
Parallel Iterative
Algorithms

From Sequential to Grid Computing

C808X_FM.indd 1 10/15/07 10:24:19 AM

© 2008 by Taylor & Francis Group, LLC

CHAPMAN & HALL/CRC
Numerical Analysis and Scientific Computing

Aims and scope:
Scientific computing and numerical analysis provide invaluable tools for the sciences and engineering.
This series aims to capture new developments and summarize state-of-the-art methods over the
whole spectrum of these fields. It will include a broad range of textbooks, monographs and
handbooks. Volumes in theory, including discretisation techniques, numerical algorithms, multiscale
techniques, parallel and distributed algorithms, as well as applications of these methods in multi-
disciplinary fields, are welcome. The inclusion of concrete real-world examples is highly encouraged.
This series is meant to appeal to students and researchers in mathematics, engineering and
computational science.

Choi-Hong Lai
School of Computing and
Mathematical Sciences

University of Greenwich

Frédéric Magoulès
Applied Mathematics and

Systems Laboratory
Ecole Centrale Paris

Editors

Mark Ainsworth
Mathematics Department

Strathclyde University

Todd Arbogast
Institute for Computational
Engineering and Sciences

The University of Texas at Austin

Craig C. Douglas
Computer Science Department

University of Kentucky

Ivan Graham
Department of Mathematical Sciences

University of Bath

Peter Jimack
School of Computing
University of Leeds

Takashi Kako
Department of Computer Science

The University of Electro-Communications

Peter Monk
Department of Mathematical Sciences

University of Delaware

Francois-Xavier Roux
ONERA

Arthur E.P. Veldman
Institute of Mathematics and Computing Science

University of Groningen

Editorial Advisory Board

Proposals for the series should be submitted to one of the series editors above or directly to:
CRC Press, Taylor & Francis Group
24-25 Blades Court
Deodar Road
London SW15 2NU
UK

C808X_FM.indd 2 10/15/07 10:24:19 AM

© 2008 by Taylor & Francis Group, LLC

Parallel Iterative
Algorithms

Jacques Mohcine Bahi
Sylvain Contassot-Vivier

Raphaël Couturier

From Sequential to Grid Computing

C808X_FM.indd 3 10/15/07 10:24:19 AM

© 2008 by Taylor & Francis Group, LLC

Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487‑2742

© 2008 by Taylor & Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid‑free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number‑13: 978‑1‑58488‑808‑6 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted
material is quoted with permission, and sources are indicated. A wide variety of references are
listed. Reasonable efforts have been made to publish reliable data and information, but the author
and the publisher cannot assume responsibility for the validity of all materials or for the conse‑
quences of their use.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC)
222 Rosewood Drive, Danvers, MA 01923, 978‑750‑8400. CCC is a not‑for‑profit organization that
provides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Bahi, Jacques M.
Parallel iterative algorithms: from sequential to grid computing / authors,

Jacques M. Bahi, Sylvain Contassot‑Vivier, and Raphael Couturier.
p. cm. ‑‑ (Chapman & Hall/CRC numerical analysis and scientific
computing series)

Includes bibliographical references and index.
ISBN 978‑1‑58488‑808‑6 (alk. paper)
1. Parallel processing (Electronic computers) 2. Parallel algorithms. 3.

Computational grids (Computer systems) 4. Iterative methods (Mathematics) I.
Contassot‑Vivier, Sylvain. II. Couturier, Raphael. III. Title. IV. Series.

QA76.58.B37 2007
518’.26‑‑dc22 2007038842

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

C808X_FM.indd 4 10/15/07 10:24:20 AM

© 2008 by Taylor & Francis Group, LLC

http://www.copyright.com
http://www.taylorandfrancis.com
http://www.crcpress.com
http://www.copyright.com
http://www.copyright.com

Contents

List of Tables ix

List of Figures xi

Acknowledgments xiii

Introduction xv

1 Iterative Algorithms 1
1.1 Basic theory . 1

1.1.1 Characteristic elements of a matrix 1
1.1.2 Norms . 2

1.2 Sequential iterative algorithms 5
1.3 A classical illustration example 8

2 Iterative Algorithms and Applications to Numerical Prob-
lems 11
2.1 Systems of linear equations 11

2.1.1 Construction and convergence of linear iterative algo-
rithms . 11

2.1.2 Speed of convergence of linear iterative algorithms . . 13
2.1.3 Jacobi algorithm . 15
2.1.4 Gauss-Seidel algorithm 17
2.1.5 Successive overrelaxation method 19
2.1.6 Block versions of the previous algorithms 20
2.1.7 Block tridiagonal matrices 22
2.1.8 Minimization algorithms to solve linear systems 24
2.1.9 Preconditioning . 33

2.2 Nonlinear equation systems 39
2.2.1 Derivatives . 40
2.2.2 Newton method . 41
2.2.3 Convergence of the Newton method 43

2.3 Exercises . 45

3 Parallel Architectures and Iterative Algorithms 49
3.1 Historical context . 49
3.2 Parallel architectures . 51

3.2.1 Classifications of the architectures 51
3.3 Trends of used configurations 60
3.4 Classification of parallel iterative algorithms 61

3.4.1 Synchronous iterations - synchronous communications
(SISC) . 62

v

© 2008 by Taylor & Francis Group, LLC

vi Contents

3.4.2 Synchronous iterations - asynchronous communications
(SIAC) . 63

3.4.3 Asynchronous iterations - asynchronous communications
(AIAC) . 64

3.4.4 What PIA on what architecture? 68

4 Synchronous Iterations 71
4.1 Parallel linear iterative algorithms for linear systems 71

4.1.1 Block Jacobi and O’Leary and White multisplitting al-
gorithms . 71

4.1.2 General multisplitting algorithms 76
4.2 Nonlinear systems: parallel synchronous Newton-multisplitting

algorithms . 79
4.2.1 Newton-Jacobi algorithms 79
4.2.2 Newton-multisplitting algorithms 80

4.3 Preconditioning . 82
4.4 Implementation . 82

4.4.1 Survey of synchronous algorithms with shared memory
architecture . 84

4.4.2 Synchronous Jacobi algorithm 85
4.4.3 Synchronous conjugate gradient algorithm 88
4.4.4 Synchronous block Jacobi algorithm 88
4.4.5 Synchronous multisplitting algorithm for solving linear

systems . 91
4.4.6 Synchronous Newton-multisplitting algorithm 101

4.5 Convergence detection . 104
4.6 Exercises . 107

5 Asynchronous Iterations 111
5.1 Advantages of asynchronous algorithms 112
5.2 Mathematical model and convergence results 113

5.2.1 The mathematical model of asynchronous algorithms . 113
5.2.2 Some derived basic algorithms 115
5.2.3 Convergence results of asynchronous algorithms 116

5.3 Convergence situations . 118
5.3.1 The linear framework 118
5.3.2 The nonlinear framework 120

5.4 Parallel asynchronous multisplitting algorithms 120
5.4.1 A general framework of asynchronous multisplitting meth-

ods . 121
5.4.2 Asynchronous multisplitting algorithms for linear prob-

lems . 124
5.4.3 Asynchronous multisplitting algorithms for nonlinear

problems . 125
5.5 Coupling Newton and multisplitting algorithms 129

© 2008 by Taylor & Francis Group, LLC

Contents vii

5.5.1 Newton-multisplitting algorithms: multisplitting algo-
rithms as inner algorithms in the Newton method . . 129

5.5.2 Nonlinear multisplitting-Newton algorithms 131
5.6 Implementation . 131

5.6.1 Some solutions to manage the communications using
threads . 133

5.6.2 Asynchronous Jacobi algorithm 135
5.6.3 Asynchronous block Jacobi algorithm 135
5.6.4 Asynchronous multisplitting algorithm for solving linear

systems . 138
5.6.5 Asynchronous Newton-multisplitting algorithm 140
5.6.6 Asynchronous multisplitting-Newton algorithm 142

5.7 Convergence detection . 145
5.7.1 Decentralized convergence detection algorithm 145

5.8 Exercises . 169

6 Programming Environments and Experimental Results 173
6.1 Implementation of AIAC algorithms with non-dedicated envi-

ronments . 174
6.1.1 Comparison of the environments 174

6.2 Two environments dedicated to asynchronous iterative algo-
rithms . 176
6.2.1 JACE . 177
6.2.2 CRAC . 180

6.3 Ratio between computation time and communication time . 186
6.4 Experiments in the context of linear systems 186

6.4.1 Context of experimentation 186
6.4.2 Comparison of local and distant executions 189
6.4.3 Impact of the computation amount 191
6.4.4 Larger experiments . 192
6.4.5 Other experiments in the context of linear systems . . 193

6.5 Experiments in the context of partial differential equations us-
ing a finite difference scheme 196

Appendix 201
A-1 Diagonal dominance. Irreducible matrices 201

A-1.1 Z-matrices, M -matrices and H-matrices 202
A-1.2 Perron-Frobenius theorem 203
A-1.3 Sequences and sets . 203

References 205

© 2008 by Taylor & Francis Group, LLC

List of Tables

5.1 Description of the variables used in Algorithm 5.7. 149

5.2 Description of the additional variables used in Algorithm 5.15. 163

6.1 Differences between the implementations (N is the number of
processors). 175

6.2 Execution times of the multisplitting method coupled to dif-
ferent sequential solvers for a generated square matrix of size
10.106 with 70 machines in a local cluster (Sophia). 189

6.3 Execution times of the multisplitting method coupled to dif-
ferent sequential solvers for a generated square matrix of size
10.106 with 70 machines located in 3 sites (30 in Orsay, 20 in
Lille and 20 in Sophia). 190

6.4 Execution times of the multisplitting method coupled to the
MUMPS solver for different sizes of generated matrices with
120 machines located in 4 sites (40 in Rennes, 40 in Orsay, 25
in Nancy and 15 in Lille). 191

6.5 Execution times of the multisplitting method coupled to the
MUMPS or SuperLU solvers for different sizes of generated
matrices with 190 machines located in 5 sites (30 in Rennes, 30
in Sophia, 70 in Orsay, 30 in Lyon and 30 in Lille). 192

6.6 Execution times of the multisplitting method coupled to the
SparseLib solver for generated square matrices of size 30.106

with 200 bi-processors located in 2 sites (120 in Paris, 80 in
Nice), so 400 CPUs. 193

6.7 Impacts of memory requirements of the synchronous multisplit-
ting method with SuperLU for the cage12 matrix. 195

6.8 Execution times of the multisplitting-Newton method coupled
to the MUMPS solver for different sizes of the advection-diffusion
problem with 120 machines located in 4 sites and a discretiza-
tion time step of 360 s. 198

6.9 Execution times of the multisplitting-Newton method coupled
to the MUMPS solver for different sizes of the advection-diffusion
problem with 120 machines located in 4 sites and a discretiza-
tion time step of 720 s. 198

ix

© 2008 by Taylor & Francis Group, LLC

x List of Tables

6.10 Ratios between synchronous and asynchronous execution times
of the multisplitting-Newton method for different sizes and dis-
cretization time steps of the advection-diffusion problem with
120 machines located in 4 sites. 199

© 2008 by Taylor & Francis Group, LLC

List of Figures

2.1 Splitting of the matrix. 15

2.2 Spectral radius of the iteration matrices. 23

2.3 Illustration of the Newton method. 42

3.1 Correspondence between radius-based and Flynn’s classifica-
tion of parallel systems. 53

3.2 General architecture of a parallel machine with shared memory. 54

3.3 General architecture of a parallel machine with distributed mem-
ory. 55

3.4 General architecture of a local cluster. 56

3.5 General architecture of a distributed cluster. 58

3.6 Hierarchical parallel systems, mixing shared and distributed
memory. 60

3.7 Execution flow of the SISC scheme with two processors. . . . 62

3.8 Execution flow of the SIAC scheme with two processors. . . . 64

3.9 Execution flow of the basic AIAC scheme with two processors. 65

3.10 Execution flow of the sender-side semi-flexible AIAC scheme
with two processors. 67

3.11 Execution flow of the receiver-side semi-flexible AIAC scheme
with two processors. 67

3.12 Execution flow of the flexible AIAC scheme with two proces-
sors. 68

4.1 A splitting of matrix A. 76

4.2 A splitting of matrix A using subset Jl of l ∈ {1, ..., L}. . . . 77

4.3 Splitting of the matrix for the synchronous Jacobi method. . 87

4.4 An example with three weighting matrices. 91

4.5 An example of possible splittings with three processors. . . . 92

4.6 Decomposition of the matrix. 93

4.7 An example of decomposition of a 9 × 9 matrix with three
processors and one component overlapped at each boundary
on each processor. 95

4.8 Overlapping strategy that uses values computed locally. . . . 97

4.9 Overlapping strategy that uses values computed by close neigh-
bors. 98

xi

© 2008 by Taylor & Francis Group, LLC

xii List of Figures

4.10 Overlapping strategy that mixes overlapped components with
close neighbors. 99

4.11 Overlapping strategy that mixes all overlapped values. 100
4.12 Decomposition of the Newton-multisplitting. 102
4.13 Monotonous residual decreases toward the stabilization accord-

ing to the contraction norm. 105
4.14 A monotonous error evolution and its corresponding

non-monotonous residual evolution. 106

5.1 Iterations of the Newton-multisplitting method. 142
5.2 Decomposition of the multisplitting-Newton. 144
5.3 Iterations of the multisplitting-Newton method. 144
5.4 Decentralized global convergence detection based on the leader

election protocol. 148
5.5 Simultaneous detection on two neighboring nodes. 148
5.6 Verification mechanism of the global convergence. 159
5.7 Distinction of the successive phases during the iterative

process. 160
5.8 Mechanism ensuring that all the nodes are in representative

stabilization at least at the time of global convergence detec-
tion. 161

5.9 State transitions in the global convergence detection process. 162

6.1 JACE daemon architecture. 177
6.2 A binomial tree broadcast procedure with 23 elements. 180
6.3 An example of VDM. 182
6.4 An example illustrating that some messages are ignored. . . . 184
6.5 The GRID’5000 platform in France. 187
6.6 Example of a generated square matrix. 188
6.7 Impacts of the overlapping for a generated square matrix of size

100000. 194

© 2008 by Taylor & Francis Group, LLC

Acknowledgments

The authors wish to thank the following persons for their useful help during
the writing of this book: A. Borel, J-C. Charr, I. Ledy, M. Salomon and
P. Vuillemin.

xiii

© 2008 by Taylor & Francis Group, LLC

Introduction

Computer science is quite a young research area. However, it has already
been subject to several major advance steps which, in general, have been
closely linked to the technological progresses of the machine components. It
can easily be assumed that the current evolution takes place at the level of
the communication networks whose quality, either on the reliability or the
efficiency levels, begins to be satisfying on large scales.

Beyond the practical interest of the data transfers, this implies a new vision
of the computer tool in scientific computing. Indeed, after the successive eras
of the single workstations, of the parallel machines and finally of the local clus-
ters, the last advances in large scale networks have permitted the emergence
of clusters of clusters. That new concept of meta-cluster is defined by a set
of computational units (workstations, parallel machines or clusters) scattered
on geographically distinct sites. Those meta-clusters are then commonly com-
posed of heterogeneous machines linked together by a communication network
generally not complete and whose links are also heterogeneous.

As for parallelism in general, the obvious interest of such meta-clusters is
to gather a greater number of machines allowing faster treatments and/or
the treatment of larger problems. In fact, the addition of a machine in an
existing parallel system, even if that machine is less efficient than the ones
already in the system, increases the potential degree of parallelism of that
system and thus enhances its performance. Moreover, such an addition also
increases the global memory capacity of the system which thus allows the
storage of more data and then the treatment of larger problems. So, the
heterogeneity of the machines does not represent any particular limitation in
meta-clusters. Besides, its management has already been intensively studied
in the context of local clusters. Nevertheless, a new problem arises with
meta-clusters and consists in the efficient management of the heterogeneous
communication links. That point is still quite unexplored.

However, it must be noticed that each hardware evolution often comes with
a software evolution. Indeed, it is generally necessary to modify or extend the
programming paradigms to fully exploit the new capabilities of the machines,
the obvious goal always being a gain either in the quality of the results or in
the time to obtain them, and if possible, in both of them. Hence, in the same
way the parallel machines and local clusters have induced the developments
of communication libraries in the programming languages, the emergence of
meta-clusters implies an updating of the parallel programming schemes to
take into account the specificities of those new computational systems.

xv

© 2008 by Taylor & Francis Group, LLC

xvi Introduction

In that particular field of parallel programming, the commonly used model
is the synchronous message passing. If that model is completely satisfying
with parallel machines and local clusters, it is no more the case with meta-
clusters. In fact, even if distant communications are faster and faster, they
are still far slower than the local ones. So, using synchronous communications
in the programming of a meta-cluster is strongly penalizing due to the distant
communications between the different sites.

Hence, it seems essential to modify that model or use another model to effi-
ciently use the meta-clusters. Yet, there exists another communication mode
between machines which allows, at least partially, to overcome those commu-
nication constraints, the asynchronism. The principle of that communication
scheme is that it does not block the progress of the algorithm. So, during a
communication, the sender does not wait for the reception of the message on
the destination. Symmetrically, there is no explicit waiting period for mes-
sage receptions on the receiver and the messages are managed as soon as they
arrive. That allows the performance of an implicit and efficient overlapping
of the communications by the computations.

Unfortunately, that kind of communication scheme is not usable in all the
types of algorithms. However, it is fully adapted to iterative computations.
Contrary to the direct methods, which give the solution of a problem in a
fixed number of computations, the iterative algorithms proceed by succes-
sive enhancements of the approximation of the solution by repeating a same
computational process an unknown number of times. When the successive ap-
proximations actually come closer to the solution, it is said that the iterative
process converges.

In the parallel context, those algorithms present the major advantage of al-
lowing far more flexible communication schemes, especially the asynchronous
one. In fact, under some conditions which are not too restrictive, the data
dependencies between the different computational nodes are no more strictly
necessary at each solicitation. In this way, they act more as a progression
factor of the iterative process. Moreover, numerous scientific problems can be
solved by using that kind of algorithm, especially in PDE (partial differential
equations) and ODE (ordinary differential equations) problems. There are
even some nonlinear problems, like the polynomial roots problem, which can
only be solved by iterative algorithms. Finally, in some other cases such as lin-
ear problems, those methods require less memory than the direct ones. Thus,
the interest of those algorithms is quite obvious in parallel computations,
especially when used on meta-clusters with asynchronous communications.

The objective of this book is to provide theoretical and practical knowledge
in parallel numerical algorithms, especially in the context of grid computing
and with the specificity of asynchronism. It is written in a way that makes
it useful to non-specialists who would like to familiarize themselves with the
domain of grid computing and/or numerical computation as well as to re-
searchers specifically working on those subjects. The chapters are organized
in progressive levels of complexity and detail. Inside the chapters, the pre-

© 2008 by Taylor & Francis Group, LLC

Introduction xvii

sentation is also progressive and generally follows the same organization: a
theoretical part in which the concepts are presented and discussed, an algo-
rithmic part where examples of implementations or specific algorithms are
fully detailed, and a discussion/evaluation part in which the advantages and
drawbacks of the algorithms are analyzed. The pedagogical aspect has not
been neglected and some exercises are proposed at the end of the parts in
which this is relevant.

The overall organization of the book is as follows. The first two chapters
introduce the general notions on sequential iterative algorithms and their ap-
plications to numerical problems. Those bases, required for the following of
the book, are particularly intended for students or researchers who are new
to the domain. These two chapters recall the basic and essential convergence
results on iterative algorithms. First, we consider linear systems and we re-
call the basic linear iterative algorithms such as Jacobi, Gauss-Seidel and
overrelaxation algorithms and then we review iterative algorithms based on
minimization techniques such as the conjugate gradient and GMRES algo-
rithms. Second, we consider the Newton method for the solution of nonlinear
problems.

Then, the different kinds of parallel systems and parallel iterative algorithms
are described in Chapter 3. That chapter also points out the best adequacies
of parallel systems and parallel iterative algorithms.

In Chapter 4, parallel synchronous iterative algorithms for numerical com-
putation are provided. Both linear and nonlinear cases are treated and the
specific aspects of those algorithms, such as the convergence detection or their
implementation, are addressed. In this chapter, we are interested in so-called
multisplitting algorithms. These algorithms include the discrete analogues
of Schwarz multi-subdomains methods and hence are very suitable for dis-
tributed computing on distant heterogeneous clusters. They are particularly
well suited for physical and natural problems modeled by elliptic systems and
discretized by finite difference methods with natural ordering. The parallel
versions of minimization such as the methods exposed in Chapter 2 are not
detailed in Chapter 4 but it should be mentioned that, thanks to the multi-
splitting approach, these methods can be used as inner iterations of two-stage
multisplitting algorithms.

The pendant versions of the algorithms introduced in Chapter 4 are pro-
posed in the asynchronous context in Chapter 5. In that part, in addition to
the points similarly addressed in the previous chapter, the advantages of asyn-
chronism are pointed out followed by the mathematical model and the repre-
sentative convergence situations which include M -matrices and H-matrices.
The multisplitting approach makes it possible to carry out with coarse grained
parallelism and to ensure the convergence of their asynchronous versions for
a wide class of scientific problems. They are thus very adequate in a context
of grid computing, when the ratio computation time/communication time is
weak. This is why we chose to devote Chapter 4 and Chapter 5 to them. Those
last two chapters are particularly aimed at graduate students and researchers.

© 2008 by Taylor & Francis Group, LLC

xviii Introduction

Finally, Chapter 6 is devoted to the programming environments and ex-
perimental results. In particular, the features required for an efficient im-
plementation of asynchronous iterative algorithms are given. Also, numerous
experiments led in different computational contexts for the two kinds of nu-
merical problems, linear and nonlinear, are presented and analyzed.

In order to facilitate the reading of the book, the mathematical results which
are useful in some chapters but which do not represent the central points of

© 2008 by Taylor & Francis Group, LLC

the addressed subjects have been placed in an appendix.

Chapter 1

Iterative Algorithms

1.1 Basic theory

This first chapter introduces the general notions on sequential iterative
algorithms.

1.1.1 Characteristic elements of a matrix

Throughout this book, Rn will denote the real n-dimensional linear space
of column vectors x whose components are real numbers x1, x2, ..., xn ∈ R,
the real linear space of dimension 1. The complex n-dimensional linear space
C

n is defined in the same way, with complex numbers xi ∈ C, the complex
linear space of dimension 1.

The transpose vector of a column vector x is the row vector xT defined by

x =




x1

x2

...
xn


⇔ xT =

(
x1 x2 · · · xn

)
.

The conjugate transpose of a complex vector is defined in the same way and
will be denoted by xH .

A real (respectively complex) m × n matrix A = (Ai,j) defines a linear
mapping from Rn (respectively Cn) to Rm (respectively Cm). For simplicity’s
sake we shall write A ∈ Rm×n (respectively Cm×n).

The transpose of a square matrix A will be denoted by AT ; it is defined by

(
AT
)
i,j

= (Aj,i) .

The conjugate transpose of a complex matrix A is the matrix whose elements
are the conjugate elements of the transpose of A. It is denoted by AH .

A square real (respectively complex) matrix A is symmetric (respectively
Hermitian) if A = AT (respectively, A = AH).

A real matrix A is invertible (or nonsingular) if the linear operator it defines
is one-to-one. The inverse of A will be denoted A−1.

1

© 2008 by Taylor & Francis Group, LLC

2 Parallel Iterative Algorithms

For an n× n matrix A, a scalar λ is called an eigenvalue of A if the equation

Ax = λx

has a non-zero solution. The non-zero vector x is then called an eigenvector
of A associated to the eigenvalue λ.

The eigenvalues of an n × n matrix A are the roots of the characteristic
polynomial det(A− λI) where I denotes the n× n identity matrix

I = diag(1, 1, ..., 1) =




1 0 · · · 0

0
. . .

...
... . . . 0 1


 .

So, λ is an eigenvalue of A⇔ det(A− λI) = 0.

DEFINITION 1.1 Let A be a square real matrix with eigenvalues
λ1, ..., λn, then the real number ρ(A) = max1≤i≤n |λi| is called the spectral
radius of A.

In this book T (k) will denote either a linear or a nonlinear operator (matrix
or function) depending on the iteration k, while T k will denote the kth power
of T.

1.1.2 Norms

Below, we recall basic definitions and results on vectorial norms.

DEFINITION 1.2 A vectorial norm ‖ . ‖ is a mapping from Rn (Cn) to
R (C) which satisfies the following three conditions:

(a) ‖x‖ ≥ 0, ∀x ∈ Rn (Cn) and ‖x‖ = 0⇔ x = 0,

(b) ‖αx‖ = |α| ‖x‖ , ∀x ∈ Rn (Cn), ∀α ∈ R (C),

(c) ‖x + y‖ ≤ ‖x‖ + ‖y‖ , ∀x, y ∈ Rn (Cn).

Example 1.1

For p ∈ [1, +∞[, the lp norms are defined on Rn or Cn by

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

.

The Euclidean norm corresponds to the particular case p = 2,

‖x‖2 =

√√√√
n∑

i=1

|xi|2.

© 2008 by Taylor & Francis Group, LLC

Iterative Algorithms 3

The limit case is the l∞ norm, also called the maximum norm,

‖x‖p = max
1≤i≤n

|xi| .

DEFINITION 1.3 We say that a sequence of vectors x(k) converges to

a vector x∗ if each component x
(k)
i converges to x∗

i .

lim
k→+∞

x(k) = x∗ ⇔ ∀i ∈ {1, ..., n} , lim
k→+∞

x
(k)
i = x∗

i .

It is proved that

lim
k→+∞

x(k) = x∗ ⇔ lim
k→+∞

∥∥∥x(k) − x∗
∥∥∥ = 0,

for any arbitrary norm.
We recall below the notion of norms of matrices.

DEFINITION 1.4 Given any two norms ‖ . ‖ and ‖.‖1 respectively on
Rn and Rm, and an m × n matrix A, the norm of the matrix A with respect
to ‖ . ‖ and ‖ . ‖1 is defined by

‖A‖ = sup
‖x‖=1

‖Ax‖1 .

A matrix norm as defined above satisfies the following properties:

(a) ‖A‖ ≥ 0, ∀A ∈ Rm×n and ‖A‖ = 0⇔ A = 0,

(b) ‖αA‖ = |α| ‖A‖ , ∀A ∈ Rm×n, ∀α ∈ R,

(c) ‖A + B‖ ≤ ‖A‖+ ‖B‖ , ∀A, B ∈ Rm×n.

In the particular and important case where n = m and ‖ . ‖ = ‖ . ‖1 , we
have the additional property

(d) ‖AB‖ ≤ ‖A‖ ‖B‖ , ∀A, B ∈ R
n×n.

Example 1.2

Let A be an m×n matrix, then for i = 1, 2 and∞, the li norms are given by

‖A‖1 = max
1≤j≤n

m∑

i=1

|Ai,j | (1.1)

© 2008 by Taylor & Francis Group, LLC

4 Parallel Iterative Algorithms

‖A‖∞ = max
1≤i≤m

n∑

j=1

|Ai,j | (1.2)

‖A‖2 =
√

λ, (1.3)

where λ is the maximum eigenvalue of AT A.
Note that for a symmetric real square matrix with eigenvalues λ1, ..., λn

‖A‖2 = max
1≤i≤n

|λi| = ρ(A).

The Frobenius norm is defined by

‖A‖2F =
m∑

i=1

n∑

j=1

|Ai,j |2 .

DEFINITION 1.5 We say that a matrix norm ‖A‖ is compatible with a
vectorial norm ‖x‖ if

‖Ax‖ ≤ ‖A‖ ‖x‖ .

The norms ‖A‖1 , ‖A‖∞ and ‖A‖2F are respectively compatible with the norms
‖x‖1 , ‖x‖∞ and ‖x‖2 .

DEFINITION 1.6 We say that a sequence of matrices A(k) converges

to a matrix A∗ if for all i, j ∈ {1, ..., m} × {1, ..., n} , the component A
(k)
i,j

converges to A∗
i,j .

Like in the vectorial case, it is shown that

lim
k→+∞

A(k) = A∗ ⇔ lim
k→+∞

∥∥∥A(k) −A∗
∥∥∥ = 0,

for any arbitrary matrix norm.
The following useful results are proved for example in [113] and [93].

PROPOSITION 1.1

For any matrix norm ‖ . ‖ , we have

ρ(A) ≤ ‖A‖ .

PROPOSITION 1.2

Let A be an n× n matrix. Then, given any ε > 0, there exists a matrix norm
‖ . ‖ such that

‖A‖ ≤ ρ(A) + ε.

© 2008 by Taylor & Francis Group, LLC

Iterative Algorithms 5

The following theorem is fundamental for the study of iterative algorithms.

THEOREM 1.1

Let A be a square matrix, then the following four conditions are equivalent:

1. limk→+∞ Ak = 0,

2. limk→+∞ Akx = 0, for any vector x,

3. the spectral radius ρ(A) satisfies: 0 ≤ ρ(A) < 1,

4. there exists a matrix norm ‖ . ‖ such that ‖A‖ < 1.

PROOF 1) ⇒ 2) : Let ‖ . ‖ be any matrix norm compatible with a
vectorial norm ‖ . ‖ . Then we have for any vector x

∥∥Akx
∥∥ ≤

∥∥Ak
∥∥ ‖x‖ ,

so limk→+∞ Ak = 0 =⇒ limk→+∞ Akx = 0.
2) ⇒ 3) : Suppose that ρ(A) ≥ 1, then there exists λ with |λ| ≥ 1 and x 6= 0
such that Ax = λx. This implies that Akx = λkx and then limk→+∞ Akx 6= 0,
which contradicts 2).
3) ⇒ 4) : Proposition 1.2 says that for a sufficiently small ε > 0, there exists
a matrix norm such that ‖A‖ ≤ ρ(A) + ε < 1.

4) ⇒ 1) : Since
∥∥Ak

∥∥ ≤ ‖A‖k , we deduce 1) from 4).

1.2 Sequential iterative algorithms

Let T be a linear or nonlinear mapping from E to E, whose domain of
definition is D(T),

T : D(T) ⊂ E → E.

DEFINITION 1.7 We say that the mapping T is Lipschitz continuous
on a set D ⊂ D(T) if there exists a constant L ≥ 0, such that

∀x, y ∈ D, ‖T (x)− T (y)‖ ≤ L ‖x− y‖ .

If L ∈]0, 1[then T is called a contraction (or a contractive mapping), L is
then its constant of contraction.

Note that the notion of contraction depends on the considered norm, so that
a mapping may be contractive with respect to a norm and not contractive with

© 2008 by Taylor & Francis Group, LLC

6 Parallel Iterative Algorithms

respect to another norm. Note also that if T is a matrix, then by the definition
of a norm and by Theorem 1.1, we obtain

T is a contraction with respect to the norm ‖ . ‖ ⇔ ‖T ‖ < 1.

Consider a sequential iterative algorithm associated to T, i.e., a sequential
algorithm defined by

Algorithm 1.1 A sequential iterative algorithm

Given an arbitrary x(0) ∈ D(T)
for k = 0,1,... do

x(k+1) ← T (x(k))
end for

Then we have the following result on the convergence of Algorithm 1.1.

THEOREM 1.2

Suppose that T is a contraction on a closed set D ⊂ D(T) and that α is its
constant of contraction. Suppose also that T (D) ⊂ D, then Algorithm 1.1
produces a convergent sequence x(k) whose limit is the unique fixed point x∗

of T, i.e.,

lim
k→+∞

x(k) = x∗ where x∗ = T (x∗).

Moreover, we have the estimation

∥∥∥x(k) − x∗
∥∥∥ ≤ α

1− α

∥∥∥x(k) − x(k−1)
∥∥∥ (1.4)

This important result gives a sufficient condition for the convergence of
sequential iterative algorithms. It also ensures the uniqueness of the fixed
point of a mapping T. See, e.g., [93] for more developments.

The estimation (1.4) allows us to have a bound of the error made at the kth

iteration to approximate the unknown solution x∗ in terms of the last iterates
x(k) and x(k−1). It is important to observe the impact of the value of α on
this estimation.

The condition that T maps D into itself can be weakened by supposing that
the sequence generated by Algorithm 1.1 remains for a special choice of the
initial guess x(0) in D. This choice may be made using the following result
(see [79]).

© 2008 by Taylor & Francis Group, LLC

Iterative Algorithms 7

THEOREM 1.3

Let T be contractive on a closed ball B(x(0), r) =
{
x,
∥∥x− x(0)

∥∥ ≤ r
}
, with

constant α. If x(0) satisfies

∥∥∥T (x(0))− x(0)
∥∥∥ ≤ (1− α)r,

produces a convergent sequence x(k) whose limit is the
unique fixed point x∗ of T on B(x(0), r).

PROOF It is sufficient to prove that T (B(x(0), r)) ⊂ B(x(0), r), this is
deduced by remarking that for x ∈ B(x(0), r),

∥∥T (x)− x(0)
∥∥ ≤

∥∥T (x)− T (x(0))
∥∥+

∥∥T (x(0))− x(0)
∥∥

≤ α
∥∥x− x(0)

∥∥+ (1− α)r ≤ r.

Finally, note that in the computer science framework all the balls are closed
since the set of representable numbers in computers is finite and that the
results above can be extended to a general metric space.

Convergence conditions for sequential algorithms are theoretically described
by the convergence results on successive approximation methods. Various re-
sults can be found in the literature, see for example [113], [93], [79], [91], [114],
[90], [31]. In [87], a general topological context for successive approximation
methods is studied. The authors define the notion of approximate contraction
which is a generalization of the notion of contraction and which is useful in
the study of perturbed successive approximation methods.

Theorems 1.2 and 1.3 ensure the convergence to a fixed point x∗ but do not
give any information on its exact value. Practically, the iterations produced
by Algorithm 1.1 are stopped when a distance between two iterates is small
enough. Algorithm 1.1 becomes,

Algorithm 1.2 A sequential iterative algorithm with a stopping criterion

Given an arbitrary x(0) ∈ D(T) and ε a small positive scalar
repeat

x(k+1) ← T (x(k))
k ← k + 1

until d(x(k), x(k−1)) ≤ ε

The scalar ε is a small number related to the accuracy desired by the user
and the distance d is defined by the norm ‖ . ‖.

© 2008 by Taylor & Francis Group, LLC

then Algorithm 1.1

8 Parallel Iterative Algorithms

In this book we are interested in the solution of numerical problems with
iterative algorithms and their implementation on parallel and distributed com-
puters. In the next section we introduce a standard scientific example as a
motivation of iterative computing.

1.3 A classical illustration example

Consider the problem of finding a function u of a variable x, satisfying the
following differential equation

−d2u

dt2
= f(x), x ∈ [0, 1] (1.5)

where f is a known function. Suppose also that u satisfies the boundary
conditions

u(0) = a, u(1) = b. (1.6)

The problem (1.5) with the conditions (1.6) is a two-point boundary-value
problem. It has a unique solution u. This problem is classical, it describes
many steady-state physical problems.

Let us make a discretization of the space x using a fixed step size h:

h =
1

n + 1
.

We will then compute the approximate values of u at the discrete points
h, 2h, ..., nh. Let u1, u2, ..., un denote the approximate values of u at the points
h, 2h, ..., nh and u0 = u(0) = a and un+1 = u(1) = b.

Let us use the second central difference scheme in order to discretize Equa-
tion (1.5),

d2u

dt2
≃ u(x + h)− 2u(x) + u(x− h)

h2
.

The discrete analogue of Equation (1.5) is then

−uj+1 + 2uj − uj−1 = h2f(jh), j = 1, ..., n.

We obtain a linear system which has the form

2u1 − u2 = h2f(h) + a
−u1 + 2u2 − u3 = h2f(2h)

...
...

−un−2 + 2un−1 − un = h2f((n− 1)h)
−un−1 + 2un = h2f(nh) + b.

© 2008 by Taylor & Francis Group, LLC

Iterative Algorithms 9

This linear system is equivalent to




2 −1 0 · · · 0

−1 2 −1
. . .

...

0 −1
. . .

. . . 0
...

. . .
. . .

. . . −1
0 · · · 0 −1 2







u1

u2

...

...
un




=




h2f(h) + a
h2f(2h)

...
h2f((n− 1)h)
h2f(nh) + b




. (1.7)

Then the solution of the differential equation (1.5) leads to the solution
of the sparse linear system (1.7). Even if the solution of a linear or nonlin-
ear system obtained by the discretization of a scientific problem is studied
from the mathematical point of view (existence, uniqueness, convergence),
obtaining correct solutions may be hard or impossible due for example to the
numerical stiffness of the problem and to round-off errors. To solve (1.7) one
can use direct algorithms based on the Gaussian elimination method and its
enhancements or iterative algorithms in order to approximate this solution by
inexpensive (in terms of storage) repetitive computations.

In this book, we are interested in the construction of convergent efficient
iterative algorithms in the framework of sequential, parallel synchronous and
parallel asynchronous execution modes. The next chapter is dedicated to the
basic iterative algorithms for the solution of numerical problems.

© 2008 by Taylor & Francis Group, LLC

Chapter 2

Iterative Algorithms and
Applications to Numerical Problems

Introduction

This chapter introduces linear systems and describes basic linear iterative
algorithms such as Jacobi, Gauss-Seidel and overrelaxation algorithms. Then
it presents iterative algorithms based on minimization techniques such as the
Conjugate Gradient and GMRES algorithms. Finally, the Newton method
for the solution of nonlinear problems is also introduced.

2.1 Systems of linear equations

2.1.1 Construction and convergence of linear iterative algo-
rithms

Consider a linear system

Ax = b, x ∈ R
n, (2.1)

where A = (Ai,j)1≤i,j≤n is a square and nonsingular matrix and b is a vector
of the form b = (b1, ..., bn)T . Let A−1 be the inverse matrix of A.

The exact solution of (2.1) is x = A−1b. This exact solution is often im-
possible to obtain due to different kinds of errors, such as round-off errors,
truncature errors and data perturbation errors. The computation of A−1 is
more expansive than numerical algorithms for the approximation of the solu-
tion of (2.1). Indeed, to compute A−1, we have to solve n linear systems

Ax(j) = e(j), j ∈ {1, ..., n} ,

where e(1) = (1, 0, ..., 0)T , e(2) = (0, 1, 0, ..., 0)T , ..., e(n) = (0, ..., 0, 1)T . The
solutions x(j) represent the jth columns of A−1. We can see that the compu-
tation of A−1 requires the solution of n linear systems such as (2.1)!

11

© 2008 by Taylor & Francis Group, LLC

12 Parallel Iterative Algorithms

To solve (2.1), two classes of algorithms exist: direct algorithms and iter-
ative ones. Direct algorithms lead to the solution after a finite number of
elementary operations. The exact solution is theoretically reached if we sup-
pose that there is no round-off error. In direct algorithms, the number of
elementary operations can be predicted independently of the precision of the
approximate solution.

Iterative algorithms proceed by successive approximations and consist in
the construction of a sequence

{
x(k)

}
k∈N

the limit of which is the solution

of (2.1)
lim

k→∞
x(k) = A−1b.

The iterations are stopped when the desired precision is obtained. See Chap-
ter 4 for more developments.

Linear iterative algorithms can be expressed in the form

x(k+1) = Tx(k) + c with a known initial guess x(0). (2.2)

Jacobi, Gauss-Seidel, overrelaxation and Richardson algorithms are linear it-
erative algorithms. If the mapping T does not depend on the current iteration
k, then the algorithm is called stationary. In the opposite case, the algorithm
is called nonstationary. The iterations generated by (2.2) correspond to the
Picard successive approximations method associated to T . To obtain such
algorithms, the fixed point of T has to coincide with the solution of (2.1). For
that, the matrix A is partitioned into

A = M −N (2.3)

where M is a nonsingular matrix. The linear system (2.1) can thus be written

Mx = Nx + b

or equivalently to the fixed point equation

x = M−1Nx + M−1b. (2.4)

From this last equation, the following iterative algorithm is deduced

x(k+1) = M−1Nx(k) + M−1b, with a given x(0),

DEFINITION 2.1 The linear iterative algorithm (Algorithm 2.2) is con-
vergent to the solution of the linear system (2.1) if given any x(0) ∈ Rn,
limk→+∞ x(k) = A−1b.

The following theorem whose proof is a deduction of Theorem 1.1 of Chap-
ter 1 is essential for the study of the convergence of iterative algorithms; see,
e.g., [113].

© 2008 by Taylor & Francis Group, LLC

which has the form of the linear iterative algorithm (Algorithm 2.2).

Iterative Algorithms and Applications to Numerical Problems 13

THEOREM 2.1

Consider a linear system Ax = b whose solution is x∗, then the following three
conditions are equivalent:

1.

2. ρ(T) < 1,

3. there exists a matrix norm ‖ . ‖ such that ‖T ‖ < 1.

Therefore, to build a convergent linear iterative algorithm in order to solve
a linear system Ax = b, the splitting (2.3) has to satisfy one of the last two
conditions of the above theorem, where T is replaced by M−1N.

2.1.2 Speed of convergence of linear iterative algorithms

In the above section we have explained how to build a convergent linear
iterative algorithm; the convergence is ensured if the spectral radius of the
iteration matrix T is strictly less than one, i.e., if the iteration matrix is a
contraction. This result is a particular case of the general convergence result
given in Chapter 1. The goal of this section is to give tools and results
to evaluate the speed of convergence of an iterative algorithm and then to
compare iterative linear methods. For more details, the reader is invited to
see [113].

LEMMA 2.1

Consider a square iterative matrix T , then for any matrix norm ‖.‖ we have,

ρ(T) = lim
k 7→+∞

(∥∥T k
∥∥)1/k

PROOF Proposition 1.1 ensures that

(ρ(T))
k

= ρ(T k) ≤
∥∥T k

∥∥ ,

so,

ρ(T) ≤
(∥∥T k

∥∥)1/k
.

Consider for an arbitrary ε the matrix T (ε) = T
ρ(T)+ε , then ρ(T (ε)) < 1 and

limk 7→+∞

(∥∥∥
(
T (ε)

)k∥∥∥
)

= 0. This implies that there exists K ∈ N such that

∀k ≥ K,
∥∥∥
(
T (ε)

)k∥∥∥ < 1. This is equivalent to

∀k ≥ K,
(∥∥T k

∥∥)1/k
< ρ(T) + ε. (2.5)

Since ε is arbitrary, we deduce the lemma.

© 2008 by Taylor & Francis Group, LLC

the linear iterative algorithm (Algorithm 2.2) is convergent,

14 Parallel Iterative Algorithms

Consider a convergent linear iterative algorithm whose iteration matrix T
is convergent, i.e., ρ(T) < 1. Thus limk→+∞ x(k) = x∗. Let us denote by ε(k)

the error vector at iteration k,

ε(k) = x(k) − x∗,

then we have
ε(k) = Tε(k−1) = T kε(0).

Let us choose ε such that ρ(T) + ε < 1. Then the above equality and (2.5)
both give

∀k ≥ K,
∥∥∥ε(k)

∥∥∥ ≤ (ρ(T) + ε)k
∥∥∥ε(0)

∥∥∥ .

So, the speed of convergence of a linear iterative algorithm with iteration
matrix T is determined by the spectral radius of T. The smaller the spectral
radius is, the faster the algorithm is.

pletely determined by the fixed point mapping defined by the fixed point equa-
tion (2.4)

x 7→M−1Nx + M−1b,

this is also true in the case of nonlinear systems, as we will see in Section 2.2.
So, we will talk about an iterative algorithm associated to a fixed point map-
ping.

The following definition [113] gives the average rate of convergence and
allows the comparison of two iterative algorithms.

DEFINITION 2.2 Let A be an n × n matrix. If for some integer m,
‖Am‖ < 1, then

R(Am) = − ln
[
‖ Am ‖1/m

]
= − ln ‖Am‖

m

is the average rate of convergence for m iterations of the matrix A. Consider
two convergent linear iterative algorithms (I) and (II) with respective iteration
matrices A1 and A2. If

R(Am
1) > R(Am

2)

then the Algorithm (I) is faster for m iterations than Algorithm (II). The
asymptotic rate of convergence of an iterative method with iteration matrix A
is defined by

R∞(A) = lim
m→+∞

R(Am) = − lnρ(A).

It should be noticed that for all m such that ‖Am‖ < 1 we have
R∞(A) ≥ R(Am).

In the next sections, we particularize the previous results to basic linear
algorithms. We show how to build them and we outline their convergence
conditions.

© 2008 by Taylor & Francis Group, LLC

We see that the behavior of the iterative algorithm (Algorithm 2.2) is com-

Iterative Algorithms and Applications to Numerical Problems 15

D

L

U

FIGURE 2.1: Splitting of the matrix.

2.1.3 Jacobi algorithm

The Jacobi method is the simplest method to solve a linear system. It
consists in decomposing the matrix A into A = M −N where M = D is the
diagonal matrix of A. The diagonal elements are assumed to be non-null. An
example of the decomposition is given in Equation (2.6).

A =




10 −4 −2 0
−2 23 −5 −1
−1 −2 16 −7
0 −1 −4 18


 , M = D =




10 0 0 0
0 23 0 0
0 0 16 0
0 0 0 18


 , N =




0 4 2 0
2 0 5 1
1 2 0 7
0 1 4 0




(2.6)

Using the decomposition of Figure 2.1 which can summarize the Jacobi
algorithm and the Gauss-Seidel one (see the next subsection), M = D and
N = −(L + U). With that decomposition and Equation (2.1) and following
the construction method of the previous section, we obtain

Dx(k+1) = Nx(k) + b. (2.7)

As D is a diagonal matrix with non-zero elements, the inverse D−1 of D
contains the inverse of each element of the diagonal and Equation (2.7) gives

x(k+1) = −D−1(L + U)x(k) + D−1b. (2.8)

It should be noticed that at each iteration, each component of the vector
x(k+1) uses components of the previous iteration x(k), so we have to store all
the components of x(k) in order to compute x(k+1).

The component-wise form of the Jacobi method is:

x
(k+1)
i = (bi −

∑

j 6=i

Ai,jx
(k)
j)/Ai,i. (2.9)

© 2008 by Taylor & Francis Group, LLC

16 Parallel Iterative Algorithms

In order to implement the Jacobi algorithm, several equivalent variants are
possible, depending on whether the values of the matrix may be changed or
not and depending on the storage mode of the matrix. Of course this remark
is true for almost all the numerical algorithms. Considering that we have
the initial matrix A, either the algorithm divides each value of a line by the
diagonal element at each iteration, or this transformation is performed before
the Jacobi algorithm.

Algorithm 2.1 presents a possible implementation of the Jacobi method. In
the following algorithm we consider that A is a two dimensional array that
contains the elements of the matrix. Each dimension of A has Size elements.
We consider that a structure (vector or matrix) of Size elements is numbered
from 0 to Size − 1 as this is traditionally the case in the C programming
language. The unknown vector at the iteration k + 1, x(k+1), is stored into
X , a one dimensional vector of size Size. In the same way, x(k) is represented
by the one dimensional array XOld.

The principle of this algorithm consists in iterating on the following state-
ments until the stopping criterion is reached. Each element X [i] contains the
product of the line i of the matrix A multiplied by the previous vector (XOld)
except for element i. The purpose of the last step of an iteration is to take
into account the right-hand side and to divide all the results by the diagonal
element i.

Algorithm 2.1 Jacobi algorithm

Size: size of the matrix
X[Size]: solution vector
XOld[Size]: solution vector at the previous iteration
A[Size][Size]: matrix
B[Size]: right-hand side vector

repeat
for i=0 to Size−1 do

X[i] ← 0
for j=0 to i−1 do

X[i] ← X[i]+A[i][j]×XOld[j]
end for
for j=i+1 to Size−1 do

X[i] ← X[i]+A[i][j]×XOld[j]
end for

end for
for i=0 to Size−1 do

XOld[i] ← (B[i]−X[i])/A[i][i]
end for

until stopping criteria is reached

© 2008 by Taylor & Francis Group, LLC

Iterative Algorithms and Applications to Numerical Problems 17

2.1.4 Gauss-Seidel algorithm

The Gauss-Seidel method presents some similarities with the Jacobi method.
The decomposition is slightly different since N is decomposed into two parts:
a strict lower part L and a strict upper part U as in Figure 2.1.

In opposition to the Jacobi method which only uses components of the pre-
vious iteration to compute the current one, the Gauss-Seidel method uses all
the components that have already been computed during the current iteration
to compute the other ones. The Gauss-Seidel method is defined by

Dx(k+1) + Lx(k+1) + Ux(k) = b. (2.10)

The components that have been computed at the current iteration are repre-
sented by the lower part L. Equation (2.10) can be rewritten as

x(k+1) = −(D + L)−1Ux(k) + (D + L)−1b.

The component-wise form of the Gauss-Seidel method is:

x
(k+1)
i = (bi −

∑

j<i

Ai,jx
(k+1)
j −

∑

j>i

Ai,jx
(k)
j)/Ai,i

As mentioned in the previous section both the Jacobi method and the
Gauss-Seidel method can be written as

x(k+1) = M−1Nx(k) + M−1b

in which A = M −N is a splitting of A, M = D, N = −(L + U) for Jacobi
and M = D + L, N = −U for Gauss-Seidel. Then the iteration matrix of the
Jacobi algorithm is

J = −D−1(L + U)

and the iteration matrix of the Gauss-Seidel algorithm is

L1 = −(D + L)−1U.

Using the previous notations for the Jacobi algorithm, it is possible to write

to the Jacobi one. As elements before i use the current iteration vector and
the elements after i use the previous iteration vector, it is necessary to use
an intermediate variable to store the result. In this algorithm, we use the
variable V . Apart from that difference, the rest of the algorithm is similar to
the Jacobi one.

The Stein-Rosenberg theorem [108] is based on the Perron-Frobenius the-

parison of the asymptotic rates of convergence of the point Jacobi and the
Gauss-Seidel methods. Its proof can be found in [113].

© 2008 by Taylor & Francis Group, LLC

ory on nonnegative matrices (see the Appendix) [97], [58]. It allows the com-

the Gauss-Seidel Algorithm 2.2. The principle of this algorithm is very similar

18 Parallel Iterative Algorithms

Algorithm 2.2 Gauss-Seidel algorithm

Size: size of the matrix
X[Size]: solution vector
XOld[Size]: solution vector at the previous iteration
A[Size][Size]: matrix
B[Size]: right-hand side vector
V: intermediate variable

repeat
for i=0 to Size−1 do

V ← 0
for j=0 to i−1 do

V ← V+A[i][j]×X[j]
end for
for j=i+1 to Size−1 do

V ← V+A[i][j]×XOld[j]
end for
X[i] ← (B[i]−V)/A[i][i]

end for
for i=0 to Size−1 do

XOld[i] ← X[i]
end for

until stopping criteria is reached

THEOREM 2.2

Consider a linear system Ax = b where A = L + D + U . Suppose that the
Jacobi matrix J = −D−1(L + U) is nonnegative, then, the spectral radii of
the iteration matrices of Jacobi and Gauss-Seidel satisfy one of the following
exclusive conditions:

1. ρ(J) = ρ(L1) = 0,

2. 0 < ρ(L1) < ρ(J) < 1,

3. 1 = ρ(J) = ρ(L1),

4. 1 < ρ(J) < ρ(L1).

So, if the Jacobi matrix is nonnegative, the Jacobi and the Gauss-Seidel
algorithms are simultaneously convergent or divergent. As a corollary we
obtain the following comparison between the asymptotic rates of convergence

R∞(L1) > R∞(J).

So, the asymptotic rate of convergence of the Gauss-Seidel method is higher
than the Jacobi one.

© 2008 by Taylor & Francis Group, LLC

Iterative Algorithms and Applications to Numerical Problems 19

2.1.5 Successive overrelaxation method

The successive overrelaxation method, or SOR, can be obtained by applying
extrapolation to the Gauss-Seidel method. It consists in mixing the form of a
weighted average between the previous iterate and the computed Gauss-Seidel

iterate for each component x
(k+1)
i ,

x
(k+1)
i = ωx

(k+1)
i + (1 − ω)x

(k)
i

where x represents the Gauss-Seidel iterate, and ω is a relaxation parame-
ter. By choosing an appropriate ω, it is possible to increase the speed of
convergence to the solution.

So we obtain

x
(k+1)
i = (1− ω)x

(k)
i + ω(bi −

∑

j<i

Ai,jx
(k+1) −

∑

j>i

Ai,jx
(k))/Ai,i.

In matrix terms, the SOR algorithm can be written as follows:

x(k+1) = −(D + ωL)−1(ωU − (1− ω)D)x(k) + ω(D + ωL)−1b,

or equivalently
(

ωL + D

ω

)
x(k+1) =

(
(1− ω)D − ωU

ω

)
x(k) + b,

so the successive overrelaxation algorithm is a particular linear iterative al-
gorithm corresponding to the decomposition A = M −N where M = ωL+D

ω

and N = (1−ω)D−ωU
ω . The iteration matrix is

Lω = (ωL + D)−1 ((1− ω)D − ωU) .

In Algorithm 2.3 we can remark that the difference between the SOR im-
plementation and the Gauss-Seidel one only concerns the parameter ω which
allows us to take into account an intermediate value between the current it-
eration and the previous one.

The following theorem which is a corollary of a general theorem due to
Ostrowski [94] gives the convergence of the overrelaxation algorithm.

THEOREM 2.3

If the matrix A is symmetric (respectively Hermitian), then the successive
overrelaxation algorithm converges for ω ∈]0, 2[.

If ω = 1, the SOR method becomes the Gauss-Seidel method. In [76] Kahan
has proved that SOR fails to converge if ω is outside the interval]0, 2[. The
term overrelaxation should be used when 1 < ω < 2; nevertheless, it is used
for any value of 0 < ω < 2.

© 2008 by Taylor & Francis Group, LLC

20 Parallel Iterative Algorithms

Algorithm 2.3 SOR algorithm

Size: size of the matrix
X[Size]: solution vector
XOld[Size]: solution vector at the previous iteration
A[Size][Size]: matrix
B[Size]: right-hand side vector
V: intermediate variable
Omega: parameter of the method

repeat
for i=0 to Size−1 do

V ← 0
for j=0 to i−1 do

V ← V+A[i][j]×X[j]
end for
for j=i+1 to Size−1 do

V ← V+A[i][j]×XOld[j]
end for
V ← (B[i]−V)/A[i][i]
X[i] ← XOld[i]+Omega×(V−XOld[i])

end for
for i=0 to Size−1 do

XOld[i] ← X[i]
end for

until stopping criteria is reached

Commonly, the computation of the optimal value of ω for the rate of con-
vergence of SOR is not possible in advance. When this is possible, the com-
putation cost of ω is generally expensive. That is why a solution consists in
using some heuristics to estimate it. For example, some heuristics are based
on the mesh spacing of the discretization of the physical problem [81].

2.1.6 Block versions of the previous algorithms

The three previous algorithms only work component-wise. The particularity
of a block version of an existing algorithm consists in taking into account block
components rather than simple components. Consequently, the structure of
the algorithm is the same but the computation and the implementation are
different.

© 2008 by Taylor & Francis Group, LLC

Iterative Algorithms and Applications to Numerical Problems 21

So, matrix A and vectors x and b are partitioned as follows:

A =




A11 A12 A13 . . . A1n

A21 A22 A23 . . . A2n

A31 A32 A33 . . . A3n

...
...

...
. . .

...
An1 An2 An3 . . . Ann




, x =




X1

X2

X3

...
Xn




, b =




B1

B2

B3

...
Bn




, (2.11)

where x and b are partitioned into subvectors in a compatible way with the
partitioning of A.

So, it is possible to define a similar splitting as in Figure 2.1 in which D is
composed of diagonal blocks as follows:

D =




A11

A22

A33

. . .

Ann




, E =




0
−A21 0
−A31 −A32 0
...

...
...

. . .

−An1 −An2 . . . Ann−1 0




,

F =




0 −A12 −A13 . . . −A1n

. . .
...

...
...

0 −An−2n−1 −An−2n

0 −An−1n

0




(2.12)

Suppose that we have NbBlock blocks that have the same size BlockSize.
Thus, the offset of the ith block is stored into i× BlockSize. Algorithm 2.4
gives a possible implementation of the block Jacobi algorithm. The first
step consists in duplicating the right-hand side into an intermediate variable
BTmp. Then, for each block k, components corresponding to the block of the
right-hand side are updated using the previous iteration vector XOld. The
corresponding linear subsystem needs then to be solved in order to obtain
an approximation of the corresponding unknown vector x. The choice of the
method to solve the linear system is free. It may be a direct or an iterative
method. When an iterative method is used we talk about two-stage iterative
algorithms.

The advantage of the block Jacobi method is that the number of iterations
is often significantly decreased. The drawback of this method is that it re-
quires the resolution of several linear subsystems which is not an easy task.
Moreover, the precision of the inner solver has an influence on the number of
iterations required for the outer solver to reach the convergence.

Implementing a block version of the Gauss-Seidel and the SOR methods
simply requires the use of the last version of components of previous blocks
and the previous version of components of the next blocks (as it is the case
in the componentwise version). Moreover, the SOR version needs to include
a relaxation parameter as in the componentwise version.

© 2008 by Taylor & Francis Group, LLC

22 Parallel Iterative Algorithms

Algorithm 2.4 Block Jacobi algorithm

Size: size of the matrix
BlockSize: size of a block
NbBlock: Number of blocks
A[Size][Size]: matrix
B[Size]: right-hand side vector
BTmp[Size]: intermediate right-hand side vector
X[Size]: solution vector
XOld[Size]: solution vector at the previous iteration

repeat
for i=0 to Size−1 do

BTmp[i] ← B[i]
end for
for k=0 to NbBlock−1 do

for i=k×BlockSize to (k+1)×BlockSize−1 do
for j=0 to k×BlockSize−1 do

BTmp[i] ← BTmp[i]−A[i][j]×XOld[i]
end for
for j=(k+1)×BlockSize to Size−1 do

BTmp[i] ← BTmp[i]−A[i][j]×XOld[i]
end for

end for
Solve the linear subsystem corresponding to the kth block of A and
BTmp (Akk, Xk, Bk)

end for
until stopping criteria is reached

2.1.7 Block tridiagonal matrices

In this section we review the convergence results in the important case of
block tridiagonal matrices

A block tridiagonal matrix A is a matrix of the form

A =




A1 B1 0 · · · 0

C1 A2 B2
. . .

...

0 C2
. . .

. . . 0
...

. . .
. . .

. . . Bα−1

0 · · · 0 Cα−1 Aα




Suppose that in the linear system (2.1), the matrix A is block tridiagonal,
then we have the following result (see [113]):

© 2008 by Taylor & Francis Group, LLC

Iterative Algorithms and Applications to Numerical Problems 23

1

1 2

ω0 = 2

1+
√

1−(ρ(J))2

ρ(Lω)

ω

ω0 − 1

ρ(L1) = (ρ(J))2

FIGURE 2.2: Spectral radius of the iteration matrices.

THEOREM 2.4

The Jacobi and Gauss-Seidel algorithms converge or diverge simultaneously
and

ρ(L1) = (ρ(J))
2
.

The following result compares the convergence of Jacobi, Gauss-Seidel and
successive overrelaxation algorithms in the case of block tridiagonal matrices.

THEOREM 2.5

Let the matrix A of the linear system (2.1) be block tridiagonal. Suppose that
the eigenvalues of the block Jacobi iteration matrix are real. Then the block
Jacobi and the block successive overrelaxation algorithms converge or diverge
simultaneously. The spectral radius of the iteration matrices varies following
Figure 2.2. ω0 is the optimum parameter corresponding to the lowest spectral
radius, its exact value is

ω0 =
2

1 +
√

1− (ρ(J))2

and
ρ(Lω0) = ω0 − 1.

An important particular situation where the hypotheses of the above theo-
rem are satisfied is that of symmetric (Hermitian) positive definite matrices.

The next methods are called nonstationary methods. Those methods differ
from stationary methods because the computations involve information which
is led to be changed at each iteration. Usually, constants for nonstationary
methods are defined by inner products of residuals or other vectors obtained

© 2008 by Taylor & Francis Group, LLC

24 Parallel Iterative Algorithms

in the iterative process. In the previous sections we were interested in linear
iterative algorithms to solve linear systems of equations. In the next section
we will review another class of algorithms to solve linear systems. These
algorithms are based on the minimization of a function.

2.1.8 Minimization algorithms to solve linear systems

Assume that we have to solve a linear system of the form (2.1) and that A
is symmetric positive definite. Let us consider the function

F (x) =
1

2
(Ax, x) − (b, x) (2.13)

where (x, y) denotes the Euclidean scalar product

(x, y) = xT y.

Let us denote by ‖x‖A the A-norm of a vector x,

‖x‖A = (Ax, x)1/2 (2.14)

The derivative of F is

∇F (x) = F ′(x) = Ax− b,

and the Hessian of F is

∇2F (x) = A.

Since the Hessian of F is symmetric positive definite, the solution of (2.1)
coincides with the minimum of F. Thus solving the minimization problem

min F (x), x ∈ R
n, (2.15)

and solving the problem (2.1) are equivalent tasks.

The principle of minimization algorithms is as follows: to solve (2.1) we
minimize the function F . To do that we choose an initial guess x(0) and we
compute a new iterate on a subspace of R

n (called a search subspace). This
subspace is defined by some constraints which define another subspace of Rn

(the direction subspace); the aim is to minimize the value of F at each new
iterate. We also talk about projection methods in general and orthogonal
projection methods when the search subspace and the constraint subspace
coincide.

Below we give the principle of descent and gradient algorithms in a one-
dimensional projection process and the principles of the Conjugate Gradient,
the GMRES and the BiConjugate Gradient algorithms. We simply explain the
idea of each algorithm, then we give its main results and its implementation.

© 2008 by Taylor & Francis Group, LLC

Iterative Algorithms and Applications to Numerical Problems 25

2.1.8.1 Descent and Gradient algorithms

The gradient method belongs to the class of numerical methods called de-
scent methods. In order to minimize F, we choose an initial point x(0) and we
compute a new iterate x(1) such that F (x(1)) < F (x(0)). The new iterate x(1)

is defined by
x(1) = x(0) + p(0)d(0)

where d(0) is a non-null vector of Rn and p(0) is a nonnegative real, so d(0) is
chosen so that

F (x(0) + p(0)d(0)) < F (x(0))

When d(0) exists, it is called a descent direction and p(0) is called a descent
step. Those two values can be constant or changed at each iteration. The
general scheme of a descent method is:

{
x(0) given

x(k+1) = x(k) + p(k)d(k) (2.16)

with d(k) ∈ Rn − {0} and p(k) ∈ R+∗, and

F (x(k) + p(k)d(k)) < F (x(k)) (2.17)

A natural idea to find a descent direction consists in making a Taylor
development of the function F between two consecutive iterates x(k) and
x(k+1) = x(k) + p(k)d(k):

F (x(k) + p(k)d(k)) = F (x(k)) + p(k)(∇F (x(k)), d(k)) + o(p(k)d(k)) (2.18)

In order to have (2.17), it is possible to choose as initial approximation
d(k) = −∇F (x(k)). Hence, we obtain the gradient algorithm

{
x(0) given

x(k+1) = x(k) − p(k)∇F (x(k)) = x(k) + p(k)(b −Ax(k))
(2.19)

From a practical point of view, implementing this algorithm is quite easy.
Algorithm 2.5 sums up the gradient method.

Algorithm 2.5 Gradient algorithm

Initializes x and p
repeat

x← x− p∇F (x)
compute a new p if needed

until stopping criteria is reached

If we use a variable step at each iteration, we obtain the optimal step
gradient method. With this method we choose a step p which minimizes the

© 2008 by Taylor & Francis Group, LLC

26 Parallel Iterative Algorithms

cost function φ(p) = F (x(k))−p∇F (x(k)) at the iteration k. In the case where
F is defined by (2.13) and if we assume that p(k−1) 6= 0, we can prove that
the optimum value of p(k) is

popt =

∥∥r(k−1)
∥∥2

2

(Ar(k−1), r(k−1))
where r(k−1) = b−Ax(k−1).

The quantities r(k) (k ≥ 0) are called the residual vectors; we can see that
they have to converge to 0.

In practice, p is defined using a linear search of optimal step using for
example the Wolfe’s algorithm [119].

The following result gives the convergence behavior of the gradient algo-
rithm; see [72].

THEOREM 2.6

Let A be a symmetric positive definite matrix and let λmin and λmax denote
the extreme eigenvalues of A. Then for any initial guess x(0), the gradient
algorithm produces iterates which converge to the solution of (2.1). Moreover,
F being defined in (2.13), we have the error estimates

∥∥∥x(m) − x∗
∥∥∥

A
=

(
λmax − λmin

λmax + λmin

)m ∥∥∥x(0) − x∗
∥∥∥

A
,

and

F (x(m))− F (x∗) =

(
λmax − λmin

λmax + λmin

)2m (
F (x(0))− F (x∗)

)
.

2.1.8.2 Conjugate gradient algorithm

The conjugate gradient (CG) method results from the combination of the
gradient method and the search of optimal directions. Indeed, the gradient
method suffers from the fact that even if two successive residual vectors are
orthogonal (form a right angle), a residual may not be orthogonal to a non-
successive residual vector. This leads to a high number of iterations to find the
solution of the linear system. The CG method also belongs to the category of
projection methods and it is designed for symmetric positive definite systems.
The CG method ensures that any two residual vectors are orthogonal, that
property is achieved by a suitable choice of the directions p(k) (which are A-
orthogonal in the sense of the scalar product defined in (2.14), i.e., conjugate)
as a linear combination of p(k−1) and r(k). The method requires that only a
few iterates are kept in memory. At each iteration, two inner products are
performed in order to update a scalar which is used to compute the sequence
of iterates and residuals satisfying orthogonality conditions. Below we give
the different steps of the conjugate gradient algorithm.

© 2008 by Taylor & Francis Group, LLC

Iterative Algorithms and Applications to Numerical Problems 27

At each iteration, the iterates x(k+1) are updated in each direction by a
multiple (called α(k+1)) of the search direction vector p(k+1)

x(k+1) = xk + α(k+1)p(k+1). (2.20)

The residuals are updated in the same way as follows:

r(k+1) = r(k) − α(k+1)q(k+1), (2.21)

where q(k+1) = Ap(k+1). The parameter α(k+1) = (r(k), r(k))/(Ap(k+1), p(k+1))
minimizes (A−1r(k+1), r(k+1)) among all possible choices for α in (2.21). The
search directions are updated using the residuals

p(k+1) = r(k+1) + β(k)p(k), (2.22)

where the parameter β(k) = (r(k), r(k))/(r(k−1), r(k−1)) ensures that vectors
p(k+1) and Ap(k) are orthogonal. This is equivalent to the condition that
vectors r(k+1) and r(k) are orthogonal.

The residuals build an orthogonal basis for the space span{r0, Ar0, A2r0...}.
Algorithm 2.6 illustrates a possible implementation of the CG algorithm.

This algorithm uses a matrix notation that can be used with several libraries
such as MV++ used in SparseLib [44], or the Matrix Template Library [105].

Let K denote the condition number λmax

λmin
of the symmetric positive definite

matrix A, then it can be proved that [72],

THEOREM 2.7

The CG iterates satisfy the error estimates

‖ x(k) − x∗ ‖A≤ 2

(√
K − 1√
K + 1

)k

‖ x(0) − x∗ ‖A .

2.1.8.3 GMRES

The GMRES (Generalized Minimum RESidual) method is a projection al-
gorithm in which the constraint subspace is AKm where Km is the Krylov sub-

space Km = span
{
v(1), Av(1), ..., Am−1v(1)

}
and v(1) = r(0)

‖r(0)‖
2

. This method

was designed by Saad and Schultz [103]. It is based on the Arnoldi-modified
Gram-Schmidt procedure to build orthogonal basis of the Krylov subspace
and it has the property to compute an approximation which minimizes the
Euclidean norm of the residual over all vectors of the form x(0) + Km.

To apply the GMRES algorithm, the matrix A has to be positive definite
but not necessarily symmetric. The most popular form of the GMRES is
based on the modified Gram-Schmidt procedure. In order to control the
storage requirements, this method uses restarts. Without them, the GMRES
method is ensured to converge in n steps where n is the size of the matrix

© 2008 by Taylor & Francis Group, LLC

28 Parallel Iterative Algorithms

Algorithm 2.6 Conjugate Gradient algorithm

Size: size of the matrix
A[Size][Size]: matrix
B[Size]: right-hand side vector
X[Size]: solution vector
R[Size]: residual vector
P[Size]: search direction vector
Q[Size]: orthogonal vector to the search direction
Alpha, Beta, Rho, RhoOld: scalar variables

R ← B−A×X
i ← 1
repeat

Rho ← (R,R)
if i=1 then

P ← R
else

Beta ← Rho/RhoOld
P ← R+Beta×P

end if
Q ← A×P
Alpha ← Rho/(P,Q)
X ← X+Alpha×P
R ← R−Alpha×Q
RhoOld ← Rho
i ← i+1

until stopping criteria is reached

(considering exact arithmetic). However, from a practical point of view, this is
inconceivable when n is large because it requires too much memory storage and
too many computations. As a consequence, restarts are essential in practice.

The GMRES method generates a sequence of orthogonal vectors which must
be stored. As mentioned above, the algorithm uses a modified Gram-Schmidt
orthogonalization. The orthogonal basis of the GMRES is formed explicitly
by Algorithm 2.7.

Algorithm 2.7 GMRES orthogonal basis construction

w(i) ← A× v(i)

for k=1 to i do
w(i) ← w(i) − (w(i), v(k))v(k)

end for
v(i+1) ← w(i)/ ‖ w(i) ‖2

© 2008 by Taylor & Francis Group, LLC

Iterative Algorithms and Applications to Numerical Problems 29

The GMRES algorithm has the property that the residual norm can be
computed without the sequence of the iterates. So, the method works by
computing the successive residual norms until they become accurate enough
and only then it generates the iterate, which is the time consuming step,
according to the following construction:

x(i) = x(0) + y1v
(1) + y2v

(2) + · · ·+ yiv
(i)

where the yk are chosen to minimize the residual norm ‖ b−Ax(i) ‖.
As can be seen, the GMRES method requires a large amount of work and

storage which rises linearly with the iteration count. This drawback can be
overcome by restarting the algorithm after a chosen number m of iterations.
In that case, the accumulated data are wiped out and the intermediate results
are used in order to compute the next m iterations as initial data.

Unfortunately, the problem is to define an appropriate value for m. Choos-
ing a value which is too low makes the algorithm converge slowly, whereas
choosing a value larger than necessary involves excessive work and requires
more memory storage.

Algorithm 2.8 illustrates an implementation of the GMRES algorithm. The
principle of this algorithm is the following. At each iteration, the algorithm:

1. computes the Arnoldi process which gives the Hessenberg matrix H
(using a QR factorization) and the orthogonal basis V ,

2. applies the Givens rotations with the functions ApplyP laneRotation
and GenerateP laneRotation (by applying the rotations on the previous
elements of H , then by computing the new rotations and finally by
applying it on the right-hand side vector for the minimization problem),

3. if needed it solves the minimization problems using H and S with the
function Update in order to update the values of the solution vector X .

The matrix H is used to store the Hessenberg decomposition. It is computed
with the Arnoldi method using a QR factorization.

The functions GenerateP laneRotation and ApplyP laneRotation are used
to compute the Givens orthogonalization. In these functions, the arrays CS
and SN respectively represent the sine and the cosine for the rotations.

The function UPDATE is used to restart the algorithm when the size of the
orthogonal basis becomes too large. In this function, the variable K represents
the current size of the orthogonal basis. This function aims at finding Y such
that it is the solution of H×Y = S. Remember that H is an upper triangular
matrix. Then the vector X is updated using the orthogonal basis V and Y .

In [29, 102, 69, 68, 115, 56], interested readers will be able to find more
information on the subject. In [102], two interesting results concerning the
convergence are described. First a global convergence result is given.

© 2008 by Taylor & Francis Group, LLC

30 Parallel Iterative Algorithms

Algorithm 2.8 GMRES algorithm

M: number of iterations between each restart
Size: size of the matrix
A[Size][Size]: matrix
B[Size]: right-hand side vector
H[M+1][m]: matrix for the Hessenberg decomposition
V[M+1][Size]: orthogonal basis for the Krylov subspace
X: solution vector
R: residual vector
S[M+1]: right-hand side vector for the minimization problem
CS[M+1], SN[M+1]: cosine and sine for the Givens rotations
W[Size]: intermediate vector used in the Arnoldi’s method to compute H
NormB: norm of B
NormR: norm of R

R ← B−A×X
NormB ← ||B||2
NormR ← ||R||2
repeat

V[0] ← R/NormR
S[0] ← NormR
for i=0 to M−1 do

W ← A× V[i]
for k=0 to i do

H[k][i] ← (W,V[k])
W ← W−H[k][i]×V[k]

end for
H[i+1][i] ← ||W ||2
V[i+1] ← W/H[i+1][i]
for k=0 to i−1 do

ApplyPlaneRotation(H[k][i], H[k+1][i], CS[k], SN[k])
end for
GeneratePlaneRotation(H[i][i], H[i+1][i], CS[i], SN[i])
ApplyPlaneRotation(H[i][i], H[i+1][i], CS[i], SN[i])
ApplyPlaneRotation(S[i], S[i+1], CS[i], SN[i])
if |S[i + 1]|/NormB is small enough then

UPDATE(X, i, M, H, S, V)
quit

end if
end for
UPDATE(X, M−1, M, H, S, V)
R ← B−A×X
NormR ← ||R||2
if NormR/NormB is small enough then

quit
end if

until stopping criteria is reached
(NormR ≤ ǫ or a too large number of iterations has been performed)

© 2008 by Taylor & Francis Group, LLC

Iterative Algorithms and Applications to Numerical Problems 31

Algorithm 2.9 Function ApplyP laneRotation(DX, DY, CS, SN)

This function returns DX and DY
Tmp: intermediate variable

Tmp ← CS × DX + SN × DY
DY ← −SN × DX + CS × DY
DX ← Tmp

Algorithm 2.10 Function GenerateP laneRotation(DX, DY, CS, SN)

This function returns CS and SN

if DY=0 then
CS ← 1
SN ← 0

else
if |DY | > |DX | then

SN ← 1 /
√

1 + (DX/DY)2

CS ← SN×DX/DY
else

CS ← 1 /
√

1 + (DY/DX)2

SN ← CS×DY/DX
end if

end if

Algorithm 2.11 Function UPDATE(X, K, M, H, S, V)

K: size of the orthogonal basis
Y[K+1]: solution vector of the system HY = S

for i=0 to K do
Y[i] ← S[i]

end for
for i=K to 0 do

Y[i] ← Y[i]/H[i][i]
for j=i−1 to 0 do

Y[j] ← Y[j]−H[j][i]×Y[i]
end for

end for
for j=0 to K do

X ← X+Y[j]×V[j]
end for

© 2008 by Taylor & Francis Group, LLC

32 Parallel Iterative Algorithms

THEOREM 2.8

If A is a positive definite matrix, then the GMRES algorithm converges for
any m ≥ 1 where m is the dimension of the considered Krylov space.

Then a proposition allows the provision of an upper bound on the conver-
gence rate of the GMRES iterates.

PROPOSITION 2.1

Assume that A is a diagonalizable matrix and let A = XΛX−1 where
Λ = diag{λ1, λ2, . . . , λn} is the diagonal matrix of eigenvalues and X is the
matrix of eigenvectors. In the following, Pm denotes the set of all Chebyshev
polynomials of degree m. By defining

ǫ(m) = minp∈Pm,p(0)=1maxi=1,...,n|p(λi)|, (2.23)

it is possible to prove that the residual norm achieved by the mth step of
GMRES satisfies the inequality

‖ rm ‖2≤ K2(X)ǫ(m) ‖ r0 ‖2 (2.24)

where K2(X) ≡‖ X ‖2‖ X−1 ‖2.

Unfortunately, except in the case when X is normal (i.e., XHX = XXH

so ‖ X ‖2= ρ(A) and K2(X) = 1), this estimation is not really useful, first
because the condition number K2(X) of the matrix X is generally unknown,
then because it may be very large.

2.1.8.4 BiConjugate Gradient algorithm

While the Conjugate Gradient method is designed for symmetric positive
definite systems, the BiConjugate Gradient method can be applied to non-
symmetric systems. This method is based on the Lanczos biorthogonalization;
it consists in replacing the orthogonal sequence of residuals by two mutually
orthogonal sequences. In counterpart, the minimization is not ensured any-
more. The second conjugate gradient is provided by using AT instead of using
A. So there are two residual sequences which are defined by:

r(k+1) = r(k) − α(k+1)Ap(k+1), r̃(k+1) = r̃(k) − α(k+1)AT p̃(k+1) (2.25)

where the search directions are defined as follows:

p(k+1) = r(k) + β(k)p(k), p̃(k+1) = r̃(k) + β(k)p̃(k) (2.26)

In order to have the biorthogonality relations

(r̃(i), r(j)) = (p̃(i), Ap(j)) = 0 if i 6= j, (2.27)

© 2008 by Taylor & Francis Group, LLC

Iterative Algorithms and Applications to Numerical Problems 33

α(k+1) and β(k+1) are defined as follows:

α(k+1) =
(r̃(k), r(k))

(p̃(k+1), Ap(k+1))
, β(k+1) =

(r̃(k+1), r(k+1))

(r̃(k), r(k))
(2.28)

From the algorithmic point of view, the BiConjugate Gradient algorithm
(Algorithm 2.12) presents some similarities with the Conjugate Gradient one.
Nevertheless, it has the drawback of requiring the computation of the trans-
pose product AT × PT ilde. For some applications, the computation of this
product is not possible. For example, it is not possible to assemble elements
of the matrix for some applications.

Concerning the convergence of this algorithm few theoretical results are
known. For symmetric positive definite systems, convergence results are sim-
ilar to those of conjugate gradient, even if it requires twice the cost per itera-
tion. For nonsymmetric matrices it has been proved that the method is more
or less comparable to full GMRES (in terms of the number of iterations) [57].

2.1.9 Preconditioning

As we have seen in the previous sections, the speed of a minimization
method to solve a linear system Ax = b depends on the condition number
K(A) of A. The objective of preconditioning is to solve an equivalent system
whose condition number is as close as possible to 1.

This equivalent system has the form

M−1Ax = M−1b.

The principle of preconditioning techniques is to find an approximation
of M−1 = A−1 such that K(M−1A) is the nearest possible to 1.
Since K(A−1A) =1, the best theoretical choice of M−1 is A−1, but in practice,
we have to choose an inexpensive approximation of A−1.

The new linear system is then solved (when it is possible) by a minimization
method giving rise to a preconditioned minimization algorithm. If we apply
the gradient algorithm (Algorithm 2.19) with a fixed step p (Richardson al-
gorithm) to a linear system M−1Ax−M−1b = 0, then we obtain,

{
x(0) given

x(k+1) = x(k) + p
(
M−1b −M−1Ax(k)

)

Then if we choose M = D, the diagonal part of A, then we have
{

x(0) given

x(k+1) = x(k) + p
(
D−1b −D−1Ax(k)

)

or in an equivalent way
{

x(0) given

Dx(k+1) = Dx(k) + p(b−Ax(k)).

© 2008 by Taylor & Francis Group, LLC

34 Parallel Iterative Algorithms

Algorithm 2.12 BiConjugate Gradient algorithm

Size: size of the matrix
A[Size][Size]: matrix
X[Size]: solution vector
R[Size]: residual vector
RTilde[Size]: second residual vector
P[Size]: search direction vector
PTilde[Size]: second search direction vector
Q[Size]: orthogonal vector to the search direction
QTilde[Size]: orthogonal vector to the second search direction
Alpha, Beta, Rho, RhoOld: scalar variables

R← B −A×X
Choose RTilde, for example RTilde = R
i← 1
repeat

Rho← (R, RT ilde)
if Rho = 0 then

method fails
end if
if i=1 then

P ← R
PT ilde← RTilde

else
Beta← Rho/RhoOld
P ← R + Beta× P
PT ilde← RTilde + Beta× PT ilde

end if
Q← A× P
QT ilde← AT × PT ilde
Alpha← Rho/(PT ilde, Q)
X ← X + Alpha× P
R← R−Alpha×Q
RTilde← RTilde−Alpha×QTilde
RhoOld← Rho
i← i + 1

until stopping criteria is reached

© 2008 by Taylor & Francis Group, LLC

Iterative Algorithms and Applications to Numerical Problems 35

Then we obtain the relaxed Jacobi algorithm to solve Ax = b. So, the Richard-
son algorithm preconditioned with the diagonal matrix of A coincides with
the relaxed Jacobi algorithm.

In the following we will briefly describe the most used preconditioning tech-
niques, namely Jacobi, SOR, SSOR and ILU preconditioning.

2.1.9.1 Jacobi, SOR, SSOR and ILU preconditioning

Consider a matrix A and its splitting

A = D − L− U

where D, L and U are, respectively, the diagonal, the lower and the upper
parts of A.

The Jacobi preconditioning is given by the preconditioning matrix,

MJ = D.

The Gauss-Seidel preconditioning is defined by the preconditioning matrix

(D − L),

while the preconditioning matrix of the SOR preconditioning is

MSOR =
1

ω
(D − ωL).

Thus, the Jacobi preconditioning matrix is simply the diagonal part of A and
the Gauss-Seidel preconditioning matrix is the lower triangular part of A.

The SSOR preconditioning matrix is defined by ([52], [11])

MSSOR =
1

ω(2− ω)
(D − ωL)D−1(D − ωU), (2.29)

where ω ∈]0, 2[.

2.1.9.2 Preconditioning matrices for the conjugate gradient algo-
rithm

Suppose now that A is a symmetric positive definite matrix and split A into

A = D − L− LT

Following (2.29), the SSOR preconditioning matrix is

MSSOR =
1

ω(2− ω)
(D − ωL)D−1(D − ωLT),

where ω ∈]0, 2[.

© 2008 by Taylor & Francis Group, LLC

36 Parallel Iterative Algorithms

Note that MSSOR does not require any computation nor any storage. More-
over the matrix MSSOR can be written in the form

MSSOR = CωCT
ω ,

where

Cω =
(D − ωL)D−1/2

(ω(2− ω))
1/2

,

which facilitates the resolution of the linear system MSSORz = r (r being
the residual) required at each step. If we choose ω = 1, then we obtain the
symmetric Gauss-Seidel iterations

MSGS = (D − L)D−1(D − LT).

To obtain a preconditioned conjugate gradient algorithm, the matrix of the
new linear system has to be symmetric. Since the product of symmetric ma-
trices is not necessarily symmetric, the conjugate gradient algorithm cannot
be directly applied to a matrix M−1A even if the matrix M−1 is symmetric.

If M−1 is positive definite, then there exists a matrix M−1/2 such that(
M−1/2

)2
= M−1. The system M−1Ax = M−1b can be written

M−1Ax =
(
M−1/2

)2
b

M1/2M−1Ax = M1/2
(
M−1/2

)2
b

M1/2M−1Ax = M−1/2b

M1/2M−1AM−1/2M1/2x = M−1/2b.

Putting y = M1/2x, we obtain the system

M−1/2AM−1/2y = M−1/2b.

The matrix M−1/2AM−1/2 being symmetric positive definite, we can apply
the conjugate gradient algorithm to it.

2.1.9.3 Implementation of the preconditioned conjugate gradient
solver

Using a preconditioner with a numerical algorithm often does not require
many modifications in the algorithm. Nonetheless, the difficulty lies in the
way of building the preconditioner. Iterative solvers are easily adaptable to
be used with a preconditioner. For more information, interested readers are
invited to read some of the numerous books dedicated to this topic. Roughly
speaking the modifications for an iterative solver concern the use of a Solve

procedure that can compute the inverse of the preconditioned matrix and
multiply it by the residual vector. Later, the result of this Solve procedure
is used in the algorithm. Algorithm 2.13 describes the preconditioned version

© 2008 by Taylor & Francis Group, LLC

Iterative Algorithms and Applications to Numerical Problems 37

of the Conjugate Gradient algorithm. Compared to the simple version, there
are few differences.

Algorithm 2.13 Preconditioned Conjugate Gradient algorithm

Size: size of the matrix
A[Size][Size]: matrix
X[Size]: solution vector
R[Size]: residual vector
M[Size][Size]: preconditioned matrix
Z[Size]: solution vector of the system MZ = R
P[Size]: search direction vector
Q[Size]: orthogonal vector to the search direction
Alpha, Beta, Rho, RhoOld: scalar variables

R ← B−A×X
i ← 1
repeat

Z ← Solve(M, R)
Rho ← (R,Z)
if i=1 then

P ← Z
else

Beta ← Rho/RhoOld
P ← Z+Beta×P

end if
Q ← A×P
Alpha ← Rho/(P,Q)
X ← X+Alpha×P
R ← R−Alpha×Q
RhoOld ← Rho
i ← i+1

until stopping criteria is reached

Algorithm 2.14 gives the Solve procedure that uses the SSOR precondi-
tioner. It is supposed to be used with the matrix A as a parameter for M in
Solve(M, R). This procedure is based on Equation (2.29). There are three
loops in the algorithm which correspond to the three parts of the equation:

(D−ωL), D−1

ω×(2−ω) and (D−ωU). Of course the result of each part is used for

the next one. The first and the last parts correspond to a triangular matrix
solve.

For more details on SSOR, interested readers are invited to
consult [8, 120, 28].

© 2008 by Taylor & Francis Group, LLC

38 Parallel Iterative Algorithms

Algorithm 2.14 SSOR Solve(M,R)

Size: size of the matrix
Z[Size]: solution vector
Z2[Size]: intermediate vector
Tmp: intermediate variable
Omega: relaxation parameter

for i=0 to Size−1 do
Tmp← 0
for j=0 to i−1 do

Tmp ← Tmp+M[i][j]×Z2[j]
end for
Z2[i]← (R[i]−Omega×Tmp)/M[i][i]

end for
for i=0 to Size−1 do

Z2[i]← Z2[i]×M[i][i]×(Omega×(2−Omega))
end for
for i=Size−1 to 0 do

Tmp← 0
for j=Size−1 to i+1 do

Tmp ← Tmp+M[i][j]×Z[j]
end for
Z[i] ← (Z2[i]−Omega×Tmp)/M[i][i]

end for
return Z

2.1.9.4 Incomplete LU factorization

This method commonly called ILU is based on the well-known direct
method LU [29]. The LU method is known to be very efficient for solving
a system as soon as the factorization has been achieved. Unfortunately, this
process is often complex to implement and time consuming compared to an it-
erative method to solve a sparse system. Another drawback of the LU method
with a sparse linear system is that the factorization process tends to fill the
matrix elements. Several techniques have been developed to circumvent this
problem. For more details on direct methods and incomplete factorization
techniques, interested readers are invited to consult [45, 46, 85, 112, 9, 28, 10].

In opposition to the traditional factorization method, the incomplete factor-
ization ignores some elements that would be filled with a complete factoriza-
tion. After the incomplete factorization process, we obtain a matrix M = LU
where L is a lower triangular matrix and U is an upper triangular one. The
more the matrix M−1 approximates A−1, the more the preconditioner is effi-
cient.

© 2008 by Taylor & Francis Group, LLC

Iterative Algorithms and Applications to Numerical Problems 39

The simplest form of the ILU algorithm builds an incomplete LU factor-
ization without filling any empty element of the matrix. So, the factorization
method needs to know the non-null elements of the matrix. In Algorithm 2.15,
we need to know if elements of the matrix A are null or not, that is why we
test them before applying the classical LU factorization. Consequently, only
non-null elements are modified for the factorization. Hence, the ILU factor-
ization algorithm is based on the standard LU factorization and only differs
from it by not filling the empty elements of the matrix.

Algorithm 2.15 ILU factorization

Size: size of the matrix
M[Size][Size] : matrix used for the factorization, it must be initialized with
the elements of the matrix to factorize

for i=1 to Size−1 do
for k=0 to i−1 do

if M[i][k] 6= 0 then
M[i][k] ← M[i][k]/M[k][k]
for j=k+1 to Size−1 do

if M[i][k] 6= 0 then
M[i][j] ← M[i][j]−M[i][k]×M[k][j]

end if
end for

end if
end for

end for

The ILU Solve procedure used in any preconditioned algorithm is similar
to the LU Solve one. It consists in solving two triangular systems. Algo-
rithm 2.16 illustrates this.

More efficient, but also more complex, preconditioners based on LU decom-
position and other techniques are for example detailed in [29, 102].

2.2 Nonlinear equation systems

Nonlinear systems arise in multiple domains of computer science. Scientists
are faced with nonlinear systems if they want to solve multiple optimization
problems, root finding problems and many more. Nonlinear problems are far
more difficult to solve than the linear ones.

© 2008 by Taylor & Francis Group, LLC

40 Parallel Iterative Algorithms

Algorithm 2.16 ILU Solve(M,R)

Size: size of the matrix
Z[Size]: solution vector
Tmp: intermediate variable

for i=0 to Size−1 do
Z[i] ← R[i]
for j=0 to i−1 do

Z[i] ← Z[i]−M[i][j]×Z[j]
end for

end for
for i=Size−1 to 0 do

Tmp← 0
for j=Size−1 to i+1 do

Tmp ← Tmp+M[i][j]×Z[j]
end for
Z[i] ← (Z[i]−Tmp)/M[i][i]

end for
return Z

Many books are dedicated to nonlinear systems, see, e.g., [93], [79] and the
references therein. In this section we do not pretend to be exhaustive and
we present the most commonly used method to solve nonlinear systems: the
Newton-Kantorovich method (or the Newton method, for simplicity); see [77],
[78], [79], [93]. Let us first review the basic concepts of nonlinear mappings.

2.2.1 Derivatives

Recall that a real function f of a single variable is differentiable at x0 if
there exists a real a = f ′(x0) such that

lim
h→0

f(x0 + h)− f(x0)− ah

h
= 0.

In the case of the n-dimensional real space, this definition is extended as
follows

DEFINITION 2.3 A nonlinear operator F : D(F) ⊂ R
n → R

m is
Fréchet-differentiable at an interior point x of D if there exists a linear oper-
ator A : such that for any h ∈ Rn,

lim
‖h‖→0

‖F (x0 + h)− F (x0)−Ah‖
‖h‖ = 0. (2.30)

The linear operator A (m× n matrix) is called the derivative of F at x0 and
is denoted by F ′(x0).

© 2008 by Taylor & Francis Group, LLC

Iterative Algorithms and Applications to Numerical Problems 41

If f1, ..., fm denote the components of F and ∂fi(x)/∂xj , the partial deriva-
tive of fi at xj , then F ′(x) is given by the Jacobian matrix

F ′(x) =




∂f1(x)/∂x1 · · · ∂f1(x)/∂xn

...
. . .

...
∂fm(x)/∂x1 · · · ∂fm(x)/∂xn


 .

The partial derivatives are also denoted by

Ji,j =
∂fi(x)

∂xj
,

and so the Jacobian F ′(x) is denoted by F ′(x) = J(x) = (Ji,j)1≤i≤m; 1≤j≤n .

If F : D(F) ⊂ Rn → Rn then F ′(x) is represented by the row vector

F ′(x) = (∂F (x)/∂x1, · · · , ∂F (x)/∂xn) ,

and the column vector (F ′(x))
T

is called the gradient of F at x and is denoted
∇F,

∇F =




∂F (x)/∂x1

...
∂F (x)/∂xn


 .

DEFINITION 2.4 A vector valued function F : Rn → Rm is called con-
tinuously differentiable if F ′ is continuous. This means that each component
fj of F is differentiable and f ′

j is continuous.

2.2.2 Newton method

Initially, the Newton method allows us to find the roots of f (x such that
f(x) = 0), where f is a continuously differentiable function of R into itself. It
is expressed by

x(k+1) = x(k) − f(x(k))

f ′(x(k))
(2.31)

This method is also called the tangent method. Each iterate x(k+1) is actually
obtained using the previous iterate and drawing the tangent to the function f
at point (x(k), f(x(k))) and taking its intersection with the x-axis, as illustrated
in Figure 2.3.

The previous method is generalizable to Rn. Let F be a nonlinear function
of Rn into itself and x a vector of size n. Assume that equation

F (x) = 0 (2.32)

has at least one solution x∗ and that F ′ exists. Then the Newton method is
defined by

x(k+1) = x(k) − F ′(x(k))−1F (x(k)) (2.33)

© 2008 by Taylor & Francis Group, LLC

42 Parallel Iterative Algorithms

F(x)

x(k)x(k+1)x∗ x(k+2)

FIGURE 2.3: Illustration of the Newton method.

So it is possible to write the equivalent equation

F ′(x(k))x(k+1) = F ′(x(k))x(k) − F (x(k)) (2.34)

which can be expressed as

F ′(x(k))(x(k+1) − x(k)) = −F (x(k)) (2.35)

Let us denote by δx(k+1) = (x(k+1) − x(k)) and by J(x(k)) the Jacobian of
F at x(k), then the previous equation can be rewritten as

J(x(k))δx(k+1) = −F (x(k)) (2.36)

The Newton method linearizes the nonlinear function and requires the res-
olution of a linear system at each iteration. A direct method or an iterative
one may be used to solve the linear system obtained by the method. Because
the computation of the Jacobian is time consuming, there exist several vari-
ants of the Newton method called modified Newton methods. For example, it
is possible to only compute the linear system at some iterations or, in some
particular cases, only at the first iteration. The algorithm is then called quasi-
Newton. The number of iterations to reach the convergence may be increased
but the benefit from not computing the Jacobian matrix is interesting.

Algorithm 2.17 illustrates the Newton algorithm or the quasi-Newton vari-
ant according to the fact that the Jacobian matrix is computed at each Newton
iteration or not.

© 2008 by Taylor & Francis Group, LLC

Iterative Algorithms and Applications to Numerical Problems 43

Algorithm 2.17 Newton and quasi-Newton algorithm

Size: size of the matrix
J[Size][Size]: Jacobian matrix
X[Size]: solution vector
Delta: residual vector

initialize X to the initial guess
repeat

if first iteration or required then
Computation of the Jacobian matrix J

end if
Delta ← linearSolve(J , −F (X))
X ← X+Delta

until stopping criteria is reached

2.2.3 Convergence of the Newton method

The Newton algorithm (Algorithm 2.33) can be written as

x(k+1) = T (x(k)), (2.37)

where
T (x(k)) = x(k) − F ′(x(k))−1F (x(k)).

In what follows, we shall give local and global convergence results on Newton
methods.

THEOREM 2.9

Let x∗ be a solution of Equation (2.32). Assume that F ′(x∗) has a bounded
inverse and that F ′(x) is Lipschitz continuous with constant L in some neigh-
borhood of x∗

‖F ′(x) − F ′(y)‖ ≤ L ‖x− y‖ , (2.38)

then the iteration vectors generated by the Newton algorithm satisfy
∥∥∥x(k+1) − x∗

∥∥∥ ≤ c(ε, x(0))ε2n,

where x(0) is the initial vector iterate which is assumed to be sufficiently close
to x∗ and ε is any arbitrary small number. c(ε, x(0)) is a number which de-
pends on ε and the initial guess x(0).

PROOF see [79].

In the following we give a global convergence condition on the Newton
algorithm.

© 2008 by Taylor & Francis Group, LLC

44 Parallel Iterative Algorithms

Let x(0) be the initial iterate of the Newton algorithm. Suppose that F
is defined and differentiable on a ball B(x(0), R) of radius R and center x(0).
Suppose also that F ′(x) satisfies the Lipschitz condition (2.38). We assume

that
(
F ′(x(0))

)−1
is well defined. The following theorem is proved in [79].

THEOREM 2.10

Assume that

∥∥∥∥
(
F ′(x(0))

)−1
∥∥∥∥ ≤ b0 and

∥∥∥∥
(
F ′(x(0))

)−1

F (x(0))

∥∥∥∥ ≤ η0 and h0 = b0Lη0 ≤
1

2
.

If

R ≥ r0 =
1−
√

1− 2h0

h0
η0

then the iterations generated by the Newton algorithm converge to a solution
x∗ of Equation (2.32) in the ball B(x(0), r0).

In the quasi-Newton algorithm F ′(x(k)) is replaced by the constant value
F ′(x(0)), so this algorithm can be written as

x(k+1) = Tx(k).

The general convergence results of Theorems 1.2 and 1.3 of Section 1.2 can
be applied to the quasi-Newton algorithm. We shall give below an analogue
of the above theorem for the quasi-Newton algorithm.

Suppose that F is defined and Fréchet differentiable on a ball B(x(0), R)
in which the derivative F ′(x) satisfies the Lipschitz condition (2.38). As-

sume also that
(
F ′(x(0))

)−1
is well defined. Let

∥∥∥
(
F ′(x(0))

)−1
∥∥∥ ≤ b0 and

∥∥∥
(
F ′(x(0))

)−1
F (x(0))

∥∥∥ ≤ η0, then

THEOREM 2.11

If

h0 = b0Lη0 <
1

2

and

R ≥ r0 =
1−
√

1− 2h0

h0
η0,

then the iterations generated by the quasi-Newton algorithm converge to a
solution x∗ ∈ B(x(0), r0) of Equation (2.32).

© 2008 by Taylor & Francis Group, LLC

Iterative Algorithms and Applications to Numerical Problems 45

2.3 Exercises

1. Prove the equalities (1.1), (1.2) and (1.3) of Chapter 1.

2. Norm equivalence theorem. Let ‖ . ‖ and ‖ . ‖1 be any two norms on
Rn. Prove that there exist constants c2 ≥ c1 > 0 such that

c1 ‖x‖ ≤ ‖x‖1 ≤ c2 ‖x‖ , ∀x ∈ R
n.

3. Neumann Lemma. Prove that if A is a n× n matrix such as ρ(A) < 1,
then (I −A)−1 exists and

(I −A)−1 = lim
k→+∞

k∑

i=0

Ai.

4. Prove that if ‖A‖ < 1, then I −A is nonsingular and

∥∥(I −A)−1
∥∥ ≤ 1

(1− ‖A‖) .

5. Let A = (Ai,j)1≤i,j≤n be a square matrix; prove that
N(A) =

∑n
i,j=1 |Ai,j | defines a matrix norm.

6. Prove that M(A) = max1≤i,j≤n |Ai,j | does not define a matrix norm.

7. Prove that N(A) = n(max1≤i,j≤n |Ai,j |) defines a matrix norm.

8. Let A be a positive definite matrix. Prove that N(x) =
√

xT Ax is a
vectorial norm.

9. Prove the equivalence

λ is an eigenvalue of A⇐⇒ 1/λ is an eigenvalue of A−1

10. Let A = (Ai,j)1≤i,j≤n be a square matrix such that ∀i, j ∈ {1, ..., n} ,
|Ai,j | < 1. Prove that ρ(A) < 1.

11. ([113]) Consider the matrix A =




5 2 2
2 5 3
2 3 5



 = D + L + U where D, L

and U are, respectively, the diagonal, the lower triangular and the upper
triangular matrices of A.

(a) Prove that A is positive definite and compute the spectral radius
ρ of the by-point Gauss-Seidel matrix −(D + L)−1U.

© 2008 by Taylor & Francis Group, LLC

46 Parallel Iterative Algorithms

(b) Compute the spectral radius of the per-block Gauss-Seidel matrix

−(D + L)−1U where D =




5 2 0
2 5 0

0 0 5


 ,L =




0 0 0
0 0 0

2 3 0


 and U = LT

and compare it to ρ.

12. Prove that an irreducible diagonally dominant matrix is nonsingular.

13. Gerschgorin Circle theorem. Let A = (Ai,j)1≤i,j≤n be a real or complex
square matrix and define the set

G =

n⋃

i=1



z, |ai,i − z| ≤

∑

j 6=i

|ai,j |



 ,

Prove that every eigenvalue of A lies in G.

14. Consider a contractive fixed point mapping T whose domain of definition
is a complete metric space E. Let x∗ denote the fixed point of T . Let us
fix some u(0) ∈ E. Denote by l the constant of contraction of T . Define
the following sets

E(k) =
{
u ∈ E, d(u, x∗) ≤ lkd(u0, x∗)

}
.

Show that the sequential iterative algorithm defined by

x(0) ∈ E(0)

for k = 0,1,... do
x(k+1) ← T (x(k))

end for

converges to x∗.

15. Consider the problem (1.5) with the condition (1.6) of Chapter 1.

(a) Show that the matrix A of the linear system (1.7) is positive definite
and that A−1 > 0.

(b) Write the Jacobi algorithm to solve this problem.

(c) Write the Gauss-Seidel algorithm.

(d) Write the Successive OverRelaxation (SOR) algorithm and com-
pute the optimal relaxation parameter.

(e) By taking a = b = 0, f(x) = 2 sin(x) + 1 and n = 15, plot on the
same graphic the solutions obtained by the three algorithms.

16. Consider again the problem (1.5) with the conditions (1.6) of Section 1.3.

© 2008 by Taylor & Francis Group, LLC

Iterative Algorithms and Applications to Numerical Problems 47

(a) Find a block decomposition of A of the form

A = D − L− U,

where D is a positive definite block diagonal matrix and −L and
−U are the block lower and upper parts of A and such that the
2D −A is a positive definite matrix.

(b) Show that the block Jacobi and the SOR methods associated with
the above decomposition converge.

17. Show that the mapping T : [0, 1] ⊂ R→ R defined by T (x) = 1
2x + 2 is

contractive but has no fixed point.

18. Write a program that solves the equation

ex

2
− cos(x) = 0,

with the initial guess x(0) = 20.

19. Let F be a nonlinear mapping from R
n into itself which has the decom-

position

F (x) = Ax−H(x), (2.39)

where A is a nonsingular n× n matrix and H is a nonlinear mapping.

(a) Write a program that allows the computation of the iterates

x(k+1) = x(k) −A−1F (x(k)) and x(0) given. (2.40)

(b) What is the condition of convergence of the iterations (2.40)?

(c) Give another simple formulation of the iterations (2.40).

(d) Find an example of nonlinear mapping F satisfying (2.39) such
that (2.40) locally converges.

20. Consider the Newton algorithm

x(k+1) = x(k) − F ′(x(k))−1F (x(k)). (2.41)

The Newton-SOR method consists in solving the linear problem involved
in (2.41) by the SOR algorithm at each Newton iteration.

(a) Write the Newton-SOR algorithm by partitioning F ′(x(k)) into
D(k) − L(k) − U (k).

(b) Write the two-stage algorithm corresponding to the Newton-SOR
algorithm.

© 2008 by Taylor & Francis Group, LLC

48 Parallel Iterative Algorithms

21. Several methods have been defined to find roots of polynomial. The
most popular methods are the Newton method, the Aberth method [34]
and the Durand-Kerner method [39]. A polynomial P of size n with
complex coefficients has the following form:

P (z) =

n∑

i=0

aiz
n−i (2.42)

with a0 = 1, an 6= 0 and ai ∈ C.

The Durand-Kerner method, which allows us to find every root zi of the
polynomial P , is defined by

z
(k+1)
i =

P (z
(k)
i)

n∏

j=1,j 6=i

(z
(k)
i − z

(k)
j)

(2.43)

for all i ∈ [1, n].

The Aberth method, which allows us to find every root zi of the poly-
nomial P , is defined by

z
(k+1)
i = z

(k)
i −

P (z
(k)
i)

P ′(z
(k)
i)

1− P (z
(k)
i)

P ′(z
(k)
i)

n∏

j=1,j 6=i

1

(z
(k)
i − z

(k)
j)

(2.44)

for all i ∈ [1, n].

Design an iterative algorithm that computes the root of a polynomial
using those methods.

© 2008 by Taylor & Francis Group, LLC

Chapter 3

Parallel Architectures and Iterative
Algorithms

Introduction

As seen in the previous chapter, iterative methods can be used on a large
class of numerical problems. However, in numerous scientific applications, the
size of the problem and/or the amount of required computations implies the
use of a parallel system. Unfortunately, or fortunately, there is neither a single
kind of parallel system nor a single kind of parallel iterative algorithm. Hence,
the subject of this chapter is twofold: the first goal is to present the most com-
mon kinds of parallel architectures which can be encountered throughout the
world and the second goal is to provide a classification of the parallel iterative
algorithms.

A brief review of the evolution of parallel systems is given in Section 3.1.
Then, Section 3.2 presents the classical parallel architectures and the main
features which differentiate them. In Section 3.3, the trends of used configu-
rations are discussed. Finally, a classification of parallel iterative algorithms
is proposed in Section 3.4 with a focus on their respective advantages and
drawbacks.

3.1 Historical context

The concept of parallelism is not new and was already extensively used far
before the emergence of computer science. That concept is quite simple since
it consists in gathering several working units and making them collaborate
to perform a given task. Obviously, that definition is very broad and thus
holds for many systems which are not in the scope of this book. However, it
is exactly that concept which is used in computer science and it encompasses
all the computing parallel systems going from parallel machines to distributed
clusters while also including pipelines.

49

© 2008 by Taylor & Francis Group, LLC

50 Parallel Iterative Algorithms

Since the beginning of parallel computing in the mid fifties, the evolution
of parallel systems has been influenced by several factors: the progress of the
interconnection networks and of the Integrated Circuits (IC) technology, but
also the decrease in the production costs of processing units. In fact, the
improvements of the networks have tended to increase the distance between
the processing units whereas the advances related to ICs and to the financial
aspect have influenced their nature.

In this way, parallelism initially invaded computers at the processor level
under several aspects. The first one took place during the era of scalar proces-
sors, in the development of coprocessors taking in charge some specific tasks
of the working unit (mathematical operations, communications, graphics,...)
and relieving the Central Processing Unit (CPU). Another aspect has resided
in the processor itself. The development of the Complementary Metal-Oxide-
Semiconductor (CMOS) technology since 1963 and of the Very-Large-Scale
Integration (VLSI) since the 1980s have allowed the inclusion of more and
more complex components in the processors such as pipelines and multiple
computation units. More recently, as the CMOS technology is nearer and
nearer its physical limits, that intrinsic parallelization of the processors has
logically been followed by the emergence of multiple-core processors.

Except for that last development, those forms of parallelism are hidden to
the programmer of the machine; this is why we call it intrinsic parallelism.
Concerning the explicit one, requiring a specific programming, the first paral-
lel systems were tightly coupled such as vector processors, typically composed
of a collection of basic processors on the same IC board and either used in a
Simple Instruction Multiple Data (SIMD) way or in a pipelined one. But, over
time, the links between the processors have become longer and longer, going
from the inner scale of the computers (central buses, crossbar switches...) to
their outer scale (local networks) to finally end up at the highest scale of the
Internet since the beginning of the 21st century. As previously mentioned, in
conjunction with that phenomenon, processors have become more and more
complex due to the progress in electronics. Nevertheless, it is more the fi-
nancial aspect than the technological one which has oriented the design of
the following parallel systems. As the cost of personal computers sharply
decreased in the nineties while the cost of parallel machines continued to be
very high (due to specific hardware design and build), the economical con-
straints led more and more scientific organizations to develop local clusters.
Most of those clusters were initially homogeneous in the way that they were
composed of the same kind of machines linked together by the same kind of
network. But here again, the fast evolution of the machines together with
the sharp decrease of their costs considerably increased the turnover of the
machines in those clusters, often leading to heterogeneous local clusters. The
emergence of heterogeneity in local clusters has also been greatly facilitated
by the effort in the standardization of the communication protocols. Eventu-
ally, the improving performances of the networks in the Internet have led to
the interconnection of local clusters scattered over distinct geographical sites.

© 2008 by Taylor & Francis Group, LLC

Parallel Architectures and Iterative Algorithms 51

Finally, it can be seen that the advances in the communication networks
and in the economical evolution of computer hardware have led to a large set
of existing parallel architectures. The most common ones are detailed in the
following part with a focus on the main features characterizing each of them.

3.2 Parallel architectures

As there are many ways to build a parallel system, the number of possible
configurations is also very large. However, some architectures provide better
performance than others. Of course, the notion of performance of a parallel
system is quite theoretical since it also depends on the kind of application
which is used on it. In fact, it is quite obvious that some systems are better
suited to some kind of applications. In this way, even if in most of the cases,
the parallel systems are quite general and allow the use of any kind of appli-
cation; the design of such a system is often directly related to its intended
use. So, although numerous variants may be deduced from the main classes
of parallel systems, giving an exhaustive list of them is not in the scope of
this book and the reader should, for example, refer to [47, 107, 96] for further
details. Our concern here is to list the main kinds of parallel systems and to
point out which kind of PIAs is most suited on each of them.

3.2.1 Classifications of the architectures

As in most domains, there exist a lot of possible classifications of the parallel
architectures depending on the used criteria. However, Flynn’s taxonomy [54]
is the one commonly accepted as a reference in the domain. In that classifi-
cation, there are four classes of parallel systems:

Single Instruction Single Data (SISD): corresponds to scalar monopro-
cessor systems performing only one instruction at a time on a single
data.

Single Instruction Multiple Data (SIMD): is the class of vector proces-
sors and more generally of systems with a large number of small com-
puting units allowing the application of an instruction on several data
at the same time.

Multiple Instruction Single Data (MISD): is the only class that has not
yet led to real implementations since it supposes the simultaneous ap-
plication of different instructions on the same data. It seems that the
range of applications corresponding to that particular architecture is
quite reduced.

© 2008 by Taylor & Francis Group, LLC

52 Parallel Iterative Algorithms

Multiple Instruction Multiple Data (MIMD): are the systems capable
of performing multiple instructions on different data at the same time.

As can be seen, that classification is based upon the relationship between the
instructions and the manipulated data. In a sense, it is quite general and
does not reflect all the aspects of parallel systems. Hence, other criteria can
be taken into account such as the way the memory is used or the physical
radius of the system, i.e., the physical distance between the processing units
(PUs).

Concerning the memory, it can be either shared by the processors, all the
processors accessing the same memory, or distributed over them, each pro-
cessor owning its private memory with an exclusive access. Obviously, that
distinction is not relevant for the SISD systems and is not of great interest for
the MISD class which is not actually used. However, it is of concern to both
the SIMD and MIMD classes.

According to the radius of the system, another classification of the computer
architectures can be deduced which better reflects the evolution trends:

Monoprocessor Machines (MM): mainly representing the SISD comput-
ers available in the mass-market (PCs, workstations). They also include
SIMD machines containing one vector processor.

Parallel Machines (PM): built as a single machine containing several pro-
cessing units. They include SIMD and MIMD architectures and poten-
tial combinations of them.

Local Clusters (LC): collections of independent computers gathered in the
same place and connected via a local network. Although they are in-
trinsically MIMD oriented, SIMD machines can be used at the node
level.

Distributed Clusters (DC): collections of local clusters scattered all
around the world and linked together via the Internet. Here also, those
systems mainly follow the MIMD model but they can include SIMD
parts.

The links between those two classifications are depicted in Figure 3.1.
It can be noticed that the MM class tends to be progressively replaced by

small sized PMs (2 or 4 cores). Moreover, since that first class of machines is
not directly in the scope of that part, only the last three classes are detailed
in the following.

3.2.1.1 Parallel machines

The concept of parallel machines is to include several PUs in the same ma-
chine running one instance of an operating system (OS). Hence, the common
architecture of most of the parallel machines can be seen as a collection of pro-
cessing units linked together by a very fast interconnection network, partially

© 2008 by Taylor & Francis Group, LLC

Parallel Architectures and Iterative Algorithms 53

SISD

LC

MM

PM

DC

SIMD

MIMD

FIGURE 3.1: Correspondence between radius-based and Flynn’s classification
of parallel systems.

or completely implemented on ICs to provide bandwidths of the same order
as the internal bandwidths of the nodes and very small latencies. Techni-
cally, that network may be implemented in different topological and physical
ways from one machine to another (central buses, crossbars, butterflies or
hypercubes...).

When the first researches on parallel systems began in the mid fifties, the
advances in communication networks and in processor design only permitted
the consideration of the gathering of a few simple processing units (PUs) in
a single machine. The advances in both those domains have then led to an
increase in the number of units in the machines and then to a more and more
distinct separation of those units.

We present here two representative models of parallel machines which have
been used for many years and which point out that progression toward larger
radius systems. The distinction is made according to the memory manage-
ment.

3.2.1.1.1 Parallel machines with shared memory The parallel ma-
chines with shared memory are a good example of the integrated approach
since the processing units share some indispensable resources (memory, I/O
operations). Schematically, the memory of the machine is accessible by every
PU via the interconnection network. A representation of such a machine is
given in Figure 3.2.

That kind of machine knew great success in the second half of the 20th

century. The most famous examples are probably the Cray series such as Cray-
1 and 2, and Cray X-MP and Y-MP. Nevertheless, most of the major computer
vendors have also developed their own series of that kind of machine, as well
as small companies specializing in supercomputers, such as Convex or Alliant,
but also some academic institutions like the University of Illinois (Illiac IV).

© 2008 by Taylor & Francis Group, LLC

54 Parallel Iterative Algorithms

Memory
PU PU PU PU PU

Interconnection network

Storage

FIGURE 3.2: General architecture of a parallel machine with shared memory.

Although the production of that kind of machine has largely decreased in the
last two decades, new machines are still being developed by some vendors as,
for example, the Cray X1E.

The great advantage of such systems is that they neither require data dis-
tributions over the processors nor data messages between them. Moreover,
the communications between PUs required for the control of the application
are implicitly performed via the shared memory and can thus be very fast.

However, the centralization of the memory also presents some drawbacks.
The first one is that it implies a very high memory bandwidth, potentially
with concurrency, in order to avoid bottlenecks. Thus, the interconnection
network between the memory and the PUs as well as the memory controller
speed are often the limiting factors of the number of PUs included in that kind
of machine. Moreover, there is also the problem of the concurrent accesses
which may lead to incoherent results of the running application if not carefully
managed. It is then necessary to use specific rules like mutual exclusion in
order to ensure coherency. Those mechanisms often reduce the performance
of the system.

3.2.1.1.2 Parallel machines with distributed memory This second
version of parallel machines is very interesting since it is significant of the
trend to make the PUs more and more independent. In this architecture, the
PUs are still linked together by an interconnection network but the memory is
no longer shared by all the PUs. Instead, each PU has its own memory with an
exclusive access. However, in most cases, there remain some resources which
are still shared like, for example, the mass storage or the I/O operations.
Figure 3.3 depicts a typical distributed memory architecture.

That kind of machine knew great success and progressively replaced the

© 2008 by Taylor & Francis Group, LLC

Parallel Architectures and Iterative Algorithms 55

Mem Mem Mem MemMem

PU

Mem

PU

Mem

PU PU PU PU PU

Interconnection network

Storage

FIGURE 3.3: General architecture of a parallel machine with distributed
memory.

previous type in the 1980s an 1990s. Logically, the major companies which
built shared memory supercomputers have shown a great interest in that new
type of architecture. Representative examples of such machines are the Cray
T3D/T3E or the Intel iPSC/2 and Paragon. As before, small companies have
also developed interesting products such as Connection Machines (CM-1 to
CM-5) or MasPar (MP1 and MP2). Those systems have demonstrated their
efficiency over the years and their larger flexibility in terms of design and
configuration has made them more financially viable than their predecessors.
This is probably why there are still important developments around them and
they regularly appear among the most powerful parallel systems such as, for
example, the IBM Blue Gene or the Cray Red Storm.

The advantages of such an architecture are directly related to the drawbacks
of the previous one. In particular, the concurrent memory accesses are no
longer an issue since only one PU accesses one memory bank. For the same
reason, the problem of the memory bandwidth, although still important, is
less critical. Hence, those systems are intrinsically better suited to include a
very large number of PUs.

However, they also present some drawbacks. The most obvious ones are
the necessity of a data distribution over the processors’ own memory and the
use of messages passing between processors to exchange data or information
to control the application. The performances of the interconnection network
between the PUs is also a critical point to ensure good performance. However,
thanks to the larger flexibility in the network design induced by the distri-

© 2008 by Taylor & Francis Group, LLC

56 Parallel Iterative Algorithms

bution of the memory, different network topologies such as grids (2D or 3D),
torus or crossbars have been developed to overcome that constraint.

3.2.1.2 Local clusters

The major advances in the communication networks which began in the
eighties together with the sharp decrease in hardware costs have accelerated
the radius growth of parallel systems. In some way, the clustering concept
uses the opposite approach of the one used in parallel machines. Rather than
designing an entire machine from scratch, the idea is to gather a collection of
existing and independent PUs and to link them together via a local network.
The obtained system can then be viewed as a single meta-machine and used
in the same collaborative way as a parallel machine.

The implementations are of two sorts. The former, generally self-made,
is the Beowulf approach introduced in the mid 1990s. The idea is to build
low-cost parallel systems using only commercial off-the-shelf hardware and
software. Such systems are also called Networks Of Workstations (NOWs) or
Clusters Of Workstations (COWs). The latter, used by most vendors, consists
in providing specific integration facilities (racks and cabinets) with optimized
network and software environment. Whatever solution is used, the typical
architecture of such clusters can be sketched as in Figure 3.4.

Network

Local

Independant PUs

FIGURE 3.4: General architecture of a local cluster.

The major difference with the concept of parallel machines is that the PUs
are not rigidly integrated in the machine. Hence, PUs can be easily added or
suppressed from the system. Moreover, a distinction is usually made between
clusters and constellations according to the relative number of nodes and
processing units per nodes in the system. When the number of nodes is
greater than the number of processing units per node, the system is considered

© 2008 by Taylor & Francis Group, LLC

Parallel Architectures and Iterative Algorithms 57

as a cluster. The other case corresponds to constellations. That distinction is
motivated by the impact on the programming methods used on those systems.
Typically, message passing is intensively used on clusters which is not often
the case on constellations.

The other big difference lies in the interconnection network which is often
far slower than the fully integrated ones in parallel machines. Moreover, an
additional weakness lies in the connections of the nodes themselves. Indeed,
in most clusters, the connection of each node to the network is done through
the connection bus of that node which often has restricted bandwidths and/or
latencies. However, that difference tends to disappear with the latest genera-
tions of local communication networks and connection buses.

Numerous clusters of different sizes have been built during the last decade.
The major reason for their success is that they represent an interesting al-
ternative to the closed parallel machines previously described as they are
generally cheaper while providing comparable theoretical peak performance.
This is confirmed by the continuous increase of the proportion of clusters in
the top 500 supercomputers (see [107]) since the mid 1990s. That proportion
almost reaches three quarters of the June 2006 list. Nevertheless, it must be
noted that most of those clusters are commercial products with integrated
parts whereas self-made COWs only represent a tiny part.

Another important advantage is the flexibility of clusters compared to the
rigidity of parallel machines which are often closed systems. The possibility of
modifying the physical configuration of the system (PUs, network, RAM...)
implies a larger convenience for its maintenance and a larger reactivity to
technological advances. Indeed, defective or obsolete parts of a cluster can be
easily replaced by new and better hardware. In this way, the computational
power of a cluster can theoretically be in permanent evolution, following the
progress in chip technology. Moreover, the flexibility even goes beyond the
maintenance and upgrade aspects and offers scalability to those systems. The
number of machines can be increased or decreased as needed. This enables
us to potentially gather much more computational power and memory than
in closed systems and thus to treat far more complex and/or large problems.

Of course, clusters are not perfect and their major weakness is obviously
the network which remains slower than those integrated in parallel machines.
However, as said above, that difference tends to disappear with the use of
faster and faster local networks.

3.2.1.3 Distributed clusters/grids

The concept of distributed clusters (also referred to as grids) is quite a log-
ical result of the great improvements in distant networks during the last few
years combined with the stronger and stronger demand for more and more
powerful computational systems. With the availability of quite fast distant
networks, the use of several local clusters scattered on different geographical
sites to solve a given problem becomes relevant. The principle of those dis-

© 2008 by Taylor & Francis Group, LLC

58 Parallel Iterative Algorithms

tributed clusters is quite the same as that of local clusters, but just pushed
a step further in physical radius. It consists of the interconnection of several
local clusters via the Internet, as shown in Figure 3.5. That definition may
seem a bit restrictive and a more general definition could explicitly include
any kind of computers on the scattered sites (MM, PM or LC). In fact, the
monoprocessor machines are implicitly included in the first definition since,
although interest seems reduced, a local cluster may be reduced to a single
MM. The problem is different with parallel machines. Usually, communi-
cations between the PUs of those machines and some external PUs are not
supported. Moreover, their frequently imposed non-interactive use is an ad-
ditional obstacle to the global coordination of the distributed cluster. This is
why parallel machines have not been used in distributed clusters until now.

Network

Local

Local

Network

Local

Network

Cluster 2

Cluster 1

Cluster 3

Internet

FIGURE 3.5: General architecture of a distributed cluster.

© 2008 by Taylor & Francis Group, LLC

Parallel Architectures and Iterative Algorithms 59

Examples of such systems are still very few, probably because of the impor-
tant costs required to develop and maintain their global infrastructure (local
clusters and high speed large scale networks) as well as their higher complexity
of management compared to the rather specific application range they offer.
However, national and/or international projects exist such as GRID’5000 in
France and EGEE (Enabling Grid for E-sciencE) in Europe. Some software
developments, like the SETI@home project at Berkeley University, have also
led to the realization of a slightly different kind of distributed clusters. Their
principle is based on cycle harvesting which consists in using some registered
desktop computers linked to a central server via the Internet to perform a
task given by the server when they are not locally in use. In such systems,
there is no collaboration between the involved computers. Thus, their applica-
tion range is even smaller than the collaborative distributed clusters discussed
here.

The advantages of distributed clusters are quite obvious. They allow the
gathering of a very large number of machines resulting in larger computational
power and larger memory capacity. This scheme corresponds to the most
powerful parallel systems since all the computers in the world could potentially
be included in such a system via the Internet. Thus, the most complex and
largest problems are likely to be treatable only on that kind of architecture.

However, at an even larger degree, those clusters suffer the same major
drawback as their local counterparts. The communications between clusters
are generally much slower than those inside local clusters which are themselves
slower than those in parallel machines. So, the design of any application to
be run on such a system must particularly focus on the logical organization
of the processors according to the induced communication scheme, that is to
say, the localization of the data exchanges in the network and their volume.

Moreover, the use of several distinct clusters implies another problem re-
lated to the security of computer systems. In most cases, the local networks
connected to the Internet are protected from intrusions by filtering mecha-
nisms such as firewalls. This implies that, contrary to the local clusters which
have complete communication graphs, the distributed clusters often have non-
complete ones. Indeed, local clusters usually have a single frontal access and
the other machines inside it are not able to communicate with the exterior.
Thus, a machine in a distributed cluster cannot directly communicate with
all the other machines. This may be a strong constraint for some applica-
tions as a hierarchical communication mechanism must then be used. Such
mechanisms are subject to bottlenecks and tend to slow down a bit more the
communications in the parallel system.

© 2008 by Taylor & Francis Group, LLC

60 Parallel Iterative Algorithms

3.3 Trends of used configurations

The previous classification depicts the general schemes of parallel systems
which have been used since the beginning of parallelism. However, different
combinations of those architectures have also arisen more recently. For ex-
ample, the development of multi-core processors and bi- or quadri-processor
boards have led to the mixing of shared and distributed memory. Indeed, a
higher and higher number of parallel systems have a hierarchical architecture.
That hierarchy is typically made of racks containing node cards containing
mono/multi-core chips, as depicted in Figure 3.6. The best example of this
probably is the IBM BlueGene/L (with one more level of hierarchy) whose
one instance, installed at the Lawrence Livermore National Laboratory, has
been at the top of the list of the most powerful supercomputers between 2005
and 2007 and probably will remain thus for still quite some time.

chip

...

...

...

Network

Multi−core

Parallel system

Rack
Node Card

FIGURE 3.6: Hierarchical parallel systems, mixing shared and distributed
memory.

Obviously, as more and more local clusters, including COWs, are com-
posed of multi-core processors and/or multi-processor nodes, more and more
distributed clusters logically belong to that class of mixed memory architec-
tures. The level of hierarchy is just extended one level further. As already
mentioned, the major differences with other hierarchical systems lie in the
network properties at the outer level. However, it is worth noticing that
the combination of shared and distributed memory is not systematic in dis-
tributed clusters. Also belonging to the class of hierarchical architectures are
the S-COMA and ccNUMA systems. The main difference with the previous
systems is that they work as shared memory systems.

Concerning the processors included in the latest systems, the trend goes
toward a more and more intensive use of mass-market processors in super-
computers. Indeed, the strong competition between processor vendors has led
to a drastic suppression of the series of processors which were not commer-

© 2008 by Taylor & Francis Group, LLC

Parallel Architectures and Iterative Algorithms 61

cially viable. In the meantime, the increasing performance of mass-market
processors and economical constraints have strongly induced the vendors to
put mass-market processors in their supercomputers. Nevertheless, some ven-
dors still continue to develop specific processors to put in supercomputers such
as vector, massively multi-threaded or VLIW (Very Large Instruction Word)
processors. Concerning those specific developments, it can be seen that after
the invasion of the inner layers of the processors by parallelism, that one is
currently resurging at the outer layers. There are some tries to re-use the
parallel concepts usually taking place at the processor level at the scale of
small groups of processors in order to design yet more powerful virtual pro-
cessors. This is typically the case of IBM and its projects of Virtual Vector
Architecture and cell processor.

Concerning the networks used, Gigabit Ethernet has been intensively used
in non-integrated clusters and some integrated ones. However, it is rather pe-
nalized by its still high latencies. Other networks have emerged among them
SCI, Infiniband or Myrinet. All those networks provide bandwidths of the
order of the Gb/s and/or latencies the order of the microsecond. Moreover,
they also often provide a large flexibility in the possible topologies.

Finally, according to current evolution, the major trend for future systems
will certainly be the inclusion of heterogeneity at different levels of the par-
allel architectures. Some vendors, such as Cray or SGI, are already working
on systems combining several kinds of processors (vector, scalar,...) and, in
some sense, the networks are already heterogeneous in all the hierarchical ar-
chitectures.

As a conclusion, the last remark that can be made is that the frontiers
between the different parts of a parallel system are becoming less and less
obvious. Processors tend to become mini multi-processor systems and clus-
tering tends to be used at all the levels of multi-layer systems so that the term
cluster alone becomes more and more inaccurate outside any specific context.

3.4 Classification of parallel iterative algorithms

The set of parallel iterative algorithms (PIA) being quite large, it contains
algorithms which have a different global behavior and thus, different conver-
gence conditions. So, it is necessary to distinguish some classes inside that set
in order to precisely identify a given algorithm and to know what conditions
hold on it.

As the global behavior of a PIA is mainly dictated by the synchronous/asyn-
chronous nature of its iterations and communications, the following classifi-
cation is based on those two criteria. Following that scheme, four classes
should be expected. However, as the one with asynchronous iterations and

© 2008 by Taylor & Francis Group, LLC

62 Parallel Iterative Algorithms

synchronous communications is not relevant, there remain only three classes
which are described here.

3.4.1 Synchronous iterations - synchronous communications
(SISC)

This class corresponds to the most commonly used scheme in the PIA. At
each iteration, each processor waits until it has received all the data computed
at the previous iteration, coming from other processors before beginning its
following iteration. This implies a synchronization of the iterations over the
processors of the system. Moreover, the data exchanges are performed at the
end of each iteration by synchronous global communications. An example of
the execution flow of such an algorithm is given in Figure 3.7 in the case of
two processors.

Processor 1

Processor 2

Time

FIGURE 3.7: Execution flow of the SISC scheme with two processors.

Concerning the global behavior of this kind of algorithm, the synchroniza-
tion of the iterations implies exactly the same sequence of iterations as in
the sequential case. So, the global behavior of SISC algorithms is exactly
the same as their sequential counterpart. This implies that their convergence
conditions are identical to the ones standing for the SIA.

Those algorithms have known great success in numerical computation and
are still widely used. The reasons for that success are manifold. The first
one is that their performances are quite good on small physical radius parallel
systems (parallel machines, local clusters) which are still the most commonly
used. The second reason is that they do not require any further convergence
analysis since their behavior is the same as in the sequential case. Finally,
the last reason is that their design is quite straightforward starting from a
sequential version and there exist several well-made synchronous communica-
tion libraries (PVM [66], MPI [71]) allowing non-specialists to write their own
codes.

© 2008 by Taylor & Francis Group, LLC

Parallel Architectures and Iterative Algorithms 63

Unfortunately, the synchronous communications strongly penalize the per-
formances of those algorithms, especially on systems with a slow and/or het-
erogeneous interconnection network. Indeed, as can be seen in Figure 3.7,
there may be a lot of idle times (white spaces) between iterations (grey blocks)
depending on the speed of the network used. So, although the synchroniza-
tions have a small impact in contexts of fast networks as in parallel ma-
chines and local homogeneous clusters, it is quite different in systems with
slow or heterogeneous links between processors, which is typically the case
in distributed clusters. In those last cases, the performance loss may be so
important that the SISC algorithms cannot be reasonably used.

3.4.2 Synchronous iterations - asynchronous communications
(SIAC)

This class has been developed in order to overcome the performance prob-
lem of the SISC algorithms. Its principle is to keep a synchronized iterative
scheme while performing data exchanges between processors asynchronously.
The synchronized iterations conserve the same global behavior as the SISC and
thus the same convergence conditions as well. The asynchronous communica-
tions present the advantage of performing an overlapping of the computations
with the communications.

In fact, before beginning a new iteration, each processor still waits for the
data computed at the previous iteration, coming from other processors. How-
ever, the synchronous global communications are replaced by asynchronous
sendings and blocking receipts of the data. In general, this scheme is asso-
ciated with a flexibility of the communications. It consists in sending data
or a group of data not at the end of the iteration but as soon as it has been
updated during the iteration. This strategy relies on the assumption that
the data sent during an iteration have a good probability of reaching their
destination before the end of the current iteration. Hence, those data will be
directly available on that destination for the next iteration and the processor
will not have to wait for their delivery.

This yields a partial overlapping of the computations with the communica-
tions. It is partially due to the fact that neither the computation of the first
data or group of data can be overlapped with communications nor the sending
of the last group of data on the latest processor can overlap some computa-
tions on its destinations. Moreover, even the communications started during
an iteration may be longer than this iteration, still implying a waiting time
on the respective destinations. However, even if this scheme does not com-
pletely eliminate the idle times between iterations, the partial overlapping of
computations with communications implies shorter idle times than those in
the SISC and thus provides better overall performance. An example of the
execution flow of the SIAC scheme is given in Figure 3.8 in the case of two
processors. It can also be seen that the order of the communications may not
be respected.

© 2008 by Taylor & Francis Group, LLC

64 Parallel Iterative Algorithms

Processor 1

Processor 2

Time

FIGURE 3.8: Execution flow of the SIAC scheme with two processors. In this
example, the first half of data is sent as soon as updated (dashed arrows) and
the second half is sent at the end of the iteration (solid arrows).

Concerning the global behavior of these algorithms, as each processor be-
gins its next iteration as soon as it has received all its required data, all the
processors may not begin their iterations at the same time. Nonetheless, for
that same reason, a processor which would have finished its iteration before
the others would not be able to begin the next iteration before them. Thus, it
is not possible to have at any time during the whole iterative process two pro-
cessors computing iterations with different numbers. In fact, at each time, the
processors are either computing the same iteration (same number) or waiting
for their required data. So, the notion of synchronism still holds in this scheme
and the convergence conditions are the same as for the SISC and sequential
algorithms.

3.4.3 Asynchronous iterations - asynchronous communica-
tions (AIAC)

Considering the previous classes, it appears that the last obstacle to a
complete overlapping of the computations with the communications lies in the
synchronization of the iterations. The principle used in the AIAC algorithms
is to suppress that obstacle.

In that context, all the processors perform their iterations without taking
care of the progression of the other processors. They do not wait for the
latest updates of the data coming from the other processors but they keep on
computing their iterations, using the version of those data they own at that
time. That basic concept has been deduced from the models of Bertsekas [33]
and El Tarazi [110]. As the processors do not wait for the data deliveries, there
are no more idle times between the iterations, as can be seen in Figure 3.9
which depicts an example of the execution flow of the basic AIAC scheme for
two processors.

Considering the global behavior of those algorithms, the asynchronism of

© 2008 by Taylor & Francis Group, LLC

Parallel Architectures and Iterative Algorithms 65

Processor 2

Time

Processor 1

FIGURE 3.9: Execution flow of the basic AIAC scheme with two processors.
The horizontal part of the arrows represents the span of time between the
data receipt and its integration in the computations.

the iterations implies that two processors may be computing different iter-
ations at the same time (see Figure 3.9). In fact, the difference with the
previous classes is even more complex than that and corresponds to the pres-
ence of indeterminism in the iterative process. Those mechanisms are detailed
in Chapter 5 but intuitively, they correspond to the random evolutions during
the process of the relative speeds of the processors and of the communication
times between them.

Thus, although the set of fixed points or stabilization states stays the same
between a synchronous PIA and its asynchronous version, their respective
sequences of iterations may no longer be the same for any given initial state.
So, the AIAC algorithms have a different global behavior than the algorithms
of the previous classes implying different convergence conditions. Hence, they
require a specific convergence analysis.

Another difference implied by the asynchronism is that the convergence
requires at least the same number of iterations but often more than in syn-
chronous algorithms. They are thus slower in terms of iterations. However,
the penalties due to the synchronization of the iterations are generally so im-
portant that they largely compensate the time required to compute the extra
iterations of the AIAC algorithm. So, depending on the parallel system used,
it is possible to have a PIA which is faster than another while performing
more iterations. The most favorable contexts are particularly the distributed
clusters in which the communication links are often heterogeneous with some
great differences between the links performances. The efficiency of the AIAC
in those contexts comes from the fact that they are less sensitive to the com-
munication delays and to their variations than the synchronous algorithms.
Moreover, they also present some tolerance to the loss of data messages since
such losses (in reasonable ratios) do not prevent the progression of the itera-
tive process on both the sender and destination nodes. Both the processors
keep on their computations and another message will be sent in a further it-
eration. However, that tolerance does not hold for the control messages used

© 2008 by Taylor & Francis Group, LLC

66 Parallel Iterative Algorithms

for the convergence detection and the halting procedure. Finally, in order to
extend the efficiency of the AIAC to more contexts, it is essential to minimize
the number of extra iterations induced by the asynchronism.

It is to attain that goal that several variants of the basic AIAC scheme pre-
sented in Figure 3.9 have been designed. Those variants depend on when the
data sendings are performed in an iteration as well as on when the received
data are taken into account in the computations. Among all the possible
variants, two are particularly interesting; the former uses semi-flexible com-
munications and the latter uses flexible communications. In opposition to the
semi-flexible and flexible communications, the basic AIAC scheme previously
presented is often referred to as the rigid communication model.

3.4.3.1 Semi-flexible communications

Concerning the semi-flexible schemes, there are in fact two symmetrical
cases according to which side of the communication is flexible, the sender or
the receiver.

3.4.3.1.1 Sender-side semi-flexibility In this first case, the receiver
conserves the rigid scheme. So, all the data received during an iteration are
integrated in the computations only at the beginning of the next iteration.
On the opposite, the sender is flexible in the way that in place of sending all
the required data at the end of each iteration, it uses the same sending policy
as in the SIAC scheme. Hence, data are decomposed in groups which are
asynchronously sent during the iteration as soon as they are updated. The
goal of this method is to speed up the convergence of the process by making
the most recent updates of the data available sooner on their destinations.
The data groups may be reduced to a single element but generally they con-
tain several ones in order to avoid the overloading of the network with a lot
of small messages. Hence, particular attention must be paid to the design of
those data groups in order to obtain the best progression speed-ups without
decreasing the network performance too much.

The execution flow of this scheme is given in Figure 3.10.

3.4.3.1.2 Receiver-side semi-flexibility In this second case, it is the
sender which conserves the rigid scheme and the receiver which becomes flex-
ible. Hence, all the data required on another processor are asynchronously
sent at the end of each iteration but as soon as they are received on their
destination, they are integrated in the computations. This scheme is depicted
in Figure 3.11.

The objective is also to speed up the convergence of the algorithm but it
uses a different approach which consists in integrating the most recent data
in the computations as soon as possible. Nonetheless, the direct integration
of data during the computations is not always possible according to the kind

© 2008 by Taylor & Francis Group, LLC

Parallel Architectures and Iterative Algorithms 67

Processor 1

Processor 2

Time

FIGURE 3.10: Execution flow of the sender-side semi-flexible AIAC scheme
with two processors. In this example, the first half of data is sent as soon as
updated (dashed arrows) and the second half is sent at the end of the iteration
(solid arrows). The horizontal part of the arrows represents the span of time
between the data receipt and its integration in the computations.

Time

Processor 1

Processor 2

FIGURE 3.11: Execution flow of the receiver-side semi-flexible AIAC scheme
with two processors.

of computations performed. So, the conditions of use of this scheme are more
restrictive than those of the previous one.

3.4.3.2 Flexible communications

This scheme, introduced by Miellou, El Baz and Spitéri in [88] (see also [48,
63]), simply consists in a combination of the two semi-flexible schemes in order
to take advantage of their respective improvements. So, on the sender side,
the data are asynchronously sent by groups as soon as they are updated and,
on the receiver side, the data are integrated in the computations as soon as
they are received. The resulting execution flow is given in Figure 3.12.

This last scheme suffers the same restriction problem as the receiver-side
semi-flexibility and the design of the data groups on the sender side must be
carefully done. However, when it can be used, it generally yields better results
than the two previous ones.

© 2008 by Taylor & Francis Group, LLC

68 Parallel Iterative Algorithms

Processor 2

Time

Processor 1

FIGURE 3.12: Execution flow of the flexible AIAC scheme with two proces-
sors. In this example, the first half of data is sent as soon as updated (dashed
arrows) and the second half is sent at the end of the iteration (solid arrows).

As said above, there are many more possible variants of AIAC algorithms.
For example, it is possible to adapt the schemes presented here to a specific
computing context or to a specific kind of application. The important point
is that those adaptations will always deal with the way the asynchronous
communications are managed on the sender side and on the receiver side.

In the following paragraph, the adequacy between the different kinds of
PIAs and the parallel architectures previously described is detailed.

3.4.4 What PIA on what architecture?

3.4.4.1 Parallel machines

Concerning the use of PIAs on such systems, as they generally provide
the fastest communications between processors, they are very well suited to
synchronous algorithms.

More particularly, on shared memory machines, the sharing of the memory
as well as the similarity of the PUs in those systems (in most of the cases)
imply a drastic reduction of any potential asynchronism. So, although it is
possible to implement PIAs without any explicit synchronization on such sys-
tems, their global behavior is likely to be almost the same as their synchronous
counterparts.

Concerning the distributed memory machines, as in the previous case, it
is still possible to design very fast interconnection networks with partial or
complete integration on circuits. For that reason, this parallel context is also
better suited to synchronous PIAs. But, as the communication delays are
usually a bit larger than in shared memory systems, the use of asynchronous
PIAs is a bit more relevant. Nonetheless, the extra iterations those algorithms
often require compared to their synchronous versions are not likely to be
compensated by the synchronization penalties which are rather reduced in
that case.

© 2008 by Taylor & Francis Group, LLC

Parallel Architectures and Iterative Algorithms 69

3.4.4.2 Local clusters

In such computational contexts, the choice between synchronous and asyn-
chronous PIAs starts becoming more ambiguous. In fact, as will be seen in
Chapter 6, the synchronous versions are better suited for small homogeneous
clusters with very fast networks whereas asynchronous algorithms provide bet-
ter performance on large-size heterogeneous clusters. This comes from the fact
that asynchronous algorithms are more robust to the heterogeneity of the pro-
cessors and to slow communications. Indeed, when the number of processors
increases, the network is likely to be much more solicited and the communica-
tions may be sharply slowed down by congestions. Also, when the processors
have significant differences in performance, the speed of synchronous itera-
tive processes is limited by the slowest processors which is not the case with
their asynchronous counterparts. So, in those contexts, the asynchronous
algorithms obtain better performance than the synchronous ones.

So, according to PIAs, that computational context is certainly the most ver-
satile since both synchronous and asynchronous algorithms can be efficiently
used.

3.4.4.3 Distributed clusters/grids

As mentioned above, asynchronous PIAs are more robust to slow commu-
nications and to heterogeneity than the synchronous ones. Hence, it is not a
big surprise if they are the most suited PIAs to be run on distributed clusters.
In fact, the communication constraint is generally so strong that synchronous
algorithms (even outside the class of PIAs) must be prohibited on those kinds
of systems. However, if future advances in communication networks provide
much faster distant communications, synchronous algorithms may be recon-
sidered for use in such contexts. However, the problem of the heterogeneity
of the processors remains and is even likely to be more important in those
larger systems than in local clusters.

© 2008 by Taylor & Francis Group, LLC

Chapter 4

Synchronous Iterations

Introduction

In this chapter, we are interested in parallel synchronous iterative algo-
rithms for linear and nonlinear systems. Convergence results of the syn-
chronous versions and their implementations are detailed.

We will concentrate on so-called multisplitting algorithms and their coupling
with the Newton method. Multisplitting algorithms include the discrete ana-
logues of Schwarz multi-subdomain methods and hence are very suitable for
distributed computing on distant heterogeneous clusters. They are particu-
larly well suited for physical and natural problems modeled by elliptic systems
and discretized by finite difference methods with natural ordering.

The parallel versions of minimization like the methods exposed in Chap-
ter 2 are not detailed in this chapter but it should be mentioned that, thanks
to the multisplitting approach and under suitable assumptions on the split-
tings, these methods can be used as inner iterations of two-stage multisplitting
algorithms.

4.1 Parallel linear iterative algorithms for linear systems

4.1.1 Block Jacobi and O’Leary and White multisplitting
algorithms

Suppose that we have L processors P1, ..., PL and that an unknown vector of
dimension n is partitioned into L subvectors of dimensions ni (i ∈ {1, ..., L})
so that n =

∑L
i=1 ni, Rn =

∏L
i=1 Rni .

Consider the n-dimensional linear system

Ax = b, x ∈ R
n, (4.1)

and suppose that (4.1) has a unique solution x∗.
As seen in Section 2.1.6 of Chapter 2, block iterative algorithms can be de-

duced from by-point iterative algorithms by splitting the matrix A into M−N

71

© 2008 by Taylor & Francis Group, LLC

72 Parallel Iterative Algorithms

where M and N are block matrices. The parallel block Jacobi algorithm con-
sists in taking M as a block nonsingular diagonal matrix

M = D =




A11 0 · · · · · · 0

0 A22
. . .

...
...

. . . A33
. . .

...
...

. . .
. . . 0

0 · · · · · · 0 Ann




, N =




0 −A12 −A13 . . . −A1n

−A21 0 −A23 . . . −A2n

−A31 −A32 0 . . . −A3n

...
...

...
. . .

...
−An1 −An2 −An3 . . . 0




(4.2)
where Aii are matrices of dimension ni × ni, so that at each iteration k, each

processor Pi solves for X
(k+1)
i the linear system

AiiX
(k+1)
i = −

∑

j 6=i

AijX
(k)
j + Bi,

where Xi and Bi are the ith block components of x and b of dimensions ni×1
so that we have

x = (X1, ..., XL)T and b = (B1, ..., BL)T .

The convergence of the parallel block Jacobi algorithm is deduced from
Theorem 2.1 of Section 2.1 of Chapter 2. Indeed, it is sufficient to consider
that the new fixed point mapping T is the one corresponding to the block
Jacobi matrix J = M−1N where M and N are defined above in (4.2).

In this section we introduce O’Leary and White algorithms ([92], [118])
which generalize the parallel block Jacobi algorithms. Let us first recall some
definitions and results which will be helpful in the comparison of the speed of
convergence of the different forthcoming parallel algorithms.

DEFINITION 4.1 We say that a vector x is nonnegative (positive),
denoted x ≥ 0 (x > 0), if all its entries are nonnegative (positive). A matrix
B is said to be nonnegative, denoted B ≥ 0, if all its entries are nonnegative.
We compare two matrices A ≥ B, when A − B ≥ 0, and two vectors x ≥ y
(x > y) when x− y ≥ 0 (x− y > 0) .

DEFINITION 4.2 Let A be a n × n real matrix. The decomposition
A = M −N is called a splitting if M is nonsingular. It is called a convergent
splitting if ρ(M−1N) < 1. A splitting A = M −N is called:
(a) regular if M−1 ≥ 0 and N ≥ 0
(b) weak regular if M−1 ≥ 0 and M−1N ≥ 0.

© 2008 by Taylor & Francis Group, LLC

Synchronous Iterations 73

THEOREM 4.1

Let A = M −N, where A and M are nonsingular square matrices.
Let T = M−1N and suppose that T is a nonnegative matrix, then

ρ(T) < 1⇔ A−1N ≥ 0.

Moreover

ρ(T) =
ρ(A−1N)

1 + ρ(A−1N)
.

PROOF Suppose that ρ(T) < 1. Then

A−1N =
[
M(I −M−1N)

]−1
N

= (I − T)−1T
=
∑∞

p=1 T p.

As T is nonnegative, we deduce that A−1N is nonnegative.
Suppose now that A−1N ≥ 0. Then the Perron-Frobenius theorem implies

that there exists a positive vector such that

Tx = ρ(T)x.

So
A−1Nx = (I − T)−1Tx

=
ρ(T)

1− ρ(T)
x.

As A−1N and x are nonnegative, the last equality implies that ρ(T) < 1.
Now, the equation just quoted above implies that

ρ(T)

1− ρ(T)
≤ ρ(A−1N),

hence

ρ(T) ≤ ρ(A−1N)

1 + ρ(A−1N)
.

On the other hand, as A−1N ≥ 0, we have by the Perron-Frobenius theorem

Ty = (I + A−1N)−1A−1Ny

=
ρ(A−1N)

1 + ρ(A−1N)
y,

for some positive vector y, thus

ρ(T) ≥ ρ(A−1N)

1 + ρ(A−1N)
.

© 2008 by Taylor & Francis Group, LLC

74 Parallel Iterative Algorithms

THEOREM 4.2

Let A = M−N be a weak regular splitting of A. Then the following assertions
are equivalent:

1. A−1 ≥ 0.

2. A−1N ≥ 0.

3. ρ(T) < 1.

PROOF 1) implies 2) since A−1N = (I − T)−1T =
∑∞

p=1 T p (Neumann
Lemma, see the Appendix).
2) ⇔ 3) by Theorem 4.1.
3) ⇒1) : since A−1 = (I − T)−1M−1 =

∑∞
p=1 T pM−1.

PROPOSITION 4.1

Consider a square n× n matrix A such that A−1 ≥ 0. Let

A = M1 −N1 = M2 −N2

be two regular splittings of A. Denote by T1 = M−1
1 N1 and by T2 = M−1

2 N2,
then

N2 ≤ N1 ⇒ ρ(T2) ≤ ρ(T1),

so
R∞(T1) ≤ R∞(T2).

PROOF This is a consequence of Theorem 4.2 and the fact that the
function f(x) = x/(1 + x) is monotone increasing.

The above results allow us to compare two block Jacobi like algorithms.
Indeed, the decompositions A = M1 −N1 and A = M2 −N2 give rise to the
block Jacobi algorithms whose iteration matrices are, respectively, M−1

1 N1

and M−1
2 N2. Indeed, the behaviors of synchronous iterations, generated by

these block Jacobi algorithms to solve the linear system (4.1), are, respectively,
described by the successive approximations associated to the fixed point map-
ping

T (1) : Rn → Rn

x 7→ y = M−1
1 N1x + M−1

1 b

and
T (2) : Rn → Rn

x 7→ y = M−1
2 N2x + M−1

2 b.

Then, Theorems 4.1 and 4.2 give sufficient conditions to ensure the conver-
gence of block Jacobi algorithms. Theorem 4.1 allows us to compare the speed
of convergence of two given block Jacobi algorithms.

© 2008 by Taylor & Francis Group, LLC

Synchronous Iterations 75

The multisplitting approach consists in partitioning the matrix A into hor-
izontal band matrices. Then each processor, or group of processors, is re-
sponsible for the management of a band matrix and the associated unknown
subvector of x. Multisplitting methods were first introduced by O’Leary and
White in [92], [118], [116]; they define a multisplitting of A as a collection of
L triplets (Bl, Cl, Dl) such that

1. A = Bl − Cl, for l = 1, . . . , L where Bl is nonsingular.

2.
∑

l Dl = I where Dl (l = 1, ..., L) are diagonal nonnegative matrices
and I is the identity matrix.
Then the multisplitting algorithm is defined as follows (x(0) given):

Algorithm 4.1 Multisplitting scheme

for i=0,1,. . . , until convergence do
for l=1,. . . ,L do

yl ← B−1
l Clx

(i) + B−1
l b

end for
x(i+1) ←∑

l Dlyl

end for

O’Leary and White [92] established the following result:

THEOREM 4.3

If for l = 1, ..., L, (Bl, Cl) are weak regular splittings of A satisfying A−1 ≥ 0,
then Algorithm 4.1 is convergent.

The convergence of O’Leary and White multisplitting algorithms given in
Theorem 4.3 is based on Theorem 4.1. It can be seen that block Jacobi
algorithms correspond to the particular case of the O’Leary and White multi-
splitting method where the matrix is partitioned into non-overlapping blocks
and where the entries of the weighted diagonal matrices are null when they
are not associated with the computation of the vector associated with the
block diagonal matrix.

Since the work of O’Leary and White, several authors have studied mul-
tisplitting algorithms for linear and nonlinear systems; we refer to [59], [61],
[60], [75], [27], [62], [5] and the references therein.

In the next section, we give a general formulation of multisplitting algo-
rithms due to Bahi et al. [27]. This formulation allows us to put in the same
theoretical framework, parallel block Jacobi algorithms, O’Leary and White
multisplitting algorithms and the discrete analogues of parallel Schwarz algo-
rithms.

© 2008 by Taylor & Francis Group, LLC

76 Parallel Iterative Algorithms

A 1 N1M

= −

FIGURE 4.1: A splitting of matrix A.

4.1.2 General multisplitting algorithms

In this section we follow the general formulation of multisplitting algorithms
given in [27]. These algorithms are described by the iterations generated by
the successive approximations associated to an extended fixed point mapping
defined from (Rn)

L
into itself, where n is the dimension of the problem and

L is the number of processors. This fixed point mapping is defined as follows:

{
T : (Rn)

L −→ (Rn)
L

X = (x1, ..., xL) 7−→ Y = (y1, ..., yL),
(4.3)

such that for l ∈ {1, ..., L}




yl = T (l)(zl)

zl =
L∑

k=1

Elkxk,
(4.4)

where Elk are weighting matrices satisfying






Elk are diagonal matrices
Elk ≥ 0
L∑

k=1

Elk = In (identity matrix) , ∀l ∈ {1, ..., L} .
(4.5)

In (4.4),
T (l)(zl) = M−1

l Nlz
l + M−1

l b (4.6)

where
A = Ml −Nl, l = 1, ..., L (4.7)

is a splitting of A and Ml is, e.g., the block diagonal matrix defined in Fig-
ure 4.1.

Then it can be shown that if each splitting is convergent,
i.e., if ρ(M−1

l Nl) < 1, then the extended fixed point mapping is also con-
vergent to the extended solution of (4.1), say (x∗, ..., x∗), and then the syn-
chronous algorithm converges. The convergence study will be detailed in the

© 2008 by Taylor & Francis Group, LLC

Synchronous Iterations 77

1 N1A M

=

Jl

Jl

Ãl

Ãl

−

Ãl

Ãl

Âl

FIGURE 4.2: A splitting of matrix A using subset Jl of l ∈ {1, ..., L}.

next chapter in the more general context which includes the study of both
synchronous and asynchronous algorithms.

In the following, a matrix A is partitioned as follows:
(
Âl

)

i,j
= ai,j , for i, j ∈ Jl,

(
Ãl

)

i,j
= ai,j for i, j ∈ JC

l ,

Ml = diag
(
Âl, Ãl

)
,

where L denotes the number of processors and Jl are subsets of {1, ..., n} .
The elements of Jl are indices of sub-components of a vector x of Rn. To each
l ∈ {1, ..., L} we associate a splitting, so we obtain L splittings of A described
in Figure 4.2.

We will now show how the extended fixed point defined above and the
dependence of the weighting matrices on both l and k allow us to obtain
particular standard algorithms such as O’Leary and White multisplitting al-
gorithms.

The practical considerations on how to implement such algorithms are dis-
cussed in Section 4.4.5.

4.1.2.1 Obtaining O’Leary and White multisplitting

If the diagonal positive matrices Elk depend only on k

Elk = Ek

and satisfy 



L∑
k=1

Ek = In

(Ek)i,i = 0, ∀i /∈ Jk

(4.8)

Then the synchronous iterations corresponding to O’Leary and White multi-
splitting are defined by the fixed point mapping (here L = n, Bl = Rn),

T OW (x1, ..., xL) = (y1, ..., yL) such that

© 2008 by Taylor & Francis Group, LLC

78 Parallel Iterative Algorithms





yl = T (l)(z)

z =
L∑

k=1

Ekxk

where for l ∈ {1, ..., L} , T (l) is defined by (4.6).

4.1.2.2 Obtaining discrete analogues of Schwarz alternating algo-
rithms

Suppose that we have only two subsets J1 and J2 and that J1

⋂
J2 6= ∅, so

we have an overlapping between the 1st and the 2nd subdomains and

A = M1 −N1 = M2 −N2

Consider the matrices Elk such that

(E11)i,i =

{
1 ∀i ∈ J1

0 ∀i /∈ J1
, (E12)i,i =

{
0 ∀i ∈ J1

1 ∀i /∈ J1
(4.9)

(E21)i,i =

{
1 ∀i /∈ J2

0 ∀i ∈ J2
, (E22)i,i =

{
0 ∀i /∈ J2

1 ∀i ∈ J2

Define the fixed point mapping

T S(x1, x2) = (y1, y2) such that for l = 1, 2




yl = T (l)(zl)

zl =
2∑

k=1

Elkxk (4.10)

where for l ∈ {1, 2} , T (l) is defined by (4.6). Then the additive discrete
analogue of the Schwarz alternating method corresponds to the successive
approximation method applied to T S , and the multiplicative discrete analogue
of the Schwarz alternating method corresponds to the block nonlinear Gauss-
Seidel method applied to T S .

4.1.2.3 Obtaining discrete analogues of multisubdomain Schwarz
algorithms

We introduce the weighting matrices Ek satisfying (4.8) and the matrices
Elk such that for l ∈ {1, ..., L}

(Ell)i,i =

{
1 if i ∈ Jl

0 if i /∈ Jl

(Elk)i,i =

{
0 if i ∈ Jl

(Ek)i,i if i /∈ Jl

(4.11)

the synchronous iterations corresponding to the discrete analogue of the mul-
tisubdomain Schwarz method are defined by the fixed point mapping T MS

T MS(x1, ..., xL) = (y1, ..., yL) such that

© 2008 by Taylor & Francis Group, LLC

Synchronous Iterations 79





yl = T (l)(zl)

zl =
L∑

k=1

Elkxk (4.12)

where Elk are defined by (4.11) and T (l) are defined by (4.6).

4.1.2.4 Convergence of multisplitting and two-stage multisplitting
algorithms

As mentioned above, the convergence of synchronous multisplitting algo-
rithms was established by O’Leary and White in [92] when A−1 ≥ 0, where
A is the matrix of the linear system, and the splittings are weak regular.

When the linear systems, arising from the multisplitting algorithm, are not
solved exactly but are instead approximated by iterative methods, we are
confronted with two-stage multisplitting algorithms or inner-outer iterations.
The convergence of two-stage multisplitting algorithms when the number of
inner iterations is fixed was established by Szyld and Jones in [109] (see also
[75]) for A−1 ≥ 0 when the outer splittings are regular and the inner splittings
are weak regular. The convergence of two-stage multisplitting algorithms was
also studied by Bahi et al. [27] in a more general context including linear and
nonlinear systems of equations.

4.2 Nonlinear systems: parallel synchronous Newton-
multisplitting algorithms

Now we are interested in the development of parallel algorithms for non-
linear problems. We concentrate on the Newton method, since it is the most
commonly used method to solve nonlinear systems.

4.2.1 Newton-Jacobi algorithms

Consider the nonlinear problem

F (x) = 0 (4.13)

and the Newton method defined in Chapter 2 by the iterations

x(k+1) = x(k) − F ′(x(k))−1F (x(k)).

The solution of the system

F ′(x(k))x(k+1) = F ′(x(k))x(k) − F (x(k)) (4.14)

may be particularly prohibitive when the dimension of the problem is large.
In this case, we can use an iterative method instead of direct ones in order to
obtain an approximate solution of the system (4.14).

© 2008 by Taylor & Francis Group, LLC

80 Parallel Iterative Algorithms

Let D(k) be a block diagonal matrix of F ′(x(k)), then

F ′(x(k)) = D(k) −D(k) + F ′(x(k)). (4.15)

The linear system (4.14) can be solved by the block Jacobi algorithm asso-
ciated with the splitting (4.15). The obtained scheme consists in computing
the iteration vectors by the following two-stage algorithm.

Algorithm 4.2 Newton-Jacobi scheme

Choose any arbitrary initial vector (x(0))(0) = 0
for k = 1,2,... do

for l = 1,2,... do
D(k)(x(k+1))(l+1) ← (D(k) − F ′(x(k)))(x(k))(l) − F (x(k))

end for
end for

It should be noticed that in practice only a fixed number of inner iterations
is performed and that the number of inner iterations may vary in function of
the Newton outer iterations. We are then in the presence of nonstationary
iterative methods. The next section introduces Newton-multisplitting algo-
rithms which are a generalization of Newton-Jacobi algorithms.

4.2.2 Newton-multisplitting algorithms

We suppose that (4.13) has a solution x∗ and that F is Fréchet differentiable
on a neighborhood of x∗. We also suppose that F ′ is nonsingular and Lipschitz
continuous on a neighborhood of x∗. Newton iterations can be rewritten in
the form

x(k+1) = x(k) − y(k), k = 0, 1, 2, ...

where y(k) is the solution of the linear system

F ′(x(k))y = F (x(k)) (4.16)

Using an iterative method to solve (4.16) gives rise to the so-called Newton
iterative methods [5], [6]. In [117], White proposes the parallel Newton-SOR
method in order to solve nonlinear systems on parallel computers. In [5] and
[6], the authors propose nonstationary multisplitting methods to solve (4.16),
i.e., they consider for each k, a collection of L splittings of F ′(x(k)),

F ′(x(k)) = Ml(x
(k))−Nl(x

(k)), l = 1, ..., L, (4.17)

Suppose that the weighting matrices (4.5) only depend on one index and
that the solution of system (4.16) is approximated by performing q iterations
of the multisplitting method and that y(0) = 0.

© 2008 by Taylor & Francis Group, LLC

Synchronous Iterations 81

The parallel Newton-multisplitting method can be written as follows:

x(k+1) = G(x(k)), (4.18)

where

G(x) = x−A(x)F (x),

and

A(x) =

L∑

l=1

El(x)(I − (Ml(x)−1Nl(x))q(F ′(x))−1. (4.19)

The following result gives the convergence condition of synchronous Newton-
multisplitting algorithms.

THEOREM 4.4

If the splittings (4.17) are convergent, then there exists a neighborhood Vx∗

of the solution x∗, such that any synchronous Newton-multisplitting algorithm
associated with (4.18) and (4.19) starting from x(0) ∈ Vx∗ converges to x∗.

PROOF We have

G′(x∗) = I −A(x∗)F ′(x∗). (4.20)

From (4.19) we have

G′(x∗) = I −
L∑

l=1

El(x
∗)(I − (Ml(x

∗)−1Nl(x
∗))q . (4.21)

The properties of the weighting matrices imply that

G′(x∗) =
L∑

l=1

El(x
∗)(Ml(x

∗)−1Nl(x
∗))q. (4.22)

As the splittings (4.17) are convergent, we deduce by the application of propo-
sition 3.2 of [27] that

ρ(G′(x∗)) ≤ max
1≤l≤L

ρ((Ml(x
∗)−1Nl(x

∗))q) < 1.

The result follows from Ostrowski theorem [95] (see the Appendix).

One can also suppose that the approximate solution of (4.16) is done by
performing different qk,l inner linear iterations based on the linear splittings as
explained in [5]. The obtained two-stage algorithm is called a nonstationary
Newton iterative algorithm. The following convergence result is proved in [6].

© 2008 by Taylor & Francis Group, LLC

82 Parallel Iterative Algorithms

THEOREM 4.5

If any of the following two conditions is satisfied, then there exists a neighbor-
hood Vx∗ such that the Newton-multisplitting started with x(0) ∈ Vx∗ converges
to x∗,

1. F ′(x∗) is monotone and the splittings (4.17) are weak regular.

2. F ′(x∗) is an H-matrix and the splittings (4.17) are H-compatible (see
the Appendix).

4.3 Preconditioning

Some preconditioning algorithms have been adapted to parallel synchronous
algorithms. In this case, depending on the amount of communications and
of synchronizations, on the granularity of the method, on the degree of par-
allelism and especially on the network efficiency, the performances of those
algorithms are relatively limited with a large number of processors. Never-
theless, some preconditioners have been designed for parallel architectures.
For example, parallel preconditioners, based on ILU, are very sensitive to the
ordering of the unknowns. The more independent the unknowns are, the more
efficient the parallel preconditioner ILU is. For more explanations on parallel
preconditioners, interested readers are invited to read [29, 102, 121, 41] and
the references therein.

4.4 Implementation

Implementing a synchronous parallel algorithm depends on the platform
used to execute it. In fact, it is possible to distinguish at least two different
paradigms from the programming point of view. The first one is only ded-
icated to shared memory architectures. The second one is commonly called
message passing and is mainly used in distributed architectures.

On shared memory architectures, at least two different kinds of program-
ming exist. The first class aims at parallelizing most consuming loops. Con-
sequently we obtain what is usually called a data parallel code which fits the
class of fine grained parallelism. In this model, the same set of instructions
runs simultaneously on different pieces of data. More precisely, each proces-
sor executes only a part of the loop. The other parts are achieved by other
processors. In this context, the best-known programming model is certainly
OpenMP [36] for which a programmer only needs to add compiler directives

© 2008 by Taylor & Francis Group, LLC

Synchronous Iterations 83

in its code. In some particular cases the programmer does not need to modify
its code. Compiler directives are interpreted in order to split the initial work
of loops into smaller parts that are executed by the available processors.

The second class aims at decomposing the work into large parts with smaller
parts in which processors exchange some data. Usually this method is efficient
if the parts are relatively independent. This model is frequently called coarse
grained parallelism.

In both these models, processors can access to the whole memory for reading
and writing. If two processors access the same data in writing, the behavior
is often nondeterministic. So the programmer must carefully check that only
one processor writes into a part of data at each instant. However, the big
advantage of this model is its programming simplicity since a processor can
directly read any part of the memory without asking it to any processor.
Of course according to the architecture, the time to read data is not always
constant and this often leads to bottlenecks.

Concerning the programming of synchronous iterative algorithms both mod-
els are interesting but do not provide the same programming work. Using
fine grained parallelism with loops splitting is quite easy. Nevertheless such
codes are not as scalable as coarse grained parallelism codes which require
a longer programming endeavor. Now, most programmers do agree with the
fact that the transformation of a sequential program into a parallel one using
shared memory mechanism requires less work than using other parallelization
paradigms. Moreover, as few architectures provide a shared memory mecha-
nism, an application parallelized using that paradigm would not be as portable
as if it were parallelized using another programming model.

An interesting alternative, if we are interested in code reuse, lies in design-
ing an application with the message passing paradigm. This is the classical
model used for distributed architectures in which processors communicate
by sending/receiving messages to/from each other. Using a message passing
paradigm often requires rather a lot more work and time to design a paral-
lel application compared to using a shared memory paradigm. Nonetheless,
such a program is more portable since it can be executed on many architec-
tures: either distributed ones or shared memory ones. Even if it is not as
efficient on shared memory architecture as using a shared memory paradigm,
it is possible to run a program designed with a message passing paradigm on
such an architecture. Message passing programs generally require the use of
buffers in order to send or receive messages; that is why on shared memory
architectures, they could be less efficient.

With the development of multi-core processors, scientists have access to
clusters in which both paradigms can be used in order to benefit from the
best performance. On the one hand, communications between processors
linked by a network should be achieved using a message passing interface.
On the other hand, inside a multiprocessor or a multi-core machine, a shared
memory paradigm is preferable to obtain efficient codes. So, in this kind of
architecture, which will probably be used more and more in the next years,

© 2008 by Taylor & Francis Group, LLC

84 Parallel Iterative Algorithms

the mixing of shared memory and message passing paradigms will probably
be the best solution in order to obtain efficient codes.

Designing a parallel algorithm to solve a linear system or a nonlinear one
requires approximately the same notions from the programming point of view.
First it is extremely important to be rigorous. Of course this is important
for implementing any sequential algorithm but it is more important as far
as parallel application is concerned, the least error being indeed extremely
difficult to detect. Implementing a parallel algorithm depends on the parallel
language chosen. Nevertheless, with some experience, it is relatively easy to
disregard it. This is quite similar to implementing a sequential algorithm with
one language or with another one which only differs by the syntax. That is
why in the following we will only focus on a general implementation that will
slightly differ from using MPI with the language C or OpenMP with C++
and a coarse-grained paradigm.

4.4.1 Survey of synchronous algorithms with shared mem-
ory architecture

As shared memory architectures are not as scalable as distributed ones, in
this book, we only describe the principles for designing parallel synchronous
iterative algorithms using this kind of architecture. Moreover, parallelizing
an application using a shared memory architecture is often easier than using
a distributed one.

Since the parallelization of an iterative algorithm using the coarse grained
paradigm with a shared memory architecture is quite similar to the paral-
lelization of the same algorithm with a distributed system, we only focus on
the fine grained paradigm. In addition, this paradigm is easier to implement
and is probably the most used model with a limited number of processors, as
it is the case with cheaper architectures (small multi-processor or multi-core
systems).

Since OpenMP is the most used tool to build fine grained parallel algo-
rithms, we limit our explanation to it. Roughly speaking, iterative algorithms
are all composed of a loop which represents an iteration. As an iteration
uses the results computed in previous iterations it is not possible to execute
different iterations concurrently on different processors. Therefore, it is nec-
essary to parallelize the computation inside an iteration. Consequently, the
number of iterations with such a parallel program will be exactly the same
as the sequential code used for the parallelization. The fact of using the fine
grained paradigm with OpenMP consists in parallelizing all the loops inside
an iteration as soon as the work inside a loop can be done concurrently. It
should be noticed that several loops can be parallelized inside an iterative
algorithm. For example, scalar products, matrix-vector products, or vector
additions can be executed using parallelization at the loop level. Taking the
Jacobi algorithm (Algorithm 2.1), it is possible to parallelize the first loop
indexed by i. Concerning the Gauss-Seidel algorithm (Algorithm 2.2), it is

© 2008 by Taylor & Francis Group, LLC

Synchronous Iterations 85

well-known that this algorithm is less parallelizable. It is not possible to par-
allelize the same loop. Nevertheless it is possible to parallelize the inner loops,
indexed by j in that algorithm. Of course, this parallel scheme is less efficient
since the parallelization of small loops only provides a small performance gain.
The parallelization of nonlinear methods is sensibly similar. Only some loops
inside an iteration are parallelizable. Practically speaking, this kind of par-
allelization provides good speed-ups with few processors, but unfortunately,
bad speed-ups as soon as the number of processors increases.

Coarse grained parallelism implementation is completely different and uses
approximately the same scheme either with a shared memory architecture
or with a distributed one (except for the communication handling). In the
following sections we distinguish the case of sequential algorithms that can
be parallelized using traditional message passing schemes from the Jacobi
algorithm and multisplitting ones for which an appropriate implementation
will enable them to be executed in an asynchronous mode as we will see in
Chapter 5.

4.4.2 Synchronous Jacobi algorithm

It is well known that it is generally difficult to implement an efficient and
general code. According to the structure of the studied matrix, some opti-
mizations can produce very efficient codes. In the following we give an imple-
mentation of the Jacobi parallel code. In order to keep this algorithm simple,
we consider that a processor needs to send its results to all other processors.
In many cases, it is easy to compute the list of neighbors for each processor
and, consequently, only send the results to processors that require it. So, we
consider that the matrix A is split into rectangular parts as in Figure 4.3.
The vector B is split as the vector X .

Each processor only owns a part of the vector X but it requires a larger part
of the vector XOld. According to the structure of the matrix A, this part may
vary. If A is an almost dense matrix, then each processor needs the totality of
the vector XOld. Algorithm 4.3 illustrates the synchronous Jacobi algorithm.
In this algorithm Size and SizeGlo represent, respectively, the local size and
the global size of the matrix A, Offset represents the offset of the global index
for the computation, i.e., the sum of the local size of all parts of matrices of
processors having a lower rank. The variable MyRank represents the rank
of the processor, that is to say the number of the current processor in the
computation. In order to detect the convergence, we first compute at each
iteration the local convergence and put the result in the variable Error. Then
we use a reduce operation that computes the maximum of all the local errors.
With MPI, such an operation is directly implemented in the API.

Without considering the communications, this parallel version of the Jacobi
method is completely similar to the sequential one. In the algorithm we are
using a high level communication procedure called AllReduce. The goal of this
procedure consists in applying a reduction operation on the variable Error

© 2008 by Taylor & Francis Group, LLC

86 Parallel Iterative Algorithms

Algorithm 4.3 Synchronous Jacobi algorithm

NbProcs: number of processors
MyRank: rank of the processor
Size: local size of the matrix
SizeGlo: global size of the matrix
Offset: offset of the global index
A[Size][SizeGlo]: local part of the matrix
X[Size]: local part of the solution vector
XOld[SizeGlo]: global solution vector
B[Size]: local part of the right-hand side vector
Error: local error
MaxError: global error
Epsilon: desired accuracy

repeat
for i=0 to Size−1 do

X[i] ← 0
for j=0 to Offset−1 do

X[i] ← X[i]+A[i][j]×XOld[j]
end for
for j=Offset+Size to SizeGlo−1 do

X[i] ← X[i]+A[i][j]×XOld[j]
end for

end for
for i=0 to Size−1 do

X[i] ← (B[i]−X[i])/A[i][i+Offset]
end for
Error← 0
for i=0 to Size−1 do

Error ← max(Error, abs(X[i]−XOld[i+Offset]))
XOld[i+Offset] ← X[i]

end for
for k=0 to NbProcs−1 do

if k 6= MyRank then
Send(k, X)

end if
end for
for k=0 to NbProcs−1 do

if k 6= MyRank then
Recv(k, XOld[k×Size])

end if
end for
AllReduce(Error, ErrorMax, MAX)

until stopping criteria is reached (MaxError ≤ Epsilon)

© 2008 by Taylor & Francis Group, LLC

Synchronous Iterations 87

X
O

ldS
iz

e

SizeGlo

O
ff
se

t
X X A

FIGURE 4.3: Splitting of the matrix for the synchronous Jacobi method.

and putting the result in the variable ErrorMax. In that case, the MAX

operator is used in order to compute the maximum of the local error (or
norm here). The result is available on each processor. As a consequence, the
result is strictly identical to the result obtained using the sequential version
(neglecting the potential rounding errors).

The communication part consists for each processor in sending its results
(the vector X) to all the processors that need it. In the case of a dense ma-
trix, processor k sends its result to all the other processors. Then a processor
receives all the results and directly puts them in their right places in the ar-
ray XOld; each place is computed in function of the rank of the sender and
the (local) size of the matrix (considered constant). From a practical point
of view, the programmer should rather use nonblocking communications in
order to perform the exchange of data. According to the programming envi-
ronment, it is possible that the use of blocking sends and receptions leads to a
deadlock situation in which some processors are blocked while communicating
simultaneously with each other.

With some high level implementation libraries (like MPI) it is possible to
use a single call to a function to realize this exchange operation. In the code
corresponding to this example we use it, so interested readers are invited
to test it with MPI. For example, it is possible to use a procedure called
AllToAllV(X[Offset],X,Size) that produces the same results as the communi-
cation part in Algorithm 4.3.

© 2008 by Taylor & Francis Group, LLC

88 Parallel Iterative Algorithms

4.4.3 Synchronous conjugate gradient algorithm

The conjugate gradient algorithm can be parallelized using basically the
same procedure, i.e., splitting the work and synchronizing every part of the
code requiring it. Algorithm 4.4 describes the synchronous version of the
conjugate gradient algorithm. In the following, we use X[Offset]=Y in order
to copy the elements of the vector Y into X at the offset Offset. Likewise, for
some operations we specify the number of elements that are concerned. For
example, P[Offset]=R (copy Size elements) means that size elements of R are
copied into P with the offset Offset.

Compared to the synchronous parallel Jacobi algorithm, the parallel version
of the conjugate gradient requires more synchronizations. With the parallel
Jacobi only two steps act as a synchronization, the exchange of data and
the computation of the global error. In opposition, the parallel conjugate
gradient algorithm contains twice the synchronization steps: three AllReduce
operations and one AllT oAllV .

4.4.4 Synchronous block Jacobi algorithm

The synchronous block Jacobi algorithm is relatively easy to write having
the sequential version in mind. In fact, each processor is responsible for the
computation of a block and after an iteration, all processors send their local
solution to their neighbors that need it. In Algorithm 4.5, we describe the
synchronous version of this algorithm. At the end of an iteration, processors
exchange their local computation using an AllT oALLV procedure. Then,
they compute the global error. Consequently this algorithm requires two syn-
chronization steps. In order to solve the local subsystem, each processor uses
an appropriate method. In practice, depending on the size of the submatrix
and its degree of density, a sparse or a dense direct method can be used. The
solution of a subsystem is considered exact (neglecting rounding errors), so
an iterative method is not considered for solving a local subsystem.

At each iteration, three main steps may be distinguished in the block Jacobi
algorithm. The first one consists in updating the right-hand side using the
dependencies of other processors. In Algorithm 4.5, this step updates the
vector BTmp. The second step aims at solving the local subsystem on each
processor. Using an existing solver obviously simplifies the programming of
this method. According to the characteristics of the matrix, the choice of
the inner solver may drastically change the efficiency of the parallel solver.
Finally, the third step corresponds to the data exchanges and to the global
error computation.

© 2008 by Taylor & Francis Group, LLC

Synchronous Iterations 89

Algorithm 4.4 Synchronous conjugate gradient algorithm

NbProcs: number of processors
MyRank: rank of the processor
Size: local size of the matrix
SizeGlo: global size of the matrix
Offset: offset of the global index
A[Size][SizeGlo]: local part of the matrix
X[SizeGlo]: solution vector
R[Size]: local part of the residual vector
B[Size]: local part of the right-hand side vector
P[SizeGlo]: search direction vector
Q[Size]: local part of the orthogonal vector to the search direction
DotPQ, DotPQGlo: local and global scalar product of (P,Q)
Alpha, Beta, Rho, RhoGlo: scalar variables
Error: local error
MaxError: global error
Epsilon: desired accuracy

Offset ← Size×MyRank
R ← B−A×X
repeat

Rho ← (R,R)
AllReduce(Rho, RhoGlo, SUM)
if i=1 then

P[Offset] ← R (copy Size elements)
else

Beta ← RhoGlo/RhoOldGlo
P[Offset] ← R+Beta×P[Offset] (copy Size elements)

end if
AllToAllV(P[Offset], P, Size)
Q ← A×P
DotPQ ← (P[Offset],Q)(for only Size elements)
AllReduce(DotPQ, DotPQGlo, SUM)
Alpha ← RhoGlo/DotPQGlo
X[Offset] ← X+Alpha×P[Offset] (for Size elements)
R ← R−Alpha×Q
RhoOldGlo ← RhoGlo
Error ← 0
for i=0 to Size−1 do

Error ← max(Error, abs(R[i]))
end for
AllReduce(Error, ErrorMax, MAX)

until stopping criteria is reached (MaxError ≤ Epsilon)

© 2008 by Taylor & Francis Group, LLC

90 Parallel Iterative Algorithms

Algorithm 4.5 Synchronous block Jacobi algorithm

NbProcs: number of processors
MyRank: rank of the processor
Size: local size of the matrix
SizeGlo: global size of the matrix
Offset: offset of the global index
A[Size][SizeGlo]: local part of the matrix
X[Size]: local part of the solution vector
B[Size]: local part of the right-hand side vector
BTmp[Size]: intermediate local part of the right-hand side vector
XOld[SizeGlo]: global solution vector
Error: local error
MaxError: global error
Epsilon: desired accuracy

Offset← Size×MyRank
repeat

for i=0 to Size−1 do
BTmp[i]← B[i]

end for
for i=0 to Size−1 do

for j=0 to Offset−1 do
BTmp[i]← BTmp[i]−A[i][j]×XOld[j]

end for
for j=Offset+Size to SizeGlo do

BTmp[i]← BTmp[i]−A[i][j]×XOld[j]
end for

end for
X← Solve(A, BTmp)
Error← 0
for i=0 to Size−1 do

Error ← max(Error, abs(X[i]−XOld[i+Offset]))
XOld[i+Offset]← X[i]

end for
AllToAllV(XOld[Offset], XOld, Size)
AllReduce(Error, ErrorMax, MAX)

until stopping criteria is reached (MaxError ≤ Epsilon)

© 2008 by Taylor & Francis Group, LLC

Synchronous Iterations 91

4.4.5 Synchronous multisplitting algorithm for solving lin-
ear systems

This algorithm comes directly from the formulation of Equations (4.3)-(4.5).
In the following we explain how to obtain the algorithm without overlapping
components and then we introduce the overlapping of components.

The first step consists in defining the weighting matrices. Without intro-
ducing overlapping, those matrices are diagonal and either contain 1 or 0 on
the diagonal. For example, if we take three processors (L = 3), the weighting
matrices are defined as in Figure 4.4.

El3 =El1 = El2 = 01

1 0

0 0 1

0

0

FIGURE 4.4: An example with three weighting matrices.

Having defined those matrices, we need to define the matrices Ml and Nl.
With Equation (4.4) and by defining T (l) as in Equation (4.6), with three
processors, we obtain the following system





y1 = M−1
1 N1(E11x

1 + E12x
2 + E13x

3) + M−1
1 b

y2 = M−1
2 N2(E21x

1 + E22x
2 + E23x

3) + M−1
2 b

y3 = M−1
3 N3(E31x

1 + E32x
2 + E33x

3) + M−1
3 b

(4.23)

In that system, matrices M−1
l and Nl and vectors yl, xl and b are not

decomposed. From a practical point of view, a processor does not handle the
whole vectors and matrices, it only has the parts it is in charge of. In the
example with three processors, each processor has a third of data. So we can
define y′l, x′l and b′l that correspond to the parts handled by the processors.
And Equation (4.23) can be rewritten as





y′1 = (A−1
11 ×−A12)x

′2 + (A−1
11 ×−A13)x

′3 + A−1
11 b′1

y′2 = (A−1
22 ×−A21)x

′1 + (A−1
22 ×−A23)x

′3 + A−1
22 b′2

y′3 = (A−1
33 ×−A31)x

′1 + (A−1
33 ×−A32)x

′2 + A−1
33 b′3

(4.24)

with, for example, the splittings depicted in Figure 4.5.
By multiplying each previous equation by Aii we obtain:






A11 × y′1 = b′1 −A12x
′2 −A13x

′3

A22 × y′2 = b′2 −A21x
′1 −A23x

′3

A33 × y′3 = b′3 −A31x
′1 −A32x

′2
(4.25)

© 2008 by Taylor & Francis Group, LLC

92 Parallel Iterative Algorithms

0

0 0 0

0 0

0 0

0

0

0

00

00

0

0

0

00

0 0

0 0

0

00

A31

A12A11 A13

A21 A22 A23A =

A33A32

A32 A33

A13A12

A21

A13

A23

A12

A32

A21

A31

A13

A23

A32A31

A22

A11

A22

A31

M3 =

M2 =

M1 =

N3 =

N2 =

N1 =

A11

A11

A21

A22

A12

A33

A23

A33

FIGURE 4.5: An example of possible splittings with three processors.

In this example, each processor i has a local linear subsystem to solve. The
right-hand side contains the corresponding part of the vector b′i minus all the
block off-diagonal (Aij with j 6= i) multiplied by the corresponding x′j with
j 6= i.

From a practical point of view, we call the off-diagonal block the dependen-
cies of the computation. So, processor 1 depends, respectively, on processors
2 and 3 if blocks A12 and A13 are, respectively, nonempty. In the follow-
ing practical algorithm we want to gather all dependencies before the current
processor in an array called LeftDep and all the dependencies after the cur-
rent processor in an array called RightDep. Likewise, each processor has two
vectors XLeft and XRight.

In Figure 4.6, the decomposition of the matrix is illustrated. Each processor
is in charge of a rectangular part of the matrix. This rectangular part is
split into three parts. The left dependencies (DepLeft) involve components
computed by processors whose rank is strictly smaller than the one of the
considered processor. The submatrix (noted A) is the square matrix that a
processor is in charge of; it corresponds to the matrix Aii in Equation (4.25).
And finally, the right dependencies (DepRight) involve components computed
by processors whose rank is strictly greater than the one of the considered
processor. With such a decomposition, a processor needs to solve:

A×X = B −DepLeft×XLeft−DepRight×XRight (4.26)

© 2008 by Taylor & Francis Group, LLC

Synchronous Iterations 93

which exactly corresponds to the lines in Equation (4.25). As soon as it has
computed the solution of the subsystem, this solution needs to be sent to all
processors depending on it.

B

X
L
eft

ADepLeft

X
R

ight

DepRight X

FIGURE 4.6: Decomposition of the matrix.

Algorithm 4.6 illustrates the synchronous version of the multisplitting al-
gorithm to solve linear systems. At the beginning of an iteration, a processor
computes the right-hand side as in Equation (4.26). Then it solves the lin-
ear system composed of the submatrix it is in charge of with the right-hand
side that takes into account the dependencies just computed. To solve this
linear system, it is possible to use either a direct algorithm or an iterative
one (with or without using a preconditioner); in this latter case we obtain a
two-stage method. In Section 6.4, we report an experiment that highlights the
impact of using this or that algorithm. The next step consists in exchanging
dependencies. Before starting the iterative process, processors exchange their
dependencies in order to initialize the arrays DependsOnMe and IDependOn.
This part involves the use of the offset computed on each processor. More-
over, a processor takes into consideration what parts of the solution vector it
needs. With those arrays, a processor knows its neighbors. Consequently, it
can send to each of its neighbors the part of its vector that they need. Then it
is ready to receive dependencies from its neighbors. According to the rank of
a neighbor, a processor integrates the dependency in DepLeft or DepRight.
Globally, this exchange part acts as a synchronization step. The last step lies
in computing the error locally and then globally using for a second time a
synchronization step so that all the processors know the global error.

As explained, one particularity of the multisplitting method is that it allows
the processors to overlap components in order to speed up the convergence.
The principle is to let some processors compute simultaneously some com-

© 2008 by Taylor & Francis Group, LLC

94 Parallel Iterative Algorithms

Algorithm 4.6 Synchronous linear multisplitting algorithm

NbProcs: number of processors
MyRank: rank of the processor
Size: local size of the matrix
SizeGlo: global size of the matrix
Offset: offset of the global index
A[Size][Size]: local block-diagonal part of the matrix
DepLeft[Size][Offset]: submatrix with left dependencies
DepRight[Size][SizeGlo-Offset-Size]: submatrix with right dependencies
DependsOnMe[NbProcs]: array of the dependent processors
IDependOn[NbProcs]: array of the processors this processor depends on
B[Size]: right-hand side vector of the subsystem
X[Size], XOld[Size]: local part solution vectors of the subsystem
XLeft[Offset]: left part of the solution vector of the system
XRight[SizeGlo-Offset-Size]: right part of the solution vector of the system
BLoc[Size]: array containing the local computations on the right-hand side
TLoc[Size]: array used for the receptions of the dependencies
Error: local error
MaxError: global error
Epsilon: desired accuracy

repeat
BLoc ← B
if MyRank6=0 then

BLoc ← BLoc−DepLeft×XLeft
end if
if MyRank 6= NbProcs−1 then

BLoc ← BLoc−DepRight×XRight
end if
X ← Solve(A, BLoc)
for i=0 to NbProcs−1 do

if i 6= MyRank and DependsOnMe[i] then
Send(i, PartOf(X, i))

end if
end for
for i=0 to NbProcs−1 do

if i 6= MyRank and IDependOn[i] then
Recv(i, TLoc)
Update XLeft or Xright with TLoc according to the processor i

end if
end for
Error← 0
for i=0 to Size−1 do

Error ← max(Error, abs(X[i]−XOld[i]))
XOld[i]← X[i]

end for
AllReduce(Error, ErrorMax, MAX)

until stopping criteria is reached (MaxError ≤ Epsilon)

© 2008 by Taylor & Francis Group, LLC

Synchronous Iterations 95

ponents and to mix the results in order to obtain an accurate result faster.
It corresponds to splitting the matrix into rectangular matrices that are not
disjoint (J sets in the theoretical framework). In Figure 4.7, we give an ex-
ample with a small matrix of size 9 × 9 for which the corresponding linear
system is solved with three processors using one overlapped component with
each neighbor. Without using overlapping, each processor has three compo-
nents (processor 1 has components 1 to 3, processor 2 has components 4 to 6
and processor 3 has components 7 to 9). If we allow some components to be
overlapped, processors with only one neighbor (i.e., processors 1 and 3 in the
figure) have four components. Processor 2 has five components. In Figure 4.7,
the hatched parts represent the submatrices that processors are in charge of
(matrix A in Algorithm 4.6) and black dots represent non-null values of the
matrix. Parts in the matrix that are doubly hatched highlight components
that are computed by two processors. Subvectors x′i (X in Algorithm 4.6)
also have overlapped components that are represented in gray in the figure.
Non-null values that are not in submatrices represent dependencies. In Fig-
ure 4.7, circled dots illustrate dependencies that are simultaneously computed
by two processors. Dependencies on lines 1 and 2 are computed by processors
2 and 3. Likewise, dependencies on lines 8 and 9 are computed by processors
1 and 2.

P 1

P 3

x′2

x′3

A

P 2

x′1

FIGURE 4.7: An example of decomposition of a 9 × 9 matrix with three
processors and one component overlapped at each boundary on each processor.

There are multiple ways to mix the overlapped components. In the follow-
ing, we explain four ways to mix overlapped components.

© 2008 by Taylor & Francis Group, LLC

96 Parallel Iterative Algorithms

4.4.5.1 Overlapping strategy that uses locally computed values

In this case, a processor only uses components that it has computed while
ignoring the values corresponding to the same set of components computed by
its neighbors. With the example defined in Figure 4.7, it consists in defining
the weighting matrices as in Figure 4.8. In this figure, matrices E1k, E2k and
E3k, respectively, correspond to weighting matrices of processors 1, 2 and 3.
Overlapped components are represented in gray in the figure. For example,
components 3 and 4 are computed simultaneously by processors 1 and 2. For
a processor i, we can remark that the sum of weighted matrices Eik is equal
to the identity matrix (as expressed in Equation (4.5)). Hence, with this
strategy, processor 1 uses its components 1 to 4, it uses components 5 and
6 of processor 2 and components 7 to 9 of processor 3. Processor 2 uses its
components 3 to 7 and uses components 1 and 2 of processor 1 and components
8 and 9 of processor 3. Processor 3 proceeds similarly to processor 1; since it
has its 4 components, it uses 2 components of processor 2 and 3 components
of processor 1. This strategy is quite easy to implement since it does not
require any mixing of overlapped components. It simply consists in using all
the components computed by a processor.

4.4.5.2 Overlapping strategy that uses values computed by close
neighbors

This strategy has similarities to the previous one because it does not require
any mixing of overlapped components either. The principle consists in using
all the overlapped components of its close neighbors. Weighting matrices,
corresponding to the same example, are illustrated in Figure 4.9. In that case,
processor 1 is close to processor 2 but not to processor 3. So processor 1 only
uses its components 1 and 2, it uses components 3 to 6 that are computed by
processor 2 and it uses components 7 to 9 computed by processor 3. Processor
2 has two close neighbors (processors 1 and 3); it uses components 1 to 4 of
processor 1, it uses its single component 5 and it uses components 6 to 9
of processor 3. Processor 3 proceeds similarly to processor 1 and it uses
components 1 to 3 of processor 1, components 4 to 7 of processor 2 and its
components 8 and 9. Compared to the previous strategy, this one requires
more data exchange since a processor requires all overlapped components of
its close neighbors.

4.4.5.3 Overlapping strategy that mixes overlapped components
with close neighbors

With this strategy a processor mixes its overlapped components with its
close neighbors. In Figure 4.10, we give an example of the mixing which
consists in taking half of the value computed by a processor and half of the
value computed by the close neighbor. So, processor 1 has its components 1
and 2 and it mixes its components 3 and 4 with processor 2, it uses components

© 2008 by Taylor & Francis Group, LLC

Synchronous Iterations 97

1
0

0

0
0

1

0

1

1
1

0

0

0

0
0

0

0
0

0
0

0

0

1
1

0

0

0
0

0
0

1
1

1
1

0

1
1

0
0

0

0

1

1

0

0

1

1
1

1
0

0

0

0

1

1
0

0
0

1
1

0
0 1

0
0

0

0

1

0
0

0

0

1

1

0
0

0

0
0

0
0

E13E11 E12

E21 E22 E23

E31 E32 E33

FIGURE 4.8: Overlapping strategy that uses values computed locally.

© 2008 by Taylor & Francis Group, LLC

98 Parallel Iterative Algorithms

1
1

0

0
0

0

0

1

1
0

0

0

0

0
0

0

0
0

0
0

0

1

1
1

0

0

1
1

0
0

0
0

1
1

0
0

0

0

1

1
1

0
0

0

1
1

1
1

0

0

0

1
0

0
0

0

0

0
0

1

1

0

0
0

0

1

0

0
0

0

1
0

0

1
1

0

0

1

1

0
0

E11 E12 E13

E21 E22 E23

E31 E32 E33

FIGURE 4.9: Overlapping strategy that uses values computed by close neigh-
bors.

© 2008 by Taylor & Francis Group, LLC

Synchronous Iterations 99

5 and 6 of processor 2 and components 7 to 9 of processor 3. Processor 2 uses
components 1 and 2 of processor 1, it mixes its components 3 and 4 with
processor 1, it uses it component 5, it mixes its components 6 and 7 with
processor 3 and it uses components 8 and 9 of processor 3. Processor 3 uses
components 1 to 3 of processor 1, it uses components 4 and 5 of processor 2,
it mixes its components 6 and 7 with processor 2 and it uses its components
8 and 9. Compared to the previous strategy, the amount of data exchange is
strictly equal. With this strategy it is possible to use different ratios of mixing
as soon as the sum of ratios on one line of all the matrices Elk is equal to 1.
For instance, it is possible to take 75% of the computed components and 25%
of the values computed by the other processor.

1
1

0
0

0
0

0
0

0

1
0

0

0

0
0

0

0
0

0

0

1
1

1

0
0

0
0

0
0

0
0

0
0

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5 0,5

1
1

0,5

0

0

0

1
1

0
0

0

1
1

0

0

1

0
0

1
1

1
0

0

0

0

1

0
0

0

0
0

0,5

1
1

E11 E12

E21 E22

E31 E32

E13

E23

E33

FIGURE 4.10: Overlapping strategy that mixes overlapped components with
close neighbors.

© 2008 by Taylor & Francis Group, LLC

100 Parallel Iterative Algorithms

4.4.5.4 Overlapping strategy that mixes all overlapped compo-
nents

This strategy mixes all components that are overlapped (not only with its
close neighbors). In Figure 4.11 we illustrate a possible example of values of
the weighted matrices Elk for this strategy. All the gray parts, corresponding
to overlapped components, contain values that are different from 0 and 1.
This strategy offers the most freedom to mix overlapping components. In
our example, all processors use components 1 and 2 from processor 1, they
mix components 3 and 4 from processors 1 and 2, they use component 5 of
processor 2, they mix components 6 and 7 from processors 2 and 3 and they
use components 8 and 9 of processor 3. If different values of mixing are used
according to processors, all overlapped components must be sent to processors
that need them. Consequently the amount of data transfered may be greater.

1
1

0
0

0
0

0
0

0
0

0

0

0
0

0

0
0

0

0

1
1

0
0

0
0

0

0
0

0
0

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5 0,5

1
1

0,5

0

0

0

1

0
0

1
1

0

0

1

0
0

1
1

0

0

1

0
0

0

0
0

0,5

1
1

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

E12

E21 E22

E31 E32 E33

E13

E23

E11

FIGURE 4.11: Overlapping strategy that mixes all overlapped values.

Implementing all those strategies in Algorithm 4.6 is quite easy. The ma-
trix distribution should be achieved by taking into account the overlapped

© 2008 by Taylor & Francis Group, LLC

Synchronous Iterations 101

components on each processor. So, the offsets and the local size of matrices
are different. Then, according to the overlapping strategy chosen, the amount
of data might be different. For example with the first strategy presented,
the amount of data is smaller, whereas with the last strategy the amount of
data transfered is greater. According to the structure and dependencies of
the problem, the choice of the best strategy is not a trivial task.

4.4.6 Synchronous Newton-multisplitting algorithm

In the previous sections we have explained how to implement the multisplit-
ting method in order to solve linear systems. Now we describe how to design
the algorithm based on the Newton-multisplitting method. As described for-
merly, this method uses the Newton method to linearize the problem. Using
synchronous iterations, the algorithm first builds the Jacobian matrix and
then it needs to solve the linear system obtained. The multisplitting method
to solve a linear system is used for this. In Algorithms 4.7 and 4.8, both
methods are coupled. The outer iterations perform the Newton iteration,
whereas the inner ones solve the linear system. Variables of this algorithm
are described in Algorithm 4.7 and its core is given in Algorithm 4.8.

At each Newton iteration, a processor starts by computing the rectangular
part of the Jacobian matrix it is in charge of. Then it computes the right-hand
side of the nonlinear function as described in Equation (4.16). Of course, each
processor has a different set of components according to the block distribu-
tion. As soon as the Jacobian submatrices have been defined simultaneously
on processors, they start to solve the linear system using the multisplitting
algorithm for linear systems. To solve the subsystem it is possible to use a
direct method or an iterative one. In this latter case, we obtain a two-stage
algorithm. The Jacobian is computed using the same computation as in the
sequential algorithm. The only difference is that the Jacobian is distributed
on all processors, as described in Figure 4.12. The computation of −F is also
distributed across the processors.

After the computation of the Jacobian, the method consists in solving the
whole linear system using the multisplitting method for linear systems. So,
until global convergence of the multisplitting algorithm, a processor computes
the local right-hand side and updates it using the dependencies computed by
its neighbors. In the algorithm, J represents the local submatrix for a pro-
cessor. JDepLeft and JDepRight, respectively, correspond to DepLeft and
DepRight defined in the multisplitting algorithm for linear systems, described
previously. At each multisplitting iteration, a processor solves the subsystem
composed of the Jacobian submatrix and the right-hand side using a sequen-
tial solver. Then, it sends its DX vector part to each of its neighbors that
need it, and it receives the part of the solution of its neighbors and updates
the vectors DXLeft and DXRight. Finally, it computes the local error
of the multisplitting process. When the multisplitting method has globally
converged, a processor computes the local error of the Newton process. Pro-

© 2008 by Taylor & Francis Group, LLC

102 Parallel Iterative Algorithms

Algorithm 4.7 Variables used in the synchronous Newton-multisplitting al-
gorithm

NbProcs: number of processors
MyRank: rank of the processor
Size: local size of the matrix
SizeGlo: global size of the matrix
Offset: offset of the global index
J[Size][Size]: local block-diagonal part of the Jacobian matrix
JDepLeft[Size][Offset]: submatrix with left dependencies of the Jacobian
JDepRight[Size][SizeGlo-Offset-Size]: submatrix with right dependencies of
the Jacobian
DependsOnMe[NbProcs]: array of the dependent processors
IDependOn[NbProcs]: array of the processors this processor depends on
F[Size], FLoc[Size]: right-hand side vectors of the subsystem
X[SizeGlo]: solution vector of the Newton subsystem
DX[Size], DXOld[Size]: local part solution vectors of the multisplitting sub-
system
DXLeft[Offset]: left part of the solution vector of the system
DXRight[SizeGlo-Offset-Size]: right part of the solution vector of the system
TLoc[Size]: array used for the receptions of the dependencies
ErrorNewton: local error of the Newton process
MaxErrorNewton: global error of the Newton process
ErrorMulti: local error of the multisplitting
MaxErrorMulti: global error of the multisplitting process
EpsilonMulti: desired accuracy for the multisplitting process
EpsilonNewton: desired accuracy for the Newton process

JDepLeft

D
X

R
ight

D
X

L
eft

DX -FJDepRightJ

FIGURE 4.12: Decomposition of the Newton-multisplitting.

© 2008 by Taylor & Francis Group, LLC

Synchronous Iterations 103

Algorithm 4.8 Synchronous Newton-multisplitting algorithm

repeat
if first iteration or required then

Computation of the Jacobian rectangular matrix and storage of the
respective parts into J , JDepLeft and JDepRight

end if
Computation of −F depending on X from components Offset to
Offset+size−1 and storage of the result into F
repeat

FLoc ← F
if MyRank 6= 0 then

FLoc ← FLoc−JDepLeft×DXLeft
end if
if MyRank 6= NbProcs−1 then

FLoc ← FLoc−JDepRight×DXRight
end if
DX ← Solve(J, FLoc)
for i=0 to NbProcs−1 do

if i 6= MyRank and DependsOnMe[i] then
Send(i, PartOf(DX, i))

end if
end for
for i=0 to NbProcs−1 do

if i 6= MyRank and IDependOn[i] then
Recv(i, TLoc)
Update DXLeft or DXRight with TLoc according to processor i

end if
end for
ErrorMulti← 0
for i=0 to Size−1 do

ErrorMulti ← max(ErrorMulti, abs(DX[i]−DXOld[i]))
DXOld[i]← DX[i]

end for
AllReduce(ErrorMulti, MaxErrorMulti, MAX)

until stopping criteria of multisplitting is reached
(MaxErrorMulti ≤ EpsilonMulti)

ErrorNewton← 0
for i=0 to Size−1 do

X[Offset+i] ← X[Offset+i]+DX[i]
ErrorNewton ← max(ErrorNewton, abs(DX[i]))

end for
AllToAllV(X[Offset], X, Size)
AllReduce(ErrorNewton, MaxErrorNewton, MAX)

until stopping criteria of Newton is reached
(MaxErrorNewton ≤ EpsilonNewton)

© 2008 by Taylor & Francis Group, LLC

104 Parallel Iterative Algorithms

cessors execute Newton iterations until the global error is lower than a given
threshold.

Analyzing the number of synchronizations of this algorithm we can remark
that there are as many synchronizations as multisplitting iterations and New-
ton iterations (considering that there is only one synchronization per iteration,
we have seen previously that this is not the case). Thus this algorithm requires
quite an important number of synchronizations.

4.5 Convergence detection

We discuss here the problem of convergence detection in iterative processes
of the form:

x(k+1) = G(x(k)) (4.27)

where x(k+1) and x(k) are the global state vectors at the respective iterations
k+1 and k, and G is a contraction. The useful property of contractions is that
their convergence is ensured. This is why most of the iterative algorithms cur-
rently in use are contractions. In fact, an important constraint when designing
an iterative method is precisely to ensure that it is a contraction.

However, most of the theoretical results related to the convergence of it-
erative processes, including contractions, are of limited interest in practice
since they are often based on properties which are not directly calculable or
whose computation cost is of the same order as the problem to solve. Hence,
as explained in [33], practical methods for proving the convergence of iter-
ative methods generally consist in finding a suitable norm for which it can
be shown that each iteration reduces the distance between the current global
state vector and the fixed point which represents the solution of the problem.

Unfortunately, it is possible to ensure that an iterative process is a contrac-
tion without being able to find the suitable norm which allows us to detect its
convergence in practice. For example, in linear problems, we know that we
have a contraction when the spectral radius of the iteration matrix is smaller
than one but there is no information about the norm to use in practice. More-
over, as already mentioned in Section 1.2, a contraction is norm dependent
and may be contractive with a given norm and non-contractive with another
one. This is an important problem which may induce some difficulties in the
convergence detection.

Indeed, when the contraction norm is known (let’s note it || . ||C) there is
no problem detecting the convergence since, by definition, we have:

∀x, y, ||G(x)−G(y)||C ≤ L||x− y||C with L < 1 (4.28)

which implies
||x(k+1) − x(k)||C < ||x(k) − x(k−1)||C (4.29)

© 2008 by Taylor & Francis Group, LLC

Synchronous Iterations 105

So, the distance between two global state vectors obtained from two con-
secutive iterations decreases according to the contraction norm || . ||C . That
distance between two consecutive iterations is often called the residual and,
in some ways, represents the progression speed of the iterative process. Thus,
when the right norm is used, the residual monotonously decreases toward
zero, without reaching it if the convergence is asymptotic. However, when the
residual becomes small enough, it can be assumed that the iterative process
is sufficiently close to the exact solution to detect the convergence and stop
the process. Hence, the residual is regularly compared to a given threshold
defining a sufficiently small progression speed of the process to assume its
stabilization. A schematic example of such a behavior is given in Figure 4.13.

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100

Iterations

Absolute error

Residual

Threshold

FIGURE 4.13: Monotonous residual decreases toward the stabilization ac-
cording to the contraction norm.

Nevertheless, as mentioned above, it is not always possible to know the
contraction norm and it is then necessary to arbitrarily choose one metric
among all the possible ones. The most common metrics are the Euclidean
norm:

||x(k) − x(k−1)||2 =

√√√√
n∑

i=1

(x
(k)
i − x

(k−1)
i)2 (4.30)

and the max norm:

||x(k) − x(k−1)||∞ = max
i
|x(k)

i − x
(k−1)
i | (4.31)

where x
(k)
i and x

(k−1)
i are the respective ith component of state vectors x(k)

and x(k−1).

© 2008 by Taylor & Francis Group, LLC

106 Parallel Iterative Algorithms

So, when the norm used is not the contraction norm, nothing ensures that
Equations (4.28) and (4.29) still hold. Using such an arbitrary norm makes
the convergence detection far more difficult as there is no more valuable infor-
mation about the position of the current state according to the exact solution.
Thus, even when the residual becomes very small, nothing ensures us that the
process is actually close to the exact solution. Typically, if the path followed
by the iterative process toward the solution in the state space includes smaller
variations than the chosen threshold according to the chosen norm, the con-
vergence may be detected even though the current state may still be far from
the solution. Moreover, even when the iterative process has a monotonous
evolution toward the solution, i.e., when the distance between the current
state vector and the exact solution always decreases from an iteration to the
following one, the residual may not be monotonous. A schematic illustration
of such a case is depicted in Figure 4.14.

 1e-04

 0.001

 0.01

 0.1

 1

 10

 0 10 20 30 40 50 60 70 80 90 100

Iterations

Absolute error

Residual

Threshold

FIGURE 4.14: A monotonous error evolution and its corresponding
non-monotonous residual evolution.

As can be seen, the problem induced by such variations of the residual is
that important slow-downs like the one at iteration 33 may not correspond to
the final stabilization of the process and lead to a false convergence detection
if the threshold is set too high. On the other hand, if the threshold is set
too low, the iterative process may not converge in reasonable time when the
convergence is asymptotic. Some attempts have been made to overcome that
problem by taking into account several consecutive residuals, for example:

residual(k) = ||x(k) − x(k−1)||+ ||x(k−1) − x(k−2)|| (4.32)

© 2008 by Taylor & Francis Group, LLC

Synchronous Iterations 107

in order to avoid false detections due to sharp slow-downs. However, that
does not completely solve the problem since temporary slow-downs under the
given threshold may have arbitrary lengths.

Thus, the choice of the norm used to compute the residual is a critical point
in the design of iterative algorithms and the setting of its associated threshold
often requires a careful analysis of the treated problem in order to ensure an
appropriate convergence detection.

4.6 Exercises

1. Show that a nonsingular M -matrix has the form

sI −B,

where B ≥ 0 and s > ρ(B).

2. Give examples of M -matrices and compute their principal minors.

3. Let A be a square matrix with Ai,j ≤ 0 for i 6= j. Show that A is an
M -matrix if and only if

A + εI

is a nonsingular M -matrix for all ε > 0.

4. Consider the two-point boundary-value problem:

−d2u

dx2
= 4π2 sin 2πx, 0 ≤ x ≤ 1 (4.33)

and
u(0) = u(1) = 0.

(a) Use the second central difference formulae with a constant step

size h = 1/(n + 1) to approximate d2u
dx2 and show that the discrete

approximation is the solution of a linear system Au = b where
u = (u1, ..., un).

(b) For n = 3 show that

A =




2 −1 0
−1 2 −1
0 −1 2



 , b =
π2

4




1
0
−1



 .

(c) Use a direct method to solve the ui.

(d) Use the Jacobi and the Gauss-Seidel methods to find the discrete
approximation.

© 2008 by Taylor & Francis Group, LLC

108 Parallel Iterative Algorithms

(e) Compare the results to the true solution u = sin 2πx at x = 1/4,
x = 1/2, x = 3/4 (Berman and Plemmons [31]).

5. Write a program to solve the two-point boundary-value problem (4.33)
using Jacobi algorithm, SOR algorithm with optimum relaxation pa-
rameter for n = 50, n = 200, n = 500. Discuss the obtained results
(Berman and Plemmons [31]).

6. Show that the system {
ex − y = 0
x− e−y = 0

has only one solution and write a program to solve it by the Newton
method.

7. Write a program to solve the following system of nonlinear equations by
the Newton method:





x2 + y2 + z2 − 3 = 0
xy + xz − 3yz + 1 = 0
x2 + y2 − z2 − 1 = 0.

Study the convergence of the Newton method.

8. Consider the Laplace equation

∂2f

∂x2
+

∂2f

∂y2
= 0, (x, y) ∈ [0, 2]× [0, 1] ,

with

f(0, y) = 0, f(2, y) = 6

f(x, 0) = 6, ∀x ∈ [1, 2]

∂f

∂y
(x ≤ 1, y = 0) = 0,

∂f

∂y
(x, y = 1) = 0.

(a) By using the finite difference method to approximate the second
derivatives and following the illustration example of Chapter 1,
write the linear system Au = b whose solution coincides with the
approximate solution of the above Laplace equation.

(b) By choosing step sizes ∆x = 2×10−4 and ∆x = 10−4, write a pro-
gram to solve the obtained linear system by the Jacobi algorithm
and the Gauss-Seidel algorithm.

(c) Propose and write a program to solve the linear system by a mul-
tisplitting algorithm on 10 processors.

(d) Propose and write a program to solve the linear system by a two-
stage multisplitting algorithm on 10 processors.

© 2008 by Taylor & Francis Group, LLC

Synchronous Iterations 109

9. Consider the Poisson equation

−∆u = −32x(1− x)y(1 − y) on Ω =]0, 1[
2
,

u = 0 on ∂Ω =]0, 1[× {0, 1}
⋃
{0, 1} ×]0, 1[.

(a) Following the above exercise, write a program to solve in parallel
the discretized solution of this Poisson equation by the conjugate
gradient method (∆x = ∆y = 10−4).

(b) Propose and write a program to solve the linear system by different
multisplitting algorithms on 10 processors.

(c) Compare the overall times of the synchronous executions obtained
with the different algorithms but with the same precision.

10. In all the algorithms presented in the implementation section, we have
used the AllToAllV procedure that allows all processors to broadcast a
part of a vector that they have computed. Write this procedure using
only Send and Recv operations.

11. Implement all the algorithms presented in the implementation section
using blocking and nonblocking receptions. Try to measure the perfor-
mances with twenty processors or so.

12. Using an AllReduce operation allows us to simply diffuse the maximum
of the local convergence on all processors. Try to implement the same
thing using a master processor that will receive the local convergence of
all processors, compute the global value and then diffuse the result to
all processors.

13. With a sparse matrix, split into rectangular matrices as in Figure 4.6
on each processor, implement an algorithm that allows us to compute
the arrays DependsOnMe and IDependOn as in Algorithm 4.6.

14. Most systems needing to be solved are sparse. Implement algorithms
described in this chapter with a sparse matrix representation. Then
compare the behavior of an algorithm optimized with a naive imple-
mentation.

© 2008 by Taylor & Francis Group, LLC

Chapter 5

Asynchronous Iterations

Introduction

In the grid computing framework, especially when the clusters are distant,
the ratio computation time/communication time can be weak and thus give
a considerable importance to the communications. For this reason, powerful
algorithms, such as those based on the minimization of a function, can para-
doxically become less powerful in such environments. The synchronizations
between the iterates provide the same convergence of algorithms as in the
sequential case. Nevertheless, those synchronizations are penalizing in the
distant clusters framework.

The asynchronous algorithms allow processors to compute at their own
rhythms and to send the data when they become available. The communi-
cations as well as the iterations are desynchronized, avoiding the penalizing
synchronizations and carrying out a kind of automatic overlapping of commu-
nications by computations. It is, however, necessary to precede any implemen-
tation of asynchronous iterative algorithms by a study of their convergence;
this is due to the desynchronization of the iterations (notice that the study of
the convergence is also necessary for all the iterative algorithms, even in the
synchronous or the sequential framework).

In this chapter, we are interested in the multisplitting methods and their
two-stage variants and in their coupling with the Newton method. Multi-
splitting algorithms allow us to carry out coarse grained parallelism which is
very suited in the field of grid computing. Moreover, the two-stage multisplit-
ting algorithms make it possible to choose, at the level of each processor, the
best adapted sequential algorithm to the subproblem. We thus obtain coarse
grained asynchronous algorithms with a coupling of different sequential algo-
rithms.

111

© 2008 by Taylor & Francis Group, LLC

112 Parallel Iterative Algorithms

5.1 Advantages of asynchronous algorithms

Contrary to synchronous implementations, in Asynchronous Iterations -
Asynchronous Communication (AIAC) execution modes the processors are
not coordinated in order to obtain a solution of a fixed point problem. Some
processors are allowed to compute faster than others; some communications
are allowed to be more frequent than others. The delays between processors
are unpredictable and the transmission of messages may be accomplished in
an unspecified order. Asynchronous iterations have been introduced in [38] by
Chazan and Miranker for linear problems under the name chaotic relaxation.
The pioneers in the study and the generalization to asynchronous algorithms
are Miellou [86], Baudet [30], Robert, Charnay and Musy [101], Bertsekas and
Tsitsiklis [32, 33], Bahi et al. [25] and Bahi [12].

The asynchronous iterations model describes a wide generalization of the
successive approximation method in the case of a fixed point mapping defined
on a product space, or even a product set.

This formulation is sufficiently general in order to contain:

• The successive approximation method which includes an inherent par-
allelism

• The Gauss-Seidel method which is often strictly sequential. The first of
these two standard algorithms is well designed for parallelization while
the second one is often, but not always, sequential. On the other hand,
Gauss-Seidel iterations satisfy the so-called Gauss principle, which as-
serts that a new partial result is immediately used anew. Jacobi it-
erations do not satisfy the Gauss principle. The aim of asynchronous
iterations is to satisfy in the best way the Gauss principle in a parallel
framework. In some sense they afford a compromise between the usual
good properties of the Jacobi and Gauss-Seidel methods.

Asynchronous executions have several potential advantages; we list some of
them below (see [80]):

1. They reduce the effect of bottlenecks. Indeed, if for example the com-
munication link between two processors is drastically slowed down then,
contrary to synchronous executions, all the processors will go on and
the two processors with the slow link will not slow down the processors
which do not directly depend on them.

2. They reduce the synchronization penalty. A processor can compute the
next iteration without waiting for the iterations computed by slower
processors.

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 113

3. They are well designed for systems in which synchronizations are unre-
alistic such as very dense systems and for systems where global infor-
mation is impossible to obtain such as decentralized systems.

4. They are easily restartable. For example, suppose that while solving
an optimization problem, a change happens in one parameter, as may
be the case in data networks. Then, while in synchronous computations
the system has to be stopped and restarted, in asynchronous executions,
the parameter is incorporated in each processor without waiting for all
processors to do so.

5. They provide an improvement of the convergence thanks to the Gauss
principle.

The major drawback of asynchronous algorithms is that they may diverge
while their synchronous counterparts converge. Indeed, asynchronous itera-
tions cannot be described mathematically by x(k+1) = T (x(k)).

Below, we give the mathematical model of asynchronous algorithms and we
recall their convergence conditions.

5.2 Mathematical model and convergence results

5.2.1 The mathematical model of asynchronous algorithms

Suppose again that we have L processors and that an n-dimensional un-
known vector is partitioned into L subvectors of dimension ni,
i.e., n =

∑L
i=1 ni, so that each processor i can compute a vector of dimension

ni.
Consider the system of n equations

F (x) = 0, (5.1)

and suppose that (5.1) has a unique solution x∗. Suppose that after some
algebraic transformations the above system of equations is rewritten as

x = T (x). (5.2)

Asynchronous executions of iterative algorithms associated to the above fixed
point problem are described by the behavior of the following sequence (k
denoting the kth iteration)






Given x(0) = (x
(0)
1 , ..., x

(0)
L)

for k = 0, 1, 2...
for i = 1, ..., L

x
(k+1)
i =

{
Ti(x

(ρi
1(k))

1 , ..., x
(ρi

i(k))
i , ..., x

(ρi
L(k))

L) if i ∈ s(k)

x
(k)
i if i /∈ s(k),

(5.3)

© 2008 by Taylor & Francis Group, LLC

114 Parallel Iterative Algorithms

where S = {s(k)}k∈N is a sequence of nonempty subsets of {1, ..., L}. The
subsets s(k) represent the set of components updated at the iteration k; it is
usually called the steering of the algorithm.

For i ∈ {1, ..., L}, ρi = {ρi
1(k), ..., ρi

L(k)}k∈N is a sequence of integers such
that:

∀i, j ∈ {1, ..., L}, ρi
j(k) ≤ k,

where ρi
j(k) represents the iteration number of the data coming from processor

j and available on processor i at iteration k. In other words, the quantity
k − ρi

j(k) represents the delay of processor j according to processor i when

the latter processor computes the ith block at the kth iteration. That delay
could be due to the communication time or to the computation time of the
jth block.

The sequence (5.3) describes the behavior of iterative algorithms executed
asynchronously on a parallel computer with L processors: at each iteration

k, either the processor i computes x
(k+1)
i by using the ith component Ti (so

the ith component is updated) or it does not perform any computation and it

keeps the value of x
(k)
i computed at the previous iteration.

The two following conditions have to be ensured

card{k ∈ N, i ∈ s(k)} = +∞ (5.4)

and

∀i, j ∈ {1, ..., L}, lim
k→+∞

ρi
j(k) = +∞. (5.5)

Condition (5.4) corresponds, in a standard way, to the fact that none of the
equations is definitively forgotten and so, none of the corresponding compo-
nents is not refreshed after a certain rank of the iterations.

Condition (5.5) implies that old information is purged from the system.
This results from the fact that any information is transmitted during a delay
shorter than the one of a finite number r of refreshment of components. So

ρi
j(k) = k − r

and (5.5) is satisfied.

It should be noted that in the model (5.3), we do not need to have knowledge
of the delays nor of the updated components; we only have to be sure that
conditions (5.4) and (5.5) are satisfied.

Two asynchronous executions of the same algorithm do not give rise to the
same iterations, but when the convergence of an asynchronous algorithm is
proved, this means that it converges whatever the actual conditions of exper-
imentation, provided that conditions (5.4) and (5.5) are satisfied. In what
follows, we will refer to asynchronous algorithms associated to the successive
approximations generated by a fixed point mapping T by (T, Async).

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 115

5.2.2 Some derived basic algorithms

Asynchronous fixed point methods are not only a family of algorithms suit-
able for asynchronous computations on multiprocessors, but also a general
framework allowing a general formulation of iteration methods associated
to a fixed point mapping on a product space, including the most standard
ones such as the successive approximation method (linear or nonlinear Jacobi
method) and linear or nonlinear Gauss-Seidel method among many others.

If we take ρi
j(k) = k for all processors i and j and all k ∈ N, then (5.3)

describes synchronous parallel algorithms.
If we take ρi

j(k) = k for all processors i and j, all k ∈ N and

s(k) = {1, ..., L} for k ∈ N

then (5.3) describes the successive approximation method applied to (5.2).
If we take ρi

j(k) = k for all processors i and j, all k ∈ N and

s(k) = {1 + k(mod)L} for k ∈ N

then (5.3) describes the synchronous Gauss-Seidel algorithm.
Suppose that each of the L processors deals with m equations so that

Lm = n

then to modelize the Gauss-Seidel method executed synchronously on the L
processors, it is sufficient to take

{
∀k ∈ N, s(k) =

⋃L
l=1 {(l − 1)m + 1 + k(mod)m}

∀i ∈ {1, 2, ..., n} , ρi
j(k) = k.

This method corresponds to a situation associated to Gauss’s principle, which
asserts that any obtained partial result is immediately used anew. This al-
gorithm corresponds to an ideal case in which not only each processor syn-
chronously swaps with the others the m equations to which it is devoted, but
also synchronously accesses produced results, independently of the fact that
they are produced by itself or by another.

Suppose now that each processor runs a sequential Gauss-Seidel algorithm
along the m equations to which it is devoted, and that the L processors run
asynchronously. If we suppose that each processor has a local steering

sk(ql) = (l − 1)n + 1 + ql(mod)m

then we get the asynchronous Gauss-Seidel method.
It is worthwhile to note that in the general situation of asynchronous algo-

rithms we do not know the global steering s(k), nor the delays ρi
j(k) of such

algorithms and so we are unable to specify their exact formulations. But to
study the behavior of an asynchronous algorithm it is not important to know
the exact expression of the steerings and delays; we only have to be sure that
this algorithm admits such a formulation of the form (5.3) and that conditions
(5.4), (5.5) are satisfied.

© 2008 by Taylor & Francis Group, LLC

116 Parallel Iterative Algorithms

5.2.3 Convergence results of asynchronous algorithms

In the case of a Banach product space (see the Appendix), the main con-
vergence theorem in a contraction framework is El Tarazi’s Theorem [50],
[51], formulated as follows. Consider the following maximum weighted norm

defined on a product Banach space E =
∏L

i=1 Ei by

for u = (u1, ..., uL) ∈ E =
∏L

i=1 Ei

‖u‖γ,∞ = max1≤i≤L
|ui|i
γi

(5.6)

where for i ∈ {1, ..., L} , | . |i is a norm defined on Ei and γi are positive real
numbers.

THEOREM 5.1

Let T be a mapping from D(T) ⊂ E in E and suppose that:

(a) D(T) =
∏L

i=1 Di(T)
(b) T (D(T)) ⊂ D(T)
(c) ∃u∗ ∈ D(T), such that u∗ = T (u∗)
(d) ∀u ∈ D(T), ||T (u)− u∗||γ,∞ ≤ β||u− u∗||γ,∞ with 0 < β < 1,
then each asynchronous algorithm (T, Async) associated to T converges to the
fixed point u∗ of T , whatever the starting point u0 ∈ D(T).

In fact, this theorem gives a generalization of a theorem due to Miellou
[86]: Miellou’s theorem is placed in a contraction matrix framework (with
respect to a vectorial norm) which is included in the maximum weighted norm
framework (with respect to a scalar norm). The weights γi are obtained by
the Perron-Frobenius theorem in the case of monotone operators.

Bertsekas and Tsitsiklis established a more general convergence result based
on nested sets [33]. This theorem is true in the general case of a Cartesian
metric space. We give below its formulation in the case of the n-dimensional
real space.

THEOREM 5.2

Let E =
∏L

i=1 Ei ⊂
∏L

i=1 Rni . Suppose that for each i ∈ {1, ..., L} , there

exists a sequence of nested sets E
(k)
i of subsets of Ei such that for all k ≥ 0,

1. E
(k+1)
i ⊂ E

(k)
i ,

2. T (E(k)) ⊂ E(k+1), where E(k) =
∏L

i=1 E
(k)
i ,

then under assumptions (5.4) and (5.5) every limit point of the sequence{
x(k)

}
k∈N

generated by algorithm (5.3) and starting with x(0) ∈ E(0) is a

solution of the fixed point problem (5.2).

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 117

The last condition can be enlarged to the existence of attractors for the con-
sidered asynchronous iterations in the case of perturbed fixed point mapping,
for example by round-off errors [87].

Convergence studies of asynchronous algorithms have been obtained by
Chazan and Miranker [38] for linear systems, Miellou [86], Baudet [30], El
Tarazi [50], [51] for contracting operators on the one hand and Miellou [86]
and Bertsekas [32], for monotone iterations on the other hand. Uresin and
Dubois [111] also have studied the convergence of asynchronous algorithms.

The sufficient conditions of Theorem 5.2 are shown to be necessary in the
case where ni = 1 for each i and T is a linear mapping ([38]).

Theorem 5.1 is in fact a particular situation which satisfies the general
convergence result of Theorem 5.2. Indeed, if we consider the sets

E
(k)
i =

{
ui ∈ R

ni , |ui − u∗
i |i ≤ βk

∣∣∣u(0)
i − u∗

i

∣∣∣
i

}
,

with x(0) ∈ D(T) ⊂ E, then one can easily verify that the subsets E
(k)
i satisfy

the conditions of Theorem 5.2.

In several practical situations, the exact solution of the fixed point equation

x
(k+1)
i = Ti(x

(ρi
1(k))

1 , ..., x
(k+1)
i , ..., x

(ρi
L(k))

L) in (5.3) cannot be obtained or its
computation may be prohibitive, so that one has to approximate this solution
by performing some iterations of a convergent process. In these situations, we
are dealing with inner and outer iterations. The iterations are called nonsta-
tionary since T depends on the current outer iteration k (T (k)). Theorem 5.2
is still valid by replacing T by T (k). The obtained model includes the so-called
two-stage algorithms.

When the new computed values are sent to other processors as soon as
they are computed and without waiting for the convergence, we are in the
context of asynchronous iterations with flexible communications [65], [49].
The mathematical model for these algorithms can be obtained by introducing
a second set of delays as follows:






Given x(0) = (x
(0)
1 , ..., x

(0)
L)

for k = 0, 1, 2...
for i = 1, ..., L

x
(k+1)
i =

{
Ti

(
(x

(ρi
1(k))

1 , ..., x
(ρi

L(k))
L), (x

(ri
1(k))

1 , ..., x
(ri

L(k))
L)

)
if i ∈ s(k)

x
(k)
i if i /∈ s(k).

(5.7)
For a generalization of this model when the domain consists in multiple copies
of E and each component of each copy is subject to different delays, see [64].
The following theorems ([65], [64]) which can be considered as a general-
ization of Theorem 5.1 give sufficient convergent conditions of asynchronous
algorithms with flexible communications.

© 2008 by Taylor & Francis Group, LLC

118 Parallel Iterative Algorithms

THEOREM 5.3

Assume that there exists x∗ ∈ E such that T (x∗, x∗) = x∗ and assume that
there exist γ ∈ [0, 1[and a weighted maximum norm such that for all x, y ∈ E,

||T (x, y)− x∗||γ,∞ ≤ γ max(||x− x∗||γ,∞, ||y − x∗||γ,∞),

then the asynchronous iterations described by (5.7) converges to x∗.

Asynchronous algorithms which satisfy conditions (5.4) and (5.5) are called
totally asynchronous algorithms in opposition to partial asynchronous ones.
The difference between the two kinds of algorithms mainly lies in the assump-
tions made on the delays between the processors. Condition (5.5) is replaced
by the following conditions.

There exists a positive integer B such that for every iteration k, we have

∀i, j ∈ {1, ..., L}, k −B + 1 ≤ ρi
j(k) ≤ k (5.8)

∀i ∈ {1, ..., L}, ρi
i(k) = k (5.9)

Note that condition (5.8) means that old information is purged from the
network after at most B iterations. This condition is satisfied in practice.
Condition (5.9) means that the own computed components of a processor are
never outdated. This last condition is also generally satisfied.

5.3 Convergence situations

5.3.1 The linear framework

Consider again the linear system

Ax = b, (5.10)

where A is a n× n square nonsingular matrix and let

A = M −N (5.11)

be a splitting of A, i.e., M is a nonsingular matrix. Consider the iterative
algorithm associated to the splitting (5.11) and defined by

{
x(0) given

x(k+1) = M−1Nx(k) + M−1b, for all k ∈ N
(5.12)

Let T = M−1N and |T | denotes the matrix whose entries are the absolute
values of the entries of T. Then we have the following result due to Chazan
and Miranker [38].

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 119

THEOREM 5.4

1. If ρ (|T |) < 1 (|T | = (|Ti,j |)i,j) then the asynchronous iterations (5.12)

converge to the solution of (5.10).

2. If ρ (|T |) ≥ 1 there exists a set of delays and strategies and an initial
guess x(0) such that the corresponding asynchronous iteration does not
converge to the solution of (5.10).

The proof of this theorem derives from the Perron-Frobenius theorem which
states that ρ (|T |) < 1 if and only if T is a contraction with respect to a
weighted maximum norm of the form (5.6).

In the next part of this section we are interested in the case of M -matrices
(see the Appendix). Let us suppose that A = (Ai,j) is an M -matrix and
consider the by point Jacobi splitting of A,

A = D −B,

where D = diag(..., Ai,i, ...). Remark that as A is an M -matrix, B is a non-
negative matrix. Consider the by point Jacobi iterations associated to the
fixed point mapping G defined by

∀x ∈ R
n, y = G(x)⇔ y = D−1Bx + D−1b,

then we have the following result which is proved for example in [26].

PROPOSITION 5.1

G is contractive with respect to a weighted maximum norm of the form (5.6),
where the vector γ is obtained from the Perron-Frobenius theory for nonnega-
tive matrices and the constant of contraction of G is either ρ(D−1B) if D−1B
is irreducible or ρ(D−1B) + ε (for any ε > 0) if D−1B is reducible.

The next result, due to Bahi and Miellou [26], can be considered as an exten-
sion of the classical Stein-Rosenberg theorem [108] in the case of asynchronous
algorithms. It allows us to build asynchronous convergent algorithms and to
compare their speed of convergence.

Let A = M − N be a regular per block splitting of A and T be the fixed
point mapping corresponding to this splitting, i.e.,

∀x ∈ R
n, y = T (x)⇔ y = M−1Nx + M−1b.

Consider also Tω the relaxed fixed point mapping defined by

∀x ∈ R
n, y = Tω(x)⇔ y = (1− ω)x + T (x),

then

© 2008 by Taylor & Francis Group, LLC

120 Parallel Iterative Algorithms

PROPOSITION 5.2

If ω ∈]0, 2
1+ρ(M−1N) [then any asynchronous algorithm associated to Tω

converges to the solution of (5.10). Moreover,

ρ(M−1N) < ρ(D−1B) < 1.

It should be noticed that, as stated in [26], the above proposition is also
true in the case where A is an H-matrix with positive diagonal elements.

5.3.2 The nonlinear framework

Suppose that in the system of equations (5.1), F is a nonlinear mapping and
that there exists a unique solution x∗ on D(F) ⊂ Rn. Suppose also that we
have an iterative algorithm whose convergence is described by a fixed point
mapping T which satisfies x∗ = T (x∗), then in [50] we have the following
result on the local convergence of asynchronous iterations associated to T.
This theorem can be considered as a generalization of the Ostrowski theorem
[95] on successive iterations.

THEOREM 5.5

Assume that T is Fréchet differentiable at x∗ and that x∗ lies on the interior
of D(F). If ρ(|T ′(x)|) < 1 then there exists a neighborhood Vx∗ of x∗ such
that any asynchronous iteration associated to T and started with x(0) ∈ Vx∗

converges to x∗.

An important iterative algorithm to solve (5.1) is the Newton algorithm for
which

T (x) = x− F ′(x)−1F (x).

As T ′(x∗) = 0, the above theorem can be applied.
In practice, the computation of F ′(x)−1 is expensive so one may use the

quasi Newton methods by replacing F ′(x)−1 by a more simple computation.
The above theorem is then applied by considering the spectral radius of the
new |T ′(x)| .

5.4 Parallel asynchronous multisplitting algorithms

In this section we come back to parallel multisplitting algorithms and we an-
alyze their convergence when they are executed asynchronously on a grid envi-
ronment. Multisplitting algorithms are well suited for parallel computing be-
cause each splitting gives rise to a subproblem which can be solved by a proces-
sor. Parallel asynchronous multisplitting algorithms may have several advan-

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 121

tages. Indeed, in general, when the ratio communication time/computation
time is not negligible, asynchronous execution may reduce the total time of
computation by cancelling the idle times due to synchronizations between the
iterations.

Another important point of multisplitting algorithms is that a processor
may use a direct solver which is adapted to its problem independently from
the other processors, which induces an interesting coupling of different solvers
to treat a large problem on a grid environment.

In the next part of this section we follow the paper of Bahi et al. [27]
and we give a unified mathematical framework of asynchronous multisplitting
algorithms and then we consider the linear and nonlinear contexts.

5.4.1 A general framework of asynchronous multisplitting
methods

We consider problems of the form (5.1)

F (x) = 0, x ∈ D ⊂ R
n

where F is a nonlinear operator defined on a closed set D where

D =

n∏

i=1

di and di ⊂ R are closed and convex. (5.13)

Suppose that the solution of (5.1) is x∗. Suppose also the existence of L
mappings T (l) on D such that

T (l)(D) ⊂ D (5.14)

and
T (l)(x∗) = x∗, ∀l ∈ {1, ..., L} (5.15)

Assume that for l ∈ {1, ..., L}, T (l) is contractive with respect to x∗ and to a
norm | . |∞,γ , 




|x|∞,γ = max

1≤i≤n

|xi|
γi

γi > 0.
(5.16)

Here, |xi| denotes the absolute value of xi in R, i.e.,

∣∣∣T (l)(x)− x∗
∣∣∣
∞,γ
≤ νl |x− x∗|∞,γ (5.17)

DEFINITION 5.1 A formal multisplitting associated to (5.1) is a col-
lection of fixed point problems

x− T (l)(x) = 0, l ∈ {1, ..., L}

© 2008 by Taylor & Francis Group, LLC

122 Parallel Iterative Algorithms

where each T (l) satisfies the conditions (5.14), (5.15) and (5.17). Let us fix
the following notations,

xl and xk, l, k ∈ {1, ..., L}

are vectors of Rn the components of which are

xl
i and xk

j , i, j ∈ {1, ..., n} .

Define the extended fixed point mapping

{
T : (Rn)

L −→ (Rn)
L

X = (x1, ..., xL) 7−→ Y = (y1, ..., yL)

such that for l ∈ {1, ..., L}





yl = T (l)(zl)

zl =
L∑

k=1

Elk(X)xk (5.18)

where Elk(X) are weighting matrices satisfying





Elk(X) are diagonal matrices
Elk(X) ≥ 0
L∑

k=1

Elk(X) = In (identity matrix in Rn) , ∀l ∈ {1, ..., L}
(5.19)

Since T (l)(D) ⊂ D we have
T (U) ⊂ U (5.20)

where U =
L∏

i=1

D.

Then the successive approximations associated to the extended fixed point
mapping T describe the behavior of any multisplitting algorithms associated
to (5.1).

As mentioned in [27] and in the previous chapter, the dependence of the
weighting matrices Elk(X) on l, k and the current element X allows us:

• to take Elk(X) = Ek in order to obtain O’Leary and White multisplit-
ting algorithms, as seen in Chapter 4.

• to define Elk(X) = Elk depending on the index l in order to give a
presentation of either the Schwarz alternating method or the general
Schwarz multisplitting methods, as seen in Chapter 4.

• to take Elk(X) depending on both the index l and on the element X of

(Rn)L , the value of which must be the current iterate Xp in order to
describe two-stage multisplitting methods.

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 123

Under the assumptions of (5.14), (5.17), (5.19) we have the following result
on T :

PROPOSITION 5.3

Denote X∗ = (x∗, ..., x∗) where x∗ is the solution of (5.1), then T is contrac-
tive with respect to X∗ and to | . |∞,γ which is defined by

|X |∞,γ = max
1≤k≤L

max
1≤i≤n

∣∣(xk
)
i

∣∣
γi

(5.21)

Its constant of contraction is

ν = max
1≤l≤L

νl (5.22)

and X∗ is the fixed point of T .

PROOF Take any Y = T (X), by (5.18) we have

∣∣yl − x∗
∣∣
∞,γ

=

∣∣∣∣∣T
(l)

(
L∑

k=1

Elk(X)xk

)
− x∗

∣∣∣∣∣
∞,γ

we have

∣∣∣∣
(

L∑
k=1

Elk(X)
(
xk − x∗

))

i

∣∣∣∣
γi

=

∣∣∣∣∣
L∑

k=1

n∑
j=1

(Elk(X))i,j

(
xk − x∗

)
j

∣∣∣∣∣
γi

Since the weighting matrices Elk(X) are diagonals, we have

∣∣∣∣∣∣

n∑

j=1

(Elk(X))i,j

(
xk − x∗

)
j

∣∣∣∣∣∣
=
∣∣∣(Elk(X))i,i

(
xk − x∗

)
i

∣∣∣

condition (5.19) gives

∣∣∣∣∣

L∑

k=1

(Elk(X))i,i

(
xk − x∗

)
i

∣∣∣∣∣ ≤
L∑

k=1

(Elk)i,i (X)

︸ ︷︷ ︸
1

max
1≤k≤L

∣∣(xk − x∗
)
i

∣∣

so

max
1≤i≤n

∣∣∣∣
(

T (l)

(
L∑

k=1

Elk(X)xk

)
− x∗

)

i

∣∣∣∣
γi

≤ νl max
1≤i≤n

max
1≤k≤L

∣∣(xk − x∗
)
i

∣∣
γi

© 2008 by Taylor & Francis Group, LLC

124 Parallel Iterative Algorithms

then

max
1≤l≤L

max
1≤i≤n

∣∣(yl − x∗)i

∣∣
γi

≤ max
1≤l≤L

(
νl max

1≤i≤n

∣∣(xl − x∗
)
i

∣∣
γi

)

by (5.21) and (5.22) we have

|Y −X∗|∞,γ ≤ ν |X −X∗|∞,γ

since
L∑

k=1

Elk(X) = In and x∗ = T (l)(x∗) we have T (X∗) = X∗.

The above result gives the important following general convergence result of
asynchronous multisplitting algorithms described by the fixed point mapping
T for solving (5.1).

COROLLARY 5.1

Under the assumptions of Proposition 5.3, any asynchronous algorithm
(T , Async), corresponding to T and starting with X0 ∈ U , converges to the
solution of (5.1).

PROOF Condition (5.20) implies that T has a unique fixed point; Theo-
rem 5.1 and Proposition 5.3 end the proof.

5.4.2 Asynchronous multisplitting algorithms for linear
problems

In Chapter 4, we have shown how to build convergent synchronous multi-
splitting algorithms by splitting the nonsingular square matrix A of the linear
system. We will now give a convergence result on asynchronous multisplitting
algorithms for the solution of linear systems.

Consider again, as in Section 5.3.1, the linear system (5.10)

Ax = b,

where A is a n× n square nonsingular matrix and consider L splittings of A
which are supposed to be regular

A = Ml −Nl, l = 1, ..., L

Then we can build a multisplitting as in definition (5.1) by setting

T (l)(x) = M−1
l Nlx + M−1

l b.

Thus the successive approximations associated to the extended fixed point
mapping T defined in (5.18) describe the behavior of parallel multisplitting
algorithms for the solution of (5.10).

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 125

Process (5.3), where T is replaced by T , describes the behavior of asyn-
chronous execution of parallel multisplitting algorithms. A simple application
of Proposition 5.2 shows that, for example, if A is an M -matrix then Tl are
contractive mappings and as a consequence of Proposition 5.3 and Corol-
lary 5.1 we obtain the following convergence result.

PROPOSITION 5.4

If the matrix A of the linear system (5.10) is an M -matrix, then any asyn-
chronous multisplitting algorithm, associated with regular splittings of A, con-
verges to the solution of the linear system (5.10).

By a suitable choice of the weighting matrices Elk we can, as seen for the
parallel synchronous case in Chapter 4, define asynchronous versions of the
O’Leary and White and Schwarz multisubdomain algorithms.

5.4.3 Asynchronous multisplitting algorithms for nonlinear
problems

In this section we introduce a tool which allows us to build splittings for
either linear or nonlinear fixed point equations.

For a more general tool to build splittings of a nonlinear problem, the
interested reader should consult [27]. We consider problems in the form (5.1),

F (x) = 0

which can be rewritten in the fixed point equation form (5.2),

x = T (x), x ∈ D ⊂ R
n,

where D satisfies (5.13) and T satisfies the contraction assumption

{ |T (x)− T (y)|∞,γ ≤ ν |x− y|∞,γ

0 < ν < 1

and

T (D) ⊂ D (5.23)

Let Il, l ∈ {1, ..., L}, be subsets of {1, ..., n} and IC
l their complementaries

Il ∪ IC
l = {1, ..., n} , ∀l ∈ {1, ..., L} (5.24)

and define the vectors σl
i (u, v) by






σl
i(u, v) = (w1, ..., wn) such that

wj = uj if (i, j ∈ Il) or
(
i, j ∈ IC

l

)

wj = vj otherwise
(5.25)

© 2008 by Taylor & Francis Group, LLC

126 Parallel Iterative Algorithms

DEFINITION 5.2 The block
(
Il, I

C
l

)
splittings are defined by the follow-

ing mappings Fl

∀x ∈ D, ∀i ∈ {1, ..., n} , T (l)
i (x) = Ti

(
σl

i

(
T (l)(x), x

))
(5.26)

In such a case we usually take

(Elk)i,j = 0 or (Ek)i,j = 0 for j ∈ IC
k (5.27)

It should be noticed that if we except particular problems which admit a
natural block decomposition structure suitable for block iterative algorithms,
the previous condition (5.27) is very important, especially for overlapping
block decomposition techniques, because in the evaluation of T (l), for any k
we never have to use any component the index of which lies in IC

k , so in the
block

(
Il, I

C
l

)
splitting the solution of a diagonal block subproblem associated

to any IC
l never has to be computed.

PROPOSITION 5.5

For l ∈ {1, ..., L} , T (l) is | . |∞,γ contractive, its constant is less than or equal
to the constant of T and the fixed point of T (l) is x∗.

PROOF
∣∣∣T (l)

i (x) − T
(l)
i (y)

∣∣∣
γi

=

∣∣Ti

(
σl

i

(
T (l)(x), x

))
− Ti

(
σl

i

(
T (l)(y), y

))∣∣
γi

≤ ν
∣∣∣σl

i

(
T (l)(x), x

)
− σl

i

(
T (l)(y), y

)∣∣∣
∞,γ

≤ ν max



 max
1≤j≤n

∣∣∣T (l)
j (x)− T

(l)
j (y)

∣∣∣
γj

, max
1≤j≤n

|xj − yj |
γj





so either ∣∣∣T (l)
i (x)− T

(l)
i (y)

∣∣∣
γi

≤ ν max
1≤j≤n

∣∣∣T (l)
j (x)− T

(l)
j (y)

∣∣∣
γj

which implies that
∣∣∣T (l)

i (x)− T
(l)
i (y)

∣∣∣ = 0
or ∣∣∣T (l)

i (x)− T
(l)
i (y)

∣∣∣
γi

≤ ν max
1≤j≤n

|xj − yj|
γj

so ∣∣∣T (l)(x)− T (l)(y)
∣∣∣
∞,γ
≤ ν |x− y|∞,γ

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 127

which implies that T (l) is contractive and that its constant is less than or
equal to ν.

Moreover by (5.23) F and T have an unique fixed point; let

T
(l)
i (x) = xi

so equivalently
xi = Ti

(
σl

i (x, x)
)

so
x = T (x)

hence T (l) and T have the same fixed point x∗.

5.4.3.1 Extended fixed point mapping associated with
(
Il, I

C
l

)
mul-

tisplitting

Take the diagonal positive matrices Elk(X) depending only on k

Elk(X) = Ek

and satisfying 



L∑
k=1

Ek = In

(Ek)i,i = 0, ∀i /∈ Ik

(5.28)

The asynchronous iterations corresponding to
(
Il, I

C
l

)
multisplitting are de-

fined by the fixed point mapping

T OW (x1, ..., xL) = (y1, ..., yL) such that




yl = T (l)(z)

z =
L∑

k=1

Ekxk (5.29)

where for l ∈ {1, ..., L} , T (l) is defined by (5.26). We remark that this mul-
tisplitting algorithm is analogous to O’Leary and White multisplitting algo-
rithms for nonlinear problems.

As a consequence of Propositions 5.3 and 5.5 we have

COROLLARY 5.2

Any asynchronous algorithm (T OW , Async) corresponding to T OW and start-
ing with X0 ∈ U converges to the solution of (5.1).

5.4.3.2 The discrete analogue of Schwarz alternating method and
its multisubdomain generalizations

Asynchronous Schwarz alternating methods and their multisubdomain gen-
eralizations are obtained by choosing the weighted matrices exactly as in
Chapter 4. In the following, we point out, once again, these choices.

© 2008 by Taylor & Francis Group, LLC

128 Parallel Iterative Algorithms

5.4.3.3 Discrete analogue of the Schwarz alternating method

Suppose I1

⋂
I2 6= ∅, so we have an overlap between the 1st and the 2nd

subdomains. Consider the matrices Elk such that

(E11)i,i =

{
1 ∀i ∈ I1

0 ∀i /∈ I1
, (E12)i,i =

{
0 ∀i ∈ I1

1 ∀i /∈ I1
(5.30)

(E21)i,i =

{
1 ∀i /∈ I2

0 ∀i ∈ I2
, (E22)i,i =

{
0 ∀i /∈ I2

1 ∀i ∈ I2

Define the fixed point mapping

T S(x1, x2) = (y1, y2) such that for l = 1, 2




yl = T (l)(zl)

zl =
2∑

k=1

Elkxk (5.31)

where for l ∈ {1, 2} , T (l) is defined by (5.26). Then the additive discrete
analogue of the Schwarz alternating method corresponds to the successive
approximation method applied to T S , and the multiplicative discrete analogue
of the Schwarz alternating method corresponds to the block nonlinear Gauss-
Seidel method applied to T S . For the use of such methods as preconditioners
of Krylov spaces methods, we refer to [72], [106].

5.4.3.4 Discrete analogue of the multisubdomain Schwarz method

We introduce the weighting matrices Ek satisfying (5.28) and the matrices
Elk such that for l ∈ {1, ..., L}

(Ell)i,i =

{
1 if i ∈ Il

0 if i /∈ Il

(Elk)i,i =

{
0 if i ∈ Il

(Ek)i,i if i /∈ Il

(5.32)

the asynchronous iterations, corresponding to the discrete analogue of the
multisubdomain Schwarz method, are defined by the fixed point mapping
T MS

T MS(x1, ..., xL) = (y1, ..., yL) such that





yl = T (l)(zl)

zl =
L∑

k=1

Elkxk (5.33)

where Elk are defined by (5.32) and T (l) are defined by (5.26).
T being T OW or T S or T MS we have the following Corollary.

COROLLARY 5.3

Any asynchronous algorithm (T , Async), corresponding to T and starting with
X0 ∈ U , converges to the solution of (5.1).

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 129

5.5 Coupling Newton and multisplitting algorithms

The standard algorithm for solving the system of nonlinear equations (5.1)
is the Newton algorithm; an effective way to use the Newton algorithm in a
parallel environment is to couple it with multisplitting algorithms.

There are two ways to realize this coupling. The first one consists in split-
ting the linear problems involved in each iteration of the Newton algorithm
and the second one consists in splitting the nonlinear problem (5.1) itself
into subproblems and solving each subproblem using the Newton algorithm.
Below, we describe the algorithmic formulation of these two kinds of mixed
Newton multisplitting algorithms.

5.5.1 Newton-multisplitting algorithms: multisplitting algo-
rithms as inner algorithms in the Newton method

Recall that the Newton algorithm for solving the nonlinear system of equa-
tion (5.1), F (x) = 0 is described by the iterations

x(k+1) = x(k) − F ′(x(k))−1F (x(k)), k = 0, 1, 2, ...

As in Chapter 4, we will suppose that (5.1) has a solution x∗, that F is
Fréchet differentiable on a neighborhood of x∗ and that F ′ is nonsingular and
Lipschitz continuous on a neighborhood of x∗. We have seen in Chapter 4 that
the Newton method involves the solution of a linear system

F ′(x(k))y = F (x(k)) (5.34)

and that this solution allows the computation of the next Newton iterates
x(k+1) by setting y(k) = y in the following equation:

x(k+1) = x(k) − y(k), k = 0, 1, 2, ...

The solution of (5.34) by splitting F ′(x(k)) gives rise to the multisplitting
methods to solve this kind of problem. We call the global algorithm to solve
(5.1) the Newton-multisplitting algorithm.

So, suppose we have L processors and that, as explained in Chapter 4, we
have L splittings of F ′(x(k)) at each iteration k, so that we have

F ′(x(k)) = Ml(x
(k))−Nl(x

(k)), l = 1, ..., L. (5.35)

For simplicity sake, suppose that the weighting matrices only depend on one
index and that the solution of system (5.34) is approximated by performing
q iterations of the multisplitting method.

The parallel Newton-multisplitting method can be defined as follows

x(k+1) = G(x(k)), (5.36)

© 2008 by Taylor & Francis Group, LLC

130 Parallel Iterative Algorithms

where

G(x) = x−A(x)F (x), (5.37)

and

A(x) =

L∑

l=1

El(x)

q−1∑

j=0

(Ml(x)−1Nl(x))jMl(x)−1.

If we take y(0) = 0, then

A(x) =

L∑

l=1

El(x)(I − (Ml(x)−1Nl(x))q(F ′(x))−1. (5.38)

THEOREM 5.6

If the splittings (5.35) are weak regular convergent, then there exists a neigh-
borhood Vx∗ of the solution x∗ such that any asynchronous Newton-
Multisplitting algorithm associated to (5.37) and (5.38), and starting from
x(0) ∈ Vx∗ converges to x∗.

PROOF We apply Theorem 5.5. We have

G′(x∗) = I −A(x∗)F ′(x∗). (5.39)

From (5.38) we have

G′(x∗) = I −
L∑

l=1

El(x
∗)(I − (Ml(x

∗)−1Nl(x
∗))q . (5.40)

The properties of the weighting matrices imply that

|G′(x∗)| = G′(x∗) =

L∑

l=1

El(x
∗)(Ml(x

∗)−1Nl(x
∗))q. (5.41)

As the splittings (5.35) are convergent, we deduce by the application of Propo-
sition 3.2 of [27] that

ρ(G′(x∗)) ≤ max
1≤l≤L

ρ((Ml(x
∗)−1Nl(x

∗))q) < 1.

The result follows from Theorem 5.5.

There exist particular situations which satisfy the assumptions of the above
convergence result. For example, if F ′(x) is monotone (i.e., F ′(x)−1 ≥ 0) then
every weak regular splitting of F ′(x) is convergent [31].

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 131

5.5.2 Nonlinear multisplitting-Newton algorithms

Another way to mix the Newton method and the multisplitting approach is
to use the result of Bahi et al. [26], [27] on nonlinear multisplitting. Indeed,
the Newton method applied to the nonlinear problem (5.1) is described by
the iterations associated to the contractive fixed point mapping

x = T (x), x ∈ R
n,

where

T (x) = x− F ′(x)−1F (x).

Consider now L subsets Il of {1, ..., n} and weights Elk, l, k ∈ {1, ..., L} , then
Definition 5.2 of Section 5.4.3 allows us to generate L splittings of (5.2),

x = T (l)(x), x ∈ R
n,

with
xi = Ti

(
σl

i

(
T (l)(x), x

))
.

The application of Proposition 5.5 implies that T (l) are contractive mappings,
so they define a nonlinear formal multisplitting: x− T (l)(x), l ∈ {1, ..., L} as
in Definition 5.1. We consider asynchronous algorithms associated to those
splittings and weights Elk. We call those algorithms nonlinear multisplitting-
Newton algorithms.

Practically, the iterations, generated by each fixed point mapping T (l) de-
fined just above, correspond to the iterations generated by the Newton algo-
rithm and applied to a subproblem of (5.1). These subproblems are defined by
the (Il, I

C
l) splittings; they correspond to the computation of card(Il) com-

ponents of x. We then have the convergence result which is a consequence of
Proposition 5.3 and Corollary 5.1.

PROPOSITION 5.6

Suppose that the Newton algorithm with the initial guess x(0) ∈ Vx∗ converges
to x∗, a solution of (5.1) in Vx∗ ⊂ D(F), then the nonlinear multisplitting-
Newton algorithm started with x(0) converges to x∗.

5.6 Implementation

The implementation of an asynchronous iterative algorithm may seem easier
to achieve since there is no more synchronization. Nevertheless, as described
in the previous section, the convergence detection is different and is not the

© 2008 by Taylor & Francis Group, LLC

132 Parallel Iterative Algorithms

most trivial point to implement in a distributed environment. Indeed, ac-
cording to the dedicated architecture, a centralized mechanism can either be
used (for a parallel architecture or a cluster with a high speed network with a
quite limited number of processors) or is completely inconceivable (with a dis-
tributed cluster or a grid with a large number of processors). In Section 3.2.1,
the classification of parallel iterative algorithms points out another crucial
point allowing us to distinguish a synchronous parallel iterative algorithm
from an asynchronous one. It deals with the communications management.
With a synchronous algorithm, all messages sent are received and used. With
an asynchronous algorithm, according to the implementation of communica-
tions management, it may not be the case. Indeed, on the sending side, some
messages may not be actually sent if newer local data are available before their
emission. Likewise, on the receiving side, some messages may not be taken
into account if newer messages arrived before their use. Furthermore, it should
be remembered that asynchronous iterative algorithms support message loss.

In Chapter 4, we have detailed the parallelization of some well-known al-
gorithms. Only some of them can be executed using asynchronous iterations.
For example, it is not possible to execute a parallel Conjugate Gradient, or
a GMRES with asynchronous iterations. Roughly speaking, only algorithms
based on the Jacobi method and the multisplitting method can be executed
in an asynchronous mode.

Before explaining those algorithms, it is essential to review the different
ways to manage the asynchronism in programming and execution environ-
ments. With AIAC algorithms, the iterations are asynchronous and so are the
communications. Consequently, communications must be dissociated from
the computations. With several traditional parallel environments based on
the message passing paradigm (like PVM [66], MPI [71]), it is possible to use
buffered sendings and nonblocking receptions. Nevertheless all emitted mes-
sages must be received using a receive operation. One of the particularities of
AIAC algorithms is that when there are several versions of the same message
(corresponding to different iterations), the program should only take the last
version in order to converge faster. To clarify this, let us take a simple exam-
ple. Consider that two processors are executing an AIAC algorithm and that
processor 1 performs its iterations two times faster than processor 2. Consider
also, that at each iteration processor 2 receives on average two messages from
processor 1 and that processor 1 only receives a message from processor 2
approximately one iteration out of two. If the processors only test an iter-
ation once, if a message arrives, then processor 2 would have a lot of delay
in the reception of messages since at each iteration k it would approximately
have k messages in delay. Of course, it is not possible to know a priori the
number of messages that a processor will receive at each iteration and this
number varies from one iteration to another. So, in a traditional message
passing based environment, a naive solution consists in receiving all messages
at each iteration and only using the last one. Then, the problem comes from
the convergence detection that must be very efficient, and for that, as soon

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 133

as a message for the convergence arrives it must be detected. That is why
it is essential to dissociate the communications from the computations. For
that, the only solution from our point of view lies in using a multithreaded
environment which allows us to execute the computations in one thread and
the management of the communications in other threads.

In order to keep the same formalism, we do not focus on the implementation
of AIAC algorithms with shared memory architectures. With such environ-
ments, as soon as a mechanism to simulate communications between AIAC
algorithms has been implemented, the following algorithms are quite easy to
adapt.

5.6.1 Some solutions to manage the communications using
threads

According to the flexibility of the communications in an AIAC algorithm,
it is possible to distinguish different levels of communications management.
The simplest solution, from the programmer point of view, consists in using an
environment suited to the design of AIAC algorithms. Currently two program-
ming environments fulfill those requirements, namely, JACE [23, 22, 24, 19]
and CRAC [40]. Both environments have been developed in order to provide a
communication library that allows us to design synchronous and asynchronous
iterative algorithms. They use two queues that are executed into two threads:
one for the message sendings and another one for the receptions. According
to the execution mode (synchronous or asynchronous), the operating of those
queues is different. In the synchronous mode, those queues are managed tra-
ditionally, i.e., when a computation task needs to send a message, the message
is put in the sending queue that actually sends it, the reception queue receives
it on the destination processor and the computation task on the other machine
can use the message. In the asynchronous mode, the sending queue first checks
whether a similar version of the message is not already in the queue (based
on its tag, sender and receiver). In this case, the previous one is replaced by
the newest one. The reception queue acts similarly when receiving a message.
It checks the reception queue and replaces an old message by a recent one
whenever possible. So, when a computation task receives a message, it is
ensured to have the latest version available. Of course, in JACE and CRAC,
the programmer does not need to interact with the threads which transpar-
ently manage the communications. Those two environments are detailed in
Sections 6.2.1 and 6.2.2.

With a multithreaded version of MPI [7], or Corba [98] or PM2 [89] which
are implicitly multithreaded, it is possible to implement AIAC algorithms.
However, this requires a stronger endeavor from the programmer point of
view since the management of threads is explicit. Using an environment with
explicit management of threads, a programmer may assign one or more threads
in charge of sending some messages and as many in charge of receiving them.
Although the endeavor is stronger, it allows us to manage more precisely the

© 2008 by Taylor & Francis Group, LLC

134 Parallel Iterative Algorithms

communications. For example, it is possible to implement flexible models
defined in Section 3.4.3. The sending of a message is as flexible as using
any message passing interface since a user can send a message anywhere in
a program. However, using a thread that can directly handle a message as
its reception occurs is a possible source of convergence speed-up. As network
resources in a distant environment often are a critical point, a possible strategy
consists in assigning a thread to each destination neighbor and in waiting
for the previous message to have arrived at its destination before sending
another one. For that, the use of a mutex combined with an acknowledgment
message allows the programmer to control the sending of each message. The
principle is the following: when a processor wants to send a message to a given
neighbor, the thread that is dedicated to this neighbor is locked (unless it was
already locked and in that case, the message is not sent). Then the message
is sent, the thread on the emitter processor is blocked until the neighbor
confirms that it has received the message. When the emitting thread has
received the acknowledgement of reception, it unlocks the mutex. So, it is
then ready to send another message. If another message was supposed to be
sent, then the mutex would be locked so the sending would not be possible. As
a consequence, the network would not be overloaded with a useless message,
since the previous one would not have been handled yet. One of the drawbacks
of this explicit management of threads is that when the number of neighbors
per processor is not known in advance or is dynamic, it is difficult to define
a number of threads a priori. Moreover, that difficulty comes for both the
sending and the reception. Furthermore, the explicit management of threads
requires much more attention than traditional programming because they may
lead to deadlock situations if the programmer is not very attentive. When
the number of threads running simultaneously becomes too important, the
scheduling may be less fair, which is not acceptable. In fact, the fairness is
an essential requirement of the threads management since the convergence
conditions of AIAC algorithms involve that each processor should be able to
regularly update its components.

In the following we present some asynchronous iterative algorithms in which
we consider that messages arrive in their emitted order. If this is not the case,
a simple mechanism should be added which consists in adding the iteration
number at which the sent data have been produced on the sender. Then,
on the receiver, the iteration number included in the message is compared
to the one of the last message taken into account from that source. Finally,
if the number in the message is smaller than the current one, the message
is suppressed without being taken into account. Otherwise, the message is
used and the current iteration number related to that source is updated.
Implementing that mechanism allows us to ensure a faster convergence.

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 135

5.6.2 Asynchronous Jacobi algorithm

The asynchronous version of the synchronous Jacobi algorithm presents sev-
eral similarities with it. In fact only two parts are different, the management
of the communications and the convergence detection. In Algorithm 5.1 we
give a possible implementation of the asynchronous Jacobi. With such a for-
malism which hides the mechanism to manage the asynchronism, it is quite
easy to write the asynchronous version starting with the synchronous one. In
this algorithm, receptions are nonblocking whereas they were blocking in the
synchronous version. So, after the sendings, a processor takes the last version
of its neighbors’ messages if new messages have arrived since the previous
iteration. In Algorithm 5.1, restarting a new iteration without receiving any
new messages leads to the same computation. That is why a simple way to
enhance this algorithm consists in detecting if a new message has arrived at
each iteration. If this is not the case, it would probably be better to wait for a
few micro seconds and to test again if a new message has arrived. According
to the number of neighbors, it may be wise to wait for the reception of a given
number of messages.

The other difference with the synchronous version of the Jacobi algorithm
concerns the convergence detection. As described in Section 5.7, it is possible
to use a centralized version or a decentralized version in order to detect the
convergence. In this algorithm we consider that a function called convergence
allows us to detect the global convergence. This function uses the local error
and the threshold Epsilon used to stop the iterations.

If receptions are directly managed by threads, they can occur at any mo-
ment in the program. In that case, Algorithm 5.1 is slightly different. In fact,
the call to the receive function is no longer in the main iteration. As recep-
tions are completely free and do not only occur at the end of an iteration, this
version of the Jacobi algorithm is based on what we have called receiver-side

5.6.3 Asynchronous block Jacobi algorithm

This algorithm is the asynchronous version of the synchronous block Jacobi
one. Compared to the synchronous version, it presents the advantage of being
less perturbed by synchronizations as each processor has a block of the ma-
trix to compute with a direct method that may require a non-negligible time
for each subsystem. Compared to the Jacobi algorithm (without blocks), the
asynchronous block version will probably converge in less iterations but they
will probably be longer. So, during the solving of the subsystem, messages
from the neighbors have time to arrive. Consequently, the overlapping of mes-
sages by computations with this algorithm may be more important than in the
asynchronous Jacobi algorithm, especially when dealing with large matrices.

This algorithm, like its synchronous version, also requires that the linear
solver used to solve the subsystem provides a result without approximation.
In other words, a direct method is required.

© 2008 by Taylor & Francis Group, LLC

semi-flexibility (cf Section 3.4.3.1.2).

136 Parallel Iterative Algorithms

Algorithm 5.1 Asynchronous Jacobi algorithm

NbProcs : number of processors
MyRank : rank of the processor
Size : local size of the matrix
SizeGlo : global size of the matrix
Offset : offset of the global index
A[Size][SizeGlo]: local part of the matrix
X[Size]: local part of the solution vector
XOld[SizeGlo]: global solution vector
B[Size]: local part of the right-hand side vector
Error : local error
Epsilon: desired accuracy
Converged: convergence state

repeat
for i=0 to Size−1 do

X[i] ← 0
for j=0 to i+Offset−1 do

X[i] ← X[i]+A[i][j]×XOld[j]
end for
for j=i+Offset+1 to SizeGlo−1 do

X[i] ← X[i]+A[i][j]×XOld[j]
end for

end for
for i=0 to Size−1 do

X[i] ← (B[i]−X[i])/A[i][i+Offset]
end for
Error← 0
for i=0 to Size−1 do

Error ← max(Error, abs(A[i]−XOld[i+Offset]))
XOld[i+Offset] ← X[i]

end for
for k=0 to NbProcs−1 do

if k 6= MyRank then
Send(k, X)

end if
end for
for k=0 to NbProcs−1 do

if k 6= MyRank then
Recv(k, XOld[k×Size])

end if
end for
Converged ← convergence(Error, Epsilon)

until Converged = true

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 137

Algorithm 5.2 Asynchronous block Jacobi algorithm

NbProcs: number of processors
MyRank: rank of the processor
Size: local size of the matrix
SizeGlo: global size of the matrix
Offset: offset of the global index
A[Size][SizeGlo]: local part of the matrix
X[Size]: local part of the solution vector
B[Size]: local part of the right-hand side vector
BTmp[Size]: intermediate local part of the right-hand side vector
XOld[SizeGlo]: global solution vector
Error: local error
Epsilon: desired accuracy
Converged: convergence state

repeat
for i=0 to Size−1 do

BTmp[i]← B[i]
end for
for i=0 to Size−1 do

for j=0 to Offset−1 do
BTmp[i] ← BTmp[i]−A[i][j]×XOld[j]

end for
for j=Offset+Size to SizeGlo−1 do

BTmp[i] ← BTmp[i]−A[i][j]×XOld[j]
end for

end for
X← Solve(A, BTmp)
Error← 0
for i=0 to Size−1 do

Error ← max(Error, abs(X[i]−XOld[i+Offset]))
XOld[i+Offset]← X[i]

end for
for k=0 to NbProcs−1 do

if k 6= MyRank then
Send(k, X)

end if
end for
for k=0 to NbProcs−1 do

if k 6= MyRank then
Recv(k, XOld[k×Size])

end if
end for
Converged ← convergence(Error, Epsilon)

until Converged = true

© 2008 by Taylor & Francis Group, LLC

138 Parallel Iterative Algorithms

5.6.4 Asynchronous multisplitting algorithm for solving lin-
ear systems

The asynchronous version of the multisplitting method for solving linear
systems is designed to be efficient for grid or distant clusters. This method
actually features interesting characteristics for this. It is a coarse grained
algorithm since a processor solves the subsystem it is in charge of at each it-
eration either using a sequential iterative solver (i.e., so we obtain a two-stage
algorithm) or a direct one. According to the characteristics of the subsys-
tems obtained by the splitting and the parameters of the architecture, a good
choice of the inner method can drastically change the performances. This
method allows us to overlap communications with computations. This fea-
ture is typically provided by the asynchronism of the method. Consequently,
we strongly believe that this method is particularly well suited to solve large
linear systems in grid environments. Compared to the synchronous version,
the asynchronous one only has two modifications. Those two modifications
concern the two main differences between a synchronous and an asynchronous
version of the same algorithm for which the convergence proof in the asyn-
chronous mode has been previously studied, that is to say, the management of
the communications and the convergence detection, as previously mentioned
in this section.

With this method, it is strongly recommended to count the number of mes-
sages received per iteration and to take into account this number in order to
decide if the program should wait for other messages or run the next iteration.
As previously mentioned, running a new iteration without any new message
will produce the same result, which is not interesting from the computational
point of view. In order to increase the convergence speed it is sometimes more
interesting to wait for a small span of time, for example 1 ms, to receive some
new messages rather than using only one new message before running the next
iteration. In the synchronous version of this algorithm we have presented the
multiple ways of overlapping some components. In Algorithm 5.4 we present
the small changes in the multisplitting algorithm in order to take into account
the Overlap components which are overlapped. Obviously, we consider that
the size of the Overlap parameter is less than the size of the subsystem.

Using the overlapping of components has two main impacts on the execution
of an AIAC algorithm. The first one is that the number of iterations required
to reach the convergence threshold is smaller. That is the positive point. The
second impact, which is a drawback, is that the size of each subsystem is
larger, and consequently, the time to solve a subsystem is longer. That is
why using the overlapping mechanism may reduce the number of iterations
when this number is high, i.e., the spectral radius of iteration matrix is close
to one. Nevertheless, according to the method used to solve subsystems, the
solving time may change. If a direct method is used, then one of the most
time-consuming tasks consists in factorizing the matrix. At each iteration of
the multisplitting method, only the right-hand side changes, so the factorized

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 139

Algorithm 5.3 Asynchronous linear multisplitting algorithm

NbProcs: number of processors
MyRank: rank of the processor
Size: local size of the matrix
SizeGlo: global size of the matrix
Offset: offset of the global index
A[Size][Size]: local block-diagonal part of the matrix
DepLeft[Size][Offset]: submatrix with left dependencies
DepRight[Size][SizeGlo-Offset-Size]: submatrix with right dependencies
DependsOnMe[NbProcs]: array of the dependent processors
IDependOn[NbProcs]: array of the processors this processor depends on
B[Size]: right-hand side vector of the subsystem
X[Size], XOld[Size]: local part of solution vectors of the subsystem
XLeft[Offset]: left part of the solution vector of the system
XRight[SizeGlo-Offset-Size]: right part of the solution vector of the system
BLoc[Size]: array containing the local computations on the right-hand side
TLoc[Size]: array used for the receptions of the dependencies
Error: local error
Epsilon: desired accuracy
Converged: convergence state

repeat
BLoc ← B
if MyRank6=0 then

BLoc ← BLoc−DepLeft×XLeft
end if
if MyRank 6= NbProcs−1 then

BLoc ← BLoc−DepRight×XRight
end if
X ← Solve(A, BLoc)
for i=0 to NbProcs−1 do

if i 6= MyRank and DependsOnMe[i] then
Send(i, PartOf(X, i))

end if
end for
for i=0 to NbProcs−1 do

if i 6= MyRank and IDependOn[i] then
if Recv(i, TLoc) then

Update XLeft or Xright with TLoc according to the processor i
end if

end if
end for
Error← 0
for i=0 to Size−1 do

Error ← max(Error, abs(X[i]−XOld[i]))
XOld[i]← X[i]

end for
Converged ← convergence(Error, Epsilon)

until Converged = true

© 2008 by Taylor & Francis Group, LLC

140 Parallel Iterative Algorithms

Algorithm 5.4 Parameter to take into account the overlapping for the mul-
tisplitting method

if MyRank=0 or MyRank=NbProcs−1 then
Size ← Size+Overlap

else
Size ← Size+2×Overlap

end if
if MyRank6=0 then

Offset ← Offset−Overlap
end if

form of the matrix can be re-used for the next iterations. So, when the number
of iterations to reach the convergence threshold is high, the time to factorize
a matrix may not be so important in comparison to the number of times that
the factorized form will be used. If an iterative method is used, the time to
solve a subsystem may vary linearly with the size of a sparse matrix. Hence,
it may be worth overlapping some components but it is difficult to define
an optimal overlapping size. Furthermore, the optimal size may depend on
the network speed, because if the bandwidth is low, it may be preferable to
compute longer and communicate less.

5.6.5 Asynchronous Newton-multisplitting algorithm

In Algorithm 4.8 we have described the synchronous version of the Newton-
multisplitting algorithm. In order to define the asynchronous version of that

boolean Converged as in all other AIAC algorithms. It should be noted that
in the asynchronous Newton-multisplitting algorithm only one part is asyn-
chronous, this is the computation of the solution of the linear system obtained
at each iteration of the Newton process. So, the Newton iterations are still
synchronous.

In Figure 5.1, we illustrate the behavior of the algorithm. At each Newton

the figure. The synchronization corresponds to the computation of the global
error of the Newton process and to the diffusion of the local values of compo-
nents of vector X computed on each processor. Rectangles represent iterations
of the multisplitting method used to solve the linear system obtained at each
Newton iteration. So, this figure clearly highlights that Newton iterations are
synchronized whereas multisplitting iterations are asynchronous.

© 2008 by Taylor & Francis Group, LLC

algorithm, presented in Algorithm 5.5, we can use the same variables (c.f. Al-

iteration, a synchronization step is used; it is represented by a vertical line in

gorithm 4.7), except that instead of the variable MaxErrorMulti we need a

Asynchronous Iterations 141

Algorithm 5.5 Asynchronous Newton-multisplitting algorithm

repeat
if first iteration or required then

Computation of the Jacobian rectangular matrix and storage of the
respective parts into J , JDepLeft and JDepRight

end if
Computation of −F depending on X from components Offset to
Offset+size−1 and storage of the result into F
Converged ← false
repeat

FLoc ← F
if MyRank 6= 0 then

FLoc ← FLoc−JDepLeft×DXLeft
end if
if MyRank 6= NbProcs−1 then

FLoc ← FLoc−JDepRight×DXRight
end if
DX ← Solve(J, FLoc)
for i=0 to NbProcs−1 do

if i 6= MyRank and DependsOnMe[i] then
Send(i, PartOf(DX, i))

end if
end for
for i=0 to NbProcs−1 do

if i 6= MyRank and IDependOn[i] then
if Recv(i, TLoc) then

Update DXLeft or DXRight with TLoc according to processor i
end if

end if
end for
ErrorMulti← 0
for i=0 to Size−1 do

ErrorMulti ← max(ErrorMulti, abs(DX[i]−DXOld[i]))
DXOld[i]← DX[i]

end for
Converged ← convergence(ErrorMulti, EpsilonMulti)

until Converged = true
X ← X+DX
ErrorNewton← 0
for i=0 to Size−1 do

ErrorNewton ← max(ErrorNewton, abs(DX[i]))
end for
AllToAllV(X[Offset], X, Size)
AllReduce(ErrorNewton, ErrorNewtonMax, Max)

until stopping criteria of Newton is reached
(MaxErrorNewton ≤ EpsilonNewton)

© 2008 by Taylor & Francis Group, LLC

142 Parallel Iterative Algorithms

Newton

Time

Processor 1

Processor 2

Iteration 1
Newton

Iteration 2

FIGURE 5.1: Iterations of the Newton-multisplitting method.

5.6.6 Asynchronous multisplitting-Newton algorithm

This algorithm allows us to solve a nonlinear system. It is formally described
in Section 5.5.2. Algorithm 5.6 describes a possible implementation. In order
to see the difference in terms of the computations, we represent in Figure 5.2
the decomposition of the problem. In fact, the problem is not considered
in its globality like in the Newton-multisplitting method. The function F
is split into NbProcs processors. And each of them must solve a different
part of the function F using the Newton process. So, the Jacobian matrix
is not considered in its totality as in the previous algorithm. Each processor
computes a local Jacobian matrix of size Size×Size which corresponds to the
local size after decomposition. As in the previous algorithm the computation
of the local function F requires a larger part of the vector X than the one
locally computed. This is why in Algorithm 5.6 we consider that this vector
has the global size of the system. In opposition to the Newton-multisplitting
algorithm for which the multisplitting is used to solve a linear system obtained
at each Newton iteration, the multisplitting in this algorithm is used to split
the nonlinear system, i.e., the Newton method. So, this method has only
one iteration in which messages are used to update the approximation of the
vector X that is computed locally with Newton iterations on local subsystems.

From the programming point of view, this method is simpler to implement
than the Newton-multisplitting one. Figure 5.2 allows us to understand how
the decomposition is different from the previous one. It is easy to see that the
parts called JDepLeft and JDepRight in Figure 4.12 are completely ignored.
Likewise, there is no need for processors to exchange their local solutions of
each subsystem (in opposition to the Newton-multisplitting method) since
this is done by directly exchanging vector X . As already mentioned in the
previous chapter, in all the multisplitting methods it is possible to solve the
subsystems using either a direct method or an iterative one. In the latter
case, we obtain a two-stage algorithm.

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 143

Algorithm 5.6 Asynchronous multisplitting-Newton algorithm

NbProcs: number of processors
MyRank: rank of the processor
Size: local size of the matrix
SizeGlo: global size of the matrix
Offset: offset of the global index
JLoc[Size][Size]: local block-diagonal part of the Jacobian matrix
DependsOnMe[NbProcs]: array of the dependent processors
IDependOn[NbProcs]: array of the processors this processor depends on
F[Size]: right-hand side vector of the subsystem
X[SizeGlo]: solution vector of the subsystem
DX[Size]: solution vector of the multisplitting subsystem
TLoc[Size]: array used for the receptions of the dependencies
Error: local error
Epsilon: desired accuracy
Converged: convergence state

repeat
if first iteration or required then

Computation of the Jacobian submatrix and storage of the result into
JLoc

end if
Computation of −F depending on X from components Offset to
Offset+size−1 and storage of the result into F
DX ← Solve(JLoc, F)
for i=0 to Size−1 do

X[Offset+i] ← X[Offset+i]+DX[i]
end for
for i=0 to NbProcs−1 do

if i 6= MyRank and DependsOnMe[i] then
Send(i, PartOf(X, i))

end if
end for
for i=0 to NbProcs−1 do

if i 6= MyRank and IDependOn[i] then
if Recv(i, TLoc) then

Update X according to processor i
end if

end if
end for
Error← 0
for i=0 to Size−1 do

ErrorMulti ← max(Error, abs(DX[i]))
end for
Converged ← convergence(Error, Epsilon)

until Converged = true

© 2008 by Taylor & Francis Group, LLC

144 Parallel Iterative Algorithms

JLoc DX -F

0

0

00

FIGURE 5.2: Decomposition of the multisplitting-Newton.

In Figure 5.3 we represent iterations of the multisplitting-Newton method.
The rectangles represent the iterations of the Newton process on each pro-
cessor. As can be seen, those iterations are asynchronous. So, compared
to Figure 5.1 it is obvious that the multisplitting-Newton algorithm may be
faster than the Newton-multisplitting one when communication delays are in
favor of asynchronous iterations. This is typically the case in distant clusters
in which the communication links and the machines are generally hetero-
geneous, implying large disparities in the communication and computation
speeds in the system.

Time

Processor 1

Processor 2

FIGURE 5.3: Iterations of the multisplitting-Newton method.

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 145

5.7 Convergence detection

As seen in Section 4.5, the convergence detection is an important issue of
iterative algorithms. In the asynchronous context, the convergence detection
is even hardened by the difficulty to get a correct image of the global state at
any time during the process.

The most common techniques used in distributed computing to recover
that information are centralized [55, 43, 100] and synchronous [84]. By their
nature, those detection algorithms are efficient in parallel systems with a small
physical radius but are not suited to large scale and/or distant distributed
systems. Moreover, they are not suited to asynchronous iterative algorithms
either, as the global synchronizations required at each recovery of the global
state would indirectly synchronize the iterative process itself and then would
drastically reduce the ratio of asynchronism and its benefit.

In fact, specific studies about the termination detection have been led in
the context of asynchronous iterative algorithms [33, 104, 37]. But, most of
them were either centralized or based on particular assumptions sometimes
including some modifications of the iterative process itself.

So, in order to preserve the benefit of the asynchronism, the convergence
detection algorithm must also be asynchronous. Moreover, the centralization
of such an algorithm may not only generate the classical problem of bottle-
necks but may also induce a loss of generality in its possible contexts of use.
Indeed, in the classical centralized algorithms, all processors directly com-
municate their information to the central one. However, that communication
scheme, implying that one machine can directly be contacted by all the others,
is not possible in all parallel systems, particularly in the distributed clusters
in which each site may have restricted access policies for security reasons. In
most cases, only one machine of a given cluster is reachable from the outside.
In order to bypass that problem, an explicit forwarding of the messages can be
performed from any node in the system toward the central one. That method
presents the advantage of only involving communications between neighboring
nodes and is adapted to the hierarchical communication systems that can be
found in distributed clusters. Unfortunately, that scheme implies more com-
munications, slowing down the network and indirectly the iterative process
itself. Moreover, it also implies larger delays toward the central node.

So, the most suitable detection algorithm in that context must not only
be asynchronous but also completely decentralized. Such an algorithm is
presented below.

5.7.1 Decentralized convergence detection algorithm

The decentralized algorithm for global convergence detection presented here
works on all parallel iterative algorithms, either asynchronous or synchronous.

© 2008 by Taylor & Francis Group, LLC

146 Parallel Iterative Algorithms

Although the version described in the following is closer to asynchronous
algorithms, which represent the most general case, only a few adaptations are
necessary to use it in the synchronous context.

The major difficulty with termination detection lies in the proof that the
proposed algorithm does not detect convergence prematurely. Indeed, in asyn-
chronous algorithms, the delays between iterations could lead to a false re-
alization of the convergence criterion. This situation typically occurs in het-
erogeneous contexts, for example when a processor computes a new iteration
whereas a slower processor computes a former iteration. That difficulty is in-
creased with distant processors where the communication/computation ratio
may be important.

As for the classical convergence detection algorithms, the principle of the
decentralized detection algorithm is based on two steps. The first one con-
sists in detecting the local convergence on each processor and the second one
properly consists in the global convergence detection. Those two steps are
described in the following paragraphs.

5.7.1.1 Local convergence detection

The local convergence step is quite similar to the one used in the syn-
chronous case. As explained in Section 4.5, there is usually no information
about the distance between the current state of the system and its fixed point.
So, in place, the residual is used according to a chosen metric to get an idea of
the stabilization of the process. Finally, that stabilization is itself determined
by the setting of a threshold on the residual. However, it has also been seen in
the previous chapter that when the metric used is not the contraction one, the
residual does not follow a monotonous decrease but there may be oscillations
around the given threshold. Hence, if no care is taken, a local convergence
can be detected too early, leading in turn to a false detection of the global
convergence. Once again, we insist on the fact that this problem is common
to all iterative algorithms and is not due to the asynchronism.

Currently, there is no way to ensure a definitive local convergence on a pro-
cessor without modifying the iterative process, as in [33]. The common heuris-
tic is then to assume that local convergence is achieved when the node has
performed a given number of successive iterations under the residual thresh-
old. That mechanism is used in Algorithm 5.7. It implies the use of a constant,
called THRESHOLD LOCAL CV , which represents the required number
of successive iterations under the residual threshold to ensure the local conver-
gence. It is important to note that this THRESHOLD LOCAL CV value
theoretically exists and is finite since, by hypothesis, the asynchronous it-
erative process converges. However, that value is quite difficult, not to say
impossible, to evaluate in practice. Consequently, the use of an approximate
value implies that the detection of the local convergence may not be definitive
as the residual may rise again over the threshold after the considered number
of iterations passed under it. Hence, in that context, the local state of a node

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 147

may alternatively vary between convergence and non-convergence. This is
why two versions of the detection algorithm are presented in the following: a
theoretical version, not affected by that problem, which is useful to describe
and prove the overall detection scheme, and a practical version which takes
into account that problem of local states alternation.

5.7.1.2 Global convergence detection

The goal here is to obtain a similar stopping criterion as in the sequen-
tial/synchronous modes, that is to say, having all the nodes in local conver-
gence at the same time. Unfortunately, if the asynchronism is not responsible
for the difficulty in evaluating the local convergence, it hardens the global
convergence detection by making the building of a representative image of
the global state of the system more difficult. The process described below
allows us to detect the global convergence on any one node of the system in
a decentralized manner. Its correctness is proved in the context where the
contraction norm is used. In other cases, often encountered in practice, the
process is still correct but an additional verification step is necessary after the
global detection to ensure that the system was in the correct global state at
the detection time.

5.7.1.2.1 Global detection scheme: The decentralization of the detec-
tion algorithm is based upon a scheme quite similar to the leader election pro-
tocol [83]. That protocol consists in dynamically designating one processor
to perform a given task. In that case, the task will be the global convergence
detection. However, in that particular context, the leader election process
requires some specific adaptations which imply the use of a tree graph. For-
tunately, that does not reduce the generality of the algorithm since it is always
possible to compute (off-line or in-line) a spanning tree from any connected
graph.

The election process works with what can be called PartialCV messages
between processors. Such a message informs the receiver that all the pro-
cessors in the subtree depending on the sender (behind the sender according
to the receiver) have reached local convergence. Hence, on each processor,
the algorithm considers the number of neighbors (in the tree) from which no
PartialCV message has already been received.

When that number is equal to one and the node is in local convergence, it
sends a PartialCV message to its last neighbor which has not sent it such a
message yet. It is at that point that the spanning tree is necessary. It ensures
that there always exists at least one node in the system which only has one
neighbor (all the leaves of the spanning tree). Thus, the partial convergence
detections will propagate from the leaves of the spanning tree toward the inner
nodes and will meet on one node. So, as depicted in Figure 5.4, a node will
detect the global convergence when it has received the PartialCV messages
from all its neighbors and is itself in local convergence.

© 2008 by Taylor & Francis Group, LLC

148 Parallel Iterative Algorithms

1

1
2

1

2

1

1

1

01

1

1

1

1

1

0

1

1

global convergencenormal state local convergence

PartialCV messagecommunication graph spanning tree

1

2

1

3

2

1

FIGURE 5.4: Decentralized global convergence detection based on the leader
election protocol. For each node, the number of its neighbors in the spanning
tree from which no partial convergence message has been received is indicated.

The way the process is designed implies that such a detection may happen
on two neighboring nodes in place of only one. This occurs when all the nodes
in the system are in local convergence and the propagation of the PartialCV
messages ends at two neighboring nodes which are for each other the last one
which has not yet sent its PartialCV message to the other one. So, both
those nodes send their message to the other, implying a double detection
of the global convergence on the two nodes. Such a particular situation is
presented in Figure 5.5.

PartialCV message

1

1

0

0

global convergence spanning treelocal convergence

FIGURE 5.5: Simultaneous detection on two neighboring nodes.

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 149

Fortunately, that situation is not a problem per se in that context since it
does not correspond to a false detection but only to a multiple one. Moreover,
as the halting procedure is performed by the propagation of halting messages
throughout the system from the elected node(s) and each node forwards the
halting message to its other neighbors only once, that special case generates
only two useless messages between the two elected nodes. So, it does not alter
the halting process and does not actually require any particular treatment.
However, if for some reason (often a practical one) only one node had to be
elected, this could be easily achieved with, for example, a simple verification
and choice mechanism between a node which detects the global convergence
and its neighbor from which has come the last PartialCV message.

NbNeig integer representing the number of neighbors in the
spanning tree

RecvdPCV[NbNeig] boolean array indicating for each neighbor of the cur-
rent node in the spanning tree if a PartialCV message
has been received from that node

NbNotRecvd number of neighbors from which no PartialCV mes-
sage has been received yet

NbUnderTh number of successive iterations with a residual under
the threshold

UnderTh boolean equals true when the residual is under the
threshold and false otherwise

LocalCV boolean equals true when the local convergence is
detected and false otherwise

GlobalCV boolean equals true when the global convergence is
detected and false otherwise

Table 5.1: Description of the variables used in Algorithm 5.7.

The decentralized detection algorithm obtained is given in Algorithm 5.7.
For clarity sake, a description of the variables used in that algorithm is given
in Table 5.1.

The receipts of messages are handled by distinct functions and do not
directly appear in the main algorithm. That organization is particular to
asynchronous algorithms where communications are not performed and man-
aged at specific times in the algorithm but as soon as they are required or
they occur.

The function RecvPartialCV only consists in decreasing the number of
neighbors which have not yet reached local convergence. The function
recvGlobalCV consists in stopping the iterative process on the node by set-
ting the GlobalCV variable to true.

© 2008 by Taylor & Francis Group, LLC

150 Parallel Iterative Algorithms

Algorithm 5.7 Decentralized global convergence detection

for all Pi, i ∈ {1, . . . , N} do
NbNotRecvd ← NbNeig
for Ind from 0 to NbNeig−1 do

RecvdPCV[Ind] ← false
end for
NbUnderTh ← 0
UnderTh ← false
LocalCV ← false
GlobalCV ← false
repeat

if LocalCV = false then
. . . iterative process and evaluation of UnderTh . . .
if UnderTh = true then

NbUnderTh ← NbUnderTh + 1
if NbUnderTh = THRESHOLD LOCAL CV then

LocalCV ← true
end if

else
NbUnderTh ← 0

end if
end if
if LocalCV = true then

if NbNotRecvd = 0 then
GlobalCV ← true

else
if NbNotRecvd = 1 then

Send a PartialCV message to the neighbor corresponding to the
unique cell of RecvdPCV[] being false

end if
end if

end if
until GlobalCV = true
Broadcast a GlobalCV message to all neighbors in the spanning tree from
which no GlobalCV message has arrived

end for

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 151

Algorithm 5.8 Function RecvPartialCV()

Extract SrcNode from the message
SrcIndNeig ← corresponding index of SrcNode in the list of neighbors

of the current node (−1 if not in the list)
//the test is just a precaution since such a message should always come
//from one of the neighbors in the spanning tree
if SrcIndNeig ≥ 0 then

RecvdPCV[SrcIndNeig] ← true
NbNotRecvd ← NbNotRecvd−1

end if

Algorithm 5.9 Function RecvGlobalCV()

GlobalCV ← true

5.7.1.2.2 Validity proof: We remind the reader that the convergence de-
tection algorithm above is to be used with any asynchronous iterative process
which converges. It is important to underline that this process does not force
the convergence of any asynchronous iterative process but ensures the correct
convergence detection of a converging asynchronous iterative process.

Preliminary definitions:
Let P = {P1, ..., PN} be the set of the processors.
Let us define NoPCVmsg(Pi, Pj , t) between two neighboring processors Pi and
Pj at time t as:

NoPCVmsg(Pi, Pj , t) ={
true if Pi has not yet received a PartialCV message from Pj

false if Pi has received a PartialCV message from Pj

The detection algorithm is based on two particular properties of the pro-
cessors which are the local convergence and the number of neighbors having
communicated their partial convergence. Since these properties evolve dur-
ing the iterative process, the set P (t) of processors Pi can be written as the
following partition:

P (t) = Sc
0(t) ∪ Sc

1(t) ∪ . . . ∪ Sc
N−1(t)

∪ Sd
0 (t) ∪ Sd

1 (t) ∪ . . . ∪ Sd
N−1(t)

where Se
k(t) is the set of processors having at time t:

NbNotRecvd = k

LocalCV =

{
true if e = c
false if e = d

The particular presentation of P (t) is only for intuitive representation of the
partition.

© 2008 by Taylor & Francis Group, LLC

152 Parallel Iterative Algorithms

Finally, we note tc(i) the time at which processor Pi reaches local convergence
and we define tr(k, j) as the receipt time of the PartialCV message on Pk

from Pj and tm(j, k, t) as the communication time from Pj to Pk at time t (t
is included because communication times may vary during the process).
We have then:

tr(k, j) = tc(j) + tm(j, k, tc(j))

THEOREM 5.7

If the following hypotheses are satisfied:

(H1) The communication graph used for the detection process is connected
and acyclic

(H2) The asynchronous iterative process converges

(H3) Communications between neighbors are achieved in a finite time

then, there exists td ∈ N such that

Sc
0(td) 6= ∅
|Sc

1(td)| ≥ 0
Sc

k(td) = ∅ k ∈ {2, ..., N − 1}
Sd

k(td) = ∅ k ∈ {0, ..., N − 1}
2

The second statement only appears to point out that there is no particular
condition on Sc

1(td).

The proof of Theorem 5.7 is made in two steps:

(A) we prove that Sc
0(td) 6= ∅ implies all the other statements of Theorem 5.7

(B) we prove that ∃td ∈ N such that Sc
0(td) 6= ∅

Part (A):

Let us define Neigh(Pi) the set of physical neighbors of processor Pi. In
order to get the processor Pi in Sc

0(t), we must have by Algorithm 5.7:

∀Pj ∈ Neigh(Pi), NoPCVmsg(Pi, Pj , t) = false

which implies in turn for all the Pj that

∀Pk ∈ Neigh(Pj) \ {Pi}, NoPCVmsg(Pj , Pk, t) = false

and by recursion, we deduce that

∀Pa ∈ P (t) \ {Pi}, ∃Pb ∈ P (t), NoPCVmsg(Pb, Pa, t) = false (5.42)

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 153

This means that all the Pa in that equation have sent a PartialCV message
to the corresponding Pb and by Algorithm 5.7, this is only possible once Pa

has reached local convergence.

Thus, we have:

∀Pa ∈ P (t) \ {Pi}, Pa 6∈
N−1⋃

u=0

Sd
u(t)

and since Pi ∈ Sc
0(t), then

N−1⋃

u=0

Sd
u(t) = ∅

Moreover, by Algorithm 5.7, we also know that the condition for a processor
Pa to verify Equation (5.42) (sending of a PartialCV message to another
node) is to have its NbNotRecvd equal to one.

Hence:

∀Pa ∈ P (t) \ {Pi}, Pa ∈
1⋃

u=0

Sc
u(t)

and then
N−1⋃

u=2

Sc
u(t) = ∅

and all the other statements of Theorem 5.7 are verified. 2

Part (B):

By definition, at the beginning of the process, the following statements are
verified:

Sc
k(0) = ∅ ∀k ∈ {0, ..., N − 1}

Sd
0 (0) = ∅

Sd
1 (0) 6= ∅

(5.43)

The third statement comes from (H1) which implies that the graph always
has at least one node with only one neighbor.

By (H2), we have:

Pi ∈ Sd
k(t), i ∈ {1, ..., N}, k ∈ {0, ..., N − 1}

⇒ ∃ tc(i) ∈ N, ∀t ≥ tc(i), Pi ∈
⋃k

u=0 Sc
u(t)

(5.44)

hence

∃t′(k) ∈ N, ∀t ≥ t′(k), |Sd
k(t)| = 0, k ∈ {0, ..., N − 1} (5.45)

© 2008 by Taylor & Francis Group, LLC

154 Parallel Iterative Algorithms

Equation (5.43), Equation (5.45) and Algorithm 5.7 imply that

∃tdn,





Sc
1(tdn) 6= ∅
∀t < tdn,

⋃N−1
u=0 Sd

u(t) 6= ∅
∀t ≥ tdn,

⋃N−1
u=0 Sd

u(t) = ∅
∀t < tdn, Sc

0(t) = ∅

(5.46)

The last statement is, in fact, a deduction from the second one. As seen in
part (A), Sc

0(t) 6= ∅ implies that
⋃N−1

u=0 Sd
u(t) = ∅ which is in contradiction

with the second statement for each t < tdn.

Now, at tdn, we know by Equation (5.46) that Sc
1(tdn) 6= ∅. So, every

Pi ∈ Sc
1(tdn), according to Algorithm 5.7, sends a PartialCV message to

its unique neighbor Pk which verifies NoPCVmsg(Pi, Pk, tdn) = true.
We define:

A(t) = {Pi ∈ Sc
1(t), ∃!Pk ∈ P (t),

NOpCVmess(Pi, Pk, t) = NOpCVmess(Pk, Pi, t) = true}

and

B(t) = {Pk ∈ P (t), ∃Pi ∈ A(t) such that NoPCVmsg(Pi, Pk, t) = true}

So, A(t) is the set of processors whose sending of the PartialCV message to
exactly one element of B(t) (corresponding set of destination nodes) has not
yet arrived at time t.

From (H1), we deduce the following lemma.

LEMMA 5.1

Considering the set A and time t′ ≥ tdn:

A(t′ − 1) 6= ∅, A(t′) = ∅ ⇒
{
∀t ≥ t′, A(t) = ∅
∃Pi ∈ Sc

0(t
′)

2

Justification of Lemma 5.1:

Since t′ ≥ tdn, we are in the context of Equation (5.46) where all the
processors are in the subsets Sc

u, u ∈ {0, ..., N − 1}.
If we consider the state of the system at time t′, it is not possible to have

one node in another subset than Sc
0 or Sc

1 since this would imply that this
node has not yet received the PartialCV message from at least two of its
neighbors.

So, either these neighbors are communicating their PartialCV message to
this node, which is a contradiction to A(t′) = ∅, or the other possibility is

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 155

that these neighbors have not sent their PartialCV message to this node
yet. Nevertheless, the only way for these neighbors not to have sent their
PartialCV message to this node yet is that they have themselves at least two
neighbors from which they have not received the PartialCV message yet. If
we continue this reasoning by recursion, we come to the conclusion that this
situation is only possible if all these nodes form a cycle in the graph which is
a contradiction to hypothesis (H1).

Hence, we are sure that all the nodes have reached their local convergence
and sent a PartialCV message which has already arrived at the destination
node.

Finally, (H1) also implies that there is at least one node which has received
the PartialCV messages from all its neighbors and is then located in Sc

0(tdn).

REMARK 5.1 One consequence is that as soon as the set A becomes
empty, it cannot become nonempty again.

REMARK 5.2 Another consequence is that time t′ is equivalent to time
td in Theorem 5.7 since Sc

0(t
′) 6= ∅ and then Part (A) of the proof implies all

the other statements of the theorem.

REMARK 5.3 At time tdn, all the processors have reached their local
convergence and since Sd

1 (0) 6= ∅ it is sure that the set A becomes nonempty
at the latest at time tdn.

Now, let us examine the set A(tdn):

If it is empty, Lemma 1 and Remark 5.3 imply that it was nonempty at the
time just before and then tdn corresponds to the time t′ in Lemma 1 which
also corresponds to the time td in Theorem 5.7 as pointed out by Remark 5.2.

If it is nonempty, Equation (5.46) implies that B(tdn) ⊆ ⋃N−1
u=1 Sc

u(tdn) and
there are two distinct possibilities over the set B(tdn): (5.47)

(1) ∀Pl ∈ B(tdn), Pl ∈ Sc
1(tdn)

(2) ∀Pl ∈ B(tdn), Pl ∈
⋃N−1

u=2 Sc
u(tdn)

Case (1):

In this case, there exists at least one Pl ∈ B(tdn) such that ∃!Pi ∈ A(tdn) for
which NoPCVmsg(Pl, Pi, tdn) = true and NoPCVmsg(Pl, Pi, tr(l, i)) = false
implying Pl ∈ Sc

0(tr(l, i)), and leading to the detection of the global conver-
gence on Pl at time tr(l, i). Hypothesis (H3) ensures that tr(l, i) < ∞ and
then statement (B) is verified with td = tr(l, i).

© 2008 by Taylor & Francis Group, LLC

156 Parallel Iterative Algorithms

Case (2):
In this case, Pl ∈ B(tdn) implies that there is one Sc

u(tdn), u ∈ {2, ..., N−1}
such that Pl ∈ Sc

u(tdn), and then by Algorithm 5.7:

Pl ∈
u−1⋃

v=0

Sc
v(tr(l, i)), with i such that Pi ∈ A(tdn)

and NoPCVmsg(Pi, Pl, tdn) = true

(5.48)

This means that each time a processor receives a PartialCV message, its
number of neighbors which have not sent it a PartialCV message yet de-
creases by one. Moreover, we use a union of the u − 1 first subsets because
this processor may receive other PartialCV messages from other neighbors
in the interval time between tdn and tr(l, i), making it move down by more
than one subset.

Hence, by Lemma 1:

• either there exists at least one Pl ∈ B(tdn) for which Pl ∈ A(tr(l, i)),
with tr(l, i) < ∞ by (H3), and we come back to a similar context as
in (5.47) where A(t) 6= ∅ by replacing tdn by tr(l, i) and we obtain

a recursion on
⋃N−1

u=1 Sc
u(t). Equation (5.48) ensures that this recursion

will empty all the subsets Sc
u(t), u ∈ {2, ..., N−1} and will then converge

toward case (1).

• or none of the nodes of B(tdn) comes in the set A which becomes empty
as soon as all the nodes of B(tdn) have received their PartialCV message
(in a finite time by (H3)), directly leading to Theorem 5.7 by Remark 5.2.

2

As a last remark, it can be noticed that hypothesis (H3) also implies that
the termination of the iterative process on all nodes happens in a finite time
after the global convergence detection on the elected node (at time td in
Theorem 5.7).

5.7.1.2.3 Practical version: As mentioned at the beginning of
Section 5.7.1.2, Algorithm 5.7 is only usable in that form when the contrac-
tion metric is known and used to compute the residual. When that metric
is unknown, the difficulty of ensuring the local convergence on each node im-
plies the use of two additional mechanisms: an optional one which is useful
to regulate the local detections better, and a vital one which permits us to
get a correct image of the global state of the system. Indeed, the possible
alternation of the local state of the nodes requires a more accurate snapshot
of the global state of the system to ensure that all the nodes have verified the
local convergence conditions at the same time.

The practical version presented here is somewhat different from the one
proposed in [17]. That previous version has the drawback of requiring the

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 157

determination of the maximal communication time between any couple of
nodes in the system during the entire iterative process. In practice, it is
quite difficult, if not to say impossible, to get an accurate estimation of such a
value. The version described here does not use that value and, more generally,
presents the advantage of not requiring any specific information on the parallel
system used. Its approach is closer to the theoretical version presented in the
previous part in the sense that it lets the global detection happen even if the
local evolutions on the nodes change during the election process. Then, after
the global detection, it includes an additional verification phase to ensure
its validity. It is important to notice here that the iterative process is not
interrupted either during the global convergence detection process or during
the verification phase. There are two reasons for that; the most obvious one
is not to slow down the iterative process itself and the second one is that its
evolution during the global detection and verification processes represents a
mandatory piece of information.

Concerning the first of the two mechanisms mentioned above, it concerns
the local convergence detection on each node and consists in taking into ac-
count what we call pseudo-periods in place of a given number (arbitrary in
practice) of successive iterations. In the domain of dynamic systems, a period
corresponds to a minimal span of time during which all the components of the
system are updated at least once with different data values from its depen-
dencies. The pseudo-period is quite a local version of that global progression
step. So, for each node, a pseudo-period corresponds to the minimal span of
time during which that node receives at least one newer data message from all
its dependencies. In this way, the local evolution of one node is fully represen-
tative between two consecutive pseudo-periods. Thus, the local convergence
detection is no longer assumed after a given number of successive iterations
with the residual under the threshold but after at least one (but possibly
several successive ones) pseudo-period verifying that constraint. This has a
drastic regulating effect on the local convergence detections in practice and,
if it cannot avoid all the false detections due to an inadequate used norm,
it sharply limits them. It is therefore strongly recommended although not
essential.

For its part, the second mechanism is imperative and takes place at the
global level of the system just after the global convergence detection. Its aim
is to verify that all the nodes were still in local convergence at the time of the
global detection and that their states were representative of their evolution.
Hence, that verification is decomposed in four main steps:

1) Diffusion of a verification message from the elected node through the
spanning tree to initiate the verification phase.

2) Elaboration on each node of its response to the verification request.

3) Gathering of the responses of all the nodes toward the elected node
through the spanning tree to get the verdict.

© 2008 by Taylor & Francis Group, LLC

158 Parallel Iterative Algorithms

4) Diffusion of a verdict message from the elected node through the span-
ning tree to finish the verification phase.

When one node is elected by the global convergence detection process, it
sends a verification message to all its neighbors (step 1). Each node which
receives such a message from one of its neighbors (referred to as the asking
node in the following) forwards it to all its other neighbors in the spanning
tree (step 1) and, while waiting for their responses, elaborates its own response
(step 2). The response of a node does not only depend on its own state and
evolution but also on the responses of its neighbors in the spanning tree, except
the asking one. As soon as the response is available, the node returns it to its
asking node (step 3). Finally, when the elected node has its own response and
those of its neighbors, it deduces the verdict and sends it to all its neighbors
(step 4). Then, each node receiving a verdict message forwards it to its other
neighbors in the spanning tree (step 4). At the end of the verification phase,
the state of each node is set up according to the final verdict. The global
scheme of that verification mechanism is depicted in Figure 5.6.

As mentioned above, the response of each node depends on its state but also
on its evolution during the verification phase. Effectively, in order to ensure
that all the nodes have been in local convergence at the same time (which is
the criterion used in the sequential and synchronous versions), the response of
a node is positive if and only if its residual never goes back over the threshold
during the span of time between its last sending of a PartialCV message and
the sending of its response to the verification request.

Moreover, to be sure that the response of each node is representative of its
actual state and is not illusory, a particular mechanism is inserted to ensure
that each node actually evolves during the span of time between the receipt
of the verification request and the sending of its response. That mechanism
roughly corresponds to the waiting of a particular pseudo-period. The ideal
way to ensure the pertinence of the global state image would be to wait for
a period and watch the resulting state. However, periods are quite difficult
and expensive to identify in dynamical systems implemented on distributed
environments. So, a lighter concept is used here which is better suited to the
decentralization constraint while giving pertinent information about the evo-
lution of the system as well. Hence, each node sends its response (depending
on its residual evolution) only after having performed at least one iteration
with versions of all its data dependencies at least as recent as the global detec-
tion time. In this way, the response will be fully representative of the actual
evolution and state of that node until that time.

In order to force the nodes to use specific data versions during the verifi-
cation phase, a tagging system is included in the data messages in order to
differentiate them between the successive phases of the iterative process (nor-
mal processing and verification phase). Moreover, since there may be several
verification phases during the whole iterative process, due to possible cancel-
lations of global detections, that tagging is also useful to distinguish the data

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 159

communication graph

normal state

global convergence

local convergence

unknown state

1

01

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1
0

0

0

0

2

32

response message

verdict message

verification message

spanning tree

1

1

1

1

1

1

1

1

1

Step 1

Steps 2 & 3

Global convergence

detection

Step 4

FIGURE 5.6: Verification mechanism of the global convergence. The two pos-
sibilities are illustrated, cancellation on the left and confirmation on the right.
The unknown states in the first two steps are from the elected node point of
view. The value beside each node corresponds to the variable NbNotRecvd.

messages related to the different verification phases. Finally, there is another
good reason to use tagged messages not only for the data communications
but also for the information related to the global detection and verification
processes: the reactivity of the verification phase.

In fact, as quite an important number of verification phases is likely to
occur during an entire iterative process, it is rather important to increase its
reactivity. This has the indirect effect of reducing the latency between the
actual global convergence of the system and its detection. In order to do so,
each node is allowed to send its response as soon as it is able to deduce it,
that is to say, when its residual goes over the threshold or when it receives
a negative response from one of its neighbors. Such events imply a negative
response of the node, whatever the values of the other elements constituting

© 2008 by Taylor & Francis Group, LLC

160 Parallel Iterative Algorithms

its response are. It is then a waste of time to wait for the responses of the
other neighbors or the local completion of a pseudo-period. The same behavior
takes place on the elected node except that it directly sends a negative verdict
message to its neighbors instead of sending a response to an asking node.
However, as the order of the messages is not ensured in the asynchronous
computing context, this strategy also implies that messages related to a given
verification phase may arrive on a node after the termination of that phase
(in the case of a verification phase canceled faster). Thus, in order to avoid
confusions in the messages related to the global detection scheme, a tagging
system must also be inserted.

Finally, in order to respond to all those message distinction constraints,
each phase of the iterative process (normal computing and verification of the
global convergence) is distinguished in time by an integer tag incremented
at each phase transition, as shown in Figure 5.7, with four nodes linearly
organized for a span of time beginning with the tag equal to k.

Tag=k+2Tag=k Tag=k+1

P2

P1

P3

time

P4

verdict msg

GC

detection

GC

verdict

verification msg

FIGURE 5.7: Distinction of the successive phases during the iterative
process.

The whole detection and verification mechanism is detailed in Figure 5.8 in
the same computing context as above and in the case of a global convergence
detected and confirmed on node P2. As can be seen, the whole process ensures,
in case of a positive verdict, that all the nodes in the distributed system
have had their residual under the threshold at least at the time at which the
global convergence was detected on the elected node, and possibly during a
larger span of time after it. Moreover, the pseudo-period performed on each
node during the verification phase with data as recent as the global detection
ensures that their states are representative of their actual evolutions. In this
way, that entire global convergence detection mechanism provides a similar

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 161

stopping criterion as in the sequential/synchronous cases.

Ensured instant of

local CV on every node

P4

P2

P1

time

P3

verification msg

tagged data msg

response msg

iteration with

tagged (recent)

data dependencies

the threshold

iterations under

detection

GC

PartialCV msg

confirmation

GC

LC detection

FIGURE 5.8: Mechanism ensuring that all the nodes are in representative
stabilization at least at the time of global convergence detection.

As the behavior of the nodes is not the same according to the different
steps in the detection process and verification phase, it is also necessary to
introduce four different states:

• NORMAL: the basic state during the whole iterative process when the
node is not in the global convergence detection mechanism.

• WAIT4V: when the node is waiting for the local start of the verification
phase after its sending of a PartialCV message.

• VERIF: when the node is performing the verification phase, either after
the receipt of the corresponding message or by election.

• FINISHED: when the global convergence has been confirmed.

The transitions between those states are depicted in Figure 5.9.
The final scheme obtained is given in Algorithm 5.15. In order to get an

easy reading of it, the list of the additional variables according to the previous
algorithm is given in Table 5.2.

© 2008 by Taylor & Francis Group, LLC

162 Parallel Iterative Algorithms

PartialCV msg

 WAIT4VNORMAL

VERIF FINISHED

negative verdict

electionnegative verdict

verdict
positive

election or receipt
of a verification msg

sending of a

FIGURE 5.9: State transitions in the global convergence detection process.

The different types of messages are listed below together with their contents:

• data message:

– identifier of the source node
– source node iteration number at the sending time
– source node phase tag at the sending time
– data

• PartialCV message:

– identifier of the source node
– source node phase tag at the sending time

• verification message:

– identifier of the source node
– source node phase tag at the sending time

• response message:

– identifier of the source node
– source node phase tag at the sending time
– response of the source node

• verdict message:

– identifier of the source node
– new phase tag to use on the receiver
– verdict

The algorithm also uses additional functions which are briefly described
below:

• InitializeState(): (re-)initializes the variables related to the conver-
gence detection process and sets the node in NORMAL state.

• ReinitializePPer(): (re-)initializes the variables related to the pseudo-
period detection.

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 163

MyRank integer identifying uniquely the current node
State integer indicating the current state of the

node among NORMAL, WAIT4V, VERIF and
FINISHED

PhaseTag integer identifying the current phase on the current
node

PseudoPerBeg boolean indicating that a pseudo-period has begun
PseudoPerEnd boolean indicating the end of a pseudo-period
NbDep integer representing the number of computational de-

pendencies of the current node
NewerDep[NbDep] boolean array indicating for each data dependency

if a newer version has been received since the last
pseudo-period

LastIter[NbDep] integer array indicating for each dependency node
the iteration of production of the last data received
from that node

PartialCVSent boolean indicating that a PartialCV message has
been sent

ElectedNode boolean indicating that the node is the elected one
Resps[NbNeig] integer array containing the responses of the neigh-

bors of the current node in the spanning tree. The
values are either −1 (negative), 0 (no response yet)
or 1 (positive)

ResponseSent boolean indicating that the response has been sent

Table 5.2: Description of the additional variables used in Algorithm 5.15.

• InitializeVerif(): initializes the verification phase. In particular, the
PhaseTag variable is incremented to distinguish the new verification
phase from the potential previous ones.

• RecvDataDependency(): manages the receipts of data dependencies.
In the general asynchronous model, each received datum is taken into
account, whenever it was produced. However, taking only newer data
(produced after the locally available ones) tends in practice to speed up
the iterative process. So, the function takes into account any newer data
when the receiver is not in verification phase (VERIF state). Otherwise,
it filters the data produced after the last global convergence detection,
that is to say, with the same phase tag as the receiver.

• RecvPartialCV(): manages the receipts of PartialCV messages. Also
updates the local state of the node when an election is possible. How-
ever, the mutual exclusion mechanism mentioned on page 149 is per-
formed to ensure that only one node is elected in the system.

© 2008 by Taylor & Francis Group, LLC

164 Parallel Iterative Algorithms

• RecvVerification(): manages the receipts of verification messages.
The message is taken into account only when its phase tag corresponds
to the following phase on the receiver. In that case, the state of the
receiver is changed to enter the verification phase (VERIF state) and
the message is propagated to its other neighbors in the spanning tree.

• RecvResponse(): manages the receipts of response messages. The
message is taken into account only when the phase tag in the message
corresponds to the current phase tag on the receiver.

• RecvVerdict(): manages the receipt of the verdict of the verification
phase on the non-elected nodes. The verdict is always taken into account
and propagated through the spanning tree to set all the nodes either in
FINISHED state or back in NORMAL state with a new phase tag. As
the state of the non-elected nodes cannot change before the receipt of
that message, no other global convergence detection may happen before
all the nodes have received it. Therefore, there cannot be any confusion
with a similar message coming from a previous verification phase.

• ChooseLeader(integer, integer): takes two integer parameters iden-
tifying two nodes which are potential candidates to the leader election
and returns the one which is chosen by the election referee policy.

The last function of the list is not detailed in the following since it directly
depends on the referee policy used. The choice of that policy is quite free as
its only constraint is to make a choice between the two proposed nodes.

Algorithm 5.10 Function InitializeState()

NbNotRecvd ← NbNeig
for Ind from 0 to NbNeig−1 do

RecvdPCV[Ind] ← false
end for
ElectedNode ← false
LocalCV ← false
PartialCVSent ← false
ReinitializePPer()
State ← NORMAL

Algorithm 5.11 Function ReinitializePPer()

PseudoPerBeg ← false
PseudoPerEnd← false
for Ind from 0 to NbDep−1 do

NewerDep[Ind] ← false
end for

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 165

Algorithm 5.12 Function InitializeVerif()

ReinitializePPer()
PhaseTag ← PhaseTag + 1
for Ind from 0 to NbNeig−1 do

Resps[Ind] ← 0
end for
ResponseSent ← false

Algorithm 5.13 Function RecvDataDependency()

Extract SrcNode, SrcIter and SrcTag from the message
SrcIndDep ← corresponding index of SrcNode in the list of dependencies

of the current node (−1 if not in the list)
if SrcIndDep ≥ 0 then

if LastIter[SrcIndDep] < SrcIter
and (State 6= VERIF or SrcTag = PhaseTag) then
Put the data in the message at their corresponding place according to
SrcIndDep in the local data array used for the computations
LastIter[SrcIndDep] ← SrcIter
NewerDep[SrcIndDep] ← true

end if
end if

Algorithm 5.14 Function RecvPartialCV()

Extract SrcNode and SrcTag from the message
SrcIndNeig ← corresponding index of SrcNode in the list of neighbors

of the current node (−1 if not in the list)
if SrcIndNeig ≥ 0 and SrcTag = PhaseTag then

RecvdPCV[SrcIndNeig] ← true
NbNotRecvd ← NbNotRecvd−1
if NbNotRecvd = 0 and PartialCVSent = true

and ChooseLeader(MyRank, SrcNode) = MyRank then
ElectedNode ← true
InitializeVerif()
Broadcast a verification message to all its neighbors
State ← VERIF

end if
end if

© 2008 by Taylor & Francis Group, LLC

166 Parallel Iterative Algorithms

Algorithm 5.15 Practical version of Algorithm 5.7 (1/3)

for all Pi, i ∈ {1, . . . , N} do
InitializeState()
UnderTh ← false
PhaseTag ← 0
repeat

. . . iterative process, data sendings and evaluation of UnderTh . . .
if State = NORMAL then

if UnderTh = false then
ReinitializePPer()

else
if PseudoPerBeg = false then

PseudoPerBeg ← true
else

if PseudoPerEnd = true then
LocalCV ← true
if NbNotRecvd = 0 then

ElectedNode ← true
InitializeVerif()
Broadcast a verification message to all its neighbors
State ← VERIF

else
if NbNotRecvd = 1 then

Send a PartialCV message to the neighbor corresponding
to the unique cell of RecvdPCV[] being false
PartialCVSent ← true
State ← WAIT4V

end if
end if

else
if all the cells of NewerDep[] are true then

PseudoPerEnd← true
end if

end if
end if

end if
else if State = WAIT4V then

see that part on page 167...
else if State = VERIF then

see that part on pages 167 and 168...
end if

until State = FINISHED
end for

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 167

Algorithm 5.15 bis Practical version of Algorithm 5.7 (2/3)

for all Pi, i ∈ {1, . . . , N} do
see that part on page 166...
repeat

. . . iterative process, data sendings and evaluation of UnderTh . . .
if State = NORMAL then

see that part on page 166...
else if State = WAIT4V then

if UnderTh = false then
LocalCV ← false

end if
else if State = VERIF then

if ElectedNode = true then
if UnderTh = false or LocalCV = false

or at least one cell of Resps[] is negative then
PhaseTag ← PhaseTag + 1
Broadcast a negative verdict message to all its neighbors
InitializeState()

else
if PseudoPerEnd = true then

if there are no more 0 in Resps[] then
if all the cells of Resps[] are positive then

Broadcast a positive verdict message to all its neighbors
State ← FINISHED

else
PhaseTag ← PhaseTag + 1
Broadcast a negative verdict message to all its neighbors
InitializeState()

end if
end if

else
if all the cells of NewerDep[] are true then

PseudoPerEnd← true
end if

end if
end if

else
see that part on page 168...

end if
end if

until State = FINISHED
end for

© 2008 by Taylor & Francis Group, LLC

168 Parallel Iterative Algorithms

Algorithm 5.15 ter Practical version of Algorithm 5.7 (3/3)

for all Pi, i ∈ {1, . . . , N} do
see that part on page 166...
repeat

. . . iterative process, data sendings and evaluation of UnderTh . . .
if State = NORMAL then

see that part on page 166...
else if State = WAIT4V then

see that part on page 167...
else if State = VERIF then

if ElectedNode = true then
see that part on page 167...

else
if ResponseSent = false then

if UnderTh = false or LocalCV = false
or at least one cell of Resps[] is negative then
Send a negative response to the asking neighbor
//by construction, that is the neighbor to which has been sent
//the last PartialCV message ⇔ false cell of RecvdPCV[]
ResponseSent ← true

else
if PseudoPerEnd = true then

if there remains only one 0 in Resps[] then
//that last 0 is located in the cell of the asking neighbor
if the other cells of Resps[] are all positive then

Send a positive response to the asking neighbor
else

Send a negative response to the asking neighbor
end if
ResponseSent ← true

end if
else

if all the cells of NewerDep[] are true then
PseudoPerEnd← true

end if
end if

end if
end if

end if
end if

until State = FINISHED
end for

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 169

Algorithm 5.16 Function RecvVerification()

Extract SrcNode and SrcTag from the message
if SrcTag = PhaseTag + 1 then

InitializeVerif()
State ← VERIF
Broadcast the verification message to all its neighbors but SrcNode

end if

Algorithm 5.17 Function RecvResponse()

Extract SrcNode, SrcTag and SrcResp from the message
SrcIndNeig ← corresponding index of SrcNode in the list of neighbors

of the current node (−1 if not in the list)
if SrcIndNeig ≥ 0 and PhaseTag = SrcTag then

Resps[SrcIndNeig] ← SrcResp
end if

Algorithm 5.18 Function RecvVerdict()

Extract SrcNode, SrcTag and SrcVerdict from the message
if SrcVerdict is positive then

State ← FINISHED
else

InitializeState()
PhaseTag ← SrcTag

end if
Broadcast the verdict message to all its neighbors but SrcNode

5.8 Exercises

1. Consider a linear system

Ax = b,

where A is an M -matrix and ε is a positive scalar. Prove that asyn-
chronous algorithms associated to the Jacobi algorithm for solving this
linear system converge.

© 2008 by Taylor & Francis Group, LLC

170 Parallel Iterative Algorithms

2. Consider a linear system

(A + ε)x = b,

where A is an M -matrix. Prove that for any ε > 0, asynchronous
algorithms associated to the Jacobi algorithm for solving this linear
system converge.

3. Consider a linear system Ax = b. Prove that iterative algorithms arising
from the splitting of A converge asynchronously if A is monotone and
the splittings are weak regular.

4. Give examples of large linear systems involving monotone matrices A
and by considering weak regular splitting of A, write programs of parallel
multisplitting iterative algorithms that converge asynchronously to the
solution of Ax = b (b given).

5. Consider the gradient iterations

x(k+1) = x(k) − γAx(k).

Prove that if A is diagonally dominant for a sufficiently small γ, then
the gradient algorithm converges asynchronously to the solution of

min
1

2
xT Ax.

6. Consider the 2 dimensional Dirichlet problem

−∆u = f on Ω =]0, 1[×]0, 1[
u = 0 on the boundary ∂ΩofΩ.

(a) By using the finite difference method to approximate the second
derivatives and following the illustration example of Chapter 1,
show that the approximate solution is the solution of a linear sys-
tem

Ax = b

where A is a block tridiagonal and where each block is also a tridi-
agonal matrix of the form




4 −1

−1
. . .

. . .

. . .
. . . −1
−1 4




.

(b) Propose a convergent asynchronous algorithm to solve the approx-
imate solution of the Dirichlet problem.

© 2008 by Taylor & Francis Group, LLC

Asynchronous Iterations 171

(c) Propose a parallel block convergent asynchronous algorithm to
solve the approximate solution of the Dirichlet problem.

7. Consider the ordinary differential equation




dx
dt = f(x, t)
x(0) = x0

t ∈ [0, T] .
(5.49)

Let’s denote by C1 the space of continuous functions defined on [0, T]
with values in Rn. Then, we suppose that the unknown function x ∈ C1

and that f is a continuous function.

(a) Prove that the following mapping is a norm on C1,
for x = (x1, ..., xn) ,

n(x) = ‖x‖∞ = max
1≤i≤n

max
0≤t≤T

‖xi(t)‖

(b) We suppose that f is Lipschitz continuous with respect to x, with
constant L, i.e.,

‖f(x, t)− f(y, t)‖∞ ≤ L ‖x− y‖∞
and consider the following fixed point mapping

T (x) = y ⇔ dyi

dt
= f(x1, ..., xn, t), yi(0) = (x0)i .

Let K be a real number such that

1− e−KT

K
<

1

L

Prove that T is contractive with respect to the norm
‖x‖K = max1≤i≤n max0≤t≤T e−Kt ‖xi(t)‖ .

(c) Propose a parallel asynchronous algorithm which converges to the
solution of (5.49).

(d)
multisplitting algorithm to solve (5.49).

8. Implement a centralized detection convergence procedure and a decen-
tralized one. Then compare the performances on algorithms presented
in this chapter.

9. With AIAC multisplitting algorithms (linear or not), compare the be-
havior of versions using different solvers for solving linear subsystems. It
is interesting to compare the behavior of iterative solvers against direct
ones. Nevertheless, the comparison between a simple iterative solver and
a more complex one, like GMRES, is also instructive. Try to point out
cases where simple iterative solvers perform faster than more complex
ones. Try to explain when this situation is possible.

© 2008 by Taylor & Francis Group, LLC

Following Section 5.4.3 of Chapter 5, build a parallel asynchronous

172 Parallel Iterative Algorithms

10. Try to implement the tips described in Section 5.6.4 which consist in
waiting for some new messages to arrive before running the next it-
erations with multisplitting algorithms for solving linear systems. Ac-
cording to the number of neighbors of each processor try to define an
appropriate number of messages to wait for before running the next
iterations.

11. Try to implement the same mechanisms as in the previous exercise with
nonlinear multisplitting algorithms.

12. Compare the behavior of the Newton-multisplitting algorithm and the
multisplitting-Newton algorithm for some nonlinear problems. Try to
point out the threshold for which one of those algorithms seems better
than the other in a distant cluster context.

© 2008 by Taylor & Francis Group, LLC

Chapter 6

Programming Environments and
Experimental Results

Introduction

In the two previous chapters, synchronous and asynchronous algorithms for
solving common problems have been described formally and their implemen-
tations have been explained. To implement those algorithms, it is possible
to use programming environments which are not dedicated to the implemen-
tation of asynchronous algorithms. However, it is obviously preferable and
easier to implement them using a dedicated environment. In order to imple-
ment a synchronous algorithm, any message passing environment can be used.
As mentioned previously, the implementation of an asynchronous algorithm
requires the disassociation of the computations from the communications.
That is why in this chapter we first present some environments that we have
used to implement asynchronous algorithms. Those environments are: Corba
OmniOrb 4, PM2 and MPICH/Madeleine which is a multithreaded imple-
mentation of MPI. With them, the programmer needs to explicitly manage
the features of AIAC algorithms. Later, two programming and execution en-
vironments have been designed to implement AIAC algorithms, namely JACE
and CRAC. We present them and we explain what interesting features they
provide to implement AIAC algorithms.

Finally, we report in this chapter some experiments that we have performed
in different contexts of execution with different algorithms. Our goal is not to
focus on pure performances that actually depend on the execution context but
rather on the differences between the behaviors of the synchronous and asyn-
chronous versions of the same algorithm. As we could not experiment with all
the algorithms described in this book in the same experimental contexts, we
report some experiments for some algorithms and analyze the results. From
those experiments, it is difficult to deduce general rules and to say a priori,
for a given problem in a given computing context, which of the synchronous
or the asynchronous versions of an algorithm will be the faster. Nevertheless,
the conducted experiments allow us to conclude that a crucial point is the
ratio between the computation time and the communication time. That is
why a brief discussion about that ratio is placed before the presentation of
the experiments.

173

© 2008 by Taylor & Francis Group, LLC

174 Parallel Iterative Algorithms

6.1 Implementation of AIAC algorithms with non-dedi-
cated environments

In [16] we have compared three environments for implementing AIAC algo-
rithms. These three environments are PM2 [89], MPICH/Madeleine [7] and
OmniOrb 4 [1].

The first one was naturally selected since we implemented our first AIAC
algorithms with it. It is a portable environment available on a wide range
of architectures. Its implementation is built on top of two separate software
components: Marcel and Madeleine. Marcel is a POSIX-compliant thread
package. Madeleine is a generic communication interface which can be used
on top of different communication protocols such as VIA, BIP, SBP, SCI,
MPI, PVM and TCP. In our experiments, we used it over TCP.

The second environment is a multi-protocol version of MPICH which also
uses Marcel. Thus, it provides multi-threading functionalities inside an MPI
implementation. This environment has been chosen according to the wide use
of MPI and the fact that it is thread safe. The comparison with PM2 is rele-
vant since although they use the same thread manager, their communications
are performed using different schemes (explicit communication with MPI and
RPC (Remote Procedure Call) with PM2).

Finally, the last environment is the free Corba [98] ORB OmniOrb 4. It is
a robust and high performance ORB which is certified to be in compliance
with Corba 2.1. It may be surprising to use an ORB to implement paral-
lel algorithms since this does not correspond to what they are designed for.
Nevertheless, Corba in general and OmniOrb 4 in particular both present the
minimal features necessary to make those implementations: a communication
system between machines and a multi-threaded environment. Our choice has
been to take this particular ORB since we already had to use it in another
context, so we know it well. Moreover, it has one of the most efficient commu-
nication management among the free available ORBs. The comparison with
the two other environments is also relevant since it uses a different thread
manager and an object oriented communication scheme.

6.1.1 Comparison of the environments

Those environments are multithreaded and, consequently, allow us to im-
plement AIAC algorithms. In order to compare them we have defined three
interesting measures: the performances obtained for each of them, the ease
of implementing those algorithms and the ease of deploying them onto the
parallel systems. We do not present the whole comparison which is quite long
but we prefer to highlight the interesting issues. Two typical scientific ap-
plications have been tested: a sparse linear system and a nonlinear chemical
problem. For more details on those applications, interested readers are invited
to consult [16].

© 2008 by Taylor & Francis Group, LLC

Programming Environments and Experimental Results 175

6.1.1.1 Performances

Using a low communication network, we have remarked that the three asyn-
chronous implementations (with MPI/Madeleine, Corba and PM2) are always
faster than the classical synchronous ones with a standard MPI implementa-
tion. Concerning the asynchronous versions, although the environments ob-
tain different results, the ranges of execution times are not that large. So,
it can be said that the tested environments globally have the same behavior
with AIAC algorithms. We have also concluded that it was impossible to
implement exactly the same mechanism from one environment to another. In
fact, some of the mechanisms used, such as threads or communications man-
agement, are directly dependent on the environments. Unfortunately, it is
not always possible to have clear explanations of how those mechanisms are
actually implemented. Hence, our algorithms are not exactly implemented in
the same way for all the environments because some of the functionalities they
require (threads, communications) are not usable in the same way. The main
differences between the tested implementations are summarized in Table 6.1.

Sparse linear problem
one sending threadPM2
receiving threads created on demand
one sending threadMPI/Mad
one receiving thread
N sending threadsOmniOrb 4
receiving threads created on demand

Nonlinear problem

two sending threadsPM2
one receiving thread
two sending threadsMPI/Mad
two receiving threads
two sending threadsOmniOrb 4
receiving threads created on demand

Table 6.1: Differences between the implementations (N is the number of pro-
cessors).

6.1.1.2 Ease of programming

Obviously, the ease of programming is rather subjective to each user. Here,
the comparison is based on the major programming aspects intervening in the
programming of AIAC algorithms according to our personal experience.

The first remark is that all the tested environments present both advan-
tages and drawbacks. MPI/Mad is probably the easiest to program since all
communications are done in the simple and well known MPI form and the

© 2008 by Taylor & Francis Group, LLC

176 Parallel Iterative Algorithms

threads are quite easily managed with the Marcel library. PM2 and Om-
niOrb 4 are quite similar in the way of managing the threads. Concerning the
communications, both of them use a remote procedure call mechanism. In
PM2, there is a system of explicit data packing before the call to the remote
function whereas, in OmniOrb 4, the data to be sent are given as arguments
of the called function.

Nevertheless, after having used a dedicated environment for AIAC algo-
rithm programming, all those considerations are meaningless since a dedicated
environment provides all the tools to easily develop an AIAC algorithm.

6.1.1.3 Ease of deployment

In terms of deployment, the advantage clearly goes to OmniOrb 4 due to
its high flexibility of use over multiple sites and more generally over the global
grid that represents the Internet.

Concerning PM2, its deployment is much more restrictive since it requires
a complete interconnection graph of the cluster to be used. Moreover, its
portability is less important since it does not completely support the use of
several systems and/or several architectures of machine in the same cluster.

Concerning the MPI/Mad environment, it is quite similar to PM2 in terms
of deployment and portability. Indeed, all the machines must be visible to each
other and data representations must be taken into account by the programmer.

Finally, compared to JACE which is portable and easy to deploy, all three
environments are not so easily deployable.

After having described the three programming environments that we have
initially used to develop AIAC algorithms, we can detail two dedicated envi-
ronments to efficiently and quickly design AIAC algorithms.

6.2 Two environments dedicated to asynchronous itera-
tive algorithms

The previous environments require the programmer to explicitly manage
asynchronous features. Two programming and execution environments have
been especially designed for parallel asynchronous iterative algorithms. As
those environments are used in the following experiments and as they simplify
the development of a parallel iterative algorithm it seems mandatory to us to
succinctly present them.

First of all we present JACE. Then, we present Crac which may be viewed
as a C++ implementation of JACE with some enhancements. In our exper-
iments, from the programming point of view they are quite similar to use
although from the implementation point of view, there are numerous differ-
ences which are not important for the designer of AIAC algorithms.

© 2008 by Taylor & Francis Group, LLC

Programming Environments and Experimental Results 177

6.2.1 JACE

JACE has been mainly designed and implemented by K. Mazouzi during
his PhD thesis. As this environment has been enhanced, we directly present
the last version.

JACE [24] is a Java programming and executing environment that permits
us to implement efficient asynchronous algorithms as simply as possible. It
builds a distributed virtual machine, composed of heterogeneous machines
scattered over several distant sites. It proposes a simple programming inter-
face to implement applications using the message passing model. The inter-
face completely hides the mechanisms related to asynchronism, especially the
communication manager and the global convergence control. In order to pro-
pose a more generic environment, JACE also provides primitives to implement
synchronous algorithms and a simple mechanism to swap from one mode to
another. JACE relies on three components: the daemon, the computing task
and the spawner.

6.2.1.1 The daemon

The daemon is the entity responsible for executing user applications. It is
a Java process running on each node taking part in the computation. Fig-
ure 6.1 shows the internal architecture of the daemon which is composed of
three layers: the RMI service, the application layer and the communication
layer.

Layer

Application Layer

Tasks Manager

Communication

Grid Infrastructure

Messages Manager

TCP/Socket NIO

R
M

I
S

er
v

ic
e

User’s Task

FIGURE 6.1: JACE daemon architecture.

© 2008 by Taylor & Francis Group, LLC

178 Parallel Iterative Algorithms

- RMI Service: When a daemon is launched, an RMI server is started on
it and is continuously waiting for remote invocations. The server provides
communications between the daemons and the spawner. It is used to manage
the JACE environment as for instance: initializing the daemons, monitoring
them or gathering the results.

- Application Layer: This layer provides tasks execution and global conver-
gence detection. A daemon may execute multiple tasks, allowing it to reduce
distant communications. JACE is designed to control the global convergence
process in a transparent way. Tasks only compute their local convergence state
and call the JACE API to retrieve the global state. The internal mechanisms
of the convergence detection depend on the execution mode, i.e., synchronous
or asynchronous.

- Communication Layer: Communications between tasks are performed
using the message/object passing model. JACE uses waiting queues to store
incoming/outgoing messages and two threads (sender and receiver) to deal
with communications. According to the kind of algorithm used, synchronous
or asynchronous, the management of queues is different. For a synchronous
execution, all messages sent by a task must be received by the other tasks,
whereas on an asynchronous execution, only the most recent occurrence of a
message, with the same source or destination and containing the same type
of information, is kept in the queues. The older one, if it exists, is deleted.

For scalability issues and to achieve better performances, the communica-
tion layer should use an efficient protocol to exchange data between remote
tasks. For this reason JACE is based on several protocols: TCP/IP Sockets,
NIO (New Input/Output) [74, 99] and RMI. NIO is a Java API (introduced
in Java 1.4). It provides new features and improved performances in the areas
of buffer management, scalable network and file I/O. The most important dis-
tinction between the original I/O library and NIO is how the data are packed
and transmitted. The original I/O deals with data in streams whereas NIO
deals with data blocks and consumes a block of data in one step. Further-
more, for network applications, users previously had to deal with multiple
socket connections by starting a thread for each connection. Inevitably, they
may have encountered issues such as operating system limits, deadlocks, or
thread safety violations, especially in large scale contexts. With NIO, selec-
tors are used to manage multiple simultaneous socket connections on a single
thread.

6.2.1.2 The computing task

As in MPI-like environments, the programmer decomposes the problem to
be solved into a set of cooperating sequential tasks. These tasks are executed
on the available processors and invoke special routines to send or receive
messages. A task is the computing unit in JACE, which is executed like a

© 2008 by Taylor & Francis Group, LLC

Programming Environments and Experimental Results 179

thread rather than a process. Thus, multiple tasks may be executed in the
same daemon and can share the system resources.

To write a JACE application, the user simply needs to extend the Task class
and to define a run() method containing its program code. The Task class
may be considered as the programming interface of JACE. It contains a limited
set of methods and attributes dedicated to implement asynchronous/synchro-
nous algorithms in a message passing style. To summarize, we can find:

• the nonblocking send/receive,

• the blocking send/receive (for synchronism),

• the global communications: barrier, broadcast,

• the convergence control,

• the finalization.

We also point out here that JACE implementation relies on the Java object
serialization to transparently send objects rather than raw data.

6.2.1.3 The spawner

The spawner is the entity that effectively starts the user application. After
starting daemons on all nodes, computations begin by launching the spawner
program with the following parameters:

• the number of tasks to be executed

• the URL of the task byte-code

• the parameters of the application

• the list of target daemons

• the mapping algorithm (round robin, best effort)

Then, the spawner broadcasts this information to all the daemons. As
JACE is designed to execute applications on large scale architectures with
a large number of nodes, that is achieved by using an efficient broadcast
algorithm based on a binomial tree [67]. This algorithm provides better per-
formances compared to a binary tree.

Let us suppose that we have a binomial tree of 2d nodes and that node 0
needs to send a message to all other nodes. This algorithm uses d parallel
phases where at phase k (1 ≤ k ≤ d) node i (with i < 2d−1) sends a message
to node i + 2k−1. In the general case, the spawning procedure is achieved in
log2(n) communication steps on n nodes. Figure 6.2 presents a binomial tree
broadcast procedure with 23 nodes.

© 2008 by Taylor & Francis Group, LLC

180 Parallel Iterative Algorithms

Phase 3

2 3

6 7

4 5

Phase 1

Phase 2

0 1

FIGURE 6.2: A binomial tree broadcast procedure with 23 elements.

Now, when a task is spawned, an identification number (task ID) is assigned
to it. This number is an integer whose value ranges from 0 to p − 1, with p
being the global number of tasks in the JACE application. This task mapping
is done by JACE and by default uses a round robin algorithm. Another
method can be used (called best effort) trying to balance the number of tasks
over the set of machines. To illustrate these two policies, let us assume 6 tasks
(0, 1 . . . 5) to be mapped on 3 processors. With a round robin algorithm tasks 0
and 3 are mapped on processor 0 and so on. With a best effort algorithm tasks
0 and 1 are mapped on processor 0 and so on. Since communications often
take place between consecutive tasks the best effort policy encourages local
communications and can be interesting when using multi-processor machines.

6.2.2 CRAC

CRAC has mainly been developed by S. Domas. It has been coded in
C++ in order to obtain good performances. It should be noted that for an
application coded with JACE in Java and the same application coded with
MPI in C (with MPICH/Madeleine), the amount of Java code is one-third
smaller than the C code since there is no need to explicitly implement the
asynchronism mechanisms. Furthermore, we have obtained an average ratio
of 6 between the Java and C execution times, even though it is common to
have 10 for scientific applications. However, this ratio is often considered too
big in respect to the higher coding effort needed in C. This is why CRAC was
developed in a C++ environment, based on the same principles as JACE, and
adding some optimized primitives and mechanisms which take into account
the architecture of the grid.

© 2008 by Taylor & Francis Group, LLC

Programming Environments and Experimental Results 181

6.2.2.1 Architecture

CRAC is based on the classical MPI triplet: daemon, application, spawner.
The daemon is launched on each machine constituting the Virtual Distributed
Machine (VDM). The user develops its application and launches it with the
spawner on the desired machines. However, the similarity with MPI nearly
stops here. Even if the CRAC programming interface uses the message passing
paradigm, the semantic of communications is completely different and several
primitives do not exist in MPI. Furthermore, the internals of CRAC are based
on multithreading and even the application is a thread. Finally, the virtual
distributed machine relies on a hierarchical view of the network in order to
reach machines with private IPs and to limit the bandwidth use on slow links.

The following items present the different components of CRAC, from the
VDM to the programming interface.

- Virtual Distributed Machine (VDM): the efficiency problem of dis-
tributed executions partly comes from low bandwidth on links between distant
geographical sites. In that case, a primitive like a gather-scatter that does not
take care of the network architecture may be totally inefficient if all messages
must take the slowest link in the architecture. Assuming that machines can
be gathered in sites, which have good bandwidths, and that sites are linked
by low bandwidths, all global communications may be optimized to take this
organization into account. This is the case when the architecture is composed
of clusters linked by the Internet. Unfortunately, cluster machines often have
private IPs and can only be reached through a frontal machine. To get round
that problem, the frontal may relay messages.

MPI does not take into account the network architecture but CRAC does.
Thus we can give the following definition of a site as a pool of machines which
can directly connect to each other. This notion is not necessarily geographical
but this may sometimes be the case. For example, if the machines of two
distant clusters can freely interconnect, it is better to separate them in two
sites if the bandwidth between the clusters is low. If it is similar to the
bandwidth inside clusters, they can be gathered in the same site.

Within a site, four types of machines are possible: master, supermaster,
slave, frontal. The last type may be applied to any of the first three. For
example, a machine may be a slave frontal. This characterization allows us
to optimize the management of the VDM (starting/stopping the daemons,
spawning, ...), and to reach machines with private IPs.

Here are the definitions of the types:

• frontal: a machine that can relay messages from outside the site to the
private IP machines of the site. It can also relay messages to another
site if a machine cannot send data outside the site.

• slave: a machine with no particular role (except computations).

© 2008 by Taylor & Francis Group, LLC

182 Parallel Iterative Algorithms

shape

master

slave

frontal

not frontal

private IP

Site 2 Site 3

Site 1

color

supermaster

FIGURE 6.3: An example of VDM.

• master: a machine that collects information from the slaves of the site
and relays them to the supermaster, or that relays information from the
supermaster to the slaves.

• supermaster: a machine that collects/sends information from/to the
masters. Obviously, the supermaster is a master but is unique.

The VDM is defined via an XML file, which is a perfect language to describe
its hierarchical organization. This file is passed as an argument to a booter
(like lamboot) that launches the daemons on each machine of the VDM. Then,
a TCP connection is created between each master and the supermaster, and
between each slave and its own master. This hierarchy allows us to limit the
bandwidth used between the sites. For example, when tasks are spawned for
an execution, the supermaster sends the configuration of the execution (the
machines used and their number) to all masters, which relay the information
to their own slaves.

In order to limit the number of connections between tasks, the convergence
detection mechanism also uses this hierarchy. Thus, even if a master runs no
task, its daemon is in charge of collecting the local convergence state of each
task running in the site.

Figure 6.3 shows an example of VDM with 3 sites. The lines represent the
TCP connections that constitute the hierarchical network used for convergence
detection and for management (essentially launching and stopping tasks). In
sites 2 and 3, two slaves have private IPs. Thus, it is mandatory for a machine
of those sites to be a frontal. It may be the master itself as in site 3 or simply
another slave, as in site 2. It can be noticed that there are no connections
between masters and that the supermaster may also have slaves, as in site 1.

During the execution of an application, a task may communicate data to
a task on another machine. The hierarchical network is never used for that.

© 2008 by Taylor & Francis Group, LLC

Programming Environments and Experimental Results 183

Instead, a new TCP connection is created between the machines running the
two tasks the first time they want to communicate (see below).

- Daemon: a CRAC daemon is launched on each machine of the VDM.
During an execution, its main role is to send and receive messages for the
local tasks. If the machine is a frontal, the daemon may also relay messages
to tasks hosted by another daemon. Those operations are executed by two
threads:

• the Sender thread: each time it awakes, it checks in the outgoing
queue the presence of messages to send. If no socket exists to the
destination machine, the Sender tries to connect and to retrieve a new
socket dedicated to send application data to that destination. Even if
the destination machine hosts several tasks, a single socket is used.

However, the destination machine may have a private IP. In that case,
the Sender tries to connect to the frontal machine of the destination
site. Each message will be sent to the frontal, which will relay the data
to the real destination.

In order to optimize the global communication time, each message is
composed of a header followed by packets and is not sent in one chunk.
As each packet has a fixed destination, the Sender performs a loop on
the destinations of the packets: it sends a packet to one destination
after another. Obviously, if a new message to an existing destination is
inserted in the outgoing queue, it must wait for the end of the emission
of the current one. But if the new message is for a new destination, it
can be sent immediately. That process is a kind of pipeline which greatly
reduces the time needed by the last message inserted in the queue to
arrive completely at its destination.

• the Receiver thread: it uses a polling mechanism to passively detect
connection demands and the incoming of data on existing sockets. In
the last case, the Receiver uses the header to determine the destination
task. If this task is not running on the machine, it means that the
message must be relayed and it is directly put in the outgoing queue
to be sent by the Sender. If the machine hosts the destination task,
the Receiver retrieves the source task from the header and a slot of the
incoming queue, associated to that task, is used to store the data.

The slot allocation policy is as follows: The Receiver always checks if
a slot with the same message characteristics {source,destination,tag}
exists. If this is the case, existing data are overlapped by the ones to
come, otherwise a new slot is created. This overlapping is particularly
useful to accelerate convergence in asynchronous executions. The slot is
freed when the task retrieves its data.

Taking the example of Figure 6.4, the Receiver of B would create a slot
for the first message coming from A. At the end of its first iteration,

© 2008 by Taylor & Francis Group, LLC

184 Parallel Iterative Algorithms

A ...

...

...C

time0

B

FIGURE 6.4: An example illustrating that some messages (represented with
dashed lines) are ignored.

B retrieves the data from the slot. During its second iteration, the
Receiver creates a slot for the second message from A but uses the same
slot to store the data of the third message. Thus, B is insured to always
have the latest data sent by A.

It must be noticed that this policy works perfectly well for synchronous
executions. Indeed, for a given triplet {source,destination,tag}, a single
message can be sent/received during the same iteration. Thus, there
cannot be lost data because of overlapping messages.

The daemon also creates the Converger thread that is in charge of collect-
ing and updating information about the convergence, using the hierarchical
network of the VDM. It implies that the supermaster has more information
to collect than the masters, and the masters more than the slaves. Thus, the
work of this thread depends on the machine type but whatever the case, its
final goal is to provide the global convergence state to the tasks.

- Task: the application task is a thread that is executed within the daemon
context. Thus, the task can directly access message queues (incoming and
outgoing). This is not the case for MPI, in which a task is a process and
must communicate (with a Unix socket or shared memory) with the daemon
to send/receive data.

As CRAC is an object environment, the Task class is defined as a thread,
containing all primitives of the programming interface and the classical at-
tributes of a task (identifier, number of tasks in the daemon and in the
VDM,. . .). CRAC also declares (as an include file) the UserTask class which
inherits from Task. This class contains a run() method that must be defined
by the user in a C++ file, which is compiled as a shared library. When a task
is launched on a machine via the spawner, the daemon dynamically loads its
code and creates a new thread object containing that code. The thread is
started and its run() method automatically called, as in Java.

© 2008 by Taylor & Francis Group, LLC

Programming Environments and Experimental Results 185

- Spawner: the CRAC spawner is a classical MPI spawner, except that it
uses an XML file to specify which and how many tasks are launched on which
machine. The access path of the code of each task must be given for each
machine. Thus, it is possible to have an MIMD execution. It is also possible
to pass arguments to each task. For now, the spawning is only static and
tasks cannot be added during an execution.

- Programming interface: it is defined in the Task class. It provides
the classical primitives to implement message passing codes but some have
special semantics and some are dedicated to iterative algorithms. Here are
four characteristic examples that greatly differ from MPI:

• CRACSend(): the emission of a message is never blocking. This routine
simply copies the data in a slot of the outgoing queue. Thus, the buffer
containing the data can be immediately reused. The slot allocation
policy is identical to that of the incoming queue: a new slot may be
created or an existing slot chosen and its data overlapped.

• CRACRecv(): the reception may be blocking or not, depending on a
parameter of this function. In MPI, the nonblocking reception returns
an identifier that allows the receiver to test and to wait for the total
reception of the message. In CRAC, it is like a test/receive. If the
message is in the incoming queue, the buffer passed to CRACRecv()

is filled and it is left empty if no message arrived. This semantic is
dedicated to an asynchronous execution for which it must be possible
to begin another iteration without new data being received.

• CRACConvergence(): it may be blocking or not, depending on a param-
eter of that function. In both cases, it takes a boolean as a parameter,
which is the local convergence state. It returns the global convergence
state as a boolean. Obviously, that routine must be used in blocking
mode for a synchronous execution. For a description of its work in
asynchronous mode, one can refer to [22].

• tags: each message must be marked by an integer value defined by the
user. As mentioned above and in the Receiver description, there is an au-
tomatic replacement if a message with the same triplet {source,destina-
tion,tag} is already present in the queues. Thus, the user must assign
the same tag to the messages that are used to update the same data set
of the destination task. Obviously, the same tag must never be used for
messages updating different data sets.

© 2008 by Taylor & Francis Group, LLC

186 Parallel Iterative Algorithms

6.3 Ratio between computation time and communica-
tion time

Scientists who work with parallel architectures define the ratio between
the computation time and the communication time as the granularity of an
application. This comes from the fact that in traditional algorithms (i.e.,
synchronous algorithms, iterative or not), periods of computation are typi-
cally separated from periods of communication by synchronizations. How-
ever, dealing with AIAC algorithms, there are no more synchronizations, thus
that traditional definition is not very appropriate. In order to be scalable,
an algorithm must be coarse grained, i.e., have long computation parts with-
out communications. That is to say, messages must be gathered in order to
reduce the number of communications. It is straightforward to see that algo-
rithms based on the multisplitting method are coarse grained. Nevertheless,
even though an algorithm has been designed to be coarse-grained, the ratio
between the computation time and the communication time may affect its ex-
ecution times in a given computing context. Thus, in our opinion, this ratio
is more important than the notion of the granularity of an application. The
main reason lies in the fact that the granularity definition does not involve
the speed of the interconnection network which affects the communication
time. In the following, as we will see, for some algorithms in some computing
contexts the synchronous version will be faster than the asynchronous one.
Of course, we shall also see the opposite situation.

6.4 Experiments in the context of linear systems

As explained in the respective chapters on synchronous and asynchronous
iterative algorithms, the multisplitting method is very efficient to solve linear
systems, especially sparse ones. That kind of systems arises in numerous
modelizations.

6.4.1 Context of experimentation

In this subsection we explain all the experiments we have performed and
we analyze the results obtained. Experiments have been conducted on the
GRID’5000 architecture, a nation-wide experimental grid in France [35]. Cur-
rently, the GRID’5000 platform is composed of an average of 1300 bi-processors
which are located in 9 sites in France: Bordeaux, Grenoble, Lille, Lyon, Nancy,
Orsay, Rennes, Sophia-Antipolis, Toulouse, as described in Figure 6.5. Most
of those sites have a Gigabit Ethernet Network between the local machines.

© 2008 by Taylor & Francis Group, LLC

Programming Environments and Experimental Results 187

The links between the different sites range from 2.5 Gbps up to 10 Gbps.
Most of the processors in the platform are AMD Opterons. For more de-
tails on the GRID’5000 architecture, interested readers are invited to visit
the website: http://www.grid5000.fr. The architecture of that platform con-
stantly evolves as each site independently updates its local architecture.

Concerning the processors used in the following experiments, they range
from AMD Opterons 246 2 GHz to AMD Opterons 250 2.4 GHz.

FIGURE 6.5: The GRID’5000 platform in France.

In order to compare the behavior of both synchronous and asynchronous
multisplitting methods for linear systems, we have built a square matrix gen-
erator which ensures that the corresponding linear problem can be solved by
those methods, i.e., their convergence is guaranteed by the matrix properties.

The matrices we have used are built using the following scheme. The di-
agonal of the matrix is not empty nor are its two neighbor diagonals. Then,
according to the number of diagonals specified by the user, some of the other
diagonals are not empty. Those diagonals are equitably scattered between the
diagonal of the matrix and a bandwidth specified by the user. Consequently,
in the experiments we report those two parameters (number of diagonals and
bandwidth). Off-diagonal nonempty elements of a matrix are negative ran-
dom values with a value between −1 and 0. Diagonal elements are equal to
the inverse of the sum of the nonempty elements of the same line plus a ran-
dom value whose interval is defined by the user. This allows us to change the

© 2008 by Taylor & Francis Group, LLC

https://www.grid5000.fr

188 Parallel Iterative Algorithms

spectral radius of the iteration matrix which acts on the number of iterations
required to reach a given threshold during the resolution. Such generated
matrices are M -matrices for which it is known that multisplitting algorithms
converge. Figure 6.6 illustrates the case where the bandwidth is equal to half
the matrix size with 7 nonempty diagonals.

Bandwidth

FIGURE 6.6: Example of a generated square matrix.

In the following experiments we mention the size of the square matrix, its
parameters, the sequential solver used, the execution mode (synchronous or
asynchronous), the execution time in seconds, the number of iterations and the
number of processors used with their location and characteristics. It should
be noticed that the number of iterations in the synchronous mode is always
constant whereas it is not the case in the asynchronous mode since it varies
from one execution to another and from one processor to another, mainly
according to the possible network fluctuations and to the relative powers of the
processors if they are heterogeneous. That is why, in this case, we report an
interval with the minimum and the maximum number of iterations according
to the execution and the processors. Every reported result is the mean value
of a series of four executions. Finally, it should be noticed that we have not
experimented with matrices for which the resulting iteration matrices have
too small a spectral radius because in such cases, the number of iterations
would be smaller and not very representative. Therefore we have chosen quite
complex matrices.

© 2008 by Taylor & Francis Group, LLC

Programming Environments and Experimental Results 189

In our experiments, we did not change the default parameters of the
MUMPS [3, 4] and SuperLU [82, 70] packages. With SparseLib we have
chosen the GMRES method with a ILU preconditioner. In order to imple-
ment those synchronous and asynchronous algorithms we have used the CRAC
library [40].

6.4.2 Comparison of local and distant executions

In this first series of experiments, we wanted to compare the execution
times of the multisplitting method using only local nodes, and using the same
number of nodes scattered over distant sites. To achieve this, we have used
a square matrix of size 10,000,000 with 70 processors located either in Nice
for the local case or 70 processors scattered as follows: 30 in Orsay, 20 in
Lille and 20 in Nice for the distant one. Table 6.2 shows the execution times
obtained with the local cluster in Nice. In this table we can remark that with
large bandwidth matrices, the multisplitting method is more efficient in the
asynchronous mode than in the synchronous one. This can be explained by the
fact that the larger the bandwidth is, the more communications are required
with the more neighbors. With a smaller bandwidth, the synchronous version
is faster. It can also be noticed that the number of iterations required to
reach the convergence in the asynchronous mode is always greater than for
the synchronous mode. This remark will always be true in the following.

Synchronous AsynchronousSolver
exec. time (s) nb. iter. exec. time (s) nb. iter.

13 diagonals, bandwidth: 5,000,000
SparseLib 88.69 142 57.42 [207-296]
MUMPS 98.73 142 70.39 [198-280]
SuperLU 80.23 142 49.00 [241-365]

13 diagonals, bandwidth: 1,000,000
SparseLib 79.89 125 57.60 [182-247]
MUMPS 98.33 125 69.75 [174-237]
SuperLU 72.87 125 50.92 [183-255]

13 diagonals, bandwidth: 100,000
SparseLib 39.19 51 48.01 [57-75]
MUMPS 15.45 51 19.81 [65-106]
SuperLU 12.40 51 15.21 [71-111]

Table 6.2: Execution times of the multisplitting method coupled to different
sequential solvers for a generated square matrix of size 10.106 with 70 machines
in a local cluster (Sophia).

© 2008 by Taylor & Francis Group, LLC

190 Parallel Iterative Algorithms

Table 6.3 shows the execution times of the same matrices as in Table 6.2
with the same number of nodes but located in three sites. The execution times
are higher than in a local context. This is not surprising since distant com-
munications take more time than local ones. With large bandwidth matrices
execution times are much longer and the comparison between a local running
and a distant one may seem irrelevant. In this case, the use of a distant cluster
is limited to solving large square matrices that cannot be solved using a local
cluster.

Nevertheless, the asynchronous version is more robust to distant communi-
cations than the synchronous one. This is due to the implicit overlapping of
communications by computations inherent to the asynchronous model. How-
ever, with smaller bandwidth matrices the behavior of the solver between a
local and a distant running is more comparable. The ratio between the local
and the distant running is bounded by three although the smallest machines
in the distant configuration are the same as in the local one. Another issue is
that whatever the sequential solver used in our experiments is, the execution
times are relatively similar for this size of matrix.

Synchronous AsynchronousSolver
exec. time (s) nb. iter. exec. time (s) nb. iter.

13 diagonals, bandwidth: 5,000,000
SparseLib 1,340.12 142 770.62 [1,821-2,354]
MUMPS 1,178.56 142 741.65 [1,582-2,101]
SuperLU 1,109.12 142 736.63 [1,782-2,095]

13 diagonals, bandwidth: 1,000,000
SparseLib 1,244.25 125 517.69 [1,876-2,320]
MUMPS 1,318.63 125 512.32 [2,019-2,764]
SuperLU 1,298.71 125 506.76 [2,102-2,908]

13 diagonals, bandwidth: 100,000
SparseLib 83.97 51 48.73 [65-86]
MUMPS 60.48 51 42.29 [178-279]
SuperLU 62.35 51 46.56 [283-422]

Table 6.3: Execution times of the multisplitting method coupled to different
sequential solvers for a generated square matrix of size 10.106 with 70 machines
located in 3 sites (30 in Orsay, 20 in Lille and 20 in Sophia).

To sum up this first series of experiments, the ratio between the compu-
tation time and the communication time plays a major role. With those
matrices, when the bandwidth increases, the computation time stays quite of
the same order whereas the communication time drastically increases. That is
why, with large bandwidth matrices, the multisplitting method is less efficient

© 2008 by Taylor & Francis Group, LLC

Programming Environments and Experimental Results 191

in a distant context. But it should be noticed that any other solvers would
have the same caveat, probably with a stronger effect due to the amount
of communications and synchronizations. From a general point of view, the
higher this ratio between the computation time and the communication time
is, the more favored the synchronous version is compared to the asynchronous
one, and reciprocally. That is why when executing an algorithm in a local
cluster, the synchronous version may be faster than the asynchronous one.
Conversely, executing the same algorithm within a grid context, where com-
munication performances are worse, the communication time would be longer
and the ratio would often decrease in favor of the asynchronism.

6.4.3 Impact of the computation amount

In the previous series of experiments we have shown that the communication
time has a great influence on the execution time especially in a distant context.
In this second series of experiments we want to study how the execution time
is affected when the computation amount increases. In Table 6.4, we report
the experiments with different sizes of square matrices. For each one, the
bandwidth is quite small, which ensures that the execution times will not be
too long. For those experiments we have used 120 machines scattered over 4
sites (40 in Rennes, 40 in Paris, 25 in Nancy and 15 in Lille). As our goal was
not to compare the performances of the different sequential solvers, only one
of them has been used in those experiments, the MUMPS solver.

Size Number Synchronous Asynchronous
of the of Bandwidth exec. nb. exec. nb.
matrix diagonals time (s) iter. time (s) iter.
1.106 23 1,000 10.05 72 4.55 [303-475]
2.106 23 2,000 14.98 69 5.39 [195-229]
4.106 23 4,000 19.33 68 12.31 [204-268]
6.106 23 6,000 24.19 69 13.34 [146-176]
8.106 23 8,000 27.87 68 18.18 [142-143]
10.106 23 5,000 28.10 67 22.22 [136-144]

Table 6.4: Execution times of the multisplitting method coupled to the
MUMPS solver for different sizes of generated matrices with 120 machines
located in 4 sites (40 in Rennes, 40 in Orsay, 25 in Nancy and 15 in Lille).

Those experiments emphasize that the smaller the size of the square matrix
is, the more efficient the asynchronous version is, compared to the synchronous
one. This is easily understandable since the computation amount increases

© 2008 by Taylor & Francis Group, LLC

192 Parallel Iterative Algorithms

with the size of the square matrix. So, the ratio between the computation
time and the communication time decreases and the communications become
less penalizing. The number of iterations to reach the convergence in the
asynchronous version clearly shows that point as that number is larger with
matrices of small sizes. When the computation amount becomes more impor-
tant, the difference between the synchronous and the asynchronous versions
decreases. It should be noticed that the network bandwidth between the dif-
ferent sites of the GRID’5000 architecture is very important compared to the
traditional network bandwidths. So, with the GRID’5000 platform the ratio
between the computation time and the communication time for which algo-
rithms are efficient is very different from more traditional grid environments
with low bandwidth networks.

6.4.4 Larger experiments

In a third series of experiments we have used a larger number of processors
in order to measure the scalability of the multisplitting method.

Size Nb. Synchronous Asynchronous
Solver of the of Band- exec. nb. exec. nb.

matrix diag. width time (s) iter. time (s) iter.
MUMPS 10.106 13 5,000 16.41 30 10.98 [138-159]
SuperLU 10.106 13 5,000 19.83 30 14.77 [85-109]
MUMPS 20.106 13 5,000 15.91 22 15.48 [74-79]

Table 6.5: Execution times of the multisplitting method coupled to the
MUMPS or SuperLU solvers for different sizes of generated matrices with
190 machines located in 5 sites (30 in Rennes, 30 in Sophia, 70 in Orsay, 30
in Lyon and 30 in Lille).

In Table 6.5 we report three configurations for which we have compared
the execution times of the two execution modes of the multisplitting method
with 190 machines scattered over 5 sites (30 in Rennes, 30 in Sophia, 70 in
Orsay, 30 in Lyon and 30 in Lille). It results from those experiments that the
two sequential direct solvers which can be used have quite a similar behavior.
With the larger matrix size, equal to 20,000,000, the synchronous and the
asynchronous versions require about the same amount of time. This is due to
the ratio between the computation time and the communication time which
does not favor any of the two versions.

In all our previous experiments, we have only studied executions with one
computation thread per machine. Let us remind the interested reader that

© 2008 by Taylor & Francis Group, LLC

Programming Environments and Experimental Results 193

machines in the GRID’5000 architecture are at least bi-processors. As previ-
ously mentioned, CRAC is a multithreaded library and it is possible, with the
multisplitting method, to run more than one computation task per machine.
In fact, as soon as the computation task is thread safe, i.e., it supports being
executed by multiple threads, the multisplitting method can be executed with
multiple computation tasks. Unfortunately, two of the three internal solvers
used are not thread safe (MUMPS and SuperLU); that is why we have only
experimented it with SparseLib.

In that experiment, we have used two sites (Paris and Nice) and chosen ma-
trices with larger bandwidths, up to 3,000,000. Table 6.6 shows the results.
Although only two distant sites are used, we can remark that the asynchronous
version is still faster than the synchronous one. The multisplitting method
simply allows us to use multi-processor machines as soon as the sequential
linear solver used is thread safe. Hence, it is easy to increase the computing
power without any additional effort.

Number Synchronous Asynchronous
of Bandwidth exec. nb. exec. nb.

diagonals time (s) iter. time (s) iter.
13 300,000 132.51 134 87.14 [634-859]
23 300,000 163.88 141 104.37 [576-809]
13 3,000,000 353.80 142 245.68 [980-1279]

Table 6.6: Execution times of the multisplitting method coupled to the
SparseLib solver for generated square matrices of size 30.106 with 200 bi-
processors located in 2 sites (120 in Paris, 80 in Nice), so 400 CPUs.

6.4.5 Other experiments in the context of linear systems

Using the multisplitting method to solve linear systems has other interest-
ing advantages which are worth noticing. In this subsection, we report some
experiments performed to measure some interesting features of the multisplit-
ting method.

6.4.5.1 Influence of the overlapping

In several parts of this book we have mentioned that the overlapping of
components may reduce the number of iterations, and consequently, the ex-
ecution time. In the following experiments we have measured the impact of
the overlapping on the number of iterations required to reach the convergence
and the impact on the factorization time. We only focus on the multisplitting

© 2008 by Taylor & Francis Group, LLC

194 Parallel Iterative Algorithms

method with a direct inner solver because the size of each submatrix, which
varies depending on the overlapping size, has an important influence on the
factorization time. Moreover, we only consider the synchronous version in
order to measure the influence on the number of iterations. Considering an
asynchronous execution would lead to different numbers of iterations from one
execution to another. Finally, we have generated a smaller square matrix of
size 100,000 and used a smaller cluster composed of only 10 machines scat-
tered on 2 distant sites in France, connected by a 20 Mbps optic fiber link.
The machine configuration ranges from Intel Pentiums IV 1.7 GHz to Intel
Pentium IV 2.6 GHz with 512 MB memory.

 0

 5

 10

 15

 20

 25

 30

 0 1000 2000 3000 4000 5000

T
im

e
(in

 s
ec

on
ds

)

Overlapping size

synchronous
asynchronous

factorizing time
number of iterations/100

FIGURE 6.7: Impacts of the overlapping for a generated square matrix of
size 100000.

Figure 6.7 illustrates the impacts of the overlapping on the proposed algo-
rithms. The larger the overlapping is, the more time-consuming the factoriza-
tion step is. Consequently, its size should be defined carefully and should take
into account the size of the matrix and its parameters such as the factorization
time, the spectral radius, etc. In the figure, the numbers of iterations for the
synchronous algorithm are reported divided by 100 to simplify the reading of
the display. It can be seen that, in that example, the best overlapping size is
around 2500.

6.4.5.2 Memory requirements with a direct method

It is also interesting to study the influence of the number of processors on the
memory usage when a direct inner solver is used in the multisplitting method
to solve linear systems. The factorization step requires a lot of memory; that

© 2008 by Taylor & Francis Group, LLC

Programming Environments and Experimental Results 195

is why it is interesting to measure the influence of the number of processors
on the memory usage. As mentioned before, by splitting the matrix, each
processor is in charge of a small part of the matrix. This part is all the
smaller as the number of processors is important. Table 6.7 shows the maximal
memory usage for a processor in function of the number of processors used. In
those experiments on the memory requirements, we have used the synchronous
version of the multisplitting method with the SuperLU solver on a cluster
composed of 20 Pentiums IV 3 GHz with 1 GB memory. The network is a
standard Giga Ethernet with 1 Gbps. We have used a matrix called cage12
which can be found in the University of Florida Sparse Matrix Collection [42].

number of execution factorization maximal memory number of
processors time (s) time (s) usage (MB) iterations
6 28570.82 3114.54 1748.81 16
7 11795.22 1866.55 1267.43 16
8 2136.03 1297.61 1061.15 17
9 902.98 886.27 864.40 17
10 420.49 411.17 596.48 17
11 431.71 423.32 576.20 17
12 218.55 212.02 429.86 17
13 186.23 178.97 371.26 17
14 220.47 212.59 363.97 18
15 102.25 98.44 258.59 17
16 133.25 121.03 265.66 18
17 85.62 74.20 214.39 17
18 77.37 71.26 203.34 18
19 47.30 44.47 157.35 18
20 74.33 68.93 176.57 18

Table 6.7: Impacts of memory requirements of the synchronous multisplitting
method with SuperLU for the cage12 matrix.

This table contains several important points that should be commented
upon. No experimentation has been conducted with fewer than 6 processors
because the machines did not have enough memory. In those experiments, we
only present splittings with equal sizes. According to the dependencies of the
matrix and the values of submatrices, the memory required for each processor
differs. In the table, we only report the maximum of the memory used because
it is significant information. In fact, with that cluster configuration, in which
each processor has 1 Gb memory, the memory requirements in the experiments
with 6 to 8 processors exceed the total available memory on at least one of
the involved machines, which has to swap a part of its memory during the

© 2008 by Taylor & Francis Group, LLC

196 Parallel Iterative Algorithms

computation. This is why the execution times are so important with those
numbers of processors. Besides, we can remark that, contrary to the other
processor configurations, i.e., more than 8, there is an important difference
between the execution times and the factorization times, which is also due to
the memory swapping.

Other experiments with linear systems in different execution contexts may
be found in [13, 18, 15, 14].

6.5 Experiments in the context of partial differential
equations using a finite difference scheme

In this section, we are interested in solving a nonlinear system of equations
which simulates the evolution of the concentrations of two chemical species
in a two dimensional domain. This problem corresponds to an advection-
diffusion system with two species. It is solved by using a discretization of the
space on a two-dimensional grid (x, z).

The evolution of the species concentrations is given by

∂ci

∂t
= Kh

∂2ci

∂x2
+ V

∂ci

∂x
+

∂

∂z
Kv(z)

∂ci

∂z
+ Ri(c1, c2, t) (6.1)

where ci (i = 1, 2) denotes the concentrations of the chemical species, Kh, V
and Kv, respectively, denote the horizontal diffusion coefficient, the velocity
and the vertical diffusion coefficient. The function Ri() represents the reaction
of the chemical species [73]:

R1(c1, c2, t) = −q1c
1c3 − q2c

1c2 + 2q3(t)c
3 + q4(t)c

2

R2(c1, c2, t) = q1c
1c3 − q2c

1c2 + q4(t)c
2 (6.2)

with
Kh = 4.0× 10−6 V = 10−3

Kv(z) = 10−8e
z
5 c3 = 3.7× 1016

q1 = 1.63× 10−16 q2 = 4.66× 10−16

qj(t) = e−aj/sin(ωt) for sin(ωt) > 0
qj(t) = 0 otherwise

(6.3)

and j = 3, 4, ω = π/43200, a3 = 22.62 and a4 = 7.601.
The initial conditions are the following ones:

c1(x, z, 0) = 106α(x)β(z)
c2(x, z, 0) = 1012α(x)β(z)

(6.4)

with
α(x) = 1− (0.1x− 1)2 + (0.1x− 1)4/2
β(z) = 1− (0.1z − 1)2 + (0.1z − 4)4/2

(6.5)

© 2008 by Taylor & Francis Group, LLC

Programming Environments and Experimental Results 197

The discretization in space along x and z allows us to rewrite the system of
PDEs in Equation (6.1) in a system of ODEs (Ordinary Differential Equations)
of the form

dy(t)

dt
= f(y(t), t) with y = (c1, c2) (6.6)

where y(t) is a vector of size 2n and n is the total number of elements in the
discretization grid.

Using the implicit Euler scheme, the previous equation can be rewritten as

y(t + h)− y(t)

h
= f(y(t + h), t + h) (6.7)

where h is the discretization time step.
Solving the previous equation is equivalent to finding F (y(t+h), y(t), t) = 0

with

F (y(t + h), y(t), t) = y(t) + h ∗ f(y(t + h), t + h)− y(t + h) (6.8)

where t and y(t) are known and y(t + h) is the unknown.
In a sequential execution, the Newton algorithm allows us to compute the

solution of that equation. So, as soon as the problem has been solved for one
instant t, it can then be solved at the next instant t+h according to the given
discretization time step h. And that process is repeated until the solution has
been computed over the entire considered time interval.

In parallel, using an asynchronous algorithm, it is possible to design two
versions. One is based on the asynchronous Newton-multisplitting algorithm
presented in Section 5.6.5 and the other one is based on the asynchronous
multisplitting-Newton algorithm presented in Section 5.6.6.

As previously seen, the multisplitting-Newton version presents the advan-
tage of not requiring any synchronization. As this problem is nonstationary
and involves the resolution of a nonlinear equation at each time step, the use
of the multisplitting-Newton method allows one to obtain an algorithm which
only requires one synchronization at each discretization time step. Hence, this
algorithm may seem suited to a grid computing context with distant clusters.

In the following experiments we have also used the GRID’5000 architecture
presented in Section 6.4.1.

In Tables 6.8 and 6.9, we report the results of the multisplitting-Newton
method applied to the advection-diffusion problem discretized as described
above. In order to sequentially solve the underlying sparse linear systems, we
have used the MUMPS software [2] which is a direct sparse linear solver. In
those experiments, 120 machines have been used, scattered over 4 sites of the
GRID’5000 platform.

In those tables, each result is the mean value of a series of 10 executions.
In order to compare the behavior of the application, we have chosen two
discretization steps: 360 and 720 seconds. For each value, reported execution
times have been achieved for 2 time steps. Different sizes of problems have

© 2008 by Taylor & Francis Group, LLC

198 Parallel Iterative Algorithms

discretization time step: 360 s
problem synchronous asynchronous

size exec. nb. of exec. nb. of
time (s) iter. time (s) iter.

1400× 1000 47.8 252 25.9 [264-290]
2100× 1500 123.8 429 80.6 [452-496]
2800× 2000 271.7 626 190.7 [710-832]
4200× 3000 981.3 984 668.8 [1108-1274]

Table 6.8: Execution times of the multisplitting-Newton method coupled to
the MUMPS solver for different sizes of the advection-diffusion problem with
120 machines located in 4 sites and a discretization time step of 360 s.

discretization time step: 720 s
problem synchronous asynchronous

size exec. nb. of exec. nb. of
time (s) iter. time (s) iter.

1400× 1000 75.5 393 39.4 [401-437]
2100× 1500 242.1 696 184.8 [712-846]
2800× 2000 431.9 964 299.0 [1042-1169]
4200× 3000 1368.9 1523 1046.7 [1691-1864]

Table 6.9: Execution times of the multisplitting-Newton method coupled to
the MUMPS solver for different sizes of the advection-diffusion problem with
120 machines located in 4 sites and a discretization time step of 720 s.

been examined in order to analyze the behavior of CRAC with a variable ratio
between computation and communication times. For example, a problem size
of 4200 × 3000 means that, because of the two chemical species, the global
matrix has 2× 4200× 3000 = 25,200,000 rows and columns, with 10 non-null
elements per row. As previously mentioned, multisplitting methods allow the
overlapping of some components, which may decrease the number of iterations.
In our experiments, an overlapping size equal to 20 for each dimension has
been chosen.

The study of Tables 6.8 and 6.9 reveals that the asynchronous version of
the algorithm is always faster than the synchronous one. This phenomenon
is due to the fact that in the synchronous case, all tasks are synchronized at
each iteration of the multisplitting method. When the problem size increases,
the ratio of the computation time over the communication time also increases,
and the difference between the synchronous and the asynchronous execution
times decreases. This is clearly shown in the last column of Table 6.10 which
gives the synchronous execution time divided by the asynchronous one. This

© 2008 by Taylor & Francis Group, LLC

Programming Environments and Experimental Results 199

discretization problem exec. times
time step size ratio

1400× 1000 1.85
2100× 1500 1.53360
2800× 2000 1.42
4200× 3000 1.47

1400× 1000 1.92
2100× 1500 1.31720
2800× 2000 1.44
4200× 3000 1.31

Table 6.10: Ratios between synchronous and asynchronous execution times of
the multisplitting-Newton method for different sizes and discretization time
steps of the advection-diffusion problem with 120 machines located in 4 sites.

fact was commonly observed in all our studies of asynchronous algorithms.
For each version of the algorithm, Tables 6.8 and 6.9 also report the number
of iterations required to reach the convergence. As already pointed out, in
the asynchronous case, that number varies from one execution to another and
from one processor to another. That is why, as in the experiments in the
context of linear problems, we report an interval which corresponds to the
minimum and maximum numbers of iterations for the different executions.
Without considering the mode of execution of the algorithm, the larger the
size of the discretization step is, the larger the number of iterations required
to reach the convergence is.

Other experiments with nonlinear systems in different execution contexts
may be found in [21, 20].

© 2008 by Taylor & Francis Group, LLC

Appendix

A-1 Diagonal dominance. Irreducible matrices

DEFINITION A.1 An n × n matrix A = (Ai,j)1≤i,j≤n is diagonally
dominant if for all i ∈ {1, ..., n}

|Ai,i| ≥
∑

j 6=i

|Ai,j | . (A.9)

The matrix A is strictly diagonally dominant if strict inequality is valid for
all i in (A.9).

DEFINITION A.2 An n × n matrix A = (Ai,j)1≤i,j≤n is reducible if
there exists an n× n permutation matrix P such that

PAPT =

(
B C
0 D

)
,

where B is an r× r submatrix and C is a n− r×n− r submatrix. If no such
permutation matrix exists, then A is said to be irreducible.

DEFINITION A.3 An n×n matrix A = (Ai,j)1≤i,j≤n is irreducibly diag-
onally dominant if A is irreducible, diagonally dominant and strict inequality
holds in (A.9) for at least one i.

THEOREM A.1

Let A be an n×n real or complex matrix. If A is either strictly or irreducibly
diagonally dominant then it is invertible.

PROOF See, e.g., [93]

DEFINITION A.4 A real n × n matrix A = (Ai,j)1≤i,j≤n is positive
semidefinite if

xT Ax ≥ 0, ∀x ∈ R
n.

201

© 2008 by Taylor & Francis Group, LLC

202 Parallel Iterative Algorithms

It is positive definite if strict inequality holds whenever x 6= 0.

The eigenvalues of a symmetric positive (semi)definite matrix are positive
(nonnegative).

PROPOSITION A.1

Let A be a real n× n matrix. If A is symmetric, irreducibly diagonally domi-
nant and has positive diagonal elements then A is positive definite.

A-1.1 Z-matrices, M-matrices and H-matrices

DEFINITION A.5 An n × n square real matrix A is a Z-matrix if for
any i, j ∈ {1, ..., n} , Ai,i > 0 and Ai,j ≤ 0 for i 6= j.

PROPOSITION A.2

Let A be a Z-matrix, then the following properties are equivalent:

1. There exists a nonnegative vector u (u ≥ 0) such that Au > 0.

2. There exists a positive vector u (u > 0) such that Au > 0.

3. The matrix A is nonsingular and A−1 ≥ 0.

4. The spectral radius of the Jacobi matrix associated to A is strictly less
than 1, i.e.,

ρ(I −D−1A) < 1,

where D is the diagonal part of A.

PROOF See Fieder et al. [53].

DEFINITION A.6 An M -matrix is a Z-matrix which satisfies the prop-
erties of Proposition A.2.

It can be deduced that an M -matrix A satisfies the maximum principle,

Au ≤ 0⇒ u ≤ 0.

Let us associate to the real matrix A the comparison matrix 〈A〉 the coef-
ficients ai,j of which satisfy

ai,i = ai,i and ai,j = − |ai,j | if i 6= j

DEFINITION A.7 A will be called an H-matrix if the matrix 〈A〉 is an
M -matrix.

© 2008 by Taylor & Francis Group, LLC

Appendix 203

We can see that M -matrices are special cases of H-matrices.

LEMMA A.1

Let B be a real n×n matrix and assume that ρ(B) < 1. Then (I −B)−1 exists
and

(I − B)
−1

= lim
k→∞

k∑

i=0

Bi.

A-1.2 Perron-Frobenius theorem

THEOREM A.2

Let A ≥ 0 be an irreducible n× n matrix. Then,

1. A has a positive real eigenvalue equal to its spectral radius.

2. To ρ(A) there corresponds an eigenvector x > 0.

3. ρ(A) increases when any entry of A increases.

4. ρ(A) is a simple eigenvalue of A.

PROOF [97], [58].

A-1.3 Sequences and sets

A sequence
{
x(k)

}
k∈N

of complex numbers is said to converge to a number
x∗ if for arbitrary small and positive number ε, there exists an integer I such
that for any k ≥ I we have

∣∣x(k) − x∗
∣∣ < ε.

A real sequence
{
x(k)

}
k∈N

is said to converge to +∞ (respectively −∞) if

for every M ∈ R, there exists I such that x(k) ≥ M (respectively x(k) ≤ M)
for k ≥ I.

A real sequence
{
x(k)

}
k∈N

is called bounded above (respectively below) if

there exists some real M such that x(k) ≤ M (respectively x(k) ≥ M) for all
k.

A real sequence
{
x(k)

}
k∈N

is bounded if the sequence
{∣∣x(k)

∣∣}
k∈N

is bounded
above.

A real sequence
{
x(k)

}
k∈N

is said to be nonincreasing (respectively nonde-

creasing) if x(k+1) ≤ x(k) (respectively x(k+1) ≥ x(k)) for all k.

PROPOSITION A.3

Every bounded nonincreasing or nondecreasing real sequence converges to a
finite real number.

© 2008 by Taylor & Francis Group, LLC

204 Parallel Iterative Algorithms

Given a sequence
{
x(k)

}
k∈N

, the supremum and the infimum of
{
x(k)

}
k∈N

are defined by

sup
k

x(k) = sup
{

x(k), k ∈ N

}
and inf

k
x(k) = inf

{
x(k), k ∈ N

}
.

Define y(m) = sup
{
x(k), k ≥ m

}
and z(m) = inf

{
x(k), k ≥ m

}
, then the

sequences
{
y(m)

}
m∈N

and
{
z(m)

}
m∈N

are, respectively, nonincreasing and
nondecreasing so they converge to possibly infinite numbers. We have the
following result.

PROPOSITION A.4

Let
{
x(k)

}
k∈N

be a real sequence, then

1. infk x(k) ≤ limk→∞ infk x(k) ≤ limk→∞ supk x(k) ≤ supk x(k).

2.
{
x(k)

}
k∈N

converges to x∗ if

limk→∞ infk x(k) = limk→∞ supk x(k) = x∗.

A vectorial sequence
{
x(k)

}
k∈N

, x(k) ∈ Cn is said to converge to x∗ ∈ Cn if

the ith coordinate of x(k) converges to the ith coordinate of x∗.

DEFINITION A.8 Let B be a subset of Cn. We say that a vector x ∈ Cn

is a limit point of B if it is a limit of a sequence
{
x(k)

}
k∈N

of elements of B.

DEFINITION A.9 A set B ⊂ C
n is called closed if it contains all its

limit points. It is called compact if it is closed and bounded.
Let ‖ . ‖ be a vector norm on Cn. A closed ball B of center x∗ and radius

r is defined by B = {x ∈ Cn, ‖x− x∗‖ ≤ r} .

DEFINITION A.10 A vector x is said to be an interior point of a set
A if there exists some ε > 0 such that {y ∈ Cn, ‖x− y‖ < ε} ⊂ A.

DEFINITION A.11 Consider a metric space E equipped with a distance
d. A sequence

{
x(k)

}
k∈N

of E is called a Cauchy sequence if for every ε > 0,

there exists some K such that d(x(k), x(l)) < ε for all k, l ≥ K.

DEFINITION A.12 A metric space in which every Cauchy sequence
converges is called complete.

DEFINITION A.13 A Banach space is a complete normed vector space.

© 2008 by Taylor & Francis Group, LLC

References

[1] Omniorb web page. http://omniorb.sourceforge.net.

[2] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel
distributed symmetric and unsymmetric solvers. Comput. Methods in
Appl. Mech. Eng., 184:501–520, 2000.

[3] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and X. S. Li. Analysis
and comparison of two general sparse sol vers for distributed memory
computers. ACM Transactions on Mathematical Software, 27(4):388–
421, 2001.

[4] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid
scheduling for the parallel solution of linear systems. Parallel Comput-
ing, 32(2):136–156, 2006.

[5] J. Arnal, V. Migallon, and J. Penadès. Non-stationary parallel Newton
iterative methods for nonlinear problems. Lecture Notes in Comput.
Sci., 1573:142–155, 1999.

[6] J. Arnal, V. Migallon, and J. Penadès. Parallel Newton two-stage mul-
tisplitting iterative methods for nonlinear systems. BIT Num. Math.,
43:849–861, 2003.

[7] O. Aumage, G. Mercier, and R. Namyst. MPICH/Madeleine: a True
Multi-Protocol MPI for High-Performance Networks. In Proc. 15th
International Parallel and Distributed Processing Symposium (IPDPS
2001), page 51, San Francisco, April 2001. IEEE.

[8] O. Axelsson. A generalized SSOR. BIT, 13:443–467, 1972.

[9] O. Axelsson. Incomplete block matrix factorization preconditioning
methods. The ultimate answer? J. Comp. Appl. Math., 12&13:3–18,
1985.

[10] O. Axelsson. A general incomplete block-matrix factorization method.
Lin. Alg. Appl., 74:179–190, 1986.

[11] O. Axelsson. Iterative Solution Methods. Cambridge Univ. Press, Cam-
bridge, 1994.

[12] J. Bahi. Asynchronous iterative algorithms for nonexpansive linear sys-
tems. J. Parallel Distrib. Comput., 60(1):92–112, 2000.

205

© 2008 by Taylor & Francis Group, LLC

http://omniorb.sourceforge.net

206 References

[13] J. Bahi, S. Contassot-Vivier, and R. Couturier. Asynchronism for itera-
tive algorithms in a global computing environment. In The 16th Annual
International Symposium on High Performance Computing Systems and
Applications (HPCS’2002), pages 90–97, Moncton, Canada, June 2002.

[14] J. Bahi, S. Contassot-Vivier, and R. Couturier. Dynamic load balanc-
ing and efficient load estimators for asynchronous iterative algorithms.
IEEE Transactions on Parallel and Distributed Systems, 16(4):289–299,
2005.

[15] J. Bahi, S. Contassot-Vivier, and R. Couturier. Evaluation of the asyn-
chronous iterative algorithms in the context of distant heterogeneous
clusters. Parallel Computing, 31(5):439–461, 2005.

[16] J. Bahi, S. Contassot-Vivier, and R. Couturier. Performance compari-
son of parallel programming environments for implementing AIAC algo-
rithms. Journal of Supercomputing. Special Issue on Performance Mod-
elling and Evaluation of Parallel and Distributed Systems, 35(3):227–
244, 2006.

[17] J. Bahi, S. Contassot-Vivier, R. Couturier, and F. Vernier. A decentral-
ized convergence detection algorithm for asynchronous parallel iterative
algorithms. IEEE Transactions on Parallel and Distributed Systems,
16(1):4–13, 2005.

[18] J. Bahi and R. Couturier. Parallelization of direct algorithms using
multisplitting methods in grid environments. In 19th IEEE and ACM
Int. Parallel and Distributed Processing Symposium, IPDPS 2005, pages
254b, 8 pages, Denver, Colorado, USA, April 2005. IEEE Computer
Society Press.

[19] J. Bahi, R. Couturier, D. Laiymani, and K. Mazouzi. Java and
asynchronous iterative applications: large scale experiments. In
IPDPS’2007, 21th IEEE and ACM Int. Symposium on Parallel and
Distributed Processing Symposium, page 195 (8 pages), Long Beach,
California USA, March 2007. IEEE Computer Society Press.

[20] J. Bahi, R. Couturier, K. Mazouzi, and M. Salomon. Synchronous and
asynchronous solution of a 3d transport model in a grid computing
environment. Applied Mathematical Modelling, 30(7):616–628, 2006.

[21] J. Bahi, R. Couturier, and P. Vuillemin. Solving nonlinear wave equa-
tions in the grid computing environment: an experimental study. Jour-
nal of Computational Acoustics, 14(1):113–130, 2006.

[22] J. Bahi, S. Domas, and K. Mazouzi. Combination of java and asyn-
chronism for the grid : a comparative study based on a parallel power
method. In 18th IEEE and ACM Int. Conf. on Parallel and Distributed
Processing Symposium, IPDPS 2004, pages 158a, 8 pages, Santa Fe,
USA, April 2004. IEEE Computer Society Press.

© 2008 by Taylor & Francis Group, LLC

References 207

[23] J. Bahi, S. Domas, and K. Mazouzi. Jace : a java environment for dis-
tributed asynchronous iterative computations. In 12th Euromicro Con-
ference on Parallel, Distributed and Network based Processing, PDP’04,
pages 350–357, Coruna, Spain, February 2004. IEEE Computer Society
Press.

[24] J. Bahi, S. Domas, and K. Mazouzi. More on jace: New functionalities,
new experiments. In IPDPS’2006, 20th IEEE and ACM Int. Sympo-
sium on Parallel and Distributed Processing Symposium, pages 231–239,
Rhodes Island, Greece, April 2006. IEEE Computer Society Press.

[25] J. Bahi, E. Griepentrog, and J. C. Miellou. Parallel treatment of a class
of differential-algebraic systems. SIAM Journal on Numerical Analysis,
33(5):1969–1980, October 1996.

[26] J. Bahi and J.-C. Miellou. Contractive mappings with maximum norms.
Comparison of constants of contraction and application to asynchronous
iterations. Parallel Computing, 19:511–523, 1993.

[27] J. Bahi, J.-C. Miellou, and K. Rhofir. Asynchronous multisplitting
methods for nonlinear fixed point problems. Numerical Algorithms,
15:315–345, 1997.

[28] R. E. Bank and C. C. Douglas. An efficient implementation of the SSOR
and ILU preconditionings. Appl. Numer. Math., 1:489–492, 1985.

[29] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for
the Solution of Linear Systems: Building Blocks for Iterative Methods,
2nd Edition. SIAM, Philadelphia, PA, 1994.

[30] G. M. Baudet. Asynchronous iterative methods for multiprocessors. J.
ACM, 25:226–244, 1978.

[31] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Math-
ematical Sciences. Academic Press, New York, 1979. Reprinted by
SIAM, Philadelphia, 1994.

[32] D. Bertsekas. Distributed asynchronous computation of fixed points.
Math. Programming, 27:107–120, 1983.

[33] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computa-
tion: Numerical Methods. Prentice Hall, Engelwood Cliffs, 1989.

[34] D. A. Bini. Numerical computation of polynomial zeros by means of
Alberth’s method. Numerical Algorithms, 13:179–200, 1996.

[35] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot,
Y. Jégou, S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst,
P. Primet, B. Quetier, O. Richard, E.-G. Talbi, and I. Touche.
Grid’5000: A large scale and highly reconfigurable experimental grid

© 2008 by Taylor & Francis Group, LLC

208 References

testbed. International Journal of High Performance Computing Appli-
cations, 20(4):481–494, 2006.

[36] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and
R. Menon. Parallel Programming in OpenMP. Morgan Kaufmann Pub-
lishers Inc., 2001.

[37] A. S. Charão. Multiprogrammation parallèle générique des méthodes de
décomposition de domaine. PhD thesis, Institut National Polytechnique
de Grenoble, 2001.

[38] D. Chazan and W. Miranker. Chaotic relaxation. Linear Algebra Appl.,
2:199–222, 1969.

[39] M. Cosnard and P. Fraigniaud. Analysis of asynchronous polynomial
root finding methods on a distributed memory multicomputer. IEEE
Transaction on Parallel and Distributed Systems, 5(6):639–648, 1994.

[40] R. Couturier and S. Domas. CRAC: a grid environment to solve scien-
tific applications with asynchronous iterative algorithms. In 21th IEEE
and ACM Int. Symposium on Parallel and Distributed Processing Sym-
posium, IPDPS’2007, page 289 (8 pages), Long Beach, USA, March
2007. IEEE Computer Society Press.

[41] H. Dag. An approximate inverse preconditioner and its implementation
for conjugate gradient method. Parallel Computing, 33(2), 2007.

[42] T. Davis. University of Florida sparse matrix collection. NA Digest,
1997. See http://www.cise.ufl.edu/research/sparse/matrices/.

[43] E. W. Dijkstra, W. H. J. Feijen, and A. J. M VanGasteren. Deriva-
tion of a termination detection algorithm for distributed computation.
Information Processing Letters, 16(5):217–219, 1983.

[44] J. Dongarra, A. Lumsdaine, X. Niu, R. Pozo, and K. Remington. A
sparse matrix library in C++ for high performance architectures. In
Second Object Oriented Numerics Conference, pages 214–218, 1994.

[45] I. S. Duff. A survey of sparse matrix research. In Proceedings of the
IEEE, volume 65, pages 500–535, 1977.

[46] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse
Matrices. Oxford University Press, 1989.

[47] R. Duncan. A survey of parallel computer architectures. IEEE Com-
puter, pages 5–16, Feb. 1990.

[48] D. El Baz. A method of terminating asynchronous iterative algorithms
on message passing systems. Parallel Algorithms and Algorithms, 9:153–
158, 1996.

© 2008 by Taylor & Francis Group, LLC

http://www.cise.ufl.edu

References 209

[49] D. El Baz, P. Spitéri, J.-C. Miellou, and D. Gazen. Asynchronous
iterative algorithms with flexible communication for non linear net-
work problems. Journal of Parallel and Distributed Computing, 38:1–15,
1996.

[50] M. N. El Tarazi. Contraction et Ordre Partiel Pour L’étude
D’algorithmes Synchrones et Asynchrones En Analyse Numérique. PhD
thesis, Univ. de Franche-Comté, 1981.

[51] M. N. El Tarazi. Some convergence results for asynchronous algorithms.
Numer. Math., 39:325–340, 1982.

[52] D.J. Evans. The use of preconditioning in iterative methods for solving
linear equations with symmetric positive definite matrices. J. Internat.
Math. Appl., 4:295–314, 1967.

[53] M. Fiedler and V. Ptak. On matrices with non-positive off-diagonal
elements and positive principal minors. Czechoslovak Math. J., 87:382–
400, 1962.

[54] M. J. Flynn. Some computer organizations and their effectiveness. IEEE
Transactions on Computers, C-21(9):948–960, September 1972.

[55] N. Francez. Distributed termination. ACM Transactions on Program-
ming Languages and Systems, 2(1):42–55, January 1980.

[56] V. Frayssé, L. Giraud, S. Gratton, and J. Langou. Algorithm 842:
A set of GMRES routines for real and complex arithmetics on high
performance computers. ACM Transactions on Mathematical Software,
31(2):228–238, June 2005.

[57] R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual
method for non-Hermitian linear systems. In Iterative Methods in Linear
Algebra, pages 151–154. Elsevier Science Publishers, 1992.

[58] G. Frobenius. über matrizenaus positiven elementen. S.-B. Preuss.
Akad. Wiss., Berlin, pages 456–477, 1912.

[59] A. Frommer. Parallel nonlinear multisplitting methods. Numerische
Mathematik, 56:269–282, 1989.

[60] A. Frommer and G. Mayer. Convergence of relaxed parallel multisplit-
ting methods. Linear Algebra Appl., 119:141–152, 1989.

[61] A. Frommer and G. Mayer. On the theory and practice of multisplitting
mehods in parallel computation. Computing, 49:63–74, 1992.

[62] A. Frommer and H. Schwandt. A unified representation and theory of
algebraic additive Schwarz and multisplitting methods. SIAM Journal
on Matrix Analysis and Applications, 18, 1997.

© 2008 by Taylor & Francis Group, LLC

210 References

[63] A. Frommer and D. B. Szyld. Asynchronous iterations with flexible
communication for linear systems. Calculateurs Parallèles, Réseaux et
Systèmes Répartis, 10:421–429, 1998.

[64] A. Frommer and D. B. Szyld. On asynchronous iterations. J. Comput.
and Appl. Math., 123:201–216, 2000.

[65] A. Frommer and D.B. Szyld. Asynchronous iterations with flexible
communications for linear systems. Calculateurs Parallèles, 10:421–429,
1998.

[66] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sun-
deram. PVM: A Users’ Guide and Tutorial for Networked Parallel Com-
puting. MIT Press, 1994.

[67] A. V. Gerbessiotis. Architecture independent parallel binomial tree
option price valuations. Parallel Computing, 30(2):301–316, 2004.

[68] L. Giraud and S. Gratton. A set of GMRES routines for real and
complex arithmetics. Technical report, Cerfacs, 1998.

[69] A. Greenbaum, M. Rozložnik, and Z. Strakoš. Numerical behaviour of
the modified Gram-Schmidt GMRES implementation. BIT, 37:706–719,
1997.

[70] L. Grigori and X. S. Li. A new scheduling algorithm for parallel sparse
LU factorization with static pivoting. In Super Computing 2002. IEEE
Computer Society Press and ACM Sigarch, 2002. Paper 139 on CD.

[71] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel
Programming with the Message Passing Interface. MIT Press, 1994.

[72] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations.
Springer, 1994.

[73] A. C. Hindmarsh and R. Serban. Example program for cvode.
http://www.llnl.gov/CASC/sundials/.

[74] R. Hitchens. Java NIO. O’Reilly & Associates, Inc., 2002.

[75] M. Jones and D. B. Szyld. Two-stage multisplitting methods with over-
lapping blocks. Numer. Linear Algebra Appl., 3:113–124, 1996.

[76] W. Kahan. Gauss-Seidel Methods for Solving Large Systems of Linear
Equations. PhD thesis, University of Toronto, 1958.

[77] L. V. Kantorovich. Functional analysis and applied mathematics. UMN,
23, No. 6, 1948.

[78] L. V. Kantorovich. On Newton’s method. In Trudy Mat. Inst. Steklov
28. 1949.

© 2008 by Taylor & Francis Group, LLC

https://www.llnl.gov

References 211

[79] M. A. Krasnosel’ski, G. M. Vainikko, P. P. Zabreiko, Y. B. Rutitskii, and
V. Y. Stetsenko. Translated from the Russian by D. Louvish. Approx-
imate Solution of Operators Equations. Wolters-Noordhoff Publishing,
Groningen, 1972.

[80] H. T. Kung. Synchronized and asynchronous algorithms for multipro-
cessors. In J. F. Traub Ed., Algorithm and Complexity: New Directions
and Recent Results, New York, 1976. Academic Press.

[81] C.-C. J. Kuo and B. C. Levy. A two–level four–color SOR method.
SIAM J. Numer. Anal., 26:129–151, 1989.

[82] X. S. Li and J. W. Demmel. SuperLU DIST: A scalable distributed-
memory sparse direct solver for unsymmetric linear systems. ACM
Transactions on Mathematical Software, 29(2):110–140, June 2003.

[83] N. Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco,
1996.

[84] N. Maillard, E-M. Daoudi, P. Manneback, and J-L. Roch. Contrôle
amorti des synchronisations pour le test d’arrêt des méthodes itératives.
In Renpar 14, pages 177–182, Hamamet, Tunisie, April 2002.

[85] T. A. Manteuffel. An incomplete factorization technique for positive
definite linear systems. Mathematics of Computation, 34:473–497, 1980.

[86] J.-C. Miellou. Algorithmes de relaxation chaotique à retards.
R.A.I.R.O., R-1:55–82, 1975.

[87] J.-C. Miellou, P. Cortey-Dumont, and M. Boulbrachene. Perturbation
of fixed point iterative methods. Advances in Parallel Computing, 1:81–
142, 1990.

[88] J. C. Miellou, D. El Baz, and P. Spitéri. A new class of asyn-
chronous iterative algorithms with order intervals. Math. of Compu-
tation, 221(67):237–255, 1998.

[89] R. Namyst and J.-F. Méhaut. PM2: Parallel multithreaded machine. A
computing environment for distributed architectures. In Parallel Com-
puting: State-of-the-Art and Perspectives, ParCo’95, volume 11, pages
279–285. Elsevier, North-Holland, 1996.

[90] O. Nevanlinna. Remarks on Picard-Lindelof iteration. Bit, 29:Part I,
328–346, Part II 535–562, 1989.

[91] N. K. Nichols. On the convergence of two-stage iterative processes for
solving linear equations. Siam J. Numer. Anal., 10:460–469, 1973.

[92] D. P. O’Leary and R. E. White. Multisplittings of matrices and parallel
solution of linear systems. SIAM J. on Alg. Disc. Math., 6:630–640,
1985.

© 2008 by Taylor & Francis Group, LLC

212 References

[93] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear
Equations in Several Variables. Academic Press, New York, 1970.

[94] A. Ostrowski. über die determinanten mit überweigender hauptdiago-
nale. Coment. Math. Helv., 10:69–96, 1937.

[95] A. Ostrowski. Solution of Equations and Systems of Equations. Aca-
demic Press, New York, 1966.

[96] B. Parhami. Introduction to Parallel Processing - Algorithms and Ar-
chitectures. Plenum Series in Computer Science. Springer, 1999.

[97] O. Perron. Zur theorie der matrizen. Math. Ann., 64:248–263, 1907.

[98] A. Pope. The CORBA Reference Guide: Understanding the Common
Object Request Broker Architecture. Addison-Wesley, Reading, MA,
USA, December 1997.

[99] B. Pugh and J. Spaccol. MPJava: High Performance Message Passing
in Java using Java.nio. In Proceedings of the Workshop on Languages
and Compilers for Parallel Computing, College Station, Texas, USA,
October 2003.

[100] S. P. Rana. A distributed solution to the distributed termination prob-
lem. Information Processing Letters, 17:43–46, July 1983.

[101] F. Robert, M. Charnay, and F. Musy. Itérations chaotiques série par-
allèle pour des équations non-linéaires de point fixe. Appl. Math., 20:1–
38, 1975.

[102] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing,
New York, 1996.

[103] Y. Saad and M. Schultz. GMRES: A generalized minimal residual al-
gorithm for solving nonsymmetric linear systems. SIAM Journal of
Scientific and Statistical Computing, 7:856–869, 1986.

[104] S. A. Savari and D. P. Bertsekas. Finite termination of asynchronous
iterative algorithms. Parallel Computing, 22:39–56, 1996.

[105] J. G. Siek and A. Lumsdaine. The matrix template library: A generic
programming approach to high performance numerical linear algebra.
In ISCOPE, pages 59–70, 1998.

[106] B. Smith, P. Bjorstad, and W. Gropp. Domain Decomposition. Cam-
bridge University Press, Cambridge, 1996.

[107] A. Van Der Steen and J. Dongarra. Overview of recent supercomputers.
http://www.top500.org/orsc/2006/, 2006.

[108] P. Stein and R.L. Rosenberg. On the solution of linear simultaneous
equations by iteration. J. of London Math. Soc., 23:111–118, 1948.

© 2008 by Taylor & Francis Group, LLC

http://www.top500.org

References 213

[109] D. B. Szyld and M. Jones. Two-stage and multisplitting methods for
the solution of linear systems. SIAM J. Matrix Anal. Appl., 13:671–679,
1992.

[110] M. El Tarazi. Some convergence results for asynchronous algorithms.
Numer. Math., 39:325–340, 1982.

[111] A. Uresin and M. Dubois. Sufficient conditions for the convergence of
asynchronous iterations. Parallel Computing, 10:83–92, 1989.

[112] H. A. van der Vorst. Preconditioning by Incomplete Decompositions.
PhD thesis, University of Utrecht, 1982.

[113] R. S. Varga. Matrix Iterative Analysis. Prentice Hall, 1962.

[114] R. S. Varga. On recurring theorems on diagonal dominance. Linear
Algebra Appl., 13:1–9, 1976.

[115] H. F. Walker. Implementation of the GMRES method using House-
holder transformations. SIAM Journal on Scientific and Statistical
Computing, 9(1):152–163, 1988.

[116] J. K. White and A. E. Sangiovanni-Vincentelli. Relaxation Techniques
for the Simulation on VLSI Circuits. Kluwer Academic Publishers,
Boston, 1987.

[117] R. E. White. Parallel algorithms for nonlinear problems. SIAM J. Alg.
Discrete Meth., 7:137–149, 1986.

[118] R. E. White. Multisplittings with different weighting schemes. SIAM
J. Matrix Anal. Appl., 10:481–493, 1989.

[119] P. Wolfe. Methods of nonlinear programming. John Wiley, New York,
USA, 1976.

[120] D. M. Young. On the accelerated SSOR method for solving large linear
systems. Advances in Mathematics, 23(3):215–271, 1977.

[121] J. Zhang. A sparse approximate inverse preconditioner for parallel pre-
conditioning of general sparse matrices. Applied Mathematics and Com-
putation, 130(1):63–85, July 2002.

© 2008 by Taylor & Francis Group, LLC

	Parallel Iterative Algorithms: From Sequential to Grid Computing
	Contents
	List of Tables
	List of Figures
	Acknowledgments
	Appendix
	References

	Introduction
	Appendix
	References

	Chapter 1: Iterative Algorithms
	1.1 Basic theory
	1.1.1 Characteristic elements of a matrix
	1.1.2 Norms

	1.2 Sequential iterative algorithms
	1.3 A classical illustration example
	Appendix
	References

	Chapter 2: Iterative Algorithms and Applications to Numerical Problems
	Introduction
	2.1 Systems of linear equations
	2.1.1 Construction and convergence of linear iterative algorithms
	2.1.2 Speed of convergence of linear iterative algorithms
	2.1.3 Jacobi algorithm
	2.1.4 Gauss-Seidel algorithm
	2.1.5 Successive overrelaxation method
	2.1.6 Block versions of the previous algorithms
	2.1.7 Block tridiagonal matrices
	2.1.8 Minimization algorithms to solve linear systems
	2.1.8.1 Descent and Gradient algorithms
	2.1.8.2 Conjugate gradient algorithm
	2.1.8.3 GMRES
	2.1.8.4 BiConjugate Gradient algorithm

	2.1.9 Preconditioning
	2.1.9.1 Jacobi, SOR, SSOR and ILU preconditioning
	2.1.9.2 Preconditioning matrices for the conjugate gradient algorithm
	2.1.9.3 Implementation of the preconditioned conjugate gradient solver
	2.1.9.4 Incomplete LU factorization

	2.2 Nonlinear equation systems
	2.2.1 Derivatives
	2.2.2 Newton method
	2.2.3 Convergence of the Newton method

	2.3 Exercises
	Appendix
	References

	Chapter 3: Parallel Architectures and Iterative Algorithms
	Introduction
	3.1 Historical context
	3.2 Parallel architectures
	3.2.1 Classifications of the architectures
	3.2.1.1 Parallel machines
	3.2.1.2 Local clusters
	3.2.1.3 Distributed clusters/grids

	3.3 Trends of used configurations
	3.4 Classification of parallel iterative algorithms
	3.4.1 Synchronous iterations - synchronous communications (SISC)
	3.4.2 Synchronous iterations - asynchronous communications (SISC)
	3.4.3 Asynchronous iterations - asynchronous communications (AIAC)
	3.4.3.1 Semi-flexible communications
	3.4.3.2 Flexible communications

	3.4.4 What PIA on what architecture?
	3.4.4.1 Parallel machines
	3.4.4.2 Local clusters
	3.4.4.3 Distributed clusters/grids

	Appendix
	References

	Chapter 4: Synchronous Iterations
	Introduction
	4.1 Parallel linear iterative algorithms for linear systems
	4.1.1 Block Jacobi and O’Leary and White multisplitting algorithms
	4.1.2 General multisplitting algorithms
	4.1.2.1 Obtaining O’Leary and White multisplitting
	4.1.2.2 Obtaining discrete analogues of Schwarz alternating algorithms
	4.1.2.3 Obtaining discrete analogues of multisubdomain Schwarz algorithms
	4.1.2.4 Convergence of multisplitting and two-stage multisplitting algorithms

	4.2 Nonlinear systems: parallel synchronous Newton-multisplitting algorithms
	4.2.1 Newton-Jacobi algorithms
	4.2.2 Newton-multisplitting algorithms

	4.3 Preconditioning
	4.4 Implementation
	4.4.1 Survey of synchronous algorithms with shared memory architecture
	4.4.2 Synchronous Jacobi algorithm
	4.4.3 Synchronous conjugate gradient algorithm
	4.4.4 Synchronous block Jacobi algorithm
	4.4.5 Synchronous multisplitting algorithm for solving linear systems
	4.4.5.1 Overlapping strategy that uses locally computed values
	4.4.5.2 Overlapping strategy that uses values computed by close neighbors
	4.4.5.3 Overlapping strategy that mixes overlapped components with close neighbors
	4.4.5.4 Overlapping strategy that mixes all overlapped components

	4.4.6 Synchronous Newton-multisplitting algorithm

	4.5 Convergence detection
	4.6 Exercises
	Appendix
	References

	Chapter 5: Asynchronous Iterations
	Introduction
	5.1 Advantages of asynchronous algorithms
	5.2 Mathematical model and convergence results
	5.2.1 The mathematical model of asynchronous algorithms
	5.2.2 Some derived basic algorithms
	5.2.3 Convergence results of asynchronous algorithms

	5.3 Convergence situations
	5.3.1 The linear framework
	5.3.2 The nonlinear framework

	5.4 Parallel asynchronous multisplitting algorithms
	5.4.1 A general framework of asynchronous multisplitting methods
	5.4.2 Asynchronous multisplitting algorithms for linear problems
	5.4.3 Asynchronous multisplitting algorithms for nonlinear problems
	5.4.3.1 Extended fixed point mapping associated with…
	5.4.3.2 The discrete analogue of Schwarz alternating method and its multisubdomain generalizations
	5.4.3.3 Discrete analogue of the Schwarz alternating method
	5.4.3.4 Discrete analogue of the multisubdomain Schwarz method

	5.5 Coupling Newton and multisplitting algorithms
	5.5.1 Newton-multisplitting algorithms: multisplitting algorithms as inner algorithms in the Newton method
	5.5.2 Nonlinear multisplitting-Newton algorithms

	5.6 Implementation
	5.6.1 Some solutions to manage the communications using threads
	5.6.2 Asynchronous Jacobi algorithm
	5.6.3 Asynchronous block Jacobi algorithm
	5.6.4 Asynchronous multisplitting algorithm for solving linear systems
	5.6.5 Asynchronous Newton-multisplitting algorithm
	5.6.6 Asynchronous multisplitting-Newton algorithm

	5.7 Convergence detection
	5.7.1 Decentralized convergence detection algorithm
	5.7.1.1 Local convergence detection
	5.7.1.2 Global convergence detection

	5.8 Exercises
	Appendix
	References

	Chapter 6: Programming Environments and Experimental Results
	Introduction
	6.1 Implementation of AIAC algorithms with non-dedicated environments
	6.1.1 Comparison of the environments
	6.1.1.1 Performances
	6.1.1.2 Ease of programming
	6.1.1.3 Ease of deployment

	6.2 Two environments dedicated to asynchronous iterative algorithms
	6.2.1 JACE
	6.2.1.1 The daemon
	6.2.1.2 The computing task
	6.2.1.3 The spawner

	6.2.2 CRAC
	6.2.2.1 Architecture

	6.3 Ratio between computation time and communication time
	6.4 Experiments in the context of linear systems
	6.4.1 Context of experimentation
	6.4.2 Comparison of local and distant executions
	6.4.3 Impact of the computation amount
	6.4.4 Larger experiments
	6.4.5 Other experiments in the context of linear systems
	6.4.5.1 Influence of the overlapping
	6.4.5.2 Memory requirements with a direct method

	6.5 Experiments in the context of partial differential equations using a finite difference scheme
	Appendix
	References

	Appendix
	A-1 Diagonal dominance. Irreducible matrices
	A-1.1 Z-matrices, M -matrices and H-matrices
	A-1.2 Perron-Frobenius theorem
	A-1.3 Sequences and sets

	References

	References
	Appendix

