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Preface

The urgent need for computer-assisted detection of tumors and lesions in medical
images becomes clear when one considers the state of affairs in X-ray film mam-
mography for breast cancer screening. In the United States it is estimated that
there are currently more than 50 million women over the age of 40 at risk of con-
tracting breast cancer. If only one-half of these women are screened by mammo-
graphic examination each year—and given that in the United States each breast is
viewed from two angles—then the number of X-ray films that must be read by ra-
diologists reaches the staggering total of 100 million per annum. A recent report
estimating that somewhere between 10 and 30% of breast lesions are missed dur-
ing routine screening is therefore not surprising. Motivated by such alarming
statistics, researchers are developing computer image processing algorithms for
detecting signs of disease. Their goal is to develop screening systems that will pro-
vide a second opinion, to prompt the radiologist to take a second look at a suspi-
cious region in the image. Besides mammography, there exists a need for image
processing techniques to assist the radiologist in reading chest X-rays, MRI scans,
and nuclear medical images. These modalities share the property with mammog-
raphy that signs of disease are often extremely subtle.

This book is the first ever devoted to the subject of tumor detection using
image processing techniques. Many of the chapters discuss image processing al-
gorithms that analyze a specific type of medical image and point to suspected tu-
mors. These are the so-called computer-aided diagnosis (CAD) techniques that act
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as second-opinion providers. Also represented are image enhancement algorithms
that make it more likely that a radiologist will see the tumor. Such algorithms do
not perform tumor detection directly, but they certainly can improve detectability.

The book contains 14 chapters arranged into two parts. The first (Chapters
1–5) discusses the background behind diagnostic imaging, image processing
methods and their evaluation, and clinical applications. The second part (Chapters
6–14) examines current tumor detection techniques in mammography, chest X-
ray, MRI imaging, and nuclear medicine.

This book summarizes the state of the art in image processing methods for
detecting tumors in medical images. The intended audience includes electrical en-
gineers, computer scientists, radiologists, and other researchers in the health sci-
ences.

Robin N. Strickland
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1
Tumor Imaging

Harold L. Kundel
University of Pennsylvania, Philadelphia, Pennsylvania

Peter B. Dean
University of Turku, Turku, Finland

I. DEFINITIONS: NEOPLASMS AND TUMORS

The term “tumor,” which literally means swelling, can be applied to any patho-
logical process that produces a lump or mass in the body. Tumors are a major man-
ifestation of a vast and varied group of diseases called neoplasms or more com-
monly cancers. However, many other diseases such as infections can produce
tumors, and they are a source of confusion in imaging diagnosis. We will use the
term tumor to indicate neoplastic masses.

Neoplasms arise from normal body cells that through a series of transfor-
mations lose the capacity to respond to the usual physiological mechanisms that
control growth. Uncontrolled growth leads to the formation of a tumor. Slowly
growing tumors that lack the capacity to spread to distant sites are called benign,
and rapidly growing tumors that can infiltrate surrounding tissues and spread to
distant sites (metastasize) are called malignant. Tumors that resemble the parent
cell type are classified as well differentiated, whereas tumors that have lost any re-
semblance to the original cell type are classified as undifferentiated. In general,
undifferentiated tumors tend to grow faster than well-differentiated tumors. Tu-
mors growing at a distance from the primary malignant tumor site are called
metastases (1). They occur because tumor cells are shed into the surrounding ex-
tracellular space and into the blood vessels. The cells in the extracellular space
move into the lymphatic system and are trapped in lymph nodes, where they be-
gin to grow, producing lymph node metastases. In a like manner, cells shed into
the blood vessels are trapped in other organs, commonly the lungs, liver, brain,
lymph nodes, and bone marrow. Diagnostic studies, including surgical biopsies
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and images, are used to identify the location and determine the extent of tumors.
This information is used to assign a stage to the disease. A general definition of
the cancer stages is shown in Table 1. The stage together with an assessment of
the degree of differentiation is very important for treatment planning and for de-
termining cancer prognosis.

Every type of cell in the body can be the precursor to a neoplasm, but some
types such as those arising from the breast, lung, colon, and prostate are more
common. A specific diagnosis is generally made by microscopic examination,
which in most cases allows determination of cell type of origin and the degree of
malignancy. Neoplasms are generally named after the cell type and tissue from
which they originate. The most common ones originate from the epithelial cells
and glands that form the inner and outer surface of the body. They are called car-
cinomas and are given a prefix to indicate the cell type. For example, if the cells
tend to form sheets, they are called squamous cell carcinomas from the Latin
“squama” meaning scale, and if they form spherical groupings, they are called
adenocarcinomas from the Greek “aden” meaning gland. Sarcomas arise from the
muscles and connective tissues. Lymphomas arise from the lymphatic tissues, and
the enlarged lymph nodes form tumors. Leukemias arise from the blood-forming
cells and, in general, do not produce tumors.

II. REASONS FOR IMAGING TUMORS OR POTENTIAL
TUMORS

People with tumors or potential tumors are imaged for detection, classification,
staging, and comparison. Detection can be subdivided into diagnosis, case find-
ing, and screening, depending on the level of suspicion. People are usually re-
ferred for diagnosis because they have signs and symptoms suggestive of cancer.
Case finding occurs when a test is performed to find a disease before it becomes
clinically evident and, thus, easier to treat and cure. A physician may order or per-
form a diagnostic test in a person who does not have definite symptoms to be sure
that the person is healthy. Case finding should not be confused with population
screening, which involves examining a predefined population for one specific dis-

Table 1 A Typical Assignment of Cancer Stages

Stage Meaning

0 Atypical cells in a normal anatomical configuration
1 Tumor limited to the local anatomical site
2 Involvement of ipsilateral regional lymph nodes
3 Involvement of contralateral lymph nodes
4 Involvement of a distant site
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ease without performing any other diagnostic examinations. Such a population
typically will have a low prevalence of cancer.

Classification ideally consists of making a tissue diagnosis or at least mak-
ing a determination of whether the tumor is a manifestation of a benign or malig-
nant disease. Benign disease can include both benign tumors and nonneoplastic
pathological conditions such as granulomas or hyperplastic cysts. The diagnosti-
cian is obligated to classify every suspicious region in an image. If there is uncer-
tainty about the classification, additional diagnostic procedures are done. These
generally start with less invasive imaging procedures and proceed to minimally in-
vasive procedures such as endoscopy and arteriography. When minimally inva-
sive procedures are exhausted, needle biopsy or surgical excision can provide a
definitive diagnosis. For example, it might not be possible to classify a homoge-
neous, smoothly marginated mass detected on a mammogram as benign or malig-
nant. Ultrasonographic imaging can then be done to determine whether the mass
is a cyst or a solid tumor. If it is a solid tumor, needle biopsy will show that it is
benign about 30% of the time (2). Currently, magnetic resonance imaging (MRI)
is being studied as a method for improving the classification of breast masses in
hopes of decreasing the number of breast biopsies that show benign disease (3).
Computer analysis of image features may also play a role in improving disease
classification (4).

Staging is performed to determine the extent of the disease, both local and
distant. An assessment of local involvement is useful before an excisional surgi-
cal procedure to be sure that the entire tumor is included in the resection. Staging
is important for the selection of an appropriate treatment regimen and for estimat-
ing prognosis. Most statistics about the outcome of cancer treatment are stratified
according to the stage of the disease at the start of treatment. Staging usually in-
volves obtaining images or biopsy specimens of regions of the body that are
known to have a high probability of harboring metastatic tumor.

Comparison imaging is performed after treatment to determine the effect of
treatment and to check for tumor recurrence. The diagnostic problem frequently
involves discriminating between changes caused by the treatment and changes
caused by recurrent tumor. For example, the radiation therapy of tumors can cause
local tissue necrosis that is difficult to distinguish from active tumor (5).

III. DIRECT AND INDIRECT VISUALIZATION OF TUMORS

A tumor can be conceptually modeled as a circumscribed mass of abnormal tissue
growing in normal tissue. It has a matrix that can be either textured or homoge-
neous and a boundary with the normal tissue that can be either fuzzy or distinct. It
can be visualized directly if it has either different physical or metabolic properties
from the surrounding tissue. When the tumor matrix has the same physical prop-
erties as the surrounding tissue, it is said to be “isointense.” An isointense tumor
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is not directly visible, but it may manifest itself indirectly by the alteration of ad-
jacent normal structures such as displaced blood vessels, distorted normal struc-
tures, or obstruction of ducts and airways. For example, a lung tumor is suspected
when there is persistent collapse (atelectasis) of a lung segment. The tumor may
not be visible, but obstruction by a tumor may be the most logical explanation for
the segmental lung collapse. Part of the art of radiology consists of recognizing the
subtle direct and indirect signs of tumors.

IV. FACTORS THAT INFLUENCE THE APPEARANCE 
OF TUMORS IN IMAGES

A. Summary

The appearance of a tumor in an image depends on the imaging modality, the im-
age acquisition geometry, the physical parameters of the imaging system, and tu-
mor biology. The imaging modality determines the body property that is mapped
into the image. Acquisition geometry determines the spatial relationship of the tu-
mor to surrounding tissues. The physical parameters of the imaging system deter-
mine the clarity of details and boundaries, as well as the contrast between the tu-
mor and the surrounding tissue. Tumor biology determines the characteristics of
the tumor matrix and the boundary of the tumor with the surrounding normal tis-
sue, as well as the response to physiological probes such as intravascularly ad-
ministered contrast-enhancing agents and radiopharmaceuticals.

B. Imaging Modality: Anatomical and Functional Imaging

Imaging modalities can be divided into those that show body anatomy and those that
show metabolic activity or function. Anatomical imaging modalities such as x-ray
imaging, ultrasonography, and MRI apply energy to the body and then map the in-
tensity of the interaction of the energy with the body. For example, x-rays that enter
the body can be scattered, absorbed, or directly transmitted. The image shows the dis-
tribution of transmitted and scattered x-rays and by inference the distribution of ab-
sorbing and scattering material in the body. Ultrasonography sends a beam of sound
into the body and records the returning echoes. The echo images show the location
of reflecting surfaces in the body. Proton MRI images are more complicated, because
they show the distribution of a weighted combination of the density of water protons
and two water proton relaxation times called T1 and T2. Varying the weighting fac-
tors at the time of image acquisition can produce a great variety of images.

Functional imaging modalities such as radionuclide imaging and magnetic
resonance spectroscopy (MRS) show the distribution of metabolic activity in the
body. Radionuclide imaging is particularly useful in general tumor imaging for
the detection of bone metastases. The mineral content of the bone has to be de-
creased by 25% to 30% before a change is visible by x-ray imaging. A radionu-
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A

B

Fig. 1 (A) A planar image of the chest shows a tumor in the left suprahilar region (ar-
row). The boundaries of the tumor are not well defined, because the shadow of the tumor
on the image is a composite of tumor, overlapping pulmonary blood vessels, ribs, and tho-
racic soft tissues. (B) A cross-section image made through the plane of the tumor. The
boundaries of the tumor are now well defined. Notice that it has irregular margins.
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clide tracer consisting of a complex of technetium (99mTc), tin, and a polyphos-
phate is incorporated into the bone at the metastatic site because of increased
metabolic activity associated with bone destruction and attempted repair by the
body.

The distinction between anatomical and functional imaging is somewhat ar-
tificial, because function can be deduced from sequential images obtained of a
moving organ like the heart or by plotting image intensity as a function of time
during the passage of a contrast agent through an organ. MRI is being used to
study cardiac function (6) and blood flow in breast tumors (7). Doppler ultra-
sonography is used to image blood flow and experimentally to differentiate tumor
blood flow from normal tissue blood flow (8).

C. Image Acquisition Geometry: Planar-Projection 
vs Cross-Section Imaging

Images can be divided into two major geometric types, planar and cross-section.
Planar images are also sometimes called projection images or the words are com-
bined into planar-projection. Most of the x-ray images that are produced in the
world are planar images of the chest, axial skeleton, extremities, and breast. Many
radionuclide images are also planar. A common metaphor for a planar x-ray im-
age is a shadow of the body cast by a beam of x-rays. It is an unusual shadow, be-
cause the body is translucent to x-ray, and the intensity of the emerging beam that
produces the shadow depends on x-ray energy, body thickness, and body compo-
sition. The final image is a complex sum of the interaction of the x-rays with all
of the tissues in the path of the beam. Cross-section imaging was developed to
eliminate the ambiguity caused by overlapping structures in planar imaging. Early
radiologists developed motion tomography, a technique for visualizing a plane of
the body by blurring the planes above and below the plane of interest. This was re-
placed by x-ray computed tomography (CT) in which a series of thin (typically a
few millimeters) planar images (typically 256) made by an x-ray source traveling
around the body are used to reconstruct a cross-sectional image of a thin slice of
the body. The advantages of CT images relative to planar images are increased im-
age contrast between tissues of differing composition and a relative lack of inter-
ference by overlapping shadows. The disadvantages are increased complexity of
the examination, increased radiation dose, and increased cost. The advantages of
cross-section imaging are illustrated in Figure 1, which shows a planar and a
cross-sectional x-ray image of the chest of a person with a tumor in the left lung.
The position of the tumor in the chest produces superimposition of pulmonary
blood vessels in the planar image. The attenuation of the blood vessels and the tu-
mor combine to produce a composite shadow that has indistinct boundaries in Fig.
1A. The camouflaging effect of the blood vessels is completely overcome in the
cross-section image in Fig. 1B.

Copyright © 2002 Marcel Dekker, Inc.



Despite the advantages of cross-sectional imaging, planar images still pre-
dominate in the examination of the chest and breast, because images can be made
simply, rapidly, and relatively inexpensively. For example, chest images can be
made with a mobile x-ray machine at the bedside of a sick person.

D. Physical Factors

Each imaging modality has fixed and adjustable physical parameters that deter-
mine the visibility and sharpness of detail (spatial resolution) and the clarity of
boundaries (contrast rendition) (9). Both spatial resolution and contrast rendition
are affected by noise. In fact, one of the defining properties of medical images is
that they are visibly noisy at normal levels of illumination. The appearance of tu-
mors in images is affected by the adjustable physical parameters of the imaging
modality. The most dramatic effects are seen in MRI, in which the image pulse se-
quence determines the relative weighting of proton density and the T1 and T2 re-
laxation times. More subtle effects are found in x-ray imaging, in which the peak
kilovoltage (kVp) of the x-ray beam affects the tissue contrast. The detection of

A B

Fig. 2 Effect of tissue anatomy on tumor growth. (A) A 1-cm symmetrical lung nodule.
(B) After 2 months, the nodule has enlarged asymmetrically but has not grown across the
interlobar fissure.
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cancer is improved when planar chest images are obtained at higher kVp (140 vs
75) levels (10). This result is not due to increased contrast of the tumor but to de-
creased contrast of the surrounding structures such as the ribs that tend to hide tu-
mors (11). The adjustable physical parameters are usually set to achieve some
level of image quality specified by a human observer, usually a radiologist. It is
altogether possible that parameters that are chosen to meet human specifications
may not be optimal for processing the images by computer. Fortunately, the mi-
gration to digital imaging, particularly for planar x-ray imaging, makes image data
available before they have been processed to meet the requirements of the human
observer.

E. Biological Factors

1. Growth Follows the Vascular Supply and Tissue Planes

At first, tumors receive oxygen and nutrients by diffusion from the surrounding
extracellular fluid, which is supplied by existing capillaries. As they increase in
size, they require an additional blood supply to obtain oxygen and nutrients and,
in response to hypoxia, the tumor cells secrete a hormone (tumor angiogenic fac-
tor) that stimulates blood vessel growth from surrounding normal tissues (12). The
gross morphology of a tumor depends on the rate of growth and the location of
available blood vessels in the surrounding normal tissues. Rapidly growing tu-
mors can increase in size faster than blood vessels in the surrounding tissue can
proliferate, and cells become hypoxic and then necrotic. Areas of hypoxia and
necrosis contribute to variations in the texture of the tumor matrix. The shape of a
tumor may also depend on the availability of a blood supply from the normal tis-
sues. Figure 2 is a planar image of a metastatic lung tumor that started as a pe-
ripheral nodule and as it grew encountered the pleural fissure between the upper
and middle lobe of the lung. The tumor growth stopped at the fissure, creating a
flattened profile. More complicated boundary profiles are produced when the tis-
sue planes are more complex or when there is an inflammatory reaction in the sur-
rounding normal tissue.

2. Calcification

Whenever there is tissue injury leading to necrosis, the local physiological condi-
tions favor the deposition of calcium salts. Dystrophic calcification is found com-
monly in the walls of blood vessels in athersclerosis, in injured heart valves, in
necrotic tumors, in healing abscesses, and in granulomas. In the early stages of the
development of breast cancers, tiny (10–200 �m) calcifications may form in the
tumor. These calcifications typically form within the milk ducts, which are sepa-
rated from the blood circulation by the basement membrane surrounding the duct.
As malignant cells proliferate within the ducts, the ducts enlarge and the central

8 Kundel and Dean
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core, being the farthest from the blood circulation, begins to undergo necrosis and
subsequently calcifies. Microcalcification may be the only sign of malignancy in
a mammogram (13) when the noncalcified part of the tumor matrix is isointense
to x-rays. Calcification may also be dystrophic in nonmalignant tissue. An impor-
tant decision made in mammography is the differentiation of malignant from be-
nign calcification (14). As opposed to mammography, calcified lung tumors are
usually benign manifestations of healing granulomas caused by tuberculosis or
some other infectious disease. Computed tomography can be used to measure the
level of calcification and discriminate malignant from benign tumors (15).

3. Secondary Effects: Obstruction and Architectural Distortion

Obstruction of a critical passageway in the body may produce the first symptoms
of a tumor and may also provide the only signs of a tumor on an imaging exami-
nation. Squamous cell carcinomas of the lung arise from the bronchial endothe-
lium. The growing endobronchial lesions at first partially and then totally obstruct
the bronchus in which they are growing. Partial obstruction results in the accu-
mulation of secretions in the lung behind the obstruction. If the secretions become
infected, the person develops a pneumonia that may be very resistant to treatment
because of the obstruction. Total obstruction results in atelectasis, which consists
of a combination of collapse of the airspace and an influx of fluid caused by re-
sorption of the air. In these cases, cross-sectional imaging with CT is generally
able to identify the obstructing tumor.

Fig. 3 A CT scan showing a malignant lung tumor. Notice the numerous small circular
objects in the lungs. Most of them are cross sections of blood vessels.
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A tumor that is not growing in the vicinity of a vital passageway may also
distort the surrounding tissues, and the distortion may be the only visible sign of
a tumor on the imaging examination. Table 2, taken from a report of the mammo-
graphic features of 300 consecutive nonpalpable breast cancers, indicates that
19% of the cancers were biopsied because of indirect signs (13). These signs in-
cluded architectural distortion (9%), a developing density uncharacteristic of a
mass (6%), asymmetry (3%), and a single dilated duct (1%).

4. Visualizing Tumors by Means of Contrast-Enhancing Agents

Many diagnostic cross-sectional images are made using intravenous contrast
agents to improve the visualization of tumors. The iodinated contrast agents that
are used in x-ray imaging and the gadolinium chelates that are used in MRI are
freely distributed in the extracellular space of the body but do not cross the
blood–brain barrier into the extracellular space of the brain. Right after intra-
venous administration, the contrast agents are concentrated in the blood, and ac-
quisition of the images can be timed to show the vascular phase. Differences be-
tween the vascularity of tumors and the surrounding normal tissue will show as
differences in contrast. Tumors can be either more or less vascular than the sur-
rounding tissue, producing either hyper-intensity or hypo-intensity in the image.
Sometimes they have an avascular center with a surrounding ring of hypervascu-
larity. The contrast agents rapidly diffuse from the vascular compartment into the
extracellular space. Many tumors have an extracellular space that is larger than
that of the surrounding normal tissues, and as a consequence they have a higher
volume distribution and appear hyper-intense in the image. The matrix of many
tumors also contains necrotic, avascular areas into which contrast agents diffuse

Table 2 Mammographic Features Prompting Biopsy in 300
Successive Nonpalpable Breast Cancers (see Ref. 13)

Mammographic feature No. %

Classic signs of malignancy
Linear/branching calcifications 68 23
Spiculated knobby mass

Subtotal 117 39

More subtle signs of malignancy
Other calcifications 57 19
Other masses 69 23
Indirect signs

Subtotal
Total 300 100

61183

1957

1649
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very slowly producing differences in image contrast with time. The permeability
of the blood–brain barrier is increased in the vicinity of most brain tumors, and af-
ter the administration of a contrast agent, there may be an increased concentration
of the contrast agent relative to the surrounding brain.

V. FEATURES OF MALIGNANT TUMORS SEEN ON
IMAGES

A. Some Generalization About the Features of Malignancy

In any tissue, the features of malignancy may be shared by benign neoplasms,
non-neoplastic diseases such as infections and granulomas, and occasionally by
normal tissues. Some of the features of benign and malignant tumors are shown in
Table 3. In general, benign tumors have sharp boundaries and a regular shape, fre-
quently spherical or ovoid. Malignant tumors tend to be irregular in shape with in-
distinct boundaries and frequently show speculation at the borders. Most of these
features indicate rapid growth. Generalizing about calcifications poses a consid-
erable problem, especially for breast cancer. Malignant breast tumors can contain
both fine and fairly extensive calcifications. The intraductal, branching calcifica-
tions are typically malignant, except when they are smooth and dense, when they
can be rather unequivocally called benign. On the other side, most (�80%) clus-
tered calcifications on the mammogram are of benign origin. The very fine, pow-
derish calcifications, which are usually composed of psammoma body calcifica-
tions sized approximately 10 �m and visible mammographically as a summation
when in larger clusters, are caused by benign processes in two of three instances
and by malignant processes in one of three instances.

B. Specific Features of Breast Cancer

The breast is composed of glandular, connective, and adipose (fat) tissue in pro-
portions that vary considerably, not only among women, but also in the same

Table 3 Common Features of Benign and Malignant Tumors Seen
on Images

Benign Malignant
Feature characteristics characteristics

Shape Regular Irregular, lobulated
Border Sharp Fuzzy, spiculated
Matrix

Calcification Dense Fine
Texture Smooth Variegated
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woman, depending on her age and the phase of her menstrual cycle. Mammogra-
phy is excellent for differentiating fat from other soft tissues but cannot differenti-
ate between glandular, connective, and malignant tissues if these are not separated
by fat. The interspersed fat, which transmits x-rays more readily than the other tis-
sues, reveals the structure of the more “dense” (more radiopaque) tissues. When a
breast cancer has broken through the basement membrane of the ducts and begun
to form tumors, it takes one of three characteristic appearances. First, it may ap-
pear as a round or oval tumor with slightly indistinct borders. Second, it may ap-
pear as a spiculated or stellate tumor with a characteristic radiating border pattern
caused by a connective tissue reaction. Finally, in the absence of surrounding fat,
the tumor may infiltrate surrounding glandular and connective tissue without pro-
ducing any easily detectable pattern. The size at which a breast cancer can be dif-
ferentiated from its surroundings on a mammogram depends on the relative pro-
portion of fat. More fat means that the tumor can be detected at a smaller size, with
a lower limit on the order of about 3 mm if there is no surrounding connective or
glandular tissue. At the other extreme, if there is no surrounding fat, a tumor may
grow to the size of several centimeters and still not be easily detectable on the
mammogram, but these larger tumors will always produce a hard lump that can be
easily detected by palpation. The normal variation in breast tissue structure will
make breast cancers easy to detect in some women and difficult to detect in others.
A 1.5-cm tumor can be easily detected in a breast composed predominantly of fat,
but a 2.1 cm tumor can be detected only with difficulty in a breast containing rel-
atively little fat.

Although fewer than 20% of clustered breast calcifications are caused by
breast cancer, there are certain types of calcifications that are typically associated
with breast cancer. These tend to have a typical structure and can often be rec-
ognized when the cancer is still in its in situ or preinvasive state. These calcifi-
cations (see Sec. IV.E.2) have three typical forms, the granular or crushed stone
type, the casting or linear, branching type, and the powderish or amorphous type.
Although they are caused by preinvasive growth of breast cancer, there may be
invasive breast cancer nearby, which can also cause some of the calcifications to
disappear. The powderish type of calcifications is less typical of malignancy, be-
cause in most cases these will be associated with benign processes. Because there
is no apparent difference between powderish calcifications produced by malig-
nant and benign processes, it is necessary to send all such cases to biopsy. Calci-
fications have received the most attention in the computer analysis of mammo-
grams, but their importance in the control of death from breast cancer is fairly
minor. When left to grow, a very small percentage of breast cancers with calcifi-
cations can rapidly lead to fatality, whereas most breast cancer calcifications give
an advance warning of several years during which breast cancer fatality can be
avoided. On the other hand, most fatal cases of breast cancer result from the stel-
late (spiculated) tumors, which may be far more difficult to detect than the calci-
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Fig. 4 Three lung masses that are about the same size and located in the midlung. Notice
the difference in the distinctness of the tumor boundary with the lung.
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fications. It is also easier for radiologists to learn to detect and differentiate breast
calcifications than it is for them to learn how to detect small, noncalcified breast
cancers.

C. Specific Features of Lung Cancer

Early malignant lung tumors can be found inside the major bronchi (endobronchial
lesions) and in the periphery of the lung (nodules). Small endobronchial lesions can
be imaged by conventional CT when there is encroachment on the bronchial lumen
(16). Virtual bronchoscopy done by reconstructing the bronchial tree from CT
scans of the thorax is being explored as a means for identifying early endobronchial
lesions (17). Peripheral lung tumors are roughly circular in projection and are gen-
erally called nodules. When small and of low contrast, they are very difficult to de-
tect in planar chest images. Nodules less than 1 cm in diameter are rarely detected
on planar radiographs, because composite vascular shadows mimic nodules, and
radiologists cannot distinguish true nodules from “noise” nodules (18). The situa-
tion is improved by cross-section imaging, in which it is possible to detect nodules
as small as 3 mm in diameter. Fig. 3 shows a small pulmonary nodule on a CT im-
age. Notice that there are other small circular objects that could be cross-sections
of small spherical masses but, in fact, most of them are cross-sections of blood ves-
sels running through the section. Viewing the sections sequentially helps the hu-
man observer separate nodules from blood vessels (19).

As a consequence of rapid growth and following the local blood supply, ma-
lignant tumors tend to develop irregular shapes, and the boundary with the normal
tissue tends to become indistinct as fronds of tumor grow along tissue planes. This
produces a boundary that is fuzzy and frequently spiculated. However, the bound-
ary of malignant tumors within the lung can range from sharp to indistinct. Figure
4 shows three rather large malignant lung tumors, an adenocarcinoma and two
alveolar cell carcinomas. Notice the character of the boundary, which ranges from
very sharp to spiculated and indistinct.

Calcification is one of the features of benign lung tumors. Benign calcifica-
tion is dense and sometimes irregular (popcorn). Its location in the mass is either
central or concentric. Eccentric or stipulated calcification may be associated with
malignancy, and frequently it appears as if the tumor has arisen in the neighbor-
hood of a benign lesion and engulfed it.

VI. HUMAN FACTORS THAT INFLUENCE OUR
UNDERSTANDING OF THE NATURE OF IMAGE
FEATURES

Medical images have three important characteristics: (a) they are transparencies,
(b) they are visualized in terms of anatomy and pathology, and (c) the visibility of

Copyright © 2002 Marcel Dekker, Inc.



contrast and detail are limited by noise. Let us briefly consider the implications of
each of these for human tumor visualization and image processing. Transparency
is a more important property for planar than for cross-section imaging; in fact, it
is the reason that cross-section imaging was developed. In planar imaging the su-
perposition of structures located in different planes produces ambiguity in the im-
age. In a chest image two blood vessels in different planes may combine to pro-
duce a single nodulelike structure that is mistaken for a tumor. Similarly, as in Fig.
1, a real tumor superimposed on large blood vessels may lose many of its intrin-
sic features. Most planar image examinations include two views made at approx-
imately right angles, a frontal image (anteroposterior or posteroanterior) and a lat-
eral. Oblique views are sometimes substituted for lateral views as in
mammography. The use of two views in a screening study has been controversial,
but the incremental increase in tumor detection from the second view has recently
been shown to be on the order of 25% to 45% for the detection of tumors smaller
than 15 mm with screening mammography (20). There also is a large increase in
diagnostic certainty and an associated decrease in false-positive results. Superim-
posed structures that produce the spurious appearance of a tumor will not be seen
on both views. The implication of this for studies of computer-aided diagnosis is
that the information supplied by a second planar image should not be neglected. 

People with knowledge of anatomy and pathology read images. They de-
scribe images using terminology that frequently reflects inferences about anatomy
and pathology (21). There are some image-specific terms, but an unambiguous
terminology for describing medical images has never been developed. The image
is visualized as a surrogate for the patient. A radiologist will report that there is a
rib fracture on a chest radiograph. This is a clear statement about the patient but
not much of a description of the intrinsic appearance of the image. The radiologist
has used the visual clues in the image to build a preferred perception that best fits
his or her understanding of the patient. The preferred perception is not necessar-
ily a literal rendition of the image. For example, the clarity of organ boundaries is
limited by the noise that is visible in most medical images. Incomplete boundaries
may be completed perceptually, because knowledge of anatomy and pathology in-
dicates that they must be there. So when the radiologist describes features in an
image, the computer scientist must decide if the features represent the preferred
perception (image plus knowledge) or the literal perception (image only). The ra-
diologist may not be able to distinguish one from the other (22).

VII. SCREENING FOR BREAST AND LUNG CANCER

At present, planar x-ray imaging (mammography) is used for screening women older
than 40 for breast cancer. Screening for lung cancer using planar imaging has not
been very widespread, because a few large clinical trials have not shown that screen-
ing reduces lung cancer mortality (23). Recently there has been a re-evaluation of the
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screening studies that used planar imaging (24) and a movement toward using low-
dose CT as a screening method, particularly in Japan where lung cancer is becom-
ing a greater public health problem (25). The screening problem is one of achieving
a high true-positive fraction without incurring a large number of costly false-posi-
tive results. Computer-aided diagnosis is being applied to both mammography (26)
and lung CT (27) to improve cancer detection in the screening environment. Detec-
tion, although important for evaluating the technology, is not the criteria for deter-
mining whether a cancer-screening program is successful. The effectiveness of
screening by CT must eventually be measured as a reduction in cancer mortality.

VIII. CONCLUSIONS: SOME LESSONS FOR THE
COMPUTER SCIENTIST

Malignant tumors start small and grow. As they get larger, they become more con-
spicuous and have more opportunity to show their character. They also produce
symptoms and bring the person to a physician. We would like to be able to detect
the smallest possible symptomatic malignant tumors and, in the context of screen-
ing, the smallest possible asymptomatic tumors. It should be clear that many fac-
tors influence the appearance of tumors on images, and although there are some
common features of malignancies, there is also a great deal of variation that de-
pends on the tissue and the tumor type. Characteristic features are more likely to
be found in large tumors. Small tumors may not have many of the features of ma-
lignancy and may even manifest themselves only by secondary effects such as ar-
chitectural distortion. When studying image processing, it is important to include
small asymptomatic tumors in the test material.
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I. INTRODUCTION

This chapter deals with evaluation criteria for software designed to detect ab-
normalities in medical images. When computer algorithms are designed for ap-
plications such as this, strict evaluation criteria are crucial for a number of rea-
sons. The most obvious reason is the need to assess expected system
performance. This may be required to gain widespread acceptance or to estab-
lish the state of the art. In addition, some means of objective and fair compari-
son are needed to help determine the relative merit of competing algorithms. A
rigorous evaluation also facilitates the development of a robust system. By
knowing specifically which situations cause an algorithm to fail, we can begin
to isolate and address the causes of the failure. This leads to further development
in an effort to correct the problem, handle the error, or enable the algorithm to
recognize when failure occurs.

Algorithm evaluation can have a different meaning in a clinical setting. Per-
formance requirements in a day-to-day clinical environment may involve addi-
tional or different criteria. In many cases, regulatory approval is necessary before
software can be cleared for commercial use. For example, the U.S. Federal Food,
Drug, and Cosmetics Act and subsequent amendments to the Safe Medical Device
Act give the Food and Drug Administration (FDA) authority to ensure safe and ef-
fective devices (1). Many applications involving computerized medical image
analysis, such as computer-aided diagnosis (CAD), fall into the medical device
category. Here, performance analysis of the computer algorithm alone is not 
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sufficient. The evaluation must consider the effects the computer-generated infor-
mation ultimately has on decisions involving patient care.

A tumor, or neoplasm, is technically defined as a growth of abnormal tissue
that is different in structure from the surrounding tissue. We may only be inter-
ested in detecting malignant tumors. However, it is not always possible to easily
distinguish between benign and malignant tumors without a biopsy or some other
diagnostic test that relies on information not found in the image. Therefore, eval-
uation criteria are application dependent. If tumor pathology can be predicted with
a high degree of accuracy from a visual inspection of the image, it may be desir-
able to define detection as a task of finding only those tumors that are suspicious
for malignancy. If an automated system for detecting tumors is used as a sec-
ondary image reader, detecting some number of obviously benign abnormalities
may be permissible.

A decision made during a detection task falls into one of four possible cat-
egories, shown in Fig. 1. An image region can be called cancerous (positive) or
normal (negative), and a decision can either be correct (true) or incorrect (false).
There are two types of errors that can be made: false-negative and false-positive
errors. A false-negative (FN) error implies that a true abnormality was not de-
tected. A false-positive (FP) error occurs when a detection corresponds to a nor-
mal region, and thus falsely identifies the region as abnormal. Two types of cor-
rect decisions can also be made: true-positive (TP) and true-negative decisions
(TN). A detection that corresponds to an actual abnormality is called a true posi-
tive. A true-negative decision simply means a normal region was correctly labeled
as being normal.

Sensitivity and specificity are measurements related to the false-negative
and false-positive error rates, respectively. The sensitivity is the rate at which tu-
mors are detected (1.0-FN error rate), and so it is referred to as the true-positive
rate. Specificity is 1.0-FP error rate. The performance of a process that detects tu-

Fig. 1 A decision made during a detection task falls into one of four possible categories.
The word “positive” or “negative” corresponds to the decision made, whereas the word true
or false denotes whether or not the decision was correct.
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mors in medical images, be it a computer system, a human, or a combination of
the two, can be completely characterized by its sensitivity/specificity tradeoff. For
example, suppose a test set contains 200 images, 100 of which contain cancer and
100 of which do not. If a process detects 80 of 100 tumors, there are 20 false-
negative errors. The sensitivity is 80% and the false-negative rate is 20%. If the
process also generated 10 false-positive detections, the false-positive rate is about
11.1% (10 of the 90 total detections were false positives). The specificity in this
example is 88.9%. When an image may contain more than one distinct abnormal-
ity, specificity is often expressed in terms of the average number of false-positive
detections per image, which in this example is 0.05. Obviously, 100% sensitivity
and specificity (or a false-positive rate of zero) represents perfect performance,
the ultimate and usually unrealistic objective.

The first part of this chapter is concerned with performance evaluation of
computer detection algorithms alone. This generally involves comparing the 
computer output with some form of ground truth information for a set of test im-
ages and generating some meaningful statistics. We begin with a discussion of de-
tection criteria, which involves how computer detections are characterized as ei-
ther true positive or false positive. In Sec. III, we describe methods for evaluating
and comparing algorithms and discuss some relevant issues. Sec. IV covers sev-
eral aspects of algorithm evaluation in a clinical environment, including FDA re-
quirements, the elements of a good clinical trial, and techniques for isolating cer-
tain aspects of performance. In Sec. V, we summarize what we believe to be the
essential aspects of a sound evaluation and make some basic recommendations.
Finally, in Sec. VI, we use a case study to illustrate many of the concepts and tech-
niques discussed in this chapter.

II. DETECTION CRITERIA

Perhaps the first issue to deal with concerns the characterization of a computer de-
tection as either true positive or false positive. To do this for a given image, the
output of the computer algorithm must be compared with the “ground truth” in-
formation associated with the image. How the comparison is performed is some-
what dictated by the intended application of the computer algorithm.

A. Ground Truth

The term “ground truth” is derived from remote sensing applications and essen-
tially means measurements made “on the ground” (near-surface measurements)
concerning the objects to be analyzed. The term “gold standard” is sometimes
used to mean essentially the same thing. Defining ground truth in biological sys-
tems is often complicated. Although applications related to remote sensing, for
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example, allow measurement of actual distances, height, etc., assessment of most
disease processes and symptoms are not always defined in absolute terms. This is
particularly applicable to medical image interpretation.

For tumor detection in medical images, ground truth typically would refer
to the pathology results from biopsy specimens. For simplicity, we assume that
there are no errors in the pathology results. In reality, of course, there is some
nonzero error rate in every process. The pragmatic version of the assumption is
that the pathology error rate is essentially zero compared with the image analy-
sis error rate. In their simplest form pathology results would classify the speci-
men as benign or malignant. Regions with tissue found to be malignant would
be denoted as positive in the ground truth. Note that other positive regions
not subjected to biopsy because they were missed or not found suspicious
enough may still be present in the images but not labeled as positive. Follow-up
of cases over time can help solve this problem and improve the accuracy of
ground truth. For example, in the Digital Database for Screening Mammography
(DDSM) project (2) a “normal” set of mammogram images is one that has 4-
year follow-up as normal. This reduces the chances of the database containing a
“normal” study that actually contains a cancer that is too small or too subtle to
be readily detected.

Depending on the application, it may be reasonable to use radiologist inter-
pretation as the basis for establishing ground truth. In this case, truth is defined as
the assessment given by an expert radiologist, or possibly, a group of expert radi-
ologists. In its simplest form, this assessment will indicate suspicious regions in
an image. Anything that would cause a radiologist to request additional workup or
biopsy, regardless of the result, should probably be labeled positive in the ground
truth.

In most cases the assessment of the radiologist, and hence ground truth la-
beling, cannot be limited to simple positive or negative decisions. In screening
mammography, for example, the BI-RADS (3) standard for describing the image
interpretation allows for one of five overall assessments: (a) negative, (b) benign
finding, (c) probably benign, (d) suspicious abnormality, or (e) highly suggestive
of malignancy. When radiologist assessment is used to measure performance of a
computer system, the ground truth representation must take into account all pos-
sible assessments in the context of intended system use. Typically, ground truth is
determined by combining radiologist assessment, biopsy results, and case follow-
up. Biopsy results are used to determine malignancy, whereas radiologist assess-
ment and follow-up are used to identify benign and nonsuspicious cases not 
recommended for biopsy.

Regardless of the different types of regions identified in a ground truth,
it is always possible to consider a subset of regions as positive while treating
the rest of the image as normal for the purpose of evaluating a tumor detection
system. Consider a computer application that acts as a second reader for
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breast cancer detection in screening mammography. A typical screening exami-
nation in the United States contains four images, two views of each breast.
A radiologist has alternatives to biopsy for suspicious-looking regions and may
request additional workup. This workup may include spot compression, addi-
tional views of the breast, ultrasound imaging, short-term follow-up, or other
methods. Even though additional workup may ultimately convince the radiolo-
gist that a biopsy is not necessary, or a biopsy result may be benign, the origi-
nal screening images were either inconclusive or suspicious enough to warrant
extra attention. In this situation, it would make little sense to call a computer
prompt a false positive if it points to something on which a radiologist would
have required additional workup. To emphasize this point, if a CAD second
reader were to prompt only image regions on which the radiologist would ask
for additional workup, it could be said to have a zero false-positive rate in a cer-
tain context.

In general, a ground truth representation for a particular class of images can
be developed by determining the following:

1. All possible findings and how radiologists describe their findings. This
task is significantly easier for applications that already have an estab-
lished interpretation standard.

2. The subset of findings that the ground truth must encode. This will be
highly dependent on the intended use of the detection system.

3. A method for recording case assessment in electronic format.
4. A ground truth representation capable of capturing all significant find-

ings and indicating the location and extent of each abnormality in an
image.

One of the challenging aspects of establishing medical image ground truth
is sometimes the lack of clear separation between possible assessments and im-
portant exceptions that may not fit into the framework of the ground truth repre-
sentation. Another difficulty is the potential for different interpretations among
different radiologists for the same case. Carefully following interpretation stan-
dards may help overcome some of these difficulties, but some borderline cases
will still be problematic. Another important issue is the lack of accuracy in mark-
ing the true extent of an abnormality. Although a radiologist may easily indicate
the location of an abnormality, providing an accurate outline for that abnormality
may be more difficult, especially when the outline is not well defined in the im-
age. In addition, estimating the extent of an abnormality is subjective, and any two
radiologists would rarely provide identical estimates.

For the purposes of this discussion, the only ground truth information re-
quired is that which denotes the image regions that should be detected. How the
ground truth is derived is irrelevant. We only need to know that it is the “gold
standard” against which an algorithm will be measured. Once ground truth in-
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formation for a set of test images has been established, characterization of
computer detections is quite straightforward. Detections that correspond to pos-
itive image regions are true-positive detections. All other detections are
false positives. How correspondence is determined is the subject of the next sub-
section.

Historically, several schemes have been used for ground truth annotation of
medical images. Positive image regions are denoted either by some definition of
the region boundary or a template image. Some examples are shown in Fig. 2. The

Fig. 2 A mammogram image with a spiculated lesion and three methods for denoting the
positive location: (A) the raw image, (B) a circular region defined with a centroid and ra-
dius, (C) a region defined with a chain code, and (D) a template image.
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MIAS database (4) of mammogram images uses a circle, defined by a center and
radius, to denote a positive region. The LLNL/UCSF mammogram database (5)
uses template images for ground truth annotation. The DDSM (2) uses a chain
code, which permits a more freeform definition of positive regions, and a utility
for converting the chain code to a template image.

Depending on the complexity of information given by the ground truth,
it is usually possible to convert from a boundary representation to a template
image and vice versa. Both methods can encode the same information, but there
are advantages to each. Boundary representations require less space to store
and can be more flexible than a template image. A boundary representation is
easier to use for overlapping abnormalities and abnormal regions that contain
different signs of abnormalities (e.g., a tumor with calcifications). On the other
hand, from an image-processing point of view, it is generally easier to imple-
ment algorithms for comparing computer output to ground truth using template
images.

B. Comparing Computer Output to Ground Truth

Specific detection criteria are dictated by the purpose of the intended application.
For example, if accurate tumor segmentation is considered important, perhaps for
diagnostic reasons or for evaluating intermediate processing results, then some
method of measuring segmentation accuracy is useful. However, if the computer
system is simply meant to prompt a human user to more closely inspect suspicious
image regions (i.e., a second reader system), then some looser evaluation criteria
based on tumor localization is more appropriate. Fig. 3 shows some examples of
computer detection results overlaid on a positive ground truth region. The perfor-

Fig. 3 Comparing computer output with ground truth.
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mance of detection algorithms is greatly affected by the detection criteria used to
determine the true-positive detection rate (6). Other methods could be used to
compare computer output to ground truth, but region overlap and measurements
of prompt location are by far the most common.

One method of comparing detection results with the ground truth is to mea-
sure the relative amount of a true-positive region that has been detected (or seg-
mented). For example, we could say the computer detection must overlap at least
N% of a ground truth region to be labeled a true positive. One potential problem
with this overlap measure is that very large detections, like in Fig. 3C, will be la-
beled true positives, because 100% of the tumor was detected. This is somewhat
misleading, because even though the computer detection is highly sensitive at the
pixel level, the specificity is very low. In fact, one could simply generate a single
huge detection region for every image. This would guarantee 100% sensitivity and
at most one false-positive detection per normal image. Although these numbers
sound great, the computer algorithm is useless.

A more accurate detection criteria is one that measures the mutual overlap
between a computer detection and a positive region. Now, the threshold of
N% mentioned earlier also applies to the relative amount of the computer de-
tection that is overlapped by the ground truth region. So, the detection in Fig.
3C would no longer be a true positive, because the ground truth only overlaps a
relatively small percent of the detection. Another way to view this detection cri-
teria is as a measurement of the pixel-level sensitivity and specificity. For ex-
ample, in Fig. 3B, the pixel-level specificity is 100%, but the pixel-level sensi-
tivity is very low. The main advantage to a mutual overlap detection criteria is
that they avoid labeling oversized or undersized detections true positives. One
problem is determining how much mutual overlap constitutes a true-positive
detection.

For second reader systems that generate prompts, the computer detection
can be effectively reduced to a single point. This can be accomplished in any num-
ber of ways. For example, the prompt location may be computed as the centroid
of the detected region (7), or, if individual pixels have associated probabilities, as
the location of maximum likelihood within the detected region (8). Now, all that
matters is the location of the prompt. A prompt may be considered a true-positive
detection if it lies in or near a positive region, otherwise it is a false positive. The
distance between the centroid of a ground truth region and the prompt may also be
used. It may be necessary to weight the distance measurement with respect to the
size of the ground truth region if tumor size varies greatly. The physical appear-
ance of the prompt, be it an arrow or some other symbol, is probably not critical
as long as it is clearly visible. In addition, a single-point prompt is not the only op-
tion. Kegelmeyer (9) overlaid the outline of computer-detected regions on the im-
ages to prompt radiologists and used an overlap detection criteria to measure sen-
sitivity and specificity.
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III. ALGORITHM EVALUATION

Detection algorithms have parameters that can be varied to alter the TP and FP
rates. These parameters may correspond to settings for a statistical classifier,
threshold values on the algorithm output, or other elements of the detection pro-
cess. Each set of parameter values may result in a different (TP, FP) pair, called
an operating point. In general, as the TP rate of a process increases, so does the FP
rate. This is simply because more detections must be generated to increase sensi-
tivity, but some of these extra detections will inevitably be false positives.

In practice, the errors that can be made (false positive and false negative) of-
ten have different “costs.” For example, it may not be as detrimental to generate a
false-positive detection as it is to miss a true abnormality. A false positive may
cause a “needless” biopsy, but a false negative allows a cancer to grow. In such
cases, “profits” can be maximized by selecting the best available operating point
(10). The best parameter settings for an application may well depend on the par-
ticular combination of TP and FP rates desired.

Given that detection algorithms can be adjusted to perform at varying lev-
els of sensitivity, it would not seem sufficient to evaluate or compare algorithms
on the basis of a single operating point. A couple of well-accepted methods for al-
gorithm evaluation within the context of tumor detection take into account the
sensitivity/specificity tradeoff characteristics. Depending on the situation, one or
both of these methods may be appropriate.

A. ROC Analysis

Receiver operating characteristic (ROC) analysis is a well-accepted method of
evaluation for detection tasks (11,12). An ROC curve is a plot of operating points
showing the possible tradeoff between the TP rate vs the FP rate. Two typical
ROC curves are shown in Fig. 4. The area under the curve, usually referred to as
the Az index, is an accepted way of evaluating diagnostic performance (11–14).
Perfect diagnostic accuracy means a TP rate of 100% (or 1.0) and a FP rate of 0%,
and the ROC curve will have an Az of 1.0. Random guessing would result in an Az

of 0.5.
Analogies for ROC analysis exist in the field of statistics for testing a sta-

tistical hypothesis (15). Type I and type II errors correspond to false negatives and
false positives, respectively. The probability of committing a type I error, which
we are calling the false-negative error rate, is called the level of significance, and
is denoted by the Greek letter �. The probability of committing a type II error,
which we are calling the false-positive error rate, is denoted by the Greek letter �.
The term “power curve” is used instead of ROC curve.

During system development, ROC analysis can be applied to evaluate cer-
tain intermediate aspects, or levels, of the computer detection algorithm. For ex-
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ample, suppose a computer algorithm segments candidate regions from an image,
and then each region is classified as normal or abnormal. Segmentation involves
pixel-level analysis in which similar neighboring pixels are grouped together into
regions. This requires two basic steps: (1) features are computed at each pixel, and
(2) a decision is made to either keep or discard a pixel on the basis of the com-
puted features. Segmentation may be as simple as thresholding an image on the
basis of intensity, or as complex as sophisticated feature extraction followed by
multivariate statistical classification (16). Regardless, the segmentation step can
be expressed in terms of a yes/no decision: Is the pixel in question likely to be part
of a tumor? Similarly, the region classification task corresponds to a yes/no deci-
sion: Is the segmented region likely to be a tumor?

In this example, the performance of the overall system will clearly
depend on the sequence of steps used in the pixel-level analysis followed by
the region-level classification. Variations of the detection process can be
compared to facilitate selection of the optimal components and parameter val-
ues. For example, ROC analysis can aid in feature selection by facilitating
a comparison of different feature sets extracted at the pixel and region levels.
Different classifiers can be compared in the decision-making process of the
segmentation and classification steps. An ROC curve can also be useful in 

Fig. 4 Two ROC curves and the expected performance from random guessing.
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selecting parameter values, such as thresholds, by allowing the system devel-
oper to visualize the sensitivity/specificity tradeoff associated with different
settings.

B. FROC Analysis

It is often not sufficient to simply report the existence of a tumor. Correct local-
ization of the tumor is also required for a true-positive detection. The appropriate
method of evaluation in this case is free-response receiver operating characteris-
tic (FROC) analysis (17–20). FROC analysis permits multiple abnormalities per
image and requires correct localization of tumors. An FROC curve is a plot of op-
erating points showing the possible tradeoff between the TP rate vs the average
number of false positives per image, as shown in Fig. 5.

The ordinate of an FROC plot is the same as for ROC plots, 0% to 100%
sensitivity. The abscissa of the FROC plot begins at zero, but the upper limit is
open. Realistically, a detection system is not very useful if too many false posi-
tives are generated, and for most sufficiently large data sets 100% sensitivity is
rarely attainable. For these reasons FROC plots rarely show performance above a
few false positives per image. As with ROC curves, the Az index is useful for eval-
uating diagnostic performance. The Az value of an FROC curve, like that of an
ROC curve, has a maximum value of 1.0 corresponding to perfect performance.
The Az value is computed by normalizing the area under the FROC curve by the
range of the abscissa. For example, the Az for the FROC curve in Fig. 5 would be
computed by dividing the area under the curve by 3.0.

Fig. 5 An FROC curve is a plot of the sensitivity the average number of false positives
generated per image.
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C. Generating and Comparing ROC and FROC Curves

We should note that ROC and FROC analyses were originally used in psy-
chophysics (21), signal detection (22), and statistical decision making (23). How-
ever, the concepts have since been adapted for performance evaluation of com-
puter detection/recognition algorithms. In traditional ROC analysis involving
human observer experiments in medical imaging, operating points are generated
by requiring the observer to use confidence ratings rather than a strict yes or no
answer (12). Typically, the observer would rate a finding on a scale of 1 to 5, or
some similar range, where 5 indicates the highest confidence the finding is ab-
normal, and 1 indicates the lowest confidence (12). The ROC points are generated
by considering successively less certain categories of abnormal (i.e., category 5
alone, categories 4 and 5 together, categories 3, 4, and 5 together, etc.) (13).

Generating operating points for computer detection algorithms is usually done
by applying a threshold to the algorithm output. This roughly corresponds to the
concept of confidence ratings used by human observers. For example, Kegelmeyer
(9,24) and Karssemeijer (8) use decision tree classifiers to generate a probability im-
age for each mammogram image. The value at each pixel represents a probability
estimate that the pixel is part of an abnormality. The probability image is thresh-
olded at some value, and detections are generated for remaining regions. Numerous
operating points are generated by varying the threshold value. In fact, most statisti-
cal classifiers produce an output that can be easily thresholded to generate a large
number of operating points. Some classifiers may use more complicated methods to
generate operating points (25), and detection algorithms involving the combination
of multiple classifiers may also require specialized methods (26).

1. Computing Az Values

The area under an ROC or FROC curve can be computed at least two different
ways. One method is to integrate a smoothed curve that has been fitted to the op-
erating points. For ROC curves, the ROCFIT program developed by Metz and col-
leagues (27) is typically used. For FROC curves, Chakraborty’s FROCFIT pro-
gram seems to be the software of choice (19). These curve-fitting programs
assume continuous binormal distributions for ROC and FROC curves. This is why
the index Az is used, because it symbolizes the gaussian underpinnings. This as-
sumption is generally well accepted (11,13,19,20,27).

Because computer algorithms can typically generate an abundance of oper-
ating points, a reasonable estimate for the area under ROC and FROC curves can
be obtained using the trapezoidal rule. The trapezoidal rule does systematically
underestimate areas under the curve. However, if many operating points can be
generated, this underestimation becomes negligible. In addition, if competing
methods generate a similar number and distribution of operating points, then Az

values for both methods will have approximately the same underestimation, and a
comparison will still be valid.
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Detection algorithm performance at very low sensitivities or very high FP
rates is usually not of practical interest. When large portions of a curve lie outside
the range of interest, it may be more useful to analyze only a portion of the ROC
or FROC curve (28). An area computed under a portion of a curve needs to be nor-
malized (in the same manner as the FROC measurement) to arrive at an Az value
before applying tests for statistical significance. Consider the FROC curve in Fig.
5, but assume that our application requires the false-positive rate to average less
than 1.5 per image and the sensitivity must be greater than 75%. This situation is
depicted in Fig. 6. First, the area under the curve over the range of interest is esti-
mated (the shaded area in Fig. 6). Next, it is normalized by the maximum possi-
ble area over the ranges of interest as in

Az � (1)

where Ap is the area under the curve computed between TP rates TP1 and TP2, and
FP rates FP1 and FP2. In this example, the partial area Ap is normalized by 
(1.0 � 0.75)(1.5 � 0) � 0.375, to get the Az value.

2. Comparing Az Values

To compare two Az values, a critical ratio is computed, and a test for statistical sig-
nificance is applied. The formula for the test statistic, z, is

z � (2)

where Az
1 and Az

2 are the two estimated Az values. The variance term in the de-
nominator can be estimated several ways. In the context of comparing computer

Az
1 � Az

2

��
�V� a�r(�A�z

1��� A�z
2)�

Ap
���
(TP2 � TP1)(FP2 � FP1)

Fig. 6 Computing an Az value for a portion of an FROC curve.
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detection algorithms (or variations of the same algorithm), it is likely that ROC or
FROC curves for competing methods will be generated from the same set of test
data. Thus, the Az values will be statistically dependent, and there is a covariance
term associated with Var(Az

1 � Az
2). Hanley and McNeil (13,14) provide a method

for estimating the variance term when ROC curves are derived from the same
cases. Alternatively, a jackknife method (29–31) can be used to directly estimate
the variance term as:

Var(Az
1 � Az

2) � �
N

N
� 1
� ∑

N

i�1
[(Az

1 � Az
2) � (Az

1i � Az
2i)] (3)

where Az
1i and Az

2i represent the Az values of the two methods obtained by analyz-
ing all images except the ith image, and N represents the total number of images.

A two-tailed test for statistical significance is appropriate, where the null hy-
pothesis is that the two observed Az values are the same. The alternate hypothesis
is that the two Az values are different. A critical range of z � 1.96 or z � �1.96
(a level of significance � � 0.05) indicates that the null hypothesis can be rejected,
and there is sufficient evidence to support the alternate hypothesis.

Fig. 7 Case B_3033 from volume cancer_01 of the Digital Database for Screening
Mammography (2). In two mammogram views of the same breast, an irregular mass with
ill-defined margins is visible in the craniocaudal view but not in the mediolateral oblique
view.
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D. Levels of Evaluation

Earlier, we discussed the usefulness of pixel-level and region-level evaluation
during algorithm development. For overall system evaluation, “image-level” re-
sults are typically reported in ROC or FROC form. Some screening or diagnostic
applications may include multiple images of the same object. For example, a typ-
ical mammogram screening in the United States contains two views of each
breast: a craniocaudal view and a mediolateral oblique view. Sometimes a tumor
may be detected in one view, but not in the other, as in Fig. 7. The results of the
detection algorithm in this situation are perfectly acceptable, because the tumor
was indeed detected. Thus, “case-level” performance evaluation may be a reason-
able, or even preferred, alternative. Kegelmeyer et al. report the case level sensi-
tivity and specificity of an algorithm for detection of spiculated lesions (9). An
FROC curve may be used to plot case-level results. Here, the sensitivity refers to
the detection rate of each tumor that is present in the study. If a tumor is visible in
multiple images, it need only be detected in one view for a successful case-level
result.

IV. CLINICAL EVALUATION

Retrospective testing on previously diagnosed cases is only the first step in test-
ing and refining tumor detection methods for clinical use. To ensure that a system
is safe and effective, it must be tested in the operating environment for which it
was designed. The intended use of a detection system must be defined before de-
termining appropriate clinical trial design.

The most ambitious use of CAD is as a fully automated system capable of
determining the existence of an abnormality on its own. In this scenario, the sys-
tem is expected to have at least the same performance as an expert in terms of both
specificity and sensitivity. Another potential application is to use a system as a
prescreener that can reliably eliminate clearly normal cases from further review
by a human. In this case, the system should be highly sensitive and should be able
to identify a substantial number of normal cases with a high degree of confidence.
Given the current state of the art in medical image analysis, perhaps the most re-
alistic current use of a tumor detection system is as an aid to radiologists. This de-
tection system can act as a second reader such that radiologist’s performance with
the help of the system is better than unassisted performance (9,32–36). A second
reader system must have high sensitivity but may not need to be as specific as a
prescreening or stand-alone system.

Clinical testing is not only concerned with the effectiveness of a detection
system but also with the safety of using that system. Medical image interpretation
is a diagnostic tool that results in consequences for patient care. The result of this
interpretation may send a patient to biopsy, which is an invasive procedure with
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lasting implications. In addition to the inevitable trauma and cost, a biopsy that re-
sults in a benign finding can, for example, cause problems in reading future diag-
nostic images of the affected area (37).

Prospective clinical testing is usually complicated because of the large num-
ber of variables involved in any trial (38). Careful design is required to achieve
meaningful results. Clearly defining the objectives of each experiment is the first
step toward a successful design. Interestingly, designing clinical testing protocols
for measuring effectiveness and safety of the more sophisticated fully automated
system or prescreener may be easier than designing protocols for measuring the
effect of using a detection system in conjunction with a radiologist. The main rea-
son for this is the complexity introduced by the interaction between the detection
system and the radiologist.

It is often helpful to break down the main objective of a study into several
smaller objectives. Designing a single large study with complex interactions 
between variables and parameters makes it difficult to draw any conclusions based
on final results. It is easier to to come up with more conclusive results from
smaller experiments. In showing the safety of a tumor detection system, it may be
easier to design a protocol aimed at answering the simple question: Does the
biopsy rate of a particular radiologist increase by using the system compared with
his or her prior biopsy rate? In the context of showing effectiveness, a reasonable
question may concern the ability of the tumor detection system to detect tumors
missed by radiologists. One way to show this is to apply the tumor detection sys-
tem to cases with previous images that were originally found to be normal, but for
which an abnormality was found on a subsequent examination. If the tumor de-
tection system is able to identify regions in the previous images that correspond to
where the tumor was eventually found, then clearly the system has the ability to
detect abnormalities missed by a radiologist.

The application and the intended use of the system will play major roles
in determining the appropriate design of a clinical study. Also, understanding
the current workflow of clinical practice for a particular application is important
for a successful design. Once the main objectives have been defined, several
smaller studies can be designed to provide evidence that support or refute the
basic assumptions. Each smaller study design can go through the following
process:

1. Define a central simple question that, when answered, will offer evi-
dence of safety or effectiveness.

2. Design a focused experiment aimed at answering that central question
while taking into account the current practice in the clinical environ-
ment.

3. Carry out the experiment and collect needed data.
4. Analyze the data to determine whether it supports a positive or negative

response to the central question.
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V. RECOMMENDATIONS

In addition to using the evaluation criteria and statistical methods for algorithm
evaluation presented here, we shall end this chapter with some recommendations
for sound research.

A. Train/Test Protocol

One very important aspect of developing a system for tumor detection is the
training and testing protocol used for algorithm development and evaluation. In
most medical image analysis applications, the availability of high-quality, reli-
ably ground-truthed data is scarce. Among the reasons for this are (a) the time
required of a domain expert to provide ground truth information is quite expen-
sive and perhaps difficult to reserve, (b) converting ground truth from what is
provided by the domain expert to a suitable computer-usable format is tedious
and labor intensive, (c) expensive digitization equipment may be required, and
(d) medical institutions are reluctant to provide data that might reveal patient
identity, constituting an invasion of privacy. Given a limited set of data that
must be used for both algorithm development (e.g., training machine learning al-
gorithms) and evaluation using efficient train/test protocol is very important. It
is also important to keep in mind that training data should never be used as test
data in any one experiment. Therefore, the best approach is probably some form
of cross-validation training and testing.

For cross-validation, the data set is divided into N separate subsets. One sub-
set is held out, and the algorithm is trained using the remaining N � 1 subsets and
tested on the held-out subset. Next, a different subset is held out, and the train/test
cycle is repeated. This process continues until each subset has been used as the test
set. Unbiased test results can now be reported on all the data, and, more impor-
tantly, training data have never been used to test in any one experiment. The value
of N can range from 2 to M � 1, where M is the total number of cases available.
The case where N � M � 1 is called leave-one-out or “round-robin” testing, and
in general this process is called N-fold cross-validation. It may be important to
consider what the “one” is that is left out. In mammography, it would appropri-
ately be one study consisting of four images.

B. Data Selection and Detection Criteria

One aspect of algorithm evaluation concerns the selection of test data. Perfor-
mance figures given in the “research” stage are typically much better than in ap-
plication. Evidence of this has been shown by the University of Chicago’s work
on mammogram image analysis (39). This is due in part to inadequate or small
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data sets at the research stage, inconsistent evaluation criteria, and optimistic
train/test formulations. To whatever extent possible, the test data should be typi-
cal of what could be expected in a real-world environment. This applies with re-
spect to the subtlety of the tumors, variability of image quality, and overall ap-
pearance of the images. For example, mammogram images exhibit a wide variety
of breast tissue densities and textures. As one would expect, less-dense and less-
textured breast images are generally easier to read for humans and computers. So,
it is important to include the more difficult cases in a test set, as well as the easier
ones (40).

With the abundance of results reported in scientific journals and conference
proceedings, it is usually impossible to determine the relative merit of multiple al-
gorithms designed for the same task, because each has been tested on a different
set of data. Ideally, researchers should share data to facilitate comparisons among
competing algorithms. Because many times privacy constraints prohibit such data
sharing, whenever possible test results should be reported for publicly available
image databases (2,4,5,41). In fact, identical sets of test images should be used for
an unbiased, direct comparison of competing algorithms (41).

Because performance varies greatly depending on how computer detections
are scored (6), identical detection criteria should be used when comparing algo-
rithms. Therefore, researchers should specify the parameters of their published
work well enough for it to be repeated.

C. Simulated Data

In general, performance evaluation based on simulated data is not acceptable (un-
less you want to detect simulated abnormalities!). Simulated data can be used ef-
fectively as developmental tools. For example, in some problem domains real data
are not overly abundant. Chan et al. (42) superimpose simulated microcalcifica-
tions onto normal mammograms to optimize the image-processing and signal-
extraction parameters used in their detection algorithm. FROC analysis is used to
evaluate and compare different combinations of parameters. Once the parameters
have been set using the simulated data set, the algorithm is evaluated on real mam-
mogram data. If real data are used for extensive parameter optimization, that same
data should not be used for a final evaluation, because this constitutes testing on
the training data. Thus, they were able tweak their algorithm without biasing the
results.

Another good example of simulated data as a developmental tool is to 
verify that particular software modules are functioning properly. Karssemeijer (8)
uses a schematic model of a spiculated lesion embedded in gaussian noise at 
various signal–noise ratios (SNR) to verify that feature extraction code behaves as
expected on an ideal example of the type of abnormality his algorithm is attempt-
ing to detect.
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D. Failure/Special Case Handling

No algorithm is unbreakable. However, it may be of interest to detect and handle
special known circumstances. Problems with image acquisition, such as scanner-
induced artifacts or film-feed errors, may cause unexpected results (43). When hu-
mans are involved in the process, there is the potential for other problems such as
misplaced identification labels, grease pencil markings, scratch and dust artifacts,
or films could be fed into a digitizer in different orientations. Inevitably, unusual-
looking images will be encountered. Fig. 8 shows some atypical mammogram im-
ages that, although rare, do occur in a clinical environment. Handling special cir-
cumstances and graceful degradation are important to maintain physician
confidence as new applications involving automated tumor detection begin to
make their way into everyday practice.

VI. A CASE STUDY

To illustrate some of the concepts and techniques discussed in this chapter, we will
step through an example of algorithm development in which some of the evalua-
tion techniques and recommendations were used to guide the process. The algo-

Fig. 8 Examples of atypical mammogram images. (A) Breast implants may be present as
in image aorcc of the LLNL/UCSF digital mammogram library (5). (B) A pacemaker is vis-
ible in the left MLO view of case B_3084 from volume cancer_01 of the Digital Database
for Screening Mammography (2).
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rithm is designed to detect clustered microcalcifications in digital mammogram
images. The basic approach is to segment high-contrast candidate regions, extract
a set of measurements from the candidates, classify candidates as either “normal”
or “calcification,” and finally group individual calcifications into clusters.

We have two separate sets of mammogram images for algorithm develop-
ment and evaluation. One set of the data is used only for algorithm development.
In the next two subsections, we will use this training set to select parameters and
algorithm components, perform feature selection, and train a classifier. There are
no restrictions on how these data are used in the training phase. The second data
set is used only for performance evaluation and will not be used in any way until
then. This strict separation of training and test data is critical for unbiased results.
For both data sets, we have ground truth for all of the clusters and many of the in-
dividual calcifications in the form of template images.

A. Algorithm Component Selection

The first algorithm module is meant to segment candidate regions. For this pur-
pose, a filter designed for small, round, bright spots is used. The filter response is
a measure of contrast, and true calcifications should give a high response. The fil-
ter is convolved with an image, and a threshold is applied to the filtered image to
create a binary template. Although this sounds quite straightforward, there are
many variations to the basic process, some more subtle than others. For example,
there are preprocessing steps meant to segment the breast tissue from the film
background and handle image noise. There is the design of the “spot detection”
filter and selection of an appropriate threshold parameter.

First, we need to establish the goal of the segmentation module and the de-
tection criteria that will be used to compare the binary template to the ground
truth. The purpose of the segmentation module is really to reduce the amount of
image data that will be passed on to the more computationally expensive feature
extraction module. So, we want to extract as many calcifications as possible (i.e.,
a high TP rate) while at the same time limiting the number of normal regions that
are segmented (i.e., a low average number of FPs per image). Because we are at-
tempting to locate multiple targets in each image, FROC analysis is the appropri-
ate evaluation technique. From previous experience, we know that the segmenta-
tion module should have a sensitivity of around 90%. For this reason the FROC
curves are evaluated for sensitivities ranging from 85% to 90%, and for FP rates
from 0 to 1000 FPs per image.

Accurate segmentation is not crucial at this point, because in our algorithm,
the feature extraction module refines the segmentation results. This being the case,
the binary regions in the segmentation template are reduced to single-pixel loca-
tions by selecting the pixel within each connected region with the highest response
to the contrast filter. The single-pixel locations are compared with the ground
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truth. A pixel location that lies within the boundary of a labeled calcification is
considered a true positive, and anything else is a false positive. Because it is prac-
tically impossible to provide ground truth for every individual calcification, the
FP rate is computed from the segmentation results of normal images only. This
avoids counting a segmented region that corresponds to an unlabeled calcification
as a false positive.

Now that performance goals and detection criteria have been set, different
configurations of the segmentation module can be easily evaluated. Fig. 9 shows
FROC curves and Az values for two variations of the segmentation module using
all the training images. The only difference between methods A and B is a pre-
processing step for estimating the image noise level. All other parts of the algo-
rithm are identical. So, this experiment clearly isolates the effect of two variations
of a preprocessing step and justifies the selection of method B.

The FROC analysis also permits us to specify the operating sensitivity of the
segmentation module by means of selection of an appropriate threshold for the fil-
tered image. Because we would like approximately 90% sensitivity, we simply
need to select the threshold that generated the operating point closest to this de-
sired performance. From Fig. 9 we see that an average of 350 candidates per im-
age will survive the segmentation process at a sensitivity of 90%. A typical 18-cm
by 24-cm mammogram film digitized at a spatial resolution of 50 �m per pixel
produces a digital image with more than 17 million pixels. So, this first part of the

Fig. 9 FROC curves for two variations of a segmentation algorithm. The Az values are
computed over the TP range (85%, 90%), and the FP range (0,1000) FPs per image. This
analysis justifies the selection of method B.
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detection algorithm reduces the amount of image data from 17 million pixels to
about 350 while retaining 90% of calcifications.

B. Feature Selection and Classification

Once the segmentation module has been optimized, we turn our attention to the
feature extraction and classification modules. Because localization has already
been performed, we are left with a yes/no question: Is the candidate a calcification
or not? The performance goal is to retain as many true calcifications as possible
(high TP rate) while eliminating as many noncalcifications as possible (low FP
rate). This is a typical two-class pattern recognition problem, and the use of ROC
analysis techniques is appropriate for evaluation.

The feature extraction routines compute a set of measurements, or features,
in the neighborhood of each candidate. On the basis of the set of features, a sta-
tistical classifier assigns each candidate a value that indicates the probability that
it is a calcification. The operating points for a ROC curve are generated by apply-
ing a threshold to the probability associated with each candidate.

This evaluation process requires training data for the classifier and valida-
tion data with which to generate ROC curves. We simply divided the training set
into two halves with approximately the same numbers of normal and abnormal
images. Now, different feature sets, classifiers, and parameter settings can be eas-
ily evaluated by generating and comparing ROC curves. Properly conducted ex-
periments can isolate the effect of different variations of the feature extraction and
classification process.

Fig. 10 shows ROC curves and Az values for three different feature sets. The
only difference across each experiment is the features extracted for each candi-
date. All other parts of the process, including classifier training, parameter set-
tings, and validation data, are identical. Feature Set A was the original attempt to
distinguish calcifications from normal tissue. We noticed that a good number of
false positives were fine linear strips of connective tissue and calcified arteries.
Feature Set B is the same as Set A plus an extra feature designed to respond to lin-
ear structures. Feature Set C is the same as Set B plus another feature designed to
respond to calcified arteries. There is a significant jump in performance going
from Feature Set A to Set B. Clearly, the linear structure feature was a worthwhile
addition. The calcified artery feature led to a small performance gain, but because
it is not computationally expensive, we opted to include it in the final algorithm.

C. Performance Evaluation

Once the algorithm has been sufficiently tweaked on the basis of the training set
data, we are ready for performance evaluation. The detection algorithm is applied
to the test images using a leave-one-case-out train/test protocol. That is, a single
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case is pulled from the test set, the algorithm training is performed with the re-
maining cases, and test results are generated for the single test case. The process
is repeated with each case used as the single test case, and the results are compiled
together.

The images are preprocessed and passed through the segmentation, feature
extraction, and classification stages. After classification, images are postpro-
cessed by grouping all calcification objects into clusters. A cluster is defined as
three or more calcifications within 1 cm2. The intended use of this detection algo-
rithm is for a CAD second reader system. Therefore, cluster detections are reduced
to single-pixel prompt locations computed as the centroid of the individual calci-
fications within each cluster. If a prompt falls within 1 cm of a true cluster, it is
considered a true positive, otherwise it is a false positive.

Performance can be measured at the image or case level using FROC anal-
ysis. Each individual operating point in the FROC curves are generated by apply-
ing a threshold to the probability associated with each calcification and then 
running the postprocessing clustering routine. Fig. 11 compares the FROC curves
at the case level and image level for the set of test images. As the detection algo-
rithm is further refined, new FROC curves can be compared with those shown in
Fig. 11 to determine whether any tangible improvements have been made.

Some changes to the detection algorithm may give better intermediate re-
sults but not make a difference in the final evaluation. For example, an improved
segmentation step may significantly reduce the number of false-positive objects

Fig. 10 ROC curves for three different feature sets for microcalcification classification.
The Az values are computed over the TP range (60%,100%), and the FP range (0%,6%).
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that reach the classification step. However, most of those extra object removed be-
fore classification may have not been classified as calcifications in the previous
version of the algorithm. The end results are the same for both versions of the al-
gorithm. The evaluation still provides useful information, because one may now
select whichever version of the algorithm is conceptually more appealing or com-
putationally less expensive.
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3
Clinical Applications
Present and Future

Elizabeth A. Krupinski
University of Arizona, Tucson, Arizona

I. INTRODUCTION

One of the main advantages of acquiring radiologic images digitally and display-
ing them on cathode ray tube (CRT) monitors is that image-processing tools and
computer-aided detection (CAD) schemes can be readily implemented. Thus,
there has been a proliferation of image processing (1–2) and CAD (3–5) tools de-
veloped in the past 20 years. With the advent of digital acquisition technologies in
chest imaging (i.e., computed radiography [CR]) and the recent progress in digi-
tal mammography, clinical implementation of CAD seems even more probable
than in the past. Image-processing tools are often used regularly in certain clinical
situations now (e.g., in computed tomography [CT], magnetic resonance imaging
[MRI], and ultrasonography [US], where images are digitally acquired and are of-
ten displayed on and diagnosed from a CRT monitor), but for the most part CAD
tools are used only in experimental situations. Part of the problem with imple-
menting CAD and image-processing tools in the clinical environment is that only
a few, limited studies have been conducted to demonstrate reliably their useful-
ness in improving observer performance. For the most part, results from the use of
CAD and image processing in the clinical environment have been equivocal
(6–10). Sometimes CAD or image processing aids performance, sometimes it has
little or no effect, and sometimes it actually hurts overall performance. Before get-
ting into the specific applications of CAD and the clinical implementation of
CAD, a brief explanation of why and how CAD might be useful to the radiologist
is in order.
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II. PROMPTING/CUEING TO IMPROVE PERFORMANCE

Radiologic images are generally quite complex, especially chest radiographs and
mammograms. The detection and recognition of lesions in these images can be
difficult because (a) x-ray images are two-dimensional representations in which
three-dimensional solid structures are made transparent, requiring an understand-
ing of projective geometry to determine the true depth and location of imaged
structures; and (b) lesions, especially nodules or masses, are typically embedded
in a background of anatomical noise. The difficulty of the task of finding a lesion
in a radiographic image is especially evident when one considers general screen-
ing in the clinical setting. If the radiologist has no clinical history and is looking
for any possible abnormality, then the entire image must be searched, or read, to
make a complete and accurate diagnosis. Even when clinical information is avail-
able, the radiologist must read the entire image carefully for the possible presence
of other abnormalities in the image.

For general screening studies, error rates (misses) have been estimated to
range from 15% to 30% with 2% to 15% false-positive rates (11–16). Many of
these missed lesions are, in retrospect, visible on the radiograph and thus are one
of the major causes for malpractice suits in radiology (17–21). Malpractice is not
the only issue, because missed lesions can result in delayed treatment and possi-
bly increase the severity of the patient’s illness. These are just a few of the many
reasons why ways have been investigated (including CAD) to aid the human ob-
server in detecting and classifying (i.e., either as a particular type of lesion or as
benign vs malignant) lesions in radiographic images.

There have been a number of ways that have been tried over the years to im-
prove observer detection performance. Computer-aided detection is one of the
more recent ways tried and differs from past attempts in that a computer is used to
analyze the radiographic image and provide detection and/or classification infor-
mation to the radiologist to incorporate into the final diagnostic decision. The ad-
vantage of using computers is that they are objective. An algorithm(s) is devel-
oped that uses the same basic criteria for every case it analyzes, and detection
results are consistent as long as the algorithm or its thresholds are not changed.
Other attempts to improve performance rely more heavily on the human observer.
The human observer, however, is much more subjective and variable than the
computer. Depending on any number of factors (even time of day!), radiologists
will change their decision criteria and the way they search images (22), which can
contribute to errors being made.

In general, investigators have found that cueing radiologists to direct their
attention to and search a particular area of an image does improve performance.
Computer-aided detection does essentially the same thing, but a computer gener-
ates the cue and tells the radiologist where to look. The most common type of cue-
ing that has been investigated uses a cue that radiologists generally have available
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when reading images—the patient’s clinical history (e.g., slipped on ice, sore
knee) or referral request (e.g., rule out pneumonia). The results of investigations
into the effect of history information have, however, been equivocal. Some stud-
ies have reported an increase (23–26) in the true-positive rate (e.g., for complex
abnormalities other than nodules), but sometimes this gain has been offset by an
accompanying increase in the false-positive rate. On the other hand, some studies
that have given the radiologist a complete physical description or history of the
target abnormality have found that overall performance does not improve (27–29).
General consensus does seem to support the belief that clinical history does im-
prove detection performance for many abnormalities.

Kundel et al. have used the radiologists’ own eye-position data to cue them
to possible lesion locations. A series of experiments demonstrated, by recording
the eye position of radiologists as they searched chest images for nodules, that
gaze duration is a good predictor of missed nodules (30). Radiologists tended to
spend more time fixating nodule locations, even if they did not report detecting a
lesion, than they did fixating image locations without nodules. Similar results
have also been found with bone and mammography images (31–34). A convenient
method for displaying distributions of gaze durations associated with different di-
agnostic decisions is survival analysis. Fig. 1 shows typical gaze duration distri-
butions associated with true-positive (TP), false-positive (FP), false-negative
(FN), and true-negative (TN) decisions for radiologists searching chest images for
pulmonary nodules. Fig. 2 shows the same type of distributions for search in mam-
mograms. The characteristic distributions for diagnostic decisions in the two
search tasks are quite similar. Note that true-positive and false-positive decisions

Fig. 1 Distributions of gaze durations (as derived from survival analysis) associated with
true-positive (TP), false-positive (FP), false-negative (FN), and true-negative (TN) deci-
sions. The data are from six radiologists searching chest images for pulmonary nodules.
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are associated with longer dwell times than true negatives. False-negative deci-
sions fall somewhere in between positive decisions and true-negative decisions,
suggesting that the unreported lesion locations are being visually processed to a
greater extent (although they are not recognized as lesions) than truly negative ar-
eas.

On the basis of the observation that missed nodules receive prolonged
dwell, Kundel et al. designed an experiment that fed back areas of prolonged dwell
(by circling) to the radiologist for reconsideration (35). A dwell time of 1000 msec
(see the vertical line at 1000 msec in Figs. 1 and 2) was chosen as the feedback
threshold. Using this threshold, 38% of missed nodules were fed back for recon-
sideration. Fig. 3 shows an example of a chest image with a single missed nodule
circled for feedback. Typically about five image areas were fed back per image.
Perceptually based feedback resulted in a 16% increase in performance compared
with a control condition in which radiologists looked at the image for a second
time but without feedback. The number of true positives increased, and the num-

Fig. 2 Distributions of gaze durations (as derived from survival analysis) associated with
true-positive (TP), false-positive (FP), false-negative (FN), and true-negative (TN) deci-
sions. The data are from six radiologists searching mammograms for masses and/or micro-
calcification clusters.
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ber of false positives decreased compared with a control second look at the image
without feedback.

A series of follow-up experiments (36,37) demonstrated that the feedback
circle served to increase the frequency with which the radiologist fixates directly
on the nodule and decreases the spread of fixations in the region of interest.
Both of these factors would suggest an increased probability that the lesion
would be detected and recognized. By progressively decreasing the amount of
image area available for viewing outside of the feedback circle (see Figs. 4–6),
it was further demonstrated that the circle cue essentially had the effect of fo-
cusing attention to such an extent that information outside the circle was essen-
tially blocked off so the observer could concentrate completely within the circle.
Performance with the feedback circle present on the chest was essentially equiv-
alent to having all of the area outside the circle removed (see Fig. 7). The prob-
lem with perceptually based feedback is that the radiologist has to fixate missed
nodules for enough time to pass the feedback threshold. If the radiologist fails
to fixate the nodule during the initial search, it will not be fed back for recon-
sideration. Also, if the radiologist fails to fixate the lesion altogether, it cannot
be fed back for reconsideration.

Fig. 3 An example of a feedback circle superimposed over a pulmonary nodule missed
during an initial search of the image. Although the nodule was not reported, it was fixated
for more than 1000 msec and therefore was fed back for further consideration during a sec-
ond look at the image.
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Fig. 4 An example of how image area outside the region of a feedback was reduced to
determine the mechanism by which feedback circles improved nodule detection perfor-
mance. This image has 25% of the image area removed.

Fig. 5 An example of how image area outside the region of a feedback was reduced to
determine the mechanism by which feedback circles improved nodule detection perfor-
mance. This image has 50% of the image area removed.
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There are other ways that have been used to try to improve radiologists’
performance. Dual reading has been shown to improve performance (38,39)
and is often used clinically, but it is still a rather subjective procedure and re-
quires having two radiologists read the same image. In some clinics, two radi-
ologists are not available for dual readings, and in others dual reading is not a
cost-effective procedure. Picture Archiving and Communication Systems
(PACS) and teleradiology services are one way to facilitate the use of dual read-
ing and second opinions, but not all hospitals have access to these technologies
yet. Computer-aided detection is intended to function in much the same way
as a second reader does, but without the cost associated with using a second
radiologist.

Checklists have also been used to help radiologists classify lesions
(40–42), and in many cases these have been quite useful for correctly classify-
ing lesions as benign vs malignant. The Breast Imaging Reporting And Data
System (BIRADS) lexicon was developed by the American College of Radiol-
ogy as a quality assurance tool to reduce variability in mammographic interpre-
tations and use of terminology. Recent studies (42–44) have demonstrated that
the BIRADS lexicon is a useful predictor of malignancy—lesions classified as
category 5 have a very high probability of being malignant, and those classified
as category 3 have a high probability of being benign on biopsy. The use of
checklists such as the BIRADS classification is, however, dependent on the ra-
diologist detecting the lesion in the first place. The usefulness and reliability of

Fig. 6 An example of how image area outside the region of a feedback was reduced to
determine the mechanism by which feedback circles improved nodule detection perfor-
mance. This image has 100% of the image area removed.
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checklists also depend on the consistency with which they are used by different
radiologists and by the same radiologist on different cases. In the case of mam-
mography, even when using the BIRADS system, variation in classification
among readers can be quite high, especially for masses (45). The goal of some
CAD programs is to detect lesions, then apply checklist-like criteria and assign
a probability value as to whether the lesion is benign or malignant. The advan-
tage of CAD over the human observer is again that the computer is objective and
will use the image data in a consistent manner using consistent criteria; whereas
the human observer can be quite variable from image to image and from one
point in time to another.

Fig. 7 Examples of conditions in an experiment reducing the amount of background in-
formation outside the area of the feedback circle. Performance was measured using receiver
operating characteristic Az values.
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III. MEDICAL IMAGING AND LESION DETECTION

Much of the work in CAD has been done using mammographic images with mi-
crocalcifications and masses as targets of detection (46–50). Most of the early
work, and much of the work done now, has focused on detection of microcalcifi-
cations and microcalcification clusters. Part of the reason for concentrating on this
particular lesion is that microcalcifications are generally fairly high contrast,
punctate objects that have very different properties than the surrounding breast tis-
sue. In contrast to microcalcifications, masses tend to be embedded in the sur-
rounding breast tissue and have properties quite similar to the surrounding tissue.
Stellate lesions are especially difficult to detect because of their irregular borders
and very thin “tendrils” that emanate from the body of the lesion into the sur-
rounding tissue. Currently, detection rates for microcalcifications using CAD tend
to be higher than for masses, but there is much work being done to improve de-
tection rates and decrease false-positive rates in both of these area (51,52).

A number of people are also using computer analysis techniques to charac-
terize other potentially useful characteristics of mammograms. For example, there
are attempts being made to characterize breast tissue parenchymal patterns using
computer algorithms (53,54), because different breast patterns are associated with
differing levels of risk for breast cancer developing. Some breast tissue classifi-
cation systems have been developed for use by radiologists (55), but their use is
not universal or standard among those who do use them. Computer-aided detec-
tion analysis of parenchymal patterns and detection of subtle lesion patterns
within different parenchymal patterns (especially dense breasts) could prove to be
quite useful in improving the detection of breast lesions.

The detection of changes in the appearance of the breast, or in the appear-
ance of potential lesions that are being watched mammographically over time for
changes in appearance, is also of great interest to mammographers and those de-
veloping CAD techniques. The human visual system is very good at detecting
change, but subtle differences in size or shape can be difficult to detect, especially
because subtle changes require that attention be focused on the locus of change
(56). Lapses in attention or distractions, which often occur in reading rooms, can
result in subtle lesion changes being missed. A computer does not suffer from
lapses in attention or distractions, so changes in lesion shape or size might be more
reliably detected using CAD schemes designed for this purpose (57).

In chest radiography, some of the issues for lesion detection and classifica-
tion are very similar to those in mammography. Radiologists look for changes
over time in the appearance of the lungs in some cases, and in other cases they are
searching for specific lesions either in the screening situation or in response to a
particular patient history or symptoms. As in mammography, however, lesions
such as nodules are generally embedded in the complex background of the lungs

Copyright © 2002 Marcel Dekker, Inc.



and are often quite difficult to detect. Other disease patterns such as interstitial
lung abnormalities can also be quite difficult to detect and classify. Computer-
aided detection has had some success in detecting and characterizing lung lesions
and disease entities (58–61), although the success rate is not as high as with mi-
crocalcifications in mammograms. One of the major differences between research
in CAD for mammography vs chest imaging is that research in chest imaging uses
different types (62,63) of images (e.g., digitized film, CR, CT, MRI), whereas
CAD for mammography uses almost exclusively mammography images (al-
though there are some exceptions, see Ref. 64, for example).

IV. CRITICAL ISSUES FOR CLINICAL USE OF CAD

Many investigators are working in the area of CAD, using many different ap-
proaches to the general problem of detecting and classifying lesions in medical
images. A number of chapters in this book deal with some of the successes in the
development of CAD systems for mammographic and lung lesions and go into the
details of the various procedures implemented. It is safe to say, however, that the
clinical success of any CAD system depends on a number of issues in addition to
the basic one of how well a particular CAD system detects and/or classifies lesions
(i.e., what are the true-positive and false-positive rates). It is obvious that the CAD
information provided must be relatively reliable. True-positive rates need to be
high and false-positive rates need to be low. Too many false positives per image
will result in radiologists not trusting and becoming frustrated with the system.
Too few true positives will have the same result. Ideally, one would like the CAD
system to confirm what has been detected by the human observer and to point out
the very subtle lesions that are missed, without pointing out too many irrelevant
locations.

For the most part, CAD systems have been and still are evaluated in terms
of what the true-positive and false-positive rates are, independent of if and how a
radiologist uses the CAD information in the diagnostic decision process. It is only
recently that studies are being conducted that actually include the radiologist in
the evaluation process and use CAD as a second reader or prescreening tool dur-
ing the diagnostic process (65–67). The results of these studies are so far gener-
ally positive. In one study (65), when CAD was compared with double reading,
there were no statistically significant differences in sensitivity and specificity for
CAD-assisted reading compared with the double-reading consensus of two inde-
pendent radiologists. CAD also seems to be especially useful in helping radiolo-
gists classify correctly lesions as benign vs malignant. Chan et al. (67) and Jiang
et al. (66) both found that radiologists performed significantly better when CAD
information on the probability of malignant vs benign was provided. Radiologists
recommended more malignant lesions for biopsy and fewer benign ones when
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CAD was used compared with standard clinical reading without CAD. Methods
to enhance digitally displayed mammograms (68,69) also seem to improve (or at
least bring to the level of film screen) detection performance compared with dig-
itally displayed but unenhanced images.

It is worth noting, however, that not all studies have found CAD to be help-
ful in improving performance. Mugglestone et al. (70) compared reading mam-
mograms with and without lesion prompts. Each case had three prompts—one for
the true lesion and two false-positive prompts on 87% of the abnormal cases, and
three false positives with the lesion unprompted for 13% of the abnormal cases.
The normal cases all had three false-positive prompts. It was found that the addi-
tion of prompts did not improve significantly the number of lesions detected.
There was a slightly lower false-negative rate with prompts, but this was accom-
panied by an associated rise in the false positives on both normal and abnormal
cases. For a secondary analysis, the cases were divided into easy and difficult
cases. Prompting did not aid performance in either case, which is unexpected in
the difficult cases, because these are the ones one would expect CAD prompting
to be most effective in. The authors conclude that overall, prompting has an inter-
fering effect, because it has little influence on the true-positive rate and actually
may increase the false-positive rate.

The more general finding, however, that CAD improves performance of ra-
diologists is not surprising. CAD is a form of cueing, and as noted previously, it
has been demonstrated that cueing in general, whether it be by perceptual feed-
back, clinical history, or CAD, does improve performance. There is also extensive
evidence in the psychology literature that supports the beneficial effects of cueing
on performance (71–73). However, there are a number of issues that need to be
looked at for CAD to be a useful and productive tool in the clinical environment.

A. Display

At this time, image display is probably the most critical issue for clinical imple-
mentation of CAD. For chest radiography this is not as much a problem as it is for
mammography. Many departments use computed radiography to acquire chest
images, and although they are generally printed to film, they can be displayed on
a CRT monitor directly. The same is true for CT and MRI images of the
chest/lungs. There is no need to digitize films (unless traditional screen/film im-
ages are acquired), so the CAD algorithms can work directly on the digitally ac-
quired image data. Computer-aided detection information can then be displayed
directly on the image when it appears on the CRT monitor. Radiologists can either
diagnose the images from the monitor, or they can diagnose the images from film
and use the monitor display for viewing the CAD prompts.

In mammography, however, screening images are not acquired or displayed
digitally at this time. Stereotactic images are acquired and displayed digitally, but
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these images are used during biopsies once the lesion has been detected and diag-
nosed rather than for screening purposes. There is also much excitement sur-
rounding the advances being made in the development of systems for full-field
digital acquisition of mammograms (74–76). The problem in this area, however,
is that digital image acquisition for mammography is much farther advanced than
digital displays for mammography. Conventional screen/film combinations used
in mammography have an extremely high spatial resolution: 5% MTF at a fre-
quency of almost 20 lp/mm is typical. If this high limiting spatial resolution had
to be reproduced in a digital image for the typical mammography format of 
20.3 	 25.4 cm, a digital matrix of 8120 	 10,160 pixels would be required (77)!
Some studies (78,79) have suggested that a pixel matrix of at least 2048 	 2560
is the minimum spatial resolution required for digital mammography. This figure
is more realizable than the former for direct translation of film to digital resolu-
tion, but it is not clear yet whether it is really sufficient. Monitors are currently
available with resolutions of 2048 	 2560 and fairly high luminance levels (e.g.,
140 ftL), but there have been no formal studies assessing diagnostic performance
using digitally acquired mammograms displayed on these high-resolution moni-
tors. Because digital mammograms will likely be acquired at a higher resolution
than 2048 	 2560, better monitors than currently available will be needed for dis-
play, especially if it is found that radiologists need to see the entire image at once
at full resolution (i.e., rather than relying on zoom and pan functions to access the
full resolution data for viewing specific regions of interest).

Obviously, CAD for mammography would be most efficiently displayed di-
rectly on digitally acquired mammograms displayed on a high-resolution monitor.
Currently, this is not possible. Mammograms must be digitized, and then the CAD
prompts must be displayed on the lower resolution digitally displayed images. The
digitization step itself is a major bottleneck in the process at this time. For each
examination, at least four films need to be digitized (right and left breast, cranio-
caudal and mediolateral views) to be analyzed by the CAD system. Depending on
the digitizer, this takes at least 5 minutes, often longer, per case. In a high-volume
clinic, it could be very difficult, time-consuming, and impractical to digitize ev-
ery case and have it examined by CAD for a second opinion. At our institution we
have the ImageChecker CAD system from R2 Technology, Inc. (Los Altos, CA),
and we are able to process about one-third of the daily case load without interfer-
ing significantly with the normal flow of activities and reading schedules.

B. Invalid Cues or False-Positive Rates with CAD

As noted previously, there is quite a bit of evidence both in the psychological and
radiological literature that cueing or prompting observers to attend to specific im-
age locations aids detection performance. There are, however, some potential
problems with prompting that could influence the effectiveness of CAD prompt-
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ing when used in the clinical environment. Although already mentioned, it is
worth mentioning again that radiologists must have confidence in the fact that
whatever CAD system they are using, the CAD prompts are for the most part ac-
curate (i.e., have a very high true-positive rate and a relatively low false-positive
rate). On the one hand, it is a matter of reliability and the observer’s confidence in
what they are being shown. On the other hand, there is substantial evidence that
cueing accuracy can affect performance. Research in psychology (80–82) has
demonstrated quite reliably that valid spatial cues (i.e., those that correctly indi-
cate target locations) provide more benefits in terms of correct identification rates
and recognition times than do invalid cues. Invalid cues, which falsely indicate lo-
cations that do not contain a target, result in increased response times and in-
creased false-positive reports.

The invalid cue could potentially be a problem, although possibly minor,
with CAD. So far no CAD system is 100% perfect (i.e., 100% true positives with
0% false positives). With microcalcifications, the true-positive rates are very high
(�90%), but there are still false positives. Much work is being done to reduce the
false-positive rates, and much progress is being made. However, it seems unlikely
that a 0% false-positive rate with 100% true-positive rate will ever be reached,
given the wide variety of features in a mammographic image that resemble mi-
crocalcifications or masses. The key is to get the false-positive rates low enough
that the radiologist does not get frustrated with an overabundance of false reports
and can easily disregard obviously false locations. According to the mammogra-
phers at our institution, the microcalcification false-positive rate with the R2 Im-
ageChecker is low enough that they have a very high degree of confidence in this
part of the CAD system. They have also noted that for the most part, the false-pos-
itive microcalcification prompts are easily disregarded, because they tend to indi-
cate obvious things such as obviously benign macrocalcifications or minor nicks
and scratches on the original film image. This observation agrees nicely with stud-
ies in the psychology literature on the effects of nontarget similarity and difficulty
on target detection (83,84). It is possible that many of these false positives will dis-
appear altogether once digitally acquired mammograms can be displayed directly
on CRT monitors!

C. The Influence of CAD on Image Search

The mammographers at our institution also noted another potential problem with
CAD, because they have so much confidence in the ability of the CAD system to
correctly identify the microcalcification clusters, they tend to find themselves
“skimming” the original film mammogram (no CAD information) instead of con-
ducting a thorough microcalcification search. To see if this is really the case, a re-
cent study by Krupinski (85) recorded the eye position of radiologists as they
scanned mammograms in a CAD situation. Mammographic cases with masses
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and/or microcalcification clusters were digitized and analyzed by the Im-
ageChecker CAD system. Half of the readers were experienced mammographers
and half were fourth-year residents. Observers were instructed to search the orig-
inal film images, provide an initial diagnosis, then access and view the CAD in-
formation whenever they wanted to and provide a revised diagnosis. Fig. 8 shows

Fig. 8 An example of a mammographer’s eye-position pattern during search for masses
and/or microcalcifications. Each small circle represent a fixation or location where the eye
landed during search.
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a typical eye-position pattern of an experienced mammographer searching a mam-
mogram for masses and microcalcifications.

On average, the mammographers accessed the CAD images after 104 sec of
search, and the residents accessed it after 86 sec of search. The mammographers
then spent 49 sec on average searching the CAD and original images, and the res-
idents spent 63 sec. By correlating dwell times with decisions, it was found that
the median dwell time for mammographers on false negatives (unreported lesions)
before the CAD image was revealed was 1383 msec. The residents had a pre-CAD
median false-negative dwell time of only 921 msec. After CAD was revealed and
the false-negative locations were prompted, the mammographers had a median
dwell on those locations of 524 msec and the residents had a median dwell of 737
msec. For the mammographers 50% of the original false negatives were reported
as lesions after CAD, and 33% of the false negatives were reported by the resi-
dents. In this study all the false-negative areas were prompted.

True positives had a median dwell of 1743 msec and 1801 msec before CAD
for mammographers and residents, respectively. Median dwells on these areas
were 187 msec and 329 msec, respectively, for mammographers and residents af-
ter CAD was revealed. With respect to false positives, the mammographers had a
median dwell of 1681 msec on false positives before CAD and 328 msec after
CAD. The residents had a median dwell on false positives of 1829 before CAD
and 490 msec after CAD.

These results suggest a number of interesting conclusions and implications
for CAD use. The first is that there may be a significant difference in how CAD is
used, depending on the experience of the observer. For the most part CAD will
probably be more useful for the general radiologist than for the expert mammog-
rapher. The results of this study suggest, however, that the radiologists with less
mammographic experience seemed to rely more heavily on the CAD information
than did the mammographers and that this reliance on CAD affected their visual
search behaviors. The residents tended to access the CAD images sooner than the
mammographers and spent less time dwelling on false-negative locations before
CAD was revealed. After CAD was revealed, the residents’ dwells on the false-
negative areas were longer than those of the mammographers, but their false-neg-
ative to true-positive conversion rate was lower (33% vs 50%) than the mammo-
graphers. It would seem that a thorough search of the image before CAD is
presented is extremely beneficial with respect to CAD having its desired effect.
Perceptually speaking, it seems as if the more a suspicious region is fixated and
visually processed before CAD is presented, the easier it is to recognize that sus-
picious region as actually positive after CAD reinforces the suspicion by prompt-
ing it as a lesion.

The finding that lesions detected before CAD is presented receive extended
dwell but receive very little dwell once CAD is presented is also interesting. This
result confirms the idea that CAD is a good way to confirm the radiologists’ sus-
picion if the level of suspicion was high enough to report the lesion in the initial
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search before CAD. The very short dwells on these lesions after CAD is presented
suggest that the radiologists are basically giving a quick double-checking glance
to these already detected areas just to make sure the CAD location and their orig-
inally detected location are one in the same. The interesting thing is that the false
positives showed this same trend—extended dwell on the suspected location be-
fore CAD and relatively short dwell duration after CAD. With the false positives,
however, the dwells after CAD were short but slightly longer than for the true pos-
itives. With respect to performance, the mammographers changed 50% of their
false positives to true negatives after CAD was presented, and the residents
changed 25% of their decisions. These results suggest a benefit of CAD that is
rarely talked about—the influence of CAD on the radiologists’ false positives. Be-
cause CAD and the radiologist report the same false-positive areas only about
one-third of the time (86), it is not surprising that the radiologists would spend
more time looking at an area that they called positive but that the computer did
not. This is especially true if the radiologist has faith in CAD’s performance and
expects it to be right most of the time. By double-checking areas that the radiolo-
gist called positive, but CAD did not, the experienced mammographer seems bet-
ter able to modify the initial incorrect decision than the less-experienced resident.
The effect is not complete, however, because even the experienced mammogra-
phers changed only 50% of their false-positive reports to true negatives. If general
radiologists are found to perform more like residents than expert mammographers,
they too may have trouble changing their false-positive calls even if CAD does not
confirm their suspicions.

D. Satisfaction of Search (SOS) and CAD

Satisfaction of search (SOS) is a phenomenon first reported by Tuddenham (87)
and subsequently studied by others (88–91), in which the radiologist fails to report
multiple lesions on a radiograph after one lesion has already been detected. Tud-
denham suggested that radiograph interpretation involves a “search for meaning.”
If a lesion is detected during search, then this “search for meaning” is satisfied,
and the radiologist may prematurely halt search and fail to detect further lesions.
Hence the term satisfaction of search. Although this phenomenon has not yet been
studied specifically with respect to visual search, CAD and detection perfor-
mance, two studies (70,85) do suggest that SOS might occur with CAD. Muggle-
stone et al. (70) found that radiologists tended to concentrate mostly on prompted
areas of mammograms and to ignore unprompted areas. Unprompted lesions
tended to be fixated minimally and were often missed. Krupinski (85) also found
this to be true. Before CAD was presented, radiologists had a median true nega-
tive dwell time of about 700 msec. After CAD was presented, true negative dwell
times fell to about 150 msec, and the number of fixation clusters outside areas in-
dicted by CAD was minimal. Radiologists often went back to check areas that they
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had called positive that CAD did not, but they did not spend much time on other
areas outside the CAD-indicated regions of interest.

The findings from both of these studies suggest that a sort of SOS effect
may be occurring with CAD. The presence of the CAD prompts tends to draw
the radiologists’ attention to the prompted areas and tends to inhibit them from
searching unprompted areas. Because CAD does not have a 100% detection rate
(neither does the radiologist), there are lesions that will be unprompted by CAD
and undetected by radiologists in an initial search of the image. In fact, Krupin-
ski and Nishikawa (86) found that about 5% of microcalcification clusters go
undetected by both CAD and radiologists when both search the same mammo-
gram. If there truly is an SOS effect associated with CAD, these unprompted le-
sions may remain undetected if the radiologists do not conduct a thorough
search of the image even after CAD has been presented. Therefore, although
having faith in CAD’s performance is certainly required if CAD is to be imple-
mented and used in the clinical situation, it should not be blind faith. Radiolo-
gists need to recognize that CAD is not a perfect second reader and that they still
should give an image a good second search even after CAD has been presented.
This is especially true if, as mammographers at our institution noted, it is found
that it is all too easy to give an image a cursory initial search then access the
CAD information for the prompts. The ImageChecker does have a built-in de-
lay, but that does not ensure that the radiologist will conduct a thorough search
of the image while waiting out the delay.

IV. CONCLUSIONS

The potential for CAD is immense. It should prove to be an important aid to the
mammographer in the near future. As noted, the main factor inhibiting its wide-
scale use in the mammography clinic is that all the mammographic films have to
be digitized before CAD systems can analyze them. The CAD results must then
be displayed on a CRT monitor rather than the original film image, requiring the
radiologist to make comparisons between the two displays. Both of these factors
make the use of CAD at this point rather time-consuming, especially the digitiza-
tion phase. In a large-volume clinic, it will be extremely difficult and time-con-
suming to process every case for CAD analysis. Even though the detection rates
are high and false-positive rates relatively low, especially for microcalcifications,
time delays will make the clinical use of CAD less attractive. With the advent of
digital mammography and future development of CRT displays that can handle
mammographic images, this problem should be solved. CAD will work directly
on the digital data and will display the detection prompts directly on the image as
it is displayed on a high-resolution monitor. Hopefully, this is a scenario that can
be realized within the next 5 to 10 years.
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In chest radiography, clinical use of CAD may not be as widespread as in
mammography. Lung cancer still has the highest incidence of all cancers, espe-
cially in men. However, people are generally not screened as regularly for lung
cancer as women are for breast cancer. In addition, chest images are acquired rou-
tinely for many other purposes than screening for lung cancer, and chest imaging
often represents the highest volume case type in many hospitals. In our hospital,
chest imaging accounts for almost 80% of all radiographic images acquired. Thus,
it may be impractical to use CAD on every chest image acquired. In combination
with a clinical history or presenting symptoms, however, judicious use of CAD for
detection of lung nodules might be useful and feasible. The same scenario would
hold for use of CAD for detection and classification of interstitial disease or other
abnormalities amenable to CAD analysis. Ideally, one might want to see a “pack-
age” CAD system developed that operates on many types of lesions much as the
ImageChecker does for masses and microcalcifications in mammography. If the
detection algorithms could work in parallel with sufficient speed, they could work
directly on the digital data from a CR system. If the chest images are then viewed
directly on a CRT monitor, the CAD prompts could be accessed quite easily and
superimposed over the image. If CR images are still printed to film, one could still
view the CAD images on the CRT and refer back to the film image, which is what
is currently done with the ImageChecker system in mammography.

Most of the potential problems with using CAD that were noted earlier can
be avoided with judicious use of CAD systems. As long as radiologists recognize
the limitations of CAD and their own limitations, the use of CAD will serve quite
nicely as a reliable second reader. Radiologists need to integrate CAD into their
normal reading procedure, without changing their normal search and detection be-
haviors to any great extent. Careful and thorough search of images and lesions will
be necessary no matter how accurate CAD systems get. Computer-aided detection
detection rates will eventually be quite high for both microcalcification clusters
and masses in mammography and probably for lesions in other types of images as
well. Computer-aided detection programs to provide probabilities of benign vs
malignant are also getting more reliable and accurate and will be quite useful in
many circumstances. However, in the final analysis it is the radiologist who is re-
sponsible for collecting, analyzing, and weighing all the available data and com-
ing up with a diagnostic decision and suggesting a course of treatment.
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Statistical Decision Theory 
and Tumor Detection

Eric Clarkson and Harrison H. Barrett
University of Arizona, Tucson, Arizona

I. INTRODUCTION

Statistical decision theory is the branch of mathematics and statistics that deals
with the task of choosing among competing hypotheses based on a finite amount
of data that contain some randomly varying components. In medical imaging the
problem of tumor detection is an example of this kind of task. The data in this
case are the output of a digital imaging device, either the raw data or the image
that results from a reconstruction algorithm. The competing hypotheses are that
the tumor is absent or the tumor is present in the patient. The randomness in the
data has three sources, noise from the imaging system itself, anatomical and
other variations in the patient population, and random variations in tumor char-
acteristics.

The imaging-system noise, or measurement noise, is due to the random na-
ture of the physical processes that produce the data. This means that even if we
created many images by using the same system on one patient, there would be ran-
dom variations in the data sets that we collect. The sources of this type of noise
are often well known. From this knowledge, the statistics of the measurement
noise can be modeled by familiar probability distributions, such as the Poisson or
gaussian distributions.

The anatomical or background noise is mainly due to random variations in
the normal anatomical structure from one patient to the next. The statistics of
large-scale variations, such as organ shapes and skeletal structure, are difficult to
model mathematically (1,2). The statistics of small-scale variations, such as the
texture of a particular tissue type, is often modeled by correlated gaussian distri-
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butions (3–6). There are also texture synthesis algorithms that can produce en-
sembles of simulated backgrounds for Monte Carlo studies of the effects of small-
scale structural variations (7).

Random variations in some tumor characteristics, such as size and location,
are easily modeled with known probability distributions. For example, the loca-
tion of a tumor may be uniformly distributed within a certain specified region of
the anatomy. Variations in other tumor characteristics, such as shape and texture,
are more difficult to model analytically, and Monte Carlo calculations with simu-
lated ensembles may be necessary to account for them.

For the purposes of this chapter an observer is a human or a computer algo-
rithm that uses the noisy output data from an imaging system that views a patient
and decides whether a tumor is present in that patient. The observer is not allowed
to equivocate, and there can be no random element in the decision process. The
latter condition implies that, given a data set that is identical to a previous one, the
observer will make the same decision the second time around. To some extent hu-
man observers violate this last condition. This is often accounted for by assuming
that there is an internal noise component to the human decision-making process.
We will not deal with this complication here.

Given an imaging system, patient ensemble, tumor parameters, and an ob-
server, we would like to calculate the performance of the observer in the tumor de-
tection task. To do this we must first define a figure of merit, a function that as-
signs a number to each observer for the given task, that corresponds to detection
performance. Then we can devise ways to compute this number to some degree of
approximation for the given observer. We will consider some of the commonly
used figures of merit from statistical decision theory and discuss their applicabil-
ity to various tumor-detection tasks.

II. DATA AND OBSERVERS

The output of a digital imaging system is always a finite list of numbers. This is true
even when we consider the output to be a reconstructed image derived from the raw
data. For example, a gray-level image is a list of numbers, one for each pixel, that
determine the gray levels. It is convenient to think of these numbers as the compo-
nents of a data vector g. We will assume that g has M components and write

g �

Of course, a radiologist would not have much use for this vector, preferring an im-
age instead.



g1

g2

�
gM


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In signal detection theory we are often concerned with mathematical ma-
nipulations of the data that lead to a decision on the presence or absence of a sig-
nal. A tumor produces a signal in the data, some change in the components of the
data vector relative to the data components we would expect from a tumor-free pa-
tient, and we want to distinguish this change from the variations in the data vec-
tor caused by noise.

Along with the signal and the data we need an observer. The observer could
be a radiologist looking at an image, but in this chapter we will concentrate on
mathematical observers. A mathematical observer, which is usually a computer
program, uses the data vector to compute a single number and decides whether the
tumor is present or absent on the basis of whether that number exceeds a thresh-
old. This number is often called the observer’s test statistic, and it may be an ex-
tremely complicated function of the data. The two mathematical observers we will
discuss the most are the ideal observer and the Hotelling observer.

The ideal observer has full knowledge of the statistics of the data under both
tumor-present and tumor-absent hypotheses. The test statistic that the ideal ob-
server uses is called the likelihood ratio and is simply the ratio of the probability
density functions under the tumor-present and tumor-absent hypotheses evaluated
at the given data vector. By many commonly used measures of observer perfor-
mance in the tumor detection task, some of which will be discussed later, the per-
formance of the ideal observer is the best possible. A drawback of the ideal ob-
server is that it is often very difficult to compute the likelihood ratio.

If we restrict ourselves to linear observers, those whose test statistic is a lin-
ear function of the data, then a commonly used figure of merit for the performance
of the observer is the signal-to-noise ratio (SNR) of the test statistic, which will be
defined later. The linear observer that maximizes the SNR is called the Hotelling
observer (8). Similarly, the test statistic for this observer is often called the
Hotelling test statistic. It is considerably easier to compute this test statistic than
the likelihood ratio. A drawback of the Hotelling observer is that, for non-gaus-
sian statistics, the SNR may not be an accurate reflection of the performance of
the observer in the actual signal detection task.

The reason we are interested in these two observers is that their performance
on the tumor detection task is a measure of how useful the imaging system itself
is for this task. For example, if the ideal observer for a given imaging system and
tumor detection task performs very badly, then all other observers, including a ra-
diologist looking at a reconstructed image, will also have poor performance on
this particular task. The ideal observer for a given imaging system and tumor de-
tection task sets an upper bound on the performance of any observer using that
system for that task. Thus, the ideal observer performance can be used to optimize
system parameters for a particular task or set of tasks. On the other hand, the per-
formance of a Hotelling observer with certain detection tasks is often a good pre-
dictor of human performance at those tasks. In addition, because the Hotelling test
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statistic is also usually easier to compute and analyze than the likelihood ratio, it
may be used for system optimization when the ideal observer performance is too
difficult to compute. Of course, in both cases we must specify exactly how the per-
formance of an observer is being measured for these statements to be meaningful.
In the next few sections we will introduce ideal observers, Hotelling observers,
and some measures of observer performance.

III. IDEAL OBSERVERS

In this section we will introduce the bayesian risk and show how it leads to the
ideal observer. Reality is represented by one of two hypotheses H0 and H1. Under
H0 the tumor is absent, whereas under H1 the tumor is present. The observer is try-
ing to determine which hypothesis is correct, given one data vector from the imag-
ing system. This observer must choose one of two decisions, D0 or D1. With D0

the observer is declaring that the tumor is absent, whereas with D1 that it is pre-
sent. As noted earlier, we assume that the observer will make the same decision if
presented with the same data vector at a later time.

A. Minimizing the Bayesian Risk

Of course, the observer’s decision may be correct or incorrect. This implies the
existence of certain conditional probabilities for the various combinations of hy-
pothesis and decision. The probability that the observer decides that the tumor
is present when it is actually present will be denoted by Pr(D1 | H1) and is
called the true-positive fraction (TPF). The false-positive fraction (FPF) is the
probability that the observer declares the tumor present when it is actually ab-
sent, Pr(D1 | H0). The probability of deciding the tumor is absent when it is ac-
tually present is Pr(D0 | H1), the false-negative fraction (FNF). Finally, the true-
negative fraction (TNF) is the probability of declaring the tumor to be absent
when it is actually absent, Pr(D0 | H0). These numbers are determined by the
imaging system, detection task, and the observer, and they always satisfy the
constraints

Pr(D1 | H1) 
 Pr(D0 | H1) � 1

Pr(D1 | H0) 
 Pr(D0 | H0) � 1

These equations follow from the fact that the observer cannot equivocate.
The two other relevant probabilities are Pr(H0), the probability that the tu-

mor is actually absent, and Pr(H1) � 1 � Pr(H0), the probability that it is present.
These prior probabilities reflect the prevalence of the type of tumor that we are try-
ing to detect in the patient population that we are studying.
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For each combination of decision and hypothesis there is an associated cost.
For example, the cost of a false-positive outcome is c10. The three other costs, c11,
c01, and c00, are defined similarly and are thought of as elements of a cost matrix
C:

C �

Generally we would expect c10 and c01 to be high, because they are the costs for
incorrect decisions, whereas c11 and c00 would be low, or even negative, being the
costs for correct decisions. We will assume that c10 � c00 and c01 � c11. The Bayes
risk is the average cost and is given by

R � c11 Pr(D1 | H1) Pr(H1) 
 c01 Pr(D0 | H1) Pr(H1)


 c10 Pr(D1 | H0) Pr(H0) 
 c00 Pr(D0 | H0) Pr(H0)

Note that in this expression each cost value is multiplied by the probability that
that cost will be incurred. The cost matrix is usually difficult to determine in prac-
tice. Fortunately, for our purposes, the exact values of the entries of this matrix are
not needed.

Using the constraints on the conditional probabilities noted earlier, we may
write the Bayes risk in the form

R � c01 Pr(H1) 
 c00 Pr(H0)


 (c10 � c00) Pr(D1 | H0) Pr(H0) � (c01 � c11) Pr(D1 | H1) Pr(H1)

Now consider an observer for the tumor-detection task and let � be the region in
data space that consists of all possible data vectors. This region may be separated
into two disjoint regions �0 and �1. The region �0 consists of all data vectors that
lead the observer to declare D0, tumor absent, whereas �1 is all data vectors that
lead to D1, tumor present. Associated with the hypotheses, H0 and H1 are proba-
bility density functions for the data pr(g | H0) and pr(g | H1), respectively. Then
Pr(D1 | H0) is the integral of pr(g | H0) over the region �1, whereas Pr(D1 | H1) is
the integral of pr(g | H1) over �1. In terms of these density functions, the Bayes
cost may therefore be written as

C � c01 Pr(H1) 
 c00 Pr(H0)


 �
�1

[(c10 � c00) Pr(H0)pr(g | H0) � (c01 � c11) Pr(H1)pr(g | H1)]dg

In this last expression, the observer controls �1 only. Everything else on the
right side of this equation is independent of the observer. The observer that min-
imizes the Bayes risk is the one that chooses �1 to be exactly that region of �


c00 c01

c10 c11


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where the integrand is negative. This observer declares the tumor to be present
(D1) if
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and declares the tumor absent (D0) if
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The test statistic on the left in these inequalities is the likelihood ratio, and
is denoted by 
(g). The decisions of the observer using this ratio may be summa-
rized as

D0


(g) � 
0

D1

where 
0 is a threshold that depends on the cost matrix and the prior probabilities.
The likelihood ratio itself is independent of these details, which is fortunate, be-
cause they are often unknown.

B. Minimum Error Detector

The total probability of error for a given observer and tumor detection task is given
by

Pe � Pr(D0 | H1) Pr (H1) 
 Pr (D1 | H0) Pr (H0)

This is the Bayes risk if the cost matrix is

C �

Therefore, the observer that minimizes the total probability of error is the ideal ob-
server with the decision threshold given by the ratio of prior probabilities:


0 � �
P
P

r
r
(
(
H
H

0

1

)
)

�

If we use the equations

pr(g | H1) Pr(H1) � Pr(H1 | g)pr(g)

pr(g | H0) Pr(H0) � Pr(H0 | g)pr(g)

this can be reformulated in terms of posterior probabilities as follows. Declare the
tumor present if the probability that the tumor is present, given the data, is greater
than the corresponding probability that the tumor is absent: Pr(H1 | g) � Pr(H0 | g).


1
0

0
1


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If the reverse is true, Pr(H1 | g) � Pr(H0 | g), then declare the tumor to be 
absent.

C. Maximum Likelihood Detector

If we have no knowledge of the prior probabilities on the hypotheses, then we may
as well assume that Pr(H0) � Pr(H1) � �

1
2

�. This gives the decision threshold 
0

� 1. The decision process for this observer may be rephrased in terms of likelihood
functions. The observer declares the tumor present if the likelihood of the data
given that the tumor is present is greater than the corresponding likelihood given
that the tumor is absent: pr(g | H1) � pr(g | H0). If the reverse is true, pr(g | H1) �
pr(g | H0), then this observer declares the tumor to be absent. In other words, pick
the hypothesis that gives the maximum likelihood for the given data vector.

D. Ideal Observers

Each of the three observers we have just discussed computes the likelihood ratio
and declares the tumor present if 
(g) � 
0, and the tumor absent if 
(g) � 
0,
for some threshold 
0. Any observer that follows this or an equivalent procedure
is called an ideal observer. For example, it is often more convenient to calculate
the log of the likelihood ratio, �(g) � log 
(g), and compare the result to the
threshold �0 � log 
0. An observer who does this is an ideal observer. If L(r) is
any monotonically increasing function of the non-negative real variable r, then the
observer who computes �̃(g) � L(
(g)) and compares the result to the threshold
�̃0 � L(
0) is also an ideal observer.

We have seen that minimizing the Bayes risk, minimizing the total proba-
bility of error, or maximizing the likelihood of the data all lead to the same deci-
sion statistic, the likelihood ratio. Either the Bayes risk or the probability of error
could be used as a measure of ideal-observer performance, and therefore as a mea-
sure of the performance of the imaging system for the given tumor detection task.
One drawback to this approach, however, is that the cost matrix and prevalence
are often unknown. Later we will see that there is an alternative measure of ob-
server performance that is also maximized by ideal observers and that only de-
pends on the statistical properties of the imaging system data.

IV. HOTELLING OBSERVERS

A linear observer computes a test statistic that is linear in the data:

�(g) � wTg � ∑
M

m�1
wmgm
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where wT indicates the transpose of the vector w. This vector is often called the
template for the given linear observer. We will see examples later where the ideal
observer is linear, but in general the ideal observer will perform nonlinear opera-
tions on the data vector to arrive at a decision.

At this point we introduce the following notation for expectation values of
an arbitrary function of the data �(g) under the two hypotheses:

���0 � ��(g)�0 � �
�

�(g)pr(g | H0)dg

���1 � ��(g)�1 � �
�

�(g)pr(g | H1)dg

The variances of �(g) under each hypothesis are defined in the usual way by

var0(�) � �(� � ���0)2�0
var1(�) � �(� � ���1)2�1

Using this notation, the SNR of the linear observer is given by

SNR�
2 �

In fact, this expression applies even when �(g) is not a linear function of the data.
The numerator is a measure of the change in the observer’s test statistic when a tu-
mor is present, whereas the denominator is a measure of the strength of the noise
in the test statistic.

For a linear observer we may compute the SNR explicitly. The components
of a signal vector s in the data can be defined as the difference of means

sm � �gm�1 � �gm�0

The signal vector is a measure of the change in the data when a tumor is present.
We may also define the elements of the average covariance matrix K for the data
by means of the equation

Kmn � �
1
2

� �(gm � �gm�0)(gn � �gn�0)�0 
 �
1
2

� �(gm � �gm�1)(gn � �gn�1)�1

The average covariance is a measure of the strength of the noise in the data and
the correlations between the different data components. In terms of these quanti-
ties, the SNR for the linear observer using the template w is given by

SNR�
2 � �

w
(w

T

T

K
s)

w

2

�

[���1 � ���0]2

���
�
1
2

� var1(�) 
 �
1
2

� var0(�)
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The Hotelling observer is the linear observer that maximizes this SNR. This
observer uses the Hotelling template wH to compute the test statistic

�H(g) � wT
Hg � (K�1s)Tg � (K�1/2s)T (K�1/2g)

and then compares the result to a threshold. The Hotelling observer therefore
needs to know only the first- and second-order statistics of the data under each hy-
pothesis, as opposed to the ideal observer, who must know the complete proba-
bility densities. The operation of multiplying a vector by K�1/2 is called
prewhitening, and the Hotelling observer is said to be using a prewhitened
matched filter on the data.

The SNR for the Hotelling observer is called the Hotelling trace and is given
by (8–10)

SNR2
H � sTK�1s � (K�1/2s)T (K�1/2s)

Therefore, the Hotelling trace is the square magnitude of the prewhitened signal
in the data. This quantity could also be used as a measure of the performance of
the imaging system on the given detection task. It is usually easier to compute than
other measures of performance, and, in certain circumstances, it correlates well
with human observer performance (5,11–14). It has the drawback that, when the
statistics of the data are not gaussian, it may not correlate well with the ideal per-
formance of the system when it is used to detect tumors.

V. OBSERVER PERFORMANCE

Let us return to the case of an arbitrary observer, one who is not necessarily an
ideal observer or a linear observer. The region �1 in the data region � that corre-
sponds to decision D1 for this observer can always be described as the set of data
vectors g that satisfy �(g) � �0 for some test statistic �(g) and threshold �0. There
are, in fact, many functions that fulfill this requirement. To find the function �(g)
that a particular observer is using, we can vary the threshold �0 and keep track of
the how the region �1 depends on this variable. If we determine �1 for all values
of �0, then �(g) is determined up to a monotonic transformation. This is the best
we can do because, if L(r) is a monotonic function as earlier, then an observer who
uses L(�(g)) with the threshold L(�0) makes the same decisions as the one using
�(g) and �0.

Suppose, then, that a given observer is using the test statistic �(g) to make
decisions about the presence or absence of tumors. Because g is a random vector
under each hypothesis, we may regard � as a random variable under each hypoth-
esis. The probability density for � under the tumor absent hypothesis is a function
pr(� | H0), whereas under the tumor present hypothesis, it is a different function
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pr(� | H1). The conditional probabilities that appear in the Bayes risk depend on
the threshold �0 and are given by

TPF(�0) � Pr(D1 | H1) � ��

�0

pr(� | H1)d�

FPF(�0) � Pr(D1 | H0) � ��

�0

pr(� | H0)d�

FNF(�0) � Pr(D0 | H1) � ��0

��
pr(� | H1)d�

TNF(�0) � Pr(D0 | H0) � ��0

��
pr(� | H0)d�

Because, as already noted, these quantities always satisfy the constraints TPF

 FNF � 1 and TNF 
 FPF � 1, only two of them need to be determined, say
TPF and FPF, to find values for all four. In the literature TPF is also called the
sensitivity or the probability of detection, TNF the specificity, and FPF the false-
alarm rate. One of these numbers, or some combination of them, could be used as
a figure of merit for the observer, but they all depend on the threshold �0, which is
often somewhat arbitrary. This dependence can be removed by averaging over the
threshold.

A. The ROC Curve and the Area Under the Curve

A figure of merit that is often used and does not suffer from dependence on
the threshold is the area under the receiver operating characteristic (ROC)
curve (15–22). This scalar is usually called the AUC. The ROC curve is gener-
ated by varying the threshold and plotting the points (FPF(�0), TPF(�0)).
This curve therefore gives us the probability of detection of the tumor for each
value of the false-alarm rate. Because TNF � 1 � FPF, the ROC curve may
also be regarded as a plot of sensitivity versus specificity as the threshold is
changed. The ROC curve starts at the point (1, 1) for small values of �0 and
moves toward (0, 0) as �0 is increased. If the observer’s decisions are no better
than those made by flipping a coin, then the corresponding ROC curve
will move along the diagonal of the unit square that has these two points at its
corners, and the AUC will be �

1
2

�. It is desirable for the ROC curve to stay near
the top of this square until it approaches the point (0, 1) and then drop down to
the origin. This corresponds to a TPF near 1 for almost all FPF, and an AUC
near 1.
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The AUC for the observer using the test statistic �(g) is given by

AUC� � ���

��
TPF(�) �

d
d
�
� [FPF(�)]d�

This AUC may also be calculated from the probability density functions for � un-
der the two hypotheses via the double integral

AUC� � ��

��
��

�
pr(� | H0)pr(�� | H1)d�� d�

From this expression it can be shown that, if another observer uses �̃(g) � L(�(g)),
and L(r) is a monotonically increasing function, then AUC� � AUC�̃. Therefore,
equivalent observers give the same value for the AUC.

We define the characteristic functions of � under each hypothesis as

�0(�) � �exp(�2�i��)�0
�1(�) � �exp(�2�i��)�1

It is often easier to work with these functions when calculating the AUC. With �
used to indicate the Cauchy principal value of the integral, the relevant formula is
(23)

AUC� � �
1
2

� 
 �
2
1
�i
� � ��

��
�1(�)�*

2(�) �
d
�

�
�

The AUC of an observer can also be estimated by simulating a two-alterna-
tive forced-choice (2AFC) experiment. An observer performing a 2AFC study is
presented with a sequence of pairs of data sets, one from the tumor-present popu-
lation and one from the tumor-absent population and must choose, for each pair,
which data set corresponds to the tumor-present patient. To do this for a mathe-
matical observer, pairs of sample data vectors are drawn randomly from the tu-
mor-absent and tumor-present populations. The test statistic is computed for each
data vector in the pair, and the tumor is declared to be present in the sample that
gives the largest value for the test statistic. If we use a large number of sample
pairs, then the fraction of decisions that are correctly made by the observer is a
good estimate of the AUC for that observer on the given task. Thus, the AUC is
directly related to a real-world measure of detection performance.

B. Ideal Observer AUC

We now specialize to the ideal observer and see how these formulas for the AUC
can be simplified for this case. These simplifications all follow from the fact that,
with 
(g) equal to the likelihood ratio, pr(
 | H1) � 
pr(
 | H0). Green and Swets
call this the Gertrude Stein law, because it tells us that the likelihood ratio of the
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likelihood ratio is the likelihood ratio (24,25). Therefore, if the probability density
for 
 under one hypothesis is known, it is also known for the other hypothesis. As
a result of this relation, we can show that AUC
 may be computed from the false
alarm rate by means of (26)

AUC
 � 1 � �
1
2

� ��

0
[FPF(
)]2d


It must be emphasized that 
 in this formula must be the likelihood ratio for it to
be true. Of course, any other ideal observer will have the same value for the AUC.

Some other useful expressions may be derived by defining the moment gen-
erating functions

M0(�) � �exp(��)�0 � �
��0
M1(�) � �exp(��)�1 � �
��1

From the Gertrude Stein Law it follows that M1(�) � M0(� 
 1), so we need to
compute only one of these functions. In terms of M0(�), the AUC for an ideal ob-
server is

AUC
 � �
1
2

� 
 �
2
1
�i
� � ��

��
M0(i�)M0(1 � i�) �

d
�
�
�

By moving the contour of integration, this can also be written as (23)

AUC
 � 1 � �
2
1
�
� ��

0 �M0��
1
2

� 
 i�	�
2

This form is often convenient, because there is no Cauchy principal value in-
volved, and the integrand is nonnegative. The integral, after dividing by 2�, rep-
resents how far AUC
 deviates from its maximum possible value of 1.

From the Gertrude Stein law and the fact that the expectation of 1 is always
1, it follows that M0(0) � M1(�1) � 1 and M0(1) � M1(0) � 1. These equations
imply the existence of a function G(�) that satisfies

M0(�) � exp
�(� � 1)G�� � �
1
2

�	�
M1(�) � exp
�(� 
 1)G�� 
 �

1
2

�	�
We will call G(�) the likelihood generating function (23). If we know this func-
tion, then the statistics of the likelihood ratio under the two hypotheses are com-
pletely determined. In particular, the ideal-observer AUC may be written as

AUC
 � 1 � �
2
1
�
� ��

0
exp
�2��2 
 �

1
4

�	 ReG(i�)� d�
�
�2 
 �

1
4

�

d�
�
�2 
 �

1
4

�
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This shows us that the behavior of the likelihood generating function on the imag-
inary axis determines the AUC for an ideal observer.

C. Signal/Noise Ratios

The AUC of an observer is often converted to a SNR, which can vary from 0 to �,
with larger values corresponding to better tumor-detection performance. For an
ideal observer we have

SNRAUC � 2 erf�1 (2AUC
 � 1)

The symbol erf�1 in this expression stands for the inverse error function. The rea-
son for calling this number a SNR will become clear later.

Another SNR in common use is derived from the mean and variance of the
log-likelihood under each hypothesis by means of:

SNR2
� �

It might be thought that SNR
 would be just as reasonable a choice as SNR� for a
figure of merit, but in fact SNR
 has some peculiar properties that make it unsuit-
able for this purpose. For example, in many cases, including some discussed later,
SNR
 will increase to some maximum value and then decrease as the contrast be-
tween the tumor and background is increased (26). A reasonable measure of de-
tection performance would increase monotonically as a function of contrast. Just
like AUC
, SNR� can be computed if either M0(�) or the likelihood generating
function is known. All that is needed are the following formulas for moments of
� under the two hypotheses:

��k�0 � 
�
d
d
�

k

k�M0(�)�
��0

��k�1 � 
�
d
d
�

k

k� M0(�)�
��1

A third SNR is derived from the value of the likelihood generating function
at the origin (23):

SNRG(0) � �2�G�(0�)� � ��
8
 l
o
g
 M
0(
�
1
2

�)

In terms of the probability densities for 
 under the two hypotheses, G(0) is given
by

G(0) � �4 log ��

��
�p�r(�
� |�H�0)�p�r(�
� |�H�1)� d


This integral can be used to show that G(0) is always a positive quantity. Just like

[���1 � ���0]2

���
�
1
2

�var0(�) 
 �
1
2

�var1(�)
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the AUC, G(0) is invariant under a monotonic transformation: if 
 is replaced
throughout this integral by �̃� L(
) as earlier, then the value of the integral is un-
changed. We can also compute G(0) directly from the original probability densi-
ties for the data by using

G(0) � �4 log �
�

�p�r(�g� |�H�0)�p�r(�g� |�H�1)� dg

This integral is invariant under invertible transformations of the data. In other
words, if the data are processed in a reversible way, then the value of G(0) will not
change. This is also true of AUC
.

By definition AUC
 can be retrieved from SNRAUC by using

AUC
 � �
1
2

� 
 �
1
2

� erf(SNRAUC)

An often used, and sometimes good, approximation for AUC
 is

AUC
 � �
1
2

� 
 �
1
2

� erf(SNR�)

This approximation is exact, when � is normally distributed under both hypothe-
ses. If � is approximately normal, then we would expect this approximation to
give a good estimate for AUC
. We have found that

AUC
 � �
1
2

� 
 �
1
2

� erf(SNRG(0))

is also a good approximation in all of the examples examined so far. This approx-
imation is derived by replacing G(i�) with G(0) in the last integral expression
given earlier for AUC
. It is also exact when � is normally distributed. We have
found, in some examples where the exact value of AUC
 can be computed, that
the SNRG(0) approximation is usually better than the SNR� approximation, and it
is also easier to compute when M0(�) is known (26).

As a figure of merit for the performance of an imaging system in tumor de-
tection tasks, AUC
 has several advantages. It does not depend on the cost matrix,
prevalence, or threshold, only on the statistics of the data coming out of the sys-
tem as it views the tumor-absent and tumor-present patient ensembles. It does not
depend on the particular reconstruction being used to generate images, because
the ideal observer uses the raw data. Finally, AUC
 gives an upper bound for the
percentage of correct decisions for any observer on a 2AFC test with the given pa-
tient ensembles. For these reasons we would like to be able to compute AUC
 for
realistic imaging systems, tasks, and noise models. As we will see later, this can
be difficult, but even computations in simplified cases can be revealing about the
strategies used by ideal observers and their performance on tumor detection tasks.
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VI. SKE/BKE

SKE/BKE stands for signal known exactly/background known exactly. This type
of task is the easiest to analyze and therefore the least realistic. However, as we
will see, the ideal observers that arise from such tasks use techniques for tumor de-
tection that are common in the literature. As we proceed to more realistic tasks,
we will see that this is not specific to the SKE/BKE paradigm.

A. Example 1: Normal Noise with the Signal in the Mean

In this example the probability density when the tumor is absent is given by

pr(g | H0) � [(2�)M det(K)]�1/2 exp[��
1
2

�(g � b)TK�1(g � b)]

The mean of g is the fixed background data vector b, and K is the covariance ma-
trix for the noise. The effect of the tumor on the data is to shift the background
vector from b to b 
 s. This means that the probability density when the tumor is
present is given by

pr(g | H1) � pr(g � s | H0)

An ideal observer computes the log-likelihood,

�(g) � sTK�1g 
 �
1
2

� bTK�1b � �
1
2

�(b 
 s)TK�1(b 
 s)

and compares this number with a threshold �0. If we remove the terms from �(g)
that do not depend on g, we get an equivalent observer who computes

�̃(g) � sTK�1g

and compares this to a threshold �̃0. We can recognize this last expression as the
prewhitened matched filter, which implies that the ideal observer is identical to the
Hotelling observer in this example.

The moment generating function under the tumor-absent hypothesis is
given by

M0(�) � exp[�
1
2

� �(� � 1)sTK�1s]

From this expression, we see that G(�) � �
1
2

�sTK�1s, a constant. We then have im-
mediately the G(0) SNR:

SNRG(0) � (sTK�1s)1/2

Copyright © 2002 Marcel Dekker, Inc.



which is also the Hotelling trace. For this example we have exact agreement be-
tween the various SNRs:

SNRAUC � SNRG(0) � SNR�

If the covariance is diagonal, then an ideal observer computes a weighted in-
ner product of the data with the signal:

�̃(g) � ∑
M

m�1
�
g

�

m
2
m

sm
�

The weights �2
m are the variances in each data channel. This could be called a

weighted matched filter. If the weights all equal �2, then an ideal observer uses the
simple matched filter:

�̃(g) � ��
�
1

2�	 ∑
M

m�1
gmsm

In each case the filter is optimal, as measured by the AUC, for the SKE/BKE task
and the normal noise model with the given covariance. We cannot expect such fil-
ters to be optimal in other circumstances.

B. Example 2: Independent Exponential Noise with Signal
in the Mean

Exponential noise is related to speckle noise in ultrasonographic imaging (27–30).
If the data are distributed as independent exponential random variables and the
signal changes the mean of each data component, then the relevant probability dis-
tributions are given by

pr(g | H0) � �
M

m�1
�
b

1

m
� exp���

g

b
m

m
�	

pr(g | H1) � �
M

m�1
�
bm 


1
sm

� exp���
bm

g




m

sm
�	

A more realistic model of speckle noise would include correlations between
the data components, but that is beyond the scope of this work. In this and the
following examples, we will assume that the components of the signal s are
all positive. If some component of s vanished, then the corresponding compo-
nent of the data vector g would not contribute to the likelihood ratio in any of
these examples and thus would not affect the figures of merit that we are con-
sidering. Negative components of s could be accommodated with a little more
notation.

Copyright © 2002 Marcel Dekker, Inc.



The log-likelihood observer for this task computes the quantity

�(g) � ∑
M

m�1
�
bm(b

s

m

mg




m

sm)
� 
 ∑

M

m�1
log��bm

b




m

sm
�	

Removing the data-independent terms gives an ideal observer who computes

�̃(g) � ∑
M

m�1
gm
�bm(bm

sm


 sm)
��

This observer uses a weighted matched filter similar to the case of normal noise
with a diagonal covariance matrix, except that the weights in the denominators in
this expression depend on the signal. The variance of gm is �2

0m � b2
m under H0 and

�2
1m � (bm 
 sm)2 under H1. The weights are bm(bm 
 sm) � ���2

0m���2
1m� (i.e., the

geometric averages of the variances under the two hypotheses for each data com-
ponent). Note that the Hotelling observer in this example would use the arithmetic
averages of the variances for the weights. Therefore, the ideal observer and
Hotelling observer are not identical, even though both are linear observers. This
shows that the Hotelling observer does not, in general, maximize the AUC among
the class of linear observers.

All of the SNRs for this example are most easily expressed in terms of the
inverse contrast ratios �m � bm/sm. The moment generating function under the tu-
mor absent hypothesis is given by

M0(�) � �
M

m�1
�
(1

1







�

�

m

m

)1

�

��

�

��
m

�

From this expression, or by direct calculation of the relevant expectations, we can
find SNR�:

SNR� � �2�

From this equation it follows that SNR� � �2�M� always. This saturation effect is
somewhat counter intuitive, because we expect the detectability to increase with-
out bound as the contrast increases (i.e., as �m → 0 for all m).

From the moment generating function evaluated at � � 1/2 we find that

G(0) � 2 ∑
M

m�1
log
�4(�1m




(1
2



�m

�

)

m

2

)
��

∑
M

m�1
��

�
1
m
� � �

1 

1

�m
�	

����
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This expression shows that SNRG(0) increases without bound as the contrast
increases. The moment generating function also leads to an exact expression
for the ideal observer AUC. If we define two functions of the inverse contrasts
by

A1(�) � �
M

m�1
�m(1 
 �m)

and

A2(�) � ∑
M

n�0 
(1 
 2�n) �
M

m�1
m�n

(1 
 �m 
 �n)(�m � �n)�
�1

then the ideal observer AUC is given by (26)

AUC
 � 1 � �
1
2

� A1(�)A2(�)

We can use this equation to show that SNRAUC also increases without bound as the
contrast increases. Therefore, we would expect SNRG(0) to more accurately ap-
proximate SNRAUC than SNR� does, at least for high contrasts.

In the case in which all of the contrasts are the same, �1 � . . . � �m � �,
we can show that this expectation is fulfilled. An alternative derivation leads to
an exact expression for the ideal-observer is AUC in this case that is given by
(26)

AUC
 � ��11





2
�

�
�	M

∑
M�1

k�0
�
(M
k!(




M
k
�

�

1
1
)!
)!

� ��1 


�

2�
�	k

In Fig. 1 this expression is compared with the approximations derived from SNR�

and G(0) for M � 3. Note that the G(0) approximation is very good throughout the
range of contrasts, whereas the SNR� approximation fails as the contrast increases.
For a fixed contrast, the agreement between the exact AUC
 and both approxima-
tions improves as M is increased, as we would expect from the central limit theo-
rem. However, for a given M the SNR� approximation will always fail for large
enough contrasts. Of course, we are usually interested in the performance of a sys-
tem in low-contrast situations, so this kind of defect in the SNR� approximation
may not be a drawback in practice. It does, however, make us somewhat suspi-
cious of the SNR� approximation for non-gaussian noise models.

C. Example 3: Poisson Noise with the Signal in the Mean

In SPECT imaging, among others, a major source of noise arises from the fact that
the detectors count photons (31). The Poisson noise model is almost always valid
in this situation. When the signal affects the mean, the Poisson model gives us the

Copyright © 2002 Marcel Dekker, Inc.



probability distributions

Pr(g | H0) � �
M

m�1

Pr(g | H1) � �
M

m�1

under the two hypotheses. Note that g is a discrete random variable, because it rep-
resents the number of photons counted.

The log-likelihood in this example is given by

�(g) � ∑
M

m�1
gm log��bm

b



m

sm
�	 � ∑

M

m�1
sm

Removing data independent terms gives an ideal observer who calculates the
quantity

�̃(g) � ∑
M

m�1
gm log��bm

b



m

sm
�	 � ∑

M

m�1
gm�m

Again, we find that the ideal observer uses a weighted matched filter. In this case,

we have �2
0m � bm and �2

1m � bm 
 sm, and the weights are 
2 log��
�

�
1

0

m

m
�	�

�1

. As 

exp[gm log(bm 
 sm) � bm � sm]
����

gm!

exp[gm log(bm) � bm]
���

gm!

Fig. 1 Exact AUC
, and the SNR� and SNRG(0) approximations, for independent expo-
nential noise with three detectors. On the left side of the graph, the exact curve is below the
SNRG(0) curve and above the SNR� curve. The exact and SNR� curves cross as we move to
the right. The inverse contrast ratio is background/signal.

Copyright © 2002 Marcel Dekker, Inc.



in the previous example, the ideal observer here is linear, but it is not identical to
the Hotelling observer.

As usual, we can compute all of the SNRs from the moment generating
function M0(�), which in this case is given by

M0(�) � exp��� ∑
M

m�1
sm	 exp
∑

M

m�1
bm exp(��m) � bm�

The value of G(0) can be computed from this expression as

G(0) � 4 ∑
M

m�1

�

1
2

� (2bm 
 sm) � ∑
M

m�1
�b�m�(b�m� 
� s�m�)��

The quantity in square brackets is the arithmetic average of bm and bm 
 sm minus
the geometric average of the same two numbers. The SNR of the log-likelihood is
given by

SNR� � �2�

Both of these figures of merit are unbounded as the signal strength increases.
The exact value for the AUC of the ideal observer can be computed for this

example, but the resulting expression is rather complicated. To compare the ap-
proximations to this AUC to exact values, we will consider the special case where
b1 � . . . � bm � b and s1 � . . . � sm � s. The ideal-observer AUC is then given
by (26)

AUC
 � 1 � exp[�M(2b 
 s)]
∑
�

k�0
∑
k�1

l�0
�
Mk
1b

k

k

!
(
l
b
!


 s)l

�
 �
1
2

� ∑
�

k�0
�
Mkbk

k
(
!
b
k!

 s)k

��
In Fig. 2 this expression is plotted as a function of Ms for Mb � 0.1, along with
the approximate expressions derived from SNR� and G(0). In this figure, we can
see that each approximation is better than the other in some range of contrasts. For
significantly larger values of Mb, the total mean background count, the three
curves are indistinguishable.

D. Example 4: Independent laplacian Noise with the Signal
in the Mean

If a medical image is passed through a high-pass filter, the resulting image often
has a histogram that can be well approximated by the laplacian distribution
(32,33). If the signal passes through the filter and changes the mean of the result-

∑
M

m�1

sm�m

���

�∑
M

m�
1
(2
b
m
 

 s
m
)�
2
m
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ing gray level histogram, then the probability densities under the two hypotheses
are given by

pr(g | H1) � �
M

m�1
�
2
1
cm
� exp
��

c
1
m
� | gm � bm | �

pr(g | H2) � �
M

m�1
�
2
1
cm
� exp
��

c
1
m
� | gm � bm � sm | �

We are again assuming the statistical independence of the pixel values, which is
unlikely to be true in real images. The numbers cm are related to the variance at
each pixel.

The log-likelihood for this task is

�(g) � ∑
M

m�1
�
c
1
m
� [ | gm � bm | � | gm � bm � sm | ]

By removing data independent terms we get an ideal observer who computes.

�̃(g) � ∑
M

m�1
�
c
2
m
� [min{gm, bm 
 sm} � min{gm, bm}]

Fig. 2 Exact AUC
, and the SNR� and SNRG(0) approximations, for Poisson noise with
total mean background level of 0.1 photons. On the left side of the graph, the exact curve
is below the SNR� curve, which is in turn below the SNRG(0) curve. The exact and SNR�

curves cross as we move to the right. Signal amplitude is measured in mean number of pho-
tons.
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In analogy with the morphological correlation, to be discussed later, this test
statistic might be called a morphological matched filter. In fact, the quantity �̃(g)
may be computed by means of a thresholding operation. Define a modified data
vector g̃ by applying thresholds above and below:

g̃m �

Then this ideal observer computes

�̃(g) � ∑
M

m�1
�
c
2
m
� [g̃m � bm]

� ��(g) � ∑
M

m�1
�
2
c
b
m

m�

The observer who uses ��(g) for a test statistic is also ideal. This test statistic is
linear in the modified data vector g̃, although the thresholding operations that
lead to g̃ are nonlinear. Thresholding is a common operation in morphological
filtering, but it arises here from the ideal observer for this particular noise
model.

The performance of this ideal observer is most easily expressed in terms
of the contrast parameters �m � sm/cm. The moment generating function is given
by

M0(�) � �
M

m�1
�
1
2

� 
1 � �
2�

1
� 1
� 
 exp[(2� � 1)�m]��2�

2
�

�

1
�	� exp[���m]

From this expression we have immediately:

G(0) � 4 ∑
M

m�1

�

1
2

� �m � log�1 
 �
1
2

� �m	�
Finding the SNR of the log-likelihood is a more tedious computation, but the end
result is

SNR� �

2 ∑
M

m�1

[�m � 1 
 exp(��m)]

������

�∑
M

m�
1
[3
 �
 2
 e
x
p
(�
�
m
)
�
 4
�
m
 e
x
p
(�
�
m
)
�
 e
x
p
(�
2
�
m
)]





bm if gm � bm

gm if bm � gm � bm 
 sm

bm 
 sm if bm 
 sm � gm




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The exact AUC for the ideal observer can be reduced to the integral [26]

AUC
 � 1 � �
2
1
�
� ��

1
2

�	
2M

exp��∑
M

m�1
�m	
�

�

0 ��
�
1

�	
2M

�
M

m�1

	 [sin(��m) 
 2� cos(��m)]2 �
which could be evaluated numerically for given parameter values. At this time an
exact value for this integral is not known in general. For the M � 1 case (one de-
tector) we find that, with � � �1,

AUC
 � 1 � �
1
2

� exp(��)�1 
 �
�
2

�	
In Fig. 3, this expression is compared with the approximations derived from the M
� 1 versions of SNR� and G(0). The approximation from G(0) is better, especially
in the midrange values of the contrast.

VII. SKE

In most cases in medical imaging the background data vector is not known exactly
because of anatomical variations in the population. To proceed in this situation we

d�
�
�2 
 �

1
4

�

Fig. 3 Exact AUC
 and the SNR� and SNRG(0) approximations for independent Laplacian
noise with one detector. On the left side of the graph the exact curve is below the SNRG(0)

curve, which is in turn below the SNR� curve. The exact and SNRG(0) curves cross as we
move to the right.
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need a probability density function prb(b) on the background data vectors that
arise from the individuals in the population under study. In the case in which a
known signal shifts the background data vector from b to b 
 s, the probability
functions for the data under the tumor-absent and tumor-present hypotheses are
given by

pr(g | H0) � �prn(g | b)prb(b)db

pr(g | H1) � �prn(g | b 
 s)prb(b)db � �prn(g | b)prb(b � s)db

The conditional probability density prn(g | b) in this expression arises from the
random variations in the data caused by measurement noise in the imaging sys-
tem. An ideal observer looking for this signal computes the likelihood ratio 
(g),
or some equivalent statistic, and compares the result with a threshold.

A. Example 5: Normal Noise and Normal Background
Variation

Suppose that, for a fixed background, the data vector g is normally distributed
about a mean b with covariance Kn. Assume also that the background data vec-
tors are themselves normally distributed with mean b� and covariance Kb. Then,
under the tumor-absent hypothesis, g is normally distributed with mean b� and
covariance K � Kn 
 Kb. Under the tumor-present hypothesis, the data co-
variance is the same and the mean is b� 
 s. This case therefore reduces to Ex-
ample 1, and the ideal observer uses a prewhitened matched filter. In simulation
studies, Kn is often a diagonal matrix that is known from theoretical considera-
tions, whereas Kb can be estimated from the collection of noise-free sample
data sets.

B. Linear Observers

If either the noise or the background variation are not normal, then the perfor-
mance of the ideal observer by any of the figures of merit discussed earlier be-
comes difficult to compute. In fact, simply computing the log-likelihood for a
particular data vector can be a difficult task, because computing both pr(g | H1)
and pr(g | H2) involves approximating a large dimensional integral. For this rea-
son we are often forced to fall back to linear observers to get figures of merit
that can be computed in a reasonable amount of time. Assume, as in the pre-
ceding, that the linear observer uses the test statistic �(g) � wTg for some tem-
plate vector w.
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To find useful expressions for the AUC of a linear observer, we introduce
the characteristic functions for the data under each hypothesis

�1(�) � �exp(�2�i�Tg)�1
�2(�) � �exp(�2�i�Tg)�2

The AUC of the linear observer can now be computed by means of an integral
along the line through the origin in �-space that is parallel to the template w: (23)

AUC� � �
1
2

� 
 �
2
1
�i
� P ��

��
�1(w�)�*2(w�)�

d
�

�
�

If the conditional probability density for the data given the background satisfies
prn(g | b) � prn(g � b) for some noise probability density prn(n), then the AUC
for the linear observer reduces to

AUC� � �
1
2

� 
 �
2
1
�i
� P ��

��
| �n(w�) |2 | �b(w�) |2 exp(2�iwTs�) �

d
�

�
�

Even this expression is difficult to evaluate analytically, except in the normal-nor-
mal case discussed already. Because both of these integrals are one-dimensional, nu-
merical evaluation of them for a given template would not be difficult. When wTs �
0, the integrand is an odd function, because the square magnitude of a characteristic
function is always and even function. This implies that the integral vanishes and
therefore AUC� � 0.5, which we expect because the observer in this situation would
not see the signal. On the other hand, if wTs � 0, then the component of the template
w that is orthogonal to the signal s can have an effect on AUC� by means of the noise
and background characteristic functions. Once again, this shows that setting the tem-
plate equal to the signal, a common practice, is not likely to be optimal.

C. Hotelling Observer

If the data vector g has a large number of components, which it does in medical
imaging, then the central limit theorem may imply that the random variable � is
normally distributed. If this is a valid inference, then AUC� can be approximated
by computing the SNR of � and using the error function relation noted earlier. The
optimal linear observer in this approximation would use the template w that max-
imizes the SNR of �. This is, of course, the Hotelling observer. In the absence of
a practical way to compute the AUC of the ideal observer, the resulting Hotelling
trace can be used as a figure of merit for an imaging system used in this task.

VIII. BKE

It may be the case that the background is known exactly, from a previous image
for example, but the signal is not. Tumors can grow and change shape, for exam-
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ple, or we may know the tumor size and shape but not know its location or orien-
tation. If we use the vector � to represent the unknown parameters of the tumor,
then the data probability densities under the two hypotheses are

pr(g | H1) � prn(g | b)

pr(g | H2) � �prn(g | b 
 s(�))pr�(�)d�

We are again assuming that the signal changes the background from b to b 
 s(�).
In the second of these equations, pr�(�) is some prior probability on the unknown
parameters of the tumor. We assume that this prior has been chosen on the basis of
some knowledge (or lack of knowledge) of the type of tumor we are interested in.

The likelihood ratio in this situation may be expressed as a weighted inte-
gral of simple likelihood ratios that are parametrized by � (34):


(g) � �
b(g | �)pr�(�)d�

The weighting function is just the prior probability density on �, and the simple
likelihood ratios are given by


b(g | �) ��
prn(

p
g
rn

|
(
b
g




| b
s
)
(�))

�

If there are a small number of unknown parameters, then evaluating this integral
may be quite feasible. We will consider some examples. On the other hand, find-
ing an exact expression for the AUC of this ideal observer is difficult, so we will
not attempt to do that.

A. Example 6: Location Uncertainty with Normal Noise

We suppose that the tumor shape and size are known, but that the location of the
tumor could be at any of the positions r1, . . ., rM in a noisy image, which is sam-
pled at the same points described by the data vector g. This gives a set of possible
signal vectors whose components are

[sk]m � s(rm � rk) � skm

The function s(r) is this expression describes the known tumor profile. If we let Pk

be the prior probability that a tumor will be located at rk, and the noise is normally
distributed with covariance K, then the likelihood ratio is given by (34)


(g) � ∑
M

k�1
Pk exp
��

1
2

� sk
TK�1sk� exp[(g � b)TK�1sk]

If the noise is stationary, then the quantity in the first exponential is independent
of k. With a constant prior probability on k and �g � g � b, we then have


(g) � �
M
1
� exp
��

1
2

� s1
TK�1s1� ∑

M

k�1
exp[�gTK�1sk]
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In this equation, the quantity in the second exponential is the correlation of the
prewhitened signal vector with the prewhitened �g vector, evaluated at the shift
corresponding to rk. This correlation output is then exponentiated and summed
over k to get the likelihood ratio. If the noise is gaussian, so the covariance is a
multiple of the identity, then an ordinary correlation is performed before expo-
nentiating and summing. A common procedure is to leave out the prewhitening
and exponentiating steps and simply sum the ordinary correlation between the sig-
nal and the data over all positions (35–37). We can see that this is not an optimal
procedure even if the noise is gaussian.

B. Example 7: Location Uncertainty with laplacian Noise

If a tumor of known shape and size is located somewhere in a medical image that
has been through a high-pass filter, then the laplacian noise model may be of in-
terest. With the signal notation as in the previous example, the likelihood ratio is
now given by


(g) � ∑
M

k�1
Pk �

M

m�1
exp
��

c
1
m
� | �gm � skm | 
 �

c
1
m
� | �gm |�

When the pixel variances are all the same, we have c1 � . . . � cM � c. If we de-
fine the total signal amplitude S by

∑
N

m�1
skm � S

then an ideal observer calculates the quantity


(g) � �
M
1
� exp
�

S
c

�� exp
��
2
c

� ∑
M

m�1
min{�gm, 0}� ∑

M

k�1
exp
�

2
c

� ∑
M

m�1
min{�gm, skm}�

when all locations are equally likely. In this expression the quantity in the third set
of square brackets is the morphological correlation of the net data vector �g with
the signal vector, evaluated at the shift corresponding to rk. The output of this op-
eration is exponentiated and summed over k. The first exponential in 
(g) is also
data dependent and affects the outcome of the calculation. The most common way
to use morphological correlation, as with the ordinary correlation, is to simply
sum over k, without exponentiating, and use the result for the decision statistic. As
was the case with ordinary correlation in the previous example, this simplified
procedure is not the optimal way to use the morphological correlation for tumor
detection, at least with this noise model.

Because we have analytical expressions for the ideal observer in these ex-
amples, we could estimate the AUC by simulating a two-alternative forced-choice
experiment with them. The fraction correct would then be a good approximation
to the ideal-observer AUC if there are a large number of samples in the simula-
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tion. An appeal to the central limit theorem and the Hotelling observer may also
be possible, as in the SKE case. Note, however, that the ideal observers in these
two examples are highly nonlinear.

IX. NKE

NKE stands for nothing known exactly, which is quite often the situation in med-
ical imaging. The background is not known exactly because of anatomical varia-
tion in the population, among other factors. The signal is not known exactly when
some parameters of the tumor, such as size, shape, or location, are unknown. If we
have prior probabilities for the background vectors b and parameter vectors �,
then, with the same assumption about how the signal affects the data as earlier, we
may write a general expression for the data probability densities under the tumor-
absent and tumor-present hypotheses:

pr(g | H0) � �prn(g | b)prb(b)db

pr(g | H1) � � 
�prn(g | b 
 s(�))pr�(�)d�� prb(b)db

� � 
�prn(g | b)prb(b � s(�))db� pr�(�)d�

In principle, with a noise model incorporated into prn(g | b), these quantities could
be computed and the likelihood ratio formed by their quotient. In practice the
high-dimensional integrals make this difficult. Current research is focusing on
other ways to compute 
(g), or some equivalent statistic, and AUC
, which does
not involve explicit evaluation of these integrals.

We could, of course, retreat to linear observers again and find the appropri-
ate expression for the Hotelling observer. From the examples we have seen so far,
though, we suspect that the ideal observer in this kind of real world task is not lin-
ear. This makes numerical searches for the ideal observer more complicated, be-
cause parametrizing a general nonlinear observer is more difficult than it is for a
general linear observer. With the increasing size and speed of computers, how-
ever, this kind of computation is becoming more and more feasible.

X. SUMMARY

We have shown how the ideal observer and Hotelling observer compute a test
statistic for the task of tumor detection in digital imaging data. The ideal observer
is optimal by several criteria, including minimizing the Bayes risk and maximiz-
ing the AUC. The Hotelling observer maximizes the SNR among all linear ob-
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servers. We have provided exact and approximate formulas for computing the
AUC of an ideal observer, which can be used as a figure of merit for the imaging
system itself on a particular tumor detection task.

For SKE/BKE tumor detection tasks, we have given some examples of an-
alytical expressions for the ideal observer and the exact and approximate AUC
values for this observer. In these examples, the G(0) approximation to the ideal-
observer AUC was generally better than the well-known approximation using the
SNR of the log-likelihood. For SKE tumor detection tasks, we have outlined the
general procedure for computing the likelihood ratio and shown how the AUC for
a linear observer may be estimated. For BKE tumor detection, we have shown an-
alytically that common procedures, such as computing the correlation or morpho-
logical correlation, are used by the ideal observer in certain circumstances. These
operations must be used correctly, though, to yield optimum performance. Finally,
in the NKE situation, we have provided a general formula for the likelihood ratio
and have indicated the difficulties involved in computing the AUC for the ideal
observer in this most general setting.
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5
Display, Including Enhancement, 
of Two-Dimensional Images

Stephen M. Pizer, 
Bradley M. Hemminger and 
R. Eugene Johnston
University of North Carolina, Chapel Hill, North Carolina

In this chapter the recorded image is assumed to have the form of a single inten-
sity value at each point in a two-dimensional (2D) array of image points. Sec. I
will face the question of what representation of displayed intensity should be used
and how the displayed intensity should change as we move across the display
scale. Sec. II will then address the question of how to assign display scale values
to the recorded intensities at each image position.

I. DISPLAY SCALES

A. Quantitative and Classification Display: Discrete Scales

In classification display the viewer’s job is to distinguish the class of each pixel cor-
responding to its recorded intensity. Quantitative display, while providing an inter-
val scale, can be viewed as a nominal scale in which individual numeric recorded
intensities or recorded intensity ranges form the classes. Probably the most effec-
tive form of classification display is interrogative—the viewer is given a pointing
device, and the display systems responds with the class name or the quantitative
value corresponding to the pixel or region to which the viewer has pointed. How-
ever, if such interaction is inconvenient, it may be useful to produce a single image
to communicate the classes associated with pixels.

The class boundaries are assumed to be sharp, and thus the locations in one
class should be perceptually distinguishable from those in another. To do this, we
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can effectively take advantage of the object-forming functions of the visual sys-
tem. From this we see that adjacent ranges of recorded intensities corresponding
to different classes should have discontinuously distinct luminances. Hue and sat-
uration can nicely be used to label the classes as well, with the caveat that the per-
ceived color depends on the spatial pattern and that many viewers will be to some
degree color blind, at least between red and green.

B. Qualitative Display: Perceptually Continuous Scales

In qualitative display the viewer’s job is to discern patterns of anatomy or physi-
ology from the measurements of a scalar recorded intensity that can in principle
vary over a continuous range at each pixel. Because the human visual system is
especially sensitive to local, considerable changes in intensity, using them as
boundary measurements to form objects, it is important that unimportant changes
in recorded intensity not be represented as considerable changes in displayed in-
tensity. Thus, at least the mapping from recorded intensity to displayed intensity
should be smooth.

The objective of qualitative display is to optimize the transmission of infor-
mation about pattern properties in the recorded image. Because the job that we are
discussing is display and not image restoration, let us assume that the image has
been processed to show the patterns in question with an optimal tradeoff of reso-
lution, noise, and object contrast. More strongly, let us assume that our job in dis-
play is to present information as to patterns in the recorded image. Any detail in
the image should be assumed to be of potential interest, even though in fact it
might have come from noise of imaging. If it is not of interest, it is because the in-
formation is not relevant to the task of the viewer, not because the information is
not relevant to the scene to be viewed.

Fig. 1 shows the sequence of stages for 2D display, from the point of view
of intensity transformations. The middle stage is the display device itself, which
includes analog hardware for turning analog intensities into luminances, colors,
heights, or other perceivable features preceded by either hardware or software
for doing the lookup that turns the numeric displayable intensities into analog in-
tensities that drive the analog display hardware. From the point of view of in-
tensity transformations, the display device is characterized by a display scale;
the device takes numeric values indicating displayable intensities at each image
point and produces displayed intensities on the display scale. In the final stage
these displayed intensities are transformed by a viewer into a perceived image.
At the beginning of the process the recorded image’s intensities must be as-
signed to intensities on the scale of displayable intensities. This assignment is
intended to optimize the contrast of important objects, and it is specified by a
function from the recorded intensities to the ideal scale given by the displayable
intensities.
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To give a feeling for the range of possible display scales, here are a few
possibilities (see Fig. 2 for illustrations):

1. A gray scale, beginning at black and going through white, with the
property that for all intensities on the scale the luminance that is at frac-
tion � along the scale is a fixed multiple of the luminance that is at frac-
tion � � l/n along the scale, for some step parameter n.

2. A gray scale, beginning at black and going through white, with the
property that for all intensities on the scale the luminance that is at frac-
tion � along the scale is a fixed increment over the luminance that is at
fraction � � l/n along the scale, for some step parameter n.

3. A gray scale, beginning at white and going through black, which is the
reverse of black to white scale number 1.

4. A gray scale, beginning at dark gray and going through light gray and
comprising the middle half of scale number 1.

Fig. 1 Two-dimensional display sequence.
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5. A color scale, beginning at black and going through white, with the hue
following some specified path through red, orange, and yellow, the sat-
uration following some specified path, and the luminance following the
rule in scale 1.

6. A height scale, in which the intensity is displayed as a surface height
proportional to its value, and the resulting surface is written onto a
screen using three-dimensional (3D) display techniques that transfer a
height into a shading and a stereo disparity.

7. A height scale as in scale 6, but in which the surface is painted with a
combination of hue and saturation that is a function of the height, with
the hue and saturation following some specified path in the space of
hue, saturation possibilities.

These examples suggest that to specify a display scale, one must specify

1. The display parameter(s), which are to represent the displayable inten-
sity (e.g., luminance, or color—luminance, hue, saturation), or height.
Let us use the symbol ƒ to stand for this collection of features.

A B

C D

Fig. 2 A chest computed tomography (CT) medical image displayed with four different
display scales. (a) standard intensity windowed for soft tissues view, (b) inverted grayscale
view, (c) bone intensity window view, and (d) height (topography) scale.
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2. The path that these parameters must follow. In the case of a single pa-
rameter the beginning and the end of the path specify the path (e.g.,
black to white, white to black, or 0 cm to 5 cm of altitude). With multi-
ple parameters, a curve through the multidimensional parameter space
must be specified (e.g., a path through the double-cone representation
of color space).

3. The speed at which the path is traversed, as a function of position on the
path. Scales 1 and 2, for example, differ only in this parameter. For
these different scales the luminance corresponding, for example, to the
middle of the scale is quite different.

For single parameter display the basis of comparison of different scales is
the discrimination sensitivity that the scale provides. In early work at the Univer-
sity of North Carolina (1), we attempted to define a number, called perceived dy-
namic range (pdr), which measures this property. The idea is that a perceptual unit
called the just noticeable difference (jnd) is defined, and the pdr gives the number
of jnd’s that the scale provides. The difficulty in doing so is that the jnd depends
on the spatial size and structure of the target and background, so the hope to mea-
sure pdr’s of two scales, even relative to others, in a fully image-independent fash-
ion is unfulfillable. Nevertheless, practice and visual experiments have suggested
that it is reasonable to measure jnd’s and thus pdr’s with a particular, reasonably
selected family of targets and backgrounds and that scale choices made on this ba-
sis will roughly accord with choices made with other families.

Intuitively, if the displayed intensity i 
 j is just noticeable from a reference
displayed intensity i, we call j the jnd for that reference intensity. To define the jnd
more strictly, we strictly need to specify target and background structures, the
viewing environment, a criterion true-positive rate of detection, and a criterion
false-positive rate of detection. That is, a jnd is a change required by a viewer op-
erating at a certain degree of conservatism to correctly detect the change at a spec-
ified (true positive) rate of correct calls. The jnd thus corresponds to receiver op-
erating curve passing through a specified (true-positive rate, false-positive rate)
point. The jnd may be a different value for every reference displayed intensity i,
so it is given by a function j(i).

Jnd’s provide the units for perceived intensity. If P(i) is the perceived in-
tensity corresponding to a displayed intensity i, it can be shown (1) that

P(i) � �i

imin

�
j(i) log

j

(

�

1

(i




)

j�(i))
� di

where imin is displayed intensity on the bottom of the display scale. The perceived
intensity corresponding to i � imin is zero. The perceived dynamic range of a dis-
play scale is simply the number of jnd’s from the bottom of the display scale to the
top: pdr � P(imax).
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For display scales that are smooth, one way to increase the pdr is to cycle
many times up and back along a particular display scale. But despite increasing
the pdr, this does not improve the displayed images, because the perceived pat-
terns formed from regions crossing more than one cycle do not correspond to pat-
terns in the recorded image. Similarly, color scales that are not monotonic in lu-
minance produce such misleading patterns despite having large pdr’s, because
visual object formation in 2D images seems to be largely controlled by the lumi-
nance cue. It is therefore recommended to restrict color and gray display scales to
those that are monotonic in luminance. Similarly, scales based on altitude (depth)
should be monotonic in this parameter. With such a restriction comparisons on the
basis of the pdr seem useful.

The greater the pdr of a scale, the more sensitively it can show intensity dif-
ferences. Intuitively, sensitivity is a desirable feature, but it has been questioned
whether it might not be the case that sensitive display of detail that is irrelevant to
the task might not be distracting. That is, might it be the case that if image detail,
such as that coming from imaging noise, has an amplitude less than signal con-
trast, then lowering the sensitivity with which image intensity changes are shown
would decrease the visibility of distracting noise while leaving signal contrast ad-
equately visible? Klymenko (2) has shown experimentally that this is not the case,
at least in the situations he measured. In his studies, increasing the pdr never de-
creased the ability of the observer to perform his task of determining the orienta-
tion of a small Pacman-shaped object. Thus, of available display scales that are
monotonic in luminance, it is always beneficial to use the display scale with the
largest pdr.

Results (3) from psychophysical experiments from nearby but separated
square targets in a uniform background on 100 Cd/m2 (30 ftL) monitors with 8-bit
DACs demonstrated the pdr for a gray scale as 90 jnd’s and for a heated object
pseudocolor scale as 120 jnd’s. The pdr for a continuous gray scale over any lu-
minance range can be derived from the Rose–de Vries and Weber’s laws. These
laws state, respectively, that in the scotopic or low-luminance range the jnd is pro-
portional to the square root of the luminance of the reference intensity; in the pho-
topic or high-luminance range the jnd is proportional to the reference intensity;
and in a luminance range separating these two ranges there is a transition between
these two rules. Roughly the Rose–de Vries range goes up to 5 	 10�3 Cd/m2, and
the Weber range begins about 1 Cd/m2. Barten (4) and Daly (5) give models of
these composite jnd functions. Using these new composite visual models, with the
most sensitive targets as parameters, calculated for the luminance range of current
high-brightness cathode ray tube (CRT) displays suggests significantly higher
maximum pdrs, around 500 for high-brightness (340 Cd/m2) CRTs, and around
1000 for 3425 Cd/m2 lightboxes (6). Recent experimental work using 10 bit
DACs suggests similar experimental results for video monitors (an estimated
300–600 JNDs for 340 Cd/m2) and similar experimental results for lightboxes (es-
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timated 500–700 JNDs, lower than the predicted 1000 JNDs because inaccuracies
in reproduction of contrast signal when producing film images limit detection by
human observers) (7).

The constants of proportionality between luminance or its square root and
the jnd depend on many factors, including target shape, the spatial scale and in-
tensity of confusing detail (e.g., image noise), the spatial structure of the back-
ground, and the time of exposure. These can cause the pdr to vary by up to a
factor of 10. Hemminger (8) suggests that display scale choices depend on the
lower envelope of all these jnd curves. Specifically, they analyzed the family of
curves resulting from varying the parameters of the visual models across what is
commonly found in medical imaging, and after finding similarity in the shape of
these curves, they proposed using the jnd from the combination of parameters to
the Barten visual model that gives the smallest jnd (the most sensitive discrimi-
nation of intensities). Very similar parameters to the Barten model were pro-
posed by Blume (6). The Blume and Hemminger proposed parameters were in-
corporated into the Standard Display Function defined by DICOM for medical
imaging for the purpose of display standardization. In the following, reference
to the jnd curve will be taken to be to the DICOM GreyScale Standard Display
Function (9).

Given a display with a given sequence of the features ƒ mediating intensity,
the speed at which we should move along this sequence at each point in the se-
quence has yet to be specified. Any display scale with the rates specified can be
given by a function ƒ(i) from displayable intensity i to displayed intensity ƒ. For
any fully specified scale ƒ(i), each monotonic onto function g on displayable in-
tensities on the range [imin, imax] will correspond to a different fully specified scale
ƒ(g(i)) with the same sequence. Two separate objectives seem affected by the
choice of the traversal speed modification function g. The first objective is the op-
timization of the effectiveness of image information transmission with respect to
the viewing task (i.e., contrast enhancement). As the display scale traversal speed
changes along the display scale, the perceived contrast for a fixed distance in dis-
playable intensity changes, and this affects how the image looks. The second ob-
jective is the standardization across display systems. It seems desirable that the
same image presented on two different displays with the same pdr communicate
the same information.

Matters of display system standardization have to apply over all images that
will be displayed on the system and all viewing tasks that will be accomplished
with it. On the other hand, matters of effectiveness of information transmission are
deeply tied up with the particular image and the particular viewing task. There-
fore, it seems desirable to separate the standardization objective from the contrast
enhancement objective. It is for this reason that Fig. 1 has separate boxes for con-
trast enhancement and for intensity lookup. The latter is intended to accomplish
the standardization task. The contrast enhancement is intended to produce in the
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displayable image those contrasts that allow the viewing task to be best accom-
plished.

A fixed perceptual property needs to be chosen to specify the scale traversal
speed modification function g, given a basic scale sequence ƒ(i). At the University
of North Carolina much effort has been spent working on perceptual linearization
(i.e., arranging the relation between displayable intensity and perceived intensity
so that it would be linear). Given the convention that the minimum displayable in-
tensity is called zero, perceptual linearization corresponds to arranging the per-
ceived intensity corresponding to displayable intensity i c 	 i for a constant c given
by the ratio of the pdr of the display scale and the number range of displayable in-
tensities. Figure 3 shows that to accomplish this, we simply need to realize that the
display device and observer together apply the intensity transformation P, so we
need to precede them by a multiplication by c and an application of the function in-
verse to P. This fixed function can be applied by means of lookup, assuming that
intensity sampling in the displayable intensity is fine enough (see later). The re-
sulting scale will have a constant jnd function vs displayable intensity. Implemen-
tation of this lookup correction using discrete values on computer systems has pit-
falls, with the result that a careful correction may reduce the available number of
contrasts levels. This is discussed further in the next section.

The difficulty in the preceding argument has already been stated: the per-
ceived intensity function P is not independent of the image and the task. To the
extent that the changes caused by image and task are linear, the lookup table will
not be changed, because c and P�1 will change in reciprocal fashion. However,
further work is necessary to determine in which circumstances this change in P
caused by image and task is linear. To the extent that there is a nonlinear depen-
dence of P on image and task, the separation between contrast enhancement and
standardization may seem misguided. However, for practical purposes, it is very
advantageous to be able to standardize across display devices. Without this,
adopted standards for medical image communication, like DICOM, would be
meaningless. Furthermore, once a standard has been decided on, even if it is not
perfect, it is well defined and provides a perceptually approximately linear re-

Fig. 3 Perceptual intensity standardization.
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sponse for the display system, so that contrast-enhancement algorithms can be ap-
plied with the knowledge that a known expected perceptual linear response trans-
fer function will approximately occur on the display system. As a result, the med-
ical imaging community is currently adopting in practice this separation of
standardization and contrast enhancement.

C. Gray and Color Scales for Image Presentation

The gray scale going from the darkest luminance producible by the display device
to the brightest is the obvious first choice for a single parameter scale for 2D dis-
play. Such a display, when viewed in a room with ambient light, can be thought
of as having a scale going from the ambient light level to the maximum screen lu-
minance. This yields an approximate pdr, because factors such as screen glare,
phosphor nonuniformities, CRT noise, etc. all affect the actual pdr.

A common assumption is that for a gray-scale image, reversal of the image
can sometimes improve, or at least change, the visibility of objects in the image.
If a display system is perceptually linearized, the pdr is independent of which di-
rection the scale is presented. By definition of perceptual linearization, a just no-
ticeable difference is the same whether it runs from black to white or from white
to black.

Many display designers have suggested that the pdr could be strikingly in-
creased by the use of a color scale. In that case the display scale will involve a
track through the 3D color space. There are many coordinate systems for this
space, including red-green-blue (the intensity of each of these light primaries for
CRT’s) and hue-saturation-intensity (normally shown on a color double-cone). It
has been suggested that a path should cover as many hues as possible to optimize
the pdr. But many commonly used scales, including scales passing through the
colors of the rainbow, have failed to accept the aforementioned restriction that lu-
minance should be monotonic, and these scales are guaranteed to produce artifacts
for qualitative display. Moreover, because perceived chromanence varies strongly
with the form and location of object boundaries and the chromanence of the ob-
jects and surrounds, such display scales cannot be counted on to be seen in a way
that is close to the presenter’s intentions, and jnd and other experiments based on
test patterns cannot be expected to be usable to predict the behavior or the scale
with real images. Display designers and users are thus strongly warned against so-
called pseudocolor display, the use of single parameter qualitative display scales
going over many hues.

A few pseudocolor scales in which the hue change is slow and the lumi-
nance is monotonic have been found to have some benefit of increase of pdr with-
out obvious artifacts. One of these with among the highest pdrs is the so-called
heated object scale. Also called the hot body scale and the temperature scale, it ap-
proximates the colors taken by a black body as it is heated: black-red-orange-yel-
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low-white. It can be produced by monotonically modulating the three color beams
in a color CRT. However, this scale increases the pdr over a CRT gray scale by at
most one-third, according to the kind of test pattern jnd experiments described ear-
lier. This is a modest increase for the extra cost.

Several authors, including ourselves, have investigated pseudocolor scales
other than gray scale as alternatives for increasing the pdr. However, the evidence
to date suggests that observers perform as well, or better, using gray scales for
clinical tasks (10). Furthermore, radiologists generally indicate they are much
more comfortable using the gray scales. Until experimental evidence shows a sub-
stantial increase in performance as a result of using a different pseudocolor scale,
gray scale display seems indicated for single parameter qualitative 2D display.
Furthermore, for these same reasons, the DICOM standards for medical image
presentation are currently limited to gray scale presentation.

D. Sampling Issues for Digital (Discrete) Displays

Until now, all of the discussions on display scales have assumed that the scale was
continuous. This is essentially true for analog displays such as analog filmscreen
films displayed on a lightbox. However, many modern display systems, including
laser printed films, video monitors, and reflective paper hardcopy are digital and
thus have discrete intensity scales. The question of how a continuous scale should
be sampled to produce a discrete scale and the number of samples that are neces-
sary must therefore be addressed.

Recall the need for qualitative display scales to be perceptually continuous.
From this it can be concluded that successive discrete intensities on a scale must
be distinctly unnoticeable when they are in adjacent regions, even when the
boundary of these regions is smooth and long. That is, using such a test pattern for
jnd experiments, the intensity differences between successive scale intensities
should be around a half of one jnd. Finer sampling will not increase perceptibility
of displayed objects, and coarser sampling brings with it the jeopardy of artifac-
tual object boundaries. Thus, a perceptually linear scale should be sampled
equally, with the number of samples being approximately double the pdr. For a
gray scale if we assume under the best circumstances the human observer could
see approximately 500 jnds (9 bits), then this would result in the display device
needing to provide 10 bits of standardized response.

This is likely an overestimate of what is required. To date, little work has
been done to quantify how much contrast resolution is required for different clin-
ical protocols. Sezan (11) found that 8 bits standardized film presentations was
sufficient to avoid contouring on a general collection of x-ray protocols. Similarly,
Hemminger found 7 bits on standardized film and video presentations sufficient
to avoid contouring artifacts on mammograms (7). Thus, it is likely that between
8 and 10 bits will be required on the display system DAC.
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Unfortunately, many scales are far from perceptually linear. An example is
the raw scale of many digital gray scale devices; the bottom 15% and the top 10%
are frequently far from perceptually linear. If in this case the voltages driving the
scales are to be uniformly sampled, the number of samples will need to be small
enough so that the smallest intersample perceptual difference is a fraction of a jnd.
Hemminger studied existing video and laser printed film displays and found that
in general a resampling of the characteristic curve of the display system to closely
approximate the perceptual linear DICOM Standard Display Function required re-
ducing the contrast resolution by a factor of 2 (8). Thus, for instance, to accurately
achieve 8 bits of contrast on a display system, it required starting with 9 bits of
contrast in the display system.

II. ASSIGNMENT OF DISPLAY SCALE INTENSITIES 
TO RECORDED INTENSITIES*

Given a display scale and a 2D recorded image of a single parameter, the remain-
ing step in the display process is the rule by which the recorded intensities of the
original image are mapped to the display scale intensities (see Fig. 1). When per-
formed explicitly, this step is called contrast enhancement. This name suggests
that it is an optional step, that an unenhanced displayed image exists. In fact, this
step is not optional. To produce an image that a viewer can look at, the assignment
must be done. The issue is simply whether we will do it better or worse.

Confusion has arisen from medical imaging systems in which the display is
entangled with the acquisition. For example, in ordinary (analog) radiography, the
film is exposed by light scintillations generated directly from the transmitted x-
rays, and to determine properties of the display the viewer only has the choice of
film type, development procedure, and lightbox intensity. But even these choices
give different images, (i.e., different contrast enhancements). With digitally ac-
quired images the choice of contrast enhancements is simply more flexible.

After the contrast-enhancement mapping is performed, the image undergoes
further transformations, first within the display system and then in the human vi-
sual system. The effective design of contrast enhancement mappings requires a
thorough understanding of these transformations. It would be ideal if the display
device/observer combination could be made linear, so that equal differences in
display scale intensity would be perceived as equally different. Methods for at-
tempting to achieve this linearity given an appropriate model of luminance per-

* Based on Edge-Affected Context for Adaptive Contrast Enhancement by R. Cromartie and Stephen
Pizer, Department of Computer Science, University of North Carolina. In: Information Processin in
Medical Imaging (IPMI XII), Lecture notes in Computer Science, ACF Colchester, DJ Hawkes, eds,
Vol. 511, New York: Springer-Verlag, 1991, pp 474–485.
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ception and difficulties in doing so have been discussed in the previous section.
However, ultimately, the step of standardizing the display scale and assigning in-
tensities to it both depend on the spatial structure of the image (the target and its
context) and of human visual perception, so it makes limited sense to separate the
display scale rate and contrast enhancement determinations. Thus, the contrast-en-
hancement step needs to concern itself with mapping to an arbitrary well-con-
structed display scale.

In this chapter we first present a survey of contrast-enhancement techniques,
concentrating on locally adaptive methods. Classical adaptive methods have cen-
tered on the calculation of various statistics of the local intensity distribution and
the use of these to amplify local contrasts. More recently, methods have been de-
veloped that attempt to take explicit account of local image structure in terms of
objects, especially object edges. These methods are based on advances in our un-
derstanding of human visual perception.

The notation used here is that i is the recorded intensity to be assigned and
I is the displayable intensity that is the result of the contrast enhancement.

A. Global (Stationary) Contrast Enhancement

A global or stationary enhancement mapping is an intensity transformation based
solely on the intensity of each pixel: I(x, y) � ƒ(i(x, y)). The goal is to find a func-
tion that best uses the full range of display gray levels. Among these methods are
intensity windowing, histogram equalization, and histogram hyperbolization.

If we identify a subrange of image gray levels corresponding to features of
interest, this subrange can be expanded linearly to fill the full range of intensities
(see Fig. 4). This technique is called intensity windowing. Pixels whose values fall
outside the selected range are mapped to the minimum or maximum level. This
technique is commonly used in the presentation of computed tomography (CT)
images. For example, in chest CT images, a “lung window” and a “mediastinum
window” are chosen and applied, producing two images. These two images are
then viewed side-by-side by the radiologist. This method has the advantage of be-
ing easily computed and can be made interactive by an implementation that di-
rectly manipulates the lookup table of the display device. One difficulty is that ob-
jects occupying widely separated areas of the intensity range cannot be well
presented in a single image. A perhaps more serious difficulty is that the percep-
tion of object boundary locations can depend critically on window selection 
(Fig. 5).

Although fixed intensity window choices are appropriate for CT images in
which the pixel values are Hounsfeld units and represent physical 3D locations, in
standard x-rays in which the pixels represent projections from 3D to 2D, this type
of relationship may not hold. Intensity windowing in such situations needs to be
able to accomodate shifts or changes in the shape of the histogram caused by dif-
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ferences in acquisition parameters and projection angles. The most common tech-
nique for dealing with this is histogram-based intensity windowing techniques,
which attempt to recognize the shape and location of the histogram to localize the
intensity window to the appropriate range of contrast values for each individual
image. Such techniques are becoming more common with the advent of digital
scanners (computed x-ray, direct digital mammography, etc). An example depict-

A

B C

Fig. 4 The intensity windowing contrast enhancement mapping. The intensity window,
giving the linear range of the mapping, is normally specified by either the window width
and center or by the window bottom and top. (a) depicts the intensity windowing algorithm.
(b) and (c) show the two common chest CT presentations, soft-tissue intensity windowed
and lung intensity windowed.
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ing histogram-based recognition of the breast tissue in a mammogram is shown in
Fig. 6. Taking this approach a step further, another related method is to recognize
the individual components of the histogram to more accurately choose the inten-
sity windowing based on specific components. For instance, a general histogram-
based intensity windowing technique may accurately recognize an appropriate
window for “overall” breast tissue, whereas a technique that recognized the indi-
vidual components of the breast (background, uncompressed fat, fat, dense, mus-
cle) would be able to provide intensity windows tuned specifically to dense areas
of the breast or to combinations of components (for instance fatty and dense areas
of the breast). An example of this approach using mixture modeling (12) to inten-
sity window the dense part of the breast is shown in Fig. 7.

Fig. 5 A radiotherapy portal verification film. (a) The original image. (b) intensity win-
dowed to show contrast in the center of the image. (c) intensity windowed to show contrast
in the outer portion of the image.

(a)

(b) (c)
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Cormack (13) argued that the display intensity napping ƒ should be chosen
to maximally transmit information as to scene intensity values. In the case of noise-
free, high-resolution imaging and display, the probability of a display scale inten-
sity p(ƒ(i)) is equal to the histogram of displayable intensities. Assuming that in-
tensities equally far apart on the display scale are equally discernible (the display
scale is linearized), the information increase by looking at (coming to know the
value of) an image intensity is maximized by maximizing the average displayed in-
tensity uncertainty before viewing, a property that occurs when p(ƒ(i)) is flat (i.e.,
a constant function of displayable intensity) ƒ (i). Thus, on the assumption that in-
tensities that are adjacent on the display scale are separated by a fixed number of
jnd’s and on the (very poor) assumption that intensity values are uncorrelated, so
that what is right for coming to know the value of a single pixel is right for the col-
lection of pixels, it follows from the preceding that flattening of displayed inten-
sity histogram optimizes the image information increase to the viewer.

This flattening of the histogram of intensities in the whole image is called
global histogram equalization. In this method, a pixel’s gray level is mapped to
its rank in the intensity histogram of the entire image, scaled so that the output im-
age fills the full range of intensities. The enhancement mapping is thus propor-
tional to the cumulative distribution function of the recorded image intensities.
The result is that intensity values having greater numbers of pixels will be allo-

Fig. 6 Histogram based intensity windowed mammogram image. The parameters are
chosen for best overall visualization of fatty and dense breast tissue.
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(a)

(b)

Fig. 7 Mixture-modeling based intensity window (MMIW) approach. (a) On the right
panel: an example mammogram labeled with different breast tissue components 
(Bkg � Background, UF ultra fatty, F � fatty, M � muscle, D � dense). (a) On the left
panel: the segmentation calculated by MMIW from this mammogram. (b) shows MMIW
applied to the same mammogram of Fig. 6.
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cated a greater number of display levels, and the resulting histogram will be as flat
as possible. Intensities that occur less frequently in the global histogram can com-
bine with adjacent intensities into a single displayed intensity, resulting in a loss
of contrast for the less frequently occurring intensities, but according to the pre-
ceding theory, this loss is more than compensated for by the greater sensitivity to
changes in the other parts of the recorded intensity range (Fig. 8). Limitations of
the flattening caused by discrete recorded and displayable intensities can cause
some difficulties of overcompression of the infrequently appearing intensities, but
these problems can be limited by adjustments of the algorithm.

In histogram hyperbolization (14), a transformation of intensities is sought
that results in a flat histogram of perceived intensities. Because the luminance re-
sponse of the first stage of the human visual system is approximately logarithmic,
Frei argued that the shape of the histogram of displayed intensities should be ap-
proximately hyperbolic. Essentially, what is sought is histogram equalization af-
ter the effect of retinal processing. Thus a histogram-equalized image presented
on a perceptually linearized display should result in perceived brightnesses very
close to those of a histogram-hyperbolized image displayed without linearization.
This approach assumes a display device the luminance output of which is linear in
displayable intensity, not a common occurrence. Its main weakness is the strong
dependence of our visual system on local object structure; brightness (perceived
luminance) is not a logarithmic function of luminance.

B. Adaptive Contrast Enhancement

An adaptive contrast-enhancement mapping is one in which the new intensity
value for a pixel is calculated from its original value and some further information
derived from local image properties:

I(x,y) � ƒ(i(x,y),DN (x,y)) � ƒN(i(x,y))

where N(x,y), the contextual region, is some spatial neighborhood of (x,y) in the
image that includes the pixel of interest (see Fig. 9) and DN (x,y) is some collection

(a) (b)

Fig. 8 (a) Original chest CT scan and (b) same CT scan processed using global histogram
equalization.
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of measurements over N(x,y). For computational efficiency, it is most usual for N
to be a square region centered on (x,y), but as we shall see, this need not be the case.
Furthermore, the size and shape of the contextual region may itself vary through-
out the image, based on either local statistics or local structural information.

The reason for contrast enhancement being adaptive is that the visual sys-
tem perceives an object according to the shape of the object, its contrast with its
local background, the structure of that local background, and variations of inten-
sity within the object. To maximize perceivability of all changes, it is desirable to
bring all contrasts within and in the vicinity of the object to a high value while
making these local contrasts monotonic with the information they transmit. At the
same time, there is no benefit to concerning oneself with global interluminance re-
lationships because of the weak abilities of the visual system to perceive such re-
lationships. The dependence of perception on local contrasts means that specify-
ing the display contrast between local objects and distant objects does not change
what will be perceived as objects. Although there is some ability to compare ab-
solute intensities at a distance, and these relationships will be disturbed by arbi-
trary changes of the relation of intensities at a distance, the visual system cannot
be trusted to determine absolute intensities, because the object structure strongly

Fig. 9 Three pixels and their contextual regions for AHE processing.
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affects perceived brightnesses. It follows that one should not even insist that for
two spatially distant positions the order of the values of the recorded intensities be
maintained into the display scale intensities under contrast enhancement. Rather,
only appropriate local relationships should be optimized, as discussed earlier.

Any adaptive contrast-enhancement method with a fixed sized contextual
region will produce a sort of shadowing artifact at sharp high-contrast bound-
aries. As the pixel moves toward the boundary, the contextual region passes
across the boundary, and within the contextual region there is an exchange of
pixels on one side of the boundary for those on the other side. That is, the aver-
age intensity of the context gets sharply lighter and lighter (darker and darker)
as the center pixel on the dark (light) side of the boundary is moved toward the
boundary. Thus, relative to its context, the center pixel will get darker and
darker (lighter and lighter) as that pixel on the dark (light) side of the boundary
is moved toward the boundary, so the result of the adaptive mapping will have
the same behavior. Fig. 10 shows the general shape of the so-called edge-shad-
owing behavior that results.

Fig. 10 Edge-shadowing intensity behavior near a sharp high-contrast edge.
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This problem is common to all algorithm methods based on a contextual re-
gion including a sharp edge. This leads to a display mapping that can change too
quickly with image position. Chan (15) has suggested a method of explicitly con-
trolling this rate of change of the mapping with image position.

Many adaptive contrast-enhancement methods can be viewed as some vari-
ation of detail amplification (high-pass filtering). The oldest and most widely used
of these is unsharp masking. Known in its photographic form for at least 60 years,
unsharp masking has also been applied to digital images. It is defined as

I(x,y) � �(i(x,y) � i*N (x,y)) 
 i*N (x,y)

� �i(x,y) 
 (1 � �) i*N (x,y)

where i*N (x,y) is a positively weighted average of intensities over the contextual
region and � is a constant gain factor. i*N (x,y) is referred to as the background im-
age, because it represents the smooth background to the image detail. The term
(i(x,y) � i*N (x,y)) is a high-frequency component referred to as the detail image.
A � between 0 and 1 results in a smoothing of the image, and the values of �
greater than 1 that are normally used in contrast enhancement result in emphasis
of the detail image. Unsharp masking has been applied and tested with varying but
frequently good success on a wide range of medical images (16,17). It has a no-
ticeable contrast-enhancing effect on edges, but when the gain factor is high
enough to present very small details well, ringing (edge-shadowing) artifacts are
introduced across strong edges and breakup of image objects can occur (Fig. 11).

Note that although unsharp masking is frequently viewed as a shift-in-
variant linear filtering process, when viewed as a contrast enhancement it is

Fig. 11 Unsharp masking applied to the same portal image as in Fig. 5 with two differ-
ent gain factors- ��4 (a) and ��10 (b).

A B
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adaptive (i.e., context-sensitive). It needs to be understood that sharpening (fil-
tering) and contrast enhancement are two complementary ways of looking at the
same process. In the former there is a focus on the spatial relations between pix-
els, and the intensity relations come along for the ride, whereas in the latter there
is a focus on the intensity relations between pixels, and the spatial relations are
secondary.

Unsharp masking can be generalized in a number of ways. One way is to re-
place the constant gain with separate weights for the background and detail terms:

I(x,y) � A(i(x,y) � i*N (x,y)) 
 B(i*N (x,y))

An example of a method using this formulation is the statistical difference filter
(18,19). In this method, A is chosen so that the variance within the contextual re-
gion is made as nearly constant as possible, subject to a preset maximum gain to
avoid overenhancement of areas of very small standard deviation. B is a constant
that serves to restore part of the background component. The method has been
shown to produce objectionable artifacts, and finding suitable values for the
weighting factors, the maximum gain and the window size proves difficult.

Multiscale Image Contrast Amplification (MUSICA™) (20) is an algorithm
based on a multiresolution representation of the original image. The image is de-
composed into a weighted sum of smooth, localized, 2D basis functions at multi-
ple scales. Each transform coefficient represents the amount of local detail at some
specific scale and at a specific position in the image. Detail contrast is enhanced
by nonlinear amplification of the transform coefficients. An inverse transform is
then applied to the modified coefficients. This yields a uniformly contrast-en-
hanced image without apparent artifacts (see Fig. 12 for an example).

Another well-accepted adaptive method generalizes histogram equalization
to local context. In adaptive histogram equalization (AHE) (21,22), the histogram
is calculated for the contextual region of a pixel, and the transformation is that
which equalizes this local histogram. Its development is logical both from the
point of view of optimization of information, the basis for histogram equalization,
and of the local sensitivity of the human visual system. It gives each pixel an in-
tensity that is proportional to its rank in the intensity histogram of the contextual
region centered at that pixel. AHE provides a single displayed image in which
contrasts in all parts of the range-recorded intensities can be sensitively perceived.
AHE has demonstrated its effectiveness in the display of images from a wide
range of imaging modalities, including CT, magnetic resonance imaging (MRI),
and radiotherapy portal fims.

The size of the contextual region used is a parameter of the method. Gener-
ally, the contextual region should be proportional to the size of the objects or ob-
ject details to be visualized from the image. For 512 	 512 CT or MR or radio-
graphic images, contextual regions of between 32 	 32 and 64 	 64 have been
found to be the best for clinical use.
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AHE as it stands requires the computationally expensive process of com-
puting a histogram for every pixel. Algorithms have been developed for stream-
lining this process while not changing the result (23,24), and for fitting this pro-
cess on parallel processors (25,26), with only minor effects on the results. A great
speedup on sequential machines has been achieved by interpolative AHE, in
which the histogram and thus the local function ƒN is computed for only a sample
of pixels, and the value I(x,y) is bilinearly interpolated from the results of ƒN

(i(x,y)) for each of the ƒN appropriate for the nearest pixels in the sample (24).
However, interpolative AHE has been shown to produce certain artifacts that are
in some cases damaging, so full AHE is to be preferred if the time or the parallel
machine it requires can be accepted.

While providing excellent enhancement of the signal component of the im-
age, AHE also enhances noise, as it should if the perceptual task is to view all
recorded image information. In addition, as with all adaptive methods with a fixed
contextual region, shadowing of strong edges can occur in certain types of images.
Contrast-limited adaptive histogram equalization (CLAHE) (24) was designed to
lessen these behaviors in those cases in which the perceptual task leads to the de-
sire to ignore salt-and-pepper noise. CLAHE proceeds from the realization that 

Fig. 12 The same mammogram processed with MUSICA. See Fig. 6 and 7 for compar-
ison with MMIW and HIW methods.
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overenhancement of noise occurs when the recorded intensity is approximately
uniform in the contextual region. This nearly constant intensity reflects itself in a
large peak in the contextual region’s histogram, and this in turn leads to a high slope
in the cumulative histogram. Because the slope of a normalized version of the cu-
mulative histogram gives the degree of contrast amplification, that amplification is
great when the contextual region has nearly constant intensity. Moreover, the main
contrast to be amplified there is that caused by noise. This reasoning suggests that
the enhancement calculation be modified by imposing a user-specified maximum
on the height of the local histogram, and thus on the slope of the cumulative his-
togram that defines the contrast amplification in that region (see Fig. 13). This is
exactly what CLAHE does, except that an additional normalizing transformation
must be done, as discussed in the next paragraph. The enhancement is thereby re-
duced in very uniform areas of the image, which prevents overenhancement of

Fig. 13 Histogram clipping and renormalization and its effect on the intensity mapping.
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noise. At the same time lowering the contrast amplification reduces the edge-shad-
owing effect of unlimited AHE (see Fig. 14). More about this will be said later.

For any contrast-enhancement function ƒN that maps the full range of i (in
the contextual region) to the range of displayable intensities, the modification of
by limiting its slopes will lead to a function that does not map to the full range of
displayable intensities. Some renormalization is necessary to achieve a mapping
to the full range. Basically, what needs to be done is to replace parts of the his-
togram that have been clipped off by the limitation in contrast amplification. The
renormalization that produces a minimum change in the maximal contrast ampli-
fication caused by the renormalization is achieved by adding a constant level to
the histogram so that its area is returned to its value before the clipping or, equiv-
alently, by adding a constant to the slope of the cumulative histogram, which for
histogram equalization is proportional to ƒN. The result of adding a constant to the
slope of the mapping is equivalent to adding a multiple of the original image into
the image mapped by the unrenormalized cumulative histogram. In fact, it is best
for this constant to be added only to histogram bins that have a nonzero content to
make the method insensitive to pixels with strongly outlying intensities.

Another method for limiting the shadowing problem was discovered by
Rehm (27) in the context of high-resolution digital chest radiographs. Her solution
is a variant on unsharp masking. Instead of amplifying the detail image by multi-
plying it by a constant before adding it back to the background image, she applied
CLAHE to (only) the detail image before adding a multiple of the result back. The
limited excursions in intensity in the detail image and the limited edge-shadowing
of CLAHE with heavy histogram height limitation led to limited edge shadowing
in the final result.

C. Methods Incorporating Object Structure

The local image structure in terms of object geometry plays a crucial role in our
perception of contrast. Enhancement techniques that incorporate local object ge-

Fig. 14 (a) The original CT image shown in Fig. 8 processed by AHE and (b) CLAHE.

A B
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ometry are a logical result. There are two ways in which the preceding methods
may be extended to include object information. One is to change the enhancement
calculation itself; the other is to change the contextual region over which the cal-
culations are done. Examples of each of these approaches are presented in the fol-
lowing.

An interesting extension of the two-coefficient generalization of unsharp
masking (28) chooses the coefficients to produce a local contrast modification
based on the detection of edges within the contextual region. In essence, the
recorded intensity of a pixel is weighted by the local edge strength at that pixel as
computed by the Sobel, Laplacian, or other edge operator. These edge-weighted
values are then used in the calculation of the local ƒN. This method has an edge-
enhancing effect.

Several ways have been proposed of adjusting the contextual region over
which the contrast enhancement is calculated. The idea is to adaptively restrict the
local context to that which is relevant to perception of the pixel under considera-
tion. Exactly what constitutes relevance in this sense depends to a large extent on
the visual model that is used, but it is certain that perceived object boundaries are
important in defining relevant context.

Gordon’s version of two-coefficient generalization of unsharp masking (29)
has been extended by introducing a limited set of different window sizes and
choosing the appropriate size on a pixel-by-pixel basis throughout the image. This
is done by analyzing how the contrast function changes across these different win-
dow sizes. As the window size increases, the contrast of a central object will in-
crease until the inner window just covers the object. This window is then used to
calculate the enhancement. Even by restricting the available windows to a few
possible sizes, the computational burden is large. Moreover, the use of square win-
dows limits the ability to adapt to actual image structure.

Kim and Yaroslavskii (30) propose analyzing the local histogram to define
a subset of the contextual region and determining the enhancement mappings from
the histogram of this subset only. One method uses only that portion of the his-
togram of the contextual region that falls within a certain intensity range sur-
rounding the value of the center pixel. To the extent that nearness in the histogram
or nearness in absolute intensity corresponds to closeness within the image, this
has the effect of restricting the calculations to within-object boundaries. The
method unfortunately may result in a contextual region of disconnected pixels.
Moreover, although the contextual region does indeed change across the image,
the overall window size remains fixed. To be entirely satisfactory, an adaptive
neighborhood must both have some mechanism for responding to object bound-
aries and also not be limited by an imposed overall shape. Two methods that meet
both these criteria are now examined.

In designing an effective variable contextual region calculation, we seek
some way of determining the relevant context. The context is the local object and
its near background. The very variable conductance diffusion (VCD) that pro-
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duces object formation in certain models of human vision also gives a measure of
relevance of one pixel to another, thus offering a way of producing truly object-
sensitive contextual regions.

One way of using VCD is called sharpened histogram equalization
(SHAHE) (31), the background image of an unsharp masking is formed using
VCD, and the resultant unsharp masking is followed by CLAHE.

The form of VCD used diffuses intensity according to a conductance deter-
mined by the rate of change of intensity. That is, conductance is lower in regions
with high rate of change of intensity (near edges) than in those where intensity is
more homogeneous. The scale at which intensity change should be measured at
the beginning part of the diffusion determines what spatial degree of edge coher-
ence is necessary for the location to form a significant degree of insulation.

SHAHE is a somewhat ad hoc combination of the ideas of object-sensitive
contrast enhancement, but it frequently produces good results. It is unusual by
having been proven to make a clinically significant difference, namely on radio-
therapy portal films (32). The method consists of an unsharp masking based on
smoothing by means of variable conductance diffusion, followed by CLAHE.
VCD is used to define the background region in unsharp masking. The standard
unsharp masking formula I(x,y) � �i(x,y) 
 (1 � �) i*N (x,y), is used, but the back-
ground i*N (x,y) is produced using a variable rather than fixed contextual region.
The background thus reflects a relatively small blurring of high contrast, sharp
edges while keeping a relatively large blurring of low-sharpness or low-contrast
edges. This means that the detail image shows a strong sharpening of the weak
edges while maintaining the sharpness but decreasing the sharpness of the strong
edges. The step amplifying the detail image and adding back the background thus
results in a relative increase in the enhancement of small details while producing
no overshoot or even an undershoot along the edges. This is exactly what is
needed to counteract the shadowing effect of CLAHE. Thus, when CLAHE with
a significant contrast-enhancement limitation is applied (thus itself resulting in
low shadowing) to the result of the unsharp masking, a high-contrast result with-
out much edge shadowing is produced (Fig. 15).

D. Quality of Contrast-Enhancement Methods

The ultimate test of any contrast-enhancement method designed for use with med-
ical images is whether it provides increased diagnostic accuracy or efficiency in a
clinical setting. In choosing among contrast-enhancement methods, we must gen-
erally be content with some approximation to this test. Most frequently, enhanced
images are judged purely subjectively. Unfortunately, there is a lack of correlation
between performance as an observer executing a viewing task and subjective rat-
ing of image quality. Thus, observer experiments comparing different enhance-
ment techniques have become an important part of the field. Enhancement meth-
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ods are often compared on the basis of their ability to increase detectability of ei-
ther standard test patterns or very subtle artificially produced lesions imposed on
real medical images. This detection task is certainly important for many imaging
modalities but may not be the most important in every case. Boundary localization,
shape characterization and comparison of absolute luminances are some viewing
tasks that may be of importance. It may take a considerable amount of training for
the clinician to effectively use images processed by means of these enhancements.

Another task-related matter is how noise is treated. Noise is unwanted im-
age detail, so its definition depends on what detail is wanted, as well as what is
known about the properties of the image-formation process. With such a decision,
the contrast enhancement must be chosen not simply to convey signal differences
but to convey them relative to noise.

If one does not understand the effect of the display system, one cannot de-
sign contrast-enhancement mappings that best present the information of the
recorded image to the human observer. We cannot control the processing that
takes place inside the human visual system; indeed, we design our contrast-en-
hancement methods to best match this processing as we understand it. But non-
linearities in the display system can confound the most carefully designed 
enhancement mapping, and these effects can and must be controlled. Standard-
ization of display systems is absolutely critical, especially when comparing dif-
ferent contrast-enhancement ideas.

We have discussed these techniques without paying particular attention to
the cost of computing them. Certainly, for a method to be usable in the real world,
the implementation must be relatively fast, even real-time. Many of the methods

Fig. 15 Results of applying SHAHE algorithm to the portal image shown in Fig. 5.
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discussed previously, particularly the adaptive ones, have in the past been too
computationally expensive to be clinically valuable. However, many algorithms
are approaching real-time computation speeds as general purpose computers be-
come more powerful. Furthermore, in most cases specialized hardware optimized
for a specific method would be capable of real-time computation of that method.

We have presented a survey of recent advances in contrast-enhancement
techniques and tried to give some indication of the importance of an accurate vi-
sual model in the development of these techniques. As better models of human vi-
sual perception are formulated, we will be able to design contrast-enhancement
methods that more effectively complement our perceptual capabilities.
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6
Detection of Microcalcifications

Robert M. Nishikawa
The University of Chicago, Chicago, Illinois

I. INTRODUCTION

Breast cancer is one of the few diseases that uses asymptomatic screening as a
method for controlling the disease. Several countries in the world have national
screening programs, and many others have recommendations for regular mam-
mographic screening for asymptomatic women. Consequently, mammography is
becoming a high-volume subspecialty. Furthermore, it is becoming one of the
most common areas for radiological malpractice suits in the United States (1).
Radiologists read screening mammograms in batches, sometimes 100 or more at
a sitting. Because only about 0.5% of these cases will have breast cancer, it can
be difficult to be ever vigilant to find the often subtle indications of malignancy
on the mammogram. Consequently, between 5% and 30% of women, who have
breast cancer and have a mammogram, are diagnosed as normal. Computerized
detection of breast lesions can be used by radiologists as a “second opinion” and
thereby reduce the chances that a cancer is missed. Therefore, automated analy-
sis of mammograms is the most active area in computer-aided diagnosis re-
search.

Microcalcifications appear grouped on a mammogram—typically, at least 5
microcalcifications per square centimeter are required to be considered a cluster,
but three suspicious microcalcifications could be enough to prompt a biopsy. Be-
cause isolated calcifications are not clinically relevant, the detection of clustered
microcalcifications is somewhat unique. Multiple individual microcalcifications
compose the target lesion: a cluster of microcalcifications. Therefore, it is not nec-
essary to detect every calcification to detect the cluster. In theory, a detection
scheme could have low sensitivity for the detection of microcalcifications, while
having high sensitivity for the detection of a cluster of microcalcifications.
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Calcifications are a result of either a benign or a malignant process that
causes the epithelial cells lining the ducts of the breast to secrete calcium salts into
the duct lumen. As a result, what appears mammographically as a calcification is
a concretion of varying size composed of calcium phosphates, mainly hydroxya-
patite, or calcium oxalate crystals. Thus, the calcifications themselves are neither
benign nor malignant but are the result of cells that have undergone a benign or
malignant transformation. Although it appears mammographically as a single en-
tity, a calcification is actually composed of multiple crystals. Because these crys-
tals can adhere in multiple ways, the size and shape of the calcification can vary
greatly—from 10 �m up to several millimeters in diameter and from spherical to
elongated. Furthermore, the density of the calcifications can vary, depending on
the amount of fluid trapped in the concretion. Consequently, the radiographic con-
trast of the calcifications can differ even for calcifications of the same size and
shape. These factors add to the complexity of detecting calcifications on mam-
mograms.

Mammographic screen-film systems are capable of imaging very high-con-
trast objects down to 25 �m or less. However, small calcifications are not high-
contrast objects. Typically, the smallest calcifications that can be seen with con-
ventional mammography are around 200 �m microns (2,3). This is because the
detection of calcifications is limited by the calcification’s signal/noise ratio (4).
Smaller calcifications or better detail of larger calcifications can be obtained 
using geometric magnification techniques when producing the image because of
improved signal/noise ratio (5,6). These special views may be done as part of 
a diagnostic mammogram workup but are not normally done in screening 
mammography.

Historically, the first report of automated detection of microcalcifications
was by Spiesberger in 1979 (7). His technique examined the mammogram in sec-
tions, using a 25 �m pixel size. For each point in the image, the local maximum
pixel value was found. For each candidate, the contrast was calculated and com-
pared with two times the standard deviation in pixel values of the boundary pix-
els. Finally, compactness was computed, and only compact candidates were kept.
Modest performance was obtained using 132 regions of interest (ROIs) of 
512 	 512 pixels: 68% sensitivity at a false-positive rate of 1% and a false-nega-
tive rate of 31%. A number of other published reports followed over the next few
years, none showing conclusively a technique that was accurate enough to be used
clinically.

The turning point in the field occurred in 1990, when Chan and colleagues
showed that an automated detection scheme could improve radiologists’ ability to
find clustered microcalcifications on mammograms (8). In this carefully con-
trolled observer study, seven attending radiologists and eight radiology residents
each read 60 images. Half the images contained a cluster of calcifications, and the
other half did not. The readers used a five-category rating scale to give their con-
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fidence that a cluster was present. The data were analyzed using the receiver op-
erating characteristic (ROC) method (9,10). The computer scheme had a sensitiv-
ity of 87% with an average of four false clusters per image. The area under the
ROC curve increased from 0.924 to 0.953 when the observers used the computer
aid. This increase was statistically significant at the p � 0.001 level. On average,
the readers’ sensitivity increased by 10% at a constant specificity. This study was
in fact the first computer-assisted diagnosis (CAD) algorithm of any kind shown
to be a beneficial aid to radiologists. It has spurred CAD research in mammogra-
phy and in other organs and other imaging modalities.

There are probably 100 or more groups developing an automated detection
method for clustered microcalcifications on mammograms. It is not possible to de-
scribe them all. There is, however, commonality between most approaches.
Nearly all methods can be described generically, as outlined in Fig. 1, as consist-
ing of three steps: preprocessing, segmentation of candidate microcalcifications,
and feature analysis to remove false-positive detections.

Almost all techniques developed to date have relied on digitized screen-film
mammograms as a source of image data. The quality of the digitized mammogram

Fig. 1 Flowchart of a generic scheme for the detection of clustered microcalcifications.
Most approaches reported in the literature follow this paradigm.
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will depend on the characteristics of the digitizer used: pixel size, gray-scale res-
olution, noise properties, and artifacts. Because microcalcifications are small—
microcalcifications as small as 200 �m can be reliably seen mammographically—
the choice of pixel size is critical and is a current point of controversy (11–16).
Chan et al. have examined the performance of their automated detection scheme
on mammograms digitized with different pixel size and gray-scale resolution (14).
They found that the performance of their scheme for detecting microcalcifications
decreased when the pixel size was 70 �m or larger (compared with 35 �m). Note
that this result is for the detection of individual microcalcifications and not for the
detection of clusters of microcalcifications. It is possible to detect a cluster of
pleomorphic calcifications by detecting the larger calcifications while missing the
smaller, subtler ones. Most algorithms are currently being developed using images
digitized at 100 �m. Table 1 is a surrey of the pixel sizes used by different inves-
tigators.

Another limitation of using digitized film mammograms is the high amount
of noise in dark regions of the image. When the film optical density is high, light
transmission through the film is low and, consequently, few photons are measured
by the digitizer. Under such conditions, the electronic noise of the digitizer will be
a significant fraction of the measured signal, resulting in poor signal-to-noise
characteristics. This can lead to false-positive detections if one is not careful in de-
signing a technique. This situation is exacerbated, because the newer screen-film
systems have maximum optical densities greater than 4.0 (17), which is beyond
what most digitizers can accurately measure.

The remainder of the chapter will describe techniques used to accomplish
the three different parts of a detection scheme; this will not be a comprehensive
listing, but rather a survey. There are a number of different approaches to accom-
plishing these three tasks. Unfortunately, at present, it is not possible to compare

Table 1 A Survey of Pixel Sizes Used by Different Investigators

Pixel size Number of
�m investigators Reference number

25 1 (54)
35 1 (93)
40 3 (31, 55, 65)
50 (8 bit) 4 (35, 45, 62, 68)
50 (!10 bits) 7 (22, 30, 46, 49, 61, 73, 85)
80 1 (47)
100 (8 bit) 3 (57, 58, 94)
100 (!10 bits) 23 (8, 23–25, 33, 34, 40, 44, 51, 53, 59,

60, 63, 64, 66, 74, 77, 80, 84, 95–98)
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the different approaches in a meaningful way. This is principally because differ-
ent images are used to evaluate performance of the different methods, and this can
introduce great variations in measured performance (18). This is illustrated in Fig.
2, where selecting a subset of cases from a larger set of images can produce large
variation in measured performance. Furthermore, the exact criterion used to score
the computer detections can influence measured performance (19,20). Because no
standard test set or scoring method exists, no attempt is made in this chapter to
compare different techniques. Large databases are becoming available (21), and
this should facilitate direct comparisons of techniques in the future.

II. PREPROCESSING

Preprocessing is used in an effort to reduce the effects of the normal anatomy of
the breast, which acts as a camouflaging background to clustered microcalcifica-
tions. In addition, because the response of the screen-film system is nonlinear, the
background optical density will affect the image contrast of the microcalcifica-
tions (see Appendix to this chapter). In bright or dark areas of the image, the con-
trast is reduced compared with regions that are optimally exposed. This reduces
the effectiveness of pixel-value–based and contrast-dependent techniques.

One approach to preprocessing is to fit a polynomial to the background and
subtract the fitted background from the original image. Cubic polynomials have

Fig. 2 The effect of a database on measured performance. Here, the performance of a de-
tection scheme on a database of 90 mammograms (all) is compared with a subset of 50
mammograms that gives the best performance and a subset of 50 mammograms that give
the worst result.
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been found to be useful by Bottema et al. (22). When analyzing smaller ROIs,
background trend correction by polynomial fitting has been found to be useful
(8,23,24).

Because microcalcifications contain relatively large amounts of high spatial
frequency information, a high-pass filter would enhance the signals while reduc-
ing the background structure. Unsharp masking will accomplish this goal (25).
However, a large component of the power in a mammogram at high spatial fre-
quencies is noise, both quantum mottle and film granularity (4,26,27). Therefore,
a band-pass filter would be more effective, because there is little information at
the highest spatial frequencies in the image.

One strategy for enhancing calcifications is to subtract two processed im-
ages: one in which calcifications or high spatial frequencies have been enhanced
and another in which the calcifications or high spatial frequencies have been re-
moved or diminished. The first group to use this approach was Chan et al. (28,29).
They applied two linear filters by means of convolution on images digitized at
100-�m pixel size. The template for the enhancing filter was a 3 	 3-pixel kernel,
with the center pixel having a higher weighting factor than the surrounding pixels
in a 4:3 ratio. The suppression filter used a 9 	 9 kernel, with the center 5 	 5 pix-
els having 0 weighting and the 2-pixel rim perimeter having a value of 1/56. This
filter would enhance calcifications 500 �m and smaller. An example of applying
such a technique is shown in Fig. 3.

Similar principles are used in applying a top hat operator. The top hat tem-
plate includes components for enhancement of calcifications and suppression of
background but uses mathematical morphological operators instead of convolu-
tion operations. Several groups have found this approach useful (30–32). An ex-
tension of the top hat transformation has been proposed by Kobatake et al., which
multiple structuring elements, which are linear or curvilinear, are used. In one im-
plementation, there are 16 structuring elements, each 5 pixels (100-�m pixel size),
radiating from the same pixel out to a pixel on the perimeter of a 9 	 9 box. The
termination points are every other perimeter pixel, starting it the pixel directly
above the central pixel (33). This approach is less likely to have false detection be-
cause of ducts and ligaments that form part of the normal background structure in
the mammogram.

A difference of gaussian band-pass filtering can also be used to create an en-
hanced image with reduced background structure. In this approach, an image is
convolved by two gaussian functions, and the resulting filtered images are sub-
tracted. Empirical data by Zheng et al. show that a 1.55 and 2.33 pixel full width
at half-maximum intensity (100-�m pixel size) are effective sizes for the gaussian
function (34). This corresponds to a kernel size of 5 and 7 pixels, respectively.

A directional recursive median filter with principal component analysis
(PCA) has been developed by Cernadas et al., in which one-dimensional recursive
median filters are applied at 12 different angles (35). The recursive median filter is
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a class of filters known as sieves (36) and is closely related to morphological oper-
ators. This allows a scale-orientation signature to be built for each pixel. In this sig-
nature, a column represents constant orientation, a row constant scale, and the val-
ues are the changes in gray level of the pixel with respect to the image filtered at the
next smaller scale. PCA (Principle Component Analysis) is then applied to reduce
the dimensionality of the signature. Typically, the first 80 components are used.

Wavelets are an effective method of preprocessing, because a multiple num-
ber of band-pass filters can be chosen on the basis of which daughter wavelet de-
composition is used in reconstructing the image. The principle of applying
wavelets to medical images is discussed in Chapter 6. In mammography, a
weighted sum of the different levels in the wavelet domain is performed to en-
hance calcifications (37). Different approaches differ in their choice of wavelets
and the selection of which levels to use in the reconstruction. A list of different
wavelets used for processing microcalcifications on mammograms is given in
Table 2.

Although most implementation of wavelets is decomposition and recon-
struction of selected levels, Strickland and Hahn use wavelets as means of apply-
ing match filters to an image (38). Undecimated wavelet transforms are used to

Fig. 3 A preprocessing technique, in which the normal breast structure shown in (a) is
greatly suppressed in (b). A cluster of calcifications is marked in the unprocessed image.
The suppressed image is presented with greatly enhanced contrast to show that the large-
area variation in the background has been successfully suppressed.
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adjust the filter for the range in sizes of calcifications. To implement a match fil-
ter, in addition to the size and shape of the object, the power spectrum of the im-
age noise needs to be known. To estimate the noise power spectrum a stochastic
model is used (39), which consists of a stationary and nonstationary components.
The two components are modeled as separable Markov process with autocorrela-
tion of rnn(k,l) � �2

ne��( | k | 
 | l | ), and a nonseparable Markov process with auto-
correlation of rnn(k,l) � �2

ne�� �k2� 
� l2�. The power spectrum can be computed
from a weighted sum of the two Markov processes and by estimating the Markov
correlation parameter, �, from the background texture.

A very sophisticated filter has been designed by Qian et al. (40). They have
developed a tree-structured nonlinear filter coupled with wavelets. The front end
of their method is a cascade of centrally weighted median filters that reduce the
image noise while trying to maintain the structure of the calcifications. This is
done, in part, by using eight different 5 	 5 linear or curved windows. A two-
channel tree-structured wavelet transform that incorporates quadrature-mirror fil-
ter banks is then applied.

A different preprocessing technique has been developed by Karssemeijer
(41). In his method, the gray level values are rebinned, so that each gray level con-
tains the same amount of noise, as opposed to the same amount of signal. This
eliminates the dependency of the noise on the gray-level value. To do this the
number of bits in the image to be analyzed is reduced from 12 to 8. Because the
noise properties of the image depend on the film’s optical density (26,27), the
transformation from 12 to 8 bits is nonlinear. The method estimates the standard
deviation as:

ŝ(k) � �cmax

cmin

c2ƒ̂(c | k) dc (1)

where c is the radiographic contrast measured in pixel values [i.e., a constant times
�D of Eq. (A5), assuming the digitizer is linear] calculated in a small region of in-

Table 2 List of Different Mother Wavelets Used for
Processing Mammograms Containing Microcalcifications

Lead investigator Wavelet

Brown (61) Undecimated spline
Chen (55) Morlet
Lo (66) Daubechies 8-tap
Strickland (38) Biorthogonal B-spline
Wang (99) Daubechies’ 4- and 20- coefficient
Yoshida (95) 8-tap least asymmetric Daubechies
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terest, and ƒ̂(c | k) is the estimated conditional probability density of the local con-
trast conditioned on the gray level value. Estimates of the local standard deviation
can be made by using measurements from nonoverlapping bins (42).

In 1990, Caldwell et al. showed that the film optical density pattern on a
mammogram could be used to determine a fractal dimension (43), implying that
the distribution of tissue within the breast was fractal in nature. Two different in-
vestigators have used this fact to segment calcifications on a mammogram. The
reasoning is that the presence of a calcification will change the fractal dimension
of a local area. Li et al. have applied a fractal model to the normal background
structure in a mammogram (44). Then by subtracting the model from the original
image, an image of calcifications can be obtained. A threshold is also applied to
the difference image to eliminate weak intensities caused by noise. Lefebvre et al.
(45) plotted the logarithm of the surface area as a function of the logarithm of the
elementary ruler area for small 16 	 16-pixel ROIs (50-�m pixel size). The slope
of this plot is related to the fractal dimension, because, for a true fractal, this plot
is a straight line. When a calcification is present, the plot becomes concave, and
the maximum deviation from the theoretical straight line is determined. ROIs with
the highest deviation are kept as containing possible calcifications.

Another approach for preprocessing that uses fractals is by Sari-Sarref et al.
(46). Instead of filtering the image, they select ROIs that are unlike other regions
in the given mammogram. That is, a region that is dissimilar to all other regions
in an image is likely to contain an abnormality. Determining dissimilarity is done
by partitioning the image into regions, initially 256 	 256 pixels (50-�m pixel
size). Then two classes of regions are created: range and domain. If a given region
in the domain pool cannot be mapped to any region in the range pool, then that do-
main region is partitioned into smaller subregions. The partitioning continues un-
til a match from the range pool is found or the region is subdivided down to 
8 	 8-pixel subregions. Subregions that do match are considered to be suspicious
and are kept. All matched subregions are eliminated. In this way, the amount of
the image that needs further analysis is greatly reduced, by approximately 80%.

Guillemet et al. use a texture model based on noisy fractional brownian mo-
tion to eliminate regions on the mammogram that are too regular to contain mi-
crocalcifications (47). The model assumes that image texture is caused by frac-
tional brownian motion and an independent gaussian white noise source. There
are three parameters in the model: signal dynamic, signal fractal dimension, and
noise level. Details of the method are given elsewhere (48).

III. SEGMENTATION

Because calcifications have higher mass attenuation coefficients than any other
structure in the breast, they appear as bright areas in the mammogram. This makes
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gray-level thresholding a potentially useful method for segmentation. Unfortu-
nately, a mammogram is a two-dimensional projection of a three-dimensional ob-
ject, so that summation of overlapping tissues can produce areas in the mammo-
gram that are brighter than calcifications. Furthermore, the appearance of the
calcification depends on the type and amount of tissue surrounding it, in addition
to the tissue that is directly above and below it. As can be seen in Fig. 4, a calcifi-
cation can have a low optical density or a relatively high optical density, depend-

Fig. 4 A collage of regions of interest, each 1.28- 	 1.28-cm in size. There are micro-
calcifications centered on the middle of each ROI. Although the microcalcifications may
not be visible in all ROIs, one can see the range in contrast and background film density for
clustered microcalcifications on mammograms. The bottom right ROI is empty.

Copyright © 2002 Marcel Dekker, Inc.



ing on its surrounding tissue. Therefore, keeping a small fraction of the brightest
pixels will be effective in identifying calcifications, but it also will include other
noncalcification objects in the image. In a small ROI, however, calcifications
should again be the brightest objects present. This may also be true for images that
have been preprocessed appropriately. The problem then becomes one of sig-
nal/noise ratio. That is, small calcifications will have relatively low contrast and
tend to be masked by image noise. Therefore, to segment the most subtle calcifi-
cations on the basis of gray-level thresholding will result in the inclusion of pix-
els caused by image noise. After thresholding, region growing is used to identify
connected pixels as individual calcifications.

The global thresholding can be refined by applying a local threshold. The
local threshold is determined as the mean plus a multiple of the standard deviation
of pixel values in a small region of interest, for example 5 	 5-mm square, as done
by Chan et al. (29). In this way, the local statistics (i.e., noise) of the region around
the calcification influence the threshold.

Shen et al. have developed a variation on local thresholding. They compare
the seed pixel value to the average of the maximum and minimum pixel value of
the four connected neighbors (49). If the pixel value is within plus or minus a per-
centage of the average, then that pixel is grown as part of the signal.

Zheng et al. implemented segmentation using the quantity (34):
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where I1 and I2 are pixel values of the object and its background (a 5 	 5-mm
square region). A 2% threshold is then applied, so only those signals with a �0.02
are kept. This is combined with a local minimum search ring, in which each pixel
in the thresholded image is compared with 16 pixels that form a circle of radius 3
pixels.

Note that several investigators use the preceding definition in Eq. (2) for
contrast. For digitized screen-film mammograms, however, the contrast is just the
difference in pixel value, not the difference divided by the mean. This is shown in
the Appendix to this chapter.

Jiang et al. (50) and Veldkamp and Karssemeijer (51) have independently
developed a segmentation technique based on background-trend correction and
signal-dependent thresholding. In these two approaches, corrections for the non-
linear response and the blurring of the calcification by the screen-film system and
film digitizer are performed. At low and high x-ray exposures to the screen, the
contrast, which is proportional to the slope of the characteristic curve, is reduced
[see Eq. (A5) and Fig. 5]. That is, the inherent contrast of the calcifications [i.e.,
radiation contrast, given by Eq. (A1)] is reduced when recorded by the screen-film
system. This can be seen in Fig. 4. Therefore, the image or radiographic contrast
[given by Eq. (A5)], will depend on the background intensity. If a correction is not
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made for nonlinearity, then it becomes extremely difficult to segment accurately
calcifications in dense and fatty regions of the image simultaneously with calcifi-
cations in other regions of the breast. Similarly, the smaller the calcification, the
more that its contrast is reduced because of blurring. This can be corrected based
on the modulation transfer function of the screen-film system (52).

Gürcan et al. use a two-dimensional adaptive filtering method, which is
based on the assumption that the prediction error has a gaussian distribution if no
calcifications are present (53). The prediction error is the difference between the
actual pixel value and the weighted sum of the eight nearest neighbor pixels. Next,
a gaussianity test is applied in which the moments of the prediction error for a 30
	 30-mm squared area are computed. Then the moments are combined as:

h � M3 � 3M1(M2 � M2
1) � M3

1 (3)

M1, M2, and M3 are the first, second, and third moments, respectively. If the pre-
diction error follows a gaussian distribution, then h goes to zero as the size of the
ROI goes to infinity. A threshold of approximately 5 is applied to segment the cal-
cifications.

Bankman et al. have developed a method that operates without threshold or
window selection or parametric data models (54). Given a local maximum pixel

Fig. 5 A typical characteristic curve for a mammographic screen-film system.
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value at (x0,y0), then an edge pixel is given by the value of (x,y) that maximizes
the difference in pixel value between pixels at (x,y) and (x0,y0) divided by the eu-
clidean distance between the two pixels. In this way edge pixels from 16 different
lines equally spaced radiating from (x0,y0) are determined. All pixels that lie
within the contour defined by the edge pixels are then determined on the basis of
the radial angle from (x0,y0). This technique works well when the object consists
of many pixels. In their work, images with 25-�m pixel size were used, resulting
in each calcification being at least 100 pixels in size. If images of 100-�m pixel
size were used, then the calcification could consist of only 6 pixels. It is unclear
how effective the Bankman technique would then be.

Stochastic approaches have also been used to segment calcifications, in par-
ticular, a Markov random field model (41,55). Karssemeijer et al. use the Markov
random field to model pixels in the image as belonging to one of four classes:
background, calcification, lines/edge, and film emulsion errors (42). Three differ-
ent features are used in the model: local contrast at two different spatial resolu-
tions and the output of a line/edge detector. The line/edge detector resembles a
Hough transform analysis (41).

IV. FEATURE ANALYSIS

To reduce the number of false detections, features are extracted and are used to
differentiate true calcifications from false detections. A large number of different
features are being used by different investigators. A large, but not complete, list is
given in Table 3. The drawback of having a large number of features to choose
from is that the selection of the optimum set of features is difficult to do, unless a
very large number of images are available for feature selection (56). This is in ad-
dition to images needed for training and images needed for testing the technique.

Most of the features listed in Table 3 use standard techniques for deter-
mining their value. One feature, effective thickness of the calcification devel-
oped by Jiang et al., is calculated using a model of image formation (50). That
is, what thickness of calcification will give rise to a given measured contrast in
the digital image. To do this, corrections for the blurring of the digitizer and the
screen-film system are performed, along with corrections for the characteristic
curves of the digitizer and the screen-film system. The assumption is that, in
general, calcifications are compact, so their diameter and thickness should be
comparable. Film artifact, such as dust on the screen, will have a very high
thickness value compared with its size and, therefore, can be eliminated. Simi-
larly, detections that are thin compared with their area are likely to be false pos-
itives because of image noise.

Most features are extracted from either the original image or a processed
image that has sought to preserve the shape and contrast of the calcifications in
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the original image. Zheng et al. have used a series of topographical layers (n �
3) as a basis for their feature extraction. The layers are generated by applying a
1%, 1.5%, and 2% threshold using Eq. (2). This allows for features related to
differences between layers (e.g., shape factor in layer 2 and shape factor in layer
3) and changes between layers (e.g., growth factor between layers 1 and 2) to be
used.

Once a set of features has been identified, a classifier is used to reduce the
number of false detections, while retaining most of the actual calcifications that
were detected. Several different classifiers are being used: simple thresholds
(7,29,33,34,45,57–60), artificial neural networks (61–64), nearest neighbor meth-
ods (32,60,65), fuzzy logic (66,67), linear discriminant analysis (35), quadratic
classifier (61), bayesian classifier (68), genetic algorithms (69), and multiobjec-
tive genetic algorithms (70).

Once individual signals have been identified, they need to be grouped or
clustered, because only clustered microcalcifications have clinical significance.

Table 3 List of Different Features Used for Distinguishing Actual Calcifications from
False Detections

Morphology Derivative
Pixel-value based based based Other

Contrast (7, 28, 45, Area (28, 45, 60, 100, Mean edge gradient Number of signals
60, 68, 83) 101) (25, 33, 57–60, per cluster (45,

Average pixel Area/maximum 66, 68, 83) 93, 101)
value (7, 49) linear dimension Standard deviation Density of signals

Maximum value (57) of gradient (58) in cluster
(22, 66) Average radius (22) Gradient direction (45, 100, 101)

Moments of Maximum dimension (25) Distance to nearest
gray-level (58) Second derivative neighbor (93)
histogram (67) Aspect ratio (93) (68) Distance to skin

Mean background Linearity (59) line (93)
value (66) Circularity Mean distance

Standard deviation (22, 60, 101) between signals
in background Compactness (101)
(66, 83, 100) (7, 57, 68) First moment of

Sphericity (contrast is power spectrum
the third dimension) (8)
(22) Effective thickness

(50)
Peak contrast/area

(22)
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This usually is done based on the spacing between detected signals (58,71,72).
Not only will this eliminate isolated detections, but false signals that are in close
proximity to each other (i.e., a false-positive cluster) can be eliminated (71).

V. ALTERNATIVES TO FEATURE EXTRACTION

In lieu of feature extraction, several investigators have used the image data as in-
put to a neural network. The difficulty with this approach is that the networks are
usually quite complex (several thousand connections). Therefore, to properly train
the network and to determine the optimum architecture of the network requires a
very large database of images.

Stafford et al., after application of a high-pass filter and normalization, used
16 	 16-pixel ROIs (50-�m pixel size) as input to a feed-forward neural network
(73). They use 16 neurons in the hidden layer and a single neuron at the output.
They repeated this structure three times to create a parallel network. The inputs to
the other two subnetworks are the original image reduced by 4 and 16 times in size
by pixel averaging. In this way, the network using the unreduced image is “tuned”
for calcifications in the 100–500-�m size range, once-reduced-image network
200–1000 �m, and the twice-reduce-image network 400–2000 �m. The three out-
puts are then subjected to a winner-take-all filter, in which the output from the net-
work with the largest value is kept.

Rosen et al. used a bayesian artificial neural network to examine the image
using 7 	 7-pixel ROIs (100-�m pixel size) (74). Their network had a single hid-
den layer with nine hidden units and one output unit. They found that the weights
from the inputs to one of the hidden units resembled a Mexican hat filter—a peak
at the center decreasing to negative value in the surround.

These and similar approaches are limited, because extremely high perfor-
mance is needed to avoid having a high false-positive rate. Most mammograms are
normal, and most of the area of mammograms that are abnormal do not contain cal-
cifications. Mammographically, the average breast is approximately 100 cm2 in area.
For a 50-�m pixel, there will be 4 million pixels to be analyzed. If there are 13 calci-
fications of 500 �m in diameter, then only 0.01% of pixels will belong to a calcifi-
cation. Therefore, a specificity of 99.9% will give rise to 10 false ROIs per image.

Wu et al. used a feed-forward neural network to examine regions that con-
tained potential calcifications as specified by a detection scheme (75). This re-
duces the number of ROIs that need to be examined and thus reduces the demand
for extremely high specificity. They used 32 	 32-pixel ROIs (100-�m pixel size)
that have background trends removed using a third-degree polynomial. These
ROIs are then subjected to a fast fourier transform. The resulting values are then
scaled logarithmically between 0 and 1 and are used as input values. The network
had 15 hidden units and one output unit.
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Zhang et al. (23,76) and Hasegawa et al. (77) have developed a shift-invari-
ant or convolution artificial neural network to further refine suspicious areas de-
tected by a computer scheme. This network is a simplified version of the neocog-
nitron (78) and is a multilayer, back-propagation neural network with local,
shift-invariant interconnections. The advantage of this network is that its output is
not dependent on the location of a calcification in the input layer. Zhang et al. (23)
have shown that this network outperforms the network developed by Wu et al.

Sajda et al. have developed a hierarchical/pyramid artificial neural network
(HPNN) to detect calcifications (24). The advantage of their technique is that the
network automatically learns context information relevant to calcifications. In
their technique, illustrated schematically in Fig. 6, the input to the neural networks
come from an integrated feature pyramid (IFP) (79). The IFP is composed of fea-

Fig. 6 Schematic diagram of the hierarchical/pyramid artificial neural network to detect
calcifications (24). This is an example of a technique that inputs the image data, in this case
preprocessed, to a neural network, as opposed to feature values extracted from the image.
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tures constructed at several scales, generated using gaussian reduction. At each
scale, steerable filters are used to produce four orientation-invariant features at
each pixel. The filtered images are then squared to compute the energy. Then, for
each pixel, the orientation that produced the maximum energy is kept. In this way,
the resulting image is invariant to orientation. From these images, images at dif-
ferent scales are produced and are then input to a series of multilayer perceptrons
with connections between the hidden units at low resolution and the input to the
next level network. In this way, the network takes advantage of coarse-to-fine
search.

VI. COMPUTATION TIMES

The computation times are not often stated by most investigators, perhaps under
the belief that this is not an important factor, because computers will always get
faster. In general, times range from 20 seconds (80) up to several tens of minutes
(inferred by this author from description of the technique), depending on the plat-
form and pixel size of the image. For any of the techniques to be used clinically,
they must be able to process images at a rate that is useful clinically. For “real-
time” analysis, such as for diagnostic mammography, there is approximately one
patient approximately every 20 minutes per x-ray machine. This means there is 5
minutes available per film, including the time to digitize the film. However, many
clinics have several mammography units, with large centers having four or more.
In this situation, computation times of about a minute per film may be necessary.
This also assumes that only one detection scheme is run. Most likely, at least one
other algorithm, for the detection of masses, will be implemented, cutting the
available time for computation in half.

In most centers, screening mammograms are not read until the next day.
This allows for processing overnight, and computation time becomes less critical,
but still important. To analyze 20 cases (80 films) in 15 hours (overnight) is 11
minutes per film for at least two different algorithms. For a higher volume center
(40 cases), this gives less than 3 minutes for each algorithm. Computation time is
not a trivial matter.

VII. DIGITAL MAMMOGRAMS

Developing in parallel to CAD is the development of digital detectors for mam-
mography. Small-field digital detectors for stereotactic needle biopsy systems are
commonly used clinically. So-called full-field digital mammography systems are
being developed by several companies (81). Digital acquisition of the mammo-
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gram overcomes several limitations of screen-film systems (82). The resulting im-
ages should have higher signal/noise ratios, and thus detection algorithms should
have higher performance when analyzing these images (81).

Because digital mammography is a new modality, cases for developing,
training, and testing detection schemes are not readily available, especially in the
United States. In Japan, computed radiography (CR) systems have been in use at
several hospitals, including the largest cancer hospital in the country. At the can-
cer center, a large number of cases have been performed. Kobatake et al. have
used this large database (953 patients) to develop a detection scheme (83).
McLeod et al. have begun a preliminary study using wavelets to detect calcifica-
tions again on CR images (84). Their database had 248 images from 62 patients.
These studies, however, do not allow a comparison of digitized film versus digi-
tal mammograms. Further studies on other digital mammography systems need to
be performed, because the different systems have different imaging characteristics
(e.g., pixel size).

VIII. CONCLUSION

In about 20 years, the automated detection of clustered calcifications has gone
from a crude tool in the research laboratory to a commercial system being sold and
used clinically. The performance obtained on a large, consecutive set of cancer
cases can be as high as 98.3% sensitivity at a false-positive rate of 0.3 clusters per
image (85). This extremely high level of performance indicates that such a system
should be beneficial clinically. Clinical trials to prove this hypothesis are now on-
going.

Although a high level of performance has been achieved, there are still a
number of areas that need to be addressed, such as:

1. Defining a standard test set (18).
2. Defining a standard scoring methodology (19,20).
3. How to deal with finite size databases (86–88).
4. Comprehensive comparison of different classifiers (89).
5. Clinical trials (90).
6. Understanding the relationship between the computer’s performance

(false-positive and true-positive rates) and clinical efficacy, which in-
cludes, but is not limited to, reduction in mortality and morbidity, cost-
effectiveness, acceptance by radiologists, and improvement in radiolo-
gists’ performance.

7. Should a detection algorithm identify calcifications associated with be-
nign breast disease or only identify cancers, and how does this affect ra-
diologists’ ability to use the computer aid (91)?
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IX. APPENDIX

In this Appendix, the relationship between radiographic contrast measured on the
film and the inherent contrast of the object (radiation contrast) is shown. The con-
trast, in terms of differences in number of x-ray quanta, is given as (92):
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The contrast given by Eq. (A1) is called the radiation contrast. Film optical
density (D) is related to the incident x-ray exposure (E) by the characteristic curve
of the screen-film system (see Fig. 5). The contrast, as recorded by the film (i.e.,
radiographic contrast), is given by:

D1 � D2 � G(log E1 � log E2) (A2)

where G is the slope of the characteristic curve. Now, for a given x-ray beam, E is
related to N by a constant, k, so that Eq. (A2) becomes:

�D � G �(log kN) (A3)

Given that:

�(log kN) � (log10e)�(ln kN)

� (log10e) �
�
N�
N
� (A4)

then, by Eq. (A1), Eq. (A3) becomes:

�D � GC log10e (A5)

That is, contrast measured on the film is the difference in measured film optical
density, and this is related to the radiation contrast (difference divided by the
mean) by a constant and the slope of the characteristic curve. So at x-ray expo-
sures corresponding to dense breast tissue or fatty tissue (low and high exposures),
the contrast of a calcification will be reduced compared with its contrast if it were
in the “average” part of the breast, where the slope of the characteristic curve is
maximum. This is illustrated in Fig. 4. The contrast measured on a digitized mam-
mogram is directly proportional to the �D, because digitizers are generally have
a linear relationship between pixel value and film density.
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I. INTRODUCTION

We have carried out a receiver operating characteristics (ROC) study for the en-
hancement of mammographic features in digitized mammograms. The study eval-
uated the benefits of multiscale enhancement methods in terms of diagnostic per-
formance of radiologists. The enhancement protocol relied on multiscale
expansions and nonlinear enhancement functions. Dyadic spline wavelet func-
tions (first derivative of a cubic spline) were used together with a sigmoidal non-
linear enhancement function (1,2). We designed a computer interface on a soft-
copy display and performed an ROC study with three radiologists, who
specialized in mammography. Clinical cases were obtained from a national mam-
mography database of digitized radiographs prepared by the University of South
Florida (USF) and Harvard Medical School.

Our study focused on dense mammograms [i.e., mammograms of density 3
and 4 on the American College of Radiology (ACR) breast density rating], which
are the most difficult cases in screening. To compare the performance of radiolo-
gists with and without using multiscale enhancement, two groups of 30 cases each
were diagnosed. Each group contained 15 cases of cancerous and 15 cases of nor-
mal mammograms. Conventional ROC analysis was applied, and the resulting
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ROC curves indicated improved diagnostic performance when radiologists used
multiscale nonlinear enhancement.

Recently, research has focused on the development of digital displays and
softcopy workstations for digital mammography. Limited spatial resolution, lu-
minance, and dynamic range cannot be solved simply by hardware improvements
or computer programming alone. A possible solution to these problems is the ap-
plication of multiscale contrast-enhancement techniques derived from nonlinear
models.

Radiologists are mostly familiar with films in which the Modulation Trans-
fer Function (MTF) is approximately equal to 28 gray levels of contrast resolution.
However, images acquired with digital detectors can record at least 212 different
gray levels of intensity and are now commercially available. The wealth of dy-
namic range within these digital acquisition systems provides strong evidence that
the signal-to-noise-ratio (SNR) can be increased in digital mammography. For ex-
pert radiologists the human visual system can detect at most 27 shades of gray.
These considerations motivate the need for judicious methods of processing digi-
tal radiographs that can optimize the bandwidth of the human visual system. We
have designed enhancement software that is well adapted for this purpose and
provides a “data mining” tool to map and make visible selected “quantum levels”
of information living within the wide range of contrast resolution provided by dig-
ital detectors.

Medical imaging is a field in which quantitative accuracy and qualitative fi-
delity are paramount. In any image-enhancement process, distortion of the origi-
nal image and artifacts are not affordable. Multidimensional feature enhancement
by means of wavelet analysis has been previously demonstrated on mammograms
(3–8) and is a powerful tool for processing digital medical images without arti-
facts. The enhancement process adjusts multiscale coefficients at some particular
spatial-frequency scale by increasing, decreasing, or resetting their values. Each
image is then reconstructed with modified coefficients. This simple enhancement
technique relies on the idea that features of interest in a given radiograph are de-
tectable at a particular scale and can be amplified, whereas noise and less clini-
cally interesting features may live at other levels of analysis, whose visual ap-
pearance can be diminished or eliminated in a reconstructed image. Further results
and detailed descriptions of these methods can be found in Refs. 9–15.

Surprisingly, there have been very few studies carried out to evaluate the
benefits of multiscale enhancement methods in terms of diagnostic performance.
Our study aimed at providing quantitative evidence of these benefits. ROC anal-
ysis (16) is most commonly used in medical imaging for such purposes, although
alternative statistical approaches can be found as well (17). ROC curves have been
compared to evaluate the visibility of malignancies (18), mass detection tech-
niques (19), or algorithms for computer-aided diagnosis (CAD) that use neural
networks (20).
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The chapter is organized as follows. In Sec. II we describe a protocol for mul-
tiscale nonlinear contrast enhancement. After a short overview of the use of multi-
scale expansions for contrast enhancement, we discuss the dyadic spline wavelet
selected, its implementation, and how a nonlinear enhancement function is applied
to multiscale coefficients. Sec. III addresses the design of a graphical user interface
(GUI) that was developed to carry out the ROC study, including high-performance
displays and specialized hardware for softcopy display of digital mammograms.
Next, the ROC study itself together with its results and subsequent data analysis is
presented in Sec. IV. After a discussion of the results of the study, conclusions and
possible directions of future research are presented in Sec. V.

II. ENHANCEMENT PROTOCOL

A. Contrast Enhancement by Means of Multiscale
Expansions: A Short Overview

We summarize in the following, the advantages of the use of overcomplete mul-
tiscale representations for adaptive contrast enhancement of digital mammo-
grams. Critically sampled multiscale representations are not suitable for detection
and enhancement tasks because of aliasing effects introduced during downsam-
pling of the analysis (21,22). However, overcomplete representations avoid such
aliasing artifacts and have the desirable property of being shift invariant (23,24).
Indeed, this property ensures that the spatial locations of any mammographic find-
ing within an image are preserved across all scales. Thus, in our approach, the
transform coefficient matrix size at each scale remains the same as the original
spatial resolution of the digital mammogram, because there is no downsampling
across each level of analysis.

Overcomplete multiscale analysis and reconstruction algorithms using
dyadic scales previously developed in Refs. 25–27 were used as an initial choice
of analysis function for our enhancement protocol. The implementation was car-
ried out by the use of several low-pass and high-pass filters with localized fre-
quency support. At each level of the multiscale expansion an input image is de-
composed into a coarse approximation and detailed structures. The coarse
approximation is the output from applying a low-pass filter, and the detailed struc-
tures are obtained from high-pass filtering. The approximation image corresponds
to scaling coefficients, whereas the details extracted from the approximation are
wavelet coefficients at a particular scale. This procedure is successively repeated
on the approximation image to obtain multiple levels of analysis. The coarsest ap-
proximation is often referred to as the “dc-cap.” A gain or enhancement function
modifies the matrices of coefficients that have been isolated by the filters at each
level and may boost coefficients at some scales and/or attenuate others. If the fil-
ters meet a perfect reconstruction condition, the image can be reconstructed from

Copyright © 2002 Marcel Dekker, Inc.



its wavelet representation of scaling and wavelet coefficients (28). The filter bank
implementation of enhancement processing by an expansion-reconstruction algo-
rithm for two levels of analysis is schematically illustrated in Fig. 1. Image re-
construction that is also accomplished by appropriate filtering operations is pre-
sented in a simplified manner in Fig. 1.

The modified matrices of coefficients are simply “plugged in” during re-
construction, producing a “focused” subband enhancement. As shown earlier, the
enhancement function can be implemented independently of a particular set of fil-
ters and easily incorporated into a filter bank to provide the benefits of multiscale
enhancement (1,29).

B. High-Speed Implementation to Support Interactive
Processing

Similar to orthogonal and biorthogonal discrete wavelet transforms (30) the dis-
crete dyadic wavelet transform can be implemented within a hierarchical filtering
scheme. Let an input signal x(n) be real, x(n) � l1(Z), n � [0, N � 1] (i.e., x(n) is
supported on the index interval [0, N � 1]) and let X(�) be its Fourier transform.
Depending on the length of each filter impulse response, filtering an input signal
may be computed either by multiplying X(�) by the frequency response of a filter
or by circularly convolving x(n) with the impulse response of a filter. Of course,
such a periodically extended signal may change abruptly at the boundaries and
cause artifacts. A common remedy for such a problem is realized by constructing
a mirror extended signal

xme(n) � �x(�n � 1), if n � [�N, �1]
,

x(n), if n � [0, N � 1]

where we chose the signal xme(n) to be supported in [�N, N � 1]. In Ref. 1 it is
shown how a mirror extension is a particularly elegant solution in conjunction
with symmetrical antisymmetrical filters, because a signal is of a particular type
of symmetry at each stage of the filter bank. The optimized circular convolution
described in Ref. 1 was implemented in native “ANSI C” to speed up performance
for multiscale decomposition and image reconstruction. Parameters of this algo-
rithm included number of levels of analysis, gain, and threshold. This algorithm
was incorporated into a GUI developed during the preparation of the study.

As a further goal, we envision developing feature-specific enhancement
protocols for each type of lesion. An enhancement protocol would consist of a
multiscale expansion of a mammogram by a specific basis and an associated non-
linear enhancement function that is best matched to a specific type of lesion (e.g.,
microcalcifications). For the study under consideration, a dyadic spline wavelet
function was used as the basis, and a nonlinear sigmoidal function was applied as
the enhancement function. Both are described in greater detail next.
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Fig. 1 Multiscale analysis with nonlinear contrast enhancement: Schematic of filter bank implementation. In the left part, multiscale
expansion with enhancement for two levels of analysis is shown, and reconstruction is presented (in a simplified manner) in the right part.
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C. Dyadic Spline Wavelet Algorithm

The wavelet transform of a signal ƒ(x) at scale s and position x is defined 

by Wƒ(u,s) � ƒ*�u,s � �
�

��
ƒ(x) �

�
1

s�
� �* ��x �

s
u

�	dx, where the function ƒ is 

projected on a family of translated and dilated basis functions (wavelets) 

�u,s(x) �
�
1

s�
� � ��x �

s
u

�	. � (x) is the mother wavelet of zero average. Both transla-

tion and dilation parameters u and s are continuous for the continuous wavelet
transform. To allow fast numerical implementation of discrete wavelet transforms,
Mallat and Zhong (31) introduced the dyadic wavelet transform, in which the scale
parameter varies only along the dyadic sequence {2j}, with j � Z. Extending this
approach to two dimensions by the use of a tensor product yields the two-dimen-
sional (2-D) dyadic wavelet transform that partitions plane orientations into two
bands. This means that there are two channels of analysis along orthogonal direc-
tions x and y. The wavelet transform of the 2-D signal ƒ(x,y) at the scale 2j has two
components defined by: W1

2jƒ(x,y) � ƒ*�1
2j(x,y) and W2

2jƒ(x,y) � ƒ*�2
2j(x,y), with

�d
2 j(x,y) � �

2

1
2

j��d��
2

x
j�,�

2

y
j�	, (d � 1,2). We used the quadratic spline wavelet

function �(x) defined by Mallat and Zhong in Ref. 31 of compact support 
and continuously differentiable. Its Fourier transform can be derived as 

�̂(�) � (j�) ��sin

�

(�

/4

/4)
�	

4
. �(x) is the first derivative of a cubic spline smoothing 

function �(x), whose Fourier transform is �̂(�) � ��sin

�

(�

/4

/4)
�	

4
(1). These functions 

are displayed for the one-dimensional case in Fig. 2.
By use of a wavelet that is the derivative of a smoothing function, it can be

shown that the wavelet transform Wd
2jƒ of the signal ƒ is proportional to the deriva-

Fig. 2 (a) Cubic spline smoothing function �(x). (b) Quadratic spline wavelet �(x) of
compact support defined as the first derivative of the smoothing function.

(a) (b)
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tive of the signal smoothed at the scale 2j (32). The coefficients of modulus max-
ima detection are then equivalent to an adaptive sampling that finds signal varia-
tion points in the two orthogonal directions x and y.

Because images represent finite energy signals measured at some finite res-
olution, we cannot compute the wavelet transform at scales below the limit set by
this resolution. We applied this analysis at dyadic scales varying from 1 (original
signal) to the limit imposed by acquisition (digitizer sampling rate). Fig. 3 shows
an example for one level of an overcomplete wavelet expansion of a region of in-
terest (ROI) with a spiculated mass at a dyadic scale, and in Fig. 4 wavelet coef-
ficients of microcalcifications at the finest dyadic scale are presented.

D. Nonlinear Enhancement Function

Modification of selected analysis coefficients within a certain scale can make
more obvious indiscernible or barely seen mammographic features (14). Contrast

Fig. 3 Level 5 of an overcomplete dyadic wavelet expansion of a spiculated mass. (a)
Original image. (b) Horizontal details. (c) Vertical details. (d) Approximation image.

Fig. 4 (a) Original ROI with microcalcifications. (b) Horizontal and (c) vertical dyadic
wavelet coefficients.

(a) (b) (c)

(a) (b) (c)

(d)
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enhancement was achieved by applying an enhancement function to transform co-
efficients at selected scales. This operation results in local attenuation or amplifi-
cation of coefficients. Enhancement or gain functions must be cumulative and
monotonically increasing to preserve the order of intensity information in the orig-
inal image and to avoid artifacts (26). Fig. 5(a) provides a simple example of a
piecewise linear enhancement function. Multiscale coefficients are denoted wij,
which are modified by applying an enhancement function ƒ(wij). T is the thresh-
old of the function, and � the gain. The effect of the enhancement function de-
pends on the value of the angle �. For � � 45, there is an attenuation of the coef-
ficients (� � 1), at � � 45 we have the identity function (� � 1), and for � � 45
there is a smooth amplification of the coefficients (� � 1). The values of the two
parameters, T and � (or �), determine the final shape of the enhancement function.
Fig. 5(b) displays a hard-thresholding function for denoising, in which coeffi-
cients with modulus | wij | � T are set to zero. Unfortunately, these two particular
functions have the disadvantage of being discontinuous at the threshold value "T.
This could result in an abnormal distribution of coefficient values in the output
and may create sharp peaks on both ends of the histogram of a particular output
mapping. For this reason, smoother functions, like sigmoids, are preferable and
were used in this study. Fig. 6 shows an example of such a function as described
in Ref. 2.

The analytical formulation of the sigmoidal enhancement function as de-
signed in Refs. 2 and 33 is the following:

ƒ(wij) � a[sigm(c(wij � b)) � sigm(�c(wij 
 b))]

a � , 0 � b � 1 (1)

sigm(y) � �
1 


1
e�y�

1
����
sigm(c(1 � b)) � sigm(�c(1 
 b))

Fig. 5 (a) A simple piecewise linear enhancement function, (b) Hard-thresholding func-
tion.

(a) (b)
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Parameters b and c control the threshold and the rate of enhancement (gain),
respectively. This enhancement function is continuous, monotically increasing,
and has a continuous first derivative. This ensures that the application of the func-
tion will not introduce any new discontinuities of coefficients in the transform do-
main.

From Fig. 6 we see that this enhancement function decreases the value of
the coefficients around zero, which is equivalent to a denoising action, whereas it
may increase values of the coefficients outside this range, equivalent to enhance-
ment or amplification. This type of enhancement function, in “steps,” offers a very
rich and flexible paradigm to carry out nonlinear dynamic analysis of coefficients
within a specific scale (34).

There are many criteria for the selection of the enhancement function ap-
plied to the coefficients of a particular level of analysis for contrast enhancement.
One goal of the study described here was to develop a research tool for testing en-
hancement functions targeted for specific mammographic features. Because this
process requires specialized expertise and a substantial time investment, no sys-
tematic study of the problem of associating enhancement functions with target
features in mammograms has been reported in the literature.

In general, nonlinear estimators are signal dependent and behave differently
for different realizations of each signal. In this context, Johnstone and Donoho
have shown that by considering the signal as deterministic, thresholding of
wavelet coefficients gives a nearly optimal estimation of piecewise smooth func-
tions (35,36). More specifically, for a noisy signal of size N, thresholding of the
wavelet coefficients with T � � �2� l�n�(N�)�, where � is the standard deviation of the
coefficients, provides an asymptotically optimal estimator of the original signal in

Fig. 6 A sigmoidal nonlinear enhancement function.
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the mini-max sense (36). Thresholding of wavelet coefficients performs an adap-
tive smoothing of the image by averaging noisy areas and preserving or enhanc-
ing coefficients in areas of sharp transitions. Noise standard deviations can be es-
timated by determining the median wavelet coefficient value at the finest scale or
with local discrete statistical estimation in the transform domain. The use of ex-
tremely local variances for the estimation of a threshold leads to a very aggressive
posturing of the enhancement function and represents a high amount of interven-
tion in adjusting the output, whereas global variance measurements are less no-
ticeable. Superiority of either method depends on the screening protocol used by
the radiologist and the kind of analysis to be performed. For example, fine micro-
calcifications represent high-frequency information of the image. We would ex-
pect the local variance for such a feature to be high within a selected ROI. Conse-
quently, smooth amplification of coefficients within this particular spatial
frequency range (in combination with possibly decreasing the information of
other spatial frequencies) will enhance these features of interest. Similar analysis
can be done to enhance low spatial frequency features such as masses. A block di-
agram of the enhancement process for coefficients at selected scales, which are
chosen with respect to the particular mammographic feature to be enhanced, is
shown in Fig. 7.

Because the computation of the enhancement parameters uses data-depen-
dent information such as local or global coefficient variance, digital and digitized
radiographs acquired under different imaging conditions are best processed inde-
pendently to achieve optimal enhancement. Intrinsic properties of the radiograph
are therefore incorporated in the setting of the parameters. In our work we used
both coefficient variance computed with respect to a ROI and user input (see 
Sec. IIIB) to adapt the threshold and gain parameters.

III. DEVELOPMENT OF A GRAPHICAL USER INTERFACE

A. Motivation

Running such an enhancement algorithm in a batch mode might be sufficient for
single experiments. However, adjustment of parameters tied to a data-dependent
enhancement function is slow because of the repeated need to decompose and re-

Fig. 7 Block diagram of modifying feature-specific coefficients at selected scales by ap-
plying a nonlinear enhancement function.
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construct from modified coefficients. A more desirable situation would be to ob-
serve the results of modified multiscale coefficients interactively and to continue
the enhancement procedure until results are visually satisfactory or the decision is
made that no further improvement can be achieved. In addition, with introducing
fixed-enhancement protocols into a clinical screening paradigm, the algorithm
must be simple, fast, and user-friendly (i.e., use of the algorithm should be famil-
iar to the radiologist and intuitive). Because each radiologist may have prefer-
ences with respect to contrast in mammograms, it must be possible to adjust pa-
rameter settings to individual preferences. Thus, we designed a GUI to facilitate
carrying out such a study and to create a softcopy display prototype, whose suc-
cessors might find entrance into clinical screening. We call this application a “test
bed” softcopy display tool. Its first version was used for the ROC study described
in the next section.

B. Design and Implementation

The GUI developed for this study was written in Visual C

 6.0. The code for
the wavelet expansion and image reconstruction that was written in native “ANSI
C” to speed up performance could be incorporated and executed in this environ-
ment without major modifications, thus shortening development time. Some of
the guidelines and considerations for the design and implementation of the GUI
are described next.

The prototype interface was primarily designed to process raw 16-bit data.
Data were obtained from a national mammography database of digitized radio-
graphs provided by the University of South Florida (USF, “Digital Database for
Screening Mammography” (DDSM)). Our database of digitized mammograms
(stored on 22 8-mm tapes) at the time of the study contained 586 selected cases of
biopsy proven malignant lesions and 437 cases of normal breasts. More specifi-
cally, different types of lesions are represented in the following proportions: 100
round and oval malignant masses, 216 spicular lesions, and 248 microcalcifica-
tions. Five hundred fifty-nine cases of dense breasts (density of 3 and 4) with 266
normal and 293 cancerous, referred by radiologists as the most challenging cases,
were included in the database.

Images from the mammography database were digitized from film at res-
olutions of 40 to 50 �m. Image line lengths (no. of columns) varied between
2000 and 3000 pixels, and number of rows from 4000 to 5900 pixels. Depend-
ing on the scanner used for digitization, the contrast resolution was either 12 bits
or 16 bits per pixel, resulting in 15 to 50 megabytes per view. To handle this
large amount of data and to provide the diagnosing radiologist as much infor-
mation as possible, all four views (right and left mediolateral (RMLO, LMLO)
and right and left craniocaudal (RCC, LCC) of a case were loaded into memory
and displayed as downsampled images on display screen, which consisted of
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two high-resolution MegaScan monitors each with a screen size of 2048 by 
2560 pixels. Specialized framebuffers allowed a display of 210 gray levels 
(see Sec. IIIC). The four views were aligned to assist the radiologist to look for
asymmetries. In addition, one view could be selected, and a viewport could dis-
play a selected ROI at full (original) resolution from a selected mammogram.
The size of the viewport could be chosen as 512 by 512, 1014 by 1024, or even
2048 by 2048. The center of the ROI was determined through the mouse pointer
in a chosen window. Thus, the original mammogram could also be examined
through the viewport, if desired. More importantly, suspicious areas could be
captured in the viewport and processed through enhancement by means of the
multiscale expansion described in Sec. II. For the enhancement procedure, the
user could adjust the number of subbands of the expansion as well. After se-
lecting a ROI, the image was decomposed onto dyadic wavelet basis functions
yielding wavelet coefficients. Coefficients were modified by a sigmoidal non-
linear enhancement function, and the image was reconstructed from these mod-
ified coefficients in nearly real time.

Fig. 8(a) shows Dr. Koenigsberg, one of three radiologists who participated
in this investigation, during the ROC study, Fig. 8(b) depicts a typical screen dis-
play of the GUI showing additional viewports described earlier.
As mentioned in Sec. IID, the shape of the enhancement function can be changed
through modification of the two parameters gain and threshold. Therefore, each
parameter could be adjusted through sliders for each level (subband) of the multi-
scale expansion (see Fig. 9(b)). On release of the slider button, a reconstruction
“event” was “triggered” and a resulting image presented in an output window. For
example, reconstruction of a 512 by 512 matrix for five levels of decomposition

Fig. 8 (a) Tova Koenigsberg, MD, using the GUI during the preliminary ROC study de-
scribed earlier (b) Typical screen display used during the ROC study: four original digitized
mammograms of one case on the right monitor, and a selected view, the GUI interface for
parameter adjustments, original and enhanced ROI are shown on the left monitor.

(a) (b)
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(five subbands) took 5 to 6 seconds. For four subbands reconstruction time short-
ened to 4 to 5 seconds. Reconstruction times trecon for different sizes of the ROI
and different number of levels of analysis are presented in Table 1. However, re-
construction time can certainly be improved to achieve true real-time performance
by use of faster algorithms.

After processing, enhanced images could be saved together with informa-
tion about the location of the ROI (the position of the ROI was marked in its cor-
responding downsampled view) to facilitate evaluation of a particular diagnosis
for each case in comparison with the “ground truth” provided in the USF database.
All suspicious areas in a case could be carefully examined by sequentially choos-
ing different views and multiple ROIs.

Fig. 9(b) shows the test bed interface as an illustration. Interactive (real-
time) enhancement was accomplished by means of sliders shown in the graphical
user interface (GUI). The enhancement operation relied on the optimality of pa-
rameters derived from their nonlinear models and on the strategy used for the type

Fig. 9 (a) Original mammogram with selected ROI containing a mass, (b) Multi-Scale
Contrast Enhancement (MSCE) GUI, (c) original ROI, and (d) enhanced ROI.

Table 1 Reconstruction Times Trecon for Two Different Levels of Analysis
and Two Sizes of ROI

Size of region Trecon for  four Trecon for five
of interest (ROI) levels of analysis levels of analysis

512 	 512 4–5 sec 6–7 sec
1024 	 1024 19–20 sec 24–25 sec

(c)

(d)
(a) (b)
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of enhancement applied to each subband of coefficients (amplification, preserva-
tion, or diminution). Selected subband coefficients at a particular level could be
strongly suppressed by choosing large thresholds (�2) and small gains (�1),
which can be desirable for the elimination of (structured and acquisition) noise or
normal benign anatomical (fibroglandular) structures.

Because the size of digital mammograms is quite large, an ROI (fixed at ei-
ther 512 	 512 or 1024 	 1024) within the original image was chosen to avoid
computing over regions that do not contain suspicious areas. This is also shown in
Fig. 9, where Fig. 9(a) exhibits an original digitized mammogram with a 512 
	 512 ROI that contains a possible mass. Fig. 9(c) and Fig. 9(d) display this ROI
before and after enhancement by means of a nonlinear modification of multiscale
coefficients, respectively.

C. Display and Hardware Settings

The enhancement protocol was executed on an IBM IntelliStation Z Pro Profes-
sional Workstation Type 6865. This machine had two Intel Pentium II Xeon mi-
croprocessors (450 MHz), 512 Mbytes of RAM, and was equipped with 36 Gbytes
of hard disk space. Windows NT 4.0 with service pack 4 was the operating sys-
tem.

To explore the richness of information quantized at 16-bit per pixel (bpp)
gray scale data (65,536 shades of gray), the IBM IntelliStation workstation was
equipped with two BARCOMed SMP1H Graphics controllers. These are high-
resolution display subsystems for the PCI bus with a resolution of 2048 	 2560
pixels each, a digital-to-analog converter (DAC) capable of 1024 shades of gray
and real-time window leveling. With the BARCO© framebuffers, an extended
hardware palette of nearly 16,000 entries could be accessed through specialized
“C” function calls that were part of a library provided to us as developers for
BARCO/Metheus. By use of these library functions, the extended palette was
loaded with a ramp of 4096 shades of gray corresponding to 12-bit resolution.
Images stored in 16-bit per pixel format were rescaled to 12 bpp, if necessary
(most of the mammograms were digitized at a resolution of 12 bpp), and then
displayed at full resolution. Direct access to the video framebuffer also sped up
the display process useful for updating and refreshing the different views on the
screen.

Two high-resolution MegaScan monitors were attached to this worksta-
tion, providing dual-headed display on a single logical framebuffer or virtual
desktop of 4000 	 2048 pixels, respectively, with Windows NT 4.0. To ensure
the accurate depiction of the same image quality on both screens, a BARCO
P1500 luminance photometer was used. It recognized the 1024 shades of gray
displayed by a monitor and had a range of 0 to 450 ft-L. Both monitors were
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calibrated to correct for nonlinearity of display properties through gamma cor-
rection.

Lighting conditions were controlled for the ROC study to model reading
room conditions. The ambient light intensity was measured with the luminance
photometer to be 12.802659 candelea/m2. It is worthwhile to note that the opti-
mality of enhancement parameters is independent of the cathode ray tube (CRT)
display quality and the image acquisition quality. Because their computation is
data driven, they are adapted to signal content and its characteristics. As our radi-
ologists gave us feedback on the quality of the enhancement, we could adjust these
initial default settings in future studies.

IV. DESCRIPTION OF THE RECEIVER OPERATING
CHARACTERISTICS (ROC) STUDY

The first ROC study focused on overcomplete dyadic wavelets for enhancement
of mammographic features in digitized mammograms. Specifically, dyadic spline
wavelet functions were used together with a sigmoidal nonlinear enhancement
function explicitly described in Sec. II. The ROC study included three radiologists
specializing in mammography. The Director of the Breast Imaging Center at
Columbia-Presbyterian Medical Center, Dr. Suzanne Smith, assisted in the selec-
tion of cases.

A. Selection of Cases

To measure the benefits of diagnosing digitized mammograms with enhancement
through multiscale expansions, we focused on dense mammograms [i.e., mam-
mograms of density 3 and 4 on the American College of Radiology (ACR) breast
density rating], which are the most difficult cases in screening. In general, the en-
hancement protocol aimed at improving the detection and localization of mam-
mographic features, such as microcalcifications, masses, and spicular lesions,
without introducing “false positives.”

To compare the performance of radiologists with and without the enhance-
ment tool, two groups of 30 cases each were presented. Each group contained 15
cases of cancerous and 15 cases of normal mammograms. As mentioned earlier, a
national mammography database of the USF provided “ground truth” (mostly
through biopsy) for the selected cases. The selection was carried out very carefully
under the guidance of a mammographer (Dr. Smith) to find rather challenging
cases of similar difficulty for each group. Images showing metal markers (“bibis”)
to indicate suspicious regions of breast tissue were avoided, as well as obvious
malignancies. Because of time constraints, the number of cases was limited for
this initial study.
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B. Paradigm of Diagnosis of Study

For each case presented to the radiologist, the enhancement procedure followed
was the following:

1. Paradigm A: Without Enhancement

The radiologist made a diagnosis based only on the four original displays and the
viewport. No processing of ROIs was allowed.

2. Paradigm B: With Enhancement

The radiologist selected an ROI in one of the views and could apply multiscale en-
hancement. Four levels of coefficients were computed. The radiologist then eval-
uated the quality of an enhanced ROI and adjusted the equalizer sliders of a chan-
nel to improve the visual quality of suspicious regions. Once he or she was
satisfied with the visual result or if he or she judged that additional benefit could
not be achieved, a diagnostic decision was made.

A diagnosis included specifying all lesions found and assigning a BI-RAD
scale to each breast and the case. In addition, the radiologist was asked to choose
a level of confidence (LOC) for each positive diagnosis (i.e., cancer is present) on
an integer scale from 1 (definitely negative, i.e., total confidence that there are no
malignant lesions) to 5 (definitely positive, i.e., total confidence that there is a ma-
lignant lesion). The value for the LOC was used in the analysis of data to decide
whether a lesion was classified as malignant or benign (see discussion of LOC rat-
ings in Sec. IVD).

C. ROC Data

Tables 2 and 3 summarize the data acquired during the study. Group 1 is com-
posed of the set of cases in which the radiologists were allowed to take advantage
of the enhancement protocol, whereas Group 2 contains those cases in which no
processing could be applied. Each of the tables shows the case numbers, the case
designation, and total number (#) of lesions for each case according to the mam-
mography database (DB) and for each of the three mammographers the BI_RAD
rating and level of confidence (LOC) values. The BI_RAD rating could be chosen
from the standard categories 0–5 with 0 meaning that additional information for a
more confident diagnosis was needed. In such cases, the radiologists were asked
to also select a BI_RAD rating different from 0, if they were asked to make a di-
agnosis without any additional information. This number is shown in parentheses
for such cases.

In each table, both groups are sorted into actually negative cases (normals
with “0” lesions) and actually positive cases (cancers with at least “1” malignant
lesion), because this is required for subsequent analysis of the data.
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Table 2 ROC Data for Three Mammographers for Group 1 (i.e., with Enhancement
Enabled)

Group 1 (With enhancement)

Mammographer Mammographer Mammographer

DB total #
1 2 3

Case # Database of lesions Bi Rad Loc Bi Rad Loc Bi Rad Loc

2 A 0058 0 4 3 1 1 3 2
5 A 0069 0 1 2 1 1 1 1
6 A 0041 0 3 2 1 1 1 1
7 A 0077 0 3 2 2 1 2 1
9 A 0064 0 2 2 2 1 2 2

13 A 0067 0 0 (3) 2 1 1 0 (3) 3
15 A 0080 0 0 (3) 3 2 1 2 1
16 A 0089 0 3 3 1 1 1 2
19 A 0062 0 2 2 1 1 2 1
21 A 0057 0 2 2 1 1 0 (3) 3
24 A 0072 0 1 2 1 1 1 1
25 A 0070 0 1 2 0 (3) 2 1 2
26 A 0068 0 1 2 1 1 2 1
28 A 0039 0 3 2 1 1 0 (4) 3
30 A 0092 0 3 2 1 1 1 1

1 B 3044 1 4 4 4 4 4 3
3 B 3073 1 3 2 3 2 4 3
4 B 3006 1 5 5 5 5 5 5
8 B 3032 1 0 (3) 2 5 4 4 4

10 B 3107 1 5 4 4 4 5 4
11 C 0060 1 0 (3) 3 0 3 0 (4) 3
12 B 3057 1 4 4 5 4 4 4
14 B 3078 1 5 4 5 4 0 (4) 3
17 B 3033 1 0 (3) 2 0 2 0 (3) 3
18 B 3031 1 0 (4) 4 5 4 0 (3) 3
20 B 3076 1 0 (3) 3 0 3 0 (5) 4
22 B 3058 1 5 5 5 5 4 4
23 B 3079 1 2 2 1 1 1 1
27 B 3047 1 3 2 0 (4) 3 0 (4) 3
29 C 0008 1 0 (3) 3 3 3 0 (4) 3

D. ROC Analysis: General Principles

The most widely used method to objectively evaluate the performance of a diag-
nostic system or the difference in performance between two diagnostic systems is
ROC analysis. It compares radiologists’ image-based diagnoses with known states
of disease and health. In ROC analysis, performance of a diagnostic system is de-
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scribed by the indices of “sensitivity” and “specificity,” in which “sensitivity” can
be expressed as the true-positive fraction (TPF) and “specificity” by the true-neg-
ative fraction (TNF) of a diagnosis (16). In a complimentary way, the false-nega-
tive fraction (TNF) and the false-positive fraction (FPF) can be defined as FNF 
� 1-TPF and FPF � 1-TPF, respectively, with a similar interpretation. Because

Table 3 ROC Data for Three Mammographers for Group 2 (i.e., without
Enhancement)

Group 2 (Without enhancement)

Mammographer Mammographer Mammographer

DB total #
1 2 3

Case # Database of lesions Bi Rad Loc Bi Rad Loc Bi Rad Loc

3 A 0015 0 2 2 1 1 1 1
4 A 0034 0 2 2 0 (3) 2 0 (3) 3
5 A 0112 0 2 1 1 1 0 (4) 3
8 A 0020 0 2 2 1 1 2 2
9 A 0003 0 3 2 1 1 1 1

13 A 0030 0 2 2 1 1 0 (3) 2
15 A 0009 0 2 2 1 1 2 2
16 A 0037 0 2 2 1 1 1 2
17 A 0099 0 0 (3) 2 1 1 2 1
18 A 0116 0 0 (3) 3 1 1 1 1
21 A 0035 0 0 (3) 2 0 (4) 3 0 (3) 3
23 A 0018 0 2 2 1 1 1 1
24 A 0022 0 2 2 1 1 0 (3) 3
27 A 0005 0 0 (3) 2 0 (3) 2 1 2
30 A 0016 0 2 2 1 1 1 2

1 B 3003 1 1 2 1 1 5 5
2 B 3389 1 2 2 1 1 1 1
6 B 3009 1 0 (4) 4 0 (3) 2 0 (4) 3
7 C 0309 1 4 4 1 1 0 (4) 3

10 C 0142 1 0 (3) 3 0 (3) 2 1 2
11 B 3016 1 0 (4) 4 0 (3) 2 4 4
12 B 3382 1 2 2 1 1 3 2
14 B 3134 1 5 4 4 4 5 5
19 B 3005 3 0 (3) 3 3 3 0 (4) 4
20 C 0127 1 0 (3) 3 0 (4) 3 0 (4) 4
22 C 0015 1 0 (4) 4 0 (4) 4 5 5
25 B 3007 1 3 3 4 3 4 4
26 B 3012 1 5 5 5 5 0 (4) 3
28 B 3380 1 0 (4) 4 4 4 0 (4) 4
29 C 0358 1 5 5 5 4 0 (4) 4
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of this dependence, it is only necessary to measure one pair of indices, and fre-
quently TPF and FPF are used (as in our study).

The underlying model for ROC analysis is the use of probability density dis-
tributions of a radiologist’s confidence in a positive diagnosis for a particular diag-
nostic task for true-positive and true-negative patients (16). It is currently accepted
that based on a confidence threshold [i.e., a particular level of confidence (LOC) in
a positive diagnosis], a diagnosis is considered to be positive if it exceeds this thresh-
old, and a diagnosis is considered to be negative if it falls below the threshold. TPF
and FPF are then calculated from the probability density distributions as areas un-
der the curves delimited by the confidence threshold (see Fig. 10). If the confidence
threshold is varied continuously, an ROC curve can be generated from the pair val-
ues for TPF and FPF. ROC curves that indicate better decision performance are po-
sitioned higher in the unit square spanned by FPF and TPF (higher TPF values for
the same FPF values). The area under the ROC curve, Az, provides a useful sum-
mary index for the inherent discrimination performance of a diagnostic system.
Thus, Az is the average value of sensitivity of a corresponding ROC curve, if the
specificity of the system is selected randomly between 0.0 and 1.0. Conversely, it
can be considered as the average value specificity of a corresponding ROC curve if
the sensitivity of the system is selected randomly between 0.0 and 1.0 (16).

In practice, data for an ROC analysis are obtained by providing a set of rat-
ing categories to the radiologist. For a rating scale, we chose discrete values from
1 to 5 for the LOC in a positive diagnosis. The meaning of these values was as fol-

Fig. 10 Schematic example of the model that underlies ROC analysis. The bell-shaped
curves represent probability density distributions of a radiologist’s confidence in a positive
diagnosis. A confidence threshold, represented by a vertical line, separates “positive” de-
cisions from “negative” decisions.
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lows: (a) definitely or almost definitely negative, (b) probably negative, (c) possi-
bly positive, (d) probably positive, and (e) definitely or almost definitely positive.
With this choice, the value for the LOC is similar to the standard BI_RAD rating
scale used in screening.

To generate an ROC curve from discrete data requires assumptions about
the functional form of the curve. The “binormal” model has been widely used in
medical imaging. This model includes two adjustable parameters, and it is as-
sumed that each conventional ROC curve has the same functional form as that im-
plied by two “normal” (i.e., gaussian) decision-variable distributions with gener-
ally different means and standard deviations (37,38).

The two adjustable parameters of the binormal ROC curve can be taken to
be the y intercept and the slope of the straight line that represents the ROC curve
when it is plotted on normal-deviate axes. These two parameters, denoted as “a”
and “b,” can be interpreted as an effective pair of underlying gaussian distribu-
tions as the distance between the means of the two distributions and the standard
deviation of the actually negative distribution, respectively, with both expressed
in units of the standard deviation of the actually positive distribution (16). With
the binormal model, a maximum-likelihood parameter estimation scheme is then
used to generate an ROC curve that best represents the data.

If two different diagnostic systems are to be evaluated, the statistical dif-
ference of an apparent difference between measured ROC curves is of interest.
Testing differences between ROC curves is well described in the literature
(39,40).

E. Results from ROC Analysis

In our study, ROC analysis was possible, because the “ground truth” for each case
was provided by the mammography database. In general, any enhancement pro-
tocol should increase sensitivity, [i.e., fraction of true positives (TPF)], without
decreasing specificity, [i.e., essentially without increasing the fraction of false
positives (FPF)] (41). An initial analysis of the data counted the number of false
positives and true positives in each group of cases. Before a lesion was considered
being diagnosed as malignant or benign, the LOC value was thresholded (16). The
threshold value influences the shape of the ROC curve and its interpretation. For
example, if the threshold for the level of confidence was chosen to be 3, meaning
that lesions with a LOC greater or equal 3 were considered as malignant, then the
average TPF was found to be 0.667 with enhancement, and TPF � 0.569 without
enhancement. This observed increase in sensitivity is encouraging, although it
was accompanied by a slight increase in the fraction of false positives (0.222 com-
pared with 0.178). The latter is not too surprising, because the applied enhance-
ment protocol only used dyadic spline wavelets with the nonlinear sigmoidal en-
hancement function, which is certainly not optimal for all types of lesions. We
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believe that dyadic spline wavelet expansions are best used to enhance microcal-
cifications. If the analysis of the data only focused on microcalcifications, then we
observed TPF � 0.417 with enhancement compared with TPF � 0.222 without
enhancement. No increase or decrease in FPF was noticed! The last finding sup-
ports the promise for future research to design specific enhancement protocols for
each mammographic feature. Table 4 summarizes initial results of the ROC study
using the single basis function described in Sec. IIC.

A more thorough analysis of the data was undertaken by using the ROCKIT
software developed by a research group led by Charles Metz at the University of
Chicago (42,43). This software package was written to analyze data from ROC
studies and to generate corresponding ROC curves. More specifically, the purpose
of ROCKIT is to calculate maximum-likelihood estimates of the parameters of a
conventional “binormal” model for the input data, to calculate maximum-likeli-
hood estimates of the parameters of a “bivariate binormal” model for data from
two potentially correlated diagnostic tests, and, thus, to estimate the binormal
ROC curves implied by those data and their correlation, and to calculate the sta-
tistical significance of the difference between two ROC curve estimates using any
one of three distinct statistical tests:

1. The bivariate test: A bivariate chi-square test of the simultaneous dif-
ferences between the “a” parameter and the “b” parameter of the two
ROC curves. (Null hypothesis: the data sets arose from the same binor-
mal ROC curve.)

2. The area test: A univariate z-score test of the difference between the ar-
eas under the two ROC curves. (Null hypothesis: the data sets arose
from binormal ROC curves with equal areas beneath them.)

Table 4 Results of Preliminary ROC Study. TPF Refers to
the Fraction of True-positives and FPF to the Fraction of
False-positives

With enhancement Without enhancement
(all types of lesions) (all types of lesions)

TPF FPF TPF FPF

0.667 0.233 0.569 0.178

With enhancement Without enhancement
(micros only) (micros only)

TPF FPF TPF FPF

0.417 0.0 0.222 0.0
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3. The TFP test: A univariate z-score test of the difference between the
(TPFs on the two ROC curves at a selected FPF. (Null hypothesis: the
data sets arose from binormal ROC curves having the same TPF at the
selected FPF.)

Three types of input data are allowed for statistical testing of the differences be-
tween ROC curves:

1. Unpaired (uncorrelated) test results. The two “conditions” are applied
to independent case samples—for example, from two different diag-
nostic tests performed on the different patients, from two different ra-
diologists who make probability judgments concerning the presence of
a specified disease in different images, etc.

2. Fully paired (correlated) test results, in which data from both of two
conditions are available for each case in a single case sample. The two
“conditions” in each test-result pair could correspond, for example, to
two different diagnostic tests performed on the same patient, to two dif-
ferent radiologists who make probability judgments concerning the
presence of a specified disease in the same image, etc.

3. Partially paired test results—for example, two different diagnostic tests
performed on the same patient sample and on some additional patients
who received only one of the diagnostic tests.

ROCKIT assumes that the population ROC curve for each condition plots as
a straight line on “normal-deviate” axes, or equivalently, that the input data fol-
low normal distributions after some unknown monotonic transformation (16)
ROC curves measured in a broad variety of fields demonstrate this “binormal”
form (44–46). The assumption may be satisfied even when the raw data have mul-
timodal and/or skewed distributions (42,43).

With the ROCKIT software, the analysis was first applied independently
to the datasets for Group 1 and Group 2 for each of the three radiologists. Un-
fortunately, this approach did not allow us to compare the diagnostic perfor-
mance for the two diagnostic systems (softcopy display with and without en-
hancement). The reason for that was that the analysis for at least one group of
cases could not be completed, because the data were found to be degenerate
(41). In this case, the result of the ROC analysis would be a straight line with a
constant value for TPF, and, therefore, the software aborts processing to avoid
meaningless output. According to the authors of the software, a degenerate data
distribution can be found if the number of samples is too small or in data sets
with many tied values (43).

Because the number of cases could not be increased after conducting the
study and to obtain more complete results, we decided to apply the analysis to the

Copyright © 2002 Marcel Dekker, Inc.



union of data from all three radiologists. This was justified by the fact that all three
radiologists came from the same population with a similar level of experience.
Thus, their performance should be similar under the same conditions, and the data
could be treated as independent samples (unpaired data). If the data did not have
to be pooled, they would have been unpaired, because the two different conditions
were applied to different sample cases. Nevertheless, we are well aware that the
statistical significance of the results must be interpreted carefully. For future ROC
studies, we plan to increase the number of cases to avoid such a problem. To check
on our assumption of independent samples (unpaired data) and for completion, we
also repeated the analysis with the input as paired data. These results are included
in this chapter as well.

For the analysis, Group 1 (with enhancement) was set as Condition 1 and
Group 2 (without enhancement) was considered as Condition 2. The resulting
ROC curves for data analyzed as unpaired are shown in Fig. 11. Their corre-
sponding values for FPF and TPF are given in Table 5. Finally, the most im-
portant results of ROC analysis, the binormal parameters a, b, and the area un-
der the ROC curve Az with their corresponding standard errors, 95% confidence
intervals, and correlation of a and b are summarized for unpaired data in Table
6. Note that the 95% confidence intervals are symmetrical for the binormal pa-
rameters a and b, but asymmetric for the area index Az. The corresponding re-
sults from the analysis as paired data follow directly afterwards. ROC curves are
shown in Fig. 12, FPF and TPF values in Table 7, and parameters a, b, and Az

together with their corresponding standard errors, 95% confidence intervals, and
correlation of a and b in Table 8.

Fig. 11 ROC curves for data with Condition 1 (with enhancement) and Condition 2
(without enhancement) analyzed as unpaired data (independent analysis).
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F. Discussion

As seen from the analysis for unpaired data, the value for the area under the ROC
curve Az was 8.7% larger for Condition 1 (with enhancement) than it was for Con-
dition 2 (without enhancement). In all cases the standard error for Az was between
0.03 and 0.05, which was rather small. Although the 95% confidence intervals for
Az overlapped, there was a clear tendency that diagnostic performance improved
with enhancement compared with diagnosis without enhancement. All ROC
curves lay high in the unit square of FPF and TPF, which corresponded to accu-
rate diagnostic performances in general, but the curve for Condition 1 was posi-
tioned slightly higher (see Fig. 11).

Similar results were generally obtained for the analysis as paired data. The
increase in Az for Condition 1 with respect to Condition 2 was 8.5%, but there was
an overlap of the 95% confidence intervals for Az as well. The ROC curve for Con-
dition 1 was also positioned slightly higher than the one for Condition 2 (see Fig.
12). Values for a, b, and Az were very similar for both types of analysis. Hence,
the same tendency of improved diagnostic performance with enhancement com-
pared with diagnosis without enhancement can be inferred.

The observed increase of the summary index Az within statistical errors
and the higher position of the ROC curve for diagnosis with enhancement en-
courage us to further pursue the application of enhancement protocols for mam-
mographic screening. We are aware of the fact that there always are inherent
sources of variability in the index Az, such as a “case-sample” component caused

Table 5 Values for False-positive Fractions (FPF) and True-positive Fractions (TPF)
for Condition 1 (with Enhancement, TPF 1) and Condition 2 (without Enhancement, TPF
2) Analyzed as Unpaired Data (Independent Analysis)

FPF TPF 1 TPF 2 FPF TPF 1 TPF 2

0.005 0.4886 0.4989 0.13 0.8155 0.7282
0.01 0.5521 0.5407 0.14 0.8232 0.7346
0.02 0.6199 0.5859 0.15 0.8304 0.7406
0.03 0.6612 0.614 0.2 0.86 0.7665
0.04 0.6911 0.6347 0.25 0.8825 0.7874
0.05 0.7145 0.6514 0.3 0.9003 0.8053
0.06 0.7338 0.6653 0.4 0.9274 0.8352
0.07 0.7501 0.6773 0.5 0.9472 0.8602
0.08 0.7642 0.6879 0.6 0.9625 0.8825
0.09 0.7767 0.6974 0.7 0.9746 0.9035
0.1 0.7878 0.7061 0.8 0.9845 0.9244
0.11 0.7979 0.714 0.9 0.9926 0.9475
0.12 0.8071 0.7213 0.95 0.9962 0.9619
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Table 6 Binormal Parameters a, b, Area Under ROC Curve Az with their
Corresponding Standard Errors, 95% Confidence Intervals, and Correlation (a, b) for
Condition 1 (with Enhancement) and Condition 2 (without Enhancement) Analyzed as
Unpaired Data (Independent Analysis)

Condition 1 (with enhancement) Condition 2 (without enhancement)

Area under Area under
Binormal Binormal ROC Binormal Binormal ROC
parameter a parameter b curve Az parameter a parameter b curve Az

1.6183 0.6393 0.9136 1.0813 0.4208 0.8405

Standard Standard Standard Standard Standard Standard
error a error b error Az error a error b error Az

0.3162 0.2093 0.0325 0.2329 0.1307 0.0475

95% 95% 95% 95% 95% 95%
confidence confidence confidence confidence confidence confidence
interval interval interval interval interval interval
for a for b for Az for a for b for Az

(0.9986, (0.2291, (0.8312, (0.6247, (0.1647, (0.7301,
2.2381) 1.0495) 0.9615) 1.5379) 0.6770) 0.9162)

Correlation Correlation
(a, b) (a, b)

0.6544 0.4989

Fig. 12 ROC curves for data with Condition 1 (with enhancement) and Condition 2
(without enhancement) analyzed as paired data (correlated analysis).
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by random variations in the difficulty of the cases included in an ROC experi-
ment, a “between-reader” component caused by random variations in the skills
of the observers participating in the experiment, and a “within-reader” compo-
nent associated with each reader’s inability to reproduce her or his diagnosis of
every case on repeated readings (16). In addition, we were not able to analyze
the data for each radiologist separately because of data degeneracy as mentioned
previously. The latter has diminished the statistical significance of our results
obtained from the analysis of all data combined, because not all samples were
completely independent.

Hence, for future ROC studies we plan to increase the number of cases to
avoid degenerate data sets for the analysis and to increase the statistical power of
the experiment.

Aside from statistical considerations and the cautious interpretation of the
results of this study, we know that our prototype test bed software tool can be fur-
ther optimized. To improve multiscale contrast enhancement the idea is to develop
feature-specific enhancement protocols with different bases and associated non-
linear functions for each distinct mammographic feature, such as microcalcifica-
tions, masses, and spicular lesions. The enhancement protocol used for this ex-
periment, dyadic spline wavelets with nonlinear sigmoidal function, was
suggested to work best for microcalcifications according to our previous work
with multiscale expansions (2,25). The results of this first ROC experiment seem
to confirm our expectations.

Table 7 Values for False-positive Fractions (FPF) and True-positive Fractions (TPF)
for Condition 1 (with Enhancement, TPF 1) and Condition 2 (without Enhancement, TPF
2) Analyzed as Paired Data (Correlated Analysis)

FPF TPF 1 TPF 2 FPF TPF 1 TPF 2

0.005 0.494 0.5036 0.13 0.8155 0.7304
0.01 0.5565 0.5451 0.14 0.8232 0.7367
0.02 0.6232 0.5898 0.15 0.8303 0.7426
0.03 0.6638 0.6176 0.2 0.8595 0.7682
0.04 0.6932 0.6381 0.25 0.8817 0.7889
0.05 0.7162 0.6545 0.3 0.8994 0.8066
0.06 0.7351 0.6683 0.4 0.9263 0.8361
0.07 0.7512 0.6801 0.5 0.9461 0.8608
0.08 0.7651 0.6906 0.6 0.9614 0.8829
0.09 0.7774 0.7 0.7 0.9737 0.9036
0.1 0.7883 0.7086 0.8 0.9838 0.9244
0.11 0.7982 0.7164 0.9 0.9922 0.9472
0.12 0.8073 0.7236 0.95 0.9959 0.9617
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V. CONCLUSIONS AND FUTURE WORK

We have reported on the successful completion of the first ROC study to
evaluate the benefits of contrast enhancement by means of overcomplete
multiscale expansions of mammograms. The study was carried out in collabora-
tion with radiologists at the Breast Imaging Center in Columbia-Presbyterian
Medical Center and the Biomedical Imaging Laboratory of Columbia Univer-
sity.

In continuation of our previous work in digital mammography, an
enhancement protocol using a dyadic spline wavelet as the basis for multiscale
expansion and an associated nonlinear sigmoidal enhancement function was
designed. Suspicious areas (ROIs) of digitized mammograms were decomposed
onto a multiscale basis to obtain coefficients at distinct subbands. Coefficients

Table 8 Binormal Parameters a,b, Area Under ROC Curve Az with their
Corresponding Standard Errors, 95% Confidence Intervals, and Correlation (a, b) for
Condition 1 (with Enhancement) and Condition 2 (without Enhancement) Analyzed as
Paired Data (Correlated Analysis)

Condition 1 (with enhancement) Condition 2 (without enhancement)

Area under Area under
Binormal Binormal ROC Binormal Binormal ROC
parameter a parameter b curve Az parameter a parameter b curve Az

1.6084 0.6302 0.9132 1.0839 0.4172 0.8414

Standard Standard Standard Standard Standard Standard
error a error b error Az error a error b error Az

0.3137 0.2072 0.0327 0.233 0.1302 0.0474

95% 95% 95% 95% 95% 95%
confidence confidence confidence confidence confidence confidence
interval interval interval interval interval interval
for a for b for Az for a for b for Az

(0.9936, (0.2240, (0.8304, (0.6272, (0.1620, (0.7311,
2.2232) 1.0363) 0.9613) 1.5407) 0.6724) 0.9169)

Correlation Correlation
(a, b) (a, b)

0.6506 0.4995

Correlation of Az for Condition 1 and Az for Condition 2: �0.0922.
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were modified by applying a nonlinear sigmoidal function. Two parameters
could be adjusted to change the nature of enhancement. Image reconstruction
from modified coefficients occurred in nearly real time through an interactive
interface running on a high-resolution digital mammography workstation. To vi-
sualize raw data of digitized mammograms at the highest possible contrast and
spatial resolutions, 16-bit BARCO/Metheus framebuffers together with a dual-
headed high-resolution MegaScan gray scale monitor were used in the hardware.
We incorporated specialized software function calls to directly access the video
framebuffer for fast/smooth image display and update.

To quantify the performance of our multiscale-based processing technique
in terms of overall sensitivity and specificity, an ROC study was designed and
conducted with three radiologists from Columbia-Presbyterian Medical Center
specializing in mammography. Conventional ROC curves were generated and
significant statistical parameters determined. The area under the ROC curve Az

was used as a summary index to quantify overall specificity and sensitivity of
the two diagnostic systems (16). Unfortunately, it was not possible to analyze
data sets for each of three mammographers separately because of data degener-
acy. Nevertheless, analyzing all the data together yielded a slight increase
(8.7%) in area Az for diagnosis with enhancement compared with diagnosis
without. Despite the limited statistical significance of this result, it encourages
us to further investigate the application of multiscale methods for contrast en-
hancement of mammograms. More extensive ROC studies with a larger number
of cases are planned to further evaluate the benefits of such processing tech-
niques.

Ancillary to statistical results, we received very positive feedback from the
participating radiologists, who expressed great interest in using the interactive dis-
play tool and acknowledged a marked improvement in image quality, when en-
hancement was applied.

The current enhancement protocol works best for the detection/enhance-
ment of microcalcifications. Future directions of work include the expansion
of the choice of enhancement protocols to a menu of feature-specific enhance-
ment algorithms tailored for each mammographic feature, such as microcalcifi-
cations, masses, and spicular lesions (e.g., the application of brushlet functions)
(47,48) to mammograms with spicular lesions. In addition, the investigation of
a range of optimal enhancement parameters and the optimization of our interface
software tool comprise further projects. Our “dream” is to present a clinical in-
terface, in which specific enhancement protocols can be selected by a physician
by only “pushing a button on the screen.” We envision that through such a
clinical interface the diagnostic performance of radiologists in screening digital
mammograms could be substantially improved, both in terms of cost and
quality.
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8
Detection of Masses 
in Mammograms

Nico Karssemeijer
University Medical Center, Nijmegen, Nijmegen, The Netherlands

I. INTRODUCTION

Nearly all breast cancers have an intraductal origin, and as long as a cancer re-
mains inside the ductal system, mammography may only reveal it by the presence
of microcalcifications. It is when an intraductal cancer becomes invasive that it
will often appear as a mass in a mammogram. In this phase it should be detected
as small as possible, because tumor size is a very important prognostic factor (1).
Consequently, the success of breast cancer screening programs critically depends
on the ability to detect nonpalpable invasive cancers, ideally when they are
smaller than 1.5 cm, because only these are detected early enough to have a strong
impact on overall mortality reduction. Masses smaller than 5 mm are rarely visi-
ble in mammograms, and detection of intraductal in situ cancers is less effective,
because many of these do not get invasive during lifetime.

Detection of small masses in screening mammograms is difficult, because
they may be hard to distinguish from normal fibroglandular tissue patterns. More-
over, in a screening population only three to six of a thousand women have breast
cancer. It is this very large fraction of normal cases that makes screening into a
complex visual task for radiologists. To avoid perception errors, radiologists need
to be alert at a constant high level. That failures are not uncommon has been re-
vealed by a number of retrospective studies. There is evidence that in current
breast cancer screening programs radiologists do not detect around 25% of the
cancers that are visible on retrospective review (2–7). An effective way to increase
performance of radiologists in screening is double reading (8). Increases of sensi-
tivity with 5% to 15% have been reported by having two independent readers.
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However, implementation of double reading may be hard to organize because of
time limitations. As an alternative, it has been suggested that computer programs
that identify suspicious regions in mammograms can be used as a second reader.
This approach turned out to be successful in a number of studies (9–12), but its
success in practice will depend on the level of performance of detection algo-
rithms in terms of both sensitivity and specificity.

In this chapter an overview of different approaches to computer-aided de-
tection (CAD) of masses in mammograms will be presented. Masses in mammo-
grams can be described as more or less compact areas that appear brighter than the
tissue in which they are embedded because of a higher attenuation of x-rays. When
the tissue surrounding a mass is fatty, the detection problem is relatively easy, and
tumors as small as 5 mm can be detected. However, when a mass is projected in
dense fibroglandular tissue, it may be very difficult to recognize. Even large
masses may be completely obscured by dense tissue (13). This is one of the rea-
sons for taking two different views of each breast, as is common practice in most
screening programs. Usually, mediolateral oblique (MLO) and craniocaudal (CC)
projections are recorded.

The appearance of masses can be circumscribed, fuzzy, or spiculated. In the
latter case there is a radiating pattern of spicules surrounding the central mass area.
Differentiation of masses from normal glandular tissue structures may be so diffi-
cult that one has to rely on distortion or asymmetry of the normal mammographic
pattern. Stellate patterns of straight lines are especially suspect, as are straight re-
tractions of the glandular tissue boundary. Bilateral asymmetry may form another
important clue when a masslike area only appears in one breast. Furthermore, the
location of a suspicious area sometimes plays a role. For instance, in a fatty area
behind the glandular tissue, close to the chest wall, the presence of a mass is very
suspect if it does not have a corresponding sign in the contralateral breast. Some
examples of malign masses are shown in Fig. 1.

Detection of malignant masses in mammograms involves two tasks:
search and interpretation. The problem of search is to locate mammographic re-
gions suspected of containing a mass. The problem of interpretation is to clas-
sify mass lesions into predefined categories and to estimate how likely it is that
a given mass is malignant. These categories include benign masses, like fi-
broadenomas and cysts, and projections of normal glandular tissue. In the liter-
ature on digital mammography, most of the research dealing with masses in
mammograms has been focused on automated detection of suspicious areas. The
classification stage involved in these methods is aimed at distinguishing real
masses from normal breast tissue, and not on separating benign and malign ab-
normalities.

An adequate description of the detection problem requires analysis of the
characteristics of normal parenchymal patterns and anatomical structures in the
breast as imaged by mammography. In fact, it is the complex tissue pattern of nor-
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mal mammograms that makes detection difficult. Depending on breast composi-
tion and recording technique, normal breast tissue appears as a texture of many
criss-crossing linear structures representing strands of connective tissue and the
ductal pattern. Distinct areas in normal mammograms can be distinguished, and
segmentation of these is an important problem. As a first step in classification of
normal mammographic tissue, it has been suggested to segment fatty tissue from
dense regions. Using such an approach, it should be realized that this is an ill-de-
fined problem, because each pixel in a mammogram represents a column of tissue
that may have more than one major component contributing to its value. Another
distinct region in mammograms that can be segmented is the area in which the
pectoral muscle is projected. When proper positioning techniques are used, the
pectoral muscle should always be visible as a bright area in the upper corner of
oblique views. Cancers may be located in the part of the pectoral muscle that
partly overlaps the breast tissue. Often, the pectoral muscle is visible in CC views,
as well at the chest wall boundary. Other anatomical structures that are visible in
normal mammograms are blood vessels and the nipple.

In the next section common aspects of mass detection algorithms will be
discussed, followed by a section on preprocessing methods used for segmentation
and image normalization. An overview of methods for detection of masses in sin-
gle views will be given in Sec. IV, and Sec. V discusses the use of multiple views.
The chapter concludes with an example of the performance of different methods
applied to the same database, aimed at giving an impression of current perfor-
mance of mass detection schemes.

II. COMMON ASPECTS OF DETECTION ALGORITHMS

Detection of masses in mammograms has been investigated by many re-
searchers, resulting in a great variety of different approaches. All these methods

Fig. 1 Examples of malignant lesions: a circumscribed mass (left), a spiculated mass
(middle), and an architectural distortion (right).
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have some aspects in common, and it has been suggested that it is worthwhile
to view them in a general framework that includes only a few different phases
(14). Such a common scheme is depicted in Fig. 2. In the first phase, labeled as
preprocessing, a digital mammogram is typically filtered and its gray scale nor-
malized. Furthermore, areas that are to be processed differently (e.g., back-
ground, breast tissue, and the pectoral muscle) can be segmented. In the second
phase, local image features are calculated at each pixel or at a set of regularly
spaced points across the whole breast area. Using these features, pixels are
grouped into regions by a segmentation scheme in phase three. In the last phase,
features are calculated for each candidate region, and a classifier determines re-
gions that are regarded as suspicious. Ideally, the output for each region is a
measure of suspiciousness that can be thresholded at different levels to generate
an FROC curve representing sensitivity as a function of the number of false pos-
itives per image.

Mass detection methods differ in the way they address and emphasize each
of the different phases. Some apply very simple procedures to form many candi-
date regions and rely heavily on region classification to remove an abundance of
false positives. Other approaches concentrate on designing features that can be
computed directly from the pixel grid (e.g., without requiring a region boundary)
and apply relatively simple segmentation and region classification techniques. Al-
though it has been observed that the latter approach tends to result in better per-
formance (14), it seems likely that optimal performance can only be achieved by
paying careful attention to each of the four phases.

In both phase two and three a classifier is involved that respectively labels
pixels as being part of a mass or background or labels regions as normal or ab-
normal. These classifiers can range from simple thresholding when only one mea-
sure is involved, to more complicated statistical classifiers, neural networks, or
decision trees for classifying multidimensional samples. When many features are
involved, genetic algorithms are sometimes used to find a best set of features. De-
tails on construction of classifiers and their use are discussed elsewhere in this
book. The focus of this chapter will be on definition and computation of features,
preprocessing, and general design considerations.

Fig. 2 A general framework for mass detection methods.

Copyright © 2002 Marcel Dekker, Inc.



III. PREPROCESSING

Digital mammograms can be obtained by digitization of conventionally recorded
film screen mammograms or by using direct digital acquisition devices. It is good
to realize that automated pattern recognition programs are often not very robust
when images come from different sources. Each device has its own characteristics
with respect to noise and contrast transfer, and the positioning of labels and mark-
ers on mammograms may differ. This may cause unexpected problems for com-
puter programs that are often tuned to one particular image data set. To minimize
such problems, it is important to develop methods that are invariant to resolution
and gray scale conversions, and that use reliable methods for segmentation of
breast tissue from the background. In this section various ways to normalize and
convert mammograms with the aim of facilitating detection of mass lesions are
discussed.

A. Image Segmentation

Segmentation of the breast tissue area is a step that is common to almost any breast
image-processing technique. An obvious reason for initial labeling of the breast
tissue area is the gain in computational speed, which can be achieved by avoiding
time-consuming lesion detection operations to process the image background.
Moreover, generation of false alarms outside the breast, for instance caused by
film identification markers, should be avoided in practice to prevent the radiolo-
gist losing confidence in CAD. The necessity of knowing where the breast tissue
boundary is located is also required by many mass detection algorithms to avoid
inaccurate results caused by kernels overlapping the background or to warp cor-
responding images taken from different screenings of the same patient.

Mammography is a highly standardized technique. When mammograms are
recorded or digitized with calibrated equipment, a fixed threshold can often be
used to draw a boundary between tissue and background. Otherwise, a histogram
of the image gray levels will provide a way to adaptively select a threshold for
each image. This technique can be combined with edge detection to increase ac-
curacy (15). Applying a threshold for segmentation will often generate more than
one region because of markers or unexposed areas in the mammogram. In the re-
sulting binary image, morphological operations like openings and closings are
well suited to disconnect different areas that are only loosely connected, after
which the largest region can be labeled as the breast. The whole process can be
implemented in an efficient way by downsampling the image to a very low reso-
lution. When an accurate determination of the skin line is needed in further pro-
cessing steps, a local search near the detected breast boundary in the high-resolu-
tion image data may be implemented.
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In oblique or lateral views of the breast, the pectoral muscle will mostly
be visible. Some methods for mass detection make use of the position of the
pectoral muscle, for instance to guide a process of matching pairs of mammo-
grams or to define different processing modes for the breast and the pectoral
muscle. The boundary of the pectoral muscle as projected in a mammogram is
normally imaged by strong gray level edges, which may induce problems for
mass detection methods that are trained with more homogeneous background
textures. Occasionally, a breast tumor may be projected in the lower areas of 
the pectoral muscle. Therefore, the pectoral area should not be excluded from
processing by detection algorithms. An algorithm for determining the location 
of the pectoral boundary is described in Ref. 16. An example result of this
Hough-transformed-based technique is shown in Fig. 3. A peak detected in
Hough space represents a first approximation of the pectoral boundary as a
straight line, which can be transformed back to the image space. When required,
the shape and position of the boundary can be optimized, for instance by an ac-
tive shape or contour model that uses the straight line boundary as an initial
guess.

In some applications, it is required to determine the position of the nipple,
for instance to guide a model-based search algorithm or to transform different
views to a common coordinate frame. The nipple is the only well-defined land-
mark in the breast. In Ref. 17 a method is described that automatically determines
the location of the nipple based on analysis of average gradient strength perpen-
dicular to the skin-air interface.

Fig. 3 The pectoral muscle in a mammogram is automatically recognized by detecting a
peak in Hough space (middle) and transforming this back to the image (right).
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B. Peripheral Enhancement

The standard procedure in mammography requires the breast to be compressed
during exposure. This technique optimizes image quality for a number of reasons,
including reduced scatter and motion blurring. Moreover, this procedure results in
a more uniform exposure on the detector over the major part of the projected tis-
sue area. This improves contrast visualization and allows more accurate image
processing. Near the skin line, however, breast thickness rapidly decreases, caus-
ing a strong gradient of the image intensity perpendicular to the breast edge. Such
a strong gradient may easily confuse a mass-detection algorithm in the area near
the skin line. This is obvious when one realizes that operations used for detection
of masses need to have a large supporting image area of at least the size of a mass,
which will often overlap with the breast margin. To avoid this problem, image
processing methods can be applied that correct for the decreasing image intensity
near the breast edge. An example is shown in Fig. 4. In this case the mammogram
has been smoothed with a large gaussian kernel and at all sites i, where the
smoothed image had pixel values gi lower than a threshold T, the original pixel
values yi were replaced by

y�i � yi � gi 
 T (1)

The two parameters in this algorithm are the size of the gaussian smoothing
kernel and the value of the threshold T. The latter was chosen here as the mean
pixel value in the mammogram. This procedure has been applied as a preprocess-

Fig. 4 Correction for breast thickness decrease in the peripheral zone of the breast.
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ing step in an algorithm for detection of spiculated masses (18). Also Groshong
and Kegelmeyer (19) correct for the brightness “roll-off” near the breast edge in a
method for detecting circumscribed lesions.

A disadvantage of the simple approach described earlier is that ringing arti-
facts may be introduced near the boundary of bright areas in the image. If needed,
these can be reduced by the use of nonlinear smoothing methods. Another ap-
proach for thickness equalizing in the periphery of the breast is described by Byng
et al. (20), where the aim is reduction of the dynamic range to improved image dis-
play. Correction of the breast thickness differences also is an important part of a
sophisticated image normalization procedure developed by Highnam et al. (21),
which will be discussed in the next section.

C. Normalization of Gray Levels

Current methods for detection of masses in mammograms have been developed
and tested using databases of digitized mammograms. Because of a lack of proper
calibration data, most researchers do not attempt to normalize images in these
databases with respect to variation in acquisition procedures. Unfortunately, it is
true that reliable parameters that describe the physics of the recording process are
hard to obtain for conventionally recorded series of mammograms. Ideally, there
should be a known relation between pixel values and the underlying breast tissue
attenuation. A major source of uncertainty is the breast thickness, which is usually
not recorded by mammography technicians. Moreover, even in the same mam-
mogram breast thickness may vary because of a tilt of the compression plate. A
second source of variation is instability of the film development process. This
variation is hard to deal with because of the strong nonlinear characteristics of the
film/screen detector system. Direct digital mammography will solve part of these
problems. Linearity of the transfer function and the availability of reliable cali-
bration data will allow more quantitative assessment of parameters related to
mammographic lesions.

Having available proper calibration data, it has been shown that mammo-
grams can be normalized to a representation that reflects the amount of nonfatty
tissue at each pixel (21–23). The basic idea behind this is the observation that in
terms of linear attenuation for x-ray energy, two distinct types of breast tissues can
be distinguished, namely fat and all other dense tissues, aside from calcifications.
To obtain such a representation the scatter component of the mammographic im-
age must be subtracted from the image data, and beam hardening should be taken
into account. Estimation of the scatter component is only possible when the ge-
ometry of the imaging system and calibration data are known and when an accu-
rate measurement or estimate of breast thickness is available (22). Other correc-
tion procedures that need to be carried out for image normalization should deal
with divergence of the x-ray beam, the anode heel effect, and the inverse square
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law effect. It is expected that image analysis performed on normalized images can
make detection and classification of breast masses more reliable and robust, but
no studies have been performed yet that demonstrate this.

D. Reduction of Background Structure

Detection of masses is complicated by the rich structure of normal mammographic
regions. A major component of this structure is composed of linear structures rep-
resenting fibroglandular tissue, ducts, and blood vessels. Although these struc-
tures are very different in appearance from mammographic masses, they may eas-
ily reduce the performance of mass detection methods. A simple way to remove
linear structures is smoothing. However, smoothing also reduces the edges of
masses. To preserve the features related to a mass it has been suggested to remove
curvilinear structure in a preprocessing step (24). A map of those pixels that are
part of a linear structure is formed first, and by subtraction or interpolation the
pixel values in this map are replaced by a local background estimates.

IV. DETECTION IN SINGLE VIEWS

A common phase in mass detection algorithms is generation of candidate regions
that are suspicious enough to pass to the final classification stage (Fig. 2). Basi-
cally, there are two approaches in this phase. The first uses segmentation methods
not specific to mammography but based on some general assumptions about the
regions that are searched for. For instance, regions should be brighter than their
surroundings, have a compact shape, and should be more or less homogeneous in
intensity. The second approach uses more complex pixel-level features, often es-
pecially designed for mammography. These features are computed at each site, re-
sulting in a multidimensional map that represents the local image characteristics
relevant for mass detection in an explicit way. A classifier is usually applied to
convert this map to an image representing the likelihood of abnormality at each
site. Regions are subsequently segmented in this probability map instead of in the
original image.

A disadvantage of more general segmentation schemes is that any bright re-
gion will be segmented, regardless of its shape. For true masses the regions that
are formed may not correspond very well with the mass boundary because of
parenchymal structures that overlap with the mass. Because of a lack of specificity
in the initial detection stage, it may become very hard to classify regions in a sec-
ond stage. Moreover, by using segmentation techniques that are merely based on
local gray level statistics, spiculated lesions that lack a clear central mass may not
be found. More specific selection of suspicious areas in the initial detection stage
requires computation of features that respond better to characteristic properties of
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mammographic masses. In this section, different methods for defining pixel level
features will be discussed that were designed to find masses that are close to cir-
cular in shape or masses that have radiating line patterns surrounding them. Sub-
sequently, approaches based on segmentation and features for classification of re-
gions will be discussed. In the next section it will be described how features
related to asymmetry can be computed. One of the consequences of using more
complex features in the initial pixel-level stage is that the computations required
will be more intensive. To increase speed, images can best be processed in a sam-
pling mode, where features are computed at a sequence of regularly spaced test
sites. These should be distributed densely enough to avoid missing small masses.

A. Features for Mass Detection

Features that signal masses in mammograms can be computed by band-pass fil-
ters that selectively enhance areas that are brighter than their surroundings. A
technique that has been applied by a number of investigators, either in a single or
multiresolution mode, is convolution of the image with a filter function that has a
positive center and a negative surround (25–28). An example of such a filter func-
tion is the laplacian of the gaussian (LoG) function. To increase computational
speed this function can be approximated by a difference of two gaussian (DoG)
filters with a different scale. The latter approach, subtraction of two images that
are somehow smoothed at a different spatial scale, is often referred to as a differ-
ence image technique. In Fig. 5 it is shown how a laplacian of the gaussian re-
sponds well to a mass when the size of the mass fits the dimension of the central
part of the kernel and when the contrast of the mass is high enough. However,
there is little reason to believe that application of this filter is a very good ap-
proach. In fact, the response to a mass with low contrast—also depicted in Fig.
5—is very poor. The shape of the convolution filter function influences the de-
tection of lesions. It is hard, however, to tune this shape to mammographic masses
because of their variability. In an application using a convolution neural network
described in Ref. 27, a set of filter kernels is learned from example patterns dur-
ing a training phase. However, optimization of a convolution filter for detection
of mammographic mass lesions has not been studied in depth.

An important disadvantage of using convolution filters is that the filter out-
put is proportional to the contrast of a given region. The contrast of true mass le-
sions may vary largely because of variation of size, tumor tissue properties, vari-
ability in exposure conditions, and nonlinearity of the contrast transfer of a
film/screen imaging system. Small masses with low contrast may only give a
modest signal compared with edges of the pectoral or glandular tissue boundary,
as is shown in the bottom row of Fig. 5. To avoid direct dependence on contrast,
template matching or area correlation can be used. This is a well-known technique
in image processing in which the similarity between a model and the local image
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Fig. 5 Two mammograms with malignant mass lesions. From top to bottom feature maps
computed by a DoG filter, area correlation, and a directional gradient filter are shown.
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structure is determined by computing the cross-correlation (29). Let the shape
model be described by a template T(x,y) and the local image function by ƒ(x,y),
then a similarity measure can be defined by the normalized cross-correlation
R(x,y) in a neighborhood S

R(x,y) � (2)

with the variances of ƒ and T computed within the support S of the filter. By us-
ing a number of templates of different sizes, this technique can been applied in a
multiresolution scheme. The method was applied in some early articles on mass
detection (30,31), where relatively simple mass templates with a uniform central
region and a uniform surround were used. In Fig. 5 examples of area correlation
are shown using a two-dimensional projection of a sphere as a template. The ex-
amples demonstrate that the correlation filter is superior to the DoG filter when a
mass lesion has low contrast.

Template matching is a special case of the more general matched-filtering
approach (e.g., Ref 29). This would be the optimal strategy for detecting a mass if
the shape of the mass could be known exactly and if the mammographic back-
ground could be adequately described by a power spectral density. In that case the
known shape of the mass should serve as the template, and a preprocessing filter
should be implemented to prewhiten the background power spectrum. Unfortu-
nately, in medical applications the shape of a lesion to be detected is unknown, and
the background tissue patterns that are to be dealt with are not adequately de-
scribed by simple statistical models. This makes the formal matched filtering ap-
proach less attractive.

Mass lesions occur over a wide range of sizes. For that reason investigators
have suggested use of a multiscale approach for detection. Wavelets are especially
popular tools for filtering out structures within a range of sizes of interest and to
eliminate patterns that have spatial frequencies outside the range of interest. The
use of wavelets for contrast enhancement and detection of masses in mammogra-
phy has been explored by several authors (32,33). As pointed out by Miller and
Ramsey (34), however, the motivation for using wavelets is not very strong. They
propose the use of a nonlinear method of multiscale analysis. It is argued that as-
signing an optimal set of low-frequency modes to a mammogram can best be
treated as an inverse problem, when it is desired that these low-frequency modes
correlate well with imaged physical objects like masses. Maximum entropy is
used in combination with a positivity constraint to decompose a mammogram into
subimages representing structure at different spatial scales. A simple adaptive
thresholding approach is used to detect masses at a selected set of resolution lev-
els. A disadvantage of inverse filtering is the high computional load, especially
when judged in comparison with the wavelet transform, which can be imple-
mented with great computational efficiency.

# (i,j)ES[T(i, j) � T�][ƒ(x 
 i, y 
 j) � ƒ�(x,y)]
�����
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An alternative approach to mass detection is based on analysis of gradient
patterns. The idea behind this is that in a neighborhood surrounding the center of
a mass, most of the brightness gradient vectors will be oriented toward the center,
especially when a mass is approximately circular. This property was used by
Groshong and Kegelmeyer (19) in a method based on the generalized Hough
transform for circles. By using an edge detector, the strongest edges in the image
are transformed to a Hough accumulator, in which each element represents a cir-
cle with given radius and location. By normalizing the peak heights and by mea-
suring an additional image contrast component for circular areas corresponding to
the peaks, masses are detected. Another approach using gradient orientation was
described by Te Brake and Karssemeijer (35). Instead of using the generalized
Hough transform, a statistical analysis of local gradient orientation patterns is per-
formed. Given that computations are carried out at site i, of all pixels j that are lo-
cated within a distance rij from i, with rij $ [rmin, rmax], the orientation is evaluated
(Fig. 6). Denoting the number of pixels oriented to the center by ni and the total
number of pixels in the neighborhood by Ni, a feature gi representing gradient ori-

Fig. 6 Detection of a spiculated mass using line (top) and gradient orientation (bottom)
maps. The figures in the central column show the labels allocated to pixels based on their
orientations, when the window is centered at the tumor. Pixels are marked white when they
are oriented toward the center or gray when they are not. The right-most column represents
the output of the feature detector.
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entation convergence is computed as

gi � �
�N�

ni

ip�

�

(1�

p

��

Ni

p�)�
� (3)

with p the mean probability that a pixel is oriented toward the center in a random
background. By this definition, the feature is normalized by an expected value and
variance estimated for random noise patterns. In this way problems at the breast
edge are avoided, and parameters can be changed adaptively. Application to the
images in Fig. 5 demonstrate good performance for both bright and faint masses.

The use of texture features to distinguish masses from normal mammo-
graphic tissue has been proposed in a number of articles, either for supporting de-
tection of potentially suspect sites in an early processing stage (36) or as part of a
region description in a later stage aimed at removing false alarms. The use of mul-
tiresolution texture analysis was investigated by Wei et al. (37). In this study large
numbers of texture features were computed in fixed size rectangular windows, us-
ing either the original image or wavelet coefficients as input. Texture features
were based on the co-occurrence matrix, and the performance of different feature
combinations was measured. Results were presented for small regions of interest
only.

B. Features for Detection of Spicules

Malignant masses are often surrounded by a radiating pattern of linear spicules.
Several methods have been proposed to construct features that respond to such
patterns. Kegelmeyer (12,36) describes a method for detection of such stellate
lesions that is based on analysis of local histograms of gradient orientations.
These histograms are computed in a square moving window 3 cm wide. Stellate
patterns will give rise to histograms that are more or less flat, whereas normal
breast tissue is assumed to generate less uniform histograms, because of a duc-
tal pattern that is oriented from the chest wall to the nipple. In addition to this
feature, the more general Law’s texture measures are used. The features are
combined using a binary decision tree to label pixels as normal or abnormal. Im-
pressive results were reported by the author, but other researchers were not able
to reproduce these (14,38). It seems that the method is not specific enough be-
cause of a feature definition that does not incorporate the idea of a center with
respect to which convergence of orientations is measured. Also the use of first-
order derivative orientation seems suboptimal. When one is interested in orien-
tation of linear spiculation, the use of a second-order line orientation measure is
more appropriate.

Methods that do analyze local orientation patterns with respect to a center
have been proposed by Ng et al. (31). Several methods are described, all based on
a variation of the Hough transform. The idea is that extrapolating straight lines
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through selected edge points in the direction normal to the local gradient vector
will yield a peak of line density at centers of radiating structures. Because of edges
at the mass boundary, however, the response of this filter is rather poor. To im-
prove performance the authors attempt to detect spicules first on the basic of their
characteristic microstructure. It seems, however, that the resolution of their im-
ages was too low to justify such an approach. Detection of spicules and subsequent
accumulation of evidence for the presence of spiculated masses is also the goal of
a method described by Parr et al. (39,40). Their approach is based on a statistical
representation of line patterns and principal component analysis. A method for de-
tecting stellate lesions by texture analysis in Hough space is described in Ref. 41.

Detection of stellate patterns by a statistical analysis of linear orientation
patterns is described by Karssemeijer (18,25). A feature that measures the degree
of convergence of pixel orientations is defined in a way similar to the gradient ori-
entation method for mass detection described earlier, with a live-based orientation
measure in place of gradient orientations. This feature represents the normalized
number of pixels with directions pointing to a test area (Fig. 6). A second feature
measures the homogeneity of the orientation pattern surrounding the test site. This
allows a classifier to distinguish radiating patterns from crossing lines or vessel
structures. Both features are statistically normalized by a variance, and the ex-
pected value is computed for random noise patterns. In this way, problems at the
chest or skin line boundary are avoided. Furthermore, it allows the features to be
computed in a multiresolution mode, in which window size changes adaptively to
increase sensitivity for lesions of varying diameters. Fig. 7 gives an example of
the response of the orientation convergence filter to a stellate lesion without a
clear central mass. The method critically depends on creation of a map of local

Fig. 7 A stellate lesion and a feature designed for detecting radiating line patterns.
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line orientations, using second-order directional gaussian derivatives (18). This
method of orientation estimation is an example of a more general approach known
as steerable filters (42), which allows the output of a directional filter at any ori-
entation to be computed from the filter output at a limited set of orientations, only
three in the preceding application.

C. Detection and Segmentation of Regions

By using image segmentation, it is possible to generate candidate regions directly,
without time-consuming computation of pixel level features by operators with
large support. The term “segmentation” is used here for techniques that subdivide
images into regions that are homogeneous with respect to some property, usually
the pixel value or brightness itself. The assumption that is made is that masses in
mammograms are brighter than their surroundings and have a relatively uniform
intensity level inside. Brzakovic et al. (43,44) use a multiresolution segmentation
scheme called fuzzy pyramid linking to identify regions. Woods and Bowyer (45)
use region growing, in which local maxima in the image intensity distribution are
used as seeds. A method based on adaptive thresholding, followed by a refinement
stage using a Markov Random Field model, is described by (46) Li et al. By use
of spatial interactions defined by the Markov model, this segmentation method
can iteratively guide the segmentation process to a solution that is composed of
larger connected structures only. Constraints on the shape of these regions, how-
ever, cannot be imposed. Region growing is also used by Chang et al. (47) in a
method in which results of a number of different segmentation processes are com-
bined by use of the overlap of detected regions. Yin and Giger (48) use local gray-
level thresholding based on histograms in subimages. A segmentation method
based on edge detection, after a contrast enhancement step, is used by Petrick et
al. (49).

When more complex features, as described in the previous section, are used
that respond directly to circular shapes and spiculation patterns, a segmentation
step is required to identify suspicious regions. The common approach is that fea-
tures are computed at a sample of sites across the image and are susequently used
to classify each individual site independently as normal or abnormal. In general,
these more complex features are computed with a support that is large enough to
cover a typical circumscribed lesion or stellate mass. Therefore, evidence about
the presence of a mass is accumulated at each site, which allows features to be
combined into a map that represents the likelihood that a mass is present. For fea-
ture combination schemes there are many possible choices, such as neural net-
works, binary decision trees, or bayesian classifiers (18,50). A discussion of these
falls outside the scope of this chapter. Having the likelihood representation avail-
able, a simple peak detection procedure is sufficient to generate potentially suspi-

Copyright © 2002 Marcel Dekker, Inc.



cious sites. Starting from these sites, regions can be segmented in the original im-
age or in feature space, using techniques such as region growing, active contours,
or random field models.

D. Classification of Regions

Once reliable boundaries of a potential mass area have been obtained, region-
based measures representing size, shape, texture, and contrast can be computed
to classify structures as normal, benign, or malign. Measures that have been
used include morphological features like compactness, irregularity of the bound-
ary, and gray-level statistics computed inside the segmented region of interest.
Most of these techniques are not specific to mammography and can be found in
textbooks on image processing. Exceptions are formed by measures that are de-
fined to signal spiculation or a halo. Giger et al. (51) define two spiculation mea-
sures using a blurred lesion contour determined by the margin fluctuation and
the difference in area of the processed and unprocessed contour. More recently,
it was suggested by the same group to use a method termed “radial edge gradi-
ent analysis,” that is derived from histograms of edge orientations taken relative
to the center of the mass (52). The method was applied to distinguish malignant
masses from benign ones. Analysis of tumor boundary characteristics to mea-
sure spiculation was also investigated by Pohlman et al. (53). They show that the
results of their method depend strongly on spatial resolution of the mammo-
grams. A feature aimed at measuring a dark halo that is often visible around
masses is described in Ref. 54.

An interesting question is: Do some region-based features have a clear
benefit over others in terms of statistical power for discrimination of malign
masses from normal tissue or benign lesions. Unfortunately, this question is hard
to answer by reviewing the literature on this subject. The problem is that opti-
mizing a region-based feature space cannot be studied without taking the seg-
mentation method being used into account and that different segmentation meth-
ods yield regions with very different boundary characteristics. Another problem
is that most authors use a large number of region-based features in combination,
for instance more than 200 in Ref. 37, and in many articles only overall 
measures of the performance of feature combinations are presented as results.
Individual features that have been shown to have good discriminating power for
malign structures are mostly related measures of spiculation or roughness of the
extracted region boundary. In general, features related to contrast measures seem
to perform less well, perhaps because of improper calibration of the gray levels.
In Ref. 37, it is remarked that texture analysis of detail images generated by a
wavelet transform is not effective using measures based on the co-occurrence
matrix.
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V. DETECTION USING MULTIPLE VIEWS

Masses may be easily obscured by the fibroglandular tissue, especially when a le-
sion is still small. For this reason radiologists are trained to compare left and right
images and to compare a mammogram with previous screening images of the
same breast. Changes of the parenchymal pattern may reveal tumor growth. How-
ever, comparing densities in two different images is difficult for the human eye.
Moreover, corresponding mammograms often differ significantly because of vari-
ation of positioning, compression, and x-ray exposure during recording, whereas
other changes are due to natural changes in the breast over time. For left/right
comparison, there is an additional difference caused by anatomical variability.
Therefore, correspondence between positions in two views can only be deter-
mined by approximation. Once correspondence has been established, asymmetry
features can be computed by comparing local texture or brightness measures in the
two views, for instance by subtraction. To avoid generating false asymmetries be-
cause of inadequate registration, an alternative approach to asymmetry detection
was suggested by Miller and Astley (55). They found that many of the radiolo-
gists’ comparisons have a regional basis, considering four breast quadrants and
the glandular region. Because most cancers are located in the glandular region, ra-
diologists pay special attention to the shape of the glandular disc. Based on this,
they suggest a method that determines more global features related to shape,
brightness, and topology of the glandular tissue area. In their method, the glandu-
lar tissue area is automatically segmented from the fatty regions of the breast. It
seems that the reliability of this segmentation step is a critical issue. A disadvan-
tage of this approach might be that these global asymmetry measures do not give
a direct clue as to where to find the origin of the asymmetry itself, which hampers
combination of the asymmetry measure with other features computed for regions.

Various approaches to establish correspondence between different views
have been proposed. Yin and Giger (48,56,57) apply a relatively simple rigid body
transformation to align the skin line of two breast images. More elaborate meth-
ods generate a set of corresponding landmarks or control points in each breast and
apply some form of nonlinear interpolation. Lau and Bisschof (58) use a set of
three control points defined on the skin line, including the estimated location of
the nipple, in a method for asymmetry detection. Sallam and Bowyer (59) apply a
more general warping technique in a method for detecting changes with respect to
previous screenings of the same breast. In their approach, landmarks are generated
over the whole breast area by an algorithm that determines maximum curvature
points at the outline of dense tissue regions. In a second stage, landmarks inside
the dense tissue area are used as well. Correspondence between the points is es-
tablished by minimizing a cost function. They also introduce the use of thin-plate
splines (60) as a model for deforming the tissue area between the control points in
the mapping stage. Vujovic et al. (61,62) also use automatically generated control
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points in the breast in a method for detection of cancerous changes. In their
method, control points are selected from a set of cross-sections of prominent ducts
and vessels. An example of registration using landmarks defined on the breast out-
line and thin-plate spline interpolation is shown in Fig. 8.

Once correspondence has been established, features can be computed that
respond to bilateral asymmetry or abnormal changes with respect to previous
screenings. Asymmetrical regions can be found by bilateral subtraction and

Fig. 8 Registration of a pair of mammograms using landmarks defined on the breast out-
line and thin plate spline mapping. The image of the left breast is mapped to the right. The
bottom row shows the subtraction image, and a feature map representing bilateral asym-
metry, obtained by smoothing the subtraction image.
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smoothing (58). Some form of normalization of the gray levels is appropriate be-
fore applying this technique, because exposure conditions may vary. In Ref. 58,
mammograms are normalized to the same levels of mean intensity and variance.
To deal with variation of compression, a thickness correction in the peripheral
zone of the breast should be implemented. Ideally, gray levels should be calibrated
by a rigorous approach, taking all aspects of image acquisition into account
(21–23). Fig. 8 shows an example of bilateral subtraction. The example demon-
strates that in oblique views misalignment of the pectoral muscle may be a source
of false asymmetries. To avoid this, more accurate registration is needed with the
use of additional landmarks on the pectoral boundary.

The subtraction itself can also be performed in a nonlinear way, for instance
as described in Refs. 48 and 56, in which multiple thresholds are used before sub-
traction, setting pixels below the threshold to a constant value. From the set of sub-
traction images thus obtained, suspicious regions are extracted by a linking
scheme. In addition to subtraction of intensity levels, images representing texture
differences in corresponding regions of an image pair can be computed as well
(58). It has been suggested that slight textural changes can be used to predict early
stages of cancer. Using advanced statistical methods, this is investigated by Priebe
(63).

VI. EXPERIMENTAL RESULTS AND DISCUSSION

Because of the complexity of normal fibroglandular patterns in the breast and the
variability in appearance of mass lesions, a straightforward and simple approach
to detect mass lesions in mammograms does not exist. A great variety of ap-
proaches have been proposed in the literature, but it seems that for a successful ap-
proach a number of techniques need to be combined. This is demonstrated by an
experiment, in which current versions of mass detection methods developed at our
institute were combined. Fig. 9 and 10 show FROC curves representing detection
performance measured on a series of 71 cancers detected in the breast cancer
screening program in Nijmegen, The Netherlands, from 1993 to 1996. In total this
set consisted of 132 mammograms with a cancer and 132 bilateral normal mam-
mograms. In 10 cases only oblique views had been taken at screening. All cases
detected by screening in the selected period were included, with the exception of
those that only showed microcalcifications. Thus, the set can be regarded as rep-
resentative for cancers detected by screening mammography. The results show the
performance of a method that is almost entirely based on pixel-level features. The
only region-based feature that was used is the size of the detected suspicious area.
Regions were simply obtained by thresholding the output of a neural network clas-
sifier used to combine features for masses, spiculation, and asymmetry. Gradient
and line orientation filters were used for detecting masses and spiculation (18, 35).
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Fig. 9 Froc curves computed on database of 71 cases using single image mass and spic-
ulation features, and asymmetry.

Bilateral subtraction was used for asymmetry detection, using thin-plate spline in-
terpolation with landmarks on the breast boundary. The results show that the
methods designed to detect each of the individual features have only a modest per-
formance compared with the classifier in which the different approaches are com-
bined. It is also shown that the value of using asymmetry computed by bilateral
subtraction is limited compared with mass detection by gradient orientation anal-
ysis in single views.

Having more views per breast available, there are in fact two valid ap-
proaches to compute detection sensitivity. In the curves shown in Figs. 9 and 10,
true positives were counted independently in each mammogram, except for the
case-based curve in Fig. 10. The latter was computed by counting a true positive
whenever a cancer was detected in view of the two or in both views. One might ar-
gue that this is more realistic, because in some of the cases a cancer is hardly visi-
ble in one of the views. Had that view been the only one available at screening, the
cancer would probably not have been detected. It could only be annotated, because
a clear sign in the other view at a corresponding location was visible. Therefore, a
case-based analysis is more appropriate when a comparison with human detection
performance is made. When doing this, it is clear that, at present, methods only
achieve a high sensitivity at the cost of a false-positive rate that is an order of mag-
nitude higher than that of radiologists in breast cancer screening. A simple calcu-
lation makes this clear. Assuming a radiologist has a positive predictive value of
20% in a population-based screening with an incidence of 0.3%, it can be calcu-
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lated that this radiologist reports only about 12 false positives per 1000 cases. This
corresponds to only 0.003 FP/image when there are four mammograms recorded
per case, which is well below the range of performance measured in Fig. 10. Still,
application of mass detection method at this stage is likely to be very useful when
they are used to alert radiologists to potentially suspicious mammographic regions.
It should be kept in mind that the estimated sensitivity of radiologists in breast can-
cer screening is around 75%. Furthermore, radiologists not only detect lesions but
also distinguish benign from malign types. The latter is not reflected in the FROC
curves of the computer performance. Retrospective studies have shown that a sig-
nificant number of cancers missed in screening are due to oversight. Such errors
may well be prevented by using a computer as second reader.

REFERENCES

1. L Tabar, G Fagerberg, NE Day. Breast cancer treatment and natural history: new in-
sights from results of screening. Lancet, 339:412–414, 1992.

2. CJ Baines, DV McFarlane, and AB Miller. The role of the reference radiologist: es-
timates of inter-observer agreement and potential delay in cancer detection in the na-
tional breast screening study. Invest Radiol 25:971–976, 1990.

Fig. 10 Froc curves obtained by combination of features using a neural network. Also a
case-based measure of sensitivity was used for the combined feature set, counting a true
positive whenever a lesion is hit in at least one view. This leads to a higher FROC curve.

Copyright © 2002 Marcel Dekker, Inc.



3. RE Bird, TW Wallace, BC Yankaskas. Analysis of cancers missed at screening mam-
mography. Radiology 184:613–617, 1992.

4. JAM van Dijck, LM Verbeek, JHCL Hendriks, R Holland. The current detectability
of breast cancer in a mammographic screening program. Cancer 72:1933–1938,
1993.

5. JE Harvey, LL Fajardo, CA Inis. Previous mammograms in patients with impalpable
breast carcinoma: retrospective vs blinded interpretation. AJR 161:1167–1172, 1993.

6. A Gale, ARM Wilson, EJ Roebuck. Mammographic screening: radiologic perfor-
mance as a precursor to image processing. SPIE 1905:458–464, 1993.

7. CJ Savage, AG Gale, EF Pawley, ARM Wilson. To err is human; to compute divine?
In AG Gale, SM Astley, DR Dance, AY Cairns, eds. Digital Mammography. Ams-
terdam: Elsevier, 1994, pp 405–414.

8. EL Thurfjell, KA Lernevall, AAS Taube. Benefit of independent double reading in a
population-based mammography screening program. Radiology 191:241–244, 1994.

9. IW Hutt, SM Astley, CRM Boggis. Prompting as an aid to diagnosis in mammogra-
phy. In AG Gale, SM Astley, DR Dance, AY Cairns, ed. Digital Mammography. Am-
sterdam: Elsevier, 1994, pp 389–398.

10. HP Chan, K Doi, CJ Vyborny, RA Schmidt, CE Metz, KL Lam, T Ogura, Y Wu, H
Macmahon. Improvement in radiologist’s detection of clustered microcalcifications
on mammograms. Invest Radiol 25:1102–1110, 1990.

11. S Astley, I Hutt, S Adamson, P Rose, P Miller, C Boggis, C Taylor, T Valentine, J
Davies. Automation in mammography: computer vision and human perception. SPIE
1905:716–730, 1993.

12. WP Kegelmeyer, JM Pruneda, PD Bourland, A Hillis, MW Riggs, ML Nipper. Com-
puter-aided mammographic screening for spiculated lesions. Radiology 191:331–
337, 1994.

13. PB Dean. Overview of breast cancer screening. In: K Doi, ML Giger, RM Nishikawa,
RA Schmidt, eds. Digital Mammography. Amsterdam: Elsevier, 1996, pp 19–26.

14. K Woods, K Bowyer. general view of detection algorithms. In: K Doi, ML Giger, RM
Nishikawa, RA Schmidt, eds, Digital Mammography. Amsterdam: Elsevier, 1996, pp
385–390.

15. M Abdel-Mottaleb, CS Carman, CR Hill, S Vafai. Locating the boundary between the
breast skin edge and the background in digitized mammograms. In: K Doi, ML Giger,
RM Nishikawa, RA Schmidt, ed. Digital Mammography. Amsterdam: Elsevier,
1996, pp 467–470.

16. N Karssemeijer. Automated classification of parenchymal patterns in mammograms.
Phys Med Biol, 43:365–378, 1998.

17. R Chandrasekhar, Y Attikiouzel. A simple method for automatically locating the nip-
ple in mammograms. IEEE Trans Med Imag 16:483–494, 1997.

18. N Karssemeijer, GM te Brake. Detection of stellate distortions in mammograms.
IEEE Trans Med Imag 15:611–619, 10 1996

19. BR Groshong, WP Kegelmeyer. Evaluation of a Hough transform method for cir-
cumscribed lesion detection. In: K Doi, ML Giger, RM Nishikawa, RA Schmidt, eds.
Digital Mammography Amsterdam: Elsevier, 1996, pp 361–366.

20. JW Byng, JP Critten, MJ Yaffe. Thickness-equalization processing for mammo-
graphic images. Radiology 203:564–568, 1997.

Copyright © 2002 Marcel Dekker, Inc.



21. RP Highnam, JM Brady, BJ Shepstone. A representation for mammographic image
processing. Med Imag Analysis 1:1–18, 3 1996.

22. RP Highnam, JM Brady, BJ Shepstone. Computing the scatter component of mam-
mographic images. IEEE Trans Med Imag 13:301–313, 1994.

23. JH Smith, SM Astley, J Graham, AP Hufton. The calibration of grey levels in mam-
mograms. In: K Doi, ML Giger, RM Nishikawa, and RA Schmidt, eds. Digital Mam-
mography. Amsterdam: Elsevier, 1996, pp 195–200.

24. N Cerneaz, JM Brady. Enriching digital mammogram image analysis with a descrip-
tion of the curvi-linear structures. In: AG Gale, SM Astley, DR Dance, AY Cairns,
eds. Digital Mammography. Amsterdam: Elsevier, 1994, pp 297–306.

25. N Karssemeijer. Recognition of stellate lesions in digital mammograms. In: AG Gale,
SM Astley, DR Dance, AY Cairns, eds. Digital Mammography. Amsterdam: Else-
vier, 1994, pp 211–220.

26. SL Kok, JM Brady, L Tarrasenko. The detection od abnormalities in mammograms.
In: AG Gale, SM Astley, DR Dance, AY Cairns, eds. Digital Mammography. Ams-
terdam: Elsevier, 1994, pp 261–270.

27. B Sahiner, HP Chan, N Petrick, D Wei, MA Helvie, DD Adler, MM Goodsitt. Clas-
sification of mass and normal breast tissue: a convolution neural network classifier
with spatial domain and texture images. IEEE Trans Med Imag 15:598–610, 10 1996.

28. B Zheng, YH Chang, D Gur. Computerized detection of masses in digitized mam-
mograms using single image segmentation and a multi-layer topographic feature
analysis. Acad Radiol 2:959–966, 1995.

29. AK Jain. Fundamentals of Digital Image Processing. Englewood Cliffs, NJ: Prentice-
Hall 1989.

30. SM Lai, X Li, WF Bischof. On techniques for detecting circumscribed masses in
mammograms. IEEE Trans on Med Imag 8:377–386, 1989.

31. SL Ng, WF Bischof. Automated detection and classification of breast tumors. Com-
put Biomed Res 25:218–237, 1992.

32. AF Laine, S Schuler, J Fan, W Huda. Mammographic feature enhancement by mul-
tiscale enhancement. IEEE Trans on Med Imag 13:725–740, 1994.

33. A Laine, W Huda, DW Chen, J Harris. Segmentation of masses using continuous
scale representations. In: K Doi, ML Giger, RM Nishikawa, RA Schmidt, eds. Digi-
tal Mammography. Amsterdam: Elsevier, 1996, pp 447–450.

34. L Miller, N Ramsey. The detection of malignant masses by non-linear multiscale
analysis. In: K Doi, ML Giger, RM Nishikawa, RA Schmidt, eds. Digital Mammog-
raphy. Amsterdam: Elsevier, 1996, pp 335–340.

35. GM te Brake, N Karssemeijer. Detection of stellate breast abnormalities. In: K Doi,
ML Giger, RM Nishikawa, RA Schmidt, eds. Digital Mammography. Amsterdam:
Elsevier, 1996, pp 341–346.

36. WP Kegelmeyer. Computer detection of stellate lesions in mammograms. SPIE
1660:446–454, 1992.

37. D Wei, HP Chan, MA Helvie, B Sahiner, N Petrick, DD Adler, MM Goodsitt. Clas-
sification of mass and normal breast tissue on digital mammograms: multiresolution
texture analysis. Med Phys 22:1501–1513, 9 1995.

38. GM te Brake, N Karssemeijer. Automated detection of breast carcinomas that were
not detected in a screening program. Radiology (in press), 1998.

Copyright © 2002 Marcel Dekker, Inc.



39. TC Parr, SM Astley, CJ Taylor, CRM Boggis. Model based classification of linear
structures in digital mammograms—(automatic detection and model based classifi-
cation of anatomically different linear structures in digital mammograms). In: K Doi,
ML Giger, RM Nishikawa, RA Schmidt, eds. Digital Mammography. Amsterdam:
Elsevier 1996, pp 351–356.

40. TC Parr, CJ Taylor, SM Astley, CRM Boggis. Statistical representation of pattern
structure for digital mammography. In: K Doi, ML Giger, RM Nishikawa, RA
Schmidt, eds. Digital Mammography. Amsterdam: Elsevier 1996, pp 357–360.

41. M Zhang, ML Giger. Automated detection of spiculated lesions and architectural dis-
tortions in digitized mammograms. SPIE 2434:846–855, 1995.

42. WT Freeman, EH Adelson. The design and use of steerable filters. IEEE PAMI.
13(9):891–906, 1991.

43. D Brzakovic, XM Luo, P Brzakovic. An approach to automated detection of tumors
in mammograms. IEEE Trans on Med Imag 9:233–241, 1990.

44. D Brzakovic, M Nescovic. Mammogram screening using multiresolution based im-
age segmentation. Int J Pattern Recognition AI 7(6):1437–1460, 1992.

45. KS Woods, KW Bowyer. Computer detection of stellate lesions. In: AG Gale, SM
Astley, DR Dance, AY Cairns, eds. Digital Mammography. Amsterdam: Elsevier,
1994, pp 221–230.

46. HD Li, M Kallergi, LP Clarke, VK Jain, RA Clark. Markov random field for tumor
detection in digital mammography. IEEE Trans on Med Imag 14:565–576, 1995.

47. YH Chang, B Zheng, D Gur. Computerized identification of suspicious regions for
masses in digitized mammograms. Invest Radiol 31:146–153, 1996.

48. FF Yin, ML Giger, CJ Vyborny, K Doi, RA Schmidt. Comparison of bilateral-sub-
straction and single-image processing techniques in the computerized detection of
mammographic masses. Invest Radiol 6:473–481, 1993.

49. N Petrick, HP Chan, B Sahiner, D Wei. An adaptive density-weighted contrast en-
hancement filter for mammographic breast mass detection. IEEE Trans Med Imag
15:59–67, 1996.

50. WP Kegelmeyer, MC Allmen. Dense feature maps for detection of calcifications. In:
AG Gale, SM Astley, DR Dance, AY Cairns, eds. Digital Mammography. Amster-
dam: Elsevier 1994, pp 3–12.

51. ML Giger, CJ Vyborny, RA Schmidt. Computerized characterization of mammo-
graphic masses: analysis of spiculation. Cancer Lett 77:201–211, 1994.

52. Z Huo, ML Giger, CJ Vyborny, U Bick, P Lu, DE Wolverton, RA Schmidt. Analysis
of spiculation in the computerized classification of mammographic masses. Med
Phys 22:1569–1579, 10 1995.

53. S Pohlman, KA Powell, NA Obuchowski, WA Chilcote, S Grundfest-Broniatowski.
Quantitative classification of breast tumors in digitized mammograms. Med Phys
23:1337–1345, 1996.

54. RP Highnam, JM Brady, BJ Shepstone. A quantitative feature to aid diagnosis in
mammography. In: K Doi, ML Giger, RM Nishikawa, RA Schmidt, eds. Digital
Mammography. Amsterdam: Elsevier, 1996, pp 201–206.

55. P Miller, SM Astley. Automated detection of mammographic asymmetry using
anatomical features. Int. J Pattern Recognition AI 7(6):1461–1476, 1992.

56. FF Yin, ML Giger, K Doi, CE Metz, CJ Vyborny, RA Schmidt. Computerized de-

Copyright © 2002 Marcel Dekker, Inc.



tection of masses in digital mammograms: Analysis of bilateral substraction images.
Med Phys 18:955–963, 1991.

57. ML Giger, P Lu, Z Huo, U Bick, CJ Vyborny, RA Schmidt, W Zhang, CE Metz, D
Wolverton, RM Nishikawa, W Zouras, K Doi. Cad in digital mammography: com-
puterized detection and classification of masses. In: AG Gale, SM Astley, DR Dance,
AY Cairns, eds. Digital Mammography. Amsterdam: Elsevier, 1994, pp 281–288.

58. TK Lau, WF Bischof. Automated detection of breast tumors using the asymmetry ap-
proach. Comp Biomed Res 24:273–295, 1991.

59. M Sallam, KW Bowyer. Registering time-sequences of mammograms using a two-
dimensional unwarping technique. In: AG Gale, SM Astley, DR Dance, AY Cairns,
eds. Digital Mammography. Amsterdam: Elsevier, 1994, pp 121–131.

60. FL Bookstein. Principal warps: thin-plate splines and the decomposition of deforma-
tions. IEEE PAMI 11(6):567–585, 1989.

61. N Vujovic, D Brzakovic, K Fogarty. Detection of cancerous changes in mammo-
grams using intensity and texture measures. Proc SPIE 2434:37–47, 1995.

62. N Vujovic, D Brzakovic. Establishing the correspondence between control points in
pairs of mammographic images. IEEE Trans Image Proc 6(10):1388–1399, 1997.

63. CE Priebe, RA Lorey, DJ Marchette, JL Solka. Nonparametric spatio-temporal
change point analysis for early detection in mammography. In: AG Gale, SM Astley,
DR Dance, AY Cairns, eds. Digital Mammography. Amsterdam: Elsevier, 1994, pp
111–120.

Copyright © 2002 Marcel Dekker, Inc.



9
Region-Based Adaptive Contrast
Enhancement

Rangaraj M. Rangayyan, Liang Shen, and Yiping Shen, 
M. Sarah Rose
University of Calgary, Calgary, Alberta, Canada

J. E. Leo Desautels, Heather E. Bryant, Timothy J. Terry, and
Natalka Horeczko†

Alberta Program for the Early Detection of Breast Cancer, 
Calgary, Alberta, Canada

The fundamental enhancement needed in mammography is an increase in
contrast, especially for dense breasts. Contrast between malignant tissue and nor-
mal dense tissue may be present on a mammogram, albeit below the threshold of
human perception. As well, microcalcifications in a sufficiently dense mass may
not be readily visible because of low contrast. Although many enhancement tech-
niques reported are able to enhance specific details, they typically produce dis-
turbing artifacts. An adaptive enhancement method* is proposed in this chapter to
enhance the contrast of features of mammograms and improve the visibility of di-
agnostic details without creating significant artifacts (1–4).

* Based on “Improvement of sensitivity of breast cancer diagnosis with adaptive neighborhood con-
trast enhancement of mammograms,” by R.M. Rangayyan, L. Shen, Y. Shen, J.E.L. Desautels, H.
Bryant, T.J. Terry, N. Horeczko, and M.S. Rose, which appeared in IEEE Transactions on Informa-
tion Technology in Biomedicine, 1(3):161–170, September 1997. ©1997 IEEE.
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I. ENHANCEMENT OF MAMMOGRAMS

Accurate diagnosis depends on the quality of mammograms; in particular, on the
visibility of small, low-contrast objects within the breast image. Unfortunately,
contrast between malignant tissue and normal tissue is often so low that detection
of malignant tissue becomes difficult. Hence, the fundamental enhancement
needed in mammography is an increase in contrast, especially for dense breasts.

Dronkers and Zwaag (5) suggested the use of reversal film rather than neg-
ative film for the implementation of a form of photographic contrast enhancement
for mammograms. They found that the image quality produced was equal to that
of conventional techniques without the need for special mammographic equip-
ment. A photographic unsharp masking technique for mammographic images was
proposed by McSweeney et al. (6). This procedure includes two steps: first, a
blurred image is produced by copying the original mammogram through a sheet
of glass or clear plastic that diffuses the light; then, by using subtraction print film,
the final image is formed by subtracting the blurred image from the original mam-
mogram. Although these photographic techniques improve the visualization of
mammograms, they have not been widely adopted, possibly because of the vari-
ability in the image reproduction procedure.

Askins et al. (7) investigated autoradiographic enhancement of mammo-
grams by use of thiourea labeled with 35S. In this instance, mammograms under-
exposed as much as 10-fold could be autoradiographically intensified so that the
enhanced impage was comparable to a normally exposed film. The limitations to
routine use of autoradiographic techniques include cost, processing time, and dis-
posal of radioactive solutions.

Digital image enhancement techniques have been used in radiography for
more than two decades. [See Bankman (8) for a section including discussions on
several enhancement techniques.] Ram (9) stated that images considered unsatis-
factory for medical analysis may be rendered usable through various enhancement
techniques and further indicated that application of these techniques in a clinical
situation may reduce the radiation dose by about 50%. Rogowska et al. (10) ap-
plied digital unsharp masking and local contrast stretching to chest radiographs
and reported that the quality of images was improved. Chan et al. (11) investigated
unsharp-mask filtering for digital mammography: according to their receiver op-
erating characteristics (ROC) studies, the simple unsharp masking procedure
could improve the detectability of calcifications on digital mammograms. How-
ever, this method also increased image noise and enhancement of artifacts.

Algorithms based on adaptive neighborhood image processing to enhance
mammographic contrast were first reported by Gordon and Rangayyan (12). Ran-
gayyan and Nguyen (13) defined a tolerance-based method for growing fore-
ground regions, which could have arbitary shapes rather than squares. Morrow et
al. (1,14) further developed this approach with a new definition for background re-
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gions. Dhawan et al. (15) investigated the benefits of various contrast transfer
functions, including �C�, ln(1 
 3C), 1 � e�3C, and tanh(3C), where C is the orig-
inal contrast, but used square adaptive neighborhoods. They found that although
a suitable contrast function was important to bring out features of interest in mam-
mograms, it was difficult to select such a function. Later, Dhawan and Le Royer
(16) proposed a tunable contrast enhancement function to better enhance mam-
mographic features. Although the adaptive neighborhood enhancement tech-
niques have been successful in enhancing the diagnostic information on mammo-
grams, accompanying enhancement of noise continues to be a problem; thus
further modification to this procedure may be necessary.

Emphasis has recently been directed toward image enhancement based on
the characteristics of the human visual system (17), leading to innovative methods
using nonlinear filters, scale-space filters, multiresolution filters, and wavelet
transforms. Attention has been paid to designing algorithms to enhance the con-
trast and visibility of diagnostic features while maintaining control on noise en-
hancement. Laine et al. (18) presented a method for nonlinear contrast enhance-
ment based on multiresolution representation and the use of dyadic wavelets. A
software package named MUSICA (19) (MUlti-Scale Image Contrast Amplifica-
tion) has been produced by Agfa-Gevaert. Belikova et al. (20) discussed various
optimal filters for enhancement of mammograms. Qu et al. (21) used wavelet
techniques for enhancement and evaluated the results using breast phantom im-
ages. Tahoces et al. (22) presented a multistage spatial filtering procedure for non-
linear contrast enhancement of chest and breast images. Qian et al. (23) reported
on tree-structured nonlinear filters based on median filters and an edge detector.
Chen et al. (24) proposed a regional contrast enhancement technique based on un-
sharp masking and adaptive density shifting.

The various mammogram enhancement algorithms that have been reported
in the literature may be sorted into three categories: algorithms based on conven-
tional image processing methods (10,11,20,22,25,26), adaptive algorithms based
on principles of human visual perception (1,12,15–17,24,27), and multiresolution
enhancement algorithms (18,21,23,28–31). To evaluate the diagnostic usefulness
of an enhancement algorithm, an ROC study has to be conducted. However, few
of the aforementioned methods (3,11,25,27,28) have been tested with ROC pro-
cedures.

In their ROC study to evaluate the effects of digitization and unsharp-mask
filtering on the detection of calcifications, Chan et al. (11) used 12 images with
calcifications and 20 normal images. The digitization was performed at a spatial
resolution of 0.1 mm/pixel, and the enhanced images were printed on film. Nine
radiologists interpreted the images. They found that detectability of calcifications
in the digitized mammograms was improved by unsharp-mask filtering, although
both the unprocessed digitized and the processed mammograms provided lower
accuracy than the conventional mammograms. Kimme-Smith et al. (25) compared
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contact, magnified, and television-enhanced mammographic images of 31 breasts
for diagnosis of calcifications. The interpretation was performed by three experi-
enced radiologists and three radiology residents. The television enhancement pro-
cedure used the Wallis filter, which is similar to unsharp masking. They con-
cluded that television enhancement could not replace microfocal spot
magnification and could lead to misdiagnosis by inexperienced radiologists. Ex-
perienced radiologists showed no significant improvement in performance with
the enhanced images. Nab et al. (32) performed ROC analysis comparing 270
mammographic films with 2K 	 2K 12-bit digitized versions (at 0.1 mm/pixel)
displayed on monitors. The task for the two radiologists in the study was to indi-
cate the presence or absence of tumors or calcifications. No significant difference
in performance was observed between the use of films and their digitized versions.

Kallergi et al. (28) conducted an ROC study with 100 mammograms and
four radiologists, including the original films, digitized images (105-�m pixel
size) displayed on monitors, and wavelet-enhanced images displayed on monitors
(limited to 8-bit gray scale). The diagnostic task was limited to detection and clas-
sification of calcifications. Although they observed a statistically significant re-
duction in the area under the ROC curve with the digitized images, the difference
between reading the original films and the wavelet-enhanced images displayed on
monitors was not significant. They also noted that interobserver variation was re-
duced with the use of the wavelet-enhanced images. They concluded that filmless
mammography with their wavelet-based enhancement method is comparable to
screen–film mammography for detecting and classifying calcifications.

It is important to distinguish between the evaluation of the detection of the
presence of features such as microcalcifications in an image and the evaluation of
the diagnostic conclusion about a subject. Although some enhancement tech-
niques may enhance the visibility of features such as calcifications, they may also
distort their appearance and shape characteristics, which may lead to misdiagno-
sis (please refer to our article (1) on contrast enhancement using adaptive neigh-
borhoods for a discussion on this topic). A similar observation was made by
Kimme-Smith et al. (25), who stated that “Studies of digitally enhanced mammo-
grams should examine the actual ability to form diagnostic conclusions from the
enhanced images, rather than the ability merely to report the increased numbers of
clusters of simulated microcalcifications that it is possible to detect. Radiologic
evaluation obviously begins with the detection of an abnormality, but if the image
of the abnormality is distorted, an incorrect diagnosis may result.”

II. REGION GROWING METHODS

A. Additive Tolerance Region Growing

A commonly used region growing scheme is pixel aggregation (1,33). It compares
the properties of neighboring pixels (i.e., pixels that are spatially connected to the
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pixels belonging to the region) with those of the starting or “seed” pixel; the prop-
erties used are determined by homogeneity criteria. For intensity-based image
segmentation, the simplest property is the pixel gray value. The term “additive tol-
erance level” stands for the permitted absolute gray level difference between the
neighboring pixels and the seed pixel: a neighboring pixel, p(i, j), is appended to
the region if its absolute gray level difference with respect to the seed pixel � is
within the additive tolerance level T:

| p(i, j) � � | � T (1)

Fig. 1 shows a simple example of additive tolerance region growing using
different seed pixels in a 5 	 5 image. The additive tolerance level T used in the
example is 3. It is seen that two different regions are obtained by starting with two
seeds at different locations as shown in Fig. 1b and Fig. 1c. To overcome this de-
pendence of the region shape on seed pixel selection, we define the following

Fig. 1 A simple example of additive tolerance region growing using different seed pix-
els (T � 3). (a) Original image. (b) The result of region growing with the seed pixel at (2,
2). (c) The result of region growing with the seed pixel at (3, 3). (d) The result of region
growing with the modified algorithm with any seed pixel within the highlighted region.

Copyright © 2002 Marcel Dekker, Inc.



modified criterion to determine whether a neighboring pixel should be included in
a region or not. Instead of comparing the incoming pixel with the gray level of the
seed, the gray level of a neighboring pixel is now compared with the mean gray
level (called the running mean) or average gray level (called the running average)
of the region being grown at its current stage, Rc. This method can also be repre-
sented by Eq. (1), with the parameter � replaced by

� � �
N
1

c
�       #

(x,y)�Rc
p(x, y) (2)

where Nc is the number of pixels in Rc. Fig. 1d shows the result obtained with this
modified scheme by using the same additive tolerance level as before (T � 3).
With the new criterion, no matter which pixel is selected as the seed, the same fi-
nal region will be obtained by this method as long as the seed pixel is within the
region that is the central highlighted area in this illustration (Fig. 1d).

In the simplest scheme described earlier [Eq. (1)], the seed pixel is always
used to check the incoming neighboring pixels, even though most of them are not
spatially close to the seed. Such a region growing procedure may fail when a seed
pixel is inappropriately located at a noisy pixel.

In addition to the running-mean/average-based method that may prove to be
a solution, another alternative modification is to use the current center pixel as the
reference instead of the seed pixel. For example, the shaded area shown in Fig. 2
represents a region being grown. When the pixel N0 is appended to the region, its
4-connected neighbors (labeled as Ni, i � 1, 2, 3, 4) or 8-connected neighbors
(marked as Ni, i � 1, 2, . . ., 8) should be checked for inclusion in the region, using

| Ni � N0 | � T (3)

Fig. 2 Illustration of the concept of the “current” center pixel.
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However, because some of the neighbor pixels are already included in the region,
only N2, N3, and N4 in the case of 4-connectivity or N2, N3, N4, N6, N7, and N8
in the case of 8-connectivity are compared with their current center pixel N0 for
region growing, rather than with the seed pixel. This procedure generates the same
result as shown in Fig. 1d without the dependence on the location of the seed pixel
when using the same additive tolerance level (T � 3).

B. Multiplicative Tolerance Region Growing

In addition to the sensitivity of the region to seed pixel selection with the additive
tolerance region growing method, the additive tolerance level (or absolute differ-
ence in gray level) is not a good criterion for region growing; an additive tolerance
level of 3, although appropriate for a seed pixel value (or running mean/average)
of 127, may not be suitable when the seed pixel gray level (or running mean/av-
erage) is at a different level (e.g., 230).

To address this concern, a relative difference (called the Multiplicative Tol-
erance Level) � could be used. Then, the criterion for region growing could be de-
fined as

�
| p(i, j)

�

� � |
� � � (4)

or

2 �
| p

p
(
(
i
i
,
,
j
j
)
)
�




�

�

|
� � � (5)

Both additive and multiplicative tolerance levels determine the maximum
gray level deviation allowed within a region, and any deviation less than this level
is considered to be an intrinsic property of the region or to be noise. Multiplica-
tive tolerance is meaningful when related to the signal/noise ratio (SNR) of a re-
gion (or image), whereas additive tolerance has a direct connection with the stan-
dard deviation (SD) of the pixels within the region or a given image.

C. Analysis of Region Growing

A mathematical analysis of the additive and multiplicative tolerance-based algo-
rithms may provide some insight and establish their need and theoretical basis.
Assume that any image I can be modeled as an ideal image R plus a pure noise im-
age N, where R consists of a series of strictly uniform disjoint or nonoverlapping
regions Ri, i � 1, 2, . . ., k, and N includes their corresponding noise parts Ni, i �
1, 2, . . ., k. Mathematically, the image can be expressed as

I � R 
 N (6)
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where

R � �
i

Ri; i � 1, 2, …, k (7)

and

N � �
i

Ni; i � 1, 2, . . ., k (8)

A strictly uniform region Ri is composed of a set of connected pixels p(x, y) at po-
sitions (x, y) whose values equal a constant Pi, i.e.

Ri � {(x, y) | p(x, y) � Pi} (9)

The set of regions Ri, i � 1, 2, . . ., k, is what we expect to obtain as the result of
region growing or segmentation. Suppose the noise parts Ni, i � 1, 2, . . ., k, are
composed of white noise with zero mean and standard deviation �i; then, we have

I � �
i

(Ri 
 Ni); i � 1, 2, . . ., k (10)

and

R � �
i

Ri � I � �
i

Ni; i � 1, 2, . . ., k (11)

Because I is the given image, some knowledge of the white-noise components Ni

has to be available to obtain the segmentation result R. As a special case when all
the noise components have the same standard deviation �, i.e.,

�1 � �2 � %%% � �k � � (12)

and

N1 � N2 � %%% � Nk � N (13)

(where the symbol � represents statistical similarity), the image I can be de-
scribed as

I � �
i

Ri 
 N; i � 1, 2, . . ., k (14)

and

R � �
i

Ri � I � N; i � 1, 2, . . ., k (15)

The additive tolerance region growing method is well suited for segmentation of
this special type of image, and an additive tolerance level solely determined by �
can be used globally over the image. However, such special cases are rare in real
images. A given image generally has to be modeled as Eq. (10), in which case
multiplicative tolerance region growing may be more suitable, with the expecta-
tion that a global multiplicative tolerance level can be derived for all the regions
in a given image. Because the multiplicative tolerance level could be made a func-
tion of �i/Pi (related to SNR, which can be defined as 10 log10 Pi

2/�i
2 in dB) for

each individual region i, such a global tolerance level can be found if and only if

�
�

P
1

1
� � �

�

P
2

2
� � %%% � �

�

P
k

k
� (16)
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D. Region Growing Criteria

A region growing procedure is used in our contrast-enhancement algorithm for the
purpose of identifying nearly homogeneous regions in the image. The procedure
relies on one of the multiplicative tolerance region-growing algorithms introduced
in Sec IIB. The region-growing procedure starts with the pixel to be processed,
called the seed. The eight neighbors of the seed are checked to see whether their
gray level values are within a specified deviation from the seed [� set to be 0.05
and � set equal to the seed pixel as in Eq. (4)]. Pixels that meet the criterion for
inclusion in the region are labeled. The neighbors of the labeled pixels are then
checked for inclusion, and so on. A region thus grown is labeled as the foreground
layer. The foreground stops growing when it is surrounded by a layer of pixels that
do not meet the criterion for inclusion in the foreground. This layer of pixels is la-
beled as the background, which may be increased to a specified size (e.g., 3-pixel
width) by further region growing, molded to the foreground region in shape. Fig.
3 illustrates the concepts of the foreground and the background. Note that the cri-
terion for background growing is as simple as checking whether the pixel is al-
ready labeled as a foreground pixel.

Fig. 3 Illustration of the concepts of the foreground and the background.
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III. ADAPTIVE CONTRAST ENHANCEMENT

The adaptive neighborhood contrast enhancement (ANCE) method (1) is an im-
age-enhancement technique designed to improve the perceptibility of objects or
features in an image. The technique may be summarized as follows. First, nearly
homogeneous regions in the image are identified by the region growing procedure.
The visual contrast of each region is then computed by comparing the intensity of
the region with the intensity of its surroundings. The region’s contrast is selectively
increased by modifying its intensity if the following conditions are met:

• The region’s contrast is low [C as defined in Eq. (17) being in the range
0.02 to 0.4].

• The pixels in the region’s background have a standard deviation nor-
malized with respect to their mean of less than 0.1.

The first condition is imposed so as to not enhance low-level noise or re-
gions already with high contrast; the second is used to rule out enhancement of re-
gions surrounded by a variable or “busy” background. This approach is applied
sequentially at each pixel in the image to enhance the contrast of all objects and
features in the image.

In the ANCE procedure, the contrast C is calculated from groupings of pix-
els using the optical contrast definition (34)

C � �
ƒ
ƒ

�




b
b

� (17)

where ƒ and b are the foreground and background densities. Letting Nƒ and Nb be
the numbers of pixels in the foreground and background, respectively, and p(i, j)
be the pixel value at the location (i, j), ƒ and b can be obtained as

ƒ � �
N
1

ƒ
�  ∑

(i, j)�foreground

p(i, j) (18)

and

b � �
N
1

b
� ∑

(i, j)�background

p(i, j) (19)

The groupings of pixels are referred to as neighborhoods, and a neighborhood is
determined for each pixel in the image. Thus, ANCE is based on the contextual
details in the image around each pixel. Note that each pixel in the image is treated
in turn as the seed for region growing and processing for enhancement.

The basic objective of ANCE is to increase the contrast of specific regions
that may be of radiological interest and need enhancement, without changing the
rest of the image significantly. This is realized by selectively assigning a new con-
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trast C� to those regions that are of interest, and then determining from C� the de-
sired value of the foreground (seed pixel) as

ƒ� � b �
1
1



�

C
C

�
�

� (20)

A specific relationship between C� and C, as shown in Fig. 4, was designed to ob-
tain clinically useful enhancement.

Because the ANCE algorithm works on the basis of adaptive neighbor-
hoods, it can enhance the visibility of features of varying shape and size. The gen-
eral comments of the radiologist who interpreted the original and enhanced im-
ages of eight biopsy-proven cases with different types of mammographic features
and presentation (1) indicated that the enhanced images “. . . suggested carcinoma
as the origin of both lesions much more strongly than the unenhanced mammo-
gram”; “. . . dense nodule appeared to be connected to the spiculated mass, sug-
gesting a much further advanced carcinoma than that suspected from the unen-
hanced mammogram”; “. . . the details in the internal architecture of the breast
appeared clearer, adding further weight to the diagnosis of benign lesions”; “. . .
provided stronger evidence of carcinoma with poor margins of the lesion, a greater
number of calcifications, and inhomogeneity in the density of the calcium”; “. . .
showed the same detail as the unenhanced mammogram with the additional find-
ing of some microcalcifications.”

Fig. 4 Relationship between original contrast C and enhanced contrast C�.
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IV. CASE SELECTION, DIGITIZATION, 
AND PRESENTATION

To evaluate the diagnostic usefulness of the ANCE technique, two ROC studies
were conducted using two different databases: Difficult Cases and Interval Can-
cer Cases. The Difficult Cases data set is a collection of cases for which the radi-
ologist had been unsure enough to call for a biopsy. The cases were difficult in
terms of both detection of the abnormality present and the diagnosis as normal, be-
nign, or malignant. The investigation to be described here was conducted to test
whether ANCE could be used to distinguish benign cases from their malignant
counterparts (2). Interval Cancer Cases are cases in a screening program where
cancer is detected before a scheduled return screening visit; they may be indica-
tive of the inability to detect an already present cancer or an unusually rapid-grow-
ing cancer. In these cases, the radiologist had declared that there was no evidence
of cancer on the previous mammograms. The purpose of the study to be described
next was to test whether interval cancers could be detected earlier with appropri-
ate digital enhancement and analysis (3).

It should be noted that the goal of interpretation in this study was screening,
and not detection of signs such as calcifications or masses; as such, no record was
maintained of the number or sizes of signs [as done by Kallergi et al. (28) and
Nishikawa et al. (35)].

A. Difficult Cases

An experienced radiologist selected 21 difficult cases (related to 14 subjects with
benign breast disease and seven subjects with malignant disease) for this study
from files covering the period 1987 to 1992 at the Foothills Hospital, Calgary,
Canada. Four films (two views: MLO—Mediolateral oblique and CC—Cranio-
caudal, of each breast) were available for each of 18 cases, whereas only two films
(of one breast) were available for each of three cases, leading to a total of 78
screen–film mammograms. Biopsy results were also available for each subject, on
which our ROC evaluation was based.

Each film was digitized using an Eikonix 1412 scanner (Eikonix Inc., Bed-
ford, MA) to 4096 by about 2048 pixels (the second index value depends on the
size of the image in the mammogram; the sizes of the digitized images were thus
different from case to case) with 12-bit gray-scale resolution. This sampling rep-
resents a spot size on the film of about 0.062 mm 	 0.062 mm. Films were illu-
minated by a Plannar 1417 lightbox (Gordon Instruments, Orchard Park, NY). Al-
though the lightbox is designed to have a uniform light intensity distribution, it
was necessary to correct for nonuniformities in illumination. After correction,
pixel gray levels were determined to be accurate to 10 bits, with a dynamic range
of approximately 0.02 to 2.52 optical density units (36).
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The digital images were down-sampled by a factor of two for processing
and display for interpretation on a MegaScan 2111 monitor (Advanced Video
Products Inc., Littleton, MA.). Although the memory buffer of the Megascan sys-
tem is 4096 	 4096 	 12 bits, the display buffer is limited to 2560 	 2048 	 8
bits, with panning and zooming facilities. The original screen—film mammo-
grams used in the study were presented to the radiologists using a standard mam-
mogram film viewer.

Six radiologists from the Foothills Hospital interpreted the original, the un-
processed digitized, and the enhanced mammograms separately. Only one of the
radiologists had prior experience with digitized and enhanced mammographic im-
ages. The images were presented in random order and the radiologists were given
no additional information about the patients. The radiologists ranked each case as
(1) definitely or almost definitely benign, (2) probably benign, (3) possibly ma-
lignant, (4) probably malignant, (5) definitely or almost definitely malignant.

B. Interval Cancer Cases

Two hundred twenty-two screen–film mammograms of 28 interval cancer patients
and six control patients with benign disease were selected for this study from files
over the period 1991 to 1995 at the Screen Test Centres of the Alberta Program
for the Early Detection of Breast Cancer. Some of the cases of cancer were diag-
nosed by physical examination or mammography performed after the initial (or
previous) visit to the screening program but before the next scheduled visit. Note
that the radiologists reading the mammograms taken before diagnosis of the can-
cer had declared that there was no evidence of cancer on the films. The small num-
ber of benign cases were included to prevent “overdiagnosis”; the radiologists
were not informed of the proportion of benign to malignant cases in the set. Most
of the files include multiple sets of films taken at different times; all sets except
one have at least four films each (two views: MLO and CC, of each breast) in the
database. (More specifically, the database includes 52 four-film sets, one 3-film
set, one 5-film set, and one 6-film set). Previous films of all the interval cancer
cases had initially been reported as being normal. Biopsy results were available
for each subject.

The aim of this study was to investigate the possibility of earlier detection
of interval breast cancer with the aid of appropriate image-processing techniques.
Because a few sets of films taken at different times were available for each sub-
ject, we labeled the sets of mammograms of each subject as separate cases. All
films of the subjects with malignant disease within the selected period were la-
beled as being malignant, even though the cases had not been previously inter-
preted as such. By this process, 55 cases were obtained, of which 47 were malig-
nant and eight were benign (the numbers of subjects being 28 with malignant
disease and six with benign disease).
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The films were digitized as described in the previous section and processed
using the ANCE technique with the full digitized resolution available. The digi-
tized version and the ANCE-processed version were printed on film using a KO-
DAK XL 7700 Digital Continuous Tone Printer (Eastman Kodak Company,
Rochester, NY) with pixel arrays up to 2048 	 1536 (8-bit pixels). Gray-level
remapping (10 bits/pixel to 8 bits/pixel) and downsampling by a factor of two
were applied before a digitized/enhanced mammogram image was sent for print-
ing with two different look-up tables (LUTs).

Three reference radiologists from the Screen Test Program separately inter-
preted the original films of the involved side, their digitized versions, and their
ANCE-processed versions on a standard mammogram film viewer. Only one of
the radiologists had prior experience with digitized and enhanced mammographic
images. Interpretation of the digitized images (without ANCE processing) was in-
cluded in the test to evaluate the effect on diagnostic accuracy of digitization and
printing with the resolution and equipment used. The images were presented in
random order, and the radiologists were given no additional information about the
patients. The radiologists ranked each case as (1) definitely or almost definitely
benign, (2) probably benign, (3) indeterminate, (4) probably malignant, (5) defi-
nitely or almost definitely malignant. Note that the diagnostic statement for rank
(3) is different in this study from that described in the previous section. This was
done based on comments from the radiologists involved in the Difficult Cases
study.

In both studies the objective was screening and not localization of disease.
The radiologists had to find lesions, if any, and assess them for the likelihood of
malignancy, but did not have to mark their locations on the films.

Images were interpreted in random order by the radiologists. Images were
presented in the same random order to each radiologist individually. Each radiol-
ogist interpreted all of the images in a single sitting. Multiple sets of films of a
given subject (taken at different times) were treated as different cases and inter-
preted separately to avoid the development of familiarity and bias. The original,
digitized, and enhanced versions of any given case were mixed for random order-
ing, treated as separate cases, and interpreted separately to prevent the develop-
ment of familiarity and bias. All available views of a case were read together as
one set. Note that the initial (original) diagnosis of the cases was performed by dif-
ferent teams of radiologists experienced in the interpretation of screening mam-
mograms, which further limits the scope of bias in this study.

V. ROC AND STATISTICAL ANALYSIS

In this study, ROC analysis (37,38) is used to compare the radiologists’ perfor-
mance in detecting abnormalities in the various images. The maximum likelihood
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estimation method (39) was used to fit a binormal ROC curve to each radiologist’s
confidence rating data for each set of mammograms. The slope and intercept pa-
rameters of the binormal ROC curve (when plotted on normal probability scales)
were calculated for each fitted curve. To estimate the average performance of the
group of radiologists on each set of images, composite ROC curves (37) were cal-
culated by averaging the slope and the intercept parameters of the individual ROC
curves. Finally, the area under the binormal ROC curve (as plotted in the unit
square) was computed, which represents the overall abnormality detection accu-
racy for each type of image.

In addition to ROC analysis of the interval cancer cases, McNemar’s test of
symmetry (40,41) was performed on a series of 3 	 3 contingency tables obtained
by cross-tabulating (a) diagnostic confidence using the original mammograms
(categories 1 or 2, 3, and 4 or 5) against the diagnostic confidence using the digi-
tized mammograms, and (b) diagnostic confidence using the digitized mammo-
grams against the diagnostic confidence using the enhanced mammograms. Sep-
arate 3 	 3 tables, as illustrated in Fig. 5, were formed for the malignant cases and
the benign cases. Cases in which there is no change in the diagnostic confidence
will fall on the diagonal (upper left to lower right, labeled as D in Fig. 5) of the
table. For the malignant cases, improvement in the diagnostic accuracy is illus-
trated by a 3 	 3 table with most cases in the three upper right-hand cells (labeled
as U in Fig. 5). Conversely, for the benign cases, improvement in the diagnostic
accuracy will be illustrated by a 3 	 3 table with most cases in the three lower left-
hand cells (labeled as L in Fig. 5). The hypothesis of significant improvement can
be tested statistically using McNemar’s test of symmetry (40,41), namely that the
probability of an observation being classified into a cell [i, j] is the same as the
probability of being classified into the cell [ j, i].

Fig. 5 Illustration of the table for McNemar’s test.
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The validity of McNemar’s test depends on the assumption that the cell
counts are at least moderately large. To avoid limitations caused by this factor and
also to avoid the problem of excessive multiple comparisons, the data across the
individual radiologists were combined in two different ways before applying Mc-
Nemar’s test. The first method (referred to as “averaged”) averaged the radiolo-
gists’ diagnostic ratings before forming the 3 	 3 tables. In the second method (re-
ferred to as “combined”), the 3 	 3 tables for each of the radiologists were formed
first and then combined by summing the corresponding cells.

Because this analysis involves multiple p values, the Bonferroni correction
was used to adjust the p values (42). When multiple p values are produced, the
probability of making a type I error increases. (Rejection of the null hypothesis
when it is true is called a type I error.) The Bonferroni method for adjusting mul-
tiple p values requires that when k hypothesis tests are performed, each p value is
multiplied by k, so that the adjusted p value is p* � kp.

To reduce the number of p values, it was decided to test symmetry for each
situation (malignant/benign and averaged/combined) for the two tables original-
to-digitized and digitized-to-enhanced, but not the original-to-enhanced (which
follows from the other two).

VI. RESULTS

Fig. 6 shows a part of a mammogram with malignant calcifications (left) and the
corresponding image after processing by the ANCE procedure (right). It is seen
that increased contrast in the enhanced image has improved the visibility of the
calcifications.

A. ROC Analysis of Difficult Cases

Because the population involved in this study was such that the original mammo-
grams were sufficiently abnormal to cause the initial attending radiologist to call
for biopsy, the aim of this study was to test whether specificity could be improved
with the ANCE method.

The composite ROC curves representing breast cancer diagnosis by the six
radiologists in this study are compared in Fig. 7. Several points are clearly illus-
trated by Fig. 7. First, the process of digitization (and downsampling to an effec-
tive pixel size of 0.124 mm 	 0.124 mm) degrades the quality of images and
therefore makes the radiologists’ performance worse, especially in the low false-
positive fraction (FPF) range. However, better performance of the radiologists is
seen with the digitized images at high FPFs (better sensitivity with worse speci-
ficity). Second, it should be noticed that the ANCE method improves the radiolo-
gists’ performance at all ranges of FPF (more significantly in the low FPF range)
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Fig. 6 A part of a mammogram with malignant calcifications (left) and its ANCE-pro-
cessed version (right).

Fig. 7 Comparison of composite ROC curves for detection of abnormalities by inter-
preting the original, unprocessed digitized, and enhanced images of 21 difficult cases. Re-
produced with permision from Rangayyan et al. (4). ©IEEE 1997.
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compared with the unprocessed digitized images, although it is still lower than
that with the original films in the low range of FPF. The values of the area pa-
rameter (Az) for the original, digitized, and enhanced mammograms were com-
puted to be 0.6735, 0.6259, and 0.6745, respectively. (Note that Kallergi et al. (28)
also observed a drop in the area under the ROC curve when digitized images were
interpreted from monitor display compared with the original films; their wavelet-
based enhancement method provided an improvement over the digitized version,
although the enhanced images did not provide any statistically significant benefit
over the original films.) The area values are lower than those normally encoun-
tered in the literature (in the range 0.9–0.98), because the cases selected were dif-
ficult enough to call for biopsy. Larger area values could have been obtained by
adding a large number of obvious or easy cases, but this approach was not taken
in this work. Regardless, the numerical results confirm our observations and indi-
cate that the ANCE technique improves the radiologists’ overall performance, es-
pecially over unprocessed digitized mammograms, and allows the radiologists to
discriminate between the two populations slightly better while interpreting the en-
hanced mammograms compared with the original films.

B. McNemar’s Tests on Difficult Cases

Tables 1 and 2 contain details of the radiologists’ diagnostic performance varia-
tions for malignant cases and benign cases with this database. (NOTE: in the tables,
B refers to Benign, U to Undecided or Indeterminate, and M to Malignant ratings.)
For almost every table for individual readers, the numbers were too small to per-
form the McNemar chi-square test (including the average). In other cases, the
numbers would be too small to detect a statistically significant difference. There-
fore, the data were combined for the six readers by simply summing the 3 	 3 ma-
trices.

For the benign cases (combined), p values of 0.004, 0.5319, and 0.0225
were obtained for original-to-digitized, digitized-to-enhanced, and original-to-en-
hanced, respectively. For the malignant cases (combined), the p values were
0.1577, 0.3618, and 0.6858 for original-to-digitized, digitized-to-enhanced, and
original-to-enhanced, respectively. The p values represent no evidence of im-
provement in the diagnostic accuracy for any of the three tables (original-to-digi-
tized, digitized-to-enhanced, and original-to-enhanced) for the malignant cases in
the Difficult Cases data set. However, for the benign cases, there is a statistically
significant improvement in the diagnostic accuracy (p � 0.004, Bonferroni ad-
justed value p* � 0.024). There is no evidence of a significant improvement from
digitized to enhanced, and although there is a significant improvement from the
original to the digitized category (but not significant after Bonferroni adjustment,
p* � 0.135), this is entirely caused by the improvement in moving from the orig-
inal to the digitized category.
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C. ROC Analysis of Interval Cancer Cases

Fig. 8 shows the variation of the ROC curves among the three radiologists who in-
terpreted the same set of unprocessed digitized mammograms of interval cancers.
Similar variation was observed with the sets of the original film mammograms
and the enhanced mammograms. Details of the radiologists’ diagnostic perfor-
mance variations with the original mammograms, unprocessed digitized mammo-

Table 1 Details of Radiologists’ Diagnostic Performance Variations with Original
Mammograms (Orig), Unprocessed Digitized Mammograms (Digt), and ANCE-
processed Digitized Mammograms (Enhn) for the Seven Malignant Cases in the Difficult
Cases Database. (NOTE: To Obtain the Average Values, the Individual Diagnostic
Confidence Levels were Averaged First.)

Change of diagnostic confidence level

M: level
B: level 1 or 2; U: level 3; 4 or 5

B → U U → M B → M B → U → M →
Radiologist Image types (U → B) (M → U) (M → B) B U M

Orig → Digt 1 (1) 0 (2) 0 (0) 1 0 2
#1 Digt → Enhn 1 (0) 1 (0) 0 (0) 1 2 2

Orig → Enhn 0 (0) 0 (2) 1 (0) 1 1 2

Orig → Digt 0 (0) 0 (1) 0 (0) 1 1 4
#2 Digt → Enhn 0 (0) 0 (0) 0 (0) 1 2 4

Orig → Enhn 0 (0) 0 (1) 0 (0) 1 1 4

Orig → Digt 1 (0) 1 (2) 0 (0) 0 2 1
#3 Digt → Enhn 0 (1) 0 (0) 0 (0) 0 4 2

Orig → Enhn 1 (1) 1 (2) 0 (0) 0 1 1

Orig → Digt 0 (1) 0 (1) 0 (1) 1 0 3
#4 Digt → Enhn 1 (0) 1 (0) 0 (0) 2 0 3

Orig → Enhn 0 (0) 0 (0) 0 (1) 1 1 4

Orig → Digt 0 (0) 1 (0) 0 (0) 1 2 3
#5 Digt → Enhn 1 (0) 1 (1) 0 (0) 0 1 3

Orig → Enhn 1 (0) 2 (1) 0 (0) 0 1 2

Orig → Digt 0 (1) 0 (0) 0 (2) 1 0 3
#6 Digt → Enhn 0 (0) 0 (1) 2 (0) 2 0 2

Orig → Enhn 0 (0) 1 (1) 0 (1) 1 0 3

Orig → Digt 0 (0) 0 (2) 0 (0) 1 1 3
Average Digt → Enhn 0 (0) 1 (0) 0 (0) 1 2 3

Orig → Enhn 0 (0) 1 (2) 0 (0) 1 0 3
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grams, and ANCE-processed mammograms are listed in Table 3 and 4 for the 47
malignant and eight nonmalignant cases, respectively.

It is seen from Table 3 that, on the average (average of individual diagnos-
tic confidence levels), almost half (21) of the 47 malignant cases, which were orig-
inally diagnosed as benign (average diagnostic confidence level of less than 2.5)
by the three radiologists with the original films, were relabeled as malignant (av-
erage diagnostic confidence level of greater than 3.5) with the ANCE-processed

Table 2 Details of Radiologists’ Diagnostic Performance Variations with Original
Mammograms (Orig), Unprocessed Digitized Mammograms (Digt), and ANCE-
processed Digitized Mammograms (Enhn) for the 14 Benign Cases in the Difficult Cases
Database. (NOTE: To Obtain the Average Values, the Individual Diagnostic Confidence
Levels were Averaged First.)

Change of diagnostic confidence level

M: level
B: level 1 or 2; U: level 3; 4 or 5

U → B M → U M → B B → U → M →
Radiologist Image types (B → U) (U → M) (B → M) B U M

Orig → Digt 3 (1) 2 (0) 0 (0) 2 3 3
#1 Digt → Enhn 1 (2) 0 (1) 0 (1) 2 4 3

Orig → Enhn 2 (1) 2 (1) 0 (1) 1 3 3

Orig → Digt 1 (0) 0 (1) 0 (0) 5 4 3
#2 Digt → Enhn 0 (0) 0 (0) 0 (0) 6 4 4

Orig → Enhn 1 (0) 0 (1) 0 (0) 5 4 3

Orig → Digt 3 (1) 1 (2) 0 (1) 4 1 1
#3 Digt → Enhn 1 (1) 1 (0) 0 (0) 6 2 3

Orig → Enhn 2 (1) 1 (2) 0 (0) 5 2 1

Orig → Digt 4 (0) 0 (1) 2 (0) 5 1 1
#4 Digt → Enhn 0 (2) 0 (0) 0 (0) 9 1 2

Orig → Enhn 3 (1) 0 (1) 2 (0) 4 2 1

Orig → Digt 3 (1) 1 (1) 1 (1) 2 2 2
#5 Digt → Enhn 2 (0) 1 (1) 1 (1) 5 1 2

Orig → Enhn 3 (0) 1 (2) 1 (0) 4 1 2

Orig → Digt 5 (0) 0 (1) 2 (0) 5 0 1
#6 Digt → Enhn 0 (1) 0 (0) 0 (2) 9 0 2

Orig → Enhn 4 (1) 0 (2) 2 (1) 3 0 1

Orig → Digt 5 (1) 1 (1) 1 (0) 3 1 1
Average Digt → Enhn 1 (1) 0 (1) 0 (0) 8 1 2

Orig → Enhn 4 (0) 1 (2) 1 (0) 4 1 1
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versions. Only three malignant cases whose original average diagnostic confi-
dence levels were greater than 3.5 had their average confidence levels reduced to
the range of 2.5 to 3.5 while interpreting the enhanced mammograms. However,
in general, no significant changes are observed for the benign cases (Table 4) with
the ANCE procedure.

Composite ROC curves for breast cancer diagnosis with the original, un-
processed digitized, and enhanced images are plotted in Fig. 9. The following
facts, similar to those described earlier, may be observed in Fig. 9. First, the radi-
ologists’ performance with the enhanced versions is the best among the three, es-
pecially when FPF is more than 0.3. This is reasonable, because most of the can-
cer cases in this database were difficult and were initially diagnosed as normal
while interpreting the original films. Therefore, the FPF level has to be increased
to achieve good sensitivity (high true-positive fraction or TPF). Second, the digi-
tized versions seem to provide better diagnostic results when compared with the
original films. This is likely because two printouts for each digitized image with
two different print tables (unchanged and lighten2) were provided to the radiolo-
gists; the lighten2 table (Fig. 10) provided by Kodak performs some enhancement.
Two print tables were used, because the radiologists did not favor the use of the

Fig. 8 Variation of conventional ROC curves among three radiologists interpreting the
same set of unprocessed digitized mammograms from the Interval Cancer Cases dataset.
Reproduced with permission from Rangayyan et al. (4). ©IEEE 1997.
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hyperbolic tangent (sigmoid) function, which is an approximate model of an x-ray
film system, during initial setup tests. Finally, the values of the area parameter Az

for the original, digitized, and enhanced mammograms were computed to be
0.3906, 0.4682, and 0.5407, respectively. These numbers are much lower than the
commonly encountered area values, because the cases selected are difficult cases,
and—more importantly—because signs of earlier stages of the interval cancers
were either not present on the previous films or were not visible. (The radiologists
interpreting the mammograms taken before diagnosis of the cancer had declared
that the there was no evidence of cancer on the films; hence the improvement in-
dicated by the ROC curve is significant in terms of diagnostic outcome. This also
explains why the area parameter is less than 0.5 for the original and digitized
mammograms.) The area parameter could be increased by expanding the set of
cases by adding easy-to-diagnose normal cases; this was not done in this study to
maintain focus on interval cancer. Regardless, the numerical results confirm our
observations and indicate that the ANCE technique can improve sensitivity,
thereby allowing the radiologists to diagnose cancer at earlier stages.

Table 3 Details of Radiologists’ Diagnostic Performance Variations with Original
Mammograms (Orig), Unprocessed Digitized Mammograms (Digt), and ANCE-
processed Digitized Mammograms (Enhn) for the 47 Malignant Cases in the Interval
Cancer Cases Database. (NOTE: To Obtain the Average Values, the Individual Diagnostic
Confidence Levels were Averaged First.)

Change of diagnostic confidence level

M: level
B: level 1 or 2; U: level 3; 4 or 5

B → U U → M B → M B → U → M →
Radiologist Image types (U → B) (M → U) (M → B) B U M

Orig → Digt 8 (0) 4 (0) 15 (1) 2 1 16
#1 Digt → Enhn 0 (0) 9 (0) 2 (0) 0 1 35

Orig → Enhn 1 (0) 5 (1) 24 (0) 0 0 16

Orig → Digt 8 (0) 7 (0) 5 (0) 4 7 16
#2 Digt → Enhn 1 (1) 12 (2) 3 (0) 0 3 25

Orig → Enhn 4 (1) 13 (1) 13 (0) 0 0 15

Orig → Digt 7 (1) 0 (1) 4 (3) 9 6 16
#3 Digt → Enhn 5 (2) 8 (3) 2 (1) 6 4 16

Orig → Enhn 6 (0) 4 (3) 8 (3) 6 3 14

Orig → Digt 9 (0) 2 (4) 10 (0) 4 4 14
Average Digt → Enhn 1 (0) 14 (2) 3 (0) 0 3 24

Orig → Enhn 2 (0) 5 (3) 21 (0) 0 1 15
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D. McNemar’s Tests on Interval Cancer Cases

For the benign cases (averaged) and for the original-to-enhanced, the numbers
were too small to provide a valid chi-square statistic for McNemar’s test. There-
fore, for the benign cases, two tables (digitized-to-enhanced and original-to-
enhanced) combined over the three radiologists were tested. No significant dif-
ference in diagnostic accuracy was found for the benign cases for either the digi-
tized-to-enhanced table with p � 0.097 (Bonferroni adjusted p value p* � 0.582)
or for the original-to-enhanced table with p � 0.0833 (p* � 0.50).

For each of the four tables for the malignant cases, a significant improve-
ment was observed in the diagnostic accuracy. The various p values are original-
to-digitized (combined) p � 0.001, p* � 0.001; digitized-to-enhanced (com-
bined) p � 0.0001, p* � 0.0006; original-to-digitized (averaged) p � 0.002, p*
� 0.012; digitized-to-enhanced (averaged) p � 0.0046, p* � 0.0276.

In summary, no significant changes were seen in the diagnostic accuracy for
the benign control cases. For the malignant cases, a significant improvement was

Table 4 Details of Radiologists’ Diagnostic Performance Variations with Original
Mammograms (Orig), Unprocessed Digitized Mammograms (Digt), and ANCE-
processed Digitized Mammograms (Enhn) for the Eight Benign Cases in the Interval
Cancer Cases Database. (NOTE: To Obtain the Average Values, the Individual Diagnostic
Confidence Levels were Averaged First.)

Change of diagnostic confidence level

M: level
B: level 1 or 2; U: level 3; 4 or 5

U → B M → U M → B B → U → M →
Radiologist Image types (B → U) (U → M) (B → M) B U M

Orig → Digt 0 (0) 1 (4) 0 (0) 1 0 2
#1 Digt → Enhn 0 (1) 1 (0) 0 (0) 0 1 5

Orig → Enhn 0 (1) 1 (3) 0 (0) 0 1 2

Orig → Digt 0 (0) 1 (0) 0 (0) 1 2 4
#2 Digt → Enhn 0 (1) 0 (1) 0 (0) 0 2 4

Orig → Enhn 0 (1) 1 (1) 0 (0) 0 1 4

Orig → Digt 0 (0) 1 (0) 0 (1) 2 1 1
#3 Digt → Enhn 0 (0) 0 (1) 0 (1) 1 1 1

Orig → Enhn 0 (0) 0 (0) 0 (2) 1 1 2

Orig → Digt 0 (0) 1 (2) 0 (0) 1 1 3
Average Digt → Enhn 0 (1) 1 (1) 0 (0) 0 1 4

Orig → Enhn 0 (1) 1 (2) 0 (0) 0 1 3
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Fig. 9 Comparison of composite ROC curves for the detection of abnormalities by in-
terpreting the original, unprocessed digitized, and enhanced images from the Interval Can-
cer Cases dataset. Reproduced with permission from Rangayyan et al. (4). ©IEEE 1997.

Fig. 10 The two Look-Up-Tables (LUT) used for printing. Reproduced with permission
from Rangayyan et al. (4). ©IEEE 1997.
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seen in the diagnostic accuracy in all four tables tested, even after using a Bon-
ferroni adjustment for the multiple p values (k � 6).

VII. DISCUSSION

The results of the Interval Cancer Cases study indicate that the ANCE method has
a positive impact on the interpretation of mammograms in terms of early detection
of breast cancer (improved sensitivity). The ANCE-processed mammograms in-
creased the detectability of malignant signs at earlier stages (of the interval cancer
cases) compared with the original and unprocessed digitized mammograms. In
terms of the average diagnostic confidence levels of three experts, 19 of 28 interval
cancer patients were not diagnosed during their earlier mammography tests with the
original films only. However, had the ANCE procedure been used, all of these cases
would have been diagnosed as malignant at the corresponding earlier times. Only
one of six patients initially labeled as having benign disease with the original mam-
mogram films was interpreted as malignant after enhancement. Although the resul-
tant high sensitivity (TPF) comes with increased FPF of more than 0.3, such an im-
provement in the detection of breast cancer at early stages is important. With the
specific Interval Cancer Cases database used, the ANCE technique leads to 38%
improvement in overall diagnostic efficiency compared with original films.

Results with the set of Difficult Cases were not as conclusive as the results
with the Interval Cancer Cases. Three reasons for this could be (a) lack of famil-
iarity of five of the six radiologists with digitized and enhanced mammographic
images; (b) reading the images on a monitor; and (c) use of downsampled images
at a lower resolution of 124 �m. Better results may be achieved if the mammo-
grams are digitized and processed with the desired spatial resolution of 50 �m and
dynamic range of 0 to 3.0 optical density units and printed at full resolution on
film. (No monitor is as yet available to display images of the order of 4096 	 4096
pixels at 12 bits/pixel.)

Results of statistical analysis using McNemar’s tests have shown (more
conclusively than ROC analysis) that the ANCE procedure has resulted in a sta-
tistically significant improvement in the diagnosis of interval cancer cases, with
no significant effect on the benign control cases. Statistical tests such as McNe-
mar’s test complement ROC analysis in certain circumstances, such as those in
this study, involving small numbers of difficult cases. Both methods are useful,
because they analyze the results from different perspectives: ROC analysis pro-
vides a measure of the accuracy of the procedure in terms of sensitivity and speci-
ficity, whereas McNemar’s test analyzes the statistical significance and consis-
tency of the change (improvement) in performance. ROC analysis could include
a chi-square test of statistical significance, but this was not possible in this study
because of the small numbers of cases.
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In the study with the Difficult Cases dataset, both the ROC study and statis-
tical analysis using McNemar’s tests have shown that the digital versions have led
to some improvements in distinguishing benign cases from malignant cases
(specificity). However, the improvement in the unprocessed digitized mammo-
grams may have come from the availability of a zooming utility.

The ANCE method was recently used in a preference study comparing the
performance of mammographic enhancement algorithms (43). The other methods
used in the study were adaptive unsharp masking, contrast-limited adaptive his-
togram equalization, and wavelet-based enhancement. In most cases with micro-
calcifications, the ANCE algorithm provided the most preferred results. In the set
of images with masses, the unenhanced images were preferred in most of the
cases.

Further investigation needs to be conducted by using the hyperbolic tangent
(sigmoid) function for printing images, because some visual problems were no-
ticed with the use of two print LUTs in this study. New versions of laser printers
(such as the Kodak 8600) can print images of the order of 4096 	 4096 pixels; this
could lead to improved quality in the reproduction of the enhanced images and
consequent improved interpretation by radiologists.

Although the ANCE algorithm includes procedures to control noise en-
hancement, increased noise has been observed in the processed images. Improve-
ments in this direction should lead to better specificity while increasing the sensi-
tivity of breast cancer detection.

The results could also be improved by interpreting a combination of the
original or digitized mammograms with their enhanced versions; increased famil-
iarity with the enhanced mammograms may assist the radiologists in the detection
of abnormalities. (This was the first experience with digitized mammograms for
two of the three reference radiologists involved in the Interval Cancer Cases study
and for five of the six experienced radiologists with the Difficult Cases study; no
training was provided with the digitized images before the study.)

Digital image enhancement has the potential to dramatically improve the ac-
curacy of breast cancer diagnosis and lead to earlier detection of breast cancer. In-
vestigations are in progress to develop parallel computing strategies to make the
ANCE technique applicable in a screening program (44–47).

VIII. SUMMARY

Breast cancer is a leading cause of death among women. Mammography is the
best established procedure for breast cancer screening and early diagnosis. How-
ever, mammograms are difficult to interpret, especially in cancers at their early
stages. The effectiveness of the ANCE technique in increasing breast cancer di-
agnosis sensitivity was demonstrated in this chapter. The results of ROC analysis
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show that the radiologists’ performance with the ANCE-processed images is the
best among the three sets of images (original, digitized, and enhanced) in terms of
the area under the ROC curve and that diagnostic sensitivity is improved by the
ANCE algorithm. All of the 19 interval cancer cases not detected with the origi-
nal films of earlier mammographic examinations were diagnosed as malignant
with the corresponding ANCE-processed versions, whereas only one of six benign
patients initially labeled correctly with the original mammograms was interpreted
as malignant after enhancement. McNemar’s tests of symmetry indicate that the
diagnostic confidence for the Interval Cancer Cases was improved by the ANCE
procedure with a high level of statistical significance (p values of 0.0001–0.005)
with no significant effect on the diagnosis of the benign control cases (p values of
0.08–0.1). This study demonstrates the potential of diagnostic performance im-
provement for early detection of breast cancer with appropriate digital image en-
hancement.

ACKNOWLEDGMENT

This work was supported by the Alberta Breast Cancer Foundation, the Alberta
Heritage Foundation for Medical Research, and the Natural Sciences and Engi-
neering Research Council of Canada.

REFERENCES

1. WM Morrow, RB Paranjape, RM Rangayyan, JEL Desautels. Region-based contrast
enhancement of mammograms. IEEE Trans Med Imag 11(3):392–406, 1992.

2. RM Rangayyan, L Shen, RB Paranjape, JEL Desautels, JH MacGregor, HF Morrish,
P Burrowes, S Share, FR MacDonald. An ROC evaluation of adaptive neighborhood
contrast enhancement for digitized mammography. Proceedings of 2nd International
Workshop on Digital Mammography, York, UK, July 1994, pp 307–313.

3. L Shen, Y Shen, RM Rangayyan, JEL Desautels, H Bryant, TJ Terry, N Horeczko.
Earlier detection of interval breast cancers with adaptive neighborhood contrast en-
hancement of mammograms. Proceedings of SPIE on Medical Imaging 1996: Image
Processing, volume SPIE-2710, Newport Beach, CA, February 1996, pp 940–949.

4. RM Rangayyan, L Shen, Y Shen, JEL Desautels, H Bryant, TJ Terry, N Horeczko,
MS Rose. Improvement of sensitivity of breast cancer diagnosis with adaptive neigh-
borhood contrast enhancement of mammograms. IEEE Trans Inform Tech Biomed
1(3):161–170, 1997.

5. DJ Dronkers, HV Zwaag. Photographic contrast enhancement in mammography. Ra-
diol Clin Biol 43:521–528, 1974.

6. MB McSweeney, P Sprawls, RL Egan. Enhanced-image mammography. In: Recent
Results in Cancer Research, Vol. 90. Berlin Heidelberg; Springer-Verlag, 1984, pp
79–89.

Copyright © 2002 Marcel Dekker, Inc.



7. BS Askins, AB Brill, GUV Rao, GR Novak. Autoradiographic enhancement of mam-
mograms. Diagn Radiol 130:103–107, 1979.

8. IN Bankman, ed. Handbook of Medical Imaging: Processing and Analysis. San
Diego, CA: Academic Press, 2000.

9. G Ram. Optimization of ionizing radiation usage in medical imaging by means of im-
age enhancement techniques. Med Phys 9(5):733–737, 1982.

10. J Rogowska, K Preston, D Sashin. Evaluation of digital unsharp masking and local
contrast stretching as applied to chest radiographs. IEEE Trans Biomed Eng
35(10):817–827, 1988.

11. HP Chan, CJ Vyborny, H MacMahon, CE Metz, K Doi, EA Sickles. ROC studies of
the effects of pixel size and unsharp-mask filtering on the detection of subtle micro-
calcifications. Invest Radiol 22:581–589, 1987.

12. R Gordon, RM Rangayyan. Feature enhancement of film mammograms using fixed
and adaptive neighborhoods. Appl Opt 23(4):560–564, 1984.

13. RM Rangayyan, HN Nguyen. Pixel-independent image processing techniques for en-
hancement of features in mammograms. IEEE/Eighth Annual Conference of the En-
gineering in Medicine and Biology Society, 1986, pp 1113–1117.

14. WM Morrow. Region-based image processing with application to mammography.
Master’s thesis, Department of Electrical Engineering, The University of Calgary,
Calgary, Alberta, Canada, December 1990.

15. AP Dhawan, G Buelloni, R Gordon. Enhancement of mammographic features by op-
timal adaptive neighborhood image processing. IEEE Trans Med Imag MI-5(1):8–15,
1986.

16. AP Dhawan, E Le Royer. Mammographic feature enhancement by computerized im-
age processing. Comput Methods Programs Biomed 27:23–35, 1988.

17. TL Ji, MK Sundareshan, H Roehrig. Adaptive image contrast enhancement based on
human visual properties. IEEE Trans Med Imag 13(4):573–586, 1994.

18. AF Laine, S Schuler, J Fan, W Huda. Mammographic feature enhancement by mul-
tiscale analysis. IEEE Trans Med Imag 13(4):725–740, December 1994.

19. P Vuylsteke, E Schoeters. Multiscale image contrast amplification (MUSICA). Pro-
ceedings of SPIE on Medical Imaging 1994: Image Processing, volume SPIE-2167,
1994, pp 551–560.

20. T Belikova, V Lashin, I Zaltsman. Computer assistance in the digitized mammogram
processing to improve diagnosis of breast lesions. Proceedings of the 2nd Interna-
tional Workshop on Digital Mammography. York, England, 10–12 July 1994, pp
69–78.

21. G Qu, W Huda, A Laine, B Steinbach, J Honeyman. Use of accreditation phantoms
and clinical images to evaluate mammography image processing algorithms. Pro-
ceedings of the 2nd International Workshop on Digital Mammography. York, Eng-
land, 10–12 July 1994, pp 345–354.

22. PG Tahoces, J Correa, M Souto, C Gonzalez, L Gomez, JJ Vidal. Enhancement of
chest and breast radiographs by automatic spatial filtering. IEEE Trans Med Imag
10(3):330–335, September 1991.

23. W Qian, LP Clarke, M Kallergi, RA Clark. Tree-structured nonlinear filters in digi-
tal mammography. IEEE Trans Med Imag 13(4):25–36, March 1994.

Copyright © 2002 Marcel Dekker, Inc.



24. J Chen, MJ Flynn, M Rebner. Regional contrast enhancement and data compression
for digital mammographic images. Proceedings of SPIE on Biomedical Image Pro-
cessing and Biomedical Visualization, volume SPIE-1905. San Jose, CA, February
1993, pp 752–758.

25. C Kimme-Smith, RH Gold, LW Bassett, L Gormley, C Morioka. Diagnosis of breast
calcifications: Comparison of contact, magnified, and television-enhanced images.
Am J Roentgenol 153:963–967, 1989.

26. K Simpson, KW Bowyer. A comparison of spatial noise filtering techniques for dig-
ital mammography. Proceedings of the 2nd International Workshop on Digital Mam-
mography. York, England, 10–12 July 1994, pp 325–334.

27. RM Rangayyan, L Shen, RB Paranjape, JEL Desautels, JH MacGregor, HF Morrish,
P Burrowes, S Share, FR MacDonald. An ROC evaluation of adaptive neighborhood
contrast enhancement for digitized mammography. Proceedings of the 2nd Interna-
tional Workshop on Digital Mammography. York, England, 10–12 July 1994, pp
307–314.

28. M Kallergi, LP Clarke, W Qian, M Gavrielides, P Venugopal, CG Berman, SD Hol-
man-Ferris, MS Miller, RA Clark. Interpretation of calcifications in screen/film, dig-
itized, and wavelet-enhanced monitor-displayed mammograms: A receiver operating
characteristic study. Acad Radiol 3:285–293, 1996.

29. A Laine, J Fan, S Schuler. A framework for contrast enhancement by dyadic wavelet
analysis. Proceedings of the 2nd International Workshop on Digital Mammography.
York, England, 10–12 July 1994, pp 91–100.

30. A Laine, J Fan, WH Yan. Wavelets for contrast enhancement of digital mammogra-
phy. IEEE Eng Med Biol Magazine 14(5):536–550, September/October 1995.

31. W Qian, LP Clarke, BY Zheng. Computer assisted diagnosis for digital mammogra-
phy. IEEE Eng Med Biol Magazine 14(5):561–569, September/October 1995.

32. HW Nab, N Karssemeijer, LJTHO van Erning, JHCL Hendriks. Comparison of dig-
ital and conventional mammography: A ROC study of 270 mammograms. Med In-
format 17:125–131, 1992.

33. RC Gonzalez, RE Woods. Digital Image Processing. Reading, MA: Addison-Wesley
Publishing Company, Inc., 1992.

34. EL Hall. Computer Image Processing and Recognition. New York: Academic Press,
1979.

35. RM Nishikawa, ML Giger, K Doi, CE Metz, FF Yin, CJ Vyborny, RA Schmidt. Ef-
fect of case selection on the performance of computer-aided detection schemes. Med
Phys 21:265–269, 1994.

36. GR Kuduvalli, RM Rangayyan. Performance analysis of reversible image compres-
sion techniques for high-resolution digital teleradiology. IEEE Trans Med Imag
11(3):430–445, 1992.

37. JA Swets, RM Pickett. Evaluation of Diagnostic Systems: Methods from Signal De-
tection Theory. New York: Academic Press, 1982.

38. CE Metz. ROC methodology in radiologic imaging. Invest Radiol 21:720–733, 1986.
39. DD Dorfman, E Alf. Maximum likelihood estimation of parameters of signal detec-

tion theory and determination of confidence intervals—rating method data. J Math
Psychol 6:487–496, 1969.

Copyright © 2002 Marcel Dekker, Inc.



40. JL Fleiss. Statistical Methods for Rates and Proportions. 2nd ed. New York: Wiley,
1981.

41. JH Zar. Biostatistical Analysis. 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1984.
42. DG Altman. Practical Statistics for Medical Research. London: Chapman & Hall,

1991.
43. R Sivaramakrishna, NA Obuchowski, WA Chilcote, G Cardenosa, KA Powell. Com-

paring the performance of mammographic enhancement algorithms: A preference
study. Am J Roentgenol 175:45–51, 2000.

44. WM Morrow, RM Rangayyan. Implementation of adaptive neighborhood image pro-
cessing algorithm on a parallel supercomputer. In: Pelletier M, ed. Proceedings of the
Fourth Canadian Supercomputing Symposium. Montreal, PQ, Canada, 1990, pp
329–334.

45. RB Paranjape, WA Rolston, RM Rangayyan. An examination of three high perfor-
mance computing systems for image processing operations. Proceedings of the Su-
percomputing Symposium. Montreal, PQ, Canada, 1992, pp 208–218.

46. H Alto, D Gavrilov, RM Rangayyan. Parallel implementation of the adaptive neigh-
borhood contrast enhancement algorithm. Proceedings of SPIE on Parallel and Dis-
tributed Methods for Image Processing Vol. 3817. 1999, pp 88–97.

47. RM Rangayyan, H Alto, D Gavrilov. Parallel implementation of the adaptive neigh-
borhood contrast enhancement technique using histogram-based image partitioning.
J Elect Imag pp 10(3): 804–813, 2001.

Copyright © 2002 Marcel Dekker, Inc.



10
Computerized Detection of Lung
Nodules

Maryellen L. Giger, Samuel G. Armato III, Heber MacMahon, 
and Kunio Doi
The University of Chicago, Chicago, Illinois

I. INTRODUCTION

Lung cancer is the leading cause of cancer death among both American women
and men. The disease is expected to claim the lives of 157,400 Americans in 2001,
a figure that represents 25% of cancer deaths among women and 31% of cancer
deaths among men (1). Moreover, an anticipated 169,500 new lung cancer cases
(13% of all new cancer cases) will be diagnosed in the United States in 2001 (1).
Unfortunately, clinical symptoms of lung cancer, such as shortness of breath,
chronic cough, and hemoptysis, usually do not occur until the disease has reached
a more advanced stage, when patient prognosis is especially poor. The 5-year sur-
vival rate for lung cancer patients is only 13% (2).

The primary noninvasive modes for lung cancer detection include sputum
cytology, chest radiography, and thoracic computed tomography (CT). Although
CT is considered the most sensitive imaging modality for the detection of lung
nodules (3), radiation dose and economic considerations maintain chest radiogra-
phy as the dominant modality for the initial diagnosis of lung cancer, although the
use of low-dose helical CT as a lung cancer screening modality is gaining accep-
tance. Because resection of certain lung cancers at an early stage has been shown
to significantly improve survival rate (4), timely radiographic detection of pul-
monary nodules is important to the proper management of patients with lung can-
cer.

The chest radiograph is one of the most challenging radiographs to pro-
duce technically and to interpret diagnostically (5,6). The thorax contains
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anatomical structures that greatly vary in their attenuation of diagnostic-energy
x-ray photons. These structures range from air-filled alveoli on one end of the
attenuation spectrum to bones and dense soft-tissue structures on the other end.
Once this range of normal anatomy is captured by an imaging system with ap-
propriate brightness and contrast, the complex background presented by normal
anatomy creates “structured noise” that hinders the detection and interpretation
of pulmonary nodules. Nodules may be missed because of obscuration by over-
lying ribs, bronchi, blood vessels, the cardiac silhouette, or other normal
anatomical structures (7–10).

In a study of missed bronchogenic carcinoma at chest radiography, anatom-
ical structures (predominantly bones) obscured the missed cancer in all 27 patients
(10). When the radiographs were shown to six independent radiologists who were
told that the cases represented missed cancers, 73% of the lesions were missed by
at least one of these radiologists. The average miss rate for the radiographic de-
tection of early lung nodules is estimated to be about 30% (11). In a lung cancer
screening study, 90% of identified peripheral lung carcinomas were visible in ret-
rospect even though three physicians had interpreted previous radiographs ac-
quired at 4-month intervals as normal (7). Of these retrospectively identifiable le-
sions, 40% had been visible for more than one year prior to the time of initial
diagnosis. Clearly, radiographic diagnosis poses a difficult challenge for radiolo-
gists.

Nodule detection errors have been attributed to faulty processing of image
information in the perception and cognition domains of the observer (12). Rea-
sons for failure to detect nodules have been categorized as scanning errors,
recognition errors, and decision-making errors (12). A scanning error occurs
when the observer fails to fixate a nodule within the visual field of view. Even
when the nodule is scanned by the visual field, however, the observer may not
recognize the abnormal features contained within the field. The result is an er-
ror in recognition. A decision-making error will occur when the abnormal fea-
tures of the fixated region are recognized by the observer but then rejected as in-
significant. It is within this psychological paradigm of fixation, recognition, and
decision making that human observers must operate to successfully perform a
detection task.

It has been shown that visual dwell times can predict the location of nod-
ules in chest radiographs (13–15). Gaze durations for missed nodules were sig-
nificantly longer than for regions with no lesion present. This perception-
based method to facilitate the recognition of pulmonary nodules was then
investigated as an aid to nodule detection (16). The computer-assisted method
indicated regions on chest images that had received prolonged visual attention
during the initial viewing of each image. Results from the observer study
demonstrated a 16% improvement in nodule-detection performance when, dur-
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ing a second viewing of the images, observers were provided with dwell-time
feedback.

Image analysis may also be performed by computers for the purpose of de-
tecting signals (i.e., lung nodules) on complex backgrounds (i.e., normal
anatomy). Indeed, the very nature of the radiological process, from the technical,
image acquisition aspect to the clinical, diagnostic evaluation aspect, makes it
uniquely amenable to the logic used by computers. The quantitative processing of
a computer is inherently distinct from the qualitative nature of the human
eye–brain system so that a computerized scheme may be designed to exploit char-
acteristics of a structure in an image even though these characteristics may not be
normally recognized by human observers. Consequently, computers have the po-
tential to complement human observers. Thus, the interpretation of radiographical
chest images may benefit from image processing and computer-aided diagnostic
methods that direct radiologists’ attention to suspect regions in an attempt to over-
come scanning and recognition errors.

Computer-aided diagnosis (CAD) can be defined broadly as a diagnosis
made by an individual who incorporates output from a computer into his or her
medical decision-making process. Such computer output could take the form of a
processed (i.e., enhanced) version of an original image, a superimposed symbol
such as an arrow that indicates the location of a suspected lesion in the image, a
numerical value that indicates, for example, the likelihood of malignancy of a sus-
pected lesion, text that describes characteristics of the lesion as “seen” by the com-
puter, a visual presentation of other lesions from a standardized database that have
similar characteristics to the lesion in question, or a suggested diagnosis based on
clinical and image data.

Potchen and Austin have stated that “despite attempts to improve on the
imaging system, the ability to systematically detect pulmonary nodules in large
screening series has not changed much” (17). They suggest a focus on the human
factors that play a role in radiographic interpretation. Computerized approaches to
image analysis address this issue by directing radiologists’ attention to computer-
identified regions of suspicion. Use of image processing techniques and CAD sys-
tems have been shown to improve radiologists’ detection accuracy for lung nod-
ules in chest radiographs (18,19), as well as for breast masses and clustered
microcalcifications in mammograms (20,21). Today, the availability of high-
speed computers and high-quality, high-resolution digital image acquisition sys-
tems (i.e., film digitizers, computed radiography [CR], and digital “flat panel” de-
tectors) make possible near-real-time processing of chest images to facilitate their
interpretation.

In this chapter, we present an overview of current research for the improve-
ment of lung nodule detection through enhanced (processed) images for human vi-
sion and through automated image analysis for computer vision.
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II. IMAGE PROCESSING TECHNIQUES FOR LUNG
NODULE ENHANCEMENT

Image processing refers to manipulation of the gray level information contained
within the pixels of a digital image. The result is image output intended for either
human interpretation or further computer analysis. The latter option effectively re-
sults in the automation of the detection task and is termed “computer vision.” One
goal of medical image processing is to increase the conspicuity of a lesion or re-
gion of interest within the image, where lesion conspicuity may be defined as the
ratio of the lesion contrast to the complexity of the surround (22). Accordingly, a
computerized method may be developed that either preferentially increases the
relative contrast of nodule like structures in an image or reduces the apparent com-
plexity of the surrounding background anatomy. Once processed, the enhanced
image may be viewed by a radiologist either as soft copy on a computer monitor
or as hard copy on film. This section presents examples of some common image
processing techniques that have been investigated for use in chest radiography for
subsequent image display and human interpretation.

A. Exposure Correction

Computerized methods for the correction of underexposed and overexposed
chest radiographs have been developed to decrease the number of repeat expo-
sures that may be required (23–25), thereby reducing dose to patients and costs
to radiology departments. Such techniques are especially useful for hospital in-
tensive care units in which correct exposure levels are more difficult to obtain
with portable radiography equipment, and daily chest films for a patient are re-
quired. By normalizing the optical densities of each film, variation between se-
quential images is reduced. The resulting consistency among the radiographs
also facilitates the day-to-day comparison of sequential films for the evaluation
of temporal change.

Thoracic anatomy poses technical challenges for plain film chest radiogra-
phy. In particular, the presence of tissues with a wide range of attenuation prop-
erties requires a screen-film system with a wide exposure latitude. For a given
range of film optical densities, however, wide latitude is achieved at the expense
of contrast. Moreover, an improperly exposed radiograph could force a lung nod-
ule to appear in the nonlinear “toe” or “shoulder” regions of the screen-film sys-
tem’s characteristic curve. A nodule in one of these regions would demonstrate
severely reduced contrast that may render the nodule imperceptible. Automated
compensation for such exposure errors could serve to bring pulmonary structures
(including nodules) within the linear portion of the characteristic curve and im-
prove detectability.
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One exposure correction technique involves initial digitization of a con-
ventional radiograph. Next, a nonlinear density-correction technique, based on
the characteristic curves of both the original radiographic film and the digitizer,
is used to compensate for improperly exposed radiographs. Fig. 1 illustrates the
comparison of gray-level histograms of the same “phantom” radiograph ac-
quired at three different exposure levels. It should be noted that the three his-
tograms will have the same shape in terms of “logarithm of relative exposure,”
but they will differ in terms of pixel values because of the nonlinear relationship
between exposure and pixel value as expressed by the characteristic curve. A
“lookup table” can be created to represent this nonlinear relationship (25). Fig.
2 illustrates (a) an original portable chest radiograph that was overexposed
400% relative to the proper level and (b) the digitized chest image after correc-
tion (23). Similarly, Fig. 3 illustrates (a) an original portable chest radiograph
with an underexposure equivalent to 50% of the proper exposure level and (b)
the digitized chest image after correction (23).

The problem of limited exposure latitude in screen/film combinations is
solved with CR systems based on storage phosphor technology (26). The physical
phenomenon of storage phosphor systems is referred to as photostimulable lumi-
nescence, and the intensity of the stimulated luminescence is proportional to the
number of x-ray photons absorbed by the storage phosphor. Storage phosphor sys-
tems have an exposure latitude that spans a factor of approximately 10,000 (27)
compared with approximately 50 to 200 for screen/film systems. Therefore, CR
systems are used widely for portable chest radiography to compensate for the

Fig. 1 Schematic diagram illustrating the comparison of pixel value histograms for the
same patient radiographs from acquired at three different exposures. Reprinted with per-
mission from Ref. 25 (Fig. 1).
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(a) (b)

Fig. 2 (a) Original portable chest radiograph with an overexposure level of 400% of the
proper level. (b) Digitized processed chest radiograph that provides markedly improved di-
agnostic quality. Reprinted with permission from Ref. 23 (Fig. 2).

(a) (b)

Fig. 3 (a) Original portable chest radiograph with an underexposure level of 50% of the
proper exposure level. (b) Digitized processed chest radiograph that is diagnostically supe-
rior, especially for mediastinal and upper abdominal detail. Reprinted with permission from
Ref. 23 (Fig. 3).
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overexposure and underexposure errors that commonly occur. Similar benefits are
offered by solid-state image capture devices that have become commercially
available. These technologies include systems based on amorphous selenium and
amorphous silicon (28–30).

B. Unsharp Mask Filtering

Digital unsharp mask filtering is a technique that is routinely used in computed ra-
diography systems to increase local contrast and enhance the visibility of fine-de-
tail structures (31,32). It is most extensively used in digital chest radiography.

The linear form of unsharp mask filtering can be expressed as:

Dp(x,y) � Do(x,y) 
 K [Do(x,y) � Dus(x,y)]

where Do(x,y) corresponds to the original two-dimensional digital image, and
Dp(x,y) corresponds to the final processed image. Dus(x,y) refers to a blurred ver-
sion (an “unsharp mask”) of Do(x,y) and includes mainly the low spatial fre-
quency components of the original image. The size of the kernel used to produce
the unsharp image determines the spatial frequency range that is enhanced, and the
weighting factor, K, determines the magnitude of enhancement. Fig. 4 shows (a)
an original digitized chest radiograph and (b) the same image highly enhanced
with linear unsharp masking. Note that the highly enhanced image (b) amplifies
the interstitial lung texture to such a degree that incorrect image interpretation
may result.

To compensate for overenhancement of certain anatomical regions, some
investigators have found it advantageous to perform nonlinear unsharp mask fil-
tering in which the degree of enhancement depends on the original local optical
density of the film. Accordingly, enhancement is dependent on the underlying
anatomy, so that maximum processing would be applied to low optical density
regions such as the mediastinum, and minimum processing would be applied to
high optical density regions such as the peripheral lung region. Fig. 4c illustrates
such processing on the chest image from Fig. 4a. More recently, multiscale un-
sharp masking techniques have been developed to selectively enhance detail
across the image at different resolutions (33), and dynamic range control tech-
niques have been implemented to restore visible detail in high- or low-density
regions (34).

C. Temporal Subtraction

In conventional clinical practice, radiologists commonly refer to a patient’s pre-
vious chest films while interpreting the current radiographs to identify changes
over time (35). This approach aids in the identification of new disease. Such se-
quential radiographs also provide a means for assessing the progression or the re-
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sponse to treatment of a known abnormality. Comparison among sequential ra-
diographs may be facilitated through introduction of a “difference image” into the
decision-making process. Once previous and current chest images are obtained in
digital format (either directly through, for example, a CR system or indirectly
through the digitization of analog films), the previous chest radiograph can be reg-
istered with and subtracted from the current chest radiograph. The resulting dif-

(a) (b)

(c)

Fig. 4 Example of (a) an original digitized chest radiograph, (b) the same image pro-
cessed with linear unsharp masking, and (c) the same image processed with moderate non-
linear unsharp masking.

Copyright © 2002 Marcel Dekker, Inc.



ference image tends to enhance areas of temporal change by suppressing the
background on which abnormalities are superimposed.

Various investigators have reported on such difference imaging techniques
(36–38). Kano et al. (37) developed a subtraction method for sequential chest ra-
diographs that consists of an automatic registration technique based on nonlin-
ear geometric warping followed by digital subtraction. Initially, the chest images
are processed by the density-correction method described earlier. Next, regions
of interest (ROIs) are located in each of the two subsampled chest images (500
	 500-pixel matrix, 0.7-mm effective pixel dimension). A local cross-correla-
tion technique is used to locally match the ROIs. The associated shifts between
the (x,y) coordinates of the two chest images are subjected to a two-dimensional
curve-fitting algorithm with 10th-order polynomials. The fitted shift values are
used to create a warped version of the previous chest image, which is then sub-
tracted from the current chest image. Fig. 5 shows original digital images of (a)
a current chest film and (b) a previous chest film of the same patient (37). Fig.
5c contains the subtraction image after use of the nonlinear warping technique.
A subtle nodule is more easily perceived in the subtraction image. The useful-
ness of this technique is its potential to enhance the appearance of subtle lesions
that may develop during the time between acquisition of the previous and cur-
rent radiographs.

In a receiver operating characteristic (ROC) study (39), Difazio et al. (40)
evaluated the effects of temporal subtraction images on the detection of interval
change. Observers’ performances when viewing paired digitized chest radio-
graphs (the current and previous radiographs) were compared with their perfor-
mances when the paired digitized chest radiographs were viewed together with a
temporal subtraction image. Statistically significant improvement was reported in
the detection of abnormalities greater than 1 cm in size when the observers were
given the paired chest radiographs (current and previous) together with the tem-
poral subtraction image (Fig. 6). In addition, the mean interpretation time de-
creased by 19% when the temporal subtraction images were used (40).

D. Dual-Energy Imaging

A recurrent theme in radiography is that visual perception of lesions in radio-
graphic images may be limited because of overlying normal anatomical structures.
Another means of suppressing “structured noise” caused by the normal anatomi-
cal background is dual-energy imaging. In dual-energy imaging, two images of
the patient are obtained simultaneously (or nearly so), each produced by x-ray
beams with effectively different mean energies. These individual images are then
combined to form tissue-selective images such as a soft-tissue image or a bone im-
age (41–44). In a soft-tissue-selective image, for example, calcium-containing
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structures such as the ribs and vertebral bodies are suppressed to yield improved
visualization of the lungs. This technique has the potential to greatly improve the
detectability of nodules. Furthermore, dual-energy imaging is uniquely able to as-
sist in the identification of calcified lesions, which may aid radiologists in diag-
nosing detected lung nodules as either benign or malignant.

The energy separation needed for dual-energy imaging can be obtained

(a) (b)

(c)

Fig. 5 A chest radiograph (a) shows a faint right upper lobe nodule. A previous radio-
graph (b) was used as a subtraction mask to produce a difference image (c). The nodule is
substantially more conspicuous in the subtraction image (c) than in the current image.
Reprinted with permission from Ref. 40 (Fig. 2).
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through either (a) a double-exposure technique in which the peak x-ray energy is
changed or (b) a single-exposure technique that uses paired detectors (such as
photostimulable phosphor plates) separated by a beam-attenuating filter (41). The
front detector records the low-energy component of the beam, and, after the filter
serves to harden the x-ray beam, the rear detector records the high-energy com-
ponent of the beam. Methods for combining the low- and high-energy images in-
clude scatter correction techniques, improved basis material decomposition algo-
rithms, and noise suppression techniques (45).

Various researchers have applied dual-energy imaging to chest radiography
to improve the detection of pulmonary nodules and to distinguish between malig-
nant and benign lesions (41,43). Fig. 7 illustrates a set of dual-energy CR images
for a patient with a left-upper-lobe pulmonary nodule: (a) the conventional chest
radiograph, (b) the soft-tissue image, and (c) the bone image. These images were
acquired from a CR system with photostimulable phosphor plates.

In an ROC study, investigators compared conventional chest radiography
with dual-energy CR (43). In this study involving five observers and images from
60 patients, significant improvements were found in the observers’ ability to di-
agnose pulmonary nodules and to characterize calcified nodules with dual-energy
CR. In another observer study in which a chest phantom was used, investigators
compared conventional chest radiography with the two types of dual-energy chest
radiography (i.e., the single-exposure technique and the double-exposure tech-

Fig. 6 ROC curves illustrating the statistically significant improvement in radiologists’
performance when the radiologists used the temporally subtracted chest image during their
interpretation. Reprinted with permission from Ref. 40 (Fig. 7).
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nique) (46). They found that both dual-energy techniques yielded observer per-
formances superior to conventional chest radiography. Although differences be-
tween the single- and double-exposure dual-energy techniques did not achieve
statistical significance, these investigators preferred the single-exposure tech-

(a) (b)

(c)

Fig. 7 A set of dual-energy computed radiography images obtained from a single-expo-
sure system for a patient with a left upper lobe pulmonary nodule. (a) The image captured
by the photostimulable phosphor plate closest to the patient is virtually equivalent to a stan-
dard chest radiograph, (b) tissue-selective image showing the nodule without obscuration
from overlying ribs, and (c) bone-selective image in which the noncalcified nodule cannot
be visualized.
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nique for reasons such as ease of implementation, reduced patient exposure, and
reduced motion artifacts.

III. COMPUTERIZED DETECTION OF LUNG NODULES

Computer vision seeks to automate a particular detection task. Through the inte-
gration of image processing, image segmentation, feature extraction, and decision
analysis techniques (47), computerized medical image analysis systems attempt to
identify normal and abnormal structures based on their radiographic characteris-
tics in a digital image. The development of computer vision methods requires in-
formation about the physical properties of the radiographic image acquisition sys-
tem and the range of expected radiographic appearances of both the abnormality
under investigation and the associated anatomical background on which the ab-
normality is expected to be superimposed. Thus, a database composed of a large
number of cases is needed to cover the broad range of abnormal and normal pat-
terns.

The development of CAD methods is timely in the sense that digital chest
radiography is routinely used in some medical centers and is on the threshold of
widespread clinical use. Thus, CAD techniques that have been developed for im-
ages derived from digitized film may be calibrated instead for images that have
been acquired digitally. These computerized schemes then may be automatically
and routinely applied to the images between the time of acquisition and interpre-
tation. The potential significance of CAD lies in the fact that if the detectability of
cancer and other diseases can be increased through computerized methods de-
signed to assist radiologists, then the treatment of patients can be initiated earlier
with an anticipated concomitant improvement in prognosis.

Many investigators are involved in the development and evaluation of CAD
methods for chest radiography. In the following sections, a few examples are used
to illustrate the potential use of CAD for the detection of lung nodules in chest ra-
diographs and in thoracic CT images.

A. Lung Segmentation

Segmentation of the lung fields in chest radiographs initiates most computerized
schemes developed for the detection of pulmonary disease, including lung nodules
(Fig. 8). Because nodule-detection methods are effectively trained to recognize
specific deviations from the normal radiographic appearance of pulmonary
anatomy, application of these schemes to regions outside the lungs would provide
meaningless information and would greatly increase computation time. Investiga-
tors have developed a variety of lung segmentation schemes for posteroanterior
(PA) (48–59) and lateral chest radiographs (60,61). In one such method, an itera-
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tive global gray-level thresholding scheme was used to identify an initial set of
lung segmentation contours (58). To more completely capture the aerated lung re-
gions, local gray-level thresholding was then applied within regions of interest
placed along these initial contours. Another method analyzed the first and second
derivatives of gray-level profiles to delineate the rib cage edge (55). Polynomial
functions were then fit to these initially detected edges.

B. Plain Chest Radiographs

Among the first computerized analyses of chest radiographs for the detection of
lung tumors were techniques based on edge detection and contrast enhancement
(62,63) and methods based on a hierarchical process that incorporated a ladderlike
decision tree (64,65). Since then, many investigators have developed and evaluated
computerized lung nodule detection methods for single-projection chest radio-
graphs based on mathematical morphology (66,67), fractal analysis (68), artificial
neural networks (69–73), rule-based methods (74), multiscale approaches (75,76),
and wavelet-based deformable contour methods (77). Toriwaki et al. (63) and
Hashimoto et al. (78) used edge detection approaches in conjunction with gray-
level thresholding to locate suspect lesions in chest images. Giger et al. (79,80) ini-
tially reported on a background suppression approach for the computerized detec-
tion of lung nodules in digitized chest radiographs. This technique, which involved
creation of a signal-enhanced version and a signal-suppressed version of the orig-
inal image, attempted to remove the structured anatomical background before ap-
plication of feature analysis. Fig. 9 illustrates (a) an original digitized chest radio-
graph, (b) the corresponding difference image, and (c) the difference image after a

(a) (b)

Fig. 8 Example of accurately segmented lung regions in (a) a PA chest image and (b) a
lateral chest image. (a) reprinted with permission from Ref. 58 (Fig. 12).
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specific gray-level threshold has been applied (80). The arrow indicates the loca-
tion of an actual nodule. The number of false-positive detections from the com-
puterized scheme was substantially reduced through the combination of rule-based
classifiers and an artificial neural network (ANN) that merged various geometric-
and edge-gradient-orientation–based features (66,73,81).

A radiographic feature that has been successfully used to differentiate nod-
ules from false-positive detections is the edge-gradient orientation (Fig. 10) (81).

(a) (b)

(c)

Fig. 9 Example of (a) an original digitized chest radiograph with a 1-cm nodule in the
left lung (arrow), (b) the difference image obtained using a 9-mm-diameter nodule-
matched filter and an 18-mm ring-shaped averaging filter for enhancement and suppres-
sion, respectively, and (c) the difference image after gray-level thresholding. Reprinted
with permission from Ref. 80 (Figs. 3a, d, and 5b).
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The center of a suspected nodule is automatically identified, and the magnitude
and direction of the maximum edge gradient is computed for each pixel within a
50 	 50-pixel ROI. A histogram of accumulated edge gradients as a function of
the angle (with respect to the x-axis) associated with this gradient direction is then
constructed. Trends in the shape of such a cumulative edge-gradient–orientation
histogram are used to determine whether the suspected region is actually a nodule.
Fig. 10 shows the cumulative edge-gradient–orientation histograms (c and d) for
(a) a lung nodule and (b) the intersection of a rib and the clavicle (81). The peaks
in the edge-gradient–orientation histogram for the rib crossing correspond to the
strong gradients along the rib edges. More recently, a similar technique based on
radial edge-gradient analysis (82) has been used to improve the specificity of lung
nodule detection methods (83).

The ultimate test of any computerized analysis scheme will be its ability to
actually improve radiologists’ performance when used as a clinical aid. CAD uses
the computer as a “second opinion,” not as a stand-alone reader; therefore, a com-
puterized method need not be perfect to be useful. A CAD scheme may be bene-
ficial even with an overall accuracy less than that of a radiologist, because the le-
sions detected by the computer will typically not coincide completely with those
detected by the human observer.

Observer performance studies have been carried out in which output from a
computer detection scheme was incorporated by radiologists in their decision-
making process. In the task of detecting pulmonary nodules in chest radiographs,
a statistically significant improvement was obtained when the locations of com-
puter-suspected nodules were provided to radiologists during their interpretation
(19). In that study, the computer performed at a sensitivity of 75% with approxi-
mately one false-positive detection per image. Fig. 11 shows a comparison of the
areas under the ROC curve (denoted Az) for all observers in the study. Gray shad-
ing represents Az values when only the conventional chest radiographs were in-
terpreted, and diagonal stripes correspond to the increase in Az values attained in
conjunction with the CAD method. The gain in performance achieved through the
use of CAD was larger for residents than it was for thoracic and general radiolo-
gists. Fig. 12 shows a comparison of average reading time for the observers. Over-
all, reading time decreased slightly when the computer aid was used (Fig. 12). The
observation of decreased reading time is notable, because it counters the perceived
notion that CAD will increase interpretation time caused by the additional infor-
mation that radiologists must assimilate.

To facilitate introduction of CAD results into the routine clinical interpre-
tive process, investigators are developing intelligent workstations that incorporate
CAD results derived from chest radiographs (84,85). Images and their corre-
sponding CAD results are displayed in a format that can be reviewed rapidly in
conjunction with conventional interpretation. Radiographs are either digitized or
digital radiographs are transferred from sources such as CR systems or image
archives. CAD analyses are then run automatically using distributed computing
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(a) (b)

Fig. 10 (a) A region from an original digitized chest radiograph containing an actual
nodule and (c) its corresponding gradient-orientation distribution. (b) A region from an
original digitized chest radiograph containing a rib-clavicle crossing that was erroneously
detected as a nodule (a false positive) by the computer and (d) its corresponding gradient-
orientation distribution. Reprinted with permission from Ref. 81 (Figs. 1a, 8a, 4a, 8b).
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based on a client-server model. The results are available for the radiologist on the
workstation during the reading session. Pilot studies have indicated that such a
workstation is user-friendly and provides beneficial information to the radiologist
in a timely and efficient manner (84).

It should be noted that although these CAD methods have been developed
specifically for PA chest radiographs, important diagnostic information is also

Fig. 11 Graphs showing comparison of Az values for all observers in the nodule detec-
tion study. Gray shading represents Az values when only the conventional chest radio-
graphs were interpreted, and diagonal stripes correspond to the increase in Az values
achieved in conjunction with the CAD method. Observers 1,2 � Thoracic radiologists, 3–8
� general radiologist, 9–16 � residents in radiology. Reprinted with permission from Ref.
19 (Fig. 5).

Fig. 12 Graph showing comparison of average interpretation time for all observers par-
ticipating in the nodule detection study. Average interpretation time was reduced, for most
observers, when CAD was used. Reprinted with permission from Ref. 19 (Fig. 6).
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demonstrated in lateral radiographs. The lateral view is a routine component of a
standard radiographic chest examination and provides a perspective of pulmonary
anatomy and pathology that complements the PA view. In a study of missed bron-
chogenic carcinoma at chest radiography, for example, the lateral projection was
judged to demonstrate the missed lesion better than the PA projection in 4 of 23
cases, including 1 case in which the PA radiograph did not show the lesion (10). The
missed lesion did not appear in the lateral radiograph in only 2 of the 23 cases. It is
possible that future development of lung nodule detection schemes for lateral radio-
graphs will improve on the performance of current PA-image–based CAD methods.

C. CT Images of the Thorax

It is widely recognized that the sensitivity of thoracic computed tomography (CT)
scans for the visualization of lung nodules is superior to that of plain chest radio-
graphs (86–88). For this reason, the CT scan is generally regarded as the “gold
standard” by which the presence of nodules is confirmed for the purpose of eval-
uating truth in studies involving PA radiographs. The most important advantage
that CT offers over plain radiography is its ability to distinctly represent anatom-
ical structures that would otherwise radiographically project in superposition. The
practical consequence of this fundamental difference in imaging approaches is
that the average size of peripheral cancers on CT scans missed by radiologists is
3 mm compared with 13 mm at radiography (89–90).

A potential disadvantage of conventional CT is the risk that differences in
patient respiration between acquisitions of contiguous sections could result in a
scan that fails to image portions of the anatomy (91). Conventional CT uses a
“step-and-shoot” protocol in which each CT section image is successively ob-
tained after the patient table is indexed to the next position within the scanner, and
the patient is asked to maintain a breath hold. Consequently, the patient table is
motionless during the acquisition of each section image, and the patient breathes
between sections. The development of helical (or spiral) CT scanning procedures
(92) allows for the recording of volumetric data in a single breath hold through si-
multaneous data acquisition and patient translation. These data are then recon-
structed to yield section images, and the planes of reconstruction may be specified
after data acquisition (93). This ability to retrospectively define the planes of re-
construction in helical CT has been shown to improve the detectability of lung
nodules (94). Accordingly, helical CT may provide the most reliable method for
detecting pulmonary nodules (95).

Increased sensitivity of helical CT over conventional CT with regard to iden-
tification of lung nodules has been observed (95–97). Remy-Jardin et al. (95) re-
ported a significantly higher mean number of nodules seen per patient with helical
versus conventional CT and a corresponding significantly higher mean number of
nodules less than 5 mm in diameter. Costello et al. (97) reported four additional
nodules detected on helical CT than were detected on conventional CT for 20 pa-
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tients who underwent both procedures. On the basis of both phantom and clinical
studies, Milla et al. (96) found that CT demonstrated a sensitivity for the detection
of nodules less than 5 mm that was higher than conventional screen-film chest ra-
diography, advanced multiple beam equalization radiography (AMBER), and CR.

A secondary benefit of helical CT is increased patient throughput resulting
from the decreased scanning time. This aspect of helical CT, along with the increased
detectability of lung nodules, has resulted in the implementation of helical CT as a
modality for lung cancer screening (98). Scans acquired with lower x-ray exposure
reduce the radiation risk to screened individuals. Trials to validate mass lung cancer
screening with low-dose helical CT are currently underway in Japan, Germany, and
the U.S.A. In one lung cancer screening study, a malignant nodule was identified in
2.7% of screened individuals in the prevalence phase of the study (107).

Although the potential camouflaging effect of overlapping anatomical
structures is mostly eliminated in CT scans, identification of lung nodules is con-
founded by the prominence of blood vessels in CT images. Croisille et al. demon-
strated a significant improvement in radiologists’ detection of pulmonary nodules
when vessels were removed from the volumetric data using a three-dimensional
region-growing algorithm (99). Distinguishing between nodules and vessels typ-
ically requires visual comparison among several CT sections, which necessitates
the radiologist to mentally construct a three-dimensional representation of patient
anatomy. This task, although tedious for radiologists in view of complex anatom-
ical structures, may be efficiently handled by a computerized method.

Efforts to develop automated nodule detection methods for CT scans have
gained momentum in recent years. Ryan et al. (100) modeled nodules and vessels as
spherical and cylindrical volumes, respectively. A comparison between soft tissue
and air densities on the surface and within the volume of a bounding cube was then
used to differentiate between nodules and vessels. Kanazawa et al. (101) used a
fuzzy clustering algorithm to identify vessels and potential nodules within the lung
fields. A rule-based approach incorporating distance from the lung boundary and
circularity information was used to distinguish nodules from vessels on a section-
by-section basis. The reported results indicate that this algorithm attained a sensi-
tivity of 86% with 11 false-positive cases on a database of 224 helical CT cases. This
work was expanded by Toshioka et al. (102), who included a comparison of imme-
diately adjacent sections. On a database of 450 helical CT scans, sensitivities of 76%
to 100% were attained, depending on radiologist-assigned tumor probability ratings.
Okumura et al. (103) used spatial filtering, including a three-dimensional morpho-
logical filter, to automatically detect pulmonary nodules. In a database of 82 cases,
all 21 nodules were detected along with 301 false-positive regions.

Fiebich et al. (104) reported on a computerized method for the detection of
lung nodules in low-dose helical CT scans from a lung cancer screening program.
The method attained an overall nodule detection sensitivity of 95.6% with ap-
proximately 15 false-positive detections per study and is being evaluated with
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clinical experience (105). Ko and Betke (106) developed a nodule detection
method based on gray-level thresholding. When applied to 16 CT scans (eight dif-
ferent patients with two CT scans each), they achieved anodule detection sensi-
tivity of 86% with an unspecified number of false-positive detections. Other in-
vestigators have also contributed to the important task of computerized lung
nodule detection in CT images (107–109).

Giger et al. (110) in 1994 reported on an automated detection scheme that
was trained and tested on a database of eight thoracic CT scans. In this scheme,
gray-level thresholding was used to isolate the thorax and to segment the lung re-
gions in each CT section. To distinguish nodules from vessels within the lung re-
gions, geometrical feature analysis was implemented in conjunction with multiple
gray-level thresholding. The final classification was made on the basis of a com-
parison of suspected regions in each section with suspected regions in adjacent
sections. The method performed at a level of 94% sensitivity with an average of
1.25 false-positive detections per case. Armato et al. (111,112) have developed a
nodule detection method that makes use of the volumetric nature of CT image
data. Gray-level thresholding techniques were applied to identify three-dimen-
sional structures in CT scans. A maximum-volume criterion was imposed on these
structures to identify an initial set of nodule candidates, for which two- and three-
dimensional morphologic and gray-level features were computed. Linear dis-
criminant analysis was used to merge the features and reduce the number of can-
didates that correspond to nonnodules (Fig. 13). The method was improved and
applied to a database of 43 standard-dose (diagnostic) CT scans and a database of
13 low-dose CT scans (113,114). With the exception of the training of the final-
stage classifier, the computerized detection algorithm was kept constant. The
method attained comparable performance levels when applied to these separate
databases: 71% sensitivity (121 out of 171 nodules) with an average of 1.5 false-
positive detections per section on the 43-case standard-dose database and 71%
sensitivity (180 out of 255 nodules) with an average of 1.2 false-positive detec-
tions per section on the 13-case low-dose database.

IV. SUMMARY

The future of image processing and CAD in diagnostic radiology is more promis-
ing now than ever, with encouraging results being reported from observer perfor-
mance studies. Clinical trials in years to come will help optimize the accuracy of
the computerized methods and determine the actual contribution of CAD to the in-
terpretation process; however, a physician will still make the final decision re-
garding diagnosis and patient management. Nonetheless, studies have indicated
that computer output need not have greater overall accuracy than a given radiolo-
gist to improve his or her performance.
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The computer should not be considered a “black box” that renders judgment
on an image in a consistent but arbitrary manner. Indeed, the computerized meth-
ods that exist have been developed over the span of many years by scientific and
medical researchers who have incorporated the various facets of image acquisition
and interpretation into computer algorithms. Within these algorithms, concepts
from physics, anatomy, pathology, statistics, and computer science are integrated
to provide a metric for computer vision based on the imaging parameters and vi-
sual cues that serve as the foundation for human-vision interpretation of medical
images by radiologists.

A systematic and gradual introduction of CAD into radiology departments
will be necessary, so that radiologists may become familiar with the strengths
and weaknesses of each CAD program, thereby avoiding either excessive re-
liance on or a dismissive attitude toward the computer output. This approach
should ensure the acceptance of CAD and facilitate optimal diagnostic perfor-
mance by the radiologist. In practice, each radiologist will individually define,
according to personal training and observational skills, an appropriate role for
the various CAD programs in his or her diagnostic decision-making process.
Consequently, intraobserver variations may be reduced, and diagnostic perfor-
mance may be optimized. It is expected that routine use of CAD methods will
eventually be accepted as a viable means of improving patient care.
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Fig. 13 Maximum intensity projection image representing the set of three-dimensional
nodule candidates (a) before and (b) after merging of morphological and gray-level features
through linear discriminant analysis. Reprinted with permission from Ref. 105 (Figs. 15,
18).
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Lung: X-Ray and CT

Michael F. McNitt-Gray and Matthew S. Brown
UCLA School of Medicine, Los Angeles, California

I. INTRODUCTION

With the advent of spiral scanning, computed tomography (CT) imaging is ex-
pected to take on a significant role in the detection of lung nodules both in a
screening role for asymptomatic patients and in an evaluation role for patients
who are known to have lung cancer. In spiral CT, volumetric data sets are ac-
quired rather than incremental axial images. Data sets are obtained during a sin-
gle suspended breath hold, eliminating potential sampling errors that result from
respiratory variation between axial scans. In addition, because spiral data can be
reconstructed at any incrementation, images can be overlapped to yield better
resolution along the axis of the patient (z-axis). These factors taken together
have been shown to improve lesion detection in the lungs by radiologists (1–4).
This improved resolution comes at the cost of an increased number of images to
read. This creates a significant burden for the radiologist to review each of these
images.

Thus, image processing and pattern classification techniques are being in-
vestigated to assist radiologists in detection and quantification tasks. For the
screening of lung cancer, image-processing techniques are being used to detect tu-
mors in the lung at the earliest possible stage. For the evaluation of lung cancer
patients and their response to treatment, image-segmentation techniques are being
used to first detect lesions and then to measure tumor volumes that are being
tracked over time.
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II. CLINICAL SETTING

A. Lung Cancer

According to statistics from the American Cancer Society (5), lung cancer is the
leading cause of cancer death among both men and women. In 1997, an estimated
178,000 new cases of lung cancer accounted for about 13% of all new cancers in
the United States and about 29% of deaths from cancer. There were an estimated
160,400 deaths from lung cancer in 1997. For those whose cancer is found and
treated early, before it has spread to lymph nodes or the other organs, the average
survival rate is 48%. However, using present techniques, only 15% of lung can-
cers are found at this early, localized stage.

B. Lung Cancer Screening

A screening examination is one performed on a patient with little or no symptoms
of lung cancer for the purposes of detecting early signs of the disease. Currently,
it is generally accepted that screening for the early detection of lung cancer using
chest radiography–based methods does not provide a significant benefit (6). Sev-
eral large-scale randomized control trials (7–10), which included some combina-
tion of chest radiography and histological sputum analysis, concluded that these
screening activities did not reduce lung cancer–specific mortality. However, con-
ventional projectional radiography suffers from the inherent limitations that bones
and organs overlap in the images, and this may obscure small lesions representing
lung cancers at an early stage. The fact that survival rate is reasonably good when
the cancer is detected at an early stage has motivated research into screening tech-
niques that can detect lung cancer at an earlier stage. The National Cancer Insti-
tute is undertaking another large-scale study to investigate the efficacy of screen-
ing in lung, prostate, colon, and ovarian cancers. For lung cancer, the projectional
chest radiograph in conjunction with sputum cytology techniques is being used in
this study.

In Japan, there has recently been interest in using CT as a screening tool
(11–13). Spiral CT yields volumetric image data sets that do not suffer from the
overlap of anatomical structures that limits projectional radiography nor the
breathing misregistration between slices that occurs in conventional CT. Low-
dose scanning techniques have been developed and clinically deployed in Japan.
Preliminary trials have shown spiral CT to provide a greater detection rate than the
sputum cytology and miniature fluoroscopy techniques currently used for screen-
ing in Japan (.47% for CT compared with .03% to .05% for the latter) (11).

C. Evaluating Response to Therapy for Lung Cancer
Patients

For patients in whom the lung cancer diagnosis has been established, CT has been
used to determine their response to therapy (14–18). Typically using axial, incre-
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mental CT image data, radiologists make a series of cross-sectional diameter mea-
surements for a few indicator lesions and then compare them with measurements
made from previous scans to indicate response to therapy (tumor progression/re-
gression/stability). However, these measurements of lesion diameter, although
widely used, may not provide an accurate assessment of tumor size because of a
number of factors, including (a) irregular lesions, lesions that do not grow spher-
ically may not be adequately represented by a change in diameters; (b) interob-
server and intraobserver measurement differences, involving selection of the im-
age used for the measurement and where the lesion boundary is located; (c)
differences in scanning levels from one examination to another, lesions may not
be imaged at the exact same location from one examination to another, which af-
fects how the lesion appears and makes comparisons between examinations diffi-
cult. Spiral CT and its ability to provide single breath-hold scans and its simulta-
neous ability to provide overlapping reconstructions improves the ability to image
lesions at reproducible levels from different examinations. However, the mea-
surement of these lesions is still a subjective task, subject to the variability de-
scribed in (a) and (b) previously.

III. IMAGE PROCESSING METHODS USED IN PULMONARY
NODULE DETECTION ON CT

A. Goals and General Problems

In either a screening or evaluation situation, one of the primary tasks of the radi-
ologist is nodule detection. When spiral CT is used in either of these situations, the
number of images to be examined by a radiologist for potential lesions could be
very large. This is because (a) covering the entire thorax typically requires 30 to
40 cm of table movement (to cover from the thoracic inlet to the lung bases); (b)
images are typically acquired using a collimation (slice thickness) of between 5
and 10 mm; and (b) spiral CT allows the ability to reconstruct overlapping images
at small intervals. Using axial CT, a 40-cm long patient imaged using only 10-mm
collimation would result in 40 images but would have required 5 or 10 different
breath holds because of slower scan times and interscan delays. With a spiral scan-
ner, this same 40-cm long patient would require one breath hold of 40 sec (or two
20-sec breath holds) and, if images were reconstructed at 5-mm intervals, would
now result in 80 images.

The exact imaging protocol used can have a significant impact on the abil-
ity to detect nodules. In spiral CT, each image has an effective slice thickness as-
sociated with it. The thicker the slice, the greater the volume of tissue contribut-
ing to that image and the greater the volume averaging problem. Thus, a 5-mm
spherical nodule in a 10-mm thick slice is averaged with approximately 5-mm
thickness of other tissues (Fig. 1), whatever those tissues happen to be. When
these tissues are low-attenuating lung tissues (mostly air), then the resulting pixel
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shows an attenuation value lower than that of the nodule itself, which reduces the
signal from the nodule and the radiologists’ ability to detect it.

The factors that determine the effective slice thickness in spiral CT are col-
limation, pitch (table speed), and spiral interpolation algorithm (19–25). Collima-
tion is set by the operator and determines the physical thickness of the detected x-
ray beam. Pitch is the ratio of (table speed per rotation)/(collimation) and
determines how far the table travels per rotation. The higher the pitch, the further
the table moves per rotation and, because spiral CT uses interpolation to form its
images, the larger the longitudinal range of data used in that interpolation. This re-
sults in greater effective slice thickness (and more volume averaging). Thus,
greater patient coverage comes at a price of thicker effective slices and greater
volume averaging. The spiral interpolation algorithm determines what that range
of longitudinal data is used to form the image. Most CT manufacturers use either
the 180LI method or the 360LI method (19–21). The 180LI method uses a smaller
range of longitudinal data and results in a smaller increase in effective slice thick-
ness than the 360LI (though the noise performance of the 360LI is better).

One other spiral CT technical parameter of note is the reconstruction inter-
val. Because a volumetric data set is acquired in spiral CT, the exact location
where images are reconstructed is arbitrary, as is the interval between images.
Thus, overlapping images can be obtained without additional radiation to the pa-
tient but by merely reconstructing images from the original volumetric data set.
Because the orientation of lesions with the images is not known a priori, it is very

Fig. 1 Diagram illustrating 5-mm spherical nodule in a 10-mm thick slice. (a) With the
best possible alignment between object and image. At its widest point, the sphere does not
occupy the full slice width and is averaged with whatever tissues are adjacent to it. (b) With
bad alignment between object and image. The signal from the nodule is now split between
two images and in each image the nodule is further averaged with whatever tissues are ad-
jacent to it.

(a) (b)
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likely that a nodule could be poorly aligned with an image as shown in Fig. 1b, ex-
acerbating the volume averaging problem. Overlapping images (illustrated in Fig.
2) have been shown to improve the alignment between lesion and image and to
minimize the volume averaging that is due to splitting the nodule signal between
two images (26).

The image-processing task is to search a volumetric image data set to detect
only lesions (tumors) and to avoid the false positives created by normal anatomi-
cal structures such as bronchial walls and blood vessels. Tumors and blood ves-
sels have similar x-ray attenuation and may appear similar when viewed on cross-
sectional images. Therefore, identification, and removal, of vascular structures is
useful in lesion detection. However, removing vascular structures is not a com-
plete solution, because nodules can be in contact with those vessels, the chest wall,

Fig. 2 Diagram illustrating the difference between (a) contiguous reconstruction, in
which slice thickness and slice spacing are equal, and (b) overlapped reconstruction, in
which slice spacing is less than slice thickness, in spiral CT. Overlapped reconstructions
yield increased sampling in the longitudinal direction of the patient and can create better
nodule-image alignment, which in turn reduces volume averaging as shown in Fig. 1.
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and/or the mediastinum. Examples of each of these are shown in Fig. 3. For the
evaluation task, accurate (or at least reproducible) identification of lesion bound-
aries will give more consistent results in tumor measurement.

What follows is a summary of several approaches to the problems involved
in nodule detection. We have broken these into groups of methods that (a) detect
the pulmonary vasculature to assist in the detection of pulmonary nodules (if vas-
culature is removed, then only nodules should remain); (b) automatically detect
objects in the CT image volume and attempt to distinguish between nodules and
other structures such as vessels or the chest wall, etc.; and (c) automatically detect
endobronchial lesions (those within the tracheobronchial tree).

B. Segmentation of Vascular Structures to Assist Nodule
Detection

A three-dimensional analysis to detect and remove the pulmonary vasculature was
used by Croisille et al. (27) to make detection of remaining pulmonary nodules

A B

Fig. 3 Examples of (a) an isolated lesion identified by the arrow; (b) a lesion with a con-
tacting vessel; (c) a lesion in contact with the chest wall pleural interface; and (d) a lesion
contacting the mediastinum.

DC
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easier for the radiologist. In this approach, sequential CT images were first put to-
gether to form an image volume. The heart was then manually removed before the
extraction of the vascular tree. The vessels were extracted from the remaining vol-
umetric data by using a three-dimensional seeded region growing algorithm. The
seed point was selected by the user from the vascular lumen; all voxels within the
user-specified gray level (or Hounsfield Unit (HU)—the normalized measure of
attenuation used in CT) range that were six-connected (that is, x, y, or z con-
nected) to the seed point were added recursively until the entire vascular tree was
segmented. This should identify both the pulmonary arterial and venous trees.
Once identified, the voxels belonging to the vascular tree were removed from the
volumetric data set. The voxels remaining in the data set were then examined for
pulmonary nodules by a radiologist. Fig. 4 shows an original CT image, with the
segmented image showing only pulmonary nodules. With the vascularity re-
moved, the nodules are much more conspicuous.

This approach was then applied to simulated and clinical image data sets
that were read and scored by radiologists for nodule detection. All nodules in-
cluded in the study (simulated and real) were less than 5 mm in diameter and were
acquired with 8-mm collimation, 8 mm/sec table speed, and 4-mm reconstruction
interval. The results were very encouraging, because the readers performed sig-
nificantly better when using the images with the vascular tree removed. Thus, ex-
tracting the vascular tree from the CT images improves the ability of radiologists
to detect small pulmonary nodules. However, some pulmonary nodules that were
in close contact with the vascular tree were removed along with the vasculature,
and some nodules in contact with the chest wall (pleural surface) were removed
along with the pleural surface itself, resulting in several false negatives (missed
nodules). The authors suggest that the latter may not be a significant problem, be-
cause many nodules at the pleural surface are easily detected in the original image
data.

Fig. 4 CT scan showing pulmonary nodules (arrowheads in a) in a patient (a) before and
(b) after the segmentation. (Source: Ref. 27; reprinted with permission.)

(a) (b)
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Further segmentation of the vascular tree into its arterial and venous com-
ponents was explored by Tozaki (28). In this method, anatomical knowledge
about the characteristics of the tracheobronchial tree and the accompanying pul-
monary vascular tree was exploited, namely, that the pulmonary arteries generally
run adjacent to the bronchial tree. Thus, proximity to a bronchial structure serves
as a distinguishing characteristic of the pulmonary arteries. This may prove to be
important in both detecting pulmonary nodules and, as Tozaki suggests, in distin-
guishing benign from malignant disease.

In Tozaki’s approach, the lung region was extracted using thresholding and
skeletonization techniques. From the lung region, a second threshold was applied
to extract the combined bronchial and arterial trees. The next step was to find the
bronchial tree and then, using anatomical information, to separate the arterial tree
from the venous tree. The bronchial tree was extracted by thresholding to find the
air-containing portion of the tree, and then region growing based on edge values
was applied. Once the bronchial tree was identified, the remainder of the tree—
the vascular portion—was thinned to determine the centerline of each branch.
The distance between each vascular branch and the nearest bronchial branch was
calculated, as well as the direction of each branch. If the distance was smaller
than some threshold and the direction of the two branches was similar enough
(i.e. if the inner product is below some threshold), then the branch was classified
as a pulmonary artery. Otherwise, it was classified as a pulmonary vein. Some
promising preliminary results obtained from thin-section images using 2-mm col-
limation, 2 mm/sec table speed, and 1-mm reconstruction interval are shown in
Fig. 5. This figure shows the potential of image processing techniques to assist in
the determination of connectivity of lesions to either pulmonary veins or arteries,
which may be useful in determining the malignancy of lesions.

C. Automated Segmentation of Pulmonary Nodules

In these methods, the focus was on nodule detection, rather than the pulmonary
vasculature tree. Even though the vascular tree is not explicitly segmented in these
methods, a primary concern remains the ability to distinguish nodules from ves-
sels. One method for automated detection of pulmonary nodules on CT using a
combination of segmentation and morphological techniques was reported by
Giger (29). This approach analyzed each two-dimensional (2-D) slice individually
and then compared candidate nodules in neighboring slices. For each 2-D slice,
the first step was to detect the thoracic boundary in the image. This was done by
obtaining a profile from the center of the image to the edge of the image; this pro-
file was used to determine a section-specific threshold from which the boundaries
of connected regions are obtained. In the case of multiple regions, each region was
analyzed in terms of its location, area, and circularity to determine whether it is
truly the thorax or another object (e.g., patient table).
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Fig. 5 (a) Segmented bronchus and pulmonary vein, (b) segmented bronchus and pul-
monary artery; (c) segmented bronchus, pulmonary artery, and pulmonary vein; and (d)
magnification images of segmented lesion, bronchus, artery, and vein using Tozaki’s ap-
proach. (Source: Ref. 28; all reprinted with permission.) (continued)

Copyright © 2002 Marcel Dekker, Inc.



C

D

Fig. 5 Continued.
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From within the thoracic boundary, the lung region was identified by us-
ing gray-level threshold techniques. A histogram of the thoracic region is ob-
tained for each slice. This histogram contains a bimodal distribution (aerated
lung vs soft tissue and bone). The gray level with the maximum separation be-
tween the groups is used as the threshold. From the thresholded image, con-
nected regions within the thorax region are identified using an eight-point con-
nectivity border tracker.

From within the lung regions, soft tissue objects were identified, which
could be either nodules or vessels. This was accomplished by first thresholding
objects within the lung boundaries at four different thresholds. At each threshold,
a binary image was generated, and the location of objects above the threshold
value was analyzed. As the threshold increased, the size of the candidate objects
became smaller, and an object at one threshold sometimes separated into multiple
objects at a higher threshold. Objects at one threshold were only analyzed if the
center of the object was contained within an object that existed at a lower thresh-
old. For each candidate object, morphological features were evaluated at each
threshold. These features include the following:

• Perimeter
• Area
• Compactness � 4�Area/(perimeter)2

• Elongation measure � Long axis/short axis
• Circularity � Compactness/elongation measure
• Distance measure � Distance from inner lung boundary/distance from

outer lung boundary
• Total � Area 	 circularity 	 distance

From these measures a rule-based system was used to distinguish features
describing nodules from those describing vessels. The initial classification was
performed based on individual 2-D CT image sections. Ambiguities in the initial
classification were resolved by comparisons with features in adjacent images.
Comparisons to adjacent images allows vessels, especially those that travel per-
pendicular to the scan plane for several images, to be distinguished from nodules,
which may appear strongly in one image and then more weakly in adjacent images
because of the usually spherical nature of these objects.

The preliminary results from this approach were quite encouraging. When
nodules with a “definitely a nodule” or “probably a nodule” score were counted,
the system accurately detected 94% of the nodules from eight cases with an aver-
age of 1.25 false-positive detections per case.

Toshioka et al. (30) have also reported an automated 2-D method for de-
tecting lung tumors from helical CT images. The first step is segmentation of the
lung field using thresholding, followed by smoothing of the lung boundary. Tu-
mors contacting the chest wall cause irregularities in the lung boundary and thus
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are included in the lung field after the smoothing operation. Fuzzy clustering (31)
is applied within the lung field to separate pixels into two classes: “air part” or
“blood vessels and tumors.” The blood vessels and tumors are considered “candi-
date regions.”

Feature analysis is used to identify the tumors separate from the blood ves-
sels, because they cannot be reliably distinguished on the basis of CT number (i.e.,
by thresholding). The following features were calculated for each candidate region:

• Area: number of pixels in the candidate region
• Thickness: maximum gray-weighted distance in the candidate region
• Circularity: percentage of occupation inside the candidate region’s cir-

cumscribed circle
• Gray-level: average CT number of pixels in the candidate region
• Variance: variance of CT numbers of pixels in the candidate region
• Position: minimum distance between the center of the candidate re-

gion’s circumscribed circle and the lung boundary

Tumors are recognized using rules derived from the following pieces of “medical
knowledge,” which include (a) the shape of tumors is assumed to be spherical in
a 2-D cross-sectional images, whereas vessels running in the scan plane appear
oblong; (b) the thickness of blood vessels decrease as their position approaches
the chest wall, whereas tumors are larger; (c) shadows contacting the chest wall
are usually tumors, because blood vessels at the periphery are too small to be seen
in the CT image; (d) the CT numbers of the blood vessels are usually higher than
tumors when the vessels run perpendicular to the scan plane, and (e) the CT num-
bers within lung tumors are relatively uniform.

From this knowledge, heuristic rules were created and applied to 450 image
data sets acquired using 10-mm collimation, table speed 20 mm/sec, with 10-mm
reconstruction interval. Classification results were compared against three ex-
perts. Of the 225 lesions classified as “sure malignant lesion” or “probably ma-
lignant lesion” by at least one expert, the system correctly identified 11 of 11 le-
sions that were classified by all three experts; 35 of 40 lesions that were classified
by two experts, and 141 of 174 lesions that were classified by one expert. There
was an average of 9.6 false positives per case. Most of the false negatives were
small tumors (� 5 mm). The false positives were caused by blood vessels being
misidentified as tumors.

The systems described to this point have demonstrated the need for incor-
porating anatomical knowledge, in addition to CT number, to identify lung tumors
separate from blood vessels and the chest wall. Typically, the knowledge has been
incorporated in an ad hoc fashion using feature-based rules. In addition, these sys-
tems have demonstrated that segmentation of small tumors and tumors that con-
tact or lie within the mediastinum requires more extensive and complex anatomi-
cal knowledge. To facilitate this, Brown et al. have described an architecture for
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knowledge-based segmentation (32), where knowledge is stored in the form of an
explicit anatomical model, which can be extended in terms of the anatomy in-
cluded and the features used to model the anatomy (33,34). This approach con-
trasts with methods that include heuristics or rules directly, or implicitly, in a
pixel-based segmentation algorithm.

The method uses a modular architecture consisting of (see Fig. 6) an
anatomical model, image-processing routines, and an inference engine, the inter-
actions of which occur via a blackboard (35). This modular architecture represents
a general-purpose framework for knowledge-based medical image analysis and
interpretation (36–38). System components interact strictly by reading data from,
and writing results to, the blackboard. This promotes independence between the
modules and, in particular, between the anatomical model and image-processing
routines.

Labeling the anatomical structures in the image data set involves matching
image primitives to corresponding objects in the model. Matching is done by
transforming data from the image and the model into a common, parametric fea-
ture-space for comparison. The inference engine compares features of image
primitives with the predictions from the model and chooses the best match for
each object.

The model contains information about specific anatomical parts, including
expected size, shape, x-ray attenuation range, and location relative to other struc-
tures. These data are stored in a frame-based semantic network (39,40) as shown
in Fig. 7.

Fig. 6 Basic architecture for knowledge-based segmentation system showing separation
of model and image processing routines and how they communicate through the black-
board.
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Image segmentation is done by means of a combination of gray-level thresh-
olding, 3-D region growing, and mathematical morphology. These conventional
algorithms are constrained using information from the anatomical model. The
thresholding process is constrained by spatial relationships; for example, because
the trachea is “part of” the airspace, only those voxels that have previously been
labeled as airspace are considered when thresholding for the trachea. Morpholog-
ical processing is used to extract shape properties of identified objects and to sep-
arate objects that are connected but of different size and shape.

The image-processing routines typically produce multiple candidates for a
single anatomical structure. For a given candidate, confidence scores are gener-
ated, using fuzzy sets (41), for all individual constraints imposed by the model
(e.g., size, shape). These confidence scores are used by the inference engine to
quantify how well a candidate satisfies the given constraints. The inference engine
selects the candidate with the highest score, effectively matching image structures
to the model.

The control system is initialized by transferring information about the struc-
tures to be segmented from the model to the blackboard, complete with all of the
knowledge used to constrain the segmentation. Each frame in the model is trans-
lated to a frame on the blackboard, including links for the various interdependen-
cies (such as “inside of” or “part of”). Once the blackboard frames have been cre-
ated, the control system must decide which frame to segment next. Scheduling is
determined primarily by the dependency between frames; those having less de-
pendencies are scheduled first. After image-processing routines are called to ex-

Fig. 7 (a) Semantic network description of lung including attenuation and positional re-
lationships. (b) Extension of semantic network to include model of isolated nodule and at-
tached vessel.

(a) (b)

Copyright © 2002 Marcel Dekker, Inc.



tract candidates, the inference engine identifies the candidate with the highest con-
fidence score and stores it in the “best candidate” slot of the blackboard frame.

The system was developed originally to segment the lung parenchyma (32)
(see Fig. 7a) and was then extended by adding nodule and vessel frames to the
model, including expected shape and volume information (Fig. 7b). For candidate
objects in the image that are within or exceed the volume constraint, 3-D binary
morphological opening is applied. Contiguous sets of voxels remaining after the
opening operation form a new set of candidates. The difference between the orig-
inal and opened binary images is taken, and contiguous sets of voxels in the dif-
ference image (removed during opening) are also included as candidates. Thus,
the original candidate is “split” into multiple smaller candidates. For nodules in
contact with vessels, the morphological opening generates a candidate for the nod-
ule with the vessels removed.

For these isolated lung lesions, simple measures of shape were used to dis-
tinguish lesions from vessels using a measure of compactness:

Compactness estimate � 3&/(4�r3).
Where d � maximum dimension (x, y, or z) of object’s bounding box,

r � d/2,
& � volume of the object.

As the shape approaches spherical, as may be the case for a nodule, the com-
pactness estimate approaches 1; whereas, a long thin vessel will yield a value
closer to 0.

Fig. 8 shows results from an automated segmentation of an lung nodule with
contiguous vessels, as well as the original images. This figure shows that, using
the knowledge-based methods described earlier, the vessels and nodule are indi-
vidually segmented. A seeded region-growing approach without knowledge guid-
ance (a) requires manual interaction to place a seed point within the tumor and (b)
is not able to differentiate the nodule from the vessel, because they have similar

Fig. 8 (a) Original thoracic CT image showing nodule in contact with vessel, (b) pul-
monary nodule (black) segmented separate from contacting vessel.
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attenuation and are anatomically contiguous or at least appear so because of vol-
ume averaging or noise effects. In such cases, the region-growing algorithm
“leaks” from one structure to the other, incorrectly combining them into a single
set of contiguous voxels.

The system has also been extended to identify lung nodules that contact the
lung-chest wall interface. In this case, the morphological operation removes the
nodules from the otherwise smooth chest wall, so that the difference operation
produces candidates for the nodule. Fig. 9 shows a lung mass contacting the chest
wall pleural interface, which was successfully segmented. This figure shows that
the chest wall, spine, anterior junction line, and mediastinum were approximately
segmented to guide the isolation of the lesion. The results from this approach are
promising but still preliminary. The ability to add knowledge to the system has
been shown to be important for approaching the difficult problems in nodule de-
tection described previously.

D. Segmentation of Endobronchial Lesions

Image processing techniques have also been applied to the detection of lesions
that appear within the tracheobronchial tree (42) rather than in the lung
parenchyma. In this approach, Summers suggested the use of surface curvature in
conjunction with virtual reality techniques to automatically detect these lesions.
First, a volumetric CT scan is analyzed using a 3-D seeded region growing tech-
nique to identify the walls of the airways. In one detection approach (the “patch”
method), the airway surface is smoothed, and an overlapping bicubic parameter
B-spline patch was fit to each point of the surface. The local curvature at each ver-
tex was computed using first- and second-order derivatives of the B-spline patch
(43,44). The calculated curvatures were analyzed, so that potential lesions were
identified as those having elliptical curvature of the peak subtype (based on the
signs of the principal curvatures). In a second detection method (the “gray-scale”

Fig. 9 (a) Original thoracic CT image, (b) segmented chest wall (black), mediastinum
(gray), and lesion (white) contacting the chest wall.

(a) (b)
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method), 3-D filters were applied to compute the partial derivatives directly from
the image data (45,46). These partial derivatives were used to compute the gaus-
sian (K), mean (H), and principal curvatures ('min, 'max) at each vertex on the air-
way surface. These curvature values were then used to identify potential lesion
sites.

For either approach, potential lesion sites were then evaluated using a 3-D
surface geometry viewer and airway navigation software tools (47). The prelimi-
nary results showed that, when applied to patient scan data, the patch method was
more sensitive (94%) than the gray-scale method (53%–65%), while yielding sim-
ilar specificities (63%–78%), and that both methods performed reasonably well
for lesions that were 5 mm in diameter or larger. This early work demonstrates
some promise for the difficult problem of early detection of lesions that do not lie
in the lung parenchyma but exist within the tracheobronchial tree.

IV. FUTURE WORK

A. Contributions of Automated Segmentation

For pulmonary nodule detection, the automatic identification (segmentation) of
both normal anatomy and lesions in the lungs remains a fundamental limitation.
For lung cancer screening, segmentation of anatomy will facilitate the identifica-
tion of lesions that need to be reviewed by radiologists; for evaluation of lung can-
cer patients, segmentation will identify not just indicator lesions but potentially all
of the lesions within the lung, so that their volumes can be calculated and com-
pared across examinations. In each case, the ability to segment isolated lesions
and those that contact other soft tissue structures (vessels, the chest wall as well as
the mediastinum) is required for these approaches to be successful. To perform the
required segmentation will require the addition of anatomical knowledge in one
form or another. The methods described here hold some promise but require fur-
ther testing to determine their reliability in detecting nodules and the number of
false positives per image.

B. Image Processing Methods to Diagnose Solitary
Pulmonary Nodules from CT

In addition to the nodule detection tasks described earlier, CT is commonly used
as a follow-up and evaluation examination for solitary pulmonary nodules, espe-
cially those identified on a prior chest radiograph. These nodules present a com-
mon and difficult diagnostic problem (48–50), because they usually appear as a
small, roughly circular object in the lungs of unknown origin, as shown earlier in
Fig. 3. These nodules arise because of many different underlying processes rang-
ing from a simple infection to a cancerous (malignant) lesion. The follow-up 
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options are, obviously, quite different, depending on whether the nodule is
thought to be benign or malignant and range from simple radiographic follow-up
to needle biopsy of the tissue or, even more aggressively, surgical removal of the
nodule. Interest in performing less-invasive tests has led to current research into
the use of contrast-enhanced CT studies for diagnosis (51–53) and approaches that
seek to quantify various properties of the nodule (e.g. size, shape, texture, rate of
growth) that may aid in the diagnosis of the solitary lesion (54–59).

Several approaches have been described that use image-processing methods
to quantify many of the properties currently described subjectively by a radiolo-
gist in an attempt to predict the nodule’s diagnosis. Cavouras demonstrated
promising results by using quantitative measures of nodule density and texture,
extracted directly from the image data, in a classifier scheme to characterize SPNs
(54). The features extracted included density measures (RCT, etc.); density his-
togram measures; and 12 texture measures from a spatial gray-level dependency
(co-occurrence) matrix. A least squares minimum distance (LSMD) classifier was
used to classify nodules and was very successful, because it correctly diagnosed
90.2% (46 of 51) of nodules. The authors concluded that although their method
was successful, additional information may be provided by including the nodule’s
contour shape and size in the analysis.

McNitt-Gray (55,56) extended this approach to include quantitative mea-
sures from the following categories: (a) voxel intensity measures; (b) intensity
histogram measures; (c) spatial distribution of intensity; (d) size; (e) shape; and
(f) various texture measures (co-occurrence matrix measures and Laws’ micro-
texture masks and various fractal based measures). For each nodule, all of the
measures in each category were calculated. A feature selection step was per-
formed to identify which features provided the most discriminatory power be-
tween the benign and malignant classes of nodules. The selected features were
then used to train and test a pattern classifier to predict an individual nodule’s
diagnosis. Preliminary results yielded 28 of 31 (90.3%) correct with 2 false pos-
itives and 1 false negative.

In addition, because of the complex nature of the solitary nodules and our
ability to image them in three dimensions with spiral CT, several groups have be-
gun investigating the 3-D properties of the nodules. The 3-D nature of the nodule
is demonstrated in Figs. 10 and 11. Fig. 10 shows a solitary nodule with calcium,
whose distribution varies in location from slice to slice. Fig. 11 shows a 3-D ren-
dering of the calcium distribution. This complex distribution of the nodule’s den-
sity requires that it be analyzed with methods that take into account the 3-D nature
of the object. These methods include techniques to assess the surface shape of the
nodule (57) [similar to the methods used in (42)]. In addition, Reeves (58) and
Yankelevitz (59) are investigating the morphological properties of nodules in
three dimensions to detect changes over time, which may also be indicative of a
lesion’s diagnosis.
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In the near future, combinations of contrast-enhanced scanning with image
processing methods that analyze both 2-D and 3-D properties will be evaluated to
determine the efficacy of CT imaging in the diagnosis of solitary pulmonary nod-
ules.

C. Technological Advances in Spiral CT Scanners

Technical developments in spiral CT continue to improve the ability to acquire
images rapidly. In the late 1990s, commercial manufacturers introduced subsec-

Fig. 10 CT images from an overlapped spiral acquisition (3-mm collimation, recon-
structed every 1.5 mm) through a solitary pulmonary nodule viewed under “soft tissue”
window and level settings (L � 40 HU, W � 400). Note the change in calcium distribution
within the nodule from image to image.

Fig. 11 Volume rendered images of volumetric image data set through the solitary nod-
ule imaged in Fig. 6 (a) opacity table set so that soft tissue is transparent, emphasizing the
complex three-dimensional shape of the solitary nodule; and (b) opacity table set so that
soft tissue is more opaque, showing the relationship of the calcium to the soft tissue of the
nodule.

(a), (b) (c)

(a) (b)
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ond spiral scanning (complete 360-degree tube rotation in less than a second) and
multiple detectors. By the fall of 1998, commercially available scanners could
perform a complete rotation in .5 second; systems with two and four detectors
were also commercially available with significant increases in the number of de-
tectors on the near horizon. These developments allow the coverage of a volume
of data in a very rapid fashion using very thin slices. Using a four-detector system
with a .5 second rotation time, it would be possible to cover a 40-cm long thorax
using 5-mm collimation in 20 seconds—a reasonable breath hold for most pa-
tients. If overlapping reconstructions were used (every 2.5 mm), this results in ap-
proximately 160 images. These developments result in (a) thinner effective slices,
which reduce volume-averaging problems and increase the ability to detect
smaller and smaller lesions; (b) increased longitudinal sampling for better nodule-
image alignment; and (c) yet another significant increase in the number of images
for radiologists to review. All three of these aspects further motivate the need for
intelligent image-processing techniques to assist in lung tumor detection when
spiral CT imaging is used.
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I. INTRODUCTION

The ultimate goal of medical image analysis in general, and brain magnetic reso-
nance imaging (MRI) analysis in particular, is to extract important clinical infor-
mation that would improve diagnosis and treatment of disease. In the past few
years, MRI has drawn considerable attention for its possible role in tissue charac-
terization. The image gray levels in MRI depend on several tissue parameters, in-
cluding proton density (PD); spin-lattice (T1) and spin-spin (T2) relaxation times;
flow velocity (v); and chemical shift ((). A sequence of MRI images of the same
anatomical site (an MRI scene sequence) contains information pertaining to the
tissue parameters. This implicit information is used for image analysis.

In brain tumor studies, existence of abnormal tissues is easily detectable
most of the time. However, accurate and reproducible segmentation and charac-
terization of abnormalities are not straightforward. For instance, a major problem
in tumor treatment planning and evaluation is determination of the tumor extent.
Clinically, T2-weighted and gadolinium (Gd)-enhanced T1-weighted MRI have
been used to indicate regions of tumor growth and infiltration (1,2). Convention-
ally, simple thresholding or region growing techniques have been used on each
image individually to segment the tissue or volume of interest for diagnosis, treat-
ment planning, and follow-up of the patients. These methods are unable to exploit
all the information provided by MRI. Advanced image analysis techniques have
been and still are being developed to optimally use MRI data and solve the prob-
lems associated with the previous techniques.
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Image analysis is performed by comparative and composite analysis of
three-dimensional (3-D) brain MRI data. The aim of comparative analysis is to
measure changes in the normal and tumorous tissue over time. The aim of com-
posite analysis is to combine complementary information about the brain tissues
from multiple MRI protocols to perform tissue segmentation and characterization.
A given cerebral tumor may be composed of confluent areas of coagulation necro-
sis, compact areas of anaplastic cells, and areas of adjacent brain parenchyma in-
filtrated by tumor cells. This tumor may then be surrounded by reactive astrocytes
and a rim of edema (3,4). Without considering all of the information obtained
from different MRI protocols, segmentation and characterization of the tumor
compartments are not feasible.

In an image analysis system designed for brain studies, the input image is
first preprocessed. Preprocessing consists of (a) registration of multiple MRI
studies; (b) segmentation of intracranial cavity from skull, scalp, and back-
ground; (c) correction of image nonuniformities; and (d) noise suppression. The
resulting images may be combined to enhance the image contrast (5); the con-
trast-enhanced images may then be used to improve visual inspection of the
scene. They may also be combined to generate a composite image in which a de-
sired object (tumor) is segmented from its surrounding tissue (normal tissue)
(6–12). In addition, it is possible to extract certain features from the images and
use these features to segment the image into its components (13). The seg-
mented image may be used for clinical studies, such as guided biopsy proce-
dures, or it may be passed to an image classifier, which assigns the segmented
regions to one of several objects. The results may be used for 3-D visualization,
or they may be analyzed by an image-understanding system, which determines
the relationships between different objects to form a scene description. These
image analysis steps are shown in Fig. 1.

In the field of MRI, Vannier et al. (14) presented the first work in which the
multiparametric (multispectral) nature of the MRI data was used for tissue char-
acterization. Clarke et al. (15) have reviewed some of the MRI segmentation work
in recent years. They conclude that feature extraction is a crucial step for MRI seg-
mentation. Rather than using all the information in the images at once, feature ex-
traction and selection breaks down the problem of segmentation to the grouping
of feature vectors (16–19). Features can be pixel intensities themselves, features
calculated from the pixel intensities, or edge and texture features (15).

Over the past 10 years, several approaches have been proposed for the
analysis of multiparameter MRI data (5). These approaches include the maxi-
mum contrast method (20), artificial neural networks (21–24), a variety of clus-
tering techniques (25–34), eigenimage filtering (6–12), and an optimal feature
space method (13), all of which have been applied to tissue segmentation and
characterization. Before getting into the details of the techniques, let us intro-
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Fig. 1 A flowchart of image-processing steps for analysis of brain MRI studies.
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duce the concepts related to spatial and feature domain representations of brain
MRI.

A. Spatial and Feature Domain Representation

An MRI scene sequence shows spatial locations of different tissues, with a differ-
ent contrast in each image. It can therefore be considered as a spatial domain rep-
resentation of the tissues in a slice. In a spatial domain representation, pixels cor-
responding to a specific tissue are locally connected but may be distributed over
different sections of the image. A feature space (domain) representation of tissues
can be generated from an MRI scene sequence. In a feature space representation,
pixels corresponding to a specific tissue are connected as clusters, even though
their spatial locations in the image domain may be far apart. For an MRI scene se-
quence consisting of n images, a feature space representation is generated by
defining an n-dimensional pixel vector for each pixel in the image (spatial) do-
main, using pixel gray levels of the same location from different images in the se-
quence as elements of this vector.

Image analysis can be accomplished using an appropriate feature space
method. Feature space methods can be useful for all three steps of image analysis:
(a) identification of objects; (b) segmentation of objects; and (c) quantitative mea-
surements on objects, to obtain information that can be used in decision making
(diagnosis, treatment planning, and evaluation of treatment). Basics of image pro-
cessing and the interrelationship of the preceding three steps in image analysis are
discussed in Refs. 35–38.

In this chapter, we present a supervised segmentation method that is based
on visualization of the generated feature space (i.e., visualization of the multidi-
mensional histogram of the data), which we call a cluster plot. This constrains
the dimensionality of the feature space. As the dimensionality of the feature
space increases, its visualization becomes more difficult. One- and two-dimen-
sional (1-D and 2-D) feature spaces can be easily visualized with a conventional
histogram and an image whose pixel intensity is proportional to the number of
data points in a certain range (i.e., a 2-D cluster plot). With a little bit more ef-
fort, we may generate a 3-D cluster plot, by drawing three axes of an orthogo-
nal coordinate system in an image, for 3-D perception, and making image pixel
gray levels proportional to the number of data points in certain ranges. Further-
more, we may generate a 4-D feature space, by creating 3-D feature spaces and
showing them in a loop (i.e., using time as the fourth axis). This visualization
will, however, be limited in that the operator cannot easily draw regions of in-
terest (ROIs) on it and find the corresponding pixels in the image domain. More
difficulties will be involved with visualizing feature spaces of dimensions higher
than four. Therefore, we restrict our attention to feature spaces with dimensions
not larger than three.
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Considering pixel intensity features and those extracted from them by ap-
plying a transformation, methods of preparing data for an MRI feature space rep-
resentation can be partitioned into three categories: (a) tissue-parameter-weighted
images [e.g., (14,39)]; (b) explicit calculation of tissue parameters [e.g., (40,41)];
and (c) linear transformations [e.g., generation of color composite images (42,43)
or principal component analysis (PCA) (44)] and nonlinear transformations [e.g.,
angle images (45)].

Both categories (a) and (b) require acquisition of multiple images using spe-
cific MRI protocols. A difficulty with category (b) is that it requires protocols that
are usually different from those routinely used in clinical studies. In addition,
noise propagation, through the required nonlinear calculations, combines with the
model inaccuracies and yields unsatisfactory results (46–48). As illustrated in Ref.
49, because of the nonlinearity of the transformation from pixel intensity space to
tissue parameter space, optimal linear decision functions in the intensity space
translate to nonlinear decision functions in the tissue parameter space. Thus, un-
less these nonlinear decision functions are used, the decision is not optimal.

Category (c) can be applied to any MRI scene sequence and can improve the
clustering properties of the data for the feature space representation while reduc-
ing its dimensionality. However, general purpose transformations found in the lit-
erature are not appropriate for MRI. For instance, a difficulty with the feature
space generated by principal component images is its limitation related to the size
of the objects in the scene. Small objects make slight contributions to the covari-
ance matrix and thus are not enhanced and visualized in the first few principal
component images. The first few principal component images are normally used
for the feature space representation, because they have the best signal/noise ratios
(SNRs). A concern with angle images is the nonlinearity of the transformation that
generates curves, rather than lines, for partial volume regions in the cluster plot;
this complicates the distinction between clusters for partial volume regions and
those for heterogeneous tissues.

Soltanian-Zadeh, et al. (13) have devoted a significant effort toward deriva-
tion of an optimal linear transformation to prepare MRI data for feature space
analysis. It should be noted that an important distinction for feature extraction
methods is whether they need class information or not. PCA does not; hence it is
widely used in other fields as a general purpose approach. The method presented
in this chapter, which is related to discriminant analysis (DA) (50), needs some
class information (signature vectors for normal tissues); hence it has specific com-
patibility to MRI and is most appropriate for this field. The features extracted from
the image define clusters in the feature space. A correspondence exists between
these clusters and the tissue types in the image. We explain how this correspon-
dence is explored, and the scene is segmented using the information present in the
cluster plot. Visualization of the feature space (cluster plot) is therefore critical to
the optimal method.
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Several general purpose unsupervised methods have also been proposed for
segmentation of normal and abnormal tissues from brain MRI. They include clus-
tering approaches such as K-means and fuzzy C-means and neural networks such
as multilayer perceptron, which are general purpose segmentation and classifica-
tion techniques. In this chapter, we present methods that have been specifically de-
veloped for MRI and thus are optimal for MRI. Wherever necessary, these meth-
ods use intraframe and interframe information to achieve best performance. In
developing these methods, vector space notations and methods were used. We
present these notations in the next section.

B. Notations

For presenting mathematical bases of the techniques, we use an n-dimensional
vector space (�n, �), where n is the number of images in the MRI scene sequence.
For example, when dealing with an MRI scene sequence consisting of a T1-
weighted and four T2-weighted spin-echo images for each anatomical location,
we use a five-dimensional vector space. Using the vector space concept, the fol-
lowing representations are introduced. The MRI scene sequence is represented by
pixel vectors. A pixel vector Pjk � [Pjk1 Pjk2 %%% Pjkn]T is a vector whose elements
are the corresponding gray levels of the (j, k)-th pixels in the MR images (see Fig.
2). The image size determines the number of these pixel vectors (e.g., for 

Fig. 2 A schematic representation of a sequence of images of a specific anatomical site
consisting of different materials. As an example, the upper region is considered as the de-
sired region, and a pixel vector is chosen from that region as the desired signature vector.
Similarly, the lower region is considered as the undesired region, and a pixel vector is se-
lected from that region as the undesired signature vector. The large region in the middle is
assumed to be a region of interest, which might be a combination of the desired and unde-
sired tissues or something else. A pixel vector is also shown from the region of interest.
(Source: Ref. 7.)
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256 	 256 images there are 65,536 pixel vectors). The MRI characteristics of tis-
sue types are represented by signature vectors. For image analysis, one is nor-
mally interested in clearly visualizing one of the tissue types (referred to as desired
tissue), whereas other tissue types (referred to as undesired or interfering tissues)
interfere with its visualization. A desired signature vector d � [d1 d2 %%% dn]T is de-
fined as a vector whose i-th element is the average gray level of the desired tissue
in the i-th image. Undesired (interfering) signature vectors ui � [u1i u2i %%% uni]T,
1 � i � m, are similarly defined for the interfering tissues. Finally, vectors Pd

jk and
Pu

lm are pixel vectors from the desired tissue at location ( j, k) and the undesired tis-
sue at location (l, m), respectively. These notations and those defined later are
summarized in a list that follows the following list of abbreviations.

1. List of Abbreviations

AVG: Average
CNR, SNR: Contrast/noise ratio and signal/noise ratio, respectively
CSF: Cerebrospinal fluid
ROI: Region of interest
DROI: Desired tissue ROI
UROI (IROI): Undesired (interfering) tissue ROI
EPV, OPV: Estimated and original partial volumes, respectively
LS: Least squares
MLE: Maximum likelihood estimate
MR, MRI: Magnetic resonance and magnetic resonance imaging/images,

respectively
NS: Neighborhood size
PD, PF: Probabilities of detection and false alarm, respectively
PD, N(H): Proton density
IED, IAD: Interset and intraset euclidean distances, respectively
MMAC: Maximized minimum absolute contrast/noise ratio
MAC: Minimum absolute contrast/noise ratio

2. List of Mathematical Notations

CNRi: The CNR between desired tissue and i-th interfering tissue
d: The desired tissue signature vector
e: The weighting vector for the eigenimage filter
E[%]: The expected value operator
Eˆ[%]: An expected value estimator (here, the sample mean)
EIjk: The gray level of the ( j, k)-th pixel in the eigenimage
m: The number of interfering tissues in the scene
n: The number of images in the MRI scene sequence
N: The number of pixels in the DROI
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Pjk: The gray level of the ( j, k)-th pixel in an image
Pjki: The gray level of the ( j, k)-th pixel in the i-th image
Pjk: A pixel vector (i.e., an n-dimensional vector whose i-th element is Pjki)
Pd

jk: The gray level of the ( j, k)-th pixel in the DROI of an image
Pd

jk: A pixel vector in the DROI
Pu

jk: The gray level of the ( j, k)-th pixel in an UROI of an image
Pjk

ui: The gray level of the ( j, k)-th pixel in the i-th UROI of an image
Pjk

ui: A pixel vector in the i-th UROI
�: The standard deviation of white noise
SNRd: The SNR of the desired tissue
Si: The MRI signal from the i-th tissue
u: An undesired tissue signature vector
ui: The i-th undesired tissue signature vector
Var(%): The variance operator
�Var( %): A variance estimator (here, the sample variance)

Vl: The partial volume of the l-th tissue in a voxel
Vljk: The partial volume of the l-th tissue in the ( j, k)-th voxel
V: The total volume of a voxel
w: The weighting vector for a linear filter
wjk: The zero-mean white noise at the ( j, k)-th pixel of an image
wjki: The zero-mean white noise at the (j, k)-th pixel of the i-th image

II. PREPROCESSING

Preprocessing consists of (a) registration of multiple MRI studies; (b) segmenta-
tion of intracranial cavity from skull, scalp, and background; (c) correction of im-
age nonuniformities; and (d) noise suppression. Methods specifically designed for
these tasks are explained in the following sections.

A. Registration

To follow sequential changes that may occur over time, it is necessary to register
the image sets obtained at different times. Also, if the patient moves between dif-
ferent scans, images should be registered before multispectral image processing
and analysis are applied (see Fig. 3).

Several methods have been proposed for medical image registration [e.g.,
(12,15,51–55)]. These techniques can be partitioned into three categories: (a)
landmark based (point matching); (b) surface based (surface matching); and (c) in-
tensity based (volume matching). Compared with landmark-based methods, sur-
face-based methods do not need landmarks, and compared with intensity-based
methods, they are faster. Most of the surface-based methods use the head surface,
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Fig. 3 An illustration of image registration. A, An axial T1-weighted MRI of a tumor pa-
tient, with skin edges (contour) overlaid. B, Corresponding axial T2-weighted MRI, with
contour of the T1-weighted image overlaid to show the need for registration. C, The T2-
weighted image after being registered to the T1-weighted image, with the contour of the
T1-weighted image overlaid to illustrate the match generated by the image registration
method.
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Fig. 4 Steps of the multiresolution approach for automatic contour extraction. (Source:
Ref. 62.)
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brain surface, or inner/outer surface of the skull to estimate rotation and transla-
tion parameters [see (12,51–53) for details]. The surface is usually characterized
by a set of edge or contour points extracted from cross-sectional images. Manual
drawing of the contours is very time consuming. Automatic extraction of the con-
tour points by standard edge-based, region-based, or classification-based algo-
rithms has shown problems (56). Both region-based and classification-based al-
gorithms are affected by inhomogeneity artifacts. Edge-based techniques are
affected by the partial volume effects creating wide transition zones between tis-
sue types. Researchers have developed a variety of complex and heuristic systems
to overcome these difficulties and to automate the contour extraction procedure
for specific applications (56–60). A thorough survey of the recent work in the area
of contour extraction for intracranial cavity segmentation is given in Ref. (56).

Because of its simplicity and its capability to follow an appropriate path in
the middle of the partial volume regions, an edge-tracking algorithm similar to the
one proposed by Henrich et al. (61) can be used. In using this algorithm, it was
found that this method has difficulties caused by discontinuity of edges in the back
of the eyes and ears and sometimes by edge discontinuities resulted from a previ-
ous surgery (see Fig. 5) or an inadequate field of view. To solve this problem,
Soltanian-Zadeh and Windham (62) developed an automated method that uses a
multiresolution pyramid to connect edge discontinuities. A flowchart of the algo-
rithm is presented in Fig. 4, and an example is shown in Figs. 5 and 6.

Fig. 5 A T2-weighted MRI of a tumor patient in which the edge-tracking algorithm does
not find correct edges because of soft tissue discontinuity. (Source: Ref. 62.)
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Fig. 6 Steps of the multiresolution approach for connecting gaps in MR images. a0–a4,
Skin edges extracted from the MR image shown in Fig. 5 and four lower-resolution ver-
sions of it, respectively. b4, Exterior edge of a4. b3, Points on the exterior edge of a3,
found by selecting edge points in a3 that are less than 2 units of chessboard distance from
a blowup of b4. Similarly, b2 is found using b3 and a2; b1 is found using b2 and a1; and
b0 is found using b1 and a0. (Source: Ref. 62.)
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B. Intracranial Segmentation

The image background does not usually contain any useful information but com-
plicates the image restoration and tissue segmentation/classification and increases
the processing time. It is therefore beneficial to remove the image background be-
fore image restoration and analysis begins. In addition, in brain studies, tissues
such as scalp, eyes, and others that are outside of the intracranial cavity are not of
interest. Hence, it is preferred to segment the intracranial cavity volume from
scalp and background. This segmentation is usually straightforward for brain MRI
studies. Thresholding and morphological operators (35–38) have been used to do
this segmentation.

C. Nonuniformity Correction

MRI brain images acquired using standard head coils suffer from several possible
sources of nonuniformity, including (a) main field (B0) nonuniformity; (b) the
time domain filter applied before Fourier transformation in the frequency encod-
ing direction; (c) nonuniformity caused by uncompensated gradient eddy currents;
(d) transmitted and received radiofrequency (RF) field nonuniformity; (e) RF pen-
etration depth effects; and (f) RF standing wave effects. Simmons et al. (63,64)
have investigated the magnitude of these effects on clustering properties of MRI
data acquired using a GE Signa system. The first effect is usually corrected by us-
ing a multiple spin-echo sequence. Condon et al. (65) have discussed methods for
correcting the second effect. However, because most of the current scanners use
digital filters whose effect on the image is limited to two or three pixels at the edge
of the image, this correction is usually unnecessary. The third effect on modern
MRI systems, such as GE Signa, that are equipped with shielded gradients is small
for spin-echo sequences at long repetition times used in tumor studies. The fourth
effect needs to be estimated and used to correct MRI scans (66). Approaches for
estimating this nonuniformity are explained in the next paragraph. The fifth and
sixth effects are normally negligible in tumor patient studies; thus, no correction
is necessary for them.

Ignoring the random noise, the measured MRI pixel gray level Pij can be re-
lated to the true MRI signal by the relation Pij � AijIij, where Aij is the nonunifor-
mity factor at location (i, j) in the image and Iij is the artifact-free intensity value
at the same location. A number of approaches to the correction of RF-induced in-
tensity variations have been proposed [e.g., (67–73)]. All of these methods rely on
the division of the acquired image by a reference image that approximates the
nonuniformity profile Aij but differ in the way the reference image is obtained.

One approach is to use a water or oil phantom. These phantoms are cylinder
shaped plastic containers of about the same size as an average human head (about
20 cm in diameter and 25 cm in height) filled with water or solid oil. Using an oil
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phantom compared with a water phantom has the advantage of avoiding spurious
RF penetration depth and standing wave effects. Both of these phantoms have lim-
itations associated with changing nonuniformity pattern over time and loading of
the coil. Therefore, approaches such as those explained in the following that esti-
mate the nonuniformity pattern from the acquired images (in a reasonable amount
of time) are more appropriate.

1. Assuming that the inhomogeneity in the RF coil sensitivity manifests it-
self as a low-frequency component, Aij is estimated by smoothing the
image using a 33 	 33 kernel of 1’s (69). We have modified this ap-
proach by not averaging the background pixels to avoid the artifacts
generated around the outside of the brain. Also, cerebrospinal fluid
(CSF) and other high-contrast regions are replaced by the average of
white and gray matter values to avoid other edge artifacts.

2. Making the assumptions that T1, T2, and proton density (PD) values for
a single tissue type do not vary significantly across a particular slice and
that reference points for at least one tissue type can be identified across
the image, an intensity surface is fitted to the reference points to esti-
mate the nonuniformity profile. Two methods (direct and indirect) have
been proposed (70). In the direct method, the user selects multiple
points to define a tissue type across the field of view. In the indirect
method, the user selects an initial point, and the reference points are se-
lected automatically throughout the image using a similarity criterion.
Then, using the basis functions, Fi � di

2 ln(di), where di is the euclidean
distance, an intensity pattern is fitted to the reference points by a least
squares fit. This method has also been used by researchers such as No-
cera and Gee (74).

D. Tissue Inhomogeneities

A tissue type may have biological variations throughout the imaged volume. For
example, biological properties of white matter in the anterior and posterior of the
brain are slightly different. A tissue type may also have biological heterogeneity
in it; many brain lesions are heterogeneous in nature. These cause variations of
signal intensity for a single tissue in the imaged volume. The feature space repre-
sentation of the entire volume may therefore be spread out (i.e., clusters for dif-
ferent tissues may overlap). Sources of this variation include the difference in the
proton density and T1 and T2 relaxation times from voxel to voxel. These differ-
ences generate a different multiplicative factor in image gray levels from voxel to
voxel, and application of a ratio filter seems appropriate (5). However, in general,
because of these effects, feature space analysis is not recommended for the entire
3-D volume in one stage; superior results may be obtained using a slice-by-slice
analysis approach.
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E. Noise Suppression

Noise limits the performance of both human observers and computer vision sys-
tems. As such, noise should be suppressed before inputting data to image seg-
mentation and classification algorithms. To reduce the computation time, noise
suppression is performed after intracranial volume segmentation. General pur-
pose filters such as low-pass, Weiner, median, or anisotropic diffusion filters may
be used. However, an optimal filter specifically designed for MRI (75) generates
superior results. We explain this filter next.

The filter is a multidimensional nonlinear edge-preserving filter. It has been
specifically developed for multiparameter (multispectral) MR image restoration
(noise suppression) in which multiple images of the same section are processed to-
gether. The filter uses both intraframe (spatial) and interframe (temporal) infor-
mation by considering a neighborhood around each pixel and calculating the eu-
clidean distance of each pixel vector in this neighborhood from the pixel vector in
the center and comparing the result with a preset threshold value. The threshold
value is found by calculating probabilities of detection (PD) and false alarm (PF).
In applications for which a good model exists for interframe information (e.g., the
exponential model for multiple spin-echo images), the filter uses the model. It also
uses the widely used zero-mean white gaussian noise model for the statistical
noise. Details of the method for multiple spin-echo sequences are explained be-
low.

For a multiple spin-echo sequence with n echoes, the signal Si, arising from
a region with tissue-specific parameters N(H) and T1 and T2 relaxation times in
the ith image is given by

Si � N(H) 
1 � (�1)n
2 ∑
n

l�1
(�1)le 
 e ��

	 e , 1 � i � n

(1)

where TR � repetition time and TE � echo time are pulse sequence parameters.
Considering the additive white noise, the intensity of the jk-th pixel in the

ith image (Pjki) can be represented by

Pjki � Mjke 
 wjki, 1 � i � n (2)

where Mjk is a function of T1 and N(H) of the tissue at position ( j, k) and TR of the
pulse sequence, and wjki is a white gaussian noise. The model in Eq. (2) provides
a means for obtaining a least-square (LS) or maximum-likelihood (ML) estimate
of the pixel intensities, because it shows the relationship between corresponding
pixels from different images in the sequence that we refer to as interframe (tem-

�iTE
�T2 jk

�iTE
�T2

�TR
�T1

(2l�1)TE�2TR
��2T1
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poral) information. It should be noted that for the gaussian model in Eq. (2), the
ML estimate coincides with the LS estimate (76). Intraframe (spatial) information
refers to the relationship between pixels from a particular tissue within the same
image in the sequence. This information is provided by the anatomical structures
visualized in the image.

The filter works as follows. A neighborhood around each pixel is consid-
ered. The euclidean distance of each pixel vector in the neighborhood from the
pixel vector in the center is found. If this distance is smaller than a specific thresh-
old value, ), the pixel vector is considered in the LS or ML estimation, otherwise
it is not. The threshold ) is selected on the basis of the noise standard deviation �
in the images, the contrast between adjacent tissues, and partial volume averaging
effects that are reflected in the sharpness of edges in each image. In practice, ) is
calculated on the basis of the probabilities of detection and false alarm. An ap-
proximate LS or ML estimate for the average of the contributing pixel vectors is
determined and saved for all of the contributing pixel vectors, using the model in
Eq. (2). Then, the neighborhood is moved, and the procedure is repeated. Finally,
the average of several estimates obtained for a particular pixel vector is calculated
to obtain the filter output for the pixel vector.

In the derivation of the filter, we have considered an approximate LS or ML
estimate, because the exact estimate requires solving a nonlinear system of equa-
tions, which is computationally intense. To do the approximation, we factor the

signal Mjk exp
��T
i

2

T

jk

E
�� out of Eq. (2) and take its natural logarithm. Using a Tay

lor series expansion for ln(1 
 x) and neglecting x2 and higher order terms, be

cause Mjk exp
��T
i

2

T

jk

E
��/wjki * 1 thus x � wjki/Mjk exp
��T

i

2

T

jk

E
�� + 1, we get

ln(Pjki) � ln�Mjke 	 
 ln�1 
 	

�ln�Mjke 	 
 (3)

� ln(Mjk) � �
T
iT
2
E

jk
� 
 wsjki � ajk 
 bjki 
 wsjki

Note that wsjki is also zero-mean and gaussian distributed, because it is a scaled
version of wjki. So, the maximum likelihood estimate of ln(Pjki) is identical to a
weighted least-squares estimate for the line ajk 
 bjki. Weights for the least

squares estimate are 
Mjk exp
��Ti
2
T

jk

E
���

�1
, which we approximate by (Pjki)�1 [See

Eq. (2)].

wjki
�
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�
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In the selection of the threshold ), we consider the probabilities of detec-
tion PD and false alarm PF. It is ideal to have a PD equal to 1.0 and a PF equal
to 0.0. The probability of detection PD is the chance of correctly identifying a
pixel vector Pd

jk in the neighborhood that represents the same tissue type as the
pixel vector Pd

lm in the center. These pixel vectors are assumed to be uncorre-
lated and gaussian distributed, with mean vector d and covariance matrix �2 I.
The difference vector Dd

jk � Pd
lm � Pd

jk is therefore gaussian distributed, with
mean vector 0 and covariance matrix 2�

2 I. The square of the euclidean distance
ED2

jk � � Dd
jk �2 between these pixel vectors has a scaled chi-squared distribution

with n degrees of freedom, a mean of 2n�2, and a variance of 8n�4 (77). Using
the threshold value ) for the euclidean distance, EDjk yields the following prob-
ability of detection PD:

PD � �
0

2�2
——
)2

ƒx(x)dx � �
0

2�2
——
)2

x
n–
2
�1e�

x–
2 dx (4)

The probability of false alarm PF is the chance of wrongly classifying a
pixel vector in the neighborhood (i.e., the probability of misclassifying Pu

jks repre-
senting tissue us) into tissue class d corresponding to pixel vector Pd

lm. As before,
these pixel vectors are assumed to be uncorrelated and gaussian distributed, with
identical covariance matrices �2 I but different mean vectors u and d, respec-
tively. The difference vector Du

jk � Pd
lm � Pu

jk is then gaussian distributed with
mean vector m � d � u and covariance matrix 2�

2 I. The square of the euclidean
distance between these pixel vectors ED2

jk � � Du
jk �2 has a noncentral chi-squared

distribution. Using standard techniques for deriving probability density functions
(pdf) (78), the pdf for the square of the i-th component of the difference vector di-
vided by 2�2 is obtained as

ƒYi(y) � �
2�

1
2���y�
� 
e

�
(��y�

2
� mi)

2


 e
�

(��y�
2
� mi)

2

�,

y � 0, 1 � i � n

(5)

where mi is the ith component of the difference vector m divided by �2��. The
pdf ƒY (y) for the euclidean distance squared ED2

jk divided by 2�2 is found by con-
volving n pdfs given in Eq. (5), i.e.

ƒY (%) � ƒY1
(%) � ƒY2

(%) � %%% � ƒYn
(%) (6)

Finally, the probability of false alarm PF is

PF ��
0

2�2
——
)2

ƒY(y)dy (7)

1
�
2

n–
2 �(�

n
2

�)
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Fig. 7 O1–O5, Four T2-weighted multiple spin echo images (TE/TR � 25–100/2000
msec) and a T1-weighted image (TE/TR � 20/500 msec) of a tumor patient, respectively,
after registration and intracranial segmentation. A, Transformed image (eigenimage) cre-
ated for the lesion by applying the optimal transformation method explained in Sec. VB to
images O1–O5. R1–R5, Noise-suppressed images generated using the filter described in
Sec. IID. B, Transformed image (eigenimage) created for the lesion by applying the opti-
mal transformation method to images R1–R5. C, Difference image generated by subtract-
ing image B from image A. Note the quality improvement in the original images and the
lesion eigenimage generated by the noise suppression filter. Image C illustrates that the fil-
ter has suppressed the noise without removing useful image information.
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Theoretical and experimental results have shown that when processing MRI
scene sequences with four or five images per slice, a 9 	 9 neighborhood and a
threshold value of ) � 4� generates optimal results (75).

1. An Example

Fig. 7 shows a sequence of four T2-weighted and a T1-weighted MRI of a tumor
patient after registration and intracranial segmentation. It also shows noise-sup-
pressed images generated using the filter described earlier. Transformed images
(eigenimages) created for the lesion by applying the optimal transformation
method (explained in Sec. VB) to the original and noise-suppressed images and
the corresponding difference image are also shown. Note the quality improvement
in the original images and the lesion eigenimage generated by the noise-suppres-
sion filter. This figure illustrates the significance of noise suppression before
eigenimage filtering.

III. CONTRAST ENHANCEMENT

Contrast/noise ratio is one of the standard measures of MR image quality. There
are at least three approaches for improving the image CNR: (a) by injecting con-
trast agents to the patient; (b) by optimizing MRI protocols and pulse sequence pa-
rameters; and (c) by combining multiple MR images obtained in clinical studies.
Image combination techniques can be applied to an existing set of MR images
without any extra image acquisitions or contrast agent administration. Also, they
are applied off line, thus do not take any extra time from the patient. Here, we ex-
plain an optimal linear method for MR image combination, which is traditionally
named a “maximum CNR filter.”

The maximum CNR filter has its roots in signal processing, where it was
originally used for detecting one of two known signals in white gaussian noise
(79). There is no unique extension of the filter to a general case of having more
than two tissues in the scene (multiple interfering case). In many clinical appli-
cations there exist multiple interfering tissues. For example, in brain studies,
considering pathology as the desired tissue and normal tissues (white matter,
gray matter, and CSF as interfering, we have a scene with three interfering tis-
sues.

A reasonable approach for extending the filter to the case of multiple inter-
fering tissues is to define the maximum CNR filter as one that provides the largest
value for the minimum absolute CNR (max.{min.{ | C N R | }}) between a desired
tissue and multiple interfering tissues (80). We refer to this filter as maximized
minimum absolute CNR (MMAC) (20). This technique requires a search among
several possibilities to find the optimal filter.
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Brown et al. (80) used a parametric method to find the optimal weighting
vector for the MMAC filter. They did not solve the problem for the case of hav-
ing more than two interfering tissues (or CNRs of interest) in the scene. Note that
if one is interested in CNRs between interfering tissues in addition to the CNRs
between the desired and interfering tissues, then even for the case of two interfer-
ing tissues in the scene there are three CNRs to be considered. Their approach
lacks an easy derivation of the analytical solution for the general case of multiple
interfering tissues.

Soltanian-Zadeh and Windham (20) have developed a new approach that
derives the analytical solution for the general case of multiple interfering tissues.
Major contributions of Ref. 20 are: (a) a general formulation of the MMAC filter
for an arbitrary number of interfering tissues, as constrained optimization prob-
lems and a formula for the number of candidate weighting vectors; and (b) a novel
solution using the simple method of Gram-Schmidt orthogonalization.

Here, we present the theoretical basis for the MMAC filter. We then present
a clinical application of the technique. We calculate theoretical CNRs of the com-
posite images and compare them with those of the actual images. We show all 13
composite images for a representative study to illustrate possible use of these im-
ages for medical image analysis and interpretation.

A. Problem Formulation

Linearly transformed images (LTIl, l � 1, %%%, M, where M is the number of trans-
formed images) are weighted sums (linear combinations) of original images in the
sequence (Pt, t � 1, %%%, n). Using the notations defined in Sec. IB, this is written
as:

LTIl � ∑
n

t�1
WltPt, l � 1, %%%, M (8)

where {Wl � (Wl1 Wl2 %%% Wln)T, l � 1, %%%, M} are the transform coefficients
(weighting vectors).

The CNR between the desired tissue and i-th interfering (undesired) tissue
(CNRdui) is defined as (46)

E(Pd
jk) � E(Pjk

ui)
C N Rdui

�

�

 (9)

where E(Pd
jk) and V ar(Pd

jk) are the mean and the variance of pixel values in the
DROI, respectively. Similarly, E(Pjk

ui) and Var(Pjk
ui) are the mean and the variance

of pixel values in the i-th interfering ROI (IROIi), respectively.

Var(Pd
jk) 
 Var(Pjk

ui)
���

2
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We make the following assumptions that were also made in many articles
[e.g., (46,81,82)] (a) statistical noise in tissue regions of an MRI scene sequence
can be modeled as a multidimensional zero-mean white noise field with standard
deviation �; and (b) signature vectors are a priori known fairly well. Then, the
standard formula for noise propagation (83,84) shows that the CNRdui in the l-th
filtered image is expressed by

C N Rl
dui

� � (10)

where % represents the usual inner product.
The ultimate goal is to find a weighting vector that maximizes the smallest

of {|C N Rl
dui

|, i � 1, %%%, m}. For each i, CNRl
dui

is a nonlinear functional of Wl.
Defining another nonlinear functional MAC(Wl) as the minimum of {| C N Rl

dui
|,

i � 1, %%%, m}, the goal would be to find the global maximum of MAC, which we
refer to as the objective functional. Usually, this objective functional is not con-
cave and has several local maxima. The possible weighting vectors corresponding
to these maxima are from one of the following m classes.

• Class (1): At a Wl, which gives the maximum value for a particular | C N
Rl

duk
|. This occurs when Wl provides larger absolute values for all other 

C N Rl
dui

, i � k. There are 20 (1
m) � m possibilities for this situation. Here

(p
q) is the number of possible combinations for choosing q objects from 

p objects.
• Class (2): At a Wl, which provides | C N Rl

duk | � | C N Rl
duk� |. This hap-

pens when Wl provides larger absolute values for all other C N Rl
dui

, i �
k, and i � k�. There are 21 (1

m) possibilities for this class.
�
• Class (r): At a Wl, which gives equal absolute values for r C N Rls, i.e., |

C N Rl
duk1

| � %%% � | C N Rl
dukr

|, 1 � k1, k2, %%%, kr � m. There are 2r�1 (r
m)

possibilities for this situation.
�
• Class (m): At a Wl, which provides equal absolute values for all C N Rls

(i.e., | C N Rl
du1

| � | C N Rl
duk

| for all 2 � k � m). There are 2m�1 (m
m) �

2m�1 possibilities for this class.

The total number of possible weighting vectors (M), corresponding to local
maxima of the objective functional, is therefore

M � ∑
m

i�1
2i�1 �m

i 	 � �
3m

2
� 1
� (11)

Wl%(d � ui)
��
�(Wl %Wl)

1–
2

Wl %d � Wl%ui
��

�(Wl %Wl)
1–
2
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B. Solution

To find the weighting vector corresponding to the global maximum, all of the
weighting vectors for the possible local maxima are found, and the corresponding
C N Rls are calculated and compared. To find the candidate (possible) weighting
vectors, we note that the problems in class (1) are unconstrained optimization
problems whose solutions are readily obtained by recalling the maximum CNR
filter (46). All other classes specify constrained optimization problems, which are
solved by use of the theorem given in Ref. 20.

As an example, we consider the first problem in class (r), which is

max. �C N R12 � � (12)

subject to the constraint that

C N R12 � C N R13 � C N R14 � %%% � C N R1r (13)

Eq. (13) is equivalent to the following (r � 2) constraints:

Wr1%(s2 � s3) � 0

Wr1%(s2 � s4) � 0
(14)

�
Wr1%(s2 � sr) � 0

Hence, we have a constrained optimization problem with (r � 2) constraints. By
the theorem given in Ref. 20, the solution is

Wr1 � (s1 � s2) � (s1 � s2)p (15)

Here (s1 � s2)p represents the projection of (s1 � s2) onto the subspace defined by
{(s2 � s3), (s2 � s4), %%%, (s2 � sr)} which is obtained using Gram-Schmidt or-
thogonalization.

1. An Example

Fig. 8 shows the best 3 original images and all of the 13 candidate images gener-
ated for the MMAC filter. It can be seen that in some of the composite images 
tumor compartments and their extents are visualized better than any of the origi-
nal images. Comparison of CNRs of the original and composite images has shown
that the MMAC filter improves the MAC value by about 30% on average.

IV. FEATURE EXTRACTION

Brain tumors are normally large, and detection of their existence is simple. They
may be found by a symmetry analysis of the image gray levels in the axial images,

Wr1%(s1 � s2)
��
�(Wr1%Wr1)

1–
2
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because they generate significant gray level asymmetry in these images. Detection
of multiple zones in the tumor and accurate estimation of the tumor extent are,
however, difficult, and different image analysis approaches may be used for this
purpose. We present the most relevant image analysis techniques and the issues
related to this topic in the remainder of this chapter.

Fig. 8 MMAC filter applied to a tumor patient study. a–c (best original images), two
spin-echo T2-weighted (TE/TR � 25,100/2500 ms) and one T1-weighted (TE/TR �
25/500 ms) MRI of a brain tumor patient, respectively. Here, the desired tissue is the tumor
and the interfering tissues are white matter, gray matter, and CSF. d–p (composite im-
ages), Thirteen composite images obtained using the candidate weighting vectors for the
MMAC filter.
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A critical step in this analysis is feature extraction. Conventional methods
include explicit calculations of the tissue parameters (40,41); tissue
parameter–weighted images (14,39); principal component images (44,47); and
angle images (45). Explicit calculations of the tissue parameters is not usually rec-
ommended (and not explained in this chapter) because of the following reasons:
(a) this approach requires data using several specific pulse sequences that are dif-
ferent from routine clinical protocols (40,41); (b) the results are prone to noise
propagation through the nonlinear calculations involved (48); and (c) the optimal
linear decision boundaries for the resulting feature space do not match with those
of the original data (49). Clinically feasible techniques are described next.

A. Tissue Parameter-Weighted Images

Using a multiple spin-echo pulse sequence with a short echo time (e.g., TE � 25
ms) and a long repetition time (e.g., TR � 2500 ms), a sequence of four images
(corresponding to TE � 25, 50, 75, 100 ms) can be acquired. The contrast in the
first image is mainly due to the proton density difference between tissues, thus it
is called proton density weighted. The contrast in the third and fourth images is
mainly due to the T2 relaxation difference between tissues, thus it is called T2-
weighted. Likewise, using a single spin-echo pulse sequence with a short echo
time (e.g., TE � 20 ms) and a moderate repetition time (e.g., TR � 500 ms), a T1-
weighted image can be acquired. These three images define a 3-D feature space
representation of the tissues. Alternatively, a T1-weighted image can be acquired
using an inversion recovery pulse sequence, with a short echo time (e.g., TE � 12
ms), moderate inversion time (e.g., TI � 500 ms), and long repetition time (e.g.,
TR � 1500 ms).

B. Principal Component Images

Principal component analysis is a linear transformation that has been applied in a
variety of fields including MRI (44,47). It has been used in digital image process-
ing as a technique for image coding, compression, enhancement, and feature ex-
traction (85–88). For MRI feature space representation, PCA generates linear
combinations of the acquired images that maximize the image variance. The
weighting vectors for these linear combinations are the normalized eigenvectors
of the sample covariance matrix estimated using all of the acquired images. The
number of principal component images equals the number of acquired images, but
the variance (equivalently, SNR) of the principal component images sharply de-
creases from the first image to the last. The first three principal component images
contain most of the information and may be used to define a 3-D feature space rep-
resentation of the tissues.
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C. Angle Images

Angle images are defined by calculating a set of parameters for each pixel vector
in an orthogonal subspace defined by the constant vector (cv � [1, 1, %%%, 1]T) and
the signature vectors for normal tissues (si, i � 1, %%%, M) that are encountered in
a study, (e.g., white matter, gray matter, and CSF for the brain) (45). The orthog-
onal subspace is defined by inputing cv and si into a Gram-Schmidt orthogonal-
ization procedure.

Among all the possibilities for a 3-D feature space, it has been found that the
feature space generated by (a) the euclidean norm of each pixel vector (b) the 
angle between each pixel vector and the constant vector; and (3) the angle between
each pixel vector and the orthogonal complement of white matter to the constant
vector best separates normal and abnormal tissues in a brain study (45).

D. Optimally Transformed Images

Soltanian-Zadeh et al. (13) have recently developed an optimal feature space
method for MRI. In this method, a multidimensional histogram (cluster plot) is
generated, and clusters are found and marked on the result by visual inspection.
Because of visualization limitations, a 3-D cluster plot is usually used. To gener-
ate such a cluster plot, three images need to be extracted for each slice from the
original MRI study, which may have up to six images per slice. The proposed
method for optimally extracting these features (images) is presented next.

1. Problem Formulation

In the derivation of the transformation, we use the following notation: (a) upper-
case boldface letters, such as V, to refer to a vector space; (b) uppercase sans
serif letters, such as V, to refer to a matrix each of whose columns is a point in V;
and (c) lowercase boldface letters, such as v, to refer to the vector coordinates of
a point in V.

Let V and W be n-dimensional and p-dimensional real vector spaces, re-
spectively. Then points in V and W are vectors in �n and �p, respectively. Fur-
ther assume that a collection of data can be classified or categorized in terms of M
predefined groups, with data points in a group more similar to other data points in
the group than to the data points in other groups. Let each data category have a tar-
get position in W, about which transformed data are expected to be well clustered.
Denote the number of data points in each category as N S( j), j � 1, %%%, M. A lin-
ear transformation T is desired that maps points in W to points in V as follows:

c � Tv (16)

The transformation matrix T is to be found such that the ratio of interset distance
(I E D) to intraset distance (I A D) is maximized. (The ratio of I E D to I A D is
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a standard criterion for quantifying clustering properties of data (89)—see Fig. 9.)
This problem can be formulated as the following constrained optimization 
problem

Maximize �
I
I

E
A

D
D

� (17)

Subject to cj � Tv�j, 1 � j � M (18)

where cj is the target position for the average vector of the jth group (v�j) defined
by

v�j � �
N S

1
( j)
� ∑

NS(j)

l�1
vl

j (19)

with vl
j being the lth data point in the jth group.
The I E D reflects the average distance between different data groups. It is

defined as the average of distances between each pair of the average vectors from
different groups (89) in the transformed domain:

I E D2 � �
M(M

2
� 1)
� ∑

M

j�1
∑
M

i�j
1
�Tv�j � Tv�i�

2 (20)

where v�j and v�i are the average vectors for the jth and ith groups, respectively, and
� % � represents the euclidean distance. This definition makes the interset 

Fig. 9 Transformation of categorical data to target positions and improving its clustering
properties by reducing its dimensionality. (Source: Ref. 13.)
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distance independent of the number of points in each data group. This is an im-
portant property in that it avoids dependency of the transformation to the object
size in contrast to principal component analysis. The I A D reflects the average
variance of the data points in each group. It is defined as the average of distances
between each vector in a group and the average vector from the same group, again
in the transformed domain:

I A D2 � �
ΣM

j�1

1
N S( j)
� ∑

M

j�1
∑
NS( j)

i�1
�Tvi

j � Tv�j�
2 (21)

where vi
j is the ith data point in the jth group.

2. Solution

To attain easy distinction between normal and abnormal tissues, we may project
the average vectors of the normal tissues onto prespecified locations (e.g., on 
the axes of the new subspace). This is sometimes referred to as projection of 
categorical data to target positions. Once target positions are specified, I E D is
fixed. Therefore, maximizing the ratio of I E D to I A D will be equivalent to 
minimizing I A D. Minimizing I A D, in turn, will be similar to minimizing the
mean-square error between specified target positions in W and projections of 
the measurement data (90). The solution will be obtained by taking partial deriva-
tives of I A D2 with respect to elements of T and solving the resultant systems of
equations.

3. Special Case

A special case, with an analytical solution, is defined if M � p, and we decide to
assign the target positions for normal tissues to be on the axes of the new subspace,
(i.e., ci � [0, %%%, 0, ci, 0, %%%, 0]T with ci � 0 in the ith row). This will require

ti%v�j � 0, 1 � j � M, j � i, and ti%v�i � ci (22)

where ti is the ith row of the M 	 n transformation matrix T. For this case, it can
be shown that I E D2 simplifies to

I E D2 � ∑
M

i�1
�ci�

2 (23)

Using the white noise gaussian model with standard deviation � for MRI noise
simplifies I A D2 to

I A D2 � �2 
∑
M

i�1
�ti�

2� (24)
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With an additional constraint that �ti� � 1, 1 � i � M, it can be shown that Eq.
(17) and Eq. (18) may be equivalently formulated as

Maximize , 1 � i � M (25)

Subject to ti%v�j � 0, 1 � j � M, j � i (26)

In this formulation, {�ti� � 1, 1 � i � M} is equivalently considered in the prob-
lem formulation by using �ti� � [ti%ti]

1–
2 in the denominator of the objective func-

tion Eq. (25). (See Ref. 91 for a mathematical proof of this equivalence.) Solta-
nian-Zadeh and Windham (20) have derived analytical solutions to a class of
optimization problems, which are in the form given in Eq. (25) and Eq. (26).

E. Discriminant Analysis Images

For a (p 
 1)-class problem, the natural generalization of Fisher’s linear discrim-
inant involves p discriminant functions. Similar to the optimal transformation de-
scribed earlier, the projection is from n-dimensional space to a p-dimensional
space. However, the objective function is defined using within (SW) and between
(SB) scatter matrices [50]:

SW � ∑
p
1

i�1
Si (27)

where

Sj � ∑
NS( j)

i�1
(vi

j � v�j)(vi
j � v�j)T (28)

and

SB � ∑
p
1

j�1
N S( j)(v�j � v�)(v�j � v�)T (29)

where

v� � �ΣN
1
S( j)
� ∑

p
1

i�1
N S(i)v�i (30)

To find the transformation matrix T, the following objective function is
maximized.

J(T) � (31)
|TSBTT |
��
|TSW TT |

ti%v�i
�
�[ti%ti]

1–
2
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It has been proved in Ref. 92 that the rows of T (i.e., ti) can be found by numeri-
cally solving the following generalized eigenvalue problem:

SBti � �iSWti (32)

Because the determinant is the product of the eigenvalues, it is the product
of the variances in the principal directions, thereby measuring the square of the
hyperellipsoidal scattering volume (50). Eq. (31) therefore represents the ratio of
products of between-class variances to the products of within-class variances.

The interesting point is that if the within-class scatter is isotropic, the eigen-
vectors are the eigenvectors of SB that span the subspace defined by the vectors v�i

� v�. The rows of T can be found by applying the Gram-Schmidt orthogonaliza-
tion procedure to p vectors {v�i � v�, i � 1, %%%, p} (50). This is similar to the “Spe-
cial Case” explained earlier, except that instead of normal tissue signature vectors,
linear combinations of them are used in the Gram-Schmidt orthogonalization pro-
cedure. Also, four tissues are needed instead of three. Because there are only three
normal tissues in the brain, the DA transformation will depend on the pathology,
and thus the resulting feature space and the location of the clusters changes from
study to study.

Note that the solution is not unique, because rotations and scaling of the
axes do not change the value of J(T). However, for the optimal transformation de-
rived in the previous section the solution is unique, because we fixed the location
of normal tissue clusters. Also, note that instead of p known tissues needed by the
proposed approach, discriminant analysis needs p 
 1 known tissues.

1. Examples

The effectiveness of the preceding feature extraction techniques in brain tumor
studies is demonstrated in Ref. 13. Here, using the analytical solution for the spe-
cial case presented in Sec. IVD, cluster plots for a phantom and a human brain 
are generated and shown in Figs. 10–12 and 21, respectively. Note how well clus-
ters corresponding to all of the solutions in the phantom have been visualized in
the cluster plot and are segmented by the method. Also, in the human study it can
be seen that clusters for normal tissues, their partial volume regions, and zones of
the lesion are clearly visualized in the cluster plot and appropriately segmented by
the method.

V. IMAGE SEGMENTATION

Tumor segmentation methods are mainly region based. They use MRI pixel in-
tensities or features extracted from them as representatives of biological proper-
ties of tissue. Image pixels are classified into different regions on the basis of these
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features. Classification is done using a decision method such as those explained in
the next section.

A. Decision Engine

Because the gaussian model has been widely used to characterize the MRI noise
(46,49,80,82), and our own experience has also illustrated its validation
(5,7,9,10), we have been using statistical pattern classification methods that have
sound mathematical bases. These methods are presented next.

Three approximations to the optimal Bayes method (89) can be used: (a)
minimum distance pattern classifier using standard euclidean distance; (b) mini-
mum distance pattern classifier using generalized euclidean distance (each coor-
dinate is normalized to the noise standard deviation in that direction); and (c) max-
imum likelihood classifier (MLC). These techniques are similar to those used in
multispectral satellite data (14). Because the first and second methods can be con-
sidered special cases of the third method, we briefly review the latter.

Fig. 10 a–e, Four T2-weighted multiple spin echo images (TE/TR � 25–100/2000 ms)
and a T1-weighted image (TE/TR � 20/500 ms) of a solution phantom. f–j, Noise-sup-
pressed images generated using the filter described in Sec. IID. k–m, Transformed images
created by applying the optimal transformation explained in Sec. VB, using the signature
vectors for water and solutions with maximum concentrations. (Source: Ref. 99.)
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The MLC classifies multivariate vectors by evaluating the probability for
each class membership using statistics of the training regions (93,94). The deci-
sion function for the classifier is

di(x) � exp 
��
1
2

� (x � x�i)T K i
�1 (x � x�i)� (33)

where x is the multivariate sample that is being classified, x�i is the sample mean
vector for the ith tissue type calculated from the transformed images, Ki and |Ki|
are the sample covariance matrix and its determinate, n is the number of images
in the scene sequence, P(i) is the a priori probability of class i, and T means trans-
pose. The sample mean vectors and sample covariance matrix are estimated using

P(i)
��
(2�)n/2|Ki|1/2

Fig. 11 Cluster plot generated by the optimal transformation explained in Sec. IVD.
1–16, Segmented objects (water, different concentrations of CuSO4, and CuSO4 plus crea-
tine). (Source: Ref. 99.)
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the training data sets, and P(i) is assumed to be equal for all classes. The tissue i
for which di(x) (equivalently P(i | x)) is the highest is assumed to be the most prob-
able class. When Ki is a diagonal matrix or a scaled version of the identity matrix,
the above approximate classifiers (b) or (a) are obtained, respectively. Also, be-
cause P(i)/(2�)n/2 |Ki |1/2 is constant, the maximum of di(x) coincides with the 
minimum of (x � x�i)TKi

�1(x � x�i), which is called the Mahalanobis generalized
distance (89).

B. Supervised Methods

In supervised methods, the operator has a significant interaction with the com-
puter. He or she analyzes the data slice by slice. This has the advantage of having
visual control on what is happening throughout the imaged volume and the disad-
vantage of being time consuming and operator dependent. Operator dependency
can be minimized by designing a step-by-step protocol that is followed closely by
the operator.

A variety of supervised methods can be designed for MRI segmentation. As
an example, we present the method we have developed for brain studies based on
the optimal transformation presented in Sec. IVD.

Fig. 12 Structure of the solution phantom shown in Figs. 10 and 11. W refers to water,
and numbers are actual concentrations of CuSO4 in millimole. On the right hand side, there
exist CuSO4 solutions, and on the left hand side, there exists CuSO4 solutions plus 50 mil-
limole of creatine. (Source: Ref. 99.)
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1. The operator draws a sample ROI for each of the normal tissues (white
matter, gray matter, and CSF) over the slice that he or she wants to an-
alyze. These ROIs may be small but should be carefully drawn to in-
clude pure pixels only (i.e., without any partial volume averaging).

2. The computer program finds the sample mean and standard deviation
of the pixel gray levels in each ROI for every image in the sequence. It
then defines signature vectors for the normal tissues, using the mean
values.

3. The operator specifies target locations for each of the normal tissues.
The computer program finds the minimum mean square error transfor-
mation to these target positions, applies it to the images of the slice 
under consideration, and then generates a multidimensional (3-D for
the brain) feature space representation (i.e., a cluster plot).

4. The operator draws ROIs for any clusters he or she finds in the cluster
plot. His or her a priori knowledge regarding the location of the clusters
for normal tissues will help him or her in identifying clusters corre-
sponding to partial volume pixels and abnormal tissues (see Figs. 11
and 21).

5. The computer program finds pixels in the image domain that corre-
spond to each of the ROIs drawn over the clusters and generates the 
corresponding region in the image domain for each cluster.

6. The computer program uses the statistics (sample mean and covariance
matrix) of the pixels corresponding to each region and using the eu-
clidean, generalized euclidean, or Mahalanobis generalized distance,
assigns each pixel in the image domain to one of the classes. It then as-
signs an integer number (equivalently, a color) to all pixels in each
class. Segmentation results may be presented as multiple binary images
each representing a segmented region (see Figs. 11 and 21). They may
also be presented as a color image that is not shown here because of
publication limitations.

1. Optimal Method for Partial Volume Estimation

To determine the tumor extent, the amount of tumorous tissue within each voxel
needs to be found. In the following sections, we present MRI partial volume model
and the optimal method for extracting partial volume information from MRI.

2. Partial Volume Model

The MR signal S from a voxel containing m different tissues is given by Ref. 95

S � ∑
m

l�1
��

V
V

l
�	Sl (34)
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where Vl is the volume of the l-th tissue within the voxel, V is the total volume of
the voxel, and Sl is the signal from the l-th tissue. The gray level Pjk of the ( j, k)-
th pixel (corresponding to the ( j, k)-th voxel) in an MR image is given by

Pjk � E[Pjk] 
 wjk � ∑
m

l�1
��

V
V
ljk
�	 Sl 
 wjk (35)

where Vljk is the partial volume of the l-th tissue in the ( j, k)-th voxel, and wjk rep-
resents statistical noise that is assumed to be an additive zero-mean white gaus-
sian noise field, uncorrelated between different scenes of the same MRI sequence,
with standard deviation �. Note that E[Pjk] is deterministic but unknown, whereas
the noise wjk is stochastic, so that the pixel gray level Pjk is the sum of a deter-
ministic value (to be estimated) and noise. We use the notation E[Pjk] to denote
the original, deterministic value of the pixel gray level, which contains informa-
tion pertaining to partial volume averaging effects.

Extraction of partial volume averaging effects is necessary for robust inter-
pretation and analysis of MR images, as well as for volume calculations
(12,96,97). To extract partial volume information, we generate an image whose
pixel gray levels, on average, are proportional to the percentages of a specific tis-
sue in the corresponding voxels. Mathematically, this may be translated to gener-
ating a transformed image in which

E[TIjkd] � ��
V
V
djk
�	E[�d(Pd

lm)] (36)

where E[T Ijkd] is the mean value of the ( j, k)-th pixel in the transformed image,
Vdjk is the partial volume of the desired tissue in the (j, k)-th voxel, and E[�d(Pd

lm)]
is the mean value of the (l, m)-th pixel in a desired ROI (e.g., the ROI that was
used for defining the desired signature vector) from the transformed image. The
underlying reason for using the expected value operator in defining extraction of
partial volume averaging by Eq. (36) is to exclude the additive noise, which con-
tains no information pertaining to this effect. An alternative definition may  there-
fore consist of using a noiseless image model (pixel vector) in Eq. (36) while drop-
ping the expectation operator. Either definition may be used to test extraction of
partial volume averaging information. The first definition is usually more appro-
priate for experimental work, whereas the second definition is sometimes more
appropriate for theoretical development. To find optimal �d, an analytical ex-
pression for the resulting image SNR is needed. This expression is described in the
next section.

3. Signal/Noise Ratio

Linearly transformed images are linear combinations of the images in the se-
quence, using different transformation vectors. Because we have m signature vec-
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tors, each of which can be considered as the desired signature vector, there are a
total of m different transformation vectors resulting in m different transformed im-
ages. The pixel gray levels of these linearly transformed images ({LTId, d � 1, %%%,
m}) are given by

L T Ijkd � ∑
n

i�1
TidPjki � td%Pjk, d � 1, %%%, m (37)

where L T Ijkd is the gray level of the ( j, k)-th pixel in the d-th linearly transformed
image, td � [T1d T2d %%% Tnd]T is the d-th transformation vector to be determined,
and T � [t1, t2, %%%, tm] is the transformation matrix. For a linear transformation
with the transformation vector td, and the presence of an additive zero-mean white
noise field with standard deviation � in the image sequence, the SNR of the de-
sired tissue with the signature vector sd is expressed by (5,9)

S N Rd � (38)

4. Problem Formulation

We seek a transformation that achieves the following objectives simultaneously:

• Extraction of partial volume averaging information
• Maximizing SNR of the desired tissue

Theorems 1 and 2 in (10) have established the relationship between extraction
of partial volume averaging information, removal of the interfering tissues, and
the linearity of the transformation. In the following section, we review the final
solution.

5. Solution

The solution to the problem

max. �S N Rd � � (39)

subject to the constraint that

td%sk � 0, for k � 1, %%%, m, k � d (40)

is given by

td � sd � sp
d (41)

where sp
d is the projection of sd onto the subspace spanned by {sk, k � 1, %%%, m,

k � d} (undesired subspace). In addition, td is computed using a Gram-Schmidt 
orthogonalization procedure. A composite image generated by the optimal trans-

td%sd
�
�(td%td)

1–
2

td%sd
�
�(td%td)

1–
2
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formation has been previously called an eigenimage (6). We continue to use this
name, although for the case of multiple interfering tissues, the transformation is
obtained using a different formulation.

6. Existence of the Solution

To guarantee the existence of the transformation vectors, the signature vectors
should be linearly independent. This requires that the number of unique images in
the sequence (n) be greater than or equal to the number of signature vectors (m).
Here, a unique image is one that is not a linear combination of other images in the
sequence.

7. Examples

Figs. 13 and 14 show the original images of a simulation and the resulting com-
posite images in which partial volume information is extracted. Table 1 compares
the original partial volumes with those estimated from the composite images. It il-
lustrates a close agreement between the original and estimated values.

Fig. 13 Original images of a simulation study. a–d, Four multiple spin-echo images with
TE/TR � 25, 50, 75, 100/2500 ms, respectively. (Source: Ref. 10.)
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Fig. 14 Transformed images (eigenimages) of the simulation obtained by the optimal
transformation described in Sec. VB. a–c, Transformed images for the central region, the
region on the right, and the region on the left, respectively. Note how the partial volume in-
formation is extracted and visualized in these images. (Source: Ref. 10.)

Table 1 Original (org) and Estimated (est) Values of Partial Volumes in the Simulation
Study Shown in Figs. 13 and 14.

org 10.00% 20.00% 40.00% 55.00%
Central est 9.69% 19.81% 41.33% 54.06%
region org 65.00% 80.00% 95.00% 100.00%

est 65.35% 79.66% 94.84% 100.08%
org 10.00% 20.00% 40.00% 60.00%

Left est 10.01% 19.99% 40.23% 59.78%
region org 70.00% 85.00% 95.00% 100.00%

est 70.05% 84.94% 95.13% 99.93%
org 10.00% 20.00% 30.00% 50.00%

Right est 10.46% 20.92% 29.79% 49.65%
region org 60.00% 80.00% 90.00% 100.00%

est 58.68% 80.30% 89.93% 99.98%

Source: Ref. 10.
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The method has been applied to several tumor patient MRI studies, and seg-
mentation results were compared with biopsy results (96). Figs. 15–18 illustrate
the method by showing original and composite images for a representative clini-
cal tumor study. In all of the studies conducted, it was found that the lesion ex-
tended into normal tissue at least to the location in which the biopsy sample was

Fig. 15 Illustration of eigenimage filtering as applied to brain tumor studies. Original
T2-weighted images (with four echos) and two T1-weighted spin echo images (before 
injection and after injection of Gd) from a tumor patient with a glioblastoma multiforme le-
sion. The images are windowed (histogram equalized) individually to optimize visualiza-
tion of the tissues. The ROIs selected for white matter (WM), gray matter (GM), and the
lesion are shown on the Gd-enhanced image. The tissue signature vectors (patterns) ex-
tracted from these ROIs are also shown. The elements of the tissue signature vectors are
connected by straight lines to enhance visual distinction of them. (Source: Ref. 97.)
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taken. In most cases, the image analysis results suggested that the lesion extended
several millimeters beyond the point in which the biopsy sample was taken. In
some cases, the extent of the lesion into normal tissue was well beyond the bound-
ary seen on T1- or T2-weighted images. An example of this is demonstrated in the
representative case shown in Fig. 18. In this figure, the original images and the
transformed image are shown with the biopsy location (indicated by the cross).
This sample was chosen as the edge of the T2-weighted hyperintensity. Pathology
results showed this sample to be diffusely infiltrated by poorly differentiated neo-
plastic cells. Note how the extent of the lesion posterior to the biopsy location is
not visualized on the original images. From the combined image in Fig. 18 and the

Fig. 16 Eigenimages generated in a clinical study of a tumor patient. The upper left im-
age displays the ROIs selected for white matter (WM), gray matter (GM), and the lesion.
The upper right is the eigenimage, created using the lesion as the desired tissue and WM
and GM as undesired tissues. CSF is visualized in this image, because it was not chosen as
an undesired tissue. In the bottom row, eigenimages created using the normal tissues as de-
sired tissues are displayed. (Source: Ref. 97.)
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multiple zone eigenimages in Fig. 17, it can be seen that the tumor extends well
beyond this edge. In fact, this extension of the lesion corresponds to the white mat-
ter tract in this area of the brain. The white matter tract can be easily visualized in
the WM eigenimage in Fig. 16. This infiltration along a white matter tract is a rec-
ognized pattern of spread for glioblastoma multiforme (2).

C. Unsupervised Methods

In these methods, the operator has minimal interaction with the computer. He or
she specifies the image set that should be analyzed and a set of parameters that
is used by the unsupervised method. A computer program, implementing a clus-
ter search algorithm such as K-means (16,17), fuzzy C-means (15), or ISO-
DATA (98), finds clusters for the selected data set. It defines signature vectors

Fig. 17 Eigenimages generated for multiple zones found within a tumor lesion. Note
how an area of infiltration is visualized in the left parieto-occipital region. This area is not
seen in the original T2- or T1-weighted images. (Source: Ref. 97.)
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for each cluster and segments the image using a decision rule such as those ex-
plained in Sec. VA. Velthuizen et al. (30) have used fuzzy C-means and an it-
erative least squares clustering (ILSC) approach for this purpose. Soltanian-
Zadeh et al. (34) have developed a variation of ISODATA algorithm. The
approach is similar in principle to the K-means clustering in the sense that clus-
ter centers are iteratively determined sample means; however, it includes a set
of additional merging and splitting procedures. These steps have been incorpo-
rated into the algorithm as a result of experience gained through experimenta-

Fig. 18 Three original images and a combined image of a clinical tumor patient study
displaying the location where a biopsy sample was taken. This region was sampled as
the edge of the hyperintensity seen on the T2-weighted spin echo image. The patholog-
ical studies from his biopsy site show extensive tumor cell infiltration. (Source:
Ref. 97.)
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tion. A block diagram of the proposed approach is shown in Fig. 19, and details
are given in the following section.

1. ISODATA Algorithm

The steps of the algorithm proposed in Ref. 34 are as follows.

1. Specify the following parameters:
• K � Number of cluster centers desired

Fig. 19 A flowchart of the ISODATA algorithm explained in Sec. VC. (Source: Ref. 34.)

Copyright © 2002 Marcel Dekker, Inc.



• �N � A parameter to which the number of samples in each cluster
is compared

• �s � Standard deviation parameter
• �c � Lumping parameter
• L � Maximum number of pairs of clusters that can be lumped in

one iteration
• I � Number of iterations allowed

2. Distribute the pixel vectors among the current cluster centers (Zj)
based on the smallest euclidean distance criterion.

3. Discard cluster centers with fewer than �N members, and reduce the
number of clusters (Nc) by the number of clusters discarded.

4. Redistribute the pixel vectors associated with the cluster centers dis-
carded in the previous step into the cluster centers remaining.

5. Calculate the average intraset euclidean distance (I A Dj) of pixel vec-
tors in each cluster from their center:

I A Dj � �
N
1

j
� ∑

Nj

i�1
�Zi

j � Zj � (42)

where Nj is the number of samples and Zi
j is the ith data point in the jth

group.
6. Calculate the overall average distance of the pixel vectors (I A D) us-

ing the weighted average of the I A Djs found for the clusters in the
previous step:

I A D � �
N
1

� ∑
Nc

j�1
NjIADj (43)

where N is the total number of samples.
7. Do one of the following that applies:

• If this is the last iteration, set �c � 0 and go to Step 11
• If Nc � 0.5K, go to Step 8
• If this is an even-numbered iteration or if Nc ! 2K, go to Step 11
• If 0.5K � Nc � 2K, go to Step 8

8. Find the standard deviation vectors for the clusters. This vector 
contains the standard deviations of individual elements of the pixel
vectors in each cluster. Standard deviation is estimated using the sam-
ple standard deviation formula.

9. Find the maximum element of each standard deviation vector and de-
note it �jmax.

10. If �jmax � �s and
• I A Dj � I A D and Nj � 2(�N 
 1) or
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• Nc � 0.5K then split Zj into two new cluster centers Z j

 and Z j

�,
delete Zj, and increase Nc by 1. The cluster center Z j


 is formed by
adding a given quantity �j to the component of Zj, which corre-
sponds to �jmax. Similarly, Z j

� is formed by subtracting �j from the
same component of Zj. If splitting took place in this step, go to Step
2, otherwise continue.

11. Calculate interset euclidean distance (I E D) between cluster centers:

I E Dij � �Zi � Zj� (44)

12. Find L cluster pairs that have smaller I E D than the rest of the pairs
and order them.

13. Starting with the pair that has the smallest I E D, perform a pairwise
lumping according to the following rule. If neither of the clusters has
been used in lumping in this iteration and if the distance between the
two cluster centers is less than �c, merge these two clusters and calcu-
late the center of the resulting cluster; otherwise, go to the next pair.
Once all of the L pairs are considered, go to the next step.

14. If this is the last iteration, the algorithm terminates; otherwise, go to
Step 2.

2. Selection of Parameters

We use K � 8 (to ensure that we do not lose any clusters), �N � 500, �s � twice
of the average standard deviation of white matter in MR images being segmented,
�c � euclidean distance between white and gray matter, which is usually the
minimum distance between normal tissues in the brain, L � 1, I � 60, and �j �
0.25�jmax. The algorithm does not show severe sensitivity to these parameters, but
for the best performance these parameters need to be optimized.

3. An Example

The ISODATA method has been applied to several tumor patient MRI studies.
Fig. 20 shows original images and segmentation results obtained in a representa-
tive clinical tumor study. It can be seen that the method has segmented normal 
tissues and multiple zones of the lesion. Comparing the results with those shown
in Fig. 21 for the optimal feature space method, it is noted that the results are sim-
ilar to some extent. However, it can be seen that in the optimal feature space
method, segmentation results make more sense. It can also be noted that in the 
optimal feature space method, one sees a correspondence between each seg-
mented region and its location in the feature space compared with the normal 
tissue locations. This provides information regarding biological properties of the
lesion zones.
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VI. DISCUSSION

Detecting the existence of brain tumors from MRI is relatively simple. This de-
tection is usually carried out automatically by a symmetry analysis. However, fast,
accurate, and reproducible segmentation and characterization of brain tumors are
complicated. As such, diagnostic classification of brain tumors, as well as that of
other cerebral space-occupying lesions that need to be distinguished from brain tu-

Fig. 20 O1–O5, Two T2-weighted fast spin echo images (TE/TR � 22,88/3500 ms), a
FLAIR image (TE/TI/TR � 155/2200/10000 ms), two T1-weighted images—before and
after gadolinium (TE/TR � 14/500 ms) of a tumor patient, respectively, after registration,
intracranial segmentation, and noise suppression. A–H, Segmented regions generated by
the ISODATA algorithm explained in Sec. VC.
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mors, is still based on histological examination of tissue samples obtained by
means of biopsy or excision. These examinations are carried out to (a) establish a
histological diagnosis; (b) determine the histological boundaries of a lesion; and
(c) establish whether the lesion comprises solid tumor tissue, isolated tumor cells
within the parenchyma, or some other growth pattern.

Ultimate goals of MRI processing algorithms include accomplishing the
preceding noninvasively. In this chapter, we cited most of the image-processing
work related to this area and reviewed and illustrated the techniques with sound

Fig. 21 Top, Optimal feature space (cluster plot) generated by the transformation de-
scribed in Sec. IVD. Selected ROIs for the clusters are superimposed on the cluster 
plot. A–H, Segmented regions for white matter, gray matter, partial volume between white
and gray matter, multiple zones of the nonenhancing lesion, CSF, and enhancing lesion, 
respectively.
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mathematical basis and highest potential for achieving these goals. We also
showed an example in which biopsy samples were used to validate the image anal-
ysis results. Most of the techniques presented in this chapter are implemented in a
user-friendly software package called EIGENTOOL, which runs on SUN work-
stations and is available to the researchers working in this field free of charge.

We presented a step-by-step methodology for the processing of brain tu-
mor MRI studies. Recently, compound methods have been proposed for accom-
plishing some of these steps simultaneously. For example, it has been proposed
to combine nonuniformity correction and image segmentation in a single itera-
tive algorithm. Currently, these methods are much more computationally intense
compared with the step-by-step procedures, and therefore their use is not clini-
cally feasible.

Most of the literature on brain MRI processing and the examples presented
here used gray level features for tissue segmentation and characterization. It is 
expected that future work will consider addition of other features (e.g., spatial
connectivity, texture, and edge information) and methods (e.g., mathematical
morphology and a priori knowledge) into the segmentation procedure. Segmenta-
tion results were presented as black-and-white cross-sectional pictures because of
publication limitations. In practice, color-coded images and 3-D visualization are
normally used to more efficiently present and use the segmentation results.

The methods presented in this chapter have generated promising results.
However, future research work in both of the MRI acquisition and processing 
areas needs to be undertaken to generate faster, more accurate, and more repro-
ducible segmentation and characterization of brain tumors. New MRI techniques
such as magnetization transfer imaging, diffusion imaging, and perfusion imaging
will generate additional information regarding anatomy and physiology of brain
tumors useful for tissue segmentation and characterization. These images can be
processed by the methods described in this chapter. However, because these new
images may have different geometric distortion and resolution, using them along
with standard spin-echo images requires specific preprocessing to adjust the res-
olution and correct their geometrical distortion. Magnetic resonance spectroscopy
(MRS) and magnetic resonance spectroscopic imaging (MRSI) are also expected
to play a significant role in MRI tissue characterization. Currently, the acquisition
time and resolution of MRSI images are limiting factors for their use in clinical
examinations. It is expected that by advancement of the MRI technology, these
techniques will become clinically feasible in the future.
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Brain Tumor Imaging: Fusion 
of Scintigraphy with Magnetic
Resonance and Computed
Tomography

Richard J. T. Gorniak, Elissa L. Kramer, and Marilyn E. Noz
New York University School of Medicine, New York, New York

I. INTRODUCTION

Patients with intracranial diseases frequently undergo multiple imaging studies
during the course of their evaluation and treatment. Although these studies indi-
vidually can provide important information, combining studies acquired using
two different modalities into one integrated image set may enhance the clinician’s
understanding of a patient’s disease. Because each modality has characteristic
imaging capabilities, fusion of complementary images from different modalities
can result in a synergistic image that shows the correspondence of features de-
picted by each imaging method. This can be seen in the registration of 201T1 sin-
gle photon positron emission tomography (SPECT) and magnetic resonance (MR)
images of the brain. Many functional modalities produce images showing radio-
pharmaceutical distribution, which demonstrate functional parameters of tissues
but poorly display anatomy. On the other hand, conventional MR or computed to-
mography (CT) images demonstrate structural details well but offer little infor-
mation about the physiology of these structures. By registering functional with
structural images, the anatomical context of functional findings is enhanced. For
example, areas of high-grade astrocytoma seen on 201T1 SPECT could be local-
ized to a specific position within a complex lesion depicted on a MR image. This
could be useful in assisting in both diagnosis and neurosurgical or radiotherapy
planning.
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Several registration techniques have been developed to fuse images of the
brain. In fact, image fusion has been studied more in the brain than any other body
area. Fusion techniques attempt to find a mathematical transform that can be ap-
plied to an image, so that any point in the transform of that image corresponds ex-
actly to the analogous point in another image. For brain images a three-dimen-
sional (3D) rigid body transformation usually is used as the basis of the
registration process. This transformation allows for linear movement along and
rotation around each axis in three dimensions, resulting in six registration vari-
ables. Although this is an affine transformation that preserves the original rela-
tionships of all the structures involved, others may or may not allow scale. Non-
rigid transformations, such as polynomial warping transformations, have more
degrees of freedom allowing for scaling and shear. Although nonrigid transfor-
mations can be used more broadly than rigid transformations, the added computa-
tional complexity generally is not necessary for applications limited to the brain.
For a good review of fusion techniques in the brain, see Van den Elsen et al. (1)
and Maintz (2).

The use of a rigid body transformation assumes the pixel size is known in
each image set, there is no uncorrected spatial distortion of the image sets, and the
structures in the brain have not changed position relative to each other between im-
age acquisitions. These assumptions are met in most brain images. Without a scal-
ing parameter in the registration transform, accurate pixel sizes must be known for
each image set. This information is usually determined during image acquisition.
Spatial distortion, as might be seen in MR images, can be compensated for with
postprocessing (3) or controlled with proper shimming. Although the position of
structures in the brain may vary to a small degree with the pulsations of blood flow,
short-term changes are not usually significant, unlike the chest or abdomen, where
structures frequently move significantly in short periods of time.

II. TECHNICAL CONSIDERATIONS

Registration methods that calculate the six rigid body parameters by comparing
structures in both images must consider a number of factors. Initially, structures
to be used as the registration landmarks, such as the scalp or brain, must be iden-
tified in both image sets. Identifying these structures usually involves marking or
segmenting structures manually or with an automated method. Then, based on the
identified structures, an algorithm determines the six registration parameters that
best fuse the landmark structures.

The determination of the six variables of the rigid body transformation is the
key task of any rigid-body registration algorithm. The methods used can be clas-
sified into general categories such as (a) methods that take a global approach to
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the data set using surface-based techniques such as least squares search, principal
axis, and moment-matching techniques; (b) methods that take a structural-based
approach by defining objects within the image sets; and (c) methods that take a
procedural approach. Any one of these methods may or may not introduce infor-
mation into the study, such as external markers, that was not there intrinsically.

Surface-based methods have been used widely in the registration of CT,
MR, positron emission tomography (PET), and SPECT images (4,5). Initially,
surfaces visible in both image sets are extracted. The surfaces used depend on
which two modalities are to be registered, because different structures are com-
mon to different combinations of images. For example, the brain surface is used
in 99mTc fluorodeoxyglucose 18PET or technetium 99mTc hexamethyl-polypropy-
lene-oxime (HMPAO) SPECT/MR registration, whereas the scalp surface is used
in 201T1 SPECT/MR registration. These surfaces can be defined through semiau-
tomated algorithms or manual outlining.

The sum of squares algorithm calculates the registration parameters from
the extracted surfaces, using a search technique to minimize mismatch between
the extracted surfaces (i.e., the sum of the squares of distances from points on sur-
face A to the nearest points on surface B) (6). According to Pelizzari, this process
is analogous to fitting a hat to a head. A major problem with this approach is that
a large number of points (approximately 1,000–10,000) must be identified on the
surface of each object to be matched. In addition, convergence of the search tech-
nique can be a problem if the relative difference in surface angulation is very large
(20 degrees or more). Although registration parameter selection is automated, it is
often necessary for a user to steer the process to obtain a sufficiently good match
with reasonable convergence speed.

The eigenvalue decomposition approach to surface identification for regis-
tration finds the principal axes of the image. These represent orthogonal axes,
about which the moments of inertia are at a minimum, and depend only on surface
shape. Surface-matching techniques include the eigenvalue decomposition of
scatter matrices (second-order moments) applied to the threshold version of the
original images or to the surface data (7). Here again, a large number of points
identifying the surfaces must be found (8,9). Another approach (10) uses single-
value decomposition techniques to determine the eigenvalues.

Moment-matching techniques applied to surface matching use centroids and
principal axes (11). The major problem with this technique is that the object (such
as the brain) needs to be completely scanned for the registration accuracy to be ac-
ceptable. A more comprehensive discussion of principal axis and moment match-
ing techniques contrasted with each other and with the sum of squares search tech-
nique has been reported by Rusinek and colleagues (12).

Algorithms that base registration on structures include a 2D global tracking
algorithm based on Fourier phase correlation methods (13), cross-correlation us-
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ing Fourier invariance properties, and logarithmic transforms to decouple the vari-
ables (14). Warping algorithms involving both internal and external landmarks
have been used extensively in our laboratory for fusion in many parts of the body,
including the brain (15).

Another approach is based on the pixel values of similar tissues in two stud-
ies being related to each other. The method used by Woods et al. (16,17), as mod-
ified for cross-modality registration, has been used with MR and 18FDG or H2

15O
PET registration. Once nonbrain structures are removed, the MR images are par-
titioned on the basis of pixel value into 256 regions. Ideally, areas with similar
pixel values represent similar types of tissue. In PET, these areas of similar tissue
ideally have similar PET pixel values. The algorithm seeks to maximize the uni-
formity of PET pixel values in each MR partition. Uniformity is defined by the
weighted average of the standard deviation of the PET pixel values contained in
the partitions defined on MR images. Once the MR images are edited so that only
the brain remains, no user interaction is required. A different approach based on
pixel values is to use the “mutual information” contained in the two images
(18,19). Again, image preprocessing is necessary.

Yet other means take a procedural approach that requires the use of external
devices, such as a stereotactic frame fixed to the head, at the time of image acqui-
sition. This frame enforces reproducibility of positioning at the time of the acqui-
sitions and thus permits the maintenance of geometric consistency between either
intermodality or intramodality scans. Also, the stereotactic frame offers unam-
biguous, easy-to-discern landmarks. This allows for simple, fast, mostly auto-
mated registration with the accuracy needed for neurosurgical planning (20).
Other methods that use external devices include a holder specifically molded to
the patient’s head (21,22) or a noncustom headholder (23,24). The headholder
used by the PET group at the Karolinska Institute in Stockholm (21) provides, in
the experimental setting, reproducible head localization to within 1 mm in all three
planes between PET scans and CT scans. Clinically, however, serial PET scan
may show significant mismatch (25) with this method. These problems also have
been encountered by other researchers using this approach (24). Although neces-
sary for certain applications, external markers have several disadvantages. The
markers must be placed in the same position before every study, which can be dif-
ficult if the scans are done days or weeks apart or at different institutions. Also,
application of invasive markers, such as a frame screwed to the skull, takes time,
hospital resources, and personnel and is uncomfortable for the patient. A compre-
hensive discussion of the use of markers of different varieties has been published
(1).

Use of an anatomical atlas is another example of a procedural approach to
image registration. To date, atlases have only been constructed for the brain
(23,26–31), although several full-body atlases are either currently being con-
structed or are planned (32). An anatomical atlas may be transformed to fit images
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obtained in any particular patient. Both an elastic transformation (29–31) and a
warping algorithm (27) have been applied to this task. These methods require that
corresponding curved surfaces be stretched or shrunk to effect the best fit possi-
ble. This requires the identification of exact edges. Because this is more easily ac-
complished with CT or MR, the atlas image is transformed to the structural patient
image. This is then correlated with the functional image. The difficulty of edge de-
tection has been a major challenge in the use of atlases for image registration. In
an effort to overcome the problem of edge detection in using an atlas, one group
has defined an atlas of regions of interest (ROI’s) drawn at specific levels in the
brain over specific structures (26). This atlas was developed from MR scans of
normal subjects. The atlas regions of interest are reshaped to fit the patient’s
anatomy as defined by a structural study (e.g., MR scan). The method reported
also incorporates a “Z”-shaped tube inserted into a headholder as a fiducial
marker. Patient scans are aligned using the fiducial marker that is affixed to the
headholder and then the ROIs are overlaid.

Although these methods have been reported to work well with many imag-
ing modalities, many depend on the accurate selection of landmarks, which may
not be possible on all images sets. Interactive methods overcome this by giving
control of the registration process to an expert who directly manipulates the reg-
istration parameters based on a display of the image sets. Although interactive vi-
sual methods are broadly applicable, they depend on the skill of the user and the
limitations of the original images (33). One study showed that translational mis-
registration of less than 2 to 3 mm and rotational misregistrations of less than 2 to
4 degrees were not visually detectable by an expert in 18FDG-PET/MR registra-
tions (34).

Interactive methods of registration combine the interpretive power of a hu-
man user with a computer based image manipulation and display program. With
the interactive method currently used in our laboratory (35), scaled 2D and/or 3D
images from both image sets are displayed simultaneously with contours from one
image superimposed on the other. The user then visually assesses mismatches in
analogous structures apparent in both images and, by adjusting the translation
and/or rotation of one image set, attempts to correctly match them. The 2D and 3D
images are redisplayed, interactively showing the adjustments of translation and
rotation. The user then reassesses mismatch and continues to refine the registra-
tion parameters. This process is repeated until the user is visually satisfied that the
best set of translation and rotation parameters have been selected.

With any method, understanding the accuracy of registration is vital to in-
terpreting the registered image set. Ideally, registration would result in an exact
mapping of the findings of one image set into the same anatomical location in the
other. This perfect registration may not be achievable, even if the assumptions
mentioned earlier for rigid body transformations are true. Error may be introduced
in some methods during selection of the registration landmarks in each image set.
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This is especially relevant with functional images, because the borders of struc-
tures can be less distinct in functional images, which can lead to inaccurate local-
ization of the landmarks.

It is difficult to compare accuracy of the many registration methods because
of the different combinations of image modalities used and the different methods
used to measure accuracy. Registration based on external markers is considered
the most accurate. For SPECT/MR, Erickson (36) reports an error of 3 mm using
fiduciary markers and a brain phantom. In one study, we reported the accuracy of
a variety of registration methods applied to the same CT/MR and PET/MR image
sets (37). The image sets are acquired with a stereotactic frame in place. These im-
ages are registered based on the frame, resulting in the “gold standard” registra-
tion. The frame is edited from these images, and then the images are registered
with a variety of retrospective techniques. We found the median error for
PET/MR registration to be similar for all the techniques used (2–4.9 mm). Using
similar methods to calculate accuracy, we calculated the median error for our in-
teractive method applied to 201T1 SPECT/MR registration to be 5.8 mm (38).
Generally, registration accuracy is on the order of the voxel size of lowest resolu-
tion scan.

Registration error varies not only from patient to patient but also from pixel
to pixel in the same set of images. Although translational error is constant from
pixel to pixel, the component of error caused by error in the selection of rotation
parameters varies with distance from the center of rotation. So areas distant from
the center of rotation will have a greater error component caused by rotational
misregistrations (see Fig. 1). A derivation of an equation that illustrates this spa-
tial variation in error can be found in Appendix A of West et al. (37).

III. OUR METHOD

The registration method used in our laboratory (39) (validated in Ref. 38) for the
3D registration of data sets is implemented with the IBM Visualization Data Ex-
plorer (DX) software suite, which provides an object-oriented, graphical pro-
gramming interface. The DX data model is discipline-independent (i.e., it can be
used for any visualization application including medicine), self-describing, and
supports regular and irregular grids with node and connection-dependent data. DX
uses a data-flow driven client-server execution model, and runs on UNIX work-
stations from most leading manufacturers. Window content, layout, and access
were structured for convenient use and ease of learning. Each image is fully an-
notated with variable names, display parameters, patient name, and scan date,
which are automatically extracted from the image header.

For digital fusion and manipulation of 3D tomographic data, slices from
each image modality must be transferred to a single computer system and con-
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verted to a common format. The transfer may be accomplished by any standard
method. Interformat (40), a commercially available image conversion program, is
used to do the conversion to the DX specific format “on the fly,” or the images can
be converted to an intermediate format, such as qsh (41), which is the standard
AAPM format, subsequently known as the Interfile format (42). Because DX is
flexible in allowing the user to write compiled program modules or scripts, qsh-
formatted images are easily interpreted by DX using a simple AWK script or DX
program module.

The features extracted from the 3D data sets are boundaries/surfaces of or-
gans, tumors, bones, or high-radiation emission regions. These surfaces are key
items used in registering radionuclidic functional images to structural images and
are the anatomical references used in the interpretation of fused data. Two options
are available for feature extraction, the isosurface option, and the multiscan com-

Fig. 1 201T1 SPECT axial image with contours showing the spatial variability of regis-
tration error. Error was determined by comparing registrations with and without a stereo-
tactic frame. First, the “true” registration was determined by registering a SPECT image set
with a MR image set using a stereotactic frame. The frame was edited from the images, then
the images were registered three times by an expert user without the frame. The average ab-
solute distances of the three registrations from the “true” registration were calculated at 800
points in the brain volume. Note that the error increases with distance from the axis of ro-
tation (center of the innermost contour). Each contour represents a 0.3-mm increase in er-
ror.
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position option. The multiscan composition option for viewing different MR scan-
ning sequences simultaneously is based on selecting regions with statistically sim-
ilar values from each sequence. The pulse sequences used include T1-weighted,
which shows increased signal from fat, protein-rich fluid, or subacute hemor-
rhage, T2-weighted, which shows increased signal in areas with high water con-
tent such as edema, infarction, inflammation, or tumor, and proton density (PD).
Even though T1-weighted scans provide basic structural information, T1-
weighted scans combined with T2-weighted and PD scans provide a clearer de-
lineation of disease and surrounding tissue. In most cases, brain MR scans require
an axial correction of data values to compensate for the magnetic field inhomo-
geneity, which can cause similar tissues to have different pixel values depending
on their axial location.

The first step in the extraction of significant features using the multiscan
composition option is to select a set of points in the ROI; points may be in more
than one image, T1, T2, or PD. On the basis of these points, an average and sam-
ple covariance matrix are computed. Then at each point in the 3D data space, the
Mahalanobis distance of the corresponding (T1, T2, PD) value is generated. (Ma-
halanobis distance is based on the sample mean and covariance. It is the euclidean
distance from the mean with the inverse of the covariance matrix used as the met-
ric.) A surface is then formed based on this distance. Note that points are not clas-
sified as lesion, CSF, etc. This method defines a surface about statistically similar
tissues as defined by the user’s selection based on T1, T2, and PD images.

To confirm that each of the point groups are coherent and disjointed, a 3D
cluster plot can also be formed with ellipsoids surrounding the clusters, which cor-
respond to the thresholds used for each surface. An advantage of this approach is
that it compensates for anteroposterior intensity gradients. This is particularly
valuable for large structures like the skin surface. Points can be selected around
the head, and the Mahalanobis ellipsoid will be elongated radially from the origin
of the T1-weighted, T2-weighted, and PD space.

Using the isosurface option, surfaces consisting of one specified pixel value
can display the 3D distribution of emission activity in SPECT scans. For example,
regions of abnormal activity can be displayed as an opaque 3D isosurface, and ar-
eas of normal scalp activity can be displayed as a transparent surface. The surfaces
are extracted by selecting visually appropriate pixel levels. This simple method is
also able to extract the scalp surface from the MR data. Contours can be displayed
on opaque and/or transparent isosurfaces to improve shape perception and esti-
mate the size of various regions.

Using the isosurface option or the multiscan composition option, surfaces
can be formed corresponding to scalp surface, lateral ventricles, tumor, etc. In
some cases extraneous surface segments are formed as a result of data artifacts or
“poor” segmentation. The 3D image can be edited to keep only relevant surface
segments (see Fig. 2).
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Registration of the data sets is required before fusion and analysis can be
performed. The coordinates of the functional data are translated and rotated rela-
tive to the structural coordinate system, so that a given 3D coordinate refers to the
same anatomical location in both data sets. Two approaches are available for reg-
istration: direct 3D registration and iterative 2D/3D registration.

The direct 3D approach is based on aligning extracted structural and func-
tional surfaces of the same anatomical region. For example, the structural and
functional data of a patient can be registered based on aligning scalp surfaces. This
approach relies on the ability to extract an appropriate surface from the functional
data and can produce a repeatable registration. Fig. 3 illustrates a satisfactory fu-
sion using a stereotactic frame. In our experience with SPECT images at NYU
(43), direct 3D registration is consistently possible only when external fiducial
markers are available on both image sets. In cases in which satisfactory surfaces
cannot be obtained, an alternate approach is used based on 2D, as well as 3D, im-
ages.

In the iterative 2D/3D registration, 3D surfaces of the scalp are used for ini-
tial parameter selection. By use of the scalp surfaces as a guide, registration pa-
rameters are selected to roughly match the two images. This is accomplished by
interactively entering a registration parameter and then seeing the effect of the
newly chosen parameter on the location of the SPECT scalp surface. By viewing

Fig. 2 (Left) Pixel value 70 isosurfaces extracted from a MR data set showing the scalp
and nonscalp surfaces. (Right) Same pixel value 70 isosurface, but with the surfaces not
continuous with the scalp removed.
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the surfaces from a variety of angles, the parameters that best match the entire sur-
face are selected (Fig. 4).

Next, a coronal plane through the brain in both data sets is selected. This is
displayed as a slice from each image set with isovalue contours from the SPECT
slice superimposed over the MR slice. Axial and lateral translations and antero-
posterior rotation of the 3D functional data set are then visually selected to align
the scalp contours of the SPECT to scalp seen on MR. Then two axial images are
formed, with the functional scan contours again placed over both images. It must
be kept in mind that these data sets have already been preliminarily registered in
the axial direction using 3D surfaces. The anteroposterior translation and axial ro-
tation are now selected. Then a sagittal slice is used to select the lateral rotation.
Once this estimate of the three translation and rotation parameters has been made,
the 3D surfaces and 2D slices are used iteratively to fine tune the match. A second
pass with the coronal, sagittal, and axial images is performed to make adjustments
to the translations and rotations about all axes.

To confirm the registration, image pairs at other locations are compared us-
ing overlaid isocontours. The basic concept of the iterative 2D/3D approach is to
adjust large registration disparities first, followed by smaller adjustments. This ap-
proach is well suited to SPECT/MR data, because even though the resolution of
the SPECT data is low, the registration converges in one or two passes. Fig. 5

Fig. 3 An example of the direct 3D approach using a stereotactic frame as the basis of
registration. The lateral and posterior portions of the frames are seen in both studies and are
well registered. Black surface, stereotactic frame extracted from MR data. White surface,
stereotactic frame extracted from SPECT data.
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Fig. 4 The registration control panel used to input the registration parameters and three
views of MR (gray) and SPECT (black) scalp surfaces after initial 3D registration.

shows various views from a completed registration using the iterative 2D/3D ap-
proach.

IV. CLINICAL APPLICATIONS

The use of registered image sets is clinically useful in assisting with diagnostic in-
terpretation. Although visual comparison of separate images sets is adequate in
many situations, registered images may provide further information in certain
cases. Anatomical localization of functional findings may be difficult without reg-
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Fig. 5 (Top) Surfaces showing the spatial relationship of the tumor volume seen on MR
and the volume of increased 201T1 uptake. Gray surface, scalp surface extracted from MR
data. White surface, tumor volume extracted from MR data. Black surface, volume of ab-
normal thallium uptake. (Middle) axial sections of 201T1 SPECT, T1-weighted MR, and
T2-weighted MR with isovalue contour (white) extracted from the SPECT data superim-
posed on the MR images, showing increased 201T1 uptake around the lesion, but not at the
center (bottom) coronal images.

Copyright © 2002 Marcel Dekker, Inc.



istration when the usual anatomy is distorted or displaced by disease or prior
surgery. Registration may also assist in interpreting studies when the effects of
partial voluming distort functional images. For example, tracer uptake may appear
less evident in a small (less than twice the full width of half maximum) high-grade
tumor or a tumor surrounded by necrotic areas. Registration also can be particu-
larly useful in interpreting areas of increased uptake adjacent to locations nor-
mally showing some uptake, such as gray matter with 18FDG PET or scalp with
201T1 SPECT. Without precise placement in the anatomical context of a MR or
CT image, such lesions could be overlooked as normal background uptake. One
study of the clinical usefulness of registration showed that in 19 of 24 examina-
tions, registration of MR and PET images was found to be important in distin-
guishing recurrent tumor from necrosis based on 18FDG uptake (44). Registration
was useful in all nine patients who had contrast-enhancing lesions close to the
cerebral cortex. Interpretation of the PET scan was not assisted by registration in
cases in which patients showed large diffuse regions of abnormal uptake or when
the shape of the area of FDG uptake was obviously similar to the shape of the re-
gion with contrast enhancement. We have found a similar situation in 201T1
SPECT performed in patients with primary brain tumors or central nervous sys-
tem lymphoma. In these patients, lesions adjacent to the skull tend to merge with
the normally intense scalp activity. An example of this is shown in Fig. 6. In this
case, fusion helped demonstrate that activity resides within the lesion. By clarify-
ing those functional scans that are sometimes difficult to interpret, registered im-

Fig. 6 The cerebellar lesion is clearly shown on the MR image (right). An area of uptake
adjacent to the posterior scalp is seen on 201T1 SPECT (left) but without registration the
significance of this area would be uncertain. With the SPECT contour (white) superim-
posed on the MR image, it can be seen that the 201T1 activity clearly corresponds to the
ring-enhancing lesion.
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ages may increase the sensitivity and specificity of functional studies. This is ap-
plicable particularly in the follow-up of cancer patients for recurrence or malig-
nant transformation, in differentiating tumor recurrence from radiation necrosis in
previously treated patients, or in differentiating lymphoma from opportunistic in-
fections in immunosuppressed patients.

As well as assisting in the visual interpretation of images, registration en-
ables more sophisticated methods of image analysis. Pixel-by-pixel calculations
can be made involving both image sets. Parameters such as oxygen extraction rate
can be calculated from registered PET scans showing oxygen metabolism and
cerebral blood flow (45). Registered image sets have also been used to better de-
fine regions of interest used to calculate uptake indices in 201T1 SPECT images
(46).

In biopsy planning, registration enables targeting based on functional and
anatomical characteristics. This has been shown to increase the yield of diagnos-
tic biopsies (47,48). Because functional imaging, unlike MR or CT, can differen-
tiate tumor from reactive gliosis or radiation necrosis (49), selecting areas of a le-
sion that show increased radionuclide uptake as biopsy sites increases the chance
of sampling tumor. Fig. 7 shows an example in which biopsy planning may ben-
efit from registration. By targeting the areas of 201thallium uptake in the large le-
sion, the chance of sampling tumor might be increased.

In one study, 55 sites were targeted based on registered 18FDG PET images
and 35 were based on CT images alone. Of these biopsies, histological diagnoses
were made on all 55 of the 18FDG PET–targeted biopsies, whereas CT-based tar-
gets failed to yield a diagnosis (47,48). Not only is yield increased, but because
functional imaging has been shown to differentiate between high- and low-grade
astrocytoma (50,51), biopsies based on functional images may be more likely to

Fig. 7 (Left) a sagittal section of a 201T1 SPECT scan showing two areas of increased up-
take located anteriorly. (Right) a sagittal MR section reconstructed from axial images with
a large T2 abnormality (white). The areas of increased thallium uptake (white contours)
correspond to only a portion of the MR abnormality.
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sample the highest grade portion of a tumor. This is critical for prognostic infor-
mation and appropriate treatment planning.

Registration could also be useful in planning therapeutic interventions. The
ability to localize highly malignant portions of a large mass seen on a MR image
may enable a neurosurgeon to confidently remove less brain, reducing possible
postsurgery neurological deficits (52,53). This may be especially useful in pa-
tients with prior radiation therapy, because radiation necrosis can be differentiated
from tumor with PET or SPECT but not with MR. Alexander et al. (53) found reg-
istered 201T1 SPECT/CT images useful in 37 reoperations after radiosurgery or
brachytherapy. Another study showed the usefulness of registered 11C-methion-
ine PET/MR images (52) in tumor localization and H2

15O-PET/MR registration
to locate motor areas. With these images, the extent of tumor into the motor area
could be detected. Of the 16 patients examined, 12 patients underwent radical re-
section, whereas 4 did not, because resection would have been impossible without
functional deterioration. Although useful, there are limitations to this application.
The limited resolution of functional images does not allow the detection of mi-
crotumor infiltration. Also, once the brain is manipulated during the operation,
soft tissue relationships can be greatly altered, so the previously acquired images
no longer represent the spatial relationship of structures in the brain of the patient
during the operation.

Similarly, in radiation therapy planning it may be possible to deliver a high
dose to tumor with increased activity as depicted on the functional image while
sparing other areas. In a study of eight postresection patients with malignant
gliomas, registered 18FDG PET/functional MR cerebral blood volume/CT images
were used to evaluate patients before, during, and after radiation therapy (54). In
two patients, conventional radiation therapy planning was altered because of the
added functional information. In one patient, a region with high functional activ-
ity was targeted for a higher than conventional dose boosted with proton beam
therapy. In another patient, less radiation than usual was delivered to a hy-
pometabolic area of brain and brain stem. Registration could be also useful in
pretherapy SPECT or PET radioimmunoimaging, providing information about tu-
mor localization of the therapeutic agent. Registration has also been used to cal-
culate the absorbed dose of radioimmunotherapy. By superimposing PET images
of iodine 124I labeled 3F8 antibody with MR images, the patient-specific assess-
ment of the target normal tissue absorbeddose ratio could be calculated for thera-
peutic administration of iodohippurate sodium 131I or iodohippurate sodium 125I
labeled 3F8 (55). Such information could be useful in dosimetry and 3D treatment
planning.

Clearly, very specific applications for image fusion of functional neu-
roimaging and brain MR or CT exist. Its transition to a routine clinical tool has
been somewhat slowed by the difficulties in accomplishing the fusion in the
clinic. These difficulties increasingly are being overcome on a more routine ba-
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sis. Commercial file formats are becoming standardized, making the transfer of
images across hardware and software platforms simpler. More powerful com-
puter workstations that provide the computing power for manipulating large im-
age files are more commonly available in the clinic. Not only is storage capac-
ity increasing, but the time required for manipulating large data sets has
decreased because of more efficient processors. The availability of network con-
nectivity has made the actual access to and transfer of images a routine matter.
All of this makes fusion a less time-intensive process that uses a smaller frac-
tion of the available computing capacity. In addition, our comfort level with
these registration processes has increased, and automation of these processes has
become more prevalent, so that operator interaction with the images is reduced.
Although in many situations registration is certainly a useful adjuvant for diag-
nosis and intervention planning, there are limitations to the routine clinical use
of fusion techniques. Ensuring the accuracy of the registration in each patient is
difficult. Without quality control, the use of registered images, especially in in-
terventional planning, will remain experimental. Even with accurately registered
images, the actual clinical meaning of registered scans has not been fully 
studied. Although it would seem that registration would increase the sensitivity
and specificity of functional imaging studies, this has not been proven. Even
with these limitations, clinicians are becoming convinced of the necessity 
for image fusion in the assessment and treatment of brain tumors. These 
algorithms have started to make their way into the everyday practice of neuro-
oncology.

ACKNOWLEDGMENT

We thank Ed Farrell for his collaboration in the development of registration tools
using the IBM Visualization Data Explorer (DX) software suite.

REFERENCES

1. PA Van den Elsen, EJD Pol, MA Viergever. Medical Image Matching—a Review
with Classification. IEEE Eng Med Biol EMB 40:26–39, 1993.

2. JBA Maintz. Retrospective registration of tomographic brain images, Doctoral The-
sis, University of Utrecht, The Netherlands, Helmholtz Institute, School for Au-
tonomous Systems Research.

3. H Chang, JM Fitzpatrick. A technique for accurate magnetic resonance imaging in the
presence of field inhomogeneities. IEEE Trans Med Imag 11:319–329, 1992.

4. TG Turkington, RJ Jaszczak, KL Greer, RE Coleman, CA Pelizzari. Correlation of
SPECT images of a three-dimensional brain phantom using a surface fitting tech-
nique. IEEE Trans Nucl Sci 39(5):1460–1463, 1992.

Copyright © 2002 Marcel Dekker, Inc.



5. BL Holman, RE Zimmerman, KA Johnson, PA Carvalho, RB Schwartz, JS Loeffler,
E Alexander, CA Pelizarri, GTY Chen. Computer-assisted superposition of magnetic
resonance and high-resolution technetium-99m-HMPAO and thallium-201 SPECT
images of the brain. J Nucl Med 32(8):1478–1484, 1991.

6. CA Pelizzari, GTY Chen, DR Spelbring, RR Weichselbaum, CT Chen, Accurate
three-dimensional registration of CT, PET and/or MR images of the brain. J Comput
Assist Tomogr 13:20–26, 1989.

7. TL Faber, EM Stokely. Orientation of 3-D structures in medical images. Trans Pat-
tern Anal Machine Intell PAMI-10:626–633, 1988.

8. M Mosfeghi, H Rusinek. Three-dimensional registration of multimodality medical
images using the principal axes technique. Philips J Res 47(2):81–97, 1992.

9. KD Toennies, JK Udupa, GT Herman, IL Wornom III, SR Buchman. Registration of
3D objects and surfaces. IEEE Comput Graph Appl 10(3):52–62, 1990.

10. CR Meyer, GS Leichtman, JA Burnberg, RL Wahl, RL Quint. Simultaneous usage of
homologous points, lines and planes for optimal, 3D, linear registration of multi-
modality imaging data. IEEE Trans Med Imag 14:1–11, 1995.

11. A Gamboa-Aldeco, LL Fellingham, GTY Chen. Correlation of 3D surfaces from
multiple modalities in medical imaging. Proc SPIE, 626:467–473, 1986.

12. H Rusinek, W-H Tsui, AV Levy, ME Noz, MJ DeLeon. Principal axes and surface
fitting methods for three-dimensional image registration. J Nucl Med
34(11):2019–2024, 1993.

13. E DeCastro, C Morandi. Registration of translated and rotated images using finite
Fourier transformation. IEEE Trans Pattern Anal Machine Intell, PAMI-9:700–703,
1987.

14. A Apicella, JS Kippenhan, JH Nagel. Fast multimodality image matching. Medical
Imaging III: Image Processing 1092:252–263, 1989.

15. GQ Maguire Jr, ME Noz, H Rusinek, J Jaeger, EL Kramer, JJ Sanger, G Smith.
Graphics applied to image registration. IEEE Comput Graph Appl 11:20–29, 1991.

16. RP Woods, SR Cherry, JC Mazziotta. Rapid automated algorithm for aligning and
reslicing PET images. J Comput Assist Tomogr 16(4):620–33, 1992.

17. RP Woods, JC Mazziotta, SR Cherry. MRI-PET registration with automated algo-
rithm. J Comput Assist Tomogr 17:536–546, 1993.

18. C Studholme, DL Hill, DJ Hawkes. Automated three-dimensional registration of
magnetic resonance and positron emission tomography brain images by multiresolu-
tion optimization of voxel similarity measures. Med Physics 24(1):25–35, 1997.

19. F Maes, A Collignon, D Vandermeulen, G Marchal, P Suetens. Multimodality image
registration by maximization of mutual information. IEEE Trans Med Imag
18(2):187–197, 1997.

20. CR Mauer, JM Fitzpatrick, MY Wang, RL Galloway, RJ Maciunas, GS Allen. Reg-
istration of head volume images using implantable fiducial markers. IEEE Trans Med
Image 16(4):447–461, 1997.

21. M Bergstrom, BJ Boethius, L Eriksson, T Greitz, T Ribbe, L Widen. Head fixation
device for reproducible position alignment in transmission CT and positron emission
tomography. J Comput Assist Tomogr 5(1):136–141, 1981.

22. PT Fox, JS Perlmutter, ME Raichle. A stereotactic method of anatomical localization
for positron emission tomography. J Comput Assist Tomogr 9(2):141–153, 1985.

Copyright © 2002 Marcel Dekker, Inc.



23. AC Evans, C Beil, S Marrett, CJ Thompson, A Hakim, Anatomical-functional corre-
lation using an adjustable MRI-based region of interest atlas with positron emission
tomography. J Cereb Blood Flow Metab 8:513–530, 1988.

24. PG Spetsieris, V Dhawan, S Takikawa, D Margoulef, D Eidelberg. Imaging cerebral
function. IEEE Comput Graph Appl 13(1):15–26, 1993.

25. GQ Maguire Jr, ME Noz, EM Lee, JH Schimpf. Correlation methods for tomographic
images using two and three dimensional techniques. In: SL Bacharach, ed. Informa-
tion Processing in Medical Imaging. Dordrecht, The Netherlands: Martinus Nijhoff
Publishers, 1986, pp 266–279.

26. C Bohm, T Greitz, D Kingsley, BM Berggren, L Olsson. Adjustable computerized
stereotaxic brain atlas for transmission and emission tomography. Am J Neuroradiol
4(3):731–733, 1983.

27. T Greitz, C Bohm, S Holte, L Eriksson. A computerized brain atlas: Construction,
anatomical content and some applications. J Comput Assist Tomogr 15(1):26–38,
1991.

28. S Marrett, AC Evans, L Collins, TM Peters. A volume of interest (VOI) atlas for the
analysis of neurophysical image data. Proc SPIE, 1092:467–477, 1989.

29. R Bajcsy, R Lieberson, M Reivich. A computerized system for the elastic matching
of deformed radiographic images to idealized atlas images. J Comput Assist Tomogr
7:618–625, 1983.

30. R Dann, J Hoford, S Kovacic, M Reivich, R Bajcsy. Evaluation of elastic matching
system for anatomic (CT, MR) and functional (PET) cerebral images. J Comput As-
sist Tomogr 13:603–611, 1989.

31. R Bajcsy, C Broit. Matching of deformed images. IEEE Proc Sixth International Con-
ference on Pattern Recognition. October, 1982, pp 351–353.

32. DR Masys. Visible human project. National Library of Medicine.
33. U Pietrzyk, K Herholz, WD Heiss. Three-dimensional alignment of functional and

morphological tomograms. J Comput Assist Tomogr 14(1):51–59, 1990.
34. JCH Wong, C Studholme, DJ Hawkes, MN Maisey. Evaluation of the limits of visual

detection of image misregistration in a brain fluorine-18 fluorodeoxyglucose PET-
MRI study. Eur J Nucl Med 24:642–650, 1997.

35. EJ Farrell, RJT Gorniak, EL Kramer, ME Noz, GQ Maguire Jr, DP Reddy. Graph-
ical fusion of multiple 3D image sets in radiology. J Med Syst 21(3):155–172,
1997.

36. BJ Erickson, CR Jack. Correlation of single photon emission CT with MR image data
using fiduciary markers. Am J Neuroradiol 14:713–720, 1993.

37. J West, JM Fitzpatrick, MY Wang, BM Dawant, CR Maurer Jr, RM Kessler, RJ
Maciumas, C Barillot, D Lemoine, A Collignon, F Maes, P Suetens, D Vander-
meulen, PA van den Elsen, S Napel, TS Sumanaweera, B Harkness, PF Hemler, DLG
Hill, DJ Hawkes, C Studholme, JBA Maintz, MA Viergever, G Malandain, X Pennac,
ME Noz, GQ Maguire Jr, M Pollack, CA Pelizzari, RA Robb, D Hanson, RP Woods.
Comparison and evaluation of retrospective intermodality brain image registration
techniques. J Comput Assist Tomogr 21(4):554–566, 1997.

38. RJT Gorniak, EJ Farrell, EL Kramer, GQ Maguire Jr, ME Noz, DP Reddy. Accuracy
of an interactive registration technique applied to thallium-201 SPECT and MR brain
images. Med Physics 24(8):1354, 1997.

Copyright © 2002 Marcel Dekker, Inc.



39. R Gorniak, EL Kramer, ME Noz, EJ Farrell, A Litt, M Gruber. Interactive 3-dimen-
sional registration of MR and 201 thallium SPECT brain images. In RL Arenson, RM
Friedenberg, eds. SCAR 96, Computer Applications to Assist Radiology. Symposium
Foundation, Carlsbad, CA. Denver, Colorado, June 6–8 1996, pp 422–429.

40. DP Reddy, GQ Maguire Jr, ME Noz, R Kenny. Automating image format conver-
sion—twelve years and twenty-five formats later. In: HU Lemke, K Inamura, CC Jaf-
fee, R Felix, eds, Computer Assisted Radiology—CAR’93. Berlin, West Germany:
Springer-Verlag, 1993, pp 253–258.

41. ME Noz, GQ Maguire Jr. QSH: A minimal but highly portable image display and
handling toolkit. Comput Meth Prog Biomed 27(11):229–240, 1988.

42. GQ Maguire Jr, ME Noz. Image formats: Five years after the AAPM standard format
for digital image interchange. Med Physics 16(5):818–823, 1989.

43. LG Brown, GQ Maguire, ME Noz. Landmark-based 3D fusion of SPECT and CT im-
ages. Proceedings of the SPIE Sensor Fusion VI Conference. SPIE—The Interna-
tional Society for Optical Engineering, Boston, 2059:166–174, September 1993.

44. SJ Nelson, MR Day, PJ Buffone, L Wald, et al. Alignment of volume MR images and
high resolution [18F] fluorodeoxyglucose PET images for the evaluation of patients
with brain tumors. J Comput Assist Tomogr 21(2):183–191, 1997.

45. U Pietrzyk, K Herholz, A Schuster, HM Stockhausen, H Lucht, WD Heiss. Clinical
applications of registration and fusion of multimodality brain images from PET,
SPECT, CT, and MR. Eur J Radiol 21:174–182, 1996.

46. R Rubinstein, H Karger, U Pietrzyk, T Siegal, JM Gomori, R Chisin. Use of 201thal-
lium brain SPECT, image registration, and semi-quantitative analysis in the follow-
up of brain tumors. Eur J Radiol 21:188–195, 1996.

47. B Pirotte, S Goldan, LM Bidaut, A Luxen, et al. Use of positron emission tomogra-
phy (PET) in stereotactic conditions for brain biopsy. Acta Neurochir 134:79–82,
1995.

48. M Levivier, S Goldman, B Pirotte, JM Brucher, et al. Diagnostic yield of stereotactic
brain biopsy guided by positron emission tomography with [18F]fluorodeoxyglucose.
J Neurosurg 82:445–452, 1995.

49. Schwartz RB, Carvalho PA, Alexander E III, et al. Radiation necrosis vs high-grade
recurrent glioma: differentiation by using dual-isotope SPECT with 201T1 and
99mTc-HMPAO. Am J Neuroradiol 12(6):1187–1192, 1991.

50. Black KL, Hawkins RA, Kim KT, et al. Thallium-201 (SPECT): a quantitative tech-
nique to distinguish low grade from malignant brain tumors. J Neurosurg
71:342–346, 1989.

51. N Oriuchi, M Tamura, T Shibazaki, C Ohye, et al. Clinical evaluation of thallium-201
SPECT in supratentorial gliomas: relationship to histologic grade, prognosis and pro-
liferative activities. J Nucl Med 34:2085–2089, 1993.

52. T Nariai, M Senda, K Ishii, T Maehara, et al. Three-dimensional imaging of cortical
structure, function and glioma for tumor resection. J Nucl Med 38:1563–1568, 1997.

53. E Alexander, JS Loeffler, RB Schwartz, et al. Thallium-201 technetium-99m HM-
PAO single-photon computed tomography (SPECT) imaging for guiding stereotactic
craniotomies in heavily irradiated malignant glioma patients. Acta Neurochir
122:215–217, 1993.

Copyright © 2002 Marcel Dekker, Inc.



54. FS Pardo, HJ Aronen, D Kennedy, G Moulton, et al. Functional cerebral imaging 
in the evaluation and radiotherapeutic treatment planning of patients with malignant
glioma. Int J Radiat Oncol Biol Phys 30:663–669, 1994.

55. G Sgouros, S Chiu, KS Pentlow, LJ Brewster, et al. Three-dimensional 
dosimeyrt for radioimmunotherapy treatment planning. J Nucl Med 34:1595–1601,
1993.

Copyright © 2002 Marcel Dekker, Inc.



14
Image Registration in the Thorax,
Abdomen, and Pelvis

Candice L. Aitken
Harvard Medical School, Boston, Massachusetts

Marilyn E. Noz and Elissa L. Kramer
New York University School of Medicine, New York, New York

I. INTRODUCTION

With advances in nuclear medicine, imaging techniques using radiolabeled sub-
stances, such as single photon emission computed tomography (SPECT) and po-
sition emission tomography (PET), have added significantly to the diagnosis and
evaluation of tumors. In particular, the use of radiolabeled antitumor antibodies or
tumor receptor ligands to detect abnormal concentrations of tumor-associated
antigens or receptors in tumors and metastases has increased. Imaging modalities
that give structural details, such as computed tomography (CT) or magnetic reso-
nance imaging (MRI), do not provide the functional or tissue-specific information
provided by SPECT or PET scans. For the most part, CT and MRI will show only
deformation or displacement of normal structures or space-occupying lesions
within normal structures, albeit with extraordinary detail.

PET relies on radioisotopes like fluorine Fluorine-18, Nitrogen-13, and 
Oxygen-15, that are incorporated readily into metabolic substrates like fluo-
rodeoxyglucose (FDG) and naturally occurring molecules like water or amino
acids. It provides tomographic images of the distribution of these molecules as they
are incorporated into metabolic processes. PET tumor imaging is based on alter-
ations in metabolism in the pathological states being studied. SPECT uses more
conventionally available radioisotopes, like I-123 and I-131 or radiometals like
technetium Tc-99m sulfur colloid and In-111 attached to pharmaceuticals, pep-
tides, or proteins to identify unusual tissue characteristics. Both modalities can pro-
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vide data in a tomographic format through any plane depending on the angle of re-
construction. This tomographic presentation of emission data provides enhanced
contrast and improved localization. Tomographic emission images are more eas-
ily compared with other transectional data like CT or MRI. With radiolabeled an-
tibodies for radioimmunodetection, as with most tumor-seeking radiopharmaceu-
ticals, the use of SPECT has increased the sensitivity for the detection of abnormal
concentrations of tumor-associated episopes or receptors both in the abdomen and
chest (1–5). When combined with structural imaging, radiolabeled tracer images
can delineate the nature of a residual mass in a treated patient by identifying tissue
characteristics associated with pathology (e.g., tumor). They can also identify ab-
normal tissue within structures that shows no evidence of enlargement, destruction,
or deformation on CT or MRI.

The problems associated with SPECT images are severalfold. SPECT im-
ages provide very little anatomical detail; determining the transaxial level of a
particular SPECT slice is often difficult. Similarly, the normal landmarks
needed in evaluating SPECT images may not be easily identifiable. It may be
difficult to identify the anatomical structure in which there is an abnormal lo-
calization of radiotracer, especially if that structure is enlarged or of abnormal
configuration. This makes the use of PET and SPECT for the staging of tumors
and surgical planning more difficult. The persistence of blood pool activity can
obscure a finding. In areas with high blood pool activity, areas of abnormality
may be masked by the persistence of blood pool activity. There may also be
nonspecific localization of the radiopharmaceutical in normal tissue that cannot
be differentiated from or might mask specific tumor uptake. Organs normally
involved in the excretion or clearance of a radiopharmaceutical (i.e., liver, kid-
ney or bowel) may accumulate radioactivity. Nonspecific liver uptake may then
obscure intrahepatic tumor activity; similarly, nonspecific bowel uptake that is
focal may be difficult to differentiate from specific tumor uptake. Without
anatomical landmarks, it may be difficult to know whether uptake is specific or
nonspecific (6).

CT and MRI, on the other hand, provide exquisite anatomical detail. Ab-
normal structures (e.g., masses) can be located relative to anatomical landmarks.
The determination of transaxial level is facilitated by the richness of detail. Both
abnormal masses and enlarged lymph nodes can be identified. In some cases, mil-
limeter sized masses or abnormalities are detectable.

The difficulties presented with CT are in characterizing the abnormality.
Abnormal masses cannot be characterized precisely in terms of cause; in a
treated patient they can represent recurrence or fibrosis at the site of a previously
known tumor or abscess (6,7). Alteration or distortion of normal anatomy by
surgery or prior disease can make the identification of an abnormality precari-
ous. Certain structures are variable in their appearance or positioning (8). For in-
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stance, loops of small bowel may be confused with soft tissue masses even when
oral contrast is used. Lymph nodes cannot be considered abnormal until they
measure more than 1 cm. This may lead to a false-negative diagnosis on CT.
False-positive results occur when a hyperplastic lymph node is present. The CT
cannot differentiate between an inflamed or hyperplastic lymph node and
metastatic disease. In the mediastinal staging of lung cancer, this can be a com-
mon problem.

The structural detail provided by CT, when combined with the functional
information provided by SPECT or PET, can be complementary (1,3,5,9–11).
Image registration or fusion can add spatial accuracy to the combination of
structural and functional imaging (6,12). The fusion of functional information
with structural images can help identify the location of a focus of uptake. This
may help distinguish normal from abnormal biodistribution of radiopharmaceu-
ticals. Similarly, it may help to identify a structure as either a normal variant,
scar, or residual disease. These fused images can help precisely identify struc-
tures that contain increased uptake of the radiopharmaceutical and help identify
the metabolically active portion of a structure. They also localize otherwise oc-
cult sites of disease. The precise margins on CT or MRI may be used to identify
boundaries for measurements of activity on PET and SPECT (i.e., for generat-
ing regions of interest for further analysis). Image registration has applications
in cancer diagnosis and staging, surgical planning, and radiation treatment plan-
ning.

II. TECHNICAL CONSIDERATIONS

Image fusion in the trunk presents technical difficulties not encountered in regis-
tration of images of the head or brain (7,13). The size of organs can change (e.g.,
bowel can distend and deflate) or be constantly in motion (e.g., respiratory mo-
tion). Also, organs can change in position relative to each other simply because of
the degrees of freedom of motion possible in the trunk. Pelvic rotation is the most
extreme example of this, but changes in curvature of the spine that occur with dif-
ferences in positioning may be equally problematic. When images for fusion are
acquired prospectively, differences in positioning may be reduced. Because of the
malleability of the trunk, the ability to stretch, warp, or deform images is critical
to fusion of body images.

A. General Considerations in Image Registration

Almost all fusion algorithms require the identification of corresponding points or
surfaces in the two image sets to be fused. When both images display a normal
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structure, corresponding identifiable points or surfaces on this entity may be iden-
tified. Otherwise, external fiducial systems may be used. However, the decision to
use fiducials must be made before acquiring the study. Fiducial markers both in-
crease the number of landmarks identified and are more easily identified. Al-
though we prefer to use fiducial markers, many methods of registration are suc-
cessful using internal landmarks alone.

Once the images are acquired, some attention needs to be paid to file for-
mats. Hardware and software must be capable of displaying the file formats in-
volved. For digital fusion and manipulation of three-dimensional (3D) tomo-
graphic data, slices from each different image modality must be transferred to a
single computer system and converted to a common format. The transfer may be
accomplished by any standard method such as file transfer protocol (FTP) over a
network or by reading magnetic tapes, floppy disks, etc. Interformat (14), a com-
mercially available image conversion program may be used to convert a specific
input file format into any number of specific output formats. For the algorithm
used in this laboratory, the images are converted into qsh (15), which is the stan-
dard AAPM format, subsequently known as the Interfile format (16). The image
file format associated with qsh provides two files: a header file as text in the form
of sets of standard key-value pairs comprising the nonpixel data and a second sep-
arate file composed of the N-dimensional array of numeric values (image data)
that comprise the actual pixel values. The header information (the key-value pairs)
is stored as ASCII character strings. Thus, the header files can be easily inter-
preted by any software package using a simple script, such as one written in AWK
or PERL. These header files can be used as a database to store a history of the im-
age processing or by other processes to read values from the header file, answer
requests for values, add new key-value pairs, and update image header files. This
provides facilities similar to environment variables with the added capability of
updating these values and sharing them between separate processes.

To date, several algorithms have been used to fuse SPECT or PET with CT
or MRI. In general, these algorithms may be categorized as “two-dimensional
(2D)” or “three-dimensional.” A 2D algorithm generally deals with two dimen-
sions or one image slice at a time. The operator must identify the correct slice pair
from each image set and then perform in-plane matching. In contrast, with 3D im-
ages, volume images are created from each image set and these volumes are reg-
istered. In middle ground the operator has the ability to reslice 3D data sets to per-
mit matching of the slice level and angles of reconstruction and then perform
in-plane alignment.

There is vast literature describing attempts to perform image registration,
both automatically and semiautomatically, for the head. Several good review arti-
cles (17–19), give insight into the problems and to many proposed solutions.
Common to most attempts at image registration are the difficulties encountered in
attempting image registration in areas of the body other than the head (e.g., the po-
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tential for changes in organ shape and movement of one structure relative to an-
other) (7,13). There is a great deal of emphasis on submillimeter accuracy that
might be necessary for neurosurgery but is not always necessary for cancer diag-
nosis and treatment. This level of accuracy is not attainable with functional im-
ages that have a pixel size great than 1 mm. Most registration methods and algo-
rithms that claim to be fully automatic actually incorporate a mechanism for user
interaction (20) or require preprocessing (21). An algorithm used for image fusion
should be applicable anywhere in the body, not need fiducial markers, and be ap-
plicable retrospectively.

The objective of this section is to present an overview of the methods used
fusing SPECT and/or PET with CT and/or MRI scans, particularly as they apply
to the thorax, abdomen, and pelvis. The methods used in our laboratory will then
be described.

1. Technical Approaches to Image Registration

Two major approaches to image transformation are commonly used. The first is
affine transformation involving the operations of translation, rotation, and scale,
which preserves the original relationship of all the structures involved. The sec-
ond uses warping, which performs the preceding three operations, as well as skew.

Approaches to determining transformation coefficients fall into three major
categories: (a) analytical with respect to structure; (b) analytical with respect to
surfaces; and (c) procedural. Two other approaches, although analytical in nature,
introduce data external to the studies. One of these is the use of an anatomical at-
las and the other is the use of external markers. It should be noted that these ap-
proaches are not mutually exclusive and may be used in conjunction with each
other.

a. Fourier Analysis Methods

One of the solutions for the problem of structure identification is to determine
translation, rotation, and scaling transformations using Fourier analysis methods.
One group has approached the problem by using a 2D global tracking algorithm
based on phase correlation Fourier methods (22). Another solution uses a cross-
correlation that uses Fourier invariance properties and logarithmic transforms to
decouple the variables. Although this eliminates the iterative nature of the algo-
rithm and reduces the computational expense, as with the first method, the images
must be preprocessed (23,24).

b. Polynomial-based Warping

Identification (of structure) that involves translation, rotation, scaling, and skew
can be implemented with a polynomial-based warping algorithm. These techniques
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have been applied to correlate serial thallium heart scans (25) and have been used
extensively in our laboratory (6,12,26,27). A linear and nonlinear polynomial warp
using interactively specified 3D landmarks was proposed for correlating CT, MRI,
and PET (28). Promising results were obtained with rigid objects (an artificial fixed
geometry scene and a cadaver), but when nonlinear distortion is present, problems
with oscillation occur unless enough landmarks are specified in a well-distributed
manner over the entire 3D surface.

c. Surface Identification

Surface identification is another method that has been used to register images.
There are three major approaches to surface identification: the least squares search
technique, eigenvalue decomposition, and moment matching techniques. The first
approach (20,29–35) uses a search technique to minimize “mismatch” between
the surfaces (i.e., the sum of squares of distances from points on surface A to near-
est points on surface B). The second approach finds the principal axes, because
these depend only on the shape and represent orthogonal axes about which the mo-
ments of inertia are minimum. Implementation of this technique involves the
eigenvalue decomposition of scatter matrices (second-order moments) applied to
the threshold version of the original images (36) or to the surface data (37,38). In
the third approach, surface fitting is accomplished by moment-matching tech-
niques (39). All of the preceding approaches to surface matching work well on
structures with bony outlines such as the head but are less successful with struc-
tures composed of soft tissues such as in the abdomen. Their application to parts
of the body other than the head is limited, because the presence of well-defined
contours is necessary. Scott et al. and Kolbert et al. (34,35) have used the approach
of outlining particular organs, such as the liver, on all the slices (drawing contours
or regions of interest) and then applying the least squares search method.

d. Procedural Approach

The procedural approach to image registration is based on accurate and repro-
ducible positioning of the body part at the time of the study acquisitions. Erdi et
al. (40) have used a body cast to immobilize the body and help ensure accurate
repositioning. Two different ways of accomplishing this, currently available only
in the head, are to use a stereotactic frame and to use an anatomic atlas, (Chapter
13).

e. Landmark Identification

Methods of registration involving landmark selection do not require rigid struc-
tures and, therefore, are applicable in all parts of the body. Landmarks are homol-
ogous points that appear on both image sets to be registered or fused. The relative
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position between the landmarks in one image and those corresponding in the sec-
ond image can be used in the registration algorithm. Landmarks can be defined ge-
ometrically to locate corresponding points in the two different objects (i.e., using
the relations between lines, planes, and angles) or topologically (i.e., using only
the connections between objects to identify them) (13,41). Ideally, one would like
to determine the landmarks automatically, but it is typical to identify them manu-
ally or to use a combination of these methods in which an operator, after examin-
ing the automatically chosen landmarks, is able to adjust them.

Choosing landmarks to match two images has distinct advantages over edge
or surface definition. Primarily, fewer points need to be designated. Theoretically,
in a plane, only three landmark point pairs need be identified. In practice, eight to
twelve point pairs should be chosen. (Fig. 1.) By applying linear regression tech-
niques to the complete set of landmark pairs, the errors inherent in each individual
landmark pair are minimized in a least squares sense by averaging over the whole
set of landmarks (26). This number of landmark points is still considerably less than
the number of points needed for surface-fitting algorithms. This approach permits

Fig. 1 After matching the transaxial level, corresponding landmarks have been identified
by the user using the configuration of the border of the liver and spleen. Eleven pairs of
landmarks were identified. It is important to identify these point pairs in as widely dis-
placed a distribution as possible.
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local registration and global registration. This means that whole image slices can
be matched or objects within the image slice can be matched separately. Landmarks
may be selected before or after image acquisition and in all parts of the body so that
the method may be applied retrospectively.

Landmarks may relate to intrinsic anatomy depicted in the image but may
also be identified with an anatomical atlas or external physical devices. Often a
combination of techniques are used (42).

f. Internal Landmarks

The identification of internal landmarks requires the identification of anatomical
sites within an image. This is rarely a problem on structural studies. More often,
the anatomy depicted on functional images is less complete and will depend on
the biodistribution and metabolism of the radiopharmaceutical administered. For
instance, in studies using In-111 chelate–conjugated tumor-specific antibodies,
blood pool activity, and localization of released In-111 in bone marrow provides
anatomical information from skeletal structures and great vessels (6). Body
edges often can be identified on SPECT scans from scatter; this has been applied
in technetium Tc-99 sulfur colloid–labeled antibody fragment SPECT studies of
the thorax in patients with lung cancer (12,43). Edges and contours of normal
organs can be used when these organs accumulate the radiopharmaceutical as
the liver does in blood pool SPECT studies for liver hemangiomas (27).

A more novel approach to anatomical landmark matching has been reported
by Liehn et al. and Perault et al. (44,45), who have injected technetium Tc-99m
diphosphonate and simultaneously imaged the In-111–labeled antibody and the
bone scanning agent using multiple energy windows. The simultaneous acquisi-
tions provide two image sets, a technetium Tc-99m diphosphonate image set and
an In-111 labeled antibody image set, which have the same size and orientation.
The bone scan image offers improved definition of skeletal anatomy on SPECT
scan for matching with the CT.

External Landmarks. External markers using point (46) or line sources
(12,26), sometimes in a “N” configuration (also referred to as “Z” configuration)
(40,47–48), have been used to provide additional points for referencing between
two image sets. For a discussion of different markers systems see Van den Elsen
et al. (18). For SPECT we have used point source markers containing a radionu-
clide with an emission of lower energy than the radiopharmaceutical being used.
For instance, in In-111–labeled antibody imaging, Co-57 sources are imaged in a
separate 5% window centered at 122 keV avoiding overlap with a 15% to 20%
window centered on the 173 and 247 keV photopeaks of In-111. This provides two
separate but completely matched image sets that may be viewed separately or to-
gether as one image. These point sources are placed at key and reproducibly iden-
tifiable anatomical landmarks to define external landmarks (e.g., the umbilicus for
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the abdomen and in the thorax at the sternal notch, coracoid processes, and
xyphoid process) (12). For MRI, vitamin E capsules or an air-filled tube are com-
monly used (18,26). For CT, the small metal markers used for radiation treatment
planning or an iodinated contrast filled tube may be used. Because selected sites
are often readily identifiable on CT or MRI, it is not always necessary to use mark-
ers on the CT or MRI. To ensure reproducibility between studies, the point of
placement may be marked with ink or dye on the patient.

Strings or belts of skin markers provide an alternative to individual points.
Each marker string would consist of alternating sets of markers appropriate to the
modalities being used (e.g., for PET, Gallium-68; for SPECT, Co-57; for CT,
metallic “BBs”; and for MRI, vitamin E capsules). Optimally, patients would un-
dergo the different imaging studies without removing and replacing the marker
belts. This method of external markers has been successfully used for external nar-
row-beam radiotherapy planning in primary brain tumors (49). It is the method
preferred by our group (6,12) and several groups active in the field of image reg-
istration or fusion (47,50,51). The use of external markers is flexible and adapt-
able to all body locations; however, in parts of the body other than the head, where
skin may be relatively slack, marker location may not be reproducible in relation
to internal anatomy. One approach to overcoming this difficulty has been to use
immobilization devices to better approximate patient position from one study to
another. Aquaplast, plaster, or alpha cradle immobilization, common techniques
used in radiation oncology, could be used. The external markers are then placed
on the immobilization device. This has all the inherent weaknesses of procedural
approaches to registration caused by difficulty in repositioning the trunk. Another
method that uses external landmarks has been to use a 3D space digitizer system.
This may be used to acquire data about the patient’s outer skin surface and its re-
lation to the scanner. Markers on the patient’s surface can be included easily as
part of this data set. A number of different devices are available that use magnetic,
optical, and ultrasonic methods for acquisition of this 3D information. Each sys-
tem reacts differently to operation near large metallic objects such as gamma cam-
eras and CT scanners or in the presence of large magnetic fields. The spatial res-
olution of these systems is constantly improving as new developments improve
the technology.

2. Display Requirements

When images that are obtained at different times or from contrasting modalities,
such as PET and CT, are to be viewed side by side, it is useful to have the ability
to give each image its own background and saturation values, as well as color
scale. This is important for comparative studies to allow optimal interpretation of
images and identification of features within the image. Frame buffers based on the
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X11 windowing system and/or the Motif graphical user interface provide this fa-
cility.

3. Matching Geometry

Once the images are available, the differences in the geometry of the two images
must be accounted for. The differences in the center-to-center interslice distance
of the two different image sets must be considered. One approach has been to try
during acquisition or reconstruction to match slice thickness of the various image
sets as closely as possible. We have taken two simple approaches to this problem.
The first is to tailor the CT or MRI slice acquisition so that the thickness matches
the SPECT slice thickness or a multiple thereof. The other is to choose two slices
that represent the same distance from a fiduciary marker or anatomical landmark.
Slices must also be matched for size within the plane of reconstruction. The di-
mensions of the pixel matrices of the two images must be the same. Typically
SPECT images are acquired in a 64 	 64 or 128 	 128 matrix, and CT and MRI
images are acquired generally in a 256 	 256 or 512 	 512 matrix. In practice,
we have interpolated all our images to a matrix size of 128 	 128 for subsequent
matching. The difference in the size represented by a pixel in one image compared
with the other is compensated for through the “warping” algorithm (described
later), which allows translation, rotation, scale, and skew. Once the matrix di-
mensions match and the transaxial level corresponds, corresponding landmarks
must be identified on each image. This can be done using several different meth-
ods.

B. Examples of Methods

Three broad categories of image registration approaches are: 2D combined with
3D, rigid body 3D, and 3D with warping. In the first approach, only two dimen-
sions (i.e., one plane) are manipulated at one time. The entire volume of the ac-
quisition is available for manipulation, and any plane may be adjusted. In the sec-
ond approach, rigid body 3D, a three-step procedure involving feature extraction,
registration, and fusion with quantification is performed to graphically fuse
SPECT with CT or MRI scans. The third approach is an attempt to combine the
landmark/warping method used in the 2D/3D combined method with 3D display.

1. Combined 2D–3D Method

To render the images coplanar, an oblique reconstruction (52) or tilt algorithm is
used to obtain an oblique slice from the CT and/or MRI image set that most
closely aligns with the PET or SPECT image (53). (Fig. 2) A transaxial slice is dis-
played, and the levels for sagittal and coronal reconstruction, which form the (x,y)
coordinate of the pivot point, are chosen on this slice. The sagittal and coronal
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views are then reconstructed and displayed. A cursor on the coronal view (along
with its coordinates) is displayed and moved through the coronal view for the pur-
pose of obtaining the z coordinate of the pivot point. A line on the coronal view at
this z level is rotated until the desired tilt is obtained in the x-z plane. Then a line
on the sagittal view at the correct z height is rotated until the tilt in the y-z plane
is selected. The values of the pivot point and angles are stored in the image header
file. The oblique reconstruction is then performed. Most commercial SPECT pro-
cessing software packages provide some oblique angle reconstruction capabili-
ties, but only a few provide the ability to tilt in all three planes. Most do not per-
mit reorientation within the coronal plane, so it is important to provide this
capability within the fusion software. It may be preferable to perform this oblique
angle reconstruction while displaying both image sets.

Fig. 2 Particularly when the area of interest is in the pelvis or lower abdomen, differences
in the angle of the plane of reconstruction between the CT and SPECT scan may occur. This
demonstrates a display for reorienting the plane of reconstruction of the CT scan. On the
transaxial view (top, left), a sagittal and coronal plane are chosen using line cursors. The
chosen coronal section is displayed (top, right), and the correct angle for the transaxial
plane of reconstruction is chosen. Usually the angle that is perpendicular to the patient’s
vertical midline axis is chosen. Similarly, the sagittal plane is displayed and a plane of re-
construction that mimics the SPECT is chosen. The entire volume of data is then reoriented
along these new planes.
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Landmarks are chosen on the reference image and on the image to be regis-
tered. Each landmark from the reference image is cross-correlated with the corre-
sponding landmark from the other image. A frame buffer used as a raster display
is used for viewing images simultaneously, thus aiding the comparison of the rel-
ative positions of features on each image and the measurement of their respective
coordinates. Usually between 10 and 20 pairs of landmarks are chosen (54). These
point pairs (or landmarks) may correspond to external markers placed on identifi-
able and reproducible external anatomical landmarks. Depending on the distribu-
tion of radiopharmaceutical, other anatomical landmarks depicted in both images
may be used to match corresponding points. For instance, in the In-111–labeled
monoclonal antibody studies where some activity accumulated in the skeleton, we
found that we could use skeletal landmarks such as the sacral promontory or the
posterior aspect of the sacroiliac joint on both the SPECT image and on the CT of
the pelvis. Yet another type of landmark that we have found useful is edge or sur-
face matching. Very often on the SPECT study, either the scatter will help depict
the body edge or one can use the edge of the functioning organ as the functional
image landmark. In matching SPECT of the thorax after administration of Tc-
99m–labeled antibody, the edge of the scatter on the image which corresponds to
body surface is matched with the body surface on CT. Similarly, the configuration
(edge) of the liver on the SPECT study of an In-111–labeled antibody scan could
be matched with the liver edge on the CT scan. The shape of the respective edges
provides landmarks that can be matched. At the end of this procedure, sets of co-
ordinate pairs (x,y; u,v) that relate the respective locations of the anatomical land-
marks in the two images are produced, (Fig. 3A, B).

Once corresponding points, edges, or surfaces are identified, an algorithm
is applied that describes the relationship between the corresponding sites. Our
approach to this has been to use a polynomial warping algorithm (55). A linear
regression analysis is performed on the landmarks, followed by a Gauss Jordan

Fig. 3 A CT scan (A, top right) in this man with a history of colon cancer and an elevated
serum carcinoembryonic antigen (CEA) level. He underwent a SPECT study 72 hours af-
ter infusion of 5 mCi In-111–labeled CEA-specific monoclonal antibody (ZCE025,
Hybritech, Inc., San Diego, CA). The CT scan showed a solitary abnormality in the spleen,
which is marked here with the region of interest. This region of interest was warped from
its original size and location onto the SPECT (A, top left) using the image registration pa-
rameters generated from the algorithm. The warped region of interest is seen to overlay the
“hot spot” on the SPECT (A, bottom left). This SPECT study showed a second focus of up-
take in the left upper quadrant of the abdomen. After warping, a region of interest gener-
ated over the second focus (B, left) showed that this unexpected focus of uptake overlaid
an unremarkable area in the spleen on CT (B, right). Some months later, a follow-up CT
showed a splenic lesion in that location. A region of interest generated over the liver on the
CT is warped and overlaid on the SPECT as a quality control.
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matrix inversion to find the eigenvalues of the matrix that form the transforma-
tion coefficients (56). Either first- or second-order polynomials are used, de-
pending on the severity of the transformation. These eigenvalues are then used
together with a resampling technique to determine the new coordinates for each
pixel in the image to be moved. The alteration achieved by the application of the
algorithm may be performed on either the images themselves or on a region of
interest (ROI) that describes an outline of a structure on the CT or MRI or on a
concentration of radioactivity on the SPECT.

a. Validation Studies

To determine the relative accuracy of our registration methods, studies have been
performed using a Jaszczak phantom filled with 925 MBq (25 mCi) of Tc-99m
pertechnetate with a ring of 5.55 kBq (150 �Ci) I-123 pills fixed to the phantom
at the level of the spheres in the phantom. A dual-energy window acquisition was
used with one energy window centered about the 159 keV peak of I-123 and the
other centered about the 140 keV peak of technetium Tc 99m. Two projection data
sets were generated, one that demonstrates the activity in the markers (I-123) and
one that demonstrates the activity in the phantom (Tc-99m). A CT scan of the
phantom filled with iodinated radiographic contrast and an MRI scan with the
phantom filled with water and with a ring of vitamin E capsules fixed to the phan-
tom in place of the I-123 capsules were also acquired. Registration of the SPECT
with the CT, as checked by placing a cursor on the corresponding pixels, was
achieved within one SPECT pixel, or "3.2 mm. The five width or half maximum
(FWHM) of the SPECT scanner used was 1.2 cm in all three planes (26). This may
limit the accuracy of the match compared with what could be achieved in regis-
tering CT with MRI.

In a project to assess the sensitivity, specificity, and accuracy of Tc-99m–la-
beled red blood cell SPECT imaging versus MRI in the diagnosis of hepatic cav-
ernous hemangiomas, functional information as seen by SPECT was correlated
with anatomical information derived from MRI or CT (27). Thirty lesions were
fused using SPECT-MRI and 20 using SPECT-CT. To assess the accuracy of the
fusions, two statistical models were developed. One examined the center-to-cen-
ter match of two ROI over each of the registered images. The other examined the
percent overlap between the ROI. Fusing was accurate within an average of 1.5 "
0.8 (SD) pixels. The technique enabled diagnostic confirmation of hemangiomas
as small as 1 cm in diameter (Fig. 4). These clinical results are consistent with the
phantom data. They also are comparable to the results others have obtained in the
abdomen (13).

Qualitatively, registration of SPECT from radiolabeled tumor-specific anti-
body studies with CT has been performed both in the abdomen and chest (6,12).
Unexpected foci of activity on the antibody SPECT have been identified anatom-
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ically by fusion with CT and confirmed at surgery. It is anticipated that this tech-
nique may be applied systematically to analyze CT, MRI, and SPECT in tumor
staging and identification.

Understanding the errors involved in misregistration is critical in quantita-
tive analysis of functional images. To date, this has been studied in PET, where
quantitative data are usually provided. As quantitative SPECT becomes more
common, understanding the kinds of errors and their magnitude will be increas-
ingly important. We have looked at the effect of remaining differences in tilt be-
tween two image sets after oblique reconstruction. The oblique projection algo-
rithm already described was used to tip the structural image set (in this case, the
CT of the brain) from three different very well-matched normal study pairs. Three
different angulations, "4 degrees, "8 degrees, and "12 degrees, out of the sagit-
tal plane (an angular difference of 15 degrees or greater would be noticeable on

Fig. 4 This patient had multiple abnormalities on CT in the liver. An MRI was per-
formed. This image from a T1 sequence shows multiple high-density lesions throughout the
liver. A SPECT study performed in this patient 1�

1
2

� hours after intravenous administration
of 30 mCi of technetium Tc 99–labeled red blood cells demonstrates increased blood pool
accumulation in several sites. Regions of interest were generated on the MRI slice and
warped onto the SPECT, showing correspondence between the high-intensity foci in MRI
and the high-uptake foci on SPECT.
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the CT scout film) were used. Regions of interest were drawn on the resulting
slices on the left and right caudate and putamen. These ROIs were then overlaid
on the corresponding fused PET slices. The nCi/cm3 were calculated for each ROI
derived from the untilted slice (zero degrees) and for each of the six angular dis-
placements. The differences in nCi/cm3 between the tilted and the untilted slices
ranged from 
4% to �16%, suggesting that small mismatches in tilt in the sagit-
tal plane would not invalidate measures of asymmetry (57). As an extra check on
the accuracy of our anatomist, we presented her with each of the untilted slices and
with the "12-degrees tilts. The slices were presented in a random order, and each
slice was presented more than once. She then outlined the right and left caudate
and putamen on each slice. An analysis of variance test was performed on the
measurements taken at these three angles. In no case was a statistically significant
difference in means found. We can conclude that the ROI outlines drawn at the
three different angles are statistically comparable and, therefore, that the results of
our original study are not due to the anatomist. The phantom study previously dis-
cussed validates the transformation methods.

2. 3D Rigid Body Method (58,59)

The objective of this work is to use a three-step procedure for graphically fusing
SPECT with CT and/or MRI scans. The steps are feature extraction, registration,
and fusion with quantification. The resulting fused 3D images provide additional
insight into the nature and extent of disease and its relation to normal adjacent
structures. The tools developed to accomplish our goal have proven to be useful
in clinical situations. At each step in the procedure, there are options appropriate
for the organ, scan mode, and pathology.

Feature extraction yields 3D boundaries/surfaces of organs, bone, and
high/low radioactive emission regions that are then used to register the radionu-
clide data to structural scans. The registration is accomplished with routine diag-
nostic scans without reliance on a head frame or fiducial markers and is based on
visualizing 3D shapes and 2D images. With registered data sets, 2D and 3D im-
ages from SPECT and CT/MRI can be displayed in the same image (i.e., fused).
Interactive graphical methods can then be used to measure (a) the relative posi-
tion, size, and shape of regions of interest and (b) the magnitude and distribution
of radioactivity. Quantitative geometric and radioactive emission information are
of particular interest.

Although scans using tumor-avid pharmaceuticals are obtained for the pur-
pose of identifying sites of active tumor, information such as tumor size and even
exact anatomical tumor location is difficult to obtain from the functional study
alone. The visualization tools that we used focus on geometric measurements by al-
lowing anatomical information derived from the structural (CT/MRI) data to be reg-
istered with the functional SPECT data. Of particular interest is the ability to inte-
grate into one image information from different MRI sequences, T1-weighted (T1,
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a scanning sequence that has short time of signal repetition and thus emphasizes cer-
tain particular tissue characteristics), T2-weighted (T2, a scanning sequence that
has a long echo time and thus emphasizes certain particular tissue characteristics
that are different from those emphasized in T1-weighted images), and proton den-
sity (PD, a scanning sequence that produces an image in which the brightest signal
reflects the highest density of protons). In characterizing tumors, particularly brain
tumors, each MRI imaging sequence contributes different information.

For this purpose we have used the IBM Visualization Data Explorer (DX)
(IBM Visualization Data Explorer, International Business Machines Corpora-
tion, Yorktown Heights, NY) software suite, which provides an object-oriented,
graphical programming interface (Figs. 5A, B). The DX data model is disci-
pline-independent (i.e., it can be used for any visualization application including

A

B

Fig. 5 In this patient with a history of breast carcinoma, a SPECT scan using Indium-111
BrE-3 antibody, specific for a tumor-associated epitope of breast epithelial mucin, shows
areas of increased activity in the liver that (A, left, arrows) corresponded to apparently nor-
mal areas in the liver on the CT scan (A, right). However, follow-up CT some months later
demonstrated metastatic lesions at these sites. The lower image (B) demonstrates the use
of DX, a 3D registration program to align the CT with a radiolabeled antibody SPECT
study in all directions. For analysis of the abnormalities on the SPECT and CT, 2D displays
are used.
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medicine), self-describing, and supports regular and irregular grids with node
and connection-dependent data. DX uses a data-flow–driven client-server exe-
cution model and runs on UNIX workstations from most leading manufacturers.
Window content, layout, and access were structured for convenient use and ease
of learning. Each image is fully annotated with variable names, display param-
eters, patient name, and scan date. The latter data are automatically extracted
from the image header.

The visualization programs are structured to minimize execution time. Data
volume is a key factor. In some cases, images can be interpolated to reduce size
without loss of relevant data for quick visualization and determination of param-
eters. Where appropriate, data can be rescaled to 1 byte to reduce memory re-
quirements. Caching and paging behavior are also important design considera-
tions. DX provides the option to cache results at each process step. When a display
parameter is changed, only those steps affected by the change are recomputed,
with minimal computation and rapid response. However, excessive caching may
result in paging, thus reducing response time. The selection of which nodes are
cached and paging behavior was included in the overall program design analysis.

a. Feature Extraction

The features extracted from the 3D data sets are boundaries or surfaces of organs,
bone, and high-radiation emission regions. These surfaces are key items used in
registering radionuclide functional to structural images and are the anatomical ref-
erences used in the interpretation of fused data. We have found isosurface render-
ing to be more useful than volume rendering for feature extraction. For the iso-
surface rendering, the image consists of solid pixels, all of which have a specified
pixel value and transparent pixels having a different specified pixel value.

A surface consisting of only one specified pixel value, an isosurface, can
display the 3D distribution of emission activity in SPECT scans by displaying re-
gions of abnormally high or low activity as an opaque 3D isosurface and of nor-
mal activity as a transparent surface. For tumor-avid SPECT images, the trans-
parent surface often corresponds to the surface of the involved organ. The opaque
surface corresponds to the localized abnormal accumulation of radioactivity
within the organ. Contours can be displayed on the opaque and/or transparent iso-
surfaces to improve shape perception and estimate the size of various regions.

On the basis of MRI, CT, and SPECT 3D data sets, isosurfaces are formed
corresponding to skin surface, brain lateral ventricles, tumor, lung surfaces, bone,
etc. In some cases extraneous isosurface segments are formed as a result of data
artifacts or poor segmentation. The 3D image can be edited to keep only relevant
surface segments.

The first step in the extraction of significant features is to select a set of
points in the ROI; points may be in more than one image set. Points are selected
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first in one or two image sets. Based on these points, an average and sample co-
variance matrices are computed. Then at each point in the 3D data space, scan re-
gion, the Mahalanobis distance of the corresponding value is generated. The Ma-
halanobis distance is based on the sample mean and covariance. It is the euclidean
distance from the mean with the inverse of the covariance matrix used as the met-
ric. An isosurface is then formed based on this distance. Note that points are not
classified as lesion, cerebrospinal fluid, etc. This method defines an isosurface
about statistically similar tissues as defined by the user.

After selecting several key regions of anatomical interest, contours are dis-
played in 2D image sets. To confirm that each of the point groups is coherent and
disjoint, a 3D cluster plot can also be formed with ellipsoids surrounding the clus-
ters that correspond to the thresholds used for each surface. An advantage of this
approach is that it compensates for anteroposterior intensity gradients. This is par-
ticularly valuable for large structures like the skin surface. Points can be selected
around the head, and the Mahalanobis ellipsoid will be elongated radially from the
origin of the T1-weighted, T2-weighted, and PD space.

b. Registration

Registration of the data sets is required before fusion and analysis can be per-
formed. The coordinates of the functional data are translated and rotated relative
to the structural coordinate frame to ensure that a given 3D coordinate refers to the
same anatomical location in both data sets. Two approaches are available for reg-
istration: direct 3D registration and iterative 2D/3D registration. The direct 3D ap-
proach is based on aligning structural and functional surfaces of the same anatom-
ical region. For example, the structural and functional data of a patient can be
registered based on aligning skin surfaces, one opaque and one transparent. It is
possible to visualize the 3D surfaces from several viewpoints. This approach re-
lies on the ability to extract an appropriate surface from the functional data and
can produce a repeatable registration even with very ill-defined surfaces. In our
experience with SPECT images at New York University, however, direct 3D reg-
istration is always possible only when external fiducial markers are available on
the functional images (41). In cases in which satisfactory surfaces cannot be ob-
tained, an alternate approach is used based on 2D and 3D images.

In the iterative 2D/3D registration, 3D surfaces are used for the initial pa-
rameter selection. Most frequently, the coronal views are used to define the ante-
rior, middle, and posterior extent of a significant organ or tissue. During the reg-
istration process, the 3D surfaces are continuously updated, thus giving a visual
display of the results of each operation of rotation and translation.

The first step is to select a data plane through the 3D SPECT data set based
on identifiable features. Interactive 3D rotation is key to positioning this plane.
Next, a comparable plane is selected for the structural, in this case CT, data. 
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Because these images have clear structures, a 3D liver surface is not needed to se-
lect the coronal plane. Axial and lateral translations of the 3D functional data set,
and the anteroposterior rotation, are then visually selected to align the contours to
anatomical features in the structural image. The two axial slices at the same axial
location are formed, with the functional scan contours again placed over both im-
ages. It must be kept in mind that these data sets have already been preliminarily
registered in the axial direction using 3D surfaces. The anteroposterior translation
and axial rotation are now selected. Then a sagittal slice is used to select the lat-
eral rotation. Once this rough estimate of the three translation and rotation pa-
rameters has been made, the 3D surfaces and 2D slices are used iteratively to fine
tune the match. A second pass with the coronal, sagittal, and axial images is per-
formed to make adjustments to the translation values and rotations about all axes.

To confirm the registration, image pairs are compared using overlaid iso-
contours (2D) of isosurfaces (3D) for different plane locations and directions. The
basic concept of the iterative 2D/3D approach is to adjust large registration dis-
parities first, followed by smaller adjustments. This approach is well suited to
SPECT/CT data, because even though resolution of the SPECT data is low, the
registration converges in one or two passes.

c. Fusion with Quantification

With registered data sets, 3D surfaces from functional data can be fused with sur-
faces from the structural data sets. Also planes of functional and structural images
can be displayed with the 3D isosurfaces. The 2D slice images provide detailed in-
formation in a plane, whereas the 3D isosurfaces present the global relationships.

The width, height, and depth of 3D regions can be obtained using the sur-
face contours, along with a clear interpretation of shape. After registration, these
surfaces are merged with CT structures. The CT structures often used include the
spine, ribs, and descending aorta. Because the CT, which is a routine clinical scan,
has slice thickness of 15 mm in the axial direction, the bone surfaces have a very
irregular shape. An original CT slice is included in the presentation. In addition to
the three standard directions, the user can pick any three surface points to define
a plane and display a 2D slice from either data set. This allows the user to obtain
detailed spatial information about objects of special interest that may not be
aligned along conventional planes.

In DX, an interactive “Pick” module is used to extract pixel values (repre-
senting relative radioactivity accumulation) at selected points, to measure dis-
tances between points, or to view an emission profile plot along a selected line
segment. Also, the volume enclosed by a surface is evaluated with a “Measure”
module. This can be the entire isosurface or just a segment like a hot spot near the
spine. The ability to calculate volume is particularly important when using a radi-
olabeled tumor-avid agent to identify a tumor. This volume calculation for a tu-
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mor enables one to follow the tumor over the course of therapy for response and
is useful for radiation dose calculations in radioimmunotherapy.

d. Validation

This method has been validated both by comparing the results obtained with
known results previously obtained and by clinical follow-up on particular patients.
We have also studied a group of 33 brain tumor images, nine of which had stereo-
tactic frames, and we compared the results obtained including and not including
the frame. The average 3D difference between the standard registration and regis-
tration without a stereotactic frame was 5.8 " 2.9 mm. The average 3D difference
was determined by applying the two sets of registration parameters to an 800-pixel
sample of each patient’s brain volume, then calculating the average distance be-
tween the corresponding pixels of each trial (60). This validation has not yet been
performed for the body.

3. 3D Warping Method

We are currently collaborating with the Radiation Physics Institute of the Karolin-
ska Institute in Stockholm, Sweden, to produce a registration system that com-
bines our landmark/warping approach with the 3D visualization techniques previ-
ously described. We are developing visualization programs in which landmarks
will be chosen on one or more axial slices while the 3D image and the sagittal and
coronal slices will be displayed for reference. These 3D landmarks will then be
used directly in the polynomial warping algorithm described earlier. Essentially,
this will eliminate the oblique slice projection and will allow the user to page back
and forth through the entire image set.

III. CLINICAL APPLICATIONS OF IMAGE REGISTRATION

A. Applications in the Thorax

The application of image registration or fusion to the chest presents less difficulty
than the abdomen, because there are fewer degrees of motion possible. Respira-
tory motion may introduce discrepancies, because CT is obtained with breath
holding at deep inspiration and SPECT with quiet respiration. The position of the
arms will also have an influence on the relative expansion of the chest. Nonethe-
less, differences in rotation can usually be accounted for either by careful posi-
tioning or by rotation of images after the acquisition. As in other parts of the body,
image fusion in patients with suspected tumors has been used to give anatomical
meaning to SPECT or PET images, especially in the mediastinum. When there is
other underlying disease and the relative expansion or collapse of a particular part
of the lung may distort the usual anatomy, fusion will help in surgical planning.
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Image fusion has also been invaluable in differentiating tumor from other disease
in the lung.

Image registration has been used in lung perfusion studies to accurately de-
termine the location of perfusion abnormalities. A composite image is formed by
the superimposition of the Tc-99m macroaggregated albumin SPECT and chest
CT images (61). The precise localization of lung segments allowed by image reg-
istration helps to quantify perfusion abnormalities and changes. Perfusion lung
images have long been used in conjunction with pulmonary function testing
(FEV1) to predict regional pulmonary function after lobectomy or pneumonec-
tomy. The actual borders of lung segments or lobes seen on the CT may be super-
imposed on the SPECT depiction of the distribution of pulmonary perfusion. This
will provide a better understanding of the clinical impact of resecting a lobe or
wedge of lung on pulmonary function.

Image registration of radiolabeled antibody studies with chest CT in lung
carcinoma may be used for the staging of non-small cell lung carcinoma (NSCLC)
as an integral part of determining the approach to treatment. Thoracic CT scans
were registered with Tc-99m–labeled IMMU-4 anti-carcinoembryonic antigen
Fab� antibody fragment SPECT scans in 14 patients with NSCLC (43). All of the
patients had biopsy proven NSCLC, stages IIb–IV. A landmark-based algorithm
was used to fuse the two modalities. External fiducials (Co-57) were placed on
prominent superficial anatomical landmarks: the coracoid process, the sternal
notch, and the xiphoid process. Accuracy of registration was based on two mea-
surements: center-to-center distance and the overlap of ROIs. The accuracy of the
registration was determined to be within 1.3 " 0.8 pixels. Although the SPECT
alone provided information about abnormal accumulation of tumor antigens, reg-
istration of the images allowed differentiation of abnormal uptake caused by tu-
mor in the mediastinum from normal blood pool activity in the great vessels and
thus added specificity (Fig. 6).

In this series, 40 pairs of structural-functional images were registered. The
registered images differentiated areas of tumor and mediastinal lymphadenopa-
thy from blood pool in 7 of 14 patients. Fusion of Tc-99m IMMU-4 SPECT
with CT helped distinguish necrotic tumor from viable tumor in three treated pa-
tients. In two of three patients who had undergone a prior surgical resection, im-
age fusion of the radiolabeled antibody SPECT with the CT demonstrated that
the postoperative changes on the CT at the surgical site represented recurrence.
In a third of those three patients, fusion of the two image types confirmed the
presence of scar. This illustrates that image registration is especially useful in
differentiating recurrence from fibrosis at the postsurgical site. Eight of the 14
patients showed mediastinal or hilar lymphadenopathy on CT. In seven of these
eight patients, fusion of the radiolabeled antibody SPECT with CT localized in-
creased activity to the enlarged lymph nodes. In six of these seven positive fu-
sion cases, tumor was confirmed. In the eighth patient, where fusion showed ab-
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sence of antibody accumulation in the enlarged lymph nodes, a biopsy revealed
benign sinus histiocytosis. Therefore, image registration allowed differentiation
of lymph nodes enlarged because of metastasis or another process, in this case,
benign sinus histiocytosis. This demonstrates that image registration can be use-
ful in the staging of NSCLC.

In another similar study (12) using fusion of technetium Tc 99m NR-LU-10
Fab antibody SPECT with chest CT, characterization of nodules was enhanced,
(Fig. 7A, 7B). NR-LU-10 Fab antibody is specific for an adenocarcinoma-associ-
ated glycoprotein. As in the previously described study, fusion of these two types
of studies was helpful in identifying the viable portion of lung tumors (e.g., within
postobstructive pneumonias). It was also helpful in establishing the true negative

Fig. 6 This patient with an abnormal chest x-ray was believed to have primary lung car-
cinoma. A chest CT performed as part of his staging workup showed a large irregular mass
in the right posterior medial lung field. A technetium T 99m IMMU-4 Fab� CEA-specific
monoclonal antibody study (CEAscan, Immunomedics, Morris Plains, NJ) was performed
including SPECT of the chest. This showed increased uptake in the right lung but also in
the mediastinum. A region of interest drawn over the right lung mass on the CT warps onto
the increased uptake on the SPECT study. Similarly, a region of interest generated over the
descending aorta warps onto a SPECT focus of uptake corresponding to blood pool, not
lymph nodes.
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nature of a nodule. Often the background “noise” associated with a SPECT re-
construction of the lungs makes the interpretation of radiolabeled antibody con-
centration difficult, especially if target/background ratios are low. Although that
was not a problem in this series of patients, it has been a problem more often with
pulmonary metastases. Also, in small tumors partial volume effects may decrease
the tumor to background ratios and make interpretation of SPECT images diffi-
cult. Fusion helped confirm that the absence of uptake at the site of a lesion on the
CT represented an inflammatory process. In addition, image registration helped
localize mediastinal lymphadenopathy to specific sets of lymph nodes.

Recently, Fluorine-18 FDG PET for the evaluation of lung cancer has been
officially approved for clinical use. As with monoclonal antibody SPECT, clini-
cal usefulness in the chest may be enhanced by registration with CT. Applying
Pelizzari’s surface-fitting algorithm to pleural surfaces, Yu et al. (62) have used
image registration of CT and PET to evaluate the extent of disease and mediasti-
nal invasion. By use of this technique, the authors found easier characterization of
lung lesions as pneumonia, consolidation, or scar vs. tumor. This method used an
automated segmentation method based on thresholding of both the CT and PET at
50% of the soft tissue value. The accuracy based on phantom data was within 2 to
3 mm in this study, although some axial displacement between the CT and PET
was identified.

A method of image registration using dual isotope SPECT and CT scans
has been applied to thyroid and carcinoid tumors involving the thorax by Perault
et al. (45). In this retrospective study, 13 patients underwent SPECT scans with
Tc-99m hydroxymethylene diphosphonate (bone SPECT scans) and either In-
111 pentetreotide, Iodene-131, or I-131 metaiodobenzylguanidine (antibody
SPECT scans). The bone scan was registered to the CT using internal land-
marks, (e.g., the spine, sternum, xiphoid process) and a Sun-4 computer. The
transformations used to align the bone scan SPECT with the CT were then ap-
plied to the antibody SPECT image, so that it could be superimposed onto the
CT scan once corresponding slices were determined. The algorithm used to reg-
ister the images was a spatially varying geometric transformation. An operator

Fig. 7 (A) This woman with metastatic nonsmall cell lung carcinoma underwent a Tc-
99m IMMU-4 Fab� CEA-specific monoclonal antibody study. This SPECT scan showed
both liver metastases and a slightly less intense and exophytic focus just at the “anterior sur-
face of the liver.” Fusion with CT showed that the region of interest generated over this su-
perficial uptake actually corresponded to an expansile bony metastasis in the rib. (B) In this
same patient, a region of interest generated over a small focus above the liver on the SPECT
projected over a metastatic lung nodule on CT. Regions of interest over central blood
pool–containing structures (inferior vena cava and aorta) warp onto these same structures
on the CT. These provide a “check” on the accuracy of the match.
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had to choose slices from the antibody SPECT scans that corresponded to slices
from the CT. These decisions were based partly on the sternum-to-spine distance
and the width of the thoracic cage. In eight of these patients, at 10 sites, abnor-
mal uptake was anatomically localized and histologically confirmed through fol-
low-up. The root mean square (RMS) error between homologous points was
used to gauge the accuracy of the registration process. The average error was 
7.0 " 1.6 mm.

Scott et al. (63) have also fused images in patients with metastatic thyroid
cancer. They have reported one patient with a hepatic metastasis of a thyroid car-
cinoma in which image registration provided confirmation. Fusion in this case
showed I-131 activity at the site of the lesion in the liver on CT confirming that
this represented a functioning thyroid metastasis rather than another malignancy
or benign lesion. As with other fusion studies performed by their group, an exter-
nal fiducial band was fitted around the upper abdomen, surfaces were outlined
manually, and Pelizzari’s algorithm applied for registration.

B. Applications in the Abdomen and Pelvis

Registration of images in the abdomen has been limited thus far because of the
more fluid anatomy and the potential for changes in the configuration of normal
anatomical structures. This problem has been overcome in part by the use of sev-
eral approaches: intrinsic landmarks, (e.g., blood pool in the aorta), surface
anatomy of the liver, and external fiducials (e.g., Co-57 markers placed on easily
identifiable surface anatomy, such as the xiphoid process, and anterior superior il-
iac spines). Fusion is helpful in differentiating nonspecific from specific uptake on
SPECT or PET in the abdomen. Also, unfilled loops of small bowel may mask
subtle pathological anatomical findings on the CT scans. Fusion may reveal ab-
normal tumor among these small bowel loops.

Registration of SPECT and CT scans or MR images in the abdomen has
been used by Birnbaum et al. (27) to confirm the diagnosis of hepatic heman-
giomas in 20 patients with 35 known hepatic hemangiomas. This study was de-
signed to test the registration software on a patient population with intrahepatic le-
sions and assess its accuracy. Hepatic hemangiomas were studied because they
represent well-defined regions on SPECT scans. Tc-99m–labeled red blood cells
were used for the SPECT scans and iodinated intravenous contrast for the CT
scans. Registration was performed off-line using a Sun 3/180 workstation. Intrin-
sic anatomical structures were used to register the images, which included the
splenic tip, liver edge, inferior vena cava, and aorta. Regions of interest were then
drawn around normal anatomical structures, such as the liver, spleen, or aorta, to
test the accuracy of the landmarks and the registration. The accuracy of registra-
tion with this technique was determined to be "1.3 pixels using a phantom study.
Regions of interest were then drawn around the hepatic hemangiomas on the CT
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scan or the MR image. These ROIs were then “warped” and projected onto the
registered SPECT image. The ROI from the SPECT was then analyzed for blood
pool activity (see Fig. 4). This procedure also worked in reverse: a ROI could be
drawn on an area of the SPECT that represented a high concentration of labeled
red blood cells. Quantitative measures were designed to measure the accuracy of
image registration: ROI center-to-center distance and ROI overlap. The accuracy
of these registrations was 1.5 " 0.8 pixels.

Thirty-four of 35 suspected hemangiomas were confirmed with image reg-
istration. The smallest hemangioma detected was 1 cm, with a range of sizes from
1 cm to 11 cm. Image registration was valuable in differentiating between a he-
mangioma and a branching blood vessel. The advantages of this method include
the side-by-side display of the different modalities and the use of intrinsic anatom-
ical markers for the registration algorithm. A disadvantage is that accuracy de-
pends on accurate landmark identification and placement. There were 50 regis-
tered pairs, 20 CT-SPECT and 20 MR-SPECT in 12 patients with 20
hemangiomas and 10 MR-SPECT in 8 patients with 15 hemangiomas. Thirty-four
of 35 hemangiomas correlated with hot spots on axial SPECT images. Heman-
gioma blood pool activity existed in 48 of 50 registered pairs.

In another study of eight subjects with suspected or known colorectal ade-
nocarcinoma, SPECT scans were registered with CT scans of the abdomen (6).
SPECT scans were completed using In-111–labeled anti-carcinoembryonic anti-
gen (anti-CEA) monoclonal antibodies. External fiducials were placed for the
SPECT scans at the sternal notch, xiphoid process, umbilicus, or the anterior su-
perior iliac spines. Oral contrast was administered before the CT scans. The im-
ages were transferred off-line to a Sun 3/180 workstation. External fiducials and
internal landmarks (liver, aorta, sacrum, femoral vessels) were used to correlate
slices from the CT with slices from the SPECT. The SPECT was translated and
rotated using linear regression.

The SPECT scans identified known tumor sites in seven patients with
known tumors. Seven additional sites were identified as a result of image regis-
tration. One subject had no known tumor but underwent testing because of an el-
evated CEA level. The image registration showed a single focus that later was
identified histologically as adenocarcinoma. CT alone identified six known ab-
dominal tumors and also identified hilar and parenchymal lung disease in the sev-
enth patient. In one patient, CT missed a synchronous neoplasm in the cecum (Fig.
8). However, the CT identified lymphadenopathy in one patient that was not iden-
tified on the SPECT. Six areas of increased uptake on the SPECT could not be
anatomically localized using side-by-side correlation of the two modalities. With
image registration, four of the six were identified as tumors. Fusion helped iden-
tify two SPECT foci as false positives; registration of the images identified the up-
take as inferior vena cava blood pool activity and irregular liver uptake, respec-
tively. In one patient without known disease, an area of increased uptake
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demonstrated tumor that was localized subsequently using the CT. This CT was
initially read a negative. In one patient fusion added no additional information.

SPECT and CT images were registered from eight patients with known or
suspected colorectal carcinoma (12). The SPECT images were obtained 3 or 4
days after the infusion of In-111-ZCE025, a CEA-specific monoclonal antibody.
External Co-57 markers were placed at the umbilicus, the anterior superior iliac
spines, and 3 cm inferior to the umbilicus. In the postsurgical patient, definitive
determination of whether a mass represents scarring or fibrosis or tumor recur-
rence may be difficult using the CT alone. In this study, the fusion of the images
helped to detect a recurrence at the site of a previous surgery; an abnormal area of
increased uptake corresponded exactly to this site. The variable position of the
loops of small bowel complicates the interpretation of small soft tissue density

Fig. 8 This woman was seen with complaints of blood-streaked stools. A sigmoidoscopy
showed a sigmoid colon lesion (not shown). Radiolabeled CEA-specific antibody studies
(ZCE025, Hybritech, Inc., San Diego, CA) demonstrated a second focus of uptake in the
right lower quadrant of the abdomen in addition to uptake in the sigmoid lesion. Although
the CT was initially interpreted as negative in the right lower quadrant, a region of interest
generated over the right lower quadrant “hot spot” and warped onto the CT overlaid an area
of thickening of the wall of the cecum. At laparotomy for resection of the sigmoid lesion,
a second synchronous primary tumor was discovered in the cecum at this site.
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structures on CT alone. These loops of bowel may obscure small masses or may
be wrongly identified as a mass. In one case, the registration of SPECT and CT
images helped to determine that several small metastases were localized in and
around the small bowel. A third patient demonstrated increased activity that lo-
calized to the liver. In this patient, the CT alone was difficult to read because of
previous wedge biopsies and distortion of the normal liver shape (Fig. 9). These
hot spots were later confirmed as liver metastasis at biopsy. In another patient, the
fusion of the CT with the SPECT helped determine that the increased uptake rep-
resented normal blood pool activity in the inferior vena cava rather than a lymph

Fig. 9 This patient had undergone multiple hepatic wedge resections for colon carcinoma
metastases. Follow-up with both MRI (not shown) and CT (right) showed a markedly dis-
torted liver configuration. On this particular slice, a soft tissue density projected out from
the surface of the liver posteriorly (posterior region of interest). Although his serum CEA
level was rising, the appearance of the liver had been interpreted as hepatic regeneration.
The patient underwent In-111 CEA-specific antibody imaging (ZCE025, Hybritech, Inc.,
San Diego, CA). The SPECT study (right) showed a focus of increased uptake within the
liver. The region of interest generated over this “hot spot” (top left) warped onto an unre-
markable area in the liver on the CT. This was confirmed as a metastasis. In contrast, a re-
gion of interest placed within the more posterior soft tissue density on CT was warped onto
an area without increased activity on the SPECT. This soft tissue density represented an ir-
regular area of regenerating normal liver.
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node or the right adrenal gland. In another patient, a second unsuspected focus of
uptake could be clearly localized as abnormal (see Fig. 3A, B).

Superimposition of CT or MR scans with F-18 FDG-PET scans have been
used to help differentiate pancreatic cancer from mass-forming pancreatitis (MFP)
by Kato et al. (64). These two clinical situations can be difficult to differentiate,
because they share some gross pathological features, including cyst formation,
pancreatic enlargement, ductal dilation, and ascites. This study of 24 patients reg-
istered the scans from different modalities in most of the cases by drawing the lev-
els of the CT or MR slices on the patient’s abdomen. These lines were used as a
guide for the planes of the PET scans. Regions of interest were drawn on the su-
perimposed images along isocontours at 70% to 80% of the peak count of PET.
Differential absorption ratios (DAR � tissue tracer concentration/injected
dose/body weight) over these ROIs were calculated 50 minutes after infusion.
There was a slightly different range of values that helped differentiate between
pancreatic carcinoma (mean, 4.64 " 1.94) and MFP (mean, 2.84 " 2.22). In the
study there were two false positives (tubular adenocarcinoma) and one false neg-
ative (mucinous adenocarcinoma).

Image registration involving two subsets of patients receiving I-131 CC49
was completed by Scott et al. (65) for radioimmunotherapy and radioimmunodi-
agnosis. In the first set, there were 10 patients undergoing radioimmunodiagnosis
for suspected recurrence of their colorectal cancer. The second group of 14 pa-
tients were involved in a phase I radioimmunotherapy study of I-131 CC49. Reg-
istration of I-131 CC49 SPECT with either CT or MR increased the accuracy of
the localization of abnormal accumulation of the radiopharmaceutical and im-
proved the staging of the cancer. CT and MR images were first digitized. No ex-
ternal markers were used for the SPECT. Surface contours were drawn around the
liver on SPECT slices. The registration algorithm used was the surface-fitting al-
gorithm developed by Pelizzari. With this method, surface-fitting mean accuracy
was determined in a phantom study to be 3.6 mm for the liver and 1.8 mm for in-
trahepatic tumors. In the I-131 CC49 studies, the mean accuracy was 0.92 cm and
0.79 cm for metastatic lesions in the radioimmunotherapy and radioimmunodiag-
nosis trials, respectively.

Image registration was found to be especially useful in distinguishing nor-
mal blood pool activity from nearby sites (e.g., paraaortic lymph nodes, omen-
tum, and bone metastasis). In three of the patients in the phase I trial, the SPECT
scans were negative, probably because of an inadequate dose of antibody. Over-
all, in 11 of 24 cases, the registered images helped localize abnormal accumula-
tions of the radiopharmaceutical. In these cases, the SPECT alone was insuffi-
cient to accurately determine the location of the abnormal uptake. In the patients
undergoing radioimmunodiagnosis, registration helped localize areas of abnor-
mal uptake on the SPECT. Metastatic disease was found at surgery in six of nine
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patients that had foci of increased uptake in the liver and two patients with ex-
trahepatic disease. Although all of the lesions greater than 1 cm were detected
on the CT scan (13), the registration helped localize smaller lesions that ap-
peared on the SPECT alone. In one patient, image registration localized one le-
sion to the adrenal gland and a second to the liver. In this patient, the CT scan
was negative in the liver until 7 months later, when a lesion on the CT localized
to the same location in the liver that was shown in the registered SPECT. In the
radioimmunotherapy trial, registered images identified all liver masses �1.5 cm
on the CT or MR scan. In this study, the image registration helped differentiate
disease near blood pool activity from actual blood pool activity. In 8 of 14 pa-
tients, registration helped localize metastatic disease. These cases included pa-
tients with numerous liver metastasis, tumor necrosis, and paraaortic or omental
disease. One patient had an enlargement of the left adrenal gland that did not
correspond to an area of increased uptake on the SPECT. This lesion was later
determined to be benign.

In a study of three patients with colorectal cancer, Erdi et al. (40) per-
formed image registration of CT or MR with SPECT scans. The SPECT studies
used either Tc-99m–labeled 88BV59 IgG (two patients) or I-131–labeled 16.88
IgM (one patient). This study used a customized body cast to match slice posi-
tions of the different image types. This body cast had a “N”- or “Z”-shaped rub-
ber tube attached to it that was filled with Tc-99m pertechnetate for the SPECT
scan, contrast dye for the CT scan, and manganese for the MR scans. This cast
also served to immobilize the patients. This is a unique approach to image fu-
sion in the body. The images were fused using a new computer graphics pro-
gram that aligned the external fiducials. Accuracy was assessed by calculating
the center-to-center distance between markers on the registered scans; accuracy
was 3 to 4 mm and 6 to 8 mm for axial and sagittal registrations, respectively.
In the first patient, uptake in the SPECT correlated to the pancreas on CT, which
was later discovered to be metastatic disease of the biliary tree. This method
eliminates much of the movement that can occur because of the nonrigid
anatomy of the abdomen.

Seventeen patients with colorectal carcinoma were evaluated by Welt et al.
(66) using CT/SPECT registration in a phase I study of I-131–labeled monoclonal
antibody F19, an antibody that binds fibroblast activation protein. Surfaces were
drawn on the CT and SPECT images and registered using Pelizzari’s algorithm on
a DEC Micro VAXII computer. Image registration helped anatomically localize
areas of increased uptake on the SPECT. There was one patient in whom this tech-
nique was especially useful. This patient had had previous surgery for colorectal
cancer and rising serum CEA levels. SPECT showed increased uptake at the site
of the previous surgery, whereas the CT scan was difficult to interpret. In addition,
the SPECT showed metastasis to both lobes of the liver; the mass in the right lobe
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was visible on CT, whereas the left lobe of the liver appeared normal on the CT.
Both of the liver masses and the mass at the site of previous surgery were later
shown to be tumor. Image registration was also useful in determining disease in
extrahepatic portal lymph nodes.

Liehn et al. (44) have taking an interesting approach, registering CT with
SPECT using the internal anatomy provided by the bony pelvis. Ten patients with
suspected cancer recurrence underwent both antibody SPECT scans, using in In-
111 antibody and bone scan SPECT using Tc-99m HMDP. Five patients with re-
current ovarian carcinoma underwent antibody SPECT with in In-111–labeled
OC125 antigen, whereas the five patients with recurrent colorectal carcinoma
were given In-111–labeled monoclonal antibodies to CEA. In-111 antibody
SPECT and Tc-99m HMDP bone scan SPECT studies were acquired simultane-
ously. All of the patients had abnormal CT scans that were interpreted as recur-
rence, scar fibrosis, or equivocal; however, after the registration, all cases were
discovered to be recurrence as confirmed either by surgery, biopsy, or the rapid
increase in size of an abnormal mass on CT. The purpose of the bone SPECT was
to help in the alignment of the antibody SPECT with the CT. The pelvic bones
identified on bone scan served as internal landmarks; they were used to register
the bone SPECT with the CT. The same transformation was then used to align the
antibody SPECT with the CT scan. The mean accuracy of the registration was de-
termined to be less than 1 cm based on the bone scan SPECT/CT fused images.

“Anatometabolic fusion,” registration of F-18 FDG-PET with CT or MRI
has been performed by Wahl et al. (67) in 10 patients with visceral carcinomas.
These images were digitally fused on a Sun-4 workstation with MIT X-windows
using a rigid rotate translate scale. Both external fiducials, containing fluorine F
18 FDG, and internal anatomy, such as the carina and the lung apices, were used
in the fusion. The mean error magnitude of fusion was 5.0 " 0.8 mm across
fiducial markers. Nine of 10 patients were successfully registered. In the tenth
patient, respiratory motion affected the quality of the PET scan.

Registration of the PET with the MRI demonstrated that the increased up-
take corresponded to a focal tumor in a rib rather than a lymph node, as originally
suspected. In one patient, an abnormal mass on the MRI corresponded to a cold
spot on the PET scan. Months later, the mass was unchanged and was determined
to represent scarring caused by aggressive chemotherapy. In another patient, an
area of increased activity on the PET scan corresponded to a collapsed central por-
tion of the right lower lobe of the lung. In another case, the hot spots on the PET
scan corresponded to normal-sized lymph nodes; months later, these nodes were
found to be positive for cancer. Problems encountered in this method include
changes in position between imaging studies caused by different patient position
or range of respiratory motion, and the fullness of distensible organs such as the
bowel or bladder.
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C. Applications in Dosimetry

At Memorial Sloan-Kettering Cancer Center, a method of registration of PET or
SPECT images with CT/MRI was developed for radioimmunotherapy treatment
planning. In one report (68) they describe its application to two patients, one of
which had a retroperitoneal tumor mass. The PET images used i I-124–labeled
3F8 antibodies. PET contours of areas of activity were superimposed without in-
terpolation on a CT or MR slice. The CT or MR slice was chosen based on its ax-
ial value. The contour from the PET scan was then manually interpolated to fit the
area on the CT or MRI slice. This transformation was then performed on the rest
of the PET slices. This new area was used to calculate the appropriate dose. This
method uses patient-specific anatomy provided by CT to calculate absorbed dose
rate or total dose to a defined target region.

The registration of MR images with SPECT images also has applications
in dosimetry. It has been used by Pohjonen et al. (69) at Helsinki University
Central Hospital to improve the determination of liver and spleen volume and
activity in radioimmunotherapy dosimetry. The researchers found that no previ-
ously tested SPECT segmentation method provided the accuracy that they
needed. This study both tested the registration system on volunteers and evalu-
ated the transfer of outlines drawn on the borders of the spleen and liver from
the MR to the SPECT in a radiolabeled platelet study. SPECT images of three
male volunteers were obtained at two separate sessions: for the first set of im-
ages indium In-111–labeled platelets were used, and 2 days later, the second was
acquired after injection of Tc-99m–labeled colloids. External markers consisted
of tubes filled with coconut butter for MRI and either In-111 or Tc-99m for
SPECT. They were placed on the sacrum, thoracic spine, umbilicus, xiphoid
process, and the lateral margin of the twelfth rib. The registration was performed
with a Sun-5 workstation and noniterative least squares algorithm. The accuracy
of the registration was determined by the RMS error. In the two patients whose
MR was a fast scan, the average RMS error was 11 mm and 14 mm for single
and dual detector gamma cameras, respectively. The third patient had a slower
MRI sequence than the other two patients; his residual error values were 18 mm
and 15 mm, for the two cameras. In dosimetry, great accuracy in volume and ac-
tivity determination is necessary. The authors found that activity measures im-
proved with the registration of the MR with the SPECT image. This provides a
prototype for future radioimmunotherapy work.

In a subsequent study, Kolbert et al. (35) describe further implementation of
the method described by Sgouros et al. (68). The SPECT/PET images and the
CT/MR images are registered by use of the method developed by Pelizzari and
Chen and then transferred to a 3D internal dosimetry program (3D-ID) to define
ROIs on the fused image. The software uses Interactive Data Language (IDL) and
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C and is platform independent. This kind of integration of image fusion for region
of interest analysis with dosimetry calculation represents the logical next step in
the use of image registration for treatment planning.

In a study by Parsai et al. (70), registration of SPECT and CT scans has been
used to provide an anatomical context for the uptake of P-32 colloids in infusional
brachytherapy for the treatment of neoplasms. P-32 colloids are directly injected
into the tumor using P-32 Bremsstrahlung SPECT and CT guidance. Registration
of the CT with a SPECT backscatter image, obtained using external Tc-99m
sources, allows the visualization of the anatomical areas in which the P-32 accu-
mulates. The Tc-99m backscatter SPECT is used to obtain the body contour,
whereas the P-32 SPECT determines the localization of the colloid. Image regis-
tration was performed using a 3D software program (MCO, from the Medical Col-
lege of Ohio) that aids in the planning of radiation therapy on a DEC Alpha AXP
UNIX workstation. A surface-fitting algorithm developed at MCO was used to
map the surface contour of the SPECT onto the CT. Once the Tc-99m backscatter
SPECT was mapped onto the CT, the same transformation was applied to the
Bremsstrahlung SPECT to register it with the CT. The AVS (Advanced Visual
System) software was used to determine the accuracy of the registered images.
The registration accuracy was determined to be 3 to 4 mm. The patients in this
study had pancreatic cancer (one patient), liver metastasis (two patients), and lung
cancer (one patient).

Koral et al. (71) propose a method using fusion of CT and SPECT images
in dosimetry of lymphoma patients with monoclonal antibody therapy. I-131
SPECT was performed in six patients: three had MB1 monoclonal antibody and
three had anti-B1 antibody therapy. External markers composed of glass–fiber pa-
per soaked with I-131 were placed at the intersections of lines drawn on the ab-
domen and were used for the SPECT, whereas lead markers were used for the CT.
These lines represented the slices for the CT scans and the location of the tumor.
Superimposition of the markers using a computer program designed to minimize
the RMS distance between corresponding markers was achieved. Superimposition
of CT on SPECT allows for patient-specific attenuation correction, making
SPECT quantitative as well as qualitative. Attenuation coefficient maps were de-
rived by a three-range energy extrapolation based on a two-range technique de-
veloped by Nickoloff. In addition, calculation of the mean absorbed dose based on
time-activity curves of daily SPECT scans and tumor volume from CT is possible.
This method improves the accuracy of dosimetry. In this study of four tumors in
three patients with non-Hodgkins lymphoma, the mean absorbed dose correlated
well with the prognosis. The tumor-specific absorbed dose with anti B-1 therapy
was 1.4 to 1.7 mGy/MBq. This method uses the same pixels for the activity and
volume measurement. The mean dose for the entire tumor or organ is determined,
and there is less bias toward high-uptake tumors. It is thought that this method
should provide a correct estimate of the actual uptake of the radiolabeled antibody.
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Problems associated with this method include the fact that the ink marks used in
the placement of markers disappear. In addition, nonrigid movements of body are
not accommodated in this algorithm.

IV. CONCLUSION

There have been various approaches that have been successful in fusing the func-
tional information provided by SPECT or PET with the rich anatomical details of
CT or MRI. This fusion may be accomplished despite the freedom of motion pos-
sible in the chest, abdomen, and pelvis and the changeability of the organs within.
Liehn et al. (44,45) have used bone scan SPECT to register antibody-SPECT with
CT. Erdi et al. (40) have developed a device that helps to restrict patient move-
ment in their registration of SPECT with CT or MRI. Kolbert et al. (35) have made
advances in radioimmunotherapy using registration. At New York University, we
use a combination of internal landmarks and external fiducials to perform regis-
tration. Surface-fitting algorithms, especially when warping is possible, show par-
ticular promise.

Image registration enhances diagnosis, confirmation, follow-up, and treat-
ment planning of cancer patients. The functional information provided by SPECT
or PET is put into an anatomical context provided by CT or MRI. In addition, im-
age registration helps distinguish between specific (i.e., tumor) and nonspecific
(i.e., blood pool) activity in the SPECT or PET. Image registration allows for char-
acterization of soft tissue masses on CT scans and allows recurrent tumor to be dif-
ferentiated from a surgical scar.

For image registration to be truly useful in a clinical setting, we need to con-
centrate on data compatability issues, for example, ensuring that registration is
possible even if images are acquired at different centers and on different types of
machines. The registration methods should be performed without too much ad-
vanced preparation, so that images can be fused even if the need for fusion was
not recognized before the images were acquired. The image registration should be
easy to perform in a clinical setting. It should not be a complicated process that
takes hours to complete and is reserved for a select few. The display of the images
should be optimized to provide the maximum information. Registration should not
obscure detail or information from either data set.

Much progress has been made in manipulating data from multiple modali-
ties and sources. More powerful computing tools enable the processing of even
larger data sets. Time requirements are lessening. We look forward to increased
automation and the inclusion of greater amounts of information, such as 3D dis-
plays and increased numbers of isosurfaces or volumes. Maturation of image fu-
sion tools will most certainly enhance the clinical integration of both functional
(SPECT/PET) and structural (CT/MRI) imaging.
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