt1+1�) and thus

R.E. ≤ [(1/2)β�t1)]/(1/β) ≤ (1/2)β(1�t1)

and the theorem is proved.

This theorem tells us that

|ε| ≤ 2�t1 (binary)
|ε| ≤ (1/2)10(1�t1) (decimal)
|ε| ≤ (1/2)16(1�t1) (hexadecimal)

Truncating of the result

In some computers, the result z in the previous theorem is
truncated to s.p. t1 digits rather than rounded. In this case, we have

© 2008 by Taylor & Francis Group, LLC

100 Numerical Linear Approximation in C

Theorem 4.16

(4.7.2) z(truncated) = z(1 + ε), where |ε| ≤ β(1�t1)

It is also possible to prove the following alternative to the above
two theorems.

Theorem 4.17

Let �op� denote any of the arithmetic operations +, �, × or /. Then

z = fl(x�op�y) = (x�op�y)/(1 + ε)

where
|ε| ≤ (1/2)β(1�t1) (rounded operation)
|ε| ≤ β(1�t1) (truncated operation)

4.7.4 Computation of the square root of a s.p. number

The bound for the error made in obtaining the square root depends
on the algorithm used to extract the root of the number. However, it
will always be assumed that [15]

fl[sqrt(x)] = sqrt(x)(1 + ε), where |ε| ≤ 1.00001(1/2)β(1�t1)

4.7.5 Arithmetic operations in a s.p. accumulator

Let us see what happens when arithmetic operations are instead
performed in a s.p. accumulator. Addition and subtraction operations
are more affected than multiplication or division. In the former, either
none, one or two rounding operations are performed for the single
arithmetic operation. Let us illustrate the worst case by the example

103(0.9741) + 102(0.4936)

When a d.p. accumulator is used, the result is computed as follows

103(0.97410000) + 103(0.04936000) = 104(0.1023)

Yet, in s.p. we have

103(0.9741) + 103(0.0494) = 103(1.0235)

and the normalized result is 104(0.1024); that is, the smaller number is
rounded up and the final result is also rounded up. In this case, let the
error in these two rounding operations be respectively ξ and η. Let y

© 2008 by Taylor & Francis Group, LLC

Chapter 4: Efficient Solutions of Linear Equations 101

be the smaller number, which is rounded off first; then ξ and η may be
given by

|ξ| ≤ βb(1/2)β(�1�t1) and |η| ≤ βb(1/2)β�t1

Thus we have

|ξ + η| ≤ |ξ| + |η| ≤ (1 + (1/β))βb(1/2)β�t1

Theorem 4.18

For a single-precision accumulator

z = fl(x + y) = (x + y)(1 + δ)

|δ| ≤ (1/2)(1 + (1/β))β1�t1

Hence, |δ| ≤ (1.5)2�t1 (binary), |δ| ≤ (0.55)101�t1 (decimal) and for
hexadecimal |δ| ≤ (1/2)(1 + (1/16))161�t1.

For multiplication or division, the error depends on how the
operation is performed for the given floating-point processor. In any
case, it is unlikely that an error greater than 1 in the least significant
digit of the final result will occur, so the result of the previous theorem
will still be valid for the multiplication and division case.

4.7.6 Arithmetic operations with two d.p. numbers

In case there is no quadruple word for two d.p. numbers in which
simple operations take place, we get

fl2(x�op�y) = (x�op�y)(1 + δ), |δ| ≤ (1/2)(1 + (1/β))β1�t2

where t2 = the number of digits in the mantissa in a d.p. word.
From now on, ε1 and ε2 denote the round-off error in a s.p.

operation performed first in a d.p. accumulator, and the d.p. operation
performed in a d.p. accumulator respectively, where

(4.7.3) ε1 = (1/2)β(1�t1) and ε2 = (1/2)(1 + (1/β))β(1�t2)

Let us now consider extended simple arithmetic operations of s.p.
numbers.

4.7.7 Extended simple s.p. operations in a d.p. accumulator

Consider the following operations:

© 2008 by Taylor & Francis Group, LLC

102 Numerical Linear Approximation in C

(a) Extended multiplication:
Let us calculate w = xyz. This is done in two steps, namely by
calculating fl(xy) then fl(fl(xy)z). Thus

w = fl((xy)(1 + δ1)z)

= (xyz)(1 + δ1)(1 + δ2), |δ1|, |δ2| ≤ ε1

where ε1 is defined in (4.7.3). In general, by assuming |δi| ≤ ε1

w = fl(x1 x2�xn)

= (x1 x2�xn)(1 + δ1)(1 + δ2)�(1 + δn�1)

(b) Extended addition (summation):
Consider w = (x + y + z). In the same manner, this is done in
two steps, by calculating fl(x+y) then fl(fl(x + y) + z). We get

w = fl((x + y)(1 + δ1) + z)

= ((x + y)(1 + δ1) + z)(1 + δ2)

= (x + y)(1 + δ1)(1 + δ2) + z(1 + δ2)
In general

w = fl(x1 + x2 + � + xn)

= (x1 + x2)(1 + δ1)(1 + δ2)�(1 + δn�1)

+ x3(1 + δ2)�(1 + δn�1) +�+ xn�1(1 + δn�2)(1 + δn�1)

+ xn(1 + δn�1)

|δi| ≤ ε1

(c) Inner products:
Let us compute w = (x1y1 + x2y2)

w = (x1y1(1 + δ1) + x2y2(1 + δ2))(1 + δ3), |δi| ≤ ε1

This result may also be extended.

Because the product of the factors (1 + δi) appear so often, it is
useful for practical purposes to obtain some rounding error bounds for
such products.

Lemma 4.1

Assume that |δi| ≤ ε1, i = 1, 2, �, n, and that nε1 < 0.01. Then

© 2008 by Taylor & Francis Group, LLC

Chapter 4: Efficient Solutions of Linear Equations 103

(4.7.4) 1 � nε1 ≤ Π1
n(1 + δi) ≤ 1 + 1.01nε1

Proof:

From the assumption that |δi| < ε1

(1 � ε1)n ≤ Π1
n(1 + δi) ≤ (1 + ε1)n

It is easy to establish that

1 � nε1 ≤ (1 � ε1)n

Also, assuming that nε1 < 0.01, it is easy to show that

(1 + ε1)n < 1 + 1.01nε1

and by applying (4.7.5a, b) to (4.7.4), the lemma is proved.

By using (4.7.4), we get the following bounds for the extended
multiplication, extended summation and inner products respectively.

(a) w = fl(x1 x2 � xn) = (x1 x2 � xn)(1 + τ), where

(4.7.6) 1 � (n � 1)ε1 ≤ 1 + τ ≤ 1 + 1.01(n � 1)ε1

(b) w = fl(x1 + x2 + � + xn)
= fl(x1 + x2)(1 + τ2) + x3(1 + τ3) +�+ xn(1 + τn), where

(4.7.7)1 � (n + 1 � r)ε1 ≤ (1 + τr) ≤ 1 + 1.01(n + 1 � r)ε1, r = 2, 3,�, n

(c) w = fl(x, y) = (x1y1)(1+τ1) + x2y2(1+τ 2)+�+ xn yn (1+τn)

where

1 � nε1 ≤ (1 + τ1) ≤ 1 + 1.01nε1

1 � (n + 2 � r)ε1 ≤ (1 + τr) ≤ 1 + 1.01(n + 2 � r)ε1, r = 2, 3, �, n

Remark 4.1

The error in the extended-product case depends on the order in
which the numbers are multiplied. Yet, the upper bound of the error as
given in (4.7.6) is independent of such order. Also, the relative error
(R.E.) is appreciably small and from (4.7.6) is

|R.E.| < 1.01(n � 1)ε1

Remark 4.2

In the summation operation, both the error and the upper bound in
(4.7.7) depend on the order in which the numbers are added. The

© 2008 by Taylor & Francis Group, LLC

104 Numerical Linear Approximation in C

upper bound of this error will be smaller if the numbers were added in
order of increasing absolute magnitude. That is because the largest
factor (1+τi) will be associated with the smallest xi. However, in this
process there is no guarantee that the relative error will be small.

It may happen that the positive and negative terms in the
summation of the denominator cancel each other in such a way that
the summation is very small. It may also happen that the terms in the
numerator will support each other. In such a case the relative error
will be very high. The same situation may occur in the inner product
case. This phenomenon of cancellation is very crucial and it magnifies
the harmful effect of the round-off error.

4.7.8 Alternative expressions for summations and
inner-product operations

(a) The expression for summations may take the form

w = fl(x1 + x2 + � + xn)

= (x1 + x2 + � + xn) + e1
where

(4.7.8) |e1| ≤ 1.01ε1[(n � 1)|x1 + x2| + (n � 2)|x3| + � + 2|xn�1| + |xn|]

(b) Also, for the inner product operation, we may have

w = fl(x, y) = (x, y) + e2, where

(4.7.9) |e2| ≤ 1.01ε1[n|x1| |y1| + n|x2| |y2| + (n � 1)|x3| |y3|

+�+ 2|xn| |yn|]

4.7.9 More conservative error bounds

(a) The summation case, from (4.7.8)

w = fl(x1 + x2 + � + xn)

= (x1 + x2 + � + xn) + e3, where

R.E. xiτi
i 1=

n

∑ xi
i 1=

n

∑⁄≤

© 2008 by Taylor & Francis Group, LLC

Chapter 4: Efficient Solutions of Linear Equations 105

|e3| ≤ 1.01(n � 1)ε1(|x1| + |x2| + � + |xn|)

(b) The inner product case, from (4.7.9)

w = fl(x, y) = (x, y) + e4, where

|e4| ≤ 1.01nε1(|x|, |y|)

where |x| and |y| are the two vectors whose elements are
respectively the absolute elements of x and y.

4.7.10 D.p. summations and inner-product operations

In most computers there are facilities for accumulating the sum of
several terms in a d.p. accumulator for each partial sum and the whole
terms are added. The final result is then rounded to s.p.
(a) The summation operation.

First we obtain an expression similar to (4.7.7), namely

fl2(x1 + x2 + � + xn)

= (x1 + x2)(1 + η2) + x3(1 + η3) + � + xn(1 + ηn)

and

1 � (n + 1 � r)ε2

≤ (1 + ηr) ≤ 1 + 1.01(n + 1 � r)ε2, r = 2, 3, �, n

and from (4.7.3)

ε2 = (1/2)(1 + (1 + (1/β)))β(1�t2)

Then when this result is rounded to s.p. we get

= [(x1 + x2)(1 + η2) + x3(1 + η3)

+ � + xn(1 + ηn)](1 + ε), |ε| ≤ ε1

From this result we write

w = (x1 + x2 + � + xn) + E1, where

w fl fl2 xi
i 1=

n

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

=

© 2008 by Taylor & Francis Group, LLC

106 Numerical Linear Approximation in C

(b) The inner product case.
In the same manner as above

w = fl(fl2(x, y)) = (x, y) + E2,

where

|E2| ≤ ε1|(x, y)| + 1.01nε2(|x|, |y|)

We observe that the second term on the right for both |E1| and
|E2| is a second order term, compared with the first term.

4.7.11 Rounding error in matrix computation

The obtained results so far are now applied to a simple matrix
computation. Let A = (aij) be an n by n matrix and let x be an n-vector.
Let us compute the following:
(i) y = Ax. The computed ith element of y is

From (4.7.9)

| Ei | ≤ 1.01ε1[n|ai1| |x1| + n|ai2| |x2| + (n � 1)|ai3| |x3|

+ � + 2|ain| |xn|]

We may write

y = Ax + E1

| E1| ≤ 1.01 |A| D |x| ε1

and D is a diagonal matrix given by

D = diag(n, n, n � 1, �, 2)

Again, |A| denotes the matrix whose elements are the absolute
elements of matrix A. Thus by taking the Euclidean norms of
the above inequality, we get the following bound

E1 ε1 xi
i 1=

n

∑ 1.01 n 1�()ε2 xi
i 1=

n

∑+≤

yi fl aijxj
j 1=

n

∑ aijxj
j 1=

n

∑ Ei+= =

© 2008 by Taylor & Francis Group, LLC

Chapter 4: Efficient Solutions of Linear Equations 107

||E1||2 ≤ 1.01 nε1||A||E ||x||2
(ii) C = AB, where each of A, B and C is an n by n real matrix.

In the same manner we write down

C = fl(AB) = AB + E2

where

||E2||E ≤ 1.01 nε1||A||E ||B||E
See for example Wilkinson ([15], p. 83).

However, if d.p. accumulations of inner products are made, the
results for (i) and (ii) are
(i) y = fl(fl2(Ax)) = Ax + E3, where

||E3||2 ≤ ε1||Ax||2 + 1.01nε2||A||E ||x||2
(ii) C = fl(fl2(AB)) = AB + E4, where

||E4||E ≤ ε1||AB||E + 1.01nε2||A||E ||B||2

4.7.12 Forward and backward round-off error analysis

Let us now assume that we are calculating the value of

x = g(a1, a2, �, an)

where the ai are given. As a result of the round-off error, the computed
value of x, namely x will differ from the exact value x by dx = x � x.

In the forward error analysis, we attempt to obtain some bound on
dx. In the backward error analysis, we do not concern ourselves with
the value of dx. Instead, we try to show that the computed value x is
exactly equal to

x = g(a1 + da1, a2 + da2, �, an + dan)

for some values of da1, da2, �, dan, and we calculate the bounds for
the dai. The analysis has to be continued after this step to obtain some
bounds for ||dx||, usually by using some perturbation technique [3, 14].

In practice, it is found that the backward round-off error analysis
is much simpler than the forward analysis, in particular in the
floating-point computation. We give here a simple example to
illustrate the idea of the backward error analysis. Suppose that we are
computing the elements xi from the lower triangular set of equations

© 2008 by Taylor & Francis Group, LLC

108 Numerical Linear Approximation in C

a11x1 = b1
a21x1 + a22x2 = b2

(4.7.10) a31x1 + a32x2 + a33x3 = b3
a41x1 + a42x2 + a43x3 + a44x4 = b4

The variables x1, x2, �, are computed in succession

x1 = fl(b1/a11)

xi = fl[(�ai1x1 � ai2x2 � + bi)/aii], i = 2, 3, 4

From Theorem 4.17

x1 = b1/[a11(1 + δ11)]

and

xi = fl[(�ai1(1 + δi1)x1 � � � ai, i�1(1 + δi, i�1)xi�1 + bi)]
/ [aii(1 + δii)(1 + εii)], i = 2, 3, 4

where

|δii|, |εii| ≤ ε1, i = 1, 2, 3, 4, |δi1| ≤ 1.01(i � 1)ε1, i = 2, 3, 4

and |δij| ≤ 1.01(i + 1 � j)ε1, i = 2, 3, 4, j < i

Hence, we get

a11(1 + δ11)x1 = b1
a21(1 + δ21)x1 + a22(1 + δ22)(1 + ε22)x2 = b2, etc.

or in matrix form

(A + dA)x = b

where

Hence, by taking the L∞ norm of dA, (maximum absolute row sum)

||dA||∞ ≤ (1/2) × 1.01 × 4 × 5ε1 × maxij|aij|

If instead, A is n by n (not 4 by 4), the error bound would be

dA 1.01ε1

a11 0 0 0
a21 2 a22 0 0

2 a31 2 a32 2 a33 0
3 a41 3 a42 2 a43 2 a44

≤

© 2008 by Taylor & Francis Group, LLC

Chapter 4: Efficient Solutions of Linear Equations 109

(4.7.11) ||dA||∞ ≤ (1/2)1.01n(n + 1)ε1 × maxij|aij|

In other words, the computed solution to (4.7.10) is the exact
solution of (A + dA)x = b, where ||dA||∞ is given above and the error
dx = (x � x) is calculated from Theorem 4.12 by taking db = 0 and
assuming ||A�1dA|| < 1

(4.7.12)

4.7.13 Statistical error bounds and concluding remarks

We conclude that the upper bounds of round-off error may be
reached only in very special cases. The round-off error in a single
arithmetic operation lies between �ε1 and ε1. To realize the worst-case
estimated upper bound in the error of an accumulation of simple
arithmetic operations, every single round-off error would have to be at
either extreme �ε1 or ε1 and the data of the problem would have to be
arranged in such a form that the errors all accumulate in the same
direction. In the above, the obtained error bound for ||dA||∞ is given by
(4.7.11). In practice, due to the statistical distribution of the round-off
errors the factor n(n + 1) in (4.7.11) is more likely to be n.

We note that the first detailed round-off error analysis in fixed
point arithmetic operations (not discussed in this section) was given
by von Neumann and Goldstine [12]. The corresponding analysis in
floating-point operations was first given by Wilkinson [14]. The
backward round-off error analysis was first introduced by Givens [4].

The pioneering contribution to the subject of round-off error
analysis in algebraic processes in both fixed and floating-point
computation is due to Wilkinson. Most of his published and
unpublished work is summarized in his two books [15, 16].

References

1. Businger, P. and Golub, G., Linear least squares solution
by Householder transformation, Numerische Mathematik,
7(1965)269-276.

dx
x

----------- A 1� dA
1 A 1� dA�
------------------------------≤

© 2008 by Taylor & Francis Group, LLC

110 Numerical Linear Approximation in C

2. Fisher, M.E., Introductory Numerical Methods with the NAG
Software Library, The University of Western Australia,
Crawley, 1988.

3. Forsythe, G.E. and Moler, C.B., Computer Solution of Linear
Algebraic Systems, Prentice-Hall, Englewood Cliffs, NJ, 1967.

4. Givens, J.W., Numerical computation of the characteristic
values of a real matrix, Oak Ridge National Laboratory,
ORNL-1574, 1954.

5. Givens, J.W., Computation of plane unitary rotations
transforming a general matrix to triangular form, Journal of
SIAM, 6(1958)26-50.

6. Golub, G.H. and Van Loan, C.F., Matrix Computation, Third
Edition, The Johns Hopkins University Press, Baltimore,
1996.

7. Hadley, G., Linear Programming, Addison-Wesley, Reading,
MA, 1962.

8. Householder, A.S., Unitary triangularization of a non-
symmetric matrix, Journal of ACM, 5(1958)339-342.

9. Lancaster, P., Theory of Matrices, Academic Press, New
York, 1969.

10. Noble, B., Applied Linear Algebra, Prentice-Hall, Englewood
Cliffs, NJ, 1969.

11. Stewart, G.W., Introduction to Matrix Computations,
Academic Press, New York, 1973.

12. von Neumann, J. and Goldstine, H.H., Numerical inverting of
matrices of high order, Bulletine of American Mathematical
Society, 53(1947)1021-1099.

13. Westlake, J.R., A Handbook of Numerical Matrix Inversion
and Solution of Linear Equations, John Wiley & Sons, New
York, 1968.

14. Wilkinson, J.H., Error analysis of floating-point computation,
Numerische Mathematik, 2(1960)319-340.

15. Wilkinson, J.H., Rounding Errors in Algebraic Processes,
Prentice-Hall, Englewood Cliffs, NJ, 1963.

16. Wilkinson, J.H., The Algebraic Eigenvalue Problem,
Clarendon Press, Oxford, 1965.

© 2008 by Taylor & Francis Group, LLC

PART 2

The L1 Approximation

© 2008 by Taylor & Francis Group, LLC

112 Numerical Linear Approximation in C

Chapter 5 Linear L1 Approximation 113

Chapter 6 One-Sided L1 Approximation 183

Chapter 7 L1 Approximation with Bounded Variables 213

Chapter 8 L1 Polygonal Approximation of Plane Curves 245

Chapter 9 Piecewise L1 Approximation of Plane Curves 275

© 2008 by Taylor & Francis Group, LLC

113

Chapter 5

Linear L1 Approximation

5.1 Introduction

Given is the overdetermined system of linear equations

(5.1.1) Ca = f

where C = (cij) is a real n by m matrix of rank k, k ≤ m ≤ n and f = (fi)
is a real n-vector. In general, this is an inconsistent linear system and
has no exact solution; only an approximate one. The residual vector
for the system Ca = f, denoted by r is

r = Ca � f

In this chapter, we consider the linear L1 solution of Ca = f, which
requires that the L1 norm of the errors (the residuals) in the
approximation problem be as small as possible.

Since the early seventies, there has been an increasing interest in
the linear L1 approximation. According to Bloomfield and Steiger
([14], pp. 33, 34), it has been given many names, such as Discrete L1
approximation [1, 2, 8], L1 solution of overdetermined linear
equations [1, 3, 4], Linear discrete L1 norm problem [6], L1 norm
minimization [22], Least absolute deviations (LAD) [14], Minimum
sum of absolute errors (MSAE) [17], L1�Approximation [18], Least
absolute value (LAV) [23], L1 linear regression [24], Least absolute
value regression [28] and others.

The robustness of the L1 solution against odd points or outliers
(one or more inaccurate element in vector f) was illustrated in Figure
2-1. In this context, Rosen et al. [22] give necessary and sufficient
conditions that correct solution is obtained when there are some errors
not only in vector f, but also in the coefficient matrix C.

© 2008 by Taylor & Francis Group, LLC

114 Numerical Linear Approximation in C

The L1 solution of system Ca = f, or the discrete L1
approximation, is the m-vector a = (ai) that minimizes the L1 norm
of the residuals; that is

(5.1.2)

where ri is the ith element of vector r and is given by

(5.1.3) , i = 1, 2, �, n

Abdelmalek [1] showed that the discrete linear L1 approximation
is equivalent to the solution of the overdetermined linear equation
Ca = f in the L1 norm, as explained in Chapter 2. For the case when
matrix C satisfies the Haar condition, Usow [25] treated the discrete
L1 approximation by solving a geometric problem equivalent to
solving Ca = f in the L1 norm. Abdelmalek [1] generalized Usow�s
algorithm for the non-Haar case and showed that his algorithm is
completely equivalent to a dual simplex method applied to a linear
programming problem with non-negative bounded variables.
However, one iteration of Usow�s algorithm is equivalent to one or
more iterations in the latter.

The most widely used methods for solving the L1 approximation
employ linear programming techniques, in the primal or the dual
form. Wagner [26] was the first to successfully formulate the L1
approximation problem (5.1.1-3) to a linear programming one in both
the primal and dual forms.

Barrodale and Roberts [8, 9] used a modification of the simplex
method of linear programming to solve the primal problem. Their
routine is able to skip certain intermediate simplex iterations. Matrix
C of (5.1.1) need not be of full rank, minimum computer storage is
required and an initial basic feasible solution is easily computed.

To advance the starting basis in the linear programming solution
for the L1 approximation problem, Sklar and Armstrong [23] solved
the equation Ca = f first in the least squares (LS) sense. They
computed and ordered the absolute LS residuals. Then the initial basis

minimize Z ri
i 1=

n

∑=

ri cijaj
j 1=

m

∑ fi�=

© 2008 by Taylor & Francis Group, LLC

Chapter 5: Linear L1 Approximation 115

for the L1 problem corresponds to the columns related to the m
smallest absolute LS residuals. This is because the L1 approximation
is supposed to interpolate at least m of the given data points, m being
the rank of matrix C. Their method requires solving the problem in the
LS sense first and assumes that the coefficient matrix C is of full rank
m. See Section 5.1.1.

Bloomfield and Steiger [13] presented an algorithm identical to
that of Barrodale and Roberts [8, 9] except that they differ in the start
up of the algorithm. They assume that rank(C) = m and use the
characterization theorem outlined in Section 5.1.1. They consider all
m combinations with zero residuals and use an exchange method that
is a variation of the simplex method.

Among other methods that use linear programming is that of
Narula and Wellington [17]. They developed one algorithm that
solves both the L1 approximation problem, calling it the minimum
sum of absolute errors (MSAE) regression and the Chebyshev
approximation problem, calling it minimization of the maximum
absolute error (MMAE) regression. They maintain that the
algorithm for MSAE regression is that of Barrodale and Roberts [8]
and the algorithm for MMAE regression retains the basic elements of
Barrodale and Phillips [7].

Following the analysis of Usow�s method, Abdelmalek [2, 3, 4]
next solved the linear programming problem in the dual form, in such
a way that certain intermediate simplex iterations are skipped.
Numerical results [3] on a large number of test cases show that this
method is comparable to that of Barrodale and Roberts [7, 8]. This is
not surprising since the two algorithms are identical as shown by
Armstrong and Godfrey [6]. However, the two methods differ in
obtaining the initial basic solution and the way a vector leaves and
enters the basis. Another difference is that in Abdelmalek [3, 4], for
the purpose of numerical stability for ill-conditioned problems, a
triangular decomposition to the basis matrix is used. Nevertheless, a
program without triangular decomposition of the basis, which is
faster, is also included here.

Robers and Ben-Israel [20] and Robers and Robers [21] described
an interval programming technique to solve the bounded variables
dual linear programming problem (5.2.3) below. No intermediate
simplex iterations are skipped in their method.

© 2008 by Taylor & Francis Group, LLC

116 Numerical Linear Approximation in C

Techniques for solving the L1 approximation problem other than
linear programming, include that of Bartels et al. [10] who used a
projected gradient method for choosing a descent direction to
minimize a piecewise differential function. Wesolowsky [28] used a
technique closely related to that of Bartels et al. [10] with different
rules of descent. Bartels and Conn [11] used a descent method, which
is a variant of the simplex method.

In the following, we describe the solution using the dual form of
the linear programming formulation of the L1 approximation problem.
It reduces to a programming problem with non-negative bounded
variables. No artificial variables are needed in the algorithm and as we
noted earlier, it deals with rank deficient cases. Also, minimum
computer storage is used and an initial basic feasible solution is easily
computed. We are able to skip certain intermediate simplex iterations
and hence, the algorithm is an efficient one. In Section 3.8.1, we
outlined the formulation of the L1 problem as a linear programming
problem. For the sake of completeness, we formulate this problem
again here.

5.1.1 Characterization of the L1 solution

For characterization theorems of the L1 optimal solution, see for
example, Madsen et al. [16], Pinkus [18], Powell [19] and Watson
[27]. The most important characterization is the following. For
practical purposes, for an optimal solution, if matrix C in (5.1.1) has
rank k, k ≤ m, then at least k of the residuals are 0�s. This
characterization (theorem) is a direct result of the solution of the dual
linear programming problem of the L1 approximation. See Section
5.7. However, simplex methods calculate such optimal solutions, but
not every optimal solution has this characterization ([24], p. 60).

5.2 Linear programming formulation of the problem

Since the residuals (ri) in (5.1.3) are unrestricted in sign; that is, ri
may be >, =, or < 0, i = 1, 2, �, n, we write

(5.2.1a) ri = ui � vi

Hence

© 2008 by Taylor & Francis Group, LLC

Chapter 5: Linear L1 Approximation 117

(5.2.1b) |ri| = ui + vi

where ui and vi are such that

(5.2.1c) ui ≥ 0 and vi ≥ 0, i = 1, 2, �, n

When ri > 0, we have ui > 0 and vi = 0 and when ri < 0, we have
vi > 0 and ui = 0. Obviously, when ri = 0, ui = vi = 0. Hence, from
(5.2.1b), (5.1.2) becomes

In vector-matrix notation, let vector u = (uj) and vector v = (vj).
Hence, the residual vector r is

r = u � v = Ca � f

The primal form of the linear programming problem is

(5.2.2a) minimize Z = eTu + eTv

subject to the constraints

(5.2.2b)

(5.2.2c) ai unrestricted in sign, i = 1, 2, �, m

(5.2.2d) ui ≥ 0, vi ≥ 0, i = 1, 2, �, n

In (5.2.2a), e is an n-vector, each element of which equals 1, and
the superscript T refers to the transpose. In (5.2.2b), In is an n-unit
matrix.

The dual form to problem (5.2.2) is

(5.2.3a) maximize z = fTw

subject to

(5.2.3b) CTw = 0

w ≤ e
(5.2.3c) w ≥ �e

minimize Z ui
i 1=

n

∑ vi
i 1=

n

∑+=

C I� n In

a
u
v

f=

© 2008 by Taylor & Francis Group, LLC

118 Numerical Linear Approximation in C

where the n-vector w = (wi). The last two sets of constraints reduce to
the following constraints

�1 ≤ wi ≤ 1, i = 1, 2, �, n

Then by defining bi = wi + 1, i = 1, 2, �, n, we get the following
formulation of the problem.

(5.2.4a) maximize z = fT(b � e)

subject to the constraints

CTb = CTe

or

(5.2.4b)

(5.2.4c) 0 ≤ bi ≤ 2, i = 1, 2, �, n

Ci
T is the ith column of matrix CT and b = (bi). We see that (5.2.4) is a

linear programming problem with non-negative bounded variables
[15]. We solve here this dual form (5.2.4).

5.3 Description of the algorithm

In (5.2.4c), for an optimum solution, the lower bounds of
parameter bi, i = 1, 2, �, n, are 0�s and their upper bounds are 2. A
dual simplex algorithm for solving this problem is described here.
Without loss of generality, assume that matrix C is of rank m.

Theorem 5.1

A necessary and sufficient condition for a nonzero program for
system (5.2.4) to be optimal is that (n � m) elements of vector b, each
has the value 0 (lower bound) or 2 (upper bound), and that the other m
elements of b are basic variables [15].

Let a basis indicator set for vector b be the index set
I(b) ⊂ {1, 2, �, n} with the property that the variables {bi | i ∈ I(b)}
are basic variables. Let also the index sets L(b) and U(b) be indicators
for the non-basic variables {bi | i ∉ I(b)} that are respectively at their
lower bounds (= 0) and at their upper bounds (= 2). Let B denote the

CTb Ci
T

i 1=

n

∑=

© 2008 by Taylor & Francis Group, LLC

Chapter 5: Linear L1 Approximation 119

basis matrix and the basic solution be bB = (bBj), j = 1, 2, �, m.
As usual, the simplex tableau is formed by calculating the

non-basic vectors yi and their marginal costs (zi � fi), i = 1, 2, �, n.
Then

(5.3.1) yi = B�1Ci
T

and

(5.3.2) zi � fi = fB
Tyi � fi

The elements of fB = (fi), i ∈ I(b).
Since some of the non-basic variables may be at their upper bound

(= 2), from (5.2.4b), the basic solution

(5.3.3)

By denoting the first term on the right by bB0 and by (5.3.1)

(5.3.4)

Theorem 5.2

A basic feasible solution is maximal, if the marginal costs for the
non-basic variables (zi � fi), i ∉ I(b), satisfy the relations [15]

zi � fi ≥ 0, i ∈ L(b)

zi � fi ≤ 0, i ∈ U(b)

The solution of this dual problem is summarized as follows. A
non-basic column may replace a basic column, may go from a zero
bound to an upper bound or may go from an upper bound to zero. The
optimal solution is characterized by Theorem 5.1.

Theorem 5.3

At any stage of the computation, the residuals (ri) of (5.1.3) are
themselves the marginal costs (zi � fi) for the same reference

zi � fi = ri, i = 1, 2, �, n

Proof:

bB B 1� Ci
T

i 1=

n

∑ 2 Ci
T

i U b()⊂
∑�=

bB bB0 2 yi
i U b()⊂

∑�=

© 2008 by Taylor & Francis Group, LLC

120 Numerical Linear Approximation in C

For any i ∉ I(b), from (5.3.1), (5.3.2) is given by

zi � fi = fB
TB�1Ci

T � fi = CiB�TfB � fi

where Ci
 is the ith row of C. Also, the elements of fB = (fj), j ∈ I(b).

Thus B�TfB = (a1, �, am)T, and hence

, i = 1, 2, �, n

For i ∈ I(b); that is, for the reference equations (zi � fi) = 0, the
residual ri = 0, which proves the theorem.

As a result, the objective function z of (5.1.2) is given by

Theorem 5.4

The solution vector of the L1 approximation problem is given by

(5.3.5) aT = fB
TB�1

where B�1 is the inverse of the basis matrix for the optimum solution
of the programming problem and fB is associated with the optimal
solution.

The proof follows also from the fact that B�TfB = (a1, �, am)T.

5.4 The dual simplex method

We start solving (5.2.4) by choosing any m linearly independent
columns of CT to form the basis matrix B. The simplex tableau is then
formed by calculating vectors (yi) from (5.3.1) and the marginal costs
(zi � fi) from (5.3.2), for i = 1, 2, �, n.

The following steps constitute none other than a dual simplex
algorithm for the non-negative bounded variables (bi) as described,
for example, in Hadley ([15], pp. 387-394). The choice of the vector
that leaves the basis is made first. Then the vector that enters the basis
is determined. At first, any non-basic variable bi is given the lower
bound 0.

zi fi� cijaj
j 1=

m

∑ fi ri=�=

z zi fi�
i 1=

n

∑=

© 2008 by Taylor & Francis Group, LLC

Chapter 5: Linear L1 Approximation 121

(1) Scan the marginal costs. For all marginal costs (zi � fi) < 0, let
their bi take the value 2 (upper bound). Indicate that by putting
a mark �x� above the corresponding columns in the simplex
tableau. Then the bB is calculated from (5.3.4).

(2) Scan the elements of the basic solution bB. If all the elements
bBs, s = 1, 2, �, m, are bounded, i.e., 0 ≤ bBs ≤ 2, an optimal
solution is reached. Otherwise go to step (3).

(3) The first element bBi that is < 0 or > 2 is considered. The
corresponding column in the basis is to be replaced by a
non-basic column according to one of the steps (3.1-4) below.
The scanning proceeds from element bBi+1 and back again
from bB1.

Let at any iteration, Cj
T be associated with bBi, and let Cr

T replace
Cj

T in the basis. The following steps are employed.

Case (1)

If bBi < 0, Cr
T is determined from

θr = max(θ1, θ2) < 0

where

θ1 = (zr � fr)/yir = maxs((zs � fs)/yis), yis < 0, s ∈ L(b)

and

θ2 = (zr � fr)/yir = maxs((zs � fs)/yis), yis > 0, s ∈ U(b)

(3.1) If θr = θ1, transfer the simplex tableau and go to step (2)
above.

(3.2) If θr = θ2, transfer the simplex tableau, add 2 (upper bound) to
the new bBi. Remove the mark �x� from column r since br is
no longer at its upper bound. Go to step (2).

Case (2)

If bBi > 2, Cr
T is determined from

τr = max(τ1, τ2) > 0

where

τ1 = (zr � fr)/yir = mins((zs � fs)/yis), yis > 0, s ∈ L(b)

and

© 2008 by Taylor & Francis Group, LLC

122 Numerical Linear Approximation in C

τ2 = (zr � fr)/yir = mins((zs � fs)/yis), yis < 0, s ∈ U(b)

(3.3) If τr = τ1, transfer the simplex tableau. Mark column Cj
T with

�x� to indicate that bj is now at its upper bound (= 2). Subtract
2yj from bB and go to step (2).

(3.4) If τr = τ2, transfer the simplex tableau as usual. Remove the
mark �x� from column Cr

T and place an �x� on column Cj
T.

Add 2 to the new bBi and subtract 2yj from bB. Go to step (2).

In view of (5.3.4), steps (3.1-4) are analyzed as follows. When a
non-basic column Cr

T at its upper bound enters the basis, as in steps
(3.2) and (3.4), it is no more at its upper bound and according to
(5.3.4), we add 2yr to bB, or in effect, we add 2 to bBi. Also, when a
basic column Cj

T leaves the basis to its upper bound, as in steps (3.3)
and (3.4), we subtract 2yj from bB. To illustrate the steps in this
algorithm, so far, consider this example.

Example 5.1

Solve the following system of equations in the L1 norm

a1 + a2 = 3
a1 � a2 = 1

(5.4.1) a1 + 2a2 = 7
2a1 + 4a2 = 11.1
3a1 + a2 = 7.2

In the initial data, column bB0 is the sum of the 5 columns of CT.
Matrix B�1 is the inverse of the matrix formed by the first 2 columns
of CT.

Initial Data

fT 3 1 7 11.1 7.2
B�1 bB0 C1

T C2
T C3

T C4
T C5

T

������������������������� ����������������������������
0.5 0.5 8 1 1 1 2 3
0.5 �0.5 7 1 �1 2 4 1

������������������������� ����������������������������

In the initial data B-1 is not calculated yet, and in view of (5.3.3),
vector bB0 is the algebraic sum of the five columns of Ci

T.
Tableau 5.4.1 is formed by multiplying the initial data by B�1.

© 2008 by Taylor & Francis Group, LLC

Chapter 5: Linear L1 Approximation 123

However, we actually obtain Tableau 5.4.1 by pivoting over the first
element in row 1 of the initial data and apply a Gauss-Jordan
elimination step, as explained in Chapter 4. Then we pivot over the
second element in row 2 in the obtained tableau and apply a
Gauss-Jordan elimination step. We then calculate the marginal costs
(zi � fi), i ∉ I(b).

We find in Tableau 5.4.1 that (zi � fi) < 0, for i = 3, 4 and 5.
Hence, the corresponding bi is given the upper bound 2, and this is
identified by marks �x� on these columns. Vector bB is modified by
subtracting 2(y3 + y4 + y5) from it.

In Tableau 5.4.1, the elements of column bB are �5.5 and 1.5. The
first element violates the inequalities 0 ≤ bB1 ≤ 2 of (5.2.4c). Column
C1

T is the column in the basis that is associated with this element.
Hence, we replace this column in the basis.

Tableau 5.4.1

x x x
fT 3 1 7 11.1 7.2

bB B C1
T C2

T C3
T C4

T C5
T

������������������������� ����������������������������
7.5�2(1.5+3+2) = �5.5 C1

T 1 0 1.5 3 (2)
0.5�2(�0.5�1+1) = 1.5 C2

T 0 1 �0.5 �1 1
������������������������� ����������������������������

z = 6.3 zi � fi 0 0 �3 �3.1 �0.2
θr �2 �1.03 �0.1

Tableau 5.4.2

x x
fT 3 1 7 11.1 7.2

bB B C1
T C2

T C3
T C4

T C5
T

������������������������� ����������������������������
�2.75+2 = �0.75 C5

T 0.5 0 0.75 1.5 1
4.25 C2

T �0.5 1 �1.25 (�2.5) 0
������������������������� ����������������������������

z = 5.75 zi � fi 0.1 0 �2.85 �2.8 0
τr 2.28 1.12

The vector that enters the basis is calculated from steps (3.1-4)

© 2008 by Taylor & Francis Group, LLC

124 Numerical Linear Approximation in C

above via calculating the ratios θr or τr. In Tableau 5.4.1 the
parameters θr represent the ratios of the elements of (zi � fi) over the
corresponding elements of the first row in that tableau.

For this Tableau we apply step (3.2) and the pivot element is
shown between brackets; that is, column C5

T
 will replace column C1

T

in the basis. We calculate Tableau 5.4.2, by applying a Gauss-Jordan
step and remove the mark �x� from the top of column C5

T.
For Tableau 5.4.2, both elements of bB violate the inequalities

(5.2.4c), so we have the choice of replacing C5
T or C2

T in the basis.
We shall replace C2

T by C4
T by observing step (3.4) above. Again, in

Tableau 5.4.2, the parameters τr represent the ratios of the elements of
(zi � fi) over the corresponding elements of the second row in that
tableau.

We get Tableau 5.4.3, in which both elements of bB satisfy the
inequalities (5.2.4c). Hence, Tableau 5.4.3 gives the optimal solution
for Example 5.1.

Tableau 5.4.3

x x
fT 3 1 7 11.1 7.2

bB B C1
T C2

T C3
T C4

T C5
T

������������������������� ����������������������������
1.8 �2(0.6) = 0.6 C5

T 0.2 0.6 0 0 1
�1.7 +2�2(�0.4) = 1.1 C4

T 0.2 �0.4 0.5 1 0
������������������������� ����������������������������

z = 3.23 zi � fi 0.66 �1.12 �1.45 0 0

Note also that the elements of the last row in Tableau 5.4.3 are the
residuals of system (5.4.1). From Theorem 5.3, the sum of their
absolute vales = 0.66 + 1.12 + 1.45 + 0 + 0 = 3.23 = z. From (5.3.5)
or by solving the fifth and fourth equations of (5.4.1) of Example 5.1,
we get the solution of the problem; a = (a1, a2)T = (1.77, 1.89)T.

5.5 Modification to the algorithm

We note in the above section that the process of adding 2yr and/or
subtracting 2yj vectors is done after the simplex tableau has been
changed by applying a Gauss-Jordan elimination step.

The efficiency of the algorithm is improved by skipping certain

© 2008 by Taylor & Francis Group, LLC

Chapter 5: Linear L1 Approximation 125

intermediate Gauss-Jordan iterations [2]. This is done with the
following modifications:
(1) Reverse the order of the two processes. The process of adding

the 2yr and/or subtracting the 2yj vectors from bB is done first.
Then it is followed by the Gauss-Jordan step.

(2) More importantly, the changing of the tableau may be
postponed until some non-basic columns each enter then leave
the basis. This is because the corresponding bBi does not yet
satisfy the bounds 0 ≤ bBi ≤ 2 of (5.2.4c). This process
continues until the last non-basic column for which bBi
satisfies this inequality is found. This ensures that in replacing
a basic column, the maximum decrease in the objective
function z has been achieved.

Let us assume that we start the procedure of the previous
paragraph from a basic solution given by a simplex tableau, say
tableau 1. Let us also assume that the (k � 1) non-basic columns have
each entered, then left the basis for which bBi violated the inequalities
(5.2.4c). Assume also that a kth column entered the basis without
leaving, because bBi satisfied the inequalities (5.2.4c). Hence, in this
method, we have skipped calculating the (k � 1) intermediate tableaux
2, 3, �, k that correspond to the (k � 1) non-basic columns that each
entered, then left the basis. Only tableau k + 1 is calculated.

All necessary data needed for pursuing this procedure is contained
in the ith row of tableau 1 and the marginal costs of this tableau. We
need to know the (bBi) and the pivot elements (yir) for the (k � 1)
intermediate iterations. We also note that each intermediate tableau is
obtained by pivoting over an element yir in row i of the previous
(intermediate) tableau. As a result, the ith element of the basic solution
and the pivot elements for intermediate tableaux t = 2, 3, �, k, are
(bBi/yi,t�1) and (yit/yi,t�1) respectively.

We also know that the (k + 1)th tableau is the tableau that we
would have obtained, had we changed tableau 1 once, by pivoting
over yik.

Let

(5.5.1a) b'Bi = bBi and yi,t = yi,t, t = 1

(5.5.1b) b'Bi = b'Bi/yi,t�1 and yi,t = yi,t/yi,t�1, t = 2, 3, �, k

where b'Bi and yi,t are respectively the ith element of b'B and the pivot

© 2008 by Taylor & Francis Group, LLC

126 Numerical Linear Approximation in C

element in tableaux t = 1, 2, �, k. Also, b'B is bB with vector(s) 2yr
added to it and/or vector(s) 2yj subtracted from it. Again, let us start
an iteration from a basic solution given by, say, tableau 1. This
algorithm modifies the algorithm of Section 5.4 as follows.

Starting step

Scan bBk for k = 1, 2, �, m. Consider the smallest of parameters
bBk < 0 and (2 � bBk). Let Cr

T replaces Cj
T and each time calculate

b'Bi from (5.5.1). This is done until the calculated b'Bi satisfies
0 ≤ b'Bi ≤ 2. Change the simplex tableau and re-scan the elements of
bB. This is repeated until all the elements bBk satisfy 0 ≤ bBk ≤ 2.
Steps (3.1-4) of Section 5.4 are now modified as follows.

Case (1')

If bBi < 0, the sequence of the non-basic columns Cr
T that enter

the basis and may leave the basis, corresponds to the parameters
θr = (zr � fr)/yir < 0, r ∉ I(b), starting from the algebraically larger
ratio.
(3.1') If yir < 0, b'B is not changed. Go to step (3.5').
(3.2') If yir > 0, add 2yr to b'B. Remove the �x� from Cr

T indicating
that br is no more at its upper bound. Go to step (3.5').

Case (2')

If bBi > 2, the sequence of the non-basic columns Cr
T that enter

the basis and may leave the basis corresponds to the parameters
τr = (zr � fr)/yir > 0, r ∉ I(b), starting from the smallest ratio.
(3.3') If yir > 0, subtract 2yj from b'B and place a mark �x� over Cj

T

indicating that it is now at its upper bound. Go to step (3.5').
(3.4') If yir < 0, add 2yr and subtract 2yj from b'B. Remove the �x�

from Cr
T and place an �x� over Cj

T. Go to step (3.5').
(3.5') Calculate b'Bi from (5.5.1a, b). If the resulting b'Bi still violates

0 ≤ b'Bi ≤ 2, go to either case (1') or case (2'), according to
whether b'Bi < 0 or > 2 respectively. If the resulting b'Bi
satisfies 0 ≤ b'Bi ≤ 2, change the tableau. Go to the starting
step.

5.6 Occurrence of degeneracy

In the dual simplex method degeneracy arises when there exist

© 2008 by Taylor & Francis Group, LLC

Chapter 5: Linear L1 Approximation 127

one or more non-basic column r, for which the ratio (zr � fr)/yir = 0. It
should be decided whether it is τr = 0 or θr = 0. This is resolved as
follows. If br = 0, we replace (zr � fr) by a small number δ, and if
br = 2, we replace (zr � fr) by �δ. We then calculate (zr � fr)/yir, and it
will definitely be either > or < 0, and the degeneracy is resolved.

The small number δ represents the round-off error in
floating-point arithmetic operations, denoted in our software by
PREC, and set to 10�6 and 10�16 for single- and double-precision

Example 5.2

Solve the following system of equations in the L1 norm.

�2a1 = 6
8a1 + 9a2 = 6

(5.6.1) �8a1 = 24
21a1 + 18a2 = 3
12a1 � 9a2 = �6

�32a1 � 13.5a2 = �9

For simplicity of presentation, we are not using pivoting in
obtaining part 1 of the solution. As indicated above, in part 1 of this
problem, columns 1 and 2 form the initial basis matrix.

Initial Data

fT 6 6 24 3 �6 �9
ΣiCi

T C1
T C2

T C3
T C4

T C5
T C6

T

 ������������� ���������������������������
�1 �2 8 �8 21 12 �32
4.5 0 9 0 18 �9 �13.5

 ������������� ���������������������������

Tableau 5.6.2 (part 1)

fT 6 6 24 3 �6 �9
bB0 C1

T C2
T C3

T C4
T C5

T C6
T

 ������������� ���������������������������
2.5 1 0 4 �2.5 �10 10
0.5 0 1 0 2 �1 �1.5

 ������������� ���������������������������

© 2008 by Taylor & Francis Group, LLC

computation respectively (see Sections 2.4 and 4.7.1).

128 Numerical Linear Approximation in C

Tableau 5.6.1 (not shown) is obtained by pivoting over the first
nonzero element in the first row of the initial data and applying a
Gauss-Jordan step. Tableau 5.6.2 is obtained by pivoting over the first
nonzero element in the second row in Tableau 5.6.1 and applying a
Gauss-Jordan step.

Tableau 5.6.3 is Tableau 5.6.2, with the marginal costs (zi � fi),
i = 1, 2, �, 6, added to it, and with bB calculated.

We have an initial degeneracy, as τr = (zi � fi)/yir = 0, for r = 3.
Since b3 = 0, we replace the 0 value of (z3 � f3) by +δ and
(z3 � f3)/y13 > 0. From τr = (zi � fi)/yir in Tableau 5.6.3, the sequence
of the columns that enter the basis and may then leave the basis is
C3

T, C4
T, C5

T, C6
T. The pivot y13 = 4 > 0, and according to step

(3.3'), 2y1 is subtracted from bB, and a mark �x� is placed above C1
T.

The new b'B1 = (27.5 � 2)/4 = 25.5/4 > 2, and we still have case (2') of
the algorithm. Now C3

T leaves the basis and C4
T enters the basis.

From (5.5.1b), the pivot y14 = �2.5/4 < 0. Hence, from step (3.4'), 2y3
is subtracted from and 2y4 is added to the previously calculated b'B. A
mark �x� is placed over C3

T
 and the �x� over C4

T is removed. The
new b'B1 = (25.5 � 8 � 5)/(�2.5), which = 12.5/(�2.5) < 0, and we now
have case (1') of the algorithm.

Tableau 5.6.3 (part 2)

x x
fT 6 6 24 3 �6 �9

bB C1
T C2

T C3
T C4

T C5
T C6

T

 ������������� ���������������������������
2.5+5+20 = 27.5 1 0 4 �2.5 �10 10
0.5�4+2 = �1.5 0 1 0 2 �1 �1.5

 ������������� ���������������������������
z = 126 zi � fi 0 0 0 �6 �60 60

τr δ/4 2.4 6 6

As C4
T leaves the basis, either C5

T or C6
T enters the basis as they

both have the same ratio τr. Let C5
T enter the basis. The pivot

y15 = �10/(�2.5) > 0, and from step (3.2') of case (1') we add 2y5 to
the previously obtained b'B and remove the �x� from C5

T. The
obtained b'B1 = (12.5 � 20)/(�10) = 0.75, which is between 0 and 2.
We thus change the tableau and get Tableau 5.6.4. That ends this
iteration.

© 2008 by Taylor & Francis Group, LLC

Chapter 5: Linear L1 Approximation 129

Tableau 5.6.4

x x
fT 6 6 24 3 �6 �9

bB C1
T C2

T C3
T C4

T C5
T C6

T

 ������������� ���������������������������
0.75 �0.1 0 �0.4 0.25 1 �1
1.25 �0.1 1 �0.4 2.25 0 �2.5

 ������������� ���������������������������
z = 39 zi � fi �6 0 �24 9 0 0

In Tableau 5.6.4, both the elements of bB are between 0 and 2 and
Tableau 5.6.4 is optimal. Hence, this example requires 3 iterations, 2
in part 1 and 1 in part 2.

The solution vector a is calculated from the fifth and second
equations of system (5.6.1). These two equations correspond to the
final basis (in Tableau 5.6.4)

 a1 = 0 and a2 = 2/3

From Theorem 5.3, the residuals are the marginal costs

r = (�6, 0, �24, 9, 0, 0)T

and z = 39.

5.7 A significant property of the L1 approximation

Assume that the n by m matrix C of Ca = f is of rank m, m < n.
Then the best L1 approximation of system Ca = f has m equations
with zero residuals ri. This property is a direct consequence of using
the dual form of the linear programming for this problem, since the m
equations in Ca = f associated with the basis matrix have zero
marginal costs, (zi � fi), i.e., zero residuals ri.

This means that if n discrete points in the x-y plane are being
approximated by a plane curve in the L1 norm, the curve will pass
through m of the discrete points. This is known as the interpolation
property of the L1 approximation, described in Section 2.3.1.

If the rank of matrix C is k, k ≤ m < n, there exists an L1 solution
to system Ca = f such that there are k equations in Ca = f for which
the residuals are 0�s. However, as noted in Section 5.1.1, Spath
([24], p. 60) argues that while optimal solutions calculated by simplex

© 2008 by Taylor & Francis Group, LLC

130 Numerical Linear Approximation in C

methods produce this property, not every optimal solution has this
characterization.

For the purpose of numerical stability for ill conditioned systems
Ca = f, we employ a triangular decomposition to the basis matrix.
This is described in the next section.

5.8 Triangular decomposition of the basis matrix

In our modification to part 1 of the algorithm (Section 5.5), we
apply m Gauss-Jordan elimination steps with complete pivoting.

In part 2, a triangular decomposition method for the basis matrix is
used [3, 4]. This method is a variation of the method of Bartels et al.
[12]. Without loss of generality, let rank(C) = m.

Let at the end of part 1, the basis be denoted by I0(b), the inverse
of the basis matrix be B0

�1, the basic solution be bB0, and the columns
of the simplex tableau be Y0. In other words, the programming
problem (5.2.4) is described by the 5-tuple

{I0(b), I, B0
�1, bB0, Y0}

where an m-unit matrix I is added.

For part 2, the inverse of the basis matrix as well as the other
parameters in the 5-tuple are updated. The inverse of the basis matrix
B�1 may be updated as

B-1 = EB0
�1

E is a nonsingular m-square matrix and E�1 is decomposed into

LE�1 = P

L is a nonsingular m-square matrix and P is a nonsingular upper
triangular m-matrix. Now, P and B0

�1 are stored and updated. For
each iteration in part 2, the above 5-tuple change to

(5.8.1) {I(b), P, G�1, VB, X}

In (5.8.1)

(5.8.1a) G�1 = LB0
�1, VB = LbB0, X = LY0

(5.8.2a) B�1 = P�1G�1

The basic solution is given by

© 2008 by Taylor & Francis Group, LLC

Chapter 5: Linear L1 Approximation 131

(5.8.2b)

The summation over j is for vectors that go from zero bound to an
upper bound, and the summation over r are for vectors that go from
upper bound to zero bound. Vector bB is calculated from

PbB = VB

by back substitution.
Vectors (yi) in the simplex tableau are given by

(5.8.2c) yi = P�1xi, i = 1, 2, �, n

The marginal costs which are the residuals are, as usual, given by

(5.8.2d) ri = fB
Tyi � fi, i = 1, 2, �, n

where fB is associated with the basis matrix.
In part 2, the non-basic column r, that enters the basis, is

determined from

(5.8.3) αr = ±mins |rs/yis|, s ∉ I(b)

where αr denotes τr or θr of Section 5.4.
If |αr| ≤ 1, the residuals in (5.8.2d) are updated as

r'j = rj � αr yij, j ∉ I(b)

However, if |αr| > 1, the r'j are calculated from (5.8.2c) and (5.8.2d);
that is, r'j = uTxj � fj, where u is the solution of PTu = fB.

For the elements yis, s ∉ I(b), from (5.8.2c), yis = wTxs, where wT

is row i of P�1and PTw = ei, where ei is column i of an m-unit matrix.
Let now

{I'(b), P', G'�1, V'B, X'}

be the update of (5.8.1) for which r ∉ I(b) replaces s ∈ I(b). Then

I'(b) = {i, �, is�1, is+1, �, im, r}

and

P = {p1, �, ps�1, ps+1, �, pm, xr}

P is an upper Hessenberg matrix. Its (m � s) nonzero sub-diagonal

bB P 1� VB 2 xj
j

∑ 2 xr
r

∑+� P 1� VB= =

© 2008 by Taylor & Francis Group, LLC

132 Numerical Linear Approximation in C

elements are annihilated by (m � s) Gauss elimination steps with row
permutation.

Finally, the solution of the L1 problem is given by Theorem 5.4

(5.8.4) aT = fB
TB�1

where B�1 is the inverse of the basis matrix given by (5.8.2a), for the
optimum solution of the programming problem.

5.9 Arithmetic operations count

In the majority of algorithms, the number of additions/
subtractions in the arithmetic operations is comparable to the number
of multiplications/divisions (m/d). Yet, the CPU time of an addition or
a subtraction is very small, compared with the CPU time taken to
execute a multiplication or a division. Hence, in this section we shall
only count the number of (m/d) for this algorithm.

For part 1 of this algorithm, each iteration requires an average of
(nm + 0.5m2) m/d. This is to apply a Gauss-Jordan elimination step to
the simplex tableau and to calculate the inverse of the basis B0

�1. At
the end of part 1, from (5.8.2d), the residuals (ri), i ∉ I(b), are
calculated, which requires m(n � m) m/d. Then bB0 is calculated,
which requires m×n additions and subtractions, which are small,
compared with other m/d, and may be neglected.

For part 2, from (5.8.2b), bB is calculated and it requires 0.5m2

m/d. If the residuals (ri), i ∉ I(b), are calculated from (5.8.3), (n � m)
m/d are required. Otherwise, approximately (mn � 0.5m2) m/d are
required to calculate vector u and the inner product uTxi, for i ∉ I(b).

The (n � m) elements yis, s ∉ I(b), need an average of 0.5mn m/d
to calculate vector w and the inner product wTxs. The parameter αr
requires (n � m) divisions. For more detail, see [3]. We come to the
following conclusion.

Each iteration in part 2 needs an average of about mn + 1.17m2

m/d if |αr| ≤ 1 and about 2mn + 0.67m2 m/d if |αr| > 1. Numerical
experience shows that for most test examples conducted in [3], most
of the αr satisfy |αr| < 1. Very few examples have |αr| > 1 for the first
few iterations; the |αr| then become ≤ 1 for the remaining iterations.
Hence, in practice, the arithmetic operations count per iteration in part
2 is comparable to that of part 1. At last, the solution of the L1

© 2008 by Taylor & Francis Group, LLC

Chapter 5: Linear L1 Approximation 133

problem as given by (5.8.4), where matrix B�1 and vector fB are
associated with the optimal solution needs 1.5m2 m/d.

Our final conclusion is that in part 1 of the algorithm the
arithmetic operations count per iteration is [m(n � m)] m/d. In part 2,
the arithmetic operations count per iteration is on the average of
approximately [mn + 1.17m2] m/d if |αr| ≤ 1 and [2mn + 0.67m2] if
|αr| > 1. That means that the arithmetic operations count per iteration
in either part 1 or part 2 of the algorithm is a linear function of n and
m2. It is also known that in linear programming problems, the number
of iterations is proportional to m.

A number of examples were solved in [3] on the IBM 360/67
computer and their CPU seconds were recorded (Table 1 in [3],
p. 226). For problem 4 in that table, matrix C(n×m) has the values n =
23, 53, 103 and 203, for m = 6. In problem 5, matrix C(n×m) has the
values n = 21, 51, 101 and 202, for m = 11.

Table 5.1 (problem 4 in [3])

��
Example C(n×m) Iterations CPU CPU/iter (CPU/iter)/n

seconds in 10�3sec.
��

1 23×6 9 0.08 0.0089 0.386
2 53×6 10 0.21 0.0210 0.396
3 103×6 12 0.48 0.0400 0.388
4 203×6 11 1.03 0.0936 0.461

Table 5.2 (problem 5 in [3])

��
Example C(n×m) Iterations CPU CPU/iter (CPU/iter)/n

seconds in 10�3sec.
��

1 21×11 18 0.24 0.0133 0.633
2 51×11 27 0.88 0.0326 0.639
3 101×11 29 1.71 0.0590 0.584
4 201×11 36 5.12 0.1422 0.708

In Tables 5.1 and 5.2, we show that the CPU times/iteration for
these two problems are approximately proportional to the parameter n.

© 2008 by Taylor & Francis Group, LLC

134 Numerical Linear Approximation in C

In other words, (CPU times/iteration)/n is almost the same for the 4
cases in each problem.

5.10 Numerical results and comments

The functions LA_L1() and LA_Lone() both implement this
algorithm. LA_Lone() is the same as LA_L1(), except that
LA_Lone() does not use a triangular decomposition of the basis
matrix. LA_Lone() implements the algorithm described in [2] and
LA_L1() implements the algorithm [3] given in FORTRAN IV in [4].
LA_Lone() is faster than LA_L1(), and it is used by other programs in
this book. DR_L1() and DR_Lone() both test the following examples.

Example 5.3

This example is the same as that solved in the L1 norm in ([2],
pp. 848-849). The obtained results are z = 90, the residual vector r =
(�5.6, �4.0, 48.0, �22.4, 0, 0, 10)T and a = (�0.2, 0.4, 0.0)T.

LA_Lone() and LA_L1() yield the same values of z and r as
obtained in [2], in 3 iterations. However, they compute a different
solution vector a = (0, 0.6, �0.2)T, indicating that it is not unique.

Example 5.4

For 0 ≤ x ≤ 1, approximate in the L1 norm the function
f(x) = exp(x), for x ≤ (0.5), and f(x) = exp(0.5), for x > 0.5. The
approximating function is

a1 + a2 sin(x) + a3 cos(x) + a4 sin(2x) + a5 cos(2x) + a6 sin(3x)
+ a7 cos(3x) + a8 sin(4x) + a9 cos(4x) + a10 sin(5x) + a11 cos(5x)

This problem is the same as problem 2 of example 5 in [3]. The
coordinates of x are taken at 0.02 intervals, i.e., (0.0, 0.02, 0.04, �,
1.0). Matrix C in Ca = f is a 51 by 11 matrix and is ill-conditioned.

When the solution is computed in s.p, both LA_L1() and
LA_Lone() give rank(C) = 8 and z = 0.3242. However, the elements
of vector a agree only to 2 decimal places; a = (�7.97, 0, 0, 7.40,
18.72, 0, �19.64, �3.83, 15.03, 0.39, �5.15)T. This indicates that for ill
conditioned problems in single-precision (s.p.), LA_L1() gives more
accurate results.

In double-precision (d.p.), LA_L1() and LA_Lone() give identical
results (a and r), in 27 iterations; rank(C) = 11 and z = 0.1564. It is

© 2008 by Taylor & Francis Group, LLC

Chapter 5: Linear L1 Approximation 135

observed, however, that although the value of z in d.p. is about half
the value of z in s.p., the values of the elements of a in d.p. are very
large, compared with those of a in s.p., indicating that matrix C for
this problem is ill-conditioned.

Example 5.5

This is the curve fitting Example 2.1. We have the set of 8 points
in the x-y plane: (1, 2), (2, 2.5), (3, 2), (4, 6.5), (5, 3.5), (6, 4.5), (7, 6),
(8, 7), with the fourth point as an outlier. It is required to approximate
this discrete set in the L1 norm by the vertical parabola
y = a1 + a2x + a3x2, where a1, a2 and a3 are unknowns.

In this example, the equation Ca = f is given by (2.2.2). The result,
computed by both LA_L1() and LA_Lone(), is z = 4.857 and
r = (0, �0.429, 0.357, �3.643, 0.071, 0, �0.357, 0)T. The solution
vector a = (2.143, �0.25, 0.107)T is unique. The fitting parabola is
given by the solid curve in Figure 2-1.

This example is solved again where the given 8 points are
approximated by the curve y = a1 + a2x + a3x2 + a4x2, where a1, a2, a3
and a4 are to be calculated. Matrix C is an 8 by 4 matrix, where the
first 3 columns are the same as in equation (2.2.2) and the fourth
column is the same as the third column; that is, matrix C is rank
deficient. The results r and z are the same as in the previous paragraph
but the solution vector a = (2.143, �0.25, 0.107, 0.0)T and a is not
unique due to rank deficiency of matrix C. We shall be using this
example again in other chapters of this book.

Finally, we note that in our experience, cycling (as a result of the
occurrence of degeneracy) never occurred, and no failure of our
programs has been recorded. We also observe that our algorithm
compares favorably with that of Barrodale and Roberts [8, 9]. See the
comments later.

The techniques used in this algorithm, i.e., solving a linear
programming problem with non-negative bounded variables has
proved to be valuable in solving other problems such as the L1
solution of overdetermined systems of linear equations with
bounded variables of Chapter 7 and the bounded and L1 bounded
solutions of underdetermined systems of linear equations of
Chapter 21.

A large number of examples have been tested by the current

© 2008 by Taylor & Francis Group, LLC

136 Numerical Linear Approximation in C

method [3, 4] and compared with those of Barrodale and Roberts (BR)
[9]. A typical result is that the total CPU time for the current method is
about 15% higher than (BR). Spath ([24], pp. 74, 82) argues that this
is partially true. We also note that when we used partial pivoting in
part 1 of our algorithm LA_L1() instead of complete pivoting, our
method was slightly faster. As noted earlier, it was concluded by
Armstrong and Godfrey [6] that the two algorithms, ours and that of
Barrodale and Roberts (BR) [9], are identical except for the starting
basis.

Bloomfield and Steiger [14] presented a unified treatment of the
role of the L1 approximation in many areas, such as statistics and
numerical analysis. They also discussed and described different
algorithms for solving the L1 approximation problem. In their book
([14], pp. 219-236) they compared the CPU times and the iteration
counts between three algorithms. These are of Barrodale and Roberts
(BR) [9], Bartels et al. (BCS) [10] and Bloomfield and Steiger (BS)
[13]. The comparison was over a variety of problems, some
deterministic and some random.

The coefficient matrices have row values n ranging from 50 to 600
and some from 100 to 900, in increments and column values
k = 3, 4, �, 8. A characteristic difference was observed between the
(BR) and the other two. For all k, as n increases, the CPU times
increase almost proportional to n2 while for the other two the CPU
increase linearly. A comparison was also made between the (BCS)
and the (BS) algorithms on some other data. The CPU times for the
(BS) algorithm was between one half to one third of that of the (BCS).

Spath [24] collected data (matrix C and vector f) for 42 examples
that were tested on a number of routines after converting them to
FORTRAN 77 on the IBM PC AT 102. He compared them with
respect to computer storage, CPU time and accuracy of results. The
routines were those of Robers and Robers (RR) [21] (believed to be
the oldest published routine and needing the most computer storage)
Barrodale and Roberts (BR) [8], Armstrong et al. (AFK) [5], ours
(NA) [4], Bloomfield and Steiger (BS) [13] and Bartels and Conn
(BC) [11]. The last algorithm is for constrained L1 approximation
problem, and was modified for the case when the constraints do not
exist. Spath displayed the results of the last 5 methods
([24], pp. 79-82).

© 2008 by Taylor & Francis Group, LLC

Chapter 5: Linear L1 Approximation 137

He found that the algorithm of (BS) needs two arrays of size nm.
However, unlike other methods, matrix C is not overwritten. The
(BR) method needs the smallest storage and the fewest number of
lines of code. He also proved that the (AFK) method was the fastest of
all available algorithms. The (BS) method is the fastest of all
algorithms only if n is at least two orders of magnitude larger than m.
Due to the number of lines of code executed by the (BC) method, it is
slower than the (BS) and (BR) methods. For realistic sizes of n and m,
(BR) does best after (AFK) and (BS).

Spath�s chose the method of Armstrong et al. [5] as the best,
followed by Abdelmalek [4] and Bloomfield and Steiger [13], in
comparison with Barrodale and Roberts [9]. Moreover, among the
algorithms tested by Spath, only the methods of Barrodale and
Roberts [8, 9] and of Abdelmalek [3, 4] can deal with the case when
matrix C is rank deficient, i.e., has rank(C) ≤ m. Spath concluded,
however, that the results of the different algorithms are sensitive to the
value of the tolerance parameter EPS.

References

1. Abdelmalek, N.N., On the discrete L1 approximation and L1
solutions of overdetermined linear equations, Journal of
Approximation Theory, 11(1974)38-53.

2. Abdelmalek, N.N., An efficient method for the discrete linear
L1 approximation problem, Mathematics of Computation,
29(1975) 844-850.

3. Abdelmalek, N.N., L1 solution of overdetermined systems of
linear equations, ACM Transactions on Mathematical Soft-
ware, 6(1980)220-227.

4. Abdelmalek, N.N., Algorithm 551: A FORTRAN subroutine
for the L1 solution of overdetermined systems of linear
equations [F4], ACM Transactions on Mathematical Software,
6(1980)228-230.

5. Armstrong, R.D., Frome, E.L. and Kung, D.S., Algorithm
79-01: A revised simplex algorithm for the absolute deviation
curve fitting problem, Communications on Statistics-
Simulation and Computation, B8(1979)175-190.

© 2008 by Taylor & Francis Group, LLC

138 Numerical Linear Approximation in C

6. Armstrong, R.D. and Godfrey, J., Two linear programming
algorithms for the linear discrete L1 norm problem,
Mathematics of Computation, 33(1979)289-300.

7. Barrodale, I. and Phillips, C., An improved algorithm for
discrete Chebyshev linear approximation, Proceedings of the
Fourth Manitoba Conference on Numerical Mathematics,
Hartnell, B.L. and Williams, H.C. (eds.), Winnipeg, Manitoba,
Canada, pp. 177-190, 1975.

8. Barrodale, I. and Roberts, F.D.K., An improved algorithm for
discrete l1 approximation, SIAM Journal on Numerical
Analysis, 10(1973)839-848.

9. Barrodale, I. and Roberts, F.D.K., Algorithm 478, Solution of
an overdetermined system of equations in the l1 norm [F4],
Communications of ACM, 17(1974)319-320.

10. Bartels, R.H., Conn, A.R. and Sinclair, J.W., Minimization
techniques for piecewise differentiable functions: The l1
solution of an overdetermined linear system, SIAM Journal on
Numerical Analysis, 15(1978)224-241.

11. Bartels, R.H. and Conn, A.R., Algorithm 563: A program for
linear constrained discrete l1 problems, ACM Transactions on
Mathematical Software, 6(1980)609-614.

12. Bartels, R.H, Stoer, J. and Zenger, Ch., A realization of the
simplex method based on triangular decomposition, Handbook
for Automatic Computation, Vol. II: Linear Algebra, Wilkin-
son, J.H. and Reinsch, C. (eds.), Springer-Verlag, New York,
pp. 152-190, 1971.

13. Bloomfield, P. and Steiger, W.L., Least absolute deviations
curve-fitting, SIAM Journal on Scientific and Statistical
Computing, 1(1980)290-301.

14. Bloomfield, P. and Steiger, W.L., Least Absolute Deviations,
Theory, Applications, and Algorithms, Birkhauser, Boston,
1983.

15. Hadley, G., Linear Programming, Addison-Wesley, Reading,
MA, 1962.

16. Madsen, K., Nielsen, H.B. and Pinar, M.C., New character-
izations of l1 solutions to overdetermined systems of linear
equations, Operations Research Letters, 16(1994)159-166.

© 2008 by Taylor & Francis Group, LLC

Chapter 5: Linear L1 Approximation 139

17. Narula, S.C. and Wellington, J.F., An efficient algorithm for
the MSAE and the MMAE regression problems, SIAM
Journal on Scientific and Statistical Computing, 9(1988)717-
727.

18. Pinkus, A.M., On L1-Approximation, Cambridge University
Press, London, 1989.

19. Powell, M.J.D., Approximation Theory and Methods,
Cambridge University Press, London, 1981.

20. Robers, P.D. and Ben-Israel, A., An interval programming
algorithm for discrete linear L1 approximation problems,
Journal of Approximation Theory, 2(1969)323-336.

21. Robers, P.D. and Robers, S.S., Algorithm 458: Discrete linear
L1 approximation by interval linear programming, Commun-
ications of ACM, 16(1973)629-631.

22. Rosen, J.B., Park, H., Glick, J. and Zhang, L., Accurate
solution to overdetermined linear equations with errors using
L1 norm minimization, Computational Optimization and
Applications, 17(2000)329-341.

23. Sklar, M.G. and Armstrong, R.D., Least absolute value and
Chebyshev estimation utilizing least squares results, Mathem-
atical Programming, 24(1982)346-352.

24. Spath, H., Mathematical Algorithms for Linear Regression,
Academic Press, English Edition, London, 1991.

25. Usow, K.H., On L1 approximation. II. Computation for
discrete functions and discretization effects, SIAM Journal on
Numerical Analysis, 4(1967)233-244.

26. Wagner, H.M., Linear programming techniques for regression
analysis, Journal of American Statistical Association,
54(1959) 206-212.

27. Watson, G.A., Approximation Theory and Numerical
Methods, John Wiley & Sons, New York, 1980.

28. Wesolowsky, G.O., A new descent algorithm for the least
absolute value regression problem, Communications in
Statistics � Simulation and Computation, B10(1981)479-491.

© 2008 by Taylor & Francis Group, LLC

140 Numerical Linear Approximation in C

5.11 DR_L1

/*---
DR_L1

This program is a driver for the function LA_L1(), which solves an
overdetermined system of linear equations in the L1 (L-One) norm.
It uses a dual simplex method and a triangular factorization of the
basis matrix.

The overdetermined system has the form

 c*a = f

"c" is a given real n by m matrix of rank k, k <= m <= n.
"f" is a given real n vector.
"a" is the solution m vector.

This program contains 3 examples whose results appear in the
text.
---*/

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define Na 7
#define Ma 3
#define Nb 51
#define Mb 11
#define Nc 8
#define Mc 4

void DR_L1 (void)
{
 /*--
 Constant matrices/vectors
 --*/
 static tNumber_R c1init[Na][Ma] =
 {
 { -2.0, 0.0, -2.0 },
 { 8.0, 9.0, 17.0 },
 { 36.0, 18.0, 54.0 },
 { -8.0, 0.0, -8.0 },
 { 21.0, 18.0, 39.0 },

© 2008 by Taylor & Francis Group, LLC

Chapter 5: DR_L1 141

 { 12.0, -9.0, 3.0 },
 { -32.0, -13.5, -45.5 }
 };

 static tNumber_R f1[Na+1] =
 { NIL,
 6.0, 6.0, -48.0, 24.0, 3.0, -6.0, -9.0
 };

 static tNumber_R c3init[Nc][Mc] =
 {
 { 1.0, 1.0, 1.0, 1.0 },
 { 1.0, 2.0, 4.0, 4.0 },
 { 1.0, 3.0, 9.0, 9.0 },
 { 1.0, 4.0, 16.0, 16.0 },
 { 1.0, 5.0, 25.0, 25.0 },
 { 1.0, 6.0, 36.0, 36.0 },
 { 1.0, 7.0, 49.0, 49.0 },
 { 1.0, 8.0, 64.0, 64.0 }
 };

 static tNumber_R f3[Nc+1] =
 { NIL,
 2.0, 2.5, 2.0, 6.5, 3.5, 4.5, 6.0, 7.0
 };

 /*--
 Variable matrices/vectors
 --*/
 tMatrix_R ct = alloc_Matrix_R (MM_COLS, NN_ROWS);
 tVector_R f = alloc_Vector_R (NN_ROWS);
 tVector_R r = alloc_Vector_R (NN_ROWS);
 tVector_R a = alloc_Vector_R (MM_COLS);

 tMatrix_R c1 = init_Matrix_R (&(c1init[0][0]), Na, Ma);
 tMatrix_R c3 = init_Matrix_R (&(c3init[0][0]), Nc, Mc);

 int m, n, irank, iter;
 int i, j, Iexmpl;
 tNumber_R dx, x1, x2, x3, x4, x5, g, g1, z;

 eLaRc rc = LaRcOk;

 prn_dr_bnr ("DR_L1, L1 Solution of an Overdetermined System "
 " of Linear Equations");

© 2008 by Taylor & Francis Group, LLC

142 Numerical Linear Approximation in C

 for (Iexmpl = 1; Iexmpl <= 3; Iexmpl++)
 {
 switch (Iexmpl)
 {
 case 1:
 n = Na;
 m = Ma;
 for (i = 1; i <= n; i++)
 {
 f[i] = f1[i];
 for (j = 1; j <= m; j++) ct[j][i] = c1[i][j];
 }
 break;

 case 2:
 n = Nb;
 m = Mb;
 dx = 0.02;
 g1 = exp (0.5);
 for (i = 1; i <= n; i++)
 {
 x1 = dx * (tNumber_R)(i-1);
 x2 = x1 + x1;
 x3 = x1 + x2;
 x4 = x2 + x2;
 x5 = x2 + x3;
 ct[1][i] = 1.0;
 ct[2][i] = sin (x1);
 ct[3][i] = cos (x1);
 ct[4][i] = sin (x2);
 ct[5][i] = cos (x2);
 ct[6][i] = sin (x3);
 ct[7][i] = cos (x3);
 ct[8][i] = sin (x4);
 ct[9][i] = cos (x4);
 ct[10][i] = sin (x5);
 ct[11][i] = cos (x5);
 g = exp (x1);
 f[i] = g1;
 if (g < g1) f[i] = g;
 }
 break;

 case 3:

© 2008 by Taylor & Francis Group, LLC

Chapter 5: DR_L1 143

 n = Nc;
 m = Mc;
 for (i = 1; i <= n; i++)
 {
 f[i] = f3[i];
 for (j = 1; j <= m; j++) ct[j][i] = c3[i][j];
 }
 break;

 default:
 break;
 }

 prn_algo_bnr ("L1");

 prn_example_delim();
 PRN ("Example #%d: Size of Matrix \"c\", %d by %d\n",
 Iexmpl, n, m);
 prn_example_delim();
 PRN ("L1 Solution of an Overdetermined System\n");
 prn_example_delim();
 PRN ("r.h.s. Vector \"f\"\n");
 prn_Vector_R (f, n);
 PRN ("Transpose of Coefficient Matrix, \"ct\"\n");
 prn_Matrix_R (ct, m, n);

 rc = LA_L1 (m, n, ct, f, &irank, &iter, r, a, &z);

 if (rc >= LaRcOk)
 {
 PRN ("\n");
 PRN ("Results of the L1 Approximation\n");
 PRN ("L1 solution vector \"a\"\n");
 prn_Vector_R (a, m);
 PRN ("L1 residual vector \"r\"\n");
 prn_Vector_R (r, n);
 PRN ("L1 norm \"z\" = %8.4f\n", z);
 PRN ("Rank of matrix \"c\" = %d, No. of Iterations "
 "= %d\n", irank, iter);
 }

 prn_la_rc (rc);
 }

 free_Matrix_R (ct, MM_COLS);

© 2008 by Taylor & Francis Group, LLC

144 Numerical Linear Approximation in C

 free_Vector_R (f);
 free_Vector_R (r);
 free_Vector_R (a);

 uninit_Matrix_R (c1);
 uninit_Matrix_R (c3);
}

© 2008 by Taylor & Francis Group, LLC

Chapter 5: LA_L1 145

5.12 LA_L1

/*---
LA_L1

This program solves an overdetermined system of linear equations
in the L1 (L-One) norm. It uses a dual simplex method to the dual
linear programming formulation of the problem. In this program
certain intermediate simplex iterations are skipped.

For the purpose of numerical stability, this program uses a
triangular decomposition to the basis matrix.

The system of linear equations has the form

 c*a = f

"c" is a given real n by m matrix of rank k, k <= m <= n.
"f" is a given real n vector.

The problem is to calculate the elements of the real m vector
"a" that gives the minimum L1 residual norm z.

 z = |r[1]| + |r[2]| + ... + |r[n]|

where r[i] is the ith residual and is given by

 r[i] = c[i][1]*a[1] + c[i][2]*a[2] + ... + c[i][m]*a[m] - f[i],
 i = 1, 2, ..., n

Inputs
m Number of columns of matrix "c" in the system c*a = f.
n Number of rows of matrix "c" in the system c*a = f.
mmm An integer = (m* (m+3))/2 - 1.
ct A real m by n matrix containing the transpose of matrix "c"
 of the system c*a = f.
f A real n vector containing the r.h.s. of the system c*a = f.

Local Variables
ginv A real m square matrix that contains the inverse of the
 basis matrix in the linear programming problem.
vb A real m vector containing the basic solution in the linear
 programming problem.
ic An integer m vector containing the indices of the columns of

© 2008 by Taylor & Francis Group, LLC

146 Numerical Linear Approximation in C

 "ct" that form the columns of the basis matrix.
ir An integer m vector containing the row indices of of matrix
 "ct".
ib A sign n vector. Its elements have the values +1 or -1.
 ib[j] = +1 indicates that column j of matrix "ct" is in
 the basis or is at its lower bound 0. ib[j] = -1
 indicates that column j is at its upper bound 2.
p A real (((m+1)*((m+1)+3))/2-1) vector whose first
 ((irank*(irank+3))/2)-1 elements contain the
 ((irank*(irank+1))/2) elements of an upper triangular matrix
 + extra (irank-1) working locations. See the comments in
 LA_l1_pslv().
bp A real m vector whose first "irank" elements are the r.h.s.
 of the triangular equation p*xp = bp.
xp A real m vector whose first "irank" elements are the solution
 of the triangular equation p*xp = bp or the triangular
 equation p(transpose)*xp = bp.

Outputs
irank The calculated rank of matrix "c".
iter Number of iterations or the number of times the simplex
 tableau is changed by a Gauss-Jordon elimination step.
a A real m vector containing the L1 solution of the system
 c*a = f.
r A real n vector containing the residual vector
 r = (c*a - f).
z The minimum L1 norm of the residual vector "r".

Returns one of
 LaRcSolutionUnique
 LaRcSolutionProbNotUnique
 LaRcSolutionDefNotUniqueRD
 LaRcNoFeasibleSolution
 LaRcErrBounds
 LaRcErrNullPtr
 LaRcErrAlloc
---*/

#include "LA_Prototypes.h"

eLaRc LA_L1 (int m, int n, tMatrix_R ct, tVector_R f, int *pIrank,
 int *pIter, tVector_R r, tVector_R a, tNumber_R *pZ)
{
 tVector_R t = alloc_Vector_R (n);
 tVector_R uf = alloc_Vector_R (m);

© 2008 by Taylor & Francis Group, LLC

Chapter 5: LA_L1 147

 tVector_R bp = alloc_Vector_R (m);
 tVector_R xp = alloc_Vector_R (m);
 tMatrix_R ginv = alloc_Matrix_R (m, m);
 tVector_R vb = alloc_Vector_R (m);
 tVector_I ib = alloc_Vector_I (n);
 tVector_I ic = alloc_Vector_I (n);
 tVector_I ir = alloc_Vector_I (m);
 tVector_R alfa = alloc_Vector_R (n);
 tVector_R p = alloc_Vector_R
 (((m + 1) * ((m + 1) + 3)) / 2 - 1);

 int iout = 0, jin = 0, icj = 0, iciout = 0, icjin = 0,
 ivo = 0, itest = 0;
 int i = 0, j = 0, kk = 0, ijk = 0;
 int nmm = 0, irank1 = 0, irnkm1 = 0;
 tNumber_R tpeps = 0.0;
 tNumber_R alpha = 0.0, pivot = 0.0, pivotn = 0.0, pivoto = 0.0,
 xb = 0.0, bxb = 0.0;

 /* Validation of the data before executing the algorithm */
 eLaRc rc = LaRcSolutionUnique;
 VALIDATE_BOUNDS ((0 < m) && (m <= n) && !((n == 1) && (m == 1)));
 VALIDATE_PTRS (ct && f && pIrank && pIter && r && a && pZ);
 VALIDATE_ALLOC (t && uf && bp && xp && ginv && vb && ib && ic &&
 ir && alfa && p);

 /* Initialization */
 tpeps = 2.0 + EPS;
 *pIrank = m;
 nmm = (m * (m + 3))/2;
 *pIter = 0;
 for (j = 1; j <= n; j++)
 {
 ib[j] = 1;
 ic[j] = j;
 }
 for (j = 1; j <= m; j++)
 {
 ir[j] = j;
 vb[j] = 0.0;
 a[j] = 0.0;
 for (i = 1; i <= m; i++)
 {
 ginv[i][j] = 0.0;
 }

© 2008 by Taylor & Francis Group, LLC

148 Numerical Linear Approximation in C

 ginv[j][j] = 1.0;
 }

 iout = 0;
 /* Part 1 of the algorithm */
 LA_l1_part_1 (m, n, ct, ic, ir, ginv, pIrank, pIter);

 /* Part 2 of the algorithm */
 irank1 = *pIrank + 1;
 irnkm1 = *pIrank - 1;

 /* Initial residuals and basic solution */
 LA_l1_part_2 (n, ct, f, ic, ib, uf, vb, pIrank, r);

 /* Initializing the triiangular matrix */
 LA_l1_triang_matrix (m, p, pIrank);

 for (ijk = 1; ijk <= n; ijk++)
 {
 ivo = 0;

 LA_l1_pslv (1, pIrank, p, vb, xp);

 /* Determine the vector that leaves the basis */
 LA_l1_vleav (&ivo, &iout, &xb, xp, pIrank);
 if (ivo == 0)
 {
 LA_l1_pslv (2, pIrank, p, uf, vb);

 /* Calculate the results */
 rc = LA_l1_res (pIrank, m, n, r, ginv, vb, ir, xp, a,
 pZ);
 GOTO_CLEANUP_RC (rc);
 }

 iciout = ic[iout];
 t[iciout] = 1.0;
 bxb = xb;
 for (i = 1; i <= *pIrank; i++)
 {
 bp[i] = 0.0;
 }
 bp[iout] = 1.0;
 LA_l1_pslv (2, pIrank, p, bp, xp);

© 2008 by Taylor & Francis Group, LLC

Chapter 5: LA_L1 149

 /* Determine the alfa ratios */
 LA_l1_alfa (iout, n, ct, ic, ib, xp, t, alfa, pIrank, r);

 pivoto = 1.0;
 itest = 0;

 for (kk = 1; kk <= n; kk++)
 {
 /* Determine the vector that enters the basis */
 LA_l1_vent (ivo, &jin, &itest, n, ic, alfa, pIrank);

 /* No feasible solution has been found */
 if (itest != 1)
 {
 GOTO_CLEANUP_RC (LaRcNoFeasibleSolution);
 }

 icjin = ic[jin];
 pivot = t[icjin];
 alpha = alfa[icjin];
 pivotn = pivot/pivoto;

 /* Skipping simplex iteration */
 LA_l1_skip_iters (iciout, icjin, xb, &bxb, pivotn, ct,
 ib, t, vb, pIrank);

 xb = bxb/pivot;
 if (xb < -EPS || xb > tpeps) itest = 0;
 alfa[icjin] = 0.0;
 if (itest == 1) break;
 pivoto = pivot;
 iciout = icjin;
 }
 r[icjin] = 0.0;
 *pIter = *pIter + 1;

 /* Update vector p */
 LA_l1_update_p (iout, jin, ct, ic, p, pIrank);

 if (iout != *pIrank)
 {
 for (i = iout; i <= irnkm1; i++)
 {
 /* Update (ginv, vb, ct) */
 LA_l1_update_ginv (i, n, ct, ir, p, ginv, vb,

© 2008 by Taylor & Francis Group, LLC

150 Numerical Linear Approximation in C

 pIrank);
 }
 }

 for (j = 1; j <= *pIrank; j++)
 {
 icj = ic[j];
 uf[j] = f[icj];
 }
 LA_l1_calcul_r (alpha, n, ct, f, ic, ib, uf, xp, t, p,
 pIrank, r);
 }

CLEANUP:

 free_Vector_R (t);
 free_Vector_R (uf);
 free_Vector_R (bp);
 free_Vector_R (xp);
 free_Matrix_R (ginv, m);
 free_Vector_R (vb);
 free_Vector_I (ib);
 free_Vector_I (ic);
 free_Vector_I (ir);
 free_Vector_R (alfa);
 free_Vector_R (p);

 return rc;
}

/*---
Square non-singular system

This function solves the square real non-singular system of linear
equations
 p*xp = vb

or the square real non-singular system of linear equations

 p(transpose)*xp = vb

"p" is an upper triangular matrix.
"vb" is the right hand side vector.
"xp" is the solution vector.

© 2008 by Taylor & Francis Group, LLC

Chapter 5: LA_L1 151

Inputs
id An integer specifying the action to be performed.
 If id = 1 the equation "p*xp=vb" is solved.
 if id = any integer other than 1, the equation
 "p(transpose)*xp=vb" is solved.
k The number of equations of the given system.
p An (((m+1)*((m+1)+3))/2-1) vector whose first (k+1) elements
 contain the first k elements of row 1 of the upper triangular
 matrix plus an extra location to the right. Its next k
 elements contain the (k-1) elements of row 2 of the upper
 triangular matrix plus an extra location to the right,
 ..., etc.
vb An m vector whose first k elements contain the r.h.s. vector
 of the given system.

Outputs
xp A real m vector whose first k elements contain the solution
 to the given system.
---*/
void LA_l1_pslv (int id, int *pIrank, tVector_R p, tVector_R vb,
 tVector_R xp)
{
 int i, l, ll, j, jj, kk, kd, km1, kkd, kkm1;
 tNumber_R s;

 /* Solution of the upper triangular system */
 if (id == 1)
 {
 l = (*pIrank-1) + (*pIrank * (*pIrank+1))/2;
 xp[*pIrank] = vb[*pIrank]/p[l];
 if (*pIrank != 1)
 {
 kd = 3;
 km1 = *pIrank - 1;
 for (i = 1; i <= km1; i++)
 {
 j = *pIrank - i;
 l = l - kd;
 kd = kd + 1;
 s = vb[j];
 ll = l;
 jj = j;
 for (kk = 1; kk <= i; kk++)
 {
 ll = ll + 1;

© 2008 by Taylor & Francis Group, LLC

152 Numerical Linear Approximation in C

 jj = jj + 1;
 s = s - p[ll] * (xp[jj]);
 }
 xp[j] = s/p[l];
 }
 }
 }

 /* Solution of the lower triangular system */
 if (id != 1)
 {
 xp[1] = vb[1]/p[1];
 if (*pIrank != 1)
 {
 l = 1;
 kd = *pIrank + 1;
 for (i = 2; i <= *pIrank; i++)
 {
 l = l + kd;
 kd = kd - 1;
 s = vb[i];
 kk = i;
 kkm1 = i - 1;
 kkd = *pIrank;
 for (j = 1; j <= kkm1; j++)
 {
 s = s - p[kk] * xp[j];
 kk = kk + kkd;
 kkd = kkd - 1;
 }
 xp[i] = s/p[l];
 }
 }
 }
}

/*---
A Gauss-Jordan elimination step in LA_L1()
---*/
void LA_l1_gauss_jordn (int iout, int jin, int lj, int *pIrank,
 int n, tMatrix_R ct, tMatrix_R ginv, tVector_I ic)
{
 int i, j;
 tNumber_R pivot, d;

© 2008 by Taylor & Francis Group, LLC

Chapter 5: LA_L1 153

 pivot = ct[iout][jin];
 for (j = 1; j <= n; j++)
 {
 ct[iout][j] = ct[iout][j]/pivot;
 }
 for (j = 1; j <= iout; j++)
 {
 ginv[iout][j] = ginv[iout][j]/pivot;
 }
 for (i = 1; i <= *pIrank; i++)
 {
 if (i != iout)
 {
 d = ct[i][jin];
 for (j = 1; j <= n; j++)
 {
 ct[i][j] = ct[i][j] - d * ct[iout][j];
 }
 for (j = 1; j <= iout; j++)
 {
 ginv[i][j] = ginv[i][j] - d * ginv[iout][j];
 }
 }
 }

 /* Swap two elements of vector "ic" */
 swap_elems_Vector_I (ic, iout, lj);
}

/*---
Calculate the results of LA_L1()
---*/
eLaRc LA_l1_res (int *pIrank, int m, int n, tVector_R r,
 tMatrix_R ginv, tVector_R vb, tVector_I ir, tVector_R xp,
 tVector_R a, tNumber_R *pZ)
{
 int i, j, k, ij;
 tNumber_R d, e, s;

 for (i = 1; i <= *pIrank; i++)
 {
 s = 0.0;
 for (k = 1; k <= *pIrank; k++)
 {
 s = s + vb[k] * ginv[k][i];

© 2008 by Taylor & Francis Group, LLC

154 Numerical Linear Approximation in C

 }
 ij = ir[i];
 a[ij] = s;
 }
 s = 0.0;
 for (j = 1; j <= n; j++)
 {
 s = s + fabs (r[j]);
 }
 *pZ = s;

 if (*pIrank < m)
 return LaRcSolutionDefNotUniqueRD;

 e = 2.0 - EPS;
 for (i = 1; i <= m; i++)
 {
 d = xp[i];
 if (d < -EPS || d > e)
 return LaRcSolutionProbNotUnique;
 }

 return LaRcSolutionUnique;
}

/*---
Part 1 of LA_L1()
---*/
void LA_l1_part_1 (int m, int n, tMatrix_R ct, tVector_I ic,
 tVector_I ir, tMatrix_R ginv, int *pIrank, int *pIter)
{
 int i, j, k, lj = 0, li = 0;
 int iout, jin = 0, icj;
 tNumber_R d, g, piv;

 for (iout = 1; iout <= m; iout++)
 {
 if (iout <= *pIrank)
 {
 piv = 0.0;
 for (j = iout; j <= n; j++)
 {
 icj = ic[j];
 for (i = iout; i <= *pIrank; i++)
 {

© 2008 by Taylor & Francis Group, LLC

Chapter 5: LA_L1 155

 d = ct[i][icj];
 if (d < 0.0) d = -d;
 if (d > piv)
 {
 li = i;
 jin = icj;
 lj = j;
 piv = d;
 }
 }
 }

 /* Detection of rank deficiency of matrix "c"*/
 if (piv < EPS)
 {
 *pIrank = iout - 1;
 }

 if (piv > EPS)
 {
 if (li != iout)
 {
 for (j = 1; j <= n; j++)
 {
 g = ct[iout][j];
 ct[iout][j] = ct[li][j];
 ct[li][j] = g;
 }

 /* Swap two elements of vector "ir" */
 swap_elems_Vector_I (ir, iout, li);

 /* Swap two rows of matrix "ginv" */
 if (iout != 1)
 {
 k = iout - 1;
 for (j = 1; j <= k; j++)
 {
 d = ginv[li][j];
 ginv[li][j] = ginv[iout][j];
 ginv[iout][j] = d;
 }
 }
 }

© 2008 by Taylor & Francis Group, LLC

156 Numerical Linear Approximation in C

 LA_l1_gauss_jordn (iout, jin, lj, pIrank, n, ct,
 ginv, ic);
 *pIter = *pIter + 1;
 }
 }
 }
}

/*---
Part 2 of LA_L1()
---*/
void LA_l1_part_2 (int n, tMatrix_R ct, tVector_R f, tVector_I ic,
 tVector_I ib, tVector_R uf, tVector_R vb, int *pIrank,
 tVector_R r)
{
 int i, j, icj, irank1;
 tNumber_R s, sa;

 /* Calculating initial residuals r[] */
 irank1 = *pIrank + 1;
 for (j = 1; j <= *pIrank; j++)
 {
 icj = ic[j];
 r[icj] = 0.0;
 uf[j] = f[icj];
 }
 for (j = irank1; j <= n; j++)
 {
 icj = ic[j];
 s = -f[icj];
 for (i = 1; i <= *pIrank; i++)
 {
 s = s + uf[i] * ct[i][icj];
 }
 r[icj] = s;
 if (s < 0.0) ib[icj] = -1;
 }

 /* Calculating the initial basic solution vb[] */
 for (i = 1; i <= *pIrank; i++)
 {
 s = 0.0;
 for (j = 1; j <= n; j++)
 {
 sa = ct[i][j];

© 2008 by Taylor & Francis Group, LLC

Chapter 5: LA_L1 157

 if (ib[j] == -1) sa = -sa;
 s = s + sa;
 }
 vb[i] = s;
 }
}

/*---
Initializing the triangular matrix in LA_L1()
---*/
void LA_l1_triang_matrix (int m, tVector_R p, int *pIrank)
{
 int i, k, kd, nmm;

 nmm = (m * (m + 3))/2;
 for (i = 1; i <= nmm; i++)
 {
 p[i] = 0.0;
 }
 k = 1;
 kd = *pIrank + 1;
 for (i = 1; i <= *pIrank; i++)
 {
 p[k] = 1.0;
 k = k + kd;
 kd = kd - 1;
 }
}

/*---
Determine the vector that leaves the basis in LA_L1()
---*/
void LA_l1_vleav (int *pIvo, int *pIout, tNumber_R *pXb,
 tVector_R xp, int *pIrank)
{
 int i;
 tNumber_R d, e, g, tpeps;

 tpeps = 2.0 + EPS;
 g = 1.0;
 for (i = 1; i <= *pIrank; i++)
 {
 e = xp[i];
 if (e > tpeps || e < -EPS)
 {

© 2008 by Taylor & Francis Group, LLC

158 Numerical Linear Approximation in C

 if (e > tpeps)
 {
 d = 2.0 - e;
 if (d < g)
 {
 g = d;
 *pIvo = 1;
 *pIout = i;
 *pXb = e;
 }
 }
 if (e < -EPS)
 {
 d = e;
 if (d < g)
 {
 g = d;
 *pIvo = -1;
 *pIout = i;
 *pXb = e;
 }
 }
 }
 }
}

/*---
Determine the alfa ratios for LA_L1()
---*/
void LA_l1_alfa (int iout, int n, tMatrix_R ct, tVector_I ic,
 tVector_I ib, tVector_R xp, tVector_R t, tVector_R alfa,
 int *pIrank, tVector_R r)
{
 int i, j, icj, irank1;
 tNumber_R d, e, s;
 tNumber_R alfmx;

 irank1 = *pIrank + 1;
 alfmx = 0.0;
 for (j = irank1; j <= n; j++)
 {
 icj = ic[j];
 alfa[icj] = 0.0;
 s = 0.0;
 for (i = iout; i <= *pIrank; i++)

© 2008 by Taylor & Francis Group, LLC

Chapter 5: LA_L1 159

 {
 s = s + xp[i] * (ct[i][icj]);
 }
 e = s;
 t[icj] = e;
 if (fabs (e) > EPS)
 {
 d = r[icj];
 if (fabs (d) < PREC) d = PREC * (ib[icj]);
 alfa[icj] = d/e;
 }
 }

}

/*---
Determine the vector that enters the basis for LA_L1()
---*/
void LA_l1_vent (int ivo, int *pJin, int *pItest, int n,
 tVector_I ic, tVector_R alfa, int *pIrank)
{
 int j, icj, irank1;
 tNumber_R d, e, alfmn, alfmx;

 irank1 = *pIrank + 1;
 alfmx = 1.0/EPS;
 alfmn = -alfmx;
 for (j = irank1; j <= n; j++)
 {
 icj = ic[j];
 e = alfa[icj];
 d = e * ivo;
 if (d > 0.0)
 {
 if (ivo == -1)
 {
 if (e > alfmn)
 {
 alfmn = e;
 *pJin = j;
 *pItest = 1;
 }
 }
 if (ivo == 1)
 {

© 2008 by Taylor & Francis Group, LLC

160 Numerical Linear Approximation in C

 if (e < alfmx)
 {
 alfmx = e;
 *pJin = j;
 *pItest = 1;
 }
 }
 }
 }
}

/*---
Skipping simplex iterations in LA_L1()
---*/
void LA_l1_skip_iters (int iciout, int icjin, tNumber_R xb,
 tNumber_R *pBxb, tNumber_R pivotn, tMatrix_R ct, tVector_I ib,
 tVector_R t, tVector_R vb, int *pIrank)
{
 int i;
 tNumber_R tpeps;

 tpeps = 2.0 + EPS;

 if (xb < -EPS)
 {
 if (pivotn > 0.0)
 {
 for (i = 1; i <= *pIrank; i++)
 {
 vb[i] = vb[i] + ct[i][icjin] + ct[i][icjin];
 }
 *pBxb = *pBxb + t[icjin] + t[icjin];
 ib[icjin] = 1;
 }
 }

 if (xb > tpeps)
 {
 for (i = 1; i <= *pIrank; i++)
 {
 vb[i] = vb[i] - ct[i][iciout] - ct[i][iciout];
 }
 *pBxb = *pBxb - t[iciout] - t[iciout];
 ib[iciout] = -1;

© 2008 by Taylor & Francis Group, LLC

Chapter 5: LA_L1 161

 if (pivotn < 0.0)
 {
 for (i = 1; i <= *pIrank; i++)
 {
 vb[i] = vb[i] + ct[i][icjin] + ct[i][icjin];
 }
 *pBxb = *pBxb + t[icjin] + t[icjin];
 ib[icjin] = 1;
 }
 }
}

/*---
Update vector p for LA_L1()
---*/
void LA_l1_update_p (int iout, int jin, tMatrix_R ct, tVector_I ic,
 tVector_R p, int *pIrank)
{
 int i, j, k, k1, kd;
 int icjin, irnkm1;

 icjin = ic[jin];
 irnkm1 = *pIrank - 1;

 if (iout != *pIrank)
 {
 for (j = iout; j <= irnkm1; j++)
 {
 k = j;
 k1 = k + 1;
 kd = *pIrank;

 /* Swap two elements of vector "ic" */
 swap_elems_Vector_I (ic, k, k1);

 for (i = 1; i <= k1; i++)
 {
 p[k] = p[k + 1];
 k = k + kd;
 kd = kd - 1;
 }
 }

 /* Swap elements "irank" and "jin" of vector "ic" */
 swap_elems_Vector_I (ic, jin, *pIrank);

© 2008 by Taylor & Francis Group, LLC

162 Numerical Linear Approximation in C

 k = *pIrank;
 kd = *pIrank;
 for (i = 1; i <= *pIrank; i++)
 {
 p[k] = ct[i][icjin];
 k = k + kd;
 kd = kd - 1;
 }
 }
}

/*---
Update matrix ginv in LA_L1()
---*/
void LA_l1_update_ginv (int i, int n, tMatrix_R ct, tVector_I ir,
 tVector_R p, tMatrix_R ginv, tVector_R vb, int *pIrank)
{
 int j, k, l;
 int i1, ii, kd, kk, kl, irank1;

 tNumber_R d, e, g;

 irank1 = *pIrank + 1;
 ii = i;
 i1 = i + 1;
 k = 0;
 kd = irank1;
 for (j = 1; j <= ii; j++)
 {
 k = k + kd;
 kd = kd - 1;
 }
 kk = k;
 kl = k - kd;
 l = kl;
 g = p[k];
 d = p[l];
 if (g < 0.0) g = - g;
 if (d < 0.0) d = - d;
 if (g > d)
 {
 for (j = ii; j <= *pIrank; j++)
 {
 /* Swap two elements of vector "p" */

© 2008 by Taylor & Francis Group, LLC

Chapter 5: LA_L1 163

 swap_elems_Vector_R (p, k, l);

 k = k + 1;
 l = l + 1;
 }
 /* Swap two elements of vector "ir" */
 swap_elems_Vector_I (ir, i, i1);

 /* Swap two rows of matrix "ct" */
 swap_rows_Matrix_R (ct, i, i1);

 /* Swap two rows of matrix "ginv" */
 swap_rows_Matrix_R (ginv, i, i1);

 /* Swap two columns of matrix "ginv" */
 for (j = 1; j <= *pIrank; j++)
 {
 e = ginv[j][i];
 ginv[j][i] = ginv[j][i1];
 ginv[j][i1] = e;
 }

 /* Swap two elements in real vector "vb" */
 swap_elems_Vector_R (vb, i, i1);
 }
 e = p[kk]/p[kl];
 k = kk;
 l = kl;
 for (j = ii; j <= *pIrank; j++)
 {
 p[k] = p[k] - e * p[l];
 k = k + 1;
 l = l + 1;
 }
 for (j = 1; j <= n; j++)
 {
 ct[i1][j] = ct[i1][j] - e * (ct[i][j]);
 }
 for (j = 1; j <= *pIrank; j++)
 {
 ginv[i1][j] = ginv[i1][j] - e * ginv[i][j];
 }
 vb[i1] = vb[i1] - e * vb[i];
}

© 2008 by Taylor & Francis Group, LLC

164 Numerical Linear Approximation in C

/*---
Calculate the residual vector "r" for LA_L1()
---*/
void LA_l1_calcul_r (tNumber_R alpha, int n, tMatrix_R ct,
 tVector_R f, tVector_I ic, tVector_I ib, tVector_R uf,
 tVector_R xp, tVector_R t, tVector_R p, int *pIrank,
 tVector_R r)
{
 int i, j, icj, irank1;
 tNumber_R d, s;

 irank1 = *pIrank + 1;
 if (fabs (alpha) <= 1.0)
 {
 for (j = irank1; j <= n; j++)
 {
 icj = ic[j];
 r[icj] = r[icj] - alpha * t[icj];
 }
 }
 if (fabs (alpha) > 1.0)
 {
 LA_l1_pslv (2, pIrank, p, uf, xp);
 for (j = irank1; j <= n; j++)
 {
 icj = ic[j];
 s = -f[icj];
 for (i = 1; i <= *pIrank; i++)
 {
 s = s + xp[i] * (ct[i][icj]);
 }
 r[icj] = s;
 }
 }
 for (j = irank1; j <= n; j++)
 {
 icj = ic[j];
 d = r[icj] * ib[icj];
 if (d < 0.0) r[icj] = 0.0;
 }
}

© 2008 by Taylor & Francis Group, LLC

Chapter 5: DR_Lone 165

5.13 DR_Lone

/*---
DR_Lone

This program is a driver for the function LA_Lone(), which solves an
overdetermined system of linear equations in the L1 (L-One) norm,
using a dual simplex method.

The overdetermined system has the form

 c*a = f

"c" is a given real n by m matrix of rank k, k <= m <= n.
"f" is a given real n vector.
"a" is the solution m vector.

This program contains the 3 examples whose results appear in the
text.
---*/

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define Na 7
#define Ma 3
#define Nb 51
#define Mb 11
#define Nc 8
#define Mc 4

void DR_Lone (void)
{
 /*--
 Constant matrices/vectors
 --*/
 static tNumber_R c1init[Na][Ma] =
 {
 { -2.0, 0.0, -2.0 },
 { 8.0, 9.0, 17.0 },
 { 36.0, 18.0, 54.0 },
 { -8.0, 0.0, -8.0 },
 { 21.0, 18.0, 39.0 },
 { 12.0, -9.0, 3.0 },

© 2008 by Taylor & Francis Group, LLC

166 Numerical Linear Approximation in C

 { -32.0, -13.5, -45.5 }
 };

 static tNumber_R f1[Na+1] =
 { NIL,
 6.0, 6.0, -48.0, 24.0, 3.0, -6.0, -9.0
 };

 static tNumber_R c3init[Nc][Mc] =
 {
 { 1.0, 1.0, 1.0, 1.0 },
 { 1.0, 2.0, 4.0, 4.0 },
 { 1.0, 3.0, 9.0, 9.0 },
 { 1.0, 4.0, 16.0, 16.0 },
 { 1.0, 5.0, 25.0, 25.0 },
 { 1.0, 6.0, 36.0, 36.0 },
 { 1.0, 7.0, 49.0, 49.0 },
 { 1.0, 8.0, 64.0, 64.0 }
 };

 static tNumber_R f3[Nc+1] =
 { NIL,
 2.0, 2.5, 2.0, 6.5, 3.5, 4.5, 6.0, 7.0
 };

 /*--
 Variable matrices/vectors
 --*/
 tMatrix_R ct = alloc_Matrix_R (MM_COLS, NN_ROWS);
 tVector_R f = alloc_Vector_R (NN_ROWS);
 tVector_R r = alloc_Vector_R (NN_ROWS);
 tVector_R a = alloc_Vector_R (MM_COLS);

 tMatrix_R c1 = init_Matrix_R (&(c1init[0][0]), Na, Ma);
 tMatrix_R c3 = init_Matrix_R (&(c3init[0][0]), Nc, Mc);

 int irank, iter;
 int i, j, m, n, Iexmpl;

 tNumber_R dx, x1, x2, x3, x4, x5, g, g1, z;

 eLaRc rc = LaRcOk;

 prn_dr_bnr ("DR_Lone, L-One Solution of an Overdetermined "
 "System of Linear Equations");

© 2008 by Taylor & Francis Group, LLC

Chapter 5: DR_Lone 167

 z = 0.0;
 for (Iexmpl = 1; Iexmpl <= 3; Iexmpl++)
 {
 switch (Iexmpl)
 {
 case 1:
 n = Na;
 m = Ma;
 for (i = 1; i <= n; i++)
 {
 f[i] = f1[i];
 for (j = 1; j <= m; j++)
 ct[j][i] = c1[i][j];
 }
 break;

 case 2:
 n = Nb;
 m = Mb;
 dx = 0.02;
 g1 = exp (0.5);
 for (i = 1; i <= n; i++)
 {
 x1 = dx * (tNumber_R)(i-1);
 x2 = x1 + x1;
 x3 = x1 + x2;
 x4 = x2 + x2;
 x5 = x2 + x3;
 ct[1][i] = 1.0;
 ct[2][i] = sin (x1);
 ct[3][i] = cos (x1);
 ct[4][i] = sin (x2);
 ct[5][i] = cos (x2);
 ct[6][i] = sin (x3);
 ct[7][i] = cos (x3);
 ct[8][i] = sin (x4);
 ct[9][i] = cos (x4);
 ct[10][i] = sin (x5);
 ct[11][i] = cos (x5);
 g = exp (x1);
 f[i] = g1;
 if (g < g1) f[i] = g;
 }
 break;

© 2008 by Taylor & Francis Group, LLC

168 Numerical Linear Approximation in C

 case 3:
 n = Nc;
 m = Mc;
 for (i = 1; i <= n; i++)
 {
 f[i] = f3[i];
 for (j = 1; j <= m; j++)
 {
 ct[j][i] = c3[i][j];
 }
 }
 break;

 default:
 break;
 }

 prn_algo_bnr ("Lone");

 prn_example_delim();
 PRN ("Example #%d: Size of matrix \"c\", %d by %d\n",
 Iexmpl, n, m);
 prn_example_delim();
 PRN ("L-One Solution of an Overdetermined System"
 " of Linear Equations\n");
 prn_example_delim();
 PRN ("r.h.s. Vector \"f\"\n");
 prn_Vector_R (f, n);
 PRN ("Transpose of Coefficient Matrix, \"ct\"\n");
 prn_Matrix_R (ct, m, n);

 rc = LA_Lone (m, n, ct, f, &irank, &iter, r, a, &z);

 if (rc >= LaRcOk)
 {
 PRN ("\n");
 PRN ("Results of the L-One Approximation\n");
 PRN ("L-One solution vector, \"a\"\n");
 prn_Vector_R (a, m);
 PRN ("L-One residual vector \"r\"\n");
 prn_Vector_R (r, n);
 PRN ("L-One norm \"z\" = %8.4f\n", z);
 PRN ("Rank of matrix \"c\" = %d, No. of Iterations ="
 " %d\n", irank, iter);

© 2008 by Taylor & Francis Group, LLC

Chapter 5: DR_Lone 169

 }

 prn_la_rc (rc);
 }

 free_Matrix_R (ct, MM_COLS);
 free_Vector_R (f);
 free_Vector_R (r);
 free_Vector_R (a);

 uninit_Matrix_R (c1);
 uninit_Matrix_R (c3);
}

© 2008 by Taylor & Francis Group, LLC

170 Numerical Linear Approximation in C

5.14 LA_Lone

/*---
LA_Lone

This program solves an overdetermined system of linear equations
in the L1 (L-One) norm. It uses a dual simplex method to the dual
linear programming formulation of the problem. In this program
certain intermediate simplex iterations are skipped.

The system of linear equations has the form

 c*a = f

"c" is a given real n by m matrix of rank k, k <= m <= n.
"f" is a given real n vector.

The problem is to calculate the elements of the real m vector
"a" that gives the minimum L1 residual norm z.

 z = |r[1]| + |r[2]| + ... + |r[n]|

where r[i] is the ith residual and is given by

 r[i] = c[i][1]*a[1] + c[i][2]*a[2] + ... + c[i][m]*a[m] - f[i],
 i = 1, 2, ..., n

Inputs
m Number of columns of matrix "c" in the system c*a = f.
n Number of rows of matrix "c" in the system c*a = f.
ct A real m by n matrix containing the transpose of matrix "c"
 of the system c*a = f.
f A real n vector containing the r.h.s. of the system c*a = f.

Local Variables
binv A real m square matrix containing the inverse of the basis
 matrix in the linear programming problem.
bv A real m vector containing the basic solution in the linear
 programming problem.
th A real n vector containing the ratios

 th[j] = r[j]/ct[iout][j]

 "iout" corresponds to the basic vector that leaves the

© 2008 by Taylor & Francis Group, LLC

Chapter 5: LA_Lone 171

 basis.
icbas An integer m vector containing the indices of the columns
 of "ct" that form the columns of the basis matrix.
irbas An integer m vector containing the indices of the rows of
 "ct".
ibound An n sign vector. Its elements have the values +1 or -1.
 ibound[j] = +1 indicates that column j of matrix "ct" is in
 the basis or is at its lower bound 0. ibound[j] = -1
 indicates that column j is at its upper bound 2.

Outputs
irank The calculated rank of matrix "c".
iter Number of iterations, or the number of times the simplex
 tableau is changed by a Gauss-Jordon elimination step.
a A real m vector containing the L1 solution of the system
 c*a = f.
r A real n vector containing the residual vector
 r = (c*a - f).
z The minimum L1 norm of the residual vector "r".

Returns one of
 LaRcSolutionUnique
 LaRcSolutionProbNotUnique
 LaRcSolutionDefNotUniqueRD
 LaRcNoFeasibleSolution
 LaRcErrBounds
 LaRcErrNullPtr
 LaRcErrAlloc
---*/

#include "LA_Prototypes.h"

eLaRc LA_Lone (int m, int n, tMatrix_R ct, tVector_R f, int *pIrank,
 int *pIter, tVector_R r, tVector_R a, tNumber_R *pZ)
{
 tVector_I icbas = alloc_Vector_I (m);
 tVector_I irbas = alloc_Vector_I (m);
 tVector_R th = alloc_Vector_R (n);
 tMatrix_R binv = alloc_Matrix_R (m, m);
 tVector_R bv = alloc_Vector_R (m);
 tVector_I ibound = alloc_Vector_I (n);

 int iout = 0, jin = 0, jout = 0, ivo = 0;
 int i = 0, j = 0, ij = 0, kk = 0, itest = 0, ipart = 0;
 tNumber_R tpeps = 0.0, xb = 0.0;

© 2008 by Taylor & Francis Group, LLC

172 Numerical Linear Approximation in C

 tNumber_R pivot = 0.0, pivotn = 0.0, pivoto = 0.0;

 /* Validation of the data before executing the algorithm */
 eLaRc rc = LaRcSolutionUnique;
 VALIDATE_BOUNDS ((0 < m) && (m <= n) && !((n == 1) && (m == 1)));
 VALIDATE_PTRS (ct && f && pIrank && pIter && r && a && pZ);
 VALIDATE_ALLOC (icbas && irbas && th && binv && bv && ibound);

 /* Initialization */
 xb = 0.0;
 tpeps = 2.0 + EPS;
 *pIrank = m;
 *pIter = 0;
 *pZ = 0.0;
 ipart = 1;
 for (j = 1; j <= n; j++)
 {
 r[j] = 0.0;
 ibound[j] = 1;
 }

 for (j = 1; j <= m; j++)
 {
 a[j] = 0.0;
 bv[j] = 0.0;
 irbas[j] = j;
 icbas[j] = 0;
 for (i = 1; i <= m; i++) binv[i][j] = 0.0;
 binv[j][j] = 1.0;
 }

 /* Part 1 of the algorithm */
 LA_lone_part_1 (ipart, n, ct, icbas, irbas, binv, bv, ibound,
 pIrank, pIter, r);

 /* Part 2 of the algorithm */
 /* Calculating the initial residuals (marginal costs)
 and the initial basic solution */
 ipart = 2;
 LA_lone_part_2 (n, ct, f, icbas, bv, ibound, pIrank, r);

 for (kk = 1; kk <= n; kk++)
 {
 ivo = 0;

© 2008 by Taylor & Francis Group, LLC

Chapter 5: LA_Lone 173

 /* Determine the vector that leaves the basis */
 LA_lone_vleav (&ivo, &iout, pIrank, &xb, bv);

 /* Calculate the results */
 if (ivo == 0)
 {
 rc = LA_lone_res (m, n, f, icbas, irbas, binv, bv,
 pIrank, r, a, pZ);
 GOTO_CLEANUP_RC (rc);
 }
 jout = icbas[iout];

 /* Calculation of the possible parameters th[j] */
 LA_lone_th (iout, n, ct, icbas, ibound, th, pIrank, r);

 pivoto = 1.0;
 itest = 0;

 for (ij = 1; ij <= n; ij++)
 {
 /* Determine the vector that enters the basis */
 LA_lone_vent (ivo, &itest, &jin, n, th);

 /* Solution is not feasible */
 if (itest != 1)
 {
 GOTO_CLEANUP_RC (LaRcNoFeasibleSolution);
 }
 pivot = ct[iout][jin];
 pivotn = pivot/pivoto;

 if (xb < -EPS)
 {
 if (pivotn > 0.0)
 {
 for (i = 1; i <= *pIrank; i++)
 {
 bv[i] = bv[i] + ct[i][jin] + ct[i][jin];
 }
 }
 ibound[jin] = 1;
 }
 if (xb > tpeps)
 {
 for (i = 1; i <= *pIrank; i++)

© 2008 by Taylor & Francis Group, LLC

174 Numerical Linear Approximation in C

 {
 bv[i] = bv[i] - ct[i][jout] - ct[i][jout];
 }
 ibound[jout] = -1;
 if (pivotn < 0.0)
 {
 for (i = 1; i <= *pIrank; i++)
 {
 bv[i] = bv[i] + ct[i][jin] + ct[i][jin];
 }
 ibound[jin] = 1;
 }
 }
 xb = bv[iout]/pivot;
 if (xb < -EPS || xb > tpeps) itest = 0;
 th[jin] = 0.0;
 icbas[iout] = jin;
 if (itest == 1) break;
 pivoto = pivot;
 jout = jin;
 }
 /* A Gauss-Jordan elimination step */
 LA_lone_gauss_jordn (ipart, iout, jin, n, ct, icbas, binv,
 bv, ibound, pIrank, r);
 *pIter = *pIter + 1;
 }

CLEANUP:

 free_Vector_I (icbas);
 free_Vector_I (irbas);
 free_Vector_R (th);
 free_Matrix_R (binv, m);
 free_Vector_R (bv);
 free_Vector_I (ibound);

 return rc;
}

/*---
Part 1 of LA_Lone()
---*/
void LA_lone_part_1 (int ipart, int n, tMatrix_R ct, tVector_I icbas,
 tVector_I irbas, tMatrix_R binv, tVector_R bv, tVector_I ibound,
 int *pIrank, int *pIter, tVector_R r)

© 2008 by Taylor & Francis Group, LLC

Chapter 5: LA_Lone 175

{
 int i, j, li = 0, lj;
 int iout, jin = 0;

 tNumber_R d, piv;

 for (iout = 1; iout <= *pIrank; iout++)
 {
 if (iout <= *pIrank)
 {
 piv = 0.0;
 for (j = 1; j <= n; j++)
 {
 for (i = iout; i <= *pIrank; i++)
 {
 d = ct[i][j];
 if (d < 0.0) d = -d;
 if (d > piv)
 {
 li = i;
 jin = j;
 piv = d;
 }
 }
 }

 /* Detection of rank deficiency of matrix "ct" */
 if (piv < EPS)
 {
 *pIrank = iout - 1;
 ipart = 2;
 }
 if (ipart == 2) break;
 if (li != iout)
 {
 /* Swap two elements of vector "irbas" */
 swap_elems_Vector_I (irbas, li, iout);

 /* Swap two rows of matrix "ct" */
 swap_rows_Matrix_R (ct, li, iout);

 if (iout != 1)
 {
 lj = iout - 1;
 for (j = 1; j <= lj; j++)

© 2008 by Taylor & Francis Group, LLC

176 Numerical Linear Approximation in C

 {
 d = binv[li][j];
 binv[li][j] = binv[iout][j];
 binv[iout][j] = d;
 }
 }
 }
 if (ipart == 2) break;
 /* A Gauss-Jordan elimination step */
 LA_lone_gauss_jordn (ipart, iout, jin, n, ct, icbas,
 binv, bv, ibound, pIrank, r);
 *pIter = *pIter + 1;
 }
 }
}

/*---
Part 2 of LA_Lone()
---*/
void LA_lone_part_2 (int n, tMatrix_R ct, tVector_R f,
 tVector_I icbas, tVector_R bv, tVector_I ibound, int *pIrank,
 tVector_R r)
{
 int i, j, k, ic;

 tNumber_R s, sa;

 for (j = 1; j <= n; j++)
 {
 ic = 0;
 for (i = 1; i <= *pIrank; i++) if (j == icbas[i]) ic = 1;
 if (ic == 0)
 {
 s = - f[j];
 for (i = 1; i <= *pIrank; i++)
 {
 k = icbas[i];
 s = s + f[k]*ct[i][j];
 }
 r[j] = s;
 if (s <= 0.0) ibound[j] = - 1;
 }
 }
 for (i = 1; i <= *pIrank; i++)
 {

© 2008 by Taylor & Francis Group, LLC

Chapter 5: LA_Lone 177

 s = 0.0;
 for (j = 1; j <= n; j++)
 {
 sa = ct[i][j];
 if (ibound[j] == -1) sa = - sa;
 s = s + sa;
 }
 bv[i] = s;
 }
}

/*---
Calculate the "th" ratios in LA_lone()
---*/
void LA_lone_th (int iout, int n, tMatrix_R ct, tVector_I icbas,
 tVector_I ibound, tVector_R th, int *pIrank, tVector_R r)
{
 int i, j, ic;
 tNumber_R d, e, gg, thmax;

 thmax = 0.0;

 /* Calculation of the possible parameters th[j] */
 for (j = 1; j <= n; j++)
 {
 th[j] = 0.0;
 ic = 0;
 for (i = 1; i <= *pIrank; i++)
 {
 if (j == icbas[i]) ic = 1;
 }
 if (ic == 0)
 {
 e = ct[iout][j];
 if (fabs (e) > EPS)
 {
 d = r[j];
 if (fabs (d) < PREC) d = PREC*ibound[j];
 th[j] = d/e;
 gg = th[j];
 if (gg <0.0) gg = - gg;
 if (gg > thmax) thmax = gg;
 }
 }
 }

© 2008 by Taylor & Francis Group, LLC

178 Numerical Linear Approximation in C

}

/*---
Determine the vector that enters the basis in LA_Lone()
---*/
void LA_lone_vent (int ivo, int *pItest, int *pJin, int n,
 tVector_R th)
{
 int j, ij;

 tNumber_R d, e, thmax, thmin;

 for (ij = 1; ij <= n; ij++)
 {
 thmax = 1.0/ (EPS*EPS);
 thmin = -thmax;
 for (j = 1; j <= n; j++)
 {
 e = th[j];
 d = e * ivo;
 if (d > 0.0)
 {
 if (ivo == -1)
 {
 if (e > thmin)
 {
 thmin = e;
 *pJin = j;
 *pItest = 1;
 }
 }
 if (ivo == 1)
 {
 if (e < thmax)
 {
 thmax = e;
 *pJin = j;
 *pItest = 1;
 }
 }
 }
 }
 }
}

© 2008 by Taylor & Francis Group, LLC

Chapter 5: LA_Lone 179

/*---
Determine the vector that leaves the basis in LA_Lone()
---*/
void LA_lone_vleav (int *pIvo, int *pIout, int *pIrank,
 tNumber_R *pXb, tVector_R bv)
{
 int i;
 tNumber_R d, e, g, tpeps;

 tpeps = 2.0 + EPS;
 g = 1.0;
 for (i = 1; i <= *pIrank; i++)
 {
 e = bv[i];
 if (e > tpeps || e < -EPS)
 {
 if (e > tpeps)
 {
 d = 2.0 - e;
 if (d < g)
 {
 g = d;
 *pIvo = 1;
 *pIout = i;
 *pXb = e;
 }
 }
 if (e < -EPS)
 {
 d = e;
 if (d < g)
 {
 g = d;
 *pIvo = -1;
 *pIout = i;
 *pXb = e;
 }
 }
 }
 }
}

/*---
A Gauss-Jordan elimination step in LA_Lone()
---*/

© 2008 by Taylor & Francis Group, LLC

180 Numerical Linear Approximation in C

void LA_lone_gauss_jordn (int ipart, int iout, int jin, int n,
 tMatrix_R ct, tVector_I icbas, tMatrix_R binv, tVector_R bv,
 tVector_I ibound, int *pIrank, tVector_R r)
{
 int i, j, ic;
 tNumber_R pivot, e, d;

 pivot = ct[iout][jin];

 icbas[iout] = jin;
 for (j = 1; j <= n; j++)
 {
 ct[iout][j] = ct[iout][j]/pivot;
 }
 for (j = 1; j <= *pIrank; j++)
 {
 binv[iout][j] = binv[iout][j]/pivot;
 }
 if (ipart != 1) bv[iout] = bv[iout]/pivot;
 for (i = 1; i <= *pIrank; i++)
 {
 if (i != iout)
 {
 e = ct[i][jin];
 for (j = 1; j <= n; j++)
 {
 ct[i][j] = ct[i][j] - e*ct[iout][j];
 }
 for (j = 1; j <= *pIrank; j++)
 {
 binv[i][j] = binv[i][j] - e*binv[iout][j];
 }
 if (ipart != 1)
 {
 bv[i] = bv[i] - e*bv[iout];
 }
 }
 }
 if (ipart != 1)
 {
 e = r[jin];
 for (j = 1; j <= n; j++) r[j] = r[j] - e*ct[iout][j];
 for (j = 1; j <= n; j++)
 {
 ic = 0;

© 2008 by Taylor & Francis Group, LLC

Chapter 5: LA_Lone 181

 for (i = 1; i <= *pIrank; i++)
 {
 if (j == icbas[i]) ic = 1;
 if (ic == 0)
 {
 d = r[j]*ibound[j];
 if (d < 0.0) r[j] = 0.0;
 }
 }
 }
 }
}

/*---
Calculate the results of LA_Lone()
---*/
eLaRc LA_lone_res (int m, int n, tVector_R f, tVector_I icbas,
 tVector_I irbas, tMatrix_R binv, tVector_R bv, int *pIrank,
 tVector_R r, tVector_R a, tNumber_R *pZ)
{
 int i, j, k;
 tNumber_R s, sa;

 for (j = 1; j <= *pIrank; j++)
 {
 s = 0.0;
 for (i = 1; i <= *pIrank; i++)
 {
 k = icbas[i];
 s = s + f[k] * (binv[i][j]);
 }
 k = irbas[j];
 a[k] = s;
 }

 s = 0.0;
 for (j = 1; j <= n; j++)
 {
 sa = r[j];
 if (sa < 0.0) sa = - sa;
 s = s + sa;
 }
 *pZ = s;

 if (*pIrank < m)

© 2008 by Taylor & Francis Group, LLC

182 Numerical Linear Approximation in C

 return LaRcSolutionDefNotUniqueRD;

 for (i = 1; i <= m; i++)
 {
 if (bv[i] <= EPS || bv[i] >= 2.0 - EPS)
 return LaRcSolutionProbNotUnique;
 }

 return LaRcSolutionUnique;
}

© 2008 by Taylor & Francis Group, LLC

183

Chapter 6

One-Sided L1 Approximation

6.1 Introduction

In the previous chapter, an algorithm for obtaining the L1 solution
of an overdetermined system of linear equations is given. That L1
solution is a double-sided one, meaning that some of the elements of
the residual vector have values ≥ 0 and others have values < 0. In
other words, for the discrete linear L1 approximation, some of the
points lie above or on the approximating surface (curve) and some lie
below the approximating surface. Hence, the approximation is the
ordinary or double-sided L1 approximation.

In this chapter, we present the linear one-sided L1
approximation problem. In this approximation, all the given discrete
points lie either above or on, or below and on the approximating
surface. When all the discrete points lie above or on the
approximating surface, this is known as the one-sided L1
approximation from above. When all the discrete points lie below or
on the approximating surface, the approximation is known as the
one-sided L1 approximation from below. In two dimensional case,
this is illustrated by Figure 6-1.

We shall consider the problem of the one-sided L1 approximation
from below. However, the analysis and presentation of the problem
from above are almost identical. The described algorithm is
manipulated slightly so that it can be applied to the latter case as well.

The problem is presented here as a linear programming problem
and we pursue the analysis of the dual form of the linear programming
presentation. The algorithm is much simpler than the algorithm for the
ordinary L1 approximation in Chapter 5.

We should note that there are problems that have (ordinary) L1

© 2008 by Taylor & Francis Group, LLC

184 Numerical Linear Approximation in C

approximation but do not have one-sided L1 approximation from
above and/or one-sided L1 approximation from below. See the
numerical examples in Section 6.5. See also the practical example,
Example 16.2.

Consider the overdetermined system of linear equations

(6.1.1a) Ca = f

C = (cij), is a given real n by m matrix of rank k, k ≤ m ≤ n and f = (fi)
is a given real n-vector. The (ordinary) L1 solution of system Ca = f is
the m-vector a = (ai) that minimizes the L1 norm z of the residuals

(6.1.1b)

where ri is the ith residual and is given by

(6.1.1c) , i = 1, 2, �, n

Figure 6-1: Curve fitting with vertical parabolas of a set of 8 points
using L1 approximation and one-sided L1 approximations

This figure gives curve fitting with vertical parabolas of the set of

z ri
i 1=

n

∑=

ri cijaj
j 1=

m

∑ fi�=

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9

© 2008 by Taylor & Francis Group, LLC

Chapter 6: One-Sided L1 Approximation 185

8 points shown in Figure 2-1. The solid curve is the ordinary L1
approximation. The dashed curve is the one-sided L1 approximation
from above and the dotted curve is the one-sided L1 approximation
from below.

The special case when the system of equation Ca = f, is
consistent, i.e., the residual r = Ca � f = 0, is not of interest here. We
thus assume that r ≠ 0.

When the elements of the residual vector r satisfy the additional
conditions

(6.1.1d) ri ≤ 0, i = 1, 2, �, n

or in effect

(6.1.1e) Ca ≤ f

we have the one-sided L1 solution from above of system Ca = f; that
is, for any equation i, i = 1, �, n, in Ca = f, the observed value fi is
greater than (or equal to) the calculated value (ci1a1 + ci2a2 + � +
cimam).

If the inequalities (6.1.1d) are reversed, i.e.,

ri ≥ 0, i = 1, 2, �, n

we have the one-sided L1 solution from below.
As indicated above, we formulate here the problem of the

one-sided L1 solution from below as a linear programming one. We
use the dual formulation of the problem as we did for the ordinary L1
approximation in the previous chapter. However, we use here the
simplex method, not the dual simplex method that we used in the
previous chapter. In this algorithm no conditions are imposed on the
coefficient matrix. It may be a rank deficient one. An initial basic
solution is obtained with a small effort. The described algorithm
applies as well to the one-sided L1 solution from above.

In Section 6.2, the problem is presented as a special case of a
general constrained L1 approximation problem. In Section 6.3, the
linear programming formulation of the problem is given. In Section
6.4, the algorithm is described and a numerical example is solved. A
note on the linear one-sided L1 solution from above is also given and
the interpolating properties of the one-sided L1 approximation is
described. In Section 6.5, numerical results are presented and
compared with other techniques for solving the same problem.

© 2008 by Taylor & Francis Group, LLC

186 Numerical Linear Approximation in C

6.1.1 Applications of the algorithm

One-sided Lp approximations have applications to the numerical
solution of operator equations, to ordinary differential equations and
to integral equations. See Watson [23, 24].

The one-sided approximation in the L1 norm is applied to the
degree reduction of interval polynomial of the so-called Bézier
curves in computer aided design. See Deng et al. [13]. The one-sided
L1 and the one-sided Chebyshev solutions of overdetermined systems
are also applied to the solution of overdetermined linear inequalities
[2]. The latter is a basic problem in pattern classification. See Tou and
Gonzalez ([22], pp. 40-41, 48-49) and also Chapter 16.

6.1.2 Characterization and uniqueness

For the characterization and uniqueness of the best one-sided L1
approximation of a continuous function, see Pinkus [21] and for
harmonic functions see Armitage et al. [3]. For the uniqueness of the
best one-sided L1 approximation of continuous differentiable
functions see Babenko and Glushko [5] and also Lenze [19]

6.2 A special problem of a general constrained one

A number of authors developed algorithms for general constrained
L1 approximation problems. By manipulating the constraints, each
problem reduces to a one-sided L1 approximation problem. In other
words, their algorithms are general purpose algorithms, while ours is a
special purpose one.

Using our notation, let C and E be matrices of appropriate
dimensions and let f be the vector associated with C, and ea and eb be
two vectors associated with E respectively. Armstrong and Hultz
(AH) [4] seek a solution vector a that satisfies the problem

(6.2.1a) minimize ||Ca � f||1
subject to

(6.2.1b) ea ≤ Ea ≤ eb

If in (6.2.1b) we take E = C, ea = f, and eb is a very large vector,
we get the one-sided L1 approximation from below.

© 2008 by Taylor & Francis Group, LLC

Chapter 6: One-Sided L1 Approximation 187

Each of Barrodale and Roberts (BR) [7, 9], Bartels and Conn (BC)
[10, 11] and Dax (DA) [12] also proposed to solve a class of problems
that includes the problem given by Armstrong and Hultz (AH) [4] as a
special case. They minimize the L1 norm of the residual subject to a
mixture of linear equality and inequality constraints. Using our
notation, let C, G and D be matrices of appropriate dimensions and let
f, g and d be vectors associated with C, G and D respectively. Then
they seek a solution vector a that satisfies

(6.2.2a) minimize ||Ca � f||1
subject to

(6.2.2b) Ga = g and Da ≥ d

They allow for the possibility that some but not all of the arrays
(G, g) and (D, d) be vacuous. Barrodale and Roberts [7, 9] use a
primal linear programming technique that is an extension of their
method for the L1 approximation without linear constraints [6].
Bartels and Conn [10, 11], however, use a penalty-function method,
which solves a constrained optimization problem, while Dax [12] uses
a steepest descent search direction method by first solving a linear
least squares sub-problem. Hence, if in (6.2.2b) we take G = 0, g = 0,
D = C and d = f, problem (6.2.2) reduces to the one-sided L1 problem
from below. We shall comment on these methods in Section 6.5.

6.3 Linear programming formulation of the problem

In linear programming terminology [18], problem (6.1.1) is
formulated as follows. See Lewis [20] and Watson [23, 24]. Since the
residual vector r for Ca = f is given by r = Ca � f, and since all the
elements of r, ri ≥ 0, i = 1, 2, �, n, in vector-matrix notation, we have

minimize Z = eT(Ca � f)

where e is an n-vector, each element of which is 1. Now since eTf is
just a constant, this reduces to

(6.3.1a) minimize Z = eT(Ca)

subject to Ca � f > 0, which is

(6.3.1b) Ca ≥ f

© 2008 by Taylor & Francis Group, LLC

188 Numerical Linear Approximation in C

and

(6.3.1c) aj unrestricted in sign, j = 1, 2, �, m

It is easier to deal with the dual of problem (6.3.1), namely

(6.3.2a) maximize z = fTb

subject to CTb = CTe, which is

(6.3.2b)

and

(6.3.2c) bi ≥ 0, i = 1, 2, �, n

In (6.3.2b) Cj
T is the jth column of matrix CT and the r.h.s. of (6.3.2b)

is the sum of the columns of CT.

6.4 Description of the algorithm

This problem may be solved by the two-phase method of linear
programming, as described in Section 3.5. However, we should start
with vector bB whose elements are non-negative. This is easily done
because of the simple structure of the problem, as explained next.

6.4.1 Obtaining an initial basic feasible solution

We note that the main body (the matrix of constraints) in the
initial data in the programming problem is matrix CT and from
(6.3.2b), the basic solution vector bB is given by

The elements of vector bB may or may not be non-negative, i.e., one
or more of its elements may be < 0. Let the element bBi < 0. If we now
multiply bBi and the whole of row i in the initial data by �1, this
amounts to multiplying column i of matrix C in the system Ca = f by
�1. Then the calculated element ai of the solution vector a will not be
ai but �ai. An index i would then be stored in an index vector and, at

CTb Cj
T

i 1=

n

∑=

bB Cj
T

i 1=

n

∑=

© 2008 by Taylor & Francis Group, LLC

Chapter 6: One-Sided L1 Approximation 189

the end of the program, element ai would be multiplied by �1.
At the end of phase 1, we have an initial basic feasible solution bB.

If rank(C) = k < m, then only k Gauss-Jordan steps are needed. We
then calculate the marginal costs (zj � fj)

zj � fj = fB
Tyj � fj, j = 1, �, n

Phase 2 of the algorithm is the ordinary simplex method. If at any
iteration, a pivot element is not found, or the ratio bBi/yij is < EPS, the
problem has no solution and the program terminates.

Lemma 6.1 (Theorem 5.3)

At any stage of the computation, the residuals (ri) of (6.1.1c) are
themselves the marginal costs (zi � fi) for the same reference

zi � fi = ri, i = 1, 2, �, n

As a result, for the optimum solution, the objective function z =
the sum of the marginal costs, being all ≥ 0

See Theorem 5.3.

Lemma 6.2

The solution vector of the one-sided L1 approximation problem is
given by

(6.4.1) aT = fB
TB�1

where B�1 is the inverse of the basis matrix for the optimum solution
and fB is associated with the optimal solution. See Theorem 5.4.

Example 6.1

Obtain the L1 solution from below of the following system
�a1 � a2 = 2

a1 + 3a2 = 1
(6.4.2) a1 + 2a2 = 1

a2 = �3
a3 = 0

In the tableau for the Initial Data, the left hand side is the algebraic

z zi fi�()
i 1=

n

∑=

© 2008 by Taylor & Francis Group, LLC

190 Numerical Linear Approximation in C

sum of the columns of matrix CT. Tableau 6.4.1 represents the end of
part 1. It is obtained by applying 3 Gauss-Jordan steps to the Initial
Data. The basic solution is feasible; all elements of bB are ≥ 0.

Initial Data

fT 2 1 1 �3 0
ΣiCi

T C1
T C2

T C3
T C4

T C5
T

 ������������� ����������������������
1 �1 1 1 0 0
5 �1 3 2 1 0
1 0 0 0 0 1

 ������������� ����������������������

Tableau 6.4.1 (end of part 1)

fT 2 1 1 �3 0
fB

T bB C1
T C2

T C3
T C4

T C5
T

 ������������� ����������������������
2 1 1 0 �1/2 1/2 0
1 2 0 1 (1/2) 1/2 0
0 1 0 0 0 0 1

 ������������� ����������������������
0 0 �3/2 9/2 0

Tableau 6.4.2 (part 2)

fT 2 1 1 �3 0
fB

T bB C1
T C2

T C3
T C4

T C5
T

 ������������� ����������������������
2 3 1 1 0 1 0
1 4 0 2 1 1 0
0 1 0 0 0 0 1

 ������������� ����������������������
z = 9 0 3 0 6 0

It took one Gauss-Jordan iteration to obtain the optimum solution
of the problem. The residuals of the problem are given as the marginal
costs (Lemma 6.1) in the last tableau and are r = (0, 0, 3, 6, 0)T from
which z = 9. From (6.4.1) or by solving the first, the third and the fifth
equations in the set (6.4.2), we get the solution vector a = (�5, 3, 0)T.

© 2008 by Taylor & Francis Group, LLC

Chapter 6: One-Sided L1 Approximation 191

6.4.2 One-sided L1 solution from above

For the linear one-sided L1 solution from above, as indicated
earlier, the inequalities for the residuals are given by

ri ≤ 0, i = 1, 2, �, n

The algorithm described here for one-sided L1 solution from below
may be applied as well to the one-sided L1 solution from above as
follows. We multiply each element of matrix C and each element of
vector f in Ca = f by �1. We get the equation Ca = f, where C = �C
and f = �f. We then apply the current algorithm to the equation Ca = f.

Then the elements ri of the residual vector r = Ca � f, satisfy

ri ≥ 0, i = 1, 2, �, n

which implies that for the given equation Ca = f

ri ≤ 0, i = 1, 2, �, n

meaning the one-sided solution from above.
The obtained solution vector a would be that for the L1 solution

from above, and the elements of the obtained residual vector r are to
be multiplied by �1.

6.4.3 The interpolation property

A certain property is shared between the (ordinary) L1 solution [1]
and the one-sided L1 solutions of overdetermined systems of linear
equations. Let rank(C) = k ≤ m. Then at least k equations of Ca = f,
each has zero residual ri. This property is a direct result of using the
dual form of the linear programming formulation for both problems.

The reason is that k equations in Ca = f, associated with the basis
matrix have zero marginal costs (residuals). This also means the
following. If n discrete points in the x-y plane are being approximated
by a plane curve, in the one-sided L1 sense, the curve will pass
through at least k of the discrete points. See Figure 6-1.

6.5 Numerical results and comments

LA_Loneside() implements this algorithm. DR_Loneside() tests 8
examples in which the data is taken from [14, 15, 16, 17].

© 2008 by Taylor & Francis Group, LLC

192 Numerical Linear Approximation in C

Table 6.1 shows the results of 3 of the examples, computed in
single-precision. For comparison purposes, the results for the
(ordinary or the two-sided) L1 solution for each example are included.
The L1 solution is calculated by LA_Lone() of Chapter 5.

Table 6.1

One-sided L1 L1 One-sided L1
from above solution from below

��
Example C(n×m) Iter z Iter z Iter z
��

1 4 × 2 no solution 2 18.4 no solution
2 10× 5 7 10.00 6 10.00 no solution
3 25×10 20 0.1408 21 0.0878 19 0.139

For each example, the number of iterations and the optimum L1
norms z for the 3 cases are shown. In this table, �no solution�
indicates that the problem has no one-sided L1 solution. The results
indicate that the number of iterations for the one-sided L1
approximation are comparable to those for the ordinary L1
approximation.

The current algorithm is a special purpose one for solving the
one-sided L1 approximation problem. However, the algorithms
mentioned in Section 6.2, those of Armstrong and Hultz (AH) [4],
Barrodale and Roberts (BR) [7-9], Bartels and Conn (BC) [10, 11]
and Dax (DA) [12], are general purpose algorithms that may by used
to solve the current problem.

Each of those algorithms necessitates that matrix C and vector f be
stored twice in computer memory, once for (6.2.1a) and once for
(6.2.1b), or once for (6.2.2a) and once for (6.2.2b), replacing D and d
respectively. That would nearly double the number of arithmetic
operations in their algorithms. Our algorithm, as a special purpose
one, would thus be more efficient. The same observations are made at
the end of Chapter 11 for the one-sided Chebyshev approximation
problem.

© 2008 by Taylor & Francis Group, LLC

Chapter 6: One-Sided L1 Approximation 193

References

1. Abdelmalek, N.N., On the discrete L1 approximation and L1
solutions of overdetermined linear equations, Journal of
Approximation Theory, 11(1974)38-53.

2. Abdelmalek, N.N., Linear one-sided approximation algo-
rithms for the solution of overdetermined systems of linear
inequalities, International Journal of Systems Science,
15(1984)1-8.

3. Armitage, D.H., Gardiner, S.J., Haussmann, W. and Rogge,
L., Best one-sided L1 � approximation by harmonic functions,
Manuscripta Mathematica, 96(1998)181-194.

4. Armstrong, R.D. and Hultz, J.W., An algorithm for a restricted
discrete approximation problem in the L1 norm, SIAM Journal
on Numerical Analysis, 14(1977)555-565.

5. Babenko, V.F. and Glushko, V.N., On the uniqueness of
elements of the best approximation and the best one-sided
approximation in the space L1, Ukrainian Mathematical
Journal, 46(1994)503-513.

6. Barrodale, I. and Roberts, F.D.K., An improved algorithm for
discrete l1 approximation, SIAM Journal on Numerical
Analysis, 10(1973)839-848.

7. Barrodale, I. and Roberts, F.D.K., Algorithms for restricted
least absolute value estimation, Communications on Statistics
- Simulation and Computation, B6(1977)353-363.

8. Barrodale, I. and Roberts, F.D.K., An efficient algorithm for
discrete l1 linear approximation with linear constraints, SIAM
Journal on Numerical Analysis, 15(1978)603-611.

9. Barrodale, I. and Roberts, F.D.K., Algorithm 552: Solution of
the constrained L1 linear approximation problem, ACM Trans-
actions on Mathematical Software, 6(1980)231-235.

10. Bartels, R.H. and Conn, A.R., Linearly constrained discrete l1
problems, ACM Transactions on Mathematical Software,
6(1980)594-608.

11. Bartels, R.H. and Conn, A.R., Algorithm 563: A program for
linearly constrained discrete l1 problems, ACM Transactions
on Mathematical Software, 6(1980)609-614.

© 2008 by Taylor & Francis Group, LLC

194 Numerical Linear Approximation in C

12. Dax, A., The l1 solution of linear equations subject to linear
constraints, SIAM Journal on Scientific and Statistical
Computation, 10(1989)328-340.

13. Deng, J., Feng, Y. and Chen, F., Best one-sided approximation
of polynomials under L1 norm, Journal of Computational and
Applied Mathematics, 144(2002)161-174.

14. Duris, C.S., An exchange method for solving Haar and
non-Haar overdetermined linear equations in the sense of
Chebyshev, Proceedings of Summer ACM Computer Conf-
erence, (1968)61-65.

15. Duris, C.S. and Sreedharan, V.P., Chebyshev and l1-solutions
of linear equations using least squares solutions, SIAM Journal
on Numerical Analysis, 5(1968)491-505.

16. Easton, M.C., A fixed point method for Tchebycheff solution
of inconsistent linear equations, Journal of Institute of
Mathematics and Applications, 12(1973)137-159.

17. Goldstein, A.A., Levine, N. and Hereshoff, J.B., On the best
and least qth approximation of an overdetermined system of
linear equations, Journal of ACM, 4(1957)341-347.

18. Hadley, G., Linear Programming, Addison-Wesley, Reading,
MA, 1962.

19. Lenze, B., Uniqueness in best one-sided L1 � approximation
by algebraic polynomials on unbounded intervals, Journal of
Approximation Theory, 57(1989)169-177.

20. Lewis, J.T., Computation of best one-sided L1 approximation,
Mathematics of Computation, 24(1970)529-536.

21. Pinkus, A.M., On L1-Approximation, Cambridge University
Press, London, 1989.

22. Tou, J.T. and Gonzalez, R.C., Pattern Recognition Principles,
Addison-Wesley, Reading, MA, 1974.

23. Watson, G.A., The calculation of best linear one-sided Lp
approximations, Mathematics of Computation, 27(1973)607-
620.

24. Watson, G.A., One-sided approximation and operator equa-
tions, Journal of Institute of Mathematics and Applications,
12(1973)197-208.

© 2008 by Taylor & Francis Group, LLC

Chapter 6: DR_Loneside 195

6.6 DR_Loneside

/*---
DR_Loneside

This program is a driver for the function LA_Loneside(), which
calculates the one-sided L-One solution from above or from below of
an overdetermined system of linear equations.

The overdetermined system has the form

 c*a = f

"c" is a given real n by m matrix of rank k, k <= m <= n.
"f" is a given real n vector.
"a" is the solution m vector.

This driver contains 8 examples from which the results of examples
1, 6 and 7 are given in the text. All the example are solved twice;
once for the one-sided L-One approximation from above and once for
the one-sided L-One approximation from below.
---*/

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define N1 4
#define M1 2
#define N2 5
#define M2 3
#define N3 6
#define M3 3
#define N4 7
#define M4 3
#define N5 8
#define M5 4
#define N6 10
#define M6 5
#define N7 25
#define M7 10
#define N8 8
#define M8 4

void DR_Loneside (void)

© 2008 by Taylor & Francis Group, LLC

196 Numerical Linear Approximation in C

{
 /*--
 Constant matrices/vectors
 --*/
 static tNumber_R c1init[N1][M1] =
 {
 { 0.0, -2.0 },
 { 0.0, -4.0 },
 { 1.0, 10.0 },
 {-1.0, 15.0 }
 };

 static tNumber_R c2init[N2][M2] =
 {
 { 1.0, 2.0, 0.0 },
 {-1.0, -1.0, 0.0 },
 { 1.0, 3.0, 0.0 },
 { 0.0, 1.0, 0.0 },
 { 0.0, 0.0, 1.0 }
 };

 static tNumber_R c3init[N3][M3] =
 {
 { 0.0, -1.0, 0.0 },
 { 1.0, 3.0, -4.0 },
 { 1.0, 0.0, 0.0 },
 { 0.0, 0.0, 1.0 },
 {-1.0, 1.0, 2.0 },
 { 1.0, 1.0, 1.0 }
 };

 static tNumber_R c4init[N4][M4] =
 {
 { 1.0, 0.0, 1.0 },
 { 1.0, 2.0, 2.0 },
 { 1.0, 2.0, 0.0 },
 { 1.0, 1.0, 0.0 },
 { 1.0, 0.0, -1.0 },
 { 1.0, 0.0, 0.0 },
 { 1.0, 1.0, 1.0 }
 };

 static tNumber_R c5init[N5][M5] =
 {
 { 1.0, -3.0, 9.0, -27.0 },

© 2008 by Taylor & Francis Group, LLC

Chapter 6: DR_Loneside 197

 { 1.0, -2.0, 4.0, -8.0 },
 { 1.0, -1.0, 1.0, -1.0 },
 { 1.0, 0.0, 0.0, 0.0 },
 { 1.0, 1.0, 1.0, 1.0 },
 { 1.0, 2.0, 4.0, 8.0 },
 { 1.0, 3.0, 9.0, 27.0 },
 { 1.0, 4.0, 16.0, 64.0 }
 };

 static tNumber_R c6init[N6][M6] =
 {
 { 1.0, 0.0, 0.0, 0.0, 0.0 },
 { 0.0, 1.0, 0.0, 0.0, 0.0 },
 { 0.0, 0.0, 1.0, 0.0, 0.0 },
 { 0.0, 0.0, 0.0, 1.0, 0.0 },
 { 0.0, 0.0, 0.0, 0.0, 1.0 },
 { 1.0, 1.0, 1.0, 1.0, 1.0 },
 { 0.0, 1.0, 1.0, 1.0, 1.0 },
 {-1.0, 0.0, -1.0, -1.0, -1.0 },
 { 1.0, 1.0, 0.0, 1.0, 1.0 },
 { 1.0, 1.0, 1.0, 0.0, 1.0 }
 };

 static tNumber_R c8init[N8][M8] =
 {
 { 1.0, 1.0, 1.0, 1.0 },
 { 1.0, 2.0, 4.0, 4.0 },
 { 1.0, 3.0, 9.0, 9.0 },
 { 1.0, 4.0, 16.0, 16.0 },
 { 1.0, 5.0, 25.0, 25.0 },
 { 1.0, 6.0, 36.0, 36.0 },
 { 1.0, 7.0, 49.0, 49.0 },
 { 1.0, 8.0, 64.0, 64.0 }
 };

 static tNumber_R f1[N1+1] =
 { NIL,
 -12.0, 6.0, 0.0, 5.0
 };

 static tNumber_R f2[N2+1] =
 { NIL,
 1.0, 2.0, 1.0, -3.0, 0.0
 };

© 2008 by Taylor & Francis Group, LLC

198 Numerical Linear Approximation in C

 static tNumber_R f3[N3+1] =
 { NIL,
 1.0, 2.0, 3.0, 2.0, 2.0, 4.0
 };

 static tNumber_R f4[N4+1] =
 { NIL,
 0.0, -2.0, 1.0, -1.0, 5.0, 7.0, 0.0
 };

 static tNumber_R f5[N5+1] =
 { NIL,
 3.0, -3.0, -2.0, 0.0, 7.0, -1.0, 5.0, 2.0
 };

 static tNumber_R f6[N6+1] =
 { NIL,
 1.0, -1.0, 0.0, -1.0, 1.0, 0.0, 2.0, 3.0, -3.0, -2.0
 };

 static tNumber_R f7[N7+1] =
 { NIL,
 0.0872673, 0.0872794, 0.0873029, 0.0873315, 0.0873576,
 0.3491184, 0.3498802, 0.3513824, 0.3532572, 0.3550109,
 0.6111334, 0.6150641, 0.6230824, 0.6336395, 0.6441493,
 0.8733883, 0.8841621, 0.9071868, 0.9400757, 0.9766021,
 1.135895, 1.157550, 1.206257, 1.283258, 1.384432
 };

 static tNumber_R f8[N8+1] =
 { NIL,
 2.0, 2.5, 2.0, 6.5, 3.5, 4.5, 6.0, 7.0
 };

 /*--
 Variable matrices/vectors
 --*/
 tMatrix_R ct = alloc_Matrix_R (MM_COLS, NN_ROWS);
 tVector_R f = alloc_Vector_R (NN_ROWS);
 tVector_R r = alloc_Vector_R (NN_ROWS);
 tVector_R a = alloc_Vector_R (MM_COLS);
 tMatrix_R c7 = alloc_Matrix_R (N7, M7);

 tMatrix_R c1 = init_Matrix_R (&(c1init[0][0]), N1, M1);
 tMatrix_R c2 = init_Matrix_R (&(c2init[0][0]), N2, M2);

© 2008 by Taylor & Francis Group, LLC

Chapter 6: DR_Loneside 199

 tMatrix_R c3 = init_Matrix_R (&(c3init[0][0]), N3, M3);
 tMatrix_R c4 = init_Matrix_R (&(c4init[0][0]), N4, M4);
 tMatrix_R c5 = init_Matrix_R (&(c5init[0][0]), N5, M5);
 tMatrix_R c6 = init_Matrix_R (&(c6init[0][0]), N6, M6);
 tMatrix_R c8 = init_Matrix_R (&(c8init[0][0]), N8, M8);

 int irank, iter, iside, kase;
 int i, j, k, m, n, Iexmpl;
 tNumber_R d, dd, ddd, e, ee, eee, z;

 eLaRc rc = LaRcOk;

 for (j = 1; j <= 5; j++)
 {
 d = 0.15* (j-3);
 dd = d*d;
 ddd = d*dd;
 for (i = 1; i <= 5; i++)
 {
 e = 0.15* (i-3);
 ee = e*e;
 eee = e*ee;
 k = 5* (j-1) + i;
 c7[k][1] = 1.0;
 c7[k][2] = d;
 c7[k][3] = e;
 c7[k][4] = dd;
 c7[k][5] = ee;
 c7[k][6] = e*d;
 c7[k][7] = ddd;
 c7[k][8] = eee;
 c7[k][9] = dd*e;
 c7[k][10] = ee*d;
 }
 }

 prn_dr_bnr ("DR_Loneside, One-Sided L-One Solutions of an "
 "Overdetermined System of Linear Equations");

 for (kase = 1; kase <= 2; kase++)
 {
 if (kase == 1) iside = 1;
 if (kase == 2) iside = 0;
 for (Iexmpl = 1; Iexmpl <= 8; Iexmpl++)
 {

© 2008 by Taylor & Francis Group, LLC

200 Numerical Linear Approximation in C

 switch (Iexmpl)
 {
 case 1:
 n = N1;
 m = M1;
 for (i = 1; i <= n; i++)
 {
 f[i] = f1[i];
 for (j = 1; j <= m; j++) ct[j][i] = c1[i][j];
 }
 break;

 case 2:
 n = N2;
 m = M2;
 for (i = 1; i <= n; i++)
 {
 f[i] = f2[i];
 for (j = 1; j <= m; j++) ct[j][i] = c2[i][j];
 }
 break;

 case 3:
 n = N3;
 m = M3;
 for (i = 1; i <= n; i++)
 {
 f[i] = f3[i];
 for (j = 1; j <= m; j++) ct[j][i] = c3[i][j];
 }
 break;

 case 4:
 n = N4;
 m = M4;
 for (i = 1; i <= n; i++)
 {
 f[i] = f4[i];
 for (j = 1; j <= m; j++) ct[j][i] = c4[i][j];
 }
 break;

 case 5:
 n = N5;
 m = M5;

© 2008 by Taylor & Francis Group, LLC

Chapter 6: DR_Loneside 201

 for (i = 1; i <= n; i++)
 {
 f[i] = f5[i];
 for (j = 1; j <= m; j++) ct[j][i] = c5[i][j];
 }
 break;

 case 6:
 n = N6;
 m = M6;
 for (i = 1; i <= n; i++)
 {
 f[i] = f6[i];
 for (j = 1; j <= m; j++) ct[j][i] = c6[i][j];
 }
 break;

 case 7:
 n = N7;
 m = M7;
 for (i = 1; i <= n; i++)
 {
 f[i] = f7[i];
 for (j = 1; j <= m; j++) ct[j][i] = c7[i][j];
 }
 break;

 case 8:
 n = N8;
 m = M8;
 for (i = 1; i <= n; i++)
 {
 f[i] = f8[i];
 for (j = 1; j <= m; j++) ct[j][i] = c8[i][j];
 }

 break;

 default:
 break;
 }

 prn_algo_bnr ("Loneside");
 prn_example_delim();
 PRN ("Example #%d: Size of matrix \"c\", %d by %d\n",

© 2008 by Taylor & Francis Group, LLC

202 Numerical Linear Approximation in C

 Iexmpl, n, m);
 prn_example_delim();
 if (iside == 1)
 PRN ("One-sided L-One Solution from Above\n");
 else
 PRN ("One-sided L-One Solution from Below\n");
 prn_example_delim();
 PRN ("r.h.s. Vector \"f\"\n");
 prn_Vector_R (f, n);
 PRN ("Transpose of Coefficient Matrix, \"ct\"\n");
 prn_Matrix_R (ct, m, n);

 rc = LA_Loneside (iside, m, n, ct, f, &irank, &iter, r,
 a, &z);

 if (rc >= LaRcOk)
 {
 PRN ("\n");
 PRN ("Results of the One-sided L1 Approximation\n");
 PRN ("One-sided L-One solution vector, \"a\"\n");
 prn_Vector_R (a, m);
 PRN ("One-sided L-One residual vector, \"r\"\n");
 prn_Vector_R (r, n);
 PRN ("One-sided L-One norm \"z\" = %8.4f\n", z);
 PRN ("Rank of Matrix \"c\" = %d,"
 " Number of Iterations = %d\n", irank, iter);
 }

 prn_la_rc (rc);
 }
 }
 free_Matrix_R (ct, MM_COLS);
 free_Vector_R (f);
 free_Vector_R (r);
 free_Vector_R (a);
 free_Matrix_R (c7, N7);

 uninit_Matrix_R (c1);
 uninit_Matrix_R (c2);
 uninit_Matrix_R (c3);
 uninit_Matrix_R (c4);
 uninit_Matrix_R (c5);
 uninit_Matrix_R (c6);
 uninit_Matrix_R (c8);
}

© 2008 by Taylor & Francis Group, LLC

Chapter 6: LA_Loneside 203

6.7 LA_Loneside

/*---
LA_Loneside

This program calculates the one-sided L-One solution from above or
from below of an overdetermined system of linear equations. It uses
a modified simplex method to the linear programming formulation of
the problem.

The system of linear equations has the form

 c*a = f

"c" is a given real n by m matrix of rank k <= m <= n.
"f" is a given real n vector.

The problem is to calculate the elements of the real m vector
"a" that gives the minimum L1 residual norm z.

 z = |r[1]| + |r[2]| + ... + |r[n]|

where r[i] is the ith residual and is given by

 r[i] = c[i][1]*a[1] + c[i][2]*a[2] + ... + c[i][m]*a[m] - f[i],
 i = 1, 2, ..., n

subject to the conditions

 r[i] => 0, for the one-sided L-One solution from below
or
 r[i] =< 0, for the one-sided L-One solution from above.

Inputs
iside An integer specifying the action to be performed.
 If iside = 1, the one-sided L-One solution from above is
 calculated.
 If iside != 1, the one-sided L-One solution from below is
 calculated.
m Number of columns of matrix "c" in the system c*a = f.
n Number of rows of matrix "c" in the system c*a = f.
ct A real m by n matrix containing the transpose of matrix "c"
 of the system c*a = f.
f A real n vector containing the r.h.s. of the system c*a = f.

© 2008 by Taylor & Francis Group, LLC

204 Numerical Linear Approximation in C

Local Variables
binv A real m square matrix containing the inverse of the basis
 matrix in the linear programming problem.
bv A real m vector containing the basic solution in the linear
 programming problem.
icbas An integer m vector containing the indices of the columns
 of "ct" that form the columns of the basis matrix.
irbas An integer m vector containing the indices of the rows
 of "ct".

Outputs
irank The calculated rank of matrix "c".
iter Number of iterations, or the number of times the simplex
 tableau is changed by a Gauss-Jordon elimination step.
a A real m vector containing the one-sided L-One solution of
 the system c*a = f.
r A real n vector containing the one-sided L-One residual
 vector r = (c*a - f).
z The optimum one-sided L-One norm of the problem.

Returns one of
 LaRcSolutionUnique
 LaRcSolutionProbNotUnique
 LaRcSolutionDefNotUniqueRD
 LaRcNoFeasibleSolution
 LaRcErrBounds
 LaRcErrNullPtr
 LaRcErrAlloc
---*/

#include "LA_Prototypes.h"

eLaRc LA_Loneside (int iside, int m, int n, tMatrix_R ct,
 tVector_R f, int *pIrank, int *pIter, tVector_R r, tVector_R a,
 tNumber_R *pZ)
{
 tMatrix_R binv = alloc_Matrix_R (m, m);
 tVector_R bv = alloc_Vector_R (m);
 tVector_I icbas = alloc_Vector_I (m);
 tVector_I irbas = alloc_Vector_I (m);

 int i = 0, j = 0, kk = 0;
 int iout = 0, jin = 0, ivo = 0, itest = 0;

© 2008 by Taylor & Francis Group, LLC

Chapter 6: LA_Loneside 205

 /* Validation of data before executing the algorithm */
 eLaRc rc = LaRcSolutionUnique;
 VALIDATE_BOUNDS ((0 < m) && (m <= n) && !((n == 1) && (m == 1)));
 VALIDATE_PTRS (ct && f && pIrank && pIter && r && a && pZ);
 VALIDATE_ALLOC (binv && bv && icbas && irbas);

 /* Initialization */
 *pIrank = m;
 *pIter = 0;
 for (j = 1; j <= m; j++)
 {
 a[j] = 0.0;
 icbas[j] = 0;
 irbas[j] = j;
 for (i = 1; i <= m; i++)
 {
 binv[i][j] = 0.0;
 }
 binv[j][j] = 1.0;
 }
 for (j = 1; j <= n; j++)
 {
 r[j] = 0.0;
 }

 /* One-sided L-One solution from above */
 if (iside == 1)
 {
 for (j = 1; j <= n; j++)
 {
 f[j] = -f[j];
 for (i = 1; i <= m; i++) ct[i][j] = - ct[i][j];
 }
 }

 /* Calculate the initial basic solution */
 LA_loneside_basic_sol (m, n, ct, irbas, bv);

 /* Determine the rank of matrix "ct" */
 LA_loneside_part_1 (m, n, ct, icbas, irbas, binv, bv, pIrank,
 pIter, r);

 /* Part 2 of the algorithm */
 /* Calculate the marginal costs */
 LA_loneside_marg_costs (m, n, ct, f, icbas, r);

© 2008 by Taylor & Francis Group, LLC

206 Numerical Linear Approximation in C

 for (kk = 1; kk <= n*n; kk++)
 {
 /* Determine the vector that enters the basis */
 LA_loneside_vent (&ivo, &jin, m, n, icbas, r);

 if (ivo == 0)
 {
 /* Calculate the results */
 rc = LA_loneside_res (iside, m, n, f, icbas, irbas, binv,
 bv, pIrank, r, a, pZ);
 GOTO_CLEANUP_RC (rc);
 }
 itest = 0;
 /* Determine the vector that leaves the basis */
 LA_loneside_vleav (jin, &iout, &itest, m, ct, bv);

 if (itest != 1)
 {
 GOTO_CLEANUP_RC (LaRcNoFeasibleSolution);
 }

 /* A Gauss-Jordan elimination step */
 LA_loneside_gauss_jordn (iout, jin, m, n, ct, icbas, binv,
 bv, r);
 *pIter = *pIter + 1;
 }

CLEANUP:

 free_Matrix_R (binv, m);
 free_Vector_R (bv);
 free_Vector_I (icbas);
 free_Vector_I (irbas);

 return rc;
}

/*---
Determine the rank of matrix "c" in LA_Loneside()
---*/
void LA_loneside_part_1 (int m, int n, tMatrix_R ct,
 tVector_I icbas, tVector_I irbas, tMatrix_R binv, tVector_R bv,
 int *pIrank, int *pIter, tVector_R r)
{

© 2008 by Taylor & Francis Group, LLC

Chapter 6: LA_Loneside 207

 int i, j, k, li = 0, jin = 0, iout;
 tNumber_R d, g, piv;

 for (iout = 1; iout <= m; iout++)
 {
 if (iout <= *pIrank)
 {
 piv = 0.0;
 for (j = 1; j <= n; j++)
 {
 for (i = iout; i <= *pIrank; i++)
 {
 d = ct[i][j];
 if (d < 0.0) d = -d;
 if (d > piv)
 {
 li = i;
 jin = j;
 piv = d;
 }
 }
 }

 /* Detection of rank deficiency */
 if (piv > 0.0)
 {
 if (li != iout)
 {
 /* Swap of two elements of vector "irbas" */
 swap_elems_Vector_I (irbas, li, iout);

 /* Swap of two elements of vector "bv" */
 swap_elems_Vector_R (bv, li, iout);

 /* Swap of two rows of matrix "ct" */
 swap_rows_Matrix_R (ct, li, iout);

 /* Swap parts of two rows of matrix "binv" */
 if (iout != 1)
 {
 k = iout - 1;
 for (j = 1; j <= k; j++)
 {
 g = binv[li][j];
 binv[li][j] = binv[iout][j];

© 2008 by Taylor & Francis Group, LLC

208 Numerical Linear Approximation in C

 binv[iout][j] = g;
 }
 }
 }

 LA_loneside_gauss_jordn (iout, jin, m, n, ct, icbas,
 binv, bv, r);
 *pIter = *pIter + 1;
 }
 if (piv < EPS)
 {
 /* Solution is not unique */
 *pIrank = iout - 1;
 }
 }
 }
}

/*---
Calculation of the initial marginal costs in LA_Loneside()
---*/
void LA_loneside_marg_costs (int m, int n, tMatrix_R ct, tVector_R f,
 tVector_I icbas, tVector_R r)
{
 int i, j, k, ibc;
 tNumber_R s;

 for (j = 1; j <= n; j++)
 {
 r[j] = 0.0;
 ibc = 0;
 for (i = 1; i <= m; i++)
 {
 if (j == icbas[i]) ibc = 1;
 }
 if (ibc == 0)
 {
 s = - f[j];
 for (i = 1; i <= m; i++)
 {
 k = icbas[i];
 s = s + f[k] * ct[i][j];
 }
 r[j] = s;
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 6: LA_Loneside 209

 }
}

/*---
Calculation of the initial basic solution in LA_Loneside()
---*/
void LA_loneside_basic_sol (int m, int n, tMatrix_R ct,
 tVector_I irbas, tVector_R bv)
{
 int i, j;
 tNumber_R s;

 for (i = 1; i <= m; i++)
 {
 s = 0.0;
 for (j = 1; j <= n; j++)
 {
 s = s + ct[i][j];
 }
 bv[i] = s;
 }
 for (i = 1; i <= m; i++)
 {
 if (bv[i] < -EPS)
 {
 bv[i] = -bv[i];
 irbas[i] = -i;
 for (j = 1; j <= n; j++)
 {
 ct[i][j] = -ct[i][j];
 }
 }
 }
}

/*---
Determine the vector that enters the basis in LA_Loneside()
---*/
void LA_loneside_vent (int *pIvo, int *pJin, int m, int n,
 tVector_I icbas, tVector_R r)
{
 int i, j, ic;
 tNumber_R d, g;

 *pIvo = 0;

© 2008 by Taylor & Francis Group, LLC

210 Numerical Linear Approximation in C

 g = 1.0/ (EPS*EPS);
 for (j = 1; j <= n; j++)
 {
 ic = 0;
 for (i = 1; i <= m; i++)
 {
 if (j == icbas[i]) ic = 1;
 }
 if (ic == 0)
 {
 d = r[j];
 if (d < 0.0)
 {
 if (d < g)
 {
 *pIvo = 1;
 g = d;
 *pJin = j;
 }
 }
 }
 }
}

/*---
Determine the vector that leaves the basis in LA_Loneside()
---*/
void LA_loneside_vleav (int jin, int *pIout, int *pItest, int m,
 tMatrix_R ct, tVector_R bv)
{
 int i;
 tNumber_R d, g, thmax;

 thmax = 1.0/ (EPS*EPS);
 for (i = 1; i <= m; i++)
 {
 d = ct[i][jin];
 if (d > EPS)
 {
 g = bv[i]/d;
 if (g <= thmax)
 {
 thmax = g;
 *pIout = i;
 *pItest = 1;

© 2008 by Taylor & Francis Group, LLC

Chapter 6: LA_Loneside 211

 }
 }
 }
}

/*---
A Gauss-Jordan elimination step in LA_Loneside()
---*/
void LA_loneside_gauss_jordn (int iout, int jin, int m, int n,
 tMatrix_R ct, tVector_I icbas, tMatrix_R binv,
 tVector_R bv, tVector_R r)
{
 int i, j;
 tNumber_R pivot, d;

 pivot = ct[iout][jin];
 for (j = 1; j <= n; j++) ct[iout][j] = ct[iout][j]/pivot;
 for (j = 1; j <= m; j++) binv[iout][j] = binv[iout][j]/pivot;
 bv[iout] = bv[iout]/pivot;
 for (i = 1; i <= m; i++)
 {
 if (i != iout)
 {
 d = ct[i][jin];
 for (j = 1; j <= n; j++)
 {
 ct[i][j] = ct[i][j] - d * (ct[iout][j]);
 }
 for (j = 1; j <= m; j++)
 {
 binv[i][j] = binv[i][j] - d * (binv[iout][j]);
 }
 bv[i] = bv[i] - d * (bv[iout]);
 }
 }
 icbas[iout] = jin;
 d = r[jin];
 for (j = 1; j <= n; j++) r[j] = r[j] - d * (ct[iout][j]);
}

/*---
Calculate the results of LA_Loneside()
---*/
eLaRc LA_loneside_res (int iside, int m, int n, tVector_R f,
 tVector_I icbas, tVector_I irbas, tMatrix_R binv, tVector_R bv,

© 2008 by Taylor & Francis Group, LLC

212 Numerical Linear Approximation in C

 int *pIrank, tVector_R r, tVector_R a, tNumber_R *pZ)
{
 int i, j, k;
 tNumber_R s;

 for (j = 1; j <= *pIrank; j++)
 {
 s = 0.0;
 for (i = 1; i <= *pIrank; i++)
 {
 k = icbas[i];
 s = s + f[k]*binv[i][j];
 }
 k = irbas[j];
 if (k < 0) k = -k;
 a[k] = s;
 if (irbas[j] < 0) a[k] = -s;
 }

 s = 0.0;
 for (j = 1; j <= n; j++)
 {
 s = s + r[j];
 }

 *pZ = s;
 if (iside == 1)
 {
 for (j = 1; j <= n; j++) r[j] = -r[j];
 }

 if (*pIrank < m)
 return LaRcSolutionDefNotUniqueRD;

 for (i = 1; i <= m; i++)
 {
 if (bv[i] < EPS)
 return LaRcSolutionProbNotUnique;
 }

 return LaRcSolutionUnique;
}

© 2008 by Taylor & Francis Group, LLC

213

Chapter 7

L1 Approximation with Bounded Variables

7.1 Introduction

In Chapter 5, an algorithm for calculating the L1 solution of
overdetermined systems of linear equations is given. In this solution
the L1 norm of the residual vector, is as small as possible. In Chapter
6, the one-sided L1 solution of overdetermined linear equations was
presented, in which the L1 norm of the residual vector is as small as
possible and such that all the elements of the residual vector are either
non-positive or non-negative.

In this chapter we present yet another kind of the linear L1
approximation, known as L1 approximation with bounded variables
[5]. Here, the additional constraints are on the elements of the solution
vector, not on the elements of the residual vector as in the previous
chapter. The elements of the solution vector are to be bounded
between �1 and 1.

For example, given the (x, y) data of Figure 2-1, the solid curve in
Figure 7-1, is for the ordinary L1 approximation, and is given by
y = 2.143 � 0.25x + 0.107x2. The elements of the solution vector are
(2.143, �0.25, 0.107) and they are not all bounded between �1 and 1.

Yet for the same data, for the L1 approximation with bounded
variables between �1 and 1, the approximating curve is given by
y = 1 + 0.083x + 0.083x2, where the elements of the solution vector
are between �1 and 1. For comparison purposes, the two
approximating curves are shown in Figure 7-1.

In this chapter, the problem is solved by linear programming
techniques, where initial basic solution is obtained with very little
computational effort. Minimum computer storage is required and no
conditions are imposed on the coefficient matrix. It could be a rank

© 2008 by Taylor & Francis Group, LLC

214 Numerical Linear Approximation in C

deficient one.
Consider the overdetermined system of linear equations

Ca = f

C = (cij) is a given real n by m matrix of rank k, k ≤ m ≤ n, and f = (fi)
is a given real n-vector. The L1 solution of system Ca = f is the
m-vector a = (ai) that minimizes the L1 norm z of the residuals

(7.1.1)

where ri is the ith element of the residual vector

r = Ca � f

When the elements of the solution vector a are required to satisfy
the additional conditions

(7.1.2) �1 ≤ ai ≤ 1, i = 1, 2, �, m

we have the problem of calculating the L1 solution of system Ca = f
with bounded variables between �1 and 1.

If instead of the constraints (7.1.2), we require the elements of
vector a to satisfy the constraints

(7.1.3) ci ≤ ai ≤ di, i = 1, 2, �, m

where vectors c = (ci) and d = (di) are given m-vectors, by substituting
variables, these constraints reduce to the constraints (7.1.2) in the new
variables. Let

(7.1.4) ai = 0.5[(di � ci)zi + (di + ci)], i = 1, 2, �, m

That is

zi = [2ai � (di + ci)]/(di � ci), i = 1, 2, �, m

Hence, when ai = di, zi = 1 and when ai = ci, zi = �1. In
vector-matrix form, (7.1.4) is given by

(7.1.5) a = Gz + g

G is a diagonal m-matrix whose ith diagonal element is 0.5(di � ci) and
g is an m-vector whose ith element is 0.5(di + ci). By substituting
(7.1.5) into Ca = f, one gets

z ri
i 1=

n

∑=

© 2008 by Taylor & Francis Group, LLC

Chapter 7: L1 Approximation with Bounded Variables 215

Dz = h

where

D = CG and h = f � Cg

and the elements of the new solution vector z are bounded between �1
and 1

�1 ≤ zi ≤ 1, i = 1, 2, �, m

Once the solution vector z is obtained, the solution vector a of the
given system Ca = f is calculated by substituting z into (7.1.5).

The linear L1 approximation with non-negative parameters may
be formulated as an L1 approximation with bounded variables, as
explained in Section 7.1.1.

Figure 7-1: Curve fitting with vertical parabolas of a set of 8 points
using L1 approximation and L1 approximation with bounded variables

between �1 and 1

The solid curve is the L1 approximation and the dashed curve is
the L1 approximation with bounded variables.

In Section 7.2, the bounded L1 approximation problem would be
treated as a special case of some general purpose algorithms. We shall
comment on these algorithms in Section 7.5. In Section 7.3, the linear

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9

© 2008 by Taylor & Francis Group, LLC

216 Numerical Linear Approximation in C

programming formulation of the problem is presented and necessary
lemmas are given. In Section 7.4, the algorithm is described, and in
Section 7.5, numerical results and comments are given.

7.1.1 Linear L1 approximation with non-negative parameters
(NNL1)

If in (7.1.3) we take (ci) = 0 and (di) = Big, i = 1, 2, �, m, where
Big is a large number, we get the non-negative linear L1 (NNL1)
approximation. Spath ([13], p. 250) suggested to take Big = 100 ×
max|fi|, i = 1, 2, �, n, where (fi) are the elements of vector f in the

approximation (NNLI).

7.2 A special problem of a general constrained one

As in Chapter 6, this problem would be treated as a special case of
one of the four general purpose algorithms. These are of Armstrong
and Hultz [6], Barrodale and Roberts [7, 8], Bartels and Conn [9, 10]
and Dax [11].

Using our notation, let C and E be matrices of appropriate
dimensions and let f be the vector associated with C, and e1 and e2 be
two vectors associated with E respectively. Using a special purpose
primal linear programming method, Armstrong and Hultz (AH) [6]
seek a solution vector a that satisfies the problem

(7.2.1a) minimize ||Ca � f||1
subject to

(7.2.1b) e1 ≤ Ea ≤ e2

Hence, if we take in (7.2.1b), matrix E = Im, an m-unit matrix, and
take e1 = �em and e2 = em, where each element of em is 1, (7.2.1a, b)
reduce to the problem of bounded L1 approximation between �1 and
1.

Once more, consider equations (6.2.2a-b) using our notation. Let
C, G and D be matrices of appropriate dimensions and let f, g and d
be vectors associated with C, G and D respectively. Each of Barrodale
and Roberts (BR) [7, 8], Bartels and Conn (BC) [9, 10] and Dax (DA)
[11] seek a vector a that satisfies

© 2008 by Taylor & Francis Group, LLC

system Ca = f. See Chapter 12.1.1 for the non-negative L-infinity

Chapter 7: L1 Approximation with Bounded Variables 217

(7.2.2a) minimize ||Ca � f||1
subject to

(7.2.2b) Ga = g and Da ≥ d

They allow the possibility that some but not all of the arrays (G, g)
and (D, d) be vacuous.

Hence, if in (7.2.2b), we take G = 0, g = 0, D = [Im, �Im]T and
d = [�em, �em]T, (7.2.2a, b) reduce to the problem of the L1
approximation with bounded variables. As indicated earlier, we shall
comment on these methods in Section 7.5.

In the following, we describe an algorithm for the L1
approximation with bounded variables between �1 and 1, using linear
programming techniques. The algorithm is an extension of the
algorithm for the ordinary L1 solution of overdetermined linear
equations. In the linear programming formulation, the initial basic
feasible solution is obtained with little computational effort, and
intermediate simplex iterations are skipped [2, 3].

7.3 Linear programming formulation of the problem

Since the elements of the residual vector r = (ri) are unrestricted in
sign, we may write the residual vector as

r = r1 � r2

where vectors r1, r2 ≥ 0. It is understood that when ri > 0, r1i > 0 and
r2i = 0 and when ri < 0, r1i = 0 and r2i > 0. When ri = 0, r1i = r2i = 0,
where r1i and r2i are the ith elements of vectors r1 and r2 respectively.

This problem may be reduced to a linear programming problem in
the primal form as follows.

minimize Z = en
Tr1 + en

Tr2

subject to

Ca � Inr1 + Inr2 = f

�Ima ≥ �em
Ima ≥ �em

aj, j = 1, 2, �, m, unrestricted in sign, r1, r2 ≥ 0

Here, en and em are n and m-vectors respectively, each element of

© 2008 by Taylor & Francis Group, LLC

218 Numerical Linear Approximation in C

which is 1. Also, In and Im are n- and m-unit matrices respectively.
It is more beneficial to work with the dual form of this primal

problem, namely (Chapter 3)

maximize z = fTw � em
Tu � em

Tv

subject to

CTw � Imu + Imv = 0

w ≤ en
w ≥ �en

ui, vi ≥ 0, i = 1, 2, �, m

The last two vector inequalities reduce to

�1 ≤ wi ≤ 1, i = 1, 2, �, n

where w, u and v are respectively n-, m- and m-vectors for the dual
linear programming problem. As in [1, 2], by letting bi = wi + 1,
i = 1, 2, �, n, this problem reduces to (in vector-matrix form)

or since fTen is just a constant term, the above reduces to

(7.3.1a)

subject to

(7.3.1b)

(7.3.1c) 0 ≤ bi ≤ 2, i = 1, 2, �, n

(7.3.1d) ui, vi ≥ 0, i = 1, 2, �, m

maximize z fT em
T� em

T�
b
u
v

f� Ten=

maximize z fT em
T� em

T�
b
u
v

=

CT Im� Im

b
u
v

CTen=

© 2008 by Taylor & Francis Group, LLC

Chapter 7: L1 Approximation with Bounded Variables 219

Let in (7.3.1a)

(7.3.2a) g = [f T �em
T �em

T]

and in (7.3.1b)

(7.3.2b) D = [CT �Im Im]

The r.h.s. of (7.3.1b) is none other that the sum of the columns of
matrix CT. Compare the r.h.s. of (7.3.1b) with those of (5.2.4b) and of
(6.3.2b).

Problem (7.3.1) is solved by using a dual simplex algorithm with
non-negative bounded variables [1-4, 12]. Since matrix D in (7.3.2b)
is of dimension m by (n + 2m), a simplex tableau for m constraints in
(n + 2m) variables is constructed for problem (7.3.1). Note also that
the matrix of constraints D in (7.3.2b) is of full rank; rank(D) = m.
though matrix C may be rank deficient.

The basis matrix, denoted by B has m linearly independent
columns in the simplex tableau. Vectors yj are given by

(7.3.3a) yj = B�1Dj, j = 1, 2, �, n+2m

where Dj is the jth column of matrix D in (7.3.2b).
Let bB denote the initial basic solution. Since in (7.3.1c), variables

bi, i = 1, 2, �, n, are bounded between 0 and 2, as in [2]. In this
problem, bB is given by

(7.3.3b)

The summations are respectively over the basic variables bi, the
non-basic variables bi at their lower bound (= 0) and the non-basic
variables bi at their upper bound (= 2). The technique used here is
very similar to that used for the (ordinary) linear L1 approximation
problem of Chapter 5.

The marginal costs, denoted by (zj � gj), are given by

(7.3.3c) zj � gj = gB
Tyj � gj, j = 1, 2, �, n+2m

where the elements of the m-vector gB are associated with the basic
variables and vector g is defined by (7.3.2a).

bB yi
iεI b()
∑ yi

iεL b()
∑ yi

iεU b()
∑�+=

© 2008 by Taylor & Francis Group, LLC

220 Numerical Linear Approximation in C

7.3.1 Properties of the matrix of constraints

We will make use of the fact that there is a kind of asymmetry in
parts of the matrix of constraints D. There exist the two matrices �Im
and Im as part of D in (7.3.2b). We take the m-unit matrix Im as the
initial basis matrix B.

Definition

Let i and j, (n + 1) ≤ i, j ≤ (n + 2m), be the indices of any two
columns in matrix D such that |i � j| = m. We define columns i and j as
two corresponding columns. Consider the following lemmas.

Lemma 7.1

Any two corresponding columns should not appear together in any
basis matrix. Otherwise, the basis matrix would be singular.

Lemma 7.2

At any stage of the computation, the corresponding columns of the
simplex tableau are related. If one column is known, the other is easily
derived. The same is true about their marginal costs. From (7.3.3a)
and (7.3.3c) respectively we get

(7.3.4a) yi + yi+m = 0, i = n+1, n+2, �, n+m

(7.3.4 b) (zi � gi) + (zi+m � gi+m) = 2, i = n+1, n+2, �, n+m

These two lemmas indicate that only m columns of the last 2m
columns in matrix D need to be stored by the program, and no
corresponding columns exist in these m columns. Hence, from the
matrix of constraints D, we need to store m constraints in only (n + m)
variables, since the y vectors of the other m variables and their
marginal costs would be known from (7.3.4a, b).

Lemma 7.3

At any stage of the computation, the last m columns in the simplex
m by (n + 2m) tableau are themselves the m columns of the inverse of
the basis matrix; B�1.

Lemma 7.4 (Lemma 2 in [1])

The residuals ri, i = 1, �, n, of (7.2.1c) are themselves the
marginal costs for the first n columns in the simplex tableau

© 2008 by Taylor & Francis Group, LLC

Chapter 7: L1 Approximation with Bounded Variables 221

ri = (zi � gi), i = 1, 2, �, n

Hence, the objective function z of (7.1.1) is given by

(7.3.5)

Lemma 7.5

At any stage of the computation, the solution of the L1 problem of
the bounded variables is given by

aT = gB
TB�1

See Lemmas 5.4 and 6.2.

The steps taken to solve problem (7.3.1) are almost identical to
those used in solving (5.2.4). However, we make use here of the
asymmetry that exists in the matrix of constraints D, as indicated
above. This is explained in the following section.

7.4 Description of the algorithm

Lemma 7.3 indicates that the last m columns in the simplex
tableau are themselves the m columns of matrix B�1. Since matrix B�1

is always available, and from the discussion following (7.3.4a, b), in
the initial tableau, we only need to store the first n columns of matrix
D of (7.3.2b). We call the initial tableau and the following tableaux,
the condensed tableaux. We consider the columns of matrix B�1 (and
their corresponding columns) together with their marginal costs as
part of the simplex tableau.

We need an (n + m)-index indicator vector whose elements are +1
or �1. For the first n elements of this indicator, if bj, 1 ≤ j ≤ n, of
(7.3.1c), is a basic variable, or if it is at its lower bound (= 0), index j
has the value +1. If bj is at its upper bound (= 2), index j has value �1.
For the remaining m elements of this index vector, if column j of
matrix B�1, 1 ≤ j ≤ m, has its marginal cost stored, the index (n + j)
has the value +1. Else, it has the value �1.

The algorithm is in 2 parts. In part 1, the last m columns of matrix
D; columns (n + m + 1), �, (n + 2m), form an m-unit matrix Im and

z ri
i 1=

n

∑ zi gi�
i 1=

n

∑= =

© 2008 by Taylor & Francis Group, LLC

222 Numerical Linear Approximation in C

they form the inverse of the initial basis matrix, B�1. This does not
require changing the simplex tableau being columns of an m-unit
matrix.

In part 2, one calculates the basic solution bB from (7.3.3b) and
the marginal costs (zi � gi), i = 1, 2, �, n, from (7.3.3c) for the
condensed tableau. We also calculate the marginal costs for B�1. From
(7.3.1a) and from the above discussion, vector (�em) would be the
price vector for the columns of B�1.

The algorithm proceeds almost exactly as in part 2 in Chapter 5,
for the ordinary L1 solution, where intermediate simplex iterations are
skipped. The only difference between the algorithm of Chapter 5 and
this one is as follows. From (7.3.1c), if bj, 1 ≤ j ≤ n, is in the basis for
the optimum solution, bj has to be bounded; i.e., 0 ≤ bj ≤ 2. While,
from (7.3.1d), if uj or vj, 1 ≤ j ≤ m, is in the basis, uj or vj should only
satisfy the non-negativity conditions; i.e., uj, vj ≥ 0.

From Lemma 7.4, the residuals ri, i = 1, 2, �, n, are themselves
the marginal costs for the first n columns in the simplex tableau. The
bounded L1 error norm z is calculated from (7.3.5). The optimal
solution vector a is calculated from Lemma 7.5.

7.5 Numerical results and comments

LA_Lonebv() is an extension to LA_Lone() of Chapter 5, where
again certain intermediate simplex iterations are skipped. This
algorithm has been tested with many examples, including examples
with rank deficient matrices C. No failures were encountered.

DR_Lonebv() tests the 8 examples that were solved in Chapter 6
for the one-sided L1 approximation problem.

Table 7.1

L1 L1 solution with
Solution bounded variables

��
Example C(n×m) Iterations z Iterations z

��
1 4 × 2 2 18.40 1 20.2
2 10× 5 6 10.00 2 11.00
3 25×10 21 0.0878 12 3.548

© 2008 by Taylor & Francis Group, LLC

Chapter 7: L1 Approximation with Bounded Variables 223

The results satisfy the inequalities (7.1.2), namely, �1 ≤ ai ≤ 1.
Table 7.1 shows the results for 3 of the 8 examples.

For each example, the number of iterations and the optimum norm
for the L1 solution with bounded variables are shown. For comparison
purposes, the results for the ordinary L1 approximation problem are
also given. We observe that the number of iterations for this algorithm
are, in general, smaller than those for the corresponding ordinary L1
case.

Analogous to the comments at the end of Chapter 6, our algorithm
in this chapter is a special purpose algorithm compared with the
algorithms of Armstrong and Hultz (AH) [6], Barrodale and Roberts
(BR) [7, 8], Bartels and Conn (BC) [9, 10] and Dax (DA) [11]
mentioned in Section 7.2. Their algorithms are general purpose ones.
They need more computer storage than ours and as a result, more
computation. This point was explained in detail at the end of Chapter
6.

References

1. Abdelmalek, N.N., On the discrete linear L1 approximation
and L1 solutions of overdetermined linear equations, Journal
of Approximation Theory, 11(1974) 38-53.

2. Abdelmalek, N.N., An efficient method for the discrete linear
L1 approximation problem, Mathematics of Computation,
29(1975) 844-850.

3. Abdelmalek, N.N., L1 solution of overdetermined systems of
linear equations, ACM Transactions on Mathematical Soft-
ware, 6(1980) 220-227.

4. Abdelmalek, N.N., Algorithm 551: A FORTRAN subroutine
for the L1 solution of overdetermined systems of linear
equations [F4], ACM Transactions on Mathematical Software,
6(1980)228-230.

5. Abdelmalek, N.N., Chebyshev and L1 solutions of
overdetermined systems of linear equations with bounded
variables, Numerical Functional Analysis and Optimization,
8(1985-86)399-418.

© 2008 by Taylor & Francis Group, LLC

224 Numerical Linear Approximation in C

6. Armstrong, R.D. and Hultz, J.W., An algorithm for a restricted
discrete approximation in the L1 norm, SIAM Journal on
Numerical Analysis, 14(1977)555-565.

7. Barrodale, I. and Roberts, F.D.K., An efficient algorithm for
discrete l1 linear approximation with linear constraints, SIAM
Journal on Numerical Analysis, 15(1978)603-611.

8. Barrodale, I. and Roberts, F.D.K., Algorithm 552: Solution of
the constrained L1 linear approximation problem, ACM Trans-
actions on Mathematical Software, 6(1980)231-235.

9. Bartels, R.H. and Conn, A.R., Linearly constrained discrete l1
problems, ACM Transactions on Mathematical Software,
6(1980)594-608.

10. Bartels, R.H. and Conn, A.R., Algorithm 563: A program for
linearly constrained discrete l1 problems, ACM Transactions
on Mathematical Software, 6(1980)609-614.

11. Dax, A., The l1 solution of linear equations subject to linear
constraints, SIAM Journal on Scientific and Statistical
Computation, 10(1989)328-340.

12. Hadley, G., Linear Programming, Addison-Wesley, Reading,
MA, 1962.

13. Spath, H., Mathematical Algorithms for Linear Regression,
Academic Press, English Edition, London, 1991.

© 2008 by Taylor & Francis Group, LLC

Chapter 7: DR_Lonebv 225

7.6 DR_Lonebv

/*---
DR_Lonebv

This program is a driver for the function LA_Lonebv(), which solves
an overdetermined system of linear equations in the L-One norm
subject to the constraints that each element of the solution vector
"a" is bounded between -1 and 1;

 -1 <= a[j] <= 1, j = 1, 2, ..., m

The overdetermined system has the form

 c*a = f

"c" is a given real n by m matrix of rank k, k <= m <= n.
"f" is a given real n vector.
"a" is the solution m vector.

This driver contains the 8 examples whose results are given in the
text.
---*/

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define NN_MM_ROWS (NN_ROWS + MM_COLS)
#define N1 4
#define M1 2
#define N2 5
#define M2 3
#define N3 6
#define M3 3
#define N4 7
#define M4 3
#define N5 8
#define M5 4
#define N6 10
#define M6 5
#define N7 25
#define M7 10
#define N8 8
#define M8 4

© 2008 by Taylor & Francis Group, LLC

226 Numerical Linear Approximation in C

void DR_Lonebv (void)
{
 /*--
 Constant matrices/vectors
 --*/
 static tNumber_R c1init[N1][M1] =
 {
 { 0.0, -2.0 },
 { 0.0, -4.0 },
 { 1.0, 10.0 },
 {-1.0, 15.0 }
 };

 static tNumber_R c2init[N2][M2] =
 {
 { 1.0, 2.0, 0.0 },
 {-1.0, -1.0, 0.0 },
 { 1.0, 3.0, 0.0 },
 { 0.0, 1.0, 0.0 },
 { 0.0, 0.0, 1.0 }
 };

 static tNumber_R c3init[N3][M3] =
 {
 { 0.0, -1.0, 0.0 },
 { 1.0, 3.0, -4.0 },
 { 1.0, 0.0, 0.0 },
 { 0.0, 0.0, 1.0 },
 {-1.0, 1.0, 2.0 },
 { 1.0, 1.0, 1.0 }
 };

 static tNumber_R c4init[N4][M4] =
 {
 { 1.0, 0.0, 1.0 },
 { 1.0, 2.0, 2.0 },
 { 1.0, 2.0, 0.0 },
 { 1.0, 1.0, 0.0 },
 { 1.0, 0.0, -1.0 },
 { 1.0, 0.0, 0.0 },
 { 1.0, 1.0, 1.0 }
 };

 static tNumber_R c5init[N5][M5] =

© 2008 by Taylor & Francis Group, LLC

Chapter 7: DR_Lonebv 227

 {
 { 1.0, -3.0, 9.0, -27.0 },
 { 1.0, -2.0, 4.0, -8.0 },
 { 1.0, -1.0, 1.0, -1.0 },
 { 1.0, 0.0, 0.0, 0.0 },
 { 1.0, 1.0, 1.0, 1.0 },
 { 1.0, 2.0, 4.0, 8.0 },
 { 1.0, 3.0, 9.0, 27.0 },
 { 1.0, 4.0, 16.0, 64.0 }
 };

 static tNumber_R c6init[N6][M6] =
 {
 { 1.0, 0.0, 0.0, 0.0, 0.0 },
 { 0.0, 1.0, 0.0, 0.0, 0.0 },
 { 0.0, 0.0, 1.0, 0.0, 0.0 },
 { 0.0, 0.0, 0.0, 1.0, 0.0 },
 { 0.0, 0.0, 0.0, 0.0, 1.0 },
 { 1.0, 1.0, 1.0, 1.0, 1.0 },
 { 0.0, 1.0, 1.0, 1.0, 1.0 },
 {-1.0, 0.0, -1.0, -1.0, -1.0 },
 { 1.0, 1.0, 0.0, 1.0, 1.0 },
 { 1.0, 1.0, 1.0, 0.0, 1.0 }
 };

 static tNumber_R c8init[N8][M8] =
 {
 { 1.0, 1.0, 1.0, 1.0 },
 { 1.0, 2.0, 4.0, 4.0 },
 { 1.0, 3.0, 9.0, 9.0 },
 { 1.0, 4.0, 16.0, 16.0 },
 { 1.0, 5.0, 25.0, 25.0 },
 { 1.0, 6.0, 36.0, 36.0 },
 { 1.0, 7.0, 49.0, 49.0 },
 { 1.0, 8.0, 64.0, 64.0 }
 };

 static tNumber_R f1[N1+1] =
 { NIL,
 -12.0, 6.0, 0.0, 5.0
 };

 static tNumber_R f2[N2+1] =
 { NIL,
 1.0, 2.0, 1.0, -3.0, 0.0

© 2008 by Taylor & Francis Group, LLC

228 Numerical Linear Approximation in C

 };

 static tNumber_R f3[N3+1] =
 { NIL,
 1.0, 2.0, 3.0, 2.0, 2.0, 4.0
 };

 static tNumber_R f4[N4+1] =
 { NIL,
 0.0, -2.0, 1.0, -1.0, 5.0, 7.0, 0.0
 };

 static tNumber_R f5[N5+1] =
 { NIL,
 3.0, -3.0, -2.0, 0.0, 7.0, -1.0, 5.0, 2.0
 };

 static tNumber_R f6[N6+1] =
 { NIL,
 1.0, -1.0, 0.0, -1.0, 1.0, 0.0, 2.0, 3.0, -3.0, -2.0
 };

 static tNumber_R f7[N7+1] =
 { NIL,
 0.0872673, 0.0872794, 0.0873029, 0.0873315, 0.0873576,
 0.3491184, 0.3498802, 0.3513824, 0.3532572, 0.3550109,
 0.6111334, 0.6150641, 0.6230824, 0.6336395, 0.6441493,
 0.8733883, 0.8841621, 0.9071868, 0.9400757, 0.9766021,
 1.135895, 1.157550, 1.206257, 1.283258, 1.384432
 };

 static tNumber_R f8[N8+1] =
 { NIL,
 2.0, 2.5, 2.0, 6.5, 3.5, 4.5, 6.0, 7.0
 };

 /*--
 Variable matrices/vectors
 --*/
 tMatrix_R ct = alloc_Matrix_R (MM_COLS, NN_ROWS);
 tVector_R f = alloc_Vector_R (NN_ROWS);
 tVector_R rbv = alloc_Vector_R (NN_MM_ROWS);
 tVector_R a = alloc_Vector_R (MM_COLS);
 tMatrix_R binv = alloc_Matrix_R (MM_COLS, MM_COLS);
 tVector_R bv = alloc_Vector_R (MM_COLS);

© 2008 by Taylor & Francis Group, LLC

Chapter 7: DR_Lonebv 229

 tVector_R thbv = alloc_Vector_R (NN_MM_ROWS);
 tVector_I icbas = alloc_Vector_I (MM_COLS);
 tVector_I ibbv = alloc_Vector_I (NN_MM_ROWS);
 tMatrix_R c7 = alloc_Matrix_R (N7, M7);

 tMatrix_R c1 = init_Matrix_R (&(c1init[0][0]), N1, M1);
 tMatrix_R c2 = init_Matrix_R (&(c2init[0][0]), N2, M2);
 tMatrix_R c3 = init_Matrix_R (&(c3init[0][0]), N3, M3);
 tMatrix_R c4 = init_Matrix_R (&(c4init[0][0]), N4, M4);
 tMatrix_R c5 = init_Matrix_R (&(c5init[0][0]), N5, M5);
 tMatrix_R c6 = init_Matrix_R (&(c6init[0][0]), N6, M6);
 tMatrix_R c8 = init_Matrix_R (&(c8init[0][0]), N8, M8);

 int iter;
 int i, j, k, m, n, Iexmpl;
 tNumber_R d, dd, ddd, e, ee, eee, z;

 eLaRc rc = LaRcOk;

 prn_dr_bnr ("DR_Lonebv, Bounded L-One Solution of an "
 "Overdetermined System of Linear Equations");

 z = 0.0;

 for (j = 1; j <= 5; j++)
 {
 d = 0.15* (j-3);
 dd = d*d;
 ddd = d*dd;
 for (i = 1; i <= 5; i++)
 {
 e = 0.15* (i-3);
 ee = e*e;
 eee = e*ee;
 k = 5* (j-1) + i;
 c7[k][1] = 1.0;
 c7[k][2] = d;
 c7[k][3] = e;
 c7[k][4] = dd;
 c7[k][5] = ee;
 c7[k][6] = e*d;
 c7[k][7] = ddd;
 c7[k][8] = eee;
 c7[k][9] = dd*e;
 c7[k][10] = ee*d;

© 2008 by Taylor & Francis Group, LLC

230 Numerical Linear Approximation in C

 }
 }

 for (Iexmpl = 1; Iexmpl <= 8; Iexmpl++)
 {
 switch (Iexmpl)
 {
 case 1:
 n = N1;
 m = M1;
 for (i = 1; i <= n; i++)
 {
 f[i] = f1[i];
 for (j = 1; j <= m; j++) ct[j][i] = c1[i][j];
 }
 break;
 case 2:
 n = N2;
 m = M2;
 for (i = 1; i <= n; i++)
 {
 f[i] = f2[i];
 for (j = 1; j <= m; j++) ct[j][i] = c2[i][j];
 }
 break;
 case 3:
 n = N3;
 m = M3;
 for (i = 1; i <= n; i++)
 {
 f[i] = f3[i];
 for (j = 1; j <= m; j++) ct[j][i] = c3[i][j];
 }
 break;
 case 4:
 n = N4;
 m = M4;
 for (i = 1; i <= n; i++)
 {
 f[i] = f4[i];
 for (j = 1; j <= m; j++) ct[j][i] = c4[i][j];
 }
 break;
 case 5:
 n = N5;

© 2008 by Taylor & Francis Group, LLC

Chapter 7: DR_Lonebv 231

 m = M5;
 for (i = 1; i <= n; i++)
 {
 f[i] = f5[i];
 for (j = 1; j <= m; j++) ct[j][i] = c5[i][j];
 }
 break;
 case 6:
 n = N6;
 m = M6;
 for (i = 1; i <= n; i++)
 {
 f[i] = f6[i];
 for (j = 1; j <= m; j++) ct[j][i] = c6[i][j];
 }
 break;
 case 7:
 n = N7;
 m = M7;
 for (i = 1; i <= n; i++)
 {
 f[i] = f7[i];
 for (j = 1; j <= m; j++) ct[j][i] = c7[i][j];
 }
 break;
 case 8:
 n = N8;
 m = M8;
 for (i = 1; i <= n; i++)
 {
 f[i] = f8[i];
 for (j = 1; j <= m; j++) ct[j][i] = c8[i][j];
 }
 break;
 default:
 break;
 }

 prn_algo_bnr ("Lonebv");
 prn_example_delim();
 PRN ("Example #%d: Size of matrix \"c\" %d by %d\n",
 Iexmpl, n, m);
 prn_example_delim();
 PRN ("Bounded L-One Solution of an Overdetermined "
 "Equations\n");

© 2008 by Taylor & Francis Group, LLC

232 Numerical Linear Approximation in C

 prn_example_delim();
 PRN ("r.h.s. Vector \"f\"\n");
 prn_Vector_R (f, n);
 PRN ("Transpose of Coefficient Matrix, \"ct\"\n");
 prn_Matrix_R (ct, m, n);

 rc = LA_Lonebv (m, n, ct, f, icbas, binv, bv, ibbv, thbv,
 &iter, rbv, a, &z);

 if (rc >= LaRcOk)

 {
 PRN ("\n");
 PRN ("Results of the Bounded L-One Solution\n");
 PRN ("Bounded L-One solution vector \"a\"\n");
 prn_Vector_R (a, m);
 PRN ("Bounded L-One residual vector \"r\"\n");
 prn_Vector_R (rbv, n);
 PRN ("Bounded L-One norm \"z\" = %8.4f\n", z);
 PRN ("No. of Iterations = %d\n", iter);
 }

 prn_la_rc (rc);
 }

 free_Matrix_R (ct, MM_COLS);
 free_Vector_R (f);
 free_Vector_R (rbv);
 free_Vector_R (a);
 free_Matrix_R (binv, MM_COLS);
 free_Vector_R (bv);
 free_Vector_R (thbv);
 free_Vector_I (icbas);
 free_Vector_I (ibbv);
 free_Matrix_R (c7, N7);

 uninit_Matrix_R (c1);
 uninit_Matrix_R (c2);
 uninit_Matrix_R (c3);
 uninit_Matrix_R (c4);
 uninit_Matrix_R (c5);
 uninit_Matrix_R (c6);
 uninit_Matrix_R (c8);
}

© 2008 by Taylor & Francis Group, LLC

Chapter 7: LA_Lonebv 233

7.7 LA_Lonebv

/*---
LA_Lonebv

This program calculates the L-One solution of an overdetermined
system of linear equations subject to the conditions that the
elements of the solution vector be bounded between -1 and +1.

This program uses a modified simplex method to the linear
programming formulation of the problem. In this method certain
intermediate simplex iterations are skipped.

The system of linear equations has the form

 c*a = f

"c" is a given real n by m matrix of rank k, k <= m <= n.
"f" is a given real n vector.

The problem is to calculate the elements of the solution vector
"a" that minimizes the L-One norm z

 z = |rbv[1]| + |rbv[2]| + ... + |rbv[n]|

subject to the constraints

 -1 <= a[j] <= 1, j = 1, 2, ..., m

rbv[i] is the ith residual and is given by

 rbv[i] = c[i][1]*a[1] + c[i][2]*a[2] + ... + c[i][m]*a[m] - f[i],
 i = 1, 2, ..., n

Inputs
m Number of columns of matrix "c" of the system c*a = f.
n Number of rows of matrix "c" of the system c*a = f.
ct A real m by n matrix containing the transpose of matrix "c"
 of the system c*a = f.
f A real n vector containing the r.h.s. of the system c*a = f.

Other Parameters
binv A real m square matrix containing the inverse of the basis
 matrix in the linear programming problem.

© 2008 by Taylor & Francis Group, LLC

234 Numerical Linear Approximation in C

bv A real m vector containing the basic solution in the linear
 programming problem.
thbv An (n + m) vector containing the ratios

 thbv[j] = rbv[j]/ct[iout][j]

 "iout" corresponds to the basic vector that leaves the
 basis.
ibbv A sign (n + m) vector. Its first n elements have the
 values 1 or -1.
 ibbv[j] = 1 indicates that column j of matrix "ct" is in
 the basis or at its lower bound 0.
 ibbv[j] = -1 indicates that column "j" is at its upper
 bound 2.
icbas An integer m vector containing the indices of the columns
 of "ct" forming the basis matrix.

Outputs
iter Number of iterations, or the number of times the simplex
 tableau is changed by a Gauss-Jordan step.
a A real m vector containing the bounded L-One solution of
 the system c*a = f.
rbv An (n + m) vector. Its first n elements are the bounded
 L-One residual vector r = c*a - f.
z The minimum bounded L-One norm of the residuals "rbv".

Returns one of
 LaRcSolutionFound
 LaRcNoFeasibleSolution
 LaRcErrBounds
 LaRcErrNullPtr
---*/

#include "LA_Prototypes.h"

eLaRc LA_Lonebv (int m, int n, tMatrix_R ct, tVector_R f,
 tVector_I icbas, tMatrix_R binv, tVector_R bv, tVector_I ibbv,
 tVector_R thbv, int *pIter, tVector_R rbv, tVector_R a,
 tNumber_R *pZ)
{
 int ij = 0, kk = 0, n1 = 0, nm = 0;
 int iout = 0, jout = 0, jin = 0, ivo = 0, itest = 0;
 tNumber_R pivot = 0.0, pivoto = 0.0, tpeps = 0.0, xb = 0.0;

 /* Validation of the data before executing the algorithm */

© 2008 by Taylor & Francis Group, LLC

Chapter 7: LA_Lonebv 235

 eLaRc rc = LaRcSolutionFound;
 VALIDATE_BOUNDS ((0 < m) && (m <= n) && !((n == 1) && (m == 1)));
 VALIDATE_PTRS (ct && f && icbas && binv && bv && ibbv && thbv
 && pIter && rbv && a && pZ);

 nm = n + m;
 n1 = n + 1;
 tpeps = 2.0 + EPS;
 *pIter = 0;

 /* Part 1 of the algorithm. Obtain a feasible basic solution */
 LA_lonebv_part_1 (m, n, ct, f, icbas, binv, bv, ibbv, rbv);

 /* Part 2 of the algorithm */
 for (kk = 1; kk <= n*n; kk++)
 {
 ivo = 0;
 xb = 0.0;

 /* Determine the vector that leaves the basis */
 LA_lonebv_vleav (&ivo, &iout, &xb, m, n, icbas, bv);

 /* Calculate the results */
 if (ivo == 0)
 {
 LA_lonebv_res (m, n, f, icbas, binv, rbv, a, pZ);
 GOTO_CLEANUP_RC (LaRcSolutionFound);
 }

 jout = icbas[iout];

 /* Calculate the possible ratios thbv[j] */
 LA_lonebv_thbv (ivo, iout, m, n, ct, icbas, binv, ibbv, thbv,
 rbv);

 pivoto = 1.0;
 itest = 0;

 for (ij = 1; ij <= n*n; ij++)
 {
 /* Determine the vector that enters the basis */
 LA_lonebv_vent (ivo, &jin, &itest, m, n, thbv);

 /* Solution is not feasible */
 if (itest != 1)

© 2008 by Taylor & Francis Group, LLC

236 Numerical Linear Approximation in C

 {
 GOTO_CLEANUP_RC (LaRcNoFeasibleSolution);
 }

 /* Update the solution vector "bv" */
 LA_lonebv_update_bv (iout, jout, jin, &pivot, pivoto,
 &xb, m, n, ct, binv, bv, ibbv);

 if ((jin > n && xb > -EPS) || (xb >= -EPS && xb<= tpeps))
 {
 thbv[jin] = 0.0;
 }
 else
 {
 itest = 0;
 thbv[jin] = 0.0;
 }
 icbas[iout] = jin;
 if (itest == 1) break;
 pivoto = pivot;
 jout = jin;
 }

 /* A Gauss-Jordan elimination step */
 LA_lonebv_gauss_jordn (jin, iout, m, n, ct, icbas, binv, bv,
 ibbv, rbv);
 *pIter = *pIter + 1;
 }

CLEANUP:

 return rc;
}

/*---
Part 1; Initialization for LA_Lonebv()
---*/
void LA_lonebv_part_1 (int m, int n, tMatrix_R ct, tVector_R f,
 tVector_I icbas, tMatrix_R binv, tVector_R bv, tVector_I ibbv,
 tVector_R rbv)
{
 int i, j, k;
 tNumber_R s, sa;

 /* Part 1 of the algorithm. Obtain a feasible basic solution */

© 2008 by Taylor & Francis Group, LLC

Chapter 7: LA_Lonebv 237

 for (j = 1; j <= m; j++)
 {
 k = n + j;
 icbas[j] = k;
 ibbv[k] = -1;
 rbv[k] = 0.0;
 for (i = 1; i <= m; i++) binv[i][j] = 0.0;
 binv[j][j] = 1.0;
 }

 /* Calculate the residuals (marginal costs) */
 for (j = 1; j <= n; j++)
 {
 ibbv[j] = 1;
 s = - f[j];
 for (i = 1; i <= m; i++) s = s - ct[i][j];
 rbv[j] = s;
 if (s < -EPS) ibbv[j] = -1;
 }

 /* Calculate the initial basic solution */
 for (i = 1; i <= m; i++)
 {
 s = 0.0;
 for (j = 1; j <= n; j++)
 {
 sa = ct[i][j];
 if (ibbv[j] == -1) sa = -sa;
 s = s + sa;
 }
 bv[i] = s;
 }
}

/*---
Determine the vector that leaves the basis in LA_Lonebv()
---*/
void LA_lonebv_vleav (int *pIvo, int *pIout, tNumber_R *pXb, int m,
 int n, tVector_I icbas, tVector_R bv)
{
 int i, k;
 tNumber_R e, d, g, tpeps;

 tpeps = 2.0 + EPS;
 g = 1.0;

© 2008 by Taylor & Francis Group, LLC

238 Numerical Linear Approximation in C

 for (i = 1; i <= m; i++)
 {
 e = bv[i];
 k = icbas[i];
 if (e < -EPS)
 {
 d = e;
 if (d < g)
 {
 *pIvo = -1;
 g = d;
 *pIout = i;
 *pXb = e;
 }
 }
 if (k <= n && e > tpeps)
 {
 d = 2.0 - e;
 if (d < g)
 {
 *pIvo = 1;
 g = d;
 *pIout = i;
 *pXb = e;
 }
 }
 }
}

/*---
Calculate the parameters of vector "thbv" in LA_Lonebv()
---*/
void LA_lonebv_thbv (int ivo, int iout, int m, int n, tMatrix_R ct,
 tVector_I icbas, tMatrix_R binv, tVector_I ibbv, tVector_R thbv,
 tVector_R rbv)
{
 int i, j, ii, i0 = 0, k, nm;
 tNumber_R e = 0, d, gg, thmax;

 nm = n + m;

 thmax = 0.0;
 for (j = 1; j <= nm; j++)
 {
 thbv[j] = 0.0;

© 2008 by Taylor & Francis Group, LLC

Chapter 7: LA_Lonebv 239

 ii = 0;
 for (i = 1; i <= m; i++)
 {
 if (j == icbas[i])
 {
 ii = 1;
 i0 = i;
 }
 }
 if (ii == 1)
 {
 if (j > n && i0 == iout)
 {
 thbv[j] = -2.0;
 rbv[j] = 2.0;
 ibbv[j] = -ibbv[j];
 gg = thbv[j];
 if (gg < 0.0) gg = -gg;
 if (gg > thmax) thmax = gg;
 }
 }
 else if (ii == 0)
 {
 if (j <= n) e = ct[iout][j];
 if (j > n)
 {
 k = j - n;
 d = -1.0;
 if (ibbv[j] == -1) d = -d;
 e = d * binv[iout][k];
 if ((ivo == -1 && e > EPS) || (ivo == 1 && e < -EPS))
 {
 e = -e;
 rbv[j] = 2.0 - rbv[j];
 ibbv[j] = -ibbv[j];
 }
 }

 if (fabs (e) > EPS)
 {
 d = rbv[j];
 if (fabs (d) < PREC) d = PREC * ibbv[j];
 if (fabs (d) < PREC && j > n) d = PREC;
 thbv[j] = d/e;
 }

© 2008 by Taylor & Francis Group, LLC

240 Numerical Linear Approximation in C

 }
 }
}

/*---
Determine the vector that enters the basis in LA_Lonebv()
---*/
void LA_lonebv_vent (int ivo, int *pJin, int *pItest, int m, int n,
 tVector_R thbv)
{
 int j, nm;
 tNumber_R e, d, thmax, thmin;

 nm = n + m;
 thmax = 1.0/EPS;
 thmin = -thmax;
 for (j = 1; j <= nm; j++)
 {
 e = thbv[j];
 d = e * ivo;
 if (d > 0.0)
 {
 if (ivo == -1)
 {
 if (e > thmin)
 {
 thmin = e;
 *pJin = j;
 *pItest = 1;
 }
 }
 if (ivo == 1)
 {
 if (e < thmax)
 {
 thmax = e;
 *pJin = j;
 *pItest = 1;
 }
 }
 }
 }
}

/*---

© 2008 by Taylor & Francis Group, LLC

Chapter 7: LA_Lonebv 241

Update the basic solution bv in LA_Lonebv()
---*/
void LA_lonebv_update_bv (int iout, int jout, int jin,
 tNumber_R *pPivot, tNumber_R pivoto, tNumber_R *pXb, int m,
 int n, tMatrix_R ct, tMatrix_R binv, tVector_R bv,
 tVector_I ibbv)
{
 int i, kin, nm;
 tNumber_R e, pivotn, tpeps;
 nm = n + m;

 tpeps = 2.0 + EPS;
 if (jin > n)
 {
 kin = jin - n;
 e = -1.0;
 if (ibbv[jin] == -1) e = -e;
 *pPivot = e * (binv[iout][kin]);
 }
 if (jin <= n) *pPivot = ct[iout][jin];

 pivotn = *pPivot/pivoto;
 if ((jin > n && *pXb > -EPS) || *pXb > tpeps)
 {
 if (jout <= n)
 {
 for (i = 1; i <= m; i++)
 {
 bv[i] = bv[i] - ct[i][jout] - ct[i][jout];
 }
 ibbv[jout] = -1;
 if (pivotn <= 0.0)
 {
 for (i = 1; i <= m; i++)
 {
 bv[i] = bv[i] + ct[i][jin] + ct[i][jin];
 }
 ibbv[jin] = 1;
 }
 }
 }
 else if (pivotn > 0.0)
 {
 for (i = 1; i <= m; i++)
 {

© 2008 by Taylor & Francis Group, LLC

242 Numerical Linear Approximation in C

 bv[i] = bv[i] + ct[i][jin] + ct[i][jin];
 }
 ibbv[jin] = 1;
 }
 *pXb = bv[iout]/ (*pPivot);
}

/*---
A Gauss-Jordan elimination step in LA_Lonebv()
---*/
void LA_lonebv_gauss_jordn (int jin, int iout, int m, int n,
 tMatrix_R ct, tVector_I icbas, tMatrix_R binv, tVector_R bv,
 tVector_I ibbv, tVector_R rbv)
{
 tNumber_R pivot, e = 0, d;
 int i, ic = 0, j, k, kin = 0, n1, nm;

 nm = n + m;
 n1 = n + 1;
 pivot = ct[iout][jin];
 if (jin > n)
 {
 kin = jin - n;
 e = -1.0;
 if (ibbv[jin] == -1) e = -e;
 pivot = e * binv[iout][kin];
 }
 for (j = 1; j <= n; j++) ct[iout][j] = ct[iout][j]/pivot;
 for (j = 1; j <= m; j++) binv[iout][j] = binv[iout][j]/pivot;
 bv[iout] = bv[iout]/pivot;
 for (i = 1; i <= m; i++)
 {
 if (i != iout)
 {
 d = ct[i][jin];
 if (jin > n) d = e * binv[i][kin];
 for (j = 1; j <= n; j++)
 {
 ct[i][j] = ct[i][j] - d * ct[iout][j];
 }
 for (j = 1; j <= m; j++)
 {
 binv[i][j] = binv[i][j] - d * binv[iout][j];
 }
 bv[i] = bv[i] - d * bv[iout];

© 2008 by Taylor & Francis Group, LLC

Chapter 7: LA_Lonebv 243

 }
 }
 d = rbv[jin];
 for (j = 1; j <= n; j++)
 {
 rbv[j] = rbv[j] - d * ct[iout][j];
 }
 for (j = n1; j <= nm; j++)
 {
 e = -1.0;
 if (ibbv[j] == -1) e = -e;
 k = j - n;
 rbv[j] = rbv[j] - e * d * binv[iout][k];
 }
 for (j = 1; j <= n; j++)
 {
 for (i = 1; i <= m; i++)
 {
 ic = 0;
 if (j == icbas[i]) ic = 1;
 }
 if (ic == 0)
 {
 d = rbv[j] * ibbv[j];
 if (d >= 0.0) break;
 rbv[j] = 0.0;
 }
 }
}

/*---
Calculate the results of LA_Lonebv()
---*/
void LA_lonebv_res (int m, int n, tVector_R f, tVector_I icbas,
 tMatrix_R binv, tVector_R rbv, tVector_R a, tNumber_R *pZ)
{
 tNumber_R e, s;
 int i, j, k;

 for (j = 1; j <= m; j++)
 {
 s = 0.0;
 for (i = 1; i <= m; i++)
 {
 k = icbas[i];

© 2008 by Taylor & Francis Group, LLC

244 Numerical Linear Approximation in C

 e = -1.0;
 if (k <= n) e = f[k];
 s = s + e * binv[i][j];
 }
 a[j] = s;
 }
 s = 0.0;
 for (j = 1; j <= n; j++) s = s + fabs (rbv[j]);
 *pZ = s;
}

© 2008 by Taylor & Francis Group, LLC

245

Chapter 8

L1 Polygonal Approximation of Plane Curves

8.1 Introduction

Polygonal approximation of a given plane curve is done by first
digitizing the given curve into discrete points and then approximating
the digitized curve by a polygon of connected straight lines. The
points at which the lines join are usually, but not necessarily, a subset
of the digitized points of the curve. There are certain particulars about
polygonal approximation that are summarized in the following
sections.

8.1.1 Two basic issues

There are two basic issues associated with piecewise
approximation in general, including polygonal approximation:
(1) Find a polygonal approximation of the given curve such that

the measured residual or error norm between the discrete
points of the curve and the straight line in each segment does
not exceed a specified tolerance ε.

(2) Given a specified number of segments, find the polygonal
approximation of the given curve such that the error norms in
all the segments are nearly equal. This is known as the near
balances norm approximation.

There might be a third issue, which is:
(3) Find a polygonal approximation of the given curve such that

the error norms in all the segments are nearly equal and that
each does not exceed a specified tolerance ε. This outcome
could be achieved by assuming a number of segments n, and
calculating the polygonal approximation for near balanced

© 2008 by Taylor & Francis Group, LLC

246 Numerical Linear Approximation in C

norms. If the calculated norm is > ε, increase n by 1 at a time
and the process is repeated until the obtained norm is ≤ ε. If
the calculated norm is < ε, the process is reversed by
decreasing n by 1, and repeated until the calculated norm starts
to be > ε.

8.1.2 Approaches for polygonal approximation

In the literature, a large number of polygonal approximation
methods have been proposed. The various approaches of these
algorithms can be classified into categories such as:
(a) Sequential or scan-along approach: This approach is utilized

by Kurozumi and Davis [18], Sklansky and Gonzalez [35] and
by Wall and Danielsson [39] as well as the approach of our
algorithm [2]. In the sequential approach, one starts at a point
Pa, and scans sequentially along the following points of the
digitized curve. The scan stops at point Pb, when the norm of
the errors between the intermediate points and the line joining
Pa and Pb begins to exceed a specified tolerance ε. The method
is repeated by starting at point Pb and so on.

(b) Split approach: This approach has been used by Ramer [25]
and by Duda and Hart [9]. In this approach, the digitized
points of a curve segment is approximated by a straight line
connecting the first and the last points of the segment. If the
calculated error norm is larger than the specified value ε, the
curve segment is broken into two segments at the curve point
most distant from the straight line segment and the new error
norm is calculated. This process is repeated until each curve
segment is approximated by a straight line connecting its end
points and the error norm for each segment is ≤ the specified
value ε.

(c) Split or merge approach: This is demonstrated by Pavlidis [21]
and by Ansari and Delp [4]. In this approach, one starts from
an initial segmentation of the given digitized curve and
calculates the error norms between the given points and the
straight lines. The segmentation is then split or merged by
adjusting segment end points until the error norms are driven
under the pre-specified bound.

© 2008 by Taylor & Francis Group, LLC

Chapter 8: L1 Polygonal Approximation of Plane Curves 247

(d) Dominant point or significant vertices detection approach:
This is explained by Teh and Chin [37], Ansari and Delp [4],
and by Ray and Ray [27]. See also Sarkar [33] for polygonal
approximation of chain-coded curves. This method extracts
the most significant points in the curve before approximating
it. These are the peak points, positive maximum and negative
minimum curvature points. The method then partitions the
curves between the dominant points.
Hamann and Chen [13] presented a method for selecting a
subset of points from the finite set of curve points. The
selected subset is based on assigning weights to all the initial
data points. Only the most significant points are used in the
piecewise approximation. Sato [34] presented a point choice
function that relates the original points and the chosen points.
Sarkar et al. [32] presented a genetic algorithm based approach
to locate a specified number of significant points.
Johnson and Vogt [16] presented a geometric method for
polygonal approximation of convex arcs. The method tends to
produce many points where the curvature is high and few
points where the curvature is low. Pei and Lin [22] introduced
a technique for detecting the dominant points on a digital
curve by a scale-space filtering with a Gaussian kernel.

 (e) K-means based approach: This method was elaborated upon
by Yin [41]. In this approach, the digitized points are first
partitioned into k connected arbitrary clusters and their
principal axes are computed. The perpendicular distances from
the points in the cluster to the principal axis of the cluster are
calculated. Points are reassigned to a neighboring cluster if
they have shorter distances to the principal axis of the
neighboring cluster. This process is repeated until the points of
each cluster have the shortest distances to the principal axis of
their own cluster.

(f) Genetic algorithms approach, particularly for closed digitized
curves: Such algorithms are described by Yin [42], Huang and
Sun [15], Sun and Huang [36] and by Ho and Chen [14]. A
disadvantage of all the methods outlined in (a) to (e) above is
that the final polygonal approximation results depend on the
selection of the initial points and the arbitrary initial solution.

© 2008 by Taylor & Francis Group, LLC

248 Numerical Linear Approximation in C

See for example, Kolesnikov and Franti [17]. Genetic
algorithms are supposed to rectify this disadvantage. Genetic
algorithms can be viewed as stochastic search algorithms
based on natural genetic systems, by stimulating the biological
model of evolution. These algorithms simulate the survival of
the fittest elements, which reproduce and then compete with
each other. That produces an optimal or near optimal solution
in a search space for optimization problems. See for example,
Golden [11] and Michalewicz [20].
Yin [42] presented three genetic algorithms for polygonal
approximation of digital curves. The first one minimizes the
number of sides of the polygon such that the approximation
error norms, each does not exceed a specified value. The
second one minimizes the error norm for a given number of
sides. The third one determines the approximating polygon
automatically without any given condition.

8.1.3 Other unique approaches

There are other unique approaches to polygonal approximations of
plane curves.
(a) Lopes et al. [19] considered the problem of computing a

polygonal approximation for a plane curve presented
implicitly by a given function. A robust and adaptive
polygonal approximation was proposed. By robust they mean
that the algorithm captures both the topology and the geometry
of the curve. By adaptive, they mean that the polygonal
approximation is adapted to the geometry of the curve; having
longer edges for the flat parts of the curve where the curvature
is low, and shorter edges where the curvature is high.

(b) Badi�i and Peikari [6] presented a linear functional
approximation of planar curves based on adaptive seg-
mentation procedure. Their method alleviates the need for
specifying the number of segments and minimizing the error
norm.

(c) Rannou and Gregor [26] presented a polygonal approximation
algorithm for closed contours with a unique feature. Their
algorithm creates polygons whose edges are all of the same

© 2008 by Taylor & Francis Group, LLC

Chapter 8: L1 Polygonal Approximation of Plane Curves 249

length. Then a one-dimensional description of the given shape
is possible by using the interior angles between the
approximating lines.

8.1.4 Criteria by which error norm is chosen

 Polygonal approximation may also be classified according to the
criterion by which the error norm ε between the straight line and the
digitized points of a segment is chosen.
(1) The mean square (the L2) error norm was used by Cantoni [7],

Pavlidis [21], Salotti [31] and Sarkar et al. [32].
(2) The uniform or the Chebyshev norm was used by Ramer [25],

Tomek [38], Williams [40], Kurozumi and Davis [18],
Dunham [10], Sklansky and Gonzalez [35] and Zhu and
Seneviratne [43].

(3) The L1 error norm was used by a number of authors. Johnson
and Vogt [16] used a geometric method for polygonal
approximation of a planar convex curve. Their method
minimizes the area between the curve and the polygonal arc.
This method is a kind of an L1 piecewise approximation
method. Ray and Ray [28] presented a technique that uses the
L1 error norm criterion. Wall and Danielsson [39] also used
the area deviation for each line segment, which is itself the L1
error norm criterion. We shall comment in Section 8.5 on
these 3 algorithms that also use the L1 error norm criterion.

(4) The city block metric criterion was used by Pikaz and Dinstein
[24] to define the maximal distance of a point (x, y) between
the line and the curve as |x| + |y|. That is, the sum of the sides
of the triangle whose diagonal is the perpendicular distance
between the point (x, y) and the approximating line.

8.1.5 Direction of error measure

One more issue by which the errors between the digitized points
and the straight line approximating them are measured is considered:
(a) The error may be measured in the direction perpendicular to

the approximating line, known as the Euclidean distance, such
as in the case of Pavlidis [21], Sarkar et al. [32], Ramer [25],

© 2008 by Taylor & Francis Group, LLC

250 Numerical Linear Approximation in C

Williams [40], Kurozumi and Davis [18], Sklansky and
Gonzalez [35], Dunham [10] and Zhu and Seneviratne [43],
or

(b) The error may be measured in the direction along the y-axis,
such as in the case of Cantoni [7], Tomek [38] and our
technique.

8.1.6 Comparison and stability of polygonal approximations

Arkin et al. [5] developed a method for comparing two polygons,
one is stored as a model for a particular object and the other as an
approximate one of the object. The method is based on the L2 distance
between certain functions of the two polygons.

Rosin [30] developed several measures to assess the stability of
polygonal approximation algorithms under perturbation of the given
data and changes of the algorithms scale parameters.

We present here an algorithm for obtaining a polygonal
approximation in the L1 norm of a plane curve of an arbitrary shape
[2]. In the presence of spikes and wild points in a given set of discrete
points, the L1 approximation is usually recommended over other
norms to approximate this set of points. See Section 2.3, Rice and
White [29] and Abdelmalek [3].

In the current algorithm, the L1 (error) norm in any segment is not
to exceed a pre-assigned value. The errors between the discrete points
and the approximating lines are measured along the y-axis direction.
We shall discuss this point in Section 8.5. The given curve may be an
open curve, as in Figure 8-1 or a closed one, as in Figure 8-2.

The given curve is first digitized into a number of discrete points,
not necessarily at equal distances. The algorithm is then applied to the
discrete points. The vertices of the polygon are a subset of the points
of the given digitized curve. In other words, the approximating
straight line to any segment of the given curve passes through the two
end points of the segment. The algorithm uses linear programming
techniques [12], making it more efficient than other recorded
methods.

In Section 8.2, the L1 approximation problem is outlined. In
Section 8.3, the algorithm is described. In Section 8.4, the linear
programming techniques are implemented. In Section 8.5, numerical

© 2008 by Taylor & Francis Group, LLC

Chapter 8: L1 Polygonal Approximation of Plane Curves 251

results and also comments on related methods to ours for calculating
the polygonal approximation of plane curves in the L1 norm are given.

8.1.7 Applications of the algorithm

Piecewise approximation of plane curves, including polygonal
approximation, represent the data in waveforms and the boundaries of
digital images. This facilitates feature extraction, shape recognition
[8] and pattern classification of the given waveforms or images [21].
Besides, polygonal representation of a digital curve reduces the
amount of data needed to process the given shape.

Polygonal approximation is also used in map simplification in
cartography, pre-processing in electrocardiography and in electro-
encephalography, transient analysis of speech signals, and other
applications. For this see the references in Perez and Vidal [23].

8.2 The L1 approximation problem

Let us be given a two-dimensional open or closed curve. Let this
curve be digitized and let the digitized set be ordered at K consecutive
points. The first and the last points coincide for a closed curve. The
digitized points may not necessarily be equally spaced. Let n be the
number of pieces (segments) in the approximation and let (zj),
j = 1, 2, �, n, be the L1 residual (error) norms for the n pieces. The
number of pieces n is not known beforehand.

Consider any segment j, 1 ≤ j ≤ n of the given curve. Let this
segment consist of N digitized points, with coordinates (xi, f(xi)),
i = 1, 2, �, N, N ≥ 2. Let the N points be approximated by the straight
line

(8.2.1) y = a1 + a2x

that minimizes the L1 norm zj (or briefly z), of the residuals ri

(8.2.2a)

where

(8.2.2b) ri = a1 + a2 xi � fi, i = 1, 2, �, N

z ri
i 1=

N

∑=

© 2008 by Taylor & Francis Group, LLC

252 Numerical Linear Approximation in C

and fi denotes f(xi).
It is known that this problem reduces to the problem of obtaining

the L1 solution of an overdetermined system of linear equations. See
Chapter 2. In vector-matrix notation, the linear system is

(8.2.3) Ca = f

C is the coefficient matrix in (8.2.3), vector a = (a1, a2)T and vector
f = (f1, f2, �, fN)T. Or we have

The L1 solution to system (8.2.3) is the real vector a that
minimizes the norm z given by (8.2.2a). As indicated above, the
approximating straight line that approximates segment j passes
through the end points; points 1 and N of segment j.

8.3 Description of the algorithm

Let the piecewise approximation for any segment j, 1 ≤ j ≤ n, be
such that its residual or error norm zj ≤ ε, a pre-assigned value. This
algorithm employs the following steps:
(1) Take j = 1 (the first segment).
(2) Take N = 2, which is the minimum initial number of points for

segment j to be approximated by the straight line (8.2.1).
Calculate the solution vector (a1, a2)T for the line that passes
through the 2 points. The norm z = 0, since it corresponds to a
perfect fit to the 2 points. Go to step (3). In case points 1 and N
lie on a vertical or a nearly vertical line, a2 (the slope of the
line) would be a very large number and the computation may
break down. In this case, increase the number of points N by 1,
as many times as necessary, until the end points 1 and N are
not on a vertical or a nearly vertical line.

1 x1

1 x2

. .

. .

. .
1 xN

a1

a2

f1

f2

.

.

.
fN

=

© 2008 by Taylor & Francis Group, LLC

Chapter 8: L1 Polygonal Approximation of Plane Curves 253

(3) Add the point (N + 1) of the curve to segment j and calculate
the new solution (a1, a2) for the straight line that passes
through the points 1 and (N + 1). Calculate z from (8.2.2a).
Take N = N + 1.

(4) If z < ε, go to step (3). If z > ε, take N = N � 1, which is the
final number of points for segment j, with the solution (a1, a2)
as the required L1 solution for segment j. Take j = j + 1 and go
to step (2) for segment (j + 1).

Since this algorithm is for a polygonal approximation, the last end
point of segment j is the first end point of segment (j + 1).

8.4 Linear programming technique

Implementing linear programming techniques enables us to
calculate, in an efficient way, the norm z each time we add a new
point to the N points of segment j. Let CT form the initial data of a
linear programming problem and let f be the cost vector to the initial
data. C and f are those of equation (8.2.3).

For N ≥ 2, let a 2 by 2 unit matrix I2 be the initial basis matrix B.
Let B be an extension to the initial data, given by Tableau 8.4.1.
Hence initially, B�1 = I2. As the tableau is updated, B�1 is also
updated.

Tableau 8.4.1 (Initial Data)

����������������������
f1 f2 f3 � fN
����������������������
1 1 1 � 1
x1 x2 x3 � xN
����������������������

We update Tableau 8.4.1 by applying two Gauss-Jordan
elimination steps, which reduce columns 1 and N of CT to the first and
second columns of I2 respectively. We get Tableau 8.4.2.

If points 1 and N lie on a vertical or near vertical line, the pivot
element for the second elimination step in Tableau 8.4.1 would be 0,
or a very small number, and the computation would break down
(Lemma 8.3). In this case, as indicated earlier, we increase the number

© 2008 by Taylor & Francis Group, LLC

254 Numerical Linear Approximation in C

of points N by 1, more than once if necessary, until the pivot element
for the added point is greater than a specified tolerance.

Tableau 8.4.2

����������������������
f1 f2 f3 � fN
����������������������
1 y12 y13 � 0
0 y22 y23 � 1
����������������������
0 c2�f2 c3�f3 0

In Tableau 8.4.2, vectors (yi), i = 1, 2, �, N, are given by

(8.4.1) , i = 2, 3, �, N � 1

The marginal costs in Tableau 8.4.2 are given by

(8.4.2) ci � fi = f1y1i + fNy2i � fi, i = 2, 3, �, N

Lemma 8.1

The marginal costs denoted here by (ci � fi), i = 1, 2, �, N, in any
tableau are themselves the residuals, given by (8.2.2b)

ci � fi = ri, i = 1, 2, �, N

and since r1 = rN = 0, the L1 norm z of (8.2.2a) is

(8.4.3)

Lemma 8.2

The solution vector a of the interpolating straight line is given by

(8.4.4) (a1, a2) = (f1, fN) B�1

See Theorem 5.4 and [1].

yi B 1� 1
xi

=

z ci fi�
i 2=

N 1�

∑=

© 2008 by Taylor & Francis Group, LLC

See Theorem 5.3 and also [1].

Chapter 8: L1 Polygonal Approximation of Plane Curves 255

Lemma 8.3

If a new added point (N + 1) lies on a vertical line with point 1 of
the segment at hand, then the two points would have the same
x-coordinate, and we would have yN+1 = (1, 0)T. The next elimination
step breaks down, since the pivot element is 0.

In view of this lemma, the users of the software should ensure that
no two points of the digitized curve have the same x-coordinate.

8.4.1 The algorithm using linear programming

The following steps are employed:
(1) Take j = 1 (the first segment).
(2) Take N = 2. Form Tableau 8.4.1 and Tableau 8.4.2 for the two

points. For N = 2, z = 0. Go to step (3).
(3) Add the point (N + 1) of the curve to segment j. From (8.4.1)

and (8.4.2) calculate the vector yN+1 from (8.4.1) and the
marginal cost (cN+1 � fN+1) from (8.4.2). Append yN+1, fN+1
and (cN+1 � fN+1) to the right of Tableau 8.4.2. Apply an
elimination step, which reduces vector yN+1 to the second
column of the unit matrix I2 and also reduces (cN+1 � fN+1) to
0. Take N = N + 1. Go to step (4).

(4) Calculate the norm z from (8.4.3). If z < ε, the pre-assigned
norm, go to step (3). If z > ε, take N = N � 1, which is the final
number of points for segment j. From (8.4.4) calculate the
vector (a1, a2)T as the L1 solution for segment j. Take j = j + 1
and go to step (2) for segment (j + 1).

The solution vector a is calculated only once; i.e., at the end of
step (4).

8.5 Numerical results and comments

LA_L1pol() calculates the number of segments in the polygonal
approximation in the L1 error norm, the end points and the parameters
(a1 and a2) of each straight line. It also calculates the residuals (errors)
at all the points of the digitized curve. From the end points of the n
segments or from the parameters of the straight lines (a1, a2), we draw
the polygonal approximation.

© 2008 by Taylor & Francis Group, LLC

256 Numerical Linear Approximation in C

DR_L1pol() tests 4 examples, 2 of which are presented here. The
first example is with unequal x-intervals. The second example is a
closed figure and its data is not equally spaced.

Figure 8-1: L1 polygonal approximation for a waveform. The L1 norm
in any segment is ≤ 0.6

Figure 8-2: L1 polygonal approximation for a contour. The L1 norm in
any segment is ≤ 0.4

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

© 2008 by Taylor & Francis Group, LLC

Chapter 8: L1 Polygonal Approximation of Plane Curves 257

In calculating the polygonal approximation of plane curves in the
Chebyshev norm, Dunham [10], Kurozumi and Davis [18], Ramer
[25], Williams [40] and Zhu and Seneviratne [43] defined the errors as
the Euclidean distances between the given points and the
approximating line, i.e., perpendicular to the approximating line in
each segment.

This requirement is not needed in the L1 polygonal approximation
such as in our algorithm. The reason is that the L1 error norm for a
digitized curve segment is approximately proportional to the area
between the segment and the approximating straight line. This area is
approximately the same when the residuals are measured along the
y-axis or when the error is measured perpendicular to the
approximating straight line using the straight line as the base, as in
Ray and Ray [28] and in Wall and Danielsson [39].

We now comment on 3 of the algorithms that deal with the same
problem as ours. These are the algorithms of Ray and Ray [28], Wall
and Danielsson [39] and Johnson and Vogt [16].

The number of arithmetic operations in the method of Ray and
Ray [28] including the calculation of square roots, is much higher than
ours. The method of Wall and Danielsson [39] encounters some
difficulties when the curvature of the given curve changes sign.

Once more, Johnson and Vogt [16] use a geometric method that is
a generalization of a method that minimizes the area between the
curve and the polygonal arc. This method is a kind of an L1 piecewise
approximation method. In contrast to our algorithm, in their method
the given curve has to be a convex one.

References

1. Abdelmalek, N.N., On the discrete linear L1 approximation
and L1 solutions of overdetermined linear equations, Journal
of Approximation Theory, 11(1974)38-53.

2. Abdelmalek, N.N., Polygonal approximation of planar curves
in the L1 norm, International Journal of Systems Science,
17(1986)1601-1608.

3. Abdelmalek, N.N., Noise filtering in digital images and
approximation theory, Pattern Recognition, 19(1986)417-424.

© 2008 by Taylor & Francis Group, LLC

258 Numerical Linear Approximation in C

4. Ansari, N. and Delp, E.J., On detecting dominant points,
Pattern Recognition, 24(1991)441-451.

5. Arkin, E.M., Chew, L.P., Huttenlocher, D.P., Kedem, K. and
Mitchell, J.S.B., An efficient computable metric for
comparing polygonal shapes, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 13(1991)209-215.

6. Badi�i, F. and Peikari, B., Functional approximation of planar
curves via adaptive segmentation, International Journal of
Systems Science, 13(1982)667-674.

7. Cantoni, A., Optimal curve fitting with piecewise linear
functions, IEEE Transactions on Computers, 20(1971)59-67.

8. Davis, L.S., Shape matching using relaxation techniques,
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1(1979)60-72.

9. Duda, R.O. and Hart, P.E., Pattern Classification and Scene
Analysis, John Wiley & Sons, New York, 1973.

10. Dunham, J.G., Optimum uniform piecewise linear
approximation of planar curves, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(1986)67-75.

11. Golden, D.E., Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison-Wesley, Reading, MA, 1989.

12. Hadley, G., Linear Programming, Addison-Wesley, Reading,
MA, 1962.

13. Hamann, B. and Chen, J-L., Data point selection for piecewise
linear curve approximation, Computer Aided Geometric
Design, 11(1994)289-301.

14. Ho, S-Y. and Chen, Y-C., An efficient evolutionary algorithm
for accurate polygonal approximation, Pattern Recognition,
34(2001)2305-2317.

15. Huang, S-C. and Sun, Y-N., Polygonal approximation using
genetic algorithms, Pattern Recognition, 32(1999)1409-1420.

16. Johnson, H.H. and Vogt, A., A geometric method for
approximating convex arcs, SIAM Journal on Applied
Mathematics, 38(1980)317-325.

17. Kolesnikov, A. and Franti, P., Polygonal Approximation of
Closed Contours, Lecture Notes in Computer Science,
2749(2003)778-785.

© 2008 by Taylor & Francis Group, LLC

Chapter 8: L1 Polygonal Approximation of Plane Curves 259

18. Kurozumi, Y. and Davis, W.A., Polygonal approximation by
the minimax method, Computer Graphics and Image
Processing, 19(1982)248-264.

19. Lopes, H., Oliveira, J.B. and de Figueiredo, L.H., Robust
adaptive polygonal approximation of implicit curves,
Computers and Graphics, 26(2002)841-852.

20. Michalewicz, Z., Genetic Algorithms + Data Structures =
Evolution Programs, Second Extended Edition, Springer-
Verlag, New York, 1992.

21. Pavlidis, T., Polygonal approximations by Newton�s method,
IEEE Transactions on Computers, 26(1977)800-807.

22. Pei, S-C. and Lin, C-N., The detection of dominant points on
digital curves by scale-space filtering, Pattern Recognition,
25(1992)1307-1314.

23. Perez, J-C. and Vidal, E., Optimum polygonal approximation
of digitized curves, Pattern Recognition Letters, 15(1994)743-
750.

24. Pikaz, A. and Dinstein, I.H., Optimal polygonal approxi-
mation of digital curves, Pattern Recognition, 28(1995)373-
379.

25. Ramer, U., An iterative procedure for the polygonal
approximation of plane curves, Computer Graphics and Image
Processing, 1(1972)244-256.

26. Rannou, F. and Gregor, J., Equilateral polygon approximation
of closed contours, Pattern Recognition, 29(1996)1105-1115.

27. Ray, B.K. and Ray, K.S., An algorithm for detection of
dominant points and polygonal approximation of digitized
curves, Pattern Recognition Letters, 13(1992)849-856.

28. Ray, B.K. and Ray, K.S., Determination of optimal polygon
from digital curve using L1 norm, Pattern Recognition,
26(1993)505-509.

29. Rice, J.R. and White, J.S., Norms for smoothing and
estimation, SIAM Review, 6(1964)243-256.

30. Rosin, P.L., Assessing the behavior of polygonal approxi-
mation algorithms, Pattern Recognition, 36(2003)505-518.

31. Salotti, M., Optimal polygonal approximation of digitized
curves using the sum of square deviations criterion, Pattern
Recognition, 35(2002)435-443.

© 2008 by Taylor & Francis Group, LLC

260 Numerical Linear Approximation in C

32. Sarkar, B., Singh, L.K. and Sarkar, D., A genetic algorithm-
based approach for detection of significant vertices for
polygonal approximation of digital curves, International Jour-
nal of Image and Graphics, 4(2004)223-239.

33. Sarkar, D., A simple algorithm for detection of significant
vertices for polygonal approximation of chain-coded curves,
Pattern Recognition Letters, 14(1993)959-964.

34. Sato, Y., Piecewise linear approximation of plane curves by
perimeter optimization, Pattern Recognition, 25(1992)1535-
1543.

35. Sklansky, J. and Gonzalez, V., Fast polygonal approximation
of digitized curves, Pattern Recognition, 12(1980)327-331.

36. Sun, Y-N. and Huang, S-C., Genetic algorithms for error-
bounded polygonal approximation, International Journal of
Pattern Recognition and Artificial Intelligence, 14(2000)297-
314.

37. Teh, C-H. and Chin, R.T., On the detection of dominant points
on digital curves, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 11(1989)859-872.

38. Tomek, I., Two algorithms for piecewise-linear continuous
approximation of functions of one variable, IEEE
Transactions on Computers, 23(1974)445-448.

39. Wall, K. and Danielsson, P-E., A fast sequential method for
polygonal approximation of digitized curves, Computer
Vision, Graphics, and Image Processing, 28(1984)220-227.

40. Williams, C.M., An efficient algorithm for the piecewise
linear approximation of planar curves, Computer Graphics
and Image Processing, 8(1978)286-293.

41. Yin, P-Y., Algorithms for straight line fitting using k-means,
Pattern Recognition Letters, 19(1998)31-41.

42. Yin, P-Y., Genetic algorithms for polygonal approximation of
digital curves, International Journal of Pattern Recognition
and Artificial Intelligence, 13(1999)1061-1082.

43. Zhu, Y. and Seneviratne, L.D., Optimal polygonal approxi-
mation of digitized curves, IEEE Proceedings on Vision,
Image and Signal Processing, 144(1997)8-14.

© 2008 by Taylor & Francis Group, LLC

Chapter 8: DR_L1pol 261

8.6 DR_L1pol

/*---
DR_L1pol

This is a driver for the function LA_L1pol(), which calculates the
polygonal straight line approximation of a given data point set {x,y}
that results from discretizing a given plane curve y = f(x).

The approximation by LA_L1pol() is such that the approximating
straight line interpolates the end points of the segment at hand
and also such that the L-One residual norm for any segment not
to exceed a pre-assigned tolerance denoted by "enorm".

From an n data points (x,y) we form the overdetermined system of
linear equations

 c*a = f

"c" is a real n by 2 matrix. Each element of the first column of "c"
is 1. The second column of "c" contains the x-coordinates of the
set {x,y} arranged in a sequential order.

"f" is a real n vector whose elements are the y coordinates of
the given data set {x,y}.

"a" is the solution 2 vector (for each segment there is a different
solution vector "a").

This driver contains 4 test examples. The results of 2 of them are
given in the text.
---*/

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define Ncp 28
#define Ndp 44
#define Nep 49
#define Ngp 64

void DR_L1pol (void)
{
 /*--

© 2008 by Taylor & Francis Group, LLC

262 Numerical Linear Approximation in C

 Constant matrices/vectors
 --*/
 static tNumber_R fc[Ncp+1] =
 { NIL,
 8.0, 11.0, 13.0, 11.2, 9.1, 10.8, 14.8, 16.0, 15.1, 14.0,
 14.7, 15.8, 16.8, 15.6, 13.0, 14.3, 13.8, 10.6, 9.3, 9.6,
 10.8, 11.2, 9.0, 7.0, 5.8, 6.8, 4.8, 3.9
 };

 static tNumber_R xd[Ndp+1] =
 { NIL,
 6.0, 7.0, 8.5, 9.5, 10.2, 12.9, 13.6, 15.9, 16.4, 16.8,
 17.8, 18.0, 19.3, 20.1, 21.0, 21.5, 21.9, 23.2, 24.2, 24.5,
 25.5, 26.8, 28.0, 29.2, 30.2, 32.0, 33.1, 34.0, 34.9, 35.7,
 36.6, 37.3, 37.8, 39.7, 40.8, 41.9, 42.8, 46.0, 47.0, 47.6,
 48.1, 49.0, 49.9, 50.2
 };

 static tNumber_R fd[Ndp+1] =
 { NIL,
 1.6, 1.65, 1.75, 1.78, 1.7, 1.88, 2.28, 2.23, 2.38, 2.63,
 2.6, 2.32, 2.4, 2.38, 1.8, 1.15, 1.12, 1.13, 0.72, 0.4,
 0.39, 0.68, 0.67, 0.31, 0.31, 0.51, 0.86, 0.87, 0.79, 0.85,
 1.35, 1.35, 1.95, 2.67, 2.68, 2.58, 2.57, 3.33, 3.36, 3.08,
 3.03, 3.15, 3.12, 1.58
 };

 static tNumber_R xe[Nep+1] =
 { NIL,
 3.8, 6.6, 8.8, 10.9, 12.3, 13.5, 15.0, 15.6, 15.7, 15.8,
 15.9, 18.0, 19.0, 19.7, 20.4, 22.0, 23.5, 24.1, 25.2, 24.8,
 22.5, 21.3, 20.5, 18.0, 16.0, 15.5, 15.0, 15.9, 16.6, 17.0,
 17.8, 16.0, 15.3, 14.9, 10.0, 9.0, 8.0, 7.5, 7.0, 6.0,
 5.0, 5.8, 6.5, 7.0, 8.0, 6.0, 5.1, 4.0, 3.8
 };

 static tNumber_R fe[Nep+1] =
 { NIL,
 0.48, 0.48, 0.39, 0.46, 0.38, 0.27, 0.28, 0.5, 0.55, 0.6,
 0.7, 0.89, 0.89, 0.96, 0.96, 1.02, 1.23, 1.38, 1.57, 2.0,
 1.79, 1.77, 1.5, 1.26, 1.26, 1.55, 1.6, 1.6, 1.65, 1.78,
 1.98, 2.1, 2.17, 2.23, 2.22, 2.11, 2.11, 2.02, 1.95, 1.89,
 1.74, 1.5, 1.41, 1.19, 0.9, 0.73, 0.72, 0.6, 0.48
 };

© 2008 by Taylor & Francis Group, LLC

Chapter 8: DR_L1pol 263

 static tNumber_R xg[Ngp+1] =
 { NIL,
 2.8, 3.9, 5.6, 6.7, 8.2, 9.5, 11.3, 12.4, 12.4, 14.1,
 14.1, 15.0, 19.0, 19.8, 21.0, 20.9, 25.2, 28.0, 32.5, 31.6,
 32.5, 32.1, 32.6, 31.5, 32.0, 30.1, 26.1, 24.2, 23.1, 21.7,
 19.9, 19.0, 18.7, 19.0, 18.1, 18.1, 18.7, 18.9, 18.1, 18.1,
 17.6, 17.4, 16.9, 16.8, 17.0, 17.1, 16.5, 15.9, 16.0, 16.3,
 15.2, 13.3, 13.0, 12.5, 12.1, 11.5, 10.5, 10.0, 9.5, 9.0,
 8.1, 8.5, 5.5, 2.8
 };

 static tNumber_R fg[Ngp+1] =
 { NIL,
 1.18, 0.9, 0.8, 0.6, 0.51, 0.6, 0.52, 0.6, 0.73, 0.8,
 0.98, 0.92, 1.58, 1.58, 1.89, 1.95, 2.3, 2.32, 1.92, 1.8,
 1.8, 1.7, 1.52, 1.3, 1.02, 0.82, 0.5, 0.48, 0.52, 0.5,
 0.6, 0.66, 0.8, 0.88, 0.88, 0.99, 0.99, 1.15, 1.13, 1.38,
 1.38, 1.46, 1.46, 1.58, 1.58, 1.73, 1.7, 1.8, 1.9, 1.98,
 2.1, 2.08, 2.09, 2.09, 2.03, 2.1, 2.0, 2.05, 1.92, 1.9,
 1.75, 1.6, 1.1, 1.18
 };

 /*--
 Variable matrices/vectors
 --*/
 tMatrix_R ct = alloc_Matrix_R (2, NN_ROWS);
 tMatrix_R ctn = alloc_Matrix_R (2, NN_ROWS);
 tMatrix_R binv = alloc_Matrix_R (2, 2);
 tMatrix_R ap = alloc_Matrix_R (KK_PIECES, 2);
 tVector_R f = alloc_Vector_R (NN_ROWS);
 tVector_R r = alloc_Vector_R (NN_ROWS);
 tVector_R rp = alloc_Vector_R (NN_ROWS);
 tVector_R zp = alloc_Vector_R (KK_PIECES);
 tVector_R a = alloc_Vector_R (2);
 tVector_R v = alloc_Vector_R (2);
 tVector_I icbas = alloc_Vector_I (2);
 tVector_I ixl = alloc_Vector_I (KK_PIECES);

 int m, n, npiece, Iexmpl;
 int j;

 tNumber_R enorm;

 eLaRc rc = LaRcOk;

© 2008 by Taylor & Francis Group, LLC

264 Numerical Linear Approximation in C

 prn_dr_bnr ("DR_L1pol, Polygonal L1 Approximation of a Plane"
 " Curve");

 m = 2;
 for (Iexmpl = 1; Iexmpl <= 4; Iexmpl++)
 {
 switch (Iexmpl)
 {
 case 1:
 enorm = 1.8;
 n = Ncp;
 for (j = 1; j <= n; j++)
 {
 f[j] = fc[j];
 ct[1][j] = 1.0;
 ct[2][j] = j;
 }
 break;

 case 2:
 enorm = 0.6;
 n = Ndp;
 for (j = 1; j <= n; j++)
 {
 f[j] = fd[j];
 ct[1][j] = 1.0;
 ct[2][j] = xd[j];
 }
 break;

 case 3:
 enorm = 0.48;
 n = Nep;
 for (j = 1; j <= n; j++)
 {
 f[j] = fe[j];
 ct[1][j] = 1.0;
 ct[2][j] = xe[j];
 }
 break;

 case 4:
 enorm = 0.8;
 n = Ngp;
 for (j = 1; j <= n; j++)

© 2008 by Taylor & Francis Group, LLC

Chapter 8: DR_L1pol 265

 {
 f[j] = fg[j];
 ct[1][j] = 1.0;
 ct[2][j] = xg[j];
 }
 break;

 default:
 break;
 }

 prn_algo_bnr ("L1pol");

 prn_example_delim();
 PRN ("Example #%d: Size of Matrix \"c\", %d by %d\n",
 Iexmpl, n, m);
 prn_example_delim();
 PRN ("Polygonal L1 Approximation of a Plane Curve\n");
 prn_example_delim();
 PRN ("r.h.s. Vector \"f\"\n");
 prn_Vector_R (f, n);
 PRN ("Transpose of Coefficient Matrix, \"ct\"\n");
 prn_Matrix_R (ct, m, n);

 rc = LA_L1pol (m, n, enorm, ct, f, ctn, binv, icbas, r, a,
 ixl, v, rp, ap, zp, &npiece);

 if (rc >= LaRcOk)
 {
 PRN ("\n");
 PRN ("Results of Polygonal L1 Approximation\n");
 PRN ("Pre-assigned tolerance 'enorm' = %8.4f\n", enorm);
 PRN ("Number of lines (pieces) = %d\n", npiece);
 PRN ("Starting point of each line\n");
 prn_Vector_I (ixl, npiece);
 PRN ("Solution Vector \"a\" for each line\n");
 prn_Matrix_R (ap, npiece, 2);
 PRN ("Residual Vector \"r\" for the n points\n");
 prn_Vector_R (rp, n);
 PRN ("L-One norms of the residuals for the "
 " \"npiece\" lines\n");
 prn_Vector_R (zp, npiece);
 }

 prn_la_rc (rc);

© 2008 by Taylor & Francis Group, LLC

266 Numerical Linear Approximation in C

 }

 free_Matrix_R (ct, 2);
 free_Matrix_R (ctn, 2);
 free_Matrix_R (binv, 2);
 free_Matrix_R (ap, KK_PIECES);
 free_Vector_R (f);
 free_Vector_R (r);
 free_Vector_R (rp);
 free_Vector_R (zp);
 free_Vector_R (a);
 free_Vector_R (v);
 free_Vector_I (icbas);
 free_Vector_I (ixl);
}

© 2008 by Taylor & Francis Group, LLC

Chapter 8: LA_L1pol 267

8.7 LA_L1pol

/*---
LA_L1pol

This program calculates straight line polygon to a discrete
point set {x,y}. The approximation is such that the L-One error
norm for any line not to exceed a pre-assigned tolerance denoted
by "enorm". The number of lines in the polygon is not known before
hand. The polygon may be an open or a closed one.

Given is a set of points {x,y} resulting from digitizing a given
plane curve of the form y = f(x). The points may not be equally
spaced. We form the overdetermined system of linear equations

 c*a = f

"c" is a real n by 2 matrix. Each element of its first column
is 1 and its second column contains the x-coordinates of the points
(x,y) in a sequential order.
"f" is a real n vector whose elements are the y coordinates of
the points (x,y).

Inputs
m An integer = 2 which is the number of unknowns in the
 straight line y = a[1] + a[2]*x.
n The number of points of the set {x,y}.
ct A real 2 by n matrix containing the transpose of matrix "c"
 of system c*a = f. "ct" is not destroyed in the computation.
f A real n vector containing the r.h.s. of the system c*a = f.
 This vector also is not destroyed in the computation.
enorm A given real parameter; a pre-assigned tolerance such that
 the L-One residual norm for any segment is <= enorm.

Outputs
npiece The number of straight lines of the polygonal approximation.
ixl An integer "npiece" vector containing the indices of the
 first elements of the "npiece" segments.
 For example, if ixl = (1,5,12,22,...), then the first
 segment contains points 1 to 5, the second segment contains
 points 5 to 12, and so on.
ap A real "npiece" by 2 matrix. The 2 elements of its first
 row contain the coefficients of the first line. The 2
 elements of the second row contain the coefficients of

© 2008 by Taylor & Francis Group, LLC

268 Numerical Linear Approximation in C

 the second line and so on.
rp A real n vector containing the residual values at the n
 points of the set {x,y}.
zp A real "npiece" vector containing the npiece optimum values
 of the L-One norms for the "npiece" segments.

Returns one of
 LaRcSolutionFound
 LaRcErrBounds
 LaRcErrNullPtr
---*/
#include "LA_Prototypes.h"

eLaRc LA_L1pol (int m, int n, tNumber_R enorm, tMatrix_R ct,
 tVector_R f, tMatrix_R ctn, tMatrix_R binv, tVector_I icbas,
 tVector_R r, tVector_R a, tVector_I ixl, tVector_R v,
 tVector_R rp, tMatrix_R ap, tVector_R zp, int *pNpiece)
{
 int is = 0, ie = 0, nu = 0, je = 0;
 int i = 0, j = 0, k = 0, ij = 0, ijk = 0, kase = 0;
 tNumber_R z = 0.0, piv = 0.0;

 /* Validation of the data before executing the algorithm */
 eLaRc rc = LaRcSolutionFound;
 VALIDATE_BOUNDS ((m == 2) && (m <= n) && !((n == 1) && (m == 1)));
 VALIDATE_PTRS (ct && f && ctn && binv && icbas && r && a && ixl
 && v && rp && ap && zp && pNpiece);

 /* Initialization */
 *pNpiece = 1;

 /* "is" means i(start) and "ie" means i(end) */
 is = 1;
 for (ijk = 1; ijk <= n; ijk++)
 {
 /* kase == 0: The start of the algorithm */
 je = 0;
 kase = 0;
 z = 0.0,
 zp[*pNpiece] = 0.0;
 ie = is + m - 1;
 for (j = is; j <= ie; j++)
 {
 rp[j] = 0.0;
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 8: LA_L1pol 269

 for (i = 1; i <= m; i++)
 {
 ap[*pNpiece][i] = 0.0;
 }
 if (ie > n) ie = n;
 ixl[*pNpiece] = is;
 nu = ie - is + 1;
 if (nu < m)
 {
 GOTO_CLEANUP_RC (LaRcSolutionFound);
 }

 if (kase == 0)
 {
 for (j = is; j <= ie; j++)
 {
 for (i = 1; i <=m; i++)
 {
 ctn[i][j] = ct[i][j];
 }
 }
 }

 for (ij = 1; ij <= n; ij++)
 {
 LA_l1pol_residuals (m, is, ie, ctn, f, icbas, binv,
 r, a, &z, kase);

 if (z > enorm)
 {
 is = ie - 1;
 *pNpiece = *pNpiece + 1;
 break;
 }
 zp[*pNpiece] = z;
 for (j = 1; j <= m; j++)
 {
 ap[*pNpiece][j] = a[j];
 }
 for (j = is; j <= ie; j++)
 {
 rp[j] = r[j];
 }
 kase = -1;
 je = ie + 1;

© 2008 by Taylor & Francis Group, LLC

270 Numerical Linear Approximation in C

 if (je > n)
 {
 GOTO_CLEANUP_RC (LaRcSolutionFound);
 }

 /* Check if the first and last points lie on a vertical
 or near vertical line */
 LA_l1pol_vertic_line (je, m, ct, ctn, f, r, binv, a, v,
 &piv);

 for (k = 1; k <= n; k++)
 {
 if (fabs (piv) > EPS) break;
 if (fabs (piv) <= EPS)
 {
 je = ie + 1;
 if (je > n)
 {
 GOTO_CLEANUP_RC (LaRcSolutionFound);
 }
 LA_l1pol_vertic_line (je, m, ct, ctn, f, r, binv,
 a, v, &piv);
 }
 }
 ie = je;
 }
 }

CLEANUP:

 return rc;
}

/*---
This function solves the first and the last equations of an
overdetermined system. It uses a linear programming method, such
that if an extra equation is added to the system, it solves the first
and the new last equation. It does that in one simplex step.
It also calculates the L-One norm "z" of the residual vector of the
segment at hand from the simplex tableau.
---*/
void LA_l1pol_residuals (int m, int n1, int n2, tMatrix_R ct,
 tVector_R f, tVector_I icbas, tMatrix_R binv, tVector_R r,
 tVector_R a, tNumber_R *pZ, int kase)

© 2008 by Taylor & Francis Group, LLC

Chapter 8: LA_L1pol 271

{
 int i, j, k, jin, ibc, iout;
 tNumber_R e, s, z, pivot;

 /* kase = 0 indicates the start of a new segment */
 if (kase == 0)
 {
 for (j = 1; j <= m; j++)
 {
 a[j] = 0.0;
 icbas[j] = 0;
 for (i = 1; i <= m; i++)
 {
 binv[i][j] = 0.0;
 }
 binv[j][j] = 1.0;
 }
 z = 0.0;
 iout = 1;
 jin = n1;

 /* A Gauss-Jordan elimination step */
 LA_l1pol_gauss_jordn (n1, n2, m, iout, jin, ct, binv, icbas);
 }

 /* kase != 0 The segment at hand is enlarged by adding to its
 end an extra point */

 iout = 2;
 jin = n2;
 pivot = ct[iout][jin];

 /* Detection of a singular basis matrix */
 if (fabs (pivot) >= EPS)
 {
 LA_l1pol_gauss_jordn (n1, n2, m, iout, jin, ct, binv, icbas);
 if (kase != 0)
 {
 e = r[jin];
 for (j = n1; j <= n2; j++)
 {
 r[j] = r[j] - e * (ct[iout][j]);
 }
 }
 }

© 2008 by Taylor & Francis Group, LLC

272 Numerical Linear Approximation in C

 else
 return;

 /* Calculate the residuals (marginal costs) */
 for (j = n1; j <= n2; j++)
 {
 r[j] = 0.0;
 ibc = 0;
 for (i = 1; i <= m; i++)
 {
 if (j == icbas[i]) ibc = 1;
 }
 if (ibc == 0)
 {
 s = -f[j];
 for (i = 1; i <= m; i++)
 {
 k = icbas[i];
 s = s + f[k] * ct[i][j];
 }
 r[j] = s;
 }
 }

 LA_l1pol_gauss_jordn (n1, n2, m, iout, jin, ct, binv, icbas);
 LA_l1pol_res (n1, n2, m, f, r, a, binv, icbas, pZ);
}

/*---
A Gauss-Jordan elimination step in LA_L1pol()
---*/
void LA_l1pol_gauss_jordn (int n1, int n2, int m, int iout, int jin,
 tMatrix_R ct, tMatrix_R binv, tVector_I icbas)
{
 int i, j;
 tNumber_R e, pivot;

 pivot = ct[iout][jin];
 icbas[iout] = jin;
 for (j = n1; j <= n2; j++)
 {
 ct[iout][j] = ct[iout][j]/pivot;
 }
 for (j = 1; j <= m; j++)
 {

© 2008 by Taylor & Francis Group, LLC

Chapter 8: LA_L1pol 273

 binv[iout][j] = binv[iout][j]/pivot;
 }
 for (i = 1; i <= m; i++)
 {
 if (i != iout)
 {
 e = ct[i][jin];
 for (j = n1; j <= n2; j++)
 {
 ct[i][j] = ct[i][j] - e * (ct[iout][j]);
 }
 for (j = 1; j <= m; j++)
 {
 binv[i][j] = binv[i][j] - e * (binv[iout][j]);
 }
 }
 }
}

/*---
Calculate the results of LA_L1pol()
---*/
void LA_l1pol_res (int n1, int n2, int m, tVector_R f, tVector_R r,
 tVector_R a, tMatrix_R binv, tVector_I icbas, tNumber_R *pZ)
{
 int i, j, k;
 tNumber_R s;

 for (j = 1; j <= m; j++)
 {
 s = 0.0;
 for (i = 1; i <= m; i++)
 {
 k = icbas[i];
 s = s + f[k] * binv[i][j];
 }
 a[j] = s;
 }

 s = 0.0;
 for (j = n1; j <= n2; j++)
 {
 s = s + fabs (r[j]);
 }
 *pZ = s;

© 2008 by Taylor & Francis Group, LLC

274 Numerical Linear Approximation in C

}

/*---
Test if the 2 end points lie on a vertical or near vertical line in
LA_L1pol()
---*/
void LA_l1pol_vertic_line (int je, int m, tMatrix_R ct,
 tMatrix_R ctn, tVector_R f, tVector_R r, tMatrix_R binv,
 tVector_R a, tVector_R v, tNumber_R *pPiv)
{
 int i, k;
 tNumber_R s;

 for (i = 1; i <= m; i++)
 {
 v[i] = ct[i][je];
 }

 /* Calculating the marginal costs (the residuals) */
 for (i = 1; i <= m; i++)
 {
 s = 0.0;
 for (k = 1; k <= m; k++)
 {
 s = s + binv[i][k]*v[k];
 }
 ctn[i][je] = s;
 }
 s = -f[je];
 for (i = 1; i <= m; i++)
 {
 s = s + a[i] * ct[i][je];
 }
 r[je] = s;
 *pPiv = ctn[2][je];
}

© 2008 by Taylor & Francis Group, LLC

275

Chapter 9

Piecewise L1 Approximation of Plane Curves

9.1 Introduction

Piecewise linear approximation of a plane curve implies that the
plane curve is divided into segments, or pieces, and each piece is
approximated by a simple curve. Unlike polygonal approximation,
where the approximating lines are joined to form a polygon, the
approximating curves in piecewise approximations are not joined to
one another. In this respect, Pavlidis [8] argues that the continuity
requirement at the joints does not appear to be essential for some
applications, and even desirable for other applications.

Discontinuity is desirable in the detection of feature selection for
pattern recognition and picture processing. It is also desirable in
detecting jumps in waveforms. Besides that, calculating the
approximations for separate segments reduces the computation
complexity and time.

In the majority of the published works on piecewise linear
approximation, the approximating curves are either constants
(horizontal lines) or straight lines. However, the approximations could
be by any kind of polynomials.

In the presence of spikes in the given curve, the approximation in
the L1 norm is usually recommended over other norms. This is
because the approximating curve in the L1 norm almost totally ignores
the presence of the spikes, as explained in Section 2.3.

The problem of piecewise approximation in the L1 norm has not
received much attention. The obvious reason is that the segmentation
requires the use of algorithms for solving the L1 approximation
problem that were not available to many authors. On the other hand,
piecewise approximations in the Chebyshev and the L2 norms

© 2008 by Taylor & Francis Group, LLC

276 Numerical Linear Approximation in C

received considerable attention. See the references in Chapters 15 and
18 respectively. We note here that Sklar and Armstrong [10]
described a procedure for piecewise linear approximation for Lp norm
curve fitting, where 1 < p < 2.

In this chapter, two algorithms for the piecewise linear L1
approximation of plane curves are presented [4] for the two cases:
(a) when the L1 norm in any segment is not to exceed a

pre-assigned value, and
(b) when the number of segments is given and a balanced (equal)

L1 norm solution for all the segments is required.

The problem is solved by first digitizing the given curve. Then
either algorithm is applied to the discrete points. This work is
analogous to that presented in Chapters 15 and 18 for the Chebyshev
[3] and the L2 [5] norms respectively.

In Section 9.2, the characteristics of the piecewise approximation
are presented. In Section 9.3, the discrete linear L1 approximation
problem is outlined. In Section 9.4, the two piecewise linear L1
approximation algorithms are described. In Section 9.5, numerical
results and comments are given.

9.1.1 Applications of piecewise approximation

As indicated in the previous chapter, piecewise approximation of
plane curves has several applications. It is used in the area of image
processing such as image segmentation, image compression and
segmentation/reconstruction of range images. It is also used in feature
extraction, noise filtering, speech recognition and numerous other
fields. See the references cited in Section 8.1.1.

9.2 Characteristics of the piecewise approximation

Piecewise approximation possesses certain characteristics that
were laid down by Lawson [7]. These characteristic properties are for
segmented rational Chebyshev approximation. Yet, they apply as well
for linear approximation and for norms other than the Chebyshev
norm. See also Pavlidis and Maika [9].

Let us be given the plane curve y = f(x) and let it be defined on the
interval [a, b]. Let this curve be digitized at the K points (xi, f(xi)),

© 2008 by Taylor & Francis Group, LLC

Chapter 9: Piecewise L1 Approximation of Plane Curves 277

i = 1, 2, �, K, where x1 = a and xK = b. Let n be the number of pieces
(segments) in the approximation and let (zj), j = 1, 2, �, n, be the L1
residual or error norms for the n pieces. For the first algorithm, the
number of segments is not known beforehand.

Assume that f(x) is continuous and satisfies Lipschitz condition on
[a, b]. Hence, the error norm zj, 1 ≤ j ≤ n, has the following
characteristics.

Characteristic 1

(a) zj is a continuous function of the end points of the segment,
(b) zj is non-increasing in the segment left end point, and
(c) zj is non-decreasing in the segment right end point.

Characteristic (b) means that if a point is deleted from the left end
of segment j, zj, the error norm for segment j, will not increase, but is
likely to decease or remain unchanged. Characteristic (c) means that if
a point is added to the right end of segment j, zj will not decrease, but
is likely to increase or remain unchanged.

Characteristic 2

If a piecewise approximation is calculated for the curve f(x), (not
for the digitized points of the curve), and if z1 = z2 = � = zn, then the
solution is optimal. Such a solution always exists and is known as a
balanced (equal) error norm solution. However, in the case of the
approximation of the discrete points of the digitized curve, a balanced
error norm solution may not exist. One attempts to obtain a
near-balanced piecewise approximation instead.

Lawson [7] suggested an iterative technique for obtaining such a
balanced error norm solution. The technique performs well on smooth
data, but it might fail (cycle) if at some intermediate step, a segment
has a zero-error norm. This happened when segmentation by straight
lines were used. Pavlidis [8] was able to rectify this point. We should
also note that this algorithm does not result in a unique near equal
error norm solution. The final result depends on the initial
segmentation of the given digitized curve. We have met this situation
in our experimentation. Pavlidis [8] encountered the same situation in
his experimentation.

As indicated above, the problem is solved by first digitizing the
given curve into discrete points. Then either algorithm is applied to

© 2008 by Taylor & Francis Group, LLC

278 Numerical Linear Approximation in C

the discrete data. The two algorithms use the discrete linear L1
approximation function LA_Lone() of Chapter 5 [2].

The first algorithm has the option of calculating connected or
disconnected piecewise linear L1 approximations, while the second
algorithm calculates disconnected piecewise L1 approximations only.
In the connected piecewise approximation, the x-coordinate of the
right end point of segment j is the x-coordinate of the starting (left)
point of segment (j + 1). In the disconnected piecewise approxi-
mation, the x-coordinate of the adjacent point to the right end point of
segment j is the x-coordinate of the starting left point of segment
(j + 1). See Figures 9.1-3 below.

9.3 The discrete linear L1 approximation problem

Consider any segment j, 1 ≤ j ≤ n, of the given curve f(x). Let this
segment consist of N digitized points with coordinates (xi, f(xi)),
i = 1, 2, �, N. Let these N discrete points be approximated by

which minimizes the L1 norm zj (or briefly z), of the residuals r(xi)

where

(9.3.1) r(xi) = L(a, xi) � f(xi), i = 1, 2, �, N

The functions (φi(x)), i = 1, 2, �, M, M ≤ N, are given real
linearly independent approximating functions and a = (ai) is an M real
vector to be calculated.

This problem reduces to the problem of obtaining the L1 solution
of the overdetermined system of equations [1] (Section 2.2)

Ca = f

C is an N by M matrix given by C = (cij) = (φj(xi)), i = 1, 2, �, N,
j = 1, 2, �, M. and f is the N-vector f = (fi) = (f(xi)). The L1 solution

L a x,() aiφi x()
i 1=

M

∑=

z r xi()
i 1=

N

∑=

© 2008 by Taylor & Francis Group, LLC

Chapter 9: Piecewise L1 Approximation of Plane Curves 279

to system Ca = f is the real M-vector a that minimizes the L1 norm

where ri is the ith residual given by (9.3.1), or by

, i = 1, 2, �, N

This problem has been efficiently solved as a linear programming
problem in the dual form [2, 6] (Chapter 5). The implementation of
the algorithm for the discrete linear L1 approximation to this problem
is described in the next section.

9.4 Description of the algorithms

9.4.1 Piecewise linear L1 approximation with pre-assigned
tolerance

Let the piecewise approximation for any segment j, 1 ≤ j ≤ n, be
such that the L1 error norm zj, be zj ≤ ε, where ε is a pre-assigned
parameter. The number of segments n is not known yet. For this
algorithm, we use the sequential or scan-along approach. See Section
8.1.2. It is described in the following steps:
(1) Take j = 1 (first segment).
(2) Starting from the first point in segment j in the digitized curve,

take a number of points N = M, which is the minimum initial
number of points for segment j. M is the number of terms in
the approximating function L(a, x). Use the function L(a, x) to
calculate matrix C and vector f, as in Ca = f. From C, f, and
the parameters M and N calculate the L1 approximation using
LA_Lone() of Chapter 5. This corresponds to a perfect fit,
with zj = 0, assuming that the N by M matrix C is of rank M.
In fact, since we assumed that the functions (φi(x)),
i = 1, �, M, are linearly independent, matrix C in Ca = f
would be of rank M. Go to step (3).

z ri
i 1=

N

∑=

ri r xi() cijaj
j 1=

M

∑ fi�= =

© 2008 by Taylor & Francis Group, LLC

280 Numerical Linear Approximation in C

(3) Add point (N + 1) to the right of the N points of segment j.
Call the L1 approximation function LA_Lone() and calculate
the L1 norm for the (N + 1) points. Go to step (4).

(4) If the value of the norm zj is ≤ ε, where ε is the pre-assigned
value, go to step (3). If zj > ε, take N = N � 1, which is the
final number of points for segment j, with the corresponding zj
as the L1 solution for segment j. Take j = j + 1 and go to step
(2) for segment (j + 1).

If the number of points in the last segment is ≤ M, we get a perfect
fit for this segment with zn = 0.

9.4.2 Piecewise linear approximation with near-balanced L1
norms

Given is the number of segments n. It is required that the
calculated L1 residual norms for the n segments be equal; i.e.,
z1 = z2 = � = zn. As indicated earlier, it may be possible to fulfill this
requirement for the piecewise approximation of the given curve itself.
However, in the case of the approximation of the discrete points of the
digitized curve, a balanced residual norm solution may not exist, so a
near-balanced solution is obtained instead.

The initial indices of the first point in each segment are calculated.
This is done by dividing the total number of the digitized points of the
given curve into n approximate numbers. The steps of this algorithm
are similar to those of Pavlidis [8]:
(1) Call the L1 approximation function LA_Lone() to calculate the

L1 approximation for the n segments, where n is specified. Let
their optimum L1 residual norms be (z1, �, zn).

(2) Set iflag(j) = 1, for j = 1, 2, �, n. iflag(j) is an index indicator
for segment j such that if both iflag(j) = 0 and iflag(j + 1) = 0,
we skip step (3) for segments j and (j + 1). This is indicated
shortly.

(3) For j = 1, 3, 5, �, call LA_Lone() to calculate the L1 residual
norms zj and zj+1. Compare the norms zj and zj+1. If zj < zj+1,
go to step (3.1). Otherwise if zj > zj+1, go to step (4.1).

(3.1) If zj < zj+1, add the left end point of segment (j + 1) to the right
end of segment j. Call LA_Lone() to calculate the L1
approximation for the enlarged segment j and for the

© 2008 by Taylor & Francis Group, LLC

Chapter 9: Piecewise L1 Approximation of Plane Curves 281

shortened segment (j + 1). Call the new L1 residual norms
zj

new and zj+1
new. Go to step (3.2).

(3.2) If |zj
new � zj+1

new| < |zj � zj+1|, set zj = zj
new and zj+1 = zj+1

new.
Also set iflag(j) = 0 and iflag(j + 1) = 0.
Repeat step (3) for j = 2, 4, 6, �
If iflag(j) = 1, 1 ≤ j ≤ n, repeat step (3), otherwise terminate. If
in repeating step (3), iflag = 0 for any two adjacent segments j
and (j + 1), skip step (3) for segments j and (j + 1).

(4.1) If zj > zj+1, delete the right end point of segment j by adding it
to the left end of segment (j + 1). Go to step (4.2).

(4.2) This step uses equivalent logic to step (3.2).

9.5 Numerical results and comments

Each of the functions LA_L1pw1() and LA_L1pw2() calculate the
number of segments in the piecewise approximation (for
LA_L1pw2(), n is given), the starting points of the n segments, the
coefficients of the approximating curves for the n segments, the
residuals at each point of the digitized curve and finally the L1
residual norms for the n segments.

LA_L1pw1() computes for the case when the L1 residual norm in
any segment is not to exceed a pre-assigned value ε. LA_L1pw2()
computes for the case when the number of segments is given and a
near-balanced L1 error norm solution is required. Both of these
functions use LA_Lone() of Chapter 5.

LA_L1pw1() has the option of calculating connected or
disconnected piecewise L1 approximations, while LA_L1pw2() can
only calculate disconnected piecewise L1 approximations. This was
explained at the end of Section 9.2. DR_L1pw1() and DR_L1pw2()
test several examples.

In order to compare the results of these two algorithms with those
of the algorithms for the Chebyshev norm [2] and for the L2 norm [3],
we chose the same curve. This curve is digitized with equal
x-intervals into 28 points, and the data points are fitted with vertical
parabolas. Each is of the form y = a1 + a2x + a3x2. The results of
LA_L1pw1() are shown in Figures 9-1 and 9-2. The results of
LA_L1pw2() are shown in Figure 9-3, where the number of segments
was set to n = 4.

© 2008 by Taylor & Francis Group, LLC

282 Numerical Linear Approximation in C

The L1 norms of Figures 9-1 and 9-2 are (5.940, 4.543, 5.480,
4.414) and n = 4, and (5.940, 4.820, 5.213, 3.038, 1.367) and n = 5,
respectively. The L1 norms of Figure 9-3 are (5.940, 4.543, 5.480,
4.414), for n = 4.

Figure 9-1: Disconnected linear L1 piecewise approximation with
vertical parabolas. The L1 residual norm in any segment ≤ 6.2

Figure 9-2: Connected linear L1 piecewise approximation with vertical
parabolas. The L1 residual norm in any segment ≤ 6.2

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30

© 2008 by Taylor & Francis Group, LLC

Chapter 9: Piecewise L1 Approximation of Plane Curves 283

Figure 9-3: Near-balanced residual norm solution. Disconnected linear
L1 piecewise approximation with vertical parabolas. Number of

segments = 4

We observe that LA_L1pw2() did not produce a balanced norm
solution (equal L1 norms for all the segments) in Figure 9-3. Also, by
mere chance in this example, Figures 9-1 and 9-3 give identical
results.

We should note that for each segment, the error between the
digitized points and the approximating curve is measured along the
y-axis direction. That is, not in the direction perpendicular to the
approximating curve.

The requirement that the error between the digitized points and the
approximate curve be measured in a direction perpendicular to the
approximating curve is not needed in the L1 piecewise approximation,
such as in our algorithm. The reason is that the L1 error norm for a
digitized curve segment is approximately proportional to the area
between the digitized points and the approximating curve. This area is
approximately the same when the residuals (errors) are measured in
the y-direction or when measured perpendicular to the approximating
curve. This same point was made in the previous chapter for
polygonal approximation of plane curves in the L1 norm.

In a previous version of our algorithms [4], we utilized parametric
linear programming techniques [6] and made use of the interpolating
property of the L1 approximation (Chapters 2 and 5). In these

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30

© 2008 by Taylor & Francis Group, LLC

284 Numerical Linear Approximation in C

techniques, information from a previous simplex iteration in step (3)
of Section 9.4.1 or Section 9.4.2 are stored and used in a current
iteration. This increases the code complexity but reduces the number
of iterations.

References

1. Abdelmalek, N.N., On the discrete linear L1 approximation
and L1 solutions of overdetermined linear equations, Journal
of Approximation Theory, 11(1974)38-53.

2. Abdelmalek, N.N., An efficient method for the discrete linear
L1 approximation problem, Mathematics of Computation
29(1975)844-850.

3. Abdelmalek, N.N., Piecewise linear Chebyshev approximation
of planar curves, International Journal of Systems Science,
14(1983)425-435.

4. Abdelmalek, N.N., Piecewise linear L1 approximation of
planar curves, International Journal of Systems Science,
16(1985)447-455.

5. Abdelmalek, N.N., Piecewise linear least-squares approxi-
mation of planar curves, International Journal of Systems
Science, 21(1990)1393-1403.

6. Hadley, G., Linear Programming, Addison-Wesley, Reading,
MA, 1962.

7. Lawson, C.L., Characteristic properties of the segmented
rational minimax approximation problem, Numerische
Mathematik, 6(1964)293-301.

8. Pavlidis, T., Waveform segmentation through functional app-
roximation, IEEE Transactions on Computers, 22(1973)689-
697.

9. Pavlidis, T. and Maika, A.P., Uniform piecewise polynomial
approximation with variable joints, Journal of Approximation
Theory, 12(1974)61-69.

10. Sklar, M.G. and Armstrong, R.D., A piecewise linear approxi-
mation procedure for Lp norm curve fitting, Journal of
Statistical Computation and Simulation, 52(1995)323-335.

© 2008 by Taylor & Francis Group, LLC

Chapter 9: DR_L1pw1 285

9.6 DR_L1pw1

/*---
DR_L1pw1

This is a driver for the function LA_L1pw1(), which calculates a
linear piecewise L-One approximation of a given data point set {x,y}
that results from discretizing a given plane curve y = f(x).
The points of the set might not be equally spaced.

The approximation by LA_L1pw1() is such that the L-One residual
norm for any segment is not to exceed a pre-assigned tolerance
denoted by "enorm".

LA_L1pw1() calculates the connected or the disconnected linear
piecewise L-One approximation, according to the value of an integer
parameter "konect" set by the user.
See comments in program LA_L1pw1().

From the approximating curve we form the overdetermined system of
linear equations

 c*a = f

"c" is a real n by m matrix of rank k, k <= m < n.
n is the number of digitized points of the given plane curve.

m is the number of terms in the approximating curves. If for
example, the approximating curves are vertical parabolas of
the form
 y = a1 + a2*x + a3*x*x
then m = 3.

"f" is a real n vector whose elements are the y coordinates of
the data set {x,y}.

"a" is the solution m vector. There are different "a" solution
vectors for the different segments.

This driver contains 1 test example. A given curve is digitized
into 28 points at equal x intervals. The points are piecewise
approximated by vertical parabolas of the form

 y = a1 + a2*x + a3*x*x

© 2008 by Taylor & Francis Group, LLC

286 Numerical Linear Approximation in C

The results for the disconnected and of the connected piecewise
L-One approximation are given in the text.
---*/

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define Nc 28

void DR_L1pw1 (void)
{
 /*--
 Constant matrices/vectors
 --*/
 static tNumber_R fc[Nc+1] =
 { NIL,
 8.0, 11.0, 13.0, 11.2, 9.1, 10.8, 14.8, 16.0, 15.1, 14.0,
 14.7, 15.8, 16.8, 15.6, 13.0, 14.3, 13.8, 10.6, 9.3, 9.6,
 10.8, 11.2, 9.0, 7.0, 5.8, 6.8, 4.8, 3.9
 };

 /*--
 Variable matrices/vectors
 --*/
 tMatrix_R ct = alloc_Matrix_R (MM_COLS, NN_ROWS);
 tMatrix_R rp1 = alloc_Matrix_R (KK_PIECES, NN_ROWS);
 tMatrix_R ap = alloc_Matrix_R (KK_PIECES, MM_COLS);
 tVector_R f = alloc_Vector_R (NN_ROWS);
 tVector_R zp = alloc_Vector_R (KK_PIECES);
 tVector_I irankp = alloc_Vector_I (KK_PIECES);
 tVector_I ixl = alloc_Vector_I (KK_PIECES);

 int j, k, m, n;
 int konect, npiece;
 tNumber_R enorm;
 eLaRc prnRc;

 eLaRc rc = LaRcOk;

 prn_dr_bnr ("DR_L1pw1, L1 Piecewise Approximation of a Plane "
 "with Pre-assigned Norm");

 konect = 0;
 for (k = 1; k <= 2; k++)

© 2008 by Taylor & Francis Group, LLC

Chapter 9: DR_L1pw1 287

 {
 switch (k)
 {
 case 1:
 enorm = 6.2;
 n = Nc;
 m = 3;
 for (j = 1; j <= n; j++)
 {
 f[j] = fc[j];
 ct[1][j] = 1.0;
 ct[2][j] = j;
 ct[3][j] = j*j;
 }
 break;
 default:
 break;
 }

 prn_algo_bnr ("L1pw1");
 if (k == 1) konect = 0;
 if (k == 2) konect = 1;
 prn_example_delim();
 PRN ("konect = %d: Size of matrix \"c\" %d by %d\n",
 konect, n, m);
 PRN ("L1 Piecewise Approximation with Pre-assigned Norm\n");
 PRN ("Pre-assigned Norm \"enorm\" = %8.4f\n", enorm);
 prn_example_delim();
 if (konect == 1)
 PRN ("Connected L1 Piecewise Approximation\n");
 else
 PRN ("Disconnected L1 Piecewise Approximation\n");
 prn_example_delim();
 PRN ("r.h.s. Vector \"f\"\n");
 prn_Vector_R (f, n);
 PRN ("Transpose of Coefficient Matrix, \"ct\"\n");
 prn_Matrix_R (ct, m, n);

 rc = LA_L1pw1 (m, n, enorm, konect, ct, f, ixl, irankp, rp1,
 ap, zp, &npiece);

 if (rc >= LaRcOk)
 {
 PRN ("\n");
 PRN ("Results of the L1 Piecewise Approximation\n");

© 2008 by Taylor & Francis Group, LLC

288 Numerical Linear Approximation in C

 PRN ("Calculated number of segments (pieces) = %d\n",
 npiece);
 PRN ("Staring points of the \"npiece\" segments\n");
 prn_Vector_I (ixl, npiece);
 PRN ("Coefficients of the approximating curves\n");
 prn_Matrix_R (ap, npiece, m);
 PRN ("Residual vectors for the \"npiece\" segments\n");
 prnRc = LA_pw1_prn_rp1 (konect, npiece, n, ixl, rp1);
 PRN ("L1 residual norms for the \"npiece\" segments\n");
 prn_Vector_R (zp, npiece);
 if (prnRc < LaRcOk)
 {
 PRN ("Error printing PW1 results\n");
 }
 }

 prn_la_rc (rc);
 }

 free_Matrix_R (ct, MM_COLS);
 free_Matrix_R (rp1, KK_PIECES);
 free_Matrix_R (ap, KK_PIECES);
 free_Vector_R (f);
 free_Vector_R (zp);
 free_Vector_I (irankp);
 free_Vector_I (ixl);
}

© 2008 by Taylor & Francis Group, LLC

Chapter 9: LA_L1pw1 289

9.7 LA_L1pw1

/*---
LA_L1pw1

This program calculates a linear piecewise L1 (L-One) approximation
to a discrete point set {x,y}. The approximation is such that the
L1 residual (error) norm for any segment is not to exceed a given
tolerance "enorm". The number of segments (pieces) is not known
before hand.

Given is a set of points {x,y}. From the approximating functions
of the piecewise approximation, one forms the overdetermined system
of linear equations
 c*a = f

This program uses LA_Lone() for obtaining the L-One solution of
overdetermined system of linear equations.

LA_L1pw1() has the option of calculating connected or disconnected
piecewise L1 approximation, according to the value of an integer
parameter "konect".

In the connected piecewise approximation the x-coordinate of the
end point of segment j say, is the x-coordinate of the starting
point of segment (j+1). In the disconnected piecewise
approximation, the x-coordinate of the adjacent point to the end
point of segment j is the x-coordinate of the starting point of
segment (j+1). See the comments on "ixl" below.

Inputs
m Number of terms in the approximating functions.
n Number of points to be piecewise approximated.
ct An m by n real matrix containing the transpose of matrix
 "c" of the system c*a = f.
 Matrix "ct" is not destroyed in the computation.
f An real n vector containing the r.h.s. of the system
 c*a = f. This vector contains the y-coordinates of the
 given point set. This vector is not destroyed in the
 computation.
enorm A real pre-assigned parameter, such that the L-One residual
 norm for any segment is <= enorm.
konect An integer specifying the action to be performed.
 If konect = 1, the program calculates the connected L-One

© 2008 by Taylor & Francis Group, LLC

290 Numerical Linear Approximation in C

 piecewise approximation.
 If konect != 1, the program calculates the disconnected
 L-One piecewise approximation.

Outputs
npiece Obtained number of segments or pieces of the approximation.
ixl An integer "npiece" vector containing the indices of the
 first elements of the "npiece" segments.
 For example, if ixl = (1,5,12,22,...), and if konect = 1,
 then the first segment contains points 1 to 5, the second
 segment contains points 5 to 12, the third segment contains
 points 12 to 22 and so on.
 Again if ixl = (1,5,12,22,...), and if konect !=1, then the
 first segment contains points 1 to 4, the second segment
 contains points 5 to 11, the third segment contains points 12
 to 21 ..., etc.
ap A real "npiece" by m matrix. Its first row contains the
 the coefficients of the approximating curve for the first
 segment. The second row contains the coefficients of the
 approximating curve for the second segment and so on.
 If any row j is all zeros, this indicates that vector "a" of
 segment j is not calculated as the number of points of
 segment j is <= m and there is a perfect fit by the
 approximating curve for segment j.
rp1 A real "npiece" by n matrix. Its first row contains the
 residuals for the points of the first segment. Its second
 row contains the residuals for the points of the second
 segment, and so on.
zp A real "npiece" vector containing the "npiece" optimum
 values of the L-One residual norms for the "npiece" segments.
 If zp[j] == 0.0, it indicates that there is a perfect fit for
 segment j.

Returns one of
 LaRcSolutionFound
 LaRcErrBounds
 LaRcErrNullPtr
 LaRcErrAlloc
---*/

#include "LA_Prototypes.h"

eLaRc LA_L1pw1 (int m, int n, tNumber_R enorm, int konect,
 tMatrix_R ct, tVector_R f, tVector_I ixl, tVector_I irankp,
 tMatrix_R rp1, tMatrix_R ap, tVector_R zp, int *pNpiece)

© 2008 by Taylor & Francis Group, LLC

Chapter 9: LA_L1pw1 291

{
 tMatrix_R ctp = alloc_Matrix_R (m, n);
 tVector_R fp = alloc_Vector_R (n);
 tVector_R r = alloc_Vector_R (n);
 tVector_R a = alloc_Vector_R (m);

 int i = 0, j = 0, je = 0, ji = 0, jj = 0, is = 0, ie = 0,
 nu = 0, irank = 0;
 int ijk = 0, iter = 0;
 tNumber_R z = 0.0;

 /* Validation of the data before executing the algorithm */
 eLaRc rc = LaRcSolutionFound;
 VALIDATE_BOUNDS ((0 < m) && (m <= n) && !((n == 1) && (m == 1))
 && (0.0 < enorm));
 VALIDATE_PTRS (ct && f && ixl && irankp && rp1 && ap && zp &&
 pNpiece);
 VALIDATE_ALLOC (ctp && fp && r && a);

 *pNpiece = 1;

 /* "is" means i(start) for the segment at hand */
 is = 1;

 for (ijk = 1; ijk <= n; ijk++)
 {
 /* Initializing the data for "npiece" */
 ie = is + m - 1;
 LA_pw1_init (pNpiece, is, ie, m, rp1, ap, zp);

 irank = m;
 z = 0;

 for (j = is; j <= ie; j++)
 {
 ji = j - is + 1;
 fp[ji] = f[j];
 for (i = 1; i <= m; i++)
 {
 ctp[i][ji] = ct[i][j];
 }
 }

 for (jj = 1; jj <= n; jj++)
 {

© 2008 by Taylor & Francis Group, LLC

292 Numerical Linear Approximation in C

 nu = ie - is + 1;

 rc = LA_Lone (m, nu, ctp, fp, &irank, &iter, r, a, &z);
 if (rc < LaRcOk)
 {
 GOTO_CLEANUP_RC (rc);
 }

 if (z > enorm + EPS)
 {
 break;
 }
 else
 {
 LA_pw1_map (m, nu, r, a, z, rp1, ap, zp, pNpiece);

 ixl[*pNpiece] = is;
 je = ie + 1;

 if (je > n)
 {
 GOTO_CLEANUP_RC (LaRcSolutionFound);
 }

 ie = je;
 nu = ie - is + 1;

 for (j = is; j <= ie; j++)
 {
 ji = j - is + 1;
 fp[ji] = f[j];
 for (i = 1; i <= m; i++)
 {
 ctp[i][ji] = ct[i][j];
 }
 }
 }
 }

 is = ie;
 if (konect == 1) is = ie - 1;
 *pNpiece = *pNpiece + 1;
 ixl[*pNpiece] = is;
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 9: LA_L1pw1 293

CLEANUP:

 free_Matrix_R (ctp, m);
 free_Vector_R (fp);
 free_Vector_R (r);
 free_Vector_R (a);

 return rc;
}

© 2008 by Taylor & Francis Group, LLC

294 Numerical Linear Approximation in C

9.8 DR_L1pw2

/*---
DR_L1pw2

This is a driver for the function LA_L1pw2() which calculates the
"near balanced" piecewise linear L-One approximation of a given
data point set (x,y) resulting from the discretization of a plane
curve y = f(x).

Given is an integer number "npiece" which is the number of segments
(pieces) in the approximation.

The approximation by LA_L1pw2() is such that the L-One residual norms
for all segments are nearly equal, hence the name "near balanced"
piecewise approximation.

From the approximating curves we form the overdetermined system of
linear equations

 c*a = f

"c" is a real n by m matrix of rank k, k <= m < n.
n is the number of digitized points of the given plane curve.
m is the number of terms in the approximating curves. If for
example, the piecewise approximating curves are vertical parabolas
of the form
 y = a1 + a2*x + a3*x*x
then m = 3.

"f" is a real n vector whose elements are the y coordinates of
the data set {x,y}.

"a" is the solution m vector. There are different "a" solution
vectors for the different segments.

This driver contains 1 test example.
A given curve is digitized into 28 points at equal x intervals. The
points are piecewise approximated by vertical parabolas of the form

 y = a1 + a2*x + a3*x*x

The results for piecewise L-One approximation are given in the text.
---*/

© 2008 by Taylor & Francis Group, LLC

Chapter 9: DR_L1pw2 295

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define Nc 28

void DR_L1pw2 (void)
{
 /*--
 Constant matrices/vectors
 --*/
 static tNumber_R fc[Nc+1] =
 { NIL,
 8.0, 11.0, 13.0, 11.2, 9.1, 10.8, 14.8, 16.0, 15.1, 14.0,
 14.7, 15.8, 16.8, 15.6, 13.0, 14.3, 13.8, 10.6, 9.3, 9.6,
 10.8, 11.2, 9.0, 7.0, 5.8, 6.8, 4.8, 3.9
 };

 /*--
 Variable matrices/vectors
 --*/
 tMatrix_R ct = alloc_Matrix_R (MM_COLS, NN_ROWS);
 tVector_R rp2 = alloc_Vector_R (NN_ROWS);
 tMatrix_R ap = alloc_Matrix_R (KK_PIECES, MM_COLS);
 tVector_R f = alloc_Vector_R (NN_ROWS);
 tVector_R zp = alloc_Vector_R (KK_PIECES);
 tVector_I ixl = alloc_Vector_I (KK_PIECES);

 int j, m, n;
 int Iexmpl, npiece;
 eLaRc prnRc;

 eLaRc rc = LaRcOk;

 prn_dr_bnr ("DR_L1pw2, L1 Piecewise Approximation of a Plane "
 "Curve with Near Equal Residual Norms");

 for (Iexmpl = 1; Iexmpl <= 1; Iexmpl++)
 {
 switch (Iexmpl)
 {
 case 1:
 npiece = 4;
 n = Nc;
 m = 3;

© 2008 by Taylor & Francis Group, LLC

296 Numerical Linear Approximation in C

 for (j = 1; j <= n; j++)
 {
 f[j] = fc[j];
 ct[1][j] = 1.0;
 ct[2][j] = j;
 ct[3][j] = j*j;
 }
 break;
 default:
 break;
 }

 prn_algo_bnr ("L1pw2");

 prn_example_delim();
 PRN ("Size of matrix \"c\" %d by %d\n", n, m);
 prn_example_delim();
 PRN ("L1 Piecewise Approximation with Near Equal Norms\n");
 PRN ("Given number of segments (pieces) = %d\n", npiece);
 prn_example_delim();
 PRN ("r.h.s. Vector \"f\"\n");
 prn_Vector_R (f, n);
 PRN ("Transpose of Coefficient Matrix, \"ct\"\n");
 prn_Matrix_R (ct, m, n);

 rc = LA_L1pw2 (m, n, npiece, ct, f, ap, rp2, zp, ixl);

 if (rc >= LaRcOk)
 {
 PRN ("\n");
 PRN ("Results of the L1 Piecewise Approximation\n");
 PRN ("Starting points of the \"npiece\" segments\n");
 prn_Vector_I (ixl, npiece);
 PRN ("Coefficients of the \"npiece\" approximating "
 " curves\n");
 prn_Matrix_R (ap, npiece, m);
 PRN ("Residuals at the given points\n");
 prnRc = LA_pw2_prn_rp2 (npiece, n, ixl, rp2);
 PRN ("L1 residual norms for the \"npiece\" segments\n");
 prn_Vector_R (zp, npiece);

 if (prnRc < LaRcOk)
 {
 PRN ("Error printing PW2 results: ");
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 9: DR_L1pw2 297

 }

 prn_la_rc (rc);
 }

 free_Matrix_R (ct, MM_COLS);
 free_Vector_R (rp2);
 free_Matrix_R (ap, KK_PIECES);
 free_Vector_R (f);
 free_Vector_R (zp);
 free_Vector_I (ixl);
}

© 2008 by Taylor & Francis Group, LLC

298 Numerical Linear Approximation in C

9.9 LA_L1pw2

/*---
LA_L1pw2

This program calculates the "near balanced" piecewise linear
L1 (L-One) approximation of a given data point set {x,y} resulting
from the discretization of a plane curve y = f(x).

Given is an integer number "npiece" which is the number of segments
in the approximation.

The approximation by LA_L1pw2() is such that the L1 residual norms
for all segments are nearly equal, hence the name "near balanced"
piecewise approximation.

From the approximating functions (curves) one forms the
overdetermined system of linear equations

 c*a = f

Inputs
npiece Given umber of segments (pieces) of the approximation.
m Number of terms in the approximating curves.
n Number of points to be piecewise approximated.
ct A real m by n matrix containing the transpose of matrix "c"
 of the system c*a = f. This matrix is not destroyed in the
 computation.
f A real n vector containing the r.h.s. of the system c*a = f.
 This vector contains the y-coordinates of the given point
 set. This vector is not destroyed in the computation.

Outputs
ixl An integer "npiece' vector containing the indices of the
 first elements of the "npiece" segments.
 For example, if ixl = (1,5,12,22,...), then the first
 segment contains points 1 to 4, the second segment contains
 points 5 to 11, the third segment contains points 12
 to 21 ..., etc.
ap A real "npiece" by m matrix. Its first row contains the
 coefficients of the approximating curve for the first
 segment. The second row contains the coefficients of the
 approximating curve for the second segment and so on.
rp2 A real n vector containing the residual values of the n

© 2008 by Taylor & Francis Group, LLC

Chapter 9: LA_L1pw2 299

 points of the given set {x,y}.
zp A real "npiece" vector containing the optimum L-One
 "npiece" residual norms for the "npiece" segments.

Returns one of
 LaRcSolutionFound
 LaRcErrBounds
 LaRcErrNullPtr
 LaRcErrAlloc
---*/

#include "LA_Prototypes.h"

eLaRc LA_L1pw2 (int m, int n, int npiece, tMatrix_R ct, tVector_R f,
 tMatrix_R ap, tVector_R rp2, tVector_R zp, tVector_I ixl)
{
 tVector_R al = alloc_Vector_R (m);
 tVector_R rl = alloc_Vector_R (n);
 tVector_R bv = alloc_Vector_R (m);
 tMatrix_R binv = alloc_Matrix_R (m, m);
 tVector_R th = alloc_Vector_R (n);
 tVector_I icbas = alloc_Vector_I (m);
 tVector_I irbas = alloc_Vector_I (m);
 tVector_I ibound = alloc_Vector_I (n);
 tVector_R ar = alloc_Vector_R (m);
 tVector_R rr = alloc_Vector_R (n);
 tMatrix_R ctp = alloc_Matrix_R (m, n);
 tVector_R fp = alloc_Vector_R (n);
 tVector_I iflag = alloc_Vector_I (npiece);

 int i = 0, j = 0, k = 0, is = 0, ie = 0, ji = 0, nu = 0,
 ibc = 0, kl = 0, klp1 = 0;
 int iend = 0, iter = 0, irank = 0, kase = 0;
 int ijk = 0, isl = 0, isr = 0, isrn = 0, iel = 0,
 ieln = 0, ier = 0;
 int ipcp1 = 0, istart = 0;
 tNumber_R zl = 0.0, zln = 0.0, zrn = 0.0;
 tNumber_R con = 0.0, conn = 0.0;

 /* Validation of the data before executing the algorithm */
 eLaRc rc = LaRcSolutionFound;
 VALIDATE_BOUNDS ((0 < m) && (m <= n) && !((n == 1) && (m == 1))
 && (1 < npiece));
 VALIDATE_PTRS (ct && f && ap && rp2 && zp && ixl);
 VALIDATE_ALLOC (al && rl && bv && binv && th && icbas && irbas

© 2008 by Taylor & Francis Group, LLC

300 Numerical Linear Approximation in C

 && ibound && ar && rr && ctp && fp && iflag);

 kase = 0;
 for (k = 1; k <= npiece; k++)
 {
 iflag[k] = 1;

 /* Initializing L1pw2 */
 LA_pw2_init (k, npiece, m, n, &is, &ie, ct, f, ctp, fp, ixl);

 /* Calculating the L1 approximations of the "npiece"
 segments */
 nu = ie - is + 1;

 rc = LA_Lone (m, nu, ctp, fp, &irank, &iter, rl, al, &zl);
 if (rc < LaRcOk)
 {
 GOTO_CLEANUP_RC (rc);
 }

 zp[k] = zl;

 /* Mapping initial data for the "npiece" segments */
 for (i = 1; i <= m; i++)
 {
 ap[k][i] = al[i];
 }
 for (j = is; j <= ie; j++)
 {
 ji = j - is + 1;
 rp2[j] = rl[ji];
 }
 }

 /*---Process of balancing the L-One norms----*/
 istart = 1;
 iend = npiece - 1;
 ipcp1 = npiece + 1;
 ixl[ipcp1] = n + 1;

 for (ijk = 1; ijk < n*n; ijk++)
 {
 for (kl = istart; kl <= iend; kl=kl+2)
 {
 klp1 = kl + 1;

© 2008 by Taylor & Francis Group, LLC

Chapter 9: LA_L1pw2 301

 con = fabs (zp[klp1] - zp[kl]);
 isl = ixl[kl];
 isr = ixl[klp1];
 iel = isr - 1;
 if (kl < iend) ier = ixl[kl + 2] - 1;
 if (kl == iend) ier = n;

 /* The case where : -----z[i]<z[i+1] */
 if (zp[kl] < zp[klp1])
 {
 ieln = iel + 1;
 isrn = ieln + 1;
 nu = ieln - isl + 1;
 for (j = isl; j <= ieln; j++)
 {
 ji = j - isl + 1;
 fp[ji] = f[j];
 for (i = 1; i <= m; i++)
 {
 ctp[i][ji] = ct[i][j];
 }
 }

 rc = LA_Lone (m, nu, ctp, fp, &irank, &iter, rl, al,
 &zln);
 if (rc < LaRcOk)
 {
 GOTO_CLEANUP_RC (rc);
 }

 nu = ier - isrn + 1;
 for (j = isrn; j <= ier; j++)
 {
 ji = j - isrn + 1;
 fp[ji] = f[j];
 for (i = 1; i <= m; i++)
 {
 ctp[i][ji] = ct[i][j];
 }
 }

 rc = LA_Lone (m, nu, ctp, fp, &irank, &iter, rr, ar,
 &zrn);
 if (rc < LaRcOk)
 {

© 2008 by Taylor & Francis Group, LLC

302 Numerical Linear Approximation in C

 GOTO_CLEANUP_RC (rc);
 }

 conn = fabs (zrn - zln);
 iflag[kl] = 1;
 iflag[klp1] = 1;
 if (conn > con)
 {
 iflag[kl] = 0;
 iflag[klp1] = 0;
 continue;
 }
 }
 /* The case where : -----z[i]>z[i+1] */
 else if (zp[kl] > zp[klp1])
 {
 isrn = isr - 1;
 ieln = isrn - 1;
 nu = ieln - isl + 1;
 for (j = isl; j <= ieln; j++)
 {
 ji = j - isl + 1;
 fp[ji] = f[j];
 for (i = 1; i <= m; i++)
 {
 ctp[i][ji] = ct[i][j];
 }
 }

 rc = LA_Lone (m, nu, ctp, fp, &irank, &iter, rl, al,
 &zln);
 if (rc < LaRcOk)
 {
 GOTO_CLEANUP_RC (rc);
 }

 nu = ier - isrn + 1;
 for (j = isrn; j <= ier; j++)
 {
 ji = j - isrn + 1;
 fp[ji] = f[j];
 for (i = 1; i <= m; i++)
 {
 ctp[i][ji] = ct[i][j];
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 9: LA_L1pw2 303

 }

 rc = LA_Lone (m, nu, ctp, fp, &irank, &iter, rr, ar,
 &zrn);
 if (rc < LaRcOk)
 {
 GOTO_CLEANUP_RC (rc);
 }

 conn = fabs (zrn - zln);
 iflag[kl] = 1;
 iflag[klp1] = 1;
 if (conn > con)
 {
 iflag[kl] = 0;
 iflag[klp1] = 0;
 continue;
 }
 }
 for (j = isl; j <= ieln; j++)
 {
 ji = j - isl + 1;
 rp2[j] = rl[ji];
 }
 for (j = isrn; j <= ier; j++)
 {
 ji = j - isrn + 1;
 rp2[j] = rr[ji];
 }
 for (i = 1; i <= m; i++)
 {
 ap[kl][i] = al[i];
 ap[klp1][i] = ar[i];
 }
 zp[kl] = zln;
 zp[klp1] = zrn;
 ixl[klp1] = isrn;
 isr = isrn;
 iel = isr - 1;
 }

 is = 2;
 if (istart == 2) is = 1;
 istart = is;
 ibc = 0;

© 2008 by Taylor & Francis Group, LLC

304 Numerical Linear Approximation in C

 for (j = 1; j <= npiece; j++)
 {
 if (iflag[j] != 0) ibc = 1;
 }
 if (ibc == 0)
 {
 GOTO_CLEANUP_RC (LaRcSolutionFound);
 }
 }

CLEANUP:

 free_Vector_R (al);
 free_Vector_R (rl);
 free_Vector_R (bv);
 free_Matrix_R (binv, m);
 free_Vector_R (th);

 free_Vector_I (icbas);
 free_Vector_I (irbas);
 free_Vector_I (ibound);

 free_Vector_R (ar);
 free_Vector_R (rr);

 free_Matrix_R (ctp, m);
 free_Vector_R (fp);
 free_Vector_I (iflag);

 return rc;
}

© 2008 by Taylor & Francis Group, LLC

PART 3

The Chebyshev Approximation

© 2008 by Taylor & Francis Group, LLC

306 Numerical Linear Approximation in C

Chapter 10 Linear Chebyshev Approximation 307

Chapter 11 One-Sided Chebyshev Approximation 347

Chapter 12 Chebyshev Approximation with Bounded
Variables 387

Chapter 13 Restricted Chebyshev Approximation 419

Chapter 14 Strict Chebyshev Approximation 469

Chapter 15 Piecewise Chebyshev Approximation 517

Chapter 16 Solution of Linear Inequalities 545

© 2008 by Taylor & Francis Group, LLC

307

Chapter 10

Linear Chebyshev Approximation

10.1 Introduction

In this chapter and the following four chapters, 5 algorithms for
the discrete linear Chebyshev (L∞ or minimax) approximations are
described. In this chapter, we consider the first of these algorithms,
the (ordinary) linear Chebyshev approximation, which requires that
the Chebyshev or L∞ norm of the residuals (errors) in the
approximation be as small as possible [1, 2].

In real life it is important to know the largest error between the
approximation of a given function and the true value of the function
itself. Hence, it is called the minimax approximation.

Consider the overdetermined system of linear equations

(10.1.1) Ca = f

C = (cij) is a given real n by m matrix of rank k, k ≤ m < n, and f = (fi)
is a given real n-vector. The Chebyshev solution of system (10.1.1) is
the m-vector a = (aj) that minimizes the Chebyshev or the L∞ norm z

(10.1.2) z = maxi|ri|

where ri is the ith residual in (10.1.1), given by

(10.1.3) , i = 1, 2, �, n

The first algorithm for solving the Chebyshev approximation
problem, we are aware of, was by Stiefel [19] for the case when
matrix C in the system Ca = f satisfies the Haar condition, (every m
by m sub-matrix of C is nonsingular). This algorithm is known as the

ri cijaj
j 1=

m

∑ fi�=

© 2008 by Taylor & Francis Group, LLC

308 Numerical Linear Approximation in C

exchange algorithm. It is also known by Cheney ([10], p. 45) as the
ascent method. Later, both Stiefel [20] and Osborne and Watson [15]
showed that the exchange algorithm is exactly equivalent to a simplex
algorithm of a linear programming problem.

Barrodale and Phillips [6, 7] implemented a simplex algorithm for
obtaining the Chebyshev solution of Ca = f using the dual form of the
linear programming formulation of the problem.

Among the other methods that solve the linear Chebyshev
approximation is that of Bartels and Golub [8, 9]. They presented a
numerically stable version of Siefel exchange algorithm [20] and used
an LU decomposition technique for the basis matrix together with an
iterative improvement. In their method matrix C has to be of full rank.

Narula and Wellington [14] developed one algorithm that solves
both the L1 approximation problem (minimum sum of absolute errors
(MSAE) regression) and the Chebyshev approximation problem
(minimization of the maximum absolute error (MMAE) regression).
Their algorithm exploits the similarities between the two problems.

Armstrong and Sklar [5] used the revised simplex method with
multiple pivoting to solve the dual form of the linear programming
problem. They also used an LU decomposition technique and in their
method matrix C is a full rank matrix.

To advance the starting basis in the linear programming solution
for the Chebyshev approximation, Sklar and Armstrong [17] solved
Ca = f first in the L2 (least squares) sense. Then using the
characterization theorem (Section 10.1.1), the initial basis in the linear
programming problem corresponds to the (m + 1) largest residuals in
absolute value of the L2 solution. This method would be advantageous
when the least squares estimate is already available.

Coleman and Li [11] presented a new iterative quadratically
convergent algorithm for solving the linear Chebyshev approximation
problem. In their method the required number of iterations to solve the
problem is insensitive to the problem size and being quadratically
convergent, a solution can be obtained with high accuracy. However,
in their method, at each iteration, a weighted least squares problem is
solved. They showed that their method converges in fewer steps than
that of Barrodale and Phillips [7].

Pinar and Elhedhli [16] presented an algorithm based on the
application of quadratic penalty functions to a primal linear

© 2008 by Taylor & Francis Group, LLC

Chapter 10: Linear Chebyshev Approximation 309

programming formulation of the Chebyshev approximation problem.
Comparisons were made between the Barrodale and Phillips [7] and
the predictor-corrector primal-dual interior point algorithms.

We obtain here the Chebyshev solution of the overdetermined
system of linear equations Ca = f using the dual form of the linear
programming formulation of the problem. Our method differs in
significant points from that of Barrodale and Phillips [6] as explained
in Section 10.5. However, like [6], our algorithm needs minimum
computer storage and imposes no conditions on the coefficient matrix,
such as the Haar condition or the full rank condition.

The algorithm presented here is in 3 parts. In part 1, a numerically
stable initial basic solution is obtained. The initial basic solution may
be feasible or not. Also, if C is not of full rank, the rank of matrix C is
determined.

In part 2, if the initial basic solution is not feasible, it is made
feasible by applying a number of Gauss Jordan elimination steps. To
end part 2, the marginal costs as well as the objective function z are
calculated. The objective function z may not be > 0. If z < 0, it is
made positive with a small effort.

Part 3 consists of a modified simplex algorithm that makes use of
the kind of asymmetry of the simplex tableau.

In Section 10.1.1, the characterization of the Chebyshev solution
is outlined. In Section 3.8.2, we outlined the formulation of the
Chebyshev problem as a linear programming problem. For the sake of
completeness, we present this formulation again in Section 10.2. In
Section 10.3, the algorithm is described and a numerical example is
solved in detail. In Section 10.4, a significant property of the
Chebyshev approximation is described. In Section 10.5, numerical
results and comments are given.

10.1.1 Characterization of the Chebyshev solution

For the characterization theorems of the residuals for an optimum
solution, see for example, Appa and Smith [3] and Watson [22]. The
most important characteristic is described as follows. If matrix C in
Ca = f has rank k, k ≤ m, then there are at least (k + 1) residuals
having values ±z, where z is the optimum norm solution. See Sections
2.3.1 and 10.4.

© 2008 by Taylor & Francis Group, LLC

310 Numerical Linear Approximation in C

10.2 Linear programming formulation of the problem

The Chebyshev solution problem of system Ca = f was first
formulated as a linear programming problem in both the primal and
the dual formats by Wagner [21]. Let h ≥ 0, be the value z = maxi|ri| in
(10.1.2). The primal form of the linear programming problem is

minimize h

subject to

ri ≤ h and ri ≥ �h, i = 1, 2, �, n

From (10.1.3) the above two inequalities reduce to

, i = 1, 2, �, n

In vector-matrix form, they become

Ca + he ≥ f
�Ca + he ≥ �f

h ≥ 0 and aj, j = 1, 2, �, m, unrestricted in sign

e is an n-vector, each element of which is 1. That is

minimize h

subject to

(10.2.1)

h ≥ 0 and aj, j = 1, 2, �, m, unrestricted in sign

It is much easier to solve the dual form of this formulation

(10.2.2a) maximize z = [fT �fT]b

subject to

(10.2.2b)

h� cijaj
j 1=

m

∑ fi� h≤ ≤

C e
C� e

a
h

f
f�

≥

CT C� T

eT eT
b em 1+=

© 2008 by Taylor & Francis Group, LLC

Chapter 10: Linear Chebyshev Approximation 311

(10.2.2c) bi ≥ 0, i = 1, 2, �, 2n

where em+1 is an (m + 1)-vector, which is the last column in an
(m + 1)-unit matrix, eT is an n-row vector whose elements are 1�s, and
the 2n-vector b = (bi).

For simplicity of presentation, we write (10.2.2b) in the form

(10.2.2d) Db = em+1

and let the columns of matrix D be denoted by Dj, j = 1, 2, �, 2n.
To simplify the analysis, assume that rank(C) = m and thus

rank(D) = (m + 1). We construct a simplex tableau for problem
(10.2.2), which is for (m + 1) constraints in 2n variables. We call this
the large tableau, because it has 2n variables. This is to distinguish it
from the condensed tableaux of (m + 1) constraints in only n
variables, described later.

Let B denote the basis matrix for problem (10.2.2). It would be of
rank (m + 1). Let also (yi) be the columns forming the simplex
tableau, (zj � fj) the marginal costs for column (yj), bB the basic
solution and z the objective function. Let also the elements of the
2n-vector [fT �fT] of (10.2.2a), associated with the basic variables be
the (m + 1)-vector fB. Then as usual, we have for j = 1, 2, �, 2n.

(10.2.3a) yj = B�1Dj
(10.2.3b) (zj � fj) = fB

Tyj � fj
(10.2.3c) bB = B�1em+1
(10.2.3d) z = fB

TbB

10.2.1 Property of the matrix of constraints

Note the kind of asymmetry in the right and left halves of matrix
D in (10.2.2d). This kind of asymmetry enables us to use a condensed
simplex tableau for this problem, as explained in Section 10.3. From
(10.2.2b), we note that for j = 1, 2, �, n

(10.2.4)

where Cj
T is column j of CT.

Dj
Cj

T

1
 and Dj n+

C� j
T

1
= =

© 2008 by Taylor & Francis Group, LLC

312 Numerical Linear Approximation in C

We have Cj
T as part of vector Dj, and �Cj

T as part of vector Dj+n,
for j = 1, 2, �, n. Hence, from (10.2.4)

(10.2.5) Dj + Dj+n = 2em+1, 1 ≤ j ≤ n

Definition

Because there is a kind of asymmetry between the two halves of
the matrix of constraints D in (10.2.2b), we define any column j,
1 ≤ j ≤ n, and the column (j + n) in this matrix as two corresponding
columns.

Lemma 10.4 and 10.5 below give useful relations between any
two corresponding columns in the simplex tableau and between their
marginal costs. Thus we use a condensed simplex tableau having
(m + 1) constraints in only n variables.

Lemma 10.1

At any stage of the computation, the basic solution vector bB
equals the (m + 1)th column of B�1.

This follows directly from (10.2.3c), since em+1 is the (m + 1)th

column of an (m + 1)-unit matrix.

Lemma 10.2

The optimum solution a and z for problem (10.2.2) is given by

or in effect

(aT z) = fB
TB�1

Proof:

To prove the first equation, we observe that the (m + 1) linearly
independent rows of matrix BT are themselves the (m + 1) rows from
the l.h.s. matrix of (10.2.1), and that the (m + 1) elements of fB are the
corresponding elements from the r.h.s. of (10.2.1). We also observe
that when the optimum solution is reached, h = z and the inequalities
in (10.2.1) become equalities.

By taking the transpose of the first equation, the second equation
follows.

BT a
z

fB=

© 2008 by Taylor & Francis Group, LLC

Chapter 10: Linear Chebyshev Approximation 313

Lemma 10.3

At any stage of the computation, the algebraic sum of the elements
of the basic solution bB equals 1.

Proof:

Consider the last equation in the system (10.2.2b), which is

(eT, eT)b = 1

Since the elements of the vector (eT, eT) are 1�s, this inner product
equals the sum of the elements of vector b. Then since the non-basic
elements of b are all 0�s, the lemma is proved.

This lemma is useful in checking the simplex tableau in the

Lemma 10.4

1 ≤ i, j ≤ 2n, should not appear together in any basis.

Lemma 10.5

(10.2.6a) yi + yj = 2bB

and

(10.2.6b) (zi � fi) + (zj � fj) = 2z

Proof:

By multiplying (10.2.5) by B�1, from (10.2.3a, c), (10.2.6a) is
proved. Also, from (10.2.3a-d) and that fi = �fj, (10.2.6b) is proved.

Let us assume that we have obtained an initial basic solution that
is not feasible; that is, one or more elements of the basic solution bB is
negative. Consider the following lemma.

Lemma 10.6

Let there be one or more elements of the basic solution bB that is
< 0. Let bBs, 1 ≤ s ≤ (m + 1), be one of those elements and let i be the
basic column associated with bBs. Let j be the corresponding column
to the basic column i, i.e., |i � j| = n. Then if column i is replaced by
column j in the basis, the new element bBs

(n) will be > 0. Moreover,

© 2008 by Taylor & Francis Group, LLC

process of the solution of the problem. See Tableaux 10.3.1-5 below.

See for example, Lemma 4.3 in [15].

Any two corresponding columns, i and j, |i � j| = n, where

314 Numerical Linear Approximation in C

the elements of the new basic solution bBk
(n)

 k ≠ s, each will keep the
sign of its old value.

Proof:

Since we assume that column i is the basic column associated with
bBs

(10.2.7) yi = (0, �, 1, �, 0)T

where the 1 is in the s position. If now column j replaces column i in
the basis, and we apply a Gauss-Jordan step to the simplex tableau, we
get the following. The pivot to change the tableau is ysj. Then after the
Gauss-Jordan step we get

(10.2.8a) bBs
(n) = bBs/ysj

(10.2.8b) bBk
(n) = bBk � (ykj/ysj)bBs, k ≠ s

From (10.2.6a) and (10.2.7), ysj = 2bBs � 1 and ykj = 2bBk, k ≠ s.
Then by substituting the values of ysj and ykj into (10.2.8b), it is easy
to show that (10.2.8a, b) become

(10.2.9a) bBs
(n) = bBs/ysj

(10.2.9b) bBk
(n) = �bBk/ysj, k ≠ s

As bBs is assumed negative, ysj = 2bBs � 1 is also negative. Thus
in (10.2.8a), bBs

(n) > 0. In (10.2.9b), the parameters bBk
(n), k ≠ s, each

has the same sign as its old value bBk. The lemma is thus proved.

Lemma 10.7

(a) Consider any basic solution, feasible or not. Then there
corresponds two basis matrices denoted by B(1) and B(2), each
giving the same basic solution. Every column in one has its
corresponding column in the other basis, arranged in the same
order.

(b) The corresponding two values of z are equal in magnitude but
opposite in sign.

Proof:

Let B(1) be given in partitioned form as B(1) = (H/h), where H is
an m by (m + 1) matrix and h is an (m + 1)-row vector, then from
(10.2.2b), and since no two corresponding columns appear together in
any basis, B(2) = (�H/h). Hence, if B(1)

�1 = (G | g), where G is an

© 2008 by Taylor & Francis Group, LLC

Chapter 10: Linear Chebyshev Approximation 315

(m + 1) by m matrix and g an (m + 1)-vector, then B(2)
�1 = (�G | g).

For B(1), from (10.2.3c), the basic solution is bB(1) =
(G|g)em+1 = g. For B(2), the basic solution is bB(2) = (�G|g)em+1 = g,
which proves part (a) of the lemma.

To prove part (b) of the lemma, if fB(1) is associated with B(1),
then from (10.2.3b), �fB(1) would be associated with B(2). For B(1),
z(1) = fB(1)

Tg, and for B(2), z(2) = �fB(1)
Tg = �z(1) which proves (b) of

the lemma.

Lemma 10.8

Let us use (10.2.3a, b) to construct two simplex tableaux T(1) and
T(2) that correspond respectively to the bases B(1) and B(2) defined in
Lemma 10.7. Let also j be the corresponding column to column i,
where 1 ≤ i, j ≤ 2n. Then we have the following:
(1) yi in T(1) equals yj in T(2), and
(2) the marginal cost (zi � fi) in T(1) = �(zj � fj) in T(2).

Proof:

For T(1), B(1)
�1 = (G | g), and for T(2), B(2)

�1 = (�G | g), from
(10.2.4) and (10.2.3a)

yi = (GCi
T + g)

and for T(2)

yj = (GCi
T + g) = yi

which proves the first part of the lemma.

The second part is established by (10.2.3b), the above equation
and the facts that fB(2) = �fB(1) and fj = �fi.

10.3 Description of the algorithm

We construct a condensed simplex tableau for problem (10.2.2),
for (m + 1) constraints in only n variables. An n-index indicator vector
whose elements are +1 or �1 is needed. If column i, 1 ≤ i ≤ n, is in the
condensed tableau, index i of this vector has the value +1. If the
corresponding column to column i is in the condensed tableau, index i
has a value �1. The algorithm is in 3 parts.

In part 1, we obtain an initial basic solution, feasible or not. This is

© 2008 by Taylor & Francis Group, LLC

316 Numerical Linear Approximation in C

simply done by performing a finite number of Gauss-Jordan
elimination steps to the initial data. We use partial pivoting, where the
pivot is the largest element in absolute value in row i of tableau
(i � 1), i = 1, 2, �, m+1. Tableau 0 denotes the initial data.

If rank(C) = k < m, a row (or more) of CT is linearly dependent on
one or more of the preceding rows, a zero row in the tableau is
obtained and is discarded from the following tableaux. An exception
from this rule is the last row in the tableau. The simplex tableau
becomes for (k + 1) constraints in n variables.

In part 2 of the algorithm, we examine the elements of the basic
solution bB. If one or more elements in bB is < 0, the initial basic
solution is not feasible. For each basic column i associated with a
negative element of bB, we apply Lemma 10.6. We make use of
(10.2.6a) and replace the column yi by its corresponding column yj.
We reverse the sign of the element in vector fB associated with this
column. According to Lemma 10.6, by applying a Gauss-Jordan step
after each replacement, the new basic solution will be feasible. The
calculation of the marginal costs (zi � fi) follows from (10.2.3b), and
the objective function z from (10.2.3d).

If z < 0, we use Lemmas 10.7 and 10.8, and replace the columns
of the basis matrix by its corresponding columns. We mainly keep the
simplex tableau unchanged, except for the fi and fB values, the
marginal costs and z. Such parameters have their signs reversed. We
now have a basic feasible solution and z > 0. This ends part 2 of the
algorithm.

Part 3 is the ordinary simplex algorithm. The difference is in the
choice of the non-basic column that enters the basis. It has the most
negative marginal cost among the non-basic columns in the
condensed tableau and their corresponding columns. Relation
(10.2.6b) is used for calculating the marginal costs of the
corresponding columns. Consider the following numerical example.

Example 10.1

This example is, in effect, Example 5.1 solved in Chapter 5 for the
L1 approximation. Matrix C is a 5 by 2 matrix of rank 2. Obtain the
Chebyshev solution for the system

© 2008 by Taylor & Francis Group, LLC

Chapter 10: Linear Chebyshev Approximation 317

a1 + a2 = �3
a1 � a2 = �1

(10.3.1) a1 + 2a2 = �7
2a1 + 4a2 = �11.1
3a1 + a2 = �7.2

The Initial Data and the condensed tableaux are shown for this
example. In the initial data and in Tableaux 10.3.1 and 10.3.2, the
pivot is chosen as the largest element in absolute value in row i of
tableau (i � 1). The pivot element in each tableau is bracketed.

Initial Data

fT �3 �1 �7 �11.1 �7.2
B bB D1 D2 D3 D4 D5

 ������������� ����������������������
0 1 1 1 2 (3)
0 1 �1 2 4 1
1 1 1 1 1 1

 ������������� ����������������������

Tableau 10.3.1 (part 1)

fT �3 �1 �7 �11.1 �7.2
fB B bB D1 D2 D3 D4 D5

 ������������� ����������������������
�7.2 D5 0 1/3 1/3 1/3 2/3 1

0 2/3 �4/3 5/3 (10/3) 0
1 2/3 2/3 2/3 1/3 0

 ������������� ����������������������

Tableau 10.3.2

fT �3 �1 �7 �11.1 �7.2
fB B bB D1 D2 D3 D4 D5

 ������������� ����������������������
�7.2 D5 0 0.2 0.6 0 0 1

�11.1 D4 0 0.2 �0.4 0.5 1 0
1 0.6 (0.8) 0.5 0 0

 ������������� ����������������������

Tableau 10.3.3 gives an initial basic solution bB that is not feasible

© 2008 by Taylor & Francis Group, LLC

318 Numerical Linear Approximation in C

since the first element of bB is < 0. We make use of Lemma 10.6.
Hence, y5, which is associated with this element, is replaced by its
corresponding vector y10 and f5 is replaced by f10, which = �f5. From
(10.2.6a), y10 = 2bB � y5, or y10 = (�5/2, 1, 5/2)T. A Gauss-Jordan
step is performed giving tableau 10.3.4. In this tableau the marginal
costs and z are also calculated. Though the initial basic solution bB is
feasible, yet z < 0. We use Lemma 10.7 and get Tableau 10.3.4*,
where z > 0.

Tableau 10.3.3

fT �3 �1 �7 �11.1 �7.2
fB B bB D1 D2 D3 D4 D5

 ������������� ����������������������
�7.2 D5 �3/4 �1/4 0 �3/8 0 1

�11.1 D4 1/2 1/2 0 3/4 1 0
�1 D2 5/4 3/4 1 5/8 0 0

 ������������� ����������������������

Tableau 10.3.4 (part 2)

fT �3 �1 �7 �11.1 �7.2
fB B bB D1 D2 D3 D4 D10

 ������������� ����������������������
7.2 D10 0.3 0.1 0 3/20 0 1

�11.1 D4 0.2 0.4 0 3/5 1 0
�1 D2 0.5 0.5 1 1/4 0 0

 ������������� ����������������������
z = �0.56 �1.22 0 1.17 0 0

Tableau 10.3.4*

fT �3 �1 �7 �11.1 �7.2
fB B bB D6 D7 D8 D9 D5

 ������������� ����������������������
�7.2 D5 0.3 0.1 0 3/20 0 1
11.1 D9 0.2 0.4 0 (3/5) 1 0

1 D7 0.5 0.5 1 1/4 0 0
 ������������� ����������������������

z = 0.56 1.22 0 �1.17 0 0

© 2008 by Taylor & Francis Group, LLC

Chapter 10: Linear Chebyshev Approximation 319

8 � f8) is the most
negative marginal cost, and D8 replaces D9 in the basis, which gives
tableau 10.3.5.

In each of Tableau 10.3.5 and its corresponding part, we search for
the most negative marginal cost. We find that (z6 - f6) is the most
negative marginal cost, which from (10.2.6b), = 2z � (z1 � f1) = �0.1.
Hence, in Tableau 10.3.5, D1 replaces D6 and a Gauss-Jordan step is
performed, giving tableau 10.3.6, which gives the optimum
Chebyshev norm with z = 1. Note that in all the tableaux, the
algebraic sum of the elements of bB equals 1 (Lemma 10.3).

Tableau 10.3.5 (part 3)

fT �3 �1 �7 �11.1 �7.2
fB B bB D6 D7 D8 D9 D5

 ������������� ����������������������
�7.2 D5 1/4 0 0 0 �1/4 1
7 D8 1/3 2/3 0 1 5/3 0
1 D7 0.42 1/3 1 0 �0.42 0

 ������������� ����������������������
z = 0.95 2 0 0 1.95 0

Tableau 10.3.6

fT �3 �1 �7 �11.1 �7.2
fB B bB D1 D7 D8 D9 D5

 ������������� ����������������������
�3 D1 1/2 1 0 0 �1/2 2
7 D8 1/3 0 0 1 5/3 0
1 D7 1/6 0 1 0 �1/6 �1

 ������������� ����������������������
z = 1 0 0 0 1.9 0.2

The Chebyshev solution of system (10.3.1) is obtained by solving
the equations that correspond to the basis in tableau 10.3.6, namely
D1, D8 and D7. We observe that D8 and D7 are the corresponding
columns of D3 and D2 respectively; that is, from Lemma 10.2

© 2008 by Taylor & Francis Group, LLC

In tableau 10.3.4* and its corresponding part, (z

320 Numerical Linear Approximation in C

a1 + a2 + z = �3
�a1 � 2a2 + z = 7
�a1 + a2 + z = 1

or

a1 + a2 + 3 = �z
(10.3.2) �a1 � 2a2 � 7 = �z

�a1 + a2 � 1 = �z

By comparing the above 3 equations with their counterparts in the
set (10.3.1), we find that the residuals in these 3 equations are
±z = ±1. By replacing z with 1.0 (from Tableau 10.3.6), we get

z = 1, a1 = �2, a2 = �2

However, in the software of this chapter, a and z are calculated from
the second equation of Lemma 10.2.

Nevertheless, the set (10.3.2) is known as the reference equation
set for this example, as explained in the following section.

10.4 A significant property of the Chebyshev approximation

Assume that matrix C of Ca = f in (10.1.1) is of rank m. It was
noted that the basis matrix B is of rank (m + 1); that is, (m + 1)
linearly independent columns in the simplex tableau for problem
(10.2.2) form the basis matrix B. These columns correspond to
(m + 1) linearly independent equations in system (10.2.1) (with the
inequality sign made an equality sign), known as the reference
equation set. As noted in the previous section, the equation in Lemma
10.2, which is equation (10.3.2), is a reference equation set.

A significant property of the Chebyshev approximation is stated
as follows. The residuals ri of the (m + 1) equations in the reference
equation set each has the value ±z, arranged in any order, where z is
the optimum Chebyshev norm. The residuals of all other equations of
the set Ca = f, in absolute value are ≤ z. If rank(C) = k < m, then the
reference equation set consists of (k + 1) equations and the residuals
of (k + 1) equations each has the value ±z.

© 2008 by Taylor & Francis Group, LLC

Chapter 10: Linear Chebyshev Approximation 321

10.4.1 The equioscillation property of the Chebyshev norm

If n (> m) discrete points in the x-y plane are being approximated
by a plane curve in the Chebyshev norm, the residuals for (m + 1) of
these points will be ±z in an oscillating order, where z is the optimum
Chebyshev norm. A residual ri = +z, is followed by residual ri+1 = �z,
followed by ri+2 = �z and so on, where i, i+1, i+2, �, are consecutive
points that correspond to the reference set. The residuals of all other
points in the discrete set in absolute value ≤ z.

The above is illustrated in Figure 2-1, where z = 1.797 and the
optimum values r3 = +1.797, r4 = �1.797, r5 = +1.797, r8 = �1.797
and the reference equation set involves equations 3, 4, 5 and 8 of
system describe by equation (2.2.2). Hence, this property is known as
the equioscillation property of the Chebyshev norm.

10.5 Numerical results and comments

LA_Linf() implements this algorithm [2]. DR_Linf() tests the
same 8 examples that were solved in Chapter 6 for the one-sided L1
approximation problem. Table 10.5.1 shows the results of 3 of the
examples, computed in single-precision. These 3 results are typical of
the other test cases.

Table 10.5.1

��
Example C(n×m) Iterations z Unique

��
1 4 × 2 5 10.0 no
2 10× 5 9 1.7778 yes
3 25×10 23 0.0071 no

For each example, the number of iterations and the optimum
Chebyshev norm z are shown.

The Chebyshev solution is not unique when matrix C is a rank
deficient matrix. Also, when the optimum basic feasible solution bB is
degenerate, i.e., bB has one or more zero elements, the Chebyshev
solution is most probably not unique.

The algorithm of Barrodale and Phillips [6, 7] is the nearest to
ours. Yet, it differs from ours in significant points. They introduced

© 2008 by Taylor & Francis Group, LLC

322 Numerical Linear Approximation in C

(m + 2) artificial variables in the linear programming problem, which
were used as slack variables. In our algorithm no artificial variables
are needed. In part 1 of our algorithm it is possible to obtain a
numerically stable basic solution, which is always desirable in any
iterative procedure. Also, we do not need to calculate the marginal
costs and objective function z until the end of part 2 of the algorithm.
In our algorithm, if rank(C) = k < m, the simplex tableaux would
correspond to (k + 1) constraints in n variables and the amount of
computation is considerably reduced. On the other hand, in this case
in [6], some of the slack variables will persist in all the tableaux.

Spath [18] collected data (matrix C and vector f) for 42 examples.
He tested these examples using different routines, after converting
them to FORTRAN 77. He compared the routines with respect to
computer storage, computation time and accuracy of results. Among
these algorithms are those of Bartels and Golub [9], Barrodale and
Phillips [7], ours [2] and Armstrong and Kung [4].

Spath concluded that the method of Armstrong and Kung [4]
contains some errors, which yielded incorrect results for some test
cases. According to Grant and Hopkins [12], if working correctly, it is
faster than that of Barrodale and Phillips [7] only for small values of
m.

The total CPU time on the IBM PC AT 102, for the 42 examples
were 34, 46, 56 and 73 seconds respectively for the methods of
Barrodale and Phillips [7], ours [2], Bartels and Golub [9] and
Armstrong and Kung [4]. For pseudo-randomly generated data, the
method of Barrodale and Phillips [7] took longer CPU time than the
other 3 methods in 3 out of 4 cases (values of m and n), and nearly the
same value for the 4th case. Finally, only the methods of Barrodale
and Phillips [7] and ours [2] accommodate rank deficient coefficient
matrix C. Spath also stated that the results are sensitive to the value of
the computer tolerance parameter EPS.

References

1. Abdelmalek, N.N., Chebyshev solution of overdetermined
systems of linear equations, BIT, 15(1975)117-129.

© 2008 by Taylor & Francis Group, LLC

Chapter 10: Linear Chebyshev Approximation 323

2. Abdelmalek, N.N., A computer program for the Chebyshev
solution of overdetermined systems of linear equations,
International Journal for Numerical Methods in Engineering,
10(1976)1197-1202.

3. Appa, G. and Smith, C., On L1 and Chebyshev estimation,
Mathematical Programming, 5(1973)73-87.

4. Armstrong, R.D. and Kung, D.S., Algorithm AS 135: Min-
Max estimates for a linear multiple regression problem,
Applied Statistics, 28(1979)93-100.

5. Armstrong, R.D. and Sklar, M.G., A linear programming
algorithm for curve fitting in the L∞ norm, Numerical
Functional Analysis and Optimization, 2(1980)187-218.

6. Barrodale, I. and Phillips, C., An improved algorithm for
discrete Chebyshev linear approximation, Proceedings of the
Fourth Manitoba conference on Numerical Mathematics,
Hartnell, B.L. and Williams, H.C. (eds.), Winnipeg, Manitoba,
Canada, pp. 177-190, 1975.

7. Barrodale, I. and Phillips, C., Algorithm 495: Solution of an
overdetermined system of linear equations in the Cheby-
shev norm, ACM Transactions on Mathematical Software,
1(1975)264-270.

8. Bartels, R.H. and Golub, G.H., Stable numerical methods for
obtaining the Chebyshev solution of an overdetermined
system of equations, Communications of ACM, 11(1968)401-
406.

9. Bartels, R.H. and Golub, G.H., Algorithm 328: Chebyshev
solution to an overdetermined linear system, Communications
of ACM, 11(1968)428-430.

10. Cheney, E.W., Introduction to Approximation Theory,
McGraw-Hill, New York, 1966.

11. Coleman, T.F. and Li, Y., A global and quadratically
convergent method for linear L∞ problems, SIAM Journal on
Numerical Analysis, 29(1992)1166-1186.

12. Grant, P.M. and Hopkins, T.R., A remark on algorithm AS
135: Min-Max estimates for linear multiple regression
problems, Applied Statistics, 32(1983)345-347.

13. Hadley, G., Linear Programming, Addison-Wesley, Reading,
MA, 1962.

© 2008 by Taylor & Francis Group, LLC

324 Numerical Linear Approximation in C

14. Narula, S.C. and Wellington, J.F., An efficient algorithm for
the MSAE and the MMAE regression problems, SIAM
Journal on Scientific and Statistical Computing, 9(1988)717-
727.

15. Osborne, M.R. and Watson, G.A., On the best linear
Chebyshev approximation, Computer Journal, 10(1967)172-
177.

16. Pinar, M.C., and Elhedhli, S., A penalty continuation method
for the l∞ solution of overdetermined linear systems, BIT �
Numerical Mathematics, 38(1998)127-150.

17. Sklar, M.G. and Armstrong, R.D., Least absolute value and
Chebyshev estimation utilizing least squares results, Mathem-
atical Programming, 24(1982)346-352.

18. Spath, H., Mathematical Algorithms for Linear Regression,
Academic Press, English Edition, London, 1991.

19. Stiefel, E., Uber diskrete und lineare Tschebyscheff-
approximation, Numerische Mathematik, 1(1959)1-28.

20. Stiefel, E., Note on Jordan elimination, linear programming
and Tchebycheff approximation. Numerische Mathematik,
2(1960)1-17.

21. Wagner, H.M., Linear programming techniques for regression
analysis, Journal of American Statistical Association,
54(1959)206-212.

22. Watson, G.A., Approximation Theory and Numerical
Methods, John Wiley & Sons, New York, 1980.

© 2008 by Taylor & Francis Group, LLC

Chapter 10: DR_Linf 325

10.6 DR_Linf

/*---
DR_Linf

This is a driver for the function LA_Linf(), which solves an
overdetermined system of linear equations in the L-infinity or the
Chebyshev norm.

The overdetermined system has the form

 c*a = f

"c" is a given real n by m matrix of rank k, k <= m < n.
"f" is a given real n vector.
"a" is the solution m vector.

This driver contains the 8 examples whose results are given in the
text.
---*/

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define N1 4
#define M1 2
#define N2 5
#define M2 3
#define N3 6
#define M3 3
#define N4 7
#define M4 3
#define N5 8
#define M5 4
#define N6 10
#define M6 5
#define N7 25
#define M7 10
#define N8 8
#define M8 4

void DR_Linf (void)
{
 /*--

© 2008 by Taylor & Francis Group, LLC

326 Numerical Linear Approximation in C

 Constant matrices/vectors
 --*/
 static tNumber_R c1init[N1][M1] =
 {
 { 0.0, -2.0 },
 { 0.0, -4.0 },
 { 1.0, 10.0 },
 {-1.0, 15.0 }
 };

 static tNumber_R c2init[N2][M2] =
 {
 { 1.0, 2.0, 0.0 },
 {-1.0, -1.0, 0.0 },
 { 1.0, 3.0, 0.0 },
 { 0.0, 1.0, 0.0 },
 { 0.0, 0.0, 1.0 }
 };

 static tNumber_R c3init[N3][M3] =
 {
 { 0.0, -1.0, 0.0 },
 { 1.0, 3.0, -4.0 },
 { 1.0, 0.0, 0.0 },
 { 0.0, 0.0, 1.0 },
 {-1.0, 1.0, 2.0 },
 { 1.0, 1.0, 1.0 }
 };

 static tNumber_R c4init[N4][M4] =
 {
 { 1.0, 0.0, 1.0 },
 { 1.0, 2.0, 2.0 },
 { 1.0, 2.0, 0.0 },
 { 1.0, 1.0, 0.0 },
 { 1.0, 0.0, -1.0 },
 { 1.0, 0.0, 0.0 },
 { 1.0, 1.0, 1.0 }
 };

 static tNumber_R c5init[N5][M5] =
 {
 { 1.0, -3.0, 9.0, -27.0 },
 { 1.0, -2.0, 4.0, -8.0 },
 { 1.0, -1.0, 1.0, -1.0 },

© 2008 by Taylor & Francis Group, LLC

Chapter 10: DR_Linf 327

 { 1.0, 0.0, 0.0, 0.0 },
 { 1.0, 1.0, 1.0, 1.0 },
 { 1.0, 2.0, 4.0, 8.0 },
 { 1.0, 3.0, 9.0, 27.0 },
 { 1.0, 4.0, 16.0, 64.0 }
 };

 static tNumber_R c6init[N6][M6] =
 {
 { 1.0, 0.0, 0.0, 0.0, 0.0 },
 { 0.0, 1.0, 0.0, 0.0, 0.0 },
 { 0.0, 0.0, 1.0, 0.0, 0.0 },
 { 0.0, 0.0, 0.0, 1.0, 0.0 },
 { 0.0, 0.0, 0.0, 0.0, 1.0 },
 { 1.0, 1.0, 1.0, 1.0, 1.0 },
 { 0.0, 1.0, 1.0, 1.0, 1.0 },
 {-1.0, 0.0, -1.0, -1.0, -1.0 },
 { 1.0, 1.0, 0.0, 1.0, 1.0 },
 { 1.0, 1.0, 1.0, 0.0, 1.0 }
 };

 static tNumber_R c8init[N8][M8] =
 {
 { 1.0, 1.0, 1.0, 1.0 },
 { 1.0, 2.0, 4.0, 4.0 },
 { 1.0, 3.0, 9.0, 9.0 },
 { 1.0, 4.0, 16.0, 16.0 },
 { 1.0, 5.0, 25.0, 25.0 },
 { 1.0, 6.0, 36.0, 36.0 },
 { 1.0, 7.0, 49.0, 49.0 },
 { 1.0, 8.0, 64.0, 64.0 }
 };

 static tNumber_R f1[N1+1] =
 { NIL,
 -12.0, 6.0, 0.0, 5.0
 };

 static tNumber_R f2[N2+1] =
 { NIL,
 1.0, 2.0, 1.0, -3.0, 0.0
 };

 static tNumber_R f3[N3+1] =
 { NIL,

© 2008 by Taylor & Francis Group, LLC

328 Numerical Linear Approximation in C

 1.0, 2.0, 3.0, 2.0, 2.0, 4.0
 };

 static tNumber_R f4[N4+1] =
 { NIL,
 0.0, -2.0, 1.0, -1.0, 5.0, 7.0, 0.0
 };

 static tNumber_R f5[N5+1] =
 { NIL,
 3.0, -3.0, -2.0, 0.0, 7.0, -1.0, 5.0, 2.0
 };

 static tNumber_R f6[N6+1] =
 { NIL,
 1.0, -1.0, 0.0, -1.0, 1.0, 0.0, 2.0, 3.0, -3.0, -2.0
 };

 static tNumber_R f7[N7+1] =
 { NIL,
 0.0872673, 0.0872794, 0.0873029, 0.0873315, 0.0873576,
 0.3491184, 0.3498802, 0.3513824, 0.3532572, 0.3550109,
 0.6111334, 0.6150641, 0.6230824, 0.6336395, 0.6441493,
 0.8733883, 0.8841621, 0.9071868, 0.9400757, 0.9766021,
 1.135895, 1.157550, 1.206257, 1.283258, 1.384432
 };

 static tNumber_R f8[N8+1] =
 { NIL,
 2.0, 2.5, 2.0, 6.5, 3.5, 4.5, 6.0, 7.0
 };

 /*--
 Variable matrices/vectors
 --*/
 tMatrix_R ct = alloc_Matrix_R (MMc_COLS, NN_ROWS);
 tVector_R f = alloc_Vector_R (NN_ROWS);
 tVector_R r = alloc_Vector_R (NN_ROWS);
 tVector_R a = alloc_Vector_R (MMc_COLS);
 tMatrix_R binv = alloc_Matrix_R (MMc_COLS, MMc_COLS);
 tVector_R bv = alloc_Vector_R (MMc_COLS);
 tVector_I ibound = alloc_Vector_I (NN_ROWS);
 tVector_I icbas = alloc_Vector_I (MMc_COLS);
 tVector_I irbas = alloc_Vector_I (MMc_COLS);
 tMatrix_R c7 = alloc_Matrix_R (N7, M7 + 1);

© 2008 by Taylor & Francis Group, LLC

Chapter 10: DR_Linf 329

 tMatrix_R c1 = init_Matrix_R (&(c1init[0][0]), N1, M1);
 tMatrix_R c2 = init_Matrix_R (&(c2init[0][0]), N2, M2);
 tMatrix_R c3 = init_Matrix_R (&(c3init[0][0]), N3, M3);
 tMatrix_R c4 = init_Matrix_R (&(c4init[0][0]), N4, M4);
 tMatrix_R c5 = init_Matrix_R (&(c5init[0][0]), N5, M5);
 tMatrix_R c6 = init_Matrix_R (&(c6init[0][0]), N6, M6);
 tMatrix_R c8 = init_Matrix_R (&(c8init[0][0]), N8, M8);

 int iter, irank;
 int i, j, k, m, n, Iexmpl;
 tNumber_R d, dd, ddd, e, ee, eee, z;

 eLaRc rc = LaRcOk;

 for (j = 1; j <= 5; j++)
 {
 d = 0.15* (j-3);
 dd = d*d;
 ddd = d*dd;
 for (i = 1; i <= 5; i++)
 {
 e = 0.15* (i-3);
 ee = e*e;
 eee = e*ee;
 k = 5* (j-1) + i;
 c7[k][1] = 1.0;
 c7[k][2] = d;
 c7[k][3] = e;
 c7[k][4] = dd;
 c7[k][5] = ee;
 c7[k][6] = e*d;
 c7[k][7] = ddd;
 c7[k][8] = eee;
 c7[k][9] = dd*e;
 c7[k][10] = ee*d;
 }
 }

 prn_dr_bnr ("DR_Linf, Chebyshev Solution of an Overdetermined "
 "System of Linear Equations");

 for (Iexmpl = 1; Iexmpl <= 8; Iexmpl++)
 {
 switch (Iexmpl)

© 2008 by Taylor & Francis Group, LLC

330 Numerical Linear Approximation in C

 {

 case 1:
 n = N1;
 m = M1;
 for (i = 1; i <= n; i++)
 {
 f[i] = f1[i];
 for (j = 1; j <= m; j++) ct[j][i] = c1[i][j];
 }
 break;

 case 2:
 n = N2;
 m = M2;
 for (i = 1; i <= n; i++)
 {
 f[i] = f2[i];
 for (j = 1; j <= m; j++) ct[j][i] = c2[i][j];
 }
 break;

 case 3:
 n = N3;
 m = M3;
 for (i = 1; i <= n; i++)
 {
 f[i] = f3[i];
 for (j = 1; j <= m; j++) ct[j][i] = c3[i][j];
 }
 break;

 case 4:
 n = N4;
 m = M4;
 for (i = 1; i <= n; i++)
 {
 f[i] = f4[i];
 for (j = 1; j <= m; j++) ct[j][i] = c4[i][j];
 }
 break;

 case 5:
 n = N5;
 m = M5;

© 2008 by Taylor & Francis Group, LLC

Chapter 10: DR_Linf 331

 for (i = 1; i <= n; i++)
 {
 f[i] = f5[i];
 for (j = 1; j <= m; j++) ct[j][i] = c5[i][j];
 }
 break;

 case 6:
 n = N6;
 m = M6;
 for (i = 1; i <= n; i++)
 {
 f[i] = f6[i];
 for (j = 1; j <= m; j++) ct[j][i] = c6[i][j];
 }
 break;

 case 7:
 n = N7;
 m = M7;
 for (i = 1; i <= n; i++)
 {
 f[i] = f7[i];
 for (j = 1; j <= m; j++) ct[j][i] = c7[i][j];
 }
 break;

 case 8:
 n = N8;
 m = M8;
 for (i = 1; i <= n; i++)
 {
 f[i] = f8[i];
 for (j = 1; j <= m; j++) ct[j][i] = c8[i][j];
 }
 break;

 default:
 break;
 }

 prn_algo_bnr ("Linf");

 prn_example_delim();
 PRN ("Example #%d: Size of matrix \"c\" %d by %d\n",

© 2008 by Taylor & Francis Group, LLC

332 Numerical Linear Approximation in C

 Iexmpl, n, m);

 prn_example_delim();
 PRN ("Chebyshev Solution of an Overdetermined System\n");

 prn_example_delim();
 PRN ("r.h.s. Vector \"f\"\n");
 prn_Vector_R (f, n);

 PRN ("Transpose of Coefficient Matrix, \"ct\"\n");
 prn_Matrix_R (ct, m, n);

 rc = LA_Linf (m, n, ct, f, &irank, &iter, r, a, &z);

 if (rc >= LaRcOk)
 {
 PRN ("\n");
 PRN ("Results of the Chebyshev Approximation\n");
 PRN ("Chebyshev solution vector, \"a\"\n");
 prn_Vector_R (a, m);

 PRN ("Chebyshev residual vector \"r\"\n");
 prn_Vector_R (r, n);

 PRN ("Chebyshev norm \"z\" = %8.4f\n", z);
 PRN ("Rank of matrix \"c\" = %d, No. of Iterations "
 "= %d\n", irank, iter);
 }

 prn_la_rc (rc);
 }

 free_Matrix_R (ct, MMc_COLS);
 free_Vector_R (f);
 free_Vector_R (r);
 free_Vector_R (a);
 free_Matrix_R (binv, MMc_COLS);
 free_Vector_R (bv);
 free_Vector_I (ibound);
 free_Vector_I (icbas);
 free_Vector_I (irbas);
 free_Matrix_R (c7, N7);

 uninit_Matrix_R (c1);
 uninit_Matrix_R (c2);

© 2008 by Taylor & Francis Group, LLC

Chapter 10: DR_Linf 333

 uninit_Matrix_R (c3);
 uninit_Matrix_R (c4);
 uninit_Matrix_R (c5);
 uninit_Matrix_R (c6);
 uninit_Matrix_R (c8);
}

© 2008 by Taylor & Francis Group, LLC

334 Numerical Linear Approximation in C

10.7 LA_Linf

/*---
LA_Linf
/*---
This program solves an overdetermined system of linear equations in
the Chebyshev (L-infinity) norm. It uses a modified simplex method
to the linear programming formulation of the problem.

The system of linear equations has the form

 c*a = f

"c" is a given real n by m matrix of rank k <= m < n.
"f" is a given real n vector.

The problem is to calculate the elements of the m vector "a" that
gives the minimum Chebyshev norm z.

 z = max|r[i]|, i=1,2,...,n

where r[i] is the ith residual and is given by

 r[i] = c[i][1]*a[1] + c[i][2]*a[2] + ... + c[i][m]*a[m] - f[i],
 i = 1, 2, . . ., n

Inputs
m Number of columns of matrix "c" in the system c*a = f.
n Number of rows of matrix "c" in the system c*a = f.
ct A real (m+1) by n matrix. Its first m rows and its n
 columns contain the transpose of matrix "c" of the system
 c*a = f. Its (m+1)th row will be filled with ones by the
 program.
f A real n vector containing the r.h.s. of the system c*a = f.

Local Variables
binv A real (m+1) square matrix containing the inverse of the
 basis matrix in the linear programming problem.
bv A real (m+1) vector containing the basic solution in the
 linear programming problem.
icbas An integer (m+1) vector containing the indices of the
 columns of matrix "ct" forming the basis matrix.
irbas A integer (m+1) vector containing the indices of the rows
 of matrix "ct".

© 2008 by Taylor & Francis Group, LLC

Chapter 10: LA_Linf 335

Outputs
irank Calculated rank of matrix "c".
iter Number of iterations, or the number of times the simplex
 tableau is changed by a Gauss-Jordon elimination step..
a A real (m + 1) vector. Its first m elements are the
 Chebyshev solution of the system c*a = f.
r A real n vector containing the residual vector
 r = (c*a - f).
z The minimum Chebyshev norm of the residual vector "r".

Returns one of
 LaRcSolutionUnique
 LaRcSolutionProbNotUnique
 LaRcSolutionDefNotUniqueRD
 LaRcNoFeasibleSolution
 LaRcErrBounds
 LaRcErrNullPtr
 LaRcErrAlloc
---*/

#include "LA_Prototypes.h"

eLaRc LA_Linf (int m, int n, tMatrix_R ct, tVector_R f, int *pIrank,
 int *pIter, tVector_R r, tVector_R a, tNumber_R *pZ)
{
 tVector_I icbas = alloc_Vector_I (m + 1);
 tVector_I irbas = alloc_Vector_I (m + 1);
 tVector_R th = alloc_Vector_R (n);
 tMatrix_R binv = alloc_Matrix_R (m + 1, m + 1);
 tVector_R bv = alloc_Vector_R (m + 1);
 tVector_I ibound = alloc_Vector_I (n);

 int i = 0, ij = 0, j = 0, kl = 0, m1 = 0;
 int itest = 0, iout = 0, jin = 0, ivo = 0;
 tNumber_R d = 0.0;

 /* Validation of data before executing the algorithm */
 eLaRc rc = LaRcSolutionUnique;
 VALIDATE_BOUNDS ((0 < m) && (m < n));
 VALIDATE_PTRS (ct && f && pIrank && pIter && r && a && pZ);
 VALIDATE_ALLOC (icbas && irbas && th && binv && bv && ibound);

 /* Part 1 of the algorithm */
 m1 = m + 1;

© 2008 by Taylor & Francis Group, LLC

336 Numerical Linear Approximation in C

 kl = 1;
 *pIter = 0;
 *pIrank = m;
 *pZ = 0.0;

 /* Initializing the data */
 LA_linf_init (m, n, ct, icbas, irbas, binv, ibound, r, a);

 iout = 0;

 /* Part 1 of the algorithm.
 Detecting the rank of matrix "c" */
 LA_linf_part_1 (&kl, m, n, ct, f, icbas, irbas, binv, bv, ibound,
 pIrank, pIter);

 /* Part 2 of the algorithm.
 Obtaining a basic feasible solution */
 LA_linf_part_2 (kl, m, n, ct, f, icbas, binv, bv, ibound, pIter);

 /* Part 3 of the algorithm.
 Calculating the initial marginal costs and the norm z */
 LA_linf_part_3 (kl, m, n, ct, f, icbas, binv, bv, ibound, r, pZ);

 for (ij = 1; ij <= n*n; ij++)
 {
 ivo = 0;
 /* Determine the vector that enters the basis */
 LA_linf_vent (&ivo, &jin, kl, m, n, icbas, r, pZ);

 if (ivo == 0)
 {
 /* Calculate the results */
 rc = LA_linf_res (kl, m, n, f, icbas, irbas, binv, bv,
 ibound, r, a, *pIrank, pZ);
 GOTO_CLEANUP_RC (rc);
 }
 if (ivo != 1)
 {
 for (i = kl; i <= m1; i++)
 {
 ct[i][jin] = bv[i] + bv[i] - ct[i][jin];
 }
 r[jin] = *pZ + *pZ - r[jin];
 f[jin] = -f[jin];
 ibound[jin] = -ibound[jin];

© 2008 by Taylor & Francis Group, LLC

Chapter 10: LA_Linf 337

 }
 itest = 0;

 /* Determine the vector that leaves the basis */
 LA_linf_vleav (&itest, &iout, jin, kl, m, ct, bv);

 /* No feasible solution is available */
 if (itest != 1)
 {
 GOTO_CLEANUP_RC (LaRcNoFeasibleSolution);
 }

 /* A Gauss-Jordan elimination step */
 LA_linf_gauss_jordn (iout, jin, kl, m, n, ct, icbas, binv,
 bv, pIter);
 d = r[jin];
 for (j = 1; j <= n; j++)
 {
 r[j] = r[j] - d * (ct[iout][j]);
 }
 *pZ = *pZ - d * (bv[iout]);
 }

CLEANUP:

 free_Vector_I (icbas);
 free_Vector_I (irbas);
 free_Vector_R (th);
 free_Matrix_R (binv, m + 1);
 free_Vector_R (bv);
 free_Vector_I (ibound);

 return rc;
}

/*---
Initializing the data of LA_Linf()
---*/
void LA_linf_init (int m, int n, tMatrix_R ct, tVector_I icbas,
 tVector_I irbas, tMatrix_R binv, tVector_I ibound, tVector_R r,
 tVector_R a)
{
 int i, j, m1;

 m1 = m + 1;

© 2008 by Taylor & Francis Group, LLC

338 Numerical Linear Approximation in C

 for (j = 1; j <= m1; j++)
 {
 a[j] = 0.0;
 icbas[j] = 0;
 irbas[j] = j;
 for (i = 1; i <= m1; i++)
 {
 binv[i][j] = 0.0;
 }
 binv[j][j] = 1.0;
 }
 for (j = 1; j <= n; j++)
 {
 ct[m1][j] = 1.0;
 r[j] = 0.0;
 ibound[j] = 1;
 }
}

/*---
Part 1 of the algorithm LA_Linf()
---*/
void LA_linf_part_1 (int *pKl, int m, int n, tMatrix_R ct,
 tVector_R f, tVector_I icbas, tVector_I irbas, tMatrix_R binv,
 tVector_R bv, tVector_I ibound, int *pIrank, int *pIter)
{
 int j, iout, jin = 0;
 tNumber_R d, piv,

 m1 = m + 1;
 for (iout = 1; iout <= m1; iout++)
 {
 piv = 0.0;
 for (j = 1; j <= n; j++)
 {
 d = ct[iout][j];
 if (d < 0.0) d = -d;
 if (d > piv)
 {
 jin = j;
 piv = d;
 }
 }
 if (piv > EPS)
 {

© 2008 by Taylor & Francis Group, LLC

Chapter 10: LA_Linf 339

 /* A Gauss-Jordan elimination step */
 LA_linf_gauss_jordn (iout, jin, *pKl, m, n, ct, icbas,
 binv, bv, pIter);
 }

 /* Detect the rank of matrix "c" */
 LA_linf_detect_rank (pKl, iout, jin, m, n, piv, ct, f, icbas,
 irbas, binv, bv, ibound, pIrank, pIter);
 }
}

/*---
Detection of rank deficiency of matrix "c" in LA_Linf()
---*/
void LA_linf_detect_rank (int *pKl, int iout, int jin, int m, int n,
 tNumber_R piv, tMatrix_R ct, tVector_R f, tVector_I icbas,
 tVector_I irbas, tMatrix_R binv, tVector_R bv, tVector_I ibound,
 int *pIrank, int *pIter)
{
 int i, j, k, m1, icb;
 m1 = m + 1;
 if ((piv < EPS) && iout < m1)
 {
 swap_rows_Matrix_R (ct, *pKl, iout);
 k = irbas[iout];
 irbas[iout] = irbas[*pKl];
 irbas[*pKl] = 0;
 for (j = *pKl; j <= m; j ++)
 {
 binv[iout][j] = binv[*pKl][j];
 binv[*pKl][j] = 0.0;
 }
 icbas[iout] = icbas[*pKl];
 icbas[*pKl] = 0;
 for (i = *pKl; i <= m1; i++)
 {
 binv[i][iout] = binv[i][*pKl];
 binv[i][*pKl] = 0.0;
 }
 *pIrank = *pIrank - 1;
 *pKl = *pKl + 1;
 }
 if ((piv < EPS) && iout == m1)
 {
 for (j = 1; j <= n; j++)

© 2008 by Taylor & Francis Group, LLC

340 Numerical Linear Approximation in C

 {
 icb = 0;
 for (i = *pKl; i <= m; i++)
 {
 if (j == icbas[i]) icb = 1;
 }
 if (icb == 0)
 {
 jin = j;
 break;
 }
 }
 f[jin] = -f[jin];
 ibound[jin] = -ibound[jin];
 for (i = *pKl; i <= m; i++)
 {
 ct[i][jin] = -ct[i][jin];
 }
 ct[m1][jin] = 2.0 - ct[m1][jin];
 /* A Gauss-Jordan elimination step */
 LA_linf_gauss_jordn (iout, jin, *pKl, m, n, ct, icbas, binv,
 bv, pIter);
 }
}

/*---
Part 2 of the algorithm.
Obtaining a basic feasible solution in LA_Linf()
---*/
void LA_linf_part_2 (int kl, int m, int n, tMatrix_R ct, tVector_R f,
 tVector_I icbas, tMatrix_R binv, tVector_R bv, tVector_I ibound,
 int *pIter)
{
 int i, k, m1;
 int iout, jin;

 jin = 0;
 iout = 0;
 m1 = m + 1;

 for (i = kl; i <= m; i++)
 {
 if (bv[i] < 0.0)
 {
 iout = i;

© 2008 by Taylor & Francis Group, LLC

Chapter 10: LA_Linf 341

 jin = icbas[i];
 f[jin] = -f[jin];
 ibound[jin] = -ibound[jin];
 for (k = kl; k <= m1; k++)
 {
 ct[k][jin] = bv[k] + bv[k] - ct[k][jin];
 }
 /* A Gauss-Jordan elimination step */
 LA_linf_gauss_jordn (iout, jin, kl, m, n, ct, icbas,
 binv, bv, pIter);
 }
 }
}

/*---
Part 3 of the algorithm.
Calculating the initial marginal costs and the norm z in LA_Linf()
---*/
void LA_linf_part_3 (int kl, int m, int n, tMatrix_R ct, tVector_R f,
 tVector_I icbas, tMatrix_R binv, tVector_R bv,
 tVector_I ibound, tVector_R r, tNumber_R *pZ)
{
 int i, j, k, m1, icb;
 tNumber_R s;

 m1 = m + 1;
 for (j = 1; j <= n; j++)
 {
 r[j] = 0.0;
 icb = 0;
 for (i = kl; i <= m1; i++)
 {
 if (j == icbas[i]) icb = 1;
 }
 if (icb == 0)
 {
 s = -f[j];
 for (i = kl; i <= m1; i++)
 {
 k = icbas[i];
 s = s + ct[i][j] * (f[k]);
 }
 r[j] = s;
 }
 }

© 2008 by Taylor & Francis Group, LLC

342 Numerical Linear Approximation in C

 s = 0.0;
 for (i = kl; i <= m1; i++)
 {
 k = icbas[i];
 s = s + bv[i] * (f[k]);
 }
 *pZ = s;
 if (*pZ < 0.0)
 {
 for (j = 1; j <= n; j++)
 {
 f[j] = -f[j];
 ibound[j] = -ibound[j];
 r[j] = -r[j];
 }
 *pZ = -*pZ;
 for (j = kl; j <= m; j++)
 {
 for (i = kl; i <= m1; i++)
 {
 binv[i][j] = -binv[i][j];
 }
 }
 }
}

/*---
Determine the vector that enters the basis in LA_Linf()
---*/
void LA_linf_vent (int *pIvo, int *pJin, int kl, int m, int n,
 tVector_I icbas, tVector_R r, tNumber_R *pZ)
{
 int i, j, m1, icb;
 tNumber_R d, e, g, tz;

 m1 = m + 1;
 g = 1.0/ (EPS*EPS);
 tz = *pZ + *pZ + EPS;
 for (j = 1; j <= n; j++)
 {
 icb = 0;
 for (i = kl; i <= m1; i++)
 {
 if (j == icbas[i]) icb = 1;
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 10: LA_Linf 343

 if (icb == 0)
 {
 d = r[j];
 if (d < -EPS)
 {
 e = d;
 if (e < g)
 {
 g = e;
 *pJin = j;
 *pIvo = 1;
 }
 }
 else if (d >= tz)
 {
 e = tz - d;
 if (e < g)
 {
 g = e;
 *pJin = j;
 *pIvo = -1;
 }
 }
 }
 }
}

/*---
Determine the vector that leaves the basis in LA_Linf()
---*/
void LA_linf_vleav (int *pItest, int *pIout, int jin, int kl, int m,
 tMatrix_R ct, tVector_R bv)
{
 int i, m1;
 tNumber_R d, g, thmax;

 m1 = m + 1;
 thmax = 1.0/ (EPS*EPS);
 for (i = kl; i <= m1; i++)
 {
 d = ct[i][jin];
 if (d > EPS)
 {
 g = bv[i]/d;
 if (g <= thmax)

© 2008 by Taylor & Francis Group, LLC

344 Numerical Linear Approximation in C

 {
 thmax = g;
 *pIout = i;
 *pItest = 1;
 }
 }
 }
}

/*---
A Gauss-Jordan elimination step in LA_Linf()
---*/
void LA_linf_gauss_jordn (int iout, int jin, int kl, int m, int n,
 tMatrix_R ct, tVector_I icbas, tMatrix_R binv, tVector_R bv,
 int *pIter)
{
 int i, j, l, m1;
 tNumber_R d, pivot;

 m1 = m + 1;
 pivot = ct[iout][jin];

 for (j = 1; j <= n; j++)
 {
 ct[iout][j] = ct[iout][j]/pivot;
 }
 l = m1;
 /*ko = kl + *pIter;
 if (ko < m1) l = ko; */
 for (j = kl; j <= m1; j++)
 {
 binv[iout][j] = binv[iout][j]/pivot;
 }
 for (i = kl; i <= m1; i++)
 {
 if (i != iout)
 {
 d = ct[i][jin];
 for (j = 1; j <= n; j++)
 {
 ct[i][j] = ct[i][j] - d * (ct[iout][j]);
 }
 for (j =kl; j <= m1; j++)
 {
 binv[i][j] = binv[i][j] - d * (binv[iout][j]);

© 2008 by Taylor & Francis Group, LLC

Chapter 10: LA_Linf 345

 }
 }
 }
 for (i = kl; i <= m1; i++)
 {
 bv[i] = binv[i][m1];
 }
 *pIter = *pIter + 1;
 icbas[iout] = jin;
}

/*---
Calculate the results of LA_Linf()
---*/
eLaRc LA_linf_res (int kl, int m, int n, tVector_R f,
 tVector_I icbas, tVector_I irbas, tMatrix_R binv, tVector_R bv,
 tVector_I ibound, tVector_R r, tVector_R a, int irank,
 tNumber_R *pZ)
{
 int i, j, k, m1;
 tNumber_R s, d;

 m1 = m + 1;
 for (j = kl; j <= m1; j++)
 {
 s = 0.0;
 for (i = kl; i <= m1; i++)
 {
 k = icbas[i];
 s = s + f[k]*binv[i][j];
 }

 k = irbas[j];
 a[k] = s;
 }

 for (j = 1; j <= n; j++)
 {
 d = r[j] - *pZ;
 if (ibound[j] == -1) d = -d;
 r[j] = d;
 }

 if (irank < m)
 return LaRcSolutionDefNotUniqueRD;

© 2008 by Taylor & Francis Group, LLC

346 Numerical Linear Approximation in C

 for (i = 1; i <= m1; i++)
 {
 if (bv[i] < EPS)
 return LaRcSolutionProbNotUnique;
 }

 return LaRcSolutionUnique;
}

© 2008 by Taylor & Francis Group, LLC

347

Chapter 11

One-Sided Chebyshev Approximation

11.1 Introduction

In the previous chapter, an algorithm for obtaining the linear
(ordinary) Chebyshev approximation is given [1]. The linear
Chebyshev approximation is a double-sided one, meaning that some
of the elements of the residual vector have values ≥ 0 and the others
have values < 0. In other words, for the discrete linear Chebyshev
approximation, some of the discrete points are above or on, and some
are below the approximating curve (surface). Hence, the
approximation is the ordinary or the double-sided one.

In this chapter, we study the linear one-sided Chebyshev
approximation problem. In this problem, all the residuals are either
non-positive or non-negative. In other words, for the Chebyshev
approximation of discrete points, all the discrete points are either
above or on the approximating curve (surface), or below or on the
approximating curve. In the former case, when all the discrete points
are above or on the approximating curve, we have the one-sided
Chebyshev approximation from above. The one-sided Chebyshev
approximation from below is described in a similar manner. This is
illustrated by Figure 11-1, which is analogous to Figure 6-1 for the
linear one-sided L1 approximations.

Consider the overdetermined system of linear equations

Ca = f

C = (cij), is a given real n by m matrix of rank k, k ≤ m < n and f = (fi)
is a given real n-vector. The L∞ or the Chebyshev solution of system
Ca = f is the m-vector a = (ai) that minimizes the Chebyshev norm z
of the residuals

© 2008 by Taylor & Francis Group, LLC

348 Numerical Linear Approximation in C

(11.1.1) z = max|ri|, i = 1, 2, �, n

where ri is the ith residual and is given by

(11.1.2) , i = 1, 2, �, n

The special case when the system of equation Ca = f is consistent,
i.e., the residual r = f � Ca = 0, is not of interest here. We thus assume
that r ≠ 0. Note that the residuals in (11.1.2) are chosen to be the
negative of the residuals in Chapter 10. This is to facilitate the
analysis in this chapter. As noted in Chapter 2, such choice of the
definition of the residuals is arbitrary.

When the solution vector satisfies the additional conditions

(11.1.3) ri ≥ 0, i = 1, 2, �, n

which in vector-matrix form is

(11.1.3a) f ≥ Ca

we have the one-sided Chebyshev solution from above of system
Ca = f; that is, from (11.1.3a), for any equation i in Ca = f,
i = 1, 2, �, n, the observed value fi of vector f is ≥ the calculated
element i of Ca. If the inequalities in (11.1.3) are reversed, we have
the problem of the one-sided Chebyshev solution from below.

We also note that there are problems that have an (ordinary)
Chebyshev approximation but do not have one-sided Chebyshev
approximation from above and/or from below. See the numerical
examples in Section 11.5.

We consider here the problem of the one-sided Chebyshev
approximation from above. However, the analysis and presentation of
the problem from below are almost identical and the described
algorithm applies to it as well. The problem is presented here as a
linear programming problem and we pursue the analysis of the dual
form of the linear programming presentation. In this algorithm,
minimum computer storage is required, no artificial variables are
needed and no conditions are imposed on the coefficient matrix.

In Section 11.2, the problem is presented as a special case of
general constrained Chebyshev approximation problems. We shall
comment on these algorithms in Section 11.5. In Section 11.3, the

ri fi cijaj
j 1=

m

∑�=

© 2008 by Taylor & Francis Group, LLC

Chapter 11: One-Sided Chebyshev Approximation 349

linear programming formulation of the problem is given and
necessary lemmas are derived. In Section 11.4, the algorithm is
described and a numerical example is solved. A note on the linear
one-sided Chebyshev solution from below is also presented. In
Section 11.5, numerical results are given. Simple relationships
between the one-sided and the ordinary Chebyshev approximations
are observed. Comparisons with other methods for solving the same
problem are also given.

Figure 11-1: Curve fitting with vertical parabolas of a set of 8 points
using Chebyshev and one-sided Chebyshev approximations

This figure shows curve fitting with vertical parabolas of the set of
8 points shown in Figure 2-1. The solid curve is the ordinary
Chebyshev approximation. The dashed curve is the one-sided
Chebyshev approximation from above and the dotted curve is the
one-sided Chebyshev approximation from below.

11.1.1 Applications of the algorithm

As indicated in Chapter 6, the discrete linear one-sided
approximation problems arise in the discretization of the continuous

-2

-1

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9

© 2008 by Taylor & Francis Group, LLC

350 Numerical Linear Approximation in C

one-sided approximation problems. The latter problems arise, for
example, in the solution of operator equations [13, 14]. They are also
applied to the solution of overdetermined linear inequalities. The
latter is a basic problem in pattern classification ([12], pp. 40-41,
48-49). See Chapter 16.

11.2 A special problem of a general constrained one

There exist algorithms for constrained Chebyshev approximation
problems. By manipulating the constraints, the problem reduces to a
one-sided Chebyshev approximation one. This was the case with the
one-sided L1 approximation problem presented in Section 6.2.

Using our notation, we start with Dax [6] who presented an
algorithm for solving the one-sided Chebyshev approximation from
below, namely

minimize ||Ca � f||∞
subject to

Ca ≥ f

In his method, a search direction is obtained via the solution of the
least squares problem, which means that a least squares solution
should be available first.

Joe and Bartels [8], using a penalty linear programming approach,
presented an algorithm to solve the problem

(11.2.1a) minimize ||Ca � f||∞
subject to

(11.2.1b) Ga = g and Ea ≥ e

If in (11.2.2b) we take G = 0, g = 0 and take E = C and e = f,
(11.2.1b) reduces to

Ca ≥ f

and we get the one-sided Chebyshev solution from below.
Sklar [11] presented a linear programming algorithm with

multiple pivoting and an LU decomposition technique to solve the
problem

(11.2.2a) minimize ||Ca � f||∞

© 2008 by Taylor & Francis Group, LLC

Chapter 11: One-Sided Chebyshev Approximation 351

subject to

(11.2.2b) ea ≤ Ea ≤ eb

His algorithm is a generalization of that of Armstrong and Sklar [3]. If
we take E = C, ea = �∞ and eb = f, we get the one-sided Chebyshev
solution from above. By �∞, we mean a large negative number, such
as say �106.

Roberts and Barrodale [10] presented an algorithm to solve the
problem

(11.2.3a) minimize ||Ca � f||∞
subject to

(11.2.3b) Ga = g and ea ≤ Ea ≤ eb

Their algorithm is the extension of the algorithm of Barrodale and
Phillips for the ordinary Chebyshev solution [4, 5]. If in (11.2.3b) we
take G = 0, g = 0, problem (11.2.3) reduces to problem (11.2.2).

11.3 Linear programming formulation of the problem

Watson [14, 15] reduced the problem of the one-sided Chebyshev
approximation from above to a linear programming problem as
follows. Let in (11.1.1), h = max|ri|, i = 1, 2, �, n. Then from (11.1.2)
and (11.1.3), in vector-matrix form, the primal linear programming
formulation of this problem is

minimize h

subject to

0 ≤ f � Ca ≤ he

e is an n-vector each element of which equals 1 and 0 is an n-zero
vector. The above two inequalities reduce to

Ca + he ≥ f

�Ca ≥ �f

This problem may be stated as

© 2008 by Taylor & Francis Group, LLC

352 Numerical Linear Approximation in C

subject to

where em+1 is an (m + 1)-vector that is the (m + 1)th column of an
(m + 1)-unit matrix.

It is more efficient to go to the dual of this problem [7, 15]; i.e.,

(11.3.1a) maximize z = [fT �fT]b

subject to the constraints

(11.3.1b)

and b is a 2n-vector

(11.3.1c) bi ≥ 0, i = 1, 2, �, 2n

Let us write (11.3.1b) as

(11.3.1d) Db = em+1

where D is the matrix on the l.h.s. of (11.3.1b).
As usual, for problem (11.3.1), a simplex tableau for (m + 1)

constraints in 2n variables is constructed. This is denoted by the large
tableau, in order to distinguish it from the condensed tableaux, which
we shall use in this algorithm.

Without loss of generality, we assume that rank(C) = m. Let the
basis matrix at any stage of the computation be denoted by B, which is
an (m + 1) non-singular square matrix. For any column j in the
simplex tableau, the vector yj and its marginal cost are given by

(11.3.2a) yj = B�1Dj, j = 1, 2, �, 2n

(11.3.2b) (zj � fj) = fB
Tyj � fj, j = 1, 2, �, 2n

The elements of fB are those associated with the basic variables.

minimize Z em 1+
T a

h
=

C e
C� 0

a
h

f
f�

≥

CT CT�

eT 0T
b em 1+=

© 2008 by Taylor & Francis Group, LLC

Chapter 11: One-Sided Chebyshev Approximation 353

The basic solution, denoted by bB is given by

(11.3.2c) bB = B�1em+1

and the objective function by

(11.3.2d) z = fB
TbB

11.3.1 Properties of the matrix of constraints

The analysis of the linear programming problem is initiated by the
kind of asymmetry in the matrix of constraints D in (11.3.1d). Let us
denote the jth column matrix D by Dj and the jth column of matrix CT

by Cj
T. Then from (11.3.1b), for j = 1, 2, �, n

(11.3.3)

We have Cj
T as part of vector Dj and �Cj

T as part of vector Dj+n,
for j = 1, 2, �, n. See also Section 10.2.1. This kind of asymmetry in
the matrix of constraints D, enables us to use a condensed simplex
tableau of (m + 1) constraints in only n variables. From (11.3.3)

(11.3.4) Dj + Dj+n = em+1

Definition

As in Section 10.2, we define any two columns j and (j + n),
1 ≤ j ≤ n in the matrix of constraints D in (11.3.1d) as two
corresponding columns.

The following 8 lemmas correspond respectively to the 8 lemmas
in Chapter 10.

Lemma 11.1

At any stage of the computation, the (m + 1)th column of B�1 is
the basic solution vector bB. This follows directly from (11.3.2c).

Lemma 11.2

The optimum solution vector a and z for problem (11.3.1) are
given by

Dj
Cj

T

1
 and Dj n+

C� j
T

0
= =

© 2008 by Taylor & Francis Group, LLC

354 Numerical Linear Approximation in C

or

(aT z) = fB
TB�1

Lemma 11.3

Assume that bB is a basic feasible solution. Then the algebraic
sum of the elements of bB ≥ 1.

Proof:

Consider the last equation in (11.3.1b), which is

(eT 0T)b = 1

The elements of the vector (eT 0T) are 1�s and 0�s. Also, as bB is
assumed feasible, each element of bB is ≥ 0. Since the non-basic
elements of vector b are all 0�s, the algebraic sum of the elements of
bB ≥ (eT 0T)b = 1 and the lemma is proved.

Lemma 11.4

Any two corresponding columns i and j, |i � j| = n, 1 ≤ i, j < 2n,
should not appear together in any basis matrix.

Lemma 11.5

Let bB be any basic solution, and z be the corresponding objective
function for the programming problem (11.3.1). Let also columns j
and (j + n), 1 ≤ j ≤ n, be two corresponding columns in the matrix of
constraints in (11.3.1b). Then at any stage of the computation

(11.3.5a) yj + yj+n = bB, 1 ≤ j ≤ n

and a

(11.3.5b) (zj � fj) + (zj+n � fj+n) = z, 1 ≤ j ≤ n

Proof:

The proof of this lemma follows the proof of Lemma 10.5. That is,

BT a
z

fB=

© 2008 by Taylor & Francis Group, LLC

For the proof see Lemma 3 in [15]

Chapter 11: One-Sided Chebyshev Approximation 355

by multiplying (11.3.4) by B�1, from (11.3.2a) and Lemma 11.1, we
get (11.3.5a). From (11.3.5a), (11.3.2a, b), Lemma 11.1, and that
fj+n = �fj, (11.3.5b) is obtained.

Lemma 11.6

Assume that we have obtained an initial basic solution that is not
feasible; there exist one or more elements of the basic solution bB that
is < 0. Let bBs, 1 ≤ s ≤ (m + 1), be one of these elements. Let i be the
basic column associated with bBs. Let j be the corresponding column
to the basic column i; |i � j| = n. Then if column i is replaced by
column j in the basis, and a Gauss-Jordan step is performed on the
simplex tableau, the new element bBs of the basic solution will be > 0.
Moreover, the elements of the new basic solution bBk, k ≠ s,
k = 1, 2, �, m+1, each will have the sign of its old value.

The proof here follows the steps of the proof of Lemma 10.6.

Lemma 11.7 (Lemma 5 in [2])

Let a basis matrix B(1) be formed by choosing (m + 1) linearly
independent columns out of the 2n columns in the matrix of
constraints in (11.3.1b) such that no two corresponding columns
appear together in B(1). Let another basis matrix B(2) be formed, the
columns of which are the corresponding columns of B(1) arranged in
the same order and assume that B(2) is non-singular. Let bB(1) and z(1)
be respectively the basic solution and the objective function
associated with B(1) and bB(2) and z(2) be the respective parameters
associated with B(2). Then

bB(2) = cbB(1)

and

z(2) = �cz(1)

where c is a constant given by

(11.3.6) c = 1/(sm+1 � 1)

where sm+1 is the algebraic sum of the elements of bB(1). If bB(1) is
feasible, from Lemma 11.3, sm+1 > 1 and then c > 0.

Lemma 11.8 (Lemma 6 in [2])

Consider the two bases B(1) and B(2) of the previous lemma. Let

© 2008 by Taylor & Francis Group, LLC

356 Numerical Linear Approximation in C

(B(1))i and (B(2))i be respectively column i of B(1) and of B(2). Let also
column i of B(1)

�1 and of B(2)
�1 be respectively (B(1)

�1)i and (B(2)
�1)i.

Let us construct two simplex tableaux T(1) and T(2) for B(1) and
B(2) respectively, where the columns of T(2) are the corresponding
columns of T(1) arranged in the same order. Then

(B(2)
�1)i = �(B(1)

�1)i + csibB(1)

yi in T(2) = yi in T(1) + (1 � ci)cbB(1)

where si is the algebraic sum of the elements of column (B(1)
�1)i, ci is

the algebraic sum of the elements of yi in T(1) and c is given by
(11.3.6).

Lemma 11.9

Unlike the ordinary linear Chebyshev approximation problem
(Chapter 10), there are problems whose one-sided Chebyshev
solution(s) do not exist. The corresponding linear programming
problem (11.3.1) would have an unbounded solution.

Example 16.2.

11.4 Description of the algorithm

The algorithm is similar to that of the ordinary Chebyshev
approximation of Chapter 10. It is again in three parts. In part 1, a
numerically stable initial basic solution, feasible or not, is obtained.
Also, the rank of matrix C is determined. In part 2, if the initial basic
solution is not feasible, it is made feasible. Then the objective
function z and the marginal costs are calculated. Part 3 is a slightly
modified simplex algorithm.

We start by constructing a condensed simplex tableau for (m + 1)
constraints in only n variables, namely, the first n variables. An
n-index indicator vector whose elements are +1 or �1 is needed. If
column j, 1 ≤ j ≤ n, is in the condensed tableau, index j of this vector
has the value +1. If column (j + n), 1 ≤ j ≤ n, is in the condensed
tableau, index j of this vector has the value �1.

An initial basic solution, feasible or not is obtained. This is done
by simply applying a finite number of Gauss-Jordan elimination steps
to the initial data. We use partial pivoting. The pivot is the largest

© 2008 by Taylor & Francis Group, LLC

See Lemma 7 in [2], the numerical results in Section 11.5 and also

Chapter 11: One-Sided Chebyshev Approximation 357

element in absolute value in row i of tableau (i � 1), i = 1, 2, �, m+1.
Tableau 0 is the initial data.

If one of the first m rows of matrix CT is linearly dependent on
one or more of the preceding rows, i.e., rank(C) = k < m, during the
elimination processes in part 1 of the algorithm, we get a zero row in
the tableau. Such row(s) are discarded from the following tableaux.

From (11.3.1b), the continuation of any of these rows in the large
tableau will also be a row consisting of zero elements. In this case, the
simplex tableau is for (k + 1) constraints in n variables. An exception
from this rule is the last row in the tableau, as this row cannot be
linearly dependent on any of the preceding rows. If the last row in the
condensed tableau consists of all zero elements, the continuation of
this row in the large tableau will not contain all zero elements.

For the (k + 1)th iteration in part 1, we chose the pivot as the
largest positive element in the last row of the tableau and the
extension of this row (in the large tableau). This ends part 1 of the
algorithm.

If one or more elements of the obtained basic solution bB is < 0,
the initial basic solution is not feasible. For each basic column j
associated with a negative element in the basic solution, we utilize
Lemma 11.6. Column yj in the simplex tableau is replaced by its
corresponding column. Then by applying a Gauss-Jordan step after
each replacement, the new basic solution will be feasible.

The objective function z is then calculated from (11.3.2c, d). Then
if z < 0, we calculate the algebraic sum of the elements of bB. If this
algebraic sum > 1, we construct the simplex tableau of the
corresponding columns of the current tableau. We also construct the
inverse of the corresponding basis matrix. This is done in the manner
given by Lemma 11.7 and Lemma 11.8. Hence, z becomes > 0. The
marginal costs (zi � fi) are then calculated from (11.3.5b).

If z < 0 and the algebraic sum of the elements of bB = 1, B(2)
�1

would be singular, and we proceed to calculate the marginal costs and
go to part 3 of the algorithm. In this case, in part 3, z is bound to
increase algebraically and will eventually change to a positive
quantity and if the solution exists, z will eventually increase to its
optimum value. This ends part 2 of the algorithm, as we now have an
initial basic feasible solution and z ≥ 0.

Part 3 is the ordinary simplex algorithm. The only difference is in

© 2008 by Taylor & Francis Group, LLC

358 Numerical Linear Approximation in C

the choice of the non-basic column that enters the basis. The column
to enter the basis is that which has the most negative marginal cost
among the non-basic columns in the current condensed tableau and
their corresponding columns. Relation (11.3.5b) is used for
calculating the marginal costs of the corresponding columns. The
above steps are illustrated by the following detailed numerical
example.

Example 11.1

Obtain the one-sided Chebyshev solution from above of the
following system.

a1 + 2a2 = �1
�a1 � a2 = �2

(11.4.1) a1 + 3a2 = �1
a2 = �4

The initial data are shown in the condensed tableau. The pivot is
chosen as the largest element in absolute value in row i of tableau
(i � 1). The pivot element in each tableau is bracketed.

Initial Data

fT �1 �2 �1 �4
bB D1 D2 D3 D4

 ������������� ������������������
0 (1) �1 1 0
0 2 �1 3 1
1 1 1 1 1

 ������������� ������������������

Tableau 11.4.1 (part 1)

fT �1 �2 �1 �4
fB bB D1 D2 D3 D4

 ������������� ������������������
�1 D1 0 1 �1 1 0

0 0 (1) 1 1
1 0 2 0 1

 ������������� ������������������

In Tableau 11.4.2 and its corresponding part, the pivot is chosen as

© 2008 by Taylor & Francis Group, LLC

Chapter 11: One-Sided Chebyshev Approximation 359

the largest positive element, which is y37. For this reason we write
down Tableau 11.4.2*, where y7 replaces y3 in the basis.

Tableau 11.4.2

fT �1 �2 �1 �4
fB B bB D1 D2 D3 D4

 ������������� ������������������
�1 D1 0 1 0 2 1
�2 D2 0 0 1 1 1

1 0 0 �2 �1
 ������������� ������������������

Tableau 11.4.2*

fT �1 �2 1 �4
fB B bB D1 D2 D7 D4

 ������������� ������������������
�1 D1 0 1 0 �2 1
�2 D2 0 0 1 �1 1

1 0 0 (3) �1
 ������������� ������������������

Tableau 11.4.3 gives an initial basic feasible solution but z < 0.
Meanwhile, the algebraic sum of the elements of bB = 1.33 > 1.
Hence, we make use of Lemmas 11.7 and 11.8 and replace Tableau
11.4.3 by Tableau 11.4.3*. In this Tableau, z > 0 and we calculate the
marginal costs from (11.3.5b).

Tableau 11.4.3

fT �1 �2 1 �4
fB B bB D1 D2 D7 D4

 ������������� ������������������
�1 D1 2/3 1 0 0 1/3
�2 D2 1/3 0 1 0 2/3
1 D7 1/3 0 0 1 �1/3

 ������������� ������������������
z = �1

© 2008 by Taylor & Francis Group, LLC

360 Numerical Linear Approximation in C

Tableau 11.4.3* (part 2)

fT 1 2 �1 4
fB B bB D5 D6 D3 D8

 ������������� ������������������
1 D5 2 1 0 0 1
2 D6 1 0 1 0 (1)
�1 D3 1 0 0 1 0

 ������������� ������������������
z = 3 0 0 0 �1

Tableau 11.4.4 (part 3)

fT 1 2 �1 4
fB B bB D5 D6 D3 D8

 ������������� ������������������
1 D5 1 1 �1 0 0
4 D8 1 0 1 0 1
�1 D3 1 0 0 1 0

 ������������� ������������������
z = 4 0 1 0 0

 In Tableau 11.4.3*, (z8 � f8) is the most negative marginal cost
and thus D8 replaces D6 in the basis. Tableau 11.4.4 gives the
optimum one-sided Chebyshev solution from above with z = 4. The
optimum solution vector a of system (11.4.1) is given by the solution
of the equations in (11.4.1) associated with the basic vectors, namely
D5, D8 and D3 in Tableau 11.4.4. That is

�a1 � 2a2 = 1
� a2 = 4

a1 + 3a2 + z = �1
which gives a1 = 7, a2 = �4 and z = 4. The residual r = (0, 1, 4, 0)T.

However, since the initial data (matrix C and vector f) are
destroyed in the computation, vector a and z are calculated from the
second equation in Lemma 11.2.

11.4.1 One-sided Chebyshev solution from below

For the one-sided Chebyshev solution from below, the problem

© 2008 by Taylor & Francis Group, LLC

Chapter 11: One-Sided Chebyshev Approximation 361

would be

(11.4.2a) minimize ||Ca � f||∞
subject to

(11.4.2.b) Ca ≥ f

The formulation of the dual form of the linear programming
problem is straightforward and is given by

maximize z = [fT �fT]b

subject to the constraints

and

bi > 0, i = 1, 2, �, 2n

Our algorithm for one-sided Chebyshev from above can also be
applied to the one-sided Chebyshev from below problem. The
function LA_Linfside() calculates either the one-sided Chebyshev
solution from above or from below, depending on an indicator
specified by the user.

For the solution from below, we follow the steps of Section 6.4.2.
We multiply both matrix C and vector f by �1. The inequality
(11.4.2b) reduces to

[�C]a ≤ [�f]

and the problem is solved as a one-sided Chebyshev approximation
from above. The solution vector a would be for the one-sided from
below. However, the residual vector r, would be multiplied by �1.

11.5 Numerical results and comments

LA_Linfside() implements this algorithm. DR_Linfside() tests the
same 8 examples that were solved in Chapter 6 for the one-sided L1
approximation problem. The driver tests these examples twice; once
for the one-sided Chebyshev solution from above and once for the

CT CT�

0T eT
b em 1+=

© 2008 by Taylor & Francis Group, LLC

362 Numerical Linear Approximation in C

one-sided Chebyshev solution from below.
Table 11.5.1 shows the results of 3 of the examples, computed in

single-precision. For each example, the number of iterations and the
optimum norm for the one-sided Chebyshev solution from above, the
ordinary Chebyshev solution, and the one-sided Chebyshev solution
from below are shown. In this table, �no solution� indicates that the
programming problem has an unbounded solution.

The results show that the number of iterations for the one-sided
Chebyshev solution from above (or from below), if either exists, is of
the same order of that of the (ordinary) Chebyshev solution of the
given problems.

Table 11.5.1

One-sided Chebyshev One-sided
from above solution from below

��
Example C(n×m) Iter z Iter z Iter z
��

1 4 × 2 no solution 5 10.0 no solution
2 10× 5 12 3.00 9 1.7778 no solution
3 25×10 23 0.0142 23 0.0071 23 0.0142

Example 1 has no one-sided Chebyshev solution from above nor
from below. Example 2 has one-sided Chebyshev solution from above
but not from below. The third example has both one-sided Chebyshev
solutions. For Example 3, consider the next section.

11.5.1 Simple relationships between the Chebyshev and
one-sided Chebyshev approximations

It is observed in example 3 that the value of z for either the
one-sided Chebyshev approximation from above or from below, is
exactly twice that of the ordinary Chebyshev approximation.

This relationship exists when one of the approximating functions
is a constant term. In this case, the one-sided Chebyshev
approximations are just shifted ordinary Chebyshev approximations
and the optimum value of z for the one-sided Chebyshev
approximation is twice the optimum value of z for the ordinary
Chebyshev approximation.

© 2008 by Taylor & Francis Group, LLC

Chapter 11: One-Sided Chebyshev Approximation 363

In the example of Figure 11-1, the approximating functions for the
one-sided Chebyshev approximation from above, the Chebyshev
approximation and the one-sided Chebyshev approximation from
below are (�2.6 + 2x � 0.156x2), (�0.8 + 2x � 0.156x2) and
(1 + 2x � 0.156x2) respectively. The three approximating functions
differ only in the constant terms. The difference between the constant
terms in the second and the first functions = the difference between
the constant terms in the third and the second functions = the
Chebyshev deviation 1.8.

This and other relationships between the one-sided and the
ordinary approximations for certain classes of approximating
functions, for certain types of norms, have been addressed by Phillips
[9].

We now comment on the algorithms of Dax [6], Joe and Bartels
[8], Sklar [11] and Roberts and Barrodale [10] mentioned in Section
11.2. Dax�s algorithm is more involved than ours, as it requires the
least squares solution of the system Ca = f. In the other three
algorithms, one would store matrix C twice; once for (11.2.1a),
(11.2.2a) or (11.2.3a) and once for (11.2.1b), (11.2.2b) or (11.2.3b),
where E is replaced by C. The same can be said about storing vector f
twice. Hence, their algorithms need more computer storage than ours
and nearly double the number of arithmetic operations.

We claim that for this problem, a special purpose program such as
ours would be more efficient than a general purpose one such as those
of [8], [11] and [10]. See similar comments at the end of Chapter 6,
for the one-sided L1 approximation problem.

References

1. Abdelmalek, N.N., Chebyshev solution of overdetermined
systems of linear equations, BIT, 15(1975)117-129.

2. Abdelmalek, N.N., The discrete linear one-sided Chebyshev
approximation, Journal of Institute of Mathematics and
Applications, 18(1976)361-370.

3. Armstrong, R.D. and Sklar, M.G., A linear programming
algorithm for curve fitting in the L∞ norm, Numerical
Functional Analysis and Optimization, 2(1980)187-218.

© 2008 by Taylor & Francis Group, LLC

364 Numerical Linear Approximation in C

4. Barrodale, I. and Phillips, C., An improved algorithm for
discrete Chebyshev linear approximation, Proceedings of the
Fourth Manitoba Conference on Numerical Mathematics,
Hartnell, B.L. and Williams, H.C. (eds.), Winnipeg, Manitoba,
Canada, pp. 177-190, 1975.

5. Barrodale, I. and Phillips, C., Algorithm 495: Solution of an
overdetermined system of linear equations in the Cheby-
shev norm, ACM Transactions on Mathematical Software,
1(1975)264-270.

6. Dax, A., The minimax solution of linear equations subject to
linear constraints, IMA Journal of Numerical Analysis,
9(1989)95-109.

7. Hadley, G., Linear Programming, Addison-Wesley, Reading,
MA, 1962.

8. Joe, B. and Bartels, R., An exact penalty method for
constrained, discrete, linear l∞ data fitting, SIAM Journal on
Scientific and Statistical Computation, 4(1983)76-84.

9. Phillips, D.L., A note on best one-sided approximations,
Communications of ACM, 14(1971)598-600.

10. Roberts, F.D.K. and Barrodale, I., An algorithm for discrete
Chebyshev linear approximation with linear constraints,
International Journal for Numerical Methods in Engineering,
15(1980)797-807.

11. Sklar, M.G., L∞ norm estimation with linear restrictions on the
parameters, Numerical Functional Analysis and Optimization,
3(1981)53-68.

12. Tou, J.T. and Gonzalez, R.C., Pattern Recognition Principles,
Addison-Wesley, Reading, MA, 1974.

13. Watson, G.A., One-sided approximation and operator equa-
tions, Journal of Institute of Mathematics and Applications,
12(1973)197-208.

14. Watson, G.A., The calculation of best linear one-sided Lp
approximations, Mathematics of Computation, 27(1973)607-
620.

15. Watson, G.A., On the best linear one-sided Chebyshev
approximation, Journal of Approximation Theory, 7(1973)48-
58.

© 2008 by Taylor & Francis Group, LLC

Chapter 11: DR_Linfside 365

11.6 DR_Linfside

/*---
DR_Linfside

This program is a driver for the function LA_Linfside(), which
calculates the one-sided Chebyshev solution from above or from below
of an overdetermined system of linear equations.

The overdetermined system has the form

 c*a = f

"c" is a given real n by m matrix of rank k, k <= m < n.
"f" is a given real n vector.
"a" is the solution m vector.

This driver contains 8 examples from which the results of examples
1, 6 and 7 are given in the text. All the examples are solved twice;
once for the one-sided Chebyshev approximation from above and once
for the one-sided Chebyshev approximation from below.
---*/

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define N1 4
#define M1 2
#define N2 5
#define M2 3
#define N3 6
#define M3 3
#define N4 7
#define M4 3
#define N5 8
#define M5 4
#define N6 10
#define M6 5
#define N7 25
#define M7 10
#define N8 8
#define M8 4

void DR_Linfside (void)

© 2008 by Taylor & Francis Group, LLC

366 Numerical Linear Approximation in C

{
 /*--
 Constant matrices/vectors
 --*/
 static tNumber_R c1init[N1][M1] =
 {
 { 0.0, -2.0 },
 { 0.0, -4.0 },
 { 1.0, 10.0 },
 {-1.0, 15.0 }
 };

 static tNumber_R c2init[N2][M2] =
 {
 { 1.0, 2.0, 0.0 },
 {-1.0, -1.0, 0.0 },
 { 1.0, 3.0, 0.0 },
 { 0.0, 1.0, 0.0 },
 { 0.0, 0.0, 1.0 }
 };

 static tNumber_R c3init[N3][M3] =
 {
 { 0.0, -1.0, 0.0 },
 { 1.0, 3.0, -4.0 },
 { 1.0, 0.0, 0.0 },
 { 0.0, 0.0, 1.0 },
 {-1.0, 1.0, 2.0 },
 { 1.0, 1.0, 1.0 }
 };

 static tNumber_R c4init[N4][M4] =
 {
 { 1.0, 0.0, 1.0 },
 { 1.0, 2.0, 2.0 },
 { 1.0, 2.0, 0.0 },
 { 1.0, 1.0, 0.0 },
 { 1.0, 0.0, -1.0 },
 { 1.0, 0.0, 0.0 },
 { 1.0, 1.0, 1.0 }
 };

 static tNumber_R c5init[N5][M5] =
 {
 { 1.0, -3.0, 9.0, -27.0 },

© 2008 by Taylor & Francis Group, LLC

Chapter 11: DR_Linfside 367

 { 1.0, -2.0, 4.0, -8.0 },
 { 1.0, -1.0, 1.0, -1.0 },
 { 1.0, 0.0, 0.0, 0.0 },
 { 1.0, 1.0, 1.0, 1.0 },
 { 1.0, 2.0, 4.0, 8.0 },
 { 1.0, 3.0, 9.0, 27.0 },
 { 1.0, 4.0, 16.0, 64.0 }
 };

 static tNumber_R c6init[N6][M6] =
 {
 { 1.0, 0.0, 0.0, 0.0, 0.0 },
 { 0.0, 1.0, 0.0, 0.0, 0.0 },
 { 0.0, 0.0, 1.0, 0.0, 0.0 },
 { 0.0, 0.0, 0.0, 1.0, 0.0 },
 { 0.0, 0.0, 0.0, 0.0, 1.0 },
 { 1.0, 1.0, 1.0, 1.0, 1.0 },
 { 0.0, 1.0, 1.0, 1.0, 1.0 },
 {-1.0, 0.0, -1.0, -1.0, -1.0 },
 { 1.0, 1.0, 0.0, 1.0, 1.0 },
 { 1.0, 1.0, 1.0, 0.0, 1.0 }
 };

 static tNumber_R c8init[N8][M8] =
 {
 { 1.0, 1.0, 1.0, 1.0 },
 { 1.0, 2.0, 4.0, 4.0 },
 { 1.0, 3.0, 9.0, 9.0 },
 { 1.0, 4.0, 16.0, 16.0 },
 { 1.0, 5.0, 25.0, 25.0 },
 { 1.0, 6.0, 36.0, 36.0 },
 { 1.0, 7.0, 49.0, 49.0 },
 { 1.0, 8.0, 64.0, 64.0 }
 };

 static tNumber_R f1[N1+1] =
 { NIL,
 -12.0, 6.0, 0.0, 5.0
 };

 static tNumber_R f2[N2+1] =
 { NIL,
 1.0, 2.0, 1.0, -3.0, 0.0
 };

© 2008 by Taylor & Francis Group, LLC

368 Numerical Linear Approximation in C

 static tNumber_R f3[N3+1] =
 { NIL,
 1.0, 2.0, 3.0, 2.0, 2.0, 4.0
 };

 static tNumber_R f4[N4+1] =
 { NIL,
 0.0, -2.0, 1.0, -1.0, 5.0, 7.0, 0.0
 };

 static tNumber_R f5[N5+1] =
 { NIL,
 3.0, -3.0, -2.0, 0.0, 7.0, -1.0, 5.0, 2.0
 };

 static tNumber_R f6[N6+1] =
 { NIL,
 1.0, -1.0, 0.0, -1.0, 1.0, 0.0, 2.0, 3.0, -3.0, -2.0
 };

 static tNumber_R f7[N7+1] =
 { NIL,
 0.0872673, 0.0872794, 0.0873029, 0.0873315, 0.0873576,
 0.3491184, 0.3498802, 0.3513824, 0.3532572, 0.3550109,
 0.6111334, 0.6150641, 0.6230824, 0.6336395, 0.6441493,
 0.8733883, 0.8841621, 0.9071868, 0.9400757, 0.9766021,
 1.135895, 1.157550, 1.206257, 1.283258, 1.384432
 };

 static tNumber_R f8[N8+1] =
 { NIL,
 2.0, 2.5, 2.0, 6.5, 3.5, 4.5, 6.0, 7.0
 };

 /*--
 Variable matrices/vectors
 --*/
 tMatrix_R ct = alloc_Matrix_R (MMc_COLS, NN_ROWS);
 tVector_R f = alloc_Vector_R (NN_ROWS);
 tVector_R r = alloc_Vector_R (NN_ROWS);
 tVector_R a = alloc_Vector_R (MMc_COLS);
 tMatrix_R c7 = alloc_Matrix_R (N7, M7);

 tMatrix_R c1 = init_Matrix_R (&(c1init[0][0]), N1, M1);
 tMatrix_R c2 = init_Matrix_R (&(c2init[0][0]), N2, M2);

© 2008 by Taylor & Francis Group, LLC

Chapter 11: DR_Linfside 369

 tMatrix_R c3 = init_Matrix_R (&(c3init[0][0]), N3, M3);
 tMatrix_R c4 = init_Matrix_R (&(c4init[0][0]), N4, M4);
 tMatrix_R c5 = init_Matrix_R (&(c5init[0][0]), N5, M5);
 tMatrix_R c6 = init_Matrix_R (&(c6init[0][0]), N6, M6);
 tMatrix_R c8 = init_Matrix_R (&(c8init[0][0]), N8, M8);

 int irank, iter, iside, kase;
 int i, j, k, m, n, Iexmpl;
 tNumber_R d, dd, ddd, e, ee, eee, z;

 eLaRc rc = LaRcOk;

 iside = 1;

 for (j = 1; j <= 5; j++)
 {
 d = 0.15* (j-3);
 dd = d*d;
 ddd = d*dd;
 for (i = 1; i <= 5; i++)
 {
 e = 0.15* (i-3);
 ee = e*e;
 eee = e*ee;
 k = 5* (j-1) + i;
 c7[k][1] = 1.0;
 c7[k][2] = d;
 c7[k][3] = e;
 c7[k][4] = dd;
 c7[k][5] = ee;
 c7[k][6] = e*d;
 c7[k][7] = ddd;
 c7[k][8] = eee;
 c7[k][9] = dd*e;
 c7[k][10] = ee*d;
 }
 }
 prn_dr_bnr ("DR_Linfside, One-Sided Chebyshev Solutions of an "
 "Overdetermined System of Linear Equations");

 for (kase = 1; kase <= 2; kase++)
 {
 iside = 2 - kase;
 for (Iexmpl = 1; Iexmpl <= 8; Iexmpl++)
 {

© 2008 by Taylor & Francis Group, LLC

370 Numerical Linear Approximation in C

 switch (Iexmpl)
 {
 case 1:
 n = N1;
 m = M1;
 for (i = 1; i <= n; i++)
 {
 f[i] = f1[i];
 for (j = 1; j <= m; j++) ct[j][i] = c1[i][j];
 }
 break;

 case 2:
 n = N2;
 m = M2;
 for (i = 1; i <= n; i++)
 {
 f[i] = f2[i];
 for (j = 1; j <= m; j++) ct[j][i] = c2[i][j];
 }
 break;

 case 3:
 n = N3;
 m = M3;
 for (i = 1; i <= n; i++)
 {
 f[i] = f3[i];
 for (j = 1; j <= m; j++) ct[j][i] = c3[i][j];
 }
 break;

 case 4:
 n = N4;
 m = M4;
 for (i = 1; i <= n; i++)
 {
 f[i] = f4[i];
 for (j = 1; j <= m; j++) ct[j][i] = c4[i][j];
 }
 break;

 case 5:
 n = N5;
 m = M5;

© 2008 by Taylor & Francis Group, LLC

Chapter 11: DR_Linfside 371

 for (i = 1; i <= n; i++)
 {
 f[i] = f5[i];
 for (j = 1; j <= m; j++) ct[j][i] = c5[i][j];
 }
 break;

 case 6:
 n = N6;
 m = M6;
 for (i = 1; i <= n; i++)
 {
 f[i] = f6[i];
 for (j = 1; j <= m; j++) ct[j][i] = c6[i][j];
 }
 break;

 case 7:
 n = N7;
 m = M7;
 for (i = 1; i <= n; i++)
 {
 f[i] = f7[i];
 for (j = 1; j <= m; j++) ct[j][i] = c7[i][j];
 }
 break;

 case 8:
 n = N8;
 m = M8;
 for (i = 1; i <= n; i++)
 {
 f[i] = f8[i];
 for (j = 1; j <= m; j++) ct[j][i] = c8[i][j];
 }

 break;

 default:
 break;
 }

 prn_algo_bnr ("Linfside");
 prn_example_delim();
 PRN ("Example #%d: Size of matrix \"c\", %d by %d\n",

© 2008 by Taylor & Francis Group, LLC

372 Numerical Linear Approximation in C

 Iexmpl, n, m);
 prn_example_delim();
 if (iside == 1)
 PRN ("One-sided Chebyshev Solution from above\n");
 else
 PRN ("One-sided Chebyshev Solution from below\n");
 prn_example_delim();
 PRN ("r.h.s. Vector \"f\"\n");
 prn_Vector_R (f, n);
 PRN ("Transpose of Coefficient Matrix, \"ct\"\n");
 prn_Matrix_R (ct, m, n);

 rc = LA_Linfside (iside, m, n, ct, f, &irank, &iter, r,
 a, &z);

 if (rc >= LaRcOk)
 {
 PRN ("\n");
 PRN ("Results of the "
 "One-sided Chebyshev Approximation\n");
 PRN ("One-sided Chebyshev solution vector, \"a\"\n");
 prn_Vector_R (a, m);
 PRN ("One-sided Chebyshev residual vector \"r\"\n");
 prn_Vector_R (r, n);
 PRN ("One-sided Chebyshev norm \"z\" = %8.4f\n", z);
 PRN ("Rank of matrix \"c\" = %d, No. of Iterations ="
 " %d\n", irank, iter);
 }

 prn_la_rc (rc);
 }
 }
 free_Matrix_R (ct, MMc_COLS);
 free_Vector_R (f);
 free_Vector_R (r);
 free_Vector_R (a);
 free_Matrix_R (c7, N7);
 uninit_Matrix_R (c1);
 uninit_Matrix_R (c2);
 uninit_Matrix_R (c3);
 uninit_Matrix_R (c4);
 uninit_Matrix_R (c5);
 uninit_Matrix_R (c6);
 uninit_Matrix_R (c8);
}

© 2008 by Taylor & Francis Group, LLC

Chapter 11: LA_Linfside 373

11.7 LA_Linfside

/*---
LA_Linfside

This program calculates the one-sided Chebyshev solution from above
or from below of an overdetermined system of linear equations. It
uses a modified simplex method to the linear programming formulation
of the problem.

The system of linear equations has the form

 c*a = f

"c" is a given real n by m matrix of rank k, k <= m < n.
"f" is a given real n vector.

The problem is to calculate the elements of the m vector
"a" that gives the minimum Chebyshev residual norm z.

 z=max|r[i]|, i = 1, 2, ..., n

where r[i] is the ith residual and is given by

 r[i] = f[i] - (c[i][1]*a[1] + c[i][2]*a[2] + ... + c[i][m]*a[m]),
 i = 1, 2, ..., n

subject to the conditions

 r[i] => 0, for the one-sided L-One solution from above.
or
 r[i] =< 0, for the one-sided L-One solution from below.

[Note: For LA_Linfside vector r = f - ca, while for
 LA_Loneside, r = ca - f].

Inputs
iside An integer specifying the action to be performed.
 If iside = 1, the one-sided Chebyshev solution from above is
 calculated.
 If iside != 1, the one-sided Chebyshev solution from below is
 calculated.
m Number of columns of matrix "c" in the system c*a = f.
n Number of rows of matrix "c" in the system c*a = f.
ct A real (m+1) by n matrix. Its first m rows and its n
 columns contain the transpose of matrix "c" of the system
 c*a = f. Its (m+1)th row will be filled with ones by the
 program.

© 2008 by Taylor & Francis Group, LLC

374 Numerical Linear Approximation in C

f A real n vector containing the r.h.s. of the system c*a = f.

Local Variables
binv A real (m + 1) square matrix containing the inverse of the
 basis matrix in the linear programming problem.
bv A real (m + 1) vector containing the basic solution in the
 linear programming problem.
icbas An integer (m + 1) vector containing the indices of the
 columns of matrix "ct" forming the basis matrix.
irbas An integer (m + 1) vector containing the indices of the
 rows of matrix "ct".

Outputs
irank Calculated rank of matrix "c".
iter Number of iterations, or the number of times the simplex
 tableau is changed by a Gauss-Jordan step.
a A real (m + 1) vector. Its first m elements are the
 one-sided Chebyshev solution to the system c*a = f.
r A real n vector containing the one-sided Chebyshev residual
 vector r = (f - c*a).
z The optimum one-sided Chebyshev norm of the problem.

Returns one of
 LaRcSolutionUnique
 LaRcSolutionProbNotUnique
 LaRcSolutionDefNotUniqueRD
 LaRcNoFeasibleSolution
 LaRcErrBounds
 LaRcErrNullPtr
 LaRcErrAlloc
---*/

#include "LA_Prototypes.h"

eLaRc LA_Linfside (int iside, int m, int n, tMatrix_R ct,
 tVector_R f, int *pIrank, int *pIter, tVector_R r, tVector_R a,
 tNumber_R *pZ)
{
 tMatrix_R binv = alloc_Matrix_R (m + 1, m + 1);
 tVector_R bv = alloc_Vector_R (m + 1);
 tVector_I icbas = alloc_Vector_I (m + 1);
 tVector_I irbas = alloc_Vector_I (m + 1);
 tVector_I ibound = alloc_Vector_I (n);

 int i = 0, j = 0, kl = 0, m1 = 0;
 int ijk = 0, iout = 0, jin = 0, ivo = 0, itest = 0;
 tNumber_R d = 0.0, piv = 0.0;

 /* Validation of the data before executing the algorithm */

© 2008 by Taylor & Francis Group, LLC

Chapter 11: LA_Linfside 375

 eLaRc rc = LaRcSolutionUnique;
 VALIDATE_BOUNDS ((0 < m) && (m < n));
 VALIDATE_PTRS (ct && f && pIrank && pIter && r && a && pZ);
 VALIDATE_ALLOC (binv && bv && icbas && irbas && ibound);

 *pIrank = m;
 *pIter = 0;
 m1 = m + 1;
 kl = 1;
 /* Initializing the data */
 LA_linfside_init (iside, m, n, ct, irbas, binv, ibound, a);

 iout = 0;

 /* Part 1 of the algorithm */
 for (iout = 1; iout <= m1; iout++)
 {
 piv = 0.0;
 for (j = 1; j <= n; j++)
 {
 d = fabs (ct[iout][j]);
 if (d > piv)
 {
 jin = j;
 piv = d;
 }
 }

 if (piv > EPS)
 {
 /* A Gauss-Jordan elimination step, */
 LA_linfside_gauss_jordn (iout, jin, kl, m, n, ct, icbas,
 binv, bv);
 *pIter = *pIter + 1;
 }

 /* Detection of rank deficiency of matrix "c" */
 LA_linfside_detect_rank (piv, iout, jin, &kl, m, n, ct, f,
 icbas, irbas, binv, bv, ibound,
 pIrank, pIter);
 }

 /* Part 2; obtaining a basic feasible solution */
 LA_linfside_part_2 (kl, m, n, ct, f, icbas, binv, bv, ibound,
 pIter);

 /* Calculating the initial residual vector r and norm z */
 LA_linfside_resid_norm (kl, m, n, ct, f, icbas, binv, bv, ibound,
 r, pZ);

© 2008 by Taylor & Francis Group, LLC

376 Numerical Linear Approximation in C

 /* Part 3 of the algorithm */
 for (ijk = 1; ijk <= n*n; ijk++)
 {
 ivo = 0;

 /* Determine the vector that enters the basis */
 LA_linfside_vent (&ivo, &jin, kl, m, n, icbas, r, pZ);

 /* Calculate the results */
 if (ivo == 0)
 {
 rc = LA_linfside_res (iside, m, n, kl, iout, f, icbas,
 irbas, binv, bv, ibound, r, a,
 *pIrank, pZ);
 GOTO_CLEANUP_RC (rc);
 }
 if (ivo != 1)
 {
 for (i = kl; i <= m1; i++)
 {
 ct[i][jin] = bv[i] - ct[i][jin];
 }
 r[jin] = *pZ - r[jin];
 f[jin] = -f[jin];
 ibound[jin] = -ibound[jin];
 }
 itest = 0;

 /* Determine the vector that leaves the basis */
 LA_linfside_vleav (&itest, &iout, jin, kl, m, ct, bv);

 if (itest != 1)
 {
 GOTO_CLEANUP_RC (LaRcNoFeasibleSolution);
 }

 /* A Gauss-Jordan elimination step */
 LA_linfside_gauss_jordn (iout, jin, kl, m, n, ct, icbas,
 binv, bv);
 *pIter = *pIter + 1;
 d = r[jin];
 for (j = 1; j <= n; j++)
 {
 r[j] = r[j] - d * (ct[iout][j]);
 }
 *pZ = *pZ - d * (bv[iout]);
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 11: LA_Linfside 377

CLEANUP:

 free_Matrix_R (binv, m + 1);
 free_Vector_R (bv);
 free_Vector_I (icbas);
 free_Vector_I (irbas);
 free_Vector_I (ibound);

 return rc;
}

/*---
Initializing the program data for LA_Linfside()
---*/
void LA_linfside_init (int iside, int m, int n, tMatrix_R ct,
 tVector_I irbas, tMatrix_R binv, tVector_I ibound, tVector_R a)
{
 int i, j, m1;
 tNumber_R e;

 m1 = m + 1;
 for (i = 1; i <= m1; i++)
 {
 a[i] = 0.0;
 irbas[i] = i;
 }
 for (j = 1; j <= m1; j++)
 {
 for (i = 1; i <=m1; i++)
 {
 binv[i][j] = 0.0;
 }
 binv[j][j] = 1.0;
 }
 e = 1.0;
 if (iside != 1) e = 0.0;
 for (j = 1; j <= n; j++)
 {
 ct[m1][j] = e;
 ibound[j] = 1;
 }
}

/*---
Detection of the rank of matrix "c" in LA_Linfside()
---*/
void LA_linfside_detect_rank (tNumber_R piv, int iout, int jin,
 int *pKl, int m, int n, tMatrix_R ct, tVector_R f,
 tVector_I icbas, tVector_I irbas, tMatrix_R binv, tVector_R bv,

© 2008 by Taylor & Francis Group, LLC

378 Numerical Linear Approximation in C

 tVector_I ibound, int *pIrank, int *pIter)
{
 int i, j, k, m1, icb;

 m1 = m + 1;

 if (piv < EPS && iout < m1)
 {
 swap_rows_Matrix_R (ct, *pKl, iout);

 k = irbas[iout];
 irbas[iout] = irbas[*pKl];
 irbas[*pKl] = 0;
 for (j = *pKl; j <= m; j++)
 {
 binv[iout][j] = binv[*pKl][j];
 binv[*pKl][j] = 0.0;
 }
 bv[*pKl] = 0.0;
 icbas[iout] = icbas[*pKl];
 icbas[*pKl] = 0;
 for (i = *pKl; i <= m1; i++)
 {
 binv[i][iout] = binv[i][*pKl];
 binv[i][*pKl] = 0.0;
 }
 *pIrank = *pIrank - 1;
 *pKl = *pKl + 1;
 }
 if (piv < EPS && iout == m1)
 {
 for (j = 1; j <= n; j++)
 {
 icb = 0;
 for (i = *pKl; i <= m; i++)
 {
 if (j == icbas[i]) icb = 1;
 }
 if (icb == 0)
 {
 jin = j;
 break;
 }
 }
 f[jin] = -f[jin];
 ibound[jin] = -ibound[jin];
 for (i = *pKl; i <= m; i++)
 {
 ct[i][jin] = -ct[i][jin];

© 2008 by Taylor & Francis Group, LLC

Chapter 11: LA_Linfside 379

 }
 ct[m1][jin] = 1.0 - ct[m1][jin];
 /* A Gauss-Jordan elimination step, */
 LA_linfside_gauss_jordn (iout, jin, *pKl, m, n, ct, icbas,
 binv, bv);
 *pIter = *pIter + 1;
 }
}

/*---
Obtaining a basic feasible solution of the linear programming
problem in LA_Linfside()
---*/
void LA_linfside_part_2 (int kl, int m, int n, tMatrix_R ct,
 tVector_R f, tVector_I icbas, tMatrix_R binv, tVector_R bv,
 tVector_I ibound, int *pIter)
{
 int i, k, m1;
 int iout, jin;

 m1 = m + 1;
 for (i = kl; i <= m1; i++)
 {
 if (bv[i] < 0.0)
 {
 iout = i;
 jin = icbas[i];
 f[jin] = -f[jin];
 ibound[jin] = -ibound[jin];
 for (k = kl; k <= m1; k++)
 {
 ct[k][jin] = bv[k] - ct[k][jin];
 }

 /* A Gauss-Jordan elimination step, */
 LA_linfside_gauss_jordn (iout, jin, kl, m, n, ct, icbas,
 binv, bv);
 *pIter = *pIter + 1;
 }
 }
}

/*---
Calculating initial residual vector r and norm z in LA_Linfside()
---*/
void LA_linfside_resid_norm (int kl, int m, int n, tMatrix_R ct,
 tVector_R f, tVector_I icbas, tMatrix_R binv, tVector_R bv,
 tVector_I ibound, tVector_R r, tNumber_R *pZ)
{

© 2008 by Taylor & Francis Group, LLC

380 Numerical Linear Approximation in C

 int i, j, k, m1, icb;
 tNumber_R d, g, s;

 m1 = m + 1;

 s = 0.0;
 for (i = kl; i <= m1; i++)
 {
 k = icbas[i];
 s = s + bv[i] * (f[k]);
 }
 *pZ = s;
 if (*pZ < 0.0)
 {
 s = 0.0;
 for (i = kl; i <= m1; i++)
 {
 s = s + bv[i];
 }
 d = s - 1.0;
 if (fabs (d) > EPS)
 {
 g = 1.0/d;
 for (i = kl; i <= m1; i++)
 {
 bv[i] = g * (bv[i]);
 }
 *pZ = - g * (*pZ);
 for (j = 1; j <= n; j++)
 {
 f[j] = -f[j];
 ibound[j] = -ibound[j];
 icb = 0;
 for (i = kl; i <= m1; i++)
 {
 if (j == icbas[i]) icb = 1;
 }
 if (icb == 0)
 {
 s = 0.0;
 for (i = kl; i <= m1; i++)
 {
 s = s + ct[i][j];
 }
 d = 1.0 - s;
 for (i = kl; i <= m1; i++)
 {
 ct[i][j] = ct[i][j] + d * (bv[i]);
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 11: LA_Linfside 381

 }
 }
 for (j = kl; j <= m; j++)
 {
 s = 0.0;
 for (i = kl; i <= m1; i++)
 {
 s = s + binv[i][j];
 }
 d = s;
 for (i = kl; i <= m1; i++)
 {
 binv[i][j] = -binv[i][j] + d * (bv[i]);
 }
 }
 for (i = kl; i <= m1; i++)
 {
 binv[i][m1] = bv[i];
 }
 }
 }
 for (j = 1; j <= n; j++)
 {
 r[j] = 0.0;
 icb = 0;
 for (i = kl; i <= m1; i++)
 {
 if (j == icbas[i]) icb = 1;
 }
 if (icb == 0)
 {
 s = -f[j];
 for (i = kl; i <= m1; i++)
 {
 k = icbas[i];
 s = s + ct[i][j] * (f[k]);
 }
 r[j] = s;
 }
 }
}

/*---
Determine the vector that leaves the basis in LA_Linfside()
---*/
void LA_linfside_vleav (int *pItest, int *pIout, int jin, int kl,
 int m, tMatrix_R ct, tVector_R bv)
{
 int i, m1;

© 2008 by Taylor & Francis Group, LLC

382 Numerical Linear Approximation in C

 tNumber_R d, g, thmax;

 m1 = m + 1;
 thmax = 1.0/ (EPS * EPS);
 for (i = kl; i <= m1; i++)
 {
 d = ct[i][jin];
 if (d > EPS)
 {
 g = bv[i]/d;
 if (g < thmax)
 {
 thmax = g;
 *pIout = i;
 *pItest = 1;
 }
 }
 }
}

/*---
Determine the vector that enters the basis in LA_Linfside()
---*/
void LA_linfside_vent (int *pIvo, int *pJin, int kl, int m, int n,
 tVector_I icbas, tVector_R r, tNumber_R *pZ)
{
 int i, j, m1, icb;
 tNumber_R d, e, g, tz;

 m1 = m + 1;
 g = 1.0/ (EPS*EPS);
 tz = *pZ + EPS;
 for (j = 1; j <= n; j++)
 {
 icb = 0;
 for (i = kl; i <= m1; i++)
 {
 if (j == icbas[i]) icb = 1;
 }
 if (icb == 0)
 {
 d = r[j];
 if (d < -EPS)
 {
 e = d;
 if (e < g)
 {
 g = e;
 *pJin = j;

© 2008 by Taylor & Francis Group, LLC

Chapter 11: LA_Linfside 383

 *pIvo = 1;
 }
 }
 else if (d >= tz)
 {
 e = tz - d;
 if (e < g)
 {
 g = e;
 *pJin = j;
 *pIvo = -1;
 }
 }
 }
 }
}

/*---
A Gauss-Jordan elimination step for LA_Linfside()
---*/
void LA_linfside_gauss_jordn (int iout, int jin, int kl, int m,
 int n, tMatrix_R ct, tVector_I icbas, tMatrix_R binv,
 tVector_R bv)
{
 int i, j, k, m1;
 tNumber_R d, pivot;

 m1 = m + 1;
 pivot = ct[iout][jin];
 for (j = 1; j <= n; j++)
 {
 ct[iout][j] = ct[iout][j]/pivot;
 }
 k = m1;

 /*
 kj = kl + *pIter;
 if (kj < m1) k = kj;
 for (j = kl; j <= k; j++)
 */
 for (j = kl; j <= m1; j++)
 {
 binv[iout][j] = binv[iout][j]/pivot;
 }
 for (i = kl; i <= m1; i++)
 {
 if (i != iout)
 {
 d = ct[i][jin];

© 2008 by Taylor & Francis Group, LLC

384 Numerical Linear Approximation in C

 for (j = 1; j <= n; j++)
 {
 ct[i][j] = ct[i][j] - d * (ct[iout][j]);
 }
 for (j = kl; j <= k; j++)
 {
 binv[i][j] = binv[i][j] - d * (binv[iout][j]);
 }
 }
 }
 for (i = kl; i <= m1; i++)
 {
 bv[i] = binv[i][m1];
 }
 icbas[iout] = jin;
}

/*---
Calculate the results of LA_Linfside()
---*/
eLaRc LA_linfside_res (int iside, int m, int n, int kl, int iout,
 tVector_R f, tVector_I icbas, tVector_I irbas, tMatrix_R binv,
 tVector_R bv, tVector_I ibound, tVector_R r, tVector_R a,
 int irank, tNumber_R *pZ)
{
 int i, j, k, m1;
 tNumber_R d, g, s, piv, pivot;

 m1 = m + 1;
 piv = 0.0;
 for (i = kl; i <= m1; i++)
 {
 d = bv[i];
 if (d > piv)
 {
 piv = d;
 iout = i;
 }
 }
 if (iout != m1)
 {
 for (j = kl; j <= m1; j++)
 {
 d = binv[iout][j];
 binv[iout][j] = binv[m1][j];
 binv[m1][j] = d;
 }
 k = icbas[iout];
 icbas[iout] = icbas[m1];

© 2008 by Taylor & Francis Group, LLC

Chapter 11: LA_Linfside 385

 icbas[m1] = k;
 }
 pivot = binv[m1][m1];
 for (j = kl; j <= m1; j++)
 {
 binv[m1][j] = binv[m1][j]/pivot;
 }
 for (i = kl; i <= m; i++)
 {
 d = binv[i][m1];
 for (j = kl; j <= m1; j++)
 {
 binv[i][j] = binv[i][j] - d * (binv[m1][j]);
 }
 }
 for (j = kl; j <= m; j++)
 {
 k = icbas[j];
 g = f[k];
 if (iside == 1 && ibound[k] == 1) g = g - *pZ;
 if (iside != 1 && ibound[k] == -1) g = g - *pZ;
 binv[j][m1] = g;
 }
 for (j = kl; j <= m; j++)
 {
 s = 0.0;
 for (i = kl; i <= m; i++)
 {
 s = s + binv[i][m1] * (binv[i][j]);
 }
 k = irbas[j];
 a[k] = s;
 }

 /* Calculation of the one-sided residuals */
 for (j = 1; j <= n; j++)
 {
 d = r[j];
 if (iside == 1)
 {
 if (ibound[j] == 1) d = *pZ - d;
 r[j] = d;
 }
 else if (iside != 1)
 {
 if (ibound[j] == -1) d = *pZ - d;
 r[j] = - d;
 }
 }

© 2008 by Taylor & Francis Group, LLC

386 Numerical Linear Approximation in C

 if (irank < m)
 return LaRcSolutionDefNotUniqueRD;

 if (kl > 1)
 return LaRcSolutionProbNotUnique;

 for (i = 1; i <= m1; i++)
 {
 if (bv[i] < EPS)
 return LaRcSolutionProbNotUnique;
 }

 return LaRcSolutionUnique;
}

© 2008 by Taylor & Francis Group, LLC

387

Chapter 12

Chebyshev Approximation with Bounded Variables

12.1 Introduction

In Chapter 10, an algorithm for calculating the Chebyshev
solution of overdetermined systems of linear equations is given. In
that algorithm, the Chebyshev norm of the residual vector, is as small
as possible. In Chapter 11, an algorithm for the one-sided Chebyshev
solution of overdetermined linear equations is presented. In that
algorithm, the Chebyshev solution is subject to the additional
constraints that all the elements of the residual vector are either
non-positive or non-negative.

In this chapter, we present the Chebyshev approximation with
bounded variables [3], where the additional constraints are on the
elements of the solution vector, not on the elements of the residual
vector. Typically, the elements of the solution vector are to be
bounded between �1 and 1. This chapter is analogous to Chapter 7 for
the linear bounded L1 approximation.

The solid curve in Figure 12-1 is for the ordinary Chebyshev
approximation, for the 8 points of Figure 2-1, and is given by
y = �0.8 + 2x � 0.156x2. The elements of the solution vector for this
approximating curve are (�0.8, 2, �0.156). They are not all bounded
between �1 and 1. For the same 8 points, the Chebyshev
approximation with bounded variables between �1 and 1 is given by
y = 1+ x � 0.024x2. The dotted curve in Figure 12-1 shows this
approximation.

In this chapter, linear programming techniques [7] are used to
solve this problem, where minimum computer storage is required and
no conditions are imposed on the coefficient matrix. The coefficient
matrix could be a rank deficient one.

© 2008 by Taylor & Francis Group, LLC

388 Numerical Linear Approximation in C

Consider the overdetermined system of linear equations

(12.1.1) Ca = f

C = (cij) is a given real n by m matrix of rank k, k ≤ m < n, and f = (fi)
is a given real n-vector. The Chebyshev solution to system Ca = f is
the m-vector a = (aj) that minimizes the Chebyshev norm z of the
residuals

z = max|ri|, i = 1, 2, �, n

where ri is the ith residual and is given by

(12.1.2) , i = 1, 2, �, n

When the elements of the solution vector a is required to satisfy
the additional conditions

(12.1.3) �1 ≤ ai ≤ 1, i = 1, 2, �, m

we have the problem of calculating the Chebyshev solution of (12.1.1)
with bounded variables between �1 and 1.

Figure 12-1 shows curve fitting with vertical parabolas for the
same 8 points shown in Figure 2-1. The solid curve is the ordinary
Chebyshev approximation and the dotted curve is the Chebyshev
approximation with bounded variables between �1 and 1.

If, instead of the constraints (12.1.3), we require the elements of
vector a to satisfy the constraints

(12.1.4) ci ≤ ai ≤ di, i = 1, 2, �, m

where (ci) and (di) are elements of given m-vectors c and d, by
substituting variables, (12.1.4) reduces to the constraints (12.1.3) in
the new variables. This has been given in Section 7.1.

The Chebyshev approximation with non-negative parameters may
be formulated as a Chebyshev approximation with bounded variables
as well. See Section 12.1.1.

In Section 12.2, the Chebyshev approximation with bounded
variables is formulated as a special problem of some general
constrained problems. We shall comment on these methods in Section
12.5. In Section 12.3, the linear programming formulation of the
problem is presented. In Section 12.4, the algorithm is described and

ri cijaj
j 1=

m

∑ fi�=

© 2008 by Taylor & Francis Group, LLC

Chapter 12: Bounded Chebyshev Approximation 389

in Section 12.5, numerical results and comments are given.

Figure 12-1: Curve fitting a set of 8 points using Chebyshev
approximation and Chebyshev approximation with bounded variables

between �1 and 1

12.1.1 Linear Chebyshev approximation with non-negative
parameters (NNLI)

If in (12.1.4) we take (ci) = 0 and (di) = Big, for i = 1, 2, �, m,
where Big is a large number, we have the linear L∞ approximation
with non-negative parameters, or non-negative L-infinity (NNLI). See
Section 7.1.1 for the L1 approximation with non-negative parameters,
or non-negative L1 approximation (NNL1).

12.2 A special problem of a general constrained one

Sklar [11] presented an algorithm to solve the problem (expressed
here in our notation)

minimize ||Ca � f||∞
subject to

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9

.

© 2008 by Taylor & Francis Group, LLC

390 Numerical Linear Approximation in C

ea ≤ Ea ≤ eb

His algorithm is a generalization of that of Armstrong and Sklar [4].
Also, Roberts and Barrodale [10] presented an algorithm to solve

the problem

minimize ||Ca � f||∞
subject to

Ga = g and ea ≤ Ea ≤ eb

Their algorithm is the extension of the algorithm of Barrodale and
Phillips for the ordinary Chebyshev solution [5, 6].

In the above, C, G and E are matrices of appropriate dimensions, f
is the vector associated with C, g is the vector associated with G and
ea and eb are two vectors associated with E. Also, not all of the arrays
(G, g) and (E, ea, eb) are vacuous.

If we take G = 0, g = 0 and take E = Im and ea = �em and eb = em,
where Im and em are respectively an m-unit matrix and an m-vector,
each element of which equals 1, we get the Chebyshev solution with
bounded variables between 1 and �1. As mentioned earlier, we shall
comment on these algorithms in Section 12.5.

12.3 Linear programming formulation of the problem

The problem given by (12.1.1-3) may be reduced to a linear
programming problem as follows.

Let h ≥ 0, be h = maxi|ri| in (12.1.2). Hence, the primal form of the
programming problem is

minimize h

subject to

, i = 1, 2, �, n

and

�1 ≤ ai ≤ 1, i = 1, 2, �, m

In vector-matrix notation, the above inequalities become

h� cijaj fi�
j 1=

m

∑ h≤ ≤

© 2008 by Taylor & Francis Group, LLC

Chapter 12: Bounded Chebyshev Approximation 391

Ca + hen ≥ f
�Ca + hen ≥ �f

�a ≥ �em
a ≥ �em

where

aj, j = 1, 2, �, m, unrestricted in sign, h ≥ 0

en and em are an n- and m-vectors, each element of which is 1.

This formulation may be written more conveniently as

subject to

aj, j = 1, 2, �, m, unrestricted in sign, h ≥ 0

Here, dm+1 is an (m + 1)-vector whose first m elements are 0�s
and the (m + 1)th element is 1; that is, dm+1 is the (m + 1)th column of
an (m + 1)-unit matrix. Here, dm+1 is the same as em+1 in Chapters 10
and 11. Again, Im is an m-unit matrix and 0 is an m-zero vector.

By rearranging the terms in the primal formulation, the dual form
is (Section 3.6)

(12.3.1a) maximize z = [fT �em
T �fT �em

T]b

subject to

(12.3.1b)

(12.3.1c) bi ≥ 0, i = 1, 2, �, 2(n + m)

minimize Z dm 1+
T a

h
=

C en

C� en

I� m 0
Im 0

a
h

f
f�

em�
em�

≥

CT Im� CT� Im

en
T 0T en

T 0T
b dm 1+=

© 2008 by Taylor & Francis Group, LLC

392 Numerical Linear Approximation in C

Let us write (12.3.1b) in the form

(12.3.1d) Db = dm+1

where D is the coefficient matrix on the l.h.s. of (12.3.1b). D is an
(m + 1) by 2(n + m) matrix and is of rank (m + 1), despite the fact that
matrix C may be rank deficient.

As usual, let B denote the non-singular basis matrix for the linear
programming problem (12.3.1). Since matrix D is of rank (m + 1), B
is an (m + 1) square matrix. Let also (yi) be the columns forming the
simplex tableau, (zj � fj) be the marginal costs for column (yj), bB be
the basic solution, and z be the objective function.

Let a lso the elements of the 2(n + m)-vector gT =
[fT �em

T �fT �em
T] of (12.3.1a) associated with the basic variables

be the (m + 1)-vector gB. Then for j = 1, 2, �, 2(n + m), we have

(12.3.2a) yj = B�1Dj
(12.3.2b) (zj � gj) = gB

Tyj � gj
(12.3.2c) bB = B�1dm+1
(12.3.2d) z = gB

TbB

where Dj is the jth column of matrix D.

12.3.1 Properties of the matrix of constraints

Consider the two halves of matrix D, in (12.3.1b, d), each is of
(n + m) columns. While matrix CT exists in the first n columns of the
left half of D, matrix �CT exists in the first n columns of the right half.
The last m columns of the left half are the negatives of the last m
columns of the right half. We also make use of the fact the a unit
matrix exists in the last m columns of each of the two halves of D.

This kind of asymmetry and the existence of unit matrices in D
will enable us to use a simplex tableau for this problem of only
(m + 1) constraints in n variables, instead of a simplex tableau of
(m + 1) constraints in 2(n + m) variables. This will be apparent from
the coming analysis.

From the definition of matrix D in (12.3.1d), we have for
j = 1, 2, �, n

© 2008 by Taylor & Francis Group, LLC

Chapter 12: Bounded Chebyshev Approximation 393

(12.3.3a)

where again, Dj and Cj
T are respectively the jth column of D and the

jth column of CT. Then we have

(12.3.3b) Dj + Dj+n+m = 2dm+1, j = 1, �, n

and also we have

(12.3.3c) Dj + Dj+n+m = 0, j = n + 1, �, n + m

Definition

Let i and j, 1 ≤ i, j ≤ 2(n + m), be the indices of any two columns
in matrix D such that |i � j| = (n + m). We define columns i and j as
two corresponding columns.

Consider the following lemmas.

Lemma 12.1

At any stage of the computation, the (m + 1)th column of matrix
B-1 is the basic solution vector bB.

This follows directly from (12.3.2c) since dm+1 is the (m + 1)th

column of an (m + 1)-unit matrix.

Lemma 12.2

At any stage of the computation, the solution vector a and the
objective function z, are given by Lemma 10.2

(12.3.4a)

or

(12.3.4b) (aT z) = gB
TB�1

Lemma 12.3

Any two corresponding columns should not appear together in any
basis matrix.

Dj
Cj

T

1
 and Dj n m+ +

C� j
T

1
= =

BT a
z

gB=

© 2008 by Taylor & Francis Group, LLC

394 Numerical Linear Approximation in C

Lemma 12.4

For any two corresponding columns in the simplex tableau we
have

yi + yi+n+m = 2bB, i = 1, �, n
yi + yi+n+m = 0, i = n + 1, �, n + m
(zi � gi) + (zi+n+m � gi+n+m) = 2z, i = 1, 2, �, n
(zi � gi) + (zi+n+m � gi+n+m) = 2, i = n + 1, �, n + m

Proof:

By multiplying (12.3.3b, c) by B�1 and using (12.3.2a, c) the first
two equations are proved. From (12.3.2a-c) the last two equations are
proved.

Lemma 12.5

The residuals (ri), i = 1, 2, �, n, are given by one of the following
relations

ri = (zi � gi) � z, i = 1, 2, �, n
ri = z � (zi � gi), i = n + m + 1, �, 2n + m

It is sufficient to prove the first relation. Let 1 ≤ j ≤n. Then since
Cj

T is the jth column of CT, i.e., the jth row of C, we write (12.1.2) as
rj = aTCj

T � gj, or from the definition of Dj
T in (12.3.3a), 1 ≤ j ≤n,

rj = (aT z)Dj
T � gj � z.

By substituting (12.3.4b), (12.3.2a) and (12.3.2d) in succession in
the last expression of rj, we get rj = gB

TB�1Dj
T � gj � z = (zi � gi) � z.

This proves the first relation in the Lemma. The second relation is
proved in the same manner. See also Lemma 13.4 and [2].

Lemma 12.6

The last m columns in the (m + 1) by 2(n + m) simplex tableau are
the first m columns of the inverse of the basis matrix; B�1. Initially,
they are the first m columns of an (m + 1)-unit matrix.

12.4 Description of the algorithm

We only need to store in the initial simplex tableau the first n
columns of matrix D of (12.3.1b, d). We call this the condensed
tableau. From Lemma 12.4, if any column in the simplex tableau and

© 2008 by Taylor & Francis Group, LLC

Chapter 12: Bounded Chebyshev Approximation 395

its marginal cost are known, the corresponding column and its
marginal cost are easily derived.

From Lemma 12.6, the first m columns of the (m + 1) matrix B�1

are available. We consider the first m columns of matrix B�1 (and
their corresponding columns) as part of the simplex tableau.

The algorithm is in 3 parts. In part 1, the simplex tableau is
changed once when any one (usually the first column) of the first n
columns of matrix D may form the (m + 1)th column of the basis
matrix B. After changing the simplex tableau once, the initial basic
solution bB is now available. From Lemma 12.1, bB is itself the
(m + 1)th column of B�1. We remark that for this Gauss-Jordan step,
each of the pivot element and the (m + 1)th element of bB is 1; that is,
the (m + 1)th element of bB is ≥ 0.

An (n + m)-index indicator vector whose elements are +1 or �1 is
needed. If column j, 1 ≤ j ≤ n, is in the condensed tableau, index j of
this vector has the value +1. If the corresponding column to column j
is in the condensed tableau, index j has a value �1. Similarly, if
column j of matrix B�1, 1 ≤ j ≤ m, has its marginal cost stored, the
index (n + j) has the value +1. Otherwise, it has the value �1.

In part 2, if one or more elements i, 1 ≤ i ≤ m, of the basic solution
bB is negative, the initial basic solution is not feasible. For each basic
column j, (2n + m + 1) ≤ j ≤ 2(n + m), associated with a negative
element i in the basic solution, we make use of the second equation of
Lemma 12.4 and replace column j by its corresponding column.
Again, this does not require changing the simplex tableau, except that
row i, which corresponds to the negative element of bB, is multiplied
by �1. Row i of B�1 and the ith element of bB are also multiplied by
�1.

At the end of part 2, the initial objective function z is calculated
from (12.3.2d) and z may have a positive or a negative value. If z is
negative in part 3 of the algorithm, z increases monotonically until it
acquires its optimum (positive) value.

Part 3 is almost identical to part 3 of the algorithm for the ordinary
Chebyshev solution [1] described in Chapter 10. The only difference
is the following. At the beginning of part 3, we calculate the marginal
costs not only for the columns of the condensed tableau, but also for
the first m columns of matrix B�1. From (12.3.1a) and the above
discussion, the prices for the first m columns of B�1 would be the

© 2008 by Taylor & Francis Group, LLC

396 Numerical Linear Approximation in C

elements of the vector (�em).
As in Chapter 10, the non-basic column to enter the basis is that

which has the most negative marginal cost among:
(a) the non-basic columns in the current condensed tableau,
(b) the first m columns of matrix B�1, and
(c) the corresponding columns of (a) and (b).

The optimum residual vector r is calculated from Lemma 12.5 and
the optimum (aT z) values are obtained from Lemma 12.2.

12.5 Numerical results and comments

LA_Linfbv() implements this algorithm. DR_Linfbv() tests 8
examples, including some with rank deficient matrices.

All of the results satisfy the inequalities (12.1.3). Table 12.5.1
shows the results of 3 of the examples.

Table 12.5.1

Chebyshev Chebyshev solution with
Solution bounded variables

��
Example C(n×m) Iterations z Iterations z

��
1 4 × 2 5 10.0 5 10.0
2 10× 5 9 1.778 6 1.778
3 25×10 22 0.0071 19 0.2329

For each example, the number of iterations and the optimum norm
for the Chebyshev solution with bounded variables are shown. For
comparison purposes, the results of the ordinary Chebyshev
approximation problem are also given.

The number of iterations for this algorithm are, in general, smaller
than those for the corresponding ordinary Chebyshev case.

We now comment on other algorithms that solve this problem.
Using an extension of the well-known exchange algorithm, Powell [9]
presented an algorithm for obtaining the Chebyshev solution of
system Ca = f subject to the constraints (12.1.3). FORTRAN IV code
for Powell's method was given by Madsen and Powell [8]. Excluding
comments, the FORTRAN implementation consists of 289 lines of

© 2008 by Taylor & Francis Group, LLC

Chapter 12: Bounded Chebyshev Approximation 397

code, as compared with the FORTRAN IV implementation of our
algorithm, which consists of 165 lines of code.

As noted in Section 12.2, both Sklar [11] and Roberts and
Barrodale [10] presented general constrained Chebyshev algorithms
that would solve the bounded Chebyshev problem as a special case.

We observe that our algorithm requires less computer storage and,
as a special purpose algorithm, would be more efficient than a general
purpose algorithm, such as [9] and [11]. It is also noted by Roberts
and Barrodale ([10], p. 798) that Powell's algorithm [8, 9] is more
efficient than theirs.

References

1. Abdelmalek, N.N., Chebyshev solution of overdetermined
systems of linear equations, BIT, 15(1975)117-129.

2. Abdelmalek, N.N., The discrete linear restricted Chebyshev
approximation, BIT, 17(1977)249-261.

3. Abdelmalek, N.N., Chebyshev and L1 solutions of
overdetermined systems of linear equations with bounded
variables, Numerical Functional Analysis and Optimization,
8(1985-86)399-418.

4. Armstrong, R.D. and Sklar, M.G., A linear programming
algorithm for curve fitting in the L∞ norm, Numerical
Functional Analysis and Optimization, 2(1980)187-218.

5. Barrodale, I. and Phillips, C., An improved algorithm for
discrete Chebyshev linear approximation, Proceedings of the
Fourth Manitoba Conference on Numerical Mathematics,
Hartnell, B.L. and Williams, H.C. (eds.), Winnipeg, Manitoba,
Canada, pp. 177-190, 1975.

6. Barrodale, I. and Phillips, C., Algorithm 495: Solution of an
overdetermined system of linear equations in the Cheby-
shev norm, ACM Transactions on Mathematical Software,
1(1975)264-270.

7. Hadley, G., Linear Programming, Addison-Wesley, Reading,
MA, 1962.

8. Madsen, K. and Powell, M.J.D., A FORTRAN subroutine that
calculates the minimax solution of linear equations subject to

© 2008 by Taylor & Francis Group, LLC

398 Numerical Linear Approximation in C

bounds on the variables, United Kingdom Atomic Energy
Research Establishment, AERE-R7954, February 1975.

9. Powell, M.J.D., The minimax solution of linear equations
subject to bounds on the variables, Proceedings of the Fourth
Manitoba Conference on Numerical Mathematics, Hartnell,
B.L. and Williams, H.C. (eds.), Winnipeg, Manitoba, Canada,
pp. 53-107, 1975.

10. Roberts, F.D.K. and Barrodale, I., An algorithm for discrete
Chebyshev linear approximation with linear constraints,
International Journal for Numerical Methods in Engineering,
15(1980)797-807.

11. Sklar, M.G., L∞ norm estimation with linear restrictions on the
parameters, Numerical Functional Analysis and Optimization,
3(1981)53-68.

© 2008 by Taylor & Francis Group, LLC

Chapter 12: DR_Linfbv 399

12.6 DR_Linfbv

/*---
DR_Linfbv

This program is a driver for the function LA_Linfbv(), which solves
an overdetermined system of linear equations in the Chebyshev norm
subject to the constraints that each element of the solution vector
is bounded between -1 and 1;

 -1 <= a[j] <= 1, j = 1, 2, ..., m

The overdetermined system has the form

 c*a = f

"c" is a given real n by m matrix of rank k, k <= m < n.
"f" is a given real n vector.
"a" is the solution m vector.

This driver contains the 8 examples whose results are given in the
text.
---*/

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define NNMMc_ROWS (NN_ROWS + MMc_COLS)
#define N1 4
#define M1 2
#define N2 5
#define M2 3
#define N3 6
#define M3 3
#define N4 7
#define M4 3
#define N5 8
#define M5 4
#define N6 10
#define M6 5
#define N7 25
#define M7 10
#define N8 8
#define M8 4

© 2008 by Taylor & Francis Group, LLC

400 Numerical Linear Approximation in C

void DR_Linfbv (void)
{
 /*--
 Constant matrices/vectors
 --*/
 static tNumber_R c1init[N1][M1] =
 {
 { 0.0, -2.0 },
 { 0.0, -4.0 },
 { 1.0, 10.0 },
 {-1.0, 15.0 }
 };

 static tNumber_R c2init[N2][M2] =
 {
 { 1.0, 2.0, 0.0 },
 {-1.0, -1.0, 0.0 },
 { 1.0, 3.0, 0.0 },
 { 0.0, 1.0, 0.0 },
 { 0.0, 0.0, 1.0 }
 };

 static tNumber_R c3init[N3][M3] =
 {
 { 0.0, -1.0, 0.0 },
 { 1.0, 3.0, -4.0 },
 { 1.0, 0.0, 0.0 },
 { 0.0, 0.0, 1.0 },
 {-1.0, 1.0, 2.0 },
 { 1.0, 1.0, 1.0 }
 };

 static tNumber_R c4init[N4][M4] =
 {
 { 1.0, 0.0, 1.0 },
 { 1.0, 2.0, 2.0 },
 { 1.0, 2.0, 0.0 },
 { 1.0, 1.0, 0.0 },
 { 1.0, 0.0, -1.0 },
 { 1.0, 0.0, 0.0 },
 { 1.0, 1.0, 1.0 }
 };

 static tNumber_R c5init[N5][M5] =

© 2008 by Taylor & Francis Group, LLC

Chapter 12: DR_Linfbv 401

 {
 { 1.0, -3.0, 9.0, -27.0 },
 { 1.0, -2.0, 4.0, -8.0 },
 { 1.0, -1.0, 1.0, -1.0 },
 { 1.0, 0.0, 0.0, 0.0 },
 { 1.0, 1.0, 1.0, 1.0 },
 { 1.0, 2.0, 4.0, 8.0 },
 { 1.0, 3.0, 9.0, 27.0 },
 { 1.0, 4.0, 16.0, 64.0 }
 };

 static tNumber_R c6init[N6][M6] =
 {
 { 1.0, 0.0, 0.0, 0.0, 0.0 },
 { 0.0, 1.0, 0.0, 0.0, 0.0 },
 { 0.0, 0.0, 1.0, 0.0, 0.0 },
 { 0.0, 0.0, 0.0, 1.0, 0.0 },
 { 0.0, 0.0, 0.0, 0.0, 1.0 },
 { 1.0, 1.0, 1.0, 1.0, 1.0 },
 { 0.0, 1.0, 1.0, 1.0, 1.0 },
 {-1.0, 0.0, -1.0, -1.0, -1.0 },
 { 1.0, 1.0, 0.0, 1.0, 1.0 },
 { 1.0, 1.0, 1.0, 0.0, 1.0 }
 };

 static tNumber_R c8init[N8][M8] =
 {
 { 1.0, 1.0, 1.0, 1.0 },
 { 1.0, 2.0, 4.0, 4.0 },
 { 1.0, 3.0, 9.0, 9.0 },
 { 1.0, 4.0, 16.0, 16.0 },
 { 1.0, 5.0, 25.0, 25.0 },
 { 1.0, 6.0, 36.0, 36.0 },
 { 1.0, 7.0, 49.0, 49.0 },
 { 1.0, 8.0, 64.0, 64.0 }
 };

 static tNumber_R f1[N1+1] =
 { NIL,
 -12.0, 6.0, 0.0, 5.0
 };

 static tNumber_R f2[N2+1] =
 { NIL,
 1.0, 2.0, 1.0, -3.0, 0.0

© 2008 by Taylor & Francis Group, LLC

402 Numerical Linear Approximation in C

 };

 static tNumber_R f3[N3+1] =
 { NIL,
 1.0, 2.0, 3.0, 2.0, 2.0, 4.0
 };

 static tNumber_R f4[N4+1] =
 { NIL,
 0.0, -2.0, 1.0, -1.0, 5.0, 7.0, 0.0
 };

 static tNumber_R f5[N5+1] =
 { NIL,
 3.0, -3.0, -2.0, 0.0, 7.0, -1.0, 5.0, 2.0 };

 static tNumber_R f6[N6+1] =
 { NIL,
 1.0, -1.0, 0.0, -1.0, 1.0, 0.0, 2.0, 3.0, -3.0, -2.0
 };

 static tNumber_R f7[N7+1] =
 { NIL,
 0.0872673, 0.0872794, 0.0873029, 0.0873315, 0.0873576,
 0.3491184, 0.3498802, 0.3513824, 0.3532572, 0.3550109,
 0.6111334, 0.6150641, 0.6230824, 0.6336395, 0.6441493,
 0.8733883, 0.8841621, 0.9071868, 0.9400757, 0.9766021,
 1.135895, 1.157550, 1.206257, 1.283258, 1.384432
 };

 static tNumber_R f8[N8+1] =
 { NIL,
 2.0, 2.5, 2.0, 6.5, 3.5, 4.5, 6.0, 7.0
 };

 /*--
 Variable matrices/vectors
 --*/
 tMatrix_R ct = alloc_Matrix_R (MMc_COLS, NN_ROWS);
 tVector_R f = alloc_Vector_R (NN_ROWS);
 tVector_R r = alloc_Vector_R (NNMMc_ROWS);
 tVector_R a = alloc_Vector_R (MMc_COLS);
 tMatrix_R binv = alloc_Matrix_R (MMc_COLS, MMc_COLS);
 tVector_R bv = alloc_Vector_R (MMc_COLS);
 tVector_I ibound = alloc_Vector_I (NNMMc_ROWS);

© 2008 by Taylor & Francis Group, LLC

Chapter 12: DR_Linfbv 403

 tVector_I icbas = alloc_Vector_I (MMc_COLS);
 tVector_I irbas = alloc_Vector_I (MMc_COLS);
 tMatrix_R c7 = alloc_Matrix_R (N7, M7);

 tMatrix_R c1 = init_Matrix_R (&(c1init[0][0]), N1, M1);
 tMatrix_R c2 = init_Matrix_R (&(c2init[0][0]), N2, M2);
 tMatrix_R c3 = init_Matrix_R (&(c3init[0][0]), N3, M3);
 tMatrix_R c4 = init_Matrix_R (&(c4init[0][0]), N4, M4);
 tMatrix_R c5 = init_Matrix_R (&(c5init[0][0]), N5, M5);
 tMatrix_R c6 = init_Matrix_R (&(c6init[0][0]), N6, M6);
 tMatrix_R c8 = init_Matrix_R (&(c8init[0][0]), N8, M8);

 int iter, i, j, k, m, n, Iexmpl;
 tNumber_R d, dd, ddd, e, ee, eee, z;

 eLaRc rc = LaRcOk;

 for (j = 1; j <= 5; j++)
 {
 d = 0.15* (j-3);
 dd = d*d;
 ddd = d*dd;
 for (i = 1; i <= 5; i++)
 {
 e = 0.15* (i-3);
 ee = e*e;
 eee = e*ee;
 k = 5* (j-1) + i;
 c7[k][1] = 1.0;
 c7[k][2] = d;
 c7[k][3] = e;
 c7[k][4] = dd;
 c7[k][5] = ee;
 c7[k][6] = e*d;
 c7[k][7] = ddd;
 c7[k][8] = eee;
 c7[k][9] = dd*e;
 c7[k][10] = ee*d;
 }
 }

 prn_dr_bnr ("DR_Linfbv, Bounded Chebyshev Solution of an "
 "Overdetermined System of Linear Equations");

© 2008 by Taylor & Francis Group, LLC

404 Numerical Linear Approximation in C

 for (Iexmpl = 1; Iexmpl <= 8; Iexmpl++)
 {
 switch (Iexmpl)
 {
 case 1:
 n = N1;
 m = M1;
 for (i = 1; i <= n; i++)
 {
 f[i] = f1[i];
 for (j = 1; j <= m; j++) ct[j][i] = c1[i][j];
 }
 break;

 case 2:
 n = N2;
 m = M2;
 for (i = 1; i <= n; i++)
 {
 f[i] = f2[i];
 for (j = 1; j <= m; j++) ct[j][i] = c2[i][j];
 }
 break;

 case 3:
 n = N3;
 m = M3;
 for (i = 1; i <= n; i++)
 {
 f[i] = f3[i];
 for (j = 1; j <= m; j++) ct[j][i] = c3[i][j];
 }
 break;

 case 4:
 n = N4;
 m = M4;
 for (i = 1; i <= n; i++)
 {
 f[i] = f4[i];
 for (j = 1; j <= m; j++) ct[j][i] = c4[i][j];
 }
 break;

 case 5:

© 2008 by Taylor & Francis Group, LLC

Chapter 12: DR_Linfbv 405

 n = N5;
 m = M5;
 for (i = 1; i <= n; i++)
 {
 f[i] = f5[i];
 for (j = 1; j <= m; j++) ct[j][i] = c5[i][j];
 }
 break;
 case 6:
 n = N6;
 m = M6;
 for (i = 1; i <= n; i++)
 {
 f[i] = f6[i];
 for (j = 1; j <= m; j++) ct[j][i] = c6[i][j];
 }
 break;

 case 7:
 n = N7;
 m = M7;
 for (i = 1; i <= n; i++)
 {
 f[i] = f7[i];
 for (j = 1; j <= m; j++) ct[j][i] = c7[i][j];
 }
 break;

 case 8:
 n = N8;
 m = M8;
 for (i = 1; i <= n; i++)
 {
 f[i] = f8[i];
 for (j = 1; j <= m; j++) ct[j][i] = c8[i][j];
 }
 break;

 default:
 break;
 }

 prn_algo_bnr ("Linfbv");

 prn_example_delim();

© 2008 by Taylor & Francis Group, LLC

406 Numerical Linear Approximation in C

 PRN ("Example #%d: Size of matrix \"c\" %d by %d\n",
 Iexmpl, n, m);
 prn_example_delim();
 PRN ("Bounded Chebyshev Solution "
 "of an Overdetermined System\n");
 prn_example_delim();
 PRN ("r.h.s. Vector \"f\"\n");
 prn_Vector_R (f, n);
 PRN ("Transpose of Coefficient Matrix, \"ct\"\n");
 prn_Matrix_R (ct, m, n);

 rc = LA_Linfbv (m, n, ct, f, icbas, irbas, binv, bv, ibound,
 &iter, r, a, &z);

 if (rc >= LaRcOk)
 {
 PRN ("\n");
 PRN ("Results of the Bounded Chebyshev Solution\n");
 PRN ("Bounded Chebyshev solution vector, \"a\"\n");
 prn_Vector_R (a, m);
 PRN ("Bounded Chebyshev residual vector \"r\"\n");
 prn_Vector_R (r, n);
 PRN ("Bounded Chebyshev norm \"z\" = %8.4f\n", z);
 PRN ("No. of Iterations = %d\n", iter);
 }

 prn_la_rc (rc);
 }

 free_Matrix_R (ct, MMc_COLS);
 free_Vector_R (f);
 free_Vector_R (r);
 free_Vector_R (a);
 free_Matrix_R (binv, MMc_COLS);
 free_Vector_R (bv);
 free_Vector_I (ibound);
 free_Vector_I (icbas);
 free_Vector_I (irbas);
 free_Matrix_R (c7, N7);

 uninit_Matrix_R (c1);
 uninit_Matrix_R (c2);
 uninit_Matrix_R (c3);
 uninit_Matrix_R (c4);
 uninit_Matrix_R (c5);

© 2008 by Taylor & Francis Group, LLC

Chapter 12: DR_Linfbv 407

 uninit_Matrix_R (c6);
 uninit_Matrix_R (c8);
}

© 2008 by Taylor & Francis Group, LLC

408 Numerical Linear Approximation in C

12.7 LA_Linfbv

/*---
LA_Linfbv

This program calculates the Chebyshev solution of an overdetermined
system of linear equations subject to the conditions that the
elements of the solution vector be bounded between -1 and +1.

The system of linear equations has the form

 c*a = f

"c" is a given real n by m matrix of rank k <= m < n.
"f" is a given real n vector.

The problem is to calculate the solution vector "a" that gives
the minimum Chebyshev norm z,

 z = max|r[i]|, i = 1, 2, ..., n

subject to the constraints that the elements of vector "a" are
bounded between -1 and 1. That is

 -1 <= a[j] <= 1, j = 1, 2, ..., m

r[i] is the ith residual and is given by

 r[i] = c[i][1]*a[1] + c[i][2]*a[2] + ... + c[i][m]*a[m] - f[i],
 i = 1, 2, ..., n

Inputs
m Number of columns of matrix "c" of the system c*a = f.
n Number of rows of matrix "c" of the system c*a = f.
ct A real (m+1) by n matrix. Its first m rows and its n
 columns contain the transpose of matrix "c" of the system
 c*a = f. Its (m+1)th row will be filled with ones by the
 program.
f A real n vector containing the r.h.s. of the system c*a = f.

Other Parameters
binv An (m+1) real square matrix containing the inverse of the
 basis matrix in the linear programming problem.
bv An (m+1) real vector containing the basic solution in the

© 2008 by Taylor & Francis Group, LLC

Chapter 12: LA_Linfbv 409

 linear programming problem.
icbas An (m+1) integer vector containing the indices of the
 columns of "ct" forming the basis.
irbas An (m+1) integer vector containing the indices of the rows
 of matrix "ct".

Outputs
iter Number of iterations, or the number of times the simplex
 tableau is changed by a Gauss-Jordan step.
a An (m + 1) vector whose first m elements contain the bounded
 Chebyshev solution vector "a" to the system c*a = f.
r An (n + m + 1) vector whose first n elements constitute the
 residual vector r = (c*a - f).
z The minimum bounded Chebyshev norm of the residual vector r.

Returns one of
 LaRcSolutionFound
 LaRcNoFeasibleSolution
 LaRcErrBounds
 LaRcErrNullPtr
---*/

#include "LA_Prototypes.h"

eLaRc LA_Linfbv (int m, int n, tMatrix_R ct, tVector_R f,
 tVector_I icbas, tVector_I irbas, tMatrix_R binv, tVector_R bv,
 tVector_I ibound, int *pIter, tVector_R r, tVector_R a,
 tNumber_R *pZ)
{
 int i = 0, j = 0, ijk = 0, k = 0, m1 = 0, n1 = 0, nm = 0;
 int iout = 0, jin = 0, ivo = 0, itest = 0;
 tNumber_R d = 0.0, e = 0.0;

 /* Validation of the data before executing the algorithm */
 eLaRc rc = LaRcSolutionFound;
 VALIDATE_BOUNDS ((0 < m) && (m < n));
 VALIDATE_PTRS (ct && f && icbas && irbas && binv && bv &&
 ibound && pIter && r && a && pZ);

 /* Initialization */
 m1 = m + 1;
 n1 = n + 1;
 nm = n + m;
 *pIter = 0;

© 2008 by Taylor & Francis Group, LLC

410 Numerical Linear Approximation in C

 /* Part 1 of the algorithm
 Initializing program data */
 LA_linfbv_init (m, n, ct, icbas, irbas, binv, ibound, r, a);

 iout = m1;
 jin = 1;
 r[1] = 0.0;

 /* A Gauss-Jordan elimination step */
 LA_linfbv_gauss_jordn (m, n, iout, jin, ct, icbas, binv, bv,
 ibound);
 *pIter = *pIter + 1;

 /* Part 2 of the algorithm.
 Obtaining a feasible basic solution */
 LA_linfbv_part_2 (m, n, ct, binv, bv, ibound);

 /* Calculating the initial residual vector "r" and
 norm "z" */
 LA_linfbv_resid_norm (m, n, ct, f, icbas, bv, r, pZ);

 /* Part 3 of the algorithm */
 for (ijk = 1; ijk < n*n; ijk++)
 {
 ivo = 0;
 /* Determine the vector that enters the basis */
 LA_linfbv_vent (&ivo, &jin, m, n, icbas, r, pZ);

 if (ivo == 0)
 {
 /* Calculate the results */
 LA_linfbv_res (m, n, f, icbas, irbas, binv, ibound, r, a,
 pZ);
 GOTO_CLEANUP_RC (LaRcSolutionFound);
 }

 if (ivo == -1)
 {
 ibound[jin] = -ibound[jin];
 if (jin <= n)
 {
 for (i = 1; i <= m1; i++)
 {
 ct[i][jin] = bv[i] + bv[i] - ct[i][jin];
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 12: LA_Linfbv 411

 r[jin] = *pZ + *pZ - r[jin];
 f[jin] = -f[jin];
 }
 else if (jin > n)
 {
 r[jin] = 2.0 - r[jin];
 }
 }
 itest = 0;

 /* Determine the vector that leaves the basis */
 LA_linfbv_vleav (jin, &iout, &itest, m, n, ct, binv, bv,
 ibound);

 /* Solution is not feasible */
 if (itest != 1)
 {
 GOTO_CLEANUP_RC (LaRcNoFeasibleSolution);
 }

 /* A Gauss-Jordan elimination step */
 LA_linfbv_gauss_jordn (m, n, iout, jin, ct, icbas, binv, bv,
 ibound);
 *pIter = *pIter + 1;

 d = r[jin];
 for (j = 1; j <= n; j++)
 {
 r[j] = r[j] - d * (ct[iout][j]);
 }
 for (j = n1; j <= nm; j++)
 {
 e = -1.0;
 if (ibound[j] == -1) e = -e;
 k = j - n;
 r[j] = r[j] - e * (d) * (binv[iout][k]);
 }
 *pZ = *pZ - d * (bv[iout]);
 }

CLEANUP:

 return rc;
}

© 2008 by Taylor & Francis Group, LLC

412 Numerical Linear Approximation in C

/*---
A Gauss-Jordan elimination step in LA_Linfbv()
---*/
void LA_linfbv_gauss_jordn (int m, int n, int iout, int jin,
 tMatrix_R ct, tVector_I icbas, tMatrix_R binv, tVector_R bv,
 tVector_I ibound)
{
 int i, j, kin = 0, m1;
 tNumber_R d, e = 0, pivot = 0;

 m1 = m + 1;
 if (jin <= n)
 {
 pivot = ct[iout][jin];
 }
 else if (jin > n)
 {
 kin = jin - n;
 e = -1.0;
 if (ibound[jin] == -1) e = 1.0;
 pivot = e * binv[iout][kin];
 }

 for (j = 1; j <= n; j++)
 {
 ct[iout][j] = ct[iout][j]/pivot;
 }
 for (j = 1; j <= m1; j++)
 {
 binv[iout][j] = binv[iout][j]/pivot;
 }
 for (i = 1; i <= m1; i++)
 {
 if (i != iout)
 {
 d = ct[i][jin];
 if (jin > n) d = e * (binv[i][kin]);
 for (j = 1; j <= n; j++)
 {
 ct[i][j] = ct[i][j] - d * (ct[iout][j]);
 }
 for (j = 1; j <= m1; j++)
 {
 binv[i][j] = binv[i][j] - d * (binv[iout][j]);
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 12: LA_Linfbv 413

 }
 }
 for (i = 1; i <= m1; i++)
 {
 bv[i] = binv[i][m1];
 }
 icbas[iout] = jin;
}

/*---
Calculate the results of LA_Linfbv()
---*/
void LA_linfbv_res (int m, int n, tVector_R f, tVector_I icbas,
 tVector_I irbas, tMatrix_R binv, tVector_I ibound,
 tVector_R r, tVector_R a, tNumber_R *pZ)
{
 int i, j, k, m1;
 tNumber_R d, e, s;

 m1 = m + 1;
 for (j = 1; j <= m1; j++)
 {
 s = 0.0;
 for (i = 1; i <= m1; i++)
 {
 k = icbas[i];
 e = -1.0;
 if (k <= n) e = f[k];
 s = s + e * (binv[i][j]);
 }
 k = irbas[j];
 a[k] = s;
 }
 for (j = 1; j <= n; j++)
 {
 d = r[j] - *pZ;
 if (ibound[j] == -1) d = -d;
 r[j] = d;
 }
}

/*---
Initializing program data of LA_Linfbv()
---*/
void LA_linfbv_init (int m, int n, tMatrix_R ct, tVector_I icbas,

© 2008 by Taylor & Francis Group, LLC

414 Numerical Linear Approximation in C

 tVector_I irbas, tMatrix_R binv, tVector_I ibound, tVector_R r,
 tVector_R a)
{
 int i, j, k, m1;

 m1 = m + 1;
 for (j = 1; j <= m; j++)
 {
 a[j] = -1.0;
 k = n + j;
 icbas[j] = k;
 ibound[k] = -1;
 r[k] = 0.0;
 }
 for (j = 1; j <= m1; j++)
 {
 irbas[j] = j;
 for (i = 1; i <= m1; i++)
 {
 binv[i][j] = 0.0;
 }
 binv[j][j] = 1.0;
 }
 for (j = 1; j <= n; j++)
 {
 ct[m1][j] = 1.0;
 ibound[j] = 1;
 }
}

/*---
Obtaining a feasible basic solution of LA_Linfbv()
---*/
void LA_linfbv_part_2 (int m, int n, tMatrix_R ct, tMatrix_R binv,
 tVector_R bv, tVector_I ibound)
{
 int i, j, k, m1;

 m1 = m + 1;
 for (i = 1; i <= m; i++)
 {
 if (bv[i] < 0.0)
 {
 k = n + i;
 ibound[k] = -ibound[k];

© 2008 by Taylor & Francis Group, LLC

Chapter 12: LA_Linfbv 415

 for (j = 1; j <= n; j++)
 {
 ct[i][j] = -ct[i][j];
 }
 for (j = 1; j <= m1; j++)
 {
 binv[i][j] = - binv[i][j];
 }
 bv[i] = - bv[i];
 }
 }
}

/*---
Calculating the initial residual vector "r" and norm "z" in
LA_Linfbv()
---*/
void LA_linfbv_resid_norm (int m, int n, tMatrix_R ct, tVector_R f,
 tVector_I icbas, tVector_R bv, tVector_R r, tNumber_R *pZ)
{
 int i, j, m1, icb;
 tNumber_R s;

 m1 = m + 1;
 for (j = 1; j <= n; j++)
 {
 icb = 0;
 for (i = 1; i <= m1; i++)
 {
 if (j == icbas[i]) icb = 1;
 }
 if (icb == 0)
 {
 s = - f[j] + f[1] * (ct[m1][j]);
 for (i = 1; i <= m; i++)
 {
 s = s - ct[i][j];
 }
 r[j] = s;
 }
 }
 s = f[1] * (bv[m1]);
 for (i = 1; i <= m; i++)
 {
 s = s - bv[i];

© 2008 by Taylor & Francis Group, LLC

416 Numerical Linear Approximation in C

 }
 *pZ = s;
}

/*---
Determine the vector that enters the basis in LA_Linfbv()
---*/
void LA_linfbv_vent (int *pIvo, int *pJin, int m, int n,
 tVector_I icbas, tVector_R r, tNumber_R *pZ)
{
 int i, j, m1, nm, icb;
 tNumber_R d, e, g, tz;

 g = 1.0/ (EPS*EPS);
 m1 = m + 1;
 nm = n + m;
 for (j = 1; j <= nm; j++)
 {
 icb = 0;
 for (i = 1; i <= m1; i++)
 {
 if (j == icbas[i]) icb = 1;
 }
 if (icb == 0)
 {
 tz = *pZ + *pZ + EPS;
 if (j > n) tz = 2.0 + EPS;
 d = r[j];
 if (d < 0.0)
 {
 e = d;
 if (e < g)
 {
 g = e;
 *pJin = j;
 *pIvo = 1;
 }
 }
 else if (d >= tz)
 {
 e = tz - d;
 if (e < g)
 {
 g = e;
 *pJin = j;

© 2008 by Taylor & Francis Group, LLC

Chapter 12: LA_Linfbv 417

 *pIvo = -1;
 }
 }
 }
 }
}

/*---
Determine the vector that leaves the basis in LA_Linfbv()
---*/
void LA_linfbv_vleav (int jin, int *pIout, int *pItest, int m, int n,
 tMatrix_R ct, tMatrix_R binv, tVector_R bv, tVector_I ibound)
{
 int i, m1, kin;
 tNumber_R d, e, g, thmax;

 m1 = m + 1;
 thmax = 1.0/ (EPS*EPS);
 if (jin <= n)
 {
 for (i = 1; i <= m1; i++)
 {
 d = ct[i][jin];
 if (d > EPS)
 {
 g = bv[i]/d;
 if (g <= thmax)
 {
 thmax = g;
 *pIout = i;
 *pItest = 1;
 }
 }
 }
 }
 else if (jin > n)
 {
 e = -1.0;
 if (ibound[jin] == -1) e = 1.0;
 for (i = 1; i <= m1; i++)
 {
 kin = jin - n;
 d = e * (binv[i][kin]);
 if (d > EPS)
 {

© 2008 by Taylor & Francis Group, LLC

418 Numerical Linear Approximation in C

 g = bv[i]/d;
 if (g <= thmax)
 {
 thmax = g;
 *pIout = i;
 *pItest = 1;
 }
 }
 }
 }
}

© 2008 by Taylor & Francis Group, LLC

419

Chapter 13

Restricted Chebyshev Approximation

13.1 Introduction

Consider the overdetermined system of linear equations

Ca = f

C = (cij) is a given real n by m matrix of rank k, k ≤ m < n and f = (fi)
is a given real n-vector. The Chebyshev solution of this system is the
m-vector a = (ai) that minimizes the Chebyshev norm z of the residual
vector r

(13.1.1) z = max|ri|, i = 1, 2, �, n

where ri is the ith residual (error) and is given by

(13.1.2) , i = 1, 2, �, n

Note that ri here is �ri in (10.1.3).

In the last three chapters, algorithms are presented for three
different kinds of the linear Chebyshev approximations. In Chapter
10, the Chebyshev solution of system Ca = f, has the Chebyshev norm
of vector r as small as possible. In Chapter 11, the one-sided
Chebyshev solution of Ca = f requires the additional constraints that
the elements of the residual vector r be either non-positive or
non-negative. In Chapter 12, for the bounded Chebyshev
approximation, the additional constraints are that the elements of the
Chebyshev solution vector a, each be bounded between �1 and 1. In
this chapter, an algorithm for yet another kind of the linear Chebyshev
approximation, known as the restricted Chebyshev approximation, is

ri fi cijaj
j 1=

m

∑�=

© 2008 by Taylor & Francis Group, LLC

420 Numerical Linear Approximation in C

presented. In this algorithm, the additional constraint is that the left
hand side of Ca = f be bounded between 2 given n-vectors, namely

(13.1.3) l ≤ Ca ≤ u

or

(13.1.3a) , i = 1, 2, �, n

where l = (li) and u = (ui). That is, the elements of Ca are restricted
between upper and lower ranges.

In deriving existence and characterization theorems to this
problem, an extra condition to (13.1.3) is often imposed [17, 18, 22],
namely

(13.1.4) l ≤ f ≤ u

If this condition is not met, a solution for the problem may not exist.
In our work, this condition is not imposed. However, if a solution does
not exist, it could be because this condition is not met or because the
linear programming problem has an unbounded solution. In either
case, the computation is terminated.

Usually the assumption that matrix C satisfies the Haar condition
is required [12, 18, 23]. This condition is not required in our work.
Matrix C may even be a rank deficient matrix.

In this chapter, a numerically stable linear programming algorithm
for calculating the restricted Chebyshev solution of overdetermined
systems of linear equations is described. Minimum computer storage
is required and no conditions are imposed on the coefficient matrix C.

The algorithm consists of two main parts. In part 1, a simplex
algorithm is described. This part is analogous to that of obtaining the
Chebyshev solution of system Ca = f given in Chapter 10. However,
for the purpose of numerical stability, part 2 constitutes a triangular
decomposition of the basis matrix.

The ordinary Chebyshev solution [1], the one-sided Chebyshev
solutions [2] and the Chebyshev approximation by non-negative
functions [17] are obtained as special cases in this algorithm. In
Section 13.2, we state that this problem may be solved as a special
case by algorithms of other constrained Chebyshev approximation
problems. We shall comment on these algorithms in Section 13.7.

li cijaj
i 1=

m

∑ ui≤ ≤

© 2008 by Taylor & Francis Group, LLC

Chapter 13: Restricted Chebyshev Approximation 421

In Section 13.3, the linear programming formulation of the
problem is given, together with necessary lemmas. In Section 13.4,
the new algorithm is described and in Section 13.5, the triangular
decomposition of the basis matrix is presented. In Section 13.6,
arithmetic operations count for the algorithm are presented and in
Section 13.7, numerical results and comments are given.

13.1.1 The semi-infinite programming problem

A interesting, related problem to the restricted Chebyshev
approximation problem is the semi-infinite programming (SIP)
problem, in which a given function f(x) is approximated in the
Chebyshev norm over a set X that contains infinite elements.

The Chebyshev approximation by the function Ca is subject to the
constraints (13.1.3) together with the additional constraints

bi ≤ ai ≤ ci, i = 1, 2, �, m

where b = (bi) and c = (ci) are given m-vectors. That is, the SIP is a
restricted problem with bounded variables as well.

The SIP problems occur in technical applications such as the study
of propagation of water and air pollution [13, 14, 16].

13.1.2 Special cases

The following are special cases of the restricted Chebyshev
approximation problem:
(a) If for all i, we take li = �∞ and ui = ∞, we get the ordinary

Chebyshev solution [1] to system the Ca = f (Chapter 10).
(b) If for all i, we take li = �∞ and ui = fi, we get the one-sided

Chebyshev solution from above [2] (Chapter 11) to Ca = f.
The one-sided Chebyshev solution from below is obtained in a
similar way.

(c) If for all i, we take li = 0 and ui = ∞, we have the problem of
calculating the Chebyshev approximation by a non-negative
linear function [7]. By ∞, we mean a large number, such as
100×max|fi|, i = 1, 2, �, n, where (fi) are the elements of
vector f in the system Ca = f.

© 2008 by Taylor & Francis Group, LLC

422 Numerical Linear Approximation in C

(d) Arbitrary choices of li and ui may also be made. Figure 13-1
shows curve fittings with vertical parabolas for the set of 8
points of Figure 2-1, as calculated by this algorithm.

Figure 13-1: Curve fitting a set of 8 points using restricted Chebyshev
approximations with arbitrary ranges

The solid curve is the (ordinary) Chebyshev approximation. The
dashed curve is the one-sided Chebyshev approximation from above.
The dotted curve is the Chebyshev approximation with arbitrary lower
and upper ranges; li = fi � 0.5zC.S. and ui = a, very large number,
where zC.S. is the optimum Chebyshev norm.

13.1.3 Applications of the restricted Chebyshev algorithm

The restricted Chebyshev approximation problem arises in several
engineering applications. See the references in [12, 18]. See also
[23, 24].

13.2 A special problem of general constrained algorithms

As in the previous two chapters, some authors developed
constrained Chebyshev approximation algorithms that would solve
this problem as a special case.

Using our notation, Sklar [21] presented an algorithm to solve the

-2

-1

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9

© 2008 by Taylor & Francis Group, LLC

Chapter 13: Restricted Chebyshev Approximation 423

problem

(13.2.1a) minimize ||Ca � f||∞
subject to

(13.2.1b) ea ≤ Ea ≤ eb

His algorithm is an extension of that of Armstrong and Sklar [6].
Also, Roberts and Barrodale [20] presented the algorithm

(13.2.2a) minimize ||Ca � f||∞
subject to

(13.2.2b) Ga = g and ea ≤ Ea ≤ eb

Their algorithm is an extension of the algorithm of Barrodale and
Phillips for the ordinary Chebyshev solution [7, 8].

In the above C, G and E are matrices of appropriate dimensions, f
is the vector associated with C, g is the vector associated with G and
ea and eb are two vectors associated with E. Also, not all of the arrays
(G, g) and (E, ea, eb) are vacuous. If in (13.2.1b) we take E = C and
ea = l and eb = u, we get the restricted Chebyshev approximation
problem. Also, if in (13.2.2b) we take G = 0, g = 0, we get problem
(13.2.1), which reduces to the restricted Chebyshev approximation
problem.

13.3 Linear programming formulation of the problem

This problem is formulated as a linear programming problem as
follows. Let in (13.1.1), h = maxi|ri|, h ≥ 0. The primal form is [24]

minimize h

subject to

, i = 1, 2, �, n

and

, i = 1, 2, �, n

h� fi cijaj
j 1=

m

∑� h≤ ≤

li cijaj
j 1=

m

∑ ui≤ ≤

© 2008 by Taylor & Francis Group, LLC

424 Numerical Linear Approximation in C

In vector-matrix notation, the above inequalities become

Ca + he ≥ f
�Ca + he ≥ �f
Ca ≥ l

�Ca ≥ �u

h ≥ 0 and aj, j = 1, 2, �, m, unrestricted in sign

This may be written more conveniently as

subject to

h ≥ 0 and aj, j = 1, 2, �, m, unrestricted in sign

where em+1 is an (m + 1)-vector that is the (m + 1)th column of an
(m + 1)-unit matrix. Also, e is an n-vector, each element of which
equals 1, and the 0 is an n-zero vector. The two n-vectors l = (li) and u
= (ui).

It is more efficient to solve the dual of this problem, which is

(13.3.1a) maximize z = [f T �f T lT �uT] b = gTb

subject to

(13.3.1b)

(13.3.1c) bi ≥ 0, i = 1, 2, �, 4n

Let (13.3.1b) be written in the form

(13.3.1d) Db = em+1

minimize Z em 1+
T a

h
=

C e
C� e

C 0
C� 0

a
h

f
f�
l
u�

≥

CT CT� CT C� T

eT eT 0T 0T
b em 1+=

© 2008 by Taylor & Francis Group, LLC

Chapter 13: Restricted Chebyshev Approximation 425

D is the (m + 1) by 4n coefficient matrix on the l.h.s. of (13.3.1b), and
is the matrix of constraints in this linear programming problem.

To simplify the analysis, assume that rank(C) = m. Let for the
linear programming problem (13.3.1), the basis matrix B be an
(m + 1) square nonsingular matrix. In the simplex tableau, vectors (yj)
are calculated, as usual, as

(13.3.2a) yj = B�1Dj, j = 1, 2, �, 4n

where Dj is the jth column of matrix D.
The basic solution bB is given by

(13.3.2b) bB = B�1em+1

Let the (m + 1)-vector gB be the vector whose elements are the
prices for bB. Then for the marginal costs, denoted by (zj � gj), we
have

(13.3.2c) (zj � gj) = gB
Tyj � gj, j = 1, 2, �, 4n

The objective function z is

(13.3.2d) z = gB
TbB

Vector g is defined in (13.3.1a).

13.3.1 Properties of the matrix of constraints

As we encountered in the previous 3 chapters, we observe
asymmetries in the matrix of constraints D. The description of the
algorithm is prompted by such kind of asymmetries.

Consider the two halves of matrix D, in (13.3.1b, d), each is of 2n
columns. While matrix CT exists in the first n columns of the left half
of D, matrix �CT exists in the second n columns of this half. The first
n columns of the right half are the negative of the last n columns of the
right half.

From (13.3.1b), the following relationships exist between any
column i, 1 ≤ i ≤ n and the columns i + n, i + 2n and i + 3n of matrix
D in (13.3.1d).

(13.3.3a) Di + Di+n = 2em+1, Di � Di+2n = em+1, Di + Di+3n = em+1

and

(13.3.3b) Di+n + Di+2n = em+1, Di+n � Di+3n = em+1, Di+2n + Di+3n = 0

© 2008 by Taylor & Francis Group, LLC

426 Numerical Linear Approximation in C

Definition

Let i and j, 1 ≤ i, j ≤ 4n, be two columns in the matrix of
constraints D such that |i � j| = n or 2n or 3n. We define columns i and
j as two corresponding columns.

From Lemmas 13.3, 13.4 and 13.5 below, we find that in the
simplex algorithm, we need tableaux of (m + 1) constraints in only n
variables (not 4n variables). We call such tableaux the condensed
tableaux.

Lemma 13.1

From (13.3.2b), bB is the (m + 1)th column of B�1 (Lemma 10.1).

Lemma 13.2

The solution vector a and objective function z at any stage of the
computation are given by Lemma 10.2

(aT z) = gB
TB�1

Lemma 13.3

For any two corresponding columns, the following relations
between the marginal costs are obtained:
(1) For 1 ≤ i ≤ n

(zi � gi) + (zj+n � gj+n) = 2z
(zi � gi) � (zi+2n � gi+2n) = z � (fi � li)

(13.3.4) (zi � gi) � (zi+3n � gi+3n) = z + (ui � fi)
(zi+n � gi+n) + (zi+2n � gi+2n) = z + (fi � li)
(zi+n � gi+n) � (zi+3n � gi+3n) = z � (ui � fi)
(zi+2n � gi+2n) + (zi+3n � gi+3n) = (ui � li)

(2) For 1 ≤ i ≤ n

(13.3.5) yi + yi+n = 2bB, yi � yi+2n = bB, yi + yi+3n = bB, �

Relations (13.3.4) are established from (13.3.2a-d) since in
(13.3.1a), for 1 ≤ i ≤ n, gi = fi, gi+n = �fi, gi+2n = li and gi+3n = �ui.
Also, relations (13.3.5) are proved from (13.3.3a, b) and (13.3.2a, b).

Lemma 13.4

Let z be the objective function and (zi � gi), i = 1, 2, �, 4n, be the
marginal costs for a basic solution for problem (13.3.1). Then the

© 2008 by Taylor & Francis Group, LLC

Chapter 13: Restricted Chebyshev Approximation 427

residuals ri, 1 ≤ i ≤ n of (13.1.2) are given by any one of the relations

ri = z � (zi � gi)
ri = (zi+n � gi+n) � z
ri = (fi � li) � (zi+2n � gi+2n)
ri = (zi+3n � gi+3n) + (fi � ui)

The proof of the first relation follows the proof of Lemma 12.5.
The proof of the other 3 relations are established from the first 3
relations in (13.3.4).

Lemma 13.5 (Lemma 3 in [3])

Any two corresponding columns in the simplex tableau can not
appear together in any basis.

Lemma 13.6 (Lemma 4 in [3])

Let us have a basic feasible solution to problem (13.3.2). Then a
non-basic vector i may replace a corresponding basic column j in the
basis only if |i � j| = 2n.

Lemma 13.7

Not every problem has a restricted Chebyshev solution. As noted
earlier, this is due to one of two cases:
(a) An optimal solution can not be reached, which may occur if

the condition (13.1.4) is not met, or
(b) The corresponding linear programming problem (13.3.2)

would have an unbounded solution.

13.4 Description of the algorithm

As in Chapter 10, the algorithm for solving problem (13.3.1) is in
3 parts. In part 1, an initial basic solution, feasible or not, is obtained.
We note that the left half of matrix D in (13.3.1d) is the same as
matrix D in equation (10.2.2b) and the right hand side of (13.3.1d) is
itself the right hand side of (10.2.2b). Hence, part 1 here is made
identical to part 1 in Chapter 10.

We should remark that in our work, the simplex tableau is not
calculated explicitly, as in Chapter 10. This means that required
vectors and elements of the tableau are calculated when they are
needed. The given data of the problem, namely C and f of Ca = f are

© 2008 by Taylor & Francis Group, LLC

428 Numerical Linear Approximation in C

not destroyed (changed) in the computation, except perhaps for a �ve
sign multiplication to some of the equations in Ca = f.

As indicated, we calculate the (condensed) tableaux of (m + 1)
constraints in only n variables (not in 4n variables). A 4n-index
indicator vector whose elements are 1, 2, 3 or 4 is needed. If column i,
1 ≤ i ≤ n, is in the condensed tableau, index i has the value 1. If a
column j, corresponding to column i, (n + 1) ≤ j ≤ 2n, is in the
condensed tableau, index j has a value 2, and so on.

In part 2, the basic solution is made feasible and an objective
function z ≥ 0 is calculated, as explained in detail in Chapter 10.
However, for part 2 here, we have developed a simple technique [5]
by which B�1, obtained at the end of part 1, is modified in one step by
a matrix of rank 1. That is, no simplex steps are used in part 2. At the
end of part 2, the marginal costs for the n stored columns are
calculated.

Part 3 is the ordinary simplex method in which the column to enter
the basis is that which has the most negative marginal cost among the
non-basic columns. This is done in accordance with Lemma 13.6. For
calculating the parameters of the corresponding columns, relations
(13.3.4) are used. The results of the problem, a and z, are calculated
from Lemma 13.2.

In part 3 also, a triangular decomposition method for the basis
matrix is used. The details are briefly given in the next section.

13.5 Triangular decomposition of the basis matrix

A variation of the triangular decomposition method of Bartels et
al. [10] is described here. Assume without loss of generality that
rank(C) = m. Let B0 denote the basis matrix at the end of part 2 and B
denote the basis matrix in part 3. Then we may write

(13.5.1) B�1 = EB0
�1

where E is a nonsingular (m + 1) square matrix that is the product of
Frobenius matrices ([15], p. 48). Let E�1 be decomposed into

(13.5.2) LE�1 = P

where L is an (m + 1) nonsingular square matrix and P is an (m + 1)
nonsingular upper triangular matrix. This is analogous to the
decomposition (1.3.3) in [10]. Here, P and B0

�1 are stored and

© 2008 by Taylor & Francis Group, LLC

Chapter 13: Restricted Chebyshev Approximation 429

updated. This is done as follows. Let, in our algorithm, at the end of
part 2, problem (13.3.2) be described by the 3-tuple

(13.5.3) {I0(b), I, B0
�1}

where I0(b) represents the basis at the end of part 2, I is an
(m + 1)-unit matrix and B0

�1 is the inverse of the basis matrix at the
end of part 2. In each iteration in part 3, the above 3-tuple is updated
to

(13.5.4) {I(b), P, G�1}

In (13.5.4), G�1 would be given by G�1 = LB0
�1.

The relation between the main parameters in Section 13.3 and the
parameters in (13.5.1) are

(13.5.5a) B�1 = P�1G�1

(13.5.5b) yj = P�1G�1Dj, j = 1, 2, �, 4n

The updates are given in detail in [3].

13.6 Arithmetic operations count

As noted in Section 5.8, we shall only count the number of
multiplications/divisions (m/d) per iteration for the algorithm.

 In part 1, matrix B�1 is constructed from the Frobenius matrices
Ei, i = 1, 2, �, (m + 1), where B�1 = Em+1�.E2E1. See for example,

1
step needs (m + 1) m/d. For i = 2, row 2 of the first tableau is
calculated using E1 and rows 1 and 2 of matrix D of (13.3.1d), and
E2E1. This step needs (n � 1) + (m + 1) + 2(m + 1) = (n � 1) +
3(m + 1) m/d for calculating respectively row 2 of the first tableau
(minus the pivot element), the columns of the pivot element and the
first 2 columns of E21. The remaining steps of part 1 follow in the
same way.

Thus part 1 requires about 0.67(m + 1)3 + 0.5n(m + 1)2 m/d.
These operation counts are slightly less than those of part 1 in [1]
obtained by applying the Gauss-Jordan elimination steps to the
simplex tableau. Part 2 of our algorithm requires (m + 1)(m + 2) m/d.

For part 3, the calculation of vectors yr needs about 1.5(m + 1)2

m/d; that is, to calculate vectors xr = G�1Dr and Pyr = xr by backward

© 2008 by Taylor & Francis Group, LLC

Hadley ([15], pp. 48-50). For i = 1, we construct column 1 of E . This

430 Numerical Linear Approximation in C

substitution. The marginal costs for the (n � m � 1) nonbasic columns
of matrix D are calculated from Lemma 13.4, where the residuals are
calculated from (13.1.2). Vector (aT z) is calculated by calculating
vector w from PTw = gB by forward substitution and (aT z) = wTG�1.
These operations need respectively about 0.5(m + 1)2 + (m + 1)2

= 1.5(m + 1)2 m/d. The m/d counts for the other parameters in part 3
follow easily. Part 3 meeds an average of n(m+1) + 3.17(m + 1)2 m/d
per iteration.

The arithmetic operations count/iteration is a linear function of n
and m3 in part 1, and of n and m2 in part 3. We have reached a similar
conclusion about the operations count in the L1 approximation case
(Chapter 5).

The above result compares favorably with those of related
algorithms of Bartels et al. [9] and of Cline [11]. Also, numerical
experience reported in [9] indicates that direct methods, in general,
converge in a far greater number of iterations, compared with iterative
methods such as ours.

Among the solved examples in table 1 in [3], 4 of the examples
were solved by Bartels et al. [9] for the ordinary Chebyshev case. The
reported number of iterations for their methods are very high,
compared with the number of iterations of ours. The method of Cline
[11] is very similar to that of Bartels et al. [9].

13.7 Numerical results and comments

LA_Restch() implements this algorithm. DR_Restch() has 40 test
cases.

Let z be a large positive number, say z = 100×max|fi|. Then for
each example, for i = 1, 2, �, n:
(a) li = �z and ui = z, the (ordinary) Chebyshev solution results

calculated in Chapter 10 are obtained.
(b) li = fi � 0.5zC.S. and ui = z, where zC.S. is the Chebyshev norm

calculated from case (a).
(c) li = �z and ui = fi, the results for the one-sided Chebyshev

solutions from above in Chapter 11 are obtained.
(d) li = c1 and ui = c2, where c1 = min(fi) and c2 = max(fi), i = 1,

2, �, n.

© 2008 by Taylor & Francis Group, LLC

Chapter 13: Restricted Chebyshev Approximation 431

(e) li = 0 and ui = z, (this is the approximation by non-negative
functions).

Table 13.7.1 shows the results of 8 of the test cases, computed in
single-precision.

Table 13.7.1

Chebyshev One-sided
Solution from above

(a) (b) (c) (d)
��
Ex C(n×m) Iter z Iter z Iter z Iter z
��
1 4 × 2 5 10.0 no solution no solution 8 11.04
2 5 × 3 6 2.25 10 3.375 7 4.5 6 2.25
3 6 × 3 5 1.556 no solution 5 1.556 no solution
4 7 × 3 7 2.625 10 3.938 8 5.25 8 3.0
5 8 × 4 7 3.786 10 5.679 8 7.571 7 3.7857
6 10× 5 9 1.778 13 4.889 13 3.0 9 1.778
7 25×10 21 0.0071 28 0.0106 28 0.0142 21 0.008
8 8 × 3 7 1.797 9 2.695 12 3.594 8 1.853

For each example, the optimum norms and the number of
iterations for cases (a) to (d) are shown. In this table, �no solution�
indicates that no feasible solution was obtained for these cases.

Cases (a), (b) and (c) of the results of example 8 are displayed in
Figure 13-1. For all the examples, the number of iterations needed for
the solution is comparable to the number of iterations required for
obtaining the Chebyshev solution for the same example.

It is observed that for examples 2, 4, 7 and 8, the norms z for case
(b) are 1.5zC.S., and the norms z for case (c) are 2zC.S. These
relationships with zC.S were proved by Phillips [19] for certain
approximations, including the one-sided Chebyshev approximations.
See section 11.5.

As in Chapters 10, 11 and 12, our algorithm does not need any
artificial variables and no conditions are imposed on the coefficient
matrix C. Rank(C) is determined in part 1 of the algorithm and if
rank(C) = k < m, the amount of calculation is considerably reduced.

The triangular decomposition method adopted here makes use of

© 2008 by Taylor & Francis Group, LLC

432 Numerical Linear Approximation in C

the numerically stable calculation of parts 1 and 2.
As indicated at the end of Section 13.6, the arithmetic operation

counts for this algorithm [3, 4] compare favorably with related
algorithms, such as those of Bartels et al. [9] and Cline [11].

Iterative refinement of the solutions of the two triangular systems
occurring in the calculation in part 3 may be implemented if the
problem is very badly conditioned. Again, the given data of the
problem, namely C and f of Ca = f, are not changed, except perhaps
for a �ve sign multiplication applied to some of the equations in
Ca = f. Hence, iterative refinement to the final solution of the problem
may be used.

Finally, our algorithm is a general one; that is, it calculates the
restricted Chebyshev solution, including the ordinary and the
one-sided Chebyshev solutions, as well as the approximation by
non-negative functions, as special cases.

We now comment on the algorithms of Sklar [21] and Roberts and
Barrodale [20] discussed in Section 13.2. As noted at the end of
Chapter 11, in these algorithms one would store matrix C twice; once
for (13.2.5a) and once for (13.2.5b), or once for (13.2.6a) and once for
(13.2.6b), where E is replaced by C. Hence, their algorithms when
compared with ours, need more computer storage and require nearly
double the number of arithmetic operations. We claim that for this
problem, a special purpose program such as ours would be more
efficient than a general purpose one such as [21] and [20].

References

1. Abdelmalek, N.N., Chebyshev solution of overdetermined
systems of linear equations, BIT, 15(1975)117-129.

2. Abdelmalek, N.N., The discrete linear one-sided Chebyshev
approximation, Journal of Institute of Mathematics and
Applications, 18(1976)361-370.

3. Abdelmalek, N.N., The discrete linear restricted Chebyshev
approximation, BIT, 17(1977)249-261.

4. Abdelmalek, N.N., Computer program for the discrete linear
restricted Chebyshev approximation, Journal of Computa-
tional and Applied Mathematics, 7(1981)141-150.

© 2008 by Taylor & Francis Group, LLC

Chapter 13: Restricted Chebyshev Approximation 433

5. Abdelmalek, N.N., An exchange algorithm for the Chebyshev
solution of overdetermined systems of linear equations,
unpublished work.

6. Armstrong, R.D. and Sklar, M.G., A linear programming
algorithm for curve fitting in the L∞ norm, Numerical
Functional Analysis and Optimization, 2(1980)187-218.

7. Barrodale, I. and Phillips, C., An improved algorithm for
discrete Chebyshev linear approximation, Proceedings of the
Fourth Manitoba Conference on Numerical Mathematics,
Hartnell, B.L. and Williams, H.C. (eds.), Winnipeg, Manitoba,
Canada, pp. 177-190, 1975.

8. Barrodale, I. and Phillips, C., Algorithm 495: Solution of an
overdetermined system of linear equations in the Cheby-
shev norm, ACM Transactions on Mathematical Software,
1(1975)264-270.

9. Bartels, R.H, Conn, A.R. and Charalambous, C., Minimization
techniques for piecewise differentiable functions: The l∞
solution to overdetermined linear system, The Johns Hopkins
University, Baltimore, MD, Technical report no. 247, May
1976.

10. Bartels, R.H, Stoer, J. and Zenger, Ch., A realization of the
simplex method based on triangular decomposition, Handbook
for Automatic Computation, Vol. II: Linear Algebra, Wilkin-
son, J.H. and Reinsch, C. (eds.), Springer-Verlag, New York,
pp. 152-190, 1971.

11. Cline, A.K., A descent method for the uniform solution to
overdetermined systems of linear equations, SIAM Journal on
Numerical Analysis, 13(1976)293-309.

12. Gimlin, D.R., Cavin, III R.K. and Budge, Jr., M.C., A multiple
exchange algorithm for calculation of best restricted
approximations, SIAM Journal on Numerical Analysis,
11(1974)219-231.

13. Glashoff, K. and Gustafson, S.A., Numerical treatment of a
parabolic boundary-value control problem, Journal of
Optimization Theory and Applications, 19(1976)645-663.

14. Gustafson, S.A. and Kortanek, K.O., Numerical treatment of a
class of semi-infinite programming problems, Naval Research
Logistics Quarterly, 20(1973)477-504.

© 2008 by Taylor & Francis Group, LLC

434 Numerical Linear Approximation in C

15. Hadley, G., Linear Programming, Addison-Wesley, Reading,
MA, 1962.

16. Hettich, R., A Newton method for nonlinear Chebyshev
approximation, Lecture Notes in Mathematics No. 556, Dold,
A. and Eckmann, B. (eds.), Springer-Verlag, Berlin, pp. 222-
236 (1976).

17. Jones, R.C. and Karlovitz, L.A., Iterative construction of
constrained Chebyshev approximation of continuous func-
tions, SIAM Journal on Numerical Analysis, 5(1968)574-585.

18. Lewis, J.T., Restricted range approximation and its application
to digital filter design, Mathematics of Computation,
29(1975)522-539.

19. Phillips, D.L., A note on best one-sided approximations,
Communications of ACM, 14(1971)598-600.

20. Roberts, F.D.K. and Barrodale, I., An algorithm for discrete
Chebyshev linear approximation with linear constraints,
International Journal for Numerical Methods in Engineering,
15(1980)797-807.

21. Sklar, M.G., L∞ norm estimation with linear restriction on the
parameters, Numerical Functional Analysis and Optimization,
3(1981)53-68.

22. Taylor, G.D., Approximation by functions having restricted
ranges III, Journal of Mathematical Analysis and Applic-
ations, 27(1969)241-248.

23. Taylor, G.D. and Winter, M.J., Calculation of best restricted
approximations, SIAM Journal on Numerical Analysis,
7(1970)248-255.

24. Watson, G.A., The calculation of best restricted approxi-
mations, SIAM Journal on Numerical Analysis, 11(1974)693-
699.

© 2008 by Taylor & Francis Group, LLC

Chapter 13: DR_Restch 435

13.8 DR_Restch

/*---
DR_Restch

This program is a driver for the function LA_Restch(), which
calculates the restricted Chebyshev solution of an overdetermined
systems of linear equations. It uses a modified simplex method
with a triangular factorization of the basis matrix.

The overdetermined system has the form

 c*a = f

"c" is a given real n by m matrix of rank k, k <= m < n.
"f" is a given real n vector.

The problem is to calculate the elements of the m vector "a" that
gives the minimum Chebyshev norm z.

 z=max|r[i]|, i = 1, 2, ..., n

where r[i] is the ith residual and is given by
 r[i] = f[i] - (c[i][1]*a[1] + c[i][2]*a[2] + ... + c[i][m]*a[m])

subject to the conditions

 el[i] <= c[i][1]*a[1] + ... + c[i][m]*a[m] <= ue[i]
 i = 1, 2, ...,n

where el[i] and ue[i] are given

Also the following conditions should be satisfied

 el[i]<= f[i] <= ue[i], i=1,...,n

This driver contains the 8 examples whose results are given in the
text. Let "big" denote a large real number, say 1000 and "z" be
the Chebyshev solution of the given problem.

Then all the examples are solved for the 4 cases:

1) el[i] = - big and ue[i] = big, i = 1, 2, ..., n
 The output will be the ordinary Chebyshev solution.

© 2008 by Taylor & Francis Group, LLC

436 Numerical Linear Approximation in C

2) el[i] = f[i] - 0.5*z and ue[i] = big, i = 1, 2, ..., n
 The output is the solution for arbitrary lower and upper ranges.

3) el[i] = -big and ue[i] = f[i], i = 1, 2, ..., n
 The output is the one-sided Chebyshev solution from above.

4) el[i] = c1 and ue[i] = c2
 where c1 is min{f[i]} and c2 = max{f[i]}; i = 1, 2, ..., n.
---*/

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define N1 4
#define M1 2
#define N2 5
#define M2 3
#define N3 6
#define M3 3
#define N4 7
#define M4 3
#define N5 8
#define M5 4
#define N6 10
#define M6 5
#define N7 25
#define M7 10
#define N8 8
#define M8 4

void DR_Restch (void)
{
 /*--
 Constant matrices/vectors
 --*/
 static tNumber_R c1init[N1][M1] =
 {
 { 0.0, -2.0 },
 { 0.0, -4.0 },
 { 1.0, 10.0 },
 {-1.0, 15.0 }
 };

 static tNumber_R c2init[N2][M2] =

© 2008 by Taylor & Francis Group, LLC

Chapter 13: DR_Restch 437

 {
 { 1.0, 2.0, 0.0 },
 {-1.0, -1.0, 0.0 },
 { 1.0, 3.0, 0.0 },
 { 0.0, 1.0, 0.0 },
 { 0.0, 0.0, 1.0 }
 };

 static tNumber_R c3init[N3][M3] =
 {
 { 0.0, -1.0, 0.0 },
 { 1.0, 3.0, -4.0 },
 { 1.0, 0.0, 0.0 },
 { 0.0, 0.0, 1.0 },
 {-1.0, 1.0, 2.0 },
 { 1.0, 1.0, 1.0 }
 };

 static tNumber_R c4init[N4][M4] =
 {
 { 1.0, 0.0, 1.0 },
 { 1.0, 2.0, 2.0 },
 { 1.0, 2.0, 0.0 },
 { 1.0, 1.0, 0.0 },
 { 1.0, 0.0, -1.0 },
 { 1.0, 0.0, 0.0 },
 { 1.0, 1.0, 1.0 }
 };

 static tNumber_R c5init[N5][M5] =
 {
 { 1.0, -3.0, 9.0, -27.0 },
 { 1.0, -2.0, 4.0, -8.0 },
 { 1.0, -1.0, 1.0, -1.0 },
 { 1.0, 0.0, 0.0, 0.0 },
 { 1.0, 1.0, 1.0, 1.0 },
 { 1.0, 2.0, 4.0, 8.0 },
 { 1.0, 3.0, 9.0, 27.0 },
 { 1.0, 4.0, 16.0, 64.0 }
 };

 static tNumber_R c6init[N6][M6] =
 {
 { 1.0, 0.0, 0.0, 0.0, 0.0 },
 { 0.0, 1.0, 0.0, 0.0, 0.0 },

© 2008 by Taylor & Francis Group, LLC

438 Numerical Linear Approximation in C

 { 0.0, 0.0, 1.0, 0.0, 0.0 },
 { 0.0, 0.0, 0.0, 1.0, 0.0 },
 { 0.0, 0.0, 0.0, 0.0, 1.0 },
 { 1.0, 1.0, 1.0, 1.0, 1.0 },
 { 0.0, 1.0, 1.0, 1.0, 1.0 },
 {-1.0, 0.0, -1.0, -1.0, -1.0 },
 { 1.0, 1.0, 0.0, 1.0, 1.0 },
 { 1.0, 1.0, 1.0, 0.0, 1.0 }
 };

 static tNumber_R c8init[N8][M8] =
 {
 { 1.0, 1.0, 1.0, 1.0 },
 { 1.0, 2.0, 4.0, 4.0 },
 { 1.0, 3.0, 9.0, 9.0 },
 { 1.0, 4.0, 16.0, 16.0 },
 { 1.0, 5.0, 25.0, 25.0 },
 { 1.0, 6.0, 36.0, 36.0 },
 { 1.0, 7.0, 49.0, 49.0 },
 { 1.0, 8.0, 64.0, 64.0 }
 };

 static tNumber_R f1[N1+1] =
 { NIL,
 -12.0, 6.0, 0.0, 5.0
 };

 static tNumber_R f2[N2+1] =
 { NIL,
 1.0, 2.0, 1.0, -3.0, 0.0
 };

 static tNumber_R f3[N3+1] =
 { NIL,
 1.0, 2.0, 3.0, 2.0, 2.0, 4.0
 };

 static tNumber_R f4[N4+1] =
 { NIL,
 0.0, -2.0, 1.0, -1.0, 5.0, 7.0, 0.0
 };

 static tNumber_R f5[N5+1] =
 { NIL,
 3.0, -3.0, -2.0, 0.0, 7.0, -1.0, 5.0, 2.0

© 2008 by Taylor & Francis Group, LLC

Chapter 13: DR_Restch 439

 };

 static tNumber_R f6[N6+1] =
 { NIL,
 1.0, -1.0, 0.0, -1.0, 1.0, 0.0, 2.0, 3.0, -3.0, -2.0
 };

 static tNumber_R f7[N7+1] =
 { NIL,
 0.0872673, 0.0872794, 0.0873029, 0.0873315, 0.0873576,
 0.3491184, 0.3498802, 0.3513824, 0.3532572, 0.3550109,
 0.6111334, 0.6150641, 0.6230824, 0.6336395, 0.6441493,
 0.8733883, 0.8841621, 0.9071868, 0.9400757, 0.9766021,
 1.135895, 1.157550, 1.206257, 1.283258, 1.384432
 };

 static tNumber_R f8[N8+1] =
 { NIL,
 2.0, 2.5, 2.0, 6.5, 3.5, 4.5, 6.0, 7.0
 };

 /* The elements of vector zz are the optimum Chebyshev norms for
 the 8 examples */
 static tNumber_R zz[9] =
 { NIL,
 10.0, 2.25, 1.5556, 2.625, 3.786, 1.7778, 0.0071, 1.9
 };

 /*--
 Variable matrices/vectors
 --*/
 tMatrix_R ct = alloc_Matrix_R (MMc_COLS, NN_ROWS);
 tVector_R f = alloc_Vector_R (NN_ROWS);
 tVector_R r = alloc_Vector_R (NN_ROWS);
 tVector_R a = alloc_Vector_R (MMc_COLS);
 tVector_R el = alloc_Vector_R (NN_ROWS);
 tVector_R ue = alloc_Vector_R (NN_ROWS);
 tMatrix_R c7 = alloc_Matrix_R (N7, M7);

 tMatrix_R c1 = init_Matrix_R (&(c1init[0][0]), N1, M1);
 tMatrix_R c2 = init_Matrix_R (&(c2init[0][0]), N2, M2);
 tMatrix_R c3 = init_Matrix_R (&(c3init[0][0]), N3, M3);
 tMatrix_R c4 = init_Matrix_R (&(c4init[0][0]), N4, M4);
 tMatrix_R c5 = init_Matrix_R (&(c5init[0][0]), N5, M5);
 tMatrix_R c6 = init_Matrix_R (&(c6init[0][0]), N6, M6);

© 2008 by Taylor & Francis Group, LLC

440 Numerical Linear Approximation in C

 tMatrix_R c8 = init_Matrix_R (&(c8init[0][0]), N8, M8);

 int irank, iter, kase;
 int i, j, k, m, n, Iexmpl;
 tNumber_R cc1, cc2, d, dd, ddd, e, ee, eee, big, z;

 eLaRc rc = LaRcOk;

 big = 1.0/ (EPS * EPS);
 for (j = 1; j <= 5; j++)
 {
 d = 0.15* (j-3);
 dd = d*d;
 ddd = d*dd;
 for (i = 1; i <= 5; i++)
 {
 e = 0.15* (i-3);
 ee = e*e;
 eee = e*ee;
 k = 5* (j-1) + i;
 c7[k][1] = 1.0;
 c7[k][2] = d;
 c7[k][3] = e;
 c7[k][4] = dd;
 c7[k][5] = ee;
 c7[k][6] = e*d;
 c7[k][7] = ddd;
 c7[k][8] = eee;
 c7[k][9] = dd*e;
 c7[k][10] = ee*d;
 }
 }

 prn_dr_bnr ("DR_Restch, Restricted Chebyshev Solution of an "
 "Overdetermined System of Linear Equations");

 for (kase = 1; kase <= 4; kase++)
 {
 for (Iexmpl = 1; Iexmpl <= 8; Iexmpl++)
 {
 switch (Iexmpl)
 {
 case 1:
 n = N1;
 m = M1;

© 2008 by Taylor & Francis Group, LLC

Chapter 13: DR_Restch 441

 z = zz[1];
 for (i = 1; i <= n; i++)
 {
 f[i] = f1[i];
 for (j = 1; j <= m; j++) ct[j][i] = c1[i][j];
 }
 break;

 case 2:
 n = N2;
 m = M2;
 z = zz[2];
 for (i = 1; i <= n; i++)
 {
 f[i] = f2[i];
 for (j = 1; j <= m; j++) ct[j][i] = c2[i][j];
 }
 break;

 case 3:
 n = N3;
 m = M3;
 z = zz[3];
 for (i = 1; i <= n; i++)
 {
 f[i] = f3[i];
 for (j = 1; j <= m; j++) ct[j][i] = c3[i][j];
 }
 break;

 case 4:
 n = N4;
 m = M4;
 z = zz[4];
 for (i = 1; i <= n; i++)
 {
 f[i] = f4[i];
 for (j = 1; j <= m; j++) ct[j][i] = c4[i][j];
 }
 break;

 case 5:
 n = N5;
 m = M5;
 z = zz[5];

© 2008 by Taylor & Francis Group, LLC

442 Numerical Linear Approximation in C

 for (i = 1; i <= n; i++)
 {
 f[i] = f5[i];
 for (j = 1; j <= m; j++) ct[j][i] = c5[i][j];
 }
 break;

 case 6:
 n = N6;
 m = M6;
 z = zz[6];
 for (i = 1; i <= n; i++)
 {
 f[i] = f6[i];
 for (j = 1; j <= m; j++) ct[j][i] = c6[i][j];
 }
 break;

 case 7:
 n = N7;
 m = M7;
 z = zz[7];
 for (i = 1; i <= n; i++)
 {
 f[i] = f7[i];
 for (j = 1; j <= m; j++) ct[j][i] = c7[i][j];
 }
 break;

 case 8:
 n = N8;
 m = M8;
 z = zz[8];
 for (i = 1; i <= n; i++)
 {
 f[i] = f8[i];
 for (j = 1; j <= m; j++) ct[j][i] = c8[i][j];
 }

 break;

 default:
 break;
 }
 if (kase == 1)

© 2008 by Taylor & Francis Group, LLC

Chapter 13: DR_Restch 443

 {
 for (i = 1; i <= n; i++)
 {
 el[i] = - big;
 ue[i] = big;
 }
 }
 if (kase == 2)
 {
 for (i = 1; i <= n; i++)
 {
 el[i] = f[i] - z/2.0;
 ue[i] = big;
 }
 }
 if (kase == 3)
 {
 for (i = 1; i <= n; i++)
 {
 el[i] = -big;
 ue[i] = f[i];
 }
 }
 if (kase == 4)
 {
 cc1 = big;
 cc2 = -big;
 for (j = 1; j <= n; j++)
 {
 if (f[j] < cc1) cc1 = f[j];
 if (f[j] > cc2) cc2 = f[j];
 }
 for (i = 1; i <= n; i++)
 {
 el[i] = cc1;
 ue[i] = cc2;
 }
 }

 prn_algo_bnr ("Restch");

 prn_example_delim();
 PRN ("Example #%d: Size of matrix \"c\" %d by %d\n",
 Iexmpl, n, m);
 prn_example_delim();

© 2008 by Taylor & Francis Group, LLC

444 Numerical Linear Approximation in C

 if (kase == 1)
 PRN ("Ordinary Chebyshev Solution\n");
 else if (kase == 2)
 PRN ("Solution for arbitrary lower and upper "
 "ranges\n");
 else if (kase == 3)
 PRN ("One-sided Chebyshev solution from above.\n");
 else if (kase == 4)
 PRN ("Solution for arbitrary lower and upper "
 "ranges\n");
 prn_example_delim();
 PRN ("r.h.s. Vector \"f\"\n");
 prn_Vector_R (f, n);
 PRN ("Transpose of Coefficient Matrix, \"ct\"\n");
 prn_Matrix_R (ct, m, n);

 rc = LA_Restch (m, n, ct, f, el, ue, &irank, &iter, r, a,
 &z);

 if (rc >= LaRcOk)
 {
 PRN ("\n");
 PRN ("Results of the Restricted Approximation\n");
 PRN ("Restricted solution vector, \"a\"\n");
 prn_Vector_R (a, m);
 PRN ("Restricted residual vector, \"r\"\n");
 prn_Vector_R (r, n);
 PRN ("Restricted Chebyshev norm, \"z\" = %8.4f\n",
 z);
 PRN ("Rank of matrix \"c\" = %d, No. of "
 "iterations = %d\n", irank, iter);
 }

 prn_la_rc (rc);
 }
 }

 free_Matrix_R (ct, MMc_COLS);
 free_Vector_R (f);
 free_Vector_R (r);
 free_Vector_R (a);
 free_Vector_R (el);
 free_Vector_R (ue);
 free_Matrix_R (c7, N7);

© 2008 by Taylor & Francis Group, LLC

Chapter 13: DR_Restch 445

 uninit_Matrix_R (c1);
 uninit_Matrix_R (c2);
 uninit_Matrix_R (c3);
 uninit_Matrix_R (c4);
 uninit_Matrix_R (c5);
 uninit_Matrix_R (c6);
 uninit_Matrix_R (c8);
}

© 2008 by Taylor & Francis Group, LLC

446 Numerical Linear Approximation in C

13.9 LA_Restch

/*---
LA_Restch

This program calculates the restricted Chebyshev solution of an
overdetermined system of linear equation. It uses a modified simplex
method to the linear programming formulation of the problem.

For purpose of numerical stability, this program uses a triangular
decomposition to the basis matrix.

The system of linear equations has the form

 c*a = f

"c" is a given real n by m matrix of rank <= m < n.
"f" is a given real n vector.

The problem is to calculate the elements of the m vector "a" that
gives the minimum Chebyshev norm z,

 z = max|r[i]|, i = 1, 2, ..., n

where r[i] is the ith residual and is given by

 r[i] = f[i] - (c[i][1]*a[1] + c[i][2]*a[2] +...+ c[i][m]*a[m]),

subject to the conditions

 el[i] <= c[i][1]*a[1] + ... + c[i][m]*a[m] <= ue[i]

where el[i] and ue[i] are given parameters for i = 1, 2, ..., n.
Also the following conditions should be satisfied.

 el[i] <= f[i] <= ue[i], i = 1, 2, ..., n

Inputs
m Number of columns of matrix "c" in the system c*a = f.
n Number of rows of matrix "c" in the system c*a = f.
ct A real (m+1) by n matrix. Its first m rows and its n
 columns contain the transpose of matrix "c" of the system
 c*a = f. Its (m+1)th row will be filled with ones by the
 program.

© 2008 by Taylor & Francis Group, LLC

Chapter 13: LA_Restch 447

f A real n vector containing the r.h.s. of the system c*a = f.
el A real n vector containing the lower range vector "el".
ue A real n vector containing the upper range vector "ue".

Local Variables
ginv A real (m+1) square matrix that is the inverse of the basis
 matrix.
vb A real (m+1) vector containing the basic solution in the
 linear programming problem.
ic An integer m vector containing the column indices of matrix
 "ct" that form the columns of the basis matrix.
ir An integer (m+1) vector containing the indices of the rows
 of matrix "ct".
ib An integer n vector, each element of which has the value
 1, 2, 3 or 4.
p An (((m+1)*((m+1)+3))/2) vector whose first
 (((irank+1)*(irank+4))/2)-1 elements contain the
 ((irank+1)*(irank+2))/2 elements of an upper triangular
 matrix + extra "irank" working locations. See the comments
 in LA_pslvc().

Outputs
irank The calculated rank of matrix "c".
iter The number of iterations needed for the problem.
a A real (m+1) vector whose first m elements are the solution
 vector "a".
r A real n vector containing the residual vector r = f - c*a.
z The restricted Chebyshev norm of the residual vector.

Returns one of
 LaRcSolutionUnique
 LaRcSolutionProbNotUnique
 LaRcSolutionDefNotUniqueRD
 LaRcNoFeasibleSolution
 LaRcInconsistentConstraints
 LaRcErrBounds
 LaRcErrNullPtr
 LaRcErrAlloc
---*/

#include "LA_Prototypes.h"

eLaRc LA_Restch (int m, int n, tMatrix_R ct, tVector_R f,
 tVector_R el, tVector_R ue, int *pIrank, int *pIter, tVector_R r,
 tVector_R a, tNumber_R *pZ)

© 2008 by Taylor & Francis Group, LLC

448 Numerical Linear Approximation in C

{
 tMatrix_R ginv = alloc_Matrix_R (m + 1, m + 1);
 tVector_R vb = alloc_Vector_R (m + 1);
 tVector_R zc = alloc_Vector_R (n + 1);
 tVector_R p = alloc_Vector_R
 (((m + 1) * ((m + 1) + 3)) / 2);
 tVector_R g = alloc_Vector_R (n + 1);
 tVector_R u = alloc_Vector_R (m + 1);
 tVector_R v = alloc_Vector_R (m + 1);
 tVector_R w = alloc_Vector_R (m + 1);
 tVector_I ic = alloc_Vector_I (m + 1);
 tVector_I ir = alloc_Vector_I (m + 1);
 tVector_I ib = alloc_Vector_I (n + 1);

 int i = 0, k = 0, kd = 0, kk = 0, ko = 0, m1 = 0;
 int ijk = 0, itest = 0, iout = 0, ivo = 0, jin = 0,
 nmm = 0, irank1 = 0;

 tNumber_R ggg = 0.0, piv = 0.0;

 eLaRc tempRc;

 /* Validation of the data before executing the algorithm */
 eLaRc rc = LaRcSolutionUnique;
 VALIDATE_BOUNDS ((0 < m) && (m < n));
 VALIDATE_PTRS (ct && f && el && ue && pIrank && pIter && r && a
 && pZ);
 VALIDATE_ALLOC (ginv && vb && zc && p && g && u && v && w && ic
 && ir && ib);

 /* Initialization & checking some constraints */
 m1 = m + 1;
 nmm = (m1* (m1 + 3))/2;
 *pIrank = m;
 irank1 = *pIrank + 1;
 *pIter = 0;
 *pZ = 0.0;

 /* Initializing program data */
 tempRc = LA_restch_init (m, n, ct, f, el, ue, ir, ib, ic, g,
 ginv, a);
 if (tempRc < LaRcOk)
 {
 GOTO_CLEANUP_RC (tempRc);
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 13: LA_Restch 449

 /* Part 1 of the algorithm */
 iout = 0;

 for (kk = 1; kk <= m1; kk++)
 {
 iout = iout + 1;
 if (iout <= irank1)
 {
 /* Part 1 of the program */
 LA_restch_part_1 (&piv, iout, &jin, n, ct, ic, ginv);

 /* Detect the rank of matrix "c" */
 LA_restch_detect_rank (&piv, &iout, &jin, n, ct, ic, ir,
 ib, g, v, ginv, pIrank, pIter);
 }
 }

 /* Part 2 of the algorithm.
 Initial feasible basic solution and a positive norm z */
 LA_restch_part_2 (n, ct, ic, ib, g, v, ginv, vb, pIrank);

 /* Initializing the triangular matrix */
 LA_restch_init_p (m, p, pIrank);

 /* Calculating the marginal costs */
 LA_restch_marg_costs (m, n, ct, f, el, ue, ic, ir, ib, g, u, v,
 w, zc, p, ginv, pIrank, r, a, pZ);

 /* Part 3 */
 for (ijk = 1; ijk <= n*n; ijk++)
 {
 irank1 = *pIrank + 1;
 ivo = 0;

 /* Determine the vector that enters the basis */
 LA_restch_vent (&ivo, &jin, &ggg, n, f, el, ue, ic, ib, zc,
 pIrank, pZ);

 /* Calculate the results */
 if (ivo == 0)
 {
 tempRc = LA_restch_res (m, f, el, ue, ic, ib, v, p, vb,
 pIrank, r, pZ);
 GOTO_CLEANUP_RC (tempRc == LaRcOk ? rc : tempRc);

© 2008 by Taylor & Francis Group, LLC

450 Numerical Linear Approximation in C

 }

 ko = ib[jin];
 if (ko != ivo)
 {
 kk = ko + ivo - 2;
 if (kk != 2 && kk != 4)
 {
 for (i = 1; i <= irank1; i++)
 {
 ct[i][jin] = -ct[i][jin];
 }
 }
 for (i = 1; i <= m1; i++)
 {
 k = ir[i];
 if (k == m1) ko = i;
 }
 if (ivo <= 2) ct[ko][jin] = 1.0;
 if (ivo > 2) ct[ko][jin] = 0.0;
 }

 /* Determine the vector that leaves the basis */
 itest = 0;
 ib[jin] = ivo;
 g[jin] = ggg;

 LA_pslvc (1, irank1, p, vb, v);

 LA_restch_vleav (jin, &iout, &itest, ct, u, v, w, p, ginv,
 pIrank);

 /* No feasible solution has been found */
 if (itest != 1)
 {
 GOTO_CLEANUP_RC (LaRcNoFeasibleSolution);
 }

 *pIter = *pIter + 1;

 if (iout != irank1)
 {
 /* Updating of the triangular factorization */
 LA_restch_update_p (iout, ic, p, pIrank);
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 13: LA_Restch 451

 ic[irank1] = jin;
 k = irank1;
 kd = irank1;
 for (i = 1; i <= irank1; i++)
 {
 p[k] = u[i];
 k = k + kd;
 kd = kd - 1;
 }

 if (iout != irank1)
 {
 /* Update matrix ginv */
 LA_restch_update_ginv (iout, ct, ir, p, ginv, vb,
 pIrank);
 }

 /* Calculate the results; vector "a" and z */
 LA_restch_marg_costs (m, n, ct, f, el, ue, ic, ir, ib, g, u,
 v, w, zc, p, ginv, pIrank, r, a, pZ);
 }

CLEANUP:

 free_Matrix_R (ginv, m + 1);
 free_Vector_R (vb);
 free_Vector_R (zc);
 free_Vector_R (p);
 free_Vector_R (g);
 free_Vector_R (u);
 free_Vector_R (v);
 free_Vector_R (w);
 free_Vector_I (ic);
 free_Vector_I (ir);
 free_Vector_I (ib);

 return rc;
}

/*---
Initializing data for LA_Restch()
---*/
eLaRc LA_restch_init (int m, int n, tMatrix_R ct, tVector_R f,
 tVector_R el, tVector_R ue, tVector_I ir, tVector_I ib,
 tVector_I ic, tVector_R g, tMatrix_R ginv, tVector_R a)

© 2008 by Taylor & Francis Group, LLC

452 Numerical Linear Approximation in C

{
 int i, j, m1;

 m1 = m + 1;
 for (j = 1; j <= n; j++)
 {
 if (el[j] > f[j] || ue[j] < f[j])
 return LaRcInconsistentConstraints;
 g[j] = f[j];
 ib[j] = 1;
 ct[m1][j] = 1.0;
 }

 for (j = 1; j <= m1; j++)
 {
 for (i = 1; i <= m1; i++)
 {
 ginv[i][j] = 0.0;
 }
 ginv[j][j] = 1.0;
 ic[j] = 0;
 ir[j] = j;
 a[j] = 0.0;
 }

 return LaRcOk;
}

/*---
Part 1 of for LA_Restch()
---*/
void LA_restch_part_1 (tNumber_R *pPiv, int iout, int *pJin, int n,
 tMatrix_R ct, tVector_I ic, tMatrix_R ginv)
{
 int j, k, icb, ioutm1;
 tNumber_R d, s;

 *pPiv = 0.0;
 if (iout == 1)
 {
 for (j = 1; j <= n; j++)
 {
 d = ct[iout][j];
 if (d < 0.0) d = -d;
 if (d > *pPiv)

© 2008 by Taylor & Francis Group, LLC

Chapter 13: LA_Restch 453

 {
 *pJin = j;
 *pPiv = d;
 }
 }
 }
 else if (iout > 1)
 {
 ioutm1 = iout - 1;
 for (j = 1; j <= n; j++)
 {
 icb = 0;
 for (k = 1; k <= ioutm1; k++)
 {
 if (j == ic[k]) icb = 1;
 }
 if (icb == 0)
 {
 s = ct[iout][j];
 for (k = 1; k <= ioutm1; k++)
 {
 s = s + ginv[iout][k] * (ct[k][j]);
 }
 d = s;
 if (d < 0.0) d = -d;
 if (d > *pPiv)
 {
 *pJin = j;
 *pPiv = d;
 }
 }
 }
 }
}

/*---
Detect the rank of matrix "c" in LA_Restch()
---*/
void LA_restch_detect_rank (tNumber_R *pPiv, int *pIout, int *pJin,
 int n, tMatrix_R ct, tVector_I ic, tVector_I ir, tVector_I ib,
 tVector_R g, tVector_R v, tMatrix_R ginv, int *pIrank,
 int *pIter)
{
 int i, j, k, icb, ioutm1, irank1;
 tNumber_R s, pivot;

© 2008 by Taylor & Francis Group, LLC

454 Numerical Linear Approximation in C

 /* Detection of rank deficiency */
 irank1 = *pIrank + 1;
 if ((*pPiv < EPS) && *pIout != irank1)
 {
 for (j = 1; j <= n; j++)
 {
 ct[*pIout][j] = ct[*pIrank][j];
 ct[*pIrank][j] = 1.0;
 ct[irank1][j] = 0.0;
 }
 ioutm1 = *pIout - 1;
 for (j = 1; j <= ioutm1; j++)
 {
 ginv[*pIout][j] = ginv[*pIrank][j];
 ginv[*pIrank][j] = ginv[irank1][j];
 ginv[irank1][j] = 0.0;
 }
 ir[*pIout] = ir[*pIrank];
 ir[*pIrank] = ir[irank1];
 ir[irank1] = 0;
 *pIrank = *pIrank - 1;
 irank1 = *pIrank + 1;
 *pIout = *pIout - 1;
 }

 if ((*pPiv <= EPS) && *pIout == irank1)
 {
 for (j = 1; j <= n; j++)
 {
 icb = 0;
 for (i = 1; i <= *pIrank; i++)
 {
 if (j == ic[i]) icb = 1;
 }
 if (icb == 0)
 {
 *pJin = j;
 *pPiv = 2.0;
 break;
 }
 }
 ib[*pJin] = 2;
 g[*pJin] = -g[*pJin];
 for (i = 1; i <= *pIrank; i++)

© 2008 by Taylor & Francis Group, LLC

Chapter 13: LA_Restch 455

 {
 ct[i][*pJin] = -ct[i][*pJin];
 }
 }
 if (*pPiv > EPS)
 {
 for (i = 1; i <= irank1; i++)
 {
 s = ct[i][*pJin];
 if (*pIout != 1)
 {
 ioutm1 = *pIout -1;
 if (i < *pIout) s = 0.0;
 for (k = 1; k <= ioutm1; k++)
 {
 s = s + ginv[i][k] * (ct[k][*pJin]);
 }
 }
 v[i] = s;
 }
 pivot = v[*pIout];
 for (j = 1; j <= *pIout; j++)
 {
 ginv[*pIout][j] = ginv[*pIout][j]/pivot;
 }

 for (i = 1; i <= irank1; i++)
 {
 if (i != *pIout)
 {
 for (j = 1; j <= *pIout; j++)
 {
 ginv[i][j] = ginv[i][j] - v[i]
 * (ginv[*pIout][j]);
 }
 }
 }
 ic[*pIout] = *pJin;
 *pIter = *pIter + 1;
 }
}

/*---
Part 2 of the algorithm for LA_Restch().
Obtaining a basic feasible solution and a positive norm z.

© 2008 by Taylor & Francis Group, LLC

456 Numerical Linear Approximation in C

---*/
void LA_restch_part_2 (int n, tMatrix_R ct, tVector_I ic,
 tVector_I ib, tVector_R g, tVector_R v, tMatrix_R ginv,
 tVector_R vb, int *pIrank)
{
 int i, j, k, kk, l, ibv, jin, irank1;
 tNumber_R d, s, z;

 irank1 = *pIrank + 1;
 for (i = 1; i <= irank1; i++)
 {
 v[i] = 0.0;
 vb[i] = ginv[i][irank1];
 }
 ibv = 0;
 d = 0.5;
 for (i = 1; i <= irank1; i++)
 {
 if (vb[i] <= -EPS)
 {
 vb[i] = -vb[i];
 ibv = ibv + 1;
 jin = ic[i];
 g[jin] = -g[jin];
 kk = 2;
 if (ib[jin] == 2) kk = 1;
 ib[jin] = kk;
 for (k = 1; k <= *pIrank; k++)
 {
 ct[k][jin] = -ct[k][jin];
 }
 d = d + vb[i];
 for (j = 1; j <= irank1; j++)
 {
 ginv[i][j] = -ginv[i][j];
 v[j] = v[j] + ginv[i][j];
 }
 }
 }
 if (ibv > 0)
 {
 for (j = 1; j <= irank1; j++)
 {
 v[j] = v[j]/d;
 for (i = 1; i <= irank1; i++)

© 2008 by Taylor & Francis Group, LLC

Chapter 13: LA_Restch 457

 {
 ginv[i][j] = ginv[i][j] - v[j]*vb[i];
 }
 }
 for (j = 1; j <= irank1; j++)
 {
 vb[j] = ginv[j][irank1];
 }
 }
 s = 0.0;
 for (i = 1; i <= irank1; i++)
 {
 k = ic[i];
 s = s + g[k] * (vb[i]);
 }
 z = s;
 if (z <= -EPS)
 {
 for (j = 1; j <= n; j++)
 {
 g[j] = -g[j];
 kk = 2;
 if (ib[j] == 2) kk = 1;
 ib[j] = kk;
 for (i = 1; i <= *pIrank; i++)
 {
 ct[i][j] = -ct[i][j];
 }
 z = -z;
 for (l = 1; l <= *pIrank; l++)
 {
 for (i = 1; i <= irank1; i++)
 {
 ginv[i][l] = -ginv[i][l];
 }
 }
 }
 }
}

/*---
Initializing the triangular matrix for LA_Restch()
---*/
void LA_restch_init_p (int m, tVector_R p, int *pIrank)
{

© 2008 by Taylor & Francis Group, LLC

458 Numerical Linear Approximation in C

 int i, k, kd, m1, nmm, irank1;

 m1 = m + 1;
 nmm = (m1 * (m1 + 3))/2;
 irank1 = *pIrank + 1;
 for (i = 1; i <= nmm; i++)
 {
 p[i] = 0.0;
 }
 k = 1;
 kd = *pIrank + 2;
 for (i = 1; i <= irank1; i++)
 {
 p[k] = 1.0;
 k = k + kd;
 kd = kd - 1;
 }
}

/*---
Determine the vector that enters the basis in LA_Restch()
---*/
void LA_restch_vent (int *pIvo, int *pJin, tNumber_R *pGgg, int n,
 tVector_R f, tVector_R el, tVector_R ue, tVector_I ic,
 tVector_I ib, tVector_R zc, int *pIrank, tNumber_R *pZ)
{
 int i, j, kk;
 int icb, irank1;

 tNumber_R gg, ga, gb, gc, gd;

 irank1 = *pIrank + 1;

 gg = 1.0/ (EPS*EPS);
 for (j = 1; j <= n; j++)
 {
 ga = 0.0;
 gb = 0.0;
 gc = 0.0;
 gd = 0.0;
 icb = 0;
 kk = ib[j];
 for (i = 1; i <= irank1; i++)
 {
 if (j == ic[i]) icb = 1;

© 2008 by Taylor & Francis Group, LLC

Chapter 13: LA_Restch 459

 }
 if (icb == 0)
 {
 if (kk == 1)
 {
 ga = zc[j];
 gb = *pZ + *pZ - ga;
 gc = ga - *pZ + f[j] - el[j];
 gd = *pZ - ga - f[j] + ue[j];
 }
 else if (kk == 2)
 {
 gb = zc[j];
 ga = *pZ + *pZ - gb;
 gc = *pZ - gb + f[j] - el[j];
 gd = gb - *pZ - f[j] + ue[j];
 }
 else if (kk == 3)
 {
 gc = zc[j];
 ga = *pZ + gc - f[j] + el[j];
 gb = *pZ - gc + f[j] - el[j];
 gd = ue[j] - el[j] - gc;
 }
 else if (kk == 4)
 {
 gd = zc[j];
 ga = *pZ - gd - f[j] + ue[j];
 gb = *pZ+ *pZ - ga;
 gc = ue[j] - el[j] - gd;
 }
 if ((ga <= -EPS) && ga < gg)
 {
 gg = ga;
 *pGgg = f[j];
 *pJin = j;
 *pIvo = 1;
 }
 else if ((gb <= -EPS) && gb < gg)
 {
 gg = gb;
 *pGgg = -f[j];
 *pJin = j;
 *pIvo = 2;
 }

© 2008 by Taylor & Francis Group, LLC

460 Numerical Linear Approximation in C

 else if ((gc <= -EPS) && gc < gg)
 {
 gg = gc;
 *pGgg = el[j];
 *pJin = j;
 *pIvo = 3;
 }
 else if ((gd <= -EPS) && gd < gg)
 {
 gg = gd;
 *pGgg = -ue[j];
 *pJin = j;
 *pIvo = 4;
 }
 }

 else if (icb == 1)
 {
 if (kk == 1)
 {
 gc = -*pZ + f[j] - el[j];
 if ((gc <= -EPS) && gc < gg)
 {
 gg = gc;
 *pGgg = el[j];
 *pJin = j;
 *pIvo = 3;
 }
 }
 else if (kk == 2)
 {
 gd = -*pZ - f[j] + ue[j];
 if ((gd <= -EPS) && gd < gg)
 {
 gg = gd;
 *pGgg = -ue[j];
 *pJin = j;
 *pIvo = 4;
 }
 }
 else if (kk == 3)
 {
 ga = *pZ - f[j] + el[j];
 if ((ga <= -EPS) && ga < gg)
 {

© 2008 by Taylor & Francis Group, LLC

Chapter 13: LA_Restch 461

 gg = ga;
 *pGgg = f[j];
 *pJin = j;
 *pIvo = 1;
 }
 }
 else if (kk == 4)
 {
 gb = *pZ + f[j] - ue[j];
 if ((gb <= -EPS) && gb < gg)
 {
 gg = gb;
 *pGgg = -f[j];
 *pJin = j;
 *pIvo = 2;
 }
 }
 }
 }
}

/*---
Determine the vector that leaves the basis in LA_Restch()
---*/
void LA_restch_vleav (int jin, int *pIout, int *pItest,
 tMatrix_R ct, tVector_R u, tVector_R v, tVector_R w,
 tVector_R p, tMatrix_R ginv, int *pIrank)
{
 int i, k, irank1;
 tNumber_R d, s, gg, thmax;

 thmax = 1.0/ (EPS*EPS);
 irank1 = *pIrank + 1;
 for (i = 1; i <= irank1; i++)
 {
 s = 0.0;
 for (k = 1; k <= irank1; k++)
 {
 s = s + ginv[i][k] * (ct[k][jin]);
 }
 u[i] = s;
 }

 LA_pslvc (1, irank1, p, u, w);

© 2008 by Taylor & Francis Group, LLC

462 Numerical Linear Approximation in C

 for (i = 1; i <= irank1; i++)
 {
 d = w[i];
 if (d >= EPS)
 {
 gg = v[i]/d;
 if (gg <= thmax)
 {
 thmax = gg;
 *pIout = i;
 *pItest = 1;
 }
 }
 }
}

/*---
Update vector p in LA_Restch()
---*/
void LA_restch_update_p (int iout, tVector_I ic, tVector_R p,
 int *pIrank)
{
 int i, j, k, kp1, kd, irank1;

 irank1 = *pIrank + 1;
 for (j = iout; j <= *pIrank; j++)
 {
 k = j;
 kp1 = k + 1;
 kd = irank1;

 /* Swap two elements of vector "ic" */
 swap_elems_Vector_I (ic, k, kp1);
 for (i = 1; i <= kp1; i++)
 {
 p[k] = p[k+1];
 k = k + kd;
 kd = kd - 1;
 }
 }
}

/*---
Update matrix ginv in LA_Restch()
---*/

© 2008 by Taylor & Francis Group, LLC

Chapter 13: LA_Restch 463

void LA_restch_update_ginv (int iout, tMatrix_R ct, tVector_I ir,
 tVector_R p, tMatrix_R ginv, tVector_R vb, int *pIrank)
{
 int i, j, k, l, kl, kd, kk, irank1;
 int ii, ip1;

 tNumber_R d, e;

 irank1 = *pIrank + 1;
 for (i = iout; i <= *pIrank; i++)
 {
 ii = i;
 ip1 = i + 1;
 k = 0;
 kd = *pIrank + 2;
 for (j = 1; j <= ii; j++)
 {
 k = k + kd;
 kd = kd - 1;
 }
 kk = k;
 kl = k - kd;
 l = kl;
 d = p[k];
 if (d < 0.0) d = -d;
 e = p[l];
 if (e < 0.0) e = -e;
 if (d > e)
 {
 for (j = ii; j <= irank1; j++)
 {
 /* Swap two elements of a real vector */
 swap_elems_Vector_R (p, l, k);
 k = k + 1;
 l = l + 1;
 }

 /* Swap two elements of an integer vector */
 swap_elems_Vector_I (ir, i, ip1);

 /* Swap two rows of matrix "ct" */
 swap_rows_Matrix_R (ct, i, ip1);

 /* Swap two rows of matrix "ginv" */
 swap_rows_Matrix_R (ginv, i, ip1);

© 2008 by Taylor & Francis Group, LLC

464 Numerical Linear Approximation in C

 /* Swap two columns of matrix "ginv" */
 for (k = 1; k <= irank1; k++)
 {
 d = ginv[k][i];
 ginv[k][i] = ginv[k][ip1];
 ginv[k][ip1] = d;
 }

 /* Swap two elements of a real vector */
 swap_elems_Vector_R (vb, i, ip1);
 }
 e = p[kk]/p[kl];
 k = kk;
 l = kl;
 for (j = ii; j <= irank1; j++)
 {
 p[k] = p[k] - e * (p[l]);
 k = k + 1;
 l = l + 1;
 }
 for (j = 1; j <= irank1; j++)
 {
 ginv[ip1][j] = ginv[ip1][j] - e * (ginv[i][j]);
 }
 vb[ip1] = vb[ip1] - e * (vb[i]);
 }
}

/*---
Calculate the results of LA_Restch()
---*/
void LA_restch_marg_costs (int m, int n, tMatrix_R ct, tVector_R f,
 tVector_R el, tVector_R ue, tVector_I ic, tVector_I ir,
 tVector_I ib, tVector_R g, tVector_R u, tVector_R v,
 tVector_R w, tVector_R zc, tVector_R p, tMatrix_R ginv,
 int *pIrank, tVector_R r, tVector_R a, tNumber_R *pZ)
{
 int i, j, k, kk, m1, icb, irank1;
 tNumber_R d, s;

 irank1 = *pIrank + 1;
 m1 = m + 1;
 for (j = 1; j <= irank1; j++)
 {

© 2008 by Taylor & Francis Group, LLC

Chapter 13: LA_Restch 465

 k = ic[j];
 u[j] = g[k];
 }
 LA_pslvc (2, irank1, p, u, w);

 for (j = 1; j <= irank1; j++)
 {
 s = 0.0;
 for (k = 1; k <= irank1; k++)
 {
 s = s + w[k] * (ginv[k][j]);
 }
 v[j] = s;
 k = ir[j];
 a[k] = s;
 }
 *pZ = a[m1];
 for (j = 1; j <= n; j++)
 {
 zc[j] = 0.0;
 icb = 0;
 for (i = 1; i <= irank1; i++)
 {
 if (j == ic[i]) icb = 1;
 }
 if (icb == 0)
 {
 kk = ib[j];
 s = f[j] + *pZ;
 if (kk == 2) s = f[j] - *pZ;
 if (kk == 3) s = f[j];
 d = -1.0;
 if (kk == 2 || kk == 4) d = 1.0;
 for (i = 1; i <= irank1; i++)
 {
 s = s + d * (v[i]) * (ct[i][j]);
 }
 r[j] = s;
 if (kk == 1) zc[j] = *pZ - r[j];
 if (kk == 2) zc[j] = r[j] + *pZ;
 if (kk == 3) zc[j] = f[j] - el[j] - r[j];
 if (kk == 4) zc[j] = r[j] + ue[j] - f[j];
 }
 }
}

© 2008 by Taylor & Francis Group, LLC

466 Numerical Linear Approximation in C

/*---
Calculating the residuals in LA_Restch()
---*/
eLaRc LA_restch_res (int m, tVector_R f, tVector_R el, tVector_R ue,
 tVector_I ic, tVector_I ib, tVector_R v, tVector_R p,
 tVector_R vb, int *pIrank, tVector_R r, tNumber_R *pZ)
{
 int i, j, kk, m1, irank1;

 eLaRc rc = LaRcOk;

 irank1 = *pIrank + 1;
 m1 = m + 1;
 for (i = 1; i <= irank1; i++)
 {
 j = ic[i];
 kk = ib[j];
 if (kk == 1) r[j] = *pZ;
 if (kk == 2) r[j] = -*pZ;
 if (kk == 3) r[j] = f[j] - el[j];
 if (kk == 4) r[j] = f[j] - ue[j];
 }

 if (*pIrank < m)
 {
 rc = LaRcSolutionDefNotUniqueRD;
 }
 else if (*pIrank == m)
 {
 LA_pslvc (1, irank1, p, vb, v);
 for (i = 1; i <= m1; i++)
 {
 if (v[i] < EPS) rc = LaRcSolutionProbNotUnique;
 }
 }

 return rc;
}

/*---
LA_pslvc

This function solves the square non-singular system of linear
equations.

© 2008 by Taylor & Francis Group, LLC

Chapter 13: LA_Restch 467

 p*x = b

or the square non-singular system of linear equations

 p(transpose)*x = b

where "p" is an upper triangular matrix, "b" is the right hand side
vector and "x" is the solution vector.

Inputs
id An integer specifying the action to be performed.
 If id = 1 the equation "p*x = b" is solved.
 if id= any integer other than 1, the equation
 "p(transpose)*x = b" is solved.
k The number of equations of the given system.
p An (((m+1)*((m+1)+3))/2) vector. Its first (k+1) elements
 contain the first k elements of row 1 of the upper triangular
 matrix + an extra location to the right. Its next k elements
 contain the (k-1) elements of row 2 of the upper triangular
 matrix + an extra location to the right,..., etc.
b An (m+1) vector. Its first "k" elements contain the
 r.h.s. vector "b" of the given system.

Outputs
x An (m+1) vector whose first k elements contain the solution
 to the given system.
---*/
void LA_pslvc (int id, int k, tVector_R p, tVector_R b, tVector_R x)
{
 int i, j, jj, l, ll, kd, kk;
 int kkd, km1, kkm1;
 tNumber_R s;

 /* Solution of the upper triangular system */
 if (id == 1)
 {
 l = (k-1) + (k* (k+1))/2;
 x[k] = b[k]/p[l];
 if (k > 1)
 {
 kd = 3;
 km1 = k - 1;
 for (i = 1; i <= km1; i++)
 {
 j = k - i;

© 2008 by Taylor & Francis Group, LLC

468 Numerical Linear Approximation in C

 l = l - kd;
 kd = kd + 1;
 s = b[j];
 ll = l;
 jj = j;
 for (kk= 1; kk <= i; kk++)
 {
 ll = ll + 1;
 jj = jj + 1;
 s = s - p[ll] * (x[jj]);
 }
 x[j] = s/p[l];
 }
 }
 }

 /* Solution of the lower triangular system */
 else if (id != 1)
 {
 x[1] = b[1]/p[1];
 if (k > 1)
 {
 l = 1;
 kd = k + 1;
 for (i = 2; i <= k; i++)
 {
 l = l + kd;
 kd = kd - 1;
 s = b[i];
 kk = i;
 kkm1 = i - 1;
 kkd = k;
 for (j = 1; j <= kkm1; j++)
 {
 s = s - p[kk] * (x[j]);
 kk = kk + kkd;
 kkd = kkd - 1;
 }
 x[i] = s/p[l];
 }
 }
 }
}

© 2008 by Taylor & Francis Group, LLC

469

Chapter 14

Strict Chebyshev Approximation

14.1 Introduction

Consider the overdetermined system of linear equations

Ca = f

C = (cij) is a given real n by m matrix of rank k, k ≤ m < n, f = (fi) is a
given real n-vector and a = (aj) is the m-solution vector. The residual
vector for this system is given by

r = Ca � f

In the last four chapters, algorithms are presented for four kinds of
linear Chebyshev approximations. In Chapter 10, the ordinary
Chebyshev approximation of system Ca = f is presented, where the
Chebyshev norm of the residual vector r is minimum [1]. In Chapter
11, the one-sided Chebyshev approximation of system Ca = f requires
the additional constraints that all the elements of the residual vector r
be either non-positive or non-negative. In Chapter 12, the bounded
Chebyshev approximation is presented, where the additional
constraints are that each element of the solution vector a is bounded
between 1 and �1. In Chapter 13, different additional constraints are
that the left hand side of system Ca = f, i.e., vector Ca be bounded
between lower and upper rages. The solution vector a in any of the
aforementioned Chebyshev algorithms, if it exists, may or may not be
unique.

In this chapter, we study the uniqueness issue of the ordinary
Chebyshev approximation. We consider what is known as the Strict
Chebyshev solution of overdetermined systems of linear equations.
A Strict Chebyshev solution is calculated only when the ordinary

© 2008 by Taylor & Francis Group, LLC

470 Numerical Linear Approximation in C

Chebyshev solution is not unique. The Strict Chebyshev solution is
always unique. Let us denote the Chebyshev solution of Ca = f by
C.S., and the Strict Chebyshev solution by S.C.S.

Descloux [6] proved the important result that the Lp solution of
system Ca = f converges to the S.C.S. as p → ∞. Rice [10] introduced
a certain C.S. defined on a finite set, that he called the S.C.S, which is
always unique.

In this chapter, we use linear programming techniques to solve the
Strict Chebyshev approximation problem. In Section 14.2, the
problem is described as it was presented by Descloux. In Section 14.3,
the linear programming analysis of the problem is given. This analysis
provides a way to determine, for the majority of cases, all the
equations that belong to the so-called characteristic set. It also gives
an efficient method to calculate the inverse of the matrix needed to
calculate the strict Chebyshev solution. In addition, it provides a way
to recognize the elements of the solution vector of the ordinary
Chebyshev solution that equal the corresponding elements of the strict
Chebyshev solution. Necessary lemmas are presented. In Section
14.4, numerical results and comments on other algorithms to solve the
same problem are given.

Let E denote the set of the n equations Ca = f. The C.S. to this
system is the m-vector a = (ai) that minimizes the Chebyshev norm of
the residuals

z = max|ri|, i ∈ E

where ri is the ith residual and is given by

(14.1.1) , i ∈ E

Let us denote the C.S. a by (a)C.S. It is known that if C satisfies
the Haar condition, where every m by m sub-matrix of matrix C is
nonsingular, the C.S. vector (a)C.S. is unique. Otherwise it may not be
unique.

When the C.S. is not unique, there is a certain degree of freedom
for some, but not all, of the residuals (14.1.1). For these residuals, the
maximum absolute value is minimized over the C.S. and the resulting
solution is the S.C.S. This is explained in the next section.

ri cijaj
j 1=

m

∑ fi�=

© 2008 by Taylor & Francis Group, LLC

Chapter 14: Strict Chebyshev Approximation 471

14.2 The problem as presented by Descloux

The following presentation of the problem is due to Descloux [6].
Assume that matrix C is of rank m and let the Chebyshev norm to the
given system Ca = f be z1 = z. The solution (a)C.S. and z1 are obtained
from (m + 1) equations of E known as the reference equation set
(RS). Equation (10.3.2) is a RS; let it be given by

(14.2.1) , i ∈ RS

where δi is either +1 or �1. It is better to write this equation as

(14.2.1a) , i ∈ RS

Assume that (a)C.S. is not unique and let W1 be the set of all
Chebyshev solutions (a)C.S. to the system Ca = f. Let R1 be the
collection of all equations i ∈ E for which |ri| = z1. R1 is denoted by
Descloux as the characteristic set of f relative to matrix C.

(14.2.2) , i ∈ R1

System (14.2.2) is of rank s1, s1 ≤ m and thus W1 is a subset of the
solutions to (14.2.2).

It is required to obtain the C.S. of the system (E � R1) subject to
the s1 constraints (14.2.2). This may be done by eliminating certain s1
elements of vector a, using (14.2.2). Then the C.S. of the obtained
reduced system (E � R1) is calculated. To illustrate this point, see
Example 14.2 below.

System Ca = f thus reduces to the system of (E � R1) equations in
(m � s1) unknowns, where C(2) is of rank (m � s1)

(14.2.3) C(2)a(2) = f(2)

The procedure is repeated for system (14.2.3). If the C.S. of
(14.2.3) is not unique, the characteristic set R2 of (14.2.3) is obtained,
and we eliminate s2 elements of a(2) from (E � R1) and obtain the C.S.

cijaj
j 1=

m

∑ δiz+ fi=

cijaj
j 1=

m

∑ fi δiz�=

cijaj
j 1=

m

∑ fi δiz�=

© 2008 by Taylor & Francis Group, LLC

472 Numerical Linear Approximation in C

of the further reduced system (E � R1 � R2). This process is repeated
if necessary a finite number of times, until the C.S. of the most
reduced system is unique.

At the end, an m equations in m unknowns is obtained. It consists
of s1 equations of R1 + s2 equations of R2 + �, namely

(14.2.4) Da = d

Duris and Temple [7] were the first to describe an algorithm for
calculating the S.C.S. of Ca = f, following the presentation of
Descloux.

Thiran and Thiry [12] did not follow the presentation of Descloux.
They rather used an ascent exchange algorithm for computing the
strict Chebyshev solution to overdetermined systems of equations.
Branning [4, 5] proposed a direct method for computing the same
problem. Comments on the works Thiran and Thiry [12] and of
Branning [4, 5] are given in Section 14.4.

We present here an algorithm that is essentially that of Duris and
Temple [7]. By using linear programming techniques, one obtains the
solution in an efficient manner.

Our computational scheme [2] also differs in several significant
respects with the result that normally, the computational effort is
reduced considerably. Our method deals also with full rank as well as
rank deficient coefficient matrix C.

14.3 Linear programming analysis of the problem

The C.S. of system Ca = f is obtained by using the linear
programming algorithm described in Chapter 10. Let in the final
tableau for the Chebyshev approximation matrix B be the basis
matrix. Let also bB be the optimal basic solution and (zi � fi),
i = 1, 2, �, 2n, be the marginal costs for the optimum solution. By
examining the final tableau of the linear programming problem, a
simple procedure is used by which, for the majority of cases, we
determine all the equations that belong to the characteristic set R1. If
this procedure is not followed, many Gauss-Jordan iterations may be
needed to obtain system (14.2.3) from system Ca = f.

From the equation in Lemma 10.2, matrix B is the transpose of the
coefficient matrix on the left hand side of the reference set (14.2.1a)

© 2008 by Taylor & Francis Group, LLC

Chapter 14: Strict Chebyshev Approximation 473

above [9]. Also, the residuals (14.1.1) in the RS are given by ri =
±(zi � fi � z). See for example, the first equation in Lemma 12.5. So
that if (zi � fi) = 0 or 2z, ri is given by |ri| = z.

From the final tableau of the programming problem for the
Chebyshev approximation, we find out whether the C.S. of Ca = f is
unique or not. Then, as indicated earlier, determine the characteristic
set R1.

14.3.1 The characteristic set R1 and how to obtain it

The following lemma was proved in [2].

Lemma 14.1

If bB has no zero components, i.e., bB is non-degenerate, the C.S.
of Ca = f is unique and the C.S. = S.C.S.

The proof also follows from the fact that no non-basic column can
replace any one of the basic columns. The inverse is not always true.
There are problems with degenerate basic solutions but the C.S.
solution is unique. See Example 14.1 below.

Assume that C.S. of Ca = f is not unique. Assume that we have
obtained all the optimal basic solutions bB of the linear programming
problem for system Ca = f. Let bB(1), bB(2), �, be such solutions. We
expect that each of these solutions is degenerate, i.e., each has one or
more zero elements. We deduce from the definition of R1 that R1
consists of the union of the equations in the reference sets (14.2.1)
associated with the nonzero elements of the corresponding bB(i),
i = 1, 2, � .

How to obtain the characteristic set R1

To obtain the characteristic set R1, that is, to obtain all the optimal
basic solutions, a simple procedure is followed, requiring the
calculation of some of the optimal solutions without the need to
change the simplex tableau.

To start with, the equations in RS of (14.2.1) corresponding to the
nonzero elements of the bB at hand belong to R1. The non-basic
columns are then examined and those that have zero marginal costs or
marginal costs of 2z are considered.

Remember that if the marginal cost (zi � fi) = 0 or 2z, ri is given by
|ri| = z. Let i be one of such columns with zero marginal cost. Check in

© 2008 by Taylor & Francis Group, LLC

474 Numerical Linear Approximation in C

the usual manner, if column i may enter the basis with positive level.
If so, calculate the new optimal solution bB' without changing the
simplex tableau. Then the equations of the new RS (14.2.1) that
correspond to the nonzero elements of bB', belong to R1. This of
course includes column i itself, since it entered the basis with nonzero
(positive) level.

This procedure is repeated for every non-basic column having
zero marginal cost or a marginal cost of 2z. The reduced system
(14.2.3) is then calculated as described. We call this the simplified
procedure. An alternative procedure is given by Hadley ([8], pp.
166-168), which requires changing of the tableau.

Our simplified procedure does not, in general, calculate all the
optimal solutions, but it is successful in the majority of cases in
finding the set R1. In Table 1 in [2], this procedure worked for all
examples, with the exception of one (Example 3a) in which two major
iterations, instead of one, were needed to determine R1.

The following lemma has also been proved in [2].

Lemma 14.2

Assume that the optimal solutions bB(1), �, bB(r) have q zero
components in common. We mean that each bB(i) has its jth
component = 0. Then the equations corresponding to the nonzero
elements of these solutions have rank (m � q).

The proof follows directly from the fact that if the bB(i) have q
zeros in common, the columns in the simplex tableau associated with
the nonzero components of these bB(i), each has those q zero elements
in common.

It follows that if q = 0, the C.S. is unique.

Example 14.1

Consider the C.S. of the equations

a1 � 15a2 = �5
�0.5a1 + 7.5a2 = 17.5

2a2 = 12
�4a2 = 6

Two of the optimal basic solutions, bB(1) and bB(2), obtained by
the simplified procedure are (0, 2/3, 1/3)T and (1/3, 0, 2/3)T and there
is no zero component in common between bB(1) and bB(2) and thus the

© 2008 by Taylor & Francis Group, LLC

Chapter 14: Strict Chebyshev Approximation 475

C.S. is unique; (a)C.S. = (0, 1)T = (a)S.C.S. and z = 10.
We note here that the two basic solutions bB(1) and bB(2)

correspond respectively to equations (1, 3 and 4) and (1, 3 and 2), and
that all 4 equations form R1 of (14.2.2) which is of rank 2.

14.3.2 Calculating matrix (DT)�1

Instead of calculating matrix D of (14.2.4), we rather calculate the
inverse of its transpose (DT)�1. This is done by successively
modifying matrix B�1, as we see shortly. In the product form, B�1 may
be given by the matrices Ei, i = 1, 2, �, m + 1.

(14.3.1) B�1 = Em+1Em�E1

The Ei are (m + 1)-square matrices and are given, for example, in ([8],
p. 48). We need to calculate the matrices

(Em+1
�1B�1), (Em

�1Em+1
�1B�1), �, (Em+1�q

�1 � Em+1
�1B�1)

If necessary we exchange the rows of B�1 before calculating the
matrix Em+1

�1 and the columns of (Em+1
�1B�1) before calculating

Em
-1, � . This is to achieve maximum numerical stability.
Let us assume that m = 5 and q = 2. Then the end result of this

process is that the modified B�1 will have its right 3 columns become
the right three columns of a 6-unit matrix.

It is not difficult to write (see the second equation in Lemma 11.2)

(a)C.S
T = fT[Em+1

�1B�1]m×m

where the subscript m×m denotes the upper left sub-matrix.
If we assume that m = 5 and q = 2, and that s1 = 3 and s2 = 2, then

the system Da = d consists of s1 (= 3) equations of R1 + s2 (= 2)
equations of R2. The elements of a(1) are permuted such that a(2) is
obtained by eliminating the first s1 elements of a(1).

As in the case of B�1 given in the product form (14.3.1), matrix
(DT)�1 may also be given in the form

(14.3.2) (DT)�1 = (Em �) � (Es1+s2 � Es1+1)(Es1 � E1)

where the Ei are suitable m by m matrices. We write (14.3.2) in the
form

(DT)�1 = Em � Es1+1[(Es1 � E1)]m×m = Em � Es1+1[(G1)]m×m

© 2008 by Taylor & Francis Group, LLC

476 Numerical Linear Approximation in C

from which, for j ≤ s1, we write

where fi are the s1 elements of (14.2.2). For j ≤ s2, a similar equation
to the above is obtained, and so on. For more details, see [2].

The following lemma is proved in [2], and provides the important
means to identify which elements of (a)S.C.S. equal their
corresponding elements of (a)C.S.. This is also illustrated by Example
14.2.

Lemma 14.3

Consider the first s1 columns of matrix G1. Then if in column
j ≤ s1, there exists q zero elements in the position of the q zero
elements in bB, then

(aj)S.C.S. = (aj)C.S.

14.3.3 The case of a rank deficient coefficient matrix

For a system Ca = f, where matrix C is rank deficient, the columns
of matrix C that are linearly dependent on the other columns are
detected while obtaining the C.S. by the algorithm of Chapter 10, and
are deleted. The parameters ai associated with these columns are set
equal to 0. In such cases, the calculated S.C.S. would be for the
overdetermined system whose coefficient matrix C consists of the
linearly independent columns of the given coefficient matrix.

14.4 Numerical results and comments

The algorithm described above may be illustrated by the following
example from Duris and Temple ([7], p. 697).

Example 14.2

Obtain the strict Chebyshev solution of the following seven
equations.

aj()S.C.S. di DT()ij
1�

i 1=

m

∑ fi Gi()ij[]m m×
i 1=

s1

∑= =

© 2008 by Taylor & Francis Group, LLC

Chapter 14: Strict Chebyshev Approximation 477

a1 + a3 = 1
a2 = 1

a1 � a2 + a3 = 1
a3 = 3

2a3 = 0
a1 � a2 � a3 = �4

2a1 � a2 = 1

This example is solved by the linear programming technique of
Chapter 10, which is incorporated in [2]. The inverse of the basis
matrix and the basic solution in the final simplex tableau are shown
for this problem.

bB B�1

 ����� �����������������������
0.33 �0.33 0.33 0.33 0.33
0 0 �1 �1 0
0 0 0 �1 0
0.67 0.33 0.67 1.67 0.67

 ����� �����������������������

Here, bB is degenerate. Columns 5, 2, 6 and 4 in the final tableau
form the basis. By examining the simplex tableau, we find that no
non-basic column with zero marginal cost or a marginal cost of 2z,
can enter the basis with a positive level. Thus R1 consists of equations
5 and 4, which correspond to the nonzero elements of bB. It has rank
s1 = 1 and the C.S. of Ca = f is not unique with (a)C.S. = (2, 3, 1)T and
z1 = 2.

It is observed that there exist two 0�s in column 1 of B�1 which
correspond to the two 0�s of bB. Column 1 of B-1 correspond to a3.
Hence, according to Lemma 14.3, (a3)S.C.S. = (a3)C.S. = 1.

Since s1 = 1 and one element of (a)S.C.S. is now known, system
(14.2.3), namely C(2)a(2) = f(2) is easily derived, as explained in
Section 14.3.4. It is given by

a1 = 1 � 1 = 0
a2 = 1

a1 � a2 = 1 � 1 = 0
a1 � a2 = �4 + 1 = �3

2a1 � a2 = 1

© 2008 by Taylor & Francis Group, LLC

478 Numerical Linear Approximation in C

Vector bB of this system has one zero element with columns 7, 6
and 3 forming the basis and z2 = 1.5. However, the non-basic column
2 has a zero marginal cost and can replace column 3 in the basis, with
a positive level. The obtained optimal solution bB' is not degenerate.
Hence, the solution of this reduced system is unique. Matrix (DT)�1 is
then calculated as described at the end of Section 14.3.2, and the
S.C.S. is obtained from (14.2.4).

The final result is (a)S.C.S = (1, 2.5, 1)T and the Chebyshev
solution has two systems with z1 = 2.0 and z2 = 1.5.

LA_Strict() implements this algorithm [3]. DR_Strict() tests 5
examples. Examples 2 and 5 each have 3 systems. Examples 1 and 4
each have 2 systems, and example 3 has one system; i.e., it has a
unique C.S. Table 14.1 shows the results.

Table 14.1

��
Example C(n×m) Iterations # systems z1, z2, z3, �
��

1 25×10 24 2 0.0071, 0.0064
2 5 × 3 9 3 2.25, 1.5, 0.0
3 7 × 3 7 1 2.625
4 7 × 4 10 2 2.0, 1.5
5 25× 6 26 3 1.0, 0.5, 0.25

For each example, the number of iterations; i.e., the total number
of times the simplex tableau is changed, the number of systems and
their corresponding z values are given.

Example 1 is the same as example 2 in ([7], p. 698), solved by
Duris and Temple. Example 4 is the same as Example 14.2. In
Example 4, the 7 by 4 matrix C is of rank 3 and we get the same final
vector r, number of systems and corresponding z values, as those for
Ca = f when the linearly dependent column in C is discarded.

In [2] we experimented with 14 examples (Table 1 in [2]). The
data and the number of points were taken from Watson ([13], Table
2), who used this data for a different purpose. The results in Table 1 in
[2] were compared with the results of Duris and Temple [7]. The
number of major iterations is the same as those of ours for all but two
of the examples.

© 2008 by Taylor & Francis Group, LLC

Chapter 14: Strict Chebyshev Approximation 479

As we noted earlier, Thiran and Thiry [12] used an ascent
exchange algorithm for computing the strict Chebyshev solution to
overdetermined systems of equations. The numbers of major
iterations agree with ours for all but two (examples 3a and 4a of Table
1 in [2]), where their numbers are slightly smaller. Their algorithm is
adaptive to improvements in order to deal with very ill-conditioned
systems ([12], p. 724). Branning [4, 5] proposed a direct method for
computing the same problem. However, as reported by Thiran and
Thiry [12], Branning�s algorithm might lead to cycling, and
convergence is not guaranteed.

References

1. Abdelmalek, N.N., Chebyshev solution of overdetermined
systems of linear equations, BIT, 15(1975)117-129.

2. Abdelmalek, N.N., Computing the strict Chebyshev solution
of overdetermined linear equations, Mathematics of Computa-
tion, 31(1977)974-983.

3. Abdelmalek, N.N., A computer program for the strict
Chebyshev solution of overdetermined systems of linear
equations, International Journal for Numerical Methods in
Engineering, 13(1979)1715-1725.

4. Brannigan, M., Theory and computation of best strict
constrained Chebyshev approximation of discrete data, IMA
Journal of Numerical Analysis, 1(1980)169-184.

5. Brannigan, M., The strict Chebyshev solution of over-
determined systems of linear equations with rank deficient
matrix, Numerische Mathematik, 40(1982)307-318.

6. Descloux, J., Approximations in LP and Chebyshev approxi-
mations, Journal of Society of Industrial and Applied
Mathematics, 11(1963)1017-1026.

7. Duris, C.S. and Temple, M.G., A finite step algorithm for
determining the �strict� Chebyshev solution to Ax = b, SIAM
Journal on Numerical Analysis, 10(1973)690-699.

8. Hadley, G., Linear Programming, Addison-Wesley, Reading,
MA, 1962.

© 2008 by Taylor & Francis Group, LLC

480 Numerical Linear Approximation in C

9. Osborne, M.R. and Watson, G.A., On the best linear
Chebyshev approximation, Computer Journal, 10(1967)172-
177.

10. Rice, J.R., Tchebycheff approximation in a compact metric
space, Bulletin of American Mathematical Society,
68(1962)405-410.

11. Rice, J.R., The Approximation of Functions, Vol. 2, Addison-
Wesley, Reading, MA, 1969.

12. Thiran, J.P. and Thiry, S., Strict Chebyshev approximation for
general systems of linear equations, Numerische Mathematik,
51(1987)701-725.

13. Watson, G.A., A multiple exchange algorithm for multivariate
Chebyshev approximation, SIAM Journal on Numerical
Analysis, 12(1975)46-52.

© 2008 by Taylor & Francis Group, LLC

Chapter 14: DR_Strict 481

14.5 DR_Strict

/*---
DR_Strict

This program is a driver for the function LA_Strict(), which
calculates the "Strict" Chebyshev solution of an overdetermined
system of linear equations. It uses a linear programming method.

The overdetermined system has the form

 c*a = f

"c" is a given real n by m matrix of rank k, k <= m < n.
"f" is a given real n vector.
"a" is the solution m vector.

This driver contains the 5 examples whose results are given in the
text. Example 3 is the one solved in detail in the text.
---*/

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define N1s 25
#define M1s 10
#define N2s 5
#define M2s 3
#define N3s 7
#define M3s 3
#define N4s 7
#define M4s 4
#define N5s 25
#define M5s 6

void DR_Strict (void)
{
 /*--
 Constant matrices/vectors
 --*/
 static tNumber_R c2init[N2s][M2s] =
 {
 { 1.0, 2.0, 0.0 },
 {-1.0, -1.0, 0.0 },

© 2008 by Taylor & Francis Group, LLC

482 Numerical Linear Approximation in C

 { 1.0, 3.0, 0.0 },
 { 0.0, 1.0, 0.0 },
 { 0.0, 0.0, 1.0 }
 };

 static tNumber_R c3init[N3s][M3s] =
 {
 { 1.0, 0.0, 1.0 },
 { 1.0, 2.0, 2.0 },
 { 1.0, 2.0, 0.0 },
 { 1.0, 1.0, 0.0 },
 { 1.0, 0.0, -1.0 },
 { 1.0, 0.0, 0.0 },
 { 1.0, 1.0, 1.0 }
 };

 static tNumber_R c4init[N4s][M4s] =
 {
 { 1.0, 0.0, 1.0, 1.0 },
 { 0.0, 1.0, 0.0, 0.0 },
 { 1.0, -1.0, 1.0, 1.0 },
 { 0.0, 0.0, 1.0, 0.0 },
 { 0.0, 0.0, 2.0, 0.0 },
 { 1.0, -1.0, -1.0, 1.0 },
 { 2.0, -1.0, 0.0, 2.0 }
 };

 static tNumber_R c5init[N5s][M5s] =
 {
 { 1.0, -2.0, -2.0, 4.0, 4.0, 4.0 },
 { 1.0, -1.0, -2.0, 1.0, 2.0, 4.0 },
 { 1.0, 0.0, -2.0, 0.0, 0.0, 4.0 },
 { 1.0, 1.0, -2.0, 1.0, -2.0, 4.0 },
 { 1.0, 2.0, -2.0, 4.0, -4.0, 4.0 },
 { 1.0, -2.0, -1.0, 4.0, 2.0, 1.0 },
 { 1.0, -1.0, -1.0, 1.0, 1.0, 1.0 },
 { 1.0, 0.0, -1.0, 0.0, 0.0, 1.0 },
 { 1.0, 1.0, -1.0, 1.0, -1.0, 1.0 },
 { 1.0, 2.0, -1.0, 4.0, -2.0, 1.0 },
 { 1.0, -2.0, 0.0, 4.0, 0.0, 0.0 },
 { 1.0, -1.0, 0.0, 1.0, 0.0, 0.0 },
 { 1.0, 0.0, 0.0, 0.0, 0.0, 0.0 },
 { 1.0, 1.0, 0.0, 1.0, 0.0, 0.0 },
 { 1.0, 2.0, 0.0, 4.0, 0.0, 0.0 },
 { 1.0, -2.0, 1.0, 4.0, -2.0, 1.0 },

© 2008 by Taylor & Francis Group, LLC

Chapter 14: DR_Strict 483

 { 1.0, -1.0, 1.0, 1.0, -1.0, 1.0 },
 { 1.0, 0.0, 1.0, 0.0, 0.0, 1.0 },
 { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 },
 { 1.0, 2.0, 1.0, 4.0, 2.0, 1.0 },
 { 1.0, -2.0, 2.0, 4.0, -4.0, 4.0 },
 { 1.0, -1.0, 2.0, 1.0, -2.0, 4.0 },
 { 1.0, 0.0, 2.0, 0.0, 0.0, 4.0 },
 { 1.0, 1.0, 2.0, 1.0, 2.0, 4.0 },
 { 1.0, 2.0, 2.0, 4.0, 4.0, 4.0 }
 };

 static tNumber_R f1[N1s+1] =
 { NIL,
 0.0872673, 0.0872794, 0.0873029, 0.0873315, 0.0873576,
 0.3491184, 0.3498802, 0.3513824, 0.3532572, 0.3550109,
 0.6111334, 0.6150641, 0.6230824, 0.6336395, 0.6441493,
 0.8733883, 0.8841621, 0.9071868, 0.9400757, 0.9766021,
 1.135895, 1.157550, 1.206257, 1.283258, 1.384432
 };

 static tNumber_R f2[N2s+1] =
 { NIL,
 1.0, 2.0, 1.0, -3.0, 0.0
 };

 static tNumber_R f3[N3s+1] =
 { NIL,
 0.0, -2.0, 1.0, -1.0, 5.0, 7.0, 0.0
 };

 static tNumber_R f4[N4s+1] =
 { NIL,
 1.0, 1.0, 1.0, 3.0, 0.0, -4.0, 1.0
 };

 static tNumber_R f5[N5s+1] =
 { NIL,
 -1.0, 0.0, 1.0, -1.0, 1.0,
 -1.5, -0.875, -0.25, -0.25, 0.375,
 -1.5, 0.0, 1.5, 2.25, 2.5,
 1.375, 3.0, 4.625, 6.0, 7.375,
 5.75, 8.0, 10.125, 12.125, 13.875
 };

 /*--

© 2008 by Taylor & Francis Group, LLC

484 Numerical Linear Approximation in C

 Variable matrices/vectors
 --*/
 tMatrix_R c = alloc_Matrix_R (NN_ROWS, MMc_COLS);
 tVector_R f = alloc_Vector_R (NN_ROWS);
 tMatrix_R cc = alloc_Matrix_R (NN_ROWS, MMc_COLS);
 tVector_R fc = alloc_Vector_R (NN_ROWS);
 tVector_R r = alloc_Vector_R (NN_ROWS);
 tVector_R rch = alloc_Vector_R (NN_ROWS);
 tVector_R z = alloc_Vector_R (NN_ROWS);
 tVector_R a = alloc_Vector_R (MMc_COLS);
 tMatrix_R c1 = alloc_Matrix_R (N1s, M1s);

 tMatrix_R c2 = init_Matrix_R (&(c2init[0][0]), N2s, M2s);
 tMatrix_R c3 = init_Matrix_R (&(c3init[0][0]), N3s, M3s);
 tMatrix_R c4 = init_Matrix_R (&(c4init[0][0]), N4s, M4s);
 tMatrix_R c5 = init_Matrix_R (&(c5init[0][0]), N5s, M5s);

 int iter, irank, ksys;
 int i, j, k, m, n, Iexmpl;
 tNumber_R d, dd, ddd, e, ee, eee;

 eLaRc rc = LaRcOk;

 for (j = 1; j <= 5; j++)
 {
 d = 0.15* (j-3);
 dd = d*d;
 ddd = d*dd;
 for (i = 1; i <= 5; i++)
 {
 e = 0.15* (i-3);
 ee = e*e;
 eee = e*ee;
 k = 5* (j-1) + i;
 c1[k][1] = 1.0;
 c1[k][2] = d;
 c1[k][3] = e;
 c1[k][4] = dd;
 c1[k][5] = ee;
 c1[k][6] = e*d;
 c1[k][7] = ddd;
 c1[k][8] = eee;
 c1[k][9] = dd*e;
 c1[k][10] = ee*d;
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 14: DR_Strict 485

 }

 prn_dr_bnr ("DR_Strict, Strict Chebyshev Solution "
 "of Overdetermined Systems");

 for (Iexmpl = 1; Iexmpl <= 5; Iexmpl++)
 {
 switch (Iexmpl)
 {
 case 1:
 n = N1s;
 m = M1s;
 for (i = 1; i <= n; i++)
 {
 f[i] = f1[i];
 fc[i] = f1[i];
 for (j = 1; j <= m; j++)
 {
 c[i][j] = c1[i][j];
 cc[i][j] = c1[i][j];
 }
 }
 break;

 case 2:
 n = N2s;
 m = M2s;
 for (i = 1; i <= n; i++)
 {
 f[i] = f2[i];
 fc[i] = f2[i];
 for (j = 1; j <= m; j++)
 {
 c[i][j] = c2[i][j];
 cc[i][j] = c2[i][j];
 }
 }
 break;

 case 3:
 n = N3s;
 m = M3s;
 for (i = 1; i <= n; i++)
 {
 f[i] = f3[i];

© 2008 by Taylor & Francis Group, LLC

486 Numerical Linear Approximation in C

 fc[i] = f3[i];
 for (j = 1; j <= m; j++)
 {
 c[i][j] = c3[i][j];
 cc[i][j] = c3[i][j];
 }
 }
 break;

 case 4:
 n = N4s;
 m = M4s;
 for (i = 1; i <= n; i++)
 {
 f[i] = f4[i];
 fc[i] = f4[i];
 for (j = 1; j <= m; j++)
 {
 c[i][j] = c4[i][j];
 cc[i][j] = c4[i][j];
 }
 }
 break;

 case 5:
 n = N5s;
 m = M5s;
 for (i = 1; i <= n; i++)
 {
 f[i] = f5[i];
 fc[i] = f5[i];
 for (j = 1; j <= m; j++)
 {
 c[i][j] = c5[i][j];
 cc[i][j] = c5[i][j];
 }
 }
 break;
 default:
 break;
 }

 prn_algo_bnr ("Strict");
 prn_example_delim();
 PRN ("Example #%d: Size %d by %d\n", Iexmpl, n, m);

© 2008 by Taylor & Francis Group, LLC

Chapter 14: DR_Strict 487

 prn_example_delim();
 PRN ("Strict Chebyshev Solution of an Overdetermined System "
 "of Linear Euations\n");
 prn_example_delim();
 PRN ("r.h.s. Vector \"f\"\n");
 prn_Vector_R (f, n);
 PRN ("Coefficient Matrix, \"c\"\n");
 prn_Matrix_R (c, n, m);

 rc = LA_Strict (m, n, c, f, &ksys, &irank, &iter, r, a, z);

 if (rc >= LaRcOk)
 {
 PRN ("\n");
 PRN ("Results of the Strict Chebyshev Solution\n");
 PRN ("Number of systems = %d, Iterations = %d\n",
 ksys, iter);
 PRN ("Solution vector, \"a\"\n");
 prn_Vector_R_nDec (a, m, 4);
 PRN ("Residual vector \"r\"\n");
 prn_Vector_R_nDec (r, n, 4);
 PRN ("System norms \"z\"\n");
 prn_Vector_R_nDec (z, ksys, 4);

 /* Here the residual vector is calculated from obtained
 vector "a" and from matrix "c" and vector "f".
 That is for checking the oalculated results.*/
 for (j = 1; j <= n; j++)
 {
 d = -fc[j];;
 for (i = 1; i <= m; i++)
 {
 d = d + a[i] * cc[j][i];
 }
 rch[j] = d;
 }
 PRN ("Residual vector 'rc'\n");
 prn_Vector_R_nDec (rch, n, 4);
 }

 prn_la_rc (rc);
 }

 free_Matrix_R (c, NN_ROWS);
 free_Vector_R (f);

© 2008 by Taylor & Francis Group, LLC

488 Numerical Linear Approximation in C

 free_Matrix_R (cc, NN_ROWS);
 free_Vector_R (fc);
 free_Vector_R (r);
 free_Vector_R (rch);
 free_Vector_R (z);
 free_Vector_R (a);
 free_Matrix_R (c1, N1s);

 uninit_Matrix_R (c2);
 uninit_Matrix_R (c3);
 uninit_Matrix_R (c4);
 uninit_Matrix_R (c5);
}

© 2008 by Taylor & Francis Group, LLC

Chapter 14: LA_Strict 489

14.6 LA_Strict

/*---
LA_Strict

This program calculates the "Strict" Chebyshev solution of an
overdetermined system of linear equations. It uses a modified
simplex method to the linear programming formulation of the problem.

The system of linear equations has the form

 c*a = f

"c" is a given real n by m matrix of rank k, k <= m < n.
"f" is a given real n vector.

The strict Chebyshev solution of system c*a = f is the m
vector "a" that minimizes the Chebyshev norm

 z = max|r[i]|, i = 1, 2. ..., n

in the strict sense.

r[i] is the ith residual of system c*a = f and is given by

 r[i] = c[i][1]*a[1] + c[i][2]*a[2] + ... + c[i][m]*a[m] - f[i],
 i = 1, 2, ..., n

Inputs
m Number of columns of matrix "c" in the system c*a = f.
n Number of rows of matrix "c" in the system c*a = f.
c A real n by (m+1) matrix. Its n rows and first m columns
 contain matrix "c" of the system c*a = f.
f A real n vector containing the r.h.s. of the system c*a = f.

Local Variables
ct A real (m+1) by n matrix. Its first m rows and its n
 columns contain the transpose of matrix "c" of the system
 c*a = f. Its (m+1)th row will be filled with ones by the
 program.
binv An (m + 1) square matrix containing the inverse of the basis
 matrix in the linear programming problem.
bv An (m + 1) vector containing the basic solution in the
 linear programming problem.

© 2008 by Taylor & Francis Group, LLC

490 Numerical Linear Approximation in C

icbas An (m + 1) vector containing the indices of the columns of
 matrix "ct" that form the columns of the basis matrix.
irbas An (m + 1) vector containing the row indices of "ct".

Outputs
irank The calculated rank of matrix "c".
ksys Number of involved systems.
 ksys = 1 ndicates that one system, namely c*a = f is solved.
 The obtained solution is the ordinary Chebyshev solution and
 it is unique.
 ksys = 2 indicates that 2 systems are involved, and so on.
iter Total number of iterations, or total number of times the
 simplex tableau is changed by a Gauss-Jordan step.
a A real (m+1) vector whose first m elements are the solution
 vector "a" of the problem.
r A real n vector containing the residual vector r = c*a - f.
z A real n vector whose first "ksys" elements are the
 Chebyshev "norms" of the "ksys" systems involved.

Returns one of
 LaRcSolutionUnique
 LaRcNoFeasibleSolution
 LaRcErrBounds
 LaRcErrNullPtr
 LaRcErrAlloc
---*/

#include "LA_Prototypes.h"

eLaRc LA_Strict (int m, int n, tMatrix_R c, tVector_R f, int *pKsys,
 int *pIrank, int *pIter, tVector_R r, tVector_R a, tVector_R z)
{
 tMatrix_R ct = alloc_Matrix_R (m + 1, n);
 tMatrix_R binv = alloc_Matrix_R (m + 1, m + 1);
 tVector_R bv = alloc_Vector_R (m + 1);
 tVector_R v = alloc_Vector_R (m + 1);
 tVector_R fs = alloc_Vector_R (m + 1);
 tVector_I ibound = alloc_Vector_I (n);
 tVector_I icbas = alloc_Vector_I (m + 1);
 tVector_I irbas = alloc_Vector_I (m + 1);
 tVector_I ib = alloc_Vector_I (n);
 tVector_I iv = alloc_Vector_I (m + 1);
 tVector_I ih = alloc_Vector_I (m + 1);

 int i = 0, j = 0;

© 2008 by Taylor & Francis Group, LLC

Chapter 14: LA_Strict 491

 int ij = 0, ji = 0, kn = 0, kj = 0, kl = 0, km = 0,
 ld = 0, m1 = 0, ma = 0;
 int ivo = 0, jin = 0, ijk = 0, kln = 0, iter = 0,
 iout = 0, itest = 0;
 int ild1 = 0, klnm = 0;
 tNumber_R d = 0.0, zz = 0.0, piv = 0.0, bignum = 0.0;

 /* Validation of data before executing the algorithm */
 eLaRc rc = LaRcSolutionUnique;
 VALIDATE_BOUNDS ((0 < m) && (m < n));
 VALIDATE_PTRS (c && f && pKsys && pIrank && pIter && r && a &&
 z);
 VALIDATE_ALLOC (ct && binv && bv && v && fs && ibound && icbas
 && irbas && ib && iv && ih);

 bignum = 1./ (EPS*EPS);
 m1 = m + 1;
 ma = m;
 kn = n;
 kl = 1;
 zz = 0.0;
 *pIrank = m;
 *pIter = 0;
 *pKsys = 0;

 /* Initializing data (1) */
 LA_strict_init_1 (m, n, binv, ib, iv, irbas, v, fs, a, r, z);

 /* Loop for "ksys" */
 for (ijk = 1; ijk <= n; ijk++)
 {
 *pKsys = *pKsys + 1;

 /* Initializing data (2) */
 LA_strict_init_2 (kl, m, n, c, ct, ib, ibound, irbas);
 itest = 1;
 iout = kl - 1;

 LA_strict_part_1 (&kl, kn, &ma, m, n, c, ct, f, binv, bv, v,
 fs, ib, ih, iv, ibound, icbas, irbas,
 pIrank, pKsys, pIter, r, a, z, rc);

 /* Part 2 of the Chebyshev algorithm. Obtaining a basic
 feasible solution */
 LA_strict_part_2 (kl, m, n, ct, f, binv, bv, ib, ibound,

© 2008 by Taylor & Francis Group, LLC

492 Numerical Linear Approximation in C

 icbas, &iter);

 /* Part 3 of the algorithm for the Chebyshev solution.
 Calculating the residuals and the Chebyshev norm zz */
 LA_strict_part_3 (kl, m, n, c, ct, f, binv, bv, ib, ibound,
 icbas, &zz);

 /* Calculating the optimun Chebyshev solution of the system
 at hand */
 for (ij = 1; ij <= n*n; ij++)
 {
 ivo = 0;
 jin = 0;
 /* Determine the vector that enters the basis */
 LA_strict_vent (&ivo, &jin, kl, m, n, c, ib, icbas, zz);

 if (ivo == 0)
 {
 break;
 }
 if (ivo == -1)
 {
 for (i = kl; i <= m1; i++)
 {
 ct[i][jin] = bv[i] + bv[i] - ct[i][jin];
 }
 c[jin][m1] = zz + zz - c[jin][m1];
 f[jin] = - f[jin];
 ibound[jin] = - ibound[jin];
 }

 /* Determine the vector that leaves the basis */
 itest = 0;
 LA_strict_vleav (kl, &iout, jin, &itest, m, ct, bv);

 /* No feasible solution */
 if (itest != 1)
 {
 GOTO_CLEANUP_RC (LaRcNoFeasibleSolution);
 }

 /* A Gauss-Jordan elimination step to matrix "ct" */
 LA_strict_gauss_jordn (iout, jin, kl, m, n, ct, binv, bv,
 ib, icbas);
 *pIter = *pIter + 1;

© 2008 by Taylor & Francis Group, LLC

Chapter 14: LA_Strict 493

 d = c[jin][m1];
 /* Updating the residuals and zz of the system at hand */
 for (j = 1; j <= n; j++)
 {
 if (ib[j] != 0)
 {
 c[j][m1] = c[j][m1] - d * (ct[iout][j]);
 }
 }
 zz = zz - d * (bv[iout]);
 }

 kj = kl - 1;

 ld = 0; /* Number of zero elements in the optimum basic
 solution vector "bv" */
 for (i = kl; i <= m1; i++)
 {
 ih[i] = 1;
 if (bv[i] < EPS)
 {
 ih[i] = 0;
 ld = ld + 1;
 }
 }

 /* Check for non-uniqueness of the Chebyshev solution */
 if (ld != 0)
 {
 LA_strict_uniquens (&ivo, &iout, kl, &kn, &ld, m, n, c,
 ct, f, bv, v, ib, ih, ibound, icbas,
 r, zz);
 }

 /* Eliminating zz */
 LA_strict_eliminat_zz (&iout, kl, m, c, binv, bv, ib, ih,
 ibound, icbas, pKsys, r, z, zz);
 for (ji = 1; ji <= n; ji++)
 {
 ild1 = 0;

 /* A Gauss-Jordan step to matrix binv */
 LA_strict_gauss_jordn_binv (iout, kl, m, binv, iv);
 if (iout == m1)

© 2008 by Taylor & Francis Group, LLC

494 Numerical Linear Approximation in C

 {
 if (ld != 0)
 {
 kln = m1 - ld;
 klnm = kln - 1;
 kn = kn + kl + ld - m1 - 1;
 km = m;
 LA_strict_permute_binv (kj, kl, &km, m, binv, bv,
 ih, icbas);
 }
 LA_strict_map (kl, m, f, fs, ih, icbas, r, zz);

 /* Calculate the solution vector "a" */
 LA_strict_calcul_a(m, fs, binv, iv, icbas, irbas, a);

 if ((ld == 0) && (*pKsys == 1) ||
 (rc == LaRcSolutionProbNotUnique))
 {
 LA_strict_calcul_r_1(m, n, c, ib, ibound, r, zz);
 GOTO_CLEANUP_RC (LaRcSolutionUnique);
 }
 if (ld == 0)
 {
 ild1 = 1;
 break;
 }
 }
 iout = iout - 1;
 if (iout < kln) break;
 piv = 0.0;
 for (j = kl; j <= iout; j++)
 {
 d = binv[iout][j];
 if (d < 0.0) d = -d;
 if (d <= piv) continue;
 piv = d;
 jin = j;
 }
 if (jin == iout) continue;
 for (i = kl; i <= m1; i++)
 {
 d = binv[i][jin];
 binv[i][jin] = binv[i][iout];
 binv[i][iout] = d;
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 14: LA_Strict 495

 /* Swap two elements of an integer vector */
 swap_elems_Vector_I (irbas, jin, iout);
 if (kj == 0) continue;
 for (j = 1; j <= kj; j++)
 {
 if (iv[j] == 0) continue;
 d = binv[jin][j];
 binv[jin][j] = binv[iout][j];
 binv[iout][j] = d;
 }
 }
 if (ild1 == 0)
 {
 for (j = 1; j <= n; j++)
 {
 if (ib[j] == 0) continue;
 if (ibound[j] == 1) continue;
 f[j] = -f[j];
 }

 /* calculating the reduced system */
 if (kl < kln)
 {
 /* Calculating the reduced system */
 LA_strict_reduce_sys (kl, kln, &ma, m, n, c, f, binv,
 ib, iv, irbas, a);
 }
 }
 if ((*pKsys != 1) && (kj != 0))
 {
 LA_strict_modify_binv (kl, kj, m, binv, v, iv);
 }
 if (ld == 0)
 {
 rc = LaRcSolutionProbNotUnique;
 }
 if (rc == LaRcSolutionProbNotUnique)
 {
 /* Calculating vector a */
 LA_strict_calcul_a (m, fs, binv, iv, icbas, irbas, a);
 break;
 }
 if (ma != ld)
 {
 if (kl != kln)

© 2008 by Taylor & Francis Group, LLC

496 Numerical Linear Approximation in C

 {
 LA_strict_eliminate_ll (kl, kln, &ma, ld, m, n, c, f,
 ib, iv, ibound, icbas, irbas,
 r, zz);
 }
 }

 /* Calculating elements of residual vector r, part (c) */
 LA_strict_calcul_r_3 (kl, kln, m, c, ib, ibound, icbas, r,
 zz);

 LA_strict_calcul_r_2 (&kn, kln, m, n, c, ib, ibound, irbas,
 r, zz);

 if (kn != 0)
 {
 kl = kln;
 }
 }

 LA_strict_calcul_r_1 (m, n, c, ib, ibound, r, zz);
 rc = LaRcSolutionUnique;

CLEANUP:

 free_Matrix_R (ct, m + 1);
 free_Matrix_R (binv, m + 1);
 free_Vector_R (bv);
 free_Vector_R (v);
 free_Vector_R (fs);
 free_Vector_I (ibound);
 free_Vector_I (icbas);
 free_Vector_I (irbas);
 free_Vector_I (ib);
 free_Vector_I (iv);
 free_Vector_I (ih);

 return rc;
}

/*---
Initializing the data in LA_Strict()
---*/
void LA_strict_init_1 (int m, int n, tMatrix_R binv, tVector_I ib,
 tVector_I iv, tVector_I irbas, tVector_R v, tVector_R fs,

© 2008 by Taylor & Francis Group, LLC

Chapter 14: LA_Strict 497

 tVector_R a, tVector_R r, tVector_R z)
{
 int i, j, m1;

 m1 = m + 1;
 for (j = 1; j <= m1; j++)
 {
 for (i = 1; i <= m1; i++)
 {
 binv[i][j] = 0.0;
 }
 binv[j][j] = 1.0;
 iv[j] = 1;
 irbas[j] = j;
 v[j] = 0.0;
 a[j] = 0.0;
 fs[j] = 0.0;
 }
 for (j = 1; j <= n; j++)
 {
 r[j] = 0.0;
 ib[j] = 1;
 z[j] = -1.0;
 }
}

/*---
Initializing data (2) in LA_Strict()
---*/
void LA_strict_init_2 (int kl, int m, int n, tMatrix_R c,
 tMatrix_R ct, tVector_I ib, tVector_I ibound, tVector_I irbas)
{
 int i, j, k, m1;

 m1 = m + 1;
 for (j = 1; j <= n; j++)
 {
 if (ib[j] == 0) continue;
 ibound[j] = 1;
 for (i = kl; i <= m; i++)
 {
 k = irbas[i];
 ct[i][j] = c[j][k];
 }
 ct[m1][j] = 1.0;

© 2008 by Taylor & Francis Group, LLC

498 Numerical Linear Approximation in C

 }
}

/*---
Part 1 in LA_Strict()
---*/
void LA_strict_part_1 (int *pKl, int kn, int *pMa, int m, int n,
 tMatrix_R c, tMatrix_R ct, tVector_R f, tMatrix_R binv,
 tVector_R bv, tVector_R v, tVector_R fs, tVector_I ib,
 tVector_I ih, tVector_I iv, tVector_I ibound,
 tVector_I icbas, tVector_I irbas, int *pIrank,
 int *pKsys, int *pIter, tVector_R r, tVector_R a,
 tVector_R z, eLaRc rc)
{
 int kj, ld, m1;
 int iout, jin = 0;
 tNumber_R zz, piv;

 m1 = m + 1;
 for (iout = *pKl; iout <= m1; iout++)
 {
 if ((kn == *pMa) && iout == m1)
 {
 zz = 0.0;
 z[*pKsys] = 0.0;
 kj = *pKl - 1;
 ld = 0;
 /* Mapping some data */
 LA_strict_map (*pKl, m, f, fs, ih, icbas, r, zz);

 /* Calculating vector a */
 LA_strict_calcul_a (m, fs, binv, iv, icbas, irbas, a);

 if ((ld == 0 && *pKsys == 1) ||
 (rc == LaRcSolutionProbNotUnique))
 {
 /* Calculating the residual vector r, part (c) */
 LA_strict_calcul_r_1 (m, n, c, ib, ibound, r, zz);
 break;
 }

 /* Modifying matrix binv */
 if (ld == 0)
 {
 /* Modifying matrix binv */

© 2008 by Taylor & Francis Group, LLC

Chapter 14: LA_Strict 499

 LA_strict_modify_binv (*pKl, kj, m, binv, v, iv);
 }
 }

 if (iout <= m1)
 {
 piv = 0.0;
 /* Calculate pivot element */
 LA_strict_piv (iout, &jin, n, &piv, ct, ib);

 if (piv > EPS)
 {
 /* A Gauss-Jordan elimination step to matrix "ct" */
 LA_strict_gauss_jordn (iout, jin, *pKl, m, n, ct,
 binv, bv, ib, icbas);
 *pIter = *pIter + 1;
 }

 /* Detection of rank deficiency of matrix "c" */
 if (piv < EPS)
 {
 if (iout < m1)
 {
 /* Swapping process */
 LA_strict_swapping (*pKl, iout, m, n, ct, binv,
 ib, icbas, irbas);
 *pIrank = *pIrank - 1;
 *pMa = *pMa - 1;
 iv[*pKl] = 0;
 *pKl = *pKl + 1;
 }
 if (iout == m1)
 {
 /* Rank of Coefficient matrix "c" */
 LA_strict_detect_rank (*pKl, &jin, m, n, ct, f,
 ib, ibound, icbas);
 /* A Gauss-Jordan elimination step to matrix
 "ct" */
 LA_strict_gauss_jordn (iout, jin, *pKl, m, n, ct,
 binv, bv, ib, icbas);
 *pIter = *pIter + 1;
 }
 }
 }
 }

© 2008 by Taylor & Francis Group, LLC

500 Numerical Linear Approximation in C

}

/*---
Mapping some data in LA_Strict()
---*/
void LA_strict_map (int kl, int m, tVector_R f, tVector_R fs,
 tVector_I ih, tVector_I icbas, tVector_R r, tNumber_R zz)
{
 int i, k;

 for (i = kl; i <= m; i++)
 {
 k = icbas[i];
 r[k] = 0.0;
 }
 for (i = kl; i <= m; i++)
 {
 k = icbas[i];
 fs[i] = f[k] - zz;
 if (ih[i] == 1) f[k] = fs[i];
 }
}

/*---
Calculating the pivot element in LA_Strict()
---*/
void LA_strict_piv (int iout, int *pJin, int n, tNumber_R *pPiv,
 tMatrix_R ct, tVector_I ib)
{
 int j;

 tNumber_R d;

 for (j = 1; j <= n; j++)
 {
 if (ib[j] == 0) continue;
 d = ct[iout][j];
 if (d < 0.0) d = -d;
 if (d <= *pPiv) continue;
 *pJin = j;
 *pPiv = d;
 }
}

/*---

© 2008 by Taylor & Francis Group, LLC

Chapter 14: LA_Strict 501

Swapping processes in LA_Strict()
---*/
void LA_strict_swapping (int kl, int iout, int m, int n,
 tMatrix_R ct, tMatrix_R binv, tVector_I ib, tVector_I icbas,
 tVector_I irbas)
{
 int i, j, m1;

 tNumber_R d;

 m1 = m + 1;
 irbas[iout] = irbas[kl];
 irbas[kl] = 0;
 icbas[iout] = icbas[kl];
 icbas[kl] = 0;

 for (j = 1; j <= n; j++)
 {
 if (ib[j] == 0) continue;
 d = ct[iout][j];
 ct[iout][j] = ct[kl][j];
 ct[kl][j] = d;
 }
 for (j = kl; j <= m; j++)
 {
 binv[iout][j] = binv[kl][j];
 binv[kl][j] = 0.0;
 }
 for (i = kl; i <= m1; i++)
 {
 binv[i][iout] = binv[i][kl];
 binv[i][kl] = 0.0;
 }
}

/*---
Rank of matrix "c" in LA_Strict()
---*/
void LA_strict_detect_rank (int kl, int *pJin, int m, int n,
 tMatrix_R ct, tVector_R f, tVector_I ib, tVector_I ibound,
 tVector_I icbas)
{
 int i, j, m1, ibc;

 m1 = m + 1;

© 2008 by Taylor & Francis Group, LLC

502 Numerical Linear Approximation in C

 for (j = 1; j <= n; j++)
 {
 if (ib[j] == 0) continue;
 ibc = 0;
 for (i = kl; i <= m; i++)
 {
 if (j == icbas[i]) ibc = 1;
 }
 if (ibc == 0)
 {
 *pJin = j;
 break;
 }
 }
 f[*pJin] = -f[*pJin];
 ibound[*pJin] = -ibound[*pJin];
 for (i = kl; i <= m; i++)
 {
 ct[i][*pJin] = -ct[i][*pJin];
 }
 ct[m1][*pJin] = 2.0 - ct[m1][*pJin];
}

/*---
Part 2 of the Chebyshev algorithm.
Obtaining a basic feasible solution in LA_Strict().
---*/
void LA_strict_part_2 (int kl, int m, int n, tMatrix_R ct,
 tVector_R f, tMatrix_R binv, tVector_R bv, tVector_I ib,
 tVector_I ibound, tVector_I icbas, int *pIter)
{
 int i, k, m1, iout, jin;

 m1 = m + 1;
 for (i = kl; i <= m; i++)
 {
 if (bv[i] >= 0.0) continue;
 iout = i;
 jin = icbas[i];
 f[jin] = -f[jin];
 ibound[jin] = -ibound[jin];
 for (k = kl; k <= m1; k++)
 {
 ct[k][jin] = bv[k] + bv[k] - ct[k][jin];
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 14: LA_Strict 503

 /* A Gauss-Jordan elimination step to matrix "ct"
 for Part 2 of the Chebyshev algorithm */
 LA_strict_gauss_jordn (iout, jin, kl, m, n, ct, binv, bv,
 ib, icbas);
 *pIter = *pIter + 1;
 }
}

/*---
Part 3 of the Chebyshev algorithm in LA_Strict()
---*/
void LA_strict_part_3 (int kl, int m, int n, tMatrix_R c,
 tMatrix_R ct, tVector_R f, tMatrix_R binv, tVector_R bv,
 tVector_I ib, tVector_I ibound, tVector_I icbas, tNumber_R *pZz)
{
 int i, j, k, m1, icb;
 tNumber_R s;

 m1 = m + 1;
 for (j = 1; j <= n; j++)
 {
 if (ib[j] == 0) continue;
 icb = 0;
 for (i = kl; i <= m1; i++)
 {
 if (j == icbas[i]) icb = 1;
 }
 if (icb == 0)
 {
 s = -f[j];
 for (i = kl; i <= m1; i++)
 {
 k = icbas[i];
 s = s + ct[i][j] * (f[k]);
 }
 /* The residual of equation j is
 stored in c[j][m1] */
 c[j][m1] = s;
 }
 else if (icb == 1) c[j][m1] = 0.0;
 }
 s = 0.0;
 for (i = kl; i <= m1; i++)
 {

© 2008 by Taylor & Francis Group, LLC

504 Numerical Linear Approximation in C

 k = icbas[i];
 s = s + bv[i] * (f[k]);
 }
 if (fabs (s) < EPS) s = 0.0;
 *pZz = s;
 if (*pZz < 0.0)
 {
 for (j = 1; j <= n; j++)
 {
 if (ib[j] == 0) continue;
 f[j] = -f[j];
 ibound[j] = -ibound[j];
 c[j][m1] = -c[j][m1];
 }
 *pZz = -*pZz;
 for (j = kl; j <= m; j++)
 {
 for (i = kl; i <= m1; i++)
 {
 binv[i][j] = -binv[i][j];
 }
 }
 }
}

/*---
Determine the vector that enters the basis in LA_Strict()
---*/
void LA_strict_vent (int *pIvo, int *pJin, int kl, int m, int n,
 tMatrix_R c, tVector_I ib, tVector_I icbas, tNumber_R zz)
{
 int i, icb, j, m1;
 tNumber_R d, e, g, tz;

 m1 = m + 1;
 g = 1.0/ (EPS*EPS);
 tz = zz + zz + EPS;
 for (j = 1; j <= n; j++)
 {
 if (ib[j] == 0) continue;
 icb = 0;
 for (i = kl; i <= m1; i++)
 {
 if (j == icbas[i]) icb = 1;
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 14: LA_Strict 505

 if (icb == 1) continue;
 d = c[j][m1];
 if (d < -EPS)
 {
 e = d;
 if (e < g)
 {
 g = e;
 *pJin = j;
 *pIvo = 1;
 }
 }
 if (d >= tz)
 {
 e = tz - d;
 if (e < g)
 {
 g = e;
 *pJin = j;
 *pIvo = -1;
 }
 }
 }
}

/*---
Determine the vector that leaves the basis in LA_Strict()
---*/
void LA_strict_vleav (int kl, int *pIout, int jin, int *pItest,
 int m, tMatrix_R ct, tVector_R bv)
{
 int i, m1;
 tNumber_R d, g, thmax;

 m1 = m + 1;
 thmax = 1.0/ (EPS*EPS);

 for (i = kl; i <= m1; i++)
 {
 d = ct[i][jin];
 if (d > EPS)
 {
 g = bv[i]/d;
 if (g <= thmax)
 {

© 2008 by Taylor & Francis Group, LLC

506 Numerical Linear Approximation in C

 thmax = g;
 *pIout = i;
 *pItest = 1;
 }
 }
 }
}

/*---
A Gauss-Jordan elimination step to matrix "ct" in LA_Strict()
---*/
void LA_strict_gauss_jordn (int iout, int jin, int kl, int m,
 int n, tMatrix_R ct, tMatrix_R binv, tVector_R bv, tVector_I ib,
 tVector_I icbas)
{
 int i, j, m1;
 tNumber_R d, pivot;

 m1 = m + 1;
 pivot = ct[iout][jin];
 for (j = 1; j <= n; j++)
 {
 if (ib[j] == 0) continue;
 ct[iout][j] = ct[iout][j]/pivot;
 }
 for (j = kl; j <= m1; j++)
 {
 binv[iout][j] = binv[iout][j]/pivot;
 }
 for (i = kl; i <= m1; i++)
 {
 if (i == iout) continue;
 d = ct[i][jin];
 for (j = 1; j <= n; j++)
 {
 if (ib[j] == 0) continue;
 ct[i][j] = ct[i][j] - d * (ct[iout][j]);
 }
 for (j = kl; j <= m1; j++)
 {
 binv[i][j] = binv[i][j] - d * (binv[iout][j]);
 }
 }
 icbas[iout] = jin;
 for (i = kl; i <= m1; i++)

© 2008 by Taylor & Francis Group, LLC

Chapter 14: LA_Strict 507

 {
 bv[i] = binv[i][m1];
 }
}

/*---
Check for non-uniqueness of the Chebyshev solution in LA_Strict()
---*/
void LA_strict_uniquens (int *pIvo, int *pIout, int kl, int *pKn,
 int *pLd, int m, int n, tMatrix_R c, tMatrix_R ct, tVector_R f,
 tVector_R bv, tVector_R v, tVector_I ib, tVector_I ih,
 tVector_I ibound, tVector_I icbas, tVector_R r, tNumber_R zz)
{
 int i, j, k, icb, m1;
 tNumber_R d, e, piv, bignum;

 m1 = m + 1;
 bignum = 1.0/ (EPS*EPS);
 for (j = 1; j <= n; j++)
 {
 if (ib[j] == 0) continue;
 icb = 0;
 for (i = kl; i <= m1; i++)
 {
 if (j == icbas[i]) icb = 1;
 }
 if (icb == 1) continue;
 d = c[j][m1];
 if (d >= EPS)
 {
 e = zz + zz - d;
 if (e > EPS) continue;
 for (i = kl; i <= m1; i++)
 {
 ct[i][j] = bv[i] + bv[i] - ct[i][j];
 }
 f[j] = -f[j];
 ibound[j] = -ibound[j];
 c[j][m1] = e;
 }
 piv = bignum;
 *pIvo = 0;
 for (i = kl; i <= m1; i++)
 {
 if ((bv[i] < EPS) || ct[i][j] < EPS) continue;

© 2008 by Taylor & Francis Group, LLC

508 Numerical Linear Approximation in C

 d = bv[i]/ct[i][j];
 if (d > piv) continue;
 *pIvo = 1;
 *pIout = i;
 piv = d;
 }
 if (*pIvo == 0) continue;
 v[*pIout] = bv[*pIout]/ct[*pIout][j];
 for (i = kl; i <= m1; i++)
 {
 if (i == *pIout) continue;
 icb = 0;
 v[i] = bv[i] - v[*pIout] * (ct[i][j]);
 if (v[i] < -EPS)
 {
 icb = -1;
 break;
 }
 }
 if (icb == -1) continue;
 k = 0;
 for (i = kl; i <= m1; i++)
 {
 if (bv[i] > EPS) continue;
 if (v[i] < EPS) continue;
 ih[i] = 1;
 k = 1;
 }
 if (k == 0) continue;
 d = c[j][m1] - zz;
 if (ibound[j] == -1) d = -d;
 r[j] = d;
 ib[j] = 0;
 *pKn = *pKn - 1;
 }
 *pLd = 0;
 for (i = kl; i <= m1; i++)
 {
 if (ih[i] == 0) *pLd = *pLd + 1;
 }
}

/*---
Eliminating zz in LA_Strict()
---*/

© 2008 by Taylor & Francis Group, LLC

Chapter 14: LA_Strict 509

void LA_strict_eliminat_zz (int *pIout, int kl, int m, tMatrix_R c,
 tMatrix_R binv, tVector_R bv, tVector_I ib, tVector_I ih,
 tVector_I ibound, tVector_I icbas, int *pKsys, tVector_R r,
 tVector_R z, tNumber_R zz)
{
 int i, j, k, m1;
 tNumber_R d, piv;

 m1 = m + 1;
 piv = 0.0;
 z[*pKsys] = zz;
 for (i = kl; i <= m1; i++)
 {
 d = bv[i];
 if (d > piv)
 {
 piv = d;
 *pIout = i;
 }
 }
 k = icbas[*pIout];
 d = c[k][m1] - zz;
 if (ibound[k] == -1) d = -d;
 r[k] = d;
 ib[k] = 0;
 if (*pIout != m1)
 {
 /* Swap two rows of matrix "binv" */
 for (j = kl; j <= m1; j++)
 {
 d = binv[*pIout][j];
 binv[*pIout][j] = binv[m1][j];
 binv[m1][j] = d;
 }
 bv[*pIout] = binv[*pIout][m1];
 bv[m1] = binv[m1][m1];

 /* Swap two elements of vector "icbas" */
 swap_elems_Vector_I (icbas, *pIout, m1);

 /* Swap two elements of vector "ih" */
 swap_elems_Vector_I (ih, *pIout, m1);
 }
 *pIout = m1;
}

© 2008 by Taylor & Francis Group, LLC

510 Numerical Linear Approximation in C

/*---
A Gauss-Jordan step to matrix "binv" in LA_Strict()
---*/
void LA_strict_gauss_jordn_binv (int iout, int kl, int m,
 tMatrix_R binv, tVector_I iv)
{
 int i, j, m1;
 tNumber_R d, pivot;

 m1 = m + 1;
 pivot = binv[iout][iout];
 for (j = kl; j <= iout; j++)
 {
 if (iv[j] == 0) continue;
 binv[iout][j] = binv[iout][j]/pivot;
 }
 for (i = kl; i <= m1; i++)
 {
 if (i == iout) continue;
 d = binv[i][iout];
 for (j = kl; j <= iout; j++)
 {
 if (iv[j] == 0) continue;
 binv[i][j] = binv[i][j] - d * (binv[iout][j]);
 }
 }
}

/*---
Permuting matrix "binv" in LA_Strict()
---*/
void LA_strict_permute_binv (int kj, int kl, int *pKm, int m,
 tMatrix_R binv, tVector_R bv, tVector_I ih, tVector_I icbas)
{
 int j, l, ij, ji, m1;
 tNumber_R d;

 m1 = m + 1;

 l = kj;
 l = l + 1;
 for (ij = 1; ij <= m1; ij++)
 {
 if (l > *pKm) break;

© 2008 by Taylor & Francis Group, LLC

Chapter 14: LA_Strict 511

 for (ji = l; ji <= *pKm - 1; ji++)
 {
 if (ih[ji] == 1) l = l + 1;
 if (ih[ji] != 1) break;
 }
 if ((ih[*pKm] != 0) && l != *pKm)
 {
 for (j = kl; j <= m; j++)
 {
 d = binv[l][j];
 binv[l][j] = binv[*pKm][j];
 binv[*pKm][j] = d;
 }
 swap_elems_Vector_R (bv, l, *pKm);

 swap_elems_Vector_I (icbas, l, *pKm);

 swap_elems_Vector_I (ih, l, *pKm);
 }
 *pKm = *pKm - 1;
 }
}

/*---
Calculating vector "a" in LA_Strict()
---*/
void LA_strict_calcul_a (int m, tVector_R fs, tMatrix_R binv,
 tVector_I iv, tVector_I icbas, tVector_I irbas, tVector_R a)
{
 int i, j, k;
 tNumber_R s;

 for (j = 1; j <= m; j++)
 {
 if (iv[j] != 0)
 {
 s = 0.0;
 for (i = 1; i <= m; i++)
 {
 if (icbas[i] != 0)
 {
 s = s + fs[i] * (binv[i][j]);
 }
 }
 k = irbas[j];

© 2008 by Taylor & Francis Group, LLC

512 Numerical Linear Approximation in C

 a[k] = s;
 }
 }
}

/*---
Calculating the reduced system in LA_Strict()
---*/
void LA_strict_reduce_sys (int kl, int kln, int *pMa, int m, int n,
 tMatrix_R c, tVector_R f, tMatrix_R binv, tVector_I ib,
 tVector_I iv, tVector_I irbas, tVector_R a)
{
 int i, j, k, l, ii;
 int klnm;
 tNumber_R d;

 klnm = kln - 1;
 if (kln > kl)
 {
 for (l = kl; l <= klnm; l++)
 {
 ii = 0;
 for (i = kln; i <= m; i++)
 {
 d = binv[i][l];
 if (d < 0.0) d = -d;
 if (d < EPS) continue;
 ii = 1;
 break;
 }
 if (ii == 1) continue;
 k = irbas[l];
 for (j = 1; j <= n; j++)
 {
 if (ib[j] == 0) continue;
 f[j] = f[j] - a[k] * (c[j][k]);
 }
 iv[l] = 0;
 irbas[l] = 0;
 *pMa = *pMa - 1;
 }
 }
}

/*---

© 2008 by Taylor & Francis Group, LLC

Chapter 14: LA_Strict 513

Modifying matrix "binv" in LA_Strict()
---*/
void LA_strict_modify_binv (int kl, int kj, int m, tMatrix_R binv,
 tVector_R v, tVector_I iv)
{
 int i, j, k;
 tNumber_R s;

 for (j = 1; j <= kj; j++)
 {
 if (iv[j] == 0) continue;
 for (i = kl; i <= m; i++)
 {
 s = 0.0;
 for (k = kl; k <= m; k++)
 {
 s = s + binv[i][k] * (binv[k][j]);
 }
 v[i] = s;
 }
 for (i = kl; i <= m; i++)
 {
 binv[i][j] = v[i];
 }
 }
}

/*---
Equation ll eliminates element a[k] in LA_Strict()
---*/
void LA_strict_eliminate_ll (int kl, int kln, int *pMa, int ld,
 int m, int n, tMatrix_R c, tVector_R f, tVector_I ib,
 tVector_I iv, tVector_I ibound, tVector_I icbas, tVector_I irbas,
 tVector_R r, tNumber_R zz)
{
 int i, j, k, l, ll = 0, kb, m1, klnm;
 tNumber_R d, e, g, piv, pivot = 0;

 m1 = m + 1;
 klnm = kln - 1;
 for (i = kl; i <= klnm; i++)
 {
 if (iv[i] == 0) continue;
 k = irbas[i];
 piv = 0.0;

© 2008 by Taylor & Francis Group, LLC

514 Numerical Linear Approximation in C

 for (j = kl; j <= klnm; j++)
 {
 l = icbas[j];
 if (ib[l] == 0) continue;
 g = c[l][k];
 d = g;
 if (d < 0.0) d = -d;
 if (d <= piv) continue;
 piv = d;
 pivot = g;
 ll = l;
 }
 /* Equation ll is used to eliminate element a[k] */
 if (piv < EPS) continue;
 for (j = kl; j <= m; j++)
 {
 l = irbas[j];
 if (l == 0) continue;
 c[ll][l] = c[ll][l]/pivot;
 }
 f[ll] = f[ll]/pivot;
 d = c[ll][m1] - zz;
 if (ibound[ll] == -1) d = -d;
 r[ll] = d;
 ib[ll] = 0;
 for (j = 1; j <= n; j++)
 {
 if (ib[j] == 0) continue;
 d = c[j][k];
 e = d;
 if (e < 0.0) e = -e;
 if (e < EPS) continue;
 for (l = 1; l <= m; l++)
 {
 kb = irbas[l];
 if (kb == 0) continue;
 c[j][kb] = c[j][kb] - d * (c[ll][kb]);
 }
 f[j] = f[j] - d * (f[ll]);
 }
 *pMa = *pMa - 1;
 if (*pMa == ld) break;
 }
}

© 2008 by Taylor & Francis Group, LLC

Chapter 14: LA_Strict 515

/*---
Calculating elements of residual vector r, part (c) in LA_Strict()
---*/
void LA_strict_calcul_r_3 (int kl, int kln, int m, tMatrix_R c,
 tVector_I ib, tVector_I ibound, tVector_I icbas, tVector_R r,
 tNumber_R zz)
{
 int i, k, m1, klnm;
 tNumber_R d;

 m1 = m + 1;
 klnm = kln - 1;
 for (i = kl; i <= klnm; i++)
 {
 k = icbas[i];
 if (ib[k] == 0) continue;
 d = c[k][m1] - zz;
 if (ibound[k] == -1) d = -d;
 r[k] = d;
 ib[k] = 0;
 }
}

/*---
Calculating elements of residual vector r, part (b) in LA_Strict()
---*/
void LA_strict_calcul_r_2 (int *pKn, int kln, int m, int n,
 tMatrix_R c, tVector_I ib, tVector_I ibound, tVector_I irbas,
 tVector_R r, tNumber_R zz)
{
 int i, j, k, ii, m1;
 tNumber_R e, d, g;

 m1 = m + 1;
 for (j = 1; j <= n; j++)
 {
 ii = 0;
 if (ib[j] == 0) continue;
 d = c[j][m1];
 if (d >= EPS)
 {
 e = zz + zz - d;
 if (e >= EPS) continue;
 }
 for (i = kln; i <= m; i++)

© 2008 by Taylor & Francis Group, LLC

516 Numerical Linear Approximation in C

 {
 k = irbas[i];
 g = c[j][k];
 if (g < 0.0) g = -g;
 if (g >= EPS)
 {
 ii = 1;
 break;
 }
 }
 if (ii == 1) continue;
 d = d - zz;
 if (ibound[j] == -1) d = -d;
 r[j] = d;
 ib[j] = 0;
 *pKn = *pKn - 1;
 }
}

/*---
Calculating elements of residual vector r, part (a) in LA_Strict()
---*/
void LA_strict_calcul_r_1 (int m, int n, tMatrix_R c, tVector_I ib,
 tVector_I ibound, tVector_R r, tNumber_R zz)
{
 int j, m1;
 tNumber_R d;

 m1 = m + 1;
 for (j = 1; j <= n; j++)
 {
 if (ib[j] == 0) continue;
 d = c[j][m1] - zz;
 if (ibound[j] == -1) d = -d;
 r[j] = d;
 }
}

© 2008 by Taylor & Francis Group, LLC

517

Chapter 15

Piecewise Chebyshev Approximation

15.1 Introduction

In Chapter 9, two algorithms for the piecewise linear
approximation of plane curves in the L1 norm are described. In this
chapter, we describe two corresponding algorithms for the piecewise
linear approximation of plane curves in the Chebyshev norm.

The problem of piecewise approximation for plane curves in the
Chebyshev norm, including polygonal approximation, received
considerable attention for some time. Although the number of
published works on the polygonal approximation of plane curve is
considerably large (see the references in Chapter 8), yet there are
relatively fewer references on piecewise approximation in the
Chebyshev norm.

Lawson [8] derived characteristic properties of the segmented
Chebyshev approximation problem and proposed an iterative
algorithm for finding these approximation. Phillips [13] presented two
simple algorithms for approximating a convex function (whose
second derivative is positive), the first one is when the Chebyshev
residual (error) norm in any segment is not to exceed a pre-assigned
value, and the other one is when the number of segments is given and
a balanced (equal) Chebyshev error norm solution is required. The
Chebyshev residual was measured along the direction of the y-axis.

Pavlidis [9] reviewed various algorithms for piecewise linear
Chebyshev segmentation and proposed a new one based on discrete
optimization. His algorithm is for the near-balanced solution case.
The Chebyshev residual norm is measured along the direction of the
y-axis.

Pavlidis and Horowitz [11] then presented another algorithm for

© 2008 by Taylor & Francis Group, LLC

518 Numerical Linear Approximation in C

segmenting a digitized plane curve in the Chebyshev norm. They
attempted to determine the minimum number of segments in the
approximation. After an arbitrary initial segmentation of the given
digitized curve, segments are split and merged to derive the
Chebyshev residual norm below a specified value. The Chebyshev
norm for each segment is measured perpendicular to the straight line
approximating the segment.

Tomek [15] described two simple heuristic algorithms, using
parallel lines technique for Chebyshev piecewise approximation by
straight lines. One algorithm works well for smooth functions. Both
algorithms are for the case where the Chebyshev residual norm for
each segment is not to exceed a pre-assigned value. The Chebyshev
error norm is measured along the y-axis direction.

Using functional iteration, Pavlidis and Maika [12] proposed a
procedure for solving the near-balanced polynomial Chebyshev
approximation problem. Their method compares favorably with
Lawson�s algorithm [8]. Again, the Chebyshev error norm is
measured along the direction of the y-axis.

Kioustelidis [6] discussed the existence of segmented
approximations with free knots for a given continuous function.

The majority of published methods consider only the special cases
of piecewise approximation by constants (horizontal lines) or by
straight lines. In this chapter, the approximating functions may be any
kind of polynomials, not necessarily constants or straight lines. The
Chebyshev error norm is measured along the direction of the y-axis.
Two algorithms for the piecewise linear Chebyshev approximation of
plane curves are presented [1]. They are for the 2 cases: (a) when the
Chebyshev error norm in any segment is not to exceed a pre-assigned
value and (b) when the number of segments is given and a
near-balanced Chebyshev error norm solution is required.

The problem follows the same steps taken in Chapter 9 for the
piecewise linear approximation of plane curves in the L1 norm. The
problem is solved by first digitizing the given curve into discrete
points. Then each of the algorithms is applied to the discrete points.
Both algorithms use the discrete linear Chebyshev approximation
function LA_Linf() of Chapter 10.

In Section 15.2, the characteristic properties of the piecewise
approximation are outlined. In Section 15.3, the Chebyshev

© 2008 by Taylor & Francis Group, LLC

Chapter 15: Piecewise Chebyshev Approximation 519

approximation is described. In Section 15.4, the two Chebyshev
piecewise approximations are presented. In Section 15.5, numerical
results and comments are given.

15.1.1 Applications of piecewise approximation

We identify here some applications of piecewise approximation
that were not presented in Chapters 8 and 9. In the field of numerical
analysis, it is used in the reduction of non-linear problems to
approximately equivalent linear problems. It is used also in the
approximate solutions of linear differential equations with time
varying parameters [14]. Applications are also used in the design of
electronic analog and hybrid computers [7]. In the fields of image
processing and pattern recognition it is used in feature extraction,
noise filtering and data compression [4, 10].

15.2 Characteristic properties of piecewise approximation

Let y = f(x) be a given plane curve and let it be defined on the
interval [a, b]. Let this curve be digitized at the K points (xi, f(xi)),
i = 1, 2, �, K, where x1 = a and xK = b. Let n be the number of pieces
(segments) in the approximation and let (zj), j = 1, 2, �, n, be the
Chebyshev error norms for the n pieces. For the first algorithm, the
number of segments n is not known beforehand.

Assume f(x) is continuous and satisfies Lipschitz condition on
[a, b]. Lawson [8] showed that the norm zj, 1 ≤ j ≤ n, has certain
characteristics. Such characteristics are given in Section 9.2 for the
piecewise linear approximation of plane curves in the L1 norm. The
same characteristics apply as well for the piecewise linear
approximation in the Chebyshev norm and in the L2 or the least
squares norm (Chapter 18).

15.3 The discrete linear Chebyshev approximation problem

Consider any segment j, 1 ≤ j ≤ n, of the given curve f(x). Let this
segment consist of N digitized points with coordinates (xi, f(xi)),
i = 1, 2, �, N. Let these N points be approximated by the linear
function

© 2008 by Taylor & Francis Group, LLC

520 Numerical Linear Approximation in C

L(a, x) = a1φ1(x) + � + aMφΜ(x)

which minimizes the Chebyshev norm zj (or briefly z), of the residuals
r(xi), where

z = max|r(xi)|

and

(15.3.1) r(xi) = L(a, xi) � f(xi), i = 1, 2, �, N

Here, {φj(x)}, j = 1, 2, �, M, M < N, is a given set of real linearly
independent approximating functions and a is an M real vector to
be calculated. For example, if the approximating function is a vertical
parabola, L(a, x) = a1 + a2x + a3x2, then a1, a2 and a3 are the elements
of vector a, which are to be calculated.

This problem reduces to the problem of obtaining the Chebyshev
solution of the overdetermined system of linear equations

Ca = f

C = (cij) is an N by M matrix given by C = (φj(xi)), i = 1, 2, �, N and
j = 1, 2, �, M, and f is the N-vector f = f(xi). The Chebyshev solution
to this system is the real M-vector a that minimizes the Chebyshev
norm

z = max|ri|, i = 1, 2, �, N

where ri is the ith residual given by (15.3.1) or by

ri = ci1a1 + � + cimam � fi, i = 1, 2, �, N

15.4 Description of the algorithms

15.4.1 Piecewise linear Chebyshev approximation with
pre-assigned tolerance

This algorithm uses the same steps as those of Section 9.4.1.
However, each time a point is added to segment say j, we use the
function LA_Linf() of Chapter 10 to re-calculate the new Chebyshev
norm of the segment.

© 2008 by Taylor & Francis Group, LLC

Chapter 15: Piecewise Chebyshev Approximation 521

15.4.2 Piecewise linear Chebyshev approximation with
near-balanced Chebyshev norms

This algorithm uses the same steps as those of Section 9.4.2.
Again, each time we add a point or delete a point from segment j, we
use the function LA_Linf() of Chapter 10 to re-calculate the new
Chebyshev norm of the segment.

15.5 Numerical results and comments

Each of the functions LA_Linfpw1() and LA_Linfpw2() calculate
the number of segments in the piecewise approximation (for
LA_Linfpw2(), n is given), the starting points of the n segments, the
coefficients of the approximating curves for the n segments, the
residuals at each point of the digitized curve and finally the
Chebyshev residual norms for the n segments.

LA_Linfpw1() computes for the case when the Chebyshev error
norm in any segment is not to exceed a pre-assigned value.
LA_Linfpw2() computes for the case when the number of segments is
given and a near-balanced Chebyshev error norm solution is required.
Each of these functions uses LA_Linf() [2, 3] of Chapter 10.

DR_Linfpw1() and DR_Linfpw2() were used to test the two
algorithms in single-precision.

Recall that LA_Linfpw1() has the option of calculating connected
or disconnected piecewise Chebyshev approximations, while
LA_Linfpw2() can only calculate disconnected piecewise Chebyshev
approximations. As explained at Section 9.2, in the connected
piecewise approximation, the x-coordinate of the right end point of
segment j is the x-coordinate of the starting (left) end point of segment
(j + 1). In the disconnected piecewise approximation, the x-coordinate
of the adjacent point to the right end point of segment j is the
x-coordinate of the starting left point of segment (j + 1).

The numerical results of one example are presented here. They are
for the same curve used in Chapter 9 for the piecewise linear
approximation in the L1 norm, and also for the L2 norm of Chapter 18.

The given curve is digitized with equal x-intervals into 28 points
and the data points are fitted with vertical parabolas, each is of the
form y = a1 + a2x + a3x2.

© 2008 by Taylor & Francis Group, LLC

522 Numerical Linear Approximation in C

The results of the first algorithm are shown in Figures 15-1 and
15-2. The results of the second algorithm are shown in Figure 15-3,
where the number of segments was set to n = 4.

Figure 15-1: Disconnected linear Chebyshev piecewise approximation
with vertical parabolas. Chebyshev residual norm in any

segment ≤ 1.3

Figure 15-2: Connected linear Chebyshev piecewise approximation
with vertical parabolas. Chebyshev residual norm in any

 segment ≤ 1.3

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30

© 2008 by Taylor & Francis Group, LLC

Chapter 15: Piecewise Chebyshev Approximation 523

Figure 15-3: Near-balanced residual norm solution. Disconnected
linear Chebyshev piecewise approximation with vertical parabolas.

Number of segments = 4

The Chebyshev norms of Figures 15-1 and 15-2 are (0.438, 0.981,
1.238, 0.937) and n = 4, and (0.438, 0.981, 1.203, 1.285, 0.842) and
n = 5, respectively. The Chebyshev norms of Figure 15-3 are (1.553,
0.920, 1.050, 0.937), for n = 4.

We observe that the second algorithm did not produce a balanced
norm solution. However, by comparing Figures 15-1 and 15-3, we see
that it gives an improved solution to that of the first algorithm.

In a previous version of our algorithms [1], we used parametric
linear programming techniques [5] and made use of the
equioscillation property of the Chebyshev approximation. This
technique increases the code complexity but reduces the number of
iterations.

References

1. Abdelmalek, N.N., Chebyshev solution of overdetermined
systems of linear equations, BIT, 15(1975)117-129.

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30

© 2008 by Taylor & Francis Group, LLC

524 Numerical Linear Approximation in C

2. Abdelmalek, N.N., A computer program for the Chebyshev
solution of overdetermined systems of linear equations,
International Journal for Numerical Methods in Engineering,
10(1976)1197-1202.

3. Abdelmalek, N.N., Piecewise linear Chebyshev approximation
of planar curves, International Journal of Systems Science,
14(1983)425-435.

4. Davison, L.D., Data compression using straight line
interpolation, IEEE Transactions on Information Theory,
IT-14(1968)390-394.

5. Hadley, G., Linear Programming, Addison-Wesley, Reading,
MA, 1962.

6. Kioustelidis, J.B., Optical segmented approximations, Compu-
ting, 24(1980)1-8.

7. Korn, G.A. and Korn, T.M., Electronic Analog and Hybrid
Computers, McGraw-Hill, New York, 1964.

8. Lawson, C.L., Characteristic properties of the segmented
rational minimax approximation problem, Numerische
Mathematik, 6(1964)293-301.

9. Pavlidis, T., Waveform segmentation through functional app-
roximation, IEEE Transactions on Computers, 22(1973)689-
697.

10. Pavlidis, T., The use of algorithms of piecewise
approximations for picture processing applications, ACM
Transactions on Mathematical Software, 2(1976)305-321.

11. Pavlidis, T. and Horowitz, S.L., Segmentation of plane curves,
IEEE Transactions on Computers, 23(1974)860-870.

12. Pavlidis, T. and Maika, A.P., Uniform piecewise polynomial
approximation with variable joints, Journal of Approximation
Theory, 12(1974)61-69.

13. Phillips, G.M., Algorithms for piecewise straight line
approximation, Computer Journal, 11(1968)211-212.

14. Solodov, A.V., Linear Automatic Control Systems with
Varying Parameters, Blackie, London, 1966.

15. Tomek, I., Two algorithms for piecewise-linear continuous
approximation of functions of one variable, IEEE
Transactions on Computers, 23(1974)445-448.

© 2008 by Taylor & Francis Group, LLC

Chapter 15: DR_Linfpw1 525

15.6 DR_Linfpw1

/*---
DR_Linfpw1

This is a driver for the function LA_Linfpw1(), which calculates a
linear piecewise Chebyshev approximation of a given data point set
{x,y} that results from discretizing a given plane curve y = f(x).
The points of the set might not be equally spaced.

The approximation by LA_Linfpw1() is such that the Chebyshev norm for
any segment is not to exceed a pre-assigned tolerance donated by
"enorm".

LA_Linfpw1() calculates the connected or the disconnected piecewise
linear Chebyshev approximation according to the value of an integer
parameter denoted by "konect" set by the user.
See comments in LA_Linfpw1().

From the approximating curve we form the overdetermined system of
linear equations

 c*a = f

"c" is a real n by m matrix of rank k, k <= m < n.
n is the number of digitized points of the given plane curve.

m is the number of terms in the approximating curves. If for
example, the approximating curves are vertical parabolas of
the form
 y = a1 + a2*x + a3*x*x
then m = 3.

"f" is a real n vector whose elements are the y coordinates of
the data set {x,y}.

"a" is the solution m vector. There are different "a" solution
vectors for the different segments.

This driver contains 1 test example. A given curve is digitized
into 28 points at equal x intervals. The points are piecewise
approximated by vertical parabolas of the form

 y = a1 + a2*x + a3*x*x

© 2008 by Taylor & Francis Group, LLC

526 Numerical Linear Approximation in C

The results for the disconnected and of the connected piecewise
Chebyshev approximation are given in the text.
---*/

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define Nc 28

void DR_Linfpw1 (void)
{
 /*--
 Constant matrices/vectors
 --*/
 static tNumber_R fc[Nc+1] =
 { NIL,
 8.0, 11.0, 13.0, 11.2, 9.1, 10.8, 14.8, 16.0, 15.1, 14.0,
 14.7, 15.8, 16.8, 15.6, 13.0, 14.3, 13.8, 10.6, 9.3, 9.6,
 10.8, 11.2, 9.0, 7.0, 5.8, 6.8, 4.8, 3.9
 };

 /*--
 Variable matrices/vectors
 --*/
 tMatrix_R ct = alloc_Matrix_R (MM_COLS, NN_ROWS);
 tMatrix_R rp1 = alloc_Matrix_R (KK_PIECES, NN_ROWS);
 tMatrix_R ap = alloc_Matrix_R (KK_PIECES, MM_COLS);
 tVector_R f = alloc_Vector_R (NN_ROWS);
 tVector_R zp = alloc_Vector_R (KK_PIECES);
 tVector_I irankp = alloc_Vector_I (KK_PIECES);
 tVector_I ixl = alloc_Vector_I (KK_PIECES);

 int j, k, m, n;
 int konect, npiece;
 tNumber_R enorm;
 eLaRc prnRc;

 eLaRc rc = LaRcOk;

 prn_dr_bnr ("DR_Linfpw1, Chebyshev Piecewise Approximation of "
 "a Plane with Pre-assigned Norm");

 for (k = 1; k <= 2; k++)
 {

© 2008 by Taylor & Francis Group, LLC

Chapter 15: DR_Linfpw1 527

 switch (k)
 {
 case 1:
 enorm = 1.3;
 n = Nc;
 m = 3;
 for (j = 1; j <= n; j++)
 {
 f[j] = fc[j];
 ct[1][j] = 1.0;
 ct[2][j] = j;
 ct[3][j] = j*j;
 }
 break;
 default:
 break;
 }

 prn_algo_bnr ("Linfpw1");
 if (k == 1) konect = 0;
 if (k == 2) konect = 1;
 prn_example_delim();
 PRN ("konect #%d: Size of matrix \"c\" %d by %d\n",
 konect, n, m);
 PRN ("Chebyshev Piecewise Approximation with "
 "Pre-assigned Norm\n");
 PRN ("Pre-assigned Norm \"enorm\" = %8.4f\n", enorm);
 prn_example_delim();
 if (konect == 1)
 PRN ("Connected Piecewise Approximation\n");
 else
 PRN ("Disconnected Piecewise Approximation\n");
 prn_example_delim();
 PRN ("r.h.s. Vector \"f\"\n");
 prn_Vector_R (f, n);
 PRN ("Transpose of Coefficient Matrix, \"ct\"\n");
 prn_Matrix_R (ct, m, n);

 rc = LA_Linfpw1 (m, n, enorm, konect, ct, f, ixl, irankp,
 rp1, ap, zp, &npiece);

 if (rc >= LaRcOk)
 {
 PRN ("\n");
 PRN ("Results of the Chebyshev Piecewise "

© 2008 by Taylor & Francis Group, LLC

528 Numerical Linear Approximation in C

 "Approximation\n");
 PRN ("Calculated number of segments (pieces) = %d\n",
 npiece);
 PRN ("Staring points of the \"npiece\" segments\n");
 prn_Vector_I (ixl, npiece);
 PRN ("Coefficients of the approximating curves\n");
 prn_Matrix_R (ap, npiece, m);
 PRN ("Residual vectors for the \"npiece\" segments\n");
 prnRc = LA_pw1_prn_rp1 (konect, npiece, n, ixl, rp1);
 PRN ("Chebyshev residuals for the \"npiece\" "
 "segments\n");
 prn_Vector_R (zp, npiece);
 if (prnRc < LaRcOk)
 {
 PRN ("Error printing PW1 results\n");
 }
 }

 prn_la_rc (rc);
 }

 free_Matrix_R (ct, MM_COLS);
 free_Matrix_R (rp1, KK_PIECES);
 free_Matrix_R (ap, KK_PIECES);
 free_Vector_R (f);
 free_Vector_R (zp);
 free_Vector_I (irankp);
 free_Vector_I (ixl);
}

© 2008 by Taylor & Francis Group, LLC

Chapter 15: LA_Linfpw1 529

15.7 LA_Linfpw1

/*---
LA_Linfpw1

This program calculates a linear piecewise Chebyshev (L-infinity)
approximation to a discrete point set {x,y}. The approximation is
such that the Chebyshev residual (error) norm for any segment is
not to exceed a given tolerance "enorm". The number of segments
(pieces) is not known before hand.

Given is a set of points {x,y}. From the approximating functions
(curves) one forms the overdetermined system of linear equations

 c*a = f

This program uses program LA_Linf() for obtaining the Chebyshev
solution of overdetermined system of linear equations.

LA_Linfpw1() has the option of calculating connected or
disconnected piecewise Chebyshev approximation, according to
the value of an integer parameter "konect".

In the connected piecewise approximation the x-coordinate of the
end point of segment j say, is the x-coordinate of the starting
point of segment (j+1). In the disconnected piecewise
approximation, the x-coordinate of the adjacent point to the end
point of segment j is the x-coordinate of the starting point of
segment (j+1). See the comments on "ixl" below.

Inputs
m Number of terms in the approximating functions.
n Number of points to be piecewise approximated.
ct A real (m+1) by n matrix. Its forst m rows and its n columns
 contain the transpose of matrix "c" of the system c*a = f.
 The (m + 1)th row of "ct" is a row of ones.
 Matrix "ct" is not destroyed in the computation.
f An real n vector containing the r.h.s. of the system
 c*a = f. This vector contains the y-coordinates of the
 given point set. This vector is not destroyed in the
 computation.
enorm A real pre-assigned parameter, such that the Chebyshev
 residual norm for any segment is <= enorm.
konect An integer specifying the action to be performed.

© 2008 by Taylor & Francis Group, LLC

530 Numerical Linear Approximation in C

 If konect = 1, the program calculates the connected
 Chebyshev piecewise approximation.
 If konect != 1, the program calculates the disconnected
 Chebyshev piecewise approximation.

Outputs
npiece Obtained number of segments or pieces of the approximation.
ixl An integer "npiece" vector containing the indices of the
 first elements of the "npiece" segments.
 For example, if ixl = (1,5,12,22,...), and if konect = 1,
 then the first segment contains points 1 to 5, the second
 segment contains points 5 to 12, the third segment contains
 points 12 to 22 and so on.
 Again if ixl = (1,5,12,22,...), and if konect !=1, then the
 first segment contains points 1 to 4, the second segment
 contains points 5 to 11, the third segment contains points 12
 to 21 ..., etc.
ap A real "npiece" by m matrix. Its first row contains the
 the coefficients of the approximating curve for the first
 segment. The second row contains the coefficients of the
 approximating curve for the second segment and so on.
 If any row j is all zeros, this indicates that vector "a" of
 segment j is not calculated as the number of points of
 segment j is <= m and there is a perfect fit by the
 approximating curve for segment j.
rp1 A real "npiece" by n matrix. Its first row contains the
 residuals for the points of the first segment. Its second
 row contains the residuals for the points of the second
 segment, and so on.
zp A "npiece" real vector containing the "npiece" optimum values
 of the Chebyshev residual norms for the "npiece" segments.
 If zp[j] == 0.0, it indicates that there is a perfect fit for
 segment j.

Returns one of
 LaRcSolutionFound
 LaRcErrBounds
 LaRcErrNullPtr
 LaRcErrAlloc
---*/

#include "LA_Prototypes.h"

eLaRc LA_Linfpw1 (int m, int n, tNumber_R enorm, int konect,
 tMatrix_R ct, tVector_R f, tVector_I ixl, tVector_I irankp,

© 2008 by Taylor & Francis Group, LLC

Chapter 15: LA_Linfpw1 531

 tMatrix_R rp1, tMatrix_R ap, tVector_R zp, int *pNpiece)
{
 tMatrix_R ctp = alloc_Matrix_R (m + 1, n);
 tVector_R fp = alloc_Vector_R (n);
 tVector_R r = alloc_Vector_R (n);
 tVector_R a = alloc_Vector_R (m + 1);

 int i = 0, j = 0, je = 0, ji = 0, jj = 0, is = 0, ie = 0,
 m1 = 0, nu = 0, irank = 0;
 int ijk = 0, iter = 0;
 tNumber_R z = 0.0;

 /* Validation of data before executing algorithm */
 eLaRc rc = LaRcSolutionFound;
 VALIDATE_BOUNDS ((0 < m) && (m < n) && (0.0 < enorm));
 VALIDATE_PTRS (ct && f && ixl && irankp && rp1 && ap && zp &&
 pNpiece);
 VALIDATE_ALLOC (ctp && fp && r && a);

 m1 = m + 1;
 *pNpiece = 1;

 /* "is" means i(start) for the segment at hand */
 is = 1;
 for (ijk = 1; ijk <= n; ijk++)
 {
 /* Initializing the data for "npiece".
 is means i (start)
 ie means i (end) for the segment at hand */
 ie = is + m1 - 1;
 LA_pw1_init (pNpiece, is, ie, m, rp1, ap, zp);

 if (ie > n)
 {
 GOTO_CLEANUP_RC (LaRcSolutionFound);
 }
 irank = m;
 z = 0;

 for (j = is; j <= ie; j++)
 {
 ji = j - is + 1;
 fp[ji] = f[j];
 for (i = 1; i <= m; i++)
 {

© 2008 by Taylor & Francis Group, LLC

532 Numerical Linear Approximation in C

 ctp[i][ji] = ct[i][j];
 }
 }
 for (jj = 1; jj <= n; jj++)
 {
 nu = ie - is + 1;

 rc = LA_Linf (m, nu, ctp, fp, &irank, &iter, r, a, &z);
 if (rc < LaRcOk)
 {
 GOTO_CLEANUP_RC (rc);
 }

 if (z > enorm + EPS) break;
 else
 {
 LA_pw1_map (m, nu, r, a, z, rp1, ap, zp, pNpiece);
 ixl[*pNpiece] = is;
 je = ie + 1;
 if (je > n)
 {
 GOTO_CLEANUP_RC (LaRcSolutionFound);
 }
 ie = je;
 nu = ie - is + 1;
 if (nu < m1)
 {
 GOTO_CLEANUP_RC (LaRcSolutionFound);
 }
 for (j = is; j <= ie; j++)
 {
 ji = j - is + 1;
 fp[ji] = f[j];
 for (i = 1; i <= m; i++)
 {
 ctp[i][ji] = ct[i][j];
 }
 }
 }
 }
 is = ie;
 if (konect == 1) is = ie - 1;
 *pNpiece = *pNpiece + 1;
 ixl[*pNpiece] = is;
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 15: LA_Linfpw1 533

CLEANUP:

 free_Matrix_R (ctp, m + 1);
 free_Vector_R (fp);
 free_Vector_R (r);
 free_Vector_R (a);

 return rc;
}

© 2008 by Taylor & Francis Group, LLC

534 Numerical Linear Approximation in C

15.8 DR_Linfpw2

/*---
DR_Linfpw2

This is a driver for the function LA_Linfpw2() which calculates the
"near balanced" piecewise linear Chebyshev approximation of a given
data point set {x,y} resulting from the discretization of a plane
curve y=f(x).

Given is an integer number "npiece" which is the number of segments
in the approximation.

The approximation by LA_Linfpw2() is such that the Chebyshev residual
norms for all segments are nearly equal, hence the name "near
balanced" piecewise approximation.

From the approximating curves we form the overdetermined system of
linear equations

 c*a = f

"c" is a real n by m matrix of rank k, k <= m < n.
n is the number of digitized points of the given plane curve.
m is the number of terms in the approximating curves. If for
example, the piecewise approximating curves are vertical parabolas
of the form
 y = a1 + a2*x + a3*x*x
then m = 3.

"f" is a real n vector whose elements are the y coordinates of
the data set {x,y}.

"a" is the solution m vector. There are different "a" solution
vectors for the different segments.

This driver contains 1 test example.
A given curve is digitized into 28 points at equal x intervals. The
points are piecewise approximated by vertical parabolas of the form

 y = a1 + a2*x + a3*x*x

The results for piecewise Chebyshev approximation are given in
the text.

© 2008 by Taylor & Francis Group, LLC

Chapter 15: DR_Linfpw2 535

---*/

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define Nc 28

void DR_Linfpw2 (void)
{
 /*--
 Constant matrices/vectors
 --*/
 static tNumber_R fc[Nc+1] =
 { NIL,
 8.0, 11.0, 13.0, 11.2, 9.1, 10.8, 14.8, 16.0, 15.1, 14.0,
 14.7, 15.8, 16.8, 15.6, 13.0, 14.3, 13.8, 10.6, 9.3, 9.6,
 10.8, 11.2, 9.0, 7.0, 5.8, 6.8, 4.8, 3.9
 };

 /*--
 Variable matrices/vectors
 --*/
 tMatrix_R ct = alloc_Matrix_R (MM_COLS, NN_ROWS);
 tVector_R f = alloc_Vector_R (NN_ROWS);
 tVector_R rp2 = alloc_Vector_R (NN_ROWS);
 tMatrix_R ap = alloc_Matrix_R (KK_PIECES, MM_COLS);
 tVector_R zp = alloc_Vector_R (KK_PIECES);
 tVector_I ixl = alloc_Vector_I (KK_PIECES);
 tVector_R w = alloc_Vector_R (NN_ROWS);

 int j, m, n;
 int Iexmpl, npiece;
 eLaRc prnRc;

 eLaRc rc = LaRcOk;

 prn_dr_bnr ("DR_Linfpw2, Chebyshev Piecewise Approximation of "
 "a Plane Curve with Near Equal Residual Norms");

 for (Iexmpl = 1; Iexmpl <= 1; Iexmpl++)
 {
 switch (Iexmpl)
 {
 case 1:
 npiece = 4;

© 2008 by Taylor & Francis Group, LLC

536 Numerical Linear Approximation in C

 n = Nc;
 m = 3;
 for (j = 1; j <= n; j++)
 {
 f[j] = fc[j];
 ct[1][j] = 1.0;
 ct[2][j] = j;
 ct[3][j] = j*j;
 }
 break;
 default:
 break;
 }

 prn_algo_bnr ("Linfpw2");
 prn_example_delim();
 PRN ("Size of matrix \"c\" %d by %d\n", n, m);
 prn_example_delim();
 PRN ("Chebyshev Piecewise Approximation "
 "with Near Equal Norms\n");
 PRN ("Given number of segments (pieces) = %d\n", npiece);
 prn_example_delim();
 PRN ("r.h.s. Vector \"f\"\n");
 prn_Vector_R (f, n);
 PRN ("Transpose of Coefficient Matrix, \"ct\"\n");
 prn_Matrix_R (ct, m, n);

 rc = LA_Linfpw2 (m, n, npiece, ct, f, ap, rp2, zp, ixl);

 if (rc >= LaRcOk)
 {
 PRN ("\n");
 PRN ("Results of the Chebyshev Piecewise "
 "Approximation\n");
 PRN ("Starting points of the \"npiece\" segments\n");
 prn_Vector_I (ixl, npiece);
 PRN ("Chebyshev residual norms for the"
 " \"npiece\" segments\n");
 prn_Vector_R (zp, npiece);
 PRN ("Coefficients of the \"npiece\" approximating "
 " curves\n");
 prn_Matrix_R (ap, npiece, m);
 PRN ("Residuals at the given points\n");
 prnRc = LA_pw2_prn_rp2 (npiece, n, ixl, rp2);
 if (prnRc < LaRcOk)

© 2008 by Taylor & Francis Group, LLC

Chapter 15: DR_Linfpw2 537

 {
 PRN ("Error printing PW2 results: ");
 }
 }

 prn_la_rc (rc);
 }

 free_Matrix_R (ct, MM_COLS);
 free_Vector_R (f);
 free_Vector_R (rp2);
 free_Matrix_R (ap, KK_PIECES);
 free_Vector_R (zp);
 free_Vector_I (ixl);
 free_Vector_R (w);
}

© 2008 by Taylor & Francis Group, LLC

538 Numerical Linear Approximation in C

15.9 LA_Linfpw2

/*---
LA_Linfpw2

This program calculates the "near balanced" piecewise linear
Chebyshev approximation of a given data point set {x,y} resulting
from the discretization of a plane curve y = f(x).

Given is an integer number "npiece" which is the number of segments
in the approximation.

The approximation by LA_Linfpw2() is such that the Chebyshev
residual norms for all segments are nearly equal, hence the name
"near balanced" piecewise approximation.

From the approximating functions (curves) one forms the
overdetermined system of linear equations

 c*a = f

Inputs
npiece Given umber of segments (pieces) of the approximation.
m Number of terms in the approximating functions.
n Number of points to be piecewise approximated
ct A real (m+1) by n matrix. Its first m rows and its n columns
 contain the transpose of matrix "c" of the system c*a = f.
 The (m+1)th row of "ct" is a row of ones.
 Matrix "ct" is not destroyed in the computation.
f A real n vector containing the r.h.s. of the system c*a = f.
 This vector contains the y-coordinates of the given point
 set. This vector is not destroyed in the computation.

Outputs
ixl An integer "npiece" vector containing the indices of the
 first elements of the "npiece" segments.
 For example, if ixl = (1,5,12,22,...), then the first
 segment contains points 1 to 4, the second segment contains
 points 5 to 11, the third segment contains points 12
 to 21 ..., etc.
ap A real "npiece" by m matrix. Its first row contains the
 coefficients of the approximating curve for the first
 segment. The second row contains the coefficients of the
 approximating curve for the second segment and so on.

© 2008 by Taylor & Francis Group, LLC

Chapter 15: LA_Linfpw2 539

rp2 A real n vector containing the residual values of the n
 points of the given set {x,y}.
zp A real npiece vector containing the optimum Chebyshev
 residual norms for the "npiece" segments.

Returns one of
 LaRcSolutionFound
 LaRcErrBounds
 LaRcErrNullPtr
 LaRcErrAlloc
---*/

#include "LA_Prototypes.h"

eLaRc LA_Linfpw2 (int m, int n, int npiece, tMatrix_R ct,
 tVector_R f, tMatrix_R ap, tVector_R rp2, tVector_R zp,
 tVector_I ixl)
{
 tVector_R al = alloc_Vector_R (m + 1);
 tVector_R rl = alloc_Vector_R (n);
 tVector_R bv = alloc_Vector_R (m + 1);
 tMatrix_R binv = alloc_Matrix_R (m + 1, m + 1);
 tVector_I icbas = alloc_Vector_I (m + 1);
 tVector_I irbas = alloc_Vector_I (m + 1);
 tVector_I ibound = alloc_Vector_I (n);
 tVector_R ar = alloc_Vector_R (m + 1);
 tVector_R rr = alloc_Vector_R (n);
 tMatrix_R ctp = alloc_Matrix_R (m + 1, n);
 tVector_R fp = alloc_Vector_R (n);
 tVector_I iflag = alloc_Vector_I (npiece);

 int i = 0, j = 0, k = 0, is = 0, ie = 0, ji = 0, nu = 0,
 kl = 0, klp1 = 0, ijk = 0;
 int icb = 0, isl = 0, isr = 0, iel = 0, ier = 0,
 ieln = 0, isrn = 0;
 int istart = 0, iend = 0, ipcp1 = 0, iterl = 0,
 iterr = 0;
 int irankl = 0, irankr = 0;
 tNumber_R con = 0.0, conn = 0.0, zl = 0.0, zln = 0.0,
 zrn = 0.0;

 /* Validation of the data before executing the algorithm */
 eLaRc rc = LaRcSolutionFound;
 VALIDATE_BOUNDS ((0 < m) && (m < n) && (1 < npiece));
 VALIDATE_PTRS (ct && f && ap && rp2 && zp && ixl);

© 2008 by Taylor & Francis Group, LLC

540 Numerical Linear Approximation in C

 VALIDATE_ALLOC (al && rl && bv && binv && icbas && irbas &&
 ibound && ar && rr && ctp && fp && iflag);

 for (k = 1; k <= npiece; k++)
 {
 iflag[k] = 1;

 /* Initializing LA_Linfpw2 */
 LA_pw2_init (k, npiece, m, n, &is, &ie, ct, f, ctp, fp, ixl);

 /* Calculating the Chebyshev solution of the "npiece"
 segment */
 nu = ie - is + 1;

 rc = LA_Linf (m, nu, ctp, fp, &irankl, &iterl, rl, al, &zl);
 if (rc < LaRcOk)
 {
 GOTO_CLEANUP_RC (rc);
 }

 zp[k] = zl;

 /* Mapping initial data for the "npiece" segments */
 for (i = 1; i <= m; i++)
 {
 ap[k][i] = al[i];
 }
 for (j = is; j <= ie; j++)
 {
 ji = j - is + 1;
 rp2[j] = rl[ji];
 }
 }

 /* Process of balancing the Chebyshev norms */
 istart = 1;
 iend = npiece - 1;
 ipcp1 = npiece + 1;
 ixl[ipcp1] = n + 1;

 for (ijk = 1; ijk < n*n; ijk++)
 {
 for (kl = istart; kl <= iend; kl=kl+2)
 {
 klp1 = kl + 1;

© 2008 by Taylor & Francis Group, LLC

Chapter 15: LA_Linfpw2 541

 con = fabs (zp[klp1] - zp[kl]);
 isl = ixl[kl];
 isr = ixl[klp1];
 iel = isr - 1;
 if (kl != iend) ier = ixl[kl + 2] - 1;
 if (kl == iend) ier = n;

 /* The case where : -----z[i]<z[i+1] */
 if (zp[kl] < zp[klp1])
 {
 ieln = iel + 1;
 isrn = ieln + 1;
 nu = ieln - isl + 1;
 for (j = isl; j <= ieln; j++)
 {
 ji = j - isl + 1;
 fp[ji] = f[j];
 for (i = 1; i <= m; i++)
 {
 ctp[i][ji] = ct[i][j];
 }
 }

 rc = LA_Linf (m, nu, ctp, fp, &irankl, &iterl, rl,
 al, &zln);
 if (rc < LaRcOk)
 {
 GOTO_CLEANUP_RC (rc);
 }

 nu = ier - isrn + 1;
 for (j = isrn; j <= ier; j++)
 {
 ji = j - isrn + 1;
 fp[ji] = f[j];
 for (i = 1; i <= m; i++)
 {
 ctp[i][ji] = ct[i][j];
 }
 }

 rc = LA_Linf (m, nu, ctp, fp, &irankr, &iterr, rr,
 ar, &zrn);
 if (rc < LaRcOk)
 {

© 2008 by Taylor & Francis Group, LLC

542 Numerical Linear Approximation in C

 GOTO_CLEANUP_RC (rc);
 }

 conn = fabs (zrn - zln);
 iflag[kl] = 1;
 iflag[klp1] = 1;
 if (conn > con)
 {
 iflag[kl] = 0;
 iflag[klp1] = 0;
 continue;
 }
 }
 /* The case where : -----z[i]>z[i+1] */
 else if (zp[kl] > zp[klp1])
 {
 isrn = isr - 1;
 ieln = isrn - 1;

 nu = ieln - isl + 1;
 for (j = isl; j <= ieln; j++)
 {
 ji = j - isl + 1;
 fp[ji] = f[j];
 for (i = 1; i <= m; i++)
 {
 ctp[i][ji] = ct[i][j];
 }
 }

 rc = LA_Linf (m, nu, ctp, fp, &irankl, &iterl, rl,
 al, &zln);
 if (rc < LaRcOk)
 {
 GOTO_CLEANUP_RC (rc);
 }

 nu = ier - isrn + 1;
 for (j = isrn; j <= ier; j++)
 {
 ji = j - isrn + 1;
 fp[ji] = f[j];
 for (i = 1; i <= m; i++)
 {
 ctp[i][ji] = ct[i][j];

© 2008 by Taylor & Francis Group, LLC

Chapter 15: LA_Linfpw2 543

 }
 }

 rc = LA_Linf (m, nu, ctp, fp, &irankr, &iterr, rr,
 ar, &zrn);
 if (rc < LaRcOk)
 {
 GOTO_CLEANUP_RC (rc);
 }

 conn = fabs (zrn - zln);
 iflag[kl] = 1;
 iflag[klp1] = 1;
 if (conn > con)
 {
 iflag[kl] = 0;
 iflag[klp1] = 0;
 continue;
 }
 }
 for (j = isl; j <= ieln; j++)
 {
 ji = j - isl + 1;
 rp2[j] = rl[ji];
 }
 for (j = isrn; j <= ier; j++)
 {
 ji = j - isrn + 1;
 rp2[j] = rr[ji];
 }
 for (i = 1; i <= m; i++)
 {
 ap[kl][i] = al[i];
 ap[klp1][i] = ar[i];
 }
 zp[kl] = zln;
 zp[klp1] = zrn;
 ixl[klp1] = isrn;
 isr = isrn;
 iel = isr - 1;
 }

 is = 2;
 if (istart == 2) is = 1;
 istart = is;

© 2008 by Taylor & Francis Group, LLC

544 Numerical Linear Approximation in C

 icb = 0;
 for (j = 1; j <= npiece; j++)
 {
 if (iflag[j] != 0) icb = 1;
 }
 if (icb == 0)
 {
 GOTO_CLEANUP_RC (LaRcSolutionFound);
 }
 }

CLEANUP:

 free_Vector_R (al);
 free_Vector_R (rl);
 free_Vector_R (bv);
 free_Matrix_R (binv, m + 1);

 free_Vector_I (icbas);
 free_Vector_I (irbas);
 free_Vector_I (ibound);

 free_Vector_R (ar);
 free_Vector_R (rr);

 free_Matrix_R (ctp, m + 1);
 free_Vector_R (fp);

 free_Vector_I (iflag);

 return rc;
}

© 2008 by Taylor & Francis Group, LLC

545

Chapter 16

Solution of Linear Inequalities

16.1 Introduction

Until now, we have dealt with different solutions of
overdetermined systems of linear equations, in the L1 and in the
Chebyshev norms. In this chapter, we deal with the solution of
overdetermined systems of linear inequalities of the form

(16.1.1) Ca > 0

C is a given real N by M matrix, and the 0 is a zero N-vector, N > M.
It is required to calculate the M-vector a that satisfies this inequality.

Solution of linear systems of inequalities such as (16.1.1) has
interesting applications for pattern classification problems, as
described in detail in Section 16.2.

In short we will show in Section 16.4 that the solution of system
(16.1.1) is none other than the one-sided solution of a system of linear
equations of the form Ca = f, where f is a strictly positive vector.

As early as 1952, Hoffman [20] considered the solution of the
consistent system of linear inequalities (using our notation)

(16.1.2) Ca ≤ f

By consistent, it was meant that a solution exists that satisfies the
system of inequalities. He gave a quantitative formulation of the
assertion that if vector a almost satisfies (16.1.2), then a is close to a
solution.

Over forty years later, Guler et al. [15] considered the result of
Hoffman and obtained a particularly simple proof of Hoffman�s
existence theorem. They also obtained a new representation for the
corresponding Lipschitz bound in that theorem and provided

© 2008 by Taylor & Francis Group, LLC

546 Numerical Linear Approximation in C

geometric representation of these bounds.
In 1954, both Agmon [5] and Motzkin and Schoenberg [24]

discussed an iterative method called the relaxation-projection method
for solving the consistent system

(16.1.3) Ca ≥ f

Associating these inequalities to half-spaces, in which a point
corresponding to a feasible solution lies, they proved that such a point
can be reached from some arbitrary outside point. Forty-three years
later, Labonte [21] examined the implementation of the relaxation
projection method to solve sets of linear inequalities using artificial
neural networks. He described the different versions of this method
and reported on tests he ran with simulated realizations of neural
networks.

Goffin [14] studied the rate of conversion of the relaxation method
by Agmon [5] and Motzkin and Schoenberg [24] and the possible
finiteness of the method.

Censor and Elfving [8] considered the iterative method of
Cimmino for solving linear equations and generalized it to solve a
general system of linear inequalities of the form Ca ≤ f. They also
showed how to modify a Richardson-type iterative least-squares
algorithm for computing a solution for the linear inequalities. De
Pierro and Iusem [11] proved the convergence of that method starting
from any point, both for consistent and inconsistent systems. The
convergence is to a feasible solution in the first case and to a weighted
least squares type solution in the second case. He [18] presented a
new method based on an iterative contraction technique to a convex
minimization problem. A system of linear inequalities may be trans-
lated to an equivalent unconstrained smooth convex minimization
problem to which the contraction method is applied.

None of the aforementioned authors presented an algorithm for
solving the inequalities (16.1.2) or (16.1.3). Interesting enough, a
solution to these equations is none other than a solution to the
one-sided overdetermined system of equations of the form Ca = f
from above and from below respectively. We shall introduce that in
Section 16.3.

Nagaraja and Krishna [25] developed an algorithm for solving the
system of linear inequalities Ca > 0 using the method of conjugate

© 2008 by Taylor & Francis Group, LLC

Chapter 16: Solution of Linear Inequalities 547

gradients for function minimization. They showed that the algorithm
converges to a solution in a finite number of steps for both consistent
and inconsistent cases. They stated that their algorithm converges
faster than that of Ho and Kashyap [19] and the accelerated relaxation
algorithms (which will be discussed shortly).

Nie and Xu [26] dealt with the inequality system Ca ≥ f. If it is an
inconsistent system, i.e., having an infeasible solution, they determine
which inequality in the system causes the inconsistency, and correct
its right hand side. They use the isometric plane method of linear
programming.

Cohen and Megiddo [10] considered the linear systems of
inequalities Ca ≤ f, where each inequality involves, at-most, two out
of the M elements (using our notation), i.e., each row of matrix C
contains, at-most, two nonzero elements. They state that their
algorithm is faster than previous algorithms.

Faigle et al. in their book ([13] Section 2.4) attempted to solve the
linear system of inequalities Ca ≤ f, by eliminating one variable after
the other, until a solution is obtained, or decide that no solution is
feasible. A solution, if it exists, is obtained by back substitution.
However, in the elementary row operations, only multiples with
strictly positive scalars are allowed. This is because multiplication of
an inequality by a negative scalar reverses the inequality sign. They
use the Fourier-Motzkin elimination method, which can be viewed as
Gauss elimination with respect to the set of non-negative scalars. As a
result, the Fourier-Motzkin elimination may considerably increase the
number of inequalities in every elimination step.

Han [17] described an algorithm for solving the system of
inequalities Ca ≤ f using a least squares solution technique. The
algorithm employs a singular value decomposition to sub-matrices of
matrix C. Later, Bramley and Winnicka [7] improved over Han�s
algorithm. They used the computationally efficient QR factorization
instead, which allows updating and downdating of matrix R. As a
result, their algorithm is much faster than that of Han [17]. For the QR
factorization, see Chapter 17. For the updating and downdating
techniques see Stewart [30] and for an algorithm using updating and
downdating techniques, see Abdelmalek [4].

Ho and Kashyap [19] also used a least squares solution technique
for solving the system Ca > 0. They considered the following

© 2008 by Taylor & Francis Group, LLC

548 Numerical Linear Approximation in C

equivalent problem instead. It is required to calculate the M weight
vector a and an N-vector f such that

(16.1.4) Ca = f, f > 0

The residual vector of (16.1.4) is

(16.1.5) r = Ca � f

Starting from a guess vector f = f(0) > 0, they used an iterative least
squares minimization method, where the residual vector (16.1.5) is
minimized in the Euclidean norm. In each iteration the r.h.s. vector f
is changed to f + δf and a new least squares solution vector is
calculated. If there is a solution to the system Ca > 0, the algorithm
converges in a finite number of steps, due to the fact that in each
iteration both vectors a and f change. Ho-Kashyap algorithm needs
the calculation of the pseudo-inverse C+ of matrix C.

Abdelmalek [2] presented an algorithm analogous to that of Ho
and Kashyap, except that the residual vector (16.1.5) is minimized in
the Chebyshev norm rather than in the least squares sense. In the
iterations of this method, parametric linear programming techniques
[16] were used with the Chebyshev approximation algorithm. This
resulted in a speed improvement to this method, and an algorithm that
converges faster than that of Ho and Kashyap [19]. In this method,
matrix C need not be a full rank matrix.

Pinar and Chen [27] presented an algorithm that calculated the L1
solution for the system Ca = f instead, where f is an n-vector each
element of which is 1. In their method, the L1 norm minimization
problem is approximated by a piecewise quadratic smooth function.

Bahi and Sreedharan [6] presented an algorithm for the solution of
the linear system of inequalities Ca ≥ f, in the Lp norm, where,
1 < p < ∞. They first characterized the solutions for the problem and
then introduced a dual to this problem. They presented the results of
their algorithm for 2 examples. Their numerical results for some cases
show the number of iterations to be very large.

16.1.1 Linear programming techniques

Linear programming techniques have been applied for some time
to the solution of the linear inequality Ca > 0. Minnick [23] showed
how linear programming could be used in the solution of the linear

© 2008 by Taylor & Francis Group, LLC

Chapter 16: Solution of Linear Inequalities 549

input logic problem, a linearly separable switching function, which
reduces to a linear inequality problem. Mangasarian [22] suggested
the use of linear programming to the solution of the problem, without
actually solving it. Smith [29] presented a linear programming
formulation of discriminant function design, which reduces to a
pattern classifier design. Duda and Hart ([12] pp. 167-169) presented
two different linear programming formulations to the problem Ca ≥ f,
without implementing them.

In our work, we solve problem (16.1.1) as a linear one-sided
approximation problem in the Lp norm, for p = ∞ and for p = 1. We
make use of the definition of the one-sided solution of overdetermined
linear equations in the Chebyshev norm of Chapter 11 and in the L1
norm of Chapter 6 respectively. We formulate the problem in such a
way that we may apply either of these two algorithms to it. Both
algorithms use linear programming techniques.

We also observe that there are one-sided problems whose
solutions do not exist. Hence, there are linear systems of inequalities
that do not have feasible solutions. See Example 16.2 in Section 16.6.

In Section 16.2, the pattern classification problem in formulated as
a problem of linear inequalities. In Section 16.3, the solution of the
system of linear inequalities Ca > 0 is presented as a one-sided
solution of the system of linear equations Ca = f, where f is a strictly
positive vector. In Sections 16.4 and 16.5, the linear one-sided
Chebyshev approximation algorithm and the linear one-sided L1
approximation algorithm are outlined respectively. In Section 16.6,
two numerical examples for solving the pattern classification
problems are given with comments.

16.2 Pattern classification problem

Overdetermined linear inequalities form a basic problem in
pattern classification. Given is a class A of s patterns and a class B of t
patterns, where each pattern is a point in an m-dimensional Euclidean
space. Let n = (s + t) and usually n >> m.

The pattern classification problem is summarized as follows. It is
required to find a surface in the m-dimensional space such that all
points of class A be on one side of this surface and all points of class
B be on the other side of the surface. Let the equation of this

© 2008 by Taylor & Francis Group, LLC

550 Numerical Linear Approximation in C

separating surface be

a1φ1(x) + a2φ2(x) + � + am+1φm+1(x) = 0

Vector a = (a1, a2, �, am+1)T is to be calculated and
{φ1(x), φ2(x), �, φm+1(x)} is a set of linearly independent functions
to be specified according to the geometry of the problem. Without loss
of generality, we may take φm+1(x) = 1.

Following Tou and Gonzalez ([31], pp. 40-41, 48-49), a decision
function d(x) of the form (taking φm+1(x) = 1)

d(x) = a1φ1(x) + a2φ2(x) + � + amφm(x) + am+1

is established. This function has the property that

(16.2.1) d(xi) < 0, xi ∈ A

and

(16.2.2) d(xi) > 0, xi ∈ B

The two classes of patterns A and B are linearly separable if and
only if there exists an (m + 1)-vector a such that the above two
inequalities are satisfied. If no such vector exists, then classes A and B
are linearly inseparable. By multiplying the first set of inequalities by
a �ve signs, we get

(16.2.3) �d(xi) > 0, xi ∈ A

The problem may now be posed as follows. Using (16.2.3) and
(16.2.2), let C be an n by (m + 1) matrix whose ith row Ci is

Ci = (�φ1(xi), �φ2(xi), �, �φm(xi), �1), 1 ≤ i ≤ s

and

Ci = (φ1(xi), φ2(xi), �, φm(xi), 1), (s + 1) ≤ i ≤ n

It is required to calculate the (m + 1)-vector a such that the system of
inequalities

Ca > 0

is satisfied. This is the same system of inequalities (16.1.1) above. In
this case, N = n and M = (m + 1).

Clark and Gonzalez [9] presented an algorithm based on a search
procedure where matrix C has to satisfy the Haar condition. That is,

© 2008 by Taylor & Francis Group, LLC

Chapter 16: Solution of Linear Inequalities 551

every (m + 1) by (m + 1) sub-matrix of C is of rank (m + 1). Sklansky
and Michelotti [28] described an algorithm, called a locally trained
piecewise linear classifier, for use with multi-dimensional data.

16.3 Solution of the system of linear inequalities Ca > 0

A common practice is to replace the inequalities Ca > 0 by the
inequalities

Ca ≥ f

where f is an N-vector, each element of which is positive. It is easier
to manipulate the system Ca ≥ f and that its solution is also a solution
to the system Ca > 0.

The solution of the system of linear inequalities Ca ≥ f, reminds
us of the one-sided solutions of overdetermined systems of linear
equations in the Chebyshev norm (Chapter 11) or in the L1 norm
(Chapter 6).

Here, two algorithms for solving the overdetermined system of
linear inequalities Ca > 0 are presented [3]. The first algorithm
calculates the one-sided Chebyshev solution from below of the system
Ca = f, where f is a strictly positive vector. The second algorithm
calculates the one-sided L1 solution from below of the same system
Ca = f, where f is a strictly positive vector. If a solution exists to
either of the one-sided problems, it would be a solution to the given
system of inequalities Ca > 0.

16.4 Linear one-sided Chebyshev approximation algorithm

Consider the overdetermined system of linear equations derived
from Ca ≥ f, namely

(16.4.1) Ca = f

where C = (cij) is an N by M real matrix and f = (fi) is an N real
vector, N > M. The Chebyshev solution of (16.4.1) is vector a that
minimizes the Chebyshev norm of the residuals

z = max|ri|, i = 1, 2, �, N

where ri is the ith residual and is given by

© 2008 by Taylor & Francis Group, LLC

552 Numerical Linear Approximation in C

, i = 1, 2, �, n

As in Chapter 11, when the solution vector a satisfies the
additional conditions

ri ≥ 0, i = 1, 2, �, N

we have the one-sided Chebyshev solution from below [1] of system
Ca = f.

Let h = maxi|ri|, then this problem is formulated in linear
programming as follows

minimize h

subject to

0 ≤ Ca � f ≤ he

where e is an N-vector, each element of which is 1 and the 0 is an
N-zero vector. From the left inequality we have

Ca ≥ f

Since we assume that f is a strictly positive vector, the solution of
the inequalities Ca ≥ f, is a solution of the inequalities Ca > 0. In
Chapter 11, an algorithm for the one-sided Chebyshev solution of
overdetermined systems of linear equations is presented.

16.5 Linear one-sided L1 approximation algorithm

Consider the overdetermined system of linear equations Ca = f in
(16.4.1). The L1 solution of this equation is the solution vector a that
minimizes the L1 norm of the residuals

where ri is the ith residual, as defined in section 16.4.
As in Chapter 6, when the solution vector a satisfies the additional

conditions

ri cijaj
j 1=

m

∑ fi�=

z ri
i 1=

N

∑=

© 2008 by Taylor & Francis Group, LLC

Chapter 16: Solution of Linear Inequalities 553

ri ≥ 0, i = 1, 2, �, N

we have the one-sided L1 solution from below of system Ca = f; that
is, for any equation i, i = 1, �, N, the observed value fi is not greater
than the calculated value of element i of Ca.

In other words, the inequalities ri ≥ 0, i = 1, 2, �, N, are translated
to

, i = 1, 2, �, N

Or in vector-matrix form

Ca ≥ f

Since we assume that f is a strictly positive vector, the solution
vector a of Ca ≥ f is a solution to the inequalities Ca > 0. In Chapter
6, an algorithm for the one-sided L1 solution of overdetermined
systems of linear equations was presented.

16.6 Numerical results and comments

DR_Chineq() calls the one-sided Chebyshev solution function
LA_Linfside() of Chapter 11, and DR_L1ineq() calls the one-sided L1
function LA_Loneside() of Chapter 6. Two pattern classification
examples are solved here.

Example 16.1

Consider the two dimensional problem of 16 points that belong to
the classes A and B. Their coordinates are as follows.

Class A:

{(1, 3), (1.5, 5), (2, 6), (2.5, 7), (�1, 2), (�1.5, 4), (�2, 6), (�2.5, 7)}

Class B:

{(2, 2), (4, 4), (5, 6), (6, 7), (�3, �1), (�4, 3), (�5, 4), (�6, 6)}

We assume that the separating curve of the two classes is the
vertical parabola

(16.6.1) a1 + a2x + a3x2 + a4y = 0

cijaj
j 1=

M

∑ fi≥

© 2008 by Taylor & Francis Group, LLC

554 Numerical Linear Approximation in C

We should remember that the decision function of (16.2.1) for
class A is d(xi) < 0, xi ∈ A. The decision function for this example is
the l.h.s. of the equation of the vertical parabola in (16.6.1). In order to
reverse the < sign for class A, we multiply d(xi) < 0, xi ∈ A by �1.
Also, it is customary to take each element of vector f as 1. Hence,
from Ca ≥ f, the following equation is formed

a11 + a2x + a3x2 + a4y = f

where 1 is a vector of 16 elements, each of which is 1. That is

The solution by the first algorithm, the one-sided Chebyshev
approximation from below, is a = (1.42, 0.38, 0.287, �1.164)T, which
is y = 1.22 + 0.327x + 0.247x2. The solution by the second algorithm,
the one-side L1 approximation from below, is a = (0.733, 0.4, 0.267,
�0.8)T, which is y = 0.92 + 0.5x + 0.33x2. The separating curves for
the two algorithms are shown in Figure 16-1.

1� 1� 1� 3�
1� 1.5� 2.25� 5�
1� 2� 4� 6�
1� 2.5� 6.25� 7�
1� 1 1� 2�
1� 1.5 2.25� 4�
1� 2 4� 6�
1� 2.5 6.25� 7�

1 2 4 2
1 4 16 4
1 5 25 6
1 6 36 7
1 3� 9 1�
1 4� 16 3
1 5� 25 4
1 6� 36 6

a1

a2

a3

a4

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

=

© 2008 by Taylor & Francis Group, LLC

Chapter 16: Solution of Linear Inequalities 555

Figure 16-1: Two curves that each separate the patterns of class A from
the patterns of class B

 Algorithm 1 produces the thick parabola and algorithm 2
produces the thin parabola. Each parabola separates the patterns of
class A, denoted by �.�, from the patterns of class B, denoted by �×�.

Example 16.2

Consider the two dimensional problem of 12 points that belong to
the two classes A and B. Their coordinates are

Class A:

{(2, 1), (2, �1), (4, 1), (4, �1), (�3, 1), (�3, �1)}

Class B:

{(3, �3), (5, �3), (4, �4), (�1, 3), (�3, 3), (�2, 5)}

We assume that the separating curve of the two classes is the ellipse
a1x2 + a2y2 + a3 = 0

Vector f is again a 12-vector, each element of which is 1. Hence, from
the inequality Ca ≥ f, the following equation is formed

a1x2 + a2y2 + a3 = f

-2

0

2

4

6

8

10

12

14

16

18

-8 -6 -4 -2 0 2 4 6 8

© 2008 by Taylor & Francis Group, LLC

556 Numerical Linear Approximation in C

The solution vector by either of the two algorithms is
a = (0.0, 0.25, �1.25)T, which gives the result y2 = 5, or y = ±sqrt(5).
Certainly, the two straight lines y = ± sqrt(5) is a solution to the
inequality Ca > 0.

For this example the second point in class B is then changed from
(5, �3) to (5, 1) and the problem is re-solved. The obtained result by
both algorithms is a = (0.222, 0.667, �5.222)T. This is an ellipse of
semi-major and semi-minor axes 4.85 and 2.8 respectively.

Once more, for this example, the second point in class B is
changed from (5, �3) to (4, 1). Both algorithms return, indicating that
no feasible solution is obtained; that is, the two classes A and B are
inseparable.

It should be noted that if we replace vector f in (16.4.1) by Kf,
where K is a positive scalar, the obtained solution vector would be Ka
and we would get the same separating surface.

Our two algorithms are comparable in speed. They are faster and
simpler than other existing algorithms including a previous one by the
author [2]. They also converge in a finite number of iterations. Being
linear programs, the number of iterations is of the order of 2 to 3 times
the smaller dimension of matrix C in Ca > 0. Another important
points is the following.

Finally, since we are using linear programming techniques, matrix
C need not be of full rank.

4� 1� 1�
4� 1� 1�
16� 1� 1�
16� 1� 1�
9� 1� 1�
9� 1� 1�

9 9 1
25 9 1
16 16 1
1 9 1
9 9 1
4 25 1

a1

a2

a3

1
1
1
1
1
1
1
1
1
1
1
1

=

© 2008 by Taylor & Francis Group, LLC

Chapter 16: Solution of Linear Inequalities 557

References

1. Abdelmalek, N.N., The discrete linear one-sided Chebyshev
approximation, Journal of Institute of Mathematics and
Applications, 18(1976)361-370.

2. Abdelmalek, N.N., Chebyshev approximation algorithm for
linear inequalities and its applications to pattern recognition,
International Journal of Systems Science, 12(1981)963-975.

3. Abdelmalek, N.N., Linear one-sided approximation algo-
rithms for the solution of overdetermined systems of linear
inequalities, International Journal of Systems Science,
15(1984)1-8.

4. Abdelmalek, N.N., Piecewise linear least-squares approxi-
mation of planar curves, International Journal of Systems
Science, 21(1990)1393-1403.

5. Agmon, S., The relaxation method for linear inequalities,
Canadian Journal of Mathematics, 6(1954)382-392.

6. Bahi, S. and Sreedharan, V.P., An algorithm for a minimum
norm solution of a system of linear inequalities, International
Journal of Computer Mathematics, 80(2003)639-647.

7. Bramley, R. and Winnicka, B., Solving linear inequalities in a
least squares sense, SIAM Journal on Scientific Computation,
17(1996)275-286.

8. Censor, Y. and Elfving, T., New methods for linear inequal-
ities, Linear Algebra and its Applications, 42(1982)199-211.

9. Clark, D.C. and Gonzalez, R.C., Optimal solution of linear
inequalities with applications to pattern recognition, IEEE
Transactions on Pattern Analysis and Machine Intelligence,
6(1981)643-655.

10. Cohen, E. and Megiddo, N., Improved algorithms for linear
inequalities with two variables per inequality, SIAM Journal
on Computing, 23(1994)1313-1347.

11. De Pierro, A.R. and Iusem, A.N., A simultaneous projections
method for linear inequalities, Linear Algebra and its
Applications, 64(1985)243-253.

12. Duda, R.O. and Hart, P.E., Pattern Classification and Scene
Analysis, John Wiley & Sons, New York, 1973.

© 2008 by Taylor & Francis Group, LLC

558 Numerical Linear Approximation in C

13. Faigle, U., Kern, W. and Still, G., Algorithmic Principles of
Mathematical Programming, Kluwer Academic Publishers,
London, 2002.

14. Goffin, J.L., The relaxation method for solving systems of
linear inequalities, Mathematics of Operations Research,
5(1980)388-414.

15. Guler, O., Hoffman, A.J. and Rothblum, U.G., Approxi-
mations to solutions to systems of linear inequalities, SIAM
Journal on Matrix Analysis and Applications, 16(1995)688-
696.

16. Hadley, G., Linear Programming, Addison-Wesley, Reading,
MA, 1962.

17. Han, S-P., Least squares solution of linear inequalities,
Technical Report TR-2141, Mathematics Research Center,
University of Wisconsin-Madison, 1980.

18. He, B., New contraction methods for linear inequalities,
Linear Algebra and its Applications, 207(1994)115-133.

19. Ho, Y-C. and Kashyap, R.L., An algorithm for linear
inequalities and its applications, IEEE Transactions on
Electronic Computers, 14(1965)683-688.

20. Hoffman, A.J., On approximate solutions of systems of linear
inequalities, Journal of Research of the National Bureau of
Standards, 49(1952)263-265.

21. Labonte, G., On solving systems of linear inequalities with
artificial neural networks, IEEE Transactions on Neural
Networks, 8(1997)590-600.

22. Mangasarian, O.L., Iterative solution of linear programs,
SIAM Journal on Numerical Analysis, 18(1981)606-614.

23. Minnick, R.C., Linear-input logic, IRE Transactions on
Electronic Computers, 10(1961)6-16.

24. Motzkin, T.S. and Schoenberg, I.J., The relaxation method
for linear inequalities, Canadian Journal of Mathematics,
6(1954)393-404.

25. Nagaraja, G. and Krishna, G., An algorithm for the solution
of linear inequalities, IEEE Transactions on Computers,
23(1974)421-427.

© 2008 by Taylor & Francis Group, LLC

Chapter 16: Solution of Linear Inequalities 559

26. Nie, Y.Y. and Xu, S.R., Determination and correction of an
inconsistent system of linear inequalities, Journal of
Computational Mathematics, 13(1995)211-217.

27. Pinar, M.C. and Chen, B., l1 solution of linear inequalities,
IMA Journal of Numerical Analysis, 19(1999)19-37.

28. Sklansky, J. and Michelotti, L., Locally trained piecewise
linear classifier, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2(1980)101-110.

29. Smith, F.W., Pattern classifier design by linear programming,
IEEE Transactions on Computers, 17(1968)367-372.

30. Stewart, G.W., The effects of rounding residual on an
algorithm for downdating a Cholesky factorization, Journal of
Institute of Mathematics and Applications, 23(1979)203-213.

31. Tou, J.L. and Gonzalez, R.C., Pattern Recognition Principles,
Addison-Wesley, Reading, MA, 1974.

© 2008 by Taylor & Francis Group, LLC

560 Numerical Linear Approximation in C

16.7 DR_Chineq

/*---
DR_Chineq

Given is an overdetermined system of linear inequalities of the form

(1) c*a > 0

"c" is a given real n by m matrix of rank k, k <= m < n. Usually,
n>>m. It is required to obtain the m solution vector "a" for this
system.

System (1) is first replaced by the overdetermined system of linear
equations

(2) c*a = f

where "f" is a strictly real positive n vector.

This program is a driver for the function LA_Chineq(), which
calculates the one-sided "Chebyshev" solution from below of system
(2). This solution itself would be a solution of the inequality (1).

This driver contains examples for problems of pattern classification
in which there are two classes of patterns. It is required to
calculate the parameters of a plane curve that separates the two
classes. The results of these examples appear in the text.

Example 1:
 class a: { (1,3), (1.5,5), (2,6), (2.5,7), (-1,2), (-1.5,4),
 (-2,6), (-2.5,7) }
 class b: { (2,2), (4,4), (5,6), (6,7), (-3,-1), (-4,3), (-5,4),
 (-6,6) }
 separating curve is the parabola

 a1 + a2*x + a3*x*x + a4*y = 0

Example 2:
 class A: { (2,1), (2,-1), (4,1), (4,-1), (-3,1), (-3,-1) }
 class B: { (3,-3), (5,-3), (4,-4), (-1,3), (-3,3), (-2,5) }
 Separating curve is the ellipse

 a1*x*x + a2*y*y + a3 = 0

© 2008 by Taylor & Francis Group, LLC

Chapter 16: DR_Chineq 561

Example 3:
 class A: { (2,1), (2,-1), (4,1), (4,-1), (-3,1), (-3,-1) }
 class B: { (3,-3), (5,1), (4,-4), (-1,3), (-3,3), (-2,5) }
 Separating curve is the ellipse

 a1*x*x + a2*y*y + a3 = 0

 This example is itself example 2, but with the second point
 in B (5,-3) replaced by (5,1).

Example 4:
 class A: { (2,1), (2,-1), (4,1), (4,-1), (-3,1), (-3,-1) }
 class B: { (3,-3), (4,1), (4,-4), (-1,3), (-3,3), (-2,5) }
 Separating curve is the ellipse

 a1*x*x + a2*y*y + a3 = 0

 This example is itself example 2, but with the second point in
 B (5,-3) replaced by (4,1).
---*/

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define N1q 16
#define M1q 4
#define N2q 12
#define M2q 3

void DR_Chineq (void)
{
 /*--
 Constant matrices/vectors
 --*/
 static tNumber_R Cainit[N1q][M1q] =
 {
 { -1.0, -1.0, -1.0, -3.0 },
 { -1.0, -1.5, -2.25, -5.0 },
 { -1.0, -2.0, -4.0, -6.0 },
 { -1.0, -2.5, -6.25, -7.0 },
 { -1.0, 1.0, -1.0, -2.0 },
 { -1.0, 1.5, -2.25, -4.0 },
 { -1.0, 2.0, -4.0, -6.0 },
 { -1.0, 2.5, -6.25, -7.0 },

© 2008 by Taylor & Francis Group, LLC

562 Numerical Linear Approximation in C

 { 1.0, 2.0, 4.0, 2.0 },
 { 1.0, 4.0, 16.0, 4.0 },
 { 1.0, 5.0, 25.0, 6.0 },
 { 1.0, 6.0, 36.0, 7.0 },
 { 1.0, -3.0, 9.0, -1.0 },
 { 1.0, -4.0, 16.0, 3.0 },
 { 1.0, -5.0, 25.0, 4.0 },
 { 1.0, -6.0, 36.0, 6.0 }
 };

 static tNumber_R Cbinit[N2q][M2q] =
 {
 { -4.0, -1.0, -1.0 },
 { -4.0, -1.0, -1.0 },
 { -16.0, -1.0, -1.0 },
 { -16.0, -1.0, -1.0 },
 { -9.0, -1.0, -1.0 },
 { -9.0, -1.0, -1.0 },
 { 9.0, 9.0, 1.0 },
 { 25.0, 9.0, 1.0 },
 { 16.0, 16.0, 1.0 },
 { 1.0, 9.0, 1.0 },
 { 9.0, 9.0, 1.0 },
 { 4.0, 25.0, 1.0 }
 };

 static tNumber_R fa[N1q+1] =
 { NIL,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0
 };

 static tNumber_R fb[N2q+1] =
 { NIL,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
 };

 /*--
 Variable matrices/vectors
 --*/
 tMatrix_R ct = alloc_Matrix_R (MMc_COLS, NN_ROWS);
 tVector_R f = alloc_Vector_R (NN_ROWS);
 tVector_R r = alloc_Vector_R (NN_ROWS);
 tVector_R a = alloc_Vector_R (MMc_COLS);

© 2008 by Taylor & Francis Group, LLC

Chapter 16: DR_Chineq 563

 tMatrix_R Ca = init_Matrix_R (&(Cainit[0][0]), N1q, M1q);
 tMatrix_R Cb = init_Matrix_R (&(Cbinit[0][0]), N2q, M2q);

 int irank, iter, iside;
 int i, j, m, n, Iexmpl;
 tNumber_R z = 0.0;

 eLaRc rc = LaRcOk;

 prn_dr_bnr ("DR_Chineq, Solving an Overdetermined System of"
 " Linear Inequalities");

 for (Iexmpl = 1; Iexmpl <= 4; Iexmpl++)
 {
 switch (Iexmpl)
 {
 case 1:
 n = N1q;
 m = M1q;
 for (i = 1; i <= n; i++)
 {
 f[i] = fa[i];
 for (j = 1; j <= m; j++)
 {
 ct[j][i] = Ca[i][j];
 }
 }
 break;

 case 2:
 n = N2q;
 m = M2q;
 for (i = 1; i <= n; i++)
 {
 f[i] = fb[i];
 for (j = 1; j <= m; j++)
 {
 ct[j][i] = Cb[i][j];
 }
 }
 break;

 case 3:
 n = N2q;

© 2008 by Taylor & Francis Group, LLC

564 Numerical Linear Approximation in C

 m = M2q;
 for (i = 1; i <= n; i++)
 {
 f[i] = fb[i];
 for (j = 1; j <= m; j++)
 {
 ct[j][i] = Cb[i][j];
 }
 ct[2][8] = 1.0;
 }
 break;

 case 4:
 n = N2q;
 m = M2q;
 for (i = 1; i <= n; i++)
 {
 f[i] = fb[i];
 for (j = 1; j <= m; j++)
 {
 ct[j][i] = Cb[i][j];
 }
 ct[1][8] = 16.0;
 ct[2][8] = 1.0;
 }
 break;

 default:
 break;
 }
 prn_algo_bnr("Chineq");
 prn_example_delim();
 PRN ("Example #%d: Size of matrix \"c\" %d by %d\n",
 Iexmpl, n, m);
 prn_example_delim();
 PRN ("\"Linfside\" for Solving an Overdetermined System of"
 " Linear Inequalities\n");
 prn_example_delim();
 PRN ("r.h.s. Vector \"f\"\n");
 prn_Vector_R (f, n);
 PRN ("Transpose of Coefficient Matrix, \"ct\"\n");
 prn_Matrix_R (ct, m, n);
 iside = 0;

 rc = LA_Linfside (iside, m, n, ct, f, &irank, &iter, r, a,

© 2008 by Taylor & Francis Group, LLC

Chapter 16: DR_Chineq 565

 &z);

 if (rc >= LaRcOk)
 {
 PRN ("\n");
 PRN ("Results of the Solution of Linear Inequalities\n");
 PRN ("One-sided Chebyshev solution vector \"a\"\n");
 prn_Vector_R (a, m);
 PRN ("One-sided Chebyshev residual vector \"r\"\n");
 prn_Vector_R (r, n);
 PRN ("One-sided Chebyshev norm \"z\" = %8.4f\n", z);
 PRN ("Rank of of matrix \"c\" = %d, No. of "
 " Iterations = %d\n", irank, iter);
 }

 prn_la_rc (rc);
 }

 free_Matrix_R (ct, MMc_COLS);
 free_Vector_R (f);
 free_Vector_R (r);
 free_Vector_R (a);

 uninit_Matrix_R (Ca);
 uninit_Matrix_R (Cb);
}

© 2008 by Taylor & Francis Group, LLC

566 Numerical Linear Approximation in C

16.8 DR_L1ineq

/*---
DR_L1ineq

Given is an overdetermined system of linear inequalities of the form

(1) c*a > 0

"c" is a given real n by m matrix of rank k, k <= m < n. Usually,
n>>m. It is required to obtain the m solution vector "a" for this
system.

System (1) is first replaced by the overdetermined system of linear
equations

(2) c*a = f

where "f" is a strictly real positive n vector.

This program is a driver for the function LA_L1ineq(), which
calculates the one-sided L-One solution from below of system (2).
This solution itself would be a solution of the inequality (1).

This driver contains examples for problems of pattern classification
in which there are two classes of patterns. It is required to
calculate the parameters of a plane curve that separates the two
classes. The results of these examples appear in the text.

Example 1:
 class a: { (1,3), (1.5,5), (2,6), (2.5,7), (-1,2), (-1.5,4),
 (-2,6), (-2.5,7) }
 class b: { (2,2), (4,4), (5,6), (6,7), (-3,-1), (-4,3), (-5,4),
 (-6,6) }
 separating curve is the parabola

 a1 + a2*x + a3*x*x + a4*y = 0

Example 2:
 class A: { (2,1), (2,-1), (4,1), (4,-1), (-3,1), (-3,-1) }
 class B: { (3,-3), (5,-3), (4,-4), (-1,3), (-3,3), (-2,5) }
 Separating curve is the ellipse

 a1*x*x + a2*y*y + a3 = 0

© 2008 by Taylor & Francis Group, LLC

Chapter 16: DR_L1ineq 567

Example 3:
 class A: { (2,1), (2,-1), (4,1), (4,-1), (-3,1), (-3,-1) }
 class B: { (3,-3), (5,1), (4,-4), (-1,3), (-3,3), (-2,5) }
 Separating curve is the ellipse

 a1*x*x + a2*y*y + a3 = 0

 This example is itself example 2, but with the second point
 in B (5,-3) replaced by (5,1).

Example 4:
 class A: { (2,1), (2,-1), (4,1), (4,-1), (-3,1), (-3,-1) }
 class B: { (3,-3), (4,1), (4,-4), (-1,3), (-3,3), (-2,5) }
 Separating curve is the ellipse

 a1*x*x + a2*y*y + a3 = 0.

 This example is itself example 2, but with the second point in
 B (5,-3) replaced by (4,1).
---*/

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define Na 16
#define Ma 4
#define Nb 12
#define Mb 3

void DR_L1ineq (void)
{
 /*--
 Constant matrices/vectors
 --*/
 static tNumber_R Cainit[Na][Ma] =
 {
 { -1.0, -1.0, -1.0, -3.0 },
 { -1.0, -1.5, -2.25, -5.0 },
 { -1.0, -2.0, -4.0, -6.0 },
 { -1.0, -2.5, -6.25, -7.0 },
 { -1.0, 1.0, -1.0, -2.0 },
 { -1.0, 1.5, -2.25, -4.0 },
 { -1.0, 2.0, -4.0, -6.0 },
 { -1.0, 2.5, -6.25, -7.0 },

© 2008 by Taylor & Francis Group, LLC

568 Numerical Linear Approximation in C

 { 1.0, 2.0, 4.0, 2.0 },
 { 1.0, 4.0, 16.0, 4.0 },
 { 1.0, 5.0, 25.0, 6.0 },
 { 1.0, 6.0, 36.0, 7.0 },
 { 1.0, -3.0, 9.0, -1.0 },
 { 1.0, -4.0, 16.0, 3.0 },
 { 1.0, -5.0, 25.0, 4.0 },
 { 1.0, -6.0, 36.0, 6.0 }
 };

 static tNumber_R Cbinit[Nb][Mb] =
 {
 { -4.0, -1.0, -1.0 },
 { -4.0, -1.0, -1.0 },
 { -16.0, -1.0, -1.0 },
 { -16.0, -1.0, -1.0 },
 { -9.0, -1.0, -1.0 },
 { -9.0, -1.0, -1.0 },
 { 9.0, 9.0, 1.0 },
 { 25.0, 9.0, 1.0 },
 { 16.0, 16.0, 1.0 },
 { 1.0, 9.0, 1.0 },
 { 9.0, 9.0, 1.0 },
 { 4.0, 25.0, 1.0 }
 };

 static tNumber_R fa[Na+1] =
 { NIL,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
 };

 static tNumber_R fb[Nb+1] =
 { NIL,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
 };

 /*--
 Variable matrices/vectors
 --*/
 tMatrix_R ct = alloc_Matrix_R (MM_COLS, NN_ROWS);
 tVector_R f = alloc_Vector_R (NN_ROWS);
 tVector_R r = alloc_Vector_R (NN_ROWS);
 tVector_R a = alloc_Vector_R (MM_COLS);

© 2008 by Taylor & Francis Group, LLC

Chapter 16: DR_L1ineq 569

 tMatrix_R Ca = init_Matrix_R (&(Cainit[0][0]), Na, Ma);
 tMatrix_R Cb = init_Matrix_R (&(Cbinit[0][0]), Nb, Mb);

 int irank, iter, iside;
 int i, j, m, n, Iexmpl;
 tNumber_R z;

 eLaRc rc = LaRcOk;

 prn_dr_bnr ("DR_L1ineq, Solving an Overdetermined System of"
 " Linear Inequalities");

 for (Iexmpl = 1; Iexmpl <= 4; Iexmpl++)
 {
 switch (Iexmpl)
 {
 case 1:
 n = Na;
 m = Ma;
 for (i = 1; i <= n; i++)
 {
 f[i] = fa[i];
 for (j = 1; j <= m; j++)
 {
 ct[j][i] = Ca[i][j];
 }
 }
 break;

 case 2:
 n = Nb;
 m = Mb;
 for (i = 1; i <= n; i++)
 {
 f[i] = fb[i];
 for (j = 1; j <= m; j++)
 {
 ct[j][i] = Cb[i][j];
 }
 }
 break;

 case 3:
 n = Nb;
 m = Mb;

© 2008 by Taylor & Francis Group, LLC

570 Numerical Linear Approximation in C

 for (i = 1; i <= n; i++)
 {
 f[i] = fb[i];
 for (j = 1; j <= m; j++)
 {
 ct[j][i] = Cb[i][j];
 }
 ct[2][8] = 1.0;
 }
 break;

 case 4:
 n = Nb;
 m = Mb;
 for (i = 1; i <= n; i++)
 {
 f[i] = fb[i];
 for (j = 1; j <= m; j++)
 {
 ct[j][i] = Cb[i][j];
 }
 ct[1][8] = 16.0;
 ct[2][8] = 1.0;
 }
 break;

 default:
 break;
 }

 prn_algo_bnr ("L1ineq");
 prn_example_delim();
 PRN ("Example #%d: Size of matrix \"c\": %d by %d\n",
 Iexmpl, n, m);
 prn_example_delim();
 PRN ("\"Loneside\" for Solving an Overdetermined System of"
 " Linear Inequalities\n");
 prn_example_delim();
 PRN ("r.h.s. Vector \"f\"\n");
 prn_Vector_R (f, n);
 PRN ("Transpose of Coefficient Matrix, \"ct\"\n");
 prn_Matrix_R (ct, m, n);
 iside = 0;

 rc = LA_Loneside (iside, m, n, ct, f, &irank, &iter, r, a,

© 2008 by Taylor & Francis Group, LLC

Chapter 16: DR_L1ineq 571

 &z);

 if (rc >= LaRcOk)
 {
 PRN ("\n");
 PRN ("Results of the Solution of Linear Inequalities\n");
 PRN ("One-sided L-One solution vector \"a\"\n");
 prn_Vector_R (a, m);
 PRN ("One-sided L-One residual vector \"r\"\n");
 prn_Vector_R (r, n);
 PRN ("One-sided L-One norm \"z\" = %8.4f\n", z);
 PRN ("Rank of of matrix \"c\" = %d, No. of "
 " Iterations = %d\n", irank, iter);
 }

 prn_la_rc (rc);
 }

 free_Matrix_R (ct, MM_COLS);
 free_Vector_R (f);
 free_Vector_R (r);
 free_Vector_R (a);

 uninit_Matrix_R (Ca);
 uninit_Matrix_R (Cb);
}

© 2008 by Taylor & Francis Group, LLC

PART 4

The Least Squares Approximation

© 2008 by Taylor & Francis Group, LLC

574 Numerical Linear Approximation in C

Chapter 17 Least Squares and Pseudo-Inverses of
Matrices 575

Chapter 18 Piecewise Linear Least Squares
Approximation 671

Chapter 19 Solution of Ill-Posed Linear Systems 703

© 2008 by Taylor & Francis Group, LLC

575

Chapter 17

Least Squares and Pseudo-Inverses of Matrices

17.1 Introduction

It is expected that the reader of this chapter is familiar with the
concept of the least squares solution of systems of linear equations.
This chapter is the extension of Chapter 4, and is also a tutorial one.
Consider the systems of linear equations

Ax = b

A is a real n by m matrix, b is a real n-vector and x is the solution
m-vector. The residual vector for the system Ax = b, is given here by

r = b � Ax

It is known that A has an inverse A�1 if and only if A is a square
nonsingular matrix. The solution of the system Ax = b, is given by
x = A�1b. However, if A is a rectangular matrix, or a square singular
matrix, Ax = b may have an approximate solution. A least squares
solution x minimizes the L2 norm ||r||2 of the residual vector. The
least squares solution is given by x = A+b, where A+ is known as
the pseudo-inverse of A.

We state here some theorems concerning the least squares solution
of a system of linear equations whose coefficient matrix is a real
general one. Such theorems make it easy to understand the term
unique least squares solution or minimal length least squares
solution of a system of linear equations.

The pseudo-inverse of A is calculated by factorizing matrix A into
the product of 2 or 3 matrices, each is of full rank. The pseudo-inverse
of A is calculated in terms of the pseudo-inverses of the factorized
matrices.

© 2008 by Taylor & Francis Group, LLC

576 Numerical Linear Approximation in C

Two efficient matrix factorization methods are considered. These
are the Gauss LU factorization with complete pivoting and the
Householder�s QR factorization method with pivoting.

In Section 17.2, theorems are given concerning necessary and
sufficient conditions for the square of the residual vector to have a
minimum value. This leads to the definition and calculation of the
pseudo-inverse of matrix A and the definition of the minimal length
least squares solution.

In Section 17.3, the two mentioned factorizations of matrix A are
presented. A review of other factorization methods, such as Givens�
plane rotation and the classical and modified Gram-Schmidt methods,
is also presented.

In Section 17.4, explicit expressions for the pseudo-inverse in
terms of the factorization matrices are presented. The singular value
decomposition (SVD) of matrix A is given in Section 17.5, together
with the spectral condition number of A and some properties of the
pseudo-inverses of A. In Section 17.6, practical considerations in
computing the linear least squares solution of Ax = b are given. An
introduction of linear spaces and the pseudo-inverses is given in
Section 17.7.

The interesting subject of multicollinearity, collinearity of the
columns of matrix A, or the ill-conditioning of matrix A, is presented
in Section 17.8. This leads to the subject of dealing with
multicollinearity via the Principal components analysis (PCA), the
Partial least squares method (PLS) and the Ridge regression or
Ridge equation technique. These are given in Sections 17.9-17.11.

In Section 17.12, numerical results using the Gauss LU
factorization method with complete pivoting and the Householder�s
QR factorization method with pivoting are presented with
comments.

17.2 Least squares solution of linear equations

Let us assume that we have real matrices and vectors. Let AT and
xT refer to the transpose of matrix A and of vector x respectively. The
vector norm ||.|| denotes the L2 norm.

© 2008 by Taylor & Francis Group, LLC

Chapter 17: Least Squares and Pseudo-Inverses of Matrices 577

Theorem 17.1

A necessary and sufficient condition for the square of the residual
vector, (r, r) = ||r||2, to be minimum is that [18]

(17.2.1) AT(b � Ax) = 0

Proof:

Sufficiency: From the definition of r, we have

(r, r) = ((b � Ax), (b � Ax)) = (b, b) � (b, Ax) � (Ax, b) + (Ax, Ax)

Let us differentiate (r, r) w.r.t. x and equate to 0. This gives

ATAx = ATb or AT(b � Ax) = 0

Necessity: Suppose x gives the minimum (r, r) but

AT(b � Ax) = w ≠ 0

The square of the residual corresponding to x + εw, where ε is a small
positive parameter is easily found to be

||b � Ax � εΑw||2 = ||b � Ax||2 � 2ε||w||2 + ε2||Αw||2

For sufficiently small ε, the r.h.s. is < ||b � Ax||2. The hypothesis is
thus contradicted and we should have w = 0 and the theorem is
proved.

Theorem 17.2

Let A be an n by m matrix (n > m) of rank m. Then the linear least
squares solution to the system Ax = b is given by

(17.2.2) x = (ATA)�1ATb

Proof:

From (17.2.1), we write

(17.2.3) ATAx = ATb

Since A is of rank m, the m by m matrix (ATA) is nonsingular and
equation (17.2.3) has the solution x = (ATA)�1ATb and the theorem is
proved.

Equation (17.2.3) is known as the normal equation to the linear
least squares problem of Ax = b.

In (17.2.2), we may write x = A+b, where we define

© 2008 by Taylor & Francis Group, LLC

578 Numerical Linear Approximation in C

(17.2.4) A+ = (ATA)�1AT

as the pseudo-inverse of A. The motivation behind this is that if A is
square nonsingular, A+ in (17.2.4) reduces to A�1 and x = A�1b.

17.2.1 Minimal-length least squares solution

In (17.2.2) the solution x = A+b, where A+ is given by (17.2.4) is
unique, since A is an n by m matrix, n > m, of rank m and thus ATA is
nonsingular. However, in the general case, when n < m or when
rank(A) = k < min(n, m), the least squares solution of Ax = b is not
unique.

It is desired that the solution given by x = A+b, where A+ has a
suitable definition, for a general n by m matrix, be unique. On the
other hand, it was found that the solution of Ax = b that gives the
minimum residual norm ||r||2 and also the minimum norm ||x||2, is
unique. It is known as the minimal-length (or minimum norm) least
squares solution.

For this reason, the general derivation of A+ is based on the fact
that the least squares solution x of Ax = b is of minimum length. This
point is the basis of the next two theorems.

Theorem 17.3

If A is an n by m matrix (n < m) of rank n, then the minimal length
least squares solution x of Ax = b is given by

(17.2.5) x = AT(AAT)�1b

Proof:

Since n < m, the system of equations Ax = b is an
underdetermined system and thus has an infinite number of solutions
(Chapter 4). Hence, in order to obtain the unique minimal length least
squares solution, the problem is formulated as follows.

Find x that minimizes the inner product (x, x) subject to the
condition b � Ax = 0. This problem is solved by the method of
Lagrange multipliers. Let c = (c1, c2, �, cn)T be the Lagrange
multiplier vector. Let the function F be

F = (x, x) + (c, (b � Ax))

For minimum F, we differentiate F w.r.t. xi, i = 1, �, m and also w.r.t.

© 2008 by Taylor & Francis Group, LLC

Chapter 17: Least Squares and Pseudo-Inverses of Matrices 579

ci, i = 1, 2, �, n, and equate each of the m + n equations to 0. This
gives the two vector equations

ATc � 2x = 0 and b � Ax = 0

Thus (AAT)c = 2b or c = 2(AAT)�1b (since (AAT) is
non-singular). Substituting this value of c into the first equation gives
x = AT(AAT)�1b and the theorem is proved.

We write the solution (17.2.5) in the form

x = A+b, where A+ = AT(AAT)�1

Also, A+ reduces to A�1 if A is square nonsingular. As indicated in
Section 17.1, in order to be able to calculate the pseudo-inverse A+

efficiently, we first factorize matrix A into the product of 2 or 3
matrices, each of full rank. Then we get the pseudo-inverse of A in
terms of the pseudo-inverses of the factorized matrices.

17.3 Factorization of matrix A

Assume that A is a real n by m matrix of rank k, k ≤ min(n, m).
Then A may be factorized into two matrices, each of rank k. We shall
consider the factorization by the Gauss LU and by Householder�s QR
methods.

17.3.1 Gauss LU factorization

Let (A|b) denote the n by (m + 1) matrix whose first m columns
are matrix A and its (m + 1)th column is vector b. For maximum
numerical stability and also in order to help determine the rank of
(A|b), we obtain the LU factorization of (A|b) with complete pivoting.
This is done by permuting the rows of (A|b) and/or the columns of A.
The LU factorization will not be for matrix A, but rather for matrix A,
where, if S and P are permutation matrices, A = SAP. See Chapter 4.
The formal factorization proceeds exactly as in the nonsingular case
in Chapter 4. However, in the current case, if matrix A is of rank k,
after the kth step we shall have the factorization

(17.3.1) A = L1U1

L1 is an n by n-unit lower triangular matrix, while U1 is an n by m

© 2008 by Taylor & Francis Group, LLC

580 Numerical Linear Approximation in C

matrix. The upper k rows of U1 form an upper trapezoidal matrix and
its remaining rows consist of zero elements. See the structure of L1
and of U1 as illustrated by the following, where n = 6, m = 4 and k = 2.

It is clear that the last 4 columns of L1 and the last 4 rows of U1, in
this case, play no part in the factorization. They might be discarded
and instead we get the two trapezoidal matrices L and U.

Obviously, the elements aij of U1 or of U are not the elements of
matrix A; that is, we get the factorization

(17.3.2) A = LU

where L is an n by k-unit lower trapezoidal (its diagonal elements are
1�s) and U is a k by m upper trapezoidal matrix

 L1 U1

 L U

Note 17.1
For practical considerations whenever matrix U is a trapezoidal

(not a triangular) matrix, U may be factorized into

U = DU

L1U1

1
m21 1
m31 m32 1
m41 m42 0 1
m51 m52 0 0 1
m61 m62 0 0 0 1

a11 a12 a13 a14

a22 a23 a24

=

LU

1
m21 1
m31 m32

m41 m42

m51 m52

m61 m62

a11 a12 a13 a14

a22 a23 a23

=

© 2008 by Taylor & Francis Group, LLC

Chapter 17: Least Squares and Pseudo-Inverses of Matrices 581

and thus

(17.3.3) A = LDU

where D is a k by k diagonal matrix whose elements are the diagonal
elements of U and U is a unit trapezoidal matrix (with unit diagonal
elements).

17.3.2 Householder�s factorization

This factorization proceeds in the same manner as in the
nonsingular case of Chapter 4. Once more, the factorization is not for
matrix A, but for matrix A = AP, and P is a permutation matrix. If
matrix A is of rank k, k < min(n, m), then after the kth step, we shall
get

(17.3.4) A = Q1T1

Here, Q1 is an n by n orthonormal matrix (Q1
TQ1 = In), while T1 is an

n by m matrix whose first k rows form an upper trapezoidal and the
remaining (n � k) rows consist of zero elements. The last (n � k)
columns of Q1 and the last (m � k) rows of T1 play no part in the
factorization of A and should be discarded. We get

(17.3.5) A = QT

where Q is an n by k orthonormal matrix (QTQ = Ik) and T is a k by
m upper trapezoidal. In (17.3.5), we might also factorize T into

T = RWT

where R is a k by k upper triangular and W is an m by k orthonormal
matrix. This factorization might be achieved by a modified version of
the Householder�s method [10]. In this case, (17.3.5) becomes

(17.3.6) A = QRWT

where QTQ = Ik and WTW = Ik.
To simplify the notation, we shall assume from now on that the

permuted A is denoted by A, A+ is denoted by A+, where A+ is the
pseudo-inverse of A and the permuted x is denoted by x.

There are other orthogonal factorization methods that give
equally-accurate results as the Gauss LU factorization and
Householder's factorization methods, and also have their own merits.

© 2008 by Taylor & Francis Group, LLC

582 Numerical Linear Approximation in C

These are the Givens� transformation (known as plane rotations) and
the Gram-Schmidt methods.

For the next two sections, we shall assume that the n by m matrix
A, n > m, is of rank m. These methods are described here briefly and
they give the QR factorization of the un-permuted matrix A as the
Householder's factorization method, apart possibly from numerical
signs [1].

17.3.3 Givens� transformation (plane rotations)

Givens� transformation factorizes A into, A = QR. To achieve
this, matrix A is pre-multiplied by the so-called rotation matrices,
producing a triangular matrix R. Givens� method makes 0�s of desired
elements of matrix A while preserving existing 0 elements.
Pre-multiplying A by rotation matrices produces 0�s below the
diagonal of A. This is done column by column or row by row. As in
Householder�s factorization, the orthonormal matrix Q is not
calculated explicitly; rather, vector QTb is calculated.

There are two advantages for this method. It is best suited for
sparse matrices, where the existing 0�s in matrix A are preserved and
need not be treated [9]. Another advantage is that Givens�
transformation is best suited for updating the least squares solution of
the problem when equations are added to or deleted from the matrix
equation Ax = b. Stewart calls such a technique, the updating and
downdating of a system of linear equations [3, 23, 24].

17.3.4 Classical and modified Gram-Schmidt methods

Let vectors a1, a2, �, am be the columns of matrix A, assumed
linearly independent. It is required to construct a set of orthonormal
columns q1, q2, �, qm of a matrix Q such that for each k ≤ m, qk is a
linear combination of a1, a2, �, ak. Again, by orthonormal, we mean,
(qs, qs) = 1 and (qs, qk) = 0, s ≠ k. This is done by the Gram-Schmidt
algorithm. As a result, A is factorized as A = QR, where QTQ = Im,
and R is an upper triangular m by m matrix.

For the classical Gram-Schmidt algorithm, the elements of R are
calculated one column at a time. For the modified Gram-Schmidt, the
elements of R are instead calculated one row at a time [1, 5]. For the

© 2008 by Taylor & Francis Group, LLC

Chapter 17: Least Squares and Pseudo-Inverses of Matrices 583

classical Gram-Schmidt with re-orthogonalization, intermediate
vectors are formed and the re-orthogonalization is then carried out.
Such extra computation is a drawback for this last method. The
classical Gram-Schmidt algorithm is derived in Section 17.7.3.

In [1], following the presentation of Bjorck [5], a round-off error
analysis for the classical Gram-Schmidt algorithm with
re-orthogonalization was presented. A numerical example for an
ill-conditioned case was solved by the Householder�s factorization
(without pivoting), the classical Gram-Schmidt, the modified
Gram-Schmidt and the classical Gram-Schmidt with re-
orthogonalization. The last two methods compared favorably with
Householder�s method, while the classical Gram-Schmidt lacks
accuracy for the solution vector x, matrix R and for the orthogonality
of the columns of matrix Q, meaning QTQ ≈ Im, instead of QTQ = Im
(neglecting the rounding error).

Eventually, Longley [15] modified the presentation of Bjorck for
both the classical and the modified Gram-Schmidt methods.

A merit for the Gram-Schmidt algorithms is that in calculating the
least squares solution, the number of basis functions can be added
without recalculating the problem. Barrodale and Stuart [4] gave a
FORTRAN program for the modified Gram-Schmidt method that
allows the number of basis functions to be increased without
recalculating the problem form scratch.

17.4 Explicit expression for the pseudo-inverse

Let A be a real n by m matrix of rank k, k ≤ min(n, m). Then in
general, A may be factorized into the form

A = BC

where B is an n by k matrix and C is a k by m matrix, each of rank k.

Theorem 17.4

The minimal-length least squares solution of Ax = b, is given by
x = A+b, where

(17.4.1) A+ = C+B+ = CT(CCT)�1(BTB)�1BT

Proof:

© 2008 by Taylor & Francis Group, LLC

584 Numerical Linear Approximation in C

From Theorem 17.1, the linear least squares solution x satisfies
AT(b � Ax) = 0, or since AT = CTBT

CTBTBCx = CTBTb

From this we have CCTBTBCx = CCTBTb and since each of
(CCT) and (BTB) is a k by k square nonsingular matrix, by
pre-multiplying both sides by (BTB)�1(CCT)�1, we get

Cx = (BTB)�1BTb

Finally, by applying Theorem 17.3, (17.4.1) is obtained and the
theorem is proved.

17.4.1 A+ in terms of Gauss factorization

In view of (17.4.1), for A = LU by Gauss factorization, in terms of
L and U, we get

(17.4.2) A+ = UT(UUT)�1(LTL)�1LT

and thus the least squares solution x is given by

(17.4.3) x = UT(UUT)�1(LTL)�1LTb

If A is factorized into A = LDU, as in (17.3.3), we get respectively

A+ = UT(UUT)�1D�1(LTL)�1LT

and

x = UT(UUT)�1D�1(LTL)�1LTb

For the case k = m < n, in the factorization A = LU, U is an upper
triangular matrix and instead of (17.4.2) we get

A+ = U�1L+ = U�1(LTL)�1LT

For the case k = n < m, L is a lower triangular matrix. We have

A+ = U+L�1 = UT(UUT)�1L�1

17.4.2 A+ in terms of Householder�s factorization

For the factorization A = QT of (17.3.5), in view of (17.4.1) and
the fact that Q is orthonormal, Q+= QT

© 2008 by Taylor & Francis Group, LLC

Chapter 17: Least Squares and Pseudo-Inverses of Matrices 585

(17.4.4) A+ = TT(TTT)�1QT

and

x = TT(TTT)�1QTb

For the case k = m < n, T is an upper triangular matrix and instead
of (17.4.4), we get

A+ = T�1Q+ = T�1QT

Also, from (17.3.6)

A+ = WT+R�1Q+ = WR�1QT

Hence

(17.4.5) x = WR�1QTb

17.5 The singular value decomposition (SVD)

One of the most important factorizations for an n by m matrix A of
rank k, k ≤ min(n, m), is the singular value decomposition, given by

(17.5.1) A = VSWT

V is a real n by n orthonormal matrix, VTV = In, W is a real m by m
orthonormal matrix, WTW = Im and S is a n by m diagonal matrix,
S = diag(si). [Matrix W in (17.5.1) is different from matrix W in
(17.3.6)]. The positive real numbers si, i = 1, 2, �, k are known as the
singular values of A. They are often ordered so that
s1 ≥ s2 ≥ � ≥ sk > 0.

The singular value decomposition of A is closely related to the
eigenvalues and eigenvectors of matrix (ATA), where from (17.5.1),
(ATA) is decomposed as

(17.5.2) (ATA) = WS2WT

Theorem 17.5

The orthonormal matrix W diagonalizes (ATA) and hence the
diagonal elements of S2 are the eigenvalues of (ATA) and are the
squares of the singular values of A.

Proof:

Matrix W is orthonormal. From (17.5.2)

© 2008 by Taylor & Francis Group, LLC

586 Numerical Linear Approximation in C

(ATA)W = WS2

If we now write W = [w1, w2, �, wm], where the (wi) are the m
columns of W, the above equation becomes

(ATA)[w1, w2, �, wm] = [s1
2w1, s2

2w2, �, sm
2wm]

and the theorem is proved.

Though, the SVD of matrix A provides information about the
eigensystem of (ATA). More-importantly, it provides information that
relates directly to matrix A itself; that is, concerning the notion of the
(spectral) condition number of A, which is given in terms of the
largest and smallest singular values of A.

For the n by m matrix A of rank k, k ≤ min(n, m), since V and W
are each orthonormal, and hence are of full rank, rank(A) = rank(S)
and the SVD in (17.5.1) may be partitioned as

where S11 is a k by k diagonal non-singular matrix. The zeros denoted
by �0� are zero matrices. In this case, both V and W may be
partitioned as follows

V = [V1 V2] and W = [W1 W2]

where V1 is an n by k orthonormal matrix and V2 is an n by (n � k)
zero matrix. W1 is an m by k orthonormal matrix and W2 is an m by
(m � k) zero matrix. By post multiplying A by W, we deduce that

AW1 = V1S11 and AW2 = 0

from which the n by k matrix V1 provides an orthonormal basis for the
range of A (Section 17.7.4).

If we take the transpose of A, we get similar relations for AT,
namely

ATV1 = W1S11 and ATV2 = 0

from which the m by k matrix W1 provides an orthonormal basis for
the range of AT.

From now on, the SVD given by (17.5.1) is used, where, S, V and
W denote respectively S11, V1 and W1.

A VSWT V S11 0
0 0

WT= =

© 2008 by Taylor & Francis Group, LLC

Chapter 17: Least Squares and Pseudo-Inverses of Matrices 587

17.5.1 Spectral condition number of matrix A

Because each of V and W is an orthonormal matrix and S is
diagonal, from (17.5.1), the pseudo-inverse

(17.5.3) A+ = WS�1VT

Since V and W are orthonormal, the spectral norms of A and A+ are
given respectively by (see Theorem 4.3)

||A||2 = ||S||2 = s1 and ||A+||2 = ||S�1||2 = sk
�1

The spectral condition number for A, denoted by K is defined as

(17.5.4) K = ||A||2 ||A+||2 = [s1]/[sk]

The condition number of a matrix defines the condition of the
matrix with respect to a computing problem. When the condition
number is very large, in most cases, sk is very small. As a result, the
round-off error, or a small variation of vector b and/or of matrix A,
will affect the accuracy of the obtained solution x of Ax = b. The
resulting error in the solution x is proportional to the condition
number of the matrix. See Section 4.2.8 and also [2].

The least squares solution of the system Ax = b, by the singular
value decomposition, where rank(A) = k ≤ min(m, n) is given by
x = A+b, or

x = WS�1VTb

17.5.2 Main properties of the pseudo-inverse A+

Theorem 17.6

A+ satisfies the following relations

(i) A+AA+ = A+

(ii) AA+A = A
(iii) (AA+)T = (AA+)
(iv) (A+A)T = (A+A)

The proof of each of these four equalities follow easily from the
definition of A and A+ in (17.5.1) and (17.5.3) respectively.

If the n by m matrix A is of full rank, i.e., rank(A) = k =
min(n, m), then:

© 2008 by Taylor & Francis Group, LLC

588 Numerical Linear Approximation in C

(i) If k = m < n, A+ = (ATA)�1AT, A+A = Ik
(ii) If k = n < m, A+ = AT(AAT)�1, AA+ = Ik

where Ik
 is a k-unit matrix. Finally, if A is a square nonsingular matrix

A+ = A�1 the ordinary inverse of A.

17.6 Practical considerations in computing

When writing program code, a sequence of intermediate
calculations are performed in computing a final solution. The
following sections describe some practical considerations in this
regard. Assume that A and b are real.

17.6.1 Cholesky�s decomposition

Given a real k by k symmetric positive definite matrix B,
Cholesky's decomposition method decomposes B into

B = LLT

where L is a k by k lower triangular matrix. As it is assumed that
rank(B) = k, the Cholesky's decomposition will not break down in the
process of the decomposition of B. See for example, Lau ([14], p.
101).

17.6.2 Solution of the normal equation

To calculate the least squares solution of Ax = b from the normal
equation ATAx = ATb (equation (17.2.3)), the following practical
steps are taken. We assume that the n by m matrix A is of rank m.
Then the m by m matrix (ATA) is symmetric positive definite and
may be decomposed by Cholesky's decomposition into ATA = GGT,
where G is m by m lower triangular. The normal equation becomes

GGTx = ATb

We write u = ATb, y = GTx and we have Gy = u. Then y is obtained
by forward substitution and from GTx = y, x is obtained by backward
substitution.

Spath ([22], pp. 22-24) presented a FORTRAN routine for this
method and stated that it is very fast. However, if the columns of

© 2008 by Taylor & Francis Group, LLC

Chapter 17: Least Squares and Pseudo-Inverses of Matrices 589

matrix A are nearly linearly dependent, the obtained solution x would
not be accurate.

17.6.3 Solution via Gauss LU factorization method

To calculate the least squares solution x of Ax = b, given by

x = UT(UUT)�1(LTL)�1LTb

as in (17.4.3), we calculate the intermediate vectors u, y and z first, as
follows (assuming that matrix A is of rank k)

(17.6.1) u = LTb, (LTL)y = u, (UUT)z = y and x = UTz

Each of LTL and UUT is a positive definite k by k symmetric
matrix. They may be decomposed by Cholesky's decomposition into
(LTL) = YYT and (UUT) = ZZT, where each of Y and Z is a k by k
lower triangular matrix.

To calculate y and z we calculate the intermediate vectors x1 and
x2 first as follows. The solution of (LTL)y = u is done in two steps, by
solving the two triangular systems Yx1 = u and YTy = x1. The
solution of (UUT)z = y is given by solving the two triangular systems
Zx2 = y and ZTz = x2. Triangular systems are solved by backward or
by forward substitutions, depending on the triangular matrix at hand.

17.6.4 Solution via Householder�s method

The solution x of Ax = b by the Householder�s method

x = WR�1QTb

as given by (17.4.5) is obtained by calculating the intermediate
vectors u and v, where

(17.6.2) u = QTb, Rv = u and x = Wv

We note that Rv = u is a triangular system and the elements of v are
calculated by back substitution.

17.6.5 Calculation of A+

To calculate the m by n pseudo-matrix A+, we calculate its
columns x1, x2, �, xn. That by taking in (17.6.1) (or in (17.6.2)),

© 2008 by Taylor & Francis Group, LLC

590 Numerical Linear Approximation in C

b = e1, e2, �, en, in succession, where ei is the ith column of the unit
matrix In. The proof follows the proof given in Section 4.5.4, for
calculating the matrix inverse A�1.

17.6.6 Influence of the round-off error

In the presence of round-off error, the computed parameters will
differ slightly from the actual (correct) parameters. Equations (17.3.1)
and (17.3.4) may be given by (A is assumed of rank k)

(17.6.3) A + F1 = L1U1 and A + G1 = Q1T1

where F1 and G1 are two error matrices. Also, the matrices on the
r.h.s. of each equation are not the matrices that correspond to the exact
factorizations of A. Expected zero elements in the last (m � k) rows of
U1 and of T1 are small numbers.

Let H denote either F1 or G1. The singular values si of matrices A
and (A + H), i = 1, 2, �, are related by the following inequalities
([27], p. 102 - see also Theorem 4.8)

si(A) � ||H||2 ≤ si(A + H) ≤ si(A) + ||H||2
In particular, for i = k, |sk(A + H) � sk(A)| ≤ ||H||2 and for i = k + 1,
since sk+1(A) = 0, sk+1(A + H) ≤ ||H||2.

When H is a perturbation (slight error) matrix, sk(A) >> ||H||2,
sk(A + H) ≈ sk(A) and sk+1(A + H) << sk(A), we have a well division
line in each of the factorizations (17.6.3) between the very small
numbers and the other numbers in U1 and T1.

When these small numbers are detected and discarded, instead of
(17.6.3), we shall have

(17.6.3a) A + F = L1U1 and A + G = Q1T1

where ||F|| < ||F1|| and ||G|| < ||G1||.
Let dA, db and dx be perturbation terms. Then the computed

solution of Ax = b will satisfy

(A + dA)(x + dx) = (b + db)

For error analysis for the Gauss LU factorization method and for
the Householder�s method, the reader is referred to a detailed analysis
in [2].

© 2008 by Taylor & Francis Group, LLC

Chapter 17: Least Squares and Pseudo-Inverses of Matrices 591

17.7 Linear spaces and the pseudo-inverses

The simple idea of vector spaces, known as linear spaces, is
presented. The null and range spaces of a general n by m matrix A are
introduced. Finally, the orthogonal projection operators onto the range
and null spaces of A and of the pseudo-inverse A+ are derived. The
following definitions are needed to introduce this subject

17.7.1 Definitions, notations and related theorems

A linear combination of vectors: A vector x is said to be a linear
combination of vectors x1, x2, �, xk, if it can be written in the form

x = c1x1 + c2x2 + � + ckxk

where the ci are scalars. Obviously, vectors x and (xi) are of the same
dimensions.

A vector space (or a linear space): denoted by V, is the collection
of all vectors that are closed under the operations of addition and
multiplication by a scalar. That is, if vectors x1 and x2 belong to V, so
do vectors (x1 + x2), cx1 and dx2, where c and d are scalars. The
vectors �x1, �x2 and the zero vector 0 also belong to V. Symbolically
we write

x ∈ V

meaning x is a vector in V or x belongs to V. Vectors x1, x2, �, in V
are also known as points in the space V. Let x1, x2, �, xk, be
m-dimensional vectors. Then all possible combinations of this set of
vectors form a vector space V.

Spanning of a vector space: If a vector space consists of all linear
combinations of a set of vectors x1, x2, �, xk, this set of vectors is
said to span the linear space.

Linear dependence and linear independence: Let x1, x2, �, xj,
be a set of vectors. Then these vectors are linearly dependent if there
exist scalars c1, c2, �, cj, not all 0�s such that

c1x1 + c2x2 + � + cjxj = 0

If this equality is satisfied only when all the ci are 0�s, the given set of
vectors are linearly independent.

© 2008 by Taylor & Francis Group, LLC

592 Numerical Linear Approximation in C

If x1, x2, �, xk, span a vector space and one or more of the xi is
linearly dependent on the others, then the vector space is spanned by
the given set of vectors after omitting the dependent vectors.

Basis: Given a set of vectors x1, x2, �, xk, they form a basis for
the vector space if they are linearly independent and they span the
vector space.

Theorem 17.7

Every vector in a vector space may be expressed uniquely as a
linear combination of a given basis.

Dimension of a linear space: The dimension of a linear space
equals the number of vectors in its basis. If a space has a basis
consisting of a finite number of vectors, the space is known to be of
finite dimensions.

Theorem 17.8

The maximum number of linearly independent m-dimensional
vectors in the linear space V is m. In this case, we denote V by Vm.

17.7.2 Subspaces and their dimensions

Theorem 17.9

Let Vm be a vector space of dimension m and let x1, x2, �, xr,
r < m, be linearly independent vectors in Vm. Then there exist vectors
xr+1, xr+2, �, xm such that x1, x2, �, xr, xr+1, �, xm, form a basis for
Vm. Let x1, x2, �, xr, span the space U and xr+1, xr+2, �, xm span the
space W.

Subspaces: Each of U and W is called a subspace of the linear
space Vm. The dimension of U is r and the dimension of W is (m � r).
Every element of U is an element of Vm, but the converse is not
necessarily true. It is said that U is contained in Vm or Vm contains U.
This is symbolized by U ⊆ Vm or Vm ⊇ U.

A proper subspace: If U ≠ Vm, we write U ⊂ Vm or Vm ⊃ U and
U is called a proper subspace of Vm. The same is said about the
subspace W.

Direct sum of subspaces: In Theorem 17.9, we say that Vm is the

© 2008 by Taylor & Francis Group, LLC

Chapter 17: Least Squares and Pseudo-Inverses of Matrices 593

direct sum of U and W. This is symbolized by

Vm = U ⊕ W

In this case, the following conditions are satisfied:
(i) For every vector x ∈ Vm, there exists x1∈ U and x2 ∈ W such

that x = x1 + x2, and
(ii) If x ∈ U and x ∈ W, then x = 0. This condition indicates that

the only vector common to U and W is the zero vector.

Complements of subspaces: If Vm = U ⊕ W, it is said that U and
W are complements of each other.

Inner product spaces: If in a vector space V, the inner product of
two of its vectors satisfies:
(i) (x, cy+dz) = c(x, y) + d(x, z),
(ii) (x, y) = (y, x), and
(iii) (x, x) > 0, if x ≠ 0, where c and d are scalars, V is known as an

inner product space.

Orthogonality: If q1 and q2 are two vectors in an inner product
vector space V, then q1 and q2 are orthogonal if the inner product
(q1, q2) = 0.

Orthogonal set of vectors: If q1, q2, �, qk is a set of vectors in
V, then they form an orthogonal set if (qi, qj) = 0, i ≠ j. This set of
vectors are also known as orthonormal set if ||qi||2 = 1, i = 1, 2, �, k.

Theorem 17.10

Let V be an inner product space and q1, q2, �, qk form an
orthonormal set in V. Then assuming this set is real:
(i) q1, q2, �, qk are linearly independent,
(ii) k ≤ the dimension of V, and
(iii) if a vector x is a linear combination of this set, then

Proof:

The proof of (i) and (ii) is immediate since any qi cannot be a
linear combination of the rest. To prove (iii), we write x in the form

x qi,x()qi
i 1=

k

∑ qiqi
Tx

i 1=

k

∑= =

© 2008 by Taylor & Francis Group, LLC

594 Numerical Linear Approximation in C

x = c1q1 + c2q2 + � + ckqk

Then by taking the inner products with qi, i = 1, 2, �, k,
ci = (qi, x) = qi

Tx and the theorem is proved.

17.7.3 Gram-Schmidt orthogonalization

Theorem 17.11

(i) Given a set of linearly independent vectors a1, a2, �, ak, in an
inner product space Vm, k ≤ m, the Gram-Schmidt
orthogonalization algorithm constructs a set of orthonormal
vectors q1, q2, �, qk such that for each i ≤ k, qi is a linear
combination of a1, a2, �, ai.

(ii) Every m-dimensional inner product space Vm has an
orthonormal basis.

Proof:

We start by choosing q1 in the direction of a1 and write

t11q1 = a1

t11 is a normalization factor, chosen such that ||q1|| = 1, thus t11 = ||a1||.
That is

q1 = a1/||a1||

Next, we write q2 as a linear combination of a1 and a2, or in other
words, in terms of q1 and a2. We write

t22q2 = a2 � t12q1

We calculate t12 such that q2 is orthogonal to q1. Also, t22 is a
normalization factor. By taking the inner product of this equation with
q1, we get

(q1, t22q2) = 0 = (q1, a2) � t12(q1, q1)

Hence, since (q1, q1) = 1, t12 = (q1, a2) and t22 = ||a2 �t12q1||.
In general, for i = 2, 3, �, k, the vectors qi are given by

, 2 ≤ i ≤ mtiiqi ai tji
j 1=

i 1�

∑ qj�=

© 2008 by Taylor & Francis Group, LLC

Chapter 17: Least Squares and Pseudo-Inverses of Matrices 595

where tji = (qj, ai), j = 1, 2, �, i � 1 and

The proof of (ii) follows immediately.

The algorithm described above is in fact a factorization method.
Let the vectors a1, a2, �, ak be the columns of the m by k matrix A
and the vectors q1, q2, �, qk be the columns of the m by k matrix Q.
Then we have A = QT, where QTQ = Ik and T an upper triangular k
by k matrix whose elements are the tji parameters.

As noted earlier, the Gram-Schmidt QT factorization of A gives
the QR factorization of the un-permuted matrix A, as does the
Householder's factorization method, apart possibly from numerical
signs. The difference also is in the accuracies of the calculated
parameters, as indicated at the end of Section 17.3.4.

Orthonormal basis: If further q1, q2, �, qk form the basis of a
vector space V, then the vector space is spanned by an orthonormal
basis.

The Euclidean space: An m-dimensional Euclidean space
denoted by Em is an inner product space associated with any two
vectors x and y in Em. A non-negative number called the distance
between x and y is given by

||x � y|| = [(x � y), (x � y)]1/2

The familiar 2 and 3 dimensional geometric spaces are Euclidean
spaces. Let the 3 dimensional vectors x1, x2 and x3, be linearly
independent. Then they span E3. The two vectors x1 and x2 will span a
plane passing through the origin. This plane is a subspace of E3.
Likewise the vector x3 spans a straight line through the origin. This
line is also a subspace of E3. The vectors e1, e2 and e3, where ei is the
ith column of the unit matrix I3 may be taken as an orthonormal basis
for E3.

Orthogonal complements: If, in Section 17.7.2, for every vector
u ∈ U and for every vector w ∈ W, the inner product (u, w) = 0, U
and W are known as orthogonal complements of each other. In this
case, we write

tii ai tjiqj
j 1=

i 1�

∑�=

© 2008 by Taylor & Francis Group, LLC

596 Numerical Linear Approximation in C

W = U⊥ or U = W⊥

and also

Vm = U ⊕ U⊥ and Vm = W ⊕ W⊥

Null space of a matrix A: Consider the solution of the system of
linear equations Ax = 0, where A is an m by m matrix and x is an
m-vector. It is known that if rank(A) < m, Ax = 0 has an infinite
number of solutions (Theorem 4.14).

Theorem 17.12

The set of all solutions x of Ax = 0 is a vector space.

Proof:

If the nonzero vectors x1 and x2 are two solutions to Ax = 0, i.e.,
Ax1 = 0 and Ax2 = 0, then A(cx1 + dx2) = 0. Thus (cx1 + dx2) is also
a solution to Ax = 0. All such solutions with different values of the
scalars c and d constitute a vector space.

The vector space containing all the solutions x of Ax = 0, is
known as the null space of A and is denoted by N(A). Symbolically
we write

N(A) = {x ∈ Em | Ax = 0}

17.7.4 Range spaces of A and AT and their orthogonal
complements

The following definitions apply to range spaces and their
orthogonal complements:
(1) Range space of a matrix A: Let A be a general n by m matrix

of rank k. Then the vector space spanned by the columns of A
is known as the column space or the range space of A and is
denoted by R(A). Obviously, R(A) is a subspace of the
Euclidean space En and is of dimension k. Symbolically we
write

R(A) = {y ∈ En | y = Ax, x ∈ Em}

The space of all vectors that are orthogonal to the columns of
A is the orthogonal complement of R(A) and is denoted by
R(A)⊥.

© 2008 by Taylor & Francis Group, LLC

Chapter 17: Least Squares and Pseudo-Inverses of Matrices 597

Let us recall from Section 17.3 that a general n by m matrix of
rank k, k ≤ min(n, m) may be factorized in different forms. In
the orthogonal factorization of equation (17.3.4), we get (A
denotes the permuted A)

(17.7.1) A = Q1T1

where Q1 is an n by n orthonormal and T1 is an n by m matrix
whose first k rows form an upper trapezoidal and its last
(m � k) rows consist of zero elements. When the last (n � k)
columns of Q1 and the last (m � k) rows of T1 are discarded,
we get

(17.7.2) A = QT

where Q is an n by k orthonormal matrix and T is a k by m
upper trapezoidal matrix. Factorization (17.7.2) indicates that
every column ai of matrix A may be written as a linear
combination of the k columns qi of Q.
That is, ai = Σj tjiqj, where tji are the elements of matrix T.
Hence, the k columns of Q span R(A) and may be taken as its
basis.
In the singular value decomposition of Section 17.5 for matrix
A of rank k, we have

(17.7.3) A = VSWT

The columns of V span R(A) and may be taken as another
basis for R(A).

(2) The orthogonal complement of R(A): In (17.7.1) the first k
columns of Q1 form matrix Q of (17.7.2) and span R(A). Then
since Q1 is orthonormal, the last (n � k) columns of Q1 that
form say Q2, span R(A)⊥; the orthogonal complement of
R(A).

(3) Range space of matrix AT: We note that by taking the
transpose of (17.7.3) for instance, the columns of W span
R(AT).

Let us now revisit a variation of Theorem 4.13. Let A be an n by m
matrix and b be an n-vector. Then [17]:
(i) The system of linear equations Ax = b has a solution if and

only if rank(A|b) = rank(A).

© 2008 by Taylor & Francis Group, LLC

598 Numerical Linear Approximation in C

(ii) If rank(A|b) = rank(A) = m, the solution is unique.
(iii) If rank(A|b) = rank(A) < m, the solution is not unique.

We may now restate (i), (ii) and (iii) of this theorem as follows:
(i) The system Ax = b has a solution if and only if b ∈ R(A),
(ii) If b ∈ R(A), and the columns of A form a basis for R(A), i.e.,

they are linearly independent, the solution is unique, and
(iii) If b ∈ R(A), and the columns of A are linearly dependent, the

solution is not unique.

We may also state the following theorem.

Theorem 17.13

Assuming that we are dealing with real matrices. Then:
(i) N(AT) = R(A)⊥

(ii) N(A) = R(AT)⊥

As a consequence, we have:
(iii) En = R(A) + R(A)⊥

(iv) Em = R(AT) + R(AT)⊥

Proof:

Let Q1 in (17.7.1) be written as

Q1 = [Q|Q2]

where the columns of Q span R(A), the columns of Q2 span R(A)⊥

and QTQ2 = 0.
To prove (i), let x ∈ R(A)⊥; then there exists a vector y such that

x = Q2y. Hence from (17.7.2), ATx = TTQTQ2y = 0 and thus
x ∈ N(AT). Therefore, N(AT) ⊆ R(A)⊥.

On the other hand, if x ∈ N(AT), TTQTx = 0 and x is orthogonal
to the columns of Q. That is, x may be written as x = Q2y. Hence,
x ∈ R(A)⊥ and therefore, R(A)⊥ ⊆ N(AT). We conclude that
R(A)⊥ = N(AT).

In the same way we prove (ii). Then (iii) and (iv) follow.

17.7.5 Representation of vectors in Vm

It is shown in Theorem 17.10 that if Vm is an inner product space
of dimension m and the m-vectors q1, q2, �, qm form an orthonormal
basis for Vm, then any vector x ∈ Vm may be expressed as a linear

© 2008 by Taylor & Francis Group, LLC

Chapter 17: Least Squares and Pseudo-Inverses of Matrices 599

combination of this basis, in the form

Hence, if Q is an m by m matrix that has the qi as its columns, we
have the alternative expression to this summation as

x = QQTx

17.7.6 Orthogonal projection onto range and null spaces

Let Vm be expressed as the sum of two spaces U and W; that is,
Vm = U ⊕ W. Let q1, q2, �, qk span the subspace U ⊆ Vm and
qk+1, �, qm, span the subspace W ⊆ Vm. Hence, if x ∈ Vm, then we
may write

Then x1 ∈ U and x2 ∈ W.

Theorem 17.14

Let Q1 be the m by k matrix whose columns are q1, q2, �, qk and
Q2 be the m by (m � k) matrix whose columns are qk+1, �, qm. Let
also Im be an m-unit matrix. Then:
(i) Q1Q1

T = (Im � Q2Q2
T)

(ii) Q2Q2
T = (Im � Q1Q1

T)
(iii) x1 = Q1Q1

Tx = (Im � Q2Q2
T)x

(iv) x2 = Q2Q2
Tx = (Im � Q1Q1

T)x

Proof:

Since Q is an m by m orthonormal, QTQ = QQT = Im and we
have Im = Q1Q1

T + Q2Q2
T and the proof follows.

Definition 17.1

We define Q1Q1
T as the orthogonal projection operator that

projects any vector x ∈ Vm onto the space U. Likewise let Q2Q2
T be

the orthogonal projection operator that projects any vector x ∈ Vm

x qi x,()qi
i 1=

m

∑ qiqi
Tx

i 1=

m

∑= =

x αiqi
i 1=

k

∑ αiqi
i k 1+=

m

∑ x1 x2+=+=

© 2008 by Taylor & Francis Group, LLC

600 Numerical Linear Approximation in C

onto the space W. This notion is continued as follows.

Orthogonal projection operators onto R(A) and R(AT)

From (17.7.3), A = VSWT and thus A+ = WS�1VT from which

AA+ = VVT and A+A = WWT

Theorem 17.15

AA+, (In � AA+), A+A and (Im � A+A)

or respectively

VVT, (In � VVT), WWT and (Im � WWT)

are
(i) Orthogonal projector operators,
(ii) They project any vector x onto R(A), R(A)⊥, R(AT) and

R(AT)⊥ respectively.

Consider

AA+A = (AA+)A= (VVT)A = A

This is interpreted as the columns of A belong to the range space of A,
which is a trivial result. Similarly

A+AA+ = (A+A)A+ = (WWT)A+ = A+

is interpreted as the columns of A+ belong to the range space of A+.
The other two operators are interpreted in the same way.

Theorem 17.16

Let Ax = b, and b be resolved into two vectors b = b1 + b2, where
b1 ∈ R(A) and b2 ∈ R(A)⊥. Then the least squares solution x is the
exact solution of Ax = b1, and the residual r = b2.

Proof:

The least squares solution vector x of Ax = b is given by x = A+b
and by pre-multiplying by A, we get

Ax = AA+b

and from the previous theorem, the right hand side is the projection of
b onto R(A), i.e., = b1. Then b2 = b � b1 = (In � AA+)b = b � Ax = r
and the theorem is proved, emphasizing that r ∈ R(A)⊥.

© 2008 by Taylor & Francis Group, LLC

Chapter 17: Least Squares and Pseudo-Inverses of Matrices 601

17.7.7 Singular values of the orthogonal projection matrices

Theorem 17.17

Assuming that A is of rank k, the singular values of AA+ are k 1�s
and (n � k) 0�s. The singular values of (In � AA+) are (n � k) 1�s and k
0�s. Similar results are for the two other operators A+A, and
(Im � A+A).

Proof:

From Theorem 4.10 (Wilkinson ([27], p. 54), given C as an m by
k matrix and D as a k by m matrix, m ≥ k, CD and DC have k
identical eigenvalues and the remaining (m � k) eigenvalues of CD
are 0�s. The proof of the theorem follows from the fact that the
eigenvalues of AA+ are themselves their singular values and by
observing that AA+ = VVT and that VTV = Ik.

Corollary

||AA+||2 = 1, ||In � AA+||2 = 1, etc.

Let us now consider the interesting subject of the ill-conditioning
of the coefficient matrix A in the matrix equation Ax = b.

17.8 Multicollinearity, collinearity or the ill-conditioning of
matrix A

In analyzing their data, statisticians build a linear model of the
form

Ax = b

A is a given n by m matrix containing the data of the problem, where
in most cases, n > m, and b is a given observation n-vector. The least
squares solution of this equation is mostly obtained by forming the
normal equation

ATAx = ATb

In case matrix A is of rank m, ATA is non-singular and the least
squares solution is given by

x = (ATA)�1ATb

© 2008 by Taylor & Francis Group, LLC

602 Numerical Linear Approximation in C

When matrix A is well conditioned, its columns are almost
orthogonal. However, this is not the case in most applications. In
many problems the lack of orthogonality is not serious enough to
affect the analysis of the result.

The state of strong non-orthogonality is referred to as the problem
of collinear data, also known as multicollinearity, and is a condition
of deficient matrix A. The calculated elements of x are very sensitive
to perturbations (slight errors) in the data. Hence, it is important to
know when multicollinearity occurs and how to remedy it. Let us
consider the following example by Chatterjee and Price ([6],
pp. 144-151).

Example 17.1

The congress of the United Sates ordered a survey concerning the
lack of availability of equal educational opportunities for students.
Data were collected from 70 schools across the country. A linear
model of the form Ax = b is constructed with the solution vector x to
be calculated.

Vector b is the measure of the level of student achievement.
Matrix A consists of 4 columns; a1, a2, a3 and a4. Column a1 is a
constant column of 1�s, a2 is a measure of the school facilities, a3
consists of measures of home environments and column a4 is a
measure of the school credentials. Equation Ax = b, may written as

x11 + x2a2 + x3a3 + x4a4 = b

The results of this equation were disappointing. Some of the
calculated coefficients had negative values, which was not expected.
That is besides the failed statistical tests carried out by the analysts.

These results indicate the existence of extreme multicollinearity
between the last three columns of A. There exist simple relationships
between every pair of the three columns a2, a3 and a4. It is concluded
that these three columns may be replaced by only one of them.

In Section 17.7.1, we defined linear dependence and linear
independence of a given set of vectors. We define that here again for
the columns of a given matrix A.

Definition 17.2

Let a1, a2, �, am denote the m columns of matrix A. Then these

© 2008 by Taylor & Francis Group, LLC

Chapter 17: Least Squares and Pseudo-Inverses of Matrices 603

columns are linearly dependent if there exist a vector c of constants
whose elements are c1, c2, �, cm, not all 0�s, such that

Definition 17.3

Collinearity exists among the columns of matrix A if for some
specified small constant ρ > 0

where c is defined above.

If definition 17.2 holds for a subset of the columns of A, then
rank(A) < m and (ATA) is singular and its inverse does not exist.
However, if definition 17.3 holds for a subset of the columns of A, we
have near linear dependency among these columns and collinearity
exists as matrix (ATA) is ill-conditioned.

17.8.1 Sources of multicollinearity

Montgomery and Peck ([16], p. 306) cited two primary sources of
multicollinearity. The first is an inappropriate choice of columns of
matrix A, thus causing ill-conditioning of (ATA). They also suggested
how to remedy this situation. For example, if columns a1, a2 and a3 of
A are nearly linearly dependent, one might replace the three columns
by one column whose ith element is the product of the ith elements of
the three columns. This preserves the information given by the three
original columns. This method is a kind of re-specifying the given
problem. Another technique of re-specifying the problem is to
eliminate one of the columns a1, a2 and a3. Such techniques might not
be totally satisfactory.

The second source of multicollinearity, is the improbably-defined
model, which means that there are not enough data points. In this case,
the usual approach is to increase the data points (increase n) or
eliminate some of the columns of matrix A (decrease m).

ciai
i 1=

m

∑ 0=

ciai
i 1=

m

∑ d, d ρ c≤=

© 2008 by Taylor & Francis Group, LLC

604 Numerical Linear Approximation in C

17.8.2 Detection of multicollinearity

Multicollinearity may be detected when there occurs instability in
the elements of the solution vector x. Large changes occur in the
elements of x when a variable is added or is deleted in search of a
better matrix equation, i.e., when a column is added to or a column is
deleted from matrix A.

A second indication of multicollinearity is large changes in the
elements of x when a data point is added or is dropped; i.e., when n is
increased or decreased by one.

A third indication is the numerical signs and/or the magnitude of
the elements of x that are not consistent with the physical problem. A
calculated number of students in a school, for example, is expected to
be a positive number.

A statistical detection of the presence of multicollinearity is the
size of correlation coefficients (measure of dependence) that exist
between the columns of matrix A. A large correlation between two of
the columns indicates a strong linear relationship between those two
columns.

More reliable means are needed to detect the existence of
multicollinearity. One of the powerful means is by calculating the
singular values of matrix (ATA), where we get the factorization
(ATA) = WS2WT(equations (17.5.2)). S2 is a diagonal matrix, whose
elements s1

2 ≥ s2
2 ≥ � ≥ sm

2 are the singular values of (ATA). If one
or more of the singular values are very small, that implies the near
linear dependency among a subset of the columns of matrix A.
However, some authors argue by saying, we are not informed what
�small� is and there is a natural tendency to compare �small� to 0.

The condition number of matrix (ATA); κ = s1
2/sm

2, is a better
indication of the presence of multicollinearity. Montgomery and Peck
([16], p. 319) argue saying, if this condition number is < 100, there is
no serious problem with multicollinearity. Yet, if this condition
number is between 100 and 1000, moderate to strong multicollinearity
exists and if it exceeds 1000, severe multicollinearity exists. They also
defined the condition indices of (ATA) as

κi = s1
2/si

2, i = 1, 2, �, m

© 2008 by Taylor & Francis Group, LLC

Chapter 17: Least Squares and Pseudo-Inverses of Matrices 605

Example 17.2

Montgomery and Peck ([16], pp. 319) recorded the condition
indices of (ATA) for an example of m = 9 as κ1 = 1, �, κ6 = 84.96,
κ7 = 309.18, κ8 = 824.47 and κ9 = 42,048. Since one of the condition
indices exceed 1000, it is concluded that there exists strong near
dependency in the data of this example.

Existence of multicollinearity may also be detected by standard
statistical means. In the following sections, we describe three
non-statistical methods to combat multicollinearity; principal
components analysis (PCA), partial least squares (PLS) and the
Ridge equation.

17.9 Principal components analysis (PCA)

Principal components analysis is a method that rewrites matrix A
in the equation Ax = b in terms of a set of orthogonal columns. These
new columns are obtained as linear combinations of the columns of A.
They are known as the principal components of the columns of A.

17.9.1 Derivation of the principal components

Consider the equations Ax = b. The principal components are
realized by the help of the singular value decomposition of the n by m
matrix A of rank m ([6], pp. 172-174). From (17.5.1)

A = VSWT

From this we write

(17.9.1) VS = AW = (a1, a2, �, am)W

Let us write VS = V whose columns are (v1, v2, �, vm) and the
diagonal elements of S be (s1, s2, �, sm). The columns of vector V are
orthogonal, (vi, vi) = si

2 and (vi, vj) = 0, i ≠ j.
The columns vi are referred to as the �principal components�.

Equation Ax = b may be rewritten in terms of the principal
components as follows. Since WWT = Im, Ax = b is

AWWTx = b

Let

© 2008 by Taylor & Francis Group, LLC

606 Numerical Linear Approximation in C

(17.9.2) y = WTx

then from (17.9.1), we get

(17.9.3) VSy = b

Thus

(17.9.4) y = S�1VTb or

Equation (17.9.3) is a re-presentation of equation Ax = b in terms
of the orthogonal columns of V = VS. Also, from (17.9.1), the ith
principal component vi = visi, i = 1, 2, �, m, is a linear function of the
columns aj, namely

It follows that when si = 0, the l.h.s. of the above equation is 0.
From definition 17.2 linear dependences exists among the columns of
A. If si is very small, from definition 17.3, there is an approximate
linear dependence among the given columns of A.

Suppose that the first k singular values of A are significant and the
last (m � k) are either 0�s or are considered 0�s. The last (m � k)
principal components are then considered 0�s. The solution of (17.9.4)
will instead be

and from (17.9.2) x = Wy, or

where (wi) are the columns of matrix W.
The principal components analysis may be used as a linear

dimensionality reduction technique. It determines a set of orthogonal
vectors, which are the principal components, ordered by the largest

y si
1� vi

Tbi
i 1=

m

∑=

visi wijaj
j 1=

m

∑=

y si
1� vi

Tbi
i 1=

k

∑=

x si
1� wivi

Tbi
i 1=

k

∑=

© 2008 by Taylor & Francis Group, LLC

Chapter 17: Least Squares and Pseudo-Inverses of Matrices 607

singular values which describe most of the state of the problem.
The portion of the PCA space corresponding to the smaller

singular values describe the random noise. By properly determining
the number of principal components, to maintain the PCA model, the
system can be decoupled from the random noise. The principal
components, corresponding to the large singular values of (ATA) are
retained and the smallest singular values are set equal to 0�s. To
illustrate this point, consider the following example.

Example 17.3

Data was collected by Cheng et al. ([7], p. 107) for pattern
analysis in industry and was used by Russell et al. ([20], pp. 36, 37).
For this data, the n by m matrix A in the equation Ax = b is a 50 by 4
matrix. The 4 by 4 matrix (ATA) is decomposed by the singular value
decomposition into (ATA) = WS2WT, where the elements of S2 are
the singular values of (ATA).

The singular values of (ATA) are (1.92, 0.96, 0.88, 0.24) and their
sum = 4. If the first two columns of the principal components matrix V
are retained, the ratio of the sum of their singular values to the sum of
the total singular values is (1.92 + 0.96)/4 = 72%, contributed to this
problem. That means dimension reduction to the problem with
advantages explained by Russell et al. ([20], p. 37).

An alternative to the principal components analysis is the partial
least squares (PLS) technique, presented next.

17.10 Partial least squares method (PLS)

Given is the linear model or the overdetermined matrix equation
Ax = b. Like the PCA method, the partial least squares (PLS) method
is a dimensionality reduction technique. It is particularly appealing
because the calculation is performed on the given data A (not on
ATA). This makes it suitable for large problems.

There is a number of variations of the algorithm for this method.
The most popular one is known as the non-iterative partial least
squares (NIPALS). It is described by Geladi and Kowalski [8] and by
Hoskuldsson [13]. See also Wold et al. [28] and Russell et al. [20].
The NIPALS does not calculate all the principal components at once.

In the matrix equation Ax = b, there might be more than one right

© 2008 by Taylor & Francis Group, LLC

608 Numerical Linear Approximation in C

hand side vector b; b1, b2, �, br, and in this case, there will be more
than one solution vector x; x1, x2, �, xr. Then we may write Ax = b
in the form

(17.10.1) AX = B

where B = [b1, b2, �, br] is an n by r matrix and X = [x1, x2, �, xr] is
an m by r matrix. It is important that A and B be mean-centered and
scaled [8].

Matrix A may be given in terms of the sum of m matrices, each is
of rank 1.

A = t1p1
T+ t2p2

T + � + tmpm
T

Each of the tsps
T is an outer product of ts (known as score vector) and

ps (known as loading vector). We may write A as

where T = [t1, t2, �, tk] and P = [p1, p2, �, pk]. E is a residual
matrix.

Similarly, B in (17.10.1) may be decomposed into a score matrix
U and a loading matrix Q added to a residual matrix F*

Let k be the rank of matrix A. If k is set equal to min(m, n), then E
and F* are 0�s and the PLS reduces to the ordinary least squares
solution. Setting k < min(m, n) reduces noise and colliniarity. The aim
of using the PLS is to describe matrix A in terms of a smaller number
of the tjpj

T components. The aim of the following analysis is to get a
useful relation between matrices A and B. The simplest relation is via
taking

uh = bhth

where bh = uh
Tth/||th||.

A TPT E tjpj
T

j 1=

k

∑ E+=+=

B UQT F* ujpj
T

j 1=

k

∑ F*+=+=

© 2008 by Taylor & Francis Group, LLC

Chapter 17: Least Squares and Pseudo-Inverses of Matrices 609

17.10.1 Model building for the PLS method

The PLS model may be considered as consisting of outer products
of matrices in A and in B and inner relations linking such matrices. A
simplified model is as follows: For matrix A, calculating the outer
product matrices is described in 5 steps, below.

To start with, one calculates t1 and p1
T from matrix A. Then t1p1

T

is subtracted from A and the residual E1 is calculated. Then E1 is used
to calculate t2 and p2

T and so on. Thus

E1 = A � t1p1
T, E2 = E1 � t2p2

T, �, Eh = Eh�1 � thph
T, �

For matrix A, the algorithm is:
(1) tstart = a column aj of A
(2) pold = ATt/||t|| (=ATu/||u||)
(3) Scale p to be of length one; pnew = pold/||pold||, p = pnew
(4) t = Ap/||p||
(5) Compare t used in step (2) with t obtained in step (4). If the

difference is of the order of rounding error, the iteration has
converged. If not go to step (2).

For matrix B, the procedure is similar, namely
(1) ustart = a column bj of B
(2) qold = BTu/||u|| (= BTt/||t||)
(3) Scale q to be of length one; qnew = qold/||qold||, q = qnew
(4) u = Bq/||q||
(5) Compare u used in step (2) with u obtained in step (4). If the

difference is of the order of rounding error, the iteration has
converged. If not go to step (2).

The above two separate algorithms are applied to A and B
respectively. However, in order that each can get information about
the other, let t and u change places in step (2) and the two algorithms
would be written in sequence. The following algorithm is due to
Geladi and Kowalski [8] and also to Hoskuldsson [13].

For each major iteration
(1) ustart = a column bj of B

For matrix A
(2) w = ATu/||u||
(3) Normalize w, wnew = wold/||wold||

© 2008 by Taylor & Francis Group, LLC

610 Numerical Linear Approximation in C

(4) t = Aw/||w||

For matrix B
(5) q = BTt/||t||
(6) Normalize q; qnew = qold/||qold||
(7) u = Bq/||q||
(8) Compare t in step (4) with the one in the previous iteration. If

the difference is of the order of rounding error, the iteration
has converged and go to step (9). If not, go to step (2).

If B consists of one column only, steps (5)-(8) can be omitted and
no more iterations are required.
(9) p = ATt/||t||
(10) Normalize p; pnew = pold/||pold||
(11) tnew = told||pold||
(12) wnew = wold||pold||

Obtain the regression coefficient b for the inner relation
(13) b = uTt/||t||

The residual for the A matrix (block) for component h is

Eh = Eh�1 � th�1ph�1
T, E0 = A

and for the B matrix (block), for component h is

Fh = Fh�1 � bh�1th�1qh�1
T, F0 = B

For the next major iteration, meaning for the next component, go
to step (1). However, after the first component, A is replaced by Eh
and B is replaced Fh. The iterations continue until a stopping criteria
is used or Eh becomes the zero matrix.

The following analysis is due to Hoskuldsson [13]. Using steps
(7), (5), (4) and (2) above in succession, we get

uh = Bqh/||qh||

= BBTth/[||qh|| ||th||]

= BBTAwh/[||qh|| ||th|| ||w||]

= BBTAATuh�1/[||qh|| ||th|| ||wh|| ||uh�1||]

These equations show that the algorithm described above
performs like calculating the largest eigenvalue of a matrix by the
power point ([12], pp. 330-332). In most practical cases, convergence

© 2008 by Taylor & Francis Group, LLC

Chapter 17: Least Squares and Pseudo-Inverses of Matrices 611

is obtained in less than ten iterations, unless there are equal
eigenvalues that are the largest. Similar equations are derived for qh,
th and wh.

At convergence we may write

BBTAATu = au

BTAATB q = aq

AATBBTt = at

ATBBTAw = aw

where a is the largest eigenvalue and vectors u, q, t and w are
eigenvectors of the appropriate matrices corresponding to the largest
eigenvalue.

The next equation relates a residual matrix to its previous residual
matrix

Eh = Eh�1 � th�1ph�1
T

= Eh�1 � th�1t h�1
TEh�1/||th�1||

= [I � th�1th�1
T/||th�1||] Eh�1

The basic properties of vectors w, t and p are derived from the
residual matrices [13]
(i) The vectors wi are mutually orthogonal, (wi, wj) = 0, i ≠ j.
(ii) The vectors ti are mutually orthogonal, (ti, tj) = 0, i ≠ j.
(iii) The vectors wi are orthogonal to the vectors pj, (wi, pj), i < j.

What is important is that these properties do not depend on the
way a new t vector is constructed.

There are other more interesting properties for the PLS algorithm.
For this see the tutorial paper by Hoskuldsson [13]. The subject of
PLS is a large one and the analysis given above is a brief description
for the non-iterative partial least squares (NIPALS) version.

Example 17.4

The data of Example 17.3, which illustrated the use of the
principal components analysis (PCA), was solved again by Russell et
al. ([20], p. 57) to illustrate the use of the PLS method. For the
NIPALS algorithm, they took E0 = A, F0* = B. After 12 iterations for
the first component t1, convergence was obtained with an error

© 2008 by Taylor & Francis Group, LLC

612 Numerical Linear Approximation in C

< 10�10. One more major iteration was needed to obtain a satisfactory
result for the problem.

In the next section, we describe a third technique to overcome the
problem of multicollinearity or the ill-conditioning of matrix A; the
Ridge equation, which is a stabilized normal equation.

17.11 Ridge equation

As indicated in Section 17.5, the condition number of a matrix
defines the condition of the matrix with respect to a computing
problem. The spectral condition number K of matrix A of rank k is
given in terms of its largest and smallest singular values s1 and sk,
respectively

K = ||A||2 ||A+||2 = [s1]/[sk]

When the condition number is very large, that implies in most
cases that sk is very small. On the other hand, a singular value sk that
is very small is an indicator of multicollinearity.

Given the system of linear equations Ax = b, the original idea
behind the Ridge equation is to reduce the condition number of
matrix ATA in the normal equation ATAx = ATb. Normally, 0 ≤ ε ≤ 1
and the Ridge equation is given by

(17.11.1) (ATA + εΙ)x = ATb

I is an m-unit matrix. The solution of this equation is

x = (ATA + εΙ)�1ATb

It can be shown ([22], pp. 207-208, [25], p. 102) that (17.11.1) gives

x = minx(||Ax � b||2 + ε||x||2)

The singular values of the m by m matrix ATA are non-negative
and if they are denoted by σ1, σ2, �, σm, the singular values of
(ATA + εΙ) are (σ1 + ε), (σ2+ ε), �, (σm + ε). The condition number
of (ATA + ε Ι) is

[(σ1 + ε)/(σm + ε)] < (σ1/σm)

As a result, the solution vector x of the Ridge equation is stable with
respect to slight perturbations in the given data A.

A modified version of (17.11.1) was used by Varah [25, 26] in the

© 2008 by Taylor & Francis Group, LLC

Chapter 17: Least Squares and Pseudo-Inverses of Matrices 613

solution of the Fredholm integral equation of the first kind (Chapter
19), namely

(ATA + εLTL)x = ATb

L is some discrete approximation to the first or the second derivative
operator. However, we shall only consider equation (17.11.1).

Example 17. 5

The data for this example is given in Chatterjee and Price
([6], p. 152). This example is also presented in Section 1.2.6. This
example is now solved by the Ridge equation. The linear model is
Ax = b, or

(17.11.2) x01 + x1a1 + x2a2 + x3a3 = b

The 1 denotes an n-column of 1�s, a1 refers to domestic production, a2
refers to stock formation and a3 refers to domestic consumption, while
b refers to the imports, all measured in millions of French francs.

The Ridge equation (17.11.1) for this model was solved many
times for values of ε from ε = 0 to ε = 1 in increments of 0.001. The
results of x1, x2 and x3 were plotted and also were given as a function
of ε ([6], pp. 184, 185). The value of x1 changes �0.339 for ε = 0 to a
stable value of 0.42 for ε = 0.14, x3 changes from 1.302 for ε = 0 to
0.525 for ε = 0.14, which are big changes for x1 and x3. The value of
x2 was not affected and remains stable at about 0.21.

17.11.1 Estimating the Ridge parameter

One of the early ways to estimate ε that is still in-use today is to
construct a ridge trace (graph). In this graph, the value of each
element of the solution vector x is plotted against ε, 0 ≤ ε ≤ 1, at small
increments, as was done in the above example. The value ε at which
the elements of x seem to stabilize is selected. This is of course a
subjective way of selection. There are other techniques that use
statistical factors. For these techniques, see for example, Montgomery
and Peck ([16], pp. 339-343) and the references in Ryan
([21], pp. 400, 401).

© 2008 by Taylor & Francis Group, LLC

614 Numerical Linear Approximation in C

17.11.2 Ridge equation and variable selection

In some linear models Ax = b, a subset of the columns of A cause
multicollinearity. It is thus desirable to find these columns and to
delete some of them. This process is known as variable selection.

This is mainly done by examining the ridge trace mentioned
above. It is done by removing the columns of matrix A that
correspond to unstable x element, which changes sign as ε increase
from 0 towards 1, and also delete the columns of A that correspond to
the x elements that decrease in value towards 0, again as ε increase
from 0 towards 1. This is illustrated by the following example, due to
Montgomery and Peck ([16], pp. 343-345). This example is also
discussed in Section 1.3.2.

Example 17.6

The matrix equation for this example is given by

P = x01 + x1T + x2H + x3C + x4TH + x5TC + x6HC + x7T2 +

x8H2 + x9C2

Here, b = P, a1 = 1, an n-column of 1�s, a1 = T, a2 = H, �, etc. TH
means each element of T is multiplied by the corresponding element
of H. Similarly, in T2 each element of T is squared, �, etc. (see the
notations in Section 1.3.2).

The ridge trace is plotted as a function of the ridge variable ε, from
ε = 0 to ε = 1, at small increments. As ε increases the coefficients x5
and x9 decease rapidly toward 0. Coefficients x6 changed sign at ε
= 0.32 and x8 decreased towards 0 but not so rapidly.

The four columns of matrix A that correspond to the above 4
coefficients are deleted and the ridge model is calculated again for the
remaining 5 parameters, x1, x2, x3, x4 and x7. The new ridge trace
seems more stable than when all 9 terms were considered. Also, an
increase of the ridge parameter ε from ε = 0 to ε = 1, did not change
the values of the remaining 5 variables much.

17.12 Numerical results and comments

The purpose of this final section is to show that the Gauss LU
factorization and the Householder�s QR factorization methods are

© 2008 by Taylor & Francis Group, LLC

Chapter 17: Least Squares and Pseudo-Inverses of Matrices 615

among the most efficient methods for calculating the least squares
solution of system Ax = b and the pseudo-inverse matrix A+. The two
methods give results with comparable accuracies. See also [1].

LA_Eluls() computes the least squares solution and pseudo
inverse of matrices using the Gauss LU factorization method with
complete pivoting. LA_Hhls() implements the Householder�s QR
factorization method with pivoting. We note that both Lau [15] and
Press et al. [19] presented C programs for the QR factorization
method, but for a matrix with full rank only. Both DR_Eluls() and
DR_Hhls() test the same 3 examples.

We also noted earlier that the factorizations by the Gauss LU
method and by Householder�s QR method are not for matrix A, but
for the permuted matrix A defined in these methods. Yet, the final
results computed by LA_Eluls() and LA_Hhls() are for the given
non-permuted equation Ax = b.

Note 17.2
Both LA_Eluls() and LA_Hhls() are designed to solve linear

systems with several r.h.s. vectors b(s).

Example 17.7

This example was solved by Golub, and Reinsch ([11], p. 412) by
the singular value decomposition method. The system of linear
equations is

Matrix A is a well conditioned 8 by 5 matrix of rank 3. There are 3
r.h.s. vectors b. The 3 r.h.s. vectors b(s) are chosen so that the
minimum norm least squares solutions x1, x2 and x3 are respectively,
x1 = (�1/12, 0, 1/4, �1/12, 1/12)T, x2 = (0, 0, 0, 0, 0)T and x3 = x1.

22 10 2 3 7
14 7 10 0 8

1� 13 1� 11� 3
3� 2� 13 2� 4

9 8 1 2� 4
9 1 7� 5 1�
2 6� 6 5 1
4 5 0 2� 2

x11 x12 x13

x21 x22 x23

x31 x32 x33

x41 x42 x43

x51 x52 x53

1� 1 0
2 1� 1
1 10 11
4 0 4
0 6� 6�
3� 6 3

1 11 12
0 5� 5�

=

© 2008 by Taylor & Francis Group, LLC

616 Numerical Linear Approximation in C

As expected, matrix A is found by the two routines to be of rank 3.
Results obtained in single-precision by the two methods are as
follows.

Solution by Gauss LU factorization method

x1 = (�0.083333, 1.1E�06, 0.25, �0.083333, 0.083333)T

x2 = (9.4E�07, 1.8E�06, �3.5E�07, 2.1E�06, 4.9E�07)T

x3 = (�0.083333, 1.1176E�06, 0.25, �0.083333, 0.083333)T

A measure of the accuracy of calculation of the pseudo-inverse A+

is the expression ||AA+A � A||E/||A||E, where ||.||E refers to the
Euclidean matrix norm.

The calculated ||AA+A � A||E/||A||E = 1.3E�05.

Solution by Householder�s QR factorization

x1 = (�0.083333, 9.8E�07, 0.25, �0.083333, 0.083333)T

x2 = (�1.54168E�06, 4.8E�06, �8.9E�07, �4.6E�06, 7.2E�07)T

x3 = (�0.083333, 5.68441E�06, 0.25, �0.083333, 0.083333)T

The calculated ||AA+A � A||E/||A||E = 9.7E�06.

Example 17.8

This example was solved by Golub ([10], p. 211) using an
iterative scheme. A is a 6 by 5 badly conditioned matrix. It consists of
the first 5 columns of the inverse of the 6×6 Hilbert matrix. There are
2 r.h.s.columns b(s).

Each column b is chosen such that the exact minimum norm least
squares solution for each of them is x = (1, 1/2, 1/3, 1/4, 1/5)T.

b1 = (0.463D03, �0.1386D05, 0.9702D05, �0.25872D06,
0.29106D06, �0.116424D06)T

b2 = (�0.4157D04, �0.1782D05, 0.93555D05, �0.2618D06,
0.288288D06, �0.118944D06)T

A

0.360D02 0.630D03� 0.336D04 0.756D04� 0.756D04
0.630D03� 0.147D05 0.882D05� 0.21168D06 0.2205D06�

0.336D04 0.882D05� 0.56448D06 0.14112D07� 0.1512D07
0.756D04� 0.21168D06 0.14112D07� 0.36288D07 0.3969D07�

0.756D04 0.2205D06� 0.1512D07 0.3969D07� 0.441D07
0.2772D04� 0.8316D05 0.58212D06� 0.155232D07 0.174636D07�

=

© 2008 by Taylor & Francis Group, LLC

Chapter 17: Least Squares and Pseudo-Inverses of Matrices 617

The computation is performed in double-precision. Rank(A) is
found by the two routines to be 5.

Solution by Gauss LU factorization method

Calculated Solutions x1 = x2 = (1, 0.5, 0.3333333333, 0.25, 0.2)T for
each of b1 and b2.
Measure of accuracy for the calculated pseudo-inverse A+ is
||AA+A � A||E/||A||E = 0.1633277774E�11.

Solution by Householder�s QR factorization

x = (1, 0.5, 0.3333333333, 0.25, 0.2)T for each of b1 and b2.
Measure of accuracy for the calculated pseudo-inverse A+ is
||AA+A � A||E/||A||E = 0.2715803665E�11.

Note 17.3
As noted earlier, the calculated triangular matrix R in the QR

factorization is exactly as displayed by Golub ([10], p. 211) but
different from matrix R in ([1], p. 364). The reason is that in [1], QR
factorization was done without pivoting, whereas in [10] and in our
implementation for this chapter, pivoting was used.

Example 17.9

In this example, matrix A is a badly conditioned 4 by 5 matrix.
There is no r.h.s. vector b. The pseudo-inverse A+ was computed in
both single- and double-precision.

Solution by Gauss LU factorization method

In single-precision, the calculated rank(A) = 3 and
||AA+A � A||E/||A||E = 0.1141155E�04.
In double-precision, the calculated rank(A) = 4 and
||AA+A � A||E/||A||E = 0.8727612201E�11.

A

0.4087 0.1593 0.6594 0.4302 0.3516
0.6246 0.3383 0.6591 0.9342 0.9038
0.0661 0.9112 0.6898 0.1931 0.1498
0.2112 0.815 0.7983 0.3406 0.2803

=

© 2008 by Taylor & Francis Group, LLC

618 Numerical Linear Approximation in C

Solution by Householder�s QR factorization

In single-precision, the calculated rank(A) = 3 and
||AA+A � A||E/||A||E = 0.8185643E�05.
In double-precision, the calculated rank(A) = 4 and
||AA+A � A||E/||A||E = 0.1190011279E�11.

Recall that LA_Eluls() and LA_Hhls() can also solve non-singular
square systems. The following paragraphs also confirm the superiority
of the Householder�s QR factorization (and the Gauss LU
factorization) methods.

Spath [22] collected 42 test examples, which he used to evaluate
different existing algorithms, after converting them to FORTRAN 77.
For the linear least squares solution of system Ax = b, he compares
between the solution by the normal equation (NGL) using Cholesky�s
decomposition of ATA, the modified Gram-Schmidt (MGS), Givens�
(GIVR), Householder�s transformation (HFTI) and the Singular Value
Decomposition (SVD) methods. For computer storage requirements,
for n > m (using our notation), all subroutines need more or less the
same amount of storage except the SVD, which needs almost 3 times
the storage.

Spath ([22], pp. 43-46) compares the behavior of the different
subroutines with respect to the accuracy of the results. As expected,
the results by the NGL method are not very accurate for
ill-conditioned cases (only few decimal places agree with the results
of other subroutines). In one example, only the MGS and the HFTI
gave reasonable results, while the others failed. In another example,
the MGS, GIVR, and the HFTI gave the most accurate results. As for
the CPU times for the 42 examples, and for matrices randomly
generated, the fastest was the NGL, followed by MGS, GIVR, HFTI
and the SVD.

References

1. Abdelmalek, N.N., Round-off error analysis for
Gram-Schmidt method and solution of linear least squares
problems, BIT, 11(1971)345-367.

© 2008 by Taylor & Francis Group, LLC

Chapter 17: Least Squares and Pseudo-Inverses of Matrices 619

2. Abdelmalek, N.N., On the solution of linear least squares
problems and pseudo-inverses, Computing, 13(1974)215-228.

3. Abdelmalek, N.N., Piecewise linear least-squares approxi-
mation of planar curves, International Journal of Systems
Science, 21(1990)1393-1403.

4. Barrodale, I. and Stuart, G.F., A Fortran program for linear
least squares problems of variable degree, Proceedings of the
Fourth Manitoba Conference on Numerical Mathematics,
Hartnell, B.L. and Williams, H.C. (eds.), Winnipeg, Mani-
toba, Canada, pp. 191-204, 1975.

5. Bjorck, A., Solving linear least squares problems by
Gram-Schmidt orthogonalization, BIT, 7(1967)1-21.

6. Chatterjee, S. and Price, B., Regression Analysis by Example,
John Wiley & Sons, New York, 1977.

7. Cheng, Y-Q., Zhuang, Y-M. and Yang, J-Y., Optimal Fisher
discriminant analysis using the rank decomposition, Pattern
Recognition, 25(1992)101-111.

8. Geladi, P. and Kowalski, B.R., Partial least-squares regress-
ion: A tutorial, Analytica Chimica Acta, 185(1986)1-17.

9. Gentleman, W.M., Algorithm AS 75: Basic procedures for
large, sparse or weighted linear least squares problems,
Applied Statistics, 22(1974)448-454.

10. Golub, G.H., Numerical methods for solving linear least
squares problems, Numerische Mathematik, 7(1965)206-216.

11. Golub, G.H. and Reinsch, C., Singular value decomposition
and the least squares solutions, Numerische Mathematik,
14(1970)403-420.

12. Golub, G.H. and Van Loan, C.F., Matrix Computation, The
Johns Hopkins University Press, Third Edition, London, 1996.

13. Hoskuldsson, A., PLS regression methods, Journal of
Chemometrics, 2(1988)211-228.

14. Lau, H.T., A Numerical Library in C for Scientists and
Engineers, CRC Press, Ann Arbor, 1995.

15. Longley, J.M., Least Squares Computations Using Orthogo-
nalization Methods, Marcel Dekker, New York, 1984.

16. Montgomery, D.C. and Peck, E.A., Introduction to Linear
Regression Analysis, John Wiley & Sons, New York, 1992.

© 2008 by Taylor & Francis Group, LLC

620 Numerical Linear Approximation in C

17. Noble, B., Applied Linear Algebra, Prentice-Hall, Englewood
Cliffs, NJ, 1969.

18. Peters, G. and Wilkinson, J.H., The least squares problem and
pseudo-inverses, Computer Journal, 13(1970)309-316.

19. Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling,
W.T., Numerical Recipes in C, The Art of Scientific
Computing, Cambridge University Press, Second Edition,
Cambridge, 1992.

20. Russell, E., Chiang, L.H. and Braatz, R.D., Data-Driven
Methods for Fault Detection and Diagnosis in Chemical
Processes, Springer-Verlag, London, 2000.

21. Ryan, T.P., Modern Regression Methods, John Wiley & Sons,
New York, 1997.

22. Spath, H., Mathematical Algorithms for Linear Regression,
Academic Press, English Edition, London, 1991.

23. Stewart, G.W., Introduction to Matrix Computations,
Academic Press, New York, 1973.

24. Stewart, G.W., The effects of rounding residual on an
algorithm for downdating a Cholesky factorization, Journal of
Institute of Mathematics and Applications, 23(1979)203-213.

25. Varah, J.M., A practical examination of some numerical
methods for linear discrete ill-posed problems, SIAM Review,
21(1979)100-111.

26. Varah, J.M., Pitfalls in the numerical solution of linear
ill-posed problems, SIAM Journal on Scientific Statistical
Computation, 4(1983)164-176.

27. Wilkinson, J.H., The Algebraic Eigenvalue Problem,
Clarendon Press, Oxford, 1965.

28. Wold, S., Ruhe, A., Wold, H. and Dunn III, W.J., The
collinearity problem in linear regression. The partial least
squares (PLS) approach to generalized inverses, SIAM Journal
on Scientific and Statistical Computing, 5(1984)735-743.

© 2008 by Taylor & Francis Group, LLC

Chapter 17: DR_Eluls 621

17.13 DR_Eluls

/*---
DR_Eluls

This program is a driver for the function LA_Eluls(), which
calculates the minimal-length least squares solution of a system of
linear equations and/or calculates the pseudo-inverse of the
coefficient matrix. It uses Gauss "LU" decomposition method with
complete pivoting.

The system of linear equations is of the form

 a*xs = bs

"a" is a given real n by m matrix of rank k, k <= [min(n,m)].
"bs" is (are) given real r.h.s. n vector(s).
"xs" is (are) the m solution vector(s).

The system of linear equations might be overdetermined,
determined or underdetermined.

The required results are obtained according to a parameter "ientry"
specified by the user:
 0 LA_Eluls() calculates matrices "l" and "u" in the "lu"
 decomposition of (the permuted) matrix "a(permuted)"
 as a(permuted) = l*u.
 or as a(permuted) = l*diag*u; "diag" is a diagonal matrix
 and "u" has unit diagonal elements.
 1 LA_Eluls() calculates matrices "l" and "u" in the "lu"
 decomposition + the least squares solution
 vector(s) "xs" (if "bs" != 0).
 2 LA_Eluls() calculates matrices "l" and "u" in the "lu"
 decomposition + the pseudo-inverse of "a", "apsudo".
 3 LA_Eluls() calculates matrices "l" and "u" in the "lu"
 decomposition + the pseudo-inverse of matrix "a" +
 the least squares solution(s) (if "bs" != 0).

This program contains 3 examples whose results appear in the text.

Example 1:
 matrix "a" is 8 by 5 well conditioned of rank 3. There
 are 3 r.h.s. vectors "bs". It is solved in double precision.

© 2008 by Taylor & Francis Group, LLC

622 Numerical Linear Approximation in C

Example 2:
 matrix "a" is 6 by 5 badly conditioned of rank 5. There
 are 2 r.h.s. vectors "bs". It is solved in double precision.

Example 3:
 matrix "a" is 4 by 5 badly conditioned. There are no
 r.h.s. vectors "bs". In single precision, calculated rank (a)
 = 3. In double precision, calculated rank (a) = 4.
---*/

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define Na2 8
#define Ma2 5
#define Irhsa 3
#define Nb2 6
#define Mb2 5
#define Irhsb 2
#define Nc2 4
#define Mc2 5
#define Irhsc 0

void DR_Eluls (void)
{
 /*--
 Constant matrices/vectors
 --*/
 static tNumber_R a1init[Na2][Ma2] =
 {
 { 22.0, 10.0, 2.0, 3.0, 7.0 },
 { 14.0, 7.0, 10.0, 0.0, 8.0 },
 { -1.0, 13.0, -1.0, -11.0, 3.0 },
 { -3.0, -2.0, 13.0, -2.0, 4.0 },
 { 9.0, 8.0, 1.0, -2.0, 4.0 },
 { 9.0, 1.0, -7.0, 5.0, -1.0 },
 { 2.0, -6.0, 6.0, 5.0, 1.0 },
 { 4.0, 5.0, 0.0, -2.0, 2.0 }
 };

 static tNumber_R bs1init[Na2][Irhsa] =
 {
 { -1.0, 1.0, 0.0 },
 { 2.0, -1.0, 1.0 },
 { 1.0, 10.0, 11.0 },

© 2008 by Taylor & Francis Group, LLC

Chapter 17: DR_Eluls 623

 { 4.0, 0.0, 4.0 },
 { 0.0, -6.0, -6.0 },
 { -3.0, 6.0, 3.0 },
 { 1.0, 11.0, 12.0 },
 { 0.0, -5.0, -5.0 }
 };

 static tNumber_R a2init[Nb2][Mb2] =
 {
 { 36.0, -630.0, 3360.0, -7560.0, 7560.0 },
 { -630.0, 14700.0, -88200.0, 211680.0, -220500.0 },
 { 3360.0, -88200.0, 564480.0, -1411200.0, 1512000.0 },
 { -7560.0, 211680.0, -1411200.0, 3628800.0, -3969000.0 },
 { 7560.0, -220500.0, 1512000.0, -3969000.0, 4410000.0 },
 { -2772.0, 83160.0, -582120.0, 1552320.0, -1746360.0 }
 };

 static tNumber_R bs2init[Nb2][Irhsb] =
 {
 { 463.0, -4157.0 },
 { -13860.0, -17820.0 },
 { 97020.0, 93555.0 },
 { -258720.0, -261800.0 },
 { 291060.0, 288288.0 },
 { -116424.0, -118944.0 }
 };

 static tNumber_R a3init[Nc2][Mc2] =
 {
 { 0.4087, 0.1593, 0.6594, 0.4302, 0.3516 },
 { 0.6246, 0.3383, 0.6591, 0.9342, 0.9038 },
 { 0.0661, 0.9112, 0.6898, 0.1931, 0.1498 },
 { 0.2112, 0.8150, 0.7983, 0.3406, 0.2803 }
 };

 /*--
 Variable matrices/vectors
 --*/
 tMatrix_R aa = alloc_Matrix_R (NN2_ROWS, MM2_COLS);
 tMatrix_R bs = alloc_Matrix_R (NN2_ROWS, KK2_COLS);
 tMatrix_R xs = alloc_Matrix_R (MM2_COLS, KK2_COLS);
 tMatrix_R l = alloc_Matrix_R (NN2_ROWS, NN2_ROWS);
 tMatrix_R u = alloc_Matrix_R (NN2_ROWS, MM2_COLS);
 tMatrix_R apsudo = alloc_Matrix_R (MM2_COLS, NN2_ROWS);
 tMatrix_R rres = alloc_Matrix_R (NN2_ROWS, KK2_COLS);

© 2008 by Taylor & Francis Group, LLC

624 Numerical Linear Approximation in C

 tMatrix_R aux = alloc_Matrix_R (NN2_ROWS, NN2_ROWS);
 tMatrix_R auy = alloc_Matrix_R (NN2_ROWS, MM2_COLS);
 tVector_R diag = alloc_Vector_R (MM2_COLS);
 tVector_R bb = alloc_Vector_R (NN2_ROWS);

 tMatrix_R a1 = init_Matrix_R (&(a1init[0][0]), Na2, Ma2);
 tMatrix_R bs1 = init_Matrix_R (&(bs1init[0][0]), Na2, Irhsa);
 tMatrix_R a2 = init_Matrix_R (&(a2init[0][0]), Nb2, Mb2);
 tMatrix_R bs2 = init_Matrix_R (&(bs2init[0][0]), Nb2, Irhsb);
 tMatrix_R a3 = init_Matrix_R (&(a3init[0][0]), Nc2, Mc2);

 int irank, irhs, ientry;
 int i, j, k, m, n, Iexmpl;

 tNumber_R s, sa, sum1, sum2, aerr;

 eLaRc rc = LaRcOk;

 prn_dr_bnr ("DR_Eluls, Minimal Length L2 Solution of a System of"
 " Linear Equations by Gauss \"LU\" Factorization");

 for (Iexmpl = 1; Iexmpl <= 3; Iexmpl++)
 {
 switch (Iexmpl)
 {
 case 1:
 ientry = 3;
 n = Na2;
 m = Ma2;
 irhs = Irhsa;
 for (i = 1; i <= n; i++)
 {
 for (j = 1; j <= m; j++)
 {
 aa[i][j] = a1[i][j];
 }
 }
 for (i = 1; i <= n; i++)
 {
 for (j = 1; j <= irhs; j++)
 {
 bs[i][j] = bs1[i][j];
 }
 }
 break;

© 2008 by Taylor & Francis Group, LLC

Chapter 17: DR_Eluls 625

 case 2:
 ientry = 3;
 n = Nb2;
 m = Mb2;
 irhs = Irhsb;
 for (i = 1; i <= n; i++)
 {
 for (j = 1; j <= m; j++)
 {
 aa[i][j] = a2[i][j];
 }
 }
 for (i = 1; i <= n; i++)
 {
 for (j = 1; j <= irhs; j++)
 {
 bs[i][j] = bs2[i][j];
 }
 }
 break;
 case 3:
 ientry = 2;
 n = Nc2;
 m = Mc2;
 irhs = 0;
 for (i = 1; i <= n; i++)
 {
 for (j = 1; j <= m; j++)
 {
 aa[i][j] = a3[i][j];
 }
 }
 break;

 default:
 break;
 }

 prn_algo_bnr ("LA_Eluls");

 prn_example_delim();
 PRN ("Example #%d: Size of coefficient matrix "
 "\"a\" %d by %d\n", Iexmpl, n, m);
 prn_example_delim();
 PRN ("Minimal Least Squares Solution(s) of a System of"

© 2008 by Taylor & Francis Group, LLC

626 Numerical Linear Approximation in C

 " Linear Equations Using Gauss\"LU\" Decomposition\n");
 prn_example_delim();
 PRN ("Coefficient Matrix, \"a\"\n");
 prn_Matrix_R (aa, n, m);
 if (irhs != 0)
 {
 PRN ("\n");
 PRN ("Right Hand Vector(s), \"bs\"\n");
 prn_Matrix_R (bs, n, irhs);
 }

 rc = LA_Eluls (ientry, n, m, irhs, aa, bs, l, u, diag, bb,
 &irank, apsudo, xs, rres);

 if (rc >= LaRcOk)
 {
 PRN ("\n");
 PRN ("Results of the Least Squares Problem\n");
 PRN ("Rank of the coefficient matrix = %d\n\n", irank);

 PRN ("Lower Triangular (Trapezoidal) Matrix \"l\"\n");
 prn_Matrix_R (l, n, irank);
 if (irank != m)
 {
 PRN ("Elements of Diagonal Vector \"diag\"\n");
 prn_Vector_R (diag, irank);
 }
 PRN ("Upper Triangular (Trapezoidal) Matrix \"u\"\n");
 prn_Matrix_R (u, irank, m);

 if (ientry >= 2)
 {
 PRN ("Pseudo-inverse Matrix \"apsudo\"\n");
 prn_Matrix_R (apsudo, m, n);

 s = 0.0;
 for (j = 1; j <= m; j++)
 {
 for (i = 1; i <= n; i++)
 {
 s = s + aa[i][j] * (aa[i][j]);
 }
 }
 sum1 = sqrt (s);
 for (j = 1; j <= n; j++)

© 2008 by Taylor & Francis Group, LLC

Chapter 17: DR_Eluls 627

 {
 for (i = 1; i <= n; i++)
 {
 s = 0.0;
 for (k = 1; k <= m; k++)
 {
 s = s + aa[i][k] * (apsudo[k][j]);
 }
 aux[i][j] = s;
 }
 }
 for (j = 1; j <= m; j++)
 {
 for (i = 1; i <= n; i++)
 {
 s = 0.0;
 for (k = 1; k <= n; k++)
 {
 s = s + aux[i][k] * (aa[k][j]);
 }
 auy[i][j] = s - aa[i][j];
 }
 }
 sa = 0.0;
 for (j = 1; j <= m; j++)
 {
 for (i = 1; i <= n; i++)
 {
 sa = sa + auy[i][j] * (auy[i][j]);
 }
 }
 sum2 = sqrt (sa);
 aerr = sum2/sum1;
 PRN ("||a*apsudo*a - a||/||a|| = %22.15f\n", aerr);
 }

 if ((ientry == 1) || (ientry == 3))
 {
 if (irhs != 0)
 {
 PRN ("\n");
 PRN ("The Least Squares Solution(s)\n");
 for (i = 1; i <= irhs; i++)
 {
 for (j = 1; j <= n; j++)

© 2008 by Taylor & Francis Group, LLC

628 Numerical Linear Approximation in C

 {
 bb[j] = bs[j][i];
 }
 PRN ("Right Hand Vector \"b\"\n");
 prn_Vector_R (bb, n);
 for (j = 1; j <= m; j++)
 {
 bb[j] = xs[j][i];
 }
 PRN ("Solution vector \"x\"\n");
 prn_Vector_R (bb, m);
 for (j = 1; j <= n; j++)
 {
 bb[j] = rres[j][i];
 }
 s = 0.0;
 for (j = 1; j <= n; j++)
 {
 s = s + bb[j] * (bb[j]);
 }
 sum1 = sqrt (s);
 PRN ("Residual vector \"rres\"\n");
 prn_Vector_R (bb, n);
 }
 }
 }
 }

 prn_la_rc (rc);
 }

 free_Matrix_R (aa, NN2_ROWS);
 free_Matrix_R (bs, NN2_ROWS);
 free_Matrix_R (xs, MM2_COLS);
 free_Matrix_R (l, NN2_ROWS);
 free_Matrix_R (u, NN2_ROWS);
 free_Matrix_R (apsudo, MM2_COLS);
 free_Matrix_R (rres, NN2_ROWS);
 free_Matrix_R (aux, NN2_ROWS);
 free_Matrix_R (auy, NN2_ROWS);
 free_Vector_R (diag);
 free_Vector_R (bb);

 uninit_Matrix_R (a1);
 uninit_Matrix_R (bs1);

© 2008 by Taylor & Francis Group, LLC

Chapter 17: DR_Eluls 629

 uninit_Matrix_R (a2);
 uninit_Matrix_R (bs2);
 uninit_Matrix_R (a3);
}

© 2008 by Taylor & Francis Group, LLC

630 Numerical Linear Approximation in C

17.14 LA_Eluls

/*---
LA_Eluls

This program calculates the minimal-length least squares solution(s)
of a system of linear equations using the Gauss "LU" factorization
method with complete pivoting.

The system of linear equations is of the form

 a*xs = bs

"a" is a given real n by m matrix of rank k, k <= [min (n,m)].
"bs" is (are) the given r.h.s. n vector(s).
"xs" is (are) the m solution vector(s).

The problem is to calculate the elements of the "irhs" vector(s)
xs[i][j], i = 1, 2, ..., m, j = 1, 2, ..., "irhs" of the system
a*xs = bs.

Inputs
n Number of rows of matrix "a" in the system a*xs = bs.
m Number of columns of matrix "a" in the system a*xs = bs.
irhs Number of columns in matrix "bs" in the system a*xs = bs.
a A real n by m matrix of the system a*xs = bs.
bs An n rows by "irhs" columns matrix in the system a*xs = bs.
ientry An integer specifying the action by the user:
 0 LA_Eluls() calculates matrices "l" and "u" in the "lu"
 decomposition of (the permuted) matrix "a(permuted)"
 into a(permuted) = l*u
 or a(permuted) =l*diag*u; "diag" is a diagonal matrix
 and "u" has unit diagonal elements.
 1 LA_Eluls() calculates matrices "l" and "u" in the "lu"
 decomposition + the least squares solution
 vector(s) "xs" (if "bs" != 0).
 2 LA_Eluls() calculates matrices "l" and "u" in the "lu"
 decomposition + the pseudo-inverse of "a", "apsudo".
 3 LA_Eluls() calculates matrices "l" and "u" in the "lu"
 decomposition + the pseudo-inverse of matrix "a" +
 the least squares solution(s) (if "bs" != 0).

Local Data
t, v, tempp

© 2008 by Taylor & Francis Group, LLC

Chapter 17: LA_Eluls 631

 Real working matrices.
b, x, w, y temp
 Real working vectors.
ir An n vector containing the indices of the rows of the
 permuted matrix "a".
ic An m vector containing the indices of the columns of the
 permuted matrix "a".

Outputs
irank The calculated rank of matrix "a".
xs An m by "irhs" matrix containing the "irhs" columns that
 are the "irhs" solution m vector(s) xs.
rres An n by "irhs" matrix. (rres[1][j], rres[2][j], ...,
 rres[n][j]) is the least squares residual vector for the
 jth solution, j = 1, ..., "irhs".
 rres[i][j] = a[i][1]*xs[1][j] + ... + a[i][m]*xs[m][j]
 - bs[i][j], for j = 1, 2,..., "irhs".
l An n by n real lower triangular matrix whose n rows and
 first "irank" columns contain the lower triangular
 (trapezoidal) matrix "l" in the decomposition of
 a(permuted) = l*u or a(permuted) = l*diag*u.
diag An m real vector whose first "irank" elements contain the
 diagonal elements of matrix "u".
u An m by m real matrix whose first "irank" rows and m columns
 contain the upper triangular (trapezoidal) matrix "u" in the
 decomposition of a(permuted) = l*u or = l*diag*u.
apsudo An m by n real matrix containing the pseudo inverse of
 matrix "a".

NOTE: The calculated results "xs" and "apsudo" are for the given
 equation a*xs = bs, (not for the permuted one).

Returns one of
 LaRcSolutionFound
 LaRcErrBounds
 LaRcErrNullPtr
 LaRcErrAlloc
---*/

#include "LA_Prototypes.h"

eLaRc LA_Eluls (int ientry, int n, int m, int irhs, tMatrix_R aa,
 tMatrix_R bs, tMatrix_R l, tMatrix_R u, tVector_R diag,
 tVector_R b, int *pIrank, tMatrix_R apsudo, tMatrix_R xs,
 tMatrix_R rres)

© 2008 by Taylor & Francis Group, LLC

632 Numerical Linear Approximation in C

{
 tMatrix_R t = alloc_Matrix_R (m, m);
 tMatrix_R v = alloc_Matrix_R (m, m);
 tMatrix_R tempp = alloc_Matrix_R (m, m);
 tVector_R x = alloc_Vector_R (m);
 tVector_R y = alloc_Vector_R (m);
 tVector_R w = alloc_Vector_R (m);
 tVector_R temp = alloc_Vector_R (m);
 tVector_I ir = alloc_Vector_I (n);
 tVector_I ic = alloc_Vector_I (m);

 int iend = 0, iout = 0, iwish = 0, ifirst = 0,
 isecnd = 0;
 int i = 0, j = 0, ij = 0, irank = 0;

 /* Validation of the data before executing the algorithm */
 eLaRc rc = LaRcSolutionFound;
 VALIDATE_BOUNDS ((0 < n) && (0 < m) && !((n == 1) && (m == 1))
 && (0 <= irhs) && IN_BOUNDS (ientry, 0, 3));
 VALIDATE_PTRS (aa && bs && l && u && diag && b && pIrank &&
 apsudo && xs && rres);
 VALIDATE_ALLOC (t && v && tempp && x && y && w && temp && ir &&
 ic);
 iwish = ientry;
 iout = 1;
 irank = n;

 if (m <= n) irank = m;

 /* lu decomposition */
 LA_eluls_lu_decomp (&iout, n, m, aa, l, u, diag, ir, ic);

 *pIrank = iout - 1;
 if (*pIrank != n)
 {
 /* l factorizing */
 LA_eluls_l_decomp (n, m, tempp, l, u, pIrank);

 /* Cholesky decomposition of matrix tempp */
 LA_chols (irank, tempp, t);
 }
 if (*pIrank != m)
 {
 /* u factorizing */
 LA_eluls_u_decomp (m, tempp, u, diag, pIrank);

© 2008 by Taylor & Francis Group, LLC

Chapter 17: LA_Eluls 633

 /* Cholesky decomposition of matrix tempp */
 LA_chols (irank, tempp, v);
 }
 /* End of l-u factorizations */

 if (iwish == 0)
 {
 GOTO_CLEANUP_RC (LaRcSolutionFound);
 }

 iend = n;
 if (iwish != 2)
 {
 iend = irhs;
 }

 /* Calculating the solution vector(s) and the psudo-inverse
 of the coefficient matrix "a" */
 for (ij = 1; ij <= 2; ij++)
 {
 for (ifirst = 1; ifirst <= iend; ifirst++)
 {
 if (iwish == 2)
 {
 for (isecnd = 1; isecnd <= n; isecnd++)
 {
 b[isecnd] = 0.0;
 }
 b[ifirst] = 1.0;
 }
 else if (iwish != 2)
 {
 for (i = 1; i <= n; i++)
 {
 j = ir[i];
 b[i] = bs[j][ifirst];
 }
 }

 /* Calculating vector y */
 LA_calcul_y (pIrank, n, t, y, w, temp, l, b);

 /* Calculating vector x */
 LA_calcul_x (pIrank, m, v, y, w, temp, u, diag, x);

© 2008 by Taylor & Francis Group, LLC

634 Numerical Linear Approximation in C

 /* Permuting ellements of vector x and calculating
 pseudo-inverse matrix "apsudo" */
 LA_permute_x (iwish, ifirst, isecnd, n, m, aa, bs, w, x,
 ir, ic, apsudo, xs, rres);
 }
 if ((iwish == 1) || (iwish == 2))
 {
 GOTO_CLEANUP_RC (LaRcSolutionFound);
 }
 iwish = 2;
 iend = n;
 }

CLEANUP:

 free_Matrix_R (t, m);
 free_Matrix_R (v, m);
 free_Matrix_R (tempp, m);
 free_Vector_R (x);
 free_Vector_R (y);
 free_Vector_R (w);
 free_Vector_R (temp);
 free_Vector_I (ir);
 free_Vector_I (ic);

 return rc;
}

/*---
Part 1 of LA_Eluls()
---*/
void LA_eluls_lu_decomp (int *pIout, int n, int m, tMatrix_R aa,
 tMatrix_R l, tMatrix_R u, tVector_R diag, tVector_I ir,
 tVector_I ic)
{
 int i, j, ij, iout1, kp = 0, kp1, kdp = 0, nless;
 tNumber_R e, gh, piv, pivot;

 for (j = 1; j <= m; j++)
 {
 ic[j] = j;
 for (i = 1; i <= n; i++)
 {
 u[i][j] = aa[i][j];

© 2008 by Taylor & Francis Group, LLC

Chapter 17: LA_Eluls 635

 }
 }
 for (i = 1; i <= n; i++)
 {
 for (j = 1; j <= n; j++)
 {
 l[i][j] = 0.0;
 }
 ir[i] = i;
 l[i][i] = 1.0;
 }
 *pIout = 1;
 nless = n;
 if (m < n) nless = m;
 for (ij = 1; ij <= nless; ij++)
 {
 piv = 0.0;

 /* Complete pivoting for elements of matrix u */
 for (j = *pIout; j <= m; j++)
 {
 for (i = *pIout; i <= n; i++)
 {
 e = u[i][j];
 if (e < 0.0) e = -e;
 if (e > piv)
 {
 kp = i;
 kdp = j;
 piv = e;
 }
 }
 }

 if (piv < EPS)
 return;
 else
 {
 if (*pIout != kdp)
 {
 /* Swap two elements of integer vector "ic" */
 swap_elems_Vector_I (ic, kdp, *pIout);

 /* Swap two columns of real matrix "u" */
 for (i = 1; i <= n; i++)

© 2008 by Taylor & Francis Group, LLC

636 Numerical Linear Approximation in C

 {
 e = u[i][*pIout];
 u[i][*pIout] = u[i][kdp];
 u[i][kdp] = e;
 }
 }
 if (*pIout != kp)
 {
 /* Swap two elements of integer vector "ir" */
 swap_elems_Vector_I (ir, kp, *pIout);

 /* Swap two partial rows of real matrix "u" */
 for (j = *pIout; j <= m; j++)
 {
 e = u[*pIout][j];
 u[*pIout][j] = u[kp][j];
 u[kp][j] = e;
 }
 if (*pIout != 1)
 {
 iout1 = *pIout - 1;
 for (j = 1; j <= iout1; j++)
 {
 e = l[*pIout][j];
 l[*pIout][j] = l[kp][j];
 l[kp][j] = e;
 }
 }
 }

 pivot = u[*pIout][*pIout];
 diag[*pIout] = pivot;
 if (*pIout != n)
 {
 kp1 = *pIout + 1;
 for (i = kp1; i <= n; i++)
 {
 e = u[i][*pIout];
 gh = e/pivot;
 u[i][*pIout] = 0.0;
 l[i][*pIout] = gh;
 for (j = kp1; j <= m; j++)
 {
 u[i][j] = u[i][j] - gh * (u[*pIout][j]);
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 17: LA_Eluls 637

 }
 }
 *pIout = *pIout + 1;
 }
 }
}

/*---
Calculating vector y for LA_Eluls()
---*/
void LA_calcul_y (int *pIrank, int n, tMatrix_R t, tVector_R y,
 tVector_R w, tVector_R temp, tMatrix_R l, tVector_R b)
{
 int i, j, k, ki, im1, ip1;
 tNumber_R sm;

 if (*pIrank == n)
 {
 y[1] = b[1];
 if (*pIrank == 1) return;
 for (i = 2; i <= *pIrank; i++)
 {
 im1 = i - 1;
 sm = -b[i];
 for (k = 1; k <= im1; k++)
 {
 sm = sm + l[i][k] * (y[k]);
 }
 y[i] = -sm;
 }
 return;
 }
 else if (*pIrank != n)
 {
 for (i = 1; i <= *pIrank; i++)
 {
 sm = 0.0;
 for (k = 1; k <= n; k++)
 {
 sm = sm + l[k][i] * (b[k]);
 }
 temp[i] = sm;
 }
 w[1] = temp[1]/t[1][1];
 if (*pIrank > 1)

© 2008 by Taylor & Francis Group, LLC

638 Numerical Linear Approximation in C

 {
 for (i = 2; i <= *pIrank; i++)
 {
 im1 = i - 1;
 sm = -temp[i];
 for (k = 1; k <= im1; k++)
 {
 sm = sm + t[i][k] * (w[k]);
 }
 w[i] = -sm/t[i][i];
 }
 }
 y[*pIrank] = w[*pIrank]/t[*pIrank][*pIrank];
 if (*pIrank == 1) return;
 for (j = 2; j <= *pIrank; j++)
 {
 i = *pIrank - j + 1;
 ip1 = i + 1;
 sm = -w[i];
 ki = j - 1 + ip1 - 1;
 for (k = ip1; k <= ki; k++)
 {
 sm = sm + t[k][i] * (y[k]);
 }
 y[i] = -sm/t[i][i];
 }
 }
}

/*---
Calculating vector x for LA_Eluls()
---*/
void LA_calcul_x (int *pIrank, int m, tMatrix_R v, tVector_R y,
 tVector_R w, tVector_R temp, tMatrix_R u, tVector_R diag,
 tVector_R x)
{
 int i, j, im1, ip1, k, ki;

 tNumber_R sm;

 if (*pIrank == m)
 {
 x[*pIrank] = y[*pIrank]/u[*pIrank][*pIrank];
 if (*pIrank == 1) return;
 for (j = 2; j <= *pIrank; j++)

© 2008 by Taylor & Francis Group, LLC

Chapter 17: LA_Eluls 639

 {
 i = *pIrank - j + 1;
 ip1 = i + 1;
 sm = -y[i];
 ki = j - 1 + ip1 - 1;
 for (k = ip1; k <= ki; k++)
 {
 sm = sm + u[i][k] * (x[k]);
 }
 x[i] = -sm/u[i][i];
 }
 return;
 }
 else if (*pIrank != m)
 {
 for (i = 1; i <= *pIrank; i++)
 {
 y[i] = y[i]/diag[i];
 }
 w[1] = y[1]/v[1][1];
 if (*pIrank > 1)
 {
 for (i = 2; i <= *pIrank; i++)
 {
 im1 = i - 1;
 sm = -y[i];
 for (k = 1; k <= im1; k++)
 {
 sm = sm + v[i][k] * (w[k]);
 }
 w[i] = -sm/v[i][i];
 }
 }
 temp[*pIrank] = w[*pIrank]/v[*pIrank][*pIrank];
 if (*pIrank > 1)
 {
 for (j = 2; j <= *pIrank; j++)
 {
 i = *pIrank - j + 1;
 ip1 = i + 1;
 sm = -w[i];
 ki = j - 1 + ip1 - 1;
 for (k = ip1; k <= ki; k++)
 {
 sm = sm + v[k][i] * (temp[k]);

© 2008 by Taylor & Francis Group, LLC

640 Numerical Linear Approximation in C

 }
 temp[i] = -sm/v[i][i];
 }
 }
 for (i = 1; i <= m; i++)
 {
 sm = 0.0;
 for (k = 1; k <= *pIrank; k++)
 {
 sm = sm + u[k][i] * (temp[k]);
 }
 x[i] = sm;
 }
 }
}

/*---
Permute elements of vector x and calculate apsudo for LA_Eluls()
---*/
void LA_permute_x (int iwish, int ifirst, int isecnd, int n, int m,
 tMatrix_R aa, tMatrix_R bs, tVector_R w, tVector_R x,
 tVector_I ir, tVector_I ic, tMatrix_R apsudo, tMatrix_R xs,
 tMatrix_R rres)
{
 int i, j, k;

 tNumber_R sm;

 for (i = 1; i <= m; i++)
 {
 k = ic[i];
 w[k] = x[i];
 }
 if (iwish != 2)
 {
 for (i = 1; i <= m; i++)
 {
 xs[i][ifirst] = w[i];
 }
 for (j = 1; j <= n; j++)
 {
 sm = -bs[j][ifirst];
 for (k = 1; k <= m; k++)
 {
 sm = sm + aa[j][k] * (w[k]);

© 2008 by Taylor & Francis Group, LLC

Chapter 17: LA_Eluls 641

 }
 rres[j][ifirst] = -sm;
 }
 }
 else if (iwish == 2)
 {
 for (isecnd= 1; isecnd <= m; isecnd++)
 {
 k = ir[ifirst];
 apsudo[isecnd][k] = w[isecnd];
 }
 }
}

/*---
lu factorization for LA_Eluls
---*/
void LA_eluls_l_decomp (int n, int m, tMatrix_R tempp, tMatrix_R l,
 tMatrix_R u, int *pIrank)
{
 int i, j, k, irank1;
 tNumber_R sm;

 if (*pIrank < n)
 {
 irank1 = *pIrank + 1;
 for (i = irank1; i <= n; i++)
 {
 for (j = *pIrank; j <= m; j++)
 {
 u[i][j] = 0.0;
 }
 }
 }
 for (i = 1; i <= *pIrank; i++)
 {
 for (j = 1; j <= *pIrank; j ++)
 {
 sm = 0.0;
 for (k = 1; k <= n; k++)
 {
 sm = sm + l[k][i] * (l[k][j]);
 }
 tempp[i][j] = sm;
 }

© 2008 by Taylor & Francis Group, LLC

642 Numerical Linear Approximation in C

 }
}

/*---
Factorizing matrix u for LA_Eluls()
---*/
void LA_eluls_u_decomp (int m, tMatrix_R tempp, tMatrix_R u,
 tVector_R diag, int *pIrank)
{
 int i, j, k;
 tNumber_R con, sm;

 for (i = 1; i <= *pIrank; i++)
 {
 u[i][i] = 1.0;
 k = i + 1;
 con = diag[i];
 for (j = k; j <= m; j++)
 {
 u[i][j] = u[i][j]/con;
 }
 }
 for (i = 1; i <= *pIrank; i++)
 {
 for (j = 1; j <= *pIrank; j++)
 {
 sm = 0.0;
 for (k = 1; k <= m; k++)
 {
 sm = sm + u[i][k] * (u[j][k]);
 }
 tempp[i][j] = sm;
 }
 }
}

/*---
LA_chols

This program calculates the Cholesky decomposition of a positive
definite symmetric matrix q.

Matrix "q" is decomposed into q = el*el(transpose) where "el" is a
lower triangular matrix.

© 2008 by Taylor & Francis Group, LLC

Chapter 17: LA_Eluls 643

Inputs
irank The dimension of the square matrix q.
q An m by m matrix whose first "irank" rows and "irank"
 columns contain the positive definite symmetric matrix "q".

Outputs
el An "irank" by "irank" matrix whose "irank" rows and "irank"
 columns contain the lower triangular matrix "el" of the
 decomposition
 q = el*el (transpose)
---*/
void LA_chols (int irank, tMatrix_R q, tMatrix_R el)
{
 int i, j, k, im1, jp1;
 tNumber_R c, sm;

 j = 1;
 c = q[1][1];
 el[1][1] = sqrt (c);
 if (irank == 1) return;
 for (j = 1; j <= irank-1; j++)
 {
 jp1 = j + 1;
 el[jp1][1] = q[1][jp1]/el[1][1];
 if (j > 1)
 {
 for (i = 2; i <= j; i++)
 {
 im1 = i - 1;
 c = -q[i][jp1];
 sm = c;
 for (k = 1; k <= im1; k++)
 {
 sm = sm + el[i][k] * (el[jp1][k]);
 }
 el[jp1][i] = -sm/el[i][i];
 }
 }
 for (i = 1; i <= j; i++)
 {
 el[i][jp1] = 0.0;
 }
 c = -q[jp1][jp1];
 sm = c;
 for (k = 1; k <= j; k++)

© 2008 by Taylor & Francis Group, LLC

644 Numerical Linear Approximation in C

 {
 sm = sm + el[jp1][k] * (el[jp1][k]);
 }
 el[jp1][jp1] = sqrt (-sm);
 }
}

© 2008 by Taylor & Francis Group, LLC

Chapter 17: DR_Hhls 645

17.15 DR_Hhls

/*---
DR_Hhls

This program is a driver for the function LA_Hhls(), which
calculates the minimal-length least squares solution of a system of
linear equations and/or calculates the pseudo-inverse of the
coefficient matrix. It uses Householder's "qrp" decomposition method
with pivoting.

The system of linear equations is of the form

 a*xs = bs

"a" is a given real n by m matrix of rank k, k <= [min (n,m)]
"bs" is (are) given real r.h.s. n vector(s).
"xs" is (are) the m solution vector(s).

The system of linear equations might be overdetermined, determined or
underdetermined.

The required results are obtained according to a parameter "ientry"
specified by the user:
 0 LA_Hhls() calculates the factorization matrices q, r
 and p of "a(permuted)" = q * r * p(transpose).
 1 LA_Hhls() calculates the matrices "q", "r" and "p" +
 the least squares solution vector(s) "xs" (if "bs" != 0).
 2 LA_Hhls() calculates the matrices q", "r" and "p" + the
 pseudo-inverse of "a", "apsudo".
 3 LA_Hhls() calculates the matrices q", "r" and "p" +
 the pseudo-inverse of matrix "a" + the least squares
 solution(s) (if "bs" != 0).

This program contains 3 examples whose results appear in the text.

Example 1:
 matrix "a" is 8 by 5 well conditioned matrix of rank 3. There
 are 3 r.h.s. vectors "bs".

Example 2:
 matrix "a" is 6 by 5 badly conditioned matrix of rank 5. There
 are 2 r.h.s. vectors "bs".

© 2008 by Taylor & Francis Group, LLC

646 Numerical Linear Approximation in C

Example 3:
 matrix "a" is 4 by 5 badly conditioned matrix. There are no
 r.h.s. vectors "bs".
 In single precision, the calculated rank of coefficient matrix
 "a" = 3.
 In double precision, the calculated rank of coefficient matrix
 "a" = 4.
---*/

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define Na2 8
#define Ma2 5
#define irhsa 3
#define Nb2 6
#define Mb2 5
#define irhsb 2
#define Nc2 4
#define Mc2 5
#define irhsc 0

void DR_Hhls (void)
{
 /*--
 Constant matrices/vectors
 --*/
 static tNumber_R a1init[Na2][Ma2] =
 {
 { 22.0, 10.0, 2.0, 3.0, 7.0 },
 { 14.0, 7.0, 10.0, 0.0, 8.0 },
 { -1.0, 13.0, -1.0, -11.0, 3.0 },
 { -3.0, -2.0, 13.0, -2.0, 4.0 },
 { 9.0, 8.0, 1.0, -2.0, 4.0 },
 { 9.0, 1.0, -7.0, 5.0, -1.0 },
 { 2.0, -6.0, 6.0, 5.0, 1.0 },
 { 4.0, 5.0, 0.0, -2.0, 2.0 }
 };

 static tNumber_R bs1init[Na2][irhsa] =
 {
 { -1.0, 1.0, 0.0 },
 { 2.0, -1.0, 1.0 },
 { 1.0, 10.0, 11.0 },
 { 4.0, 0.0, 4.0 },

© 2008 by Taylor & Francis Group, LLC

Chapter 17: DR_Hhls 647

 { 0.0, -6.0, -6.0 },
 { -3.0, 6.0, 3.0 },
 { 1.0, 11.0, 12.0 },
 { 0.0, -5.0, -5.0 }
 };

 static tNumber_R a2init[Nb2][Mb2] =
 {
 { 36.0, -630.0, 3360.0, -7560.0, 7560.0 },
 { -630.0, 14700.0, -88200.0, 211680.0, -220500.0 },
 { 3360.0, -88200.0, 564480.0, -1411200.0, 1512000.0 },
 { -7560.0, 211680.0, -1411200.0, 3628800.0, -3969000.0 },
 { 7560.0, -220500.0, 1512000.0, -3969000.0, 4410000.0 },
 { -2772.0, 83160.0, -582120.0, 1552320.0, -1746360.0 }
 };

 static tNumber_R bs2init[Nb2][irhsb] =
 {
 { 463.0, -4157.0 },
 { -13860.0, -17820.0 },
 { 97020.0, 93555.0 },
 { -258720.0, -261800.0 },
 { 291060.0, 288288.0 },
 { -116424.0, -118944.0 }
 };

 static tNumber_R a3init[Nc2][Mc2] =
 {
 { 0.4087, 0.1593, 0.6594, 0.4302, 0.3516 },
 { 0.6246, 0.3383, 0.6591, 0.9342, 0.9038 },
 { 0.0661, 0.9112, 0.6898, 0.1931, 0.1498 },
 { 0.2112, 0.8150, 0.7983, 0.3406, 0.2803 }
 };

 /*--
 Variable matrices/vectors
 --*/
 tMatrix_R aa = alloc_Matrix_R (NN2_ROWS, MM2_COLS);
 tMatrix_R bs = alloc_Matrix_R (NN2_ROWS, KK2_COLS);
 tMatrix_R xs = alloc_Matrix_R (MM2_COLS, KK2_COLS);
 tMatrix_R q = alloc_Matrix_R (NN2_ROWS, NN2_ROWS);
 tMatrix_R r = alloc_Matrix_R (MM2_COLS, MM2_COLS);
 tMatrix_R p = alloc_Matrix_R (MM2_COLS, MM2_COLS);
 tMatrix_R apsudo = alloc_Matrix_R (MM2_COLS, NN2_ROWS);
 tMatrix_R res = alloc_Matrix_R (NN2_ROWS, KK2_COLS);

© 2008 by Taylor & Francis Group, LLC

648 Numerical Linear Approximation in C

 tMatrix_R aux = alloc_Matrix_R (NN2_ROWS, NN2_ROWS);
 tMatrix_R auy = alloc_Matrix_R (NN2_ROWS, MM2_COLS);
 tVector_R bb = alloc_Vector_R (NN2_ROWS);

 tMatrix_R a1 = init_Matrix_R (&(a1init[0][0]), Na2, Ma2);
 tMatrix_R bs1 = init_Matrix_R (&(bs1init[0][0]), Na2,irhsa);
 tMatrix_R a2 = init_Matrix_R (&(a2init[0][0]), Nb2, Mb2);
 tMatrix_R bs2 = init_Matrix_R (&(bs2init[0][0]), Nb2,irhsb);
 tMatrix_R a3 = init_Matrix_R (&(a3init[0][0]), Nc2, Mc2);

 int irank, irhs, ientry;
 int i, j, k, m, n, Iexmpl;

 tNumber_R s, sa, sum1, sum2, aerr;

 eLaRc rc = LaRcOk;

 prn_dr_bnr ("DR_Hhls, Minimal Length L2 Solution of a System of"
 " Linear Equations by Householder's \"QR\""
 " Decomposition");

 for (Iexmpl = 1; Iexmpl <= 3; Iexmpl++)
 {
 switch (Iexmpl)
 {
 case 1:
 ientry = 3;
 n = Na2;
 m = Ma2;
 irhs = irhsa;
 for (i = 1; i <= n; i++)
 {
 for (j = 1; j <= m; j++)
 {
 aa[i][j] = a1[i][j];
 }
 }
 for (i = 1; i <= n; i++)
 {
 for (j = 1; j <= irhs; j++)
 {
 bs[i][j] = bs1[i][j];
 }
 }
 break;

© 2008 by Taylor & Francis Group, LLC

Chapter 17: DR_Hhls 649

 case 2:
 ientry = 3;
 n = Nb2;
 m = Mb2;
 irhs = irhsb;
 for (i = 1; i <= n; i++)
 {
 for (j = 1; j <= m; j++)
 {
 aa[i][j] = a2[i][j];
 }
 }
 for (i = 1; i <= n; i++)
 {
 for (j = 1; j <= irhs; j++)
 {
 bs[i][j] = bs2[i][j];
 }
 }
 break;

 case 3:
 ientry = 2;
 n = Nc2;
 m = Mc2;
 irhs = 0;
 for (i = 1; i <= n; i++)
 {
 for (j = 1; j <= m; j++)
 {
 aa[i][j] = a3[i][j];
 }
 }
 break;

 default:
 break;
 }

 prn_algo_bnr ("Hhls");

 prn_example_delim();
 PRN ("Example #%d: Size of matrix \"a\" %d by %d\n",
 Iexmpl, n, m);

© 2008 by Taylor & Francis Group, LLC

650 Numerical Linear Approximation in C

 prn_example_delim();
 PRN ("Minimal Least Squares Solution(s) of a System of"
 " Linear Equations Using Householder's \"QR\""
 " Decomposition\n");
 prn_example_delim();

 PRN ("Coefficient Matrix \"a\"\n");
 prn_Matrix_R (aa, n, m);

 if (irhs != 0)
 {
 PRN ("\n");
 PRN ("Right Hand Vector(s) \"bs\"\n");
 prn_Matrix_R (bs, n, irhs);
 }

 rc = LA_Hhls (ientry, n, m, irhs, aa, bs, q, r, p, &irank,
 apsudo, xs, res);

 if (rc >= LaRcOk)
 {
 PRN ("\n");
 PRN ("Results of the Least Squares Problem\n");
 PRN ("Rank of the coefficient matrix = %d\n\n", irank);
 PRN ("Orthogonal Matrix \"q\"\n");
 prn_Matrix_R (q, n, irank);

 PRN ("Upper Triangular Matrix \"r\"\n");
 prn_Matrix_R (r, irank, irank);

 PRN ("Orthogonal Matrix \"p\"\n");
 prn_Matrix_R (p, m, irank);

 if (ientry >= 2)
 {
 PRN ("Pseudo-inverse Matrix \"apsudo\"\n");
 prn_Matrix_R (apsudo, m, n);

 s = 0.0;
 for (j = 1; j <= m; j++)
 {
 for (i = 1; i <= n; i++)
 {
 s = s + aa[i][j] * (aa[i][j]);

© 2008 by Taylor & Francis Group, LLC

Chapter 17: DR_Hhls 651

 }
 }
 sum1 = sqrt (s);

 for (j = 1; j <= n; j++)
 {
 for (i = 1; i <= n; i++)
 {
 s = 0.0;
 for (k = 1; k <= m; k++)
 {
 s = s + aa[i][k] * (apsudo[k][j]);
 }
 aux[i][j] = s;
 }
 }

 for (j = 1; j <= m; j++)
 {
 for (i = 1; i <= n; i++)
 {
 s = 0.0;
 for (k = 1; k <= n; k++)
 {
 s = s + aux[i][k] * (aa[k][j]);
 }
 auy[i][j] = s - aa[i][j];
 }
 }

 sa = 0.0;
 for (j = 1; j <= m; j++)
 {
 for (i = 1; i <= n; i++)
 {
 sa = sa + auy[i][j] * (auy[i][j]);
 }
 }
 sum2 = sqrt (sa);
 aerr = sum2/sum1;
 PRN ("||a*apsudo*a - a||/||a|| = %22.15f\n", aerr);
 }

 if ((ientry == 1) || (ientry == 3))
 {

© 2008 by Taylor & Francis Group, LLC

652 Numerical Linear Approximation in C

 if (irhs != 0)
 {
 PRN ("\n");
 PRN ("The Least Squares Solution(s)\n");
 for (i = 1; i <= irhs; i++)
 {
 for (j = 1; j <= n; j++)
 {
 bb[j] = bs[j][i];
 }

 PRN ("Right Hand Vector \"b\"\n");
 prn_Vector_R (bb, n);
 for (j = 1; j <= m; j++)
 {
 bb[j] = xs[j][i];
 }

 PRN ("Solution vector \"x\"\n");
 prn_Vector_R (bb, m);
 for (j = 1; j <= n; j++)
 {
 bb[j] = res[j][i];
 }
 s = 0.0;
 for (j = 1; j <= n; j++)
 {
 s = s + bb[j] * (bb[j]);
 }
 sum1 = sqrt (s);

 PRN ("Residual vector \"res\"\n");
 prn_Vector_R (bb, n);
 }
 }
 }
 }

 prn_la_rc (rc);
 }

 free_Matrix_R (aa, NN2_ROWS);
 free_Matrix_R (bs, NN2_ROWS);
 free_Matrix_R (xs, MM2_COLS);
 free_Matrix_R (q, NN2_ROWS);

© 2008 by Taylor & Francis Group, LLC

Chapter 17: DR_Hhls 653

 free_Matrix_R (r, MM2_COLS);
 free_Matrix_R (p, MM2_COLS);
 free_Matrix_R (apsudo, MM2_COLS);
 free_Matrix_R (res, NN2_ROWS);
 free_Matrix_R (aux, NN2_ROWS);
 free_Matrix_R (auy, NN2_ROWS);
 free_Vector_R (bb);

 uninit_Matrix_R (a1);
 uninit_Matrix_R (bs1);
 uninit_Matrix_R (a2);
 uninit_Matrix_R (bs2);
 uninit_Matrix_R (a3);
}

© 2008 by Taylor & Francis Group, LLC

654 Numerical Linear Approximation in C

17.16 LA_Hhls

/*---
LA_Hhls

This program calculates the minimal-length least squares solution(s)
of a system of linear equations and/or the pseudo-inverse of the
coefficient matrix. It uses the Householder's "QR" decomposition
method with pivoting.

The system of linear equations is of the form

 a*xs = bs

"a" is a given real n by m matrix of rank k, k <= [min (n,m)].
"bs" is (are) the given r.h.s. n vector(s).
"xs" is (are) the m solution vector(s).

In this method the permuted matrix "a(permuted)" is factorized into

(1) "a(permuted)" = q*r*p(transpose)

See description of "q", "r" and "p" below".

Inputs
n Number of rows of matrix "a" in the system a*xs = bs.
m Number of columns of matrix "a" in the system a*xs = bs.
irhs Number of columns of the r.h.s matrix "bs".
a A real n by m matrix of the given equation a*xs = bs.
 This matrix is not destroyed in the computation.
bs A real n by "irhs" matrix of the r.h.s. of a*xs = bs.
ientry An integer specifying the action by the user:
 0 LA_Hhls() calculates the factorization matrices q, r
 and p of "a(permuted)" = q * r * p(transpose).
 1 LA_Hhls() calculates the matrices "q", "r" and "p" +
 the least squares solution vector(s) "xs" (if "bs" != 0).
 2 LA_Hhls() calculates the matrices q", "r" and "p" + the
 pseudo-inverse of "a", "apsudo".
 3 LA_Hhls() calculates the matrices q", "r" and "p" +
 the pseudo-inverse of matrix "a" + the least squares
 solution(s) (if "bs" != 0).

Local Data
ic An integer n vector containing the column permutation of

© 2008 by Taylor & Francis Group, LLC

Chapter 17: LA_Hhls 655

 matrix "a".
t A real working matrix.
b, x, w, dm
 Real working vectors.

Outputs
irank The calculated rank of matrix "a".
q An n by n matrix whose first n rows and "irank" columns
 contain the orthogonal matrix "q" in the factorization (1)
 above.
r A real m by m matrix whose first "irank" rows and "irank"
 columns contain the triangular matrix "r" in the
 factorization (1) above.
p An m by m matrix whose first "irank" rows and m columns
 contain matrix "p(transpose)" of the factorization (1) above.
xs A real m by "irhs" matrix containing the minimal length
 least squares solution matrix "xs" of system a*xs = bs.
res A real n by "irhs" matrix containing the residual vectors
 given by (bs - a*xs) for the "irhs" solutions of a*xs = bs.
apsudo A real m by n matrix containing the pseudo-inverse of matrix
 "a".

NOTE: The calculated results "xs" and "apsudo" are for the given
 equation a*xs = bs, (not for the permuted one).

Returns one of
 LaRcSolutionFound
 LaRcErrBounds
 LaRcErrNullPtr
 LaRcErrAlloc
---*/

#include "LA_Prototypes.h"

eLaRc LA_Hhls (int ientry, int n, int m, int irhs, tMatrix_R aa,
 tMatrix_R bs, tMatrix_R q, tMatrix_R r, tMatrix_R p, int *pIrank,
 tMatrix_R apsudo, tMatrix_R xs, tMatrix_R res)
{
 tMatrix_R t = alloc_Matrix_R (n, m);
 tVector_R x = alloc_Vector_R (m);
 tVector_R w = alloc_Vector_R (n + 1);
 tVector_R dm = alloc_Vector_R (n + 1);
 tVector_I ic = alloc_Vector_I (m);
 tVector_R b = alloc_Vector_R (n);

© 2008 by Taylor & Francis Group, LLC

656 Numerical Linear Approximation in C

 int iout = 0, iwish = 0, in = 0, ifirst = 0, isecnd = 0,
 irank1 = 0;
 int i = 0, ij = 0;
 tNumber_R eps2 = 0.0;

 /* Validation of the data before executing the algorithm */
 eLaRc rc = LaRcSolutionFound;
 VALIDATE_BOUNDS ((0 < n) && (0 < m) && !((n == 1) && (m == 1))
 && (0 <= irhs) && IN_BOUNDS (ientry, 0, 3));
 VALIDATE_PTRS (aa && bs && q && r && p && pIrank && apsudo &&
 xs && res);
 VALIDATE_ALLOC (t && x && w && dm && ic && b);

 /* Initialization */
 eps2 = EPS*EPS;
 iwish = ientry;

 LA_hhls_init (n, m, aa, q, t, ic);
 iout = 1;

 /* Calculation of matrix q */
 LA_hhls_calcul_q (&iout, n, m, q, t, ic, w, dm);

 *pIrank = iout - 1;

 irank1 = *pIrank + 1;

 /* Intialize matrix p */
 LA_hhls_init_p (n, m, pIrank, r, t, p);

 /* Calculation of matrix r */
 LA_hhls_calcul_r_p (pIrank, m, r, p, w, dm);

 if (iwish == 0)
 {
 GOTO_CLEANUP_RC (LaRcSolutionFound);
 }

 in = n;
 if (iwish != 2) in = irhs;

 for (ij = 1; ij <= 2; ij++)
 {
 for (ifirst = 1; ifirst <= in; ifirst++)
 {

© 2008 by Taylor & Francis Group, LLC

Chapter 17: LA_Hhls 657

 if (iwish != 2)
 {
 for (i = 1; i <= n; i++)
 {
 b[i] = bs[i][ifirst];
 }
 }
 else if (iwish == 2)
 {
 for (isecnd = 1; isecnd <= n; isecnd++)
 {
 b[isecnd] = 0.0;
 }
 b[ifirst] = 1.0;
 }
 /* Calculate the results */
 LA_hhls_calcul_res (iwish, ifirst, isecnd, pIrank, n, m,
 aa, bs, xs, apsudo, q, r, p, ic, b,
 x, w, dm, res);
 }

 if ((iwish == 1) || (iwish == 2))
 {
 GOTO_CLEANUP_RC (LaRcSolutionFound);
 }
 iwish = 2;
 in = n;
 }

CLEANUP:

 free_Matrix_R (t, n);
 free_Vector_R (x);
 free_Vector_R (w);
 free_Vector_R (dm);
 free_Vector_I (ic);
 free_Vector_R (b);

 return rc;
}

/*---
Calculation of matrix q in LA_Hhls()
---*/
void LA_hhls_calcul_q (int *pIout, int n, int m, tMatrix_R q,

© 2008 by Taylor & Francis Group, LLC

658 Numerical Linear Approximation in C

 tMatrix_R t, tVector_I ic, tVector_R w, tVector_R dm)
{
 int nless, kdp, iout1;
 int i, ij, j, k;

 tNumber_R beta, e, eps2, piv, s, sqsg;

 eps2 = EPS*EPS;
 nless = n;
 if (m < n) nless = m;

 /* Calculation of matrix q */
 for (ij = 1; ij <= nless; ij++)
 {
 /* Permuting the columns of matrix t */
 piv = 0.0;
 kdp = *pIout;
 for (i = *pIout; i <= m; i++)
 {
 s = 0.0;
 for (k = *pIout; k <= n; k++)
 {
 s = s + t[k][i] * t[k][i];
 }
 if (s >= piv)
 {
 piv = s;
 kdp = i;
 }
 }

 if (piv >= eps2)
 {
 if (*pIout != kdp)
 {
 /* Swap two elements of integer vector "ic" */
 swap_elems_Vector_I (ic, kdp, *pIout);

 /* Swap two columns of real matrix "t" */
 for (i = 1; i <= n; i++)
 {
 e = t[i][*pIout];
 t[i][*pIout] = t[i][kdp];
 t[i][kdp] = e;
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 17: LA_Hhls 659

 }

 if (*pIout < n)
 {
 e = t[*pIout][*pIout];
 if (e < 0.0) e = -e;
 sqsg = sqrt (piv);
 beta = 1.0/ (piv + sqsg * e);
 for (i = 1; i <= n; i++)
 {
 w[i] = 0.0;
 if (i > *pIout)
 {
 w[i] = t[i][*pIout];
 }
 else if (i == *pIout)
 {
 e = sqsg;
 if (t[*pIout][*pIout] < 0.0) e = -e;
 w[i] = t[*pIout][*pIout] + e;
 }
 }

 for (j = *pIout; j <= m; j++)
 {
 s = 0.0;
 for (k = *pIout; k <= n; k++)
 {
 s = s + w[k] * (t[k][j]);
 }
 dm[j] = s * beta;
 }

 for (j = *pIout; j <= m; j++)
 {
 for (i = *pIout; i <= n; i++)
 {
 t[i][j] = t[i][j] - w[i] * (dm[j]);
 }
 }
 iout1 = *pIout + 1;

 for (i = iout1; i <= n; i++)
 {
 t[i][*pIout] = 0.0;

© 2008 by Taylor & Francis Group, LLC

660 Numerical Linear Approximation in C

 }

 for (i = 1; i <= n; i++)
 {
 s = 0.0;
 for (k = *pIout; k <= n; k++)
 {
 s = s + w[k] * (q[i][k]);
 }
 dm[i] = s * beta;
 }

 for (j = *pIout; j <= n; j++)
 {
 for (i = 1; i <= n; i++)
 {
 q[i][j] = q[i][j] - dm[i] * (w[j]);
 }
 }
 }
 *pIout = *pIout + 1;
 }
 }
}

/*---
Intialize matrix p in LA_Hhls()
---*/
void LA_hhls_init_p (int n, int m, int *pIrank, tMatrix_R r,
 tMatrix_R t, tMatrix_R p)
{
 int i, j, irank1;

 irank1 = *pIrank + 1;

 if (*pIrank != n)
 {
 for (j = *pIrank; j <= m; j++)
 {
 for (i = irank1; i <= n; i++)
 {
 t[i][j] = 0.0;
 }
 }
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 17: LA_Hhls 661

 for (j = 1; j <= m; j++)
 {
 for (i = 1; i <= *pIrank; i++)
 {
 r[i][j] = t[i][j];
 }
 }

 for (j = 1; j <= m; j++)
 {
 for (i = 1; i <= m; i ++)
 {
 p[i][j] = 0.0;
 }
 p[j][j] = 1.0;
 }
}

/*---
Calculating matrix r in LA_Hhls()
---*/
void LA_hhls_calcul_r_p (int *pIrank, int m, tMatrix_R r,
 tMatrix_R p, tVector_R w, tVector_R dm)
{
 int iout, irank1;
 int i, ij, j, k;

 tNumber_R e, s, abass, beta, sigma, sqsg;

 irank1 = *pIrank + 1;
 if (*pIrank != m)
 {
 iout = *pIrank;
 for (ij = 1; ij <= *pIrank; ij++)
 {
 e = r[iout][iout];
 if (e < 0.0) e = -e;
 abass = e;
 s = abass*abass;

 for (k = irank1; k <= m; k++)
 {
 s = s + r[iout][k] * (r[iout][k]);
 }

© 2008 by Taylor & Francis Group, LLC

662 Numerical Linear Approximation in C

 sigma = s;
 sqsg = sqrt (sigma);
 beta = 1.0/ (sigma + abass * sqsg);

 for (j = 1; j <= m; j++)
 {
 w[j] = 0.0;
 if (j > *pIrank)
 {
 w[j] = r[iout][j];
 }
 else if (j == *pIrank)
 {
 e = sqsg;
 if (r[iout][iout] < 0.0) e = -e;
 w[iout] = r[iout][iout] + e;
 }
 }

 for (i = 1; i <= m; i++)
 {
 s = 0.0;
 for (k = 1; k <= m; k++)
 {
 s = s + p[i][k] * (w[k]);
 }
 dm[i] = s * beta;
 }

 for (j = 1; j <= m; j++)
 {
 for (i = 1; i <= m; i++)
 {
 p[i][j] = p[i][j] - dm[i] * (w[j]);
 }
 }

 for (i = 1; i <= *pIrank; i++)
 {
 s = 0.0;
 for (k = 1; k <= m; k++)
 {
 s = s + r[i][k] * (w[k]);
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 17: LA_Hhls 663

 dm[i] = s * beta;
 }

 for (j = 1; j <= m; j++)
 {
 for (i = 1; i <= *pIrank; i++)
 {
 r[i][j] = r[i][j] - dm[i] * (w[j]);
 }
 }

 iout = iout - 1;
 if (iout < 1)
 {
 return;
 }
 }
 }
}

/*---
Calculate the results of LA_Hhls()
---*/
void LA_hhls_calcul_res (int iwish, int ifirst, int isecnd,
 int *pIrank, int n, int m, tMatrix_R aa, tMatrix_R bs,
 tMatrix_R xs, tMatrix_R apsudo, tMatrix_R q, tMatrix_R r,
 tMatrix_R p, tVector_I ic, tVector_R b, tVector_R x, tVector_R w,
 tVector_R dm, tMatrix_R res)
{
 int ip1;
 int i, ii, j, k;

 tNumber_R s;

 for (i = 1; i <= *pIrank; i++)
 {
 s = 0.0;
 for (k = 1; k <= n; k++)
 {
 s = s + b[k] * (q[k][i]);
 }
 dm[i] = s;
 }

 w[*pIrank] = dm[*pIrank]/r[*pIrank][*pIrank];

© 2008 by Taylor & Francis Group, LLC

664 Numerical Linear Approximation in C

 if (*pIrank != 1)
 {
 for (ii = 2; ii <= *pIrank; ii++)
 {
 i = *pIrank - ii + 1;
 ip1 = i + 1;
 s = -dm[i];
 for (k = ip1; k <= *pIrank; k++)
 {
 s = s + r[i][k] * (w[k]);
 }
 w[i] = -s/r[i][i];
 }
 }

 for (i = 1; i <= m; i++)
 {
 s = 0.0;
 for (k = 1; k <= *pIrank; k++)
 {
 s = s + w[k] * (p[i][k]);
 }
 dm[i] = s;
 k = ic[i];
 x[k] = dm[i];
 }

 if (iwish == 2)
 {
 for (isecnd = 1; isecnd <= m; isecnd++)
 {
 apsudo[isecnd][ifirst] = x[isecnd];
 }
 }
 else if (iwish != 2)
 {
 for (i = 1; i <= m; i++)
 {
 xs[i][ifirst] = x[i];
 }
 for (j = 1; j <= n; j++)
 {
 s = -bs[j][ifirst];
 for (k = 1; k <= m; k++)

© 2008 by Taylor & Francis Group, LLC

Chapter 17: LA_Hhls 665

 {
 s = s + aa[j][k] * (x[k]);
 }
 res[j][ifirst] = -s;
 }
 }
}

/*---
Initialization of LA_Hhls()
---*/
void LA_hhls_init (int n, int m, tMatrix_R aa, tMatrix_R q,
 tMatrix_R t, tVector_I ic)
{
 int i, j;

 for (j = 1; j <= m; j++)
 {
 ic[j] = j;
 for (i = 1; i <= n; i++)
 {
 t[i][j] = aa[i][j];
 }
 }

 for (j = 1; j <= n; j++)
 {
 for (i = 1; i <= n; i++)
 {
 q[i][j] = 0.0;
 }
 q[j][j] = 1.0;
 }
}

/*---
LA_Hhlsro

Given is the real n by m matrix "c" of rank m <= n and a real n
vector "f" for the equation

 (a) c*a = f

© 2008 by Taylor & Francis Group, LLC

666 Numerical Linear Approximation in C

This program applies householder"s transformation to obtain the upper
triangular matrix, which is the r.h.s. in the orthogonal
factorization
 [r | h]
 (b) q(transpose)*[c|f] = [---|---]
 [0 |rho]

where
"q" is a real n by n orthogonal matrix
 q(transpose)*q = I(unit matrix)
 "q" is not calculated nor it is stored.
 The matrix on the r.h.s. of (b) is an upper (m+1)
 by (m+1) matrix.
"r" is a real m by m upper triangular matrix.
"h" is a real m vector given by q(transpose)*b=h.
"rho" is a real scalar that equals plus or minus of the L-Two norm
of the residual vector res = (b - a*x), i.e.
 |rho| = ||c*a-f|| where ||.|| denotes the L-Two norm.

This program then calculates the least squares solution of the
overdetermined system (a) above, given by

 a = (r**-1)*h

Returns one of
 LaRcSolutionFound
 LaRcInconsistentSystem
 LaRcErrBounds
 LaRcErrNullPtr
---*/
eLaRc LA_Hhlsro (int n, int m, tMatrix_R c, tVector_R f, tVector_R a,
 tMatrix_R r, tVector_R res, tMatrix_R t, tVector_R dm,
 tVector_R w, tNumber_R *pRho)
{
 int iend, mp1;
 int i, j;
 tNumber_R e, eps2;
 eLaRc tempRc;

 eLaRc rc = LaRcSolutionFound;
 VALIDATE_BOUNDS ((0 < n) && (0 < m) && !((n == 1) && (m == 1)));

 mp1 = m + 1;

 eps2 = EPS * EPS;

© 2008 by Taylor & Francis Group, LLC

Chapter 17: LA_Hhls 667

 /* Initialization, mapping matrix "c" on matrix t */
 for (j = 1; j <= m; j++)
 {
 for (i = 1; i <= n; i++)
 {
 t[i][j] = c[i][j];
 }
 }

 for (i = 1; i <= n; i++)
 {
 t[i][mp1] = f[i];
 }
 iend = mp1;

 if (n == mp1)
 {
 iend = m;
 }
 if (n == m)
 {
 iend = m - 1;
 }

 /* Householder"s transformation of matrix "t"
 This will never return a failure code */
 tempRc = LA_hhlsro_hh_t (iend, n, m, t, dm, w);
 if (tempRc < LaRcOk)
 {
 return tempRc;
 }

 for (j = 1; j <= mp1; j++)
 {
 for (i = 1; i <= mp1; i++)
 {
 r[i][j] = t[i][j];
 }
 }

 e = r[m][m];
 if (e < 0.0)
 {
 e = -e;

© 2008 by Taylor & Francis Group, LLC

668 Numerical Linear Approximation in C

 }

 if (e < EPS)
 {
 GOTO_CLEANUP_RC (LaRcInconsistentSystem);
 }

 /* Calculating the least squares solution vector "a" */
 LA_hhlsro_x_res (n, m, c, f, a, r, res, pRho);

CLEANUP:

 return rc;
}

/*---
Householder"s transformation of matrix "t" in LA_Hhlsro()
---*/
eLaRc LA_hhlsro_hh_t (int iend, int n, int m, tMatrix_R t,
 tVector_R dm, tVector_R w)
{
 int i, j, k, iout, kdp, mp1;
 tNumber_R e, s, beta, piv, eps2, sqsg;

 eps2 = EPS * EPS;
 mp1 = m + 1;
 for (iout = 1; iout <= iend; iout++)
 {
 piv = 0.0;
 kdp = iout;
 s = 0.0;
 for (k = iout; k <= n; k++)
 {
 s = s + t[k][iout] * (t[k][iout]);
 }
 piv = s;

 /* Pemature exit due to rank deficiency of coefficient
 matrix */
 if ((iout <= m) && (piv < eps2))
 return LaRcNoFeasibleSolution;

 /* Householder"s transformation of matrix "t" */
 e = t[iout][iout];
 if (e < 0.0) e = - e;

© 2008 by Taylor & Francis Group, LLC

Chapter 17: LA_Hhls 669

 sqsg = sqrt (piv);
 beta = 1.0 / (piv + sqsg * e);
 for (i = 1; i <= n; i++)
 {
 w[i] = 0.0;
 if (i >= iout)
 {
 if (i > iout) w[i] = t[i][iout];
 if (i == iout)
 {
 e = sqsg;
 if (t[iout][iout] < 0.0) e = - e;
 w[i] = t[iout][iout] + e;
 }
 }
 }

 for (j = iout; j <= mp1; j++)
 {
 s = 0.0;
 for (k = iout; k <= n; k++)
 {
 s = s + w[k] * (t[k][j]);
 }
 dm[j] = s * beta;
 }

 for (j = iout; j <= mp1; j++)
 {
 for (i = iout; i <= n; i++)
 {
 t[i][j] = t[i][j] - w[i] * (dm[j]);
 }
 }
 }

 return LaRcOk;
}

/*---
Calculating the least squares solution vector in LA_Hhlsro()
---*/
void LA_hhlsro_x_res (int n, int m, tMatrix_R c, tVector_R f,
 tVector_R a, tMatrix_R r, tVector_R res, tNumber_R *pRho)
{

© 2008 by Taylor & Francis Group, LLC

670 Numerical Linear Approximation in C

 int i, j, k, ii, ip1, mp1;
 tNumber_R s;

 mp1 = m + 1;
 a[m] = r[m][mp1]/r[m][m];

 if (m != 1)
 {
 for (ii = 2; ii <= m; ii++)
 {
 i = m - ii + 1;
 ip1 = i + 1;
 s = -r[i][mp1];
 for (k = ip1; k <= m; k++)
 {
 s = s + r[i][k] * a[k];
 }
 a[i] = -s/r[i][i];
 }
 }

 for (j = 1; j <= n; j++)
 {
 s = -f[j];
 for (k = 1; k <= m; k++)
 {
 s = s + c[j][k] * (a[k]);
 }
 res[j] = -s;
 }

 if (n == m) r[mp1][mp1] = 0.0;

 /* L2 norm of residual vector |rho| */
 *pRho = r[mp1][mp1];
 if (*pRho < 0.0) *pRho = -*pRho;
}

© 2008 by Taylor & Francis Group, LLC

671

Chapter 18

Piecewise Linear Least Squares Approximation

18.1 Introduction

In Chapter 9, two algorithms for the piecewise linear
approximation of plane curves in the L1 norm are described [2]. In
Chapter 15, two corresponding algorithms in the Chebyshev norm are
given [1]. In this chapter, we describe two corresponding algorithms
for the piecewise linear approximation of plane curves in the L2 or the
least squares norm [4].

The problem of piecewise linear approximation of plane curves in
the least squares sense has been dealt with by a number of authors. As
early as 1961, Stone [18] presented an algorithm for finding best
approximation to a given convex function f(x) on a finite interval by
K straight line segments using the least squares norm. He formulated
the problem giving a closed form solution when the approximated
function is quadratic. Bellman [5] showed that when the approximated
function is quadratic, dynamic programming also provides a solution.
For both Stone and Bellman, the L2 errors between an approximated
segment and the approximating straight line are measured in the
y-axis direction.

Cantoni [6] described a method for finding the break points for
segment approximation using weighted least squares norm. Pavlidis
[11] derived necessary and sufficient conditions and suggested simple
functional iteration algorithms for locating the break points of the L2
piecewise approximation of continuous differentiable functions of one
and two variables.

Pavlidis [13] also used Newton�s method to optimally locate the
breaking points for a continuous differentiable function for L2
piecewise linear approximation. In [11], Pavlidis measured the errors

© 2008 by Taylor & Francis Group, LLC

672 Numerical Linear Approximation in C

between the approximated segments and the approximating straight
lines in the y-axis direction, while in [13] Pavlidis measured the errors
in the Euclidean distance, i.e., perpendicular to the approximating line
for each segment.

Salotti [15] presented a new algorithm for an optimal polygonal
approximation for digitized curves using the least squares norm
criterion. By optimal is meant using the minimum number of
segments.

Sarkar et al. [16] presented a genetic algorithm-based approach for
detection of significant vertices for polygonal approximation in the L2
norm of digital curves. The error is the Euclidean distances between
the given points and the line segments.

For the applications and the merits of piecewise linear
approximation of plane curves, see Section 9.1.1 and also Pavlidis
[10, 12].

In our work, the following two algorithms for the piecewise linear
approximation in the least squares sense are presented:
(a) when the L2 residual norm in any segment is not to exceed a

pre-assigned value, and
(b) when the number of segments is given and a near-balanced L2

residual norm solution is required. That is, all the segments
would have nearly the same L2 residual norm.

The errors are measured along the y-axis direction.
As usual, the problem is solved by first digitizing the given curve

into discrete points. Then each algorithm is applied to the discrete
points. No conditions are imposed on the approximating functions.
The approximating functions are any polynomials. They need not be
constants or straight lines as is the case for the majority of the
published works.

In Section 18.2, the characteristics of the piecewise approximation
are outlines. In Section 18.3, the discrete linear L2 approximation
problem is presented. In Section 18.4, the two algorithms listed above
are outlined. In Section 18.5, numerical results and comments are
given.

Section 18.6 offers a brief tutorial describing the technique of
updating and downdating systems of linear equations, used for
calculating the piecewise linear approximation of plane curves in the
least squares sense.

© 2008 by Taylor & Francis Group, LLC

Chapter 18: Piecewise Linear Least Squares Approximation 673

18.1.1 Preliminaries and notation

For convenience sake, the following notation is used again. Let us
be given the plane curve y = f(x) defined on the interval [a, b]. Let this
curve be digitized at the K points (xi, f(xi)), i = 1, 2, �, K, where
x1 = a and xK = b. Let n be the number of segments (pieces) in the
piecewise approximation. For the first algorithm, n is not known
beforehand. Finally, let (zj), j = 1, 2, �, n, be the L2 residual norms of
the n segments.

18.2 Characteristics of the approximation

As indicated in Chapters 9 and 15, assume that f(x) is continuous
and satisfies Lipschitz condition on [a, b]. Following the analysis of
Lawson [9] for the Chebyshev norm, one shows that for segment k,
1 ≤ k ≤ n, the L2 norm zk, has the following properties:
(a) zk is a continuous function of the end points of the segment,
(b) zk is non-increasing in the segment left end point, and
(c) zk is non-decreasing in the segment right end point.

For the meanings of these characteristics, see Section 9.2. One
also shows that if a piecewise L2 approximation is calculated for the
curve f(x) (not for the discrete points of the curve) and if
z1 = z2 = � = zn, then the solution is optimal. Such a solution always
exists and is known as a balanced residual norm solution. However, in
the case of the approximation of the digitized curve, a balanced
residual norm solution may not exist. One may in this case attempt to
minimize the variance of the residual norms (zk) and get a
near-balanced L2 solution.

18.3 The discrete linear least squares approximation problem

Consider any segment k, 1 ≤ k ≤ n, of the given curve f(x). Let this
segment consist of N digitized points with coordinates (xi, f(xi)),
i = 1, 2, �, N. Let these N points be approximated by the function

L(a, x) = Σj ajφj(x)

where, {φj(x)}, j = 1, 2, �, M, is a given set of real linearly
independent approximating functions. The number of points N is

© 2008 by Taylor & Francis Group, LLC

674 Numerical Linear Approximation in C

usually far more than the number of the M parameters (aj); N > M.
The linear least squares (approximate) solution to the data set by this
curve is vector a that minimizes the L2 norm

where r(xi) is ith residual and is given by

(18.3.1) r(xi) = f(xi) � L(a, xi), i = 1, 2, �, N

Note that the residual r(xi) in (18.3.1) is the �ve of that defined in
equation (9.3.1) and also in equation (15.3.1). Such definitions are
arbitrary.

As in Section 2.2, this problem reduces to the problem of
obtaining the least squares solution of the overdetermined system of
linear equations

Ca = f

C is an N by M matrix given by C = (φj(xi)), i = 1, 2, �, N and
j = 1, 2, �, M, and f is the N-vector (f(x1), �, f(xN))T.

The least squares solution to system Ca = f is the real M-vector a
that minimizes the L2 norm

where ri is residual i, given by (18.3.1), which is

, i = 1, 2, �, N

and cij are the elements of matrix C.

18.4 Description of the algorithms

The C implementations of the algorithms are similar to those of
Chapters 9 and 15, as follows.

z sqrt r xi()[]2

i 1=

N

∑=

z sqrt ri[]2

i 1=

N

∑=

ri fi cijaj
i 1=

M

∑�=

© 2008 by Taylor & Francis Group, LLC

Chapter 18: Piecewise Linear Least Squares Approximation 675

18.4.1 Piecewise linear L2 approximation with pre-assigned
tolerance

This algorithm uses the same steps as those of Section 9.4.1.
However, each time a point is added to segment say j, we use the
function LA_Hhls() of Chapter 17 to re-calculate the new L2 norm of
the segment.

18.4.2 Piecewise linear L2 approximation with near-balanced
L2 norms

This algorithm uses the same steps as those of Section 9.4.2.
Again, each time we add a point or delete a point from segment say j,
we use the function LA_Hhls() of Chapter 17 to re-calculate the new
Chebyshev norm of the segment.

18.5 Numerical results and comments

Each of the functions LA_L2pw1() and LA_L2pw2() calculate the
number of segments in the piecewise approximation (for
LA_L2pw2(), n is given), the starting points of the n segments, the
coefficients of the approximating curves for the n segments, the
residuals at each point of the digitized curve and finally the L2
residual norms for the n segments.

LA_L2pw1() computes for the case when the L2 error norm in any
segment is not to exceed a pre-assigned value. LA_L2pw2() computes
for the case when the number of segments is given and a
near-balanced L2 error norm solution is required.

DR_L2pw1() and DR_L2pw2() were used to test the algorithms
on a number of problems in single-precision.

Again, as in Chapters 9 and 15, LA_L2pw1() has the option of
calculating connected or disconnected piecewise linear L2
approximations, while LA_L2pw2() can only calculate disconnected
piecewise linear L2 approximations. This is explained at the end of
Section 9.2.

In order to compare the results of these algorithms with those of
the algorithms of Chapters 9 and 15 for the L1 and the Chebyshev
norms respectively, we chose the same curve used in those chapters.

© 2008 by Taylor & Francis Group, LLC

676 Numerical Linear Approximation in C

The curve is digitized with equal x-intervals into 28 points and the
data points are fitted with vertical parabolas. Each is of the form
y = a1 + a2x + a3x2. The results of LA_L2pw1() are shown in figures
18-1 and 18-2. The results of LA_L2pw2() are shown in figure 18-3,
where the number of segments was set to n = 4.

Figure 18-1: Disconnected linear L2 piecewise approximation with
vertical parabolas. The L2 residual norm in any segment ≤ 3

Figure 18-2: Connected linear L2 piecewise approximation with
vertical parabolas. The L2 residual norm in any segment ≤ 3

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30

© 2008 by Taylor & Francis Group, LLC

Chapter 18: Piecewise Linear Least Squares Approximation 677

The L2 norms of Figures 18-1 and 18-2 are (2.905, 3.000, 2.867,
1.165) and n = 4, and (2.905, 2.984, 2.762, 2.756) and n = 4,
respectively. The L2 norms of Figure 18-3 are (2.905, 1.990, 2.390,
2.028), for n = 4. We observe that LA_L2pw2() did not produce a
balanced norm solution. But it did give an improved approximation to
that of figure 18-1.

Figure 18-3: Near-balanced residual norm solution. Disconnected
linear L2 piecewise approximation with vertical parabolas. Number of

segments = 4

In a previous version of these algorithms [4], we utilized the
techniques of updating and downdating the systems of linear
equations, which solve the piecewise approximation in the least
squares sense. These techniques use information from a current
iteration and carry them into the calculation of the next iteration
without recomputing the least squares solution of a modified system
from scratch. This increases the code complexity but reduces the
number of iterations.

In the next section we present a brief review of the updating and
downdating technique.

18.6 The updating and downdating techniques

For any segment at hand in the piecewise approximation, let the
system of linear equations be Ca = f, where as usual, C is an N by M

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30

© 2008 by Taylor & Francis Group, LLC

678 Numerical Linear Approximation in C

matrix, N > M, and f is an N-vector. The augmented matrix [C|f] of
this system is factorized by the Householder�s QR factorization
method [14, 19] (Chapter 17). The least squares solutions are then
calculated in terms of the R matrices [8]. The Q matrices are not
explicitly calculated. The algorithms work in an iterative manner by
updating the least squares solutions via updating the R matrices of the
segments.

Assume that the least squares solution of system Ca = f has been
obtained. Let one new data point be added to or an old point be
deleted from the existing point set and a new least squares solution be
re-calculated for the new set. Stewart [17] denotes these two problems
as the problems of updating and of downdating of the least squares
problem respectively.

These two problems are equivalent to updating the least squares
solution vector a when an extra equation is augmented to or when an
existing equation is deleted from the system Ca = f respectively.

For the updating problem, we make use of the scheme of Gill et al.
[7] and for the downdating problem, we use the technique of Stewart
[17]. This is explained here as follows.

As indicated earlier, the least squares solution of system Ca = f
may be calculated without explicitly storing matrix Q. We
pre-multiply the matrix [C|f] by Householder�s elementary orthogonal
matrices (Section 5.4.1). We get the upper triangular matrix

(18.6.1a)

where

(18.6.1b) h = QTf and |ρ| = ||r||

R and Q are the factorization of matrix C by Householder�s
decomposition into C = QR.

The least squares solution to system Ca = f is given by

(18.6.1c) a = R�1h

18.6.1 The updating algorithm

Assume that we have added an extra equation to the system Ca = f

R R h
0 ρ

=

© 2008 by Taylor & Francis Group, LLC

Chapter 18: Piecewise Linear Least Squares Approximation 679

and that we want to re-calculate the least squares solution of the new
system. Assume without loss of generality that the added equation is
augmented to the bottom of the given system Ca = f. That is, the new
system is given by

(18.6.2)

c is a row vector and η is the corresponding f element.
Calculating the least squares solution of system (18.6.2) amounts

to calculating the upper triangular matrix R' in the Q'R' factorization
of the augmented system. This is done by updating matrix R of
(18.6.1a) in the QR factorization of matrix [C|f] as follows.

From (18.6.2), it is easy to verify that

(18.6.3)

By considering (18.6.3), we first augment [c|η] to the bottom of
matrix R in (18.6.1a). Then we pre-multiply the augmented matrix by
the product of either Householder or Givens matrices to reduce the
r.h.s. matrix in (18.6.3) to an upper triangular matrix. The resulting
matrix is

(18.6.4)

The least squares solution for the new system is a' = R'�1h', where
|ρ'| = ||r'||; r' is the new residual vector.

18.6.2 The downdating algorithm

Downdating matrix R after deleting an existing data point is done
as follows. Let the row in matrix [C|f] that corresponds to this deleted
point be [c|η]. Stewart [17] shows that the algorithm is stable in the
presence of rounding errors. However, the new matrix R' can be a
very ill-conditioned function of R and c. The algorithm by Stewart

C
c

a f
η

=

Q 0
0 1

C f
c η

R h
0 ρ
c η

=

R' R' h'
0 ρ'

=

© 2008 by Taylor & Francis Group, LLC

680 Numerical Linear Approximation in C

reduces the obtained system to (18.6.1a) or (18.6.4) and the result is
given by (18.6.1b, c). See also [4].

We applied the updating and downdating techniques described in
this section [4] to the problems that we solved by the algorithms of
Section 18.4, and obtained the same results.

18.6.3 Updating and downdating in the L1 norm

We note that the updating and downdating techniques for linear
equations in the L1 norm could also be achieved. Such techniques use
parametric linear programming together with making use of the
characteristic of solution of the L1 approximation problem. For
details, see [3].

References

1. Abdelmalek, N.N., Piecewise linear Chebyshev approximation
of planar curves, International Journal of Systems Science,
14(1983)425-435.

2. Abdelmalek, N.N., Piecewise linear L1 approximation of
planar curves, International Journal of Systems Science,
16(1985)447-455.

3. Abdelmalek, N.N., A recursive algorithm for discrete L1 linear
estimation using the dual simplex method, IEEE Transactions
on Systems, Man and Cybernetics, SMC-15(1985)737-742.

4. Abdelmalek, N.N., Piecewise linear least-squares approxi-
mation of planar curves, International Journal of Systems
Science, 21(1990)1393-1403.

5. Bellman, R., On the approximation of curves by line segments
using dynamic programming, Communications of the ACM,
4(1961)284.

6. Cantoni, A., Optimal curve fitting with piecewise linear
functions, IEEE Transactions on Computers, 20(1971)59-67.

7. Gill, P.E., Golub, G.H., Murray, W. and Saunders, M.A.,
Methods for modifying matrix factorizations, Mathematics of
Computation, 28(1974)505-535.

© 2008 by Taylor & Francis Group, LLC

Chapter 18: Piecewise Linear Least Squares Approximation 681

8. Golub, G., Numerical methods for solving linear least squares
problems, Numerische Mathematik, 7(1965)206-216.

9. Lawson, C.L., Characteristic properties of segmented rational
minimax approximation problem, Numerische Mathematik,
6(1964)293-301.

10. Pavlidis, T., Waveform segmentation through functional app-
roximation, IEEE Transactions on Computers, 22(1973)689-
697.

11. Pavlidis, T., Optimal piecewise polygonal L2 approximation
of functions of one and two variables, IEEE Transactions on
Computers, 24(1975)98-102.

12. Pavlidis, T., The use of algorithms of piecewise
approximations for picture processing, ACM Transactions on
Mathematical Software, 2(1976)305-321.

13. Pavlidis, T., Polygonal approximation by Newton�s method,
IEEE Transactions on Computers, 26(1977)800-807.

14. Peters, G. and Wilkinson, J.H., The least squares problem and
pseudo-inverses, Computer Journal, 13(1970)309-316.

15. Salotti, M., Optimal polygonal approximation of digitized
curves using the sum of squares deviation criterion, Pattern
Recognition, 35(2002)435-443.

16. Sarkar, B., Singh, L.K. and Sarkar, D., A genetic algorithm-
based approach for detection of significant vertices for
polygonal approximation of digital curves, International Jour-
nal of Image and Graphics, 4(2004)223-239.

17. Stewart, G.W., The effects of rounding residual on an
algorithm for downdating a Cholesky factorization, Journal of
Institute of Mathematics and Applications, 23(1979)203-213.

18. Stone, H., Approximation of curves by line segments,
Mathematics of Computation, 15(1961)40-47.

19. Wilkinson, J.H., The Algebraic Eigenvalue Problem,
Clarendon Press, Oxford, 1965.

© 2008 by Taylor & Francis Group, LLC

682 Numerical Linear Approximation in C

18.7 DR_L2pw1

/*---
DR_L2pw1

This is a driver for the function LA_L2pw1(), which calculates a
linear piecewise L2 (L-Two) approximation of given data point set
{x,y} that results from the discretization of a given plane curve
y = f(x). The points of the set might not be equally spaced.

The approximation by LA_L2pw1() is such that the L2 norm for any
segment is not to exceed a pre-assigned tolerance denoted by
"enorm".

LA_L2pw1() calculates the connected or the disconnected linear
piecewise L2 approximation, according to the value of an integer
parameter "konect" set by the user.
See comments in program LA_L2pw1().

From the approximating curve we form the overdetermined system of
linear equations

 c*a = f

"c" is a real n by m matrix of rank k, k <= m < n.
n is the number of digitized points of the given plane curve.

m is the number of terms in the approximating curves. If for
example, the approximating curves are vertical parabolas of
the form
 y = a1 + a2*x + a3*x*x
then m = 3.

"f" is a real n vector whose elements are the y coordinates of
the data set {x,y}.

"a" is the solution m vector. There are different "a" solution
vectors for the different segments.

This driver contains 1 test example. A given curve is digitized
into 28 points at equal x intervals. The points are piecewise
approximated by vertical parabolas of the form

 y = a1 + a2*x + a3*x*x

© 2008 by Taylor & Francis Group, LLC

Chapter 18: DR_L2pw1 683

The results for the disconnected and of the connected piecewise
L2 approximation are given in the text.
---*/

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define Nc 28

void DR_L2pw1 (void)
{
 /*--
 Constant matrices/vectors
 --*/
 static tNumber_R fc[Nc+1] =
 { NIL,
 8.0, 11.0, 13.0, 11.2, 9.1, 10.8, 14.8, 16.0, 15.1, 14.0,
 14.7, 15.8, 16.8, 15.6, 13.0, 14.3, 13.8, 10.6, 9.3, 9.6,
 10.8, 11.2, 9.0, 7.0, 5.8, 6.8, 4.8, 3.9
 };

 /*--
 Variable matrices/vectors
 --*/
 tMatrix_R c = alloc_Matrix_R (NN_ROWS, MM_COLS);
 tMatrix_R ap = alloc_Matrix_R (KK_PIECES, MM_COLS);
 tMatrix_R rp1 = alloc_Matrix_R (KK_PIECES, NN_ROWS);
 tVector_R f = alloc_Vector_R (NN_ROWS);
 tVector_R zp = alloc_Vector_R (KK_PIECES);
 tVector_I ixl = alloc_Vector_I (KK_PIECES);

 int j, k, n, m, konect, npiece;
 tNumber_R enorm;
 eLaRc prnRc;

 eLaRc rc = LaRcOk;

 prn_dr_bnr ("DR_L2pw1, L2 Piecewise Approximation of a Plane "
 "with Pre-assigned Norm");

 for (k = 1; k <= 2; k++)
 {
 switch (k)
 {

© 2008 by Taylor & Francis Group, LLC

684 Numerical Linear Approximation in C

 case 1:
 enorm = 3.0;
 n = Nc;
 m = 3;
 for (j = 1; j <= n; j++)
 {
 f[j] = fc[j];
 c[j][1] = 1.0;
 c[j][2] = j;
 c[j][3] = j*j;
 }
 break;
 default:
 break;
 }

 prn_algo_bnr ("L2pw1");
 if (k == 1) konect = 0;
 if (k == 2) konect = 1;
 prn_example_delim();
 PRN ("konect #%d: Size of matrix \"c\" %d by %d\n",
 konect, n, m);
 PRN ("L2 Piecewise Approximation with Pre-assigned Norm\n");
 PRN ("Pre-assigned Norm \"enorm\" = %8.4f\n", enorm);
 prn_example_delim();
 if (konect == 1)
 PRN ("Connected Piecewise Approximation\n");
 else
 PRN ("Disconnected Piecewise Approximation\n");
 prn_example_delim();
 PRN ("r.h.s. Vector \"f\"\n");
 prn_Vector_R (f, n);
 PRN ("Coefficient Matrix, \"c\"\n");
 prn_Matrix_R (c, n, m);

 rc = LA_L2pw1 (n, m, enorm, konect, c, f, ixl, rp1, ap, zp,
 &npiece);

 if (rc >= LaRcOk)
 {
 PRN ("\n");
 PRN ("Results of the L2 Piecewise Approximation\n");
 PRN ("Calculated number of segments (pieces) = %d\n",
 npiece);
 PRN ("Staring points of the \"npiece\" segments\n");

© 2008 by Taylor & Francis Group, LLC

Chapter 18: DR_L2pw1 685

 prn_Vector_I (ixl, npiece);
 PRN ("Coefficients of the approximating curves\n");
 prn_Matrix_R (ap, npiece, m);
 PRN ("Residual vectors for the \"npiece\" segments\n");
 prnRc = LA_pw1_prn_rp1 (konect, npiece, n, ixl, rp1);
 PRN ("L2 residual norms for the \"npiece\" segments\n");
 prn_Vector_R (zp, npiece);
 if (prnRc < LaRcOk)
 {
 PRN ("Error printing PW1 results\n");
 }
 }

 prn_la_rc (rc);
 }

 free_Matrix_R (c, NN_ROWS);
 free_Matrix_R (ap, KK_PIECES);
 free_Matrix_R (rp1, KK_PIECES);
 free_Vector_R (f);
 free_Vector_R (zp);
 free_Vector_I (ixl);
}

© 2008 by Taylor & Francis Group, LLC

686 Numerical Linear Approximation in C

18.8 LA_L2pw1

/*---
LA_L2pw1

This program calculates a linear piecewise L2 (L-Two) approximation
to a discrete point set {x,y}. The approximation is such that the
L2 residual (error) norm for any segment is not to exceed a given
tolerance "enorm". The number of segments (pieces) is not known
before hand.

Given is a set of points {x,y}. From the approximating functions
of the piecewise approximation, one forms the overdetermined system
of linear equations

 c*a = f

This program uses LA_Hhls() for obtaining the L2 solution of
overdetermined system of linear equations.

LA_L2pw1() has the option of calculating connected or disconnected
piecewise L2 approximation, according to the value of an integer
parameter "konect".

In the connected piecewise approximation the x-coordinate of the
end point of segment j say, is the x-coordinate of the starting
point of segment (j+1). In the disconnected piecewise
approximation, the x-coordinate of the adjacent point to the end
point of segment j is the x-coordinate of the starting point of
segment (j+1). See the comments on "ixl" below.

Inputs
m Number of terms in the approximating functions.
n Number of points to be piecewise approximated.
c A real n by m matrix of containing matric "c" of the
 system c*a = f.
 Matrix "c" is not destroyed in the computation.
f A real n vector containing the r.h.s. of the system
 c*a = f. This vector contains the y-coordinates of the
 given point set. This vector is not destroyed in the
 computation.
enorm enorm A real pre-assigned parameter, such that the L2
 residual norm for any segment is <= enorm.
konect An integer specifying the action to be performed.

© 2008 by Taylor & Francis Group, LLC

Chapter 18: LA_L2pw1 687

 If konect = 1, the program calculates the connected L2
 piecewise approximation.
 If konect != 1, the program calculates the disconnected
 L2 piecewise approximation.

Outputs
npiece Obtained number of segments or pieces of the approximation.
ixl An integer "npiece" vector containing the indices of the
 first elements of the "npiece" segments.
 For example, if ixl = (1,5,12,22,...), and if konect = 1,
 then the first segment contains points 1 to 5, the second
 segment contains points 5 to 12, the third segment contains
 points 12 to 22 and so on.
 Again if ixl = (1,5,12,22,...), and if konect !=1, then the
 first segment contains points 1 to 4, the second segment
 contains points 5 to 11, the third segment contains points 12
 to 21 ..., etc.
irankp An integer "npiece" vector containing the rank values of the
 approximating curves for the "npiece" segments.
ap A real "npiece" by m matrix. Its first row contains the
 the coefficients of the approximating curve for the first
 segment. The second row contains the coefficients of the
 approximating curve for the second segment and so on.
 If any row j is all zeros, this indicates that vector "a" of
 segment j is not calculated as the number of points of
 segment j is <= m and there is a perfect fit by the
 approximating curve for segment j.
rp1 A real "npiece" by n matrix. Its first row contains the
 residuals for the points of the first segment. Its second
 row contains the residuals for the points of the second
 segment, and so on.
zp A real "npiece" vector containing the "npiece" optimum
 values of the L2 residual norms for the "npiece" segments.
 If zp[j] == 0.0, it indicates that there is a perfect fit for
 segment j.

Returns one of
 LaRcSolutionFound
 LaRcErrBounds
 LaRcErrNullPtr
 LaRcErrAlloc
---*/

#include "LA_Prototypes.h"

© 2008 by Taylor & Francis Group, LLC

688 Numerical Linear Approximation in C

eLaRc LA_L2pw1 (int n, int m, tNumber_R enorm, int konect,
 tMatrix_R c, tVector_R f, tVector_I ixl, tMatrix_R rp1,
 tMatrix_R ap, tVector_R zp, int *pNpiece)
{
 tMatrix_R cp = alloc_Matrix_R (n, m);
 tMatrix_R t = alloc_Matrix_R (n, m + 1);
 tMatrix_R r = alloc_Matrix_R (m + 1, m + 1);
 tVector_R fp = alloc_Vector_R (n);
 tVector_R res = alloc_Vector_R (n);
 tVector_R dm = alloc_Vector_R (n);
 tVector_R w = alloc_Vector_R (n);
 tVector_R a = alloc_Vector_R (m);

 int i = 0, j = 0, je = 0, ii = 0, jj = 0, is = 0, ie = 0,
 nu = 0, irank = 0;
 int ijk = 0;
 tNumber_R z = 0.0;

 /* Validation of data before executing algorithm */
 eLaRc rc = LaRcSolutionFound;
 VALIDATE_BOUNDS ((0 < m) && (m <= n) && !((n == 1) && (m == 1))
 && (0.0 < enorm));
 VALIDATE_PTRS (c && f && ixl && rp1 && ap && zp && pNpiece);
 VALIDATE_ALLOC (cp && t && r && fp && res && dm && w && a);

 *pNpiece = 1;
 /* "is" means i(start) for the segment at hand */
 is = 1;
 for (ijk = 1; ijk <= n; ijk++)
 {
 /* Initializing the data for "npiece" */
 ie = is + m - 1;
 LA_pw1_init (pNpiece, is, ie, m, rp1, ap, zp);

 irank = m;
 z = 0;
 for (i = is; i <= ie; i++)
 {
 ii = i - is + 1;
 fp[ii] = f[i];
 for (j = 1; j <= m; j++)
 {
 cp[ii][j] = c[i][j];
 }
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 18: LA_L2pw1 689

 for (jj = 1; jj <= n; jj++)
 {
 nu = ie - is + 1;
 if (nu < m)
 {
 GOTO_CLEANUP_RC (LaRcSolutionFound);
 }

 rc = LA_Hhlsro (nu, m, cp, fp, a, r, res, t, dm, w, &z);
 if (rc < LaRcOk)
 {
 GOTO_CLEANUP_RC (rc);
 }

 if (z > enorm + EPS)
 {
 break;
 }
 else
 {
 LA_pw1_map (m, nu, res, a, z, rp1, ap, zp, pNpiece);

 ixl[*pNpiece] = is;
 je = ie + 1;
 if (je > n)
 {
 GOTO_CLEANUP_RC (LaRcSolutionFound);
 }

 ie = je;
 nu = ie - is + 1;
 for (i = is; i <= ie; i++)
 {
 ii = i - is + 1;
 fp[ii] = f[i];
 for (j = 1; j <= m; j++)
 {
 cp[ii][j] = c[i][j];
 }
 }
 }
 }
 is = ie;
 if (konect == 1) is = ie - 1;

© 2008 by Taylor & Francis Group, LLC

690 Numerical Linear Approximation in C

 *pNpiece = *pNpiece + 1;
 ixl[*pNpiece] = is;
 }

CLEANUP:

 free_Matrix_R (cp, n);
 free_Matrix_R (t, n);
 free_Matrix_R (r, m + 1);
 free_Vector_R (fp);
 free_Vector_R (res);
 free_Vector_R (dm);
 free_Vector_R (w);
 free_Vector_R (a);

 return rc;
}

© 2008 by Taylor & Francis Group, LLC

Chapter 18: DR_L2pw2 691

18.9 DR_L2pw2

/*---
DR_L2pw2

This is a driver for the function LA_L2pw2() which calculates the
"near balanced" piecewise linear L2 approximation problem of a given
data point set {x,y} resulting from the discretization of a plane
curve y=f(x).

Given is an integer number "npiece" which is the number of segments
in the approximation.

The approximation by LA_L2pw2() is such that the L2 residual norms
for all segments are nearly equal, hence the name "near balanced"
piecewise approximation.

From the approximating curves we form the overdetermined system of
linear equations

 c*a = f

"c" is a real n by m matrix of rank k, k <= m < n.
n is the number of digitized points of the given plane curve.
m is the number of terms in the approximating curves. If for
example, the piecewise approximating curves are vertical parabolas
of the form
 y = a1 + a2*x + a3*x*x
then m = 3.

"f" is a real n vector whose elements are the y coordinates of
the data set {x,y}.

"a" is the solution m vector. There are different "a" solution
vectors for the different segments.

This driver contains 1 test example.
A given curve is digitized into 28 points at equal x intervals. The
points are piecewise approximated by vertical parabolas of the form

 y = a1 + a2*x + a3*x*x

The results for piecewise L2 approximation are given in the text.
---*/

© 2008 by Taylor & Francis Group, LLC

692 Numerical Linear Approximation in C

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define Nc 28

void DR_L2pw2 (void)
{
 /*--
 Constant matrices/vectors
 --*/
 static tNumber_R fc[Nc+1] =
 { NIL,
 8.0, 11.0, 13.0, 11.2, 9.1, 10.8, 14.8, 16.0, 15.1, 14.0,
 14.7, 15.8, 16.8, 15.6, 13.0, 14.3, 13.8, 10.6, 9.3, 9.6,
 10.8, 11.2, 9.0, 7.0, 5.8, 6.8, 4.8, 3.9
 };

 /*--
 Variable matrices/vectors
 --*/
 tMatrix_R c = alloc_Matrix_R (NN_ROWS, MM_COLS);
 tVector_R f = alloc_Vector_R (NN_ROWS);
 tMatrix_R ap = alloc_Matrix_R (KK_PIECES, MM_COLS);
 tVector_R rp2 = alloc_Vector_R (NN_ROWS);
 tVector_R zp = alloc_Vector_R (KK_PIECES);
 tVector_I ixl = alloc_Vector_I (KK_PIECES);

 int j, m, n;
 int Iexmpl, npiece;
 eLaRc prnRc;

 eLaRc rc = LaRcOk;

 prn_dr_bnr ("DR_L2pw2, L2 Piecewise Approximation of a Plane "
 "Curve with Near Equal Residual Norms");

 for (Iexmpl = 1; Iexmpl <= 1; Iexmpl++)
 {
 switch (Iexmpl)
 {
 case 1:
 npiece = 4;
 n = Nc;
 m = 3;

© 2008 by Taylor & Francis Group, LLC

Chapter 18: DR_L2pw2 693

 for (j = 1; j <= n; j++)
 {
 f[j] = fc[j];
 c[j][1] = 1.0;
 c[j][2] = j;
 c[j][3] = j*j;
 }
 break;
 default:
 break;
 }

 prn_algo_bnr ("L2pw2");
 prn_example_delim();
 PRN ("Size of matrix \"c\" %d by %d\n", n, m);
 prn_example_delim();
 PRN ("L2 Piecewise Approximation with Near Equal Norms\n");
 PRN ("Given number of segments (pieces) = %d\n", npiece);
 prn_example_delim();
 PRN ("r.h.s. Vector \"f\"\n");
 prn_Vector_R (f, n);
 PRN ("Coefficient Matrix, \"c\"\n");
 prn_Matrix_R (c, n, m);

 rc = LA_L2pw2 (m, n, npiece, c, f, ap, rp2, zp, ixl);

 if (rc >= LaRcOk)
 {
 PRN ("\n");
 PRN ("Results of the L2 Piecewise Approximation\n");
 PRN ("Starting points of the \"npiece\" segments\n");
 prn_Vector_I (ixl, npiece);
 PRN ("L2 residual norms for the \"npiece\" segments\n");
 prn_Vector_R (zp, npiece);
 PRN ("Coefficients of the \"npiece\" approximating "
 "curves\n");
 prn_Matrix_R (ap, npiece, m);

 PRN ("Residuals at the given points\n");
 prnRc = LA_pw2_prn_rp2 (npiece, n, ixl, rp2);
 if (prnRc < LaRcOk)
 {
 PRN ("Error printing PW2 results: ");
 }
 }

© 2008 by Taylor & Francis Group, LLC

694 Numerical Linear Approximation in C

 prn_la_rc (rc);
 }

 free_Matrix_R (c, NN_ROWS);
 free_Vector_R (f);
 free_Matrix_R (ap, KK_PIECES);
 free_Vector_R (rp2);
 free_Vector_R (zp);
 free_Vector_I (ixl);
}

© 2008 by Taylor & Francis Group, LLC

Chapter 18: LA_L2pw2 695

18.10 LA_L2pw2

/*---
LA_L2pw2

This program calculates the "near balanced" piecewise linear
L2 (L-Two) approximation of a given data point set {x,y} resulting
from the discretization of a plane curve y = f(x).

Given is an integer number "npiece" which is the number of segments
in the approximation.

The approximation by LA_L2pw2() is such that the L2 residual norms
for all segments are nearly equal, hence the name "near balanced"
piecewise approximation.

From the approximating functions (curves) one forms the
overdetermined system of linear equations

 c*a = f

Inputs
npiece Given umber of segments (pieces) of the approximation.
m Number of terms in the approximating functions.
n Number of points to be piecewise approximated.
c A real n by m matrix of the system c*a = f. This matrix is
 not destroyed in the computation.
f A real n vector containing the r.h.s. of the system c*a = f.
 This vector contains the y-coordinates of the given point
 set.

Outputs
ixl An integer "npiece' vector containing the indices of the
 first elements of the "npiece" segments.
 For example, if ixl = (1,5,12,22,...), then the first
 segment contains points 1 to 4, the second segment contains
 points 5 to 11, the third segment contains points 12
 to 21 ..., etc.
ap A real "npiece" by m matrix. Its first row contains the
 coefficients of the approximating curve for the first
 segment. The second row contains the coefficients of the
 approximating curve for the second segment and so on.
rp2 A real n vector containing the residual values of the n
 points of the given set {x,y}.

© 2008 by Taylor & Francis Group, LLC

696 Numerical Linear Approximation in C

zp A real npiece vector containing the npiece optimum values of
 the L-Two residual norms for the "npiece" segments.

Returns one of
 LaRcSolutionFound
 LaRcErrBounds
 LaRcErrNullPtr
 LaRcErrAlloc
---*/

#include "LA_Prototypes.h"

eLaRc LA_L2pw2 (int m, int n, int npiece, tMatrix_R c, tVector_R f,
 tMatrix_R ap, tVector_R rp2, tVector_R zp, tVector_I ixl)
{
 tMatrix_R cp = alloc_Matrix_R (n, m);
 tMatrix_R t = alloc_Matrix_R (n + 1, m + 1);
 tVector_R fp = alloc_Vector_R (n);
 tVector_R a = alloc_Vector_R (m);
 tVector_R al = alloc_Vector_R (m);
 tVector_R ar = alloc_Vector_R (m);
 tVector_R dm = alloc_Vector_R (n);
 tVector_R w = alloc_Vector_R (n);
 tVector_I iflag = alloc_Vector_I (npiece);
 tVector_R resl = alloc_Vector_R (n);
 tVector_R resr = alloc_Vector_R (n);
 tMatrix_R r = alloc_Matrix_R (m + 1, m + 1);
 tVector_I ir = alloc_Vector_I (n);

 int i = 0, j = 0, k = 0, ii = 0, ji = 0, is = 0, ie = 0,
 isl = 0, iel = 0, isr = 0, ier = 0, nu = 0;
 int istart = 0, iend = 0, kl = 0, ijk = 0, klp1 = 0,
 ipcp1 = 0, ibc = 0;
 int ieln = 0, isrn = 0;
 tNumber_R con = 0.0, conn = 0.0, zl = 0.0, zln = 0.0,
 zrn = 0.0;

 /* Validation of the data before executing the algorithm */
 eLaRc rc = LaRcSolutionFound;
 VALIDATE_BOUNDS ((0 < m) && (m <= n) && !((n == 1) && (m == 1))
 && (1 < npiece));
 VALIDATE_PTRS (c && f && ap && rp2 && zp && ixl);
 VALIDATE_ALLOC (cp && t && fp && a && al && ar && dm && w &&
 iflag && resl && resr && r && ir);

© 2008 by Taylor & Francis Group, LLC

Chapter 18: LA_L2pw2 697

 /* Calculating the residuals for initial segments */
 for (k = 1; k <= npiece; k++)
 {
 iflag[k] = 1;

 LA_l2pw2_init (k, npiece, n, m, &is, &ie, c, f, cp, fp, ixl);

 /* Triangularizing the coefficient matrix using
 Householder's transformation */
 nu = ie - is + 1;

 rc = LA_Hhlsro (nu, m, cp, fp, al, r, resl, t, dm, w, &zl);
 if (rc < LaRcOk)
 {
 GOTO_CLEANUP_RC (rc);
 }

 zp[k] = fabs (zl);
 /* Map initial data for the "npiece" segments */
 for (j = 1; j <= m; j++)
 {
 ap[k][j] = al[j];
 }
 for (j = is; j <= ie; j++)
 {
 ji = j - is + 1;
 rp2[j] = resl[ji];
 }
 }

 /* Process of balancing the L2 norms */
 istart = 1;
 iend = npiece - 1;
 ipcp1 = npiece + 1;
 ixl[ipcp1] = n + 1;
 for (ijk = 1; ijk <= n; ijk++)
 {
 for (kl = istart; kl <= iend; kl=kl+2)
 {
 klp1 = kl + 1;
 con = fabs (zp[klp1] - zp[kl]);
 isl = ixl[kl];
 isr = ixl[klp1];
 iel = isr - 1;
 if (kl != iend) ier = ixl[kl+2] - 1;

© 2008 by Taylor & Francis Group, LLC

698 Numerical Linear Approximation in C

 if (kl == iend) ier = n;

 /* The case where : -----z[i]<z[i+1] */
 if (zp[kl] < zp[klp1])
 {
 ieln = iel + 1;
 isrn = isr + 1;
 for (i = isl; i <= ieln; i++)
 {
 ii = i - isl + 1;
 fp[ii] = f[i];
 for (j = 1; j <= m; j++)
 {
 cp[ii][j] = c[i][j];
 }
 }

 /* Updating the L2 approximation for left segment */
 nu = ieln - isl + 1;
 rc = LA_Hhlsro (nu, m, cp, fp, al, r, resl, t, dm, w,
 &zln);
 if (rc < LaRcOk)
 {
 GOTO_CLEANUP_RC (rc);
 }

 for (i = isrn; i <= ier; i++)
 {
 ii = i - isrn + 1;
 fp[ii] = f[i];
 for (j = 1; j <= m; j++)
 {
 cp[ii][j] = c[i][j];
 }
 }

 /* Updating the L2 approximation for right segment */
 nu = ier - isrn + 1;
 rc = LA_Hhlsro (nu, m, cp, fp, ar, r, resr, t, dm, w,
 &zrn);
 if (rc < LaRcOk)
 {
 GOTO_CLEANUP_RC (rc);
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 18: LA_L2pw2 699

 zln = fabs (zln);
 zrn = fabs (zrn);
 conn = fabs (zrn - zln);
 iflag[kl] = 1;
 iflag[klp1] = 1;
 if (conn >= con)
 {
 iflag[kl] = 0;
 iflag[klp1] = 0;
 continue;
 }
 }
 /* The case where : ---------- z[i]>z[i+1] */
 else if (zp[kl] > zp[klp1])
 {
 isrn = isr - 1;
 ieln = isrn - 1;
 for (i = isl; i <= ieln; i++)
 {
 ii = i - isl + 1;
 fp[ii] = f[i];
 for (j = 1; j <= m; j++)
 {
 cp[ii][j] = c[i][j];
 }
 }
 /* Updating the l2 approximation for left segment */
 nu = ieln - isl + 1;
 rc = LA_Hhlsro (nu, m, cp, fp, al, r, resl, t, dm, w,
 &zln);
 if (rc < LaRcOk)
 {
 GOTO_CLEANUP_RC (rc);
 }

 for (i = isrn; i <= ier; i++)
 {
 ii = i - isrn + 1;
 fp[ii] = f[i];
 for (j = 1; j <= m; j++)
 {
 cp[ii][j] = c[i][j];
 }
 }
 /* Updating the L2 approximation for right segment */

© 2008 by Taylor & Francis Group, LLC

700 Numerical Linear Approximation in C

 nu = ier - isrn + 1;
 rc = LA_Hhlsro (nu, m, cp, fp, ar, r, resr, t, dm, w,
 &zrn);
 if (rc < LaRcOk)
 {
 GOTO_CLEANUP_RC (rc);
 }

 zln = fabs (zln);
 zrn = fabs (zrn);
 conn = fabs (zrn - zln);
 iflag[kl] = 1;
 iflag[klp1] = 1;
 if (conn >= con)
 {
 iflag[kl] = 0;
 iflag[klp1] = 0;
 continue;
 }
 }

 for (j = isl; j <= ieln; j++)
 {
 ji = j - isl + 1;
 rp2[j] = resl[ji];
 }
 for (j = isrn; j <= ier; j++)
 {
 ji = j - isrn + 1;
 rp2[j] = resr[ji];
 }
 for (i = 1; i <= m; i++)
 {
 ap[kl][i] = al[i];
 ap[klp1][i] = ar[i];
 }
 zp[kl] = zln;
 zp[klp1] = zrn;
 ixl[klp1] = isrn;
 isr = isrn;
 iel = isr - 1;
 }
 is = 2;
 if (istart == 2) is = 1;
 istart = is;

© 2008 by Taylor & Francis Group, LLC

Chapter 18: LA_L2pw2 701

 ibc = 0;
 for (j = 1; j <= npiece; j++)
 {
 if (iflag[j] != 0) ibc = 1;
 }
 if (ibc == 0)
 {
 GOTO_CLEANUP_RC (LaRcSolutionFound);
 }
 }

CLEANUP:

 free_Matrix_R (cp, n);
 free_Matrix_R (t, n + 1);
 free_Vector_R (fp);
 free_Vector_R (a);
 free_Vector_R (al);
 free_Vector_R (ar);
 free_Vector_R (dm);
 free_Vector_R (w);
 free_Vector_I (iflag);

 free_Vector_R (resl);
 free_Vector_R (resr);
 free_Matrix_R (r, m + 1);

 free_Vector_I (ir);

 return rc;
}

/*---
Initializing LA_L2pw2()
---*/
void LA_l2pw2_init (int k, int npiece, int n, int m, int *pIs,
 int *pIe, tMatrix_R c, tVector_R f, tMatrix_R cp, tVector_R fp,
 tVector_I ixl)
{
 int i, j, ii, jj, kp1;

 jj = n/npiece;
 ixl[k] = (k-1) * jj + 1;
 *pIs = ixl[k];
 if (k == npiece) *pIe = n;

© 2008 by Taylor & Francis Group, LLC

702 Numerical Linear Approximation in C

 if (k != npiece)
 {
 kp1 = k + 1;
 ixl[kp1] = k * jj + 1;
 *pIe = ixl[kp1] - 1;
 }
 for (i = *pIs; i <= *pIe; i++)
 {
 ii = i - *pIs + 1;
 fp[ii] = f[i];
 for (j = 1; j <= m; j++)
 {
 cp[ii][j] = c[i][j];
 }
 }
}

© 2008 by Taylor & Francis Group, LLC

703

Chapter 19

Solution of Ill-Posed Linear Systems

19.1 Introduction

This chapter presents the solution of ill-posed linear systems such
as those arising from the discretization of Fredholm integral equation
of the first kind.

Fredholm integral equation of the first kind arises in the
mathematical analysis of many physics, chemistry and biology
problems. It also arises in the restoration of blurred images [4, 5, 6]
and in several classical mathematical problems, such as the numerical
inversion of Laplace transform and many other problems [28, 30].

Consider the Fredholm integral equation of the first kind

A is a continuous kernel and ill-posed in the sense that the solution
vector x does not depend continuously on the data b. In other words,
the problem is not stable with respect to small perturbation on vector
b. In a real situation, the elements of b are the output of some
measurements contaminated with errors.

Using numerical integration, the discretization of the above
integral equation results in the system of linear equations

Ax = b

A is a real n by m matrix of rank k, k ≤ min(n, m) and b is a real
n-vector. Assume that n ≥ m.

Again, system Ax = b is ill-posed and ill-posed systems are also
ill-conditioned. An ill-conditioned system such as Ax = b has the
smallest singular values of A very small. The elements of the solution

A
α
β∫ t t'(,)x t'()dt' b t()=

© 2008 by Taylor & Francis Group, LLC

704 Numerical Linear Approximation in C

vector x, would be of large and alternate positive and negative values.
Computational difficulties arise when one attempts to solve this
system.

We shall only consider the case that kernel A is smooth. As a
result, one expects a reasonable approximate solutions to this
problem. Varah [30] examined the existence and uniqueness questions
of such reasonable approximate solutions. He defined a reasonable
solution as follows. Vector x is a reasonable solution to Ax = b with
respect to noise level ε, if the norm of the residual, ||Ax � b|| = O(ε),
provided that both A and b are properly scaled. O(ε) denotes of the
order of ε.

In Section 19.2, different methods of solution of ill-posed systems
of linear equations are discussed. For each method of solution, a free
parameter is to be estimated. In Section 19.3, the estimation of the free
parameter is outlined. In Section 19.4, our method of solution of
ill-posed systems is described. This method utilizes linear
programming techniques and the free parameter to be estimated is the
rank of the system of equations. The optimum value of the rank is
estimated in Section 19.5, and the linear programming techniques are
described in Section 19.6. In Section 19.7, numerical results and
comments are given.

19.2 Solution of ill-posed linear systems

There exist several methods for solving ill-posed linear systems.
These include the methods of steepest descents and conjugate
gradients by Squire [24], without using any regularization technique
(explained below). As reported by Squire, when proper termination
criteria are used, the conjugate gradients methods require less
computational time than the steepest descents. He also noted that a
noticeable increase in the residual during the calculation of the
conjugate gradients indicates that the limiting accuracy of the method
has been reached. Kammerer and Nashed [18] discussed the
convergence of the conjugate gradient method. They then studied
iterative solutions for integral equations of the first and second kinds
[19].

Hanson and Phillips [17] presented a method where the
approximate solution of Ax = b is expressed as a continuous

© 2008 by Taylor & Francis Group, LLC

Chapter 19: Solution of Ill-Posed Linear Systems 705

piecewise linear spline function. The procedure may be used
iteratively to improve the accuracy of the approximate solution.

However, the most widely used approaches for solving the
ill-posed system Ax = b are the following:
(1) The first approach is to use the regularization methods, such as

the original one of Tikhonov [27] and Phillips [23] and the
modified regularization method [30].

(2) The second approach is to replace matrix A in system Ax = b
by an approximate matrix of smaller rank k, k < m. This
approach is illustrated by Hanson [16] and by Varah [28],
using a truncated singular value decomposition (SVD)
expansion of matrix A. This approach also includes the
truncated QR method [29], where Q is an orthogonal matrix
and R an upper triangular. The method used in this chapter is
of this nature but quite a different one.

The methods listed in (1) and (2) both require the estimation of a
free parameter. We shall give a brief description of these methods:
(1a) The original regularization methods [27, 23] are called by

Varah [29, 30] damped least squares. Assuming that the n by
m matrix A is of rank k, k < m ≤ n, these methods calculate a
solution xα such that (the ||.|| refers to the Euclidean vector
norm)

xα = minx (||Ax � b||2 + α2||x||2)

The free parameter in this method is α, which is to be
estimated. This method is equivalent to the solution of the
modified normal equation in the form of the Ridge equation
[29] (discussed in Chapter 17)

(ATA + α2Im)xα = ATb

where Im is an m-unit matrix. Matrix (ATA + α2Im) is matrix
ATA with α2 added to each of its singular values, and thus
(ATA + α2Im) is square nonsingular. The solution of this
equation is obtained efficiently via the singular value
decomposition of A, as A = VSWT, V is a real n by m
orthonormal matrix, VTV = Im, W is a real m by m
orthonormal matrix, WTW = Im and S is an m by m diagonal

© 2008 by Taylor & Francis Group, LLC

706 Numerical Linear Approximation in C

matrix, S = diag(s1, s2, �, sm), the si are the singular values of
A, ordered as s1 ≥ s2 ≥ � sm ≥ 0. With little manipulation

(19.2.1)

where VTb = β and (wi) are the columns of W.
For a proper choice of the parameter α, most of the terms in
the above summation are damped and the summation would
be from 1 to say k, not from 1 to m, where k < m. The solution
would be very close to the truncated SVD, given by (19.2.2) in
approach (2a) below.
To see this, for i > k, si → 0, |βi| → ε, so if we chose α ≥ ε, in
(19.2.1), siβi/(si

2 + α2) ≈ 0, since si → 0. For i ≤ k, if we
choose α ≈ ε in (19.2.1), and since si > ε, siβi/(si

2 + α2) ≈ βi/si.
Thus (19.2.1) becomes

Compare this result with (19.2.2) of the truncated SVD in
approach (2a).

(1b) The modified regularization or the modified least squares
method produces the modified normal equation [29, 30]

(ATA + α2LTL)xα = ATb

L is usually some discrete approximation to the first or the
second derivative operator. The solution xα has the same form
of xα of the previous method except that the solution is given
in terms of some orthogonal vectors other than the (wi).
te Riele [26] presented a program with numerical results for
the solution of Fredholm integral equation of the first kind,
using this method.

(2a) The truncated SVD method [16] is described as follows. Again
using the SVD of A = VSWT, Ax = b, reduces to

VSWTx = b

xα siβiwi
i 1=

m

∑ si
2 α2+()⁄=

xα βiwi() si⁄
i 1=

k

∑=

© 2008 by Taylor & Francis Group, LLC

Chapter 19: Solution of Ill-Posed Linear Systems 707

In this method, the smallest (m � k) singular values of matrix
A are replaced by 0�s. The free parameter in this method is k,
and the solution is

(19.2.2)

This approach requires the estimation of the rank k of the
matrix that approximates matrix A. The truncated SVD
method is an appropriate method, but it is computationally
expensive.

(2b) The truncated QR method [29] is an alternative to the
truncated SVD method. As we observed in the above 3
approaches, the solution xα or xk are given in the form of an
expansion in terms of orthogonal vectors, as in (19.2.2) for
example. Now, assume some expansion of the form

where the {yi} is a set of m orthogonal vectors, the columns of
some orthogonal matrix Y. The factors (ci) are elements of an
m-vector c, are to be calculated by solving a least squares
problem. Let us write this equation as

x = Yc

Varah [29] suggested the factorization AY= QR, where Q is
an orthogonal matrix and R an upper triangular [22]. Then by
solving the first k equations of

Rc = QTb

we get the k-vector c. However, Varah pointed out that the
singular values of AY are not always reflected in the size of
the diagonal elements of R. That is, the truncated QR system
may not be a good approximation to the system to AY whose
rank is estimated by k < m.

Hansen [13] compared the truncated SVD method with the
regularization method and defined necessary conditions for which the

xk βiwi() si⁄
i 1=

k

∑=

x ciyi
i 1=

m

∑=

© 2008 by Taylor & Francis Group, LLC

708 Numerical Linear Approximation in C

two methods give similar results.

19.3 Estimation of the free parameter

Each of the above methods involves a free parameter α for the
regularization techniques, and the rank k for the truncated SVD and
the QR methods. It is extremely difficult to calculate the value of this
free parameter that results in a �good� approximate solution to the
�true� one. It is a trade-off between accuracy and smoothness of the
solution. Among the methods for calculating this free parameter are
the cross-validation, the discrepancy principle and the L-curve
methods. See also Section 19.5.

For the cross-validation method, for choosing α, see Wahba [32]
and for the truncated SVD method when data are noisy, see Vogel
[31]. The last method is based on statistical assumptions about the
data error.

For the discrepancy principle method, see Morozov [20]. It is
based on the coupling of the regularization parameter α and the noise
level in the given data vector b. The L-curve method [14, 15] seems to
strike a balance between the size of the solution ||xα|| and the
corresponding residual norm ||Axα � b||.

In our work [2, 3], we use an alternative to the truncated SVD
method. The ill-posed system Ax = b is first replaced by an equivalent
consistent system of linear equations. The algorithm calculates the
minimal length least squares solution of the consistent system.
Starting from rank k = 1 of the consistent system, the rank k is
increased by one in succession and a new solution is calculated. This
is repeated until a simple criterion is satisfied. Then the obtained
minimal length least squares solution would be the approximate
(smooth) solution of the system Ax = b.

Our method may also be viewed as the analog of the so-called
stepwise regression, described by Albert ([8] Section 4.4). Linear
programming techniques are used for which the successive solutions
of the consistent system are themselves the basic solutions in the
successive simplex tableaux. The algorithm is numerically stable.
Results show that this method gives comparable accuracy to the
truncated SVD method. Yet it is 2 to 5 times faster [2].

© 2008 by Taylor & Francis Group, LLC

Chapter 19: Solution of Ill-Posed Linear Systems 709

19.4 Description of the new algorithm

Let the system Ax = b be pre-multiplied by AT. One gets the
consistent system of linear equations

(19.4.1) ATAx = ATb

Let (19.4.1) be written as

(19.4.1a) C(m)x(m) = c(m)

where C(m) = ATA and c(m) = ATb. If rank(A) = k, k ≤ m, (19.4.1a)
would have k linearly independent equations and (m � k) linearly
dependent ones.

Assume that the equations in (19.4.1a) are properly permuted and
that the first k equations, k ≤ m are linearly independent. Let C(k)
denotes the first k rows of matrix C(m) and c(k) denotes the first k
elements of vector c(m). Then the first k equations in (19.4.1a) are

(19.4.2) C(k)x(k) = c(k)

System (19.4.2) is an underdetermined system of rank k. The
pseudo-inverse of C(k) is given by (Chapter 17)

[C(k)]+ = [C(k)]T([C(k)][C(k)]T)�1

and its minimal length least squares solution is

(19.4.3) x(k) = [C(k)]+c(k)

19.4.1 Steps of the algorithm

(1) First we show that the least squares solution of Ax = b is itself
the least squares solution of ATAx = ATb of (19.4.1) (Lemma
19.1).

(2) We then show that matrix C(k) of (19.4.2) is a good
approximation to matrix (ATA), which is assumed of rank k,
k ≤ m (Lemma 19.2). As a result, x(k) of (19.4.3) is the least
squares solution of ATAx = ATb, which is the least squares
solution of Ax = b (Lemma 19.3).

(3) We measure the error between matrix (ATA)2 and the matrix
that approximates it (Lemma 19.4). As a result, we illustrate
that |pivot(i)|1/4 is of the order of magnitude of the singular

© 2008 by Taylor & Francis Group, LLC

710 Numerical Linear Approximation in C

value si(A), where pivot(i) is the pivot element in the ith
simplex step (Lemma 19.5).

(4) Meanwhile, for estimating the rank value k, we need to show
that the norm of residual (b � Ax) decreases monotonically as
k increases (Lemma 19.6).

Lemma 19.1

The least squares solution of Ax = b is itself the least squares
solution of ATAx = ATb.

Proof:

The proof follows directly from the SVD of matrix A, namely
A = VSWT and its pseudo-inverse, A+ = WS�1VT. The solution of
Ax = b is x(1) = A+b and the solution of ATAx = ATb is x(2) =
(ATA)+(ATb). By substituting the expressions of A and A+ in the two
equations, x(1) = x(2) and the lemma is proved.

Lemma 19.2

The following relations between the singular values of (ATA)2

and (Ck[Ck]T) exist

sk(ATA)2 ≤ sk(Ck[Ck]T) ≤ sk�1(ATA)2

Proof:

Each of (ATA)2 and (C(k)[C(k)]T) is Hermitian (symmetric),
positive semi-definite (Theorem 4.1). Their eigenvalues are
themselves their singular values. The lemma is proved from the fact
that (C(k)[C(k)]T) is the k by k leading principal sub-matrix of matrix
(ATA)2 ([25], pp. 317). Note that in [25], the eigenvalues of the
Hermitian matrices are ordered in an increasing manner while in our
case the singular values are ordered in a decreasing manner.

This lemma means that if sk+1(ATA)2 and the smaller singular
values of (ATA)2 are very small and considered 0�s, (Ck[Ck]T) would
be good approximation of (ATA)2, meaning Ck is a good
approximation of (ATA).

Lemma 19.3

The minimal length least squares solution x(k) of the system of k
equations C(k)x(k) = c(k) of (19.4.2), is itself the least squares solution

© 2008 by Taylor & Francis Group, LLC

Chapter 19: Solution of Ill-Posed Linear Systems 711

of C(m)x(m) = c(m), assuming that rank(A) = k.

Proof:

Since C(m) = (ATA) is assumed of rank k, it has k linearly
independent rows and its last (m � k) rows are linearly dependent on
the first k rows. The same is said for vector c(m). We partition each of
C(m) and c(m) and we may write Cx(m) = c(m) as

(Ik/P)C(k)x = (Ik/P)c(k)

where Ik is a k-unit matrix and P is an (m � k) by k matrix. See for
example, Noble ([21], pp. 144, 145). The minimal length least squares
solution of this equation is

x = [C(k)]+(Ik/P)+(Ik/P)c(k) = [C(k)]c(k) = x(k)

since (Ik/P) is of full rank and (Ik/P)+(Ik/P) = Ik. This proves the
lemma.

This lemma shows that system C(k)x
(k)=c(k) is equivalent to

ATAx = ATb in the sense that the two systems have the same minimal
length least squares solution, assuming rank(A) = k.

Our algorithm begins as follows. We calculate x(k) for k = 1 of
system (19.4.2). That is, system C(k)x

(k) = c(k) consists of only one
equation. We then increase the rank k by 1 at a time so that
C(k)x

(k) = c(k) consists of 2, 3, �, equations in succession. In each
case the solution x(k) is calculated. This is repeated until a certain
simple criterion is satisfied. Linear programming techniques are used
for which the successive solution vectors x(k), for k = 1, 2, �, appear
as the basic solutions in the successive simplex tableaux. The criterion
for choosing the rank value k is described in Section 19.5.

Before every simplex iteration, the program pivots on the diagonal
elements of matrix �([C(m)][C(m)]

T) = �(ATA)2 and its updates in the
simplex tableaux (see Tableau (a) in Section 19.6). That is, complete
pivoting is used before each simplex iteration. Since this matrix is
symmetric semi-definite, the algorithm is numerically stable.

It is easy to illustrate that the pivot elements in the Gauss-Jordan
steps are themselves the diagonal element of matrix D in the
Cholesky�s factorization �(ATA)2 = �LDLT, where L is a lower
triangular matrix with unit diagonals and D is diagonal, assuming that
rank(A) = m ([10], pp. 146, 147). Let us illustrate this point by

© 2008 by Taylor & Francis Group, LLC

712 Numerical Linear Approximation in C

following example. Let a matrix C be decomposed by Cholesky�s
factorization into C = LDLT as follows

This matrix is a modification of that of ([11], p. 26). Let us now
perform 4 Gauss-Jordan steps to matrix C (without pivoting). It is
easy to show that the pivot elements are going to be (1, 4, 9, 16),
which are the diagonal elements of D.

This idea would allow us to obtain an upper bound to
sk+1[C(k+1)][C(k+1)]

T, had we stopped the simplex method after step
(k + 1) instead of step k.

Consider now matrix [C(m)][C(m)]
T = (ATA)2 and assume that

we decompose it by Cholesky�s factorization with complete pivoting.
We get

(19.4.4) (ATA)2 = LDLT + B

L is a lower m by k trapezoidal matrix with unit diagonal elements
and D is k-diagonal matrix of diagonal elements d1 ≥ d2 ≥ � ≥ dk > 0.
The sum of the singular values of LDLT is the trace (sum of diagonal
elements) of LDLT or of D1/2LTLD1/2 (Section 4.2.6). The
factorization is stopped after step k, when there is no significant
addition to the trace ([10], p. 146); in other words, when dk+1 is not
significant. The next lemma gives a measure of error matrix B.

Lemma 19.4

(19.4.5) ||B||2 ≤ (m � k) dk+1

Proof:

In (19.4.4), each of (ATA)2 and LDLT is symmetric positive
semi-definite of the same dimensions and their eigenvalues are their
singular values. We have ([25], p. 315)

sk(ATA)2 ≤ sk(LDLT) + ||B||2

C

1 2 1 1
2 8 4 4
1 4 11 5
1 4 5 19

1
2 1
1 0.5 1
1 0.5 0.33 1

1
 4
 9
 16

1 2 1 1
 1 0.5 0.5
 1 0.33
 1

= =

© 2008 by Taylor & Francis Group, LLC

Chapter 19: Solution of Ill-Posed Linear Systems 713

Yet

||B||2 ≤ ||B||E ≤ (m � k)dk+1

where ||.||E denotes the Euclidean matrix norm, and the lemma is
proved.

In obtaining the upper bound of ||B||E, we assumed that the
absolute value of each element in the right lower (m � k) square
submatrix B is dk+1. That is unrealistic; a more realistic factor is
(m � k)1/2, and (19.4.5) would be replaced by

(19.4.6) ||B||2 ≤ (m � k)1/2dk+1

This lemma shows that the diagonal elements (di) of D,
i = 1, 2, �, in the factorization (ATA)2 ≈ LDLT, are good measures
of the size of si(ATA)2. Or that the pivot elements in the Gauss-Jordan
elimination steps are good measures of the size of si(ATA)2. Thus we
shall replace the parameter dk+1 in the above inequality by
|pivot(k + 1)|, where pivot(i) is the ith pivot element in the simplex
iteration. We get

||B||E ≤ (m � k)1/2|pivot(k + 1)|

Lemma 19.5

The value |pivot(i)|1/4 is of the order of magnitude of si(A).

Proof:

From Lemma 19.2, sk+1(Ck+1[Ck+1]T) ≤ sk(ATA)2 and we have
sk(A) = (sk(ATA)2)1/4.

By taking the fourth power of (m � k)1/2|pivot(k + 1)| in (19.4.6),
we get (m � k)1/8|pivot(k)|1/4, k = 1, 2, �, a measure of sk(A).

Consider now the factor (m � k)1/8. For all practical purposes, we
have (m � k)1/8 < 2. For example, for large m, say m = 200 and
k = 30, (m � k)1/8 ≈ 1.9 and for smaller m, say m = 15 and k = 3, we
get (m � k)1/8 ≈ 1.36. The lemma is thus proved.

Lemma 19.6

Let x(k) and x(k+1) be the respective minimal length least squares
solutions of the systems C(k)x(k) = c(k) and C(k+1)x(k+1)= c(k+1) of
(19.4.2). Then ||r(k+1)|| ≤ ||r(k)||, where r(k+1) and r(k) are the residuals

© 2008 by Taylor & Francis Group, LLC

714 Numerical Linear Approximation in C

(b � Ax(k+1)) and (b � Ax(k)) respectively. That is, the residual of
Ax(k) = b decreases monotonically as k increases.

19.5 Optimum value of the rank

For the estimation of the rank k of matrix A, which gives best or
near-best solution to system Ax = b, we adopt a simple criterion
similar to that used by Hanson [16] and also by Squire [24]. It is based
on Lemma 19.6 that the Euclidean norm of the residual vector of
equation Ax = b; ||b � Ax(k)|| decreases monotonically as k increases.

For each solution vector x(k), k = 1, 2, �, the program calculates
the residual norm ||b � Ax(k)||. The program exits when this residual
norm is less than a specified tolerance TOLER, or if the magnitude of
the pivot element for the next linear programming tableau is less than
a machine-dependent tolerance EPS.

19.5.1 The parameters TOLER and EPS

The parameter TOLER is estimated as follows. If the right hand
side vector b in system Ax = b is expected to be contaminated by an
error vector δb, then an appropriate value of the parameter TOLER is
of the order of the Euclidean norm ||δb||. If δb = 0, a suitable value is
TOLER = 1.0E�04 or 1.0E�03, the justification for which is
supported only by numerical experimentation.

As described in Chapter 2, EPS, on the other hand, is a
machine-dependent tolerance such that a calculated parameter z is
considered 0 if |z| < EPS. EPS is set to 10�4 for single-precision and
10�11 for double-precision (see Section 4.7.1).

We might be able to improve the accuracy of the solution vector x
by making a better estimate of the parameter EPS. This depends on
the order of magnitude of the pivot elements in the simplex tableaux.
In such cases we might let EPS take smaller values. We examine the
absolute values of the pivot elements in the simplex tableaux that are
say < 1.0E�03. We take EPS as the mean of the absolute values of two
consecutive pivot elements where there is a large separation between
them. See numerical experimentation for a similar problem ([6],
p. 1418) and also ([7], p. 374).

© 2008 by Taylor & Francis Group, LLC

Chapter 19: Solution of Ill-Posed Linear Systems 715

In example 2 in [2], the absolute values of the pivot elements of
the simplex tableaux, accurate to 3 decimal places, are 0.304E+04,
0.242E+01, 0.148E�03, 0.272E�06, 0.107E�08, � . There is a large
separation between the third and the fourth values. We take EPS as the
mean of these 2 values; 0.741E�04. This gives the calculated
rank(ATA)2 = 3 and ||x(exact) � x(calculated)|| = 0.299 which is a
slight improvement to the result given in [2], which is 0.377 for
rank(A) = 5. This example is solved as Example 19.1, using a
different discretization method to the Fredholm integral equation of
the first kind.

19.6 Use of linear programming techniques

The method described here uses linear programming techniques. It
achieves the result that the calculated successive minimal length least
squares solutions are themselves the basic solutions in the successive
simplex tableaux. It is a hybrid of a technique by the author for a
different problem [1]. See also Chapter 23.

Assume that we have the set of the 2m underdetermined linear
equations, where v, x and y are m unknown vectors.

(19.6.1a) [C(m)]Tv + Imx + 0 = 0
(19.6.1b) �C(m)[C(m)]Tv + 0 + Imy = c(m)

C(m) and c(m) are those of (19.4.1a) and Im is an m-unit matrix. A
solution to system (19.6.1) is v = x = 0 and y = c(m). Let us write down
this system in a simplex tableau format [1, 12].

Tableau (a)

B bB vT xT yT

 �������������������� �����������������������������
x 0 [C(m)]T Im 0

y c(m) �C(m)[C(m)]T 0 Im
 �������������������� �����������������������������

In Tableau (a), B and bB denote respectively the initial basis
matrix and the initial basic solution. In linear programming
terminology, the elements of vectors x and y are basic variables.

Assume that rank(C(m)) = m. Then C(m)[C(m)]T is nonsingular.

© 2008 by Taylor & Francis Group, LLC

716 Numerical Linear Approximation in C

Let now the elements of vector v replace the corresponding elements
of vector y as basic variables. This gives Tableau (b).

Tableau (b)

B bB vT xT yT

 �������������������� �����������������������������
x [C(m)]+c(m) 0 Im [C(m)]+

v �(C(m)[C(m)]T)�1c(m) Im 0 �(C(m)[C(m)]T)�1

 �������������������� �����������������������������

In effect, Tableau (b) is obtained by premultiplying Tableau (a) by
matrix E, where

However, in practice, Tableau (b) is obtained by applying m
Gauss-Jordan elimination steps to Tableau (a) and its updates. Since
under vT in Tableau (a), �C(m)[C(m)]T is symmetric semi-definite,
before each Gauss-Jordan elimination step, we pivot over the diagonal
elements of �C(m)[C(m)]T in Tableau (a) and its updates, in the
successive tableaux between Tableaux (a) and (b). Under the basic
solution bB in Tableau (b), we find that x = [C(m)]+c(m), which is the
required minimal length least squares solution (19.4.3) of the system
Ax = b, for k = m.

However, if rank(C(m)) = k < m, the absolute value of the pivot
element in the (k + 1)th elimination step is assumed very small < EPS
and is replaced by 0. The columns of [C(m)]T under vT in Tableau (a),
used in the calculation so far, are matrix [C(k)]T. The obtained basic
solution in this case is x(k) = [C(k)]+c(k), which is the approximate
least squares solution of system Ax = b.

Let us denote the successive tableaux between Tableau (a) and
Tableau (b), as Tableau (1), Tableau (2), �, Tableau (k). Tableau (0)
is Tableau (a) and Tableau (k) is Tableau (b). Then the columns under
yT in Tableau (p), p = 1, 2, �, is [C(p)]+ and the first m elements of
bB is x(p) = [C(p)]+c(p). In other words, in Tableaux (1), (2), �, (k),
the calculated basic solutions are the repeated solutions

E Im C m()[]T

0 C� m() C m()[]T

1�
Im C m()[]+

0 C m() C m()[]T()�
1�

= =

© 2008 by Taylor & Francis Group, LLC

Chapter 19: Solution of Ill-Posed Linear Systems 717

x(1), x(2), �, x(k) respectively. The calculation may also be done in a
smaller (condensed) tableaux, as we did in [1].

19.7 Numerical results and comments

In this section, we show that our algorithm obtains a smooth
solution to the Fredholm integral equation of the first kind and also
may be applied in solving other ill-conditioned linear systems.

LA_Mls() implements the Minimum norm Least Squares
algorithm. DR_Mls() tests two examples, the results of which were
computed in double-precision, as follows.

Example 19.1

Solve the following Fredholm integral equation of the first kind

This example was solved by Baker ([9], pp. 664-667) and also by
Baker et al. [10] and in [2, 3]. The exact solution is f(x) = x.

Table 19.1

f(x) x(exact) x(calculated) error
 ��������������������������������������

0.0000 0.0000 �0.0066 0.0066
0.0714 0.0714 0.1249 �0.0535
0.1429 0.1429 0.1135 0.0294
0.2143 0.2143 0.1628 0.0515
0.2857 0.2857 0.2590 0.0267
0.3571 0.3571 0.3690 �0.0119
0.4286 0.4286 0.4720 �0.0434
0.5000 0.5000 0.5585 �0.0585
0.5714 0.5714 0.6259 �0.0544
0.6429 0.6429 0.6749 �0.0321
0.7143 0.7143 0.7080 0.0063
0.7857 0.7857 0.7279 0.0578
0.8571 0.8571 0.7372 0.1200
0.9286 0.9286 0.7382 0.1904
1.0000 1.0000 0.7329 0.2671

x2 y2+()
0.5

0
1∫ f y()dy 1 x2+()

1.5
x3�[]= 3⁄

© 2008 by Taylor & Francis Group, LLC

718 Numerical Linear Approximation in C

In discretizing this equation, we use here the rectangular rule
rather than the Chebyshev rule, as in [2, 3]. We used the parameters
n = 15, m = 15, EPS = 10�11, TOLER = 10�4. The calculated
rank(A) = 5.

The results are shown in Table 19.1.
Residual vector (b � Ax) =

(�0.00001515, 0.00009018, �0.00008601, �0.00007357,
0.00000561, 0.00005994, 0.00006877, 0.00004385,
0.00000466, �0.00003197, �0.00005458, �0.00005681,

�0.00003611, 0.00000753, 0.00007266)T

||b � Ax|| = 0.21293071E�03

||x(exact) � x(calculated)|| = 0.37677

The pivots in the simplex tableaux to 8 decimal places are

(�3039.73005711, �2.41835358, �0.00014840, �0.00000027,
 0.00000000)

|pivot|1/4 =
(7.42521023, 1.24703875, 0.11037181, 0.02283408, 0.00571954)

The pivots and |pivot|1/4 shown here differ slightly from those in
([2], p. 108) because here we use the rectangular rule in the
discretization of the given equation while in [2], we used the
Chebyshev rule. It is well-known (Baker [9]) that different quadrature
rules for discretizing a given integral equation give results with
different accuracies. In ([2], p. 107), where the discretization of this
example is done by the Chebyshev rule, slightly better results are
obtained and the estimated rank(A) = 3.

In ([2], p. 108) we displayed the results of this problem together
with the results by the truncated SVD method. The calculated values
of the elements of x were almost the same for both methods.
However, our method was 4 times faster than the truncated SVD
method.

Example 19.2

Obtain the least squares solution of the ill-conditioned system
Ax = b, where matrix A (a scaled version of Hilbert matrix) and
vector b are given such that the exact solution is x = (1, 1, 1, 1, 1, 1)T.
We have n = 7 and m = 6. The results are shown in Table 19.2.

© 2008 by Taylor & Francis Group, LLC

Chapter 19: Solution of Ill-Posed Linear Systems 719

Table 19.2

x(exact) x(calculated) error
 ����������������������������

1.0000 0.9999 0.0001
1.0000 1.0016 �0.0016
1.0000 0.9950 0.0050
1.0000 1.0032 �0.0032
1.0000 1.0044 �0.0044
1.0000 0.9959 0.0041

Residual vector (b � Ax) =
(0.00000001, �0.00000016, 0.00000046, �0.00000019,
�0.00000036, 0.00000001, 0.00000025)T

||b � Ax|| = 0.6798635653E�06

||x(exact) � x(calculated)|| = 0.008639

Matrix A and vector b are given in ([3], p. 292) and they are not
multiplied by 1.0E05. Their elements should be of reasonable sizes.

The pivots in the simplex tableaux to 8 decimal places are

(�673.99536685, �0.28826497, �0.00001107, 0.00000000)

|pivot|1/4 = (5.09523510, 0.73273674, 0.05767962, 0.00366241)

 For these results, we used EPS = 10�11 and TOLER = 10�4. This
example was also solved in ([22], p. 315).

We now illustrate that |pivot(i)|1/4 in the simplex tableau are of the
order of magnitude of the elements of si(A). In example 2 in
([2], p. 108), the values (si(A)) and (|pivot(i)|1/4) were compared,
where rank(A) was found to be 3

(si (A)) = (12.16, 1.435, 0.100)

which is compared with

(|pivot(i)|1/4) = (7.275, 1.132, 0.088)

Compare also |pivot(i)|1/4 and si(A) in example 1 in ([2], p. 107)
and the numerical example given in Baker et al. ([10], p. 147).

This makes our method a good alternative to the truncated
singular value decomposition method. It is also concluded that matrix
C(k) in C(k)x = c(k) of (19.4.2) is a (good) approximation to matrix

© 2008 by Taylor & Francis Group, LLC

720 Numerical Linear Approximation in C

C(m) = (ATA), where it is assumed that rank(A) = k.
For this example, the results here agree with those of Peters and

Wilkinson ([22], p. 315), where TOLER was set to 10�4 and
rank(A) = 4. We solved this example also for EPS = 10�11 and
TOLER = 10�3. The results were less accurate, giving the estimated
rank(A) = 3.

Finally, one observes that the matrix from which we chose the
pivot elements in the linear programming problem is matrix
�C(m)[C(m)]T and its updates in the simplex tableaux. Thus if A has
large elements, the tableaux will contain very large numbers. Also, if
A has many elements of very small sizes, this may result in some very
small pivot elements of the order of EPS. A proper scaling of system
Ax = b before calling LA_Mls() would solve this problem.

In conclusion, the singular values of matrix A give an accurate
representation of the condition of matrix A. In our method, however,
the absolute values of the pivot elements in the successive simplex
tableaux, raised to the power (1/4), reflect the condition of matrix A in
the system Ax = b, (Lemma 19.5).

In the simplex tableaux, the number of arithmetic operations for
each iteration is of the order of m2 multiplications/divisions. The
computation time is approximately proportional to m2(n + k/2), where
k is the estimated rank of matrix A. The actual code of our subroutine
(in FORTRAN IV, not including comment lines) consists of less than
100 lines.

References

1. Abdelmalek, N.N., Minimum energy problem for discrete
linear admissible control systems, International Journal of
Systems Science, 10(1979)77-88.

2. Abdelmalek, N.N., An algorithm for the solution of ill-posed
linear systems arising from the discretization of Fredholm
integral equation of the first kind, Journal of Mathematical
Analysis and Applications, 97(1983)95-111.

3. Abdelmalek, N.N., A program for the solution of ill-posed
linear systems arising from the discretization of Fredholm

© 2008 by Taylor & Francis Group, LLC

Chapter 19: Solution of Ill-Posed Linear Systems 721

integral equation of the first kind, Computer Physics
Communications, 58(1990)285-292.

4. Abdelmalek, N.N., Kasvand, T. and Croteau, J.P., Image
restoration for space invariant pointspread functions, Applied
Optics, 19(1980)1184-1189.

5. Abdelmalek, N.N., Kasvand, T., Olmstead, J. and Tremblay,
M.M., Direct algorithm for digital image restoration, Applied
Optics, 20(1981)4227-4233.

6. Abdelmalek, N.N. and Otsu, N., Restoration of images with
missing high-frequency components by minimizing the L1
norm of the solution vector, Applied Optics, 24(1985)1415-
1420.

7. Abdelmalek, N.N. and Otsu, N., Speed comparison among
methods for restoring signals with missing high-frequency
components using two different low-pass-filter matrix
dimensions, Optics Letters, 10(1985)372-374.

8. Albert, A., Regression and More-Penrose Pseudoinverse,
Academic Press, New York, 1972.

9. Baker, C.T.H., The Numerical Treatment of Integral
Equations, Oxford University Press, Clarendon, Oxford, 1977.

10. Baker, C.T.H., Fox, L., Mayers, D.F. and Wright, K.,
Numerical solution of Fredholm integral equations of the first
kind, Computer Journal, 7(1964)141-148.

11. Fisher, M.E., Introductory Numerical Methods with the NAG
Software Library, The University of Western Australia,
Crawley, 1988.

12. Hadley, G., Linear Programming, Addison-Wesley, Reading,
MA, 1962.

13. Hansen, P.C., The truncated SVD as a method for
regularization, BIT, 27(1987)534-553.

14. Hansen, P.C., Analysis of discrete ill-posed problems by
means of the L-curve, SIAM Review, 34(1992)561-580.

15. Hansen, P.C. and O�Leary, D., The use of the L-curve in the
regularization of discrete ill-posed problems, SIAM Journal on
Scientific Computation, 14(1993)1487-1502.

16. Hanson, R.J., A numerical method for solving Fredholm
integral equations of the first kind using singular values, SIAM
Journal on Numerical Analysis, 8(1971)616-622.

© 2008 by Taylor & Francis Group, LLC

722 Numerical Linear Approximation in C

17. Hanson, R.J. and Phillips, J.L., An adaptive numerical method
for solving linear Fredholm integral equations of the first kind,
Numerische Mathematik, 24(1975)291-307.

18. Kammerer, W.J. and Nashed, M.Z., On the convergence of the
conjugate gradient method for singular linear equations, SIAM
Journal on Numerical Analysis, 8(1971)65-101.

19. Kammerer, W.J. and Nashed, M.Z., Iterative methods for best
approximate solution of linear integral equations of the first
and second kinds, Journal of Mathematical Analysis and
Applications, 40(1972)547-573.

20. Morozov, V.A., Methods for Solving Incorrectly Posed
Problems, Springer-Verlag, New York, 1984.

21. Noble, B., Applied Linear Algebra, Prentice-Hall, Englewood
Cliffs, NJ, 1969.

22. Peters, G. and Wilkinson, J.H., The least squares problem and
pseudo-inverses, Computer Journal, 13(1970)309-316.

23. Phillips, D.L., A technique for the numerical solution of
certain integral equations of the first kind, Journal of ACM,
9(1962)84-97.

24. Squire, W., The solution of ill-conditioned linear systems
arising from Fredholm equations of the first kind by steepest
descents and conjugate gradients, International Journal for
Numerical Methods in Engineering, 10(1976)607-617.

25. Stewart, G.W., Introduction to Matrix Computations,
Academic Press, New York, 1973.

26. te Riele, H.J.J., A program for solving first kind Fredholm
integral equations by means of regularization, Computer
Physics Communications, 36(1985)423-432.

27. Tikhonov, A.N., Solution of incorrectly formulated prob-
lems and method of regularization, Soviet Mathematics,
4(1963)1035-1038.

28. Varah, J.M., On the numerical solution of ill-conditioned
linear systems with applications to ill-posed problems, SIAM
Journal on Numerical Analysis, 10(1973)257-267.

29. Varah, J.M., A practical examination of some numerical
methods for linear discrete ill-posed problems, SIAM Review,
21(1979)100-111.

© 2008 by Taylor & Francis Group, LLC

Chapter 19: Solution of Ill-Posed Linear Systems 723

30. Varah, J.M., Pitfalls in the numerical solution of linear
ill-posed problems, SIAM Journal on Scientific Statistical
Computation, 4(1983)164-176.

31. Vogel, C.R., Optimal choice of a truncation level for the
truncated SVD solution of linear first kind integral equations
when data are noisy, SIAM Journal on Numerical Analysis,
23(1986)109-134.

32. Wahba, G., Practical approximate solutions to linear operator
equations when the data are noisy, SIAM Journal on
Numerical Analysis, 14(1977)651-667.

© 2008 by Taylor & Francis Group, LLC

724 Numerical Linear Approximation in C

19.8 DR_Mls

/*---
DR_Mls

This program is a driver for the function LA_Mls(), which calculates
a smooth solution vector "x" for an ill-posed / ill-conditioned
system of linear equations

 a*x = b

"a" is a real n by m matrix of rank k, k <= m <= n.
"b" is a real n vector.

Remark 1:
 It is recommended to solve this program in double precision only.
 That is due to the ill-conditioning of the derived system of
 equations a*x = b.

This program contains 2 examples.

Example 1:
 This example is for getting the least squares solution of
 Fredholm integral equation of the first kind.
 For this example the real solution is y = x.
 The integration is done by the rectangular rule.

Example 2:
 This example is for getting the least squares solution of an
 ill-conditioned system of linear equations.

Each example is solved twice, once for the parameter
"toler" = 1.0e-04 and once for "toler" = 1.0e-03
---*/

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define TOLER1 1.0E-04
#define TOLER2 1.0E-03

#define NN1_ROWS 60
#define MM1_COLS 40

© 2008 by Taylor & Francis Group, LLC

Chapter 19: DR_Mls 725

#define N1m 15
#define M1m 15
#define N2m 7
#define M2m 6

void DR_Mls (void)
{
 /*--
 Constant matrices/vectors
 --*/
 static tNumber_R a2init[N2m][M2m] =
 {
 { 3.6036, 1.8018, 1.2012, 0.9009, 0.72072, 0.6006 },
 { 1.8018, 1.2012, 0.9009, 0.72072, 0.6006, 0.5148 },
 { 1.2012, 0.9009, 0.72072, 0.6006, 0.5148, 0.45045 },
 { 0.9009, 0.72072, 0.6006, 0.5148, 0.45045, 0.4004 },
 { 0.72072, 0.6006, 0.5148, 0.45045, 0.4004, 0.36036 },
 { 0.6006, 0.5148, 0.45045, 0.4004, 0.36036, 0.3276 },
 { 0.5148, 0.45045, 0.4004, 0.36036, 0.3276, 0.3003 }
 };

 static tNumber_R b2[N2m+1] =
 { NIL,
 8.82882, 5.74002, 4.38867, 3.58787, 3.04733, 2.65421, 2.35391
 };

 /*--
 Variable matrices/vectors
 --*/
 tMatrix_R a = alloc_Matrix_R (NN1_ROWS, MM1_COLS);
 tVector_R b = alloc_Vector_R (NN1_ROWS);
 tVector_R x = alloc_Vector_R (MM1_COLS);
 tVector_R xp = alloc_Vector_R (M1m + 1);
 tVector_R yp = alloc_Vector_R (M1m + 1);
 tVector_R xexact = alloc_Vector_R (M1m + 1);
 tVector_R xerror = alloc_Vector_R (M1m + 1);
 tVector_R r = alloc_Vector_R (N1m + 1);

 tMatrix_R a2 = init_Matrix_R (&(a2init[0][0]), N2m, M2m);

 int krun, irank;
 int i, j, k, m, n, Iexmpl;
 tNumber_R pi, dx, dy, e, e1, s, sum, toler;

© 2008 by Taylor & Francis Group, LLC

726 Numerical Linear Approximation in C

 eLaRc rc = LaRcOk;

 pi = 4.0*atan (1.0);
 dx = 2.*pi/99;

 pi = 4.0*atan (1.0);

 prn_dr_bnr ("DR_Mls, "
 "Solution of Ill-posed Systems of Equations");

 for (krun = 1; krun <= 2; krun++)
 {
 if (krun == 1) toler = TOLER1;
 if (krun == 2) toler = TOLER2;

 PRN ("Test run output # = %d, toler = %8.4f\n", krun, toler);

 for (Iexmpl = 1; Iexmpl <= 2; Iexmpl++)
 {
 switch (Iexmpl)
 {
 case 1:
 n = N1m;
 m = M1m;
 dx = 1.0 / (tNumber_R)(n - 1);
 for (i = 1; i <= n; i++)
 {
 xp[i] = dx * ((tNumber_R)(i - 1));
 }
 dy = 1.0 / (tNumber_R)(m - 1);
 for (j = 1; j <= m; j++)
 {
 yp[j] = dy * (tNumber_R)(j - 1);
 }
 for (i = 1; i <= n; i++)
 {
 e = xp[i];
 xexact[i] = e;
 e1 = (pow ((1.0 + e*e), 1.5) - e*e*e) / 3.0;
 b[i] = e1/dx;
 for (j = 1; j <= m; j++)
 {
 a[i][j] = pow ((xp[i]*xp[i] + yp[j]*yp[j]),
 0.50);
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 19: DR_Mls 727

 }
 break;

 case 2:
 n = N2m;
 m = M2m;
 for (i = 1; i <= n; i++)
 {
 b[i] = b2[i];
 xexact[i] = 1.0;
 for (j = 1; j <= m; j++)
 {
 a[i][j] = a2[i][j];
 }
 }
 break;
 default:
 break;
 }

 prn_algo_bnr ("Mls");

 prn_example_delim();
 PRN ("Example #%d: Size of coefficient matrix "
 "%d by %d\n", Iexmpl, n, m);
 prn_example_delim();
 if (Iexmpl == 1)
 {
 PRN ("Least Squares Solution of a Fredholm "
 "Integral Equation of the First Kind\n");
 prn_example_delim();
 PRN ("Exact solution is f(x) = x\n");
 }
 if (Iexmpl == 2)
 {
 PRN ("Least Squares Solution of an Ill-conditioned "
 "System of Linear Equations\n");
 prn_example_delim();
 PRN ("r.h.s. Vector \"b\"\n");
 prn_Vector_R (b, n);
 PRN ("Coefficient Matrix, \"a\"\n");
 prn_Matrix_R (a, n, m);
 }
 PRN ("Parameters \"toler\" = %11.4f, \"EPS\" "
 "= %13.11f\n", toler, EPS);

© 2008 by Taylor & Francis Group, LLC

728 Numerical Linear Approximation in C

 rc = LA_Mls (m, n, a, b, toler, x, &irank);

 if (rc >= LaRcOk)
 {
 PRN ("Calculated rank of the system of equations "
 " = %d\n", irank);
 PRN ("Calculated solution vector, \"x\"\n");
 prn_Vector_R (x, m);
 PRN ("Exact solution vector, \"xexact\"\n");
 prn_Vector_R (xexact, m);
 sum = 0.0;
 for (i = 1; i <= m; i++)
 {
 xerror[i] = xexact[i] - x[i];
 sum = sum + xerror[i] * (xerror[i]);
 }
 sum = pow (sum, 0.5);

 if (Iexmpl == 1)
 {
 PRN (" Coordinate x(exact) "
 "x(calculated) xerror\n");
 for (i = 1; i <= m; i++)
 {
 PRN (" %8.4f, %8.4f,"
 " %8.4f, %8.4f\n",
 xp[i], xexact[i], x[i], xerror[i]);
 }
 }
 if (Iexmpl == 2)
 {
 PRN (" x(exact) x(calculated) "
 "xerror\n");
 for (i = 1; i <= m; i++)
 {
 PRN (" %8.4f, %8.4f, %8.4f\n",
 xexact[i], x[i], xerror[i]);
 }
 }

 sum = 0.0;
 for (i = 1; i <= m; i++)
 {
 xerror[i] = xexact[i] - x[i];

© 2008 by Taylor & Francis Group, LLC

Chapter 19: DR_Mls 729

 sum = sum + xerror[i] * (xerror[i]);
 }
 sum = pow (sum, 0.5);
 PRN ("L2 Norm ||x(exact) - x(calculated)|| "
 "= %17.10f\n", sum);
 sum = 0.0;
 for (i = 1; i <= n; i++)
 {
 s = b[i];
 for (k = 1; k <= m; k++)
 {
 s = s - a[i][k] * (x[k]);
 }
 r[i] = s;
 sum = sum + s*(s);
 }
 sum = pow (sum, 0.5);
 PRN ("Residual vector, (b-a*x)\n");
 prn_Vector_R_exp (r, m);
 PRN ("L2 Norm ||b-a*x|| = %17.10f\n", sum);
 }

 prn_la_rc (rc);
 }
 }

 free_Matrix_R (a, NN1_ROWS);
 free_Vector_R (b);
 free_Vector_R (x);
 free_Vector_R (xp);
 free_Vector_R (yp);
 free_Vector_R (xexact);
 free_Vector_R (xerror);
 free_Vector_R (r);

 uninit_Matrix_R (a2);
}

© 2008 by Taylor & Francis Group, LLC

730 Numerical Linear Approximation in C

19.9 LA_Mls

/*---
LA_Mls

Given is the system of linear equations

 a*x = b

"a" is a given real n by m matrix of rank k, k <= m <= n.
"b" is a given real n vector.

The system a*x = b may result from the discretization of "Fredholm
integral equation of the first kind". In this case, it is known that
a*x = b is ill-posed; a small perturbation in the r.h.s. vector "b"
results in a large change to the solution vector "x". An ill-posed
system is also ill-conditioned.

The problem is to calculate a smooth solution m vector "x" to the
(ill-posed / ill-conditioned) system a*x = b.

The program pre-multiplies the equation a*x = b by a(transpose).
One gets the system of linear equations

 c*x = f

The m by m matrix c = a(transpose)*a and the m vector f =
a(transpose)*b.

The program then, using linear programming techniques calculates the
minimum length least squares solution x(k) of k equations of the
system c*x=f, where k = 1, 2,

Meanwhile after each simplex iteration (solution) the Euclidean norm
||b-a*x|| is calculated. Computation stops when this norm is less
than a given tolerance "toler" or when the absolute value of the
pivot element for the next simplex iteration is less than "EPS", a
computer-dependent parameter.

The obtained solution vector x[k] is itself the smooth solution "x"
of the system a*x = b.

Inputs
m Number of columns of matrix "a" of the system a*x = b.

© 2008 by Taylor & Francis Group, LLC

Chapter 19: LA_Mls 731

n Number of rows of matrix "a" of a*x = b.
a An n by m real matrix "a" of the system a*x = b.
b An n real vector of the system a*x = b. Both matrix "a"
 and vector "b" are not destroyed in the computation.
toler A real specified tolerance; Euclidian ||b - a*x|| < toler.

Local Variables
c An (m + m) by n real matrix.
f An m real vector.

Outputs
irank The estimated rank of matrix "c" of c*x = f that results
 in a best solution "x" for the system a*x = b. Also,
 "irank" is the number of simplex iterations in the linear
 programming problem.
x Am m real vector containing the minimum length least squares
 solution to the "irank" equations of the system c*x = f.
 "x" is the smooth solution to the system a*x = b.
diag A real m vector containing the pivot elements in the "irank"
 simplex iterations.
ic An m integer vector whose first "irank" elements are the
 indices of the "irank" linearly independent equations of
 the system c*x = f.

Returns one of
 LaRcSolutionFound
 LaRcErrBounds
 LaRcErrNullPtr
 LaRcErrAlloc
---*/

#include "LA_Prototypes.h"

eLaRc LA_Mls (int m, int n, tMatrix_R a, tVector_R b,
 tNumber_R toler, tVector_R x, int *pIrank)
{
 tVector_R f = alloc_Vector_R (m);
 tMatrix_R c = alloc_Matrix_R (m + m, m);
 tVector_I ic = alloc_Vector_I (m);
 tVector_R diag = alloc_Vector_R (m);

 int i = 0, j = 0, k = 0, kd = 0, kdp = 0, mpi = 0,
 mpj = 0, mpm = 0;
 int iout = 0, mout = 0;
 tNumber_R d = 0.0, piv = 0.0, pivot = 0.0, s = 0.0, sum = 0.0;

© 2008 by Taylor & Francis Group, LLC

732 Numerical Linear Approximation in C

 /* Validation of the data before executing the algorithm */
 eLaRc rc = LaRcSolutionFound;
 VALIDATE_BOUNDS ((0 < m) && (0 < n) && !((n == 1) && (m == 1)));
 VALIDATE_PTRS (a && b && toler && x && pIrank);
 VALIDATE_ALLOC (f && c && ic && diag);

 /* Initialization */
 mpm = m + m;
 *pIrank = m;
 for (j = 1; j <= m; j++)
 {
 ic[j] = j;
 diag[j] = 0.0;
 x[j] = 0.0;
 s = 0.0;
 for (k = 1; k <= n; k++)
 {
 s = s + b[k] * (a[k][j]);
 }
 f[j] = s;
 }
 for (j = 1; j <= m; j++)
 {
 for (i = j; i <= m; i++)
 {
 sum = 0.0;
 for (k = 1; k <= n; k++)
 {
 sum = sum + a[k][i] * (a[k][j]);
 }
 c[j][i] = sum;
 c[i][j] = sum;
 }
 }

 for (j = 1; j <= m; j++)
 {
 mpj = m + j;
 for (i = j; i <= m; i++)
 {
 mpi = m + i;
 s = 0.0;
 for (k = 1; k <= m; k++)
 {

© 2008 by Taylor & Francis Group, LLC

Chapter 19: LA_Mls 733

 s = s + c[k][i] * (c[k][j]);
 }
 c[mpj][i] = - s;
 c[mpi][j] = - s;
 }
 }

 for (iout = 1; iout <= m; iout++)
 {
 mout = m + iout;
 piv = 0.0;
 /* Pivoting along the diagonal elements of matrix "c" */
 for (j = iout; j <= m; j++)
 {
 mpj = m + j;
 d = fabs (c[mpj][j]);
 if (d > piv)
 {
 kd = j;
 kdp = mpj;
 piv = d;
 }
 }

 if (piv < EPS)
 {
 *pIrank = iout - 1;
 GOTO_CLEANUP_RC (LaRcSolutionFound);
 }

 if (kdp != mout)
 {
 /* Swap two rows of matrix "c" */
 swap_rows_Matrix_R (c, kdp, mout);

 /* Swap of two elements of vector "f" */
 swap_elems_Vector_R (f, kd, iout);

 /* Swap two columns of matrix "c" */
 for (i = 1; i <= mpm; i++)
 {
 d = c[i][iout];
 c[i][iout] = c[i][kd];
 c[i][kd] = d;
 }

© 2008 by Taylor & Francis Group, LLC

734 Numerical Linear Approximation in C

 swap_elems_Vector_I (ic, kd, iout);
 }

 /* A Gauss-Jorden elimination step */
 pivot = c[mout][iout];
 diag[iout] = pivot;
 for (j = 1; j <= m; j++)
 {
 c[mout][j] = c[mout][j]/pivot;
 }
 f[iout] = f[iout]/pivot;
 for (i = 1; i <= mpm; i++)
 {
 if (i != mout)
 {
 d = c[i][iout];
 for (j = 1; j <= m; j++)
 {
 if (j != iout)
 {
 c[i][j] = c[i][j] - d * (c[mout][j]);
 }
 }
 c[i][iout] = - c[i][iout]/pivot;
 if (i > m)
 {
 k = i - m;
 f[k] = f[k] - d * (f[iout]);
 }
 else if (i <= m)
 {
 x[i] = x[i] - d * (f[iout]);
 }
 }
 }
 c[mout][iout] = 1.0/pivot;
 sum = 0.0;
 for (i = 1; i <= n; i++)
 {
 s = b[i];
 for (k = 1; k <= m; k++)
 {
 s = s - a[i][k] * (x[k]);
 }
 sum = sum + s*s;

© 2008 by Taylor & Francis Group, LLC

Chapter 19: LA_Mls 735

 }
 sum = sqrt (sum);
 if (sum < toler)
 {
 *pIrank = iout;
 break;
 }
 }

CLEANUP:

 free_Vector_R (f);
 free_Matrix_R (c, m + m);
 free_Vector_I (ic);
 free_Vector_R (diag);

 return rc;
}

© 2008 by Taylor & Francis Group, LLC

PART 5

Solution of Underdetermined Systems
Of Linear Equations

© 2008 by Taylor & Francis Group, LLC

738 Numerical Linear Approximation in C

Chapter 20 L1 Solution of Underdetermined Linear
Equations 739

Chapter 21 Bounded and L1 Bounded Solutions of
Underdetermined Linear Equations 765

Chapter 22 Chebyshev Solution of Underdetermined
Linear Equations 799

Chapter 23 Bounded Least Squares Solution of
Underdetermined Linear Equations 833

© 2008 by Taylor & Francis Group, LLC

739

Chapter 20

L1 Solution
of Underdetermined Linear Equations

20.1 Introduction

This is the first of four chapters on the solution of
underdetermined consistent systems of linear equations subject to
certain types of constraints. For consistent underdetermined systems
of linear equations, the residual vector is zero. Hence, the constraints
are on the solution vector of the system, not on the residual vector. In
this chapter, the constraint is that the L1 norm of the solution vector be
as small as possible. Consider the underdetermined system of linear
equations

Ca = f

C = (cij) is a given real n by m matrix of rank k, k ≤ n < m, and f = (fi)
is a given real n-vector. It is required to calculate a solution m-vector
a = (aj) for this system.

It is known that system Ca = f has a solution if and only if
rank(C|f) = rank(C). If rank(C|f) > rank(C), the system is inconsistent
and it has no solution (Theorem 4.13). We shall assume throughout
our work that the system Ca = f is consistent.

Also, because the number of equations is less than the number of
unknowns, system Ca = f has an infinite number of solutions. In this
problem, among these infinite solutions, we seek a solution vector a
whose L1 norm

(20.1.1) z a 1 ai
i 1=

m

∑= =

© 2008 by Taylor & Francis Group, LLC

740 Numerical Linear Approximation in C

is as small as possible.
Using basic theorems of functional analysis, Cadzow [4]

developed algorithmic procedures for solving both the problem of the
minimum L1 solution and the problem of the minimum L∞ solution
(Chapter 22), of the underdetermined system Ca = f.

Kolev [7] presented an iterative algorithm to solve both these
problems based on the steepest descent method for constrained
optimization. His algorithm results in a procedure of theoretically
infinite number of iterations. Kolev [8] then developed his algorithm
such that it required a finite number of iterations. In both of Kolev�s
methods, the minimum energy solution (Chapter 23) is used to start
the iterations. A third algorithm was presented by Kolev [9] based on
the simplex method of linear programming [6], but unfortunately, this
method was not properly developed. See the comments in [2].

In this context, Dax [5] presented a method for calculating the Lp
norm of the solution vector of the consistent system Ca = f, where
1 < p < ∞. He presented a primal Newton method for p > 2 and a dual
Newton method for 1 < p < 2.

In our work, this problem is formulated as a linear programming
problem [2] for which a modified simplex algorithm is described. In
this algorithm minimum computer storage is required, where an initial
basic feasible solution is available with no artificial variables needed.
This method applies to full rank as well as rank deficient cases i.e.,
when rank(C|f) = rank(C) < n. Our method is initiated by the method
that we described for the Chebyshev solution of overdetermined
systems of linear equations [1].

In Section 20.2, the linear programming formulation of the
problem is given. In Section 20.3, the algorithm is described and in
Section 20.4, numerical results and comments are given.

20.1.1 Applications of the algorithm

In control theory this problem is known as the Minimum fuel
problem for discrete linear control systems [11, 9, 3]. The
parameter ai represents the rate of fuel consumption in time interval i
and thus z in (20.1.1) represents the total fuel consumption per unit
time.

© 2008 by Taylor & Francis Group, LLC

Chapter 20: L1 Solution of Underdetermined Linear Equations 741

20.2 Linear programming formulation of the problem

This problem is reduced to a linear programming problem as
follows

subject to

Ca = f

aj, j = 1, 2, �, m, unrestricted in sign

Since the variables aj are unrestricted in sign, we may write

aj = vj � wj

Hence

|aj| = vj + wj

vj ≥ 0 and wj ≥ 0, j = 1, 2, �, m

Let the m-vectors v = (vj) and w = (wj). Hence, the problem now
reduces to

(20.2.1a)

(20.2.1b)

(20.2.1c) vj ≥ 0 and wj ≥ 0, j = 1, 2, �, m

Let us denote the matrix on the l.h.s. of (20.2.1b) by D and let the
vectors v and w be augmented to form the 2m-vector b. Problem
(20.2.1) may be rewritten as

(20.2.2a) minimize z = e2m
Tb

subject to

(20.2.2b) Db = f

minimize z aj
j 1=

m

∑=

minimize z vj
j 1=

m

∑ wj
j 1=

m

∑+=

C C�
v
w

f=

© 2008 by Taylor & Francis Group, LLC

742 Numerical Linear Approximation in C

(20.2.2c) bj ≥ 0, j = 1, 2, �, 2m

where e2m is a 2m-vector each element of which is 1.
Problem (20.2.2) is a linear programming problem of n constraints

in 2m variables. Assume without loss of generality that rank(C) = n.
Let the basis matrix for this problem be denoted by the n-square
matrix B. Let us, as usual, construct the simplex tableau for problem
(20.2.2) by calculating the vectors (yj)

(20.2.3) yj = B�1Dj, j = 1, 2, �, 2m

where Dj is the jth column of matrix D.
From (20.2.2a), the marginal costs are given by (zj � 1)

(20.2.4) zj � 1 = en
Tyj � 1, j = 1, 2, �, 2m

where en is an n-vector each element of which is 1. Let bB denote the
basic solution to problem (20.2.2)

bB = B�1f

The objective function denoted by z is given by

z = en
TbB

20.2.1 Properties of the matrix of constraints

The analysis of this problem is initiated by the asymmetry matrix
D of (20.2.2b) has. For any column j, 1 ≤ j ≤ m, we have

(20.2.5) Dj = Cj and Dj+m = �Cj, j = 1, 2, �, m

where again Dj and Cj are the jth columns of matrix D and matrix C
respectively. This asymmetry enables us to use a condensed simplex
tableau of n constraints in only m variables.

Definition

Because of this asymmetry in matrix D, we define any column j,
1 ≤ j ≤ m, of D and the column (j + m) as two corresponding columns.
Consider the following lemmas [2].

Lemma 20.1

Any two corresponding columns could not appear together in any
basis. Otherwise, the basis matrix would be singular.

© 2008 by Taylor & Francis Group, LLC

Chapter 20: L1 Solution of Underdetermined Linear Equations 743

Lemma 20.2

Let i and j be any two corresponding columns in the simplex
tableau, i.e., |i � j| = m, 1 ≤ i, j ≤ 2m. Then from (20.2.3-5)

yi + yj = 0

(zi � 1) + (zj � 1) = �2

Lemma 20.3

Assume that we have obtained an infeasible basic solution bB, to
the linear programming problem (20.2.2); that is, one or more
elements of bB is < 0. Let bBs, 1 ≤ s ≤ n, be one of such elements. Let
i be the column associated with bBs. Let j be the corresponding
column to column i. Then if column j replaces column i in the basis,
the new basic solution has the new bBs = �bBs and all the other
elements of bB are unchanged.

The proof of this lemma is similar to the proof of Lemma 10.6.

It is easily seen, in this case, that the simplex tableau is changed as
follows. Row s of the tableau and the element bBs are multiplied by
�1, while the rest of the tableau as well as the other elements of bB are
left unchanged.

Lemma 20.4

The elements of the solution vector a to the system Ca = f are
given in terms of the elements of the optimal basic solution bB to
problem (20.2.2) as follows. For any element bBs, s = 1, 2, �, n, of
the optimal basic solution, let j be the column in the simplex tableau
associated with bBs. Then

aj = bBs, if 1 ≤ j ≤ m

aj � m = �bBs, if instead m < j ≤ 2m

The remaining (m � n) elements of a are zero elements and thus the L1
norm z of (20.1.1) is the sum of the elements of bB, being all
non-negative.

Proof:

The proof follows directly from aj = vj � wj and b = [vT wT]T.
Also, since the non-basic elements of vector b are 0�s, the remaining
elements of vector a are 0�s and the objective function z = the sum of

© 2008 by Taylor & Francis Group, LLC

744 Numerical Linear Approximation in C

the elements of the basic solution bB.

Note 1
If rank(C|f) = rank(C) = k < n, then (m � k) elements of a are zero

elements instead.

Lemma 20.5

If the system of equation Ca = f is not consistent, the linear
programming solution would have one or more zero rows in the
simplex tableau but the corresponding bB elements would be nonzero.
The solution of the programming problem is not feasible.

20.3 Description of the algorithm

From Lemma 20.2, the corresponding columns yi and yj are the
negative of one another, |i � j| = m. Also, the marginal costs of the
corresponding columns are related to one another. Hence, we need to
construct simplex tableaux for problem (20.2.2), for n constraints in
only m variables, and we call this the condensed tableaux. We start
with the first half of matrix D of (20.2.2b).

In part 1 of this algorithm, we obtain a basic solution, feasible or
not, without needing any artificial variables. This is simply done by
performing a finite number of Gauss-Jordan elimination steps to the
initial data, with partial pivoting. We choose the pivot as the largest
element in absolute value in row i in tableau (i � 1), i = 1, 2, �, n.

If rank(C|f) = rank(C) = k < n, this is indicated by the presence of
0 rows and corresponding 0 bB elements in the simplex tableaux.
These rows are deleted from the following tableaux.

If one or more elements of the basic solution is < 0, the basic
solution is not feasible. For each of these elements bBs, we apply
Lemma 20.3, which implies replacing column i associated with bBs by
its corresponding column.

If Ca = f is inconsistent, this is detected, as explained by Lemma
20.5. In this case the calculation is terminated as the solution is not
feasible, with an indication that the system is inconsistent.

We end part 1 by calculating the marginal costs in the condensed
tableau using (20.2.4).

Part 2 of the algorithm is the ordinary simplex method. The choice
of the non-basic column that enters the basis would be the column

© 2008 by Taylor & Francis Group, LLC

Chapter 20: L1 Solution of Underdetermined Linear Equations 745

with the largest positive marginal cost of the non-basic columns and
their corresponding columns. That is, by using Lemma 20.2 for
calculating the marginal costs of the corresponding columns. The
solution vector a of system Ca = f and the optimum norm z of (20.1.1)
are obtained from Lemma 20.4.

The steps described here are explained by the following detailed
numerical example. This example is a simplified version of the
example solved by Cadzow ([3], pp. 489, 490) and by Kolev ([7],
p. 783).

Example 20.1

Obtain the minimum L1 norm of the solution vector a of the
following underdetermined system

2a1 � a2 � 4a3 � 3a4 + a5 = 2
(20.3.1) 2a1 � a2 � 4a3 � 3a4 + a5 = 2

5a1 + a2 + 3a3 � 2a4 + 0 = 1

Here, matrix C is a 3 by 5 matrix of rank 2 and system (20.3.1) is
consistent. The second equation in (20.3.1) is the same as the first one.
The Initial Data and the condensed simplex tableaux are shown. The
pivot in each tableau is bracketed.

Initial Data

B bB D1 D2 D3 D4 D5
 ��������������� �������������������������������

2 2 �1 (�4) �3 1
2 2 �1 �4 �3 1
1 5 1 3 �2 0

 ��������������� �������������������������������

Tableau 20.3.1 (part 1)

B bB D1 D2 D3 D4 D5
 ��������������� �������������������������������

D3 �0.5 �0.5 0.25 1 0.75 �0.25
0 0 0 0 0 0
2.5 (6.5) 0.25 0 �4.25 0.75

 ��������������� �������������������������������

© 2008 by Taylor & Francis Group, LLC

746 Numerical Linear Approximation in C

Tableau 20.3.2

B bB D1 D2 D3 D4 D5
 ��������������� �������������������������������

D3 �0.308 0 0.270 1 0.423 �0.192
D1 0.385 1 0.039 0 �0.654 0.115

 ��������������� �������������������������������

Tableau 20.3.2*

B bB D1 D2 D8 D4 D5
 ��������������� �������������������������������

D8 0.308 0 �0.270 1 �0.423 0.192
D1 0.385 1 0.039 0 �0.654 0.115

 ��������������� �������������������������������
0 �1.231 0 �2.077 �0.693

Tableau 20.3.3 (part 2)

B bB D1 D2 D8 D9 D5
 ��������������� �������������������������������

D8 0.308 0 �0.270 1 0.423 0.192
D10 0.385 1 0.039 0 (0.654) 0.115

 ��������������� �������������������������������
0 �1.231 0 0.077 �0.693

Tableau 20.3.4

B bB D1 D2 D8 D9 D5
 ��������������� �������������������������������

D8 0.059 �0.647 �0.295 1 0 �0.266
D10 0.588 1.529 0.060 0 1 0.176

 ��������������� �������������������������������
z = 0.647 �0.118 �1.235 0 0 �1.090

Note that the prices are the coefficients of vector b in (20.2.2a),
which are the elements of e2m, which are all 1�s, so we need not write
these prices on the top of each tableau.

In Tableau 20.3.1, the whole of the second row consists of zero
element, indicating rank deficiency. This row is deleted from the
following tableaux. Tableau 20.3.2 gives a basic solution that is not
feasible, since bB1 < 0.

© 2008 by Taylor & Francis Group, LLC

Chapter 20: L1 Solution of Underdetermined Linear Equations 747

In Tableau 20.3.2*, y8 replaces its corresponding column y3
(which is associated with bB1) in the basis. In effect, the simplex
tableau is left unchanged except for the first row and the first element
in bB. They are multiplied by �1. The element y18 is corrected to +1.
This gives Tableau 20.3.2* in which the marginal costs (zj � 1) are
also calculated from (20.2.4).

In Tableau 20.3.2*, y9, the corresponding column to y4, has the
largest positive marginal cost. We exchange y4 by y9 (Tableau 20.3.3)
and perform a Gauss-Jordan elimination step. This gives Tableau
20.3.4, which is optimal.

From Lemma 20.4, the solutions a and z of (20.1.1) are obtained,
a = (0, 0, �0.059, �0.588, 0)T and z = (0.059 + 0.588) = 0.647.

Since rank(C) = 2, only 2 elements of a are nonzeros and the other
3 are zeros (Lemma 20.4). Finally, since bB is not degenerate and
none of the marginal costs for the non-basic columns is zero, a is
unique ([6], p. 166).

20.4 Numerical results and comments

LA_Fuel() implements the minimum fuel algorithm, and
DR_Fuel() demonstrates 7 test cases.

Table 20.4.1 shows the results, calculated in single-precision.

Table 20.4.1

��
Example C(n×m) Iterations z

��
1 4×5 2 2.12
2 4×8 7 2.055
3 2×3 2 4.975
4 4×6 4 1.359
5 4×100 13 10.930
6 5×100 19 14.778
7 7×100 22 20.464

For each example, the size of matrix C, the number of iterations
and the optimum L1 norm z are given.

This method can be characterized as follows. All the calculations
are done in the condensed simplex tableaux. The inverse of the basis

© 2008 by Taylor & Francis Group, LLC

748 Numerical Linear Approximation in C

matrix, i.e., matrix B�1, is never calculated. The elements of the
solution vector a and the optimum norm z are obtained directly from
the optimal solution bB.

References

1. Abdelmalek, N.N., Chebyshev solution of overdetermined
systems of linear equations, BIT, 15(1975)117-129.

2. Abdelmalek, N.N., A simplex algorithm for minimum fuel
problems of linear discrete control systems, International
Journal of Control, 26(1977)635-642.

3. Cadzow, J.A., Functional analysis and the optimal control of
linear discrete systems, International Journal of Control,
17(1973)481-495.

4. Canon, M.D., Cullum Jr., C.D. and Polak, E., Theory of
Optimal Control and Mathematical Programming, Mcgraw-
Hill, New York, 1970.

5. Dax, A., Methods for calculating lp-minimum norm solutions
of consistent linear systems, Journal of Optimization Theory
and Applications, 83(1994)333-354.

6. Hadley, G., Linear Programming, Addison-Wesley, Reading,
MA, 1962.

7. Kolev, L.V., Iterative algorithm for the minimum fuel and
minimum amplitude problems, International Journal of
Control, 21(1975)779-784.

8. Kolev, L.V., Algorithm of finite number of iterations for the
minimum fuel and minimum amplitude control problems,
International Journal of Control, 22(1975)97-102.

9. Kolev, L.V., Minimum-fuel control of linear discrete systems,
International Journal of Control, 23(1976)207-216.

10. Luenberger, D.G., Optimization by Vector Space Methods,
John Wiley, New York, 1969.

11. Porter, W.A., Modern Foundations of System Engineering,
Macmillan, New York, 1966.

© 2008 by Taylor & Francis Group, LLC

Chapter 20: DR_Fuel 749

20.5 DR_Fuel

/*---
DR_Fuel

This program is a driver for the function LA_Fuel(), which
calculates the L-One solution of an underdetermined system of
consistent linear equations.

Given is the underdetermined consistent system

 c*a = f

"c" is a given real n by m matrix of rank k <= n <= m.
"f" is a given real n vector.

It is required to calculate the m vector "a" for this system such
that the L-One norm z of "a"

 z = |a[1]|+ |a[2]|+ ... + |a[m]|

is as small as possible.

In control theory, this problem is known as the "Minimum Fuel"
problem for linear discrete control systems.

This program has 7 examples whose results appear in the text.
---*/

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define N1e 4
#define M1e 5
#define N2e 4
#define M2e 8
#define N3e 2
#define M3e 3
#define N4e 4
#define M4e 6
#define N5e 4
#define M5e 100
#define N6e 5
#define M6e 100

© 2008 by Taylor & Francis Group, LLC

750 Numerical Linear Approximation in C

#define N7e 7
#define M7e 100

void DR_Fuel (void)
{
 /*--
 Constant matrices/vectors
 --*/
 static tNumber_R b1init[N1e][M1e] =
 {
 { 2.0, 1.0, -3.0, 5.0, 3.0 },
 { 2.0, 1.0, -3.0, 5.0, 3.0 },
 { 2.0, 1.0, -3.0, 5.0, 3.0 },
 {-8.0, -4.0, 2.0, 5.0, 6.0 }
 };

 static tNumber_R f1[N1e+1] =
 { NIL,
 10.0, 10.0, 10.0, 8.0
 };

 static tNumber_R b2init[N2e][M2e] =
 {
 {-6.0, 4.0, 2.0, -8.0, 5.0, -1.0, 6.0, 3.0 },
 { 7.0, -3.0, 9.0, 5.0, -9.0, 8.0, 7.0, -4.0 },
 { 9.0, 7.0, -5.0, 2.0, 7.0, 0.0, 1.0, 8.0 },
 { 9.0, -3.0, 2.0, 4.0, 0.0, 3.0, 0.0, 1.0 }
 };

 static tNumber_R f2[N2e+1] =
 { NIL,
 5.0, 7.0, -9.0, 1.0
 };

 static tNumber_R b3init[N3e][M3e] =
 {
 {-0.7182, -3.6706, -11.6961 },
 {-1.7182, -4.6706, -12.6961 }
 };

 static tNumber_R f3[N3e+1] =
 { NIL,
 24.8218, 24.4218
 };

© 2008 by Taylor & Francis Group, LLC

Chapter 20: DR_Fuel 751

 static tNumber_R b4init[N4e][M4e] =
 {
 {2.0, -1.0, -4.0, 0.0, -3.0, 1.0 },
 {2.0, -1.0, -4.0, 0.0, -3.0, 1.0 },
 {5.0, 1.0, 3.0, 1.0, -2.0, 0.0 },
 {1.0, -2.0, -1.0, -5.0, 1.0, 4.0 }
 };

 static tNumber_R f4[N4e+1] =
 { NIL,
 2.0, 2.0, 1.0, -4.0
 };

 /*--
 Variable matrices/vectors
 --*/
 tMatrix_R c = alloc_Matrix_R (Ne_ROWS, Me_COLS);
 tVector_R f = alloc_Vector_R (Ne_ROWS);
 tVector_R a = alloc_Vector_R (Me_COLS);
 tMatrix_R fay = alloc_Matrix_R (N7e, M7e);
 tVector_R fy = alloc_Vector_R (N7e + 1);

 tMatrix_R b1 = init_Matrix_R (&(b1init[0][0]), N1e, M1e);
 tMatrix_R b2 = init_Matrix_R (&(b2init[0][0]), N2e, M2e);
 tMatrix_R b3 = init_Matrix_R (&(b3init[0][0]), N3e, M3e);
 tMatrix_R b4 = init_Matrix_R (&(b4init[0][0]), N4e, M4e);

 int irank, iter;
 int i, j, m, n, Iexmpl;
 tNumber_R pi, dx, x1, x2, x3, z;

 eLaRc rc = LaRcOk;

 pi = 4.0*atan (1.0);
 dx = 2.*pi/99;
 for (j = 1; j <= 100; j++)
 {
 x1 = (j - 1)* dx;
 x2 = x1 + x1;
 x3 = x2 + x1;
 fay[1][j] = 1.0;
 fay[2][j] = sin (x1);
 fay[3][j] = cos (x1);
 fay[4][j] = sin (x2);
 fay[5][j] = cos (x2);

© 2008 by Taylor & Francis Group, LLC

752 Numerical Linear Approximation in C

 fay[6][j] = sin (x3);
 fay[7][j] = cos (x3);
 }
 for (i = 1; i <= 7; i++)
 {
 fy[i] = (10.0+15.0*fay[2][i]-7.0*fay[3][i]+9.0*fay[4][i]) *
 (1.0 + 0.01*fay[4][i]);
 }

 prn_dr_bnr ("DR_Fuel, L1 Solution of an Underdetermined System");

 for (Iexmpl = 1; Iexmpl <= 7; Iexmpl++)
 {
 switch (Iexmpl)
 {
 case 1:
 n = N1e;
 m = M1e;
 for (i = 1; i <= n; i++)
 {
 f[i] = f1[i];
 for (j = 1; j <= m; j++)
 c[i][j] = b1[i][j];
 }
 break;

 case 2:
 n = N2e;
 m = M2e;
 for (i = 1; i <= n; i++)
 {
 f[i] = f2[i];
 for (j = 1; j <= m; j++)
 c[i][j] = b2[i][j];
 }
 break;

 case 3:
 n = N3e;
 m = M3e;
 for (i = 1; i <= n; i++)
 {
 f[i] = f3[i];
 for (j = 1; j <= m; j++)
 c[i][j] = b3[i][j];

© 2008 by Taylor & Francis Group, LLC

Chapter 20: DR_Fuel 753

 }
 break;
 case 4:
 n = N4e;
 m = M4e;
 for (i = 1; i <= n; i++)
 {
 f[i] = f4[i];
 for (j = 1; j <= m; j++)
 c[i][j] = b4[i][j];
 }
 break;
 case 5:
 n = N5e;
 m = M5e;
 for (i = 1; i <= n; i++)
 {
 f[i] = fy[i];
 for (j = 1; j <= m; j++)
 c[i][j] = fay[i][j];
 }
 break;
 case 6:
 n = N6e;
 m = M6e;
 for (i = 1; i <= n; i++)
 {
 f[i] = fy[i];
 for (j = 1; j <= m; j++)
 c[i][j] = fay[i][j];
 }
 break;
 case 7:
 n = N7e;
 m = M7e;
 for (i = 1; i <= n; i++)
 {
 f[i] = fy[i];
 for (j = 1; j <= m; j++)
 c[i][j] = fay[i][j];
 }
 break;
 default:
 break;
 }

© 2008 by Taylor & Francis Group, LLC

754 Numerical Linear Approximation in C

 prn_algo_bnr ("Fuel");
 prn_example_delim();
 PRN ("Example #%d: Size of matrix \"c\" %d by %d\n",
 Iexmpl, n, m);
 prn_example_delim();
 PRN ("L1 Solution of an Underdetermined System\n");
 prn_example_delim();
 PRN ("r.h.s. Vector \"f\"\n");
 prn_Vector_R (f, n);
 PRN ("Coefficient Matrix, \"c\"\n");
 prn_Matrix_R (c, n, m);

 rc = LA_Fuel (m, n, c, f, &irank, &iter, a, &z);

 if (rc >= LaRcOk)
 {
 PRN ("\n");
 PRN ("Results of the Minimum Fuel Solution\n");
 PRN ("L1 solution vector \"a\"\n");
 prn_Vector_R (a, m);
 PRN ("L1 Norm of vector \"a\", ||a|| = %8.4f\n", z);
 PRN ("Rank of matrix \"c\" = %d, No. of Iterations "
 "= %d\n", irank, iter);
 }

 LA_check_rank_def (n, irank);
 prn_la_rc (rc);
 }

 free_Matrix_R (c, Ne_ROWS);
 free_Vector_R (f);
 free_Vector_R (a);
 free_Matrix_R (fay, N7e);
 free_Vector_R (fy);

 uninit_Matrix_R (b1);
 uninit_Matrix_R (b2);
 uninit_Matrix_R (b3);
 uninit_Matrix_R (b4);
}

© 2008 by Taylor & Francis Group, LLC

Chapter 20: LA_Fuel 755

20.6 LA_Fuel

/*---
LA_Fuel

This program solves an underdetermined system of consistent linear
equations whose solution vector has a minimum L1 norm.
The underdetermined system is of the form

 c*a = f

"c" is a given real n by m matrix of rank k, k <= n <= m.
"f" is a given real n vector.

It is required to calculate the m vector "a" for this system such
that the L-One norm "z" of vector "a"

 z = |a[1]| + |a[2]| + ... + |a[m]|

is as small as possible.

In control theory, this problem is known as the "Minimum Fuel"
problem for linear discrete control systems.

Inputs
m Number of columns of matrix "c" in the system c*a = f.
n Number of rows of matrix "c" in the system c*a = f.
c A real n by m matrix containing matrix "c" of system c*a = f.
f A real n vector containing the r.h.s. of the system c*a = f.

Outputs
irank The calculated rank of matrix "c".
iter The number of iterations or the number of times the simplex
 tableau is changed by a Gauss-Jordan step.
a A real m vector whose elements are the solution of system
 c*a = f.
z The minimum L-One norm of the solution vector "a".

Local Data
icbas An m vector containing the indices of the columns of matrix
 "c" that form the basis matrix.

Returns one of
 LaRcSolutionUnique

© 2008 by Taylor & Francis Group, LLC

756 Numerical Linear Approximation in C

 LaRcSolutionProbNotUnique
 LaRcNoFeasibleSolution
 LaRcInconsistentSystem
 LaRcErrBounds
 LaRcErrNullPtr
 LaRcErrAlloc
---*/

#include "LA_Prototypes.h"

eLaRc LA_Fuel (int m, int n, tMatrix_R c, tVector_R f, int *pIrank,
 int *pIter, tVector_R a, tNumber_R *pZ)
{
 tVector_I icbas = alloc_Vector_I (n);
 tVector_I irbas = alloc_Vector_I (n);
 tVector_I ibound = alloc_Vector_I (m);
 tVector_R zc = alloc_Vector_R (m);

 int itest = 0, i = 0, ij = 0, iout = 0, ivo = 0, j = 0,
 jin = 0, kl = 0;
 tNumber_R d = 0.0;
 eLaRc tempRc;

 /* Validation of data data before executing the algorithm */
 eLaRc rc = LaRcSolutionUnique;
 VALIDATE_BOUNDS ((0 < n) && (n <= m) && !((n == 1) && (m == 1)));
 VALIDATE_PTRS (c && f && pIrank && pIter && a && pZ);
 VALIDATE_ALLOC (icbas && irbas && ibound && zc);

 /* Initialization */
 kl = 1;
 *pZ = 0.0;
 *pIter = 0;
 *pIrank = n;

 LA_fuel_init (m, n, icbas, irbas, ibound, a);

 iout= 0;

 /* Part 1 of the algorithm */
 for (ij = 1; ij <= n; ij++)
 {
 iout = iout + 1;
 tempRc = LA_fuel_part_1 (iout, &jin, &kl, m, n, c, f, icbas,
 irbas, pIrank, pIter);

© 2008 by Taylor & Francis Group, LLC

Chapter 20: LA_Fuel 757

 if (tempRc < LaRcOk)
 {
 GOTO_CLEANUP_RC (tempRc);
 }
 }

 for (i = kl; i <= n; i++)
 {
 if (f[i] <= -EPS)
 {
 jin = icbas[i];
 ibound[jin] = -ibound[jin];
 f[i] = -f[i];
 for (j = 1; j <= m; j++)
 {
 c[i][j] = -c[i][j];
 }
 c[i][jin] = 1.0;
 }
 }

 /* Part 2 of the algorithm.
 Calculating the marginal costs */
 LA_fuel_part_2 (kl, m, n, c, icbas, zc);

 /* Part 3 of the algorithm, */
 for (ij = 1; ij <= m*m; ij++)
 {
 ivo = 0;
 jin = 0;
 /* Determine the vector that enters the basis */
 LA_fuel_vent (&ivo, &jin, kl, m, n, icbas, zc);

 /* Calculate the results */
 if (ivo == 0)
 {
 rc = LA_fuel_res (kl, n, f, icbas, ibound, a, pZ);
 GOTO_CLEANUP_RC (rc);
 }

 if (ivo != 1)
 {
 for (i = kl; i <= n; i++)
 {
 c[i][jin] = -c[i][jin];

© 2008 by Taylor & Francis Group, LLC

758 Numerical Linear Approximation in C

 }
 zc[jin] = -2.0 - zc[jin];
 ibound[jin] = -ibound[jin];
 }
 itest= 0;

 /* Determine the vector that leaves the basis */
 LA_fuel_leav (&itest, jin, &iout, kl, n, c, f);

 /* No feasible solution is possible */
 if (itest != 1)
 {
 GOTO_CLEANUP_RC (LaRcNoFeasibleSolution);
 }

 LA_fuel_gauss_jordn (iout, jin, kl, m, n, c, f, icbas);
 *pIter = *pIter + 1;

 d = zc[jin];
 for (j = 1; j <= m; j++)
 {
 zc[j] = zc[j] - d*c[iout][j];
 }
 }

CLEANUP:

 free_Vector_I (icbas);
 free_Vector_I (irbas);
 free_Vector_I (ibound);
 free_Vector_R (zc);

 return rc;
}

/*---
Initialization of LA_fuel()
---*/
void LA_fuel_init (int m, int n, tVector_I icbas, tVector_I irbas,
 tVector_I ibound, tVector_R a)
{
 int i, j;

 for (j = 1; j <= m; j++)
 {

© 2008 by Taylor & Francis Group, LLC

Chapter 20: LA_Fuel 759

 a[j] = 0.0;
 ibound[j] = 1;
 }
 for (i = 1; i <= n; i++)
 {
 icbas[i] = 0;
 irbas[i] = i;
 }
}

/*---
Part 1 of LA_Fuel()
---*/
eLaRc LA_fuel_part_1 (int iout, int *pJin, int *pKl, int m, int n,
 tMatrix_R c, tVector_R f, tVector_I icbas, tVector_I irbas,
 int *pIrank, int *pIter)
{
 int j;
 tNumber_R d, piv;

 piv = 0.0;
 for (j = 1; j <= m; j++)
 {
 d = fabs (c[iout][j]);
 if (d > piv)
 {
 *pJin = j;
 piv = d;
 }
 }

 /* Detection of rank deficiency of matrix "c" */
 if (piv < EPS)
 {
 /* Inconsistent system */
 if (fabs (f[iout]) > EPS)
 return LaRcInconsistentSystem;

 /* Swap two rows of matrix "c" */
 swap_rows_Matrix_R (c, *pKl, iout);

 /* Swap two elements of vector "f" */
 swap_elems_Vector_R (f, *pKl, iout);
 irbas[iout] = irbas[*pKl];
 irbas[*pKl] = 0;

© 2008 by Taylor & Francis Group, LLC

760 Numerical Linear Approximation in C

 icbas[iout] = icbas[*pKl];
 icbas[*pKl] = 0;

 *pIrank = *pIrank - 1;
 *pKl = *pKl + 1;
 }
 else
 {
 icbas[iout] = *pJin;
 /* A Gauss-Jordon elimination step */
 LA_fuel_gauss_jordn (iout, *pJin, *pKl, m, n, c, f, icbas);
 *pIter = *pIter + 1;
 }

 return LaRcOk;
}

/*---
A Gauss-Jordan elimination step in LA_Fuel()
---*/
void LA_fuel_gauss_jordn (int iout, int jin, int kl, int m, int n,
 tMatrix_R c, tVector_R f, tVector_I icbas)
{
 tNumber_R pivot, d;
 int i, j;

 pivot = c[iout][jin];
 for (j = 1; j <= m; j++)
 c[iout][j] = c[iout][j]/pivot;

 f[iout] = f[iout]/pivot;
 for (i = kl; i <= n; i++)
 {
 if (i != iout)
 {
 d = c[i][jin];
 for (j = 1; j <= m; j++)
 {
 c[i][j] = c[i][j] - d * (c[iout][j]);
 }
 f[i] = f[i] - d * (f[iout]);
 }
 }
 icbas [iout] = jin;

© 2008 by Taylor & Francis Group, LLC

Chapter 20: LA_Fuel 761

}

/*---
Part 2 of LA_Fuel()
---*/
void LA_fuel_part_2 (int kl, int m, int n, tMatrix_R c, tVector_I
 icbas, tVector_R zc)
{
 int i, j, icb;
 tNumber_R s;

 for (j = 1; j <= m; j++)
 {
 zc[j] = 0.0;
 icb = 0;
 for (i = kl; i <= n; i++) if (j == icbas[i]) icb = 1;
 if (icb == 0)
 {
 s = -1.0;
 for (i = kl; i <= n; i++)
 {
 s = s + c[i][j];
 }
 zc[j] = s;
 }
 }
}

/*---
Determine the vector that enters the basis in LA_Fuel()
---*/
void LA_fuel_vent (int *pIvo, int *pJin, int kl, int m, int n,
 tVector_I icbas, tVector_R zc)
{
 int i, j, icb;
 tNumber_R d, e, g;

 g = - 1.0/ (EPS*EPS);
 for (j = 1; j <= m; j++)
 {
 icb = 0;
 for (i = kl; i <= n; i++)
 {
 if (j == icbas[i]) icb = 1;
 }

© 2008 by Taylor & Francis Group, LLC

762 Numerical Linear Approximation in C

 if (icb == 0)
 {
 d = zc[j];
 if (d > EPS)
 {
 e = d;
 if (e > g)
 {
 *pIvo = 1;
 g = e;
 *pJin = j;
 }
 }
 else
 {
 e = -2.0 - d;
 if (e > EPS && e > g)
 {
 *pIvo = -1;
 g = e;
 *pJin = j;
 }
 }
 }
 }
}

/*---
Determine the vector that leaves the basis in LA_Fuel()
---*/
void LA_fuel_leav (int *pItest, int jin, int *pIout, int kl, int n,
 tMatrix_R c, tVector_R f)
{
 int i;
 tNumber_R d, g, thmax;

 thmax = 1.0/ (EPS*EPS);
 for (i = kl; i <= n; i++)
 {
 d = c[i][jin];
 if (d > EPS)
 {
 g = f[i]/d;
 if (g <= thmax)
 {

© 2008 by Taylor & Francis Group, LLC

Chapter 20: LA_Fuel 763

 thmax = g;
 *pIout = i;
 *pItest = 1;
 }
 }
 }
}

/*---
Calculate the results of LA_fuel()
---*/
eLaRc LA_fuel_res (int kl, int n, tVector_R f, tVector_I icbas,
 tVector_I ibound, tVector_R a, tNumber_R *pZ)
{
 int i, k;
 tNumber_R e;

 *pZ = 0.0;
 for (i = kl; i <= n; i++)
 {
 k = icbas[i];
 e = f[i];
 *pZ = *pZ + e;

 if (ibound[k] == -1) e = -e;
 a[k] = e;
 if (fabs (a[k]) < EPS)
 return LaRcSolutionProbNotUnique;
 }

 return LaRcSolutionUnique;
}

© 2008 by Taylor & Francis Group, LLC

765

Chapter 21

Bounded and L1 Bounded Solutions
of Underdetermined Linear Equations

21.1 Introduction

In the previous chapter, the L1 solution of an underdetermined
system of consistent linear equations was obtained. The
underdetermined system was solved subject to the constraint that the
L1 norm of the solution vector be as small as possible.

In this chapter, the constraints are (a) each element of the solution
vector would be bounded between �1 and +1 or (b) each element of
the solution vector would be bounded between �1 and +1 and that the
L1 norm of the solution vector be as small as possible.

Consider the underdetermined consistent system

Ca = f

C = (cij) is a given real n by m matrix of rank k, k ≤ n < m, f = (fi) is a
given real n-vector and a = (ai) is the required m-solution vector.

The first problem may be formulated as follows. Among the
infinite number of solutions that the underdetermined system Ca = f
has, a solution satisfying the conditions

(21.1.1) �1 ≤ ai ≤ 1, i = 1, 2, �, m

may or may not exist. We call this problem (A).
The second problem may be formulated as follows. Given the

system Ca = f, find vector a that satisfies (21.1.1) and such that the L1
norm of the solution vector a

z a 1 ai
i 1=

m

∑= =

© 2008 by Taylor & Francis Group, LLC

766 Numerical Linear Approximation in C

be as small as possible. We call this problem (B).
If instead of the constraints (21.1.1), we require the elements of

vector a to satisfy the constraints

bi ≤ ai ≤ ci, i = 1, 2, �, m

where vectors b = (bi) and c = (ci) are given m-vectors, by substituting
variables, the above constraints reduce to the constraints (21.1.1) in
the new variables. See Section 7.1.

Lin [8] attempted to construct boundary hyper-planes of a
reachable set for problem (A). Outrata [9] stated necessary conditions
for the solution of problem (A) and developed a simple algorithm to
get an approximate solution to it. Weischedel [11] used the minimum
energy problem (Chapter 23), as a subsidiary problem, with an
iterative technique to solve problem (A). Torng [10] used the simplex
method of linear programming and solved both problems (A) and (B).
Bashein [5] also used an efficient simplex method to solve problem
(A). We shall comment on both Torng�s and Bashein�s methods in
Section 21.4.

Here, we formulate both problems (A) and (B) as one linear
programming problem but with two different objective functions [1].
This linear programming problem is very similar to the dual form of
the linear programming problem for the discrete linear L1
approximation problem [1] given in Chapter 5. The algorithm for
solving the L1 approximation problem is modified and used here to
obtain the solution of either problem (A) or problem (B).

Unlike the problem of the previous chapter, problems (A) and (B)
may have no solution. If problem (A) has no solution, then problem
(B) also has no solution. Condition (21.1.1), which requires the
elements of the solution vector to be bounded, may not be achieved
for some given problems.

If problem (A) and problem (B) have no solution, this is
determined by the algorithm. In this case, the corresponding linear
programming problem has an unbounded solution.

In Section 21.2, the linear programming formulation of the
problem is presented. In Section 21.3, the algorithm is described and
the problem of degeneracy in this algorithm is discussed in detail.
Also, the uniqueness of the solution for problems (A) and (B) is
outlined. In Section 21.4, numerical results and comments are given.

© 2008 by Taylor & Francis Group, LLC

Chapter 21: Bounded and L1 Bounded Solutions 767

21.1.1 Applications of the algorithms

Our algorithm for problem (B) has been applied to problems of
restoration of images with missing high frequency components [3, 4].

However, the two algorithms have applications in control theory,
where problems (A) and (B) are known respectively as the minimum
time problem and the minimum fuel problem for discrete linear
admissible control systems [6].

21.2 Linear programming formulation of the two problems

Problem (A) is formulated as follows. Obtain a basic feasible
solution to system Ca = f subject to the conditions |aj| ≤ 1,
j = 1, 2, �, m. By introducing n artificial variables aSi ≥ 0,
i = 1, 2, �, n, problem (A) is stated as

subject to the conditions Ca = f and |aj| ≤ 1, j = 1, �, m.

Problem (B) is stated as

(21.2.1a)

subject to Ca = f and |aj| ≤ 1, j = 1, �, m.
The elements of vector a in Ca = f are unrestricted in sign. We

may write

(21.2.1b) ai = vi � wi

Hence

(21.2.1c) |ai| = vi + wi

and

(21.2.1d) 0 ≤ vi ≤ 1 and 0 ≤ wi ≤ 1, i = 1, 2, �, m

We shall now reformulate problem (B) first. Using (21.2.1),
problem (B) may be reformulated as

minimize Z aSi
i 1=

n

∑=

minimize z a 1 aj
j 1=

m

∑= =

© 2008 by Taylor & Francis Group, LLC

768 Numerical Linear Approximation in C

subject to

0 ≤ vi ≤ 1 and 0 ≤ wi ≤ 1, i = 1, 2, �, m

Let us rewrite this problem as

(21.2.2a)

subject to

(21.2.2b) Db = f

(21.2.2c) 0 ≤ bi ≤ 1, i = 1, 2, �, 2m

where D = [C �C] and the 2m augmented vector b = [vT wT]T.
A negative sign is introduced in (21.2.2a) so that the problem is

posed as a maximization problem. Reformulation of problem (A) is

(21.2.2a')

subject to

Db = f

and

0 ≤ bi ≤ 1, i = 1, 2, �, 2m

Problem (21.2.2) is very similar to the problem described by
equations (5.2.3). Both problems are linear programming problems
with bounded variables. The following theorem states the necessary
and sufficient conditions for the existence of a solution to problem
(21.2.2).

minimize z vj
j 1=

m

∑ wj
j 1=

m

∑+=

C C�
v
w

f=

maximize z bi
i 1=

2m

∑�=

maximize Z aSi
i 1=

n

∑�=

© 2008 by Taylor & Francis Group, LLC

Chapter 21: Bounded and L1 Bounded Solutions 769

Theorem 21.1

A necessary and sufficient condition for a nonzero program for
problem (A) or for problem (B) to be optimal, is that m elements of
the 2m-vector b each has the value 0 (lower bound), (m � n) elements
of b, each has the value 0 (lower bound) or 1 (upper bound) and the
other n elements of b are basic variables ([7], pp. 387-394). See also
Lemma 21.3 below.

Without loss of generality, assume that matrix C is of rank n.
Hence, matrix D of (21.2.2b) is also of rank n. A simplex tableau of n
constraints in 2m variables for problem (A) or problem (B) is
constructed as if the elements of b were not bounded from above. Let
B denote a basis matrix. Then vectors (yj) in the simplex tableau are
given by

(21.2.3) yj = B�1Dj, j = 1, 2, �, 2m

where Dj is the jth column of matrix D.
Denote the marginal costs in this problem by (zcj), j = 1, 2, �,

2m. When the artificial variables aSi of (21.2.2a') are driven out, for
problem (A), the marginal costs zcj = 0, for all j. For problem (B), in
part 2 of the algorithm, since from (21.2.2a) the prices are all 1�s

(21.2.4) , j = 1, 2, �, 2m

where yij is the ith element of yj.

21.2.1 Properties of the matrix of constraints

Again, as in the previous chapter, the analysis for this problem is
initiated by the asymmetry matrix D has. From (21.2.2b) we have

Dj = Cj and Dj+m = �Cj, j = 1, 2, �, m

That is

(21.2.5) Dj + Dj+m = 0, j = 1, 2, �, m

where again Dj and Cj are the jth columns of D and C respectively.
This asymmetry enables us to use a condensed simplex tableau of n
constraints in only m variables.

zcj yij
i 1=

n

∑� 1+=

© 2008 by Taylor & Francis Group, LLC

770 Numerical Linear Approximation in C

Definition

Let us define any column j, 1 ≤ j ≤ m, and the column (j + m) of
matrix D as two corresponding columns.

Lemma 21.1

Any two corresponding columns could not appear together in any
basis.

The proof is obvious. If two corresponding columns appear
together in the basis matrix B, the basis matrix would be singular,
since one column is the negative of the other.

Lemma 21.2

yj + yj+m = 0, j = 1, 2, �, m

and for their marginal costs we have the following.
For problem (A), as indicated earlier, in part 2 of the algorithm

zcj = zcj+m = 0, j = 1, 2, �, m

and for problem (B), in part 2 of the algorithm, we have

zcj + zcj+m = 2, j = 1, 2, �, m

The lemma is proved from (21.2.3-5).

Lemma 21.3

Let i and j be two corresponding columns, meaning |i � j| = m,
1 ≤ i, j ≤ 2m. Then if Di is in the basis, Dj is at zero level, i.e., bj = 0.

Lemma 21.4

The elements of the solution vector a of the system Ca = f are
obtained as follows. As in Lemma 20.4, for any element bBs,
s = 1, 2, �, n, of the optimal basic solution, let j be the column in the
simplex tableau associated with bBs. Then

aj = bBs, if 1 ≤ j ≤ m

aj � m = �bBs, if instead m < j ≤ 2m

However, the remaining (m � n) elements of a are either at their
lower bound (zero) or at their upper bound (one). The upper bound
means aj = 1 for 1 ≤ j ≤ m and aj � m = �1 for m < j ≤ 2m. The L1 norm
z is the sum of the absolute values of all of these elements.

© 2008 by Taylor & Francis Group, LLC

Chapter 21: Bounded and L1 Bounded Solutions 771

21.3 Description of the algorithms

Since from Lemma 21.2, if any vector yj, j = 1, 2, �, m, and its
marginal cost in the simplex tableau are known, the corresponding
vector yj+m and its marginal cost are easily derived. Accordingly, we
shall use a simplex tableau in n constraints in only m variables. We
call this the condensed tableau. We start this tableau with columns
1, 2, �, m, of matrix D.

The computation for either problem (A) or (B) is divided into two
parts. In part 1, a numerically stable initial basic solution, feasible or
not, is obtained. This is done simply by performing to the initial data a
finite number of Gauss-Jordan elimination steps with partial pivoting.

As in the previous chapter, the program will detect the cases when
rank(C|f) = rank(C) = k < n, i.e., the consistent rank deficient case. It
will also detect an inconsistent system, i.e., when rank(C|f) > rank(C).

For problem (A), part 1 is equivalent to driving the artificial
variables aSi of (21.2.2a') out, but having an initial basic solution that
might not be feasible. At the end of part 1 for problem (A), zcj = 0, for
all j, and the objective function Z = 0. The (zcj) and Z remain 0�s in
part 2. For problem (B), the marginal costs (zcj), j = 1, 2, �, m, are
calculated from (21.2.4).

Part 2 of the algorithm is almost identical to the algorithm for the
discrete linear L1 approximation problem of Chapter 5 [1]. In this
algorithm certain intermediate iterations are skipped. Since in our
algorithm, only one half of the simplex tableau is stored, we account
for the second un-stored half from Lemma 21.2.

21.3.1 Occurrence of degeneracy

In part 2, for problem (A), the marginal costs are all 0�s. Also, for
problem (B), some non-basic marginal costs may acquire zero values.
As in Chapter 5, the degeneracy is resolved as follows. Every zero
non-basic marginal cost zcj is replaced by either δ or �δ according to
whether bj is 0 or 1 respectively. The parameter δ is the round-off
error of the computer; δ is set to 10�6 and 10�16 for single- and
double-precision computation respectively.

However, for problem (A), another difficulty exists. This is when
two non-basic corresponding columns, one at its zero level and the

© 2008 by Taylor & Francis Group, LLC

772 Numerical Linear Approximation in C

other at its upper level (= 1), are both eligible to replace a column in
the basis. It should be decided which one enters the basis so that
Lemma 21.3 is not violated. Let us consider Di and Dj as two
non-basic corresponding columns, |i � j| = m such that bi = 0 and
bj = 1.

According to the previous paragraph we replace respectively zci
by δ and replace zcj by �δ. Yet, from Lemma 21.2, yi = �yj and
according to the selection rules for the column to enter the basis, we
find that either Di or Dj may enter the basis. However, if Di (with
bi = 0) enters the basis, Lemma 21.3 would be violated and the
algorithm breaks down since its corresponding column Dj (with
bj = 1) is at its upper bound. This lemma states that if a column is in
(or enters) the basis, its corresponding column is (should be) at zero
level, i.e., bj = 0. Hence, we always chose the column which is at its
upper bound to enter the basis.

21.3.2 Uniqueness of the solution

For problem (A), since in the final condensed tableau, the
non-basic marginal costs are all 0�s, it is almost certain that the
solution vector a is not unique.

Problem (B) has a unique solution a if in the final condensed
tableau none of the elements of the basic solution bB is 0 (lower
bound) or 1 (upper bound) and none of the non-basic marginal costs is
0 or 1. Otherwise the solution a might not be unique.

21.4 Numerical results and comments

LA_Tmfuel() implements the Minimum Time Minimum Fuel
algorithm. DR_Tmfuel() demonstrates 7 test cases. These are the
same test cases shown in Table 20.4.1, for the L1 solution of
underdetermined linear systems. For each of the test cases,
DR_Tmfuel() solves the Minimum Time case, problem (A), then the
Minimum Fuel case, problem (B).

Table 21.4.1 shows the results of the 7 test examples calculated in
single-precision.

© 2008 by Taylor & Francis Group, LLC

Chapter 21: Bounded and L1 Bounded Solutions 773

Table 21.4.1

Minimum Time Minimum Fuel

��
Example C(n×m) Iterations z Iterations z

��
1 4×5 3 2.750 4 2.667
2 4×8 6 2.851 7 2.055
3 2×3 no solution no solution
4 4×6 4 1.546 5 1.359
5 4×100 9 14.492 14 11.094
6 5×100 9 18.864 17 15.286
7 7×100 22 27.647 23 23.130

For each example, the size of matrix C, the number of iterations
and the L1 norm z are given. Also, �no solution� refers to the case
when the given problem has no feasible solution.

Again, the obtained optimum z and the number of iterations for
each example are comparable to the results of Table 20.4.1.

The results of the first example in Table 21.4.1 are given here in
more detail in Example 21.1.

Example 21.1

Find the bounded and L1 bounded solutions of the system

2a1 + a2 � 3a3 + 5a4 + 3a5 = 10
2a1 + a2 � 3a3 + 5a4 + 3a5 = 10
2a1 + a2 � 3a3 + 5a4 + 3a5 = 10

�8a1 � 4a2 + 2a3 + 5a4 + 6a5 = 8

This system of 4 equations is consistent but of rank 2. Each of the
second and third equations is the same as the first one.

The solution for problem (A) is

a = (0.25, 0, �0.5, 1, 1)T and z = 2.75

The solution for problem (B) is

a = (0, 0, �0.875, 1, 0.7917)T and z = 2.6667

We observe that the L1 norm z for problem (B) is smaller than that
of problem (A). This is besides the fact that each element of a is
bounded between �1 and +1.

© 2008 by Taylor & Francis Group, LLC

774 Numerical Linear Approximation in C

Finally, we note that the nearest method to our algorithm is that of
Torng [10] and of Bashein [5]. Torng's method uses m slack variables
and no intermediate simplex iterations are skipped. Bashein�s method,
which applies to a problem similar to problem (A), preserves the
minimum computer storage, but no intermediate iterations could be
skipped.

References

1. Abdelmalek, N.N., Efficient solution for the discrete linear L1
approximation problem, Mathematics of Computation,
29(1975)844-850.

2. Abdelmalek, N.N., Solutions of minimum time problem
and minimum fuel problem for discrete linear admissible
control systems, International Journal of Systems Science,
9(1978)849-855.

3. Abdelmalek, N.N. and Otsu, N., Restoration of Images with
missing high-frequency components by minimizing the L1
norm of the solution vector, Applied Optics, 24(1985)1415-
1420.

4. Abdelmalek, N.N. and Otsu, N., Speed comparison among
methods for restoring signals with missing high-frequency
components using two different low-pass-filter matrix
dimensions, Optics Letters, 10(1985)372-374.

5. Bashein, G., A simplex algorithm for on-line computation of
time optimal controls, IEEE Transactions on Automatic
Control, 16(1971)479-482.

6. Canon, M.D., Cullum Jr., C.D. and Polak, E., Theory of
Optimal Control and Mathematical Programming, McGraw-
Hill, New York, 1970.

7. Hadley, G., Linear Programming, Addison-Wesley, Reading,
MA, 1962.

8. Lin, J.N., Determination of reachable set for a linear dis-
crete system, IEEE Transactions on Automatic Control,
15(1970)339-342.

© 2008 by Taylor & Francis Group, LLC

Chapter 21: Bounded and L1 Bounded Solutions 775

9. Outrata, J.V., On the minimum time problem in linear discrete
systems with the discrete set of admissible controls,
Kybernetika, 11(1975)368-374.

10. Torng, H.C., Optimization of discrete control systems through
linear programming, Journal of Franklin Institute,
278(1964)28-44.

11. Weischedel, H.R., A solution of the discrete minimum-time
control problem, Journal of Optimization Theory and
Applications, 5(1970)81-96.

© 2008 by Taylor & Francis Group, LLC

776 Numerical Linear Approximation in C

21.5 DR_Tmfuel

/*---
DR_Tmfuel

This program is a driver for the function LA_Tmfuel(), which
calculates the "bounded" or the "L-One" bounded solutions of an
underdetermined consistent system of linear equations.

Given is the underdetermined consistent system

 c*a = f

"c" is a given real n by m matrix of rank k, k <=n <= m.
"f" is a given real n vector.

It is required to calculate the m vector "a" for either of the
following two problems:

Problem (a):
 The m elements a[i] of "a" satisfy the conditions
 |a[i]| < 1, i = 1, 2, ..., m

or

Problem (b):
 The m elements of "a" satisfy (1) and the L1 norm z of vector "a"
 z = |a[1]| + |a[2]| + ... + |a[m]|
 is as small as possible.

In control theory, problem (a) is known as the "minimum time" problem
and problem (b) is known as the "minimum fuel problem" for linear
discrete admissible control systems.

This program has 7 examples whose results are given in the text.
The program solves the 7 examples twice, once for the minimum time
case and once for the minimum fuel case.
---*/

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define N1e 4
#define M1e 5

© 2008 by Taylor & Francis Group, LLC

Chapter 21: DR_Tmfuel 777

#define N2e 4
#define M2e 8
#define N3e 2
#define M3e 3
#define N4e 4
#define M4e 6
#define N5e 4
#define M5e 100
#define N6e 5
#define M6e 100
#define N7e 7
#define M7e 100

void DR_Tmfuel (void)
{
 /*--
 Constant matrices/vectors
 --*/
 static tNumber_R b1init[N1e][M1e] =
 {
 { 2.0, 1.0, -3.0, 5.0, 3.0 },
 { 2.0, 1.0, -3.0, 5.0, 3.0 },
 { 2.0, 1.0, -3.0, 5.0, 3.0 },
 {-8.0, -4.0, 2.0, 5.0, 6.0 }
 };

 static tNumber_R f1[N1e+1] =
 { NIL,
 10.0, 10.0, 10.0, 8.0
 };

 static tNumber_R b2init[N2e][M2e] =
 {
 {-6.0, 4.0, 2.0, -8.0, 5.0, -1.0, 6.0, 3.0 },
 { 7.0, -3.0, 9.0, 5.0, -9.0, 8.0, 7.0, -4.0 },
 { 9.0, 7.0, -5.0, 2.0, 7.0, 0.0, 1.0, 8.0 },
 { 9.0, -3.0, 2.0, 4.0, 0.0, 3.0, 0.0, 1.0 }
 };

 static tNumber_R f2[N2e+1] =
 { NIL,
 5.0, 7.0, -9.0, 1.0
 };

 static tNumber_R b3init[N3e][M3e] =

© 2008 by Taylor & Francis Group, LLC

778 Numerical Linear Approximation in C

 {
 {-0.7182, -3.6706, -11.6961 },
 {-1.7182, -4.6706, -12.6961 }
 };

 static tNumber_R f3[N3e+1] =
 {NIL,
 24.8218, 24.4218
 };

 static tNumber_R b4init[N4e][M4e] =
 {
 {2.0, -1.0, -4.0, 0.0, -3.0, 1.0 },
 {2.0, -1.0, -4.0, 0.0, -3.0, 1.0 },
 {5.0, 1.0, 3.0, 1.0, -2.0, 0.0 },
 {1.0, -2.0, -1.0, -5.0, 1.0, 4.0 }
 };

 static tNumber_R f4[N4e+1] =
 { NIL,
 2.0, 2.0, 1.0, -4.0
 };

 /*--
 Variable matrices/vectors
 --*/
 tMatrix_R c = alloc_Matrix_R (N_ROWS, M_COLS);
 tVector_R f = alloc_Vector_R (N_ROWS);
 tVector_R a = alloc_Vector_R (M_COLS);
 tMatrix_R fay = alloc_Matrix_R (N7e, M7e);
 tVector_R fy = alloc_Vector_R (N7e + 1);

 tMatrix_R b1 = init_Matrix_R (&(b1init[0][0]), N1e, M1e);
 tMatrix_R b2 = init_Matrix_R (&(b2init[0][0]), N2e, M2e);
 tMatrix_R b3 = init_Matrix_R (&(b3init[0][0]), N3e, M3e);
 tMatrix_R b4 = init_Matrix_R (&(b4init[0][0]), N4e, M4e);

 int irank, iter, itf;
 int i, j, kase, m, n, Iexmpl;
 tNumber_R pi, dx, x1, x2, x3, znorm;

 eLaRc rc = LaRcOk;

 pi = 4.0*atan (1.0);
 dx = 2.*pi/99;

© 2008 by Taylor & Francis Group, LLC

Chapter 21: DR_Tmfuel 779

 for (j = 1; j <= 100; j++)
 {
 x1 = (j - 1)* dx;
 x2 = x1 + x1;
 x3 = x2 + x1;
 fay[1][j] = 1.0;
 fay[2][j] = sin (x1);
 fay[3][j] = cos (x1);
 fay[4][j] = sin (x2);
 fay[5][j] = cos (x2);
 fay[6][j] = sin (x3);
 fay[7][j] = cos (x3);
 }
 for (i = 1; i <= 7; i++)
 {
 fy[i] = (10.0+15.0*fay[2][i]-7.0*fay[3][i]+9.0*fay[4][i])
 * (1.0+0.01*fay[4][i]);
 }

 prn_dr_bnr ("DR_Tmfuel, Bounded & L1 Bounded Solutions of "
 "an Underdetermined System of Linear Equations");

 for (kase = 1; kase <= 2; kase++)
 {
 if (kase == 1) itf = 0;
 if (kase == 2) itf = 1;
 for (Iexmpl = 1; Iexmpl <= 7; Iexmpl++)
 {
 switch (Iexmpl)
 {
 case 1:
 n = N1e;
 m = M1e;
 for (i = 1; i <= n; i++)
 {
 f[i] = f1[i];
 for (j = 1; j <= m; j++) c[i][j] = b1[i][j];
 }
 break;
 case 2:
 n = N2e;
 m = M2e;
 for (i = 1; i <= n; i++)
 {
 f[i] = f2[i];

© 2008 by Taylor & Francis Group, LLC

780 Numerical Linear Approximation in C

 for (j = 1; j <= m; j++) c[i][j] = b2[i][j];
 }
 break;
 case 3:
 n = N3e;
 m = M3e;
 for (i = 1; i <= n; i++)
 {
 f[i] = f3[i];
 for (j = 1; j <= m; j++) c[i][j] = b3[i][j];
 }
 break;
 case 4:
 n = N4e;
 m = M4e;
 for (i = 1; i <= n; i++)
 {
 f[i] = f4[i];
 for (j = 1; j <= m; j++) c[i][j] = b4[i][j];
 }
 break;
 case 5:
 n = N5e;
 m = M5e;
 for (i = 1; i <= n; i++)
 {
 f[i] = fy[i];
 for (j = 1; j <= m; j++)
 c[i][j] = fay[i][j];
 }
 break;
 case 6:
 n = N6e;
 m = M6e;
 for (i = 1; i <= n; i++)
 {
 f[i] = fy[i];
 for (j = 1; j <= m; j++)
 c[i][j] = fay[i][j];
 }
 break;
 case 7:
 n = N7e;
 m = M7e;
 for (i = 1; i <= n; i++)

© 2008 by Taylor & Francis Group, LLC

Chapter 21: DR_Tmfuel 781

 {
 f[i] = fy[i];
 for (j = 1; j <= m; j++)
 c[i][j] = fay[i][j];
 }
 break;
 default:
 break;
 }
 prn_algo_bnr ("Tmfuel");
 prn_example_delim();
 PRN ("Example #%d: Size of matrix \"c\" %d by %d\n",
 Iexmpl, n, m);
 prn_example_delim();
 if (itf != 1)
 PRN ("Minimum Time Problem (Bounded Solution) "
 " for an Underdetermined System\n");
 else
 PRN ("Minimum Fuel Problem (L1 Bounded Solution) "
 " for an Underdetermined System\n");
 prn_example_delim();
 PRN ("r.h.s. Vector \"f\"\n");
 prn_Vector_R (f, n);
 PRN ("Coefficient Matrix, \"c\"\n");
 prn_Matrix_R (c, n, m);

 rc = LA_Tmfuel (itf, m, n, c, f, &irank, &iter, a,
 &znorm);

 if (rc >= LaRcOk)
 {
 PRN ("\n");
 PRN ("Results of the Problem\n");
 PRN ("L1 Solution vector, \"a\"\n");
 prn_Vector_R (a, m);
 PRN ("L1 Norm of vector \"a\", ||a|| = %8.4f\n",
 znorm);
 PRN ("Rank of matrix \"c\" = %d, No. of"
 "iterations = %d\n", irank, iter);
 }

 LA_check_rank_def (n, irank);
 prn_la_rc (rc);
 }
 }

© 2008 by Taylor & Francis Group, LLC

782 Numerical Linear Approximation in C

 free_Matrix_R (c, N_ROWS);
 free_Vector_R (f);
 free_Vector_R (a);
 free_Matrix_R (fay, N7e);
 free_Vector_R (fy);

 uninit_Matrix_R (b1);
 uninit_Matrix_R (b2);
 uninit_Matrix_R (b3);
 uninit_Matrix_R (b4);
}

© 2008 by Taylor & Francis Group, LLC

Chapter 21: LA_Tmfuel 783

21.6 LA_Tmfuel

/*---
LA_Tmfuel

Given is the underdetermined consistent system of linear equations

 c*a = f

"c" is a given real n by m matrix of rank k, k <= n <= m.
"f" is a given real n vector.

This program calculates the m vector "a" for either of the following
two problems:

Problem (a):
 The m elements a[i] of "a" satisfy the conditions
 |a[i]| < 1, i = 1, 2, ..., m

or

Problem (b):
 The m elements of "a" satisfy (1) and the L1 norm z of vector "a"
 z = |a[1]| + |a[2]| + ... + |a[m]|
 is as small as possible.

In control theory, problem (a) is known as the "minimum time" problem
and problem (b) is known as the "minimum fuel problem" for linear
discrete admissible control systems.

This program uses a dual simplex algorithm to the linear programming
formulation of the given problem. In this algorithm certain simplex
intermediate iterations are skipped.

Inputs
itf An integer set by the user.
 If itf = 1, the program calculates a solution to the minimum
 fuel problem; problem (b).
 If itf != 1, the program calculates a solution to the minimum
 time problem; problem (a).
m Number of columns of matrix "c" in the system c*a = f.
n Number of rows of matrix "c" in the system c*a = f.
c A real n by m matrix containing matrix "c" of system c*a = f.
f A real n vector containing the r.h.s. of the system c*a = f.

© 2008 by Taylor & Francis Group, LLC

784 Numerical Linear Approximation in C

Local Variables
icbs An integer n vector whose elements are the indices of the
 columns of matrix "c" that form the columns of the basis
 matrix.
irbs An integer n vector whose elements are the row indices of
 matrix "c".

Outputs
irank The calculated rank of matrix "c".
iter The number of iterations, or the number of times the simplex
 tableau is changed by a Gauss-Jordan step.
a A real m vector whose elements are the solution of c*a = f.
znorm The L1 norm of the solution vector "a".

Returns one of
 LaRcSolutionUnique
 LaRcSolutionProbNotUnique
 LaRcNoFeasibleSolution
 LaRcInconsistentSystem
 LaRcErrBounds
 LaRcErrNullPtr
 LaRcErrAlloc
---*/

#include "LA_Prototypes.h"

eLaRc LA_Tmfuel (int itf, int m, int n, tMatrix_R c, tVector_R f,
 int *pIrank, int *pIter, tVector_R a, tNumber_R *pZnorm)
{
 tVector_I icbs = alloc_Vector_I (n);
 tVector_I irbs = alloc_Vector_I (n);
 tVector_I ibnd = alloc_Vector_I (m + m);
 tVector_I kbnd = alloc_Vector_I (m + m);
 tVector_I ib = alloc_Vector_I (m);
 tVector_R th = alloc_Vector_R (m);
 tVector_R tu = alloc_Vector_R (m);
 tVector_R zc = alloc_Vector_R (m);

 int ii = 0, ij = 0, ijk = 0, iout = 0, itest = 0,
 ivo = 0;
 int j = 0, jin = 0, jout = 0, ktest = 0;
 tNumber_R d = 0, oneps = 0, pivot = 0, pivoto = 0, xb = 0;
 eLaRc tempRc;

© 2008 by Taylor & Francis Group, LLC

Chapter 21: LA_Tmfuel 785

 /* Validation of the data before executing the algorithm */
 eLaRc rc = LaRcSolutionUnique;
 VALIDATE_BOUNDS ((0 < n) && (n <= m) && !((n == 1) && (m == 1)));
 VALIDATE_PTRS (c && f && pIrank && pIter && a && pZnorm);
 VALIDATE_ALLOC (icbs && irbs && ibnd && kbnd && ib && th && tu
 && zc);

 *pIter = 0;
 *pIrank = n;
 oneps = 1.0 + EPS;
 *pZnorm = 0.0;
 iout = 0;

 LA_tmfuel_init (m, n, icbs, irbs, ibnd, kbnd, ib, zc, a);

 /* Part 1 of the algorithm */
 for (ij = 1; ij <= n; ij++)
 {
 iout = iout + 1;
 if (iout <= *pIrank)
 {
 jin = 0;
 tempRc = LA_tmfuel_part_1 (iout, &jin, m, c, f, icbs,
 irbs, pIrank, pIter);
 if (tempRc < LaRcOk)
 {
 GOTO_CLEANUP_RC (tempRc);
 }
 }
 }

 /* Obtain a basic feasible solution */
 if (itf == 1)
 {
 /* Calculating the marginal costs */
 LA_tmfuel_marg_costs (m, c, f, icbs, ibnd, kbnd, zc, pIrank);
 }

 /* Part 2 of the algorithm */
 for (ijk = 1; ijk <= m; ijk++)
 {
 /* Determine the vector that leaves the basis */
 ivo = 0;
 xb = 0.0;
 LA_tmfuel_vleav (pIrank, &iout, &ivo, f, &xb);

© 2008 by Taylor & Francis Group, LLC

786 Numerical Linear Approximation in C

 /* Calculate the results */
 if (ivo == 0)
 {
 rc = LA_tmfuel_res (itf, m, f, icbs, ibnd, kbnd, ib, zc,
 pIrank, a, pZnorm);
 GOTO_CLEANUP_RC (rc);
 }

 /* Calculating of the possible ratios th[j] and tu[j] */
 LA_tmfuel_th_tu (itf, m, ivo, iout, &jout, c, icbs, ibnd,
 kbnd, th, tu, zc);

 pivoto = 1.0;
 ktest = 1;
 for (ii = 1; ii <=m; ii++)
 {
 if (ktest == 0)
 {
 break;
 }

 itest = 0;
 /* Determine the vector that enters the basis */
 LA_tmfuel_vent (m, &jin, ivo, &itest, th, tu);

 /* No feasible solution has been found */
 if (itest == 0)
 {
 GOTO_CLEANUP_RC (LaRcNoFeasibleSolution);
 }

 if (kbnd[jin] != 1)
 {
 if (jin > m)
 {
 jin = jin - m;
 }

 if (ibnd[jin] == 1)
 {
 LA_tmfuel_swap (itf, pIrank, &jin, c, ibnd, kbnd,
 ib, th, tu, zc);
 }
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 21: LA_Tmfuel 787

 /* Cascading vectors, each enters then leaves the basis*/
 LA_tmfuel_cascade (iout, jin, &jout, xb, &pivot, pivoto,
 c, f, ibnd, pIrank);
 LA_tmfuel_test (iout, jin, &itest, &xb, pivot, f, icbs,
 th);

 if (itest == 0)
 {
 pivoto = pivot;
 jout = jin;
 ktest = 1;
 }

 if (itest == 1)
 {
 ktest = 0;
 /* A Gauss-Jordan elimination step */
 LA_tmfuel_gauss_jordn (iout, jin, pIrank, m, c, f);
 *pIter = *pIter + 1;

 if (itf == 1)
 {
 d = zc[jin];
 for (j = 1; j <= m; j++)
 {
 zc[j] = zc[j] - d * (c[iout][j]);
 }
 }
 }
 }
 }

CLEANUP:

 free_Vector_I (icbs);
 free_Vector_I (irbs);
 free_Vector_I (ibnd);
 free_Vector_I (kbnd);
 free_Vector_I (ib);
 free_Vector_R (th);
 free_Vector_R (tu);
 free_Vector_R (zc);

 return rc;

© 2008 by Taylor & Francis Group, LLC

788 Numerical Linear Approximation in C

}

/*---
LA_Tmfuel() initialization
---*/
void LA_tmfuel_init (int m, int n, tVector_I icbs, tVector_I irbs,
 tVector_I ibnd, tVector_I kbnd, tVector_I ib, tVector_R zc,
 tVector_R a)
{
 int i, j;

 for (j = 1; j <= m; j++)
 {
 ib[j] = 1;
 a[j] = 0.0;
 zc[j] = 0.0;
 ibnd[j] = 1;
 kbnd[j] = 1;
 }

 for (i = 1; i <= n; i++)
 {
 icbs[i] = 0;
 irbs[i] = i;
 }
}

/*---
Part 1 of LA_Tmfuel()
---*/
eLaRc LA_tmfuel_part_1 (int iout, int *pJin, int m, tMatrix_R c,
 tVector_R f, tVector_I icbs, tVector_I irbs, int *pIrank,
 int *pIter)
{
 int i, j, li = 0;
 tNumber_R e, d, piv, pivot;

 piv = 0.0;
 for (j = 1; j <= m; j++)
 {
 for (i = iout; i <= *pIrank; i++)
 {
 d = fabs (c[i][j]);
 if (d > piv)
 {

© 2008 by Taylor & Francis Group, LLC

Chapter 21: LA_Tmfuel 789

 li = i;
 *pJin = j;
 piv = d;
 }
 }
 }

 if (piv < EPS)
 {
 /* Detection of rank deficiency of matrix "c" */
 for (i = iout; i <= *pIrank; i++)
 {
 e = f[i];
 if (fabs (e) > EPS)
 return LaRcInconsistentSystem;
 }
 *pIrank = iout - 1;
 }
 else
 {
 pivot = c[li][*pJin];
 icbs[iout] = *pJin;

 if (li != iout)
 {
 /* Swap two rows of matrix "c" */
 swap_rows_Matrix_R (c, li, iout);
 /* Swap two elements of vectors "f" and "irbs" */
 swap_elems_Vector_R (f, li, iout);
 swap_elems_Vector_I (irbs, li, iout);
 }
 /* A Gauss-Jordan elimination step */
 LA_tmfuel_gauss_jordn (iout, *pJin, pIrank, m, c, f);
 *pIter = *pIter + 1;
 }

 return LaRcOk;
}

/*---
Calculating the marginal costs in LA_Tmfuel()
---*/
void LA_tmfuel_marg_costs (int m, tMatrix_R c, tVector_R f,
 tVector_I icbs, tVector_I ibnd, tVector_I kbnd, tVector_R zc,
 int *pIrank)

© 2008 by Taylor & Francis Group, LLC

790 Numerical Linear Approximation in C

{
 int i, j, icb;
 tNumber_R d, g, s;

 for (j = 1; j <= m; j++)
 {
 icb = 0;
 for (i = 1; i <= *pIrank; i++)
 {
 if (j == icbs[i]) icb = 1;
 }
 if (icb == 0)
 {
 s = -1.0;
 for (i = 1; i <= *pIrank; i++)
 {
 s = s + c[i][j];
 }
 zc[j] = -s;
 d = -s;
 if (d < 0.0)
 {
 for (i = 1; i <= *pIrank; i++)
 {
 f[i] = f[i] - c[i][j];
 }
 ibnd[j] = -1;
 }
 else
 {
 g = 2.0 - d;
 if (g < 0.0)
 {
 for (i = 1; i <= *pIrank; i++)
 {
 f[i] = f[i] + c[i][j];
 }
 kbnd[j] = -1;
 }
 }
 }
 }
}

/*---

© 2008 by Taylor & Francis Group, LLC

Chapter 21: LA_Tmfuel 791

Determine the vector that leaves the basis in LA_Tmfuel()
---*/
void LA_tmfuel_vleav (int *pIrank, int *pIout,int *pIvo, tVector_R f,
 tNumber_R *pXb)
{
 int i;
 tNumber_R e, d, g, oneps;

 oneps = 1.0 + EPS;
 *pIvo = 0;
 g = 1.0;
 for (i = 1; i <= *pIrank; i++)
 {
 e = f[i];
 if (e >= oneps)
 {
 d = 1.0 - e;
 if (d < g)
 {
 g = d;
 *pIvo = 1;
 *pIout = i;
 *pXb = e;
 }
 }

 if (e < -EPS)
 {
 d = e;
 if (d < g)
 {
 g = d;
 *pIvo = -1;
 *pIout = i;
 *pXb = e;
 }
 }
 }
}

/*---
Calculating possible ratios th[j] and tu[j] in LA_Tmfuel()
---*/
void LA_tmfuel_th_tu (int itf, int m, int ivo, int iout,
 int *pJout, tMatrix_R c, tVector_I icbs, tVector_I ibnd,

© 2008 by Taylor & Francis Group, LLC

792 Numerical Linear Approximation in C

 tVector_I kbnd, tVector_R th, tVector_R tu, tVector_R zc)
{
 tNumber_R d, e, g, gg, thmax;
 int j;

 *pJout = icbs[iout];
 thmax = 0.0;
 for (j = 1; j <= m; j++)
 {
 tu[j] = 0.0;
 th[j] = 0.0;
 e = c[iout][j];
 if (fabs (e) > EPS)
 {
 d = zc[j];
 g = 2.0 - d;
 if (itf != 1)
 {
 g = 0.0;
 }

 if (fabs (g) <= EPS)
 {
 g = PREC * (kbnd[j]);
 if (kbnd[j] == 1) g = g + g;
 }

 tu[j] = -g/e;
 g = ivo * (tu[j]);
 if (g < 0.0) tu[j] = 0.0;
 if (j != *pJout)
 {
 gg = tu[j];
 if (gg < 0.0) gg = -gg;
 if (gg > thmax)
 {
 thmax = gg;
 }

 if (fabs (d) < EPS)
 {
 d = PREC * (ibnd[j]);
 if (ibnd[j] == 1) d = d + d;
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 21: LA_Tmfuel 793

 th[j] = d/e;
 d = ivo * (th[j]);
 if (d < 0.0) th[j] = 0.0;
 gg = th[j];
 if (gg < 0.0) gg = -gg;
 if (gg > thmax) thmax = gg;
 }
 }
 }
 if (itf == 1 && ivo == -1) tu[*pJout] = -2.0;
 if (itf != 1 && ivo == -1) tu[*pJout] = -PREC;
}

/*---
Determine the vector that enters the basis in LA_Tmfuel()
---*/
void LA_tmfuel_vent (int m, int *pJin, int ivo, int *pItest,
 tVector_R th, tVector_R tu)
{
 tNumber_R e, thmax, thmin;
 int j;
 thmax = 1.0/ (EPS * EPS);
 thmin = -thmax;
 for (j = 1; j <= m; j++)
 {
 e = th[j];
 if (e != 0.0)
 {
 if (ivo == 1)
 {
 if (e < thmax)
 {
 thmax = e;
 *pJin = j;
 *pItest = 1;
 }
 }

 if (ivo != 1)
 {
 if (e > thmin)
 {
 thmin = e;
 *pJin = j;
 *pItest = 1;

© 2008 by Taylor & Francis Group, LLC

794 Numerical Linear Approximation in C

 }
 }
 }
 }
 for (j = 1; j <= m; j++)
 {
 e = tu[j];
 if (e != 0.0)
 {
 if (ivo == 1)
 {
 if (e < thmax)
 {
 thmax = e;
 *pJin = j + m;
 *pItest = 1;
 }
 }

 if (ivo != 1)
 {
 if (e > thmin)
 {
 thmin = e;
 *pJin = j + m;
 *pItest = 1;
 }
 }
 }
 }
}

/*---
Swap elements and vectors in LA_Tmfuel()
---*/
void LA_tmfuel_swap (int itf, int *pIrank, int *pJin, tMatrix_R c,
 tVector_I ibnd, tVector_I kbnd, tVector_I ib, tVector_R th,
 tVector_R tu, tVector_R zc)
{
 tNumber_R d;
 int i, k;

 k = ibnd[*pJin];
 ibnd[*pJin] = kbnd[*pJin];
 kbnd[*pJin] = k;

© 2008 by Taylor & Francis Group, LLC

Chapter 21: LA_Tmfuel 795

 d = th[*pJin];
 th[*pJin] = tu[*pJin];
 tu[*pJin] = d;
 ib[*pJin] = -ib[*pJin];
 for (i = 1; i <= *pIrank; i++)
 {
 c[i][*pJin] = -c[i][*pJin];
 }
 zc[*pJin] = 2.0 - zc[*pJin];
 if (itf != 1) zc[*pJin] = 0.0;
}

/*---
Cascades vectors, each enters and then leaves the basis in
LA_Tmfuel()
---*/
void LA_tmfuel_cascade (int iout, int jin, int *pJout, tNumber_R xb,
 tNumber_R *pPivot, tNumber_R pivoto, tMatrix_R c, tVector_R f,
 tVector_I ibnd, int *pIrank)
{
 tNumber_R oneps, pivotn;
 int i;

 oneps = 1.0 + EPS;
 *pPivot = c[iout][jin];
 pivotn = *pPivot/pivoto;
 if (xb > oneps)
 {
 for (i = 1; i <= *pIrank; i++)
 {
 f[i] = f[i] - c[i][*pJout];
 }

 ibnd[*pJout] = -1;
 if (pivotn <= 0.0)
 {
 for (i = 1; i <= *pIrank; i++)
 {
 f[i] = f[i] + c[i][jin];
 }
 ibnd[jin] = 1;
 }
 }
 else
 {

© 2008 by Taylor & Francis Group, LLC

796 Numerical Linear Approximation in C

 if (pivotn > 0.0)
 {
 for (i = 1; i <= *pIrank; i++)
 {
 f[i] = f[i] + c[i][jin];
 }
 ibnd[jin] = 1;
 }
 }
}

/*---
Test if xb is not bounded in LA_Tmfuel()
---*/
void LA_tmfuel_test (int iout, int jin, int *pItest, tNumber_R *pXb,
 tNumber_R pivot, tVector_R f, tVector_I icbs, tVector_R th)
{
 tNumber_R oneps;

 oneps = 1.0 + EPS;
 *pXb = f[iout]/ (pivot);
 if (*pXb <= -EPS || *pXb >= oneps)
 {
 *pItest = 0;
 }

 th[jin] = 0.0;
 icbs[iout] = jin;
}

/*---
A Gauss-Jordan elimination step in LA_Tmfuel()
---*/
void LA_tmfuel_gauss_jordn (int iout, int jin, int *pIrank, int m,
 tMatrix_R c, tVector_R f)
{
 int i, j;
 tNumber_R d, pivot;

 pivot = c[iout][jin];
 for (j = 1; j <= m; j++)
 {
 c[iout][j] = c[iout][j]/pivot;
 }
 f[iout] = f[iout]/pivot;

© 2008 by Taylor & Francis Group, LLC

Chapter 21: LA_Tmfuel 797

 for (i = 1; i <= *pIrank; i++)
 {
 if (i != iout)
 {
 d = c[i][jin];
 for (j = 1; j <= m; j++)
 {
 c[i][j] = c[i][j] - d * (c[iout][j]);
 }
 f[i] = f[i] - d * (f[iout]);
 }
 }
}

/*---
Calculate the results of LA_Tmfuel()
---*/
eLaRc LA_tmfuel_res (int itf, int m, tVector_R f, tVector_I icbs,
 tVector_I ibnd, tVector_I kbnd, tVector_I ib, tVector_R zc,
 int *pIrank, tVector_R a, tNumber_R *pZnorm)
{
 int i, j, i0, icb;
 tNumber_R e, d;
 eLaRc rc = LaRcSolutionUnique;

 e = 1.0 - EPS;
 for (j = 1; j <= m; j++)
 {
 a[j] = 0.0;
 i0 = 0;
 for (i = 1; i <= *pIrank; i++)
 {
 if (j == icbs[i]) i0 = i;
 }

 if (i0 == 0)
 {
 d = 0.0;
 if (ibnd[j] == -1) d = 1.0;
 if (kbnd[j] == -1) d = -1.0;
 }
 else
 {
 d = f[i0];
 if (d < EPS || d > e)

© 2008 by Taylor & Francis Group, LLC

798 Numerical Linear Approximation in C

 {
 rc = LaRcSolutionProbNotUnique;
 }
 }

 if (ib[j] == -1) d = -d;
 a[j] = d;

 if (d < 0.0) d = -d;
 *pZnorm = *pZnorm + d;
 }

 if (itf != 1)
 {
 rc = LaRcSolutionProbNotUnique;
 }

 for (j = 1; j <= m; j++)
 {
 icb = 0;
 for (i = 1; i <= *pIrank; i++)
 {
 if (j == icbs[i])
 {
 icb = 1;
 }
 }
 if (icb == 0)
 {
 e = zc[j];
 d = e;
 if (e < 0.0) d = -d;
 if (d < EPS)
 {
 rc = LaRcSolutionProbNotUnique;
 }
 }
 }

 return rc;
}

© 2008 by Taylor & Francis Group, LLC

799

Chapter 22

Chebyshev Solution
of Underdetermined Linear Equations

22.1 Introduction

In Chapter 20, an algorithm was presented for the solution of
underdetermined systems of consistent linear equations, where the L1
norm of the solution vector is minimum. In Chapter 21, algorithms for
the bounded and for the L1 bounded solution of underdetermined
systems of consistent linear equations were presented as problems (A)
and (B) respectively. In problem (A), each element of the solution
vector is bounded between 1 and �1, and in problem (B), each element
of the solution vector is bounded between 1 and �1 and the L1 norm of
the solution vector is as small as possible.

This chapter is the third chapter for the solution of
underdetermined consistent systems where the constraint is to have
the Chebyshev or the L∞ norm of the solution vector be as small as
possible.

Consider the underdetermined system of linear equations

Ca = f

C = (cij) is a given real n by m matrix of rank k, k ≤ n < m, and f = (fi)
is a given real n-vector. We are seeking the m-solution vector a = (ai)
whose L∞ or Chebyshev norm

(22.1.1) ||a||∞ = max(|a1|, |a2|, �, |am|)

is minimized.
Based on the steepest descent method, Kolev [11] presented an

iterative algorithm for solving both the L1 (Chapter 20) and L∞ (this
chapter) problems for consistent underdetermined linear equations.

© 2008 by Taylor & Francis Group, LLC

800 Numerical Linear Approximation in C

His algorithm results in a procedure of theoretically infinite number of
iterations. Kolev [12] then developed his algorithm such that it
requires a finite number of iterations. In both of Kolev�s methods, the
minimum energy (Chapter 23) solution is used to start the iterations.

Based on the duality principle from functional analysis, Cadzow
[3, 4] developed a number of important properties related to the
solution of the consistent underdetermined systems Ca = f. As noted
in Chapter 20, algorithmic procedures for both the minimum L1
solution and the minimum L∞ solution were then developed. Cadzow
[5] further refined his algorithm using a column exchange method.
This necessitates that matrix C satisfies the Haar condition. Next,
Cadzow [6] described another algorithm that handles the non-Haar
cases but for the full rank case. He also outlined a linear programming
scheme for the problem of this chapter. See also Cadzow [7].

As noted in Chapter 20, Dax [8] presented a method for
calculating the Lp norm of the solution vector of the consistent system
Ca = f, where 1 < p < ∞. He presented a primal Newton method for
p > 2 and a dual Newton method for 1 < p <2.

Lucchetti and Mignanego [13] studied the variational
perturbations of the minimum effort problem in control theory. They
gave a sufficiency characterization for the convergence of the
sequence of solutions of the perturbed problem to the original
problem.

Gravagne and Walker [9] explored the details of a related subject
to the minimum effort problem. In their exploration, they noted that
they introduced for the first time a closed-form expression for the
minimum effort solution of underdetermined consistent linear
systems. They also gave an extended discussion of the minimum
effort solutions from a geometric point of view.

In our work, this is reduced to a linear programming problem. No
conditions are imposed on matrix C, such as the Haar condition or the
full rank condition.

Our algorithm [2] has two parts. In part 1, an initial basic feasible
solution for the linear programming problem is obtained. The
objective function z is calculated next. If z < 0, it is easily made
positive. The marginal costs are then calculated. Part 2 consists of a
slightly modified simplex method The algorithm needs minimum
computer storage. The elements of the solution vector a are calculated

© 2008 by Taylor & Francis Group, LLC

Chapter 22: Chebyshev Solution of Underdetermined Linear Equations 801

from the objective function and the marginal costs in the final tableau
of the programming problem.

In Section 22.2, the linear programming formulation of the
problem is presented. In Section 22.3, the algorithm is described, and
in Section 22.4, numerical results and comments are given.

22.1.1 Applications of the algorithm

In control theory, this problem is known as the minimum effort
or minimum amplitude problem for discrete linear control systems.
See the references in [5, 6, 9].

22.2 The linear programming problem

Let in (22.1.1), ||a||∞ = h > 0. Then this problem may be reduced
to a linear programming problem as follows

minimize h

subject to

�h ≤ ai ≤ h, i = 1, 2, �, m

and

Ca = f

The last set of constraints may be replaced by

f ≤ Ca ≤ f

After rearranging the constraints, this problem is conventionally
formulated as follows

(22.2.1a)

subject to

Ca ≥ f
(22.2.1b) a + he ≥ 0

�Ca ≥ �f
�a + he ≥ 0

minimize Z em 1+
T a

h
=

© 2008 by Taylor & Francis Group, LLC

802 Numerical Linear Approximation in C

and
(22.2.1c) h ≥ 0

In (22.2.1a), em+1 is an (m + 1)-vector each element of which is 0
except the (m + 1)th element, which is 1. Again, em+1 is the last
column in an (m + 1)-unit matrix. In (22.2.1b), e is an m-vector each
element of which is 1.

It is more efficient to use the dual of problem (22.2.1). For a
related case see ([14], p. 174). The dual formulation of (22.2.1) is

(22.2.2a) maximize z = [fT 0T �fT 0T]b = gTb

subject to

For convenience, we write the above equation in the form

(22.2.2b) Db = em+1

where D is the coefficient matrix on the l.h.s. of the previous equation.
A simplex tableau for (m + 1) constraints in 2(n + m) variables is

to be constructed for this problem. However, we show later that we
need to store only n columns of the constraint matrix D.

Let the basis matrix be denoted by the (m + 1) square matrix B.
Then the vectors yj in the simplex tableau are given by

(22.2.3) yj = B�1Dj, j = 1, 2, �, 2(n + m)

Dj is the jth column of matrix D of (22.2.2b).
Let the elements of vector g of (22.2.2a), associated with the basic

variables be the (m + 1) vector gB. Then the marginal costs are

(22.2.4) zj � gj = gB
Tyj � gj, j = 1, 2, �, 2(n + m)

The basic solution bB and the objective function z are given by

(22.2.5) bB = B�1em+1

(22.2.6) z = gB
TbB

CT I CT� I�

0T eT 0T eT
b em 1+=

© 2008 by Taylor & Francis Group, LLC

Chapter 22: Chebyshev Solution of Underdetermined Linear Equations 803

22.2.1 Properties of the matrix of constraints

Again, as in the previous two chapters, as well as in other chapters
in this book, the analysis in this problem is initiated by the kind of
asymmetry matrix D has.

The first n columns of the left half of matrix D, are the negative of
the first n columns of the right half. Again the unit matrix I exists in
the last m columns of the left half of D, and �I exists in the second n
columns of the right half. That kind of asymmetry in D and the
existence of unit matrices in matrix D will enable us to use a simplex
tableau for this problem of only (m + 1) constraints in only n
variables, instead of (m + 1) constraints in 2(n + m) variables. We call
this the reduced tableau. This is explained in Section 22.3. Consider
first the following analysis.

Definition

Because of the kind of asymmetry of matrix D described above,
we define any column i, 1 ≤ i ≤ (n + m), and the column
j = (i + (n + m)) in this matrix as two corresponding columns.

We can show that any two corresponding columns should not
appear together in any basis.

Let z and B be respectively the optimum objective function and
the basis matrix associated with the optimum solution. Then the
optimum Chebyshev norm ||a||∞ = z = Z, where Z is the optimum
solution of problem (22.2.1).

Again, if in the dual problem (22.2.2), a column is in the basis for
the optimal solution, its corresponding inequality in the primal
(22.2.1b) is an equality ([10], p. 239). As a result, (aT z) is the
solution of the system

(22.2.7)

where gB is associated with the basic variables for the optimum
solution of (22.2.2). See also Lemma 10.2. For further use, we write
(22.2.7) in the form

(22.2.7a) (aT z) = gB
T(B)�1

Consider an example of obtaining the minimum L∞ solution of the

BT a
z

gB=

© 2008 by Taylor & Francis Group, LLC

804 Numerical Linear Approximation in C

underdetermined system Ca = f, for 2 equations of rank 2 in 4
unknowns. In this case (22.2.7) consists of 5 equations in 5 unknowns,
the 4 elements of a and z. The equations would be the first 2 and a
suitable 3 of the remaining 4 of the following system, where ρi = +1
or �1. If column i, i = 1, 2, �, n+m of the matrix of constraints D in
(22.2.2b), is in the basis, ρi = +1, and ρi = �1 if instead its
corresponding column is in the basis

(22.2.7b)

In this example, the first 2 equations are in system (22.2.7a) and
thus system Ca = f is satisfied. Also, since the 3 last equations but one
in (22.2.7b) are in (22.2.7a), 3 out of the 4 elements of a, each equals
+z or �z.

It is clear from this example that in general, (m + 1 � n) elements
of a, each equals +z or �z and therefore the remaining (n � 1) elements
of a in absolute value, each ≤ z. See Lemmas 22.5 and 22.6 below.

Lemma 22.1

In any stage of the computation, we have the following relations
between the corresponding columns i and j, 1 ≤ i ≤ (n+m)

(22.2.8a) yi + yj = 0, i = 1, 2, �, n

and

(22.2.8b) yi + yj = 2bB, i = n+1, n+2, �, n+m

Also, for the marginal costs

(22.2.9a) (zi � fi) + (zj � fj) = 0, i = 1, 2, �, n

and

(22.2.9b) (zi � fi) + (zj � fj) = 2z, i = n+1, n+2, �, n+m

ρ1c11 ρ1c12 ρ1c13 ρ1c14 0
ρ2c21 ρ2c22 ρ2c23 ρ2c24 0

ρ3 0 0 0 1
0 ρ4 0 0 1
0 0 ρ5 0 1
0 0 0 ρ6 1

a1

a2

a3

a4

z

ρ1f1

ρ2f2

0
0
0
0

=

© 2008 by Taylor & Francis Group, LLC

Chapter 22: Chebyshev Solution of Underdetermined Linear Equations 805

Lemma 22.2

(a) For each basic solution, feasible or not, there correspond two
bases B(1) and B(2), each of which determines the same basic
solution. Every column in one of the bases has its
corresponding column in the other basis, arranged in the same
order.

(b) The two values of z are equal in magnitude but opposite in
sign. This lemma corresponds to Lemma 10.7.

Lemma 22.3

Consider the two bases B(1) and B(2), defined in the previous
Lemma, and let us use (22.2.3-5) to construct two simplex tableaux
T(1) and T(2) that correspond respectively to B(1) and B(2). Let i be the
corresponding column to column j, where 1 ≤ j ≤ 2(n + m). Then we
have yi in T(1) = yj in T(2).

This lemma corresponds to Lemma 10.8.

Lemma 22.4

At any stage of the computation, the (m + 1)th column of matrix
B�1 equals the basic solution bB. This is obvious from (22.2.5) since
em+1 is the (m + 1)th column in an (m + 1)-unit matrix.

Assume that we have obtained an optimum basic feasible solution
to the linear programming problem (22.2.2). Then it is concluded
earlier that (m + 1 � n) elements of a, each equals +z or �z and the
remaining (n � 1) elements of a in absolute value, each ≤ z.

Note 1
If rank(C|f) = rank(C) = k < n, then (m + 1 � k) elements of a,

each equals +z or �z and the remaining (k � 1) elements of a in
absolute value, each ≤ z.

Lemma 22.5

If column j, (n + 1) ≤ j ≤ (n + m), of the matrix of constraints of
(22.2.2b) is in the final basis, then aj�n = �z. But if instead, the
corresponding column of j is in the final basis, aj�n = z.

Proof:

The proof of the lemma is established from the structure of
equation (22.2.7b).

© 2008 by Taylor & Francis Group, LLC

806 Numerical Linear Approximation in C

Lemma 22.6

The (n � 1) elements of a whose absolute value ≤ z, each is
calculated from the marginal cost of a non-basic column in the final
(condensed) simplex tableau. These non-basic columns are not
corresponding columns of any column in the basis. Let column j,
(n + 1) ≤ j ≤ (n + m) of the matrix of constraints be such non-basic
column. Then

(22.2.10a) aj�n = (zj � gj) � z, (n + 1) ≤ j ≤ (n + m)

(22.2.10b) aj�2n�m = z � (zj � gj), (2n + m + 1) ≤ j ≤ 2(n + m)

Proof:

Consider the case (n + 1) ≤ j ≤ (n + m). From (22.2.2b) and
(22.2.3-4)

where uj is the jth column of an m-unit matrix. Hence

(zj � gj) = gB
T[(B)j�n

�1 + (B)m+1
�1]

where (B)j�n
�1 and (B)m+1

�1are respectively the (j � n)th and the
(m + 1)th column of (B)�1. Finally, from (22.2.7) and (22.2.6) and
Lemma 22.5, (22.2.10a) is proved. In the same way, (22.2.10b) is
proved.

Lemma 22.7

If the set of equations Ca = f is inconsistent, i.e., rank(C|f) >
rank(C), then the solution of the linear programming problem (22.2.2)
would be unbounded.

22.3 Description of the algorithm

Lemma 22.1 relates the columns yi, 1 ≤ i ≤ (n + m) in the simplex
tableau and their corresponding column yj, j = i + (n + m). The same
is true for their marginal costs. If one column and its marginal cost is
known, the corresponding column and its marginal cost is easily
derived. We start by constructing a simplex tableau for problem

zj � gj() zj gB
TB 1� uj n�

1
= =

© 2008 by Taylor & Francis Group, LLC

Chapter 22: Chebyshev Solution of Underdetermined Linear Equations 807

(22.2.2), for (m + 1) constraints in only (n + m) variables. Obviously,
let these be the first (n + m) elements of the 2(n + m)-vector b. This
tableau is the condensed tableaux.

In part 1 of the algorithm, an initial basic feasible solution to the
programming problem (22.2.2) is obtained. We also calculate the
initial objective function z (≥ 0) and the initial marginal costs (zi � gi).

 We take advantage of the existence of the m-unit sub-matrices I
in matrix D in (22.2.2b) in obtaining an initial basic feasible solution,
and we need no artificial variables.

The m columns (n + 1), (n + 2), �, (n + m), in matrix D, each is a
column in an m-unit matrix augmented by a 1 as the (m + 1)th

element. We chose these m columns, or their corresponding columns,
to form the first m columns in the initial basis matrix B. This is simply
done by performing m Gauss-Jordan eliminations for each of these
columns, which consists of one step only. This is the step needed to
eliminate the 1 in the (m + 1)th position of each column. The choice
between column (n + i), i = 1, 2 �, m, or its corresponding column to
form the first m columns in the initial basis matrix B is given next.

Consider any one of the first n columns in matrix D. Denote this
column by X. Consider element i, i = 1, 2, �, m, in succession of
column X. If in X, element i is ≤ 0, we chose column (n + i) in matrix
D to form the ith column of B. If element i in X is > 0, we chose
instead the corresponding column to column (n + i) to form the ith
column of B. When all these m columns enter the basis, the first m
elements of X, each would keep its value, with a negative sign and the
(m + 1)th element of X would be > 0. In fact, this (m + 1)th element
would equal the sum of the absolute values of the first m elements in
X = 1. Column X will now be chosen to be the (m + 1)th column of B.
The process described so far, guarantees that when column X enters
the basis as the (m + 1)th column of B, the initial basic solution would
be feasible. That is, with all the element of bB ≥ 0.

The objective function z is then calculated from (22.2.6). If z < 0,
we use Lemmas 22.2 and 22.3 and replace the basis matrix by its
corresponding one. We also replace the columns of the condensed
simplex tableau by their corresponding columns. In effect, we keep
the simplex tableau unchanged, except for the f values and z. Such
parameters have their signs reversed. See [1] and also Chapter 10. The
marginal costs (zj � gj) are then calculated from (22.2.4). We now

© 2008 by Taylor & Francis Group, LLC

808 Numerical Linear Approximation in C

have an initial basic feasible solution and z ≥ 0.This ends part 1 of the
algorithm.

Part 2 of the algorithm is the ordinary simplex algorithm.
However, the column to enter the basis is that which has the most
negative marginal cost among the non-basic columns in the current
tableau and their corresponding columns. Lemma 22.1 is used for
calculating the marginal costs of the corresponding columns. Finally,
the elements of the solution vector a to the given problem Ca = f are
calculated from Lemmas 22.5 and 22.6.

The steps described here are explained by the following detailed
numerical example.

Example 22.1

Obtain the minimum L∞ solution of the underdetermined system
of linear equations.

7a1 � 4a2 + 5a3 + 3a4 = �30
�2a1 + a2 + 5a3 + 4a4 = 15

Here, matrix C is a 2 by 4 matrix of rank 2 and the system is
consistent. This example is a hybrid of example 1 in ([2], p. 65). The
Initial Data and the condensed simplex tableaux are shown. Again Dj,
1 ≤ j ≤ 2(n + m) is the jth column of the matrix of constraints D in
(22.2.2b). The pivot elements are shown between brackets, as first
seen in Tableau 22.3.1**.

Initial Data

g �30 15 0 0 0 0
bB D1 D2 D3 D4 D5 D6

 ���
0 7 �2 1 0 0 0
0 �4 1 0 1 0 0
0 5 5 0 0 1 0
0 3 4 0 0 0 1
1 0 0 1 1 1 1

 ���

Let column X be the first column in the initial data, column D1.
We see that elements i = 1, 3, and 4 of D1 are > 0. Hence, we chose
columns [(i + n) + (n + m)], i.e, columns 9, 11, and 12 to be columns

© 2008 by Taylor & Francis Group, LLC

Chapter 22: Chebyshev Solution of Underdetermined Linear Equations 809

1, 3 and 4 of the basis matrix B. Again since the second element of D1
is < 0, we chose column (i + n), i.e., column 4 to form column 2 of the
basis matrix B.

The basis (m + 1)-matrix B is now formed from columns 9, 4, 11,
12 and 1 of the matrix of constraints D. As indicated above, we
perform 4 Gauss-Jordan steps to eliminate the 1 in the 5th position of
each of D3, D4, D5 and D6. We then perform another Gauss-Jordan
step to make column D1 the fifth column in the basis matrix B. This
gives Tableau 22.3.1, where we also calculate the objective function z
from (22.2.5-6).

Tableau 22.3.1 (part 1)

g �30 15 0 0 0 0
bB D1 D2 D9 D4 D11 D12

 ���
0.368 0 4.21 1 0 0 0
0.211 0 2.26 0 1 0 0
0.263 0 �3.42 0 0 1 0
0.158 0 �3.05 0 0 0 1
0.053 1 0.316 0 0 0 0

 ���
z = �1.59

Tableau 22.3.1*

g 30 �15 0 0 0 0
bB D7 D8 D3 D10 D5 D6

 ���
0.368 0 4.21 1 0 0 0
0.211 0 2.26 0 1 0 0
0.263 0 �3.42 0 0 1 0
0.158 0 �3.05 0 0 0 1
0.053 1 0.316 0 0 0 0

 ���
z = 1.59 0 24.47 0 0 0 0

In Tableau 22.3.1, however, the initial basic solution is feasible
but z < 0. Hence, we make use of Lemmas 22.2 and 22.3 and replace
Tableau 22.3.1 by Tableau 22.3.1*. This tableau is the same as

© 2008 by Taylor & Francis Group, LLC

810 Numerical Linear Approximation in C

Tableau 22.3.1, except for the f values and z; their signs are reversed.
Also, the columns in Tableau 22.3.1* are the corresponding columns
of Tableau 22.3.1. This ends part 1 of the algorithm.

In Tableau 22.3.1*, D2 (the corresponding column to D8) has the
most negative marginal cost. Hence, we replace y8 by y2. From
(22.2.8a) y2 = �y8, and from (22.2.9a), (z2 � g2) = �(z8 � g8). This
gives Tableau 22.3.1**. In Tableau 22.3.1**, y2 replaces y6 in the
basis. This gives Tableau 22.3.2.

Tableau 22.3.1** (part 2)

g 30 15 0 0 0 0
bB D7 D2 D3 D10 D5 D6

 ���
0.368 0 �4.21 1 0 0 0
0.211 0 �2.26 0 1 0 0
0.263 0 3.42 0 0 1 0
0.158 0 (3.05) 0 0 0 1
0.053 1 �0.316 0 0 0 0

 ���
z = 1.59 0 �24.47 0 0 0 0

Tableau 22.3.2

g 30 15 0 0 0 0
bB D7 D2 D3 D10 D5 D6

 ���
0.586 0 0 1 0 0 1.379
0.328 0 0 0 1 0 0.741
0.086 0 0 0 0 1 �1.121
0.052 0 1 0 0 0 0.328
0.069 1 0 0 0 0 0.103

 ���
z = 2.845 0 0 0 0 0 8.017

In Tableau 22.3.2, y12 has the most negative marginal cost and it
replaces its corresponding column y6. This gives Tableau 22.3.2*. In
Tableau 22.3.2*, y12 has the most negative marginal cost. It replaces
y5 in the basis. This gives Tableau 22.3.3, which gives the optimal
objective function z = 3. From Lemmas 22.5 and 22.6, the optimum

© 2008 by Taylor & Francis Group, LLC

Chapter 22: Chebyshev Solution of Underdetermined Linear Equations 811

solution z = 3 and a = (�3, 3, �1.2, 3)T.

Tableau 22.3.2*

g 30 15 0 0 0 0
bB D1 D2 D3 D10 D5 D12

 ���
0.586 0 0 1 0 0 �0.207
0.328 0 0 0 1 0 �0.086
0.086 0 0 0 0 1 (1.293)
0.052 0 1 0 0 0 �0.224
0.069 1 0 0 0 0 0.035

 ���
z = 2.845 0 0 0 0 0 �2.328

Tableau 22.3.3

g 30 15 0 0 0 0
bB D7 D2 D3 D10 D5 D12

 ���
0.6 0 0 1 0 0.16 0
0.333 0 0 0 1 0.067 0
0.067 0 0 0 0 0.773 1
0.067 0 1 0 0 0.173 0
0.067 1 0 0 0 �0.027 0

 ���
z = 3 0 0 0 0 1.8 0

22.3.1 The reduced tableaux

A careful look to the simplex Tableaux in this solved example, we
see that 5 out of 6, i.e., (m + 1) out of (n + m) columns in the
condensed tableaux are actually 5 columns in a 6-unit matrix. Such
columns need not be accounted for nor they need to be stored. The
condensed simplex tableaux may be condensed more. We denote such
tableaux as the reduced tableaux. In the reduced tableaux we calculate
only bB and (n � 1) columns and their marginal costs. These (n � 1)
columns are the non-basic columns in the condensed tableaux. An
index indicator is used for the columns that we actually use in the
tableaux.

© 2008 by Taylor & Francis Group, LLC

812 Numerical Linear Approximation in C

22.4 Numerical results and comments

LA_Effort() implements this Minimum Effort algorithm, and
DR_Effort() demonstrates 7 test cases.

Table 22.4.1 shows the results calculated in single-precision.
These are the same 7 examples that were solved in Chapters 20 and
21.

Table 22.4.1

��
Example C(n×m) Iterations z

��
1 4×5 3 0.906
2 4×8 8 0.537
3 3×5 4 3.0
4 4×6 7 0.372
5 4×100 49 0.244
6 5×100 51 0.303
7 7×100 60 0.508

For each example, the size of matrix C, the number of iterations
and the optimum L∞ norm z are given. This method can be
characterized by the following features. All the calculations are done
in the reduced (not even in the condensed) simplex tableaux. An
initial basic feasible solution for the linear programming problem as
well as the initial objective function z (≥ 0) are obtained with
minimum effort. We do not need to calculate the marginal costs until
the end of part 1 of the algorithm. The inverse of the basis matrix, B�1,
is never calculated. The elements of the solution vector a of the given
system Ca = f are calculated from z and the marginal costs of the final
reduced tableau. Rank(C) is known at the end of the solution. See
example 1 in ([2], p. 65).

The closest technique to our algorithm is that of Cadzow [6].
Using our notation, we compared the number of arithmetic operations
of Cadzow�s method with that of ours. The number of
multiplications/divisions (m/d) per iteration in [6] is > (3nm + m). In
our method, the number of (m/d) required per iteration, i.e., to change
a simplex tableau, is n(m + 3). This is about 1/3 of the iterations in [6].
Again, the numerical example solved by Cadzow ([5], p. 616) was

© 2008 by Taylor & Francis Group, LLC

Chapter 22: Chebyshev Solution of Underdetermined Linear Equations 813

solved by our program and the execution time was half the time given
by Cadzow, who used a faster computer.

References

1. Abdelmalek, N.N., Chebyshev solution of overdetermined
systems of linear equations, BIT, 15(1975)117-129.

2. Abdelmalek, N.N., Minimum L∞ solution of underdetermined
systems of linear equations, Journal of Approximation Theory,
20(1977)57-69.

3. Cadzow, J.A., Algorithm for the minimum-effort problem,
IEEE Transactions on Automatic Control, 16(1971)60-63.

4. Cadzow, J.A., Functional analysis and the optimal control of
linear discrete systems, International Journal of Control,
17(1973)481-495.

5. Cadzow, J.A., A finite algorithm for the minimum l∞ solution
to a system of consistent linear equations, SIAM Journal on
Numerical Analysis, 10(1973)607-617.

6. Cadzow, J.A., An efficient algorithmic procedure for
obtaining a minimum l∞-norm solution to a system of
consistent linear equations, SIAM Journal on Numerical
Analysis, 11(1974)1151-1165.

7. Cadzow, J.A., Minimum-amplitude control of linear discrete
systems, International Journal of Control, 19(1974)765-780.

8. Dax, A., Methods for calculating lp-minimum norm solutions
of consistent linear systems, Journal of Optimization Theory
and Applications, 83(1994)333-354.

9. Gravagne, I.A. and Walker, I.D., On the structure of minimum
effort solutions with application to kinematic redundancy
resolution, IEEE Transactions on Robotics and Automation,
16(2000)855-863.

10. Hadley, G., Linear Programming, Addison-Wesley, Reading,
MA, 1962.

11. Kolev, L.V., Iterative algorithm for the minimum fuel and
minimum amplitude problems, International Journal of
Control, 21(1975)779-784.

© 2008 by Taylor & Francis Group, LLC

814 Numerical Linear Approximation in C

12. Kolev, L.V., Algorithm of finite number of iterations for the
minimum fuel and minimum amplitude control problems,
International Journal of Control, 22(1975)97-102.

13. Lucchetti, R. and Mignanego, F., Variational perturbation of
the minimum effort problem, Journal of Optimization Theory
and Applications, 30(1980)485-499.

14. Osborne, M.R. and Watson, G.A., On the best linear
Chebyshev approximation. Computer Journal, 10(1967)172-
177.

© 2008 by Taylor & Francis Group, LLC

Chapter 22: DR_Effort 815

22.5 DR_Effort

/*---
DR_Effort

This program is a driver for the function LA_Effort(), which
calculates the Chebyshev solution of an underdetermined system
of consistent linear equations.

Given is the underdetermined consistent system

 c*a = f

"c" is a given real n by m matrix of rank k, k <= n <= m.
"f" is a given real n vector.

It is required to calculate the m vector "a" for this system, such
that the Chebyshev norm z of "a"

 z = max|a[j]|, j = 1, 2, ..., m

is as small as possible.

In control theory, this problem is known as the "Minimum Effort" or
"Minimum Amplitude" problem for discrete linear control systems.

This program contains 7 examples whose results appear in the text.
---*/

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define Nf_ROWS 25
#define Mf_COLS 151
#define N1f 4
#define M1f 5
#define N2f 4
#define M2f 8
#define N3f 3
#define M3f 5
#define N4f 4
#define M4f 6
#define N5f 4
#define M5f 100

© 2008 by Taylor & Francis Group, LLC

816 Numerical Linear Approximation in C

#define N6f 5
#define M6f 100
#define N7f 7
#define M7f 100

void DR_Effort (void)
{
 /*--
 Constant matrices/vectors
 --*/
 static tNumber_R b1init[N1f][M1f] =
 {
 { 2.0, 1.0, -3.0, 5.0, 3.0 },
 { 2.0, 1.0, -3.0, 5.0, 3.0 },
 { 2.0, 1.0, -3.0, 5.0, 3.0 },
 {-8.0, -4.0, 2.0, 5.0, 6.0 }
 };

 static tNumber_R f1[N1f+1] =
 { NIL,
 10.0, 10.0, 10.0, 8.0
 };

 static tNumber_R b2init[N2f][M2f] =
 {
 {-6.0, 4.0, 2.0, -8.0, 5.0, -1.0, 6.0, 3.0 },
 { 7.0, -3.0, 9.0, 5.0, -9.0, 8.0, 7.0, -4.0 },
 { 9.0, 7.0, -5.0, 2.0, 7.0, 0.0, 1.0, 8.0 },
 { 9.0, -3.0, 2.0, 4.0, 0.0, 3.0, 0.0, 1.0 }
 };

 static tNumber_R f2[N2f+1] =
 { NIL,
 5.0, 7.0, -9.0, 1.0
 };

 static tNumber_R b3init[N3f][M3f] =
 {
 { 7.0, -4.0, 5.0, 3.0, 1.0},
 {-2.0, 1.0, 5.0, 4.0, 1.0},
 { 5.0, -3.0, 10.0, 7.0, 2.0}
 };

 static tNumber_R f3[N3f+1] =
 { NIL,

© 2008 by Taylor & Francis Group, LLC

Chapter 22: DR_Effort 817

 -30.0, 15.0, -15
 };

 static tNumber_R b4init[N4f][M4f] =
 {
 {2.0, -1.0, -4.0, 0.0, -3.0, 1.0 },
 {2.0, -1.0, -4.0, 0.0, -3.0, 1.0 },
 {5.0, 1.0, 3.0, 1.0, -2.0, 0.0 },
 {1.0, -2.0, -1.0, -5.0, 1.0, 4.0 }
 };

 static tNumber_R f4[N4f+1] =
 { NIL,
 2.0, 2.0, 1.0, -4.0
 };

 static tNumber_R b5init[N5f][M5f] =
 {
 {2.0, -1.0, -4.0, 0.0, -3.0, 1.0 },
 {2.0, -1.0, -4.0, 0.0, -3.0, 1.0 },
 {5.0, 1.0, 3.0, 1.0, -2.0, 0.0 },
 {1.0, -2.0, -1.0, -5.0, 1.0, 4.0 }
 };

 static tNumber_R f5[N5f+1] =
 { NIL,
 2.0, 2.0, 1.0, -4.0
 };

 /*--
 Variable matrices/vectors
 --*/
 tMatrix_R ct = alloc_Matrix_R (Mf_COLS, Nf_ROWS);
 tVector_R f = alloc_Vector_R (Nf_ROWS);
 tVector_R a = alloc_Vector_R (Mf_COLS);
 tMatrix_R fay = alloc_Matrix_R (N7f, M7f);
 tVector_R fy = alloc_Vector_R (N7f + 1);

 tMatrix_R b1 = init_Matrix_R (&(b1init[0][0]), N1f, M1f);
 tMatrix_R b2 = init_Matrix_R (&(b2init[0][0]), N2f, M2f);
 tMatrix_R b3 = init_Matrix_R (&(b3init[0][0]), N3f, M3f);
 tMatrix_R b4 = init_Matrix_R (&(b4init[0][0]), N4f, M4f);

 tNumber_R pi, dx, x1, x2, x3, z;
 int irank, iter;

© 2008 by Taylor & Francis Group, LLC

818 Numerical Linear Approximation in C

 int i, j, m, n, Iexmpl;

 eLaRc rc = LaRcOk;

 pi = 4.0*atan (1.0);
 dx = 2.*pi/99;

 for (j = 1; j <= 100; j++)
 {
 x1 = (j - 1)* dx;
 x2 = x1 + x1;
 x3 = x2 + x1;
 fay[1][j] = 1.0;
 fay[2][j] = sin (x1);
 fay[3][j] = cos (x1);
 fay[4][j] = sin (x2);
 fay[5][j] = cos (x2);
 fay[6][j] = sin (x3);
 fay[7][j] = cos (x3);
 }

 for (i = 1; i <= 7; i++)
 {
 fy[i] = (10.0+15.0*fay[2][i]-7.0*fay[3][i]+
 9.0*fay[4][i]) * (1.0 + 0.01*fay[4][i]);
 }

 prn_dr_bnr ("DR_Effort, "
 "Chebyshev Solution of an Underdetermined System");

 for (Iexmpl = 1; Iexmpl <= 7; Iexmpl++)
 {
 switch (Iexmpl)
 {
 case 1:
 n = N1f;
 m = M1f;
 for (i = 1; i <= n; i++)
 {
 f[i] = f1[i];
 for (j = 1; j <= m; j++)
 ct[j][i] = b1[i][j];
 }
 break;

© 2008 by Taylor & Francis Group, LLC

Chapter 22: DR_Effort 819

 case 2:
 n = N2f;
 m = M2f;
 for (i = 1; i <= n; i++)
 {
 f[i] = f2[i];
 for (j = 1; j <= m; j++)
 ct[j][i] = b2[i][j];
 }
 break;

 case 3:
 n = N3f;
 m = M3f;
 for (i = 1; i <= n; i++)
 {
 f[i] = f3[i];
 for (j = 1; j <= m; j++)
 ct[j][i] = b3[i][j];
 }
 break;
 case 4:
 n = N4f;
 m = M4f;
 for (i = 1; i <= n; i++)
 {
 f[i] = f4[i];
 for (j = 1; j <= m; j++)
 ct[j][i] = b4[i][j];
 }
 break;
 case 5:
 n = N5f;
 m = M5f;
 for (i = 1; i <= n; i++)
 {
 f[i] = fy[i];
 for (j = 1; j <= m; j++)
 ct[j][i] = fay[i][j];
 }
 break;
 case 6:
 n = N6f;
 m = M6f;
 for (i = 1; i <= n; i++)

© 2008 by Taylor & Francis Group, LLC

820 Numerical Linear Approximation in C

 {
 f[i] = fy[i];
 for (j = 1; j <= m; j++)
 ct[j][i] = fay[i][j];
 }
 break;
 case 7:
 n = N7f;
 m = M7f;
 for (i = 1; i <= n; i++)
 {
 f[i] = fy[i];
 for (j = 1; j <= m; j++)
 ct[j][i] = fay[i][j];
 }
 break;
 default:
 break;
 }

 prn_algo_bnr ("Effort");

 prn_example_delim();
 PRN ("Example #%d: Size of matrix \"c\" %d by %d\n",
 Iexmpl, n, m);
 prn_example_delim();
 PRN ("Chebyshev Solution of an Underdetermined System\n");
 prn_example_delim();
 PRN ("r.h.s. Vector \"f\"\n");
 prn_Vector_R (f, n);
 PRN ("Transpose of Coefficient Matrix, \"ct\"\n");
 prn_Matrix_R (ct, m, n);

 rc = LA_Effort (m, n, ct, f, &irank, &iter, a, &z);

 if (rc >= LaRcOk)
 {
 PRN ("\n");
 PRN ("Results of the Minimum Effort Solution\n");
 PRN ("Minimum Effort solution vector \"a\"\n");
 prn_Vector_R (a, m);
 PRN ("Chebyshev norm of vector \"a\", ||a|| "
 "= %8.4f\n", z);
 PRN ("Rank of matrix \"c\" = %d, No. of Iterations "
 "= %d\n", irank, iter);

© 2008 by Taylor & Francis Group, LLC

Chapter 22: DR_Effort 821

 }

 LA_check_rank_def (n, irank);
 prn_la_rc (rc);
 }

 free_Matrix_R (ct, Mf_COLS);
 free_Vector_R (f);
 free_Vector_R (a);
 free_Matrix_R (fay, N7f);
 free_Vector_R (fy);

 uninit_Matrix_R (b1);
 uninit_Matrix_R (b2);
 uninit_Matrix_R (b3);
 uninit_Matrix_R (b4);
}

© 2008 by Taylor & Francis Group, LLC

822 Numerical Linear Approximation in C

22.6 LA_Effort

/*---
LA_Effort

This program solves an underdetermined system of consistent linear
equations whose solution vector has a minimum Chebyshev norm. The
underdetermined system is of the form

 c*a = f

"c" is a given real n by m matrix of rank k, k <= n <= m.
"f" is a given real n vector.

It is required to calculate the m vector "a" for this system such
that the Chebyshev norm "z" of vector "a"

 z = max|a[j]|, j = 1, 2, ..., m

is as small as possible.

In control theory, this problem is known as the "Minimum Effort"
or "Minimum Amplitude" problem for discrete linear control systems.

Inputs
m Number of columns of matrix "c" in the system c*a = f.
n Number of rows of matrix "c" in the system c*a = f.
ct A real (m + 1) by n matrix, Its first m row and its n columns
 contain the transpose of matrix "c" of the system c*a = f.
f A real n vector containing the r.h.s. of the system c*a = f.

Outputs
irank The calculated rank of matrix "c".
iter The number of iterations or the number of times the simplex
 tableau is changed by a Gauss-Jordan step.
a A real m vector whose elements are the solution of system
 c*a = f.
z The minimum Chebyshev norm of the solution vector "a".

Returns one of
 LaRcSolutionUnique
 LaRcSolutionProbNotUnique
 LaRcNoFeasibleSolution
 LaRcErrBounds

© 2008 by Taylor & Francis Group, LLC

Chapter 22: LA_Effort 823

 LaRcErrNullPtr
 LaRcErrAlloc
---*/

#include "LA_Prototypes.h"

eLaRc LA_Effort (int m, int n, tMatrix_R ct, tVector_R f,
 int *pIrank, int *pIter, tVector_R a, tNumber_R *pZ)
{
 tVector_I ic = alloc_Vector_I (m + 1);
 tVector_I ip = alloc_Vector_I (n);
 tVector_I ib = alloc_Vector_I (m + n);
 tVector_I nb = alloc_Vector_I (n);
 tVector_R zc = alloc_Vector_R (n);

 int i = 0, ii = 0, ijk = 0, iout = 0, itest = 0, ivo = 0;
 int j = 0, l, jc = 0, jin = 0, m1 = 0, nm = 0;
 tNumber_R bignum = 0.0, d = 0.0, pivot = 0.0;

 /* Validation of the data before executing the algorithm */
 eLaRc rc = LaRcSolutionUnique;
 VALIDATE_BOUNDS ((0 < n) && (n < m));
 VALIDATE_PTRS (ct && f && pIrank && pIter && a && pZ);
 VALIDATE_ALLOC (ic && ip && ib && nb && zc);

 /* Part 1 of the algorithm, */
 bignum = 1.0 / (EPS*EPS);
 *pIter = 0;
 *pIrank = n;
 m1 = m + 1;
 nm = n + m;
 *pZ = 0.0;

 /* Program initialization */
 LA_effort_init (m, n, ct, ib, ic, ip, nb);
 iout = m1;
 jin = 1;
 ic[iout] = 0;
 jc = nb[jin];
 ii = 1;

 /* A Gauss-Jordan elimination step */
 pivot = ct[iout][jin];
 LA_effort_gauss_jordn (iout, jin, m, n, pivot, ct, ic, nb);
 *pIter = *pIter + 1;

© 2008 by Taylor & Francis Group, LLC

824 Numerical Linear Approximation in C

 /* Part 2 of the algorithm, */
 LA_effort_marg_costs (m, n, ct, f, ib, zc);

 /* Calculate the results */
 if (n == 1)
 {
 rc = LA_effort_res (m, n, ct, ib, ic, ip, nb, zc, pIrank, a,
 pZ);
 GOTO_CLEANUP_RC (rc);
 }

 /* Part 3 of the algorithm */
 for (ijk = 1; ijk <= m*m; ijk++)
 {
 /* Determine the vector that enters the basis */
 ivo = 0;
 LA_effort_vent (&ivo, &jin, n, nb, zc, pZ);

 /* Calculate the results */
 if (ivo == 0)
 {
 rc = LA_effort_res (m, n, ct, ib, ic, ip, nb, zc, pIrank,
 a, pZ);
 GOTO_CLEANUP_RC (rc);
 }
 jc = nb[jin];
 if (ivo != 1)
 {
 ib[jc] = -ib[jc];
 if (jc > n)
 {
 for (i = 1; i <= m1; i++)
 {
 ct[i][jin] = ct[i][1] + ct[i][1] - ct[i][jin];
 }
 zc[jin] = zc[1] + zc[1] - zc[jin];
 }
 else
 {
 for (i = 1; i <= m1; i++)
 {
 ct[i][jin] = -ct[i][jin];
 }
 zc[jin] = -zc[jin];

© 2008 by Taylor & Francis Group, LLC

Chapter 22: LA_Effort 825

 f[jc] = -f[jc];
 }
 }

 itest = 0;
 /* Determine the vector that leaves the basis */
 LA_effort_vleav (&itest, jin, &iout, m, ct);

 /* No feasible solution */
 if (itest != 1)
 {
 GOTO_CLEANUP_RC (LaRcNoFeasibleSolution);
 }

 /* A Gauss-Jordan elimination step */
 pivot = ct[iout][jin];

 LA_effort_gauss_jordn (iout, jin, m, n, pivot, ct, ic, nb);
 *pIter = *pIter + 1;
 d = zc[jin];
 for (j = 1; j <= n; j++)
 {
 if (j != jin)
 {
 zc[j] = zc[j] - d * (ct[iout][j]);
 }
 }
 zc[jin] = -zc[jin]/pivot;
 l = ic[m1];
 if (l != ii)
 {
 swap_elems_Vector_I (ip, l, ii);
 ii = l;
 }
 }

CLEANUP:

 free_Vector_I (ic);
 free_Vector_I (ip);
 free_Vector_I (ib);
 free_Vector_I (nb);
 free_Vector_R (zc);

 return rc;

© 2008 by Taylor & Francis Group, LLC

826 Numerical Linear Approximation in C

}

/*---
A Gauss-Jordan elimination step in LA_Effort()
---*/
void LA_effort_gauss_jordn (int iout, int jin, int m, int n,
 tNumber_R pivot, tMatrix_R ct, tVector_I ic, tVector_I nb)
{
 int i, j, k, m1;

 m1 = m + 1;
 k = nb[jin];
 nb[jin] = ic[iout];
 ic[iout] = k;
 for (j = 1; j <= n; j++)
 ct[iout][j] = ct[iout][j]/pivot;
 for (i = 1; i <= m1; i++)
 {
 if (i != iout)
 {
 for (j = 1; j <= n; j++)
 {
 if (j != jin)
 {
 ct[i][j] = ct[i][j] - ct[i][jin] * (ct[iout][j]);
 }
 }
 ct[i][jin] = -ct[i][jin]/pivot;
 }
 ct[iout][jin] = 1.0/pivot;
 }
}

/*---
Initialization of LA_Effort()
---*/
void LA_effort_init (int m, int n, tMatrix_R ct, tVector_I ib,
 tVector_I ic, tVector_I ip, tVector_I nb)
{
 int i, j, k, m1, nm;

 m1 = m + 1;
 nm = n + m;
 for (j = 1; j <= n; j++)
 {

© 2008 by Taylor & Francis Group, LLC

Chapter 22: LA_Effort 827

 nb[j] = j;
 ip[j] = j;
 ct[m1][j] = 0.0;
 }
 for (j = 1; j <= nm; j++)
 {
 ib[j] = 1;
 }
 for (i = 1; i <= m; i++)
 {
 k = i + n;
 ic[i] = k;
 if (ct[i][1] >= EPS)
 {
 for (j = 1; j <= n; j++)
 {
 ct[i][j] = -ct[i][j];
 ib[k] = -1;
 }
 }
 for (j = 1; j <= n; j++)
 {
 ct[m1][j] = ct[m1][j] - ct[i][j];
 }
 }
}

/*---
Calculating the initial marginal costs in LA_Effort()
---*/
void LA_effort_marg_costs (int m, int n, tMatrix_R ct, tVector_R f,
 tVector_I ib, tVector_R zc)
{
 int i, m1, nm;
 tNumber_R d;
 m1 = m + 1;
 nm = n + m;
 d = f[1];
 zc[1] = d * (ct[m1][1]);
 if (zc[1] <= -EPS)
 {
 for (i = 1; i <= n; i++)
 {
 f[i] = -f[i];
 }

© 2008 by Taylor & Francis Group, LLC

828 Numerical Linear Approximation in C

 for (i = 1; i <= nm; i++)
 {
 ib[i] = -ib[i];
 }
 zc[1] = -zc[1];
 }
 if (n > 1)
 {
 for (i = 2; i <= n; i++)
 {
 zc[i] = -f[i] + f[1] * (ct[m1][i]);
 }
 }
}

/*---
Determine the vector that enters the basis in LA_Effort()
---*/
void LA_effort_vent (int *pIvo, int *pJin, int n, tVector_I nb,
 tVector_R zc, tNumber_R *pZ)
{
 int j, jc;
 tNumber_R bignum, d, e, g, gg, tz, tze;

 bignum = 1.0/ (EPS*EPS);
 *pIvo = 0;
 g = bignum;
 *pZ = zc[1];
 tz = *pZ + *pZ;
 tze = tz + EPS;
 for (j = 2; j <= n; j++)
 {
 d = zc[j];
 jc = nb[j];
 if (jc <= n)
 {
 gg = d;
 if (gg < 0.0) gg = -gg;
 if (gg > EPS)
 {
 if (d >= 0.0)
 {
 e = -d;
 if (e < g)

© 2008 by Taylor & Francis Group, LLC

Chapter 22: LA_Effort 829

 {
 *pIvo = -1;
 g = e;
 *pJin = j;
 }
 }
 else if (d < 0.0)
 {
 e = d;
 if (e < g)
 {
 *pIvo = 1;
 g = e;
 *pJin = j;
 }
 }
 }
 }
 else if (jc > n)
 {
 if (d < -EPS)
 {
 e = d;
 if (e < g)
 {
 *pIvo = 1;
 g = e;
 *pJin = j;
 }
 }
 else if (d >= tze)
 {
 e = tz - d;
 if (e < g)
 {
 *pIvo = -1;
 g = e;
 *pJin = j;
 }
 }
 }
 }
}

/*---

© 2008 by Taylor & Francis Group, LLC

830 Numerical Linear Approximation in C

Determine the vector that leaves the basis in LA_Effort()
---*/
void LA_effort_vleav (int *pItest, int jin, int *pIout, int m,
 tMatrix_R ct)
{
 int i, m1;
 tNumber_R d, g, thmax;

 m1 = m + 1;
 thmax = 1.0/ (EPS*EPS);
 for (i = 1; i <= m1; i++)
 {
 d = ct[i][jin];
 if (d > EPS)
 {
 g = ct[i][1]/d;
 if (g <= thmax)
 {
 thmax = g;
 *pIout = i;
 *pItest = 1;
 }
 }
 }
}

/*---
Calculate the results of LA_Effort()
---*/
eLaRc LA_effort_res (int m, int n, tMatrix_R ct, tVector_I ib,
 tVector_I ic, tVector_I ip, tVector_I nb, tVector_R zc, int
 *pIrank, tVector_R a, tNumber_R *pZ)
{
 int i, k, kj, l, m1;
 tNumber_R gg;

 m1 = m + 1;
 for (i = 1; i <= m; i++)
 {
 k = ic[i];
 if (k <= n)
 {
 l = ip[k];
 k = nb[l];
 kj = k - n;

© 2008 by Taylor & Francis Group, LLC

Chapter 22: LA_Effort 831

 a[kj] = zc[l] - *pZ;
 if (ib[k] == -1) a[kj] = -a[kj];
 }
 else if (k > n)
 {
 kj = k - n;
 a[kj] = -*pZ;
 if (ib[k] == -1) a[kj] = *pZ;
 }
 }
 for (i = 1; i <= n; i++)
 {
 gg = fabs (zc[i]);
 if (gg <= EPS)
 {
 *pIrank = *pIrank - 1;
 }
 }
 for (i = 1; i <= m1; i++)
 {
 if (ct[i][1] < EPS)
 return LaRcSolutionProbNotUnique;
 }

 return LaRcSolutionUnique;
}

© 2008 by Taylor & Francis Group, LLC

833

Chapter 23

Bounded Least Squares Solution
of Underdetermined Linear Equations

23.1 Introduction

This is the last of four chapters on the solution of underdetermined
systems of consistent linear equations subject to constraints on the
solution vectors. This chapter differs from the previous 3 chapters,
where we used linear programming techniques, in that we use
quadratic programming techniques. Here, it is required to calculate
the least squares solution of an underdetermined consistent linear
system subject to the constraints that each element of the solution
vector be bounded between �1 and 1.

Consider the underdetermined system of linear equations

(23.1.1) Ca = f

C = (cij) is a given n by m real matrix of rank k, k ≤ n < m, f = (fi) is a
given real n-vector and a = (aj) is the solution m-vector.

Assume throughout that rank(C|f) = rank(C) meaning that system
Ca = f in (23.1.1) is consistent. Since n < m, system Ca = f by itself
has an infinite number of solutions. In Chapter 17, among these
infinite number of solutions, we obtained a solution vector a that
minimizes the least square or the L2 norm ||a||2 of vector a. We call
this the minimal length least squares solution.

In this chapter, the problem is stated as follows. It is required to
minimize half of the square of the L2 norm of vector a

(23.1.2) (1/2)||a||2 = (1/2)(aTa)

subject to the constraints

(23.1.3) �1 ≤ aj ≤ 1, j = 1, 2, �, m

© 2008 by Taylor & Francis Group, LLC

834 Numerical Linear Approximation in C

The problem is dealt with in two steps. The first step is to calculate
the minimal length least squares solution of the undetermined system
Ca = f, without applying the constraints (23.1.3). Let this be called
problem (E0).

We then examine the elements of the solution vector. If they
satisfy the given constraints (23.1.3), then the solution of problem
(E0) is itself the solution of the given problem. If not, we proceed to
the second step, where the elements of vector a are to be bounded
between �1 and 1. We call this problem (E).

Problem (E0): A solution for problem (E0) always exists and is
given by

(23.1.4) a = C+f

where C+ is the pseudo-inverse of matrix C. If rank(C) = n < m, the
solution is unique [9] and

(23.1.5) C+ = CT(CCT)�1

Problem (E) is to find a solution m-vector a that minimizes
(23.1.2), or in effect, minimizes the L2 norm ||a|| and whose elements
are bounded between 1 and �1. As indicated in Chapter 21, if instead
of the constraints (23.1.3), we require vector a to satisfy the
constraints

bi ≤ ai ≤ ci, i = 1, 2, �, m

where vectors b = (bi) and c = (ci) are given m-vectors, by substituting
variables, the above constraints reduce to the constraints (23.1.3) in
the new variables. See Section 7.1.

23.1.1 Applications of the algorithm

This algorithm has been used in digital image restoration [2, 3].
However, this problem is known in control theory as the minimum
energy problem for discrete linear admissible control systems
[4, 5].

A dynamical control system may be described by the vector
difference equation

(23.1.6) x[i + 1] = Ax[i] + Ba[i], i = 0, 1, 2, �

A and B are real constant matrices of dimensions n by n and n by r

© 2008 by Taylor & Francis Group, LLC

Chapter 23: Bounded Least Squares Solution of Underdetermined 835
Linear Equations

respectively, x[i] is the state n-vector and a[i] is the control vector at
time interval i. The minimum energy problem for this control system
is to find a[0], a[1], �, a[N � 1], N ≥ n, that brings the system from
an initial state x[1] = b to a desired state x[N] = c such that

is as small as possible. The recurrence solution of equation (23.1.6)
with the conditions x[1] = b and x[N] = c, gives

This equation could finally be written in the form Ca = f, which is
equation (23.1.1). For admissible control systems, the elements of
vector a satisfy the inequalities (23.1.3), which yields problem (E). A
solution of system Ca = f that satisfies the above constraints may or
may not exist.

Canon and Eaton [4] introduced canonical representation of the
control system and solved problem (E) as a quadratic programming
problem. Again Polak and Deparis [10] used optimal control and
convex programming ideas for solving this problem.

Stark and Parker [11] introduced a FORTRAN subroutine named
BVLS (bounded-variable least-squares) that is modeled on the
non-negative least squares (NNLS) algorithm of Lawson and Hanson
[8]. BVLS solves the least squares problem of the system Ca = f
subject to the constraints l ≤ a ≤ u, where l and u are given vectors.
Using our notation, the relative size of the n by m matrix C of
(23.1.1), is typically n << m.

In this chapter, problem (E) is solved as a quadratic programming
problem for bounded variables. It is based on the simplex method for
quadratic programming introduced by Dantzig [6] and implemented
by van de Panne and Whinston [12, 13].

We take advantage of the special structure of the simplex tableaux
for this problem. Hence, minimum computer storage is needed and the
computation time is considerably reduced. As a result, this method
can deal with fairly large size problems without exhausting the

E 1 2⁄() a i[]Ta i[]
i 0=

N 1�

∑=

c ANb AN 1� i� Ba i[]
i 0=

N 1�

∑+=

© 2008 by Taylor & Francis Group, LLC

836 Numerical Linear Approximation in C

capacity of the computer.
Problem (E0) is solved first as a quadratic programming problem.

Its solution requires k simplex iterations, where k = rank(C). It needs
a small number of arithmetic operations. If the obtained solution
satisfies the inequality constraints (23.1.3), then this solution is also a
solution of problem (E). If not, the simplex tableau is enlarged and the
problem at hand is solved as a quadratic programming problem for
bounded variables.

If Ca = f is consistent but rank deficient; that is, one or more
equations in Ca = f are redundant, the redundant equation(s) are
deleted. The algorithm also detects the case when system Ca = f is
inconsistent, i.e., rank(C|f) > rank(C) and a solution for problems (E0)
and (E) is not feasible. In this case, the calculation terminates.

In section 23.2, the quadratic programming formulation of the
problem is given. In section 23.3, the solution of problem (E0) as a
quadratic programming problem is obtained. Also in section 23.3, the
case of rank deficient consistent system Ca = f and the case of
inconsistent system Ca = f are detected. In section 23.4, the solution
of problem (E) as a quadratic programming problem with bounded
variables is obtained. In section 23.5, numerical results and comments
are given.

23.2 Quadratic programming formulation of the problems

Problem (E0) is formulated as a quadratic programming problem

(23.2.1a) maximize z = �(1/2)aTa

subject to

(23.2.1b) Ca = f

(23.2.1c) aj, j = 1, 2, �, m, unrestricted in sign

The problem is posed as a maximization problem by introducing a �ve
sign in (23.2.1a).

Problem (E) is formulated by (23.2a, b) and

(23.2.1d) �1 ≤ aj ≤ 1, j = 1, 2, �, m

© 2008 by Taylor & Francis Group, LLC

Chapter 23: Bounded Least Squares Solution of Underdetermined 837
Linear Equations

23.3 Solution of problem (E0)

To solve problem (E0) as a quadratic programming problem, we
first write down the Lagrange function

L = �(1/2)aTa � vT(Ca � f)

v is an n-vector of Lagrange multipliers for the constraints (23.2.1b),
namely Ca = f. For optimum L, we differentiate L w.r.t. ai,
i = 1, 2, �, m and also w.r.t. vj, j = 1, 2, �, n, and equate each of the
(m + n) equations to 0. However, we shall not equate the (m + n)
equations to 0�s right away. We do that in two steps, as follows:
(1) The differentiation produces [12, 13]

(23.3.1a) Imu0 � CTv � Ima = 0

(23.3.1b) Ca + Iny = f

(23.3.1c) aj, j = 1, 2, �, m, and vi, i = 1, 2, �, n, unrestricted in sign

In (23.3.1a), u0 is the m-vector whose elements are the
negative of the partial derivatives of the Lagrange function
with respect to the a-variables. In (23.3.1b) we added the
n-vector y, which is assumed to be an n-vector of artificial
variables used to form the initial basic solution of the problem.
Also, Im and In are unit matrices of order m and n respectively.

(2) Solve for a and v by making both u and y as non-basic. This is
done via putting equations (23.3.1a, b) in a simplex tableau
format (Tableau 23.3.1), which is a setup tableau for problem
(E0).

Tableau 23.3.1 (Setup tableau for problem (E0))

B bB u0T vT aT yT

 �������������� ��������������������������������
u0 0 Im �CT �Im 0
y f 0 0 C In

 �������������� ��������������������������������

In this tableau, B denotes the (m + n) basis matrix and bB denotes
the basic solution. The elements of u0 and of y form the (initial) basic
variables.

To solve problem (E0), we change this tableau, by applying

© 2008 by Taylor & Francis Group, LLC

838 Numerical Linear Approximation in C

Gauss-Jordan elimination steps so that the elements of vector a
replace the corresponding elements of vector u0 as basic variables. In
effect, Tableau 23.3.2 is obtained by pre-multiplying the main body of
Tableau 23.3.1 by the inverse of matrix B1

�1, which is its own inverse

Then the elements of vector v replace the corresponding elements
of vector y as basic variables making y a non-basic, again by applying
Gauss-Jordan elimination steps. This gives Tableau 23.3.3. Again, in
effect, Tableau 23.3.3 is obtained by pre-multiplying the main body of
Tableau 23.3.2 by matrix B2

�1, where

where C+ is given by (23.1.5) for rank(C) = n < m.

Tableau 23.3.2 (For problem (E0))

B bB u0T vT aT yT

 �������������� ��������������������������������
a 0 �Im CT Im 0
y f C �CCT 0 In

 �������������� ��������������������������������

Tableau 23.3.3 (Optimal solution for problem (E0))

B bB u0T vT aT yT

 �������������� ��������������������������������
a C+f (�Im+ C+C) 0 Im C+

v �(CCT)�1f �C+T In 0 �(CCT)�1

 �������������� ��������������������������������

In (23.3.1c), the elements of vectors a and v are unrestricted in
sign. Therefore, Tableau 23.3.3 would be the tableau for the optimal
solution. In Tableau 23.3.3, C+ is the pseudo-inverse of matrix C as
given by (23.1.5). Hence, by comparing with (23.1.4), the basic

Im� 0
C In

1�
Im� 0
C In

=

B2
1� Im CT

0 CCT�

1�
Im C+

0 CCT()
1�

�
= =

© 2008 by Taylor & Francis Group, LLC

Chapter 23: Bounded Least Squares Solution of Underdetermined 839
Linear Equations

solution in Tableau 23.3.3, a = C+f, is the optimal solution for
problem (E0).

To ensure the numerical stability of the solution, before changing
the simplex tableau, pivoting is performed as follows. To obtain
Tableau 23.3.2 from Tableau 23.3.1, Gauss-Jordan elimination steps
are used to reduce matrix C in the column of aT to 0.

Again, to obtain Tableau 23.3.3 from Tableau 23.3.2, Gauss-
Jordan elimination steps with pivoting are used to reduce the columns
under vT to a matrix 0 augmented vertically by matrix In. Since matrix
CCT is positive semi-definite, pivoting is done along the diagonal
elements of �CCT.

Because of using partial pivoting in obtaining Tableau 23.3.3, the
calculated C+ in Tableau 23.3.3 would be the pseudo-inverse of
matrix C (not of matrix C), where C is matrix C whose rows are
permuted. The permutation of the rows of C are recorded in an
n-vector of indices.

If rank(C) = k < n, this is determined in the process of applying
the Gauss-Jordan elimination with pivoting. In this case one or more
of the intermediate tableaux between Tableaux 23.3.2 and 23.3.3 has a
row of 0�s. If the corresponding element of the basic solution bBi to
this row is also 0, then system (23.1.2) is consistent but rank deficient.
The row and its zero bBi element are deleted and the rows of the
current tableau are then rearranged. Again, a row of 0�s indicates that
a corresponding column of CT is linearly dependent on one or more of
the previous columns. The calculated C+ would be of dimensions m
by k and it is the pseudo-inverse of matrix C of dimension k by m,
where C contains the linearly independent rows of matrix C, properly
permuted.

If the corresponding element of bB to a row of 0�s is nonzero, the
system is inconsistent and the calculation is terminated, as system
Ca = f would have no feasible solution.

Again, if the elements of the obtained a-solution of problem (E0)
are bounded between �1 and +1, this solution would also be the
solution of problem (E). If the solution vector a of problem (E0) does
not satisfy (23.1.3), we proceed to solve problem (E), as a quadratic
programming problem with bounded variables.

© 2008 by Taylor & Francis Group, LLC

840 Numerical Linear Approximation in C

23.4 Solution of problem (E)

Slack variables xj
1 ≥ 0 and the surplus variables xj

2 ≥ 0,
j = 1, 2, �, m, are needed to convert respectively the right and left
inequalities in (23.2.1d) into equalities.

(23.4.1a) aj + xj
1 = 1, j = 1, 2, �, m

(23.4.1b) �aj + xj
2 = 1, j = 1, 2, �, m

The Lagrange function for problem (E) is then given by

L = �(1/2)aTa � vT(Ca � f) � u1T(a + x1 � e) � u2T(a + x2 � e)

The vectors u0, v and y are defined as in (23.3.1a, b), e is an
m-vector each element of which is 1, and u1 and u2 are m-vectors of
Lagrange multipliers for (23.4.1a, b) respectively. The Kuhn-Tucker
conditions for the solution of problem (E) are the following [14].

(a) Imu0 � Imu1 + Imu2 � CTv � Ima = 0
(b) Ima + Imx1 = e
(c) � Ima + + Imx2 = e
(d) Ca + + Iny = f
(e) u1Tx1 + u2Tx2 = 0
(f) xj

1, xj
2, uj

1, uj
2 ≥ 0, j = 1, 2, �, m

(g) aj, j = 1, 2, �, m and vi, i = 1, 2, �, n, unrestricted in sign

From these conditions, the setup tableau for problem (E) is
constructed (Tableau 23.4.1), where the elements of vectors u0, x1, x2

and y form the initial basic variables.

Tableau 23.4.1 (Setup Tableau for problem (E))

B bB u0T u1T u2T vT aT x1T x2T yT

���������� ���
u0 0 Im �Im Im �CT �Im 0 0 0
x1 e 0 0 0 0 Im Im 0 0
x2 e 0 0 0 0 �Im 0 Im 0
y f 0 0 0 0 C 0 0 In

���������� ���

The setup tableau is now changed as in problem (E0), where the
elements of vector a replace the corresponding elements of vector u0

as basic variables. The elements of vector v then replace the

© 2008 by Taylor & Francis Group, LLC

Chapter 23: Bounded Least Squares Solution of Underdetermined 841
Linear Equations

corresponding elements of vector y as basic variables. That gives
Tableau 23.4.2 (not shown), then Tableau 23.4.3.

Tableau 23.4.3 (For problem (E))

B bB u0T u1T u2T vT aT x1T x2T yT

���������� ���
a C+f G �G G 0 Im 0 0 C+

x1 e�C+f �G G �G 0 0 Im 0 �C+

x2 e+C+f G �G G 0 0 0 Im C+

v �(CCT)�1f �C+T C+T �C+T In 0 0 0 �(CCT)�1

���������� ���

In Tableau 23.4.3, G = (�Im + C+C). This tableau is then changed
in such a way as to satisfy the Kuhn-Tucker conditions (e) and (f).

23.4.1 Asymmetries in the simplex tableau

By examining Tableau 23.4.3, the following asymmetries exist.
(i) The columns under u0T and under u1T are the �ve of one

another.
(ii) The columns under u1T and under u2T are the �ve of one

another.

Lemma 23.1

Let wj
1 and wj

2 be respectively the columns under uj
1and uj

2 in
any tableau after Tableau 23.4.2. Then

wj
1 + wj

2 = 0, j = 1, 2, �, m

and as a result, we have the following lemma.

Lemma 23.2

In any tableau after Tableau 23.4.3, for any j, 1 ≤ j ≤ m, uj
1 and

uj
2, cannot together be basic variables.

Proof:

If uj
1 and uj

2 appear together in any basis, the basis matrix would
be singular.

© 2008 by Taylor & Francis Group, LLC

842 Numerical Linear Approximation in C

Lemma 23.3

Assume in a tableau after Tableau 23.4.3, xj
1 and xj

2, 1 ≤ j ≤ m,
are both basic variables and (gij) and (hij) are the elements of the
tableau opposite xj

1 and xj
2 respectively in the non-basic columns.

Then

gij = �hij

For the proof of a similar lemma, see ([14], pp. 176, 177)

Standard and non-standard tableau

If in any of the tableaux following Tableau 23.4.3, condition (e) of
Kuhn-Tucker is satisfied, the tableau is defined as a standard tableau.

For condition (e) to be satisfied, if uj
1, j = 1, 2, �, m, is a basic

variable, xj
1 is non-basic, and vice versa. The same is true for uj

2 and
xj

2, j = 1, 2, �, m. If condition (e) is not satisfied, the tableau is
nonstandard.

For any standard tableau and from Lemma 23.2, one of the
following pairs of variables is basic, (xj

1 and uj
2), (uj

1 and xj
2) or

(xj
1 and xj

2), j = 1, 2, �, m.

Lemma 23.4

In any standard tableau the following are satisfied:
(a) If xj

1 and uj
2 are basic variables, xj

2 = 0, xj
1 = 2 and aj = �1.

(b) If uj
1 and xj

2 are basic variables, xj
1 = 0, xj

2 = 2 and aj = 1.
(c) If xj

1 and xj
2 are both basic variables, xj

1 + xj
2 = 2.

Lemma 23.5

In any tableau, standard or not, where only xj
1 or xj

2 is a basic
variable, 1 ≤ j ≤ m, we have the following. If xj

1 say is non-basic, the
row opposite xj

2 has zero elements in the non-basic columns, except
under xj

1, where the element is 1 and xj
2 = 2. The same is true when

the roles of xj
1 and xj

2 are exchanged.

23.4.2 The condensed tableau for problem (E)

Because of the Kuhn-Tucker condition (g), the elements of vectors
a and v are unrestricted in sign, the elements of their respective
corresponding vectors u0 and y should be 0�s. They are so in Tableau

© 2008 by Taylor & Francis Group, LLC

Chapter 23: Bounded Least Squares Solution of Underdetermined 843
Linear Equations

23.4.3, and they should stay non-basic in all the following tableaux. In
other words, the elements of vectors a and v should stay basic
variables in all the following tableaux.

Tableau 23.4.4 (Condensed tableau for problem (E))

B bB u0T vT aT yT

 �������������� ��������������������������������
x1 e � C+f G �G Im 0
x2 e + C+f �G G 0 Im

 �������������� ��������������������������������

where G was defined earlier and is G = (�Im+ C+C).
In effect, we may disregard in Tableau 23.4.3 and the following

tableaux, the m and n rows that correspond to the elements of vectors
a and v respectively. We also disregard the columns that correspond
to the elements of vectors a, u0T, vT and y. The calculation in the
following simplex steps is confined to the remaining part of Tableau
23.4.3, which we denote by Tableau 23.4.4. We call this a condensed
tableau. Finally, for optimal solution, the elements xj

1, xj
2, uj

1, uj
2,

j = 1, 2, �, m, are to be non-negative in a standard condensed
tableau.

23.4.3 The dual method of solution

Let from now on, u denote either of the vectors u1 or u2 and
similarly let x denote either of the vectors x1 or x2. The x-variables are
known as the primal variables and the corresponding u-variables are
the dual variables.

A new obtained tableau may or may not be a standard one. In a
non-standard tableau, if an x-variable and its corresponding u-variable
are both basic, they are known as a basic pair. If they are both
non-basic, they are known as a non-basic pair. It has been shown [12,
13], that the rules of changing the simplex tableau may be such that
there is only one basic pair and one non-basic pair in a nonstandard
tableau.

Tableau 23.4.4 is a standard tableau, and where u ≥ 0, the dual
variables have feasible solution. Thus Tableau 23.4.4 is a suitable
initial tableau for the solution of problem (E) using the dual method
for quadratic programming. The rules of changing the simplex tableau

© 2008 by Taylor & Francis Group, LLC

844 Numerical Linear Approximation in C

are found in ([12], p. 296).

23.4.4 The reduced tableau for problem (E)

We show here that it is sufficient to store 1/8 of the condensed
tableau. That is, 1/2 the non-basic columns and 1/2 the rows opposite
the basic variables. The columns of the basic variables are also not
stored, as each is a column in a 2m-unit matrix. The remaining part of
the tableau can easily be obtained from the stored part. We call this m
by m tableau, the reduced tableau.

Let xj
1 and uj

2, 1 ≤ j ≤ m, both be basic variables. In this case
the column under xj

2 and the row opposite uj
2 are stored. From

Lemma 23.1, in the condensed tableau, the column under uj
1 is ej,

where ej is the jth column in an 2m-unit matrix, and from Lemma
23.5, the row opposite xj

1 consists of zero elements, except under xj
2,

where the element is 1.
Let xj

1 and xj
2 both be basic variables, 1 ≤ j ≤ m. If 0 ≤ xj

1 ≤ 2,
then from the Kuhn Tucker conditions (b) and (c), 0 ≤ xj

2 ≤2. In this
case the row opposite either xj

1 or xj
2 and the column under the

corresponding non-basic u-variable are stored.
From Lemmas 23.3 and 23.1, the un-stored row and column

respectively are known. If, on the other hand, we let xj
1 < 0, then

xj
2 > 2. In this case the row opposite xj

1 and the column under its
corresponding non-basic u-variable are stored.

In a nonstandard tableau, in which ui
1 say, did replace uj

1 in the
basis, we store the column under xj

1 and the row opposite uj
1.

Again from Lemma 23.1, the column under ui
2 is �ei, and from

Lemma 23.5, the row opposite xj
2 has zero elements, except under xj

1,
where it is 1. Hence, in all cases, 1/8 of the condensed tableau is
stored. This includes the data needed for the following iterations.

23.4.5 The method of solution of problem (E)

All calculation is done in the reduced tableaux [1], using the dual
method for quadratic programming, in a manner very similar to that
used in [13]. Index indicator vector accounts for the corresponding
part of the tableau.

If a solution for problem (E) does not exist, in the simplex step, no

© 2008 by Taylor & Francis Group, LLC

Chapter 23: Bounded Least Squares Solution of Underdetermined 845
Linear Equations

non-basic variable at a positive level is found to replace a basic
variable at a negative level. However, if a solution exists, the
convergence of the method is guaranteed [12].

23.5 Numerical results and comments

LA_Energy() implements this algorithm, and DR_Energy() tests 3
examples. The examples were solved in both single- and
double-precision, the results of which are given here.

Also, the 7 test cases of Chapter 20 were demonstrated for this
algorithm. The third example, whose matrix C is a 2 by 3 matrix, has
no feasible solution. The one whose matrix C is a 4 by 5 matrix is
given here as Example 23.1. For the other 5 test cases of Chapter 20,
the elements of the solution vector a satisfy the boundedness
constraints (23.1.3); that is, the solution of problem (E0) is itself the
solution of the given problem (E).

Example 23.1

Matrix C is a well conditioned 4 by 5 matrix of rank 2. The
solution is obtained after 3 (= rank + 1) iterations; 2 for problem (E0)
and 1 for problem (E). The result is the same, regardless of single- or
double-precision computation.

2a1 + a2 � 3a3 + 5a4 + 3a5 = 10
2a1 + a2 � 3a3 + 5a4 + 3a5 = 10
2a1 + a2 � 3a3 + 5a4 + 3a5 = 10

�8a1 � 4a2 + 2a3 + 5a4 + 6a5 = 8

a = (0.139, 0.070, �0.614, 1.0, 0.937)T

z = 0.5||a||2 = 1.139

Example 23.2

Matrix C is a 4 by 19 badly conditioned matrix of rank 4. Using
single-precision computation, the problem has no feasible solution.
The following solution, computed in double-precision, is obtained
after 20 iterations.

a = (�1, �1, �1, �1, �1, �0.534, 1, 1, 1, 1, 1, 1, 0.393, �1, �1, �1, �1,
0.139, 1)T

© 2008 by Taylor & Francis Group, LLC

846 Numerical Linear Approximation in C

z = 0.5||a||2 = 8.230

Example 23.3

Matrix C is a 4 by 20 matrix of rank 4, the extension of matrix C
of the previous example. It is not badly conditioned. The obtained
results are the same, regardless of single- or double-precision
computation. It converges in 8 iterations. The results are

a = (�1, �1, �1, �0.799, �0.410, �0.058, 0.247, 0.491, 0.661, 0.744,
0.732, 0.618, 0.403, 0.102, �0.251, 0.596, �0.832, �0.798,
�0.254, 1)T

z = 0.5||a||2 = 4.502

We note here that the calculation for problem (E0) is numerically
stable. This is because of using pivoting in the simplex steps. As for
problem (E), the numerical results indicate the following.

If the problem has a solution, the parameter θ

θ = min(bBi/gi ≥ 0), i ∈ I

where I is the set of indices associated with the basic u-variables and
xl, are less than or of the order of 1, the calculation is also numerically
stable. If the problem does not have a solution, the parameters θ
becomes larger and larger in the successive iterations, and as a result,
the build up of the round-off error increases. The algorithm terminates
when the pivot in the simplex step is of wrong sign or is a very small
number of the order of the round-off error of the computer.

References

1. Abdelmalek, N.N, Minimum energy problem for discrete
linear admissible control systems, International Journal of
Systems Science, 10(1979)77-88.

2. Abdelmalek, N.N., Restoration of images with missing
high-frequency components using quadratic programming,
Applied Optics, 22(1983)2182-2188.

3. Abdelmalek, N.N. and Kasvand, T., Digital image restoration
using quadratic programming, Applied Optics, 19(1980)3407-
3415.

© 2008 by Taylor & Francis Group, LLC

Chapter 23: Bounded Least Squares Solution of Underdetermined 847
Linear Equations

4. Canon, M.D. and Eaton, J.H., A new algorithm for a class of
quadratic programming problems with application to control,
SIAM Journal on Control, 4(1966)34-45.

5. Canon, M.D., Cullum Jr., C.D. and Polak, E., Theory of
Optimal Control and Mathematical Programming, McGraw-
Hill, New York, 1970.

6. Dantzig, G.B., Linear Programming and Extensions,
Princeton University Press, Princeton, NJ, 1963.

7. Hadley, G., Linear Programming, Addison-Wesley, Reading,
MA, 1962.

8. Lawson, C.W. and Hanson, R.J., Solving Least Squares
Problems, Prentice Hall, Englewood Cliffs, NJ, 1974.

9. Peters, G. and Wilkinson, J.H., The least squares problem and
pseudo-inverses, Computer Journal, 13(1970)309-316.

10. Polak, E. and Deparis, M., An algorithm for minimum
energy control, IEEE Transactions on Automatic Control,
14(1969)367-377.

11. Stark, P.B. and Parker, R.L., Bounded-variable least-squares:
An algorithm and applications, Computational Statistics,
10(1995)129-141.

12. van de Panne, C. and Whinston, A., Simplicial methods for
quadratic programming, Naval Research Logistic Quarterly,
11(1964)273-302.

13. van de Panne, C. and Whinston, A., Simplex and the dual
method for quadratic programming, Operations Research
Quarterly, 15(1964)355-388.

14. Whinston, A., The bounded variable problem � An application
of the dual method for quadratic programming, Naval
Research Logistics Quarterly, 12(1965)173-179.

© 2008 by Taylor & Francis Group, LLC

848 Numerical Linear Approximation in C

23.6 DR_Energy

/*---
DR_Energy

This program is a driver for the function LA_Energy(), which
calculates the minimum bounded least squares solution of an
underdetermined consistent system of linear equations.

Given is the underdetermined consistent system

 c*a = f

"c" is a given real n by m matrix of rank k, k <= n <= m.
"f" is a given real n vector.

It is required to calculate the m vector "a" for this system such
that the elements of "a" satisfy

 -1 <= a[j] <= 1, j = 1, 2, ..., m

and that half of the square of the L2 (L-Two) norm of vector "a"

 z = 0.5*[sum[a[j]*a[j]], sum over j from 1 to m

is as small as possible.

In control theory, this problem is known as the "Minimum Energy"
problem for discrete linear admissible control systems.

This program carries 3 examples.whose results appear in the text.
---*/

#include "DR_Defs.h"
#include "LA_Prototypes.h"

#define MNe_ROWS (Ne_ROWS + Me_COLS) /* From DR_Defs.h */
#define MNe_COLS (Ne_ROWS + Me_COLS)
#define N1e 4
#define M1e 5
#define N2e 4
#define M2e 19
#define M3e 20

© 2008 by Taylor & Francis Group, LLC

Chapter 23: DR_Energy 849

void DR_Energy (void)
{
 /*--
 Constant matrices/vectors
 --*/
 static tNumber_R b1init[N1e][M1e] =
 {
 { 2.0, 1.0, -3.0, 5.0, 3.0 },
 { 2.0, 1.0, -3.0, 5.0, 3.0 },
 { 2.0, 1.0, -3.0, 5.0, 3.0 },
 {-8.0, -4.0, 2.0, 5.0, 6.0 }
 };

 static tNumber_R f1[N1e+1] =
 { NIL,
 10.0, 10.0, 10.0, 8.0
 };

 /*--
 Variable matrices/vectors
 --*/
 tMatrix_R ct = alloc_Matrix_R (MNe_ROWS, MNe_COLS);
 tVector_R f = alloc_Vector_R (Ne_ROWS);
 tVector_R a = alloc_Vector_R (Me_COLS);
 tMatrix_R fay = alloc_Matrix_R (N2e, M3e);
 tVector_R fy = alloc_Vector_R (N2e + 1);

 tMatrix_R b1 = init_Matrix_R (&(b1init[0][0]), N1e, M1e);

 int irank, iter;
 int i, j, m, n, i2, Iexmpl;
 tNumber_R z;

 eLaRc rc = LaRcOk;

 for (i = 1; i <= 2; i++)
 {
 i2 = i + 2;
 fy[i] = -2.0;
 fy[i2] = -4.0;
 }
 for (j = 1; j <= 20; j++)
 {
 i = j;
 fay[1][j] = 1.0;

© 2008 by Taylor & Francis Group, LLC

850 Numerical Linear Approximation in C

 fay[2][j] = pow (1.1, i);
 fay[3][j] = pow (1.2, i);
 fay[4][j] = pow (1.3, i);
 }

 prn_dr_bnr ("DR_Energy, "
 "Bounded L2 Solution of an Underdetermined System");

 for (Iexmpl = 1; Iexmpl <= 3; Iexmpl++)
 {
 switch (Iexmpl)
 {
 case 1:
 n = N1e;
 m = M1e;
 for (i = 1; i <= n; i++)
 {
 f[i] = f1[i];
 for (j = 1; j <= m; j++)
 ct[j][i] = b1[i][j];
 }
 break;

 case 2:
 n = N2e;
 m = M2e;
 for (i = 1; i <= n; i++)
 {
 f[i] = fy[i];
 for (j = 1; j <= m; j++)
 ct[j][i] = fay[i][j];
 }
 break;

 case 3:
 n = N2e;
 m = M3e;
 for (i = 1; i <= n; i++)
 {
 f[i] = fy[i];
 for (j = 1; j <= m; j++)
 ct[j][i] = fay[i][j];
 }
 break;
 default:

© 2008 by Taylor & Francis Group, LLC

Chapter 23: DR_Energy 851

 break;
 }
 prn_algo_bnr ("Energy");
 prn_example_delim();
 PRN ("Example #%d: Size of matrix \"c\" %d by %d\n",
 Iexmpl, n, m);
 prn_example_delim();
 PRN ("Bounded Least Squares Solution of an Underdetermined "
 "System\n");
 prn_example_delim();
 PRN ("r.h.s. Vector \"f\"\n");
 prn_Vector_R (f, n);
 PRN ("Transpose of Coefficient Matrix, \"ct\"\n");
 prn_Matrix_R (ct, m, n);

 rc = LA_Energy (m, n, ct, f, &irank, &iter, a, &z);

 if (rc >= LaRcOk)
 {
 PRN ("\n");
 PRN ("Results of Minimum Energy Solution\n");
 PRN ("Minimum Energy solution vector \"a\"\n");
 prn_Vector_R (a, m);
 PRN ("Norm z = 0.5||a||*||a||= %8.4f\n", z);
 PRN ("Rank of matrix \"c\" = %d, No. of Iterations "
 "= %d\n", irank, iter);
 }

 LA_check_rank_def (n, irank);
 prn_la_rc (rc);
 }

 free_Matrix_R (ct, MNe_ROWS);
 free_Vector_R (f);
 free_Vector_R (a);
 free_Matrix_R (fay, N2e);
 free_Vector_R (fy);

 uninit_Matrix_R (b1);
}

© 2008 by Taylor & Francis Group, LLC

852 Numerical Linear Approximation in C

23.7 LA_Energy

/*---
LA_Energy

Given is the consistent underdetermined system of linear equations

 c*a = f

"c" is a given real n by m matrix of rank k, k <= n <= m.
"f" is a given real n vector.

It is required to calculate the m vector "a" for this system that
satisfies the conditions

 -1 <= a[j] <= 1, j = 1, 2, ..., m

and that half of square of the L2 norm of vector "a"

 z = 0.5*sum([a[j]*a[j]), sum over j from 1 to m

is as small as possible.

In control theory, this is known as the "Minimum Energy" problem for
discrete linear admissible control systems.

Inputs
m Number of columns of matrix "c" in the system c*a = f.
n Number of rows of matrix "c" in the system c*a = f.
ct An (m + n) by (m + n) matrix whose first m rows and first n
 columns contain the transpose of matrix "c" of the system
 c*a = f.
f An n vector that contains the r.h.s. of the system c*a = f.

Outputs
irank The calculated rank of matrix "c".
iter The number of iterations or the number of times the simplex
 tableau is changed by a Gauss-Jordan step.
a A real m vector that is the minimum energy solution of the
 system c*a = f.
z Half the square of the minimum L2 norm of the solution
 vector "a".

Returns one of

© 2008 by Taylor & Francis Group, LLC

Chapter 23: LA_Energy 853

 LaRcSolutionFound
 LaRcNoFeasibleSolution
 LaRcInconsistentSystem
 LaRcErrBounds
 LaRcErrNullPtr
 LaRcErrAlloc
---*/

#include "LA_Prototypes.h"

eLaRc LA_Energy (int m, int n, tMatrix_R ct, tVector_R f,
 int *pIrank, int *pIter, tVector_R a, tNumber_R *pZ)
{
 tVector_I ic = alloc_Vector_I (n);
 tVector_I ir = alloc_Vector_I (m);
 tVector_I ik = alloc_Vector_I (m);

 int i = 0, jin = 0, ibc = 0, iijj = 0, ijk = 0, iout = 0,
 irjin = 0;
 int ikj0 = 0, ikj1 = 0, istd = 0, ivo = 0;
 int itest = 0, ikj2 = 0, ikk = 0, iriout = 0, j = 0,
 k = 0, j0 = 0, j1 = 0, j2 = 0;
 int mn = 0, np1 = 0, nj0 = 0;
 tNumber_R e = 0.0, opeps = 0.0, pivot = 0.0;
 eLaRc tempRc;

 /* Validation of the data before executing algorithm */
 eLaRc rc = LaRcSolutionFound;
 VALIDATE_BOUNDS ((0 < n) && (n <= m) && !((n == 1) && (m == 1)));
 VALIDATE_PTRS (ct && f && pIrank && pIter && a && pZ);
 VALIDATE_ALLOC (ic && ir && ik);

 /* Initialization */
 *pIrank = n;
 *pIter = 0;
 *pZ = 0.0;
 np1 = n + 1;
 mn = m + n;
 opeps = 1.0 + EPS;

 /* Initializing the data */
 LA_energy_init (m, n, ct, ic, ir, ik, a);

 /* Phase 1 of the algorithm */
 tempRc = LA_energy_phase_1 (m, n, ct, f, ic, a, pIrank, pIter);

© 2008 by Taylor & Francis Group, LLC

854 Numerical Linear Approximation in C

 if (tempRc < LaRcOk)
 {
 GOTO_CLEANUP_RC (tempRc);
 }

 ibc = 0;
 for (i = 1; i <= m; i++)
 {
 if (fabs (a[i]) > opeps) ibc = 1;
 }

 if (ibc == 0)
 {
 /* The norm z */
 LA_energy_norm (m, a, pZ);
 GOTO_CLEANUP_RC (LaRcSolutionFound);
 }

 /* Phase 2 of the program */
 LA_energy_phase_2 (m, n, ct, ir, ik, pIrank, a);

 istd = 1;
 j1 = 0;
 for (ijk = 1; ijk <= m*m; ijk++)
 {
 if (istd != 1)
 {
 j0 = j1;
 nj0 = n + j1;
 iijj = 1;
 }

 if (istd == 1)
 {
 /* Determine the vector that enters the basis */
 ivo = 0;
 LA_energy_vent (&ivo, &jin, m, n, ir, a);

 /* Calculate the results */
 if (ivo == 0)
 {
 LA_energy_res (m, n, ct, ir, a);
 /* The specified norm */
 LA_energy_norm (m, a, pZ);

© 2008 by Taylor & Francis Group, LLC

Chapter 23: LA_Energy 855

 GOTO_CLEANUP_RC (LaRcSolutionFound);
 }

 if (ivo == 1)
 {
 for (j = np1; j <= mn; j++)
 {
 ct[jin][j] = -ct[jin][j];
 }
 a[jin] = 2.0 - a[jin];
 ir[jin] = -ir[jin];
 }
 irjin = ir[jin];
 ikj1 = irjin + mn;

 if (irjin < 0) ikj1 = irjin - mn;
 iijj = 0;

 for (j = 1; j <= m; j++)
 {
 j0 = j;
 nj0 = n + j0;
 ikj0 = ik[j0];
 if (ikj0 == ikj1)
 {
 iijj = 1;
 break;
 }

 if (ikj0 == -ikj1)
 {
 for (i = 1; i <= m; i++)
 {
 ct[i][nj0] = -ct[i][nj0];
 }
 ik[j0] = -ik[j0];
 ikj0 = -ikj0;
 iijj = 1;
 break;
 }
 }

 if (iijj == 0)
 {
 GOTO_CLEANUP_RC (LaRcNoFeasibleSolution);

© 2008 by Taylor & Francis Group, LLC

856 Numerical Linear Approximation in C

 }
 }

 itest = 0;
 iout = 0;
 /* Determine the vector that leaves the basis */
 LA_energy_vleav (&itest, jin, m, n, &iout, j0, ct, ir, a);

 /* The problem has no feasible solution */
 if (itest == 0)
 {
 GOTO_CLEANUP_RC (LaRcNoFeasibleSolution);
 }
 if ((istd != 1) || (iout != jin))
 {
 istd = 0;
 iriout = ir[iout];
 ikj1 = iriout - mn;
 if (iriout < 0) ikj1 = iriout + mn;
 iijj = 0;
 for (j = 1; j <= m; j++)
 {
 j2 = j;
 ikj2 = ik[j2];
 if (ikj2 == ikj1)
 {
 for (k = 1; k <= m; k++)
 {
 ikk = ik[k];
 if (ikk == ikj2)
 {
 j1 = k;
 iijj = 1;
 break;
 }
 }
 if (iijj == 1) break;
 }
 }
 if (iijj == 0)
 {
 /* The problem has no feasible solution */
 GOTO_CLEANUP_RC (LaRcNoFeasibleSolution);
 }
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 23: LA_Energy 857

 istd = 1;
 pivot = ct[iout][nj0];
 e = fabs (pivot);
 LA_energy_gauss_jordn_e (m, n, iout, j0, ct, ir, ik, a);
 *pIter = *pIter + 1;
 }

CLEANUP:

 free_Vector_I (ic);
 free_Vector_I (ir);
 free_Vector_I (ik);

 return rc;
}

/*---
LA_Energy() initialization
---*/
void LA_energy_init (int m, int n, tMatrix_R ct, tVector_I ic,
 tVector_I ir, tVector_I ik, tVector_R a)
{
 int i, j, k, np1, mi, mj, nj, mn;
 tNumber_R s;

 np1 = n + 1;
 mn = m + n;

 for (j = np1; j <= mn; j++)
 {
 for (i = 1; i <= m; i++)
 {
 ct[i][j] = 0.0;
 }
 }

 for (j = 1; j <= m; j++)
 {
 ir[j] = 0;
 ik[j] = 0;
 a[j] = 0.0;
 nj = j + n;
 for (i = 1; i <= n; i++)
 {
 mi = m + i;

© 2008 by Taylor & Francis Group, LLC

858 Numerical Linear Approximation in C

 ct[mi][nj] = ct[j][i];
 }
 }

 /* Calculating matrix [-(c*c(transpose))] */
 for (j = 1; j <= n; j++)
 {
 ic[j] = j;
 mj = m + j;
 for (i = j; i <= n; i++)
 {
 mi = m + i;
 s = 0.0;
 for (k = 1; k <= m; k++)
 {
 s = s + ct[k][i] * (ct[k][j]);
 }
 ct[mj][i] = -s;
 ct[mi][j] = -s;
 }
 }
}

/*---
Phase 1 of LA_Energy()
---*/
eLaRc LA_energy_phase_1 (int m, int n, tMatrix_R ct, tVector_R f,
 tVector_I ic, tVector_R a, int *pIrank, int *pIter)
{
 int i, j, ij, iout, kd = 0, kdp = 0, mj, mn, mout;
 tNumber_R d, piv;

 mn = m + n;
 iout = 0;

 for (ij = 1; ij <= n; ij++)
 {
 iout = iout + 1;
 if (iout <= *pIrank)
 {
 /* Pivoting along the diagonal elements of
 ct*ct(transpose) */
 mout = m + iout;
 piv = 0.0;
 for (j = iout; j <= n; j++)

© 2008 by Taylor & Francis Group, LLC

Chapter 23: LA_Energy 859

 {
 mj = m + j;
 d = fabs (ct[mj][j]);
 if (d > piv)
 {
 kd = j;
 kdp = mj;
 piv = d;
 }
 }

 if (piv > EPS)
 {
 if (kdp != mout)
 {
 swap_rows_Matrix_R (ct, kdp, mout);
 }
 if (kd != iout)
 {
 swap_elems_Vector_R (f, kd, iout);
 swap_elems_Vector_I (ic, kd, iout);
 /* Swap two columns of matrix "ct" */
 for (i = 1; i <= mn; i++)
 {
 d = ct[i][iout];
 ct[i][iout] = ct[i][kd];
 ct[i][kd] = d;
 }
 }

 /* A Gauss-Jordan eliminaion step */
 LA_energy_gauss_jordn_e0 (iout, m, n, ct, f, a);
 *pIter = *pIter + 1;
 }
 else if (piv < EPS)
 {
 for (i = iout; i <= n; i ++)
 {
 if (fabs (f[i]) > EPS)
 return LaRcInconsistentSystem;
 }
 *pIrank = iout - 1;
 }
 }
 }

© 2008 by Taylor & Francis Group, LLC

860 Numerical Linear Approximation in C

 return LaRcOk;
}

/*---
Phase 2 of LA_Energy()
---*/
void LA_energy_phase_2 (int m, int n, tMatrix_R ct, tVector_I ir,
 tVector_I ik, int *pIrank, tVector_R a)
{
 int i, j, k, mk, mn, ni, nj;
 tNumber_R s;

 /* Calculating (c * pseuedo-inverse * c) */
 mn = m + n;
 for (j = 1; j <= m; j++)
 {
 nj = n + j;
 for (i = j; i <= m; i++)
 {
 ni = n + i;
 s = 0.0;
 for (k = 1; k <= *pIrank; k++)
 {
 mk = m + k;
 s = s + ct[i][k] * (ct[mk][nj]);
 }
 ct[i][nj] = s;
 ct[j][ni] = s;
 }
 }

 /* Calculating (c * pseuedo-inverse * c - m-Unit matrix) */
 for (i = 1; i <= m; i++)
 {
 ir[i] = i;
 ik[i] = mn + i;
 a[i] = 1.0 - a[i];
 ni = n + i;
 ct[i][ni] = ct[i][ni] - 1.0;
 }
}

/*---
Norm z in LA_Energy()

© 2008 by Taylor & Francis Group, LLC

Chapter 23: LA_Energy 861

---*/
void LA_energy_norm (int m, tVector_R a, tNumber_R *pZ)
{
 int i;
 tNumber_R s;

 s = 0.0;
 for (i = 1; i <= m; i++)
 {
 s = s + a[i] * (a[i]);
 }
 *pZ = 0.5 * s;
}

/*---
A Gauss-Jordan elimination step for problem E0 in LA_Energy()
---*/
void LA_energy_gauss_jordn_e0 (int iout, int m, int n, tMatrix_R ct,
 tVector_R f, tVector_R a)
{
 int i, j, jin, mn, mout, k;
 tNumber_R d, pivot;

 mn = m + n;
 jin = iout;
 mout = m + iout;
 pivot = ct[mout][jin];
 for (j = 1; j <= n; j++)
 {
 ct[mout][j] = ct[mout][j]/pivot;
 }
 f[iout] = f[iout]/pivot;
 for (i = 1; i <= mn; i++)
 {
 if (i != mout)
 {
 d = ct[i][jin];
 for (j = 1; j <= n; j++)
 {
 if (j != jin)
 {
 ct[i][j] = ct[i][j] - d * (ct[mout][j]);
 }
 }

© 2008 by Taylor & Francis Group, LLC

862 Numerical Linear Approximation in C

 ct[i][jin] = -ct[i][jin]/pivot;
 if (i > m)
 {
 k = i - m;
 f[k] = f[k] - d * (f[iout]);
 }
 else if (i <= m)
 {
 a[i] = a[i] - d * (f[iout]);
 }
 }
 }
 ct[mout][jin] = 1.0/pivot;
}

/*---
A Gauss-Jordan elimination step for problem E in LA_Energy()
---*/
void LA_energy_gauss_jordn_e (int m, int n, int iout, int j0,
 tMatrix_R ct, tVector_I ir, tVector_I ik, tVector_R a)
{
 int i, j, k, mn, np1, nj0;
 tNumber_R d, pivot;

 mn = m + n;
 np1 = n + 1;
 nj0 = n + j0;
 pivot = ct[iout][nj0];

 for (j = np1; j <= mn; j++)
 {
 ct[iout][j] = ct[iout][j]/pivot;
 }

 a[iout] = a[iout]/pivot;

 for (i = 1; i <= m; i++)
 {
 if (i != iout)
 {
 d = ct[i][nj0];
 ct[i][nj0] = -ct[i][nj0]/pivot;
 a[i] = a[i] - d * (a[iout]);
 for (j = np1; j <= mn; j++)
 {

© 2008 by Taylor & Francis Group, LLC

Chapter 23: LA_Energy 863

 if (j != nj0)
 {
 ct[i][j] = ct[i][j] - d * (ct[iout][j]);
 }
 }
 }
 }

 ct[iout][nj0] = 1.0/pivot;
 k = ik[j0];
 ik[j0] = ir[iout];
 ir[iout] = k;
}

/*---
Determine the vector that enters the basis in LA_Energy()
---*/
void LA_energy_vent (int *pIvo, int *pJin, int m, int n, tVector_I ir,
 tVector_R a)
{
 int i, k, mn;
 tNumber_R d, e, g, tpeps;

 mn = m + n;
 tpeps = 2.0 + EPS;
 g = 1.0;
 for (i = 1; i <= m; i++)
 {
 k = ir[i];
 if (k < 0) k = -k;
 if (k <= mn)
 {
 e = a[i];
 if (e < -EPS)
 {
 d = e;
 if (d < g)
 {
 *pIvo = -1;
 g = d;
 *pJin = i;
 }
 }

 if (e >= tpeps)

© 2008 by Taylor & Francis Group, LLC

864 Numerical Linear Approximation in C

 {
 d = 2.0 - e;
 if (d < g)
 {
 *pIvo = 1;
 g = d;
 *pJin = i;
 }
 }
 }
 }
}

/*---
Determine the vector that leaves the basis in LA_Energy()
---*/
void LA_energy_vleav (int *pItest, int jin, int m, int n, int *pIout,
 int j0, tMatrix_R ct, tVector_I ir, tVector_R a)
{
 int i, iri, mn, nj0;
 tNumber_R d, e, g, thmax;

 mn = m + n;
 nj0 = n + j0;
 thmax = 1.0/ (EPS*EPS);
 for (i = 1; i <= m; i++)
 {
 if (i != jin)
 {
 iri = ir[i];
 if (iri < 0) iri = -iri;
 if (iri < mn) continue;
 }
 d = ct[i][nj0];
 e = d;

 if (e < 0.0)
 {
 e = -e;
 }

 if (e >= EPS)
 {
 g = a[i]/d;
 if (g >= 0.0 && g < thmax)

© 2008 by Taylor & Francis Group, LLC

Chapter 23: LA_Energy 865

 {
 thmax = g;
 *pItest = 1;
 *pIout = i;
 }
 }
 }
}

/*---
Calculate the results of LA_Energy()
---*/
void LA_energy_res (int m, int n, tMatrix_R ct, tVector_I ir,
 tVector_R a)
{
 int i, iri, mn;
 tNumber_R g;

 mn = m + n;

 for (i = 1; i <= m; i++)
 {
 ct[mn][i] = a[i];
 }

 for (i = 1; i <= m; i++)
 {
 g = ct[mn][i];
 iri = ir[i];
 if (iri > mn)
 {
 g = 1.0;
 iri = iri - mn;
 a[iri] = g;
 continue;
 }

 if (iri < -mn)
 {
 g = -1.0;
 iri = -mn - iri;
 a[iri] = g;
 continue;
 }

© 2008 by Taylor & Francis Group, LLC

866 Numerical Linear Approximation in C

 if (iri > 0)
 {
 g = 1.0 - g;
 a[iri] = g;
 continue;
 }

 if (iri <= 0)
 {
 g = g - 1.0;
 iri = -iri;
 a[iri] = g;
 continue;
 }
 }
}

© 2008 by Taylor & Francis Group, LLC

Appendices

© 2008 by Taylor & Francis Group, LLC

868 Numerical Linear Approximation in C

Appendix A References 869

Appendix B Main Program 893

Appendix C Constants, Types and Function Prototypes 897

Appendix D Utilities and Common Functions 917

© 2008 by Taylor & Francis Group, LLC

869

Appendix A

References

1. Abdelmalek, N.N., Linear L1 approximation for a discrete
point set and L1 solutions of overdetermined linear equations,
Journal of ACM, 18(1971)41-47.

2. Abdelmalek, N.N., Round-off error analysis for
Gram-Schmidt method and solution of linear least squares
problems, BIT, 11(1971)345-367.

3. Abdelmalek, N.N., On the discrete L1 approximation and L1
solutions of overdetermined linear equations, Journal of
Approximation Theory, 11(1974)38-53.

4. Abdelmalek, N.N., On the solution of linear least squares
problems and pseudo-inverses, Computing, 13(1974)215-228.

5. Abdelmalek, N.N., Chebyshev solution of overdetermined
systems of linear equations, BIT, 15(1975)117-129.

6. Abdelmalek, N.N., An efficient method for the discrete linear
L1 approximation problem, Mathematics of Computation,
29(1975)844-850.

7. Abdelmalek, N.N. A computer program for the Chebyshev
solution of overdetermined systems of linear equations,
International Journal for Numerical Methods in Engineering,
10(1976)1197-1202.

8. Abdelmalek, N.N., The discrete linear one-sided Chebyshev
approximation, Journal of Institute of Mathematics and
Applications, 18(1976)361-370.

9. Abdelmalek, N.N., Minimum L∞ solution of underdetermined
systems of linear equations, Journal of Approximation Theory,
20(1977)57-69.

10. Abdelmalek, N.N., A simplex algorithm for minimum fuel
problems of linear discrete control systems, International
Journal of Control, 26(1977)635-642.

11. Abdelmalek, N.N., The discrete linear restricted Chebyshev
approximation, BIT, 17(1977)249-261.

© 2008 by Taylor & Francis Group, LLC

870 Numerical Linear Approximation in C

12. Abdelmalek, N.N., Computing the strict Chebyshev solution
of overdetermined linear equations, Mathematics of Computa-
tion, 31(1977)974-983.

13. Abdelmalek, N.N., Solutions of minimum time problem
and minimum fuel problem for discrete linear admissible
control systems, International Journal of Systems Science,
9(1978)849-855.

14. Abdelmalek, N.N., Minimum energy problem for discrete
linear admissible control systems, International Journal of
Systems Science, 10(1979)77-88.

15. Abdelmalek, N.N., A computer program for the strict
Chebyshev solution of overdetermined systems of linear
equations, International Journal for Numerical Methods in
Engineering, 13(1979)1715-1725.

16. Abdelmalek, N.N., L1 solution of overdetermined systems of
linear equations, ACM Transactions on Mathematical Soft-
ware, 6(1980)220-227.

17. Abdelmalek, N.N., Algorithm 551: A FORTRAN subroutine
for the L1 solution of overdetermined systems of linear
equations [F4], ACM Transactions on Mathematical Software,
6(1980)228-230.

18. Abdelmalek, N.N., Computer program for the discrete linear
restricted Chebyshev approximation, Journal of Computa-
tional and Applied Mathematics, 7(1981)141-150.

19. Abdelmalek, N.N., Chebyshev approximation algorithm for
linear inequalities and its applications to pattern recognition,
International Journal of Systems Science, 12(1981)963-975.

20. Abdelmalek, N.N., Piecewise linear Chebyshev approximation
of planar curves, International Journal of Systems Science,
14(1983)425-435.

21. Abdelmalek, N.N., An algorithm for the solution of ill-posed
linear systems arising from the discretization of Fredholm
integral equation of the first kind, Journal of Mathematical
Analysis and Applications, 97(1983)95-111.

22. Abdelmalek, N.N., Restoration of images with missing
high-frequency components using quadratic programming,
Applied Optics, 22(1983)2182-2188.

© 2008 by Taylor & Francis Group, LLC

Appendix A: References 871

23. Abdelmalek, N.N., Linear one-sided approximation algo-
rithms for the solution of overdetermined systems of linear
inequalities, International Journal of Systems Science,
15(1984)1-8.

24. Abdelmalek, N.N., Piecewise linear L1 approximation of
planar curves, International Journal of Systems Science,
16(1985)447-455.

25. Abdelmalek, N.N., A recursive algorithm for discrete L1 linear
estimation using the dual simplex method, IEEE Transactions
on Systems, Man and Cybernetics, SMC-15 (1985)737-742.

26. Abdelmalek, N.N., Chebyshev and L1 solutions of
overdetermined systems of linear equations with bounded
variables, Numerical Functional Analysis and Optimization,
8(1985-86)399-418.

27. Abdelmalek, N.N., Noise filtering in digital images and
approximation theory, Pattern Recognition, 19(1986)417-424.

28. Abdelmalek, N.N., Polygonal approximation of planar curves
in the L1 norm, International Journal of Systems Science,
17(1986)1601-1608.

29. Abdelmalek, N.N., Heuristic procedure for segmentation of
3-D range images, International Journal of Systems Science,
21(1990)225-239.

30. Abdelmalek, N.N., Piecewise linear least-squares approxi-
mation of planar curves, International Journal of Systems
Science, 21(1990)1393-1403.

31. Abdelmalek, N.N., A program for the solution of ill-posed
linear systems arising from the discretization of Fredholm
integral equation of the first kind, Computer Physics
Communications, 58(1990)285-292.

32. Abdelmalek, N.N. and Kasvand, T., Image restoration by
Gauss LU decomposition, Applied Optics, 18(1979)1684-
1686.

33. Abdelmalek, N.N., Kasvand, T. and Croteau, J.P., Image
restoration for space invariant pointspread functions, Applied
Optics, 19(1980)1184-1189.

34. Abdelmalek, N.N. and Kasvand, T., Digital image restoration
using quadratic programming, Applied Optics, 19(1980)3407-
3415.

© 2008 by Taylor & Francis Group, LLC

872 Numerical Linear Approximation in C

35. Abdelmalek, N.N., Kasvand, T., Olmstead, J. and Tremblay,
M.M., Direct algorithm for digital image restoration, Applied
Optics, 20(1981)4227-4233.

36. Abdelmalek, N.N. and Otsu, N., Restoration of images with
missing high-frequency components by minimizing the L1
norm of the solution vector, Applied Optics, 24(1985)1415-
1420.

37. Abdelmalek, N.N. and Otsu, N., Speed comparison among
methods for restoring signals with missing high-frequency
components using two different low-pass-filter matrix
dimensions, Optics Letters, 10(1985)372-374.

38. Agmon, S., The relaxation method for linear inequalities,
Canadian Journal of Mathematics, 6(1954)382-392.

39. Albert, A., Regression and More-Penrose Pseudoinverse,
Academic Press, New York, 1972.

40. Andrews, H.C. and Hunt, B.R., Digital Image Restoration,
Prentice-Hall, Englewood Cliffs, NJ, 1977.

41. Ansari, N. and Delp, E.J., On detecting dominant points,
Pattern Recognition, 24(1991)441-451.

42. Appa, G. and Smith, C., On L1 and Chebyshev estimation,
Mathematical Programming, 5(1973)73-87.

43. Arkin, E.M., Chew, L.P., Huttenlocher, D.P., Kedem, K. and
Mitchell, J.S.B., An efficient computable metric for
comparing polygonal shapes, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 13(1991)209-215.

44. Armitage, D.H., Gardiner, S.J., Haussmann, W. and Rogge,
L., Best one-sided L1 � approximation by harmonic functions,
Manuscripta Mathematica, 96(1998)181-194.

45. Armstrong, R.D., Frome, E.L. and Kung, D.S., Algorithm
79-01: A revised simplex algorithm for the absolute deviation
curve fitting problem, Communications on Statistics-
Simulation and Computation, B8(1979)175-190.

46. Armstrong, R.D. and Godfrey, J., Two linear programming
algorithms for the linear discrete L1 norm problem,
Mathematics of Computation, 33(1979)289-300.

47. Armstrong, R.D. and Hultz, J.W., An algorithm for a restricted
discrete approximation problem in the L1 norm, SIAM Journal
on Numerical Analysis, 14(1977)555-565.

© 2008 by Taylor & Francis Group, LLC

Appendix A: References 873

48. Armstrong, R.D. and Kung, D.S., Algorithm AS 135: Min-
Max estimates for a linear multiple regression problem,
Applied Statistics, 28(1979)93-100.

49. Armstrong, R.D. and Sklar, M.G., A linear programming
algorithm for curve fitting in the L∞ norm, Numerical
Functional Analysis and Optimization, 2(1980)187-218.

50. Babenko, V.F. and Glushko, V.N., On the uniqueness of
elements of the best approximation and the best one-sided
approximation in the space L1, Ukrainian Mathematical
Journal, 46(1994)503-513.

51. Badi�i, F. and Peikari, B., Functional approximation of planar
curves via adaptive segmentation, International Journal of
Systems Science, 13(1982)667-674.

52. Bahi, S. and Sreedharan, V.P., An algorithm for a minimum
norm solution of a system of linear inequalities, International
Journal of Computer Mathematics, 80(2003)639-647.

53. Baker, C.T.H., The Numerical Treatment of Integral
Equations, Clarendon Press, Oxford, 1977.

54. Baker, C.T.H., Fox, L., Mayers, D.F. and Wright, K.,
Numerical solution of Fredholm integral equations of the first
kind, Computer Journal, 7(1964)141-148.

55. Barrodale, I., L1 approximation and analysis of data, Applied
Statistics, 17(1968)51-57.

56. Barrodale, I. and Phillips, C., An improved algorithm for
discrete Chebyshev linear approximation, Proceedings of the
Fourth Manitoba conference on Numerical Mathematics,
Hartnell, B.L. and Williams, H.C. (eds.), Winnipeg, Manitoba,
Canada, pp. 177-190, 1975.

57. Barrodale, I. and Phillips, C., Algorithm 495: Solution of an
overdetermined system of linear equations in the Cheby-
shev norm, ACM Transactions on Mathematical Software,
1(1975)264-270.

58. Barrodale, I. and Roberts, F.D.K., An improved algorithm for
discrete l1 approximation, SIAM Journal on Numerical
Analysis, 10(1973)839-848.

59. Barrodale, I. and Roberts, F.D.K., Algorithm 478, Solution of
an overdetermined system of equations in the l1 norm [F4],
Communications of ACM, 17(1974)319-320.

© 2008 by Taylor & Francis Group, LLC

874 Numerical Linear Approximation in C

60. Barrodale, I. and Roberts, F.D.K., Algorithms for restricted
least absolute value estimation, Communications on
Statistics-Simulation and Computation, B6(1977)353-363.

61. Barrodale, I. and Roberts, F.D.K., An efficient algorithm for
discrete l1 linear approximation with linear constraints, SIAM
Journal on Numerical Analysis, 15(1978)603-611.

62. Barrodale, I. and Roberts, F.D.K., Algorithm 552: Solution of
the constrained L1 linear approximation problem, ACM Trans-
actions on Mathematical Software, 6(1980)231-235.

63. Barrodale, I. and Stuart, G.F., A Fortran program for linear
least squares problems of variable degree, Proceedings of the
Fourth Manitoba Conference on Numerical Mathematics,
Hartnell, B.L. and Williams, H.C. (eds.), Winnipeg, Manitoba,
Canada, pp. 191-204, 1975.

64. Bartels, R.H. and Conn, A.R., Linearly constrained discrete l1
problems, ACM Transactions on Mathematical Software,
6(1980)594-608.

65. Bartels, R.H. and Conn, A.R., Algorithm 563: A program for
linearly constrained discrete l1 problems, ACM Transactions
on Mathematical Software, 6(1980)609-614.

66. Bartels, R.H, Conn, A.R. and Charalambous, C., Minimization
techniques for piecewise differentiable functions: The l∞
solution to overdetermined linear system, The Johns Hopkins
University, Baltimore, MD, Technical report no. 247, May
1976.

67. Bartels, R.H., Conn, A.R. and Sinclair, J.W., Minimization
techniques for piecewise differentiable functions: The l1
solution of an overdetermined linear system, SIAM Journal on
Numerical Analysis, 15(1978)224-241.

68. Bartels, R.H. and Golub, G.H., Stable numerical methods for
obtaining the Chebyshev solution of an overdetermined
system of equations, Communications of ACM, 11(1968)401-
406.

69. Bartels, R.H. and Golub, G.H., Algorithm 328: Chebyshev
solution to an overdetermined linear system, Communications
of ACM, 11(1968)428-430.

© 2008 by Taylor & Francis Group, LLC

Appendix A: References 875

70. Bartels, R.H. and Golub, G.H., The simplex method of linear
programming using LU decomposition, Communications of
ACM, 12(1969)266-268.

71. Bartels, R.H., Golub, G.H. and Saunders, M.A., Numerical
techniques in mathematical programming, Nonlinear Prog-
ramming, Rosen, J.B., Mangasarian, O.L. and Ritter, K. (eds.),
Academic Press, New York, 1970.

72. Bartels, R.H, Stoer, J. and Zenger, Ch., A realization of the
simplex method based on triangular decomposition, Handbook
for Automatic Computation, Vol. II: Linear Algebra, Wilkin-
son, J.H. and Reinsch, C. (eds.), Springer-Verlag, New York,
pp. 152-190, 1971.

73. Bashein, G., A simplex algorithm for on-line computation of
time optimal controls, IEEE Transactions on Automatic
Control, 16(1971)479-482

74. Bellman, R., On the approximation of curves by line segments
using dynamic programming, Communications of ACM,
4(1961)284.

75. Bellman, R., Introduction to Matrix Analysis, McGraw-Hill,
New York, 1970.

76. Belsley, D.A., Kuh, E. and Welch, R.E., Regression
Diagnostics Identifying Influential Data and Sources of
Collinearity, John Wiley & Sons, New York, 1980.

77. Bjorck, A., Solving linear least squares problems by
Gram-Schmidt orthogonalization, BIT, 7(1967)1-21.

78. Bloomfield, P. and Steiger, W.L., Least absolute deviations
curve-fitting, SIAM Journal on Scientific and Statistical
Computing, 1(1980)290-301.

79. Bloomfield, P. and Steiger, W.L., Least Absolute Deviations,
Theory, Applications, and Algorithms, Birkhauser, Boston,
1983.

80. Bramley, R. and Winnicka, B., Solving linear inequalities in a
least squares sense, SIAM Journal on Scientific Computation,
17(1996)275-286.

81. Brannigan, M., Theory and computation of best strict
constrained Chebyshev approximation of discrete data, IMA
Journal of Numerical Analysis, 1(1980)169-184.

© 2008 by Taylor & Francis Group, LLC

876 Numerical Linear Approximation in C

82. Brannigan, M., The strict Chebyshev solution of
overdetermined systems of linear equations with rank
deficient matrix, Numerische Mathematik, 40(1982)307-318.

83. Businger, P. and Golub, G., Linear least squares solution
by Householder transformation, Numerische Mathematik,
7(1965)269-276.

84. Cadzow, J.A., Algorithm for the minimum-effort problem,
IEEE Transactions on Automatic Control, 16(1971)60-63.

85. Cadzow, J.A., Functional analysis and the optimal control of
linear discrete systems, International Journal of Control,
17(1973)481-495

86. Cadzow, J.A., A finite algorithm for the minimum l∞ solution
to a system of consistent linear equations, SIAM Journal on
Numerical Analysis, 10(1973)607-617.

87. Cadzow, J.A., An efficient algorithmic procedure for
obtaining a minimum l∞-norm solution to a system of
consistent linear equations, SIAM Journal on Numerical
Analysis, 11(1974)1151-1165.

88. Cadzow, J.A., Minimum-amplitude control of linear discrete
systems, International Journal of Control, 19(1974)765-780.

89. Canon, M.D., Cullum Jr., C.D. and Polak, E., Theory of
Optimal Control and Mathematical Programming, McGraw-
Hill, New York, 1970.

90. Canon, M.D. and Eaton, J.H., A new algorithm for a class of
quadratic programming problems with application to control,
SIAM Journal on Control, 4(1966)34-45.

91. Cantoni, A., Optimal curve fitting with piecewise linear
functions, IEEE Transactions on Computers, 20(1971)59-67.

92. Censor, Y. and Elfving, T., New methods for linear inequal-
ities, Linear Algebra and its Applications, 42(1982)199-211.

93. Chatterjee, S. and Price, B., Regression Analysis by Example,
John Wiley & Sons, New York, 1977.

94. Cheney, E.W., Introduction to Approximation Theory,
McGraw-Hill, New York, 1966.

95. Cheng, Y-Q., Zhuang, Y-M. and Yang, J-Y., Optimal Fisher
discriminant analysis using the rank decomposition, Pattern
Recognition, 25(1992)101-111.

© 2008 by Taylor & Francis Group, LLC

Appendix A: References 877

96. Clark, D.C. and Gonzalez, R.C., Optimal solution of linear
inequalities with applications to pattern recognition, IEEE
Transactions on Pattern Analysis and Machine Intelligence,
6(1981)643-655.

97. Clasen, R.J., Techniques for automatic tolerance control in
linear programming, Communications of ACM, 9(1966)802-
803.

98. Cline, A.K., A descent method for the uniform solution to
overdetermined systems of linear equations, SIAM Journal on
Numerical Analysis, 13(1976)293-309.

99. Cohen, E. and Megiddo, N., Improved algorithms for linear
inequalities with two variables per inequality, SIAM Journal
on Computing, 23(1994)1313-1347.

100. Coleman, T.F. and Li, Y., A global and quadratically
convergent method for linear l∞ problems, SIAM Journal on
Numerical Analysis, 29(1992)1166-1186.

101. Cook, R.D. and Weisberg, S., Residuals and Influence in
Regression, Chapman-Hall, London, 1982.

102. Dantzig, G.B., Linear Programming and Extensions,
Princeton University Press, Princeton, NJ, 1963.

103. Davis, L.S., Shape matching using relaxation techniques,
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1(1979)60-72.

104. Davison, L.D., Data compression using straight line
interpolation, IEEE Transactions on Information Theory,
IT-14(1968)390-394.

105. Dax, A., The l1 solution of linear equations subject to linear
constraints, SIAM Journal on Scientific and Statistical
Computation, 10(1989)328-340.

106. Dax, A., The minimax solution of linear equations subject to
linear constraints, IMA Journal of Numerical Analysis,
9(1989)95-109.

107. Dax, A., Methods for calculating lp-minimum norm solutions
of consistent linear systems, Journal of Optimization Theory
and Applications, 83(1994)333-354.

108. Deng, J., Feng, Y. and Chen, F., Best one-sided approximation
of polynomials under L1 norm, Journal of Computational and
Applied Mathematics, 144(2002)161-174.

© 2008 by Taylor & Francis Group, LLC

878 Numerical Linear Approximation in C

109. De Pierro, A.R. and Iusem, A.N., A simultaneous projections
method for linear inequalities, Linear Algebra and its
Applications, 64(1985)243-253.

110. Descloux, J., Approximations in LP and Chebyshev
approximations, Journal of Society of Industrial and Applied
Mathematics, 11(1963)1017-1026.

111. Duda, R.O. and Hart, P.E., Pattern Classification and Scene
Analysis, John Wiley & Sons, New York, 1973.

112. Dunham, J.G., Optimum uniform piecewise linear
approximation of planar curves, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(1986)67-75.

113. Duris, C.S., An exchange method for solving Haar and
non-Haar overdetermined linear equations in the sense of
Chebyshev, Proceedings of Summer ACM Computer
Conference, (1968)61-65.

114. Duris, C.S. and Sreedharan, V.P., Chebyshev and l1-solutions
of linear equations using least squares solutions, SIAM Journal
on Numerical Analysis, 5(1968)491-505.

115. Duris, C.S. and Temple, M.G., A finite step algorithm for
determining the �strict� Chebyshev solution to Ax = b, SIAM
Journal on Numerical Analysis, 10(1973)690-699.

116. Easton, M.C., A fixed point method for Tchebycheff solution
of inconsistent linear equations, Journal of Institute of
Mathematics and Applications, 12(1973)137-159.

117. Faigle, U., Kern, W. and Still, G., Algorithmic Principles of
Mathematical Programming, Kluwer Academic Publishers,
London, 2002.

118. Fisher, M.E., Introductory Numerical Methods with the NAG
Software Library, The University of Western Australia,
Crawley, 1988.

119. Forsythe, G.E. and Moler, C.B., Computer Solution of Linear
Algebraic Systems, Prentice-Hall, Englewood Cliffs, NJ, 1967.

120. Geladi, P. and Kowalski, B.R., Partial least-squares regress-
ion: A tutorial, Analytica Chimica Acta, 185(1986)1-17.

121. Gentleman, W.M., Algorithm AS 75: Basic procedures for
large, sparse or weighted linear least squares problems,
Applied Statistics, 22(1974)448-454.

© 2008 by Taylor & Francis Group, LLC

Appendix A: References 879

122. Gill, P.E., Golub, G.H., Murray, W. and Saunders, M.A.,
Methods for modifying matrix factorizations, Mathematics of
Computation, 28(1974)505-535.

123. Gimlin, D.R., Cavin, III, R.K. and Budge, Jr., M.C., A
multiple exchange algorithm for calculation of best restricted
approximations, SIAM Journal on Numerical Analysis,
11(1974)219-231.

124. Givens, J.W., Numerical computation of the characteristic
values of a real matrix, Oak Ridge National Laboratory,
ORNL-1574, 1954.

125. Givens, J.W., Computation of plane unitary rotations
transforming a general matrix to triangular form, Journal of
SIAM, 6(1958)26-50.

126. Glashoff, K. and Gustafson, S.A., Numerical treatment of a
parabolic boundary-value control problem, Journal of
Optimization Theory and Applications, 19(1976)645-663.

127. Goffin, J.L., The relaxation method for solving systems of
linear inequalities, Mathematics of Operations Research,
5(1980)388-414.

128. Golden, D.E., Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison-Wesley Publishing
Company, Reading, MA, 1989.

129. Goldstein, A.A., Levine, N. and Hereshoff, J.B., On the best
and least qth approximation of an overdetermined system of
linear equations, Journal of ACM, 4(1957)341-347.

130. Golub, G., Numerical methods for solving linear least squares
problems, Numerische Mathematik, 7(1965)206-216.

131. Golub, G.H. and Reinsch, C., Singular value decomposition
and the least squares solutions, Numerische Mathematik,
14(1970)403-420.

132. Golub, G.H. and Van Loan, C.F., Matrix Computation, Third
Edition, The Johns Hopkins University Press, Baltimore,
1996.

133. Graham, R.E., Snow removal � A noise-stripping process for
picture signals, IEEE Transactions on Information Theory,
IT-8(1962)129-144.

© 2008 by Taylor & Francis Group, LLC

880 Numerical Linear Approximation in C

134. Grant, P.M. and Hopkins, T.R., A remark on algorithm AS
135: Min-Max estimates for linear multiple regression
problems, Applied Statistics, 32(1983)345-347.

135. Gravagne, I.A. and Walker, I.D., On the structure of minimum
effort solutions with application to kinematic redundancy
resolution, IEEE Transactions on Robotics and Automation,
16(2000)855-863.

136. Guler, O., Hoffman, A.J. and Rothblum, U.G., Approxi-
mations to solutions to systems of linear inequalities, SIAM
Journal on Matrix Analysis and Applications, 16(1995)688-
696.

137. Gunst, R.F. and Mason, R.L., Regression Analysis and its
Application: A Data Oriented Approach, Marcel Dekker, Inc.,
New York, 1980.

138. Gustafson, S.A. and Kortanek, K.O., Numerical treatment of a
class of semi-infinite programming problems, Naval Research
Logistics Quarterly, 20(1973)477-504.

139. Hadley, G., Linear Programming, Addison-Wesley, Reading,
MA, 1962.

140. Hamann, B. and Chen, J-L., Data point selection for piecewise
linear curve approximation, Computer Aided Geometric
Design, 11(1994)289-301.

141. Han, S-P., Least squares solution of linear inequalities,
Technical Report TR-2141, Mathematics Research Center,
University of Wisconsin-Madison, 1980.

142. Hansen, P.C., The truncated SVD as a method for
regularization, BIT, 27(1987)534-553

143. Hansen, P.C., Analysis of discrete ill-posed problems by
means of the L-curve, SIAM Review, 34(1992)561-580.

144. Hansen, P.C. and O�Leary, D., The use of the L-curve in the
regularization of discrete ill-posed problems, SIAM Journal on
Scientific Computation, 14(1993)1487-1502.

145. Hanson, R.J., A numerical method for solving Fredholm
integral equations of the first kind using singular values, SIAM
Journal on Numerical Analysis, 8(1971)616-622.

146. Hanson, R.J. and Phillips, J.L., An adaptive numerical method
for solving linear Fredholm integral equations of the first kind,
Numerische Mathematik, 24(1975)291-307.

© 2008 by Taylor & Francis Group, LLC

Appendix A: References 881

147. Haralick, M.R. and Watson, L., A facet model for image data,
Computer Graphics and Image Processing, 15(1981)113-129.

148. He, B., New contraction methods for linear inequalities,
Linear Algebra and its Applications, 207(1994)115-133.

149. Hettich, R., A Newton method for nonlinear Chebyshev
approximation, Lecture Notes in Mathematics No. 556, Dold,
A. and Eckmann, B. (eds.) Springer-Verlag, Berlin, pp.
222-236 (1976).

150. Ho, S-Y. and Chen, Y-C., An efficient evolutionary algorithm
for accurate polygonal approximation, Pattern Recognition,
34(2001)2305-2317.

151. Ho, Y-C. and Kashyap, R.L., An algorithm for linear
inequalities and its applications, IEEE Transactions on
Electronic Computers, 14(1965)683-688.

152. Hoffman, A.J., On approximate solutions of systems of linear
inequalities, Journal of Research of the National Bureau of
Standards, 49(1952)263-265.

153. Hoskuldsson, A., PLS regression methods, Journal of
Chemometrics, 2(1988)211-228.

154. Householder, A.S., Unitary triangularization of a non-
symmetric matrix, Journal of ACM, 5(1958)339-342.

155. Huang, S-C. and Sun, Y-N., Polygonal approximation using
genetic algorithms, Pattern Recognition, 32(1999)1409-1420.

156. Ignizio, J.P. and Cavalier, T.M., Linear Programming,
Prentice Hall, Englewood Cliffs, NJ, 1993.

157. Joe, B. and Bartels, R., An exact penalty method for
constrained, discrete, linear l∞ data fitting, SIAM Journal on
Scientific and Statistical Computation, 4(1983)76-84.

158. Johnson, H.H. and Vogt, A., A geometric method for
approximating convex arcs, SIAM Journal on Applied
Mathematics, 38(1980)317-325.

159. Jones, R.C. and Karlovitz, L.A., Iterative construction of
constrained Chebyshev approximation of continuous func-
tions, SIAM Journal on Numerical Analysis, 5(1968)574-585.

160. Kammerer, W.J. and Nashed, M.Z., On the convergence of the
conjugate gradient method for singular linear equations, SIAM
Journal on Numerical Analysis, 8(1971)65-101.

© 2008 by Taylor & Francis Group, LLC

882 Numerical Linear Approximation in C

161. Kammerer, W.J. and Nashed, M.Z., Iterative methods for best
approximate solution of linear integral equations of the first
and second kinds, Journal of Mathematical Analysis and
Applications, 40(1972)547-573.

162. Kioustelidis, J.B., Optical segmented approximations, Compu-
ting, 24(1980)1-8.

163. Kleinbaum, D.G., Kupper, L.L. and Muller, K.E., Applied
Regression Analysis and Other Multivariate Methods, Second
Edition, PWS-Kent Publishing Company, Boston, 1988.

164. Kolesnikov, A. and Franti, P., Polygonal Approximation of
Closed Contours, Lecture Notes in Computer Science,
2749(2003)778-785.

165. Kolev, L.V., Iterative algorithm for the minimum fuel and
minimum amplitude problems, International Journal of
Control, 21(1975)779-784.

166. Kolev, L.V., Algorithm of finite number of iterations for the
minimum fuel and minimum amplitude control problems,
International Journal of Control, 22(1975)97-102.

167. Kolev, L.V., Minimum-fuel control of linear discrete systems,
International Journal of Control, 23(1976)207-216.

168. Korn, G.A. and Korn, T.M., Electronic Analog and Hybrid
Computers, McGraw-Hill, New York, 1964.

169. Kurita, T. and Abdelmalek, N.N., An edge based approach for
the segmentation of 3-D range images of small industrial-
like objects, International Journal of Systems Science,
23(1992)1449-1461.

170. Kurozumi, Y. and Davis, W.A., Polygonal approximation by
the minimax method, Computer Graphics and Image
Processing, 19(1982)248-264.

171. Labonte, G., On solving systems of linear inequalities with
artificial neural networks, IEEE Transactions on Neural
Networks, 8(1997)590-600.

172. Lancaster, P., Theory of Matrices, Academic Press, New
York, 1969.

173. Lau, H.T., A Numerical Library in C for Scientists and
Engineers, CRC Press, Ann Arbor, 1995.

© 2008 by Taylor & Francis Group, LLC

Appendix A: References 883

174. Lawson, C.L., Characteristic properties of the segmented
rational minimax approximation problem, Numerische
Mathematik, 6(1964)293-301.

175. Lawson, C.W. and Hanson, R.J., Solving Least Squares
Problems, Prentice Hall, Englewood Cliffs, NJ, 1974.

176. Lenze, B., Uniqueness in best one-sided L1 � approximation
by algebraic polynomials on unbounded intervals, Journal of
Approximation Theory, 57(1989)169-177.

177. Lewis, J.T., Computation of best one-sided L1 approximation,
Mathematics of Computation, 24(1970)529-536.

178. Lewis, J.T., Restricted range approximation and its application
to digital filter design, Mathematics of Computation, 29
(1975)522-539.

179. Lin, J.N., Determination of reachable set for a linear dis-
crete system, IEEE Transactions on Automatic Control,
15(1970)339-342.

180. Longley, J.M., Least Squares Computations Using Orthogo-
nalization Methods, Marcel Dekker, New York, 1984.

181. Lopes, H., Oliveira, J.B. and de Figueiredo, L.H., Robust
adaptive polygonal approximation of implicit curves,
Computers and Graphics, 26(2002)841-852.

182. Lucchetti, R. and Mignanego, F., Variational perturbation of
the minimum effort problem, Journal of Optimization Theory
and Applications, 30(1980)485-499.

183. Luenberger, D.G., Optimization by Vector Space Methods,
John Wiley, New York, 1969.

184. Madsen, K., Nielsen, H.B. and Pinar, M.C., New character-
izations of l1 solutions to overdetermined systems of linear
equations, Operations Research Letters, 16(1994)159-166.

185. Madsen, K. and Powell, M.J.D., A FORTRAN subroutine that
calculates the minimax solution of linear equations subject to
bounds on the variables, United Kingdom Atomic Energy
Research Establishment, AERE-R7954, February 1975.

186. Mangasarian, O.L., Iterative solution of linear programs,
SIAM Journal on Numerical Analysis, 18(1981)606-614.

187. Mason, R.L. and Gunst, R.F., Outlier-induced collinearities,
Technometrics, 27(1985)401-407.

© 2008 by Taylor & Francis Group, LLC

884 Numerical Linear Approximation in C

188. Michalewicz, Z., Genetic Algorithms + Data Structures =
Evolution Programs, Second Extended Edition, Springer-
Verlag, New York, 1992.

189. Minnick, R.C., Linear-input logic, IRE Transactions on
Electronic Computers, 10(1961)6-16.

190. Montgomery, D.C. and Peck, E.A., Introduction to Linear
Regression Analysis, John Wiley & Sons, New York, 1992.

191. Morozov, V.A., Methods for Solving Incorrectly Posed
Problems, Springer-Verlag, New York, 1984.

192. Motzkin, T.S. and Schoenberg, I.J., The relaxation method
for linear inequalities, Canadian Journal of Mathematics,
6(1954)393-404.

193. Nagao, M. and Matsuyama, T., Edge preserving smoothing,
Computer Graphics and Image Processing, 9(1979)394-407.

194. Nagaraja, G. and Krishna, G., An algorithm for the solution
of linear inequalities, IEEE Transactions on Computers,
23(1974)421-427.

195. Narula, S.C. and Wellington, J.F., An efficient algorithm for
the MSAE and the MMAE regression problems, SIAM
Journal on Scientific and Statistical Computing, 9(1988)717-
727.

196. Nie, Y.Y. and Xu, S.R., Determination and correction of an
inconsistent system of linear inequalities, Journal of
Computational Mathematics, 13(1995)211-217.

197. Noble, B., A method for computing the generalized inverse of
a matrix, SIAM Journal on Numerical Analysis, 3(1966)582-
584.

198. Noble, B., Applied Linear Algebra, Prentice-Hall, Englewood
Cliffs, NJ, 1969.

199. Osborne, M.R. and Watson, G.A., On the best linear
Chebyshev approximation, Computer Journal, 10(1967)172-
177.

200. Outrata, J.V., On the minimum time problem in linear discrete
systems with the discrete set of admissible controls,
Kybernetika, 11(1975)368-374.

201. Pavlidis, T., Waveform segmentation through functional app-
roximation, IEEE Transactions on Computers, 22(1973)689-
697.

© 2008 by Taylor & Francis Group, LLC

Appendix A: References 885

202. Pavlidis, T., Optimal piecewise polygonal L2 approximation
of functions of one and two variables, IEEE Transactions on
Computers, 24(1975)98-102.

203. Pavlidis, T., The use of algorithms of piecewise
approximations for picture processing applications, ACM
Transactions on Mathematical Software, 2(1976)305-321.

204. Pavlidis, T., Polygonal approximation by Newton�s method,
IEEE Transactions on Computers, 26(1977)800-807.

205. Pavlidis, T. and Horowitz, S.L., Segmentation of plane curves,
IEEE Transactions on Computers, 23(1974)860-870.

206. Pavlidis, T. and Maika, A.P., Uniform piecewise polynomial
approximation with variable joints, Journal of Approximation
Theory, 12(1974)61-69.

207. Pei, S-C. and Lin, C-N., The detection of dominant points on
digital curves by scale-space filtering, Pattern Recognition,
25(1992)1307-1314.

208. Perez, J-C. and Vidal, E., Optimum polygonal approximation
of digitized curves, Pattern Recognition Letters, 15(1994)743-
750.

209. Peters, G. and Wilkinson, J.H., The least squares problem and
pseudo-inverses, Computer Journal, 13(1970)309-316.

210. Phillips, D.L., A technique for the numerical solution of
certain integral equations of the first kind, Journal of ACM,
9(1962)84-97.

211. Phillips, D.L., A note on best one-sided approximations,
Communications of ACM, 14(1971)598-600.

212. Phillips, G.M., Algorithms for piecewise straight line
approximation, Computer Journal, 11(1968)211-212.

213. Pierre, D.A., Optimization Theory with Applications, John
Wiley & Sons, New York, 1969.

214. Pikaz, A. and Dinstein, I.H., Optimal polygonal approxi-
mation of digital curves, Pattern Recognition, 28(1995)373-
379.

215. Pinar, M.C. and Chen, B., l1 solution of linear inequalities,
IMA Journal of Numerical Analysis, 19(1999)19-37.

216. Pinar, M.C., and Elhedhli, S., A penalty continuation method
for the l∞ solution of overdetermined linear systems, BIT �
Numerical Mathematics, 38(1998)127-150.

© 2008 by Taylor & Francis Group, LLC

886 Numerical Linear Approximation in C

217. Pinkus, A.M., On L1-Approximation, Cambridge University
Press, London, 1989.

218. Polak, E. and Deparis, M., An algorithm for minimum
energy control, IEEE Transactions on Automatic Control,
14(1969)367-377.

219. Porter, W.A., Modern Foundations of System Engineering,
Macmillan, New York, 1966.

220. Powell, M.J.D., The minimax solution of linear equations
subject to bounds on the variables, Proceedings of the Fourth
Manitoba Conference on Numerical Mathematics, Hartnell,
B.L. and Williams, H.C. (eds.), Winnipeg, Manitoba, Canada,
pp. 53-107, 1975.

221. Powell, M.J.D., Approximation Theory and Methods,
Cambridge University Press, London, 1981.

222. Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling,
W.T., Numerical Recipes in C, The Art of Scientific
Computing, Second Edition, Cambridge University Press,
Cambridge, 1992.

223. Ralston, A., A First Course in Numerical Analysis,
McGraw-Hill, New York, 1965.

224. Ramer, U., An iterative procedure for the polygonal
approximation of plane curves, Computer Graphics and Image
Processing, 1(1972)244-256.

225. Rannou, F. and Gregor, J., Equilateral polygon approximation
of closed contours, Pattern Recognition, 29(1996)1105-1115.

226. Ray, B.K. and Ray, K.S., An algorithm for detection of
dominant points and polygonal approximation of digitized
curves, Pattern Recognition Letters, 13(1992)849-856.

227. Ray, B.K. and Ray, K.S., Determination of optimal polygon
from digital curve using L1 norm, Pattern Recognition,
26(1993)505-509.

228. Rice, J.R., Tchebycheff approximation in a compact metric space,
Bulletin of American Mathematical Society, 68(1962)405-
410.

229. Rice, J.R., The Approximation of Functions, Vol. 2, Addison-
Wesley, Reading, MA, 1969.

230. Rice, J.R. and White, J.S., Norms for smoothing and
estimation, SIAM Review, 6(1964)243-256.

© 2008 by Taylor & Francis Group, LLC

Appendix A: References 887

231. Robers, P.D. and Ben-Israel, A., An interval programming
algorithm for discrete linear L1 approximation problems,
Journal of Approximation Theory, 2(1969)323-336.

232. Robers, P.D. and Robers, S.S., Algorithm 458: Discrete linear
L1 approximation by interval linear programming [E2],
Communications of ACM, 16(1973)629-631.

233. Roberts, F.D.K. and Barrodale, I., An algorithm for discrete
Chebyshev linear approximation with linear constraints,
International Journal for Numerical Methods in Engineering,
15(1980)797-807.

234. Rosen, J.B., Park, H. and Glick, J., Signal identification using
a least L1 norm algorithm, Optimization and Engineering,
1(2000)51-65.

235. Rosen, J.B., Park, H., Glick, J. and Zhang, L., Accurate
solution to overdetermined linear equations with errors using
L1 norm minimization, Computational Optimization and
Applications, 17(2000)329-341.

236. Rosin, P.L., Assessing the behavior of polygonal approxi-
mation algorithms, Pattern Recognition, 36(2003)505-518.

237. Russell, E., Chiang, L.H. and Braatz, R.D., Data-Driven
Methods for Fault Detection and Diagnosis in Chemical
Processes, Springer-Verlag, London, 2000.

238. Ryan, T.P., Modern Regression Methods, John Wiley & Sons,
New York, 1997.

239. Salotti, M., Optimal polygonal approximation of digitized
curves using the sum of square deviations criterion, Pattern
Recognition, 35(2002)435-443.

240. Sarkar, D., A simple algorithm for detection of significant
vertices for polygonal approximation of chain-coded curves,
Pattern Recognition Letters, 14(1993)959-964.

241. Sarkar, B., Singh, L.K. and Sarkar, D., A genetic algorithm-
based approach for detection of significant vertices for
polygonal approximation of digital curves, International Jour-
nal of Image and Graphics, 4(2004)223-239.

242. Sato, Y., Piecewise linear approximation of plane curves by
perimeter optimization, Pattern Recognition, 25(1992)1535-
1543.

© 2008 by Taylor & Francis Group, LLC

888 Numerical Linear Approximation in C

243. Sierksma, G., Linear and Integer Programming, Theory and
Practice, Second Edition, Marcel Dekker Inc., New York,
2002.

244. Sklansky, J. and Gonzalez, V., Fast polygonal approximation
of digitized curves, Pattern Recognition, 12(1980)327-331.

245. Sklansky, J. and Michelotti, L., Locally trained piecewise
linear classifier, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2(1980)101-110.

246. Sklar, M.G., L∞ norm estimation with linear restrictions on the
parameters, Numerical Functional Analysis and Optimization,
3(1981)53-68.

247. Sklar, M.G. and Armstrong, R.D., Least absolute value and
Chebyshev estimation utilizing least squares results, Mathem-
atical Programming, 24(1982)346-352.

248. Sklar, M.G. and Armstrong, R.D., A piecewise linear approxi-
mation procedure for Lp norm curve fitting, Journal of
Statistical Computation and Simulation, 52(1995)323-335.

249. Smith, F.W., Pattern classifier design by linear programming,
IEEE Transactions on Computers, 17(1968)367-372.

250. Solodov, A.V., Linear Automatic Control Systems with
Varying Parameters, Blackie, London, 1966.

251. Spath, H., Mathematical Algorithms for Linear Regression,
Academic Press, English Edition, London, 1991.

252. Sposito, V.A., Kennedy, W.J. and Gentle, J.E., Useful
generalized properties of L1 estimators, Communications in
Statistics-Theory and Methods, A9(1980)1309-1315.

253. Squire, W., The solution of ill-conditioned linear systems
arising from Fredholm equations of the first kind by steepest
descents and conjugate gradients, International Journal for
Numerical Methods in Engineering, 10(1976)607-617.

254. Stark, P.B. and Parker, R.L., Bounded-variable least-squares:
An algorithm and applications, Computational Statistics,
10(1995)129-141.

255. Stewart, G.W., Introduction to Matrix Computations,
Academic Press, New York, 1973.

256. Stewart, G.W., The effects of rounding residual on an
algorithm for downdating a Cholesky factorization, Journal of
Institute of Mathematics and Applications, 23(1979)203-213.

© 2008 by Taylor & Francis Group, LLC

Appendix A: References 889

257. Stiefel, E., Uber diskrete und lineare Tschebyscheff-
approximation, Numerische Mathematik, 1(1959)1-28.

258. Stiefel, E., Note on Jordan elimination, linear programming
and Tchebycheff approximation. Numerische Mathematik,
2(1960)1-17.

259. Stone, H., Approximation of curves by line segments,
Mathematics of Computation, 15(1961)40-47.

260. Storoy, S., Error control in the simplex technique, BIT,
7(1967)216-225.

261. Sun, Y-N. and Huang, S-C., Genetic algorithms for error-
bounded polygonal approximation, International Journal of
Pattern Recognition and Artificial Intelligence, 14(2000)297-
314.

262. Taylor, G.D., Approximation by functions having restricted
ranges III, Journal of Mathematical Analysis and
Applications, 27(1969)241-248.

263. Taylor, G.D. and Winter, M.J., Calculation of best restricted
approximations, SIAM Journal on Numerical Analysis,
7(1970)248-255.

264. Teh, C-H. and Chin, R.T., On the detection of dominant points
on digital curves, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 11(1989)859-872.

265. te Riele, H.J.J., A program for solving first kind Fredholm
integral equations by means of regularization, Computer
Physics Communications, 36(1985)423-432.

266. Thiran, J.P. and Thiry, S., Strict Chebyshev approximation for
general systems of linear equations, Numerische Mathematik,
51(1987)701-725.

267. Tikhonov, A.N., Solution of incorrectly formulated prob-
lems and method of regularization, Soviet Mathematics,
4(1963)1035-1038.

268. Tomek, I., Two algorithms for piecewise-linear continuous
approximation of functions of one variable, IEEE
Transactions on Computers, 23(1974)445-448.

269. Torng, H.C., Optimization of discrete control systems through
linear programming, Journal of Franklin Institute,
278(1964)28-44.

© 2008 by Taylor & Francis Group, LLC

890 Numerical Linear Approximation in C

270. Tou, J.T. and Gonzalez, R.C., Pattern Recognition Principles,
Addison-Wesley, Reading, MA, 1974.

271. Usow, K.H., On L1 approximation. II. Computation for
discrete functions and discretization effects, SIAM Journal on
Numerical Analysis, 4(1967)233-244.

272. van de Panne, C. and Whinston, A., Simplicial methods for
quadratic programming, Naval Research Logistic Quarterly,
11(1964)273-302.

273. van de Panne, C. and Whinston, A., Simplex and the dual
method for quadratic programming, Operations Research
Quarterly, 15(1964)355-388.

274. Varah, J.M., On the numerical solution of ill-conditioned
linear systems with applications to ill-posed problems, SIAM
Journal on Numerical Analysis, 10(1973)257-267.

275. Varah, J.M., A practical examination of some numerical
methods for linear discrete ill-posed problems, SIAM Review,
21(1979)100-111.

276. Varah, J.M., Pitfalls in the numerical solution of linear
ill-posed problems, SIAM Journal on Scientific Statistical
Computation, 4(1983)164-176.

277. Vogel, C.R., Optimal choice of a truncation level for the
truncated SVD solution of linear first kind integral equations
when data are noisy, SIAM Journal on Numerical Analysis,
23(1986)109-134.

278. von Neumann, J. and Goldstine, H.H., Numerical inverting of
matrices of high order, Bulletine of American Mathematical
Society, 53(1947)1021-1099.

279. Wagner, H.M., Linear programming techniques for regression
analysis, Journal of American Statistical Association,
54(1959)206-212.

280. Wahba, G., Practical approximate solutions to linear operator
equations when the data are noisy, SIAM Journal on
Numerical Analysis, 14(1977)651-667.

281. Wall, K. and Danielsson, P-E., A fast sequential method for
polygonal approximation of digitized curves, Computer
Vision, Graphics, and Image Processing, 28(1984)220-227.

© 2008 by Taylor & Francis Group, LLC

Appendix A: References 891

282. Watson, G.A., One-sided approximation and operator equa-
tions, Journal of Institute of Mathematics and Applications,
12(1973)197-208.

283. Watson, G.A., On the best linear one-sided Chebyshev
approximation, Journal of Approximation Theory, 7(1973)48-
58.

284. Watson, G.A., The calculation of best linear one-sided Lp
approximations, Mathematics of Computation, 27(1973)607-
620.

285. Watson, G.A., The calculation of best restricted approxi-
mations, SIAM Journal on Numerical Analysis, 11(1974)693-
699.

286. Watson, G.A., A multiple exchange algorithm for multivariate
Chebyshev approximation, SIAM Journal on Numerical
Analysis, 12(1975)46-52.

287. Watson, G.A., Approximation Theory and Numerical
Methods, John Wiley & Sons, New York, 1980.

288. Weisberg, S., Applied Linear Regression, Second Edition,
John Wiley & Sons, New York, 1985.

289. Weischedel, H.R., A solution of the discrete minimum-time
control problem, Journal of Optimization Theory and
Applications, 5(1970)81-96.

290. Wesolowsky, G.O., A new descent algorithm for the least
absolute value regression problem, Communications in
Statistics � Simulation and Computation, B10(1981)479-491.

291. Westlake, J.R., A Handbook of Numerical Matrix Inversion
and Solution of Linear Equations, John Wiley & Sons, New
York, 1968.

292. Whinston, A., The bounded variable problem � An application
of the dual method for quadratic programming, Naval
Research Logistics Quarterly, 12(1965)173-179.

293. Wilkinson, J.H., Error analysis of floating-point computation,
Numerische Mathematik, 2(1960)319-340.

294. Wilkinson, J.H., Rounding Errors in Algebraic Processes,
Prentice-Hall, Englewood Cliffs, NJ, 1963.

295. Wilkinson, J.H., The Algebraic Eigenvalue Problem,
Clarendon Press, Oxford 1965.

© 2008 by Taylor & Francis Group, LLC

892 Numerical Linear Approximation in C

296. Williams, C.M., An efficient algorithm for the piecewise
linear approximation of planar curves, Computer Graphics
and Image Processing, 8(1978)286-293.

297. Wold, S., Ruhe, A., Wold, H. and Dunn III, W.J., The
collinearity problem in linear regression. The partial least
squares (PLS) approach to generalized inverses, SIAM Journal
on Scientific and Statistical Computing, 5(1984)735-743.

298. Wolfe, P., Error in the solution of linear programming
problems, Proceedings of a symposium conducted by the MRC
and the University of Wisconsin, Vol. 2, Rall, L.B., (ed.), John
Wiley, New York, pp. 271-284, 1966.

299. Yin, P-Y., Algorithms for straight line fitting using k-means,
Pattern Recognition Letters, 19(1998)31-41.

300. Yin, P-Y., Genetic algorithms for polygonal approximation of
digital curves, International Journal of Pattern Recognition
and Artificial Intelligence, 13(1999)1061-1082.

301. Zhu, Y., and Seneviratne, L.D., Optimal polygonal approxi-
mation of digitised curves, IEEE Proceedings on Vision,
Image and Signal Processing, 144(1997)8-14.

© 2008 by Taylor & Francis Group, LLC

893

Appendix B

Main Program

#include <Windows.h>
#include <stdio.h>
#include <string.h>

#include "LA_Defs.h"

/*---
Driver prototypes
---*/
void DR_Lone (void);
void DR_L1 (void);
void DR_Loneside(void);
void DR_Lonebv (void);
void DR_L1ineq (void);
void DR_L1pol (void);
void DR_L1pw1 (void);
void DR_L1pw2 (void);
void DR_Linf (void);
void DR_Linfside(void);
void DR_Linfbv (void);
void DR_Chineq (void);
void DR_Restch (void);
void DR_Strict (void);
void DR_Linfpw1 (void);
void DR_Linfpw2 (void);
void DR_Eluls (void);
void DR_Hhls (void);
void DR_Mls (void);
void DR_L2pw1 (void);
void DR_L2pw2 (void);
void DR_Fuel (void);
void DR_Tmfuel (void);
void DR_Effort (void);
void DR_Energy (void);

/*---
Local function prototypes
---*/

© 2008 by Taylor & Francis Group, LLC

894 Numerical Linear Approximation in C

void Run_all (void);
void prn_unrecognized (char *pzsInput);
void prn_options (void);

/*---
Main program
---*/
int main (int argc, char* argv[])
{
 DWORD deltaTick;
 DWORD startTick = GetTickCount ();

 if (argc < 2)
 {
 PRN ("Missing option\n");
 prn_options ();
 }
 else
 {
 strlwr (argv[1]);
 if (strncmp (argv[1], "all" , 3) == 0) Run_all ();
 else if (strncmp (argv[1], "lone" , 5) == 0) DR_Lone ();
 else if (strncmp (argv[1], "l1" , 5) == 0) DR_L1 ();
 else if (strncmp (argv[1], "l1ineq" , 5) == 0) DR_L1ineq ();
 else if (strncmp (argv[1], "lonebv" , 5) == 0) DR_Lonebv ();
 else if (strncmp (argv[1], "l1pol" , 4) == 0) DR_L1pol ();
 else if (strncmp (argv[1], "l1pw1" , 5) == 0) DR_L1pw1 ();
 else if (strncmp (argv[1], "l1pw2" , 5) == 0) DR_L1pw2 ();
 else if (strncmp (argv[1], "linf" , 5) == 0) DR_Linf ();
 else if (strncmp (argv[1], "loneside", 5) == 0) DR_Loneside();
 else if (strncmp (argv[1], "linfside", 5) == 0) DR_Linfside();
 else if (strncmp (argv[1], "linfbv" , 5) == 0) DR_Linfbv ();
 else if (strncmp (argv[1], "chineq" , 1) == 0) DR_Chineq ();
 else if (strncmp (argv[1], "restch" , 1) == 0) DR_Restch ();
 else if (strncmp (argv[1], "strict" , 1) == 0) DR_Strict ();
 else if (strncmp (argv[1], "linfpw1" , 7) == 0) DR_Linfpw1 ();
 else if (strncmp (argv[1], "linfpw2" , 7) == 0) DR_Linfpw2 ();
 else if (strncmp (argv[1], "eluls" , 2) == 0) DR_Eluls ();
 else if (strncmp (argv[1], "hhls" , 1) == 0) DR_Hhls ();
 else if (strncmp (argv[1], "l2pw1" , 5) == 0) DR_L2pw1 ();
 else if (strncmp (argv[1], "l2pw2" , 5) == 0) DR_L2pw2 ();
 else if (strncmp (argv[1], "mls" , 1) == 0) DR_Mls ();
 else if (strncmp (argv[1], "fuel" , 1) == 0) DR_Fuel ();
 else if (strncmp (argv[1], "tmfuel" , 1) == 0) DR_Tmfuel ();
 else if (strncmp (argv[1], "effort" , 2) == 0) DR_Effort ();

© 2008 by Taylor & Francis Group, LLC

Appendix B: Main Program 895

 else if (strncmp (argv[1], "energy" , 2) == 0) DR_Energy ();
 else prn_unrecognized (argv[1]);
 }

 deltaTick = GetTickCount () - startTick;

 PRN ("Time to execute: %d msec", deltaTick);
}

/*---
Local functions
---*/
void Run_all (void)
{
 DR_Lone ();
 DR_L1 ();
 DR_L1ineq ();
 DR_Lonebv ();
 DR_L1pol ();
 DR_L1pw1 ();
 DR_L1pw2 ();
 DR_Linf ();
 DR_Loneside();
 DR_Linfside();
 DR_Linfbv ();
 DR_Chineq ();
 DR_Restch ();
 DR_Strict ();
 DR_Linfpw1 ();
 DR_Linfpw2 ();
 DR_Eluls ();
 DR_Hhls ();
 DR_L2pw1 ();
 DR_L2pw2 ();
 DR_Mls ();
 DR_Fuel ();
 DR_Tmfuel ();
 DR_Effort ();
 DR_Energy ();
}

void prn_unrecognized (char *pszInput)
{
 PRN ("Unrecognized option \"%s\"\n", pszInput);
 prn_options ();

© 2008 by Taylor & Francis Group, LLC

896 Numerical Linear Approximation in C

}

void prn_options (void)
{
 PRN ("Type \"LA option\": options are (case-insensitive)\n");
 PRN (" All : Run all algorithms\n");
 PRN (" Lone : L-ONE Approximation\n");
 PRN (" L1 : L1 Approximation\n");
 PRN (" L1ineq : One-Sided L-One Approximation\n");
 PRN (" Lonebv : Bounded Variables L-One Approximation\n");
 PRN (" L1pol : L1 Polygonal Approximation\n");
 PRN (" L1pw1 : Linear L-One Piecewise Approximation (1)\n");
 PRN (" L1pw2 : Linear L-One Piecewise Approximation (2)\n");
 PRN (" Linf : Chebyshev Approximation\n");
 PRN (" Loneside: L-One Solution of Linear Inequalities\n");
 PRN (" Linfside: One-Sided Chebyshev Approximation\n");
 PRN (" Linfbv : Bounded Variables Chebyshev Approximation\n");
 PRN (" Chineq : Chebyshev Solution of Linear Inequalities\n");
 PRN (" Restch : Restricted Chebyshev Approximation\n");
 PRN (" Strict : Strict Chebyshev Approximation\n");
 PRN (" Linfpw1 : Linear Chebyshev Piecewise Approximation(1)\n");
 PRN (" Linfpw2 : Linear Chebyshev Piecewise Approximation(2)\n");
 PRN (" Eluls : Least Squares Approximation by "
 "Gauss LU Decomposition\n");
 PRN (" Hhls : Least Squares Approximation by "
 "Hoseholder's Transformation\n");
 PRN (" Mls : Solution of Fredholm Integral Equation of the "
 "First Kind\n");
 PRN (" L2pw1 : Least Squares Piecewise Approximation (1)\n");
 PRN (" L2pw2 : Least Squares Piecewise Approximation (2)\n");
 PRN (" Fuel : L-ONE Solution of Underdetermined "
 "Linear Equations\n");
 PRN (" Tmfuel : Bounded/L-One-Bounded Solution of "
 "Underdetermined Linear Equations\n");
 PRN (" Effort : Chebyshev Solution of Underdetermined "
 "Linear Equations\n");
 PRN (" Energy : Bounded Least Squares Solution of"
 "Underdetermined Linear Equations\n");
 PRN ("NOTE: You can type the first N unique chararcters in the "
 "option\n");
 PRN (" - e.g. \"LA t\" instead of \"LA Tmfuel\"\n");
 PRN (" \"LA Loneb\" instead of \"LA LA_Lonebv\"\n");
}

© 2008 by Taylor & Francis Group, LLC

897

Appendix C

Constants, Types and Function Prototypes

/*---
DR_Defs.h

Constants and Type Definitions used by Drivers
---*/

#ifndef _DR_DEFS_H_
#define _DR_DEFS_H_

/* Constants used only by Driver programs.
 Not visible to LA_ algorithm programs */

/* General Constants */
#define N_ROWS 25
#define M_COLS 250
#define KK_PIECES 50
#define MM_COLS 25
#define MMc_COLS 26
#define NN_ROWS 250

/* Energy + Fuel */
#define Ne_ROWS 25
#define Me_COLS 150

/* Eluls + Hhls */
#define NN2_ROWS 50
#define MM2_COLS 30
#define KK2_COLS 12

#endif

© 2008 by Taylor & Francis Group, LLC

898 Numerical Linear Approximation in C

/*---
LA_Defs.h

Constants and Type Definitions used by Linear Approximation Library
Functions
---*/

#ifndef _LA_DEFS_H_
#define _LA_DEFS_H_

#define PRN printf

/* Used to identify unused (index 0) vector/matrix elements */
#define NIL 0.0

typedef int *tVector_I;
typedef int **tMatrix_I;

typedef double tNumber_R;
typedef double *tVector_R;
typedef double **tMatrix_R;

/* Comment-out the following line for single precision */
#define DOUBLE_PRECISION

#ifdef DOUBLE_PRECISION
#define PREC 1.0E-16
#define EPS 1.0E-11
#else /* SINGLE PRECISION */
#define PREC 1.0E-06
#define EPS 1.0E-04
#endif

/*--
Linear Approximation Return Code
Provides the result of execution of any algorithm
--*/
typedef enum
{
 /*--
 Intermediate calculation did not fail - never returned externally
 --*/
 LaRcOk = 0,

© 2008 by Taylor & Francis Group, LLC

Appendix C: Constants, Types and Function Prototypes 899

 /*--
 Algorithm has calculated results
 --*/
 /* Solution vector was found */
 LaRcSolutionFound = 1,

 /* Solution vector is unique */
 LaRcSolutionUnique = 2,

 /* Solution vector is most-probably not unique */
 LaRcSolutionProbNotUnique = 3,

 /* Solution vector is definitely not unique due to rank
 deficiency */
 LaRcSolutionDefNotUniqueRD = 4,

 /*--
 Algorithm could not calculate results
 --*/
 /* No feasible solution found, due to one of:
 (1) The problem itself has no solution, or
 (2) Matrix "c" of the system c*a=f is ill-conditioned */
 LaRcNoFeasibleSolution = -1,

 /* There is no solution because c*a=f is not consistent */
 LaRcInconsistentSystem = -2,

 /* The calculation terminated because the conditions
 el(i) <= f(i) <= ue(i), i=1,...,n
 were not satisfied */
 LaRcInconsistentConstraints = -3,

 /*--
 Errors
 --*/
 /* Argument(s) out of legal bounds */
 LaRcErrBounds = -4,

 /* Null pointer argument */
 LaRcErrNullPtr = -5,

 /* Memory allocation error */
 LaRcErrAlloc = -6,
} eLaRc;

© 2008 by Taylor & Francis Group, LLC

900 Numerical Linear Approximation in C

/* Macros to simplify/abstract run-time error/return-code handling */
#define GOTO_CLEANUP_RC(r) { rc = r; goto CLEANUP; }
#define VALIDATE(cond,r) if (!(cond)) {GOTO_CLEANUP_RC (r);}
#define VALIDATE_BOUNDS(cond) VALIDATE(cond,LaRcErrBounds)
#define VALIDATE_PTRS(cond) VALIDATE(cond,LaRcErrNullPtr)
#define VALIDATE_ALLOC(cond) VALIDATE(cond,LaRcErrAlloc)
#define IN_BOUNDS(v,lo,hi) (((v) >= (lo)) && ((v) <= (hi)))

#endif

© 2008 by Taylor & Francis Group, LLC

Appendix C: Constants, Types and Function Prototypes 901

/*---
LA_Prototypes.h

Linear Approximation Library Function Prototypes
---*/

#ifndef _LA_PROTOTYPES_H
#define _LA_PROTOTYPES_H

#include "LA_Utils.h"

eLaRc LA_L1 (int m, int n, tMatrix_R ct, tVector_R f, int *pIrank,
 int *pIter, tVector_R r, tVector_R a, tNumber_R *pZ);

void LA_l1_part_1 (int m, int n, tMatrix_R ct, tVector_I ic,
 tVector_I ir, tMatrix_R ginv, int *pIrank, int *pIter);

void LA_l1_part_2 (int n, tMatrix_R ct, tVector_R f, tVector_I ic,
 tVector_I ib, tVector_R uf, tVector_R vb, int *pIrank,
 tVector_R r);

void LA_l1_triang_matrix (int m, tVector_R p, int *pIrank);

void LA_l1_vleav (int *pIvo, int *pIout, tNumber_R *pXb,
 tVector_R xp, int *pIrank);

void LA_l1_alfa (int iout, int n, tMatrix_R ct, tVector_I ic,
 tVector_I ib, tVector_R xp, tVector_R t, tVector_R alfa,
 int *pIrank, tVector_R r);

void LA_l1_vent (int ivo, int *pJin, int *pItest, int n,
 tVector_I ic, tVector_R alfa, int *pIrank);

void LA_l1_skip_iters (int iciout, int icjin, tNumber_R xb,
 tNumber_R *pBxb, tNumber_R pivotn, tMatrix_R ct, tVector_I ib,
 tVector_R t, tVector_R vb, int *pIrank);

void LA_l1_update_p (int iout, int jin, tMatrix_R ct, tVector_I ic,
 tVector_R p, int *pIrank);

void LA_l1_update_ginv (int i, int n, tMatrix_R ct, tVector_I ir,
 tVector_R p, tMatrix_R ginv, tVector_R vb, int *pIrank);

void LA_l1_calcul_r (tNumber_R alpha, int n, tMatrix_R ct,
 tVector_R f, tVector_I ic, tVector_I ib, tVector_R uf,

© 2008 by Taylor & Francis Group, LLC

902 Numerical Linear Approximation in C

 tVector_R xp, tVector_R t, tVector_R p, int *pIrank,
 tVector_R r);

void LA_l1_pslv (int id, int *pIrank, tVector_R p, tVector_R vb,
 tVector_R xp);

void LA_l1_gauss_jordn (int iout, int jin, int lj, int *pIrank,
 int n, tMatrix_R ct, tMatrix_R ginv, tVector_I ic);

eLaRc LA_l1_res (int *pIrank, int m, int n, tVector_R r,
 tMatrix_R ginv, tVector_R vb, tVector_I ir, tVector_R xp,
 tVector_R a, tNumber_R *pZ);

eLaRc LA_Lone (int mCols, int nRows, tMatrix_R ct, tVector_R f,
 int *pIrank, int *pIter, tVector_R r, tVector_R a,
 tNumber_R *pZ);

void LA_lone_gauss_jordn (int ipart, int iout, int jin, int nRows,
 tMatrix_R ct, tVector_I icbas, tMatrix_R binv, tVector_R bv,
 tVector_I ibound, int *pIrank, tVector_R r);

void LA_lone_part_1 (int ipart, int nRows, tMatrix_R ct,
 tVector_I icbas, tVector_I irbas, tMatrix_R binv, tVector_R bv,
 tVector_I ibound, int *pIrank, int *pIter, tVector_R r);

void LA_lone_part_2 (int nRows, tMatrix_R ct, tVector_R f,
 tVector_I icbas, tVector_R bv, tVector_I ibound, int *pIrank,
 tVector_R r);

void LA_lone_th (int iout, int nRows, tMatrix_R ct, tVector_I icbas,
 tVector_I ibound, tVector_R th, int *pIrank, tVector_R r);

void LA_lone_vent (int ivo, int *pItest, int *pJin, int nRows,
 tVector_R th);

eLaRc LA_lone_res (int mCols, int nRows, tVector_R f,
 tVector_I icbas, tVector_I irbas, tMatrix_R binv, tVector_R bv,
 int *pIrank, tVector_R r, tVector_R a, tNumber_R *pZ);

void LA_lone_vleav (int *pIvo, int *pIout, int *pIrank,
 tNumber_R *pXb, tVector_R bv);

© 2008 by Taylor & Francis Group, LLC

Appendix C: Constants, Types and Function Prototypes 903

eLaRc LA_Loneside (int iside, int m, int n, tMatrix_R ct,
 tVector_R f, int *pIrank, int *pIter, tVector_R r, tVector_R a,
 tNumber_R *pZ);

void LA_loneside_basic_sol (int m, int n, tMatrix_R ct,
 tVector_I irbas, tVector_R bv);

void LA_loneside_part_1 (int m, int n, tMatrix_R ct, tVector_I icbas,
 tVector_I irbas, tMatrix_R binv, tVector_R bv, int *pIrank,
 int *pIter, tVector_R r);

void LA_loneside_gauss_jordn (int iout, int jin, int m, int n,
 tMatrix_R ct, tVector_I icbas, tMatrix_R binv, tVector_R bv,
 tVector_R r);

eLaRc LA_loneside_res (int iside, int m, int n, tVector_R f,
 tVector_I icbas, tVector_I irbas, tMatrix_R binv, tVector_R bv,
 int *pIrank, tVector_R r, tVector_R a, tNumber_R *pZ);

void LA_loneside_marg_costs (int m, int n, tMatrix_R ct, tVector_R f,
 tVector_I icbas, tVector_R r);

void LA_loneside_vent (int *pIvo, int *pJin, int m, int n,
 tVector_I icbas, tVector_R r);

void LA_loneside_vleav (int jin, int *pIout, int *pItest, int m,
 tMatrix_R ct, tVector_R bv);

eLaRc LA_Lonebv (int m, int n, tMatrix_R ct, tVector_R f,
 tVector_I icbas, tMatrix_R binv, tVector_R bv, tVector_I ibbv,
 tVector_R thbv, int *pIter, tVector_R rbv, tVector_R a,
 tNumber_R *pZ);

void LA_lonebv_part_1 (int m, int n, tMatrix_R ct, tVector_R f,
 tVector_I icbas, tMatrix_R binv, tVector_R bv, tVector_I ibbv,
 tVector_R rbv);

void LA_lonebv_vleav (int *pIvo, int *pIout, tNumber_R *pXb, int m,
 int n, tVector_I icbas, tVector_R bv);

void LA_lonebv_thbv (int ivo, int iout, int m, int n, tMatrix_R ct,
 tVector_I icbas, tMatrix_R binv, tVector_I ibbv, tVector_R thbv,

© 2008 by Taylor & Francis Group, LLC

904 Numerical Linear Approximation in C

 tVector_R rbv);

void LA_lonebv_vent (int ivo, int *pJin, int *pItest, int m, int n,
 tVector_R thbv);

void LA_lonebv_update_bv (int iout, int jout, int jin,
 tNumber_R *pPivot, tNumber_R pivoto, tNumber_R *pXb, int m,
 int n, tMatrix_R ct, tMatrix_R binv, tVector_R bv,
 tVector_I ibbv);

void LA_lonebv_gauss_jordn (int jin, int iout, int m, int n,
 tMatrix_R ct, tVector_I icbas, tMatrix_R binv, tVector_R bv,
 tVector_I ibbv, tVector_R rbv);

void LA_lonebv_res (int m, int n, tVector_R f, tVector_I icbas,
 tMatrix_R binv, tVector_R rbv, tVector_R a, tNumber_R *pZ);

eLaRc LA_L1pol (int m, int n, tNumber_R enorm, tMatrix_R ct,
 tVector_R f, tMatrix_R ctn, tMatrix_R binv, tVector_I icbas,
 tVector_R r, tVector_R a, tVector_I ixl, tVector_R v,
 tVector_R rp, tMatrix_R ap, tVector_R zp, int *pNpiece);

void LA_l1pol_vertic_line (int je, int m, tMatrix_R ct,
 tMatrix_R ctn, tVector_R f, tVector_R r, tMatrix_R binv,
 tVector_R a, tVector_R v, tNumber_R *pPiv);

void LA_l1pol_residuals (int m, int n1, int n2, tMatrix_R ct,
 tVector_R f, tVector_I icbas, tMatrix_R binv, tVector_R r,
 tVector_R a, tNumber_R *pZ, int kase);

void LA_l1pol_gauss_jordn (int n1, int n2, int m, int iout, int jin,
 tMatrix_R ct, tMatrix_R binv, tVector_I icbas);

void LA_l1pol_res (int n1, int n2, int m, tVector_R f, tVector_R r,
 tVector_R a, tMatrix_R binv, tVector_I icbas, tNumber_R *pZ);

eLaRc LA_L1pw1 (int m, int n, tNumber_R enorm, int konect,
 tMatrix_R ct, tVector_R f, tVector_I ixl, tVector_I irankp,
 tMatrix_R rp1, tMatrix_R ap, tVector_R zp, int *pNpiece);

© 2008 by Taylor & Francis Group, LLC

Appendix C: Constants, Types and Function Prototypes 905

eLaRc LA_L1pw2 (int m, int n, int npiece, tMatrix_R ct, tVector_R f,
 tMatrix_R ap, tVector_R rp2, tVector_R zp, tVector_I ixl);

eLaRc LA_Linf (int m, int n, tMatrix_R ct, tVector_R f, int *pIrank,
 int *pIter, tVector_R r, tVector_R a, tNumber_R *pZ);

void LA_linf_init (int m, int n, tMatrix_R ct, tVector_I icbas,
 tVector_I irbas, tMatrix_R binv, tVector_I ibound, tVector_R r,
 tVector_R a);

void LA_linf_gauss_jordn (int iout, int jin, int kl, int m, int n,
 tMatrix_R ct, tVector_I icbas, tMatrix_R binv, tVector_R bv,
 int *pIter);

void LA_linf_detect_rank (int *pKl, int iout, int jin, int m, int n,
 tNumber_R piv, tMatrix_R ct, tVector_R f, tVector_I icbas,
 tVector_I irbas, tMatrix_R binv, tVector_R bv, tVector_I ibound,
 int *pIrank, int *pIter);

void LA_linf_part_1 (int *pKl, int m, int n, tMatrix_R ct,
 tVector_R f, tVector_I icbas, tVector_I irbas, tMatrix_R binv,
 tVector_R bv, tVector_I ibound, int *pIrank, int *pIter);

void LA_linf_part_2 (int kl, int m, int n, tMatrix_R ct, tVector_R f,
 tVector_I icbas, tMatrix_R binv, tVector_R bv, tVector_I ibound,
 int *pIter);

eLaRc LA_linf_res (int kl, int m, int n, tVector_R f,
 tVector_I icbas, tVector_I irbas, tMatrix_R binv, tVector_R bv,
 tVector_I ibound, tVector_R r, tVector_R a, int irank,
 tNumber_R *pZ);

void LA_linf_part_3 (int kl, int m, int n, tMatrix_R ct, tVector_R f,
 tVector_I icbas, tMatrix_R binv, tVector_R bv, tVector_I ibound,
 tVector_R r, tNumber_R *pZ);

void LA_linf_vent (int *pIvo, int *pJin, int kl, int m, int n,
 tVector_I icbas, tVector_R r, tNumber_R *pZ);

void LA_linf_vleav (int *pItest, int *pIout, int jin, int kl, int m,
 tMatrix_R ct, tVector_R bv);

© 2008 by Taylor & Francis Group, LLC

906 Numerical Linear Approximation in C

eLaRc LA_Linfside (int iside, int m, int n, tMatrix_R ct,
 tVector_R f, int *pIrank, int *pIter, tVector_R r, tVector_R a,
 tNumber_R *pZ);

void LA_linfside_vleav (int *pItest, int *pIout, int jin, int kl,
 int m, tMatrix_R ct, tVector_R bv);

void LA_linfside_init (int iside, int m, int n, tMatrix_R ct,
 tVector_I irbas, tMatrix_R binv, tVector_I ibound, tVector_R a);

void LA_linfside_gauss_jordn (int iout, int jin, int kl, int m,
 int n, tMatrix_R ct, tVector_I icbas, tMatrix_R binv,
 tVector_R bv);

void LA_linfside_detect_rank (tNumber_R piv, int iout, int jin,
 int *pKl, int m, int n, tMatrix_R ct, tVector_R f,
 tVector_I icbas, tVector_I irbas, tMatrix_R binv, tVector_R bv,
 tVector_I ibound, int *pIrank, int *pIter);

void LA_linfside_part_2 (int kl, int m, int n, tMatrix_R ct,
 tVector_R f, tVector_I icbas, tMatrix_R binv, tVector_R bv,
 tVector_I ibound, int *pIter);

void LA_linfside_resid_norm (int kl, int m, int n, tMatrix_R ct,
 tVector_R f, tVector_I icbas, tMatrix_R binv, tVector_R bv,
 tVector_I ibound, tVector_R r, tNumber_R *pZ);

eLaRc LA_linfside_res (int iside, int m, int n, int kl, int iout,
 tVector_R f, tVector_I icbas, tVector_I irbas, tMatrix_R binv,
 tVector_R bv, tVector_I ibound, tVector_R r, tVector_R a,
 int irank, tNumber_R *pZ);

void LA_linfside_vent (int *pIvo, int *pJin, int kl, int m, int n,
 tVector_I icbas, tVector_R r, tNumber_R *pZ);

eLaRc LA_Linfbv (int m, int n, tMatrix_R ct, tVector_R f,
 tVector_I icbas, tVector_I irbas, tMatrix_R binv, tVector_R bv,
 tVector_I ibound, int *pIter, tVector_R r, tVector_R a,
 tNumber_R *pZ);

void LA_linfbv_init (int m, int n, tMatrix_R ct, tVector_I icbas,

© 2008 by Taylor & Francis Group, LLC

Appendix C: Constants, Types and Function Prototypes 907

 tVector_I irbas, tMatrix_R binv, tVector_I ibound, tVector_R r,
 tVector_R a);

void LA_linfbv_part_2 (int m, int n, tMatrix_R ct, tMatrix_R binv,
 tVector_R bv, tVector_I ibound);

void LA_linfbv_resid_norm (int m, int n, tMatrix_R ct, tVector_R f,
 tVector_I icbas, tVector_R bv, tVector_R r, tNumber_R *pZ);

void LA_linfbv_vent (int *pIvo, int *pJin, int m, int n,
 tVector_I icbas, tVector_R r, tNumber_R *pZ);

void LA_linfbv_vleav (int jin, int *pIout, int *pItest, int m, int n,
 tMatrix_R ct, tMatrix_R binv, tVector_R bv, tVector_I ibound);

void LA_linfbv_gauss_jordn (int m, int n, int iout, int jin,
 tMatrix_R ct, tVector_I icbas, tMatrix_R binv, tVector_R bv,
 tVector_I ibound);

void LA_linfbv_res (int m, int n, tVector_R f, tVector_I icbas,
 tVector_I irbas, tMatrix_R binv, tVector_I ibound, tVector_R r,
 tVector_R a, tNumber_R *pZ);

eLaRc LA_Mls (int m, int n, tMatrix_R a, tVector_R b,
 tNumber_R toler, tVector_R x, int *pIrank);

eLaRc LA_Restch (int m, int n, tMatrix_R ct, tVector_R f,
 tVector_R el, tVector_R ue, int *pIrank, int *pIter, tVector_R r,
 tVector_R a, tNumber_R *pZ);

eLaRc LA_restch_init (int m, int n, tMatrix_R ct, tVector_R f,
 tVector_R el, tVector_R ue, tVector_I ir, tVector_I ib,
 tVector_I ic, tVector_R g, tMatrix_R ginv, tVector_R a);

void LA_restch_part_1 (tNumber_R *pPiv, int iout, int *pJin, int n,
 tMatrix_R ct, tVector_I ic, tMatrix_R ginv);

void LA_restch_detect_rank (tNumber_R *Ppiv, int *pIout, int *pJin,
 int n, tMatrix_R ct, tVector_I ic, tVector_I ir, tVector_I ib,
 tVector_R g, tVector_R v, tMatrix_R ginv, int *pIrank,
 int *pIter);

© 2008 by Taylor & Francis Group, LLC

908 Numerical Linear Approximation in C

void LA_restch_part_2 (int n, tMatrix_R ct, tVector_I ic,
 tVector_I ib, tVector_R g, tVector_R v, tMatrix_R ginv,
 tVector_R vb, int *pIrank);

void LA_restch_init_p (int m, tVector_R p, int *pIrank);

void LA_restch_update_ginv (int iout, tMatrix_R ct, tVector_I ir,
 tVector_R p, tMatrix_R ginv, tVector_R vb, int *pIrank);

void LA_restch_vent (int *pIvo, int *pJin, tNumber_R *pGgg, int n,
 tVector_R f, tVector_R el, tVector_R ue, tVector_I ic,
 tVector_I ib, tVector_R zc, int *pIrank, tNumber_R *pZ);

void LA_restch_vleav (int jin, int *pIout, int *pItest, tMatrix_R ct,
 tVector_R u, tVector_R v, tVector_R w, tVector_R p,
 tMatrix_R ginv, int *pIrank);

void LA_restch_update_p (int iout, tVector_I ic, tVector_R p,
 int *pIrank);

eLaRc LA_restch_res (int m, tVector_R f, tVector_R el, tVector_R ue,
 tVector_I ic, tVector_I ib, tVector_R v, tVector_R p,
 tVector_R vb, int *pIrank, tVector_R r, tNumber_R *pZ);

void LA_pslvc (int id, int k, tVector_R p, tVector_R b, tVector_R x);

void LA_restch_marg_costs (int m, int n, tMatrix_R ct, tVector_R f,
 tVector_R el, tVector_R ue, tVector_I ic, tVector_I ir,
 tVector_I ib, tVector_R g, tVector_R u, tVector_R v, tVector_R w,
 tVector_R zc, tVector_R p, tMatrix_R ginv, int *pIrank,
 tVector_R r, tVector_R a, tNumber_R *pZ);

eLaRc LA_Strict (int m, int n, tMatrix_R c, tVector_R f, int *pKsys,
 int *pIrank, int *pIter, tVector_R r, tVector_R a, tVector_R z);

void LA_strict_init_1 (int m, int n, tMatrix_R binv, tVector_I ib,
 tVector_I iv, tVector_I irbas, tVector_R v, tVector_R fs,
 tVector_R a, tVector_R r, tVector_R z);

void LA_strict_init_2 (int kl, int m, int n, tMatrix_R c,
 tMatrix_R ct, tVector_I ib, tVector_I ibound,
 tVector_I irbas);

© 2008 by Taylor & Francis Group, LLC

Appendix C: Constants, Types and Function Prototypes 909

void LA_strict_part_1 (int *pKl, int kn, int *pMa, int m, int n,
 tMatrix_R c, tMatrix_R ct, tVector_R f, tMatrix_R binv,
 tVector_R bv, tVector_R v, tVector_R fs, tVector_I ib,
 tVector_I ih, tVector_I iv, tVector_I ibound, tVector_I icbas,
 tVector_I irbas, int *pIrank, int *pKsys, int *pIter,
 tVector_R r, tVector_R a, tVector_R z, eLaRc rc);

void LA_strict_map (int kl, int m, tVector_R f, tVector_R fs,
 tVector_I ih, tVector_I icbas, tVector_R r, tNumber_R zz);

void LA_strict_piv (int iout, int *pJin, int n, tNumber_R *pPiv,
 tMatrix_R ct, tVector_I ib);

void LA_strict_swapping (int kl, int iout, int m, int n,
 tMatrix_R ct, tMatrix_R binv, tVector_I ib, tVector_I icbas,
 tVector_I irbas);

void LA_strict_detect_rank (int kl, int *pJin, int m, int n,
 tMatrix_R ct, tVector_R f, tVector_I ib, tVector_I ibound,
 tVector_I icbas);

void LA_strict_part_2 (int kl, int m, int n, tMatrix_R ct,
 tVector_R f, tMatrix_R binv, tVector_R bv, tVector_I ib,
 tVector_I ibound, tVector_I icbas, int *pIter);

void LA_strict_part_3 (int kl, int m, int n, tMatrix_R c,
 tMatrix_R ct, tVector_R f, tMatrix_R binv, tVector_R bv,
 tVector_I ib, tVector_I ibound, tVector_I icbas, tNumber_R *pZz);

void LA_strict_vent (int *pIvo, int *pJin, int kl, int m, int n,
 tMatrix_R c, tVector_I ib, tVector_I icbas, tNumber_R zz);

void LA_strict_vleav (int kl, int *pIout, int jin, int *pItest,
 int m, tMatrix_R ct, tVector_R bv);

void LA_strict_gauss_jordn (int iout, int jin, int kl, int m, int n,
 tMatrix_R ct, tMatrix_R binv, tVector_R bv, tVector_I ib,
 tVector_I icbas);

void LA_strict_uniquens (int *pIvo, int *pIout, int kl, int *pKn,
 int *pLd, int m, int n, tMatrix_R c, tMatrix_R ct, tVector_R f,
 tVector_R bv, tVector_R v, tVector_I ib, tVector_I ih,
 tVector_I ibound, tVector_I icbas, tVector_R r, tNumber_R zz);

© 2008 by Taylor & Francis Group, LLC

910 Numerical Linear Approximation in C

void LA_strict_eliminat_zz (int *pIout, int kl, int m, tMatrix_R c,
 tMatrix_R binv, tVector_R bv, tVector_I ib, tVector_I ih,
 tVector_I ibound, tVector_I icbas, int *pKsys, tVector_R r,
 tVector_R z, tNumber_R zz);

void LA_strict_gauss_jordn_binv (int iout, int kl, int m,
 tMatrix_R binv, tVector_I iv);

void LA_strict_permute_binv (int kj, int kl, int *pKm, int m,
 tMatrix_R binv, tVector_R bv, tVector_I ih, tVector_I icbas);

void LA_strict_calcul_a (int m, tVector_R fs, tMatrix_R binv,
 tVector_I iv, tVector_I icbas, tVector_I irbas, tVector_R a);

void LA_strict_reduce_sys (int kl, int kln, int *pMa, int m, int n,
 tMatrix_R c, tVector_R f, tMatrix_R binv, tVector_I ib,
 tVector_I iv, tVector_I irbas, tVector_R a);

void LA_strict_modify_binv (int kl, int kj, int m, tMatrix_R binv,
 tVector_R v, tVector_I iv);

void LA_strict_eliminate_ll (int kl, int kln, int *pMa, int ld,
 int m, int n, tMatrix_R c, tVector_R f, tVector_I ib,
 tVector_I iv, tVector_I ibound, tVector_I icbas, tVector_I irbas,
 tVector_R r, tNumber_R zz);

void LA_strict_calcul_r_3 (int kl, int kln, int m, tMatrix_R c,
 tVector_I ib, tVector_I ibound, tVector_I icbas, tVector_R r,
 tNumber_R zz);

void LA_strict_calcul_r_2 (int *pKn, int kln, int m, int n,
 tMatrix_R c, tVector_I ib, tVector_I ibound, tVector_I irbas,
 tVector_R r, tNumber_R zz);

void LA_strict_calcul_r_1 (int m, int n, tMatrix_R c, tVector_I ib,
 tVector_I ibound, tVector_R r, tNumber_R zz);

eLaRc LA_Linfpw1 (int m, int n, tNumber_R enorm, int konect,
 tMatrix_R ct, tVector_R f, tVector_I ixl, tVector_I irankp,
 tMatrix_R rp1, tMatrix_R ap, tVector_R zp, int *pNpiece);

© 2008 by Taylor & Francis Group, LLC

Appendix C: Constants, Types and Function Prototypes 911

eLaRc LA_Linfpw2 (int m, int n, int npiece, tMatrix_R ct, tVector_R f,
 tMatrix_R ap, tVector_R rp2, tVector_R zp, tVector_I ixl);

eLaRc LA_Eluls (int ientry, int n, int m, int irhs, tMatrix_R aa,
 tMatrix_R bs, tMatrix_R l, tMatrix_R u, tVector_R diag,
 tVector_R b, int *pIrank, tMatrix_R apsudo, tMatrix_R xs,
 tMatrix_R rres);

void LA_eluls_lu_decomp (int *pIout, int n, int m, tMatrix_R aa,
 tMatrix_R l, tMatrix_R u, tVector_R diag, tVector_I ir,
 tVector_I ic);

void LA_eluls_l_decomp (int n, int m, tMatrix_R tempp, tMatrix_R l,
 tMatrix_R u, int *pIrank);

void LA_eluls_u_decomp (int m, tMatrix_R tempp, tMatrix_R u,
 tVector_R diag, int *pIrank);

void LA_calcul_y (int *pIrank, int n, tMatrix_R t, tVector_R y,
 tVector_R w, tVector_R temp, tMatrix_R l, tVector_R b);

void LA_calcul_x (int *pIrank, int m, tMatrix_R v, tVector_R y,
 tVector_R w, tVector_R temp, tMatrix_R u, tVector_R diag,
 tVector_R x);

void LA_permute_x (int iwish, int ifirst, int isecnd, int n, int m,
 tMatrix_R aa, tMatrix_R bs, tVector_R w, tVector_R x,
 tVector_I ir, tVector_I ic, tMatrix_R apsudo, tMatrix_R xs,
 tMatrix_R rres);

void LA_chols (int irank, tMatrix_R tempp, tMatrix_R el);

eLaRc LA_Hhls (int ientry, int n, int m, int irhs, tMatrix_R aa,
 tMatrix_R bs, tMatrix_R q, tMatrix_R r, tMatrix_R p, int *pIrank,
 tMatrix_R apsudo, tMatrix_R xs, tMatrix_R res);

void LA_hhls_init (int n, int m, tMatrix_R aa, tMatrix_R q,
 tMatrix_R t, tVector_I ic);

void LA_hhls_calcul_q (int *pIout, int n, int m, tMatrix_R q,
 tMatrix_R t, tVector_I ic, tVector_R w, tVector_R dm);

© 2008 by Taylor & Francis Group, LLC

912 Numerical Linear Approximation in C

void LA_hhls_init_p (int n, int m, int *pIrank, tMatrix_R r,
 tMatrix_R t, tMatrix_R p);

void LA_hhls_calcul_r_p (int *pIrank, int m, tMatrix_R r,
 tMatrix_R p, tVector_R w, tVector_R dm);

void LA_hhls_calcul_res (int iwish, int ifirst, int isecnd,
 int *pIrank, int n, int m, tMatrix_R aa, tMatrix_R bs,
 tMatrix_R xs, tMatrix_R apsudo, tMatrix_R q, tMatrix_R r,
 tMatrix_R p, tVector_I ic, tVector_R b, tVector_R x, tVector_R w,
 tVector_R dm, tMatrix_R res);

eLaRc LA_Hhlsro (int n, int m, tMatrix_R c, tVector_R f, tVector_R a,
 tMatrix_R r, tVector_R res, tMatrix_R t, tVector_R dm,
 tVector_R w, tNumber_R *pZ);

eLaRc LA_hhlsro_hh_t (int iend, int n, int m, tMatrix_R t,
 tVector_R dm, tVector_R w);

void LA_hhlsro_x_res (int n, int m, tMatrix_R c, tVector_R f,
 tVector_R a, tMatrix_R r, tVector_R res, tNumber_R *pRho);

eLaRc LA_L2pw1 (int n, int m, tNumber_R enorm, int konect,
 tMatrix_R c, tVector_R f, tVector_I ixl, tMatrix_R rp1,
 tMatrix_R ap, tVector_R zp, int *pNpiece);

eLaRc LA_L2pw2 (int m, int n, int npiece, tMatrix_R c, tVector_R f,
 tMatrix_R ap, tVector_R rp2, tVector_R zp, tVector_I ixl);

void LA_l2pw2_init (int k, int npiece, int n, int m, int *pIs,
 int *pIe, tMatrix_R c, tVector_R f, tMatrix_R cp, tVector_R fp,
 tVector_I ixl);

void LA_pw1_init (int *pNpiece, int is, int ie, int m, tMatrix_R rp1,
 tMatrix_R ap, tVector_R zp);

void LA_pw1_map (int m, int nu, tVector_R r, tVector_R a,
 tNumber_R z, tMatrix_R rp1, tMatrix_R ap, tVector_R zp,
 int *pNpiece);

© 2008 by Taylor & Francis Group, LLC

Appendix C: Constants, Types and Function Prototypes 913

eLaRc LA_pw1_prn_rp1 (int konect, int npiece, int n, tVector_I ixl,
 tMatrix_R rp1);

void LA_pw2_init (int k, int npiece, int m, int n, int *pIs,
 int *pIe, tMatrix_R ct, tVector_R f, tMatrix_R ctp, tVector_R fp,
 tVector_I ixl);

eLaRc LA_pw2_prn_rp2 (int npiece, int n, tVector_I ixl,
 tVector_R rp2);

eLaRc LA_Fuel (int m, int n, tMatrix_R c, tVector_R f, int *pIrank,
 int *pIter, tVector_R a, tNumber_R *pZ);

void LA_fuel_init (int m, int n, tVector_I icbas, tVector_I irbas,
 tVector_I ibound, tVector_R a);

eLaRc LA_fuel_part_1 (int iout, int *pJin, int *pKl, int m, int n,
 tMatrix_R c, tVector_R f, tVector_I icbas, tVector_I irbas,
 int *pIrank, int *pIter);

void LA_fuel_part_2 (int kl, int m, int n, tMatrix_R c,
 tVector_I icbas, tVector_R zc);

void LA_fuel_vent (int *pIvo, int *pJin, int kl, int m, int n,
 tVector_I icbas, tVector_R zc);

void LA_fuel_leav (int *pItest, int jin, int *pIout, int kl, int n,
 tMatrix_R c, tVector_R f);

void LA_fuel_gauss_jordn (int iout, int jin, int kl, int m, int n,
 tMatrix_R c, tVector_R f, tVector_I icbas);

eLaRc LA_fuel_res (int kl, int n, tVector_R f, tVector_I icbas,
 tVector_I ibound, tVector_R a, tNumber_R *pZ);

eLaRc LA_Tmfuel (int itf, int m, int n, tMatrix_R c, tVector_R f,
 int *pIrank, int *pIter, tVector_R a, tNumber_R *pZnorm);

void LA_tmfuel_init (int m, int n, tVector_I icbs, tVector_I irbs,
 tVector_I ibnd, tVector_I kbnd, tVector_I ib, tVector_R zc,
 tVector_R a);

© 2008 by Taylor & Francis Group, LLC

914 Numerical Linear Approximation in C

eLaRc LA_tmfuel_part_1 (int iout, int *pJin, int m, tMatrix_R c,
 tVector_R f, tVector_I icbs, tVector_I irbs, int *pIrank,
 int *pIter);

void LA_tmfuel_marg_costs (int m, tMatrix_R c, tVector_R f,
 tVector_I icbs, tVector_I ibnd, tVector_I kbnd, tVector_R zc,
 int *pIrank);

void LA_tmfuel_vleav (int *pIrank, int *pIout, int *pIvo,
 tVector_R f, tNumber_R *pXb);

void LA_tmfuel_th_tu (int itf, int m, int ivo, int iout, int *pJout,
 tMatrix_R c, tVector_I icbs, tVector_I ibnd, tVector_I kbnd,
 tVector_R th, tVector_R tu, tVector_R zc);

void LA_tmfuel_vent (int m, int *pJin, int ivo, int *pItest,
 tVector_R th, tVector_R tu);

void LA_tmfuel_swap (int itf, int *pIrank, int *pJin, tMatrix_R c,
 tVector_I ibnd, tVector_I kbnd, tVector_I ib, tVector_R th,
 tVector_R tu, tVector_R zc);

void LA_tmfuel_cascade (int iout, int jin, int *pJout, tNumber_R xb,
 tNumber_R *pPivot, tNumber_R pivoto, tMatrix_R c, tVector_R f,
 tVector_I ibnd, int *pIrank);

void LA_tmfuel_test (int iout, int jin, int *pItest, tNumber_R *pXb,
 tNumber_R pivot, tVector_R f, tVector_I icbs, tVector_R th);

void LA_tmfuel_gauss_jordn (int iout, int jin, int *pIrank, int m,
 tMatrix_R c, tVector_R f);

eLaRc LA_tmfuel_res (int itf, int m, tVector_R f, tVector_I icbs,
 tVector_I ibnd, tVector_I kbnd, tVector_I ib, tVector_R zc,
 int *pIrank, tVector_R a, tNumber_R *pZnorm);

eLaRc LA_Effort (int m, int n, tMatrix_R ct, tVector_R f,
 int *pIrank, int *pIter, tVector_R a, tNumber_R *pZ);

void LA_effort_gauss_jordn (int iout, int jin, int m, int n,
 tNumber_R pivot, tMatrix_R ct, tVector_I ic, tVector_I nb);

© 2008 by Taylor & Francis Group, LLC

Appendix C: Constants, Types and Function Prototypes 915

eLaRc LA_effort_res (int m, int n, tMatrix_R ct, tVector_I ib,
 tVector_I ic, tVector_I ip, tVector_I nb, tVector_R zc,
 int *pIrank, tVector_R a, tNumber_R *pZ);

void LA_effort_init (int m, int n, tMatrix_R ct, tVector_I ib,
 tVector_I ic, tVector_I ip, tVector_I nb);

void LA_effort_marg_costs (int m, int n, tMatrix_R ct, tVector_R f,
 tVector_I ib, tVector_R zc);

void LA_effort_vent (int *pIvo, int *pJin, int n, tVector_I nb,
 tVector_R zc, tNumber_R *pZ);

void LA_effort_vleav (int *pItest, int jin, int *pIout, int m,
 tMatrix_R ct);

eLaRc LA_Energy (int m, int n, tMatrix_R ct, tVector_R f,
 int *pIrank, int *pIter, tVector_R a, tNumber_R *pZ);

void LA_energy_init (int m, int n, tMatrix_R ct, tVector_I ic,
 tVector_I ir, tVector_I ik, tVector_R a);

eLaRc LA_energy_phase_1 (int m, int n, tMatrix_R ct, tVector_R f,
 tVector_I ic, tVector_R a, int *pIrank, int *pIter);

void LA_energy_phase_2 (int m, int n, tMatrix_R ct, tVector_I ir,
 tVector_I ik, int *pIrank, tVector_R a);

void LA_energy_norm (int m, tVector_R a, tNumber_R *pZ);

void LA_energy_gauss_jordn_e0 (int iout, int m, int n, tMatrix_R ct,
 tVector_R f, tVector_R a);

void LA_energy_gauss_jordn_e (int m, int n, int iout, int nj0,
 tMatrix_R ct, tVector_I ir, tVector_I ik, tVector_R a);

void LA_energy_vent (int *pIvo, int *pJin, int m, int n,
 tVector_I ir, tVector_R a);

void LA_energy_vleav (int *pItest, int jin, int m, int n, int *pIout,
 int j0, tMatrix_R ct, tVector_I ir, tVector_R a);

© 2008 by Taylor & Francis Group, LLC

916 Numerical Linear Approximation in C

void LA_energy_res (int m, int n, tMatrix_R ct, tVector_I ir,
 tVector_R a);

#endif

© 2008 by Taylor & Francis Group, LLC

917

Appendix D

Utilities and Common Functions

/*---
LA_Utils.h

Linear Approximation Utility Prototypes
---*/

#ifndef _LA_UTILS_H_
#define _LA_UTILS_H_

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#include "LA_Defs.h"

/* Function prototypes */
void LA_check_rank_def (int n, int irank);

void prn_la_rc (eLaRc rc);
void prn_dr_bnr (char *pszMsg);
void prn_algo_bnr (char *pszMsg);
void prn_example_delim (void);

tVector_I alloc_Vector_I (int nElems);
void swap_elems_Vector_I (tVector_I v, int elemA, int elemB);
void prn_Vector_I (int *v, int nElems);
void free_Vector_I (int *v);

tVector_R alloc_Vector_R (int nElems);
void swap_elems_Vector_R (tVector_R v, int elemA, int elemB);
void prn_Vector_R (tNumber_R *v, int nElems);
void prn_Vector_R_nDec (tNumber_R *v, int nElems, int nDec);
void prn_Vector_R_exp (tNumber_R *v, int nElems);
void free_Vector_R (tNumber_R *v);

tMatrix_R alloc_Matrix_R (int nRows, int mCols);
tMatrix_R init_Matrix_R (tNumber_R *c, int nRows, int mCols);
void swap_rows_Matrix_R (tMatrix_R m, int elemA, int elemB);

© 2008 by Taylor & Francis Group, LLC

918 Numerical Linear Approximation in C

void prn_Matrix_R (tMatrix_R, int, int);
void free_Matrix_R (tMatrix_R, int nRows);
void uninit_Matrix_R (tNumber_R **m);

#endif

/*---
LA_Utils.c

Linear Approximation Utility Functions
---*/

#include <malloc.h> /* malloc () */
#include <memory.h> /* memcpy () */
#include <string.h>

#include "LA_Utils.h"

/*---
Interpretation of results functions
---*/

void LA_check_rank_def(int n, int irank)
{
 if (irank < n)
 {
 PRN ("System is rank deficient\n");
 }
}

/*---
Print functions
---*/

void prn_la_rc (eLaRc rc)
{
 PRN("---------- RC = ");

 switch (rc)
 {
 case LaRcSolutionFound:
 PRN ("Solution Found"); break;
 case LaRcSolutionUnique:
 PRN ("Solution is Unique"); break;
 case LaRcSolutionProbNotUnique:

© 2008 by Taylor & Francis Group, LLC

Appendix D: Utilities and Common Functions 919

 PRN ("Solution is probably not Unique"); break;
 case LaRcSolutionDefNotUniqueRD:
 PRN ("Solution is definitely not Unique"
 " due to Rank deficiency"); break;
 case LaRcNoFeasibleSolution:
 PRN ("No Feasible Solution"); break;
 case LaRcInconsistentSystem:
 PRN ("Inconsistent System"); break;
 case LaRcInconsistentConstraints:
 PRN ("Inconsistent Constraints"); break;
 case LaRcErrBounds:
 PRN ("ERROR: Argument out of bounds"); break;
 case LaRcErrNullPtr:
 PRN ("ERROR: NULL pointer argument"); break;
 case LaRcErrAlloc:
 PRN ("ERROR: Memory allocation failure"); break;
 case LaRcOk: /* Should never return this */
 default:
 PRN ("ERROR: Unknown"); break;
 }

 PRN(" ----------\n");
}

void prn_dr_bnr (char *pszMsg)
{
PRN("\n===\n");
PRN("===== Executing Driver: %s", pszMsg);
PRN("\n===\n");
}

void prn_algo_bnr (char *pszMsg)
{
PRN("\n---\n");
PRN("----- Executing Algorithm: %s", pszMsg);
PRN("\n---\n");
}

void prn_example_delim (void)
{
 PRN("----------\n");
}

© 2008 by Taylor & Francis Group, LLC

920 Numerical Linear Approximation in C

/*---
Vector Functions
---*/

/* Allocate an integer vector */
tVector_I alloc_Vector_I (int nElem)
{
 int *v;
 if (nElem <= 0) return NULL;
 v = (int *)malloc (nElem * sizeof (int));
 if (!v) return NULL;
 memset (v, nElem * sizeof (int), 0);
 return v - 1;
}

void swap_elems_Vector_I (tVector_I v, int idxA, int idxB)
{
 int temp = v[idxA];
 v[idxA] = v[idxB];
 v[idxB] = temp;
}

void prn_Vector_I (int *v, int nElems)
{
 int i;
 for (i = 1; i <= (nElems - 1); i++)
 PRN ("%d\t", v[i]);
 PRN ("%d\n", v[nElems]);
}

void free_Vector_I (int *v)
{
 if (v == NULL) return;
 free ((char *) (v+1));
}

/* Allocate a real vector */
tNumber_R *alloc_Vector_R (int nElem)
{
 tNumber_R *v;
 if (nElem <= 0) return NULL;
 v = (tNumber_R *)malloc (nElem * sizeof (tNumber_R));
 if (!v) return NULL;
 memset (v, nElem * sizeof (tNumber_R), 0);
 return v - 1;

© 2008 by Taylor & Francis Group, LLC

Appendix D: Utilities and Common Functions 921

}

void swap_elems_Vector_R (tVector_R v, int idxA, int idxB)
{
 tNumber_R temp = v[idxA];
 v[idxA] = v[idxB];
 v[idxB] = temp;
}

void prn_Vector_R (tNumber_R *v, int nElems)
{
 int i;
 for (i = 1; i <= nElems; i++)
 PRN ("% 7.3f ", v[i]);
 PRN ("\n");
}

/* Print to nDec decimal places */
void prn_Vector_R_nDec (tNumber_R *v, int nElems, int nDec)
{
 char szFormat[] = "% 5.pf ";
 int i;
 szFormat[4] = (char)((nDec % 10) + '0');
 for (i = 1; i <= (nElems - 1); i++)
 PRN (szFormat, v[i]);
 PRN (szFormat, v[nElems]);
 PRN ("\n");
}

/* Print vector in exponent format */
void prn_Vector_R_exp (tNumber_R *v, int nElems)
{
 int i;
 for (i = 1; i <= (nElems - 1); i++)
 PRN ("% 1.3E\t", v[i]);
 PRN ("% 1.3E\n", v[nElems]);
}

void free_Vector_R (tNumber_R *v)
{
 if (v == NULL) return;
 free ((char *) (v+1));
}

© 2008 by Taylor & Francis Group, LLC

922 Numerical Linear Approximation in C

/*---
Matrix Functions
---*/

/* Allocate a real matrix */
tNumber_R **alloc_Matrix_R (int nRows, int mCols)
{
 int i;
 tNumber_R **m;
 if (nRows <= 0 || mCols <= 0) return NULL;
 m = (tNumber_R **)malloc (nRows * sizeof (tNumber_R *));
 if (!m) return NULL;

 m -= 1;

 for (i = 1; i <= nRows; i++)
 {
 m[i] = (tNumber_R *)
 malloc (mCols * sizeof (tNumber_R));
 if (!m[i]) return NULL;
 memset (m, mCols * sizeof (tNumber_R), 0);
 m[i] -= 1;
 }

 return m;
}

/* Allocate matrix and initialize it with contents of matrix "c" */
tNumber_R **init_Matrix_R (tNumber_R *c, int nRows, int mCols)
{
 int i, j;
 tNumber_R **m = (tNumber_R **)
 malloc (nRows * sizeof (tNumber_R *));
 if (!m) return NULL;

 m -= 1;

 for (i = 0, j = 1; i <= nRows - 1; i++, j++)
 m[j] = c + mCols * i - 1;
 return m;
}

void swap_rows_Matrix_R (tMatrix_R m, int idxA, int idxB)
{
 tVector_R temp = m[idxA];

© 2008 by Taylor & Francis Group, LLC

Appendix D: Utilities and Common Functions 923

 m[idxA] = m[idxB];
 m[idxB] = temp;
}

void prn_Matrix_R (tNumber_R **m, int nRows, int mCols)
{
 int i;
 for (i = 1; i <= nRows; i++) prn_Vector_R (m[i], mCols);
}

void free_Matrix_R (tNumber_R **m, int nRows)
{
 int i;
 if (m == NULL) return;
 for (i = nRows; i > 0; i--)
 if (m[i] != NULL) free ((char *)(m[i] + 1));
 free ((char *)(m + 1));
}

void uninit_Matrix_R (tNumber_R **m)
{
 free ((char *)(m + 1));
}

© 2008 by Taylor & Francis Group, LLC

924 Numerical Linear Approximation in C

/*---
LA_PwCmn.h

Commonly-Used Piecewise Linear Approximation Functions
---*/

#include "LA_Prototypes.h"

/*---
Initializing the data for "npiece" for piecewise approximation
programs
---*/
void LA_pw1_init (int *pNpiece, int is, int ie, int m, tMatrix_R rp1,
 tMatrix_R ap, tVector_R zp)
{
 int i, j, ji;

 /* Initializing the data for "npiece" */
 zp[*pNpiece] = 0.0;

 for (j = is; j <= ie; j++)
 {
 ji = j - is + 1;
 rp1[*pNpiece][ji] = 0.0;
 }

 for (i = 1; i <= m; i++)
 {
 ap[*pNpiece][i] = 0.0;
 }
}

/*---
Mapping the data for piecewise approximation programs LA_L1pw1() and
LA_Linfpw1()
---*/
void LA_pw1_map (int m, int nu, tVector_R r, tVector_R a,
 tNumber_R z, tMatrix_R rp1, tMatrix_R ap, tVector_R zp,
 int *pNpiece)
{
 int j;

 zp[*pNpiece] = z;

 for (j = 1; j <= m; j++)

© 2008 by Taylor & Francis Group, LLC

Appendix D: Utilities and Common Functions 925

 {
 ap[*pNpiece][j] = a[j];
 }

 for (j = 1; j <= nu; j++)
 {
 rp1[*pNpiece][j] = r[j];
 }
}

/*---
Initializing L1pw2 or LA_Linfpw2
---*/
void LA_pw2_init (int k, int npiece, int m, int n, int *pIs,
 int *pIe, tMatrix_R ct, tVector_R f, tMatrix_R ctp,
 tVector_R fp, tVector_I ixl)
{
 int i, j, ji, jj, kp1;

 jj = n/npiece;
 ixl[k] = (k-1) * jj + 1;
 *pIs = ixl[k];
 if (k == npiece) *pIe = n;
 if (k != npiece)
 {
 kp1 = k + 1;
 ixl[kp1] = k * jj + 1;
 *pIe = ixl[kp1] - 1;
 }
 for (j = *pIs; j <= *pIe; j++)
 {
 ji = j - *pIs + 1;
 fp[ji] = f[j];
 for (i = 1; i <= m; i++)
 {
 ctp[i][ji] = ct[i][j];
 }
 }
}

/*---
Printing the residual vectors for the "npiece" segments for
LA_L1pw1(), LA_Linfpw1() and LA_L2pw1()
---*/
eLaRc LA_pw1_prn_rp1 (int konect, int npiece, int n, tVector_I ixl,

© 2008 by Taylor & Francis Group, LLC

926 Numerical Linear Approximation in C

 tMatrix_R rp1)
{
 tVector_R w = alloc_Vector_R (n);
 int i, j, j1, j2, j3, jj = 0;

 eLaRc rc = LaRcOk;
 VALIDATE_ALLOC (w);

 /* For connected piecewise approximation */
 if (konect == 1)
 {
 for (i = 1; i <= npiece-1; i++)
 {
 j1 = ixl[i];
 j2 = ixl[i + 1];
 for (j = j1; j <= j2; j++)
 {
 jj = j2 - j1 + 1;
 j3 = j - j1 + 1;
 w[j3] = rp1[i][j3];
 }
 prn_Vector_R (w, jj);
 }
 j1 = ixl[npiece];
 j2 = n;
 for (j = j1; j <= j2; j++)
 {
 jj = j2 - j1 + 1;
 j3 = j - j1 + 1;
 w[j3] = rp1[npiece][j3];
 }
 prn_Vector_R (w, jj);
 }

 /* For disconnected piecewise approximation */
 if (konect != 1)
 {
 for (i = 1; i <= npiece-1; i++)
 {
 j1 = ixl[i];
 j2 = ixl[i + 1] - 1;
 for (j = j1; j <= j2; j++)
 {
 jj = j2 - j1 + 1;
 j3 = j - j1 + 1;

© 2008 by Taylor & Francis Group, LLC

Appendix D: Utilities and Common Functions 927

 w[j3] = rp1[i][j3];
 }
 prn_Vector_R (w, jj);
 }
 j1 = ixl[npiece];
 j2 = n;
 for (j = j1; j <= j2; j++)
 {
 jj = j2 - j1 + 1;
 j3 = j - j1 + 1;
 w[j3] = rp1[npiece][j3];
 }
 prn_Vector_R (w, jj);
 }

CLEANUP:

 free_Vector_R (w);

 return rc;
}

/*---
Printing the residual vectors for the "npiece" segments
for LA_L1pw2(), LA_Linfpw2() and LA_L2pw2()
---*/
eLaRc LA_pw2_prn_rp2 (int npiece, int n, tVector_I ixl,
 tVector_R rp2)
{
 tVector_R w = alloc_Vector_R (n);
 int i, j, j1, j2, j3, jj = 0;

 eLaRc rc = LaRcOk;
 VALIDATE_ALLOC (w);

 for (i = 1; i <= npiece-1; i++)
 {
 j1 = ixl[i];
 j2 = ixl[i + 1] - 1;
 for (j = j1; j <= j2; j++)
 {
 jj = j2 - j1 + 1;
 j3 = j - j1 + 1;
 w[j3] = rp2[j];
 }

© 2008 by Taylor & Francis Group, LLC

928 Numerical Linear Approximation in C

 prn_Vector_R (w, jj);
 }
 j1 = ixl[npiece];
 j2 = n;
 for (j = j1; j <= j2; j++)
 {
 jj = j2 - j1 + 1;
 j3 = j - j1 + 1;
 w[j3] = rp2[j];
 }
 prn_Vector_R (w, jj);

CLEANUP:

 free_Vector_R (w);

 return rc;
}

© 2008 by Taylor & Francis Group, LLC

	Numerical Linear Approximation in C
	Contents
	List of Figures
	Preface
	Acknowledgments
	Warranties
	About the authors
	Nabih N. Abdelmalek
	William A. Malek

	PART 1: Preliminaries and Tutorials
	Chapter 1: Applications of Linear Approximation
	1.1 Introduction
	1.2 Applications to social sciences and economics
	1.2.1 Systolic blood pressure and age
	1.2.2 Annual teacher salaries
	1.2.3 Factors affecting survival of island species
	1.2.4 Factors affecting fuel consumption
	1.2.5 Examining factors affecting the mortality rate
	1.2.6 Effects of forecasting
	1.2.7 Factors affecting gross national products

	1.3 Applications to industry
	1.3.1 Windmill generating electricity
	1.3.2 A chemical process

	1.4 Applications to digital images
	1.4.1 Smoothing of random noise in digital images
	1.4.2 Filtering of impulse noise in digital images
	1.4.3 Applications to pattern classification
	1.4.4 Restoring images with missing high-frequency components
	1.4.5 De-blurring digital images using the Ridge equation
	1.4.6 De-blurring images using truncated eigensystem
	1.4.7 De-blurring images using quadratic programming

	References
	Appendix A: References
	Appendix B: Main Program
	Appendix C: Constants, Types and Function Prototypes
	Appendix D: Utilities and Common Functions

	Chapter 2: Preliminaries
	2.1 Introduction
	2.2 Discrete linear approximation and solution of overdetermined linear equations
	2.3 Comparison between the L1, the L2 and the…
	2.3.1 Some characteristics of the L1 and the Chebyshev approximations
	(a) The L1 approximation
	(b) The Chebyshev approximation

	2.4 Error tolerances in the calculation
	2.5 Representation of vectors and matrices in C
	2.6 Outliers and dealing with them
	2.6.1 Data editing and residual analysis

	References
	Appendix A: References
	Appendix B: Main Program
	Appendix C: Constants, Types and Function Prototypes
	Appendix D: Utilities and Common Functions

	Chapter 3: Linear Programming and the Simplex Algorithm
	3.1 Introduction
	3.1.1 Exceptional linear programming problems

	3.2 Notations and definitions
	3.3 The simplex algorithm
	3.3.1 Initial basic feasible solution
	3.3.2 Improving the initial basic feasible solution

	3.4 The simplex tableau
	3.5 The two-phase method
	3.5.1 Phase 1
	3.5.2 Phase 2
	3.5.3 Detection of the exceptional cases

	3.6 Duality theory in linear programming
	The dual problem
	3.6.1 Fundamental properties of the dual problems
	3.6.2 Dual problems with mixed constraints
	3.6.3 The dual simplex algorithm

	3.7 Degeneracy in linear programming and its resolution
	3.7.1 Degeneracy in the simplex method
	3.7.2 Avoiding initial degeneracy in the simplex algorithm
	3.7.3 Resolving degeneracy resulting from equal thetamin
	3.7.4 Resolving degeneracy in the dual simplex method

	3.8 Linear programming and linear approximation
	3.8.1 Linear programming and the L1 approximation
	3.8.2 Linear programming and Chebyshev approximation

	3.9 Stability of the solution in linear programming
	References
	Appendix A: References
	Appendix B: Main Program
	Appendix C: Constants, Types and Function Prototypes
	Appendix D: Utilities and Common Functions

	Chapter 4: Efficient Solutions of Linear Equations
	4.1 Introduction
	4.2 Vector and matrix norms and relevant theorems
	4.2.1 Vector norms
	4.2.2 Matrix norms
	4.2.3 Hermitian matrices and vectors
	4.2.4 Other matrix norms
	4.2.5 Euclidean and the spectral matrix norms
	4.2.6 Euclidean norm and the singular values
	4.2.7 Eigenvalues and the singular values of the sum and the product of two matrices
	4.2.8 Accuracy of the solution of linear equations

	4.3 Elementary matrices
	4.4 Gauss LU factorization with complete pivoting
	4.4.1 Importance of pivoting
	4.4.2 Using complete pivoting
	4.4.3 Pivoting and the rank of matrix A

	4.5 Orthogonal factorization methods
	4.5.1 The elementary orthogonal matrix H
	4.5.2 Householder's QR factorization with pivoting
	4.5.3 Pivoting in Householder's method
	4.5.4 Calculation of the matrix inverse A-1

	4.6 Gauss-Jordan method
	4.7 Rounding errors in arithmetic operations
	4.7.1 Normalized floating-point representation
	4.7.2 Overflow and underflow in arithmetic operations
	4.7.3 Arithmetic operations in a d.p. accumulator
	4.7.4 Computation of the square root of a s.p. number
	4.7.5 Arithmetic operations in a s.p. accumulator
	4.7.6 Arithmetic operations with two d.p. numbers
	4.7.7 Extended simple s.p. operations in a d.p. accumulator
	4.7.8 Alternative expressions for summations and inner-product operations
	4.7.9 More conservative error bounds
	4.7.10 D.p. summations and inner-product operations
	4.7.11 Rounding error in matrix computation
	4.7.12 Forward and backward round-off error analysis
	4.7.13 Statistical error bounds and concluding remarks

	References
	Appendix A: References
	Appendix B: Main Program
	Appendix C: Constants, Types and Function Prototypes
	Appendix D: Utilities and Common Functions

	PART 2: The L1 Approximation
	Chapter 5: Linear L1 Approximation
	5.1 Introduction
	5.1.1 Characterization of the L1 solution

	5.2 Linear programming formulation of the problem
	5.3 Description of the algorithm
	5.4 The dual simplex method
	5.5 Modification to the algorithm
	5.6 Occurrence of degeneracy
	5.7 A significant property of the L1 approximation
	5.8 Triangular decomposition of the basis matrix
	5.9 Arithmetic operations count
	5.10 Numerical results and comments
	References
	5.11 DR_L1
	5.12 LA_L1
	5.13 DR_Lone
	5.14 LA_Lone
	Appendix A: References
	Appendix B: Main Program
	Appendix C: Constants, Types and Function Prototypes
	Appendix D: Utilities and Common Functions

	Chapter 6: One-Sided L1 Approximation
	6.1 Introduction
	6.1.1 Applications of the algorithm
	6.1.2 Characterization and uniqueness

	6.2 A special problem of a general constrained one
	6.3 Linear programming formulation of the problem
	6.4 Description of the algorithm
	6.4.1 Obtaining an initial basic feasible solution
	6.4.2 One-sided L1 solution from above
	6.4.3 The interpolation property

	6.5 Numerical results and comments
	References
	6.6 DR_Loneside
	6.7 LA_Loneside
	Appendix A: References
	Appendix B: Main Program
	Appendix C: Constants, Types and Function Prototypes
	Appendix D: Utilities and Common Functions

	Chapter 7: L1 Approximation with Bounded Variables
	7.1 Introduction
	7.1.1 Linear L1 approximation with non-negative parameters (NNL1)

	7.2 A special problem of a general constrained one
	7.3 Linear programming formulation of the problem
	7.3.1 Properties of the matrix of constraints

	7.4 Description of the algorithm
	7.5 Numerical results and comments
	References
	7.6 DR_Lonebv
	7.7 LA_Lonebv
	Appendix A: References
	Appendix B: Main Program
	Appendix C: Constants, Types and Function Prototypes
	Appendix D: Utilities and Common Functions

	Chapter 8: L1 Polygonal Approximation of Plane Curves
	8.1 Introduction
	8.1.1 Two basic issues
	8.1.2 Approaches for polygonal approximation
	8.1.3 Other unique approaches
	8.1.4 Criteria by which error norm is chosen
	8.1.5 Direction of error measure
	8.1.6 Comparison and stability of polygonal approximations
	8.1.7 Applications of the algorithm

	8.2 The L1 approximation problem
	8.3 Description of the algorithm
	8.4 Linear programming technique
	8.4.1 The algorithm using linear programming

	8.5 Numerical results and comments
	References
	8.6 DR_L1pol
	8.7 LA_L1pol
	Appendix A: References
	Appendix B: Main Program
	Appendix C: Constants, Types and Function Prototypes
	Appendix D: Utilities and Common Functions

	Chapter 9: Piecewise L1 Approximation of Plane Curves
	9.1 Introduction
	9.1.1 Applications of piecewise approximation

	9.2 Characteristics of the piecewise approximation
	9.3 The discrete linear L1 approximation problem
	9.4 Description of the algorithms
	9.4.1 Piecewise linear L1 approximation with pre-assigned tolerance
	9.4.2 Piecewise linear approximation with near-balanced L1 norms

	9.5 Numerical results and comments
	References
	9.6 DR_L1pw1
	9.7 LA_L1pw1
	9.8 DR_L1pw2
	9.9 LA_L1pw2
	Appendix A: References
	Appendix B: Main Program
	Appendix C: Constants, Types and Function Prototypes
	Appendix D: Utilities and Common Functions

	PART 3: The Chebyshev Approximation
	Chapter 10: Linear Chebyshev Approximation
	10.1 Introduction
	10.1.1 Characterization of the Chebyshev solution

	10.2 Linear programming formulation of the problem
	10.2.1 Property of the matrix of constraints

	10.3 Description of the algorithm
	10.4 A significant property of the Chebyshev approximation
	10.4.1 The equioscillation property of the Chebyshev norm

	10.5 Numerical results and comments
	References
	10.6 DR_Linf
	10.7 LA_Linf
	Appendix A: References
	Appendix B: Main Program
	Appendix C: Constants, Types and Function Prototypes
	Appendix D: Utilities and Common Functions

	Chapter 11: One-Sided Chebyshev Approximation
	11.1 Introduction
	11.1.1 Applications of the algorithm

	11.2 A special problem of a general constrained one
	11.3 Linear programming formulation of the problem
	11.3.1 Properties of the matrix of constraints

	11.4 Description of the algorithm
	11.4.1 One-sided Chebyshev solution from below

	11.5 Numerical results and comments
	11.5.1 Simple relationships between the Chebyshev and one-sided Chebyshev approximations

	References
	11.6 DR_Linfside
	11.7 LA_Linfside
	Appendix A: References
	Appendix B: Main Program
	Appendix C: Constants, Types and Function Prototypes
	Appendix D: Utilities and Common Functions

	Chapter 12: Chebyshev Approximation with Bounded Variables
	12.1 Introduction
	12.1.1 Linear Chebyshev approximation with non-negative parameters (NNLI)

	12.2 A special problem of a general constrained one
	12.3 Linear programming formulation of the problem
	12.3.1 Properties of the matrix of constraints

	12.4 Description of the algorithm
	12.5 Numerical results and comments
	References
	12.6 DR_Linfbv
	12.7 LA_Linfbv
	Appendix A: References
	Appendix B: Main Program
	Appendix C: Constants, Types and Function Prototypes
	Appendix D: Utilities and Common Functions

	Chapter 13: Restricted Chebyshev Approximation
	13.1 Introduction
	13.1.1 The semi-infinite programming problem
	13.1.2 Special cases
	13.1.3 Applications of the restricted Chebyshev algorithm

	13.2 A special problem of general constrained algorithms
	13.3 Linear programming formulation of the problem
	13.3.1 Properties of the matrix of constraints

	13.4 Description of the algorithm
	13.5 Triangular decomposition of the basis matrix
	13.6 Arithmetic operations count
	13.7 Numerical results and comments
	References
	13.8 DR_Restch
	13.9 LA_Restch
	Appendix A: References
	Appendix B: Main Program
	Appendix C: Constants, Types and Function Prototypes
	Appendix D: Utilities and Common Functions

	Chapter 14: Strict Chebyshev Approximation
	14.1 Introduction
	14.2 The problem as presented by Descloux
	14.3 Linear programming analysis of the problem
	14.3.1 The characteristic set R1 and how to obtain it
	How to obtain the characteristic set R1

	14.3.2 Calculating matrix (DT)–1
	14.3.3 The case of a rank deficient coefficient matrix

	14.4 Numerical results and comments
	References
	14.5 DR_Strict
	14.6 LA_Strict
	Appendix A: References
	Appendix B: Main Program
	Appendix C: Constants, Types and Function Prototypes
	Appendix D: Utilities and Common Functions

	Chapter 15: Piecewise Chebyshev Approximation
	15.1 Introduction
	15.1.1 Applications of piecewise approximation

	15.2 Characteristic properties of piecewise approximation
	15.3 The discrete linear Chebyshev approximation problem
	15.4 Description of the algorithms
	15.4.1 Piecewise linear Chebyshev approximation with pre-assigned tolerance
	15.4.2 Piecewise linear Chebyshev approximation with near-balanced Chebyshev norms

	15.5 Numerical results and comments
	References
	15.6 DR_Linfpw1
	15.7 LA_Linfpw1
	15.8 DR_Linfpw2
	15.9 LA_Linfpw2
	Appendix A: References
	Appendix B: Main Program
	Appendix C: Constants, Types and Function Prototypes
	Appendix D: Utilities and Common Functions

	Chapter 16: Solution of Linear Inequalities
	16.1 Introduction
	16.1.1 Linear programming techniques

	16.2 Pattern classification problem
	16.3 Solution of the system of linear inequalities Ca > 0
	16.4 Linear one-sided Chebyshev approximation algorithm
	16.5 Linear one-sided L1 approximation algorithm
	16.6 Numerical results and comments
	References
	16.7 DR_Chineq
	16.8 DR_L1ineq
	Appendix A: References
	Appendix B: Main Program
	Appendix C: Constants, Types and Function Prototypes
	Appendix D: Utilities and Common Functions

	PART 4: The Least Squares Approximation
	Chapter 17: Least Squares and Pseudo-Inverses of Matrices
	17.1 Introduction
	17.2 Least squares solution of linear equations
	17.2.1 Minimal-length least squares solution

	17.3 Factorization of matrix A
	17.3.1 Gauss LU factorization
	17.3.2 Householder's factorization
	17.3.3 Givens' transformation (plane rotations)
	17.3.4 Classical and modified Gram-Schmidt methods

	17.4 Explicit expression for the pseudo-inverse
	17.4.1 A+ in terms of Gauss factorization
	17.4.2 A+ in terms of Householder's factorization

	17.5 The singular value decomposition (SVD)
	17.5.1 Spectral condition number of matrix A
	17.5.2 Main properties of the pseudo-inverse A+

	17.6 Practical considerations in computing
	17.6.1 Cholesky's decomposition
	17.6.2 Solution of the normal equation
	17.6.3 Solution via Gauss LU factorization method
	17.6.4 Solution via Householder's method
	17.6.5 Calculation of A+
	17.6.6 Influence of the round-off error

	17.7 Linear spaces and the pseudo-inverses
	17.7.1 Definitions, notations and related theorems
	17.7.2 Subspaces and their dimensions
	17.7.3 Gram-Schmidt orthogonalization
	17.7.4 Range spaces of A and AT and their orthogonal complements
	17.7.5 Representation of vectors in Vm
	17.7.6 Orthogonal projection onto range and null spaces
	17.7.7 Singular values of the orthogonal projection matrices

	17.8 Multicollinearity, collinearity or the ill-conditioning of matrix A
	17.8.1 Sources of multicollinearity
	17.8.2 Detection of multicollinearity

	17.9 Principal components analysis (PCA)
	17.9.1 Derivation of the principal components

	17.10 Partial least squares method (PLS)
	17.10.1 Model building for the PLS method

	17.11 Ridge equation
	17.11.1 Estimating the Ridge parameter
	17.11.2 Ridge equation and variable selection

	17.12 Numerical results and comments
	References
	17.13 DR_Eluls
	17.14 LA_Eluls
	17.15 DR_Hhls
	17.16 LA_Hhls
	Appendix A: References
	Appendix B: Main Program
	Appendix C: Constants, Types and Function Prototypes
	Appendix D: Utilities and Common Functions

	Chapter 18: Piecewise Linear Least Squares Approximation
	18.1 Introduction
	18.1.1 Preliminaries and notation

	18.2 Characteristics of the approximation
	18.3 The discrete linear least squares approximation problem
	18.4 Description of the algorithms
	18.4.1 Piecewise linear L2 approximation with pre-assigned tolerance
	18.4.2 Piecewise linear L2 approximation with near-balanced L2 norms

	18.5 Numerical results and comments
	18.6 The updating and downdating techniques
	18.6.1 The updating algorithm
	18.6.2 The downdating algorithm
	18.6.3 Updating and downdating in the L1 norm

	References
	18.7 DR_L2pw1
	18.8 LA_L2pw1
	18.9 DR_L2pw2
	18.10 LA_L2pw2
	Appendix A: References
	Appendix B: Main Program
	Appendix C: Constants, Types and Function Prototypes
	Appendix D: Utilities and Common Functions

	Chapter 19: Solution of Ill-Posed Linear Systems
	19.1 Introduction
	19.2 Solution of ill-posed linear systems
	19.3 Estimation of the free parameter
	19.4 Description of the new algorithm
	19.4.1 Steps of the algorithm

	19.5 Optimum value of the rank
	19.5.1 The parameters TOLER and EPS

	19.6 Use of linear programming techniques
	19.7 Numerical results and comments
	References
	19.8 DR_Mls
	19.9 LA_Mls
	Appendix A: References
	Appendix B: Main Program
	Appendix C: Constants, Types and Function Prototypes
	Appendix D: Utilities and Common Functions

	PART 5: Solution of Underdetermined Systems Of Linear Equations
	Chapter 20: L1 Solution of Underdetermined Linear Equations
	20.1 Introduction
	20.1.1 Applications of the algorithm

	20.2 Linear programming formulation of the problem
	20.2.1 Properties of the matrix of constraints

	20.3 Description of the algorithm
	20.4 Numerical results and comments
	References
	20.5 DR_Fuel
	20.6 LA_Fuel
	Appendix A: References
	Appendix B: Main Program
	Appendix C: Constants, Types and Function Prototypes
	Appendix D: Utilities and Common Functions

	Chapter 21: Bounded and L1 Bounded Solutions of Underdetermined Linear Equations
	21.1 Introduction
	21.1.1 Applications of the algorithms

	21.2 Linear programming formulation of the two problems
	21.2.1 Properties of the matrix of constraints

	21.3 Description of the algorithms
	21.3.1 Occurrence of degeneracy
	21.3.2 Uniqueness of the solution

	21.4 Numerical results and comments
	References
	21.5 DR_Tmfuel
	21.6 LA_Tmfuel
	Appendix A: References
	Appendix B: Main Program
	Appendix C: Constants, Types and Function Prototypes
	Appendix D: Utilities and Common Functions

	Chapter 22: Chebyshev Solution of Underdetermined Linear Equations
	22.1 Introduction
	22.1.1 Applications of the algorithm

	22.2 The linear programming problem
	22.2.1 Properties of the matrix of constraints

	22.3 Description of the algorithm
	22.3.1 The reduced tableaux

	22.4 Numerical results and comments
	References
	22.5 DR_Effort
	22.6 LA_Effort
	Appendix A: References
	Appendix B: Main Program
	Appendix C: Constants, Types and Function Prototypes
	Appendix D: Utilities and Common Functions

	Chapter 23: Bounded Least Squares Solution of Underdetermined Linear Equations
	23.1 Introduction
	23.1.1 Applications of the algorithm

	23.2 Quadratic programming formulation of the problems
	23.3 Solution of problem (E0)
	23.4 Solution of problem (E)
	23.4.1 Asymmetries in the simplex tableau
	23.4.2 The condensed tableau for problem (E)
	23.4.3 The dual method of solution
	23.4.4 The reduced tableau for problem (E)
	23.4.5 The method of solution of problem (E)

	23.5 Numerical results and comments
	References
	23.6 DR_Energy
	23.7 LA_Energy
	Appendix A: References
	Appendix B: Main Program
	Appendix C: Constants, Types and Function Prototypes
	Appendix D: Utilities and Common Functions

	Appendices
	Appendix A: References
	Appendix B: Main Program
	Appendix C: Constants, Types and Function Prototypes
	Appendix D: Utilities and Common Functions

