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Preface

This book begins and ends in information retrieval, but travels through a route
constructed in an abstract way. In particular it goes through some of the most
interesting and important models for information retrieval, a vector space model,
a probabilistic model and a logical model, and shows how these three and
possibly others can be described and represented in Hilbert space. The reasoning
that occurs within each one of these models is formulated algebraically and can
be shown to depend essentially on the geometry of the information space. The
geometry can be seen as a ‘language’ for expressing the different models of
information retrieval.

The approach taken is to structure these developments firmly in terms of
the mathematics of Hilbert spaces and linear operators. This is of course the
approach used in quantum mechanics. It is remarkable that the application of
Hilbert space mathematics to information retrieval is very similar to its appli-
cation to quantum mechanics. A document in IR can be represented as a vector
in Hilbert space, and an observable such as ‘relevance’ or ‘aboutness’ can be
represented by a Hermitian operator. However, this is emphatically not a book
about quantum mechanics but about using the same language, the mathematical
language of quantum mechanics, for the description of information retrieval. It
turns out to be very convenient that quantum mechanics provides a ready-made
interpretation of this language. It is as if in physics we have an example seman-
tics for the language, and as such it will be used extensively to motivate a similar
but different interpretation for IR. We introduce an appropriate logic and prob-
ability theory for information spaces guided by their introduction into quantum
mechanics. Gleason’s Theorem, which specifies an algorithm for computing
probabilities associated with subspaces in Hilbert space, is of critical impor-
tance in quantum mechanics and will turn out to be central for the same reasons
in information retrieval. Whereas quantum theory is about a theory of mea-
surement for natural systems, The Geometry of Information Retrieval is about
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x Preface

such a theory for artificial systems, and in particular for information retrieval.
The important notions in quantum mechanics, state vector, observable, uncer-
tainty, complementarity, superposition and compatibility readily translate into
analogous notions in information retrieval, and hence the theorems of quantum
theory become available as theorems in IR.

One of the main aims of this book is to present the requisite mathematics
to explore in detail the foundation of information retrieval as a parallel to that
of quantum mechanics. The material is principally addressed to students and
researchers in information retrieval but will also be of interest to those working
in such disciplines as AI and quantum computation. An attempt is made to lay
a sound mathematical foundation for reasoning about existing models in IR
sufficient for their modification and extension. The hope is that the treatment
will inspire and enable the invention of new models. All the mathematics is
introduced in an elementary fashion, step-by-step, making copious references
to matching developments in quantum mechanics. Any reader with a good grasp
of high school mathematics, or A-level equivalent, should be able to follow
the mathematics from first principles. One exception to this is the material in
the Prologue, where some more advanced notions are rapidly introduced, as is
often the case in dialogue, but even there a quick consultation of the appropriate
appendices would clarify the mathematics.

Although the material is not about quantum computation, it could easily
be adopted as an elementary introduction to that subject. The mathematics
required to understand most discussions on quantum computation is covered. It
will be interesting to see if the approach taken to modelling IR can be mapped
onto a quantum computer architecture. In the quantum computation literature
the Dirac notation is used as a lingua franca, and it is also used here and is
explained in some detail as it is needed.

Students and researchers in IR are happy to use mathematics to define and
specify algorithms to implement sophisticated search strategies, but they seem
to be notoriously resistant to investing energy and effort into acquiring new
mathematics. Thus there is a threshold to be overcome in convincing a person
to take the time to understand the mathematics that is here. For this reason we
begin with a Prologue. In it fundamental concepts are presented and discussed
with only a little use of mathematics, to introduce by way of a dialogue the
new way of thinking about IR. It is hoped that illustrating the material in this
way will overcome some of the reader’s resistance to venturing into this new
mathematical territory for IR.

A further five chapters followed by three technical appendices and an exten-
sive annotated Bibliography constitute the full extent of the book. The chapters
make up a progression. Chapter 1, the Introduction, goes some way to showing
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the extent to which the material depends on ideas from quantum mechanics
whilst at the same time motivating the shift in thinking about IR notions.
Chapter 2 gives an account of traditional Boolean algebra based on set theory
and shows how non-Boolean structures arise naturally when classes are no
longer sets, but are redefined in an appropriate way. An illustration of the
breakdown of the law of distribution in logic then gives rise to non-classical
logic. Chapter 3 introduces vector and Hilbert spaces from first principles,
leading to Chapter 4 which describes linear operators, their representation and
properties as vehicles for measurement and observation. Chapter 5 is the first
serious IR application for the foregoing theory. It builds on the earlier work of
many researchers on logics for IR and it shows how conditionals in logic can be
represented as objects in Hilbert space. Chapter 6, by far the longest, takes the
elementary theory presented thus far and recasts it, using the Dirac notation,
so that it can be applied to a number of specific problems in IR, for example,
pseudo-relevance feedback, relevance feedback and ostensive retrieval.

Each chapter concludes with some suggestions for further reading, thus
providing guidance for possible extensions. In general the references collected
at the end of the book are extensively annotated. One reason for this is that
readers, not necessarily acquainted with quantum mechanics or its mathematics,
may enjoy further clarification as to why pursuing any further reference may
be worthwhile. Scanning the bibliography with its annotations is intended to
provide useful information about the context for the ideas in the book. A given
reference may refer to a number of others because they relate to the same topic,
or provide a commentary on the given one.

There are three detailed appendices. The first one gives a potted introduction
to linear algebra for those who wish to refresh their memories on that subject.
It also conveniently contains a summary of the Dirac notation which takes
some getting used to. The second appendix is a self-contained introduction to
quantum mechanics, and it uses the Dirac notation explained in the previous
appendix. It also contains a simple proof of the Heisenberg Uncertainty Principle
which does not depend on any physics. The final appendix gives the classical
axioms for probability theory and shows how they are extended to quantum
probability.

There a number of ways of reading this book. The obvious way is to read
it from beginning to end, and in fact it has been designed for that. Another
way is to read the Prologue, the Introduction and the appendices, skipping the
intervening chapters on a first pass; this would give the reader a conceptual
grasp of the material without a detailed understanding of the mathematics. A
third way is to read the Prologue last, and then the bulk of the book will provide
grounding for some of the advanced mathematical ideas that are introduced
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rapidly in the Prologue. One can also skip all the descriptive and motivational
material and start immediately with the mathematics, for that one begins at
Chapter 2, and continues to the end. A fifth way is to read only Chapter 6, the
geometry of IR, and consult the relevant earlier chapters as needed.

There are many people who have made the writing of this book possible.
Above all I would like to thank Juliet and Nicola van Rijsbergen for detailed
and constructive comments on earlier drafts of the manuscripts, and for the
good humour with which they coped with my frustrations. Mounia Lalmas,
Thomas Roelleke and Peter Bruza I thank for technical comments on an early
draft. Elliott Sober I thank for help with establishing the origin of some of the
quotations as well as helping me clarify some thinking. Dealing with a publisher
can sometimes be fraught with difficulties; fortunately David Tranah of CUP
ensured that it was in fact wonderfully straightforward and agreeable, for which
I express my appreciation; I also thank him for his constant encouragement. The
ideas for the monograph were conceived during 2000–1 whilst I was on sab-
batical at Cambridge University visiting the Computer Laboratory, Department
of Engineering and King’s College, all of which institutions deserve thanks for
hosting me and making it possible to think and write. Taking on a task such
as this inevitably means that less time is available for other things, and here I
would like to express my appreciation to the IR group at Glasgow University
for their patience. Finally, I would like record my intellectual debt to Bill Maron
whose ideas in many ways foreshadowed some of mine, also to the writings of
John von Neumann for his insights on geometry, logic and probability without
which I could not have begun.



Prologue

Where did that come from?
Strictly Ballroom, film, directed by Baz Luhrmann, Australia:

M&A Film Corporation, 1992.

Scene

A sunny office overlooking a cityscape of Victorian roofs and elm trees. K, an
academic of some seniority judging by his white beard, and the capaciousness
of his bookshelves, is sitting at his desk. The sign outside his door reads ‘Please
disturb’.

B: (A younger academic) enters without knocking, shortly followed by N
(not so young).

B: I hear that you have been re-inventing IR.
K: Well, I am writing a book.
B: Yes, the story is that you have been looking at quantum mechanics, in

order to specify a new model. Also (looks at N) that you are looking at
quantum computation.

K: I have certainly been looking at quantum mechanics, but not because
I want to specify a new model; I am looking at quantum mechanics
because it gives insight into how one might combine probability, logic
and vector spaces into one formalism. The role of quantum computation
in all this is not clear yet. It may be that having reformulated IR in this
way, using the language of quantum mechanics, that it will be obvious
how quantum computation may help at the algorithmic level, but I have
not been thinking that far . . .

N: (Interrupting) Well, I listen patiently as ever – but it seems to me that
you are – yet again – taking an entirely system-based approach to IR

1



2 Prologue

leaving no room for the user. For years now I have been saying that we
need to spend more time on improving the interaction of the user with
any system. Support for the user will make a bigger difference than any
marginal improvements to a system. A new . . .

K: (Interrupting in turn) I know you think we should stop developing new
theories and models and instead spend the time making existing ones
work from a user perspective. Well, in a way that is what all this is
about. Currently, we really do not have a way of describing formally, or
in theoretical terms, how a user interacts with an IR system. I think . . .

N: – here we go. It has to be ‘formal’ –
K: we need a new paradigm, and the QM paradigm –
N: (Interrupting for the third time) Why? Why do we need this extra

formalism? We have spent years describing how a user interacts with
an IR system.

K: (Holds up hand) Hang on. We have had this argument over and over
again. My reply has always been that if you do not formally describe or
specify something then trying to arrive at a computational form becomes
nigh impossible. Or if you do achieve a computational form without
formal description then transferring a design from one approach or
system to another becomes a nightmare. There is also the scientific
imperative, that we cannot hope to make predictions about systems if
we cannot reason about their underlying structure, and for this we need
some kind of formality, and, dare I say it, –

N: I suppose I can’t stop you –
K: a theory. Einstein always claimed that you need a theory to tell you

what to measure.
N: Must you drag Einstein into this?
B: Let me get a word in edgewise. One could argue that a computer pro-

gramme is a description, or a formal theory of a system. Why do we
need more than that?

K: (Becomes instantly enthusiastic) Good question. It is certainly true that
a computer program can be considered as a formal description of a
process or a theory. Unfortunately it is very difficult to reason about such
a description, and it is difficult to recover the semantics. What’s more,
computer programs are strongly influenced by the design of the digital
computer which they run, that is, their von Neumann architecture. In
developing this new IR paradigm I intend it perhaps to be implemented
on a quantum computer.

N: Delusions of grandeur. So, tell us what is the essence or central idea of
your new way of looking at things?
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K: (Becomes even more enthusiastic) This will take some time, how long
have you got?

B, N: We have got all afternoon.
K: (Hesitates) Of course, it would easier for you to understand what I am

doing if you knew some elementary quantum mechanics. Let’s see: you
could start with Hughes’ book on ‘The Structure and Interpretation of
Quantum Mechanics’ . . .

N: I said we had this afternoon, not the next five years.
K: . . . I found his account invaluable to understanding some of the basics.
B: Can’t you just give us the gist?
K: (Gets up and inspects his bookshelf) Well, the story really begins with

von Neumann. As you know, in the thirties he wrote a now famous
book on the foundations of quantum mechanics. One could argue that
all later developments in quantum logic and probability are footnotes
to his book. Of course von Neumann did not do QM, like say Feynman
and Dirac, he theorised about it. He took the pioneering work of Bohr,
Schrödinger, Heisenberg, Born and others, and tried to construct a con-
sistent formal theory for QM It is much in the same spirit as what I am
attempting for IR.

N: (Laughs) When I ascribed you delusions of grandeur I underestimated
you. Are you now equating QM and IR in importance? Or merely
yourself with von Neumann? In IR we deal only with artefacts and the
way humans interact with them. Everything is man made. Whereas in
QM we attempt to describe a piece of reality and many of the paradoxes
arise because we are uncertain how to go about that.

K: (Focusing on the last point) Ah, exactly. You have put your finger
on the problem. Both in IR and QM we are uncertain about how to
describe things – be they real or artificial. In QM we have the problem
of measurement; we don’t know how to model the result of an observa-
tion which arises from the interaction of an ‘observable’ with a piece
of reality. In IR we face the same problem when we attempt to model
the interaction of a ‘user’ with an artefact.

B: (Gloomily) This is all getting a bit abstract for me. How about you try
to make it more concrete?

K: (Cheerfully now) Well imagine the world in IR before keywords or
index terms. A document, then, was not simply a set of words, it was
much more: it was a set of ideas, a set of concepts, a story, etc., in
other words a very abstract object. It is an accident of history that a
representation of a document is so directly related to the text in it. If
IR had started with documents that were images then such a dictionary
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kind of representation would not have arisen immediately. So let us
begin by leaving the representation of a document unspecified. That
does not mean that there will be none, it simply means it will not be
defined in advance.

B: (Even gloomier) Great. So how do I get a computer to manipulate it –
this piece of fiction?

K: Actually that is exactly what it is – a document is a kind of fictive object.
Strangely enough Schrödinger . . .

N: (As an aside) Here we go with the name dropping again.
K: (continues, ignoring N) . . . in his conception of the state-vector for QM

envisaged it in the same way. He thought of the state-vector as an object
encapsulating all the possible results of potential measurements. Let me
quote: ‘It (ψ-function) is now the means for predicting probability of
measurement results. In it is embodied the momentarily attained sum
of theoretically based future expectation, somewhat as laid down in
a catalogue.’1 Thus a state-vector representing a document may be
viewed the same way – it is an object that encapsulates the answers to
all possible queries.

N: (Perks up) Ah, I can relate to this. You mean a document is defined with
respect to the queries that a user might ask of it?

K: Yes, in more than one way, as will emerge later. By the way, one could
view Maron and Kuhns’ original paper on probabilistic indexing in this
sort of way. Indeed, Donald Mackay (1969, 1950), who worked with
Maron, anticipated the use of QM in theorising about IR.

N: Good, keep going; we seem to be getting somewhere at last.
K: So what have we got? We have a collection of artefacts each of which is

represented by a highly abstract object called a ‘state-vector’. Of course
using the term ‘vector’ gives the game away a little. These abstract
objects are going to live in some kind of space (an information space),
and it will come as no surprise to you that it will be a vector space, an
infinite-dimensional vector space: a Hilbert space.

B: (With some frustration) Terrific. After all this verbiage we end up with a
vector space, which is a traditional IR model. So, apart from being able
to add ourselves as footnotes to von Neumann, what is the big deal?

K: The big deal is that we do not say in advance what the vectors in this
space look like. All we require is a notion of dimensionality, which can
be infinite, and objects that satisfy the axioms of a vector space, for
example, vectors can be added and multiplied by scalars. Moreover, the

1 Schrödinger, p. 158 in Wheeler and Zurek (1983).
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space has a geometry given by an inner product which allows one to
define a distance on the space. The fact that it is infinite is not immedi-
ately important, but there is no reason to restrict the dimensionality.

B: Why do you talk of scalars and not of real numbers?
K: You noticed that did you? Well, scalars here can be complex numbers.
N: Hold it, are you saying that we can attach a meaning to complex or for

that matter imaginary numbers in IR?
K: No, I am not saying that. I am implying that we do not need to restrict

our representational power to just real numbers. Rest assured that our
observation or measurements will always deliver a real number, but it
may be that we represent things on the way by complex numbers. There
are many examples in mathematics where this is done, in addition to
quantum mechanics, for example, Fourier analysis.

B: I don’t buy this. Why introduce what appears to be an unnecessary
complexity into the representation? What on earth would you want to
represent with complex numbers?

K: To be honest I am not sure of this yet. But a simple example would arise
in standard text retrieval where both term-frequency and document-
frequency counts are used (per term, or per dimension) during a match-
ing process. I imagine that we may wish to represent that combination
of features in such a way that algebraic operations on them become
easier. Right now when we combine tf and idf their identities are lost at
the moment of combination.

N: So, from a mathematical, or algorithmic, point of view this may make
sense. But, tell me, are you expecting the user to formulate their queries
using complex numbers? If so, you can forget it.

K: No, of course not. But just as a person may write down a polynomial
with real coefficients which has complex roots, a user may write down a
query which from another point of view may end up being represented
by complex numbers. The user is only expected to generate the point
of view, and in changing it the query will change.

N: (With some impatience) This sounds great but I do not fully understand
it. What do you mean by a ‘point of view’?

B: Yes, what do you mean? I am lost now.
K: In conventional index term based retrieval the point of view in the vector

space model is given by the axes in the space corresponding to the index
terms in the query. Thus, if the query is (a, b, c, . . .) then a might lie
along the x-axis, b the y-axis, c the z-axis, etc. Usually these are assumed
to be orthogonal and linearly independent. Notice how convenient it is
that the user has specified a set of axes. Now imagine that the query is
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simply an abstract vector in the space, we would still have to define it
with respect to the basis of the space, but it would be up to us, or the
user, to refer the objects in the space to different bases depending on
their point of view. A change of basis constitutes a change of point of
view.

B: Well, I am not sure this buys us anything but I’ll hang in there for the
moment. I see that you are still talking about queries as vectors. I infer
that much of what you have said so far is a dressed up version of the
standard vector space model of IR. Am I right?

K: You are right. I am trying to inspire the introduction of some of the new
ways of talking by referring to the old way.

N: Get on with it – I am still waiting too.
K: All right. But first here is a small example of how we can go beyond

standard vector space ideology. By assuming that the query is a vector in
a high (maybe infinite) dimensional space, we are making assumptions
about the dimensions that are not mentioned in the query. We could
assume that those components are zero, or have some other default
value. Why? No good reason, and perhaps the query would be better
represented by a subspace, the subspace spanned by the basis vectors
that are mentioned in the query. So we have grasped the need for talking
about subspaces. The problem is how to handle that symbolically. More
about this later.
(B and N look bored, so K quickly moves on)

K: Given the space of objects is a Hilbert space which we may fondly call
an information space. How do we interact with it?

N: (With a sigh of relief) At last something about interaction.
B: Shut up, N. Let him talk. Although, I am still puzzled about how you

will interact with these objects when you do not describe them explicitly
in any way.

K: (With a grin) That is right. I forgot to tell you that. Once you have speci-
fied the basis (point of view) for the space, you can express the object in
terms of the basis. This is done by projecting the object onto the different
basis vectors. The effect of this is to give a ‘co-ordinate’ for the object
with respect to each basis vector. It is a bit like defining an object by
giving the answers to a set of simple questions, one question for each
basis vector. If the object (state-vector) is normalised these projections
are given by calculating the inner product between each basis vector
and the state-vector. Of course, if we allow complex numbers then we
would need to take the modulus (size) of the inner product to get a real
number. In the case where we have a real Hilbert space, the state-vector
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is simply expanded as a real linear combination of the basis vectors.
The expansion would differ from basis to basis.

N: You are getting too technical again; let’s get back to the issue of inter-
action.

B: Yes, let’s.
K: The basic idea is that an observable, such as a query or a single term,

is to be represented by a linear operator which is self-adjoint in the
Hilbert space. This means that in the finite case it corresponds to a
matrix which can have complex numbers as entries but is such that the
conjugate transpose is equal to itself. Let me illustrate. If A represents
an observable, then A is self-adjoint if A = A*.
(K writes some symbols on the white board)

A =
(

a b
c d

)

A∗ = A′ =
(

a c
b d

)
= A

⇒ a = a, d = d and hence real,

also b = c, b = c.

An example is

A =
(

1 −i
i 2

)

A∗ =
(

1 −i
i 2

)′
=

(
1 −i
i 2

)
= A.

K: I know what you are going to say, what has this got to do with queries
and users?

N, B: How did you guess, so what has it got to do with them?
K: Bear with me a little longer. The notion of representation is a little

indirect here. In quantum mechanics the idea is that the value of an
observable is given by the eigenvalues of the matrix.2 The beauty is that
the eigenvalues of a self-adjoint matrix are always real, even though
the entries in the matrix may be complex. So here we come back to the
fact that our representation may involve complex numbers but when we
make a measurement, that is interact, we only get real results.

B: Hang on a bit, you said that the value of an observable is an eigenvalue,
any eigenvalue? So, how do I know which one? Let me take a simple

2 More correctly, this should say that the outcome of a measurement of the observable is given by
an eigenvalue. See Appendix II.
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example, when the observable has just two values, 1 and 0. How do I
know which? Is this the right question to ask?

K: We are now getting to the meat of it. If your observable represents a two-
valued question, ‘1’ means ‘yes’ and ‘0’ means ‘no’, then determining
which answer is a matter of probability. For example, if your observable
was to determine whether an object was about the concept ‘house’, then
there would be two eigenvalues, one corresponding to ‘house’ and one
corresponding to ‘not-house’. The probability of each of these answers
would be derived from the geometry of the space.

N: You have lost me . . . again. Where do the concepts ‘house’ and ‘not-
house’ come from? One minute we have an observable which corre-
sponds to a query about ‘houseness’, next we have concepts, presumably
represented in the space, how?

K: Yes, that is right. I need to tell you about the idea of eigenvectors.
B: (With some despair) Oh no, not more algebra, is there no end to it?
K: (Soothingly) We are almost there. Corresponding to each eigenvalue is

an eigenvector. So, for a self-adjoint operator (that is, an observable) you
get a number of eigenvectors corresponding to the concepts underlying
the observable. It so happens that these eigenvectors make up a basis
for the space and so generate a point of view.3 It is as if we have found
a set of concepts, one corresponding to each eigenvector, with respect
to which we can observe each document in the space.

B: What about this relationship between probability and the geometry of
the space?

K: I will come to that in a minute.
N: (Somewhat grimly) I am glad to hear it, these algebraic considerations

are starting to give me a headache. I thought all this was for IR? Anyway,
proceed.

K: For the simple case where the observable represents a Yes/No question,
the linear operator is a particularly simple, and important one: a pro-
jection operator. It is a theorem in linear algebra that any self-adjoint
linear operator can be resolved into a linear combination of projec-
tion operators. In other words, any observable can be resolved in to a
combination of yes/no questions. Although a projector may be repre-
sented by a matrix in n dimensions, it only has two eigenvalues. In gen-
eral you would expect an n-dimensional matrix to have n eigenvalues.

3 There is an issue of ‘degeneracy’: when an eigenspace corresponds to an eigenvalue, its
dimension is equal to the degeneracy of the eigenvalue.
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Projectors have two. The effect of this is that there is a certain amount
of degeneracy, which means that corresponding to each eigenvalue we
have an eigenspace, and together these two eigenspaces span the entire
space.

B: What about the basis? If the space is n-dimensional, we need n basis
vectors to make up the basis.

K: That is still so, except that within each subspace you can choose an
arbitrary set of basis vectors spanning the subspace. Adding these two
sets will give a set of basis vectors spanning the whole space. This
finishes the geometry.

N: (Deliberately obtuse) What geometry? I only see vectors, subspaces,
bases, and operators. Where is the geometry?

K: You are right to be suspicious, the geometry is implied, and it is used
to give us both a logic and a probability measure. To calculate the
probability of a particular eigenvalue we project orthogonally the state-
vector down onto its eigenspace and measure the size of that projection
in some way to get the probability. Probability measures have to satisfy
some simple constraints, like for example that the sum of the measures
of mutually orthogonal subspaces, that together exhaust the space, must
sum to one. The geometry of the space through Pythagoras’ Theorem
ensures that this is indeed the case. Remember that theorem – (K quickly
sketches it)

a b 

c 

a2 = b2 + c2

B: So a2 has the value 1, where b2 and c2 are the measures of the corre-
sponding subspaces. You slipped in the idea of probability rather neatly,
but why should I accept that way of calculating probability as being use-
ful, or meaningful? You seem to be simply replacing the inner product
calculation with a probability. Why?

K: A good question and a hard one. First let me emphasise that we use
‘probability’ because we find it intuitive to talk of the probability that
an object has a certain property, or that is about something. Of course,
in quantum mechanics this is shorthand for saying that if one attempted
to measure such a property or aboutness then a result would be returned
with a probability, possibly with a probability of one or zero. The prob-
lem is how to connect that probability with the geometric structure of
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the space in which the objects reside. I will need to develop the abstract
view a little further before I can totally convince you that this is worth
doing.

N: Oh, no, not more mathematics.
B: Perhaps you can give us little more intuition about how to make this

connection between the geometry and probability.
K: OK. But for further details I will have to refer you to a paper by William

Wootters (1980a) and one by R. A. Fisher (1922), who were the first to
moot the intuition I am about to describe. In fact Wootters developed a
simple example in a very different context, which I will follow trans-
posed to an IR context. But first let me go back to the pioneering work
of Maron. Remember he developed a theory of probabilistic indexing
in the sixties.

N: Yes, so he did, but as a model it never really took off, although the way
of thinking in those early papers was very influential.

K: I agree, and it will serve here to interpret how the probability arises out
of the geometry. Imagine that a document is designed (by the author,
artist, photographer, . . .) to transmit the information that it is about a cer-
tain concept. One way to ascertain this information is to ask a large set
of users to judge whether it is about that concept or not. A specific user
answers either yes (Y) or no (N). Thus a long sequence, YNNYNY . . . ,
is obtained. We have assumed that our document is represented by a
vector in a space, and that a concept is represented by a basis vector
in the same space, the eigenvector of the observable representing the
concept.4 And so, geometrically, the extent to which that document is
about the concept in question is given by the angle θ the document
vector makes with the concept vector. We assume (following Wootters)
that we are able to ask the users indefinitely, and that we cannot use the
order in which the answers occur. You will agree that the probability,
P, that a document is about the concept is given by the frequency of the
Ys in the limit of the sequence, the size of sequence must not play a
role. Now it turns out that the function P = cos2 θ is the best code for
transmitting a Y or N in the sense of maximising information that will
tell us what θ is. One could describe this as a content hypothesis: ‘The
optimal way of displaying the content of a document in a vector space
is to define the probability of a concept as the square of the modulus
of projection of the state-vector on the concept vector’. This is a little

4 The idea of representing documents and concepts in the same space is not new, Deerwester
et al. (1990) discussed this at some length.
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more general than warranted by the example because it allows for com-
plex numbers.

N: Oh no, not another C-hypothesis, haven’t we already got enough of
these?

K: I am afraid not, I want to highlight that the connection between the
content and the vector is in the way of a hypothesis, which of course
should be testable. Anyway, I now turn to the connection with logic.
Earlier I said that the language I was proposing would handle logic and
probability. It turns out that given the notion of subspace we now have,
we can claim that the lattice of subspaces, where meet is the intersection,
and join is the subspace containing the linear span of all the vectors in
both subspaces, form a non-Boolean lattice which is equivalent to a
non-classical logic. All this is spelt out in some detail in Chapter 5
of my book. This result was probably first elaborated by Birkhoff and
von Neumann (1936). In fact, von Neumann foresaw very early on the
intimate connection between logic and probability when formulated in
Hilbert space. Theoreticians in computing science have not shown much
interest in this until very recently; for example, Engesser and Gabbay
(2002) have been investigating belief revision in the context of quantum
logics. In IR, we wish to go further and explore the connection between
geometry, logic and probability.

B: So what? You have a way of arranging the subspaces of a Hilbert space.
And, just like the subsets of a set make up a Boolean lattice, which is
isomorphic to a classical logic, we now have these subspaces and get a
non-Boolean lattice and logic. Then what?

K: Well, remember that a query may be represented as a subspace, in the
simplest case a 1-dimensional subspace and therefore a vector, and that
we would want to calculate the probability that the subspace induces
on the entire space.

N: Wow, you now want us to grasp the notion of a subspace inducing a
probability on a space. Does it get any freakier?

K: Yes. This is one of the ideas that quantum mechanics brings into play,
namely, that the state-vector is a measure of the space, meaning that
each subspace has a probability associated with it induced by the state-
vector. This generalises.

B: (Impatiently) How?
K: For this we need to return to these observables that I spoke of. I told

you about a particularly simple one that was a projection operator, that
is one that is idempotent (P2 = P) and self-adjoint (P* = P). It has
the eigenvalues 1 and 0. Another way of looking at it is that it projects
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onto a subspace corresponding to eigenvalue 1, and that it and the
complementary subspace corresponding to 0 span the space. Now it is
perfectly easy to define a projector onto a 1-dimensional subspace, that
is onto a ray, or onto the subspace that contains all the scalar multiples
of a vector. In the Dirac notation this becomes especially easy to denote.
If x is a unit vector then P = |x〉〈x|.5 The point is that P is a member
of a dual space to the vector space. It is the dual space of self-adjoint
linear operators.

N: OK, now we have two spaces, the vector space and its dual. What good
is that?

K: It turns out that we can name things in the dual space more easily. For
example, we can name the projector onto a vector x by |x〉〈x|. We can
name the projector onto the subspace spanned by x and y by P =|x〉〈x|+
|y〉〈y|. In fact, any superposition of states or mixture of states can be
named by an operator in the dual space through what is known as a
density operator. I realise that I have gone a bit fast here, but I wanted
to get the point where I can talk about density operators.

B: It seems to me that you are now shifting your emphasis from the vector
space to the space of operators, why?

K: Well spotted, I am doing exactly that, and the reason is that I want to
introduce you to Gleason’s Theorem. His theorem makes the important
connection between geometry and probability that I have been alluding
to. But, his theorem is expressed in terms of density operators.

N: All right, but for heaven’s sake tell me quickly what a density operator
is before I lose the thread completely.

K: A density operator is a self-adjoint linear operator that belongs to a
certain sub-class of self-adjoint operators (or if you like observables)
such that its eigenvalues are positive and the trace of it is one. The trace
of an operator is the sum of is eigenvalues. The technical definition is:
D is a density operator if D is a trace class operator and tr(D) = 1.

K: I can now give you Gleason’s Theorem, and I am afraid there is no
easy or simple way to do this other than by giving the full and correct
statement. So here it is: (Hughes, 1989)

‘Let µ be any measure on the closed subspaces of a separable (real
or complex) Hilbert space H of dimension at least 3. There exists a
positive self-adjoint operator D of trace-class such that, for all closed
subspaces of H, µ(L) = tr(DPL).’6

5 For the Dirac notation see Appendix I.
6 This theorem is discussed in some detail in Chapter 6.
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If µ is a probability measure thus requiring that µ(H) =1, then
tr(D) = 1, that is, D is a density operator. There are many versions of
this theorem, this is the one given in Hughes.

N: You had better say more about this, for this is about as opaque as it
gets. I guess I would like to see how this will help us in designing an
algorithm for retrieval.

B: Yes, let’s have it. All this mumbo jumbo has got to be good for some-
thing. Although, I must admit it is neat and I like the way you have
encoded probability in the geometry.

K: Is it that way round? In fact it is both ways round. If you start with D,
and PL the projection onto the subspace L, then is easy to show that
µ(L) is a probability measure. Gleason’s Theorem tells us that if we
have a measure µ on the subspaces then we can encode that measure as
a linear operator (density operator) to calculate that probability through
tr(DPL).

N: So what?
K: Well it is a sort of ‘comfort theorem’ ensuring that if we assume that

these probability judgments can be made then we can represent those
judgements through an algebraic calculation. I suppose you could say it
is a sort of representation theorem. Just like a classical logic can reflect
the relationships between subsets, here we have relationships between
subspaces reflected through an algebraic calculation.

B: I am still not sure what extra we get through this theorem. How would
you apply it?

K: (Getting enthusiastic again) Now it gets more interesting. The simplest
way of thinking of a density operator is as follows:

D = a1P1 + · · · + anPn,

where the ai are weights such that �ai = 1 and the Pi are projections
onto (for simplicity let us say) a 1-dimensional vector space, a ray, so
that Pi = |xi〉〈xi| where xi is a normalised vector. These vectors do not
have to be mutually orthogonal. These vectors could represent concepts,
that is, base vectors, in which case D is a form of weighted query. Also,
D could represent a weighted mixture of documents like these in a
cluster, or a path of documents through a space of documents like in
ostensive retrieval. In all cases tr(DPL) gives a probability value to the
subspace L. If L is a 1-dimensional subspace, e.g. PL= |y〉〈y| = Py,
things become very simple indeed. That is (sorry about the algebra,
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I will scribble it on the whiteboard):

µ(L) = tr[(a1P1 + · · · + anPn)|y〉〈y|]
= tr[(a1|x1〉〈x1| + · · · + an|xn〉〈xn|)|y〉〈y|]
= a1tr[|x1〉〈x1 | y〉〈y|] + · · · + antr[|xn〉〈xn | y〉〈y|]
= a1〈x1 | y〉〈y | x1〉 + · · · + an〈xn | y〉〈y | xn〉 (believe me)

= a1|〈x1 | y〉|2 + · · · + an|〈xn | y〉|2 (using complex numbers),

which in a real vector space is a weighted sum of the squares of cos θ i,
where θ i is the angle that y makes with concept or vector i. This takes
us right back to the intuition based on Maron’s probabilistic indexing.

B: Very neat.
N: But does it work?
K: Well, as always that is a matter for experimentation. The nearest to

demonstrating that it works was the work on the Ostensive Model by
Campbell and Van Rijsbergen (1996). They had a primitive ad hoc form
for this way of calculating the probabilities and using them to navigate
the document space. The great thing is that we now have a formalism
that allows us to reason sensibly about that underlying mechanism and
it applies to objects or documents in any media. It is not text specific. No
assumptions are made about the vectors in the space other then that they
participate in the geometry and that they can be observed for answers
in the way I have been explaining.
[B and N are contemplating the algebra on the whiteboard gloomily]

B: It will never catch on. It’s much too hard.
N: (Suddenly cheerful) Shall we have some coffee?
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Introduction

This book is about underlying ideas and theory. It is about a way of looking,
and it is about a formal language that can be used to describe the objects and
processes in Information Retrieval. It is not about yet another model for IR,
although perhaps some will want to find such an interpretation in it.

Why do we need another way of looking at things? There are some good
reasons. Firstly, although there are several IR models, for example vector space,
probabilistic, logical to name the most important, they cannot be discussed
within a single framework.1 This book, The Geometry of Information Retrieval
(GIR), is a first attempt to construct a unifying framework. Secondly, although
many of us pay lip-service to the conceptual depth of some of the fundamental
notions in IR such as relevance, we rarely analyse these notions formally to any
bedrock. This is not because we are lazy, it is rather because our theoretical
tools have made it very difficult to do so. What follows will, it is hoped, aid such
formal analysis. And thirdly, there is a need to support the formal specification
or expression of IR processes so that we can formally reason about them. For
example, we need to be able to lay down mathematical constructs that will direct
us in the design of some new algorithms for IR. This is especially important if
we wish to extend the boundaries of current research. Finally, a fourth reason
is that IR research has now embraced the analysis of objects in any medium,
that is, text, image, audio, etc., and it has become apparent that existing IR
models apply to all of these media. In other words, IR models are not media
specific, but sometimes the language that we have used has implied that they
are so restricted. Here is an attempt to formulate the foundations of IR in a
formal way, and at a level of abstraction, so that the results apply to any object
in any medium, and to a range of modes of interaction.

1 See the Further reading section at the end of the chapter for standard introductory references to
information retrieval and quantum mechanics.
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We want to consider the way relevance can be discussed in the context
of information spaces. We begin by thinking of an information space as an
abstract space in which objects of interest are represented, and within which
a user can interact through observation and measurement with objects. Later
such a space will be a Hilbert space. For the moment we assume that the objects
are documents, and that each document is represented by a vector of finite
dimensions in the space.

Relevance, like information, has proved to be a slippery notion. Convention-
ally, an object (usually referred to as a document but it can be an image or a
sound sequence, etc.) is thought of as relevant to a user’s information need, thus
the ultimate arbiter of relevance is the user. Relevance is therefore a subjec-
tive notion, and the relevance of a document will vary from user to user. Even
though two users may submit the same query to an IR system, their assess-
ments of which documents are relevant may differ. In fact the relevance of a
document for one user will change as the user interacts with the system. One
way of describing this is to assume that relevance depends on the state of the
user, and that as the user acquires more information, his or her state changes,
implying that a document, potentially relevant before an interaction, may not
be so afterwards. Modelling this extremely complicated process has been part
of the inspiration for the search for a formal basis for IR.2

For the most part, computing or estimating relevance has been handled quite
simply. It is generally assumed that relevance is 2-valued, a document being
either relevant or not. Algorithms and models were developed to estimate the
probability of relevance of any document with respect to a user need. Most
simply, this is done by assuming that a query can be a reasonable representation,
or expression, of a user’s information need. A calculation is made estimat-
ing the similarity of the query to a document reflecting the probability of its
relevance. The probability of relevance is not conceived to be the same as the
degree of relevance of the document, because relevance is 2-valued at every
stage (Robertson, 1977). By finding the probability of relevance for each doc-
ument it is implied that there is a residual probability of non-relevance for that
document.

Let us begin by visualising the assessment of relevance in a 2-dimensional
space. In it each document is represented by a 2-dimensional vector. Of course
the structure of the space could be ignored completely and we could simply
assert that the position of one document close to another tells us nothing about
potential relevance. We do not do so because IR has been extremely successful
in exploiting spatial structure. We make the underlying assumption everywhere

2 See Saracevic (1975) and Mizzaro (1997) for a detailed discussion on the nature of relevance.
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in this book that the geometry of the information space is significant and can
be exploited to enhance retrieval.

So, the question that remains is how do we represent the idea of relevance in
the structure of such spaces. The motivation comes from quantum mechanics,
where the state of a system is represented by a vector, the state vector, in a
finite or infinite dimensional Hilbert space. Observables, that is quantities to be
measured, are represented by self-adjoint linear operators which themselves are
represented as matrices with respect to a given basis for the Hilbert space. The
subtle thing is that a measurement of an observable gives a result which is one of
the eigenvalues of the corresponding operator with a probability determined by
the geometry of the space. In physics the interpretation3 can be that the state
vector of the system collapses onto the eigenvector of the operator correspond-
ing to the resulting measured value, that is the corresponding eigenvalue.4 This
collapse ensures that if the measurement were repeated immediately then the
same value (eigenvalue) would be measured with probability 1. What may be
useful for IR about this interpretation is the way the geometric structure is
exploited to associate probabilities with measurements. This is a view of mea-
surement, which is quite general and can be applied to infinite as well as finite
systems.

We want to apply the quantum theoretic way of looking at measurement to
the finding of relevance in IR. We would initially be interested in finite sys-
tems, although this could change when thinking about measurements applied
to images. It is possibly not controversial to assume that relevance is an observ-
able. It may be controversial to assume that it corresponds to a self-adjoint linear
operator, or a Hermitian operator, acting on the space of objects – which we are
going to assume is a Hilbert space. Instead of the conventional assumption that
the observation of relevance results in one of two values, we can easily represent
a multi-valued relevance observable by simply extending the number of differ-
ent eigenvalues for the relevance operator. Let us call the operator R. In the
binary case there will be exactly two eigenvalues λ1 = 1, λ2 = 0 corresponding
to the result of measuring the value of R for any document.

In a high-dimensional space n > 2, the eigenvalues, if there are just two
eigenvalues, are what is called degenerate, meaning that at least one of the
eigenspaces corresponding to λi has dimension greater than 1. This is a slightly
troublesome feature because it becomes difficult to illustrate the ideas geomet-
rically. If we take the simple example of a 3-dimensional Hilbert space – that
is, each document is represented as a 3-dimensional vector, and we assume that

3 There are other interpretations (DeWitt and Graham, 1973, Albert, 1994, Barrett, 1999).
4 In the non-degenerate case where there is one unique eigenvector per eigenvalue.
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relevance is 3-valued, then R will have three distinct eigenvalues λ1 �= λ2 �= λ3

(that is, no degeneracy). To measure R for any document in this space is to get
one of the values λi with a certain probability. Geometrically, we can illustrate
thus:
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| |

| |
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{e1, e2, e3} is an orthonormal basis for the 3-space. Let x be a unit vector
representing a document, let {e1, e2, e3} be the eigenvectors corresponding to
the three different eigenvalues λ1 �= λ2 �= λ3. If x = c1e1 + c2e2 + c3e3 then
quantum mechanics dictates that the probability that measuring R for x will
result in λ1, λ2 or λ3 is given by |c1|2, |c2|2 or |c3|2, which by Pythagoras’
Theorem indeed sum to one. The obvious question to ask is why should we
interpret things this way? The answer is quite technical and will emerge in the
sequel, but first an intuitive explanation will be given.

We began by making the assumption that the observable R was representable
by a Hermitian operator, or in matrix terms one for which the matrix is equal to
its conjugate transpose. This is not an intuitive assumption. Fortunately there is a
famous theorem from Gleason (Hughes, 1989, p. 147) which connects measures
on the subspaces of a Hilbert space with Hermitian operators. The importance
of the theorem is that it helps us interpret the geometric description; later in the
book this connection will be made precise. If we assume that each subspace,
in particular each 1-dimensional subspace corresponding to an individual doc-
ument, can have a measure associated with it, then Gleason’s Theorem tells us
that there is an algorithm based on a Hermitian operator that will consistently
give that measure for each closed subspace. If that measure is a probability
measure then the Hermitian operator will be one of an important kind, namely
a density operator. A definition and description of a density operator can be
found in Appendix III and Chapter 6.

This relationship is quite general; it connects a consistent probability assign-
ment to documents in space with a self-adjoint linear operator on that space.
In other words there is a density operator that for each subspace will give the
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probability measure of that subspace. Now accepting that relevance judgments
(Maron, 1965) are a matter of probability, we have established that some of the
most successful retrieval engines are based on attempts to estimate probability
of relevance for each document. Thus it is reasonable to represent the observ-
able relevance as a linear operator of the kind specified by Gleason’s Theorem.
It is important to realise that we are by no means ruling out that the probabilities
may be subjective, that is that each user, or even the same user in a different
context, can hypothetically have a different probability assignment in mind.
Without any further interaction we do not yet know what they are. The whole
point of an IR system is to estimate (or compute) the probabilities. However,
we are now in a position to reason about relevance as a first class object, namely
as an observable, as applied to the space of objects.

The Hermitian operator beautifully encapsulates the uncertainty associated
with relevance. If the relevance operator has k eigenvalues λk, then the proba-
bility of observing λk, one of the relevance values, for any particular document
x is given by the size of the projection of x onto the eigenspace corresponding
to λk. The reason we have an eigenspace and not an eigenvector is because the
eigenvalues may be degenerate,5 more about that later. All this simplifies enor-
mously if the eigenvalues are non-degenerate, for relevance, since we usually
have a bi-valued relevance, typically there will be two eigenvalues only, which
means that we have two eigenspaces.

The analysis we have given above can be applied to any observable, and
providing that we are convinced that there is a probability measure reflecting
consistently some uncertainty on the space of objects, we can represent that
observable by a density operator. It brings with it the added bonus that the
eigenvectors (eigenspaces) of a particular operator give a particular perspective
on the information space. Since the eigenvectors of a density operator make up
an orthonormal basis for the space, each observable and corresponding operator
will generate its own basis. In the space all calculations are done with respect
to a particular basis, and if the basis is different then of course the probabilities
will be different. So we see how it can follow that a difference in a relevance
operator can be reflected in the probabilities.

A second, different observable, important in IR, and quite distinct from
relevance is ‘aboutness’ (Sober, 1985, Bruza, 1993, Huibers, 1996). Philosoph-
ically, it is not clear at all whether ‘aboutness’ is a well-defined concept for IR,
but we will simply assume that it is. It arises from an attempt to reason abstractly
about the properties of documents and queries in terms of index terms.

5 This means that there is more than one eigenvector for the same eigenvalue (Hughes, 1989,
p. 50).
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The approach taken in this book is that these objects like documents do not
have or possess properties or attributes.6 The properties represented by an index
term exist by virtue of applying an observable to an object and thereby making
a measurement resulting in a value. It is as if the properties emerge from an
interacton. The simplest case would be for a single-term observable resulting in
a Yes or No answer. We can consider a entire query to be an observable and its
constituent index terms to be the possible results of a measurement. There are
various abstract ways of modelling this. The important idea is that we do not
assume objects to have the properties a priori. In discussing aboutness we come
from the opposite direction from that of relevance. In the case of aboutness we
come from the very concrete notion that index terms represent properties of
documents, which we are making more abstract, whereas with relevance we
have a very abstract notion that we are making more concrete. The result is that
both relevance and aboutness can be analysed formally in the same abstract
Hilbert space in a comparable way.

One reason for looking at ‘aboutness’ with textual documents is that it may
be obvious that an index term belongs to a document because it occurs in the
document as a token and therefore can act as a semantics for it. But, consider an
image, which may be represented by a bunch of signals, maybe mathematical
functions, and their obvious properties such as for example spatial frequencies
cannot be related simply to a semantics.7 So, we need to tackle ‘aboutness’
differently and more abstractly, and our proposal is that properties are modelled
as observables by self-adjoint linear operators which when applied to an object
(image) produce results with probabilities depending on the geometry of the
space within which the objects are represented.

Having described how an aboutness operator can be handled just like a
relevance operator, we can now face the problem of describing the nature of
their interaction. One way of formally interpreting the IR problem is that our
representation of the information need (via a query) is intended to reflect rel-
evance as closely as possible. Thus, when we rank documents with respect to
a query, ideally the ranking would be in decreasing order of probability of rel-
evance (Robertson, 1977). But, in the case where relevance and aboutness are
both represented as observables, ideally the observables would be the same. Of
course, in practice, this is rarely the case, and so we are left with the situation
where the eigenvectors for R and A (aboutness) are at an angle to each other.

6 Sustaining this is quite difficult since we are so used to talking in terms objects having
properties. There is a profound debate about this issue in quantum mechanics, see for example
Wheeler (1980): ‘No elementary phenomenon is a phenomenon until it is an observed
(registered) phenomenon.’

7 Sometimes referred to as the ‘semantic gap’ in the literature.
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We can illustrate this situation in two dimensions:

|t=1〉

|r=1〉

|t=0〉

|r=0〉 x  

q

|t = 1〉 and |t = 0〉 are the two eigenvectors associated with A, and |r = 1〉
and |r = 0〉8 are those associated with R. A document is represented by the
vector x. (All the vectors are normalised, that is, of unit length.) If we have
an inner product9 on this space then the geometry dictates that Rx = 1x with
probability |〈x|r = 1〉|2 and Ax = 1x with probability |〈x|t = 1〉|2.10 These
probabilities arise because we wish to interpret the inner product in this way. If
the eigenvectors for these two observables were to coincide then of course the
probabilities would be the same. This would mean that the probability of being
about t would be the same as the probability of being relevant a priori. But once
having observed that x is about t, then the probability of its relevance would be
1 and its probability of non-relevance would be 0. This is the simple case.

Now take the case where the eigenvectors are at an angle to each other.
We still have the a-priori probabilities, but what if we observe x to be about t,
then a subsequent observation of its relevance will depend on two probabilities
|〈r = 1|t = 1〉|2 and |〈x|t = 1〉|2. If we are in a real Hilbert space then these are
simply the squares of the cosines of the corresponding angles.

The really interesting effect occurs when we have the following sequence of
observations: A → R → A.

A A

A

RR

Y

N

Y

N

N

Y

8 We are using the Dirac notation here for ‘kets’, however, for the moment read these as labels.
The reader can find more details about the notation in Appendix I.

9 See Appendix I for a brief example of an inner product.
10 See Appendices II and III for how these probabilities are derived.
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In the above diagram we assume that a document (represented by a state vec-
tor x) enters the observation box A at the left. A represents an observable which
corresponds to the property of ‘aboutness’, and to be concrete, it corresponds to
whether a document is about a particular term, t, which might be a term such as,
for example, ‘money’, ‘bank’, etc. One can view A as representing a question,
which has the answer either yes or no. A measurement is made to establish
whether x is about t or not, this is a yes or no decision. After that the observable
R is applied to x assuming that x is not about t. Again a measurement is made
to establish whether x is relevant or not, again a yes/no decision. Similarly this
may be viewed as asking the question, ‘is x relevant?’ If the interaction between
A and R was classical then any subsequent measurement of t should result in
the same result as the first measurement, namely, that the answer to the question
‘is x about t?’ is still no. However, in the representation developed in this book
there is an interaction between A and R such that when R is measured after A a
subsequent measurement of A can once again give either result. This depends on
whether the observables A and R have different eigenbases or, to put it more pre-
cisely, whether A and R commute. The assumption made here is that A and R do
not necessarily commute, that is, determining the aboutness followed by deter-
mining relevance, is not the same as determining relevance followed by about-
ness. In mathematical terms the operators A and R do not commute: AR �= RA.
This simple example illustrates the basis for the interaction protocol11 we pro-
pose between users and information spaces, leading to the development of what
one might term an interaction logic for IR.12

Here is a simple example of two non-commuting observables represented
by their corresponding matrices.

A =
(

0 1
1 0

)
R =

(
1 0
0 −1

)

AR =
(

0 −1
1 0

)

RA =
(

0 1
−1 0

)

AR �= AR.

We can extend this analysis to the interaction between different index terms. It
is usual and convenient in IR to assume that index terms are independent. In the
geometrical picture being described, term independence means that separate
observables corresponding to the different terms will commute. If they are not

11 I thank Robin Milner for suggesting this term.
12 The reader is encouraged to read the little gem of a book by Jauch (1973) where a similar

example is worked using polarising filters for light.
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independent then the 2-dimensional eigenbases are different for each term, the
angle between each pair of bases reflecting the dependence. In fact it is conve-
nient to assume that a query operator has a set of eigenvectors as a basis, each
vector corresponding to a concept and independent from each other concept.
This is very similar to the representation adopted by Latent Semantic Indexing
(Deerwester et al., 1990).

The foregoing has given a simple description of the conceptual basis of what
we describe mathematically in the chapters that follow. This just leaves me to
explain the general approach and structure of the rest of the book. A quote from
John von Neumann to some extent expresses the spirit of the endeavour. Of
course he was talking about quantum mechanics and not information retrieval.
I quote at length with grammatical mistakes and all (Rédei and Stöltzner, 2001,
pp. 244–245):13

If you take a classical mechanism of logics, and if you exclude all those traits of
logics which are difficult and where all the deep questions of the foundations come
in, so if you limit yourself to logics referred to a finite set, it is perfectly clear that
logics in that range is equivalent to the theory of all sub-sets of that finite set, and
that probability means that you have attributed weights to single points, that you
can attribute a probability to each event, which means essentially that the logical
treatment corresponds to set theory in that domain and that a probabilistic treatment
corresponds to introducing measure. I am, of course, taking both things now in the
completely trivialized finite case.

But it is quite possible to extend this to the usual infinite sets. And one also has
this parallelism that logics corresponds to set theory and probability theory
corresponds to measure theory and that given a system of logics, so given a system
of sets, if all is right, you can introduce measures, you can introduce probability
and you can always do it in very many different ways.

In the quantum mechanical machinery the situation is quite different. Namely
instead of the sets use the linear sub-sets of a suitable space, say of a Hilbert space.
The set theoretical situation of logics is replaced by the machinery of projective
geometry, which in itself is quite simple.

However, all quantum mechanical probabilities are defined by inner products of
vectors. Essentially if a state of a system is given by one vector, the transition
probability in another state is the inner product of the two which is the square of the
cosine of the angle between them. In other words, probability corresponds precisely
to introducing the angles geometrically. Furthermore, there is only one way to
introduce it. The more so because in the quantum mechanical machinery the
negation of a statement, so the negation of a statement which is represented by a
linear set of vectors, corresponds to the orthogonal complement of this linear
space.14

And therefore, as soon as you have introduced into the projective geometry the
ordinary machinery of logics, you must have introduced the concept of

13 This is a reprint of an unpublished paper by John von Neumann, ‘Unsolved problems in
mathematics’, delivered as an address September 2–9, 1954.

14 Italics by the author of this book (GIR).
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orthogonality. This actually is rigorously true and any axiomatic elaboration of the
subject bears it out. So in order to have logics you need in this set of projective
geometry with a concept of orthogonality in it.

In order to have probability all you need is a concept of all angles, I mean angles
other than 90◦. Now it is perfectly quite true that in a geometry, as soon as you can
define the right angle, you can define all angles. Another way to put it is that if you
take the case of an orthogonal space, those mappings of this space on itself, which
leave orthogonality intact, leave all angles intact, in other words, in those systems
which can be used as models of the logical background for quantum theory, it is
true that as soon as all the ordinary concepts of logics are fixed under some
isomorphic transformation, all of probability theory is already fixed.

What I now say is not more profound than saying that the concept of a priori
probability in quantum mechanics is uniquely given from the start. You can derive
it by counting states and all the ambiguities which are attached to it in classical
theories have disappeared. This means, however, that one has a formal mechanism,
in which logics and probability theory arise simultaneously and are derived
simultaneously. I think that it is quite important and will probably [shed] a great
deal of new light on logics and probably alter the whole formal structure of logics
considerably, if one succeeds in deriving this system from first principles, in other
words from a suitable set of axioms. All the existing axiomatisations of this system
are unsatisfactory in this sense, that they bring in quite arbitrarily algebraical laws
which are not clearly related to anything that one believes to be true or that one has
observed in quantum theory to be true. So, while one has very satisfactorily
formalistic foundations of projective geometry of some infinite generalizations of
it, of generalizations of it including orthogonality, including angles, none of them
are derived from intuitively plausible first principles in the manner in which
axiomatisations in other areas are.

(John von Neumann, 1954.)

The above is a pretty good summary of how by starting with simple set theory
to model retrieval we are progressively pushed into more structure on the set
of objects, which brings with it different logics and theories of probability. In
the end we have a representation where objects are embedded in Hilbert space,
observations are achieved by applying linear operators to objects as vectors.
The logic is determined by the collection of linear subspaces and a probability
measure is generated through a consistent measure on the set of linear subspaces,
as specified by Gleason’s Theorem (Gleason, 1957).

Before proceeding to the next chapter it may be useful to highlight two
technical issues which will have profound implications for any attempts to
develop further this theoretical approach. The first is concerned with the use
of complex numbers (Accardi and Fedullo, 1982). In what follows there is
no restriction placed on the scalars for the Hilbert space. In other words in
general we assume all scalars to be complex numbers of which the reals are
a special case. For example, the complex combination of two vectors x and
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y giving rise to αx + βy, where α and β are complex numbers, is allowed.
Now it is not immediately obvious how this use should be interpreted or indeed
exploited. The thing to realise is that it is a question of representation. In the
entire theory that follows, the results of measurements are and always will
be real. That is, even if a document is represented by a vector in a complex
space, the result of applying a linear self-adjoint operator to it, whose matrix
entries may be complex, will give rise to a real with a given probability. Thus,
although the representation is in terms of complex numbers, the result of an
interaction is always real. For text retrieval this may prove useful if we wish, for
example, to use both term frequency and document frequency associated with a
given term as part of a matching algorithm expressed as an operation in Hilbert
space. Thus if tf is the term frequency and we use idf to represent the document
frequency, then this information can be carried by a complex number c, where
c = idf + itf.15 In this way the identity of the two different frequencies could be
preserved until some later stage in the computation when an explicit instruction
is carried out to combine the two into a real number (or weight). How to do
this explicitly is not clear yet, but there is no need to cut off the generality
provided by complex numbers. Of course, when the objects represent images
we have absolutely no idea what the best representation is and it may be that in
the same way as we need complex numbers when we do Fourier transforms of
signals, when specifying operations on images we may find a use for the extra
representation power afforded by complex numbers.16

This leaves us with the intriguing question of the inherent nature of the
probability that we have developed here following the lines in which it is used
in quantum mechanics. Traditionally, probabilities are specified as measures
on sets, and if the sets are subsets of a multi-dimensional space they have the
properties of volume. Thus, the volume of subset Vi is given as a relative volume
with respect to the entire set’s volume V by |Vi| / |V|.17 The volume numbers
behave like relative frequencies, and indeed two disjoint (relative) volumes
can be added to give the relative volume of the union. This is all familiar, for
example see any standard text on probability such as Feller (1957), and the
Kolmogorov axioms (see his book, 1950) capture this kind of probability very
neatly.

In quantum mechanics things are different and the basis for the probability
assignment is Pythagoras’ Theorem. In the diagram below x and y are the
eigenvectors of an observable A, and make up a 2-dimensional orthonormal

15 i =
√

−1.
16 The argument made here for complex numbers is not unlike the argument made by Feynman

for negative probabilities (Hiley and Peat, 1987, Chapter 13).
17 |·| gives the volume of a set.
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basis for a 2-dimensional space. The projection of c onto x is a, and b is the
projection of c onto y. In two dimensions we have

 

j  
x  

y

c 
b 

a 

q  

 s

and we all know that

a2 + b2 = c2

(a

c

)2
+

(
b

c

)2

= 1

or cos2 θ + cos2 ϕ = 1, 0 ≤ cos θ ≤ 1, 0 ≤ cos ϕ ≤ 1.

This gives a way of interpreting a probability of observing the result of an
observable A with two outcomes a1, a2, where a1 is the eigenvalue correspond-
ing to the eigenvector x, and a2 is the eigenvalue corresponding to the eigenvec-
tor y. In our earlier discussion a1 would represent yes and a2 would represent
no to a question represented by A. The state of the system (or the document)
is represented by the vector s, and if normalised its length c = 1. So we can
assign a probability p1 to be the probability that we get a1 for observable A
given the state s, where p1 = Prob(A = a1| s) = cos2 θ and p2 = Prob(A =
a2| s) = cos2 ϕ. The state s can vary throughout the space but p1 + p2 = 1 for
any s. In particular p1 = 1 and p2 = 0, if s lies along x and vice versa if s lies
along y.

This way of assigning probabilities generalises readily to n dimensions,
indeed to infinite dimensions, and handles complex numbers without any dif-
ficulty. In one sentence, we can summarise the purpose of this book by saying
that it is an attempt to show that this kind of probability assignment in Hilbert
space is a suitable way of describing interaction for information retrieval.

Further reading

There are now some good introductions to information retrieval that cover the
foundations of the subject from different points of view. The most recent is
Belew (2000) which takes a cognitive perspective. A more traditional approach
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is taken by Kowalski and Maybury (2000), and Korfhage (1997). The texts
by Baeza-Yates and Ribeiro-Neto (1999), and Frakes and Baeza-Yates (1992)
emphasise algorithmic and implementation issues. Before these more recent
textbooks were published, one was mostly dependent on research monographs,
such as Fairthorne (1961), Salton (1968) and Van Rijsbergen (1979a). These
are worth consulting since many of the research ideas presented in them are still
of current interest. The monograph by Blair (1990) is unique for its emphasis
on the philosophical foundations of IR. Dominich (2001) has given a very
mathematical account of the foundations of IR. In Sparck Jones and Willett
(1997) one will find a collection of some of classic papers in IR, to this it is
worth adding the paper by Fairthorne (1958) which is perhaps one of the earliest
paper on IR ever published in the computer science literature. A still much
cited text book is Salton and McGill (1983) as it contains a useful elementary
introduction to the vector space approach to IR.

The main body of this book draws heavily on the mathematics used in quan-
tum mechanics. The preceding chapter makes clear that the motivation for
viewing and modelling IR formally in the special way just described is also
drawn from quantum mechanics. To gain a better understanding of quantum
mechanics and the way it uses the appropriate mathematics one can consult a
number of introductory (sometimes popular) texts. The bibliography lists sev-
eral, together with annotations indicating their relevance and significance. One
of the simplest and clearest popular introductions is Albert (1994), which does
not shy away from using the appropriate mathematics when needed, but always
gives an intuitive explanation of its use.18 An excellent and classical account
of the mathematical foundations is Jauch (1968), he also in 1973 published a
delightful dialogue on the reality of quanta. For the philosophically minded,
Barrett (1999) is worth reading. There are several good popular introductions to
quantum mechanics, for example Penrose (1989, 1994), Polkinghorne (1986,
2002), Rae (1986). Wick (1995) is a well-written semi-popular account, whereas
Gibbins (1987) contains a nice potted history of QM before dealing with the
paradoxes of QM as Wick does. A useful dictionary, or glossary, of the well
known terms in QM can be found in Gribbin (2002). There are many more
entries in the annotated bibliography at the end of the book, and it may be
worth scanning and reading the entries if one wishes to tackle some of the more
technical literature before proceeding to the rest of this book.

18 It is also good for getting acquainted with the Dirac notation.



2

On sets and kinds for IR

In this chapter an elementary introduction to simple information retrieval is
given using set theory. We show how the set-theoretic approach leads natu-
rally to a Boolean algebra which formally captures Boolean retrieval (Blair,
1990). We then move onto to assume a slightly more elaborate class structure,
which naturally leads to an algebra which is non-Boolean and hence reflects a
non-Boolean logic (see Aerts et al., 1993, for a concrete example). The chap-
ter finishes by giving a simple example in Hilbert space of the failure of the
distribution law in logic.

Elementary IR

We will begin with a set of objects; these objects are usually documents. A
document may have a finer-grained structure, that is, it may contain some
structured text, some images and some speech. For the moment we will not
be concerned with that internal structure. We will only make the assumption
that for each document it is possible to decide whether a particular attribute
or property applies to it. For example, for a text, we can decide whether it is
about ‘politics’ or not; for images we might be able to decide that an image
is about ‘churches’. For human beings such decisions are relatively easy to
make, for machines, unfortunately, it is very much harder. Traditionally in IR
the process of deciding is known as indexing, or the assigning of index terms,
or keywords. We will assume that this process is unproblematic until later
in the book when we will discuss it in more detail. Thus we have a set of
attributes, or properties (index terms, keywords) that apply to, or are true of,
an object, or not, as the case may be. Formally the attributes may be thought
of as predicates, and the objects for which a predicate is true are said to satisfy
that predicate. Given a set of objects {x, y, z, . . .} = � and a set of predicates

28
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{P, Q, R, . . .} we can now illustrate a simple model for IR using naı̈ve set
theory.

Picture � as a set thus:

Ω

 

P Q  

we can describe the set of objects that satisfy P as [[P]] = {x | P(x) is true}
and the set of objects satisfying Q as [[Q]] = {x | Q(x) is true}. This notation is
rather cumbersome and usually, in the diagram, and discussion, [[P]] is simply
referred to as P, that is the set of of objects satisfying a predicate P is also
referred to as P. There is a well-known justification for being able to make
this identification which is known as the Stone Representation Theorem (see
Marciszewski, 1981, p. 9). Hence given any subset in the set � it represents a
property shared by all the objects in the subset. That in general we can do this
in set theory is known as the ‘comprehension axiom’, a detailed definition and
discussion can be found in Marciszewski.

Now with this basic set-up we can specify and formulate some simple
retrieval. We can ask the question {x | P(x) is true}, that is we can request
to retrieve all objects that satisfy P. Similarly, we can request to retrieve all
objects that satisfy Q. How this is done is a non-trivial issue of implementation
about which little will be said in this book (but see Managing Gigabytes by
Witten et al., 1994). The next obvious step is to consider retrieving all objects
that satisfy both P and Q, that is,

[[P ∧ Q]] = {x | ‘P(x) is true’ and ‘Q(x) is true’}.
Here we have slipped in the predicate P ∧ Q, whose meaning (or extension)
is given by the intersections of the sets satisfying P and Q. In other words we
have extended the language of predicates to allow connectives. Similarly, we
can define

[[P ∨ Q]] = {x | ‘P(x) is true’ or ‘Q(x) is true’}
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and

[[¬Q]] = {x | It is not the case that ‘Q(x) is true’}.
What we have now is a formal language of basic predicates and simple logical
connectives ∧ (and), ∨ (or) and ¬ (not). The meaning of any expression in that
language, for example (P ∧ Q) ∨ (¬R), is given by the set-theoretic operations
on the ‘meaning’ of the individual predicates. That is

[[P ∧ Q]] = [[P]] ∩ [[Q]],

[[P ∨ Q]] = [[P]] ∪ [[Q]] and

[[¬P]] = � − [[P]],

and where ‘∩’ is set intersection, ‘∪’ is set union, and ‘−’ is set complementa-
tion. Hence

[[(P ∧ Q) ∨ ¬R]] = ([[P]] ∩ [[Q]]) ∪ [[¬R]].

The fact that we can do this thus, that is make up the meaning of an expression
in terms of the meanings of the component expressions, without taking into
account the context, is known as the Principle of Compositionality. (Dowty
et al., 1981, Thomason,1974).

In retrieval terms, if a query Q is given by (R ∧ B) ∧ ¬M, where

R = rivers
B = banks
M= money,

then Q is a request for information for documents about ‘river banks’ and not
about ‘money’. It amounts to requesting the set [[Q]] given by {x | Q(x) is true},
that is we are looking for the set of all x where each x satisfies P and Q but not
M. Pictorially it looks like this:

R B

M
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What has been described so far are the basics of Boolean retrieval (Kowalski and
Maybury, 2000, Korfhage, 1997). ‘Boolean’ because the logic used to express
the retrieval request, such as Q, is Boolean (Marciszewski, 1981).

The beauty of this approach is that we do not have to say anything about
the structure of the set �. There is no information about whether an object x is
similar or dissimilar to an object y. The only information that is used is whether
an object x possesses a predicate P, whether any two objects share a predicate
P, and whether the same objects satisfy one or more predicates.1 We need to
know no more, we simply have to be able to name the objects {x, y, z, . . .} and
be able to decide whether any predicate (attribute) {P, Q, R, . . .} applies to it.

Unfortunately experience and experiment have shown that IR based on this
simple model does not deliver the required performance (Blair, 1990). The
performance of a retrieval system is usually defined in terms of the ability to
retrieve the ‘relevant’ objects (precision) whilst at the same time retrieving as
few of the ‘non-relevant’ ones as possible (recall).2 This is not a simple issue.
There is a vast literature on what determines a relevant and a non-relevant object
(Saracevic, 1975, Mizzaro, 1997). We return to aspects of this decision-making
later. What is worth saying here is that it is not straightforward to formulate
a request such as Q and to retrieve [[Q]]. There is no guarantee that [[Q]] will
contain all the relevant objects and only the relevant ones, that is, no non-
relevant ones. Typically [[Q]] will contain some of each. The challenge is to
define retrieval strategies that will enable a user to formulate and reformulate
Q so that the content of [[Q]] is optimal.

In order to introduce the standard effectiveness measures of retrieval we are
required to extend the structure of the set � with the counting measure, so that
we can tell what the size of each subset is. If we assume that the subset of
relevant documents in � is A, then the number of relevant documents is given
by |A|, where |·| is the counting measure. The most popular and commonly used
effectiveness measures are precision and recall. In set-theoretic terms, if B is
the set of retrieved documents then

precision = |A ∩ B|/|B|, and recall = |A ∩ B|/|A|.
A well-known composite effectiveness measure is the E-measure;3 a special
case is given by

E = |A � B|/(|A| + |B|) = (|A ∪ B| − |A ∩ B|)/(|A| + |B|),

1 We will ignore predicates such as x is similar to y.
2 This kind of performance is normally referred to as retrieval effectiveness; we will do the same,

see below.
3 A formal treatment of the foundation of the E-measure may be found in Van Rijsbergen (1979c).
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where � is known as the symmetric difference.4 It calculates the differ-
ence between the union and intersection of two sets. Another special case is
F = 1 − E, which is now commonly used instead of E when measuring effec-
tiveness. Both E and F can be expressed in terms of precision and recall.

It is tempting to generalise the counting measure |·| to some general (prob-
abilistic) measure, but at this stage there are no grounds for doing that (but see
Van Rijsbergen, 1979b). Beyond being able to tell what size a set is, unless
we know more about the detailed structure of each object in �, we cannot say
much more.

Returning to our general set-theoretic discussion about the correspondence
between subsets and predicates, it would appear that A and B are the extension of
predicates, properties attributable to the members of A and B. With a thorough
abuse of notation one might express this as A = [[relevant]] and B = [[retrieved]].
However, they are strange predicates because they are not known in advance. Let
us take the predicate retrieved first. This is usually specified algorithmically, and
indeed in the case of Boolean retrieval is the set satisfying a Boolean expression
Q, whatever that may turn out to be. The second predicate relevance is user
dependent, because only a user can determine whether an object x ∈� is relevant
to her or his information need. The impression given by the definitions of
precision and recall is slightly misleading because they appear to have asserted
that the set A is known in advance and static, neither of which in practice is
the case. As a first approximation in designing models and implementations for
IR we assume that such a set exists and can be found by generating a series
of subsets Bi which together will somehow end up containing A, the set of all
relevant documents. That is, a user attempts to construct ∪iBi such that A ⊆∪iBi.
This process can be broken down into a number of steps such that |A ∩ Bi| is
as large as possible and Bi �= Bj, so that at each stage, new members of A may
be found. Unfortunately, without a file-structure on � it is difficult to see how
to guide a user towards the discovery of A. Of course each Bi may give hints as
to how to formulate the next Qi+1 corresponding to Bi+1 but such a process is
fairly random.

What is more interesting is to consider the interaction between the various
predicates. Let us concentrate on the two kinds, one to connect with ‘aboutness’,
these predicates I have called {P, Q, R, . . .}; and the kind for ‘relevance’ which
for convenience I will call predicate X. We will consider how the observation of
one predicate followed by the observation of another may affect the judgement
about the first. Perhaps it would be best to begin with a simple example. Let Q
stands for ‘banks’, that is

[[Q]] = {x | x is about banks}
4 This is like a Hamming distance for sets.
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and

[[¬Q]] = {x | x is not about banks}.
In our set-theoretic account we have assumed that ‘aboutness’ is a bivalent
property, that is

x ∈ [[Q]] or x ∈ [[¬Q]] for all x ∈ �.

Many models for IR assume this,5 they assume that whether an object is about
Q or not Q can be established objectively once and for all by some computation.
This assumption may be challenged, and in fact it is more natural to assume
that an object is about neither, or both, until an observation by a user forces it
to be about one or the other, from the point of view of the user.

Now let us bring predicate X (relevance) into play. Once object x has been
observed to be about banks (Q) and the relevance is established, a subsequent
repeat observation of whether x is about banks may lead to a different result. The
intuitive explanation is that some cognitive activity has taken place between the
two observations of Q that will change the state of the observer from one mea-
surement moment to the next (see for example Borland, 2000, p. 25).6 The same
phenomenon can occur when two aboutness predicates P and Q are observed in
succession. The traditional view is that we can treat P and Q independently and
that the observation of P followed by Q will not affect the subsequent observa-
tion of P. Once again observing Q in between two observations of P involves
some cognitive activity and may have an effect. Of course we are assuming here
that aboutness, like relevance, is established through the interaction between
the user and the object under observation.

What we have described above is a notion of compatibility between predi-
cates or subsets. Technically, this can be expressed as

P = (P ∧ Q) ∨ (P ∨ ¬Q),

when P and Q are compatible, or

X = (X ∧ Q) ∨ (X ∨ ¬Q),

where X is the relevance predicate. In the latter case, if Q stands for a sim-
ple index term like ‘banks’, then the expression means that relevance can be
separated into two distinct properties ‘relevance and bankness’ and ‘relevance
and non-bankness’. When predicates are incompatible the relationship does

5 There are notable exceptions, for example Maron (1965), and the early work of Goffman (1964).
6 ‘That is the relevance or irrelevance of a given retrieved document may affect the user’s current

state of knowledge resulting in a change of the user’s information need, which may lead to a
change of the user’s perception/interpretation of the subsequent retrieved documents . . .’
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not hold. There is a well known law of logic, distribution, which enables us to
rewrite X as follows:

X = (X ∧ Q) ∨ (X ∧ ¬Q) = X ∧ (Q ∨ ¬Q) if X and Q are compatible.7

In our Boolean model the distributive law holds, and all predicates (subsets)
are treated as compatible. If, on the other hand, we wish to model a possible
incompatibility between predicates, because of interaction, then the Boolean
Model is too strong, because it forces compatibility.

Before moving on to other structures there is one more aspect of the set-
theoretic (Boolean) approach that needs to be clarified. One of the most difficult
things in modelling IR is to deal with the interplay between sets, measures and
logic. The element of logic that is central, and most troublesome, is the notion of
implication. In Boolean logic the connective ‘→’ is defined for two propositions
A and B by setting A → B = ¬A ∨ B. Using the notation introduced earlier, the
semantics may be given as

[[A → B]] = {x |x ∈ [[¬A]] ∪ [[B]]}.

This connective is important because it enables us to perform inference. For us
to prove an implication such as A → B it suffices to deduce the consequent B
from the antecedent (according to some fixed rules). This can be strengthened
into a full-blown Deduction Theorem that for classical logic states

A ∧ B |= C if and only if A |= B → C ;

in words this says that if C is semantically entailed by A and B, then A semanti-
cally entails B → C, and if A semantically entails B → C then C is semantically
entailed by A and B. Of course A may be empty, in which case we have

B |= C if and only if |= B → C.

Much of classical inference is based on this result. When later we introduce more
structure into our object space � we will discover that the lack of distribution
in the logic means we have to sacrifice the full-blown Deduction Theorem but
retain its special case.8

We now move on from considering just sets, subsets, and the relationships
between them to a slightly more elaborated class structure, which inevitably

7 See Holland (1970) for extensive details.
8 For a deeper discussion about this see Van Rijsbergen (2000).
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leads to a non-boolean logic. We motivate this class structure by first looking at a
primitive form of it, namely, an inverted file, which itself is used heavily in IR.

Inverted files and natural kinds

Inverted files have been used in information retrieval almost since the very
beginning of the subject (Fairthorne, 1958). Most introductions to IR contain
a detailed description and definition of this file-structure (see for example Van
Rijsbergen, 1979a, Salton and McGill, 1983 and Witten et al., 1994). Here we
use it in order to motivate a discussion about classes of objects, their properties
and their associated kinds. In particular we demonstrate how these considera-
tions lead to a weak logic that is not distributive and of course, therefore, not
Boolean. All we need for our discussion is classes of objects taken from � and
a notion of attribute, property or trait associated with objects. To begin with we
must determine whether objects share attributes in common or not. The kind
of class S that will interest us is one where the members share a number of
attributes and only those attributes. Thus any object not in S does not share
all the properties. At the most primitive level this is true of the buckets of an
inverted file. For example, the class of objects about mammals is indexed by
‘mammals’ and the inverted file will have a bucket (a class!) containing all and
only those objects indexed by ‘mammals’. Similarly, ‘predators’ indexes the
class of objects about predators. These classes may of course overlap, an object
may be indexed by more than one attribute.

Definition D19

A set T of attributes determine a set A of individuals if and only if the following
conditions are satisfied:

(1) every individual in A instantiates every attribute in T;
(2) no individual not in A instantiates every attribute in T.

If T is a singleton set then the As are the buckets of an inverted file.

Definition D2

A set of individuals is an artificial class if there is a corresponding set tr(A) of
attributes that determine A.

9 The formal treatment that follows owes much to Hardegree (1982).
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Please notice that we are using a contrary terminology from the philosophical
literature (Quine, 1969, Lakoff, 1987) by defining artificial classes instead of
natural classes. We prefer to follow the Numerical Taxonomy literature (Sneath
and Sokal, 1973, p. 20).

Formally, we can define the attributes of a class A and the individual instan-
tiating the attributes as follows (where V is the set of possible attributes, and �

the universe of objects).

Definition D3

tr(A) = {t ∈ V | a � t for all a ∈ A}.

Definition D4

in(T ) = {a ∈ � | a � t for all t ∈ T},
where � is a relation on �×V, the cross product of the universe of objects with
the universe of attributes.
Let us consider an example:

(1) H is the set of objects about humans;
(2) L is the set of objects about lizards;
(3) H ∪ L is the set of objects about humans or lizards.

If we now think of tr(.) as an indexing operation, then it would generate the
set of attributes that defines a set of objects. Similarly, in(.) is an operation
that generates a set of objects that share a given set of attributes. Thus tr(H)
generates the attributes, or index terms, for H, and tr(L) does the same thing for
L. What is more interesting is to consider tr(H ∪ L). Its definition is given by

tr(H ∪ L) = {t ∈ V |a � t for all a ∈ H ∪ L},
that is, it is the set of attributes shared by all the members of H and L. A question
now arises. Is H ∪ L an artificial class? For this to be the case tr(H ∪ L) would
need to determine H ∪ L, which it probably does not. For in(tr(H ∪ L)) the
objects sharing all the attributes in tr(H ∪ L) is more likely to be the class of
objects about vertebrates which properly includes H ∪ L (and some others, e.g.
fish). Thus

H ∪ L ⊂ in(tr(H ∪ L).
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And here we have the nub of the problem. Whereas in naı̈ve set theory one would
expect equality between H ∪ L and in(tr(H ∪ L), in normal use the latter set of
objects in general includes H ∪ L. One can salvage the situation by insisting
that a class must satisfy certain conditions in order that it counts as a class, this
inevitably leads to a non-Boolean logic.

Before we extend our example any further we will define the notion of mono-
thetic kinds (which philosophers call natural kinds). In terms of the example it
comes down to ensuring that tr(in(.)) and in(tr(.)) are closure operations. Let
us begin by defining the mathematical nature of tr and in. They are a Galois
connection (see Hardegree, 1982, Davey and Priestley, 1990 and Ganter and
Wille, 1999).

Definition D5

Let (P, ≤ 1) and (Q, ≤ 2) be two partially ordered sets. Then a Galois connection
between these two posets is, by definition, a pair of functions (f, g) satisfying
the following conditions:

(1) f maps P into Q; g maps Q into P;
(2) for all a, b in P, if a ≤1 b then f(a) ≥2 f(b);
(3) for all x, y in Q, if x ≤2 y then g(x) ≥1 g(y);
(4) for all a ∈ P, a ≤1 g[ f(a)];
(5) for all x ∈ Q, x ≤2 f [g(x)].

One can easily show that (tr, in) as defined in D3 and D4 is a Galois connection
between ℘(�) and ℘(V), the power sets of � and V respectively.

We can now define a closure operation on a Galois connection. For this we
need the definition of a closure operation c on a poset, say (R, ≤), where for all
a, b ∈ R we have

(1) a ≤ c(a);
(2) if a ≤ b then c(a) ≤ c(b);
(3) c[c(a)] = c(a);

Now let us look at the operations on the structure defined by �, V and the
relation � which are used to define tr and in. We say that a subset of A of � is
Galois closed if and only if in[tr(A)] = A; a subset of T of V is Galois closed if
and only if tr[in(T)] = T. This is not automatic, for the earlier example where
H ∪ L ⊂ in(tr(H ∪ L) showed that H ∪ L is not Galois closed. So, with this new
machinery we can now say that the Galois closed subsets of � are the artificial
classes. We can now go on to define the monothetic kinds.
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Definition D6

Let �, V and � be as defined before and let (tr, in) be the associated Galois
connection. A monothetic kind is defined as an ordered pair (A, I) satisfying

1. A ⊆ �;
2. I ⊆ V;
3. tr(A) = T;
4. in(T) = A;

In other words, T determines A and A determines T. This is a very strong
requirement. For example, most classification algorithms do not produce such
classes but instead produce polythetic kinds (see Van Rijsbergen, 1979a). The
nearest thing to an algorithm producing monothetic kinds is the L∗ algorithm
described in (Van Rijsbergen, 1970, Sibson, 1972).

Hardegree (1982) in his paper goes on to develop a logic based on these
kinds, and we will return to this when we discuss logics on a more abstract
space, a Hilbert space.

Let us now return to the example about humans and lizards and let us see
how a non-standard logic arises. Let H, L and B be three kinds (possibly human,
lizard and bird), and assuming that we have a logic for kinds, conjunction and
disjunction are given by

K1 ∧ K2 = (A1 ∩ A2, tr(A1 ∩ A2)),

K1 ∨ K2 = (in(T1 ∩ T2), T1 ∩ T2),

where K1 = (A1, T1) and K2 = (A2, T2) are monothetic kinds. The sets of
monothetic kinds make up a complete lattice where conjunction (join) and
disjunction (meet) are defined in the usual way. Returning to the simple example,
consider B ∧ (H ∨ L) and (B ∧ H) ∨ (B ∧ L): if the distributive law were to hold
then these expressions would be equal, but H ∨ L is by definition (lattice theory)
the smallest kind that includes both H and L, which is probably the vertebrate
kind, call it U. And so B ∧ (H ∨ L) = B ∧ U; if B is thought of as the bird kind
then B ∧ U = B. But now consider the other expression, (B ∧ H) ∨ (B ∧ L).
It is straightforward to argue that B ∧ H = B ∧ L = empty (the null kind), hence
(B ∧ H) ∨ (B ∧ L) is empty, and the distributive law fails. In classical logic
(Boolean logic) the distributive law holds, and so Boolean logic cannot be an
appropriate logic for monothetic kinds. Or to put it differently: Boolean logic
is classless.

The obvious question to ask is, does this matter? Well, it does, especially if
one is interested in defining classes in an abstract space, such as a vector space.
Here is a geometric demonstration.
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H

B

L

In this 2-dimensional space10 the class of documents about humans is given by
the subspace H, the class about birds by B, and the class about lizards by L.
(This is a very crude example.) Now define H ∨ L by the subspace spanned
by H and L, H ∧ L as the intersection of the subspace corresponding to H and
the subspace corresponding to L. Similarly for the join and meet of the other
classes. The subspace corresponding to H ∨ L will be the entire 2-dimensional
plane, and thus B ∧ (H ∨ L) = B, whereas geometrically (B ∧ H) ∨ (B ∧ L)
will again be empty, the null space. Once again the distribution law fails. If one
intends to introduce logical reasoning within a vector space then this issue has
to be confronted.

The problem also has to be avoided when the Galois connection is interpreted
as an inverted file relation. Intersection of the posting lists (buckets) of index
terms works without any problems, so does the union of lists, and indeed this is
how Boolean retrieval is implemented. But the operations intersection and union
do not necessarily correspond to the equivalent logical notions for artificial
classes. They are simple convenient ways of talking logically about set-theoretic
operations relying on the Stone Representation Theorem. This is convenient and
comfortable in the context of retrieving textual objects, but consider now the case
of retrieving from a set of image objects where retrieval is based on the contents
(a largely unsolved problem). The attributes, more accurately thought of as
features, are not conveniently available as index terms (no visual keywords!).
In general the attributes are generated through quite complex and sophisticated
processing, and the assumption that the conjunction (or disjunction) of two
attributes is representable by the intersection (or union) of lists of objects does
not seem as intuitive as it is for text. Much more likely is that the language of
features to describe image objects will have a logic which will be different from

10 The details of this representation will be made more precise later.
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a Boolean logic. Earlier on we saw an example, showing how incompatibility of
features and user-dependent assessment of features led to a non-classical logic.
Similar arguments apply when interacting with images, even more strongly.

Finally, there is a very interesting structural issue that has to do with duality.
The definition of an artificial class is given in terms of necessary and sufficient
conditions by definition D1. A consequence of this is that one could equally
well talk about artificial classes in the attributes which correspond to the object
classes. Without going into the details, it can be understood that the logic for
object classes is reflected as a logic in the attribute classes and also vice versa.
This symmetry is often referred to as duality, a notion that will recur. Later on we
will illustrate how subspaces in an abstract space correspond to projectors into
the space, more precisely the set of projectors are in 1:1 correspondence with
the subspaces of the abstract space. This is important and significant because
in many ways the logic associated with the attribute space is more natural to
deal with than the one on the object space. In IR terms, a logic capturing the
relations between index terms is more intuitive than one concerned with subsets
of documents. But more about this later.

Further reading

This chapter uses only elementary concepts from set theory and logic, and
summary details for these concepts can be found in Marciszewski (1981). The
elements of lattice theory and order on classes are readily accessible in the
classic textbook by Birkhoff and MacLane (1957). Holland (1970) contains
material on lattices with an eye to its application in Hilbert space theory and
hence ready for use in quantum theory. For more background on non-classical
logic and, in particular, conditionals, Priest (2001) is recommended. The book
by Barwise and Seligman (1997), especially Chapter 2, makes good comple-
mentary reading as it also draws on the work of Hardegree (1982).
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Vector and Hilbert spaces

The purpose of this chapter is to lay the foundations for a logic on a vector
space, or a Hilbert space (see Appendix I), and for a specification of an algebraic
realisation. We will begin by introducing the basics of vector spaces, which of
course may be found in many textbooks.1 We will introduce elementary finite-
dimensional vectors through their realisation as n-dimensional vectors in a real
Euclidean space (Halmos, 1958, p. 121). For most practical purposes this will
be sufficient, and has the great attraction of being quite rigorous and also very
intuitive. When we move to more general spaces the extension will be noted;
for example, sometimes we will allow the scalars to be complex.

The set of all n-dimensional vectors x, displayed as follows,

x =




x1
.
.
.

xn


 = |x〉,

make up the vector space. Here we have a number of notations that need clari-
fying. Firstly, we can simply refer to a vector by x, or by a particular realisation
using what is called a column vector, or through the Dirac notation |x〉 which

1 Readers familiar with elementary vector space theory can speed directly to Chapter 4. Halmos
(1958), Finkbeiner (1960), Mirsky (1990), and Sadun (2001) are all good texts to start with. For
the moment we will only be interested in finite-dimensional vector spaces (but see Halmos,
1951, Jordan, 1969). It is possible to introduce vector spaces without considering any particular
realisation, proceeding by defining the properties of addition between vectors, and
multiplication between vectors and scalars; we will not do this here, but readers can find the
relevant material in Appendix II. Those interested wanting to know more should consult the
excellent book by Halmos (1958). A word of caution: his book is written with deceptive
simplicity, Halmos assumes a fairly sophisticated background in mathematics, but he is always
rewarding to study.

41
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is known as a ket.2 It is now easy to represent addition and multiplication.

If x =




x1
.
.
.

xn


 and y =




y1
.
.
.

yn




then

x + y = |x〉 + |y〉 =




x1 + y1
.
.
.

xn + yn


 ,

addition is done component by component, or as is commonly said, component-
wise. Multiplication by a scalar α is

αx = α|x〉 =




αx1
.
.
.

αxn




A linear combination of a set of vectors {x1, . . . , xn} is defined as

y = c1x1 + · · · + cnxn,

where y is another vector generated in the vector space.
These vectors {x1, . . . , xn} are linearly dependent if there exist constant

scalars c1, . . . , cn, not all zero, such that

c1x1 + · · · + cnxn = 0,

that is, they generate the zero vector, which we will normally write as 0 without
the underscore. Intuitively this means that if they are dependent, then any vector
can be expressed as a linear combination of some of the others. Thus vectors
{x1, . . . , xn} are linearly independent if c1x1 + · · · + cnxn = 0, if and only if
c1 = c2 = · · · = cn = 0.

A set of n linearly independent vectors in an n-dimensional vector space Vn

form a basis for the space. This means that every arbitrary vector x ∈ Vn can
be expressed as a unique linear combination of the basis vectors,

x = c1x1 + · · · + cnxn,

2 The Dirac notation is explained in Dirac (1958) and related to modern algebraic notation in
Sadun (2001), there is also a brief summary and explanation in Appendix I.
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where the ci are called the co-ordinates of x with respect to the basis set
{x1, . . . , xn}. To emphasise the origin of the co-ordinates x is usually written as
x = x1x1 + · · · + xnxn. There is a set of standard basis vectors which are con-
ventionally used unless an author specifies the contrary, these are

e1 =




1
0
.
.

0


 , e2 =




0
1
.
.

0


 , . . . , en =




0
0
.
.

1


 .

The ei are linearly independent, and x is written conventionally as

x = x1e1 + · · · + xnen =




x1

x2
.
.
.

xn−1

xn




.

Notice that the zero vector using this new notation comes out as a vector of all
zeroes:

x = 0e1 + · · · + 0en =




0
0
.
.
.

0
0




.

The transpose of a vector x is xT = (x1, . . . , xn), which is called a row vector.
In the Dirac notation this denoted by 〈x|, the so-called bra.

Let us now define an inner product (dot product) on a vector space Vn where
the scalars are real.3 The inner product is a real-valued function on the cross
product Vn × Vn associating with each pair of vectors (x, y) a unique real
number. The function (. , .) has the following properties:

I(1) (x, y) = (y, x), symmetry;
I(2) (x, λy) = λ(x, y);
I(3) (x1 + x2, y) = (x1, y) + (x2, y);
I(4) (x, x) ≥ 0, and (x, x) = 0 when x = 0.

3 This definition could have been relegated to Appendix I, but its occurrence is so ubiquitous in
both IR and QM that it is reproduced here.
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Some obvious properties follow from these, for example,

(x, α1y
1
+ α2y

2
) = α1(x, y

1
) + α2(x, y

2
)

thus the inner product is linear in the second component, and because of sym-
metry it is also linear in the first component.4

There will be times when the vector space under consideration will have as
its field of scalars the complex numbers. In that case the n-dimensional vectors
are columns of complex numbers:

x =




z1
.
.
.

zn


 , where z j = a j + ib j , and a j , b j are real numbers but i = √−1.

In the complex case the inner product is modified slightly because the mapping
(. , .) now maps into the set of complex numbers; Halmos (1958) in Section 60
gives an interesting discussion about complex inner products. All the properties
above hold except for I(1), which now reads

(x, y) = (y, x), where a + ib = a − ib is the complex conjugate,

and of course affects some of the consequences. Whereas a real inner product
was linear in both its components, a complex inner product is only linear in the
second component and conjugate linear in the first. This is easy to show,

(α1x1 + α2x2, y) = (y, α1x1 + α2x2)

= α1(y, x1) + α2(y, x2)

= α1(x1, y) + α2(x2, y),

where α1, α2 are complex numbers and we have used the the properties of
complex numbers to derive the transformation. Should α1, α2 be real, then the
expression reverts to one for a real inner product.

A standard inner product (there are many, see e.g. Deutsch, 2001) is given
by

(x, y) =
n∑

i=1

xi yi

=
n∑

i=1

xi yi when the vector space is real.

4 Caution: mathematicians tend to define linearity in the first component, physicists in the
second, we follow the physicists here (see Sadun, 2001).
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Using the column and row vector notation, this inner product is representable
as

(x1, . . . , xn)




y1
.
.
.

yn


 and (x1, . . . , xn)




y1
.
.
.

yn


 ,

the sum is obtained by matrix multiplication, doing a component-wise mul-
tiplication of a row by a column. A more condensed notation is achieved by
setting

xT = (x1, . . . , xn), the transpose,

x∗ = (x1, . . . , xn), the adjoint.

We can thus write the inner product (x, y) as xTy or x*y, a row matrix times a
column matrix; and in the Dirac notation we have 〈x | y〉.5

We now return to considering real vector spaces until further notice, and
proceed to defining a norm induced by an inner product. Its geometric interpre-
tation is that it is the length of a vector. It is a function ‖.‖ from Vn to the reals.
One such norm is

‖x‖ =
√

(x, x),

which by property I(4) is always a real number. When we have the standard
inner product, we get

‖x‖ =
√√√√ n∑

i=1

x2
i = (

x2
1 + · · · + x2

n

)1/2
.

With this norm we can go on to define a distance between two vectors x and y,

d(x, y) = ‖x − y‖ =
√

(x − y, x − y) = ((x1 − y1)2 + · · · + (xn − yn)2)1/2.

A vector x ∈ Vn is a unit vector, or normalised, when ‖x‖ = 1, that is when it
has length one. The basic properties of a norm are

N(1) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0;
N(2) ‖αx‖ = |α|‖x‖ for all α and x;
N(3) ∀x, y, |(x, y)| ≤ ‖x‖‖y‖.

5 Hence the bra(c)ket name for it. It is also sometimes denoted as 〈x ‖ y〉.
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Property N(3) is known as the Cauchy–Schwartz inequality and is proved in
most introductions to linear algebra (e.g. Isham, 1989). One immediate conse-
quence of property N(3) is that we can write

−1 ≤ (x, y)

‖x‖‖y‖ ≤ 1, and therefore we can express it as

(x, y) = ‖x‖‖y‖ cos ϕ, 0 ≤ ϕ ≤ π,

where ϕ is the angle between the two vectors x and y. We can now formally
write down the cosine coefficient (correlation) that is so commonly used in IR
to measure the similarity between two documents vectors,

cos ϕ = (x, y)

‖x‖‖y‖ =

n∑
i=1

xi yi

√∑
x2

i ×
√∑

x2
i

.

If the vectors x, y are unit vectors ‖x‖ = 1 = ‖y‖, that is normalised, then

cos ϕ =
n∑

i=1

xi yi = (x, y).

Having defined the distance d(x, y) between two vectors (the metric on the
space), we can derive its basic properties. They are

D(1) d(x, x) ≥ 0 and d(x, x) = 0 if and only if x = y;
D(2) d(x, y) = d(y, x) symmetry;
D(3) d(x, y) ≤ d(x, z) + d(z, y) triangle inequality.

An important property, orthogonality, of a pair of vectors x, y is defined as
follows:

x and y are orthogonal if and only if (x, y) = 0.

Geometrically this means that the two vectors are perpendicular. With this
property we can define an orthonormal basis. A set of linearly independent
vectors {x1, . . . , xn} constitutes an orthonormal basis for the space Vn if and
only if

(xi , x j ) = δi j =
(

1 if i = j
0 if i 
= j

)
.

So, for example, the standard basis {e1, . . . , en}makes up just such an orthonor-
mal basis.
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An important notion is the concept of subspace, which is a subset of a
vector space that is a vector space itself. A set of vectors spans a vector space
if every vector can be written as a linear combination of some of the vec-
tors in the set. Thus we can define the subspace spanned by a set of vectors
S = {x1, . . . , xm} ⊂ Vn as the set of linear combinations of vectors of S, that is

span[S] = {α1x1 + · · · + αmxm | x i ∈ Vn and αi ∈ �}.6

Clearly, subspaces can be related through subset inclusion, intersection and
union. Inclusion is intuitive. The intersection of a set of subspaces is a subspace,
but the union of a set of subspaces is not normally a subspace. Remember that
we are considering finite-dimensional vector spaces here; in the infinite case
closure of the subspace becomes an issue (Simmons, 1963). We will have more
to say about the union of subspaces later. For the moment it is sufficient to
think of ‘a union operation’ as the smallest subspace containing the span of the
set-theoretic union of a collection of subspaces. Interestingly, this harks back
to the question of whether the union of two artificial classes makes up a class.7

In abstract terms notice what we have done. In the first place we have defined
an inner product on a vector space. The inner product has induced a norm, and the
norm has induced a metric.8 Norms and metrics can be defined independently,
that is they do not necessarily have to be induced, but in practice we tend to
work with induced norms and metrics.

One of the important applications of the theory thus far is the generation of an
orthonormal basis for a space or subspace, given a set of p linearly independent
vectors {a i | i = 1, 2, . . . . , p, p ≤ n, a i ∈ Vn}. The task is to find a basis
of p orthonormal vectors b i for the subspace spanned by the p vectors a i. The
method that will be described next is a well-known version of the Schmidt
Orthogonalisation Process. (Schwarz et al., 1973).

Step 1

Choose any arbitary vector, say a1, and normalise it to get b1,

(1) r11 = √
(a1, a1);

(2) b1 = a1/r11.

6 � is used for the set of real numbers.
7 At this point it may be worth rereading the end of Chapter 2, where an example of classes in a

vector space is given.
8 There is a delightful illustration of how these concepts fit together in the chapter on the

Hahn–Banach Theorem in Casti (2000).
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Step 2

Let b1, . . . , b k−1 be the orthonormal vectors found thus far using the linearly
independent vectors a1, . . . , a k−1, that is

(b i , b j ) = δi j for i, j = 1, 2, . . . , k − 1.

We now construct a vector x with the help of a k and the b1, . . . , b k−1 generated
so far:

x = a k −
k−1∑
j=1

r jkb j .

We can interpret this as constructing a vector x normal to the subspace
spanned by the {b1, . . . , b k−1}, or, which is the same thing, an x orthogonal to
each bi in turn:

(b, x) = (b i , a k) −
k−1∑
j=1

r jk(b i , b j ) = 0.

This reduces to

(b i , a k) − rik = 0,

rik = (b i , a k).

Since the b i are normalised, these rik are the projections of a k onto each b i in
turn. The new basis vector b k is now given by

b k =

(
a k −

k−1∑
j=1

r jk b j

)

rkk
,

where rkk =
(

a k −
k−1∑
j=1

r jk b j , a k

k−1∑
j=1

r jk b j

)1/2

,

normalising b k : (b k, b k) = 1.

One of the beauties of this normalisation process is that we can dynamically
grow the basis incrementally without having to re-compute the basis constructed
so far. To compute [b1, . . . , b k] we compute b k and simply add it to{b1, . . . , b k−1}
forming the new basis for the enlarged subspace. Of course a prior requirement
is that the ai are linearly independent. An obvious application of this process
is the construction of a user-specified subspace based on document vectors
identified incrementally by a user during a browsing process.
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We are now ready for an introduction to operators that act on a vector or
Hilbert space, the topic of the next chapter.

Further reading

For an immediate example of how the vector space representation is used in
document retrieval see Salton and McGill (1983) and Belew (2000); both these
textbooks give nice concrete examples. Appendix I gives a brief definition of
Hilbert space. One of the most elementary introductions to vector, or Hilbert,
spaces may be found in Hughes (1989). Cohen (1989) gives a precise and short
introduction to Hilbert space as a lead in to the presentation of quantum logics.
Another good introduction to Hilbert spaces is given by Lomonaco (2002),
Chapter I, in the context of Quantum Computation. This latter introduction is
beautifully presented. More references can be found in Appendix I.
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Linear transformations, operators and matrices

We now introduce the idea of a linear transformation (or operator) from one
vector space Vn to another Wm. We can see that Wm might be the same space as
Vn, and it often is, but need not be so. Loosely speaking, such a transformation
is a function from one space to another preserving the vector space operations.
Thus, if T is such an operator then1

T(αx) = αT(x), and

T(x + y) = T(x) + T(y), or, equivalently,

T(αx + βy) = αT(x) + βT(y), for all scalars α, β and vectors x, y.

For a transformation to satisfy these requirements is for it to be linear. In
general y (= T(x)) is a vector in the image space Wm, whereas x is a vector in
the domain space Vn. For now we are going to restrict our considerations to the
case Vn = Wm(m = n), that is, linear transformations from a vector space onto
itself.

The subject of linear transformations and operators both for finite and infi-
nite vector spaces is a huge subject in itself (Halmos, 1958, Finkbeiner, 1960,
Riesz and Nagy, 1990, Reed and Simon, 1980). Here we will concentrate on
a small part of the subject, where the transformations are represented by finite
matrices. Every linear transformation on a vector space Vn can be represented
by a square matrix, where the entries in the matrix depend on the particular basis
used for the space. Right from the outset this is an important point to note: a
transformation can be represented by many matrices, one corresponding to each

1 In the sequel operators and matrices will be in a bold typeface except for here, the beginning of
Chapter 4, where we wish to distinguish temporarily between operators and matrices, so
operators will be in normal typeface whereas matrices will be in bold. We drop this distinction
later when it becomes unnecessary, after which both will be in bold.
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basis, but the transformation thus represented is the same. The effect of a trans-
formation on a vector is entirely determined by the effect on the individual basis
vectors.

T(x) = T(α1b1 + · · · + αnbn)

= α1T(b1) + · · · + αnT(bn).

Thus to know T(x) we need to know x in terms of {b1, . . . , bn}, that is,
x = α 1b1 + · · · + αnbn, and the effect of T on each b i, namely T(b i) for all i.
The same is true for its representation in matrix form. To make the relationship
between matrices and basis vectors explicit, let us assume that a transformation
T is represented by a square matrix A.

A =




a1l . . . a1n
. . . . .
. . . . .
. . . . .

anl . . . ann


 = (aik).

This matrix has n rows and n columns. If {b1, . . . , bn} is the basis for Vn, then
it is standard to assume that the kth column contains the co-ordinates of the
transformed vector T(bk), referred to the basis {b1, . . . , bn}.

T(b k) =
n∑

i=1

aikb i.

Now if x =
n∑

k=1

xkbk and y =
n∑

i=1

yib i,

and T(x) = y, we have

T(x) =
n∑

k=1

xkT(bk) =
n∑

k=1

xk

n∑
i=1

aikb i

=
n∑

i=1

(
n∑

k=1

aikxk

)
b i

=
n∑

i=1

yib i = y,

from which we deduce that yi − ∑
kaikxk = 0, for all i, because the b i are linearly

independent. In terms of the representation of both the transformation T and
vectors in the space with respect to the basis b i, we have now a computation
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rule for deriving y from the effect of the matrix A on the representation of x.
When

A = (aik), y =




y1
.
.
.

yn


 , x =




x1
.
.
.

xn


 ,

to calculate the ith component of y we multiply the ith row component-wise
with x, thus 


y1
.
yi
.

yn


 =




al1 . . . ain
. . . . .

ai1 . aik . ain
. . . . .

an1 . . . ann







x1
.
.
.

xn


 .

(There is a sort of cancellation rule that must hold for the dimensions,

(n × 1) = (n × n–)(n– × 1) = (n × 1).)

If the transformation T for y = T(x) can be inverted, denoted T−1, which
means that x = T−1(y), then it is non-singular, otherwise it is singular.
The same is true for matrices, x = A−1(y), where A−1 is the inverse matrix
and exists if the corresponding transformation is non-singular; the termi-
nology transfers to the representations, and so we speak of non-singular
matrices.

The arithmetic operations on matrices are largely what we would expect.
Addition is simply component-wise for matrices of matching dimensions, and
the same for subtraction. To multiply a matrix by a scalar, every component
is multiplied by the scalar. Multiplication of matrices is exceptional as being
more complex.

The product of two transformations T1T2 is defined through the effect it has
on a vector, so

T1T2(x) = Ta(x), where Ta = T1T2,

T2T1(x) = Tb(x), where Tb = T2T1,

and in general the product is not commutative, that is, T1T2 �= T2T1. The same
applies to matrices, AB = Ca and BA = Cb, are calculated through their effects
of B followed by A, or A followed by B, on vectors,

y
1

= Cax = ABx,

y
2

= Cbx = BAx,
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and again, in general y
1

�= y
2
. The rule for matrix multiplication is derived

similarly to the rule for multiplying a matrix by a column vector (Mirsky,
1990). It is




cl1 . ∗ . cln

. . ∗ . .

. . cij . .

. . ∗ . .

cn1 . ∗ . cnn




=




al1 . . . aln

. . . . .

ai1
∗ ∗ ∗ ain

. . . . .

an1 . . . ann







bl1 . blj . bln

. . ∗ . .

. . ∗ . .

. . ∗ . .

bn1 . bnj . bnn




.

There are several ways of expressing this product in a abbreviated form:

(cij) = (aik)(bkj),

cij =
n∑

k=1

aikbkj,

cij = aikbkj.

The last of the three lines uses the convention that when an index is repeated it
is to be summed over. To compute the (i, j)th entry in C we multiply the ith row
with the jth column component by component and add the results. It is like the
Euclidean inner product between two vectors.

Example 1

(
1 1
1 1

) (
1 −1

−1 1

)
=

(
1 − 1 −1 + 1
1 − 1 −1 + 1

)
=

(
0 0
0 0

)
.

Example 2

(
cos ϕ −sin ϕ

sin ϕ −cos ϕ

) (
1 0
0 0

)
=

(
cos ϕ 0
sin ϕ 0

)
.

Example 3

(
1 0
0 0

) (
cos ϕ −sin ϕ

sin ϕ cos ϕ

)
=

(
cos ϕ −sin ϕ

0 0

)
.

Just as there are special vectors, e.g. e i, all zeroes except for a 1 in the ith
position, there are special matrices. In particular we have the identity matrix,
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all 1s down the diagonal and zeroes everywhere else,

I =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




.

The identity matrix plays a special role, for example to define the inverse
of a matrix (if it exists), we set AB = I = BA, from which it follows that
B = A−1, or A = B−1, or in other words that B is the inverse of A and vice
versa. I is the matrix that maps each vector into itself.

Another special matrix is the zero matrix, a matrix with all zero entries,
which maps every vector into the zero vector.

It is interesting (only once!) to see what happens to a matrix of a transforma-
tion when there is a change of basis. Let us say that the basis is changed from
{b1, . . . , bn} to {b′

1, . . . , b ′
n}, then

b′
k = clk bl + · · · + cnk bn, k = 1, . . . , n,

because any vector can be expressed as a linear combination of the basis vectors.
Any vector x referred to the new basis is

x =
n∑

k=1

x′
k b′

k,

which when expressed with respect to the old basis

x =
n∑

k=1

x′
k

n∑
i=1

cikb i

=
n∑

i=1

n∑
k=1

cikx′
kb i.

Thus xi = ∑n
k=1 cikx′

k, which gives us the rule for doing the co-ordinate trans-
formation corresponding to the basis change:

x = Cx′;

C is a non-singular matrix, uniquely invertible.
We can now calculate the effect of a co-ordinate transformation on a matrix.

Let x, y be the co-ordinates in one basis and x′, y′ the co-ordinates of the same
vectors in another basis. Let A be the matrix representing a transformation in
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the first system, and B represent the same transformation in the second system.
Then

y = Ax and y′ = Bx′,

x = Cx′ and y = Cy′,

y = Cy′ = Ax = A(Cx′) = ACx′

⇒ y′ = C−1ACx

⇒ B = C−1AC.

The two matrices A and B are related in this way through what is called a
similarity transformation C, and are said to be similar. Many important prop-
erties of matrices are invariant with respect to similarity transformations. For
example, the eigenvalues of a matrix are invariant; more about which later.

Another important class of special transformations (or matrices)2 is the class
of projectors. To define them we must first define the adjoint of a matrix. The
defining relation is

(A∗x, y) = (x, Ay).

When the set of scalars is complex, the matrix A∗ is the complex conjugate
of the transpose of A: AT. The transpose of A is simply the matrix derived by
interchanging the rows with the columns.

Example 1 – the real case, given that a, u, x, c are real numbers(
a x
u c

)∗
=

(
a u
x c

)
.

Example 2 – the complex case(
a + ib x − iy
u − iv c + id

)∗
=

(
a − ib u + iv
x + iy c − id

)
.

In the real case, which we are mostly concerned with, A∗ = AT. Operators can
be self-adjoint (or Hermitian) that is,

(Ax, y) = (x, Ay) for all x, y implies that A = A∗.

In a real inner product space the self-adjoint matrices are the same as the
symmetric matrices. In a complex space the complex conjugate of the transpose
must be equal to A. These matrices play an important role in many applications,

2 From now on we will use matrices and transformations interchangeably, that is, they will be
printed in bold.
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for example the Hermitian matrices have real eigenvalues which are exploited
as the results of measurements in quantum mechanics.

Some properties of adjoints are

(A + B)∗ = A∗ + B∗,

(αA)∗ = αA∗,

(A∗)∗ = A,

I∗ = I,

(AB)∗ = B∗A∗,

Projectors

On a vector space Vn the projectors3 are idempotent, self-adjoint linear oper-
ators. An operator E is idempotent if E2x = Ex for all x, that is E2 = E,
by self-adjointness we require E = E*. Hence projection operators are both
Hermitian and idempotent.

Example

1
2

(+1 −i
+i +1

)
is both Hermitian4 and idempotent, because

1
2

(+1 −i
+i +1

)
× 1

2

(+1 −i
+i +1

)
= 1

4

(
1 + 1 −i − i
i + i +1 + 1

)

= 1
4

(+2 −2i
+2i +2

)
= 1

2

(+1 −i
+i +1

)
.

Projectors are operators that project onto a subspace. In fact the set of projectors
on a vector space is in one-to-one correspondence with the subspaces of that
space. They include the zero operator E0 that projects every vector x to the empty
subspace, E0x = 0 for all x, and the identity operator I which maps every vector
onto itself, Ix = x for all x. We will use projection operators extensively in the
sequel, especially ones that project onto 1-dimensional spaces. For each basis
vector, there is a subspace generated by it, and corresponding to it there is a
projector which projects all the vectors in the space onto it. These projectors
make up a collection of orthogonal projectors, because any vector orthogonal to
a subspace projected onto will project to 0, and any vector already in the space
will be projected to itself. Also, any vector in the space can be represented as

3 The words ‘projectors’ and ‘projection operators’ are used interchangeably.
4 Take the conjugate transpose to show that it is Hermitian.
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the sum of two vectors, one a vector in a subspace and another vector in the
subspace orthogonal to it.

Let us now do an example calculation using some of these ideas. If the space
is spanned by a basis {b1, . . . , bn}, and it constitutes an orthonormal set,
then for any normalized x(‖x‖ = 1), x = c1b1 + · · · + cnbn, we would have∑n

i=1 |ci|2 = 1 (ci may be complex5). Now let Pi be the projector corresponding
to the subspace spanned by bi, then

Pix = c1Pib1 + · · · + ciPibi + · · · + cnPibn

= 0 + · · · + ciPib i + · · · 0

= cib i.

If we calculate

(x, Pix) = (x, PiPix) because P2
i = Pi

= (Pix, Pix) [= |Pix|2]

= (cib i, cib i)

= c∗
i (b i, cib i)

= c∗
i ci(b i, b i)

= c∗
i ci

= |ci|2 .

Now remember that
∑n

i=l |ci|2 = 1, hence the vector x has generated a probabil-
ity distribution on the subspaces corresponding to the Pis. This is an interesting
result because, depending on how we choose our {b1, . . . , bn}, we get a dif-
ferent probability distribution. This is like taking a particular point of view, a
perspective from which to view the space.

We can formalise the idea of a probability associated with a vector x more
precisely, specifically, for each normalized vector x ∈ Vn define a function µx

on the set of subspaces of Vn as follows:

µx(Li) = (Pix, Pix) = |Pix|2.
It has the usual properties:

(a) µx(0) = 0;
(b) µx(Vn) = 1;
(c) for subspaces Li and Lj, µx(Li ⊕ Lj) = µx(Li) + µx(Lj) provided that

Li ∩ Lj = �, where Li ⊕ Lj the smallest subspace containing Li and Lj.

5 ci = ai + ibi, then |ci|2 = a2
i + b2

i .
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The relationship between vectors, subspaces and probability measure will be
a recurring theme, culminating in the famous theorem of Gleason (Gleason,
1957).

Eigenvalues and eigenvectors

We now come to one of the more important concepts associated with linear
transformations and matrices. We introduce it in terms of matrices, but of course
it could equally well be discussed in terms of transformations.

We define the eigenvector x of a matrix A as a non-zero vector satisfying
Ax = λx, where λ is a scalar. The value λ is called an eigenvalue of A′

associated with the eigenvector x. This apparently simple equation has a huge
literature associated with it (e.g. Halmos, 1958, Wilkinson, 1965), and a detailed
discussion of its theoretical significance can be found in many a book on linear
algebra (some references can be found in the bibliography).

Example

A =
(

0 2
2 0

)
and v =

(
3
3

)
;

(
0 2
2 0

) (
3
3

)
=

(
6
6

)
= 2

(
3
3

)
.

Hence ( 3
3 ) is an eigenvector of A and 2 is an eigenvalue of A.

Example

u =
(−3

0

)
;

(
0 2
2 0

) (
3
0

)
=

(
0
6

)
�= λ

(
3
0

)
for any λ.

Hence u is not an eigenvector.

Example

w =
(−3

3

)
;

(
0 2
2 0

) (−3
3

)
=

(
6

−6

)
= −2

(−3
3

)
.

Hence w is an eigenvector and its eigenvalue is −2.
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In general a matrix can have complex numbers as its entries, and the field
of scalars may also be complex. Despite this we will mostly be interested
in matrices that have real eigenvalues. For example, Hermitian matrices have
eigenvalues that are all real. This means that for real matrices, symmetric matri-
ces have real eigenvalues. Notice that it is possible for real matrices to have
complex eigenvalues. Another important property of Hermitian and symmetric
matrices is that if the eigenvalues are all distinct, that is non-degenerate, then
the eigenvectors associated with them are mutually orthogonal.

Let Ax1 = λ1x, Ax2 = λ2x, and since A is Hermitian, λ1 �= λ2, x1 �= x2,
and we have

λ1(x1, x2) = (Ax1, x2) = (x1, Ax2) = λ2(x1, x2)

0 = (λ1 − λ2)(x1 − x2)

⇒ (x1, x2) = 0, that is x1 and x2 are orthogonal.

Hence for an n-dimensional matrix A, for which λ1 �= λ2 �= · · · �= λn, we have
the eigenvectors x i satisfying

(x i, x j) = δij =
{

1, i = j,
0, i �= j.

We are now a position to present one of the major results of finite-dimensional
vector spaces: the Spectral Theorem (Halmos, 1958). The importance of this
theorem will become clearer as we proceed, but for now it may be worth saying
that if an observable is seen as a question, the spectral theorem shows how such
a question can be reduced to a set of yes/no questions.

Spectral theorem

To any self-adjoint transformation A on a finite-dimensional inner product space
Vn there correspond real numbers α1, . . . , αr and orthogonal projections E1, . . . ,
Er, r ≤ n, so that

(1) the αj are pairwise distinct,
(2) the Ej are pairwise orthogonal (⊥)6 and different from 0,
(3)

∑r
j=l Ej = I, and

(4) A = ∑r
j=l αjEj.

The proof of this theorem may be found in Halmos (1958). We will restrict
ourselves to some comments. The αi are the distinct eigenvalues of A and

6 A symbol commonly used to indicate orthogonality, Ei ⊥ Ej, if and only if EiEj = EjEi = 0.
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the projectors Ei are those corresponding to the subspaces generated by the
eigenvectors. If there are n distinct eigenvalues each of these subspaces is
1-dimensional, but if not then some of the eigenvalues are degenerate, and
the subspace corresponding to such a degenerate eigenvalue will be of higher
dimensionality than 1. Also notice that we have only needed an inner product
on the space, there was no need to call on its induced norm or metric. Many
calculations with Hermitian matrices are simplified because to calculate their
effects we only need to consider the effects of the set of projectors Ei.

Look how easy it is to prove that each αi is an eigenvalue of A. By (2)
Ei ⊥ Ej, now choose a vector x in the subspace onto which Ej projects, then
Ejx = x, and Eix = 0 for all i �= j, thus

Ax =
∑

i

αiEix = αjEjx = αjx.

Hence αj is an eigenvalue.
In the Dirac notation7 these projectors take on a highly informative, but

condensed, form. Let ϕi be an eigenvector and αi the corresponding eigenvalues
of A, then Ei is denoted by

Ei = |ϕi〉〈ϕi|, or

= |αi〉〈αi|,
where the ϕi and αi are used as labels.

Remember that |.〉 indicates a column vector and 〈.| a row vector. This
notation is used to enumerate the Ei explicitly in terms of the projectors cor-
responding to the orthonormal basis given by the eigenvectors of A. Its power
comes from the way it facilitates calculation, for example,

Eix = |ϕi〉〈ϕi|x〉,
but 〈ϕi|x〉is the projection of x onto the unit vector ϕi, so

Ei = xi|ϕi〉, where xi = 〈ϕi|x〉,
The spectral representation, or spectral form, of A is written as

A =
n∑

i=l

αi|ϕi〉〈ϕi|

if A has n non-degenerate eigenvalues.

7 Consult Appendix I for a brief introduction to the Dirac notation.
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Becoming familiar with the Dirac notation is well worth while. It is used
extensively in the classical books on quantum mechanics, but rarely explained in
any detail. The best sources for such an explanation are Dirac (1958), the master
himself, Sadun (2001), which makes the connection with normal linear algebra,
and Griffiths (2002), which introduces the notation via its use in quantum
mechanics. There is also a crash course in Appendix I.

This completes the background mathematics on vector spaces and operators
that will take us through the following chapters.

Further reading

In addition to the standard texts referenced in this chapter, the books by Fano
(1971) and Jordan (1969) are good introductions to linear operators in Hilbert
space. A very clear and simple introduction can be found in Isham (1989)
and Schmeidler (1965). Sometimes the numerical and computational aspects
of linear algebra become important, for that the reader is advised to consult
Wilkinson (1965), Golub and Van Loan (1996), Horn and Johnson (1999) and
Collatz (1966). The most important result in this chapter is the Spectral Theo-
rem, for further study Arveson (2000), Halmos (1951) and Retherford (1993)
are recommended. Recent books on advanced linear algebra and matrix theory
are, respectively, Roman (1992) and Zhang (1999).
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Conditional logic in IR

We have established that the subspaces in a Hilbert Space are in 1:1 corre-
spondence with the projectors onto that space, that is, to each subspace there
corresponds a projection and vice versa. In the previous chapters we have
shown how subsets and artificial classes give us a semantics for rudimentary
retrieval languages. What we propose to do next is to investigate a seman-
tics based on subspaces in a Hilbert space and see what kind of retrieval lan-
guage corresponds to it. In particular we will be interested in the nature of
conditionals.

To appreciate the role and value of conditionals in IR we look a little more
closely at how they arise in the application of logic to IR. When retrieval is
modelled as a form of inference it becomes necessary to be explicit about the
nature of conditionals. It is simplest to illustrate this in terms of textual objects.
A document is seen as a set of assertions or propositions and a query is seen
as a single assertion or proposition. Then, a document is considered relevant to
a query if it implies the query. The intuition is that when, say, q is implied by
document �, then � is assumed to be about q . Although retrieval based on this
principle is possible, it is not enough. Typically, a query is not implied by any
document leading to failure as in Boolean retrieval. To deal with this a number
of things can be done. One is to weaken the implication, another is to attach a
measure of uncertainty to implication. There is now a considerable literature on
this starting with Van Rijsbergen (1986), culminating in Crestani et al. (1998).
It is especially worth looking at Nie and Lepage (1998), which gives a broader
introduction to the ‘logic in IR’, but nevertheless is in the same spirit as this
chapter.

Let us begin with the class of projectors (projection operators, or simply
projections) on a Hilbert space H. These are self-adjoint linear operators which

62
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are idempotent,1 that is,

E = E∗ = E2.

With each projector E, is associated the subspace

[[E]] = {x | Ex = x, x ∈ H}.
Any projector E has exactly two eigenvalues, namely 1 and 0. These can be
interpreted as the truth values of the proposition E, or [[E]], whichever is more
convenient. If any self-adjoint transformation is now seen as a generalised ques-
tion, or observable, then it can be decomposed through the Spectral Theorem
into a linear combination of questions,

A = α1E1 + α2E2 + · · · + αkEk, where EiEj = 0 for i �= j.

It is well known that the class of projectors on a Hilbert space make up an
orthomodular lattice (or modular if finite) (Holland, 1970). The order relation
is given by

E ≤ F if and only if FE = E,

that is,

∀x ∈ H we have that FEx = Ex.

What we have done here is give E ≤ F an algebraic characterisation, namely
FE = E. We can similarly characterise algebraically, when E and F commute
(EF = FE),

E⊥ = I − E,

E ∧ F = EF,

E ∨ F = E + F − EF,

where ⊥, ∧, ∨ are the usual lattice operations complement, meet and join
(Davey and Priestley, 1990). In general E and F will not commute.

Our main concern is to develop an algebraic characterisation of the condi-
tional E → F and to study its properties. Given the entailment relation E ≤ F
defined by FE = E (Herbut, 1994), we define a new proposition E → F, the
conditional of E and F by (Hardegree, 1976)

[[E → F]] = {x | FEx = Ex, x ∈ H}
= {x | (F − I) Ex = 0, x ∈ H}
= {x | F⊥Ex = 0, x = H};

1 Just a reminder that we are not distinguishing between operators and their representative
matrices, both are given in a bold type-face.
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we will call this the Subspace conditional (S-conditional). It is easy to show
that [[E → F]] is in fact a subspace (Hardegree, 1976). It remains to investigate
its properties and whether it has the character of an implication. First notice that
when E ≤ F, E entails F, then FEx = Ex for all x ∈ H; hence [[E → F]] = H,
or lattice-theoretically E → F = I since [[I]] = H. This corresponds to a well-
known result in classical logic:

|= A ⊃ B if and only if A |= B,

or lattice-theoretically

A → B = I if and only if A ≤ B.

Thus the conditional A → B is valid only in the case that A entails B. We can
interpret A → B as the material conditional.

Classically the Deduction Theorem also holds:

A & B |= C if and only if A |= B ⊃ C,

A ∧ B ≤ C if and only if A ≤ B → C.

From this follows the distribution law, that is,

A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C).

But the lattice of subspaces is not necessarily distributive and so the Deduction
Theorem cannot hold for E → F.

Van Fraassen (1976) laid down some minimal conditions for any self-
respecting connective ‘→’ to satisfy

C1: A ≤ B ⇒ A → B = I,
C2: A ∧ (A → B) ≤ B (modus ponens).

Note that

A → B = I ⇒ A ≤ B by C2,

and so A ≤ B ⇔ A → B = I.

In their earlier work, Nie and others have made a strong case that counterfactual
conditionals are the appropriate implication connectives to use in IR (Nie et al.,
1995). In the standard account of counterfactual conditionals (Lewis, 1973), the
implication connective ‘→’ does not satisfy the strong versions of transitivity,
weakening and contraposition (Priest, 2001). These are

ST: (A → B) ∧ (B → C) ≤ (A → C),
SW: A → C ≤ (A ∧ B) → C,

SC: A → B = B⊥ → A⊥.
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However, the weak versions are usually satisfied:

WT: A → B = I and B → C = I ⇒ A → C = I,
WW: A → C = I ⇒ (A ∧ B → C) = I,
WC: A → B = I if and only if B⊥ → A⊥ = I.

The strong and weak forms of these laws are distinguished by statements con-
cerning truth and validity. The weak form of transitivity says that if A → B,
B → C are valid then so is A → C. This is not the same as claiming that if
A → B, B → C are true that A → C is. Not surprisingly, the S-conditional
satisfies the weak laws but not the strong ones. Any connective satisfying C1

and C2 can be shown to satisfy the weak forms WT, WW and WC. So, what
about the S-conditional? It satisfies

C1: E ≤ F ⇒ E → F = I,
C2: E ∧ (E → F) ≤ F.

Proof:

C1: Suppose E ≤ F; then for all x, FEx = Ex by definition, also by definition
we have that [[E → F]] = H, which implies that E → F = I.

C2: Suppose x satisfies E and E → F, that is x ∈ [[E]], or Ex = x, similarly
(E → F)x = x, but the latter is true if and only if FEx = Ex by definition.
But we already have that Ex = x, therefore Fx = x and x satisfies F,
hence E ∧ (E → F) ≤ F. QED.

Thus E → F is one of those conditionals that does not satisfy the strong versions
of transitivity, weakening or contraposition but it does satisfy the weak forms.

Let us summarise the situation thus far. The set of subspaces of a Hilbert
space form a special kind of lattice (complete, atomic, orthomodular) which is
not distributive. The logical structure of this lattice is not Boolean or classical.
The logical connectives ⊥, ∧, ∨ and → in terms of subspace operations are
defined as:

[[ E ∧ F]] = [[E]] ∩ [[F]], a set-theoretic intersection which is again a subspace.
[[E⊥]] = [[E]]⊥, the set of vectors which is orthogonal to E which form a

subspace.
[[E ∨ F]] = [[E]] ⊕ [[F]], the closure of all linear combinations of x ∈ [[E]]

and y ∈ [[F]] which again forms a subspace.
[[E → F]] = {x | FEx = Ex, x ∈ H}.

It turns out that an example of E → F can be given in closed form, namely

E → F = E⊥ ∨ (E ∧ F),
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which is known as the Sasaki hook; and there are many others, see Mittelstaedt
(1972)). With this interpretation the semantics of E → F is given by

[[E → F]] = [[E]]⊥ ⊕ ([[E]] ∩ [[F]]).

The connectives introduced are not truth-functional. This is easy to see for
negation and disjunction. Clearly [[E⊥]] ⊕ [[E]] = H. This means that there are
vectors x ∈ H which satisfy neither E⊥ nor E, but do satisfy E⊥ ∨ E, making ⊥
a ‘choice negation’. Similarly, since [[E ∨ F]] is the closure of x + y, where
x ∈ [[E]] and y ∈ [[F]], it describes a ‘choice disjunction’.

Compatibility

To see how the non-classical S-conditional relates to the classical material
implication we need to re-introduce the notion of compatibility. Remember
that we previously defined the compatibility of two projectors E and F by
EF = FE. This time we take a general lattice-theoretical approach. On any
orthomodular lattice we can define

A → B = A⊥ ∨ (A ∧ B).

It is easy to prove that (see Hardegree, 1976) that the minimal conditions C1 and
C2 are satisfied. Moreover C2, modus ponens, is equivalent to the orthomodular
law for lattices:

A ≤ B ⇒ B ∧ (B⊥ ∧ A) ≤ A.

We are now ready to define our relation K of compatibility:

AK B if and only if A = (A ∧ B) ∨ (A ∧ B⊥).

Any orthocomplemented lattice is orthomodular if the relation K is symmetric:
AKB = BKA. The lattice is Boolean if the relation K is universal, that is,
‘compatibility rules OK’. The S-conditional

A → B = A⊥ ∨ (A ∧ B)

= A⊥ ∨ B

when AKB. In other words, the S-conditional defaults to the material condi-
tional when the two elements of the lattice are compatible. Since the lattice
of subspaces of a Hilbert space form an orthomodular lattice this holds for
E → F, where E and F are projectors. To prove the default result is non-trivial
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(see Holland, 1970), and depends on the connection between compatibility and
distributivity:

AK B and AK C ⇒ {A, B, C} isdistributive.

(Remember that the lattice of Hilbert subspaces is not distributive.) Now since
AKA⊥ and if AKB, then

A → B = A⊥ ∧ (A ∧ B)

= (A⊥ ∨ A) ∧ (A⊥ ∨ B)

= I ∧ (A⊥ ∨ B)

= A⊥ ∨ B.

The main reason for examining the conditions for compatibility and distribution
is that if IR models are to be developed within a general vector (Hilbert) space
frame-work, then without further empirical evidence to the contrary it has to
be assumed that the subspace logic will be non-classical and in general fails
the law of distribution. The failure can be seen as coming about because of the
lack of compatibility between propositions, to be represented by subspaces in
a Hilbert space. Accepting that subspaces are ‘first class objects’, we interpret
the class of objects about something, as a subspace, and similarly, the class of
relevant objects at any point in time is seen as a subspace. So we have moved
from considering ‘subsets’, via ‘artificial classes’ to subspaces as first class
objects whose relationships induce logics.

If R is the projector on the subspace of relevant objects, and E is the projector
onto the subspace of objects about the observable E (a yes/no property) then
compatibility means that

R = (R ∧ E) ∨ (R ∧ E⊥).

Here is the nub of our non-classical view, namely that the disjunction is not
necessarily classical. In simple IR terms an object may be about some topic or its
negation once observed, but before observation it may be neither. Interpreting
the compatibility, or lack of it, we assumed that RE �= ER, which means
that observing relevance followed by topicality is not the same as observing
topicality followed by relevance.

Compatibility for projectors about topicality may also fail. If we have two
projectors E1 and E2 that are not compatible then

E2 �= (E2 ∧ E1) ∨ (E2 ∧ E⊥
1 ).

Or we can say that E1E2 �= E2E1, that is observing that an object is about
E1 followed by E2 is not the same as observing E2 followed by E1. With the
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assumption of stochastic independence in Bayesian updating, the observation of
E1 followed by E2 has the same impact on computing the posterior probability
as the reverse. But, in general one would expect P(H | E1, E2) �= P(H | E2, E1),
as is of course the case in Jeffrey conditionalisation (Jeffrey, 1983).

Stalnaker conditional

There is a well-known conditional in the philosophical literature which fails to
satisfy ST, SW and SC, and this is the Stalnaker conditional (Stalnaker, 1970,
Lewis, 1976, Van Fraassen, 1976 and Harper et al., 1981). It was the motivation
behind a series of papers that explored its application in information retrieval
(Crestani et al., 1998). We next show that the S-conditional is a Stalnaker
conditional, an important connection to make since it links much of the analysis
in the previous pages with previous work in IR.

To show it we need to introduce possible world analysis (Priest, 2001).
Remember that our propositions are subspaces in a Hilbert space and that cor-
responding to each subspace is a projector onto it. A world in this setup is
identified with a vector x ∈ H. On this Hilbert space we have a distance func-
tion between any two vectors x and y given by the inner product

d(x, y) =
√

(x − y, x − y) = ‖x − y‖.
Now the definition of a Stalnaker conditional goes as follows. We define a
family of selection functions on H, called Stalnaker selection functions. If SA

is such a function for proposition A, then SA(x) denotes the ‘nearest’ world
to x in which A is satisfied. Intuitively a counterfactual A > B is true in
world x only when the nearest A-world to x is also a B-world. By an A(B)-
world we of course mean the world at which A(B) is true. We have used ‘>’
for our implication because we do not have a semantics for it yet. This is
given by

x ∈ [[A > B]] if and only if SA(x) ∈ [[B]].

To ensure that ‘>’ is a respectable implication satisfying C1 and C2 a number
of technical restrictions (mostly obvious) are placed on it (see Stalnaker, 1970,
or Lewis, 1976, for details).

R1: SA(x) ∈ [[A]],
R2: x ∈ [[A]] ⇒ SA(x) = x,

R3: SA(x) ∈ [[B]] and SB(x) = [[A]] ⇒ SA(x) = SB(x).
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A technical convenience condition requires that whenever SA(x) does not exist,
that is, there is no nearest A-world to x, then SA(x) = θ , the absurd world.

Hardegree (1976) introduced what he called the ‘canonical selection func-
tion’ by interpreting the foregoing entirely within a Hilbert space. The most
important aspect of his interpretation is that

SA(x) = Ax,

where A is the proposition corresponding to, or the projection from H onto, the
subspace [[A]]. The claim is made that within a Hilbert space the nearest vector
y ∈ [[A]] to any vector x ∈ H is given by Ax with respect to the distance function
d(x, y) = ‖x − y‖ defined previously. It is instructive to set out the proposition
and see a proof. To be proved is that for all y for which Ay = y (y ∈ [[A]]) the
nearest (unique) vector closest to x is Ax. It is enough to show that for y such
that Ay = y we have

(x − Ax, x − Ax) < (x − y, x − y) unless Ax = y.

There are many ways of proving it, but possibly the most elementary is to start
with the following (by definition):

for all x, (x, x) > 0 unless x = θ,

thus (Ax − y, Ax − y) > 0 unless Ax − y = θ, or Ax = y.

We can transform this last equation into the equation to be proved as follows:

(Ax − y, Ax − y) > 0,

(Ax, Ax) − (Ax, y) − (y, Ax) + (y, y) > 0,

Adding

(x, x) − (x, x) − 2(Ax, Ax) + (Ax, x) + (x, Ax) = 0

to both sides, but note that

(Ax, x) = (x, Ax) = (Ax, Ax)

because A = A∗ and A = A2,

we obtain

(x, x) − (x, Ax) − (Ax, x) + (Ax, Ax) < (x, x) − (Ax, y) − (y, Ax) + (y, y).

But (Ax, y) = (x, Ay) = (x, y) because Ay = y,

and (y, Ax) = (Ay, x) = (y, x) because Ay = y;
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we get

(x, x) − (x, Ax) − (Ax, x) + (Ax, Ax) < (x, x) − (x, y) − (y, x) + (y, y)

unless Ax = y,

which is the same as

(x − Ax, x − Ax) < (x − y, x − y) unless Ax = y,

which was to be proved (Hardegree, 1976).
This establishes that our canonical selection function is a simple function

indeed; to map x to the nearest A-world we project x onto [[A]] using the
projector A.

Now, drawing it together, we can write down the semantics for the S-
conditional and the Stalnaker conditional as follows:

SA(x) = Ax,

[[A > B]] = {x | Ax ∈ [[B]], x ∈ H}
= {x | BAx = Ax},

[[A → B]] = {x | BAx = Ax}
= [[A⊥ ∨ (A ∧ B)]].

From this we conclude that

A > B = A → B = A⊥ ∨ (A ∧ B).

We have shown that the Stalnaker conditional and the S-conditional are the same
thing. At this point we could go on to describe how to construct the probability
of a conditional. Stalnaker (1970) did this by claiming it was best modelled as
a conditional probability, which was shown by Lewis (1976) to be subject to a
number of triviality results. Lewis then showed how through imaging one could
calculate the probability of a conditional that was not subject to those triviality
results. Van Rijsbergen (1986) conjectured that imaging would be the correct
way to handle the probability of a conditional for IR. Subsequently this was
explored further by Crestani and Van Rijsbergen (1995) in a series of papers.
However, given the way that a conditional can be given a semantics in a vector
space, we can use our results so far to calculate the probability associated with
a conditional via Gleason’s Theorem using the trace function. This will be done
in the next chapter.
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Further reading

A formal connection is made between conditional logic and quantum logic
which enables a conditional logic to be interpreted in Hilbert space (or vector
space). Hitherto this has not been possible. Some of the earliest papers argu-
ing for this connection are by Hardegree (1975, 1976, 1979) and by Lock and
Hardegree (1984). In IR a recommendation for using a form of the Stalnaker
conditional for counterfactual reasoning was given by Van Rijsbergen (1986),
followed by a more detailed analysis by Nie and Brisebois et al. (1995) and
Nie and Lepage (1998). It is interesting that conditional logic has emerged as
an important area of research for IR. The fact that non-classical logics have
been developed independently in quantum mechanics is very convenient, espe-
cially given the relationship between them and conditional logic described by
Hardegree. It means that we can translate the relevant logical statements into
algebraic calculations in Hilbert space, using results from quantum mechan-
ics to guide us, and intuitions from IR to construct the appropriate algebraic
form.

There is an extensive philosophical literature on conditional logic, for exam-
ple, Stalnaker (1970), Lewis (1973), Putnam (1975, 1981), Friedman and
Putnam (1978), Gibbins (1981), Bub (1982), Stairs (1982) and Bacciagaluppi
(1993). It makes useful reading before attempting to apply conditional logic to
IR problems. Research on quantum logics emerged from the seminal paper by
Birkhoff and Von Neumann (1936) and has been active ever since. The quantum
logics literature is important for IR because it demonstrates how to interpret
such logics in vector spaces and also how to associate appropriate probabil-
ity measures with them (Halpin, 1991). There are several good bibliographies
on quantum logics, for example, in Suppes (1976), Pavicic (1992) and Rédei
(1998). To obtain an overview of the subject it is recommended that one read
parts of Beltrametti and Cassinelli (1981), Beltrametti and Van Fraassen (1981),
Garden (1984) and Rédei (1998). More specialised development of such logics
can be found in Kochen and Specker (1965a), Heelan (1970a,b), Mittelstaedt
(1972), Greechie and Gudder (1973), Finch (1975), Piron (1977) and Pitowsky
(1989).

In the light of the Spectral Theorem demonstrated in Chapter 4, it is clear that
an observable can be reduced to a set of yes/no questions. This is explored in
detail by Beltrametti and Cassinelli (1977) and Hughes (1982). The relationship
between quantum logic and probability has been investigated in detail by Kägi-
Romano (1977), Bub (1982) and Pitowsky (1989). Logicians have always be
interested in non-standard logics (Priest, 2001), often with a sceptical view,
see, for example, Dalla Chiara (1986, 1993). More recently computer scientists
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have shown an interest (Román, 1994 and Engesser and Gabbay, 2002). The
relationship between classical and quantum logic is explored by Piron (1977)
and Heelan (1970a).

Finally, the most thorough explanation of logics associated with Hilbert
spaces remains Varadarajan (1985). There is now an interesting article by the
same author describing some of the historical context (Varadarajan, 1993).



6

The geometry of IR

‘Let no man enter here who is ignorant of geometry’
Plato1

In the previous chapters we have introduced set-theoretic, logical and algebraic
notions, all of which can be used profitably in IR. We now wish to broaden
the discussion somewhat and attempt to introduce a language and a notation
for handling these disparate notions within a single space, viz. Hilbert space
(Simmons, 1963), thereby constructing a probability measure on that space via
its geometry. At first glance this appears to be a difficult task, but if we consider
that much IR research has been modelled in finite vector spaces (Salton, 1968)
with an inner product, many of our intuitions for the inner product can be
transferred to the discussion based on Hilbert spaces. One major reason for
adopting the more abstract point of view is that we wish to present a ‘language’
for describing and computing objects, whether text, image or speech, in a general
way before considering any particular implementation.

The language introduced uses a small set of operators and functions, and
the notation will be the Dirac notation (Dirac, 1958). Although at first sight
the Dirac notation strikes one as confusing and indeed awkward for learning
about linear algebra, its use in calculating or computing simple relationships
in Hilbert space is unparalleled.2 Its great virtues are that any calculation is
simple, the meaning is transparent, and many of the ‘housekeeping’ rules are
automatically taken care of. We will demonstrate these virtues as we progress.

So, to begin with we will assume that any object of interest, e.g. a doc-
ument, an image or a video clip, is represented by a normalised vector (one

1 The first known claim that this appeared above the entrance to Plato’s academy in Athens was
made by Philoponus (see Zeller, 1888).

2 Readers may wish to consult Appendix I at this stage.

73
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of unit length) in an abstract Hilbert space of finite dimension. Extension to
an infinite-dimensional space would not be difficult but would add unnec-
essary complications at this point. Later it will be more convenient to rep-
resent an object by the projector on to a 1-dimensional Hilbert space, known
as a ray. Unless specified otherwise, the Hilbert space will be assumed to be
complex, that is, the scalars will be complex numbers. It is possible and likely
that the extra representation power achieved through complex numbers may
be of some use in the future. In any case measurement outcomes are always
assumed to be real.

Preliminaries: D-notation

To begin with we have that each vector in space H is representable by a ket,
thus w.r.t. the canonical basis,

|x〉 =




x1

.

.

.

xn




.

On this space of vectors it is possible to define a linear function F mapping
each vector into a scalar. A general result is that such linear functionals are in
1:1 correpondence with the vectors in the space (Riesz and Nagy, 1990), and
that F(|x〉) = α can be uniquely represented by

F(x) = 〈y | x〉,
an inner product.3 For example, imagine we had a linear function, mapping each
document in a space into a real number, then that mapping can be represented
by finding a vector y for which 〈y | x〉 is equal to the value of F at each |x〉.
Implicitly we are using this when we calculate the cosine correlation between
a query vector and any document. If we had a linear function producing a value
for each document, then the operation of the function is representable as an
inner product between a query vector and each document.

This 1:1 correspondence between linear functionals and vectors leads to
the implementation of the inner product 〈y | x〉 by representing 〈y| as the

3 We have switched here to the Dirac notation for inner product.
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conjugate transpose of |y〉, that is

〈y| =




y1

.

.

.

yn




∗

= (y1 · · · yn).

Thus 〈y | x〉 =
n∑

i=1

yixi

w.r.t. the canonical basis.
Given the canonical basis of orthonormal vectors {e1, e2, . . . , en} for

a Hilbert space H, then the orthonormality condition is easily stated as
〈e i | e j 〉 = δij. For any set of linearly independent vectors defining a basis
{f1, f2, . . . , fn} we can write 〈f i | f j 〉 = gij. This can be used to change the
representation of vectors and matrices in one system {f1, f2, . . . , fn} to one in
{e1, e2, . . . , en} and vice versa (Sadun, 2001).

Having defined an inner product between vectors it is possible to define an
outer product. In the Dirac notation an outer product is defined, as one might
expect, as |y〉〈x|. Before giving a formal definition, observe that in the matrix
representation

|y〉〈x| =




y1

.

.

.

yn




(x1 . . . xn)

=




y1x1 y1x2 . . y1xn

y2x1 . . . .

. . . . .

. . . . .

ynx1 . . . ynxn




.

For example, in a 5-dimensional space

|e i〉〈ej| =




0
0
1
0
0




(0 1 0 0 0) =




0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0




.
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Formally, for any two vectors x, y ∈ H we define the operator |y〉〈x| for any w
by

(|y〉〈x|)w = |y〉〈x | w〉 = 〈x | w〉|y〉.
This has two interpretations, either it is the result of applying the operator |y〉〈x|
to the vector w, or the result of multiplying the vector y by the complex number
〈x | w〉. Both interpretations are valid, and this illustrates beautifully how the
Dirac notation looks after its own ‘housekeeping’.

The map (y, x) → |y〉〈x| from H × H into the set of bounded linear operators
has the following properties (Parthasarathy, 1992, p. 5):

(1) |y〉〈x| is linear in y and conjugate linear in x, that is

|α1y
1
+ α2y

2
〉〈x| = α1|y1

〉〈x| + α2|y2
〉〈x|,

|y〉〈β1x1 + β2x2| = β1|y〉〈x1| + β2|y〉〈x2|.
(2) (|y〉〈x|)* = |x〉〈x|.

(3) |y
1
〉〈x1||y2

〉〈x2| · · · |yn
〉〈x| =

{
n−1∏
i=1

〈xi|yi+1
〉
}

|y
1
〉〈xn|;

(4) If y �= 0 and x �= 0 then the range of |y〉〈x| is the one-dimensional subspace
{λy | λ ∈ C}.

(5) ‖|y〉〈x|‖ = ‖y‖‖x‖.
(6) For any bounded linear operator T,

T|y〉〈x| = |Ty〉〈x|,
|y〉〈x|T = |y〉〈T*x|.

(7) An operator is a projection with dim R(T) = 1, that is the dimensionality
of the range of T is one, if and only if T = |x〉〈x| for some unit vector x. In
such a case R(T) = {λx|λ ∈ C}.

(8) If P is a projection and {e1, e2, . . . , en} is any orthonormal basis for the
subspace R(P), then

P =
n∑

i=1

|ei〉〈ei|

if R(P) = H and dim(H) = n, then

P =
n∑

i=1

|e i〉〈e i| = I.

(This is the so-called resolution of unity, or the completeness property.)
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The Dirac notation for the inner product (ϕ, Aψ) in the previous chapter can
be written as 〈ϕ|A|ψ〉. Using the completeness property we can derive some
useful identities.

x = Ix

(
n∑

i=1

|e i〉〈e i|
)

x = |e i〉〈e i|x + |e2〉〈e2|x + · · · + |en〉〈en|x (I1)

=
n∑

i=1

〈e i | x〉e i.

In a real Hilbert space 〈e i | x〉 is of course ||e i || ||x|| cos θ , where θ is the angle
between the vectors x and e i , and if ||e i || = 1 then ||x|| cos θ is the size of the
projection of x onto e i .

Another useful identity is

〈x | y〉 = 〈x| I |y〉 =
〈

x

∣∣∣∣∣
n∑

i=1

|e i 〉〈e i |
∣∣∣∣∣ y

〉
=

n∑
i=1

〈x | e i 〉〈e i |y〉. (I2)

This is familiar because in a real Hilbert space, if x = (x1, x2, . . . , xn)T and
y = (y1, y2, . . . , yn)T then 〈x | e i 〉 = xi and 〈e i | y〉 = yi and so

〈x | y〉 =
n∑

i=1

xi yi ,

a well-known form by now.
The matrix elements of an operator A w.r.t. a basis {e1, e2, . . . , en} are

given by 〈e i |A|e j 〉 = aij, where aij is the matrix element in the ith row and jth
column. Keeping this interpretation in mind, there are the following identities.

〈ej|A|x〉 = 〈ej|AI|x〉 = 〈ej|A
n∑

i=1

|e i〉〈e i‖x〉 =
n∑

i=1

〈ej|A|e i〉〈e i|x〉. (I3)

Another identity reflecting the process of applying a matrix (operator) to a
vector is

Ae k = IAe k =
n∑

i=1

|e i 〉〈e i |Ae k =
n∑

i=1

〈e i |A|e k〉e i . (I4)

If the e i are the canonical basis and the ikth element of A is 〈e i |A|ek〉, then in
matrix notation we have

Ae k =




〈e1|A|e1〉 . . . 〈e1|A|en〉
. . . . .

. . . . .

. . . . .

〈en|A|e1〉 . . . 〈en|A|en〉







0
.

1
.

0



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=




a11 . . . a1n

. . . . .

. . . . .

. . . . .

an1 . . . ann







0
.

1
.

0




=




a1k

.

.

.

ank .




.

I4 is a very compact way of describing this calculation. Of course the e i need
not be the canonical basis.

A final identity, showing a compact form of matrix multiplication, is

〈e j |AB|e k〉 = the jkth element of AB,

(I5)〈e j |AIB|e k〉 = 〈e j |A
n∑

i=1
|e i 〉〈e i |B|e k〉 =

n∑
i=1

〈e j |A|e i 〉〈e i |B|e k〉,

which is the product rule for multiplying matrices once again in a very compact
form. Observe how effectively the resolution of identity is used.

Earlier on we gave the properties of the outer product of two vectors, or
dyad as it is sometimes called. Dirac (1958) has a neat way of introducing this
product (see his book on p. 25). Given the identities above we can now express
any linear operator as a linear combination of simple dyads.

A = IAI

=
∑

i j

|e i 〉〈e i |A|e j 〉〈e j |

=
∑

i j

〈e i |A|e j 〉|e i 〉〈e j |

=
∑

i j

ai j |e i 〉〈e j |, where 〈e i |A|e j 〉 = ai j .

An alternative derivation may be found in Nielsen and Chuang (2000) on
page 67.

One additional simple, and important, result that is beautiful to express in
this notation is the famous Cauchy–Schwarz inequality, namely

|〈x | y〉|2 ≤ 〈x | x〉〈y | y〉, or

|〈x | y〉|2
〈x | x〉〈y | y〉 ≤ 1, or
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|〈x | y〉|2
‖x‖2‖y‖2

≤ 1.

To prove this result using the D-notation proceed as follows. Construct an

orthonormal basis for the space such that |y〉/(〈y | y〉)1/2 is the first basis vector.

〈x | x〉〈y | y〉

=
n∑

i=1

〈x | e i 〉〈e i | x〉〈y | y〉

≥ 〈x | y〉〈y | x〉
〈y | y〉 〈y | y〉, substituting for the first basis vector

= 〈x | y〉〈y | x〉
= |〈x | y〉|2.

This calculation demonstrates nicely the power of the D-notation. Readers hav-
ing difficulty following this derivation are advised to read Appendix I where
the derivation is repeated at the end of the crash course on linear algebra.

The trace

The trace of an operator is also referred by some authors as pre-probability
Griffiths (2002). There are many ways of introducing it, but since we shall
largely be interested in in one kind of trace, the trace of a positive self-adjoint
operator, the simplest way is to define it formally and list some of its properties
(see also Petz and Zemánek, 1988).

The quantity
∑n

j=1〈e j |T|e j 〉, summed over the vectors in the basis, for any
T is known as the trace of T. It is independent of the choice of basis and equal
to the sum of the diagonal elements of the matrix w.r.t. any orthonormal basis.
The mapping T → tr(T) has the following important properties (Parthasarathy,
1992):

(1) tr(αT1 + βT2) = αtr(T1) + βtr(T2) (linearity).
(2) tr(T1 T2) = tr(T2 T1), in fact tr(T1 T2 . . . Tk) = tr(T2 . . . Tk T1). A cyclic

permutation of the product of operators in the argument of tr does not
change the result.

(3) tr(T) = the sum of the eigenvalues of T inclusive of multiplicity.
(4) tr(T∗) = tr(T), the trace of the adjoint is the complex conjugate of the trace

of T.
(5) tr(T) ≥ 0 whenever T ≥ 0 (i.e. positive definite).



80 The Geometry of Information Retrieval

(6) The space of bounded linear operators B(H) with the inner product
〈T1, T2〉 = tr(T1 T2) is a Hilbert space of dimension n2 (see Nielsen and
Chuang, 2000, p. 76).

(7) If λ: B(H) → C is a linear map such that λ([X, Y]) = 0 for all X, Y ∈
B(H),4 and λ(I) = n, then λ(X) = tr(X) for all X.

We can immediately derive some simple and important results about the traces
of special operators.

The trace of a projection operator is equal to the dimension of the subspace
projected on. Suppose we have P = E1 + E2 + · · · + Ek, a projection onto a k-
dimensional subspace, and Ei = |x i 〉〈x i |, the projector onto the 1-dimensional
ray represented by x i , and the x i are orthonormal. Then

tr(P) =
n∑

i=1

〈e i |P|e i 〉, letting e i = x i 1 ≤ i ≤ k ≤ n

= 〈e1 | e1〉〈e1 | e1〉 + · · · + 〈e k | e k〉〈e k | e k〉 + 0 + · · · + 0 = k.

In particular tr(|x〉〈x|) = 1, when ||x|| = 1.
A second important result is (Penrose, 1994, p. 318),

tr(|x〉〈y|) = 〈y | x.〉
This is easily proved

tr(|y〉〈x|) =
n∑

i=1

〈e i | x〉〈y | e i 〉

=
n∑

i=1

〈y | e i 〉〈e i | x〉

= 〈y|
n∑

i=1

|e i 〉〈e i‖x〉

= 〈y|I|x〉 = 〈y | x〉.

Density operators

Our aim in this chapter is to connect probabilities with the geometry of the
space. We have already alluded to this previously, where we pointed forward
to a famous theorem of Gleason (1957). There are many ways of stating this
theorem (Hughes, 1989, Jordan, 1969, Parthasarathy, 1992), but anticipating
the discussion to follow I will give Hughes’ version.

4 [X, Y] = (XY − YX).
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Gleason’s Theorem

Let µ be any measure on the closed subspaces of a separable (real or complex)
Hilbert space H of dimension at least 3. There exists a positive self-adjoint
operator T of trace class such that, for all closed subspaces L of H we have
µ(L) = tr(TPL).

In this theorem PL is the projection onto L, and an operator T is of trace
class provided T is positive and its trace is finite. We are interested in measures
µ that are probability measures, that is µ(H) = 1, in which case tr(TPH) =
tr(TI) = tr(T) = 1. In the special case where trace class operators are of trace
one, they are called density operators (or density matrices).

Definition

D is said to be a density operator if D is a trace class operator and tr(D) = 1.
Density operators are identified with states. A state can be either pure, in

which case the density operator is a projection onto a one-dimensional ray, or
it can be a mixture of pure states, specifically, a convex combination of k pure
states, where k is the rank of the operator (Park, 1967). It is conventional to use
the lower case symbol ρ for the density operator or its equivalent matrix. We
will adopt the same convention. There is a large literature on density opera-
tors scattered throughout the quantum mechanics literature (see Penrose, 1994,
Section 6.4), that usually also requires some understanding of the physics;5 we
aim to avoid that and rather link the mathematics directly to the abstract spatial
structure.

Let us recapitulate the situation before applying some of our machinery to
IR. We have shown that a state, either pure or mixed, induces a probability
measure on the subspaces of a Hilbert space. The algorithm for computing the
probability induced by a given state represented by ρ is µ(L) = tr(ρPL). It is easy
to check that we have a probability measure by using the properties of trace and
deriving the properties listed for such a measure given in Appendix III. There
are a number of ways of expressing this probability. For example, when ρ is a
pure state represented by |ϕ〉〈ϕ|,

tr(ρPL ) = tr(|ϕ〉〈ϕ|PL ) = 〈ϕ|PL |ϕ〉 = 〈PLϕ|PLϕ〉 = ||PLϕ||2,
or, if ρ = λ1|ϕ1〉〈ϕ1| + · · · + λn|ϕn〉〈ϕn|, where

∑
λi = 1, a mixture, then

tr(ρPL ) = tr([λ1|ϕ1〉〈ϕ1| + · · · + λn|ϕn〉〈ϕn|]PL )

= λ1〈ϕ1|PL |ϕ1〉 + · · · + λn〈ϕn|PL |ϕn〉.
5 An excellent introduction is Blum (1981), especially Chapter 2.
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Or, if PL = E1 + E2+ · · · + Ek, a projector onto a k-dimensional subspace,
then

tr(ρPL ) = tr(ρE1 + · · · + ρEk)

= tr(ρE1) + · · · + tr(ρEk).

Remember that any Hermitian matrix A can be expressed as a linear combination
of projectors A = λ1P1 + · · · + λnPn, where we will assume that the λi are all
different. It is a simple technical issue to deal with the situation when they are
not. If we now calculate

tr(ρA) = λ1tr(ρP1) + · · · + λntr(ρPn),

then each tr(ρPi) can be interpreted as the probability of obtaining the real
value λi when we observe A (Hermitian) in state ρ. With this interpretation it
is possible to interpret tr(ρA) as an expectation, that is,

〈A〉 = tr(ρA).

It is simply a matter of multiplying each possible observed value by its respective
probability and then summing them to obtain the expectation.

This expectation has the usual properties:

(1) 〈cA〉 = c〈A〉, where c is a constant;
(2) 〈A + B〉 = 〈A〉 +〈B〉;
(3) 〈I〉 =1.

In Jordan (1969) the reader will find a uniqueness theorem for the algorithm
for 〈A〉.

Theorem

If a finite expectation value 〈A〉 with properties (1), (2), (3) and some further
technical ones, is defined for all bounded operators A, then there is a unique
density matrix ρ such that 〈A〉 = tr(ρA).

Notice also that the expectation value of a projector operator PL is the prob-
ability measure of the subspace L projected onto by PL.
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Interpreting tr(.)

We are now in a position to interpret this mathematical machinery for IR in
various ways. The interpretation is mainly geometrical and will establish a
crucial link between geometry and probability in vector spaces.

In information retrieval we often represent a document by a vector x in an
n-dimensional space, and a query by y. Similarity matching is accomplished
by computing 〈x | y〉, usually assuming that ||x|| = 1 = ||y||. Let us say that we
are interested in the similarity between a fixed query y and any document x in
the space. With our new machinery we can express the fact that the state ρ =
|y〉〈y| induces a probability measure on the subspaces of H, and in particular
on the 1-dimensional subspaces, namely vectors. Thus we attach a probability
to each document vector x via the algorithm:

tr(ρ Px) = tr(|y〉〈y‖x〉〈x|)
= 〈y | x〉tr(|y〉〈x|)
= 〈y | x〉〈x | y〉
= 〈y | x〉〈y | x〉
= |〈y | x〉|2.

If the Hilbert space is a real Hilbert space and ||x|| = 1 = ||y||, then 〈x|y〉 =
‖x‖y‖ cos θ = cos θ and so tr(ρPx) = cos2 θ , thus we end up with the square
of the cosine correlation, but interpretable as a probability. So, the query has
induced a probability on each document equal to the square of the cosine of
the angle between the document and the query. Referring back to Gleason’s
Theorem, the density operator corresponding to the query may be a linear
combination of a number of 1-dimensional projectors. And, the subspace L can
be of a dimension greater than one.

It should be clear by now that ρ, the density operator, can represent a 1-
dimensional vector, or a set of vectors, albeit a convex combination of vectors,
a fact that will be exploited when we apply the theory to several examples
in IR. In most applications in IR we compute a similarity to a given query
and a single vector or a set of vectors. For example, when the set of interest
is a cluster we compute a similarity between it, via a cluster representative,
and a query. Traditionally, a cluster of documents is represented by a vector
which in some (usually precise) sense summarises the documents in the cluster
(Van Rijsbergen, 1979a). So, for example, if a cluster contains n documents
{d1, . . . , dn}, then some average vector of these n vectors must be calculated.
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More usefully, we calculate a weighted average of the vectors. The same can be
achieved by a convex mixture of vectors represented as a mixture of projectors:

ρ = λ1|d1〉〈d1| + · · · + λn|dn〉〈dn|, where
∑

λi = 1.

The λi are chosen to reflect the relative importance of each vector in the mixture.
Although the d i do not have to be eigenvectors of ρ, it can be arranged so
that they are, which is accomplished by finding the orthonormal basis for the
subspace spanned by {d1, . . . , dn}. So without loss of generality we can
assume that the d i form an orthonormal set. If the query is q (‖q‖ = 1) then a
probabilistic matching function is naturally given by

tr(ρ|q〉〈q|) = tr(λ1|d1〉〈d1| + · · · + λn|dn〉〈dn|)|q〉〈q|
= λ1tr(|d1〉〈d1||q〉〈q|) + · · · + λntr(|dn〉〈dn||q〉〈q|)
= λ1tr(|d1〉〈d1 | d1〉〈q|) + · · · + λntr(|dn〉〈dn | dn〉〈q|)
= λ1 cos2 θ1 + · · · + λn cos2 θn,

where θ i was defined earlier as the angle between d i and q. The object ρ can
also be interpreted as the centroid of {d1, . . . , dn}, but, notice that ρ and |q〉〈q|
are operators, not vectors. By working in the dual space of operators we have a
framework that unifies our vector operations and probabilities.6 If we wish to
measure the probability matching function between a cluster and a query q, we
simply calculate

tr(ρ|q〉〈q|),
where tr(.) is a linear functional on the space of operators. It turns out that one
can in fact define an inner product on that space by tr(A*B) ≡ 〈A | B〉, where A
and B are linear operators, this is known as the Hilbert–Schmidt or trace inner
product (Nielsen and Chuang, 2000).

It is worth commenting on this further level of abstraction. We have inter-
preted the trace function for a set of special linear operators, density operators
and projectors, as giving a probability. With the definition of the trace inner
product we have something more general, but nevertheless we may find it
useful to interpret even this special case as an inner product. In IR we are quite
familiar with the notion of inner product between objects. In some cases it
may be an advantage to view the similarity between a query and, say, a cluster
representative as an inner product. The trace inner product formalises this in a
neat way.

6 It also introduces naturally a logic, as we saw in a previous chapter.
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Co-ordination level matching

One of the oldest matching functions in IR is co-ordination level matching.
Basically it counts the number of index terms shared between a query and a
document. It is enlightening to translate this matching function into the new
notation. So let

q = (q1, . . . , qn),

x = (x1, . . . , xn),

and in the first instance let them be binary vectors. Geometrically, a vector q
matches a vector x in the ith position when 〈e i | q〉 and 〈e i | x〉 are both non-zero.

More generally, to calculate the number of index terms that any two vectors
x and y share we express

x = x1e1 + · · · + xnen,

y = y1e1 + · · · + ynen.

If xi = 1 or 0 and yi = 1 or 0, then

〈x | y〉 =
∑
i, j

xi y j 〈e i | e j 〉, but 〈e i | e j 〉 = δi j

=
∑
i, j

xi y jδi j

=
∑

i

xi yi ,

which counts the number of times that xi and yi are both 1. The formulation
also shows how cosine correlation is a simple generalisation of co-ordination
level matching. If x and y are two vectors as before but now every xi and yi is
either greater than or equal to zero, then

〈x | y〉 =
∑

i

xi yi 〈e i | e i 〉

= ‖x‖‖y‖ cos ϕ

cos ϕ = 〈x | y〉
‖x‖‖y‖ ,

and if ‖x‖ = ‖y‖ = 1 then

cos ϕ = 〈x | y〉.
The reader will have observed that the basis vectors e i have been retained
throughout the computation. For the standard basis 〈e i | e j 〉 = δij, but if one
were to refer x and y to a non-standard basis, that is, assuming that {e1, . . . , en}
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were an arbitrary set of linearly independent vectors spanning the space, then
that computation of the inner product referred to such a basis would become

〈x | y〉 =
∑

i,j

xigijyj, where 〈e i | ej〉 = gij.

The matrix G = (gij) is called the metric matrix (Sadun, 2001). In matrix terms,

〈x | y〉 = (x1, . . . , xn)G




y1

.

.

.

yn




.

For example, in the space R2, let {(1, 0),(1, 1)} be the basis, then

〈e1 | e1〉 = 1,

〈e1 | e2〉 = 1,

〈e2 | e1〉 = 1,

〈e2 | e2〉 = 2,

⇒ G =
(

1 1
1 2

)
.

And so

if b1=(1, 0) and b2 = (1, 1), then

x=a1b1 + a2b2,

y=c1b1 + c2b2

and 〈x | y〉 = (a1 a2)

(
1 1
1 2

) (
c1

c2

)
.

This is the inner product calculated with reference to the new basis {b1, b2}.
In several IR applications, for example, latent semantic indexing, a new basis

is constructed, usually consisting of a small set of linearly independent vectors.
If we refer our documents and queries to these new basis vectors, then the matrix
G, the metric matrix above, allows us to calculate an inner product in a simple
way.
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Pseudo-relevance feedback

In relevance feedback the user is asked to judge which are the top k relevant
documents in a similarity ranking presented to him or her. In pseudo-relevance
feedback it is assumed that the top k documents in a ranking are relevant.
From that one can then derive information to modify the query to reflect more
accurately the information need of the user. One can illustrate the process
geometrically in three dimensions as follows, with a basis {e1, e2, e3}.

3

x

e2

q

1

e

e

Let us say that in this 3-dimensional vector space the query q lies in the 2-
dimensional plane given by [e1, e2]. Let x be a typical document, then the
probabilistic similarity is given by

tr(|q〉〈q | x〉〈x|) = |〈q | x〉|2 = cos2 θ, where ‖x‖ = ‖q‖ = 1.

The matching value cos2 θ can be computed for each document x, and a rank-
ing of k documents is given by ranking the documents in inverse order of
cos2 θ . There are essentially two ways of modifying the query in the light of the
ranking.

(1) Rotate q in the plane [e1, e2].
(2) Expand q so that it becomes a vector in [e1, e2, e3].

There are many ways of implementing this (Baeza-Yates and Ribeiro-Neto,
1999). For example, if there are a number of documents, one might project
each document x i onto the plane [e1, e2]. This is easily expressed in our new
notation. The projector P onto [e1, e2] is denoted by P = |e1〉〈e1| + |e2〉〈e2|. To
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project x i , which itself is x i = αi1 | e1〉 + αi2|e2〉 + αi3|e3〉, simply compute

(|e1〉〈e1| + |e2〉〈e2|)x i = 〈e1 | x i 〉 | e1〉 + 〈e2 | x i 〉 | e2〉
= αi1| e2〉 + αi2| e2〉
= z i.

This calculation can be done for any x i . Now we have a bundle of vectors
projected from 3-d into 2-d. A modification of q might be to transform q into a
vector q′ which lies somewhat closer to the set of projected document vectors.
The density operator ρ representing this set would be a mixture of these vectors,
so we take a convex combination of the |z i〉〈z i|, that is

ρ =
k∑

i=1

λi |z i 〉〈z i |.

The trace, tr(ρ|q〉〈q|), gives us the probabilistic similarity between q and the
set of k projected vectors. A typical feedback operation would be to move q
closer to the set of k documents. In two dimensions this can be accomplished by
applying a linear transformation to q. A suitable transformation in this context
would be a unitary transformation,7 which represents a rotation of the vector q
through an angle φ into q′ (see Mirsky, Chapter 8, 1990, for details). The
extent of the rotation, or the size of angle φ, is determined by tr(ρ|q〉〈q|). The
relationship φ = f(tr(ρ|q〉〈q|)) would need to be determined; it could be a simple
mapping, f: [0, 1] → [0, 2π ], or further heuristic information could be used to
constrain or elaborate f. Here is an illustration:(

q ′
1

q ′
2

)
=

(
cos φ −sin φ

sin φ cos φ

) (
q1

q2

)
.

The matrix represents a counter-clockwise rotation of q in the plane through φ,
thus moving q closer to the projections of the documents x i .

This is a very simple example but it illustrates one aspect of the geometry that
may have gone unnoticed. At no stage was the definition of the inner product
made explicit; the choice of it was left open. So, for example, if we had chosen

〈x | y〉 =
n∑

i=1

xi yi .

the discussion would have been the same. In our example we chose a unitary
matrix that represented a rotation in the plane; in higher dimensions such a nice
geometric interpretation may not be available.

7 A unitary transformation A is one that satisfies A*A = I; in the case where the coefficients of
the representing matrix are real the transformation is called orthogonal.
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Query expansion is slightly different, but using the unitary transformation
above gives us the clue. To transform the query into a 3-d vector we again
transform q into q′, but this time the transformation moves q out of the 2-d
plane into 3-d. The process is the same, but ρ is now represented as a mixture
of the original (unprojected) vectors. That is,

ρ =
∑

i

λi |x i 〉〈x i |, where
∑

i

λi = 1

and tr(ρ|q〉〈q|) again gives us the matching value between the query and the set
of k top ranking documents.

Relevance feedback

The situation with relevance feedback is somewhat different from that with
pseudo-relevance feedback. A ranking (or set of documents) is presented to the
user and he, or she, is asked to judge them choosing between relevance and non-
relevance (for simplicity we will assume that unjudged ones are non-relevant).
The relevance decisions are then used to construct a new query incorporating
the relevance information. The two best known techniques for doing this, the
one based on the probabilistic model and Rocchio’s method, are both examined
in Van Rijsbergen (1979a). We will describe the first of these only.

A basic formulation of the probabilistic model for relevance feedback may
be summarised as follows. Given a set of retrieved documents we divide it into
a set of relevant documents and a set of non-relevant ones. We now look at the
frequency of occurrence of index terms in both the relevant and non-relevant
sets. Thus for each index term i we can calculate pi, the frequency with which i
occurs in the relevant set, and qi, the frequency with which i occurs in the non-
relevant set. Using these pis and qis, there are now various formulations for
implementing relevance feedback. In the decision-theoretic version described
in Van Rijsbergen (1979a), a function g(x) is derived:

g(x) =
n∑

i=1

xi log

[
pi (1 − qi )

qi (1 − pi )

]
+ constant,

where x is a document on n index terms with xi = 1 or 0 depending on whether
the ith index term is present or absent. Then for each unseen document x the
function g(x) is evaluated and used either to rank documents, or as a decision
function to separate the relevant from the non-relevant. We can safely ignore
the constant.
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If we let

α̃i = log

[
pi (1 − qi )

qi (1 − pi )

]
,

g(x) = α̃1x1 + · · · + α̃n xn,

and αi be the rescaled version such that
∑n

i=1 αi = 1 and αi ≥ 0, we have a
function not too dissimilar from the one that arises in Gleason’s Theorem. In
g(x) the variables are binary variables, so that for xi = 1, g(x) is incremented
by αi and for xi = 0 it is ignored.

With this intuition let us express g(.) as an operator to be applied to any
unseen document x. For this we write

ρ = α1|x1〉〈x1| + · · · + αn|xn〉〈xn|,
where |xi〉〈xi| is the orthogonal projection onto the ith basis vector8 representing
the ith index term. Now consider any unseen normalised x. It can be expressed
as x = β1|x1〉 + · · · + βn|xn〉, where

∑
β2

i = 1, and for x a binary vector all
the β i are equal. Now apply the operator ρ to x to get

ρx = (α1|x1〉〈x1| + · · · + αn|xn〉〈xn|)(β1|x1〉 + · · · + βn|xn〉)
= α1β1|x1〉 + · · · + αnβn|xn〉,

where αiβ i ≥ 0 if β i ≥ 0. If the index term is missing for x then β i = 0 and
αiβ i = 0. The expression ρx contains the same information as g(x). One further
step in generalisation is needed. Instead of applying ρ to x we calculate the
trace, tr(ρx) = tr(ρ|x〉〈x|). This calculation gives us the probability induced by
ρ, which contains the relevance information, on the space of vectors x. Clearly
this process can be iterated, each time generating a different density matrix ρ.

The density matrix ρ can be thought of as a generalised query. This query
is revised in the light of the relevance feedback from the user, and is applied
as an operator to each document to produce a probability value via the trace
calculation. These values can then be used to order the documents, after which
the process can be repeated with a further algebraic application of the the
operator representing the revised query. This process very nicely encapsulates
the mathematics of relevance feedback in a simple manner.

There are a number of attractive things about this formulation that are worth
describing.

Firstly, the particular ‘index terms’ chosen, that is the dimensions |xi〉 span-
ning the space do not need to be the index terms in the query. This is especially
important when the objects are images. The basis vectors of the space to be

8 xi is used as a label, to label the ith basis vector.
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projected onto can be determined by finding, for example, the eigenvectors of
the observable representing the query.

Secondly, there is nothing to prevent the density operator ρ from being
expressed as a convex combination of projectors, each of which projects on an
arbitrary subspace. Thus, if there is uncertainty about the relative importance
of, say, two index terms i and j, then we include a projector onto the subspace
spanned by |xi〉 and |xj〉, or the projector |xi〉〈xi| + |xj〉〈xj|.

Thirdly, there is no intrinsic requirement that the basis vectors be orthogonal.
Of course they will be so, if they are the eigenvectors of a self-adjoint linear
operator.

Fourthly, the formulation readily extends to infinite dimensional spaces,
which may be important when representing image objects.

Finally, the vectors do not have to be binary. tr(ρ|x〉〈x| works equally well
for (normalised) vectors x that are non-binary.

Dynamic clustering

In this section we give an account of the way in which the geometry of the
information space presented in the earlier chapters may be applied to one class
of IR problems. We have chosen clustering and in particular dynamic clustering.
There are several reasons for concentrating on this area: first and foremost
because the presence or need for a query is not essential. Secondly, because
clustering is one of the techniques in IR (although it comes in many flavours)
that attempts to exploit seriously the geometry of the information space. And
thirdly, because the technique is not overly influenced by the medium of the
objects. For example, text-based objects are often organised into an inverted
file, or Galois connection (see Chapter 2), because of the existence of keywords,
but this organisation it not the obvious one to choose for image objects. Instead
some other organisation, for example clustering, may be more appropriate.

Imagine that you, the reader, as a user, are presented with a large collection of
objects. Amongst those objects are some that are of interest to you and would,
if you could find them, satisfy your current information need. In a fantasy
world you could step into the information space, look around you, and if you
did not like what you found, you could move to a different location to continue
searching. If you did like what you found it would undoubtedly influence where
you would look next. Notice that even in this fantasy world we use a spatial
metaphor for describing how we are guided to move around it. Also, there is no
question of a query, we simply examine objects, and in the light of observations
we decide what to do next. To put it in terms of our paradigm, the user makes
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observations through interaction with objects. The results of these observations
influence the way the information space is viewed from then on.

We are unable to step literally into an information space, but we can make it
appear as if we do. For this we place our objects in an abstract geometric space
and give the user access to this space by way of an interface through visualisation
or other forms of presentation. We can keep displaying the ever-changing point
of view of the user. It is never the space that changes but the perspective or point
of view of the user. Pinning this down in information retrieval terms, it is the
probability that an object may be found relevant that is altered, depending on
what the user has found relevant thus far. This is not a completely new notion; it
was alluded to many times in the earlier IR literature, for example, by Goffman,
and more recently by Borland.

. . . that the relevance of the information from one document depends upon what is
already known about the subject, and in turn affects the relevance of other
documents subsequently examined.

(Goffman, 1964)

That is the relevance or irrelevance of a given retrieved document may affect the
user’s current state of knowledge resulting in a change of the user’s information
need, which may lead to a change of the user’s perception/interpretation of the
subsequent retrieved documents . . .

(Borland, 2000)

In other words, the probability of relevance is path-dependent: different paths
to the same object may lead to different probabilities. Therefore a probability
measure on the space varies, or equivalently it is dependent, or conditioned, on
the objects that have been judged and the order in which they have been judged.

All the foregoing pre-supposes that we have some way of moving from
object to object by way of a metric on the space. Such a metric is distance-like
and usually has the following properties repeated here for convenience.

d(x, y) ≥ 0 for all x, y,
d(x, x) = 0 for all x,
d(x, y) = d(y, x), symmetry,

d(x, y) ≤ d(x, z) + d(z, y), triangle inequality,

{d(x, y) ≤ max [d(x, z), d(z, y)]}, ultrametric inequality.

The first four conditions define a standard metric, the triangle inequality may
be omitted and only the weaker fifth condition holds, thereby defining an
ultrametric.

An abstract Hilbert space comes endowed with a metric structure, although
the precise choice, Euclidean or non-Euclidean, is left open. So if we embed
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our objects in a Hilbert space we are free to choose the metric that is most
meaningful from an IR point of view. There is a large literature on the choice
of metrics (Harman, 1992), in which the choice is mostly resolved empirically
through experimentation.

The general IR problem can now be stated. Given that the user has seen a
number of objects and made decisions regarding their relevance, how can we
present to the user, or direct the user to, a number of objects that are likely to be
relevant. Notice how the word ‘likely’ has crept into the discussion, meaning
that we expect unseen objects to vary in their estimated relevance for the user.
There are in the IR literature many models that specify exactly how such an
estimate may be calculated (Belew, 2000, Van Rijsbergen, 1979a, Salton and
McGill, 1983, Dominich, 2001 and Sparck Jones and Willett, 1997), usually
starting from a query that represents the information need. We want to leave the
idea of the query out of consideration and concentrate on how a set of selected
documents9 can influence the estimation of relevance.

The original basis for this way of thinking – retrieval without query – was
first detailed in Campbell and Van Rijsbergen (1996). It has been assumed
that the nearness of a document to another object is evidence of likely co-
relevance, an idea that has been expressed as the Cluster Hypothesis (Van
Rijsbergen, 1979a) and re-expressed several times (Croft, 1978, Voorhees, 1985,
Hearst and Pedersen, 1996 and Tombros, 2002). Going back to the geometry of
the information space enables us to calculate a probability measure reflecting
relevance in the light of already accepted objects. One possible interpretation
of such a measure is that it captures aboutness, which in turn reflects relevance.

Let us illustrate this by a small abstract example. Let’s say that we have
accepted k objects,10 namely, Y = {y1, . . . , yk} and we wish to estimate the
likely relevance of all those objects not in Y. Let z be one such object, then
intuitively we are interested in estimating the extent to which z is about Y. One
way of capturing the extent to which z is about Y is to measure the extent
to which Y implies z. This is based on a view of IR as plausible inference11

and there are many ways in which it can be formalized (Crestani et al., 1998).
However, the different ways have all been based on the Logical Uncertainty
Principle (LUP) initially formulated in Van Rijsbergen (1986), and we will
reformulate it here using the geometry of Hilbert space. We will tackle the
simple case of a single object Y = {y} = y plausibly implying an object z.12

9 We refer to documents although we could just as easily refer to the more abstract objects.
10 The ostensive model in Campbell and Van Rijsbergen (1996) only requires an object to be

pointed at for it to be accepted.
11 For a recent treatment of plausible inference see Kyburg and Teng (2001).
12 This way of looking at things has now been adopted by the researchers working on so-called

language models, where a document ‘generates’ a query as opposed to implying it.
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Conventionally, these objects are represented by vectors in some space and once
again we assume a Hilbert space. LUP requires us to measure the uncertainty of
y → z by measuring the amount of extra information that needs to be added to y
so that z can be deduced. One way of measuring this information is to measure
the size of the orthogonal projection of y onto z, and use 1- (projection)2 as that
measure. In Van Rijsbergen (2000) a formal justification of this approach can
be found without the use of Hilbert space theory. In the case of a real Hilbert
space the projection is given by

〈y | x〉 = ‖y‖‖x‖ cos θ,

which has the familiar simple interpretation as the cosine of the angle between
the two vectors when they are normalised, that is, when ‖y‖ = 1 and ‖x‖ = 1.
An interpretation motivated by quantum mechanics would lead us to suggest
1 − cos2 θ as the appropriate measure,13 because we can interpret cos2 θ as a
probability measure induced by y on the set of all subspaces of H, including of
course the subspaces corresponding to the 1-dimensional vectors z (see Amati
and Van Rijsbergen, 1998, p. 189–219) for a more general discussion). If the
space is complex the probability measure would be given by |〈y | z〉|2. This
example is a very special case. Let us see how to generalise it.

Although we may assert that y and z are vectors in a high-dimensional
space, in practice they rarely are, as we can be sure of the values of only a small
number of components in the vector, all the other components being either
undefined or assumed to have some arbitrary value. Therefore, without any
further knowledge, one could assume that y and z are in fact any vectors lying
in the corresponding subspaces Ly and Lz. It is at this point that the power of the
theory based on Gleason’s Theorem comes into play. It is natural to represent
a subspace by a projection operator onto it, that is, Ly is represented by Py and
Lz is represented by Pz. If Ly and Lz are only 1-dimensional subspaces, that is
vectors, then

Py = |y〉〈y|,
Pz = |z〉〈z|

are the projectors onto the relevant subspaces expressed in the Dirac notation.
Returning to the issue of measuring the extra information to be added to y
through a probability measure on the space induced by Py, we can now deploy
Gleason’s Theorem,

µy(Lz) = tr(PyPz),

13 See the Prologue and Wootters (1980b).
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which gives us an algorithm for computing the probability measure for any
subspace Lz induced by the subspace Ly. We repeat that

(A, B) = tr(A∗B)

is a natural inner product on the space of linear operators with dimension n2 if
the dimension of H is n. So our probability µy(Lz) is the inner product between
Py and Pz.

A sanity check shows that if Py = |y〉〈y| and Pz = |z〉〈z| then

µy(Lz) = tr(|y〉〈y||z〉〈z|)
= tr(|y〉〈y | z〉〈z|)
= 〈y | z〉tr(|y〉〈z|)
= 〈y | z〉〈z | y〉
= |〈y | z〉|2

as before. We can say that, a measure of the extent to which Py → Pz is given by
1−tr(PyPz). At this point we are free to abandon the information-theoretic point
of view and simply use the probability measure, which in all cases is given by
1 minus the information. The probability of course is a measure of the certainty
of the implication in this context.

Now in Chapter 4 we showed that Py → Pz can itself be considered a
projection onto a subspace, that is, Py → Pz is itself a self-adjoint idempotent
linear operator, and as such can by Gleason’s Theorem be used to induce a
(probability) measure on the space. It brings the logic on the space within
the scope of algebraic manipulation. Each logical operator has an algebraic
equivalent, and Gleason’s Theorem ensures that we can induce a probability
measure consistent with the logic.

So far we have considered the extent to which a single object plausibly
implies another. Consider now the case when we have a set of objects Y =
{y1, . . . , yk} in which each object is of variable importance as the antecedent of
the inference, that is, we weight their importance with αi such that

∑
αi = 1. To

represent canonically such a mixture14 of objects we use the density operator
introduced earlier, namely

ρ = α1P1 + · · · + αkPk,

where Pi is the projector onto yi. Once again Gleason’s Theorem tells us that

14 In quantum mechanics a mixture is to be distinguished from a pure state. It is not clear whether
the difference between a superposition and a mixture of states plays a significant role in IR.
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the probability measure of any subspace Lz is given by

µ(Lz) = tr(ρPz)

= α1tr(P1Pz) + · · · + αktr(PkPz)

= α1µ1(Lz) + · · · + αkµk1(Lz)

= α1|〈z | y
1
〉|2 + · · · + αk|〈z | y

k
〉|2,

which is the appropriate mixture of the probabilities associated with the indi-
vidual objects y

i
. We realise that the projectors Pi do not need to project onto

1-dimensional subspaces, they could equally project onto finite-dimensional
subspaces of dimension greater than one. The same applies to Pz, which could
be replaced by a subspace of greater dimension. When this happens, it is express-
ing the fact that there is a certain amount of ignorance about the objects involved.
The probability calculation carries through as before.

As already noted, ρ, the density operator, is a linear operator in the space of
linear operators and

tr(ρPz) = 〈ρ | Pz〉,
where the inner product is now on the space of linear operators.15 What has
emerged is that our analysis is done very simply in the dual space of linear oper-
ators with a natural geometric interpretation in the base space of objects. This
very abstract way of proceeding is useful when trying to prove mathematical
results about the constructs, but in practical information retrieval one is more
likely to work in the base space of objects.

Ostensive retrieval

In an earlier paper (Campbell and Van Rijsbergen, 1996) a model of retrieval
based on ostension (Quine, 1969) was proposed. Simply, this model assumes
that a user browsing in information space will point at objects which are relevant.
As the search enlarges, the user will have pointed at an ever increasing number
of objects. The probability of relevance of an ‘unseen’ object is a function
of the characteristics of the objects seen thus far. To make the process work
a function is needed that will incorporate new relevance assessments, and at
each stage calculate the probability of the objects to be considered next. This is
somewhat like the pseudo-relevance feedback discussed earlier. For a detailed
account see Campbell and Van Rijsbergen (1996). We are only interested in the
formalisation of the function that estimates the probability of relevance.

15 For a discussion of this inner product, the Hilbert–Schmidt inner product, see Nielsen and
Chuang (2000).
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If Y = {y1, . . . , yk} are the objects encountered so far in the order 1 to k,
then the impact of the set Y on the probability calculation can be summarised
by a density operator:

ρ = α1|y1
〉〈y

1
| + · · · + αk|y k

〉〈y
k
|,

where
∑

αi = 1

and the values αi are scaled to increase proportionately. For example, αi =(
1
2

)k−i+1
would double the relative weight each time i was incremented by

1 up to k. However, these weights do not sum to one, the sum is
(

1
2

)k
short of

one. So if we corrected each αi to αi + 1
k

(
1
2

)k
they would add to one.

To calculate the probability associated with an unseen object x, we once
again compute tr(ρ|x〉〈x|) for any x.

In the original Campbell and Van Rijsbergen paper we used a slightly dif-
ferent calculation for the probabilities involved:

pi = P(xi = 1 | Rel)

=
k∑

j=1

xi j




Py j (Rel)
k∑

u=1
Pyu (Rel)




=
k∑

j=1

α j xi j .

Here the set of seen documents totalling k in number were all assumed relevant,
and the αi were assumed be a specific discounting function as explained above.
Thus for each index term i occurring in document j, xi j = 1, and the αj made
a contribution, whereas if the ith term not occur in document j no contribution
accrues, that is, xi j = 0.

The calculation based on the geometry of the space is slightly different. To
estimate pi, we use

pi ≈ tr(ρ|xi 〉〈xi |)

=
k∑

j=1

α j tr(|y j 〉〈y j ||xi 〉〈xi |)

=
k∑

j=1

α j tr(|y j 〉〈y j |xi 〉〈xi |)

=
k∑

j=1

α j |〈y j |xi 〉|2.
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Now if y j and xi are orthogonal then 〈y j | xi 〉 = 0 and no contribution accrues
to pi. When 〈y j | xi 〉 �= 0 the value of |〈y j | xi 〉|2 modified by αj contributes to
pi. Notice again that this is different from the Campbell and Van Rijsbergen
(1996) calculation. Whereas in the original paper xi j = 0 or 1, here we have
xij = |〈y j | xi 〉|2 which is a value in the interval [0, 1]. Thus it is a generalisation
of the original model and it would not be difficult to modify the generalised
formula for xi j so that it replicated the original one.

Further reading and future research

The foregoing chapter has been well referenced at the appropriate places. The
centre piece of it is undoubtedly Gleason’s Theorem and its application to
problems in IR. Apart from Gleason’s original 1957 paper, there is the ele-
mentary proof by Cooke et al. (1985), and the constructive proof by Richman
and Bridges (1999). Several books develop the requisite mathematics before
explaining Gleason’s Theorem; good examples are Cohen (1989), Jauch (1968),
Parthasarathy (1992) and Varadarajan (1985). There is an important special case
of the theorem where the measure is a probability measure, and it is defined
in terms of a density operator. Density measures are extensively used in quan-
tum mechanics but infrequently explained properly. For example, d’Espagnat
(1976) gives a ‘density matrix formalism’ for QM but unfortunately devotes
very little space to explaining the nature of density operators. Luckily, a thor-
ough and standard account may be found in the widely used textbook for QM
by Cohen-Tannoudji et al. (1977).

One of the motivations for writing this book is to lay the foundations for
further research in IR using some of the tools presented here. There are several
areas for immediate development; we will just mention three: language mod-
elling (Croft and Lafferty, 2003), probability of conditionals and information
theory. These three are not unrelated. In Lavrenko and Croft (2003) the point
is specifically made: ‘The simple language modelling approach is very simi-
lar to the logical implication and inference network models, . . .’. Language
models, on the one hand, deal with producing generative models for P(Q | D),
where Q is the query and D a document. On the other hand, logical models are
concerned with evaluating P(D → Q), where ‘→’ may be a non-standard impli-
cation such as was fully described in Chapter 5. There seems to be an intimate,
largely unknown, connection between P(Q | D) and P(D → Q), and one of the
missing ingredients is an appropriate measure of information, which is required
for the evaluation of the conditional by the Logical Uncertainty Principle (Van
Rijsbergen, 1992).
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In quantum mechanics conditional probability is defined with the help of
Gleason’s Theorem as

PW(P | P′) = tr(P′WP′P)

tr(WP′)

for events P and P′, both projections or their corresponding subspaces. The
way to read this equation in IR is as follows. W is a density matrix which may
represent a mixture of states, think of it as defining a context, P′ represents an
observable that is measured, and thus brings about a transformation in W:

W → P′WP′

tr(WP′)
,

which by Gleason’s Theorem gives us the formula for PW(P | P′) shown above.
Compare this with the unconditional probability PW(P) in the context of W,

PW(P) = tr(WP).

So here we have an algorithmic (or algebraic) representation of the conditional
probability for events in Hilbert space. This general form of conditioning is
called Lüders’ rule (Lüders, 1951), and it has a number of special cases, one of
which is Von Neumann’s projection postulate (see Bub, 1997, 1982, for details).
Also, when W indeed represents a mixture the rule is similar to Jeffrey Condi-
tionalisation (Jeffrey, 1983, Van Fraassen, 1991, Van Rijsbergen, 1992). In gen-
eral W represents a context where it might be a number of relevant documents,
and PW(P | P′) would then represent the probability of P given P′ in that context.

Ostensive retrieval could be viewed in terms of conditionalisation, that is, W
could represent a weighted combination of the documents touched so far, and
PW(P | P′) would be the probability of an unseen document P = |x〉〈x|, given
that we have observed the last one, P′ = |y〉〈y|.

Language modelling can be analysed in a similar way, but now P = |q〉〈q|
represents the query, and P = |d〉〈d| is a document, whereas W would be
some relevant documents. Again a conditional probability is calculated within
a context.

For more details on the Projection Postulate the reader should consult the
now extensive literature: Gibbins (1987), Herbut (1969, 1994), Martinez (1991)
and Teller (1983).

It is an interesting research question to investigate to what extent P(D → Q),
when D → Q is the Stalnaker conditional from Chapter 5, will function as a
language model, that is, an alternative to P(Q | D). The accessibility relation that
underlies the evaluation of D → Q is defined in terms of a metric derived from
the inner product on the Hilbert space (see also Herbut, 1969). Such a metric
may be defined in information-theoretic terms (Amari and Nagaoka, 2000 and
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Wootters, 1980a). An exploration of this largely unexplored area may well lead
to a reasonable measure for the missing information in the Logical Uncertainty
Principle (Van Rijsbergen, 2000).

The technique of imaging that was used to calculate P(D → Q) in ear-
lier papers could also be reformulated algebraically making use of Gleason’s
Theorem and the fact that D → Q is a projection operator and corresponds to a
subspace of the Hilbert space. Some guidance for this may be found in Bigelow
(1976, 1977).



Appendix I

Linear algebra

In any particular theory there is only as much real science as there is
mathematics

Immanuel Kant

Much of the mathematics in the main part of this book is concerned with
Hilbert space. In general a Hilbert space is an infinite-dimensional space, but
for most practical purposes we are content to work with finite-dimensional
vector spaces, which indeed can be generalised to infinite-dimensional ones.
In some IR applications, such as content-based image retrieval, infinite spaces
may well arise, so there is good reason not to exclude them.

Here we concentrate on finite-dimensional vector spaces and collect together
for reference some of the elementary mathematical results relevant to them. For
this our intuitions deriving from 3-dimensional Euclidean space will stand us
in good stead. The best starting point for an understanding of a vector space is
to state its axioms.1

Vector space

Definition A vector space is a set V of objects called vectors satisfying the
following axioms.

1 What follows is mostly taken from Halmos (1958) with small changes, but equivalent
formulations can be found in many texts on linear algebra, for example, Finkbeiner (1960),
Mirsky (1990), Roman (1992), Schwarz et al. (1973), Birkhoff and MacLane (1957) and Sadun
(2001), to name but a few. A good introduction that is slanted towards physics and quantum
mechanics is Isham (1989). A readable and popular introduction is Chapter 4 of Casti (2000).
Extensions to Hilbert space can be found in Debnath and Mikusinski (1999), Simmons (1963),
Jordan (1969) and Bub (1997, Appendix). The Appendix to Redhead (1999) may also prove
useful.
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(A) To every pair, x and y, of vectors in V there corresponds a vector x + y,
called the sum of x and y, in such a way that
(1) addition is commutative, x + y = y + x,
(2) addition is associative, x + (y + z) = (x + y) + z,
(3) there exists in V a unique vector � (called the origin) such that

x +� = x for every vector x in V,
(4) to every vector x in V there corresponds a unique vector −x such that

x + (−x) = �.
(B) To every pair α and x, where α is a scalar and x is a vector in V, there

corresponds a vector αx, called the product of α and x, in such a way that
(1) multiplication by scalars is associative, α(βx) = (αβ)x,
(2) 1x = x for every x,
(3) multiplication by scalars is distributive with respect to vector addition,

α(x +y) = αx +αy,
(4) multiplication by vectors is distributive with respect to scalar addition

(α + β)x = αx + βx.

In the main body of the text (Chapter 3) we introduce n-dimensional vectors
and illustrate arithmetic operations with them. It is an easy exercise to verify
that the set of n-dimensional vectors realised by n-tuples of complex numbers
satisfy all the axioms of a vector space. Thus if we define for x = (x1, . . . , xn)T

and y = (y1, . . . , yn)T,

x + y = (x1 + y1, . . . , xn + yn)T,

αx = (αx1, . . . , xn)T,

� = (0, . . . , 0)T,

the axioms A and B above are satisfied for the set of n-tuples and hence Cn is
a vector space. In many ways this n-dimensional space is the most important
vector space since invariably it is the one used to illustrate and motivate the
intuitions about abstract vector spaces.

Another simple example of a vector space is the space of nth order polyno-
mials, including the polynomial identically zero. For example, if n = 2, then

P1(x) = a0 + a1x + a2x2,

P2(x) = b0 + b1x + b2x2,

P1(x) + P2(x) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x2 = P12,

and P12 is another second-order polynomial.
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Hilbert space

A Hilbert space is a simple extension of a vector space. It requires the definition
of an inner product on the vector space (see Chapter 3) which enables it to be
called an inner product space. An example of an inner product on a finite vector
space between x and y is

(x, y) =
n∑

i=1

x̄iyi, where x̄i is the complex conjugate of xi.

If we now impose the completeness condition on an infinite inner product space
V: that is, for every sequence of vectors (vn), if ‖vm− vm‖ → 0 as n, m → 0
then there exists a vector v such that ‖ vn − v ‖ → 0.

The most straightforward example of a Hilbert space is the set of infinite
sequences (x1, . . . , xk, . . .) of complex numbers such that

√
�∞

i=1|xi|2 is finite,
or equivalently, such �∞

i=1|xi|2 converges. Addition of sequences is defined
component-wise, that is, for x = (x1, . . . , xk, . . .) and y = (y1, . . . , yk, . . .) we
have x + y = (x1 + y1, . . . , xk + yk, . . .); similarly for θ and αx. The importance of
this Hilbert space of square-summable sequences, called l2, derives from the fact
that any abstract Hilbert space is isomorphic to it (Schmeidler, 1965). Hence
if one imagines a Hilbert space in this concrete form one cannot go far wrong.
An inner product on it is a simple extension of the one on the finite space given
earlier:

(x, y) =
∞∑

i=1

x̄iyi.

Operators

A linear operator T on a vector space V is a correspondence that assigns to
every vector z in V a vector Tz in V, in such a way that

T(αx + βy) = αTx + βTy

for any vectors x and y and scalars α and β. The most important class of linear
operators for us are the self-adjoint operators. An adjoint T* of a linear operator
T is defined by

(T∗x, y) = (x, Ty);

and it is self-adjoint when T* = T. Often the name Hermitian is used syn-
onymously for self-adjoint. The Hermitian operators have a number of suit-
able properties, such as that all their eigenvalues are real, which makes them
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suitable candidates as mathematical objects to represent observables in quantum
mechanics and information space.

Linear functionals

There is one final abstract result that is often implicitly assumed, that is rarely
explicitly stated, and it concerns linear functionals on a vector space. A linear
functional on a vector V is a map f : V → �, from V into the field of scalars
�, with the properties

f (αx + βy) = αf (x) + βf (y), for all α, β ∈ �, and x, y ∈ V.

The set of linear functionals on a vector space is itself a vector space known as
a dual space to V, usually written V* (Redhead, 1999, Appendix). If x ∈ V and
f ∈ V*, a 1:1 correspondence ϕ between V and V* is defined by writing

f (y) = (x, y), y ∈ V, and then setting x = ϕ(f ).

The result is a theorem that for any f there exists an x and the x is unique. There
is more about duality in Sadun (2001).

At this point we can take a quick dip into the world of IR to illustrate the
use of duality. Say we have defined the usual cosine correlation on the space of
documents to represent the inner product between documents. We can have
a linear functional that associates with each document a scalar, and then the
theorem tells us that for the particular inner product there is a vector x with
respect to which the inner product with each document y will result in the same
scalar value. The reverse is true too: the inner product between each y and a
given x will generate a linear functional on the space V. One way to interpret x
is that it can represent the query as a vector on the document space.

Dirac notation

We are now in a position to introduce the succinct Dirac notation that is used
at various places in the book, especially in Chapter 6. Paul Dirac (1958) was
responsible for introducing the ‘bra’ and ‘ket’ notation. A vector y in a Hilbert
space H is represented by |y〉, a ket. The linear functional f associated with x
is denoted by 〈x|, the bra, thus forming the ‘bra(c)ket’ 〈x | y〉 the inner product.
The bra (the linear functional) has the linearity property shown as follows in
the Dirac notation:

〈x|(α | y〉 + β | z〉) = α〈x | y〉 + β〈x | z〉.
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The set of linear functionals is a vector space itself, as we observed above, and
so they can be added and multiplied by complex numbers in the usual way:

[α〈u| + β〈v|](|z〉) = α〈u | z〉 + β〈v | z〉.

The 1:1 mapping between V and V*, ϕ above, is often denoted by a star *, the
same symbol used for indicating the adjoint of an operator. In the Dirac notation
this rarely causes confusion, and if it does, it can be resolved by the judicious
use of brackets.

We have the two relations

〈x| = (|x〉)∗ and |x〉 = (〈x|)∗.

The star operation is antilinear, reflecting the fact that the inner product is
antilinear in its left argument,

(α|y〉 + β|z〉)∗ = α∗〈y| + β∗〈z|,
(γ〈u| + δ〈v|)∗ = γ ∗|u〉 + δ∗|v〉.

One final piece of the Dirac notation is concerned with linear operators. The
inner product of a vector |x〉 in H with the ket T|y〉 can be written as

(|x〉)∗T|y〉 = 〈x|T|y〉.

〈x|T|y〉 is the famous ‘sandwich’ notation, which if it seems uninformative
during a manipulation can always be replaced by the more elaborate left-hand
side of its definition.

Dyads

A special class of operators, known as dyads, is particularly useful when it
comes to deriving results using the Dirac notation. A dyad is the outer product
of a ket with a bra, and can be defined by

|x〉〈y | (|z〉) = |x〉〈y | z〉 = 〈y|z〉|x〉.

Here the operator |x〉〈y| is applied to a vector |z〉 to produce the vector |x〉
multiplied by a scalar 〈y } z〉.

Especially important dyads are the projectors, which are of the form |u〉〈u|,
where u is the vector onto which the projection is made. For example,

|u〉〈u|(|z〉) = |u〉〈u | z〉 = 〈u | z〉|u〉,
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where the application of the projector to vector |z〉 results in |u〉 multiplied by
a scalar. A projector of this kind is therefore a linear transformation that takes
any vector and maps it onto another vector.

Multiplying dyads is especially easy:

|u〉〈v‖x〉〈z| = 〈v | x〉|u〉〈z|,
resulting in another dyad multiplied by the scalar 〈v | x〉. The multiplication
quickly demonstrates that operators in general do not commute, for

|x〉〈z‖u〉〈v| = 〈z | u〉|x〉〈v|,
and in general these two resulting dyads are not equal,

〈v | x〉|u〉〈z| �= 〈z | u〉|x〉〈v|.

Useful identities in Dirac notation

We now collect together a number of identities, using Dirac notation, that may
prove useful. Let {ϕ1, . . . , ϕn} be an orthonormal basis for an n-dimensional
Hilbert space, that is

√〈ϕk|ϕk〉 = 1 and 〈ϕi | ϕj〉 = δij. Although we produce
these five identities for a finite space, they also hold for an infinite-dimensional
space.

The set of dyads {|ϕ1〉〈ϕ1|, . . . ,|ϕn〉〈ϕn|} is a set of projectors, one for
each basis vector, and projecting onto that vector. They satisfy a completeness
property, or resolution of identity, namely

n∑
k=1

|ϕk〉〈ϕk| = I,

where I is the identity operator. They are also mutually orthogonal, that is

|ϕi〉〈ϕi||ϕj〉〈ϕj| = |ϕi〉〈ϕi | ϕj〉〈ϕj| = δij|ϕi〉〈ϕi|.
The matrix representation of an operator T with respect to an orthonormal basis
such as {ϕ1, . . . , ϕn} is given by 〈ϕj|T|ϕk〉, that is, it represents the jkth element
of the matrix.

|ψ〉 =
(

n∑
k=1

|ϕk〉〈ϕk|
)

|ψ〉 =
n∑

k=1

〈ϕk | ψ〉|ϕk〉

shows how to resolve a vector into its components.

〈χ | ψ〉 = 〈χ |
n∑

k=1

|ϕk〉〈ϕk | ψ〉 =
n∑

k=1

〈χ | ϕk〉〈ϕk | ψ〉
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shows the inner product as a sum of pair-wise products of components.

〈ϕj|T|ψ〉 = 〈ϕj|T
n∑

k=1

|ϕk〉〈ϕk|ψ〉 =
n∑

k=1

〈ϕj|T|ϕk〉〈ϕk | ψ〉

calculates the effect of T on a vector |ψ〉 in terms of matrix multiplication.

T|ϕj〉 =
n∑

k=1

|ϕk〉〈ϕk|T|ϕj〉 =
n∑

k=1

〈ϕk|T|ϕj〉|ϕk〉

expresses the effect of T on the jth basis vector as a linear combination of the
basis vectors with matrix elements as weights.

〈ϕj|TS|ϕk〉 = 〈ϕj|T
n∑

i=1

|ϕi〉〈ϕi|S|ϕk〉 =
n∑

i=1

〈ϕj|T|ϕi〉〈ϕi|S|ϕk〉

illustrates the product of T and S in terms of the product of the corresponding
matrix representations.

It is a good exercise in the use of Dirac notation to show that the five identities
hold. For further details the reader should consult Jordan (1969). An explanation
of how the Dirac notation relates to standard mathematical notation for vector
spaces is quite hard to find, but one of the most recent can be found in Sadun
(2001). Dirac (1958) himself of course explained and motivated the notation
in his groundbreaking book, where it was developed along with an introduc-
tion to quantum mechanics. The recent book by Griffiths (2002) has a clear
explanation, but again it is intertwined with details of quantum mechanics.
Developing an understanding of the Dirac notation is well worthwhile as it
opens up many of the books and papers in quantum mechanics, especially the
classics. One of the greatest is Von Neumann’s (1983), which uses the notation
to great effect to discuss the foundations of quantum mechanics. The power
of the notation comes from the fact that it accomplishes some very compli-
cated manipulations whilst at the same time taking care of the ‘bookkeeping’,
thus making sure, almost by sleight of hand, that mathematical correctness is
preserved.

A good example of the power of the Dirac notation shows in the derivation
of the Cauchy–Schwartz inequality, which will be used in the next appendix.

Cauchy–Schwartz inequality

The Cauchy–Schwartz inequality states that for two vectors |ϕ〉 and |�〉 we
have |〈ϕ | ψ〉|2 ≤ 〈ϕ | ϕ〉〈ψ | ψ〉. To derive this result, construct a orthonormal
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basis {ϕ1, . . . , ϕn} for the Hilbert space. Let |ϕ1〉 = |ψ〉/√〈ψ | ψ〉, then

〈ϕ | ϕ〉〈ψ | ψ〉 = 〈ϕ|
∑

i

|ϕi 〉〈ϕi||ϕ〉〈ψ | ψ〉

=
∑

i

〈ϕ | ϕi〉〈ϕi | ϕ〉〈ψ | ψ〉

≥ 〈ϕ | ψ〉〈ψ | ϕ〉
〈ψ | ψ〉 〈ψ | ψ〉

= 〈ϕ | ψ〉〈ψ | ϕ〉 = |〈ϕ | ψ〉|2,
where we have used the resolution of the identity I, and ignored all the
(non-negative) terms in the sum bar the first.



Appendix II

Quantum mechanics

One should keep the need for a sound mathematical basis dominating
one’s search for a new theory. Any physical or philosophical ideas that
one has must be adjusted to fit the mathematics. Not the other way around.

Dirac, 1978.

This appendix will give a brief, highly simplified introduction to a number
of the principles underlying quantum theory. It is convenient to collect them
here independent of information retrieval. We will use the Dirac notation
introduced in the previous appendix to express the necessary mathematics.1

Before examining the few principles underlying quantum mechanics let us
make two comments. The first is that there is no general agreement about
whether probabilistic quantum statements apply to individual isolated systems
or only to ensembles of such systems identically prepared. The second com-
ment is that there is no distinct preference whether to develop quantum the-
ory fully in terms of vectors in a Hilbert space, or in terms of the density
operators applied to that space. We will not take a strong position on either

1 There are, it is hardly necessary to say, many more complete and deeper introductions. Usually
they are wrapped up with philosophical considerations, or physical phenomena. For example,
Hughes (1989), Van Fraassen (1991) and Bub (1997) give excellent philosophical accounts,
whereas Peres (1998), Omnès (1994) and Schwinger (2001) are good introductions linked with
physical phenomena. One of the best pure mathematical accounts, in sympathy with the
approach taken in this book, is Varadarajan (1985). Of course, the original books by Dirac
(1958), Von Neumann (1983) and Feynman et al. (1965) are good sources of inspiration and
understanding. Outstanding bibliographies can be found in Suppes (1976) and Auletta (2000);
the website www.arXiv.org gives access to many recent papers in quantum mechanics. One of
the best all-round introductions, combining the mathematical, philosophical and physical is
Griffiths (2002).

There are remarkably few principles underlying modern quantum mechanics. Different
versions can be found in d’Espagnat (1976), Auyang (1995) and Wootters (1980), where they
are spelt out explicitly.

109



110 The Geometry of Information Retrieval

division. For convenience we will assume that statements are applicable to
single systems, and that when it suits, either vectors or density operators can be
used.

To begin with we will consider only pure states of single systems and observ-
ables with discrete non-degenerate spectra.2 This will keep the mathematics
simple.

There are four significant fundamental concepts to consider: physical states,
observables, measurements and dynamics; and of course the interplay between
these.

Physical states

A quantum state is the complete and maximal summary of the characteristics
of the quantum system at a moment in time. Schrödinger, see Wheeler and
Zurek (1983), already held this view: ‘It (ψ-function) is now the means for
predicting probability of measurement results. In it is embodied momentarily-
attained sum of theoretically based future expectation, somewhat as laid down
in a catalogue.’ The state of a system is represented mathematically by a unit
vector |ϕ〉 in a complex Hilbert space. That is, the states are such that

‖ϕ‖2 = 〈ϕ | ϕ〉 = 1.

The ensemble interpretation would say that the ensemble of identically prepared
systems is represented by |ϕ〉. The same physical state as |ϕ〉 is represented
by eiθ |ϕ〉, its norm remains unity, and θ is called the phase factor.

Observables

These are represented by self-adjoint operators on the Hilbert space. It is
assumed that every physical property that is to be measured is representable by
such an operator, and that the spectrum of the operator comprises all possible
values that can be found if the observable is measured. Thus, certain values
called eigenvalues of the self-adjoint operator, which are all real, are all the out-
comes of a measurement that are possible. The eigenvectors corresponding to
the eigenvalues, are called the eigenstates of the system. A famous postulate3 of

2 This is standard terminology to express that the eigenvalues of the operators representing
observable are unique: a single eigenvector per eigenvalue.

3 The postulate is generally referred to as Von Neumann’s Projection Postulate. There are other
related ones, for example one due to Lüders (1951).
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Von Neumann required that immediately after a measurement a system could be
deemed to be in the eigenstate corresponding to the observed eigenvalue. This
would ensure that a measurement of the same observable immediately after its
first measurement would produce the same eigenvalue with probability 1.

Measurements

Let us assume that we have a physical system whose quantum state is described
by the ket |ϕ〉, and suppose that we measure the observable T which is repre-
sented by the self-adjoint operator T. In classical physics such a measurement
would produce a definite result. However, in quantum theory the outcome of
a measurement can only be predicted with a certain probability, making the
claim that measurement is intrinsically probabilistic, and that the probability of
outcome of a measurement depends on the state of the system, that is, it depends
on |ϕ〉. This fundamental relationship is codified in the following manner for
n-dimensional operators with a non-degenerate spectrum

Pϕ(T, λi) = 〈
ϕ

∣∣ ET
i ϕ

〉 = 〈ϕ | ψi〉〈ψi | ϕ〉 = |〈ϕ | ψi〉|2, where

ϕ is the normalised vector in Hilbert space representing the system,4

T is the self-adjoint operator representing the observable T,5

ET
i is the projector |ψ i〉〈ψ i| onto the 1-dimensional subspace spanned by ψ i,

ψ i is one of the n eigenvectors associated with T, and
λi is the ith eigenvalue associated with the ith eigenvector ψ i.

Pϕ (T, λi) is the probability that a measurement of T conducted on a system
in state ϕ will yield a result λi with a probability given by |〈ϕ | ψi〉|2. In an
n-dimensional Hilbert space any vector ϕ can be expressed as a linear combi-
nation of the basis vectors. The eigenvectors {ψ1, . . . ,ψn} form an orthonormal
basis and hence ϕ = c1ψ1 + c2ψ2 + · · · + cnψn, where the ci are complex
numbers such that �n

i=1|ci|2 = 1, and hence |〈ϕ | ψi〉|2 = |c∗
i ci| = |ci|2. Observe

that the probabilities sum to unity, as they must.
From this algorithm for calculating the probability Pϕ(. , .) it is immediately

possible to derive the statistical quantities, expected value and variance of
an observable, which we will need below to derive the famous Heisenberg

4 ϕ and |ϕ〉 are in 1:1 correspondence and will be treated as names for the same object.
5 It is conventional in quantum mechanics to use the same symbol for an observable and the

self-adjoint operator representing it.
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Uncertainty Principle. The expected value 〈T〉 of an obervable T is calculated
as follows:

〈T〉 =
n∑

i=1

|〈ϕ | ψi〉|2λi =
n∑

i=1

〈ϕ|ET
i |ϕ〉λi

= 〈ϕ|
n∑

i=1

λiET
i |ϕ〉

= 〈ϕ|T|ϕ〉.
The last step in the derivation above is given by the Spectral Decomposition
Theorem (see Chapter 4).

The variance of a quantity is usually a measure of the extent to which it
deviates from the expected value. In quantum mechanics the variance (�T)2 of
an observable T in state ϕ is defined as

(�T)2 = 〈Tϕ − 〈T〉ϕ | Tϕ − 〈T〉ϕ〉 = ‖Tϕ − 〈T〉ϕ‖2.

Let us demonstrate the expected value and variance with some examples. If
the system is in one of its eigenstates, say |ψ i〉, then for a measurement of the
observable T you expect 〈T〉to be λi with zero variance, that is with complete
certainty. Let us check this:

〈T〉 = 〈ψi|T|ψi〉 = 〈ψi |λiψi〉 = λi〈ψi | ψi〉 = λi because 〈ψi | ψi〉 = 1;

(�T) = ‖Tψi − 〈T〉ψi‖ = ‖Tψi − λiψi‖ = ‖Tψi − Tψi‖ = 0.

Another interesting case is to look at the expectation of a projector onto an
eigenvector |ψ i〉when the system is in state |ϕ〉. Let Ti = |ψ i〉〈ψ i|; then

〈|ψi〉〈ψi|〉 = 〈ϕ | ψi〉〈ψi | ϕ) = |〈ϕ | ψi〉|2,
which is the probability that a measurement of Ti conducted on a system in
state ϕ will yield a result λi.6 Projection operators can be interpreted as simple
questions that have a ‘yes’ or ‘no’ answer, because they have two eigenvalues,
namely 1 and 0.

Ti|ψi〉 = |ψi〉〈ψi | ψi〉 = 1|ψi〉;
Ti|ψj〉 = |ψi〉〈ψi | ψj〉 = 0|ψi〉 because 〈ψi | ψj〉 = δij.

Given one such question Ti, 〈Ti〉 is the expected relative frequency with which
the observable Ti when measured will return an answer ‘yes’. Because any
self-adjoint operator can be decomposed into a linear combination of pro-
jectors, it implies that any observable can be reduced to a set of ‘yes’/‘no’

6 Remember that λi is the eigenvalue associated with the eigenvector ψ i.
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questions. Mackey(1963) developed this ‘question-oriented’ approach to quan-
tum mechanics in some detail, constructing what he called question-valued
measures.

Heisenberg Uncertainty Principle7

Surprisingly, this famous principle in quantum mechanics can be derived from
Hilbert space theory for non-commuting self-adjoint operators without any
reference to physics. It uses some simple facts about complex numbers and the
Cauchy–Schwartz inequality (see Chapter 3). Its statement for two observables
T and S is that when T and S are measured for a system whose quantum state
is given by |ψ〉, then the product of the variances of T and S are bounded from
below as follows:

�T�S ≥ 1
2 |〈ψ |TS − ST|ψ〉|.

To derive it we need first to introduce some notation and some elementary
mathematical results. For any two observables A and B we can define the
commutator [A, B] and anti-commutator {A, B}

[A, B] ≡ AB − BA,

{A, B} ≡ AB + BA.

Let x and y be real variables and x + iy a complex number.

〈ψ |AB|ψ〉 = x + iy

〈ψ |[A, B]|ψ〉 = 〈ψ |AB|ψ〉 − 〈ψ |BA|ψ〉 = x + iy − x + iy = 2iy,

〈ψ |{A, B}|ψ〉 = 〈ψ |AB|ψ〉 + 〈ψ |BA|ψ〉 = x + iy + x − iy = 2x.

Doing the complex number arithmetic, we can derive

|〈ψ |[A, B]|ψ〉|2 + |〈ψ |{A, B}|ψ〉|2 = 4|〈ψ |AB|ψ〉|2.
By the Cauchy–Schwartz inequality, we get

|〈ψ |AB|ψ〉|2 ≤ 〈ψ |A2|ψ〉〈ψ |B2|ψ〉.
Combining this with the previous equation and dropping the term involving
{A, B}, we get

|〈ψ |[A, B]|ψ〉|2 ≤ 4〈ψ |A2|ψ〉〈ψ |B2|ψ〉.

7 See Heisenberg (1949) for an account by the master, and Popper (1982) for an enthusiastic
critique.



114 The Geometry of Information Retrieval

Now, to derive the principle we substitute A = T − 〈T〉I and B = S − 〈S〉I,
where T and S are observables and I is the identity operator, and we get

(�T)2 = 〈ψ |A2|ψ〉,
(�S)2 = 〈ψ |B2|ψ〉,

〈ψ |[A, B]|ψ〉 = 〈ψ |(T − 〈T〉I)(S − 〈S〉I)|ψ〉 = 〈ψ |[T, S]|ψ〉.
Substituting into the inequality above gives the Heisenberg Uncertainty
Principle:

�T�S ≥ |〈ψ |[T, S]|ψ〉|
2

.

There are some interesting things to observe about this inequality and its deriva-
tion. Time did not play a role in the derivation, so the result is independent of
time. More importantly, one must be clear about its interpretation. The inequal-
ity does not quantify how the measurement of one observable inteferes with the
accuracy of another. The correct way to interpret it is as follows: when a large
number of quantum systems are prepared in an identical state represented by
|ψ〉, then peforming a measurement of T on some of these systems, and S on
others, the variances (�T)2 and (�S)2 will satisfy the Heisenberg inequality.
It is important to emphasise once again that no physics was used in the deriva-
tion, and the only extra mathematical results used, apart from standard Hilbert
space geometry, were the Cauchy–Schwartz inequality and the fact that in gen-
eral operators do not commute, that is, AB − BA �= 0. In the case where the
operators do commute, the commutator [A, B] reduces to zero and the lower
bound on the product of the variances is zero, and hence no bound at all. It is
surprising that such a famous principle in physics is implied by the choice of
mathematical representation for state and observable in Hilbert space.

In this appendix the time evolution of the quantum state has been ignored,
because in this book, time evolution is not considered. Nevertheless, it is impor-
tant to remember that the evolution in time of a state vector |ψ〉 is governed by
the famous Schrödinger equation. An excellent exposition of this equation may
be found in Griffiths (2002).

Further reading

The following is a list of references for further elementary, and in some cases
more philosophical, introductions to quantum mechanics. The reader might
like to consult the bibliography for the annotations with respect to each refer-
ence. They are Aerts (1999), Baggott (1997), Barrett (1999), Greenstein and
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Zajonc (1997), Healey (1990), Heisenberg (1949), Isham (1995), Lockwood
(1991), London and Bauer (1982), Murdoch (1987), Packel (1974), Pais (1991),
Reichenbach (1944) and Van der Waerden (1968).

Although this book is not about quantum computation, much of the literature
referenced below contains excellent introductions to the mathematics for quan-
tum mechanics in which the application to physics is minimized and instead
the relationship with computing science is emphasized. Good examples are
Bouwmeester et al. (2001), Deutsch (1997), Grover (1997), Gruska (1999),
Hirvensalo (2001), Lo et al. (1998), Nielsen and Chuang (2000) and Pittenger
(2000). Grover (1997) is not a book but a seminal paper on the application of
quantum computation to searching.

A book that deserves special mention is the one by Lomonaco (2002);
although it is primarily an introduction to quantum computation, the first chap-
ter contains one of the best introductions to quantum mechanics this author has
encountered.
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Probability

Therefore the true logic for this world is the calculus of Probabilities
which is, or ought to be, in a reasonable man’s mind.

James Clerk Maxwell

Classical probability

The usual starting point for classical probability theory is with Kolmogorov’s
axioms, first stated in his book published in 1933 and translated into English
in 1950. Ever since then these axioms have been used and repeated in many
publications, and may be considered as orthodoxy.1 The Kolmogorov axioms
define a probability measure on a field � of sets, which is a collection of subsets
of the set �, the universe of basic events. This universe � can be a set of
anything; it is the subsets which are members of � that are important. � is a
field because it is closed with respect to the operations of complementation,
countable union and intersection. Furthermore, it contains the empty set �, and
hence by complementation the entire set �.

We can now define a probability measure on �. It is a positive-valued function
µ: � → �+, a mapping from the field of subsets into the set of positive real
numbers2 with the following properties:

µ(�) = 0; µ(�) = 1.

1 A recent version is given in Jaynes (2003), where we also find very detailed and annotated
references to the earlier literature on probability, for example Jeffreys (1961), Keynes (1929),
Feller (1957)), Good (1950), Cox (1961), de Finetti (1974) and Williams (2001). For
introductions to probability theory motivated by the needs of quantum mechanics one should
look at Jauch (1968), Sneed (1970) and Sutherland (2000).

2 The positive shall include zero.
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For any pairwise disjoint sequence Sn , that is Si ∩ Sj = � for i �= j , we have

µ
(⋃

Sn

)
=

⋃
n

µ(Sn) (σ -additivity)

and a requirement for continuity at zero, that if a sequence S1 ⊇ S2 ⊇ S3 ⊇
· · · tends to the empty set, then µ(Sn) → 0. All this abstract theory can be
summarised by saying that a numerical probability is a measure µ on a Boolean
σ -algebra � of subsets of a set �, such that µ(�) = 1 (Halmos, 1950).

We rarely work with probability functions in this form, and we usually see
them defined slightly differently P(.) is a positive real-valued function on an
event space, where E0 is the empty event, E1 the universal event, and then

P(E0) = 0 and P(E1) = 1,

P(Ei ∪ Ej) = P(Ei) + P(Ej) provided that Ei ∩ Ej = E0.

A conditional probability is then defined by

P(E | F) = P(E ∩ F)

P(F)
provided that P(F) �= 0.

One can then transform this latter equation into Bayes’ Theorem, which is

P(E | F) = P(F | E)P(E)

P(F)
.

Because of a famous corollary to the Stone Representation Theorem: every
Boolean algebra is isomorphic to a field of sets (Halmos, 1963), it is possible to
substitute propositional variables for events. Thus we can define probability as
a real-valued function P on an algebra of propositions satisfying the following
axioms:

P(p) ≥ 0 for all p belonging to the algebra,

P(T) = 1, where T = p ∨ p̄ is a tautology,

P(p ∨ q) = P(p) + P(q), whenever p ∨ q.

Conditional probability and Bayes’ Theorem can then be re-expressed in terms
of propositions instead of subsets.

Quantum probability

When it comes to defining a probability function for quantum mechanics the
situation is somewhat different. There is an excellent paper by Jauch (1976)
in Suppes (1976) that shows how to define probability and random variables
for quantum mechanics, with definitions motivated by the classical definitions.
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In essence the powerset of subsets of a set of outcomes (the sample space)
which forms a Boolean lattice is replaced by a non-Boolean lattice on which a
probability measure is defined thus.

Let L be the lattice of elementary events. Then a probability measure on L,
a function µ: L → [0, 1], is defined on L with values in [0, 1] satisfying the
following conditions:

∑
µ(ai) = µ(∪ai), for ai ∈ L, i = 1, 2, . . . , ai ⊥ aj, when i �= j;

µ(�) = 0, µ(I) = 1, where � is the smallest and I is the largest element

in L;

if µ(a) = µ(b) = 1 then µ(a ∩ b) = 1.

This definition is made more concrete if the lattice elements are interpreted as
the subspaces of a Hilbert space H. It is a well known result that this ℘(H),
the lattice of closed subspaces of a complex Hilbert space, is a non-Boolean
lattice of a special kind (see, for example, Birkhoff and Von Neumann, 1936,
or Beltrametti and Cassinelli, 1981).

A less abstract definition of the probability measure can now be given
in terms of the closed subspaces of H. Let ϕ be any normalised vector in
the Hilbert space H, then a probability measure µ on the set of subspaces
L = ℘(H) is defined as follows:

µϕ(�) = 0,
µϕ(H) = 1.

For subspaces Li and Lj, µϕ(Li ⊕ Lj) = µφ(Li) + µϕ(Lj) provided Li ∩ Lj = �.
Observe that the measure µ is defined with respect to a particular vector ϕ, a
different measure for different vectors. The symbol ⊕ is used to indicate the
linear span of two subspaces, which in the classical axioms would have been the
union of two sets. For a more general form of the probability axioms, interested
readers should consult Parthasarathy (1992).

A concrete realisation of such a probability measure can be given. To do this
we need to define briefly trace and density operator (see Chapter 6).

tr(A) =
∑

i

〈ϕi|A|ϕi〉, where 〈ϕ|A|ϕ〉 > 0 ∀ϕ ∈ H,

and {ϕi} is a orthonormal basis for H.

The trace tr(.) has the following properties if the traces are finite and α a scalar:

tr(αA) = αtr(A),

tr(A + B) = tr(A) + tr(B).
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Now a density operator D is such that 〈ϕ|D|ϕ〉 > 0 ∀ ϕ ∈ H and tr(D) = 1.
So, for example, every projection operator onto a 1-dimensional subspace is
a density operator, and its trace is unity. Moreover, any linear combination∑

i αPi of such projectors Pi, where
∑

i α = 1, is a density operator. If we
now define for any projector PL onto subspace L the quantity tr(DPL) for a
density operator D, we find that it is a probability measure on the subspaces L:
µ(L) = tr(DPL), conforming to the axioms defined above. Significantly, the
reverse is true as well, that is that given a probability measure on the closed sub-
spaces of a Hilbert space H, then there exists a density operator that ‘computes’
the probability for each subspace (Gleason, 1957).

Let us do a simple example. Let D = |ϕ〉〈ϕ| and Pψ = |ψ〉〈ψ|. Then

tr(DPψ ) = tr(|ϕ〉〈ϕ‖ψ〉〈ψ |) = tr(|ϕ〉〈ϕ | ψ〉〈ψ|)
= 〈ϕ | ψ〉tr(|ϕ〉〈ψ|) = 〈ϕ | ψ〉〈ψ | ϕ〉 = |〈ϕ | ψ〉|2,

which by now is a familiar result showing that the probability of getting a yes
answer to the question Pψ when the system is in state D is |〈ϕ | ψ〉|2 (refer to
Appendix II for more details).

Further reading

Williams (2001), apart from being an excellent book on probability theory, con-
tains a comprehensive chapter on quantum probability. For the real enthusiast
we recommend Pitowsky (1989), which describes and explains many results
in quantum probability in great detail and makes appropriate connections with
quantum logic.



Bibliography

Accardi, L. and A. Fedullo (1982). ‘On the statistical meaning of complex numbers in
quantum mechanics.’ Lettere al nuovo cimento 34(7): 161–172. Gives a technical
acount of the necessity for using complex rather than real Hilbert spaces in quantum
mechanics. There is no equivalent argument for IR (yet).

Aerts, D. (1999). ‘Foundations of quantum physics: a general realistic and operational
approach.’ International Journal of Theoretical Physics 38(1): 289–358. This is a
careful statement of the basic concepts of quantum mechanics. Most of it is done
from first principles and the paper is almost self-contained. The foundations are
presented from an operational point of view.

Aerts, D., T. Durt, A. A. Grib, B. van Bogaert and R. R. Zupatrin (1993). ‘Quantum
structures in macroscopic reality.’ International Journal of Theoretical Physics
32(3): 489–498. They construct an artificial, macroscopic device that has quantum
properties. The corresponding lattic is non-Boolean. This example may help in
grasping non-Boolean lattices in the abstract.

Albert, D. Z. (1994). Quantum Mechanics and Experience, Harvard University Press.
This is one of the best elementary introductions to quantum mechanics, written
with precision and very clear. The examples are very good and presented with
considerable flair. It uses the Dirac notation and thus provides a good entry point
for that too, although the mathematical basis for it is never explained.

Albert, D. and B. Loewer (1988). ‘Interpreting the many worlds interpretation.’ Synthese
77: 195–213. The many worlds interpretation is worth considering as a possible
model for interpreting the geometry of information retrieval. Albert and Loewer
give a clear and concise introduction to the many world approach as pioneered by
Everett (DeWitt and Graham, 1973).

Amari, S.-i. and H. Nagaoka (2000). Methods of Information Geometry, Oxford
University Press. This one is not for the faint hearted. It covers the connection
between geometric structures and probability distribution, but in a very abstract
way. Chapter 7 gives an account of ‘information geometry’ for quantum systems.
It defines a divergence measure for quantum systems equivalent to the Kullback
divergence. For those interested in quantum information this may prove of interest.

Amati, G. and C. J. van Rijsbergen (1998). ‘Semantic information retrieval.’ In
Information Retrieval: Uncertainty and Logics, F. Crestani, M. Lalmas and

120



Bibliography 121

C. J. van Rijsbergen (eds.). Kluwer, pp. 189–219. Contains a useful discussion
on various formal notions of information content.

Arveson, W. (2000). A short course on spectral theory. Springer Verlag. Alternative to
Halmos (1951). A fairly dense treatment.

Auletta, G. (2000). Foundations and Interpretation of Quantum Mechanics; in the Light
of a Critical-Historical Analysis of the Problem and of a Synthesis of the Results.
World Scientific. This book is encyclopedic in scope. It is huge – 981 pages long
and contains a large bibliography with a rough guide as to where each entry is
relevant, and the book is well indexed. One can find a discussion of almost any
aspect of the interpretation of QM. The mathematics is generally given in its full
glory. An excellent source reference. The classics are well cited.

Auyang, S. Y. (1995). How is Quantum Field Theory Possible? Oxford University Press.
Here one will find a simple and clear introduction to the basics of quantum mechan-
ics. The mathematics is kept to a minimum.

Bacciagaluppi, G. (1993). ‘Critique of Putnam’s quantum logic.’ International Journal
of Theoretical Physics 32(10): 1835–1846. Relevant to Putnam (1975).

Baeza-Yates, R. and B. Ribeiro-Neto (1999). Modern Information Retrieval, Addison
Wesley. A solid introduction to information retrieval emphasising the computational
aspects. Contains an interesting and substantial chapter on modelling. Contains a
bibliography of 852 references, also has a useful glossary.

Baggott, J. (1997). The Meaning of Quantum Theory, Oxford University Press. Fairly
leisurely introduction to quantum mechanics. Uses physical intuition to motivate
the Hilbert space mathematics. Nice examples from physics, and a good section
on the Bohr–Einstein debate in terms of their thought experiment ‘the photon box
experiment’. It nicely avoids mathematical complications.

Barrett, J. A. (1999). The Quantum Mechanics of Minds and Worlds, Oxford University
Press. This book is for the philosophically minded. It concentrates on an elaboration
of the many-worlds interpretation invented by Everett, and first presented in his
doctoral dissertation in 1957.

Barwise, J. and J. Seligman (1997). Information Flow: The Logic of Distributed Systems,
Cambridge University Press. Barwise has been responsible for a number of inter-
esting developments in logic. In particular, starting with the early work of Dretske,
he developed together with Perry an approach to situation theory based on notions
of information, channels and information flow. What is interesting about this book
is that in the last chapter of the book, it relates their work to quantum logic. For this
it used the theory of manuals developed for quantum logic, which is itself explained
in detail in Cohen (1989).

Belew, R. (2000). Finding Out About: a Cognitive Perspective on Search Engine Technol-
ogy and the WWW. Cambridge University Press. Currently one of the best textbooks
on IR in print. It does not shy away from using mathematics. It contains a good
section introducing the vector space model pioneered by Salton (1968) which is
useful material as background to the Hilbert space approach adopted in GIR. The
chapter on mathematical foundations will also come in handy and is a useful ref-
erence for many of the mathematical techniques used in IR. There is a CD insert
on which one will find, among other useful things, a complete electronic version
of Van Rijsbergen (1979a).



122 Bibliography

Bell, J. S. (1993). Speakable and Unspeakable in Quantum Mechanics, Cambridge
University Press. A collection of previously published papers by the famous Bell,
responsible for the Bell inequalities. Several papers deal with hidden variable the-
ories. Of course it was Bell who spotted a mistake in Von Neumann’s original
proof that there was no hidden-variable theory for quantum mechanics. It contains
a critique of Everett’s many-worlds interpretation of quantum mechanics. It also
contains ‘Beables for quantum field theory’.

Beltrametti, E. G. and G. Cassinelli (1977). ‘On state transformation induced by yes–
no experiments, in the context of quantum logic.’ Journal of Philosophical Logic
6: 369–379. The nature of the conditional in logic as presented by Stalnaker and
Hardegree can be shown to play a special role in quantum logic. Here we have a
discussion of how YES–NO experiments can be useful in giving meaning to such
a conditional.

— (1981). The Logic of Quantum Mechanics. Addison-Wesley Publishing Company.
This is a seminal book, a source book for many authors writing on logic and
probability theory in quantum mechanics. Most of the mathematical results are
derived from first principles. Chapter 9 is a good summary of the Hilbert space
formulation which serves as an introduction to Part II: one of the best introductions
to the mathematical structures for quantum logics. It is well written. Chapter 20 is
a very good brief introduction to quantum logic.

Beltrametti, E. G. and B. C. van Fraassen, eds. (1981). Current Issues in Quantum Logic.
Plenum Press. This volume collects together a number of papers by influential
thinkers on quantum logic. Many of the papers are written as if from first principles.
It constitutes an excellent companion volume to Beltrametti and Cassinelli (1981)
and Van Fraassen (1991). Many of the authors cited in this bibliography have a paper
in this volume, for example, Aerts, Bub, Hardegree, Hughes and Mittelstaedt. A
good place to start one’s reading on quantum logic.

Bigelow, J. C. (1976). ‘Possible worlds foundations for probability.’ Journal of
Philosophical Logic 5: 299–320. Based on the notion of similarity heavily
used by David Lewis to define a semantics for counterfactuals; Bigelow uses
it to define probability. This is good background reading for Van Rijsbergen
(1986).

— (1977). ‘Semantics of probability.’ Synthese 36: 459–472. A useful follow-on paper
to Bigelow (1976).

Birkhoff, G. and S. MacLane (1957). A Survey of Modern Algebra. The Macmillan
Company. One of the classic textbooks on algebra by two famous and first rate
mathematicians. This is the Birkhoff that collaborated with John von Neumann
on the logic of quantum mechanics and in 1936 published one of the first papers
ever on the subject. Most elementary results in linear algebra can be found in the
text. There is a nice chapter on the algebra of classes which also introduces partial
orderings and lattices.

Birkhoff, G. and J. von Neumann (1936). ‘The logic of quantum mechanics.’ Annals of
Mathematics 37: 823–843. Reprinted in Hooker (1975), this is where it all started!
‘The object of the present paper is to discover what logical structure one may hope
to find in physical theories which, like quantum mechanics, do not conform to
classical logic. Our main conclusion, based on admittedly heuristic arguments, is
that one can reasonable expect to find a calculus of propositions which is formally



Bibliography 123

indistinguishable from the calculus of linear subspaces with respect to set products,
linear sums, and orthogonal complements – and resembles the usual calculus of
propositions with respect to and, or, and not.’ Ever since this seminal work there
has been a steady output of papers and ideas on how to make sense of it.

Blair, D. C. (1990). Language and Representation in Information Retrieval. Elsevier. A
thoughtful book on the philosophical foundations of IR, it contains elegant descrip-
tions of some of the early formal models for IR. Enjoyable to read.

Blum, K. (1981). ‘Density matrix theory and applications.’ In Physics of Atoms and
Molecules, P. G. Burke (ed.) Plenum Press, pp. 1–62. It is difficult to find an
elementary introduction to density matrices. This is one, although it is mixed up
with applications to atomic physics. Nevertheless Chapter 2, which is on general
density matrix theory, is a good self-contained introduction which uses the Dirac
notation throughout.

Borland, P. (2000). Evaluation of Interactive Information Retrieval Systems. Abo
Akademi University. Here one will find a methodology for the evaluation of IR
systems that goes beyond the now standard ‘Cranfield paradigm’. There is a good
discussion of the concept of relevance and the book concentrates on retrieval as an
interactive process. The framework presented in GIR should be able to present and
formalise such a process.

Bouwmeester, D., A. Ekert and A. Zeiliager, eds. (2001). The Physics of Quantum
Information, Springer-Verlag. Although not about quantum computation per se,
there are some interesting connections to be made. This collection of papers covers
quantum cryptography, teleportation and computation. The editors are experts in
their field and have gone to some trouble to make the material accessible to the
non-expert.

Bruza, P. D. (1993). Stratified Information Disclosure: a Synthesis between Hypermedia
and Information Retrieval. Katholieke University Nijmegen. A good example of
the use of non-standard logic in information retrieval.

Bub, J. (1977). ‘Von Neumann’s projection postulate as a probability conditionalization
rule in quantum mechanics.’ Journal of Philosophical Logic 6: 381–390. The title
says it all. The Von Neumann projection postulate has been a matter of debate
ever since he formulated it; it was generalised by Lüders in 1951. Bub gives a
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Projection Postulate.

Mackay, D. (1950). ‘Quantal aspects of scientific information’, Philosophical Magazine,
41, 289–311.

— (1969). Information, Mechanism and Meaning, MIT Press.
Mackey, G. W. (1963). Mathematical Foundations of Quantum Mechanics. Benjamin.

One of the early well known mathematical introductions, it is much cited. He
introduced the suggestive terminology ‘question-valued measure’.

Marciszewski, W., ed. (1981). Dictionary of Logic – as Applied in the Study of Language.
Nijhoff International Philosophy Series, Martinus Nijhoff Publishers. This dictio-
nary contains everything that you have always wanted to know about logic (but were
ashamed to ask). It contains entries for the most trivial up to the most sophisticated.
Everything is well explained and references are given for further reading.

Maron, M. E. (1965). ‘Mechanized documentation: The logic behind a probabilistic
interpretation.’ In Statistical Association Methods for Mechanized Documenta-
tion. M. E. Stevens et al., (eds.) National Bureau of Standards Report 269: 9–13.
‘The purpose of this paper is to look at the problem of document identification and
retrieval from a logical point of view and to show why the problem must be inter-
preted by means of probability concepts.’ This quote from Maron could easily be
taken as a part summary of the approach adopted in GIR. Maron was one of the very



136 Bibliography

first to start thinking along these lines, less surprising if one considers that Maron’s
Ph.D. dissertation, ‘The meaning of the probability concept’, was supervised by
Hans Reichenbach, one of early contributors to the foundations of QM.
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