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Preface

This book describes a numerical method, called the “discrete variational
derivative method,” which is for designing numerical schemes for certain par-
tial differential equations (PDEs, for short). The targets include, for example,
(i) the Korteweg–de Vries equation:

∂u

∂t
=

∂

∂x

(
1
2
u2 +

∂2u

∂x2

)

which describes shallow water waves, (ii) the nonlinear Schrödinger equation:

i
∂u

∂t
= −∂2u

∂x2
− γ|u|p−1u, γ ∈ R, p = 3, 4, . . .

for modeling optical waves, (iii) the Cahn–Hilliard equation:

∂u

∂t
=

∂2

∂x2

(
pu + ru3 + q

∂2u

∂x2

)
, p < 0, q < 0, r > 0

which is a model of certain phase separation phenomena, and (iv) the Newell–
Whitehead equation:

∂u

∂t
(t, x, y) = µu − |u|2u +

(
∂

∂x
− i

2kc

∂2

∂y2

)2

u, µ, kc ∈ R

which simulates two-dimensional Bénard convection flow. Reflecting these
physical backgrounds, the PDEs have one striking feature in common; associ-
ated with the PDEs there are scalar functions, often referred to as “energies,”
that strictly remain constant or monotonically decrease as time evolves. In
fact, under appropriate conditions (i) the Korteweg–de Vries equation has the
energy conservation property:

d
dt

∫ (
1
6
u3 − 1

2
(ux)2

)
dx = 0,

and (ii) the nonlinear Schrödinger equation has the property:

d
dt

∫ (
−1

2
|ux|2 +

1
p
|u|p

)
dx = 0.

Similarly, (iii) the Cahn–Hilliard equation has the energy dissipation property:

d
dt

∫ (p

2
u2 +

r

4
u4 − q

2
(ux)2

)
dx ≤ 0,

ix



x

and (iv) the Newell–Whitehead equation has the property:

d
dt

∫∫ (
µ

2
|u|2 − 1

4
|u|4 +

∣∣∣∣ux − i
2kc

uyy

∣∣∣∣
2
)

dxdy ≤ 0.

In this book those PDEs are said to be “conservative” or “dissipative” PDEs,
respectively. (Note that this definition of “dissipative” is slightly different
from the definition in dynamical systems theory, where dissipative property
is defined with absorbing sets.)

In the numerical computation of such conservative or dissipative PDEs,
it is often preferable to employ some special numerical schemes that retain
the conservation/dissipation properties in a discrete sense; they are called
“conservative” or “dissipative” schemes throughout this book. The reason
for this preference is that, from the numerical point of view, the properties
often lead us to stabler computation; and for practitioners such as physicists
and engineers the motivation is that the properties themselves may be quite
important since they reflect important physical aspects of the modeled phe-
nomena. Thus, since around the 1970s, much effort has been devoted to the
development of conservative and dissipative schemes for various PDEs. In the
early phase of these researches, studies had been carried out for each indi-
vidual PDE; it was only during and after 1990s that more unified approaches
that can be applied to a certain large class of PDEs had been found. The
main topic of this book, the discrete variational derivative method, is one of
such newer developments.

Here we have to mention the case of ordinary differential equations (ODEs),
for which the history of research in the above context dates back to several
decades ago, and consequently the corresponding literature is far richer than
that of PDEs. For ODEs several unified approaches have been established,
not only for conservative and dissipative ODEs, but for many classes of ODEs
with various geometric structures. They include, for example, the symplec-
tic method for Hamiltonian systems, the Lie group method for constrained
mechanical systems, methods that preserve first-integrals, and methods for
ODEs on manifolds, among many others. Nowadays the methods are re-
garded to form a big group called “structure-preserving methods for ODEs,”
or “geometric numerical integration methods,” and more and more efforts are
being devoted to this area at an ever-increasing rate. An excellent textbook
for both beginners and experts is also available, which surveys the history and
the whole picture of structure-preserving methods for ODEs [83].

Compared to this maturity, the research in the PDE context seems to be
still at its beginning stage. Few classes for which structure-preserving inte-
gration is possible have been identified so far, and accordingly, “structure-
preserving method for PDEs” is not a popular expression yet. There is no
question, however, about the increasing importance of PDEs themselves, both
in mathematical and practical senses. We thus strongly believe that in the
next decade structure-preserving methods for PDEs will draw more and more



xi

interest, especially as the methods for ODEs come close to maximum matu-
rity. In accordance with this belief, this book is written as the first one that
is entirely dedicated to a structure-preserving method for PDEs.

This book is intended for both experts and non-experts. For both readers
an introductory Chapter 1 is prepared, where all central ideas and essential
examples are summarized. We believe that just glancing at this chapter will
suffice to enable the reader to understand the essence of the discrete varia-
tional derivative method. The subsequent chapters, 2 to 4, are devoted to
full description of the method: in Chapter 2 the PDEs which the method
covers are classified; in Chapter 3 the procedure of the method is described
in detail; in Chapter 4 the application examples are shown. Practitioners
may, after reading Chapter 1, jump to Chapter 4 and see how the method
is applied to typical problems. Chapters 5 to 7, including appendices, are
for especially interested readers; there some advanced topics and technical
details are summarized, which are too complicated to be included in the main
sections.

We hope to thank all those who have helped this project. In particu-
lar, Kazuo Murota and Masaaki Sugihara for encouraging us to write this
book, and continuously giving the authors many valuable comments. Masa-
take Mori, for guiding the authors to the rich world of numerical analysis.
Our sincere thanks also go to Tetsuya Ishiwata, Toshiyuki Koto, Taketomo
Mitsui, Yoshihisa Morita, Masaharu Nagayama, Shinji Odanaka, Takayoshi
Ogawa, Masami Okada, Hisashi Okamoto, Norikazu Saito, Takashi Sakajo,
and Takashi Suzuki, for valuable information related to the contents of this
book. We also thank our colleagues Chris Budd, Jialin Hong, Takanori Ide,
Brynjulf Owren, Reinout Quispel, Takaharu Yaguchi, among others, for fruit-
ful discussions and valuable suggestions. We are also grateful to some of our
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Chapter 1

Introduction and Summary

The key ideas of the discrete variational derivative method are summa-
rized with some illustrative examples. This chapter is a self-contained
summary of this book. After reading this introductory chapter, read-
ers are suggested to proceed to one of the subsequent chapters accord-
ing to their points of interest.

1.1 An Introductory Example: Spinodal Decomposition

Let us have a look at an illustrative example, the “spinodal decomposition.”
This is a chemi-physical phenomenon which occurs when two liquids with
different specific gravities are mixed. For example, when we put some oil and
water in a glass and shake it well, the two ingredients first intermingle with
each other, and then they are gradually separated. Figure 1.11 is a schematic
view of that process, where, for example, the ingredient A is water and B is
oil. Figure 1.2 shows an experimental result with polymer mixtures.

Mathematically, the phenomenon is modeled by the Cahn–Hilliard equa-
tion:

∂u

∂t
=

∂2

∂x2

(
pu + ru3 + q

∂2u

∂x2

)
, x ∈ (0, L), t > 0, p < 0, q < 0, r > 0. (1.1)

The solution u(x, t) describes the ratio of one component (oil, for example)
to the other (water). Here we limit ourselves to the one-dimensional case,
for simplicity of argument. We impose the boundary conditions below on the
problem:

∂u

∂x
=

∂3u

∂x3
= 0, x = 0, L. (1.2)

1Reprinted figure with permission from H. Tanaka and T. Nishi, Direct determination
of the probability distribution function of concentration in polymer mixtures undergoing
phase separation, Phys. Rev. Lett., 59, 692-695(1987). Copyright (1987) by the American
Physical Society.
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2 Discrete Variational Derivative Method

Initial Stage Phase separated structure

A + B

A

B

FIGURE 1.1: Schematic view of the spinodal decomposition.

FIGURE 1.2: Temporal change of phase-separated structure of mixtures
of polystyrene and polyvinyl methyl ether [163]. Bar corresponds to 20 µm.
(a)–(d) structures at 480, 720, 1200, and 2400 s after quench, respectively.



Introduction and Summary 3

It is not easy to integrate the Cahn–Hilliard equation numerically [70].
The right hand side of (1.1) includes a diffusion term puxx whose coefficient
is negative (recall p < 0). This means that in the numerical integration
we have to solve a diffusion equation in the negative time direction, which
is obviously numerically unstable. In order to illustrate this, let us try an
explicit Euler scheme as the simplest example. Let the spatial discretization
width be ∆x = L/N , where N is the number of the spatial grid points, and
denote the time mesh width by ∆t > 0. We denote the approximate solution
by Uk

(m) ≅ u(k∆x,m∆t) (k = 0, 1, . . . , N, m = 0, 1, 2, . . .). We also write

U (m) =
(
U

(m)
0 , . . . , U

(m)
N

)⊤
. Then the Euler scheme reads as follows.

Scheme 1.1 (Standard Euler scheme for Cahn–Hilliard equation)
Given an initial data U (0), the approximate solutions U (m) are calculated by,
for m = 0, 1, 2, . . .,

Uk
(m+1) − Uk

(m)

∆t
= δ

〈2〉
k

(
pUk

(m) + r (Uk
(m))3 + q δ

〈2〉
k Uk

(m)
)

,

k = 0, . . . , N, (1.3)

with the discrete boundary condition corresponding to (1.2):

δ
〈1〉
k Uk

(m) = δ
〈3〉
k Uk

(m) = 0, k = 0, N. (1.4)

The symbols δ
〈p〉
k (p = 1, 2, 3) mean the standard second-order central dif-

ference operators for ∂p/∂xp, which are explicitly written as

δ
〈1〉
k fk =

fk+1 − fk−1

2∆x
, (1.5)

δ
〈2〉
k fk =

fk+1 − 2fk + fk−1

(∆x)2
, (1.6)

δ
〈3〉
k fk =

fk+2 − 2fk+1 + 2fk−1 − fk−2

2(∆x)3
. (1.7)

Figure 1.3 shows the result obtained by the scheme. In the example, the
parameters are p = −1.0, q = −0.001, r = 1.0, and L = 1, N = 50 (thus
∆x = 1/50). Two time mesh sizes: ∆t = 1/1200 and 1/12000 are tested. In
both graphs, the staggered line lying around u = 0 line is the initial pattern:

u0(x) = 0.1 sin(2πx) + 0.01 cos(4πx) + 0.06 sin(4πx) + 0.02 cos(10πx). (1.8)

The numerical solution with ∆t = 1/1200 (top graph) rapidly blows up, ex-
hibiting strong oscillation in only four or five steps. This hardly improves
even when we refine the time mesh; the numerical solution with ∆t = 1/12000
(bottom graph) also blows up in only six or seven steps.

Facing this difficulty, we have two options: one is to use some reliable ODE
solver which allows adaptive integration, after suitably discretizing the space
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FIGURE 1.3: Numerical solutions of the Cahn–Hilliard equation by the
explicit Euler scheme: (top) ∆t = 1/1200; (bottom)∆t = 1/12000.



Introduction and Summary 5

variable. This might work, though it may need considerable computation
time because the package should be forced to choose very small time mesh
size. The other option—which is the basic concept throughout this book—is
to use some special scheme designed for stable integration of the equation.

To seek such a special scheme, let us cast a spotlight on a quantity, the
“free energy” or “local energy” of the problem:

G(u, ux) =
1
2
pu2 +

1
4
ru4 − 1

2
q(ux)2. (1.9)

We call its spatial integration:

J(u) =
∫ L

0

G(u, ux)dx (1.10)

the “global energy.” Note that J is a functional of u, but at the same time it
can be regarded as a function of t. The equation (1.1) can then be written as

∂u

∂t
=

∂2

∂x2

(
δG

δu

)
, (1.11)

where δG/δu is the (first) variational derivative of G(u, ux) obtained from the
following variation calculation.

∫ L

0

(G(u + δu, ux + δux) − G(u, ux))dx

=
∫ L

0

(
∂G

∂u
δu +

∂G

∂ux
δux

)
dx + O(δu2)

=
∫ L

0

(
∂G

∂u
− ∂

∂x

∂G

∂ux

)
δu dx +

[
∂G

∂ux
δu

]L

0

+ O(δu2)

=
∫ L

0

δG

δu
δu dx +

[
∂G

∂ux
δu

]L

0

+ O(δu2). (1.12)

The last equality defines δG/δu. The form (1.11) states that the evolution of
the solution is roughly a “gradient-flow”; it evolves in such a direction that
the global energy is decreased:

d
dt

J(u) =
∫ L

0

δG

δu

∂u

∂t
dx +

[
∂G

∂ux

∂u

∂t

]L

0

= −
∫ L

0

(
∂

∂x

δG

δu

)2

dx +
[(

δG

δu

)
∂

∂x

(
δG

δu

)]L

0

≤ 0. (1.13)

Note that (∂/∂x)u = 0 and (∂/∂x)3u = 0 mean ∂G/∂ux = 0 and (∂/∂x)δG/δu =
0, and thus the boundary terms vanish thanks to the boundary condition (1.2).
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From the dissipation property, the next important proposition immediately
follows.

PROPOSITION 1.1 L∞-boundedness of solution
As to the solution of (1.1) under the boundary condition (1.2), we have this

a priori estimate :
∥u∥∞ < ∞, t > 0, (1.14)

where ∥ · ∥p (p = 1, 2, . . . ,∞) is the standard Lp norm.

PROOF Recalling p, q < 0, r > 0, we have the trivial identity:

p

2
u2 +

r

4
u4 ≥ −pu2 − 9p2

4r
.

Then by the energy dissipation property (1.13) we know for any t > 0,

J(u(x, 0)) ≥ J(u(x, t))

=
∫ L

0

{
1
2
pu2 +

1
4
ru4 − 1

2
q(ux)2

}
dx

≥
∫ L

0

{
−pu2 − 9p2

4r
− 1

2
q(ux)2

}
dx

= −p∥u∥2
2 −

9p2L

4r
− q

2
∥ux∥2

2. (1.15)

Thus we have

J(u(x, 0)) +
9p2L

4r
≥ −p∥u∥2

2 −
q

2
∥ux∥2

2.

Again recalling p, q < 0, r > 0, we see that

∥u∥2, ∥ux∥2 < ∞. (1.16)

Then with the aid of the Sobolev type inequality (see, for example, John [94]):

∥u∥2
∞ ≤ c

(
∥u∥2

2 + ∥ux∥2
2

)
,

which holds for every function u(·, t) ∈ H1(0, L), we obtain ∥u∥∞ < ∞.

In other words,

[Key observation 1]
The dissipation property prevents the solution’s blow-up.

This observation encourages us to seek a scheme which retains the dissi-
pation property, because it may also prevent the blow-up of the approximate
solution. We here present such a scheme. (At the time being, we do not
discuss how it is constructed. It will be covered in Chapter 4.)
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Scheme 1.2 (Dissipative scheme for Cahn–Hilliard equation) Given an
initial data U (0), the approximate solutions U (m) are calculated by, for m =
0, 1, 2, . . .,

Uk
(m+1) − Uk

(m)

∆t
= δ

〈2〉
k

{
p

(
Uk

(m+1) + Uk
(m)

2

)
+ qδ

〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)

+r

(
(Uk

(m+1))3 + (Uk
(m+1))2Uk

(m) + Uk
(m+1)(Uk

(m))2 + (Uk
(m))3

4

)}
,

k = 0, . . . , N, (1.17)

with the discrete boundary condition (1.4).

Scheme 1.2 has the desired discrete dissipation property.

PROPOSITION 1.2 Dissipation property of Scheme 1.2
Let us define a “discrete local energy” Gd : RN+1 → RN+1 by

Gd,k(U (m))
d≡ p

2
(Uk

(m))2 +
r

4
(Uk

(m))2 − q

2




(
δ+
k Uk

(m)
)2

+
(
δ−k Uk

(m)
)2

2


 ,

(1.18)
where Gd,k(U (m)) denotes the k-th element (the detail of this expression will
be explained soon in Section 1.3). We also define the discrete global energy
accordingly by

Jd(U (m))
d≡

N∑

k=0

′′Gd,k(U (m))∆x, (1.19)

where
N∑

k=0

′′fk
d≡ 1

2
f0 + f1 + · · · + fN−1 +

1
2
fN (1.20)

is the trapezoidal rule. Then the solution by Scheme 1.2 satisfies the following
inequality.

Jd(U (m+1)) ≤ Jd(U (m)), m = 0, 1, 2, . . . . (1.21)

REMARK 1.1 Throughout this book, we basically adopt the trapezoidal
rule as our main summation rule. Other rules, for example, the rectangle rule,
can be also adopted. For example, when the periodic boundary condition is
applied, the trapezoidal rule naturally coincides with the rectangle rule, and
the latter is more convenient. Another example is the case where the use of
the rectangle rule substantially simplifies the treatment of discrete boundary
condition. This will be illustrated in Section 3.2.3.2.
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The proof of the proposition is left to Chapter 3 (generic theory) or Chap-
ter 4 (the specific Cahn–Hilliard case). With this dissipation property, and a
discrete Sobolev type inequality, we can prove that numerical solution never
blows up (we leave the detail of this discussion to Chapter 4.)

For the moment we only show some numerical results. Figure 1.4 shows the
result by Scheme 1.2 with a coarse time mesh ∆t = 1/1000 (other parameters
are the same as in the explicit Euler case). The calculation proceeds quite
stably, and a physically correct pattern (a phase separation) is obtained. Fig-
ure 1.5 shows the evolution of the energy. The discrete energy is properly
dissipated. For comparison, we present in Figure 1.6 the result obtained by
the explicit scheme. There the energy is not dissipative at all; it even blows
up. This fact agrees with the failure of the numerical computation.

-1

 0

 1

 0  0.5  1

u

x

0 step
5

10
15
20
25
30

100
1000
1100
1200
1300

-1

 0

 1

 0  0.5  1

u

x

1300 step
1500
1700
1800
1900
2000
2100

-1

 0

 1

 0  0.5  1

u

x

3000 step
10000

100000
200000

FIGURE 1.4: Numerical solutions of the Cahn–Hilliard equation by
Scheme 1.2 (∆t = 1/1000): (top-left) steps 0 to 1300 (top-right) 1300 to
2100 (bottom) 3000 to 200,000.

The Cahn–Hilliard example clearly shows the superiority of the specialized
scheme. The scheme preserves a discrete counterpart of the energy dissipation
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FIGURE 1.5: The evolution of the discrete energy in Scheme 1.2.
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FIGURE 1.6: The evolution of the discrete energy in Scheme 1.1.
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property, and the property is quite crucial for better numerical integration.
The same thing often happens also in many conservative problems (i.e., prob-
lems with conservation laws). Next we will see how dissipative or conservative
schemes, such as Scheme 1.2, can be constructed.

1.2 History

In this section, we briefly mention the related studies on the main subject
of this book.

First attempts on dissipative/conservative schemes, or more generally on
structure-preserving algorithms, focused on ordinary differential equations
such as Hamiltonian systems. For example, in the beginning of the 1970’s
Greenspan [77] considered strictly conservative discretization of some mechan-
ical systems. The method was then extended to general mechanical systems
by Gonzalez [74] and McLachlan–Quispel–Robidoux [126, 127] decades later.
A strong alternative to these works is the so-called symplectic method, which
is a specialized numerical method for Hamiltonian systems. Though sym-
plectic schemes are not strictly conservative, they are nearly conservative,
and provide us very effective ways to integrate Hamiltonian systems. For the
symplectic method, see Hairer–Lubich–Wanner [83], Sanz-Serna–Calvo [151]
and Leimkuhler–Reich [104]. Related interesting studies on nearly conserva-
tive numerical schemes include: Faou–Hairer–Pham [52] and Hairer [81].

After these successes on Hamiltonian ODEs, many other classes of ODEs
that have some intrinsic geometric structure have been identified, and structure-
preserving algorithms for these ODEs have been extensively studied. These
activities for ODEs are now also referred to as the “geometric numerical in-
tegration of ODEs,” and form a big trend in numerical analysis. Interested
readers may refer to Hairer–Lubich–Wanner [83] and Budd–Piggott [23].

In the PDE context, a number of studies on dissipative/conservative schemes
have been carried out on individual dissipative or conservative PDEs, since
around the 1970’s. Below are quite limited examples. Strauss–Vazquez [155]
presented a conservative finite difference scheme for the nonlinear Klein–
Gordon equation. Hughes–Caughey–Liu [89] presented a conservative finite
element scheme for the nonlinear elastodynamics problem. Delfour–Fortin–
Payre [35] presented a conservative finite difference scheme for the nonlinear
Schrödinger equation, then Akrivis–Dougalis–Karakashian [8] presented a fi-
nite element version of the scheme and proved the convergence of the finite
element scheme. Sanz–Serna [150] considered the nonlinear Schrödinger equa-
tion as well. Taha–Ablowitz [159, 160] presented conservative finite difference
schemes for the nonlinear Schrödinger equation and the Korteweg–de Vries
equation. Du–Nicolaides [39] presented a dissipative finite element scheme for
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the Cahn–Hilliard equation. Around the same time, in a completely different
context from above, studies on soliton PDEs such as the KdV equation were
done to find finite difference schemes that preserved discrete bilinear form or
Wronskian form, corresponding to the original equations; see, for example,
Hirota [85, 86]. They can be also regarded as structure-preserving methods.

Then during the 1990s, more general approaches that cover not only sev-
eral individual PDEs but also a wide class of PDEs have been independently
introduced by several groups. The discrete variational derivative method—
the main subject of the present book—is one of such methods, proposed by
Furihata–Mori [63, 64, 69, 65] around 1996 for PDEs with variational struc-
ture. The method has then been extended in various ways mainly by a
Japanese group including Furihata, Matsuo, Ide, and Yaguchi [66, 67, 68,
90, 91, 116, 119, 120, 121, 122, 165, 166, 167], and succeeded in proving its
effectiveness in various applications. At the same time, Gonzalez [75] pro-
posed a conservative method for some general class of PDEs describing finite-
deformation elastodynamics. There, the key is a special technique in time
discretization devised for ODEs by Gonzalez [74]. Another excellent set of
studies were given by McLachlan [129] and McLachlan–Robidoux [128], where
a general method for designing conservative schemes for conservative PDEs
based on their techniques on ODEs [126, 127] (and the related basic studies
Quispel–Turner [145] and Quispel–Capel [144]) was developed (see also the
recent related results: McLaren–Quispel [130], Quispel–McLaren [146], Celle-
doni et al. [26]). Jimenez [92] has also studied a systematic approach to obtain
discrete conservation laws for certain finite difference schemes.

Aside from strictly conservative or dissipative methods, several interest-
ing approaches for structure-preserving integration of PDEs have emerged
as of the writing of the present book. For a very comprehensive review in-
cluding these topics, see Budd–Piggot [23]. For Hamiltonian PDEs, a unique
approach was proposed by Marsden–Patrick–Shkoller [112] (see also Marsden–
West [113] for a good review), and it has been intensively studied by their
group. Their method is based on the discretization of the variational princi-
ple. Its name “variational integrator” is quite close to the discrete variational
derivative method, but these methods are quite different. For Hamiltonian
PDEs, there is another interesting emerging method, the “multi-symplectic
method,” developed by Bridges–Reich [22]. In the method, Hamiltonian PDEs
are transformed into a special “multi-symplectic form,” and then integrated
in such a way that the multi-symplecticity is conserved. This method can
be regarded as a generalization of the symplectic method for ODEs (see also
McLachlan [124]). For the recent literature in this context, see, for exam-
ple, [27, 87, 88] and the references therein.

Finally we would like to note that in this short summary we could by no
means cover all of the related studies. We recommend that interested read-
ers refer to several key reviews, such as Hairer–Lubich–Wanner [83], Budd–
Piggott [23], Leimkuhler–Reich [104], and Lubich [110], and consult their
references as well.
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1.3 Derivation of Dissipative or Conservative Schemes

In this section we demonstrate how numerical schemes that retain dissi-
pation or conservation properties are constructed. To avoid exhaustive dis-
cussion involving cumbersome symbols, we here limit ourselves to some typ-
ical PDEs, possibly ignoring some details. More precise description will be
found in Chapter 3 (generic theory) and Chapter 4 (application examples).
We consider the following four cases: first-order real-valued PDEs, first-order
complex-valued PDEs, systems of first-order PDEs, and second-order PDEs.

1.3.1 Procedure for First-Order Real-Valued PDEs

Suppose that u(x, t) is a real-valued function, and the local energy function
is given as a real-valued function G(u, ux). We define the associated global
energy by

J(u)
d≡

∫ L

0

G(u, ux)dx. (1.22)

Let us consider a real-valued PDE:

∂u

∂t
= −δG

δu
, x ∈ (0, L), t > 0. (1.23)

The equation (1.23) is dissipative in the sense that

d
dt

J(u) =
∫ L

0

δG

δu

∂u

∂t
dx +

[
∂G

∂ux

∂u

∂t

]L

0

= −
∫ L

0

(
δG

δu

)2

dx ≤ 0, (1.24)

if boundary conditions are set so that the boundary term [ · ]L0 vanishes. In
fact it does, for example, under the Dirichlet boundary condition u(0, t) =
u(L, t) = 0. Throughout this introductory chapter, we basically neglect
boundary terms for simplicity.

Let us construct a dissipative scheme, i.e., a scheme that keeps a discrete
version of the dissipation property, for the equation. Our strategy is based on
the following important observation:

[Key observation 2]
The dissipation property (1.24) immediately follows from the vari-
ational form (1.23).

In fact, in the proof of the dissipation property (1.24), the concrete form of the
energy G, and accordingly the concrete form of the PDE, are not relevant. The
variational form itself is the key in the dissipation property. This observation
leads us to a strategy summarized in Figure 1.7. The left half of the diagram
summarizes the continuous PDE case, which reads (starting from the top)
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[step 1] Define an energy G.

[step 2] Take its variation to obtain the variational derivative δG/δu.

[step 3] Define a PDE with the variational derivative. Then, as a conse-
quence (the up-pointing arrow), the energy dissipation property follows.

Our idea here is to simulate this round trip structure, from the energy G(u)
to its dissipation property via variational derivative, in a discrete setting. In
this way the method is “structure-preserving.” The right half of the diagram
reads

[step 1d] Define a discrete energy (as an approximation of the continuous
energy G).

[step 2d] Take its discrete variation to obtain the discrete variational
derivative.

[step 3d] Define a scheme with the discrete variational derivative. Then,
the discrete dissipation property should follow (again, denoted by the
up-pointing arrow).

As opposed to this structure-preserving strategy, the usual way of constructing
a scheme is to directly discretize the concrete form of the PDE (the bottom
right-pointing arrow from PDE to finite difference scheme). In such an way,
however, the beautiful round trip structure is highly likely to be destroyed,
and thus generally the desired dissipation property is lost.

Let us actually follow the strategy to construct a dissipative scheme for the
equation (1.23). To illustrate how the calculation goes exactly, we pick the
linear diffusion equation:

∂u

∂t
=

∂2u

∂x2
(1.25)

as a concrete example, which is of the form (1.23) with G(u, ux) = (ux)2/2.

[step 1d] Defining a discrete energy

By simply replacing u in G(u, ux) with Uk
(m), and ux with some finite

difference, we obtain a discrete energy Gd(U (m)). The subscript “d”, standing
for “discrete”, is added to distinguish this quantity from the continuous energy
G. The discrete energy Gd is a real-valued (N+1)-dimensional vector function
of U (m); we denote its each elements by Gd,k (k = 0, . . . , N). (See the example
below.)

Note that there are several possibilities in approximating ux, since there are
many difference operators representing the same differentiation. For example,
ux

2 can be

(δ〈1〉k Uk
(m))2, (δ+

k Uk
(m))2, (δ−k Uk

(m))2, or
(δ+

k Uk
(m))2 + (δ−k Uk

(m))2

2
, (1.26)
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Continuous Calculus Discrete Calculus

energy function

G(u, ux)

dissipation property

d
dt

J(u) ≤ 0

--------
approx.

discrete energy function

Gd(U (m))

discrete dissipation property

Jd(U (m+1)) ≤ Jd(U (m))

?

variation

????????

discrete

variation

variational derivative

δG

δu

discrete variational derivative

δGd

δ(U (m+1),U (m))

?
definition

????????
definition

PDE

∂u

∂t
= −δG

δu

-
approx.

finite difference scheme

Uk
(m+1) − Uk

(m)

∆t

= − δGd

δ(U (m+1),U (m))k

-------- proposed strategy
- standard strategy

6

consequence

66666666

consequence

FIGURE 1.7: Standard strategy versus proposed strategy.
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where

δ
〈1〉
k fk =

fk+1 − fk−1

2∆x
, δ+

k fk =
fk+1 − fk

∆x
, δ−k fk =

fk − fk−1

∆x
(1.27)

are the standard difference operators for ∂/∂x. We can choose any of them.
Regardless of the choice, we will obtain a dissipative scheme. We must note,
however, that a different choice leads to a different scheme (see Remark 1.2).

In the concrete example of (1.25), let us choose a symmetric approximation:

(ux)2 ≅
(δ+

k Uk
(m))2 + (δ−k Uk

(m))2

2
. (1.28)

Then the discrete local energy becomes

Gd,k(U (m)) =
1
2

(
(δ+

k Uk
(m))2 + (δ−k Uk

(m))2

2

)
, (1.29)

and the corresponding discrete global energy is

Jd(U (m)) =
N∑

k=0

′′Gd,k(U (m))∆x. (1.30)

[step 2d] Taking the discrete variation

Recall the continuous variation calculation (1.12), which is summarized as
∫ L

0

{G(u + δu, ux + δux) − G(u, ux)}dx

=
∫ L

0

δG

δu
δu dx + (boundary term) + O(δu2). (1.31)

We hope to simulate this in a discrete setting. That is, we hope to find an
identity:

N∑

k=0

′′
(
Gd,k(U (m+1)) − Gd,k(U (m))

)
∆x =

N∑

k=0

′′ δGd

δ(U (m+1),U (m))k

(
Uk

(m+1) − Uk
(m)

)
∆x + (boundary term). (1.32)

At this point, readers need not fully understand the discrete symbols; they
will be introduced in Chapter 3. For now it is sufficient to just recognize the
correspondences between the continuous and discrete symbols:

Gd,k(U (m+1)) − Gd,k(U (m)) ⇔ G(u + δu, ux + δux) − G(u, ux),
δGd

δ(U (m+1),U (m))k

⇔ δG

δu
,

Uk
(m+1) − Uk

(m) ⇔ δu.



16 Discrete Variational Derivative Method

The abstract identity (1.32) demands that the difference of the energies,

Gd,k(U (m+1)) − Gd,k(U (m)),

should be decomposable into the discrete version of δu,

Uk
(m+1) − Uk

(m),

and a discrete quantity which corresponds to the variational derivative, called
the “discrete variational derivative,”

δGd

δ(U (m+1),U (m))k

.

Later in Chapter 3, it is shown that in fact for any given Gd this decomposition
is possible.

In the case of example (1.25), the identity (1.32) can be easily found as
follows.

N∑

k=0

′′
(
Gd,k(U (m+1)) − Gd,k(U (m))

)
∆x

=
1
2

N∑

k=0

′′

(
(δ+

k Uk
(m+1))2 − (δ+

k Uk
(m))2

2
+

(δ−k Uk
(m+1))2 − (δ−k Uk

(m))2

2

)
∆x

=
1
2

N∑

k=0

′′

{
δ+
k

(
Uk

(m+1) + Uk
(m)

2

)
· δ+

k (Uk
(m+1) − Uk

(m))

+δ−k

(
Uk

(m+1) + Uk
(m)

2

)
· δ−k (Uk

(m+1) − Uk
(m))

}
∆x

= −
N∑

k=0

′′

{
δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)}
(Uk

(m+1) − Uk
(m))∆x

+ (boundary term). (1.33)

The symbol δ
〈2〉
k is the standard central difference operator for ∂2/∂x2 defined

by

δ
〈2〉
k fk =

fk+1 − 2fk + fk−1

(∆x)2
.

In (1.33) a trivial identity δ+
k δ−k = δ−k δ+

k = δ
〈2〉
k is used. The summation-by-

parts formula:

N∑

k=0

′′(δ+
k fk)gk∆x = −

N∑

k=0

′′fk(δ−k gk)∆x + (boundary term) (1.34)
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is used as well, which is a discrete analogue of the integration-by-parts for-
mula. The precise form of the boundary term is omitted here in order to
avoid complications. From (1.33), we find the concrete form of the discrete
variational derivative in the case of (1.25) as

δGd

δ(U (m+1),U (m))k

= −δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
. (1.35)

Note that this in fact approximates the continuous version: δG/δu = −uxx.
This supports the view that the above calculation is in fact discrete variation.

[step 3d] Defining a scheme

Once the discrete variational derivative is found for a given discrete energy
Gd, a scheme is defined with it in an abstract manner, analogously to the
continuous one (1.23).

Scheme 1.3 (Dissipative scheme for (1.23)) With given initial data U (0)

and appropriate boundary conditions, we compute U (m) by, for m = 0, 1, 2, . . .,

Uk
(m+1) − Uk

(m)

∆t
= − δGd

δ(U (m+1),U (m))k

, k = 0, . . . , N. (1.36)

This scheme keeps the desired dissipation property as follows. Observe
that the proof proceeds exactly analogously to the continuous case (1.24);
in particular, the concrete forms of the discrete energy function Gd and the
discrete variational derivative δGd/δ(U (m+1),U (m)) are not relevant. Only
the discrete variational structure matters.

PROPOSITION 1.3 Dissipation property of Scheme 1.3
Scheme 1.3 is dissipative in the sense that

Jd(U (m+1)) ≤ Jd(U (m)), m = 0, 1, 2 . . . . (1.37)

PROOF By the identity (1.32), we obtain

Jd(U (m+1)) − Jd(U (m))

=
1
∆t

N∑

k=0

′′
(
Gd,k(U (m+1)) − Gd,k(U (m))

)
∆x

=
N∑

k=0

′′ δGd

δ(U (m+1),U (m))k

(
Uk

(m+1) − Uk
(m)

∆t

)
∆x + (boundary term)

= −
N∑

k=0

′′

(
δGd

δ(U (m+1),U (m))k

)2

∆x

≤ 0. (1.38)
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In the second equality the boundary terms are assumed to vanish due to
some appropriate boundary conditions. In the last equality the scheme in
variational form (1.36) is used.

In the case of the linear diffusion equation (1.25), Scheme 1.3 reads

Uk
(m+1) − Uk

(m)

∆t
= − δGd

δ(U (m+1),U (m))k

= δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
.

(1.39)
The concrete form of the discrete variational derivative has been obtained
in (1.35). The dissipation property is guaranteed by Proposition 1.3, where
the discrete energy function is given by (1.29).

Note that in this case the resulting scheme is just the standard Crank–
Nicolson scheme. Although we can say the project has successfully completed
in the sense that we obtained a stable scheme (the stability of this Crank–
Nicolson scheme is widely known, while it is also possible to prove it directly
by utilizing the discrete dissipation property), it is not so exciting in that the
obtained scheme is a trivial one. In more generic nonlinear problems, how-
ever, resulting schemes are non-trivial, and that is exactly where the discrete
variational derivative method is of considerable benefit.

REMARK 1.2 As noted [step 1d] (page 13), the definition of discrete
energy function is not unique, and a different choice will generally leads us to
a different scheme. For example, let us approximate

(ux)2 ≅ (δ〈1〉k Uk
(m))2, (1.40)

instead of (1.28); that is, we start from the discrete energy function

Gd,k(U (m)) =
(δ〈1〉k Uk

(m))2

2
. (1.41)

Then the associated discrete variational derivative will be

δGd

δ(U (m+1),U (m))k

= −(δ〈1〉k )2
(

Uk
(m+1) + Uk

(m)

2

)
, (1.42)

which then leads us to a scheme:

Uk
(m+1) − Uk

(m)

∆t
= − δGd

δ(U (m+1),U (m))k

= (δ〈1〉k )2
(

Uk
(m+1) + Uk

(m)

2

)
.

(1.43)
This is different from (1.39). Still, the scheme is “dissipative,” in the sense
that Proposition 1.3 holds for the Gd(U (m)) defined in (1.41).
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As this example illustrates, there is generally a degree of freedom in choosing
a discrete energy function, and this is left to each user. Once it is fixed, how-
ever, by following the procedure of the discrete variational derivative method,
we automatically obtain a scheme that preserves the desired dissipation (or
in the conservative case, conservation) property with respect to the specified
discrete energy function. The performance of the resulting scheme, such as
stability and accuracy, often heavily depends on the choice. This issue will be
discussed in detail in Section 3.2.3.

Above procedure can be easily extended to more general real-valued dissi-
pative or conservative PDEs of the following types.

[real-valued dissipative PDEs]

∂u

∂t
= −(−1)s+1

(
∂

∂x

)2s
δG

δu
,

d
dt

∫ L

0

G(u, ux)dx ≤ 0, (1.44)

where s = 0, 1, 2, . . .. The linear diffusion equation belongs to this class with
s = 0. The Cahn–Hilliard equation in the previous section is another example,
where s = 1.

[real-valued conservative PDEs]

∂u

∂t
=

(
∂

∂x

)2s+1
δG

δu
,

d
dt

∫ L

0

G(u, ux)dx = 0, (1.45)

where s = 0, 1, 2 . . .. This class includes, for example, the Korteweg–de Vries
equation.

More detailed description on these PDEs is given in Chapter 2, and the full
procedures for them are described in Chapter 3. Concrete examples will be
found in Chapter 4.

1.3.2 Procedure for First-Order Complex-Valued PDEs

Several complex-valued PDEs have variational structure, and the idea de-
scribed above can be utilized. Suppose that u(x, t) is a complex-valued func-
tion, and a real-valued function G(u, ux) is given as the local energy function.
As before, the associated global energy is defined by

J(u)
d≡

∫ L

0

G(u, ux)dx. (1.46)

Let us consider first-order complex-valued PDEs of the form

i
∂u

∂t
= −δG

δu
, x ∈ (0, L), t > 0, (1.47)
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where i =
√
−1. The symbol δG/δu is the variational derivative of G with

respect to u, which is obtained as follows.
∫ L

0

(G(u + δu, ux + δux) − G(u, ux))dx

=
∫ L

0

{(
∂G

∂u
δu +

∂G

∂ux
δux

)
+

(
∂G

∂u
δu +

∂G

∂ux
δux

)}
dx + O(|δu|2)

=
∫ L

0

{(
∂G

∂u
− ∂

∂x

∂G

∂ux

)
δu +

(
∂G

∂u
− ∂

∂x

∂G

∂ux

)
δu

}
dx

+
[

∂G

∂ux
δu +

∂G

∂ux
δu

]L

0

+ O(|δu|2)

=
∫ L

0

(
δG

δu
δu +

δG

δu
δu

)
dx +

[
∂G

∂ux
δu +

∂G

∂ux
δu

]L

0

+ O(|δu|2). (1.48)

The quantities

δG

δu
=

∂G

∂u
− ∂

∂x

∂G

∂ux
,

δG

δu
=

∂G

∂u
− ∂

∂x

∂G

∂ux

are complex variational derivatives. Note that they are in general complex
conjugates of each other:

δG

δu
=

δG

δu
.

(Strictly speaking, we need some assumption on G so that the conjugacy holds;
this is left to the discussion in Chapter 3.) The PDE (1.47) is conservative in
the sense that

d
dt

J(u) =
d
dt

∫ L

0

G(u, ux)dx

=
∫ L

0

(
δG

δu

∂u

∂t
+

δG

δu

∂u

∂t

)
dx + (boundary terms)

=
∫ L

0

(
i
∣∣∣∣
δG

δu

∣∣∣∣
2

− i
∣∣∣∣
δG

δu

∣∣∣∣
2
)

dx

= 0, (1.49)

provided some appropriate boundary conditions exist. For example, a linear
conservative PDE

i
∂u

∂t
=

∂2u

∂x2
, G(u, ux) = |ux|2, (1.50)

belongs to this class.
Let us see how a conservative scheme is derived for (1.47). Again we follow

the three steps.
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[step 1d] Defining a discrete energy

As in the real-valued case, we obtain a discrete energy Gd(U (m)) by simply
replacing u in G(u, ux) with Uk

(m), and ux with some finite difference. For
the case of the linear PDE (1.50), we define a discrete local energy by, for
example,

Gd,k(U (m)) =
|δ+

k Uk
(m)|2 + |δ−k Uk

(m)|2

2
. (1.51)

This only differs from (1.29) in having | · | (absolute value) in place of (·). The
associated discrete global energy is defined by

Jd(U (m))
d≡

N∑

k=0

′′Gd,k(U (m))∆x. (1.52)

[step 2d] Taking the discrete variation

As in the real-valued case, we hope to simulate the variation calculation
(1.48) which can be summarized as

∫ L

0

{G(u + δu, ux + δux) − G(u, ux)}dx =

∫ L

0

(
δG

δu
δu +

δG

δu
δu

)
dx + (boundary terms), (1.53)

in a discrete setting to find a discrete identity:

N∑

k=0

′′
(
Gd,k(U (m+1)) − Gd,k(U (m))

)
∆x =

N∑

k=0

′′

{
δGd

δ(U (m+1),U (m))k

(
Uk

(m+1) − Uk
(m)

)
+

δGd

δ(U (m+1), U (m))k

(
Uk

(m+1) − Uk
(m)

)}
∆x

+ (boundary terms). (1.54)

In the above identity, there are new discrete symbols whose correspondences
are

δGd

δ(U (m+1),U (m))k

⇔ δG

δu
, (1.55a)

δGd

δ(U (m+1), U (m))k

⇔ δG

δu
. (1.55b)

They are called “complex discrete variational derivatives.”



22 Discrete Variational Derivative Method

In the case of the linear PDE (1.50), we find an identity corresponding to
(1.54) as follows.

N∑

k=0

′′
(
Gd,k(U (m+1)) − Gd,k(U (m))

)
∆x

=
N∑

k=0

′′

(
|δ+

k Uk
(m+1)|2 − |δ+

k Uk
(m)|2

2
+

|δ−k Uk
(m+1)|2 − |δ−k Uk

(m)|2

2

)
∆x

=
1
2

N∑

k=0

′′

{
δ+
k

(
Uk

(m+1) + Uk
(m)

2

)
· δ+

k

(
Uk

(m+1) − Uk
(m)

)
+ (c.c.)

+ δ−k

(
Uk

(m+1) + Uk
(m)

2

)
· δ−k

(
Uk

(m+1) − Uk
(m)

)
+ (c.c.)

}
∆x

= −
N∑

k=0

′′

[{
δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)}(
Uk

(m+1) − Uk
(m)

)
+ (c.c.)

]
∆x

+ (boundary terms). (1.56)

The expression“(c.c.)” denotes the complex conjugate of the preceding term(s).
In the above calculation, a trivial identity

|a|2 − |b|2

2
=

1
2

{
a + b

2
(a − b) + (c.c.)

}
,

and the summation-by-parts formula (1.34) are used. As a result we find the
discrete versions of the complex variational derivatives:

δGd

δ(U (m+1),U (m))k

= −δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
, (1.57a)

δGd

δ(U (m+1), U (m))k

= −δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
. (1.57b)

[step 3d] Defining a scheme

With the discrete variational derivative, we define an abstract scheme anal-
ogously to (1.47).

Scheme 1.4 (Conservative scheme for (1.47)) With given initial data U (0)

and appropriate boundary conditions, we compute U (m) by, for m = 0, 1, 2, . . .,

i

(
Uk

(m+1) − Uk
(m)

∆t

)
= − δGd

δ(U (m+1), U (m))k

, k = 0, . . . , N. (1.58)



Introduction and Summary 23

The scheme automatically becomes conservative as follows.

PROPOSITION 1.4 Conservation property of Scheme 1.4
Scheme 1.4 is conservative in the sense that

Jd(U (m)) = Jd(U (0)), m = 1, 2, 3 . . . . (1.59)

PROOF By the identity (1.54), we obtain

Jd(U (m+1)) − Jd(U (m))

=
1

∆t

N∑

k=0

′′
(
Gd,k(U (m+1)) − Gd,k(U (m))

)
∆x

=
N∑

k=0

′′

{
δGd

δ(U (m+1),U (m))k

(
Uk

(m+1) − Uk
(m)

∆t

)
+ (c.c.)

}
∆x

+ (boundary terms)

=
N∑

k=0

′′



i

∣∣∣∣∣
δGd

δ(U (m+1),U (m))k

∣∣∣∣∣

2

+ (c.c.)



∆x

= 0. (1.60)

In the second equality the boundary terms are assumed to vanish with appro-
priate boundary conditions, and in the last equality (1.58) is used.

In the case of the linear PDE (1.50), Scheme 1.4 reads

i

(
Uk

(m+1) − Uk
(m)

∆t

)
= − δGd

δ(U (m+1),U (m))k

= δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
,

where the concrete form of the complex discrete variational derivative has
been obtained in (1.57b). Again this is just the standard Crank–Nicolson
scheme. The conservation property is guaranteed by Proposition 1.4, where
the discrete local energy is given by (1.51).

In the subsequent chapters, we will deal with the following complex-valued
PDEs.

[complex-valued dissipative PDEs]

∂u

∂t
= −δG

δu
,

d
dt

∫ L

0

G(u, ux)dx ≤ 0. (1.61)

This includes, for example, the complex Ginzburg–Landau equation and the
Newell–Whitehead equation.
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[complex-valued conservative PDEs]

i
∂u

∂t
= −δG

δu
,

d
dt

∫ L

0

G(u, ux)dx = 0. (1.62)

The linear PDE (1.50) and the nonlinear Schrödinger equation belong to this
class.

1.3.3 Procedure for Systems of First-Order PDEs

The idea described in the previous sections can be also applied to the sys-
tems of PDEs. The following is an example.

Let us consider the Zakharov equations [72],

i
∂E

∂t
+

∂2E

∂x2
= nE,

∂2n

∂t2
− ∂2n

∂x2
=

∂2

∂x2
|E|2, x ∈ (0, L), t > 0, (1.63)

where E(x, t) is complex-valued, and n(x, t) is real-valued. The equations can
be written with variational derivatives as

d
dt




E
E
n
v


 =




0 −i 0 0
i 0 0 0
0 0 0 −1
0 0 1 0







δG/δE
δG/δE
δG/δn
δG/δv


 , (1.64)

where v(x, t) is a real-valued intermediate variable such that vt = n + |E|2,
and G(E, n, v) is the energy function defined by

G(E, n, v)
d≡ |Ex|2 + n|E|2 +

1
2
(n2 + (vx)2). (1.65)

The concrete forms of the variational derivatives are

δG

δE
= −Exx + nE, (1.66a)

δG

δE
=

δG

δE
, (1.66b)

δG

δn
= n + |E|2, (1.66c)

δG

δv
= −vxx. (1.66d)
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It is easy to see that

d
dt

∫ L

0

G(E, n, v)dx

=
∫ L

0

(
δG

δE

∂E

∂t
+ (c.c.) +

δG

δn

∂n

∂t
+

δG

δv

∂v

∂t

)
dx + (boundary terms)

=
∫ L

0

(
−i

∣∣∣∣
δG

δE

∣∣∣∣
2

+ (c.c.) − δG

δn

δG

δv
+

δG

δv

δG

δn

)
dx

= 0.

Thus the Zakharov equations conserve the energy

J(E, n, v)
d≡

∫ L

0

G(E, n, v)dx. (1.67)

As in the single PDE cases, we can construct discrete versions of the above
variational derivatives, δG/δE, δG/δE, δG/δn, and δG/δv, by which a con-
servative scheme for the Zakharov equations can be defined. Let us denote
numerical solutions by Ek

(m), nk
(m), v

(m)
k . Then we follow the three steps

again as follows.

[step 1d] Defining a discrete energy

We define the discrete local energy by

Gd,k(E(m),n(m),v(m)) =

|δ+
k Ek

(m)|2 + |δ−k Ek
(m)|2

2
+ nk

(m)|Ek
(m)|2

+
1
2

(
nk

(m)2 +
(δ+

k v
(m)
k )2 + (δ−k v

(m)
k )2

2

)
. (1.68)

We define the discrete global energy accordingly by

Jd(E(m),n(m),v(m))
d≡

N∑

k=0

′′Gd,k(E(m),n(m),v(m))∆x. (1.69)

[step 2d] Taking the discrete variation
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Taking discrete variation, we have

N∑

k=0

′′
{

Gd,k(E(m+1),n(m+1),v(m+1)) − Gd,k(E(m),n(m),v(m))
}

∆x

=
N∑

k=0

′′

{
δGd

δ(E(m+1),E(m))k

(Ek
(m+1) − Ek

(m))

+
δGd

δ(E(m+1),E(m))k

(Ek
(m+1) − Ek

(m))

+
δGd

δ(n(m+1),n(m))k
(nk

(m+1) − nk
(m))

+
δGd

δ(v(m+1),v(m))k
(v(m+1)

k − v
(m)
k )

}
∆x, (1.70)

where

δGd

δ(E(m+1),E(m))k

= −δ
〈2〉
k

(
Ek

(m+1) + Ek
(m)

2

)

+

(
Ek

(m) + Ek
(m)

2

) (
nk

(m+1) + nk
(m)

2

)
, (1.71a)

δGd

δ(E(m+1),E(m))k

=

(
δGd

δ(E(m+1),E(m))k

)
, (1.71b)

δGd

δ(n(m+1),n(m))k
=

nk
(m+1) + nk

(m)

2

+
|Ek

(m+1)|2 + |Ek
(m)|2

2
, (1.71c)

δGd

δ(v(m+1),v(m))k
= −δ

〈2〉
k

(
v
(m+1)
k + v

(m)
k

2

)
. (1.71d)

They are obviously discrete analogues of (1.66a) through (1.66d).

[step 3d] Defining a scheme

With the discrete variational derivatives, we define a numerical scheme.

Scheme 1.5 (Conservative scheme for the Zakharov equations) With
given initial data E(0),n(0),u(0) and appropriate boundary conditions, we
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compute numerical solutions by, for m = 0, 1, 2, . . .,

i

(
Ek

(m+1) − Ek
(m)

∆t

)
=

δGd

δ(E(m+1),E(m))k

= −δ
〈2〉
k

(
Ek

(m+1) + Ek
(m)

2

)
+

(
Ek

(m) + Ek
(m)

2

)(
nk

(m+1) + nk
(m)

2

)
,

(1.72a)

nk
(m+1) − nk

(m)

∆t
= − δGd

δ(v(m+1),v(m))k
= δ

〈2〉
k

(
v
(m+1)
k + v

(m)
k

2

)
, (1.72b)

v
(m+1)
k − v

(m)
k

∆t
=

δGd

δ(n(m+1),n(m))k

=
nk

(m+1) + nk
(m)

2
+

|Ek
(m+1)|2 + |Ek

(m)|2

2
, (1.72c)

where k = 0, . . . , N .

Then the scheme automatically becomes conservative as follows. We omit the
proof, which is again the discrete analogue of the continuous version.

PROPOSITION 1.5 Conservation property of Scheme 1.5
Scheme 1.5 is conservative in the sense that

Jd(E(m),n(m),v(m)) = Jd(E(0),n(0),v(0)), m = 1, 2, 3 . . . . (1.73)

More general cases are described in Chapter 2, and the procedure is pre-
sented in Chapter 3.

1.3.4 Procedure for Second-Order PDEs

So far the first-order PDEs of the form ut = · · · have been considered. Let
us consider next the cases where utt is concerned; we call such PDEs second-
order. Let u(x, t) be a real-valued function, and suppose that a real-valued
function G(u, ux) is given. We here consider the PDE of the form

∂2u

∂t2
= −δG

δu
, x ∈ (0, L), t > 0. (1.74)

This PDE has a conservation property

d
dt

∫ L

0

{
(ut)2

2
+ G(u, ux)

}
dx =

∫ L

0

(
utt +

δG

δu

)
ut dx + (boundary term)

= 0, (1.75)
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provided some appropriate boundary conditions are given. This class of PDEs
includes, for example, the linear wave equation

∂2u

∂t2
=

∂2u

∂x2
, G(u, ux) =

(ux)2

2
. (1.76)

Obviously the procedure used so far cannot be applied as is, since the
conservation property (1.75) now includes not only G(u, ux) but also ut in its
integrand. In order to handle these problems, we have two options.

• We can consider directly the variation process with respect to the global
energy:

J(u)
d≡

∫ L

0

{
(ut)2

2
+ G(u, ux)

}
dx. (1.77)

• Otherwise we can introduce a new variable v = ut to rewrite the equa-
tion into a system of first-order PDEs. The advantage of this option is
that in this way we can avoid the explicit appearance of ut in the energy
and thus can apply the known procedure.

We demonstrate these two options below in turn. Let us first consider the
first option.

[step 1d] Defining a discrete energy

We define a discrete local energy Gd, again replacing u with Uk
(m+1) and

Uk
(m), and ux with some differences.
In the case of the linear wave equation, let us define a local energy as

Gd,k(U (m+1),U (m))

d≡ 1
4

{(
(δ+

k Uk
(m+1))2 + (δ−k Uk

(m+1))2

2

)

+

(
(δ+

k Uk
(m))2 + (δ−k Uk

(m))2

2

)}
, (1.78)

and accordingly a global energy as

Jd(U (m+1),U (m))

d≡
N∑

k=0

′′





1
2

(
Uk

(m+1) − Uk
(m)

∆t

)2

+ Gd,k(U (m+1),U (m))



∆x. (1.79)

Note that now the discrete local energy function is defined with two numerical
solutions; this is a trick in order to consider the direct variation of (1.77). Its
detail is left to Chapter 3.
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[step 2d] Taking the discrete variation

Let us first recall the continuous case. The variation becomes
∫ L

0

{
1
2
(ut + δut)2 + G(u + δu, ux + δux) − 1

2
(ut)2 − G(u, ux)

}
dx

=
∫ L

0

(
utδut +

δG

δu
δu

)
dx + (boundary term) + O(δu2), (1.80)

which implies when δu/∆t → ut (as ∆t → 0),

d
dt

J(u) =
∫ L

0

(
utt +

δG

δu

)
utdx + (boundary term). (1.81)

By copying this calculation, we see for the term ut
2/2

N∑

k=0

′′

{
(δ+

mUk
(m))2

2
− (δ+

mUk
(m−1))2

2

}

=
N∑

k=0

′′

{
δ+
m

(
Uk

(m) + Uk
(m−1)

2

)
· δ+

m

(
Uk

(m) − Uk
(m−1)

)}
∆x

=
N∑

k=0

′′

{
δ〈2〉m Uk

(m) ·

(
Uk

(m+1) − Uk
(m−1)

2

)}
∆x, (1.82)

and for G

N∑

k=0

′′
{

Gd,k(U (m+1),U (m)) − Gd,k(U (m),U (m−1))
}

∆x

=
N∑

k=0

′′

{
δGd

δ(U (m+1),U (m),U (m−1))k

(
Uk

(m+1) − Uk
(m−1)

2

)}
∆x

+ (boundary term). (1.83)

The operator δ+
m is the first order difference operator in time direction (see (1.27)).

The detail of this calculation will be shown in Section 3.5.1. The last equality
should be regarded to define the discrete variational derivative:

δGd

δ(U (m+1),U (m),U (m−1))k

,

as in (1.32). Since the discrete variational derivative refers three numerical
solutions, we call it the “three-points discrete variational derivative,” to dis-
tinguish it from the standard discrete variational derivatives which refer only
two solutions. (We do not further get into the detail of the new concept here.
See also Section 1.4.2.)
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In the case of the linear wave equation, it becomes

N∑

k=0

′′
{

Gd,k(U (m+1),U (m)) − Gd,k(U (m),U (m−1))
}

∆x

=
1
8

N∑

k=0

′′
{

(δ+
k Uk

(m+1))2 − (δ+
k Uk

(m−1))2

+(δ−k Uk
(m+1))2 − (δ−k Uk

(m−1))2
}

∆x

=
1
8

N∑

k=0

′′
{

δ+
k (Uk

(m+1) + Uk
(m−1)) · δ+

k (Uk
(m+1) − Uk

(m−1))

+δ−k (Uk
(m+1) + Uk

(m−1)) · δ−k (Uk
(m+1) − Uk

(m−1))
}

∆x

= −1
4

N∑

k=0

′′
{

δ
〈2〉
k (Uk

(m+1) + Uk
(m−1)) · (Uk

(m+1) − Uk
(m−1))

}
∆x

+ (boundary term)

= −
N∑

k=0

′′

{
δ
〈2〉
k

(
Uk

(m+1) + Uk
(m−1)

2

)
·

(
Uk

(m+1) − Uk
(m−1)

2

)}
∆x

+ (boundary term). (1.84)

Again we used the summation-by-parts formula (1.34). Thus we find that

δGd

δ(U (m+1),U (m),U (m−1))k

= −δ
〈2〉
k

(
Uk

(m+1) + Uk
(m−1)

2

)
. (1.85)

[step 3d] Defining a scheme

Corresponding to the continuous equation (1.74), we define a discrete scheme
as follows.

Scheme 1.6 (Conservative scheme for (1.74)) With given initial data U (0),
U (1) and appropriate boundary conditions, we compute numerical solutions
by, for m = 1, 2, . . .,

Uk
(m+1) − 2Uk

(m) + Uk
(m−1)

(∆t)2
= − δGd

δ(U (m+1),U (m),U (m−1))k

, (1.86)

where k = 0, . . . , N .

Then the scheme automatically becomes conservative as follows. We omit the
proof.
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PROPOSITION 1.6 Conservation property of Scheme 1.6
Scheme 1.6 is conservative in the sense

Jd(U (m+1),U (m)) = Jd(U (1),U (0)), m = 1, 2, 3 . . . . (1.87)

In the case of the linear wave equation, Scheme 1.6 reads

Uk
(m+1) − 2Uk

(m) + Uk
(m−1)

(∆t)2
= δ

〈2〉
k

(
Uk

(m+1) + Uk
(m−1)

2

)
, (1.88)

whose conservation property is guaranteed by Proposition 1.6 with the energy
function (1.78).

Next, let us here adopt the second option. By introducing a new variable
v(x, t) = ut, we can rewrite the equation (1.74) into a system of first-order
PDEs:

∂u

∂t
= v, (1.89a)

∂v

∂t
= −δG

δu
. (1.89b)

If we introduce a “modified local energy”

G̃(u, ux, v) =
v2

2
+ G(u, ux), (1.90)

we can rewrite the equations (1.89) as a system of first-order PDEs:

∂u

∂t
=

∂G̃

∂v
, (1.91a)

∂v

∂t
= −∂G̃

∂u
. (1.91b)

Then let us define a global energy associated with (1.91) by

J(u, v)
d≡

∫ L

0

G̃(u, ux, v)dx. (1.92)

The conservation property (1.75) is then

d
dt

J(u, v) = 0. (1.93)

In the case of the linear wave equation (1.76), the modified local energy
becomes

G̃(u, ux, v) =
v2

2
+

(ux)2

2
. (1.94)

Let us construct a conservative scheme to the equations (1.91).
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[step 1d] Defining a discrete energy

We define a discrete modified local energy G̃d, again replacing u, v with
Uk

(m), V
(m)
k , and ux with some differences.

In the case of the linear wave equation, let us define a modified local energy
as

G̃d,k(U (m),V (m))
d≡

(V (m)
k )2

2
+

1
2

(
(δ+

k Uk
(m))2 + (δ−k Uk

(m))2

2

)
, (1.95)

and accordingly a global energy as

Jd(U (m),V (m))
d≡

N∑

k=0

′′G̃d,k(U (m),V (m))∆x. (1.96)

[step 2d] Taking the discrete variation

We aim at the identity

∫ L

0

G̃(u + δu, ux + δux, v + δv) − G̃(u, ux, v)dx

=
∫ L

0

(
∂G̃

∂u
δu +

∂G̃

∂v
δv

)
dx + (boundary term), (1.97)

in a discrete setting. For the purpose, we consider the difference

N∑

k=0

′′
{

G̃d,k(U (m+1),V (m+1)) − G̃d,k(U (m),V (m))
}

∆x

=
N∑

k=0

′′

{
δG̃d

δ(U (m+1),U (m))k

(Uk
(m+1) − Uk

(m))

+
δG̃d

δ(V (m+1),V (m))k

(V (m+1)
k − V

(m)
k )

}
∆x

+ (boundary term), (1.98)

to find the discrete variational derivatives,

δG̃d

δ(U (m+1),U (m))k

and
δG̃d

δ(V (m+1),V (m))k

.
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In the case of the linear wave equation, it becomes

N∑

k=0

′′
{

G̃d,k(U (m+1),V (m+1)) − G̃d,k(U (m),V (m))
}

∆x

=
N∑

k=0

′′

{
(V (m+1)

k )2

2
−

(V (m)
k )2

2

+
1
2

(
(δ+

k Uk
(m+1))2 + (δ−k Uk

(m+1))2

2

)

−1
2

(
(δ+

k Uk
(m))2 + (δ−k Uk

(m))2

2

)}
∆x

=
N∑

k=0

′′

{(
V

(m+1)
k + V

(m)
k

2

)
(V (m+1)

k − V
(m)
k )

− δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
· (Uk

(m+1) − Uk
(m))

}
∆x

+ (boundary term). (1.99)

Again we used the summation-by-parts formula (1.34). Thus we find that

δG̃d

δ(U (m+1),U (m))k

= −δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
, (1.100a)

δG̃d

δ(V (m+1),V (m))k

=
V

(m+1)
k + V

(m)
k

2
. (1.100b)

[step 3d] Defining a scheme

Corresponding to the continuous equations (1.91), we define a discrete
scheme as follows.

Scheme 1.7 (Conservative scheme for (1.91)) With given initial data
U (0), V (0) and appropriate boundary conditions, we compute numerical so-
lutions by, for m = 0, 1, 2, . . .,

Uk
(m+1) − Uk

(m)

∆t
=

δG̃d

δ(V (m+1),V (m))k

, (1.101a)

V
(m+1)
k − V

(m)
k

∆t
= − δG̃d

δ(U (m+1),U (m))k

, (1.101b)

where k = 0, . . . , N .
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Then the scheme automatically becomes conservative as follows. We omit the
proof.

PROPOSITION 1.7 Conservation property of Scheme 1.7
Scheme 1.7 is conservative in the sense

Jd(U (m),V (m)) = Jd(U (0),V (0)), m = 1, 2, 3 . . . . (1.102)

In the case of the linear wave equation, Scheme 1.7 reads

Uk
(m+1) − Uk

(m)

∆t
=

δG̃d

δ(V (m+1),V (m))k

=
V

(m+1)
k + V

(m)
k

2
, (1.103a)

V
(m+1)
k − V

(m)
k

∆t
= − δG̃d

δ(U (m+1),U (m))k

= δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
, (1.103b)

whose conservation property is guaranteed by Proposition 1.7 with the energy
function (1.95).

Other examples of the PDEs (1.74) will be described in Chapter 2. More rig-
orous procedures of constructing conservative schemes will be given in Chap-
ter 3.

1.4 Advanced Topics

So far we have glanced through the basics of the discrete variational deriva-
tive method and its various examples. In this section we briefly comment on
more advanced topics that will be covered in the second part of this book.
The topics are on the designs of higher-order schemes (Section 1.4.1, whose
detail will be given in Chapter 5), linearly implicit schemes (Section 1.4.2,
Chapter 6), and other remarks (Section 1.4.3, Chapter 7).

1.4.1 Design of Higher-Order Schemes

Dissipative or conservative schemes designed with the standard discrete
variational method are usually second-order both spatially and temporally;
that is,

|Uk
(m) − u(k∆x,m∆t)| = O(∆x2,∆t2). (1.104)

If more accuracy is demanded, we can increase the order under appropriate
conditions. Below we try to give the readers a picture of these high-order
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schemes. The full description inevitably requires a set of new concepts and
discrete symbols; that is left to Chapter 5.

1.4.1.1 Design of Spatially High-Order Schemes

In designing spatially high-order schemes, we make one big assumption:
we assume the periodic boundary condition. This is to utilize the high-order
difference operators, δ

〈1〉,2p
k (the superscript 2p denotes the spatial accuracy),

first three of which are

2nd: δ
〈1〉,2
k fk =

1
2fk+1 − 1

2fk−1

∆x
, (1.105a)

4th: δ
〈1〉,4
k fk =

− 1
12fk+2 + 2

3fk+1 − 2
3fk−1 + 1

12fk−1

∆x
, (1.105b)

6th: δ
〈1〉,6
k fk =

1
60fk+3 − 3

20fk+2 + 3
4fk+1 − 3

4fk−1 + 3
20fk−1 − 1

60fk−3

∆x
.

(1.105c)

Note that the subscript k of the operator denotes that it operates on the
spatial subindex k. These operators are 2p-th order approximations of ∂/∂x,
i.e.,

δ
〈1〉,2p
k u(k∆x, t) = ux(k∆x, t) + O(∆x2p). (1.106)

These operators include as a special case p = ∞ the so-called “spectral differ-
entiation” operator:

δ
〈1〉,∞
k = (F−1D̃F )k, (1.107)

where F is the matrix of the discrete Fourier transform, and D̃ is, roughly
speaking, a diagonal matrix with the elements (D̃)jj = ij (see Chapter 5 for
exact definition). The spectral differentiation operator is quite accurate in
the sense that the discretization error decreases exponentially as ∆x → 0, as
far as the target function is sufficiently smooth. Note that the more the order
2p is increased, the more the number of the referenced points becomes. In
particular, the number of the points outside the original domain 0 ≤ k ≤ N ,
which are referenced unexpectedly by such a “wide” difference operator, in-
creases, and it becomes extremely difficult to eliminate them with the limited
number of discrete boundary conditions. The periodic boundary condition is
assumed for simplicity so that we can forget this issue.

Rewriting the procedure of the standard discrete variational derivative
method with the high-order difference operator δ

〈1〉,2p
k , we obtain a new pro-

cedure for a spatially higher-order discrete variational derivative method. Let
us see this in the case of the first-order real-valued PDEs:

∂u

∂t
= −δG

δu
, x ∈ (0, L), t > 0. (1.23)
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We pick the linear diffusion equation again:

∂u

∂t
=

∂2u

∂x2
, (1.25)

as a concrete example, which is of the form (1.23) with G(u, ux) = (ux)2/2.

[step 1d] Defining a discrete energy

By simply replacing u in G(u, ux) with Uk
(m), and ux with δ

〈1〉,2p
k Uk

(m), we
obtain a discrete energy Gd(U (m)).

For the linear diffusion equation, we define a discrete local energy by

Gd,k(U (m)) =
1
2
(δ〈1〉,2p

k Uk
(m))2, (1.108)

and the corresponding discrete global energy by

Jd(U (m)) =
N∑

k=0

′′Gd,k(U (m))∆x. (1.109)

[step 2d] Taking the discrete variation

We find an identity
N∑

k=0

′′
(
Gd,k(U (m+1)) − Gd,k(U (m))

)
∆x =

N∑

k=0

′′ δGd

δ(U (m+1),U (m))k

(
Uk

(m+1) − Uk
(m)

)
∆x, (1.110)

by calculating the difference in the left hand side. Note that this seems to be
identical to the identity (1.32) in Section 1.3.1, but now the spatial difference
operator in the discrete variational derivative is replaced with higher-order
one, and the boundary terms are trivially canceled due to the discrete periodic
boundary condition.

In the linear diffusion equation case, the above identity becomes
N∑

k=0

′′
(
Gd,k(U (m+1)) − Gd,k(U (m))

)
∆x

=
N∑

k=0

′′

(
(δ〈1〉,2p

k Uk
(m+1))2 − (δ〈1〉,2p

k Uk
(m))2

2

)
∆x

=
N∑

k=0

′′

{
δ
〈1〉,2p
k

(
Uk

(m+1) + Uk
(m)

2

)
· δ〈1〉,2p

k (Uk
(m+1) − Uk

(m))

}

= −
N∑

k=0

′′

{(
δ
〈1〉,2p
k

)2
(

Uk
(m+1) + Uk

(m)

2

)}
(Uk

(m+1) − Uk
(m))∆x.

(1.111)



Introduction and Summary 37

Here we used a summation-by-parts formula with respect to δ
〈1〉,2p
k :

N∑

k=0

′′(δ〈1〉,2p
k fk)gk∆x = −

N∑

k=0

′′fk(δ〈1〉,2p
k gk)∆x, (1.112)

which holds under the discrete periodic boundary condition. Thus, we find a
discrete variational derivative.

δGd

δ(U (m+1),U (m))k

= −
(
δ
〈1〉,2p
k

)2
(

Uk
(m+1) + Uk

(m)

2

)
. (1.113)

[step 3d] Defining a scheme

With the discrete variational derivative, we define a scheme.

Scheme 1.8 (Spatially high-order dissipative scheme for (1.23)) With
given initial data U (0) and appropriate boundary conditions, we compute U (m)

by, for m = 0, 1, . . .,

Uk
(m+1) − Uk

(m)

∆t
= − δGd

δ(U (m+1),U (m))k

, k = 0, . . . , N. (1.114)

Then the scheme automatically becomes dissipative as follows.

PROPOSITION 1.8 Dissipation property of Scheme 1.8

Scheme 1.8 is dissipative in the sense that

Jd(U (m+1)) ≤ Jd(U (m)), m = 0, 1, 2 . . . . (1.115)

PROOF It is straightforward by the identity (1.110).

In the case of the linear diffusion equation, with the discrete derivative
(1.113), Scheme 1.8 becomes

Uk
(m+1) − Uk

(m)

∆t
= − δGd

δ(U (m+1),U (m))k

= (δ〈1〉,2p
k )2

(
Uk

(m+1) + Uk
(m)

2

)
.

(1.116)
The dissipation property is guaranteed by Proposition 1.8, where Gd,k(U (m))
is given by (1.108).

It can be proved that Scheme 1.8 is really spatially high-order just by con-
sidering Taylor expansion (see Chapter 5). The above procedure can be easily
extended to other types of PDEs.



38 Discrete Variational Derivative Method

1.4.1.2 Design of Temporally High-Order Schemes

Accuracy in time direction can be increased in two ways; by utilizing the
“composition method,” and by generalizing the concept of discrete variation
to temporally high-order ones.

1.4.1.2.1 By the composition method Suppose that we already have
a second-order dissipative or conservative scheme, which is obtained by, for
example, the standard discrete variational derivative method. Then, by the
so-called “composition method,” we can easily increase its temporal order to
4th, 6th, and so on.

The composition method was first introduced independently by Suzuki [157]
and Yoshida [168], for high-order numerical integrators of ordinary differential
equations, and then further developed by various authors. The method is
based on the decomposition of exponential operator. In the easiest case, it
reads:

Suppose we have a second-order temporally-symmetric integrator
φ(∆t) : U (m) 7→ U (m+1).
Then, a composed integrator : φ(c1∆t)φ(c2∆t)φ(c1∆t), where c1 ≅
1.3512072, c2 ≅ −1.7024143, is a fourth-order integrator.

The composition method is quite simple, at least from the practical point of
view; we just use the second-order scheme repeatedly with the specified time
steps, and that automatically makes a fourth-order scheme. If we already
have a program code for the second-order scheme, we can easily update it
for the fourth-order scheme just by adding a few lines. In a similar manner,
we can obtain higher-order schemes. For more complete description of the
composition method, see Chapter 5.

It is obvious that when we apply the composition method to a conservative
second-order scheme, the resulting fourth- and higher-order schemes automat-
ically become conservative as well.

The composition method has, however, two disadvantages. One is that the
computational cost considerably increases as we repeat the composition. For
example, it is obvious that the fourth-order scheme obtained in the above way
requires as three times much cost as the second-order one for the same single
step of ∆t. The other disadvantage is that basically the scheme cannot be
applied to dissipative problems. In any composition method, there is at least
one negative step, where the time mesh size must be chosen to a negative
value. This negative step can destroy the overall dissipation property, even if
the original second-order scheme is strictly dissipative.

1.4.1.2.2 By generalizing the discrete variation process The second
way of designing temporally high-order schemes is to generalize the concept
of discrete variation so that it allows temporally high-order approximations.
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The new procedure in this case, however, becomes far more complicated than
any of the procedures mentioned so far. We here describe the outline briefly.

The basic idea is, as in the spatially high-order case, to introduce temporally
high-order difference operators, say δ

〈1〉,q
m (the superscript q denotes the tem-

poral accuracy), and rewrite the whole procedure with them. Note that the
subscript m denotes the time subindex m. As opposed to the spatially high-
order case, this update requires a completely new discrete variation process
as follows.

δ〈1〉,qm

N∑

k=0

′′Gd,k(U (m))∆x

=
N∑

k=0

′′

(
δGd

δ(U (m+l2), . . . ,U (m−l1))k

· δ〈1〉,qm Uk
(m)

)
∆x + (boundary terms).

(1.117)

This is a generalization of the standard discrete variation, for example (1.32).
Note that the difference (Uk

(m+1) − Uk
(m)) in (1.32), which implicitly means

that the resulting scheme is second-order, is now replaced with higher-order
difference operator δ

〈1〉,q
m . The symbol

δGd

δ(U (m+l2), . . . ,U (m−l1))k

is a temporally high-order discrete variational derivative, which is also a gen-
eralization of the standard discrete variational derivative

δGd

δ(U (m+1),U (m))k

.

To answer the important question whether it is always possible to find a tem-
porally high-order discrete variational derivative which satisfies the discrete
variation identity (1.117) is not an easy thing. The answer is, however, fortu-
nately yes; it will be discussed in Chapter 5.

If we admit that we can find such a temporally high-order discrete varia-
tional derivative, we can define a temporally high-order dissipative or conser-
vative scheme with it. For example, for the first-order real-valued dissipative
PDE (1.23), a temporally high-order dissipative scheme is given as follows.

Scheme 1.9 (Temporally high-order dissipative scheme for (1.23))
Suppose we are given initial data U (0),U (1), . . . ,U (l−2), where l is the number
of points that the temporally high-order difference operator δ

〈1〉,q
m refers, and

appropriate boundary conditions. Then we compute U (l−1),U (l), . . . by

δ〈1〉,qm Uk
(m) = − δGd

δ(U (m+l2), . . . ,U (m−l1))k

, k = 0, . . . , N. (1.118)



40 Discrete Variational Derivative Method

PROPOSITION 1.9 Dissipation property of Scheme 1.9

Scheme 1.9 is dissipative in the sense that

δ〈1〉,qm Jd(U (m)) ≤ 0. (1.119)

We can combine spatially and temporally high-order techniques to obtain
dissipative or conservative schemes which are high-order both spatially and
temporally. The detail will be given in Chapter 5.

Finally, we would like to briefly compare the two approaches of designing
temporally high-order schemes: one by the composition method, and one by
the method presented here. As noted in the preceding paragraph, the com-
position method has two drawbacks: relatively high computational cost and
incapability of handling dissipative problems. These are not problems in the
second approach; the computational cost will not increase practically even if
the order is increased, and it can handle dissipative cases as well. On the
other hand, the second approach has its own difficulty that its procedure is
quite complicated and not easy to implement on computers, while the imple-
mentation of the composition method is always easy.

REMARK 1.3 The high-order technique described here was first intro-
duced for ordinary differential equations in Matsuo [114]. There he considered
dissipative or conservative ordinary differential equations and their high-order
discretizations inheriting the dissipation or conservation property. To under-
stand the basic idea of the temporally high-order technique, it is better to
first consult this paper, since the situation is much simpler in ODE cases.

1.4.2 Design of Linearly Implicit Schemes

Various conservative or dissipative schemes we have seen so far were basi-
cally nonlinear; that is, they form systems of nonlinear equations at each time
step, and some iterative solver such as the Newton method is indispensable in
time evolution process. This can be quite time-consuming when the problem
is large. In this subsection we are going to see that by a simple trick we can
avoid this difficulty; we can make linearly implicit schemes while keeping the
desired conservation or dissipation property in some sense. This is a short
summary of Chapter 6.

Before starting, we would like to clarify the difference between “linear vs.
nonlinear” and “explicit vs. implicit,” to make our point clear. We call a
scheme linear if the scheme is linear with respect to the unknown variable,
i.e., the approximate solution at the next time step; if not, we call it non-
linear. We call a scheme implicit if we need to solve some equation to know
the value of the unknown variable; if not, we call it explicit. As opposed
to the definition of linearity/nonlinearity, which is simple, the definition of
implicitness/explicitness requires further consideration.
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Implicitness can come from two different sources: (i) from nonlinearity, pos-
sibly inherited from the original PDE; and (ii) from any couplings between
equations with respect to the spatial subindex k, which are often caused by
spatial difference operators, such as δ

〈2〉
k . These different types of implicitness

can occur independently. We must always make sure what type(s) of im-
plicitness we are facing. We summarize the four possible types of numerical
schemes in Table 1.1.

TABLE 1.1: Classification of numerical schemes
Name Nonlinearity Implicitness Type of Imp.
Explicit linear explicit ——
Linearly implicit linear implicit (ii)
Nonlinear (uncoupled) nonlinear implicit (i)
Nonlinear (coupled) nonlinear implicit (i)+(ii)

Let us cast a glance at the four cases in turn, taking the nonlinear PDE:

∂u

∂t
=

∂2u

∂x2
− u3 (1.120)

as an example.

• Explicit schemes are the schemes where we can directly compute the
unknown variable without solving any equations. They are quite fast,
but often unstable. For example, a scheme for the above PDE,

Uk
(m+1) − Uk

(m)

∆t
= δ

〈2〉
k Uk

(m) − (Uk
(m))3,

is explicit.

• Linearly implicit schemes are the schemes where we need to solve a
system of linear equations in each time step. They can have both ad-
vantages of explicit and nonlinear schemes; they are usually cheaper
than nonlinear (coupled) schemes, and often more stable than explicit
schemes. For example, a scheme for the above PDE,

Uk
(m+1) − Uk

(m)

∆t
= δ

〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
− (Uk

(m))3,

is linearly implicit. Note there is a term δ
〈2〉
k Uk

(m+1), which makes the
scheme implicit.
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• Nonlinear (uncoupled ) schemes are the schemes where we have to solve
nonlinear equations in each time step, but each equation in the system
can be solved independently. For example, a scheme for the above PDE,

Uk
(m+1) − Uk

(m)

∆t
= δ

〈2〉
k Uk

(m) − (Uk
(m+1))3,

is nonlinear but uncoupled. Observe that the spatial difference operator
δ
〈2〉
k which can cause the coupling of equations does not operate on

Uk
(m+1), thus the equations are not coupled with each other. These

types of schemes are often as cheap as linearly implicit schemes, but
rarely used because they are not much more stable than explicit schemes.

• Nonlinear (coupled ) schemes are the schemes where we have to solve a
system of nonlinear equations in each time step. Generally this type
of numerical scheme is the most expensive but most stable. When we
simply say “a nonlinear scheme,” we usually mean this type of scheme
(it is also often called as a “fully implicit scheme”). A scheme for the
above PDE,

Uk
(m+1) − Uk

(m)

∆t
= δ

〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
−

(
Uk

(m+1) + Uk
(m)

2

)3

,

(1.121)
is nonlinear and coupled. Note that the difference operator δ

〈2〉
k causes

couplings of the equations.

When we apply the standard discrete variational derivative method to a
linear PDE, we obtain a linearly implicit scheme. The implicitness is caused
by the spatial difference operators, inherited from the original PDE. In the
case of a nonlinear PDE, we will always obtain nonlinear (coupled ) scheme.
The nonlinearity and the spatial couplings of equations are both inherited
from the original PDE.

As we focus on dissipative or conservative schemes, being nonlinear and cou-
pled is not necessarily bad news, because dissipative or conservative schemes
are usually quite stable and thus time mesh size can be large to reduce
the overall computational cost. It is also possible to design linearly implicit
schemes for nonlinear problems, which are still dissipative or conservative in
some sense. We can also design explicit, or nonlinear but decoupled schemes,
but from the view point of stability, we mainly focus on linearly implicit ones
throughout this book. In what follows, we briefly explain how linearly implicit
dissipative or conservative schemes can be designed for nonlinear problems.

Let us consider the nonlinear PDE:

∂u

∂t
=

∂2u

∂x2
− u3, x ∈ (0, L), t > 0, (1.120)
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which belongs to the class of dissipative PDEs (see Section 1.3.1):

∂u

∂t
= −δG

δu
, (1.23)

with

G(u, ux) =
(ux)2

2
+

u4

4
. (1.122)

Let us consider first the nonlinear dissipative scheme obtained by the pro-
cedure described in Section 1.3.1. To this end, let us define a discrete local
energy by

Gd,k(U (m))
d≡ 1

2

(
(δ+

k Uk
(m))2 + (δ−k Uk

(m))2

2

)
+

(Uk
(m))4

4
. (1.123)

Then we obtain the nonlinear coupled scheme:

Uk
(m+1) − Uk

(m)

∆t
= δ

〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)

−

(
(Uk

(m+1))2 + (Uk
(m))2

2

)(
Uk

(m+1) + Uk
(m)

2

)
,

(1.124)

which is dissipative in the sense that

N∑

k=0

′′Gd,k(U (m+1))∆x ≤
N∑

k=0

′′Gd,k(U (m))∆x, m = 0, 1, 2, . . . . (1.125)

Now observe carefully how nonlinearity is “passed down” from the energy
function G(u, ux) to the resulting PDE, and at the same time, the discrete
energy function Gd to the scheme. In the continuous case, the equation (1.23)
is defined with the variational derivative of the energy G. Because variational
derivative is a kind of derivative with respect to u, the nonlinearity in the
resulting PDE, u3, is one order lower than the nonlinear term in the energy,
u4/4. In the nonlinear scheme case, the highest nonlinearity in the resulting
scheme, (Uk

(m+1))3/4, is also one order lower than the nonlinear term in the
discrete energy, (Uk

(m))4/4. This is natural since discrete variation process is
just a discrete version of variation. Thus we reach an important observation:

[Key observation]
The order of nonlinearity in the resulting scheme is always one
order lower than in the discrete energy.

This observation, in turn, suggests the next strategy for designing linearly
implicit schemes.
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[Idea]
To design a linearly implicit scheme, the nonlinearity in the dis-
crete energy should be quadratic at most.

In the case of the nonlinear PDE (1.120), the quartic nonlinearity,
(Uk

(m))4/4, in the discrete local energy (1.123) should be reduced to quadratic.
For the purpose, let us define a slightly different discrete local energy as fol-
lows.

Gd,k(U (m+1),U (m))
d≡ 1

4

(
(δ+

k Uk
(m+1))2 + (δ−k Uk

(m+1))2

2

)

+
1
4

(
(δ+

k Uk
(m))2 + (δ−k Uk

(m))2

2

)

+
(Uk

(m+1))2(Uk
(m))2

4
. (1.126)

Note that this discrete energy is defined with two consecutive approximate
solutions Uk

(m+1) and Uk
(m), where previously it was defined with a single so-

lution Uk
(m). With this trick the quartic nonlinear term is now quadratic with

respect to the newest value Uk
(m+1) (i.e. the term (Uk

(m+1))2(Uk
(m))2/4). We

define associated discrete global energy by

Jd(U (m+1),U (m))
d≡

N∑

k=0

′′Gd,k(U (m+1),U (m))∆x, (1.127)

which accordingly refers two approximate solutions.

Let us consider discrete variation of Gd(U (m+1),U (m)). We consider the
difference

N∑

k=0

′′
(
Gd,k(U (m+1),U (m)) − Gd,k(U (m),U (m−1))

)
∆x

=
N∑

k=0

′′

{
1
4

(
(δ+

k Uk
(m+1))2 − (δ+

k Uk
(m−1))2

2

)

+
1
4

(
(δ−k Uk

(m+1))2 − (δ−k Uk
(m−1))2

2

)

+
(Uk

(m))2

4

(
(Uk

(m+1))2 − (Uk
(m−1))2

)}
∆x (1.128)
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=
N∑

k=0

′′

{
1
2
δ+
k

(
Uk

(m+1) + Uk
(m−1)

2

)
· δ+

k

(
Uk

(m+1) − Uk
(m−1)

2

)

+
1
2
δ−k

(
Uk

(m+1) + Uk
(m−1)

2

)
· δ−k

(
Uk

(m+1) − Uk
(m−1)

2

)

+(Uk
(m))2

(
Uk

(m+1) + Uk
(m−1)

2

)(
Uk

(m+1) − Uk
(m−1)

2

)}
∆x

=
N∑

k=0

′′

{
−δ

〈2〉
k

(
Uk

(m+1) + Uk
(m−1)

2

)
+ (Uk

(m))2
(

Uk
(m+1) + Uk

(m−1)

2

)}

×

(
Uk

(m+1) − Uk
(m−1)

2

)
∆x + (boundary terms). (1.129)

In the last equality we used the summation-by-parts formula (1.34). As-
suming some boundary condition with which the boundary terms vanish, we
can summarize the above calculation as

N∑

k=0

′′
(
Gd,k(U (m+1),U (m)) − Gd,k(U (m),U (m−1))

)
∆x =

N∑

k=0

′′ δGd

δ(U (m+1),U (m),U (m−1))k

(
Uk

(m+1) − Uk
(m−1)

2

)
∆x, (1.130)

where

δGd

δ(U (m+1),U (m),U (m−1))k

d≡

− δ
〈2〉
k

(
Uk

(m+1) + Uk
(m−1)

2

)
+ (Uk

(m))2
(

Uk
(m+1) + Uk

(m−1)

2

)

(1.131)

is a discrete variational derivative.

With the three-points discrete variational derivative (observe that it de-
pends on three numerical solutions) we define a scheme as follows.

Scheme 1.10 (Dissipative scheme for (1.120)) Suppose that the initial
data U (0) and the starting value U (1) are given, and appropriate boundary
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conditions are set. Then we compute numerical solutions by, for m = 1, 2, . . .,

Uk
(m+1) − Uk

(m−1)

2∆t
= − δGd

δ(U (m+1),U (m),U (m−1))k

= δ
〈2〉
k

(
Uk

(m+1) + Uk
(m−1)

2

)

− (Uk
(m))2

(
Uk

(m+1) + Uk
(m−1)

2

)
,

k = 0, . . . , N. (1.132)

Then the scheme automatically becomes dissipative as follows.

PROPOSITION 1.10 Dissipation property of Scheme 1.10
Scheme 1.10 is dissipative in the sense that

Jd(U (m+1),U (m)) ≤ Jd(U (m),U (m−1)), m = 1, 2, 3 . . . . (1.133)

PROOF Straightforward from the discrete variation equation (1.130).

Observe that Scheme 1.10 is linear with respect to the unknown variable
Uk

(m+1), as expected.
The above idea can be further extended to more general cases where higher

order nonlinearity involves. There, the concept of “three-points discrete varia-
tional derivative” will be further generalized to “multiple-points discrete vari-
ational derivative.” This topic is fully discussed in Chapter 6.

REMARK 1.4 By slightly modifying the definition of discrete local en-
ergy, we can obtain various schemes that preserve the desired dissipation
property in some ways. For example, if we start with a discrete local energy:

Gd,k(U (m+1),U (m))
d≡ 1

2

(
(δ+

k Uk
(m+1))(δ+

k Uk
(m)) + (δ−k Uk

(m+1))(δ−k Uk
(m))

2

)

+
(Uk

(m+1))4 + (Uk
(m))4

8
, (1.134)

we obtain a nonlinear uncoupled scheme

Uk
(m+1) − Uk

(m−1)

2∆t
= − δGd

δ(U (m+1),U (m),U (m−1))k

= δ
〈2〉
k Uk

(m) −

(
(Uk

(m+1))2 + (Uk
(m−1))2

2

)(
Uk

(m+1) + Uk
(m−1)

2

)
,

(1.135)
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which is still dissipative in the sense that

Jd(U (m+1),U (m)) ≤ Jd(U (m),U (m−1)), m = 1, 2, 3 . . . .

Note that Jd is defined with the local energy (1.134).

REMARK 1.5 Similarly to Remark 1.4, if we start with a discrete local
energy:

Gd,k(U (m+1),U (m))
d≡ 1

2

(
(δ+

k Uk
(m+1))(δ+

k Uk
(m)) + (δ−k Uk

(m+1))(δ−k Uk
(m))

2

)

+
(Uk

(m+1))2(Uk
(m))2

4
, (1.136)

then we obtain an explicit scheme

Uk
(m+1) − Uk

(m−1)

2∆t
= − δGd

δ(U (m+1),U (m),U (m−1))k

= δ
〈2〉
k Uk

(m) − (Uk
(m))2

(
Uk

(m+1) + Uk
(m−1)

2

)
,

(1.137)

which is still dissipative in the sense that

Jd(U (m+1),U (m)) ≤ Jd(U (m),U (m−1)), m = 1, 2, 3 . . . .

REMARK 1.6 As Remark 1.4 and Remark 1.5 show, we can design
various types of dissipative or conservative schemes by considering different
forms of discrete local energy. But we must note that in the linearly implicit,
or explicit or nonlinear unncoupled schemes, the dissipation or conservation
properties do not necessarily guarantee the stability of approximate solution.
We will consider this issue in Chapter 6.

1.4.3 Further Remarks

The last chapter of this book, Chapter 7 is devoted to further remarks on
the discrete variational derivative method. There, the following topics are
covered.

1.4.3.1 Solving Nonlinear Equations

As mentioned earlier, the DVDM schemes usually inherit nonlinearity from
nonlinear PDEs. One way of avoiding the heavy computational cost—the
linearization technique—has been introduced in Section 1.4.2.
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A simpler solution is to employ modern, efficient solvers for nonlinear equa-
tions. In Section 7.1, some information on this issue is summarized.

1.4.3.2 Galerkin Version of the DVDM

So far we have basically limited ourselves to spatially one-dimensional prob-
lems, and this is also our basic focus throughout this book.

It is, however, quite straightforward to see that the method can be extended
to two- or three-dimensional problems, as far as rectangular spatial domains
and their uniform rectangular meshes are sufficient for required analysis. An
example will be shown in Section 4.1.1, where the Cahn–Hilliard problem is
also considered on a rectangular domain.

Another natural way of extending the method is to switch to the Galerkin
(or more specifically, finite element) framework in place of finite difference. A
brief explanation on this extension will be given in Section 7.2. Several ex-
amples including the Ginzburg–Landau equation on two-dimensional domain
describing superconductivity are shown.

1.4.3.3 Extension to Non-Uniform Meshes

In this last subsection, Section 7.3, we will briefly mention another extension
for two-dimensional problems: the extension to non-uniform meshes. More
specifically, here we consider Voronoi meshes and special finite differences on
them such that a certain “summation-by-parts” formula holds.

Quite recently (as of writing this book) many related studies have been
carried out on such special finite differences; they are called (depending on
the context) “compatible spatial discretization” or “mimetic discretization.”
Interested readers may refer to the references mentioned in Section 7.3.



Chapter 2

Target Partial Differential Equations

In this chapter we summarize the target partial differential equations
(PDEs) of the discrete variational derivative method. In short, they
are the variational PDEs that are defined with variational derivatives
of some “energy” functions. The PDEs fall in four categories: first-
order (i.e. with ut only) real-valued PDEs, first-order complex-valued
PDEs, second-order (i.e. with utt) real-valued PDEs, and finally sys-
tems of the first three types of PDEs.

2.1 Variational Derivatives

Let us commence by briefly reviewing the concept of variational derivatives.
Let u(x, t) be a function of (x, t) ∈ [0, L]×[0,∞), and G(u, ux) be a real-valued
function of u, ux. We often call G “local energy.” We then define a “global
energy” by

J(u) =
∫ L

0

G(u, ux)dx. (2.1)

Below we consider three cases: when u is a real-valued scalar function, a
complex-valued scalar function, and vector of real- and complex-valued func-
tions.

Suppose u is a real-valued scalar function. The variation of the global
energy J(u) is defined with the Gâteaux derivative:

δJ(u; η) = lim
ε→0

∫ L

0

G(u + εη, ux + εηx) − G(u, ux)
ε

dx

=
∫ L

0

{
∂G

∂u
η +

∂G

∂ux
ηx

}
dx

=
∫ L

0

(
∂G

∂u
− ∂

∂x

∂G

∂ux

)
η dx +

[
∂G

∂ux
η

]L

0

, (2.2)

where η : [0,∞) × [0, L] → R is a smooth function, and ε ∈ R. Then the

49
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variational derivative of G(u, ux) is defined by

δG

δu

d≡ ∂G

∂u
− ∂

∂x

∂G

∂ux
. (2.3)

Note that this coincides with the expression obtained by the intuitive calcu-
lation (1.12) in Chapter 1. Also note that if we take η = ut, then δJ(u;ut) =
(d/dt)J(u), and the above calculation becomes

δJ(u;ut) =
d
dt

J(u) =
∫ L

0

(
∂G

∂u
− ∂

∂x

∂G

∂ux

)
utdx +

[
∂G

∂ux
ut

]L

0

, (2.4)

which has been already seen in (1.13).
When u is a complex-valued scalar function, we also need to consider the

variation with respect to the complex conjugate of u.

δJ(u; η) = lim
ε→0

∫ L

0

G(u + εη, ux + εηx) − G(u, ux)
ε

dx

=
∫ L

0

{
∂G

∂u
η +

∂G

∂u
η +

∂G

∂ux
ηx +

∂G

∂ux
ηx

}
dx

=
∫ L

0

{(
∂G

∂u
− ∂

∂x

∂G

∂ux

)
η +

(
∂G

∂u
− ∂

∂x

∂G

∂ux

)
η

}
dx

+
[

∂G

∂ux
η +

∂G

∂ux
η

]L

0

, (2.5)

where η : [0,∞) × [0, L] → C is a smooth function, and u is the complex
conjugate of u. Partial derivatives with respect to complex-variables are de-
fined formally by ∂/∂z = ((∂/∂(Rez) − i∂/∂(Imz))/2, ∂/∂z = ((∂/∂(Rez) +
i∂/∂(Imz))/2 (see, for example, [7, Section 1.2]). The “complex variational
derivative of G” is then defined as follows.

δG

δu

d≡ ∂G

∂u
− ∂

∂x

∂G

∂ux
, (2.6a)

δG

δu

d≡ ∂G

∂u
− ∂

∂x

∂G

∂ux
. (2.6b)

When G(u, ux) is real-valued, the variational derivatives are complex conju-
gates of each other, that is,

δG

δu
=

δG

δu
. (2.7)

When u is a vector of real- and/or complex-valued functions, we consider
variations with respect to all variables, including variations with respect to
the complex conjugates of complex-valued elements. To write the calculation
explicitly, let u be a (Nr + Ni)-dimensional vector, the first Nr of which are
real-valued and the rest, Ni, are complex-valued:

u = (u1, . . . , uNr , uNr+1, . . . , uNr+Ni)
⊤

. (2.8)
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Then the variation of J(u) is as follows.

δJ(u; η) = lim
ε→0

∫ L

0

G(u + εη, ux + εηx) − G(u, ux)
ε

dx

=
Nr∑

i=1

∫ L

0

{
∂G

∂ui
ηi +

∂G

∂ui,x
ηi,x

}
dx

+
Nr+Ni∑

i=Nr+1

∫ L

0

{
∂G

∂ui
ηi +

∂G

∂ui
ηi +

∂G

∂ui,x
ηi,x +

∂G

∂ui,x
ηi,x

}
dx

=
Nr∑

i=1

∫ L

0

{(
∂G

∂ui
− ∂

∂x

∂G

∂ui,x

)
ηi

}
dx

+
Nr+Ni∑

Nr+1

∫ L

0

{(
∂G

∂ui
− ∂

∂x

∂G

∂ui,x

)
ηi +

(
∂G

∂ui
− ∂

∂x

∂G

∂ui,x

)
ηi

}
dx

+
Nr∑

i=1

[
∂G

∂ui,x
ηi

]L

0

+
Nr+Ni∑

i=Nr+1

[
∂G

∂ui,x
ηi +

∂G

∂ui,x
ηi

]L

0

. (2.9)

In the above calculation, ui,x denotes
∂

∂x
(ui), and η is a (Nr+Ni)-dimensional

function whose first Nr elements are real and the remaining (Ni) elements are
complex.

It is often more convenient to rewrite the calculation introducing the ex-
tended solution vector of length Nex = Nr + 2Ni:

u = (u1, . . . , uNr , uNr+1, uNr+2, . . . , uNr+2(Ni−1)+1, uNr+2(Ni−1)+2)
⊤

, (2.10)

where uNr+2(i−1)+2 = uNr+2(i−1)+1 (i = 1, 2, . . . , Ni). That is, we consider
the (Nr + 2Ni)-dimensional extended vector where the complex conjugates
of complex variables are explicitly included as its elements. Employing this
notation, we can greatly simplify (2.9) as

δJ(u; η) =
∫ L

0

{
δG

δu
· η

}
dx +

[
∂G

∂ux
· η

]L

0

, (2.11)

where

δG

δui
=

∂G

∂ui
− ∂

∂x

∂G

∂ui,x
(i = 1, . . . , Nex), (2.12a)

δG

δu
=

(
δG

δu1
, . . . ,

δG

δuNex

)
, (2.12b)

∂G

∂u
=

(
∂G

∂u1
, . . . ,

∂G

∂uNex

)
, (2.12c)

∂G

∂ux
=

(
∂G

∂u1,x
, . . . ,

∂G

∂uNex,x

)
, (2.12d)
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and η = (η1, . . . , ηN ) whose first Nr elements are real, and the rest are complex
numbers which satisfy ηNr+2(i−1)+2 = ηNr+2(i−1)+1 (i = 1, . . . , Ni). The dot
“ · ” denotes the standard (real) vector inner product. In particular, when
η = ut, (2.11) reduces to

δJ(u;ut) =
d
dt

J(u) =
∫ L

0

(
δG

δu
· ut

)
dx +

[
∂G

∂ux
· ut

]L

0

, (2.13)

which is a generalization of (2.4).

REMARK 2.1 We can consider the variation of J(u) in more general cases
where G also includes uxx or more higher order derivatives of u, by repeatedly
using an integration-by-parts formula. We do not explicitly consider such
cases throughout this book for brevity, but like to emphasize that it is easy
to extend the whole method for the general cases.

Similarly, as noted in Section 1.4.3, we also do not provide full descriptions
for spatially two- or three-dimensional cases. Some two-dimensional examples
will appear in Chapter 4, and treatment by the Galerkin framework will be
covered in Chapter 7.

2.2 First-Order Real-Valued PDEs

The PDEs of the form ut = · · · where u is a scalar real-valued function
belong to this category. Here we consider two subclasses. The first subclass
of “dissipative” PDEs is of the following form.

Target PDEs 1 (Real-valued, single, dissipative PDEs)

∂u

∂t
= (−1)s+1

(
∂

∂x

)2s
δG

δu
, x ∈ (0, L), t > 0, (2.14)

where s = 0, 1, 2, . . ..
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The PDEs 1 are “dissipative,” in the sense that they satisfy the following
inequality.

d
dt

∫ L

0

G(u, ux) dx

=
∫ L

0

δG

δu

∂u

∂t
dx +

[
∂G

∂ux

∂u

∂t

]L

0

=
∫ L

0

δG

δu
· (−1)s+1

(
∂

∂x

)2s
δG

δu
dx

= −
∫ L

0

{(
∂

∂x

)s
δG

δu

}2

dx +

[
s∑

l=1

(−1)s+lF 〈l−1〉F 〈2s−l〉

]L

0

≤ 0. (2.15)

This holds true when the boundary conditions imposed on the PDEs satisfy
the following two conditions:

[
∂G

∂ux

∂u

∂t

]L

0

= 0, t > 0, (2.16)

and [
s∑

l=1

(−1)s+lF 〈l−1〉F 〈2s−l〉

]L

0

= 0, t > 0, (2.17)

where F 〈l〉 =
(

∂
∂x

)l δG
δu . The condition (2.16) is relatively easy to be satisfied;

for example, the Dirichlet boundary condition, the zero Neumann boundary
condition, and the periodic boundary condition satisfy the condition. Whether
the condition (2.17) is also satisfied or not under these boundary conditions
depends on the concrete form of G(u, ux). The inequality (2.15) implies that
the “global energy” decreases monotonically as time evolves; this property is
called “dissipation” in this book.

Below are the examples of the PDEs in this category.

1. Linear diffusion equation: With s = 0 and G(u, ux) =
(ux)2

2
,

∂u

∂t
=

∂2u

∂x2
.

2. Allen–Cahn equation [9]: With s = 0 and G(u, ux) =
p

2
u2 +

r

4
u4 −

q

2
(ux)2,

∂u

∂t
= pu + ru3 + q

∂2u

∂x2
(p > 0, q > 0, r < 0).
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This equation describes a microscopic diffusion theory for the motion of
curved antiphase boundary. The theory is incorporated into a model for
antiphase domain coarsening. The function u(x, t) is an order profile
and not conserved.

3. Cahn–Hilliard equation [25]:
With s = 1 and G(u, ux) =

p

2
u2 +

r

4
u4 − q

2
(ux)2,

∂u

∂t
=

∂2

∂x2

(
pu + ru3 + q

∂2u

∂x2

)
(p < 0, q < 0, r > 0).

This equation is a model equation of the spinodal decomposition that
describes a conserved domain decomposition phenomenon. We have
already picked this equation as an example in Chapter 1. We will demon-
strate it again in Chapter 4.

4. Prominence temperature equation [10, p.7–8]:

With s = 1 and G(u, ux) =
2
9
u

9
2 ,

∂u

∂t
=

∂2

∂x2

(
u

7
2

)
.

This equation describes the variation of kinetic temperature in the promi-
nence by means of a heat conduction equation. Since the conductivity
depends on the temperature this equation becomes nonlinear.

REMARK 2.2 The Swift–Hohenberg equation [158]:

∂u

∂t
= 2u − cu2 − u3 − 2

∂2u

∂x2
− ∂4u

∂x4
, (2.18)

is an example of real-valued dissipative PDE with s = 0 and

G(u, ux, uxx) = −u2 +
c

3
u3 +

1
4
u4 − (ux)2 +

1
2
(uxx)2. (2.19)

The parameter c ∈ R is a constant. This equation describes the effects of
thermal and hydrodynamic fluctuations on the convective instability. As
declared in Remark 2.1, we basically do not consider this equation, since it
includes uxx in G.

Another example of this kind is the extended Fisher–Kolmogorov equa-
tion [34]:

∂u

∂t
= −

(
pu + ru3 + q

∂2u

∂x2
+ γ

∂4u

∂x4

)
, (2.20)

where p < 0, q < 0, r > 0, and γ > 0, is a special case of s = 0 with

G(u, ux, uxx) =
p

2
u2 +

r

4
u4 − q

2
(ux)2 +

γ

2
(uxx)2. (2.21)
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This equation is a model of a dynamical transition in the propagation of fronts
into an unstable state of a bistable system in biophysics and chemical waves.
See also Section 4.1.3.

REMARK 2.3 The Keller–Segel equation [95]:

∂u

∂t
=

∂

∂x


ux − u

∂

∂x

{
a −

(
∂

∂x

)2
}−1

u


 , (2.22)

does not belong to the dissipative class discussed above, but it is dissipative
in the sense that

d
dt

∫ L

0

G(u)dx ≤ 0, where G(u) = u log u − u − 1
2
u

{
a −

(
∂

∂x

)2
}−1

u.

(2.23)
Due to the inverse of the Helmholtz operator in G, it formally does not belong
to the target PDEs (1). This equation describes a mathematical model of the
chemotactic interaction of small beings, for instance amoebae, used for their
aggregation. The aggregation is viewed as a breakdown of stability caused by
intrinsic changes. This equation will be mentioned later in Section 4.7.1.

REMARK 2.4 By replacing t with −t, we obtain the PDEs

∂u

∂t
= −(−1)s+1

(
∂

∂x

)2s
δG

δu
, x ∈ (0, L), t > 0, (2.24)

whose energy is now increasing :

d
dt

∫ L

0

G(u, ux)dx ≥ 0. (2.25)

An interesting example in this category is the semi-linear parabolic PDE (of-
ten referred to as “Fujita-type”):

∂u

∂t
=

∂2u

∂x2
+ up, (2.26)

where p ≥ 2 is an integer. This equation is a special case of (2.24) with s = 0
and the local energy

G(u, ux) = − (ux)2

2
+

up+1

p + 1
. (2.27)

This equation has drawn much interest for decades since its solution can
“blow-up,” i.e., some norm of u can be infinite in finite time. See also [90, 91].

The second subclass consists of the “conservative” PDEs defined as follows.
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Target PDEs 2 (Real-valued, single, conservative PDEs)

∂u

∂t
=

(
∂

∂x

)2s+1
δG

δu
, x ∈ (0, L), t > 0, (2.28)

where s = 0, 1, 2, . . ..

It is assumed that the boundary condition imposed on the PDEs satisfies
the following two conditions

[
∂G

∂ux

∂u

∂t

]L

0

= 0, t > 0, (2.16)

and
[
(−1)s 1

2
F 〈s〉F 〈s〉

]L

0

+

[
s∑

l=1

(−1)l−1F 〈l−1〉F 〈2s+1−l〉

]L

0

= 0, t > 0. (2.29)

Note that the first condition is the same as in the dissipative case. For the
definition of F 〈s〉, see (2.17). Under these conditions, the following identity
holds:

d
dt

∫ L

0

G(u, ux) dx

=
∫ L

0

δG

δu

∂u

∂t
dx +

[
∂G

∂ux

∂u

∂t

]L

0

=
∫ L

0

δG

δu
·
(

∂

∂x

)2s+1
δG

δu
dx

=
[
(−1)s 1

2
F 〈s〉F 〈s〉

]L

0

+

[
s∑

l=1

(−1)l−1F 〈l−1〉F 〈2s+1−l〉

]L

0

= 0. (2.30)

This identity implies that the global energy is conserved. Throughout this
book, this is called “conservation property.”

The examples belonging to this class include the following:

1. Linear convection equation: With s = 0 and G(u, ux) =
u2

2
,

∂u

∂t
=

∂u

∂x
.

2. Korteweg–de Vries equation [98]:

With s = 0 and G(u, ux) =
u3

6
− (ux)2

2
,

∂u

∂t
=

∂

∂x

(
u2

2
+

∂2u

∂x2

)
.
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This celebrated equation describes nonlinear long waves propagating on
shallow water surfaces. It has interesting solutions called “solitons,”
which behave as if they are independent particles. This is a typical
example of nonlinear integrable PDEs, whose exact solutions can be
found in analytic ways.

3. Zakharov–Kuznetsov equation [172]:

With s = 0 and G(u,∇u) = −u3

6
+

(ux)2

2
+

(uy)2

2
,

∂u

∂t
=

∂

∂x

(
−u2

2
− ∂2u

∂x2
− ∂2u

∂y2

)
. (2.31)

This equation also models waves on shallow water surfaces, for example,
the KdV equation, but the spatial domain is now two-dimensional. The
solitary waves in this equation do not behave as complete particles after
collisions, and thus they are called “quasi-solitons”. (In Chapter 4,
several examples are shown.)

REMARK 2.5 Recently, an interesting class of equations which is not
immediately covered by the conservative class above has emerged and been
intensively studied:

∂u

∂t
− ∂3u

∂x2∂t
+ κ

∂u

∂x
+ 3u

∂u

∂x
= γ

(
2
∂u

∂x

∂2u

∂x2
+ u

∂3u

∂x3

)
, (2.32)

where κ, γ ∈ R. The equation with κ ≥ 0, γ = 1 was first discovered by
Fuchssteiner–Fokas [62] in the context of completely integrable systems and
then rediscovered by Camassa–Holm [24] with physical derivation in the con-
text of shallow water waves. After their discovery, Dai [33] re-rediscovered the
equation with the parameters ranged in κ = 0, γ ∈ R, in the study of finite-
length and small-amplitude waves in cylindrical compressible hyper-elastic
rods. Furthermore, when κ = 1, γ = 0, the equation is greatly simplified,
and coincides with the well-known “BBM” (Benjamin–Bona–Mahony) equa-
tion [14] or a regularized long wave equation [138].

The equation (2.32) can be written with a discrete variational derivative as
follows. (

1 − ∂2

∂x2

)
∂u

∂t
=

∂

∂x

(
δG

δu

)
, (2.33)

where

G(u, ux) = −κu2 + u3 + γu(ux)2

2
. (2.34)

Since now we have the additional differential operator (1 − ∂2/∂x2) in front
of ut, this does not belong to any classes of target PDEs described above,
and accordingly the standard procedure of the DVDM shown in Chapter 3
would not apply as is. It is still possible, however, to construct conservative
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schemes; in fact, there are two possible solutions. The first solution is to
appropriately modify the procedure of the DVDM so that it can also apply
to the equation (2.33). Since this involves a lot of further technical details,
in this book we do not formally cover this in the standard DVDM procedure
in Chapter 3. A concrete example in the Camassa–Holm equation case will
be presented in Chapter 4. The second approach is to introduce an inverse
operator K = (1 − ∂2/∂x2)−1, and rewrite the equation to

∂u

∂t
= K ∂

∂x

(
δG

δu

)
, (2.35)

which looks much more similar to the target PDEs 2. A crucial difference is
that the inverse operator is now nonlocal. Recall that it is well known that
the inverse operator is well-defined under some conditions, in particular the
periodic boundary condition (see, for example, [19, VIII, example 8]). In
Chapter 7, we construct several conservative Galerkin schemes, based on the
representation (2.35).

2.3 First-Order Complex-Valued PDEs

The PDEs of the form ut = · · · where u is a scalar complex-valued function
fall in this category. Here we consider two subclasses. The first class is the
“dissipative” PDEs defined as follows.

Target PDEs 3 (Complex-valued, single, dissipative PDEs)

∂u

∂t
= −δG

δu
, x ∈ (0, L), t > 0. (2.36)

¤

In this type of PDE, the global energy decreases as time evolves:

d
dt

J(u) =
∫ L

0

∂

∂t
G(u, ux)dx

=
∫ L

0

{
∂G

∂u

∂u

∂t
+

∂G

∂u

∂u

∂t
+

∂G

∂ux

∂ux

∂t
+

∂G

∂ux

∂ux

∂t

}
dx

=
∫ L

0

{
δG

δu

∂u

∂t
+

δG

δu

∂u

∂t

}
dx +

[
∂G

∂ux

∂u

∂t
+

∂G

∂ux

∂u

∂t

]L

0

= −2
∫ L

0

∣∣∣∣
δG

δu

∣∣∣∣
2

dx

≤ 0, (2.37)
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if the associated boundary conditions satisfy

[
∂G

∂ux

∂u

∂t
+

∂G

∂ux

∂u

∂t

]L

0

= 0. (2.38)

The periodic boundary condition and the Dirichlet boundary condition satisfy
(2.38).

Examples in this category are:

1. (A variant of) Ginzburg–Landau equation [106]:
With G(u, ux) =

p

2
|ux|2 −

q

4
|u|4 − r

2
|u|2,

∂u

∂t
= p

∂2u

∂x2
+ q|u|2u + ru (p > 0, q < 0, r ∈ R).

This equation is a special one-dimensional case of the famous Ginzburg–
Landau theory of superconductivity. Originally the equation in-
cluded the effect of magnetic field, but in the above simplified equation,
the effect is ignored. (See also Remark 2.6.)

2. Newell–Whitehead equation [134]:

With G(u, ux) = −µ
|u|2

2
+

|u|4

4
+

∣∣∣∣ux − i
2kc

uyy

∣∣∣∣
2

,

∂u

∂t
= µu − |u|2u +

(
∂

∂x
− i

2kc

∂2

∂y2

)2

u (µ, kc ∈ R).

This two-dimensional equation describes Bénard convection flow in
systems close to the threshold of instability. It shows various patterns
such as roll, zigzag and so on, and is an interesting model from the
view point of pattern formation. (In Chapter 4, several examples are
shown.)

The second subclass of this category is the “conservative” PDE defined as
follows.

Target PDEs 4 (Complex-valued, single, conservative PDEs)

i
∂u

∂t
= −δG

δu
, x ∈ (0, L), t > 0. (2.39)

¤
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This equation is called “conservative” because it conserves the global energy
J , as can be easily seen as

d
dt

J(u) =
∫ L

0

{
δG

δu

∂u

∂t
+

δG

δu

∂u

∂t

}
dx +

[
∂G

∂ux

∂u

∂t
+

∂G

∂ux

∂u

∂t

]L

0

=
∫ L

0

(
i
∣∣∣∣
δG

δu

∣∣∣∣
2

− i
∣∣∣∣
δG

δu

∣∣∣∣
2
)

dx

= 0, (2.40)

under the condition (2.38).
Examples in this category include:

1. Nonlinear Schrödinger equation (see, for example, [18, 156]):

With G(u, ux) = −|ux|2 +
2

p + 1
|u|p+1,

i
∂u

∂t
= −∂2u

∂x2
− |u|p−1u (p = 2, 3, . . .).

This is one of the most fundamental nonlinear wave equations, which
arises in various physical contexts such as optical fibers, plasma and
ideal fluid. It also has been attracting mathematical interest since it
has rich mathematical structures; for example, it is completely inte-
grable when p = 3, it has Hamiltonian structure, and the solution
can “blow-up” (i.e. certain norms of the solution can be indefinite in
finite time).

2. Gross–Pitaevskii equation [79, 140]:

With G(u, ux) = −|ux|2 −
1
2
(1 − |u|2)2,

i
∂u

∂t
= −∂2u

∂x2
− (|u|2 − 1)u. (2.41)

This equation describes the evolution of the order profile of quantum
systems with weak interaction between particles. This can be regarded
as an extension of the above nonlinear Schrödinger equation. This equa-
tion in particular describes the Bose–Einstein condensation (BEC)
phenomenon, and it has been shown that simulation results well agree
with experimental results. (In Chapter 4, several examples are shown.)

2.4 Systems of First-Order PDEs

So far only single PDEs have been considered. In some cases, however, the
concept can be generalized to systems of PDEs. An example is the Zakharov
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equations [72, 171],

i
∂E

∂t
+

∂2E

∂x2
= nE,

∂2n

∂t2
− ∂2n

∂x2
=

∂2

∂x2
|E|2, (2.42)

where E(x, t) is a complex-valued, and n(x, t) is a real-valued function. They
can be written in variational form:

d
dt




E
E
n
v


 =




0 −i 0 0
i 0 0 0
0 0 0 −1
0 0 1 0







δG/δE
δG/δE
δG/δn
δG/δv


 , (2.43)

where v(x, t) is a real-valued intermediate variable such that vt = n + |E|2,
and G(E, n, vx) is an energy function defined by

G(E,n, vx) = |Ex|2 + n|E|2 +
1
2
(n2 + (vx)2). (2.44)

By easy calculation the system is shown to be conservative (again under ap-
propriate boundary conditions):

d
dt

∫ L

0

G(E,n, vx)dx = 0. (2.45)

The discrete variational derivative method can handle this kind of PDEs.
Our aim in this section is to define general classes of such systems. To

this end, we employ the notation of extended solution vector introduced in
Section 2.1, and suppose that a real-valued energy function G(u, ux) and
accordingly the global energy J(u) =

∫ L

0
G(u, ux)dx are defined.

Then the systems of PDEs we consider here are of the following form:




∂u

∂t
= A

δG

δu
, x ∈ (0, L), t > 0,

Bu = 0, x = 0, L, t > 0,
u(0, x) = u0(x), x ∈ (0, L),

(2.46)

where A is an Nex ×Nex matrix (Nex = Nr + 2Ni), whose elements are either

• constants, or

• c ∂x
s (s ∈ {1, 2, . . .}), where ∂x

d≡ ∂/∂x and c ∈ R.

In the second equation of (2.46), Bu = 0 denotes a specific boundary condi-
tion. The above systems of PDEs become conservative or dissipative, when
A and B are of certain special forms. Notice that when

[(
∂G

∂ux

)
· ∂u

∂t

]L

0

= 0, (2.47)
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the identity (2.13) reads

d
dt

J(u) =
∫ L

0

(
δG

δu
· ut

)
dx. (2.48)

It is easy to understand that, the system is conservative when A is skew-
symmetric, and dissipative when negative-semidefinite, provided appropriate
boundary conditions. In what follows, we further clarify such examples.

We first consider conservative cases.

Target PDEs 5 (Conservative systems) The following systems of PDEs
are conservative under the specified assumptions.

Type C1 The real-valued systems (2.46) where

Nex = Nr = 1, Ni = 0, A = ∂x
2s+1, s = 0, 1, 2, . . . .

We assume that the imposed boundary condition satisfies the condi-
tion (2.47) and the condition:

1
2
(−1)s

[(
∂x

s δG

δu

)2
]L

0

+
s∑

j=1

(−1)j−1

[
∂x

j−1

(
δG

δu

)
∂x

2s+1−j

(
δG

δu

)]L

0

= 0.

This is nothing but the real-valued single conservative PDEs 2.

Type C2 The systems (2.46) where

Nex = 2, A =
(

0 1
−1 0

)
.

The variables u1, u2 are either

• both real-valued (i.e., Nr = 2), or

• both complex-valued (i.e. Nr = 0, Ni = 1), and u2 = u1 (i.e., a pair
of complex conjugate variables). Multiply matrix A with i =

√
−1,

we find this class of systems equates to the complex-valued single
PDEs 4.

We also assume that the imposed boundary condition satisfies the condi-
tion (2.47). These systems are often referred to as “Hamiltonian PDEs.”

Type C3 The real-valued systems (2.46), where

Nex = Nr = 2, A = Dx
2s+1, s = 0, 1, 2, . . . .
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We assume that the imposed boundary condition satisfies the condi-
tion (2.47) and the condition:

1
2
(−1)s

[{
Dx

s ∂G

∂u

}⊤

SDx
s ∂G

∂u

]
+

s∑

j=1

(−1)j−1

[{
Dx

j−1

(
δG

δu

)}⊤

SDx
2s+1−j

(
δG

δu

)]L

0

= 0.(2.49)

where

Dx
d≡

(
0 ∂x

∂x 0

)
, S

d≡
(

0 1
1 0

)
.

Type C4 The systems (2.46) that are combinations of the above C1–C3 sys-
tems (see the examples below).

It is easy to see that the above PDEs are in fact conservative in the sense
that the identity

d
dt

J(u) = 0 (2.50)

holds. For Type C1 systems, the identity (2.50) has been already proved in
Section 2.2. In Type C2 systems, the obvious skew-symmetry of A immedi-
ately yields the conservation property. For Type C3 systems, we make use
of the following identity, which holds for any sufficiently smooth functions
v(x) = (v1(x), v2(x)) and w(x) = (w1(x), w2(x)):

∫ L

0

v(x)⊤Dxw(x)dx = −
∫ L

0

{Dxv(x)}T
w(x)dx +

[
v(x)⊤Sw(x)

]L

0
. (2.51)

By repeatedly applying this identity, we can easily prove that the identity
(2.50) holds for Type C3 systems under the assumption (2.49).

We list several examples below. The Zakharov equations (2.43) are a con-
servative system of PDEs of Type C4; they combine two Type C2 systems
(one is a real-valued Hamiltonian PDE, and the other is a complex-valued
Hamiltonian PDE).

The so-called “good” Boussinesq equation (e.g. [111]):

∂2u

∂t2
=

∂2

∂x2

(
u + u2 − ∂2u

∂x2

)
(2.52)

can be regarded as another example of the conservative systems. If we in-
troduce an intermediate variable v such that vx = ut, and define the energy
function by G = u2/2 + u3/3 + (ux)2/2 + v2/2, the equation can be rewritten
as

d
dt

(
u
v

)
=

(
0 ∂x

∂x 0

) (
δG/δu
δG/δv

)
.
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Hence it can be regarded as an example of Type C3 with s = 0.
The Boussinesq–Schrödinger equation (see [17]):

d
dt




E
E
n
u


 =




0 −i 0 0
i 0 0 0
0 0 0 ∂x

0 0 ∂x 0







δG/δE
δG/δE
δG/δn
δG/δu


 ,

where

G(E,Ex, n, u, nx) = |Ex|2 + n|E|2 +
1
2
n2 +

1
3
n3 +

1
2
(nx)2 +

1
2
u2,

is an example of Type C4; a combination of Type C2 and Type C3 systems.
Other examples include the coupled Klein–Gordon–Schrödinger equation

(see, e.g., [12]), the Boussinesq–Schrödinger equation (see [17]), and the short-
and long-wave interaction equation (see, e.g., [169]).

Next we consider dissipative cases.

Target PDEs 6 (Dissipative systems) The following systems of PDEs are
dissipative under the specified conditions.

Type D1 The real-valued systems (2.46), where

Nex = Nr = 1, Ni = 0, A = (−1)s+1∂x
2s, s = 0, 1, 2, . . . .

We assume that the imposed boundary condition which satisfies the con-
dition (2.47) and the condition:

s∑

j=1

(−1)s+j

[
∂x

j−1

(
δG

δu

)
∂x

2s−j

(
δG

δu

)]L

0

= 0.

This is just the real-valued single PDEs 1.

Type D2 The two-variable complex-valued systems (2.46), where u2 = u1,
and

Nex = 2, Nr = 0, Ni = 1, A =
(

0 −1
−1 0

)
.

We assume that the imposed boundary condition satisfies the condi-
tion (2.47). This is nothing but the complex-valued dissipative PDEs 3.

Type D3 The systems (2.46) which are combinations of the above Type C1–
C3 conservative systems and Type D1 and D2 dissipative systems.

¤
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It is easy to see that the Type D1–D3 systems are dissipative in the sense
that the inequality

d
dt

J(u(t)) ≤ 0 (2.53)

holds.
For example, the Eguchi–Oki–Matsumura equation [45]:

∂u

∂t
=

∂2

∂x2

(
δG

δu

)
, (2.54a)

∂v

∂t
= −δG

δv
, (2.54b)

where a > 0, b ∈ R, and

G(u, ux, v, vx) =
ε2

2
(ux)2 +

1
2
(vx)2 +

a

2
u2 +

1
4
v4 − b

2
v2 +

1
2
u2v2,

is a dissipative system which is a combination of two Type D1 systems (one
with s = 1, and the other with s = 0). This equation describes the dynamics of
order and composition profiles in phase separation processes, such as spinodal
decomposition, on alloy or polymer mixture materials. This can be regarded
as an extension of the Cahn–Hilliard equation, and has the same difficulty
mentioned in Chapter 1. That is, it includes a negative diffusion term (note
the u2/2 term in G and the equation (2.54a)). For the studies on this equation
using the discrete variational derivative method, see, for example, [80].

REMARK 2.6 The full Ginzburg–Landau equations with magnetic effect
(see, e.g., [40]) form a dissipative system when appropriate gauge is chosen.
Since they inevitably require vector calculus, which is not easy to mimic in
finite-difference regime, we do not consider the finite-difference discretization
of the equations in this book. A better approach is the Galerkin framework,
which will be described in Section 7.2.

2.5 Second-Order PDEs

The PDEs which involve utt belong to this category. Let u(x, t) be a real-
valued function of x, t and G(u, ux) be a real-valued function of u, ux. Then
the PDEs in this category can be written as follows.

Target PDEs 7 (Second-order conservative PDEs)

∂2u

∂t2
= −δG

δu
, x ∈ (0, L), t > 0. (2.55)

¤
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These PDEs have associated conservation property as follows.

d
dt

∫ L

0

{
1
2
(ut)2 + G(u, ux)

}
dx =

∫ L

0

(
utt +

δG

δu

)
utdx +

[
∂G

∂ux

∂u

∂t

]L

0

= 0, (2.56)

which holds when the imposed boundary conditions satisfy the condition

[
∂G

∂ux

∂u

∂t

]L

0

= 0. (2.57)

Below are the examples belonging to this class.

1. Linear wave equation: With G(u, ux) =
1
2
(ux)2,

∂2u

∂t2
=

∂2u

∂x2
.

2. Fermi–Pasta–Ulam equation I [57]:

With G(u, ux) =
1
2
(ux)2 +

ε

6
(ux)3,

∂2u

∂t2
=

∂2u

∂x2

(
1 + ε

∂u

∂x

)
.

This and the following equations model vibrating strings with nonlinear
connectivity effects. These equations have interesting history in terms
of numerical analysis. When the discoverers, Fermi, Pasta and Ulam,
first considered this equation, they expected that these systems would
asymptotically become ergodic, i.e. almost random, due to their non-
linearity. The discoverers then carried out numerical simulations to find,
to their surprise, the systems’ behaviors were quasi-periodic. Their
report was an important milestone both in nonlinear science and numer-
ical analysis; for nonlinear science, it demonstrated how nonlinearity can
produce rich, unexpected dynamics. For numerical analysis, it proved
numerical simulation was (and was going to be) an indispensable tool
for other areas of science.

3. Fermi–Pasta–Ulam equation II [57]:

With G(u, ux) =
1
2
(ux)2 +

ε

12
(ux)4,

∂2u

∂t2
=

∂2u

∂x2

(
1 + ε

(
∂u

∂x

)2
)

.
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4. String vibration equation [30]:
With G(u, ux) = −

√
1 + (ux)2,

∂2u

∂t2
=

∂

∂x

(
ux√

1 + (ux)2

)
.

This is one of the oldest nonlinear string equations. In this model, the
changes in amplitude and in tension are assumed to be relatively large.
Carrier [30] derived this equation via perturbation theory.

5. Nonlinear Klein–Gordon equation [59, 60, 76, 96]:

With G(u, ux) =
1
2
(ux)2 + φ(u),

∂2u

∂t2
=

∂2u

∂x2
− φ′(u) (φ : given function). (2.58)

This celebrated equation was first introduced to describe motion of
relativistic quantum fields, and is also referred to as the relativistic
Schrödinger equation. In this family, the so-called “sine-Gordon equa-
tion,” in which φ′(u) = sin(u), is the most famous example. Recently
they are used in various contexts such as condensed matter physics and
nonlinear optics. (In Chapter 4, several examples are shown.)

6. Shimoji–Kawai equation [154]:

With G(u, ux) =
1
12

(ux)4,

∂2u

∂t2
=

(
∂u

∂x

)2
∂2u

∂x2
. (2.59)

This equation was discovered in Shimoji–Kawai [154], where they proved
that beyond some time the solutions can be multi-valued. (In Chapter 4,
several examples are shown.)

7. Ebihara equation [44]:

With G(u, ux) =
1
2
xα(ux)2 − x−γ

2p + 2
u2p+2,

∂2u

∂t2
=

∂

∂x
(xαux) − x−γu2p+1 (α, γ ≥ 0, p ∈ N, α + 2γ < 2p + 2).

This equation is a mathematical model of the wave propagation on the
materials in which density depends on the distance from the origin. Ebi-
hara showed that the existence of spherically symmetric global solutions
to this equation.
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REMARK 2.7 The PDEs 7 can be rewritten in systems of first-order
PDEs by introducing new variable v = ut.

∂u

∂t
= v =

∂G̃

∂v
, (2.60a)

∂v

∂t
= −∂G̃

∂u
, (2.60b)

where G̃ = v2/2 + G(u, ux) is a modified local energy. The conservation law

d
dt

∫ L

0

{
1
2
(ut)2 + G(u, ux)

}
dx = 0, (2.61)

is rewritten accordingly as

d
dt

∫ L

0

G̃(u, ux, v)dx = 0. (2.62)

REMARK 2.8 The equation proposed in Feng [55] (see also Feng–Doi–
Kawahara [56]):

∂2u

∂t2
− γ

∂4u

∂t2∂x2
= −Φ′(u), (2.63)

where γ > 0 and Φ(u) is an arbitrary function, does not belong to the con-
servative class above, but is conservative in the sense that

d
dt

∫ L

0

(
1
2
(ut)2 +

γ

2
(utx)2 + Φ(u)

)
dx = 0. (2.64)

This models chains of particles connected by nearest-neighborhood interac-
tions with nonlinear non-harmonic potentials. This model was introduced to
investigate discrete breathers or intrinsic localized modes in one-dimensional
non-harmonic lattice. Feng et al. [56] found some exact solutions that form
spatial stationary breathers.



Chapter 3

Discrete Variational Derivative
Method

In this chapter we give the full description of the discrete variational
derivative method. We first define discrete symbols and formulas re-
quired to describe the method. Then we present concrete and rigorous
procedures of the method for each of the target PDEs introduced in
Chapter 2 in turn. Readers can refer to Chapter 4 as needs arise,
where many concrete examples that are useful for understanding the
method are given. In the end of this chapter, a brief explanation on
discrete functional analysis is given, which will be used in the subse-
quent chapters.

3.1 Discrete Symbols and Formulas

The discrete symbols and formulas frequently used in this book are defined.
Let {fk}k∈Z be a sequence and ∆x > 0 be the spatial mesh size. Below are
the standard operators.
[Shift operators]

s〈0〉
d≡ 1, (3.1a)

s+
k fk

d≡ fk+1, (3.1b)

s−k fk
d≡ fk−1, (3.1c)

s
〈1〉
k fk

d≡ fk+1 + fk−1

2
. (3.1d)

[Difference operators]

δ
〈0〉
k

d≡ 1, (3.2a)

δ+
k fk

d≡ fk+1 − fk

∆x
, (3.2b)

δ−k fk
d≡ fk − fk−1

∆x
, (3.2c)

69
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δ
〈1〉
k fk

d≡ fk+1 − fk−1

2∆x
, (3.2d)

δ
〈2〉
k fk

d≡ fk+1 − 2fk + fk−1

(∆x)2
, (3.2e)

δ
〈2s+1〉
k

d≡ δ
〈1〉
k δ

〈2s〉
k , s = 1, 2, . . . , (3.2f)

δ
〈2s+2〉
k

d≡ δ
〈2〉
k δ

〈2s〉
k , s = 1, 2, . . . . (3.2g)

[Averaging operators]

µ
〈0〉
k

d≡ 1, (3.3a)

µ+
k fk

d≡ fk + fk+1

2
, (3.3b)

µ−
k fk

d≡ fk + fk−1

2
, (3.3c)

µ
〈1〉
k fk

d≡ fk+1 + 2fk + fk−1

4
. (3.3d)

Regarding the difference operators, it is easy to see that the identities

δ+
k (δ−k fk) = δ−k (δ+

k fk) = δ
〈2〉
k fk, (3.4)

(
δ+
k + δ−k

2

)
fk = δ

〈1〉
k fk (3.5)

hold. Sometimes we use the following difference operator as well.

δ
〈2+〉
k fk

d≡ fk+2 − fk+1 − fk + fk−1

2(∆x)2
. (3.6)

They will be quite frequently used in the subsequent sections.
As a discretization of integral, the following summation rule is used:

N∑

k=0

′′fk∆x
d≡

(
1
2
f0 +

N∑

k=1

fk +
1
2
fN

)
∆x. (3.7)

This rule is called the trapezoidal rule. It is also possible to adopt other
summation rules; actually, in some cases other choice is advantageous. See
Section 3.2.3.2 for an example.

As to the summation rule, the following identity holds.

PROPOSITION 3.1 Summation of differences

N∑

k=0

′′δ
〈s〉
k fk∆x =





[
δ
〈s−1〉
k fk

]N

0
if s is even,

[
µ
〈1〉
k δ

〈s−1〉
k fk

]N

0
if s is odd,

(3.8)
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where

[fk]N0
d≡ fN − f0. (3.9)

PROOF This proof is based on the general summation-by-parts formula
shown in the next proposition. When s is even, using (3.12a) with fk = 1 or
gk = 1, we see

N∑

k=0

′′δ
〈s〉
k fk∆x

=
N∑

k=0

′′
(

δ+
k δ−k + δ−k δ+

k

2

)
δ
〈s−2〉
k fk∆x

=
N∑

k=0

′′
{

δ+
k

(
1
2
δ−k δ

〈s−2〉
k fk

)
+ δ−k

(
1
2
δ+
k δ

〈s−2〉
k fk

)}
∆x

=

[
s+

k ( 1
2δ−k δ

〈s−2〉
k fk) + ( 1

2δ−k δ
〈s−2〉
k fk)

2
+

s−k ( 1
2δ+

k δ
〈s−2〉
k fk) + ( 1

2δ+
k δ

〈s−2〉
k fk)

2

]N

0

=

[
( 1
2δ+

k δ
〈s−2〉
k fk) + ( 1

2δ−k δ
〈s−2〉
k fk)

2
+

( 1
2δ−k δ

〈s−2〉
k fk) + ( 1

2δ+
k δ

〈s−2〉
k fk)

2

]N

0

=
[
δ
〈1〉
k δ

〈s−2〉
k fk

]N

0
. (3.10)

Similarly, when s is odd, we see

N∑

k=0

′′δ
〈s〉
k fk∆x

=
N∑

k=0

′′
(

δ+
k + δ−k

2

)
δ
〈s−1〉
k fk∆x

=
N∑

k=0

′′
{

δ+
k

(
1
2
δ
〈s−1〉
k fk

)
+ δ−k

(
1
2
δ
〈s−1〉
k fk

)}
∆x

=

[
s+

k ( 1
2δ

〈s−1〉
k fk) + ( 1

2δ
〈s−1〉
k fk)

2
+

s−k ( 1
2δ

〈s−1〉
k fk) + ( 1

2δ
〈s−1〉
k fk)

2

]N

0

=
[(

s+
k + 2 + s−k

4

)
δ
〈s−1〉
k fk

]N

0

. (3.11)

This completes the proof.
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The above identity corresponds to the continuous integration

∫ L

0

(
∂

∂x

)s

f(x)dx =

[(
∂

∂x

)s−1

f(x)

]L

0

.

Next we introduce the so-called summation-by-parts formulas, which cor-
respond to the integration-by-parts formula. These formulas hold in various
forms depending on the choice of difference operators. Below we show several
examples which are frequently used in this book. Let us introduce another
sequence {gk}k∈Z, in addition to {fk}. The following first-order summation-
by-parts formulas hold.

PROPOSITION 3.2 First-order summation-by-parts formulas

N∑

k=0

′′fk

(
δ+
k gk

)
∆x +

N∑

k=0

′′ (δ−k fk

)
gk∆x =

[
fk(s+

k gk) + (s−k fk)gk

2

]N

0

. (3.12a)

N∑

k=0

′′fk

(
δ
〈1〉
k gk

)
∆x +

N∑

k=0

′′
(
δ
〈1〉
k fk

)
gk∆x =

[
fk(s〈1〉k gk) + (s〈1〉k fk)gk

2

]N

0

.

(3.12b)

PROOF For (3.12a),

N∑

k=0

′′fk

(
δ+
k gk

)
∆x +

N∑

k=0

′′ (δ−k fk

)
gk∆x

=
N∑

k=0

′′ {fk(s+
k gk − gk) + (fk − s−k fk)gk

}

=
N∑

k=0

′′ {fk(s+
k gk) − (s−k fk)gk

}

=
N∑

k=0

′′fk(s+
k gk) −

N−1∑

k=−1

′′fk(s+
k gk)

=
[
fk(s+

k gk) + (s−k fk)gk

2

]N

0

. (3.13)

Exchanging fk and gk in (3.12a), and adding it on (3.12a) itself, we obtain
(3.12b).

Based on the first-order summation-by-parts formulas, second-order summation-
by-parts formulas can be obtained.
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PROPOSITION 3.3 Second-order summation-by-parts formulas

N∑

k=0

′′

(
(δ+

k fk)
(
δ+
k gk

)
+ (δ−k fk)(δ−k gk)
2

)
∆x +

N∑

k=0

′′
(
δ
〈2〉
k fk

)
gk∆x

=
[
(δ+

k fk)(µ+
k gk) + (δ−k fk)(µ−

k gk)
2

]N

0

.

(3.14a)

In particular, when fk = gk,

N∑

k=0

′′
(

(δ+
k fk)2 + (δ−k fk)2

2

)
∆x +

N∑

k=0

′′
(
δ
〈2〉
k fk

)
fk∆x =

[
(δ〈1〉k fk)(s〈1〉k fk)

]N

0
.

(3.14b)

PROOF Substituting δ+
k fk into fk in (3.12a), we have

N∑

k=0

′′
{

(δ+
k fk)(δ+

k gk) + (δ〈2〉k fk)gk

}
∆x =

[
(δ+

k fk)(s+
k gk) + (δ−k fk)gk

2

]N

0

.

(3.15)
Similarly, reversing fk and gk and substituting δ−k fk into fk in (3.12a), we see

N∑

k=0

′′
{

gk(δ〈2〉k fk) + (δ−k gk)(δ−k fk)
}

∆x =
[
gk(δ+

k fk) + (s−k gk)(δ−k fk)
2

]N

0

.

(3.16)
From these two equations we immediately obtain the claim.

Although in most practical problems the first- and second-order summation-
by-parts formulas are adequate, it is also possible to construct further higher-
order formulas by repeatedly using (3.12b).

PROPOSITION 3.4 Higher-order summation-by-parts formula

Suppose s ∈ {1, 2, 3, . . .}. When s is even,

N∑

k=0

′′fkδ
〈s〉
k fk∆x = (−1)s/2

N∑

k=0

′′F
(s,s/2)
k ∆x

+


−

∑

1≤l≤s/2
l:even

2f
〈l−1〉
k f

〈s−l〉
k +

(
δ+
k f

〈l−2〉
k

) (
s+

k f
〈s−l〉
k

)
+

(
δ−k f

〈l−2〉
k

)(
s−k f

〈s−l〉
k

)

4



74 Discrete Variational Derivative Method

+
∑

1≤l≤s/2

l:odd

2f
〈l−1〉
k f

〈s−l〉
k +

(
s+

k f
〈l−1〉
k

)(
δ+
k f

〈s−l−1〉
k

)
+

(
s−k f

〈l−1〉
k

) (
δ−k f

〈s−l−1〉
k

)

4




N

0

.

(3.17)

Otherwise (when s is odd),

N∑

k=0

′′fkδ
〈s〉
k fk∆x =


−

∑

1≤l≤(s−1)/2
l:even

(
δ+
k f

〈l−2〉
k

)(
δ+
k f

〈s−l−1〉
k

)
+

(
δ−k f

〈l−2〉
k

)(
δ−k f

〈s−l−1〉
k

)

2

+
∑

1≤l≤(s−1)/2

l:odd

f
〈l−1〉
k

(
s
〈1〉
k f

〈s−l〉
k

)
+

(
s
〈1〉
k f

〈l−1〉
k

)
f
〈s−l〉
k

2

+
1
2
(−1)(s−1)/2F

(s,(s−1)/2)
k

]N

0

. (3.18)

The symbols are defined by

f
〈l〉
k

d≡ δ
〈l〉
k fk, (3.19)

F
(l,l′)
k

d≡





f
〈l′〉
k s

〈l mod 2〉
k f

〈l′〉
k , if l′ is even,

1
2

{(
δ+
k f

〈l′−1〉
k

)2

+
(
δ−k f

〈l′−1〉
k

)2
}

, if l′ is odd,
(3.20)

for l, l′ ∈ {0, 1, 2, . . .}.

PROOF This is left to Appendix B.



Discrete Variational Derivative Method 75

3.2 Procedure for First-Order Real-Valued PDEs

In this section the complete procedure of the discrete variational derivative
method for the first-order real-valued PDEs 1 and PDEs 2 in Section 2.2
is presented. First, the concept of “discrete variational derivative,” which
corresponds to the continuous variational derivative, is introduced for real-
valued and scalar function u. Then dissipative and conservative schemes are
defined with the discrete variational derivative analogously to the original
(continuous) equation.

3.2.1 Discrete Variational Derivative: Real-Valued Case

Numerical solutions are denoted as

U
(m)
k ≅ u(k∆x,m∆t), k = 0, 1, . . . , N, m = 0, 1, 2, . . . , (3.21)

where N is the number of spatial mesh points (i.e. ∆x = L/N), and ∆t is the

time-mesh size. They are also written in vector as U (m) = (U (m)
0 , . . . , U

(m)
N )

⊤
.

The superscript (m) is omitted where no confusion occurs.
Here an assumption is set: the energy function G(u, ux) is assumed to be

of the form:

G(u, ux) =
fM∑

l=1

fl(u)gl(ux), M̃ ∈ N. (3.22)

That is, the energy function is assumed to be a combination of M̃ terms, each
of which can be split into functions of u and ux; for example, for G(u, ux) =
u3/6 − ux

2/2 (the KdV equation), we can take f1(u) = u3/6, g1(ux) =
1, f2(u) = 1, g2(ux) = ux

2/2. Practically this assumption is not restrictive
at all. In fact, all the examples described in Chapter 2 meet the assumption.
Although it is also possible to generalize the theory to allow more general
cases, it is generally much more advantageous to stand by the above “special”
cases (see Remark 3.4).

For such a G(u, ux), suppose that we can define a discrete analogue of G as
follows.

Gd,k(U (m)) =
M∑

l=1

fl(Uk
(m))g+

l (δ+
k Uk

(m))g−l (δ−k Uk
(m)), k = 0, . . . , N.

(3.23)
The discrete quantity Gd,k is called the discrete energy (function). The sub-
script “d” denotes that it is a discrete quantity, and “k” the spatial index.
Since generally the first derivative ux is approximated by some combination
of δ+

k Uk
(m) and δ−k Uk

(m), the term gl(ux) in (3.22) now consists of two terms
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g+
l , g−l . Recall, for example, (1.26) and (1.28). Since now there is a possibil-

ity that one derivative term can be approximated by two finite-differences, for
example,

ux
2 ≅

(δ+
k Uk)2 + (δ−k Uk)2

2
,

we suppose the discrete energy function is a combination of M (≥ M̃) terms.
Note also that the central difference operator δ

〈1〉
k is covered by the expres-

sion (3.23) as well, since it can be written as δ
〈1〉
k = (δ+

k + δ−k )/2. The discrete
energy function is a real-valued scalar function of U (m) which approximates
G(u, ux) at x = k∆x, t = m∆t. We also write Gd(U (m)) as a vector func-
tion1. In order that Gd is an appropriate approximation of G(u, ux) in the
form of (3.22), g+

l and g−l should be carefully chosen, such that, for example,

g+
l (δ+

k Uk
(m))g−l (δ−k Uk

(m)) ≅ gl(ux| x=k∆x
t=m∆t

). (3.24)

Note that at boundaries k = 0 and N , Gd,k(U (m)) possibly refers to unde-
fined values U

(m)
−1 and U

(m)
N+1 (recall that in (3.21) approximate solutions are

defined only on k = 0, . . . , N). We assume that these values are resolved with
the known values U

(m)
0 , . . . , U

(m)
N , in accordance with the imposed discrete

boundary condition (see, for example, Example 3.1). Based on the discrete
local energy, an associated discrete global energy is defined by

Jd(U (m))
d≡

N∑

k=0

′′Gd,k(U (m))∆x. (3.25)

Notice that this corresponds to the definition of the continuous global en-
ergy (2.1). Again, the subscript “d” indicates it is a discrete quantity.

Next we consider a discrete version of the variation (or Gâteaux differenti-
ation) process (2.2) to get a discrete variational derivative. For the purpose,
let us consider the following difference:

N∑

k=0

′′{Gd,k(U) − Gd,k(V )}∆x,

where U ,V ∈ RN+1. Notice also that this directly corresponds to the ele-
mental variation calculation (1.12) in Chapter 1:

∫ L

0

{G(u + δu, ux + δux) − G(u, ux)}dx.

1To summarize, Gd : RN+1 → RN+1, and Gd,k : RN+1 → R. Note that Gd,k(U (m)) is an

element of the vector Gd(U (m)), i.e., Gd,k(U (m))
d
≡ {Gd(U (m))}k. Although the notation

might be a bit confusing, we employ it for the sake of saving space.
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In the present setting, we know that the discrete local energy is of the form (3.23),
and for such an energy function, the difference can be explicitly calculated by
factorization as follows.

N∑

k=0

′′{Gd,k(U) − Gd,k(V )}∆x

=
N∑

k=0

′′

[
M∑

l=1

(
fl(Uk) + fl(Vk)

2

)
×

{(
g+

l (δ+
k Uk) + g+

l (δ+
k Vk)

2

)(
g−l (δ−k Uk) − g−l (δ−k Vk)

δ−k (Uk − Vk)

)
δ−k (Uk − Vk)

+
(

g−l (δ−k Uk) + g−l (δ−k Vk)
2

)(
g+

l (δ+
k Uk) − g+

l (δ+
k Vk)

δ+
k (Uk − Vk)

)
δ+
k (Uk − Vk)

}

+
M∑

l=1

(
fl(Uk) − fl(Vk)

Uk − Vk

)(
g+

l (δ+
k Uk)g−l (δ−k Uk) + g+

l (δ+
k Vk)g−l (δ−k Vk)

2

)

× (Uk − Vk)

]
∆x. (3.26)

In the above factorization, a trivial identity:

ab − cd =
(

a + c

2

)
(b − d) + (a − c)

(
b + d

2

)

which holds for any constants a, b, c, d, is repeatedly used.
In order to simplify this expression, let us introduce new symbols:

∂Gd

∂(U ,V )k

d≡
M∑

l=1

(
fl(Uk) − fl(Vk)

Uk − Vk

)

×
(

g+
l (δ+

k Uk)g−l (δ−k Uk) + g+
l (δ+

k Vk)g−l (δ−k Vk)
2

)
, (3.27a)

∂Gd

∂δ−(U ,V )k

d≡
M∑

l=1

(
fl(Uk) + fl(Vk)

2

)(
g+

l (δ+
k Uk) + g+

l (δ+
k Vk)

2

)

×
(

g−l (δ−k Uk) − g−l (δ−k Vk)
δ−k (Uk − Vk)

)
, (3.27b)

∂Gd

∂δ+(U ,V )k

d≡
M∑

l=1

(
fl(Uk) + fl(Vk)

2

)(
g−l (δ−k Uk) + g−l (δ−k Vk)

2

)

×
(

g+
l (δ+

k Uk) − g+
l (δ+

k Vk)
δ+
k (Uk − Vk)

)
. (3.27c)
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The first one is a discrete approximation of ∂G/∂u. The other two approx-
imate ∂G/∂ux, based on the difference operators δ+

k and δ−k , respectively.
With these symbols, the difference (3.26) can be simply written as

N∑

k=0

′′ {Gd,k(U) − Gd,k(V )}∆x =
N∑

k=0

′′
[

∂Gd

∂(U ,V )k
(Uk − Vk)+

∂Gd

∂δ+(U ,V )k

(
δ+
k (Uk − Vk)

)
+

∂Gd

∂δ−(U ,V )k

(
δ−k (Uk − Vk)

)]
∆x. (3.28)

This corresponds to the second line of (1.12). Applying the summation-by-
parts formula (3.12a), we have

N∑

k=0

′′ {Gd,k(U) − Gd,k(V )}∆x =

N∑

k=0

′′
[{

∂Gd

∂(U ,V )k
− δ−k

(
∂Gd

∂δ+(U ,V )k

)
− δ+

k

(
∂Gd

∂δ−(U ,V )k

)}
(Uk − Vk)

]
∆x

+
1
2

[
∂Gd

∂δ+(U ,V )k
(s+

k (Uk − Vk)) +
{

s−k

(
∂Gd

∂δ+(U ,V )k

)}
(Uk − Vk)

+
∂Gd

∂δ−(U ,V )k
(s−k (Uk − Vk)) +

{
s+

k

(
∂Gd

∂δ−(U ,V )k

)}
(Uk − Vk)

]N

0

,

(3.29)

which corresponds to the third line of (1.12). If we further introduce new
symbols:

δGd

δ(U ,V )k

d≡ ∂Gd

∂(U ,V )k
− δ−k

(
∂Gd

∂δ+(U ,V )k

)

− δ+
k

(
∂Gd

∂δ−(U ,V )k

)
, (3.30)

Br,1(U ,V )
d≡ 1

2

[
∂Gd

∂δ+(U ,V )k
(s+

k (Uk − Vk))

+
{

s−k

(
∂Gd

∂δ+(U ,V )k

)}
(Uk − Vk)

+
∂Gd

∂δ−(U ,V )k
(s−k (Uk − Vk))

+
{

s+
k

(
∂Gd

∂δ−(U ,V )k

)}
(Uk − Vk)

]N

0

, (3.31)
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we finally obtain the following expression:

N∑

k=0

′′ {Gd,k(U) − Gd,k(V )}∆x =

N∑

k=0

′′
[(

δGd

δ(U ,V )k

)
(Uk − Vk)

]
∆x + Br,1(U ,V ). (3.32)

This corresponds to the last line of (2.2). The symbol δGd/δ(U ,V ) approx-
imates δG/δu, and hence is called the discrete variational derivative of Gd.
This and the discrete variation identity (3.32) play a central role in the discrete
variational derivative method. The symbol Br,1(U ,V ) denotes the boundary
values, corresponding to the last term in (2.2). “B” is for “Boundary,” “r”
denotes “real-valued case,” and “1” is the index for distinguishing it from
other boundary values that will appear later.

REMARK 3.1 In the above calculations and definitions, we find quan-
tities in the form (f(a) − f(b))/(a − b), such as (fl(Uk) − fl(Vk))/(Uk − Vk)
in (3.26). Such quantities should be understood as f ′(a) when a = b. This
remark applies to all the similar expressions in this book.

REMARK 3.2 In more general cases where G involves uxx, uxxx, . . .,
or where the spatial dimension is more than one, the discrete variational
derivative of G can be defined in a similar manner.

REMARK 3.3 For a given discrete energy function Gd,k, the discrete
variational derivative can be automatically calculated by (3.30), with associ-
ated definitions (3.27a), (3.27b) and (3.27c). In practical situations, however,
it is often more convenient to directly consider the factorization of the dif-
ference of the given discrete energies, the LHS of (3.32), as will be shown in,
for example, Example 3.1 and Remark 4.5. The above formal expressions are
mainly for mathematical completeness.

REMARK 3.4 The most crucial property demanded for “discrete varia-
tional derivative” is that it has an associated discrete variation identity such
as (3.32). The discrete variational derivative shown above indeed keeps it,
but we would like to mention here that it is not the only possibility.

Let us suppose the given PDE is already discretized in space and we have
a semi-discrete scheme, as will be discussed in Appendix A, and we have a
concrete form of semi-discrete variational derivative

δGd

δ(U)k

≅ δG

δu

∣∣∣∣
x=k∆x

,
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which satisfies the semi-discrete variation equality (A.10). (For the notation,
see Appendix A.) Then the quantity

δ̂Gd

δ(U ,V )k
=

δGd

δ(U)k

+

Gd,k(U) − Gd,k(V ) −
∑N

k=0
′′ δGd

δ(U)k
(Uk − Vk)∆x

||U − V ||22
(Uk − Vk), (3.33)

also satisfies the full-discrete variation equality

N∑

k=0

′′ (Gd,k(U) − Gd,k(V ))∆x =
N∑

k=0

′′ δ̂Gd

δ(U ,V )k
(Uk − Vk)∆x,

provided that some appropriate boundary condition is imposed so that the
boundary terms vanish. We can rewrite the whole procedure of the discrete
variational derivative method utilizing the above definition.

The definition is in one point superior to the one defined in (3.30); if we
employ this definition, we can drop the assumption (3.22), which was required
to factorize the difference of energies. In fact, (3.33) only refers to Gd,k itself
and the semi-discrete δGd/δU , and does not need any factorization. Thus it
can also handle, for example, G(u, ux) = sin(uux). If such energy functions
are important, the above definition deserves consideration.

Usually, however, we do not adopt the definition from the following two
reasons. First, as stated earlier, we barely find such PDEs in practice that
unfactorizable terms like sin(uux) are inevitable. Second and more impor-
tantly, the definition (3.33) is always nonlinear with respect to Uk, Vk, even
when the original variational derivative δG/δu is linear, and at the same
time, it causes global couplings of variables U1, . . . , UN (and V1, . . . , VN ) even
in separable cases. Due to these drawbacks, we essentially do not utilize the
definition.

3.2.2 Design of Schemes

Now we are in a position to define dissipative or conservative finite difference
schemes.

Let us first define a dissipative scheme for the dissipative PDEs 1 (Sec-
tion 2.2, page 52) as follows.

Scheme 3.1 (Scheme for the PDEs 1) Let U
(0)
k = u(k∆x, 0) be initial

data. Then, a dissipative scheme for the PDE 1 is given by, for m = 0, 1, 2, . . .,

Uk
(m+1) − Uk

(m)

∆t
= (−1)s+1δ

〈2s〉
k

δGd

δ(U (m+1),U (m))k

, k = 0, . . . , N. (3.34)
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In order to state the dissipation property of the scheme, it is inevitable to
introduce the following discrete quantity:

B
〈2s〉
r,2 (U (m+1),U (m)) =


−

∑

1≤l≤s
l:even

2ϕ
〈l−1〉
k ϕ

〈2s−l〉
k +

(
δ+
k ϕ

〈l−2〉
k

) (
s+

k ϕ
〈2s−l〉
k

)
+

(
δ−k ϕ

〈l−2〉
k

)(
s−k ϕ

〈2s−l〉
k

)

4

+
∑

1≤l≤s

l:odd

2ϕ〈l−1〉
k ϕ

〈2s−l〉
k +

(
s+

k ϕ
〈l−1〉
k

)(
δ+
k ϕ

〈2s−l−1〉
k

)
+

(
s−k ϕ

〈l−1〉
k

)(
δ−k ϕ

〈2s−l−1〉
k

)

4




N

0

,

(3.35a)

where

ϕ
〈l〉
k

d≡ δ
〈l〉
k

δGd

δ(U (m+1),U (m))k

, (3.35b)

for l ∈ {0, 1, 2, . . .}. The quantity B
〈2s〉
r,2 (U (m+1),U (m)) corresponds to the

boundary terms appearing in (2.17) and (2.29) (see the subsequent theorems
below). The subindex “2” and superscript “〈2s〉” are for distinguishing it
from (3.31).

THEOREM 3.1 Discrete dissipation property of Scheme 3.1

Assume that a discrete boundary condition satisfying the following two con-
ditions is imposed on Scheme 3.1:

(i) Br,1(U (m+1),U (m)) = 0 (m = 0, 1, 2, . . .), and

(ii) B
〈2s〉
r,2 (U (m+1),U (m)) = 0 (m = 0, 1, 2, . . .) when s = 1, 2, . . ..

Then the scheme is dissipative in the sense that the inequality

Jd(U (m+1)) ≤ Jd(U (m)), m = 0, 1, 2, . . . (3.36)

holds.

PROOF Substituting U (m+1) into U and U (m) into V in (3.32), we have

1
∆t

N∑

k=0

′′{Gd,k(U (m+1)) − Gd,k(U (m))}∆x
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=
N∑

k=0

′′

[(
δGd

δ(U (m+1),U (m))k

)(
Uk

(m+1) − Uk
(m)

∆t

)]
∆x

+ Br,1(U (m+1),U (m))

=
N∑

k=0

′′

[(
δGd

δ(U (m+1),U (m))k

)
· (−1)s+1δ

〈2s〉
k

δGd

δ(U (m+1),U (m))k

]
∆x

= −
N∑

k=0

′′Ψ(s)
k ∆x + (−1)s+1B

〈2s〉
r,2 (U (m+1),U (m))

≤ 0, (3.37)

where

Ψ(s)
k

d≡





(
ϕ
〈s〉
k

)2

if s : even,

1
2

{(
δ+kϕ

〈s−1〉
k

)2

+
(
δ−kϕ

〈s−1〉
k

)2
}

if s : odd,
(3.38)

In the second equality, the condition (i) is used. In the last inequality, the
summation-by-parts formula in Proposition 3.4 and the condition (ii) are used.

We here present an easy example to help readers’ understanding. More
practical examples will be found in Chapter 4.

Example 3.1 Linear diffusion equation
Let us consider the linear diffusion equation. We have already seen the

example in Section 1.3.1, but this time let us try a more rigorous approach
explicitly clarifying the boundary term. To this end, let us set the Neumann
boundary condition as follows.

{
ut = uxx, x ∈ (0, L), t > 0,
ux = 0, x = 0, L, t > 0.

(3.39)

This is an example of the dissipative PDE 1, where s = 0, G(u, ux) = (ux)2/2.
Let us define a discrete energy function by

Gd,k(U)
d≡

(
δ+
k Uk

)2
+

(
δ−k Uk

)2

4
, (3.40)

which means that we take in (3.23) M = 2 and

f1 = f2 = 1,

g+
1 (δ+

k Uk) =
(δ+

k Uk)2

4
, g−1 = 1, g+

2 = 1, g−2 (δ−k Uk) =
(δ−k Uk)2

4
.
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Putting them into (3.30) (and the associated expressions (3.27a)–(3.27c)), we
obtain

δGd

δ(U ,V )k
= −δ

〈2〉
k

(
Uk + Vk

2

)
. (3.41)

This agrees with (1.35) if we put Uk = Uk
(m) and Vk = Uk

(m+1). Recall that
the formal expressions (3.30) and (3.27a)–(3.27c) are derived by factorizing
the difference of Gd’s in (3.26), and it is natural that they agree with the
direct result (1.33). We here would like to stress again that, as commented
in Remark 3.3, we usually do not refer to the formal expressions; they are
mainly for the completeness of the theory, and in practice we always consider
the factorization for each given energy function.

Now Scheme 3.1 reads: for m = 0, 1, 2, . . .,

Uk
(m+1) − Uk

(m)

∆t
= − δGd

δ(U (m+1),U (m))k

= δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
,

(3.42)
for k = 0, . . . , N , which is known as standard Crank–Nicolson scheme [147].
Let us check if it is really dissipative under the discrete Neumann boundary
condition:

δ
〈1〉
k Uk

(m) = 0, k = 0, N, m = 0, 1, 2 . . . . (3.43)

According to Theorem 3.1, it is sufficient to check if Br,1(U (m+1),U (m)) = 0.
By easy calculation we see

Br,1(U (m+1),U (m))

=
1
2

[
δ+
k (Uk

(m+1) + Uk
(m))

4
(s+

k (Uk
(m+1) − Uk

(m)))

+

{
s−k

(
δ+
k (Uk

(m+1) + Uk
(m))

4

)}
(Uk

(m+1) − Uk
(m))

+
δ−k (Uk

(m+1) + Uk
(m))

4
(s−k (Uk

(m+1) − Uk
(m)))

+

{
s+

k

(
δ−k (Uk

(m+1) + Uk
(m))

4

)}
(Uk

(m+1) − Uk
(m))

]N

0

=
1
2

[
δ+
k (Uk

(m+1) + Uk
(m))

2
· µ+

k (Uk
(m+1) − Uk

(m))

+
δ−k (Uk

(m+1) + Uk
(m))

2
· µ−

k (Uk
(m+1) − Uk

(m))

]N

0

.

The last term vanishes due to the discrete Neumann boundary condition,
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which implies

δ+
k (Uk

(m+1) + Uk
(m)) = −δ−k (Uk

(m+1) + Uk
(m)),

µ+
k (Uk

(m+1) − Uk
(m)) = µ−

k (Uk
(m+1) − Uk

(m))

at k = 0, N .
Note that in (3.42), undefined exterior numerical solutions U−1 and UN+1

are used. We regard that they are eliminated by the boundary condition (3.43).
This is a concrete example of the notice given right after (3.24).

Similarly, the conservative scheme for the conservative PDEs 2 is given as
follows.

Scheme 3.2 (Scheme for the PDEs 2) Let U
(0)
k = u(k∆x, 0) be initial

values. Then, a conservative scheme for the PDE 2 is given by, for m =
0, 1, 2, . . .,

Uk
(m+1) − Uk

(m)

∆t
= δ

〈2s+1〉
k

δGd

δ(U (m+1),U (m))k

, k = 0, . . . , N. (3.44)

In order to state the conservation property of the scheme, it is also inevitable
to introduce the following discrete quantity:

B
〈2s+1〉
r,2 (U (m+1),U (m)) =

−

∑

1≤l≤s
l:even

(
δ+
k ϕ

〈l−2〉
k

)(
δ+
k ϕ

〈2s−l〉
k

)
+

(
δ−k ϕ

〈l−2〉
k

)(
δ−k ϕ

〈2s−l〉
k

)

2

+
∑

1≤l≤s

l:odd

ϕ
〈l−1〉
k

(
s
〈1〉
k ϕ

〈2s−l+1〉
k

)
+

(
s
〈1〉
k ϕ

〈l−1〉
k

)
ϕ
〈2s−l+1〉
k

2

+
1
2
(−1)sΨ̃(s)

k

]N

0

, (3.45a)

where ϕ
〈l〉
k is defined in (3.35b) and

Ψ̃(s)
k

d≡





ϕ
〈s〉
k

(
s
〈1〉
k ϕ

〈s〉
k

)
, if s : even,

1
2

{(
δ+
k ϕ

〈s−1〉
k

)2

+
(
δ−k ϕ

〈s−1〉
k

)2
}

, if s : odd.
(3.45b)

THEOREM 3.2 Discrete conservation property of Scheme 3.2
Assume that a discrete boundary condition satisfying the following two con-

ditions is imposed on Scheme 3.2 :



Discrete Variational Derivative Method 85

(i) Br,1(U (m+1),U (m)) = 0 (m = 0, 1, 2, . . .), and

(ii) B
〈2s+1〉
r,2 (U (m+1),U (m)) = 0 (m = 0, 1, 2, . . .).

Then the scheme is conservative in the sense that the inequality

Jd(U (m)) = Jd(U (0)), m = 1, 2, . . . , (3.46)

holds.

PROOF Substituting U (m+1) into U and U (m) into V in (3.32), we have

1
∆t

N∑

k=0

′′
{

Gd,k(U (m+1)) − Gd,k(U (m))
}

∆x

=
N∑

k=0

′′

[(
δGd

δ(U (m+1),U (m))k

)(
Uk

(m+1) − Uk
(m)

∆t

)]
∆x

+ Br,1(U (m+1),U (m))

=
N∑

k=0

′′

[(
δGd

δ(U (m+1),U (m))k

)
· δ〈2s+1〉

k

δGd

δ(U (m+1),U (m))k

]
∆x

= B
〈2s+1〉
r,2 (U (m+1),U (m))

= 0. (3.47)

In the second equality, the condition (i) is used. In the last inequality, the
condition (ii) is used.

Example 3.2 Convection equation
Let us demonstrate Scheme 3.2 with the convection equation:

ut = ux, x ∈ (0, L), t > 0,

under the L-periodic boundary condition:

u(0, t) = u(L, t), ux(0, t) = ux(L, t), t > 0.

This is an example of PDEs 2 with s = 0, G(u, ux) = u2/2. Let us define a
discrete energy function by

Gd,k(U)
d≡ (Uk)2

2
, (3.48)

which means that we take in (3.23) M = 1 and

f1 =
(Uk)2

2
, g+

1 = g−1 = 1.
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Then by the formal expression (3.30) (and the associated expressions (3.27a)–
(3.27c)), we obtain

δGd

δ(U ,V )k
=

Uk + Vk

2
. (3.49)

This can be also obtained by a direct factorization,

(Uk)2

2
− (Vk)2

2
=

(
Uk + Vk

2

)
(Uk − Vk),

which is again far simpler than to utilize the formal expressions.
Now Scheme 3.2 reads: for m = 0, 1, . . .,

Uk
(m+1) − Uk

(m)

∆t
= δ

〈1〉
k

δGd

δ(U (m+1),U (m))k

= δ
〈1〉
k

(
Uk

(m+1) + Uk
(m)

2

)
,

(3.50)
for k = 0, . . . , N . Suppose that the discrete periodic boundary condition:

U
(m)
0 = U

(m)
N , U

(m)
−1 = U

(m)
N−1, U

(m)
1 = U

(m)
N+1, (3.51)

is imposed. Then it is trivial that the assumptions (i) and (ii) in Theorem 3.2
are satisfied. In fact, when s = 0 the expression (3.45b) reduces to

B
〈1〉
r,2 (U (m+1),U (m)) =

[
1
2

δGd

δ(U (m+1),U (m))k

· s〈1〉k

δGd

δ(U (m+1),U (m))k

]N

0

,

and it obviously vanishes due to the periodicity. This boundary term can be
also more directly and easily obtained by following the proof of Theorem 3.2
with s = 0. Then by (3.12b) we immediately see

1
∆t

N∑

k=0

′′{Gd,k(U (m+1)) − Gd,k(U (m))}∆x

=
N∑

k=0

′′

[(
δGd

δ(U (m+1),U (m))k

)
· δ〈1〉k

δGd

δ(U (m+1),U (m))k

]
∆x

=

[
1
2

δGd

δ(U (m+1),U (m))k

· s〈1〉k

δGd

δ(U (m+1),U (m))k

]N

0

. (3.52)

As in the calculation of discrete variational derivative, in practice it is often
much easier to derive boundary terms by directly following the proof with the
summation-by-parts formulas.

Finally, it should be mentioned that the resulting scheme above is nothing
but the standard Crank–Nicolson scheme, and it seems a trivial result. In
nonlinear problems, however, resulting schemes are generally non-trivial.



Discrete Variational Derivative Method 87

REMARK 3.5 Scheme 3.1 and 3.2 have one favorable feature that the
dissipation or conservation property is kept even when the time-mesh size
is changed during the time evolution process. We can easily observe this
since the inequality (3.36) and the identity (3.46) involve only the numerical
solutions at two consecutive time steps m+1 and m, and thus the dissipation
or conservation property is a local property with respect to this single time
step. By exploiting this welcome feature, we can reduce overall computational
cost by utilizing some adaptive techniques to control time-mesh size while
keeping the dissipation or conservation property.

REMARK 3.6 When the PDEs 1 or PDEs 2 are nonlinear, the resulting
schemes are also nonlinear, and some iterative solver such as the Newton
method is inevitable. It does not necessarily imply that the schemes are too
expensive (compared to standard schemes), since they generally allow larger
time-mesh size ∆t thanks to the dissipation or conservation property.

If one still hopes for a linear scheme, then it is also possible to consider
linearly implicit versions of Scheme 3.1 and 3.2. Interested readers may refer
to Chapter 5.

3.2.3 User’s Choices

In a nutshell, the procedures described above are used in the following way:

1. User defines a discrete energy Gd.

2. Then by the given procedure, the discrete variational derivative, (ac-
cordingly) the resulting scheme, and the necessary conditions on the
discrete boundary conditions for dissipation/conservation are automat-
ically derived.

3. Finally, user defines discrete boundary conditions so that the conditions
above are satisfied (and of course consistent with the original continuous
boundary conditions).

The second step is automatic and there is no freedom (except the possibility
of other definitions of discrete variational derivative; see Remark 3.4). In this
subsection, we would like to make further useful remarks on the freedoms in
the first and third steps.

3.2.3.1 Choice of the Discrete Energy

As emphasized several times (see, for example, Remark 1.2), there are de-
grees of freedom in defining discrete energy function. It can be chosen arbi-
trarily as far as the consistency condition like (3.24) is satisfied. For example,
in the linear diffusion equation case where G(u, ux) = ux

2/2, there are at least
four possibilities as (1.26) suggests. Let us see how things would go differently
with these choices.
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[First choice]

Gd,k =
(δ+

k Uk
(m))2 + (δ−k Uk

(m))2

4
.

In this case,

M = 2, f1 = 1, g+
1 =

(δ+
k Uk

(m))2

4
, g−1 = 1,

f2 = 1, g+
2 = 1, g−2 =

(δ−k Uk
(m))2

4
,

and from which the discrete variational derivative is automatically calculated
as

δGd

δ(U (m+1),U (m))k

= −δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
.

Thus the resulting scheme is

Uk
(m+1) − Uk

(m)

∆t
= − δGd

δ(U (m+1),U (m))k

= δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
.

The condition (i) in Theorem 3.1 reads

Br,1(U (m+1),U (m)) =
1
2

[
δ+
k (Uk

(m+1) + Uk
(m))

2
· µ+

k (Uk
(m+1) − Uk

(m))

+
δ−k (Uk

(m+1) + Uk
(m))

2
· µ−

k (Uk
(m+1) − Uk

(m))

]N

0

= 0. (3.53)

This is the case in Example 3.1.

[Second choice]

Gd,k =
(δ+

k Uk
(m))2

2
.

In this case,

M = 1, f1 = 1, g+
1 =

(δ+
k Uk

(m))2

2
, g−1 = 1,

from which we obtain the same discrete variational derivative and accordingly
the same scheme as in the first choice case. However, the condition (i) in
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Theorem 3.1 is different:

Br,1(U (m+1),U (m)) =
1
2

[
δ+
k (Uk

(m+1) + Uk
(m))

2
(s+

k (Uk
(m+1) − Uk

(m)))

+

{
s−k

(
δ+
k (Uk

(m+1) + Uk
(m))

2

)}
(Uk

(m+1) − Uk
(m))

]N

0

= 0. (3.54)

[Third choice]

Gd,k =
(δ−k Uk

(m))2

2
.

In this case,

M = 1, f1 = 1, g+
1 = 1, g−1 =

(δ+
k Uk

(m))2

2
,

and from which we obtain the same discrete variational derivative and scheme
as in the first and second choices, again. In this case, however, the condition
(i) in Theorem 3.1 reads:

Br,1(U (m+1),U (m)) =

[
δ−k (Uk

(m+1) + Uk
(m))

2
(s−k (Uk

(m+1) − Uk
(m)))

+

{
s+

k

(
δ−k (Uk

(m+1) + Uk
(m))

2

)}
(Uk

(m+1) − Uk
(m))

]N

0

= 0. (3.55)

[Fourth choice]

Gd,k =
(δ〈1〉k Uk

(m))2

2
=

1
2

(
δ+
k Uk

(m) + δ−k Uk
(m)

2

)2

.

In this case,

M = 3, f1 = 1, g+
1 =

(δ+
k Uk

(m))2

8
, g−1 = 1,

f2 = 1, g+
2 =

δ+
k Uk

(m)

2
, g−2 =

δ−k Uk
(m)

2
,

f3 = 1, g+
3 = 1, g−3 =

(δ−k Uk
(m))2

8
.
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Then we have

δGd

δ(U (m+1),U (m))k

= −(δ〈1〉k )2
(

Uk
(m+1) + Uk

(m)

2

)
,

and accordingly

Uk
(m+1) − Uk

(m)

∆t
= − δGd

δ(U (m+1),U (m))k

= (δ〈1〉k )2
(

Uk
(m+1) + Uk

(m)

2

)
.

The condition (i) in Theorem 3.1 reads

Br,1(U (m+1),U (m)) =

[
δ
〈1〉
k (Uk

(m+1) + Uk
(m))

2
(s〈1〉k (Uk

(m+1) − Uk
(m)))

+

{
s
〈1〉
k

(
δ
〈1〉
k (Uk

(m+1) + Uk
(m))

2

)}
(Uk

(m+1) − Uk
(m))

]N

0

= 0. (3.56)

Thus in the present problem, we see that from the four different energy
functions we obtain the two different schemes, and the four different conditions
for discrete dissipation property. Then a natural question arises: which choice
is the best? Or more generally, are there any general principles by which even
the choice of discrete energy function can be automated? In fact, this is one of
the most frequently asked questions the authors have received regarding the
method.

This is really a difficult question to answer, and here we would like to
explain our attitude in the following way. Whether a choice of discrete energy
function is good or not depends on several factors:

1. How the form itself matters:
Sometimes the concrete form of the discrete energy function itself can
have serious meaning in mathematical analysis. For example, suppose
an energy function G(u, ux) = (u2 + (ux)2)/2, which is obviously the
H1-norm of the solution, is given (the Camassa–Holm equation [24] has
this energy function; see Chapter 4). In this case the boundedness of
the energy function implies by the Sobolev lemma (∀u ∈ H1, ∃c > 0,
∥u∥∞ ≤ c∥u∥H1) the uniform boundedness of the solution. Then it is
natural to expect that its discrete version would serve as discrete H1-
norm, and assure the uniform boundedness of discrete solutions. On this
issue, interested readers may refer to Chapter 4, where in some examples
mathematical analyses utilizing discrete functional analysis are given.

2. Symmetry:
Keeping the energy function spatially symmetric is generally advanta-
geous, since by doing so the resulting schemes always become spatially
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symmetric as well, which in turn means that they are of second-order
accuracy in space.

In the former easy example of linear diffusion equation, the resulting
schemes are all spatially symmetric regardless of the discrete energy
functions. In general nonlinear cases, however, it is not the case: for
example, consider a conservative equation ut = (δG/δu)x = 3(ux)2uxx

with an energy function G(u, ux) = −(ux)4/4. If we define a discrete
energy by

Gd,k = −
(δ+

k Uk
(m))4

4
,

then we would obtain a scheme:

Uk
(m+1) − Uk

(m)

∆t
= δ

〈1〉
k δ−k

{(
(δ+

k Uk
(m+1))2 + (δ+

k Uk
(m))2

2

)

×

(
δ+
k Uk

(m+1) + δ+
k Uk

(m)

2

)}
,

which is not symmetric (and thus it is only of first-order in space).

3. Relation with discrete boundary conditions:
In the former example, we have seen that the choice of discrete energy
function substantially affects the conditions needed for discrete dissipa-
tion property. In fact, with the four different discrete energy functions,
we had the four different conditions (3.53)–(3.56). This is also the case
in general problems, and from this point of view, it is considerably ad-
vantageous to choose such an energy function that the conditions can be
easily satisfied by natural choices of discrete boundary conditions.

For example, let us carefully investigate the four conditions (3.53)–
(3.56). As demonstrated earlier, the first condition (3.53) can be satis-
fied by the standard discrete Neumann boundary condition (3.43). The
second condition (3.54) cannot be satisfied by the same discrete Neu-
mann boundary condition; in fact, due to an obvious identity s−k δ+

k =
δ−k , the terms δ+

k ((Uk
(m+1) + Uk

(m))/2) and δ−k ((Uk
(m+1) + Uk

(m))/2)
can be handled similarly to the first case, but now the other terms
s+

k (Uk
(m+1) − Uk

(m)) and (Uk
(m+1) − Uk

(m)) are not equal under the
Neumann boundary condition. Notice also that the condition (3.54)
is not symmetric with respect to the spatial index k, which is clearly
caused by the asymmetry of the discrete energy function Gd,k. The third
condition (3.55) cannot be satisfied by the discrete Neumann boundary
condition (3.43), either. The fourth condition (3.56) even refers outer
stencils at k = −2, N + 2 because of the operators s

〈1〉
k δ

〈1〉
k , and thus

obviously cannot be fulfilled by (3.43), even though the condition itself
is symmetric as opposed to the second and third conditions.
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On the treatment of discrete boundary conditions, see also the next
subsection.

3.2.3.2 Treatment of Boundaries

As demonstrated above, it is generally quite essential to choose appropriate
discrete energy function so that conditions for discrete dissipation/conservation
properties can be easily fulfilled by “natural” discrete boundary conditions.
In some cases, however, it turns out to be difficult to choose appropriate (nat-
ural) set of discrete energy function and discrete boundary conditions, and it
is more convenient to consider a slightly modified procedure.

For example, let us consider the linear diffusion equation (3.39) again, but
this time under the Dirichlet boundary condition:

{
ut = uxx x ∈ (0, L), t > 0,
u(0, t) = a, u(L, t) = b, t > 0, a, b ∈ R.

(3.57)

This problem is still dissipative, since

d
dt

∫ L

0

G(u, ux)dx = −
∫ L

0

(uxx)2dx + [uxut]
L
0 ≤ 0. (3.58)

Note that the boundary term vanishes since ut = 0 at x = 0 and L. If
we follow the proposed method to obtain a dissipative scheme, we reach the
same condition (3.44) as in the case of the Neumann boundary condition.
It seems, however, considerably difficult to find a set of discrete boundary
conditions which is an approximation to the Dirichlet boundary conditions
and also satisfies the condition (3.44). The terms µ+

k (Uk
(m+1) − Uk

(m)) and
µ−

k (Uk
(m+1)−Uk

(m)) are the discrete versions of the term ut, but if we assume
both terms vanish by the discrete Dirichlet boundary condition, a difficulty
arises that the system becomes overdetermined.

One way of circumventing this difficulty is to slightly modify the whole
process by exploiting the following identity:

N∑

k=0

(δ+
k fk)(δ+

k gk)∆x = −
N∑

k=1

(δ〈2〉k fk)gk∆x+(δ+
k fN )gN+1−(δ+

k f−1)g0, (3.59)

which is a variant of the summation-by-parts formulas (compare it with (3.14a)).
Let us define the discrete energy function by

Gd,k(U)
d≡ −

(
δ+
k Uk

)2

2
, (3.60)

and the discrete global energy by

N∑

k=0

Gd,k(U)∆x. (3.61)



Discrete Variational Derivative Method 93

Note that in the above expressions, the rectangle rule is used as the summation
rule instead of the trapezoidal rule. Under these conditions, let us consider
the discrete variation:

N∑

k=0

{Gd,k(U) − Gd,k(V )}∆x

= −
N∑

k=1

{
δ
〈2〉
k

(
Uk + Vk

2

)}
(Uk − Vk)∆x

+
{

δ+
k

(
UN + VN

2

)}
(UN+1 − VN+1) −

{
δ+
k

(
U−1 + V−1

2

)}
(U0 − V0).

(3.62)

Then we obtain a scheme: for m = 0, 1, 2, . . .




Uk
(m+1) − Uk

(m)

∆t
= δ

〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
, k = 1, . . . , N − 1,

U
(m)
0 = a, U

(m)
N+1 = b.

(3.63)
The scheme is dissipative in the sense that the inequality:

N∑

k=0

{Gd,k(U (m+1)) − Gd,k(U (m))}∆x ≤ 0 (3.64)

holds, which can be easily verified in light of (3.62). To summarize, it is often
convenient to consider another summation rule and another summation-by-
parts formula so that a discrete boundary condition can be implemented in a
natural way.

3.3 Procedure for First-Order Complex-Valued PDEs

In this section we consider the first-order complex-valued PDEs 3 and
PDEs 4, described in Section 2.3. The main tool is the concept of the “complex
discrete variational derivative,” i.e., a rigorous discretization of the complex
variational derivative.

3.3.1 Discrete Variational Derivative: Complex-Valued Case

As in the real-valued case, suppose that G(u, ux) is in the form:

G(u, ux) =
fM∑

l=1

c̃l|pl(u)|N
P
l |ql(ux)|N

Q
l , (3.65)
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where M̃ ∈ N, NP
l , NQ

l ∈ {2, 3, 4, . . .}, c̃l ∈ R, and pl, ql are assumed to be
complex-valued functions that satisfy pl(u) = pl(u), ql(u) = ql(u). Though it
could be more general, we do this to keep discussion simple and to give the
explicit forms of the complex discrete variational derivatives.

Suppose that we can define a discrete local energy by

Gd,k(U (m)) =
M∑

l=1

cl|pl(Uk
(m))|N

P
l |q+

l (δ+
k Uk

(m))|N
+
l |q−l (δ−k Uk

(m))|N
−
l ,

(3.66)
where NQ

l = N+
l + N−

l , cl ∈ R, and q+
l , q−l are functions approximating ql.

They must be appropriate approximations, for example,

q+
l (δ+

k Uk
(m))q−l (δ−k Uk

(m)) ≅ ql(ux| x=k∆x
t=m∆t

). (3.67)

Hereafter we abbreviate |pl(Uk
(m))|NP

l as Pl(Uk
(m)), |q+

l (δ+
k Uk

(m))|N
+
l as

Q+
l (Uk

(m)), and |q−l (δ−k Uk
(m))|N

−
l as Q−

l (Uk
(m)). We define an associated

global energy by

Jd(U (m))
d≡

N∑

k=0

′′Gd,k(U (m))∆x. (3.68)

To follow the continuous variation calculation, let us consider the difference
of the discrete energies at the different points U and V , as in the real-valued
case.

N∑

k=0

′′ {Gd,k(U) − Gd,k(V )}∆x

=
N∑

k=0

′′
{

∂Gd

∂(U ,V )k
(Uk − Vk) +

∂Gd

∂(U ,V )k

(Uk − Vk)+

+
∂Gd

∂δ+(U ,V )k
(δ+

k Uk − δ+
k Vk) +

∂Gd

∂δ+(U ,V )k

(δ+
k Uk − δ+

k Vk)

+
∂Gd

∂δ−(U ,V )k
(δ−k Uk − δ−k Vk) +

∂Gd

∂δ−(U , V )k

(δ−k Uk − δ−k Vk)
}

∆x

=
N∑

k=0

′′
[{

∂Gd

∂(U ,V )k
− δ−k

(
∂Gd

∂δ+(U ,V )k

)
− δ+

k

(
∂Gd

∂δ−(U ,V )k

)}
(Uk − Vk)

+
{

∂Gd

∂(U ,V )k

− δ−k

(
∂Gd

∂δ+(U ,V )k

)
− δ+

k

(
∂Gd

∂δ−(U ,V )k

)}
(Uk − Vk)

]
∆x

+ Bc(U ,V ), (3.69)
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where

∂Gd

∂(U ,V )k

d≡
M∑

l=1

cl

(
Q+

l (Uk)Q−
l (Uk) + Q+

l (Vk)Q−
l (Vk)

2

)

×
(

pl(Uk) − pl(Vk)
Uk − Vk

)
f

(
NP

l ; pl(Uk), pl(Vk)
)
, (3.70a)

∂Gd

∂δ+(U ,V )k

d≡
M∑

l=1

cl

(
Pl(Uk) + Pl(Vk)

2

)(
Q−

l (Uk) + Q−
l (Vk)

2

)

×
(

q+
l (δ+

k Uk) − q+
l (δ+

k Vk)
δ+
k Uk − δ+

k Vk

)
f

(
N+

l ; q+
l (δ+

k Uk), q+
l (δ+

k Vk)
)
,

(3.70b)

∂Gd

∂δ−(U ,V )k

d≡
M∑

l=1

cl

(
Pl(Uk) + Pl(Vk)

2

)(
Q+

l (Uk) + Q+
l (Vk)

2

)

×
(

q−l (δ−k Uk) − q−l (δ−k Vk)
δ−k Uk − δ−k Vk

)
f

(
N−

l ; q−l (δ−k Uk), q−l (δ−k Vk)
)
,

(3.70c)

Bc(U ,V ) =
1
2

[
∂Gd

∂δ+(U ,V )k
· s+

k (Uk − Vk) + s−k

(
∂Gd

∂δ+(U ,V )k

)
· (Uk − Vk)

+
∂Gd

∂δ+(U ,V )k

· s+
k (Uk − Vk) + s−k

(
∂Gd

∂δ+(U ,V )k

)
· (Uk − Vk)

+
∂Gd

∂δ−(U ,V )k
· s−k (Uk − Vk) + s+

k

(
∂Gd

∂δ−(U ,V )k

)
· (Uk − Vk)

+
∂Gd

∂δ−(U ,V )k

· s−k (Uk − Vk) + s+
k

(
∂Gd

∂δ−(U ,V )k

)
· (Uk − Vk)

]N

0

,

(3.70d)

and

f(n; z1, z2)
d≡





z1 + z2

2
(|z1|n−2 + |z1|n−4|z2|2 + · · · + |z2|n−2), n : even,

z1 + z2

2
|z1|n−1 + |z1|n−2|z2| + · · · + |z2|n−1

|z1| + |z2|
, n : odd.

(3.71)
In the second equality of (3.69), a trivial equality ab − cd = 1

2 (a − c)(b +
d) + 1

2 (a + c)(b − d) is repeatedly used (note that in particular |a|2 − |b|2 =
1
2 (a + c)(b−d)+ 1

2 (a−c)(b + d)). In the third equality, the summation-by-parts
formula (3.12a) is applied. ∂Gd/∂(U ,V ) corresponds to ∂G/∂u, and both
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∂Gd/∂δ+(U ,V )k and ∂Gd/∂δ−(U ,V )k correspond to ∂G/∂ux. Obviously,
the discrete variation calculation (3.69) corresponds to (2.5). The symbol Bc

denotes the discrete version of the boundary term, where the subscript “c” is
for “complex.”

Now we define the complex discrete variational derivatives as follows.

δGd

δ(U ,V )k

d≡ ∂Gd

∂(U ,V )k
− δ−k

(
∂Gd

∂δ+(U ,V )k

)
− δ+

k

(
∂Gd

∂δ−(U ,V )k

)
,

(3.72a)
δGd

δ(U , V )k

d≡
(

∂Gd

∂δ+(U ,V )k

)
− δ−k

(
∂Gd

∂δ+(U , V )k

)
− δ+

k

(
∂Gd

∂δ−(U , V )k

)
.

(3.72b)

Note that the complex discrete variational derivatives are complex conjugates
of each other (as in the continuous case), that is,

δGd

δ(U ,V )k
=

δGd

δ(U , V )k

. (3.73)

It should be also noted that when

Bc(U ,V ) = 0, (3.74)

the discrete variation (3.69) becomes

N∑

k=0

′′ {Gd,k(U) − Gd,k(V )}∆x

=
N∑

k=0

′′
[{

∂Gd

∂(U ,V )k
− δ−k

(
∂Gd

∂δ+(U ,V )k

)
− δ+

k

(
∂Gd

∂δ−(U ,V )k

)}
(Uk − Vk)

+
{(

∂Gd

∂(U , V )k

)

k

− δ−k

(
∂Gd

∂δ+(U ,V )k

)
− δ+

k

(
∂Gd

∂δ−(U ,V )k

)}
(Uk − Vk)

]
∆x

=
N∑

k=0

′′
[

δGd

δ(U ,V )k
(Uk − Vk) +

δGd

δ(U ,V )k

(Uk − Vk)
]

∆x. (3.75)

This will be frequently referred to in the subsequent procedures.

3.3.2 Design of Schemes

With the complex discrete variational derivatives, dissipative or conserva-
tive finite difference schemes for the target PDEs 3 and PDEs 4 are defined
below. A dissipative finite difference scheme for the PDEs 3 is given as follows.



Discrete Variational Derivative Method 97

Scheme 3.3 (Scheme for the PDEs 3) Let U
(0)
k = u(k∆x, 0) be initial

values. Then, a dissipative scheme for the PDE 3 is given by, for m =
0, 1, 2, . . .,

Uk
(m+1) − Uk

(m)

∆t
= − δGd

δ(U (m+1), U (m))k

, k = 0, . . . , N. (3.76)

THEOREM 3.3 Discrete dissipation property of Scheme 3.3
Assume that a discrete boundary condition satisfying the following condition
is imposed on Scheme 3.3:

Bc(U (m+1),U (m)) = 0, m = 0, 1, 2, . . . . (3.77)

Then the scheme is dissipative, in the sense that the inequality

Jd(U (m+1)) ≤ Jd(U (m)), m = 0, 1, 2, . . . (3.78)

holds.

PROOF In light of (3.75),

1
∆t

N∑

k=0

′′
{

Gd,k(U (m+1)) − Gd,k(U (m))
}

∆x

=
N∑

k=0

′′

{
δGd

δ(U (m+1),U (m))k

(
Uk

(m+1) − Uk
(m)

∆t

)

+
δGd

δ(U (m+1), U (m))k

(
Uk

(m+1) − Uk
(m)

∆t

)}
∆x

= −2
N∑

k=0

′′

∣∣∣∣∣
δGd

δ(U (m+1),U (m))k

∣∣∣∣∣

2

∆x

≤ 0. (3.79)

Example 3.3
Let us consider this example:

ut = uxx, x ∈ (0, L), t > 0,

under the L-periodic boundary condition:

u(j)(0, t) = u(j)(L, t), j = 0, 1, 2.
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The superscript “(j)” denotes the j-th derivative. This is an example of
PDEs 3 with G(u, ux) = |ux|2. This can be regarded as the linearized version
of the complex Ginzburg–Landau equation (see Section 2.3). It is easy to see
directly that

d
dt

∫ L

0

G(u, ux)dx =
∫ L

0

(−uxxut − uxxut)dx = −2
∫ L

0

|ut|2dx ≤ 0.

In order to construct a dissipative scheme, let us define a discrete energy
function by

Gd,k(U)
d≡

|δ+
k Uk|2 + |δ−k Uk|2

2
, (3.80)

which means that we take in (3.66) M = 2 and

pl = 1, NP
l = 1, (l = 1, 2)

c1 =
1
2
, q+

1 = δ+
k Uk, N+

1 = 2, q−1 = 1, N−
1 = 1,

c2 =
1
2
, q+

2 = 1, N+
2 = 1, q−2 = δ−k Uk, N−

2 = 2.

Then by the formal expression (3.72a) and (3.72b) (and the associated ex-
pressions (3.70a)–(3.70c)), we obtain

δGd

δ(U ,V )k

= −δ
〈2〉
k

(
Uk + Vk

2

)
. (3.81)

This can be also obtained by a direct factorization:

N∑

k=0

′′ 1
2

(
|δ+

k Uk|2 − |δ+
k Vk|2

)
∆x

=
N∑

k=0

′′ 1
2

{
δ+
k

(
Uk + Vk

2

)
· δ+

k (Uk − Vk) + δ+
k (Uk − Vk) · δ+

k

(
Uk + Vk

2

)}
∆x

= −
N∑

k=0

′′ 1
2

{
δ
〈2〉
k

(
Uk + Vk

2

)
· (Uk − Vk) + (Uk − Vk) · δ〈2〉k

(
Uk + Vk

2

)}
∆x

+
1
4

[
δ+
k

(
Uk + Vk

2

)
· s+

k (Uk − Vk) + s−k δ+
k

(
Uk + Vk

2

)
· (Uk − Vk)

+ δ+
k

(
Uk + Vk

2

)
· s+

k (Uk − Vk) + s−k δ+
k

(
Uk + Vk

2

)
· (Uk − Vk)

]N

0

,

(3.82)

which is again far simpler than to utilize the formal expressions. The terms
regarding |δ−k Uk|2/2 can be handled in a similar manner. Now Scheme 3.3
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reads: for m = 0, 1, . . .,

Uk
(m+1) − Uk

(m)

∆t
= − δGd

δ(U (m+1),U (m))k

= δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
,

(3.83)
for k = 0, . . . , N . Suppose that the discrete periodic boundary condition:

U
(m)
0 = U

(m)
N , U

(m)
−1 = U

(m)
N−1, U

(m)
1 = U

(m)
N+1, (3.84)

is imposed. The condition (3.77) in Theorem 3.3 reads (by the formal expres-
sion (3.70d))

Bc(U (m+1),U (m)) =

1
4

[
δ+
k

(
Uk

(m+1) + Uk
(m)

2

)
· s+

k (Uk
(m+1) − Uk

(m))

+ s−k δ−k

(
Uk

(m+1) + Uk
(m)

2

)
· (Uk

(m+1) − Uk
(m))

+ δ+
k

(
Uk

(m+1) + Uk
(m)

2

)
· s+

k (Uk
(m+1) − Uk

(m))

+ s−k δ−k

(
Uk

(m+1) + Uk
(m)

2

)
· (Uk

(m+1) − Uk
(m))

+ (similar terms regarding |δ−k Uk
(m)|2)

]N

0
. (3.85)

This is obviously identical to the boundary term in (3.82). The boundary
term vanishes due to the periodicity.

A conservative scheme for the conservative PDEs 4 is defined as follows.

Scheme 3.4 (Scheme for the PDEs 4) Let U
(0)
k = u(k∆x, 0) be initial

values. Then, a conservative scheme for the PDE 4 is given by, for m =
0, 1, 2, . . .,

i

(
Uk

(m+1) − Uk
(m)

∆t

)
= − δGd

δ(U (m+1), U (m))k

, k = 0, . . . , N. (3.86)

¤

THEOREM 3.4 Discrete conservation property of Scheme 3.4
Assume that a discrete boundary condition satisfying the following condition

is imposed on Scheme 3.4:

Bc(U (m+1),U (m)) = 0, m = 0, 1, 2, . . . , (3.77)
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for m = 0, 1, 2, . . .. Then the scheme is conservative in the sense that the
equality

Jd(U (m)) = Jd(U (0)), m = 1, 2, . . . (3.87)

holds.

PROOF In light of (3.75),

1
∆t

N∑

k=0

′′
{

Gd,k(U (m+1)) − Gd,k(U (m))
}

∆x

=
N∑

k=0

′′

{
δGd

δ(U (m+1),U (m))k

(
Uk

(m+1) − Uk
(m)

∆t

)

+
δGd

δ(U (m+1), U (m))k

(
Uk

(m+1) − Uk
(m)

∆t

)}
∆x

=
N∑

k=0

′′



i

∣∣∣∣∣
δGd

δ(U (m+1),U (m))k

∣∣∣∣∣

2

− i

∣∣∣∣∣
δGd

δ(U (m+1),U (m))k

∣∣∣∣∣

2


∆x

= 0. (3.88)

Example 3.4
Let us demonstrate Scheme 3.4 with the linear wave equation:

iut = −uxx, x ∈ (0, L), t > 0,

under the L-periodic boundary condition:

u(j)(0, t) = u(j)(L, t), j = 0, 1, 2.

This is an example of PDEs 4 with G(u, ux) = −|ux|2, and can be considered
as a linearized version of the nonlinear Schrödinger equation (see Section 2.3).
Let us define a discrete energy function by

Gd,k(U)
d≡

|δ+
k Uk|2 + |δ−k Uk|2

2
. (3.89)

Then the story goes almost the same way as in the previous example to find
the concrete form of Scheme 3.4: for m = 0, 1, 2, . . .,

i

(
Uk

(m+1) − Uk
(m)

∆t

)
= − δGd

δ(U (m+1),U (m))k

= −δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
,

(3.90)
for k = 0, . . . , N . This becomes conservative under the discrete periodic
boundary conditions (which can be easily verified).
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3.4 Procedure for Systems of First-Order PDEs

In this section we consider the systems of first-order PDEs 5 and PDEs 6.
In view of the extended vector expression (2.10) we denote the numerical
solutions by

U
(m)
j,k ≅ uj(k∆x,m∆t), (j = 1, . . . , Nex, k = 0, . . . , N, m = 0, 1, 2, . . .).

(3.91)
The first subindex j corresponds to the j-th variable uj , and the second
one k denotes the spatial index. We also introduce a discrete version of the
extended solution vector introduced in Section 2.1, which is a vector of length
Nex × (N + 1):

U = (U1,0, . . . , U1,N , . . . , UNex,0, . . . , UNex,N )⊤. (3.92)

We assume that the discrete version of the energy function G(u, ux) is of
the form

Gd,k(U) =
M∑

l=1

Nex∏

j=1

fl,j(Uj,k)g+
l,j(δ

+
k Uj,k)g−l,j(δ

−
k Uj,k). (3.93)

The discrete global energy is defined accordingly by

Jd(U (m))
d≡

N∑

k=0

′′Gd,k(U)∆x. (3.94)

For the discrete energy function defined above, we hope to find an identity of
the form:

N∑

k=0

′′ (Gd,k(U) − Gd,k(V ))∆x

=
N∑

k=0

′′




Nex∑

j=1

{
∂Gd

∂(U ,V ) j,k

(Uj,k − Vj,k) +
∂Gd

∂δ+(U ,V ) j,k

(δ+
k Uj,k − δ+

k Vj,k)

+
∂Gd

∂δ−(U ,V ) j,k

(δ−k Uj,k − δ−k Vj,k)

}]
∆x, (3.95)

where ∂Gd/∂(U ,V )j,k and ∂Gd/∂δ±(U ,V )j,k are supposed to represent ∂G/∂uj

and ∂G/∂uj,x, respectively. If an identity in the form of (3.95) is realized, then
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by the summation-by-parts formula, we obtain a discrete variation identity:

N∑

k=0

′′ (Gd,k(U) − Gd,k(V ))∆x

=
N∑

k=0

′′




Nex∑

j=1

δGd

δ(U ,V ) j,k

(Uj,k − Vj,k)


∆x + Bsys(U ,V ), (3.96)

where

δGd

δ(U ,V ) j,k

d≡ ∂Gd

∂(U ,V ) j,k

− δ−k

(
∂Gd

∂δ+(U ,V ) j,k

)
− δ+

k

(
∂Gd

∂δ−(U ,V ) j,k

)
,

(3.97)
and

Bsys(U ,V )
d≡

1
2

Nex∑

j=1

[
∂Gd

∂δ+(U ,V ) j,k

{
s+

k (Uj,k − Vj,k)
}

+ s−k

(
∂Gd

∂δ+(U ,V ) j,k

)
(Uj,k − Vj,k)

+
∂Gd

∂δ−(U ,V ) j,k

{
s−k (Uj,k − Vj,k)

}
+ s+

k

(
∂Gd

∂δ−(U ,V ) j,k

)
(Uj,k − Vj,k)

]N

0

.

(3.98)

The symbol δGd/δ(U ,V )j,k is a discrete variational derivative in the multi-
variate case. The identity corresponds to the continuous case (2.9) (or more
simply, (2.11).) The term Bsys corresponds to the boundary terms in (2.9),
where “sys” is for “system.”

A troublesome issue remains to be discussed: How can we fix an iden-
tity (3.95)? The trouble is not that it is hard to find one; the truth is that
we find too many, and it seems impossible to determine a single choice as a
universal template that adapts to wide range of problems.

The next lemma shows that at least one identity of the form (3.95) can be
found.

LEMMA 3.1
Let J be a positive integer, aj : C → C (j = 1, . . . , J) be sufficiently smooth

functions, and uj , vj (j = 1, . . . , J) be their arguments. Then there exist
functions Fj (j = 1, . . . , Nex) that are polynomials of aj(uj), aj(vj) (i =
1, . . . , J, i ̸= j) such that

(i) for any uj , vj (j = 1, . . . , J)

J∏

j=1

aj(uj) −
J∏

j=1

aj(vj) =
J∑

j=1

(aj(uj) − aj(vj))Fj
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holds;

(ii) when ui = vi (i = 1, . . . , J, i ̸= j),

Fj =
∏

i̸=j

ai(ui).

Thus it follows that

lim
uj→vj

(
aj(uj) − aj(vj)

uj − vj

)
Fj =

∂

∂uj

J∏

i=1

ai(ui).

PROOF It can be explicitly constructed by repeatedly using the trivial
identity ab− cd = (a+ c)(b−d)/2+(a− c)(b+d)/2. Let us abbreviate aj(uj)
as aj and aj(vj) as bj to save space. If we choose to separate (aJ − bJ) first,
then

J∏

j=1

aj−
J∏

j=1

bj =

(∏J−1
j=1 aj +

∏J−1
j=1 bj

2

)
(aJ−bJ)+




J−1∏

j=1

aj −
J−1∏

j=1

bj




(
aJ + bJ

2

)
.

The same identity holds true with J replaced with J − 1, by which the term∏J−1
j=1 aj −

∏J−1
j=1 bj can be further factorized. By repeating this process for

J − 2, J − 3, . . . , 2, we find that

Fj =
J∏

i=j+1

(
ai + bi

2

)(∏j
i=1 ai +

∏j
i=1 bi

2

)
(j = 1, . . . , J). (3.99)

Setting J = 3Nex, and taking fl,j(Uj,k), g+
l,j(δ

+
k Uj,k), g−l,j(δ

−
k Uj,k) as aj(uj)

and fl,j(Vj,k), g+
l,j(δ

+
k Vj,k), g−l,j(δ

−
k Vj,k) as aj(vj), we see by the above lemma

that

Nex∏

j=1

fl,j(Uj,k)g+
l,j(δ

+
k Uj,k)g−l,j(δ

−
k Uj,k) −

Nex∏

j=1

fl,j(Vj,k)g+
l,j(δ

+
k Vj,k)g−l,j(δ

−
k Vj,k)

(cf. the energy (3.93)) can be factorized so that the terms (Uj,k − Vj,k),
δ±k (Uj,k − Vj,k) are separated. Then by summing them for l = 1, . . . , M , we
obtain the concrete forms of ∂Gd/∂(U ,V )j,k and ∂Gd/∂δ±(U ,V )j,k. More-
over, they are in fact valid approximations to the continuous partial derivatives
(due to (ii) of the above lemma).

The proof of the above lemma reveals that there are combinatorially many
choices for Fj ’s. In fact, we can arbitrarily change the order of separation, such
as j = 1, 2, . . . , J (instead of j = J, J − 1, . . . , 1 in the above proof), by which
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a different set of Fj ’s that are still valid approximations of the continuous
partial derivatives are obtained. Furthermore, it is also possible to separate
two or more terms at a time; for example,

4∏

j=1

aj −
4∏

j=1

bj =
(

a1a2 + b1b2

2

)
(a3a4 − b3b4)+ (a1a2 − b1b2)

(
a3a4 + b3b4

2

)
.

(3.100)
If we allow these possibilities as well, the number of possible choices soon
blows up as J (or equivalently, Nex) increases. It also seems impossible (or
useless) to give a single fixed choice such as (3.27a)–(3.27c) in the real-valued
single PDE case, and (3.70a)–(3.70c) in the complex-valued single PDE case.
The group of the systems of PDEs is too large to deal with by a single fixed
pattern; the best choice should be judged on a case-by-case basis. In practical
situations, this is not a hard task since appropriate factorizations are usually
few, if not unique, for a given system of PDEs, in view of symmetry:

• Symmetry as to δ±k : It is often preferable that in the resulting identity
the symmetry as to δ±k is preserved (since it affects the spatial symmetry
of the resulting schemes). To that end, the terms regarding δ±k Uj,k (and
δ±k Vj,k) should be grouped.

• Symmetry as to conjugate variables: If uj and uj+1 are complex conju-
gate of each other, then they should be grouped.

• Other physical symmetries: If there are any symmetries in variables
coming from physical derivation, it might be preferable to preserve them
by appropriately grouping variables.

Observe that the factorizations in the single PDE cases (i.e. (3.27a)–(3.27c)
and (3.70a)–(3.70c)), have been given with full respect for such symmetries.
Note also that practically Nex is often 3 or 4, at most (see, for example, the
Zakharov case in Section 2.4).

REMARK 3.7 Lemma 3.1 can be generalized so that it allows the factor-
izations like (3.100); i.e., even when we utilize such factorizations, the resulting
Fj ’s satisfy the conditions (i) and (ii).

REMARK 3.8 If the symmetry as to uj (j = 1, . . . , J) is demanded, it is
possible to recover the symmetry, for example, by averaging all the possible
factorizations of the form (3.99). It is also possible to partially recover the
symmetry for a subset of uj ’s by appropriately averaging factorizations. But,
by these averagings, the computational cost should increase accordingly.
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3.4.1 Design of Schemes

The general form of the proposed scheme for the target PDEs 5 and 6 is
given as follows.

U (m+1) − U (m)

∆t
= Ad

(
δGd

δ(U (m+1),U (m))

)
, m = 0, 1, 2, . . . . (3.101)

The matrix Ad is defined automatically based on the original matrix A in
PDEs 5 and 6. The subscript “d” stands for “discrete.” The scheme becomes
conservative or dissipative when the matrix Ad and the discrete boundary
condition imposed on the scheme are of certain special forms. In what fol-
lows, we give the definitions of Ad and the necessary conditions for discrete
dissipation or conservation, for each of Type C1–C4 and D1–D3 systems in
turn.

Scheme 3.5 (Scheme for the PDEs 5) Let U
(0)
j,k = uj(k∆x, 0) be initial

values. A scheme for PDEs 5 is given by (3.101) with the matrix Ad defined
as follows :

For Type C1 Ad is an (N + 1) × (N + 1) matrix :

Ad = ∆〈2s+1〉
k ,

where ∆〈s〉
k is an (N + 1) × (N + 1) matrix which is defined as

∆〈s〉
k

d≡ diag
{(

δ
〈1〉
k

)s}
.

For Type C2 Ad is a (2N + 2) × (2N + 2) matrix :
(

0 I
−I 0

)
,

where I is the (N + 1) × (N + 1) identity matrix.

For Type C3 Ad is a (2N + 2) × (2N + 2) matrix :

D
〈2s+1〉
k ,

where

D
〈s〉
k

d≡

(
0 ∆〈s〉

k

∆〈s〉
k 0

)
.

For Type C4 Ad is a block diagonal matrix where each block matrix is what
is defined above for the corresponding Type C1–C3 systems.

¤
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THEOREM 3.5 Discrete conservation property of Scheme 3.5
Assume that discrete boundary conditions that satisfy the two conditions

below are imposed. Then Scheme 3.5 is conservative in the sense that the
equality :

Jd(U (m+1)) = Jd(U (m)), m = 0, 1, 2, . . . (3.102)

holds. The first condition is

Bsys(U (m+1),U (m)) = 0, m = 0, 1, 2, . . . . (3.103)

The second condition is given independently for each type as follows :

For Type C1

1
2
(−1)s

[(
δ
〈1〉
k

)s

Pk · s〈1〉k

(
δ
〈1〉
k

)s

Pk

]N

0

+
1
2

s∑

j=1

(−1)j−1

[(
δ
〈1〉
k

)j−1

Pk · s〈1〉k

(
δ
〈1〉
k

)2s+1−j

Pk

+s
〈1〉
k

(
δ
〈1〉
k

)j−1

Pk ·
(
δ
〈1〉
k

)2s+1−j

Pk

]N

0

= 0,

(3.104)

where
Pk

d≡ δGd

δ(U (m+1),U (m))k

.

(Because M = 1 in this case, we omit the subscript j here.).

For Type C2 No additional conditions.

For Type C3

1
2
(−1)s

[(
D̃s

kP k

)⊤
S〈1〉

(
D̃s

kP k

)]N

0

+
1
2

s∑

j=1

(−1)j−1

[(
D̃j−1

k P k

)⊤
S〈1〉

(
D̃2s+1−j

k P k

)

+S〈1〉
(
D̃j−1

k P k

)⊤ (
D̃2s+1−j

k P k

)]N

0

,

(3.105a)

where
Pj,k

d≡ δGd

δ(U (m+1),U (m))j,k

, j = 1, 2, (3.105b)

P k
d≡ (P1,k, P2,k)⊤, (3.105c)
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and

D̃k
d≡

(
0 δ

〈1〉
k

δ
〈1〉
k 0

)
, S〈1〉 d≡

(
0 s

〈1〉
k

s
〈1〉
k 0

)
(3.105d)

are 2 × 2 matrices.

For Type C4 We assume that for each block of Ad components, the corre-
sponding conditions defined above are satisfied.

PROOF We consider Types C1 to C4 in order.

[Type C1]

By repeatedly using the summation-by-parts formula (3.12b), we have

1
∆t

N∑

k=0

′′Gd,k(U (m+1)) − Gd,k(U (m))∆x

=
N∑

k=0

′′Pk

(
Uk

(m+1) − Uk
(m)

∆t

)
∆x + Bsys(U (m+1),U (m))

=
N∑

k=0

′′Pk

(
δ
〈1〉
k

)2s+1

Pk∆x

=
1
2
(−1)s

[(
δ
〈1〉
k

)s

Pk · s〈1〉k

(
δ
〈1〉
k

)s

Pk

]N

0

+
1
2

s∑

j=1

(−1)j−1

[(
δ
〈1〉
k

)j−1

Pk · s〈1〉k

(
δ
〈1〉
k

)2s+1−j

Pk

+s
〈1〉
k

(
δ
〈1〉
k

)j−1

Pk ·
(
δ
〈1〉
k

)2s+1−j

Pk

]N

0

= 0. (3.106)

In the second equality, the assumption (3.103) is used. The last equality is
from the assumption (3.104).

[Type C2]

We note the scheme is rewritten with Pj,k as





U
(m+1)
1,k − U

(m)
1,k

∆t
= P2,k,

U
(m+1)
2,k − U

(m)
2,k

∆t
= −P1,k.

(3.107)
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Then, from (3.96),

1
∆t

N∑

k=0

′′Gd,k(U (m+1)) − Gd,k(U (m))∆x

=
N∑

k=0

′′
2∑

j=1

Pj,k

(
U

(m+1)
j,k − U

(m)
j,k

∆t

)
∆x + Bsys(U (m+1),U (m))

=
N∑

k=0

′′P1,kP2,k − P2,kP1,k∆x

= 0. (3.108)

[Type C3]

Using the abbreviation Pj,k, the scheme is rewritten as





U
(m+1)
1,k − U

(m)
1,k

∆t
=

(
δ
〈1〉
k

)2s+1

P2,k,

U
(m+1)
2,k − U

(m)
2,k

∆t
=

(
δ
〈1〉
k

)2s+1

P1,k.

(3.109)

To prove the conservation property, we use the following summation-by-parts
formula which corresponds to (2.51). For any sequences F k = (F1,k, F2,k)⊤,
Gk = (G1,k, G2,k)⊤,

N∑

k=0

′′F k
⊤D̃kGk∆x = −

N∑

k=0

′′
(
D̃kF k

)⊤
Gk∆x

+
1
2

[
F k

⊤S〈1〉Gk +
(
S〈1〉F k

)⊤
Gk

]N

0

. (3.110)

Then, from (3.96),

1
∆t

N∑

k=0

′′Gd,k(U (m+1)) − Gd,k(U (m))∆x

=
N∑

k=0

′′
2∑

j=1

Pj,k

(
U

(m+1)
j,k − U

(m)
1,k

∆t

)
∆x + Bsys(U (m+1),U (m))

=
N∑

k=0

′′P k
⊤

(
D̃k

)2s+1

P k∆x
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=
1
2
(−1)s

[(
D̃s

kP k

)⊤
S〈1〉

(
D̃s

kP k

)]N

0

+
1
2

s∑

j=1

(−1)j−1

[(
D̃j−1

k P k

)⊤
S〈1〉

(
D̃2s+1−j

k P k

)

+S〈1〉
(
D̃j−1

k P k

)⊤ (
D̃2s+1−j

k P k

)]N

0

= 0. (3.111)

In the second equality, the assumption (3.103) is used. The last equality is
from the assumption (3.105a).

[Type C4]

Trivial, because this is just a combination of the other types.

Scheme 3.6 (Scheme for the PDEs 6) Let U
(0)
j,k = uj(k∆x, 0) be initial

values. Then, a dissipative scheme for the PDE 5 of Type D1–D3 is given by
(3.101), where the matrix Ad is given as follows.

Type D1 Ad is an N × N matrix :

(−1)s+1∆〈2s〉
k .

Type D2 Ad is a 2N × 2N matrix :
(

0 −I
−I 0

)
.

Type D3 Ad is a block diagonal matrix where each block matrix is defined
above for the corresponding Type C1–C3, D1, and D2 systems.

¤

THEOREM 3.6 Discrete dissipation property of Scheme 3.1
Consider Scheme 3.5 for Types D1–D3 and assume that a discrete boundary

condition is imposed which satisfies the two conditions stated below. Then the
scheme is dissipative in the sense that the inequality:

Jd(U (m+1)) ≤ Jd(U (m)), m = 0, 1, 2, . . . (3.112)

holds.
The first condition is

Bsys(U (m+1),U (m)) = 0 (m = 0, 1, 2, . . .). (3.113)

The second condition is as follows.
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For Type D1

1
2

s∑

j=1

(−1)j−1

[(
δ
〈1〉
k

)j−1

Pk · s〈1〉k

(
δ
〈1〉
k

)2s−j

Pk

+s
〈1〉
k

(
δ
〈1〉
k

)j−1

Pk ·
(
δ
〈1〉
k

)2s−j

Pk

]N

0

= 0. (3.114)

For Type D2 We do not need any additional conditions.

For Type D3 We assume that for each block of Ad components, the corre-
sponding conditions defined above are satisfied.

PROOF We can easily prove the case of Type D1 just by repeatedly
applying the summation-by-parts formula as in the conservative case. The
other cases are trivial.

3.5 Procedure for Second-Order PDEs

In this section we consider the second-order PDEs 7:

∂2u

∂t2
= −δG

δu
, x ∈ (0, L), t > 0, (2.55)

and their conservative schemes. The procedure essentially differs from those
in the previous sections, since the PDEs themselves greatly differ; the conser-
vation law is now

d
dt

∫ L

0

{
1
2
(ut)2 + G(u, ux)

}
dx = 0, (3.115)

which includes not only G but also ut.
To design a conservative scheme for the PDEs 7, we have two different

approaches. The first, direct way is to start from the conservation law (3.115)
and consider its discrete variation. This is a completely new process because
the local energy appearing in (3.115) includes not only u and ux but also
ut. The second, somewhat tricky way is to rewrite (2.55) as a conservative
system of PDEs and apply the procedure described in the preceding section.
Basically these two ways lead us to different types of conservative schemes,
though the latter can be considered to include the former one. In what follows
we describe these two approaches.
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3.5.1 First Approach: Direct Variation

In this approach we try to copy the continuous differentiation (2.56) directly
in a discrete setting. Let Uk

(m) be numerical solution. Now suppose that
the local energy G(u, ux) be approximated by Gd,k(U (m),U (m+1)). This is
a completely new concept; so far the discrete local energy has been defined
with only one approximate solution: Gd,k(U (m)). But now it is defined with
two consecutive solutions. We then define a discrete global energy by

Jd(U (m+1),U (m))
d≡

N∑

k=0

′′
{

1
2
(δ+

mUk
(m))2 + Gd,k(U (m+1),U (m))

}
∆x.

(3.116)
The symbol δ+

m is the forward difference operator with respect to time index
(m); i.e. δ+

mUk
(m) = (Uk

(m+1) − Uk
(m))/∆t. Note that the global energy Jd

also refers to two solutions accordingly.
Let us consider the discrete version of (2.56) as follows.

Jd(U (m+1),U (m)) − Jd(U (m),U (m−1))

=
N∑

k=0

′′

{
(δ+

mUk
(m))2

2
− (δ+

mUk
(m−1))2

2

+ Gd,k(U (m+1),U (m)) − Gd,k(U (m),U (m−1))
}

∆x. (3.117)

The first half of the right hand side of (3.117) is

N∑

k=0

′′

{
(δ+

mUk
(m))2

2
− (δ+

mUk
(m−1))2

2

}

=
N∑

k=0

′′

{
δ+
m

(
Uk

(m) + Uk
(m−1)

2

)
· δ+

m

(
Uk

(m) − Uk
(m−1)

)}
∆x

=
N∑

k=0

′′
{

δ〈2〉m Uk
(m) · δ〈1〉m Uk

(m)∆t
}

∆x. (3.118)

In the last equality, note that

δ+
m

(
Uk

(m) + Uk
(m−1)

2

)
=

Uk
(m+1) − Uk

(m−1)

2∆t
= δ〈1〉m Uk

(m),

and

δ+
m

(
Uk

(m) − Uk
(m−1)

)
=

Uk
(m+1) − 2Uk

(m) + Uk
(m−1)

∆t
= δ〈2〉m Uk

(m)∆t.

To deal with the second half of the right hand side of (3.117),
Gd,k(U (m+1),U (m)) − Gd,k(U (m),U (m−1)), we must extend the concept of
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discrete variational derivative to three-points discrete variational derivative.
To this end, let us put the same assumption as before that the energy G(u, ux)
is of the form

G(u, ux) =
fM∑

l=1

fl(u)gl(ux), M̃ ∈ N. (3.22)

Let us define a discrete analogue of G with two solutions as

Gd,k(U (m+1),U (m)) =
M∑

l=1

fl(Uk
(m+1), Uk

(m))g+
l (δ+

k Uk
(m+1), δ+

k Uk
(m))g−l (δ−k Uk

(m+1), δ−k Uk
(m)).

(3.119)

For consistency, functions g±l are supposed to satisfy, for example,

g+
l (δ+

k Uk
(m+1), δ+

k Uk
(m))g−l (δ−k Uk

(m+1), δ−k Uk
(m)) ≅ gl(ux)|x=k∆x,t=(m+1/2)∆t .

(3.120)
Then after some calculation we obtain

N∑

k=0

′′Gd,k(U (m+1),U (m)) − Gd,k(U (m),U (m−1))∆x

=
N∑

k=0

′′

{
∂Gd

∂(U (m+1),U (m),U (m−1))k

(
Uk

(m+1) − Uk
(m−1)

2

)

+
∂Gd

∂δ+(U (m+1),U (m),U (m−1))k

· δ+
k

(
Uk

(m+1) − Uk
(m−1)

2

)

+
∂Gd

∂δ−(U (m+1),U (m),U (m−1))k

· δ−k

(
Uk

(m+1) − Uk
(m−1)

2

)}
∆x

=
N∑

k=0

′′

{
∂Gd

∂(U (m+1),U (m),U (m−1))k

(
δ〈1〉m Uk

(m)
)

+
∂Gd

∂δ+(U (m+1),U (m),U (m−1))k

· δ+
k

(
δ〈1〉m Uk

(m)
)

+
∂Gd

∂δ−(U (m+1),U (m),U (m−1))k

· δ−k
(
δ〈1〉m Uk

(m)
)}

∆t∆x, (3.121)
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where

∂Gd

∂(U (m+1),U (m),U (m−1))k

=

M∑

l=1

f
(m,m+1)
l − f

(m,m−1)
l

1
2 (Uk

(m+1) − Uk
(m−1))

×

(
g
+,(m,m+1)
l g

−,(m,m+1)
l + g

+,(m,m−1)
l g

−,(m,m−1)
l

2

)
,(3.122a)

∂Gd

∂δ±(U (m+1),U (m),U (m−1))k

=

M∑

l=1

(
f

(m,m+1)
l + f

(m,m−1)
l

2

)(
g
∓,(m,m+1)
l + g

∓,(m,m−1)
l

2

)

×

(
g
±,(m,m+1)
l − g

±,(m,m−1)
l

1
2δ±k (Uk

(m+1) − Uk
(m−1))

)
. (3.122b)

In the above notation we used the abbreviations

f
(m,m+1)
l

d≡ fl(Uk
(m+1), Uk

(m)),

g
±,(m,m+1)
l

d≡ g±l (δ±k Uk
(m+1), δ±k Uk

(m)),

and so on, for the sake of space. Applying the summation-by-parts for-
mula (3.12a), we obtain

N∑

k=0

′′Gd,k(U (m+1),U (m)) − Gd,k(U (m),U (m−1))∆x

=
N∑

k=0

′′ δGd

δ(U (m+1),U (m),U (m−1))k

(
Uk

(m+1) − Uk
(m−1)

2

)

+ Btt(U (m+1),U (m),U (m−1)), (3.123)

where

δGd

δ(U (m+1),U (m),U (m−1))k

d≡ ∂Gd

∂(U (m+1),U (m),U (m−1))k

− δ−k

(
∂Gd

∂δ+(U (m+1),U (m),U (m−1))k

)

− δ+
k

(
∂Gd

∂δ−(U (m+1),U (m),U (m−1))k

)
, (3.124)
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Btt(U (m+1),U (m),U (m−1))
d≡

∆t

2

[
∂Gd

∂(U (m+1),U (m),U (m−1))k

{
s+

k

(
δ〈1〉m Uk

(m)
)}

+

{
s−k

(
∂Gd

∂(U (m+1),U (m),U (m−1))k

)} (
δ〈1〉m Uk

(m)
)

+
∂Gd

∂δ−(U (m+1),U (m),U (m−1))k

{
s−k

(
δ〈1〉m Uk

(m)
)}

+

{
s+

k

(
∂Gd

∂δ−(U (m+1),U (m),U (m−1))k

)}(
δ〈1〉m Uk

(m)
)]N

0

.

(3.125)

We call the discrete quantity

δGd

δ(U (m+1),U (m),U (m−1))k

,

the “three-points discrete variational derivative,” since it refers three points
m−1, m, m+1, in time. The identity (3.123) corresponds to the continuous
variation (2.56). The term Btt corresponds to the boundary term in (2.56),
and the subscript “tt” is taken from the target PDE utt = · · · .

Collecting (3.118) and (3.123), we can now summarize the difference (3.117)
as

1
∆t

(
Jd(U (m+1),U (m)) − Jd(U (m),U (m−1))

)

=
N∑

k=0

′′

{
δ〈2〉m Uk

(m) +
δGd

δ(U (m+1),U (m),U (m−1))k

}
δ〈1〉Uk

(m)∆x

+ Btt(U (m+1),U (m),U (m−1))/∆t. (3.126)

This leads us to the next scheme.

Scheme 3.7 (Conservative scheme I for the PDEs 7) Suppose the ini-
tial data U (0) and the starting value U (1) are given. Then, for m = 1, 2, . . .,

δ〈2〉m Uk
(m) = − δGd

δ(U (m+1),U (m),U (m−1))k

, k = 0, . . . , N. (3.127)

PROPOSITION 3.5 Conservation property of Scheme 3.7
Suppose that discrete boundary conditions are imposed so that

Btt(U (m+1),U (m),U (m−1)) = 0, m = 1, 2, 3, . . . .
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Then Scheme 3.7 is conservative in the sense that

Jd(U (m+1),U (m)) = Jd(U (1),U (0)), m = 1, 2, . . . (3.128)

holds.

PROOF Clear from (3.126).

REMARK 3.9 Slightly modifying the procedure, we can also design an
explicit scheme:

U
(m+2)
k − Uk

(m+1) − Uk
(m) + Uk

(m−1)

2(∆t)2
= − δGd

δ(U (m+1),U (m))k

, (3.129)

which is conservative in the sense that

N∑

k=0

′′

{
(δ+

mUk
(m))(δ−mUk

(m))
2

+ Gd,k(U (m))

}
∆x

=
N∑

k=0

′′

{
(δ+

mU
(1)
k )(δ−mU

(1)
k )

2
+ Gd,k(U (1))

}
∆x (3.130)

holds for m = 2, 3, . . .. The detail of this scheme is found in Furihata [67].

3.5.2 Second Approach: System of PDEs

The PDE:
∂2u

∂t2
= −δG

δu
(2.55)

can be rewritten into a system of PDEs by introducing a new variable v = ut:

∂u

∂t
= v =

∂G̃

∂v
, (3.131a)

∂v

∂t
= −∂G̃

∂u
, (3.131b)

where G̃ = v2/2 + G(u, ux) is a modified local energy. The conservation law

d
dt

∫ L

0

{
1
2
(ut)2 + G(u, ux)

}
dx = 0 (3.115)

is rewritten accordingly as

d
dt

∫ L

0

G̃(u, ux, v)dx = 0. (3.132)
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Since the matrix appearing in the right hand side of (3.131):
(

0 1
−1 0

)
(3.133)

is skew-symmetric, we can immediately apply the method described in the
previous section to obtain a conservative scheme. Let Gd(U (m)) be a discrete
energy for G(u, ux), and

G̃d,k(U (m),V (m)) =
(V (m)

k )2

2
+ Gd,k(U (m)), (3.134)

be a discrete modified local energy.

Scheme 3.8 (Conservative scheme II for the PDEs 7) For a given set
of initial data U (0),V (0), we compute U (m),U (m) (k = 1, 2, . . .) by, for m =
1, 2, . . .,

Uk
(m+1) − Uk

(m)

∆t
=

δG̃d

δ(V (m+1),V (m))k

=
V

(m+1)
k + V

(m)
k

2
, (3.135a)

V
(m+1)
k − V

(m)
k

∆t
= − δG̃d

δ(U (m+1),U (m))k

, (3.135b)

where k = 0, . . . , N .

PROPOSITION 3.6 Conservation property of Scheme 3.8
Scheme 3.8 is conservative in the sense that

N∑

k=0

′′G̃d,k(U (m),V (m))∆x =
N∑

k=0

′′G̃d,k(U (0),V (0)), m = 1, 2, . . . , (3.136)

holds.

PROOF Straightforward and hence omitted.

REMARK 3.10 By eliminating V
(m)
k in (3.135a) by (3.135b), we obtain

δ〈2〉m Uk
(m) = −1

2

(
δG̃d

δ(U (m+1),U (m))k

+
δG̃d

δ(U (m),U (m−1))k

)
.

This is slightly different from Scheme 3.7.

REMARK 3.11 By considering a slightly modified procedure, we can
obtain an explicit scheme as follows. Let us define a discrete modified energy
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by

G̃d,k(U (m+1),U (m),V (m+1),V (m)) =
V

(m+1)
k V

(m)
k

2
+ Gd,k(U (m+1),U (m)).

(3.137)
Then considering its discrete variation, we obtain a scheme

Uk
(m+1) − Uk

(m−1)

2∆t
= V

(m)
k , (3.138a)

V
(m+1)
k − V

(m−1)
k

2∆t
= − δG̃d

δ(U (m+1),U (m),U (m−1))k

. (3.138b)

This scheme is conservative in the sense that
N∑

k=0

′′G̃d,k(U (m+1),U (m),V (m+1),V (m))∆x =

N∑

k=0

′′G̃d,k(U (1),U (0),V (1),V (0))∆x, (3.139)

holds for m = 1, 2, . . ..
Another scheme can be obtained by replacing V

(m+1)
k V

(m)
k /2 in the discrete

energy function by {(V (m+1)
k )2 + (V (m)

k )2}/2. We omit its detail.

REMARK 3.12 If we introduce the so-called “staggered” grid, we can
show that the resulting schemes obtained by the first approach can be inter-
preted as special cases of the resulting schemes by the second approach.

Let us start with the system of PDEs representation (3.131), but this

time utilizing the staggered grid for discretizing the variable v; V
(m+ 1

2 )

k ≅
v(k∆x, (m + 1

2 )∆t). Then if we define a discrete modified energy by

G̃d,k(U (m+1),U (m),V (m+ 1
2 )) =

(V (m+ 1
2 )

k )2

2
+ Gd,k(U (m+1),U (m)), (3.140)

we have an implicit scheme:

Uk
(m+1) − Uk

(m−1)

2∆t
=

V
(m+ 1

2 )

k + V
(m− 1

2 )

k

2
, (3.141a)

V
(m+ 1

2 )

k − V
(m− 1

2 )

k

∆t
= − δG̃d

δ(U (m+1),U (m),U (m−1))k

, (3.141b)

through discrete variation calculation. This scheme is conservative in the
sense that

N∑

k=0

′′G̃d,k(U (m+1),U (m),V (m+ 1
2 ))∆x =

N∑

k=0

′′G̃d,k(U (1),U (0),V ( 1
2 ))∆x

(3.142)
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holds for m = 1, 2, . . .. Furthermore, if we assume the initial data satisfy the
relation

U
(1)
k − U

(0)
k

∆t
= V

( 1
2 )

k , (3.143)

then (3.141a) reduces to

Uk
(m+1) − Uk

(m)

∆t
= V

(m+ 1
2 )

k . (3.141a’)

Subtracting the equations (3.141a’) with m + 1 and m, we obtain

δ〈2〉m Uk
(m+1) =

V
(m+ 1

2 )

k − V
(m− 1

2 )

k

∆t
= − δG̃d

δ(U (m+1),U (m),U (m−1))k

, (3.144)

which is nothing but Scheme 3.7.

REMARK 3.13 The explicit scheme (3.129) can be also derived by the
system-of-PDEs approach, if we use the staggered grid in v. If we define a
discrete modified energy by

G̃d,k(U (m),V (m+ 1
2 ),V (m− 1

2 )) =
V

(m+ 1
2 )

k V
(m− 1

2 )

k

2
+ Gd,k(U (m)), (3.145)

we have an explicit scheme:

Uk
(m+1) − Uk

(m)

∆t
= V

(m+ 1
2 )

k , (3.146a)

V
(m+ 3

2 )

k − V
(m− 1

2 )

k

2∆t
= − δG̃d

δ(U (m+1),U (m))k

, (3.146b)

through discrete variation calculation. Eliminating V
(m+ 1

2 )

k we obtain

U
(m+2)
k − Uk

(m+1) − Uk
(m) + Uk

(m−1)

2(∆t)2
= − δG̃d

δ(U (m+1),U (m))k

, (3.147)

which is the scheme (3.129).
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3.6 Preliminaries on Discrete Functional Analysis

In the subsequent chapters, we sometimes try the theoretical analyses of
the constructed schemes. For those presentations, it is convenient to prepare
some notation on the discrete version of functional analysis (which we call
“discrete functional analysis”).

As repeatedly declared, throughout this book we basically consider the
one-dimensional case on Ω = [0, L], unless otherwise explicitly stated. We
denote the standard Lebesgue space by Lp(Ω) (p = 1, 2, . . . ,∞) with ∥ · ∥p,
its associated norm. For L2(Ω), we denote the associated inner product by
( · , · ). We also denote the Sobolev space by Hs(Ω) (s = 1, 2, . . .) and its norm
by ∥ · ∥Hs . We define Lp

p(Ω) and Hs
p(Ω) as the sets of periodic functions in

Lp(Ω) and Hs(Ω), respectively.

3.6.1 Discrete Function Spaces

Let us introduce the discrete counterparts of the above function spaces. We
divide Ω = [0, L] into N meshes, i.e., L = N∆x, and denote numerical solu-
tions by Uk

(m) ≅ u(k∆x,m∆t) (k = 0, . . . , N, m = 0, 1, 2, . . .). We represent
the mesh by ΩN .

We define a finite-dimensional space Lp(ΩN ), which is a discrete version of
Lp(Ω), by

Lp(ΩN )
d≡ {U |U ∈ CN+1,

N∑

k=0

′′|Uk|p∆x < ∞}. (3.148)

Its associated norm is defined by

∥U∥p
d≡

(
N∑

k=0

′′|Uk|p∆x

)1/p

. (3.149)

We often omit the subscript 2 and write ∥U∥ when p = 2, and we also use
the inner product:

(U ,V )
d≡

N∑

k=0

′′ UkVk∆x. (3.150)

We also define the discrete sup space by

L∞(ΩN )
d≡ {U |U ∈ CN+1, max

0≤k≤N
|Uk| < ∞} (3.151)

and its associated norm is defined by

∥U∥∞
d≡ max

0≤k≤N
|Uk|. (3.152)
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A discrete version of H1(Ω) is introduced as

H1(ΩN )
d≡ {U |U ∈ CN+1,

N∑

k=0

′′|Uk|2∆x +
N−1∑

k=0

|δ+
k Uk|2∆x < ∞}. (3.153)

Its norm is defined by

∥U∥H1
d≡

(
N∑

k=0

′′|Uk|2∆x +
N−1∑

k=0

|δ+
k Uk|2∆x

)1/2

. (3.154)

For convenience we often write this as

∥U∥H1 =
(
∥U∥2 + ∥Ux∥2

)1/2
(3.155)

where

∥Ux∥
d≡

(
N−1∑

k=0

|δ+
k Uk|2∆x

)1/2

. (3.156)

When the periodic boundary condition is applied, we naturally assume
U0 = UN , and the finite-dimensional space is substantially of dimension N ,
which we denote by SN :

SN
d≡ { (Vk ∈ C)k∈Z|Vk = Vk mod N} . (3.157)

Under the periodic boundary condition we define a discrete version of Lp
p by

Lp
p(ΩN )

d≡ {U |U ∈ SN ,
N−1∑

k=0

|Uk|p∆x < ∞} (3.158)

and its associated norm is also defined by

∥U∥p
d≡

(
N−1∑

k=0

|Uk|p∆x

)1/p

. (3.159)

We note that this norm is equivalent to (3.149) under the periodic boundary
condition UN = U0. We also introduce the inner product

(U ,V )
d≡

N−1∑

k=0

UkVk∆x (3.160)

for U ,V ∈ SN and the discrete Sobolev space H1
p(ΩN ) as

H1
p(ΩN )

d≡ {U |U ∈ SN , ∥U∥2 + ∥Ux∥2 < ∞} (3.161)



Discrete Variational Derivative Method 121

where

∥Ux∥
d≡

{(
N−2∑

k=0

|δ+
k Uk|2 +

∣∣∣∣
U0 − UN−1

∆x

∣∣∣∣
2
)

∆x

}1/2

. (3.162)

We also use the “∗” product:

U ∗ V
d≡

{
(U0V0, U1V1, · · · , UNVN )T for U ,V ∈ CN+1,

(U0V0, U1V1, · · · , UN−1VN−1)T for U ,V ∈ SN .
(3.163)

It is straightforward to see that the product satisfies the following inequalities.

∥U ∗ V ∥ ≤





√
2

∆x
∥U∥∥V ∥ for U ,V ∈ CN+1,

1√
∆x

∥U∥∥V ∥ for U ,V ∈ SN .

(3.164)

3.6.2 Discrete Inequalities

3.6.2.1 Discrete Sobolev Lemma

LEMMA 3.2

With L = N∆x,

∥u∥∞ ≤





2max

(
1√
L

,

√
L

2

)
∥u∥H1 for u ∈ H1(ΩN ),

√
2max

(
1√
L

,
√

L

)
∥u∥H1 for u ∈ H1

p(ΩN ).
(3.165)

PROOF For simplicity we consider the real case: u ∈ RN+1 (but the
following proof can be easily extended to the complex case.) First we note

um − ul = (um − um−1) + (um−1 − um−2) + · · · + (ul+1 − ul)

= ∆x
m−1∑

k=l

δ+
k uk, (3.166)

which holds for 0 ≤ l,m ≤ N . Squaring this and applying the Cauchy–
Schwartz inequality, we obtain

(um − ul)2 ≤ (∆x)2N
N−1∑

k=0

(
δ+
k uk

)2
. (3.167)



122 Discrete Variational Derivative Method

Using a2/2 − b2 ≤ (a − b)2 gives

(um)2 ≤ 2(ul)2 + 2 (∆x)2 N

N−1∑

k=0

(
δ+
k uk

)2
. (3.168)

From (3.168) we see

(um)2 ≤ 4(ul)2 + 2 (∆x)2 N

N−1∑

k=0

(
δ+
k uk

)2
. (3.169)

Then, adding (3.168) and (3.169) we obtain

(N + 1)(um)2 ≤ 4
N∑

k=0

′′(uk)2 + 2(N + 1)N (∆x)2
N−1∑

k=0

(
δ+
k uk

)2
. (3.170)

Thus we have

(um)2 ≤ 4
N + 1

N∑

k=0

′′(uk)2 + 2N (∆x)2
N−1∑

k=0

(
δ+
k uk

)2

≤ 4
N

N∑

k=0

′′(uk)2 + 2N (∆x)2
N−1∑

k=0

(
δ+
k uk

)2

=
4∆x

L

N∑

k=0

′′(uk)2 + 2L∆x
N−1∑

k=0

(
δ+
k uk

)2

≤ 4 max
(

1
L

,
L

2

) {
N∑

k=0

′′(uk)2∆x +
N−1∑

k=0

(
δ+
k uk

)2
∆x

}

= 4max
(

1
L

,
L

2

)
∥u∥2

H1 . (3.171)

The case u ∈ SN can be proved in a similar manner.

In the section 8.6 of [93], a description can be found essentially equivalent
to the above proof.

3.6.2.2 Discrete Poincaré–Wirtinger inequality

LEMMA 3.3
For any u ∈ RN+1 and 0 ≤ ∀m ≤ N , the following inequality holds.

1
L

(
um − M

L

)2

≤ ∥ux∥2, (3.172)
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where

M
d≡

N∑

k=0

′′uk∆x. (3.173)

PROOF For any m such that 0 ≤ m ≤ N we have

umL − M =
N∑

k=0

′′ (um − uk)∆x =
N∑

k=0

′′γk,m(u)∆x, (3.174)

where

γk,m(u)
d≡





m−1∑

l=k

(δ+l ul)∆x, k ≤ m,

−
k−1∑

l=m

(δ+l ul)∆x, m < k.

(3.175)

This implies
∣∣∣um − M/L

∣∣∣ ≤
N−1∑

k=0

∣∣∣δ+kuk

∣∣∣ ∆x, (3.176)

since

∣∣∣umL − M
∣∣∣ ≤

N∑

k=0

′′
∣∣∣γk,m(u)

∣∣∣ ∆x, (3.177)

∣∣∣γk,m(u)
∣∣∣ ≤

N−1∑

k=0

∣∣∣δ+kuk

∣∣∣ ∆x. (3.178)

Finally, applying the Schwartz inequality to (3.176) we obtain the inequality
(3.172).

REMARK 3.14 The inequality (3.176) corresponds to the Poincaré–
Wirtinger inequality [19, VII.1].

3.6.2.3 Discrete Gagliardo–Nirenberg Inequality

The next lemma is a discrete version of the Gagliardo–Nirenberg inequality
under the zero Dirichlet boundary condition.

LEMMA 3.4 Discrete Gagliardo–Nirenberg inequality (I)
For any V ∈ {U ∈ H1(ΩN ) |U0 = UN = 0},

∥V ∥4
4 ≤ 2∥V x∥ ∥V ∥3. (3.179)
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PROOF First, we show that

sup
k

|Vk|2 ≤ 2∥V x∥ ∥V ∥ (3.180)

holds. In fact, for any n ≤ N ,

|Vk|2 =
n∑

l=1

δ−k |Vl|2∆x

=
n∑

l=1

(
|Vl|2 − |Vl−1|2

)

=
n∑

l=1

1
2

{
(Vl − Vl−1)(Vl + Vl−1) + (Vl − Vl−1)(Vl + Vl−1)

}

=
n∑

l=1

(
δ+
k Vl−1µ

+Vl−1 + δ+
k Vl−1µ

+Vl−1

)
∆x

≤ 2

∣∣∣∣∣
n∑

l=1

(
δ+
k Vl−1µ

+Vl−1

)
∆x

∣∣∣∣∣

≤ 2

(
n∑

l=1

|δ+
k Vl−1|2∆x

) 1
2

(
n∑

l=1

|µ+Vl−1|2∆x

) 1
2

≤ 2

(
N∑

l=1

|δ+
k Vl−1|2∆x

) 1
2

(
N∑

l=1

|µ+Vl−1|2∆x

) 1
2

≤ 2∥V x∥ ∥V ∥.

Taking supk of both sides, we obtain (3.180). Therefore, we obtain

N∑

k=1

|Vk|4∆x ≤
(

sup
k

|Vk|2
)
∥V ∥2

≤ 2∥V x∥ ∥V ∥3.

The periodic boundary condition case can be proved based on the zero
Dirichlet boundary condition case.

LEMMA 3.5 Discrete Gagliardo–Nirenberg inequality (II)
Let N ≥ 12, and b = 4

√
2max(4/L, 1). Then,

∥V ∥4
4 ≤ b∥V ∥H1 ∥V ∥3 (3.181)

for any V ∈ H1
p(ΩN ).
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PROOF Let us define a vector χ = (χ0, χ1, · · · , χN−1)T as follows (the
condition N ≥ 12 is required for this expression to be well-defined).

χk =





0, 0 ≤ k ≤ [N/8],
4
L (xk − x[N/8]), [N/8] + 1 ≤ k ≤ [N/4] − 1,
1, [N/4] ≤ k ≤ N − 1 − [N/4],
− 4

L (xk − xN−1−[N/8]), N − [N/4] ≤ k ≤ N − 2 − [N/8],
0, N − 1 − [N/8] ≤ k ≤ N − 1.

In the above definition, [·] marks denote Gauss’s truncation symbols. Note
that 0 ≤ χk ≤ 1, and |δ+

k χk| ≤ 4/L.
With χ ∗ V from Lemma 3.4,

N−2∑

k=1

|χkVk|4∆x ≤ 2

(
N−2∑

k=0

|δ+
k (χkVk)|2∆x

) 1
2

(
N−2∑

k=1

|χkVk|2∆x

) 3
2

. (3.182)

In the above identity, (the second term at the right-hand side) ≤ ∥V ∥3. The
first term at the right-hand side is evaluated as

(
N−2∑

k=0

|δ+
k (χkVk)|2∆x

) 1
2

=

(
N−2∑

k=0

|(δ+
k χk)Vk+1 + χk(δ+

k Vk)|2∆x

) 1
2

≤ 4
L

(
N−1∑

k=0

|Vk+1|2∆x

) 1
2

+

(
N−1∑

k=0

|χk(δ+
k Vk)|2∆x

) 1
2

≤ 4
L
∥V ∥ + ∥V x∥.

Thus (3.182) becomes

∥χ ∗ V ∥4
4 ≤ 2

(
4
L
∥V ∥ + ∥V x∥

)
∥V ∥3. (3.183)

Next, let us consider a shifted vector Zk = (s+
k )2[N/4]Vk (note that now the

periodic boundary condition is applied). For Z, the same identity as above
holds as follows.

∥χ ∗ Z∥4
4 ≤ 2

(
4
L
∥Z∥ + ∥Zx∥

)
∥Z∥3

= 2
(

4
L
∥V ∥ + ∥V x∥

)
∥V ∥3. (3.184)

Note that, under the periodic boundary condition, the shift does not affect
the value of the norm.
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On the other hand, from the definition of χ, we have

∥V ∥4
4 =

N−1−[N/4]∑

k=[N/4]

|Vk|4∆x +




[N/4]−1∑

k=0

|Vk|4∆x +
N−1∑

N−[N/4]

|Vk|4∆x




=
N−1−[N/4]∑

k=[N/4]

|Vk|4∆x +
3[N/4]−1∑

k=[N/4]

|Zk|4∆x

≤ ∥χ ∗ V ∥4
4 + ∥χ ∗ Z∥4

4. (3.185)

Thus, from (3.183), (3.184), and (3.185), we have

∥V ∥4
4 ≤ 4

(
4
L
∥V ∥ + ∥V x∥

)
∥V ∥3

≤ 4
√

2max(4/L, 1)∥V ∥H1∥V ∥3

= b∥V ∥H1∥V ∥3.

This completes the proof.

3.6.3 Discrete Gronwall Lemma

The following is a discrete version of the Gronwall lemma.

LEMMA 3.6 Discrete Gronwall lemma [102]
Let ω(m) and ρ(m) (m = 0, 1, 2, . . .) be non-negative sequences, and ρ(m) be a
non-decreasing sequence. Then, if there exists c > 0 satisfying

ω(m) ≤ ρ(m) + c∆t
m−1∑

l=0

ω(l) (m = 1, 2, 3, . . .),

then for all m = 1, 2, 3, · · · ,

ω(m) ≤ ρ(m)ecm∆t.

PROOF Let η(m) = ω(m)e−cm∆t and η(j) = max0≤l≤m η(l). Then,

ω(j) ≤ ρ(j) + c∆t

j−1∑

l=0

ω(l)

≤ ρ(j) + c∆tη(j)

j−1∑

l=0

ecl∆t

≤ ρ(m) + cη(j)

∫ j∆t

0

ecsds

= ρ(m) + η(j)
(
ecj∆t − 1

)
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holds. Thus, η(j) ≤ ρ(m). This immediately implies

ω(m) = η(m)ecm∆t ≤ max
0≤l≤m

η(l)ecm∆t ≤ ρ(m)ecm∆t.





Chapter 4

Applications

In this chapter we present application examples of the discrete vari-
ational derivative method, in order to demonstrate how the method
can be applied to actual problems. The examples are classified ac-
cording to Chapter 2. In some examples, numerical examples and/or
theoretical analyses are also given. In the last Section 4.7, we also
give several examples for PDEs that are not directly covered by the
classification in Chapter 2.

4.1 Target PDEs 1

In this section, examples for the target PDEs 1 (defined in Section 2.2;
real-valued, single, dissipative PDEs) are shown. In the first example, in
particular, the construction of the scheme (i.e., how we actually apply the
discrete variational derivative method) is demonstrated with full detail. This
example would help readers’ understanding of the method.

4.1.1 Cahn–Hilliard Equation

4.1.1.1 Introduction to Problem

Let us consider the Cahn–Hilliard equation:

∂u

∂t
=

∂2

∂x2

(
pu + ru3 + q

∂2u

∂x2

)
, x ∈ (0, L), t > 0, (4.1)

under the boundary conditions:

∂u

∂x
= 0, x = 0, L, (4.2)

∂

∂x

(
pu + ru3 + q

∂2u

∂x2

)
= 0, x = 0, L. (4.3)

This is a dissipative PDE of the form 1 (Section 2.2), where

s = 1, G(u, ux) =
1
2
pu2 +

1
4
ru4 − 1

2
q

(
∂u

∂x

)2

, (4.4)

129
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which means that
δG

δu
= pu + ru3 + q

∂2u

∂x2
. (4.5)

Note that, with this expression, we can rewrite the second boundary condition
as

∂

∂x

δG

δu
= 0, x = 0, L. (4.6)

Since now
∂G

∂ux
= −qux,

the condition (2.16) is satisfied. When s = 1, the second condition (2.17) for
the dissipation reads as

[
−δG

δu
· ∂

∂x

δG

δu

]L

0

= 0,

which is assured by (4.6). Thus, the equation is in fact dissipative in view
of (2.15). Further background of this equation can be found in Section 1.1.

4.1.1.2 Numerical Scheme

Let us construct a dissipative scheme for the Cahn–Hilliard equation, fol-
lowing the procedure in Chapter 3.

We first show the outline of the scheme construction. We commence by
defining a discrete energy function by, for example,

Gd,k(U)
d≡ 1

2
p(Uk)2 +

1
4
r(Uk)4 − 1

2
q

(
(δ+

k Uk)2 + (δ−k Uk)2

2

)
. (4.7)

Then, by the discrete variation we obtain

δGd

δ(U (m+1),U (m))k

= p

(
Uk

(m+1) + Uk
(m)

2

)

+ r

(
(Uk

(m+1))3 + (Uk
(m+1))2Uk

(m) + Uk
(m+1)(Uk

(m))2 + (Uk
(m))3

4

)

+ qδ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
, (4.8)
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and by Scheme 3.1, we have

Uk
(m+1) − Uk

(m)

∆t
= δ

〈2〉
k

δGd

δ(U (m+1),U (m))k

= δ
〈2〉
k

{
p

(
Uk

(m+1) + Uk
(m)

2

)

+ r

(
(Uk

(m+1))3 + (Uk
(m+1))2Uk

(m) + Uk
(m+1)(Uk

(m))2 + (Uk
(m))3

4

)

+ qδ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)}
,

0 ≤ k ≤ N, m = 0, 1, 2, . . . . (4.9)

This has been already shown (without explanation) in Chapter 1 as Scheme 1.2.
The outline above can be realized in the following two ways. First, let us

try the formal procedure of the discrete variational method, where (3.30) and
the related definitions (3.27a)–(3.27c) play the central role. In this case, we
first note that the discrete energy function (4.7) is of the form (3.23) with

M = 4, f1 =
1
2
p(Uk)2, g+

1 = g−1 = 1, f2 =
1
4
r(Uk)4, g+

2 = g−2 = 1,

f3 = 1, g+
3 = −1

2
q
(δ+

k Uk)2

2
, g−3 = 1,

f4 = 1, g+
4 = 1, g−4 = −1

2
q
(δ−k Uk)2

2
. (4.10)

Note that although the original energy function consists of three terms (i.e.,
M̃ = 3, in the expression of (3.22)), the discrete version consists of four
terms. This is caused by approximating the derivative term symmetrically
by δ+

k and δ−k . In this way, generally M̃ ≤ M . Then, by substituting (4.10)
into (3.27a)–(3.27c), we obtain

∂Gd

∂(U ,V )k
= p

(
Uk + Vk

2

)
+ r

(
(Uk)3 + (Uk)2Vk + Uk(Vk)2 + (Vk)3

4

)
,

(4.11)

∂Gd

∂δ+(U ,V )k
=

δ+
k Uk + δ+

k Vk

2
,

∂Gd

∂δ−(U ,V )k
=

δ−k Uk + δ−k Vk

2
. (4.12)

This, together with (3.30), allows us to reach the discrete variational deriva-
tive (4.8). Notice that although the expressions (3.27a)–(3.27c) involve the
summations of M = 4 terms, many terms trivially vanish (see Remark 3.1).
For example, in (3.27c), only the term l = 3 has a nonzero value, and other
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terms vanish due to g+
1 = g+

2 = g+
4 = 1, and

g+
l (δ+

k Uk) − g+
l (δ+

k Vk)
δ+
k Uk − δ+

k Vk

= (g+
l )′(δ+

k Uk) = 0, l = 1, 2, 4.

The first approach—the formal approach—has surely an advantage in that
it goes automatic once a discrete energy function is given. No expertise is
required there. However, the formal expressions such as (3.27a)–(3.27c) are
considerably complicated for being generic, and quite often it is much easier to
directly consider the discrete variation of the given discrete energy function,
as repeatedly emphasized in Remark 3.3 and the subsequent easy examples
there. This direct approach—the second approach here—goes as follows. For
each of the three terms in the discrete energy function, we easily see

N∑

k=0

′′
(

1
2
(Uk)2 − 1

2
(Vk)2

)
∆x =

N∑

k=0

′′
(

Uk + Vk

2

)
(Uk − Vk)∆x, (4.13a)

N∑

k=0

′′
(

1
4
(Uk)4 − 1

4
(Vk)4

)
∆x =

N∑

k=0

′′
(

(Uk)3 + (Uk)2Vk + Uk(Vk)2 + (Vk)3

4

)
(Uk − Vk)∆x, (4.13b)

N∑

k=0

′′
(

1
2
(δ±k Uk)2 − 1

2
(δ±k Vk)2

)
∆x

=
N∑

k=0

′′δ±k

(
Uk + Vk

2

)
· δ±k (Uk − Vk)∆x

= −
N∑

k=0

′′δ
〈2〉
k

(
Uk + Vk

2

)
(Uk − Vk)∆x

+
1
2

[
δ+
k

(
Uk + Vk

2

)
· µ+

k (Uk − Vk) + δ−k

(
Uk + Vk

2

)
· µ−

k (Uk − Vk)
]N

0

.

(4.13c)

In the last equality, we use the second order summation-by-parts formula (3.14a).
By collecting (4.13a)–(4.13c), and in view of (3.32), we readily obtain the ex-
pression (4.8).

Next, let us impose the following discrete boundary conditions:

δ
〈1〉
k Uk

(m) = 0, k = 0, N, (4.14)

δ
〈1〉
k

δGd

δ(U (m+1),U (m))k

= 0, k = 0, N, (4.15)
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and check that the scheme is in fact dissipative under these conditions. By
the statement of Theorem 3.1, it suffices to check that

Br,1(U (m+1),U (m)) = 0 and B
〈2〉
r,2 (U (m+1),U (m)) = 0 for m = 0, 1, 2, . . . .

Again, the check can be done by the two different approaches—the formal
approach, and the direct approach. Let us first demonstrate the first ap-
proach. By the definition (3.31), and the related definitions (3.27b)–(3.27c),
the concrete form of the first condition becomes

1
2

[
δ+
k

(
Uk

(m+1) + Uk
(m)

2

)
· s+

k (Uk
(m+1) − Uk

(m))

+ s−k δ+
k

(
Uk

(m+1) + Uk
(m)

2

)
· (Uk

(m+1) − Uk
(m))

+ δ−k

(
Uk

(m+1) + Uk
(m)

2

)
· s−k (Uk

(m+1) − Uk
(m))

+s+
k δ−k

(
Uk

(m+1) + Uk
(m)

2

)
· (Uk

(m+1) − Uk
(m))

]N

0

= 0. (4.16)

It is an easy exercise on discrete operators to see that the above condition is
equivalent to

1
2

[
δ+
k

(
Uk

(m+1) + Uk
(m)

2

)
· µ+

k (Uk
(m+1) − Uk

(m))

+δ−k

(
Uk

(m+1) + Uk
(m)

2

)
· µ−

k (Uk
(m+1) − Uk

(m))

]N

0

= 0. (4.17)

Since the condition (4.14) implies for k = 0, N that

δ+
k Uk

(m) = −δ−k Uk
(m), µ+

kUk
(m) = µ−

kUk
(m),

the identity (4.17) holds. For B
〈2〉
r,2 (U (m+1),U (m)), by its definition in Scheme 3.1,

B
〈2〉
r,2 (U (m+1),U (m)) =

1
4

[
2

δGd

δ(U (m+1),U (m))k

· δ〈1〉k

δGd

δ(U (m+1),U (m))k

+ s+k
δGd

δ(U (m+1),U (m))k

· δ+k
δGd

δ(U (m+1),U (m))k

+s−k
δGd

δ(U (m+1),U (m))k

· δ−k
δGd

δ(U (m+1),U (m))k

]N

0

=

[
s
〈1〉
k

δGd

δ(U (m+1),U (m))k

· δ〈1〉k

δGd

δ(U (m+1),U (m))k

]N

0

= 0.
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This is guaranteed by the applied discrete boundary condition (4.15).
In the second, direct approach, we have already obtained in (4.13c) the left

hand side of the identity (4.17). This completes the check for Br,1(U (m+1),U (m)).
For B

〈2〉
r,2 (U (m+1),U (m)), we note that by collecting (4.13a)–(4.13c), we al-

ready have (by neglecting Br,1(U (m+1),U (m)))

1
∆t

N∑

k=0

′′
(
Gd,k(U (m+1)) − Gd,k(U (m))

)
∆x =

N∑

k=0

′′ δGd

δ(U (m+1),U (m))k

Uk
(m+1) − Uk

(m)

∆t
∆x. (4.18)

Then by the scheme definition and the second-order summation-by-parts for-
mula (3.14b), this equals

N∑

k=0

′′ δGd

δ(U (m+1),U (m))k

· δ〈2〉k

δGd

δ(U (m+1),U (m))k

∆x

= −1
2

N∑

k=0

′′





(
δ+
k

δGd

δ(U (m+1),U (m))k

)2

+

(
δ−k

δGd

δ(U (m+1),U (m))k

)2


∆x

+

[
δ
〈1〉
k

δGd

δ(U (m+1),U (m))k

· s〈1〉k

δGd

δ(U (m+1),U (m))k

]N

0

. (4.19)

This coincides with the first case, and we hence complete the check. One can
see that, as in the construction of the scheme, it is much simpler to directly
check the dissipation property without the complicated formal expressions in
Chapter 3. In this sense, the formal procedure is for mathematical rigorous-
ness, and not for practical use.

Under the boundary condition (4.15), the scheme has the following addi-
tional conservation law.

THEOREM 4.1

The scheme (4.9) is “mass” conservative in the sense that

N∑

k=0

′′Uk
(m)∆x =

N∑

k=0

′′U
(0)
k ∆x, m = 0, 1, 2, . . . , (4.20)

holds.
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PROOF Easily shown as follows:

1
∆t

N∑

k=0

′′
(
Uk

(m) − Uk
(m−1)

)
∆x

=
1

∆t

N∑

k=0

′′δ
〈2〉
k

δGd

δ(U (m+1),U (m))k

∆x

=
1
∆t

[
δ
〈1〉
k

δGd

δ(U (m+1),U (m))k

]N

0

= 0, (4.21)

with the summation of difference (3.8).

This discrete law corresponds to

d
dt

∫ L

0

udx = 0,

in continuous context.

REMARK 4.1 The Cahn–Hilliard equation will be also mentioned in
Chapter 6 (a linearly implicit scheme for the Cahn–Hilliard equation) and
Chapter 7 (a scheme on non-rectangular mesh).

4.1.1.3 Numerical Examples

We have already seen the result in Figure 1.4, where the scheme (4.9) was
run with a coarse time mesh ∆t = 1/1000. Other parameters were taken to
p = −1.0, q = −0.001, r = 1.0, and L = 1, N = 50 (thus ∆x = 1/50). The
discrete energy dissipation property of the scheme is confirmed in Figure 1.5.

4.1.1.4 Analysis of Scheme

In this subsection, we give a theoretical analysis of the scheme. The content
of this subsection is based on [66]. For the notation of discrete functional
analysis, readers should refer to Section 3.6.

First, let us prove the stability. We commence by the following a priori
estimate of the numerical solutions.

PROPOSITION 4.1 Solutions’ bounds with discrete Sobolev norm

The solutions, U (m), satisfy the following a priori estimate:

∥U (m)∥2
H1 ≤ 1

min(−p,−1
2q)

{
N∑

k=0

′′Gd,k

(
U (0)

)
∆x +

9
4

p2

r
L

}
, (4.22)
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where ∥ • ∥H1 is the discrete first-order Sobolev–Hilbert norm which is defined
in Section 3.6. We note them here again for readers’ convenience.

∥f∥2
H1 = ∥f∥2 + ∥fx∥2 (4.23)

where

∥f∥ =

(
N∑

k=0

′′|fk|2∆x

)1/2

(4.24)

and

∥fx∥ =

(
N−1∑

k=0

|δ+
k fk|2∆x

)1/2

. (4.25)

PROOF Thanks to the dissipation property, we see

N∑

k=0

′′Gd,k

(
U (0)

)
∆x

≥
N∑

k=0

′′Gd,k

(
U (m)

)
∆x

≥
N∑

k=0

′′

{
−p(Uk

(m))2 − 9
4

p2

r
− 1

2
q
(δ+kUk

(m))2 + (δ−kUk
(m))2

2

}
∆x

( since
1
2
pX2 +

1
4
rX4 ≥ −pX2 − 9

4
p2

r
)

≥ min(−p,−1
2
q)

N∑

k=0

′′

{
(Uk

(m))2 +
(δ+kUk

(m))2 + (δ−kUk
(m))2

2

}
∆x

−9
4

p2

r
L

= min(−p,−1
2
q)∥U (m)∥2

H1 −
9
4

p2

r
L, (4.26)

where we have used the boundary condition (4.14) in the last equality.

Recall the discussion in the continuous case (page 6). The proposition above
means that a similar estimate holds for the discrete solutions as well, where
the discrete Sobolev norm of the solutions is bounded by a constant depending
only on the initial energy value.

With this and the discrete Sobolev lemma in Section 3.6.2.1, we obtain the
following stability result.
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THEOREM 4.2
The numerical solutions U (m) by the scheme (4.9) satisfy for all m ≥ 0,

∥∥∥U (m)
∥∥∥
∞

≤ 2

[
max (1/L,L/2)
min(−p,−q/2)

{
N∑

k=0

′′Gd,k

(
U (0)

)
∆x +

9
4

p2

r
L

}]1/2

.

(4.27)

This theorem means that the scheme is numerically stable for any time step
m (except for possible instabilities caused by rounding errors). This fact elo-
quently demonstrates that preserving the discrete energy dissipation is in fact
advantageous. This is a typical illustrative example for our basic philosophy:
“structure-preserving provides superiority” in computation.

The above estimate depends only on the initial data, and we can have more
precise evaluation if the data is sufficiently smooth.

COROLLARY 4.1
If U

(0)
k = u(0)(k∆x) for a function u(0)(x) ∈ C3[0, L], then it holds that

max
0≤k≤N

∣∣∣Uk
(m)

∣∣∣ ≤ 2

√√√√max(1/L,L/2)
min(−p,−q/2)

{∫ L

0

G(u(0))dx + C0L2 +
9
4

p2

r
L

}
,

(4.28)
where

C0 =
1
8

∫ L

0

∣∣∣∣
∂2G(u(0))

∂x2

∣∣∣∣ dx +
−q

2
L

(
1
4
A2

2 +
1
3
A1A3 +

L2

576
A2

3

)
, (4.29)

Am′ = max
x∈[0,L]

∣∣∣∣∣
∂m′

∂xm′ u
(0)

∣∣∣∣∣ , 1 ≤ m′ ≤ 3. (4.30)

Since the proof is an easy exercise by the Euler–Maclaurin summation for-
mula, we skip it here.

Next we show the unique existence of the numerical solutions of the scheme.
To prove that we use the contraction mapping theorem. Let us define a
mapping TU(m) : RN+1 → RN+1 in terms of the following equation:

(
1 − q∆t

2
δ
〈4〉
k

)
{TU(m)V }k = Uk

(m) +
∆t

2
δ
〈2〉
k



pVk + r{QU(m)V }k



 ,

(4.31)
where the mapping QU(m) : RN+1 → RN+1 is defined as

{QU(m)V }k

d≡ (Vk)3 + Vk

(
Vk − U

(m)
k

)2

. (4.32)
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We here promise that the operators in the above equation are defined under
the boundary conditions (4.14) and (4.15), i.e.,

V−1 = V1, VN+1 = VN−1, (4.33)
V−2 = V2, VN+2 = VN−2. (4.34)

If the mapping TU(m) has a fixed-point V ∗, then 2V ∗ − U (m) is the solu-
tion U (m+1) of the scheme (4.9). The following proposition implies that the
mapping TU(m) is well-defined for any U (m).

PROPOSITION 4.2

The operator
(

1 − q∆t

2
δ
〈4〉
k

)
is nonsingular.

PROOF The (N + 1) × (N + 1) matrix expression of
(

1 − q∆t

2
δ
〈4〉
k

)

is
(

I − q∆t

2
D2

2

)
, where I is the identity matrix of order N + 1 and D2 is

the expression matrix of the operator δ
〈2〉
k , which is defined by the following

equality:

D2
d≡ 1

(∆x)2




−2 2 0
1 −2 1

. . . . . . . . .
1 −2 1

0 2 −2




(4.35)

under the boundary condition (4.14). Eigenvalues of D2 are

λk
d≡ 2

(∆x)2

{
cos(

k

N
π) − 1

}
, k = 0, 1, · · · , N (4.36)

and accordingly the eigenvalues of
(

I − q∆t

2
D2

2

)
are 1 − q∆t

2
(λk)2, k =

0, 1, · · · , N . The positiveness of the eigenvalues implies the nonsingularity

of
(

I − q∆t

2
D2

2

)
.

Now we have the following theorem, which states the unique existence of
the numerical solution.

THEOREM 4.3
If

∆t < min

(
−q(∆x)2

2 (−p∆x + 82rM2)2
,

−2q(∆x)2

(−p∆x + 226rM2)2

)
, (4.37)
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then the mapping TU(m) has a unique fixed-point in the closed ball K , where

M
d≡ ∥U (m)∥2, (4.38)

K
d≡

{
v ∈ RN+1

∣∣∣∣ ∥v∥2 ≤ 4M

}
. (4.39)

REMARK 4.2 For the solution Uk
(m) of the scheme (4.9), M is bounded

as

M ≤

√√√√ 1
min(−p,−q/2)

{
N∑

k=0

′′Gd,k

(
U (0)

)
∆x +

9
4

p2

r
L

}
(4.40)

from the Theorem 4.2.

REMARK 4.3 Since

M ∼ ∥u(m∆t, ·)∥L2(0,L), (4.41)

(4.37) implies that by taking ∆t = O(∆x2) the unique solvability of the
scheme is guaranteed.

PROOF By the contraction mapping theorem it suffices to show that
TU(m) is a contraction mapping on K. We prove that TU(m) is a mapping
K → K. We diagonalize the matrix D2 as

D2 = XΛX−1, (4.42)

where X and Λ are matrices order N + 1 as

X
d≡

(
cos

(
ijπ

N

))N

i,j=0

, (4.43)

Λ
d≡ diag(λk), (4.44)

with λk given by (4.36). Then the matrix expression of TU(m) is given by

TU(m)V = X

(
I − q∆t

2
Λ2

)−1

X−1 U (n)

+
∆t

2
X

(
I − q∆t

2
Λ2

)−1

ΛX−1



pV + rQU(m)V



 . (4.45)
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Hence

∥TU(m)V ∥2

≤ ∥X∥2∥
(

I − q∆t

2
Λ2

)−1

∥2∥X−1∥2∥U (m)∥2

+
∆t

2
∥X∥2∥

(
I − q∆t

2
Λ2

)−1

Λ∥2∥X−1∥2

(
−p∥V ∥2 + r∥QU(m)V ∥2

)

≤ 2 max
0≤k≤N

∣∣∣∣∣
1

1 − q∆t
2 λ2

k

∣∣∣∣∣ ∥U
(m)∥2

+2
∆t

2
max

0≤k≤N

∣∣∣∣∣
λk

1 − q∆t
2 λ2

k

∣∣∣∣∣

(
−p∥V ∥2 + r∥QU(m)V ∥2

)

≤ 2M

{
1 +

√
2∆t

−q

(
−p + r

82
∆x

M2

)}
. (4.46)

Here we have used the following estimates:

∥diag(dk)∥2 = max
k

|dk|, (4.47)

max
0≤k≤N

∣∣∣∣∣
1

1 − q∆t
2 λ2

k

∣∣∣∣∣ ≤ 1, (4.48)

max
0≤k≤N

∣∣∣∣∣
λk

1 − q∆t
2 λ2

k

∣∣∣∣∣ ≤
1√

−2q∆t
, (4.49)

∥QU(m)V ∥2 ≤ 328
∆x

M3, (4.50)

∥X∥2 ≤
√

2N, (4.51)

∥X−1∥2 ≤
√

2
N

, (4.52)

that holds under the conditions ∥U (m)∥2 = M and ∥V ∥2 ≤ 4M . The evalu-
ation of the nonlinear term (4.50) is obtained by (3.164). From (4.46) we see
that TU(m) is a mapping K → K if

∆t ≤ −q(∆x)2

2 (−p∆x + 82 rM2)2
. (4.53)

Next we prove that TU(m) is contractive. Using (4.45) and the estimates
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above we can show

∥TU(m)V − TU(m)V ′∥2

≤

√
∆t

−2q

{
−p∥V − V ′∥2 + r∥QU(m)V −QU(m)V ′∥2

}

≤

√
∆t

−2q

(
−p +

226
∆x

rM2

)
∥V − V ′∥2, (4.54)

because
∥QU(m)V −QU(m)V ′∥2 ≤ 226

∆x
M2∥V − V ′∥2. (4.55)

Therefore TU(m) is contractive if

∆t <
−2q(∆x)2

(−p∆x + 226rM2)2
. (4.56)

This completes the proof.

Next, we evaluate the convergence of the scheme. Let us define the error
by

e
(m)
k

d≡ Uk
(m) − u(k∆x, m∆t), k = −1, 0, 1, · · · , N,N + 1, (4.57)

where u(x, t) is the solution to the Cahn–Hilliard equation. We define an
extension of u by

u(x, t)
d≡

{
u(x − 2lL, t) : 2lL ≤ x ≤ (2l + 1)L,
u(2lL − x, t) : (2l − 1)L < x < 2lL,

(4.58)

where l ∈ Z and

u(−∆x, t)
d≡ u(∆x, t), (4.59)

u((N + 1)∆x, t)
d≡ u((N − 1)∆x, t). (4.60)

The error is measured in terms of the discrete L2-norm, ∥f∥2 =
∑N

k=0
′′(fk)2∆x

for f = {fk}N+l
k=−l ∈ RN+1+2l; 0 ≤ l. In what follows, we use the following

special time-difference and -averaging operators (which are used only in this
subsection):

δ〈1〉m f (m) d≡ f (m+ 1
2 ) − f (m− 1

2 )

∆t
, (4.61a)

δ〈2〉m f (m) d≡ f (m+ 1
2 ) − 2f (m) + f (m− 1

2 )

( 1
2∆t)2

, (4.61b)

s〈1〉m f (m) d≡ f (m+ 1
2 ) + f (m− 1

2 )

2
. (4.61c)
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We also promise that

∂2u(−∆x, t)
∂x2

d≡ ∂2u(∆x, t)
∂x2

, (4.62)

∂2u((N + 1)∆x, t)
∂x2

d≡ ∂2u((N − 1)∆x, t)
∂x2

. (4.63)

Before proceeding to the convergence estimates, we prepare several propo-
sitions.

PROPOSITION 4.3
The error e(m) satisfies

1
∆t

{
∥e(m+1)∥2 − ∥e(m)∥2

}

≤ 1
2

{
∥e(m+1)∥2 + ∥e(m)∥2

}

−1
q
∥φ̃(U (m+1);U (m)) − φ(m+ 1

2 )∥2

+∥ζ(m+ 1
2 )

1 ∥2 + ∥ζ(m+ 1
2 )

2 ∥2, (4.64)

where

φ̃(fk; gk)
d≡ p

{
fk + gk

2

}
+ r

{
(fk)3 + (fk)2gk + fk(gk)2 + (gk)3

4

}
, (4.65)

φ
(m+ 1

2 )

k

d≡
{
pu + ru3

}∣∣
(x,t)=(k∆x,(m+ 1

2 )∆t)
, (4.66)

ζ
(m+ 1

2 )

1,k =
{(

∂

∂t
− δ〈1〉m

)
u −

(
∂2

∂x2
− δ

〈2〉
k

)
δG

δu

}∣∣∣∣
(x,t)=(k∆x,(m+ 1

2 )∆t)

,

(4.67)

ζ
(m+ 1

2 )

2,k =
√
−q

{(
s〈1〉m δ

〈2〉
k − ∂2

∂x2

)
u

}∣∣∣∣
(x,t)=(k∆x,(m+ 1

2 )∆t)

, (4.68)

for k = 0, 1, · · · , N .

In (4.67), the term δ
〈1〉
m u

∣∣∣
(x,t)=(k∆x,(m+ 1

2 )∆t)
is defined as follows :

δ〈1〉m u
∣∣∣
(x,t)=(k∆x,(m+ 1

2 )∆t)

d≡ δ〈1〉m u(k∆x, (m +
1
2
)∆t)

=
u(k∆x, (m + 1)∆t) − u(k∆x,m∆t)

∆t
.(4.69)

Other terms are defined similarly.
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PROOF Let us define

F
(m+ 1

2 )

k

d≡ δGd

δ(U (m+1),U (m))k

− δG

δu

∣∣∣∣
(x,t)=(k∆x,(m+ 1

2 )∆t)

, (4.70)

for k = −1, 0, 1, · · · , N, N + 1. From (4.1), (4.9), (4.57) and (4.70), we obtain

e
(m+1)
k − e

(m)
k

∆t
= δ

〈2〉
k F

(m+ 1
2 )

k + ζ
(m+ 1

2 )

1,k , (4.71)

for k = 0, 1, · · · , N . From (4.5), (4.9) and (4.70) we obtain

F
(m+ 1

2 )

k = φ̃(Uk
(m+1);Uk

(m)) − φ
(m+ 1

2 )

k + qδ
〈2〉
k

e
(m+1)
k + e

(m)
k

2
−
√
−q ζ

(m+ 1
2 )

2,k ,

(4.72)
for k = 0, 1, · · · , N . From (4.71) and (4.72) we have

1
2

N∑

k=0

′′

{
(e(m+1)

k )2 − (e(m)
k )2

∆t

}
∆x − 1

q

N∑

k=0

′′
(
F

(m+ 1
2 )

k

)2

∆x

=
N∑

k=0

′′

(
e
(m+1)
k + e

(m)
k

2
×RHS(4.71)

)
∆x − 1

q

N∑

k=0

′′
(
F

(m+ 1
2 )

k × RHS(4.72)
)

∆x

=
N∑

k=0

′′

{
e
(m+1)
k + e

(m)
k

2
δ
〈2〉
k F

(m+ 1
2 )

k − F
(m+ 1

2 )

k δ
〈2〉
k

e
(m+1)
k + e

(m)
k

2

}
∆x

−1
q

N∑

k=0

′′
{(

φ̃(Uk
(m+1);Uk

(m)) − φ
(m+ 1

2 )

k

)
F

(m+ 1
2 )

k

}
∆x

+
N∑

k=0

′′

{
e
(m+1)
k + e

(m)
k

2
ζ
(m+ 1

2 )

1,k

}
∆x

−1
q

N∑

k=0

′′
{

F
(m+ 1

2 )

k (−
√
−q)ζ(m+ 1

2 )

2,k

}
∆x. (4.73)

Here the first term
N∑

k=0

′′

{
e
(m+1)
k + e

(m)
k

2
δ
〈2〉
k F

(m+ 1
2 )

k − F
(m+ 1

2 )

k δ
〈2〉
k

e
(m+1)
k + e

(m)
k

2

}
∆x

=

[
e
(m+1)
k + e

(m)
k

2
δ
〈1〉
k F

(m+ 1
2 )

k − F
(m+ 1

2 )

k δ
〈1〉
k

e
(m+1)
k + e

(m)
k

2

]N

k=0

(4.74)

vanishes since

δ
〈1〉
k F

(m+ 1
2 )

k

∣∣∣
k=0

= δ
〈1〉
k F

(m+ 1
2 )

k

∣∣∣
k=N

= 0, (4.75)

δ
〈1〉
k e

(m)
k

∣∣∣
k=0

= δ
〈1〉
k e

(m)
k

∣∣∣
k=N

= 0, (4.76)
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under the boundary condition (4.14) and definition (4.58), (4.59), (4.60),
(4.62) and (4.63). The remaining terms can be bounded from above by the
inequality ab ≤ 1

2 (a2 + b2). Hence we obtain the inequality (4.64).

RHS(4.73) ≤ − 1
2q

N∑

k=0

′′
{(

φ̃(Uk
(m+1);Uk

(m)) − φ
(m+ 1

2 )

k

)2

+
(
F

(m+ 1
2 )

k

)2
}

∆x

+
1
2

N∑

k=0

′′





(
e
(m+1)
k + e

(m)
k

2

)2

+
(
ζ
(m+ 1

2 )

1,k

)2



∆x

− 1
2q

N∑

k=0

′′
{(

F
(m+ 1

2 )

k

)2

+
(
−
√
−qζ

(m+ 1
2 )

2,k

)2
}

∆x

≤ − 1
2q

N∑

k=0

′′
{(

φ̃(Uk
(m+1);Uk

(m)) − φ
(m+ 1

2 )

k

)2

+
(
F

(m+ 1
2 )

k

)2
}

∆x

+
1
2

N∑

k=0

′′
{

1
2

{(
e
(m+1)
k

)2

+
(
e
(m)
k

)2
}

+
(
ζ
(m+ 1

2 )

1,k

)2
}

∆x

− 1
2q

N∑

k=0

′′
{(

F
(m+ 1

2 )

k

)2

− q
(
ζ
(m+ 1

2 )

2,k

)2
}

∆x

= − 1
2q

∥φ̃(U (m+1);U (m)) − φ(m+ 1
2 )∥2 − 1

q
∥F (m+ 1

2 )∥2

+
1
4

(
∥e(m+1)∥2 + ∥e(m)∥2

)

+
1
2
∥ζ(m+ 1

2 )
1 ∥2 +

1
2
∥ζ(m+ 1

2 )
2 ∥2, (4.77)

since (a + b)2 ≤ 2(a2 + b2) .

PROPOSITION 4.4

∥φ̃(U (m+1);U (m)) − φ(m+ 1
2 )∥2

≤
{
−p + 3r(C2)2

}2
{
∥e(m+1)∥0, 22 + ∥e(m)∥2

}

−q
{
∥ζ(m+ 1

2 )
3 ∥2 + ∥ζ(m+ 1

2 )
4 ∥2

}
, (4.78)

where

C2
d≡ max

0≤l≤m+1

{
max

0≤k≤N

∣∣∣U (l)
k

∣∣∣ , sup
x∈[0,L]

|u(x, l∆t)|

}
, (4.79)
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and ∥ • ∥4 is a discrete L4-norm which is defined as

∥f∥4
4 =

N∑

k=0

′′(fk)4 ∆x, f = (fk)N+l
k=−l ∈ RN+1+2l; 0 ≤ l, (4.80)

and

ζ
(m+ 1

2 )

3,k

d≡ r

2
√
−q

C2 {u(k∆x, (m + 1)∆t) − u(k∆x,m∆t)}2
, (4.81)

ζ
(m+ 1

2 )

4,k

d≡ 2√
−q

{
−p + 3r(C2)2

}
(s〈1〉m − 1)u(k∆x, (m +

1
2
)∆t), (4.82)

for k = 0, 1, · · · , N .

REMARK 4.4 Note that C2 is finite since the proposed scheme is nu-
merically stable and the solution u ∈ C0([0, L]).

PROOF We denote φ̃ − φ =
4∑

i=1

Ii where Ii = (Ii,k)N
k=0 with

I1,k
d≡ φ̃(Uk

(m+1);Uk
(m)) − φ̃(u(k∆x, (m + 1)∆t);Uk

(m)), (4.83)

I2,k
d≡ φ̃(u(k∆x, (m + 1)∆t);Uk

(m)) (4.84)

−φ̃(u(k∆x, (m + 1)∆t);u(k∆x,m∆t)),

I3,k
d≡ φ̃(u(k∆x, (m + 1)∆t);u(k∆x,m∆t)) (4.85)

−φ(
u(k∆x, (m + 1)∆t) + u(k∆x,m∆t)

2
),

I4,k
d≡ φ(

u(k∆x, (m + 1)∆t) + u(k∆x, (m + 1)∆t)
2

) (4.86)

−φ(u(k∆x, (m +
1
2
)∆t)).

The following estimates are easily obtained:

|I1,k| ≤
1
2

(
−p + 3r(C2)2

) ∣∣∣e(m+1)
k

∣∣∣ , (4.87)

|I2,k| ≤
1
2

(
−p + 3r(C2)2

) ∣∣∣e(m)
k

∣∣∣ , (4.88)

|I4,k| ≤
(
−p + 3r(C2)2

)
(s〈1〉m − 1)u(k∆x, (m +

1
2
)∆t). (4.89)

The estimate for (I3,k)N
k=0,

|I3,k| ≤
r

4
C2 {u(k∆x, (m + 1)∆t) − u(k∆x, m∆t)}2

, (4.90)
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is obtained by

u3 + u2v + uv2 + v3

4
−

(
u + v

2

)3

=
1
8
(u + v)(u − v)2. (4.91)

From these inequalities we obtain

∥I1∥2 ≤ 1
4

(
−p + 3r(C2)2

)2 ∥e(m+1)∥2, (4.92)

∥I2∥2 ≤ 1
4

(
−p + 3r(C2)2

)2 ∥e(m)∥2, (4.93)

∥I3∥2 ≤ 1
16

r2 (C2)
2 ∥ {u(·, (m + 1)∆t) − u(·,m∆t)}2 ∥2, (4.94)

∥I4∥2 ≤
(
−p + 3r(C2)2

)2 ∥(s〈1〉m − 1)u(·, (m +
1
2
)∆t)∥2. (4.95)

We obtain (4.78) by substituting (4.92)–(4.95) into

∥φ̃(U (m+1);U (m)) − φ(m+ 1
2 )∥2 ≤ 4

4∑

i=1

∥Ii∥2. (4.96)

PROPOSITION 4.5

{
1 − 2∆t

(
1
2

+

{
−p + 3r(C2)2

}2

−q

)}
∥e(m+1)∥2

≤ ∥e(m)∥2 + ∆t
4∑

i=1

∥ζ(m+ 1
2 )

i ∥2. (4.97)

PROOF From Proposition 4.3 and Proposition 4.4, we obtain

1
∆t

{
∥e(m+1)∥2 − ∥e(m)∥2

}

≤ 1
2

{
∥e(m+1)∥2 + ∥e(m)∥2

}

−1
q

[{
−p + 3r(C2)2

}2
{
∥e(m+1)∥2 + ∥e(m)∥2

}

−q
{
∥ζ(m+ 1

2 )
3 ∥2 + ∥ζ(m+ 1

2 )
4 ∥2

}]

+∥ζ(m+ 1
2 )

1 ∥2 + ∥ζ(m+ 1
2 )

2 ∥2 (4.98)
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=

(
1
2

+

{
−p + 3r(C2)2

}2

−q

) {
∥e(m+1)∥2 + ∥e(m)∥2

}

+
4∑

i=1

∥ζ(m+ 1
2 )

i ∥2. (4.99)

Hence we obtain the following inequality

1
∆t

{
∥e(m+1)∥2 − ∥e(m)∥2

}

≤

(
1
2

+

{
−p + 3r(C2)2

}2

−q

)
2∥e(m+1)∥2 +

4∑

m=1

∥ζ(m+ 1
2 )

m ∥2. (4.100)

PROPOSITION 4.6
If

∆t <
1

2 + 4{−p+3r(C2)2}2

−q

, (4.101)

then

∥e(m)∥2 ≤ ∆t

m∑

l=1

(C3)
l

4∑

i=1

∥ζ(m+ 1
2−l)

i ∥2, (4.102)

where

C3
d≡ 1 +

(
2 + 4

{
−p + 3r(C2)2

}2

−q

)
∆t. (4.103)

PROOF From Proposition 4.3 and Proposition 4.4 we obtain
{

1 − 2∆t

(
1
2

+

{
−p + 3r(C2)2

}2

−q

)}
∥e(m+1)∥2

≤ ∥e(m)∥2 + ∆t
4∑

i=1

∥ζ(m+ 1
2 )

i ∥2. (4.104)

If the inequality (4.101) is satisfied, from (4.104) we obtain

∥e(m)∥2 ≤ C3

[
∥e(m−1)∥2+ ∆t

4∑

m=1

∥ζ(m− 1
2 )

m ∥2

]

≤ (C3)m∥e(0)∥2 + ∆t
m∑

l=1

(C3)
l

4∑

i=1

∥ζ(m+ 1
2−l)

i ∥2. (4.105)
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The term regarding e(0) vanishes since the error of the initial data is zero.

Now we are in a position to present the main convergence result.

THEOREM 4.4
Suppose that ∆t is small enough to satisfy the condition (4.37) and (4.101). If
(4.1) and (4.5) have a solution such that u(x, t) ∈ C6 ([0, L] × [0, T ]), then the
solution of the difference scheme (4.9) converges to the solution of (4.1) and
(4.5) in the sense of discrete L2-norm, and the convergence rate is O((∆x)2 +
(∆t)2).

PROOF From Proposition 4.6 we obtain

∥e(m)∥2 ≤ ∆t(C3)m
m∑

l=1

4∑

i=1

∥ζ(m+ 1
2−l)

i ∥2. (4.106)

If (4.1) and (4.5) have a solution such that u(x, t) ∈ C6 ([0, L] × [0, T ]), then

ζ
(m+ 1

2 )

1,k = − (∆t)2

24
∂3u

∂t3

∣∣∣∣
x=k∆x

t=t1

+
(∆x)2

12
∂4

∂x4

(
δG

δu

)∣∣∣∣ x=x1
t=(m+ 1

2 )∆t

, (4.107)

ζ
(m+ 1

2 )

2,k =
√
−q


 (∆x)2

12
∂4u

∂x4

∣∣∣∣ x=x2
t=(m+ 1

2 )∆t

+
(∆t)2

8
∂4u

∂t2∂x2

∣∣∣∣
x=x3
t=t2


 , (4.108)

ζ
(m+ 1

2 )

3,k =
r

2
√
−q

C2(∆t)2
(

∂u

∂t

∣∣∣∣
x=k∆x

t=t3

)2

, (4.109)

ζ
(m+ 1

2 )

4,k =
r√
−q

{
−p + 3r(C2)2

}2 (∆t)2

8
∂2u

∂t2

∣∣∣∣
x=k∆x

t=t4

, (4.110)

where t1, t2, t3, t4 ∈ [m∆t, (m + 1)∆t] and x1, x2, x3 ∈ [(k− 1)∆x, (k + 1)∆x].
From these there is a constant C4 such that

4∑

i=1

∥ζ(m+ 1
2 )

i ∥2 ≤ C4L
(
∆x2 + ∆t2

)2
. (4.111)

From (4.106) and (4.111) we obtain the following evaluation of the error,

∥e(m)∥

≤
√

C4LT exp

[(
1 +

2
{
−p + 3r(C2)2

}2

−q

)
T

]
(
∆x2 + ∆t2

)
, (4.112)

where T = m∆t.
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4.1.1.5 Further Topic: Two-Dimensional Examples

The procedure in Chapter 3 is presented only for the one-dimensional cases.
When the domain is rectangular, however, it is straightforward to extend the
procedure to two- or three-dimensional cases, by simply applying the method
for each direction.

For example, we can easily construct a dissipative scheme for the two-
dimensional Cahn–Hilliard equation as follows.

Scheme 4.1 (Dissipative scheme for the 2D Cahn–Hilliard equation)
We here denote the numerical solution by U

(m)
k,l ≅ u(k∆x, l∆y, m∆t) (k =

0, 1, . . . , Nx, l = 0, 1, . . . , Ny, m = 0, 1, 2, . . .) and also write U (m) =(
U

(m)
0,0 , . . . , U

(m)
Nx,Ny

)⊤
. Given an initial data U (0), the approximate solutions

U (1),U (2), . . . are calculated using the recurrence equation

U
(m+1)
k,l − U

(m)
k,l

∆t

=
(
δ
〈2〉
k + δ

〈2〉
l

) {
p

(
U

(m+1)
k,l + U

(m)
k,l

2

)
+ q

(
δ
〈2〉
k + δ

〈2〉
l

) (
U

(m+1)
k,l + U

(m)
k,l

2

)

+r

(
(U (m+1)

k,l )3 + (U (m+1)
k,l )2U (m)

k,l + U
(m+1)
k,l (U (m)

k,l )2 + (U (m)
k,l )3

4

)}
, (4.113)

with discrete boundary conditions applied to two spatial directions correspond-
ing to (1.4).

Scheme 4.1 keeps the desired discrete dissipation property, and the dis-
crete mass conservation property (we omit their proof). We here show some
numerical results in Figure 4.1.

4.1.2 Allen–Cahn Equation

4.1.2.1 Introduction to Problem

As noted in Section 2.2, the Allen–Cahn equation

∂u

∂t
= pu + ru3 + q

∂2u

∂x2
(4.114)

where p > 0, q > 0 and r < 0, is a special case of s = 0 of the target PDEs 1
with

G(u, ux) = −p

2
u2 − r

4
u4 +

q

2
(ux)2. (4.115)

This is also a mathematical model to some phase separation and domain
coarsening phenomenon. This quite resembles the Cahn–Hilliard equation in
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FIGURE 4.1: Numerical solutions of the Cahn–Hilliard equation using
Scheme 4.1 on a 2D uniform rectangular mesh: ∆x = ∆y = 1/30 and
∆t = 3/2000. Top left: profiles at time step m = 0, top right: at m = 10,
middle left: at m = 20, middle right: at m = 30, bottom: at m = 40.
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the previous subsection, but a difference is that the Allen–Cahn equation does
not have a mass conservation law.

Here we apply the Neumann boundary condition:

ux(0, t) = ux(L, t), t > 0. (4.116)

4.1.2.2 Numerical Scheme

To construct a numerical scheme, we take the discrete local energy function
as

Gd,k(U)
d≡ − p

2
(Uk)2 +

r

4
(Uk)4 +

q

2

(
(δ+kUk)2 + (δ−kUk)2

2

)
. (4.117)

Following the same procedure in the previous subsection, we obtain a scheme:

Uk
(m+1) − Uk

(m)

∆t
= − δGd

δ(U (m+1),U (m))k

, (4.118)

where

δGd

δ(U ,V )k
= −p

(
Uk + Vk

2

)
− r

(
(Uk)3 + (Uk)2Vk + Uk(Vk)2 + (Vk)3

4

)

−q δ
〈2〉
k

(
Uk + Vk

2

)
. (4.119)

Let us impose the discrete Neumann boundary condition:

δ
〈1〉
k U

(m)
0 = δ

〈1〉
k U

(m)
N , m = 0, 1, 2, . . . . (4.120)

Then it is easy to confirm that the discrete global energy

Jd(U (m))
d≡

N∑

k=0

′′Gd,k(U (m))∆x (4.121)

is dissipated. In fact, we can follow exactly the same argument in the previous
subsection for Br,1(U (m+1),U (m)) = 0 to find that Theorem 3.1 holds.

Let us here also try more advanced one. Note that the above scheme is
nonlinear with respect to the unknown variable U (m+1) (observe that the dis-
crete variational derivative is quadratic with respect to Uk). This forces us to
utilize some iterative solver in each time step. As a remedy for this compu-
tational difficulty, in Chapter 6 a linearization technique will be introduced
(a brief introduction was also given in Section 1.4.2), by which we can design
a linearly implicit (i.e. still implicit but linear with respect to the unknown
variable) scheme, and accordingly save the computational effort to a consider-
able extent. In what follows, we demonstrate an example for the Allen–Cahn
equation, without getting into the detail of the linearization technique.
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For a linear scheme, we start by defining a discrete energy function such as

Gd,k(U ,V )
d≡ −p

2
UkVk − r

4
(Uk)2(Vk)2

+
q

2
(δ+kUk)2 + (δ−kUk)2 + (δ+kVk)2 + (δ−kVk)2

4
. (4.122)

The “trick” here is to define a discrete energy function by two numerical solu-
tions. If we carry out “discrete variation” for this multistep energy function,
then we are able to derive the linearly implicit scheme:

Uk
(m+1) − Uk

(m−1)

2∆t
= − δGd

δ(U (m+1),U (m),U (m−1))k

, (4.123)

where

δGd

δ(U ,V ,W )k
= −pVk − r(Vk)2

(
Uk + Wk

2

)
− qδ

〈2〉
k

(
Uk + Wk

2

)
. (4.124)

Note that now the unknown variable U (m+1) (which corresponds to U in the
discrete variational derivative) appears only linearly in the scheme, and thus
this is a linear scheme. In the next subsection, we will test this scheme in a
two-dimensional setting.

4.1.2.3 Further Topic: Two-Dimensional Examples

Let us test the two-dimensional version of the above linearly implicit scheme.

Scheme 4.2 (Linearly implicit scheme for 2D Allen–Cahn equation)
Given an initial data U (0), we propose the following scheme to obtain the ap-
proximate solutions U (1),U (2), . . ..

U
(m+1)
k,l − U

(m−1)
k,l

2∆t
= p U

(m)
k,l + r

(
U

(m)
k,l

)2
(

U
(m+1)
k,l + U

(m−1)
k,l

2

)

+q δ
〈2〉
k,l

(
U

(m+1)
k,l + U

(m−1)
k,l

2

)
(4.125)

under the following boundary conditions,

δ
〈1〉
k U

(m)
k,l

∣∣∣
k=0,M

= δ
〈1〉
l U

(m)
k,l

∣∣∣
l=0,N

= 0, (4.126)

for m = 1, 2, . . . .

Scheme 4.2 has the following discrete dissipation property. We omit the
proof.
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THEOREM 4.5
For the numerical solution U (m) of the scheme, the following inequality holds.

Jd(U (m+1),U (m)) ≤ Jd(U (m),U (m−1)), for m = 1, 2, . . . . (4.127)

Here we define

Jd(U ,V )
d≡

Nx∑

k=0

′′
Ny∑

l=0

′′Gd,k,l(U ,V )∆x∆y, (4.128)

Gd,k,l(U ,V )
d≡ p

2
Uk,lVk,l −

r

4
(Uk,l)2(Vk,l)2

+
q

2
(δ+kUk,l)2 + (δ−kUk,l)2 + (δ+kVk,l)2 + (δ−kVk,l)2

4

+
q

2
(δ+l Uk,l)2 + (δ−l Uk,l)2 + (δ+l Vk,l)2 + (δ−l Vk,l)2

4
. (4.129)

We show a numerical example in Figure 4.2 with Ω = (0, 4) × (0, 4), p =
100, 0, q = 1.0, r = −100.0, ∆x = ∆y = 0.08 (i.e. Nx = Ny = 50) and
∆t = 10−4. The initial state is

u0(x, y) = 0.5 sin(πx) + 0.5 sin(πy). (4.130)

We observe that numerical phase separation occurs stably. (As we will see
in Chapter 6, generally such linearization can cause numerical instability. In
this case, however, the scheme happily runs without problems.)

4.1.3 Fisher–Kolmogorov Equation

4.1.3.1 Introduction to Problem

As noted in the Section 2.2, the extended Fisher–Kolmogorov equation

∂u

∂t
= −

(
pu + ru3 + q

∂2u

∂x2
+ γ

∂4u

∂x4

)
, (4.131)

where p < 0, q < 0, r > 0, and γ > 0, is a special case of the target PDEs 1
with s = 0 and

G(u, ux, uxx) =
p

2
u2 +

r

4
u4 − q

2
(ux)2 +

γ

2
(uxx)2. (4.132)

The boundary conditions for this problem are

∂u

∂x
= 0,

∂3u

∂x3
= 0,

on boundary.
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FIGURE 4.2: Numerical solutions of the Allen–Cahn equation by the lin-
early implicit scheme 4.2 on 2D rectangular region. The top left figure is the
profile at time t = 0, the top right is t = 0.08, the bottom left is t = 0.20 and
the bottom right is t = 1.00.
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4.1.3.2 Numerical Scheme

To construct a numerical scheme, we take the discrete local energy function
as

Gd,k(U)
d≡ p

2
(Uk)2 +

r

4
(Uk)4 − q

2
(δ+kUk)2 + (δ−kUk)2

2
+

γ

2

(
δ
〈2〉
k Uk

)2

. (4.133)

The resulting scheme becomes

Uk
(m+1) − Uk

(m)

∆t
= − δGd

δ(U (m+1),U (m))k

, (4.134)

where
(

δGd

δ(U ,V )

)

k

= p

(
Uk + Vk

2

)
+ r

(
(Uk)3 + (Uk)2Vk + Uk(Vk)2 + (Vk)3

4

)

+q δ
〈2〉
k

(
Uk + Vk

2

)
+ γ δ

〈4〉
k

(
Uk + Vk

2

)
. (4.135)

We impose the following boundary conditions,

δ
〈1〉
k Uk

(m)
∣∣∣
k=0,N

= 0, δ
〈3〉
k Uk

(m)
∣∣∣
k=0,N

= 0. (4.136)

These boundary conditions satisfy the conditions of the theorem 3.1 and this
scheme is dissipative in the sense that the the discrete global energy

Jd(U (m))
d≡

N∑

k=0

′′Gd,k(U (m))∆x (4.137)

dissipates.

4.1.3.3 Numerical Examples

We show a numerical example in Figure 4.3 with p = −100, q = −1,
r = 100, γ = 0.01, ∆x = 0.025 and ∆t = 10−4. The initial state is taken to

u0(x) = 0.1 sin(πx) − 0.1 cos(0.5πx). (4.138)

For these numerical solutions we confirm that the global energy decreases
monotonically as time evolves in Figure 4.4.

4.2 Target PDEs 2

In this section, examples for the target PDEs 2 (defined in Section 2.2;
real-valued, single, conservative PDEs) are shown.
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4.2.1 Korteweg–de Vries Equation

4.2.1.1 Introduction to Problem

Let us consider the famous Korteweg–de Vries equation (KdV):

∂u

∂t
=

∂

∂x

(
1
2
u2 +

∂2u

∂x2

)
, x ∈ (0, L), t > 0. (4.139)

There are a lot of studies about numerical integrators for this equation, in-
cluding [71, 73, 78, 84, 108, 137, 142, 149, 160, 170]. This is an example of
the conservative PDEs 2, where

s = 0, G(u, ux) =
1
6
u3 − 1

2

(
∂u

∂x

)2

. (4.140)

We impose the standard periodic boundary condition:

u(j)(0, t) = u(j)(L, t), j = 0, 1, 2, t > 0.

4.2.1.2 Numerical Scheme

We define a discrete energy function by

Gd,k(U)
d≡ 1

6
(Uk)3 − 1

2

((
δ+
k Uk

)2
+

(
δ−k Uk

)2

2

)
. (4.141)

Then by (3.30),

δGd

δ(U (m+1),U (m))k

=
1
2

(
(Uk

(m+1))2 + Uk
(m+1)Uk

(m) + (Uk
(m))2

3

)

+δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
. (4.142)

This concrete form can be calculated via (3.27a), (3.27b) and (3.27c). As
emphasized in Section 4.1.1, it is also possible to calculate it by a direct
discrete variation; see Remark 4.5 below for this. In either case, by Scheme
3.2 we have, for m = 0, 1, 2, . . . .,

Uk
(m+1) − Uk

(m)

∆t
= δ

〈1〉
k

δGd

δ(U (m+1),U (m))k

= δ
〈1〉
k

{
1
2

(
(Uk

(m+1))2 + Uk
(m+1)Uk

(m) + (Uk
(m))2

3

)

+ δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)}
,

k = 0, . . . , N − 1. (4.143)
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This scheme is conservative if the following conditions are satisfied:

Br,1(U (m+1),U (m))

=
1
2

[
δ+
k (Uk

(m+1) + Uk
(m))

2
· µ+

k (Uk
(m+1) − Uk

(m))

+
δ−k (Uk

(m+1) + Uk
(m))

2
· µ−

k (Uk
(m+1) − Uk

(m))

]N

0

= 0, (4.144)

B
〈1〉
r,2 (U (m+1),U (m))

=
1
2

[
δGd

δ(U (m+1),U (m))k

(
s
〈1〉
k

δGd

δ(U (m+1),U (m))k

)]N

0

= 0. (4.145)

Both conditions are satisfied if we discretize the periodic boundary condition
as

Uk
(m) = U

(m)
k mod N , m = 0, 1, 2, . . . . (4.146)

The KdV equation is a completely integrable equation which has infinitely
many conservation laws. The scheme above follows another conservation law
(“mass” conservation law):

N∑

k=0

′′Uk
(m)∆x =

N∑

k=0

′′U
(0)
k ∆x, m = 0, 1, 2, . . . , (4.147)

which corresponds to
d
dt

∫ L

0

udx = 0,

in continuous context. This conservation is confirmed by

1
∆t

N∑

k=0

′′
(
Uk

(m+1) − Uk
(m)

)
∆x =

N∑

k=0

′′

(
δ
〈1〉
k

δGd

δ(U (m+1),U (m))k

)
∆x

=

[
µ
〈1〉
k

δGd

δ(U (m+1),U (m))k

]N

0

= 0, (4.148)

under the periodic boundary condition (4.146).

REMARK 4.5 As noted in Remark 3.3, and demonstrated in Section 4.1.1,
the discrete variational derivative can be found by directly considering the fac-
torization (3.32) for the specific energy function (4.141). Let us see this again
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in the case of KdV as follows.
N∑

k=0

′′
(
Gd,k(U (m+1)) − Gd,k(U (m))

)
∆x =

=
N∑

k=0

′′
[
1
6

(
(Uk

(m+1))3 − (Uk
(m))3

)

− 1
2

{(
(δ+

k Uk
(m+1))2 + (δ−k Uk

(m+1))2

2

)
−

(
(δ+

k Uk
(m))2 + (δ−k Uk

(m))2

2

)}]
∆x

=
N∑

k=0

′′

[
1
2

(
(Uk

(m+1))2 + Uk
(m+1)Uk

(m) + (Uk
(m))2

3

) (
Uk

(m+1) − Uk
(m)

)

+ δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

) (
Uk

(m+1) − Uk
(m)

)]
∆x + (boundary terms).

In the last equality the summation-by-parts formula (3.12a) is used. We
here omit the concrete form of the boundary terms, which corresponds to the
boundary term Br,1(U (m+1),U (m)) in (3.32), for brevity.

4.2.1.3 Numerical Examples

An example of two-soliton propagation is shown in Figure 4.5.1 The initial
data is set to

u(x, 0) = 48sech2(2(x − 36)) + 12sech2(x − 24) (4.149)

and parameters are L = 40, ∆x = 0.05 and ∆t = 0.0001. Notice that the
intensities of solitons are quite large. For such large solitons often numerical
schemes tend to be unstable due to the nonlinearity of the equation. In
the present example, however, the computation proceeds quite stably. This
clearly shows the superiority of the conservative scheme. In Figure 4.6,2 the
evolutions of the discrete energy and mass are shown. Both are well conserved
to the machine accuracy.

4.2.2 Zakharov–Kuznetsov Equation

4.2.2.1 Introduction to Problem

The Zakharov–Kuznetsov equation (2.31) (ZK):

∂u

∂t
=

∂

∂x

(
−u2

2
− ∂2u

∂x2
− ∂2u

∂y2

)

1,2 Reprinted from J. Comput. Phys., 156, D. Furihata, Finite difference schemes for ∂u
∂t

=
“

∂
∂x

”α
δG
δu

that inherit energy conservation or dissipation property, 181–205, Copyright

(1999), with permission from Elsevier.
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is a two-dimensional PDE, and thus is not explicitly covered by the procedure
in Chapter 3. However, as demonstrated in Section 4.1.1, it is easy to extend
the procedure to the two-dimensional PDE as far as the domain is rectangular.
If in this way we allow two-dimensional PDEs, the ZK can be regarded as an
example of the target PDEs 2, with s = 0 and

G(u,∇u) = −u3

6
+

(ux)2

2
+

(uy)2

2
. (4.150)

We take the periodic boundary conditions for this problem and assume that
the space region Ω is rectangular. In addition to the standard energy:

J(u)
d≡

∫

Ω

G(u,∇u)dx, (4.151)

the ZK has the “mass” as its invariant:

I(u)
d≡

∫

Ω

u dx. (4.152)

4.2.2.2 Numerical Schemes

Let us define the two-dimensional discrete energy function by

Gd,k,l(U)
d≡ −1

6
(Uk,l)3

+
(δ+kUk,l)2 + (δ−kUk,l)2

4
+

(δ+l Uk,l)2 + (δ−l Uk,l)2

4
. (4.153)

Then by the two-dimensional version of Scheme 3.2, we obtain a nonlinear
scheme:

U
(m+1)
k,l − U

(m)
k,l

∆t
= δ

〈1〉
k

δGd

δ(U (m+1),U (m))k,l

0 ≤ k ≤ Nx, 0 ≤ l ≤ Ny,

(4.154)
where

δGd

δ(U (m+1),U (m))k,l

= −
(U (m+1)

k,l )2 + (U (m+1)
k,l )(U (m)

k,l ) + (U (m)
k,l )2

6

−
(
δ
〈2〉
k + δ

〈2〉
l

) (
U

(m+1)
k,l + U

(m)
k,l

2

)
, (4.155)

under the discrete periodic boundary condition.
This scheme has the following discrete invariants:

Jd(U (m))
d≡

Nx∑

k=0

′′
Ny∑

l=0

′′ Gd,k,l(U
(m))∆x∆y, (4.156)

Id(U (m))
d≡

Nx∑

k=0

′′
Ny∑

l=0

′′ U
(m)
k,l ∆x∆y. (4.157)
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As in the Allen–Cahn case (Section 4.1.2), we are also able to design a lin-
early implicit scheme using the linearization technique discussed in Chapter 6.
An example is (we omit the derivation detail):

U
(m+1)
k,l − U

(m−1)
k,l

2∆t
= δ

〈1〉
k

δGd

δ(U (m+1),U (m),U (m−1))k,l

(4.158)

where

δGd

δ(U (m+1),U (m),U (m−1))k,l

= −

(
U

(m+1)
k,l + U

(m)
k,l + U

(m−1)
k,l

)
U

(m)
k,l

6

−
(
δ
〈2〉
k + δ

〈2〉
l

) (
U

(m+1)
k,l + U

(m−1)
k,l

2

)
. (4.159)

This scheme can be derived out from

Gd,k,l(U ,V )
d≡ − (Uk,l + Vk,l)Uk,lVk,l

12

+
(δ+kUk,l)2 + (δ−kUk,l)2 + (δ+kVk,l)2 + (δ−kVk,l)2

8

+
(δ+l Uk,l)2 + (δ−l Uk,l)2 + (δ+l Vk,l)2 + (δ−l Vk,l)2

8
. (4.160)

This linearly implicit scheme also has two invariants. First,

Jd(U (m+1),U (m))
d≡

Nx∑

k=0

′′
Ny∑

l=0

′′ Gd,k,l(U
(m+1),U (m))∆x∆y (4.161)

is preserved. Second,

Id(U (m)) =
{

Id(U (0)) if m is even,

Id(U (1)) if m is odd,
(4.162)

holds for any m > 0.

4.2.2.3 Numerical Examples

In Figure 4.7 we show numerical solutions of the nonlinear scheme, with
Ω = [0, 32] × [0, 32], Nx = Ny = 100 (i.e., ∆x = ∆y = 0.32), and ∆t = 0.01.
We first investigate the dynamics of solutions close to the 1D soliton, and thus
take the initial state as

u0(x, y) = 3 cosech2(0.5
√

2(x − 16)) + 0.05 rand, (4.163)

where “rand” is a random function with 0 ≤ rand ≤ 1.
Next, we show the dynamics of two 2D soliton-like solutions in Figure 4.8.

Initial state profile is constructed by choosing appropriate two 2D soliton-like
profiles obtained by random computations.
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FIGURE 4.7: Time evolution of the traveling 1D soliton-like solutions by
the nonlinear scheme. The left figure is the initial profile and the right is the
profile of time t = 15.0.
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FIGURE 4.8: The time evolution of the two 2D soliton-like solutions. The
left upper: the profile of time t = 2.0, the right upper: t = 4.0, the left
bottom: t = 5.0, the right bottom: t = 7.0.
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4.3 Target PDEs 3

In this section, examples for the target PDEs 3 (defined in Section 2.3;
complex-valued, single, dissipative PDEs) are shown.

4.3.1 Complex-Valued Ginzburg–Landau Equation

4.3.1.1 Introduction to Problem

The complex-valued Ginzburg–Landau equation (CGL):

∂u

∂t
= p

∂2u

∂x2
+ q|u|2u + ru, x ∈ (0, L), t > 0, p > 0, q < 0, r ∈ R, (4.164)

is an example of the dissipative PDEs 1. We consider the CGL under the
periodic boundary condition:

u(j)(0, t) = u(j)(L, t), j = 0, 1, 2, t > 0. (4.165)

The local energy G(u, ux) is given by

G(u, ux) = p|ux|2 −
q

2
|u|4 − r|u|2. (4.166)

4.3.1.2 Numerical Scheme

Following the procedure in Section 3.3, we firstly define the discrete local
energy by

Gd,k(U)
d≡ p

(
|δ+

k Uk|2 + |δ−k Uk|2

2

)
− q

2
|Uk|4 − r|Uk|2. (4.167)

Then, by the definition of the complex discrete variational derivative (3.72b)
(and the related definitions (3.70a)–(3.70c)), the discrete variational derivative
can be calculated as

δGd

δ(U (m+1),U (m))k

=

−p δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
−q

(
|Uk

(m+1)|2 + |Uk
(m)|2

2

)(
Uk

(m+1) + Uk
(m)

2

)

− r

(
Uk

(m+1) + Uk
(m)

2

)
. (4.168)
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Then from (3.76), we obtain a finite difference scheme:

Uk
(m+1) − Uk

(m)

∆t
=

p δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
+q

(
|Uk

(m+1)|2 + |Uk
(m)|2

2

)(
Uk

(m+1) + Uk
(m)

2

)

+ r

(
Uk

(m+1) + Uk
(m)

2

)
. (4.169)

We here impose the discrete periodic boundary condition:

Uk
(m) = U

(m)
k mod N , m = 0, 1, 2, . . . . (4.170)

Under the discrete periodic boundary condition, it is almost obvious that the
condition (3.77) in Theorem 3.3 is satisfied (the periodic boundary condition
almost automatically eliminates any boundary terms), and thus the dissipa-
tion property (3.78) holds.

4.3.2 Newell–Whitehead Equation

4.3.2.1 Introduction to Problem

Let us consider the Newell–Whitehead equation (NW):

∂u

∂t
(t, x, y) = µu−|u|2u+

(
∂

∂x
− i

2kc

∂2

∂y2

)2

u,




(x, y) ∈ [0, Lx] × [0, Ly],
t > 0,
µ, kc ∈ R.


 .

(4.171)
We assume for simplicity the periodic boundary condition in both directions.
The local energy for the NW is

G(u, ux, uyy) = −µ|u|2 +
1
2
|u|4 +

∣∣∣∣ux − i
2kc

uyy

∣∣∣∣
2

. (4.172)

By integrating the local energy on the domain [0, Lx] × [0, Ly], we have the
global energy for the NW accordingly:

J(u) =
∫ Lx

0

∫ Ly

0

(
−µ|u|2 +

1
2
|u|4 +

∣∣∣∣
∂u

∂x
− i

2kc

∂2u

∂y2

∣∣∣∣
2
)

dxdy. (4.173)

Note that this is a two-dimensional PDE. Still, the NW belongs to the
target PDEs 3 (it is an easy exercise to check that the variational derivative
of (4.172) coincides with the right hand side of the NW), and since now the
domain is simply rectangular, by applying the procedure in Chapter 3 to x
and y directions separately, we can construct a dissipative scheme. Below we
demonstrate this.
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4.3.2.2 Numerical Scheme

We define the discrete energy as

Gd,k,l(U)
d≡ − µ|Uk,l|2 +

1
2
|Uk,l|4

+
1
2

(∣∣∣∣δ
+
k Uk,l −

i
2kc

δ
〈2〉
l Uk,l

∣∣∣∣
2

+
∣∣∣∣δ

−
k Uk,l −

i
2kc

δ
〈2〉
l Uk,l

∣∣∣∣
2
)

, (4.174)

and accordingly the discrete global energy as

Jd(U)
d≡

Nx∑

k=0

′′
Ny∑

l=0

′′Gd,k,l(U)∆x∆y, (4.175)

where Nx and Ny are the number of grid points in x and y, ∆x
d≡ Lx/Nx,

∆y
d≡ Ly/Ny, and numerical solution U

(m)
k,l ≅ u(m∆t, k∆x, l∆y) is now C(Nx+1)(Ny+1)

vector. The difference operators with the subscript l operate in l direction.

To define a discrete variational derivative we consider the difference Jd(U)−
Jd(V ) through analogy with the 1-dimensional case as follows.

Jd(U) − Jd(V ) =
Nx∑

k=0

′′
Ny∑

l=0

′′

{
δGd

δ (U ,V )k,l

(Uk,l − Vk,l)

+
δGd

δ
(
U , V

)
k,l

(Uk,l − Vk,l)

}
∆x∆y, (4.176)

where

δGd

δ
(
U ,V

)
k,l

= −µ

(
Uk,l + Vk,l

2

)
+

(
|Uk,l|2 + |Vk,l|2

2

) (
Uk,l + Vk,l

2

)

−
(

δ
〈2〉
k − i

kc
δ
〈1〉
k δ

〈2〉
l − 1

4k2
c

δ
〈4〉
l

)(
Uk,l + Vk,l

2

)
.(4.177)

In the above calculation we used the summation-by-parts formula separately
in k- and l-directions.
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Then we have a finite difference scheme:

U
(m+1)
k,l − U

(m)
k,l

∆t

= − δGd

δ
(
U (m+1), U (m)

)
k,l

= µ

(
U

(m+1)
k,l + U

(m)
k,l

2

)
−




∣∣∣U (m+1)
k,l

∣∣∣
2

+
∣∣∣U (m)

k,l

∣∣∣
2

2




(
U

(m+1)
k,l + U

(m)
k,l

2

)

+
(

δ
〈2〉
k − i

kc
δ
〈1〉
k δ

〈2〉
l − 1

4k2
c

δ
〈4〉
l

) (
U

(m+1)
k,l + U

(m)
k,l

2

)
. (4.178)

We impose the discrete periodic boundary condition in both directions as
follows.

U
(m)
k,l = U

(m)
(k mod Nx),l = U

(m)
k,(l mod Ny). (4.179)

It is easy to see that under the discrete periodic boundary condition (4.179)
the dissipation property holds for the scheme.

Since this problem is two-dimensional, the resulting scheme is relatively
expensive as is. In Chapter 6 we will present a numerical example for the
linearly implicit version of the above scheme.

4.4 Target PDEs 4

In this section, examples for the target PDEs 4 (defined in Section 2.3;
complex-valued, single, conservative PDEs) are shown.

4.4.1 Nonlinear Schrödinger Equation

4.4.1.1 Introduction to Problem

We consider the nonlinear Schrödinger equation (NLS):

i
∂u

∂t
= −∂2u

∂x2
− γ|u|p−1u, x ∈ (0, L), t > 0, γ ∈ R, p = 3, 4, . . . , (4.180)

under the periodic boundary condition:

u(j)(0, t) = u(j)(L, t), j = 0, 1, 2, t > 0. (4.181)

This is an example of the conservative PDEs 4. The local energy G(u, ux) for
NLS is given by

G(u, ux) = −|ux|2 +
2γ

p + 1
|u|p+1. (4.182)
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We here also note that NLS has an additional invariant (which is often called
“probability” in physical context):

P (u) =
∫ L

0

|u|2dx, (4.183)

since

d
dt

∫ L

−L

|u(x, t)|2dx =
∫ L

−L

(
u

∂u

∂t
+

∂u

∂t
u

)
dx = i

∫ L

−L

(
u

δH

δu
− δH

δu
u

)
dx

= i
∫ L

−L

{
u

(
−uxx − γ|u|p−1u

)
−

(
−uxx − γ|u|p−1u

)
u
}

dx

= i
∫ L

−L

(−uuxx + uxxu)dx = i
∫ L

−L

(uxux − uxux)dx + i [−uux + uxu]L−L

= 0. (4.184)

The boundary term, i [−uux + uxu]L−L, vanishes in light of the periodic bound-
ary condition.

4.4.1.2 Numerical Scheme

Let us construct a conservative scheme following the procedure in Sec-
tion 3.3. We define the associated discrete local energy by

Gd,k(U)
d≡ −

|δ+
k Uk|2 + |δ−k Uk|2

2
+

2γ

p + 1
|Uk|p+1. (4.185)

Note that this Gd approximates G(u, ux) above, and can be decomposed as
assumed in (3.66). Calculating mechanically the complex discrete variational
derivatives by (3.72a), (3.72b), and (3.70a), (3.70b), (3.70c), we have

δGd

δ(U (m+1), U (m))k

= δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)

+ γ

(
|Uk

(m+1)|p+1 − |Uk
(m)|p+1

|Uk
(m+1)|2 − |Uk

(m)|2

)(
Uk

(m+1) + Uk
(m)

2

)
.

(4.186)

(Here we like to stress again that, as repeatedly emphasized in Remark 3.3
and other related comments, it is much easier to directly consider the discrete
variation process for (4.185).)



Applications 169

Then from (3.86) we obtain a finite difference scheme:

i

(
Uk

(m+1) − Uk
(m)

∆t

)
= −δ

〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)

−γ

(
|Uk

(m+1)|p+1 − |Uk
(m)|p+1

|Uk
(m+1)|2 − |Uk

(m)|2

) (
Uk

(m+1) + Uk
(m)

2

)
.

(4.187)

We employ the discrete periodic boundary condition:

Uk
(m) = U

(m)
k mod N , m = 0, 1, 2, . . . . (4.188)

As it satisfies (3.77), Theorem 3.4 holds; i.e., the discrete global energy is
conserved. Moreover, the scheme preserves the discrete version of P (u) as
follows.

THEOREM 4.6

The solution of the scheme (4.187) satisfies

N∑

k=0

′′|Uk
(m)|2∆x = const., m = 0, 1, 2, · · · , (4.189)

under the discrete periodic boundary condition (4.188).

PROOF The proof goes exactly the same as in the continuous case, but
in order to avoid typesetting lengthy discrete formulas, below we split the
discussion into parts. We firstly note that

1
∆t

N∑

k=0

′′
[
|Uk

(m+1)|2 − |Uk
(m)|2

]
∆x

=
N∑

k=0

′′

[(
Uk

(m+1) + Uk
(m)

2

)(
Uk

(m+1) − Uk
(m)

∆t

)
+ (c.c.)

]
∆x.

= i
N∑

k=0

′′

[(
Uk

(m+1) + Uk
(m)

2

)
δGd

δ(U (m+1),U (m))k

− (c.c.)

]
∆x.

If we substitute the concrete form of the discrete variational derivative (4.186)
into the above, the second term in (4.186) obviously cancels out mutually in
the complex conjugate pairs. For the first term of (4.186), we easily see by the



170 Discrete Variational Derivative Method

summation-by-parts formula and the discrete periodic boundary condition,

N∑

k=0

′′

[(
Uk

(m+1) + Uk
(m)

2

)(
−δ

〈2〉
k

Uk
(m+1) + Uk

(m)

2

)]
∆x

=
N∑

k=0

′′

[
δ+
k

(
Uk

(m+1) + Uk
(m)

2

)
· δ+

k

(
Uk

(m+1) + Uk
(m)

2

)]
∆x.

Thus it is canceled out as well.

The scheme (4.187) coincides with the Delfour–Fortin–Payre scheme [35].

4.4.1.3 Numerical Examples

We here present some numerical examples (see also Section 5.2.4.2, where
related examples are shown). The NLS is integrated in 0 ≤ t ≤ 100, with the
initial data:

u(x, 0) = 4sech(2(x − 10))eix + 2sech(x − 20)eix/2.

Other parameters are set to γ = 0.5, L = 30, N = 200 (i.e. ∆x = 30/200),
and ∆t = 0.1.

Figure 4.9 shows the time evolution of the solutions. The two-solitons
propagate stably. In Figure 4.10, the evolution of the discrete energy and
probability are shown. Both are well preserved.
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FIGURE 4.9: Evolution of the numerical solution.
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FIGURE 4.10: Evolution of the discrete invariants: (left) energy; (right)
probability.

4.4.1.4 Analysis of Scheme

As mentioned above, the scheme has two discrete invariants. They serve as
(discrete) a priori estimates, by which we can prove the stability and conver-
gence of the numerical solution. Let us demonstrate it below.

Let us consider the case of p = 3, namely, when the NLS is cubic:

iut = −uxx − γ|u|2u, x ∈ (0, L), t > 0, γ ∈ R. (4.190)

In this case, it is known that there exists a global solution to the NLS (for
larger p’s, solutions can blow up, and it does not make sense to consider the
“stability”).

We first consider the existence and uniqueness of the solution to the non-
linear system (4.187), i.e., U (m+1). We make use of the following well-known
theorem.

THEOREM 4.7 Brouwer-type fixed-point theorem [8]
Let (H, (·, ·)) be a finite dimensional inner product space and ∥ · ∥ the asso-

ciated norm. Let g : H → H be a continuous function and assume that there
exists α > 0 such that for any z ∈ H that satisfies ∥z∥ = α,

Re (g(z),z) > 0 (4.191)

holds. Then, there exists z∗ ∈ H such that

g(z∗) = 0 and ∥z∗∥ ≤ α. (4.192)

THEOREM 4.8 Existence of a solution
The scheme (4.187) has at least one solution U (m+1).

PROOF We use the notation of discrete functional analysis in Section 3.6.
Rewriting the scheme with a new discrete quantity Vk = 1

2

(
Uk

(m+1) + Uk
(m)

)
,
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we have

2i
∆t

(
Vk − Uk

(m)
)

= −δ
〈2〉
k Vk − γ

(
|2Vk − Uk

(m)|2 + |Uk
(m)|2

)
Vk,

which can be simplified to

Vk = Uk
(m) +

i∆t

2
δ
〈2〉
k Vk +

i∆tγ

2

(
|2Vk − Uk

(m)|2 + |Uk
(m)|2

)
Vk. (4.193)

In order to prove the existence of a solution to the scheme, it suffices to show
that there exists V ∈ SN satisfying (4.193).

Let us apply Brouwer’s fixed-point theorem to the above equation. Let us
define g : SN → SN by

(g(V ))k = Vk − Uk
(m) − i∆t

2
δ
〈2〉
k Vk − i∆tγ

2

(
|2Vk − Uk

(m)|2 + |Uk
(m)|2

)
Vk,

for k = 0, . . . , N − 1. Obviously, g is continuous. We also have

(g(V ),V ) = ∥V ∥2 − (U (m),V ) − i∆t

2

N−1∑

k=0

(δ〈2〉k Vk)Vk∆x

− i∆tγ

2

N−1∑

k=0

(
|2Vk − Uk

(m)|2 + |Uk
(m)|2

)
|Vk|2∆x. (4.194)

The last term on the right-hand side is a purely imaginary number. The third
term on the right-hand side can be rewritten as, by the summation-by-parts
formula,

N−1∑

k=0

(δ〈2〉k Vk)Vk∆x = −
N−1∑

k=0

|δ+
k Vk|2∆x, (4.195)

and hence becomes a purely imaginary number as well (the boundary term
is canceled thanks to the discrete periodic boundary condition). Therefore,
from (4.194) we have

Re(g(V ),V ) = ∥V ∥2 − Re(U (m),V )

≥ ∥V ∥(∥V ∥ − ∥U (m)∥).

By choosing α = ∥U (m)∥ + 1, all the assumptions in Brouwer’s fixed-point
theorem are satisfied, and thus there exists V ∗ ∈ SN such that g(V ∗) = 0.
This completes the proof.

Next, we show that the solution is unique if ∆t is chosen appropriately
small. In order to accomplish this, we need some discrete norm estimates.
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LEMMA 4.1

Let V ∈ SN be a vector that satisfies the following conditions (where c1, c2 are
constants ):

(
N−1∑

k=0

Gd,k(V )∆x =

)
− ∥V x∥2 +

γ

2
∥V ∥4

4 = c1, (4.196a)

∥V ∥2 = c2. (4.196b)

Then,
∥V ∥4

4 ≤ c(c1, c2, γ)

holds, where b is defined in Lemma 3.5, and

c(c1, c2, γ) =





bc
3
2
2

(
bγc

3
2
2

4
+

√
b2γ2c3

2

16
+ c1 + c2

)
when γ ≥ 0,

b
√
−c1 + c2c

3
2
2 when γ < 0.

(4.197)

PROOF When γ ≥ 0, from (4.196a) and (4.196b),

γ

2
∥V ∥4

4 = ∥V ∥2
H1 − c1 − c2.

This, together with Lemma 3.5, shows

∥V ∥2
H1 ≤ bγ

2
∥V ∥H1 · c

3
2
2 + c1 + c2.

Thus,

∥V ∥2
H1 ≤ bγc

3
2
2

4
+

√
b2γ2c3

2

16
+ c1 + c2.

This, again together with Lemma 3.5, shows

∥V ∥4
4 ≤ bc

3
2
2

(
bγc

3
2
2

4
+

√
b2γ2c3

2

16
+ c1 + c2

)
.

When γ < 0, from (4.196a) we immediately have ∥V x∥2 ≤ −c1 (note that,

when γ < 0, −c1 > 0 by (4.196a)). Thus, ∥V ∥4
4 ≤ b

√
−c1 + c2c

3
2
2 .

Using the above lemmas, we can establish the uniqueness of the solution.
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THEOREM 4.9 Uniqueness of the solution

Let c1 be the initial discrete energy and c2 be the initial discrete probability
defined as follows.

c1 =
N−1∑

k=0

(
−|δ+

k Uk
(0)|2 +

γ

2
|Uk

(0)|4
)

∆x,

c2 =
N−1∑

k=0

|Uk
(0)|2∆x,

and b be what was defined in Lemma 3.5, c = c(c1, c2, γ) be what was defined
in Lemma 4.1. Then, if ∆t is sufficiently small such that

(∆t)3(18∆t + 37) <
1

183b2c2γ4

holds (for example, when ∆t < min{(55× 183b2c2γ4)−1/3, 1}), the solution of
the scheme (4.187) is unique.

PROOF We show that if there exist two solutions to (4.193), say V ,W ∈
SN , then they necessarily coincide: V = W . First, we have

∥V − W ∥2

= (V − W ,V − W )

= − i∆t

2

N−1∑

k=0

{
δ
〈2〉
k (Vk − Wk)

}
(Vk − Wk)∆x

− i∆tγ

2

N−1∑

k=0

{
|2Vk − Uk

(m)|2Vk − |2Wk − Uk
(m)|2Wk

}
(Vk − Wk)∆x

− i∆tγ

2

N−1∑

k=0

|Uk
(m)|2|Vk − Wk|2∆x. (4.198)

Applying the summation-by-parts formula, we have

N−1∑

k=0

{
δ
〈2〉
k (Vk − Wk)

}
(Vk − Wk)∆x = −∥(V − W )x∥2.
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From the real and imaginary parts of (4.198), we obtain

∥V − W ∥2

=
∆tγ

2
Im

[
N−1∑

k=0

{
|2Vk − Uk

(m)|2Vk − |2Wk − Uk
(m)|2Wk

}
(Vk − Wk)∆x

]

≤ ∆tγ

2

∣∣∣∣∣
N−1∑

k=0

{
|2Vk − Uk

(m)|2Vk − |2Wk − Uk
(m)|2Wk

}
(Vk − Wk)∆x

∣∣∣∣∣

≤ ∆tγ

2

(
N−1∑

k=0

∣∣∣|2Vk − Uk
(m)|2Vk − |2Wk − Uk

(m)|2Wk

∣∣∣
4
3

∆x

) 3
4

∥V − W ∥4,

(4.199)

∥(V − W )x∥2

≤ γ

∣∣∣∣∣
N−1∑

k=0

{
|2Vk − Uk

(m)|2Vk − |2Wk − Uk
(m)|2Wk

}
(Vk − Wk)∆x

∣∣∣∣∣

+ γ
N−1∑

k=0

|Uk
(m)|2|Vk − Wk|2∆x

≤ γ

(
N−1∑

k=0

∣∣∣|2Vk − Uk
(m)|2Vk − |2Wk − Uk

(m)|2Wk

∣∣∣
4
3

∆x

) 3
4

∥V − W ∥4

+γ

N−1∑

k=0

|Uk
(m)|2|Vk − Wk|2∆x.

(4.200)

Since for any z1, z2, z ∈ C,
∣∣|2z1 − z|2z1 − |2z2 − z|2z2

∣∣ ≤
4

(
|z1| + |z2| + 1

2 |z|
)2 |z1 − z2| holds, we have

(
N−1∑

k=0

∣∣∣|2Vk − Uk
(m)|2Vk − |2Wk − Uk

(m)|2Wk

∣∣∣
4
3

∆x

) 3
4

≤

(
N−1∑

k=0

{
4(|Vk| + |Wk| +

1
2
|Uk

(m)|)2|Vk − Wk|
} 4

3

∆x

) 3
4

≤ 4

{
N−1∑

k=0

(
|Vk| + |Wk| +

1
2
|Uk

(m)|
)4

} 1
2

∥V − W ∥4

≤ 36max
{
∥U (m)∥4, ∥V ∥4, ∥W ∥4

}2

∥V − W ∥4. (4.201)
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Furthermore, the second term at the most right-hand side of (4.200) can be
evaluated as

N−1∑

k=0

|Uk
(m)|2|Vk − Wk|2∆x ≤ ∥U (m)∥2

4∥V − W ∥2
4. (4.202)

Thus, substituting (4.201) and (4.202) into (4.199) and (4.200), we have

∥V − W ∥2 ≤ 18∆tγ max
{
∥U (m)∥4, ∥V ∥4, ∥W ∥4

}2

∥V − W ∥2
4,

(4.203)

∥(V − W )x∥2 ≤ 37γ max
{
∥U (m)∥4, ∥V ∥4, ∥W ∥4

}2

∥V − W ∥2
4.

(4.204)

From the discrete energy and probability conservation properties, and Lemma
4.1, there exists a constant c̃(c1, c2, γ) such that ∥U (m)∥4

4 ≤ c(c1, c2, γ) holds.
Since V and W are solutions of the form V (m+ 1

2 ) = (V (m+1) + V (m))/2,
there also exists a constant c(c1, c2, γ) such that ∥V ∥4

4, ∥W ∥4
4 ≤ c(c1, c2, γ)

holds. Thus,

max
{
∥U (m)∥4, ∥V ∥4, ∥W ∥4

}2

≤ c
1
2 . (4.205)

Thus, from (3.181) in Lemma 3.5, and from (4.203), (4.204), and (4.205),
we have

∥V − W ∥4
4 ≤ b∥V − W ∥H1 ∥V − W ∥3 (4.206)

≤ 18bcγ2∆t
√

18∆t(18∆t + 37)∥V − W ∥4
4.

If in (4.206) 18bcγ2∆t
√

18∆t(18∆t + 37) < 1 holds, i.e.,

(∆t)3(18∆t + 37) <
1

183b2c2γ4

holds, ∥V − W ∥4 = 0. Hence V = W .

From the discrete Sobolev inequality, and the discrete energy and proba-
bility conservation properties, we immediately obtain the boundedness of the
the numerical solution.

THEOREM 4.10 Boundedness of numerical solution
The numerical solution is bounded :

∥U (m)∥∞ < ∞, m = 0, 1, 2, . . . .
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PROOF We have ∥U (m)∥2
2 = const., because of the discrete probability

conservation property. From the proof of Lemma 4.1, ∥U (m)
x ∥2

2 < ∞. Thus,
from the discrete Sobolev inequality in Section 3.6.2.1, we have the claim of
the theorem.

In order to evaluate the convergence, let us first define the truncation error
of the scheme, F

(m)
k , as follows.

i
(

u(k∆x, (m + 1)∆t) − u(k∆x, m∆t)
∆t

)
=

−δ
〈2〉
k

(
u(k∆x, (m + 1)∆t) + u(k∆x,m∆t)

2

)

− γ

(
|u(k∆x, (m + 1)∆t)|2 + |u(k∆x, m∆t)|2

2

)

×
(

u(k∆x, (m + 1)∆t) + u(k∆x,m∆t)
2

)

+ F
(m)
k . (4.207)

As to the truncation error F
(m)
k , the next lemma holds. Hereafter, T =

M∆t is the fixed “goal time” at which we measure the error.

LEMMA 4.2
Let u ∈ C2

[
[0, T ], C3

]
. Then,

∆t
M∑

m=0

∥F (m)∥2 ≤ CT (∆t4 + ∆x2),

where C is a constant that depends only on γ and the true solution u on Ω =
[0, T ]× (−L,L). If u ∈ C2

[
[0, T ], C5

]
, then the above estimate is improved to

∆t
M∑

m=0

∥F (m)∥2 ≤ C ′T (∆t4 + ∆x4),

where C ′ is another constant.

PROOF When u ∈ C2
[
[0, T ], C3

]
, by considering the Taylor expansion

of both sides of the scheme at (x, t) = (k∆x, (m+ 1
2 )∆t), we evaluate the local

truncation error as
|F (m)

k | ≤ c3(∆t2 + ∆x),

where c3 is a constant that only depends on γ and the true solution u on
Ω = [0, T ] × (−L,L). Then by summing |F (m)

k | from m = 0 to M , we obtain
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the result. When u ∈ C2
[
[0, T ], C5

]
, the local truncation error is replaced

with
|F (m)

k | ≤ c4(∆t2 + ∆x2),

where c4 is another constant, and the rest is the same.

Now we are in a position to present a convergence theorem. Let us de-
note the error in the numerical solution by e

(m)
k = u

(m)
k − Uk

(m), where

u
(m)
k

d≡ u(k∆x,m∆t), and evaluate the error in the numerical solution at the
“goal time”: ∥e(M)∥. Then, the following theorem holds.

THEOREM 4.11 Convergence of the scheme
Let u ∈ C2

[
[0, T ], C3

]
be the true solution to the cubic NLS, and C be

the constant defined in Lemma 4.2. Then, there exists a constant c, which
depends only on γ, c1, c2 (defined in Theorem 4.9) and the true solution u on
[0, T ]× (−L, L), such that the following estimate holds if ∆t is chosen so that
1 − c∆t > 0:

∥e(M)∥2 ≤ CT

1 − c∆t
(∆t4 + ∆x2)e

cT
1−c∆t .

Moreover, if u ∈ C2
[
[0, T ], C5

]
, then the above estimate is improved to

∥e(M)∥2 ≤ C ′T

1 − c′∆t
(∆t4 + ∆x4)e

c′T
1−c′∆t ,

where c′ is a constant which depends only on γ, c1, c2 (as defined in Theorem
4.9) and the true solution u on [0, T ]×(−L,L), and C ′ is the constant defined
in Lemma 4.2.

PROOF Subtracting the scheme (4.187) from (4.207), we have

i

(
e
(m+1)
k − e

(m)
k

∆t

)
=

−δ
〈2〉
k

(
µ+

me
(m)
k

)
− γ

{
(µ+

mu
(m)
k )(µ+

m|u(m)
k |2) − (µ+

mUk
(m))(µ+

m|Uk
(m)|2)

}

− F
(m)
k . (4.208)

Let us apply 2Im
∑N−1

k=0 (·)(µ+
me

(m)
k )∆x to both sides of the above identity.

The left-hand side becomes

1
∆t

Im

{
i
N−1∑

k=0

(e(m+1)
k − e

(m)
k )(e(m+1)

k + e
(m)
k )∆x

}

=
1

∆t
Im

[
i
{
∥e(m+1)∥2 − ∥e(m)∥2 − (e(m+1),e(m)) + (e(m),e(m+1))

}]

=
1

∆t

{
∥e(m+1)∥2 − ∥e(m)∥2

}
. (4.209)



Applications 179

The first term at the right-hand side of (4.208) becomes

−2Im

{
N−1∑

k=0

(δ〈2〉k µ+
me

(m)
k )(µ+

me
(m)
k )∆x

}

= −2Im
N−1∑

k=0

{
µ+

me
(m)
k+1 − 2µ+

me
(m)
k + µ+

me
(m)
k−1

(∆x)2
· (µ+

me
(m)
k )∆x

}

= − 2
(∆x)2

Im

{
N−1∑

k=0

(µ+
me

(m)
k+1)(µ

+
me

(m)
k )∆x +

N−1∑

k=0

(µ+
me

(m)
k−1)(µ

+
me

(m)
k )∆x

}

= 0. (4.210)

In the last equality, we used the discrete periodic boundary condition and
rearranged the summation to find that inside { · } is a real number.

As to the second term at the right-hand side of (4.208),

(µ+
mu

(m)
k )(µ+

m|u(m)
k |2) − (µ+

mUk
(m))(µ+

m|Uk
(m)|2) =

(µ+
mu

(m)
k )

{
µ+

m(|u(m)
k |2 − |Uk

(m)|2)
}

+ (µ+
me

(m)
k )(µ+

m|Uk
(m)|2)

holds. If we apply 2Im
∑N−1

k=0 (·)(µ+
me

(m)
k )∆x, the second term at the right-

hand side of the above identity vanishes. The first term is evaluated as

∣∣∣∣∣2Im
N−1∑

k=0

(the first term)(µ+
me

(m)
k )∆x

∣∣∣∣∣

=

∣∣∣∣∣−2γIm
N−1∑

k=0

(µ+
mu

(m)
k )

{
µ+

m(|u(m)
k |2 − |Uk

(m)|2)
}

(µ+
me

(m)
k )∆x

∣∣∣∣∣

≤ c|γ|

∣∣∣∣∣
N−1∑

k=0

[
µ+

m

{
(u(m)

k + Uk
(m))e(m)

k + (u(m)
k + Uk

(m))e(m)
k

}]
(µ+

me
(m)
k )∆x

∣∣∣∣∣

≤ 4c2|γ|∥µ+
me

(m)
k ∥2

≤ 8c2|γ|
(
∥e(m+1)∥2 + ∥e(m)∥2

)
. (4.211)

In the above calculation, we used the fact that the numerical solution is
bounded (Theorem 4.10).

Finally, the third term at the right-hand side of (4.208) is evaluated as

∣∣∣∣∣2Im
N−1∑

k=0

F
(m)
k (µ+

me
(m)
k )∆x

∣∣∣∣∣ ≤ 2∥F (m)∥ ∥µ+
me(m)∥

≤ ∥F (m)∥2 + 2
(
∥e(m+1)∥2 + ∥e(m)∥2

)
. (4.212)
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Thus, from (4.209), (4.210), (4.211), and (4.212), we have

1
∆t

(
∥e(m+1)∥2 − ∥e(m)∥2

)
≤ c

(
∥e(m+1)∥2 + ∥e(m)∥2

)
+ ∥F (m)∥2.

Therefore,

∥e(m+1)∥2 ≤ c∆t
m+1∑

l=0

∥e(l)∥2 + ∆t
m∑

l=0

∥F (m)∥2.

If we choose ∆t sufficiently small so that 1 − c∆t > 0 holds, then we have

∥e(m+1)∥2 ≤ 1
1 − c∆t

(
c∆t

m∑

l=0

∥e(l)∥2 + ∆t
m∑

l=0

∥F (m)∥2

)
. (4.213)

Taking m = M − 1, and from Lemma 3.6 and Lemma 4.2, we reach the claim
of the theorem.

4.4.2 Gross–Pitaevskii Equation

4.4.2.1 Introduction to Problem

The Gross–Pitaevskii equation (2.41):

i
∂u

∂t
= −∂2u

∂x2
− (|u|2 − 1)u

is one of the target PDEs 4 in (2.39) with G(u, ux) = |ux|2+
1
2
(1−|u|2)2. This

equation is known as a mean field nonlinear Schrödinger equation and often
used to investigate the dynamics of the Bose–Einstein condensation (BEC)
phenomenon [79, 140]. This equation has the following invariants:

P (u)
d≡

∫

Ω

|u|2dx, (4.214)

J(u) =
∫

Ω

G(u, ux)dx. (4.215)

The invariant P (u) is called “charge.”

4.4.2.2 Numerical Scheme

We derive a numerical scheme from the Scheme 3.4 in (3.86) and

Gd,k(U)
d≡

|δ+kUk|2 + |δ−kUk|2

2
+

1
2

(
1 − |Uk|2

)2
. (4.216)

The scheme is

i

(
Uk

(m+1) − Uk
(m)

∆t

)
= − δGd

δ(U (m+1), U (m))k

, k = 0, . . . , N (4.217)
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where

δGd

δ(U (m+1), U (m))k

= −δ
〈2〉
k (µ+

nUk
(m)) +

(
µ+

m|Uk
(m)|2 − 1

)
(µ+

mUk
(m)).

(4.218)
Under the discrete boundary conditions

δ
〈1〉
k Uk

(m)
∣∣∣
k=0

= δ
〈1〉
k Uk

(m)
∣∣∣
k=N

= 0, m = 0, 1, 2, . . . (4.219)

this scheme has the following discrete invariants:

Pd(U (m))
d≡

N∑

k=0

′′ |Uk
(m)|2 ∆x, (4.220)

Jd(U (m))
d≡

N∑

k=0

′′ Gd,k(U (m)) ∆x. (4.221)

We are also able to design a linearly implicit scheme using the linearization
technique discussed in the chapter 6. For example,

i

(
Uk

(m+1) − Uk
(m−1)

∆t

)
=

δGd

δ(U (m+1), U (m), U (m−1))k

, (4.222)

where

δGd

δ(U (m+1), U (m), U (m−1))k

= −δ
〈2〉
k (s〈1〉m Uk

(m)) + |Uk
(m)|2s〈1〉m Uk

(m) − Uk
(m)

(4.223)
is the linearly implicit for the Gross–Pitaevskii equation. This scheme has
also two invariants Pd(U (m+1),U (m)) and Jd(U (m+1),U (m)). For the detail
of this scheme and the related discussion, readers may refer to [152].

4.4.2.3 Numerical Examples

In Figure 4.11, we show numerical solutions with L = 220, N = 1100
(∆x = 0.2) and ∆t = 0.2. We investigate the dynamics of a traveling wave
solution whose initial state is

u0(x) =

√
1 − γ2

2 cosh(γ(x − 20)/2)
×

exp
(

i arctan
(

eγ(x−20) + c2 − 1
−cγ

)
− i arctan

(
−c

γ

))
(4.224)

where γ =
√

2 − c2, and c > 0 is the speed of the traveling wave.
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FIGURE 4.11: The time evolution profiles of the traveling wave solutions
with the speed c = 1.0. The left figure: the nonlinear scheme (4.217), the
right: the linearly implicit scheme (4.222).

4.4.2.4 Further Topic: Two-Dimensional Examples

The Gross–Pitaevskii equation has a variety of 2D-formulations. We here
study the following equation described in Aftalion–Du [6].

∂u

∂t
= ∆u − g|u|2u − Vtrap(x)u +

µ(u)
∥u∥2

2

u + ωLzu, (4.225)

where

µ(u)
d≡

∫

Ω

(
|∇u|2 + Vtrap(x)|u|2 + g|u|4 − ωuLzu

)
dx,

and g is the parameter to describe the interaction between atoms in the con-
densation, Vtrap(x) = ((wx)2x2 + (wy)2y2)/(2min(wx, wy)) is a trapped po-
tential, wx, wy are the trap frequencies in x- and y-directions, and ωLz =
−iω~(x∂y − y∂x) is the angular momentum at z-axis with frequency ω.

By applying (the two-dimensional version of) the discrete variational deriva-
tive method, we obtain the same scheme as Aftalion–Du [6]. Numerical ex-
amples are shown in Figure 4.12.

4.5 Target PDEs 5

In this section, an example for the target PDEs 5 (defined in Section 2.4;
systems of conservative PDEs) is shown.
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FIGURE 4.12: The time evolution contours of discrete density |Uk,l|2 at
time t = 0, 2, 3, 5, 7, 10.

4.5.1 Zakharov Equations

4.5.1.1 Introduction to Problem

Let us consider the Zakharov equations:





iEt + Exx = nE, t > 0, x ∈ (0, L),
ntt − nxx = (|E|2)xx, t > 0, x ∈ (0, L),
E(0, x) = E0(x), n(0, x) = n0(x), nt(0, x) = n1(x), x ∈ (0, L).

(4.226)

We assume the periodic boundary condition. The system of the Zakharov
equations is an example of the PDEs 5, where Nex = 4 and (u1, u2, u3, u4) =
(E, E, n, v) (refer to (2.43)). In the classification of the target PDEs 5, the
equations belong to Type C4 with two Type C2 subequations.

In what follows, we use the notation (E, E, n, v) instead of (u1, u2, u3, u4)
for readability.

4.5.1.2 Numerical Scheme

Let us denote numerical solutions by Ek
(m), nk

(m), v
(m)
k . We define the

discrete local energy by

Gd,k(E(m),n(m),v(m)) = |δ+kEk
(m)|2+nk

(m)|Ek
(m)|2+1

2

(
nk

(m)2 + (δ+kv
(m)
k )2

)
,

(4.227)
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which complies with (3.93). We define the discrete global energy accordingly
by

N∑

k=0

′′Gd,k(E(m),n(m),v(m))∆x. (4.228)

Taking discrete variation according to (3.96), we have

N∑

k=0

′′Gd,k(E(m+1),n(m+1),v(m+1)) − Gd,k(E(m),n(m),v(m))∆x

=
N−1∑

k=0

{
δGd

δ(E(m+1),E(m))k

(Ek
(m+1) − Ek

(m))

+
δGd

δ(E(m+1),E(m))k

(Ek
(m+1) − Ek

(m))

+
δGd

δ(n(m+1),n(m))k
(nk

(m+1) − nk
(m))

+
δGd

δ(v(m+1),v(m))k
(v(m+1)

k − v
(m)
k )

}
∆x, (4.229)

where

δGd

δ(E(m+1),E(m))k

= −δ
〈2〉
k

(
Ek

(m+1) + Ek
(m)

2

)

+

(
Ek

(m) + Ek
(m)

2

) (
nk

(m+1) + nk
(m)

2

)
, (4.230a)

δGd

δ(E(m+1),E(m))k

=

(
δGd

δ(E(m+1),E(m))k

)
, (4.230b)

δGd

δ(n(m+1),n(m))k
=

nk
(m+1) + nk

(m)

2
+

|Ek
(m+1)|2 + |Ek

(m)|2

2
, (4.230c)

δGd

δ(v(m+1),v(m))k
= δ

〈2〉
k

(
v
(m+1)
k + v

(m)
k

2

)
. (4.230d)

With the discrete variational derivatives, we define a numerical scheme
according to (3.101).

i

(
Ek

(m+1) − Ek
(m)

∆t

)
=

δGd

δ(E(m+1), E(m))k

, (4.231a)

nk
(m+1) − nk

(m)

∆t
= − δGd

δ(v(m+1),v(m))k
, (4.231b)

v
(m+1)
k − v

(m)
k

∆t
=

δGd

δ(n(m+1),n(m))k
. (4.231c)
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We impose discrete periodic boundary conditions for all the variables. Since
this scheme satisfies the assumptions in Scheme 3.5, the discrete global energy
(4.228) is conserved.

4.6 Target PDEs 7

In this section, examples for the target PDEs 7 (defined in Section 2.5;
second-order PDEs) are shown.

4.6.1 Nonlinear Klein–Gordon Equation

4.6.1.1 Introduction to Problem

We consider the nonlinear Klein–Gordon equation (2.58) as a specific ex-
ample of the target equation (2.55) where

G(u, ux) =
1
2
(ux)2 + φ(u). (4.232)

This is a well-known nonlinear equation with soliton solutions. This includes
linear wave equation, the sine-Gordon equation, the double sine-Gordon equa-
tion and the phi-4 equation. Numerical studies regarding this equation are,
for example, [2, 3, 4, 5, 15, 16, 20, 38, 42, 48, 50, 51, 53, 86, 99, 103, 107, 139,
155, 164, 173].

4.6.1.2 Numerical Schemes

In the numerical studies on this equation, such as the above, much effort
has been devoted to “energy-preserving” computation. Most of the compu-
tations were, however, not completely discrete; for example, in some studies
energies were defined by integral, not summation, whose “conservation” would
necessarily be lost when the system was fully discretized. In the literature,
we could find the following five schemes as fully-discrete energy-conserving
schemes. Fortunately for us, all of them can be regarded as the special cases
of Scheme (3.127) or (3.129).

Strauss scheme [155]

δ〈2〉m Uk
(m) = δ

〈2〉
k Uk

(m) − dφ

d
(
Uk

(m+1), Uk
(m−1)

) , (4.233)

where dφ
d(a,b)

d≡ φ(a)−φ(b)
a−b . This is the implicit scheme (3.127) with

Gd,k(U ,V ) =
1
2

(
δ+kUkδ+kVk + δ−kUkδ−kVk

2

)
+

φ(Uk) + φ(Vk)
2

. (4.234)
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Ben-Yu scheme [15]

δ〈2〉m Uk
(m) = δ

〈2〉
k s〈1〉m Uk

(m) − dφ

d
(
Uk

(m+1), Uk
(m−1)

) . (4.235)

This scheme is a special case of the implicit scheme (3.127) with

Gd,k(U ,V ) =
1
2

(
(δ+kUk)2+(δ−kUk)2+(δ+kVk)2+(δ−kVk)2

4

)
+

φ(Uk)+φ(Vk)
2

.

(4.236)
Zhang implicit scheme [53]

δ〈2〉m Uk
(m) = δ

〈2〉
k Uk

(m)

− dφ

d
(

1
2 (Uk

(m+1) + Uk
(m)), 1

2 (Uk
(m) + Uk

(m−1))
) . (4.237)

This scheme is a special case of the implicit scheme (3.127) with

Gd,k(U ,V ) =
1
2

(
δ+kUkδ+kVk + δ−kUkδ−kVk

2

)
+ φ

(
Uk + Vk

2

)
. (4.238)

Li scheme [107]

δ〈2〉m Uk
(m) = δ

〈2〉
k µ〈1〉

m Uk
(m) − dφ

d
(
Uk

(m+1), Uk
(m−1)

) . (4.239)

This scheme is a special case of the implicit scheme (3.127) with

Gd,k(U ,V ) =
1
2

((
δ+k

(
Uk+Vk

2

))2
+

(
δ−k

(
Uk+Vk

2

))2

2

)
+

φ(Uk) + φ(Vk)
2

.

(4.240)
Zhang explicit scheme [53]

δ〈2+〉
m Uk

(m) = δ
〈2〉
k µ+

mUk
(m) − dφ

d
(
Uk

(m+1), Uk
(m)

) . (4.241)

This scheme is a special case of the explicit scheme (3.129) with

Gd,k(U) =
1
2

(
(δ+kUk)2 + (δ−kUk)2

2

)
+ φ(Uk). (4.242)

As one can see, the variety comes from the degree of the freedom in the
discrete energy function. By exploiting this feature, we can further construct
other schemes based on (3.127) or (3.129) as below.

DVDM implicit scheme

δ〈2〉m Uk
(m) = (δ〈1〉k )2µ〈1〉

m Uk
(m) − dφ

d
(
Uk

(m+1), Uk
(m−1)

) (4.243)
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is derived from (3.127) with

Gd,k(U ,V ) =
1
2

(
δ
〈1〉
k

(
Uk + Vk

2

))2

+
φ(Uk) + φ(Vk)

2
. (4.244)

DVDM explicit scheme 1

δ〈2+〉
m Uk

(m) = s
〈1〉
k δ

〈2〉
k µ+

mUk
(m) − dφ

d
(
Uk

(m+1), Uk
(m)

) (4.245)

can be derived from (3.129) with

Gd,k(U) =
1
2
(δ+kUk)(δ−kUk) + φ(Uk). (4.246)

DVDM explicit scheme 2

δ〈2+〉
m Uk

(m) = (δ〈1〉k )2µ+
mUk

(m) − dφ

d
(
Uk

(m+1), Uk
(m)

) (4.247)

is from (3.129), with

Gd,k(U) =
1
2
(δ〈1〉k Uk)2 + φ(Uk). (4.248)

4.6.1.3 Numerical Examples

Let us test the above schemes numerically. We take the sine-Gordon equa-
tion as our example. The initial state is

u(x, 0) = 4 arctan
(

exp
(

x√
1 − v2

))
, (4.249)

where v = 0.2. The exact solution for this initial state is

u(x, t) = 4 arctan
(

exp
(

x − vt√
1 − v2

))
. (4.250)

The energy Etrue d≡
∫ {

1
2
(ut)2 + G

}
dx for the exact solution is approxi-

mately

Etrue ∼=
8√

1 − v2
− L. (4.251)

Now we set L = 20, which means Etrue ≅ −11.83503. The momentum

Mtrue d≡
∫

uxutdx for the exact solution is approximately

Mtrue ∼= − 8v√
1 − v2

≅ −1.632993. (4.252)
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Below we set ∆x = 0.5, ∆t = 0.025, and

u
(m)
−j

d≡ u
(m)
j , u

(m)
N+j

d≡ u
(m)
N−j , 1 ≤ j ≤ N (4.253)

for boundary conditions.
Among the schemes mentioned above, we employ the Strauss scheme (4.233),

the Zhang implicit scheme (4.237), the Zhang explicit scheme (4.241), the
DVDM implicit scheme (4.243) and the DVDM explicit scheme 2 (4.247)
(below the DVDM schemes are just called “implicit scheme” and “explicit
scheme”). The fourth order Runge–Kutta scheme is also employed for com-
parison. Numerical solutions obtained by those schemes agree quite well with
the exact solution, while the former four schemes are slightly better than the
latter schemes (4.243) and (4.247).
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FIGURE 4.13: Evolution of the energies (left) and momenta (right).

Figure 4.133 shows the time evolution of the energies and momenta. We
can see that both are well preserved in all of the tested schemes.

TABLE 4.1: Computation time and maximum ∆t for
each scheme

Scheme Time(unit: second) Max ∆t
Runge–Kutta scheme 17.68 0.7
Strauss scheme 13.19 0.5
Zhang implicit scheme 14.36 0.5
Zhang explicit scheme 5.97 0.4
Implicit scheme (4.243) 48.37 0.1
Explicit scheme (4.247) 4.48 0.8

3−6 Reprinted from J. Comput. Appl. Math., 134, D. Furihata, Finite-difference schemes
for nonlinear wave equation that inherit energy conservation property, 37–57, Copyright
(2001), with permission from Elsevier.
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Table 4.14 shows the computation time for each scheme using the SUN Ultra
1 model 170E (CPU: UltraSPARC, 167MHz). Computation times listed in
the table represent the average of five calculations. The results indicate that
the explicit schemes are much faster than the other schemes including the
Runge–Kutta scheme.

The sensitivity of the schemes to the time mesh size ∆t can be also judged
from Table 4.1. The maximum mesh size for the implicit scheme (4.243) is
smaller than the sizes for the other schemes. This is required for the con-
vergence in the vector Newton method. The maximum time mesh size of
the other schemes compares favorably with that of the Runge–Kutta scheme.
This demonstrates the robustness of the other schemes.

4.6.2 Shimoji–Kawai Equation

4.6.2.1 Introduction to Problem

Here we consider the Shimoji–Kawai equation (2.59) as an example of the
target equation (2.55) where

G(u, ux) =
1
12

(ux)4. (4.254)

This equation was first introduced in Shimoji–Kawai [154], where they showed
multivalued exact solutions to the equation by a parametric equation.

4.6.2.2 Numerical Scheme

First we discretize the energy function as

Gd,k(U)
d≡ 1

12

{
(δ+kUk)4 + (δ−kUk)4

2

}
. (4.255)

From this definition we obtain the following discrete variational derivative

δGd

δ(U ,V )k
=

−1
24∆x




3∑

j=0

(δ+kUk
(m))j(δ+kV

(m)
k )3−j −

3∑

j=0

(δ−kUk
(m))j(δ−kV

(m)
k )3−j


 ,

(4.256)
and we can construct an explicit energy-conserving scheme:

δ〈2+〉
m Uk

(m) = − δGd

δ(U ,V )k
(4.257)

from (3.129).

4.6.2.3 Numerical Examples

Parameters are set to ∆x = 0.05, ∆t = 0.0001, and the boundary con-
ditions (4.253) are employed. The numerical investigation shows that the
scheme (4.257) is quite promising as follows.
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Figure 4.145 shows the numerical solutions for the initial state:

u(x, 0) = e−(x−3)2 , (4.258)

ut(x, 0) = 2(x − 3)2e−(x−3)2 . (4.259)

In the figures the numerical solutions are indicated by points and the ex-
act solutions by lines. Below each graph, the energy values are also shown,
which are well preserved. The exact energy value is 0.1384729571 · · · . The
difference comes from the spatial discretization in the numerical energy (i.e.
discretization of the energy integral).
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FIGURE 4.14: Numerical solutions by the scheme (4.257) for the Shimoji–
Kawai equation with the initial state (4.258) and (4.259).

Let us consider another initial state. Figure 4.156 shows the numerical
solutions for the initial state

u(x, 0) = e−(x−3)2 , (4.260)

ut(x, 0) = −2(x − 3)2e−(x−3)2 . (4.261)

The energy of exact solution is also 0.1384729571 · · · . For this initial state we
can find that the exact solution becomes multivalued, for example, when t =
1.5 in Figure 4.15. We can also find that the exact solution becomes slightly
multivalued in Figure 4.14. After t = 0.5 the numerical solution deviates from
the exact solution considerably, but energy of the numerical solution agrees
with that of the exact solution. The well-posedness of the Shimoji–Kawai
equation is still under investigation, and the numerical phenomenon should
be carefully studied in connection with the theoretical understandings.
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FIGURE 4.15: Numerical solutions by the scheme (4.257) for the Shimoji–
Kawai equation with the initial state (4.260) and (4.261).

4.7 Other Equations

As mentioned in Chapter 2, there are PDEs that strictly speaking do not
belong to the target PDEs 1–7, but are quite close to them, and still dissipative
or conservative in some sense. In this section, we present such examples
and demonstrate that by slightly modifying the procedure of the discrete
variational method, we can still construct dissipative or conservative schemes
for such PDEs.

4.7.1 Keller–Segel Equation

4.7.1.1 Introduction to Problem

As mentioned in Remark 2.3, the Keller–Segel equation (2.22):

∂u

∂t
=

∂

∂x

(
∂u

∂x
− u

∂v

∂x

)
, (4.262)

0 =
∂2v

∂x2
− a v + u, (4.263)

under the zero Neumann boundary conditions for u and v, is a kind of dissi-
pative equation, although it formally does not belong to the target dissipative
PDEs (1). The parameter a is a positive constant. This is due to the inverse
of the Helmholtz operator included in the energy function G (see (2.23)). Be-
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low we slightly extend the procedure in Chapter 3 so that we can also handle
the Helmholtz operator.

As the initial state we take u0(x) ≥ 0. This equation has the following
important features in addition to the dissipation of the energy. The first one
is the positiveness of the solutions:

u(x, t) ≥ 0, x ∈ (0, L), t > 0.

The second one is mass conservation:

d
dt

∫ L

0

u(x, t) dx = 0, t > 0.

In order to handle the inverse of the Helmholtz operator: (a− ∂2/∂x2)−1 ,
we consider the Green operator g defined by

(gu)(x, t) =
∫ L

0

ĝ(x, y) u(y, t) dy (4.264)

where ĝ is the Green function of the Helmholtz operator (a−∂2/∂x2) under the
homogeneous Neumann boundary condition. With the aid of this operator,
we rewrite the Keller–Segel equation as

∂u

∂t
=

∂

∂x

(
u

∂

∂x

(
δG

δu

))
, (4.265)

where

G(u) = u log u − u − 1
2
u gu. (4.266)

This expression can be easily confirmed, if we note that the variational deriva-
tive of G is

δG

δu
= log u − gu. (4.267)

From the variational formulation (4.265) and the positiveness of the solutions,
the following important property holds.

d
dt

J(u) ≤ 0, (4.268)

where

J(u)
d≡

∫ L

0

G(u) dx. (4.269)

In this sense, the Keller–Segel equation is a dissipative equation.
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4.7.1.2 Numerical Scheme

Below we show that by slightly modifying the procedure in Chapter 3, we
can construct a dissipative scheme for the Keller–Segel equation.

Let us discretize the operator (a−∂2/∂x2) by the standard central second-
order difference operator, and denote it by a matrix H, which operates on the
numerical solution vector U (m). We note that the matrix H is nonsingular
since it is strictly diagonally dominant.

Based on this, the discrete version of the operator g can be defined by

gd
d≡ H−1, and by which we define accordingly

Gd,k(U)
d≡ Uk log Uk − Uk − 1

2
Uk(gdU)k, (4.270)

and

Id(U)
d≡

N∑

k=0

′′Gd,k(U)∆x. (4.271)

We construct a discrete variational derivative scheme as

Uk
(m+1) − Uk

(m)

∆t
= δ

〈1〉
k

(
Uk

(m) δ
〈1〉
k

(
δGd

δ(U (m+1),U (m))k

))
, (4.272)

where
δGd

δ(U ,V )k
=

log Uk − log Vk

Uk − Vk
· Uk + Vk

2
− 1

+
log Uk + log Vk

2
− (gdU)k + (gdV )k

2
. (4.273)

The discrete variational derivative can be obtained as follows. Since, as
mentioned above, the energy function includes (the inverse of) the Helmholtz
operator, the procedure in Chapter 3 does not apply as is. However, it is still
possible to directly consider the discrete variation of the energy (4.270). The
crucial part is the third term of the energy function, which goes as follows.

N∑

k=0

′′
(

1
2
Uk(gdU)k − 1

2
Vk(gdV )k

)
∆x

=
1
4

N∑

k=0

′′
{

(Uk + Vk)(gd(U − V ))k + (Uk − Vk)(gd(U + V ))k

}
∆x

=
1
4

N∑

k=0

′′
{

(gd(U + V ))k(Uk − Vk) + (Uk − Vk)(gd(U + V ))k

}
∆x

=
N∑

k=0

′′
{

(gd(U + V ))k

2
(Uk − Vk)

}
∆x. (4.274)

The second equality is obtained since gd is symmetric in the discrete function
space L2(ΩN ) (see Section 3.6 for the notation).
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4.7.1.3 Numerical Examples

We show the dynamics of the numerical solutions under the periodic bound-
ary conditions in Figure 4.16. Parameters were set to L = 1.0, a = 10,
∆x = 0.02 and ∆t = 2 × 10−5. The initial state was set to

u(x, 0) =
{

2 cos(8πx + π)/5 + 0.4 (0 ≤ x ≤ 0.25, 0.75 ≤ x ≤ 1.0),
cos(4πx)/2 + 0.5 (otherwise).

(4.275)
Figure 4.17 confirms that the global energy successfully decreases monotoni-
cally as time evolves, and the global mass is almost conserved. Note that the
latter—the conservation of the mass—is not guaranteed mathematically.
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FIGURE 4.16: Numerical solutions to the Keller–Segel equation. Left:
profiles of u(x, t) at time 0 ≤ t ≤ 0.1, right: profiles of v, which corresponds
to (a − ∂2/∂x2)−1u.
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4.7.2 Camassa–Holm Equation

4.7.2.1 Introduction to Problem

As mentioned in Remark 2.5, the Camassa–Holm type equations [24] are
conservative equations. Let us below consider the “limiting” Camassa–Holm
(CH) equation, which reads

ut − uxxt = 2uxuxx + uuxxx − 3uux, x ∈ (0, L), t > 0. (4.276)

This is a special case of (2.32) with κ = 0 and γ = 1. It is called the “limiting
case,” since in the original Camassa–Holm context, κ > 0 denotes the depth of
shallow water, and the above case should be regarded as the extreme situation
in the limit of κ → 0. Due to the operator (1− ∂2/∂x2) in the left hand side,
it is not formally covered by the target PDEs 2.

It is well-known that by introducing an intermediate function ω = (1 −
∂2/∂x2)u, which is often called the “momentum variable,”7 the CH can be
written in two variational forms (the “bi-Hamiltonian form”):

ωt = −
(

∂

∂x
− ∂3

∂x3

)
δG

δω
, (4.277)

ωt = −
(

∂

∂x
ω + ω

∂

∂x

)
δG̃

δω
, (4.278)

where

G
d≡ 1

2
(
u3 + u(ux)2

)
, (4.279)

G̃
d≡ 1

2
(
u2 + (ux)2

)
. (4.280)

It is easy to see that

δG

δu
=

3
2
u2 +

1
2
(ux)2 − 1

2
∂2

∂x2
(u2), (4.281)

δG̃

δu
=

(
1 − ∂2

∂x2

)
u. (4.282)

The related variational derivatives with respect to ω can be obtained via
δ • /δu =

(
1 − ∂2

∂x2

)
(δ • /δω).

It is also an easy exercise to show that the Camassa–Holm equation has the
following three invariants under the periodic boundary conditions:

I(u)
d≡

∫ L

0

udx, J(u)
d≡

∫ L

0

Gdx, and K(u)
d≡

∫ L

0

G̃dx.

7In the standard notation of the Camassa–Holm studies, this is usually denoted by m,
which is obviously for “momentum.” In this book, however, we have already reserved m
for the time index of numerical solutions. In order to avoid confusion, we denote it by ω.
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We note that the Camassa–Holm equation has infinite invariants[24, 105],
because it has a bi-Hamiltonian structure [136].

4.7.2.2 Numerical Schemes

We impose the discrete periodic boundary condition:

U
(m)
k = U

(m)
k mod N , ∀k ∈ Z, m = 0, 1, . . . , (4.283)

which implies that we assume U (m) ∈ SN (for this notation, refer to Sec-
tion 3.6).

Now let us define discrete analogues of the invariants, I, J,K. For the
purpose, we first discretize the energy functions G =

(
u3 + u(ux)2

)
/2 , and

G̃ =
(
u2 + (ux)2

)
/2 by, for U ,V ∈ SN ,

Gd,k(U)
d≡ Uk G̃d,k(U), (4.284)

G̃d,k(U)
d≡ 1

2

{
(Uk)2 +

(δ+kUk)2 + (δ−kUk)2

2

}
. (4.285)

Then we define the discrete versions of the integral functionals I(u), J(u),K(u),
for U ,V ∈ SN .

Id(U)
d≡

N∑

k=0

′′Uk∆x, (4.286)

Jd(U)
d≡

N∑

k=0

′′Gd,k(U)∆x, (4.287)

Kd(U)
d≡

N∑

k=0

′′G̃d,k(U)∆x. (4.288)

For the discrete energy functions, we obtain the following discrete variational
derivatives.

δGd

δ(U ,V )k
=

3
2

(Uk)2 + (Uk)(Vk) + (Vk)2

3

+
1
2

(δ+kUk)2 + (δ−kUk)2 + (δ+kVk)2 + (δ−kVk)2

4

−1
2
δ
〈2〉
k

(
Uk + Vk

2

)2

, (4.289)

δG̃d

δ(U ,V )k
= (1 − δ

〈2〉
k )

Uk + Vk

2
. (4.290)

We are able to obtain these discrete variational derivatives by the formal
approach, or the direct approach described in Section 4.1.1.
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In view of the relation δ • /δu =
(
1 − ∂2

∂x2

)
(δ • /δω), it is straightforward

to relate the above discrete derivatives to those on ω:

δGd

δω(U ,V )k
= (1 − δ

〈2〉
k )−1 δGd

δ(U ,V )k
, (4.291)

δG̃d

δω(U ,V )k
= (1 − δ

〈2〉
k )−1 δG̃d

δ(U ,V )k

(
=

Uk + Vk

2

)
, (4.292)

where (1−δ
〈2〉
k )−1 is an inverse operator of (1−δ

〈2〉
k ). We note that (1−δ

〈2〉
k )−1

is well-defined, since the matrix representation of (1 − δ
〈2〉
k ) (considering the

discrete periodic boundary condition) is regular.
Now we are in a position to define schemes [161, 162]. Based on (4.277), we

construct the following scheme. We call the following scheme “IJ–NL” since
it conserves Id and Jd, and it is a nonlinear scheme.

δ+mV
(m)
k = −δ

〈1〉
k

(
1 − δ

(2)
k

) δGd

δω(U (m+1),U (m))k

, (4.293)

where

V
(m)
k

d≡ (1 − δ
〈2〉
k )Uk

(m). (4.294)

For this scheme, the following properties hold.

Id(U (m)) = Id(U (0)), (4.295)

Jd(U (m)) = Jd(U (0)). (4.296)

Based on (4.278) we also construct another scheme. We call it “IK–NL”
since it conserves Id and Kd and it is a nonlinear scheme.

δ+mV
(m)
k = −

(
δ
〈1〉
k V

(m+ 1
2 )

k + V
(m+ 1

2 )

k δ
〈1〉
k

) δG̃d

δω(U (m+1),U (m))k

, (4.297)

where

U
(m+ 1

2 )

k

d≡ µ+
mUk

(m) =
(Uk

(m+1) + Uk
(m))

2
. (4.298)

This scheme coincides with the one in [1]. For the solutions of this scheme,
the following discrete conservation properties hold.

Id(U (m)) = Id(U (0)), (4.299)

Kd(U (m)) = Kd(U (0)). (4.300)
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4.7.2.3 Linearly Implicit Schemes

In order to compare schemes in the next subsection, we here show two
linearly implicit schemes. First we define the discrete energy functions,

Gd2,k(U ,V )
d≡

(
Uk + Vk

2

)
G̃d2,k(U ,V ),

G̃d2,k(U ,V )
d≡ 1

2

{
UkVk +

(
δ+
k Uk

) (
δ+
k Vk

)
+

(
δ−k Uk

) (
δ−k Vk

)

2

}
,

and accordingly the summations of them as:

Jd2(U ,V )
d≡

N∑

k=0

′′Gd2,k(U ,V )∆x,

Kd2(U ,V )
d≡

N∑

k=0

′′G̃d2,k(U ,V )∆x.

The subscript “2” is for distinguishing them from the previous discrete en-
ergy functions. The discrete variational derivatives of these discrete energy
functions can be obtained using the technique in Chapter 6.

δGd2

δ(U ,V ,W )k
=

3
2

Vk(Uk + Vk + Wk)
3

+
1
4

{
(δ+kVk)

(
δ+k

Uk + Wk

2

)
+ (δ−kVk)

(
δ−k

Uk + Wk

2

)}

−
(
δ
〈2〉
k Vk

)
· µ(1)

k

(
Uk + 2Vk + Wk

4

)

−
(
δ
〈1〉
k Vk

)
· δ〈1〉k

(
Uk + 2Vk + Wk

4

)
, (4.301)

δG̃d2

δ(U ,V ,W )k
= (1 − δ

〈2〉
k )Vk, (4.302)

δGd

δω(U ,V ,W )k
= (1 − δ

〈2〉
k )−1 δGd

δ(U ,V ,W )k
, (4.303)

δG̃d

δω(U ,V ,W )k
= (1 − δ

〈2〉
k )−1 δG̃d

δ(U ,V ,W )k
(= Vk) . (4.304)

With these discrete variational derivatives we define two linearly implicit
schemes. The first is called the “IJ–L” since it conserves Id and Jd2, and
it is a linearly implicit scheme.

δ〈1〉m V
(m)
k = −δ

〈1〉
k

(
1 − δ

(2)
k

) δGd

δω(U (m+1),U (m),U (m−1))k

. (4.305)
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We note that we have to prepare U (0) and U (1) for the linear scheme. The
conservation properties of this scheme are

Id(U (m)) =
{

Id(U (0)) (n : even),
Id(U (1)) (n : odd),

(4.306)

Jd2(U (m+1),U (m)) = Jd2(U (1),U (0)). (4.307)

The second is called the “IK–L” since it conserves Id and Kd2, and it is a
linearly implicit scheme.

δ〈1〉m V
(m)
k = −

(
δ
〈1〉
k V

(m)
k + V

(m)
k δ

〈1〉
k

) δG̃d

δω(U (m+1),U (m),U (m−1))k

, (4.308)

and we also need U (0) and U (1) as initial values. This scheme holds the
following properties.

Id(U (m)) =
{

Id(U (0)) (n : even),
Id(U (1)) (n : odd),

(4.309)

Kd2(U (m+1),U (m)) = Kd2(U (1),U (0)). (4.310)

4.7.2.4 Numerical Examples

In this subsection, we numerically demonstrate the presented schemes.

4.7.2.5 Comparison of the Schemes

We first compare the schemes above, the classical Runge–Kutta scheme
(CRK), and the Heun scheme. The space and time ranges are set to x ∈
[0, 100], t ∈ [0, 30], and discretized with the mesh sizes ∆x = 2−5,∆t = 2−5.
The initial profile is set to u0(x) = 0.8 exp(−|x−50|), so that we can simulate
a traveling single-peakon solution.

Figures 4.20–4.22 show the profiles of the numerical solutions. The profile
starts with a single peakon solution, and it should move to the right as time
evolves. The results by the IK-NL, IK-L, CRK, and the Heun schemes seem
fine. However, in the IJ–NL and IJ–L schemes, undesirable oscillation appears
around the initial peakon position at x = 50. One explanation for this might
be that the initial profile created from the exact single-peakon solution (which
originally should be defined on the whole R domain) is not suitable for the
schemes. On this issue, we have confirmed that the oscillation disappears as
the space mesh size ∆x decreases.

Next let us focus on the conservation properties. Figures 4.25, 4.27, and
4.26 show the evolution of the discrete invariants, Id, Jd, and Kd. According
to Figure 4.25, Id is well conserved by all the schemes. In Figure 4.27, Kd is
well conserved by the IK–L, IK–NL, and CRK schemes, while on the contrary
in Figure 4.26, Jd is well preserved by the IK–∗ schemes and the CRK scheme.
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Thus we conclude that the IK–L, IK–NL and CRK schemes conserve those
three quantities well.

Thirdly, we compare the computation times of the schemes. Table 4.2
shows the computation times. The linear schemes are generally faster than
the nonlinear schemes. In particular, we like to point out that the IK–L
scheme is the fastest, which is about four times as fast as the CRK, and twice
as fast as the Heun scheme. The IJ–L scheme is also linear, but it falls behind
the IK–L scheme, because the coefficient matrix is constant in IK–L scheme.
More specifically, in the IK–L scheme, once we compute the inverse of the
coefficient matrix by, for example, the LU decomposition at the beginning of
the time evolution process, then we do not need to solve any linear systems
ever after.

Finally, we mention the long time behaviors of the schemes. We continued
the computation also for t > 30 to see the asymptotic behaviors. There we
found that around t = 34.5, the numerical solution by the CRK scheme blows
up; see Figure 4.24. The blowup occurs at the initial peak position mentioned
above. We also observed that decreasing the time and space mesh sizes did
not improve these instabilities very well, although the speed of the blowup
was slightly relaxed. We have also observed that similar blowup occurs in the
Heun scheme around t = 34.0. In contrast, no such explosions were found in
the conservative schemes.

TABLE 4.2: Computation times
scheme time (sec.)
IJ–NL scheme 2498
IK–NL scheme 1786
IJ–L scheme 622
IK–L scheme 103
Classical Runge–Kutta 397
Heun 199

4.7.2.5.1 Multi Peakon Solutions Next we try to capture the “multi
peakon solutions,” starting from the following initial profiles:

(2-peakon) u0(x) = 0.8 exp(−|x − 10|) + 0.2 exp(−|x − 40|), (4.311)
(3-peakon) u0(x) = 0.8 exp(−|x − 10|) + 0.4 exp(−|x − 30|)

+ 0.2 exp(−|x − 40|). (4.312)

We tested the IK–L scheme. Parameters were set to x ∈ [0, 100], t ∈ [0, 100],
∆x = 2−8 and ∆t = 2−9. Figure 4.28 shows the whole profile of the
numerical solutions in the 2-peakon case, Figure 4.35 shows the 3-peakon
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FIGURE 4.18: IJ–NL scheme.
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FIGURE 4.19: IJ–L scheme.
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FIGURE 4.20: IK–NL scheme.
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FIGURE 4.21: IK–L scheme.
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Kutta scheme.
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case. In Figures 4.29–4.34，the details of the 2-peakon profiles are shown at
t = 0, 20, 46, 50, 54 and 100. Similarly, in Figures 4.36–4.41, the 3-peakon
profiles are shown. From those figures we clearly see that the peakons recover
their original profiles after collisions. In addition to that, we also observe
some “phase shifts” after the collisions. These observations convince us that
those peakons in fact behave like solitons, as widely believed.
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FIGURE 4.28: The 2-peakon case by the IK–L scheme.
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4.7.2.6 Analysis of Scheme

In this subsection, we note some theoretical properties of the IK–NL scheme;
namely, the stability and the unique existence of numerical solutions.

4.7.2.6.1 Stability The IK–NL scheme enjoys the following stability es-
timate:

∥U (m)∥∞ < C,

where U (m) is the solution, and C is a constant independent of n,∆x and ∆t.
This property has been already indicated in a similar context in Section 4.1.1
for the Cahn–Hilliard equation. We use the discrete Sobolev–Hilbert norm
(4.23) and the discrete Sobolev lemma in Section 3.6.2.1. With this norm,

∥U (m)∥H1 = 2Jd(U (m)) = 2Jd(U (0)) = ∥U (0)∥H1

for the solutions of the IK–NL scheme. From this and the discrete Sobolev
lemma, we obtain the following important evaluation.

∥U (m)∥∞ ≤ 2max

(
1√
L

,

√
L

2

)
∥U (0)∥H1 .

This means stability in the supremum norm, aside from the effect of rounding
errors.

4.7.2.6.2 Unique Existence of the Solution
Here we show that the IK–NL scheme and IK–L scheme are uniquely solvable
under appropriate conditions at each time step.

First, let us consider the IK–NL scheme. Let us define

MU := sup
m

∥U (m)∥, MV := sup
m

∥V (m)∥

for V (m) =
(
I − D

(2)
k

)
U (m). With these definitions and the fact that ∥I −

D
(2)
k ∥ ≤ ∥I∥ + ∥D(2)

k ∥ ≤ 1 + 4/(∆x)2, we obtain the following inequality:
MV ≤ (1 + 4/(∆x)2)MU . Through some cumbersome computations, we
obtain the following lemma.

Lemma 1 If the condition:

∆t ≤ (∆x)3/2

6MV
(4.313)

is satisfied, then the IK–NL scheme has numerical solutions U (m+1).
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Furthermore, it is an easy exercise to show that the solution of the scheme
is unique if ∆t ≤ (∆x)3/2/5MV . This, together with Lemma 1, proves the fol-
lowing existence theorem. The proof is by the standard contraction mapping
theorem.

Theorem 1 If the condition (4.313) is satisfied, the IK–NL scheme has a
unique solution at the new time step.

Here we consider the IK–L scheme (4.308), whose concrete form becomes

(1 − δ
〈2〉
k )U (m+1)

k

= (1 − δ
〈2〉
k )U (m−1)

k − 2∆t
(
δ
〈1〉
k V

(m)
k + V

(m)
k δ

〈1〉
k

)
U

(m)
k . (4.314)

Since it is a linear scheme, it suffices to show that the coefficient matrix
(1 − δ

〈2〉
k ) is nonsingular. It is in fact clear, since it is strictly diagonally

dominant. We also note that this proof is uniform in that it does not depend
on ∆x, ∆t, nor the time step m.

4.7.2.7 Numerical Convergence Evaluations

Here, we numerically investigate the error convergence rates of the schemes
above. Due to the spatial and temporal symmetries of the schemes, we expect
O(∆x2 + ∆t2) convergence, at least for sufficiently smooth solutions.

We test two initial profiles; one is a singular peakon solution, and the other
is a sufficiently smooth solution. We measure the errors in the discrete L2

norm. When the exact solutions are not known, the numerical solutions with
sufficiently fine meshes are used as their substitutes.

Let us first consider the following peakon solution:

u0(x) = 0.8 exp(−|x − 50|), x ∈ [0, 100].

Since this is not an exact solution under the periodic boundary condition,
we compute a fine solution with ∆x = 2−7 and ∆t = 2−8, and regard it as
a substitute for the exact solution. We fix the time mesh to ∆t = 2−8, and
compute numerical solutions with several space mesh sizes ∆x = 2−2, 2−3, 2−4

and 2−5. The errors at t = 5 are shown in Figure 4.42. The lines in Figure 4.42
are drawn by the least-square approximations based on the data, whose gra-
dients indicate the convergence rates. Table 4.3 summarizes the estimated
convergence rates. We observe that numerical solutions by those schemes
converge to the fine solution with the order O(∆x0.8∼= 0.9). Next, we fix the
space mesh size to ∆x = 2−3 instead, and observe the convergence with re-
spect to ∆t. Figure 4.43 shows the errors at time t = 5 with the time mesh
sizes ∆t = 2−3, 2−4, 2−5 and 2−6. Again, Table 4.4 summarizes the estimated
convergence rates. From the table, we can see that the convergence rates of
the conservative schemes and the Heun scheme are around O(∆t2), while the
CRK scheme achieves almost O(∆t4).
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TABLE 4.3: The estimated convergence rates with respect to ∆x

Scheme Estimated error convergence rates
IJ–NL scheme 0.880103
IK–NL scheme 0.857593
IJ–L scheme 0.872815
IK–L scheme 0.849059
Heun scheme 0.835725
Classical Runge–Kutta scheme 0.842118
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TABLE 4.4: The estimated convergence rates with respect to ∆t

Scheme Estimated error convergence rates
IJ–NL scheme 1.94711
IK–NL scheme 1.93010
IJ–L scheme 1.98482
IK–L scheme 2.29136
Heun scheme 2.30428
Classical Runge–Kutta scheme 4.20176

As the second experiment, let us take the initial profile to

u0(x) = 0.6sech2(
√

2(x − 30)/4), x ∈ [0, 100], (4.315)

which is a smooth function. We here compare the IK–L scheme, the Heun
scheme, and the CRK scheme. We investigated the convergence rates with
respect to ∆x for various t in 1 ≤ t ≤ 90, and plotted them in Figure 4.46.
In the figure, we find a curious behavior in that the convergence rates con-
siderably change during the time evolution. In the beginning, they are about
O(∆x2), as expected for smooth solutions. But soon after that they quickly
drop to O(∆x0.8). In order to understand this strange behavior, we observed
the numerical solutions carefully to find that the initial smooth profile had
gradually peaked around 5 ≤ t ≤ 15. Figure 4.44 shows the solution profiles
by the IK–L scheme with ∆x = 2−7 and ∆t = 2−8. Figure 4.45 shows the
snapshots at t = 0, 5, 15, 60 and 90. From these figures, we can clearly see
the loss of regularity, and this should be the reason of the rate deficiency. In
fact, in the first peakon experiment, we have already seen that the rate with
respect to ∆x is O(∆x0.8), which completely agrees with this view.

Next, the convergence rates with respect to ∆t are shown in Figure 4.47.
We see that the rate of the CRK scheme is around O(∆t4.0∼= 4.8), and the IK–
L scheme around O(∆t2.0∼= 2.3). Since the numerical solutions of the Heun
scheme with ∆x = 2−3 blow up at t = 64, we show the estimated rate only
before t ≤ 64. Compared to the rate against ∆x, the result with respect to
∆t is quite natural.

To summarize, we observed that the convergence rates of the conservative
schemes are O(∆x2+∆t2) for the sufficient smooth solutions, and O(∆x+∆t2)
for non-smooth solutions, e.g., peakons.
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4.7.3 Benjamin–Bona–Mahony Equation

4.7.3.1 Introduction to Problem

As mentioned in Remark 2.5, the Benjamin–Bona–Mahony equation (BBM;
also known as the regularized long wave equation):

(
1 − ∂2

∂x2

)
∂u

∂t
= − ∂

∂x

(
δG

δu

)
, x ∈ (0, L), t > 0, (4.316)

where
G =

1
2
u2 +

1
6
u3. (4.317)

is a conservative equation. We here impose the periodic boundary conditions
of length L > 0,

∂l

∂xl

∂m′

∂tm′ u(0, t) =
∂l

∂xl

∂m′

∂tm′ u(L, t), l = 0, 1, 2, m′ = 0, 1, (4.318)

for t > 0.
This equation was proposed as a model for the undular bore problem by

Peregrine [138]. Benjamin et al. [14] have investigated this equation as a
regularized version of the Korteweg–de Vries (KdV) equation. This equation
has solitary wave solutions similar to the KdV equation. However, there is a
big difference that while the KdV equation has infinitely many invariants, it is
proved by Olver [135] that the BBM equation admits only three independent
invariants:

I(u)
d≡

∫ L

0

u(x, t)dx, (4.319)

J(u)
d≡ 1

2

∫ L

0

(
u2 +

1
3
u3

)
dx, (4.320)

K(u)
d≡ 1

2

∫ L

0

{
u2 +

(
∂u

∂x

)2
}

dx. (4.321)

Here, I, J , and K are called ‘mass’, ‘energy’, and ‘momentum’. Since the
number of conserved quantities is limited, we are not able to use the inverse-
scattering technique, which is a powerful mathematical tool to obtain theo-
retical solutions of integrable equations such as the KdV equation. So far,
large numbers of studies have been carried out for the numerical solutions of
the BBM equation: for example, [14, 31, 32, 43, 46, 47, 138].

4.7.3.2 Numerical Schemes

As noted in Remark 2.5, the BBM equation is closely related to the Camassa–
Holm equation, and thus we can follow exactly the same approach in Sec-
tion 4.7.2. Here we like to leave this to the readers’ exercise, and try another
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approach to obtain four different finite difference schemes preserving either
discrete momentum or discrete energy. Two of them are nonlinear, the rest
are linear.

We impose the following discrete periodic boundary conditions:

Uk
(m) = U

(m)
k mod N for ∀k ∈ Z. (4.322)

In other words, we assume U (m) ∈ SN (for the notation, see Section 3.6).
Let us begin by defining a discrete energy function as

Gd,k(U)
d≡ 1

2
(Uk)2 +

1
6

(Uk)3 , (4.323)

from which we obtain the following discrete variational derivative by the stan-
dard procedure of the discrete variational derivative method:

δGd

δ(U ,V )k

=
(

Uk + Vk

2

)
+

1
2

(
(Uk)2 + UkVk + (Vk)2

3

)
. (4.324)

Then we obtain the following scheme
(
1 − (δ〈1〉k )2

)
δ+mUk

(m) = −δ
〈1〉
k

δGd

δ(U (m+1),U (m))k

. (4.325)

This nonlinear scheme has the following conservation properties.

Id(U (m)) = Id(U (0)), (4.326)

Jd(U (m)) = Jd(U (0)), (4.327)

where

Id(U)
d≡

N∑

k=0

′′Uk∆x, (4.328)

Jd(U)
d≡

N∑

k=0

′′Gd,k(U)∆x. (4.329)

Below we call this scheme the Nonlinear Energy-conserving (NE) scheme.
With the same discrete variational derivative above, we can construct a

slightly different scheme as follows.
(
1 − δ

〈2〉
k

)
δ+mUk

(m) = −δ
〈1〉
k

δGd

δ(U (m+1)/2
+ ,U

(m+1)/2
− )

k

, (4.330)

where
(
U

(m+1)/2
+

)
k

d≡ s+kµ+
mUk

(m),
(
U

(m+1)/2
−

)
k

d≡ s−kµ+
mUk

(m). (4.331)
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That is, we utilize the discrete variational derivative with shifted numerical
solutions. It is not so difficult to understand it because the mathematical key
in the momentum-conservation property is

∫
∂u

∂x

δG

δu
dx =

∫
∂

∂x
G(u, ux)dx (4.332)

since the invariance is shown as:

d
dt

K(u) =
∫

(uut + uxuxt) dx =
∫

u (ut − uxxt) dx

= −
∫

u
∂

∂x

δG

δu
dx

=
∫

∂u

∂x

δG

δu
dx =

∫
∂

∂x
G(u, ux)dx = 0. (4.333)

The scheme has the following invariants:

Id(U (m)) = Id(U (0)), (4.334)

Kd(U (m)) = Kd(U (0)), (4.335)

where

Kd(U)
d≡ 1

2

N∑

k=0

′′

{
(Uk)2 +

(δ+kUk)2 + (δ−kUk)2

2

}
∆x. (4.336)

Due to the restriction of space, we here omit the detailed explanation on how
the idea of shifted solutions in fact realizes the discrete conservation (read-
ers may refer to [97]). Since this is a Nonlinear and Momentum-conserving
scheme, we call it the NM scheme.

4.7.3.3 Linearly Implicit Schemes

Next let us construct linearly implicit schemes. First we define a discrete
energy function:

Gd2,k(U ,V )
d≡ 1

2
UkVk +

1
6

(
(Uk)2 Vk + Uk (Vk)2

2

)
. (4.337)

The subscript “2” is to distinguish it from the previous discrete energy func-
tion. From the energy we obtain the three-points discrete variational deriva-
tive:

δGd2

δ(U ,V ,W )k
= Vk +

1
2

(
(Uk + Vk + Wk) Vk

3

)
. (4.338)

Then we obtain the following linearly implicit scheme:
(
1 − (δ〈1〉k )2

)
δ〈1〉m Uk

(m) = −δ
〈1〉
k

δGd2

δ(U (m+1),U (m),U (m−1))k

. (4.339)
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The associated conservation properties are

Id(U (m)) =
{

Id(U (1)), for odd m > 0,

Id(U (0)), for even m ≥ 0,
(4.340)

Jd2(U (m+1),U (m)) = Jd2(U (1),U (0)), for m ≥ 0, (4.341)

where

Jd2(U ,V )
d≡

N∑

k=0

′′Gd2,k(U ,V )∆x. (4.342)

We call this scheme the Linear Energy-conserving (LE) scheme.
As in the previous subsection, we can construct a slightly different scheme

with the idea of shifted solutions as follows.
(
1 − δ

〈2〉
k

)
δ〈1〉m Uk

(m) = −δ
〈1〉
k

δGd

δ(U (m)
+ ,U

(m)
− )

k

, (4.343)

where (
U

(m)
+

)
k

d≡ s+kUk
(m),

(
U

(m)
−

)
k

d≡ s−kUk
(m). (4.344)

This keeps the following discrete invariants.

Id(U (m)) =
{

Id(U (1)), for odd m > 0,

Id(U (0)), for even m ≥ 0,
(4.345)

Kd2(U (m+1),U (m)) = Kd2(U (1),U (0)), for m ≥ 0, (4.346)

where

Kd2(U ,V )
d≡ 1

2

N∑

k=0

′′
{

UkVk +
(δ+kUk) (δ+kVk) + (δ−kUk) (δ−kVk)

2

}
∆x. (4.347)

We call this scheme the Linear Momentum-conserving (LM) scheme.

4.7.3.4 Numerical Examples

In this subsection, we present several numerical examples.

4.7.3.4.1 One Solitary Wave The BBM equation has a one solitary
wave solution,

u(x, t) = 3 sech2

(
x − x0 − 2t

2
√

2

)
, (4.348)

where x0 + 2t is the location of the solitary wave peak. In this subsection, we
set x0 to 20, and the initial state for the numerical computation to

u0(x) = 3 sech2

(
x − x0

2
√

2

)
. (4.349)
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For the linear schemes, i.e., the LM and LE schemes, we need another starting
value: U (1). We use the NM scheme for the LM scheme, and the NE scheme
for the LE scheme.

In Table 4.5,8 the relative errors in mass, energy, momentum, and the
peak value of the numerical solutions and computation time obtained using
the four proposed schemes and the Runge–Kutta scheme at t = 40 are listed.
We note that the peak value of the exact solution (4.348) should be constant
3 (if the computation is exact). The computation parameters are set to ∆x =
1/4, ∆t = 1/16, and L = 100. For comparison, a Runge–Kutta scheme is
constructed based on the ordinary differential equations of U : R → RN :

d
dt

U(t) = − (I − D2)
−1

D1

(
U(t) +

1
2
V (t)

)
, (4.350)

where (V (t))k

d≡ (Uk(t))2. In each time step of the nonlinear schemes (the
NM and the NE schemes), we used the standard Newton method.

Energy fluctuations in the conservative schemes and the Runge–Kutta scheme
are shown in Figure 4.48,9 which shows that the discrete energies are well con-
served in all the conservative schemes. In particular, they deserve attention so
that even in the non-conservative schemes, i.e., the NM and the LM schemes,
they are nearly conserved. On the other hand, in the Runge–Kutta scheme,
the energy monotonically decreases.

Momentum fluctuations are shown in Figure 4.49,10 where we find the same
trend as the energy. The discrete momenta are well conserved by the conser-
vative schemes, even by the NE and LE schemes. On the other hand, in the
Runge–Kutta scheme, the energy monotonically decreases. In Figure 4.49,
around t ≤ 4, we observe oscillation in the LE scheme. This might be caused

TABLE 4.5: Relative errors in mass(Ms.), energy(E.),
momentum(Mm.), and peak value(PV.) of numerical solutions and
computation time(CPU) obtained using the proposed schemes and
Runge–Kutta scheme at t = 40. Computation parameters are ∆x = 1/4,
∆t = 1/16, and L = 100.

Scheme Ms.err. E.err. Mm.err. PV.err. CPU
NM 4.18691e–16 4.40752e–03 1.91544e–10 1.54169e–02 41m2s
NE 2.09345e–16 3.16232e–11 3.97717e–06 1.39999e–03 30m8s
LM 9.21120e–15 3.94501e–03 1.11896e–10 1.51433e–02 12m22s
LE 1.25607e–15 3.66348e–10 9.29801e–07 3.44311e–05 15m28s
RK 1.06307e–17 3.66779e–01 3.12369e–01 2.04904e–01 10m37s

8−14 Reprinted from S. Koide and D. Furihata, Nonlinear and linear conservative finite
difference schemes for regularized long wave equation, Japan J. Indust. Appl. Math., 26,
15–40, Copyright (2009), with permission from JJIAM publishing committee.
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FIGURE 4.48: Energy fluctuations in the conservative schemes and the
Runge–Kutta scheme.

by the fact that the starting value U (1) is not necessarily appropriate for the
LE scheme.

Peak value fluctuations are shown in Figure 4.50.11 The conservative schemes
preserve the peak value relatively well, while the Runge–Kutta scheme does
not; this agrees with the view in the discussion above.

For the initial state (4.349), we are able to estimate the errors based on
the exact solution (4.348). In Figures 4.5112 and 4.52,13 the errors in the
four conservative schemes are shown. The left panel in Figure 4.51 shows
the errors for the fixed time mesh size ∆t = 1/16, where ∆x was set to
1, 1/2, 1/4, 1/8, and 1/16. The right panel in Figure 4.51 shows the errors for
the fixed space mesh size ∆x = 1/16, where ∆t was set to 1, 1/2, 1/4, 1/8, and
1/16. Figure 4.52 shows the errors for the case ∆x = ∆t. For the NM scheme,
in particular, the max norm of the errors is estimated as O(∆x2 + ∆t2) in
Theorem 4.14, and these figures confirm this fact. Although there is no similar
theorem for the other three schemes, the figures suggest that the convergence
rates are practically the same.

4.7.3.4.2 Two Solitary Waves Let us next test another initial state:

u0(x) = 3 sech2

(
x − x1√

2

)
+

3
2

sech2

(
x − x2√

3

)
, (4.351)
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FIGURE 4.49: Momentum fluctuations in the conservative schemes and
the Runge–Kutta scheme.
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where x1 = 20 and x2 = 50. This function approximates the wave with
two peaks at x1 and x2. Figure 4.5314 shows the profiles of the numerical
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FIGURE 4.53: Computation for the two solitary waves initial state (4.351)
with ∆x = 1/5, ∆t = 1/32, and L = 200. Top left: profiles of numerical
solutions by the LM scheme, top right: by LE scheme, bottom left: energy
evolution in the LM scheme, bottom right: in the LE scheme.

solutions, energy evolution, and momentum evolution obtained by the linear
schemes with ∆x = 1/5, ∆t = 1/32, and L = 200. In the figures, we find
that a phenomenon like ‘phase shift’ occurs when two peaks collide. The
non-conserved quantities, i.e. energy in the LM scheme and momentum in
the LE scheme, deviate to some extent when two peaks of a wave collide, but
fortunately after that they attain their initial values.
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4.7.3.5 Analysis of Scheme

Here we reveal several theoretical aspects of the NM scheme (4.330). First,
applying the discrete Sobolev lemma (see Section 3.6.2.1) to (4.335), we im-
mediately obtain the following inequality.

THEOREM 4.12

∥U (m)∥∞ ≤ 2
√

2max

(
1√
L

,

√
L

2

)√
Id(U (0)). (4.352)

This inequality implies that the NM scheme (4.330) is stable for any time
step m as far as the numerical solutions of the scheme exist.

Next we exploit the conditions for the existence of numerical solutions.

THEOREM 4.13 Local Existence and Uniqueness of Solutions

If the condition :

∆t ≤ 2(∆x)3/2

√
∆x + 2∥U (m)∥

, (4.353)

holds, the NM scheme (4.330) has a unique solution .

We leave the proof to [97]. The next estimate is easily obtained, in view of
the conservation of the discrete momentum Kd.

∥U (m)∥2 ≤ ∥U (m)∥2
H1 = 2Kd(U (m)) = 2Kd(U (0)). (4.354)

With this, and the local existence theorem, we reach the global existence
result below.

COROLLARY 4.2 Global Existence and Uniqueness of Solutions

If the condition :

∆t ≤ (∆x)3/2

√
∆x + 2

(
2Kd(U (0))

)1/2
(4.355)

holds, the NM scheme (4.330) has unique numerical solutions U (m) for any
m ≥ 0.

Finally, we give an error estimate.



222 Discrete Variational Derivative Method

THEOREM 4.14
Assume that T < ∞ is given, and N = L/∆x ≥ 12. If the solution of the

BBM equation is sufficiently smooth such that
∣∣∣∣∣

∂l

∂xl

∂m′

∂tm′ u(x, t)

∣∣∣∣∣ < ∞, x ∈ (0, L), 0 ≤ t ≤ T, 0 ≤ l ≤ 5, 0 ≤ m′ ≤ 3,

(4.356)
and the time mesh size ∆t is sufficiently smooth such that

∆t <
2
3λ

, (4.357)

then the error is evaluated as follows:

max
0≤k≤N

∣∣∣Uk
(m) − u(k∆x,m∆t)

∣∣∣ ≤
√

6T max(1, L)E0 e
3
4 λT , for m ≤ T

∆t
,

(4.358)
where

λ
d≡ 29/8 max

((
4
L

)1/4

, 1

) √
K[u(·, 0)] +

7
4
LL̃2∆x2 + 1, (4.359)

E0
d≡

(
∆x2 + ∆t2

) (
1 + ∆x2 + ∆t2 + ∆x4 + ∆t4

)

×
(

49
32

L̃ +
14245
3456

L̃2

)
, (4.360)

L̃
d≡ sup

0≤t≤T, x∈(0,L), 0≤m′≤3, l∈a(m′)

{∣∣∣∣∣
∂l

∂xl

∂m′

∂tm′ u(x, t)

∣∣∣∣∣

}
, (4.361)

a(m′)
d≡





{0, 1, 2, 3, 4, 5}, m′ = 0,
{3, 4}, m′ = 1,
{0, 1, 2, 3, 4, 5}, m′ = 2,
{0, 1, 2, 3, 4}, m′ = 3.

(4.362)

The proof is, again, left to [97].

4.7.4 Feng Equation

4.7.4.1 Introduction to Problem

The Feng equation [55, 56] is

∂2u

∂t2
− γ

∂4u

∂x2∂t2
= −Φ′(u), (4.363)

where Φ is a function of u, with the appropriate periodic boundary conditions.
As noted in Remark 2.8, this does not directly belong to the target PDEs
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classified in Chapter 2, but can be regarded as a conservative PDE, if we
rewrite this as follows. 




δG1

δu
+ H(v) = 0,

∂u

∂t
= v,

(4.364)

where

G1(u)
d≡ Φ(u), (4.365)

G2(v, vx)
d≡ 1

2
v2 +

1
2
γ(vx)2, (4.366)

and
H(v)

d≡ vt − γvtxx. (4.367)

Note that H(v) satisfies the following identity.
∫

Ω

H(v)vdx =
∫

Ω

δG2

δv
vtdx. (4.368)

This Feng equation has the following invariant.

J(u, v)
d≡

∫

Ω

{G1(u) + G2(v, vx)}dx. (4.369)

4.7.4.2 Numerical Scheme

We impose the following discrete periodic boundary conditions:

Uk
(m) = U

(m)
k mod N for ∀k ∈ Z. (4.370)

In other words, we assume U (m) ∈ SN (for the notation, see 3.6.) By appro-
priate discretizing of G1 and G2 we obtain the discrete energy functions

G1d,k(U)
d≡ Φ(Uk), (4.371)

G2d,k(U)
d≡ 1

2
(Uk)2 +

1
2
γ

(
(δ+kUk)2 + (δ−kUk)2

2

)
(4.372)

and the discrete variational derivatives

δG1d

δ(U ,V )k
=

Φ(Uk) − Φ(Vk)
Uk − Vk

, (4.373)

δG2d

δ(U ,V )k
=

(
1 − γδ

〈2〉
k

) Uk + Vk

2
. (4.374)

We are able to define the discrete H function as

Hd,k(U ,V )
d≡

(
1 − γδ

〈2〉
k

) Uk − Vk

∆t
(4.375)
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and they satisfy the following equality under the discrete periodic boundary
conditions.

N∑

k=0

′′Hd,k(U ,V )
Uk + Vk

2
∆x =

N∑

k=0

′′ δG2d

δ(U ,V )k

Uk − Vk

∆t
∆x. (4.376)

So we obtain the following finite difference scheme





δG1d

δ(U (m+1),U (m))k

+ Hd,k(V (m+1),V (m)) = 0,

Uk
(m+1) − Uk

(m)

∆t
=

V
(m+1)
k + V

(m)
k

2
.

(4.377)

The solutions U ,V conserve the discrete invariant:

Jd(U (m),V (m))
d≡

N∑

k=0

′′
(
G1d,k(U (m)) + G2d,k(V (m))

)
∆x. (4.378)

4.7.4.3 Numerical Examples

In Figure 4.54, we show numerical solutions with γ = 1/4 and Φ(u) = u4.
Initial state was set to

u(x, 0) = A sech(2x − 16), (4.379a)
ut(x, 0) = 0, (4.379b)

where A is a positive constant.
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4.7.4.4 Analysis of Scheme

For some special Φ(u), we are able to obtain a stability result. Let us, for
example, take Φ to

Φ(u)
d≡ 1

2
αu2 +

1
4
βu4. (4.380)

With this Φ, it is easy to see

∥V (m)∥H1 ≤ 8
{

Jd(U (0),V (0)) +
α2

β
L

}
, (4.381)

and based on this and the discrete Sobolev lemma in Section 3.6.2.1, we can
deduce the following theorem.

THEOREM 4.15
For the potential function (4.380), the following estimate holds under the dis-
crete periodic boundary conditions.

∥U (m)∥∞ ≤ ∥U (0)∥∞ + C1T, (4.382)

where T = m∆t, and

C1
d≡ 4max

(
1√
L

,
√

L

) √
Jd(U (0),V (0)) +

α2

β
L. (4.383)

An existence and uniqueness result can be obtained via a similar discussion
as in Theorem 4.3.

THEOREM 4.16
Let us consider the potential function (4.380). If the condition :

(∆t)2 < min

(
∆x√

44α2(∆x)2 + (7038/16)β2M4
,

∆x

α∆x + (6β + 9/8)M2

)

(4.384)
holds, then the solution U (m+1) uniquely exists in the scheme (4.377) for any
m ≥ 1, where

M
d≡ 2∥U (m)∥2 + ∥U (m−1)∥2. (4.385)





Chapter 5

Advanced Topic I: Design of
High-Order Schemes

We have already glanced at the basic formulation of the discrete vari-
ational derivative method and its various applications. In this and
subsequent chapters we will discuss more advanced topics. This chap-
ter is devoted to the design of spatially and temporally higher-order
schemes. The presented schemes so far were all second-order, both
spatially and temporally. If more accuracy is demanded, we can
increase the accuracy by the method presented here. This chapter
is organized as follows. We first discuss the “orders of accuracy”
in Section 5.1. Section 5.2 is devoted to the spatially high-order
schemes. Section 5.3 and Section 5.4 are both for temporally high-
order schemes; we have two different ways of designing such schemes.
The first option is the use of the composition method; this issue will
be discussed in Section 5.3. The second option is to consider the
generalization of discrete variation process; this will be discussed in
Section 5.4.

5.1 Orders of Accuracy of Schemes

Here we define the orders of accuracy of the schemes. Let u be the solu-
tion on Ω = [0, L] × [0, T ] with some prescribed T > 0, and U (m) (0 ≤ m ≤
M, M∆t = T ) be the corresponding numerical solution obtained by a nu-
merical scheme. Then, the global orders of accuracy of the numerical solution
(and accordingly of the scheme) are defined as follows. In the definition, we
denote some vector norms as ∥ · ∥.

DEFINITION 5.1 Global orders of accuracy
Let u(T ) = (u(0, T ), u(∆x, T ), . . . , u(L, T ))⊤ be the values of true solutions
on the mesh points. If the error estimate:

∥U (M) − u(T )∥ = O(∆xp′
,∆tq

′
), ∆x, ∆t → 0

227
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holds, we say the numerical solution (and accordingly the scheme) is globally
of p′th-order in space and globally of q′th-order in time. ¤

We cannot, however, always reach this kind of estimate; especially if the
target PDE is nonlinear.

As a secondary estimate method, we employ the concept of local orders of
accuracy. Let us formally write a numerical scheme as follows.

fk(U (m+1), . . . ,U (m−l+2)) = 0, 0 ≤ k ≤ N − 1, m = 0, 1, 2, . . . ,

where l ≥ 2 is the number of steps that the scheme involves. For example, for
Scheme 3.1 (page 80), we have l = 2, and

fk(U (m+1),U (m))
d≡ Uk

(m+1) − Uk
(m)

∆t
− (−1)s+1δ

〈2s〉
k

δGd

δ(U (m+1),U (m))k

.

Then, the local truncation error of the scheme is defined by

Elocal,k
d≡ fk(u(m+1)

k , . . . , u
(m−l+2)
k ),

where u
(m)
k

d≡ u(k∆x, m∆t) are the values of the true solution on the grid
points. That is, the local truncation error shows how well the equation of the
scheme is satisfied by the true solution u. Using Taylor expansion, we can
always obtain an estimate:

Elocal,k = fk(u(m+1)
k , . . . , u

(m−l+2)
k ) = O(∆xp,∆tq), ∆x, ∆t → 0. (5.1)

Then, the local orders of accuracy are defined as follows.

DEFINITION 5.2 Local orders of accuracy When the estimate (5.1)
holds, the numerical solution (and accordingly the scheme) is locally of pth-
order in space, and locally of qth-order in time. ¤

As opposed to the global orders of accuracy, the local orders of accuracy
can be always obtained by considering Taylor expansion. Moreover, the local
orders p, q often coincide with the global orders p′, q′, and thus can be used
as the estimates of the global orders of accuracy. Thus, hereafter we employ
the local orders as the measures of accuracy; namely, when we call a scheme
pth-order in space and qth-order in time, we mean the local orders of accuracy.
We denote such scheme a (p, q)th-order scheme.

Employing Taylor expansion, we can prove that Scheme 3.1 and Scheme 3.2
(pages 80 and 84), Scheme 3.3 and Scheme 3.4 (pages 96 and 99), and Scheme 3.5
and Scheme 3.6 (pages 105 and 109), presented in Chapter 3, are all tempo-
rally second-order (note that they are symmetric with respect to U (m+1) and
U (m)). The spatial order of the schemes is either one or two, depending on
the concrete forms of the resulting schemes. The examples in Chapter 3 are
all spatially second-order.
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5.2 Spatially High-Order Schemes

In this section we design spatially high-order conservative or dissipative
schemes. To this end, we first set one big assumption: in all the problems
considered in this subsection,

∂ju

∂xj

∣∣∣∣
x=0

=
∂ju

∂xj

∣∣∣∣
x=L

, j = 0, 1, . . . , J, (5.2)

where J ≥ 1 is specific to each problem is imposed.1 We also limit ourselves to
first-order real-valued and complex-valued PDEs for brevity. The extensions
to other classes of target PDEs are rather straightforward.

5.2.1 Discrete Symbols and Formulas

The discrete symbols and the formulas used in this subsection are summa-
rized.

Corresponding to the continuous periodic boundary condition (5.2), we ap-
ply the discrete periodic boundary condition:

Uk = Uk+ωN , 0 ≤ k ≤ N − 1, ω ∈ Z. (5.3)

Next we introduce the difference operator of O(∆x2p) (p = 1, 2, . . .) for the
first derivative as follows.

δ
〈1〉,2p
k Uk =

p∑

j=−p

αp,jUk+j

∆x
. (5.4)

The coefficients αp,j can be uniquely determined to gain accuracy of O(∆x2p).
The operators are skew-symmetric, i.e., αp,j = −αp,−j for any p (see, for
example, Fornberg [61]). When p = 1, it is the well-known central difference
operator: δ

〈1〉
k Uk = (Uk+1 − Uk−1)/2∆x. And in the limit of p → ∞, δ

〈1〉,2p
k

becomes the so-called “spectral differentiation” operator [61]:

δ
〈1〉,∞
k Uk =

(
F−1D̃FU

)
k
, (5.5)

where U = (U0, U1, . . . , UN−1)T and

Fjk
d≡ 1

N
exp

(
−2iπjk

N

)
, (5.6)

D̃
d≡ diag

{
0,

2πi
L

, . . . ,
2πi(N

2 − 1)
L

, 0,−(
2πi(N

2 − 1)
L

), . . . ,−2πi
L

}
. (5.7)

1Although we have already reserved “J” for the global energies, we use the same symbol
for the degree of smoothness here, since it should not cause any confusion.
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With regard to the differentiation operator δ
〈1〉,2p
k , the following “summation-

by-parts” formula holds; this is a generalization of the basic summation-by-
parts formulas appearing in the preceding chapters.

LEMMA 5.1 Summation-by-parts with respect to δ
〈1〉,2p
k

For any two N -periodic sequences Uk, Vk (0 ≤ k ≤ N − 1),

N∑

k=0

′′(δ〈1〉,2p
k Uk)Vk∆x = −

N∑

k=0

′′Uk(δ〈1〉,2p
k Vk)∆x. (5.8)

PROOF

N∑

k=0

′′
(
δ
〈1〉,2p
k Uk

)
Vk∆x =

N−1∑

k=0

(
δ
〈1〉,2p
k Uk

)
Vk∆x

=
N−1∑

k=0




p∑

j=−p

αp,jUk+j


 Vk

=
p∑

j=−p




N−1+j∑

k′=j

αp,jUk′Vk′−j




=
p∑

j=−p

(
N−1∑

k′=0

αp,jUk′Vk′−j

)

= −
p∑

j′=−p

(
N−1∑

k′=0

αp,j′Uk′Vk′+j′

)

= −
N−1∑

k=0

Uk(δ〈1〉,2p
k Vk)∆x

= −
N∑

k=0

′′Uk(δ〈1〉,2p
k Vk)∆x. (5.9)

The periodic boundary condition (5.2), and the skew-symmetry: αp,j =
−αp,−j are used.

REMARK 5.1 Under the discrete periodic boundary condition (5.3) the
trapezoidal rule

∑N
k=0

′′ is completely equivalent to the rectangle rule
∑N−1

k=0 .
We here choose the trapezoidal rule notation, simply because we have basically
used it in the preceding chapters.
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5.2.2 Discrete Variational Derivative

In this subsection we define a spatially high-order version of the discrete
variational derivative, in both real-valued and complex-valued cases. The
key is to utilize the highly accurate spatial difference operator δ

〈1〉,2p
k instead

of the central difference operator δ
〈1〉
k used in the preceding chapters. This

modification is realized by the high-order version of the summation-by-parts
formula (5.8).

5.2.2.1 For the Real-Valued PDEs

We here consider the real dissipative PDEs 1 and conservative PDEs 2
under the periodic boundary condition (5.2). As in Chapter 3, for the sake of
simplicity, we assume that G(u, ux) is of the form:

G(u, ux) =
fM∑

l=1

fl(u)gl(ux), (5.10)

where M̃ ∈ N, and fl, gl : R → R are differentiable functions. We then define
the “discrete local energy” Gd(U) analogously to (5.10) as

Gd,k(U) =
M∑

l=1

fl(Uk)gl(δ
〈1〉,2p
k Uk), (5.11)

where M (≥ M̃) is an integer. We also define its associated global energy by

Jd(U (m))
d≡

N∑

k=0

′′Gd,k(U (m))∆x. (5.12)

For such a Gd, we consider the difference:

N∑

k=0

′′Gd,k(U)∆x −
N∑

k=0

′′Gd,k(V )∆x

=
N∑

k=0

′′
{

Gd

∂(U ,V )k

(Uk − Vk) +
Gd

∂δ(U ,V )k

(
δ
〈1〉,2p
k Uk − δ

〈1〉,2p
k Vk

)}
∆x

=
N∑

k=0

′′
{

Gd

∂(U ,V )k

− δ
〈1〉,2p
k

Gd

∂δ(U ,V )k

}
(Uk − Vk)∆x

=
N∑

k=0

′′ δGd

δ(U ,V )k

(Uk − Vk)∆x, (5.13)

where
δGd

δ(U ,V )k

d≡ ∂Gd

∂(U ,V )k

− δ
〈1〉,2p
k

(
∂Gd

∂δ(U ,V )k

)
, (5.14)



232 Discrete Variational Derivative Method

and

∂Gd

∂(U ,V )k

=
M∑

l=1

{(
gl(δ

〈1〉,2p
k Uk) + gl(δ

〈1〉,2p
k Vk)

2

)(
fl(Uk) − fl(Vk)

(Uk − Vk)

)}
,

(5.15a)

∂Gd

∂δ(U ,V )k

=
M∑

l=1

{(
fl(Uk) + fl(Vk)

2

) (
gl(δ

〈1〉,2p
k Uk) − gl(δ

〈1〉,2p
k Vk)

δ
〈1〉,2p
k (Uk − Vk)

)}
.

(5.15b)

In the second equality of (5.13) we used the summation-by-parts formula (5.8).
The discrete quantity

δGd

δ(U ,V )k

is called the “spatially high-order” discrete variational derivative. Note that
though we use the same symbol as in the second-order case, it utilizes the
high-order spatial difference operator δ

〈1〉,2p
k .

5.2.2.2 For the Complex-Valued PDEs

We here consider the complex dissipative PDEs 3 and conservative PDEs 4
under the periodic boundary condition (5.2). As in Chapter 3 we assume that
the energy G(u, ux) takes the form

G(u, ux) =
M∑

l=1

cl|pl(u)|N
P
l |ql(ux)|N

Q
l (5.16)

where cl ∈ R, and NP
l , NQ

l ∈ {2, 3, 4, . . .}, and pl, ql : C → C are assumed to
be analytic functions which satisfy pl(u) = pl(u), ql(u) = ql(u) (u ∈ C). Here-
after we abbreviate |pl(Uk)|NP

l as Pl(Uk), and |ql(δ
〈1〉,2p
k Uk)|N

Q
l as Ql(Uk).

We then define discrete energy Gd(U) analogously to (5.16) as

Gd,k(U)
d≡

M∑

l=1

cl|pl(Uk)|N
P
l |ql(δ

〈1〉,2p
k Uk)|N

Q
l , (5.17)

and its associated global energy by

Jd(U (m))
d≡

N∑

k=0

′′Gd,k(U (m))∆x. (5.18)

As in the real case, we consider the difference
N∑

k=0

′′Gd,k(U)∆x −
N∑

k=0

′′Gd,k(V )∆x

=
N∑

k=0

′′
(

δGd

δ(U ,V )k

(Uk − Vk) +
δGd

δ(U ,V )k

(Uk − Vk)
)

∆x, (5.19)
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where

δGd

δ(U ,V )k

d≡ ∂Gd

∂(U ,V )k
− δ

〈1〉,2p
k

(
∂Gd

∂δ(U ,V )k

)
, (5.20)

δGd

δ(U , V )k

d≡ ∂Gd

∂(U ,V )k

− δ
〈1〉,2p
k

(
∂Gd

∂δ(U ,V )k

)
, (5.21)

are the “spatially high-order complex discrete variational derivatives,” whose
concrete forms are

∂Gd

∂(U ,V )k

d≡
M∑

l=1

cl

(
Ql(Uk) + Ql(Vk)

2

)(
pl(Uk) − pl(Vk)

Uk − Vk

)
(5.22)

× f
(
NP

l ; pl(Uk), pl(Vk)
)
,

∂Gd

∂δ(U ,V )k

d≡
M∑

l=1

cl

(
Pl(Uk) + Pl(Vk)

2

)
(5.23)

×

(
ql(δ

〈1〉,2p
k Uk) − ql(δ

〈1〉,2p
k Vk)

δ
〈1〉,2p
k Uk − δ

〈1〉,2p
k Vk

)
f

(
NQ

l ; ql(δ
〈1〉,2p
k Uk), ql(δ

〈1〉,2p
k Vk)

)
,

where

f(n; z1, z2)
d≡





z1 + z2

2
(|z1|n−2 + |z1|n−4|z2|2 + · · · + |z2|n−2), n : even,

z1 + z2

2
|z1|n−1 + |z1|n−2|z2| + · · · + |z2|n−1

|z1| + |z2|
, n : odd.

(5.24)
In above calculation we used the summation-by-parts formula (5.8).

5.2.3 Design of Schemes

With the discrete variational derivative given above, we then define the
finite difference schemes.

5.2.3.1 For the Real-Valued PDEs

We define a scheme for the real dissipative PDEs 1 as follows.

Scheme 5.1 (Spatially high-order dissipative scheme for the PDEs 1)
Let U

(0)
k = u(k∆x, 0) be initial values. Then, a spatially high-order scheme

for the PDEs 1 is given by, for m = 0, 1, 2, . . .,

Uk
(m+1) − Uk

(m)

∆t
= (−1)s+1

(
δ
〈1〉,2p
k

)2s δGd

δ(U (m+1),U (m))k

,

k = 0, . . . , N − 1. (5.25)
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THEOREM 5.1 Discrete dissipation property and orders of Scheme 5.1

Under the discrete periodic boundary condition (5.3), Scheme 5.1 is dissipa-
tive in the sense that the inequality

Jd(U (m+1)) ≤ Jd(U (m)), m = 0, 1, 2, . . . (5.26)

holds. Moreover, the scheme is (2p, 2)-th order.

PROOF The dissipation property is proved as follows.

1
∆t

(
N∑

k=0

′′Gd,k(U (m+1))∆x −
N∑

k=0

′′Gd,k(U (m))∆x

)

=
N∑

k=0

′′ δGd

δ(U (m+1),U (m))k

(
Uk

(m+1) − Uk
(m)

∆t

)
∆x

=
N∑

k=0

′′ δGd

δ(U (m+1),U (m))k

(−1)s+1
(
δ
〈1〉,2p
k

)2s
(

δGd

δ(U (m+1),U (m))k

)
∆x

= −
N∑

k=0

′′

{(
δ
〈1〉,2p
k

)s
(

δGd

δ(U (m+1),U (m))k

)}2

∆x

≤ 0. (5.27)

The first equality is from (5.13), the second is from the definition of the
scheme (5.25), and the third is from the repeated use of the summation-by-
parts formula (5.8).

In order to prove the claim on the orders of accuracy, let us substitute the

true solutions u
(m)
k

d≡ u(k∆x,m∆t) into Uk
(m), and consider Taylor expansion

of both sides of the scheme at (x, t) = (k∆x, (m + 1
2 )∆t). It is easy to see

that
u

(m+1)
k − u

(m)
k

∆t
=

d
dt

u(k∆x, (m + 1/2)∆t) + O(∆t2).

Moreover, the following estimate holds:

δGd

δ(u(m+1),u(m))k

=
δG

δu

∣∣∣∣
x=k∆x

t=(m+1/2)∆t

+ O(∆x2p,∆t2). (5.28)

Evidently, both estimates yield

u
(m+1)
k − u

(m)
k

∆t
= (−1)s+1

(
∂

∂x

)2s
δGd

δ(u(m+1),u(m))k

+ O(∆x2p,∆t2),

which means that the scheme is (2p, 2)th-order.
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We prove the estimate (5.28), by substituting u
(m)
k into Uk

(m) in the defi-
nition of the discrete variational derivative, and considering Taylor expansion
of each term at (x, t) = (k∆x, (m+ 1

2 )∆t). We use the following abbreviation:

(·)|(k,m+1/2)

d≡ (·)|x=k∆x,t=(m+1/2)∆t .

We first consider (5.15a). Since δ
〈1〉,2p
k u

(m)
k = ux|(k,m+1/2) + O(∆x2p), we

obtain

gl

(
δ
〈1〉,2p
k u

(m+1)
k

)
+ gl

(
δ
〈1〉,2p
k u

(m)
k

)

2
= gl(ux)|(k,m+1/2) + O(∆x2p,∆t2).

(5.29)
Since for any sufficiently smooth function f(y), we have

f(y1) − f(y2)
y1 − y2

=
∂f

∂y

∣∣∣∣
y=(y1+y2)/2

+ O
(
(y1 − y2)2

)
, (5.30)

the following estimate holds:

fl(u
(m+1)
k ) − fl(u

(m)
k )

u
(m+1)
k − u

(m)
k

=
∂fl

∂u

∣∣∣∣
u=

“

u
(m+1)
k +u

(m)
k

”

/2

+ O
(
(u(m+1)

k − u
(m)
k )2

)

=
∂fl

∂u

∣∣∣∣
(k,m+1/2)

+ O
(
∆t2

)
. (5.31)

From (5.29) and (5.31) we have

∂Gd

∂(u(m+1),u(m))k

=
∂G

∂u

∣∣∣∣
(k,m+1/2)

+ O(∆x2p,∆t2). (5.32)

In a similar manner, we obtain the following estimate as to (5.15b).

∂Gd

∂δ(u(m+1),u(m))k

=
∂G

∂ux

∣∣∣∣
(k,m+1/2)

+ O(∆x2p,∆t2). (5.33)

Thus we obtain the following estimate:

δGd

δ(u(m+1),u(m))k

=
∂Gd

∂(u(m+1),u(m))k

− δ
〈1〉,2p
k

∂Gd

∂δ(u(m+1),u(m))k

=
∂G

∂u

∣∣∣∣
(k,m+1/2)

− δ
〈1〉,2p
k

(
∂G

∂ux

∣∣∣∣
(k,m+1/2)

)
+ O(∆x2p,∆t2)

=
δG

δu

∣∣∣∣
(k,m+1/2)

+ O(∆x2p,∆t2). (5.34)

A scheme for the real conservative PDEs 2 is defined as follows.
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Scheme 5.2 (Spatially high-order conservative scheme for PDEs 2)
Let U

(0)
k = u(k∆x, 0) be initial values. Then, a spatially high-order scheme

for the PDEs 2 is given by, for m = 0, 1, 2, . . .,

Uk
(m+1) − Uk

(m)

∆t
=

(
δ
〈1〉,2p
k

)2s+1 δGd

δ(U (m+1),U (m))k

,

k = 0, . . . , N − 1. (5.35)

THEOREM 5.2 Discrete conservation property and orders of Scheme 5.2

Under the discrete periodic boundary condition (5.3), Scheme 5.2 is conser-
vative in the sense that the inequality

Jd(U (m)) = Jd(U (0)), m = 1, 2, 3, . . . (5.36)

holds. Moreover, the scheme is (2p, 2)-th order.

PROOF The conservation property is proved as follows.

1
∆t

(
N∑

k=0

′′Gd(U (m+1))∆x −
N∑

k=0

′′Gd(U (m))∆x

)

=
N∑

k=0

′′ δGd

δ(U (m+1),U (m))k

(
Uk

(m+1) − Uk
(m)

∆t

)
∆x

=
N∑

k=0

′′ δGd

δ(U (m+1),U (m))k

(
δ
〈1〉,2p
k

)2s+1
(

δGd

δ(U (m+1),U (m))k

)
∆x

= (−1)s
N∑

k=0

′′

{(
δ
〈1〉,2p
k

)s
(

δGd

δ(U (m+1),U (m))k

)

×
(
δ
〈1〉,2p
k

)s+1
(

δGd

δ(U (m+1),U (m))k

)}
∆x

= 0. (5.37)

The first equality is from (5.13), the second is from the definition of the
scheme (5.35). and the third is from the repeated use of the summation-by-
parts formula (5.8). (Note that the equality

∑N
k=0

′′Ukδ
〈1〉,2p
k Uk∆x = 0 holds

for any N -periodic sequence Uk, which can be easily obtained from (5.8) as a
special case.)

The claim on the orders can be proved in the same way in Theorem 5.1.

5.2.3.2 For the Complex-Valued PDEs

We define finite difference schemes for the complex-valued dissipative PDEs 3
as follows.
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Scheme 5.3 (Spatially high-order dissipative scheme for the PDEs 3)
Let U

(0)
k = u(k∆x, 0) be initial values. Then, a spatially high-order scheme

for the PDEs 3 is given by, for m = 0, 1, 2, . . .,

Uk
(m+1) − Uk

(m)

∆t
= −

(
δGd

δ(U (m+1), U (m))

)

k

,

k = 0, . . . , N − 1. (5.38)

THEOREM 5.3 Discrete dissipation property and orders of Scheme 5.3

Under the discrete periodic boundary condition (5.3), Scheme 5.3 is dissipa-
tive in the sense that the inequality

Jd(U (m+1)) ≤ Jd(U (m)), m = 0, 1, 2, . . . (5.39)

holds. Moreover, the scheme is (2p, 2)-th order.

PROOF The dissipation property is proved as follows.

1
∆t

(
N∑

k=0

′′Gd,k(U (m+1))∆x −
N∑

k=0

′′Gd,k(U (m))∆x

)

=
N∑

k=0

′′

{(
δGd

δ(U (m+1),U (m))

)

k

(
Uk

(m+1) − Uk
(m)

∆t

)

+

(
δGd

δ(U (m+1), U (m))

)

k

(
Uk

(m+1) − Uk
(m)

∆t

)}
∆x

= −2
N∑

k=0

′′

∣∣∣∣∣

(
δGd

δ(U (m+1),U (m))

)

k

∣∣∣∣∣

2

∆x ≤ 0. (5.40)

The first equality is from (5.19), and the second is from the definition of
Scheme 5.3 and the fact that the complex (discrete) variational derivatives
are complex conjugates of each other.

The claim on the orders can be proved in the same way in Theorem 5.1.

We also define a scheme for the conservative PDEs 4 as follows.

Scheme 5.4 (Spatially high-order conservative scheme for the PDEs 4)
Let U

(0)
k = u(k∆x, 0) be initial values. Then, a spatially high-order scheme

for the PDEs 4 is given by, for m = 0, 1, 2, . . .,

i

(
Uk

(m+1) − Uk
(m)

∆t

)
= −

(
δGd

δ(U (m+1),U (m))

)

k

,

k = 0, . . . , N − 1. (5.41)
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The accuracy of this scheme is O(∆t2,∆x2p).

THEOREM 5.4 Discrete conservation property and orders of Scheme 5.4

Under the discrete periodic boundary condition (5.3), Scheme 5.4 is dissipa-
tive in the sense that the inequality

Jd(U (m+1)) = Jd(U (0)), m = 1, 2, 3, . . . (5.42)

holds. Moreover, the scheme is (2p, 2)-th order.

PROOF The conservation property is proved as follows.

1
∆t

(
N∑

k=0

′′Gd,k(U (m+1))∆x −
N∑

k=0

′′Gd,k(U (m))∆x

)

=
N∑

k=0

′′

{(
δGd

δ(U (m+1),U (m))

)

k

(
Uk

(m+1) − Uk
(m)

∆t

)

+

(
δGd

δ(U (m+1),U (m))

)

k

(
Uk

(m+1) − Uk
(m)

∆t

)}
∆x

=
N∑

k=0

′′



i

∣∣∣∣∣

(
δGd

δ(U (m+1),U (m))

)

k

∣∣∣∣∣

2

− i

∣∣∣∣∣

(
δGd

δ(U (m+1),U (m))

)

k

∣∣∣∣∣

2


∆x = 0.

(5.43)

The claim on the orders can be proved in the same way in Theorem 5.1.

REMARK 5.2 As we have repeatedly mentioned so far, the derived
schemes here can be implemented with variable time step sizes (observe that
the dissipation or conservation theorems hold even if the temporal mesh size
is changed during the time evolution process).

The schemes here are nonlinearly implicit in general due to the nonlinearity
in the PDEs. We can, however, further modify the method for designing
linearly implicit schemes, using the idea described in Chapter 6. We omit the
details, but will present several examples in the next subsection.

5.2.4 Application Examples

In this section we show some examples.
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5.2.4.1 Application to the Korteweg–de Vries Equation

Let us consider the Korteweg–de Vries equation (KdV):

∂u

∂t
=

∂

∂x

(
1
2
u2 +

∂2u

∂x2

)
, x ∈ (0, L), t > 0, (5.44)

under the periodic boundary condition (5.2). The energy function G for the
KdV is defined by

G(u, ux) =
1
6
u3 − 1

2

(
∂u

∂x

)2

. (5.45)

We have already seen an energy-conserving scheme whose accuracy is
O(∆t2,∆x2) in Section 4.2.1. Here we derive a (2p, 2)th-order conservative
scheme. We start by defining the discrete local energy as

Gd,k(U)
d≡ Uk

3

6
−

(δ〈1〉,2p
k Uk)2

2
. (5.46)

Note that it can be decomposed as assumed in (5.11). Mechanically calculat-
ing the discrete variational derivative using (5.14), (5.15a), and (5.15b), we
obtain

δGd

δ(U ,V )k

=
Uk

2 + UkVk + V 2
k

6
+

(
δ
〈1〉,2p
k

)2
(

Uk + Vk

2

)
. (5.47)

Then Scheme 5.1 reads

Uk
(m+1) − Uk

(m)

∆t
= δ

〈1〉,2p
k

{
(Uk

(m+1))2 + Uk
(m+1)Uk

(m) + (Uk
(m))2

6

+
(
δ
〈1〉,2p
k

)2
(

Uk
(m+1) + Uk

(m)

2

)}
. (5.48)

This scheme keeps a discrete energy thanks to Theorem 5.1. It also should
be noted that, as mentioned in Section 5.2, the scheme is pseudospectral-like
in the limit of p → ∞.

REMARK 5.3 We can also construct linearly implicit schemes. Below is
an example.

Uk
(m+3) − Uk

(m)

3∆t
=

− δ
〈1〉,2p
k

{
Uk

(m+2)Uk
(m+1)

2
+

(
δ
〈1〉,2p
k

)2
(

Uk
(m+3) + Uk

(m)

2

)}
.

(5.49)
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This scheme conserves the discrete global energy:

N−1∑

k=0

(
Uk

(m+3)Uk
(m+2)Uk

(m+1)

6

−

∣∣∣δ〈1〉,2p
k Uk

(m+3)
∣∣∣
2

+
∣∣∣δ〈1〉,2p

k Uk
(m+2)

∣∣∣
2

+
∣∣∣δ〈1〉,2p

k Uk
(m+1)

∣∣∣
2

6


∆x.

(5.50)

5.2.4.2 Application to the Cubic Nonlinear Schrödinger Equation

Let us consider the cubic nonlinear Schrödinger equation(NLS):

i
∂u

∂t
= −uxx − γ|u|2u, x ∈ (0, L), t > 0, γ ∈ R, (5.51)

under the periodic boundary condition (5.2). The energy function G for the
NLS is defined by

G(u, ux) = −|ux|2 +
γ

2
|u|4.

Let us derive a (2p, 2)th-order conservative scheme for the NLS. We first
define the discrete local energy as

Gd,k(U)
d≡ − |δ〈1〉,2p

k Uk|2 +
γ

2
|Uk|4. (5.52)

Note that it can be decomposed as assumed in (5.16). By mechanically cal-
culating the complex discrete variational derivatives using (5.20), (5.21), and
(5.22),(5.23), we have

(
δGd

δ(U (m+1), U (m))

)

k

= (δ〈1〉,2p
k )2

(
Uk

(m+1) + Uk
(m)

2

)

+ γ

(
|Uk

(m+1)|2 + |Uk
(m)|2

2

)(
Uk

(m+1) + Uk
(m)

2

)
. (5.53)

Then Scheme 5.3 reads

i

(
Uk

(m+1) − Uk
(m)

∆t

)
= −(δ〈1〉,2p

k )2
(

Uk
(m+1) + Uk

(m)

2

)

−γ

(
|Uk

(m+1)|2 + |Uk
(m)|2

2

)(
Uk

(m+1) + Uk
(m)

2

)
. (5.54)
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The conservation Theorem 5.4 holds, namely,

N∑

k=0

′′Gd,k(U (m))∆x (5.55)

remains constant. Moreover, the scheme conserves the discrete “probability”:

N∑

k=0

′′|Uk
(m)|2∆x. (5.56)

This conservation property is a discrete analogue of the continuous probability
conservation law:

∫ L

0
|u|2dx = const. With these properties the scheme is

shown to be stable and L2-convergent.

REMARK 5.4 By employing the linearization technique in Chapter 6,
we can also construct a linearly implicit version of the scheme as follows. We
omit the detail of the derivation here.

i

(
Uk

(m+2) − Uk
(m)

2∆t

)
=

−
(
δ
〈1〉,2p
k

)2
(

Uk
(m+2) + Uk

(m)

2

)
− γ|Uk

(m+1)|2
(

Uk
(m+2) + Uk

(m)

2

)
.

(5.57)

This scheme preserves the discrete global energy:

N∑

k=0

′′




−

∣∣∣δ〈1〉,2p
k Uk

(m+1)
∣∣∣
2

+
∣∣∣δ〈1〉,2p

k Uk
(m)

∣∣∣
2

2
+

γ

2

∣∣∣Uk
(m+1)

∣∣∣
2 ∣∣∣Uk

(m)
∣∣∣
2





∆x,

(5.58)
and the discrete probability:

N∑

k=0

′′ |Uk
(m+1)|2 + |Uk

(m)|2

2
∆x. (5.59)

Now we present some numerical results. We compare the following four
numerical schemes:

• (CPS): the scheme (5.54) with p = ∞ (i.e., a pseudospectral-like scheme)
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TABLE 5.1: Characteristics of the
tested numerical schemes

name t x energy prob.
(CPS) O(∆t2) spectral yes yes
(CFD) O(∆t2) O(∆x2) yes yes
(CLI) O(∆t2) spectral yes yes
(RK4) O(∆t4) spectral no no

• (CFD): the second-order scheme shown in Section 4.4.1

• (CLI): the linearly-implicit scheme (5.57)

• (RK4): the standard pseudospectral scheme which uses the 4th order
Runge–Kutta method

We summarize their characteristics in Table 5.1.2 In (CPS) and (CFD), we
solved the nonlinear schemes (5.54) by simple iterations; i.e., we solved (5.54)
by the iteration:

U
(m+1),j+1
k = U

(m)
k +

∆t

i

{
−(δ〈1〉,2p

k )2
(

U
(m+1),j
k + Uk

(m)

2

)

−γ

(
|U (m+1),j

k |2 + |Uk
(m)|2

2

)(
U

(m+1),j
k + Uk

(m)

2

)}
, (5.60)

where j ∈ {0, 1, 2, . . .} is the index of the iteration.
We take up the exact periodic solution (for γ > 0):

u(x, t) =

√
λ + α

γ
cn[

√
α(x − vt), k] exp

[
i
v

2
x − i

(
v2

4
− λ

)
t

]
. (5.61)

Here, cn(x, k) is the Jacobi elliptic function of modulus k, and λ, α, v, k, L
(the length of the domain) are constants. The constants are chosen to satisfy
the relations: α =

√
2γA + λ2, k =

√
(λ + α)/(2α), L = 4K(k)/

√
α and

v = 4mπ/L (m: an integer), where K(k) is the complete elliptic integral of
the first kind of modulus k to meet the periodic boundary condition (5.2).
Thus we have only three free constants λ,A ∈ R and m ∈ Z. In the following
experiments, we set γ = 2, A = 1.0 × 10−5, and λ = 1 (so that α ≅ 1.00002,
k ≅ 0.999990, L ≅ 28.5708). The constant m, which determines the “speed”

2−6 Reprinted from T. Matsuo, M. Sugihara, D. Furihata and M. Mori, Spatially accu-
rate dissipative or conservative finite difference schemes derived by the discrete variational
method, Japan J. Indust. Appl. Math., 19, 311–330, Copyright (2002), with permission
from JJIAM publishing committee.
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of the solution, is chosen in each experiment. As m increases, the solution
becomes “rapid” and harder to capture by numerical calculation. We carried
out all numerical computations with double precision.

Firstly, we compare the accuracies of the numerical solutions. In the ex-
periment we choose v = 1 (“slow” solution; temporal period Tp ≅ 64.9583).
Table 5.23 shows the maximal errors at t = T = 10 (i.e., at about 1/6 period).
We denote the exact solution by u = (u(T, x0), u(T, x1), . . . , u(T, xN−1))T at
t = T , and the numerical solution by U (M) where M = T/∆t. The (*) mark
means that the result is almost at the best order which can be attained with
the ∆x value (i.e., the order cannot be improved by decreasing ∆t). Accord-
ing to the marked result, we can confirm that the scheme (CPS) is spatially
highly accurate as expected; the error decreases almost exponentially with
regard to N , while the error by the scheme (CFD) decreases only at the rate
of O(∆x2). The superiority becomes far more significant as N grows. The
temporal accuracy of the scheme (CPS) is, however, still of O(∆t2) and may
discourage us from utilizing the scheme in view of, for example, higher order
schemes such as the Runge–Kutta scheme (RK4). This difficulty can be over-
come by the composition technique . The scheme (CLI) gives as good a result
as (CPS).

TABLE 5.2: Maximal errors at T = 10

Scheme ∆x (N) ∆t ∥U (M) − u∥∞
(CPS) 0.4464 (64) 0.001 3.85 × 10−4 (*)

0.2232 (128) 0.01 1.40 × 10−4

0.001 1.40 × 10−6

0.0001 1.92 × 10−8

0.00001 6.58 × 10−9 (*)
0.1116 (256) 0.001 1.40 × 10−6

0.0001 1.40 × 10−8

0.00001 1.41 × 10−10

0.000001 1.08 × 10−12 (*)
(CFD) 0.4464 (64) 0.001 5.00 × 10−1 (*)

0.2232 (128) 0.001 1.14 × 10−1 (*)
0.1116 (256) 0.001 2.80 × 10−2 (*)

(CLI) 0.4464 (64) 0.001 3.85 × 10−4 (*)
0.2232 (128) 0.00001 8.05 × 10−9 (*)
0.1116 (256) 0.000001 2.33 × 10−12 (*)

(RK4) 0.4464 (64) 0.01 3.84 × 10−4 (*)
0.2232 (128) 0.001 8.01 × 10−9 (*)
0.1116 (256) 0.0001 3.58 × 10−12 (*)
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Secondly, we compare the qualitative aspects of the numerical solutions.
For this purpose we use a “rapid” solution: v = 100 (i.e., the temporal period
Tp ≅ 0.6496), and see if the schemes can correctly preserve the soliton-like
waveform of the solution. We carried out numerical calculations using the
above schemes for 0 ≤ t ≤ T = 10 (i.e., about 16 periods) with ∆t = 0.001
and ∆x = 0.1116 (N = 256). Figure 5.14 shows the progression results. We
plotted the absolute values of the numerical solutions, i.e., |Uk

(m)| against
(t, x). Note that the graphs are drawn only at selected time points (t =
0, 2, 4, 6, 8, 10) to increase readability, therefore they do not reflect the right
wave speed; the exact solution goes around the interval about 16 times, as
stated earlier. Apparently the results by (CFD) and (RK4) are “qualitatively”
wrong; they fail to preserve the soliton-like waveform of the solution. In
other words, the mesh sizes are too coarse for them to catch up with the
solution. The result by (CLI) is better, but not satisfactory. The results
by (CPS) successfully preserve the waveform, and in that sense we can say
that they achieve a qualitatively right solution. The reason for the failure of
(CFD) is the lack of spatial resolution (as compared to (CPS)). The reason
in (RK4) is the lack of conservation properties; Figure 5.25 and Figure 5.36

tell this clearly. In Figure 5.2 we plot the calculated discrete energy (5.55)
for (CPS), (CFD), (RK4), and the energy (5.58) for (CLI). In Figure 5.3 we
plot the calculated discrete probability (5.56) for (CPS), (CFD), (RK4), and
the probability (5.59) for (CLI). In both graphs, the result by (RK4) does not
conserve the invariants, while the others conserve them strictly. The readers
may notice that the discrete energy of (CFD) differs from that of the other
conservative schemes; this is due to the difference in the expressions of the
discrete energy (5.52) (p = ∞ in (CPS),(CLI) and p = 1 in (CFD)).

As a result, we can conclude that the energy-conserving pseudospectral
scheme (CPS) is highly accurate in space as expected, and qualitatively reli-
able.
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FIGURE 5.1: Evolution of numerical solutions.
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5.3 Temporally High-Order Schemes: Composition Method

The temporal accuracy of a conservative scheme can be increased by the
the so-called “composition method.” The method was originally proposed
by Suzuki[157] and Yoshida[168], and then further developed by many re-
searchers including Qin and Zhu[143]. Borrowing the description from Qin
and Zhu[143], we summarize the most basic version of the composition method
in the next proposition.

PROPOSITION 5.1 The composition method [143]
Let a system of ODEs

d
dt

z(t) = f(z(t)), t > 0,

be given, and φ(∆t) be a self-adjoint integrator of order 2n, i.e.,

z(t + ∆t) = φ(∆t)z(t) + O(∆t2n+1).

Let c1, c2 be constants which satisfy

2c2n+1
1 + c2n+1

2 = 0, 2c1 + c2 = 1.

Then the combination of integrators φ(c1∆t)φ(c2∆t)φ(c1∆t) is an integrator
of order 2n + 2.

By “self-adjoint integrator” we mean an integrator satisfying φ(−∆t) =
φ−1(∆t); roughly-speaking, it means that the integrator is time-symmetric.

Suppose we have a second-order self-adjoint scheme. We can increase the
order of the scheme to any order by repeatedly composing the scheme; from
second-order to fourth-order, from fourth-order to sixth-order, and so on. We
summarize the coefficients c1, c2 appearing in each step of composition in
Table 5.3. In the table, N2 is the number of second-order schemes in one step
of the composed scheme; for example, in one step of the sixth-order scheme
we use the second-order scheme nine times with different time steps. The
quantity c will be discussed below.

The composition method is a very convenient and elegant way to obtain
high-order schemes. Furthermore, obviously it maintains discrete conservation
law.

PROPOSITION 5.2 Conservation property in composed schemes
Suppose a second-order self-adjoint scheme has a conservation law

I(U (m)) = I(U (0)), m = 1, 2, . . . , (5.62)
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TABLE 5.3: The coefficients in the
standard composition method

stage c1 c2 c N2

2nd to 4th 1.351 −1.702 −1.702 3
4th to 6th 1.175 −1.349 −2.000 9
6th to 8th 1.116 −1.232 −2.829 27
8th to 10th 1.087 −1.174 −3.075 81

where I(U (m)) is a real-valued scalar function of U (m). Then the high-order
schemes obtained by composing the second-order scheme also keep I(U (m)) as
their invariants.

Thus we can obtain temporally higher-order conservative schemes by the
composition method. One difficulty in this approach may be the compu-
tational cost. By the standard composition method, we need to call the
second-order scheme 3n−1 times to obtain a 2nth-order scheme (refer N2 in
Table 5.3). This may be unbearably heavy if we count that the second-order
scheme as nonlinear and we need iterative solvers in every second-order step
required in one step of 2nth-order scheme. Many efforts have been devoted to
improve this situation. Now we have a wide variety of composition methods,
some of which are designed to require as few second-order steps as possible.
Interested readers may refer, for example, to McLachlan [125].

On the other hand, when we consider dissipative problems, things get even
worse. It is proved that in every composition method there must be at least
one step where the time step should be negative. In Table 5.3, c represents the
width of the largest negative time step appearing in one step of the composed
high-order scheme. For example, in the fourth-order scheme the largest nega-
tive time step is −1.702∆t, and in the sixth scheme −2.000∆t. The negative
time step can destroy the overall dissipation property, even if we use a dissi-
pative second-order scheme as the base scheme. So as far as we are interested
in strictly dissipative schemes, we cannot adopt the composition method to
obtain higher-order schemes.

5.4 Temporally High-Order Schemes: High-Order Dis-
crete Variational Derivatives

The second approach to obtain temporally high-order schemes is to intro-
duce a new concept, the “temporally high-order discrete variational deriva-
tive.” Below, we discuss the following cases in order:
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[A] (1, q)th- or (2, q)th-order schemes for the real-valued PDEs 1 and 2, i.e.,
temporally high-order versions of Scheme 3.1 and Scheme 3.2 (pages 80
and 84);

[B] (p, q)th-order schemes for the real-valued PDEs 1 and 2 (under the
periodic boundary condition), i.e., temporally high-order versions of
Scheme 5.1 and Scheme 5.2 (pages 233 and 236);

[C] (1, q)th- or (2, q)th-order schemes for the complex-valued PDEs 3 and 4,
i.e., temporally high-order versions of Scheme 3.3 and Scheme 3.4 (pages
96 and 99);

[D] (p, q)th-order schemes for the complex-valued PDEs 3 and 4 (under
the periodic boundary condition), i.e., temporally high-order versions
of Scheme 5.3 and Scheme 5.4 (both on page 237).

5.4.1 Discrete Symbols

We use the following qth-order temporal difference operator throughout this
section.

DEFINITION 5.3 qth-order temporal difference operator Let
V (m) (m = 0, 1, 2, . . .) be a sequence. Let δ

〈1〉
m;c be a temporal difference operator

defined as

δ〈1〉m;cV
(m) ≡ 1

∆t

l2∑

i=−l1

ciV
(m), (5.63)

where l1, l2 ∈ {0, 1, 2, . . .}, ci ∈ R, and c = (c−l1 , . . . , cl2). We call l = l1+l2−1
the number of the referenced points. If for any sufficiently smooth function
v(t) : R → R, there exists t̃(t,∆t, l1, l2) such that the estimate:

1
∆t

l2∑

i=−l1

civ (t + i∆t) =
d
dt

v

∣∣∣∣
t=et

+ O(∆tq) ∆t → 0, (5.64)

holds, δ
〈1〉
m;c is called “qth-order at t̃.” When q is the highest order attained

by varying t̃, we call δ
〈1〉
m;c a “qth-order difference operator,” and denote it by

δ
〈1〉,q
m;c . ¤

The subscript c is often omitted where no confusion occurs. The simplest
example is

δ〈1〉,2m V (m) =
V (m+1) − V (m)

∆t
,

i.e., the forward difference operator. Though it may seem a first-order dif-
ference operator, it is called “second-order” according to Definition 5.3. In
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fact, by substituting v(m∆t) into V (m) and considering Taylor expansion at
t̃ = (m + 1

2 )∆t, we obtain an estimate:

δ〈1〉,2m v(m∆t) =
d
dt

v

∣∣∣∣
t=(m+ 1

2 )∆t

+ O(∆t2).

Another example is

δ〈1〉,4m v(m) =
1

∆t

(
− 1

24
v(m+2) +

9
8
v(m+1) − 9

8
v(m) +

1
24

v(m−1)

)
,

which is of fourth-order (the fourth-order accuracy is attained at t̃ = (m +
1/2)∆t).

5.4.2 Central Idea for High-Order Discrete Derivative

Since the notation will be quite complicated in the following sections, here
we briefly summarize the central idea for temporally high-order schemes, so
that the readers can get an idea of what is going on there.

Recall, for example, Scheme 3.1:

Uk
(m+1) − Uk

(m)

∆t
= (−1)s+1δ

〈2s〉
k

δGd

δ(U (m+1),U (m))k

. (5.65)

As in the proof of Theorem 5.1, we can prove that the scheme is temporally
second-order (and spatially first- or second-order) by considering Taylor ex-
pansion of both sides of the scheme at (x, t) = (k∆x, (m + 1

2 )∆t). Note that
the left-hand side is nothing but the temporally second-order difference oper-
ator δ

〈1〉,2
m in our new notation (see above), which implies that the resulting

scheme is temporally second-order.
The idea for designing temporally high-order schemes is to use the qth-order

temporal difference operators δ
〈1〉,q
m instead of the second-order operator δ

〈1〉,2
m ,

and search for the schemes of the form

δ〈1〉,qm Uk
(m) = (−1)s+1δ

〈2s〉
k

δGd

δ(U (m+l2), . . . ,U (m−l1))k

. (5.66)

The complicated discrete symbol on the right-hand side is a discretization of
δG/δu, which will be introduced in the next section. Because the left-hand
side is a temporally qth-order approximation of d

dtu(k∆x, t̃) (t̃ is defined in
Definition 5.3 as to δ

〈1〉,q
m ), if the right-hand side is also a temporally qth-order

approximation of the variational derivative at (x, t) = (k∆x, t̃), the scheme
must be temporally qth-order as a whole. In the following sections, we show
that in fact we can find such an approximation.

The key tool there is the high-order operator δ
〈1〉,q
m and its associated “dis-

crete chain rule.” They were first suggested in Matsuo [114] (see also [115]),
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where high-order schemes for dissipative or conservative ODEs had been con-
sidered. Before proceeding to the PDE cases, we briefly summarize the ODE
case.

Suppose we hope to solve a system of ODEs:

d
dt

z(t) = A∇H(z), (5.67)

where z ∈ RN , H : RN → R. Assume that A is skew-symmetric, i.e., for any
x,y, x · Ay = −(Ax) · y. The symbol “·” denotes the inner product in RN .
Then H is an invariant:

d
dt

H(z(t) = (∇H(z)) · dz

dt
= (∇H(z)) · A(∇H(z)) = 0.

The last equality follows from the skew-symmetry of A.
Now let us introduce a “discrete derivative”:

∇q
dH(z(m))

d≡ ∇H(z̃) +
δ
〈1〉,q
m H(z(m)) − (∇H(z̃)) · δ〈1〉,qm z(m)

∥δ〈1〉,qm z(m)∥2
2

δ〈1〉,qm z(m),

(5.68)
where z̃ is some mean value of z(m)’s. Observe that the fraction is just a
scalar. The fraction is, roughly speaking, of order O(∆tq) (provided that we
choose z̃ appropriately), and the discrete derivative is a combination of ∇H,
which is a “true” derivative at z̃, and the correction term of O(∆tq). The
latter is needed for the following discrete chain rule.

δ〈1〉,qm H(z(m)) = (∇q
dH(z(m))) · δ〈1〉,qm z(m). (5.69)

This can be easily verified by multiplying both sides of (5.68) by δ
〈1〉,q
m z(m).

This is a high-order generalization of Gonzalez’s discrete gradient introduced
in [74]. With the high-order discrete derivative, we can construct a high-order
conservative scheme as follows.

δ〈1〉,qm z(m) = A∇q
dH(z(m)). (5.70)

This is in fact O(∆tq), and enjoys the conservation:

δ〈1〉,qm H(z(m)) = 0.

We can do a similar thing also in the PDE cases. But we have to consider
the summation-by-parts formula at the same time, which makes the discussion
(and notation) cumbersome.

5.4.3 Temporally High-Order Discrete Variational Deriva-
tive and Design of Schemes

Now let us turn to the PDE cases. In what follows we define a temporally
high-order discrete variational derivative, and present the method for design-
ing temporally high-order dissipative or conservative schemes, for the cases
[A] to [D], in this order.
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5.4.3.1 [A] (1, q)th- or (2, q)th-Order Schemes for the Real-Valued
PDEs

In this subsection, (1, q)th- or (2, q)th-order schemes for the real-valued
PDEs 1 and 2 are presented.

5.4.3.1.1 Discrete variational derivative For an energy function G(u, ux),
we introduce a function G̃(u, v, w) by

G̃(u, v, w)
d≡ 1

2
(G(u, v) + G(u,w)) , (5.71)

and define a discrete energy function Gd(U (m)) by

Gd,k(U (m))
d≡ G̃(Uk

(m), δ+
k Uk

(m), δ−k Uk
(m)). (5.72)

In this way the discrete energy function is related to the original energy func-
tion. This makes our analysis of accuracy easier. We also define an associated
global energy by

Jd(U (m))
d≡

N∑

k=0

′′Gd,k(U (m))∆x. (5.73)

Next, we consider the discrete variation using the qth-order difference op-
erator:

δ〈1〉,qm Jd(U (m)) =
N∑

k=0

′′

(
δGd

δ(U (m+l2), . . . ,U (m−l1))k

· δ〈1〉,qm Uk
(m)

)
∆x

+ Btr,1(U (m+l2), . . . ,U (m−l1)), (5.74)

where

δGd

δ(U (m+l2), . . . ,U (m−l1))k

d≡
∂Gq

d

∂(U (m+l2), . . . ,U (m−l1))k

− δ−k

(
∂Gq

d

∂δ+(U (m+l2), . . . ,U (m−l1))k

)

− δ+
k

(
∂Gq

d

∂δ−(U (m+l2), . . . ,U (m−l1))k

)
, (5.75a)

∂Gq
d

∂(U (m+l2), . . . ,U (m−1l))k

d≡ ∂G̃

∂u

∣∣∣∣∣
Vk

+ rδ〈1〉,qm Uk
(m), (5.75b)

∂Gq
d

∂δ+(U (m+l2), . . . ,U (m−l1))k

d≡ ∂G̃

∂v

∣∣∣∣∣
Vk

+ rδ〈1〉,qm (δ+
k Uk

(m)), (5.75c)

∂Gq
d

∂δ−(U (m+l2), . . . ,U (m−l1))k

d≡ ∂G̃

∂w

∣∣∣∣∣
Vk

+ rδ〈1〉,qm (δ−k Uk
(m)), (5.75d)
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r
d≡ rn

rd
, (5.76a)

rn
d≡ δ〈1〉,qm Jd(U (m)) −

N∑

k=0

′′ ∂G̃

∂u

∣∣∣∣∣
Vk

δ〈1〉,qm Uk
(m)∆x

−
N∑

k=0

′′ ∂G̃

∂v

∣∣∣∣∣
Vk

(δ〈1〉,qm δ+
k Uk

(m))∆x −
N∑

k=0

′′ ∂G̃

∂w

∣∣∣∣∣
Vk

(δ〈1〉,qm δ+
k Uk

(m))∆x, (5.76b)

rd
d≡

N∑

k=0

′′
{(

δ〈1〉,qm Uk
(m)

)2

+
(
δ〈1〉,qm δ+

k Uk
(m)

)2

+
(
δ〈1〉,qm δ−k Uk

(m)
)2

}
∆x,

(5.76c)

Btr,1(U (m+l2), . . . ,U (m−l1)) =

1
2

[
∂Gq

d

∂δ+(U (m+l2), . . . ,U (m−l1))k

(s+
k δ〈1〉,qm Uk

(m))

+

(
s−k

∂Gq
d

∂δ+(U (m+l2), . . . ,U (m−l1))k

)
δ〈1〉,qm Uk

(m)

+
∂Gq

d

∂δ−(U (m+l2), . . . ,U (m−l1))k

(s−k δ〈1〉,qm Uk
(m))

+

(
s+

k

∂Gq
d

∂δ−(U (m+l2), . . . ,U (m−l1))k

)
δ〈1〉,qm Uk

(m)

]N

0

. (5.77)

In the above definitions

(·)|Vk

d≡ (·)|u=Vk, v=δ+
k Vk, w=δ−

k Vk
,

where Vk is a function of {Uk
(m)}:

Vk
d≡

l2∑

i=−l1

diU
(m+i)
k , di ∈ R, (5.78)

such that for any sufficiently smooth function f(t) defined on [(m−l1)∆t, (m+
l2)∆t],

l2∑

i=−l1

dif((m + i)∆t) = f |t=et + O(∆tq). (5.79)

The discrete quantity

δGd

δ(U (m+l2), . . . ,U (m−l1))k

,



254 Discrete Variational Derivative Method

defined in (5.75a) is an approximation of the original variational derivative. It
can be checked that it in fact satisfies the discrete variation relation (5.74). In
order to see this, let us introduce an extended vector z(m) of length 3(N + 1)
by

(
U

(m)
0 , . . . , U

(m)
N , δ+

k U
(m)
0 , . . . , δ+

k U
(m)
N , δ−k U

(m)
0 , . . . , δ−k U

(m)
N

)⊤
,

and regard Jd(U (m)) as Jd(z(m)) (i.e., as a function on the extended vector.)
Then it is an easy exercise to check that the discrete derivative (5.68) on this
expression coincides with

∇q
dJd(z(m)) =

(
∂Gq

d

∂(· · · ) 0

, . . . ,
∂Gq

d

∂(· · · )N

,
∂Gq

d

∂δ+(· · · ) 0

, . . . ,
∂Gq

d

∂δ+(· · · )N

,
∂Gq

d

∂δ−(· · · ) 0

, . . . ,
∂Gq

d

∂δ−(· · · )N

)⊤

.

Here we simplified the expressions to save space. The right hand side vector
should be understood to be an extended vector consisting of the right hand
sides of (5.75b)–(5.75d) with U (m) expanded in z(m). The correspondences
of other expressions are as follows.

z̃ ⇔ (Vk, δ+
k Vk, δ−k Vk) with V of (5.79)

∇H(z̃) ⇔

(
∂G̃

∂u

∣∣∣∣∣
Vk

,
∂G̃

∂v

∣∣∣∣∣
Vk

,
∂G̃

∂w

∣∣∣∣∣
Vk

)

∥δ〈1〉,1m z(m)∥2
2 ⇔ rd (with additional ∆x in the norm)

δ〈1〉,qm H(z(m)) − (∇H(z̃))⊤δ〈1〉,qm z(m) ⇔ rn

∇q
dH(z(m)) ⇔ ∇q

dJd(z(m))

In the first two vectors, we mean extended vectors of length 3(N + 1) with
k varying from 0 to N in each term. Note also that now we define the inner
product by x · y =

∑N
k=0

′′xkyk∆x for x,y ∈ R3(N+1), and the norm ∥ · ∥2

accordingly.
In view of above, we understand that

δ〈1〉,qm Jd(z(m)) = ∇q
dJd(z(m)) · δ〈1〉,qm z(m),

which can be expanded as

δ〈1〉,qm Jd(z(m)) =
N∑

k=0

′′

[
∂Gq

d

∂(U (m+l2), . . . ,U (m−1l))k

δ〈1〉,qm Uk
(m)

+
∂Gq

d

∂δ+(U (m+l2), . . . ,U (m−l1))k

δ〈1〉,qm δ+
k Uk

(m)

+
∂Gq

d

∂δ−(U (m+l2), . . . ,U (m−l1))k

δ〈1〉,qm δ−k Uk
(m)

]
∆x.
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At this point, we have a high-order version of (3.28) (put U (m+1) into U , and
U (m) into V ). Then by applying the summation-by-parts formula (3.12a),
we obtain the desired variation relation, corresponding to (3.29). The expres-
sion (5.77) corresponds to the boundary term (3.31).

5.4.3.1.2 Design of schemes We design conservative or dissipative fi-
nite difference schemes with the discrete variational derivative. Let us here
introduce another discrete quantity:

B
〈s〉
tr,2(U

(m+l2), . . . ,U (m−l1)) =

 −

∑

1≤l≤s/2
l:even

2ϕ
〈l−1〉
k ϕ

〈s−l〉
k +

(
δ+
k ϕ

〈l−2〉
k

)(
s+

k ϕ
〈s−l〉
k

)
+

(
δ−k ϕ

〈l−2〉
k

)(
s−k ϕ

〈s−l〉
k

)

4

+
∑

1≤l≤s/2

l:odd

2ϕ
〈l−1〉
k ϕ

〈s−l〉
k +

(
s+

k ϕ
〈l−1〉
k

)(
δ+
k ϕ

〈s−l−1〉
k

)
+

(
s−k ϕ

〈l−1〉
k

)(
δ−k ϕ

〈s−l−1〉
k

)

4




N

0

,

if s is even, (5.80a)


−

∑

1≤l≤(s−1)/2
l:even

(
δ+
k ϕ

〈l−2〉
k

)(
δ+
k ϕ

〈s−l−1〉
k

)
+

(
δ−k ϕ

〈l−2〉
k

)(
δ−k ϕ

〈s−l−1〉
k

)

2

+
∑

1≤l≤(s−1)/2

l:odd

ϕ
〈l−1〉
k

(
s
〈1〉
k ϕ

〈s−l〉
k

)
+

(
s
〈1〉
k ϕ

〈l−1〉
k

)
ϕ
〈s−l〉
k

2

+
1
2
(−1)(s−1)/2Ψ(s,(s−1)/2)

k

]N

0

, if s is odd, (5.80b)

where s = 1, 2, 3, . . ., and

ϕ
〈l〉
k

d≡ δ
〈l〉
k

δGd

δ(U (m+l2), . . . ,U (m−l1))k

, (5.81)

Ψ(l,l′)
k

d≡





ϕ
〈l′〉
k

(
s
〈l mod 2〉
k ϕ

〈l′〉
k

)
, if l′ is even,

1
2

{(
δ+
k ϕ

〈l′−1〉
k

)2

+
(
δ−k ϕ

〈l′−1〉
k

)2
}

, if l′ is odd,
(5.82)

for l, l′ ∈ {0, 1, 2, . . .}.
The (1, q)th- or (2, q)th-order schemes are defined as follows.

Scheme 5.5 (Temporally high-order scheme for the PDEs 1)
Let U

(0)
k = u(k∆x, 0) be initial values, and U (m) (m = 1, 2, . . . , l−2) be given
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starting values. Assume that a discrete boundary condition is imposed such
that for m = l1, l1 + 1, . . .

Btr,1(U (m+l2), . . . ,U (m−l1)) = 0,

and
B

〈2s〉
tr,2 (U (m+l2), . . . ,U (m−l1)) = 0,

are satisfied. Then, a scheme for the PDEs 1 is given by for m = l1, l1 +1, . . .

δ〈1〉,qm Uk
(m) = (−1)s+1δ

〈2s〉
k

δGd

δ(U (m+l2), . . . ,U (m−l1))k

, k = 0, . . . , N.

(5.83)

THEOREM 5.5 Discrete dissipation property and orders of Scheme 5.5

The scheme 5.5 is dissipative in the sense that it satisfies

δ〈1〉,qm Jd(U (m)) ≤ 0, m = l1, l1 + 1, . . . , (5.84)

and it is (1, q)th- or (2, q)th-order.

PROOF In view of (5.74), and by the assumptions on the boundary
terms, the dissipation property is proved in the same way as in, for example,
Theorem 3.1.

Because the left-hand side of the scheme is temporally qth-order and spa-
tially exact approximation of d

dtu(k∆x, t̃) (t̃ is defined in Definition 5.3 as to
δ
〈1〉,q
m ), if it is proved that the right-hand side is also a temporally qth-order

and spatially first- or second-order approximation of the variational derivative
at (x, t) = (k∆x, t̃), the claim on the orders is established. We prove this in
the following three steps:

Step 1 We evaluate r, which appears in (5.75b), (5.75c), and (5.75d).

Step 2 We evaluate (5.75b), (5.75c), and (5.75d).

Step 3 Based on the above estimates, we evaluate (5.75a).

We use the following abbreviations throughout.

(·)|(k,et)

d≡ (·)|(x,t)=(k∆x,et) , (·)|u(k,et)

d≡ (·)|u=(k∆x,et),v=w=ux(k∆x,et) .

As in the previous sections, we denote the true solution by u
(m)
k

d≡ u(k∆x, m∆t).

Step 1 Estimating r.
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We first show that when we substitute the true solution u
(m)
k into Uk

(m),

r = O(∆x,∆tq) ∆x, ∆t → 0.

The following estimates are easily obtained.

δ〈1〉,qm u(k∆x,m∆t) = ut|(k,et) + O(∆tq), (5.85a)

δ〈1〉,qm δ+
k u(k∆x,m∆t) = utx|(k,et) + O(∆x,∆tq), (5.85b)

δ〈1〉,qm δ−k u(k∆x,m∆t) = utx|(k,et) + O(∆x,∆tq). (5.85c)

Hence, we obtain

rd =
N∑

k=0

′′ ((ut)2 + 2(utx)2
)
∆x

∣∣∣∣∣
(k,et)

+ O(∆x,∆tq). (5.86)

As to rn, we first evaluate the term δ
〈1〉,q
m Jd(U (m)) as follows.

δ〈1〉,qm

N∑

k=0

′′G̃(u(k∆x,m∆t), δ+
k u(k∆x,m∆t), δ−k u(k∆x,m∆t))∆x

=

[
d
dt

N∑

k=0

′′G̃(u(k∆x, t), δ+
k u(k∆x, t), δ−k u(k∆x, t))∆x

]

t=et

+ O(∆tq)

=

[
d
dt

N∑

k=0

′′G̃(u, ux, ux)∆x

]

(k,et)

+ O(∆x,∆tq)

=

[
N∑

k=0

′′

{
∂G̃

∂u
ut +

∂G̃

∂v
utx +

∂G̃

∂w
utx

}
∆x

]

(k,et)

+ O(∆x,∆tq). (5.87)

In order to evaluate the remaining terms in rn, i.e., the terms

∂G̃

∂u

∣∣∣∣∣
Vk

,
∂G̃

∂v

∣∣∣∣∣
Vk

,
∂G̃

∂w

∣∣∣∣∣
Vk

,

let us introduce ũ(x, t) by

ũ(x, t)
d≡

l2∑

i=−l1

diu(x, t + i∆t)

for which, by the definition of Vk, the following estimate holds.

ũ(k∆x,m∆t) =
l2∑

i=−l1

diu(k∆x, (m + i)∆t) = u|(k,et) + O(∆tq), (5.88a)

δ+
k ũ(k∆x,m∆t) = ux|(k,et) + O(∆x,∆tq), (5.88b)

δ−k ũ(k∆x,m∆t) = ux|(k,et) + O(∆x,∆tq). (5.88c)
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Thus, we have

∂G̃

∂u
(ũ(k∆x,m∆t), δ+

k ũ(k∆x,m∆t), δ−k ũ(k∆x,m∆t)) =
∂G̃

∂u

∣∣∣∣∣
u(k,et)

+ O(∆x,∆tq),

(5.89a)

∂G̃

∂v
(ũ(k∆x,m∆t), δ+

k ũ(k∆x,m∆t), δ−k ũ(k∆x,m∆t)) =
∂G̃

∂v

∣∣∣∣∣
u(k,et)

+ O(∆x,∆tq),

(5.89b)

∂G̃

∂w
(ũ(k∆x,m∆t), δ+

k ũ(k∆x,m∆t), δ−k ũ(k∆x,m∆t)) =
∂G̃

∂w

∣∣∣∣∣
u(k,et)

+ O(∆x,∆tq).

(5.89c)

Taking the estimates (5.85a), (5.85b), (5.85c), (5.87), (5.89a), (5.89b), and
(5.89c) into account, we obtain

rn = O(∆x,∆tq).

This, together with (5.86), proves the aimed estimate

r = O(∆x, ∆tq).

Step 2 Evaluating (5.75b), (5.75c), and (5.75d).

By using (5.85a), (5.85b), (5.85c), (5.89a), (5.89b), (5.89c), and the result
obtained in Step 1, we immediately obtain

∂Gq
d

∂(u(m+l2), . . . ,u(m−l1))k
=

∂G̃

∂u

∣∣∣∣∣
u(k,et)

+ O(∆x,∆tq), (5.90a)

∂Gq
d

∂δ+(u(m+l2), . . . ,u(m−l1))k
=

∂G̃

∂v

∣∣∣∣∣
u(k,et)

+ O(∆x,∆tq), (5.90b)

∂Gq
d

∂δ−(u(m+l2), . . . ,u(m−l1))k
=

∂G̃

∂w

∣∣∣∣∣
u(k,et)

+ O(∆x,∆tq). (5.90c)

Step 3 Evaluating (5.75a).

From the results obtained in Step 2 and using (5.75a), we obtain

δGq
d

δ(u(m+l2), . . . ,u(m−l1))k
=

∂G̃

∂u

∣∣∣∣∣
u(k,et)

− ∂

∂x

∂G̃

∂v

∣∣∣∣∣
u(k,et)

− ∂

∂x

∂G̃

∂w

∣∣∣∣∣
u(k,et)

+ O(∆x, ∆tq)

=
δG

δu

∣∣∣∣
u(k,et)

+ O(∆x, ∆tq). (5.91)
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In the last equality, we used the following trivial identity.

δG

δu
=

∂G̃

∂u

∣∣∣∣∣
u=u,v=w=ux

− ∂

∂x


 ∂G̃

∂v

∣∣∣∣∣
u=u,v=w=ux

+
∂G̃

∂w

∣∣∣∣∣
u=u,v=w=ux


 .

This estimate is only first-order as to ∆x. However, when Gd is defined so
that it is symmetric with respect to δ+

k Uk
(m) and δ−k Uk

(m), then the discrete
derivative (5.75a) is also symmetric with respect to them, and hence trivially
second-order: O(∆x2).

REMARK 5.5 The accuracy and the dissipation property are guaran-
teed for any choice of high-order difference operator δ

〈1〉,q
m as the theorem

claims. Actually, however, the choice is quite limited in view of stability of
the resulting scheme. The high-order operator should be, for example, the
so-called “backward-difference operator” (see, for example, the textbook by
Hairer–Nørsett–Wanner [82]).

Scheme 5.6 (Scheme for the PDEs 2) Let U
(0)
k = u(k∆x, 0) be initial

values, and U (m) (m = 1, 2, . . . , l − 2) be given starting values. Assume that
a discrete boundary condition is imposed such that for m = l1, l1 + 1, . . .

Btr,1(U (m+l2), . . . ,U (m−l1)) = 0,

and
B

〈2s〉
tr,2 (U (m+l2), . . . ,U (m−l1)) = 0

are satisfied. Then, a scheme for the PDEs 2 is given by for m = l1, l1 +1, . . .

δ〈1〉,qm Uk
(m) = δ

〈2s+1〉
k

δGd

δ(U (m+l2), . . . ,U (m−l1))k

, k = 0, . . . , N. (5.92)

THEOREM 5.6 Discrete conservation property and orders of Scheme 5.6

The scheme 5.6 is conservative in the sense that it satisfies

δ〈1〉,qm Jd(U (m)) = 0, m = l1, l1 + 1, . . . , (5.93)

and it is (1, q)th- or (2, q)th-order.

PROOF The proof goes in the same way as in the preceding theorem, and
hence is omitted. (We will omit similar proofs in the subsequent dissipation
or conservation theorems as well.)

The resulting schemes derived from Scheme 5.5 or Scheme 5.6 are nonlin-
early implicit (see the classification of schemes in Chapter 1, page 41). It



260 Discrete Variational Derivative Method

might seem even worse than the standard second-order nonlinearly implicit
schemes in Chapter 3, since now it involves not only U (m+l2) (the next so-
lution) and U (m+l2−1) (the previous solution) but also further information
U (m+l2−2), . . ., U (m−l1). One might think that this causes serious increases
in computational cost.

The actual situation is, however, more optimistic; the actual computational
cost would not increase in practice even if we increase the temporal accuracy
q. This can be understood in the following way.

We first point out that although it is surely possible to utilize the Newton
method or similar iterative solvers, often simple function iterations based on
the scheme itself are sufficient. For Scheme 5.5, for example, we can use the
simple iteration:

U
(m+l2),j+1
k =

−
l2−1∑

i=−l1

ciU
(m+i)
k + (−1)s+1δ

〈2s〉
k

δGd

δ(U (m+l2),j ,U (m+l2−1), . . . ,U (m−l1))k

,

(5.94)

where U (m+l2),j (j = 0, 1, . . .) is the jth iterated solution.
In either case (Newton method or the function iteration), the computational

cost depends on the following three factors.

The number of the unknowns: In the above schemes, the only unknown
variable is always U (m+l2), and thus the number of unknowns does not
increase even when q is increased.

The number of required iterations: This is difficult to estimate theoreti-
cally, but in practice, the number is expected to remain at some satisfac-
tory level even when q is increased, as far as we choose ∆t appropriately
small. See the example below.

The computational cost in each iteration: This remains almost the same
even when q is increased. To see this, let us consider the case where we
use the simple iteration (5.94). When q is increased, the number of
known numerical solutions that appears at the right hand side of (5.94),
i.e., U

(m+l2−1)
k , . . . , U

(m−l1)
k , increases. This does not, however, mean

the increase of the computational cost in each iteration at all, because
the terms in (5.94) where the known values appear can be calculated in
prior to the iterative calculation, and thus practically the increase due
to this factor can be negligible.

Taking these three factors into account, we can conclude that computational
cost does not increase in practice, even when the temporal order of accuracy
q is increased. This note applies to all of the schemes presented hereafter.
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As a demonstration, we here present a simple ODE example from [114].
Let us consider the Kepler problem with the Hamiltonian H(z1, z2, z3, z4) =
(z1

2 + z2
2)/2 − 1/

√
z3

2 + z4
2. This is an example of the ordinary differential

equation (5.67), where N = 4 and A =
(

0 −I
I 0

)
. The initial value is set to

z(0) = (0,
√

(1 + ε)(1 − ε), 1 − ε, 0)
⊤

with the eccentricity ε = 0.8, and the
problem is integrated in 0 ≤ t ≤ 10. Let us then test the scheme (5.70) where
δ
〈1〉,q
m is chosen as the backward-difference operators of order 2, 4, and 6. The

scheme is solved in the function iteration form like (5.94). For comparison, we
also consider 4th- and 6th-order Hamiltonian-preserving schemes that are de-
rived by the composition method (Section 5.3) based on the 2nd-order version
of (5.70) (in this case, we choose the standard forward difference operator as
δ
〈1〉,2
m ). The underlying 2nd-order scheme is solved in the same way as above.

Table 5.4 shows the number of function iterations, where Nt is the num-
ber of time mesh points (i.e. ∆t = 10/Nt; Nt is chosen such that log Nt’s
distribute uniformly in 300 ≤ Nt ≤ 10000), “COMPn” (n = 2, 4, 6) denotes
the composition schemes, and “BDFn” represents the scheme (5.70). As is
claimed above, the number of iterations in BDFn actually does not increase
with q for wide range of ∆t. In contrast to that, the number in COMPn
significantly increases with q. This should be attributed to the fact that in
the composition schemes, the underlying second-order scheme is repeatedly
called within a single step of ∆t.

TABLE 5.4: Total number of iterations for each method
Nt COMP2 COMP4 COMP6 BDF2 BDF4 BDF6

300 3053 10196 19756 3083 2810 2748
425 3899 13042 26070 3995 3637 3489
604 5263 16784 33995 5140 4811 4676
858 6765 22235 45280 6816 6368 6145

1219 9200 29053 61532 8963 8397 8217
1732 12746 39363 84041 11844 11393 11220
2459 16573 54380 113179 16104 15707 15551
3492 22440 71828 150739 22256 20407 19880
4959 31025 95964 207648 28555 27352 27027
7042 43391 132413 289926 38557 37629 37289

10000 57804 185033 396610 53221 52377 52054

REMARK 5.6 When Gd is simple, the form of the discrete variational
derivative (5.75a) can be simplified. Let us consider the case, for example,
where Gd includes only Uk and not δ+

k Uk and δ−k Uk. In this case, the presented
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definitions can be modified to the following simple forms.

δ〈1〉,qm

N∑

k=0

′′Gd,k(U (m))∆x =

N∑

k=0

′′

(
δGd

δ(U (m+l2), . . . ,U (m−l1))k

· δ〈1〉,qm Uk
(m)

)
∆x, (5.95)

where

δGd

δ(U (m+l2), . . . ,U (m−l1))k

d≡
∂Gq

d

∂(U (m+l2), . . . ,U (m−l1))k

, (5.96a)

∂Gq
d

∂(U (m+l2), . . . ,U (m−l1))k

d≡ ∂G̃

∂u

∣∣∣∣∣
Vk

+ rδ〈1〉,qm Uk
(m), (5.96b)

r
d≡

δ〈1〉,qm Jd(U (m)) −
N∑

k=0

′′ ∂G̃

∂u

∣∣∣∣∣
Vk

δ〈1〉,qm Uk
(m)∆x

N∑

k=0

′′
(
δ〈1〉,qm Uk

(m)
)2

∆x

. (5.96c)

This remark applies also to the other cases ([B], [C], and [D]).

5.4.3.2 [B]: (p, q)th-Order Schemes for the Real-Valued PDEs

For the real-valued PDEs 1 and 2, (p, q)th-order schemes are proposed.
Suppose the discrete periodic boundary condition (5.3) is imposed.

5.4.3.2.1 Discrete variational derivative We define the discrete en-
ergy function by

Gd,k(U)
d≡ G(Uk, δ

〈1〉,p
k Uk), (5.97)

and accordingly associated global energy by

Jd(U (m))
d≡

N∑

k=0

′′Gd,k(U (m))∆x. (5.98)

Note that since in this case we use only the high-order difference operator
δ
〈1〉,p
k , we do not need to introduce G̃ as the previous section. Then we can

consider the discrete variation as:

δ〈1〉,qm

N∑

k=0

′′Gd,k(U (m))∆x =

N∑

k=0

′′

(
δGd

δ(U (m+l2), . . . ,U (m−l1))k

· δ〈1〉,qm Uk
(m)

)
∆x, (5.99)
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where

δGd

δ(U (m+l2), . . . ,U (m−l1))k

d≡
∂Gq

d

∂(U (m+l2), . . . ,U (m−l1))k

− δ
〈1〉,p
k

(
∂Gq

d

∂δ+(U (m+l2), . . . ,U (m−l1))k

)
,

(5.100a)
∂Gq

d

∂(U (m+l2), . . . ,U (m−l1))k

d≡ ∂G

∂u

∣∣∣∣
Vk

+ rδ〈1〉,qm Uk
(m), (5.100b)

∂Gq
d

∂δ(U (m+l2), . . . ,U (m−l1))k

d≡ ∂G

∂v

∣∣∣∣
Vk

+ rδ〈1〉,qm (δ〈1〉,pk Uk
(m)), (5.100c)

r
d≡ rn

rd
, (5.101a)

rn
d≡ δ〈1〉,qm Jd(U (m)) −

N∑

k=0

′′ ∂G

∂u

∣∣∣∣
Vk

δ〈1〉,qm Uk
(m)∆x

−
N∑

k=0

′′ ∂G

∂v

∣∣∣∣
Vk

(δ〈1〉,qm δ
〈1〉,p
k Uk

(m))∆x, (5.101b)

rd
d≡

N∑

k=0

′′
{(

δ〈1〉,qm Uk
(m)

)2

+
(
δ〈1〉,qm δ

〈1〉,p
k Uk

(m)
)2

}
∆x. (5.101c)

5.4.3.2.2 Design of schemes With the discrete variational derivative
defined as above, we can design conservative or dissipative finite difference
schemes which are temporally qth-order.

Scheme 5.7 (Scheme for the PDEs 1) Let U
(0)
k = u(k∆x, 0) be initial

values, and U (m) (m = 1, 2, . . . , l − 2) be given starting values. Then, a
scheme is given by, for m = l1, l1 + 1, . . .,

δ〈1〉,qm Uk
(m) = (−1)s+1(δ〈1〉k

,p)2s δGd

δ(U (m+l2), . . . ,U (m−l1))k

, k = 0, . . . , N.

(5.102)
¤

THEOREM 5.7 Discrete dissipation property and orders of Scheme 5.7

The scheme 5.7 is dissipative in the sense that it satisfies

δ〈1〉,qm Jd(U (m)) ≤ 0, m = l1, l1 + 1, . . . , (5.103)

and it is (p, q)th-order.
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PROOF The same as in the preceding theorems.

Scheme 5.8 (Scheme for the PDEs 2) Let U
(0)
k = u(k∆x, 0) be initial

values, and U (m) (m = 1, 2, . . . , l − 2) be given starting values. Then, a
scheme is given by, for m = l1, l1 + 1, . . .,

δ〈1〉,qm Uk
(m) = (δ〈1〉k

,p)2s+1 δGd

δ(U (m+l2), . . . ,U (m−l1))k

, k = 0, . . . , N.

(5.104)
¤

THEOREM 5.8 Discrete conservation property and orders of Scheme 5.8

The scheme 5.8 is conservative in the sense that it satisfies

δ〈1〉,qm Jd(U (m)) = 0, m = l1, l1 + 1, . . . , (5.105)

and it is (p, q)th-order.

PROOF The same as in the preceding theorems.

5.4.3.3 [C]: (1, q)th- or (2, q)-th Order Schemes for the Complex-
Valued PDEs

For the complex-valued PDEs 3 and 4, (1, q)th- or (2, q)th-order schemes
are presented.

5.4.3.3.1 Complex discrete variational derivative For an energy func-
tion G(u, ux), we introduce another function G̃(u, v, w) by

G̃(u, v, w)
d≡ 1

2
(G(u, v) + G(u,w)) . (5.106)

We then define the discrete energy function Gd(U (m)) by

Gd,k(U (m))
d≡ G̃(Uk

(m), δ+
k Uk

(m), δ−k Uk
(m)), (5.107)

and accordingly associated global energy by

Jd(U (m))
d≡

N∑

k=0

′′Gd,k(U (m))∆x. (5.108)
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Using the qth-order difference operator, we consider the discrete variation
as

δ〈1〉,qm

N∑

k=0

′′Gd,k(U (m))∆x =

N∑

k=0

′′

(
δGd

δ(U (m+l2), . . . ,U (m−l1))k

· δ〈1〉,qm Uk
(m)

)

+

(
δGd

δ(U (m+l2), . . . , U (m−l1))k

· δ〈1〉,qm Uk
(m)

)
∆x

+ Btr,1(U (m+l2), . . . ,U (m−l1)) + Btr,1(U (m+l2), . . . ,U (m−l1)),
(5.109)

where

δGd

δ(U (m+l2), . . . ,U (m−l1))k

d≡
∂Gq

d

∂(U (m+l2), . . . ,U (m−l1))k

− δ−k

(
∂Gq

d

∂δ+(U (m+l2), . . . ,U (m−l1))k

)

− δ+
k

(
∂Gq

d

∂δ−(U (m+l2), . . . ,U (m−l1))k

)
,

(5.110a)

∂Gq
d

∂(U (m+l2), . . . ,U (m−l1))k

d≡ ∂G̃

∂u

∣∣∣∣∣
Vk

+ rδ〈1〉,qm Uk
(m), (5.110b)

∂Gq
d

∂(U (m+l2), . . . , U (m−l1))k

d≡ ∂G̃

∂u

∣∣∣∣∣
Vk

+ rδ〈1〉,qm Uk
(m), (5.110c)

∂Gq
d

∂δ+(U (m+l2), . . . ,U (m−l1))k

d≡ ∂G̃

∂v

∣∣∣∣∣
Vk

+ rδ〈1〉,qm (δ+
k Uk

(m)), (5.110d)

∂Gq
d

∂δ+(U (m+l2), . . . , U (m−l1))k

d≡ ∂G̃

∂v

∣∣∣∣∣
Vk

+ rδ〈1〉,qm (δ+
k Uk

(m)), (5.110e)

∂Gq
d

∂δ−(U (m+l2), . . . ,U (m−l1))k

d≡ ∂G̃

∂w

∣∣∣∣∣
Vk

+ rδ〈1〉,qm (δ−k Uk
(m)), (5.110f)

∂Gq
d

∂δ−(U (m+l2), . . . , U (m−l1))k

d≡ ∂G̃

∂w

∣∣∣∣∣
Vk

+ rδ〈1〉,qm (δ−k Uk
(m)), (5.110g)
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r
d≡ rn

rd
, (5.111a)

rn
d≡ δ〈1〉,qm Jd(U (m))

−
N∑

k=0

′′ ∂G̃

∂u

∣∣∣∣∣
Vk

δ〈1〉,qm Uk
(m)∆x −

N∑

k=0

′′ ∂G̃

∂v

∣∣∣∣∣
Vk

(δ〈1〉,qm δ+
k Uk

(m))∆x

−
N∑

k=0

′′ ∂G̃

∂w

∣∣∣∣∣
Vk

(δ〈1〉,qm δ+
k Uk

(m))∆x,

−
N∑

k=0

′′ ∂G̃

∂u

∣∣∣∣∣
Vk

δ〈1〉,qm Uk
(m)∆x −

N∑

k=0

′′ ∂G̃

∂v

∣∣∣∣∣
Vk

(δ〈1〉,qm δ+
k Uk

(m))∆x

−
N∑

k=0

′′ ∂G̃

∂w

∣∣∣∣∣
Vk

(δ〈1〉,qm δ+
k Uk

(m))∆x (5.111b)

rd
d≡ 2

N∑

k=0

′′
{∣∣∣δ〈1〉,qm Uk

(m)
∣∣∣
2

+
∣∣∣δ〈1〉,qm δ+

k Uk
(m)

∣∣∣
2

+
∣∣∣δ〈1〉,qm δ−k Uk

(m)
∣∣∣
2
}

∆x,

(5.111c)

Btr,1(U (m+l2), . . . ,U (m−l1)) =

1
2

[
∂Gq

d

∂δ+(U (m+l2), . . . ,U (m−l1))k

(s+
k δ〈1〉,qm Uk

(m))

+

(
s−k

∂Gq
d

∂δ+(U (m+l2), . . . ,U (m−l1))k

)
δ〈1〉,qm Uk

(m)

+
∂Gq

d

∂δ−(U (m+l2), . . . ,U (m−l1))k

(s−k δ〈1〉,qm Uk
(m))

+

(
s+

k

∂Gq
d

∂δ−(U (m+l2), . . . ,U (m−l1))k

)
δ〈1〉,qm Uk

(m)

]N

0

.

(5.112)

The discrete quantities

δGd

δ(U (m+l2), . . . ,U (m−l1))k

and
δGd

δ(U (m+l2), . . . , U (m−l1))k

which are defined in (5.110a), are approximations of the original variational
derivatives.
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5.4.3.3.2 Design of schemes With the discrete variational derivative
defined as above, we can design conservative or dissipative finite difference
schemes which are temporally qth-order.

Scheme 5.9 (Scheme for the PDEs 3) Let U
(0)
k = u(k∆x, 0) be initial

values, and U (m) (m = 1, 2, . . . , l − 2) be given starting values. Assume that
a discrete boundary condition is imposed such that

Btr,1(U (m+l2), . . . ,U (m−l1)) = 0

is satisfied for m = l1, l1 + 1, . . .. Then, a scheme for the PDEs 3 is given by,
for m = l1, l1 + 1, . . .,

δ〈1〉,qm Uk
(m) = − δGd

δ(U (m+l2), . . . , U (m−l1))k

, k = 0, . . . , N. (5.113)

THEOREM 5.9 Discrete dissipation property and orders of Scheme 5.9

The scheme 5.9 is dissipative in the sense that it satisfies

δ〈1〉,qm Jd(U (m)) ≤ 0, m = l1, l1 + 1, . . . , (5.114)

and it is (1, q)th- or (2, q)th-order.

PROOF The same as in the preceding theorems.

Scheme 5.10 (Scheme for the PDEs 4) Let U
(0)
k = u(k∆x, 0) be initial

values, and U (m) (m = 1, 2, . . . , l − 2) be given starting values. Assume that
a discrete boundary condition is imposed such that

Btr,1(U (m+l2), . . . ,U (m−l1)) = 0

is satisfied for m = l1, l1 + 1, . . .. Then, a scheme for the PDEs 4 is given by,
for m = l1, l1 + 1, . . .,

i δ〈1〉,qm Uk
(m) = − δGd

δ(U (m+l2), . . . , U (m−l1))k

k = 0, . . . , N. (5.115)

THEOREM 5.10 Discrete conservation property and orders of
Scheme 5.10
The scheme 5.10 is conservative in the sense that it satisfies

δ〈1〉,qm Jd(U (m)) = 0, m = l1, l1 + 1, . . . , (5.116)

and it is (1, q)th- or (2, q)th-order.

PROOF The same as in the preceding theorems.
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5.4.3.4 [D]: (p, q)th-Order Schemes for the Complex-Valued PDEs

For the complex-valued PDEs 3 and 4 with the discrete periodic boundary
condition (5.3), (p, q)th-order schemes are presented.

5.4.3.4.1 Complex discrete variational derivative We define the dis-
crete energy function by

Gd,k(U)
d≡ G(Uk, δ

〈1〉,p
k Uk), (5.117)

and accordingly associated global energy by

Jd(U (m))
d≡

N∑

k=0

′′Gd,k(U (m))∆x. (5.118)

Then we can consider the discrete variation as:

δ〈1〉,qm

N∑

k=0

′′Gd,k(U (m))∆x

=
N∑

k=0

′′

(
δGd

δ(U (m+l2), . . . ,U (m−l1))k

· δ〈1〉,qm Uk
(m)

+
δGd

δ(U (m+l2), . . . , U (m−l1))k

· δ〈1〉,qm Uk
(m)

)
∆x,

(5.119)

where

δGd

δ(U (m+l2), . . . ,U (m−l1))k

d≡
∂Gq

d

∂(U (m+l2), . . . ,U (m−l1))k

− δ
〈1〉,p
k

(
∂Gq

d

∂δ+(U (m+l2), . . . ,U (m−l1))k

)
,

(5.120a)
δGd

δ(U (m+l2), . . . , U (m−l1))k

d≡
∂Gq

d

∂(U (m+l2), . . . , U (m−l1))k

− δ
〈1〉,p
k

(
∂Gq

d

∂δ+(U (m+l2), . . . , U (m−l1))k

)
,

(5.120b)
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∂Gq
d

∂(U (m+l2), . . . ,U (m−l1))k

d≡ ∂G

∂u

∣∣∣∣
Vk

+ rδ〈1〉,qm Uk
(m), (5.121a)

∂Gq
d

∂(U (m+l2), . . . , U (m−l1))k

d≡ ∂G

∂u

∣∣∣∣
Vk

+ rδ〈1〉,qm Uk
(m), (5.121b)

∂Gq
d

∂δ(U (m+l2), . . . ,U (m−l1))k

d≡ ∂G

∂v

∣∣∣∣
Vk

+ rδ〈1〉,qm (δ〈1〉,pk Uk
(m)), (5.121c)

∂Gq
d

∂δ(U (m+l2), . . . , U (m−l1))k

d≡ ∂G

∂v

∣∣∣∣
Vk

+ rδ〈1〉,qm (δ〈1〉,pk Uk
(m)), (5.121d)

r
d≡ rn

rd
, (5.122a)

rn
d≡ δ〈1〉,qm Jd(U (m)) −

N∑

k=0

′′ ∂G

∂u

∣∣∣∣
Vk

δ〈1〉,qm Uk
(m)∆x

−
N∑

k=0

′′ ∂G

∂v

∣∣∣∣
Vk

(δ〈1〉,qm δ
〈1〉,p
k Uk

(m))∆x, (5.122b)

rd
d≡

N∑

k=0

′′
{∣∣∣δ〈1〉,qm Uk

(m)
∣∣∣
2

+
∣∣∣δ〈1〉,qm δ

〈1〉,p
k Uk

(m)
∣∣∣
2
}

∆x. (5.122c)

The discrete quantity (5.120a) is an approximation of the discrete deriva-
tive.

5.4.3.4.2 Design of schemes With the discrete variational derivative
defined as above, we can design conservative or dissipative finite difference
schemes which are temporally qth-order.

Scheme 5.11 (Scheme for the PDEs 3) Let U
(0)
k = u(k∆x, 0) be initial

values, and U (m) (m = 1, 2, . . . , l − 2) be given starting values. Then, a
scheme for the PDEs 3 is given by, for m = l1, l1 + 1, . . .,

δ〈1〉,qm Uk
(m) = − δGd

δ(U (m+l2), . . . , U (m−l1))k

, k = 0, . . . , N. (5.123)

THEOREM 5.11 Discrete dissipation property and orders of Scheme 5.11

The scheme 5.11 is dissipative in the sense that it satisfies

δ〈1〉,qm Jd(U (m)) ≤ 0, m = l1, l1 + 1, . . . , (5.124)

and it is (p, q)th-order.



270 Discrete Variational Derivative Method

PROOF The same as in the preceding theorems.

Scheme 5.12 (Scheme for the PDEs 4) Let U
(0)
k = u(k∆x, 0) be initial

values, and U (m) (m = 1, 2, . . . , l − 2) be given starting values. Then, a
(p, q)th-order scheme for the PDEs 4 is given by, for m = l1, l1 + 1, . . .,

iδ〈1〉,qm Uk
(m) = − δGd

δ(U (m+l2), . . . , U (m−l1))k

, k = 0, . . . , N. (5.125)

THEOREM 5.12 Discrete conservation property and orders of
Scheme 5.12
The scheme 5.12 is conservative in the sense that it satisfies

δ〈1〉,qm Jd(U (m)) = 0, m = l1, l1 + 1, . . . , (5.126)

and it is (p, q)th-order.

PROOF The same as in the preceding theorems.



Chapter 6

Advanced Topic II: Design of
Linearly Implicit Schemes

For nonlinear partial differential equations, we usually obtain nonlin-
ear schemes by the discrete variational derivative method, inheriting
the nonlinearity. In some large problems the nonlinearity can be quite
crucial. In this chapter, we present ways of relaxing this restriction by
considering linearly implicit schemes. There the dissipation or conser-
vation property still holds in a generalized sense.

6.1 Basic Idea for Constructing Linearly Implicit Schemes

The conservative or dissipative schemes presented in the previous chapters
were all nonlinearly implicit with respect to the numerical solution at the
next time step. Although they had their own beauty and superiority in that
they keep the desired dissipation or conservation property, the nonlinearity
becomes more difficult as the sizes of the target problems increase. One way
of surviving this is to look for a better nonlinear solver. In fact, recently many
practical solutions for large scale nonlinear equations have been devised. See
Chapter 7 on this topic.

Another practical compromise for this difficulty is to consider linearly im-
plicit versions of the dissipative or conservative schemes. Linearly implicit
schemes are still implicit but linear with respect to the numerical solution at
the next time step (recall Table 1.1 in Chapter 1). Obviously they are far
cheaper than the nonlinearly implicit schemes. However, they generally lose
the desired dissipation or conservation property in strict sense of the word;
rather they hold in some more generalized senses, as will be described below.

We have already seen the basics of constructing linearly implicit schemes in
Chapter 1, but let us review them again with a new example. Let us consider
the cubic nonlinear Schrödinger equation (NLS):

i
∂u

∂t
= −uxx − γ|u|2u, γ ∈ R, (6.1)

271
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under the periodic boundary condition:

u(j)(t, 0) = u(j)(t, L), j = 0, 1, 2. (6.2)

As to the NLS, we have already presented a conservative scheme in Chapter 4,
which was nonlinearly implicit with respect to Uk

(m+1).
In order to obtain a linearly implicit scheme, it is essential to understand

the mechanism of how the nonlinearity in the energy is passed down to the
equation through the variation calculation. In the cubic NLS equation, the
nonlinear term |u|4 in the local energy:

G(u, ux) = −|ux|2 +
γ

2
|u|4 (6.3)

is the source of the nonlinear term |u|2u in the resulting equation (6.1). In gen-
eral, the power in the nonlinear term in the energy is always one higher than
that in the resulting nonlinear term. Hence we easily come to the conclusion
that if we want the resulting scheme to be linear, we must restrict our discrete
energy function to be quadratic, at most. In the cubic NLS, for example, this
can be accomplished by breaking down |Uk

(m)|4 to |Uk
(m+1)|2|Uk

(m)|2, with
the aid of Uk

(m) (i.e., we make the energy function multistep). Its discrete
variation calculation becomes

|Uk
(m+1)|2|Uk

(m)|2 − |Uk
(m)|2|Uk

(m−1)|2 =

|Uk
(m)|2

(
Uk

(m+1) + Uk
(m−1)

2

)(
Uk

(m+1) − Uk
(m−1)

)

+ |Uk
(m)|2

(
Uk

(m+1) + Uk
(m−1)

2

) (
Uk

(m+1) − Uk
(m−1)

)
. (6.4)

Now |Uk
(m)|2(Uk

(m+1) + Uk
(m−1))/2, which is the approximation of |u|2u, is

successfully linear with regard to the unknown variable Uk
(m+1).

Including the other terms as well, we can now construct a linearly implicit
scheme for the cubic NLS equation as follows. We define a multistep discrete
local energy by

Gd,k(U (m+1),U (m))
d≡

|δ+
k Uk

(m+1)|2 + |δ−k Uk
(m+1)|2 + |δ+

k Uk
(m)|2 + |δ−k Uk

(m)|2

4
− γ

2
|Uk

(m+1)|2|Uk
(m)|2, (6.5)

and accordingly the discrete global energy by

Jd(U (m+1),U (m))
d≡

N∑

k=0

′′Gd,k(U (m+1),U (m))∆x. (6.6)
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We here impose the discrete periodic boundary condition:

Uk = Uk mod N . (6.7)

Taking its variation we have
N∑

k=0

′′Gd,k(U (m+1),U (m)) − Gd,k(U (m),U (m−1))∆x =

δGd

δ(U (m+1),U (m),U (m−1))k

Uk
(m+1) − Uk

(m−1)

2

+
δGd

δ(U (m+1), U (m),U (m−1))k

Uk
(m+1) − Uk

(m−1)

2
, (6.8)

where
δGd

δ(U (m+1),U (m),U (m−1))k

= −1
2
δ
〈2〉
k (Uk

(m+1) + Uk
(m−1)) − γ

2
|Uk

(m)|2(Uk
(m+1) + Uk

(m−1)), (6.9)

δGd

δ(U (m+1), U (m), U (m−1))k

=
δGd

δ(U (m+1),U (m),U (m−1))k

(6.10)

are “three points discrete variational derivatives,” which have been already
introduced in Section 3.5.

With them we can now define a linearly implicit finite difference scheme as

i

(
Uk

(m+1) − Uk
(m−1)

2∆t

)

=
δGd

δ(U (m+1), U (m), U (m−1))k

= −1
2
δ
〈2〉
k (Uk

(m+1) + Uk
(m−1)) − γ

2
|Uk

(m)|2(Uk
(m+1) + Uk

(m−1)).

(6.11)

Because the scheme (6.11) is linear with respect to Uk
(m+1), we only need

to solve a linear system at each time step, and therefore it is much faster than
the nonlinear scheme which needs heavy iterative calculations.

The scheme conserves the discrete energy under the periodic boundary con-
dition (the proof is omitted because it is straightforward by the construction).

PROPOSITION 6.1 Discrete energy conservation
The solution of the linearly implicit scheme (6.11) conserves the discrete

energy (6.6) under the periodic boundary condition (6.7). Namely,

Jd(U (m+1),U (m)) = Jd(U (1),U (0)), m = 1, 2, 3, . . . . (6.12)
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The discrete probability conservation law and the stability and L2-con-
vergence of the solution can be also established, under the periodic or zero
Dirichlet boundary condition.

Scheme (6.11) is the same as the one Zhang et al. [54] proposed on the
entire spatial domain (−∞,∞). They also proved that the scheme is energy-
and probability-conserving, stable, and L2-convergent on the entire spatial
domain (−∞,∞).

6.2 Multiple-Points Discrete Variational Derivative

The concept of the three-points discrete variational derivative is further
generalized to the multiple-points discrete variational derivative in order to
deal with stronger nonlinearity. We consider the real-valued PDEs 1 and 2,
and the complex-valued PDEs 3 and 4 (for the definitions of these PDEs, see
Chapter 2).

6.2.1 For Real-Valued PDEs

Let us consider the real-valued PDEs 1 and 2. In Chapter 3, the discrete
variational derivative was defined so that it satisfies the following identity (see
the equation (3.32) on page 79).

N∑

k=0

′′Gd,k(U (m+1)) − Gd,k(U (m))∆x =

N∑

k=0

′′

[(
δGd

δ(U (m+1),U (m))k

)
(Uk

(m+1) − Uk
(m))

]
∆x + Br,1(U (m+1),U (m)).

(6.13)

In view of the assumptions in Scheme 3.1 or 3.2, we see the boundary term
Br,1(U (m+1),U (m)) vanishes, and the identity is simplified to

N∑

k=0

′′Gd,k(U (m+1)) − Gd,k(U (m))∆x =

N∑

k=0

′′

[(
δGd

δ(U (m+1),U (m))k

)
(Uk

(m+1) − Uk
(m))

]
∆x. (6.14)

In a similar manner, let us define the multiple-points real discrete variational
derivative as follows. First, we introduce the concept of the multiple-points
discrete energy function.
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DEFINITION 6.1 Multiple-points (real) discrete energy function
We call

Gd(U (m), . . . ,U (m−l+2)) : RN+1 × · · · × RN+1

︸ ︷︷ ︸
l−1

→ RN+1

a (l − 1)-points (real) discrete energy function. ¤

We use the same notation Gd or Gd,k for the multiple-points energy func-
tion. The number of the referenced points can be understood by (the number
of) their arguments. When l = 2, this is just the discrete energy function
appearing in Chapter 3. We have already seen an example of three-points
discrete variational derivative, i.e., the case where l = 3, in Section 3.5.

As to the multiple-points discrete energy function, let us introduce the
concept of the multiple-points discrete variational derivative as follows.

DEFINITION 6.2 Multiple-points (real) discrete variational deriva-
tive We call

δGd

δ(U (m), . . . ,U (m−l+1))
: RN+1 × · · · × RN+1

︸ ︷︷ ︸
l

→ RN+1

an l-points discrete variational derivative if it satisfies

N∑

k=0

′′
{

Gd,k(U (m+1), . . . ,U (m−l+3)) − Gd,k(U (m), . . . ,U (m−l+2))
}

∆x =

N∑

k=0

′′

[(
δGd

δ(U (m+1), . . . ,U (m−l+2))k

)(
U

(m+1)
k − U

(m−l+2)
k

l − 1

)]
∆x, (6.15)

under some discrete boundary condition. ¤

We also call it a multiple-points discrete variational derivative. When l = 2,
this is just the discrete variational derivative which appeared in Chapter 3. We
have already seen an example of the three-points discrete variational deriva-
tive, i.e., the case where l = 3, in Section 3.5.

6.2.2 For Complex-Valued PDEs

Let us consider the complex-valued single PDEs 3 and 4. In Chapter 3, the
complex discrete variational derivatives were defined to satisfy the following
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identity (see the equation (3.75) on page 96):

N∑

k=0

′′Gd,k(U (m+1)) − Gd,k(U (m))∆x =

N∑

k=0

′′
[(

δGd

δ(U ,V )

)

k

(Uk − Vk) +
(

δGd

δ(U , V )

)

k

(Uk − Vk)
]

∆x, (6.16)

under an appropriate discrete boundary condition. In a similar manner, here
we define the multiple-points complex discrete variational derivative as follows.

As in the real-valued case, we commence by introducing the multiple-points
complex discrete energy as follows.

DEFINITION 6.3 Multiple-points complex discrete energy func-
tion We call

Gd(U (m), . . . ,U (m−l+2)) : CN+1 × · · · × CN+1

︸ ︷︷ ︸
l−1

→ RN+1

a (l − 1)-points complex discrete energy function. ¤

Next, we define the multiple-points complex discrete variational derivative
as follows.

DEFINITION 6.4 Multiple-points complex discrete variational deriva-
tive We call

δGd

δ(U (m), . . . ,U (m−l+1))
: CN+1 × · · · × CN+1

︸ ︷︷ ︸
l

→ RN+1

a l-points complex discrete variational derivative if it satisfies

N∑

k=0

′′
{

Gd,k(U (m+1), . . . ,U (m−l+3)) − Gd,k(U (m), . . . ,U (m−l+2))
}

∆x

=
N∑

k=0

′′

[(
δGd

δ(U (m+1), . . . ,U (m−l+2))k

)(
U

(m+1)
k − U

(m−l+2)
k

l − 1

)

+

(
δGd

δ(U (m+1), . . . , U (m−l+2))k

) 
U

(m+1)
k − U

(m−l+2)
k

l − 1





∆x, (6.17)

under some discrete boundary condition. ¤

We also call it a multiple-points complex discrete variational derivative.
When l = 2, this is just the complex discrete variational derivative which
appeared in Chapter 3.
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6.3 Design of Schemes

Dissipative or conservative finite difference schemes are defined with the
multiple-points discrete variational derivatives. Again we consider real-valued
and complex-valued cases in order.

6.3.1 For Real-Valued PDEs

Using the multiple-points real discrete variational derivative in Definition
6.2, we define numerical schemes for the PDEs 1 as follows.

Scheme 6.1 (Scheme for the PDEs 1) Let U
(0)
k = u(k∆x, 0) be initial

values, and U (m) (m = 1, 2, . . . , l − 2) be given starting values. Then, a
scheme for the PDE 1 is given by, for m = l − 2, l − 1, . . .,

Uk
(m+1) − U

(m−l+2)
k

(l − 1)∆t
= (−1)s+1δ

〈2s〉
k

δGd

δ(U (m+1), . . . ,U (m−l+2))k

,

k = 0, . . . , N − 1. (6.18)

THEOREM 6.1 Discrete dissipation property of Scheme 6.1

Assume that a discrete boundary condition, which satisfies the condition
(6.15), is imposed on Scheme 6.1. Then the scheme is dissipative in the sense
that the inequality:

N∑

k=0

′′
{

Gd,k(U (m+1), . . . ,U (m−l+3)) − Gd,k(U (m), . . . ,U (m−l+2))
}

∆x ≤ 0

(6.19)
holds for m = l − 2, l − 1, . . ..

PROOF Trivial from the identity (6.15) and the summation-by-parts
formula.

Next we define numerical schemes for the PDEs 2 as follows.

Scheme 6.2 (Scheme for the PDEs 2) Let U
(0)
k = u(k∆x, 0) be initial

values, and U (m) (m = 1, 2, . . . , l − 2) be given starting values. Then, a
scheme for the PDE 2 is given by, for m = l − 2, l − 1, . . .,

Uk
(m+1) − U

(m−l+2)
k

(l − 1)∆t
= δ

〈2s+1〉
k

δGd

δ(U (m+1), . . . ,U (m−l+2))k

. (6.20)
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THEOREM 6.2 Discrete conservation property of Scheme 6.2
Assume that a discrete boundary condition, which satisfies the condition

(6.15), is imposed on Scheme 6.2. Then the scheme is conservative in the
sense that the inequality:

N∑

k=0

′′
{

Gd,k(U (m+1), . . . ,U (m−l+3)) − Gd,k(U (m), . . . ,U (m−l+2))
}

∆x = 0

(6.21)
holds for m = l − 2, l − 1, . . ..

PROOF Trivial from the identity (6.15) and the summation-by-parts
formula.

Note that each scheme derived from Scheme 6.1 or Scheme 6.2 is not nec-
essarily linearly implicit at this point. When the energy function G(u, ux) is
of some special form, and the discrete energy function Gd is defined appropri-
ately, the resulting schemes 6.1 and 6.2 become linearly implicit. We present
several examples below.

(A) When G(u, ux) has the nonlinear term u2s (s = 2, 3, . . .), use an s-points
discrete energy, where the corresponding term is

(U (m)
k )2(U (m−1)

k )2 · · · (U (m−s+1)
k )2.

Then, consider the corresponding (s + 1)-points discrete variational
derivative, and define a scheme with it. The resulting scheme becomes
linearly implicit.

(B) When G(u, ux) has the nonlinear term u2s−1 (m = 2, 3, . . .), use an s-
points discrete energy, where the corresponding term is

1
s + 1

s+1∑

i=1


U

(m+2−i)
k

∏

j ̸=i

(U (m+2−j)
k )2


 .

For example, when there is a nonlinear term u5 in G(u, ux), then define
a three-points discrete energy function:

Gd,k(U (m+1),U (m),U (m−1)) =
(U (m+1)

k )2(U (m)
k )2U (m−1)

k

3

+
(U (m+1)

k )2U (m)
k (U (m−1)

k )2

3
+

U
(m+1)
k (U (m)

k )2(U (m−1)
k )2

3
. (6.22)

Note also that the resulting schemes need starting values other than the
initial values. The starting values should be obtained by another numerical
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method, such as the Runge–Kutta method, with sufficient accuracy, so that
the desired dissipation or conservation is kept for them as well.

The trick above works only for polynomial energy functions, but practi-
cally it seems fair enough, since in most applications nonlinearity appear in
polynomial forms. See PDE examples in Chapter 2.

6.3.2 For Complex-Valued PDEs

With the multiple-points complex discrete variational derivative defined in
Definition 6.4, we define numerical schemes for the PDEs 3 as follows.

Scheme 6.3 (Scheme for the PDEs 3) Let U
(0)
k = u(k∆x, 0) be initial

values, and U (m) (m = 1, 2, . . . , l − 2) be given starting values. Then, a
scheme for the PDE 3 is given by, for m = l − 2, l − 1, . . .,

Uk
(m+1) − U

(m−l+2)
k

(l − 1)∆t
= − δGd

δ(U (m+1), . . . , U (m−l+2))k

, k = 0, . . . , N.

(6.23)
¤

THEOREM 6.3 Discrete dissipation property of Scheme 6.3
Assume that a discrete boundary condition, which satisfies the condition

(6.17), is imposed on Scheme 6.3. Then the scheme is dissipative in the sense
that the inequality:

N∑

k=0

′′
{

Gd,k(U (m+1), . . . ,U (m−l+3)) − Gd,k(U (m), . . . ,U (m−l+2))
}

∆x ≤ 0

(6.24)
holds for m = l − 2, l − 1, . . ..

PROOF Trivial from the identity (6.17) and the summation-by-parts
formula.

We define numerical schemes for the PDEs 4 as follows.

Scheme 6.4 (Scheme for the PDEs 4) Let U
(0)
k = u(k∆x, 0) be initial

values, and U (m) (m = 1, 2, . . . , l − 2) be given starting values. Then, a
scheme for the PDE 4 is given by, for m = l − 2, l − 1, . . .,

i

(
Uk

(m+1) − U
(m−l+2)
k

(l − 1)∆t

)
= − δGd

δ(U (m+1), . . . , U (m−l+2))k

, k = 0, . . . , N.

(6.25)
¤
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THEOREM 6.4 Discrete conservation property of Scheme 6.4
Assume that a discrete boundary condition, which satisfies the condition (6.17),
is imposed on Scheme 6.4. Then the scheme is conservative in the sense that
the inequality:

N∑

k=0

′′
{

Gd,k(U (m+1), . . . ,U (m−l+3)) − Gd,k(U (m), . . . ,U (m−l+2))
}

∆x = 0

(6.26)
holds for m = l − 2, l − 1, . . ..

PROOF Trivial from the identity (6.17) and the summation-by-parts
formula.

As in the real-valued case, the resulting schemes are not necessarily linearly
implicit. The following is an example where we can always construct linearly
implicit schemes.

(C) When G(u, ux) has the nonlinearity |u|2s (s = 2, 3, . . .), then use an
s-points discrete energy, where the corresponding term is

|U (m)
k |2|U (m−1)

k |2 · · · |U (m−s+1)
k |2.

The odd order NLS has the nonlinearity of this form.

6.4 Applications

Here we show several examples of linearly implicit schemes.

6.4.1 Cahn–Hilliard Equation

To illustrate how the linearization works, a dissipative linearly implicit
scheme for the Cahn–Hilliard equation:

∂

∂t
u(x, t) =

∂2

∂x2

(
pu + ru3 + quxx

)
, p < 0, q < 0, r > 0, (6.27)

is derived based on Scheme 6.1. The local energy G for the Cahn–Hilliard
equation is

G(u, ux) =
1
2
pu2 +

1
4
ru4 − 1

2
q(ux)2. (6.28)

The equation is dissipative under the following boundary conditions:

∂u

∂x
=

∂

∂x

δG

δu
= 0, x = 0, L. (6.29)
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According to the rule (A), we decompose the nonlinear term ru4/4 into

r
(
Uk

(m+1)
)2 (

Uk
(m)

)2

/4, and accordingly define a discrete local energy by

Gd,k(U (m+1),U (m))
d≡

1
2
pUk

(m+1)Uk
(m) +

1
4
r
(
Uk

(m+1)
)2 (

Uk
(m)

)2

− 1
2
q

(
(δ+

k Uk
(m+1))2 + (δ−k Uk

(m+1))2 + (δ+
k Uk

(m))2 + (δ−k Uk
(m))2

4

)
.

(6.30)

For the discrete energy, we consider the discrete variation as follows.
N∑

k=0

′′
{

Gd,k(U (m+1),U (m)) − Gd,k(U (m),U (m−1))
}

∆x

=

(
δGd

δ(U (m+1),U (m),U (m−1))k

)(
Uk

(m+1) − U
(m−1)
k

2

)
∆x, (6.31)

where
δGd

δ(U (m+1),U (m),U (m−1))k

=

pUk
(m) + r

(
Uk

(m+1) + Uk
(m−1)

2

) (
Uk

(m)
)2

+ qδ
〈2〉
k

(
Uk

(m+1) + Uk
(m−1)

2

)
. (6.32)

Then, a dissipative scheme is derived from Scheme 6.1 as follows.

Uk
(m+1) − Uk

(m−1)

2∆t

= δ
〈2〉
k

(
δGd

δ(U (m+1),U (m),U (m−1))k

)

= δ
〈2〉
k

{
pUk

(m) + r

(
Uk

(m+1) + Uk
(m−1)

2

)(
Uk

(m)
)2

+qδ
〈2〉
k

(
Uk

(m+1) + Uk
(m−1)

2

)}
. (6.33)

We take the following discrete boundary conditions.

δ
〈1〉
k Uk

(m)
∣∣∣
k=0,N

= 0, (6.34)

δ
〈3〉
k Uk

(m)
∣∣∣
k=0,N

= 0. (6.35)



282 Discrete Variational Derivative Method

This scheme is linearly implicit as expected. The dissipation property is
assured by Theorem 6.1 (page 277). In [68], it has been proved that the
scheme has a unique numerical solution and is unconditionally stable and
convergent, provided that ∆t is small enough. The proof of the stability is
different from the standard (nonlinear) version given in Theorem 4.2 (page
137). Below we briefly show the proof. First, the following inequality is
obtained easily.

LEMMA 6.1
The solutions U (m) (m = 0, 1, . . .) of the scheme (6.33) under the boundary
conditions (6.34) and (6.35) satisfy

N−1∑

k=0

(
δ+kUk

(m)
)2

∆x ≤
(

4
−q

) {
N∑

k=0

′′Gd,k(U (1),U (0))∆x +
p2L

4r

}
. (6.36)

Applying the discrete Poincaré–Wirtinger inequality in Lemma 3.3 (page
122) to (6.36), we obtain the following theorem. The inequality (6.37) in the
theorem implies that the difference scheme is stable for any time step m since
the constants U+

C , U−
C and ∆U are determined by the initial state.

THEOREM 6.5
The solutions Uk

(m) (m = 1, 2, . . .) of the scheme (6.33) under the boundary
conditions (6.34) and (6.35) satisfy

U−
C − ∆U ≤ Uk

(m) ≤ U+
C + ∆U, (6.37)

where

U+
C

d≡ 1
L

max

(
N∑

k=0

′′U
(0)
k ∆x,

N∑

k=0

′′U
(1)
k ∆x

)
, (6.38a)

U−
C

d≡ 1
L

min

(
N∑

k=0

′′U
(0)
k ∆x,

N∑

k=0

′′U
(1)
k ∆x

)
, (6.38b)

∆U
d≡

[(
4L

−q

){
N∑

k=0

′′Gd,k(U (1),U (0))∆x +
p2L

4r

}]1/2

. (6.38c)

REMARK 6.1 Theorem 6.5 is essentially independent of both ∆x and
∆t except for the dependence of the constants U+

C , U−
C and ∆U on ∆x and

∆t. This means that the numerical scheme (6.33) is unconditionally stable.

Evaluation of the regularity condition of the coefficient matrix of the newest
values U (m+1) in the linearly implicit scheme (6.33) gives the following theo-
rem.



Advanced Topic II: Design of Linearly Implicit Schemes 283

THEOREM 6.6
When the following condition

∆t <
−4q

r2 max
(
(U−

C − ∆U)4, (U+
C + ∆U)4

) (6.39)

holds, the linearly implicit scheme (6.33) has a unique solution U (m+1).

6.4.2 Odd-Order Nonlinear Schrödinger Equation

Here we present a linearly implicit finite difference scheme for the odd-order
nonlinear Schrödinger equation (NLS):

i
∂u

∂t
= −uxx − γ|u|2su, s = 1, 2, · · · , (6.40)

under the periodic boundary condition. The local energy G for the equation
is

G(u, ux) = −|ux|2 +
γ

s + 1
|u|2s+2. (6.41)

When s = 1, this coincides with the cubic NLS (6.1). According to the rule
(C), we define (s + 1)-points discrete energy as follows.

Gd,k(U (m+1), . . . ,U (m−s+1))
d≡

|δ+
k Uk

(m+1)|2 + |δ+
k Uk

(m)|2 + · · · + |δ+
k U

(m−s+1)
k |2

2(s + 1)

+
|δ−k Uk

(m+1)|2 + |δ−k Uk
(m)|2 + · · · + |δ−k U

(m−s+1)
k |2

2(s + 1)

+
γ

s + 1
|U (m+1)

k |2|U (m)
k |2 · · · |U (m−s+1)

k |2. (6.42)

Through the discrete variation calculation we have

i

(
Uk

(m+1) − U
(m−s)
k

(s + 1)∆t

)

=
δGd

δ(U (m+1), U (m), · · · , U (m−s))k

= −1
2
δ
〈2〉
k

(
Uk

(m+1) + U
(m−s)
k

)

− γ

2
|Uk

(m)|2|Uk
(m−1)|2 · · · |U (m−s+1)

k |2
(
Uk

(m+1) + U
(m−s)
k

)
. (6.43)

6.4.3 Ginzburg–Landau Equation

Let us consider the Ginzburg–Landau equation of the form

∂u

∂t
= puxx + q|u|2u + ru, p > 0, q < 0, r ∈ R. (6.44)
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We here impose the periodic boundary condition. The local energy G(u, ux)
is given as

G(u, ux) = p|ux|2 −
q

2
|u|4 − r|u|2. (6.45)

According to the rule (C), we define the discrete local energy as

Gd,k(U (m+1),U (m)) =
p

4

(
|δ+
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2
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2
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)
. (6.46)

From the discrete energy we obtain a dissipative linearly implicit finite differ-
ence scheme as

Uk
(m+1) − Uk

(m−1)

2∆t
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p δ
〈2〉
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2

)
+ q|Uk

(m)|2
(
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(m−1)

2

)
+ rUk

(m).

(6.47)

6.4.4 Zakharov Equations

We present a conservative linearly implicit scheme for the Zakharov equa-
tions:

iEt + Exx = nE,

ntt − nxx = (|E|2)xx,

E(0, x) = E0(x), n(0, x) = n0(x), nt(0, x) = n1(x).

(6.48)

We assume the periodic boundary condition. The local energy G is defined
as follows.

G = |Ex|2 + n|E|2 +
1
2
(n2 + (vx)2), (6.49)

where v is an intermediate variable such that vt = n + |E|2.
According to the rule (C), we define the discrete energy as

Gd,k(E(m+1),E(m),n(m+1),n(m),v(m+1),v(m))
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. (6.50)
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From the discrete energy, we obtain a conservative linearly implicit scheme
as:

i

(
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, (6.51)

nk
(m+1) − nk

(m−1)

2∆t
= δ

〈2〉
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, (6.52)

v
(m+1)
k − v

(m−1)
k

2∆t
=

nk
(m+1) + nk

(m−1)

2
+ |Ek

(m)|2. (6.53)

This scheme conserves the discrete energy.

6.4.5 Newell–Whitehead Equation

Let us consider the Newell–Whitehead (NW) equation:

∂u

∂t
(t, x, y) = µu−|u|2u+

(
∂

∂x
− i

2kc

∂2

∂y2

)2

u,




(x, y) ∈ [0, Lx] × [0, Ly],
t > 0,
µ, kc ∈ R


 .

(6.54)
Note that this is a two-dimensional problem defined on a rectangular domain.
We here impose the periodic boundary condition for both x, y-directions. The
local energy G is defined as follows.

G(u, ux, uyy) = −µ|u|2 +
1
2
|u|4 +

∣∣∣∣ux − i
2kc

uyy

∣∣∣∣
2

. (6.55)

Note also that the energy function includes higher derivative uyy, which was
not basically assumed in the standard procedure in Chapter 3. But it is
not difficult to see that the standard procedure can be naturally extended to
such a case, by repeatedly using the integration-by-parts (and accordingly,
the summation-by-parts) formula.

According to the rule (C), we define the discrete energy as
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From the discrete energy we obtain a dissipative linearly implicit finite differ-
ence scheme as

U
(m+1)
k,l − U

(m−1)
k,l

2∆t
= µU

(m)
k,l −

∣∣∣U (m)
k,l

∣∣∣
2
(

U
(m+1)
k,l + U

(m−1)
k,l

2

)

+
(

δ
〈2〉
k − i

kc
δ
〈1〉
k δ

〈2〉
l − 1

4k2
c

δ
〈4〉
l

) (
U

(m+1)
k,l + U

(m−1)
k,l

2

)
.

(6.57)

We present a simple numerical example of the scheme (6.57). We con-
sider the problem in Sakaguchi [148], in which all numerical calculations are
done by discretizing x, y by a finite difference method and integrating in time
by the fourth order Runge–Kutta method. We call it simply the “Runge–
Kutta scheme.” The initial data u0(x, y) and the other parameters are chosen
to be the same as those given in [148] (i.e. kc =

√
π/2, µ = 27π2/800,

Lx = 40, Ly = 20, Nx = 120, Ny = 60, and the initial state is u(0, x, y) =√
µ − 9π/400e−3iπx/20(1 + i · 0.0105e3iπ/10 + i · 0.0095e−3iπ/10)). With these

parameters the Eckhaus instability phenomena should occur, and the recon-
nection process of the roll pattern proceeds, until a stable oblique roll pattern
finally emerges. In the scheme (6.57), the U (1) needed to start computation
is obtained by the Runge–Kutta scheme. We used the CG-type solver to solve
the system of linear equations.

Figure 6.11 shows (a) the initial state (t = 0), (b) the final state (t = 100)
obtained by the our scheme (6.57) with ∆t = 5, and (c) the final state (t =
100) by the Runge–Kutta scheme with ∆t = 1/120 which is ascertained to be
the maximum step size allowed for that scheme. The real part of the pattern
u(t, x, y) is plotted in the figure. The scheme (6.57) successfully obtained the
right final pattern in spite of extraordinarily coarse time step width (600 times
larger than that of the Runge–Kutta scheme).

Figure 6.22 shows the evolution of the discrete energy. For the Runge–
Kutta scheme, which is not strictly dissipative, we computed Hd as defined
in (4.175) for comparison (the dashed line). The scheme is so sensitive to
∆t that the energy suddenly blows up within a few steps when ∆t exceeds
the limit (i.e. ∆t > 1/120; not shown in the figure). In our scheme Hd as
defined in (6.56) is plotted for two different values of ∆t, namely ∆t = 5, and
5/6. According to the result in the figure, ∆t = 5/6 is enough in our scheme
to obtain the same result as the one by the Runge–Kutta scheme, which is
100 times larger than that of the Runge–Kutta scheme. When ∆t is chosen
extraordinarily large (∆t = 5), the progress becomes quite slow. However, the
scheme strictly dissipates the energy until it reaches the same final pattern as

1−3 Reprinted from J. Comput. Phys., 171, T. Matsuo and D. Furihata, Dissipative
or conservative finite difference schemes for complex-valued nonlinear partial differential
equations, 425–447, Copyright (2001), with permission from Elsevier.
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(a) Initial state

(b) Final state by (6.57) (∆t = 5) (c) By RK (∆t = 1/120)

FIGURE 6.1: Initial and final states for the NW problem.

above, where the final energy is also the same as the one by the Runge–Kutta
scheme (or by our scheme with fine mesh). The experiment assures us that
our scheme is insensitive to ∆t, i.e., numerically stable.

Table 6.13 shows the computation time for each scheme. We used a COM-
PAQ w AlphaStation XP1000 (CPU: Alpha 21264, 500 MHz) and DIGITAL
Fortran 77 V5.2 compiler. Each scheme is tested several times and the mean
computation time is listed in the table. According to the table, our scheme is
much faster than the Runge–Kutta scheme by virtue of the large ∆t and the
linearity of the scheme itself.

TABLE 6.1: Computation time for each scheme (unit: seconds)
Runge–Kutta scheme LI scheme (∆t = 5) LI scheme (∆t = 5/6)

125 27.8 45.2

From the numerical experiment, we can conclude that the linearly implicit
scheme is fast and stable.
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FIGURE 6.2: Dissipation of the discrete energies.

6.5 Remarks on the Stability of Linearly Implicit Schemes

As emphasized in Section 3.2.3 and other related places, in the discrete
variational derivative method the choice of the discrete energy is left to each
user, and the choice may severely affect the stability of the derived scheme.
In this remark we present such an example, taking up the NW problem.

In order to clarify our point, let us first summarize the NW case again. The
NW equation is of the form:

∂u

∂t
(t, x, y) = µu−|u|2u+

(
∂

∂x
− i

2kc

∂2

∂y2

)2

u,




(x, y) ∈ [0, Lx] × [0, Ly],
t > 0,
µ, kc ∈ R


 ,

(6.54)
whose energy is

G(u, ux, uyy) = −µ|u|2 +
1
2
|u|4 +

∣∣∣∣ux − i
2kc

uyy
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2

. (6.55)
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To derive a linearly implicit scheme, we have defined a discrete energy as:
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(6.58)

from which the linearly implicit scheme:
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was derived. This scheme was shown to be stable by a numerical experiment.
The multiple-points discrete energy function is, however, not unique at all.

In fact, for example, one can also define
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from which another linearly implicit scheme:
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(6.61)
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is derived. The latter discrete energy (6.60) is different from the former energy
(6.58) only in the first term (the terms correspond to the term −µ|u|2). Ac-
cordingly, the latter scheme (6.61) is different from the former scheme (6.59)
only in the first term. At first glance, there seems no significant difference
between these two choices. At least the local accuracies are more or less the
same (O(∆t2,∆x2)). One might even think that the latter seem to be more
natural than the former as an approximation to µ|u|2 (at least, the present
authors think so!) The situation is, however, much more complicated than we
simply expect.

Let us see what in fact happens if we try the scheme (6.61). The results are
summarized in Figure 6.3 and Figure 6.4. Figure 6.3 shows the final pattern
by the scheme (6.61). Obviously it does not match the correct pattern above.
In Figure 6.4, the evolution of the discrete energy (6.60) is plotted (the points
labeled as “Unstable linear scheme”). There, the other results already shown
in Figure 6.2 are also drawn for comparison. As expected, the discrete energy
(6.60) is strictly dissipated. This time, however, the discrete energy does not
stay bounded from below but drops sharply to −∞.

FIGURE 6.3: Final state by the unstable linearly implicit scheme (6.61).

These results reveal the fact that one must be very careful in choosing
multiple-points energy function, in the design of linearly implicit schemes.
The generalized dissipation (or conservation, respectively) property is different
from the original dissipation (conservation) property after all, and the gap can
cause severe instability in the resulting schemes.
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FIGURE 6.4: Dissipation of the discrete energies (with unstable case).





Chapter 7

Advanced Topic III: Further
Remarks

In this chapter, other related remarks are presented. Specifically, here
we consider the following three topics. First, in Section 7.1, we briefly
mention the modern nonlinear solvers. Recall that, unless the lin-
earization technique in Chapter 6 is utilized, the resulting schemes
in the discrete variational derivative method are generally nonlinear,
and good nonlinear solvers are inevitable. The next two sections are
devoted to some basic techniques or ideas for handling spatially high-
dimensional problems. In Section 7.2, we discuss how the discrete
variational derivative method (DVDM) can be translated into the
Galerkin framework. Finally in Section 7.3, we discuss another ap-
proach, where the DVDM is reconstructed on non-uniform grids.

7.1 Solving System of Nonlinear Equations

As we have seen in the previous chapters, when we simply apply the discrete
variational derivative method (DVDM) to a nonlinear equation, the resulting
scheme naturally inherits the nonlinearity, unless some linearization technique,
such as the one discussed in Chapter 6, is utilized.

The issue of “either nonlinear or linear” seems to be quite a big problem,
and no simple answer seems to be able to be found. From the perspective of
speed, linear (linearly implicit) schemes are much more efficient; instead, they
can lose stability and/or qualitative good behavior that nonlinear schemes
generally have. In this respect, it seems that there are still many situations
where nonlinear schemes should be willingly employed.

The biggest problem in nonlinear schemes is, of course, how we should solve
them. We need some iterative solver, among which the most popular choice is
the Newton method. As far as we can supply a good initial guess, the Newton
method rapidly converges (if we observe the convergence per iteration), and
quite reliable. The method has, however, several drawbacks when it comes to
nonlinear equations arising from numerical schemes for nonlinear PDEs.

293
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1. It requires explicit programming of Jacobian. When the target PDE
is not so complicated, and furthermore we can limit ourselves to one-
dimensional cases, this work is not so difficult. But as the problem
grows, this rapidly becomes cumbersome. We would make many mis-
takes in the hand calculation of Jacobian, and even if we complete the
calculation, next we have to code it without errors.

2. Even though the Newton method is surely “fast” in terms of the required
iteration number, each iteration requires computational complexity of
O(N3) (N is the number of spatial discretization), which is mainly con-
sumed in the computation of the inverse of Jacobian. This is a lot
compared to O(N2) cost in linearly implicit schemes. (In most finite
difference schemes, Jacobian is sparse, often banded, and thus the effort
can be much less. But in this case, one must write a code that reflects
this sparsity. This might not be an easy task, in general, in particu-
lar when Jacobian has additional elements outside the band, as in the
periodic boundary condition case.)

For these reasons, it is not practical to stick to the classical Newton method,
and one may hope for a good alternative. Below several such alternatives are
briefly listed.

7.1.1 Use of Numerical Newton Method Libraries

A good idea is to utilize a numerical Newton method routine, provided in
various commercial and free libraries. Several examples are listed in Table 7.1.
(Note that in some libraries there are several similar routines. In Table 7.1,
only a typical example for each library is shown.)

TABLE 7.1: Numerical Newton Routines
Library name Numerical Newton Method Note
IMSL C zero sys eqn Visual Numerics, Inc.
IMSL Fortran NEQNF Visual Numerics, Inc.
MATLAB fsolve MathWorks
GNU Scientific gsl multiroot free

Library fsolver hybrids
minpack hybrd.f free

The numerical Newton methods above are more or less based on Powell’s
hybrid algorithm [141]. In most libraries, one can choose whether or not an-
alytic Jacobian should be supplied by the user; when one refuses to supply
analytic Jacobian, then in general it is substituted by finite difference Ja-
cobian. In this case, one only has to supply the residual function F (i.e.,
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we solve F (x) = 0), which can be easily written down based on numerical
scheme. This greatly simplify the implementation of nonlinear schemes.

Although the stability can slightly decrease with finite-difference Jacobians,
the convergence seem still satisfactory in most cases, as far as the authors have
experienced. If one feels that the numerical Newton routines do not work well,
then the initial guess at each time step can be improved by some less expensive
integrators (see Section 7.1.4 below).

7.1.2 Variants of Newton Method

Mainly in the field of optimization, extensive effort has been continuously
devoted to the Newton-like methods, such as the quasi-Newton method. Some
of them have been translated for nonlinear equations. See, for example, [37]
and references therein.

Among them, the so called “inexact Newton methods” [36] seem to deserve
serious consideration. A rough outline of inexact Newton methods reads as
follows.

1. Choose an initial guess x0 and η0 > 0. Set k = 0.

2. Stop, if the stopping criterion is satisfied.

3. Solve J(xk)dk = −F (xk) approximately, such that ∥J(xk)dk+F (xk)∥ ≤
ηk∥F (xk)∥.

4. Update xk+1 := xk + dk, ηk (in some appropriate way), and set k :=
k + 1. Go to Step 2.

The parameter ηk is called the “forcing coefficient,” and taken such that it
becomes small near the convergence. For example, one can choose (see [49])

ηk = γ

(
∥F (xk)∥
∥F (xk−1)∥

)2

, γ ∈ (0, 1].

Notice that, in this particular choice, the forcing coefficient becomes quite
small when xk made great progress compared to xk−1, such that ∥F (xk)∥ ≪
∥F (xk−1)∥. In this case, in Step 3 the Newton direction dk is computed
relatively accurately, since it might be quite near the solution. On the other
hand, when the condition is not satisfied, it is likely that the tentative solution
is far from the solution, and thus the Newton direction can be less accurate.
In this way, the computational cost is adaptively saved.

In order to approximately solve the system in Step 3, we can utilize efficient
iterative methods such as the Krylov subspace methods. Here is another clever
trick: in these iterative methods, often we only need to evaluate the matrix-
vector product, say J(xk)y for a given vector y. This can be quite efficiently
computed in the present context by the finite-difference:

J(xk)y ≅ F (xk + hy) − F (xk)
h

.
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Supposing we already have F (xk) in testing the stopping criterion, we only
need to evaluate F once for computing J(xk)y! Note also that now we are
interested in solving numerical schemes for PDEs; unless the target PDE
has some nonlocal term, the computation of F representing the scheme is
relatively fast. This means that inexact Newton methods can be quite efficient,
and convenient (in that we do not have to supply the analytic Jacobian).

A possible drawback is that inexact Newton methods are relatively new,
and to the best of authors’ knowledge, so far they have not been implemented
in major libraries such as those described above.

7.1.3 Spectral Residual Methods

Another newcomer is the “spectral residual method,” which again appeared
first in the context of optimization. It is a variant of the classical steepest
descent method, but its characteristic is that it takes a special step length
(in the line search), which is called “spectral step length.” With this special
choice, the line search is not necessarily monotonic, but often yields rapid con-
vergence. The stepping was first devised in Barzilai–Borwein [13] (due to this,
this group may be called “BB methods”). See also a review by Fletcher [58].

The spectral residual method was translated into nonlinear equations in La
Cruz–Raydan [101]. There an algorithm called SANE (spectral approach for
nonlinear equations) was proposed. Here we show the algorithm, for readers’
convenience (consult the original paper for the detail).

1. Choose α0 ∈ R, γ > 0, 0 < σ1 < σ2 < 1, 0 < ε < 1, M , and δ ∈ [ε, 1/ε].
(Typical values are: α0 = 1, γ = 10−4, ε = 10−8,M = 10, σ1 = 0.1, σ2 =
0.5).

Choose also x0 and set k := 0.

2. Stop, if the stopping criterion is satisfied.

Also stop, if it stops improving: |F (xk)⊤J(xk)F (xk))|/∥F (xk)∥2 < ε.

3. If αk ≤ ε or αk ≥ 1/ε, then set αk := δ.

4. Set the direction: dk := −sgn(F (xk)⊤J(xk)F (xk))F (xk).

5. If f(xk + αkdk) ≤ max0≤j≤min(k,M) f(xk−j) + 2γαkF (xk)⊤J(xk)dk,
then proceed to Step 7.

6. Choose σ ∈ [σ1, σ2], set αk := σαk, and return to Step 5.

7. Set xk+1 := xk + αkdk, and compute yk := F (xk+1) − F (xk).

8. Set αk+1 := sgn(F (xk)⊤J(xk)F (xk)) · dk
⊤dk

dk
⊤yk

· αk.

Set k := k + 1, and return to Step 2.
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The method can be summarized as follows.

• Generally speaking, an algorithm for optimization (minimization) can
be translated for nonlinear equations F (x) = 0 by introducing the merit
function f(x) = ∥F ∥2

2. In this way, however, we need the computation
of the gradient ∇f = J(x)⊤F , which cannot be efficiently computed
(compare with the finite difference approximation of J(x)F above).

To avoid this inconvenience, the SANE algorithm gives up the use of
the gradient information, and instead simply employs the residual F (x)
as the line search direction. More precisely, it considers the direction
−sgn(F (xk)⊤J(xk)F (xk))F (xk), which is expected to be a descent di-
rection. It still needs Jacobian, but it can be approximated by the
finite-difference.

• In order to compensate for the simplification, SANE is equipped with
a nonmonotone line search algorithm (Step 5). It guarantees the global
convergence of the algorithm, at least to some extent.

• SANE eventually ends in the following three patterns: (i) it successfully
terminates with the stopping criterion satisfied (F ≅ 0); (ii) it stops im-
proving |F (xk)⊤J(xk)F (xk))|/∥F (xk)∥2 < ε, which means the residual
vector F (xk) is orthogonal to the gradient ∇f(xk) = J(xk)F (xk) and
no further improvement is possible using the direction; (iii) too many
iterations in the line search (Steps 5 and 6), or in the outer loop (Steps
2 through 8).

The SANE algorithm was then further extended to DF-SANE (derivative
free SANE) algorithm [100], where even the Jacobian included in the sgn
function is eliminated, so that the algorithm is totally derivative free. DF-
SANE simply tries both ±F (x) to find the descent direction. Interested
readers can find the concrete algorithm in [100]. Below we simply call SANE
and DF-SANE the “SANE algorithms” unless otherwise explicitly stated.

From a theoretical point of view, it seems that SANE algorithms are less
understood compared to the original spectral residual methods for optimiza-
tion. In particular, how the choice of F (xk) as the search direction affects the
practical behavior of the algorithm near the solution is not well understood.
It is chosen solely from the point of efficiency.

Still, it is quite interesting to observe that the practical behavior of the
SANE algorithms is often surprisingly satisfactory. This was reported in the
original papers on the SANE algorithms (for some test problems,) and also
confirmed by the present authors in several numerical schemes appearing in
this book. We observed the following.

• In general, the SANE algorithms can be quite unstable for bad initial
guesses. By “unstable” we mean such cases that the algorithms do not
terminate in prescribed maximum iterations (the case (iii) above). The
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necessity of a good initial guess is much stronger than for the Newton
methods, including the numerical Newton methods.

• In the DVDM schemes, the SANE algorithms work well if the time
step size ∆t is chosen small enough. Note that by choosing ∆t small
enough, the numerical solution at step m should be a good initial guess
for SANE algorithms. It can be further improved by utilizing the idea
of predictor–corrector stepping (see Section 7.1.4,) if needed.

• When the SANE algorithms work, they are surprisingly fast, compared
to other algorithms.

A FORTRAN implementation of DF-SANE can be found in the homepage
of the authors of [100]. An R implementation is provided in the BB package
of R. It seems standard libraries have not yet supported SANE algorithms.

7.1.4 Implementation as a Predictor–Corrector Method

In order to considerably minimize the computational effort in nonlinear
solvers, an implementation as a predictor–corrector method often deserves
consideration. That is, one step of a DVDM scheme can be combined with
some other (cheap) numerical method in the following way.

1. Compute a numerical solution at time step m + 1 with some other nu-
merical method (for example, the explicit Runge–Kutta methods).

2. Then solve the DVDM scheme by some iterative solver, with the solution
above as its initial guess.

Whether or not it helps minimizing the computational effort seems to de-
pend on the problem.

7.2 Switch to Galerkin Framework

Basically we are concerned with finite-difference DVDM schemes. As has
been repeatedly emphasized, the most essential tool is the summation-by-parts
formula. A consequent problem is that such formulas hold basically only in
the simplest case, i.e., spatially one dimensional cases with equispaced meshes,
and higher dimensional problems cannot be handled immediately unless the
spatial domain is rectangular and the problem can be reduced to essentially
one-dimensional problems. For example, in Section 4.1.1.5, we have considered
the two-dimensional Cahn–Hilliard equation on a rectangular domain.

In order to adapt to more general cases, effort for extending the DVDM
has been reported recently. In this book, a challenge on Voronoi mesh will
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be briefly shown in Section 7.3. Yaguchi–Matsuo–Sugihara [166] employed
the concept of “computational space,” and generalized the discussion of the
DVDM to nonuniform grids. In a different study by the same authors, the
combination of the discrete variational derivative method and the so-called
“mimetic” spatial discretization has been considered [165] (for the “mimetic”
discretization, see the references therein).

Another simple approach is to give up the finite difference method, and
switch to the Galerkin framework [117]. In particular, we are interested in
the finite element method. Below, we briefly summarize the method for the
target PDEs 1, 2, and 4 described in Chapter 2. Extension to other cases is
not so difficult. In order to keep notation simple, in what follows the discus-
sion is given mainly in a one-dimensional setting. Still, the basic philosophy
easily carries to multi-dimensional settings. An example of a two-dimensional
problem is shown in the end of this section, which discusses several dissipative
finite element schemes for the time-dependent Ginzburg–Landau equation for
superconductivity.

In this project, we insist that the resulting schemes can be implemented
only with cheap H1-elements (i.e., we formulate the framework so that it
does not necessarily require C1 or any smoother elements). This is because
when we hope to try two- or three-dimensional problems, smooth elements
would be too expensive, and such schemes should be less attractive, even if
they have advantageous conservation or dissipation properties.

In the rest of this section, the following notation is used. We denote the
Galerkin approximate solution by u(m) ≅ u(x,m∆t) (similar expression will
be used for other variables). Trial and test function spaces are denoted by Sj

and Wj (j = 1, 2, . . .). We use the standard notation on function spaces such
as L2(Ω) and H1(Ω), and associated inner products. We denote the circle of
length L by S, which is meant to denote the space with the periodic boundary
condition.

7.2.1 Design of Galerkin Schemes

7.2.1.1 Real-Valued Dissipative PDEs 1

We commence by introducing the concept of “discrete partial derivatives,”
which replaces the discrete variational derivatives in the previous chapters.
We here suppose again that local energy is of the form

G(u, ux) =
M∑

l=1

fl(u)gl(ux), (7.1)
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where M ∈ {1, 2, . . .}, and fl, gl are real-valued functions (recall (3.22))1.
Then “discrete partial derivatives” are defined as follows.

∂Gd

∂(u(m+1), u(m))
d≡

M∑

l=1

(
fl(u(m+1)) − fl(u(m))

u(m+1) − u(m)

)(
gl(u

(m+1)
x ) + gl(u

(m)
x )

2

)
,

(7.2a)

∂Gd

∂(u(m+1)
x , u

(m)
x )

d≡
M∑

l=1

(
fl(u(m+1)) + fl(u(m))

2

)(
gl(u

(m+1)
x ) − gl(u

(m)
x )

u
(m+1)
x − u

(m)
x

)
.

(7.2b)

They correspond to ∂G/∂u and ∂G/∂ux, respectively. Compare them with
the finite difference versions (3.27a)–(3.27c).

It can be easily verified that the following discrete chain rule holds (hereafter
G(u(m), u

(m)
x ) is abbreviated as G(u(m)) to save space).

THEOREM 7.1 Discrete chain rule (real-valued case)
The discrete partial derivatives (7.2a) and (7.2b) satisfy the following identity.

1
∆t

∫ L

0

(
G(u(m+1)) − G(u(m))

)
dx

=
∫ L

0

{
∂Gd

∂(u(m+1), u(m))

(
u(m+1) − u(m)

∆t

)

+
∂Gd

∂(u(m+1)
x , u

(m)
x )

(
u

(m+1)
x − u

(m)
x

∆t

)}
dx. (7.3)

Now we are in a position to describe the schemes for the equation (2.14).
The simplest case s = 0 and general cases s = 1, 2, . . . are treated separately.
We use a set of trial and test function spaces S1 and W1.

Scheme 7.1 (Galerkin scheme for s = 0) Suppose u(0)(x) is given in S1.
Find u(m) ∈ S1 (m = 1, 2, . . .) such that, for any v ∈ W1,

(
u(m+1) − u(m)

∆t
, v

)
= −

(
∂Gd

∂(u(m+1), u(m))
, v

)
−

(
∂Gd

∂(u(m+1)
x , u

(m)
x )

, vx

)

+

[
∂Gd

∂(u(m+1)
x , u

(m)
x )

v

]L

0

. (7.4)

1In the preceding chapters, we used fM for original energy function, and M for its finite dif-
ference approximation. In the Galerkin framework, however, we do not have to distinguish
these two, and we simply write both by M .
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Because the discrete partial derivatives (7.2a) and (7.2b) do not include
second derivatives, the scheme can be implemented using only H1-elements,
such as the standard piecewise linear function space. The scheme is dissipative
in the following sense.

THEOREM 7.2 Dissipation property of Scheme 7.1
Assume that boundary conditions and the trial and test spaces are set such

that [
∂Gd

∂(u(m+1)
x , u

(m)
x )

(
u(m+1) − u(m)

∆t

)]L

0

= 0, (7.5)

and (u(m+1) − u(m))/∆t ∈ W1 holds. Then Scheme 7.1 is dissipative in the
sense that

1
∆t

∫ L

0

(
G(u(m+1)) − G(u(m))

)
dx ≤ 0, m = 0, 1, 2, . . . .

PROOF

1
∆t

∫ L

0

(
G(u(m+1)) − G(u(m))

)
dx

=
(

∂Gd

∂(u(m+1), u(m))
,
u(m+1) − u(m)

∆t

)
+

(
∂Gd

∂(u(m+1)
x , u

(m)
x )

,
u

(m+1)
x − u

(m)
x

∆t

)

= −
∥∥∥∥

u(m+1) − u(m)

∆t

∥∥∥∥
2

2

+

[
∂Gd

∂(u(m+1)
x , u

(m)
x )

(
u(m+1) − u(m)

∆t

)]L

0

≤ 0.

The first equality is by Theorem 7.1. The second one is shown by making
use of expression (7.4) and the assumption (u(m+1) − u(m))/∆t ∈ W1. The
inequality is shown by the assumption (7.5).

The assumption (7.5) corresponds to the condition (2.16). The assump-
tion (u(m+1) − u(m))/∆t ∈ W1 is an additional condition for the dissipation
property, which can be usually satisfied with natural choices of S1 and W1.
For example, when the Dirichlet boundary conditions u(0) = a, u(L) = b
are imposed, it is natural to take S1 = {u |u(0) = a, u(L) = b} and W1 =
{v | v(0) = 0, v(L) = 0}. In this setting the assumption is satisfied.

Next we proceed to the general case s ≥ 1. We first observe that by
recursively introducing intermediate variables: p1 = −(p2)xx, . . ., ps−1 =
−(ps)xx, and ps = δG/δu, the original equation (2.14) can be rewritten as a
system of equations ut = (ps)xx, pj−1 = −(pj)xx (j ∈ J), and ps = δG/δu,
where the set J = {2, . . . , s} when s ≥ 2 or J = ∅ when s = 1. This leads us
to the following scheme. We assume that trial spaces S1, . . . , Ss+1, and test
spaces W1, . . . , Ws+1 are prepared.
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Scheme 7.2 (Galerkin scheme for s ≥ 1) Suppose that u(0)(x) is given in

Ss+1. Find u(m+1) ∈ Ss+1, p
(m+ 1

2 )
1 ∈ S1, . . . , p

(m+ 1
2 )

s ∈ Ss (m = 0, 1, . . .)
such that, for any v1 ∈ W1, . . . , vs+1 ∈ Ws+1,

(
u(m+1) − u(m)

∆t
, v1

)
= −

(
(p(m+ 1

2 )
1 )x, (v1)x

)
+

[
(p(m+ 1

2 )
1 )xv1

]L

0
, (7.6a)

(
p
(m+ 1

2 )
j−1 , vj

)
=

(
(p(m+ 1

2 )
j )x, (vj)x

)
−

[
(p(m+ 1

2 )
j )xvj

]L

0
, (7.6b)

(
p
(m+ 1

2 )
s , vs+1

)
=

(
∂Gd

∂(u(m+1), u(m))
, vs+1

)

+

(
∂Gd

∂(u(m+1)
x , u

(m)
x )

, (vs+1)x

)

−

[
∂Gd

∂(u(m+1)
x , u

(m)
x )

vs+1

]L

0

, (7.6c)

where j ∈ J .

The equation (7.6b) is ignored when J = ∅. This scheme can be also imple-
mented only with H1-elements. The dissipation property is summarized in
the next theorem.

THEOREM 7.3 Dissipation property of Scheme 7.2
Assume that boundary conditions and the trial and test spaces are set such

that (i) the condition (7.5) is satisfied ; (ii)
[
(p(m+ 1

2 )
j )x · p(m+ 1

2 )
s+1−j

]L

0
= 0 (j =

1, 2, . . . , s); (iii) (u(m+1) − u(m))/∆t ∈ Ws+1; and (iv) Wj ⊇ Ss+1−j (j =
1, 2, . . . , s). Then Scheme 7.2 is dissipative in the sense that

1
∆t

∫ L

0

(
G(u(m+1)) − G(u(m))

)
dx ≤ 0, m = 0, 1, 2, . . . .

PROOF

1
∆t

∫ L

0

(
G(u(m+1)) − G(u(m))

)
dx

=
(

∂Gd

∂(u(m+1), u(m))
,
u(m+1) − u(m)

∆t

)
+

(
∂Gd

∂(u(m+1)
x , u

(m)
x )

,
u

(m+1)
x − u

(m)
x

∆t

)

=
(

p
(m+ 1

2 )
s ,

u(m+1) − u(m)

∆t

)
+

[
∂Gd

∂(u(m+1)
x , u

(m)
x )

(
u(m+1) − u(m)

∆t

)]L

0

= −
(
(p(m+ 1

2 )
1 )x, (p(m+ 1

2 )
s )x

)
+

[
(p(m+ 1

2 )
1 )xp

(m+ 1
2 )

s

]L

0
.
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The second equality is shown by using equation (7.6c) with vs+1 = (u(m+1) −
u(m))/∆t. The third equality is given by using equation (7.6a) with v1 =

p
(m+ 1

2 )
s and the assumption Ss ⊆ W1. By repeatedly making use of equation

(7.6b) with j = s, 2, s− 1, 3, . . . in this order, which is allowed by the assump-

tion (iv), it can be seen that the right-hand side is equal to −∥(p(m+ 1
2 )

(s+1)/2)x∥2
2

when s is odd, or −∥p(m+ 1
2 )

s/2 ∥2
2 otherwise, and so the proof is complete. All the

boundary terms vanish as a result of the boundary condition assumptions.

REMARK 7.1 The assumption (ii) in Theorem 7.3 corresponds to the
condition (2.17) (although the latter is written in weaker form). This can be
checked as follows. Recall that by definition ps = δG/δu, ps−1 = −(δG/δu)(2),
. . . , p1 = (−1)2s−1(δG/δu)(2s−2) (the superscripts denote the number of dif-
ferentiations). Substituting them into (pj)x · ps+1−j , we understand that it
means

[(
δG

δu

)(2s−2j+1)

·
(

δG

δu

)(2j−2)
]L

0

= 0, j = 1, 2, . . . , s.

The superscripts cover (2s − 1, 0), (2s − 3, 2), . . . , (1, 2s − 2). This exactly
corresponds to (2.17). The assumptions (iii) and (iv) are purely additional
conditions for the discrete dissipation property, which are likely to be satisfied
in most settings of trial and test spaces.

7.2.1.2 Real-Valued Conservative PDEs 2

Conservative schemes for the target PDEs 2 are presented using the discrete
partial derivatives introduced in the previous section. The simplest case s = 1
and general cases s = 2, 3, . . . are treated separately. Let S1, . . . , Ss+1 be trial
spaces, and W1, . . . , Ws+1 be test spaces.

Scheme 7.3 (Galerkin scheme for s = 1) Suppose that u(0)(x) is given in

S2. Find u(m+1) ∈ S2, p
(m+ 1

2 )
1 ∈ S1 such that, for any v1 ∈ W1, v2 ∈ W2,

(
u(m+1) − u(m)

∆t
, v1

)
=

(
(p(m+ 1

2 )
1 )x, v1

)
(7.7)

(
p
(m+ 1

2 )
1 , v2

)
=

(
∂Gd

∂(u(m+1), u(m))
, v2

)
+

(
∂Gd

∂(u(m+1)
x , u

(m)
x )

, (v2)x

)

−

[
∂Gd

∂(u(m+1)
x , u

(m)
x )

v2

]L

0

. (7.8)
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THEOREM 7.4 Conservation property of Scheme 7.3

Assume that boundary conditions and the trial and test spaces are set such

that (i) the condition (7.5) is satisfied ; (ii)
[
(p(m+ 1

2 )
1 )2

]L

0
= 0; (iii) (u(m+1) −

u(m))/∆t ∈ W2; and (iv) S1 ⊆ W1. Then Scheme 7.3 is conservative in the
sense that

1
∆t

∫ L

0

(
G(u(m+1)) − G(u(m))

)
dx = 0, m = 0, 1, 2, . . . .

PROOF

1
∆t

∫ L

0

(
G(u(m+1)) − G(u(m))

)
dx

=
(

p
(m+ 1

2 )
1 ,

u(m+1) − u(m)

∆t

)
+

[
∂Gd

∂(u(m+1)
x , u

(m)
x )

(
u(m+1) − u(m)

∆t

)]L

0

=
(
(p(m+ 1

2 )
1 )x, p

(m+ 1
2 )

1

)
= 0.

The first equality is shown by using equation (7.8) with v2 = (u(m+1) −
u(m))/∆t, while the second equality is given by using equation (7.7) with

v1 = p
(m+ 1

2 )
1 and the assumption S1 ⊆ W1. The last equality is from the

assumption (ii).

In order to describe the scheme for s ≥ 2, let us define the set J =
{2, . . . , s} \ {n + 1} when s = 2n (n = 1, 2, . . .), or J = {2, . . . , s} \ {n}
when s = 2n − 1 (n = 2, 3, . . .).

Scheme 7.4 (Galerkin scheme for s ≥ 2) Suppose that u(0)(x) is given in

Ss+1. Find u(m+1) ∈ Ss+1, p
(m+ 1

2 )
1 ∈ S1, . . . , p

(m+ 1
2 )

s ∈ Ss (m = 0, 1, . . .)
such that, for any v1 ∈ W1, . . . , vs+1 ∈ Ws+1,

(
u(m+1) − u(m)

∆t
, v1

)
= −

(
(p(m+ 1

2 )
1 )x, (v1)x

)
+

[
(p(m+ 1

2 )
1 )xv1

]L

0
, (7.9a)

(
p
(m+ 1

2 )
j−1 , vj

)
= −

(
(p(m+ 1

2 )
j )x, (vj)x

)
+

[
(p(m+ 1

2 )
j )xvj

]L

0
, (7.9b)

(
p
(m+ 1

2 )
n , (vn+1)x

)
=

(
(p(m+ 1

2 )
n+1 )x, (vn+1)x

)
(when s = 2n), (7.9c)

(
p
(m+ 1

2 )
n−1 , vn

)
=

(
(p(m+ 1

2 )
n )x, vn

)
(when s = 2n − 1), (7.9d)



Advanced Topic III: Further Remarks 305

(
p
(m+ 1

2 )
s , vs+1

)
=

(
∂Gd

∂(u(m+1), u(m))
, vs+1

)

+

(
∂Gd

∂(u(m+1)
x , u

(m)
x )

, (vs+1)x

)

−

[
∂Gd

∂(u(m+1)
x , u

(m)
x )

vs+1

]L

0

(7.9e)

where j ∈ J .

The equation (7.9b) is dropped when J = ∅. The conservation property is
summarized in the next theorem.

THEOREM 7.5 Conservation property of Scheme 7.4
Assume that boundary conditions and trial and test spaces are set such that (i)

the condition (7.5) is satisfied ; (ii)
[
(p(m+ 1

2 )
n )2

]L

0
= 0 and

[
(p(m+ 1

2 )
j )xp

(m+ 1
2 )

s+1−j

]L

0
=

0 (j ∈ J); (iii) (u(m+1) − u(m))/∆t ∈ Ws+1; and (iv) Wj ⊇ Ss+1−j (j =
1, . . . , s). Then Scheme 7.3 is conservative in the sense that

1
∆t

∫ L

0

(
G(u(m+1)) − G(u(m))

)
dx = 0, m = 0, 1, 2, . . . .

PROOF The proof is similar to Theorem 7.3.

1
∆t

∫ L

0

(
G(u(m+1)) − G(u(m))

)
dx = −

(
(p(m+ 1

2 )
1 )x, (p(m+ 1

2 )
s )x

)

=





−
(
(p(m+ 1

2 )
n )x, (p(m+ 1

2 )
n+1 )x

)
(when s = 2n),(

p
(m+ 1

2 )
n−1 , p

(m+ 1
2 )

n

)
(when s = 2n − 1),

= (−1)s+1
(
p
(m+ 1

2 )
n , (p(m+ 1

2 )
n )x

)
= 0.

In the second equality the equation (7.9b) is repeatedly used. The third
equality is either from (7.9c) or (7.9d).

REMARK 7.2 The above schemes in this paper are more or less in
mixed formulation (see, for example, [21]). The underlying weak forms are,
however, carefully chosen for the targeted conservation/dissipation properties.
Below we illustrate this using as an example the linear third-order dispersive
equation ut = uxxx under the periodic boundary condition. It is a special
case of (2.28) with s = 1, G = u2/2, and thus

∫ L

0
(u2/2)dx is an invariant.

Suppose that a grid and accordingly a periodic piecewise linear function space
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S over the grid are appropriately given. Then the most straightforward mixed
formulations of the problem might be to: find u(·, t), p(·, t) ∈ S such that

(ut, v) = (px, v), (p, w) = −(ux, wx), ∀v, w ∈ S, (7.10)

or
(ut, v) = −(px, vx), (p, w) = (ux, w), ∀v, w ∈ S. (7.11)

On the other hand, Scheme 7.4 suggests a slightly different form:

(ut, v) = −(px, vx), (p, wx) = (ux, wx), ∀v, w ∈ S. (7.12)

(Actually Scheme 7.4 literally suggests (ut, v) = −(px, vx), (p1, wx) = ((p2)x, wx),
(p2, z) = (u, z), ∀v, w, z, which immediately shrinks to the above.) The con-
servation property of scheme (7.12) is guaranteed by Theorem 7.5, but it can
be also directly viewed as follows.

d
dt

∫ L

0

u2

2
dx = (ut, u) = −(px, ux) = −(p, px) = 0,

where (7.12) with v = u, w = p is used. The similar calculation with the
straightforward schemes, (7.10) and (7.11), turns out to fail. Actually, unless
the grid is completely uniform, the straightforward schemes are not conserva-
tive in general. Accordingly any full discrete schemes based on them cannot
be conservative. This example illustrates that the conservation property is so
“fragile” that it can easily be lost unless correct weak forms are carefully cho-
sen. Only when these “correct” weak forms are integrated with the “correct”
time-stepping using discrete partial derivatives, the conservation property is
rigorously kept. Similar notice also applies to dissipative cases.

It is interesting to point out that (7.10) corresponds to Scheme 7.3 if we
regard the original problem as the special case of (2.28) with s = 0 and
G = (ux)2/2. Thus (7.10) conserves another invariant

∫ L

0
((ux)2/2)dx, but

not
∫ L

0
(u2/2)dx. The other scheme (7.11) completely fails in preserving either

of the invariants.
We tested three schemes based on the three weak forms, with a non-

uniform grid. The numerical results are shown in Figure 7.1.2 In the figure
“H1” denotes the original invariant

∫ L

0
(u2/2)dx, and “H2” the other one∫ L

0
((ux)2/2)dx. We can see that depending on the underlying weak forms,

the conserved invariants differ.

2−7 Reprinted from J. Comput. Appl. Math., 218, T. Matsuo, Dissipative/conservative
Galerkin method using discrete partial derivatives for nonlinear evolution equations, 506–
521, Copyright (2008), with permission from Elsevier.



Advanced Topic III: Further Remarks 307

-0.0004%

-0.0003%

-0.002%

-0.001%

true

 0  2e-006  4e-006  6e-006  8e-006  1e-005

re
la

ti
v

e
 e

rr
o

r

t

H1

H2

1.2%

0.8%

0.4%

 true

 0  2e-006  4e-006  6e-006  8e-006  1e-005

re
la

ti
v

e
 e

rr
o

r

t

H1

H2

0.06%

0.04%

0.02%

true

 0  2e-006  4e-006  6e-006  8e-006  1e-005

re
la

ti
v

e
 e

rr
o

r

t

H1

H2

FIGURE 7.1: Comparison of invariants: (top left) scheme based on (7.10),
(top right) on (7.12), (bottom) on (7.11).

7.2.1.3 Complex-Valued Conservative PDEs 4

We first introduce complex versions of the discrete partial derivatives. Sup-
pose that the local energy is again of the form of equation (7.1), but that fl

and gl are real-valued functions of a complex-valued function u(x, t), which
satisfy fl(u) = fl(ū), and gl(ux) = gl(ūx). Throughout this section, we use
the notation (f, g) =

∫ L

0 fgdx. We call the discrete quantities

∂Gd

∂(u(m+1), u(m))
d≡

M∑

l=1

(
fl(u(m+1)) − fl(u(m))
∣∣u(m+1)

∣∣2 −
∣∣u(m)

∣∣2

)(
u(m+1) + u(m)

2

)

×

(
gl(u

(m+1)
x ) + gl(u

(m)
x )

2

)
, (7.13a)

∂Gd

∂(u(m+1)
x , u

(m)
x )

d≡
M∑

l=1

(
fl(u(m+1)) + fl(u(m))

2

)

gl(u

(m+1)
x ) − gl(u

(m)
x )∣∣∣u(m+1)

x

∣∣∣
2

−
∣∣∣u(m)

x

∣∣∣
2




×


u

(m+1)
x + u

(m)
x

2


 , (7.13b)



308 Discrete Variational Derivative Method

which correspond to ∂G/∂u and ∂G/∂ux respectively, “complex discrete par-
tial derivatives.” Note that the complex discrete partial derivatives satisfy

(
∂Gd

∂(u(m+1), u(m))

)
=

∂Gd

∂(u(m+1), u(m))
,

(
∂Gd

∂(u(m+1)
x , u

(m)
x )

)
=

∂Gd

∂(u(m+1)
x , u

(m)
x )

.

The following identity holds concerning the complex partial derivatives.

THEOREM 7.6 Discrete chain rule (complex-valued case)

1
∆t

∫ L

0

(
G(u(m+1)) − G(u(m))

)
dx

=
∫ L

0

∂Gd

∂(u(m+1), u(m))

(
u(m+1) − u(m)

∆t

)
dx

+
∫ L

0

∂Gd

∂(u(m+1)
x , u

(m)
x )

(
u

(m+1)
x − u

(m)
x

∆t

)
dx + (c.c.), (7.14)

where (c.c.) denotes the complex conjugates of the preceding terms.

Making use of the complex discrete partial derivatives, a conservative scheme
for the target PDEs 4 is defined as follows:

Scheme 7.5 (Galerkin scheme for the PDEs 4) Suppose that u(0)(x) is
given in S1. Find u(m) ∈ S1 (m = 1, 2, . . .) such that, for any v ∈ W1,

i
(

u(m+1) − u(m)

∆t
, v

)
= −

(
∂Gd

∂(u(m+1), u(m))
, v

)
−

(
∂Gd

∂(u(m+1)
x , u

(m)
x )

, vx

)

+

[
∂Gd

∂(u(m+1)
x , u

(m)
x )

v

]L

0

.

THEOREM 7.7 Conservation property of Scheme 7.5
Assume that boundary conditions are imposed so that

[(
∂Gd

∂(u(m+1)
x , u

(m)
x )

) (
u(m+1) − u(m)

∆t

)
+ (c.c.)

]L

0

= 0,

and (u(m+1) − u(m))/∆t ∈ W1. Then Scheme 7.5 is conservative in the sense
that

1
∆t

∫ L

0

(
G(u(m+1)) − G(u(m))

)
dx = 0, m = 0, 1, 2, . . . .
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PROOF

1
∆t

∫ L

0

(
G(u(m+1)) − G(u(m))

)
dx

=

(
∂Gd

∂(u(m+1), u(m))
,
u(m+1) − u(m)

∆t

)
+

(
∂Gd

∂(u(m+1)
x , u

(m)
x )

,
u

(m+1)
x − u

(m)
x

∆t

)

+(c.c.)

= −i
∥∥∥∥

u(m+1) − u(m)

∆t

∥∥∥∥
2

2

+

[
∂Gd

∂(u(m+1)
x , u

(m)
x )

(
u(m+1) − u(m)

∆t

)]L

0

+ (c.c.)

= 0.

7.2.2 Application Examples

We show several examples. Below we suppose the one-dimensional region
[0, L] is divided into a mesh, and denote the piecewise linear function space
on the mesh by Sh (other spaces can be also utilized, but we here use Sh for
simplicity).

7.2.2.1 Cahn–Hilliard Equation

Let us consider the Cahn–Hilliard equation, which is an example of equa-
tion (2.14) with s = 1 and G(u, ux) = pu2/2 + ru4/4 − q(ux)2/2. We assume
the standard boundary conditions

ux = 0 and
∂

∂x

(
δG

δu

)
= 0 at x = 0, L. (7.15)

Motivated by nature of the boundary conditions, let us prepare the trial spaces
as S1, S2 = {v | v ∈ Sh, vx(0) = vx(L) = 0}, and the test spaces as W1,W2 =

Sh. Then Scheme 7.2 reads as follows: find u(m) ∈ S2 and p
(m+ 1

2 )
1 ∈ S1 such

that, for all v1 ∈ W1 and v2 ∈ W2,

(
u(m+1) − u(m)

∆t
, v1

)
= −

(
(p(m+ 1

2 )
1 )x, (v1)x

)
, (7.16)

(
p
(m+ 1

2 )
1 , v2

)
=

(
∂Gd

∂(u(m+1), u(m))
, v2

)
+

(
∂Gd

∂(u(m+1)
x , u

(m)
x )

, (v2)x

)
.(7.17)
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The discrete partial derivatives are

∂Gd

∂(u(m+1), u(m))
= p

(
u(m+1) + u(m)

2

)
+

r

(
(u(m+1))2 + (u(m))2

2

)(
u(m+1) + u(m)

2

)
, (7.18)

∂Gd

∂(u(m+1)
x , u

(m)
x )

= q

(
u

(m+1)
x + u

(m)
x

2

)
, (7.19)

which are obtained from (7.2a) and (7.2b). Note that the boundary terms

[(p(m+ 1
2 )

1 )xv1]L0 in (7.16) and [ ∂Gd

∂(u
(m+1)
x ,u

(m)
x )

v2]L0 in (7.17) now vanish, because

(p(m+ 1
2 )

1 )x = u
(m+1)
x = u

(m)
x = 0 at x = 0, L. It is easily checked that all the

assumptions in Theorem 7.3 are satisfied, and thus the scheme is dissipative.
This scheme coincides with the Du–Nicolaides scheme [39] (we like to note
that Du–Nicolaides discussed this scheme only with (unphysical) zero Dirichlet
boundary conditions).

REMARK 7.3 In practice, the trial spaces can be taken as S1 = S2 = Sh

as in the standard elliptic problems. Then the boundary conditions (7.15) are
automatically recovered as the natural boundary conditions from the equa-
tions (7.16) and (7.17).

REMARK 7.4 The scheme has an additional conservation law:

d
dt

∫ L

0

u(m+1) − u(m)

∆t
dx = 0, m = 0, 1, 2, . . . , (7.20)

which can be easily seen from the equation (7.6a) with v1 = 1.

7.2.2.2 Korteweg-de Vries Equation

The KdV equation is an example of the target PDEs 2 with s = 0 and
G(u, ux) = u3/6 − (ux)2/2. We suppose the periodic boundary condition.

Let us select the trial and test spaces as S1 = S2 = W1 = W2 = Sh∩H1(S).

Then Scheme 7.3 reads as follows: find u(m) ∈ S2 and p
(m+ 1

2 )
1 ∈ S1 such that,

for all v1 ∈ W1 and v2 ∈ W2,

(
u(m+1) − u(m)

∆t
, v1

)
=

(
(p(m+ 1

2 )
1 )x, v1

)
, (7.21)

(
p
(m+ 1

2 )
1 , v2

)
=

(
∂Gd

∂(u(m+1), u(m))
, v2

)
+

(
∂Gd

∂(u(m+1)
x , u

(m)
x )

, (v2)x

)
(7.22)
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hold, where

∂Gd

∂(u(m+1), u(m))
=

(u(m+1))2 + u(m+1)u(m) + (u(m))2

6
, (7.23)

∂Gd

∂(u(m+1)
x , u

(m)
x )

= −u
(m+1)
x + u

(m)
x

2
, (7.24)

are obtained from definitions (7.2a) and (7.2b). The boundary term appearing
in (7.8) vanishes due to the periodicity of S1 and W1. Due to the periodicity of

S1, the assumption [(p(m+ 1
2 )

1 )2]L0 = 0 is satisfied. The periodicity also implies
that condition (7.5) is satisfied, thus all the assumptions in Theorem 7.4 are
satisfied, and hence the scheme is conservative. To the best of our knowledge,
this scheme seems new.

REMARK 7.5 The scheme also has the additional conservation law
(7.20). Set v1 = 1 in the equation (7.7).

Let us demonstrate the scheme numerically. The length of the spatial period
is set to L = 20, and the period is divided into a non-uniform grid consisting
of N points which concentrate at the center (see Figure 7.23 for an example
of N = 201). The approximation space Sh ∈ H1(0, L) is set to the standard
piecewise linear function space over this grid. The initial condition is set
to u(x, 0) = 48sech2(2(x − 14)) + 24sech2(x − 10) (soliton-like pulses). For
comparison, a standard Crank–Nicolson type scheme:

(
u(m+1) − u(m)

∆t
, v1

)
=

(
(p(m+ 1

2 )
1 )x, v1

)
, (7.25)

(
p
(m+ 1

2 )
1 , v2

)
=

(
1
2

(
u(m+1) + u(m)

2

)2

, v2

)
−

(
u

(m+1)
x + u

(m)
x

2
, (v2)x

)
,

(7.26)

and a backward Euler scheme:
(

u(m+1) − u(m)

∆t
, v1

)
=

(
(p(m+ 1

2 )
1 )x, v1

)
, (7.27)

(
p
(m+ 1

2 )
1 , v2

)
=

(
(u(m+1))2

2
, v2

)
−

(
u(m+1)

x , (v2)x

)
, (7.28)

are also tested.
First, the number of spatial mesh points is set to N = 201, the temporal

mesh size ∆t = 0.025, and the problem is integrated for 0 ≤ t ≤ 20. Fig-
ure 7.34 shows the evolution of the global energies. The conservative scheme
strictly conserves the energy as constructed. In the Crank–Nicolson scheme
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FIGURE 7.2: The non-uniform mesh (N = 201).

the energy is not conserved but goes down. This energy decrease is even more
drastic in the backward Euler scheme, whereas the reason for the decrease is
not quite the same as in the Crank–Nicolson case. This can be understood
with Figure 7.4,5 which shows the initial evolution of numerical solutions (for
0 ≤ t ≤ 3). The solution by the backward Euler scheme collapses and eventu-
ally becomes flat; thus the energy decrease should be understood as the energy
dissipation. On the other hand, the solution by the Crank–Nicolson scheme is
not flattened; instead it develops undesired oscillations. The energy decrease
should be attributed to this oscillations, which increases the term

∫ L

0
ux

2dx
in the global energy. The oscillations can be also observed in the conservative
scheme. The intensity is, however, smaller than the Crank–Nicolson case, and
the solution is the best obtained among the three.
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FIGURE 7.3: Evolution of the global energies (N = 201).

The undesired oscillations arise from the insufficiency in spatial accuracy.
Next the conservative and Crank–Nicolson schemes are tested with the finer
mesh N = 401, which is again non-uniform similar to the case of N = 201. The
problem is then integrated for 0 ≤ t ≤ 100 with ∆t = 0.01. Figure 7.56 shows
the evolution of the energies, and Figure 7.67 the solutions. The solutions
are improved in both schemes. In the Crank–Nicolson scheme, however, the
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FIGURE 7.4: The numerical solutions (N = 201): (top left) the conserva-
tive scheme; (top right) the Crank–Nicolson scheme; (bottom) the backward
Euler scheme.

drifting of the energy persists. On the other hand, the conservative scheme
successfully conserves the energy, and thus is better.

7.2.2.3 Nonlinear Schrödinger Equation

Let us consider the nonlinear Schrödinger (NLS) equation under the pe-
riodic boundary condition. This is an example of the target PDEs 4 with
G(u, ux) = −|ux|2 + 2γ|u|p+1/(p + 1). Let us select the trial and test spaces
S1 = W1 = Sh ∩ H1(S). Then Scheme 7.5 becomes: find u ∈ S1 such that,
for all v ∈ W1,

i
(

u(m+1) − u(m)

∆t
, v

)
= −

(
∂Gd

∂(u(m+1), u(m))
, v

)
−

(
∂Gd

∂(u(m+1)
x , u

(m)
x )

, vx

)
,

where the terms

∂Gd

∂(u(m+1), u(m))
= γ

(
|u(m+1)|p+1 − |u(m)|p+1

|u(m+1)|2 − |u(m)|2

)(
u(m+1) + u(m)

2

)
,

(7.29)

∂Gd

∂(u(m+1)
x , u

(m)
x )

= −u
(m+1)
x + u

(m)
x

2
, (7.30)
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are obtained from definitions (7.13a) and (7.13b). The boundary term ap-
pearing in Scheme 7.5 vanishes due to the periodicity of S1 and W1. The
periodicity also implies that condition (7.5) is satisfied, and thus the conser-
vation property follows from Theorem 7.7. It may be noted that this scheme
is simply the Akrivis–Dougalis–Karakashian scheme [8], whose stability and
convergence are already guaranteed.

7.2.2.4 Camassa–Holm Type Equations

Next let us consider the Camassa–Holm type equations (2.32), which were
briefly mentioned in Remark 2.5. These equations do not belong to the stan-
dard target PDEs, and thus are not immediately covered by the procedure
described before. Still, it is not difficult to modify the procedure to accom-
modate them, and in fact, in Section 4.7.2 a way of working around was
given in the finite difference context. We show a similar method below in the
Galerkin framework. For the detail of this section, interested readers may
refer to [123, 118].

This subsection is organized as follows. We first give a general discus-
sion for the abstract equation (2.32). Then in Sections 7.2.2.4.1 through
7.2.2.4.3, we focus on the special cases: the limiting Camassa–Holm equation,
the Dai equation, and the Benjamin–Bona–Mahony equation, respectively
(for a brief introduction of these equations, see Remark 2.5). Finally, in Sec-
tion 7.2.2.4.4, we present another formulation for the limiting Camassa–Holm
equation, based on the bi-Hamiltonian structure.

We commence by recalling some mathematical properties of (2.32). It can
be viewed as a gradient flow:

(
1 − ∂2

∂x2

)
ut =

(
δG

δu

)

x

, (7.31)

where

G(u, ux) = −κu2 + u3 + γu(ux)2

2
. (7.32)

If we further introduce an operator K = (1 − ∂2/∂x2)−1, which is a map
L2(S) → H2(S) [19] the equation can be rewritten as

ut = K
(

δG

δu

)

x

. (7.33)

With the Green function:

k(x) =
cosh(x − L[x/L] − L/2)

2 sinh(L/2)
, (7.34)

where the bracket [x] means the largest integer which does not exceed x, the
operator K can be expressed in terms of the convolution

(Kf)(x) = (k ∗ f)(x) =
∫ L

0

k(x − ξ)f(ξ)dξ. (7.35)



316 Discrete Variational Derivative Method

It is easy to see that K is symmetric, and thus due to the skew-symmetry
of ∂/∂x, the equation (7.33) is obviously conservative. But in order to clarify
how the problem is now delicate, we explicitly present a conservation theorem
below.

THEOREM 7.8 Conservation property of (7.33)
Suppose u(·, t) ∈ H3(S), ut(·, t) ∈ H1(S), and G(u, ux) are sufficiently smooth
with respect to their arguments. Then,

d
dt

∫ L

0

G dx = 0. (7.36)

PROOF

d
dt

∫ L

0

G dx =
∫ L

0

(
∂G

∂u
ut +

∂G

∂ux
utx

)
dx =

∫ L

0

δG

δu
ut dx +

[
∂G

∂ux
ut

]L

0

=
∫ L

0

δG

δu
K

(
δG

δu

)

x

dx = 0.

In the third equality, the boundary term is dropped due to the periodicity. In
the last equality, an identity (Kfx, f) = 0 which holds for any f ∈ H1(S) is
used.

The theorem is completely fine, as far as we deal with smooth solutions. The
assumption u(·, t) ∈ H3(S) is reasonable, since (δG/δu)x essentially includes
uxxx. However, the reason why the Camassa–Holm type equations have drawn
much interest is that they can exhibit singular solutions like peakons. In order
to justify peakons, an H1(S)-formulation is inevitably required. In the critical
CH (κ = 0) case, such a form is given in [28]:

ut +
1
2

(
u2 + K

(
u2 +

(ux)2

2

))

x

= 0, (7.37)

which makes sense for u(·, t) ∈ H1(S). This form is quite beautiful in that it
not only accepts peakons but also clarifies the point that the equation is in
fact a “conservation law” (in the terminology of fluid dynamics). However,
since it seems that the conservation property of (7.37) cannot be directly
established, (7.37) is not convenient in our project. Actually, in [29], the
conservation property of (7.37) is established by expressing the target H1-
solution of (7.37) as the limit of a series of energy-conserving H3-solutions of
the original Camassa–Holm equation (with κ = 0). It seems difficult to do a
similar thing in a discrete setting.

Instead we employ the following set of weak forms. Find u(·, t), p(·, t) ∈
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H1(S) such that for any v1, v2 ∈ H1(S),

(ut, v1) = (Kpx, v1), (7.38)

(p, v2) =
(

∂G

∂u
, v2

)
+

(
∂G

∂ux
, (v2)x

)
. (7.39)

It is obvious that the solution u(·, t) ∈ H3(S) that solves (7.33) also solves this
set of weak forms by setting p = δG/δu. From the weak forms (7.38), (7.39),
the desired conservation property can be successfully deduced as shown in the
next theorem. The deduction can be done completely in an abstract way as
in Theorem 7.8; in this case, however, the key tools are the partial derivatives
∂G/∂u, ∂G/∂ux, instead of the variational derivative δG/δu.

THEOREM 7.9 Conservation property of the weak forms (7.38),
(7.39)
Suppose u(·, t), p(·, t) ∈ H1(S) are the solutions of the weak forms (7.38)

and (7.39). Also assume that G is sufficiently smooth and ut(·, t) ∈ H1(S).
Then the following holds

d
dt

∫ L

0

G dx = 0. (7.40)

PROOF

d
dt

∫ L

0

G dx =
(

∂G

∂u
, ut

)
+

(
∂G

∂ux
, utx

)
= (p, ut) = (Kpx, p) = 0. (7.41)

The first equality is just the chain rule. The second equality follows from (7.39)
with v2 = ut, and the third one from (7.38) with v1 = p.

REMARK 7.6 Interested readers may compare the discussion here to the
finite difference version in Section 4.7.2. In that context, all the derivatives
are replaced with finite differences, and unless discrete functional analytic
analysis is required, we usually do not pay attention to the “regularity” of the
solution. That is, we simply assume any approximate solutions (i.e., solution
vectors, such as in SN ) are infinitely many times “differentiable” by finite
differences. This is in sharp contrast to the Galerkin case, where regularity
of approximate solutions should be explicitly kept in mind, and the complex
discussion above to allow peakons in H1 is inevitable.

Now we proceed to the numerical schemes. For the function G(u, ux) defined
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in (7.32), the concrete forms of the discrete partial derivatives are

∂Gd

∂(u(m+1), u(m))
= −κ

(
u(m+1) + u(m)

2

)
− (u(m+1))2 + u(m+1)u(m) + (u(m))2

2

− γ

(
(u(m+1)

x )2 + (u(m)
x )2

4

)
, (7.42)

∂Gd

∂(u(m+1)
x , u

(m)
x )

= −γ

(
u(m+1) + u(m)

2

) (
u

(m+1)
x + u

(m)
x

2

)
. (7.43)

With these discrete partial derivatives, we define an abstract scheme for
the weak forms (7.38) and (7.39) as follows. Suppose S1, S2,W1 and W2 are
appropriately chosen; for example, S1 = S2 = W1 = W2 = Sh ∩ H1(S).

Scheme 7.6 (Abstract Galerkin scheme for (7.38), (7.39)) Suppose that
u(0)(x) is given in S2. Find u(m+1) ∈ S2, p(m+ 1

2 ) ∈ S1 (m = 0, 1, 2, . . .) such
that, for any v1 ∈ W1 and v2 ∈ W2,

(
u(m+1) − u(m)

∆t
, v1

)
=

(
K(p(m+ 1

2 ))x, v1

)
, (7.44)

(
p(m+ 1

2 ), v2

)
=

(
∂Gd

∂(u(m+1), u(m))
, v2

)
+

(
∂Gd

∂(u(m+1)
x , u

(m)
x )

, (v2)x

)
.

(7.45)

The scheme enjoys the next conservation property. The proof can be done
analogously to the continuous case.

THEOREM 7.10 Conservation property of Scheme 7.6
Assume the trial and test spaces S1, S2, W1 and W2 are set such that (i)

(u(m+1) − u(m))/∆t ∈ W2 ; and (ii) S1 ⊆ W1. Scheme 7.6 is conservative in
the sense that

1
∆t

∫ L

0

(
G(u(m+1)) − G(u(m))

)
dx = 0, m = 0, 1, 2, . . . .

PROOF

1
∆t

∫ L

0

(
G(u(m+1)) − G(u(m))

)
dx

=
(

∂Gd

∂(u(m+1), u(m))
,
u(m+1) − u(m)

∆t

)
+

(
∂Gd

∂(u(m+1)
x , u

(m)
x )

,
u

(m+1)
x − u

(m)
x

∆t

)

=
(

p(m+ 1
2 ),

u(m+1) − u(m)

∆t

)

=
(
K(p(m+ 1

2 ))x, p(m+ 1
2 )

)
= 0.
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The first equality follows from the discrete chain rule (Theorem 7.1). The
second one is shown by using the equation (7.45) with v2 = (u(m+1)−u(m))/∆t
(the substitution is allowed by the assumption (i)), while the third one is given
by using the equation (7.44) with v1 = p(m+ 1

2 ) (allowed by the assumption
(ii)).

REMARK 7.7 The equation (7.33) can also be viewed as a conservation
law:

ut −
(
K δG

δu

)

x

= 0, (7.46)

(note that for f ∈ H1(S) it holds (Kf)x = K(fx)), and there is another
invariant:

d
dt

∫ L

0

u dx =
(
K

(
δG

δu

)

x

, 1
)

= 0. (7.47)

The final equality follows from an identity ((Kf)x, 1) = 0 which holds for any
f ∈ H1(S). Scheme 7.6 also conserves this invariant:

1
∆t

∫ L

0

(
u(m+1) − u(m)

)
dx = (K(p(m+ 1

2 ))x, 1) = 0, m = 0, 1, 2, . . . .

(7.48)

Let us test how Scheme 7.6 in fact works. We set S1 = S2 = W1 = W2 =
Sh ∩H1(S), where meshes are either equispaced or non-uniform depending on
the problems. Given the approximation space, the concrete form of Scheme 7.6
is

A

(
u(m+1) − u(m)

∆t

)
= Kp(m+ 1

2 ), (7.49)

Ap(m+ 1
2 ) = f(u(m+1),u(m)), (7.50)

where

u(m) = (u(m)(x0), . . . , u(m)(xN−1))
⊤

,

p(m+ 1
2 ) = (p(m+ 1

2 )(x0), . . . , p(m+ 1
2 )(xN−1))

⊤
,

and f(u(m+1),u(m)) is the vector arising from the right hand side of (7.45)
which in general nonlinearly include u(m+1) and u(m). The matrix A is
the standard mass matrix whose elements are Aij = (φi, φj), where φi (i =
0, . . . , N − 1) are the standard basis functions of Sp, and Kij = (K(φi)x, φj).
Note that the matrices A and K depend only on the approximate space (i.e.,
the mesh), and can be prepared in prior to the time evolution process. The
preparation of the matrix K involves the computation of convolutions, which
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can be done by hand in the case of Sp. When more general approximate
spaces are required, it is also possible to employ some numerical integrator
with sufficient accuracy. Since the matrix A is invertible, the equations (7.49)
and (7.50) immediately reduce to

A

(
u(m+1) − u(m)

∆t

)
= KA−1f(u(m+1),u(m)). (7.51)

That is, the computation of the intermediate variable p(m+ 1
2 ) can be skipped,

and the dimension of the system to be solved is N , instead of 2N . In what
follows, the numerical calculations are based on this expression.

The nonlinear equations (7.51) should be solved by some iterative method.
A convenient way is to use some reliable numerical Newton library. In the
experiments below, the routine imsl d zeros sys eqn in the IMSL was used.

7.2.2.4.1 Limiting Camassa–Holm equation Let us consider the “lim-
iting” Camassa–Holm equation, which is obtained by setting κ = 0, γ = 1.
Originally, the Camassa–Holm (CH) equation only makes sense for κ > 0 in
physical context, since κ corresponds to the critical shallow water speed that
should be strictly positive (see [24]). Mathematically, however, main interest
is usually on the limiting case κ = 0, where solitons become peaked. Below we
consider this case. The concrete form of Scheme 7.6 then becomes as follows.
With the function

G(u, ux) = −u3 + u(ux)2

2
, (7.52)

which is obtained by setting κ = 0, γ = 1 in (7.32), the discrete partial
derivatives (7.42) and (7.43) become

∂Gd

∂(u(m+1), u(m))
= − (u(m+1))2 + u(m+1)u(m) + (u(m))2

2

−

(
(u(m+1)

x )2 + (u(m)
x )2

4

)
, (7.53)

∂Gd

∂(u(m+1)
x , u

(m)
x )

= −
(

u(m+1) + u(m)

2

) (
u

(m+1)
x + u

(m)
x

2

)
. (7.54)

Note that for the energy function (7.52) the (continuous) partial derivatives
are

∂G

∂u
= −3

2
u2 − 1

2
(ux)2 and

∂G

∂ux
= −uux,

and we can see the correspondence between the continuous and discrete ones.
Substituting the discrete partial derivatives into Scheme 7.6, we obtain the
concrete form of the scheme, which is then implemented as described above,
i.e., as (7.51).
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REMARK 7.8 Interested readers may compare the above discrete par-
tial derivatives with the discrete variational derivative in the finite difference
context in Section 4.7.2.

For comparison, the following two implicit schemes have been also tested;
The Crank–Nicolson scheme:

(
u(m+1) − u(m)

∆t
, v1

)
=

(
K(p(m+ 1

2 ))x, v1

)
(7.55)

(
p(m+ 1

2 ), v2

)
=

−


3

2

(
u(m+1) + u(m)

2

)2

+
1
2

(
u

(m+1)
x + u

(m)
x

2

)2

, v2




−

((
u(m+1) + u(m)

2

)(
u

(m+1)
x + u

(m)
x

2

)
, (v2)x

)
, (7.56)

and the implicit Euler scheme:
(

u(m+1) − u(m)

∆t
, v1

)
=

(
K(p(m+ 1

2 ))x, v1

)
(7.57)

(
p(m+ 1

2 ), v2

)
= −

(
3
2

(
u(m+1)

)2

+
1
2

(
u(m+1)

x

)2

, v2

)

−
(
u(m+1)u(m+1)

x , (v2)x

)
. (7.58)

Note that since all of these schemes are based on the same weak forms (7.38)
and (7.39), the spatial discretization is exactly the same, and only the tem-
poral discretizations are different.

First, the three schemes are tested on the equispaced mesh with L = 40
and N = 200 (thus ∆x = 0.2). The initial data is set to u(x, 0) = 5e−|x−xa| +
2e−|x−xb|, where xa = 13.43 and xb = 26.77, and the problem is integrated
in 0 ≤ t ≤ 10 with ∆t = 0.1. Since larger peakons are faster, the larger
peakon initially centered at xa overtakes the smaller one at xb as time passes.
Figure 7.78 shows the numerical results obtained by the three schemes. Ac-
cording to the figure, both the conservative scheme and the Crank–Nicolson
scheme seem to correctly track the overtaking phenomenon (note that since
now the periodic boundary condition is applied, the outgoing peakons come
back to the interval from the left boundary). On the other hand, in the implicit
Euler case, although the computation itself is stable, the peakons gradually be-
come flattened. Figure 7.89 shows the evolution of the energy

∫ L

0
G(u(m))dx;

8−20 Reprinted from J. Comput. Phys., 228, T. Matsuo and H. Yamaguchi, An energy-
conserving Galerkin scheme for a class of nonlinear dispersive equations, 4346–4358, Copy-
right (2009), with permission from Elsevier.
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the left figure shows the evolution near the starting time, and the right figure
the overall profile. As suggested in the wave pattern in Figure 7.7, we observe
strong energy dissipation in the case of the implicit Euler scheme (see left
figure); the energy rapidly tends to zero. Although in Figure 7.7 the results
by the conservative scheme and the Crank–Nicolson scheme look quite sim-
ilar, the energy profiles are considerably different (see right figure). In the
conservative scheme, the energy is strictly conserved to the machine accuracy,
while in the Crank–Nicolson scheme it drifts.
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FIGURE 7.7: Evolution of the two peakons; (top left) the conservative
scheme, (top right) the implicit Euler scheme, (bottom) the Crank–Nicolson
scheme.

Next, in order to check the long-time stability, the problem is solved for
0 ≤ t ≤ 70 with the time mesh size ∆t = 0.02 and the number of spatial
grid points N = 400 (∆x = 0.1). With these parameters, the larger peakon
goes around the spatial interval about ten times. The conservative scheme
successfully integrates the problem with the energy strictly kept (Figure 7.910

(left) and Figure 7.1011). In the Crank–Nicolson case, the energy is nearly
conserved in the early stage 0 ≤ t ≤ 20; the energy periodically oscillates
and stays around the exact value. As time passes, however, the oscillation
becomes irregular (20 ≤ t ≤ 50), and then completely unstable (50 ≤ t ≤ 70).
This instability can be observed in the wave pattern in Figure 7.9, where the
peakons in the Crank–Nicolson case are completely broken at t = 70. For
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FIGURE 7.8: Evolution of the energies (two peakons case); (left) detailed
profile near the starting time, (right) global profile.

t ≥ 70, it turns out that the numerical Newton solver does not work in the
Crank–Nicolson scheme, and it is impossible to continue the computation.
This result strongly suggests that the conservative scheme is in fact more
reliable than the standard Crank–Nicolson scheme.
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FIGURE 7.9: Long-time computation of the two-peakons problem; (left)
the conservative scheme, (right) the Crank–Nicolson scheme.

The third experiment is to check whether the presented scheme works on
non-equispaced grids as well. To this end, the Camassa–Holm is solved on the
spatial interval [0, 200] with the grid shown in Figure 7.1112 (N = 200), and
with the triangle shaped initial data

u(x, 0) =





x − xc + 20 if x ∈ [xc − 20, xc),
−(x − xc) + 20 if x ∈ [xc, 20),

0 otherwise,

where xc = 80.5.
Figure 7.1213 shows the numerical results by the three schemes, where the

time mesh width is set to ∆t = 0.05. For comparison, a result by a stan-
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FIGURE 7.10: Evolution of the energies in the long-time computation.

 
 0  50  100  150  200

FIGURE 7.11: The non-uniform mesh (N = 200).

dard numerical method on finer equispaced mesh (N = 2000), marked as
“FD/RK” in the figures, is also presented. The scheme is obtained by dis-
cretizing space variable by the standard central finite differences (with second-
order accuracy), and then by discretizing time stepping by the standard 4th-
order Runge–Kutta method. The time-stepping width is chosen considerably
small (∆t = 0.0005) such that the result is accurate enough as a substitute for
the unknown exact solution. As the solution suggests (Figure 7.12, bottom
right), in this problem setting the initial triangle shaped data soon splits into
a number of peakons. The splitting mainly occurs at the center of the interval,
which is the reason why the grid is chosen to be dense at the center. The re-
sult by the implicit Euler scheme (top right) again exhibits strong dissipation,
which can be also observed in the energy profile (Figure 7.1314). The result
by the conservative scheme (Figure 7.12, top left) is similar to the accurate
result by FD/RK, with the excellent energy conservation profile (Figure 7.13).
Compared to this result, even with considerably fine mesh sizes, the energy in
FD/RK scheme monotonically moves apart from the exact value; this means
that however mesh is refined the FD/RK method is not so reliable that it
can be used as an integrator for long-time computations. The shape of the
peakons in Crank–Nicolson case seems to be quite similar to the conservative
and FD/RK cases (Figure 7.12, bottom left). The energy profile, however,
behaves dreadfully, where the error exceeds 10% in magnitude. In this exam-
ple, the peakons are quite sharp and high, and the slight error in the shapes
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of peakons is magnified as the big error in the energy.
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FIGURE 7.12: Generation of peakons; (top left) the conservative scheme,
(top right) the implicit Euler scheme, (bottom left) the Crank–Nicolson
scheme, (bottom right) the FD/RK solution on the finer mesh.

7.2.2.4.2 Dai equation The Dai equation is obtained by setting κ =
0, γ ∈ R. This is quite similar to the limiting CH case, but now we have a
freedom in the choice of γ. As described before, soliton solutions are expected
to be smooth when γ < 1 and become “cusped” solutions when γ > 1. Below
we have tested two cases: γ = 0.5 and γ = 1.4. The energy function is

G(u, ux) = −u3 + γuux
2

2
, (7.59)

and accordingly the discrete partial derivatives are

∂Gd

∂(u(m+1), u(m))
= − (u(m+1))2 + u(m+1)u(m) + (u(m))2

2

− γ

(
(u(m+1)

x )2 + (u(m)
x )2

4

)
, (7.60)

∂Gd

∂(u(m+1)
x , u

(m)
x )

= −γ

(
u(m+1) + u(m)

2

)(
u

(m+1)
x + u

(m)
x

2

)
. (7.61)
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FIGURE 7.13: Evolution of the energies (peakon train case).

We test Scheme 7.6 and the Crank–Nicolson scheme. The latter is constructed
in a similar manner as in the previous section.

First, the case of γ = 0.5 is considered. With this parameter, solitons are
smooth and the computation is rather easy. In order to check the long-time
stability of the schemes, the problem is solved in a long interval 0 ≤ t ≤ 500
with the temporal mesh size ∆t = 0.1. The initial data is u(x, 0) = 5 sech(x−
5) + 2 sech(x − 15). The length of the spatial interval L is set to 40, for
which the equispaced grid with N = 200 is employed (i.e., ∆x = 0.2). Fig-
ure 7.1415 shows the evolution of the numerical solutions. The computation
proceeds quite stably as expected, and the shapes of the solitons are success-
fully preserved in both schemes, although the phase speeds of the solitons are
different. Figure 7.1516 shows the evolution of the energies. In the conserva-
tive scheme, the energy is strictly kept. In the Crank–Nicolson scheme, the
energy oscillates, but stays near the exact value.
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FIGURE 7.14: Smooth solitons in the Dai equation (γ = 0.5); (left) the
conservative scheme, (right) the Crank–Nicolson scheme.
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FIGURE 7.15: Evolution of the energies (the Dai equation, γ = 0.5).

Next, the results with γ = 1.4 are presented. The equispaced grid on the
spatial interval [0, 40] with N = 200 or 400 is used, and the problem is solved
in 0 ≤ t ≤ 10 with the time mesh size ∆t = 0.1. The initial data is set to
the same one as in the limiting CH case, i.e., u(x, 0) = 5e−|x−xa| + 2e−|x−xb|

with xa = (200/3 + 1/2)∆x and xb = (400/3 + 1/2)∆x. Figure 7.1617 shows
the numerical solutions of N = 400, and Figure 7.1718 the evolution of the
energies in both N = 200 and 400 cases. From Figure 7.16, both schemes
succeed in catching the peaked solutions (although numerically it is difficult
to judge whether the solutions are really “cusped” rather than “peaked”).
Comparing Figure 7.17 (left) and Figure 7.15, we notice that with the same
mesh (N = 200) the energy deviation in the Crank–Nicolson scheme becomes
much larger when the solutions become singular, although it can be improved
by refining the spatial mesh (Figure 7.17, right). In any case, the conservative
scheme seems to be safer when we achieve such singular solutions.
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FIGURE 7.16: Cusped solutions in the Dai equation (γ = 1.4, N = 400);
(left) the conservative scheme, (right) the Crank–Nicolson scheme.
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FIGURE 7.17: Evolution of the energies (the Dai equation, γ = 1.4); (left)
N = 200, (right) N = 400.

7.2.2.4.3 Benjamin–Bona–Mahony equation The BBM equation is
obtained by setting κ > 0 and γ = 0 and we set κ = 1 in this paragraph.
The equation is considered over the spatial domain [0, 40] using the equispaced
mesh with the number of grid points N = 100. Then the problem is integrated
in 0 ≤ t ≤ 20 with the time mesh size ∆t = 0.25. The initial data is set
to u(x, 0) = c1sech2(0.35(x − 15)) + c2sech2(0.25(x − 25)), where c1 = 9 ×
0.72/(1 − 0.72), c2 = 9 × 0.52/(1 − 0.52) (see [47] for this initial data). The
conservative scheme and the Crank–Nicolson scheme are tested. Figure 7.1819

shows the numerical solutions, and Figure 7.1920 the evolution of the energies.
Both schemes successfully capture the propagation of the two-soliton. The
conservative scheme strictly preserves the energy, while in the Crank–Nicolson
scheme the energy oscillates around the exact value.
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FIGURE 7.18: Two-soliton in the BBM equation; (left) the conservative
scheme, (right) the Crank–Nicolson scheme.
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FIGURE 7.19: Evolution of the energies (the BBM equation).

7.2.2.4.4 Limiting Camassa–Holm Equation: Second Approach So
far we have glanced through the conservative schemes for the Camassa–Holm
type equations (2.32). For a special case, the limiting Camassa–Holm equa-
tion with κ = 0, γ = 1, we can take another approach. The key is that the
limiting Camassa–Holm equation has another invariant:

G̃(u, ux) =
u2 + (ux)2

2
,

d
dt

∫ L

0

G̃(u, ux)dx = 0. (7.62)

(Actually, it is completely integrable, and has infinitely many invariants.)
Then by introducing a new variable ω = (1 − ∂2/∂x2)u, it can be written in
another variational form21:

ωt = −
(

∂

∂x
ω + ω

∂

∂x

) (
δG̃

δω

)
. (7.63)

With the help of the operator K = (1−∂2/∂x2)−1, the energy function (7.62)
can be represented in ω as

G̃(Kω,Kωx) =
(Kω)2 + (Kωx)2

2
, (7.64)

and its variational derivative with respect to ω can be defined (note that for
f ∈ H1(S), Kfx = (Kf)x holds). Throughout this section, ω is assumed to

21For the same reason described in Section 4.7.2, we use the symbol ω in place of m.
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be sufficiently smooth. By simply differentiating we obtain

d
dt

∫ L

0

G̃(Kω,Kωx)dx

=
∫ L

0

(
∂G̃

∂(Kω)
· Kωt +

∂G̃

∂(Kωx)
· Kωxt

)
dx

=
∫ L

0

(
K ∂G̃

∂(Kω)
−

(
K ∂G̃

∂(Kωx)

)

x

)
ωt dx. (7.65)

Boundary terms are dropped due to the periodicity of ω and its derivatives.
In light of the equation above, we define the variational derivative by

δG̃

δω

d≡ K ∂G̃

∂(Kω)
−

(
K ∂G̃

∂(Kωx)

)

x

. (7.66)

It is easy to see that with this particular choice the variational equation (7.63)
coincides with the limiting Camassa–Holm equation. In fact, since

∂G̃

∂(Kω)
= Kω and

∂G̃

∂(Kωx)
= Kωx, (7.67)

the concrete form of (7.66) is

δG̃

δω
= K(Kω) − (K(Kωx))x = K

(
1 − ∂2

∂x2

)
Kω = Kω. (7.68)

Here the trivial identity (1 − ∂2/∂x2)K = 1 (the identity map) is used. Sub-
stituting this into (7.63) and using ω = (1−∂2/∂x2)u, we recover the limiting
Camassa–Holm equation.

The conservation law (7.62) directly follows from the skew-symmetry of the

operator J d≡ − ((∂/∂x)ω + ω(∂/∂x)): for any f, g ∈ H1(S),

∫ L

0

fJ gdx = −
∫ L

0

(J f)gdx. (7.69)

This means that the variational PDE (7.63) is a Hamiltonian PDE, and the
corresponding Hamiltonian is conserved. In fact, from (7.65) we immediately
obtain

d
dt

∫ L

0

G̃(Kω,Kωx)dx =
∫ L

0

δG̃

δω
ωtdx =

∫ L

0

δG̃

δω
· J δG̃

δω
dx = 0. (7.70)

Observe that the conservation law solely comes from the skew-symmetry of
J and the variational form defined with variational derivative (7.63), and the
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concrete form of G̃ is not essential. This enables us to employ the strategy
described in the next section.

We present a G̃-conserving Galerkin scheme. To that end, we commence
by defining a new set of weak forms introducing a new intermediate variable
p: find ω(·, t), p ∈ H1(S) such that for any v1, v2 ∈ H1(S)

(ωt, v1) = (J p, v1), (7.71)

(p, v2) =

(
∂G̃

∂(Kω)
,Kv2

)
+

(
∂G̃

∂(Kωx)
,K(v2)x

)
(7.72)

hold. This set of weak forms happily keeps the conservation law as follows.

THEOREM 7.11

Suppose ωt(·, t), p ∈ H1(S). Then the solution ω of the weak forms (7.71),
(7.72) satisfies the conservation law (7.62).

PROOF From (7.65), we see

d
dt

∫ L

0

G̃(Kω,Kωx)dx =

(
∂G̃

∂(Kω)
,Kωt

)
+

(
∂G̃

∂(Kωx)
,Kωxt

)

= (p, ωt) = (J p, p) = 0. (7.73)

The first equality is from (7.65), the second is from (7.72) with the assumption
ωt(·, t) ∈ H1(S), and the third is from (7.72) with the assumption p ∈ H1(S).

We denote the approximate solutions by ω(m) ≅ ω(·,m∆t) and p(m+ 1
2 ) ≅

p(·, (m+ 1
2 )∆t) (m = 0, 1, 2, . . .). To mimic the variational weak forms (7.71),

(7.72), we first define a discrete version of G̃ by

Gd(Kω(m),Kω(m)
x )

d≡ (Kω(m))2 + (Kω
(m)
x )2

2
. (7.74)

Below this will be often abbreviated as Gd
(m) for saving space. We then define

associated discrete partial derivatives by

∂Gd

∂(Kω(m+1),Kω(m))
d≡ Kω(m+ 1

2 ),
∂Gd

∂(Kω
(m+1)
x ,Kω

(m)
x )

d≡ Kω
(m+ 1

2 )
x , (7.75)

where ω(m+ 1
2 ) d≡ (ω(m+1) + ω(m))/2. They apparently approximate the con-

tinuous case (7.67), and it is easy to check that they satisfy the following
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discrete chain rule corresponding to (7.65).

1
∆t

∫ L

0

(
Gd

(n+1) − Gd
(m)

)
dx

=
(

∂Gd

∂(Kω(m+1),Kω(m))
,K

(
ω(m+1) − ω(m)

∆t

))

+

(
∂Gd

∂(Kω
(m+1)
x ,Kω

(m)
x )

,K

(
ω

(m+1)
x − ω

(m)
x

∆t

))
. (7.76)

With the discrete partial derivatives, a scheme is defined as follows. Let
S1, S2 be some appropriate trial spaces, and W1, W2 test spaces. We define
an operator

J (m+ 1
2 ) d≡ −

(
∂

∂x
ω(m+ 1

2 ) + ω(m+ 1
2 ) ∂

∂x

)
, (7.77)

which approximates J , and is skew-symmetric.

Scheme 7.7 (G̃-conserving scheme) Find ω(m) ∈ S2 and p(m+ 1
2 ) ∈ S1

(m = 0, 1, 2, . . .) such that for any v1 ∈ W1 and v2 ∈ W2,

(
ω(m+1) − ω(m)

∆t
, v1

)
=

(
J (m+ 1

2 )p(m+ 1
2 ), v1

)
, (7.78)

(
p(m+ 1

2 ), v2

)
=

(
∂Gd

∂(Kω(m+1),Kω(m))
,Kv2

)

+

(
∂Gd

∂(Kω
(m+1)
x ,Kω

(m)
x )

,K(v2)x

)
(7.79)

hold.

Then the scheme enjoys the following conservation property. Observe that
the proof goes exactly the same way as in the continuous case.

THEOREM 7.12 Discrete G̃ conservation law

Suppose (ω(m+1) − ω(m))/∆t ∈ W2 (m = 0, 1, 2, . . .) and S1 ⊆ W1. Then
Scheme 7.7 is conservative in the sense that

1
∆t

∫ L

0

(
Gd

(m+1) − Gd
(m)

)
dx = 0 (m = 0, 1, 2, . . .) (7.80)

holds.
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PROOF From the discrete chain rule (7.76),

1
∆t

∫ L

0

(
Gd

(m+1) − Gd
(m)

)
dx

=
(

∂Gd

∂(Kω(m+1),Kω(m))
,K

(
ω(m+1) − ω(m)

∆t

))
(7.81)

+

(
∂Gd

∂(Kω
(m+1)
x ,Kω

(m)
x )

,K

(
ω

(m+1)
x − ω

(m)
x

∆t

))

=

(
p(m+ 1

2 ),
ω

(m+1)
x − ω

(m)
x

∆t

)

=
(
J (m+ 1

2 )p(m+ 1
2 ), p(m+ 1

2 )
)

= 0. (7.82)

In the second and third equality, the assumptions are used. The last equality
follows from the skew-symmetry of J (m+ 1

2 ).

The trial and test function spaces can be set to various standard ones such
as the standard finite-dimensional Fourier space or the finite element spaces,
depending on the users’ preferences. The theorem above clarifies the condi-
tions for the scheme to be successfully conservative. The simplest and most
useful choice would be the use of the standard periodic piecewise linear func-
tion space on some fixed grid for all of S1, S2, W1 and W2; in that case, the
assumptions in the theorem are trivially satisfied.

An important outcome of preserving the G̃ conservation law is that Scheme 7.7
gains the following stability property. Let us denote the approximate solution

of u by u(m) d≡ Kω(m).

THEOREM 7.13 Stability of Scheme 7.7
Scheme 7.7 is stable in the sense that (in exact arithmetic) ∥u(m)∥∞ < ∞

(m = 0, 1, 2, . . .).

PROOF From the G̃-conservation, we readily see that there exists a con-
stant c such that

∥u(m)∥∞ ≤ c∥u(m)∥H1(S) = const., (7.83)

by the Sobolev lemma.

REMARK 7.9 This stability property is the Galerkin version of the
stability discussed in Section 4.7.2.6.1.
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Let us demonstrate the scheme. In what follows the equispaced spatial
mesh of N grid points (x0 = 0, xN = L) is assumed, and the standard periodic
piecewise linear function space on the mesh, denoted as Sp, is used as the trial
and test spaces. The basis functions are denoted by φk(x) (k = 0, . . . , N − 1).

In actual computation, the inverse operator K = (1− ∂2/∂x2)−1 is realized
as the convolution

(Kf)(x) = (k ∗ f)(x) =
∫ L

0

k(x − ξ)f(ξ)dξ, (7.84)

with the Green function:

k(x) =
cosh(x − L[x/L] + L/2)

2 sinh(L/2)
. (7.85)

The operator appears in the second equation of Scheme 7.7, which reads
(
p(m+ 1

2 ), v2

)
=

(
Kω(m+ 1

2 ),Kv2

)
+

(
Kω

(m+ 1
2 )

x ,K(v2)x

)
. (7.86)

If we introduce the matrices

Aij
d≡ (φi, φj), (K1)ij

d≡ (Kφi,Kφj) , and (K2)ij
d≡ (K(φi)x,K(φj)x) ,

(7.87)
then the concrete form of Scheme 7.7 becomes

A

(
ω(m+1) − ω(m)

∆t

)
= g(ω(m+ 1

2 ),p(m+ 1
2 )), (7.88)

Ap(m+ 1
2 ) = K1ω

(m+ 1
2 ) + K2ω

(m+ 1
2 ). (7.89)

The vectors are defined as ω(m) d≡ (m(n)
0 , . . . , m

(n)
N−1)

T, ω(m+ 1
2 ) d≡ (ω(m+1) +

ω(m))/2, p(m+ 1
2 ) d≡ (p(n)

0 , . . . , p
(n)
N−1)

T, and g is the vector function that rep-
resents the nonlinear part in the first equation (we omit the concrete form of
g here, since it is straightforward and not important for the discussion here).
The equations above represent a system of nonlinear and linear equations of
dimension 2N , but can be readily reduced to

A

(
ω(m+1) − ω(m)

∆t

)
= g

(
ω(m+ 1

2 ), A−1(K1 + K2)ω(m+ 1
2 )

)
, (7.90)

which is of dimension N ; that is, the intermediate variable p(m+ 1
2 ) can be

erased in actual computation. Note that the matrices A, K1 and K2 depend
only on the grid and basis functions, and can be computed in prior to the
time evolution process; heavy convolutions are not required during the main
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computation. In the numerical experiment below, at each time step the equa-
tion (7.90) is solved by the hybrid Newton algorithm imsl d zeros sys eqn
in the IMSL library.

Since the time integration is solely carried out in ω space, we have to switch
from/to the original variable u as pre- and post-processes. Let Nt be the
number of temporal time steps. Then the overall integration procedure is as
follows.

1. For a given initial data u(x, 0), compute ω(x, 0) = (1 − ∂2/∂x2)u(x, 0).

2. Time integration: repeat ω(m+1) ← ω(m) (m = 0, 1, 2, . . .) by (7.90).

3. For the obtained final data ω(Nt)(x), compute u(Nt) = Kω(Nt) as the
solution.

Note that when we need the approximate solution in the form of u, we have to
compute the convolution Kω(m), which is relatively time consuming. Usually,
however, we need u itself at relatively few time steps compared to the whole
number of computation steps, and the additional cost is considered to be
acceptable in practical situations.

We consider the collision of two soliton-like solutions as an illustrative ex-
ample. We set L = 40, which is divided into N = 100 grids. The initial
data is set to u(x, 0) = 0.2 sech(x− 403/15) + 0.5 sech(x− 203/15). Then the
problem is integrated in the time interval [0, 200], with the time mesh size
∆t = 0.1 (i.e., the number of temporal grids Nt = 2000). In addition to the
scheme 7.7, we also tested for comparison an implicit Euler scheme:

(
ω(m+1) − ω(m)

∆t
, v1

)
=

(
−

(
∂

∂x
ω(m+1) + ω(m+1) ∂

∂x

)
p(m+ 1

2 ), v1

)
,

∀v1 ∈ Sp, (7.91)(
p(m+ 1

2 ), v2

)
=

(
Kω(m+1),Kv2

)
+

(
Kω(m+1)

x ,K(v2)x

)
,

∀v2 ∈ Sp, (7.92)

an explicit Euler scheme:
(

ω(m+1) − ω(m)

∆t
, v1

)
=

(
−

(
∂

∂x
ω(m) + ω(m) ∂

∂x

)
p(m+ 1

2 ), v1

)
,

∀v1 ∈ Sp, (7.93)(
p(m+ 1

2 ), v2

)
=

(
Kω(m),Kv2

)
+

(
Kω(m)

x ,K(v2)x

)
,

∀v2 ∈ Sp (7.94)

and the G-conserving scheme presented in Section 7.2.2.4.1. Note that the
implicit Euler and explicit Euler schemes above are also based on the conser-
vative weak forms (7.71), (7.72), but all ω(m+ 1

2 )’s in Scheme 7.7 are replaced
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with ω(m+1) or ω(m), and thus the conservation law is lost in those cases.
Note also that the computational complexity of the implicit Euler scheme is
almost the same as that of Scheme 7.7.

Figure 7.2022 shows the evolution of the approximate solutions. In the
result by the conservative scheme (top left figure), the collisions of the two
soliton-like solutions are rightly captured; the larger (thus faster) soliton-like
solution overtakes the smaller (slower) one as expected. The computation
proceeded quite stably. The implicit Euler scheme (bottom left) is favor-
ably stable as well, but the stability rather comes from the strong dissipation
property that is often observed in general implicit Euler schemes; in fact,
the solution rapidly gets flattened. As a consequence, the soliton-like solu-
tions get slower (recall that the speed of a soliton-like solution depends on
its size), and the larger solution goes around the interval only once, instead
of three times originally expected. Thus the implicit Euler scheme should be
rejected, when the qualitative behavior of the problem is of our interest. The
explicit Euler scheme (bottom right) is quite unstable as expected, and the
solution blows up soon after the start of computation. This scheme does not
deserve further consideration. On the result from the G-conserving scheme
(top right), some careful discussion is required. In the early phase of com-
putation (more precisely speaking, at least until around t = 100), it happily
captures the collision process and the qualitative behavior agrees with that
of G̃-conserving scheme. After that, however, the solution shows instability.
The difference between the G̃- and G-conserving schemes in terms of stability
should be attributed to the additional stability property of the G-conserving
scheme stated in Theorem 7.13. In this sense, we can say that the property
is of practical importance. (Note that the result here does not immediately
imply that the G-conserving scheme is unstable; it has been confirmed in the
preceding section that the G-conserving scheme is actually stabler than several
generic schemes. The result just claims the G̃-conserving one is better.)

The evolutions of the invariants G̃ and G in each scheme (except the explicit
Euler scheme) are shown in Figures 7.2123 and 7.22.24 In Figure 7.21, we can
see that the G̃-conserving scheme rightly conserves G̃, while the other two
schemes fail. In the implicit Euler scheme, G̃ is steadily dissipated. In the
G-conserving scheme, G̃ stays around the exact value in the early phase of
evolution, but finally it nearly blows up; this corresponds to the instability
observed in Figure 7.20. The graphs in Figure 7.22 show the evolution of
G; the left figure shows the overall profile, and the right shows its detail
around the true G value, which is to clarify the difference between the G̃-
and G-conserving schemes. According to the graphs, in the implicit Euler
scheme G is again soon dissipated. The G-conserving scheme strictly conserves

22−25 Reprinted from J. Comput. Appl. Math., 234, T. Matsuo, A Hamiltonian-conserving
Galerkin scheme for the Camassa–Holm equation, 1258–1266, Copyright (2010), with per-
mission from Elsevier.
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the invariant as the theory suggests, while the G̃-conserving scheme nearly
conserves it.
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FIGURE 7.20: Evolution of the numerical solutions: (top left) the G̃-
conserving scheme, (top right) the G-conserving scheme, (bottom left) the
implicit Euler scheme, (bottom right) the explicit Euler scheme.

Finally, the G̃-conserving scheme is checked on coarser meshes N = 20 (i.e.,
∆x = 2) and N = 40 (∆x = 1), in order to check whether the scheme is stable
with respect to the spatial discretization. The time mesh size is kept the same
(∆t = 0.1). Figure 7.2325 shows the results, which suggest that the scheme is
stable even with very coarse mesh.
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with the G̃-conserving scheme: (left) N = 20, (right) N = 40.
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7.2.2.5 Ginzburg–Landau Equation for Superconductivity

This is a sample section for essentially two-dimensional computation. The
phenomenological behavior of superconductivity is governed by the so-called
Ginzburg–Landau model. The model in the so-called “zero electric poten-
tial gauge” is described as the following time-dependent Ginzburg–Landau
(TDGL) equations:

η
∂ψ

∂t
+

1
2

{(
i
κ
∇ + A

)2

ψ +
(
|ψ|2 − 1

)
ψ

}
= 0 in Ω, (7.95a)

∂A

∂t
+ Re

[
ψ

(
i
κ
∇ + A

)
ψ

]
+ ∇× (∇× A − H) = 0 in Ω, (7.95b)

where Ω ⊂ Rd is a bounded subdomain with smooth boundary, κ > 0 is
the material constant called the Ginzburg–Landau parameter, η > 0 is the
friction coefficient, H ∈ Rd is the applied magnetic field, ψ : Ω × [0, T ] → C
is the complex-valued order parameter which denotes the conducting state of
the material, and A : Ω × [0, T ] → Rd is the magnetic potential. By ψ we
mean the complex conjugate of ψ. The associated boundary conditions are:

∇ψ · n = 0, A · n = 0, n × (∇× A − H) = 0 on ∂Ω (7.96)

where n is the exterior unit normal of the boundary ∂Ω. For this gauge choice
and the well-posedness of the associated Cauchy problem, see [40].

The advantage of this particular gauge choice is that the problem can be
viewed as a gradient flow of the Ginzburg–Landau energy functional:

G(ψ,A) =
1
2

∣∣∣∣
(

i
κ
∇ + A

)
ψ

∣∣∣∣
2

+
1
4
(1 − |ψ|2)2 +

1
2
|∇ × A − H|2, (7.97a)

J =
∫

Ω

G(ψ,A)dx, (7.97b)

η
∂ψ

∂t
= −δG

δψ
,

∂A

∂t
= − δG

δA
, (7.98)

where δG/δψ and δG/δA denote variational derivatives. This energy in other
words serves as a Lyapunov functional of the system, and this suggests us to
employ numerical schemes having some discrete counterpart of this property
for stability and correct asymptotic behavior (see, for example, Lord [109],
Montagne et al. [131], and Mu [133] for related discussions and numerical
schemes). Below we show that by (extending) the Galerkin version of the
discrete variational derivative method, we can deduce fully implicit and lin-
early implicit schemes for the TDGL that preserve discrete versions of the
Lyapunov functional.

Note that since the Ginzburg–Landau energy and the related equations
include the symbols of vector calculus, and now the domain Ω is generally
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not rectangular, this is an essentially high-dimensional problem. In the rest
of this subsection, we briefly demonstrate that the Galerkin framework shown
in this section can be naturally applied to this problem. The problem usually
makes sense for d = 3, but if we assume the material is cylinder-shaped and
the external magnetic field H is constant, the problem can be viewed as
two-dimensional d = 2; below we assume this.

In order to simplify the discussion, in what follows we limit ourselves to the
simplified model, ignoring all the magnetic effects:

η
∂ψ

∂t
=

1
2

{
∆ψ

κ2
+ (1 − |ψ|2)ψ

}
in Ω, ∇ψ · n = 0 on ∂Ω. (7.99)

This still deserves investigation since it involves interesting physical solutions
such as vortices and a Lyapunov functional:

J =
∫

Ω

G(ψ)dx, where G(ψ) =
1
2

∣∣∣∣
∇ψ

κ

∣∣∣∣
2

+
1
4
(1 − |ψ|2)2. (7.100)

The simplified equation (7.99) is formally a gradient flow with respect to the
energy:

η
∂ψ

∂t
= −δG

δψ
. (7.101)

We also assume d = 2 for brevity (we consider, say, a unit disk). Let H1
c (Ω)

be the standard Sobolev space of complex-valued functions and (·, ·) be its
associated inner product. Let S1 and W1 be the finite-dimensional subspaces
in H1

c (Ω) for trial and test functions satisfying S1 ⊆ W1 (in most cases we
simply take S1 = W1, in particular to the standard piecewise linear function
space).

7.2.2.5.1 Fully Implicit Schemes for the Simplified GL Equation
By a natural extension of the Galerkin framework shown before, we reach
the following fully implicit scheme. We denote the numerical solution by
ψ(m)(x) ≅ ψ(m∆t,x).

Scheme 7.8 (Fully Implicit Scheme ([132])) Suppose an initial data ψ(0) ∈
S1 is given. Find ψ(m) ∈ S1 (m = 1, 2, . . .) such that for any φ ∈ W1

η

(
ψ(m+1) − ψ(m)

∆t
, φ

)

= −

(
∂Gd

∂(∇ψ
(m+1)

,∇ψ
(m)

)
,∇φ

)
−

(
∂Gd

∂(ψ
(m+1)

, ψ
(m)

)
, φ

)
,
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where

∂Gd

∂(∇ψ
(m+1)

,∇ψ
(m)

)
=

1
2κ2

(
∇ψ(m+1) + ∇ψ(m)

2

)
,

∂Gd

∂(ψ
(m+1)

, ψ
(m)

)
= −1

2

(
1 − |ψ(m+1)|2 + |ψ(m)|2

2

) (
ψ(m+1) + ψ(m)

2

)
.

This scheme has a desired dissipation property.

PROPOSITION 7.1 Dissipation Property of Scheme 7.8 ([132])
Let ψ(m) (m = 1, 2, . . .) be the solutions of Scheme 7.8. Then the following

discrete dissipation property holds :

1
∆t

∫

Ω

G(ψ(m+1)) − G(ψ(m))dx = −2η

∫

Ω

∣∣∣∣
ψ(m+1) − ψ(m)

∆t

∣∣∣∣
2

dx ≤ 0.

This means that in Scheme 7.8 the original energy G dissipates as in the
continuous case. This implies that the asymptotic behavior of the approximate
solutions must be quite similar to that of the original TDGL (strictly speaking,
to that of the corresponding ODE derived by discretizing the space variable).

In [41], an implicit Euler type scheme is derived from the energy functional
based on minimization theory. Here only the resulting scheme is shown.

Scheme 7.9 (Fully Implicit Scheme ([41])) Suppose an initial data ψ(0) ∈
S1 is given. Find ψ(m) ∈ S1 (m = 1, 2, . . .) such that for any φ ∈ W1

η

(
ψ(m+1) − ψ(m)

∆t
, φ

)
= − 1

2κ2

(
∇ψ(m+1),∇φ

)
−1

2

(
(|ψ(m+1)|2 − 1)ψ(m+1), φ

)
.

PROPOSITION 7.2 Dissipation property of Scheme 7.9 ([41])
Let ψ(m) (m = 1, 2, . . .) be the solutions of Scheme 7.9. Then the following

discrete dissipation property holds :

1
∆t

∫

Ω

G(ψ(m+1)) − G(ψ(m))dx ≤ −2η

∫

Ω

∣∣∣∣
ψ(m+1) − ψ(m)

∆t

∣∣∣∣
2

dx ≤ 0.

Thus the scheme should have similar asymptotic behavior as above; in fact,
in [41], a detailed discussion on the asymptotic behavior is given for the full
TDGL (7.95).

In these two similar schemes, however, we find several essential differences.
First, notice that the first equality in Proposition 7.1 is replaced with an
inequality in Proposition 7.2, whose equality does not hold in general (this can
be understood by carefully inspecting its proof; interested readers may refer
to [41]). Since in the continuous case, the equality holds: (d/dt)

∫
Gdx =
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−2η
∫
|ψt|2dx, we can say that Scheme 7.8 is closer to the original TDGL.

Although the implicit Euler scheme happily keeps the Lyapunov functional,
the dissipation (how the energy is dissipated) is slightly stronger there than
it should be. Second, Scheme 7.8 should be second order with respect to ∆t
due to its temporal symmetry, while Scheme 7.9 is only first order.

Both schemes have an unwelcome feature in common: they are fully im-
plicit, and require time-consuming iterative solvers. This disadvantage be-
comes even more crucial, if we consider the full TDGL, or proceed to the
d = 3 cases. In the next subsection, we consider a linearly implicit scheme in
order to overcome this disadvantage.

7.2.2.5.2 A Linearly Implicit Scheme for the Simplified GL Equa-
tion By utilizing the linearization technique in Chapter 6, we can derive the
following linearly implicit scheme.

Scheme 7.10 (Linearly Implicit Scheme) Suppose an initial data ψ(0) ∈
S1 and a starting value ψ(1) are given. Find ψ(m) ∈ S1 (m = 2, 3, . . .) such
that for any φ ∈ W1

η

(
ψ(m+1) − ψ(m−1)

2∆t
, φ

)
= −

(
∂Gd

∂(∇ψ
(m+1)

,∇ψ
(m)

,∇ψ
(m−1)

)
,∇φ

)

−

(
∂Gd

∂(ψ
(m+1)

, ψ
(m)

, ψ
(m−1)

)
, φ

)
,

where

∂Gd

∂(∇ψ
(m+1)

,∇ψ
(m)

,∇ψ
(m−1)

)
=

1
2κ2

{
b∇ψ(m) + (1 − b)

∇ψ(m+1) + ∇ψ(m−1)

2

}
,

∂Gd

∂(ψ
(m+1)

, ψ
(m)

, ψ
(m−1)

)
=

a

2

(
−1 +

ψ(m+1) + ψ(m−1)

2
ψ

(m)
)

ψ(m)

+
1 − a

2
(−1 + |ψ(m)|2)

(
ψ(m+1) + ψ(m−1)

2

)
,

and a, b ∈ R are scheme parameters.

The scheme parameters a, b should be chosen carefully, since they severely
affect the stability of the resulting scheme as will be shown below. Observe
that the scheme is linear with respect to the latest value ψ(m+1). This scheme
enjoys the following dissipation property.
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THEOREM 7.14 Dissipation Property of Scheme 7.10
Let ψ(m) (m = 2, 3, . . .) be the solutions of Scheme 7.10. Then the following

discrete dissipation property holds :
∫

Ω

Gd(ψ(m+1), ψ(m)) − Gd(ψ(m), ψ(m−1))dx

= −2η

∫

Ω

∣∣∣∣
ψ(m+1) − ψ(m−1)

2∆t

∣∣∣∣
2

dx ≤ 0,

where

Gd(ψ(m+1), ψ(m))

=
1
4

{
a(1 − ψ(m+1)ψ

(m)
)(1 − ψ

(m+1)
ψ(m))

+ (1 − a)(1 − |ψ(m+1)|2)(1 − |ψ(m)|2)
}

+
1

2κ2

{
b

(
∇ψ(m) · ∇ψ

(m+1)
+ ∇ψ

(m) · ∇ψ(m)

2

)

+ (1 − b)
(
|∇ψ(m+1)|2 + |∇ψ(m)|2

2

)}
. (7.102)

Note that now the discrete energy function (7.102) depends on two consecu-
tive numerical solutions (i.e., it is “multistep”), and is quadratic with respect
to the latest value ψ(m+1); this is the key for the linearization. The scheme
parameters a, b appear as the coefficients of the linear combination of the
quadratic approximations. The theorem states that for any choice of a, b, the
discrete dissipation property holds in the above sense. The discrete energy
function (7.102) is, however, totally different from the original one (7.100),
and as a consequence the discrete dissipation property does not immediately
imply the correct asymptotic behavior, as was the case in the fully implicit
schemes.

Still, the discrete energy function gives us useful information for designing
good (stable) schemes; more specifically, for the choice of appropriate scheme
parameters a, b. Below we demonstrate this. The first step is to rewrite the
energy function as follows.

Gd(ψ(m+1), ψ(m)) =
1
4

{
|1 − ψ(m+1)ψ

(m)|2 + (a − 1)|ψ(m+1) − ψ(m)|2
}

1
2κ2

{∣∣∣∣
∇ψ(m+1) + ∇ψ(m)

2

∣∣∣∣
2

+ (1 − 2b)
∣∣∣∣
∇ψ(m+1) −∇ψ(m)

2

∣∣∣∣
2
}

.

(7.103)

Let us then consider a “doubled” phase space (ψ(m+1), ψ(m)), and consider
that Scheme 7.10 defines a discrete map from the doubled space to itself:
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(ψ(m−1), ψ(m−2)) 7→ (ψ(m+1), ψ(m)). We then observe that depending on the
parameters a, b the dynamical system can behave in the following three ways.

1. When a < 1 or b > 1/2, Gd(ψ(m+1), ψ(m)) obviously is not bounded
from below, and thus it can never serve as Lyapunov functional. In this
case, by losing the Lyapunov property the system can be unstable.

2. When a = 1 and b = 1/2, which here we call the “critical” case,
the energy function is bounded and can serve as Lyapunov functional.
By the Lyapunov theory, the dynamical system it governs asymptoti-
cally tends to the minimizers. But notice that the dynamics is a bit
different from the original one. Let us consider the global minimiz-
ers

∫
Gd(ψ(m+1), ψ(m))dx = 0. In view of (7.103), we see that the

global minimizers are such points that ψ(m+1)ψ
(m)

= 1 and ∇(ψ(m+1) +
ψ(m)) = 0. This allows an oscillatory “steady state” solution ψ(m) =
c, ψ(m+1) = 1/c where c ∈ C is an arbitrary constant. This is in fact
“steady state” in that in the doubled phase space, it corresponds to
a fixed point (c, 1/c) of the dynamical system; in the original undou-
bled space, however, it represents an oscillatory solution c → 1/c →
c → 1/c → · · · . Thus we conclude that in the critical case, the system
is equipped with a Lyapunov functional, but the dynamics is different
such that it allows spurious fixed points (in the doubled space).

3. When a > 1 and b ≤ 1/2, the spurious fixed points vanish, and the
Lyapunov functional allows only original steady state solutions as its
fixed points.

In the last case, the dynamical system is expected to behave the same way
as the fully implicit cases, although the corresponding linearly implicit scheme
is far cheaper. We like to generalize the above observation as follows: as an
unavoidable consequence of the linearization, the resulting scheme should be
necessarily multistep, and the associated dynamical system should be under-
stood in the doubled (or more higher) phase space. There are often degrees
of freedom in the definition of multistep energy functions that crucially de-
termine the dynamics observed as its (numerical) stability. In some happy
cases, such as the above, by carefully choosing the free (scheme) parameters
we can enforce the scheme (the dynamical system) to behave the same as the
original system. A question, however, concerns in which circumstances we
can find such “happy” cases. In particular, whether or not we can do that for
any PDEs is an important open problem to be answered.

7.2.2.5.3 Numerical Examples In this section we present numerical ex-
amples that illustrate the discussion in the previous section. We here test
Scheme 3, with two parameter sets (a, b) = (0.9, 0.5) and (2,−0.5), each of
which corresponds to the first and third patterns described above. For com-
parison, we also test the standard semi-implicit scheme, where the diffusion
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term is discretized in time by the implicit Euler, and the nonlinear term by
the explicit Euler. We set the TDGL parameters to be η = 1, κ = 15, and
solved the simplified TDGL on the unit disk with a triangulation of 9,375
elements by FreeFEM. As the initial data, we set the two vortices of indices
+1 and −1. With this setting, it is known that the annihilation (disappearing
by merging) of vortices should occur.

First we show a result with a fine time mesh ∆t = 0.1. We tested the
semi-implicit scheme and Scheme 7.10 with (a, b) = (2,−0.5), and found no
difference; both schemes ran quite happily in this case. We show the result in
Figure 7.24.
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FIGURE 7.24: Evolution of the solution with ∆t = 0.1: the semi-implicit
scheme and Scheme 7.10 with (a, b) = (2,−0.5).

The corresponding energy profiles are shown in Figure 7.25. For Scheme 7.10,
we calculated the summation of Gd (the multistep energy function (7.102))
and G (the original energy function (7.100)). For the semi-implicit scheme,
we calculated only the latter. In this setting, all the three lines well agree.

The semi-implicit scheme, however, becomes unstable as ∆t increases. We
demonstrate it by setting ∆t = 1.1 in Figure 7.26 which shows snapshots of
four consecutive time steps around t = 50. We can observe severe numerical
oscillation there. In contrast, Scheme 3 holds out with the same coarse time
step as shown in Figure 7.27. The energy profiles are shown in Figure 7.28,
where we can observe oscillation in the semi-implicit scheme.

Finally we test Scheme 3 with the parameters (a, b) = (0, 9, 0.5) with ∆t =
0.5. As shown in Figure 7.29, the result is catastrophic. This agrees with the
discussion in the previous section.
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FIGURE 7.25: Evolution of the energies with ∆t = 0.1: the semi-implicit
scheme and Scheme 7.10 with (a, b) = (2,−0.5).
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FIGURE 7.26: Evolution of the solution with ∆t = 1.1: the semi-implicit
scheme.
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FIGURE 7.27: Evolution of the solution with ∆t = 1.1: Scheme 7.10.
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FIGURE 7.28: Evolution of the energies with ∆t = 1.1: the semi-implicit
scheme and Scheme 7.10 with (a, b) = (2,−0.5).
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FIGURE 7.29: Evolution of the solution with ∆t = 0.5: Scheme 7.10 with
(a, b) = (0.9, 0.5).

7.3 Extension to Non-Rectangular Meshes on 2D Region

In the previous section, we discussed the extension of the discrete variational
derivative method to the Galerkin framework, with application to spatially
two- or three-dimensional problems in mind. In this section, we explain a
different approach for the same aim: the extension to non-uniform meshes on
non-rectangular domains.

This challenge of “discrete variational calculus” on non-regular meshes
starts by recalling the following fact:

The mathematical keystone of the discrete variational derivative
method is the “summation-by-parts formula,” on a given mesh.

In other words, when we hope to generalize the method to general meshes,
our main task should be to find the associated summation-by-parts formula
on the designated mesh. Below we demonstrate such an example. As an
example of flexible meshes where mesh points are arbitrarily set, we consider
the Voronoi mesh. The following lemma is a summation-by-parts formula on
Voronoi mesh. On a given mesh, we consider discrete functions, denoted by
u and so on, which exhibit a value on each vertex.

LEMMA 7.1

Suppose a Voronoi mesh is given. Then for any discrete functions u and w
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on the mesh, the following equality holds.

∑

i





∑

j∈Si

ui

(
wj − wi

lij

)
sji∆Ωij





= −
∑

i





∑

j∈Si

wi

(
uj − ui

lij

)
sji∆Ωij



 +

∑

i∈∂Ωd

uiwiRi, (7.104)

where sji
d≡ (xj − xi) /lij, Si is an index set of neighbor points of xi, ∂Ωd

is the boundary surface, ∆Ωij
d≡ rijlij/4, and Ri

d≡ −
∑

j∈Si
rijsji . For the

definitions of rij and lij, see Figure 7.30.

i
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ij1l
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ij
1

FIGURE 7.30: Voronoi mesh and finite difference points.

In a similar manner, we can deduce other formulas by which we can ex-
tend the whole framework of the discrete variational derivative method to
higher-dimensional problems, whose domains are not necessarily rectangular
with non-uniform meshes. We omit the detail in order to avoid exhaustive
discussion. Instead, in Figure 7.31, we show numerical results to the linear
diffusion equation under the Dirichlet boundary condition. The Voronoi mesh
was generated with randomly distributed 2D points.

Another example is shown in Figure 7.32, where the Cahn–Hilliard equation
was solved on a Voronoi mesh on a disk.



350 Discrete Variational Derivative Method

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

FIGURE 7.31: Numerical solutions of the linear diffusion equation under
Dirichlet boundary condition by an extended scheme on a random Voronoi
mesh with 200 points and ∆t = 5 × 10−6. Top left: profile at time step
m = 0, top right: at m = 2000, bottom left: at m = 5000, bottom right: at
m = 30000.
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t = 0 t = 22∆t

t = 75∆t t = 250∆t

t = 1600∆t t = 7000∆t

FIGURE 7.32: Numerical solutions of the Cahn–Hilliard equation on a
unit disk with standard Neumann boundary conditions. With 2391 points
and ∆t = 1 × 10−5.
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REMARK 7.10 As mentioned in the beginning of Section 7.2, quite
recently (as of writing this book) several similar studies have started. For
example, in Yaguchi–Matsuo–Sugihara [166], a generalization to non-uniform
mesh has been proposed by a mapping technique. Related studies can be
found in a research field called “compatible spatial discretization” or “mimetic
schemes”; see, for example, [11, 153] and the references therein.



Appendix A

Semi-Discrete Schemes in Space

In this appendix we show that

for a given conservative or dissipative PDE, we can always ap-
propriately discretize the space variable so that the resulting semi-
discrete scheme still keeps some conservation or dissipation prop-
erty.

It is surely possible for the target PDEs in this book, since if we consider
the limit ∆t → 0 in the full discrete conservative or dissipative schemes pre-
sented in the preceding chapters, we surely obtain semi-discrete conservative
or dissipative schemes. Below we present a more direct explanation. (See also
McLachlan [129].)

Let us consider the first-order real-valued PDEs 1 and PDEs 2 for example.
As in Chapter 2, we assume that the energy function G(u, ux) is of the form

G(u, ux) =
fM∑

l=1

fl(u)gl(ux), (A.1)

and we consider its discrete version

Gd,k(U) =
M∑

l=1

fl(Uk)g+
l (δ+

k Uk)g−l (δ−k Uk), k = 0, . . . , N, (A.2)

where Uk(t) ≅ u(k∆x, t) are approximate solutions. The associated global
energy is then

N∑

k=0

′′Gd,k(U)∆x. (A.3)

Note that this global energy is a function of the continuous variable t.
Differentiating the global energy by t we obtain

d
dt

N∑

k=0

′′Gd,k(U)∆x

=
N∑

k=0

′′

{
M∑

l=1

(
f ′

l U̇kg+
l g−l + fl(g+

l )′(δ+
k U̇k)g−l + flg

+
l (g−l )′(δ−k U̇k)

)}
, (A.4)

353
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which corresponds to (3.26). We abbreviated fl(Uk) as fl, g+
l (δ+

k Uk) as g+
l ,

and g−l (δ−k Uk) as g−l , and by U̇k we mean (d/dt)Uk(t). Let us introduce new
notation

∂Gd

∂(U)k

=
M∑

l=1

f ′
l (Uk)g+

l (δ+
k Uk)g−l (δ−k Uk), (A.5a)

∂Gd

∂(δ−k U)
k

=
M∑

l=1

fl(Uk)g+
l (δ+

k Uk)(g−l (δ−k Uk))′, (A.5b)

∂Gd

∂(δ+
k U)

k

=
M∑

l=1

fl(Uk)(g+
l (δ+

k Uk))′g−l (δ−k Uk). (A.5c)

The first one is an approximation to ∂G/∂u, and the latter two are to ∂G/∂ux.
The first symbol might look bizarre (one might feel that the brackets in the
denominator should be deleted), but we like to use it here in order to be
consistent with the full discrete symbols. With these symbols, the above
formula can be simplified to

d
dt

N∑

k=0

′′Gd,k(U)∆x =
N∑

k=0

′′

{
∂Gd

∂(U)k

U̇k +
∂Gd

∂(δ+
k U)

k

(δ+
k U̇k) +

∂Gd

∂(δ−k U)
k

(δ−k U̇k)

}
.

(A.6)
With the aid of the summation-by-parts formula (3.12a), we obtain

d
dt

N∑

k=0

′′Gd,k(U)∆x

=
N∑

k=0

′′

[{
∂Gd

∂(U)k

− δ−k

(
∂Gd

∂(δ+
k U)

k

)
− δ+

k

(
∂Gd

∂(δ−k U)
k

)}
U̇k

]
∆x

+
1
2

[
∂Gd

∂(δ+
k U)

k

(s+
k U̇k) +

{
s−k

(
∂Gd

∂(δ+
k U)

k

)}
U̇k

+
∂Gd

∂(δ−k U)
k

(s−k U̇k) +

{
s+

k

(
∂Gd

∂(δ−k U)
k

)}
U̇k

]N

0

, (A.7)

which again corresponds to (3.29). Then with the definitions

δGd

δ(U)k

d≡ ∂Gd

∂(U)k

− δ−k

(
∂Gd

∂(δ+
k U)

k

)
− δ+

k

(
∂Gd

∂(δ−k U)
k

)
, (A.8)

Br,3(U)
d≡ 1

2

[
∂Gd

∂(δ+
k U)

k

(s+
k U̇k) +

{
s−k

(
∂Gd

∂(δ+
k U)

k

)}
U̇k

+
∂Gd

∂(δ−k U)
k

(s−k U̇k) +

{
s+

k

(
∂Gd

∂(δ−k U)
k

)}
U̇k

]N

0

, (A.9)
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we finally obtain the following expression:

d
dt

N∑

k=0

′′Gd,k(U)∆x =
N∑

k=0

′′
[

δGd

δ(U)k

U̇k

]
∆x + Br,3(U). (A.10)

Thus we find δGd/δU , which is a semi-discrete approximation of δG/δu.
With the semi-discrete variational derivative, now we can define a semi-

discrete conservative or dissipative scheme for PDEs 1 and PDEs 2. To avoid
exhaustive discussions, let us limit ourselves to the special case s = 0.

Scheme A.1 (Semi-discrete scheme for the PDEs 1 (s = 0)) Let a set
of initial values U(0) be given. Then, a semi-discrete scheme for the PDEs 1
(s = 0) is given by

d
dt

Uk(t) = − δGd

δ(U)k

, k = 0, . . . , N. (A.11)

THEOREM A.1 Discrete dissipation property of Scheme A.1
Assume that a discrete boundary condition that satisfies the following condi-
tion is imposed :

Br,3(U(t)) = 0, t > 0. (A.12)

Then the scheme is dissipative in the sense that the inequality

d
dt

N∑

k=0

′′Gd(U(t))∆x ≤ 0. (A.13)

PROOF By the discrete variation equality (A.10), we have

d
dt

N∑

k=0

′′Gd,k(U)∆x =
N∑

k=0

′′
[

δGd

δ(U)k

U̇k

]
∆x + Br,3(U)

=
N∑

k=0

′′
[

δGd

δ(U)k

(
− δGd

δ(U)k

)]
∆x

≤ 0. (A.14)

In the first equality the assumption on the discrete boundary condition is
used.

Scheme A.2 (Semi-discrete scheme for the PDEs 2 (s = 0)) Let a set
of initial values U(0) be given. Then, a semi-discrete scheme for the PDEs 2
(s = 0) is given by

d
dt

Uk(t) = δ
〈1〉
k

δGd

δ(U)k

, k = 0, . . . , N. (A.15)
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THEOREM A.2 Discrete conservation property of Scheme A.2
Assume that a discrete boundary condition that satisfies the following two

condition is imposed :

(i) Br,3(U(t)) = 0, t > 0, and

(ii)
[

δGd

δ(U)k

· s〈1〉k

(
δGd

δ(U)k

)]N

0

= 0.

Then the scheme is conservative in the sense that the inequality

d
dt

N∑

k=0

′′Gd(U(t))∆x = 0. (A.16)

PROOF By the discrete variation equality (A.10), we have

d
dt

N∑

k=0

′′Gd,k(U)∆x =
N∑

k=0

′′
[

δGd

δ(U)k

U̇k

]
∆x + Br,3(U)

=
N∑

k=0

′′
[

δGd

δ(U)k

· δ〈1〉k

(
δGd

δ(U)k

)]
∆x

=
1
2

[
δGd

δ(U)k

· s〈1〉k

(
δGd

δ(U)k

)]N

0

= 0. (A.17)

In the first and the third equalities, the assumption on the discrete bound-
ary condition is used. In the second equality the summation-by-parts for-
mula (3.12b) is used.

Thus we obtained semi-discrete dissipative or conservative schemes for the
PDEs 1 and PDEs 2, with s = 0. Extension to other PDEs in Chapter 2
is straightforward. Furthermore, although here we used the standard second-
order approximation for spatial discretization, we can replace it with the high-
order version described in Chapter 5.

The semi-discrete schemes are systems of ordinary differential equations
(ODEs) with respect to U(t), whose dimension is the number of spatial grid
points.



Appendix B

Proof of Proposition 3.4

In this section we prove Proposition 3.4. For a matrix (of vector) A in general
its transpose is denoted by AT.

LEMMA B.1

δ
〈h〉
k = eTDh

k e (B.1)

where

Dk
d≡

(
0 δ+

k

δ−k 0

)
, (B.2)

e
d≡ 1√

2

(
1
1

)
. (B.3)

PROOF Omitted since it is trivial.

LEMMA B.2
N∑

k=0

′′

{
akDka′

k + (DkaT

k)Ta′
k

}
∆x =

1
2

[
akAka′

k + (AkaT

k)Ta′
k

]N

k=0

(B.4)

where

ak
d≡

(
ζk ηk

θk ξk

)
, (B.5)

a′
k

d≡
(

ζ ′k η′
k

θ′k ξ′k

)
, (B.6)

Ak
d≡

(
0 s+

k

s−k 0

)
. (B.7)

PROOF Trivial from the first-order summation-by-parts formula (Prop. 3.2).

Note that (DkaT

k)T ̸= akDT

k and (AkaT

k)T ̸= akAT

k since Dk and Ak are operator
matrices.
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LEMMA B.3

N∑

k=0

′′

{
akDh

ka′
k

}
∆x

= (−1)h′
N∑

k=0

′′

(
Dh′

k aT

k

)T (
Dh−h′

k a′
k

)
∆x

+
1
2




h′∑

l=1

(−1)l−1

{
(
Dl−1

k aT

k

)T(
AkDh−l

k a′
k

)
+

(
AkDl−1

k aT

k

)T(
Dh−l

k a′
k

)
}


N

k=0

(B.8)

where D0
k

d≡ I, h ∈ N+, h′ ∈ N and h′ ≤ h.

PROOF By repeatedly using (B.4) on the left hand side of this equation,
we see the claim.

From this lemma and the lemma B.1 we obtain the following result.

N∑

k=0

′′fkδ
〈h〉
k fk ∆x

= (−1)h′
N∑

k=0

′′
{

eT

(
Dh′

k fk

)T (
Dh−h′

k fk

)
e

}
∆x

+
1
2




h′∑

l=1

(−1)l−1
{

eT
(
Dl−1

k fk

)T (
AkDh−l

k fk

)
e
}

+
h′∑

l=1

(−1)l−1
{

eT
(
AkDl−1

k fk

)T (
Dh−l

k fk

)
e
}




N

k=0

(B.9)

where h ∈ N+, h′ ∈ N and h′ ≤ h.
Substituting h′ = h/2 into this equation we obtain Proposition 3.4 for even

h. When h is odd, we obtain Proposition 3.4 by comparing this equation with
h′ = (h − 1)/2 and the same equation with h′ = (h + 1)/2.
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