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PREFACE

This book presents ways in which computers can be used to solve chemical problems.
One approach develops synoptic algebraic scaling laws to use in place of the case-by-case
numerical integrations prescribed by traditional quantum chemistry. The ONIUM hybrid
method combines a quantum mechanical method with the molecular mechanical method. One
study includes placing functional constraints and testing the performance of the resulting
constrained functionals for several chemical properties. A review of the known
approximations for the temperature integral is included.

Some of the other areas of research discussed include protein coarse-grain models, a
specific application of spherical harmonics, use of the FERMO concept to better explain
reactions that are HOMO driven, wavelet based approaches and high resolution methods with
successful application to a fixed-bed adsorption column model. There is a discussion of
stability and thermodynamics, as well as kinetic properties of heterophosphetes and
phosphole oxides. A model is proposed that applies methods and concepts in mathematical
morphology paradigms to solve the problem of offset curves as well as a description of the
solvent effects through the in silico procedures by the use of continuum and discrete models.
A simulation method attempts to relate the microscopic details of a system to macroscopic
properties of experimental interest. Techniques to retain the use of simple potential functions
are also discussed, but with the possibility of allowing them to readjust their properties to fit
the potential energy curves of the more complex functions. The Chapman-Cruzen mechanism
is also studied using the ideas of the theory of dynamical systems.

Chapter 1 reprises and extends the development of a new approach to fundamental
problems in chemistry, now known as ‘Algebraic Chemistry’. It collects and summarizes all
results so far produced. Problems addressed here include 1) the nominal pattern of single-
electron state filling across all of the elements, 2) the exceptions to that pattern that occur for
about 20% of elements; 3) the numerical patterns in the experimental data about ionization
potentials of all elements and all orders, and 4) plausible reasons for the existence of chemical
periodicity and 5) some insights on the possible nature of chemical bonds. The approach
develops synoptic algebraic scaling laws to use in place of the case-by-case numerical
integrations prescribed by traditional Quantum Chemistry. The development of Algebraic
Chemistry requires an initial re-examination of two pillars of twentieth century physics: not
just Quantum Mechanics (QM), but also Special Relativity Theory (SRT). The reader is asked
to entertain an ‘Expanded SRT’, in which an additional ‘speed’ concept appears, and several
additional mathematical relationships among speed concepts appear. This Expanded SRT
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allows an ‘Expanded QM’, in which the main actors are not the modern, and very abstract,
probability-amplitude waves, but the old-fashioned, and very concrete, point particles.
Although the hundred years elapsed since SRT and QM were first introduced may make this
sort of re-work seem troublesome, the practical utility of the results produced makes the effort
clearly worthwhile.

The ONIOM hybrid method, which combines a quantum mechanical (QM) method with
the molecular mechanical (MM) method, is one of the powerful methods that allow to
calculate large molecular systems with the high accuracy afforded for smaller molecular
systems. The notable feature of this method is that it can include the environmental effects
into the high level QM calculation through a simple extrapolation procedure. This is a
significant difference from the conventional QM/MM methods. The definition of the layer is
simple, and also the layer is easily extended to the multiple-layers. Contrary to this, the
traditional QM/MM method that adopts the sophisticated link between the QM and MM
regions makes the handling difficult. The ONIOM method is thus more flexible and versatile
than the conventional QM/MM method, and is therefore increasingly adopted as an efficient
approach beneficial to many areas of chemistry.

Recently, the ONIOM-molecular dynamics (MD) method has been developed to analyze
the more complicated large molecular system where the thermal fluctuations of the
environment play an important role. For example, when the target is a biomolecule, such as
an enzyme, the property of the entire system is strongly affected by its dynamical behavior. In
such case, the ONIOM method is not satisfactory. The coupling of the ONIOM method with
the molecular dynamics (MD) method is necessary to account for the thermal fluctuations of
the environment. Newly developed ONIOM-MD method has made it possible to characterize
the function of enzyme etc. in a realistic simulation of the thermal motion, retaining the
concept embodied in the ONIOM method. In Chapter 2, the basic concept of the ONIOM and
ONIOM-MD methods we developed and their applications to typical cases are introduced.

Several recent studies (J. Phys. Chem. A 2004, 108, 5479; J. Comput. Chem. 2007, 28,
2431) have shown impressive results when replacing the non-empirical PBE density
functional by the empirical OPBE or OLYP functionals, i.e. replacing the PBE exchange
functional by Handy and Cohen’s OPTX functional. To investigate the origin of the
improvements, we have placed constraints from the non-empirical PBE exchange functional
on the empirical OPTX exchange functional, and tested the performance of the resulting
constrained functionals for several characteristic chemical properties.in Chapter 3, the
performance of the new functionals is tested for a number of standard benchmark tests, such
as the atomization energies of the G2 set, accuracy of geometries for small molecules, atomic
exchange energies, and proton affinities of anionic and neutral molecules. Furthermore, the
new functionals are tested against a benchmark set of nucleophilic substitution Sy2 reactions,
for which we have recently compared DFT with high-level coupled cluster CCSD(T) data (J.
Comput. Chem. 2007, 28, 1551). Our study makes clear that the performance depends
critically on the number of constraints, and on the reference data to which the constrained
functionals are optimized. For each of these properties studied, there is at least one functional
that performs very well. Although a new promising functional (ML#OLYP) emerged from the
set of constrained functionals that approaches coupled-cluster accuracy for geometries and
performs very well for the energy profile of Sy2 reactions, there is no one of the newly
constructed functionals that performs equally well for all properties.
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The temperature integral, which frequently occurs in the kinetic analysis of solid-state
reactions, does not have an exact analytical solution. Instead of performing the numerical
integration, most of the researchers prefer to circumvent the problem by using approximate
expressions.

The main aim of Chapter 4 is to carry out a review of the known approximations for the
temperature integral, to establish a ranking of those temperature integral approximations and
to present some applications of the temperature integral approximations.

The design of protein coarse-grain (CG) models and their corresponding interaction
potentials is an active field of research, especially for solving problems such as protein
folding, docking... Among the essential parameters involved in CG potentials, electrostatic
interactions are of crucial importance since they govern local and global properties, €.d., their
stability, their flexibility...

Following our development of an original approach to hierarchically decompose a protein
structure into fragments from its electron density (ED) distribution, the method is applied in
Chapter 5 to molecular electrostatic potential (MEP) functions, calculated from point charges
as implemented in well-known force fields (FF). To follow the pattern of local maxima (and
minima) in an ED or a MEP distribution, as a function of the degree of smoothing, we
adopted the following strategy. First, each atom of a molecule is considered as a starting point
(a peak, or a pit for negative potentials in a MEP analysis). As the smoothing degree
increases, each point moves along a path to reach a location where the ED or MEP gradient
value vanishes. Convergences of trajectories lead to a reduction of the number of points,
which can be associated with molecular fragments.

Practically, to determine the protein backbone representations, we analyzed CG models
obtained for an extended strand of polyglycine. The influence of the different amino acid side
chains was then studied for different rotamers by substituting the central glycine residue.
Regarding the determination of charges, we adopted two procedures. First, the net charge of a
fragment was calculated as the summation over the charges of its constituting atoms. Second,
a fitting algorithm was used to assign charges to the obtained local maxima/minima.

Applications to a literature case, a 12-residue B-hairpin peptide, are also presented. It is
observed that classical CG models are more similar to ED-based models, while MEP-based
descriptions lead to different CG motifs that better fit the MEP distributions.

A simulation method attempts to relate the microscopic details of a system (atomic
masses, interactions between them, molecular geometry, etc.) to macroscopic properties of
experimental interest (equation of state, structural parameters, etc.). The first step in
performing a molecular simulation requires knowledge of the potential energy of interaction
between the particles of the system, and one of the simplest methods used to obtain this treats
the intermolecular energy as the sum of pairwise additive potentials (as in the force-field
method). The model presented in Chapter 6 does not consider the molecules as formed by
rigid spherical particles (atoms or assemblies of atoms) but as continuum distributions of
matter (without electrical charge), and this has two effects: it can be applied to many kinds of
systems and extends the information on the system, relating a microscopic property (such as
the interaction energy) with macroscopic properties (such as the structural parameters of the
molecules). To simulate the interaction energy between P—cyclodextrin (B—CD) and
molecules with different structure (cyclic, spherical and linear geometry), a model was
constructed from a simple pairwise-additive Lennard-Jones potential combined with a
continuum description of the cyclodextrin cavity and the guest molecule. This model
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reproduces the main energetic and structural features of the physisorption, in particular that
guest molecule positions inside the cavity are more stable than outside the CD, as amply
confirmed by molecular mechanics calculations. Therefore this model cannot explain the
existence of non-inclusion complexes, and this is not a consequence of model assumptions
such as rigidity of molecules or ignoring the effects of solvent. Neither does this model allow
the effect of temperature to be included in the process. The aim of the present chapter is to
analyse the effect of molecular structure on the mobility of the guest inside and around the
B—CD, and the influence of temperature on inclusion complex formation. It was carried out
by molecular dynamics, because this simulation method is based on the resolution of classical
equations of motion to determine the trajectories of the particles. From these trajectories we
also determine the preferential binding site of the guest molecule and the probability of
forming B—CD inclusion complex.

Petroleum fractions are essentially complex mixtures of cyclic and non-cyclic
hydrocarbons. Given the complex nature of these systems and even the difficulty of
identifying the components present in such mixtures, developing a viscosity correlation
accounting for all the composition details becomes a challenging task. Numerous estimation
methods have been developed to represent the effect of the temperature on the viscosity of
different crude oil fractions at atmospheric pressure. Most of these methods are empirical in
nature since no fundamental theory exists for the transport properties of liquids. In Chapter 7
the authors carry out both a brief review of the empirical correlations commonly used and an
evaluation of their degree of accuracy. Unfortunately, the absence of information about the
accuracy of the physical magnitudes used as input parameters in the correlations and the
experimental data of kinematic viscosity used in the different fittings prevents a conclusive
assessment of the percentage of average absolute deviation reported in the literature. Finally,
the authors apply the error theory to a set of equations recently derived (and published),
which has been proved to fit successfully the data of the chart of the ASTM standard D 2502-
92 (reapproved 2004). This standard provides a means of calculating the mean molecular
weight of petroleum oils from kinematic viscosity measurements and it is partially based on
the Walter equation, that is, one of the correlations previously discussed. The use of a PC
program designed in order to carry out this new analysis permits a preliminary evaluation of
the errors of this ASTM standard.

Notwithstanding their simplicity, semi-empirical interatomic potential energy functions
are indispensable in computational chemistry as a result of their ease of execution. With over
eight decades of interatomic potential functions since the days of Lennard-Jones, numerous
potential energy functions have been proposed. The potential functions developed over the
decades have increased in complexities through additions of many parameters for the sake of
improving the modeling accuracy. However, many established computational chemistry
software still incorporate simple potential functions due to the multi-body and dynamical
nature in computational chemistry. The use of highly complex potential functions would give
a limited improvement in accuracy at the expense of the computational time and cost. An
economical and technically feasible solution would be to retain the use of simple potential
functions, but with the possibility of allowing them to readjust their properties to fit the
potential energy curves of the more complex functions. Chapter 8 discusses the techniques
developed recently for attaining such purpose.

In Chapter 9, we carried out Hartree-Fock (HF) and density functional theory calculations
on the conjugated bases of phenols, alcohols, organic acids, and amines compounds and
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analyzed their acid-base behavior using molecular orbital (MO) energies and their
dependence on solvent effects. Despite the well-known correlation between highest-occupied
MO (HOMO) energies and pKa, we observed that HOMO energies are inadequate to describe
the acid-base behavior of these compounds. Therefore, we established a criterion to identify
the best frontier MO for describing pKa values and also to understand why the HOMO
approach fails. The MO that fits our criterion provided very good correlations with pKa
values, much better than those obtained by HOMO energies. Since they are the frontier
molecular orbitals that drive the acid-base reactions in each compound, they were called
frontier effective-for-reaction MOs, or FERMOs. By use of the FERMO concept, the
reactions that are HOMO driven, and those that are not, can be better explained, independent
from the calculation method used, since both HF and Kohn-Sham methodologies lead to the
same FERMO.

Many industrial processes and systems can be modelled mathematically by a set of
Partial Differential Equations (PDEs). Finding a solution to such a PDF model is essential for
system design, simulation, and process control purpose. However, major difficulties appear
when solving PDEs with singularity. Traditional numerical methods, such as finite difference,
finite element, and polynomial based orthogonal collocation, not only have limitations to
fully capture the process dynamics but also demand enormous computation power due to the
large number of elements or mesh points for accommodation of sharp variations. To tackle
this challenging problem, wavelet based approaches and high resolution methods have been
recently developed with successful applications to a fixed-bed adsorption column model.

Our investigation has shown that recent advances in wavelet based approaches and high
resolution methods have the potential to be adopted for solving more complicated dynamic
system models. Chapter 10 will highlight the successful applications of these new methods in
solving complex models of simulated-moving-bed (SMB) chromatographic processes. A
SMB process is a distributed parameter system and can be mathematically described by a set
of partial/ordinary differential equations and algebraic equations. These equations are highly
coupled; experience wave propagations with steep front, and require significant numerical
effort to solve. To demonstrate the numerical computing power of the wavelet based
approaches and high resolution methods, a single column chromatographic process modelled
by a Transport-Dispersive-Equilibrium linear model is investigated first. Numerical solutions
from the upwind-1 finite difference, wavelet-collocation, and high resolution methods are
evaluated by quantitative comparisons with the analytical solution for a range of Peclet
numbers. After that, the advantages of the wavelet based approaches and high resolution
methods are further demonstrated through applications to a dynamic SMB model for an
enantiomers separation process.

This research has revealed that for a PDE system with a low Peclet number, all existing
numerical methods work well, but the upwind finite difference method consumes the most
time for the same degree of accuracy of the numerical solution. The high resolution method
provides an accurate numerical solution for a PDE system with a medium Peclet number. The
wavelet collocation method is capable of catching up steep changes in the solution, and thus
can be used for solving PDE models with high singularity. For the complex SMB system
models under consideration, both the wavelet based approaches and high resolution methods
are good candidates in terms of computation demand and prediction accuracy on the steep
front. The high resolution methods have shown better stability in achieving steady state in the
specific case studied in this Chapter.
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Molecular structures are often influenced by aromatic stabilization and antiaromatic
destabilization effects. In spite of nearly a century’s effort — from Kekulé 1871 to Breslow and
Dewar 1965 — to synthesize cyclobutadiene, these attempts have proved to be unsuccessful
[1-6]. Only theoretical chemistry was able to explain this failure by introducing the concept
of antiaromaticity as a new phenomenon. The synthesis of these antiaromatic compounds has
long been considered as desirable target of preparative chemistry in order to examine
experimentally their species chemical properties, but only a few compounds could be
prepared and studied. One of the examples may be the family of phosphole oxides exhibiting
a slightly antiaromatic character [7-10]. At the same time, heterophosphetes, are of more
considerable antiaromatic character and they manifest only as high energy intermediate or
transition state (TS) [11-20]. In Chapter 11, stability and thermodynamic, as well as kinetic
properties of heterophosphetes and phosphole oxides are discussed.

As discussed in Chapter 12, the description of the solvent effects through the in silico
procedures can be realized by using continuum and discrete models. Based on the classic
works of Born, Onsager and Kirkwood, the continuum models became an important tool in
the study of the solvent effects in several chemical process. In its formalism, the insertion of
the solute into a arbitrary cavity modelled by overlap spheres and the description of the
solvent as a dielectric unleashed a popular growth of the continuum models. All this
methodologic advance provided the development of many other current implementations,
such as PCM and COSMO, which have been used successfully in the study of many
molecular systems. However, the description of solvent as a dielectric yields some
limitations, i.e. the underestimates of specific interactions between solvent and solute, in
particular hydrogen bonds.

Offsets are one of the most important problems in Computational Geometry. They can be
used in many fields, such as geometric modelling, CAD/CAM and robot navigation.
Although some efficient algorithms have been developed to solve this problem, their lack of
generality makes them efficient in only a limited number of cases.

The aim of Chapter 13 is to propose a model that applies methods and concepts used in
mathematical morphology paradigms to solve the problem of general offset curves.

Presented in the work there is a method for offsetting any kind of curve at any distance,
constant or not. As a consequence, we will obtain a geometrical abstraction which will
provide solutions to typically complex problems.

The resulting method avoids any constraint in curve shape or distance to the offset and
obtains valid and optimal trajectories, with a low temporal cost of O(nem), which is
corroborated by the experiments. It also avoids some precision errors that are present in the
most popular commercial CAD/CAM libraries.

The use of morphology as the base of the formulation avoids self intersections and
discontinuities and allows the system to obtain general offsets to free-form shapes without
constraints. Most numerical and geometrical problems are also avoided. Obtaining a practical
algorithm from the theoretical formulation is straightforward, as it will be shown with the
application of the method to an algorithm to obtain tool paths for contour-parallel pocketing.
The resulting procedure is simple and efficient.

The work has been divided into next parts:

Introduction provides the reader with background information on existing offset methods
and their associated problems in offset computation. The new concept of general offset is also
introduced.
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Second section develops the morphological system resulting from applying the
conventional morphological model to which the feature of primitives ordering has been
added. The new model, called DTM model, owns features for order establishment of
morphologic primitives. The use of morphology as the base of the formulation allows the
system to obtain general offsets to free-form shapes without constraints. A computational
model which enables the morphological operations defined in the DTM to be carried out is
also developed. Its existence makes the new model (DTM) operative and permits its
efficiency to be checked through testing.

Morphologic primitives are translated into offset computation and are applied to real
machining tests in order to probe the correct behaviour of the model. The proposed model has
been successfully implemented in a commercial CAD/CAM system specialised in shoe last
making. Finally, some illustrative examples are shown.

Conclusion and discussion part summarizes this investigation and offers
recommendations for future work.

Dobson and Doig (D and D) reported an important but somehow complicated non-linear
model for alignment-free prediction of 3D-structures of enzymes opening the search of
simpler Computational Chemistry models. In Chapter 14 we have used Markov Chain Models
(MCM) to calculate electrostatic potential, hydrophobic interactions (HINT), and van der
Waals (vdw) interactions in 1371 protein structures (essentially the D and D data set). Next,
we developed a simple linear model that discriminates 73.5% of enzyme/no-enzyme proteins
using only one electrostatic potential while the D and D reaches 80% of accuracy with a non-
linear model based on more than 30 parameters. We both analyzed ROC and constructed
Complex Networks for the first time in order to study the variations of the three fields in
enzymes. Finally, we illustrated the use of the model predicting drug-target enzymes and
antibiotic enzymes (enzybiotics). In closing, this MCM allowed fast calculation and
comparison of different potentials deriving accurate protein 3D structure-function
relationships and protein-protein Complex networks obtained in a way notably simpler than
in the previous way.

In recent years, density functional theory (DFT) has emerged as one of the most
successful and powerful approaches in electronic structure calculation of atoms, molecules
and solids, as evidenced from burgeoning research activities in this direction. Chapter 15
concerns with the recent development of a new DFT methodology for accurate, reliable
prediction of many-electron systems. Background, need for such a scheme, major difficulties
encountered, as well as their potential remedies are discussed at some length. Within the
realm of non relativistic Hohenberg-Kohn-Sham (HKS) DFT and making use of the familiar
LCAO-MO principle, relevant KS eigenvalue problem is solved numerically. Unlike the
commonly used atom-centered grid (ACG), here we employ a 3D cartesian coordinate grid
(CCQ) to build atom-centered localized basis set, electron density, as well as all the two-body
potentials directly on grid. The Hartree potential is computed through a Fourier convolution
technique via a decomposition in terms of short- and long-range interactions. Feasibility and
viability of our proposed scheme is demonstrated for a series of chemical systems; first with
homogeneous, local-density-approximated XC functionals followed by nonlocal, gradient-
and Laplacian-dependent functionals. A detailed, systematic analysis on obtained results
relevant to quantum chemistry, are made, for the first time, using CCG, which clearly
illustrates the significance of this alternative method in the present context. Quantities such as
component energies, total energies, ionization energies, potential energy curve, atomization
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energies, etc., are addressed for pseudopotential calculations, along with a thorough
comparison with literature data, wherever possible. Finally, some words on the future and
prospect of this method are mentioned. In summary, we have presented a new CCG-based
variational DFT method for accurate, dependable calculation of atoms and molecules.

Infinite series are probably one of major tools that was elaborated in the early days of
modern mathematics for the purpose of answering practical and theoretical questions. In
chemistry and physics, infinite series in terms of spherical harmonics, also known as
multipole expansions, are routinely used to solve a variety of problems particularly those with
spherical symmetry, €g. an electron moving in the field created by a fixed nucleus. Chapter 16
addresses a specific application of spherical harmonics, namely the so-called two-range
addition theorems. Such mathematical constructs essentially allow one to expand a function

f(r+a) in terms of Y,"(6,,4,) hence leading to a separation of the angular and radial parts of

the variable r. In fact such a problem is very common in quantum chemistry where it is used
to express a given charge distribution as a sum of multipolar contributions and multicenter
integrals over Exponential Type Functions (ETFs) are just one of many such problems. As a
consequence and in order to illustrate the mechanics behind the two-range addition theorems,
we will use the case of multicenter integrals over ETFs as working example. In addition to
numerical algorithms, symbolic computation which is perfectly geared to obtain analytical
expressions, we will purposely address in some detail the convergence of the multipole
expansion, in the context of multicenter integrals, since this aspect is often overlooked by
researchers.

Following the work of Guo, Thompson, and Sewell (Y.Guo, D.L.Thompson, and T.D.
Sewell, J.Chem.Phys. 104, 576 (1996)) on the zero point energy correction of classical
trajectories, Chapter 17 emphasizes that the zero-point energy of a molecule is a quantum
phenomenon with no classical counterpart, rooted soundly in the positionmomentum
uncertainty principle. As a consequence certain quantum “ingredients,” such as those
introduced using Heller’s thawed Gaussian wavepacket dynamics (E.J. Heller, J.Chem.Phys.
62, 1544 (1975)), are probably necessary to avoid the computational difficulties in applying
zero-point energy corrections to classical molecular dynamics trajectories which have been
described in the literature to date.

In Chapter 18, the dynamics of stratospheric ozone is studied using the ideas introduced
by Chapman including the role of nitrogen oxides as proposed by Crutzen. We refer to these
ideas as the Chapman—Crutzen mechanism that gives a system of five ordinary differential
equations. This set of differential equations is studied using the ideas of the theory of
dynamical systems. In particular, mass conservation is used to reduce the set to three
differential equations by using certain constants of motion, we obtain the critical points of this
reduced set of equations, analyze the eigenvalues of the Jacobian matrix evaluated at the
critical points in order to determine whether or not they are hyperbolic, and compare them
with the corresponding critical points of the Chapman mechanism. Several numerical
methods, like Adams’ method and the backward differentiation formula, are used to solve the
initial value problem for the reduced set of ordinary differential equations seeking to obtain a
more global picture of the orbits than that provided by the local analysis consisting in
analyzing the nature of the critical points.
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Chapter 1

RECENT PROGRESS IN ‘ALGEBRAIC CHEMISTRY’

Cynthia Kolb Whitney”
Galilean Electrodynamics, Proceedings of the Natural Philosophy Alliance
141 Rhinecliff Street, Arlington, MA 01476-7331, U.S.A.

Abstract

This work reprises and extends the development of a new approach to fundamental problems
in chemistry, now known as ‘Algebraic Chemistry’. It collects and summarizes all results so
far produced. Problems addressed here include 1) the nominal pattern of single-electron state
filling across all of the elements, 2) the exceptions to that pattern that occur for about 20% of
elements; 3) the numerical patterns in the experimental data about ionization potentials of all
elements and all orders, and 4) plausible reasons for the existence of chemical periodicity and
5) some insights on the possible nature of chemical bonds. The approach develops synoptic
algebraic scaling laws to use in place of the case-by-case numerical integrations prescribed by
traditional Quantum Chemistry. The development of Algebraic Chemistry requires an initial
re-examination of two pillars of twentieth century physics: not just Quantum Mechanics
(QM), but also Special Relativity Theory (SRT). The reader is asked to entertain an
‘Expanded SRT’, in which an additional ‘speed’ concept appears, and several additional
mathematical relationships among speed concepts appear. This Expanded SRT allows an
‘Expanded QM’, in which the main actors are not the modern, and very abstract, probability-
amplitude waves, but the old-fashioned, and very concrete, point particles. Although the
hundred years elapsed since SRT and QM were first introduced may make this sort of re-work
seem troublesome, the practical utility of the results produced makes the effort clearly
worthwhile.

Keywords: single-electron state filling, ionization potentials, chemical periodicity, chemical
bonds, expanded special relativity theory, expanded quantum mechanics.

" E-mail address: Galilean_Electrodynamics@comcast.net
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1. Introduction

Chemistry possesses a gift of inestimable value for physics, if physicists will be so wise
as to embrace the gift. Chemistry possesses a wealth of empirical data that often seems
mysterious because it has yet to be fully interpreted in physical terms. A physicist could be
occupied for a lifetime with the existing chemical data, and never have to wait on far-off,
fickle funding for a particle accelerator, a deep mine shaft experiment, or a deep space
satellite mission. The chemical data will drive a physicist just as hard toward new physics (or
perhaps back to old physics) as would any of the other investigative techniques.

This paper reviews and extends my own journey along this path [1-3]. Section 2 shows
how far into the past I have now been driven: all the way back to Maxwell’s Electromagnetic
Theory (EMT), for an exploration of the implications of his equations that were not forcefully
articulated in his own time, or even later, although they would have been the key to more
effective development of twentieth century physics, and now for twenty first century
chemistry.

The subsequent trail goes from Maxwell’s EMT through major parts of twentieth-century
physics: Einstein’s Special Relativity Theory (SRT), then to Quantum Mechanics (QM) for
Hydrogen atoms, Positronium, spinning electron rings, and to spinning positive charge rings.
Much of that work has been published, or is in press, elsewhere, and so is here summarized
and collected as Appendices.

Sections 3 through 7 review applications of the newly developed ideas to problems in
chemistry. The first such problem concerns the nominal pattern of single-electron state filling
across all of the elements. What was generally known about the order in which single-
electron states fill was described in terms of QM. As one progresses through the elements,
more and more electrons are involved in a multi-electron state that is envisioned as a product
of single-electron states like the states that QM attributes to the prototypical Hydrogen atom.
These single-electron states are characterized by quantum numbers: the radial quantum
number n, the orbital angular momentum quantum number |, and the electron spin quantum
number S. There existed some order to the way in which available quantum numbers enter
into the mix, and it was characterized by almost-reliable empirical rules. With occasional
exceptions, single-electron state filling follows Madelung’s and Hund’s rules for the nominal
filling order: advance with the linear combination n+1, and within a given value of n+1,
advance with n, and within a given n,| combination, fill all of one S state, then the other.

Within the context of modern QM, there is no good reason why the sum of the two
physically different quantum numbers like n and | should mean something. The only
justification for any such thing comes from the huge database of spectroscopy, which was
being accumulated even before QM existed, and which suggests, when viewed from a modern
perspective, that sums of integers, like n+1, correlate with single electron state energies

proportional to —1/(n+ I)2 . But the n+1 parameter itself is pretty limited: it does not even

give a clue about the second part of the n+1 state-filling directive: “within a given value of
n+1, advance with n.”

Furthermore, about 20% of known elements break those rules in some way. Ref. [1]
suggests refining the n+ | parameter in a way that at least calls attention to places where the
violations occur. The refined parameter is
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R:%[4n+2(l+s)] 1)

Like the original n+1, R is a linear combination of disparate quantum numbers, and
has no rationale in QM. But it is useful. It has regressions and repeats that mark the places in
the Periodic Table (PT) where violations of the expected filling order occur. See figure 1.1.

n,l,s designations in periods 1 to 7 numerical values of parameter R
1 1s(-=) = 1s(+) 1->2
A A
2 2s(=) > 2s(+) > 2p(-) = 2p(+) 3545455
A A
3 3s(-) = 3s(+) = 3p(-) > 3p(+) 556>6->7
pl .J
4 4s(=) = 4s(+) > 3d(-) > 3d(+) > 4p(-) > 4p(+) 75>8—>7->8—>8->9
pl il
5 55(=) > 5s(+) > 4d(-) > 4d(+) > 5p(-) > 5p(+) 9510>9->10-510—>11
J .J
6 | 65(-) > 65(+) > 4f(=) > 4 (+) > 5d(=) > 5d(+) > 6p(-) > 6p(+) | 11 >12 510 511 511512 > 12 - 13
pl .J
T | 7s(=) = 7s(+) > 5f(=) > 5f(+) > 6d(-) > 6d(+) > 7p(-) > 7p(+) | 3514512 513513514514 15

Figure 1.1. The evolution of the parameter R through all the periods of elements.

Suppose single-electron state energies are characterized simply by E oc—1/ R?. Repeats
in R mean repeats in E. That can create opportunities for replacements, which are seen as
violations of the expected single-electron state filling order. But the filling order was still not
fully explained by this notion. So there remained good reason to try out a different approach
on this filling-order problem. The idea of spinning charge rings, arrived at through the
development recounted in the Appendices, provides such an approach [2]. It is applied in
Section 3. Section 4 goes on to identify more detailed physical reasons for the exceptions to
that pattern that occur for about 20% of elements.

Since the time of Mendeleev, the PT has been the fundamental organizing tool of
Chemistry. The big question is: Why does chemical periodicity exist? Section 5 discusses
plausible reasons for the existence of chemical periodicity, based on the ideas about electron
clusters of spinning electron rings developed in Sections 3 and 4.

Section 6 recounts from [3] the numerical patterns in the experimental data about
ionization potentials of all elements and all orders. Section 7 expands from [3] with some new
insights on the possible nature of chemical bonds, based on the information about ionization
potentials. Section 8 concludes this paper and points to future investigations.
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2. Maxwell Revisited

It is generally believed that QM is a departure from EMT necessitated by failures of EMT
at the atomic level, such as failure to account for the existence of the ground state of the
Hydrogen atom, which was thought to be vulnerable to destruction by the radiative energy
loss mandated in EMT. The present author believes the QM departure actually had a different
cause; namely, the failure of EMT practitioners to analyze fully the situation that develops in
Maxwell propagation of a radiation wave packet with finite total energy (a photon) from one
atomic system (a source) to another (a receiver). (Please take note that I say ‘atomic system’
here, and not ‘atom’. That is because, for reasons that will emerge later in this article, I do not
believe that a single isolated atom can by itself either emit a photon, or absorb a photon.
Please bear with me on this.).

One may ask: What is so interesting about the propagation of a finite energy wave
packet? Surely it can be well understood from Huygens’ analysis of an expanding spherical
wave front: each point on the spherical wave front launches little spherical wavelets, and the
wavelets tend to cancel in the backward direction and reinforce in the forward direction,
resulting in ever increasing radius R of the overall spherical wave front, with amplitude

diminishing as 1/ R? , and with profile limited in R, and invariant in R? -normalized shape.

All of that is indeed true for a scalar wave. But Maxwell waves are not scalar waves; they
are vector waves. There is an electric vector E and a magnetic vector B, transverse to each
other, and both transverse to the radiation propagation direction. This circumstance mandates
several departures from the Huygens situation. First, it is not even possible to make a uniform
spherical wave front for this situation. The simplest possible idealization that one can make is
a plane wave. This means thinking ‘rectangular’ or ‘cylindrical’ rather than ‘spherical’. We
have one definite propagation direction and two transverse field directions.

Second, finite total energy is a constraint, a kind of generalized ‘boundary condition’.
Any discussion of any differential equation is incomplete without detailed consideration of
boundary conditions, or other similar constraints, that serve to select a particular solution
from the many possible solutions.

For finite energy, the Maxwell fields have to be limited to a finite volume. That means
they have to be limited in all three spatial directions. After several centuries, we know
extremely well what limitation in the two transverse directions leads to: the phenomenon of
‘diffraction’ creates interference fringes or rings, and overall spreading in the transverse
directions. [4,5] But throughout all of that time, we should also have been asking: What about
limitation in the longitudinal direction? Will waveform shape be preserved, like in the
Huygens scalar wave situation? Or will some spreading phenomenon like diffraction come
into play?

Many people would expect the waveform shape to be preserved, on the basis that free
space has no dispersion (light speed variation with wave number), and the whole propagation
process is linear (no fields squared, cross multiplied, exponentiated, etc., involved in
Maxwell’s equations; products occur only in the formulations of field energy density and
Poynting vector). But the ‘linearity’ of Maxwell propagation only means that adding two
inputs results in adding two outputs; it does not mean the system responds to a delta-function
input with a delta function output. In the parlance of modern engineering science, the system
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can reshape the profile of the input, amplify some parts of it, kill some parts, delay some, put
some through a ‘feedback loop’, etc.

The Maxwell equations need to be considered with allowance for such complexity.
Consider that the Maxwell wave is a vector wave, and that there are two vectors involved, E
and B, and that these vectors are coupled through the Maxwell differential equations. This
makes a classic feedback loop. Induction happens: spatial variation in E (captured in modern
notation as V x E) drives temporal changes in B (captured in modern notation as 0B/ ot ),
and vice versa.

Here is how induction plays out over time. If E starts out spatially bounded in the
propagation direction, the boundaries are the loci of extra spatial change in E, and hence
extra temporal change in B orthogonal to E . In short, a pulse in E induces two peaks in B
beyond each of its two edges. The newly induced B peaks then induce two more E peaks
orthogonal to B further beyond. The ‘then’ means ‘a little later’; the system has ‘delay’.
More and more peaks appear, sequentially over time, symmetrically over space. Thus the
originally very confined waveform spreads out longitudinally.

Naturally, as the overall waveform spreads, its central amplitude must decrease to
conserve total energy. In detail, each new pair of E or B peaks not only induces another pair
of B or E peaks further out in the waveform, but also induces diminution of B or E peaks

further in, thereby maintaining the integral over all space of the energy density %(E2 + Bz) .

How fast does the waveform spreading proceed? There is only one speed in the free-
space Maxwell equations, the so-called ‘light speed’ c. It is the only speed available to
describe this spreading by induction. There are two limiting cases of interest, and in both, the
spread speed must be C .

In the first case, the process is seeded with just one pulse, either of E or of B . This seed
pulse is spatially bounded, but oscillatory in time. It sets the stage for an electromagnetic
wave expanding from the pulse location. At the extremities, new crests come into existence
by induction. So both E and B exist in this wave, with their crests interleaved so that they
form a kind of ‘standing wave’. But here nothing confines the standing waveform, so it
spreads, with greater or lesser amplitude, in all directions, except exactly coincident with the
seed field direction. In any other direction, the two ends of the waveform recede at speeds
tC.

The other limiting case of interest is seeded with two pulses, one E and the other B
orthogonal to E , with equal energy in each pulse. This situation sets the stage for a ‘traveling
wave’. The presence of the B and E pulses together creates a Poynting vector proportional
to Ex B, and the combined waveform travels at speed C in the direction of E x B. Like the
standing wave, the traveling wave also spreads at =C from its middle, but unlike the standing
wave, the middle itself is moving at +C away from its source, as indeed are all of its induced
wave crests. With greater or lesser amplidude, the waveform spread is in all directions. But
the direction of greatest interest here is the longitudinal one. Transverse spread is related to
diffraction, an important subject, but already much studied. The corresponding longitudinal
spread has not yet had equal attention.

Longitudinal spread means that one end of the wave form always remains with the
source, and the other end always extends forward to a distance twice as far away as the
waveform center. It is as if the ‘tail’ end of the waveform did not travel at all, while the ‘nose’
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end traveled at speed 2c . Note that this does not mean that any identifiable wave front travels
at a speed different from ¢ . Those wave fronts at the ‘tail’ and ‘nose’ ends of the waveform
have not gotten there by travel from somewhere else; they have arisen there by induction.

Note that, to arrive at this picture for the longitudinal spread of a traveling waveform, we
have reversed a common way of thinking about things. It has always been customary to think
of a standing wave as the combination of two traveling waves. The conceptual reversal is to
think of a traveling wave as the combination of two standing waves, with each one being
forced to move along on account of the presence of the other one.

The story about longitudinal waveform spread implies a corresponding story about wave
momentum (i.e. wave number K ). Suppose at a given time t the waveform is describable by
some function f(X,ct). That means it has a Fourier amplitude function F(K,ct) such that

+00 .
fxct)= | Fk,ctye®dk @.1)
—00
This Fourier amplitude function can be found from

+o0 .
F(k,ct)=2i [ e (x, ctydx 2.2)
T

00

For example, we could have f(X,ct) be a traveling complex oscillation with nominal wave

number K, but cut off below X = 0 and above X = 2cCt, and normalized by the length 2ct .

f(x,ct) = %exp[iko(x—ct)] for 0< x <2ct, 1/2

at x=0, x=2ct, 0 elsewhere 2.3)

The cut-offs make this f(X,ct) function a combination of two so-called ‘Heaviside step
functions’. The normalization by 2ct means that in the limit ct -0 f(x,ct) is a so-called
‘Dirac delta function’. The Fourier amplitude function corresponding to this f (X,ct) function is

2ct

1 _j 1 .
F(k,ct) = Z—Tcxioe flox ZtheXp[lkO(X —ct)]dx
_ 1 Jexp[-ik—ko)x] > o-ikoct _ 1 exp[-i(k —ko)2ct] -1 o-ikoct
on| —ik—koet | | itk —kg)2et
_ 1 exp[—i(k - ko-)ct] - exp[+i (k —ko )Ct] exp[—i(k B kO)Ct]efk()Ct 2.4
2n —i(k —kg)2ct

_ 1 sinf(k—ko)et] ikt
2n (k—kp)ct



Recent Progress in ‘Algebraic Chemistry’ 7

The limit of any ‘sin(variable)/ variable’ as ‘variable’ — 0 is unity. So for Ct — 0, the

scalar amplitude %Sin[(k -k )Ct] / (k=kg)ct of this F(k,ct) approaches the constant
T

value 1/2n for all k . All wave numbers are present in equal amount; with total localization
in X (position) space, but no localization at all in k (wave-number, i.e., momentum) space.
For ct — 0, the pulse is so short that it does not contain even one nominal wavelength, so it
possesses all wave numbers in equal amount. For large ct, the situation reverses: there is a
large spread in X space, but very little spread in k space.

A reciprocal relationship between the spreads in Fourier function pairs exists generally,
including for Maxwell fields E or B fields. Such behavior in a Maxwell wave anticipates
the kind of behavior discovered later for probability waves in QM. This is a clue that the
Maxwell theory was not really so deficient as was thought at the advent of QM: it anticipates
Heisenberg’s Uncertainty Principle.

The actual shape of the functions f(x,ct) and F(k,ct) representing the energy in the

actual E and B fields in a spreading waveform can be inferred on logical grounds. Observe
that the induction process takes energy out of any local peak, say in E, and casts it equally
into the two neighboring peaks in the other field, i.e. B. In terms of energy, the induction
process over time is much like the row-by-row construction of Pascal’s famous triangle
(figure 2.1):

1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
etc.

Figure 2.1. Pascal’s triangle.

Labeling the rows in Pascal’s triangle with index n=0,1,2,..., the elements in row n are

the ‘binomial coefficients’ for (1+1)" =2", i.e. n// m!(n—m)!. The only difference is that

the conservation of energy over time needs to be represented by normalization of the numbers
over rows (figure 2.2):

1/2 1/2

1/4 2/4 1/4
1/8 3/8 3/8 1/8
1/16 4/16 6/16 4/16 1/16
1/32 5/32 10/32 10/32 5/32 1/32
1/64 6/64 15/64 20/64 15/64 6/64 1/64
etc.

Figure 2.2. Pascal’s triangle normalized.
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Thus the shape of the function f(X,ct) that represents the energy profile of the E , or the

B, field is a series of peaks with areas matching the binomial probability distribution. The
function f(x,ct) representing the energy profile of both fields together is the sum of two

such series, one for some number n and the other for n+1, interleaved with the first one. For
large n, the resulting sum function f(x,ct) is indistinguishable from a smooth Gaussian

distribution. This means that its Fourier amplitude function F(k,ct) is also indistinguishable
from a smooth Gaussian. Function pairs f(x,ct) and F(k,ct) that are Gaussian minimize

the product of spreads X and k . That means the Maxwell fields in this limit are conforming
to Heisenberg’s Uncertainty Principle with the >’ approaching the ‘=".

The existence of such product relationships has been long known in the context of
transverse spreading; i.e. ‘diffraction’. For example, in an optical system, large aperture
means small focal spot. The ‘diffraction integral’ that relates aperture to focal spot is basically
a Fourier transform. More generally, the similarity between all diffraction integrals and
Fourier transforms accounts for the existence of the whole technologically important
discipline called ‘Fourier optics’ [4].

The corresponding situation concerning longitudinal spreading has not been similarly
developed. The present paper contains the beginning of the missing development. It too leads
to technologically important results — those in Chemistry being especially noted here.

The first step of development is to recognize that Maxwell’s equations generally support
time-reversed solutions. That means we can have not only solutions that expand from a
source, but also solutions that contract to a receiver. Their combination can explain how
energy transfer from a source to a receiver can occur. Imagine that the ‘nose’ of the
expanding waveform encounters some atomic system that can serve as receiver for the energy
contained in the wave. The presence of this new system creates a new, and hard, boundary
condition: the spreading waveform can spread no further. But a time-reversed solution that
contracts to the receiver can match exactly the now stymied waveform that has expanded
from the source. This time-reversed solution can therefore proceed, and complete the energy
transfer.

Speaking in more detail, the time reversal means OE/ ot and 0B/ ot reverse sign, and
this reverses the whole induction process that drove the expansion, and makes it drive the
contraction instead. The ‘nose’ and ‘tail’ of the waveform shrivel, and the ‘heart’ of the
waveform re-fills, thus contracting the waveform over all to the point where the receiver can
swallow it.

Thus we can understand the natural history of energy transfer by radiation from one
atomic system to another as follows: Light is emitted from a source in a pulse very localized
in space, and totally spread out in momentum (wave number). The wave packet then spreads
in space and becomes defined in wave number. Then the receiver is then encountered, and the
whole process reverses. At the end of the scenario, the pulse in space with spread in
momentum is restored, and the now fully delivered energy is absorbed all at once into the
receiver.

The behavior described here apparently is what is needed to satisfy the Maxwell
differential equations and the desired radiation condition, EQ3 =0, and the desired energy

condition, finite and constant spatial integral of E(E2 + Bz) . I believe it is the behavior that
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Nature actually exhibits. But can we witness this ‘exhibition’? Not necessarily. Consider that
the proposed waveform evolution is a behavior of ‘light in flight’. ‘Observing’ light means
‘capturing’ light, whereupon it is no longer ‘light in flight’. We can at best witness
consequences of this waveform evolution, not the evolution itself.

So what consequences can there be? Absolutely none, if the source and receiver are at
rest with respect to each other. But physics is generally a science of things that move. The
possibility of witnessing some consequence emerges when there is relative motion between
the source and receiver. We find that much of 20" century physics needs review in
consideration of the finite-energy solutions to Maxwell’s equations, and that there is
considerable spillover into chemistry. The remainder of this paper looks at just a few things.
The ones that are specifically about chemistry are in the following Sections 3-7. The ones that
are not fundamentally about chemistry, but precursors to it, are in the Appendices. What the
chemist needs to know from those Appendices is summarized as follows:

* Some post-Maxwell EMT results need to be revisited in light of the finite-energy
analysis. In particular, the directionality of Coulomb force and radiation from a
rapidly moving source must reconcile to ‘half-retarded’. This is important for
modeling atoms.

* Einstein’s SRT depends on his Second Postulate, and it changes when the Postulate
is replaced with the finite energy analysis. In particular, superluminal Galilean
speeds become a natural part of the theory. This is important for modeling electron
populations in atoms.

* The Hydrogen atom ground state can be found by asserting balance between energy
loss due to radiation and energy gain due to torquing within the system. It does not
require the QM departure from EMT. This is important for modeling all other atoms.

* The Hydrogen atom has a spectrum of sub states that are not accounted for in
traditional QM. The Hydrogen sub-state analysis is important as a prototype for
many other analyses that ultimately get to the chemistry problems.

* The Hydrogen sub-state math applies to many other attractive two-body systems. In
particular, Positronium exemplifies all equal-mass systems, the situation opposite to
the Hydrogen atom, where the positive charge is overwhelmingly more massive than
the negative charge.

*  The equal-mass analysis also applies to binary pairs of charges of the same sign, and
then to larger same-charge clusters in the form of spinning charge rings. In all such
same-charge spinning charge rings, the individual charges move at super-luminal
speeds.

*  Same-charge super-luminal spinning charge rings figure in atomic ‘excited states’
and hence atomic spectroscopy. Charge clusters are important, and probably
ubiquitous in atoms. They figure in all of the discussions of chemistry problems
below.
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3. Single Electron State Filling Across the Elements — Nominal
Order

Same-charge super-luminal spinning charge rings provide another tool that can help
explain the observed facts of single-electron state filling. This Section addresses the nominal
pattern of single-electron state filling. It is a summary of the relevant Section in [2]. Where
that paper addressed every element, this summary focuses on the elements where something
in process finishes or something new starts: the noble gasses, and the metals two charges
beyond the noble gasses.

To describe the spinning charge rings, we first of all need some words. For charge
number N =2, call the ‘ring’ a ‘binar’ for ‘binary’; for N =3, ‘tert’; for N =4, ‘quart’; for
N =5, ’quint’; for N =6, ‘hex’; for N =7, ‘sept’, and so on, if ever needed.

Except for the case of two electrons, we only occasionally see cases of even numbers of
electrons; such cases would usually form two rings instead of one big ring. So for describing
atomic charge clusters, the rings most often needed are ‘binars’, ‘terts’, ‘quints’, ‘septs’, and
of course ‘singletons’.

Let us now develop visual images for the spinning electron rings in atoms. In general, the
axes of all the electron rings should be parallel to the axis of the orbit that the whole electron
cluster executes around the nucleus. If we imagine this atomic orbit axis to be horizontal on
the page, and we imagine the various electron rings to be viewed edge-on, then those rings
look like vertical lines. So we can use vertical lines as a visual notation for electron rings. The
Appendix on Spinning Charge Rings shows that rings with successively more charges must
spin faster, and so at smaller radii. That means the vertical lines are shorter when the number
of charges is greater. Representing singleton electrons as points then completes the visual
vocabulary:

binar 2, tert 3, quart 4, quint 5, hex 6, sept 7,... singleton o

All of the spinning charge rings essentially amount to permanent electrical ‘currents’
within the low-temperature/high-temperature/no-temperature-exists ‘superconductor’ that
otherwise-empty space provides. They constitute tiny charged super magnets.

We are accustomed to thinking of magnetic interactions as producing small perturbations
on effects that are dominated by Coulombic interactions. That is so because we are
accustomed to thinking only of very sub-luminal particle speeds, both for charges creating
magnetic fields and for charges responding to magnetic fields. The situation is different when
charged particles move at super luminal speeds. Then magnetic interactions dominate.

The tiny charged super magnets like to stack, just like macroscopic magnets do. Since
magnetic effects dominate in their world, they go ahead and do stack. That is how they form
big electron clusters.

Observe that between the two binars there exists a region where the magnetic field lines
must form a ‘bottle’; i.e. the sort of thing familiar in the macro world of magnetic
confinement for controlled fusion technology. So a pair of rings of any size can contain other
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things: i.e.. a pair of smaller rings, or such a pair of rings plus whatever they in turn contain.
So we can have structures like

I I A P | |
|| L] Ly NN
2320r23320r235320r235532,0r2357532,0r23577532,

etc.

That is, the iconic image is not a sphere of electron shells nested around the nucleus, with
larger electron counts outside of smaller ones, it is a cylinder of stacked electron rings,
located at a nominal orbit radius away from the nucleus, with larger electron counts inside of
smaller ones.

Observe that the space between the two terts constitutes a magnetic confinement region
with a double wall: not just a magnetic ‘bottle’, but rather a magnetic ‘thermos jug’.
Similarly, the space between two quints constitutes a magnetic bottle with a triple wall, which
is not just a ‘magnetic bottle’, or even a ‘magnetic thermos jug’; it is really a ‘magnetic
Dewar flask’. But note too that singletons can move along any charge population axis, and
such motion is parallel to the magnetic field along the axis, so no magnetic restraint is
exercised. Singletons can always escape magnetic confinement.

Describing the elements in terms of electron rings generally requires some ‘punctuation’.
This punctuation makes the association between specific charge rings in an atom and the
conventional QM single-electron state designations. This information appears below and/or
above the ring: below for lower energy, above for higher energy. For example, one may see

1s+ 28— 25+

2 or 2 or 2 or 3 or 3 or

|
5
|
_ 4d -
Is—  1s— s+ 2P

The first of these ring examples show two single-electron states differing only in spin.
They make something like a ‘Cooper pair’, something familiar from solid-state physics. The
second and third examples involve two different radial quantum numbers. That means the
ring does not have its multiple electrons in a particular single-electron state; instead, it has its
multiple electrons in linear combinations of single-electron states. For different electrons, the
coefficients might differ in phase, but not amplitude, so that in the end all the state linear
combinations in a ring have the same mixed-state average energy. The fourth and fifth
examples have all three electrons alike. The two rings together make a sort of ‘super Cooper
pair’, made out of electron rings instead of individual electrons. The same is true of the last
two examples.

Describing the elements in terms of this ‘vocabulary’ and ‘punctuation’ also requires
some ‘grammar rules’. Here are some rules:
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1. Being the largest of all electron rings, binars make the exterior framework for the
stack.

2. The stack is always straight, centered with respect to the nucleus, and as symmetric
as its total electron count permits.

3. The equi-potential surfaces around a nucleus are spherical, so the stack center falls at
lowest energy, and the stack ends fall at highest energy.

4. The electron ring being filled is always just inside the magnetic bottle created by an
end binar.

5. Rings of the same size but more out-lying positions have higher energies.

6. At a given position, a larger ring probes further into the concave nuclear potential
well, and so has lower energy.

7. As soon as a pair of binars is present, terts can be confined; as soon as two pairs of
terts are present, quints can be confined; as soon as two pairs of quints are present,
septs can be confined.

In [2], the nominal electron configurations of all the elements are described with the
given vocabulary, punctuation, and grammar rules, along with whatever explanations of their
behavior seem to emerge from the visualization model. The competing factors that determine
state energy can make the nominal stacking order look more complicated than it really is. It

can be appreciated pretty well by looking ahead to the end, to element ;¢ ?. Note that the

question mark just means that this element has not been discovered yet, or even imagined, so
it does not have a name.
For the present summary, the first noble gas and the first element after it are:

1s+ 25— 25+

ZHe: 2 and4Be: 2 2

1s— Is— 1Is+

Note that the completion of two binars with ,Be permits the filling of terts to begin.
This filling is completed with the next noble gas:

2s— 2s+
2p+
A
joNe: 23 3 2
b

15— 2P~ Is+

Two electrons further on we switch to three binars, with single terts confined:
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35— 1s+ 3s+

2p+
o
2Mg: 2 3 2 3 2
ISR
25-“P 75— 25+

25— 1s+ 3s+
2p+3p+
ey by
18ATI 2 3 3 2 3 3 2
| | | . |
35_3p—2p—1s_ 2s+

Two electrons further on, we switch to four binars, with only single terts at the outside.

4s — 2s — 2S+ 45+
2p+ 3p+

by by
2003 2 3 2 3 3 2 3 2
I L T T
33—3p_ls—2p_ Is+ 3s+

Enough terts are now present for quints to start filling. When two quints are full, then
more terts can be filled. This filling is completed with the next noble gas:

4s— 25— 25+ 4s+

| | 2p+ | 3p+3d+4p+ |
o | o

3K 2 305 3 2 3 3 2 3 5 3 2

| [ | [ | I |

3s 4p-3d-3p- 3—2 B Is+ 35+

55— 35— 1s+ 35+ 55+
2p+3p+ 4p+3d +
T
3702 5 3 2 3 32 3 32 3 5 2
| ] | | | | | | |
3d-4p- 3p—2p-
4s — P 2s P P 1s— 25+ 4s+



14 Cynthia Kolb Whitney

Observe how the switch rearranges the terts for symmetry. Now two more quints can fill,
and then two more terts can fill. This all completes with the next noble gas.

55— 35— 1s+ 3s

+ 58+
2p+3p+ | 4p+3d+4d+5p+

I R A R
gyXe:2 3 5 5 3 2 3 32 3 32 3 5 5 32
| [ . | | | | | [ |

4s—5p_4d_3d_4p_2s—3p_2p_ls— 25+ 4s+

56Ba:
6S— 4s— 25— 2S5+ 4s+ 6S +
2p+ 3p+3d +4p+ S5p+4d +
N e e B
2 s 3 2 3 5 3 2 3 3 2 3 5 3 2 3 52
| I [ | || | [ | | |
4d -5p— _3d-3p— _
55— d >p _4p 3d 3p 13_2p 1s+ 35+ 55+

Observe how the switch moves terts and quints. It is now possible to fill two septs, two
more quints, and two more terts. All this is completed with the next noble gas.

2p+  3p+3d+4d+4p+ | Sp+5d+4f + 6P+

| Lo o |
2 3 5 5 3 2 3 5 7 3 2
| [ O | R |

1s+ 35+ 55+

25+ 4s + 6s +

p
|
3
|

Two electrons further on, we switch to seven binars, with four tert pairs, two terts, two
quint pairs, two quints, two septs:
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7s— 55— 35— 1s+
| o | Lo | | |
ggRa: 2 7 s 3 2 3 5 5 3 2 3 3 2-
A [ | | |
4f —5d—gpn_ _4d-3d—4p— _2p—
_ 6p 5p 4p—Hs _3P-2p—_
35+ 55+ 7s+
2p+3p+ | 4p+3d+4d +5p+ | 6p+5d+4f + |
| o L
-3 3 2 3 5 5 3 2 3 5 7 2
| | [ | [ |
2+ 4s+ 6S+

Observe how the switch moves quints and terts. At this point, septs can fill, then quints,
then terts. That brings us to an element not yet discovered, and therefore not named:

7s— 55— 35— Is+
| I | o | | |
ng?’+ 2 3 s 7 7 5 3 2 3 5 5 3 2 3 3 2-
| [ T I | | |
_6d-5f-4f-5d—gp_ _4d-3d-4p— _9p_
6s— P 0P =45 3P 4p 25-3P 2P
3s+ 55+ 7s+
2p+3p+ | 4p+3d+4d +5p+  6p+5d+4f +5f +6d+7P+ |
| I o
-3 3 2 3 5 5 3 2 3 5 7 7 5 3 2
o I | I |
2+ 45+ 6S+

Element ;,¢? completes the present discussion of nominal electron configurations.

Observe how the idea of magnetic confinement explains the otherwise mysterious nominal
order in which QM single-electron states fill. When characterized partly in terms of the
traditional angular momentum quantum number |, that order sometimes looks backwards.
But Nature is not paying attention to this purely mathematical construct; it is building a
physical situation based on magnetic confinement.

4. Single Electron State Filling Across the Elements — Exceptions

For about 20% of elements, the nominal single-electron state filling order is wrong, based
on a ‘singleton’ displacement, or on chemical properties, or on known single-electron
quantum state occupations. This Section identifies reasons for the 19 presently known
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exceptions to the pattern. Based on the present visualization model, a few more exceptions are
predicted for elements not yet discovered. Ref. [2] presents them all, along with whatever
insight about them can be gathered from the visualization model. Here we summarize the
possible exceptions with examples of distinct kinds.

The first exception is ,,Cr . It should nominally be

4s— 25— 25+ 4s+
2p+  3p+
o b
2 4 3 2 3 3 2 3 2-
U U R
3s 3d_3p_ls—2p_ Is+ 3s+

45— 25— 25+
2p+ 3p+
oo b
2 s 32 3 3 2 3 g.
| | | | | ‘ | 3s+
3d -3p— _
35-~0 3P~ 2P Is+

The higher-energy right-most binar (3s+/4S+) has been broken and cannibalized: its
4s+ electron has been taken to complete the lower-energy 3d — quint. The net energy
change is negative because the binar was at higher enegy than the quint is. The single 3s+

electron left resting unstably outside the magnetic confinement region makes ,,Cr obviously

conductive.
The next exception is ,oCu . It is similar to ,,Cr except that now it is the second quint

that is being filled, and cannibalizes the same right-most binar.
The next exception is 4;Nb. The situation is similar to ,,Cr, with cannibalization of the

rightmost binary (4s+/55+ ) binar to improve the lower-energy 4d — ring from tert to quart
(still not a quint though), leaving the singleton 4s+ electron outside the confinement region,

with the result that 4, Nb is obviously conductive.

The next exception is 4, Mo. It too is similar to ,,Cr, with a cannibalization of the
higher-energy 4s+/5S+ binar, this time to complete the lower-energy 4d — quint, leaving
the single 4s+ electron outside, and so leaving 4, Mo obviously conductive.

The next exception is 44Ru. Again the 4s+/55+ binary is cannibalized, this time to

improve the lower-energy 4d + from a singleton to a binar. The single 4s+ electron left

outside makes 44 Ru obviously conductive.
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The next exception is ,sRh. Again the higher-energy 4s+/5s+ binar is cannibalized,

this time to improve the lower-energy 4d + ring from binar to tert. The single 4s+ electron
thus left outside makes 4sRh obviously conductive.

The next exception is 4¢Pd. This one is unique among cannibalizations. It should

nominally be
55— 35— 1s+ 3s+ 55+
2p+3p+ 4p+3d +4d+
S T R I O I O
2 5 5 3 2 3 323 32 3 5 3 2:
T L T A O O
4s—4d_3d_4p_23—3p_2p_13— 25+ 4s+
But 4, Pd seems actually to be
35— Is+ 35+
| | 2p+3p+ | 4p+3d+4d +
. | | I
g 5 5 3 2 3 3 2 3 3 2 3 5 5 ¢g
45— | | | | | | | | | | | 4s+
4d -3d-4p— —2p—
4p 2s 3p-2p Is— 2s+

where both the 45— /55— and 4s+/55+ binars have been cannibalized to complete the 4d +

quint, which leaves two singleton exterior electrons, and makes 4, Pd very conductive.

The next exception is 4, Ag. This time, only the 4s+/5s+ binar is cannibalized, and

that suffices to complete the 4d + quint. That leaves a singleton 4s+ electron outside to
make 4, Ag obviously conductive.

The next exception is s;La. This one introduces a different kind of exception; not

cannibalization of an existing electron ring, but rather anticipation or one to come later. s;La

should nominally be
65— 4s — 25— 2S + 4s + 6S +
2p+  3p+3d+4p+  Sp+4d+
I e e I B
2 g 5 32 3 5 3 2 3 3 2 3 5 3 2 3 5 2.
| 4f -1 | | [ | | | N | | |
55— 4d—5p—3s_4p—3d—3p—ls_2p— Is+ 35+ 55+

But 5,La seems actually to be
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6S — 4s — 2s— 2S+ 4s + 6S +
2p+ | 3p+3d+4p+ | Sp+4d+
e
g 2 5 32 3 5 3 2 3 3 2 3 5 3 2 3 5 2
5d - | . b | | | | | |
55_4d—5p—3s_4p—3d—3p—ls_2p— Is+ 35+ 55+

where a single exterior 5d — electron has replaced the single interior 4f — electron, and
made 5,La conductive.

The next exception is sgCe. It is like 5;La in thata 5d — electron replaces one of two
4f — electrons, creating a mixed 4 f —/5d — binar.

The next exception is ¢,Gd . A single exterior 5d — electron replaces the single 4 f +
interior electron, making ,Gd conductive.

The next exception is ,¢gPt. This is the typical cannibalization scenario again: the

55+ /6s+ binar is cannibalized to improve the 5d + ring from tert to quart, leaving a

singleton 5s+ electron outside to make 4¢Pt obviously conductive.

The next exception is ;9Au. The 5s+/6s+ binar is cannibalized to complete the Sd +
quint, leaving a singleton 5s+ outside, which makes ;9 Au obviously conductive.

The next exception is gqAc. A single exterior 6d — electron replaces the single interior

5f — electron, making ggAc obviously conductive. This is the s, La ‘anticipation’ scenario
again.

The next exception is ggTh. It is unique among ‘anticipation’ scenarios: there are two
anticipations: a pair of 6d — electrons replaces a pair of 5f — electrons. That is, o5Th

should nominally be

7s— 55— 35— 1s+
| o | o | | |
2 2 7 7 5 3 2 3 5 5 3 2 3 3 2°-°
| ] | [ | | |
4f —4f —5d —gp_ _4d-3d-4p— —2p—
6s—5f — > 6p 4s >p 4d -3d ap 2s 3p-2p 1s—
3s+ 55+ 7S+
2p+3p+ | 4p+3d+4d+5p+  6p+5d+4f + |
| o I
-3 3 2 3 5 5 3 2 3 5 7 2.
.
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But 4(Th seems actually to be

| (.
3 3 3
| : e N
4f —5d _gcn_ _4d-3d—-4n_ _9p—
6s—6d— 06 Sp-4d=3d=dp—pg 3p-2p-5
35+ 55+ 7s+
2p+3p+ | 4p+3d+4d+5p+ | 6p+5d+4f + |
| o I
-3 3 2 3 5 5 3 2 3 5 7 2.
|

2+ 4s + 6s+

The next exception is g Pa . Again we have an ‘anticipation’ scenario: a single exterior

6d — electron replaces one of three interior 5f — electrons, making o;Pa obviously
conductive.

The next exception is ¢, U. An exterior 6d — electron replaces one four interior 4f —
electrons, making ¢, U obviously conductive.

The next exception is o3 Np. We have another ‘anticipation” scenario: an exterior 6d —
electron replaces one of the five interior 5f — electrons, making ¢3;Np obviously conductive.

This scenario is unusual in that a perfectly good quint is spoiled. That is, ¢3Np should

nominally be

| | |
3 5 5 3 3 3
| I | I | | |
5f-4f-5d-gp-  s5p-4d-3d—4p—__ 3p-2p-
6s— 45-"P 25-"P P75
35+ + 7S +
2p+3p+ | 4p+3d+4d +5p+ | 6p+5d+4f 4 |
| o L
-3 3 2 3 5 5 3 2 3 5 7 2
I
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But 43Np seems actually to be

7s— 55— 35— Is+
) o | . BN
g 2 4 7 5 3 2 3 5 5 3 2 3 3 2.
6d — | o | | | |
4f =50 —gn_ _4d-3d—-4ap_ op_
Al S=6p— g _Sp-4d=3d-d4p— . 3p-2p—
3s+ 55+ 7S+
2p+3p+ | 4p+3d +4d +5p+ | 6p+5d+4f + |
| o o
-3 3 2 3 5 5 3 2 3 5 7 2.
| | I N B | I |
25+ 4s + 6S +

The next exception is g¢Cm. It is a typical ‘anticipation’ scenario: an exterior 6d +

replaces the single 5f + electron, making ¢,Cm obviously conductive

Though not known yet, the next exception is likely to be |, Uun . It should nominally be
7

s_

| T . |

2 5 7 7 5 3 3

o o
6d-5f—4f-5d-¢gp_ _4d-3d-4p—

65 — 6p— 43 4p—,. 3
3s+ 5s+

+  4p+3d+4d+5p+ | 6p+5d+4f 4+5f 460+

||||I||||||
2 3 5 5 3 2 3 5 7 7 3 2.

25+ 45+ 6s+

2p+3

p+3p
|
-3 3
|

But ;;oUun will probably follow ,¢Pt, with cannibalization of the 6s+/7s+ binar to
improve the 6d + ring from tert to quart:
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3s+ 55+
+ 4p+3d+4d +5p+ 6p+5d+4f+5f +6d+

| o I
2 3 5 5 3 2 3 5 7 17 4 g.
L ess

2s+ 4s+

Or 11oUun may even follow ,,Pd, with complete cannibalization of the 6s+/7s+

binar to complete the 6d + quint:

76 55— 35— Is+
| | o | I | o |
2 s 7 7 5 32 3 5 5 3 2 3 3 2-
| | f f| | ] b
_5f—4f—5d—¢pn_ —4d-3d-4p-— -2p-
6S_6d 5d-6p 5p-4d-3d-4p 25 3P=2P—
35+ 5s+
2p+3p+ | 4p+3d +4d +5p+ | 6p+5d+4f +5f +6d+
| N o
-3 3 2 3 5 5 3 2 3 5 7 71 5
e
25+ 4s+

The next exception will probably be ;;;Uuu. It will probably follow -qAu, ,;Ag, and
29Cu in cannibalizing the rightmost binary, 6s+/7s+, to complete the 6d + quint, and
hence becoming obviously conductive.

Element ;;,Uuu completes the present discussion of exceptional electron

configurations. We see that generally exceptions occur because any charge ring that is not yet
completed can still be the wrong size for its confinement location. For example, singleton
electrons are too small to be confined at all, and binars are too big even for other binars to
confine very well.
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5. Numerical Patterns in lonization Potentials

It is desirable now to strive for more quantitative assessment of single-electron state
energies. Experimental evidence related to such energies is available in measured ionization
potentials (represented here as scalar variables, IP’s). IP ’s represent the strength with which
electrons are bound to atoms. Data are generally available for several ionization orders (as
integer variables, 10 ’s) of most elements. It is a rich database to explore. This Section
reveals numerical patterns in the experimental data about ionization potentials of all elements
and all orders.

Even the IP’s of atoms are not yet generally understood as well as they need to be. |
have been studying the problem for some years, and figure 5.1 expresses my current best
understanding of it. The figure depicts the behavior of IP ’s for all elements (nuclear charge
Z=1to Z=120 shown). Element Z actually allows Z ionization potentials, but for larger
Z ,many IP ’s are not so easy to measure. Readily available data go only to seventh order, so
that is how many orders are shown here.

10000

1000

100

10

1

0 10 20 30 40 50 &0 70 80 20 100 110 120
Figure 5.1. Ionization potentials, scaled appropriately and modeled algebraically.

The points on figure 5.1 are measured IP electron volts, scaled for comparison with each
other as indicated by a new theory summarized in subsequent Sections of this paper. The
scale factor is M /Z where M is nuclear mass number. This scale factor is in no way
indicated by traditional QM. Its origin lies in the variant approach to QM explained in
Appendix A3 on QM. That variant approach in turn arises in turn from the expanded
development of SRT explained in the Appendix A2 on SRT, and the field directionality
resolution in Appendix Al.

The lines on figure 5.1 represent my algebraic model for IP’s, rendered in its current
best state of development. The model is capable of producing plausible estimates for all
M / Z -scaled IP’s for all 10 ’s, even beyond those measured, and all Z’s, even beyond
those known to exist.
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The model-development approach is called ‘data mining’. Figure 5.1 has less than 400
out of approximately 5000 desired data points. But that is enough data points to support the
development of the algebraic model.

The work involved is a good example of continuing positive feedback between theory
and experiment. Theory shows what to look for; experiment shows what to try to understand.

The first development step was fundamentally observational: for 10=1, with M /Z
scaling, there are consistent rises on periods, and consistent mid-period similarity to
Hydrogen (Z =1). For 10 > 1, there is consistent scaling with 10 . There are several ways
that the scaling can be described, and the simplest way found so far is previewed as follows:

1. First-order IP’s contain ALL the information necessary to predict ALL higher-order
IP ’s via scaling.
2. Every ionization potential IP of any order 10 can be expressed as a function of at
most two first-order IP’s.
3. For a given ionization order 10 > 1, the ionization potentials for all elements start at
element Z =10, and follow a pattern similar to the IP’s for 10 =1, except for a
shift to the right and a moderation of excursions.

Details follow.

For a given value of 10, the first element that has an IP wvalue for that 10 is the
element with nuclear charge Z=10. This IP represents completely stripping all the
electrons from the atom, thus leaving an ion fully charged to +10 . The IP is given by

2

where IP | is the one and only ionization potential for atomic Hydrogen, and C is a constant

factor. Incarnations of this work prior to [3] expressed my early opinion that this factor, like
so many others to be revealed shortly, involved a 7, and some 2 ’s, and therefore had to be
7/4 .1 saw that the data were slightly off from 7/4, and attributed that discrepancy to
experimental error. I was wrong. I am now sure that the factor is not 7/4; it is 2, exactly,
without any discernable experimental error in the data. Mea culpa. The ‘2’ shows the
ongoing interplay between theory and experiment at work: looking at real data for long
enough can finally open one’s eyes!

The second element having an IP of order 10 is the element having nuclear charge
Z=10+1.This IP is given by

1
IPio,10+1 = Pio,10 +5 x IR x 10. (52)
Then inserting Eq. (5.1) with the value C =2,

2 1
IPIO,IO+1 =2x IPl,l X IO +5>< IPl,Z X IO . (53)
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Eq. (5.3) for IPg |0, makes clear that for Z=10+1 there exists not only a

contribution that scales with the quadratic 102 , but also a contribution that scales with the
linear 10 . The presence of the quadratic term again suggests a physical process involving all
of the 10 electrons being removed. The presence of the linear term suggests a SECOND
physical process, involving just the one remaining electron, perhaps a ‘resettling’ into a
system of net charge +10 .

Eq. (5.3) for IP|§ |0, presages the form of the IP of order 10 for the third element

that has one. This element has nuclear charge Z =10+2. This IP refers, not to Hydrogen,
but rather to Lithium, the start of the second period in the PT/PA. It is given by

1 2 1
IPIO,IO+2 =5 X IPL3 x 10 +E X IP1,3 x 10. 5.4

This IP has the same form as Eq. (5.3) for IPjq |1, but with the coefficient 1/2
replacing the coefficient C =2, and |P1,3 replacing IPl,l‘ Now we have two electrons

remaining, instead of just one, as in IP|5 |, - The linear ‘resettling’ term is essentially the

same in form, as if only the net positive charge of the ion actually matters, not the individual
numbers of protons or electrons.

The fourth element having an [P of order 1O is the one having nuclear charge
Z =10+ 3. The formula for that IP refers to Beryllium as well as Lithium:

1 2 1
IPIO,IO+3 :EX IP1,3 x 10 +(|P1,4 _EX |F’1,3)>< 0. (5.5

And in fact, Eq. (5.5) is just a special case of a general formula that applies for Z = 10 +3

through Z=10+9,0r N =3 through N . =9 in:

next — Nstan

1 2 1
IP = IR 4102 + (IR, —~IP y)l0. 5.6
10,10+N_ =5 P07 +(P N w175 1R3) (5.6)

The 11°th element that has an IP of order 10 is that with nuclear charge Z =10 +10.

For that atom, and for all atoms in the period N . . =N =11 through N . . =17, we
have
P L 102 +qp “Lip 1o (5.7)
10,10+N ., =5 "Ll LN, +1 72 L) :
Every subsequent period is like that. We always have:
P _Lip 1024 Ly o (5.8)
IO’IO+Nnext 2 1’Nstart 1’Nnext+1 2 1’Nstart ’ '
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where N =3,11,19,37,55,87, ...

start

Figure 5.1 shows that the weakest area of the model for higher order IP’s in terms of
first-order IP’s is its fit to second-order and third-order IP’s for elements in the sixth and
seventh periods. Because the model works so well elsewhere, it is natural to scrutinize those
points especially closely for clues to the mismatches there. It may be important that the
reported second- and third-order IP ’s there are very close to 2 and 3 times the corresponding
first-order IP ’s. It is possible that the physical process that produced the data was actually
different from what was intended: coincident production of multiple atoms each singly-
ionized instead of production of a single atom multiply-ionized.

The algebraic model gives an exceedingly prominent role to terms in squared ionization

order, 102 . This raises a question to face head on. When one speaks of ionization at order
10, should one imagine removal of one more electron from a previously prepared ion of
charge +10—17? Or should one imagine removal of 10 electrons all at once? Some may
favor the former vision because it fits with theory we have been taught. But having seen all

the data, with its prominent 102 scaling, I now believe the latter vision absolutely.

Overall, the model for for higher order IP ’s in terms of first-order IP ’s seems to convey
a simple message: Evidently, the typical IP of order 10 involves THREE physical
processes:

1. Removal of 10 electrons from an atomic system, which is thereby left with net
positive charge of +10 . The energy required for this process must scale with 102

So it has to be the term 1 IR 102 in Eq. (5.8).
1’Nsta.rt

2. But before that must come removal of 1O electrons from the atom’s electron
population, which will then be left with Z — 10 electrons. The energy required for
this process must depend on the specific Z , which enters Eq. (5.8) only through the

tHIO in Eq. (5.8).

variable N So it has to be the term IP1 N

next nex

3. There must also be reconstruction/reinstallation of the smaller population of Z — 10
electrons. As the reverse of destruction/removal, the energy ‘required’ for this

process is negative. So it has to be the term 1 x 1Py 10 in Eq. (5.8).
2 >Nstart

The first two IP’s of any order 10 >1 are not quite typical. The general case is Eq.
(5.8), but for total ionization, IPZ,Z = IPIO,IO =2x IPl,l x 102 [Eq. (5.1) with C correctly
set at 2], and for removing 1O—-1 electrons, thus leaving just one electron,
IPZ—I,Z = IPIO,IO+1 = 2x IPL1 x 102 +%>< |P1,2 x 10 [Eq. (5.3)]. Why are the underlined
factors 2 instead of 1/2 ? Observe that Hydrogen is exceptional: it has no electron-electron
interactions. So only process 1 exists; there is no Process 2 or Process 3. So Hydrogen’s IPLI

is deficient in information as a period-start reference for other more normal elements.
Observe that the general sum of the absolute coefficients in Eq. (5.8)is 1/2+1+|-1/2]=2.
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This suggests that Hydrogen’s information needs to be scaled up by 2 rather than down by

1/2 in the 102 terms for the first two IP’s of order 10 .

These comments complete the demonstration that first-order IP’s contain ALL the
information necessary to predict ALL the higher-order IP ’s via scaling laws.

We come now to the problem of the input first-order IP’s themselves. As shown on
figure 5.1, first-order IP’s exhibit consistent rises on periods, and consistent mid-period
similarity to Hydrogen. The rise factors are all 7/2 . After the first three periods, the period
maxima are all similar to each other, and the period minima are all similar to each other, and
the period mid regions are all similar to Hydrogen. Figure 5.2 details these facts.

Observe that the neighboring IP ’s are connected to each other by scale factors, such as
7/2, 1/4, 7/8, etc. These scale factors correspond to alternate and redundant paths
through the data. The path actually used in the excel program that created figure 5.1 is
indicated by the scale factors that are displayed in bold font.

718| 4 [ 1/ 4« [ L |78
718 { [ 1/ 4« [ Lo |78
11Na IPlll =10.75| > 7/2—> | 3501= IPl,18 18Ar
7181 [ «1/4¢ [ I |7/8
10K | 1R19=894 | > 712> | 3262= P gg | goKr
1 J «2/7« N 1
57Rb | 1R 37 =966 | > 7/2 > | 2951=IPg, | g4Xe
1 N «2/7« N 1
1 J «2/7« N 1

Figure 5.2. First-order IP ’s: map of main highways through the periods.

The consistency of the rises of 7/2 can be appreciated, if not fully understood, as a
manifestation of periodicity: all periods in the PT/PA are fundamentally similar. The
numerical value 7/2 can be understood in relation to the already noted connections between
IP’s of order 1 and those of higher order 10 >1. The expression

7

can be written

1
Py =2x 1R x2x1+(0- 1R )x1 (5.9b)
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or

1
IPio. 1410 =2% 1P x (10 +1)x 10+(0~_ IR ) 10 (5.9¢)

with 10 =1, which for general 10 resembles Eq. (5.8) except for the following differences:

1. The factor of 2 instead of the factor 1/2, which any reference to Hydrogen
requires;

2. The factor (I0+1)x IO in place of the 102 factor, which is appropriate because
Helium has nuclear charge Z=2=10+1;
3. The zero in place of P, \ , which is appropriate because there exists no input 1P, ,

to use.

All of this suggests that the connections between first IP’s of different elements
resemble the connections between IP ’s of different orders. This suggests in turn that all IP’s
of all orders can ultimately be related back to Hydrogen. However, there exist many more
details to specify. Within the periods beyond the first one, the rise is nowhere steady; there is
a lot of detailed structure in the IP plots. On the log scale of figure 5.1, there appear to be
straight-line runs interrupted by discontinuities. The straight-line runs are associated with the
nominal blocks of the traditional angular momentum quantum number | . Every straight-line
run is characterized by:

1. A total rise over the run, and
2. An intercept with the ‘main-highway’ straight line through the period.

The rise appears to be a function of the parameter N = 1,2,2,3,3,4,4 that belongs to the
period, and the angular momentum quantum number | that varies within the period from 0
to N —1. The rise for | =0 is just the full period rise for N =1, and for N > 1 it appears to
decline with each period. The sequence plotted in figure 5.1 is 1,1/2,1/3,1/4, with 1/4
repeated thereafter.

The rise for |1 >0 offers a lot more data to support a choice of model. The following
function was developed for use in figure 5.2 for all 1>0:

incremental rise = total rise x fraction, (5.10a)

where

fractionz[(zlﬂ)/NzJ[(N -h/1]. (5.10b)
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The first factor in square brackets is just the ratio of the multiplicity of | states,

2(21+1), to the period length, 2NZ2. The second factor, (N —1)/1, captures the real

variability in slopes. Figure 5.3 gives the overall fraction for all N,| pairs of interest.

N | period | | | fraction | | | fraction | | | fraction | | | fraction
1 1 0 1

2 2 0 1/2 1 3/4

2 3 0| 1/3 |1]| 3/4

3 4 0| 1/4 |2| 5/18 | 1| 2/3

3 5 0| 1/4 |2| 5/18 | 1| 2/3

4 6 O 1/4 |3] 7/48 |2| 5/16 |1]| 9/16
4 7 O 1/4 |3] 7/48 |2| 5/16 |1]| 9/16

Figure 5.3. First-order IP ’s: map of local roads through the periods.

The intercepts for | =0 and | =1 are fixed by the period boundaries: the first | =0 point
is tied to the period start, and the last | =1 point is tied to the period end. The intercepts for
I=2 and | =3 are set at the midpoints of those runs. Because 2(21 +1) is an even number,

midpoints fall between elements. The data often shows some type of discontinuity at run
midpoints (where the spin quantum number S changes sign). For the model, the IP’s just
above and below these mid points are set equal, making a tiny flat spot on the plotted curves
on figure 5.1.

Figure 5.1 shows that the weakest area of the model fit to first-order IP’s is in the
seventh period, in the Actinide series. The model is systematically low in comparison to the
first order IP data there. The present study on single-electron state filling order may help
explain why this happens.

It is often assumed that when ionization occurs, what gets removed from the mix of
single-electron states is a state that has the largest n radial quantum number involved, and so
seems to be on the ‘outside’ of the atomic system. This is certainly true for elements that

begin periods: 1 H, 3Li, 11Na, 19K, 37Rb, 55Cs, g7 Fr. It has to be true for ,He and
4Be too. It is probably true for |, Mg, ,,Ca, 34Sr, 5cBa, and ggRa. But it may not be

true in general.

Nor is it necessarily true that the single-electron state that gets deleted is the last one
added. For example, in the d runs of Periods 4 and 5, there are many d for S replacements
in building the atoms, so there might also be such replacements in ionizing them. For

example, 3,Zn might give up a d state rather than the s state added last, because the two s

states now present are like a Cooper pair, which is very resistant to parting, as , He shows us,

whereas the 10 d states present are only like a Cooper pair when all taken together, so that
removing just one d state should be less difficult — apparently by a factor of about 2/5.
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Just before ;3Zn, ,9Cu tells the opposite sort of story: ,qCu has one of those

anomalous d -for-S replacements, and as a result, it has just one S state present, which it
readily gives up for ionization.

In short, complications in the single-electron state filling story lead to complications in
the story about IP’s. In the Period 7 Actinide series, there are many d -for- f replacements

present. Suppose ‘splitting’ due to magnetic effects sends a d state down and an f state up

in energy, resulting in the replacement, and then ionization results in deletion of the d state.
The algebraic model does not know about this complication, so it somewhat underestimates
this anomalous data point.

More generally, the obvious regularities present in the mass of IP data seem to be trying
to tell us something. It remains our duty to figure out more of what the message really is.
Some further ideas are discussed in the last of the Appendices, which is devoted to
spectroscopy.

6. Comments on Chemical Periodicity

This paper has so far discussed two manifestations of ‘periodicity’. Sect. 3 discussed the
nominal pattern for single-electron state filling in terms of superluminal spinning charged
rings and magnetic confinement thereof. The resulting model shows a structural manifestation
of periodicity. It gives some clues for understanding the exceptions that do occur, as
discussed in Sect. 4. Section 5 then identified the nominal pattern for ionization potentials of
all elements and all ionization orders, and noted that slight departures correlate with
exceptions in single-electron state filling. The basic pattern in the ionization-potential data is
a physical manifestation of periodicity.

We turn now to the heart of Chemistry: chemical periodicity. The development of the
Mendeleev’s Periodic table (PT), based on chemical periodicity, marks the beginning of a real
science. The PT has been the fundamental organizing tool for all of Chemistry. Eric Scerri
documents the extensive history of PT development, and our present understanding of its
significance, in [6].

The existence of chemical periodicity has long been considered a mystery. People have
imagined electron shells nested around the nucleus of an atom, and supposed that the number
of electrons in the outermost shell determines the chemical properties. This idea is useful for
smaller atoms, but becomes cumbersome and unhelpful for larger ones. Just consider that
periods 6 and 7 have 32 members each, suggesting outer shells of 32 electrons each. Are there
as many as 32 distinguishable chemical behaviors?

My own opinion is that chemical periodicity correlates better with the structural
periodicity and the physical periodicity discussed in earlier Sections of this paper. That is, the
sizes and positions of spinning charged rings correlate with chemical properties, just as do the
patterns in ionization potentials.

Since the structural periodicity is all about filling spinning charged rings, the chemical
behavior may well have more to do with what is absent than with what is present. For
example, any element a few electrons short of a ‘quint” will strongly seek those few electrons.
Indeed, Section 4 showed many instances of self-cannibalization of ‘binars’ in those cases.
Conversely, any element with only one or a few of the electrons needed to fill the currently
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filling ring will strongly seek to lose those electrons. The quantitative meaning of ‘strongly’
has to do with ionization potentials, as described in the next Section.

In preparation for that, we need a purpose-built version of the iconic visual display
concerning chemical periodicity: the Periodic table. The goal of organizing the elements
according to chemical properties, like valence, has previously produced the wheels, spirals,
helixes, three-dimensional pretzels, conics, trees, and more, collected and richly displayed by
Spronsen [7]. The goal of organizing the elements according to shell structure or electron
configuration has produced some more linear types of displays, which are generally favored
by Mazurs [8]. These have elements arranged in columns for chemical similarity.

I like the idea of using an architectural metaphor in general, but not the column metaphor
in particular. As the PT has grown to accommodate more and more newly discovered
elements, the columns have come to include some very short ones to the center left, where the
Lanthanide and Actinide series must go. Being unable to support any metaphorical ‘roof” of
all-encompassing understanding, those columns are generally stored away in the ‘basement’
(footnotes), to be remembered and retrieved as needed by the user. This is awkward.

My preferred remedy for the situation is to change the architectural metaphor: instead of
thinking ‘columns’, think ‘arch’. Figure 6.1 shows the ‘Periodic Arch’ (PA). Some
information appears in red, for reasons to be explained next.

Any architectural metaphor naturally attracts one’s attention to the idea of a ‘foundation’.
The foundation of the PA is the red information along the bottom of the arch: the N

parameter, the arch layer lengths L, and the noble gasses and their atomic numbers Z ..

L=2N? for N=1,2,2,3,3.4.4,....

z :ZN L(N)=2,10,18,36,54,86,118,... (6.1)

noble

Although actual element discovery is presently only up to Z =112, one can anticipate
that the pattern identified will be followed by any heavier elements that may be found in the
future. Should we ever reach and progress beyond Z =118, we will be into the regime of

N =5 and 2N? = 2(5)2 =50, and so on, according to the pattern.

While the pattern, 2N 2 for N = 1,2,2,3,3,4,4,..., was also detectable in the rows of the

traditional PT, it was rather hidden there because of the confusing footnotes for insertions.
Mingos [9] noted the numbers, and described them by an algebraic formula (numerically
equivalent though formally different), but did not pursue a deeper meaning. Siekierski &
Burgess [10] discussed in some detail the believed reasons why each atom turns out the way it
does, but not why the overall pattern is what it is.

The arch metaphor further draws one’s attention to the idea of ‘keystone’. The keystones
in the PA are the red elements up the middle of figure 6.1: starting with Hydrogen, and above
it Carbon, Silicon, Cobalt, Rhodium, Ytterbium, and Nobelium. These keystone elements
play an important role in chemical bonding, discussed next.
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g7Fr[ssCs [37Rb[ 19K [11Naf 3Li oF\17C1| 35Br|s3l | gsAt| 17?7

|Z=32|L=18|L=18|L=8|L =8| I

Figure 6.1. The Periodic Arch (PA).

7. Comments on Chemical Bonds

The foundation algebra and the keystone elements of the PA turn out to be useful for
developing comments on the nature of chemical bonds. We know that some molecules tend to
be stable, whereas some tend to be highly reactive. For example, some simple dimers, like

H, or NaCl, etc., may escape into air, or dissolve and dissociate in water, but they will not

react explosively without a spark or catalyst of some kind. But some monomers, like atomic
Hydrogen and metallic sodium, are more risky. The present understanding for these simple
cases is often phrased in terms of ‘complete’ and ‘incomplete’ electron ‘shells’, which are
said to surround atoms. But what should be said about larger molecules, with many atoms in
them? Evidently, molecules that are relatively stable must have strong chemical bonds
throughout, and molecules that are strongly reactive must have some weak chemical bonds
somewhere. In order to extend the somewhat limited ‘shell’ understanding to larger
molecules, consider the following more general candidate statement:

Proposition 1: Molecules that are relatively stable have total electron counts such that every
atom present can be assigned an electron count equal to that of a noble gas, or else zero.

The proposition is saying that chemical bonding has less to do with pair-wise connection
between individual atoms, and more to do with molecule-wide collective status of all atoms.
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The means for improving collective status is redistribution of electron resources. The idea is
that electrons are like cash money: they are totally fungible — even more so than cash money,
since they have no serial numbers or other individually distinguishing characteristics. Atoms
are like citizens of a society: they aspire to some recognized status that has something to do
with sense of wealth: either ‘noble gas’ (possessing a comfortable number of electrons), or
else ‘priestly class’ (needing no worldly electrons at all). Strong bonding is about attending to
every atom present. If that goal can be achieved, then the molecule can have a population of
well-satisfied atoms, constituting a relatively stable society.

The reader can readily verify that Proposition 1 is satisfied by the simple dimers like H,,

NaCl, etc., as well as water H,O, CO,, and many other simple trimers. Table 7.1 gives a

half dozen of the increasingly complex other examples that prompted the articulation of
Proposition 1. There exist many more examples; there are, for example, many hydrocarbon
fuels, and so far all of them examined do have electron counts that can be redistributed in the
way that Proposition 1 describes. Maybe the stability thus implied is why the hydrocarbon
fuels are commercially viable.

Table 7.1. Electron redistributions in relatively stable molecules to give to
all of the atoms an electron count equal to that of a noble gas, or else zero

Name Chemical formula Electron contributions Electron redistributions
Ammonia NH N :7, H s: 1 each N:10, H’s:all0o
3 total 10 total 10
Sodium NaOH Na:11,0:8 H:1 Na:10,O:10, H:0
hydroxide total 20 total 20
Potassium cho3 K ’s: 19 each, total 38 K ’s: 18 each; total 36
carbonate O ’s: 8 each, total 24 O ’s: 10 each, total 30
C : 6; total 68 C : 2; total 68
ch(;rtr;i’; CH3C02C10H17 C ’s: 6 each, total 72 C ’s: 6@2, 6@10; total 72
H ’s: 1 each, total 20 Hs: 8@2, 8@V, total 16
O ’s: 8 each, total 16 O ’s: 10 each, total 20
total 108 total 108
i:;‘ite (CH3C02 )2Pb . 3H20 C ’s: 6 each, total 24 C ’s: 2 each: total 8
H ’s: 1 each, total 12 H’s: 5@2, T@0, total 10
O ’s: 8 each, total 56 O ’s: 10 each, total 70
Pb : 82; total 174 Pb : 86; total 174
CtalCiltm (C7H35C0,),Ca C ’s: 6 each; total 216 C ’s: 18@10, 18@2, tot. 216
aral
stearate H ’s: 1 each, total 70 H °s: 38@0, 32@2, total 64
O ’s: 8 each, total 32 O ’s: 10 each, total 40
Ca : 20; total 338 Ca : 18; total 338

Observe in table 7.1 that the noble-gas number (or zero) assigned to each atom is
generally for the noble gas (or zero) as close as possible to that element. Observe that the
‘keystone’ elements are all special, being equidistant from two noble gasses, or in the case of
Hydrogen, equidistant from a noble gas and a priestly-class 0. An equidistant condition
allows two choices of electron reassignment. The equidistant condition of Hydrogen perhaps
explains something mysterious observed in deep space. Evidently, any Hydrogen atom would
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want either to form a Hydrogen molecule (2 electrons total), or if that were not possible, then
to dissociate and form plasma (proton with no electron). Plasma is indeed frequently observed
in deep space. The amazing possibilities for Carbon-Carbon bonds are well known (chains,
rings, sheets, tubes, balls...life...), and seem likely to trace to its special equidistant
condition. Silicon is known to be very similar to Carbon, and the other keystone elements
may also turn out to be more similar than is presently recognized.

Sometimes, the condition specified in Proposition 1 cannot be achieved. For example, it
cannot be achieved for any molecule that has an electron count that is an odd number. Also, it

cannot be achieved for some atmospheric gasses, such as O,, O3, or NO. These molecules

are often rather highly reactive. These situations prompt one to consider a second candidate
statement that is the converse to Proposition 1:

Proposition 2: Molecules that are highly reactive have total electron counts such that not
every atom present can be assigned an electron count equal to that of a noble gas, or else zero.

The kinds of molecules that prompt the statement of Proposition 2 invite some further
discussion of the ‘society” of atoms. We have so far identified the ‘priestly class’: | H, with

no electrons needed, and the ‘noble gasses’: ,He, 1ONe s 18Ar , 36Kr R 54Xe, 36 Rn,
1187 » with period-finishing electron counts. There is also a somewhat less prestigious ‘gentry
class” with sub-period-finishing electron counts: ,Be, |, Mg, 20Ca, 351, s¢Ba, ggRa;
3040, 48Cd, goHE: 1127 70Yb, and 102No.,. Then we have a hard-working ‘middle
class’ with electron counts that finish the first half of a sub-period: 7N, 5P, 334s, 51Sb ,
33Bi; 11575 a3Tc, 75Re, 107 Bh; 63EU and g5Am . Nitrogen is a typical middle-class

element; for example, it imposes some moderation on Oxygen. Oxygen is from the remaining
‘feckless mass’: subject to rearrangements and exceptions of the sort documented in Section
4, plus other alarming behaviors. For example, Oxygen burns things. Finally, drawn from
almost the whole of this diverse society, we have a peace keeping police force of ‘keystone

elements’: 1H, ¢C, 148i, 27Co, 45Rh, 70Yb, 102No; these ‘keystone cops’ include
priests, gentry, and feckless individuals, all working together for molecular stability.

Both Propositions stated about molecules are fundamentally qualitative in nature. The
data about ionization potentials can now be enlisted to provide quantitative backup for the

Propositions. For example, consider for example the reaction CH, +20, — CO, +2H,0.
The methane CH, is a stable molecule with 6 electrons from the Carbon atom and 1 from
each Hydrogen atom, for a total of 10 electrons, admitting the reassignments 10 to Carbon,
none to any Hydrogen. The Carbon becomes like the noble gas ;,Ne, with M /Z -scaled
first IPl,lO of 43.64eV. The four H ’s enter the ‘priestly class’, and have no associated IP.

The two oxygen molecules are both unstable, with 16 electrons total. They cannot make any
fully noble-gas reassignment. The best they can achieve is 10 electrons to one Oxygen atom,

6 electrons to the other. That makes one oxygen atom like ;(Ne at scaled IP of 43.64¢V,
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and the other like (C, at 21.57 eV. The total for each oxygen molecule is 65.21 eV. On the

other side of the reaction, CO, is a stable molecule with 22 electrons, admitting the

reassignment of two electrons to the Carbon atom, ten to each Oxygen atom. That makes the
Carbon atom like ,He, at 49.875 eV, and each Oxygen atom like ;,Ne, at 43.64 eV. The
two water molecules are stable, with a total of 10 electrons each, all reassigned to the Oxygen
atom, which thereby becomes like yNe at 43.64 eV. The sum on the left side of the

reaction is 43.64+2x6521=174.06eV. The sum on the right side of the reaction is
49.875+4 x43.64 = 224.435¢eV. The larger sum on the right is a quantitative reason for the
fact that the reaction goes to the right. The amount of the excess correlates with the energy
produced, although there remains Z/ M scaling to be re-introduced in some appropriate way
to specify that energy numerically.

8. Conclusion

If science is to have the firmest foundation possible, no stone potentially useful for that
foundation can be left unturned. An important stone was left unturned during the time that the
world possessed Maxwell’s electromagnetic theory, but did not fully possess the
mathematical tools necessary to explore all of its implications; tools such as linear system
theory (Fourier transforms) and generalized functions (Heaviside step, Dirac delta). The
problem concerns the propagation of a finite-energy packet of light, like a photon.

The theory and proper use of generalized functions occasioned many years of debate,
mainly because any representation for them, whether by a parameter that goes to infinite
value, or by Fourier integrals, or sums, that go to infinite limits, lacks the normal and usual
mathematical property of ‘uniform convergence’. (The term ‘uniform convergence’ would
mean that one could set an arbitrarily small error limit, and guarantee that some finite
parameter value, or integral limit, or sum limit, would meet the error limit everywhere. No
such luck here. The unavoidable penalty is that familiar math operators, like integration,
differentiation, and limit, cannot be trusted to commute.)

No risky operator commutations are involved in the analysis given here, so one has to
wonder: Why was this analysis not done a century ago, and well remembered today? The
work of Oliver Heaviside was vital for the wide adoption of Maxwell theory, because he
developed the modern vector notation for it. He is also credited with the idea of the ‘step
function’, which involved in the present analysis? So why didn’t he do this analysis, or if he
did, why isn’t it remembered today? Perhaps his mind was ‘compartmentalized’: the
‘Maxwell-equation’ physics mind not communicating with the ‘step-function’ engineering
mind. Or perhaps, like many useful things, it was forgotten.

Too late to restrain the excesses of SRT or QM, generalized functions finally became
familiar enough for routine use, most often in modern engineering science, sometimes in
physics, although not always correctly, engineers would argue. In particular, in
electromagnetic theory, the generalized functions have been used to ‘modernize’ the
derivation of an early application of Maxwell theory, the Liénard-Wiechert potentials and
fields. Although the end results comport with the original derivations, the reader will find
many risky operator exchanges involved in getting to those results.
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The fact is: the original Liénard-Wiechert results, and many related results involving high
relative speeds produced by Einstein’s SRT, embed an assumption that contradicts Maxwell
theory. That assumption concerns the ‘speed of light’. The assumption has been overly
simple: just ‘C’. The Maxwell analysis given here suggests something more complicated.
That makes the foundation for an otherwise questionably postulate-based tower of theoretical
development that is summarized in the Appendices. The first Appendix shows how the
Liénard-Wiechert results change. The next articulates and illustrates the natural history of a
photon through emission, expansion, encounter with a candidate receiver, contraction, and
absorption by this receiver. Two Step Light then provides a foundation for an expanded
version of SRT, a ‘covering theory’ for Einstein’s SRT. Since expanded SRT contains
Einstein’s SRT, researchers who are happy with SRT need not sacrifice anything. But
researchers who need something more can perhaps find what they need in the expanded SRT.

Most notably, through the expanded SRT, Two Step Light leads to an expanded version
of QM. We need not postulate the value of Planck’s constant, or the nature of its involvement
in the mathematics of ‘probability’ waves, etc. Planck’s constant can be an output from, rather
than an input to, the expanded QM. It comes from the model for a Hydrogen atom with its
single proton and its single electron in balance through two competing effects: the well-
known loss or energy through radiation, and the newly exposed gain of energy from internal
torquing within the system.

The approach for expanded QM resembles the early Thomas-Fermi approach, and the
more recent density-functional approaches, in the sense that it seeks a universal solution,
particularized to individual elements by scaling laws. But the approach for expanded QM
differs from those other approaches, in that it does not use a spatial density function, or
involve any spatial integration to estimate any values of any variables. All it uses is algebra.
Results include ‘sub-states’ for Hydrogen and other atoms, plus ‘spinning electron rings’ to
form ‘charge clusters’. This charge cluster idea brings within reach some new approaches for
fundamental problems in Chemistry. The basic idea is that all atoms resemble Hydrogen,
except with a more positive and heavier nucleus instead of a proton, and an electron cluster
instead of a single electron.

Thus the expanded QM leads to ‘Algebraic Chemistry’. Some results from the main part
of the paper are summarized and commented as follows:

*  We have a way of thinking about single-electron state filling across the elements. It
is all about building an orbiting charge cluster from super-luminal spinning rings of
electrons in successively larger electron counts and smaller geometric extent, each
magnetically confined between geometrically larger, lower electron-count rings. The
process might well be described as ‘fractal’.

*  We also have a way of thinking about the exceptions to nominal single-electron state
filling order that occur for about 20% of elements. They have to do with incomplete
electron rings being the wrong size: single electrons too small, and able to escape
along the axis of the confining rings, or low-electron count rings being too
geometrically large to fit where they belong.

* The charge-cluster model for electron populations offers some explanation for the
otherwise totally mysterious Hund’s rule: fill all of one spin state first, then the other.
The mystery is that when paired, opposite spin electrons seem to make a stable
configuration (a Cooper pair), so why doesn’t Nature fill atomic spin states in
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alternating order? The explanation offered by the present model is that an electron
ring that is more filled, which makes it geometrically smaller, so that it can be well
confined magnetically, is more stable than two less-filled, geometrically-larger rings,
which are hence not so well confined magnetically.

We have an algebraic model for ionization potentials, IP ’s. This model is synoptic: it
extends to all possible elements and all possible ionization orders. It shows that there
exists repeated sameness of ionization potentials from period to period, and it has to
do with the sameness of the electrostatic attraction between a positive nucleus and a
negative electron cluster. There also exist clear differences between ionization
potentials from atom to atom within a period, and it has to do with the difference
between the electron clusters that the atoms have.

The IP model could be important and useful in a practical way. For example, there
exist some really ‘bad actors’ among the known elements - think of Plutonium,
Polonium, Thallium, or Uranium. There are also some very short-lived elements
beyond Uranium. Supposing that there exists some good reason to know more about
these dangerous and difficult elements, it is a good thing to have a single, safe and
reliable model, instead of many dangerous and difficult experiments, to estimate all
their ionization potentials.

We have a way of thinking about chemical periodicity. It has to do with recurrent
situations that occur in the filling of spinning electron rings in the atomic electron
cluster. In short, the chemical character of an element has more to do with what is
present in, or what is absent from, the spinning electron ring that is currently being
filled than with any characterization in terms of a nucleus surrounded with ‘electron
shells’ (which the present author doesn’t believe in).

We also have a purpose-built new display format for the Periodic Table (PT);
namely, the Periodic Arch (PA) The historically numerous revisits to the PT do
express the strong tradition in science for looking at the same, known, information
again and again, but arranged in a variety of different ways. This sort of exercise is
important for scientists to do, and keep doing, regularly. Experience has shown over
and over that looking at any information from a different angle can reveal aspects of
that information not consciously noted before, and so can trigger new and interesting
insights and new questions to ask. The PA invites one to pay attention to ‘keystone’
elements, which facilitate chemical bonding by being equally able to give or take
electrons.

We have a way of thinking about chemical bonding that is holistic: not about
individual atom-to-atom connections, more about molecule-wide conditions. It
appears that all bonding between atoms in a molecule, however complex that
molecule may be, does involve reassignment of electrons, described by the offered
Propositions 1 and 2.

Any reassignment of electrons gives the individual atoms a net charge. It would then
appear that, while electron populations in atoms are held together magnetically,
atoms overall are held together in molecules by electrostatic forces.

Bond strengths must have some correlation with ionization potentials of the elements
corresponding to the reassigned electron counts. We have gotten far enough with that
idea to see what direction a reaction goes. We still need to detail further how to
calculate exact reaction energies.



Recent Progress in ‘Algebraic Chemistry’ 37

* There is a great deal of other work yet to be done too. The presentation of the
algebraic model in [3] prompted the Guest Editor Prof. Dr. Mihai V. Putz to call my
attention to his related works [11-13]. Ref. [11] reveals, like the present work does,
energy increments that are linear and quadratic in electron numbers. Reaction

energies of ‘hard acid’ (H+) and ‘soft acid’ (HO+) with ‘hard base’ (OH ) and
‘soft bases’ (many kinds exist) are studied in [12]. They, and other reaction energies,
must be related to the IP data here codified in terms of the PT/PA. Trends across the
PT/PA are addressed for electro-negativity and hardness in [13]. I believe there exists
much related data here to be further mined!

Just for one more example, there exists a whole body of work in mathematics, especially
topology and structural analysis, by my colleague Don Briddell [14], and it all looks
potentially useful for thinking about complicated orbits traversed by electron clusters in
molecules.

Appendices

The following Appendices provide the path through theoretical physics that leads from
the Maxwell analysis to the practical chemistry applications featured in the main part of this
paper. We begin at a point in time late in the 19" century and work forward.

Al. Retarded Potentials and Fields

Maxwell’s equations contain the free-space electric permittivity ¢, and magnetic

permeability p,, which together imply a light speed c. Einstein stated this fact in a

formalized way as his famous Second Postulate, but it was known and used well before that.
One early use was in the now-standard expressions for electromagnetic potentials and fields
created by rapidly moving sources. These were developed in the works of Liénard (1898;
[15]) and Wiechert (1901; [16]).
Expressed in Gaussian units [17], the Lienard-Wiechert scalar and vector potentials are:
(x,tH)=e[1/xR|

and A(x,t)=e[B/«R] (Al.1a)

retarded retarded ’

where k =1-ng, with B being source velocity normalized by ¢, and n=R /R (a unit

vector), and R=r . ..(1)—r t—R/c) (an implicit definition for the terminology

ource (
‘retarded’). The Liénard-Wiechert fields expressed in Gaussian units are then

E(x,t) = e[(n _B)1-p%)/ 3R +nx ((n-B)xdp/ dt)/CK3R}

and B(x,t)=n

retarded

retarded X ECG1)- (Al.1b)
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The 1/ R fields are radiation fields, and they make a Poynting vector P that lies along

Nretarded *
2
P = Eradiative X Bradiative = Eradiative X (Nretarded * Eradiative)= E ;diativeMretarded - (Al.Ic)

But the 1/R? fields are Coulomb-Ampeére fields, and the Coulomb field does not lie

along N 4.4 as one might naively expect; instead, it lies along (N—B) otarded -

Consider the following scenario, designed specifically for an instructive exercise in
reductio ad absurdum. A source executes a motion comprising two components: 1) inertial
motion at constant B, plus 2) oscillatory motion at small amplitude and high frequency, so

that there exists a small velocity AR and a not-so-small acceleration

retarded

dAB/ dt|r Observe that the radiation and the Coulomb attraction/repulsion come from

etarded

different directions. The radiation comes along N ... from the retarded source position,
but the Coulomb attraction/repulsion lies along (N —B) oiardeq > Which is basically

and lies nearly along n This behavior seems peculiar.

(nretarded )projected ’ present *

Particularly from the perspective of modern Quantum Electrodynamics (QED), all
electromagnetic effects are mediated by photons — real ones for radiation and virtual ones for
Coulomb-Ampere forces. How can these so-similar photons come from different directions?

This is a paradox. It is a clue that the usage of ¢ in so simplistic a way may presume too
much. It is thus a clue that Einstein’s Second Postulate may have presumed too much too.
Witness that SRT has produced an extensive literature about paradoxes, especially featuring
twins, clocks, trains, meter sticks, or barns, or spinning disks, etc. The Liénard- Wiechert
problem is not generally counted among them, but there it is.

The Maxwell-based analysis of the finite-energy pulse developed in the present paper
resolves the directionality paradox inherent in the Liénard-Wiechert potentials and fields. It
introduces various 2¢’s into the mathematics. Because of all the 2c¢ ’s, the radiation direction

Netarded ChaNgEs 0 Npoie oo ded> and the Coulomb attraction/repulsion direction

(nretarded)projected changes to (nretarded)halfprojected' These two directions are now

physically the same; namely the source-to-receiver direction at the mid point of the scenario,

i.e. n . The potentials and fields become:

mid point

D(x,t)=¢[ 1/ R]mi d point 214 A = e[V/ cR]mi & poiat (Al.2a)
and
E(x,t)=e[n/ R%+(n/cR)x (nxd(V/c)/dt)} and
mid point
B(X,t)=n x E(X,t) (A1.2b)

mid point
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SO
P = E adiative X Bradiative

=E

(Al1.2¢)

2
radiative X (Nmid point % Eradiative)= Eradiativenmid point

Observe that the Coulomb attraction or repulsion is now aligned with the direction of the
radiation propagation.

A2. Expanded SRT: Reintroduction of Galilean Speed

People often think of Einstein’s SRT as another face of Maxwell’s EMT, since so much
of either theory can be derived from the other. But this assessment is not quite accurate, since
the finite-energy propagation analysis presented in this paper really is part of EMT, although
a late arrival, and it conflicts with Einstein’s famous Second Postulate, upon which he based
SRT. [18,19]

Maxwell’s equations contain the free-space electric permittivity €, and magnetic

permeability p , which together imply a light speed C that is entirely determined by space,

without reference to matter. This fact influenced Einstein in formulating his famous Second
Postulate, asserting that this light speed is the same constant ¢ for all inertial observers,
independent of any particular circumstance, such as motion of the source. This assertion is the
foundation for SRT.

But given the finite energy analysis developed in the present paper, the assertion needs to
be refined to embody the characteristics of a finite-energy wave packet: emission and
expansion from one atomic system, followed by contraction to and absorption by another
atomic system. The main refinement needed concerns the ‘reference’ for the light speed c .
The finite energy analysis requires that it be not so reference-free as Einstein made it. In the
expansion phase of the scenario, C has to be speed relative to the source that has emitted the
energy, and in the contraction phase of the scenario, ¢ has to be relative to the receiver that
will absorb the energy.

A bit of history: because of all the paradoxes generated by SRT, there have always been
researchers questioning Einstein’s Second Postulate, and evaluating alternatives to it. Ritz
(1908; [20]) was an early, and famous, but ultimately unsuccessful, example. The Ritz
postulate had the light moving at velocity ¢+V , where V was the velocity vector of the
source at the moment of emission, and ¢ is the velocity vector of the light if it had come from
a stationary source at that moment. This postulate was put to rest because of conflict with data
from binary star systems.

More successful with the binary star problem, and with many other interesting problems
as well, is the work of P. Moon, D. Spencer, E. Moon, and many of Spencer’s students.
(1950’s to present; [21-23]) Their key idea has been a propagation process with continuing
control by the source, even after the initial ‘emission’ event, so that the light continues to
move away from the source at speed C relative to the source, however arbitrarily the source
itself may move. Most notably, this sort of Postulate permits the recovery of Newtonian
Universal Time.



40 Cynthia Kolb Whitney

Observe that continuing control by the source implies that ‘light’, whatever it is, has a
longitudinal extent (Of course! Light possesses wavelength, does it not?), and the longitudinal
extent is expanding in time. That expansion naturally raises the question: exactly what feature
of the expanding light packet is it that moves at speed C relative to the source? The tacit
assumption in the work of Moon-Spencer-Moon et al. is that the ¢ -speed part is the leading
tip of the light packet.

My own work in SRT [24, 25] has followed Moon-Spencer-Moon et al. in maintaining
control by the source after emission. But the speed C relative to the source characterizes, not
the leading tip of the light packet, but rather the mid point of the light packet. The leading tip
moves relative to the source, not at ¢, but rather at 2c. And then when this leading tip
encounters a viable receiver, control switches to the receiver, and the whole process proceeds
in reverse, with the mid point of the light packet moving at C relative to the receiver, and the
tail reeling in at speed 2cC,

My process description was originally cast as a Postulate, in the spirit of all the earlier
work investigating alternative Postulates. However, the present paper offers something less
arbitrary than a Postulate; namely, an analysis of the implications of Maxwell’s equations for
a finite-energy light pulse. Since Maxwell is linked through Faraday to deep empirical roots, |
believe reference to his work is a foundation for further developments that is less arguable
than any postulate can be.

Figure A2.1. Illustration of Two-Step Light propagation.

In any event, the process described here has been called ‘Two-Step Light’. It is illustrated
in figure A2.1. The subscripted T ’s are Universal Times: T, at the beginning of the

scenario, T; at the mid point, and T, at the end. Particle A is the source, and particle B is
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the receiver (one of possibly many candidate receivers, selected by the accidental collision
with the expanding light arrow at T ).

The mid points of the light arrows may be said to behave like the Moon-Spencer-Moon et
al. favored postulate in the expansion phase of the scenario, and then like the Einstein
postulate in the contraction phase of the scenario.

Analysis of this process produces some interesting results. Consider the problem of
processing data consisting of successive light signals from a moving source in order to
estimate the speed V of that source. If the light propagates according to the Two-Step
process, but the data gets processed under the assumption of the one-step Einstein postulate,
then there will be a systematic error to the estimate. In fact, the estimate turns out to be:

v=V/(1+V2/4c?). (A2.1)

The estimate v is always less than V , and in fact is limited to ¢, which value occurs at
V =2c. Thus v has the property that is characteristic of any observable speed in Einstein’s
SRT. The obvious implication is that v is an Einsteinian speed, whereas V is a Galilean
speed.

One is obviously invited to look also at a related construct

vTovia-v2ac?y. (A2.2)

The superscript T is used to call attention to the fact that VT has a singularity, which is
located at V =2c, or v=c. That is, VT has the property of the so-called ‘proper’ or

‘covariant’ speed. Interestingly, past the singularity, VT changes sign. This behavior mimics
the behavior that SRT practitioners attribute to ‘tachyons’, or ‘super-luminal particles’: they
are said to ‘travel backwards in time’. The sign change is a mathematical description, while
the ‘travel backwards in time’ is a mystical description.

The relationships expressed by (A2.1) and (A2.2) can be inverted, to express V in terms

T

of v or V' . The definition V=V/(1+V2/4c2) rearranges to a quadratic equation

(V/4c®V 2 -V +v =0, which has solutions

VA [+1i\/1—v2/02]. (A2.32)

v/2c

Multiplying numerator and denominator by [+1 n‘r\ll—v2 / 02] converts these to the

form

V:V/;[lm\/l—vz/cz], (A2.3b)
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which makes clear that for small v, V has one value much, much larger than v, and another
value essentially equal to v .

T

Similarly, the definition V' =V /(1—V2/402) rearranges to a quadratic equation

(v T /4c2Wv2 -V +vT =0, which has solutions

Vv =;[+1i\/1—vm/c2]. (A2.4a)

vT/2e2

Multiplying numerator and denominator by [+1 mv1 +VT2 / CzJ converts these to the

form

v :VT/;[lm\/lJrVTz/czj, (A2.4b)

which makes clear that for small VT , V has one value much larger in magnitude than VT
(which is negative there), and another value essentially equal to VT .

To see that v and VT are not only qualitatively like Einsteinian speed and covariant
speed, but in fact quantitatively equal to them, one can do a bit more algebra. Substitute
(A2.3b) into (A2.2) and simplify to find

VT:mv/\/l—vz/cz, (A2.5a)

which is the definition of covariant speed familiar from SRT, made slightly more precise by
inclusion of the minus sign for situations beyond the singularity.
Similarly, substitute (A2.4b) into (A2.1) and simplify to find

vermv T ev 1262, (A2.5b)

which is again a relationship familiar from SRT, made slightly more precise by inclusion of
the minus sign for situations beyond the singularity.

The information contained in Egs. (A2.1) to (A2.5a,b) is displayed graphically in figure
A2.2. Both plot axes denote multiples of nominal light speed C. Galilean particle speed V is
T

the independent variable. To save space beyond the singularity, where V ' goes negative, it is

the absolute value of V T that is plotted.

Speed can be seen as a proxy for many other interesting things in SRT, like momentum,
relativistic mass, etc. Observe that with only two speed concepts, SRT only can offer only
two speed relationships, whereas with three speed concepts, Two Step Light offers six speed
relationships. This constitutes three times the information content. This is what makes Two
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Step Light a ‘covering theory’ for SRT. Two Step Light offers additional opportunities for
explaining all the interesting things in SRT.

10
proper 4 covariant V!
5
Galilean V
1 X -
Einsteinian v
0 1 2 3 4 5

Figure A2.2. Numerical relationships among three speed concepts.

Uses of the word ‘interesting’ can include use as a euphemism for ‘paradoxical’. The fact
that Galilean speed V is missing from the language of SRT means that Einsteinian speed v
gets conflated with Galilean speed V in SRT. Any conflation of different physical concepts
causes confusion and misinterpretation of both theoretical and experimental results. That is
why the literature of SRT contains so much discussion of ‘paradoxes’. But there are no
paradoxes in physical reality, and there are none in Two Step Light theory.

A3. Redeveloping QM: Ground State of Hydrogen Atom

The basis for an redeveloping QM lies in the expanded SRT. The present Appendix
reviews the redevelopment [26] of QM.

Consider the Hydrogen atom. The electron orbits at r, and the proton orbits at much,
much smaller M- Figure A3.1 illustrates in an exaggerated manner how each experiences
Coulomb attraction to the ‘half-retarded’ position of the other (as if the Coulomb force vector
propagated at speed 2c).

This situation implies that the forces within the Hydrogen atom are not central, and not
even balanced. This situation has two major implications:

1. The unbalanced forces mean that the system as a whole experiences a net force. That
means the system center of mass (C of M) can move.

2. The non-central individual forces, and the resulting torque, mean the system energy
can change.



44 Cynthia Kolb Whitney

electron

“ ! half retarded

proton position

half retarded
electron position

Figure A3.1. Coulomb force directions within the Hydrogen atom.

These sorts of bizarre effects never occur in Newtonian mechanics. But electromagnetism
is not Newtonian mechanics. In electromagnetic problems, the concepts of momentum and
energy ‘conservation’ have to include the momentum and energy of fields, as well as those of
matter. Momentum and energy can both be exchanged between matter and fields.
‘Conservation’ applies only to the system overall, not to matter alone (nor to fields alone
either).

Looking in more detail, the unbalanced forces in the Hydrogen atom must cause the C of
M of the whole atom to traverse its own circular orbit, on top of the orbits of the electron and
proton individually. This is an additional source of accelerations, and hence of radiation. It
evidently makes even worse the original problem of putative energy loss by radiation that
prompted the development of QM. But on the other hand, the torque on the system implies a
rate of energy gain to the system. This is a candidate mechanism to compensate the rate of
energy loss due to radiation. That is why the concept of ‘balance’ emerges: there can be a
balance between radiation loss of energy and torquing gain of energy.

The details are worked out quantitatively as follows. First, ask what the circulation can do
to the radiation. A relevant kinematic truth about systems traversing circular paths was
uncovered by L.H. Thomas back in 1927, in connection with explaining the then-anomalous
magnetic moment of the electron: just half its expected value [27]. He showed that a
coordinate frame attached to a particle driven around a circle naturally rotates at half the
imposed circular revolution rate. Figure A3.2 illustrates.

Applied to the old scenario of the electron orbiting stationary proton, the gradually
rotating X,y coordinate frame of the electron meant that the electron would see the proton

moving only half as fast as an external observer would see it. That fact explained the
electron’s anomalous magnetic moment, and so was received with great interest in its day.
But the fact of Thomas rotation has since slipped to the status of mere curiosity, because
Dirac theory has replaced it as the favored explanation for the magnetic moment problem.
Now, however, there is a new problem in which to consider Thomas rotation: the case of
the C of M of a whole Hydrogen atom being driven in a circle by unbalanced forces. In this
scenario, the gradually rotating local X,y coordinate frame of the C of M means that the atom

system doing its internal orbiting at frequency €, relative to the C of M will be judged by an

external observer to be orbiting twice as fast, at frequency Q' =2Q, relative to inertial space.
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Figure A3.2. Thomas rotation. When the particle traverses the full circle, its internal frame of reference
rotates 180°.

This perhaps surprising result can be established in at least three ways:

By analogy to the original problem of the electron magnetic moment;
2. By construction of Q' in the lab frame from Q, in the C of M frame as the power
series Q' =Q  x(1+1/2+1/4+1/8+..) >Q x2;

3. By observation that in inertial space (2’ must satisfy the algebraic relation
Q' =Q,+Q"/2, which implies Q' =2Q, .

The relation Q' =2Q, means the far field radiation power, if it really ever manifested
itself in the far field, would be even stronger than classically predicted. The classical Larmor
formula for radiation power from a charge e (e in electrostatic units) is P, = 2¢%a? /303,
where a is total acceleration. For the classical electron-proton system, most of the radiation

comes from the electron orbiting with a, = rng » Qg . But with Q" =2Q, the effective total

acceleration is a'=a, x 22 . With electron-proton total separation I, + I’p, the Coulomb

force is approximately F. = 2/ (r, + rp)z, a, = F,/m,, and the total radiation power is

(& e’

approximately
4,52 2 2 4
Py =2%(2e /3c3)ae =22 /m )/303(re+rp) . (A3.1a)

However, that outflow of energy due to radiation is never manifested in the far field because
it is compensated by an inflow of energy due to the torque on the system. This is what
overcomes the main problem about Hydrogen that was a main driver in the development of
QM; namely, that the Hydrogen atom ought to run down due to radiative energy loss.

Generally, the inflow power Pp=TCQ,, where T is the total torque T =

Ir, xF, + rp @ Fp |, and 1, xF, = rp Fp, so T=2|r, xF,[. With two-step light, the angle
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between r, and F, s I‘er/2C= (me/mp)(reQe/2c). So the torque T =

(m, / m)(r.Q, / o)le? / (r, + r,)] and the power

Pp=(m,/ mp)(regg /c)[ez/(re +r)]= et/ mp)/c(re + rp)3 : (A3.1b)

Now posit a balance between the energy gain rate due to the torque and the energy loss

rate due to the radiation. The balance requires Py = Py , or
e*/ mp)/c(re + rp)3 = (2%e%/ m§)/3c3(re + rp)4 . (A3.1¢)
This equation can be solved for T, + M
r,+1, =32m ¢’ / 3m2c? =5.5x 107 em, (A3.22)

Compare this value to the accepted value 5.28x10~ cm. The match is fairly close,
running just about 4% high. That means the concept of torque versus radiation does a fairly
decent job of modeling the ground state of Hydrogen.

The result concerning the Hydrogen atom invites a comment on Planck’s constant h,
which is generally presumed to be a fundamental constant of Nature. In conventional QM,

e t1p 18 expressed in terms of h:

2/,.2 2
re+rp:h /4n pe- . (A3.2b)

Here p is the so-called ‘reduced mass’, defined by u_l = me_1

(A3.2b) and equating (A3.2b) to (A3.2a) gives

-1 . .
+mp . Using p~m, in

Tce2

h==—[128m, /3m_ . (A3.3)

This expression comes to a value of 6.77 x 10734 Joule-sec, about 2% high compared to

the accepted value of 6.626176 x 1073* Joule-sec. Is this result meaningful? To test it, a more
detailed analysis accounting more accurately for ‘sin’ and ‘cos’ functions of the small angle

rer /2¢c, here represented by the small angle itself, and by unity. That exercise made the

estimate of h more accurate too, and suggests that the model is indeed meaningful, and that
Planck’s constant need not be regarded as an independent constant of Nature.
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The analysis so far is for the ground state of Hydrogen. To contribute to a covering
theory for QM, that analysis has to be extended in several ways. The first of these extensions
is most important to chemistry: we need to cover trans-Hydrogenic atoms. For this, we need
to replace the proton in Hydrogen with other nuclei. This replacement immediately gives the
reason for the M /Z scaling used in this paper for relating ionization potentials of different
elements to each other. With replacement, the subscript p for proton changes to Z . Egs.

(A3.1a) and (A3.1b) are both scaled by v , and (A3.1b) is additionally scaled by 1/ M . As
a result, (A3.2a) changes to 1, +r1; = M(r, + rp) . The electron energy in the Hydrogen case

is By = e?/ (r, + rp) ; for the element Z case, the e? changes to Ze? , so overall, the single-

electron energy changes to
E, =ZeZ/M(re+rZ)=(Z/M)EH. (A3.4)

If it weren’t for neutrons, the scale factor Z/ M would be unity. But because of neutrons,
Z/ M varies from 1 for Hydrogen, immediately to 0.5 for Helium, and eventually to 0.4 for
the heaviest elements we presently know about. So in order to put the IP data for different
elements onto a common basis, we must remove the Z/ M factor from raw data by scaling
with its inverse M /Z.

A4. Expanding QM: Sub States of Hydrogen Atoms

In earlier works, I called the redevelopment of QM ‘Variant QM’, because I was not then
certain it could actually do more than the standard QM. Now I am certain that it can, so it has
become ‘Expanded QM’. This Appendix details the first example of that expansion.

The basic concept of the ground state analysis from Appendix 3 (A3) is a balance
between two effects: the familiar energy loss by radiation, and the newly identified energy
gain by torquing. The torquing is a consequence of electromagnetic signal propagation in two
steps as described in A3.

The ground-state analysis in A3 has two ‘small-angle’ approximations in it. In the
expression for energy loss rate by radiation, there are vector projections, and hence angle
cosines, which are approximated by unity. In the expression for energy gain rate due to
torquing, there are vector cross products, and hence angle sines, which are approximated by
the angle values in radians. The sub-ground states of Hydrogen are found by replacing these
‘small-angle’ approximations with actual trigonometric functions.

Figure A4.1 illustrates the Hydrogen atom with the electron and proton both orbiting, all
dimensions exaggerated for visibility. The small angles are indicated by appropriately labeled
small arrows. The angle o is measured at the system origin, between present and half-
retarded positions of the electron or equivalently of the proton. The angle B is measured at

the electron, and is smaller than o . The angles oo —f and P are the angles from which the

two particles, electron and proton, each receive the half-retarded attractive signal from their
partner.
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Figure A4.1. Identification of small-angle approximations in Hydrogen analysis.

The larger arrows on figure A4.1 point in the directions of these charge attractions. The
proton attraction to the electron has a radial component proportional to cos(o—f) and a

tangential component proportional to sin(o. — ). The electron attraction to the proton has a
radial component proportional to cos(f}) and a tangential component proportional to sin(f) .

The small-angle approximations assumed for the Hydrogen analysis in A3 were:
cos(aa—PB)=cos(B)=~1, sinfla—B)=~a , sin(B) =P (A4.1)

The small angle approximations allowed straightforward solution of the equation of
balance between energy loss rate due to radiation and energy gain rate solution due to
torquing. This was done algebraically by equating the energy gain rate due to torquing,

4
Pr=(e*/m) / Cr, +1, ) (A4.2)
to the energy loss rate due to radiation,
Py = (2°e%/ mg)/ 33, + rp)4 (A4.3)

The relaxation of the small-angle approximations mandates the following complications:
1) The condition defining the angle o is:

a=(V,/2¢)x[(r, +rp)/re] (A4.4)
Because 1y <<r,, Eq. (A4.4) simplifies to o~V /2c.

p

2) The condition defining the angle B is
tan(B) = 1 sin(c) / [ W cos(a)J (A4.5)

Whatever angle o is, B will be near zero. But like o, angle B does depend upon V,, .
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3) The condition defining V, is
2 2 2
mVe /1, =e"/(r, + rp) (A4.6)

Because M, << I, » the approximation V, » / [me(l‘e + rp) is acceptable.

4) Because the solution sought is a balance between torquing and radiation reaction, there
is no net acceleration of the charges in the angular direction. So the rate of energy loss due to

radiation P, depends only upon the radial components of forces. These components are

proportional to cos(o. —B) and cos(p). Because they are generally less than unity, the rate of

energy loss due to radiation is lessened. The scaling down is expressed by:

2
Pr > {;[cos(a -B)+ cos(B)]} Pr (A4.7)

5) The torque on the system has contributions arising from forces on both the electron
and the proton. Those contributions involve cross products between the forces and the radial
position vectors, and hence involve the sin(o. —f) and sin(f) . The scaling down of the rate

of energy gain due to torquing is expressed by
Ir. .
Pr — {2[sm(a —B)/(0.—B) + s1n(B)/[3’]} P (A4.8)

where f" is the factor within P that sin(B) replaces. For small o, B'=p [from (A4.5)],
but for the full range of arbitrary o, ' =o /1838.

The changes developed above make the Hydrogen balance problem significantly more
complicated. Algebraic solution is no longer a practical approach. So graphical solution
becomes a more attractive approach. A simple EXCEL program is sufficient for a perfectly
reasonable graphical solution approach. To set the stage for graphical solution of the more
complicated problem with the small-angle approximations removed, figure A4.2 illustrates
the graphical solution approach as applied to the original problem, with the small-angle
approximations still embedded in it.

In figure A4.2, the independent variable is the system radius, T, + M- It is plotted on a

log scale, starting at 1, + M= 10" em and going through 6 decades to r, + = 107 cm.

There are 301 data points for each dependent variable plotted. ‘Series 1’ refers to the steeper
line, representing energy loss rate due to radiation. ‘Series 2’ refers to the shallower line,
referring to energy gain rate due to torquing. The two lines on figure A4.2 are straight
because the energy gain and loss rates are power laws plotted on log scales. The graphical
solution comes approximately in the middle of the plots, approximately at point 138,
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approximately at T, + M= 55%107° cm, i.e. approximately the same as the algebraic solution

_ -9 . _ -9
e th= 5.5x10 "~ cm, and fairly close to the accepted value r, + = 5.28x10 7 cm.

Figure A4.2 reveals something that was not obvious in the purely algebraic approach
used in [1]: the ground-state solution for Hydrogen is not stable. Any small perturbation right,
to higher energy, is encouraged by energy gain due to torquing, and any perturbation further
left, to lower energy, is encouraged by energy loss due to radiation. The revealed instability
does comport with observed facts: here on Earth, Hydrogen atoms tend to come together to
form molecules, and deep in space they tend to come apart to form a plasma. Nowhere do
they appear abundantly as individual atoms.
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Figure A4.2. Graphical solution for the Hydrogen ground state.

When the small-angle approximations are removed, the straight lines on figure A4.2
become the curved lines on figure A4.3. Again there are 301 data points, but now starting at

system radius T, + = 10713 ¢m and proceeding to I, + = 107 cm.

The familiar first solution is located where the lines cross on the right side of figure A4.3,

between points 203 and 204, between I, +1, =5.41x10 cm and I, +1 = 5.84x10™ cm.

The lower value comes a bit closer to the accepted value r, + rp =5.28x 102 cm than did the

_ 9 . . . o .
r,+ rp =5.5x10 "~ cm previously obtained with small-angle approximations. As one might

hope, including more trigonometric detail produces more numerical accuracy.
On the left side of figure A4.3, some dramatic features emerge. They are all associated
with o >7n. Note that in the vicinity of o =m, the electron speed is in the vicinity of

V, =2nc. This kind of speed is dramatically superluminal. Note that it does occur deep
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inside an atom — hardly the kind of ‘free-space’ situation for which the Einstein particle-speed
limit C was legislated.
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Figure A4.3. Extended graphical solution to the Hydrogen balance problem.

The first dramatic feature is a dip in the curve representing the rate of energy loss due to
radiation. This dip occurs where the cosine sum in Eq. (A4.7) touches zero. That happens as
angle a passes through 7. The dip on figure A4.3 actually goes to zero, but since the plot is
on a log scale, the calculations have been set up to avoid having a data point occur exactly
where the zero occurs.

The second dramatic feature is a gap in the curve that represents the rate of energy gain
due to torquing. This gap occurs for the interval © <o <2mx. In this interval, the sin(a — )

and the sin(B) in Eq. (A4.8) for Py are negative. That means the sign of P is negative, and

Pr cannot be plotted on a log scale. In this interval, the torquing effect on the system does

not oppose the radiation effect; it augments it. So system balance is not possible in this
interval.

But the third and most dramatic feature is that an additional solution emerges. It is
located just to the right of the radiation dip and torquing gap, between data points 26 and 27.
This second solution is clearly where the Hydrogen system would be driven to, should it be
perturbed from its first solution in the direction downward in radius, and hence downward in
energy. Throughout the radius regime from the first solution to the second solution, energy
loss due to radiation dominates energy gain due to torquing, and ever more energy is lost.

Looking further to the left on figure A4.3, it is clear that a family of viable superluminal
solutions is developing. Figure A4.4 begins at even smaller system radius, and shows even
more solutions. Superluminal solutions correlate with a =n+4nn, n=0,1,2,3,..., These
solutions occur just to the right of the dips. Solution-prohibiting regions of negative torque
occur to the left of the dips. The dips themselves actually go to zero, but since the plots are on
a log scale, there are no data points placed exactly at the zeros. The depths of dips look
ragged, but that is just a computational artifact without physical meaning.
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The graphical analysis here gives an initial insight into the otherwise puzzling issue of
stability vs. instability of the Hydrogen ground-state solution to the problem of Hydrogen
torque Vs. radiation balance. That solution is off the right side of figure A4.4, and it is
obviously unstable. The graphical analysis has then arrived at an infinite family of additional
solutions for Hydrogen torque vs. radiation balance. These solutions are on the left side of
figure A4.4, all below the ground state of Hydrogen in total energy, so they are ‘sub-ground’

states. They all have superluminal orbit speeds: with o=~V,/2c, we have

Ve =2mnc,10mc,18xnc,....
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Figure A4.4. Multiple solutions to the Hydrogen balance problem.

The superluminal velocity results imply very high kinetic energies. Rewriting the results

as Ve =2nc(l+4n), n=0,1,2,3..., we see that kinetic energies, if proportional to Ve2 , must

advance with n”. This behavior is like having a radial quantum number that is fractional. A
fractional radial quantum number is a phenomenon simply not within the current paradigm of
QM.

Though not the main topic of the present paper, these results are of further interest for the
future because there exists an extensive experimental literature on the spectroscopy of
Hydrogen, and some of it seems inexplicable in terms of traditional QM. In particular, the
work of Dr. Randall L. Mills and associates shows some extreme UV lines that are suggestive
of Hydrogen atom states with fractional radial quantum numbers. Dr. Mills tells that story
quite comprehensively in [28].

The refined Hydrogen analysis provides a stepping-stone to the analysis of systems in
which the participant charges are not of very dissimilar mass, as in Hydrogen, but rather of
equal mass, such as in the electron cloud in a trans-Hydrogenic atom.
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A5. An Example with Equal Masses: Positronium

The mass symmetry of Positronium makes for angle symmetry, illustrated by figure

AS.1.

o
half retarded positron

—
positron position 1
\l\
‘ ‘. half retarded

electron electron position

Figure AS5.1. Positronium.

From figure AS.1,
o-B=Pf=a/2.
The small-angle approximation for energy gain rate due to torquing becomes
Pp=(e*/ me)/c(Zre)3 .
The small-angle approximation for energy loss rate due to radiation becomes
Py = (2%e5/ m§)/3c3(2re)4 .
The analysis then follows:

1) The condition defining the angle o becomes
a=V,/2c)x(2r)/r,>V,/c
2) The formal condition for defining angle 3 becomes

sin()  2sin(a/2)cos(a/2)  sin(o/2)cos(o/ 2)
I+cos(a) 14 cos?(or/2)—sin?(cr/2) cos?(a/2)

tan(B) =

This relationship is indeed satisfied by =0 /2.

(A5.1)

(A5.2)

(A5.3)

(AS5.4)

=tan(a/2) (AS.5)
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3) The condition defining V,, becomes
2 2 2
mVe /1, =€ /(2r,) (A5.6)

The solution is then V, ~ e/,/me(zre) x(1/2).

4) The factors for removing the small-angle approximations from Pr and Py simplify.

The expression for energy loss rate due to radiation changes from

2
1 2
Pz — {2[cos(oc— B)+COS(B)]} Py to Py —[cos(ar/2)|" By (A5.7)
5) The expression for the energy gain rate due to torquing changes from

P — {;[sin(a ~B)/(a—PB)+ sin(B)/B’]} Pr to Pp—[sin(a/2)/(a/2) [Py (A5.8)
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Figure AS.2. Positronium solutions.

Being formally analogous to Hydrogen, Positronium also has a ‘ground-state’, low-speed
solution, plus a family of high-speed sub-ground solutions. Figure A5.2 illustrates the

solutions. The range of system radii starts at 10716 cm, and goes to 107" ¢m via 301 points.

The ground-state solution occurs between points 269 and 270, at system radius of about

31072 em (quite a bit smaller than the 5.28 x 107 cm for the Hydrogen atom), with orbit
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speed of about 0.22C. The other solutions are superluminal, occurring in the vicinity of
V =nc,5nc,9nc,13nc, ...

The ‘ground-state’ solution for Positronium occurs at about point 270, where system

radius is about 3.04x10™'?¢cm and V = 0.22c. This state is qualitatively like the ground-
state solution for Hydrogen: it is unstable. Any perturbation to the right, to higher energy, is
amplified by energy gain due to torquing, and any perturbation to the left, to lower energy, is
amplified by energy loss due to radiation. As we know from experience, Positronium is
indeed quite unstable; it tends to annihilate itself quite quickly.

The sub-ground solutions for Positronium are startlingly different from the corresponding
sub-ground solutions for Hydrogen: they occur where the energy gain rate due to torquing is
near maximum, not near where it is passing through zero. This is a consequence of the perfect
mass equality of the two particles in Positronium, opposite to the extreme mass inequality of
the particles in Hydrogen. While both Positronium and Hydrogen have dips in the energy loss
rate due to radiation at angle o =m,3m, 5%, 7x,...., Hydrogen has its energy gain rate due to
torquing pass through zero there, whereas Positronium has it passing through maximum there.
The reason for this difference is visible within the mathematics describing energy gain rate
due to torquing:

1. Hydrogen always has angle B =0, so for o =mr,3m,5m,77,...., both the sinf3 and the
sin(a — ) involved in the expression for energy gain rate due to torquing pass

through zero.
2. Positronium always has angle B=o/2, so sinf =sin(a—p)=sin(a/2). The

sin(a / 2) passes through unity at o = «t,3n, 57, 7m,....

As a result of this difference between Hydrogen and Positronium, all of the Positronium
superluminal solutions are actually doublets: a solution to the right with higher system radius,
lower orbit speed, and a solution to the left with lower system radius and higher orbit speed.
Within each doublet, the solution to the right is extremely stable: the plot shows that any
perturbation further right, to higher energy, is driven back by energy loss due to radiation, and
any small perturbation left, to lower energy, is driven back by energy gain due to torquing.
The solution to the left is then just the reverse, extremely unstable: any small perturbation
right, to higher energy, is encouraged by energy gain due to torquing, and any perturbation
further left, to lower energy, is encouraged by energy loss due to radiation. Something even
worse is not obvious in the plot, although it is obvious in the mathematics. For this solution to
the left, the factor cos(a/2) that enters the radial force components is actually slightly

negative. So no such circular orbit can exist at all, unless a retaining radial force arises from
some external circumstance.

The conclusion to remember for future reference is that the Positronium solutions occur
at orbit speeds just slightly below V = (nc,5nc,9nc,13nC).
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A6. Charges of the Same Sign

Technical journals occasionally feature reports and commentary about the apparently
incomprehensible phenomenon of electrons clustering together. Some of these articles have
been in the Galilean Electrodynamics journal I now edit [29-31]. The phenomenon is widely
known; related literature cited in the third of those references is quite extensive, and some of
it appears in the most widely circulated physics journals.

The non-central forces illustrated in figure AS5.1 for Positronium can also provide a
mechanism that can explain charge clusters. As is emphasized by Appendix 2 (A2), there is
no limitation on Galilean speed V ; it can exceed C . Figure A6.1 illustrates a case where two
like charges are orbiting each other at speed V =nc. Because of the ‘mid-point’ feature of
Eqgs. (A1.2b), the Coulomb ‘repulsion’ between the two charges is half-retarded, and because
of the super luminal orbit speed, the ‘repulsion’ actually works as attraction.

COOOG

=TC.

[

<P—

Figure A6.1. Attraction between two like charges orbiting at superluminal speed

Figure A6.1 just constitutes a ‘proof of existence’: there do exist circumstances in which
like charges attract. More detailed analysis of the binary same-charge system begins with
figure A6.2, which is similar to the figure A5.2 for Positronium. The angle o is the sum of
the half retardation angles, both of which are B=0o./2.

half retarded =g charge ¢,
position of ¢,

half retarded

charge ¢, position of ¢,

Figure A6.2. Binary charge cluster.

Let us identify exactly what changes are needed to adapt the existing Positronium
analysis to the binary charge cluster. The change from an opposite-charge to a same-charge
system requires that:
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1. The two charges nominally repel each other, instead of attracting each other as in the
Positronium case.

2. The radiation created by the system changes form to quadrupole, rather than dipole,
as it was in the Positronium case.

3. The torque on the system everywhere reverses sign from what it was in the
Positronium case.

The Positronium analysis identified intervals t<a <3n, St<a<7n, In<a<lln,
etc., within which the attraction between electron and positron works as if it were repulsion.
The complementing intervals 3n <o <5t, Tn<a <9, lln<a <137, etc.,, must play a
similar role for the same-charge pair: within these intervals, the repulsion between same
charges must work as if it were attraction. Note that figure A6.1 basically illustrated the first
point of the first such interval: o =7 .

The radiation from the same-charge system is quadrupole, instead of dipole as it was for
the opposite-charge Positronium system. The kind of radiation does not matter very much
qualitatively, inasmuch as solutions are associated with dips to zero radiation that are in turn
keyed to speeds at multiples of nc, regardless of what kind of radiation it is.

The sign of torquing is more significant. The Positronium solutions displayed the
existence of regimes of negative torque within which both radiation and torquing cause
energy loss from the system considered. No solution for system balance between radiation
and torquing can exist in these regimes. The excluded intervals for Positronium were
2n<oa<4n, 6m<a<8n, 10t <a<127w,... The complementing intervals 4n <a <67,
8n<a<10n, 12n <a <14n ,... are excluded for the same-charge system.

The details of the analysis follow. The angles again satisfy:

o—PB=PR=a/2 (A6.1)

The initial formula for energy gain due to torquing changes slightly; i.e., from
4
Pp=(e*/ me)/ o(2r,)® to Pp=(q*/ mg) / c(2r, )Y (A6.2)

The ‘same-charge’ condition causes several changes in the initial formula for energy loss
due to radiation. For Positronium we had (slightly rearranged for easy in conversion)

Pe =25(e5 /m2) /3c3ar)* = 24 (268 / m2) /33 2r, )* (A63)

For one thing, we have ¢’s instead of e’s, as in Py above. In addition, we have

quadrupole radiation instead of dipole radiation. To quantify this, we start with Eq. (9.52)
from Jackson [4], P = Ck6Qg /240, and insert, Q, = qu2 with d =2r,, and k=Q/c with

0? :qz/ mrqdz, plus a factor of 2% for the Thomas rotation [28] that this system

experiences due to unbalanced forces. We end up with
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Py =2° (64q8 /my )/[24005(2rq ) ] =26 @qg /my )/[1505(2rq )5} (A6.4)

The condition defining the angle o becomes
a:(Vq/Zc)x(qu/rq)—>Vq/c (A6.5)

The condition defining the angle B remains

B=a/2 (A6.6)

The condition defining Vq becomes

2 _ 2 2
Mg /Tq =€/ (21g) (A6.7)
which implies Vq = q/ /mq (2rq) x (1/2) . The scaling of Py , is
2
Pr = [cos(a/2)]" Py (A6.8)
The scaling of Py is

Py — [ sin(a./2)/(a/2) |Pp (A6.9)

The analog of figure A5.2 from Appendix 5 is then figure A6.3. Again, the plot starts at

system radius 10_16cm, a progresses to 10" em in 301 data points. Observe that the
radiation curve is generally steeper than it was for Positronium. That is because the radiation
is quadrupole rather than dipole. Observe too that there is no ‘ground-state’ solution for like
charges, but there are superluminal sub-ground solution doublets, just as for Positronium,
except that they occur at orbit speeds just slightly below V = 3nc,Z7nc,4 1nc,A5nc... instead
of V =nc,Anc,Anc,A3nc,.... Within a doublet, the solutions to the right are stable, and the

solution to the left is unstable.
For present purposes, the stable solution near V =3ncC is probably of greatest interest.

The system radius in this vicinity is about 1.58 x 1 cm. This is much smaller than the

believed Hydrogen atom radius r,+r, =5.28x 1077 cm, confirming the premise of this

p
model, that atomic charge clusters are small compared to atoms. It is smaller even than the so-

called °‘classical radius of the electron’, I :ez/ me(:2 :2.82><10_13cm. Note that this
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‘classical radius’ involves the rest energy m,cC

2

, which is a concept from standard SRT,

which in turn assumes the ‘speed limit’ c. Its meaning in the expanded SRT, with its
unlimited superluminal speeds, is not clear.
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Figure A6.3. Same-charge solutions.

A7. Systems of Many Charges

The analysis for two charges is a stepping-stone to analyses involving three, and more,
electrons. For three electrons, the analog of figure A6.1 is figure A7.1.
The condition expressed by figure A7.1 is that the light vector expansion at 2C across a
chord of the circle synchronizes with the particle transit halfway around the circumference of

the circle. Therefore, the particle transit has to be at Vq = i€ x (diameter / chord length) =

nc/sin(w/3). The sin(m/3) for the ternary case, in place of sin(n/2)=1 for the binary

case, recurs throughout the full analysis of ternary charge cluster.

| X}
45 9,
@
q .

Figure A7.1. Attraction between three like charges orbiting at speed V = rtc/ sin(w/ 3) .
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The ternary analog for figure A6.2 is figure A7.2. The angle B is smaller than in the

binary case, and that affects both the torque energy gain and the radiation energy loss.

(03

half retarded charge g,
position of ¢~ ~

half retarded
position of g,

charge ¢, charge ¢,
half retarded

position of ¢,
Figure A7.2. Angles involved in analysis of ternary charge cluster.

Another type of change required concerns the radiation. It is not the dipole formula, and
it is not the quadrupole formula. It is perhaps a ‘hexapole’ formula. In any case, it can be
worked out from the dipole formula, just as the quadrupole formula can be worked out in that
way. The quadrupole formula is the difference of two dipoles. To put it another way, it is the
sum of two dipoles at phases of 0° and 180°. Correspondingly, the radiation from this ternary
system is the sum of three dipoles, at phases 0°, 120°, and 270°. This exercise about the
radiation formula is interesting and challenging, but as we already know, does not affect the
solutions very much. Solutions will be doublets surrounding orbit speeds

Vg =——(3nc, 7nc,11nc,13ncC... A7.1
g sin(rc/3)( ) (A7.1)

Of these, the solution at orbit speed just below Vq =3nc/sin(n/3) is probably of

greatest interest.

The system radius for the ternary case can be expressed by scaling from the system radius
for the binary case. Two factors affect it. One is the increase of velocity for which radius is
sought, by the factor of 1/sin(w/3). This decreases the solution radius by a factor of

sinz(n/ 3)=3/4. The other factor is the change in the force attracting a subject charge,

which now has two contributing charges instead of one, both at closer distance, but at off-

radial direction. This changes the attractive force by a factor of 2sin(n/3)/ sin? (n/3)=
2 /sin(mt/3) =2.3094, and hence changes the solution radius by the inverse of that factor.

Altogether then, the solution radius decreases by 0.75/2.3094 = 0.3248.
In the general case of N charges in a ring, the solution velocities are

Vg :;(3nc,7nc,11nc,15nc...) (A7.2)
sin(t/ N)
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Of these, the solution just below Vq =3nc/sin(n/ N) is probably of greatest interest.

The system radius for the general case involves two factors. One is the “velocity’ factor

sin? (w/ N), and the other is the ‘attraction’ factor, which in general can be written as

N-1
> . [1/sin(kn/N)] (A7.3)

Altogether then, the solution radius scales down by

N-1
sin®(n/ N)/ Zk 1 [1/sin(kn/N)] (A7.4)

The resulting sizes for charge rings decrease as N increases: Using 1 for N =2 (call ita
‘binar’ for ‘binary’), we have 0.3248 for N =3 (‘tert’), 0.1306 for N =4 (‘quart’), 0.06275
for N =5 (quint’), 0.0342 for N =6 (‘hex’), 0.0204 for N =7 (‘sept’). All these spinning
charge rings essentially amount to permanent electrical ‘currents’ within the low-
temperature/high-temperature/no-temperature-exists ‘superconductor’ that otherwise-empty
space provides. The superluminal charge rings provide a tool for understanding electron
clusters in atoms.

A8. Excited States of Hydrogen

The conventional idea for the so-called ‘excited states’ of the Hydrogen atom involves an
electron teetering in an upper ‘shell” around the nucleus, ready to fall back to a lower ‘shell’
closer to the nucleus. But the present simple two-body analysis of Hydrogen does not allow
anything so complicated. The simple torque Vvs. radiation balance has only one low-speed
solution, corresponding to the ground state. The absence of lower-speed, higher-energy
solutions means that in this analysis the term ‘excited state’ cannot describe a condition of a
single Hydrogen atom.

A viable alternative idea for an ‘exicted state’ of Hydorgen involves, not just a single
Hydrogen atom, but rather a system of multiple Hydrogen atoms that can emit or absorb
energy as a system. In short, it is not really states of an individual atom that account for the
quantization observed; it is instead the integer number of atoms in an atomic system.

A ‘system of multiple atoms’ as the conceptual model for an ‘excited atomic state’ is
similar to the ‘Superatom Model’ for the structures or nanopartcles that atoms form in the gas
phase, and possibly in solution as well [32]. Support for an atomic excitation model based on
multiple atoms comes from the known fact that light emission is always a little bit laser-like,
in that photons are emitted, not as singletons, but rather in bursts. [33] This behavior suggests
that atoms become excited, not as singletons, but as groups.

The concept for creating such an extension to the analysis is to replace the single electron
and the single proton in Hydrogen with multiple electrons and multiple protons, the charges
of each sign bound together in ‘charge clusters’.
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So suppose that ‘excitation’ of Hydrogen up to state n actually involves n=ny
Hydrogen atoms all working together in a coherent way. In particular, suppose that the ny

electrons make a negative cluster, and the nyy protons make a positive cluster, and the two

clusters together make a scaled-up Hydrogen super-atom.
The replacement of single charges with charge clusters must affect both the radiation
energy loss rate and the torquing energy gain rate, and the balance between them. Every

factor of e and every factor of m, or m, scales by ny . Starting from (12a) for the radiation,

p

one finds that the energy loss rate scales by (ny )4 . Starting from (12b) for the torquing, one

finds that the energy gain rate scales by (ny )3. The solution radius for system balance

therefore scales as r, + r,— rnH =Ny (r, + rp). [Note: if this multi-atom model captures the

real behavior behind atomic excitation, and if one attempts to model that behavior in terms of
a single atom with discrete radial states identified with a principal quantum number N, then

the radial scaling has to be [ = I, = n2r1 , as is seen in standard QM.].
. 2
The overall system orbital energy then scales as E; > E., = (n E, /ny=nE, .
y gy 17> B = ()" By /g =ny By

This energy result is exactly the same as the orbital energy of ny separate atoms not

clustered together in a super atom. The implication is that when the system disintegrates, the
energy that exits as photons does not, as is generally believed, correspond to a change in orbit
around the nucleus. It is instead the positive energy required to form the charge clusters. This
is a completely novel view of excitation.

The charge-cluster model for excitation suggests that there ought to be some similarity

between Hydrogen in its first excited state (N =2) and a Hydrogen dimer molecule. Both

have two electrons; both are favored, just like a Helium atom is favored. The preference for a
two-atom excited state would explain why the spectrum of Hydrogen so strongly features
transitions that terminate, not with the ground state, but rather with the first excited state.

A9. Ties to Spectroscopy

Being a tool of extreme sensitivity, spectroscopy is the tool of choice for both chemists
and physicists studying the structure of atoms and molecules. But while the tool is incisive,
the interpretations of its results and its prospects for new investigations leave room for further
discussion in light of the theoretical developments summarized above, as well as the data
reported in the main part of the paper.

First of all, spectroscopy can help us interpret some mathematical details about the
atomic excitation model on offer here. The spectroscopic data about Hydrogen indicates that
the energy required to bring the last Hydrogen atom from complete separation to complete

integration into an existing super atom of nyy —1 atoms, thus forming a super atom of ny

atoms, is | E [[(ny — l)_2 -(nyg )_2] . The inverse squares can be understood as follows. The
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radial scaling rnH =Ny (r, + rp) suggests that all linear dimensions scale linearly with ny . If

so, the volume of the clusters scales as (ny )3 . The number density of charges in clusters

therefore scales as ny / nH3 =(ny )_2. The positive energy locked in the pair of clusters

therefore depends on the number density in the clusters. This is something like having energy
proportional to pressure, as is seen in classical thermodynamics.

Furthermore, spectroscopy offers a way of testing the atomic structure model on offer
here. Spectroscopic data for Hydrogen samples that include sensible amounts of deuterium
and/or tritium would be extremely helpful in this regard. Recall the Z/ M scale factor that
occurs in the model; it implies a significant isotope effect. Being extremely sensitive,
spectroscopy may be able to detect and quantify any such isotope effect.

Spectroscopic data about trans-Hydrogenic atoms invites analysis in terms of charge
clusters in general, positive well as negative, and offers an opportunity to apply what has been
revealed about ionization potentials ( IP’s). All spectral series for neutral atoms terminate
with a spectral line whose energy corresponds to a first-order IP . Historically, spectral series
have been characterized in terms of the famous Rydberg constant R. The value of R for a

hypothetical nucleus of infinite mass is called R, and the value of R for a real atom is said

to scale from R according to the rule R, =R x z2/ (I+m,/m ). The spectral

nucleus

limit for the real atom is then proportional to R, times 1/ n? , where n reflects the largest
radial quantum number the atom’s electron population offers.
Where IP’s are expressed in units of electron volts (eV’s), R is expressed in inverse

1

wavelengths (cm™ or A™). Other than that dimensional detail, the presumption is that the

spectral limit would be the same as IP ;. But the algebraic model for IP’s involves no
quantum number N, no nuclear charge Z , and its nuclear mass dependence is much stronger

-1/ M, where M is the nuclear mass number.
Consider an element toward the end of the Periodic Table. Its top radial quantum number

n will be 5, its Z will be of order 100. So its RZ will be of order
R, x(10,000/25) = R, x400. By contrast, its measured and M /Z -scaled first order IR ;

will be of order IR, ;, and the raw data without the M /Z scaling will be of order IPF ; x0.4.

That is three orders of magnitude smaller than the application of textbook scaling to the
Rydberg constant predicts. It would seem that there is no empirical evidence whatever for that
kind of scaling deep into the Periodic Table. It seems likely that the standard scaling for R
was just an early guess, offered before spectroscopy was so well developed, or so many IP’s
had been measured. It now lies fossilized in the pedagogical literature, and needs to be dug
out.

The only Z? involved in the IP data occurs for total ionization (not any kind of single-
electron ‘state’ elevation). With the M /Z -scaled total IP for Hydrogen given by 1P, ;, all

others are given by 2 x ZZIPI |- What does that universal factor of 2 mean? I believe it
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reveals a form of ‘equi-partition of energy’: for any atom that has an electron cluster, that
electron cluster involves an amount of internal energy equal in magnitude to the atomic orbit
energy in the atom.

If this is true, then the spectral data tells us something about the relationship between
electrons and photons. The traditional QM model has a one-for-one correspondence between
a photon emitted and a single electron state change in a single atom. The present model has an
electron cluster made up of electrons from several atoms coming apart, and possibly several
new, smaller electron cluster, made up of electrons from fewer atoms, being formed.

Consider Hydrogen again. Consider a decay that starts with a cluster of N and ends with

a cluster of M <N . With cluster energies NZ and M? , one expects photon energies

N2~ M?2. The relationship is ‘proportional’, not ‘equal’, because the number N 2_M? s
generally large compared to unity. The spectral lines traditionally attributed to normal H
atomic state transitions never exhibit photon energy greater than one unit of orbit energy.
(Higher-energy transitions do occur, but without the attribution ‘normal’. 1 believe they
involve the un-recognized ‘sub states’ of H .)

A proportionality factor 1/ N M2 will guarantee photon energies limited to one unit of

orbit energy. It makes the photon energies =(N2—M2)/N2M2=1/M2—1/N2.

Spectroscopic data do indeed confirm this functional form for normal spectral lines.
The present model offers a different interpretation for one important spectral datum.
Observe that when the final state is the ground state M =1, the numerator in the present

model involves is no —M? energy consumption for formation of a new cluster because there

is no new cluster. The photon energy for a drop to the ground state is then 1/ M2 =1,
regardless of N . In conventional terms, photon energy =1 looks like a drop from dissociated
plasma to ground state, i.e. N —oo. The present model suggests the more mundane

interpretation that the photon energy for a drop to the ground state is 1/ M 2_ 1, regardless of
the starting state N .

The present model also offers an explanation for why one never sees just one spectral
line; one always sees a spectrum, plus some sort of noise. Observe that all transitions are at
least binary: N—> M&(N-M), That means the cluster energies are

NZ > M? & (N - M)z. The energy left for formation of photons is never more than

E=N2- M2—(N— M)2, except for the special case M =1, where E —> N2—(N—1)2.

In the general binary case, the photon energies are

2 a2 2 N M2
(NP-MBH_ 1 1 G NENM

NZMZ M2 N2 NZ(N-M)  (N-M)? N2

If they did not have to be binary, the two kinds of transitions would consume energies

NZ-M2 and NZ- (N-M )2 ,  which would require a total energy of
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N2 - M2 —(N - M)Z. But there isn’t that much energy available; there is only

NZ- M2 - (N-M )2 . The scaled-down energies available for each kind of transition are

NZ - M2 —(N-M)? NZ-M2—(N-M)?

(N2 -M?) & [N% - (N - M)?] (A82)
AINZ - M2 (N - M)? INZ - M2 (N - M)?
Dividing these energies by the requisite photon energies produces photon counts
2 2 2 2 2 2
N“—M“—(N-M N —M“—(N-M
NZMm?2 ( )" & NX(N - M) ( ) (A83)
N2 - M?Z - (N - M)? N2 - M?Z (N -M)?

Note that in general, the total photon count from a transition N - M & (N — M) is not

equal to the number N of electrons in the scenario. There is no one-for-one correspondence
between electrons and photons here, as there is in standard quantum theory.

Note too that photon counts from (A8.3) are in general real numbers. Actual photon
counts have to be integers. The leftover fractions have to appear in some other way, such as
thermal background and Doppler line broadening. This type of scenario can account for the
fact that some spectral lines, especially toward the infra red, look ‘diffuse’, while others,
especially toward the ultra violet, look ‘sharp’.

Spectroscopy is a huge subject in its own right, deserving of much more discussion in
light of the present research. But here we must stop at this point. Because of its deep
involvement of ionization potentials, spectroscopy marks a transition from Physics to
Chemistry, and so now returns the reader to the main part of this paper.
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Chapter 2

ONIOM AND ONIOM-MOLECULAR DYNAMICS
METHODS: PRINCIPLES AND APPLICATIONS

Toshiaki Matsubara”
Center for Quantum Life Sciences and Graduate School of Science, Hiroshima
University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8530, Japan

Abstract

The ONIOM hybrid method, which combines a quantum mechanical (QM) method with the
molecular mechanical (MM) method, is one of the powerful methods that allow to calculate
large molecular systems with the high accuracy afforded for smaller molecular systems. The
notable feature of this method is that it can include the environmental effects into the high
level QM calculation through a simple extrapolation procedure. This is a significant difference
from the conventional QM/MM methods. The definition of the layer is simple, and also the
layer is easily extended to the multiple-layers. Contrary to this, the traditional QM/MM
method that adopts the sophisticated link between the QM and MM regions makes the
handling difficult. The ONIOM method is thus more flexible and versatile than the
conventional QM/MM method, and is therefore increasingly adopted as an efficient approach
beneficial to many areas of chemistry.

Recently, the ONIOM-molecular dynamics (MD) method has been developed to analyze
the more complicated large molecular system where the thermal fluctuations of the
environment play an important role. For example, when the target is a biomolecule, such as an
enzyme, the property of the entire system is strongly affected by its dynamical behavior. In
such case, the ONIOM method is not satisfactory. The coupling of the ONIOM method with
the molecular dynamics (MD) method is necessary to account for the thermal fluctuations of
the environment. Newly developed ONIOM-MD method has made it possible to characterize
the function of enzyme etc. in a realistic simulation of the thermal motion, retaining the
concept embodied in the ONIOM method. In this chapter, the basic concept of the ONIOM
and ONIOM-MD methods we developed and their applications to typical cases are
introduced.

" E-mail address: matsu05@hiroshima-u.ac jp
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1. Introduction

We have usually adopted the molecular mechanics (MM) method with molecular force
fields such as MM3, Charmm, Amber, and UFF, when we treat large organic molecules,
solution, and biological systems [I]. However, if molecular system includes a strong
interaction where large charge transfer or electron reorganization is involved, it is not
accurate enough. The molecular mechanics method cannot predict transition state
structures and energies of chemical reactions. High-level ab initio molecular orbital (MO)
methods are necessary to obtain reliable structures with strong chemical interactions and
energetics of chemical reactions. However, high-level MO calculations have a problem of
the computational time, because computational time increases as a large power of the size
of molecules. Therefore, the application of the high-level MO method has been limited in
the size of the molecule. Even calculations at a relatively low level of the MO method also
face the same problem especially for geometry optimizations. To resolve this problem of
the computational time, large and complicated substituents of real molecules, which are
chemically less important, have been very often replaced by a smaller atom or group [2].
The model molecule obtained in this way, where its size is reduced enough, allows us to
calculate with the ab initio MO method. This approximation can evaluate the major
electronic effect. However, the steric or electrostatic effect of the replaced part cannot be
taken into account. One of possible solutions to this dilemma is to integrate the MO and
the MM methods, where the active and important part of the molecule and the remainder,
such as bulky substituents or other chemical environments, are treated by the MO and MM
methods, respectively. This method thus makes it possible to calculate the real molecule
saving the computational time and without losing the accuracy. A combination of the MO
and MM methods, which is the so-called QM/MM method, has been proposed by some
groups [3-6]. However, there is a significant difference in the definition of the MO and
MM layers between the conventional QM/MM and our ONIOM methods, as mentioned
later.

In the initial stage, we optimized the entire molecule by the ‘MO-then-MM’ approach.
The geometry of a model molecule without bulky groups is first optimized by the MO
method, and then some hydrogen atoms of the model molecule are replaced by the original
substituents, whose geometries are re-optimized using the MM method, leaving the geometry
of the MO part frozen. This approach was used for organometallic reactions with bulky
substituents and ligands [7-9]. To fully optimize the geometry of the entire molecule, the
Integrated Molecular Orbital + Molecular Mechanics (IMOMM) method was developed [10].
We tested this IMOMM method on the conformation and energetics of n-butane [11] and
applied to a few examples, for example, the transition states for the Sy2 reaction, C1+ RC1
— CIR + CI, where R is methyl in the model system and propyl, isobutyl, and neopentyl in
the real systems, and potential energy profiles for the oxidative addition reaction of H, to
Pt(PR3),, where in the model system R is H and in the real system methyl, tert-butyl, and
phenyl [12]. The test calculations showed that the IMOMM method can reproduce the
geometries and energetics by a full ab initio MO method. It should be noted that the geometry
optimization for the reaction system, H, + Pt[P(t-Bu);],, at the IMOMM(MP2:MM3) level
requires only 1/253 of the computational time required for a MP2 full geometry optimization.
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The MP2 full geometry optimizations for the systems with R = t-Bu or Ph is practically
impossible.

Some cases need a more accuracy in geometries and energies. For such cases, the
integrated Molecular Orbital + Molecular Orbital (IMOMO) method combining different
levels of molecular orbital approximations was designed [13,14]. The active or more
important part of a molecule is treated at a higher level of approximation, which is similar to
the IMOMM method, and the remainder at a lower level of approximation. We further
extended this concept of the IMOMM and IMOMO approaches and developed the ONIOM
(our own n-layered integrated molecular orbital and molecular mechanics) method [15]. A
molecular system is partitioned into an onion-like multilayer. For example, a three-layered
system is handled by a high level of ab initio method taking account of the electron
correlation on the most important core part of the system, an intermediate level of MO theory
to describe the electronic effects of functional groups or ligands in the vicinity of the active
region, and a MM level of theory to describe the steric and electrostatic effects of the outer
layer of the system. In practice, we can use any combination of molecular orbital
approximations, i.e., ab initio, density functional to semi-empirical method, and molecular
mechanics method in the ONIOM method.

Huge molecular systems in nano and biological science, where the ‘true features’ of the
environmental effects remain unresolved, would be excellent targets of the ONIOM method.
However, for example, in many cases of biomolecules, the dynamical behaviors would be
strongly related to their properties. In such cases, the ONIOM method, in which the thermal
motion of the molecular system is not taken into account, is not appropriate in itself. We
therefore recently developed the ONIOM-molecular dynamics method by coupling the
ONIOM method with the molecular dynamics (MD) method [16]. In the ONIOM-MD
method, a direct MD simulation is performed calculating the ONIOM energy and its gradients
on the fly. We first applied the ONIOM-MD method to cytidine and cytosine deaminase and
showed that the thermal motion of the amino acid residues environment perturbs and
destabilizes in energy the substrate trapped in the active site of the enzyme to promote the
reaction [16,17]. To examine the environmental effects on the reaction in more detail, we
recently applied the ONIOM-MD method to a simple reaction of the organometallic
compound, cis-(H),Pt(PR3), — H, + Pt(PRj),, where the environment at the active site is
quite similar to that of enzymes, and newly found the ‘dynamical’ environmental effects [18].

2. ONIOM Method

In this section, the principle and description of the ONIOM method is first mentioned in
section 2.1. Then, the first application of the ONIOM method to the organometallic reaction,
H; + Pt(PR3), — cis-(H),Pt(PR3),, is introduced in the subsequent section 2.2.

2.1. Principle and Description of the ONIOM Method
The idea of the combination of the MO and MM methods is not first one for the ONIOM

method. We can found it in the previous literatures for the QM/MM method [3-6]. There
exists a significant difference between our ONIOM and traditional QM/MM methods in the
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definition of the linkage between the QM and MM parts. The total energy E(X-Y) of the
entire system X-Y (X is the inner part and Y is the outer part) is expressed as follows by the
QM/MM and ONIOM methods.

ES M (X =Y) =By (X) + By, (V) + E (X,Y)

int erlayer

(M

(X+Y) =By (X)

low

MM (X ~Y) = Eyiy(X) + E o

Eq. (1) for the QM/MM method includes the third term to describe the interaction energy
between the inner and outer parts. We know that it is not easy to calculate this third term. A
sophisticated definition of the interaction energy is necessary. On the other hand, eq. (2) for
the ONIOM method is quite simple. We do not need to calculate a term corresponding to the
third term of eq. (1). Both energy of the outer part and interaction energy between inner and
outer parts are included in the easily calculated second and third terms. This is readily
understood when we assume, for example, a water dimmer presented in figure 1. Here, one
and the other H;O molecules belong to the inner and outer parts, respectively. If a covalent
bond exists between the inner and outer parts, we have to define a link atom to construct a
model molecule of the inner part, as mentioned later. The total energy E(X-Y) of the entire
system is thus expressed by a connection scheme for the QM/MM method and an
extrapolation scheme for the ONIOM method. A notable feature of the ONIOM method is
that it can include the environmental effects into the high level QM calculation through a
simple extrapolation procedure. The definition of the layer is simple, and then the layer is
easily extended to the multiple-layers. On the other hand, the traditional QM/MM method that
adopts the sophisticated link between the QM and MM parts makes the handling difficult.
The ONIOM method is more flexible and versatile than the conventional QM/MM method,
and is therefore increasingly adopted as an efficient approach beneficial to many areas of
chemistry.

Y outer layer

Figure 1. Two-layered ONIOM partition of a water dimmer.

The partitioning of the entire system in the case of the three-layered ONIOM
methodology is presented in figure 2. The entire system is divided into three layers, i.e., the
center of the system and intermediate and outer layers. The core part of the center of the
system is the most important and active part, which includes a change in the elecronic
configuration. The intermediate layer includes functional groups that have an electronic effect
on the active part. The steric and electrostatic effects are taken into account by the outer layer.
This partitioning is arbitrary but is an important issue that determines the calculation
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accuracy. The core part is calculated at the highest level, and the calculation level is lowered
in turn toward the outer layer, taking account of the electronic, electrostatic, and steric effects
appropriately. Thus, we can save the computational time without losing the calculation

accuracy.

3rd layer, non-active N Real svstem
— low level |~ ’

\ 2nd layer, semi-active - Intermediate

. Fmedium level —~ model system
'......\ .,- > -
\\_ Ist layer, active || Small model
B high level J 7 system
(a)
Target:
(Real, High)
High ¢—— e
e 'y D C ]
2 A A
= Medium
= B B
Low O ~C -®
Small  Intermediate Real
model model
System
(b)

Figure 2. Concept of the ONIOM method.

The total energy of the entire system is defined as a sum of the energy of three layers as
follows.

E(ONIOM3) = E(Small,High) + AE(Int—Small,Med)

+ AE(Real«Int,Low) (3)

Here,
AE(Int<—Small,Med) = E(Int,Med) — E(Small,Med) 4)
AE(Real«—Int,Low) = E(Real,Low) — E(Int,Low) (5

The number of the layer is shown by the suffix n and described as ONIOMn. ONIOM3 means
that the entire system is divided into three layers. The calculation level adopted to each layer
is written as ONIOM3(High:Med:Low). In an actual calculation, we have to construct the
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intermediate and small models, as mentioned later. To get an ONIOM energy of the entire
system according to egs. (3)-(5), we carry out five calculations for the real, intermediate, and
small models at the different levels. Here, for example, the energy of the small model at a
high level is written as E(Small,High). The energies expressed by egs. (4) and (5), ~D and
~C, correspond to D and C, respectively, as shown in figure 2, which teach us that the
ONIOM method obtain the total energy of the entire system at a high level E(Real, High) by
an extrapolation procedure.

The partitioning of a molecular system using a link atom in the case of 3,3-dimethyl-1-
butene is presented in figure 3. The vinyl group with the double bond is included in the inner
part and the remainder t-Bu group in the outer part. In the model system of the inner part, the
set 3 atom is replaced by the set 2 link atom. In this case, the t-Bu is replaced by the H link
atom, and the model system ethylene is formed. If the bond between the set 1 and set 3 atoms
is not a covalent bond but a hydrogen bond, the link atom is not necessary. Since the set 2
link atom is on the bond between the set 1 and set 3 atoms, the position of the set 2 link atom
is shown by eq. (6).

n=r+g(r-r) (6)
0, =03, ¢ = 3 (7)

Here, g is a scale factor and constant. When the distance of the C-C bond |r; - ry| changes in
the optimization of the structure, the distance of C-H bond |r; - ry| also changes, the link
atom H following the set 3 C atom. The bond angle and dihedral angle of the link atoms are
the same as those of the corresponding set 3 atoms.

The definition of the integrated ONIOM gradients is straightforward. Let us assume a
two-layered ONIOM. The ONIOM energy is expressed as follows.

E(ONIOM2) = E(Small,High) + AE(Real«<Small,Low) (®)
AE(Real«Small,Low) = E(Real,Low) — E(Small,Low) 9)
Then, the two-layered ONIOM energy gradients are obtained as

gradE(ONIOM?2) = gradE(Real,Low) + gradE(Small,High)*J(R,;R,R3)
- gradE(Small,Low)*J(R,;R|,R3) (10)

Here, R is the coordinate of the atom. The forces on the set 2 link atoms (R;) are projected
onto the set 1 (R;) and set 3 (R3) atoms by the Jacobian matrix J. The second derivatives of
the ONIOM energy with respect to the nuclear coordinates are also obtained in the same
manner [19]. The ONIOM gradients and second derivatives are used for the geometry
optimization, normal mode analysis, and so on, of the real system.
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Model system

Figure 3. Two-layered ONIOM partitioning of 3,3-dimethyl-1-butene.

2.2. Application to the Organometallic Reaction, H; + Pt(PR3), —»
cis-(H)2Pt(PR3), (R= Me, Ph, and t-Bu)

It is well-known that the substituents of the ligands play an important role in the
organometallic reactions. The reaction is very often controlled by their steric and electronic
effects and then a selectivity of the reaction appears. Therefore, organometallic reactions are
excellent targets of the ONIOM method. We made a first test and application of the ONIOM
method to the simplest prototype organometallic reaction, the oxidative addition of the H,
molecule to the bisphosphine platinum complex Pt(PR3),, shown in Scheme 1, for R = Me,
Ph, and t-Bu.

e RR p|" RR_H
PO+ H, —> >o</Pt’f\ | /PQ‘
F|,R3 R, H R,;F  H

<_C)H P’A‘H
o Do

electron donation electron back-donation

Spo*

Scheme 1.

The reactivity of the platinum(0) complex with H, has been experimentally investigated
[20]. The cis-bishydrido complex with a chelating phosphine ligand -cis-(H),Pt[(t-
Bu),P(CH,);P(t-Bu),] is produced from the reaction of Pt[(t-Bu),P(CH,);P(t-Bu),] with H; in
toluene [21]. The two-coordinate phosphine complexes Pt(PR;), (R=c-C¢H;; and i-Pr) also
react with H, at room temperature under atmospheric pressure to give finally the energetically
stable trans-(H),Pt(PR;), product through the isomerization of the cis-(H),Pt(PR3), product
[20(a)]. However, in the case of P(t-Bu); and PPh(t-Bu),, the reaction practically does not
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take place under the same reaction conditions. The reactivity of Pt(PRj), toward H, increases
in the following order: P(t-Bu); < PPh(t-Bu), < P(c-C¢H11); < P(i-Pr)s.

This reaction has been studied extensively with ab initio MO method for the model
system with R = H [22]. The process of cis addition is well-understood in the electronic
aspects [22(a),(b)]. The reaction proceeds by the two kinds of orbital interactions, electron
donation from the H, o orbital to a Pt spc™ vacant orbital and electron back-donation from an
occupied Pt dn orbital to the H, o* orbital, as shown in Scheme 1. The latter interaction is
important to complete the reaction. An occupied dn orbital of the Pt is destabilized in energy
by the electronically donative phosphine ligand bent toward the cis position in the transition
state, which allows an easier interaction of the Pt dn with the H, o*.

However, the reactivity of Pt(PR;), depending on the substituents R of the real system has
not been investigated due to the problem of the computational time. We carried out the
ONIOM calculations for geometries and energies of the reactants, transition states, and
products of the reaction for the substituted systems with R=Me, Ph, and t-Bu at the
ONIOM2(MP2:MM3) level taking account of the electron correlation for the core part. In the
ONIOM method, we used H, + Pt(PH3), as a model system for the real system, for example,
of H, + Pt(P(t-Bu)s),, as shown in Scheme 2. The set 2 link atoms, the H atoms on PH3, in the
model system are replaced by the tert-C atoms on P(t-Bu)s, set 3 atoms, in the real system.

H--H KF--H

__Pt_ Set 1 __PL__ Set 1

_-P P R Re.
H\\\/\H H/\ “H Set2 Sl ¢ d %G, set3

H H
N ., \MeMey | \ K
MeM \ /M}Me Me/Me I \ MeMe Set 4
Model system Real system
Scheme 2.

The transition state has been theoretically determined to be rather early for R=H [22(a)-
(d)]. The H-H distance is stretched by only 4 %, and the Pt-H distance is much longer than
that of the cis-product. The energy barrier is calculated to be only several kilocalories per
mole due to the large exothermicity. The ONIOM calculations for the cases of R=Me and Ph
also gave similar results in both geometry and energetics. Contrary to this, the ONIOM
calculations showed significant differences in the case of R=t-Bu. The effects of the
substituents t-Bu are remarkably reflected in the /P-Pt-P angle in the geometry. The £P-Pt-P
angle of 151° for R=t-Bu is larger by 6-9° than those for the other R=Me and Ph in the
transition state. Although the Z/P-Pt-P angle decreases to 107° in the cis-product for R=Me
and Ph, it does not become smaller than 127° for R=t-Bu. These tendencies for R=t-Bu are
due to the strong steric repulsion between the bulky t-Bu substituents caused by the bend of
the P-Pt-P axis during the reaction. It is also interesting that the congested environment of t-
Bu forces the H, to rotate out from the P-Pt-P plane by 32° in the transition state. The
energetics also dramatically changes by the steric effect of t-Bu. The reaction is largely
endothermic and then the energy barrier becomes very large in the case of R=t-Bu as shown
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by figure 4. This is because an occupied drn orbital of the Pt is not sufficiently destabilized in
energy for the electron back-donation to the H, * orbital due to the large £/P-Pt-P angle in
the transition state and the product. Thus, it is successfully revealed by the ONIOM method
that the steric effect of the substituents of the ligands is an important factor controlling the H,
oxidative addition. This is a first case that the role of the substituent of the ligand of the
organometallic compound is computationally clarified.

E (kcal/mol)

ORI

1.3 3

0.0

A16.6 R=Me

o3 RePh

| | 1

H, + Pt(PRy), TS cis-(H),Pt(PR5), }

Figure 4. Potential energy surfaces of the reaction, H, + Pt(PR3), — cis-(H),Pt(PR;), (R=Me, Ph, and t-
Bu), calculated by the ONIOM2(MP2:MM3) method.

3. ONIOM-Molecular Dynamics (MD) Method

In this section, after the explanation of the ONIOM-molecular dynamics (MD) method in
section 3.1, the first applications of the ONIOM-MD method to cytidine deaninase and the
organometallic reaction, cis-(H),Pt(PR3), — H, + Pt(PR3),, are introduced in section 3.2 and
3.3, respectively.

3.1. Principle and Description of the ONIOM-Molecular Dynamics (MD)
Method

The ONIOM method is now routinely used all over the world to examine the large
molecular systems, since it is implemented in GAUSSIANO3 program package. The ONIOM
method is a very powerful method allowing us to calculate large molecular systems [10-
15,19,23,24] without losing the accuracy afforded for smaller molecular systems. Due to the
simple definition of the QM and MM layers [19], which easily includes the environmental
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effects into the high level QM calculation, the ONIOM method is increasingly adopted as an
efficient approach beneficial to many areas of chemistry, as mentioned earlier.

The biological system is one of excellent targets for the ONIOM method. For enzymes
that include a reaction region at the active site, the QM method that can treat the electron
configuration of the molecule is indispensable. In this case, we have been forced to reduce a
real molecule to a model molecule, which is restricted to only active region, disregarding the
environment so far, due to the limitation of the computational time. The ONIOM method
resolved this problem by including the environment in the MM part, as the MM level of
theory is good enough to describe the amino acid residues environment of enzymes.

However, the ONIOM method is not satisfactory in itself, when the target is a
biomolecule, such as an enzyme, in which the property of the entire system is strongly
affected by its dynamical behavior. For example, we have to take account of the thermal
fluctuations of the environment to examine the environmental effects of the biomolecular
system appropriately. We therefore recently developed the ONIOM-molecular dynamics
method by coupling the ONIOM method with the molecular dynamics (MD) method [16(a)].

Initial
geometry

_ EomModel
ZEqm,Model ! Ruodel

{
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Figure 5. Flowchart of the ONIOM-molecular dynamics (MD) calculation.

The flowchart of the ONIOM-MD calculation is presented in figure 5. The time evolution
of the atomic nuclei is performed according to the conventional MD procedure. Here, the
Newton’s equation of motion is solved by calculating the ONIOM gradients on the fly:

F(GradEoniom real) = Ma (11)

The ONIOM-MD method made it possible to characterize the function of enzymes in a
realistic simulation of the thermal motion retaining the concept embodied in the ONIOM
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method. In the next section, we introduce a first application of the ONIOM-MD method to
cytidine deaminase.

3.2. Application to Cytidine Deaminase

Cytidine deaminase has attracted much attention from pharmaceutical point of view,
because it plays an important role on the activation of the anticancer drug in the human body.
Recently, the oral therapy by capesitabine has been popularized for the metastatic breast and
colorectal cancer. The administered prodrug capesitabine undergoes some conversion
processes by enzymes step by step inside the human body, and is finally converted to 5-
fuluorouracil (5-FU) that attacks tumor tissues when it reaches the cancer cell, as presented in
figure 6. Cytidine deaminase catalyzes the deamination of the intermediate 5’-deoxy-5-
fluorocytidine (5’-DFCR) and produces 5'-deoxy-5-fluorouridine (5'-DFUR) that is the
precursor of 5-FU [25,26]. This is an essential step of the entire process.

0
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Figure 6. Activation process of anticancer drug capecitabine inside the human body.
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The reaction mechanism in the active site proposed on the basis of the experimental
results is presented in figure 7. Uridine and ammonia is produced from cytidine and water,
where it is considered that the reaction undergoes an intermediate B usually referred to as the
tetrahedral intermediate [26]. The participation of Glul04 in the deamination reaction has
been speculated from the observed crystal structures that combine with the substrates [27,28].
The incoming H,O molecule is first trapped at the empty site of the Zn atom in E. One of the
H of the coordinated H,O is abstracted by the glutamic acid and is transferred to the cytidine,
which induces the nucleophilic attack of the hydroxyl anion on the Zn atom to the cytidine
(E—>A). As a result, the tetrahedral intermediate B is formed. This is the first process of the
catalytic cycle. In the second process of the catalytic cycle, the -OH hydrogen in B is carried
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toward the -NH, group by the glutamic acid to form NH; and the product uridine (B—>C—D).
This mediation of the glutamic acid is thought to lower the energy barrier of the deamination
reaction. We have also recently shown that the glutamic acid significantly contributes to
lower the energy barrier of the deamination reaction by means of the density functional theory
(DFT) method using a small model of the active site [29], where the environmental effects of
the amino acid residues in the pocket of the active site are ignored. The previous experimental
studies have indicated that the second process of the catalytic cycle after the formation of the
tetrahedral intermediate B is a rate-determining step [26,30].
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Figure 7. Experimentally proposed catalytic cycle of the hydrolytic deamination of cytidine in the
active site of cytidine deaminase.

The crystal structure of cytidine deaminase was used as a realistic model of the enzyme
for the ONIOM-molecular dynamics (MD) simulations. Water molecules are placed around
the enzyme to mimic the water solvent. The entire system is divided into two layers of the
core and outer parts. The active region was cut out from the active site of the real enzyme to
form a model system, CH;COO™ + H,0O + (cytosine)Zn(SH),(H,0), capping the dangling
bonds with the H atoms. We included in the model system the —COO" group of Glul04 that
mediates the deamination reaction and the three-coordinate Zn complex that binds with the
substrate besides the substrate and the H,O molecule. The ribose ring of cytidine is replaced
by the H atom and cytosine is used instead of cytidine in the model system. To mimic the
lone electron-pair of the N of the histidine that coordinates to the Zn atom in the real system,
a H,O molecule was used in the model system. The core part were treated by the HF level of
theory and the outer part, i.e., the other part of the enzyme and the water solvent, by the MM
level of theory with the AMBER99 and TIP3P force field parameters. The simulations were
run under a constant temperature.

The second process of the deamination, which is considered to includes a rate-determinig
step, starts from the tetrahedral intermediate 12. The active site with the substrate of 12 of the
realistic model optimized by the ONIOM-MD method at 0 K is displayed in figure 8. The
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tetrahedral intermediate experimentally proposed is successfully reproduced. The Zn atom
binds with the O5 atom with the distance of 1.985 A, and the -COO™ of Glu104 interacts with
the H25 and H13 atoms with the distances of 1.506 A and 1.703 A, respectively. It should be
noted that the main chain of the CO oxygen of Tyrl26 interacts with the H23 with the
distance of 2.829 A and affects the behavior of the -NH, group (see below). Three H-bonds
between the substrate and the amino acid residues, Alal03, Asn89, and Glu91, found in the
crystal structure are reproduced. The carbonyl group of the 6-membered ring forms the H-
bond with Ala103. One of the —OH groups attached to the ribose ring forms the H-bonds with
Asn89 and Glu91. Here, Glu91 more strongly interacts with the substrate than Alal03 and
Asn89. These H-bonds prevent the substrate from relaxing, when the substrate is sterically
perturbed by other amino acid residues [16(a),17]. Thus, these H-bonds play an important role
to destabilize the substrate in energy.

Glu104 181
N__O- '.506

Ala103 /H__ €149 2CH

CH;
HO o

Gluot+—C_ -
o

Figure 8. Structure and its illustration of the active site of the tetrahedral intermediate 12 of the realistic
model of cytidine deaminase in the water solvent optimized by the ONIOM-MD method. The
optimized geometric parameters (A) are also presented together.

The H-bonds between the substrate and the amino acid residues, Alal03, Asn89, and
Glu91, are maintained in the ONIOM-MD simulation at 298.15 K, although the O---H
distances are lengthened by 0.070-0.164 A compared to those of the optimized structure, as
presented in table 1. The tendencies in the distance and angle of three H-bonds found in the
optimized structure are not changed in the ONIOM-MD simulation. The occurrence of these
three H-bonds decreases in the order, Glu91 > Alal03 > Asn89, which reflects the strength of
the H-bond. Alal03 as well as Glu91 strongly interacts with the substrate whereas Asn89
weakly interacts. Asn89 comes close to and goes away from the substrate repeatedly due to its
thermal fluctuation.
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Table 1. Occurrence of the H-bonds between the substrate and the neighboring amino

acid residues and the average and standard deviation of the geometric parameters of

their H-bonds in the ONIOM-MD simulation of the tetrahedral intermediate 12 of the
realistic model of cytidine deaminase in the water solvent at 298.15 K ?

Amino acid  Occurrence d(O-H)A) £(0--H-X) (degree)
residue (%) Average Star_ldgrd Average Star_ldgrd
deviation deviation
Alal03 76.3 1.925(1.842) 0.113 159.6(140.7) 8.9
Asn89 46.9 2.057(1.893) 0.207 163.9(162.2) 8.9
Glu9l 100.0 1.535(1.465) 0.088 170.1(173.0) 52

* The values in parentheses are the optimized geometric parameters. The occurrence was calculated on the
basis of the geometries during the MD simulation with the requirements of the O---H distance less than
2.0 A and the Z0O---H-X angle more than 120°. The standard deviation O was calculated by the

following equation; O =

1< =V
— E (Xi — X) . See Figure 8 for the H-bonds.
n-

i=1

The thermal motion of Tyr126 and Phe71, which are outside of the pocket of the active
site and contact with the water solvent, is remarkably large, as shown by the mean square
displacement calculated by the following equation (figure 9)

1o
DMSD = 3_NZ|Ri(t) - Ri(0)|2
i (12)

Here, N is the number of the atoms included in each unit of the amino acid residues and
substrate. The large thermal motion of Tyr126 and Phe71, which sandwich the substrate with
His102, affects the substrate fixed by the H-bonds with other amino acid residues through the
steric contact. In fact, the standard deviation of the QM energy of the substrate in the
ONIOM-MD simulation is about two times larger for the realistic model (7.4 kcal/mol) than
for the small model without the amino acid residues environment (4.2 kcal/mol). The energy
fluctuations of the substrate are enlarged by the perturbation from the surrounding amino acid
residues. These effects of the thermal motion of the neighboring amino acid residues are the
‘dynamical environmental effects’, which is a new concept we found. The dynamical
environmental effects verify the general consensus that the substrate trapped in the pocket of
the active site is destabilized in energy. When a part of energy fluctuations of the substrate
larger than the energy barrier concentrates on a normal mode of the reaction coordinate, the
reaction of the substrate proceeds. Therefore, the reactivity is enhanced when the energy
fluctuations of the substrate are increased by the dynamical environmental effects. The high
reactivity of enzymes thus originates from the dynamical environmental effects of the
neighboring amino acid residues.
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Figure 9. Change in the mean square displacement of the local units, the substrate and the neighboring
amino acid residues, in the ONIOM-MD simulation of the tetrahedral intermediate 12 of the realistic
model of cytidine deaminase in the water solvent at 298.15 K. The color of the lines represents the local
units as follows; green: Asn89; blue: Phe71; red: ribose ring of the substrate; black: Glu91; pink:
His102; pale blue: Ala103; yellow: Glu104; orange: Tyr126.

The intermediate 12 was converted to the intermediate 13 at 13.5 ps as presented in figure
10. The —-NH, group rotates clockwise taking the energetically favorable channel with the
increase in the kinetic energy of both H23 and H24. When the lone electron-pair of the -NH,
is directed toward the —COO" of Glul04, the H25 migrates from the OS5 to the O18 as a
proton. Although the magnitude of the oscillation of the O18---H25 distance is large, the H25
never migrates to the O18 unless the lone electron-pair of the —NH, is directed toward the —
COO" of Glul04 by the rotation of the -NH,. The migration of the H25 takes place at the
same time as the rotation of the —NH,. On the other hand, the -NH, group freely rotates
around the C6-N22 axis in the case of the small model without the amino acid residues
environment. Consequently, the H25 migrates between the O18 and O5 atoms again and
again. The rotation of the -NH, group is locked by the attractive interaction of the —NH,
hydrogen with the CO oxygen of the main chain of Tyr126 in the realistic model (see figure
8). On the other hand, one of the H of the hydroxyphenyl group of Tyr126 keeps staying in
the vicinity of the -NH, with the distance of less than 2.5 A, and facilitates the rotation of the
—NH, through the steric contact due to the thermal motion. Thus, the neighboring amino acid
residues support the H migration step.

Scheme 3.



84 Toshiaki Matsubara

2.4 . ' ' 0

22 F

20 b 50
> ' 2
- 18 100 =
é 1.6 —::i‘
L _ <
2 14 -150 =

) =

12 200 &

1.0

0.8 -250

Time (ps)

Figure 10. Change in the distances of the H-bond O5-H25---O18 and the dihedral angle £/H24-N22-C6-
05 in the ONIOM-MD simulation of the tetrahedral intermediate 12 of the realistic model of cytidine
deaminase in the water solvent at 298.15 K. The color of the lines represents the geometric parameters
as follows; blue: d(O5-H25); red: d(H25---O18); green: £LH24-N22-C6-05.

The O16---H13-N7 H-bond between the —COO™ of Glul04 and the substrate is
maintained in the realistic model, but not in the small model. The formation and dissociation
of the O16---H13-N7 and O16---H23-N22 H-bonds are repeated alternately in the small
model due to the large thermal motion of the O16 atom. In the realistic model, the position of
the O16 and the O18 is kept so as to always form the O16---H13-N7 and O18---H25-O5 H-
bonds. As a matter of course, the motion of the —COO" of Glul04 is restricted, because the
space inside the pocket of the active site is limited. However, the space provided for Glu104
is well designed to permits the O18 to merely shuttle between the O5 and the N22 as a carrier
of the proton. This is responsible for the fact that Glul04 efficiently functions as a mediator
of the proton transfer.

According to the potential energy surface of the deamination reaction calculated for the
small model by the quantum mechanical method, at least, the energy of 10.2 kcal/mol is
required to pass through the transition state TS6 that is at the highest point [29]. In the MD
simulation, the magnitude of the oscillation of the potential energy of the QM part of the
realistic model is 14.8 kcal/mol. This suggests that the deamination reaction is in principle
completed when more than 70 % of 14.8 kcal/mol concentrates on the normal mode
corresponding to the reaction coordinate. However, in order to complete the deamination
reaction within a limited time of the MD simulation, we increased the probability of the
occurrence of the deamination reaction raising the temperature of the system.

When the temperature of the entire system is raised up to 600 K, the intermediate 14 was
formed for a while after 9.6 ps. We found that besides 14 another intermediate 14’ exists
between 14 and the transition state TS6. In the intermediate 14°, the C6-N22 bond is hardly
lengthened, although the H25 is almost transferred to the N22. We further increased
intentionally the kinetic energy of the local unit including the reaction part, i.e., N7, C8, C9,
N10, C11, O12, N22, H23, and H24, after 9.6 ps, at which the intermediate 14 is formed,
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because the formed intermediate 14 goes back to the intermediate 13 without going to 15.
This selection of the atoms is reasonable, because the thermal energy would be localized on a
vibrational mode corresponding to the reaction coordinate when the reaction proceeds (The
H25 and HI13 atoms are already sufficiently ‘thermally activated’ at 600 K). By this
procedure, the formed NH; molecule on the C6 is released 3 ps later and the deamination
reaction is successfully completed (figure 11). This result suggests that the release of the NHj
molecule from the C6 (14—15) is the rate-determining step. During 3 ps from 9.6 to 12.6 ps
before releasing the NHj, the intermediate 14 was included 22.3 %, and the intermediate 14’
was also included 8.7 %. Although the intermediate 14 once retuned to the intermediate 13
after increasing the kinetic energy of the local unit, 14 was formed again at 11.3 ps. The H25
showed a reciprocating motion between the O18 and the N22 during 1.4 ps (from 11.3 to 12.7
ps) just before the release of the NH; molecule, which suggests that the NH; molecule is
released when the motions of both H25 and N22 match to each other.
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Figure 11. Change in the selected distances of the active site in the ONIOM-MD simulation of the
tetrahedral intermediate 12 of the realistic model of cytidine deaminase in the water solvent at 600 K.
The kinetic energy of the local unit consisting of the N7, C8, C9, N10, C11, O12, N22, H23, and H24
atoms was intentionally increased by two times after 9.6 ps. The color of the lines represents the
distances as follows; green: d(N22-H25); blue: d(O5-H25); red: d(O18-H25); black: d(C6-N22).

3.3. Application to the Organometallic Reaction, cis-(H).Pt(PR3), -
H, + Pt(PR3), (R=Me, Ph, and t-Bu)

As mentioned in section 2, the ONIOM calculations have demonstrated that the steric
effect of the environment significantly changes the potential energy surface of the
organometallic reaction, H, + Pt(PR;), — cis-(H),Pt(PR3),. The steric effect might be one of
reasons to determine the reactivity. However, the thermal motion of the environment should
be taken into account to describe more realistic feature of the reaction, as our ONIOM-MD
simulations have evidenced that the thermal motion is a crucial factor of the environmental
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effects for enzymes. The ‘dynamical environmental effects’ on the active site is readily
expected for the reverse reaction, cis-(H),Pt(PR3), — Hj, + Pt(PR3),. The inner (active) part of
cis-(H),Pt(PH;), would be affected by the thermal motion of the outer part of the substituent
R, because the inner part is surrounded by the outer part, as presented in Scheme 4. This
situation of the inner part is similar to that of the substrate trapped in the pocket of the
enzyme.
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Scheme 4.

As mentioned aerlier, according to the ONIOM method, the sterically congested t-Bu
substituent makes the cis-product unstable in energy, and then the oxidative addition of H,
becomes difficult. On the other hand, the less congested Me and Ph substituents readily lead
to the cis-product. Therefore, the reverse reaction, the H, reductive elimination, cis-
(H),Pt(PR3), — H, + Pt(PRj;),;, would be the most facile in the case of the congested
substituent t-Bu. We gave by ONIOM-MD method a further insight into the dynamical
aspects of the environmental effects and more realistic feature of the H; reductive elimination,
and revealed a dynamical factor of the environmental effects controlling the reactivity and a
new feature of the reaction process.

We adopted the two-layered ONIOM methodology for the system, cis-(H),Pt(PR3), — H;
+ Pt(PR3), (R=Me, Ph, and t-Bu). The inner part is cis-(H),Pt(PH;), —> H; + Pt(PH;),, where
all the P-C bonds are cut and the formed dangling bonds are capped with the H atoms. The
outer part is substituent R. This ONIOM partition is the same as that used in section 2 for the
H, oxidative addition. The inner and outer parts are also similarly treated by the quantum
mechanical (QM) method at the Hartree-Fock (HF) level of theory and by the molecular
mechanics (MM) method with the MM3 force field parameters, respectively. The MP2 level,
which makes the MD simulation difficult due to the high computational cost, is not adopted,
because the tendency in the potential energy surface for R=Me, Ph, and t-Bu is similar even at
the HF level.

As far as we tried, the H; elimination from cis-(H),Pt(PRj), occurred only when R is t-Bu
in the ONIOM-MD simulations during 100 ps. Figure 12 shows that the H, eliminates at 87.2
ps. Figure 12(c) focuses on the changes in the geometric parameters in the short time domain
from 86.5 to 87.5 ps where the H, eliminates. The H, bond is at first formed at 87.16 ps. At
this moment, the H4-HS5 already shortens to 0.781 A. On the other hand, the distances of the
Pt-H4 and Ptl1-HS5 are 1.883 A and 1.811 A, respectively, which are not significantly
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stretched. The angle £/P2-Pt1-P3 of 138.2° is also still within its fluctuations (see figure
12(a)). It is interesting that one of the terminal H of t-Bu comes close to the Pt just before the
H, elimination.
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Figure 12. Change in the geometric parameters in the reaction, cis-(H),Pt[P(t-Bus),] — H, + Pt[P(t-
Bus),], in the ONIOM-MD simulation at 900 K. The color of the lines represents the geometric
parameters as follows; red: d(Pt1-H4); blue: d(Pt1-H5); green: d(H4-HS); orange: d(Pt1-H62(t-Bu));
black: ZP2-Pt1-P3. a, b, and ¢ have a different time scale.

As shown in figure 12(a), the magnitude of the fluctuations of the H4-HS5 distance and
that of the Pt1-H4 and Pt1-HS distances repeat the increase and the decrease with a same
cycle. The magnitude of the fluctuations of the H4-HS5 distance obviously increases, when the
H(t-Bu) atom comes close to the Pt. It is rational to think that two hydrido ligands are
energetically enhanced through the steric contact of a H(t-Bu) with the Pt. This approach of
the H(t-Bu) atom would also cause a C-H o electron donation to the Pt and prevent the H; o
electron donation to the Pt, if the electronic effect is taken into account. The magnitude of the
fluctuations of the £/P2-Ptl1-P3 angle also changes with a cycle. When the H4-HS distance
shortens, the ZP2-Pt1-P3 angle has to enlarge in order to eliminate H,. However, before the
H, elimination takes place at 87.2 ps, both cycles of the changes in the magnitudes of the H4-
HS5 distance and the £P2-Pt1-P3 angle do not match as shown in figure 12(b). Both cycles
match to each other in the time domain from 87.0 to 87.2 ps just before the H, elimination
takes place. A H(t-Bu) atom also attacks the Pt for a while after 86.5 ps, until the H,
eliminates. In the time domain from 87.0 to 87.2 ps where all the factors to eliminate the H,
are prepared, two hydrido ligands, H4 and HS, start the reaction as shown by the change in
the H4-H5 distance. After the H, is detached from the Pt at 87.2 ps, the £P2-Pt1-P3 angle
increases (figure 12(c)) along the downhill energy surface of the outer part (figure 14(a)).
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As shown by the snapshots of the H, elimination process (figure 13), when the H,
molecule is formed on the Pt at 87.16 ps, the H, axis suddenly rotates to become
perpendicular to the P2-Pt1-P3 plane. One of charge transfer interactions, the electron back-
donation from an occupied Pt dr orbital to the H, 6* orbital, is broken by this rotation of the
H,. The formed H; still interacts with the Pt due to the other charge transfer interaction, the
electron donation from the H, o orbital to an unoccupied Pt spo* orbital. This electron
donative interaction is broken by the attack of a H(t-Bu) atom at 87.17 ps. A H(t-Bu) stays
close to the Pt during the H, elimination, keeping the Pt-H(t-Bu) distance less than 2.3 A. At
87.18 ps, the H; is detached and it goes away from the Pt after 87.19 ps. The H; rotates
around the axis that penetrates the mid point of the H, and the Pt throughout the H,
elimination reaction. However, the H, does not always rotate in the H, elimination. When an
enough energy provided to the H,, the H; is detached from the Pt atom without the significant
rotation of the H,. This process of the H; elimination with the contribution of a H(t-Bu) atom
is a new facts revealed by the ONIOM-MD method.

sideview

87.16 ps

33.9
195.0
228.9

Figure 13. Snapshots of the reaction, cis-(H),Pt[P(t-Bu;),] & H, + Pt[P(t-Bus),], in the ONIOM-MD
simulation at 900 K. The values (kcal/mol) in the bold, italic, and normal type are the QM energy of the
inner part, the MM energy of the outer part, and the ONIOM energy of the entire system, respectively.

The MM and ONIOM energies change randomly by their fluctuations during the H,
elimination. On the other hand, the QM energy reaches the top of the energy mountain at
87.16 ps, where the axis of the H, formed on the Pt becomes perpendicular to the P2-Pt1-P3
plane. These facts indicate that the actual energy barrier exists in the QM (inner) part. The
QM system overcomes an energy barrier by gaining an energy from its energy fluctuations, as
shown by the fact that the top of the energy barrier is within the energy oscillation of the QM
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part (see figure 14(b)). When the energy from the fluctuations concentrates on a normal mode
of the H, elimination, the reaction proceeds, as mentioned in section 3.2. The standard
deviation of the QM energy of the inner part is the largest for R=t-Bu as shown in table 2,
which suggests that the reactivity is the largest for R=t-Bu. In the congested system for R=t-
Bu, the inner part is strongly perturbed by the thermal motion of the bulky t-Bu having a huge
energy. As a result, the energy fluctuations of the inner part increase. When the system
becomes less congested after the H, elimination, the energy fluctuations of the inner part are
reduced (table 2 and figure 14(b)).

QM
Table 2. Standard deviation of the energy of the inner part e (kcal/mol) of cis-
(H)2Pt(PR3), in the ONIOM-MD simulations at various temperatures and the energy

barrier of the inner part AE oM (kcal/mol) for the reaction, cis-(H),Pt(PR3), > H, +
Pt(PRs), (R = Me, Ph, and t-Bu), calculated by the ONIOM method

R Standard deviation Energy barrier
300 K 600 K 900 K* HF level MP2 level

Me 1.7 3.2 4.8 28.3 20.2

Ph 2.6 4.6 6.5 28.5 20.4

t-Bu 3.9 5.8 8.1/5.2 244 17.0

* The values on the left and right-hand side of the slash for R=t-Bu are those before and after the H,
elimination, respectively.
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Figure 14. Change in the potential energies in the reaction, cis-(H),Pt[P(t-Bu;),] = H, + Pt[P(t-Bus),],
in the ONIOM calculation (a) and in the ONIOM-MD simulation at 900K (b). In (b), the color of the
lines represents the potential energies as follows; blue: ONIOM energy of the entire system; green: MM
energy of the outer part; red: QM energy of the inner part.

The forces added to two hydrido ligands from the substituents R are important as a
driving force of the H, elimination reaction, as figure 13 shows that the H, bond is formed
first before the increase in the P2-Pt1-P3 angle. Both hydrido ligands feel large forces in the
case of R=t-Bu as presented in figure 15. After the H, elimination, these forces become zero.
The magnitude of the force obviously increases in the order, t-Bu > Ph > Me.
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Figure 15. Change in the forces added to the hydrido ligands of the inner part from the substituents R of
the outer part in the reaction, cis-(H),Pt(PR;), — H, + Pt(PR3), (R=Me, Ph, and t-Bu), during the
ONIOM-MD simulation at 900K. In each case, red: H4 and blue: H5.

As mentioned earlier, the inner part itself has to overcome its energy barrier to complete
the reaction. After the H, is detached from the Pt, the large steric repulsion between two
phosphine ligands is reduced by the increase in the £/P2-Ptl1-P3 angle along the downbhill
energy surface. The essential barrier exits in the inner part. Therefore, we have to assess the
reactivity not by the energy barrier of the entire system including the outer part but by the
energy barrier of the inner part. The energy required to overcome a barrier is provided from
the energy fluctuations of the inner part. The reaction therefore becomes more facile, when
the magnitude of the energy fluctuations of the inner part is enlarged by the dynamical
environmental effects of the outer part caused by the thermal motion, as mentioned in section
3.2. The thermal motion of the bulky t-Bu having a huge energy in the congested space is a
driving force of the reaction and supports to overcome the energy barrier.

The magnitude of the energy fluctuations of the inner part is different among the
substituents, R=Me, Ph, and t-Bu, of the outer part at the same temperature. These difference
determine the reactivity of the inner part as mentioned earlier. In this sense, not the
temperature but the energy fluctuations, should be essential factors to evaluate the reaction
rate. We therefore derived an equation, which connects the temperature T to the standard

deviation of the energy 9E, in order to replace the temperature T by the standard deviation of

2

the energy CE in the Arrhenius’ equation. The variance of the energy € [1[J[J 0000 is
written in the following form, since we here think a canonical ensemble with a constant
temperature.

ot =((E~(E)))=(E*)~(E)

(13)

The average of the energy is expressed as follows.

<E>:ZEipi

(14)

Here, the probability Pi of Ei in the state i of the system is
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o
z kg T (15)

The partition function Z is written as

‘- ;exp[_ kfiTj

Using eq. (14), the variance of the energy is written as

oz =(E*)-(E)' = {ZE exp[ Ke J} { ZEexp[ kBTJ}Z. (17)

d(E
On the other hand, the specific heat C.- (§T> is calculated as follows using eq. (14).

(16)

U d ZEiGXp(‘ kfiTJ

dT _ﬁ z
2
[ZEzexp[ j] L ZE exp( k. j]
(18)
Therefore, the specific heat C, is written as
d(E 1
c.- 48 Lo
According to the principle of equipartition of energy, the average energy is
1
(E)=—fksT
2 (20)
Here, f is the number of degree of freedom. The specific heat C, is, thence, written in

another form,

c -YE) _lg

YoodT 2 1)
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Using egs. (19) and (21), we obtain the following equation,

. fke = % o
Eq. (22) is arranged as follows.
T= |20

When we use eq. (23) in the Arrhenius’ equation, k = Aexp(_ﬁj, we obtain
RT

k= Aexp(—\/E EJ
2 o (24)

The rate constant is expressed by the standard deviation of the energy CE instead of the
temperature T in the derived eq. (24) (Matsubara’s equation). The ratio of the rate constant
for the systems with the different energy fluctuations of the inner part is calculated as follows
using eq. (24).

(25)

It is assumed here that the frequency factors A for two different systems are the same. The

QM
standard deviation of the energy of the inner part P and the energy barrier of the inner part

AE®" presented in table 2 were used to calculate the ratio of the rate constant using eq. (25).
fis 27. The qualitative tendencies in the ratio of the rate constant for the HF and MP2 levels
are quite similar as presented in table 3. The reactivity is much larger for R=t-Bu than for the
other R=Me and Ph as expected. The rate constant is, for example, more than 45 times larger
for R=t-Bu than for R=Ph at the MP2 level at 900 K. The rate constant increases in the order,
t-Bu > Ph > Me, at each temperature.

The ratio of the rate constant is also calculated using the Arrhenius’ equation as follows.
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= (26)

Since the environmental effects of the sterically congested t-Bu substituent a little reduce
the energy barrier of the inner part, the reaction becomes more facile in the case of R=t-Bu.
But, when we take account of the dynamical environmental effects through the standard
deviation of the energy of the inner part, the reaction for the sterically congested t-Bu
substituent becomes much more facile as shown in table 3. The inner part is just thought to be
embedded in a bath of the outer part and is heated by the thermal motion of the sterically
congested substituents of the outer part. The inner part is heated higher by 160-220 K for R=t-
Bu than for R=Ph as calculated by eq. (23). This is reflected in the rate constant through the
standard deviation of the energy in eq. (24). These results explicitly show the dynamical
effects of the environment of the sterically congested substutuent of t-Bu on the reaction.

Table 3. Ratio of the rate constant of the reaction, cis-(H),Pt(PR3), — H, + Pt(PRy),, for
R=Me and Ph to that for R=t-Bu calculated at various temperatures®

R Ratio 1 Ratio 2
HF level MP2 level HF level MP2 level
300 K
Me 1.44x10° 4.66x107 2.63x10™" 9.88x107"
Ph 1.03x10° 3.33x10” 3.10x10" 2.72x10°
t-Bu 1.00 1.00 1.00 1.00
600 K
Me 3.79x107 6.82x107 3.99x10™ 4.01x10°
Ph 3.21x107 5.77x107 6.71x10™ 3.98x107
t-Bu 1.00 1.00 1.00 1.00
900 K
Me 1.12x10" 1.67x10" 2.51x10° 4.30x10™
Ph 1.01x10™" 1.49x10™ 6.46x10” 2.19x107
t-Bu 1.00 1.00 1.00 1.00
* The ratios 1 and 2 were calculated by the eq. (26) and (25), respectively, using the standard deviation of the
energy of the inner part O_(ISM and the energy barrier of the inner part AE oM presented in Table 2.

4. Concluding Remarks

We have developed a QM/MM hybrid ONIOM method, to calculate the large molecular
system practically, without the problem of the computational time and without losing the
calculation accuracy. We recently further developed the ONIOM-molecular dynamics (MD)
method integrating the ONIOM method with the molecular dynamics method to take account
of the effect of the thermal motion of the environment. We first applied the ONIOM-MD
method to an enzyme, citidine deaminase.
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Although the reaction mechanism of citidine deaminase is being clarified, there still
remain a lot of questions to be resolved to understand why citidine deaminase shows such a
high catalytic activity for the deamination. From the viewpoint of improving the efficacy of
the anticancer drug, further insights into the function and catalysis of the enzyme to transform
the anticancer prodrug into an active form are strongly desired.

The contribution of the thermal motion of the neighboring amino acid residues
environment to the catalysis is now one of subjects of interest. The ONIOM-MD simulations
showed that the thermal motion of the neighboring amino acid residues perturbs the
fluctuations in the geometry and energy of the substrate trapped in the active site through the
steric contact. This is a ‘dynamical effect’ of the environment we found, which is a new
concept and ‘true feature’ of the environmental effects. We clarified the dynamical
environmental effects of the neighboring amino acid residues on the trapped substrate and
successfully specified the key amino acid residues of these effects. We also revealed that the
dynamical environmental effects, which enlarge the fluctuations in the energy of the
substrate, are important factors controlling the reaction of the substrate. The ONIOM-MD
method brought us new findings and understandings concerning the enzymatic reaction.

The dynamical environmental effects caused by the thermal motion, which was found in
the pocket of the active site of the enzyme, is thought to play an important role generally in
the active site of the system surrounded by a similar environment. A prototype organometallic
reaction, cis-(H),Pt(PR3), — H, + Pt(PR;), (R=Me, Ph, and t-Bu), is a good sample. The
ONIOM-MD simulations showed that the thermal motion of the substituents R of the ligands
increases the magnitude of the energy fluctuations of the active site to promote the H,
elimination reaction. These dynamical environmental effects increase in the order, t-Bu > Ph
> Me, indicating that the reactivity of cis-(H),Pt(PR3), increases in the same order. This order
in the reactivity is proven by an equation derived from the Arrhenius’ equation (Matsubara’s
equation). The snapshots of the reaction in the ONIOM-MD simulation for R=t-Bu also
indicated a new feature of the H, elimination process.
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Abstract

Several recent studies (J. Phys. Chem. 4 2004, 108, 5479; J. Comput. Chem. 2007, 28, 2431)
have shown impressive results when replacing the non-empirical PBE density functional by
the empirical OPBE or OLYP functionals, i.e. replacing the PBE exchange functional by
Handy and Cohen’s OPTX functional. To investigate the origin of the improvements, we have
placed constraints from the non-empirical PBE exchange functional on the empirical OPTX
exchange functional, and tested the performance of the resulting constrained functionals for
several characteristic chemical properties. The performance of the new functionals is tested
for a number of standard benchmark tests, such as the atomization energies of the G2 set,
accuracy of geometries for small molecules, atomic exchange energies, and proton affinities
of anionic and neutral molecules. Furthermore, the new functionals are tested against a
benchmark set of nucleophilic substitution Sy2 reactions, for which we have recently
compared DFT with high-level coupled cluster CCSD(T) data (J. Comput. Chem. 2007, 28,
1551). Our study makes clear that the performance depends critically on the number of
constraints, and on the reference data to which the constrained functionals are optimized. For
each of these properties studied, there is at least one functional that performs very well.
Although a new promising functional (MLgOLYP) emerged from the set of constrained
functionals that approaches coupled-cluster accuracy for geometries and performs very well
for the energy profile of Sy2 reactions, there is no one of the newly constructed functionals
that performs equally well for all properties.

Keywords: Density Functional Theory — Exchange functional — Geometry — Reactivity —
Properties.
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Introduction

Over the past twenty years, Density Functional Theory (DFT)[1-3] has become the
method of choice for many investigations of chemical problems by quantum-chemistry
methods. Within DFT, only the exchange-correlation energy Exc = Ex + E¢ as a functional of
the electron density p(r) must be approximated, i.e. as Exc[p(r)]. In fact, Hohenberg and
Kohn[4] proved that if a suitable functional is chosen, this would give exact results.
Unfortunately, they did not give the formulation for this suitable (i.e. exact) functional, for
which various approximations have been proposed since then (see the “Formulation of DFT
functionals” section). The first and most simple approximation (Local Density
Approximation, LDA)[5-7] was derived from the uniform electron gas, and is determined
completely by the density p(r). Although this approximation works very well for physics, its
performance for chemistry was less satisfactory. Therefore, also the density gradient (V)
was taken into account (Generalized Gradient Approximation, GGA),[8] which indeed
showed marked improvements over LDA. Later studies included not only the density
gradient, but also its Laplacian (V’p) and/or the kinetic energy density (Meta-GGA,
MGGA).[9] These three classes (LDA, GGA, MGGA) comprise the first three rungs on
Jacob’s ladder of increasing accuracy (and complexity).[10] The early GGA functionals were
still not as accurate as hoped for, which also led to the inclusion of a portion of Hartree-Fock
exchange in the exchange part of the functional (hybrid functionals).[11] In the fourth rung of
the ladder (Hyper-GGAs, HGGA), not simply a portion but the full 100% of HF exchange
will be taken into account.[12]

50/

CPU-
time
(sec)

25/

LDA GGA MGGA hybr hybr-MGGA

Figure 1. Computational demand (CPU-time, s) of LDA, GGA, MGGA, hybrid and hybrid-MGGA
functionals for one SCF cycle for the HOF molecule with the cc-pVQZ basis.

The increase of accuracy (and complexity) comes with a price, as the computational cost
increases significantly along the rungs of the ladder (see figure 1). However, because the
energy depends in principle only on the density o(r) (and its derivatives), which in turn is a
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function of only 3 coordinates (X, y, z), DFT is still a much more efficient method than
wavefunction (V) based methods that explicitly depend on 3N,y., that is, the 3 coordinates of
each of the N, electrons in the system. Moreover, because of additional enhancements to
make the programs more efficient (linear scaling techniques),[13,14] the computational cost
of DFT nowadays scales linearly with system size (N), in contrast to for instance the “gold
standard” CCSD(T) that scales as N”.[15] Therefore, nowadays it is already possible to treat a
complete protein structure of 4728 atoms completely with DFT methods,[16] while probably
the largest system studied with CCSD(T) is octane (26 atoms), which was possible only in
parallel on ca. 1500 nodes.[17] However, despite the huge computational cost, the CCSD(T)
method is highly popular because it is generally applicable and a very accurate method, often
even more accurate than experiment.[18-20] As a result, the method is often used in
benchmark studies[21-24] to give the reference data with which to compare results from e.g.
DFT functionals.

One of the more promising and consistent lines of research within the formulation of
DFT functionals is provided by Perdew and co-workers,[6,7,9,12,25-31] who e.g. introduced
the first GGA functional. Over the past decades, they have constructed non-empirical
functionals on the first three rungs: PW92 (LDA),[7] PBE (GGA),[28,32] TPSS
(MGGA),[30] and semi-non-empirical hybrid functionals PBEO[33] (also known as
PBE1PBE) and TPSSh[31] that contain 25% and 10% of HF exchange respectively. These
functionals were constructed based (amongst others) on constraints that should be satisfied by
the exchange-correlation hole,[28] which is one of the reasons why these functionals in
general perform very well. However, for each of these functionals there are properties for
which it does not perform very well. For instance, the PBE functional is not very accurate for
the atomization energies of a set of molecules (the G2 set, see below), for which it shows a
deviation of 16 kcal'‘mol™. Although this is only a fraction of the deviation for LDA (83
keal'mol™),[23] it is ca. four times that of other functionals such as the highly empirical
B3LYP (a hybrid functional).[34] Very soon after its publication, the PBE functional was
therefore revised[35] with the atomization energies in mind. In this revPBE functional, one of
the PBE constraints (see below) was lifted, which indeed improved results for the G2-set
atomization energies. However, for the accuracy of geometries of a set of small
molecules,[36] PBE performed significantly better, while for other properties the difference
between revPBE and PBE is either insignificant or in favor of PBE. Several other
modifications of the PBE functional have been proposed (RPBE,[37] mPBE,[38] xPBE[39]),
which however do not show a general improvement and suffer from being highly empirical.

It seemed therefore that improvement over PBE could only be obtained by going to
higher rungs on the ladder. This changed however in 2001, when Handy and Cohen[40]
introduced the optimized exchange (OPTX) functional, which was fitted to minimize the
difference with Hartree-Fock exchange energies for atoms (H-Ar). This difference (3.6
kcal'mol™) was indeed substantially lower than that of other popular exchange functionals
like Becke88[41] (7.4 kcal-mol'l) or PBEx[32] exchange (40.5 keal'mol™; see below). When
combined with the Lee-Yang-Parr (LYP)[42] correlation functional, the resulting OLYP
functional was indeed shown to be a major improvement over other GGA functionals,[43]
and for organic chemistry reactions it performed better than the B3LYP functional.[44]
Similar good results were obtained by combining OPTX with the PBEc correlation functional
(to give OPBE).[21,23,45]
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The OPBE functional was tested successfully for the spin ground-state of a series of iron
complexes,[45] for which early GGA functionals failed completely. The latter functionals
(including PBE) showed a tendency to overstabilize low-spin states, and as a result predicted
a low-spin (doublet) ground-state for an iron(IIl) compound (Fe(N(CH;-0-CsHsS);3)(1-Me-
imidazole)) that was experimentally shown to be high-spin (sextet). For the vertical spin-state
splittings (see figure 2 for its definition), a number of DFT functionals correctly predicted the
spin ground-state, which include OPBE,[23] Becke00,[46] B3LYP,[34] TPSSh[30,47] and
VS98.[48] However, a more stringent check[49,50] on the performance, by looking at the
relaxed spin-state splittings (see figure 2 for its definition) for these iron complexes, revealed

that only one reliable functional remained: OPBE.

vertical spin-state splittings relaxed spin-state splittings

—_—
—_—

2)
Y

Energ

Ener

Metal-ligand distance ———» Metal-ligand distance ———»

Figure 2. Vertical (left) versus relaxed (right) spin-state splittings.

In a recent study[50] by one of us, the OPBE functional has been used for a series of iron
complexes, including a benchmark set (Fe(II)(H20)62+, Fe(II)(NH3)62+, Fe(II)(bpy)32+) for
which high-level ab initio (CASPT2) data by Pierloot and co-workers[51] are available for
comparison. Pierloot and co-workers also used their data to compare with Hartree-Fock (HF)
and some DFT functionals, such as LDA, BP86[25,41] (GGA), PBEO[33] (hybrid) and
B3LYP[34] (hybrid). These functionals all showed large deviations from the reference
data,[51] of respectively 57 (LDA), 15 (BP86), 11 (B3LYP) and 9 (PBE0) kcal'mol™.[50]
Moreover, the hybrid functionals B3LYP and PBEO inadvertently predicted a high-spin
(quintet) ground-state for the bipyridyl compound, which should have been low-spin (singlet).
This failure of hybrid functionals can be traced directly[52] to the inclusion of a portion of HF
exchange; Hartree-Fock itself predicts a high-spin ground-state for all three molecules, with a
large deviation (57 kcal'mol™") from the reference CASPT? data.

The OPBE functional gives excellent agreement[50] with the CASPT2 data for the
benchmark set, from which it differs by only 1-2 kcal'‘mol”. Note that this is an order of
magnitude smaller than those of the other DFT functionals, and falls well within the estimated
accuracy (1000 cm™ = 3 kcal'mol™) of the CASPT2 data.[51] In the same paper,[50] a
number of other difficult iron compounds have been studied that include a spin-crossover
compound for which B3LYP and B3LYP* (a reparameterized form[53] of B3LYP that
contains only 15% HF exchange instead of the 20% in B3LYP) were shown to fail.[54] For
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all these compounds does OPBE give excellent behavior, i.e. it predicts the spin ground-state
that is experimentally observed and gives metal-ligand distances that are in good agreement
with experimental structures. Of particular interest[50] are two iron compounds based on
pyridylmethylamine (pma) ligands, for which the mono-pma compound has a high-spin
ground-state, while the di-pma compound has a low-spin ground-state. These two compounds
are structurally very similar with a distorted octahedral arrangement of ligands around the
iron, in which the only difference is the replacement of a chloride ligand (in mono-pma) by a
pyridine ligand (in di-pma). Despite these small changes, the OPBE functional is able to
correctly predict the spin ground-state, in contrast to other DFT functionals. The standard
pure functionals, which overstabilize low-spin states, fail for the mono-pma compound for
which they do not predict the high spin-state. Hybrid functionals, which overstabilize high
spin-states due to inclusion of HF exchange, fail for the di-pma compound for which they do
not predict the low spin-state. Especially noteworthy was the failure of the Minnesota M06
functionals, which were reported[55] to be the most reliable for organometallic compounds,
but nevertheless failed dramatically for the spin ground-states of iron complexes.

The reliability of the OPBE functional for providing spin ground-states has been shown
also by studies from other groups,[52,56-68] which also looked at other metals than iron.
Furthermore, some of us have investigated[69] its performance for the spin ground-states of a
number of ligands, for which experimental data are available with several first-row transition-
metals in a number of oxidation states (Mn(II), Mn(Ill), Mn(IV), Cr(Il), Co(Il), Co(IIl),
Ni(II), Ni(III), Fe(Il), Fe(IIl)). In all these cases did OPBE correctly predict the spin ground-
state.

Recently, we have investigated the influence of the basis set on the spin-state
splittings,[70] which was found to be substantial. It was shown that both vertical and relaxed
spin-state splittings converge rapidly with basis set size when using Slater-Type Orbitals
(STOs), while the convergence is much slower for Gaussian-Type Orbitals (GTOs). The
smaller GTO basis sets have in particular problems with high-spin states that are typically
placed at too low energy, especially when looking at relaxed spin-state splittings. However,
when using very large and demanding GTO basis sets (like NR-cc-pVTZ), the GTO series
converges to the same results as obtained with the STO series. This does not occur when
using basis sets that include Effective Core Potentials (ECPBs) that give results that are
fundamentally different from the STO/GTO data.[70]

The good performance of the OPBE functional for the spin-states of iron complexes
concurs with a recent benchmark study on the energy landscapes of bimolecular nucleophilic
substitution (Sy2) reactions by us.[21] In that study, we investigated the performance of DFT
functionals for the energy profile of SN2 reactions for which reference CCSD(T) data were
available in the literature. It was shown that functionals based on OPTX exchange (OPBE,
OLYP) significantly improve upon early GGA functionals such as BLYP or PBE, i.e. the
underestimation of reaction barriers by the latter is dramatically reduced (roughly by a factor
of two). Moreover, we also investigated the geometries of the different stationary points
(reactants, products, reactant complexes, product complexes, transition states), and compared
the resulting structures with the CCSD(T) data. Significant improvements over standard GGA
results were obtained by using the OLYP and OPBE functionals, i.e. distances from
OLYP/OPBE were twice as accurate while angles were five to ten times as accurate. The
overall performance for the geometry, as measured by the Pg value, is therefore ten to twenty
times smaller for the more accurate OPBE (Ps value 0.04) and OLYP (Ps value 0.03)
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functionals than for standard DFT functionals like BP86 (Pg value 0.34), LDA (Ps value
0.34), PBE (Pg value 0.61) or BLYP (Pg value 0.72). In fact, both OLYP and OPBE
performed substantially better for the geometries than either OLAP3[71,72] (MGGA, Pg
value 0.07) or mPBEOKCIS (hybrid, Ps value 0.06), which were respectively the best
performing MGGA and hybrid functional for the energetics of the Sy2 reactions.[21]

In another validation study by some of us,[24] the competing elimination and substitution
pathways (anti-E2, syn-E2, Sy2) were determined for X + CH3;CH,X (X= F, Cl) at the
CCSD(T)/aug-cc-pVxZ//OLYP/TZ2P level (x=Q for F, T+d for CI). The same geometries
were used to determine the corresponding energies for a range of ab initio methods and DFT
functionals. The reference CCSD(T) data showed the anti-E2 pathway to be most favorable
for the fluoride reaction, while for chloride the substitution pathway is most favorable. Most
DFT functionals correctly predicted the chloride pathway (apart from M06-2X), but very few
GGA and MGGA functionals could correctly predict the anti-E2 pathway being most
favorable for the fluoride reaction. The exceptions were mainly those (M)GGA functionals
based on OPTX exchange (OPBE, OLYP, OLAP3). [24] The best performing GGA
functional for both the overall and central barrier was again OPBE, however with a
substantial mean absolute deviation (MAD) from the CCSD(T) data of 4.4 and 4.3 keal'mol™,
respectively. Similar to what was observed in the benchmark study on the energy landscapes
of Sn2 reactions, these deviations show a dramatic reduction compared to early GGAs such as
PBE, which showed MAD values of 11.8 and 7.5 kcal'mol”, respectively for the overall and
central barrier. As the elimination transition structures involve weak interactions of the
nucleophile/leaving group with the substrate (for which OPBE does not work that well, see
below), part of the elevated MAD value of OPBE and OLYP might be attributed to the less
satisfactory description of these by OPBE and OLYP. It should also be noted that the best
performing DFT functional for the Sx2 energetics (mPBEOKCIS), now performs significantly
less with MAD values close to those of OPBE.

For NMR chemical shifts, OPBE also seems to give good results,[58,59] and was in fact
claimed to be the best DFT functional around,[59] often even surpassing the MP2 method,
although this has recently been questioned by Truhlar and co-workers.[73] Truhlar claimed
that the study by Xu and co-workers[59] was biased by leaving out ozone and PN (for which
OPBE supposedly does not perform as well as for BCor'H NMR), but this does not explain
why OPBE gives a much larger deviation for °C chemical shifts (5.8 ppm) in Truhlar’s study
than in the Wu study (2.3 ppm). Fact is that a different GTO basis set was used in these two
studies, which might explain the observed differences. After all, NMR is a nuclear property
for which a good description of the region around the nucleus is mandatory, and since GTOs
do not have a cusp at the nucleus, they might not be particularly well suited for studying
NMR parameters unless very large and demanding basis sets are used (see above for the
enormous influence of the basis set type and size on spin-state splittings).

Despite these successes of OPBE for spin-state splittings,[45] Sy2 energy landscapes,[21]
accuracy of geometries,[23] vibrational frequencies,[23] NMR chemical shifts,[59] there are
also examples where it fails dramatically. The most important failings are observed for weak
interactions, i.e. n-w stacking[74] and hydrogen-bonding interactions,[75] while it also does
not work as well as anticipated for the proton affinities of anionic[76] and neutral[77] bases
(see below). These weak interactions are especially important for biochemical systems, in
particular for DNA and RNA where inter-strand hydrogen-bonding interactions and intra-
strand n-7 stacking interactions provide strong binding.[74]
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The n-m stacking interaction remains a problematic and difficult interaction for DFT to
handle,[74] which is often ascribed to the problems of DFT to describe dispersion
interactions. Although it is true that empirical C/R® corrections[78] sometimes reduce the
failings of DFT functionals, there is no causal relation between dispersion and stacking. The
best example are posed by the XLYP and X3LYP functionals,[79] which were shown to
perform very well for the dispersion interactions of noble-gas dimers (He,, Ne,). Therefore,
these “best functionals available at that time” were predicted to perform equally well for n-n
stacking interactions of DNA bases;[79] however, they failed badly[80] (also for spin-state
splittings[49,50] and SN2 reaction barriers[21]). Recently, some of us investigated how good
or bad the DFT functionals are for n-n stacking interactions,[74] and found that there are
indeed some functionals (LDA, KT1,[81] KT2,[81] BHandH[82]) that give a very good
description for it. For n-n stacking OPBE and OLYP are not particularly good.[74] They even
show repulsive interactions, unlike e.g. PBE that still shows attraction (although too weak).

Hydrogen-bonding interactions are in general well described by many DFT functionals,
as was recently shown by some of us[75] for the H-bonding interactions in the DNA base
pairs A:T and G:C. Among the functionals that perform well are PW91 and BP86, while
OPBE and B3LYP underestimate H-bonding interactions. For instance for OPBE, the
hydrogen-bond distances were overestimated by 0.05-0.14 A and the corresponding energy
underestimated by 9-12 kcal'‘mol™. We therefore concluded[74,75,83] that at present there is
no DFT functional available that is simultaneously accurate for both weak (intermolecular)
and strong (intramolecular) interactions, reaction barriers and spin-state splittings (to name
just a few in a wide range of characteristic properties). In order to be able to study e.g. the
structure and reactivity of DNA, we designed a multi-level QM/QM approach (QUILD:
QUantum-regions Interconnected by Local Descriptions)[83] in which each type of
interaction can be studied by that particular methodology that is appropriate for it.

Because of the emerging pattern where PBE works well for some properties, but not for
others, and the impressive improvements shown by OPBE, we were interested in finding out
what is the origin of the differences observed between PBE and OPBE. In other words, why
does OPBE work so much better for reaction barriers and spin-state splittings, and not at all
for weak interactions ? Since both functionals contain the same PBEc correlation functional,
and differ only in the exchange part, it is obvious that it is determined by exchange. However,
exactly which part of it ? In the design of the PBEx exchange functional,[32] Perdew and co-
workers used four constraints (see below) that completely determines its formulation. The
OPTX functional[40] satisfies only one of these constraints, so it is very likely that releasing
the other three leads to the major improvements seen by OPBE. However, are all three
important or just one or perhaps none at all ? Here, we investigate this puzzling question in
two ways: (i) either by imposing the constraints on the OPTX formula; or (ii) by releasing
them for the PBEx formula.

Formulation of DFT Functionals
Density functional theory methods[1-3] such as the local density approximation (LDA)

and the generalized gradient approximation (GGA) describe the exchange-correlation energy
in terms of the density p and density gradient V p:
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The expression for the exchange energy of LDA is derived from the uniform electron gas
and is formulated as Cx-p4/ 3, with Cx a constant and p the (spin-polarized) density. Because
there is no exchange taking place between electrons of opposite spin, for spin-polarized
systems the exchange energy is simply the sum of the separate energies in terms of o and 3
density; see the spin-scaling relationship below (constraint iv).[32] The expression for the
LDA correlation energy is a bit more involved,[5,7] and since we are focusing here on the
exchange energy only, it will not be given explicitly. The formula of the GGA exchange
energy can be expressed as function of the LDA exchange energy, by using an enhancement
factor F(s) that is expressed in terms of the reduced density gradient s = /Vp// 2pkr,
k=37 L8]

EJ = I d’r & (p)- F(s) )

In 1996, Perdew, Burke and Ernzerhof (PBE)[32] introduced a simplification of the
earlier Perdew-Wang (PWO91) functional,[26] both of which contain only physical constants
as parameters. Moreover, they posed[32] a set of four constraints on the exchange part of the
(PBEX) functional that completely determines its expression:

i) to recover the correct uniform gas limit, the exchange functional should have an
enhancement factor F(s) that equals 1 (i.e. LDA) when the reduced density gradient s is zero

ii) at low values of s, i.e. for small density variations around the uniform density, the
functional should have a limiting behavior that goes as ~/+us” to cancel the correlation-GGA
contribution and thus recover the LDA linear response

iii) the Lieb-Oxford bound,[10] which should be met, will be satisfied if the enhancement
factor grows gradually with s to a maximum value of 1.804

iv) the exact exchange energy obeys the spin-scaling relationship:

Ey [pa9pﬁ]= (EX [20.]+ Ex [2pﬂ])/2 3)

A simple expression that satisfies these four constraints is given by their chosen form for
the enhancement factor[32]

1
PBE 2
F™(s) {A+Cs 1+gszJ A+Bl+%s_2 4)
with A=1.0, B=0.804 and C~0.219515. Note that the limiting behavior for both s—0 (in
square brackets) and s—oo are given in Eq. 4.

The OPTX functional by Handy and Cohen[40] satisfies only constraint iv, and has the
following expression for the enhancement factor:
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with A=1.05151, B=1.538582 and C=0.364624. One of the main differences is therefore that
whereas the PBEx exchange functional has s° as leading term, for OPTX it is s*. One of us
therefore argued in a previous validation study for the spin-states of iron complexes,[45] that
this difference in leading terms could be responsible for the improvements observed for the
OPBE functional. Here we will see if that assessment still holds, or if it is determined more
by the constraints that are imposed on the exchange functional.

We also include a third expression for the exchange enhancement factor, which was
derived from a Bayesian Error Estimate (BEEx)[84] and which is some kind of mixture
between the PBE and OPTX expressions:

2 4
s Cs

BEE ( \_ B
d (S)_A+(1+s)2+(l+s)4

(6)

with A=1.0008, B=0.1926, C=1.8962. The BEEx expression is combined with PBEc
correlation.

The expression for the correlation energy in the PBE functional (PBEc) is given by the
following formula:

ES = | d'r p[es (p.&)+ H(pLit)] ()

with £ the relative spin polarization (ou — Pdown)/ Protal, and ¢ another dimensionless (reduced)
density gradient, which depends on the spin-scaling factor ¢ and the Thomas-Fermi screening
wave number £;:

2/3
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The function H in eq. 7 is determined by three conditions,[32] for the slowly varying
limit (t—0), for the rapidly varying limit (t—0) and uniform scaling, which are satisfied by
the following ansatz:

Yij 1+ At°

1
H (p,8,)= 14 -1 l+—t2~—} N PRV S

In the slowly varying limit t—0 (the term in square brackets), this is therefore slightly
different than the corresponding exchange expression (see term in square brackets in eq. 4).
For that reason, we implemented also the simplified expression for PBE correlation (sPBEc),
with the only difference with eq. 9 in the term in square brackets:
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Combined with the original PBEx exchange expression this makes the sPBE functional.

Benchmark Systems

We used a range of characteristic properties in order to investigate the performance of the
newly obtained functionals, ranging from atomic (H-Ar) exchange energies; standard
benchmark sets like G2 atomization energies, accuracy of geometries and proton affinities;
weak interactions, i.e. n-n stacking interactions in DNA bases and hydrogen-bonding in small
molecules; energy landscapes of Sy2 reactions; to geometric parameters of stationary points
in the Sy2 reactions. Below, we report for each set where the reference data are coming from,
and specific details about the reference set.

Atomic Exchange Energies for H-Ar

The atomic exchange energies from Hartree-Fock are many times used as reference
values to validate or construct DFT functionals. Indeed, the OPTX functional[40] was
constructed based on fitting the parameters and functional form to reproduce as best as
possible the atomic exchange energies for H to Ar. In our tests on the atomic exchange
energies, we compare our computed energies with the Hartree-Fock values that were taken
directly from the OPTX paper.

Atomization Energies for the G2-1 and G2/97 Sets

The atomization energy of a molecule consists of its bonding energy with respect to the
sum of the energies of the isolated (spin-polarized) atoms. A number of reference sets are
available (such as the G2-1[85] or G2/97[86]) that are often used to compare DFT
functionals. Here, we use the geometries and reference energies (AE,) as given by Curtiss and
co-workers,' for either the G2-1 set (55 molecules) or the G2/97 set (148 molecules).

Accuracy of Geometries for a Set of Small Molecules

Helgaker and co-workers[18,20] investigated the basis set dependence for a set of small
molecules, using a number of ab initio methods. They observed excellent results (0.1-0.2 pm)
using CCSD(T)/cc-pVxZ (x=T,Q,5) and showed an experimental error for one of the
molecules.[20] Previously,[23,36] one of us used this set of molecules to test the basis set
dependence and influence of the DFT functionals on the accuracy of the geometries. Early
GGA functionals were shown to give deviations of ca. 1 pm,[36] while functionals containing
OPTX showed somewhat smaller deviations (0.6-0.9 pm).[23] The set of molecules consists



Constraining Optimized Exchange 107

of the following molecules: HF, H,O, NH3, CH4, N, CH,, CO, HCN, CO,, HNC, C,H,,
CH,0, HNO, N,H,, O3, C,H4, F,, HOF, H,0,.

Figure 3. Geometry of 180° twisted cytosine dimer used for n-n stacking benchmark.

Proton Affinities of Anionic and Neutral Bases

The proton affinity of an anionic or neutral base B is related to the enthalpy change at
298K for the following reaction: BH — B + H (AH = —PA). In a series of papers,[76,77,87]
some of us investigated the PA values for a range of anionic and neutral bases (2™ to 6™
period hydrides for group 14-18), and studied how these are affected by methyl substitution
and solvation. These studies also included validation of the DFT functionals[76,77] by
comparing with CCSD(T) data. Early GGA functionals like BP86 and PBE showed
deviations from the CCSD(T) data of ca. 1.5 keal'mol™!, while the values for OLYP and
OPBE are significantly larger (see below). The same reference geometries and energies as
previously were used, and the same basis set strategy. l.e. we used the TZ2P basis for
optimizing the geometry, and the QZ4P basis in the subsequent single-point energy
calculation. The set of anionic bases consists of CH; , C;H; , NH, , C¢Hs , H, HCO , OH ,
CH;0 , CH;CH,0 , C;H , (CH;5),CHO , (CH;3);CO , F, SH, CN, CI, Br ,[76] while the set
of neutral bases consists of NH3;, CH,CO, H,0, CO, CO,, N,.[77]

! http://chemistry.anl.gov/compmat/comptherm.htm
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The n-n Stacking in DNA Bases

Recently,[74] we compared the performance of DFT functionals for n-m stacking
interactions in DNA bases and analogs. Here, we take one prototypical example (stacked
cytosine, see figure 3) and examine the deviation of the DFT functionals from a reference
CCSD(T) value of -9.93 kcal'mol™, which was taken from ref. [88]. The vertical distance is
3.3 A and the upper cytosine is rotated by 180° compared to the lower (around the center of
mass of the upper cytosine).[88]

Hydrogen-Bonding Interactions

Sponer, Hobza and co-workers[89] proposed a set of weakly bound dimer systems that
can be used to validate other methods. The geometries of the hydrogen-bonded dimer systems
were mainly obtained at MP2, but for four dimers (of ammonia, water, formamide, formic
acid; see figure 4) they had been obtained at the CCSD(T) level. These four were therefore
used here to compare the DFT functionals with. In particular, the distances indicated in figure
4 were used for comparison with the CCSD(T)/cc-pVxZ (x=T for formic acid and formamide
dimer, x=Q for ammonia and water dimer) distances.

ammonia dimer water dimer

formamide dimer formic acid dimer

Figure 4. Geometries of the hydrogen-bonded dimers (indicated with arrows are the distances that are
used for comparison with the CCSD(T) data).

Energy Landscapes of Sx2 Reactions

In a recent paper,[21] we reported a study on the comparison between DFT and CCSD(T)
for the energy landscapes of gas-phase SN2 reactions (see figure 5 for a typical energy
profile). We showed that there was in general good agreement between DFT and CCSD(T)
and that this coherence was better when large basis sets were used in both the CCSD(T) and
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DFT. Here, we therefore look only at those reactions for which the reference data were
coming from studies where CCSD(T) was used for obtaining both the energy and the
geometry, and with large basis sets. In the terminology of that paper, we take only reactions
A2 to A6 into account (see tables 1 and 2 of Ref. 21).

TS

F\.‘HIPX

RC

Figure 5. Energy profile for Sy2 reactions.

Structural Characterization of Stationary Points for Sx2 Reactions

Similar to the energy landscapes (see above),[21] for the structural characterization of
Sn2 reactions we only look at those that were obtained using CCSD(T) with a large basis set.
Therefore, the set of reactions for which the stationary points were determined by the DFT
functionals (and compared to CCSD(T)) consists of the following reactions: CI + CH3;Br —
CH;Cl + Br, F + CH;Cl — CHsF + Cl, ClI' + CH;Cl — CH;Cl + Cl, Br + CH;Br —
CH;Br+Br ,F +CH;F - CHsF +F .

Spin-State Splittings of a High-Spin Iron Compound

Previously,[45,50] we have shown that the OPBE functional works exceptionally well for
spin-states of iron complexes, and we therefore include one of the typical molecules for
which early GGAs were found to fail, which is the compound Fe(N(CH,-0-CsH4S)3)(1-Me-
imidazole). Experimentally and with OPBE, it has a high-spin sextet ground-state.

Computational Details

All DFT calculations were performed with a locally adapted version of the Amsterdam
Density Functional (ADF, version 2006.01)[90,91] program developed by Baerends et al. The
MOs were expanded in a large uncontracted set of Slater-type orbitals (TZ2P, QZ4P),[92]
which are respectively of triple-{ quality augmented by two sets of polarization functions, and
of quadruple-{ quality augmented by four sets of polarization functions.[91] An auxiliary set
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of s, p, d, f, and g STOs was used to fit the molecular density and to represent the Coulomb
and exchange potentials accurately in each SCF cycle. All energies and gradients were
calculated with the local density approximation (LDA) and generalized gradient
approximation (GGA) corrections added self-consistently.

Table 1. Overview of expression of exchange functionals studied (see text for further
details) and Mean Absolute Deviations (kcal-mol’l) against atomic exchange energies

functional type™”* A B C MAD in E,*
OPTX optx 1.05151 1.538582 0.364624 3.73
PBEx pbe 1.0 0.804 0.219515 40.48
BEEx bee 1.0008 0.1926 1.8962 75.49

optimized against atomic exchange
AgPBEx pbe 1.0246 4.3704 0.1450 4.26
Ay PBEx pbe 1.0116 0.7924 0.2018 6.97
A;PBEx pbe 1.0 0.7843 0.2397 8.32
A,PBEx pbe 1.0 0.804 0.2386 8.39
AzO optx 1.0508 1.5303 0.3687 2.94
A0 optx 1.0416 0.7624 0.7034 5.30
A0 optx 1.0 0.3505 2.6018 10.77
ALO optx 1.0 0.804 1.1152 30.32
optimized against atomization energies of G2-1 set

MPPBEx pbe 1.0807 1.7144 0.2497 689.72

MP;,PBEx pbe 1.0092 0.7948 0.4232 456.67

MPPBEx pbe 1.0 1.0446 0.2551 75.73

MP,,PBEx pbe 1.0 0.804 0.3826 315.29
MLO optx 1.0728 1.5124 0.4214 221.28
ML;0 optx 1.0141 0.7899 0.9191 35.65
ML;O optx 1.0 1.2783 0.4004 380.54
ML,,0 optx 1.0 0.804 0.8354 184.75
MPO optx 1.0890 1.4234 0.5050 416.84
MP;,0 optx 1.0266 0.7774 1.0742 151.10
MP;O optx 1.0 1.1567 0.4629 348.10
MP,,0 optx 1.0 0.804 0.8680 161.63

a) pbe: F(s) = A + B-Cs%/(B + Cs%)

b) optx: F(s) = A + B-u?; u=(C-s)/(1 + Cs?)

¢) bee: A + B-s¥/(1+s)? + C-s*/(1+s)*

d) mean absolute deviations (kcal'mol™") from Hartree-Fock atomic exchange energies for H-Ar.

The newly developed functionals are labeled (X,;) according to the reference data (X) to
which they were optimized and the constraints that are imposed on it (ab). The reference data
can be either A for atomic exchange (Hartree-Fock) energies of H-Ar, or MP cq. ML for
experimental molecular atomization energies of the G2-1 set; MP when obtained in
combination with PBEc correlation, and ML when obtained in combination with LYPc
correlation. The labeling of the constraints (ab=ff, fp, If, Ip) refers to the constraint at s=0 (a=!/
for LDA, constraint i; a=f for free, i.e. no constraint) and at s=co (b=p for PBE maximum of
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constraint iii; b=f for free, i.e. no constraint). For instance, Ag, refers to the functional
optimized against atomic exchange energies, with the Perdew maximum (constraint iii)
imposed on the enhancement factor with the LDA limit at s=0 not imposed (see also table 1
for the expression of the functionals).

Construction of the New Functionals

Handy and Cohen constructed their OPTX functional[40] by optimizing the atomic
exchange energies of H-Ar against those from Hartree-Fock using a large basis, ending up
with a deviation of 3.6 kcal'mol™ between the two methods. This is significantly better than
the Becke88[41] functional (7.4 kcal'mol™), or PBE[32] (40.5 kcal'mol™). In the first part of
this study, we also optimize our functionals against the atomic exchange energies from
Hartree-Fock, in four different combinations (see table 1 for the parameters of the exchange
functionals thus obtained). The first combination (AxO) imposes no constraint at all, i.e.
similar to the OPTX functional. Indeed we do find similar performance for the atomic
exchange energies with a mean absolute deviation (MAD) of 2.9 kcal'‘mol™ (see table 1). The
slight improvement over the original OPTX functional (MAD value 3.7 kcal~mol'l) probably
results from our fit procedure, which might be slightly different from that of Handy and
Cohen. If we now impose constraint iii (Lieb-Oxford bound)[32] on the enhancement factor,
to give the AgO functional, the MAD value for the HF exchange energies increases to 5.3
kcal'mol™. On the other hand, imposing the constraint for the LDA limit (constraint i), the
MAD value increases to 10.8 kcal'mol™. By imposing both these constraints, the MAD value
goes up to 30.3 kcal'mol” (see table 1). The smaller deviation of OPTX compared to the
PBEx functional is therefore resulting directly from the enhanced flexibility of not imposing
constraints on the A and C parameters. At first sight, it might seem that the improved
performance is also resulting from the exchange expression of OPTX, if one compares the
MAD value of ApO functional (30.3 kcal'mol”) with that of PBEx (40.5 kcal'mol™).
However, this is not a fair comparison since the C parameter is in PBEx fixed by constraint ii,
while it is freely optimized in A;,O. A better comparison is therefore made by looking at the
A,PBEXx functional, in which the C parameter was also optimized freely. Its MAD value for
the HF exchange energies (8.4 kcal-mol'l) is many times smaller than that of the A;,O
functional, which indicates in itself that the PBEx expression is “better” for exchange than the
OPTX expression. In fact, the value for the C-parameter within A;,PBEx (0.2386) is only 9%
larger than the constrained value (~0.2195). By optimizing also either the A or the B
parameter, the MAD value for HF exchange energies is reduced further, but only nominally,
to 8.3 kcal'mol” for APBEx and 7.0 kcal'mol” for AgPBEx (see table 1). Only by
optimizing all three parameters simultaneously does a further reduction to 4.3 kcal'mol™
occur, but with a limit for s—o0 (5.395) that is unrealistically high (the OPTX functional that
violates both the local and integrated Lieb-Oxford bounds has a limiting behavior of “only”
2.59). Therefore, the relatively large MAD value of PBEx (40.5 kcal'mol™) for the HF
exchange energies of H-Ar is largely reduced by lifting either one of constraints i, ii, or iii. In
fact, the A;PBEx functional, in which the maximum on the enhancement factor is not
imposed, results in a value for the B parameter that is actually lower than the one that is set by
the Lieb-Oxford bound. In other words, even though it is not constrained to satisfy the Lieb-
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Oxford bound, it still does ! The downside is however that it is now no longer a non-empirical
functional.

Although many exchange functionals have been obtained by comparing with atomic
exchange (as Handy and Cohen did for OPTX),[40] there are also many (empirical)
functionals that have been fitted to, for instance, the atomization energies of the G2-1
set.[34,38,85,93,94] Examples of the latter are, for instance, the B3PW91 functional by
Becke,[11] who for the first time introduced the concept of hybrid functionals, or HCTH.[93]
Therefore, we decided to also construct functionals by optimizing the parameters of the
exchange expression for the atomization energies of the G2-1 set. In this second part, we
therefore have to include a functional for the correlation energy, which was chosen to be the
PBEc for the MP,yPBE and MP,,OPBE functionals, and LYPc for the ML, OLYP
functionals. It is interesting to note that for the completely free functionals (MPyPBE,
MLiOLYP, MPyOPBE), the deviation from the LDA limit (A=1.0) is substantially larger
than for the atomic functionals of the first part. For instance, the value for the A parameter
increases from 1.0508 (for AgO) to 1.0728 (MLgO) or 1.0890 (MP#O) (see table 1), and
similarly from 1.0246 for AgPBEx to 1.0807 for MPgPBEX. Furthermore, the value for the B
parameter is for the molecular functionals in this second part found to be substantially larger
than the Lieb-Oxford bound (0.804), with values of 1.0446 for MP;PBEx, 1.2783 for ML;O
and 1.1567 for MP;O. Note that in the first part, even though the B parameter was not
constrained to the Lieb-Oxford bound, it still did satisfy it. For the molecular functionals, this
no longer holds.

For the molecular functionals of this second part, the mean absolute deviation (MAD) for
the G2-1 set[85] ranges from 2.5 to 5.5 kcal-mol™ (see table 2). This is a major improvement
over the MAD values for the combination of the atomic functionals from the first part with
their respective correlation functionals, which showed MAD values from 3.1 to 14.8
keal'mol ™. It is interesting to see that for each of the three types of molecular functionals
introduced here (MP,,PBE, ML,,OLYP and MP,OPBE) that the completely free form
(ab=ff) gives a significant better performance than the other three forms (ab=fp,If,Ip), which
give more or less the same MAD values. This is in particular true for the MP,,PBE
functionals, where the MPPBE functional has a MAD value of 3.1 kcal'mol'l, while the
other three have MAD values of 4.7-4.9 kcal'mol”, despite the very different values for the
A,B,C parameters of the various molecular functionals.

The good performance of the molecular functionals does not coincide with equally good
performance for the atomic exchange energies (see table 2). Apart from the ML;OLYP
functional, whose MAD value of 35.7 kcal'mol” for atomic exchange is similar to that of
PBEX, and the MP,PBE functional, whose value of 75.7 kcal'mol™ is comparable to that of
BEE, for the others a significantly larger MAD value is observed with values between 150
and 690 kcal'mol™. So it seems that by fitting to molecular properties, one is losing the
accuracy for the atomic properties. We also experimented briefly by optimizing
simultaneously the atomic exchange and G2-1 atomization energies (more specifically, by
minimizing the product of their respective MAD values), but this basically lead to small
variations on the atomic functionals of the first part and will thus not be discussed any further.
The smallest deviation is observed for the MLOLYP functional.



Table 2. Mean absolute deviation (MAD) values for standard benchmark studies® (kcal-mol'l, pm)

functional atomic exchange G2-1 G2/97| geom. 1* row* PA anionic PA neutrals n-n stacking | hydrogen-bonding
basis set used QZ4pP QZ4pP QZ4P TZ2P QZ4pP Q74P TZ2P TZ2P
(kcal-mol ™) (kcal-mol™) (kcal-mol ™) (pm) (kcal-mol™) (kcal-mol™) (kcal-mol ™) (pm)
PBE 40.48 7.95 16.32 0.87 1.63 1.45 7.14 2.46
SPBE 40.48 6.80 12.94 0.92 1.62 1.49 7.19 1.90
BEE 75.49 5.32 8.03 1.00 1.73 1.17 10.65 5.64
OPBE 3.73 4.79 8.90 0.90 5.54 3.83 15.62 28.11
OLYP 3.73 3.24 4.24 0.64 2.89 1.42 14.43 23.20
AssPBE 4.26 4.69 44.61 0.76 4.68 3.51 18.15 30.44
Ag,PBE 6.97 10.16 23.45 0.68 1.51 1.36 6.82 4.44
A¢PBE 8.32 7.38 14.47 0.86 1.49 1.42 6.91 1.93
Ay ,PBE 8.39 7.08 13.58 0.87 1.48 1.39 7.13 1.83
AgOLYP 2.94 3.10 4.23 0.65 2.87 1.40 14.41 23.55
Ag,OLYP 5.30 10.49 21.47 0.64 1.85 1.86 6.85 3.39
A ¢OLYP 10.77 14.82 29.49 0.74 7.71 5.77 0.72 8.49
A, OLYP 30.32 7.14 20.38 2.16 3.57 2.21 7.49 17.39
AsOPBE 2.94 4.66 8.41 0.90 5.49 3.82 15.59 28.53
As,OPBE 5.30 10.91 27.00 0.78 2.39 1.59 8.05 3.62
A,+OPBE 10.77 14.59 3431 0.74 4.48 3.20 0.26 11.21
A,,OPBE 30.32 7.16 15.52 1.75 1.90 1.66 8.39 17.23
MP¢PBE 689.72 3.07 3.94 1.01 11.94 6.16 13.38 16.75
MP¢,PBE 456.67 4.77 7.08 0.69 3.20 1.33 5.98 2.34
MP+PBE 75.73 4.71 7.09 1.01 1.97 1.20 9.69 7.97
MPy,PBE 315.29 4.87 9.42 0.82 2.10 1.20 6.52 3.55
ML¢eOLYP 221.28 251 4.57 0.33 5.38 2.86 14.17 2741
MLg,OLYP 35.65 4.42 8.21 1.57 3.18 2.10 7.46 13.16
ML,¢OLYP 380.54 3.99 8.85 1.83 4.49 1.81 13.21 20.41
ML,;,OLYP 184.75 4.61 9.73 1.95 4.74 5.99 9.04 14.50
MP£OPBE 416.84 3.47 4.71 0.61 10.96 6.48 14.34 3541
MP£,0PBE 151.10 5.09 6.73 0.91 2.54 1.67 7.70 11.80
MP,¢OPBE 348.10 5.19 7.07 1.56 2.79 1.30 13.33 21.40
MP,,0PBE 161.63 5.47 7.50 1.61 2.13 1.50 9.04 14.50

*in italics are the values which were used to construct the functionals in this chapter, in bold the functional that performs best for that particular property.
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Performance of the Functionals for Standard Benchmark Studies

Apart from the atomization energies for the G2-1 set,[85] we subjected the functionals
also to other standard benchmark studies, such as the atomization energies for the larger and
more diverse G2/97 set,[86] the accuracy of geometries of first-row molecules,[18,20,36]
proton affinities of anionic and neutral bases,[76,77] and weak interactions (m-7
stacking[74,88] and hydrogen-bonding[89]).

Atomization Energies

For many functionals considered here, going from the G2-1 set[85] with small molecules
to the more diverse G2/97 set[86] with medium-sized molecules results in a doubling of the
MAD value. A similar pattern was observed by Perdew and co-workers[47] for the MAD
values of several methods for the G2/97 and G3/3 set (that contains even larger molecules),
which doubled[47] for e.g. Hartree-Fock (148.3 [G2/97] vs. 336.4 [G3/3] kcal-mol'l), LDA
(83.7 vs. 197.1 keal'mol ™), PBE (16.9 vs. 32.8 kcal'mol™) or B3LYP (3.1 vs. 8.4 kcal'mol™).
Surprisingly,[47] the MAD values decreased for their TPSS (6.0 [G2/97] vs. 5.5 kcal-mol'l)
and TPSSh (4.2 vs. 3.3 kcal'mol ™) functionals.

Here, we see in most cases also a doubling of the MAD value for the G2/97 set compared
to that of the G2-1 set. For instance, the values for OPBE are 4.8 and 8.9 kcal~mol'1, for
APBE 7.4 and 14.5 kcal~m01'1, and 4.9 and 9.4 kcal-mol™ for MP;,PBE, to name but a few.
However, there also exceptions, both in the positive and negative sense. The MAD value for
OLYP increases only from 3.2 keal-mol™ for G2-1 to 4.2 for G2/97, and that of MPzOPBE
from 3.5 to 4.7 kcal'mol™. On the other hand, for AzPBE it increases from 4.7 kcal-mol” for
G2-1 to 44.6 kcal'mol™ for G2/97. This is probably the result of the limit for large s of this
functional (see above). Although the MLOLYP was the best performing functional for the
G2-1 set, it is no longer so for the larger G2/97 set, for which a MAD value of 4.6 kcal-mol™
is observed. For the G2/97 set, the best performance is shown by the MPxPBE functional,
which was already second-best for the G2-1 set, with a MAD value of 3.9 kcal'mol™.

Accuracy of Geometries

Previously,[23,36] one of us investigated the accuracy of geometries of a number of early
GGAs, and found the best performance for amongst others PBE (ca. 1.0 pm), while a later
study[23] showed the improved performance of OPBE and OLYP (0.8-0.9 pm). Although this
is still far from the accuracy obtained by the “gold standard” CCSD(T), which showed
deviations of ca. 0.1-0.2 pm, it is still a major improvement over Hartree-Fock that gave
deviations of 2.9 pm.[18] In comparison to the previous study,[23] where a TZP basis was
used, here we use the larger TZ2P basis set. Both PBE and OLYP significantly increase their
accuracy by ca. 0.3 pm, to 0.9 pm (PBE) and 0.6 pm (OLYP), while OPBE gives the same
deviation as it had with the TZP basis (0.9 pm). Many of the newly developed atomic
functionals provide deviations that are similar to those of OPBE and OLYP, with mean
absolute deviations between 0.6 and 0.9 pm (see table 2), and few that give much larger
deviations such as Aj;OLYP (deviation 2.2 pm) or A;,OPBE (deviation 1.8 pm).
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The situation is reversed for the newly developed molecular functionals, where many
show larger deviations (between 1.0 and 2.0 pm), and few show deviations that are
comparable to OPBE or OLYP. There is however one exception (MLzOLYP) that has an
exceptionally good performance for the geometries of this set of small molecules. Its MAD
value of 0.3 pm is by far the lowest for any DFT functional, surpasses that of MP2 and CCSD
(0.5 pm),[18,20] and approaches the accuracy of the coupled cluster CCSD(T) method.

For the molecular functionals based on the OPTX expression, there is a clear correlation
between the amount of constraints that are imposed and the accuracy obtained. l.e., more
constraints imposed results directly in an increase of the deviation. This is not true for the
molecular PBE functionals, nor for the atomic functionals. For these latter functionals, the
best performance is obtained when one constraint is imposed as in ApPBE, AOLYP, and
A;OPBE.

Proton Affinities of Anionic and Neutral Bases

Recently,[76,77] some of use investigated the proton affinities of anionic and neutral
bases for hydrides of the 2"-6"™ period, and groups 14-18. These studies also involved the
validation of DFT functionals for this property by comparing the DFT proton affinity values
to those from CCSD(T), where available. It was shown that DFT works in general very well,
and has a mean absolute deviation from CCSD(T) (and experiment) of ca 1.5 kcal-mol™.
Surprisingly, the deviations were larger for OPBE and (in lesser amount) OLYP than for
PBE. Here we find the same for the newly developed functionals based on the OPTX
expression, which show deviations between 1.9 and 11.0 keal'-mol”! for anionic bases, and
between 1.3 and 6.5 keal'mol™ for neutral bases (see table 2).

Surprisingly, in many cases and for both the atomic and molecular functionals, the
constrained functionals show better performance than the non-constrained (ab=ff) ones. For
instance, MP4OPBE gives deviations of 11.0 (anionic bases) and 6.5 (neutral) kcal'mol™,
while MP;,OPBE gives values of 2.1 and 1.5 kecal'mol™ respectively. The same happens for
the atomic counterparts with values of 5.5/3.8 keal-mol™ for A#OPBE, and values of 1.9/1.7
kcal'mol™ for A,OPBE. Therefore, there is no direct relationship between atomic exchange
(or atomization energies of the G2-1 set) on one hand, and the proton affinities at the other.
Or at best, there is an anti-correlation between the two sides.

Weak Interactions

One of the traditionally weak points of DFT is formed by n-n stacking interactions,[74]
while hydrogen-bonding interactions are described reasonably well to very good by many
functionals.[75] These trends are well shown by the PBE functional, that gives a deviation of
7.1 keal'mol™ for the - stacking of the 180° twisted cytosine dimer, and for a set of four
hydrogen-bonded dimers gives a mean absolute deviation of 2.5 pm (see table 2). Note that
PBE still predicts an attractive interaction for the n-x stacking (-2.8 kcal-mol™).

The failure of both OPBE and OLYP for weak interactions is immediately obvious from
table 2, i.e. they show deviations of 15.6 (OPBE) and 14.4 (OLYP) keal'mol™ for 7-n
stacking. Note that this corresponds to repulsive interactions of +5.7 and +4.5 kcal-mol
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respectively. Also for hydrogen-bonding interactions are they not performing well with mean
absolute deviations of 28.1 (OPBE) and 23.2 (OLYP) pm. Both functionals predict H-bond
distances that are substantially larger than they should be, i.e. they severely underestimate
hydrogen-bonding interactions. In a recent study on hydrogen-bonding interactions in DNA
bases,[75] we already showed this failure of OPBE.

The performance of the newly developed functionals for the weak interactions shows no
general trend, although all functionals without constraints imposed (ab=ff) perform badly for
both m-n stacking and hydrogen-bonding interactions. For m-m stacking, these functionals
show MAD values between 13.4 and 18.2 kcal'mol” (all repulsive), while for hydrogen-
bonding the MAD values are between 16.8 and 35.4 pm. The functionals with one or more
constraint imposed show somewhat smaller MAD values, and in some cases are the best
performing functionals. For instance for n-n stacking, the AfOPBE functional has a MAD
value of only 0.3 kcal'mol”, which is however not accompanied by an equally good
performance for hydrogen-bonding where it shows a MAD value of 11.2 pm. The best
performance for hydrogen-bonding is shown by A,PBE, with a MAD value of 1.8 pm, but in
a similar fashion to AjfOPBE it does not perform equally well for n-t stacking, for which it
has a MAD value of 7.1 keal-mol ™.

Table 3. Deviations® from CCSD(T) results for Sy2 reaction energy profiles (kcal-mol'l)

functional AE™* AE™™* AEnT N Py
PBE 0.34 1.49 6.43 7.78 4.01
SPBE 0.68 1.48 6.54 7.45 4.04
BEE 0.32 1.44 5.92 5.61 3.32
OPBE 0.31 3.54 3.37 1.26 2.12
OLYP 0.50 2.58 4.14 1.69 2.23
AsPBE 0.23 4.09 4.95 0.92 2.55
ArPBE 0.31 1.52 6.26 7.65 3.94
APBE 0.34 1.55 6.53 7.99 4.10
A1,PBE 0.34 1.49 6.49 7.85 4.04
AgfOLYP 0.51 2.57 4.14 1.69 223
Ag,OLYP 0.50 1.67 5.04 6.32 3.38
AifOLYP 0.37 5.64 8.75 14.40 7.29
A1,OLYP 0.55 1.83 5.61 7.07 3.76
ArfOPBE 0.32 3.54 3.37 1.26 2.12
ArpOPBE 0.31 1.56 427 4.47 2.65
A1fOPBE 0.19 456 7.98 12.54 6.32
A1p0PBE 0.37 1.61 4.84 5.22 3.01
MP£PBE 0.22 248 4.54 2.06 233
MP,PBE 0.32 1.97 7.28 9.26 4.71
MP,(PBE 0.36 1.34 6.19 6.37 3.56
MP1,PBE 0.34 1.80 7.15 8.91 4.55
ML#OLYP 0.49 2.87 3.56 1.44 2.09
ML#OLYP 0.55 1.72 527 6.52 3.51
ML£OLYP 0.59 2.01 5.07 3.89 2.89
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Table 3. Continued.

functional AE™ AE™ AEHe AE™""" Py
MLiOLYP 0.58 1.71 5.37 6.47 3.54
MPfOPBE 0.29 3.85 237 1.74 2.06
MP¢,0PBE 0.32 1.57 453 4.97 2.85
MPfOPBE 0.41 2.10 428 2.40 2.30
MP1,0PBE 0.39 1.66 4.61 4.65 2.83

# results obtained using QZ4P basis set, in bold the functional that performs best for that particular property.

Performance of the Functionals for SN2 Energy Landscapes
and Structural Characterization

The performance of the functionals for the energy profile of SN2 reactions is measured in
terms of four components of the energy profile.[21] These correspond to (see figure 5): the
overall reaction energy (E™“), the complexation energy (E"™), the central barrier (EY cen)
and the overall barrier (E7,,,). The absolute deviation from the reference CCSD(T) data for
each component is obtained for each reaction, and averaged over all reactions (A2-A6) to
give the MAD value for each component. The average of the MAD values for the four
components then gives the performance for the energy profile (Pg).

Given in table 3 are the MAD values for each component and the Pg value for all
functionals considered in this chapter. As already discussed previously,[21] the early GGA
functionals like PBE have in particular problems with reaction barriers, which is dramatically
reduced by the functionals with OPTX. For instance, the MAD value for the central barrier is
6.4 kcal'mol™ for PBE, 4.1 kcal'mol™ for OLYP and only 3.4 kcal'‘mol™ for OPBE. This also
influences the overall Pz performance considerably, where the value for PBE (4.0 kcal-mol™)
is nearly halved for OLYP (2.2 kcal-mol") and OPBE (2.1 kcal-mol").

For the newly developed functionals, the best performance is obtained for those without
constraints imposed (see table 3). This is in particular true for Pg and the central barrier, for
which MPOPBE performs best with MAD values of 2.1 and 2.4 kcal-mol™! respectively, and
the overall barrier, for which AgPBE performs best with a value of 0.9 kcal'‘mol™. Imposing
constraints raises the MAD values of the barriers substantially, but, interestingly, at the same
time lowers the MAD values for the complexation energy. The MAD values for the reaction
energy seems to be hardly affected by imposing constraints or not, i.e. the MAD value for all
functionals is found within the very narrow range of 0.2-0.7 kcal'mol”. The lowering of the
MAD value for the complexation energy upon imposing constraints is somewhat consistent
with the trend observed for the hydrogen-bonding interactions (see above), where the largest
MAD value was shown by the functionals without constraints. However, imposing constraints
is not in all cases favorable for the complexation energy, as is shown by e.g. the A OLYP and
AfOPBE functionals. The MAD value for the complexation energy of AfOLYP is more than
twice as large as that of the constraint-free AfOLYP functional, leading to an overall Pg value
of 7.3 kcal'mol™. This is the largest Py value in this chapter, and in fact even larger than
LDA, which had a Pg value of 5.6 keal-mol™ for reactions A2-A6.



Table 4. Deviations” from CCSD(T) geometries for stationary points of Sx2 reactions (A, deg)b

functional Ran Rgp Rre,pc Rrs Oan Or.c Orc.pc Ors Pg
PBE 0.101 0.010 0.139 0.078 4.134 0.082 5.581 5.145 0.418
SPBE 0.092 0.012 0.139 0.050 3.842 0.106 5.577 3.375 0.353
BEE 0.037 0.012 0.041 0.042 0.921 0.076 0.754 2.771 0.034
OPBE 0.069 0.010 0.115 0.017 0.607 0.338 0.621 0.958 0.042
OLYP 0.063 0.007 0.095 0.034 0.463 0.049 0.396 1.317 0.029
AsePBE 0.050 0.006 0.076 0.028 0.712 0.139 0.548 2.143 0.036
AfoPBE 0.031 0.005 0.038 0.032 0.993 0.071 0.819 2.988 0.031
A1¢PBE 0.102 0.011 0.139 0.081 4.668 0.100 5.606 8.241 0.476
A1,PBE 0.092 0.011 0.139 0.050 3.933 0.102 5.603 3.836 0.362
ArfOLYP 0.059 0.007 0.088 0.034 0.470 0.062 0.400 1.328 0.028
Ag,OLYP 0.030 0.008 0.033 0.036 0.604 0.061 0.531 1.673 0.018
AOLYP 0.126 0.018 0.175 0.094 4.672 0.444 6.498 4.622 0.589
A1, OLYP 0.151 0.036 0.187 0.145 4.525 0.598 6.211 4514 0.683
ArsOPBE 0.064 0.010 0.107 0.017 0.563 0.308 0.555 0.975 0.036
As,OPBE 0.022 0.009 0.029 0.016 0.548 0.285 0.502 1.107 0.012
A1£OPBE 0.113 0.007 0.166 0.074 4.253 0.198 5.768 5.037 0.481
A1,0PBE 0.058 0.024 0.063 0.066 0.719 0.209 0.667 1.663 0.042
MP+£PBE 0.045 0.010 0.064 0.030 0.506 0.087 0.457 1.304 0.023
MP¢,PBE 0.113 0.018 0.147 0.101 4.547 0.498 6.254 4.645 0.514
MP,¢PBE 0.113 0.015 0.151 0.094 4.669 0.218 5.649 7.918 0.528
MPy,PBE 0.111 0.017 0.145 0.100 5.045 0.451 6.140 8.104 0.560
ML¢OLYP 0.063 0.004 0.097 0.034 0.357 0.069 0.334 0.870 0.022
ML,OLYP 0.060 0.025 0.063 0.074 1.148 0.355 1.153 2319 0.069
ML,£OLYP 0.066 0.023 0.084 0.057 0.729 0.129 0.580 2.153 0.048
ML,;,OLYP 0.065 0.029 0.069 0.077 1.154 0.348 1.145 2.394 0.075
MP+OPBE 0.071 0.009 0.123 0.012 0.360 0.224 0.457 0.226 0.026
MP£,0OPBE 0.039 0.012 0.045 0.044 0.478 0.057 0.436 1.255 0.019
MP,+OPBE 0.053 0.015 0.076 0.031 0.534 0.167 0.432 1.441 0.028
MP,OPBE 0.047 0.019 0.055 0.046 0.482 0.057 0.445 1.249 0.023

# results obtained using QZ4P basis set, in bold the functional that performs best for that particular property
® more information can be found in ref. [21].
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Performance of the Functionals for Structural Characterization
of SN2 Stationary Points

Similar to the energetic performance for Sy2 reactions, for the structural characterization
of their stationary points we also take a look at different components,[21] and compare the
DFT results for these with reference values that were obtained with CCSD(T) calculations.
Specifically, we look at the bonds and angles for the reactants/products, reactant/product
complexes and transition state structures. The mean absolute deviation is then taken for both
the bonds and the angles, and the product of these values is then the overall performance Pg
for the geometry of SN2 reactions. Previously,[21] we already showed that not only do OPBE
and OLYP improve considerably upon PBE for the overall performance for the energy, but
also for the geometry. l.e., the P value for PBE (0.418) is dramatically reduced for both
OPBE (0.042) and OLYP (0.029). Note that the values reported in this chapter are different
from the previously reported values,[21] since we take only the data obtained with large basis
sets into account here.

The performance of the newly developed functionals for the structural characterization of
Sn2 reactions is for most cases a clear improvement over the early GGAs, and in many cases
also over OLYP/OPBE. In general, the constraint-free functionals (ab=ff) perform
significantly better than when constraints are imposed (see table 4). For instance, the Ps value
of MP#PBE is small (0.02), while those of the corresponding constrained ones are very large
(0.51-0.56), indeed even larger than the already substantial PBE value (0.42). This is however
not true for the MP,,OPBE functionals that have all P; values between 0.019 and 0.028.
Equally well-performing are MPiOLYP, MPxPBE and several atomic functionals.
Extraordinarily good is the AgpOPBE functional with a Pg value of only 0.012, i.e. a further
reduction by around two compared to OLYP and e.g. the MP,,OPBE functionals. This is
mainly resulting from the improved description of bonds (for which it has a MAD value of
0.022 A), and not as much the angles for which the MAD value is similar to that of e.g.
OLYP/OPBE. The small MAD value for the distances is, compared to the other functionals,
mainly resulting from the RC/PC complexes, for which AjpOPBE shows a MAD value of
0.029 A w.r.t. the CCSD(T) data, which is smaller than that of OPBE and OLYP by a factor
of around three. The poorest performance is shown for the Aj,OLYP functional, with a Pg
value of 0.68, which results from the poor performance for both bonds (MAD value 0.15 A)
and angles (MAD value 4.53 deg).

Taking both the Pr and Pg values into consideration, we find that there is no clear
relationship between the two in general. Although there are functionals (like MLfOLYP and
MP#OPBE) that improve upon OLYP and OPBE for both P and Pg, there are also many
others that do well for one but somewhat less for the other. For instance, the best performing
functional for Sx2 geometries (ApOPBE) is significantly less accurate for energies.
Furthermore, there are many functionals (such as MLgpOLYP) that are considerably less
accurate for both SN2 energetics and geometries.
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Comparison of PBE with the Simplified PBE (sPBE) and BEE
Functionals

So far we have discussed only the (non-constrained) functionals, and how the presence of
these affect their performance. However, we would also like to investigate the performance of
the sPBE and BEE[84] functionals. As mentioned in the section on the construction of the
functionals, the sPBE functional is a simplification of the PBEc correlation functional and
uses the original PBEx exchange, while the BEE was determined from a Bayesian Error
Estimate[84] and is different from PBE only in the exchange part.

The performance of the sPBE functional is in many cases similar to that of the original
PBE functional, both for many of the standard benchmark tests and the Sy2 benchmarks.
However, there are also some tests where the simplified PBE correlation performs better than
the original functional. For instance, the MAD values for the atomization energies of the G2-1
and G2/97 sets are considerably smaller for sPBE (6.8 and 12.9 kcal-mol'l) than for PBE (8.0
and 16.3 kcal'mol™), see table 2. Likewise, the MAD value for the hydrogen-bonding
distances is also significantly smaller for sPBE (1.9 pm) than for PBE (2.5 pm). Therefore,
although for some systems the sPBE functional performs better than PBE, the improvements
are not spectacular as was shown by e.g. OPBE for the reaction barriers.

The BEE functional on the other hand is significantly better than either PBE or sPBE for
the atomization energies (see table 2), but at the same time significantly worse for the
accuracy of geometries of the small molecules and for the weak interactions. For instance, its
MAD value for n-n stacking is 10.7 kcal'mol™, and for hydrogen-bonding distances 5.6 pm,
which are respectively 3.6 kcal'mol” and 3.7 pm larger than the sPBE values. For the Sx2
benchmarks, it does better than either PBE or sPBE but only marginally so, especially
compared to the major improvements shown by OPBE and OLYP.

Spin-State Splittings of a High-Spin Iron Compound

It was previously shown[45,50] that the OPBE functional works exceptionally well for
spin-states of iron complexes, and although we do not have CCSD(T) data to compare with,
we know the experimental ground-state of the molecules. Therefore we include here as test on
the newly developed functionals the calculation of the spin-state splittings of one of the
typical iron compounds, i.e. Fe(N(CH,-0-C¢H4S);)(1-Me-imidazole). Experimentally, and
with the OPBE functional, it has a high-spin sextet ground-state with the low-spin doublet
and intermediate quartet higher in energy. Similar to what was observed for the energetics of
the Sn2 reactions, the non-constrained functionals perform better than the constrained ones
(see table 5). The majority of the newly developed functionals, however, do not predict the
correct spin ground-state. For the ones that do, the largest separation between low- and high-
spin is obtained with the MP4OPBE functional (17.3 kcal'mol™), while the Ap,OPBE predicts
all three states at virtually the same energy.
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Table 5. Spin-state splittings (kcal-mol‘l) for Fe(N(CH;-0-CcH,S)3)(1-Me-imidazole)

(see figure 6)
functional double quartet sextet
t
PBE -4.1 2.5 0
SPBE -4.4 2.7 0
BEE 2.4 -1.6 0
OPBE 12.4 6.3 0
OLYP 7.4 4.0 0
ArrPBE 2.2 0.9 0
ArPBE 2.7 -1.7 0
ArrPBE -4.8 -2.8 0
AipPBE -4.6 -2.8 0
ArOLYP 73 4.0 0
ArOLYP 2.6 1.5 0
ArfOLYP -16.5 9.2 0
AipOLYP -5.0 2.6 0
ArrfOPBE 12.4 6.3 0
ArOPBE 7.4 3.8 0
ArrOPBE -11.9 -6.9 0
Ai,OPBE -0.1 -0.2 0
MP+PBE 5.7 3.2 0
MPs,PBE -9.7 -5.2 0
MP+PBE 3.9 2.3 0
MP1,PBE 9.1 -4.9 0
ML#OLYP 10.4 5.7 0
MLr,OLYP -1.3 -0.6 0
ML;¢OLYP 1.4 0.5 0
MLp,OLYP -1.8 -1.0 0
MP+OPBE 17.3 9.2 0
MP+,OPBE 2.9 1.5 0
MP1+OPBE 6.3 29 0
MP1,OPBE 2.8 1.2 0
~

Figure 6. Iron(IIT) complex Fe(N(CH,-0-CsH,S);)(1-Me-imidazole).
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Conclusion

We have explored in this chapter what might be the origin of the spectacular
improvements of OPBE (and OLYP) over PBE for a number of chemical properties, such as
atomization energies, accuracies of geometries and reaction energy profiles. In particular, we
have investigated what is the effect of the constraints that are imposed on the PBEx exchange
functional, on the one hand by lifting these constraints for the PBEx functional, and on the
other by imposing them on the OPTX functional. For all benchmark tests we investigated, the
best performance is obtained with one of the newly developed functionals, but unfortunately
there is no one that is equally good for all benchmarks.

A comparison of the performance of the A;,PBE, Aj,OPBE and Aj,OLYP shows that the
PBEx exchange expression is better suited for the fulfillment of the constraints than is the
OPTX expression. The mean absolute deviations are in all these cases lower with the PBEx
expression than with the OPTX one. However, these constrained functionals work well only
for proton affinities and hydrogen-bonded systems, for the other benchmark tests are the non-
constrained functionals working much better. This leads to sometimes extraordinarily good
performance, for instance for the accuracy of geometries where the MLgOLYP functional
approaches the accuracy of CCSD(T).

The poor performance for weak interactions by OPBE and related unconstrained
functionals does not result from the way how the exchange functional has been obtained.
Both the newly developed atomic (e.g. AfOPBE) and molecular (e.g. MPOPBE) functionals
are particularly poor for the weak interactions, which is in some cases improved upon by
imposing one (or more) constraint(s). This is especially true for the newly developed
functionals based on the PBEx expression that in general do a better job for weak interactions
than those based on the OPTX expression. The same is true for the proton affinities, while it
is the opposite for the reaction barriers, etc. Therefore, the replacement of s as leading term
in the PBEx expression by s” in the OPTX expression is not beneficial for all systems.
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Chapter 4

TEMPERATURE INTEGRAL AND ITS
APPROXIMATIONS

Junmeng Cai
Biomass Energy Engineering Research Center, School of Agriculture and Biology,
Shanghai Jiao Tong Univ., Shanghai, P.R. China

Abstract

The temperature integral, which frequently occurs in the Kkinetic analysis of solid-state
reactions, does not have an exact analytical solution. Instead of performing the numerical
integration, most of the researchers prefer to circumvent the problem by using approximate
expressions.

The main aim of this chapter is to carry out a review of the known approximations for the
temperature integral, to establish a ranking of those temperature integral approximations and
to present some applications of the temperature integral approximations.

Temperature Integral

The reaction rate of thermally stimulated solid-state reactions can be kinetically described
by the following expression:

da
:5-—k(73f(a) (0.1)

where o is the extent of reaction conversion ranging from 0 before the reaction process starts
to 1 when it is over, ¢ is the time, &(7) is the reaction rate constant that describes the
dependence of the reaction rate with the temperature (7), fla) is the differential conversion
function.

Usually, &(7) is described by the Arrhenius equation:

k(T)= Ade "™ (0.2)
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where 4 and E are the Arrhenius parameters (preexponential factor and activation energy,
respectively), R is the universal gas constant.

Table 1.1. Algebraic expressions for { @) for the most common
mechanisms in solid-state reactions

Model Symbol f(o)
Phased boundary controlled reaction R2 2(] — a)”z
R3 31-a)*”?
3
Nucleation and growth (Avraml-Erofeev) AlS 5 (1 - )[— 11’1(1 - )]1/3
A2 2(1-a)[~-In(1-a)]"?
5
A2.5 E(l—a)[—ln(l—a)]m
A3 31-a)[-In(1-a)]”
A4 4(1-a)[-In(1-a)]"*
S 2
One-dimensional diffusion D1 —
(24
1
Two-dimensional diffusion D2 D EE—
In(1-a)
N 3(1-a)”
Three-dimensional diffusion (Jander) D3 ——5-
2l-(1-a) "]
Three-dimensional diffusion (Ginstling- D4 3(1 - )1/3
Brounshtein) 2[1 _ (1 _ 0!)]/3]
Three-dimensional diffusion (Zhuralev- D5 3(1 —a )5/3
Lesokin-Tempelman) 2[1 . (1 . a)1/3]
Three-dimensional diffusion (Komatsu- D6 3(1+a )2/3
Uemura) 2[(1 + a)1/3 _ 1]
First-order reaction F1 (l-a)
Second-order reaction F2 (1 - )2
Third-order reaction F3 (-« )3
Prout-Tompkins PT a (1 - )
Reduced Sestédk-Berggren function RSB a"(l1-a)"

The fla) function describes the dependence of the reaction rate with the reaction
mechanism. Different functions have been proposed in the literature for describing the kinetic



Temperature Integral and Its Approximations 129

mechanism of the solid-state reactions. These mechanisms are proposed considering different
geometrical assumptions for the particles shape (spherical, cylindrical, planar) and driving
forces (interface growth, diffusion, nucleation, and growth of nuclei)[1]. Some of the most
common equations proposed for these reactions are included in Table 1.1. The Arrhenius
parameters (4 and E), and f{a) are sometimes called the kinetic triplet[2].

Several procedures have been proposed in the literature for the kinetic analysis of
thermally stimulated solid-state reactions under different temperature evolution conditions,
i.e., isothermal, nonisothermal[3]. For a nonisothermal system, a constant heating rate is often
used[4]

dT
-4 0.3
B 7 (0.3)

where £ is the heating rate.
For nonisothermal conditions with the linear heating program, Equation (1.1) is
represented as follows

22 Z e f(@) 04)
By integrating Equation (1.4), we get
4 T
g(a) = j = I e FRTGT (0.5)

2 (@) By

where g(a) is the integral conversion function.

The integral Ie_E/RTdT in the left hand side of Equation (1.5) is called the temperature
0
integral or Arrhenius integral, which has no exact analytic solution and some approximations
have been proposed in the literature. A ranking of the known approximations for the
temperature integral is presented in the following section.

Ranking of the Temperature Integral Approximations
The temperature integral can be approximated in three different ways.

The first type of approximations, which is called the exponential — type here, is based on
the following expression

[ = ltr Inx+pyx (0.6)
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T
where [,; is the approximation for the temperature integral J.e*E/RTdT , P1, p2 and p; are
0
constants, and x=E/RT. This type of temperature integral approximations can be found in the
literature[5,6,7,8,9,10,11,12]. The parameter values of the exponential-type approximations

are listed in Table 1.2.

Table 1.2. The parameter values of the exponential-type approximations

Name of

Author approximation P1 P P3
Dolye [5] Doyle-1 -5.3308 0 -1.0516
Liuetal. [6]  |LCSS -5.26936572 0 -1.0516296
Tangetal. [7] |TLZW -0.37773896 -1.894661 -1.00145033
Agherghinei [8] | Agherghinei 1 -0.679165 -1.7276 -1.01179
Agherghinei [8] | Agherghinei 2 -0.398956 -1.88582 -1.00174
Madhusudanan |\ g -0.29758 -1.921503 -1.000953
etal. [9]
Madhusudanan /o -0.299963 -1.92062 -1.000974
etal. [10]
Madhusudanan o 5 -0.389677 -1.884318 -1.001928
etal. [10]
Starink [11] Starink 1 -0.235 -1.95 -1
Starink [11] Starink 2 20312 -1.92 -1.0008
Cai and Liu [12] |CL -0.460120828342246 | -1.86847901883656 | -1.00174866236974

The second type of temperature integral approximations is based on the fact that the
temperature integral can be written in the following form

(x)

— RT2 e—E/RTh

(0.7)

a2

where [, is the approximation for the temperature integral. The expressions of Z(x) are

frequently rational functions of x (i.e., ratios between polynomial functions) derived from
different series expansions or obtained using appropriate fitting procedures relatively to the
values calculated by numerical integration in a certain range of x/13]. Here, this type of
temperature integral approximations is called the rational fraction — type of approximations.
A set of known expressions of /(x) that have been used for the calculation of the temperature
integral according to Equation (1.7) are given in Table 1.3.



Table 1.3. Expressions of /(x)

Name of

Authors N h(x)
approximation
Doyle[14] Doyle-2 1
Coats and x=2
Redfern[15] Coats-Redfern ;
Gorbachev[16], Lee Gorbachev-Lee- X
and Beck[17] Beck X+2
x+1
van Tets[18] van Tets
x+3
X
Wanjun et al.[19] Wanjun-1
1.00198882x+1.87391198
X
Wanjun[20] Wanjun-2 S ——
1.002x +1.874
. . x+0.66691
Cai et al.[21] Cai-1 _—
x+2.64943
_ , 0.99962x +0.60642
Cai and He[22] Cai-He
x+2.56879
2
Li{23] Li X o
x =6
Agrawal and Agrawal- x> —2x
Sivasubramanian[24] Sivasubramanian

x*=5




Table 1.3. Continued

Name of

Authors s h(x)
approximation
2
-2
Quanyin and Su[25] Quanyin-Su-1 ¥
x =52
2
X —=2x
Quanyin-Su-2 -
x —4.6
2
X +2x-2
Urbanovici-Segal-1 —
X" +4x
2
ici x +3.5x
Urbanovici and Urbanovici-Segal-2 _
Segal[26] X’ +5.5x+5
2
Urbanovici-Segal-3 )62 +5.347x+1.376
x~+7.347x+10.069
2
Senum-Yang-1 fi
X +6x+6
3 2
Senum and Yang[27] Senum-Yang-2 3 Al I?X +18x
X +12x" +36x+24
Senum-Yang-3 x* +18x° +86x% +96x
x* +20x° +120x° +240x +120
4 3 2
—-4x" +84
Zsako[28] Zsako Z x3 * > B4x
X' =2x"+76x" +152x-32
2
+16x+4
Chen and Liu[29] Chen-Liu 3x 6x

3x* +22x+30




Table 1.3. Continued

Authors applj::ilr‘ilgiion h(x)
Sefionl 0.995924x” +1.430913x
Ontiof30] x*+3.330657x +1.681534
etz 0.99997x* +3.03962x
x> +5.03637x+4.19160
. x> +4.45239x+0.76927
x% +6.45218x +7.69430
31 s x> +16.99864x +3.65517 In x +5.41337
x> +18.99977x +3.435931In x + 38.49858
13 x° +9.27052x% +16.79440x +1.20025
x* +11.27052x* +33.33602x +24.21457
Balarin[32] Balarin d 2
X+
Cai etal 3] i x+0.254031n x + 0.36665
x+0.245981n x +2.41457
0.999940083636437x +0.278603058646963 In x +0.36723390369(
Cai and Liu[34] Cai-Liu x+0.264770161932887 In x + 2.43832629069336
Cai et al.[35] Cai-3

x-0.566552207341865 )"
x+4.42348301307593




134 Junmeng Cai

Recently, Chen and Liu[36] drawn a conclusion that the exponential — type

approximations are essentially one kind of the rational fraction — type approximations with

2
-E/RT

—D, — DX

the form of . In fact, it is incorrect, which can be obtained from the

following expression

Eepl+pzlnx+p3x
2R =—x(p, + pyx)el P 4 (0.8)
RT o E/RT X
E —P, — PyX

The third type of approximations is based on the fact that the temperature integral is
directly correlated with the values of T and E. Gyulai and Greenhow[37] arrived at two
different expressions, with a reasonable degree of approximation in the range of temperatures
400-900 K and for activation energies between 30 and 90 kcal mol™'. Here, we don’t consider
this type of approximations due to the fact that this type is not usually used in the literature.

Evaluation of the Accuracy of the Exponential — Type
and Rational Fraction — Type Approximations

To evaluate the accuracy of the exponential — type approximations for the estimation of
the temperature integral, the relative deviates of the type approximations are calculated on the
basis of the following expression.

T ®©

R p1+p21nx+p3x J' —E/RTdT ep1+pzlnx+p3x_.|.§dx
£, (%) = _ 0 100 = =% 100 (09
J' ~EIRT g J.e—d
e 5 X
0 X X

—X
In the above equation, the integral j—dx doesn’t have an exact analytical solution
X
and can be numerically solved. Here the Mathematica software system has been used for the
© _—x
numerical calculation of the integral je—zdx. The relative error percentages of the
X
exponential — type approximations for the estimation of the temperature integral are listed in
Table 1.4.
To have an immediate perception of the accuracy of each exponential — type
approximation, the ranges of x associated to relative deviations lower than some selected
values, mainly chosen according to the literature, are presented in Table 1.5.



Table 1.4. The relative error percentages of the exponential — type approximations for the estimation of the temperature integral

X Doyle-1 Agherghinei I | Agherghinei I1| Starink I Starink II MKN I MKN II MKN III LCSS TLZW Cai-Liu

5.0 | -8.735704E+01 | 2.152774E-01 | 8.108395E+00 |1.587322E+01| 1.214355E+01 | 1.341071E+01 | 1.328978E+01 | 9.277526E+00 | -8.655796E+01 | 9.024293E+00 | 4.567780E+00
7.5 | -7.702776E+01 | -1.618687E-01 | 3.579168E+00 |8.638489E+00| 6.215797E+00 | 7.309475E+00 | 7.227807E+00 | 4.713874E+00 | -7.557764E+01 | 4.158319E+00 | 8.916159E-01
10.0 | -6.575508E+01 | 1.570707E-02 | 1.668877E+00 |5.140476E+00| 3.479639E+00 | 4.459986E+00 | 4.401524E+00 | 2.778760E+00 | -6.359608E+01 | 2.051523E+00 | -4.759958E-01
12.5 | -5.436486E+01 | 1.319810E-01 | 7.560592E-01 (3.162671E+00| 2.010825E+00 | 2.903357E+00 | 2.860632E+00 | 1.842244E+00 | -5.149135E+01 | 1.009067E+00 | -9.893080E-01
15.0 | -4.343871E+01 | 5.122642E-02 | 3.007945E-01 (1.944338E+00| 1.156463E+00 | 1.974549E+00 | 1.943269E+00 | 1.362187E+00 | -3.988165E+01 | 4.634354E-01 |-1.126713E+00
17.5 | -3.337067E+01 | -2.450562E-01 | 7.733055E-02 |1.154914E+00| 6.369178E-01 | 1.388511E+00 | 1.365886E+00 | 1.112243E+00 | -2.918569E+01 | 1.756094E-01 |-1.085074E+00
20.0 | -2.441089E+01 | -7.422294E-01 |-2.257116E-02|6.283827E-01| 3.141057E-01 | 1.004365E+00 | 9.884310E-01 | 9.840960E-01 | -1.966908E+01 | 2.994787E-02 | -9.568801E-01
22.5 | -1.670002E+01 | -1.416961E+00 |-5.571920E-02 |2.726952E-01| 1.129337E-01 | 7.454231E-01 | 7.347179E-01 | 9.210309E-01 | -1.148106E+01 | -3.492601E-02 | -7.894343E-01
25.0 | -1.029667E+01 | -2.245128E+00 | -5.385337E-02 3.299252E-02 | -1.038491E-02 | 5.669184E-01 | 5.603081E-01 | 8.914573E-01 | -4.683570E+00 | -5.378253E-02 | -6.083024E-01
27.5 | -5.199053E+00 | -3.204389E+00 |-3.549757E-02 |-1.252711E-01| -8.275737E-02 | 4.413071E-01 | 4.378848E-01 | 8.770103E-01 | 7.255689E-01 | -4.726804E-02 | -4.277670E-01
30.0 | -1.362216E+00 | -4.274876E+00 |-1.178357E-02 |-2.248160E-01| -1.214032E-01 | 3.509375E-01 | 3.499598E-01 | 8.667100E-01 | 4.794435E+00 | -2.806493E-02 | -2.559162E-01
32.5 | 1.288534E+00 | -5.439217E+00 | 1.048490E-02 |-2.811187E-01| -1.376994E-01 | 2.841282E-01 | 2.849741E-01 | 8.538916E-01 | 7.602674E+00 | -4.148429E-03 | -9.729195E-02
35.0 | 2.847153E+00 | -6.682317E+00 | 2.713029E-02 |-3.050311E-01| -1.393559E-01 | 2.329490E-01 | 2.350913E-01 | 8.345026E-01 | 9.250369E+00 | 1.939427E-02 | 4.565828E-02
37.5 | 3.418812E+00 | -7.991084E+00 | 3.561363E-02 |-3.043487E-01| -1.317032E-01 | 1.919054E-01 | 1.948905E-01 | 8.061150E-01 | 9.849490E+00 | 3.930169E-02 | 1.717507E-01
40.0 | 3.113795E+00 | -9.354161E+00 | 3.444033E-02 |-2.847876E-01| -1.184853E-01 | 1.571292E-01 | 1.605627E-01 | 7.673331E-01 | 9.517402E+00 | 5.349438E-02 | 2.805739E-01
42.5 | 2.042955E+00 | -1.076167E+01 | 2.279198E-02 |-2.506132E-01| -1.023631E-01 | 1.258631E-01 | 1.293988E-01 | 7.174262E-01 | 8.372042E+00 | 6.067273E-02 | 3.721903E-01
45.0 | 3.144113E-01 | -1.220503E+01 | 2.923915E-04 |-2.050569E-01| -8.524365E-02 | 9.612480E-02 | 9.945635E-02 | 6.560960E-01 | 6.528403E+00 | 6.005911E-02 | 4.469510E-01
47.5 | -1.968781E+00 | -1.367672E+01 | -3.314411E-02 |-1.505994E-01| -6.850028E-02 | 6.648066E-02 | 6.933503E-02 | 5.833268E-01 | 4.096075E+00 | 5.122888E-02 | 5.053782E-01

50.0

-4.710180E+00

-1.517019E+01

-7.741271E-02

-8.916656E-02

-5.312321E-02

3.589206E-02

3.802448E-02

4.992855E-01

1.177587E+00

3.399755E-02

5.480909E-01




Table 1.4. Continued

X Doyle-1 Agherghinei I | Agherghinei II| Starink I Starink I1 MKN I MKN I1 MKN III LCSS TLZW Cai-Liu
52.5 | -7.820925E+00 | -1.667969E+01 |-1.322850E-01 |-2.226905E-02| -3.982409E-02 | 3.607825E-03 | 4.797678E-03 | 4.042565E-01 | -2.132607E+00 | 8.344318E-03 | 5.757569E-01
55.0 | -1.122023E+01 | -1.820019E+01 | -1.974543E-01 |4.889805E-02 | -2.911011E-02 | -3.091174E-02 | -3.086424E-02 | 2.985968E-01 | -5.748661E+00 | -2.564050E-02 | 5.890617E-01
57.5 | -1.483557E+01 | -1.972725E+01 |-2.725662E-01 | 1.233819E-01 | -2.133701E-02 | -6.804940E-02 | -6.932591E-02 | 1.827065E-01 | -9.593500E+00 | -6.779192E-02 | 5.886889E-01
60.0 | -1.860252E+01 | -2.125698E+01 |-3.572397E-01 |2.004178E-01 | -1.674768E-02 | -1.080706E-01 | -1.108370E-01 | 5.700743E-02 | -1.359872E+01 | -1.178958E-01 | 5.753073E-01
62.5 | -2.246457E+01 | -2.278597E+01 |-4.510819E-01 |2.793883E-01 | -1.550039E-02 | -1.511528E-01 | -1.555608E-01 | -7.806980E-02 | -1.770427E+01 | -1.757070E-01 | 5.495642E-01
65.0 | -2.637263E+01 | -2.431119E+01 |-5.536971E-01 |3.597925E-01 | -1.768983E-02 | -1.974067E-01 | -2.035959E-01 | -2.220957E-01 | -2.185804E+01 | -2.409617E-01 | 5.120798E-01
67.5 | -3.028458E+01 | -2.582999E+01 |-6.646944E-01 |4.412222E-01 | -2.336276E-02 | -2.468930E-01 | -2.549917E-01 | -3.746482E-01 | -2.601534E+01 | -3.133868E-01 | 4.634459E-01
70.0 | -3.416473E+01 | -2.734005E+01 | -7.836914E-01 |5.233438E-01 | -3.252985E-02 | -2.996342E-01 | -3.097611E-01 | -5.353165E-01 | -3.013827E+01 | -3.927059E-01 | 4.042246E-01
72.5 | -3.798325E+01 | -2.883932E+01 | -9.103173E-01 |6.058836E-01 | -4.517462E-02 | -3.556240E-01 | -3.678888E-01 | -7.037036E-01 | -3.419520E+01 | -4.786442E-01 | 3.349481E-01
75.0 | -4.171559E+01 | -3.032601E+01 [-1.044215E+00|6.886167E-01 | -6.126033E-02 | -4.148347E-01 | -4.293391E-01 | -8.794282E-01 | -3.816010E+01 | -5.709309E-01 | 2.561201E-01
77.5 | -4.534197E+01 | -3.179854E+01 [-1.185040E+00|7.713581E-01| -8.073520E-02 | -4.772222E-01 | -4.940605E-01 | -1.062125E+00 | -4.201198E+01 | -6.693022E-01 | 1.682161E-01
80.0 | -4.884678E+01 | -3.325555E+01 |-1.332466E+00 | 8.539556E-01 | -1.035364E-01 | -5.427305E-01 | -5.619906E-01 | -1.251446E+00 | -4.573434E+01 | -7.735017E-01 | 7.168499E-02
82.5 | -5.221814E+01 | -3.469584E+01 |-1.486179E+00 |9.362837E-01 | -1.295933E-01 | -6.112949E-01 | -6.330586E-01 | -1.447059E+00 | -4.931457E+01 | -8.832822E-01 | -3.304953E-02
85.0 | -5.544738E+01 | -3.611838E+01 |-1.645879E+00|1.018239E+00| -1.588298E-01 | -6.828445E-01 | -7.071880E-01 | -1.648646E+00 | -5.274354E+01 | -9.984055E-01 | -1.455878E-01
87.5 | -5.852864E+01 | -3.752228E+01 |-1.811283E+00 |[1.099738E+00| -1.911659E-01 | -7.573041E-01 | -7.842987E-01 | -1.855909E+00 | -5.601505E+01 | -1.118643E+00 | -2.655524E-01
90.0 | -6.145845E+01 | -3.890679E+01 [-1.982120E+00|1.180710E+00| -2.265198E-01 | -8.345959E-01 | -8.643082E-01 | -2.068561E+00 | -5.912546E+01 | -1.243775E+00 | -3.925874E-01
92.5 | -6.423538E+01 | -4.027125E+01 [-2.158132E+00|1.261100E+00| -2.648085E-01 | -9.146407E-01 | -9.471329E-01 | -2.286332E+00 | -6.207330E+01 | -1.373593E+00 | -5.263562E-01
95.0 | -6.685971E+01 | -4.161512E+01 [-2.339076E+00|1.340862E+00| -3.059487E-01 | -9.973585E-01 | -1.032689E+00 | -2.508963E+00 | -6.485888E+01 | -1.507896E+00 | -6.665412E-01
97.5 | -6.933316E+01 | -4.293796E+01 |-2.524718E+00|1.419959E+00| -3.498577E-01 | -1.082669E+00 | -1.120893E+00 | -2.736210E+00 | -6.748406E+01 | -1.646491E+00 | -8.128417E-01
100.0| -7.165857E+01 | -4.423940E+01 |-2.714837E+00 |1.498362E+00| -3.964536E-01 | -1.170494E+00 | -1.211662E+00 | -2.967842E+00 | -6.995192E+01 | -1.789197E+00 | -9.649734E-01




Table 1.5. Ranges of x that guarantee relative deviations of the exponential — type approximations lower than the indicated values

Name of Ranges of x
Author approximation
PP le1[<5% le1[<1% le11<0.2% l11<0.1%
30.2864, 32.1662); (44.108
Dolye [5] Doyle-1 (27.6124, 50.2449) ( ’ ) € N -
46.505)
. 24.871,30.1518); (46.6327 26.6307, 27.6463);
Liu et al. [6] LCSS ( ’ ) (¢ | ¢ ’ ); -—- -
54.4967) (50.1414, 51.6732)
Tang et al. [7] TLZW (6.87272, 146.353) (12.5308, 85.0339) (17.2116, 63.4639) (18.5745, 59.1508)

Agherghinei [8]

Agherghinei 1

(245727, 31.5782)

(4.01806, 21.0296)

(5.03129, 17.2101)

(526357, 6.03834);
(8.54379, 11.3665);
(14.2142, 16.4899)

Agherghinei [8] Agherghinei 2 (6.43908, 126.972) (11.6432, 74.1889) (15.9089, 55.0904) (17.1414, 51.0877)
Madhusudanan et al. [9] | MKN 1 (9.38527, 181.374) (20.0351, 95.0786) (36.9682, 65.1352) (44.6716, 59.5106)
Madhusudanan et al. [10] | MKN 2 (9.31836, 178.678) (19.9062, 94.054) (37.1561, 64.8187) (44.9544, 59.3654)
Madhusudanan et al. [10] | MKN 3 (7.25475, 120.436) (19.5784, 76.6602) (57.1402, 64.6261) (59.1661, 62.8907)
. . 23.1584, 29.2475); 24.1941, 27.0197);
Starink [11] Starink 1 (10.1399, 248.698) (18.1385, 84.4425) ( ) ( )
(45.2488, 59.9866) (49.5763, 56.7254)

. . 227107, 28.4081);
Starink [11] Starink 2 (840998, 227.871) (15.6342, 125.234) (21.2697, 88.1449) ( )
(42.8486, 79.6347)

(737514, 12.5984); (19.2688 (8.47822, 9.27041); (8.65521, 9.04911);

Cai and Liu [12] CL (4.8281, 151.079) ‘ TR TEPER (30,8553, 38.1122); (32.4552, 36.0361);

100.563)

(76.6246, 86.1527)

(79.2888, 84.0075)




Table 1.6. The relative error percentages of the rational fraction — type approximations for the estimation of the temperature integral

X Siva‘:f;::;:man Balarin Cai-1 Cai-2 Cai-3 Cai-He Cai-Liu Chen-Liu
5 1.42734E+00 7.99301E-01 | 1.86918E-01 | 148265E-03 | -2.07167E-03 | 1.39575E-01 | -1.67456E-04 | 1.20754E-02
75 4.59150E-03 339416E-01 | -2.16479E-02 | -6.87515E-04 | 5.92643E-03 | -2.54158E-03 | -2.78892E-05 | -3.73962E-03
10 ~1.85066E-01 1.76331E-01 | -4.67740E-02 | -2.43569E-04 | 1.05922E-03 | -1.17731E-02 | -4.36013E-05 | -3.58464E-03
125 -1.97778E-01 1.03512E-01 | -4.05504E-02 | 1.69500E-04 | -1.48443E-03 | -3.55569E-03 | 1.47042E-05 | -2.45771E-03
15 -1.77216E-01 6.60087E-02 | -2.98341E-02 | 3.31557E-04 | -2.36737E-03 | 4.72940E-03 | 431157E-05 | -1.63249E-03
175 1.52551E-01 446983E-02 | -2.01262E-02 | 3.33177E-04 | -2.46623E-03 | 1.06275E-02 | 4.15188E-05 | -1.10119E-03
20 -1.30333E-01 3.16824E-02 | -1.23256E-02 | 2.58371E-04 | -2.23486E-03 | 143376E-02 | 2.55271E-05 | -7.61720E-04
25 “1.11668E-01 232790E-02 | -6.27882E-03 | 1.56862E-04 | -1.88507E-03 | 1.64248E-02 | 627150E-06 | -5.40695E-04
25 -0.62894E-02 1.76092E-02 | -1.64196E-03 | 5.43706E-05 | -1.51244E-03 | 1.73791E-02 | -1.05685E-05 | -3.93147E-04
275 _8.36476E-02 136442E-02 | 1.90707E-03 | -3.71295E-05 | -1.15824E-03 | 1.75612E-02 | -2.28013E-05 | -2.92128E-04
30 77.32118E-02 1.07875E-02 | 4.62669E-03 | -1.13003E-04 | -8.38352E-04 | 1.72238E-02 | -3.00899E-05 | -2.21305E-04
325 ~6.45380E-02 8.67682E-03 | 6.71426E-03 | -1.72348E-04 | -5.56935E-04 | 1.65415E-02 | -3.29589E-05 | -1.70564E-04
35 -5.72726E-02 7.08346E-03 | 831814E-03 | -2.16054E-04 | -3.12881E-04 | 1.56345E-02 | -3.2555E-05 | -1.33492E-04
375 -5.11389E-02 5.85797E-03 | 9.54960E-03 | -2.45774E-04 | -1.02925E-04 | 145858E-02 | -2.88802E-05 | -1.05924E-04
40 ~4.59208E-02 4.89992E-03 | 1.04924E-02 | -2.63389E-04 | 7.68741E-05 | 1.34528E-02 | -2.36620E-05 | -8.50939E-05
425 -4.14493E-02 4.14010E-03 | 1.12099E-02 | -2.70753E-04 | 2.30449E-04 | 1.22754E-02 | -1.73116E-05 | -6.91258E-05
45 3.75913E-02 3.52973E-03 | 1.17506E-02 | -2.69569E-04 | 3.61429E-04 | 1.10812E-02 | -1.04122E-05 | -5.67239E-05
475 3.42415E-02 3.03377E-03 | 121515E-02 | -2.61342E-04 | 4.73036E-04 | 9.88905E-03 | -3.42688E-06 | -4.69763E-05
50 3.13156E-02 2.62661E-03 | 1.24417E-02 | -2.47376E-04 | 5.68068E-04 | 8.71213E-03 | 3.28565E-06 | -3.92313E-05
525 2.87459E-02 228922E-03 | 1.26434E-02 | -2.28783E-04 | 6.48926E-04 | 7.55916E-03 | 9.45475E-06 | -3.30159E-05
55 2.64775E-02 2.00726E-03 | 127745E-02 | -2.06502E-04 | 7.17659E-04 | 6.43589E-03 | 1.48819E-05 | -2.79821E-05
575 2.44654E-02 1.76980E-03 | 1.28490E-02 | -1.81322E-04 | 7.76009E-04 | 5.34592E-03 | 1.94266E-05 | -2.38708E-05
60 2.26727E-02 1.56838E-03 | 1.28779E-02 | -1.53902E-04 | 8.25452E-04 | 4.29132E-03 | 2.29945E-05 | -2.04866E-05
62.5 2.10690E-02 139642E-03 | 128701E-02 | -1.24791E-04 | 8.67244E-04 | 3.27305E-03 | 2.55275E-05 | -1.76808E-05
65 ~1.96287E-02 124871E-03 | 1.28329E-02 | -9.44438E-05 | 9.02451E-04 | 229132E-03 | 2.69957E-05 | -1.53388E-05
67.5 ~1.83305E-02 1.12114E-03 | 127721E-02 | -6.32384E-05 | 9.31981E-04 | 1.34580E-03 | 2.73907E-05 | -1.33716E-05
70 ~1.71564E-02 1.01037E-03 | 1.26923E-02 | -3.14857E-05 | 9.56607E-04 | 4.35761E-04 | 2.67207E-05 | -1.17097E-05




Table 1.6. Continued

x Siva‘:f;::;:man Balarin Cai-1 Cai-2 Cai-3 Cai-He Cai-Liu Chen-Liu
72.5 1.60911E-02 9.13736E-04 | 1.25973E-02 | 5.57935E-07 | 9.76992E-04 | -4.39746E-04 | 2.50060E-05 | -1.02979E-05
75 J1.51217E-02 8.20046E-04 | 1.24903E-02 | 3.26822E-05 | 9.93702E-04 | -128186E-03 | 2.22761E-05 | -9.09250E-06
775 _1.42370E-02 7.54510E-04 | 123740E-02 | 6.47153E-05 | 1.00722E-03 | -2.09180E-03 | 1.85668E-05 | -8.05828E-06
80 _1.34275E-02 6.88650E-04 | 1.22502E-02 | 9.65174E-05 | 1.01797E-03 | -2.87085E-03 | 1.39183E-05 | -7.16691E-06
825 ~1.26849E-02 6.30240E-04 | 121209E-02 | 127976E-04 | 1.02631E-03 | -3.62031E-03 | 8.37355E-06 | -6.39538E-06
85 1.20021E-02 5.78256E-04 | 1.19875E-02 | 1.58999E-04 | 1.03254E-03 | -4.34148E-03 | 197723E-06 | -5.72488E-06
87.5 ~1.13729E-02 531836E-04 | 1.I18511E-02 | 1.89516E-04 | 1.03695E-03 | -5.03564E-03 | -5.22539E-06 | -5.13994E-06
90 1.07917E-02 490257E-04 | 1.17126E-02 | 2.19470E-04 | 1.03977E-03 | -5.70401E-03 | -1.31891E-05 | -4.62780E-06
925 ~1.02539E-02 452902E-04 | 1.15730E-02 | 2.48818E-04 | 1.04119E-03 | -6.34781E-03 | -2.18693E-05 | -4.17786E-06
95 9.75518E-03 4.19248E-04 | 1.14329E-02 | 2.77527E-04 | 1.04139E-03 | -6.96819E-03 | -3.12223E-05 | -3.78128E-06
97.5 9.29193E-03 3.88849E-04 | 1.12928E-02 | 3.05574E-04 | 1.04054E-03 | -7.56625E-03 | -4.12058E-05 | -3.43064E-06
100 ~8.86086E-03 3.61320E-04 | L.11531E-02 | 3.32942E-04 | 1.03876E-03 | -8.14305E-03 | -5.17788E-05 | -3.11969E-06
X Coats-Redfern Doyle-2 Gorbachev- Ji-1 Ji-2 Ji-3 Li Orfio-1
Lee-Beck
5 _1.88581E+01 3.52365E+01 | -3.40253E+00 | 7.98706E-04 | 3.38512E-05 | -1.81324E-05 | 6.76562E+00 | 2.78497E-02
75 “8.88471E+00 | 2.42481E+01 | -1.90937E+00 | -1.68672E-04 | -1.61899E-06 | -1.88621E-05 | 1.99473E+00 | 3.30000E-02
10 5.17581E+00 | 1.85302E+01 | -1.22481E+00 | 1.35871E-04 | 2.89195E-05 | -1.83320E-05 | 8.76795E-01 1.45537E-02
125 339145100 | 1.50102E+01 | -8.53293E-01 | 1.49710E-04 | 4.14740E-05 | -1.69209E-05 | 4.66463E-01 | -1.13330E-02
15 239550E+00 | 1.26206E+01 | -6.28903E-01 | 8.02862E-05 | 3.23028E-05 | -1.48804E-05 | 2.78596E-01 | -3.80986E-02
175 J1.78271E+00 | 1.08905E+01 | -4.82898E-01 | 1.26835E-05 | 1.80294E-05 | -1.31173E-05 | 1.79997E-01 | -6.33712E-02
20 J1.37870E+00 | 9.57922E+00 | -3.82529E-01 | -3.46614E-05 | 6.61459E-06 | -1.18000E-05 | 123143E-01 | -8.64236E-02
25 1.09822E+00 | 8.55073E+00 | -3.10550E-01 | -6.27589E-05 | -5.57798E-08 | -1.08402E-05 | 8.80084E-02 | -1.07167E-01
25 8.95519E-01 7.72226E+00 | -2.57165E-01 | -7.65508E-05 | -2.54027E-06 | -1.01206E-05 | 6.51059E-02 | -1.25749E-01
275 7.44252E-01 7.04051E+00 | 2.16471E-01 | -8.06707E-05 | -2.03883E-06 | -9.55169E-06 | 4.95298E-02 | -1.42393E-01
30 ~6.28361E-01 6.46961E+00 | -1.84737E-01 | -7.86091E-05 | 2.99871E-07 | -9.07561E-06 | 3.85631E-02 | -1.57331E-01
325 25.37605E-01 5.98452E+00 | -1.59511E-01 | -7.27948E-05 | 3.57852E-06 | -8.65731E-06 | 3.06160E-02 | -1.70778E-01
35 ~4.65202E-01 5.56721E+00 | -1.39126E-01 | -6.48555E-05 | 7.16356E-06 | -827651E-06 | 2.47148E-02 | -1.82926E-01
375 ~4.06513E-01 5.20439E+00 | -1.22416E-01 | -5.58571E-05 | 1.06389E-05 | -7.92176E-06 | 2.02404E-02 | -1.93940E-01




Table 1.6. Continued

x Coats-Redfern Doyle-2 Gorbachev- Ji-1 Ji-2 Ji-3 Li Orfio-1
Lee-Beck
40 3.58277B-01 | 4.88602E+00 | -1.08549E-01 | -4.64843E-05 | 1.37505E-05 | -7.58678E-06 | 1.67857E-02 | -2.03963E-01
425 3.18ISIE-01 | 4.60441E+00 | -9.69125E-02 | -3.71672E-05 | 1.63586E-05 | -7.26819E-06 | 1.40755E-02 | -2.13116E-01
45 2.84412E-01 | 4.35352E+00 | -8.70532E-02 | -2.81675E-05 | 1.84007E-05 | -6.96417E-06 | 1.19195E-02 | -2.21503E-01
475 2.55772E-01 | 4.12859E+00 | -7.86264E-02 | -1.96362E-05 | 1.98643E-05 | -6.67374E-06 | 1.01828E-02 | -2.29213E-01
50 231253E-01 | 3.92578E+00 | -7.13672E-02 | -1.16521E-05 | 2.07686E-05 | -6.39634E-06 | 8.76803E-03 | -2.36323E-01
525 2.10100E-01 | 3.74198E+00 | -6.50694E-02 | -4.24748E-06 | 2.11511B-05 | -6.13155E-06 | 7.60394E-03 | -2.42898E-01
55 1.91723E-01 | 3.57463E+00 | -5.95703E-02 | 2.57507E-06 | 2.10587E-05 | -5.87904E-06 | 6.63730E-03 | -2.48994E-01
575 “1.75657E-01 | 3.42162E+00 | -5.47404E-02 | 8.83110E-06 | 2.05428E-05 | -5.63844E-06 | 5.82794E-03 | -2.54663E-01
60 1.61530E-01 | 3.28118E+00 | -5.04751E-02 | 1.45470E-05 | 1.96549E-05 | -5.40940E-06 | 5.14510E-03 | -2.59945E-01
625 149042E-01 | 3.15182E+00 | -4.66899E-02 | 1.97551E-05 | 1.84446E-05 | -5.19151E-06 | 4.56497E-03 | -2.64879E-01
65 1.37949E-01 | 3.03228E+00 | -4.33151E-02 | 2.44903E-05 | 1.69587E-05 | -4.98436E-06 | 4.06894E-03 | -2.69498E-01
67.5 “128050E-01 | 2.92148E+00 | -4.02036E-02 | 2.87882E-05 | 1.52398E-05 | -4.78748E-06 | 3.64229E-03 | -2.73830E-01
70 1.19180E-01 | 2.81849E+00 | -3.75777E-02 | 3.26836E-05 | 1.33268E-05 | -4.60042E-06 | 3.27330E-03 | -2.77901E-01I
725 111201E-01 | 2.72252E+00 | -3.51275E-02 | 3.62098E-05 | 1.12542E-05 | -4.42272E-06 | 2.95254E-03 | -2.81734E-01
75 1.03997E-01 | 2.63288E+00 | -3.29094E-02 | 3.93985E-05 | 9.05204E-06 | -4.25391E-06 | 2.67238E-03 | -2.85348E-0l
775 “9.74718E-02 | 2.54805E+00 | -3.08951E-02 | 4.2788E-05 | 6.75009E-06 | -4.09354E-06 | 2.42659E-03 | -2.88763E-01
80 9.15420E-02 | 2.47021E+00 | -2.90602E-02 | 4.48780E-05 | 4.36945E-06 | -3.94117E-06 | 2.21006E-03 | -2.91993E-01
82.5 8.61375E-02 | 2.39619E+00 | -2.73841E-02 | 4.72208E-05 | 1.93176E-06 | -3.79636E-06 | 2.01855E-03 | -2.95053E-01
85 8.11980E-02 | 2.32648E+00 | -2.58490E-02 | 4.93303E-05 | -5.45013E-07 | -3.65871E-06 | 1.84855E-03 | -2.97956E-01
87.5 7.66716E-02 | 2.26072E+00 | -2.44394E-02 | 5.12271E-05 | -3.04532E-06 | -3.52781E-06 | 1.69712E-03 | -3.00715E-01
90 7725134E-02 | 2.19857E+00 | -2.31421E-02 | 5.9304E-05 | -5.55579E-06 | -3.40329E-06 | 1.56180E-03 | -3.03338E-01
925 “6.86847E-02 | 2.13974E+00 | -2.19455E-02 | 5.44573E-05 | -8.06500E-06 | -3.28479E-06 | 1.44050E-03 | -3.05837E-01
95 6.51514E-02 | 2.08399E+00 | -2.08393E-02 | 5.58237E-05 | -1.05632E-05 | -3.17198E-06 | 1.33144E-03 | -3.08219E-01
97.5 ~6.18840E-02 | 2.03106E+00 | -1.98148E-02 | 5.70436E-05 | -1.30421E-05 | -3.06453E-06 | 1.23313E-03 | -3.10492E-01
100 5.88564E-02 | 1.98076E+00 | -1.88640E-02 | 5.81302E-05 | -1.54948E-05 | -2.96212E-06 | 1.14426E-03 | -3.12665E-01




Table 1.6. Continued

X Orfio-2 Quanyin-Su-1 | Quanyin-Su-2 | Senum-Yang-1 | Senum-Yang-2 | Senum-Yang-3 Ur;);gna(:f;u- Ur;):gna(:'zlm-

5 -2.20314E-02 2.45186E+00 -5.61431E-01 -2.35403E-01 -2.39250E-02 -3.13231E-03 -8.26600E-01 | -4.26209E-02
7.5 -1.90086E-03 3.96382E-01 -7.69887E-01 -8.01761E-02 -5.21312E-03 -4.53868E-04 -2.41357E-01 4.59150E-03
10 4.18783E-05 2.55137E-02 -6.03578E-01 -3.47426E-02 -1.58300E-03 -9.93078E-05 -9.59459E-02 | 9.88471E-03
12.5 8.72173E-05 -6.56334E-02 -4.61022E-01 -1.74940E-02 -5.91994E-04 -2.81749E-05 -4.56984E-02 | 8.85185E-03
15 3.62320E-05 -8.63852E-02 -3.58382E-01 -9.76798E-03 -2.55747E-04 -9.57740E-06 -2.45403E-02 | 7.07248E-03
17.5 5.32920E-05 -8.62177E-02 -2.84952E-01 -5.88347E-03 -1.22886E-04 -3.72182E-06 -1.43597E-02 | 5.52976E-03
20 1.10532E-04 -7.97406E-02 -2.31365E-01 -3.75562E-03 -6.40864E-05 -1.60394E-06 -8.96376E-03 | 4.33469E-03
22.5 1.76715E-04 -7.17969E-02 -1.91316E-01 -2.51014E-03 -3.56711E-05 -7.50686E-07 -5.88545E-03 | 3.43236E-03
25 2.34967E-04 -6.40520E-02 -1.60702E-01 -1.74153E-03 -2.09376E-05 -3.75867E-07 -4.02449E-03 | 2.75126E-03
27.5 2.78458E-04 -5.70405E-02 -1.36819E-01 -1.24625E-03 -1.28443E-05 -1.99086E-07 -2.84540E-03 | 2.23273E-03
30 3.05691E-04 -5.08768E-02 -1.17852E-01 -9.15381E-04 -8.17891E-06 -1.10596E-07 -2.06877E-03 1.83336E-03
325 3.17657E-04 -4.55217E-02 -1.02549E-01 -6.87503E-04 -5.37726E-06 -6.40036E-08 -1.54026E-03 1.52194E-03
35 3.16320E-04 -4.08859E-02 -9.00300E-02 -5.26394E-04 -3.63457E-06 -3.83800E-08 -1.17043E-03 1.27613E-03
37.5 3.03877E-04 -3.68712E-02 -7.96621E-02 -4.09873E-04 -2.51692E-06 -2.37429E-08 -9.05347E-04 1.07985E-03
40 2.82420E-04 -3.33858E-02 -7.09814E-02 -3.23909E-04 -1.78063E-06 -1.50971E-08 -7.11304E-04 | 9.21417E-04
42.5 2.53804E-04 -3.03493E-02 -6.36420E-02 -2.59362E-04 -1.28391E-06 -9.83754E-09 -5.66615E-04 | 7.92243E-04
45 2.19611E-04 -2.76931E-02 -5.73820E-02 -2.10132E-04 -9.41657E-07 -6.55393E-09 -4.56943E-04 | 6.85943E-04
47.5 1.81156E-04 -2.53598E-02 -5.20002E-02 -1.72056E-04 -7.01302E-07 -4.45101E-09 -3.72586E-04 | 5.97714E-04
50 1.39523E-04 -2.33015E-02 -4.73401E-02 -1.42231E-04 -5.29599E-07 -3.08079E-09 -3.06840E-04 | 5.23902E-04
52.5 9.55911E-05 -2.14781E-02 -4.32785E-02 -1.18601E-04 -4.05013E-07 -2.16546E-09 -2.54986E-04 | 4.61697E-04
55 5.00714E-05 -1.98563E-02 -3.97172E-02 -9.96834E-05 -3.13329E-07 -1.54661E-09 -2.13643E-04 | 4.08918E-04
57.5 3.53547E-06 -1.84082E-02 -3.65776E-02 -8.43933E-05 -2.44977E-07 -1.11883E-09 -1.80354E-04 | 3.63853E-04
60 -4.35598E-05 -1.71104E-02 -3.37955E-02 -7.19269E-05 -1.93408E-07 -8.18411E-10 -1.53307E-04 | 3.25150E-04
62.5 -9.08507E-05 -1.59433E-02 -3.13189E-02 -6.16806E-05 -1.54074E-07 -6.05235E-10 -1.31147E-04 | 2.91729E-04
65 -1.38049E-04 -1.48901E-02 -2.91046E-02 -5.31963E-05 -1.23771E-07 -4.57487E-10 -1.12853E-04 | 2.62722E-04
67.5 -1.84929E-04 -1.39367E-02 -2.71169E-02 -4.61225E-05 -1.00197E-07 -3.45528E-10 -9.76407E-05 | 2.37426E-04
70 -2.31313E-04 -1.30711E-02 -2.53259E-02 -4.01867E-05 -8.16994E-08 -2.63473E-10 -8.49087E-05 | 2.15267E-04




Table 1.6. Continued

X Orfio-2 Quanyin-Su-1 | Quanyin-Su-2 | Senum-Yang-1 | Senum-Yang-2 | Senum-Yang-3 Ur;);gna(:f;u- Ur;):gna(;jlem-
72.5 -2.77065E-04 -1.22830E-02 -2.37065E-02 -3.51761E-05 -6.70681E-08 -2.03616E-10 -7.41867E-05 1.95776E-04
75 -3.22081E-04 -1.15634E-02 -2.22375E-02 -3.09229E-05 -5.54040E-08 -1.57655E-10 -6.51055E-05 1.78564E-04
71.5 -3.66282E-04 -1.09047E-02 -2.09009E-02 -2.72937E-05 -4.60412E-08 -1.24270E-10 -5.73727E-05 1.63307E-04
80 -4.09613E-04 -1.03004E-02 -1.96812E-02 -2.41818E-05 -3.84744E-08 -9.94646E-11 -5.07549E-05 1.49737E-04
82.5 -4.52033E-04 -9.74458E-03 -1.85651E-02 -2.15011E-05 -3.23165E-08 -7.68608E-11 -4.50647E-05 1.37627E-04
85 -4.93516E-04 -9.23230E-03 -1.75413E-02 -1.91819E-05 -2.72814E-08 -6.25283E-11 -4.01503E-05 1.26787E-04
87.5 -5.34049E-04 -8.75914E-03 -1.65999E-02 -1.71673E-05 -2.31350E-08 -4.78425E-11 -3.58880E-05 1.17054E-04
90 -5.73624E-04 -8.32124E-03 -1.57322E-02 -1.54103E-05 -1.97079E-08 -3.88385E-11 -3.21767E-05 1.08291E-04
92.5 -6.12243E-04 -7.91521E-03 -1.49308E-02 -1.38725E-05 -1.68567E-08 -2.95742E-11 -2.89332E-05 1.00380E-04
95 -6.49912E-04 -7.53805E-03 -1.41891E-02 -1.25219E-05 -1.44782E-08 -2.52966E-11 -2.60883E-05 | 9.32201E-05
97.5 -6.86642E-04 -7.18710E-03 -1.35013E-02 -1.13318E-05 -1.24858E-08 -2.53401E-11 -2.35847E-05 | 8.67246E-05
100 -7.22448E-04 -6.85999E-03 -1.28623E-02 -1.02798E-05 -1.07994E-08 -1.80815E-11 -2.13744E-05 | 8.08181E-05
X Urbanovici- van Tets Wanjun-1 Wanjun-2 Zsaké
Segal-3
5 2.98495E-02 1.42734E+00 -1.77275E+00 -1.77480E+00 2.00170E-01
7.5 3.56822E-03 5.81819E-01 -7.47894E-01 -7.49711E-01 2.61299E-02
10 1.77465E-04 2.94813E-01 -3.42841E-01 -3.44515E-01 -1.14972E-01
12.5 -2.42276E-04 1.70156E-01 -1.56262E-01 -1.57841E-01 -1.81717E-01
15 -2.05192E-04 1.07180E-01 -6.30494E-02 -6.45612E-02 -2.01385E-01
17.5 -1.20484E-04 7.19014E-02 -1.48458E-02 -1.63072E-02 -1.97972E-01
20 -5.44417E-05 5.05902E-02 9.83486E-03 8.41270E-03 -1.84876E-01
22.5 -1.10028E-05 3.69512E-02 2.15195E-02 2.01286E-02 -1.68639E-01
25 1.57121E-05 2.78146E-02 2.57506E-02 2.43852E-02 -1.52235E-01
27.5 3.13584E-05 2.14630E-02 2.56096E-02 2.42655E-02 -1.36906E-01
30 3.99574E-05 1.69098E-02 2.28835E-02 2.15572E-02 -1.23085E-01
325 4.41461E-05 1.35602E-02 1.86420E-02 1.73311E-02 -1.10834E-01
35 4.56080E-05 1.10409E-02 1.35417E-02 1.22441E-02 -1.00059E-01




Table 1.6. Continued

b'e Urbanovici- van Tets Wanjun-1 Wanjun-2 Zsako
Segal-3
37.5 4.54094E-05 9.10965E-03 7.99218E-03 6.70619E-03 -9.06104E-02
40 4.42246E-05 7.60418E-03 2.25197E-03 9.76212E-04 -8.23236E-02
42.5 4.24802E-05 6.41327E-03 -3.51539E-03 -4.78206E-03 -7.50443E-02
45 4.04454E-05 5.45879E-03 -9.20692E-03 -1.04655E-02 -6.86337E-02
47.5 3.82896E-05 4.68483E-03 -1.47589E-02 -1.60101E-02 -6.29710E-02
50 3.61178E-05 4.05064E-03 -2.01332E-02 -2.13779E-02 -5.79522E-02
52.5 3.39940E-05 3.52600E-03 -2.53089E-02 -2.65475E-02 -5.34888E-02
55 3.19556E-05 3.08824E-03 -3.02758E-02 -3.15090E-02 -4.95058E-02
57.5 3.00229E-05 2.72009E-03 -3.50315E-02 -3.62597E-02 -4.59394E-02
60 2.82054E-05 2.40823E-03 -3.95781E-02 -4.08016E-02 -4.27355E-02
62.5 2.65054E-05 2.14230E-03 -4.39209E-02 -4.51402E-02 -3.98481E-02
65 2.49211E-05 1.91414E-03 -4.80670E-02 -4.92823E-02 -3.72380E-02
67.5 2.34481E-05 1.71728E-03 -5.20247E-02 -5.32364E-02 -3.48716E-02
70 2.20807E-05 1.54653E-03 -5.58028E-02 -5.70111E-02 -3.27202E-02
72.5 2.08121E-05 1.39769E-03 -5.94103E-02 -6.06154E-02 -3.07590E-02
75 1.96356E-05 1.26736E-03 -6.28561E-02 -6.40583E-02 -2.89665E-02
77.5 1.85443E-05 1.15274E-03 -6.61491E-02 -6.73485E-02 -2.73244E-02
80 1.75318E-05 1.05155E-03 -6.92976E-02 -7.04944E-02 -2.58164E-02
82.5 1.65918E-05 9.61864E-04 -7.23097E-02 -7.35040E-02 -2.44285E-02
85 1.57185E-05 8.82098E-04 -7.51931E-02 -7.63850E-02 -2.31485E-02
87.5 1.49066E-05 8.10915E-04 -7.79549E-02 -7.91447E-02 -2.19657E-02
90 1.41510E-05 7.47192E-04 -8.06021E-02 -8.17898E-02 -2.08704E-02
92.5 1.34471E-05 6.89975E-04 -8.31410E-02 -8.43267E-02 -1.98544E-02
95 1.27907E-05 6.38456E-04 -8.55776E-02 -8.67615E-02 -1.89103E-02
97.5 1.21781E-05 5.91942E-04 -8.79176E-02 -8.90997E-02 -1.80314E-02
100 1.16057E-05 5.49840E-04 -9.01663E-02 -9.13467E-02 -1.72120E-02
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The relative deviations of the rational fraction — type approximations are calculated on
the basis of the following expression:

RT? ’ Te™
Te’E/RTh(x)—J‘e’E/RTdT h(x)—xzexj—zdx
£, (%) = _ 0 100 = =T 100 (0.10)
Ie’E/RTdT xzexje—zdx
0 x X

The relative error percentages of the rational fraction — type approximations for the
estimation of the temperature integral are listed in Table 1.6.

Applications of the Temperature Integral Approximations

The applications of the temperature integral approximations are the estimation of the
temperature integral and the determination of the activation energy[38].

The exponential — type approximations for the temperature integral are usually used in
the linear integral isoconversional methods.

Inserting Equation (1.6) into Equation (1.5), one can get the following equation:

AE
gla)=——el nhxr (0.11)

AR

From Equation (1.11), it follows

po+l
B A (EY o)
T g(a)\ R

In general, the linear integral isoconversional methods are based on the above equation.
These methods are based on Equation (1.11) in logarithmic form and leads to:

P+l
In ﬂj’p _n| e [ Ee +p, yPE 1 (0.13)
T, " g(@)\ R R T, .

a,i a,i

where subscripts 7 and o designate a given value of heating rate and the degree of conversion,

_ : 1 . .
respectively. For a=constant, the plot In ﬂip versus —— should be a straight line
2
a,i a,i
whose slope can be used to evaluate the apparent activation energy.
The rational fraction — type approximations for the temperature integral are usually used

in the model-fitting methods.
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Substituting Equation (1.7) into Equation (1.5), one can obtain

2
g(a)z%%e_ﬂ”h(x) (0.14)

From Equation (1.14), it follows

a AR E
In # =ln|— |-——— (0.15)
T?h(x) BE) RT
When the exact mathematical form of the function g(a) is known, the value of the activation

g(a)
T?h (x)
calculate the apparent activation energy, an iterative procedure must be implemented. In this

method, for the first step, the value of /(x) is regarded as unity, except for the first step, A(x)
is calculated based on the activation energy value obtained at the previous step.

energy can be determined by the slope of the plot of ln{ } versus —. In order to

Precision of Integral Methods

The integral methods are extensively used for the kinetic analysis of solid-state reactions.
As the temperature integral does not have an exact analytical solution, different
approximations have been proposed in the literature. A large number of approximated
equations have been proposed with the objective of increasing the precision in the
determination of the temperature integral, as checked from the standard deviation of the
approximations with regard to the real exact value of the temperature integral.

However, the main application of these approximations for the temperature integral is the
determination of the kinetic parameters, in particular the activation energy, and not the
computation of the temperature integral.

Therefore, it would be interest to estimate the precision of such integral methods for the
determination of the activation energy. The aim of this chapter is to perform a systematic
analysis of the precision of integral methods for the determination of the activation energy.

The Precision of Integral Methods for the Determination
of the Activation Energy

The integral form of the kinetic equation for solid-state reactions can be written as

follows:
T

A
g(a)==|e*"dT (2.16)
51

0

where g(a) is the integral conversion function.
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By introducing the variable x=F/RT, one can obtain

2
g(a)=%%e‘wg(x) @.17)
where
O(x) = xzexj%dx (2.18)
X

The Q(x) function does not have an exact solution, and can be numerically calculated.
The numerical values of the Q(x) function as a function of the parameter x are shown in
Figure 2.1. The numerical integration has been performed by means of the Mathematica
software developed by Wolfram Research, Inc.

1.00+
0.95 1

0.90+

O(x)
o

0.80+

0.754

tn <

20 35 50 65 80 95
X

Figure 2.1. Numerical values of Q(x) at various x.

If the integral methods were used for performing the kinetic analysis of solid-state
reactions, the apparent activation energy, E,, would satisfy the following equation:

2
g(a):f;ﬂ RET h(x,)e "' (2.19)

where the subscript a stands for the apparent values of the kinetic parameters obtained from
the integral methods, A(x) is the approximation for the O(x) function and x,=E,/RT.
From Equation (2.4), it follows:

dinlg(@)/T*] __E, (IM} 2.20)

d1/T) R dx.

The real value of the left hand side of Equation (2.5) as a function of the true activation
energy, E, can be determined from Equations (2.2):
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2
din[g(a)/T"] :_E(l_dan(x)) (221)
d(1/T) R dx
We define the relative error of the apparent activation energy é:
gtz f (2.22)
E .
From Equation (2.7), one can obtain
x, =(e+D)x (2.23)
From Equations (2.5), (2.6), (2.7) and (2.8), it follows:
dinh|(e+1
e+ 1-22 [(e+Dx]} | dInO) (2.24)
d [(8 + 1)x] dx
Orfao simplified Equation (2.9) and obtained the following two equations[30]:
L_dinh(x)_din0w) .
dx dx
£=(e+1) dIn h(x) 3 dInQ(x) (2.26)

dx dx

Equation (2.9) for the relative error of the apparent activation energy can’t be solved by
analytically solved. But for a certain x value, Equation (2.9) can be solved by some numerical
technique. For this purpose, either general purposed mathematical software or a computer
program developed in any programming language is used. In this chapter, the Mathematica
software system has been used for the numerical calculation of Equation (2.9).

Among the existed integral methods, the most commonly used in the kinetic analysis of
solid-state reactions is the integral method proposed by Coats and Redfern (here called the
Coats and Redfern method)[15], although the method was proposed 50 years ago. In fact, for
the original paper of Coats and Redfern, we have found about 2500 citations in the kinetic
analysis of solid-state reactions (this information was obtained from the ISI web of Science
database). Therefore, the precision of the Coats and Redfern method for the determination of the
activation energy has been calculated and the obtained results have been given in Table 2.1.

From the results included in Table 2.1, it can be seen that the results calculated from
Equation (2.9) significantly differ from the results from the other two equations presented in
the paper of Orfao[30]. Therefore, the simplified Equations (2.10) and (2.11) are not proper to
calculate the precision of integral methods.
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Table 2.1. The precision of the Coats and Redfern method for the determination
of the activation energy calculated from three different equations

e/ %
X Calculated by Calculated by Equation Calculated by Equation
Equation (2.9) (2.10) (2.11)
3 26.45056 77.38702 232.16107
4 13.00869 31.82985 42.43980
5 7.15007 18.09688 20.88101
6 4.30325 11.85813 12.93614
7 2.78041 8.43406 8.94521
8 1.89837 6.33210 6.60741
9 1.35365 4.94125 5.10326
10 0.99939 3.96977 4.07156
11 0.75908 3.26275 3.33003
12 0.59029 2.73132 2.77761
13 0.46823 2.32127 2.35420
14 0.37775 1.99798 2.02205
15 0.30924 1.73840 1.75641
16 0.25640 1.52671 1.54046
17 0.21498 1.35174 1.36243
18 0.18205 1.20542 1.21385
19 0.15554 1.08178 1.08852
20 0.13395 0.97634 0.98179
21 0.11619 0.88568 0.89014
22 0.10144 0.80714 0.81083
23 0.089092 0.73866 0.74173
24 0.078675 0.67858 0.68116
25 0.069824 0.62556 0.62775
26 0.062255 0.57855 0.58041
27 0.055745 0.53667 0.53826
28 0.050113 0.49919 0.50057
29 0.045216 0.46552 0.46671
30 0.040938 0.43515 0.43619
31 0.037184 0.40767 0.40858
32 0.033876 0.38272 0.38351
33 0.030950 0.35999 0.36070
34 0.028351 0.33924 0.33986
35 0.026037 0.32024 0.32079
36 0.023967 0.30279 0.30328
37 0.022112 0.28673 0.28718
38 0.020443 0.27192 0.27232
39 0.018939 0.25823 0.25859
40 0.017579 0.24556 0.24588
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Table 2.1. Continued

e/ %
X Calculated by Calculated by Equation Calculated by Equation
Equation (2.9) (2.10) (2.11)
41 0.016346 0.23379 0.23408
42 0.015225 0.22285 0.22312
43 0.014205 0.21266 0.21291
44 0.013275 0.20316 0.20338
45 0.012424 0.19428 0.19448
46 0.011644 0.18597 0.18616
47 0.010928 0.17819 0.17836
48 0.010270 0.17088 0.17104
49 0.0096631 0.16401 0.16416
50 0.0091035 0.15756 0.15769
51 0.0085864 0.15147 0.15159
52 0.0081077 0.14573 0.14584
53 0.0076640 0.14031 0.14042
54 0.0072521 0.13519 0.13529
55 0.0068692 0.13035 0.13044
56 0.0065128 0.12576 0.12584
57 0.0061807 0.12141 0.12148
58 0.0058708 0.11728 0.11735
59 0.0055813 0.11336 0.11342
60 0.0053105 0.10963 0.10969
61 0.0050570 0.10608 0.10614
62 0.0048193 0.10270 0.10276
63 0.0045963 0.099487 0.099538
64 0.0043869 0.096417 0.096466
65 0.0041900 0.093488 0.093534
66 0.0040048 0.090690 0.090733
67 0.0038303 0.088016 0.088057
68 0.0036658 0.085459 0.085497
69 0.0035106 0.083012 0.083048
70 0.0033640 0.080668 0.080702
71 0.0032255 0.078422 0.078455
72 0.0030945 0.076269 0.076300
73 0.0029705 0.074204 0.074232
74 0.0028530 0.072221 0.072248
75 0.0027416 0.070317 0.070342
76 0.0026360 0.068487 0.068511
77 0.0025357 0.066727 0.066751
78 0.0024405 0.065035 0.065057
79 0.0023500 0.063406 0.063427
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Table 2.1. Continued

e/ %
X Calculated by Calculated by Equation Calculated by Equation
Equation (2.9) (2.10) (2.11)
80 0.0022639 0.061838 0.061858
81 0.0021819 0.060327 0.060346
82 0.0021039 0.058871 0.058889
83 0.0020295 0.057467 0.057484
84 0.0019586 0.056113 0.056129
85 0.0018910 0.054806 0.054821
86 0.0018264 0.053544 0.053559
87 0.0017648 0.052325 0.052339
88 0.0017059 0.051148 0.051161
89 0.0016496 0.050010 0.050022
90 0.0015957 0.048909 0.048921
91 0.0015442 0.047844 0.047856
92 0.0014948 0.046814 0.046825
93 0.0014476 0.045817 0.045827
94 0.0014023 0.044851 0.044861
95 0.0013589 0.043915 0.043925
96 0.0013172 0.043009 0.043018
97 0.0012773 0.042130 0.042139
98 0.0012389 0.041278 0.041287
99 0.0012021 0.040451 0.040460
100 0.0011667 0.039649 0.039658
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Abstract

The design of protein coarse-grain (CG) models and their corresponding interaction potentials
is an active field of research, especially for solving problems such as protein folding,
docking... Among the essential parameters involved in CG potentials, electrostatic
interactions are of crucial importance since they govern local and global properties, e.g., their
stability, their flexibility...

Following our development of an original approach to hierarchically decompose a protein
structure into fragments from its electron density (ED) distribution, the method is here applied
to molecular electrostatic potential (MEP) functions, calculated from point charges as
implemented in well-known force fields (FF). To follow the pattern of local maxima (and
minima) in an ED or a MEP distribution, as a function of the degree of smoothing, we adopted
the following strategy. First, each atom of a molecule is considered as a starting point (a peak,
or a pit for negative potentials in a MEP analysis). As the smoothing degree increases, each
point moves along a path to reach a location where the ED or MEP gradient value vanishes.
Convergences of trajectories lead to a reduction of the number of points, which can be
associated with molecular fragments.

Practically, to determine the protein backbone representations, we analyzed CG models
obtained for an extended strand of polyglycine. The influence of the different amino acid side
chains was then studied for different rotamers by substituting the central glycine residue.
Regarding the determination of charges, we adopted two procedures. First, the net charge of a
fragment was calculated as the summation over the charges of its constituting atoms. Second,
a fitting algorithm was used to assign charges to the obtained local maxima/minima.
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Applications to a literature case, a 12-residue B-hairpin peptide, are also presented. It is
observed that classical CG models are more similar to ED-based models, while MEP-based
descriptions lead to different CG motifs that better fit the MEP distributions.

Introduction

The design of coarse-grain (CG) models [1] and their corresponding potential functions [2]
for protein computational studies is currently an active field of research, especially in solving
long-scale dynamics problems such as protein folding, protein-protein docking, ... For example,
to eliminate fast degrees of freedom, it has been shown that one can rely on CG representations
only, or on mixtures of CG and more detailed descriptions [3,4] in order to significantly
increase the time step in molecular dynamics (MD) simulations. Among the parameters
involved in CG potentials, the electrostatic interactions are of major importance [5] since they
govern local and global properties such as their stability [6], their flexibility [7]...

Common approaches used to design a CG description of a protein consist in reducing
groups of atoms into single interaction sites. For example, in reference [8], each amino acid
(AA) is represented by a single spherical site, with unit or nul electric charge. The authors
studied a proline-rich protein PRP-1 interacting with a mica surface using Monte-Carlo
simulations. Curcé et al. [9] developed a CG model of B-helical protein fragments where the
AAs are represented by two, three, or four blobs depending upon the AA type, in accordance
with a best fitting between Monte-Carlo based all-atom and CG energies. In their work, the
AAs are depicted by the amide hydrogen atom HN, the oxygen atom, the geometric center of
the side chain (except for Gly), and a fourth blob whose position depends on the AA type
(except for Gly, Ala, and Val). In reference [10], each AA residue is modeled using one
sphere located on the geometric center of the backbone and one or two spheres located on the
geometric centers of the side chain fragments (except for Gly). Differently, Pizzitutti et al.
[11] represented each AA of a protein sequence by a charged dipolar sphere. For each AA,
one CG sphere is located on the center-of-mass (c.0.m.) of the uncharged residues, while two
CG spheres are assigned to the c.o.m. of the neutral part of the AA residue and to the c.o.m.
of the charged part, respectively. Charged residues are Lys, Arg, Glu, Asp, and terminal AAs.
The authors show that, in protein association, their model provides a good approximation of
the all-atom potential if the distance between the protein surfaces is larger than the diameter
of a solvent molecule.

As mentioned earlier, a CG potential can be combined with an all-atom potential. For
example, Neri ef al. [3] included a CG description, in which the potential energy is expressed
as harmonic terms between close C, and/or Cg atoms. Such elastic network representations
are well-known to study the slow large amplitude dynamics of protein structures [12-15]. The
small biologically relevant region of the protein is modeled using an atom-based potential
while the remaining part of the protein is treated using a CG model. In this context, Heyden
and Thruhlar [16] proposed an algorithm allowing a change in resolution of selected
molecular fragments during a MD simulation, with conservation of energy and angular
momentum. A different and relatively logic way of considering the combination between all-
atom and CG potentials is to use CG as a pre-processing stage carried out to establish starting
conformations for all-atom MD simulations [4].
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Even when one uses an all-atom representation to model a protein structure, a reduced set
of Coulomb charges can still be used. For example, Gabb et al. [17] reported protein docking
studies where electrostatic complementarity is evaluated by Fourier correlation. Charges used
in Coulomb electrostatic fields were close to unit charges and placed on a limited set of
atoms. Besides the use of unit charges as in [8,11,18], an approach to assign an electrostatic
charge to a fragment or pseudo-atom is to sum over the corresponding atomic charges.
Extended approaches involve the assignment of dipolar and quadrupolar contributions to the
CGs [19]. In this last work [19], dedicated to small molecules such as benzene, methanol, or
water, the charge distribution is represented by point multipolar expansions fitted to
reproduce MD simulation data. Without being exhaustive, other assignment methods consist
in fitting the CG potential parameters so as to reproduce at best the all-atom potential values
[9,19].

In this chapter, we present two approaches to design and evaluate CG electrostatic point
charges. The first one has already been described in a previous work regarding the evaluation
of the electrostatic interactions between Aldose Reductase and its ligand [20]. In that first
approach, the fragment content is determined through a merging/clustering procedure of atom
trajectories generated in progressively smoothed electron density (ED) distribution functions.
The specific use of a Gaussian promolecular representation of an ED, i.e., a model where a
molecule is the superposition of independent and spherical atoms, allows a fast evaluation of
the ED distribution as well as their derived properties such as derivatives and integrals. In the
second approach, atoms are clustered according to their trajectories defined in a smoothed
molecular electrostatic potential (MEP) function. As the charge calculation approach useful in
ED cases revealed to be inefficient in MEP cases, a fitting algorithm is applied to evaluate
CG charges. Results are presented for the 20 AAs, first as derived from a promolecular ED
representation, and second from the all-atom Amber charges reported in Duan et al. [21]. In
this last work, the authors developed a third-generation point charge all-atom force field for
proteins. Charges were obtained by a fitting to the MEP of dipeptides calculated using
B3LYP/cc-pVTZ//HF/6-31G** quantum mechanical approaches in the PCM continuum
solvent in a low dielectric to mimic an organic environment similar to that of the protein
interior.

Finally, we will show that the CG charges obtained for each AA residue can be used to
determine a CG model representation for any protein. A particular application to a literature
case, a 12-residue B-hairpin HP7 [10], is described and MEP results are compared with
published models.

Theoretical Background

In this section, we present the mathematical formalisms that were needed to design a
protein CG representation and its point charges. First, the smoothing algorithm that is
applicable to both ED and MEP functions is described. This description is followed by the
mathematical expressions needed to smooth either a Gaussian-based ED distribution function,
or the Coulomb electrostatic interaction function. Finally, the two approaches used to
calculate CG point charges, from ED- and MEP-based CG, respectively, are detailed.
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Smoothing Algorithm

An algorithm initially described by Leung et al. [22] was implemented to follow the
pattern of local maxima in a Gaussian promolecular ED or a MEP function, as a function of
the degree of smoothing. More particularly, the authors proposed a method to model the
blurring effect in human vision, which is achieved (7) by filtering a digital image p(x) through
a convolution product with a Gaussian function g(x,?):

2 2
g(rn) = — e/
N2 (1)

where ¢ is the scale parameter, and (i) by assigning each data point of the resulting p(x,?)
image to a cluster via a dynamical equation built on the gradient of the convoluted image:

x(n+1)=x(n)+hV . p(x,t) )

where / is defined as the step length. We adapted this idea to three-dimensional (3D) images
such as ED and MEP functions, f, such as:

A

%Vf(f) 3

Fray = Tre-an +

where 7 stands for the location vector of a point in a 3D function.
The various steps of the resulting merging/clustering algorithm are:

1. At scale t = 0, each atom of a molecular structure is considered as a local maximum
(peak) of the ED and/or a local minimum (pit) of the MEP function. All atoms are
consequently considered as the starting points of the merging procedure described
below.

2. Astincreases from 0.0 to a given maximal value ¢,,,, each point moves continuously

along a gradient path to reach a location in the 3D space where ﬁf (#1)=0.0n a
practical point of view, this consists in following the trajectory of the peaks and/or
pits on the ED or MEP distribution surface calculated at ¢ according to Equation (3).

The trajectory search is stopped when Wf (l‘)‘ is lower or equal to a limit value,

grady;,. Once all peak and/or pit locations are found, close points are merged if their
interdistance is lower than the initial value of A"?. The procedure is repeated for each
selected value of 7.

If the initial A value is too small to allow convergence towards a local maximum or
minimum within the given number of iterations, its value is doubled (a scaling factor that is
arbitrarily selected) and the procedure is repeated until final convergence.
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The results obtained using that algorithm are the location of the local maxima and/or
minima, i.e., peaks and pits, and the atomic content of all fragments, at each value of ¢
between 0 and t,,, [23], that can be further interpreted in terms of dendrograms as, for
example, using the Web version of the program Phylodendron [24]. For information, input
data were written in the adequate format using DENDRO [25], a home-made program
implemented using Delphi, an object-oriented programming language that allows the
representation and processing of data in terms of classes of objects.

Promolecular Electron Density Distributions

In their studies related to the Promolecular Atom Shell Approximation (PASA), Amat
and Carbo-Dorca used atomic Gaussian ED functions that were fitted on 6-311G atomic basis
set results [26]. A molecular or promolecular ED distribution is thus a sum over atomic
Gaussian functions wherein expansion coefficients are positive to preserve the statistical
meaning of the density function in the fitted structure. In the PASA approach that is
considered in the present work, a promolecular ED distribution oy, is analytically represented
as a weighted summation over atomic ED distributions p,, which are described in terms of
series of three squared /s Gaussian functions fitted from atomic basis set representations [27]:

2

F—R,

3 2% 3/4
pgf—xnzzaZWM[}iiJ e 4)
=1

where w,; and ¢,; are the fitted parameters, respectively, as reported at the Web address
http://igc.udg.es/cat/similarity/ASA/funcset.html. py, is then calculated as:

Pym = Zpa (5)

acA

In the present approach to generate smoothed 3D ED functions, o, is directly expressed
as the solution of the diffusion equation according to the formalism presented by Kostrowicki
et al. [28]:
=2
r—R ‘

_ﬂmi

a

(6)

- 3
Pas (r-R,) =2, Zsa,i where Sqi=0Qg€
i=1

with:

2g,;

26, % 1 .
aai :Zawai - and ﬂai = ‘ (7)
| ’( ™ j (1+8¢,¢)" " (e8e,0)
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where ¢ is the smoothing degree of the ED. ¢ can also be seen as the product of a diffusion
coefficient with time or, in crystallography terms, as the overall isotropic displacement
parameter [29]. Unsmoothed EDs are thus obtained by imposing ¢ = 0 bohr”.

Molecular Electrostatic Potentials

The electrostatic potential function generated by a molecule 4 is calculated as a
summation over its atomic contributions:

9q

Vi) =y —do ()
acd|r — Ra
A smoothed version can be expressed as:
7 -R,
®

24t

acAlF — R

Vi, (F) = z‘ Iaerf

a

where the error function erf can be calculated using the analytically derivable expression [30]:

erf(x) =1—(a;T +a,T* +a;T> +a,T* —|—aST5)e_x2 ,with T’ = (10)

1+ px

The values of the parameters p and a are: p = 0.3275911, a; = 0.254829595, a, =
-0.284496736, a; = 1.421413741, a, = -1.453152027, and as = 1.061405429, as reported in
[30]. Equation (9) is identical to the expression found in the potential smoothing approach, a
well-known technique used in Molecular Mechanics (MM) applications [31].

Calculation of Fragment Charges

Fragment charges can, a priori, be calculated by summing over the point charges of the
atoms a leading to a given fragment F in an ED or MEP field. This approach was, for
example, initially applied for the evaluation of charges in proteins [20]:

qr = 244 (11
acF

As illustrated further in the text, the charges obtained in this way differ strongly from the
values obtained using a charge fitting program. That last option was thus selected, and applied
through the program QFIT [32] to get fragment charges fitted from a MEP grid. In a
conventional fitting procedure, grid points that are located too close or too far from the
molecular structure under consideration are excluded from the calculation. The atomic van
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der Waals (vdW) radii are often the reference property to select grid points under interest.
However, when using smoothed MEPs, charges are located at a reduced number of positions
that do not necessarily correspond to atomic positions. Therefore, the corresponding peak/pit
radius, Veneomes, Was defined as follows. Let us consider a 3D spherical Gaussian function:

2
f(ry=e™ (12)

and its smoothed version:
f(r,t)~e 140 (13)

An identification of the 3D integral of expressions (12) and (13) with the volume of a
sphere built on a vdW radius v, i.e.:

2, 4 3 2, 4 3
[ f(r)dm=dr = Eﬂv and [ f(r,t)4m dr = Em)smoothed (14)
leads to the two following equalities, respectively:

a=—— (15)

with v set equal to 1.5 A for peaks and pits in a MEP grid, and:

1/2( )3/2

1+4at
a3/2

Vsmoothed )™ = = (1 + 4612‘)3/2 v (16)

3rx
4

For example, at 1= 1.4 bohrz, Vemoothed 18 €qual to 2.036 A, a value that is representative of
low radius values that were previously associated with protein peaks observed in ED maps
generated at a medium crystallographic resolution level [33]. In the present work, all MEP
grids were built using the Amber point charges as reported in Duan et al. [21], with a grid
step of 0.5 A. For both unsmoothed and smoothed MEP grids, fittings were achieved by
considering points located at distances between 1.4 and 2.0 times the vdW radius of the atoms
and peaks/pits, respectively. These two limiting distance values were selected as in the Merz-
Singh-Kollman scheme [34].

In all fittings presented, the magnitude of the molecular dipole moment was constrained
to be equal to the corresponding all-atom Amber value. The quality of the fittings was
evaluated by two root mean square deviation (rmsd) values, rmsdV determined between the
MEP values obtained using the fitted charges and the reference MEP values, and rmsdu
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evaluated between the dipolar value calculated from the fitted CG charges and the reference
dipole moment of the molecular structure:

rde/u:\/ Z(:uref_:uﬁt)z A7)

I=x,y,z

All dipole moment components were calculated with the origin set to (0. 0. 0.).

Results and Discussions

This section is dedicated to the elaboration of protein CG models, either based on the
local maxima observed in smoothed ED, or on the local maxima and minima observed in
smoothed MEP functions. The two main steps of our strategy rely, first, on a CG description
of the protein backbone, and then on the development of side chain CG models. Each stage
involves the determination of CG locations and corresponding electrostatic point charges. The
final part of the section focusses on the application of our CG model to a literature case, the
12-residue B-hairpin HP7 [10].

We have restricted our studies to several fully extended peptides made of 15 amino acids,
i.e., Gly;-AA-Gly;, with the following protonation states: Lys(+1), Arg(+1), His with
protonated Ne (noted Hise further in the text), Glu(-1), and Asp(-1). The particular choice of
such peptide sequences was a compromise to ensure that (i) the backbone of the central AA
residue can interfere with neighbors. It was indeed shown previously that molecular ED-
based fragments, especially protein backbone fragments, encompass atoms from the nearest
residues [20,29]; (ii) the interference between the central AA residue and the whole peptide
structure is minimized. The concept of “interference” is solely based on the CG description
obtained for various secondary structures. For example, when a a-helix is considered rather
than an extended B-strand structure, atoms from the peptide backbone may merge with the
side chain of the central residue. It is thus extremely difficult to define a CG model that is
specific to a selected residue. We will show that the MEP-based clustering results are actually
highly dependent on the peptide conformation; (iii) the charge on the central residue Gly8 of
Gly,s is nul. This effect might also be obtained by considering a periodic peptide, which, up
to now, is not implemented yet. For each of the pentadecapeptide studied, end residues were
not charged. At first, this may sound artificial, but the presence of a large negative or positive
charge in the structure strongly affects the homogeneity of the CG distribution along the
peptide chain. This will be illustrated later when studying pentadecapeptide with a central
charged AA residue. As also shown later, an extended structure presents an homogeneous CG
distribution of a protein backbone, a specificity expected for an easy derivation of a CG
model that should hopefully be transferable to any protein structure knowing its atom
coordinates.

To generate all pentadecapeptides studied in this work, the simulated annealing (SA)
procedure implemented in the program SMMPO5 [35] was applied with dihedrals Q, ®, ¥,
and y constrained to pre-defined values. The default force field (FF) ECEPP/3 [36] and SA
running parameters were selected. Each SA run consisted in a first 100-step equilibration
Monte Carlo (MC) Metropolis stage carried out at 1000 K. Then the procedure was continued
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for 50000 MC Metropolis iterations until the final temperature, 100 K, was reached. The
lowest potential energy structure generated during each run was kept.

The hierarchical decomposition of molecular structures from ED distribution functions
was achieved at ¢ values ranging from 0.0 to 3.0 bohr?, with a step of 0.05 bohr”. The initial
value 4,,; was set equal to 10 bohrz, and grad;, to 10~ e/bohr*. When working with MEP
functions, the steepness of the MEP at the initial atom location led to the following choice of
parameters: ¢ = 0.05 to 3.0 bohrz, Aipis = 10° bohrz, grad, = 10 e/bohr’. Computing times
for pentadecapeptide Gly;s and 12-residue HP7, on a PC Xeon 32-bit processor with a clock
frequency of 2.8 GHz, are presented in table 1. It is seen that cpu times obviously increase
with the number of atoms in a molecular structure but also with its packing. As Coulomb
interactions are long-ranged, packing however has a limited influence on the calculation time
that is required for the analysis of MEP functions.

Table 1. Calculation times (min.) for the hierarchical merging/clustering
decompositions of PASA-ED and all-atom Amber MEP functions
of Gly;s and 12-residue hairpin HP7 (PDB code: 2EVQ)

cpu time

ED MEP
a-Glys 5 45
B-Gly;s 3 25
HP7 27 44

g g i g gty

Figure 1. ED iso-contours (0.05, 0.10, 0.15 e¢/bohr’) of (top) B-Gly,s and (bottom) a-Gly,s smoothed at
¢ = 1.4 bohr’. Local maxima at ¢ = 1.4 bohr” were obtained using the hierarchical merging/clustering
algorithm applied to the PASA ED distribution function. CG points are numbered as in table 3. Figures
were generated using DataExplorer [47].
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Figure 2. MEP iso-contours (plain: -0.05, -0.03 ; grid: 0.03, 0.05 e/bohr) of (top) B-Gly;s and (bottom)
a-Gly,s smoothed at t = 1.4 bohr’. Local maxima and minima at ¢ = 1.4 bohr” were obtained using the
hierarchical merging/clustering algorithm applied to the all-atom Amber MEP function. CG points are
numbered as in table 2. Figures were generated using DataExplorer [47].

Protein Backbone Modeling

As announced hereabove, to maximize the interatomic distances between the backbone
and side chain atoms, an extended geometry characterized by Q = 180°, ® =-139°, ¥ = 135°
was considered. Indeed, for MEP analyses, the conformation of the peptide appeared to be
extremely important on the results of the merging/clustering algorithm applied to MEP
functions. This is illustrated in figures 1 and 2 that respectively depict the smoothed ED and
MEP obtained at ¢ = 1.4 bohr” for a B-strand and a a-helix of Gly;s. As already established
before [20,29], the ED-based decomposition of the protein backbone is rather regular,
consisting mainly in fragments (C=0)aa(N-C,)an+1. The dendrograms (figure 3) resulting
from the application of our hierarchical merging/clustering algorithm shows that the ED-
based merging of the atoms to form fragments first occurs between the H atoms and their
chemically bonded neighbors at # = 0.05 bohr”. Then, as already shown [20,29], the C and O
atoms of the backbone carbonyl groups begin to merge starting at # = 0.4 bohr”. From 0.65 to
0.9 bohr?, the atoms of the AA backbones merge until regular fragment structures such as
(C=0)aa(N-Cy)aa+1 (H atoms are not mentioned for clarity) are fully created at about ¢ = 1.25
bohr”. At = 1.4 bohr’, there still exists one peak per residue, and an rmsd value of 0.216 A is
observed between the coordinates of the backbone peaks and their corresponding c.o.m.
(figure 4). A difference between the ED peaks of the a- and B-structures does not appear
before ¢ = 2.45 bohr”. At that smoothing level, the close packing of the residues that occurs in
the helix structure leads to a faster reduction of the number of local ED maxima (figure 5).
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Figure 3. Dendrogram depicting the results of the hierarchical merging/clustering algorithm applied to
the PASA ED distribution function of B-Gly,s. Results are displayed for the atoms of the first nine AA
residues only. The vertical line locates 7 = 1.4 bohr.
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Figure 4. t-dependent rmsd value calculated between the peaks observed in smoothed ED distribution
functions of B-Gly,s and their closest residue c.0.m. Local maxima were obtained using the hierarchical
merging/clustering algorithm applied to the PASA ED distribution function.
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Figure 5. t-dependent number of ED peaks observed for structures a-Gly,s (plain line) and B-Gly,s
(spheres). Local maxima were obtained using the hierarchical merging/clustering algorithm applied to
the PASA ED distribution function.

As just mentioned, at t = 1.4 bohr?, one observes one ED peak per residue, regardless of
the secondary structure (figures 1 and 3). When a MEP function is used, results differ from
the ED-based ones, and are highly dependent on the backbone conformation. The dendrogram
built from the results of the merging/clustering algorithm applied to the all-atom Amber MEP
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function illustrates that difference, and also shows that atoms are not necessarily merged
according to their connectivity (figure 6). For example, at 1 = 1.4 bohr’, a value selected
because the number of peaks/pits does not vary significantly any longer beyond that
smoothing degree, the points that are close to the O and C atoms (figure 2) are the result from
the merge of the atoms (O, N, C,) and (H, C, H,, H,), respectively. For an easier
identification of those points, the corresponding closest atom in the molecular structure is
given in table 2. In the case of $-Gly,s, one interestingly observes an alternating distribution
of negative and positive charges around the C=0 groups, while for a-Gly;s, the dipolar
character of the global structure is strongly emphasized with negative and positive charges
being distributed at each end of the peptide, respectively (figure 2). Corresponding charge
values, g, 4, fitted from the MEP grids smoothed at 7 = 1.4 bohr?, are presented in table 2. For
B-Glys, the sign of the charges correspond to the expected dipolar distribution, i.e., a positive
and negative net charge close to the C and O atoms, respectively. For a-Gly;s, this expected
charge distribution is observed only for residues 2, 4-7, and 15. It is thus hardly transferable
from one residue to another. There are also additional charges that are close to the N atoms,
with charge values being either positive (e.g., point 15) or negative (e.g., point 18). The
information about the closest atom is thus not strictly physically significant. The rmsd values
reflect a rather good fitting result. For example, for the a-helix structure, pw(Amber) = (-
28.694, -22.761, -26.473 D) and p(fitted) calculated with ¢, , charges = (-29.103, -22.834, -
26.672 D); for the B-strand structure, w(Amber) = (16.369, 6.365, 3.644 D) and p(fitted)
calculated with ¢, , charges = (16.352, 6.542, 3.720 D). Except for the residues that are close
to the peptide ends, it is seen that for the extended structure, positive and negative charges are
consistently located along the C=0 axes, at distances of 0.83 and 0.62 A from their closest
atom. There is a greater variability of these distances in the a-helix case. As expected, the
charge values depend upon the position of the residue in the peptide sequence. This
variability is largely more pronounced for the a-helix case. In the B-strand structure, the
charges located on the central residue, GlyS, are close to ¢; 4=+ 0.196 ¢ (points 16 and 17),
while there is no such local dipolar distribution in the a-helix structure. Rather, in this last
case, the central glycine residue leads to 3 points (points 15-17). In a-Gly;s, the positive
charges are predominant between points 1 and 7, while the negative charges are predominant
from point 29 to 33 (figure 7). It is also clearly seen that the charge magnitude is largely
reduced at the center of a-Gly;s, while the distribution is rather homogeneous for B-Gly;s. CG
charges obtained though the fitting on the unsmoothed all-atom Amber MEP grids, ¢, are
also presented in table 2. That approach is proposed to eliminate the effect of smoothing on
the charge values. Indeed, this effect may be not considered in a conventional MM
calculation. The fitting is obviously less efficient but is still of a reasonable quality, especially
for the B-strand structure for which rmsdV is equal to 1.32 kcal/mol. The dipole moment
calculated over the fitted CG charges ¢ is equal to (16.106, 6.557, 3.732 D) and leads to a
rmsdu value of 0.34 D. The dipolar character of each C=0 pair is characterized by charges
goo = = 0.205 ¢ separated by a distance of 2.65 A. For a-Gly,s, the fitting is slightly less
convincing, with rmsdV = 1.85 kcal/mol, while the rather good dipole moment of (-28.651, -
22.796, -26.383 D) leads to rmsdu =0.11 D.
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Figure 6. Dendrogram depicting the results of the hierarchical merging/clustering algorithm applied to
the all-atom Amber MEP function of -Gly,s. Results are displayed for the atoms of the first nine AA
residues only. The vertical line locates 7 = 1.4 bohr”.
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Figure 7. CG charges g, , fitted from an all-atom Amber MEP grid smoothed at 7 = 1.4 bohr” for a-Gly,s
(grey bars) and B-Gly,s (black bars). Local maxima and minima at /= 1.4 bohr” were obtained using the
hierarchical merging/clustering algorithm applied to the all-atom Amber MEP function. Points are

numbered as in table 2.

Table 2. CG charges g;,and gy (in €) of Glys fitted from the all-atom Amber MEP
grids smoothed at £=1.4 and 0.0 bohr?, respectively, using the program QFIT. Local
maxima and minima at £= 1.4 bohr” were obtained using the hierarchical
merging/clustering algorithm applied to the all-atom Amber MEP function.
For each point, the distance vs. the closest atom, d, is given in A. rmsdV
and rmsdyu are given in kcal/mol and D, respectively.

Point numbers (#) refer to Figure 2

a-helix B-strand

# Closest atom d qr4 Go.0 Closest atom d q1.4 Go.0

1 N Glyl 0.768 -0.042 -0.014 (0] Glyl 0.599 -0.329 -0.311
2 H Gly3 0.973 0.261 0.216 H Glyl 1.212 0.011 0.026
3 (0] Glyl 0.681 -0.002 -0.076 Ha Glyl 1.120 0.218 0.189
4 C Gly2 0.899 0.246 0.307 C Gly2 0.797 0.261 0.256
5 (0} Gly2 0.598 -0.139 -0.187 (0] Gly2 0.605 -0.241 -0.236
6 (0} Gly3 0.560 -0.024 -0.074 C Gly3 0.840 0.201 0.214
7 C Gly4 0.771 0.290 0.307 (6] Gly3 0.624 -0.184 -0.205
8 (0} Gly4 0.524 -0.325 -0.298 C Gly4 0.825 0.169 0.193
9 C Gly5 0.682 0.034 0.162 (0] Gly4 0.620 -0.187 -0.204
10 (6] Gly5 0.507 -0.038 -0.176 C Gly5 0.832 0.202 0.209
11 C Gly6 0.700 0.039 0.146 (¢} Gly5 0.623 -0.191 -0.202
12 (6] Gly6 0.499 -0.027 -0.174 C Gly6 0.827 0.195 0.202
13 C Gly7 0.706 0.107 0.170 (¢} Gly6 0.622 -0.197 -0.204
14 (6] Gly7 0.492 -0.088 -0.186 C Gly7 0.830 0.199 0.206
15 N Gly8 0.700 0.138 0.088 (¢} Gly7 0.623 -0.197 -0.205
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Table 2. Continued

a-helix B-strand

# Closest atom d q1.4 qo.0 Closest atom d q1.4 Go.0
16 C Gly8 0.693 0.081 0.148 C Gly8 0.828 0.197 0.205
17 (0] Gly8 0.491 -0.110 -0.189 (0] Gly8 0.623 -0.196 -0.205
18 N Gly9 0.695 -0.024 0.030 C Gly9 0.829 0.198 0.208
19 C Gly9 0.698 0.048 0.131 (0] Gly9 0.623 -0.196 -0.205
20 N Glyl10 0.691 0.005 0.066 C Gly10 0.828 0.194 0.203
21 (6] Gly9 0.499 -0.036 -0.138 (0] Glyl0 0.623 -0.195 -0.204
22 C Glyl0 0.716 -0.077 0.043 C Glyl1 0.829 0.204 0.210
23 (0] Gly10 0.499 0.107 -0.001 (0] Glyl1 0.623 -0.194 -0.204
24 N Glyll 0.675 0.005 0.039 C Glyl12 0.828 0.180 0.196
25 C Glyll 0.747 -0.001 0.098 (6] Glyl2 0.623 -0.197 -0.206
26 (6] Glyl1 0.483 0.043 -0.050 C Glyl3 0.830 0.219 0.221
27 N Glyl2 0.678 -0.039 -0.019 (0] Glyl3 0.626 -0.194 -0.205
28 C Glyl2 0.824 0.186 0.209 C Glyl4 0.823 0.207 0.212
29 (6] Glyl2 0.581 -0.259 -0.252 (0] Glyl4 0.633 -0.211 -0.213
30 (6] Glyl3 0.619 -0.152 -0.144 C Glyl5 0.608 0.275 0.273
31 (6] Glyl4 0.619 -0.168 -0.159 (6] Glyl5 0.762 -0.205 -0.200
32 C Glyl5 0.587 0.242 0.242
33 (6] Glyl5 0.648 -0.266 -0.250

rmsdV 1.12 1.85 0.67 1.32

rmsdu 0.46 0.11 0.19 0.34

Table 3. CG charges gr(in ¢) of Gly;s obtained using Equation (11) applied to
fragments determined at £= 1.4 bohr? using a hierarchical merging/clustering algorithm
applied to the PASA ED distribution function. Charges g;,and g,y were obtained
through a charge fitting algorithm using all-atom Amber MEP grids smoothed at r=1.4
and 0.0 bohr?, respectively. For each point, the distance vs. the closest c.0.m., d, is given
in A. rmsdV and rmsdp are given in kcal/mol and D, respectively.

Point numbers (#) refer to Figure 1

a-helix B-strand
# C.0.m. d qr qi1.4 qo.0 C.0.m. d qr qi.4 qo.0
1 Glyl 0.253 -0.070 0.195 0.214 Glyl 0.214 -0.070 -0.184 -0.174
2 Gly2 0.239 0.001 0.195 0.172 Gly2 0.216 0.001 0.213 0.182
3 Gly3 0.238 0.001 0.285 0.276 Gly3 0.216 0.001 -0.135 -0.105
4 Gly4 0.239 0.001 -0.043 -0.053 Gly4 0.216 0.001 0.043 0.036
5 Glys 0.239 0.001 -0.123 -0.113 Glys 0.215 0.001 0.003 -0.001
6 Gly6 0.239 0.001 -0.108 -0.096 Gly6 0.216 0.001 0.001 0.006
7 Gly7 0.238 0.001 -0.045 -0.041 Gly7 0.216 0.001 -0.008 -0.008
8 Gly8 0.239 0.001 -0.013 -0.012 Gly8 0.216 0.001 0.017 0.014
9 Gly9 0.239 0.001 0.044 0.034 Gly9 0.216 0.001 -0.011 -0.009
10 Gly10 0.240 0.001 0.073 0.076 Glyl0 0.216 0.001 0.010 0.011
11 Glyll 0.239 0.001 0.156 0.153 Glyl1 0.215 0.001 -0.009 -0.009
12 Gly12 0.237 0.001 0.069 0.051 Glyl2 0.216 0.001 0.034 0.027
13 Gly13 0.238 0.001 -0.235 -0.219 Glyl3 0.216 0.001 -0.064 -0.051
14 Glyl4 0.236 0.001 -0.146 -0.165 Glyl4 0.216 0.001 0.084 0.073
15 OXT15 1.154 0.072 -0.289 -0.264 OXT15 1.234 0.072 0.020 0.023
17.57* 4.43%
rmsdV Lo | 359 | 397 sagrs | 429 | 510
rmsdu 53.30 1.18 1.70 4.55 2.09 2.37

e  Fitting achieved vs. all-atom Amber MEP grid smoothed at ¢+ = 1.4 bohr’. **Fitting achieved vs.
unsmoothed all-atom Amber MEP grid.
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For comparison purposes, we report, in table 3, the charges gy obtained using Equation
(11) applied to the fragments observed in the PASA ED distribution function smoothed at ¢ =
1.4 bohr®. For an easier identification, each fragment is characterized by its closest residue
c.o.m. except for the last peak, described with respect to the terminal oxygen atom OXT of
Glyl5. It is first seen that both a- and B-structures lead to identical decomposition results. As
each peak consists in a glycine residue, its total charge gr is zero (the exact value results from
the atom charges reported in [21]), except for the end points which contain only a partial
number of glycine atoms. We further considered those ED-based peaks as a CG model for the
pentadecapeptide, and we evaluated the CG charges, ¢ and ¢q, 4, from all-atom Amber MEP
grids generated at # = 0.0 and 1.4 bohr’, respectively (table 3). The charges ¢y determined
from Equation (11) do not lead to a fitting as nice as those obtained from the MEP-based CG
representations. This is especially true for the a-helix case, for which rmsd) values are equal
to 17.57 and 19.17 kcal/mol vs. the all-atom Amber MEP grids smoothed at = 1.4 and 0.0
bohr?, respectively, and rmsdu = 53.30 D.

Protein Side Chains Modeling

Several CG representations of AA side chains were obtained by substituting the central
residue Gly8 of B-Gly,s by a selected AA in a specific conformational state. Except for AA =
Gly and Ala, a number of rotamers were generated by considering the angular constraints
given in table 4. These rotamers were selected according to their occurrence degree in protein
structures as reported in the Structural Library of Intrinsic Residue Propensities (SLIRP)
[37]. As already specified above, we considered the following protonation states: Lys(+1),
Arg(+1), Hise, Glu(-1), and Asp(-1). In figures 8 to 10, we present the details of the MEP-
based CG representations of Asn, Arg(+1), and Glu(-1) obtained from the all-atom Amber
MEP function [21], smoothed at 7 = 1.4 bohr”. The case of Asn (figure 8) illustrates that, for a
neutral residue, the number of minima and maxima may depend upon the conformation. For
conformation 7, Nt, there is only one negative charge located at the proximity of the O atom
(point 17), while for the two other selected conformations, ¢, Og- and t,Og+, there are two
additional positive charges close to the amide H atoms (points 17 and 19). For ¢, V¢, the two H
atoms of the amide group are sufficiently close to the peptide backbone to be merged in the
two positively charged fragments 16 and 18. In the case of Arg(+1), all four conformers
showed the same characteristics, i.e., three positive charges located at the neighborhood of the
guanidinium group (points 17-19). The g-,t,g-,g- conformation is illustrated in figure 9. It is
well seen that the positive charge located on the side chain strongly affects the distribution of
peaks and pits at the level of the whole peptide backbone. Concerning Glu(-1), illustrated in
figure 10 for the g-,t,g- conformation, all rotamers studied also showed a similar CG
description with two negative charges facing the carboxylate O atoms (points 14 and 15). The
peptide backbone CG representation is also strongly affected by the global negative charge of
the residue side chain. The global influence of charged groups on the CG model of the
pentadecapeptide models justifies, as mentioned earlier, the choice of studying peptides
without charged end residues.
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Figure 8. MEP iso-contours (plain: -0.05, -0.03 ; grid: 0.03, 0.05 e”/bohr) of Gly,;-Asn-Gly,; smoothed at
¢ = 1.4 bohr”. Top: #,Nt, middle: #,0g-, bottom: #,0g+ conformation. Local maxima and minima at 7 =
1.4 bohr” were obtained using the hierarchical merging/clustering algorithm applied to the all-atom
Amber MEP function. Figures were generated using DataExplorer [47].

Figure 9. MEP iso-contours (plain: -0.05, -0.03 ; grid: 0.03, 0.05 e’/bohr) of Gly,-Arg-Gly, in its g-,¢,g-
,g- conformation, smoothed at ¢ = 1.4 bohr’. Local maxima and minima at # = 1.4 bohr® were obtained
using the hierarchical merging/clustering algorithm applied to the all-atom Amber MEP function.
Figure was generated using DataExplorer [47].
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Figure 10. MEP iso-contours (plain: -0.05, -0.03 ; grid: 0.03, 0.05 e/bohr) of Gly;-Glu-Gly; in its g-
,t,g- conformation, smoothed at 7 = 1.4 bohr’. Local maxima and minima at £ = 1.4 bohr® were obtained
using the hierarchical merging/clustering algorithm applied to the all-atom Amber MEP function.
Figure was generated using DataExplorer [47].

Table 4. Geometrical parameters and occurrence probability of the selected AA side
chain rotamers. gand ¢stand for gauche and trans, respectively (see [37] for details)

Conformation | 1) | 22 | B | 4 Occ;‘;:)e"ce
Arg o 1, g g- 300 180 300 300 9.5
g 1, g 1 300 180 300 180 11.9
o 1 gt 1 300 180 60 180 122
PR 300 180 180 180 122
Asn t, Nt 180 0 11.1
;, Og- 180 300 213
;, Og+ 180 60 23.6
Asp [ gt 180 60 62.8
Cys o 300 56.3
ot 60 15.1
‘ 180 28.7
Gln Y 300 180 0 112
a- 1, Og- 300 180 300 332
o 1, Og+ 300 180 60 28.6
Glu o 1 g 300 180 120 29.9
g 1 g+ 300 180 60 253
His g-, Ng- 300 300 35.8
4 Ng+ 180 60 15.0
Tle o o 300 300 227
ot 300 180 283
P 60 180 425
Leu ot 300 180 652
L gt 180 60 24.1
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Table 4. Continued

Conformation x1 (®) %2 (®) %3 (®) x4 (°) Occ;n(;:)ence
Lys g gt g 300 300 180 300 8.5
g, gt gt 300 300 180 60 6.5
g 1t g 300 180 180 300 21.7
gt gt 300 180 180 60 14.3
Met g g g 300 300 300 15.5
g, gt 300 300 180 11.6
gt g 300 180 300 19.4
gt gt 300 180 60 16.4
gt 300 180 180 15.4
Phe g, g 300 300 37.8
t g+ 180 60 315
Pro g+ 0 66.8
Ser g 300 73.1
gt 30 24.8
Thr g- 300 51.6
gt 30 46.3
Trp g g 300 90 28.2
gt 300 0 16.5
t, g- 180 60 11.6
t, g+ 180 300 13.8
tt 180 0 11.2
Tyr g, g 300 120 38.3
t g+ 180 60 31.7
Val g- 300 46.4
t 180 51.9

In a further step, we determined the charge values for the CG descriptions of each AA
through a fitting procedure carried out using QFIT [32] vs. unsmoothed MEP grids. For each
of the AAs, all rotamer descriptions in terms of peaks and pits observed in all-atom Amber
MEP smoothed at ¢ = 1.4 bohr* were considered according to their occurrence probability
(table 4). The peptide backbone was constrained to be modeled by a sequence of alternating
negative and positive charges, g, as previously determined for B-Gly,s (table 2), and that,
even for charged residues (Arg, Lys, Glu, Asp). The exception is for the central residue under
consideration, for which all charges, even the backbone ones, were free to vary during the
fitting procedure, under two constraints: the molecular all-atom Amber charge and the
corresponding total dipole moment. It is to be specified that, for some AA residues, the initial
MEP-based peak/pit CG representation obtained for the corresponding side chain was
replaced by a simpler model consisting of one of several points centered on selected atoms.
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This was achieved as a first stage in the easy design of a CG protein model from its atom
coordinates, e.g., coordinates retrieved from the PDB [38].
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Figure 11. CG model for each of the 20 AA residues as established at 7 = 1.4 bohr” from the hierarchical
merging/clustering algorithm applied to the all-atom Amber MEP function. CG points are numbered as
in table 5. Figures were generated using DataExplorer [47].

In figure 11, we report the so-obtained original or simplified CG representations for all
20 AA residues as derived from the results of our hierarchical merging/clustering algorithm
applied to the all-atom Amber MEP function, smoothed at 7 = 1.4 bohr’. Corresponding CG
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charges are reported in table 5. For all non-cyclic C-H based residues, i.e., Ala, Ile, Leu, and
Val, the side chain points were placed exactly on C atoms. This was chosen as an easy way to
model the side chain of those specific residues in MM applications. For example, in the Ala
case, the point charge that was initially observed in the all-atom Amber MEP function
smoothed at # = 1.4 bohr” at a distance of 0.587 A from Cp (table 6) is replaced by a sphere
centered exactly on atom CP. For the specific case of Ile, the number of peaks and pits that
was initially observed in the smoothed MEP functions, depends on the conformation of the Ile
side chain. More precisely, there is only one CG observed in each of the three rotamers,
which is close to atom Cf for conformations g-,g- and g-,¢ and close to C81 for conformation
g+,t. We thus evaluated two different models composed either of three or four points. In the
case of the three-point model, the side chain CG point is located either on atom Cf or atom
Cd1; in the case of the four-point model, the two CG points of the side chain are centered on
the CB and C61 atoms. Resulting rmsdV and rmsdu values presented in table 6 show that the
two models perform similarly in approximating the unsmoothed all-atom Amber MEP
function, due to the very low charge values associated with the side chain CG points.

Similarly to the non-cyclic C-H based residues, the side chain of sulfur-containing
residues, i.e., Cys and Met, was modeled by a sphere placed exactly on the S atom. In the case
of Cys in its g+ conformation, there was initially an extra charge located at 1.038 A of the H
atom, which was, however, not observed in the g- conformation. As the charge fitting of the
single structure g+ onto the unsmoothed all-atom Amber MEP grid led to g5 = 0.077 ¢ (other
output parameters were gp = -0.275, g¢ = 0.360, g5 =-0.163 e, rmsdV = 1.85 kcal/mol, rmsdu
= 0.44 D), we neglected the point charge gy to generate a unique model valid for all three Cys
rotamers. For Met, most of the original side chain points were very close to the S atom, below
0.28 A (table 6), and a unique model with a sphere placed on S was built. For Lys, we also
simplified the model by setting the positive charge exactly on the N¢g atom. For all the other
AAs, the original point locations observed in the smoothed MEP functions were kept for the
charge fitting procedures. In the case of Phe, two models were evaluated (figure 11 and table
5). The first one was built from the set of CG points observed in the corresponding all-atom
Amber MEP function, at £ = 1.4 bohr”. That model includes a point for the six-membered ring
and four additional charges located close to the H atoms. This model does not reveal to be
worse or better than the second one tested, consisting in a single ring point only. This is due
to the very small amplitude of the H-related charges, ranging between 0.02 and 0.05 e
Indeed, the rmsdV values obtained for the 1- and 5-point side chain models are close to 1.5
and 1.4 kcal/mol, respectively. For rmsdu, values are 0.1 and 0.3 D, respectively.

On the whole, we can also note that for hydroxyl containing residues, i.e., Ser, Thr, and
Tyr, there are two charges located near, but not exactly on, the O and H atoms. For the
negatively charged residues, i.e., Asp and Glu, each carboxylate functional group leads to two
negative charges located near the O atoms. On the contrary, positively charged residues, Arg
and Lys, present different behaviors. While the side chain of Lys leads to only one positive
charge value, the Arg side chain is characterized by a 3-point motif, wherein each charge is
almost symmetrically located on bisectors of each of the three N-C-N angles of the
guanidinium group. For all these residues, distances between the CG charge and their closest
atom in the molecular structure are reported in table 6.



Table 5. CG charges (in ¢') for the AA residues obtained through a charge fitting algorithm using unsmoothed all-atom Amber MEP

grids. CG locations were generated at = 1.4 bohr” using a hierarchical merging/clustering algorithm applied to the all-atom Amber

MEP function. gand #stand for gauche and trans, respectively (see [37] for details). rmsdV and rmsdu are given in kcal/mol and D,
respectively. Point numbers refer to Figure 11

Conformation | Point 16 Point 17 Point 32 Point 33 Point 34 Point 35 | Point 36 rmsdV rmsdu
Ala C o CB
0.234 -0.236 -0.000(4) 1.77 0.66
Arg C (0] NH-NH, NH,-NH NH,-NH,
g-tg-g- 1.96 0.99
g-t,g-t 1.78 0.85
payyy 0.310 -0.199 0.281 0.312 0.284 72 021
gLt 1.67 0.30
Asn C (0] Hd,, 06 Hos
t,Nt 2.02 4.81
t, Og- 0.371 -0.212 0.019 -0.178 0.002 2.55 3.42
t, Og+ 241 2.65
Asp C (0] 0351 032
tg+ -0.019 -0.205 -0.417 -0.358 1.58 0.64
Cys C (0] Sy
g 1.64 0.77
g+ 0.398 -0.289 -0.103 1.92 1.46
t 1.80 1.14
Gln C (0] H, Cy O¢ Hgs
g-t, Nt 1.78 0.83
g-,t,0g- 0.293 -0.289 0.167 0.001 -0.259 0.083 1.66 0.67
g-t,0g+ 1.69 0.33
Glu C (0] Oel Og2
g-tg- 1.51 0.29
paypn 0.187 -0.270 -0.457 -0.456 155 026




Table 5. Continued

Conformation | Point 16 Point 17 Point 32 Point 33 Point 34 Point 35 | Point 36 rmsdV rmsdu
Gly C (6}
0.205 -0.205 1.32 0.34
His C (6] He No
g-,Ng- 1.54 0.23
L Ng+ 0.198 -0.188 0.178 -0.184 58 039
Ile C (0} CB Csl
g-.g- 0.266 -0.283 0.019 1.47 0.51
g-t 0.266 -0.283 0.019 1.46 0.42
gtt 0.266 -0.283 0.020 1.42 0.53
Ile C O CB Cs1
g-.g- 1.44 0.49
g-t 0.226 -0.280 0.068 -0.012 1.44 0.51
g+t 1.41 0.61
Leu C (0} Cy Cal Cd2
g-t 1.36 0.40
e 0.219 -0.245 0.062 -0.030 -0.011 136 058
Lys C (0] Ng¢
g-,g-tg- 1.68 0.95
g-g-tg+ 1.64 1.26
PTys 0.367 -0.239 0.875 163 125
g-1tgt 1.68 0.92
Met C (6} S
g-.g-.8- 1.89 1.87
g-.g-t 2.15 2.06
g-tg- 0.283 -0.232 -0.059 1.79 1.46
g-t-g+ 1.80 1.55
g- 1t 2.02 1.67




Table 5. Continued

Conformation | Point 16 Point 17 Point 32 Point 33 Point 34 Point 35 | Point 36 rmsdV rmsdu
Phe C (0] 6-ring Hd2 Hel Hg He2
g8 1.40 0.34
e 0.263 -0.234 -0.163 0.033 0.047 0.031 0.027 140 030
Phe C (0] 6-ring
g-.g- 1.53 0.14
Py 0.222 -0.219 -0.004 154 012
Pro (6] C
gt -0.163 0.161 1.76 1.72
Ser C (0] Oy Hy
g 1.50 0.45
s 0.304 -0.275 -0.173 0.153 165 0.62
Thr C (6] Oy Hy
g- 0.279 -0.247 -0.154 0.120 1.51 0.56
g+ 1.56 0.39
Trp C (0] 5-ring 6-ring Hel HH
£-8 0.270 -0.210 -0.136 -0.098 0.146 0.028 Lol 0.31
g-t 1.54 0.27
tg- 1.58 0.37
tLg+ 1.54 0.43
Lt 1.52 0.21
Tyr C (6] 6-ring OH HH Ho* He*
g-.g- 1.46 0.26
Py 0.267 -0.234 -0.110 -0.129 0.156 0.023 0.036 143 013
Val C (0] CB
g 1.62 0.66
. 0.092 -0.052 -0.051 169 081

* Ho and He stand on the opposite side of the O-H bond direction.



Table 6. Distances (in A) observed between selected peaks and pits observed in all-atom Amber

MEP function smoothed at #= 1.4 bohr?, and their closest atom. ‘--* means that the peak/pit under

consideration was not observed in the MEP grid of the considered rotamer

Nr"(;tf’f Cp Cy Co1 C52 Sy (Cys), S5 (Met), N (Lys)
Ala |1 0.587
e |3 0.846, 0.548, - -, 0418
Leu |2 2645, | 0.746,— |- 0.796
val |2 0.355, 0.349
Cys |3 0.358, 0.695, 0.450
Met |5 0.201, 0.274, 0.098, 0.100, 0.105
Lys |4 0.510, 0.380, 0.357, 0.408
0 H 051 (Asp), | 052 (Asp), | Cq
Oel (Glu) 0¢2 (Glu)
Point 32 Point 33 Point 34

Ser |2 0.659,0.796 | 1.100,

1.209
Thr |2 0.873,0.559 | 0.975,

0.932
Tyr |2 0.634,0.627 | 0.907,

0.910
Asp |1 0.330 0.363
Glu |2 0.342, 0.337 | 0.331, 0.342
Arg |4 2.282,2.256,2.268, | 1.902, 1.964, 1.989,  |2.030, 2.036, 2.036,

2.215 1.950 2.047
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Table 7. CG charges (in ) for the AA residues obtained from Equation (11) applied to
fragments generated at = 1.4 bohr? using a hierarchical merging/clustering algorithm
applied to PASA ED distribution functions. rmsdV and rmsdu are given in kcal/mol and
D, respectively. They correspond to the mean value calculated per rotamer structure.
‘BAK’ stands for the backbone c.o.m. Point numbers refer to Figure 12

BAK,aa, | BAKyyy | BAK,, | Point8 | Point9 | BAKun. | rmsdV | rmsdu
Ala 0.001 0.055 | -0.058 0.001 519 | 427
Arg 0.001 0.020 0.081 | 0.899 0.001 18.60 | 14.68
Asn 0.001 0.002 0.022 | -0.023 0.001 | 21.57 | 2455
Asp 0.001 0.077 | -0.129 | -0.793 0.001 570 | 6.78
Cys 0.001 0.038 | -0.013 | -0.023 0.001 | 30.68 | 21.62
Gln 0.001 0205 | -0.217 | 0.015 0.001 30.85 | 29.16
Glu 0.001 0.120 | -0.194 | -0.925 0.001 3020 | 30.73
Gly 0.001 0.001 0.001 0.001 524 | 455
His 0.001 -0.100 | 0.062 | 0.039 0.001 | 2898 | 29.95
Tle 0.001 0.123 | -0.122 0.001 | 2890 | 23.01
Leu 0.001 20.023 | -0.056 | 0.079 0.001 | 3432 | 31.84
Lys 0.001 0.012 0.091 | 0.899 0.001 19.56 | 13.56
Met 0.001 0.110 | -0.037 | -0.073 0.001 | 20.87 | 18.31
Phe 0.001 0.030 | -0.030 | 0.051 | -0.051 | 0.001 | 29.73 | 24.40
Pro 0.001 0.072 | -0.172 | o0.101 0.001 523 | 5.76
Ser 0.001 0.136 | -0.169 | 0.033 0.001 38.75 | 38.52
Thr 0.001 20.025 | -0.063 | 0.090 0.001 3738 | 34.14
Trp 0.001 0.050 0.018 | -0.022 0.001 | 21.47 | 17.99
Tyr 0.001 -0.060 | 0024 | 0.013 | 0.025 0.001 | 3044 | 19.14
Val 0.001 0.029 | -0.029 0.001 38.00 | 99.58

For comparison with the MEP-based CG representations, the same exercise was achieved
using ED-based CG representations that were built from the peaks observed in PASA ED
distribution functions, smoothed at # = 1.4 bohr® (figure 12). Associated charges, calculated
using Equation (11), are reported in table 7. First of all, it is observed that, for a given AA, all
rotamers showed the same behaviour, i.e., identical hierarchical decompositions and fragment
contents. A detailed description of the side chain fragments is presented in table 8. For Ala,
Gly, Ile, Pro, and Val, there is no side chain peak observed. All side chain atoms have
actually been merged with backbone atoms to form a fragment whose corresponding ED
maximum is closer to a backbone c.0o.m. For example, atoms N, Ca, and CP of Ala were
merged with C and O of the preceding AA residue in the peptide sequence. The same
occurred for Ile and Val, where a backbone fragment was formed by (CO)giy7 and (N-Ca-CB-
Cy1-Cy2-Cd1)yes, and (CO)gry7 and (N- Ca-CB-Cy1-Cy2)vas, respectively. The backbone
peak of Pro was actually associated with atoms (N-Ca-CB-Cy-Cd)pos. Except for the AA
under consideration and its nearest neighbor, A4-1, the CG model is not dependent upon the
AA type, and the Gly charge remains equal to 0.001 ¢ (table 7), the value corresponding to
the total charge of a Gly residue as reported in [21]. It can also be seen that the other nearest
neighbor, A4+1, stays unaffected by the AA type. This ED effect is thus highly local, and
might be qualified as a ‘shape’ effect, while the electrostatic long-range influence, that is
present in MEP-based results, needs to be controlled using charge constraints during the
fitting procedure. To eventually evaluate the quality of charges associated with ED-based
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CGs in reproducing the all-atom unsmoothed Amber MEP maps, rmsdV and rmsdu values
were calculated. They are reported in table 7 as well, and reflect the less precise reproduction
of MEP and dipole values than the MEP-based CG charges.
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Figure 12. CG model for each of the 20 AA residues as established at /= 1.4 bohr” from the hierarchical
merging/clustering algorithm applied to the PASA ED distribution function. CG points are numbered as
in table 7. Figures were generated using DataExplorer [47].

Application to 12-Residue Hairpin HP7

The structure of peptide HP7 was retrieved from the PDB [38] (PDB code 2EVQ). The
primary structure of that peptide is Lys-Thr-Trp-Asn-Pro-Ala-Thr-Gly-Lys-Trp-Thr-Glu
(figure 13). It has a global net charge of +1.004 ¢ when summing over the atom charges
given in reference [21]. The structure is interesting to consider as a reference structure



Determination of Protein Coarse-Grain Charges. .. 181

because a fragment-based description, as well as corresponding point charges, have been
provided [10]. In that representation, each pseudo-atom is defined as the geometric center of
the heavy atoms of a protein fragment.

Table 8. Atom content of the side chain ED-based fragments as obtained
using a hierarchical merging/clustering algorithm, at £/=1.4 bohr?.
H atoms are not reported for clarity. Distances d between local
ED maxima and closest side chain c.0.m. are given in A

Fragment content d

Arg Cy-Cd-Ne-Cg-(NH2), 1.182
Asn CB-Cy-O31-Nb2 0.383
Asp CB-Cy-081-062 0.426
Cys CB-Sy 0.590
Gln Cy-C3-O¢gl-Ne2 0.917
Glu Cy-C3-0¢1-0¢2 0.879
His Cy-N§1-Cel-Ne2-Ca2 0.618
Leu Cy-Cd1-Cd2 0.115
Lys C3-Ce-Ng 1.187
Met Cy-Sé-Ce 0.857
Phe Cy-C381-Cd2 0.483

Cel-Ce2-Cg 1.140
Ser CB-Oy 0.070
Thr CB-Oy1-Cy2 0.474
Trp Cy-C381-Nel-Ce2-Cgq2-CH2-Cg3-Ce3-Co2 1.035
Tyr Cy-Cd1-Cd2 1.213

Cel-Cc-OH-Ce2 1.436

The decompositions as obtained from PASA ED and all-atom Amber MEP functions
smoothed at £ = 1.4 bohr” are displayed in figure 14, together with the Basdevant’s CG model
which is composed of 28 grains. As already mentioned above, the MEP-based results are
highly dependent on the conformation of the peptide, and a MEP-based CG description
obtained at = 1.4 bohr’ now consists in only 22 points. This is well below the expected
number of peaks and pits, i.e., 44 as will be seen later, that would be obtained if all AA
residues were considered as isolated. Figure 14 illustrates the high diversity of the various CG
models. In table 9, we present the charges associated with the CG representations obtained
from the application of the hierarchical merging/clustering algorithm to PASA ED
distribution and all-atom Amber MEP functions, smoothed at ¢t = 1.4 bohrz, compared to the
effective charges reported in the literature [10]. Our charges were obtained using the program
QFIT [32] vs. unsmoothed all-atom Amber MEP grids. The major point to mention is the very
bad approximation brought by the model built on MEP CG points whose charges were simply
calculated using Equation (11). Indeed, rmsdV and rmsdu values are equal to 33.04 kcal/mol
and 43.13 D, respectively. The use of a simple approximation such as Equation (11) provides
better results when applied to ED-based fragments, with rmsdV = 12.78 kcal/mol and rmsdu =
16.04 D. For that last model, we can also note that the charges obtained for the side chain
peaks are identical to the values reported in table 7 for Gly7-AA-Gly7 structures. Thus, a
change in the primary and secondary structures of a protein does seem to affect the backbone
peaks only. When the charge fitting procedure is applied, both the 23-point ED- and 22-point
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MEP-based CG models provide similar quality approximations of the all-atom unsmoothed
Amber MEP grid, with, respectively, rmsdV = 5.45 and 4.62 kcal/mol, and rmsdu = 1.04 and

1.96 D.

Figure 13. 3D conformation and secondary structure of the 12-residue B-hairpin peptide HP7 (PDB
code 2EVQ). Figure was generated using SwissPDBViewer [48].

Figure 14. 3D structure of the 12-residue B-hairpin peptide HP7 (sticks) superimposed with the 22 all-
atom Amber MEP point charges at 7 = 1.4 bohr” (black diamonds), the 23 PASA ED peaks at = 1.4
bohr? (small grey spheres), and the 28-point Basdevant’s model (large black spheres). CG points are
numbered as in table 9. Figure was generated using DataExplorer [47].



Table 9. CG charges (in ¢') for the 12-residue peptide HP7 obtained through a charge fitting algorithm using
unsmoothed all-atom Amber MEP grids. CG locations were generated at = 1.4 bohr? using a hierarchical merging/clustering
algorithm applied to the PASA ED and all-atom Amber MEP functions. ‘BAK’ and ‘SCH’ stand for backbone and side chain,

respectively. rmsdV and rmsdu are given in kcal/mol and D, respectively. Charges obtained by Basdevant ef al. [10]
are reported for comparison. Point numbers (#) refer to Figure 14

ED-based ED-based MEP- MEP-
Closest c.0o.m. # [10] [10] (Fitted) # CG CG Closest atom # based CG based CG

(Eq. 11) (Fitted) (Eq. 11) (Fitted)

BAK Lysl 1 1.342 1.033 1 0.952 0.685 N Lysl 1 1.731 0.797
SCH Lysl 2 -0.673 -0.412 2 0.053 -0.104 Hgl Lys1 2 1.841 0.624
SCH Lysl 3 1.332 0.717 3 0.899 0.660 Hgl Lys9 3 -0.602 -0.110
BAK Thr2 4 0.353 -0.452 4 -0.059 -0.374 Oyl Thr2 4 0.728 -0.203
SCH Thr2 5 -0.353 -0.170 5 0.090 -0.168 C Trp3 5 -0.495 -0.105
BAK Trp3 6 -0.090 0.235 6 0.019 -0.271 (0] Trp3 6 1.061 0.989
SCH Trp3 7 -0.073 0.061 7 -0.022 0.033 Hel Trp3 7 -0.168 0.145
SCH Trp3 8 0.163 0.101 C Asn4 8 0.679 0.614
BAK Asn4 9 0.329 -0.767 8 0.093 -0.317 041 Asn4 9 -0.527 -0.319
SCH Asn4 10 -0.329 -0.155 9 -0.023 -0.128 H§2 Asn4 10 0.492 0.049
BAK Asn4 10 0.101 1.020 (6} Pro5 11 -0.435 -0.252
BAK Pro5 11 -0.375 0.270 11 -0.118 -0.265 H Thr7 12 1.019 0.495
SCH Pro5 12 0.375 0.298 (0] Ala6 13 -0.555 -0.225
BAK Ala6 13 -0.189 -0.570 12 -0.082 -0.131 Hyl Thr7 14 0.031 0.196
SCH Ala6 14 0.189 0.367 (0] Thr7 15 -0.552 -0.172
BAK Thr7 15 -0.778 -0.435 13 -0.063 -0.641 C Gly8 16 -0.186 -0.262
SCH Thr7 16 0.778 0.429 14 0.090 0.470 C Trpl0 17 1.289 0.002




Table 9. Continued

ED-based ED-based MEP- MEP-
Closest c.o.m. # [10] [10] (Fitted) # CG CG Closest atom # based CG | based CG
(Eq. 11) (Fitted) (Eq. 11) (Fitted)

BAK Gly8 17 0.000 -0.277 15 0.012 -0.151 HH2 Trp10 18 -0.543 0.021
BAK Lys9 18 0.687 1.290 16 0.095 0.895 Oyl Thrll 19 -0.602 0.139
SCH Lys9 19 -0.718 -0.342 17 0.899 0.837 OXT Glul2 20 -1.554 -0.852
SCH Lys9 20 1.031 0.865 Oel Glul2 21 -0.824 -0.396
BAK Trpl0 21 0.365 -0.947 18 -0.008 -0.772 Og2 Glul2 22 -0.824 -0.170
SCH Trpl0 22 0.093 0.538 19 -0.022 0.192
SCH Trpl0 23 -0.458 -0.307
BAK Thrll 24 0.413 1.402 20 0.056 1.329
SCH Thrl1 25 -0.413 0.023 21 0.090 -0.089
BAK Glul2 26 -1.194 -1.708 22 -1.123 -1.457
SCH Glul2 27 0.044 0.262 23 -0.925 -0.248
SCH Glul2 28 -0.850 -0.343
Total charge 1.001 1.004 1.004 1.004 1.004 1.004
rmsdV 37.74 5.45 12.78 5.45 33.04 4.62
rmsdu 23.06 1.57 16.04 1.04 43.13 1.96
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In structure HP7, the two end residues are positively and negatively charged,
respectively. These end charges prevent the regular carbon and oxygen CG MEP motif to
appear on the residue backbones. Indeed, in figure 14 and table 9, one can observe that these
two point charges are missing for most of the residues, except for Trp3 (points 5 and 6 in
table 9). Thus, in order to build the backbone CG model of peptide HP7, two charges were
generated for each residue backbone except for the first and the last ones. The two charges
were located at distances of 0.828 and 0.623 A, respectively from the C and O atoms, along
the C=0 axes. Each point was assigned a charge depending upon the AA residue type, as
given in table 5. For the two Lys residues, a charge of 0.875 e was assigned to their N¢ atom.
For Ala, a charge of -0.000(4) ¢ was set at the Cp atom location. For the Thr, Trp, Asn, and
Glu residues, a MEP-based hierarchical merging/clustering procedure was first carried out for
each isolated residue, with coordinates as given in the PDB structure. This provided the
location of the CG points, whose coordinates are reported in table 10. Then, charges were
assigned to those points according to the values reported in table 5. This was achieved under
the assumption of charge transferability between pentadecapeptide models and a protein
structure. To strictly confirm this concept, a larger set of applications is however required.
For Glu, a mean charge of -0.457 ¢ was given to each of the CG points located close to the
Og atoms. The end charges located on Niy and OXTgi2 were calculated as a sum over a
unit charge and the corresponding C and O charges of Lysl and Glul2, respectively. For
example, the charge located on Ny was set equal to ¢ = 1.127 ¢" =+ 1.000 - 0.239 + 0.367
e Finally, it is recalled that there is no side chain CG point for Pro and Gly. There remained
a 44-point CG model for the 12-residue peptide HP7 (figure 15), with a total charge of 0.999
e. For that particular model, and with respect to the unsmoothed all-atom Amber MEP grid,
the calculated rmsdV and rmsdu values are equal to 7.34 kcal/mol and 8.89 D (table 10). In
comparison, the model proposed by Basdevant et al. [10] does not perform correctly (table 9),
with rmsdV = 37.74 kcal/mol and rmsdu = 23.06 D; but this is most probably due to the use of
a different set of atom charges, and a different parametrization of the charge fitting algorithm.
An optimization of the Basdevant’s model vs. our unsmoothed all-atom Amber MEP grid led
to rmsdV = 5.45 kcal/mol and rmsdu = 1.57 D (table 9), while an optimization of our 44-CG
model vs. the same Amber MEP grid led to the charges reported in table 10, with rmsdV =
2.80 kcal/mol and rmsdu = 1.11 D. The major changes brought to our model charges occurred
at the level of the C atoms; indeed, the absolute differences between the model charges and
their corresponding optimized values are higher than 0.30 e at residues 3, 7, and 9-11. Other
drastic changes occurred, for example, at the level of Oyry7, going from a charge value of -
0.154 to 0.546 ¢’, and for Hytras,g, with a charge difference of -0.31 e’. There is also an
important charge re-distribution between the two Og atoms of Glul2. In comparison, larger
charge differences are observed between the original Basdevant’s model and the
corresponding fitted charges; most of them, i.e., 17 over 28, are higher than 0.30 ¢ in absolute
value. Backbone CG are among the points that are characterized by the largest differences,
i.e., Thr2, Asn4, Pro5, Lys9, Trp10, Thr11, and Glul2.
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Figure 15. 3D structure of the 12-residue B-hairpin peptide HP7 (sticks) superimposed with the 44-point
model built from local maxima and minima obtained for pentadecapeptides using the hierarchical
merging/clustering algorithm applied to the all-atom Amber MEP function smoothed at # = 1.4 bohr’
(grey spheres) and the 28-point Basdevant’s model (black spheres). CG points are numbered as in table
10. Figure was generated using DataExplorer [47].

Table 10. 44-point CG model for the 12-residue peptide HP7 built from charges (in €)
reported in table 5 (see text for details). rmsdV and rmsdu are given in kcal/mol and D,
respectively. Coordinates X, Y, and Z are in A. Point numbers (#) refer to Figure 15

# X Y VA CG location | Residue | Model charges Optimized
charges
1 -3.128 1.192 -0.973 o Thr2 -0.247 -0.120
2 -3.626 3.719 -1.710 C Thr2 0.279 0.579
3 -0.213 4.749 -0.653 o Trp3 -0.210 -0.254
4 -0.350 2.484 -2.079 C Trp3 0.270 -0.049
5 3.751 0.422 -1.629 o Asn4 -0.212 -0.125
6 2.691 2.833 -1.094 C Asn4 0.371 0.426
7 7.470 1.805 -2.513 ¢ Pro5 -0.163 -0.262
8 5.439 2.844 -1.112 C Pro5 0.161 0.083
9 8.762 -0.558 0.290 o Ala6 -0.236 -0.261
10 6.338 0.584 0.320 C Ala6 0.234 0.308
11 6.116 -3.794 | -2.484 o Thr7 -0.247 -0.247
12 5.388 -1.445 -1.422 C Thr7 0.279 -0.071
13 2.889 -3.106 | -5.576 (0] Gly8 -0.205 -0.337
14 3.347 -1.626 | -3.384 C Gly8 0.205 0.326
15 0.230 0.059 -1.888 o Lys9 -0.239 -0.350
16 -0.359 | -2.236 | -3.134 C Lys9 0.367 0.769
17 -2.974 | -3.551 -0.908 o Trpl0 -0.210 -0.270
18 -3.164 | -0.934 | -1.453 C Trpl0 0.270 -0.067
19 -6.482 0.356 -0.257 o Thrl1 -0.247 -0.096
20 -5.445 -1.607 1.247 C Thrll 0.279 0.696
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Table 10. Continued

# X Y V4 C(,; Residue | Model charges Optimized
location charges
21 -9.782 1.706 -1.460 N Lysl 1.127 1.018
22 -8.558 -2.226 -4.238 Ng¢ Lysl 0.875 0.807
23 -5.926 5.187 0.580 Oy Thr2 -0.154 -0.225
24 -5.998 3.255 2.149 Hy Thr2 0.120 0.164
25 1.393 3.415 -4.851 5-ring Trp3 -0.136 -0.054
26 1.396 0.189 -6.098 6-ring Trp3 -0.098 -0.248
27 4.205 3.764 -5.295 Hel Trp3 0.146 0.162
28 3.190 -1.977 -7.552 HH Trp3 0.028 0.033
29 2.628 2.645 2.624 Oy Asn4 -0.178 -0.208
30 2.929 -1.559 1.218 Hy, Asn4 0.019 -0.294
31 4253 -0.374 3.533 Hy.is Asn4 0.002 0.039
32 6.571 1.953 2.094 CB Ala6 -0.000(4) 0.103
33 2.929 -3.312 -0.689 Hy Thr7 0.120 -0.007
34 3.603 -1.682 0.868 Oy Thr7 -0.154 0.546
35 0.908 -4.071 -6.309 Ng¢ Lys9 0.875 0.937
36 -3.204 -0.409 -5.747 5-ring Trpl0 -0.136 -0.036
37 -4.409 2.858 -5.518 6-ring Trpl0 -0.098 0.017
38 -2.424 0.132 -8.616 Hel Trpl0 0.146 0.113
39 -5.904 4.299 -2.815 HH Trpl0 0.028 -0.189
40 -3.676 1.425 1.520 Oy Thrll -0.154 -0.131
41 -5.535 0.735 2.365 Hy Thrll 0.120 -0.062
42 -7.699 -2.837 3.942 OXT Glul2 -1.083 -1.036
43 -10.052 -0.302 -0.588 O¢ Glul2 -0.457 -0.774
44 -10.406 -1.697 -2.343 O¢ Glul2 -0.457 -0.347
Total charge 0.999 1.004
rmsdV 7.34 2.80
rmsd 8.89 1.11

In conclusion, among the two models that can be easily built for HP7, i.e., ED-based
CG with charges assigned using Equation (11) and MEP-based CG model as described in
table 5, the last one is slightly better. It is however no doubt that an optimization of the
charges would drastically improve the quality of the models, but this requires an additional
step that can be time-consuming for large structures. In the present work, such an
optimization stage was carried out on a single rigid conformation, while the initial (non
optimized) model charges implicitly involved information relative to several AA
conformations (but no information relative to various secondary structures). Our present
feeling is that the use of Equation (11) in combination with MEP-based CG has to be
rejected at this point.
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Conclusion

Following a previously described method [20,23,29] for the hierarchical
merging/clustering decomposition of a molecular structure, particularly a protein structure,
based on a promolecular electron density (ED) distribution function, we present an original
application to molecular electrostatic potential (MEP) functions. The approaches allow to
reduce the number of representative points of a molecule and assign them point charge
values. The decomposition of the protein structure is achieved by following the trajectories of
the atoms in progressively smoothed molecular ED or MEP functions. The present work is
especially focused on the use of the all-atom Amber MEP function [21], but is readily
applicable to other charge sets that are available in the literature.

Two approaches were proposed to study the electrostatic properties of a molecular model.
First, for the ED-based results, the Amber atomic charges were used to calculate fragment
charges. This was achieved by summing over the charges of the atoms that belong to a
fragment. Second, for the MEP-based coarse grain (CG) points, a charge fitting algorithm was
used to assign charges from the all-atom unsmoothed MEP. For each model, each of the 20
natural amino acid (AA) residues were studied, with the following specific protonation states:
Lys(+1), Arg(+1), Hise, Glu(-1), and Asp(-1). To generate CG models that avoid too many
interaction effects, we selected, for all ED-based and MEP-based calculations, extended (-
strand conformations for the molecular structures. These structures consisted in a set of
pentadecapeptide Gly;-AA-Gly;, with various rotamers for each of the 20 AA (except Gly,
Ala, Asp, and Pro).

The ED-based calculations were all achieved using ideal Gaussian-type promolecular ED
distributions, without any random noise. When working with such ED distribution functions,
a very interesting situation occurs at a smoothing degree ¢ around 1.4 bohr®, where the protein
structure is clearly partitioned into backbone and side chain fragments. One observes one
fragment for each residue backbone, mainly composed of -(C=0)-N-C,, or a derivative, and
one fragment for each residue side chain, except for Gly, Ala, Ile, Pro, and Val (no fragment
at all), and Tyr (two fragments). These observations are consistent with several descriptions
already proposed in the literature, such as the globbic description levels of protein structures
at a crystallographic resolution of about 3 A [39] and the CG model proposed by Basdevant et
al. [10]. Results showed to be independent on the AA residue conformation. On the contrary,
the use of MEP functions provided very different decomposition results, which are hardly
interpretable in terms of molecular fragments composed of chemically linked atoms, and are
very sensitive to the molecular conformation. A detailed analysis was carried out at the
smoothing level of 1.4 bohr’, like for the ED-based results, a value beyond which there was
no more drastic changes in the merging/clustering decomposition results.

Finally, the particular case of a 12-residue peptide HP7 (PDB code: 2EVQ) was studied.
This structure was selected as it is deeply detailed in the literature [10] and was thus an
interesting reference case. A 44-point CG model was built and evaluated in terms of its ability
to reproduce all-atom MEP and corresponding dipole moment. We chose to design a CG
model that already involves some simplifications for non cyclic C-H residues, sulfur-
containing residues, and Lysine, with side chain CG charges placed at selected atom
locations.
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Further developments might include strategies to directly design CG representations for
all 20 AA residues from their atomic coordinates. It is shown that without an optimization
stage, our model is of a similar quality than the previously published CG model [10]; after
optimization, the CG distribution is shown to provide a really better representation of the
MEP and dipole moment.

Another extension of the present work resides in the evaluation of backbone charges as a
function of the residue location along the protein sequence. Indeed, the CG charges of Glys
models and the optimization results of the 44-point model of HP7 showed that the local
charge separations observed along each C=0 axis is far from being a constant.

Other perspectives to the present work are numerous. First of all, an extension to various
molecular systems is needed to validate the transferability of our model. Second, the effect of
the point charge set can be studied by considering other all-atom force fields such as, for
example, in [40]. In this last work, a semi-empirical quantum mechanical procedure (FCPAC)
was used to calculate the partial atomic charges of amino acids from 494 high-resolution
protein structures. Each AA was either considered as the center of a tripeptide with the PDB
geometry (free) or the center of 13 to 16 AA clusters (buried). A more general
parametrization, applicable to organic molecules, peptides, and proteins, has also been
presented by Arnautova et al. [41] in the so-called ECEPP-05 force field (FF). The partial
atomic charge of multiple configurations of small molecules were obtained by fitting to the
MEP calculated with the HF/6-31G* quantum mechanical approach. Other sets of atomic
charges are also available. For example, Matta and Bader [42] reported charges of isolated
amino acids determined through the quantum theory of atoms-in-molecules (QTAIM) and
showed their transferability properties. We can also mention databases of transferable
parameters to evaluate atom charges of protein structures, as, for example, designed by
Lecomte et al. [43,44] and already used in a previous work [20]. Another set of atomic
charges in the Amber-type FF family designed for proteins can be found in [45]. In that new
generation united-atom force field, all hydrogen atoms bonded to aliphatic carbons in all AA
are united with C except those on Ca. Polar and aromatic H are represented explicitly.
Charges were obtained as in [21]. In that family of FF, we can also cite the Gromos charge
sets implemented in the program GROMACS [46]. Coarser descriptions are also available,
such as the one proposed by Gabb et al. [17] who reported protein docking studies where
electrostatic complementarity was evaluated by Fourier correlation.

Finally, a resolution dependency of the CG model could be studied, with the expected
behavior that, at lower smoothing levels, the efficiency of the model is expected to be better
since the number of CG points and their charges would be closer to the initial all-atom MEP
function.
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ON CONFINEMENT INSIDE THE B-CYCLODEXTRIN
CAVITY
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Abstract

A simulation method attempts to relate the microscopic details of a system (atomic masses,
interactions between them, molecular geometry, etc.) to macroscopic properties of experimental
interest (equation of state, structural parameters, etc.). The first step in performing a molecular
simulation requires knowledge of the potential energy of interaction between the particles of the
system, and one of the simplest methods used to obtain this treats the intermolecular energy as
the sum of pairwise additive potentials (as in the force-field method). The model presented in
this chapter does not consider the molecules as formed by rigid spherical particles (atoms or
assemblies of atoms) but as continuum distributions of matter (without electrical charge), and
this has two effects: it can be applied to many kinds of systems and extends the information on
the system, relating a microscopic property (such as the interaction energy) with macroscopic
properties (such as the structural parameters of the molecules). To simulate the interaction
energy between B—cyclodextrin (B—CD) and molecules with different structure (cyclic, spherical
and linear geometry), a model was constructed from a simple pairwise-additive Lennard-Jones
potential combined with a continuum description of the cyclodextrin cavity and the guest
molecule. This model reproduces the main energetic and structural features of the physisorption,
in particular that guest molecule positions inside the cavity are more stable than outside the CD,
as amply confirmed by molecular mechanics calculations. Therefore this model cannot explain
the existence of non-inclusion complexes, and this is not a consequence of model assumptions
such as rigidity of molecules or ignoring the effects of solvent. Neither does this model allow the
effect of temperature to be included in the process. The aim of the present chapter is to analyse
the effect of molecular structure on the mobility of the guest inside and around the f—CD, and
the influence of temperature on inclusion complex formation. It was carried out by molecular
dynamics, because this simulation method is based on the resolution of classical equations of

"E-mail address: malvira@ull.es
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motion to determine the trajectories of the particles. From these trajectories we also determine
the preferential binding site of the guest molecule and the probability of forming B—CD inclusion
complex.

1. Introduction

In previous work we proposed an analytical model for the interaction energy between
a-, B- and y-cyclodextrin with guest molecules of different structure and size [1]. The
intermolecular energy was then modelled by a Lennard-Jones potential which represents the
attractive and repulsive interactions between all atoms and molecules in the system, and a
continuum description of the cavity walls [2, 3]. The difference in molecular size was
represented in that study by the potential energy parameter o , but without including any
parameter related to the structure of the guest molecules. This simple model is able to
reproduce several quantitative and qualitative features of the interaction energy between
cyclodextrin (CD) and atoms, and cyclic or spherical guest molecules. The adsorption
energy obtained from this model is only valid when the guest centre of mass is located
along the cavity axis, because for points away from it there is no analytical solution for the
energy. Therefore this analytical model is inadequate to analyse the mobility of these types
of molecules around B-CD and even inside the cavity, because the guest does not always
move along the axis. The present chapter is a continuation and refinement of our previous
model applied to the study of the physisorption of atoms and guest molecules with different
structure (cyclic, spherical and linear geometry) in 3-CD. Using a Lennard-Jones potential
with a continuum description of the cavity walls and the guest molecule, the interaction
energy is calculated for positions of the guest molecule inside and outside the 3-CD, but not
only along the cavity axis. In this case the interaction energy depends on the parameters of
the potential and on molecular properties such as: number and distribution of atoms,
composition, orientation and length of the linear molecule. This model elucidates how these
factors influence the physisorption energy and contribute to forming inclusion complexes.

We also examine the influence of temperature on inclusion complex formation by means
of molecular dynamics (MD), since this simulation method is based on the resolution of
classical equations of motion to determine the trajectories of the particles depending on the
initial conditions [4-6]. By treating the results generated in this process with statistical
methods, one can obtain more detailed information about the potential parameters related to
the size and composition of the guest molecule that influence formation of inclusion
complexes with B—CD. In section 2 we present the theoretical methods, in section 3 their
main results and in section 4 the comparison between molecular structures.

2. The Model

2.1. Expression of the Interaction Potential

The intermolecular energy W between the guest and the CD is modelled by a sum of
pairwise Lennard-Jones potentials, which represents the attractive and repulsive interactions
between all atoms and molecules in the system, even totally neutral ones
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W =3 V() M
1]
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where I;; characterizes the distance between each pair of atoms, i in the molecule and j in the

CD. The corresponding parameters &;; and o;; are taken from the combination rules in
terms of the parameters of the homopolar pairs [7, 8].

However, the essentials of the confinement effects should be preserved if we make the
assumption of a continuum description of the cavity walls. We represent as W, the

interaction energy between atoms, cyclic or spherical molecules with 3-CD, and it can be
calculated as:

Wl(rmol):pCD J-SV(FmoI?F)dF (3)

where the guest-host interaction is represented by an average over the uniformly distributed
atoms in the CD. p.p is the superficial density of atoms in the CD cavity, I, is the
position of the centre of mass of the guest molecule and dF is the differential element of
surface (on the cavity) located at T . The CD is considered as a truncated cone, h being the
axial length (h ~ 7 A), b the radius of the larger base of the cone (b =~ 5 A for -CD) and a
the radius of the smaller top (& ~ 4 A for B-CD) [9]. Here the Z axis is collinear with the

cone axis (thus the XY plane is parallel to the cone base), and the origin of the coordinates lies
at the centre of the cavity. For the conical surface we used a parametric representation [10]:

F(u,v)=ucosvi +usinv j + f(u)k (4)

Parameters U and V are the polar radius and angle, respectively. If @ < U < b, then all the

points located at the same distance U from the Z axis have the same coordinate Z = f (u) and

they lie on the surface. In the case of the truncated cone, f (u) is the equation of a straight line:

z=a(b-u) (5)
h : .
where a = b is its slope. In this case the element of surface is:
—a
ﬂ df (u) 7]’
dr =u 1+[ ()} du dv (6)
u
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where (u, V) € [a, b] X [O, 27[] . Finally we can write:
27 b
W, (T )= pep N1+ [ dv [V (T, u,v) udu 7
0 a

W, (Fmol ) can be obtained as an analytical expression only when I, is located along the

cavity axis, in other case it is necessary to resolve this integral with numerical methods [11].
The adsorption energy W, obtained from Eq. (7) for I, =(0,0,Z,) as a function of

szz_};i’ q, :%, q2:% and ﬂ=a2+l is [1]:

= A ) s RO 20" | 3ac” [ R()f 3 78
Wi (s) Q(s)ﬂ;&z(s)(l SRﬁ(s)ﬂ 4Q2(s){;Ri2(5)[5Ri2(5) 10Q°(s)R ()

e )Hﬁgfzs)[‘l G ]HZR] o@)[B”a“' JORICE qlﬁﬂ v

Q*(s)-R(s)R.(s)
« O
where 0 =—. Note that 0 < S <1 corresponds to the center of mass of the guest molecule

‘m

inside the cavity. B =0 in all cases, excepting 0.39 <5< 0.61 for which B=—7x

*6
A 292480'2 ©)

4 —q

is an energy scaling factor and

Q(s)=s-aq, (10)
F(s)=s (11)
FZ(S)=1—S (12)
P(s)=-as—q, (13)
P,(s)=a(s-1)+q, (14)

R(s)=F’(s)+q’ i=12 (15)
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If we make the approximation of replacing the discrete summation by means of a
continuous integration, the interaction energy W, between linear molecules and B-CD can be

calculated as:
WZ(FmoI):pCD pmol J‘Ldrj.sv(ﬁ’r)dr (16)

where p, . is the linear density of atoms in the guest molecule and dl s the differential of

length (on the linear molecule) located at I}. The interaction energy W, depends on the

configuration of the guest molecule (orientation and centre of mass position) represented by

—

r

mol *

For the linear molecule we also use a parametric representation [10]:

Fl(FO,Q,go): (X0 +1 sinHCOS(p) +(y0 +1 sinﬁsin(/))17+(z0 +1 cosH)IZ (17)
where 1, = (XO, Yoo Zo) is the position of the guest’s centre of mass and the angles
(9, (p) € [O,/Z’]x [0,27[] define the orientation of the molecule with respect to the absolute

= L L
frame (X, Y, Z). The element of length is dl =dl and | € {—5,5}, where L is the length

of the molecule. Finally we can write:

(38}

L
2 2z b
W, (7,,0,0) = peo pra N1+ [ dl [ dv [V (7,,0,9,L,uv)udu (18

0 a

SN

W, (FE),H, go) cannot be obtained as an analytical expression, it is necessary to resolve
this integral with numerical methods even if T, is located along the cavity axis. The

interaction energy W, (fb, 0, (0) depends on parameters related to the geometry of the linear

molecule (defined by its length L), the composition of the guest and the distribution of atoms

in it (characterized by p,, and the parameters of the Lennard-Jones potential o ; , &; ;).

When we consider the interaction energy W by the integration in Eq. (3) or (16), we are
substituting the discrete atoms of the CD by a uniform distribution of mass on the cavity
surface. Therefore, we can also replace the potential parameters for the different atoms

belonging to the molecule (O'i » & ) and B-CD (O' i2€j ) by some representative values for the

composition of both systems. In order to bring out more clearly the dependence of W on the
composition of the guest molecule, we do not consider the values of these parameters for f3-
CD and the guest separately, but represent the Lennard-Jones parameters for the interaction
between the atoms of the CD and the molecule by o and ¢ .
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In molecular mechanics calculations of the potential energy surface where the 3-CD and
guest molecule are described by all their atoms, the interaction energy is determined for each

position of the centre of mass [, after minimization over the Euler angles of the guest

molecule [12, 13]. In the present model, the interaction energy is minimized for different
molecular orientations only for linear molecules and as we are dealing with a conical
continuum geometry, for every plane Z = constant, the potential energy is the same for points

(X0 , yo) located at the same distance d from the cavity axis (Xg + yo2 =d’ ) Therefore, for

atoms, cyclic or spherical molecules, we characterize the guest configuration for each energy

by the distance d from the cavity axis and the Z coordinate (I’moI = (d » 2 )) . The orientation

of a linear molecule is defined by the two polar angles and in this case, the potential energy is
calculated for different molecular orientations (about 900) and the minimum for these values

is assigned to the position T =(d,20). However, the linear guest adopts different

orientations in points located at the same distance d and Z coordinate to minimize the energy:
while the polar angle formed with the cavity axis € is the same, the value of ¢ is different

from one point to another. Therefore, some configurations of the linear molecule (T, €, @)

are equivalent in that they have the same energy, for this reason we characterize the guest
configuration for each energy by the centre of mass position (defined by d and the Z
coordinate) and the molecular orientation (characterized only by the polar angle 8).

inside

The potential energy is determined for different configurations of the guest I,

and outside the CD. In each plane Z = constant, about 700 points are explored and the range
of variation along the Z axis is about 11 A. The results obtained are represented as the
potential energy surfaces, penetration potentials and the inclusion complex configuration, and
so their comparison with the results of the all atoms model confirms the suitability of the
continuum intermolecular energy for these systems.

The curve joining the minimum potential energy for every plane Z = constant defines the
penetration potential, which describes the variation in interaction energy when its path
through the cavity is non-axial. The position and orientation of the guest molecule for which
we obtain the absolute minimum potential energy gives the geometry of the inclusion
complex.

The potential energy surfaces are represented by partitioning the variation range of the Z
axis in the B-CD cavity into four parts, depending on the position of the guest molecule centre
of mass near the top of the cone (region 1), near the centre of the cavity (regions II and III)
and near the cone base (region IV). The length of each domain is about 2 A and the potential
surface for each region is determined as the minimum energy for every point on the plane in
the corresponding interval of Z.

2.2. Simulation Method

From the continuum model presented in this chapter for the interaction energy between a
guest molecule and B-CD, we consider rigid non-polar guest molecules. Since continuity is
assumed for the guest and the cavity, this interaction energy is not capable of reproducing the
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hydrogen bonds formed by the molecule with CD. We do not consider the potential
parameters for B-CD and the guest separately, but the interaction between the atoms is

represented by the Lennard-Jones parameters (O', 8) , where o defines a scale of length and

& governs the strength of the interaction.

We place the origin of the reference system at the centre of mass of the CD and the
space-fixed frame over the principal axis of the B-CD. The configuration of the atom, cyclic
or spherical molecule is given by the coordinates of its centre of mass, while the configuration
of the linear guest includes also the molecular orientation, which is defined by the polar

angles (0, ¢) formed with respect to the absolute frame (X LY, Z) . In rigid-body dynamics

the molecular motion can be decomposed into two completely independent parts, translational
motion of the centre of mass and rotation about the centre of mass. A basic result of classical
mechanics is that the former is governed by the total force acting on the body, whereas the
latter depends on the total applied torque. For a linear molecule, the angular velocity and the
torque must be perpendicular to the molecular axis at all times [5, 6].

To integrate the equations of motion it is necessary to establish the initial conditions of
the guest molecule: centre of mass position and translational velocity for atoms, cyclic or
spherical molecules; centre of mass position, orientation and velocities (translational and
rotational) for linear guests. The magnitude of the initial velocities depends on the
temperature of the process, but the direction of the translational velocity in each trajectory
and the initial centre of mass position are determined randomly. The simulation time for each
trajectory is 1 ns with a step of 1 fs (10 fs for linear molecules with length L <5 A) and the
configuration and energies (kinetic and potential) were written every 100 steps. We use an in-
house program written in Fortran and the equations of motion to perform constant
temperature molecular dynamics are integrated numerically using a variant of the leap-frog
scheme (proposed by Brown and Clarke) [14], constraining the rotational and translational
kinetic energies separately [15].

To determine the preferential binding site of the guest molecule, the number densities of
presence in a volume element are calculated. We define a grid in which the distance between
two consecutive points is 0.5 A and the number of guest positions in each volume element is
the resulting number density for each trajectory and for the guest [16-18]. The position
probability density is calculated by dividing the number density in a volume element by the
total number of centre of mass positions for the guest.

We calculate different trajectories with initial configurations of the guest on the exterior
of the B-CD: near the primary (narrow end) and secondary rims (wide end) of the CD, and
outside the cavity walls. However the molecule can enter the cavity and then form an
inclusion complex only for certain initial positions of its centre of mass, and these positions
are always near the rims of the CD and never outside the cavity walls.

The simulation is carried out for molecules with different size, length and composition,
and at different temperatures.
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3. Results and Discussion
3.1. Interaction Energy

The interaction energy W, depends on the size and composition of the atom, cyclic or
spherical molecule through the potential parameters (0, &), and the position of its centre of
mass [ . In order to perform a comparative study we consider different values for the
parameter o to represent the interaction between 3-CD and the guest, because & only acts

as a scaling factor on the potential energy W, .

0.0 —

-4.0 —

-8.0 —

W, (eV) .
-12.0 —

-16.0 —

'EU() T I T I I | T I I I 1 I
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Figure 1. The penetration potential (solid curves) and the interaction energy along the cavity axis
(dashed curves) for atoms, cyclic or spherical molecules with different o and & = (0.006 eV.

Figure 1 exhibits the penetration potential (solid curves) for guest molecules with
different size and composition. It clearly resembles a well potential, deepening as the atomic
or molecular size of the guest increases, and with small differences in the Z coordinate of the

minimum values W,  (near the cavity centre). This behaviour is similar to the well potential

for the interaction between a guest molecule and CD, obtained by the sum of pairwise-
additive potentials (as in molecular mechanics calculations) [19], and it means that guest
molecule positions inside the cavity are more stable than outside the B-CD. Figure 1 also
exhibits the interaction energy along the cavity axis (dashed curves). The two curves are seen
to agree for molecules with o =4.1 A, as the size of the guest decreases there are some
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small differences in the energy values near the larger base of the B-CD, and for small guest
molecules the penetration potential is very different from the energy on the axis because in
this case the most stable molecular positions are located near the cavity walls. There are also

greater differences in the values of W, on the potential surface as the guest increases. The
centre of mass position at the minimum energy W,  is determined by (d min » Zmin) (table 1)

and it can be seen that the distance between this position and the cavity axis 0 _. depends on

parameter o by D . =1.120, D, = U(me)—dmin being the distance between the

m

cavity walls and the molecule in the more stable configuration and U(me) being the cone

radius at the Z . coordinate. Therefore, the part played by the potential parameters in the

n

interaction energy W, is similar to that in the Lennard-Jones potential between a pair of

atoms: & governs the strength of the interaction and o is related to the position of the

minimum energy (I, =1.120) [7].

Table 1. The minimum energy W, , the centre of mass position in the minimum energy

(d yA ) and the cone radius at the Z_. coordinate for atoms, cyclic or spherical

min > “min min

molecules with different o and £ =0.006 eV.

cd | W @ | d,@& | z,& | uz,)d
2.4 -3.20 2.01 -0.2 4.48
2.8 —4.85 1.50 02 4.48
3.0 -5.95 1.23 -0.4 4.46
33 -8.20 0.82 -0.2 4.48
3.7 -12.76 0.00 —0.6 4.43
4.1 -17.10 0.00 0.2 4.54

Figure 2a exhibits the penetration potential for linear molecules with different length and
the same composition (o= 2.7 A, £=0.006 eV). Figure 2b shows the variation of the
potential energy along the Z axis for a guest with length L = 7 A and different composition.
The numbers on the right-hand side on the graphs correspond to the values of the parameters
used in every figure and they are related in tables 2 and 3, as well as the configurations and
the energy minima. It can be observed that for every case the penetration potential resembles
a well potential, which is deeper as the length or atomic size of the molecule increases. These
results are similar to those obtained by the all atoms method only for molecules with length
L < 6 A whatever is the molecular composition [20], therefore the shape of the penetration
potential for linear molecules is not a consequence of the molecular length. The centre of

mass position in the minimum energy W, is determined by (d min > Zmin ) (tables 2, 3) and it

can be seen that the distance between this position and the cavity axis d_. is only dependent

min

on parameter ¢ , with differences of about 0.1 A. This means that for every length there is
approximately the same distance between the cavity walls and the molecule
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Dmin = u(zmin )_ dmin
the Z ..

or spherical molecules and B-CD. The orientation of the molecule inside the cavity depends

in the more stable configuration, u(z ) being the cone radius at

min

coordinate, as it happens in the continuum model for the interaction between cyclic

on the position of its centre of mass and molecular length, but for L > 6 A there is no stable
configuration of the guest with & = 90°, because the energy is repulsive. When the molecule
is located near the cavity walls, the polar angle @ tends towards 12° for any length and
composition of the guest. The configuration of the inclusion complex (the molecular
orientation and position of the guest’s centre of mass at the absolute minimum) (tables 2, 3)
also depends on o and L. In general, as the molecular length or atomic size increases, the
most stable position of the guest’s centre of mass varies from near the centre of the cavity to
near the larger cone base. As regards the orientation of the guest in the inclusion complex, the

maximum value of @ observed in all cases is 24° and the molecule is located parallel to the
cavity axis when o >4 A.

Table 2. Configuration of the linear molecule in the potential energy minima

Znn (€= 0.006 v ) and number of reference in figure 2a.

LA | ol | d. A& |z, A& | 0 (deg) W, (V) | ref.no.
4 2.7 1.6 0.2 24.0 -0.58 1
6 27 1.6 0.0 18.0 -0.81 2
7 2.7 1.6 0.0 18.0 -0.90 3
8 27 1.7 0.0 12.0 -0.98 4
9 2.7 17 0.0 12.0 -1.05 5
10 27 1.7 0.6 18.0 114 6

Table 3. Configuration of the linear molecule in the potential energy minima
W, (£=0.006 eV ) and number of reference in figure 2b.

LA | o | d,, & |z, 4 | 6, deg) W, (V) | ref.no.
7 23 2.1 0.0 18.0 20.60 I
7 25 13 0.2 18.0 20.79 2
7 27 1.6 0.0 18.0 20.90 3
7 3.0 13 0.2 12.0 S1.23 4
7 35 0.4 -0.6 12.0 212 5
7 37 0.2 0.4 6.0 -2.59 6
7 4.0 0.0 0.2 0.0 23.20 7
7 43 0.0 14 0.0 -3.26 8

The o parameters selected in this work are of the same order of magnitude as pairs of
atoms like C-C, C-O, O-0, etc. and the minimum interaction energy between them in the
equilibrium position is —& (about —0.008 eV for such pairs) [7]. If we consider this &
value for the interaction between cyclic or spherical molecules and the cavity, the minimum
energy W1min ranges from —4.3 eV for 0 =2.4 A to —22.8 eV for 0 =4.1 A, therefore
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the confinement in B-CD involves an intensification in the interaction, greater even for cyclic
or spherical molecules than for linear ones. For instance if we apply the present model to
cyclopentadiene taking into account the results obtained by a force field method [19], it can
be represented by the parameters o =3.5 A and £ =0.0004 eV, & being 5 times smaller
than for linear molecules as acrylonitrile or methyl vinyl ketone.

Figure 3 shows the potential energy surfaces for atoms, cyclic or spherical molecules
with o0=3.3 A, £=0.006 eV (figure 3a) and for linear guest with L =6 A, o=2.5 A,
£ =0.006 eV (figure 3b). They are similar in the size of the regions where the energy is
attractive, this feature being a consequence of the cavity geometry. The main differences in
the potential energy surfaces are related to the magnitude of the energy, which is largely
dependent on the molecular composition rather than its length or geometry.

0.0 — 1
1 i
W, (eV) —
- (a)
-1.2 B ]
-8 -4 0 4 &
Z(A)
1
0.0 — 2
i 4
3
-1.0 — 7
| 8
W, (eV)
-2 —
-3.0 — (b)
T T T T T

Figure 2. (a) The variation in potential energy along the Z axis for linear molecules with different length
and the same composition (0 = 2.7 A, € =0.006 eV). The numbers on the right-hand side on the
graph correspond to the values of the parameters related in table 2. (b) Same as (a) for guest molecules
with length L = 7 A and different composition (& = 0.006 eV). The numbers on the right-hand side
on the graph correspond to the values of the parameters related in table 3.
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The main discrepancies between the intermolecular potential presented in this chapter
and the results obtained by the all atoms model derive from the position of the guest centre of
mass in the configuration of the inclusion complex, because this continuum model is only
able to reproduce the position in the plane Z = constant by the distance from the cavity axis
instead of the (X, Y) coordinates.

REGION

REGIONII

REGION I1I

REGION IV

Figure 3. (a) Potential energy surfaces for atoms, cyclic or spherical molecules with o= 3.3 A and
£=0.006 eV. (b) Same as (a) for linear molecules with lengthL=6 A, 0 =2.5 A and £ = 0.006 eV.

3.2. Molecular Dynamics for Atoms, Cyclic or Spherical Molecules

The evolution of the guest molecule in each trajectory and the resultant average energy
are different because the initial conditions determine the integration of the equations of
motion. The initial velocity does not influence the number densities and the mean energy of
the process, but the starting centre of mass position determines the behaviour of the guest in
each process and affects decisively the probability of forming inclusion complex. When the
guest initial position is located outside the cavity walls the molecule always stays on the
outside of the -CD where it does not reach a stable configuration, moving around the cavity
continually or even tending to move away. During trajectories whose starting molecular
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configuration is near the rims of the B-CD the guest tends to enter the cavity, remain inside
forming an inclusion complex or exit from it after a period, depending on the potential
parameters. However, inside the cavity the molecule does not reach a stable configuration

because it is fluctuating around the most probable position Fp with an amplitude that also

depends on parameters (o, & ). This effect can be appreciated in figure 4 where the position
probability for molecules with different o and the same & is presented, a schematic
representation of the projections of the cavity in the plane has been also inserted. The range of
the oscillations inside the B-CD increases as the molecular size decreases which means
greater delocalization for the guest and then smaller values for the position probability. The

maximum probability P and the corresponding position of the guest Fp = (dp, Zp) are

presented in table 4. It can be seen that the most probable configuration varies from near the
cavity walls to the centre of the B-CD as the molecular size increases, and taking into account
the method used to calculate the position probability density, we conclude that the most
probable configuration of the complex in this type of molecules agrees with that of minimum

energy. The mean energy for the simulation W

mean Of different molecules is also presented in

mean

table 4. W is greater than W,  because the energy of every position with probability

different to zero contribute to the average energy, for bigger molecules there are greater
differences between the values of energy inside the B-CD and then greater differences with

min

Table 4. The maximum probability P__, the most probable configuration of the guest

ax ?

r = (dp, Zp) and the mean energy W

0 mean TOT the simulation of atoms, cyclic or

spherical molecules with £ = 0.006 eV at temperature T =293 K

o @A d, &) Z,A) Pax @ | W0 V)
2.4 1.80 -0.5 2.7 -2.28
2.8 1.80 -0.5 9.1 -3.62
3.0 1.00 -0.5 25.1 —4.23
33 0.71 -0.5 42.1 -6.23
3.7 0.50 -0.5 68.7 -9.89
4.1 0.00 0.00 81.0 -13.20

For molecules with o >3.0 A the parameter & only acts as a scaling factor in W

and does not influence the position probability density. For molecules with o <3.0 A &
affects the amplitude of oscillations around the most probable position: greater value of
parameter implies smaller fluctuations (figure 5). The meaning of & as strength of the
interaction is also reflected in the dynamical behaviour of the system, because while the guest
with 0 =2.8 A and &£ =0.006 eV remain inside the cavity for all the simulation time, for
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£ =0.003 eV the molecule only spents inside a period (inclusion time t) after which it exits
from the CD and moves away. This average inclusion time is 394 ps at 293 K and decreases
as temperature increases (381 ps at 323K and 356 ps at 363K).

5.0 5.0 —
3.04

1.04

Figure 4. Projections on the XY and XZ plane of the probability density of presence for atoms, cyclic or
spherical molecules with different &, £ =0.006 eV at temperature T =293 K: (a) o =2.4 A, (b)

0=33 A, (c) c0=4.1 A. A schematic representation of the projections of the cavity has been
inserted in the figure.
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Figure 5. Projections on the XY and XZ plane of the probability density of presence for atoms, cyclic or
spherical molecules with different £, o = 2.8 A at temperature T =293 K: (a) £ = 0.003 eV, (b)

£=0.006 eV. A schematic representation of the projections of the cavity has been inserted in the
figure.

3.3. Molecular Dynamics for Linear Molecules

In this case, the initial conditions of the guest molecule in each trajectory affect the
simulation in a different way: while the molecular orientation and velocities hardly influence
the number densities and the mean energy of the process, the greatest differences in these
values are due to the initial position of the guest centre of mass, which also determines the
behaviour of the guest in each process because it can give rise to stable or unstable
configurations. In some cases the molecule moves for several ps in the trajectory until it
reaches a stable configuration in which it remains for the longest period in the simulation. The
complex was considered stabilized when the difference between the angles or centre of mass
coordinates in two consecutive positions was lower than 0.001° and 0.01 A respectively.

The results depend on the length L of the linear molecule but the molecular evolution is
similar for L <5 A and different for lengths L >5 A, so we can analyse the mobility of the
guest for each category:
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a) On comparing the evolution of a linear molecule with length L <5 A characterized by
parameters (O', 6‘1) and another with (O', &, ), different trajectories that always lead to the

same results were found: the parameter & did not affect the resulting position probability
density and acts as a scaling factor on the average energy. Therefore the simulation was
performed assuming the interaction between B-CD and guest molecule to be represented by
the potential parameter o, as in the continuum model. There are two different types of
behaviour, depending on the molecular composition, and then two categories characterized by
the potential parameter o: 0 <3.5 Aand 0 >3.5 A.

+ 0<3.5 A The mean energy in each trajectory for L=4.5 A, o=3 A,
& =0.07 kcal/mol at temperature T = 293 K is detailed in table 5 and the probability
density of presence is shown in figure 6a, where a schematic representation of the
projections of the cavity and the guest in the plane has been inserted. When the
starting positions of the guest are near the primary (processes P1, P2, P3) and
secondary rims (P4, PS5, P6) of the B—CD, the linear molecule tends to move towards
and remain inside it, forming a stable complex. The greatest probability of presence
(about 62%) corresponds to inner positions of the guest centre of mass at 1.5 A from
the wide end of the CD, forming an angle € = 90° with the cavity axis (figure 6a).
This is an inclusion complex but with a different configuration than that of minimum
energy, in which the guest is located near the CD centre of mass with @ =~ 24° and
whose energy is —10.05 kcal/mol [2]. As the o parameter increases, the guest
tends to position itself nearer the wide end of the B—CD.

+ 0235 A. In this case the linear molecule cannot penetrate into the cavity and
always remains outside the /~CD, where it can form stable non-inclusion complexes.
The average energy in each trajectory for L=4.5 A, 0 =4 A, &=0.07 kcal/mol,
T =293 K is shown in table 5 and the probability density of presence in figure 6b.
During the processes P1, P2 or P3, the guest stays near the narrow end of the CD,
forming an angle of about 90° with the cavity axis and the mean energy is higher than
the trajectories P4, PS5 or P6, where the most stable position is external and parallel to
the wide rim of the f—CD. In this case, the guest has the same probability of forming
the two complexes (about 30%) because we have considered the same number of
trajectories starting from each rim of the CD.

This calculation was also carried out at temperatures T = 323 and 363 K and we conclude
that, although the stabilization time increases with temperature, it does not affect the mean
energy of the simulation or the position probability density for molecules with L <5 A.

b) For linear molecules with length L >5 A the molecular evolution is similar for every
value of parameter o . During trajectories P1, ..., P6, the guest tends to move towards the
cavity, remain inside it (forming an inclusion complex) and exit from the CD where the linear
molecule can reach a stable configuration, or even tend to move away. However, the guest
does not pass through the cavity in every process, it can enter and exit from the same rim of
the CD during the trajectory. The time spent inside the cavity (inclusion time t) varies from
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several to a hundred ps and depends on the length and composition of the guest, the
temperature and initial conditions of the trajectory. Molecular dynamics calculations
performed on complexes of phenol and benzoic derivatives with a—CD also suggest the guest

possibly moves in and out the host on a 10-100 ps scale [21].
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Figure 6. (a) Projections on the XY and XZ plane of the probability density of presence for linear
molecules with L =4.5 A, 0 =3 A, &€ =0.07 kcal/mol at temperature T = 293 K. A schematic
representation of the projections of the cavity and the guest has been inserted in the figure. b) Same as
(a) for linear molecules with L =4.5 A, 0 =4 A, & =0.07 kcal/mol at temperature T = 293 K.

., P6 for L=7 A, o=3 A,
& =0.07 kcal/mol at temperature T = 293 K is presented in table 5. This inclusion time
depends on the initial conditions and temperature of the process as it happens for cyclic or
spherical molecules. The time spent by the linear guest inside the cavity t decreases as
temperature rises, the differences being smaller when o is greater (the average value of t for
this molecule is 2.2 ps at T = 363 K). As can be seen, the time t is negligible compared to the
simulation time (1 ns) and therefore does not influence the probability of presence, whose
greatest value corresponds to positions of the guest near the cavity walls (about 8.6 %) (figure
7a). However the linear molecule does not reach a stable configuration there, on the contrary
the most probable external configuration (about 7.3 %) has the guest centre of mass at 1.5 A
from the wide rim of the CD, with @ = 77° (figure 7a). If we consider the length of time in

The inclusion time t during trajectories P1,
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trajectories P1, ..., P6 as the corresponding inclusion time, the greatest probability of
presence (about 20%) corresponds to outer positions of the guest centre of mass at 0.5 A from
the wide end of the CD, forming an angle € =~ 64° with the cavity axis (figure 7b), although
there is another possible position near the narrow rim (about 15%).

Table 5. The mean potential energy (in kcal/mol) for the simulation
of linear molecules with & = 0.07 kcal/mol at temperature 7=293 K

L=454
o3 AodA L=7A oc=34
R R e
Pl —-6.261+0.42 -5.28+£0.38 —-3.49+2.33 3.5 —10.05+3.15
P2 -6.281+0.37 -5.19+£0.34 -3.02+0.85 1.9 —7.70£2.95
P3 -6.32+£0.31 -5.14+£0.40 —3.52+1.63 1.8 -7.36%2.73
P4 —6.29+0.29 -7.12£0.35 -3.61£0.72 43 -6.78+1.95
P5 —-6.24+0.32 —-7.16+0.37 -2.89+0.62 1.3 -6.14+1.11
P6 -6.27+£0.39 —7.18+£0.43 -3.05+£041 1.1 -3.87£1.10

The average energy over the simulation time for L=7 A, 0 =3 A, & =0.07 kcal/mol
at temperature T = 293 K is presented in table 5. The average energy over the simulation time
becomes lower for linear molecules with L >5 A and the same composition as the molecular
length increases (i. e.—4.3 kcal/mol for L=9 A, o =3 A, & =0.07 kcal/mol), although
always higher than L =4.5 A because those molecules tend to remain outside the cavity for
most of the simulation time. The average energy over the inclusion time for a linear molecule
with L=7 A, 0=3 A, &£ =0.07 kcal/mol at temperature T = 293 K is also presented in
table 5. There is no proportional relation between the inclusion time and the mean energy of
the trajectory, lower interaction energies correspond to when a larger part of the linear
molecule is inside the cavity. This is also the reason for the wide differences between the
mean energies of the processes. On comparing the average energy during the inclusion time
for L=7 and 4.5 A, it can be concluded that the B—CD inclusion complexes formed with
linear molecules of these lengths and the same composition yield lower average energies as
the molecular length increases, in agreement with MM calculations. The influence of
molecular relaxation on the interaction energy between P—CD and the guest is widely
confirmed in molecular mechanics calculations. However, many theoretical studies carried
out by rigid-body molecular dynamics have produced accurate results in accordance with
experiments, depending on the simulation period. Time is therefore a decisive factor.

The dynamics simulation program used in this chapter was previously employed to
investigate the enantioselectivity of equol in f—CD [18]. One of the results obtained in that
study was that the guest remained inside the cavity for most of the simulation time, in
agreement with experimental findings. The discrepancy with the results of the present chapter
is due to the differences in potential energy, because the van der Waals contribution to the
interaction energy between the chiral host and each equol enantiomer [22] is not in
accordance with the continuum model of physisorption energy for those linear molecules
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whose interaction with B—CD is represented by one pair of values for the Lennard-Jones

parameters (J, 8) and length L >35 A [2] (applied in the present chapter).
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Figure 7. (a) Projections on the XY and YZ plane of the probability density of presence over the

simulation time for linear molecules with L =7 A, 0 =3 A, & =0.07 kcal/mol at temperature T =
293 K. A schematic representation of the projections of the cavity and the guest has been inserted in the
figure. (b) Same as (a) for the probability density of presence over the inclusion time.

4. Comparison between Molecular Structures

For each type of guest molecules the interaction energy presents some common features
and also some differences. The main similarities are the following:

» The penetration potential that represents the interaction between [B—CD and
molecules with different size, composition and structure resembles a well potential,
which is deeper as the atomic or molecular size of the guest increases.

* The role of the potential parameters in the interaction energy is similar to that in the
Lennard-Jones potential between a pair of atoms: & governs the strength of the

interaction and o is related to the position of the minimum energy (I, =1.120).

*  The confinement of the molecule in the 3-CD cavity produces an enhancement of the
physisorption energy seen in the interaction of a pair of atoms characterized by the
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same potential parameters, greater for cyclic or spherical molecules than for linear
ones

* The size of the regions where the energy is attractive (or repulsive) in the potential
surfaces is consequence of the cavity geometry and the effective structural
parameters of the B-CD.

For each type of guest molecule the dynamics simulation presents some common features
and also some differences. The main similarities are the following:

* The molecule can enter the cavity and then form an inclusion complex only for
certain initial positions of its centre of mass, and these positions are always near the
rims of the CD and never outside the cavity walls.

» The trajectories of the molecules are similar: the guest tends to move towards the
cavity and remain inside for the simulation or inclusion time, depending on the
potential parameters.

*  The inclusion time decreases as the temperature of the process increases.

The main differences are:

+  Small linear molecules (length L <5 A) with o >3.5 A cannot penetrate into the
cavity, whereas cyclic or spherical molecules form stable inclusion complexes.

*  The configuration of the inclusion complex formed with linear molecules does not
correspond to that of minimum energy, in contrast to what happens for the other
structures.

5. Conclusion

We have studied the mobility of atoms, and cyclic, spherical or linear guest molecules
inside and around B—CD by molecular dynamics simulation at constant temperature. The
intermolecular energy is modelled by a Lennard-Jones potential and a continuum description
of the cavity walls. It is found that the variation of the potential energy along the Z coordinate
(parallel to the cavity axis), resembles a well potential where the minimum energy is lower as
the atomic size of the molecule increases. The distance between the cavity walls and the guest
molecule in the absolute minimum energy configuration is approximately 1.120 and &

governs the strength of the interaction. The confinement of the molecule in the B-CD cavity
produces an enhancement of the physisorption energy seen in the interaction of a pair of

atoms characterized by the same potential parameters (0,5). The attractive zones of the

potential energy surfaces are related to the effective values of the B-CD cavity dimensions
rather than to the guest properties.

In the dynamical study of the system we conclude that the molecule can enter the cavity
and then form an inclusion complex only for certain initial positions of its centre of mass, and
these positions are always near the rims of the CD and never outside the cavity walls. The
probability of forming an inclusion complex increases with the size of the cyclic or spherical
guest molecule. The most probable configuration of the complex formed with this type of
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molecules corresponds to that of minimum energy. Linear guest molecules with length L <5
A can form inclusion and non-inclusion complexes, depending on the composition and initial
position of the guest with respect to the cavity. Linear molecules with length L >5 A have a
small probability of forming non-inclusion complexes, again depending on the composition
and initial position of guest and cavity. They can form inclusion complexes for a time period
which depends on the molecular properties (length and composition of the guest) as well as
on the temperature and initial conditions of the trajectory. The inclusion time decreases with
the temperature of the process. For atoms, and cyclic or spherical molecules the temperature
of the simulation affects the time spent by the guest inside the cavity, when its interaction
with B—CD is represented by parameters o < 3.0 A and £ <0.003 eV.
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Chapter 7

USE OF ERROR THEORY IN THE COMPUTATIONAL
METHODS DEVISED FOR KINEMATIC
VISCOSITY - TEMPERATURE CORRELATIONS
IN UNDEFINED PETROLEUM FRACTIONS

José Alberto Maroto Centeno” and Manuel Quesada-Pérez
Group of Physics and Chemistry of Linares; Departament of Physics, EPS of Linares
(University of Jaén); C/ Alfonso X el Sabio, 28, 23700 Linares, Jaén, Spain.

Abstract

Petroleum fractions are essentially complex mixtures of cyclic and non-cyclic hydrocarbons.
Given the complex nature of these systems and even the difficulty of identifying the
components present in such mixtures, developing a viscosity correlation accounting for all the
composition details becomes a challenging task. Numerous estimation methods have been
developed to represent the effect of the temperature on the viscosity of different crude oil
fractions at atmospheric pressure. Most of these methods are empirical in nature since no
fundamental theory exists for the transport properties of liquids. In this chapter the authors
carry out both a brief review of the empirical correlations commonly used and an evaluation
of their degree of accuracy. Unfortunately, the absence of information about the accuracy of
the physical magnitudes used as input parameters in the correlations and the experimental data
of kinematic viscosity used in the different fittings prevents a conclusive assessment of the
percentage of average absolute deviation reported in the literature. Finally, the authors apply
the error theory to a set of equations recently derived (and published), which has been proved
to fit successfully the data of the chart of the ASTM standard D 2502-92 (reapproved 2004).
This standard provides a means of calculating the mean molecular weight of petroleum oils
from kinematic viscosity measurements and it is partially based on the Walter equation, that
is, one of the correlations previously discussed. The use of a PC program designed in order to
carry out this new analysis permits a preliminary evaluation of the errors of this ASTM
standard.

**E-mail address: jamaroto@ujaen.es
" E-mail address: mquesada@ujaen.es
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Introduction

For the development, design, planning and operation of processes in the petroleum
industry, an engineer has to deal with the so-called undefined mixtures such as petroleum
fractions. Petroleum fractions are essentially complex mixtures of cyclic and non-cyclic
hydrocarbons. As the nature of these systems is quite complex and the identification of their
components is extremely difficult to achieve a viscosity correlation accounting for all the
composition details becomes a challenging task. Many estimation methods have been put
forward to capture the effect of the temperature on the viscosity of different crude oil
fractions at atmospheric pressure. Most of these methods are empirical in nature since no
fundamental theory exists for the transport properties of liquids. In this chapter the authors
carry out both a brief review of the empirical correlations commonly used and a critical
survey of their degree of accuracy.

At any rate, the kinematic viscosities of these fractions are required in calculations
involving mass transfer and fluid flow and, currently, there are increasing demands for
accuracy in viscosity prediction techniques for implementation in computer routines. From an
economical viewpoint, a reason for such demands can be clearly pointed out: Small
uncertainties in the kinematic viscosity could be responsible for significant reductions in
profits (up to 10%, as will be discussed later). Unfortunately, the absence of information
about the accuracy of the physical magnitudes used as input parameters in the correlations
and the experimental data of kinematic viscosity used in the different fittings prevents a
conclusive assessment of the percentage of average absolute deviation (%AAD) reported in
the literature.

As matters stand, the authors suggest the application of the error theory in this field. In
fact, such theory is applied to a set of equations recently derived [1], which has been proved
to fit successfully the data of the chart of the ASTM standard D 2502-92 (reapproved 2004).
This standard provides a means of calculating the mean molecular weight of petroleum oils
from kinematic viscosity measurements and it is partially based on the Walter equation, that
is, one of the correlations previously discussed. In this way, the usefulness of the error theory
in accuracy estimations is elucidated. The use of a PC program devised to carry out this new
analysis permits a preliminary evaluation of the errors of this ASTM standard.

The rest of the chapter is organized as follows. First, the review on the methods for
calculation of the kinetic viscosity is presented. Then, the reasons for the proposal of the error
theory in accuracy estimations are briefly outlined. In next section, the error theory is applied
to the mentioned ASTM standard and some results are discussed. Finally, some conclusions
are highlighted.

A Review of Practical Calculation Methods for the Kinematic
Viscosity of Undefined Petroleum Fractions

The relationship between kinematic viscosity and temperature for liquid petroleum
fractions is of considerable importance in many engineering problems involving fluid flow
and momentum transfer. The development of a generalized predictive viscosity correlation
has received considerable attention from engineers and scientists working in the field of
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petroleum processing and petrochemicals. Numerous calculation methods for the effect of
temperature on the kinematic viscosity have been proposed. However, it is difficult to
develop a theoretical or even a semitheoretical method for liquid petroleum fractions because
they are exceedingly complicated undefined fluids that must be characterized to obtained
relevant parameters.

This section reviews methods for the prediction and correlation of kinematic viscosity of
undefined petroleum fractions, which are suited for practical engineering use. The methods
reviewed were chosen because they are well known and accepted or potentially promising.
The applicability and average deviations for each method are discussed too.

Amin and Maddox [2] and Beg et al. [3] proposed similar correlations based on the
modification of Eyring’s equation:

vo= 4 [exp (?H (1)

but with different expressions for parameters A and B, where v =1 / p, v is the kinematic
viscosity, 1 is the dynamic viscosity and p is the density. Parameters 4 and B should be
evaluated by fitting the experimental viscosity values. Amin and Maddox [2] related 4 and B
in equation (1) to the 50% boling point, Ty, and the Watson characterization factor, K,
(dependent on the average boiling point and the specific gravity) of each crude fraction as
follows:

InB = 4717 + 0.005267, @)
-6 -0.175 K
A = 10°(91.8367 T - 29.263)(;) 3)

On the other hand, Beg et al. [3] related 4 and B with the 50% boling point, T}, and the
API gravity, API, as follows:

InB = 5471 + 0.003427, @)
0.188 Tb
A = —0.0339 (4PI) + 0241 2 (5)

Moharam et al. [4] combined the double logarithmic relationship of the Walter equation
[5] with the fact that the viscosity correlates well with the boiling temperature and the inverse
of the absolute temperature, to develop a generalized empirical correlation to describe the
kinematic viscosity-temperature behaviour in the range 50 — 550 °C:

Inv = A{exp(%}yﬂ + C (6)
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where v is the specific gravity at 288.71 K (15.6 °C), 4 = 1.0185, B = T;/305.078 — 0.55526,
C=-3.2421, Tis in K and v is in mm?/s (cSt).

Dutt [6] proposed an Antoine-type correlation using the average boiling point only as an
input. The equation has the form:

Inv = 4 +

O

where 4 = -3.0171, B = 442.78 + 1.6452 t,, C = 239 — 0.19 1, ¢ is in °C and v is in mm?/s
(cSt).
Based on Walther's equation, Mehrotra [7] proposed a correlation which has the form:

log,, log,, (v+0.8) = a + a,log(T) (8)

with a; = 5.489 + 0.148(Tb)0'5, a,=-3.7, Tand T}, are in K and v is in mm?*/s (cSt).

Puttagunta et al. [8] proposed a relatively more accurate correlation which requires a
single viscosity measurement at 37.78°C and atmospheric pressure to make the prediction.
The correlation has the form:

hy = b roc ©)

( t—37.78 )
I+

310.93
where ¢ is the temperature (°C), ¢ = -0.86960, b = logio V3778 - ¢, being v37.75 the kinematic
viscosity at 37.78 °C and S = 0.28008 b + 1.6180. Nevertheless, Mehrotra showed that this
viscosity correlation is essentially the Walter equation [9].

Aboul-Seoud and Moharam [10] carried out an exhaustive analysis of Mehrotra
equations. As previously stated, Walther's equation was the base of the work of Mehrotra. In
his work, the value of the parameter a, of equation (8) was set equal to -3.7 while the
parameter a; was expressed in terms of the average boiling point. Aboul-Seoud and Moharam
observed that the estimation of parameter a; from the boiling point alone is responsible for
the deviation associated with the application of equation (8). Consequently, some trials were
made to eliminate this parameter or to improve its estimation depending on the available input
information.

If a single viscosity measurement is available as input parameter, the parameter a; of

equation (8) can be eliminated and the viscosity can be estimated using the following
correlation:

o

In In (v + 0.8) = Inln (Vo + 0.8) + a,ln {%) (10)

where v, is the single viscosity measurements (cSt) at temperature 7, (K) and a,=-3.7.
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If the specific gravity is available, together with the average boiling point, the proposed
correlation has the form:

lnln(v+0.8) = a + a, ln(T) (11)
with ay=4.3414 (T, y)** + 6.6913 and a, = -3.7.

where T;, is the 50% boiling point in (K), y is the specific gravity and v is the kinematic
viscosity in cSt.

Fang and Lei [11] extended the equation used by Amin and Maddox and Beg et al. to
correlate the kinematic viscosity-temperature behaviour for several liquid petroleum fractions.
The final expression takes the following form:

In (%) ~ 5906 (tb)0.1546 M0'479]§ — (18.103 + In M) (12)

where the kinematic viscosity, v, is in ¢St, M is the mean molecular weight of the petroleum
fractions in g/mol, 50% boiling point, #, is in °C, T is the temperature in K and p is the
density at TK in g/cm’.

Since few references report the kinematic viscosity with the corresponding density and
molecular weight, it is necessary to have generalized methods to predict the density and
molecular weight of fractions. In this correlation, p and M are estimated from the following
equations [12,13], respectively:

p = [pte-11x107 (- 15.6)]" (13)
M = 219.05exp (0.003924 (1, + 273.15))exp (—3.07 8)(z, +273.15)"" "% (14)

where p1s6is the density (in g/cm3) at 15.6 °C of the fraction, and S = p;5/0.999024.

From equations (12) — (14) it is evident that the kinematic viscosity of a liquid petroleum
fraction at any given temperature can be predicted with only two input properties, 50%
boiling point and the density at 15.6 °C.

Finally, the standard [14] ASTM D 341 — 93 (reapproved 2003) includes a kinematic
viscosity-temperature chart that supplies the kinematic viscosity of a petroleum oil or liquid
hydrocarbon at any temperature within a limited range, provided that the kinematic viscosities
at two temperatures are known. The chart was derived with computer assistance to provide
linearity over a greater range on the basis of the most reliable of modern data. The chart is
based on the following general relation:

log,, log,,Z = A - Blog,T (15)

where Z=(v+07+C-D+E—-F+G-H),visincSt, Tin K, 4 and B are constants, C =
exp(-1.14883 — 2.65868 v), D = exp(-0.0038138 — 12.5645 v), E = exp(5.46491 — 37.6289
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v), F'=exp(13.0458 — 74.6851 v), G = exp(37.4619 — 192.643 v) and H = exp(80.4945 —
400.468 v).
The limits of applicability of equation (15) are listed in Table 1.

Table 1.
Z Interval of v values (cSt)
(v+0.7) from 2.00 to 2 x 10’
(v+0.7+C) from 1.65 to 2 x 10’
(v+0.7+C-D) from 0.90 to 2 x 10’

from 0.30 to 2 x 10’
from 0.24 to 2 x 10’
from 0.21 to 2 x 10’

(v+0.7+C-D+E)
(v+07+C-D+E—F)
(v+07+C—-D+E-F+G)

It is obvious that equation (15) in the simplified form logjo logo (v +0.7) =4 —Blogio T
is basically the Walter equation and permits viscosity calculations for a given fluid in the
majority of practical situations. Constants 4 and B can be evaluated for a fluid from two data
points. Kinematic viscosities for other points can be readily calculated. This standard warns
on the use of equation (15): it is not useful for inter-calculations of kinematic viscosity and
temperature over the full chart kinematic viscosity range. More convenient equations which
agree closely with the chart scale are necessary when calculations involve kinematic
viscosities smaller than 2.0 cSt.

From this brief survey of the methods available in the literature, which are summarized in
Table 2, it is apparent that the methods may be categorized into two groups according to the
input information required. The first contains the methods that require physical property data
such as 50% boiling point and specific gravity to perform the estimation. The methods in this
group are completely predictive and easy to use especially when the required input
parameters are available as characterizing parameters for the liquids studied. The second
group includes the methods that require one or two viscosity measurements. These methods
do not require other physical properties as input data. However, they are not predictive and it
is essential that considerable attention must be paid to the reference measurements as the
accuracy of the estimation depends entirely on these measurements.

Table 2.

Method Type Equations | Input data Year % AAD
Amin - Madox Predictive 1,2,3 Ty, ¥ 1980 37.22
Beg. et al. Predictive 1,4,5 Ty, ¥ 1988 7.40
Moharam et al. Predictive 6 Ty, v 1995 5.54
Dutt Predictive 7 Ty 1990 6.31
Mehrotra Predictive 8 Ty 1995 5
Puttagunta et al. Correlative 9 V3778 1992 1.59
Aboul_Seoud and Moharam Correlative 10 Vo, T 1999 1.47
Aboul_Seoud and Moharam Predictive 11 Ty, ¥ 1999 3.05
Fang and Lei Predictive 12,13,14 Ty, Piss 1999 4.2
ASTM D 341 (Walter equation) | Correlative 15 Vi, V2 2003 0.8-1.4
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It must be clarified that the symbol %AAD in Table 2 refers to the average absolute
deviation (%) which is given by:

1 n Vi,ca _Vi,ex
%AAD = ;Z,-=l‘i/—p><100 (16)

i,exp

where Vi and vi e, refer to calculated and experimental values of the kinematic viscosity,
respectively. Therefore, this parameter show the accuracy of the correlation analysed and is
evaluated by means of the use of experimental data relative to diverse petroleum fractions. It
must be emphasized that the values of %AAD showed in this work for each predictive or
correlative equation were evaluated by their respective authors. This fact will be discussed in
the next section.

Regarding the evaluation of the correlative methods previously mentioned, it is evident
that the ASTM method has the best %AAD. In fact this is one of the methods most widely
used in order to evaluate the kinematic viscosity of liquid petroleum crudes. Nevertheless, the
major shortcoming of this method comes out when extrapolation is required. For the purpose
of extrapolation, if the two measured values are not sufficiently far apart, experimental errors
in the kinematic viscosity, and in drawing the line may seriously affect the accuracy of
extrapolated points [8]. On the other hand, the methods of Puttagunta et al and Aboul Seoud
and Moharam can be successfully used if one viscosity value can be measured.

There are three predictive methods that show good values of %AAD: Aboul-Seoud and
Moharam method, Fang and Lei method and Mehrotra method. It is evident that the use of
two empirical parameters characterizing the petroleum liquid under study (7} and v in the case
of Aboul-Seoud and Moharam method or 7}, and ps6 in the case of Fang and Lei method)
provides better results than the use one only empirical parameter (7} in the case of Mehrotra
method) since the use of two physical parameters presumably represent in a better way the
nature or the composition of the fluid under study.

Further Analysis of the Calculation Methods. Use of Error
Theory for the Testing of Accuracy

By reviewing the literature it can be easily proved that the authors that have worked in
the field of the computational methods devised for kinematic viscosity-temperature
correlations in undefined petroleum fractions have not used the same database. In fact,
Mehrotra [7] wrote that it is difficult to state the accuracy and reliability with considerable
certainty because the testing of most methods by the respective authors, from a common
database, is limited. The majority of the authors have used old empirical data reported by Beg
et al [3] and Amin and Maddox [2] which do not include data of the accuracy in the
experimental values of v, Ty, and y. In this sense, the empirical data reported by Amin and
Maddox must be cautiously used because, according to Ely and Handley [15], the accuracy of
most viscosity data used at this date was in the order of 5-15%. On the other hand, the
database of Beg et al does not include any information about the accuracy of the experimental
data of T, and y which were used as input parameters in their predictive equation. In
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conclusion, this evident lack of information about the accuracy of both the physical
magnitudes used as input parameters in the correlations and the experimental data of
kinematic viscosity used in the different fittings prevents a conclusive assessment of the
%AAD reported in the literature.

Apart from that, it would be necessary not only to perform a number of computer
correlations in order to optimize a tentative equation but also to include physical information.
In this sense, Fang and Lei [11] think that models (such as the Dutt model [6]) that use an
only fitting parameter (50% boiling point) are not quite reasonable for the characterization of
a petroleum fraction because the kinematic viscosities of the fractions with same boiling point
range but from different crude oils are different at a given temperature. In conclusion, these
authors think at least two properties are required to characterize the different petroleum
fractions. Little work has been carried out in this field and the majority of authors have
restricted themselves to use the equations of Eyring or Walter without carrying out any
further justification about the selection of a group of fitting parameters or the mathematical
function used for each fitting parameter.

In this chapter we propose the use of a useful tool, the error theory, to evaluate the real
accuracy of the correlations for predicting the kinematic viscosity of liquid petroleum
fractions. In general, the use of a number of input parameters Xx;, X, ....., X, and the
evaluation of an output parameter y by means of the use of a correlation is not enough. We
strongly recommend to analyse how the use of a number of input experimental parameters x;
+ AX|, Xo £ AXp, ... , Xn £ AX, influences the value of an output experimental parameter y +
Ay by means of the use of a correlation.

In particular, this proposal should be taken into account in the case of kinematic viscosity
correlations. It has been widely reported that small changes in kinematic viscosity can have a
dramatic impact on the properties of petroleum fluids [16]. In fact, the criticality of kinematic
viscosity measurement prompted the petroleum industry to develop a very precise method,
first published in 1937, ASTM D 445, Test Method for Kinematic Viscosity of Transparent
and Opaque Liquids. Although it sounds very simple, achieving the high accuracy and
precision required by the industry is an extremely formidable task. There are many factors
that affect the precision of this test method. In economic terms, an error of 1 percent product
viscosity that causes a blend adjustment can easily result in increasing product cost by a
penny a gallon. For a large lubricant manufacturer, this can amount to $1,000,000 in lost
revenue per year. If this is a 10 percent reduction in profits, then it is equivalent to throwing
away 10 percent of our paycheck.

The most important factor affecting the quality of a viscosity measurement is
temperature. The control of this physical magnitude is the most significant factor to obtain
accurate and precise kinematic viscosity measurements. This is especially true for petroleum
products as their rate of viscosity change per unit temperature is significantly greater than
other products. Thus a slight variation in temperature can have a very large effect on the
viscosity of a fluid. The bath temperature for the most common measurements, usually
ranging from 40°C to 100°C, must be controlled within +/- 0.02°C. That is an extremely tight
window and great care must be taken to achieve this control.

This previous reflection show that the use of the error theory in the evaluation of the
computational methods devised for kinematic viscosity-temperature correlations in undefined
petroleum fractions is not a negligible task, but an important tool for improving the accuracy
and reliability of the reported %AAD.
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Use of the Error Theory for the Evaluation of the Accuracy
of the ASTM Standard D 2502-92 (Reapproved 2004)

In this section we apply the error theory to a set of equations recently derived [1], which
has been proved to fit successfully the data of the chart of the ASTM standard D 2502-92
(reapproved 2004). This standard [17] provides a means of calculating the mean molecular
weight of petroleum oils from kinematic viscosity measurements and it is partially based on
the Walter equation, that is, one of the correlations previously discussed. The use of a PC
program designed in order to carry out this new analysis permits a new and preliminary
evaluation of the errors involved in the use of this ASTM standard.

The ASTM standard D 2502-92 (reapproved 2004) is applicable to samples with
molecular weight in the range from 250 to 700 g/mol and is intended for use with average
petroleum fractions. It should not be applied to oils that represent extremes of composition or
posses an exceptionally narrow molecular weight range.

This standard is based on a set of equations proposed by Hirschler [18]. In order to write
down tidily this set of equations it must be defined the viscosity slope factor (VSF):

VSF=H (v(37.78°C)) —H (v(98.89°C)) (17)

where v(37.78°C) and v(98.89°C) are the kinematic viscosities evaluated at 37.78 and
98.89°C, respectively, and H(v) is a function that takes the following form:

H(v) =870 log,, log,, (v+0.6)+154 (18)

The mean molecular weight (MW) can be expressed in function of the previous
parameters by means of the following equation:

MW =180+ Sx [H (v(37.78°C)) + 60] (19)

where S is a function which depends on VSF. Values of S were tabulated for all unit values of
the VSF from 190 to 319, though in order to find an analytical form for S, Hirschler used an
equation which has been recently modified by the following one proposed by Maroto and de
las Nieves [1] (equation that fits with higher accuracy the tabulated values of the VSF):

S =3.562 —0.01129 (VSF )—1.857 x 10 > (VSF )>+ 6.843 x 10 (VSF )>  (20)

Maroto and de las Nieves showed that the data provided by the set of equations (17) —
(20) are in excellent agreement with the ASTM chart for a viscosity index range that covers
the majority of commercial oils. Finally, these authors designed a PC program in order to
make the evaluation of molecular weight of petroleum oils easier for engineers and
professionals. The use of this program that can be downloaded free from internet only
requires the insertion of kinematic viscosity data, which remove any graphical or
interpolation errors.
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Nevertheless, one should keep in mind that, in this work, the authors use v(37.78°C) and
v(98.89°C) as input parameter, without their corresponding uncertainties. Consequently, only
MW can be obtained, without any additional information about its accuracy. Next, we will
apply the error theory in order to obtain the equations that use v(37.78°C) = Av(37.78°C) and
v(98.89°C) £ Av(98.89°C) as input parameters and permit to obtain MW £ AMW.

To this end we must remember that the error Ay linked to the indirect measurement of a
physics variable y depending on n physics variables, x1, x,,....x,, can be expressed as:

Ay = Y Ax, + 24 Ax, +..... +|6y Ax, (21)
ox, ox, ‘8xn

By applying equation (21) to the set of equations (17) - (20) it can be obtained that:

AVSF = AH(v(37.78°C)) + AH (v(98.89°C)) (22)
| 164.092 |
AH(v) = A
) (v +0.6)log,, (v + 0.6)| Y *)

AMW = |H (v (37.78°C))+60|x AS +|S|x AH (v (37.78°C)) (24)
AS = \—0.01129 ~3.714 x 10 S(VSF )+ 2.05x 107 (VSF )Z\AVSF (25)

Once the new set of equations (22) — (25) have been obtained it is necessary to look into
the magnitude of the errors associated to the measurements of the kinematic viscosity in order
to carry out an evaluation of the mean molecular weight of petroleum oils and, what is more,
its corresponding error, MW + AMW, in different experimental conditions.

The ASTM standard D 445-94 specifies a procedure for the determination of the
kinematic viscosity, v, of liquid petroleum products, both transparent and opaque, by
measuring the time required by certain volume of liquid to flow under gravity through a
calibrated glass capillary viscometer [19]. The result obtained from this test method is
dependent upon the behaviour of the sample and is intended for application to liquids for
which the shear stress and shear rates are proportional (Newtonian flow behaviour). This test
requires some measure conditions to assure a high reproducibility. For example, it must be
used a transparent liquid bath of sufficient depth: during the measurement any portion of the
sample in the viscometer must be less than 20 mm below the surface of the bath liquid or less
than 20 mm above the bottom of the bath. Also, for each series of flow time measurements,
the temperature of the bath medium (usually ranging from 15 to 100°C) must not vary by
more than + 0.02 °C of the selected temperature over the length of the viscometer, or between
the position of each viscometer, or at the location of the thermometer. Finally, it is strongly
recommended the use of calibrated liquid-in-glass thermometers of an accuracy after
correction of £ 0.02 °C or better, or any other thermometric device of equal or better
accuracy.
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The ASTM standard D 445-94 reports on the reproducibility provided by the test, which
is the difference between two single and independent results obtained by different operators
working in different laboratories on nominally identical test material. The reproducibility
reported by this standard is 0.65% for base oil at 40°C and 100°C, 0.76% for formulated oils
at 40 and 100°C and 1.8% for formulated oils at 150°C. In the view of these data, we will
assume a tentative value for Av of 1% in the evaluation of the set of equations (22) — (25),
which will permit us to obtain reliable values of MW + AMW.

Figure 1 show the relative error of the mean molecular weight of the petroleum oils
versus the molecular weight for four different values of the kinematic viscosity at 98.89 °C.
The data reported in this figure have been obtained by using the set of equations (17)-(20) and
(22)-(25). Due to the relative complexity of this set of equations and in order to facilitate its
handling we have designed a PC program which permits an easy evaluation of the molecular
weight (and the error linked to it) of petroleum oils [20]. The use of this PC program, which
can be downloaded free from the Internet, only requires the insertion of both the kinematic
viscosity data at 37.78 and 98.89 °C and the errors associated to these data. On the other hand,
the value of the VSF is also provided by the program and can be used as a checking parameter
that permits the estimation of the validity of the results obtained.
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Figure 1. Error rate for the mean molecular weight of the petroleum oils versus the molecular weight
for different values of the kinematic viscosity at 98.89 °C. ( ) v(98.89°C) = 3 cSt; (— —)
v(98.89°C) =4 cSt; (-- - - - ) v(98.89°C) = 5 ¢St; (— - —) v(98.89°C) = 6 cSt.

Figure 1 show a general increase of the error rate for the mean molecular weight of
petroleum oils with increasing the mean molecular weight. Each curve is drawn at a constant
value of v(98.89°C). This increase is very sharp for low values of the mean molecular weight
whereas the error rate takes an approximate constant vale for high values of the mean
molecular weight. It is remarkable that the four curves have been drawn for values of the
viscosity slope factor in the interval between 200 and 310 for which the set of equations (17)-
(29) fit the data provided by the chart of the ASTM standard D 2502-92 (see reference [1]).
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From figure 1, it is evident that the rate errors are always below 2.6 %, which seems to be
a very good accuracy in the estimation of the mean molecular weight of petroleum oils. In
addition, it should be stressed that figure 1 shows a general decrease of the error rate with
increasing the kinematic viscosity at 98.89 °C.

Finally, we also investigated the influence of a decrease in the accuracy of the kinematic
viscosity data on the error rate for the mean molecular weight of petroleum oils. Figure 2
shows the error rate versus the molecular weight. In this case all the curves have been drawn
by taking a constant value of the kinematic viscosity at 98.89°C of 6 cSt and assuming error
rates for the kinematic viscosity of 4%, 3%, 2%, 1% and 0.5%, respectively. The data plotted
in figure 2 strongly warn about the sharp increase of the error rate associated to the evaluation
of the mean molecular weight of petroleum oils that take places with increasing the error rate
for the kinematic viscosity. Also, it is evident that only error rates for the kinematic viscosity
below 2% can assure an estimation of the mean molecular weight of petroleum oils with an
uncertainty below 5%.

Obviously, figures 1 and 2 only can be considered as an introductory analysis of the error
rate for the mean molecular weight of petroleum oils which are linked to the application of
the ASTM standard D 2502-92. In future works, a general study covering the whole range of
constant values of the kinematic viscosity should be performed.
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Figure 2. Error rate for the mean molecular weight of the petroleum oils versus the molecular weigh for
a constant value of the kinematic viscosity at 98.89°C of 6 cSt. (. Y% Av/Iv =4%; (——) %
Av/v =3%;(----- Y% AVIV =2%;(—-—)%AV/vV =1%;(—--—) % Av/v =0.5%.

Conclusion

In this chapter a brief review on the empirical correlations devised for the evaluation of
the kinematic viscosity of petroleum oils and a survey of their degree of accuracy have been
carried out. As the information about the uncertainty in the magnitudes used as inputs in the
correlations is not usually provided, a precise calculation of the corresponding %AAD cannot
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be addressed. In any case, the authors apply the error theory to a set of equations recently
derived (and published), which has been proved to fit successfully the data of the chart of the
ASTM standard D 2502-92 (reapproved 2004). This standard provides a means of calculating
the mean molecular weight of petroleum oils from kinematic viscosity measurements. In this
way, the usefulness of the error theory in this field is properly illustrated and its application to
other data and relationships ((such as kinematic viscosity correlations) is strongly encouraged.
Concerning the relative error of the mean molecular weight of petroleum oils, our analysis
clearly shows that this error rate can depend considerably on the mean molecular weight,
particularly at low viscosities.

References

[1] Maroto J.A. and de las Nieves F. J. (2007) Petrol. Chem. 47(2) 87-91

[2] Amin M.B and Maddox R.N. (1980) Hydrocarbon Process 59(12) 131-135.

[3] Beg S.A., Amin M.B. and Hussain 1. (1988) Chem. Eng. J. 38 123-136.

[4] Moharam H.M., Al-Mehaideb R.A. and Fahim M.A. (1995) Fuel 74 (12) 1776 - 1779.

[5] Walther C. (1931) Erdoel und Teer 7 382-384.

[6] Dutt N.V.K. (1990), Chem. Eng. J. 45 83-86.

[7] Mehrotra A.K. (1995) Chem. Eng. Res. Des. 73 87-90.

[8] Puttagunta V.R., Miadonye A. and Singh B. (1992) Chem. Eng. Res. Des. 70 627-631.

[9] Mehrotra A.K. (1994) Ind. Eng. Chem. Res. 33 1410-1411.

[10] Aboul-Seoud A.L. and Moharam H.M. (1999) Chem. Eng. J. 72 253-256.

[11] Fang W. and Lei Q. (1999) Fluid Phase Equilib. 166 125-139.

[12] O’Donell R.J. (1980) Hydrocarbon Process. 59 229-231.

[13] 1983 API Technical Data Book — Petroleum Refining, 4" edn. (New York: American
Petroleum Institute).

[14] 2003 ASTM D 341-93 (reapproved 2003). Viscosity-Temperature Charts for Liquid
Petroleum Products. (Philadelphia: ASTM Committee on Standards)

[15] Ely J.F. and Hanley H.J.M. (1981a) Ind. Eng. Chem. Fundam. 20 323

[16] See the interesting article written by Janet L. Lane and Kenneth O. Henderson and
entitled “Viscosity Measurement: So Easy, Yet So Difficult” which can be read in
http://www.astm.org/SNEWS/JUNE 2004/lanhen_jun04.html

[17] 2004 ASTM D 2502-92 (reapproved 2004). Standard Test Method for Estimation of
Molecular Weight (Relative Molecular Mass) of Petroleum QOils from Viscosity
Measurements. (Philadelphia: ASTM Committee on Standards)

[18] Hirschler A E 1946 J. Inst. Pet. 32

[19] 1994 ASTM D 445-94. Standard Test Method for Kinematic Viscosity of Transparent
and Opaque Liquids. (Philadelphia: ASTM Committee on Standards)

[20] See http://www4.ujaen.es/~jamaroto/programs.html. This PC program is named
EPEMO-PC.EXE.






In: Handbook of Computational Chemistry Research ISBN: 978-1-60741-047-8
Editors: C.T. Collett and C.D. Robson, pp. 229-257 © 2010 Nova Science Publishers, Inc.

Chapter 8
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INTERATOMIC PARAMETERS
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Abstract

Notwithstanding their simplicity, semi-empirical interatomic potential energy functions are
indispensable in computational chemistry as a result of their ease of execution. With over
eight decades of interatomic potential functions since the days of Lennard-Jones, numerous
potential energy functions have been proposed. The potential functions developed over the
decades have increased in complexities through additions of many parameters for the sake of
improving the modeling accuracy. However, many established computational chemistry
software still incorporate simple potential functions due to the multi-body and dynamical
nature in computational chemistry. The use of highly complex potential functions would give
a limited improvement in accuracy at the expense of the computational time and cost. An
economical and technically feasible solution would be to retain the use of simple potential
functions, but with the possibility of allowing them to readjust their properties to fit the
potential energy curves of the more complex functions. This chapter discusses the techniques
developed recently for attaining such purpose.

1. Introduction

Numerous interatomic and intermolecular potential energy functions have been
introduced since the ecarly days of the Lennard-Jones era [1] and subsequent early
contributions [2-4]. Since then a great number of potential energy functions have been
introduced for molecular [5] and solid state [6] systems. The need for more accurate potential
functions for specific interactions forms the impetus for the development of newer and more
complex potential functions, i.e. with more parameters to enable better flexibility for curve-
fitting of spectroscopic data or ab initio computational results. In spite of increasingly
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advanced potential energy functions introduced over the years, majority of computational
chemistry packages rely on simple potential functions. For example, a number of bond-
stretching potential functions in computational chemistry packages adopt the harmonic
potential (e.g. [7-9])

1
U, :Ek(r—R)z. (1)

More accurate bond-stretching potential functions adopt additional terms

J )
U, ==Y k(r-R)’ )
=2

N | —

where substitution of j =2 reduces the polynomial form into the harmonic potential, while
better accuracy is achieved when | =3 [10], j=4 [11-13] and ] =6 [14]. However the

form given in Eq.(2) is unrealistic for large bond stretching due to its non-convergent
characteristics. Hence the Morse potential function [2]

U yoree = D{l —exp[-a(r = R)|}’ (3a)

Morse
or

Uy =U yoe — D = Dfexp[-2a(r = R)]-2exp[- a(r - R)]} (3b)
is utilized in some software [15-18] to cater for large bond-stretching. Likewise, the most

common potential function for describing non-bonded uncharged interactions in
computational chemistry packages is the Lennard-Jones (12-6) function [7,9,17]

o 12 o 6

u LI(12-6) — 4D (?j - (?j (4a)
R 12 R 6

U LI (12-6) = D (?j —2(?j . (4b)

An alternative potential for describing the van der Waals energy of interaction is the
Exponential-6 function [8,12,14]

or

C
Uye = AX6eXp(_BX6r)_i (5a)

r6
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or its loose form [16,17]

_o)6 Y& (RY
Dxa =P 5—6“‘{5[1 Rﬂ 5—6@ )

with the scaling factors & =13.772 and & =12.0 for short and long range interactions

respectively, corresponding to the Lennard-Jones (12-6) potential. These sca