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 Several empirical observations suggested a long time ago that established 
human tumors could melt away in response to perturbations of the immune 
system, such as during acute infection. Such regressions of tumors occurred 
most often but not exclusively when infection occurred at the tumor site and 
sparked the interest of investigators in identifying the mechanism leading to 
such occurrences based on the assumption that infection acted as an adjuvant 
to boost existing but insuffi cient immune surveillance against neoplasms. 
These anecdotal observations are not only refl ected in the scientifi c literature 
such as the classic reports of William Cooley in the late 1800s but even dis-
cussed by classic authors such as the doctor–writer Anton Chekhov.             

 It took time, however, to elevate these concepts derived from empirical 
observations to a science of molecular precision. Skepticism dominated the 
scene for a long time, including during the late 1980s, when the introduction of 
systemic IL-2 therapy for the treatment of advanced melanoma and renal cell 
carcinoma provided consistent and reproducible evidence that some advanced 
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cancers could regress and remain in long-term remission with a treatment that 
had for sure no direct effect on cancer cells. Retrospectively, as too often occurs 
in science, this skepticism was unwarranted, and the detractors of cancer immu-
notherapy made a disservice by slowing the progression of this budding disci-
pline. Common criticisms were not directed against the observation that cancers 
could regress but rather focused on denial about the overall effectiveness of 
treatment, the sporadic nature of the regressions, and the relatively high toxic-
ity. In other words, the skeptics confused the clinical effectiveness of a treat-
ment with the value of a promising scientifi c observation. 

 I am emphasizing this because it is important to remember those diffi cult 
moments now that books as sophisticated and comprehensive are presented on 
a topic that was not even considered true science by most just a few decades 
ago. Fortunately, several investigators did not give up but, focusing on the value 
of an uncommon but reproducible observation, carried the fi eld forward. 

 Thus, this book! An achievement diffi cult to predict only two decades ago! 
 It is a book that encompasses more than 75 chapters spanning from bio-

logical aspects of innate and adaptive immune responses to systems biology 
approaches to biomarker discovery to portrayals of clinical successes and 
discussion of regulatory processes that are about to revolutionize the 
 development and licensing of new investigational agents. 

 The big change occurred after the identifi cation and molecular character-
ization of antigens recognized by antibodies and/or T cells. Moreover, the 
characterization of molecular mechanisms controlling the cross talks between 
cancer and non-neoplastic somatic cells expanded the fi eld and the under-
standing of the mechanistic bases of immune-mediated tumor rejection. 
These unarguable observations gave molecular precision to what was previ-
ously perceived as voodoo practice. However, the true revolution came with 
the clinical demonstration that some of the novel biological agents could sig-
nifi cantly improve the survival of patients, receiving, therefore, acceptance 
and recognition as standard therapies through regulatory licensing. 

 Yet, challenges remain, and it is not the time to relax. Still, the benefi ts, 
though reproducible, are marginal both in terms of number of patients benefi ting 
from the treatment and length of survival for those who benefi t. Most impor-
tantly, the outcomes are capricious and unpredictable. Predictive and surrogate 
biomarkers are missing in spite of novel technologies and strategies that could 
help in the identifi cation and stratifi cation of patients. Still, most clinical trials 
are designed to look at outcomes rather than comprehensively learn in case of 
failures. Still, a gap exists between the potentials for what we could do to better 
understand the biology of immune responsiveness and what we actually do. 

 This book is written for those who want to move the fi eld forward at both the 
clinical and the scientifi c levels. Such a compendium can provide a contemporary 
overlook at what has happened lately, which is remarkably logarithmic from a 
time perspective. Yet, we wonder how elemental this edition may seem just 
within a few years if the fi eld will continue to evolve at the current pace. We hope 
that a second edition will follow soon. Perhaps the editors should have asked for 
a clairvoyant’s chapter. Hopefully, one of the young readers of this edition may 
step forward and help defi ne the new frontiers of cancer immunotherapy.  

    Francesco     M.     Marincola  ,   MD    
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 The rapid fl ow of studies in the fi eld of cancer immunology during the last 
decade has increased our understanding of the interactions between the 
immune system and cancerous cells. In particular, it is now well known that 
such interactions result in the induction of epigenetic changes in cancerous 
cells and the selection of less immunogenic clones as well as alterations in 
immune responses. Understanding the cross talk between nascent trans-
formed cells and cells of the immune system has led to the development of 
combinatorial immunotherapeutic strategies to combat cancer.             

  Cancer Immunology , a three-volume book series, is intended as an up-to- 
date, clinically relevant review of cancer immunology and immunotherapy. 
 Cancer Immunology :  A Translational Medicine Context  is focused on the 
immunopathology of cancers;  Cancer Immunology :  Bench to Bedside 
Immunotherapy of Cancers  is a translation text explaining novel approaches 
in the immunotherapy of cancers; and fi nally,  Cancer Immunology :  Cancer 
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Immunotherapy for Organ - Specifi c Tumors  thoroughly addresses the immu-
nopathology and immunotherapy of organ-specifi c cancers. 

 In  Cancer Immunology :  Cancer Immunotherapy for Organ - Specifi c 
Tumors , the immunopathology and immunotherapy of various cancers cate-
gorized on an organ-specifi c basis are discussed in detail. Notably, the princi-
pal focus is to put the basic knowledge gained on tumor immunology and 
immunotherapy in the other two volumes into clinical perspective with the 
aim to educate clinicians on the most recent approaches used in the immuno-
therapy of various tumors. 

 Twenty-four chapters are allocated to meet this purpose. At the very begin-
ning, an overview of the benefi cial effects of immunotherapy are outlined in 
Chap.   1    ; then, in Chaps.   2     and   3    , various aspects of the immunotherapy of 
solid tumors are discussed, including vaccination against solid tumors and 
immunotherapy for pediatric solid tumors. Thereafter, fi ve chapters are 
devoted to hematological malignancies, specifi cally their immune microenvi-
ronment as well as the immunotherapeutic approaches; multiple myeloma, 
myeloid and lymphoid leukemias, as well as Hodgkin and non-Hodgkin lym-
phomas are discussed in Chaps.   3    ,   4    ,   5    ,   6    ,   7    , and   8    . 

 Due to the global prevalence of gastrointestinal tumors, precise discus-
sions are brought up in Chaps.   9    ,   10    ,   11    ,   12    , and   13    ; esophageal, gastric, liver, 
colon, and pancreatic cancers are tackled down one by one, respectively. Skin 
cancers, including melanoma and squamous-cell carcinoma as well as head, 
neck, and oral tumors, are illustrated in Chaps.   14    ,   15    , and   16    . 

 A chapter is allocated to the immunopathology and immunotherapy of 
bone and connective tissue tumors, followed by descriptions of progress 
made on the immunotherapy of central nervous system and lung tumors, in 
Chaps.   17     and   18    , respectively. 

 Chapters   19    ,   20    ,   21    , and   22     aim to educate the reader on the immunopa-
thology and immunotherapy of genitourinary tract tumors. Chapter   23     pro-
vides the reader with the most important detail on the application of 
immunotherapy in breast cancers. 

 To put an end to this volume and actually to the whole book series, immu-
nology and immunotherapy of graft-versus-host disease as a common com-
plication of organ transplantation would be highlighted. 

 I hope that this translational book will be comprehensible, cogent, and of 
special value for researchers and clinicians who wish to extend their knowl-
edge on cancer immunology.  

       Nima     Rezaei  ,   MD, PhD    
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1.1             Introduction 

 Cancer is a major public health issue which can 
affect every individual. Worldwide, cancer is one 
of the leading causes of mortality, morbidity, and 
decreased quality of life. Additionally, incidence 
of cancers is growing, and it would be the main 
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source of burden on both patients and societies, 
particularly in low- to medium-resource coun-
tries. A total of one fi fth of overall cancers can be 
 prevented by immunization against oncogenic 
infections. Thus, national vaccination programs 
against viruses such as HPV help prevent cancers 
and are regarded as the primary level of preven-
tion using immunotherapy. On the other hand, 
current standards of care have failed to do much 
for many cancer patients; hence, a new therapeu-
tic avenue like immunotherapy is needed to 
improve the care of cancer patients. With regard 
to current status of cancers worldwide including 
considerable incidence, morbidity, mortality rate, 
and insuffi ciency of current mainstays of cancer 
management including surgical approaches, che-
motherapy, and radiotherapy, immunotherapy 
holds great promise in combating cancers. In this 
chapter, a glance at overall status of morbidity, 
mortality, and burden of cancers worldwide has 
been made. Then the utility of immunotherapy at 
primary, secondary, and tertiary level of preven-
tion from cancers is discussed. At the end 
immune-related response criteria for cancer 
immunotherapy as well as cost-effectiveness of 
cancer immunotherapy have been discussed.  

1.2     Incidence, Morbidity, 
and Mortality of Cancers: 
Why Is a New Therapeutic 
Avenue Indicated? 

 Nowadays, cancer has become a global health 
issue with respect to its worldwide increase in 
incidence and burden. New cancer cases were 
estimated to be 12.7 million in 2008, whereas it is 
expected to rise to 22.2 million in 2030. This is 
alarming since increase in incidence of cancers 
outnumbers the proportional increase in popula-
tion worldwide [ 1 ]. Another unpleasant fact is 
the high mortality of this growing issue. In 2008, 
about 7.6 million died from cancers, accounting 
for 13 % of all deaths worldwide. About 70 % of 
overall cancer deaths occurred in low- to medium- 
resource countries [ 1 ,  2 ]. Of 12.7 million new 
cancer cases in 2008, 48.1 % in Asia, 25.3 % in 
Europe, 12.7 % in North America, 7.2 % in Latin 
America and Caribbean, 5.6 % in Africa, and 

1.1 % in Oceania were diagnosed. On the other 
hand, of 7.6 million deaths, 53.8 % in Asia, 
22.7 % in Europe, 8.4 % in North America, 7.2 % 
in Latin America and Caribbean, 7.2 % in Africa, 
and 0.7 % in Oceania occurred. Considering 
these absolute numbers of new cases and deaths 
owing to cancers, low- to middle-income coun-
tries are at emergent need for appropriate heath 
policies to fi ght cancers. In the following years, it 
is also estimated that new cases will mostly occur 
in low- to medium-resource countries due to two 
major reasons: (1) increase in incidence of can-
cers associated with westernized lifestyle includ-
ing colorectal, breast, and prostate cancers and 
(2) increase in the incidence of infection- related 
cancers (stomach, liver, and cervical cancers and 
less importantly lymphomas and Kaposi’s sar-
coma) owing to the dramatic increase in the prev-
alence of human immunodefi ciency virus (HIV), 
hepatitis B virus (HBV), and human papillomavi-
rus (HPV) infections, particularly in Sub-Saharan 
Africa and East Asia [ 1 ,  3 ]. These data shed light 
on “global cancer transition” that should be con-
sidered when establishing priorities to control 
cancers. One of the best strategies to control can-
cer pandemic, particularly in a low-resource set-
ting, is to provide vaccination against oncogenic 
viruses considered to have prophylactic use in 
immunotherapy to fi ght cancers [ 4 – 7 ]. 

1.2.1     Cancer Incidence 

 Worldwide incidence of overall cancers was esti-
mated to be 180.8 per 100,000 in 2008, and it is 
predicted to grow in the future. In 2008, the high-
est age-standardized incidence of overall cancers 
per 100,000 was estimated for Denmark with 
326.1, followed by Ireland with 317.0, Australia 
and New Zealand with 313.3, Belgium with 
306.8, and France with 300.4. By contrast, the 
least incidence was estimated for countries of 
Gaza Strip and West Bank with 54.9, Syrian Arab 
Republic with 72.2, Namibia with 78.3, Sudan 
with 81.5, and Botswana with 85.7 (Fig.  1.1 ). 
With respect to these data, incidence of cancer is 
the highest in high-resource countries, possibly 
due to westernized lifestyle and exposure to a 
wide range of pollutants and carcinogens. 
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However, it does not mean that cancers are of less 
importance in restricted resource regions as 
explained by several reasoning: (1) An absolute 
number of new cancer cases are higher in less 
developed countries with respect to overall popu-
lation, and (2) underestimation of cancers in 
restricted resource setting is a possibility consid-
ering the worldwide inequality in health system 
facilities.  

 More than the environment, host-related char-
acteristics are also major determinants of cancer 
incidence. Since cancer development is the result 
of immune system defeat in the war against tumor 
cells, immune-defi cient states are believed to pre-
dispose subjects to several cancers. The most 
common form of immune defi ciency is secondary 
types, though; both primary and secondary forms 
are associated with cancer development [ 8 – 11 ]. 
Infection-related cancers, but not other cancers, 
have increased incidence in these subjects [ 9 ,  11 ]. 
Acquired immunodefi ciency syndrome (AIDS), 
as one of the most important causes of secondary 
immunodefi ciency, is associated with increased 
malignancies [ 9 ]. AIDS- defi ning cancers encom-
pass Kaposi’s sarcoma, cervical cancer, and non-
hodgkin lymphoma (NHL) with a standardized 
incidence ratio (SIR) of 3640.0, 5.8, and 76.7, 
respectively. Interestingly, Kaposi’s sarcoma risk 

of incidence is up to 3,640 times higher in patients 
with AIDS compared to the normal population 
[ 9 ]. More interestingly, subjects who received 
transplantation and are immunosuppressed with 
drugs have SIR of 208.0 for Kaposi’s sarcoma 
and are also at increased risk for other infection-
related cancers [ 9 ]. Hence, immunodefi ciency is 
an important risk factor for cancer development. 
All the interventions targeting immune system 
directly or indirectly to improve immunity will 
reduce infections in immune-defi cient patients 
and thereby prevent infection-related cancers 
[ 10 ,  11 ]. In addition to immunodefi ciency, 
chronic infl ammatory states and autoimmunities 
predispose individuals to cancer development 
[ 12 – 14 ]. Incidence of cancers also varies in dif-
ferent age groups. Total cancer incidence 
increases by aging either in men or women 
(Fig.  1.2a ) [ 15 ]. Overall cancer incidence per 
100,000 in adults is 202.8 in men and 164.4 in 
women, while the corresponding fi gure is only 
9.4 in children below 18 years. It is suggestive of 
up to 20 times increase in incidence of cancers by 
aging. Accumulating genetic alterations in a long 
period of time and gradual deterioration of 
immune system by aging, regarded as immunose-
nescence, are all attributed to increased incidence 
of cancers with increase in age [ 16 ,  17 ]. 

Incidence <103

103< Incidence<128

128< Incidence< 160

160< Incidence< 220

220< Incidence< 326

  Fig. 1.1    Estimated age-standardized incidence of overall cancers per 100,000 in different countries (Extracted from)       
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Interestingly, types and the course of cancers are 
also different between children and adults. 
Leukemia is the most common cancer in child-
hood with incidence of 2.9 per 100,000, while 
lung, breast, prostate, and colorectal cancers with 
incidence of more than 20 per 100,000 are the 
most common cancers in adults. With respect to 
rapid expansion of elder population all around the 
world, there is an emerging need for novel strate-
gies to prevent and treat cancers [ 18 ].  

 In addition to environmental factors and host 
characteristics, incidence of cancers varies with 
respect to cancer sites. Some cancers are so 
common, while some are relatively uncommon 
(Fig.  1.3 ). The highest incidence of cancer is 
attributed to breast, prostate, colorectal, lung, 
and cervical cancers with incidence of 38.9, 
27.9, 22.9, 17.2, and 15.2 per 100,000, respec-
tively. Beyond the range, testis cancers, multi-
ple myeloma, nasopharyngeal cancers, Hodgkin 
lymphoma, and Kaposi’s sarcoma are the least 
common cancers worldwide with incidence of 
1.5, 1.4, 1.2, 1.0, and 0.4 per 100,000, respec-

tively. As described in the following, fatality of 
cancers with high incidence is not low; notably, 
some like lung cancers have also the highest 
mortality rates among cancers. As current sur-
gical, radiotherapeutic, and chemotherapeutic 
approaches failed to improve the outcome of 
cancers, novel approaches like immunotherapy 
may be the solution.   

1.2.2     Cancer Mortality Rate 

 Worldwide mortality rate of overall cancers was 
estimated to be 105.6 per 100,000 in 2008, and it 
is also predicted to grow in the future if health 
systems do not improve worldwide. In contrast to 
higher incidence of cancers in developed high-
resource countries, the mortality rate of cancers is 
higher in low-resource countries (Fig.  1.4 ). The 
highest age-standardized mortality rates of 
 cancers per 100,000 are recorded in Mongolia 
with 185.2, followed by Hungary with 166.1, 
Armenia with 154.2, Uruguay with 150.6, and 
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Serbia with 142.6. As evident, area of residence 
affects cancer status. Population composition par-
ticularly mean age of people, lifestyle, environ-
mental factors including pollutants and status of 
infectious diseases in that area, and vaccination 
and screening programs are determinants of can-

cer incidence in each geographic area. However, 
mortality rate of cancers is affected by access to 
health facilities together with natural course of 
disease and its fatality. Proportion of cancer death 
to new cases is the highest in Africa; conversely 
the least proportional death has been recorded in 

  Fig. 1.3    Worldwide age-standardized estimate of incidence of each cancer type per 100,000       
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  Fig. 1.4    Estimated age-standardized mortality rate of overall cancers per 100,000 in different countries
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North America. Disparities in receiving immuno-
therapy also exist in nationwide perspective in 
which patients with lower socioeconomic status 
are less likely to benefi t from novel effi cacious 
therapeutic modalities [ 19 ]. Access to current 
standards of care as well as novel treatments 
affects the outcome of cancers. It implies that our 
interventions are effi cacious in changing the out-
come of cancers but should be spread worldwide 
equally. To reach this goal, spread of knowledge 
about new therapeutic modalities as well as 
investment of international and national organiza-
tions on cancer are needed.  

 Similar to incidence, patient’s characteristics 
affect the outcome of cancer. Immunodefi cient 
patients are at increased risk of cancers and also 
have higher risk for cancer-related mortality. 
However, investigations indicate that cancer- 
related mortality will dramatically decrease by 
interventions aimed to preserve immune system 
functions [ 20 ]. As expected, mortality rate of can-
cers also increases with aging (Fig.  1.2b ), which 
may be explained by higher fatality of cancers 

occurring in elderly as well as deterioration of 
immune functions in this group of patients [ 21 ]. 

 The greatest determinant of cancer mortality 
is the site of the tumor and its stage at diagnosis. 
A fi ve-year survival of less than 10 % in patients 
with pancreatic, liver, esophageal, and lung can-
cers warrants the need for novel, more effi cacious 
therapeutic modalities. In other words, more than 
90 % of patients with these fatal cancers will be 
deceased in only 5 years. Regardless of sex, the 
highest mortality rates are seen in patients with 
lung, breast, stomach, liver, and colorectal can-
cers with age-standardized mortality rates of 
19.3, 12.4, 10.2, 9.9, and 8.2 deaths per 100,000. 
Age-standardized mortality rate of different can-
cers in both sexes is depicted in Fig.  1.5 .   

1.2.3     Burden of Cancers 

 Worldwide, it was estimated that about 169.3 
million healthy life years were lost due to cancer 
in 2008 [ 2 ]. Distribution of disability-adjusted 

  Fig. 1.5    Worldwide age-standardized estimate of age-standardized mortality rate of each cancer type per 100,000       

 

Z. Aryan et al.



7

life year (DALY) of cancers was similar to distri-
bution of cancer death worldwide since years of 
life lost (YLL) accounts for higher proportion of 
DALY than years lived with disability (YLD) [ 2 ]. 
The highest YLLs are seen in Central and Eastern 
Europe, Southern Africa, and Eastern Asia, 
respectively (Fig.  1.6 ). Higher YLD is seen in 
countries with very high human development 
index (HDI), while YLD total is lower in coun-
tries with low HDI [ 2 ] (Fig.  1.7 ). As in high- 
resource settings, life expectancy of patients with 

cancers is higher; thus, patients will remain alive 
but with cancer-related morbidities. With respect 
to greater contribution of YLLs to DALYs, 
approximately 70 % of DALY of overall cancers 
is attributable to less developed countries 
(Fig.  1.8 ). The highest DALY of cancers in men 
is recorded in Hungary with 4,756 per 100,000, 
followed by Mongolia with 4,526 per 100,000, 
Armenia with 4,243 per 100,000, Belarus with 
4,171 per 100,000, and Uruguay with 3,891 per 
100,000. This fi gure is a bit different for DALY 
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in women, as the highest DALY denotes to 
Malawi with 4,416 per 100,000, Uganda with 
4,331 per 100,000, Zimbabwe with 3,594 per 
100,000, Mali with 3,384 per 100,000, and 
Zambia with 3,357 per 100,000. Worldwide, lung 
cancer in men and breast cancer in women have 
the highest DALY; however, in Sub-Saharan 
Africa, infection-related cancers have the highest 
DALY in both sexes [ 2 ]. In Sub-Saharan Africa, 

infection-related cancers of Kaposi’s sarcoma, 
liver and cervical cancers, and NHL had the 36 % 
of overall DALYs, which are dramatically higher 
compared to other regions. Figure  1.9  shows spe-
cifi c standardized DALY of each cancer site in 
both sexes. Of note, DALYs of overall cancers 
are 6 % higher in men compared to women. It is 
in consistence with higher incidence of cancers 
observed in men with a rate difference of 38.4.       
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1.3     History of Immunotherapy 
of Cancers 

 First experience of cancer immunotherapy dates 
back to 1898 when William B. Coley succeeded 
to treat inoperable sarcomas by intratumoral 
injections of  Streptococcus pyogenes  and  Serratia 
marcescens  toxins [ 22 ]. This challenging obser-
vation of administration of bacterial products to 
already cancer patients with weakened immune 
system constructed the cornerstones of today’s 

cancer immunotherapy. For ensuing 50 years, the 
progress of cancer immunotherapy was slow with 
only sporadic documents of successful treat-
ments that were mostly irreproducible. However, 
further studies paved the road to immunotherapy 
of cancers. In this way, another important step 
was the attempt of Maurice Hilleman to invent 
hepatitis B vaccine. Hepatitis B vaccine prevents 
the spread of hepatitis B virus (HBV) infection 
and its consequences such as development of 
hepatocellular carcinoma (HCC) by induction of 
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active immunity against HBV. Concurrent with 
these investigations, in 1976, post-resection 
intravesical instillation of bacillus Calmette- 
Guérin (BCG) was shown to prolong survival of 
patients with bladder cancer. Indeed, cancer 
immunotherapy was evolving in both prophylac-
tic and therapeutic approaches. Since the 1980s, 
emerging fi eld of cancer immunotherapy was 
revolutionized by introduction of cytokines, 
monoclonal antibodies (mAbs), and adoptive cell 
therapy in treatment of cancers. Since then, cyto-
kines and mAbs were tested not only as stand- 
alone therapeutic modalities but also in 
combinational schedules with chemotherapy 
[ 23 – 25 ] and radiotherapy [ 26 ]. Interferon (IFN)-α 
was approved for hairy cell leukemia in 1986, 
and it was the fi rst immunotherapeutic drug 
approved for use in melanoma patients in 1995, 
owing to comprehensive studies by Kirkwood 
and his colleagues [ 27 – 29 ]. Rituximab is the fi rst 
mAb which received Food and Drug 
Administration (FDA) approval for NHL in 1997 
[ 30 ]. Immunotherapy also showed effi cacy in 
postsurgical management of patients with can-

cers. One of the fi rst reports dates back to 1988 
when Grohn et al. employed levamisole adjuvant 
immunotherapy in patients with breast cancer 
with equivocal results [ 31 ]. 

 Nearby these events, in 1986, recombinant 
HBV vaccine was developed, and efforts to con-
structing human papillomavirus (HPV) vaccine 
were initiated. The fi rst HPV vaccine was 
approved by the FDA in 2007. Similar to HBV 
vaccine, HPV vaccine prevents viral-induced 
cancers, in particular cervical cancers of the 
genital area and anus and oropharyngeal can-
cers. Despite common concept about vaccines, 
cancer vaccination can be applied to treat neo-
plastic lesions as secondary line of prevention. 
HPV vaccination was used to treat vulvar 
 intraepithelial neoplasia (VIN) with promising 
results in 2009 [ 32 ]. In addition, dendritic cell 
(DC) based, peptide based, and combined vac-
cines were introduced to treat cancer patients in 
the recent decade [ 33 ]. 

 Gene therapy, by providing the opportunity to 
manipulate the immune system, holds a great 
promise for cancer immunotherapy [ 33 ]. Gene 

  Fig. 1.9    Worldwide estimate of age-standardized rate of disability-adjusted life years (DALYs) per 100,000 of each 
cancer type       
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transfer with novel biologic or nonbiologic deliv-
ery vehicles enabled scientists to genetically mod-
ulate T cells to combat tumors [ 33 ]. Combination 
of adoptive T cell therapy with gene transfer was 
one the most important steps in the fi eld of cancer 
immunotherapy. In this way, T cell receptor (TCR) 
gene transfer was one of the greatest achievements 
in treating cancers, reached in 2001 [ 34 ]. 
Interestingly, further investigations suggest hopes 
for combination of cancer vaccines with current 
mainstays of cancer treatments. One of the most 
interesting studies was conducted by Antonia et al. 
on patients with extensive-stage small cell lung 
cancer in 2007 [ 35 ]. The patients received den-
dritic cells transduced with the full- length wild-
type p53 gene delivered via an adenoviral vector 
as cancer vaccine prior to chemotherapy. 
Signifi cant clinical response was observed in more 
than half of the patients owing to pre-chemothera-
peutic stimulation of the immune system by can-
cer vaccine [ 35 ]. Another progress was the 
combination of adoptive T cell therapy with radio-
therapy made in 2005. In this experience, com-
bined radiotherapy with intratumoral injection of 
the cancer vaccine was promising in patients with 
refractory hepatoma [ 36 ]. Vaccine-based thera-
peutics aim to enhance endogenous immune 
response against cancers, while adoptive T cell 
therapy is based on infusion of primed tumor-spe-
cifi c T cells. Finally, sipuleucel- T (Provenge), an 
active autologous dendritic cell-based vaccine, 
received FDA approval for patients with castra-
tion-resistant prostate cancer in 2010 [ 37 ]. 
Sipuleucel-T is the fi rst and the sole FDA-approved 
therapeutic cancer vaccine. Unfortunately, no 
adoptive T cell therapy has yet obtained FDA 
approval maybe due to its obstacles in providing 
suffi cient amounts of primed specifi c T cells [ 38 ]. 
However, cancer-testis antigens of MAGE family 
with restricted expression in tumor cells hold 
promise for the future of not only cancer vaccines 
but also adoptive T cell therapies [ 39 ,  40 ]. 

 Almost all the progresses in immunotherapy 
are owned to progresses in understanding the 
immunopathology of cancers. This is well 
refl ected in development of novel monoclonal 
antibodies and immune adjuvants through the past 
decade. Ipilimumab (also known as MDX-

010- 20 in clinical trials) received FDA approval 
for treatment of patients with advanced metastatic 
melanoma in 2011. Ipilimumab blocks the inhibi-
tory effects of cytotoxic T lymphocyte- associated 
antigen 4 (CTLA-4) on presenting the tumor anti-
gens and improves cytotoxic T lymphocyte func-
tion [ 41 ,  42 ]. Pegylated IFN-α has been approved 
for treating patients with advanced melanoma in 
March 2011 [ 33 ]. Another progress was the dis-
covery of pattern recognition receptors and target-
ing them in cancer immunotherapy; imiquimod 
(Aldara), a Toll-like receptor 7 agonist, was 
employed in the treatment of VIN since 2008 
[ 43 ]. Imiquimod has been approved by the FDA 
for external genital warts, papilloma, superfi cial 
basal cell carcinoma, and actinic keratosis [ 44 ]. 
Imiquimod administration results in endogenous 
induction of IFN production [ 44 ]. Figure  1.10  
shows a timeline of important events related to 
understanding either the immunopathology of 
cancers or immunotherapy of cancers.  

 Through more than a century of experience 
with immunotherapy, scientists and health-care 
providers aimed to reinstate immune surveillance 
against tumor cells in either primary lesions or 
metastases by immunotherapy. Immunotherapy 
provides a dynamic and specifi c formation of 
adaptive immune response that fi ghts tumor- 
mediated immunoediting. This effect of immuno-
therapy promises long-term protection against 
relapse of cancers, while it may not be effi cacious 
as other drugs, radiotherapy, and surgery in 
immediate debulking of tumor masses. Hence, 
combinational therapies may be the key to 
improve both tumor progression and overall sur-
vival of the patients. Despite brilliant progresses 
in the fi eld of cancer immunotherapy, it is still in 
its infancy and may provide defi nite treatment for 
all cancers in its maturity.  

1.4     Immunotherapy Is Going 
Upstream to Combat 
Cancers 

 Immunotherapy helps health-care providers pre-
vent not only cancer development but also pre-
vent its further progression and cancer-related 
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complications offering prevention from cancers 
at all levels. Modulation of immune responses in 
favor of enhancing tumor cell detection and 
immune clearance of these cells is what 
 immunotherapy does. In addition, immunother-
apy helps recover an injured or completely 
destroyed immune system after intensive cancer 
therapies as occurred in intensive chemotherapy 
schedules. 

 Chronic infl ammation owing to infectious eti-
ologies or continuous sterile infl ammation 
appears to cause cancers of variable origins [ 45 ]. 
Targeting the immune system to control infec-
tions known as causes of variable cancer as well 
as conditions associated with chronic infl amma-
tion (i.e., autoimmunities) results in a dramatic 
decrease in incidence of cancers [ 46 ]. This appli-
cation of immunotherapy prevents cancers at the 
primary level. Interestingly, not all subjects with 
predisposing chronic infl ammation state develop 
cancers. For instance, the human herpesvirus 8 
(HHV8) causes Kaposi’s sarcoma in the context 
of HIV caused by immunodefi ciency or drug- 
induced immunodefi ciency. Hence, immunother-
apeutic approaches prevent the spread of HIV in 
the community and can be regarded as primordial 
level of prevention from cancers. A considerable 

numbers of vaccines and immune adjuvants as 
well as monoclonal antibodies are developed to 
combat cancers at primary and primordial stages. 

 On the other hand, a broad spectrum of immu-
notherapeutic medications have been developed 
to treat patients with cancers. At this stage, 
immunotherapy acts as the second level of pre-
vention from cancers. Adoptive cell therapy, ther-
apeutic cancer vaccines, immune adjuvants, 
cytokines, monoclonal antibodies, and gene ther-
apies are already established to treat different 
cancers. Treatment of an already diagnosed 
patient with any type of cancer is designated as 
the secondary level of prevention from cancer. 
This is the most known kind of use of immuno-
therapy to combat cancers; however, it acts lately 
after establishing the cancer and usually can 
eliminate cancer in a limited number of patients. 
Today, immunotherapy is considered as a fi rst 
line of treatment of a wide range of cancers. 
Immunotherapy also offers hope for patients 
failed with other available therapeutics and 
patients with end-stage cancers. In addition, 
combination of immunotherapy with almost all 
available therapeutic approaches has been tested 
and holds promises at least to increase 
progression- free survival of patients. Many new 

  Fig. 1.10    Timeline of important events related to immu-
nopathology and immunotherapy of cancers.  Upper side  
of the  arrow  shows events related to immunopathology, 
whereas events related to immunotherapy are shown in 
the  bottom  of the fi gure.  TCR  T cell receptor,  IL-2  inter-

leukin-2,  IFN  interferon,  TNF  tumor necrosis factor,  BCG  
bacillus Calmette- Guérin,  HBV  hepatitis B virus,  HPV  
human papilloma virus,  MHCI  major histocompatibility 
complex-1,  FDA  Food and Drug Administration,  VIN  vul-
var intraepithelial neoplasia       

 

Z. Aryan et al.



13

immunotherapeutic drugs are now under devel-
opment, and many of them are in clinical trials. 

 Finally, immunotherapy can ameliorate the 
toxic effects of other available therapeutic 
 modalities, known as supportive immunotherapy. 
At this stage, immunotherapy prevents further 
disabilities due to cancer progression or therapies 
and improves quality of life of patients. 
Accordingly, immunotherapy also provides a ter-
tiary level of prevention from different cancers. 

1.4.1     Prophylactic Implication 
of Immunotherapy 

 It is best to prevent cancer development than to 
prevent cancer progression and its related com-
plications. Immunotherapy is defi ned by treat-
ment of disease using enhancement or suppression 
of immune responses. Accordingly, it can be used 
to treat cancers as well as treat underlying dis-
eases that cause cancers. The latter is prophylac-
tic use of immunotherapy for cancers. Elimination 
of infections known to cause cancers and improv-
ing the immune system by eliminating chronic 
infl ammation states and immunodefi ciency are 
the bases of prophylactic cancer immunotherapy. 
Despite complex expensive immunotherapeutic 
approaches employed at other levels of preven-
tion from cancers, immunotherapy at primary 
level includes simple inexpensive methods. To 
follow a healthy lifestyle, daily intake of anti- 
infl ammatory drugs, vaccination against onco-
genic viruses, and fi nally immunotherapies aimed 
to control spread of HIV are all acting to prevent 
cancers at primary or primordial level. 

 Increased body mass index (BMI) is believed 
to increase the risk of several cancers [ 3 ]. 
Correction of lifestyle by doing regular exercise, 
eating fresh foods full of antioxidants, restricting 
calorie intake, and eating low-fat foods leads to 
prevention of cancers [ 47 – 49 ]. The main mecha-
nism is inhibiting tumorigenesis and providing 
inappropriate microenvironment for tumor 
growth; however, a healthy lifestyle improves 
immune function [ 47 ,  48 ,  50 ]. Indeed, the main 
antitumor mechanism of having a healthy life-
style is to prevent tumorigenesis, but combating 

chronic infl ammation state as well as enhancing 
the function of effector innate cells to eliminate 
tumor cells should also be acknowledged [ 50 –
 54 ]. From this perspective, a healthy lifestyle acts 
as an old, inexpensive, simple immunomodula-
tory way of preventing cancers at primary level 
[ 47 ,  48 ]. Thus, healthy lifestyle can be regarded 
as the fi rst ancient immunotherapy employed 
against cancers. 

 Infection-related cancers are caused by a vari-
ety of viral and bacterial agents. Chronic infl am-
mation, mutagenesis by integration of pathogen 
genes with host genome, and induction of immu-
nodefi ciency are all believed to be mechanisms 
by which infectious agents can cause cancers. 
HBV is one of the most important agents known 
to cause HCC. The HBV vaccine is able to induce 
immunity against HBV infection in more than 
95 % of vaccinated subjects. Thereby, it can pre-
vent HBV-caused HCC [ 55 ]. In endemic areas of 
HBV infection like Taiwan, it has been shown 
that HBV vaccination has resulted in decrease of 
HCC incidence from 1.08 per 100,000 to 0.49 per 
100,000, suggestive of a 50 % decrease in HCC 
incidence [ 56 ]. Interestingly, in some areas like 
Alaska, known as an endemic area of HBV infec-
tion in the United States, HBV vaccination has 
eliminated HCC in children [ 57 ]. In addition, in 
coinfected patients with HBV and hepatitis C 
virus (HCV), immunotherapy with IFN-α reduces 
the risk of HCC development [ 58 ]. Hence, active 
immunotherapy against HBV infection leads to 
signifi cant reduction in HCC occurrence, and it is 
logical to assume HBV vaccine as a prophylactic 
immunotherapy against cancers. 

 HPV vaccine is another golden step in history 
of cancer immunotherapy. HPV-16 and HPV-18 
are responsible for more than 70 % of cervical 
cancers worldwide. However, HPV-6 and HPV- 
11 are also targeted in newer generations of HPV 
vaccine. The best target group of vaccine admin-
istration is young girls who are not still sexually 
active. Indeed, the vaccine is benefi cial for some-
one who is not infected with the virus. 
Quadrivalent vaccination against HPV (16, 18, 6, 
and 11) results in 98 % (95 % confi dence interval 
of 86–100 %) protection against HPV-16 or HPV- 
18 cancer-related lesions. It also confers weak 
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protection against other cervical neoplastic 
lesions [ 59 ]. As the cervical cancer holds the sec-
ond place in incidence and DALYs of cancers of 
women all around the world, its prevention is of 
utmost importance. HPV vaccine is a cost- 
effective approach to reduce cervical cancer inci-
dence worldwide [ 60 ,  61 ]. In addition to cervical 
cancer, HPV-16 and HPV-18 are implicated in 
the development of other perineal and perianal 
neoplastic lesions as well as squamous cell carci-
noma of the head and neck and oropharyngeal 
cancers. HPV vaccination can reduce risk of 
these cancers but with a lesser extent [ 62 ]. 
Vaccination of women also offers protection 
against HPV-related cancers in men owing to 
herd immunity; however, covering boys in 
 vaccination programs is not without clinical 
 benefi ts and needs further investigations [ 62 ]. 
Interestingly, vaccination of women with high- 
grade VIN with a mix of oncoproteins E6 and E7 
from HPV-16 resulted in relief of VIN-related 
symptoms in 60 % of patients, highlighting the 
important role of HPV vaccine for cervical 
 cancers [ 32 ]. 

 By contrast to HBV and HPV vaccine, other 
immunotherapeutic approaches to control HIV 
and Epstein-Barr virus (EBV) are on the way. 
In the development of anti-HIV agents, target-
ing the adaptive immune system failed due to 
progressive involvement of the adaptive sys-
tem. However, recent studies herald promises in 
targeting the innate immunity by targeting DCs, 
pattern recognition receptors, and alarmins 
[ 63 ]. Prevention from spread of HIV and pro-
gression of HIV infection to AIDS averts 
AIDS-associated syndromes and AIDS-defi ning 
cancers (Kaposi’s sarcoma, cervical cancer, and 
NHL). Immunotherapeutic approaches combat 
HIV spread, and others used to prevent infec-
tions in immunodefi cient patients whether pri-
mary or secondary are regarded as prophylactic 
implication of cancer immunotherapy [ 10 ,  63 ]. 
Autosomal recessive hyper-IgE syndrome, 
X-linked agammaglobulinemia, common vari-
able immunodefi ciency, X-linked lymphopro-
liferative disease, IL-2-inducible T cell kinase 
(ITK) defi ciency,  epidermodysplasia verruci-
formis, and warts, hypogammaglobulinemia, 

infections, myelokathexis (WHIM) syndrome 
are primary immunodefi ciency diseases with 
increased risk of infection-related cancers. 
Granulocyte-macrophage colony-stimulating 
factor (GM-CSF), intravenous immunoglobulin 
(IVIG) administration, and allogeneic hemato-
poietic stem cell transplantation (HSCT) pro-
vide benefi ts for these patients [ 10 ]. EBV is one 
of the most common viral infections with more 
than 90 % seropositivity worldwide [ 64 ]. It is 
implicated in the development of several can-
cers including Burkitt’s lymphoma, NK or T cell 
lymphoma, Hodgkin lymphoma, and nasopha-
ryngeal carcinomas particularly in subjects 
with incompetent immune system [ 64 ]. EBV   - 
associated lymphoproliferative disorders are of 
utmost clinical importance in patients who 
undergone transplantation. Immunotherapy with 
adoptive T cell transfer specifi c for EBV anti-
gens promises hope to prevent EBV-associated 
lymphoproliferative disorders in vulnerable 
subjects with EBV viremia [ 65 – 67 ]. 

 Sterile chronic infl ammation and immune 
dysregulation states like autoimmunities also 
predispose individuals to cancer development. 
Sterile chronic infl ammation is strongly associ-
ated with colorectal cancer development. 
Patients with ulcerative colitis are at increased 
risk of colorectal cancers that might be pre-
vented by anti-infl ammatory drugs like 5-ami-
nosalicylic acid (5-ASA) [ 68 ]. Another group of 
patients suffering from familial adenomatous 
polyposis (FAP) has chronic infl ammation state 
and 100 % increased risk of colorectal cancers. 
Celecoxib, a cyclooxygenase-2 (COX-2) inhibi-
tor, is approved to be used for prevention of 
colorectal cancer in this group of patients [ 68 ]. 
In subjects with no underlying infl ammatory 
disease of the gastrointestinal tract, nonsteroidal 
anti-infl ammatory drugs (NSAIDs) reduce the 
risk of colorectal cancer by 18–39 %; however, 
to date no NSAIDs have been approved to pre-
vent sporadic tumor prevention [ 69 – 71 ]. 
Similarly, monoclonal antibodies used in the 
treatment of patients with autoimmunities that 
predispose patients to malignancies can be 
regarded as another prophylactic immunothera-
peutic approach [ 72 ]. 
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 Altogether, immunotherapy can be used to 
prevent development of cancers. Prophylactic 
use of immunotherapy, also regarded as immu-
noprevention, offers benefi ts for a wide range of 
cancers particularly infection-related cancers. 
Both active immunizations with vaccines and 
passive immunizations with monoclonal anti-
bodies and cytokines are employed in prophy-
lactic immunotherapy. Many other prophylactic 
immunotherapeutic modalities may be intro-
duced in the future.  

1.4.2     Therapeutic Implication 
of Immunotherapy 

 Immunotherapy currently has been set as a key 
component of therapeutic regimens of many 
cancers [ 33 ]. Bone marrow transplantation 
(BMT) following ablative/non-myeloablative 
bone marrow therapies is now the standard of 
care of many hematological malignancies. 
Similarly donor lymphocyte infusion following 
failed BMT is an accepted immunotherapy for 
treatment of relapsed hematological malignan-
cies [ 73 – 75 ]. Once cancer develops, immuno-
therapy helps the patient’s immune system fi ght 
with tumor cells to prevent cancer progression 
and fi nally elimination of cancer [ 76 ]. Benefi ts 
of immunotherapy are not only restricted to 
patients with advanced stages of cancers, and by 
contrast, patients with early stages of cancers 
are good candidates for immunotherapy. 
Bacillus Calmette-Guérin (BCG) for early-stage 
bladder carcinoma [ 77 – 79 ] and sipuleucel-T 
immunotherapy for castration- resistant prostate 
cancer are all examples of approved immuno-
therapies employed at different stages of uro-
logical cancers [ 37 ,  80 ,  81 ]. In addition, 
immunotherapy offers hope for approximately 
all types of cancers. FDA- approved immuno-
therapeutic drugs are now available for chronic 
lymphocytic leukemia (CLL) [ 82 ,  83 ], NHL 
[ 30 ,  84 ,  85 ], Hodgkin lymphoma (HL) [ 86 ,  87 ], 
acute leukemia [ 88 ], breast cancer [ 89 ], lung 
cancer [ 90 ], colorectal cancers [ 69 ,  91 – 93 ], 
bladder cancer [ 78 ,  79 ], prostate cancer [ 80 , 
 81 ], renal cell carcinoma [ 29 ,  94 ], basal cell 

carcinoma [ 44 ,  95 ], melanoma [ 96 – 98 ], cervi-
cal cancer [ 5 ,  32 ,  59 ,  60 ], hepatocellular carci-
noma [ 55 ,  56 ,  58 ], and soft tissue tumors [ 99 , 
 100 ]. Promisingly, a large number of immuno-
therapies are also under investigation. Table  1.1  
shows current FDA-approved immunotherapies 
to treat different cancers.

   Immunotherapeutic weapons are of wide cat-
egories: immunomodulator monoclonal anti-
bodies whether agonistic or blocking, cytokines 
[interleukin (IL)-2, IFN-α, IL-12, GM-CSF, and 
tumor necrosis factor-α (TNF)-α], therapeutic 
cancer vaccines particularly DC vaccines, adop-
tive T cell transfer, gene therapy, and novel 
immune adjuvant and delivery vehicles are all 
available to help cancer patients. Elimination of 
immunosuppression and boosting of the immune 
responses against tumor cells are what immuno-
therapy does. These effects of immunotherapy 
offer long-term antitumor immune response that 
fi ghts with already established cancer, prevents 
its progression, and prevents new metastases. 
Accordingly, immunotherapy should not logi-
cally become restricted to patients with 
advanced and metastatic cancers. Despite initial 
experiences with immunotherapy on patients 
who failed with other therapeutics, today, immu-
notherapy is set to become the fi rst-line treat-
ment either in combination with other 
therapeutic modalities or as stand-alone therapy. 
In addition, to accurately measure the immuno-
therapy-induced tumor destruction, immune-
related response criteria have been developed 
and should be used in clinical practice and 
future researches. In the following, different 
aspects of cancer immunotherapy as therapeutic 
(second level of cancer prevention) have been 
described.   

1.5     Strategies of Cancer 
Immunotherapy 

 Two main strategies of cancer immunotherapy to 
treat cancer patients are (1) reduction of immu-
nosuppressive milieu and (2) boosting the antitu-
mor responses. 
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1.5.1     Immunotherapy Acts 
to Eliminate 
Immunosuppression 

 Immunotherapy reduces immunosuppression by 
blocking the negative regulatory receptors and 
inhibitory checkpoints [CTLA-4 and  programmed 
death-1 (PD-1)], blocking immunosuppressive 
cytokines [transforming growth factor-β (TGF-
β), IL-10, and TNF], blocking immunosuppres-
sive enzymes [indoleamine 2,3- dioxygenase 
(IDO)], and targeting the T regulatory cells. 
Blockade or inhibition of negative regulators of 
the immune system enhances endogenous antitu-
mor responses as well as antitumor activity of the 
immune system following other therapeutic 
approaches. 

 CTLA-4 (CD152) is expressed on T cells in 
combination with a wide variety of other immune 
cells [ 101 ]. It acts as a negative immune regula-
tory receptor that switches off T cell attacks to 
tumor cells. Indeed, CTLA-4 is one of the main 
players in establishing peripheral tolerance [ 101 ]. 
It competes with CD28 to bind to B7-1/B7-2 with 
higher affi nity and avidity [ 101 ]. Two mAbs have 
been developed to block CTLA-4: ipilimumab 
(MDX-010) and tremelimumab (CP-675,206). 
Both of these antibodies are under investigation 
for a wide range of cancers. Tremelimumab has 
been tested in treatment regimen of patients with 
metastatic or refractory melanoma, colorectal 
cancer, and prostate cancer. Unfortunately, favor-
able response in terms of tumor regression and 
improvement of survival was only detected in 
less than 10 % of patients [ 97 ,  102 – 104 ]. Results 
of trials with ipilimumab were more positive, and 
ipilimumab has received FDA approval for 
patients with metastatic melanoma [ 41 ,  98 ]. In 
addition, ipilimumab is also underway for 
patients with lung cancer [ 105 ,  106 ] and 
castration- resistant prostate cancer [ 107 ]. PD-1 is 
an inhibitory receptor present on activated T cells 
and B cells and has two main ligands PD-L1 and 
PD-L2. PD-L1 has a broad expression on not 
only immune cells but also nonimmune and 
tumor cells, whereas PD-L2 expression is 
restricted to antigen-presenting cells (APCs). 
PD-L1 is one of the most important actors in the 

maintenance of immunosuppressive microenvi-
ronment around tumor cells. PD-1 blocking anti-
body, CT-011, is under investigation for patients 
with advanced hematological malignancies and 
multiple myeloma [ 108 ,  109 ]. 

 Anti-infl ammatory cytokines IL-10 and 
TGF-β are produced by tumor cells and suppress 
antitumor responses. Anti-TGF-β antibodies are 
now in development for cancer immunotherapy. 
Initial experiences on animal models of osteosar-
coma reduced T regulatory cell numbers and 
increased number of cytotoxic T lymphocyte 
nearby prevention from growth of new metasta-
ses [ 110 ]. Fresolimumab, a fully human anti-
TGF-β, is now produced and may be tested in the 
treatment of cancer patients [ 111 ]. Anti-IL-10 
antibodies and anti-IL-10 receptor antibodies 
have potential antitumor activity, but they have 
not currently entered into clinical trials for cancer 
patients [ 112 ,  113 ]. In addition, infl iximab, an 
anti-TNF-α antibody, was tested in patients with 
RCC and resulted in 16 % partial response and 
16 % stable disease among recipients [ 114 ]. 
TNF-α is an infl ammatory cytokine, and its 
increased levels has been associated with poor 
prognosis in  cancer patients [ 114 ]. 

 IDO catalyzes degradation of essential 
L-tryptophan amino acid and keeps it away from 
activated T cells needing it for clonal expansion. 
Tumor cells as well as plasmacytoid DCs present 
in tumor-draining lymph nodes express high 
amounts of IDO leading to indirect suppression 
of antitumor responses. 1-Methyl tryptophan 
(1MT) inhibits IDO and prevents tumor cell 
growth of variable origins, but it is still under 
laboratory investigations [ 115 – 117 ]. 

 T regulatory cells are a strong source of inhib-
itory signals, preventing the effect of endogenous 
antitumor responses and inhibiting suffi cient 
response to immunotherapeutic agents boosting 
immune system. Denileukin diftitox, a conjugate 
of diphtheria toxin and IL-2, has effi cacy in the 
treatment of patients with T cell lymphoma, B 
cell NHL, and melanoma. Further studies dem-
onstrated its effi cacy in enhancing cancer vaccine 
responses by depletion of T regulatory cells. 
Indeed, denileukin diftitox is a targeted therapy 
to kill T regulatory cells [ 84 ,  118 – 120 ]. Other 
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potential targets to weaken T regulatory responses 
include IL-35 and MFG-E8 that block T regula-
tory functions [ 121 ,  122 ]. Figure  1.11  summa-
rizes the immunotherapies aimed at inhibiting 
immunosuppression to treat cancers.   

1.5.2     Immunotherapy Boosts 
the Antitumor Immune 
Responses and Enhances 
Killing of the Tumor Cell 

1.5.2.1     Activated DCs and T Cells Are 
Pivotal in Cancer 
Immunotherapy 

 Immunotherapy boosts the immune responses 
against cancers by providing primed T cells 
either  in vivo  or ex vivo. Therapeutic cancer vac-
cines provide the opportunity to priming the T 
cells  in vivo , while adoptive T cell transfer gifts 
ex vivo primed T cells to the immune system of 
cancer patients. DC vaccines constitute the most 
popular therapeutic cancer vaccines developed 

to treat a wide variety of cancers. First, DCs 
should be cultured from patients’ peripheral 
blood mononuclear cells (PBMCs). Then they 
should be matured (most commonly with infl am-
matory cytokine cocktails) and loaded with 
tumor antigens. Finally, they are reintroduced to 
the patient’s body to activate T cells and enhance 
antitumor responses. Some researchers prefer 
 in vivo  maturation of DCs by injection of these 
cells into an infl amed tissue as a simple, inex-
pensive, and physiologic way of maturation that 
enhances migration of DCs to draining lymph 
nodes [ 123 ]. Furthermore, antigens can also be 
loaded  in vivo  using antibodies that bind DC sur-
face like DEC205 [ 124 ,  125 ]. DC vaccines are 
under investigation (phase I/II clinical trial) for 
high-grade glioma [ 126 ,  127 ], glioblastoma 
[ 128 ], hepatocellular carcinoma [ 129 ], pancre-
atic cancer [ 130 ], colorectal cancer [ 131 ], meta-
static melanoma [ 132 ,  133 ], multiple myeloma 
[ 134 – 136 ], acute leukemia [ 137 ,  138 ], breast 
cancer [ 139 ], ovarian cancer [ 140 ,  141 ], RCC 
[ 142 ], and non-small cell lung cancer [ 143 ]. 

  Fig. 1.11    Cancer immunotherapy eliminates immuno-
suppressive milieu of cancer patients. Cytotoxic T 
lymphocyte- associated antigen 4 (CTLA-4) and pro-
grammed death-1 (PD-1) are expressed by activated T 
cells and act as T cell checkpoint blockers that inhibit T 
cell functions. These are blocked by anti-CTLA-4 and 
anti-PD-1 monoclonal antibodies. Interleukin-10 (IL-10) 
and transforming growth factor-β (TGF-β) are inhibitory 
cytokines produced by T regulatory cells and tumor cells. 

These inhibitory cytokines are blocked by specifi c mono-
clonal antibodies that are under investigations in labora-
tory. Denileukin diftitox, a conjugate of IL-2 and 
diphtheria toxin, kills T regulatory cells and enhances 
endogenous or induced antitumor responses. L-Methyl 
tryptophan inhibits indoleamine 2,3-dioxygenase (IDO). 
IDO inhibits T cell expansion by degradation of essential 
amino acid of tryptophan       

 

Z. Aryan et al.



21

On the other hand, adoptive T cell transfer relies 
on  in vitro  expansion of T cells harvested from 
cancer patients and reintroducing these manipu-
lated and primed T cells into the patient’s circu-
lation. These T cells can be harvested from four 
major sites: (1) PBMC, (2) resections from 
draining lymph nodes, (3) malignant effusions, 
and (4) directly from tumor biopsies. However, 
the quantity and quality of harvested T cells from 
each site differ signifi cantly; PBMCs are an easy 
site to obtain T cells, while biopsy-derived T 
cells are more reactive against tumor antigens 
[ 76 ,  144 ]. Thereafter, T cells will be engineered 
to express T cell receptors (TCR) necessary for 
tumor recognition or to express T bodies (a chi-
meric antigen receptor that directly binds tumor 
antigens) [ 145 ]. Finally, T cells can be expanded 
with exposure to relevant tumor antigens, acti-
vating mAbs and T cell growth factors like IL-15 
[ 146 ]. CD8 +  cytotoxic T lymphocyte constitute 
the main cells produced and transferred in adop-
tive T cell therapy [ 147 ]. Adoptive T cell therapy 
is now underway for neuroblastoma [ 148 ], hepa-
tocellular cancers [ 149 ], gastric cancer [ 150 ], 
metastatic melanoma [ 151 – 153 ], hematological 
malignancies [ 154 – 156 ], colorectal cancer [ 157 , 
 158 ], posttransplant lymphoproliferative dis-
eases [ 159 ,  160 ], breast cancer [ 161 ,  162 ], ovar-
ian cancer [ 163 ,  164 ], advanced lung cancer 
[ 165 ,  166 ], RCC [ 167 ], and nasopharyngeal car-
cinoma [ 168 ].  

1.5.2.2     Materials of Activating DCs 
and T Cells 

 Tumor-specifi c and tumor-associated antigens as 
well as immunostimulatory cytokines and 
immune adjuvants help in activating DCs and 
priming the T or natural killer (NK) cells  in vivo  
or ex vivo. Cancer-testis antigens are mainly 
expressed in germ cells and also appear on tumors 
of variable origin. However, these antigens are 
rarely expressed by other human cell types under 
physiologic conditions. Of all cancer-testis anti-
gens, MAGE-1 family has obtained growing 
interest as potential target for different cancers at 
variable stages [ 169 – 173 ]. MAGE-A3 and 
NY-ESO-1, two cancer-testis antigens, have been 
used to develop cancer vaccines against mela-

noma [ 174 – 176 ], lung cancer [ 177 ], ovarian car-
cinoma [ 178 ], and prostate cancer [ 179 ]. In 
addition to tumor-specifi c antigens, tumor- 
associated antigens with narrow distribution in 
tumor cells are widely used in cancer immuno-
therapy like tumor lysate antigens in DC-loaded 
vaccines [ 37 ,  180 ,  181 ]. Interestingly, antigens of 
oncogenic viruses also exert immunostimulatory 
effects able to induce strong antitumor responses 
[ 182 ]. Tumor cells of EBV-associated nasopha-
ryngeal carcinoma express EB nuclear antigen 1 
(EBNA1) and latent membrane protein 2 (LMP2) 
which are EBV antigens [ 182 ]. Intradermal 
administration MVA-EL vaccinations, which 
encodes an EBNA1/LMP2 fusion protein, results 
in boosting T cell response against tumors [ 182 ]. 
Indeed, EBV-targeted immunotherapy promises 
hopes for patients with refractory or metastatic 
EBV-associated cancers [ 183 ]. 

 Antigens can be delivered to DCs via different 
ways including fusion with tumor cells, loading 
of tumor lysates, long overlapping peptide mix-
tures or specifi c antigenic peptides, exposure 
with recombinant proteins, and transfection with 
genes encoding tumor antigens [ 37 ,  130 ,  139 , 
 184 ,  185 ]. Recombinant antigens offer specifi c 
targeting of tumor cells with high safety and effi -
cacy. Sipuleucel-T is a DC-approved vaccine for 
prostate cancer which contains ex vivo primed 
DCs with recombinant PA2024 protein fused 
with GM-CSF [ 37 ]. Interestingly, specifi c tumor 
antigens can be selectively delivered to patients 
to enhance  in vivo  DC uptake and presentation of 
tumor antigens. This direct delivery of tumor 
antigens is known as peptide vaccination. 
Subcutaneous injection of modifi ed 9-mer WT1 
peptides to patients with Wilms’ tumor results in 
increased frequency of CD14 + , CD16 + , CD33 + , 
and CD85+ DCs [ 186 ]. However, for improving 
the effi cacy of peptide vaccines, addition of cyto-
kines particularly GM-CSF is of signifi cant ben-
efi t. GM-CSF acts mainly via enhancement of 
antigen presentation by promotion of recruitment 
and maturation of DCs. Autologous or allogeneic 
irradiated tumor cells engineered to produce 
GM-CSF (GVAX) have been tested in some can-
cers like metastatic melanoma, colorectal can-
cers, non-small cell lung cancer, pancreatic 
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cancer, and castration-resistant prostate cancer 
with promising results [ 187 – 194 ]. This approach 
is expensive and technically diffi cult; thus, it did 
not gain popularity among researchers and 
clinicians. 

 In addition to therapeutic cancer vaccines, 
cytokine monotherapy is used for the promotion 
of tumor death and boosting T cell responses. 
Isolated limb perfusion with TNF-α is approved 
for treatment of patients with locally advanced 
soft tissue tumors [ 99 ,  100 ]. TNF-α is a proin-
fl ammatory cytokine involved in systemic infl am-
mation, acute phase reaction, and constitutional 
symptoms of cancer patients like cachexia, 
whereas it also inhibits tumor growth and pro-
motes apoptotic cell death. To overcome systemic 
unpleasant effects of TNF-α together with selec-
tive use of its antitumor effects, it is approved for 
local delivery in tumor repertoire [ 99 ,  100 ]. Other 
immunostimulatory cytokines acting as T cell 
growth factors, increasing survival of T cells, and 
enhancing T cell responses to tumor antigens are 
used in cancer immunotherapy. IL-2 and IFN-α 
have received FDA approval for patients with 
unresectable metastatic melanoma and renal cell 
carcinoma (RCC) [ 94 ,  153 ,  195 – 197 ]. 

 With the discovery of pattern recognition 
receptors, novel immune adjuvants gained con-
siderable popularity among researchers [ 199 ]. 
Toll-like receptor (TLR) agonists have received 
FDA approval for use as an immune adjuvant for 
cancer immunotherapy. Monophosphoryl lipid A 
(MPL), a TLR4 agonist, has been used in 
Cervarix®. Cervarix® is a vaccine against HPV- 16 
and HPV-18 and prevents HPV-related cancers 
[ 95 ]. Imiquimod, a TLR7 agonist, received FDA 
approval for basal cell carcinoma, external geni-
tal warts, and actinic keratosis [ 95 ]. In addition, 
the development of new immunotherapeutic 
agents using other TLR agonists like CpG oligo-
nucleotides continues to be an area of active 
research [ 199 ]. PF-3512676, a TLR9 agonist, is 
now in phase II clinical trial for patients with 
metastatic melanoma. Intravenous or intradermal 
administration of PF-3512676 in melanoma 
patients results in activation of DCs in sentinel 
lymph nodes and expansion of cancer-reactive 
cytotoxic CD8 +  T cells [ 200 ,  201 ]. These immu-

nological changes were in association with par-
tial clinical response in 10 % and stable disease 
in 15 % of treated melanoma patients with 
PF-3512676 monotherapy [ 202 ]. Similarly, 
PF-3512676 is in phase I clinical trial for patients 
with basal cell carcinoma and NHL [ 203 ,  204 ]. 
PF-3512676 is also under evaluation for cutane-
ous T cell lymphoma, chronic lymphocytic leu-
kemia, metastatic esophageal squamous cell 
carcinoma, and non-small cell lung cancer 
[ 205 – 210 ]. 

 Finally, immunomodulator mAbs can act as 
agonists of stimulatory receptors on immune 
cells. Stimulatory mAbs have been developed for 
glucocorticoid-induced tumor necrosis factor 
receptor (GITR), OX 40 (CD 134), CD 40, and 
CD 137. These mAbs are now underway for a 
wide range of cancers from hematological malig-
nancies to solid tumors, but these have not yet 
entered into clinical trials [ 211 ,  212 ]. Of note 
that, mAbs act as immunomodulators, trig -
ger complement activation, induce Antibody-
dependent cell-mediated cytotoxicity (ADCC) 
and also are able  to provide opportunity for tar-
geted delivery of cytotoxic materials to malig-
nant cells (for instance   131 I-tositumomab,  known  
as  radioimmunotherapy) [ 213 ]. Figure  1.12  sum-
marizes immunotherapies aimed at stimulating 
antitumor immune responses.     

1.6     At Which Line of Treatment? 

 Since the introduction of cancer immunotherapy, 
it has been used mainly as the last line of treat-
ment of patients with advanced disease. It does 
not mean that cancer immunotherapy is restricted 
to patients who relapsed with other standards of 
care. As this emerging fi eld is still in its infancy 
and its safety and effi cacy is not well evaluated, 
patients who accept to enter into trials are usually 
at advanced stages, have several metastases, and 
are inoperable. Indeed, immunotherapy provides 
hope for who is disappointed from other thera-
peutic approaches. Nonetheless, the question 
why it cannot be considered as a fi rst-line therapy 
of cancer patients at different stages remains to 
be answered. 
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 For different cancers, it has been shown that 
considering immunotherapy as the fi rst-line 
treatment did not compromise patients’ progno-
sis and their quality of life, but inversely 
improved progression- free survival and some-
times overall survival of patients. For metastatic 
colorectal cancer, addition of panitumumab to 
standard chemotherapy as fi rst-line therapy 
resulted in signifi cant improvement in progres-
sion-free survival of patients without deteriora-
tion of patients’ quality of life [ 214 ]. 
Panitumumab is approved for patients with met-
astatic refractory colorectal cancers, but it has 
several benefi ts (at least improvement of pro-
gression-free survival) for patients who have not 
received previous chemotherapy [ 91 ]. Similarly, 

use of ipilimumab in combination with pacli-
taxel and carboplatin improved progression-free 
survival of patients with non- small cell lung 
cancer who had not previously taken any medi-
cation [ 105 ]. On the other hand, immunotherapy 
is associated with better results in patients with 
early stages of cancers. BCG for superfi cial 
bladder cancer is a historical example of this 
claim. In addition, vaccination with HPV- 16 
oncoproteins in women with high-grade VIN 
resulted in relief of VIN-related symptoms in 
60 % of patients [ 32 ]. Accordingly, immuno-
therapy is of benefi t as the fi rst-line treatment of 
patients with advanced or early stages of cancer. 
However, this hypothesis should be assessed in 
future studies.  

  Fig. 1.12    Immunotherapy boosts antitumor immune 
responses and kills tumor cells. Dendritic cell (DC) vac-
cines and adoptive T cell transfer are two main ways of 
enhancing antitumor responses. Tumor antigens, immune 
adjuvants, and stimulatory cytokines help improve DC 
functions and provide cytotoxic T lymphocyte. Tumor 
cells themselves are the best source of antigens to produce 
cancer-reactive T cells. Monoclonal antibodies act as 
immunostimulatory agents to direct stimulation of T cells 
or bind tumor cells and activate complement system and 

Antibody-dependent cell-mediated cytotoxicity (ADCC). 
 TLR  Toll-like receptor,  MPL  monophosphoryl lipid A, 
 MHC II  major histocompatibility complex II,  TNF  tumor 
necrosis factor,  IFN  interferon,  IL  interleukin,  GM-CSF  
granulocyte-macrophage colony-stimulating factor, 
 VEGF  vascular endothelial growth factor,  EGFR  epider-
mal growth factor receptor,  HER2/NEU  human epidermal 
growth factor receptor 2,  GITR  glucocorticoid-induced 
tumor necrosis factor receptor       
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1.7     Monotherapy or Combined 
Therapy? 

 For many years there was a dogma that chemo-
therapy and radiotherapy have deleterious effects 
on immunity and thereby effects of combined 
immunotherapy may be subsided. Initial experi-
ences opposed to this dogma dating back to  animal 
studies in the 1970s when intratumoral injection 
of cytotoxic drugs enhanced systemic immune 
response against tumors, cleared distant metasta-
ses, and promoted protective immunity with 
rechallenge with tumor cells [ 215 ]. In addition, 
systemic delivery of chemotherapy enhanced anti-
tumor responses without induction of T regulatory 
cell depletion [ 216 ]. These observations suggested 
that cytotoxic chemotherapy may not be always 
immunosuppressive. Further studies unveiled that 
immunostimulatory or immunosuppressive effects 
of chemotherapeutic drugs depend on drug/dos-
age and schedule of treatment [ 38 ]. In addition, 
radiotherapy breaks immunosuppressive tumor 
microenvironment and enhances tumor antigen 
presentation. Accordingly radiotherapy with non-
fatal doses for the immune system may enhance 
effi cacy of cancer treatment to be combined with 
immunotherapy [ 217 ]. Under schedule that does 
not suppress effector cytotoxic T lymphocyte, 
induction of apoptotic death of tumor cells by che-
motherapy/radiotherapy results in enhanced tumor 
antigen presentation and subsequent T cell activa-
tion. This is known as immunogenic cell death 
and constructs the basis of combined immuno-
therapy with chemotherapy/radiotherapy [ 218 ]. In 
addition, this combined therapy reduces the 
chance of tumor escape and resistance similar to 
multidrug therapy. Combined therapies are now 
on the way for wide varieties of cancers. 
Immunotherapy can be combined with radiother-
apy, chemotherapy, targeted therapy (like tyrosine 
kinase inhibitors), and surgery [ 219 – 223 ]. 
Interestingly, radioimmunotherapy is an emerging 
fi eld with introduction of mAbs bearing radioac-
tive agents. Yttrium-90- ibritumomab tiuxetan is a 
mAb against CD20 conjugated to yttrium-90 and 
is used to treat relapsed B cell malignancies [ 224 ]. 
 131 I-rituximab and  131 I-tositumomab are other 
radiolabeled mAbs against CD20 [ 223 ,  225 ]. 

 One of the most famous combined chemo-
therapies/immunotherapies is used in the treat-
ment of hematological malignancies. Combined 
CHOP (cyclophosphamide, doxorubicin, vin-
cristine, and prednisone) therapy with rituximab 
as fi rst-line treatment in non-hodgkin lymphoma 
[ 226 ], CHOP plus  131 I-tositumomab in non- 
hodgkin lymphoma [ 223 ], and CHOP plus 
rituximab in untreated mantle cell lymphoma 
[ 224 ,  227 ] are examples of combined chemo-
therapy with immunotherapy in hematological 
malignancies. Other promising results have 
been obtained in pancreatic cancer, one of the 
most lethal cancers worldwide. Algenpantucel-L 
immunotherapy combined with gemcitabine 
and 5-fl uorouracil-based chemoradiotherapy 
improves progression-free survival of patients 
with resected pancreatic cancer [ 228 ]. Further-
more, yttrium-90-labeled humanized clivatu-
zumab tetraxetan with gemcitabine resulted in 
partial response in 16 % and stable disease in 
42 % of patients with advanced pancreatic can-
cer [ 229 ]. However, combined immunotherapy 
with chemotherapy does not always improve 
clinical outcome. In esophageal cancer patients, 
intratumoral administration of  111 In-labeled den-
dritic cells (DC) in combination with preopera-
tive chemotherapy did not improve immune nor 
clinical response [ 230 ]. 

 Targeted therapy with tyrosine kinase inhibi-
tors particularly those inhibiting vascular endo-
thelial growth factor receptors (VEGFR) 
promises hope for treatment of several cancers. 
Both small molecules inhibiting this receptor like 
axitinib [ 231 ] (received FDA approval for refrac-
tory RCC in 2012) and mAbs targeting VEGFR 
like bevacizumab (received FDA approval for 
metastatic colorectal cancer, RCC, and glioblas-
toma multiform in 2004) are now available. 
Despite axitinib which is a chemotherapeutics, 
bevacizumab belongs to immunotherapeutic 
agents due to activation of complement system 
and ADCC when binding VEGFR [ 89 ,  232 ,  233 ]. 
Interestingly, combination of targeted therapy 
with immunotherapy has also been evaluated in 
patients with RCC. Combination of SU5416, 
VEGFR inhibitor, and IFN-α2B (received 
FDA approval for hairy cell leukemia and 
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 advanced- stage melanoma in the 1990s) was 
tested in patients with RCC with no benefi cial 
effects. By contrast, this combination leads to 
fatal events in 6.5 % of treated patients and 
thereby is discouraged [ 234 ]. 

 Finally, immunotherapy confers benefi ts to 
patients who undergone surgery for complete 
resection or debulking of cancer. IFN-α2B after 
resection of melanoma in patients with high risk 
of relapse improves survival and decreases risk of 
relapse but jeopardizes quality of life of patients 
owing to IFN toxicities [ 235 ]. In addition to post-
surgical benefi ts, immunotherapy can be 
employed prior to surgery and resection of tumor 
masses. Neoadjuvant chemotherapy like induc-
tion of resistance cells, diffi culty in resection, 
and false shrinkage of tumor on imaging results 
in fast growth of residual tumor cells after resec-
tion; thus, neoadjuvant immunotherapy is more 
advantageous compared to neoadjuvant or induc-
tion chemotherapy [ 236 ]. Neoadjuvant immuno-
therapy has been tested for several cancers; 
carcinoembryogenic antigen (CEA)-derived 
MHCII-loaded DC vaccination prior to resection 
of colorectal metastases was promising [ 131 ]. In 
addition, adoptive T cell transfer prior or after 
surgery/radiotherapy of glioblastoma multiforme 
patients is an emerging solution for this lethal 
cancer [ 237 ,  238 ].  

1.8     Monitoring 
the Immunological 
and Clinical Responses 
to Immunotherapy 

 It should be borne in mind that immunotherapy- 
induced tumor destruction may appear with delay 
after a period of tumor progression and metasta-
sis. By contrast, response to other standards of 
care of cancer patients including surgery, radio-
therapy, and chemotherapy appears early with 
obvious reduction of tumor size and metastasis 
[ 239 ]. It highlights the signifi cance of the devel-
opment of immune-related response criteria 
nearby classic World Health Organization 
(WHO) criteria and Response Evaluation Criteria 
In Solid Tumors (RECIST). WHO criteria and 

RECIST measure response to cancer therapy 
mostly with respect to tumor shrinkage and 
appearance of new metastases [ 240 – 243 ]. 
However, immune-related response criteria 
should be applied to measure response to cancer 
immunotherapy considering the distinct biology 
of tumor cell killing using each cancer therapy 
approach [ 242 ]. One of the evidences of this dis-
tinction is immune infi ltrate of tumor mass 
caused by immunotherapy that is responsible for 
delayed but effective antitumor responses [ 239 ]. 
Major determinants of safety and effi cacy of can-
cer immunotherapy encompass specifi city of 
therapy or quality of primed T cells, quantity of 
primed T cells against cancer, and half-life of 
induced response against cancer [ 33 ]. This also 
underscores the signifi cance of a reliable unique 
assay to measure immunological response to 
immunotherapy. Such universal standard assays 
let us compare immune responses in different tri-
als. The minimal information about T cell assays 
(MIATA) project aims at establishing universal 
criteria to assess immunological response to can-
cer immunotherapy [ 244 ,  245 ]. Of note is that the 
best site of assessment for immune response is 
tumor microenvironment rather than peripheral 
blood or distant sites from tumor origin due to 
immunosuppressive effect of tumor microenvi-
ronment [ 244 ,  245 ].  

1.9     Limitations of Cancer 
Immunotherapy 

 Several obstacles limit the implication of cancer 
immunotherapy including technical obstacles, 
side effects of immunotherapeutic drugs, and 
lack of broad availability of approved immuno-
therapeutic drugs. Harvesting suffi cient amounts 
of T cells or DCs from cancer patients and acti-
vating them are not always easy and inversely are 
associated with technical diffi culties, high costs, 
and different interindividual effi cacies. Similarly, 
provision of autologous whole-tumor cell vac-
cines expressing GM-CSF is also diffi cult and 
expensive [ 76 ,  239 ]. In addition, novel adjuvants 
are needed to optimize therapy with cancer vac-
cines. Despite considerable investment on cancer 
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vaccine development, less is paid on the develop-
ment of vaccine adjuvant components [ 246 ]. 

 On the other hand, bypass of tumor tolerance 
is inevitably associated with break of peripheral 
tolerance to self-antigens. Accordingly, autoim-
mune manifestations are the most common 
adverse events of cancer immunotherapy. In 
addition some drugs such as IFN induce fatal tox-
icities leading to drug discontinuation. As immu-
notherapy is a systemic treatment, adverse events 
may appear all over the body. Various side effects 
are observed with the administration of various 
immunotherapeutic drugs including gastrointes-
tinal involvement with colitis, nausea, vomiting, 
and hepatotoxicity; skin involvement with rash 
and pruritus; endocrine involvement like adrenal-
itis and hypophysitis; hematological manifesta-
tions from pancytopenia to isolated neutropenia; 
and respiratory or urinary tract infections [ 39 ,  96 , 
 247 – 249 ]. On the other hand, some drugs are 
associated with specifi c toxicities: peripheral 
sensory neuropathy with brentuximab vedotin 
[ 250 ], skin toxicities with panitumumab and 
cetuximab [ 251 ], and hypertension and hemor-
rhage with bevacizumab [ 252 ]. These side effects 
restrict the use of immunotherapy as FDA 
revoked bevacizumab approval for breast cancer 
due to its fatal side effects.  

1.10     Supportive Therapy 

 Despite inevitable side effects of immunotherapy 
to treat cancers, immunotherapy also offers hope 
for rehabilitation and reconstruction of destroyed 
nonmalignant tissues during cancer treatment. 
This use of immunotherapy is tertiary level of 
prevention from cancers which completes the 
treatise of cancer immunotherapy. The most 
famous one is GM-CSF following myelosuppres-
sive chemotherapy. Not only GM-CSF but also 
granulocyte-CSF (G-CSF) increases the matura-
tion and release of myeloid linage including DCs 
and neutrophils. These functions of G(M)-CSF 
on DCs is used to construct more effi cient thera-
peutic cancer vaccines (known as GVAX); how-
ever, increase of neutrophil count is pivotal in 
supportive therapy of cancer patients. Neutropenia 

predisposes cancer patients to a wide range of 
bacterial infections and increases mortality of 
patients. G(M)-CSF effi ciently reduces the risk 
of infection-related morbidity and mortality 
[ 253 – 255 ]. GM-CSF has FDA approval for 
recovery following HSCT of several hematologi-
cal malignancies and is part of the guidelines of 
supportive therapy of many other countries other 
than the United States [ 256 ]. However, it has sup-
portive implication in several malignancies like 
breast cancer [ 255 ]. In breast cancer patients that 
received chemotherapy, use of GM-CSF reduces 
asthenia, anorexia, stomatitis, myalgia, dysgeu-
sia, and nail disorders [ 257 ]. 

 Vitamins also can act as supportive immuno-
therapeutic agents. High-dose methotrexate 
(MTX) which inhibits dihydrofolate reductase 
(DHFR) is used in chemotherapy of a wide range 
of lymphoproliferative diseases as well as breast 
cancer [ 258 ]. DHFR is a pivotal enzyme in folic 
acid metabolism and is required for thymidine syn-
thesis and cell replication [ 258 ]. Accordingly, folic 
acid derivatives can be used to rescue bone marrow 
as well as gut epithelial cells. The benefi cial effects 
of folic acid supplementation are more chargeable 
to nonmalignant cells justifying use of folic acid 
even concomitant with chemotherapy [ 258 ].  

1.11     Effect of Immunotherapy 
on Health-Related Quality 
of Life of Cancer Patients 

 Symptomatic treatment is one essential compo-
nent of care of cancer patients. Cancer patients 
have constitutional symptoms like decreased 
appetite and fever owing to systemic infl amma-
tion. Psychiatric complaints like depression and 
insomnia also are common among the patients. In 
addition, chemotherapy and radiotherapy as well 
as surgical resection of tumor masses exacerbate 
general condition of patients at least for a short 
period of time surrounding the therapy. In this 
manner mastectomy is one of the overwhelming 
events in care of breast cancer patients with unde-
niable psychiatric effects like depression. 
Interestingly, depression reduces the overall 
survival of breast cancer patients controlling for 
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other variables [ 259 ]. Similarly, immunotherapy 
is not free of side effects and also may cause tox-
icities for several organs. However, it is shown 
that certain immunotherapeutic drugs improve 
health-related quality of life of patients. Cytokine- 
induced killer (CIK) cell transfer for patients 
with several cancers including hepatocellular 
carcinoma and gastric cancer homological malig-
nancies improves patients’ quality of life. CIK 
improves appetite and sleep, in addition to reliev-
ing pain [ 260 ]. Sometimes immunotherapy has 
equivocal effects on quality of life. Addition of 
cetuximab in chemotherapeutic regimen of 
patients with metastatic colorectal cancer does 
not impact patients’ quality of life but improves 
overall survival [ 261 ]. Similarly, use of ipilim-
umab for advanced melanoma or panitumumab 
for metastatic colorectal cancer does not impact 
quality of life of treated patients [ 214 ,  262 ]. On 
the other hand, immunotherapy may negatively 
impact the quality of life of treated patients. IL-2 
or IFN-α2B therapy for RCC and melanoma 
patients may cause depressive but not anxiety 
symptoms in the fi rst week of treatment [ 195 ].  

1.12     Cost-Effectiveness of Cancer 
Immunotherapy 

 Not all cancer immunotherapeutic drugs are 
expensive or technically diffi cult to be developed. 
Vaccination against oncogenic viruses like HPV 
offers a cost-effective solution to prevent cancers 
more prominently in limited resource settings 
[ 263 ]. Several studies from African low-income 
countries confi rmed the cost-effectiveness of girl 
vaccination against HPV [ 263 ]. Prevention from 
cancer development is of utmost importance in 
countries without organized programs of cervical 
cancer screening [ 263 ]. In addition to low-income 
countries, developed countries which provide 
access to both screening and therapeutic programs 
for cervical cancer benefi t from HPV vaccination 
[ 61 ]. Cost-effectiveness of cancer prophylaxis in 
such a setting underscores the importance of pri-
mary prevention. In this way, both the health sys-
tem and people will benefi t as people experience 
better status of health while spending less. 

 On the other hand, immunotherapy aiming at 
cancer treatment is usually expensive considering 
either therapeutic cancer vaccines or adoptive T 
cell therapy. However, it should be borne in mind 
that other therapies for cancers are not inexpen-
sive and predispose patients to life-threatening 
side effects. Hence, cost-effectiveness of other 
therapies for cancer patients is also under ques-
tion, but these are all that can be done to save 
patients. Immunotherapy provides hopes for 
patients disappointed from other drugs or have 
metastatic advanced stages of disease. In addi-
tion, immunotherapy is now available for pancre-
atic cancer, esophageal cancer, liver cancer, and 
lung cancer which have a 5-year mortality of 
more than 90 % [ 16 ,  57 ,  90 ,  105 ,  129 ,  192 ,  193 , 
 208 ,  210 ,  230 ,  264 ,  265 ]. It suggests that immu-
notherapy for treatment of cancer patients is 
unlikely to be cost-effective but is the only hope 
of several patients to live 1 day more. 

 Considering supportive immunotherapy, 
admin istration of GM-CSF is shown to be 
 cost- effective in the treatment of neutropenia 
and  prevention of cancer-/chemotherapy-related 
sequelae on bone marrow. Increase of neutrophil 
count is associated with reduction in infection- 
related morbidity and mortality of cancer patients 
concurrent with improvement in their health-
related quality of life [ 253 ,  266 ]. Indeed, cancer 
immunotherapy has approved economic benefi t 
at primary and tertiary level of care, and at sec-
ond level, it provides hope for patients who have 
recurrent/relapsed end-stage disease.  

1.13    Concluding Remarks 

 Immunotherapy can be active or passive, rapid in 
onset of effects, or associated with delayed 
response, specifi c or nonspecifi c. Active immuni-
zation against cancers includes different vac-
cines, cell-based therapies, peptide-based 
therapies, cytokines, and gene therapies, while 
the passive immunization against cancers is also 
provided by developing variable mAbs. These 
antibodies exert their effects via complement 
activation and ADCC that are rapid in onset. 
Of note, monoclonal antibodies also exert 
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 immunomodulator effects by targeting the 
immune system rather than tumor-associated 
antigens. Innate immune actors are more impor-
tant in induction of passive immunization against 
cancers, while adaptive immunity plays the cen-
tral role in active immunization. Despite limited 
number of immunotherapeutic drugs that 
obtained FDA approval, a large number are in the 
way to get permission to be used in routine 
practice. 

 Today, cancer is an important global issue 
with high incidence, mortality, and considerable 
burden on the health system. Considering failure 
of chemotherapy, radiotherapy, or surgery in 
treatment of many cancer patients, a new thera-
peutic avenue is indicated. Immunotherapy could 
be the solution providing protection against can-
cer at all levels of care. Prophylactic use of 
immunotherapy with immunomodulation to treat 
diseases predisposes individuals to cancer, and 
vaccination against oncogenic viruses is benefi -
cial for both health-care providers and people. 
Therapeutic use of immunotherapy offers hope 
for those who are disappointed from other thera-
pies, and supportive immunotherapy helps rescue 
patients following intensive therapies. 
Accordingly, cancer immunotherapy confers a 
global benefi t, and everybody all around the 
world has the right to benefi t from this novel ther-
apeutic avenue.     
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2.1             Introduction 

2.1.1     Preclinical Rationale 

 The fi rst descriptions of the tumor-associated 
antigens (TAAs) in rodent models clearly 
suggested that chemically UV- and/or virus-
induced tumors may express individual, non-
cross- reacting TAAs, unique for each tumor, 
and are possibly derived from non-synonymous 
somatic mutations [ 1 ,  2 ]. However, the use 
of such TAAs in a therapeutic context could 
not be adequately explored for three to four 
decades owing to the lack of molecular knowl-
edge about these TAAs and of the technology 
to purify and synthesize them. This lack of 
therapeutic approaches based on unique TAAs 
was also due to the limited information of the 
features of the immune response, particularly 
of T cell response against tumors. In fact, the 
fi rst molecularly characterized human TAA 
(i.e., MAGE-1) shown to be specifi cally recog-
nized by patient’s T cells has been reported in 
1991 [ 3 ]. MAGE-1, however, was shown to be 
encoded by a cancer germline gene as a normal 
protein expressed even in a subset of testis and/
or placental cells (thereby designated as the can-
cer/testis antigen). However, these cells usually 
do not express MHC molecules, thus prevent-
ing their recognition and destruction by T cells. 
This TAA family now includes several members 
with a potential immunogenicity and immuno-
sensitivity [ 4 ,  5 ]. The report by Boon’s group in 

        G.   Parmiani ,  MD      (*) •    C.   Cimminiello ,  MD    
   C.   Maccalli ,  PhD    
  Unit of Immuno-biotherapy of Melanoma and Solid 
Tumors ,  San Raffaele Foundation Scientifi c Institute , 
  Via Olgettina 58 ,  Milan   20132 ,  Italy    

  Department of Medical Oncology , 
 San Raffaele Scientifi c Institute ,   Milan ,  Italy   
 e-mail: parmiani.giorgio@hsr.it   

    V.   Russo ,  MD    
  Unit of Cancer Gene Therapy , 
 San Raffaele Foundation Scientifi c Institute , 
  Via Olgettina 58 ,  Milan   20132 ,  Italy   

  Department of Medical Oncology , 
 San Raffaele Scientifi c Institute ,   Milan ,  Italy    

  2      Vaccination in Human Solid 
Tumors: Recent Progress 
in the Clinical Arena 

           Giorgio     Parmiani      ,     Carolina     Cimminiello     , 
    Cristina     Maccalli     , and     Vincenzo     Russo    

Contents

2.1  Introduction ................................................  41
2.1.1  Preclinical Rationale ....................................  41

2.2  Formulations Used 
in Cancer Vaccines .....................................  42

2.2.1  Peptide-/DC-Based Vaccination 
Against Cancer .............................................  43

2.3  Factors That May Impair 
the Immune Response Against Tumors ....  43

2.4  New More Successful Clinical Studies 
of Vaccination in Cancer Patients .............  44

2.5  Combination Trials ....................................  45

2.6  Concluding Remarks .................................  45

 References ...............................................................  45

mailto:parmiani.giorgio@hsr.it


42

1991 led to a plethora of new studies and publi-
cations describing other TAAs in human tumors 
that, however, were found to be mostly differ-
entiation proteins expressed even in the normal 
tissue from which the tumor derived. A possible 
classifi cation of the human TAAs is shown in 
Table  2.1 .

   The TAAs recognized by T cells of the 
fi rst three subgroups have been characterized 
(Table  2.1 ), and their T cell peptide epitope 
sequence has been defi ned. Therefore, during the 
last 10 years or so, such TAAs have lent them-
selves to clinical use in vaccination trials owing 
to the possibility to synthesize them in purifi ed 
form and relevant quantities. This availabil-
ity was not matched by that of unique, mutated 
TAAs discovered if not in recent years and used 
in early animal studies [ 6 ,  7 ]. This circumstance 
thus led to a discrepancy between self-TAAs and 
mutated TAAs, since the latter were not available 
as purifi ed peptides and consequently not usable 
if not as cellular extracts. Therefore many pro-
tocols were carried out with molecularly charac-
terized self-TAAs including the differentiation 
proteins, the C/T, and the universal ones ( see  
Table  2.1 ). The advantage of the availability of 
molecularly defi ned TAAs, however, was coun-
teracted by their weak immunogenicity since 
several forms of tolerance to these self-antigens 
along with tumor immunosuppressive mecha-
nisms (see below) prevented the occurrence of 
a strong, clinically meaningful reaction [ 8 ,  9 ]. 
However, an attempt to defi ne a prioritization 
in the use of TAAs has been made resulting in a 
useful classifi cation in terms of advantages and 
disadvantages of the 75 TAAs considered in this 
publication [ 10 ].   

2.2     Formulations Used 
in Cancer Vaccines 

 Cancer vaccines have been used under several dif-
ferent formulations without unequivocally show-
ing the superiority of one formulation over the 
others. By taking the past and successful experi-
ence gathered from antiviral vaccines, immuno-
logical adjuvants were used as local compounds 
enabling the injected vaccine to recruit infl am-
matory cells at the site of injection before vaccine 
degradation by subcutaneous enzymes. 

 This allows the TAA to persist locally and 
thus helps antigen-presenting cells to present 
such antigens to the immune system usually to 
the lymph nodes driving the region of vaccine 
injection. 

 In early trials, cellular vaccines were mostly 
used in combination with different adjuvants 
(e.g., BCG, KLH, Montanide) since they were 
easily obtainable from autologous or allogeneic 
cancer cells usually after  in vitro  stabilization of 
a cancer cell line. This choice was based on the 
unproved hypothesis that randomly selected neo-
plastic cells were representative of the antigenic 
profi le of patient’s tumor mass. These cell vac-
cines usually failed to show therapeutic activity 
in appropriate phase III trials [ 11 ]. 

 Subsequently, cancer cells were genetically 
modifi ed to express and release gene products 
(e.g., Chemokines as IL-2, IL-4, IL-7, IL-12, 
GM-CSF) able to help the  in vivo  TAA recogni-
tion by T cells and their expansion [ 12 ]. However, 
even after such manipulation, no clear and repro-
ducible increase of the clinical response was 
obtained in phase II studies [ 12 ]. The only vac-
cine that reached the phase III trial in prostate 
cancer patients (Vital-2 G-Vax, Cell Genesis) 
was also disappointing since the study had to be 
discontinued due to more deaths occurring in the 
vaccinated arm compared to the placebo arm (see 
Medical News Today, August, 31, 2008). The 
reason for this imbalance in death was not identi-
fi ed; nonetheless it is known that very high doses 
of GM-CSF, released by the cell vaccine, may 
impair rather than increase patients’ antitumor 

     Table 2.1    Tumor-associated antigens (TAAs) recog-
nized by T cells   

 1  Shared/self-/differentiation TAAs (e.g., Melan-A, 
PSA, CEA) 

 2  Shared/self-/cancer testis or germinal TAAs (e.g., 
MAGE, NY-ESO-1) 

 3  Universal TAAs (e.g., survivin, hIERI) 
 4  Mutated, unique TAAs 
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immune response [ 13 ]. However, a successful 
phase III trial was performed during the last few 
years leading to its approval by the FDA 
(Provenge) (see below). 

2.2.1     Peptide-/DC-Based 
Vaccination Against Cancer 

 As soon as TAA peptides recognized by T cells 
became available and taking into consideration 
the ineffectiveness of different B cell-defi ned 
TAA to generate widespread tumor cytotoxic 
antibody response, several phase I–II clinical 
studies were initiated to assess safety and immune 
and clinical response in cancer patients, particu-
larly in melanoma-bearing subjects since this 
neoplasm is considered to be immunogenic [ 14 ]. 
The formulation of these peptide-based cancer 
vaccines was, however, quite different going 
from peptide admixed with immunological adju-
vants like Freund’s incomplete adjuvant-like vac-
cines (e.g., Montanide) to peptide loaded onto 
autologous dendritic cells. Moreover, short pep-
tides (8–10 aa) were the fi rst to be used in the 
clinic, whereas long peptides (13–18aa) were 
used later on since long peptides were described 
to be more immunogenic as compared to short 
ones even within the HLA class I restriction [ 15 ]. 

 No major safety problem was found in vacci-
nation protocols based on the use of one or mul-
tiple peptides selected  in vitro  for their ability to 
interact with MHC-specifi c molecules forming a 
molecular complex recognizable by patient’s T 
lymphocytes through their TCR. In fact, peptides 
deriving from C/T or differentiation TAAs (e.g., 
MAGE-1/3, MART-1, gp100, CEA, PSA) were 
widely used in different human tumors, and while 
TAAs-specifi c T cell response could be generated 
in 20–80 % of subjects, the clinical outcome 
remained limited in terms of tumor response 
(5–20 %) revealing that T cell response induced 
by the vaccine was not suffi ciently strong and/or 
durable to generate an effective clinical response 
in the majority of patients [ 16 ]. A summary of 
these results is provided in Table  2.2  which deals 

with metastatic melanoma; however, it is also 
representative of other human neoplasms (e.g., 
colorectal cancer, NSCLC, H/N, prostate cancer, 
and glioblastoma).

2.3         Factors That May Impair 
the Immune Response 
Against Tumors 

 A major problem that came out from the many 
early studies was the lack or weakness of immune 
response in mice and patients receiving self- TAAs 
as vaccines usually combined with immunologi-
cal, nonspecifi c adjuvants (e.g., Montanide). A 
large number of studies were therefore conducted 
in the last two decades pioneered by the observa-
tion of Ferrone’s and Garrido’s groups [ 17 ,  18 ] on 
the downregulation of class I and II HLA on most 
tumor cells of a variety of human solid tumors like 
melanoma, colorectal cancer, etc. This alteration 
will remove crucial molecules necessary for the 
TAA presentation to the patient’s immune system. 
Table  2.3  lists the many different mechanisms of 
tumor escape that have been described in the last 
few years and that could have prevented an effi -
cient immune response specifi cally targeting the 
appropriate TAAs expressed by cancer cells [ 19 ]. 
A new possibility has been reported in melanoma 
by different authors describing that BRAF- MAPK 

   Table 2.2    Results of fi rst generation (1998–2006) of 
self-peptide-based vaccination of metastatic melanoma 
patients (phase I–II studies)   

 Type of 
peptide TAA 

 No. of 
patients 

 Clinical 
response 
(CR+PR) 
(mean %) 

 Immune 
response (%) 

 Lineage related 
(e.g., Melan-A) 

 159  14  20–65 

 Cancer/testis 
(e.g., MAGE) 

 92  17  30–50 

 DC peptides  124  16  56 
 DC lysates  106  18  46 

   Of note : Slingluff et al. [ 37 ] reported 100 % immune 
response and survival benefi t in melanoma patients vac-
cinated with 12 peptides  

2 Vaccination in Human Solid Tumors: Recent Progress in the Clinical Arena



44

signaling is generating cancer-immune evasion 
[ 20 ,  21 ] though the reverse (i.e., immunostimu-
lation) has been more recently found [ 22 ,  23 ]. 
In the last few years, the main focus was on the 
role of myeloid-derived suppressor cells (MDSC) 
[ 24 ,  25 ] and Tregs [ 26 ] as main mechanisms of 
immune escape by tumor cells. A recent adjunct 
to the plethora of escape mechanisms is the 
infl ammasome component Nirp3 underlining the 
complex relationship between infl ammation and 
cancer [ 27 ] that impairs vaccine-induced immu-
nity. However, one should consider that several 
mechanisms may be activated by tumor cells either 
simultaneously or one after the other according to 
modifi cations that occur in the tumor microenvi-
ronment and in different tissues in which tumor 
cells are growing even during different types of 

therapy [ 28 ]. A recent additional mechanism of 
tumor escape has been described that includes 
tumor cell secretion of sterol metabolites (LXR 
ligands), which inhibit the expression of CCR7 on 
the cell surface of dendritic cells (DCs), thereby 
disrupting DC migration to the lymph nodes 
and dampening the antitumor immune priming 
event [ 29 ]. Presently, the major research efforts 
are directed to fi nd compounds that may help 
in restoring the full anticancer potential of the 
immune system [ 19 ,  30 ].

2.4        New More Successful Clinical 
Studies of Vaccination 
in Cancer Patients 

 During the last few years, however, new knowl-
edge has been gained on the mechanisms of anti-
tumor immunization and tumor immune escape 
in cancer patients enrolled in earlier vaccination 
protocols. Such new information has allowed to 
overcome some of the hurdles that were identi-
fi ed earlier. Thus several phase II and even phase 
III vaccination protocols came to their conclu-
sion or to an advanced ad interim evaluation stage 
and provided clinical evidence of benefi t for 
patients with melanoma and other tumors 
(Table  2.4 ). Of note, a phase III protocol of vac-
cination for metastatic prostate cancer patients 
with autologous dendritic cells loaded with a 
hybrid molecule made of GM-CSF and PAP 
(Provenge) [ 31 ] was approved by the FDA.

   Of great interest also the phase III clinical 
study carried out by Schwartzentruber and col-
leagues in 2012 in which the combination of 
gp100 (210M) class I peptide admixed with 
Montanide (ISA-51) and high-dose IL-2  vs.  IL-2 

   Table 2.3    Factors that interfere with the T cell-mediated 
antitumor response   

 Tumor 
(immunosubversion)  Immune system 

 Lack of or 
downregulation of HLA 

 Immune anergy or 
ignorance 

 Dysfunction of antigen 
presentation 

 Lack of tissue homing 
molecules 

 Release of 
immunosuppressive 
factors (IL-10, 
TGF-beta, VEGF) 

 T cell receptor dysfunction 

 Tumor counterattack 
(Fas/FasL) 

 Inactivation of T 
cells within the tumor 
environment (granzyme B) 

 IDO, SPARC, Galectin3  Expression of FoxP3, 
CTLA4, Treg cells 

 Endoplasmic reticulum 
stress 

 MDSC 

 NFAT1, exosomes  Epithelial/mesenchymal 
transition 

 Acidic microenvironment  Tie+ monocytes dysfunction 

    Table 2.4    Evidence for 
clinical activity of cancer 
vaccines   

 Vaccine  Tumor  Phase  No. patients  Stage  Statistics 

  MAGE 3   NSCLC  II R  182  IB-II  Trend 
  IDM-2101   NSCLC  II  63  IIIB.IV  NA 
  II.2+ / -gp 100    Melanoma    III   185  IV   P  < 0.002 
  Provenge DC   Prostate cancer  III  341/171  HR   P  < 0.03 
  E75 / Her2 / neu   Breast cancer  IIR  101/75  IV   P  < 0.04 
  DC / NHL   NHL  II  18  3CR, 3PR, 8SD 
  BiovaxID   Follicular lymphoma   III   76/41   P  < 0.04 
 IMA901  RCC  II R  96  Advanced   P  < 0.02 
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alone showed a statistically relevant benefi t for 
the arm of vaccinated melanoma patients [ 32 ]. In 
fact, the protocol involved 186 stage IV or stage 
III unresectable, HLA*A0201 patients from 21 
centers who received the treatment with a pri-
mary endpoint being clinical response (Table  2.4 ). 

 In a different randomized phase II study of 
renal cell cancer patients, vaccination with mul-
tiple peptides (IMA901) purifi ed from tumor 
cells induced an immune response associated 
with increased survival. Of note, the immune 
response was improved by the administration of a 
single immunomodulating dose of cyclophos-
phamide that downregulated Tregs [ 33 ].  

2.5     Combination Trials 

 The availability of new molecular targeted thera-
peutic agents (e.g., vemurafenib, dabrafenib) and 
checkpoint blockade antibodies (e.g., ipilimumab, 
anti-PD-1), particularly for metastatic melanoma 
[ 34 ], has changed the clinical outcome of these 
subjects and opened the possibility of further 
increasing the frequency of clinical response both 
in terms of tumor shrinkage and survival by com-
bining these agents with vaccination [ 35 ]. In fact, 
antibodies modulating the different immune 
response checkpoints are known to keep the 
immune response activated, but the appropriate 
addition of tumor-specifi c vaccines may focus the 
immune response on targets and less on off-target 
tumor molecules, thus potentially increasing the 
therapeutic effect. A detailed list of published pre-
clinical studies has been recently prepared and 
published [ 36 ]. New clinical studies are being ini-
tiated by different research groups to increase the 
effi cacy of immunomodulating antibodies.  

2.6     Concluding Remarks 

 During the last few years, we have seen a clear 
change from pessimism to optimism in the poten-
tial clinical effi cacy of cancer vaccines. This 
change was based on both the discovery of new 
molecular mechanism of antitumor immunity 
and tumor immune escape. The fi rst cancer vac-

cines have been approved by the regulatory agen-
cies in the USA and Europe, but the pipeline of 
over 200 vaccines will eventually provide new 
vaccination agents to be added to the now limited 
list. The combination of vaccination, checkpoint 
antibodies, and molecular targeting by new 
kinase inhibitory agents holds great promise and 
will certainly further improve the response rate of 
metastatic patients bearing different solid tumors.     
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3.1             Introduction 

 Over 12,000 children and adolescents are diag-
nosed each year with cancer in the United States 
[ 1 ]. Cancer remains the leading cause of non- 
accidental death in the pediatric age group. 
While the incidence of childhood cancer has 
increased over the last 40 years, the overall cure 
rates have signifi cantly improved [ 1 ,  2 ]. There 
have been improvements in the outcome of chil-
dren with solid tumors; however, these have 
lagged behind those seen in hematologic 
malignancies.  

3.2     Solid Tumors 

 Pediatric solid tumors include those located 
within the central nervous system (CNS), neu-
ral tumors, and those outside the CNS, nonneu-
ral tumors. In this chapter the focus will be on 
nonneural solid tumors including bone and soft 
tissue sarcomas, neuroblastoma, Wilms tumor, 
hepatoblastoma, and systemic germ cell 
tumors. Multi-agent chemotherapy, radiation, 
and surgery have greatly improved survival in 
pediatric and young adult patients with 
localized solid tumors. Unfortunately the same 
is not true for patients with metastatic or recur-
rent disease, which may benefi t from 
novel alternate therapies such as immunother-
apy [ 1 ,  3 ]. 
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3.2.1     Sarcomas 

 The most common pediatric and adolescent sar-
comas include osteosarcoma, Ewing’s sarcoma, 
and rhabdomyosarcoma. 

3.2.1.1     Osteosarcoma 
 Osteosarcoma (OS) is the most common malig-
nant bone tumor in children and adolescents. The 
cell of origin is thought to be mesenchymal stem 
cells with an osteoid component [ 4 ]. The inci-
dence of OS is approximately 4.5 cases per mil-
lion per year in the population, and it occurs 
primarily in adolescents with more than half of 
cases found in those less than 25 years of age [ 4 , 
 5 ]. It is more common in blacks with a slightly 
increased incidence in males [ 5 ]. Although the 
majority of cases of osteosarcoma are of unknown 
etiology, there is a higher incidence in individuals 
with the RB1 mutation, found also in retinoblas-
toma, TP53 mutation which is associated with 
Li–Fraumeni syndrome, and RECQ4 mutation 
found in patients with Rothmund–Thomson syn-
drome [ 6 ]. Patients typically present with pain at 
the primary tumor site. The most common sites 
for OS are the long bones of the distal femur, 
proximal tibia, and proximal humerus. 
Approximately 20 % of patients will have meta-
static disease at diagnosis usually involving 
bones and lungs [ 7 ]. On physical examination a 
soft tissue mass may or may not be evident. 
Diagnosis is made through a biopsy of the pri-
mary tumor by a skilled orthopedic surgeon. 
There is no standard staging system utilized in 
pediatric oncology for OS, and the disease is 
classifi ed as localized or metastatic. Multimodal 
therapy consists of 10 weeks of neoadjuvant che-
motherapy followed by local control with tumor 
resection and 20 weeks of adjuvant chemother-
apy [ 4 ,  7 ]. Radiation therapy has not been found 
to be as effective and is only recommended when 
tumors are unresectable at doses of 60–68 Gy [ 7 ]. 
In children and young adults with localized dis-
ease, the event-free and overall survival is around 
60–70 %. Unfortunately for patients with meta-
static disease, the prognosis is poor ranging from 
25 to 40 %. Patients with isolated lung metastasis 
have a slightly higher overall survival [ 5 ].  

3.2.1.2     Ewing’s Sarcoma 
 Ewing’s sarcoma is the second most common 
bone tumor in children and adolescents [ 8 ]. The 
source of the Ewing’s sarcoma cell is still 
unknown; however, it is thought to derive from 
neuroectodermal cells with either neuronal or 
epithelial origins [ 9 ]. The most common cytoge-
netic translocation found in Ewing’s sarcoma is 
the balanced translocation of t(11;22), which at 
the molecular level involves the fusion of the 
Ewing’s sarcoma breakpoint region 1 (EWSR1) 
in 22q12 with the Friend leukemia virus integra-
tion 1 (FLI1) gene in 11q24. This fusion is found 
in 85 % of Ewing’s sarcoma, yet multiple alterna-
tive gene fusions have recently been found 
between these two genes [ 10 ]. The overall inci-
dence of Ewing’s sarcoma is almost three cases 
per million in the population per year, and as with 
osteosarcoma, Ewing’s sarcoma occurs primarily 
in adolescents [ 8 ]. The greatest incidence is 
found in whites and males [ 8 ]. Patients initially 
present with complaints of pain at the primary 
site. The pelvis, femur, and rib are the most com-
mon locations, yet one quarter of tumors arise in 
the soft tissue rather than bone. As in OS the most 
common locations for metastasis are the lungs 
and other bones; however, the disease can also be 
found in the bone marrow. Metastatic disease is 
found in 25 % of patients at diagnosis. As with 
OS there is not typically a staging system used 
and disease is classifi ed as localized or meta-
static. Multimodal therapy includes chemother-
apy and local control with either radiation or 
surgery. There have been no prospective studies 
comparing radiation versus surgery; however, no 
advantage has been shown utilizing one modality 
over the other. In the United States, surgery is the 
modality of choice [ 4 ,  7 ,  11 ]. Patients with local-
ized disease have survival rates between 60 and 
70 % with improved prognosis in those with 
smaller primary tumors. Those with metastatic 
disease have a much poorer outcome with 
20–30 % survival. Bone metastasis confers an 
inferior prognosis than lung metastasis [ 4 ,  8 ,  11 ].  

3.2.1.3     Soft Tissue Sarcomas 
 The soft tissue sarcomas (STS) are the most com-
mon extracranial solid tumors found in children 
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and young adults accounting for more than 7 % 
of cancer cases [ 12 ]. They are comprised of a 
diverse group of malignant connective tissue 
tumors including rhabdomyosarcoma (RMS) and 
non-rhabdomyosarcoma soft tissue sarcomas 
(NRSTS). Rhabdomyosarcoma comprises almost 
half of the STS, and the overall incidence of RMS 
is 4.5 cases per million in the population per year 
[ 12 ,  13 ]. RMS is derived from immature skeletal 
muscle, and the two largest subgroups are embry-
onal (ERMS) and alveolar (ARMS) rhabdomyo-
sarcoma. These groups are classifi ed according to 
their histologic and biologic features. ERMS is 
associated with allelic loss of chromosome 11, 
found more often in younger children, and is 
associated with a better prognosis. ARMS has 
two commonly seen gene translocations: t(2;13) 
and t(1;13), and it is distributed equally through-
out childhood and adolescence [ 13 ]. RMS has 
been associated with genetic conditions includ-
ing neurofi bromatosis type I, Rubinstein–Taybi 
syndrome, Beckwith–Wiedemann syndrome, 
Costello syndrome, Noonan syndrome, Gorlin 
basal cell nevus syndrome, and Li–Fraumeni 
syndrome [ 14 ]. RMS is very heterogeneous and 
can occur in places not even associated with skel-
etal muscle such as the mouth and bladder. Forty 
percent of RMS cases are found in the head and 
neck, 20 % arise in genitourinary sites, 20 % 
from the extremities, and 20 % from other sites 
[ 14 ]. The most common site for metastasis is the 
lungs, followed by the bone and rarely the bone 
marrow. The prognosis for RMS is determined by 
multiple factors including primary site, stage and 
group, pathology, and age. The Intergroup 
Rhabdomyosarcoma Study (IRS) Group formed 
a grouping system to assess the extent of tumor. 
In the United States, the IRS grouping classifi ca-
tion is used along with a modifi ed TNM staging 
system and histology to assign the patient to a 
risk group: low, intermediate, or high. Treatment 
includes multi-agent chemotherapy and local 
control with surgery and radiation. A complete 
resection of the primary tumor is recommended; 
however, this is not possible in the majority of 
cases as tumors often arise in sites where resec-
tion would cause unacceptable loss of function or 
cosmetic disfi gurement. For all tumors located in 

the extremity and for paratesticular tumors in 
children >10 years of age, a regional lymph node 
biopsy is also recommended, and a sentinel 
lymph node biopsy may also be helpful [ 14 – 16 ]. 
All patients with RMS Group II–IV and Group I 
alveolar receive radiation to the primary site. 
Chemotherapy is minimal for low-risk disease 
and is intensifi ed for intermediate- and high-risk 
disease. As expected, patients with low-risk dis-
ease have the most favorable outcome with 
failure- free survival (FFS) of 90 %, and those 
with intermediate-risk disease have a 70 % 
FFS. Despite intensive therapy, those patients 
with high-risk disease have a poor FFS of 20 % 
[ 17 ]. 

 The NRSTS include fi brosarcomas, liposarco-
mas, leiomyosarcomas, angiosarcomas, malig-
nant hemangiopericytoma, synovial sarcoma, 
chondrosarcomas, and malignant peripheral 
nerve sheath tumors. Due to the individual rarity 
of these tumors, they are commonly grouped 
together with the highest incidence of NRSTS 
occurring in infants and young adults [ 12 ]. These 
tumors have a similar histology to adults STS, 
however do not necessarily behave the same as in 
adults, and many of the individual NRSTS have 
characteristic cytogenetic abnormalities. Tumors 
<5 cm that are fully resected have the best prog-
nosis and no further treatment is needed. The sur-
vival for these patients is around 85 %. However, 
patients with NRSTS that are >5 cm and those 
that are unresectable have a survival of only 
50 %, and patients with metastatic disease have a 
survival of only 10 %. Chemotherapy and radia-
tion therapy have been used with some of the 
NRSTS; however, their effi cacy is still unknown 
as these tumors do not appear to be very sensitive 
to these modalities [ 15 ].   

3.2.2     Neuroblastoma 

 Neuroblastoma is the second most common 
extracranial solid tumor and the most common 
tumor found in infancy. The incidence is 4.9 
cases per million per year [ 18 ]. It is an embryonal 
tumor of the autonomic nervous system and can 
arise anywhere in tissues of the sympathetic 
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 nervous system. The majority of cases are 
 sporadic; however, familial cases are associated 
with mutation in the tyrosine kinase domain of 
the anaplastic lymphoma kinase (ALK) onco-
gene and loss of function mutations in the gene 
PHOX2B [ 19 ,  20 ]. Clinical presentation is 
dependent on tumor location and/or metastatic 
spread. The most common location of primary 
tumors is the abdomen. Approximately 50 % of 
patients will present with metastatic disease. 
Regions of metastasis include the bone, lymph 
nodes (local and noncontiguous), liver, and bone 
marrow. Children with metastatic tumors, unlike 
those with localized tumor, typically have a large 
tumor burden and are very ill at presentation [ 21 , 
 22 ]. Staging is done according to the International 
Neuroblastoma Staging System (INSS) based on 
tumor resection. The results of the tumor biology 
along with the patient’s age and disease stage 
allow for classifi cation of the patient’s risk status. 
The current risk stratifi cation will be revised as 
the International Neuroblastoma Risk Group 
(INGR) has defi ned an updated classifi cation sys-
tem that will be used internationally and in the 
United States in upcoming protocols [ 22 ,  23 ]. 
Currently, patients with low-risk disease only 
require surgery for treatment and have a survival 
of >98 %. Patients with intermediate-risk disease 
require surgery and moderate chemotherapy, yet 
the survival rate remains excellent, 90–95 %. In 
patients with high-risk disease, survival is very 
poor, 40–50 %, despite intense treatment. 
Generally high-risk patients receive three phases 
of treatment: induction, consolidation, and main-
tenance as described by Maris in a recent review 
[ 21 ]. Induction consists of chemotherapy and 
surgical resection, followed by consolidation 
with myeloablative chemotherapy with stem cell 
rescue and radiation of the primary tumor site. 
Maintenance consists of isotretinoin and immu-
notherapy (anti-GD2) to eliminate minimal resid-
ual disease. The disialoganglioside GD2 is 
uniformly expressed on all neuroblastoma cells. 
Anti-GD2 antibodies including 3F8 and ch14.18 
have shown an improvement in overall survival 
in clinical trials [ 24 ,  25 ]. The Children’s 
Oncology Group completed a randomized phase 
III study with ch14.18, and results revealed an 

improvement in overall survival from 46 to 66 % 
with the antibody in combination with IL-2 and 
GM-CSF. This will be discussed in more detail in 
the upcoming sections on immunotherapy treat-
ment [ 21 ,  25 ].  

3.2.3     Wilms Tumor 

 Wilms tumor, also known as nephroblastoma, is 
the most common malignant renal tumor of 
childhood comprising 6 % of childhood cancers. 
The incidence rate is eight cases per million per 
year in children younger than 15 years of age in 
North America. It occurs slightly more often in 
females and blacks [ 26 ]. Wilms tumor is com-
posed of blastemal, stromal, and epithelial cells. 
Tumors that contain anaplastic cells are classifi ed 
as unfavorable as these are more aggressive 
tumors with a worse prognosis [ 27 ]. As with neu-
roblastoma, a small percentage of cases of Wilms 
tumors are associated with congenital syndromes 
including WAGR (Wilms tumor, aniridia, 
 genitourinary malformation, mental retardation) 
 syndrome, Denys–Drash syndrome, and 
Beckwith–Wiedemann syndrome [ 28 ]. There 
have been specifi c genetic alterations found to be 
associated with the tumorigenesis of Wilms 
tumor. The tumor suppressor gene WT1 was the 
fi rst gene identifi ed in the development of Wilms 
tumor. Loss of heterozygosity of chromosomes 
16q and 1p has also been found in more aggres-
sive Wilms tumors [ 29 ,  30 ]. Clinically infants 
and children will usually present with a painless 
abdominal mass and may also have hypertension 
and/or hematuria. Staging differs between North 
America and Europe; in North America staging 
is determined based on histology, genetics, and 
upfront surgical resection, whereas in Europe 
staging is determined after 4–6 weeks of upfront 
chemotherapy. Treatment includes surgery, che-
motherapy, and radiation therapy. Patients with 
bilateral (stage V) disease will have neoadjuvant 
chemotherapy in order to decrease tumor size and 
preserve as much normal tumor tissue as possi-
ble. Patients with favorable histology tumors 
have an excellent prognosis, even with metastatic 
disease. Children with favorable histology and 
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stage I, II, and III disease had a 4-year survival of 
>90 %, whereas those with stage IV and V dis-
ease had survival >79 % in the latest Children’s 
Oncology Group (COG) study [ 31 ]. Those 
patients with stage I and II disease only receive 
chemotherapy, whereas patients with stage III 
and IV disease receive intensifi ed chemotherapy 
and radiation therapy. Children with anaplastic 
tumors and/or unfavorable genetics receive more 
intense chemotherapy and radiation therapy [ 31 , 
 32 ]. Patients with focal anaplasia have a better 
prognosis than those with diffuse anaplasia; how-
ever, even with diffuse anaplasia, survival is 
>70 % for stage I, II, and III disease. Yet,  children 
with stage IV disease with focal or diffuse 
 anaplasia have a very poor prognosis of 
<30 % [ 31 ].  

3.2.4     Hepatoblastoma 

 Primary liver tumors in children are rare and 
account for only 1 % of tumors in the pediatric 
age group. Hepatoblastoma is the most common 
liver tumor with the majority of cases presenting 
in children less than 4 years of age [ 33 ,  34 ]. The 
highest incidence is in infants and then declines 
rapidly with increasing age [ 33 ]. Hepatoblastoma 
occurs more often in premature infants and in 
males [ 33 ,  35 ]. It is an embryonal tumor with fi ve 
histologic types, with pure fetal type, having the 
most favorable prognosis, and small cell undif-
ferentiated type, having the most unfavorable 
prognosis. Multiple genetic syndromes and 
familial cancer predisposition conditions includ-
ing Beckwith–Wiedemann syndrome, Li–
Fraumeni syndrome, hemihypertrophy, and 
familial adenomatous polyposis are associated 
with hepatoblastoma [ 34 ]. Changes in imprinting 
at the 11–15 loci as well as acquired chromo-
somal changes are involved in the pathogenesis 
of hepatoblastoma [ 36 ,  37 ]. Infants and children 
will usually present with a painless abdominal 
mass. Serum alpha-fetoprotein (AFP) is elevated 
in more than 90 % of cases. Tumors that are AFP 
negative are thought to be more aggressive and 
have a worse prognosis. It is important to take the 
child’s age into consideration when interpreting 

AFP as it is commonly elevated in neonates up to 
1 year of age. As in Wilms tumor, staging in 
North America and Europe differs. In North 
America staging depends on the extent of surgi-
cal resection at diagnosis, whereas the European 
system only utilizes the pretreatment extent of 
disease and designates patients as standard or 
high risk. In North America, most institutions 
follow COG protocols, and children are also sep-
arated into risk groups based on postoperative 
resection and biologic features of the tumors and 
are divided into low, intermediate, and high risk. 
Treatment includes surgery and chemotherapy 
[ 34 ,  35 ,  38 ]. Complete surgical resection is cru-
cial for survival, and children with complete 
resection or pure fetal histology usually do not 
require further treatment. For tumors that are ini-
tially unresectable, patients are given up to four 
cycles of chemotherapy including cisplatin. 
Tumors are then resected by partial hepatectomy 
or children receive a liver transplantation fol-
lowed by an additional two cycles of chemother-
apy [ 34 ,  35 ]. Those children with lung metastasis 
should also have resection of residual metastasis. 
In the most recent European and North American 
trials, the prognosis was >90 % for stage I and II 
low-risk disease. Intermediate-risk disease prog-
nosis is around 70 %, and unfortunately survival 
is less than 30 % in patients with metastatic high-
risk disease [ 35 ].  

3.2.5     Systemic Germ Cell Tumors 

 Germ cell tumors (GCT) arise from primordial 
cells involved in gametogenesis and arise at mul-
tiple sites in the body with a variety of histologi-
cal subtypes including embryonal carcinoma, 
yolk sac tumors, choriocarcinoma, and teratomas 
(mature and immature) [ 39 ]. Malignant germ cell 
tumors, arising outside of the central nervous 
system, account for 2–4 % of all pediatric and 
adolescent cancers. The annual incidence is eight 
cases per million people in those less than 
20 years of age [ 40 ]. In children and adolescents 
<14 years, there is a higher incidence in 
females; however, males have a higher incidence 
in patients >14 years. Cryptorchidism and 
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 syndromes that involve abnormal testicular 
development, Klinefelter’s syndrome and XY 
dysgenesis, have been found to have an increased 
risk of testicular GCT. In pubertal and postpuber-
tal adolescents and adults, isochromosome p12 is 
present in the majority of tumors tested; however, 
in  prepubertal children this is rarely present indi-
cating a clear cytogenetic difference between 
these groups of patients [ 39 ,  41 ]. Clinically 
patients will present with symptoms related to 
the tumor site. For example, testicular or ovarian 
tumors will usually have symptoms of pain, con-
stipation, and/or urinary retention. In infants and 
children, the most common sites for GCT are the 
sacrococcyx and the ovary; the testicle is the next 
most common location [ 42 ,  43 ]. The most com-
mon sites of metastasis include the lungs, liver, 
and local lymph nodes; bone metastases are very 
rare. Alpha-fetoprotein and beta subunit of 
human chorionic gonadotropin (βHCG) are ele-
vated in the majority of malignant GCTs. Lactate 
dehydrogenase (LDH) may also be elevated; 
therefore, LDH, AFP, and βHCG should be 
obtained at diagnosis and prior to surgery. As dis-
cussed previously, AFP may also be elevated in 
hepatic tumors in infants, so it is important to 
consider this in tumor evaluation [ 39 ]. As the 
adult GCT staging system has not been found to 
accurately correlate with pediatrics, it is not used 
in pediatric GCTs. In North America the COG 
staging system is generally used. All GCTs 
require surgery and initial complete resection 
upfront is recommended if possible. If the tumor 
is a mature teratoma, no additional treatment is 
needed. If a malignant tumor cannot be fully 
resected, chemotherapy is given and a second 
look surgery may be indicated. Chemotherapy 
treatment following COG studies is based on 
tumor risk groups and tumor location. Low-risk 
tumors include stage I testicular and ovarian 
GCTs and are closely observed requiring chemo-
therapy if serum tumor markers (AFP, βHCG) do 
not decline. Intermediate-risk GCTs include tes-
ticular tumors stages II–IV, ovarian tumors stages 
II–III, and extragonadal malignant tumors stages 
I–II. Stage IV ovarian tumors and stages III–IV 
extragonadal tumors are classifi ed as high risk 
[ 44 ]. Intermediate- and high-risk tumors require 

platinum-based chemotherapy, and the most 
recent trials are attempting to decrease the num-
ber of cycles in intermediate-risk patients and 
intensifying treatment for high-risk groups [ 39 , 
 43 – 46 ]. Radiation is not utilized in the initial 
treatment of malignant GCTs, as the majority of 
these tumors are very sensitive to chemotherapy, 
specifi cally the platinums. The prognosis is 
excellent for testicular, ovarian, and sacrococcyx 
GCTs: stages I–III >85 % and stage IV >80 % 
[ 45 ,  46 ]. As mediastinal GCTs are rare, the data 
is limited, but these tumors have a worse overall 
prognosis, and in one COG (intergroup CCG/
POG) study, the overall survival was 71 % [ 45 , 
 47 ].   

3.3     Immune Therapy 
and Pediatric Solid Tumors 

3.3.1     Monoclonal Antibodies or 
Inhibitor Targeting 

3.3.1.1     Gangliosides 
 From all pediatric solid tumors, neuroblastoma 
stands out as the one in which immunotherapy 
has been most widely applied and has recently 
become part of standard therapy. Antibody 
 therapy in combination with cytokines has 
improved outcomes in patients with high-risk 
neuroblastoma. 

 Disialoganglioside (GD2) is a carbohydrate 
antigen whose true function is not known, 
although it is expressed normally on the tissues 
of the central nervous system, peripheral nerves, 
and skin melanocytes. GD2 is also expressed 
consistently on neuroblastoma making it an ideal 
target in these patients. Melanoma, some bone 
and soft tissue sarcomas, lung tumors, and brain 
tumors have also been found to express GD2 
[ 48 ]. Murine and mouse–human chimeric and 
humanized versions of anti-GD2 antibodies have 
been studied in neuroblastoma clinical trials 
including 3-F8, 14G2a, ch14.18, and hu14.18 
[ 49 ]. The fi rst generation of anti-GD2 monoclo-
nal antibodies (mAbs) included 3F8, 14G2a, and 
ch14.18. Reversible pain (secondary to binding 
of the antibody to peripheral nerve fi bers), fever, 
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tachycardia, and urticaria were the most common 
toxicities found in initial clinical trials of 3F8 and 
14G2a antibodies. 3F8 is a murine IgG3 mono-
clonal anti-GD2. Phase I and II studies revealed 
moderate responses to the antibody in patients 
with relapsed/recurrent neuroblastoma. In a later 
phase II study, 3F8 was combined with granulo-
cyte colony macrophage stimulating factor 
(GM-CSF) in order to stimulate Antibody-
dependent cell-mediated cytotoxicity (ADCC) 
mediated by monocytes and granulocytes. 
Patients tolerated this combination without sig-
nifi cant toxicity, and those with evidence of neu-
roblastoma involving the bone marrow appeared 
to benefi t the most [ 48 ,  50 ]. Another murine anti-
 GD2 mAb, 14G2a, was also utilized in a phase I 
study; however, it was combined with interleukin 
2 (IL-2) to augment NK-mediated ADCC, and 
responses were also noted in some patients [ 51 , 
 52 ]. The mAb ch14.18 is a chimeric mouse–
human antibody consisting of the variable regions 
of murine IgG3 anti-GD2 mAb 14.18 and the 
constant regions of human IgG-κ [ 48 ,  52 ]. This 
antibody has a longer half-life than 14G2a and 
showed effi cacy in an initial pilot study followed 
by a phase II trial in children with recurrent/
refractory neuroblastoma. Both studies included 
IL-2 and GM-CSF to enhance ADCC [ 25 ,  52 ]. 
This was followed by a COG phase III study in 
high-risk neuroblastoma. In this trial patients 
were randomized to receive immunotherapy with 
ch14.18 antibody combined with alternating IL-2 
and GM-CSF added to the standard therapy. 
Patients randomized to receive immunotherapy 
had signifi cantly improved rates of event-free 
survival (66 ± 5 %  vs.  46 ± 5 % at 2 years,  P  = 0.01) 
and overall survival compared to those receiving 
the standard therapy alone [ 25 ]. These results 
were so compelling that the COG Neuroblastoma 
Committee decided to offer ch14.18 to prior trial 
participants who had been randomly assigned to 
the no immunotherapy arm [ 53 ]. 

 Second-generation GD2 mAbs have been 
developed and are currently in early clinical tri-
als. Hu14.18–IL-2 is a fusion protein of a human-
ized second-generation anti-GD2 antibody 
(Hu14.18) and IL-2. Phase I and II studies of 
patients with refractory/relapsed neuroblastoma 

have been completed, and toxicities were similar 
to those of ch14.18. The phase II study revealed a 
response rate around 21 % for patients with non- 
bulky disease [ 52 ,  54 ]. Another second- generation 
mAb undergoing clinical investigation is a 
humanized ch14.18 mAb with a mutation to ala-
nine at lysine 322 (Hu 14.18K332A) in order to 
limit complement fi xing and thus the pain associ-
ated with the anti-GD2 [ 48 ]. GD2 antibodies 
have recently been used in combination with chi-
meric antigen receptors (CARs) to target neuro-
blastoma cells [ 55 ,  56 ]. Genetically engineered T 
cells with CARs are designed to recognize GD2 
and have been used in phase I clinical trials with 
evidence of activity and persistence [ 56 ,  57 ]. T 
cells and CARs will be discussed in more detail 
later in this chapter. 

 GD2, GD3, and GM3 may also be potential 
targets for sarcomas. GD2 and GD3 are both 
expressed variably in sarcomas [ 58 ,  59 ]. Unlike 
GD2, GD3 is a disialoganglioside that is not 
expressed on normal tissues. GD3 expression is 
found in melanomas, soft tissue sarcomas, and 
tumors of neuroectodermal origin [ 57 ,  60 ]. 
Similar to GD3, N-glycosylated ganglioside 
NeuGc-GM3, GM3, has also been found to be 
expressed primarily in neoplasms and not in nor-
mal tissues. GM3 has been used as a target in 
breast cancer and has been recently found on the 
surface of Wilms tumor and Ewing’s sarcoma 
[ 57 ,  60 – 62 ].  

3.3.1.2     Her2/Neu 
 Her2/Neu is the epidermal growth factor receptor 
2 oncogene that has been found to be amplifi ed in 
pediatric medulloblastoma, Wilms tumor, and 
osteosarcoma. Trastuzumab is the mAb targeting 
Her2/Neu that has been successful in the treat-
ment of breast cancer [ 57 ,  63 ]. However, its use 
in pediatric solid tumors has limited data. 
Trastuzumab was found to be safe when com-
bined with chemotherapy in a phase II trial of 
newly diagnosed patients with metastatic osteo-
sarcoma. Forty-one patients with Her2/Neu- 
positive tumors received trastuzumab, yet 
survival was not signifi cantly increased, and fur-
ther studies will need to be done to determine its 
therapeutic benefi t in pediatric solid tumors [ 64 ].  
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3.3.1.3     RANK-L 
 The cytokine RANK-L is a TNF family member 
expressed on the surface of osteoblasts and is 
released by activated T cells. RANK-L has been 
found to be critical to osteoclast formation, 
 function, and survival. Dysregulation in bone 
remodeling has been found to be key in the patho-
physiology of bone metastasis, and RANK-L 
plays an essential role in this process [ 65 ]. 
Denosumab is a humanized mAb that binds 
RANK-L ligand and has been used in phase II 
and III clinical trials in multiple myeloma (MM) 
and metastatic breast and prostate cancers [ 65 –
 68 ]. Denosumab is thought to be an ideal anti-
body to use in osteosarcoma because of its direct 
effects on bone tumor pathophysiology. In one 
study expression of RANK-L was found in 75 % 
of osteosarcoma samples, and it was related to 
poor response to neoadjuvant chemotherapy [ 69 ]. 
Denosumab will be utilized in an upcoming COG 
phase II clinical trial in patients with recurrent 
osteosarcoma (personal communication).  

3.3.1.4     Fibroblast Growth Factor 
Receptor 4 

 Fibroblast growth factors and their receptors are 
an integral part of normal cell development. They 
are important in regulating cell proliferations, 
survival, migration, and differentiation. However, 
deregulation of these growth factors is found in 
many cancers, and the current thinking is that 
they act as an oncogene, promoting cancer pro-
gression [ 70 ]. There are currently MM trials uti-
lizing antibodies to fi broblast growth factor 
receptor 3 [ 57 ]. Recently fi broblastic growth fac-
tor receptor 4 (FGFR 4) was found to be overex-
pressed in pediatric rhabdomyosarcomas with 
little expression in normal myocytes. 
Rhabdomyosarcoma tumors that were highly 
expressing FGFR4 were associated with 
advanced-stage tumors and poor survival [ 71 , 
 72 ]. Therefore, this may be a promising target for 
immunotherapy of rhabdomyosarcoma.  

3.3.1.5     VEGF 
 It is well known that the growth and metastasis of 
solid tumors are dependent on angiogenesis. 
Vascular endothelial growth factor (VEGF) is 

overexpressed in many types of cancer, making it 
a useful target for tumor vascular inhibition [ 73 ]. 
Bevacizumab is a humanized antibody against 
VEGF-A [ 74 ]. This antibody does not have direct 
immune effects but disrupts angiogenesis. It has 
been used in clinical trials targeting adult cancers 
such as renal cell carcinoma, breast cancer, and 
colorectal cancer [ 73 ]. In pediatric solid tumors, 
it has been used compassionately in patients with 
refractory tumors. In these small groups of 
patients, some responses have been reported in 
patients with Ewing’s sarcoma, NRSTS, RMS, 
and neuroblastoma [ 73 ,  75 ]. A phase I clinical 
trial of patients 1–22 years of age with refractory 
solid tumors through COG has also been com-
pleted. In the phase I trial, there were no dose- 
limiting toxicities, including no hemorrhage or 
thrombosis [ 76 ]. However, as there were no 
objective responses, further studies will need to 
be done to evaluate its clinical effi cacy. As with 
other targeted therapies, bevacizumab may work 
better in combination with other agents. 

 Inhibiting VEGF in Ewing’s sarcoma mouse 
models  in vivo  resulted in decreased lytic bone activ-
ity and specifi cally a decrease in RANK-L [ 77 ,  78 ]. 
Therefore, a combination of VEGF and RANK-L 
inhibition may be an option for future clinical trials 
in Ewing’s sarcoma and osteosarcoma.  

3.3.1.6     Insulin-Like Growth Factor 1 
Receptors 

 Insulin-like growth factor 1 receptor (IGF-1R) 
has been found to be important in the growth of 
solid tumors, specifi cally sarcomas. In the past it 
was diffi cult to target IGF-1R because of its simi-
larity to the insulin receptor leading to toxicities 
occurring without specifi c inhibition. Recently 
there has been development of humanized mAbs 
that target IGR-1R without major toxicities [ 79 ]. 
As with bevacizumab there is not a direct immune 
effect, rather targeting the pathway. The Pediatric 
Preclinical Testing Program evaluated the human 
antibody SCH 717454 in solid tumor xenograft 
models. It was found to have broad antitumor 
activity in pediatric solid tumor models including 
Ewing’s sarcoma, osteosarcoma, rhabdomyosar-
coma, and neuroblastoma [ 80 ]. Cixutumumab 
(IMC-A12), a fully human IgG1 mAb against 
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IGF-1R, was used in a phase I/II trial in pediatric 
patients with refractory solid tumors through 
COG. The drug was well tolerated; however, 
there was a limited single-agent activity [ 81 ]. It is 
thought that IGF-1R mAbs will work best in 
combination with other targeting agents such as 
mTOR inhibitors as they have been shown to 
increase the IGF-1R serine/threonine kinase 
AKT. The combination of mTOR inhibition and 
IGF-1R AKT inhibition leads to a more effective 
killing of RMS cell lines [ 79 ,  82 ]. In a recent 
multi-institutional study which included 20 
patients aged 14–41 with refractory Ewing’s sar-
coma and desmoplastic small-round-cell tumor, 
cixutumumab was combined with the mTOR 
inhibitor temsirolimus. This combination was 
well tolerated, and there was one complete 
response in these heavily treated patients. Also, 
fi ve of the patients with Ewing’s sarcoma had at 
least a 20 % decrease in their tumor size [ 83 ]. 
Additional phase III studies will need to be com-
pleted in pediatric sarcoma patients.  

3.3.1.7     TRAIL 
 Tumor necrosis factor-related apoptosis-inducing 
ligand (TRAIL) is a member of the TNF super-
family that has the ability to activate death recep-
tors inducing tumor cells to undergo apoptosis. 
Many tumor cells express the TRAIL receptors, 
TRAIL-R1 and TRAIL-R2, and these receptors 
initiate apoptosis via TRAIL. This mechanism 
seems to be selective for tumors [ 84 ,  85 ]. 
Lexatumumab (HGS-ETR2) is a human mAb 
that binds to and activates TRAIL-R2. It has been 
tested in a phase I study in adults with refractory/
relapsed solid tumors with evidence of stabiliz-
ing disease in some patients [ 85 ]. Mapatumumab 
is a human mAb, which targets TRAIL-R1, and a 
phase I trial was recently reported where it was 
used in combination with paclitaxel and carbopl-
atin in adults with refractory solid malignancies. 
In this trial 5 patients had partial response and 12 
patients had stable disease [ 86 ]. It has been found 
that osteosarcoma and Ewing’s sarcoma cell lines 
which express TRAIL death receptors are sensi-
tive to TRAIL-mediated apoptosis [ 87 ]. 
Hopefully these agents will be tested in pediatric 
solid tumors in the near future.  

3.3.1.8     Anaplastic Lymphoma Kinase 
 The anaplastic lymphoma kinase (ALK) gene is a 
receptor kinase in the insulin receptor superfam-
ily and is expressed during neuronal develop-
ment, then downregulated after birth. ALK’s 
expression is thought to increase tumor growth 
and is found in a variety of tumors including lung 
cancer, anaplastic large cell lymphoma, neuro-
blastoma, neuroectodermal tumors, glioblas-
toma, rhabdomyosarcoma, and melanoma. ALK 
is expressed in 8–10 % of neuroblastomas, and 
germline ALK mutations are found in the major-
ity of familial cases [ 52 ,  57 ,  88 ]. Crizotinib is the 
fi rst FDA-approved ALK inhibitor. It is an ATP- 
competitive 2,4-pyrimidinediamine derivative 
that binds to the inactive form of ALK [ 89 ,  90 ]. 
Crizotinib has been used successfully in early 
non-small cell lung cancer patients and is cur-
rently being tested in an ongoing COG phase I/II 
trial in pediatric patients with neuroblastoma and 
other solid tumors [ 52 ,  91 ].   

3.3.2     Adoptive T-Cell Therapy 
and Chimeric Antigen 
Receptors 

 Utilizing chimeric antigen receptors (CARs) 
that allow cytotoxic T lymphocytes (CTLs) to 
target cancer cells has been challenging on sev-
eral levels. The MHC molecules on tumors such 
as neuroblastoma are usually downregulated, 
and epitopes for targeting are largely unknown 
for many pediatric tumors. Neuroblastoma has 
been the fi rst pediatric solid tumor in which 
CAR T cells have been tested in clinical trials. 
A phase I trial in neuroblastoma patients with 
recurrent/refractory disease received Epstein–
Barr virus (EBV) CTLs that were genetically 
modifi ed to recognize GD2. Three of the 11 
patients with active disease at infusion had a 
complete response, and no signifi cant toxicity 
was observed. Long-term follow-up was done, 
and low-level persistence of the GD2–CAR T 
cells was found and associated with longer sur-
vival [ 55 ,  56 ]. Also of note, patients who 
received the GD2–CAR T cells did not experi-
ence signifi cant pain as has been observed in 
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anti-GD2 mAb therapy [ 56 ]. CAR therapy has 
also been combined with Her2/Neu to target 
solid tumors. At Baylor College of Medicine, 
there is an ongoing phase I clinical trial in 
advanced pediatric sarcomas utilizing Her2/
Neu–CAR T cells. Patients with refractory sar-
comas or metastatic osteosarcoma that express  
Her2/Neu receive escalating doses of Her2–
CD28 T cells (NCT00902044). There has been a 
signifi cant focus on utilizing CAR therapy in 
pediatric lymphomas and leukemia. Multiple 
phase I trials are currently open, and there has 
been recently published success in refractory 
acute lymphoblastic leukemia utilizing CAR–
CD19 T cells [ 92 ,  93 ]. Further potential targets 
for CAR-based therapy are currently under 
investigation for pediatric solid tumors [ 92 ].  

3.3.3     Tumor Vaccines 

 Cancer vaccines are constructed to induce immu-
nologic memory to specifi c antigens with the 
hope of sustained tumor killing primarily by 
CTL. There have been countless adult cancer 
vaccine trials with varying success. Producing 
effective therapeutic vaccines is considerably 
more challenging than developing preventive 
vaccines. There is a consensus that cancer vac-
cines will have the best response in patients with 
minimal residual disease devoid of major immu-
nosuppressive effect from T regulatory or 
myeloid suppressive cells. However, there is cur-
rently no standard for “optimal” tumor vaccines, 
with various sources studied that have included 
peptides, whole proteins, cell lysates or irradiated 
tumor cells, heat shock or chaperone protein- 
based vaccines, genetically modifi ed tumor cells, 
or DNA/RNA vaccines. Vaccines using antigens 
derived from total tumor cell lysates, tumor- 
derived chaperone proteins, or apoptotic or 
necrotic tumor cells allow for a wider array of 
antigens reducing the emergence of tumor escape 
variants and do not require identifi cation of spe-
cifi c antigens [ 49 ,  94 ]. In addition to the antigen 
component of the vaccine, an adjuvant compo-
nent is also important. Adjuvants have ranged 
from attenuated bacterial products; emulsions 

such as Montanide or liposomal adjuvants; ten-
sioactive agents such as saponins, alum, and 
other minerals; to cytokines such as GM-CSF 
[ 49 ,  95 ]. 

 Antigen-pulsed dendritic cells (DCs) have 
been utilized in many vaccine trials as they play a 
central role in the initiation and regulation of 
tumor-specifi c immune responses able to activate 
effector T and B lymphocytes as well as promote 
NK cell activation [ 94 ]. The largest dendritic cell 
vaccine trial in pediatric patients published to 
date included 30 patients with recurrent or meta-
static Ewing’s sarcoma or alveolar rhabdomyo-
sarcoma. Patients had to have confi rmed t(11;22) 
or t(2;13) translocations. The patients received 
cytoreductive chemotherapy and then were 
treated with DCs pulsed with tumor-specifi c pep-
tides derived from tumor-specifi c breakpoints 
and E7, a peptide known to bind HLA-A2. All 
patients generated infl uenza-specifi c immune 
responses and 39 % of patients to the tumor- 
specifi c breakpoints, which was used to assess 
patient immunocompetence. There was increased 
survival in the group that received tumor vaccine, 
but this study was not randomized. There were no 
signifi cant toxicities reported [ 96 ]. Smaller stud-
ies have also been published utilizing vaccines in 
pediatric solid tumors. A pilot study conducted at 
the NIH used a cancer vaccine in fi ve pediatric 
patients (three neuroblastoma, one Ewing’s sar-
coma, one synovial sarcoma) with relapsed/
refractory solid tumors post-chemotherapy, radi-
ation, and autologous peripheral blood stem cell 
transplant. Patients received autologous DCs 
pulsed with tumor-specifi c synthetic peptides or 
tumor lysates. A delayed-type hypersensitivity 
(DTH) test for tumor response was detected in all 
fi ve patients. There was no signifi cant toxicity, 
and one of the neuroblastoma patients had stable 
disease for 27 months, and even more impressive 
the Ewing’s sarcoma patient had a complete 
response for 77 months [ 97 ]. A phase I trial using 
active IL-12-secreting type 1 DCs was completed 
in pediatric and adolescent patients with a 
variety of solid tumors with refractory or meta-
static disease including Wilms tumor, adrenal 
cortical carcinoma, desmoplastic  small-round-cell 
tumor, fi brosarcoma, hepatocellular  carcinoma, 
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osteosarcoma, Ewing’s sarcoma, and renal cell 
carcinoma. Fourteen patients received subcutane-
ous injections and eight patients received intrano-
dal vaccine injections. The majority of patients 
did have a positive DTH test. No serious toxici-
ties occurred, and all patients given the vaccine 
intranodally were alive at the end of the trial as 
opposed to about half of the subcutaneously 
treated patients. However, the follow-up period 
was short (2–13 months). The majority of patients 
did not have measurable tumor responses except 
for one patient with lung metastasis that did 
achieve a decrease in size in some lung metasta-
ses. The remaining patients demonstrated stabili-
zation of disease [ 98 ]. Another DC vaccine in 
refractory pediatric solid tumors including sarco-
mas, neuroblastomas, and renal tumors was con-
ducted in 15 patients. Once again there were no 
serious adverse advents, and DTH response was 
found in seven of the ten patients that completed 
the immunization series. Regression of multiple 
metastatic sites was found in one patient, and fi ve 
patients had stable disease with a 16–30-month 
follow-up [ 99 ]. 

 Multiple vaccine studies have been completed 
in neuroblastoma patients. A phase I vaccine 
study in 11 neuroblastoma patients was con-
ducted using DCs pulsed with tumor RNA after 
standard chemotherapy, surgery, radiation, and 
high-dose chemotherapy with stem cell rescue. 
The vaccine was found to be safe with no mea-
surable toxicity. Of the three patients evaluated 
for tumor-specifi c response, two demonstrated a 
response. One of these patients remained alive 
with stable disease 14 months after diagnosis 
[ 100 ]. Rousseau et al. initially conducted a phase 
I study in relapsed advanced neuroblastoma 
patients using an allogeneic neuroblastoma tumor 
cell vaccine combining lymphoactin with IL-2. 
Lymphoactin encourages lymphocyte chemo-
taxis and works synergistically with IL-2. The 
only adverse event was reversible panniculitis 
and bone pain. There were immune responses 
found in the majority of patients as well as com-
plete remission in two patients and partial 
response in one [ 101 ]. The group followed this 
with another phase I trial in seven patients with 
recurrent neuroblastoma utilizing a tumor  vaccine 

consisting of autologous instead of allogeneic 
neuroblastoma cells that were genetically 
 modifi ed to secrete IL-2 and lymphoactin. 
Toxicity was limited to grade I and II localized 
reactions at the injection site, pain and fever. 
Tumor-specifi c immune responses were mea-
sured in six patients and were found in fi ve. Two 
of the seven patients had stable disease through-
out the study [ 102 ]. The group of investigators 
then completed a phase I/II study in high-risk 
neuroblastoma patients utilizing autologous neu-
roblastoma cells genetically modifi ed to secrete 
IL-2. Thirteen patients with small tumor burden 
were enrolled consisting of those who had 
achieved a complete response, very good partial 
response, or partial response to their initial ther-
apy. There were no serious toxicities, and median 
event-free survival was 22 months for patients in 
fi rst remission with four patients alive and three 
of them without disease recurrence [ 103 ]. This is 
proof of principle that vaccines may have an 
improved response in the setting of minimal 
disease. 

 The Wilms Tumor gene 1 (WT1) is expressed 
on many pediatric solid malignancies including 
Wilms tumor, neuroblastoma, and rhabdomyo-
sarcoma. It is expressed more intensely in alveo-
lar than embryonal subtype of rhabdomyosarcoma 
[ 104 ]. WT1 was ranked as the most promising 
tumor antigen by the NCI in 2009 [ 105 ]. It has 
been used as an antigen in multiple trials in 
patients with leukemia. A phase I/II trial was 
completed using the WT1 peptide vaccine in fi ve 
pediatric and young adult patients with rhabdo-
myosarcoma, osteosarcoma, liposarcoma, syno-
vial sarcoma, and acute lymphoblastic leukemia. 
All patients had relapsed WT1 overexpressing 
tumors. The only adverse effect was injection site 
erythema. WT1-specifi c CTLs were found in 
three of the four solid tumors. The patient with 
rhabdomyosarcoma had a complete response, 
and the patient with liposarcoma had stable dis-
ease [ 106 ]. This may prove to be a useful target 
for pediatric solid tumors, particularly alveolar 
rhabdomyosarcoma [ 104 ]. 

 Cancer/testis antigens (CTAs) are a group of 
antigens expressed on many tumor types includ-
ing pediatric sarcomas (osteosarcoma, RMS, 
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NRMS, Ewing’s sarcoma) and neuroblastoma. 
CTAs comprise 70 families with over 140 anti-
gens [ 57 ,  107 ]. Their biologic function is not 
fully understood, but because of their immunoge-
nicity, they are being studied as T cell targets for 
vaccine and adoptive cellular therapy. However, 
not all antigens are immunogenic in all patients, 
and expression of the antigens may vary between 
patients. Their expression was found to be the 
highest in osteosarcoma and RMS and may serve 
as targets for future cancer vaccines [ 95 ,  107 ].  

3.3.4     Cytokines 

3.3.4.1    Interferons 
 Interferons are cytokines that induce antitumor 
effects by a variety of mechanisms including 
antiangiogenic and direct antitumor activity 
[ 108 ]. Interferons also participate in activation of 
the innate immune system including macro-
phages and NK cells. They are involved in acti-
vating DCs and consequently contribute to 
initiation of adaptive immune responses medi-
ated by cytotoxic T and B cells [ 109 ,  110 ]. In the 
Karolinska Hospital, the largest treatment center 
for sarcomas in Sweden, alpha interferon was 
used to treat osteosarcoma patients with localized 
disease at varying doses over a 14-year period. 
A retrospective review was completed recently 
reviewing the results of 89 consecutive patients. 
Alpha interferon was used as a single agent after 
upfront tumor resection, and patients were treated 
for 2–5 years. From 1971 to 1984, 70 patients 
were treated with 3 MIU daily for 1 month fol-
lowed by three times weekly for 17 months. From 
1985 to 1990, 19 patients were treated with 
3 MIU daily for 3–5 years. The overall survival 
during this time period was 43 % with little 
known toxicity, suggesting alpha interferon had 
some effect [ 111 ]. The German/Austrian coop-
erative group study COSS-80 randomized 158 
patients with localized osteosarcoma to inter-
feron beta after upfront standard chemotherapy. 
Patients received 100,000 U/kg twice weekly for 
2 weeks followed by daily injections for 4 weeks 
and then returned to twice weekly injections for 
the fi nal 16 weeks. They did not fi nd a signifi cant 

increase in disease-free survival; however, this 
was a lower dose of a different interferon, and it 
was administered for a shorter period of time 
compared to the Scandinavian experience [ 108 , 
 112 ]. Pegylated interferon has been developed 
since the Scandinavian and COSS trials were 
completed. The pegylation allows for delayed 
clearance of the interferon, so it may be adminis-
tered at a higher dose once weekly [ 113 ]. The 
common side effects from interferons have 
included fatigue, fever, rigors, diarrhea, and 
myalgia. The question of whether interferon 
alpha is effective in osteosarcoma will hopefully 
be answered by the recently closed European and 
American Osteosarcoma Study Group trial. This 
phase III trial randomized patients with localized 
osteosarcoma and a good histological response 
after neoadjuvant chemotherapy to postoperative 
chemotherapy (methotrexate, cisplatin, and 
doxorubicin) with or without pegylated inter-
feron alpha 2b for 75 weeks with a dose escala-
tion to 1 mcg/kg (NCT00134030). 

 Gamma interferon (INF-γ) has been shown to 
enhance TRAIL against Ewing’s sarcoma in pre-
clinical models [ 113 ]. This combination of INF-γ 
and the TRAIL receptor agonist mAb lexatu-
mumab is currently being tested in a phase I trial 
of pediatric patients with refractory solid tumors 
(NCT00428272) [ 49 ]. Gamma interferon has 
also been found to enhance T-cell traffi cking of 
neuroblastoma cells. Initially patient-derived 
neuroblastoma cells and patient-derived T cells 
were injected into immunodefi cient mice, and the 
addition of INF-γ for 18 days was found to 
upregulate MHC class I expression and signifi -
cantly enhanced infi ltration of T cells into the 
tumor. Next, a pilot study was completed (NCI-
90- C0210) in fi ve pediatric patients with high- 
risk neuroblastoma. Tumors were sampled before 
and after administration of 5 days of subcutane-
ous INF-γ. None of the patients’ tumor samples 
expressed MHC class I prior to INF-γ injection, 
and two out of the fi ve patients did show upregu-
lation of neuroblastoma cell MHC I after treat-
ment which correlated with infi ltrating T cells 
[ 114 ]. These encouraging limited preliminary 
results suggest that this agent may have some 
utility in neuroblastoma.  
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3.3.4.2    Interleukin 2 
 Interleukin 2 (IL-2) has been shown to be effi ca-
cious in renal cell carcinoma and melanoma, albeit 
with signifi cant side effects, including capillary 
leak syndrome [ 115 ]. As a single agent, IL-2 has 
been given following autologous stem cell trans-
plantation to refractory pediatric patients with solid 
tumors. In these reports, it was found to increase T 
and NK cells; however, this did not lead to increase 
in survival [ 116 – 119 ]. A Pediatric Oncology Group 
phase I trial was conducted in 14 pediatric patients 
with refractory solid tumors including neuroblas-
toma, sarcomas, and renal tumors as well as 2 leu-
kemia patients. There were no objective tumor 
responses despite an apparent increase in NK cells 
and an increased ability to kill NK-resistant Daudi 
tumor cells  in vitro  [ 120 ]. IL-2 is currently being 
used effectively in combination with GM-CSF 
with the ganglioside mAbs to enhance ADCC as 
well as part of a tumor vaccine in combination with 
lymphoactin in neuroblastoma patients as dis-
cussed previously [ 25 ,  101 – 103 ].  

3.3.4.3    GM-CSF 
 Granulocyte–macrophage colony-stimulating 
factor is a cytokine that regulates the innate and 
adaptive immune systems. It is known to stimu-
late proliferation and differentiation of hemato-
poietic progenitor cells as well as increasing the 
activity of neutrophils, monocytes, macrophages, 
and DCs [ 121 ,  122 ]. Using localized GM-CSF is 
thought to cause immunostimulatory effects and 
achieve enhanced tumor killing. Two phase I stud-
ies have been completed in metastatic solid 
tumors with aerosolized GM-CSF as a single 
agent specifi cally targeting pulmonary metastasis. 
At the Mayo Clinic, a phase I study was com-
pleted in seven young adults with relapsed solid 
tumors including NRSTS, Ewing’s sarcoma, 
osteosarcoma, renal cell carcinoma, and mela-
noma. There were no signifi cant changes in pul-
monary function tests and no toxicities were seen. 
No increases in leukocyte counts were found in 
the patients’ peripheral blood counts. A 13-year-
old patient with Ewing’s sarcoma had a CR with 
12 months of follow-up, and at that time his lung 
metastases were removed and were not found to 
have any viable tumor. Stable disease was found 

in patients with osteosarcoma, NRSTS, and mela-
noma for more than 6 months [ 123 ]. 

 COG also completed a phase I study of aerosol-
ized GM-CSF in 43 pediatric patients with osteo-
sarcoma with fi rst pulmonary recurrence. Patients 
had a thoracotomy following two cycles of 
GM-CSF in order to evaluate the effects. Nodules 
were tested after the second cycle of GM-CSF for 
immunostimulatory effects, specifi cally presence 
of DC recruitment or upregulation of Fas/FasL, 
but this was not identifi ed. There was no increase 
in overall survival; however, it is not known 
whether the dose was adequate or the drug reached 
its target [ 124 ]. As with other immune therapies, 
inhaled GM-CSF may work better in combination 
with other immunostimulatory agents, and more 
testing will be needed. GM-CSF is also currently 
being utilized in combination with IL-2 and the 
ganglioside mAbs in neuroblastoma patients, as 
discussed previously, to enhance ADCC [ 25 ].   

3.3.5     Activation of Innate Immunity 

3.3.5.1    NK Cells 
 Natural killer (NK) cells play a crucial role in the 
innate immune system through killing viruses and 
tumors. They differentiate infected or malignant 
cells from normal “self” cells by a complex bal-
ance between receptor and ligand interactions. 
However, NK cells are thought to also translate 
signals to adaptive immunity via DCs. Interferon- 
primed DCs activate NK cells thorough IL-15. 
These primed NK cells then promote DC matura-
tion, which induces a T-cell response [ 125 ,  126 ]. 
NK cell-mediated lysis correlates with the surface 
expression of activating and inhibitory receptors 
on NK cells and of the corresponding ligands on 
tumor cells [ 127 ,  128 ]. The inhibitory Killer-cell 
immunoglobulin-like receptor (KIR) on NK cells 
bind to class I HLA molecules. NK cells regulated 
by KIR interactions can mediate cytotoxicity 
against HLA class I mismatched targets. In 
patients with leukemia, it has been shown that 
alloreactive HLA haploidentical NK cells in the 
stem cell transplant setting lead to enhanced 
engraftment and reduced graft versus host disease 
(GVHD) and prevent leukemic relapse [ 129 ]. 
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Infusion of human haploidentical NK cells with-
out hematopoietic transplantation in patients with 
acute myeloid leukemia (AML) has been studied 
by Miller et al. demonstrating an association 
between KIR ligand mismatch and induction of 
remission in poor-prognosis AML patients [ 130 ]. 
There are preclinical investigations using NK cell 
therapy in pediatric solid tumors showing that 
pediatric solid tumors’ cell lines (Ewing’s sar-
coma, rhabdomyosarcoma, neuroblastoma, and 
osteosarcoma) are sensitive to NK cell cytotoxic-
ity [ 131 – 134 ]. As the amount of cytotoxicity is 
proportional to the NK cell to target ratio, activa-
tion and expansion of NK cells has been described 
in order to increase killing effectiveness [ 132 , 
 135 ]. Perez-Martinez et al. completed a pilot 
study of six patients with refractory solid tumors. 
Patients received a reduced-intensity conditioning 
regimen with a haploidentical transplant with 
T-cell-depleted graphs followed by adoptive 
transfer of NK cells. All patients demonstrated an 
initial clinical response. Three patients are alive 
>20 months post-transplant, two patients died of 
progressive disease, and one patient died of severe 
GVHD. Donor NK cell KIR ligands  post-transplant 
were studied in order to evaluate response to ther-
apy. The authors concluded that as the graphs 
were T cell depleted, NK cells were thought to 
play a role in graft versus tumor (GVT) effect 
[ 136 ,  137 ]. Currently, for pediatric patients with 
refractory solid tumors, there are multiple phase I 
and pilot studies open utilizing NK cells. A phase 
I/II study for pediatric patients with refractory 
leukemia and solid tumors is currently open at the 
University of Wisconsin, Madison. The patient 
and their parents each have KIR typing com-
pleted, and the parent with the greatest KIR mis-
match undergoes mobilization followed by T-cell 
depletion. The patients receive reduced-intensity 
conditioning followed by infusion of the NK cell 
product (NCT00582816). Another phase I study 
is open at the National Cancer Institute for pediat-
ric patients with recurrent bone or soft tissue sar-
comas and neuroblastomas. Patients receive a 
conditioning regimen followed by a T-cell-
depleted and NK cell-depleted allogeneic periph-
eral blood stem cell transplant. The donor NK 
cells are activated and expanded  ex vivo  and 

infused on days +7 and +49 (NCT01287104). St. 
Jude Children’s Research Hospital has a pilot 
study using expanded donor NK cell infusion in 
patients with refractory Ewing’s sarcoma and 
RMS. Family members are screened for a haploi-
dentical match. After donor NK cells are col-
lected, they are activated and expanded  ex vivo . 
Patients receive a conditioning regimen with 
cyclophosphamide, fl udarabine, and IL-2 fol-
lowed by haploidentical donor-derived NK cell 
infusion (NCT00640796). There is early opti-
mism that this immunotherapeutic approach may 
have an impact against these tumors.  

3.3.5.2    Muramyl Tripeptide 
Phosphatidylethanolamine 

 Muramyl tripeptide phosphatidylethanolamine 
(MTP-PE) is a synthetic analog of a component 
of bacterial cell walls. MTP-PE is incorporated 
into liposomes that allow targeted delivery to 
monocytes and macrophages. Monocytes and 
macrophages phagocytize the liposome- 
encapsulated MTP-PE leading to upregulation of 
IL-1α, IL-1β, IL-6, IL-8, TNF-α, as well as 
monocyte chemotactic and activating factor 
genes. These activated macrophages kill tumor 
cells but not normal cells  in vitro  [ 138 ,  139 ]. 
Addition of chemotherapy has not decreased the 
effectiveness of MTP-PE [ 140 ,  141 ]. A random-
ized phase III trial was performed by the 
Children’s Cancer Group and Pediatric Oncology 
Group in pediatric patients with osteosarcoma 
and tested MTP-PE using a 2 × 2 design. MTP-PE 
was combined with cisplatin, doxorubicin, and 
high-dose methotrexate with or without ifos-
famide. The analysis of this study was complex; 
however, an updated report in 2008 indicated 
there was a statistically signifi cant improvement 
in overall survival for patients in the MTP-PE 
arm [ 142 ]. MTP-PE has not been yet approved by 
the FDA but is available for compassionate use.   

3.3.6     Allogeneic Stem Cell 
Transplant 

 There has been limited success improving overall 
survival in pediatric patients with metastatic solid 
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tumors with high-dose chemotherapy and autolo-
gous stem cell rescue with the exception of neu-
roblastoma [ 143 ]. Performing an allogeneic stem 
cell transplant in solid tumors has shown a poten-
tial GVT benefi t in smaller studies and case 
reports [ 126 ,  136 ,  137 ,  144 – 146 ]. These case 
reports have illustrated that patients with minimal 
disease prior to transplant developed antitumor 
responses associated with GVHD suggestive of 
GVT effects. In both Ewing’s sarcoma and RMS, 
the cancer/testis antigens from the MAGE and 
XAGE families are expressed, and as discussed 
previously, the CTAs are thought to be excellent 
targets for cytotoxic T lymphocyte. It is believed 
that these pathways may be targeted by the GVT 
effect of the allogeneic T cells [ 107 ]. 

 Shook et al. utilized matched allogeneic trans-
plant with a reduced-intensity conditioning (RIC) 
regimen in 24 pediatric patients with refractory 
solid tumors. The solid tumors included neuro-
blastoma, Wilms tumor, rhabdoid renal tumor, 
RMS, Ewing’s sarcoma, Hodgkin lymphoma, 
non-hodgkin lymphoma, and hepatoblastoma. 
All patients were heavily pretreated, and only 
three patients were in CR prior to transplant. The 
patients received a 6/6 HLA-matched sibling 
donor or a matched unrelated donor after a RIC 
regimen consisting of fl udarabine 30 mg/m 2  and 
2 Gy of total body irradiation. All patients toler-
ated the conditioning well. Four patients with 
disease prior to transplantation achieved a CR, 
and three patients with a CR prior to transplant 
remained disease-free for the follow-up period of 
3, 6, and 74 months post-transplant. Acute GVHD 
occurred in 15 patients, and 6 patients developed 
high-grade acute GVHD in the matched unre-
lated donor group versus 2 children transplanted 
with sibling donors. However, there was no sta-
tistical difference in the groups and those who 
developed GVHD; moreover, there was no differ-
ence in survival in those who developed GVHD 
versus those who did not [ 146 ]. In this trial as in 
other studies, tumor responses were attributed to 
a GVT effect since they had RIC pre-transplant; 
however, future larger trials are needed to con-
fi rm that HSCT can be used as a platform for 
more effective immunotherapy in pediatric solid 
tumors.   

3.4     Challenges with Immune 
Therapy in Pediatrics 

 There are limitless opportunities as an overex-
pressed or abnormally expressed protein can serve 
as a target for cancer vaccines, antibody therapy, as 
well as NK cell, dendritic cell, and T-cell therapy. 
The challenge remains in choosing which targets 
will have the highest yield. Orentas et al. recently 
published their method for identifying tumor anti-
gen candidates for pediatric solid tumors at the NCI 
[ 71 ]. Through analyzing gene expression profi les 
and linking these results to the current annotation 
data base, they were able to identify multiple 
potential immunotherapy targets for 11 pediatric 
solid tumors [ 71 ]. This is very exciting as one of 
the major challenges with pediatric solid tumor has 
been the ability to identify targets. These are only 
preliminary targets that will need to be incorpo-
rated into CARs and antibodies; nonetheless, they 
may constitute a signifi cant advancement in solid 
tumor immunotherapy. Another challenge of 
immune therapy that is not limited to pediatric 
solid tumors has been the evaluation of tumor 
response. Response criteria were initially standard-
ized with the development of the World Health 
Organization (WHO) guidelines, Response 
Evaluation Criteria in Solid Tumors (RECIST) 
[ 147 ]. The RECIST criteria are suffi cient to evalu-
ate the response of tumor shrinkage seen with cyto-
toxic chemotherapy, however not with 
immunotherapy. Therefore, the immune-related 
response criteria (irRC) were published after 
reviewing the melanoma trial incorporating ipilim-
umab, a fully human mAb which blocks CTL anti-
gen 4 in 2009 [ 148 ]. Results of the ipilimumab trial 
revealed four distinct patterns: (1) shrinkage in 
baseline lesions, without new lesions, (2) durable 
stable disease (in some patients followed by slow, 
steady decline in total tumor burden), (3) response 
after an increase in total tumor burden, and (4) 
response in the presence of new lesions. All of 
these patterns were associated with increased sur-
vival [ 149 ]. The irRC criteria still have the same 
thresholds of response as the WHO criteria but are 
modifi ed to take immune response into account 
[ 148 ]. The irRC criteria will likely be incorporated 
into future pediatric immunotherapy trials.  
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3.5     Concluding Remarks 

 Pediatric cancer encompasses only 1 % of newly 
diagnosed cancers in the United States. Pediatric 
nonneural solid tumors comprise about 20 % of 
pediatric malignancies [ 1 ]. Pediatric solid tumors 
that are metastatic or recurrent have a very poor 
survival which has not signifi cantly changed over 
the past 50 years. Despite the small representa-
tion of pediatric solid tumors in oncology, the 
numerous pediatric clinical trials reviewed herein 
are evidence of the optimism that immunother-
apy will have a distinct role in the treatment of 
pediatric solid tumors. One of the main reasons 
for the relatively numerous pediatric phase I tri-
als for such a small population of patients is the 
acknowledgment of the value of these clinical 
trials by pediatric oncologists. The collaborative 
efforts of the Children’s Oncology Group as well 
as European Pediatric Groups have been the driv-
ing force behind many of these trials. The unde-
niable success of the anti-GD2 antibody with 
IL-2 and GM-CSF in metastatic neuroblastoma is 
due to the ability of COG to organize meaningful 
large-scale immunotherapy clinical trials [ 25 ]. 
This phase III trial proved that immunotherapy 
is not only feasible but can improve the overall 
survival in pediatric patients with solid tumors 
that carry a poor prognosis. North American–
European collaborations on solid tumors have 
been proven feasible with the German–Austrian–
Swiss Cooperative Osteosarcoma Study Group, 
the European Osteosarcoma Intergroup, and the 
Scandinavian Sarcoma Group for the most recent 
osteosarcoma phase III clinical trial. Future col-
laborative clinical trials in other solid tumors will 
likely incorporate immunotherapeutic strategies 
to approved regimens for a greater therapeutic 
impact. Based on promising results with the dif-
ferent immunologic agents summarized in this 
chapter, there is a rapidly growing interest in 
applying immunotherapy in pediatric cancers.     
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4.1             Introduction 

 Multiple myeloma (MM) is a common hemato-
logic malignancy with approximately 20,000 new 
cases diagnosed each year. Disease progression is 
characterized by the clonal expansion of malig-
nant plasma cells associated with the clinical 
sequelae of anemia, lytic bone lesions, renal dys-
function, and compromised immunity. The advent 
of biologic-based therapies such as lenalidomide 
and bortezomib has resulted in improved patient 
outcomes in the last 5–10 years. However, cura-
tive outcomes remain elusive. There has been an 
increased appreciation of the critical role host 
immunity plays in the evolution of disease and 
the potential therapeutic effi cacy of immune-
based therapies. These treatment approaches hold 
the potential promise of selective targeting of the 
malignant clone, disruption of stromal-plasma 
cell interactions, and generation of sustained anti-
tumor immunity and durable response. However, 
the development of clinically effi cacious immuno-
therapy is dependent on achieving greater under-
standing of the complex interactions between the 
immunologic milieu and disease.  
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4.2     Immune Therapy 
for Myeloma: Overcoming 
Tumor-Associated Immune 
Suppression 

 Patients with myeloma exhibit prominent defi cien-
cies in humoral immunity due to the dominance of 
the malignant plasma cell clone and the suppres-
sion of the normal B-cell repertoire [ 1 ]. A hallmark 
of the disease is the increased risk for viral and 
bacterial infections due to encapsulated organisms 
that are dependent on opsonization for systemic 
clearance [ 2 ]. Interactions between myeloma cells 
and stromal elements create an immunosuppres-
sive microenvironment through the release of cyto-
kines and soluble factors [ 3 ]. Myeloid suppressor 
cells and plasmacytoid dendritic cells (DCs) fur-
ther contribute to the immunosuppressive milieu. 
Inhibition of antigen-presenting cell function may 
also contribute to tumor-associated tolerance and 
the loss of protective immunity. A variety of solu-
ble factors such as vascular endothelial growth fac-
tor (VEGF) and indoleamine block the maturation 
and activation of antigen-presenting cells resulting 
in an increase of DCs with an inhibitory phenotype 
at the tumor site [ 4 ,  5 ]. 

 The evolution of disease from monoclonal gam-
mopathy of undetermined signifi cance (MGUS) to 
MM is characterized by progressive defi ciencies in 
T-cell immunity. There is a loss of complexity of 
the T-cell repertoire, including the absence of 
clones targeting defi ned myeloma- associated anti-
gens such as SOX2 [ 6 ]. There is concomitant loss 
of effector cell function, expansion of regulatory T 
cells, and T-cell polarization toward an inhibitory 
phenotype in the tumor bed. Other T-cell subpopu-
lations, such as V γ 9Vδ2 T cells, also demonstrate 
impaired activation. Loss of myeloma-specifi c 
immunity disrupts the homeostatic equilibrium, 
thereby allowing for the unrestrained growth of the 
malignant plasma cell clone. 

 The activation of immune effector cells and 
the targeting of tumor cells are modulated by the 
checkpoint inhibitor pathways mediated by CTL-4 
and PD-1/PD-L1. In the non-disease setting, these 
negative costimulatory molecules maintain the 
normal equilibrium of host immunity by support-
ing the prevention of autoreactivity through the 
establishment of peripheral tolerance. In contrast, 
tumor cells upregulate these pathways as a means of 

 preventing T-cell activation and blocking the killing 
of malignant cells by effector cells. PD-L1 expres-
sion has been demonstrated in human myeloma cell 
lines as well as primary cells. PD-1 is expressed 
by circulating and bone marrow-derived T cells. 
Of note, the percentage of T cells expressing PD-1 
is increased in patients with bulk disease and after 
immune stimulation, potentially muting the induc-
tion of tumor-specifi c immunity [ 7 – 9 ]. 

 Natural killer (NK) cells constitute a key cel-
lular subset of the innate immune system with the 
potential to target malignant cells. NK cell reactiv-
ity is mediated through the expression of an array 
of inhibitory and activating receptors. Once acti-
vated, NK cells lyse target cells through secretion 
of cytotoxic granules such as perforin or granzyme 
B or via death receptors including Fas, and tumor 
necrosis factor (TNF)-related apoptosis-inducing 
ligand (TRAIL)-related pathways [ 10 – 12 ]. Studies 
have shown that NK cell function is preserved in the 
setting of MGUS and newly diagnosed MM; yet, 
with progression of the disease to advanced stages, 
there is a decline in the NK cell activity against 
MM [ 13 – 15 ]. Myeloma cells secrete TGF-β, IL-6, 
IL-10, and PGE2 which suppress NK cell func-
tion. The monoclonal immunoglobulin produced 
by MM may also directly impair NK cells. MM 
is associated with increased levels of soluble IL-2 
receptor and IL-15 and displays the IL-15R, lead-
ing to an autocrine feedback loop that impairs NK 
cell activation, proliferation, and function [ 16 – 18 ]. 
Furthermore, the balance between activating and 
inhibitory NK cell receptors and ligands is changed. 
There is upregulation of inhibitory ligands on MM 
cells such as MHC class I and PD-L1 [ 7 ,  19 ,  20 ], 
while concurrently there is reduction in activating 
ligand expression. Moreover, soluble forms of acti-
vating ligand are secreted, and activating receptors 
such as DNAM- 1, NKG2D, NKp30, and CD16 
have reduced levels [ 21 – 25 ].  

4.3     Antibody-Mediated 
Strategies 

 The effi cacy of antibody therapy is potentially 
dependent on several mechanisms involving 
accessory cell populations. Antibody-mediated 
binding of tumor cells may trigger Antibody-
dependent cell-mediated cytotoxicity (ADCC) 
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via immune effector populations that express Fcγ 
receptors, such as NK cells, neutrophils, mono-
nuclear phagocytes, and DCs. After activation of 
Fc receptors, cytotoxicity is mediated through at 
least two different mechanisms: one involving the 
release of perforin and granzyme from effector 
cells, and the other involving death ligands Fas 
ligand and TRAIL [ 26 ]. Alternatively, cell lysis 
may be accomplished by the antibody-mediated 
activation of the classical complement cascade at 
the tumor site (CDC). 

 Release of tumor antigens via cell lysis may fur-
ther amplify the antitumor immune response via 
cross-presentation of tumor-derived peptides via 
MHC class I molecules, resulting in activation of 
CD8 +  cytotoxic T lymphocyte [ 27 ]. DCs are capa-
ble of presenting peptides from engulfed apoptotic 
cells on MHC class I molecule to elicit antigen-spe-
cifi c CD8 +  T-cell responses [ 28 ]. ADCC mediated 
by monoclonal antibody (mAb) might trigger cross- 
presentation by DCs and promote adaptive immune 
responses, as DCs can engulf the resultant apoptotic 
tumor cells and subsequently present tumor anti-
gens (Ags) on MHC class I and II molecules. In 
addition, cross-presentation can be mediated by 
phagocytosis of dying Ab-coated tumor cells 
through FcγRs [ 29 ]. As such, effi cacy of humoral 
therapy is impacted by the underlying immune 
competence of the patient and may be associated 
with a secondary cellular immune response. 

 Antibody-based therapy has been pursued in 
an effort to selectively target myeloma cells while 
minimizing toxicity to normal tissues. Antibody 
therapies have focused on cell surface markers 
expressed by plasma cells such as CD38, CD138, 
and the tumor adhesion molecule CS1. 

4.3.1     CS1 

 CS1, a cell surface glycoprotein (CD2 subset 1, 
CRACC, SLAMF7, CD319, or 19A24) mem-
ber of the immunoglobulin gene superfamily, 
is highly expressed in CD138-purifi ed primary 
tumor cells from the majority of MM patients 
(over 97 %), with low levels of circulating CS1 
detectable in MM patient sera but not in healthy 
donors [ 30 ]. CS1 is believed to participate in 
promoting and supporting MM cell adhesion to 
bone marrow stromal cells [ 30 ]. 

 Elotuzumab (HuLuc63) is a humanized anti-
 CS1 mAb which binds with high affi nity to MM 
cells and signifi cantly inhibits their adhesion to 
bone marrow stromal cells. This inhibition could 
result in inhibition of the stimulatory effects 
of bone marrow stromal cells on myeloma cell 
growth and survival [ 30 ]. Elotuzumab was also 
found to induce death of myeloma cells through 
ADCC [ 30 ,  31 ]. In vivo xenograft studies have 
shown that elotuzumab induces inhibition of 
MM tumor growth in mouse models [ 30 ,  31 ]. 
Elotuzumab triggered autologous ADCC against 
primary MM cells, and pretreatment with conven-
tional or novel anti-MM drugs, especially lenalid-
omide, markedly enhanced elotuzumab-induced 
MM cell lysis [ 30 ]. 

 Elotuzumab demonstrated minimal single- 
agent activity in phase I studies of patients with 
relapsed/refractory disease [ 32 ]. However, preclin-
ical data suggested that elotuzumab demonstrates 
synergy with other biologic agents such as bortezo-
mib and lenalidomide [ 30 ,  33 ]. In a phase I study 
of elotuzumab and bortezomib, the overall response 
rate (ORR) was 48 %, and responses were achieved 
in 67 % of bortezomib-refractory patients. The 
median time to tumor progression (TTP) was 
9.46 months [ 34 ]. In a phase Ib combination study 
with lenalidomide and dexamethasone, the ORR 
was 82 % for all treated patients ( n  = 28), 95 % for 
lenalidomide-naive patients ( n  = 22), and 83 % 
among patients who had been refractory to their 
most recent treatment ( n  = 12) [ 35 ]. In a phase II 
study of the same combination, the ORR was 84 % 
for all patients ( n  = 71), with median progression-
free survival (PFS) of 26.9 months after a median 
follow-up of 18.1 months [ 36 ]. Adverse events 
attributed to elotuzumab were tolerable and 
included infusional reactions [ 32 ,  35 ,  36 ]. 
Elotuzumab is also being investigated as a thera-
peutic strategy to delay progression from smolder-
ing myeloma to clinically active disease.  

4.3.2     CD38 

 Malignant plasma cells strongly express CD38, 
making this a target of interest in the  development 
of therapeutic antibodies in MM. Daratumumab is 
a human mAb that has been shown to effectively 
kill myeloma cells  in vitro  and in murine  models 
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[ 37 ]. In preclinical studies, it has been demon-
strated that lenalidomide potently enhances the 
effi cacy of this antibody [ 38 ]. In a phase I dose-
escalation study in relapsed or refractory MM 
(RRMM) patients, 11/29 (38 %) had some reduc-
tion in paraprotein, including 5 (17 %) with more 
than 50 % reduction. Also a marked reduction 
in bone marrow (BM) plasma cells was seen in 
the higher doses [ 39 ]. Daratumumab is currently 
being evaluated in clinical trials in patients with 
relapsed/refractory MM in combination with dexa-
methasone and lenalidomide or bortezomib (trials 
NCT01615029 and NCT01620879, respectively). 

 Two other anti-CD38 Abs, SAR650984 and 
MOR03087, are also currently being evaluated in 
patients with RRMM (NCT01749969, 
NCT01084252, NCT01421186).  

4.3.3     Interleukin-6 (IL-6) 

 Investigators have examined the effi cacy of anti-
body therapy targeting the interaction of myeloma 
cells with critical aspects of the BM microenvi-
ronment including IL-6, insulin-like growth fac-
tor- 1 (IGF-1), VEGF, and B-cell-activating factor 
(BAFF) [ 40 ,  41 ]. IL-6 is a pleiotropic cytokine 
that has been shown to play a crucial role in 
growth and survival of MM cells within the BM 
milieu. IL-6 is predominantly produced and 
secreted by BM stromal cells (BMSCs), mediat-
ing MM cell growth, preventing apoptotic cell 
death, promoting myeloma cell survival, and 
conferring drug resistance. IL-6 activates Ras/
MEK/ERK cascade, JAK2/signal transducer and 
activator of transcription (STAT)-3 cascade, and 
PI3K/Akt cascade [ 42 ]. Siltuximab (CNTO 328) 
is a chimeric mAb targeting IL-6. Treatment of 
IL-6-dependent MM cell lines with siltuximab 
resulted in inhibited proliferation in a dose-
dependent manner, both in the presence and 
absence of BMSCs [ 43 ]. In phase I studies mini-
mal clinical activity was observed following 
single- agent therapy with siltuximab in patients 
with relapsed or relapsed and refractory disease 
[ 44 ,  45 ]. Preclinical studies demonstrated syn-
ergy between siltuximab and bortezomib [ 43 ], 
but in a randomized phase II study, combination 
therapy with bortezomib and siltuximab did not 

demonstrate enhanced response or survival as 
compared to bortezomib alone [ 46 ].  

4.3.4     PD-1/PD-L1 

 The PD-1/PD-L1 pathway is upregulated in MM 
and provides a critical inhibitory signal that dis-
rupts immune activation and promotes immune 
tolerance toward the myeloma cell. CT-011, a 
humanized anti-PD-1 mAb, enhances human NK 
cell function against autologous primary MM cells, 
through increased NK cell traffi cking; enhanced 
immune complex formation between patient-
derived NK cells and PD-L1-bearing, primary 
autologous MM tumor cells, and increased NK 
cytotoxicity [ 20 ]. Lenalidomide downregulates 
PD-L1 expression on myeloma cells and therefore 
synergized with CT-011 in the activation of NK 
cells and subsequent cytotoxicity against myeloma 
cells [ 47 ]. PD-1 blockade also enhances myeloma-
specifi c T-cell immunity  in vitro  and  in vivo  [ 7 ,  8 ]. 
Preclinical studies demonstrated enhanced T-cell 
responses to autologous DC/myeloma fusion vac-
cines as manifested by polarization toward a Th1 
phenotype, suppression of regulatory T cells, and 
increased cytotoxic T lymphocyte (CTL) response 
[ 9 ]. CT-011 prevented the vaccine-mediated 
increase in T-cell expression of PD-1 [ 9 ]. 

 In a phase I clinical trial, CT-011 was admin-
istrated to patients with advanced hematological 
malignancies including MM. CT-011 was safe 
and well tolerated, with clinical benefi t seen in 
33 % of patients ( n  = 15) including one com-
plete remission (CR). Treatment with CT-011 
was accompanied with an elevated percentage of 
peripheral blood CD4 +  T cells [ 48 ]. In an ongo-
ing phase II clinical trial, the safety of CT-011 
alone, and in combination with a DC/myeloma 
fusion vaccine, is being evaluated following 
autologous stem cell transplantation (ASCT) 
(NCT01067287). Preliminary results have 
 demonstrated that CT-011 has been well tolerated 
and that posttransplant administration of CT-011 
was associated with the expansion of myeloma-
specifi c T cells which persisted at 6 months fol-
lowing completion of therapy [ 49 ]. 

 For additional Abs that are being evaluated in 
MM, see Table  4.1 .
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4.4         Cellular Immunotherapy 
for Multiple Myeloma 

4.4.1     Allogeneic Transplantation 

 The unique potential effi cacy of cellular immu-
notherapy for myeloma is highlighted by the 
observation that allogeneic transplantation 
induces durable remissions in a subset of patients 
due to the graft-versus-myeloma effect [ 50 – 53 ]. 
A summary of early data of myeloablative trans-
plantation from the European Bone Marrow 
Transplant Registry demonstrated that 28 % of 
patients remained in remission 7 years posttrans-
plant, suggesting that durable responses were 
potentially achievable [ 54 ]. However, the median 
survival was only 10 months due to extremely 
high treatment-related mortality, raising a diffi -
cult choice for physicians and patients as to the 
applicability of this strategy. In a more recent 
report of 158 patients undergoing autologous or 
allogeneic transplantation based on donor avail-
ability, the event-free survival (EFS) following 
allogeneic transplantation was 33 and 31 % at 5 
and 10 years, respectively, consistent with the 
presence of a subgroup that appear to have sus-
tained disease response [ 55 ]. The role of the 
graft-versus-myeloma effect in preventing dis-
ease recurrence was further supported by a retro-
spective report from the European registry, in 
which patients with limited or extensive chronic 
graft-versus-host (cGVHD) disease demon-
strated markedly improved 3-year survival (84 
and 58 %, respectively) as compared to those 
without cGVHD (29 %) [ 56 ]. 

 Donor lymphocyte infusion (DLI) as a treat-
ment for posttransplant relapse has been shown 
to induce disease response, achievement of 
molecular remission, reconstitution of TCR Vβ 
repertoire, and long-term disease control in a 
subset of patients [ 57 – 60 ]. However, DLI therapy 
is complicated by GVHD due to the lack of 
myeloma specifi city of the alloreactive lympho-
cytes [ 61 ]. Efforts to limit toxicity through the 
use of reduced intensity conditioning regimens 
have resulted in a decrease in treatment-related 
mortality but a concomitant increase in the risk of 
relapse. As such, immune-based targeting of 

myeloma cells by alloreactive lymphocytes may 
carry the unique potential for curative outcomes; 
nonetheless, the lack of specifi city and toxicity 
signifi cantly limits its use. 

 Investigators have examined strategies to 
induce autologous cellular immune responses 
that selectively target myeloma-associated anti-
gens while minimizing toxicity to normal tissue. 

 One such strategy is the use of cancer vaccines 
to foster the expansion of tumor-specifi c lympho-
cytes. Myeloma-associated antigens that have 
been explored as targets for immunotherapy 
include the idiotype protein, MUC1, WT1, 
PRAME, CYP1B1, and HSP96 [ 62 – 69 ]. Vaccine 
strategies have included the introduction of 
myeloma-specifi c antigens in the context of 
immune adjuvants and the loading of individual 
or whole-cell-derived antigens onto antigen- 
presenting cells such as DCs.  

4.4.2     DC-Based Vaccines 
as a Platform for Antigen 
Presentation 

 DCs represent a diverse network of antigen- 
presenting cells that play a prominent role in 
mediating immune responsiveness [ 70 ]. 
Circulating DC populations have been identifi ed 
as myeloid and plasmacytoid in origin with the 
capacity to elicit Th1 and Th2 responses, respec-
tively. Plasmacytoid DCs have been shown to 
contribute to the stromal environment in myeloma 
and may contribute to tumor-mediated tolerance 
[ 4 ]. Myeloma antigens administered in the con-
text of immune adjuvants may recruit and acti-
vate native DC populations that subsequently 
internalize and present tumor antigens [ 71 – 73 ]. 
However, functional defi ciencies have been 
 demonstrated in DCs derived from myeloma 
patients which may impact their ability to elicit 
immunologic responses [ 5 ]. Alternatively, 
myeloid DCs with strong expression of costimu-
latory molecules and stimulatory cytokines may 
be generated ex vivo through cytokine stimula-
tion of precursor populations [ 74 ]. DCs gener-
ated ex vivo and loaded with myeloma-associated 
antigens may act as a platform for cancer  vaccines 
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[ 75 ]. Strategies to introduce tumor antigens 
include pulsing with peptides, proteins, or lysates 
[ 76 ], electroporation with tumor-derived RNA or 
DNA [ 8 ,  77 ,  78 ], loading of tumor-derived apop-
totic bodies [ 79 ], transduction with viral vectors 
expressing tumor antigens potentially enhanced 
by costimulatory molecules [ 80 – 83 ], and the use 
of whole-cell fusion between DCs and myeloma 
cells [ 84 – 86 ].  

4.4.3     Myeloma Vaccines: Single- 
Antigen Approaches 

 The idiotype protein represents a truly tumor- 
specifi c antigen created by the unique immuno-
globulin gene arrangement intrinsic to the 
malignant clone [ 87 ]. Vaccination with the idiot-
ype protein in conjunction with granulocyte- 
macrophage colony-stimulating factor (GM-CSF) 
or IL-12 was associated with antigen-specifi c 
T-cell responses. Prolonged disease-free progres-
sion was observed in patients exhibiting an 
immunologic response [ 88 ]. Responses have also 
been observed following vaccination with 
antigen- presenting cells pulsed with M protein or 
with DCs loaded with idiotype and exposed to 
CD40L to induce maturation [ 89 – 93 ]. Vaccination 
with idiotype-pulsed antigen-presenting cells 
posttransplant was associated with improved 
progression- free survival as compared to a his-
torical control cohort. 

 A peptide-based vaccine for WT1 adminis-
tered with immune adjuvant has been shown to 
elicit immunologic response in patients with 
hematological malignancies and a decrease in 
measures of disease [ 94 ,  95 ]. In a recent study, 
WT1-specifi c immunity following allogeneic 
transplantation for myeloma was associated with 
long-term disease control. Peptide-based vaccine 
for MUC1 is currently being explored in patients 
with myeloma (NCT01232712). Expression of 
several cancer-testis antigens has been demon-
strated and has been shown to be targeted by 
donor-derived humoral responses following allo-
geneic transplantation, confi rming their potential 
immunogenicity. The cancer-testis antigen, 
NY-ESO, demonstrates increased expression by 

plasma cells in the setting of advanced disease, 
creating an appealing target for immune-based 
therapy [ 96 ]. Repetitive stimulation with DCs 
pulsed with an NY-ESO-derived peptide elicits a 
strong CTL response  in vitro , demonstrating an 
activated phenotype capable of lysing primary 
myeloma cells [ 97 ]. Recent studies have identi-
fi ed a series of antigens recognized by T cells in 
patients following syngeneic transplantation. 

 Several other peptides which are highly 
expressed on myeloma cells and are important in 
the pathogenesis of the disease have been identi-
fi ed as potential immunogenic targets. 
Heteroclitic XBP1 (X-box-binding protein 1) 
(unspliced 184–192 and spliced 367–375), 
CD138 (syndecan-1)260–268, and CS1239-247 
were shown each alone and in a cocktail combi-
nation of the four to generate specifi c CTLs 
enriched for effector and activated T cells, 
Ag-specifi c cytotoxicity against MM cell lines, 
as well as increased degranulation, proliferation, 
and INF-γ secretion [ 98 – 101 ].  

4.4.4     Myeloma Vaccines: Whole- 
Cell Approaches 

 The use of whole-cell-derived antigens for vac-
cination may elicit a broad polyclonal response 
that is better able to target the heterogeneity of 
the myeloma cell population [ 86 ]. Consistent 
with this hypothesis, a murine model demon-
strated the emergence of idiotype-negative vari-
ants following idiotype-based vaccinations, while 
whole myeloma cell-based vaccines did not 
induce resistance [ 102 ]. DCs pulsed with tumor 
lysates have been shown to induce myeloma- 
associated immunity, although the clinical effi -
cacy was uncertain [ 76 ]. 

 The authors have developed a vaccine model 
in which patient-derived myeloma cells are fused 
with autologous DCs, creating a hybridoma 
which expresses a broad array of myeloma anti-
gens in the context of enhanced costimulation 
[ 86 ]. In a murine model, DC/MM fusions were 
shown to be protective against lethal challenge 
with syngeneic myeloma cells, and therapeutic 
effi cacy was further enhanced by  coadministration 
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of IL-12 [ 103 ]. In preclinical human studies, 
fusion of DCs and MM cells elicited the expan-
sion of activated T cells that potently lysed autol-
ogous myeloma cells  in vitro . 

 A phase I clinical trial was completed in which 
successive cohorts of patients with advanced 
myeloma underwent vaccination with escalating 
doses of autologous DC/MM fusions [ 104 ]. 
Patients had undergone a median of four prior 
treatment regimens. Myeloma cells were derived 
from bone marrow aspirates, and DCs were gen-
erated from adherent mononuclear cells cultured 
with GM-CSF and IL-4 and matured with TNF- 
α. Patients underwent serial vaccination in con-
junction with GM-CSF. Vaccine-associated 
toxicity consisted of transient grade 1–2 vaccine 
site reactions most commonly, while clinically 
signifi cant autoimmunity was not observed. 
Biopsy of the vaccine bed demonstrated a dense 
infi ltrate of CD8 +  T cells consistent with T-cell 
expansion occurring at the site of vaccination. 
Vaccination resulted in the expansion of 
myeloma-specifi c T cells in the majority of 
patients as manifested by the percent of CD4 +  
and/or CD8 +  T cells expressing IFN-γ following 
ex vivo exposure to autologous tumor lysate. On 
SEREX analysis, humoral responses against 
novel proteins were noted after vaccination. 
These fi ndings were consistent with the induction 
of myeloma-specifi c immunity in patients with 
advanced disease. Of note, 66 % of patients dem-
onstrated a period of disease stability ranging 
from several months to greater than 2 years after 
vaccination. 

 The authors have completed a phase II clinical 
trial in which patients underwent vaccination 
with DC/MM fusions in conjunction with autolo-
gous stem cell transplantation. It was postulated 
that vaccine response would be augmented fol-
lowing transplant-mediated cytoreduction and in 
the context of lymphopoietic reconstitution with 
the associated depletion of regulatory T cells. It 
was demonstrated that the posttransplant period 
was associated with the expansion of myeloma- 
reactive T cells which were further boosted by 
vaccination with DC/MM fusions. Vaccination 
was associated with the conversion of partial to 
complete responses greater than 100 days 

 posttransplant in a subset of patients. A clinical 
trial is now underway examining the effi cacy of 
PD-1 blockade in conjunction with the DC/MM 
fusion vaccine following autologous transplanta-
tion, and a national cooperative group study for 
the assessment of DC/MM fusion vaccine with 
lenalidomide versus lenalidomide maintenance 
alone is being planned.  

4.4.5     NK Cell Therapy 

 Augmentation of NK cell-mediated immunity 
has been explored as therapy for MM. Preclinical 
models have demonstrated that thalidomide and 
lenalidomide increase the production of IL-2 by 
T cells, which stimulates NK cell activation and 
function against MM [ 105 ]. Lenalidomide has 
also been shown to increase CD16 and LFA-1 
expression on NK cells, which facilitates an 
ADCC response against MM [ 106 ]. Lenalidomide 
also modulates the balance of NK cell-activating 
and inhibitory ligand expression on MM cells. It 
decreases expression of PD-L1 and enhances 
expression of ULBP-1(NKG2D ligand) on MM 
cells, which both result in improved NK cell 
immune response, as well as recognition and 
lysis of MM tumor targets [ 20 ,  107 ]. Bortezomib 
decreases MM expression of MHC class I and 
enhances the sensitivity of myeloma to NK cell- 
mediated lysis [ 108 ]. 

 The importance of NK cell-mediated immu-
nity in modulating disease outcome was high-
lighted by the observation that levels of 
autologous NK cells reinfused with autologous 
transplantation correlates with absolute lympho-
cyte recovery after ASCT for MM and non- 
hodgkin lymphoma [ 109 ]. Lymphocyte subset 
analyses revealed that an absolute NK cell count 
of 80/μL or more on day +15 post-SCT corre-
lated signifi cantly with improved progression- 
free survival [ 110 ]. In patients with MM 
undergoing allogeneic SCT, killer-cell 
immunoglobulin- like receptor (KIR)-ligand 
mismatch predicting for NK activation was pro-
tective against relapse [ 111 ]. In addition, the 
infusion of T-cell-depleted, haploidentical, KIR- 
mismatched NK cells, followed by delayed 
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 autograft stem cell rescue, has been shown to 
induce a near-complete/complete response rate 
of nearly 50 % [ 112 ]. Improved disease-free and 
overall survival was observed in myeloma 
patients who received grafts from donors with 
KIR haplotype B, which is associated with more 
activating receptor genes than KIR haplotype A 
[ 113 ]. Lenalidomide therapy for patients with 
progressive MM following allogeneic SCT has 
been associated with an overall response rate of 
66 %, and immunomonitoring data show that 
lenalidomide augments NK cell expression of 
the activating receptor NKp44 [ 114 ]. Moreover, 
in a recent phase I/II study of lenalidomide given 
early after allogeneic SCT for MM, lenalido-
mide treatment resulted in an increase of activat-
ing receptors NKp30 and NKp44 on NK cells, 
as well as an increase in NK cell-mediated cyto-
toxicity directed against myeloma associated 
with an increase in the rate of complete remis-
sion [ 115 ]. 

 IPH2101 is a fully human mAb which cross- 
reacts with KIR2DL1, KIR2DL2, and KIR2DL3 
receptors and prevents their inhibitory signaling, 
thereby enhancing  in vitro  and  in vivo  NK cell 
killing of autologous tumor cells [ 107 ,  116 ]. In a 
phase I trial of IPH2101 in patients with RRMM, 
the drug was safe and tolerable, but objective 
responses were not observed [ 117 ]. Data suggest 
that combination of IPH2101 and lenalidomide 
may exert synergistic effects, as IPH2101 sup-
presses negative regulatory signals and lenalido-
mide augments NK cell function and upregulates 
activating ligands [ 107 ]. 

 Other classes of drugs with anti-MM effects 
may also confer effi cacy, at least in part, through 
recovery or enhancement of the NK cell versus 
MM effect. For example, histone deacetylase 
inhibitors increase the tumor surface expression 
of ligands for the activating NK receptors 
NKG2D and DNAM-1, thereby facilitating 
tumor cell recognition by NK cells and augment-
ing NK cell-mediated lysis of myeloma cells 
[ 118 ,  119 ]. 

 Ex vivo expansion of NK cells from MM 
patients using good manufacturing practice 
(GMP)-compliant components has been demon-
strated. NK cells expanded on average 1,600- 
fold. These expanded NK cells showed signifi cant 

cytotoxicity against primary autologous MM 
cells and were able to retain their tolerance 
against normal cells [ 120 ]. Phase I studies utiliz-
ing this technology are underway. Another suc-
cessful method of ex vivo NK cell expansion 
using coculture with K562 cells transfected with 
41BBL and membrane-bound interleukin-15 has 
resulted in 804 and 351 fold expansion from 
healthy donors and myeloma patients, respec-
tively. These cells killed both allogeneic and 
autologous primary myeloma cells as well as 
inhibited myeloma tumor growth in a murine 
model [ 121 ]. Phase II clinical trials have been 
initiated examining this approach in relapsed 
high-risk MM (NCT01313897) and asymptom-
atic MM (NCT01884688).  

4.4.6     Engineered T Cells 

 A promising area of cancer immunotherapy 
involves the ex vivo expansion of activated T cells 
that target tumor cells. One strategy has been the 
development of chimeric antigen receptor cells 
(CARs) in which antibody targeting a cell surface 
protein on the malignant cell is transduced into 
the T-cell receptor apparatus, such that selective 
binding of the tumor is associated with activation 
of receptor and cell-mediated lysis. An important 
advance was the cotransduction of a costimula-
tory molecule such as 41BB to facilitate T-cell 
expansion and survival. Promising results have 
been obtained using CARs targeting CD19 in 
patients with advanced chronic lymphocytic leu-
kemia and acute lymphocytic leukemia with per-
sistence of the engineered cells in the circulation 
associated with long-term protection [ 122 – 124 ]. 
Investigators have begun exploring myeloma-
specifi c targets such as CD38, B-cell maturation 
antigen (BCMA), and CS1. Of note, the choice of 
antibody epitope appears to have an important 
effect on T-cell effi cacy. The Ag should be 
expressed by MM cells on their surface, but not 
by essential cells or organs. It should be expressed 
by all tumor cells or be essential for their 
maintenance. 

 In a recent study, BCMA was found to have 
restricted expression on plasma cells. Anti-
BCMA- CAR-transduced T cells killed MM cell 
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lines and were able to eradicate tumors in a mouse 
model. The anti-BCMA-CAR-transduced T cells 
produced IFN-γ when stimulated with primary 
MM cells and killed primary MM cells [ 125 ]. 

 In another recently published study, NY-ESO-1 
was found to be expressed in ~10 % of MM 
patients. A high-affi nity CAR recognizing the 
immuno-dominant NY-ESO-1157–165 peptide in 
the context of the HLA-A*02:01 molecule was 
constructed. These cells (called redirected T cells) 
had subpopulations of effector and memory cells. 
They were able to lyse target cells and express 
IFN-γ. The memory cells showed signs of differ-
entiation upon Ag restimulation and secreted IL-2. 
Moreover, these redirected T cells were protective 
against tumor growth in a mouse model [ 126 ].   

4.5    Concluding Remarks 

 Potent anti-myeloma immunity has been demon-
strated in the allogeneic transplant setting. However, 
the lack of specifi city of alloreactive T cells repre-
sents a major limitation of this approach. In the 
autologous setting, a number of antigens have been 
identifi ed on malignant plasma cells which may be 
targeted by both humoral and cell-mediated immu-
notherapeutic strategies, and encouraging results 
have been demonstrated both preclinically and in 
clinical trials. Future directions will focus on: (1) 
integrating immunotherapeutic approaches in the 
setting of low disease burden and (2) combining 
both cellular and humoral immunotherapy with 
immunomodulatory drugs to enhance autologous 
anti- MM immunity and improve patient outcome.     
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5.1             Introduction 

 Acute myeloid leukemia (AML) is the most 
common myeloid leukemia, with a median prev-
alence of 3–8 cases per 100,000. The median 
age at presentation is about 70 years, and men 
are more affected than women (ratio 3:2). Risk 
factors for acquiring AML include exposure to 
ionizing radiation, benzene, and cytotoxic che-
motherapy [ 1 ]. AML is a heterogeneous clonal 
disorder of hematopoietic progenitor cells 
(“malignant blasts”), characterized by matura-
tion arrest, uncontrolled proliferation, and resis-
tance to apoptosis. Untreated, the disease is fatal 
within weeks to months, because of fatal infec-
tion, bleeding, or organ infi ltration [ 1 ].  

5.2     Immunopathology of Acute 
Myeloid Leukemia 

 It is now generally accepted that AML originates 
from genetic alterations in normal hematopoietic 
stem cells (HSC) or common myeloid progenitor 
cells (CMP), giving rise to the leukemic stem cell 
(LSC), from which the bulk of leukemic blasts 
arise, ultimately leading to the clinical presenta-
tion of AML. 
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5.2.1     Causes of Genetic Alterations 

5.2.1.1     Primary AML 
 Depending on the absence or presence of a pre- 
existing condition or therapy, we can discriminate 
between primary and secondary AML, respec-
tively. According to the most recent, revised 
World Health Organization (WHO) classifi ca-
tion of myeloid neoplasms and acute leukemia, 
published in 2008 [ 2 ], primary acute myeloid 
leukemia (AML) can be classifi ed, depending on 
the presence (acute myeloid leukemia with recur-
rent genetic abnormalities) or absence of known 
genetic alterations (acute myeloid leukemia, not 
otherwise specifi ed), showing the importance 
of genetic abnormalities in AML: these can be 
of prognostic importance and can have thera-
peutic implications but, above all, are a major 
 pathogenetic mechanism for AML. 

 In primary AML, the causes for the alterations 
are largely unknown, and the result of errors that 
appear during mitosis is considered as “bad luck.” 
However, rare cases of familial hematological 
malignancies have been described [ 3 ,  4 ]. In this 
case, a probable genetic predisposition exists for 
multiple primary cancers. Mutations in genes as 
RUNX1 and CEBPA have been identifi ed in these 
families [ 5 ]. This mechanism is also illustrated by 
the higher incidence of AML and other cancers 
in patients with specifi c genetic disorders such as 
Down syndrome [ 6 ] and Fanconi anemia [ 7 ].  

5.2.1.2     Secondary AML 
 AML is considered secondary, if it evolves from 
a pre-existing myelodysplasia (MDS) or if the 
patient received chemotherapy and/or radiother-
apy for an unrelated disease. 

   Acute Myeloid Leukemia 
with Myelodysplasia-Related Changes 
 In the case of MDS-AML, MDS is seen as a pre-
malignant condition. It was shown by exome and 
whole genome sequencing that AML and MDS 
overall share only few common mutated genes, 
but still this number is higher than expected to 
occur by chance, suggesting that a fraction of 
recurrent mutations are involved in both AML 
and MDS [ 8 ].  

   Therapy-Related Myeloid 
Neoplasms (AML) 
 Risk factors for therapy-related AML are the type 
of chemotherapy (esp anthracyclines and epi-
podophyllotoxins), as well as host factors, such 
as specifi c polymorphisms of detoxifi cation 
enzymes and of DNA repair genes (reviewed in 
[ 9 ]). Metabolomic analysis of samples before 
auto-HSCT for another disease showed that 
development of MDS/AML after the auto-HSCT 
was associated with dysfunctions in cellular 
metabolic pathways [ 10 ].    

5.2.2      Genes Affected in AML 

 With regard to which genes are inducing AML, 
numerous studies have been done in mice with 
forced expression of oncogenes in normal bone 
marrow, resulting in the development of AML [ 11 ], 
but studies in human are more scarce [ 12 ]. Two 
recent reviews have nicely summarized the current 
knowledge of the translocations and/or mutations 
involved in AML and their interrelationship [ 13 ], 
the importance of next generation sequencing in 
the future management of AML [ 14 ], and the het-
erogeneous nature and complexity of the disease.  

5.2.3     Models for Leukemogenesis 
Through Gene Alterations 

 AML can be the result of normal HSC acquiring a 
sequence of mutations, as evidenced by the shared 
CD34 + CD38 -  phenotype of both HSC and LSC 
[ 15 – 18 ], cytogenetic abnormalities in a proportion 
of the CD34 + CD38 −  cells of AML patients [ 19 , 
 20 ], and the heterogeneity in LSC self-renewal 
potential and longevity [ 18 ]. Alternatively, more 
committed progenitor cells can undergo trans-
forming events, partially reprogramming these 
cells, resulting in the reacquisition of stem cell 
characteristics such as self-renewal [ 17 ], sup-
ported by the heterogeneity within the LSC 
phenotype [ 21 ] and the fact that transduction of 
strictly defi ned populations of long-term repopu-
lating HSC, short-term  repopulating HSC, and lin-
eage-committed CMP with a construct encoding 
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the leukemia-associated mixed lineage leukemia 
(MLL) protein resulted in a malignant phenotype 
from each of these subpopulations [ 22 ]. 

 Based on the studies mentioned under 
Sect.  5.2.2 , the classical two-hit leukemogenesis 
model was proposed (Fig.  5.1 ). In this model, it 
was suggested that AML blasts develop from 
normal blasts (affected by two types of genetic 
damage). The fi rst (class 1) hit results in constitu-
tive activation of cell-surface receptors or recep-
tor tyrosine kinases, which leads to survival or 
proliferative advantage through various down-
stream pathways. Typical class 1 mutations affect 
RAS, FLT3, and KIT. However, in mouse mod-
els, it was shown that abnormalities in these 
genes are not suffi cient to produce a typical 
AML, but rather result in a myeloproliferative 
disorder [ 23 ,  24 ]. The second hit (class 2) blocks 

myeloid differentiation, as is exemplifi ed by the 
overexpression of homeobox (HOX) genes or by 
formation of fusion genes resulting from the 
translocation t(8;21) or inversion inv(16). Both 
the AML1-ETO and CBFβ-MYH11 fusion genes 
created by t(8;21) and inv(16), respectively, result 
in alterations of the AML1-CBFβ (core-binding 
factor β), a transcription factor which regulates a 
number of hematopoiesis-specifi c genes and is 
essential for normal development of the hemato-
poietic system [ 25 – 27 ]. Similarly to class 1 hits, 
these abnormalities alone do not cause leukemia 
in mouse models [ 28 ,  29 ]. Beside the knowledge 
from murine AML models, the observation in 
human AML that class 1 and class 2 lesions occur 
together more often than do two class 1 or two 
class 2 hits [ 23 ,  24 ,  28 ,  29 ] is in further support 
for this model. However, this “minimal two-hit” 

Normal myeloid cells

HSC

MP

LSC

Pre-LMP

Pre-LSC

Hit I

Hit IIHit I

Hit I

Leukemic blasts

Hit III (Epigenetic factors)

?

Hit II

  Fig. 5.1    Models of pathogenesis of AML. Three possible 
scenarios for the development of the LSC are shown. 
Hematopoietic stem cells (HSC) or myeloid progenitors 
(MP) or both populations are potential targets for primary 
(Hit I) and secondary (Hit II) hits. Usually, one single 
mutation leads to a preleukemic stem cell (pre-LSC) of 
myeloid progenitor (Pre-LMP), and a second mutation 

(Hit II) results in the formation of a leukemic stem cell 
(LSC) that fi nally gives rise to the bulk of the leukemic 
blasts, although the LSC can also – albeit to a lower 
extent – lead to normal differentiated cells. The role of 
epigenetic changes (Hit III) has recently become clear, but 
the exact mechanism has not been fully unraveled       
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model should be modifi ed to take into account 
the recent booming knowledge about new muta-
tions and especially the role of epigenetic factors. 
Epigenetic regulation of gene expression is medi-
ated in part by DNA methylation and posttransla-
tional modifi cations such as histone modifi cations 
to regulate chromatin structure. Beside gene 
mutations, tumor development also involves epi-
genetic changes such as hypomethylation of 
DNA and hypoacetylation of chromatin, as well 
as gene-specifi c hypo- or hypermethylation [ 30 , 
 31 ], and these are nowadays considered as class 3 
hits. In the past 5 years, the fi rst genome-wide 
epigenetic studies focusing on DNA methylation 
in AML have been published [ 32 ,  33 ]. To under-
stand the entire picture of molecular pathogene-
sis in AML, gene rearrangement, gene copy 
number, DNA methylation, and expression pro-
fi les are needed to be analyzed together with gene 
mutations [ 34 ].  

 The role of miRNAs in the development of 
AML, as in other cancers, has been shown by 
several studies comparing miRNA signature 
between AML and ALL, between AML and nor-
mal CD34 +  cells, and different AML samples 
(reviewed in [ 35 ]).  

5.2.4     The Leukemic Stem Cell 

5.2.4.1     Phenotype of the LSC 
 Most AML cells are unable to proliferate exten-
sively, and only a subset of these cells preserves 

clonogenic properties, suggesting that, simi-
lar to normal hematopoiesis, leukemia may be 
maintained by a small population of stem cells 
[ 15 – 17 ,  36 ,  37 ]. In 1994, Dick and colleagues 
identifi ed that AML-initiating cells or LSCs are 
CD34 + CD38 −  (a phenotype that is similar to 
 normal HSC), based on transplantation experi-
ments in SCID and later NOD/SCID mice [ 15 , 
 16 ]. In addition, serial transplantation experiments 
performed by Shultz et al. in xenotransplant- 
permissive NOD/SCID/IL2Rγ –/–  (NSG) mice 
demonstrated that long-term engraftment and 
the self-renewal capacity of human AML cells 
resided exclusively in the CD34 + CD38 −  popula-
tion [ 38 ]. LSCs were shown to be mainly in the 
G 0  phase of the cell cycle, confi rming their quies-
cent nature [ 38 ,  39 ]. 

 Despite these studies, controversy about the 
immunophenotype of the LSC arose (Table  5.1 ) 
[ 40 ]: it is now clear that although the LSC is con-
tained within the CD34 + CD38 −  population in 
most patients, some exceptions exist where LSC 
can (also) be found in the CD34 + CD38 +  popula-
tion [ 15 ,  16 ,  21 ] or the CD34low/ –  fraction (K, I) 
[ 21 ]. Moreover, identifying a more refi ned immu-
nophenotype discriminating LSC from normal 
HSC would enable clinicians to better evaluate 
MRD after therapy and design LSC-targeted 
therapies. Some surface markers associated with 
LSC are C-type lectin-like 1(CLL-1/MICL/
CLEC12A), CD123, CD44, CD47, CD96, and 
CD25 [ 41 – 47 ], but still a unique phenotype has 
not been established thus far.

    Table 5.1    Adapted by permission from Nature Reviews Cancer (Copyright 2004. Bleakley and Riddell [ 62 ] and 
Immunotherapy. Copyright 2013 [ 108 ])   

 Antigen  Examples  Advantages  Disadvantage(s) 

 LSA  > mutations: Flt3, NPM1  Specifi city  Expression restricted to defi ned 
AML subgroups → use limited to 
small patient populations 

 > translocations: AML1-ETO, 
DEK-CAN, PML-RARα 

 Oncogenicity 
 LSC expression 

 LAA  WT1, AurAkinase, Bcl2, 
Muc1, SSX21P 

 LSC expression  Low avidity of T cells for AG 
 Broad applicability (AML 
and other types of cancer) 

 Potential toxicity to normal tissues 

 MIHA  HA-1, HA-2 (hematopoietic 
specifi c) 

 High-avidity T cells available  Use limited to allo-HSCT 
 AG recognized by both CD4 +  
and CD8 +  T cells 

 Limited number of AG defi ned 

 Potential multivalent response  Potential cause of GVHD 

  Advantages and disadvantages of immunotherapy for acute myeloid leukemia, depending on the antigen targeted:  LSA  
leukemia-specifi c antigen,  LAA  leukemia-associated antigen,  MIHA  minor histocompatibility antigen [ 57 ,  58 ]  
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5.2.4.2        Clinical Relevance of the LSC 
 If LSC, as defi ned in mouse models, were also 
relevant for AML patients, they may consti-
tute the main targets for consolidation ther-
apy against MRD [ 48 ]. In 2005, Van Rhenen 
et al. demonstrated that a high frequency of 
CD34 + CD38 −  LSCs at AML diagnosis predicts 
high frequencies of MRD after chemotherapy 
and poor overall, disease-free and relapse-free 
survival, both in an  in vivo  model and in cor-
relation studies in patients [ 49 ]. Another study 
reported that the relative ability of AML cells to 
successfully engraft in immunodefi cient mice (a 
property associated with LSCs) correlates with 
adverse clinical features [ 50 ]. Recently, two 
groups have independently demonstrated that 
HSC- and LSC- enriched populations share very 
similar transcriptional “stem cell-like” or “self-
renewal” gene expression signatures that refl ect 
stem cell function  in vivo  [ 51 ] and that are pre-
dictive of adverse clinical outcome in individuals 
with AML [ 51 ,  52 ]. The predictive value of this 
LSC score appeared to be independent of other 
risk factors in multivariate Cox regression analy-
sis, which further supports the clinical relevance 
of LSC [ 51 ,  52 ].   

5.2.5     How Do Gene Alterations 
in the LSC Lead to the Clinical 
Presentation of AML? 

 Genetic alterations lead to differentiation block 
and hyperproliferation, which further enhance 
the risk of genetic damage. This leads to a num-
ber of effects that are additive and ultimately lead 
to the clinical effects of this life-threatening 
disease:
•    Clonal outgrowth and uncontrolled, limitless 

expansion, which is achieved by mutations 
that lead to constitutive activation of pathways 
involved in cell cycle, e.g., by activating muta-
tions, overexpression of proto-oncogenes, and 
abrogation on restriction points [ 53 ].  

•   Ineffi cient maturation from the malignant 
blasts and also mature cells from the residual 
normal stem cells, caused by a maturation 
arrest (due to mutation), by cytokines that are 

produced by the malignant blasts and inhibit 
the normal differentiation, and – to a lesser 
extent – by the crowding effect  

•   Constitutive release of chemokines by the 
malignant blasts (that also express several 
chemokine receptors), which interact with 
other cytokines (esp hematopoietic growth 
factors and angioregulatory factors), and 
matrix metalloproteinases (MMP) system, 
also released by the AML cells [ 54 ]  

•   Expression of P-glycoprotein (Pgp, MDR1, 
ABCB1), plasma membrane transporters able 
to effl ux a variety of substrates from the cyto-
plasm, including chemotherapeutic agents, 
leading to the development of resistance to 
chemotherapy [ 55 ].  

•   Resistance to apoptosis and defective or profi -
cient DNA damage response [ 56 ]      

5.3     Immunotherapy for AML 

 Despite the progress that has been made in the 
past decades, AML still remains a therapeutic 
challenge. A signifi cant percentage of patients, 
especially the elderly, have primary induction 
failure, and even if chemotherapy is successful at 
inducing remission of AML, the probability of 
relapse is high [ 56 ]. Immunotherapy for AML 
was fi rst put forward almost 40 years ago: the 
hypothesis that AML blasts were distinct from 
normal blasts led to preliminary attempts to 
improve immune responsiveness to AML by the 
administration of inactivated autologous AML 
blasts with BCG [ 57 ]. The most important 
insights in the role of the immune system in con-
trolling AML, however, came from allogeneic 
HSCT and the observed graft-versus-leukemia 
(GVL) effect. Increasing evidence exists that the 
success of allo-HSCT in curing AML can be 
largely attributed to this GVL effect, especially in 
the context of non-myeloablative HSCT [ 58 – 62 ]. 
Both donor NK cells and donor T cells contribute 
to the suppression and elimination of leukemic 
cells [ 62 ]. Although allo-HSCT remains the most 
successful post-remission therapy in AML, it has 
its price of important morbidity and mortality, 
caused by infections, toxicity of the conditioning, 
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and acute and chronic graft-versus-host disease 
(GVHD) [ 58 ,  59 ]. These important complica-
tions limit its applicability in patients of older age 
and with comorbidities. Therefore, research 
groups investigated more targeted forms of 
immunotherapy that are more specifi c, do not 
require conditioning, and have less side effects. 
The biggest challenge here lies in identifying the 
ideal tumor antigen, present on LSCs, but low to 
absent on normal hematopoietic cells and other 
vital tissues. 

5.3.1     Antigens to Target in AML 

5.3.1.1     Antigens Presented by MHC 
After Internal Processing 

 Major histocompatibility complex (MHC)-
presented antigens are targets for T cell-mediated 
immunotherapy, such as vaccination and adop-
tive T cell therapy. Three types of MHC-presented 
antigens can be described in AML: leukemia- 
specifi c antigens (LSA), leukemia-associated 
antigens (LAA), and minor histocompatibility 
antigens (MIHA). LSA arise from mutations or 
translocations, which lead to the formation of 
new antigens specifi c for the AML cells. LAA 
are expressed both on normal and leukemic cells, 
but they can be good targets if they are overex-
pressed on leukemic cells (including LSC) and/or 
their physiological expression is restricted to cer-
tain developmental stages (embryologic) [ 62 –
 65 ]. Hematopoietic-specifi c MIHA differing 
between donor and recipient are interesting tar-
gets for AML in the context of allo-HSCT [ 61 , 
 62 ,  66 – 70 ]. A ranking of the most promising can-
cer antigens is reviewed by Cheever et al. [ 67 ]. In 
addition, the authors and other groups have pub-
lished an overview of AML antigens more 
recently [ 40 ,  71 ,  72 ]. Some examples, the advan-
tages and disadvantages of these antigen types 
are summarized in Table  5.1 .  

5.3.1.2     Surface Antigens 
 Surface antigens are targets for monoclonal anti-
bodies (mAbs) and chimeric antigen receptor- 
modifi ed T cells (CAR T cells). Surface antigens 
on AML that are being targeted by mAbs are 

CD33, Flt3L, and those overexpressed on LSCs 
(CLL1, CD44, CD47, IL-3R (CD123)) (reviewed 
in [ 73 ]). These antigens have the disadvantage of 
being also expressed on normal tissues, resulting 
in important side effects, as seen with the anti-
 CD33 antibodies [ 73 ,  74 ] (See Sect.  5.3.2.2.1 ).   

5.3.2     Current Immunotherapeutic 
Strategies for AML 

 Active immunotherapy (e.g., modifi ed leukemic 
cells, peptide, DNA, or dendritic cell-based vac-
cinations) requires a patient with an intact 
immune system and can only exploit the avail-
able T cell receptor (TCR) of the patient. 
However, high-affi nity TCR-bearing T cells spe-
cifi c to self-antigens (TAA) are expected to be 
deleted after negative selection in the thymus. In 
addition, the question is whether active immuno-
therapy will be able to combat the abundant nega-
tive infl uences of the host immune system and 
tumor microenvironment. Passive immunothera-
peutic strategies (e.g., adoptive transfer of AML- 
specifi c T cells or NK cells) are expected to be 
more potent therapies to target LAA and 
MIHA. Also mAbs are considered passive immu-
notherapy and have proven effi cacy in AML. 

5.3.2.1     Active Immunotherapeutic 
Strategies 

   Peptide Vaccination 
 Known immunodominant and HLA-A2 (being 
highly prevalent among Caucasians)-binding 
nonamer peptide epitopes of WT1 and proteinase 
3 (PR1) are most widely researched and devel-
oped as peptide vaccines for AML in clinical tri-
als. Receptor for hyaluronan-mediated motility    
(RHAMM) has also been targeted in vaccine tri-
als [ 75 – 77 ]. Vaccines have been combined with 
adjuvants such as montanide or keyhole limpet 
hemocyanin (KLH), with or without concurrently 
administered granulocyte-macrophage 
 colony- stimulating factor (GM-CSF). As these 
studies comprise small and diverse groups of 
patients treated with different vaccines and 
schedules, it is diffi cult to draw meaningful 
 conclusions about the true effi cacy of peptide 
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 vaccination in AML. Yet, immune responses 
were signifi cantly associated with clinical 
response. Clinical responses ranged from reduc-
tion in marrow blasts to complete remissions in a 
low percentage of patients The potency of pep-
tide vaccines may potentially be increased by 
genetically modifying peptides to enhance TCR 
affi nity or by the use of synthetic long peptides 
(SLP) (instead of exact MHC-binding nonamer 
peptides), which deliver antigens in a more effi -
cient and stable way to the patient’s antigen pre-
senting cells (APCs) [ 78 ,  79 ]. In addition, 
Toll-like receptor (TLR) ligand- peptide conju-
gates constitute an attractive vaccination modal-
ity, sharing the peptide antigen and a defi ned 
adjuvant in one single molecule [ 79 ,  80 ].  

   Dendritic Cell Vaccination 
 In order to circumvent the limitations inherent to 
peptide vaccines [ 81 ], researchers have intensely 
studied the role of antigen-loaded dendritic cells 
(DCs) as professional APCs which are able to 
prime naïve T cells [ 82 ]. Furthermore, the syn-
thetic peptide approach which may miss immuno-
dominant epitopes is replaced by the addition of 
whole protein or mRNA transfection [ 81 ]. Most 
of the strategies use DCs which are derived from 
monocytes, and only those strategies used in clin-
ical trials are mentioned here:
•    DCs pulsed with leukemic cell lysates [ 83 ], 

apoptotic leukemic cells [ 84 ], or modifi ed 
WT1 peptides [ 84 ] have been successfully 
explored in small clinical trials.  

•   Even more promising are mRNA- 
electroporated DCs. In 2010, a phase I/II clini-
cal trial (clinicaltrials.gov ID: NCT00834002) 
investigated the effect of vaccination with 
full-length WT1 mRNA-electroporated autol-
ogous dendritic cells in ten patients with 
AML, and in fi ve of them, a molecular remis-
sion was reached, although not always persist-
ing [ 85 ].  

•   In an attempt to generate WT1-presenting DCs 
with a longer  in vivo  persistence, Stripecke 
and colleagues recently developed a tricis-
tronic lentiviral vector co-expressing a trun-
cated form of WT1, granulocyte- macrophage 
colony-stimulating factor (GM- CSF), and 

interleukin-4 (IL-4), which was used for the 
transduction of human monocytes, lead-
ing to very rapid self-differentiation of these 
cells into “SmartDC/tWT1” that showed very 
promising potential for the use as immuno-
therapy against WT1-expressing tumors [ 86 ].      

5.3.2.2    Passive Immunotherapeutic 
Strategies 

    Monoclonal Antibodies 
 Monoclonal antibodies given their antigen speci-
fi city and minimal toxicity may be an excellent 
AML- and even LSC-targeting therapy. This 
immunotherapeutic strategy functions through 
several mechanisms: Antibody-dependent cell-
mediated cytotoxicity (ADCC), complement 
activation, a direct proapoptotic effect, and upon 
the inhibition of signal transduction cascades 
that are essential for homeostasis, proliferation, 
or interaction with the microenvironment [ 87 ]. 
In case mAbs are conjugated to radioisotopes or 
toxins, they can directly kill the recognized tar-
get. Anti-CD33 (present on 90 % of AML cells) 
mAbs are the most widely studied and have 
proven both clinical effi cacy and important toxic-
ity [ 72 ,  74 ,  88 ]. Current promising trials combine 
anti-CD33 mAbs in more fractionated (less toxic) 
administration with chemotherapy [ 89 ,  90 ]. Also 
radioisotope-coupled anti-CD45 antibodies    have 
been used as part of the conditioning before allo- 
HSCT [ 91 ]. Alternative mAb tools include anti-
bodies that block the immune-regulatory effect of 
molecules, such as cytotoxic T lymphocyte anti-
gen- 4 (CTL4) or programmed cell death-1 (PD- 
1), and thereby unleash cytotoxic T lymphocyte 
function [ 92 – 97 ].  

   Adoptive T Cell Transfer 
 The clinical results obtained with unmanipulated 
DLIs, a variety of T cell types/sources and ex vivo 
manipulations of T cells, point to a strong AML- 
directed therapeutic effect as well as a GVHD 
potential. Various research has been done to direct 
T cells more specifi cally toward the AML cells. In 
AML patients, autologous- or donor- derived anti-
gen-specifi c T cells can be isolated from peripheral 
blood by pMHC-multimer staining, CD137- or 
CD154-based assays, cytokine (IFNγ)-secretion 
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techniques, or repeated ex vivo stimulation with 
antigen and subsequent expansion, but all of these 
techniques still require the availability of pre-exist-
ing high-affi nity antigen- specifi c T cells in the 
patient or the donor (in the context of allo-HSCT) 
[ 98 – 100 ]. For LAA, these are usually absent due to 
negative selection in the thymus. In order to confi ne 
LAA-specifi city to T cells, peripheral blood mono-
nuclear cells (PBMC) can be transduced with a 
high-affi nity TCR recognizing LAAs present on 
AML blasts, including LSCs, thereby circumvent-
ing the issue of tolerance. Such a high-affi nity TCR 
can be isolated from LAA-specifi c T cells gener-
ated  in vivo  or  in vitro  in an autologous setting (e.g., 
from TILs of a patient with complete clinical 
responses after ACT) or, even more ideally, in an 
allogeneic MHC-mismatched setting [ 101 – 103 ]. 
Moreover, the availability of TCR genes specifi c for 
MIHA, such as HA-2, would increase the applica-
bility of MIHA-directed immunotherapy, illustrated 
by the fact that 95 % of the population expresses the 
antigenic HA-2 v  allele, and therefore, naturally mis-
matched recipient-donor pairs are infrequent [ 104 ]. 

 A new promising immunotherapeutic strategy, 
using PBMC transduced with a CAR, a construct 
that encodes the VH and VL domain of a tumor 
antigen-specifi c antibody coupled to the CD3ζ 
chain (alone or combined with the signaling 
motifs of CD28 or CD137 to enhance the signal) 
of a TCR [ 105 ], has not yet been evaluated in 
clinical trials of AML.  

   Adoptive NK Cell Transfer 
 NK cells have an important antileukemic effect, 
and their role in other immunotherapeutic strate-
gies has been established, e.g., in WT1-DC vac-
cination [ 85 ,  87 ] and KIR-mismatched 
haploidentical HSCT [ 106 ,  107 ]. Especially in 
the context of haploidentical HSCT, NK cell 
adoptive therapy is currently being explored in 
clinical trials (NCT 00799799, NTR 2818).     

5.4     Concluding Remarks 

 This chapter reviewed both the immunopathol-
ogy of AML and currently explored immunother-
apeutic strategies targeting AML. The genetic 

alterations leading to the differentiation block 
and hyperproliferation which result in AML were 
discussed. The potential clinical relevance of the 
LSC concept in the pathogenesis of AML was 
emphasized. LSC might be one of the reasons 
why AML still remains a tremendous therapeutic 
challenge nowadays. New therapeutic strategies, 
including immunotherapy, are awaited. Various 
immunotherapeutic strategies and the possible 
target antigens were listed.     
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6.1             Introduction 

 Acute lymphatic leukaemia (ALL) is a disorder 
occurring from a lymphoid progenitor cell. 
Mostly ALL is known as leukaemia occurring in 
children, but there are a number of adult patients 
suffering from ALL. While both age groups can 
be affected by the “same” disease, the outcome is 
often different. There are plenty of molecular 
changes that can be found in ALL – however 
their prognostic impact may vary between both 
patient groups. 

 Mostly ALL is classifi ed as leukaemia of the 
B-cell lineage, which is the case in 85 %; we 
therefore focused on the B-cell ALL and their 
biological background and immune therapeutical 
options. 

 This chapter will discuss the different patho-
biological changes that occur in the development 
of ALL as well as their implication on the prog-
nosis of the diseases. The second part will focus 
on the progress that has been made on different 
immune therapeutical approaches to treat and 
cure ALL. The therapies range from tyrosine 
kinase inhibitors, antibodies against different 
lymphatic antigens to cellular approaches like 
haematopoietic stem cell transplantation and chi-
meric antigen receptors (CARs)-transduced T 
cells. By incorporating the different therapeutic 
options, the treatment and opportunities have 
dramatically changed.  
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6.2     Immunopathology 
of Lymphoblastic Leukaemia 

6.2.1     General Considerations 

 The incidence of acute lymphoblastic leukaemia 
(ALL) is about 1–4/100.000 persons per year. 
Most of the cases occur in children below 6 years 
or in adults aged 80 years and more. 
Approximately 85 % of all ALL cases are of a 
B-cell phenotype.  

6.2.2     Lymphocyte Development 
as Biological Basis of Disease 

 Acute lymphatic leukaemia rises from lymphoid 
progenitors. In humans LIN − /CD34 + /CD38 −  cells 
are recognised as a stem and progenitor popula-
tion in which three different sub-compartments 
can be found: CD90 + /CD45RA − , CD90 − /
CD45RA −  and CD90 − /CD45RA + . The LIN − /
CD34 + /CD38 − /CD90 + /CD45RA −  fraction is 
highly enriched for haematopoietic stem cells 
HST [ 1 ]. The common lymphoid progenitor 
(CLP) can be defi ned as LIN − /CD10 + /CD34 +  [ 2 ]. 
Originating from this CLP, B cells continue to 
differentiate into pre-pro-B cells, which then 
turned into pro-B cells, large pre-B cells and 
small pre-B cells and fi nally differentiate into 
immature B cells. This differentiation is highly 
regulated by various transcription factors which 
are specifi cally expressed over a time period to 
ensure the correct development of B cells 
(reviewed in [ 3 ]). 

 B-ALLs are heterogenic diseases, with an 
accumulation of abnormal cells. Traditionally 
B-ALL cells have been compared to their normal 
counter-partners in B-cell development. This was 
mostly done because of similarities in morphol-
ogy and immune phenotype. However, this head-
to- head comparison misses some ALL features, 
for example, up to 30 % of ALL cases express 
myeloid markers [ 4 ]. Research on chromosome 
changes in ALL has shown that some of the initi-
ating changes occur very early (e.g. being of 
parental origin), while others occur at a later 
stage of development [ 3 ]. 

 Genetical changes leading to the development 
of B-ALL are discussed below. The increasing 
role of the signalling of the pre-B-cell receptor 
and signal transduction by this receptor should be 
mentioned. During B-cell development, the pre-
B- cell receptor has a dual function. It promotes 
survival and proliferation, and subsequently it 
induces differentiation in the B-cell compartment 
[ 5 ]. Two downstream targets which are mainly 
important for the tumor suppressive function of 
the pre-B-cell receptor are IKAROS and AIOLOS 
[ 6 ]. Interestingly, in 80 % of the BCR-ABL +  
ALL, the gene responsible for IKAROS (IKZF1) 
has been deleted [ 7 ], underlining the importance 
of those events in the signal transduction for the 
development of ALL. 

 Similar to AML, there is a two-hit model for 
ALL. The fi rst “hit” is posed to be a chromo-
somal abnormality (the major are listed below); 
nonetheless, this fi rst “hit” is not suffi cient for the 
induction of an ALL. Therefore, a second hit 
such as the deletion of tumor suppressor genes is 
needed to fully generate an ALL.  

6.2.3     Genetics in Acute Lymphatic 
Leukaemia 

6.2.3.1     Numerical Chromosome 
Changes 

   Hyperdiploid 
 Hyperploidy (>50 chromosomes) can be found in 
up to 30 % of all cases in children [ 8 ]. In contrast, 
the number of hyperploid cases in adults is sig-
nifi cantly lower (about 10 %). Hyperploidy is 
associated with good prognosis in children. This 
might be explained by the higher sensitivity to 
chemotherapy [ 9 ]. The impact of hyperploidy in 
adults is less clear; while some reports found a 
benefi t, others deny this fi nding [ 10 ,  11 ].  

   Hypodiploid 
 Hypoploidy is defi ned as the presence of less than 
46 chromosomes in a cell. Approximately 10 % of 
children and nearly 10 % of adult cases show a 
hypoploid chromosome content [ 12 ]. Patients with 
hypoploidy have a worse prognosis compared to 
those with a normal or hyperploid leukaemia [ 13 ]. 
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This is even more of importance since the event-
free survival depends on the number of chromo-
somes and patients having less than 44 
chromosomes showed 8-year EFS of 30 % [ 14 ].   

6.2.3.2     Structural Changes 
   MLL Rearrangements 
 Several rearrangements involving the MLL gene 
at chromosome 11q23 are present in ALL cells. 
The most common are t(4;11)(q21;q23), t(11;19)
(q23;p13.3) and t(9;11)(p22;q23) which lead to 
the fusion of the 5′portion of the MLL with the 
3′portion of AFF1, MLLT1 and MLLT3 [ 15 ,  16 ]. 
Beside these frequent translocation patterns, over 
50 other translocations are known which fuse to 
MLL. Interestingly, there are two major breaking 
clustering regions in the MLL gene between exon 
5 and exon 11 [ 17 ]. Regardless of the other fusion 
partner (e.g. AFF1), fusion proteins will keep the 
transcription repressing domain of MLL and gain 
the 3′portion of the partner, which is mostly a 
transcription factor. MLL rearrangement is usu-
ally associated with poor outcome [ 18 – 20 ].  

   BCR-ABL 
 The translocation of 9q to chromosome 22q 
leads to the formation of the Philadelphia (Ph) 
chromosome. This fusion protein is the hallmark 
of the chronic myeloid leukaemia (CML) but is 
also found in ALL. Around 5 % of the children 
and up to nearly 30 % of adults will show the 
t(9;22)(q34;q11.2) translocation which can be 
detected by conventional cytogenetics, FISH or 
PCR [ 12 ,  21 ,  22 ]. The latest is often used for 
quantifi cation which makes this method 
extremely interesting for detection of minimal 
residual disease (MRD) [ 23 ]. 

 Genetically the Ph chromosome is a fusion of 
the 5′portion of the BCR gene to the 3′portion of 
the Abelson leukaemia virus proto-oncogene 
(ABL1). The breaking points of BCR cluster 
occur in two regions. The major clustering region 
(M-bcr) is mostly found in CML, and the minor 
cluster (m-bcr) is predominantly seen in 
ALL. Therefore, two different translocation 
products can result depending on the involved 
breaking point, the p210 kDa and the smaller 
p180-190 kDa. Patients will show only one of the 

two possible fusion samples [ 24 ,  23 ]. Detection 
of the t(9;22) in patients with ALL leads to an 
adverse disease prognosis [ 25 ,  26 ]. 

 Tyrosine kinase inhibitors are active in Ph +  
ALL; however, the majority of patients will 
relapse after initial response to treatment and 
even during treatment [ 27 ,  28 ].  

   ETV6-RUNX1 
 Translocation t(12;21)(p13:q22) leads to the pro-
duction of the fusion protein ETV6-RUNX1. 
This is the most frequent structural chromosome 
change in paediatric ALL, which occurs in nearly 
30 % of the cases [ 29 ,  30 ]. While being quite fre-
quent in childhood lymphatic leukaemia, ETV6- 
RUNX1 transcripts are rare in adults with a 
frequency below 5 % [ 31 ,  32 ]. RUNX1 is a tran-
scription factor that regulates various genes 
important for human haematopoiesis [ 33 ]. 

 Occurrence of the ETV6-RUNX1 transloca-
tion is associated with a good prognosis in 
childhood ALL. This is especially seen in 
younger children (1–9 years of age) rather than 
in those older than 10 [ 14 ,  32 ,  34 ,  35 ]. A hypoth-
esised mechanism is that the occurrence of the 
translocation sensitises malignant cells to clas-
sical chemotherapeutic drugs used in ALL pro-
tocols [ 36 ,  37 ].     

6.3     Immune Phenotype 
and Targets in Lymphatic 
Leukaemia 

6.3.1     Cell Surface Marker 

 ALL cells express a variety of antigens that are 
linked to normal B-cell development. In a more 
simplifi ed way, three major subgroups can be 
defi ned which can be classifi ed by their immune 
phenotype. The early precursor or pro-ALL is 
characterised by the expression of CD19, cyto-
plasmic CD79a, cytoplasmic CD22 and nuclear 
TdT. The intermediate stage or common ALL is 
recognised by CD10, and the late precursor or 
pre-B-ALL stage is marked by the cytoplasmic 
expression of the μ chain. Typical phenotypes are 
listed in Table  6.1 .
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   Lymphoblasts are positive for CD10, surface 
CD22, CD24, Pax5 and TdT in most cases. The 
expression of CD34 and CD20 varies. CD45 may 
be absent. Myeloid markers such as CD13, 
CD15, CD33 and CD68 can also be expressed on 
lymphoblasts [ 38 ].  

6.3.2     Tumor Antigens 

6.3.2.1     WT1 
 Wilms tumor gene 1 (WT1) is a zinc fi nger tran-
scription factor that was originally found as a 
mutated tumor suppressor in Wilms tumor. The 
expression of the transcription factor was also 
found in haematopoiesis, and the expression and 
relevance of its expression has been extensively 
studied in AML and to a lesser extent in 
ALL. Reports showed that a great number of 
ALL have an WT1 expression, but in contrast to 
childhood ALL where WT1 was inversely corre-
lated to an inferior prognosis [ 39 ], a study on 
nearly 300 adult ALL cases missed to show any 
impact as an individual prognostic marker [ 40 ]. 
The expression varies in different ALL subtypes, 
and matured B-ALL were negative or showed 
low WT1 expression, while aberrant expression 
of myeloid marker led to the highest WT1 levels. 
However, in adult T-ALL an inferior outcome for 
patients harbouring a WT1 mutation in exon 7 
was reported [ 41 ]. While data for WT1-specifi c 
T-cell therapy in ALL are missing, a report in 
CML patients used WT1-specifi c T cells to pre-
vent relapse of leukaemia [ 42 ].  

6.3.2.2     BCR-ABL 
 Most work with BCR-ABL as a tumor antigen was 
done in CML. Numbers of reports have shown that 
T cells specifi c for BCR-ABL contribute to the 
immune  vs.  CML effect [ 42 – 44 ]. However, in 
BCR-ABL-positive ALL, the potential use of 
BCR-ABL as an immune target is less promising. 
Data of allografted BCR-ABL- positive ALL 
patients showed a better overall survival (OS) and 
less relapse compared to patients treated with con-
ventional chemotherapy [ 45 ,  46 ], suggesting that a 
graft-versus- leukaemia (GvL) effect also exists for 
BCR-ABL ALL; however the relapse rate is still 
30 % [ 47 ], and ALL has shown to be less sensitive 
for donor lymphocyte infusion [ 48 ]. BCR-ABL-
positive ALL has also been included into trail with 
bi- specifi c antibodies (discussed below), resulting 
in a considerable rate of relapse which however 
was short lasting [ 49 ]. These results suggest that 
either BCR-ABL itself is less immunogenic or that 
priming and expansion of BCR-ABL- specifi c T 
cells take too long in acute leukaemia to be effec-
tive as therapeutical approach.   

6.3.3     Cancer/Testis Antigens 

 Cancer/testis antigens (CTAs) are a group of 
tumor antigens being limitedly expressed in 
somatic tissues and represent an attractive target 
for immunotherapy in cancer since the gonads 
are immune privileged organs and anti-CTA 
immune response can be tumor specifi c (reviewed 
in [ 50 ]). While CTA represents an attractive tar-
get in AML [ 51 ], the expression and practicabil-
ity as an immunological target in ALL is less 
clear. In a small study, the expression of CTA in 
ALL patients could be detected [ 52 ].   

6.4     Immunotherapy 
for Lymphatic Leukaemia 

6.4.1     Cellular Approaches 

6.4.1.1     T Cells and Modifi ed T Cells 
 T cells as part of the adoptive immune system 
have the ability to recognise and kill tumor cells. 
This quality is part of the concept of donor lym-

   Table 6.1    Phenotype of B-ALL and potential antibody- 
based targets   

 Stage  Immune phenotype  Target 

 Early 
precursor 

 HLA-DR, TdT, cCD22, 
CD79a, CD19 

 CD19 
 Blinatumomab 

 Intermediate 
precursor 
(common) 

 HLA-DR, TdT, cCD22, 
CD79a, CD19, CD10, 
CD20 (variable) 

 CD19 
 Blinatumomab 
 CD20 
 Rituximab, 
ofatumumab 

 Late 
precursor 

 HLA-DR, TdT 
(variable), cCD22, 
CD79a, CD19, CD10, 
CD20, cytoplasmic μ 

 CD19 
 Blinatumomab 
 CD20 
 Rituximab, 
ofatumumab 
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phocyte infusions (DLI, discussed below) as cel-
lular therapy against various types of 
haematological cancers [ 53 – 55 ]. However, the 
response rates of ALL to DLI are inferior com-
pared to other haematological cancer types and 
mostly lower than 15 % [ 56 ,  57 ]. Possible expla-
nations may be that ALL is an aggressive disease 
where time for priming the naïve T cells is lack-
ing and ALL cells are missing co-stimulatory 
molecules [ 58 ]. Even  ex vivo  pre-stimulation of T 
cells with CD3/CD28 antibodies did not enhance 
the benefi t of DLI for ALL patients [ 59 ]. Another 
approach to enhance the T-cell toxicity towards 
ALL is an  ex vivo  priming against known tumor 
antigens. WT1 and BCR-ABL are the best stud-
ied antigens so far, and fi rst reports are promising 
that the priming may lead to a better control of 
tumor cells [ 60 ]. 

 An alternative to conventional T cells for 
adoptive immunotherapy is the application of 
genetically modifi ed T cells. Here the α and β 
subunits of the T-cell receptor (TCR) of a tumor- 
specifi c T-cell clone are used. First results in 
solid tumors such as melanoma were promising 
[ 61 ]; however, its use in haematological malig-
nancies was limited due to the antigen restriction 
of the T-cell clone [ 62 ,  63 ]. In addition, many 
tumor cells downregulate HLA molecules and 
thereby lower the ability of recognition by T 
cells [ 64 ]. 

 A possibility to avoid the limitations of TCR 
gene transfer may be the use of chimeric antigen 
receptors (CARs). CARs are composed of a 
 single-chain variable-fragment (scFv) antibody 
specifi c to tumor antigen, fused to a transmem-
brane domain and a T-cell signalling moiety, 
most commonly either the CD3-ζ or Fc receptor 
γ cytoplasmic signalling domains [ 65 ]. The 
resulting receptor, when expressed on the surface 
of the T cell, mediates binding to the target tumor 
antigen through the scFv domain, which subse-
quently mediates an activating signal to the T cell 
inducing target cell lysis. Major advantages are 
the ability to produce large amounts of modifi ed 
T cells in the lab and the ability that those cells 
kill HLA-independent T cells and that CAR- 
modifi ed T cells can be further manipulated by 
co-expressing cytokines or co-stimulatory mole-
cules [ 66 – 68 ]. 

 By choosing the CD19 as an immunological 
target, some preclinical work reported benefi -
cial effects of viral-transduced CD19-targeted 
CAR T cells [ 69 ,  70 ]. Further modifi cations of 
CAR T cells with co-stimulatory receptors have 
enhanced their potential in mice models [ 71 –
 73 ]. Ongoing phase I trials are investigating the 
benefi t of CAR-modifi ed T cells in the context 
of ALL (NCT01044069 and NCT01029366), 
and it will be very interesting to see which 
impact this modifi ed T cells will have on the 
management and cure of ALL. In a fi rst proof-
of-principle report, Porter et al. treated a patient 
with refractory CLL with modifi ed autologous 
T cells. T cells were transduced with CD19, 
CD137 and CD3-ζ and infused at a dosage of 
1.5 × 10 5 /kg BW. A remarkable remission for 
10 months was noted [ 74 ]. Interestingly in 
patients treated with CAR- modifi ed T cells, a 
portion of memory CAR T cells could be found 
after 6 months [ 75 ]. 

 In a more recent study, Grupp and co-workers 
used CD19 CAR-modifi ed T cells with dosages 
of 1.4 × 10 6  to 1.2 × 10 7  T cells per kg/BW to treat 
two children with relapsed and refractory pre-B- 
ALL. Both children reached complete remission 
(CR) after treatment, and one remained in CR for 
11 months, while the other child relapsed with a 
clone of non-CD19-expressing blasts [ 76 ]. 
Therefore alternative targets are investigated, and 
fi rst reports show that CD22 can also be used as 
an immunological target for CAR in ALL [ 77 ]. 
However, this point remains critical as the chosen 
antigen determines the success of the cellular 
therapy.  

6.4.1.2     NK Cell Approaches 
 NK cells are part of the innate immune system. 
In contrast to B or T cells, NK cells do not have 
receptors rearranged during their maturation, 
making them less specifi c for antigens. Indeed, 
receptors expressed on the NK cell surface have 
more function of carefully controlling NK cell 
activation. One of those receptors is the killer-
cell immunoglobulin-like recepor (KIR, CD158) 
family, which consists of different members that 
have activating as well as inhibitory functions 
on NK cells. NK cell cytotoxicity is triggered by 
tumor cells, which lack the of expression of 
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some self-MHC class I molecules referred to as 
“missing self” hypothesis [ 78 ]. Inhibitory KIRs 
recognise groups of HLA-A, HLA-B and 
HLA-C alleles. If KIR inhibitory NK cells tar-
get cells lacking the corresponding HLA-class I 
ligand, the target cell will be lysed (KIR-ligand 
model) [ 79 ]. 

 Up to now, NK cell alloreactivity does not 
seem to be benefi cial in the treatment of ALL 
[ 80 ], but some reports with genetic modifi ed NK 
cells provide some encouraging data. Retroviral 
or electroporation of NK cells to induce a CD19 
targeting CAR led to increased NK cell-mediated 
killing of ALL cell lines, as well as primary ALL 
blasts [ 81 – 83 ].   

6.4.2     Antibodies (See Table  6.2 ) 

6.4.2.1        CD20 Antibodies 
 The CD20 molecule is an integral membrane pro-
tein that is specifi c for B cells and seems to be 
important for calcium transport across the cell 
membrane [ 84 ]. The expression of CD20 is 
linked to poor prognosis [ 85 ]. CD20 is expressed 
on leukemic blast cells of about 50 % of the 
patients with B-lineage ALL. 

 Rituximab is a chimeric mouse/humane anti-
body that has dramatically changed the therapy 
of NHL. Since CD20 is also expressed in B-ALL 
cells, the antibodies have also been used in the 
ALL setting. Reports have shown that the addi-
tion of CD20 antibodies to conventional chemo-
therapy leads to a higher rate of complete 
response as well as a better overall survival. Of 
note the advantage seems only to be true in 
younger ALL patients [ 86 ,  87 ].  

6.4.2.2     CD22 Antibody 
 CD22 molecule expression is found in more than 
90 % of B-lineage ALL. Functionally, CD22 
leads to downregulation of CD19 after its phos-
phorylation. CD22 is rapidly internalised after 
activation and therefore is highly attractive for 
toxin-linked antibodies [ 88 ]. Inotuzumab ozo-
gamicin is an anti-CD22 antibody linked to cali-
cheamicin. Calicheamicin is a toxic antibiotic 
which causes double-strand breaks in the 
DNA. In a fi rst phase II trial of nearly 60 patients, 
57 % responded to the immunotoxin and showed 
an OS of 5.1 months [ 89 ]. 

 Epratuzumab is an unconjugated CD22 anti-
body. In a very small study with 15 paediatric 
patients, nine achieved CR with only moderate 
toxicity [ 90 ]. Furthermore, the addition of epratu-
zumab to standard chemotherapy improved the 
CR rate in a Children’s Oncology Group (COG) 
study    [ 91 ]. Moxetumomab pasudotox is a new-
generation toxin-linked anti-CD22 antibody that is 
currently being investigated in a phase I trial [ 92 ].  

6.4.2.3     CD52 Antibody 
 CD52 is a glycoprotein on the surface of lym-
phoid cells. CD52 can be found on T and B cells, 
making the antigen interesting for application in 
T- and B-ALL. Campath-1H is a humanised 
IgG1k antibody that showed major effi ciency in 
NHL and CLL. 

 A small series of six patients with advanced 
ALL who had been treated with alemtuzumab 
(three times 30 mg IV) was reported, and nearly 
all patients showed infectious complications 
[ 93 ]. CALGB presented data from a phase 1 
study including 24 patients in CR1 with alemtu-
zumab as treatment. The OS was 55 months, and 

   Table 6.2    Function of antibody-based immunotherapy   

 CD name  Other name  Function  Antibody 

 CD19  Forms complex with CD21 and CD81, 
co-receptor for B cells, binds 
cytoplasmic tyrosine kinases and PI3K 

 Blinatumomab 

 CD20  Oligomer of CD20 is involved in Ca 2+ 
transport and B-cell activation 

 Rituximab, ofatumumab 

 CD22  BL-CAM  Binds sialoconjugates  Inotuzumab 
 CD52  CAMPATH-1, HE5  Unknown  Alemtuzumab 
 CD33  Binds sialoconjugates  Gemtuzumab 
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DFS was 53 months. Interestingly minimal resid-
ual disease (MRD) levels were 1 log lower in 
alemtuzumab-treated patients [ 94 ]. Again infec-
tion complications were a major side effect in the 
treatment.  

6.4.2.4    CD19 Antibody 
 CD19 is expressed in nearly all B-cell malignan-
cies due to the early expression of the CD19 mol-
ecule in B-cell development. Blinatumomab is a 
structured monoclonal antibody combining two 
single-chain antibodies to CD19 B cells and to 
CD3 T cells [ 95 ]. This antibody increases the 
contact of cytotoxic CD3 to malignant B cells 
which thereby gets lysed. The GMALL showed 
data on 21 patients who achieved MRD negativ-
ity after blinatumomab therapy. The response 
rate was 80 % with a probability of relapse-free 
survival of 78 % and only mild side effects [ 96 ].    

6.5     Stem Cell Transplantation 

6.5.1     Allogeneic Stem Cell 
Transplantation (Allo SCT) 

 Allogeneic stem cell transplantation is still the 
most effective immunotherapy for ALL. Donor T 
cells contribute to controlling malignant cells. 
This effect of GvL was fi rst described in acute 
leukaemias including ALL [ 97 ]. However, there 
are also signifi cant limiting factors in the treat-
ment of ALL by allo SCT; even with the improved 
supportive care therapy, there is up to 30 % 
treatment- related mortality (TRM) [ 98 ], and 
GVHD accounts for up to 70 % of the cases [ 99 ]. 

 The majority of ALL patients will achieve CR 
after the induction therapy [ 99 ], but if patients 
profi t more from allo SCT or conventional chemo-
therapy as consolidation is still not fully answered. 
There are some patient subgroups defi ned by 
genetical features, delayed response (> day 28) 
and high leukocyte count at diagnosis that have 
been summarised by the term high-risk patients. In 
these patients allo SCT seems to be favourable as 
consolidation therapy [ 100 – 102 ]. Nevertheless, 
it has to be underlined that these data are 
mainly based on myeloablative  treatment 

 protocols and related donor transplantation. Of 
note some studies failed to support the benefi -
cial use of allo SCT in high-risk ALL patients 
[ 103 ,  104 ]. 

 Besides the group of high-risk ALL patients, 
debate exists on whether standard-risk ALL 
patients should be transplanted. The British 
MRC analysed 1,646 patients who were negative 
for the t(9;22). If a CR was achieved and the 
patient was eligible for an allo SCT, patients 
were biologically randomised on the donor/no 
donor base. Interestingly in this cohort of stan-
dard-risk ALL patients, the 5-year OS was sig-
nifi cantly better in the transplant group compared 
to non- transplanted patients (62 %  vs.  52 %, 
 p  = 0.02) [ 103 ]. 

 High-resolution typing of the HLA locus 
resulted in improved survival after matched unre-
lated donor transplantation, and results become 
similar to those of HLA-identical sibling trans-
plantation [ 105 – 107 ]. 

 As an alternative stem cell source, umbilical 
cord blood (UCB) or haploidentical donors can 
be used for allogeneic stem cell transplantation. 
Retrospective studies resulted in similar outcome 
after UCB and matched related or unrelated stem 
cell transplantation [ 108 ,  109 ], and haploidenti-
cal donor transplantation has become a reason-
able transplant option for those patients lacking a 
suitable HLA-matched donor [ 110 ]. 

 One way to lower TRM is to Reduced-
intensity conditioning (RIC). Patients in advanced 
stage of ALL, with older age or heavily pretreated 
can be transplanted after RIC [ 111 ,  112 ]. Registry 
data from the EBMT showed that using RIC pro-
tocols reduced TRM in the context of ALL, but 
also in this data set, there was an increase in 
relapse rate (RIC, 47 %  vs.  MAC 31 %,  p  < 0.001) 
[ 113 ].   

6.6     Concluding Remarks 

 ALL are acute leukaemias arising from a com-
mon lymphatic progenitor. In a number of cases, 
chromosomal changes occur; some of them like 
BCR-ABL have direct impact on the biology of 
the disease. As the neoplastic cells are closely 
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related to normal lymphoid development, ALL 
express a vast of antigens, which are a target of 
antibody-based therapies. Incorporation, espe-
cially of the chimeric blinatumomab, has 
improved therapeutical outcome in ALL patients. 
Stem cell transplantation is mostly the therapy of 
choice in the case of an ALL relapse after con-
ventional therapy or in case of high-risk features 
of the disease in upfront treatment. By replacing 
the haematopoietic system, the donor immune 
system is thought to control leukaemia growth by 
the GvL effect. This is mostly mediated by T 
cells as one of the effector arms of the adoptive 
immune system. Therefore the development of 
“more specialised” T cells by genetical modifi ca-
tion of the T-cell receptor (CAR-Ts) is a logical 
progress. CAR-modifi ed T cells have already 
shown high effi ciency in the use against lym-
phatic leukaemias. In summary immune thera-
peutic approaches held great promise to optimise 
ALL therapy and lead to a longer and better sur-
vival of ALL patients.     
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7.1             Introduction 

 The majority of patients with early-stage Hodgkin 
lymphoma (HL) experience recovery by conven-
tional chemo- and/or radiotherapy, yet consider-
able morbidity is posed by combined 
chemotherapy and radiotherapy [ 1 ]. On the other 
hand, refractory or relapsed patients comprise a 
considerable proportion, all of which could 
explain for the waning popularity of conventional         M.   Ebadi ,  MD      
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therapies. Development of resistant cell clones is 
acknowledged as the main reason for tumor 
relapse; therefore, alternative techniques are 
mandated to circumvent these limitations. 
Monoclonal antibodies (mAbs) have emerged as 
promising anticancer therapies over the last sev-
eral years [ 2 ,  3 ]. Various effector functions 
including ADCC, CDC, and direct apoptosis 
induction are mediated by mAbs [ 4 ]. Novel ther-
apies are hinting toward immunotherapy-based 
treatments. Various antibodies have been targets 
of antibody-based immunotherapy, including 
CD20, CD30, CD40, IL13 receptor, RANK 
ligand, and DR4 [ 5 ]. The effi cacy of antibody- 
based immunotherapy has been enhanced by a 
variety of approaches including radioimmuno-
conjugation and antibody-cytokine and antibody- 
toxin conjugation, in addition to biphasic Abs 
[ 6 ]. The treatment paradigm of classical HL 
(cHL) has considerably improved during the last 
two decades [ 7 ]. Among the four broad treatment 
modalities, immunotherapy is gaining superiority 
[ 6 ]. In this chapter, we aim to tackle immuno-
therapy and immunopathology of HL.  

7.2     Immunopathology 
of Hodgkin Lymphoma 

 Proper insight into the immunopathology of HL 
seems mandatory for the development of effi cient 
immunotherapeutic strategies; therefore, studies 
have been conducted in this regard. 

 HL is from B-cell origin, yet immunity 
impairment is a predominant feature, which 
is attributed to both T-cell and B-cell dysfunc-
tion. Immune defi ciency is a characteristic 
feature of HL [ 8 ], leading to the patients’ inef-
fective immune response toward Hodgkin and 
Reed-Sternberg (HRS) cells, which is recog-
nized as a mechanism in the pathogenesis of 
HL. Infi ltrating immune cells are present in 
an immune response toward HL; however, the 
activated immune system mostly resembles an 
acquired cellular immune defi ciency [ 7 ]. A vari-
ety of immunopathologic features have made HL 
a suitable candidate for antibody-based thera-
peutic approaches: (a) the expression of various 
cell surface Ags including CD15, CD25, CD30, 

CD40, and CD80. The paucity of expression of 
these markers on normal human cells, preceded 
by low cross-reactivity, has made HL an ideal 
target for immunotherapy with minimal side 
effects. (b) Selective immunotherapy could be 
intensifi ed by applying cocktails of mAbs against 
different Ags. As a result, the resistance of one 
malignant cell clone to a specifi c Ab leaves the 
opportunity for it to be targeted by other present 
Abs. (c) Malignant cells comprise the minority of 
the tumor mass, as the majority of cells are inno-
cent bystander cells. (d) Rich vascularization is 
observed in HL, leading to feasible intravenous 
connection. (e) HL is acknowledged to possess a 
high response rate to standard therapeutic regi-
mens, leaving a small proportion being targeted 
by immunotherapy (a high clinical remission rate 
is achieved after standard therapy). The immune 
environment surrounding HRS cells is depicted 
in Fig.  7.1 . A distinguishing feature of HL is the 
paucity of malignant cells in lymph nodes sur-
rounded by immune effector cells, including 
dense infl ammatory infi ltrates enriched in inhib-
itory T-regulatory cells which fail to recognize 
and invade malignant cells [ 9 ,  10 ]. The cytokines 
and chemokines produced by HL tumors which 
promote a Th2-type T-cell response are recog-
nized as potential contributors to immune eva-
sion [ 11 ]. Polarization toward T-helper-2 (Th2) 
immune response is activated by various cyto-
kines including IL-10 and chemokines produced 
by HRS cells, leading to restrained cellular reac-
tivity and poor prognosis [ 3 ,  6 – 10 ]. Multiple sig-
naling pathways are deregulated in HRS cells. 
Both canonical and noncanonical NF-kB signal-
ing pathways are frequently activated in HRS 
cells, playing an essential role in the survival of 
HRS cells. Signaling through CD40 and RANK 
receptors triggers the NF-kB signaling pathway 
[ 12 ], while in approximately 40 % of classi-
cal HL, the HRS cells are latently infected by 
EBV and, consequently, the EBV-encoded latent 
membrane protein 1 (LMP1) is expressed, which 
activates also NF-kB by mimicking an activated 
CD40 receptor [ 13 ]. Therefore, interference 
with this pathway by the targeting Ab is con-
sidered profi table [ 5 ]. Death of activated cyto-
toxic T lymphocyte and NK cells is induced by 
the upregulation of immunomodulatory  surface 
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receptors including RCAS1 or FAS ligand on 
HRS cells. Furthermore, resistance to CD95-
mediated cell death triggered by infl ammatory 

cells is manifested in HRS cells [ 14 ]. Reiners 
et al. [ 9 ] demonstrated impairment of the 
HL-derived target cell line L428 in peripheral 

  Fig. 7.1    The fi gure demonstrates the immune environment of HRS cells in HL, as well as the antibodies located on the 
cell surface which are considered potential targets for immunotherapy       
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NK cells in HL. Furthermore, it was shown that 
healthy NK cells lyse L428 target cells mainly 
by NKG2D. Remarkably, a signifi cant reduc-
tion in the NK surface expression of NKG2D 
is indicated in HL-derived p-NK cells [ 9 ]. The 
novel NKp30 ligand, BAG6, is found to suppress 
NK cell function in its soluble form. In a study 
conducted by Reiners et al., it was indicated that 
surface ligands for NKp30 are not expressed in 
HL cell line L428. Of note, trace expression of 
NKp30-ligand BAG6/BAT3 in L428 cell line 
was found [ 9 ]. In patients with HL, MICA, the 
ligand for NKG2D, is elevated. Moreover, serum 
levels of MIF and BAG6 are increased. It has 
been reported that MIF downregulates NKG2D 
and, hence, reduces NK cell function [ 15 ]. In 
addition, elevated serum BAG6 levels are pro-
posed to reduce the function of NK cells [ 16 ]. 
The release of MICA and ULBP3, as well as 
TGF-β from bystander and HRS cells, leads to 
downregulation of NKG2D on effector lympho-
cytes and results in impaired NKG2D- dependent 
killing of malignant cells [ 17 ]. Mamessier 
et al. [ 16 ] described that despite the effi ciency 
of IL-2 in restoring NK cell activity via RAS/
MAPK, JAK/STAT, and PI3-kinase/Akt signal-
ing pathways in normal cell environments, this 
pathway fails to activate NK cells in the serum of 
patients with HL, proposing the inhibitory role 
of serum factors in HL patients. In the same line, 
reversible suppression of peripheral NK cells 
has been manifested in other tumors including 
breast cancer [ 18 ,  19 ]. The JAK/STAT pathway 
is activated by many cytokines including IL-13 
and IL-21, which ultimately leads to the translo-
cation of STAT homo- or heterodimers into the 
nucleus; moreover, SOCS1, encoding the main 
inhibitor of JAK/STAT signaling, is inactivated 
by mutations in 40 % of classical HLs. Activated 
STAT3, STAT5, and STAT6 factors are accumu-
lated in HRS cells [ 12 ]. MEK/ERK and PI3K/
AKT pathways are also activated in HRS cells. 
In addition, other signaling pathways including 
multiple receptor tyrosine kinases, the T-cell 
transcription factors Notch-1 and GATA-3, the 
NK cell factor ID2, and the myeloid receptor 
CSF1R are triggered, all together contributing to 
the mixed phenotype of HRS cells [ 12 ,  20 ,  21 ].  

 Naked Abs are dependent on immune effec-
tor cell activation for implying their therapeutic 
effects. In addition, effector immune cells are 
targeted by T-regulatory cells. Thus, an immu-
nosuppressive environment is induced, explain-
ing the low therapeutic effi cacy of naked mAbs 
in clearance of HRS cells [ 22 ]. All the above-
mentioned mechanisms provide explanations 
to the low effi cacy of several therapeutic 
Abs employed in HL involving effector cell- 
dependent antitumor activities [ 5 ]. The low 
mitotic index (0.5 %), due to mitotic defects and 
high degrees of apoptosis [ 23 ], contributes to 
the low effi cacy of Abs directed toward tumor 
Ags, targeting as low as 0.5–5 % of the tumor 
mass cell population [ 24 ]. 

 HL tumors, classifi ed as a liquid tumor, pos-
sess a solid tumorlike appearance and composi-
tion. Antibodies and antibody-drug conjugates 
are poorly effective on solid tumors, and only 
0.001–0.01 % of the injected antibody permeates 
the tumor [ 25 ]. Therefore, the effi cacy of immu-
notherapy in HL is mitigated due to the solid 
tumorlike composition, as well as the low fre-
quency of HRS cells [ 5 ]. 

 Tumor necrosis factor receptor (TNFR) super-
family includes CD30, CD40, Fas (CD95), and 
OX40 (CD134), just a few to point to [ 26 ]. CD30- 
ligand binding or cross-linking by immobilized 
Abs, ultimately provokes biological signals 
including cell proliferation and apoptosis [ 5 ]. 
CD30-CD30 ligand interactions on the surface of 
HRS cells are recognized in the pathogenesis of 
HL [ 27 ]. Due to the considerable difference 
between the ability of anti-CD30 Abs in the inter-
ference with NF-kB signaling pathway, their 
therapeutic effi cacy is variable [ 5 ]. MAP kinases 
and NF-kB are the hallmark events regulated by 
CD30 signaling pathway [ 28 ,  29 ], leading to cell 
proliferation and survival, in addition to induc-
tion of antiproliferative responses and cell death 
[ 30 ]. Activation of NF-kB leads to the expression 
of antiapoptotic genes such as cFLIP [ 31 ], XIAP 
[ 32 ], and Bcl X L  [ 33 ], hence posing an additional 
level of complexity to the treatment of HL [ 34 ]. 
Therefore, inhibition of the NF-kB signaling 
pathway by therapeutic Abs seems a benefi cial 
interference [ 34 ]. 
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 The active, phosphorylated form of the 
mitogen- activated protein kinase kinase/extra-
cellular signal-regulated kinase (MAPK, EPK; 
p44/42) is observed in cultured and primary HRS 
cells. Furthermore, inhibition of the upstream 
kinase EPK has been shown to be associated with 
decreased growth of HL cell lines [ 35 ]. Hetero- 
and homodimers of Jun, Fos, and other members 
of the activating transcription factor (ATF) family, 
c-Jun, and JunB are found to be expressed exces-
sively in HL and ALCL, but not in other subtypes 
[ 36 ]. On the other hand, inhibitors of the phos-
phatidylinositol kinase/AKT pathway are recog-
nized as potential inducers of apoptosis in HRS 
cells [ 37 ]. The certain morphological feature of 
HL tumor, along with alterations in major signal-
ing pathways, justifi es the lack of the effi cacy of 
conventional antibody-based immunotherapeutic 
treatments and highlights the inevitable need to 
novel therapeutic strategies [ 5 ]. Moreover, the 
expression of delayed hypersensitivity is found 
to be impaired in these patients. 

 T cells play a critical role in the HL cell micro-
environment, as they compromise the majority of 
infi ltrating cells. HRS cells are directly sur-
rounded by CD4 +  T cells, which do not have a 
Gemcitabine and carboplatin (GC) Th-cell phe-
notype, and comprise a mixed population of Th 
cells with Th2 phenotype and regulatory T cells 
(T reg) [ 38 ,  39 ]. MHC II, a crucial mediator of 
the interaction between T cells and B cells, is 
downregulated in 40 % of HRS cells [ 40 ]. HRS 
cells attract chemokine receptor CCR4-Th and 
Treg cells via the secretion of large amounts of 
the CCL17 chemokine [ 38 ]. Overall, studies have 
indicated that the HRS cell/T-cell interaction 
plays an important role in the pathogenesis of 
HRS cells. Various factors contribute to the inter-
action between CD4 +  T cells with HRS cells, 
including the production of IL-13, an HRS cell 
growth factor produced by T cells [ 41 ], and stimu-
lation of HRS cells through interaction between 
CD28 (expressed on T-cell surface), CD80 and 
CD86 (expressed by HRS cells), and CD40 on 
HRS. Tumor-infi ltrating Treg cells preserve HRS 
cells from the attack of cytotoxic T and NK cells, 
via the production of IL-10 and the expression of 
T lymphocyte-associated protein 4 (CTLA4) [ 10 ]. 

Therefore, Treg cells play a suppressive role in 
the HL microenvironment. HRS cells are recog-
nized to draw Treg cells into the lymphoma 
microenvironment; in addition, they play a direct 
role in the differentiation of CD4 +  T cells to Treg 
cells [ 42 ]. HRS cells directly inhibit cytotoxic T 
lymphocyte and NK cells in cHL, through pro-
duction of IL-10, TGF, gelatin-1, tissue inhibitor 
of metalloproteinase 1 (TIMP1), and prostaglan-
din E2 (PGE2) [ 43 ,  44 ]. On the other hand, 
ligands PD1 and 2, which inhibit PD1 T cells and 
express CD95 ligand, are also expressed on HRS 
cells, resulting in the apoptosis of CD95-activated 
CD8 and Th1 T cells [ 43 ,  45 ]. Figure  7.1  well 
depicts the microenvironment of an HRS cell. 

 As explained by the immunopathology, the 
main focus of immunotherapy in HL is directed 
toward activation of T-cell responsiveness, par-
ticularly around HRS cells. Reactivating an 
antitumor immune response by pinpointing 
cytokines capable of reversing the polarized 
immune response has been advocated in this 
regard; in addition, antibody-targeted cytokines 
which accumulate in the lymphoma lesion have 
been found to be more effi cacious compared to 
unmodifi ed cytokines. These fi ndings shed light 
on the importance of the application of antibody- 
cytokine fusion proteins for targeting cyto-
kines toward HRS tumor cells, combined with 
the advantages of local reactivation of immune 
responses [ 46 ]. HRS cells express multiple cell 
surface Abs, among which a variety are consid-
ered potent targets for immunotherapy [ 47 ]. 

 CD1d and NK cells also play a pivotal role 
in the pathogenesis of HL. CD1d, normally 
expressed on hematopoietic cells of myelo-
monocytic and B-cell lineages, is a marker for 
malignancies originating from the corresponding 
tissues. 

 B-cell malignancies have also been found to 
display CD1d. Studies on murine models have 
demonstrated the expression of CD1d on many 
leukemia and lymphoma cell lines. Moreover, 
NKTs have exhibited a protective role in the A20 
murine B-cell lymphoma model [ 48 ], which is 
correlated to the level of CD1d expression on 
lymphoma cells, and was lost in NKT-defi cient 
mice. Studies on human lymphomas have 
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revealed that CD1d is expressed on the surface 
HRS cells in half of the cHL cases [ 49 ]. Notably, 
NKTs were present at high frequencies in pri-
mary cHL tumors and reactive lymph nodes irre-
spective of CD1d expression on tumor cells. 
However, the functional role of tumor-infi ltrating 
NKTs in cHL biology and disease outcome is yet 
to be determined. It is postulated that NKTs may 
co-localize with CD1d-positive tumor-associated 
monocytes/macrophages (TAMs) in the microen-
vironment of CD1d-negative tumors [ 50 ]. In 
addition, the increased number of TAMs is sig-
nifi cantly correlated to decreased survival rates in 
patients with cHL [ 51 ]. Targeting both HRS cells 
and TAMs for immunotherapy with NKTs and/or 
their ligands seems a promising approach [ 52 ]. 
The strongest known risk factor for the develop-
ment of lymphoma is immunosuppression, pre-
dominantly NK cell dysfunction. NK cells are 
critical effectors in tumor immunology and were 
usually regarded as effector cells of innate immu-
nity. However, more recently, it has been shown 
that they attribute to both innate and adaptive 
immunity, playing a regulatory role in shaping 
antigen-specifi c T- and B-cell responses [ 53 ]. NK 
cell activity is signifi cantly impaired in HL com-
pared to controls, irrespective of histological type 
and clinical stage. Notably, the most profound 
NK cell dysfunction, present and persistent in 
HL, is associated with increased LDH release 
activity from peripheral blood mononuclear cells. 
NK cell function is greatly impaired in HL; in 
addition, impaired NK cell activity is associated 
with increased spontaneous release activity of 
LDH from patients’ PBL, which is indicative of 
cell membrane damage, followed by the release 
of cytotoxic proteins, and eventually impaired 
NK cell activity [ 4 ].  

7.3     General Concepts 
of Monoclonal Antibodies 

7.3.1     The Structure of Monoclonal 
Antibodies 

 Antibodies used in immunotherapy target the 
Ags specifi cally present on tumor cells. The mAb 

technology was developed by Kochler and 
Milstein [ 54 ]. Monoclonal antibodies consist of a 
Fab and an Fc region, resulting in a Y-shape 
structure. The Fab fragment contains the 
complementary- determining region (CDR), 
which defi nes the specifi city of a mAb toward the 
Ags, whereas the Fc fragment, an isotype IgG, is 
responsible for the Ab’s mechanism of action and 
interacts with cells expressing Fcg receptors 
(FcgR) on immune cells including natural killer 
(NK) cells, macrophages, and neutrophils [ 55 ]. 
FcgR stimulation leads to activation of the ADCC 
pathway and results in cytotoxic events. In 
 addition, complements are fi xated by Fc 
 fragments, ensuing the activation of the 
Complement-dependent cytotoxicity (CDC). 
Direct intracellular signal, resulting in an antipro-
liferative effect and apoptosis, is proposed as an 
alternative mechanism of action, which is acti-
vated by direct  binding of the mAb to its Ag [ 55 ].  

7.3.2     Choosing the Optimal 
Antibody 

 The exquisite specifi city of Abs renders them 
ideal targets for immunotherapy in malignancies 
including HL and NHL. Selective cancer immu-
notherapy was fi rst proposed by Paul Ehrlich 
[ 56 ]. Successful immunotherapeutic approaches 
rely on appropriate target Ag selection. In select-
ing the appropriate antibody-based therapies, 
certain conditions should be taken into account, 
including (1) selectivity of the antigen expressed 
on the target cell and its suffi cient expression; (2) 
maintenance of the antigen on the cell mem-
brane; (3) no internalization after mAb binding, 
and (4) its ability in initiating a cytotoxic effect 
upon binding to its target. 

 IgG1 is the most widely used human therapeu-
tic Ab isotype [ 57 ]. It has the appeal of prolonged 
half-life compared to other human IgGs [ 58 ]. In 
addition, it exhibits signifi cantly greater specifi c-
ity and affi nity to activation and inhibition of 
FcgR. Finally, it results in greater ADCC induc-
tion [ 59 ]. 

 Monoclonal antibodies are named based on 
their origin; their general nomenclature is as 
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 follows: The addition of -omab, -amab, and 
-emab to the generic name of the Ab each implies 
murine, rat, and hamster origins, respectively, 
whereas adding -imab, -ximab, -zamab, and 
-umab each indicates primate, chimeric, human-
ized, and human origins, respectively [ 55 ]. 

 Herein, Ags targeted in immunotherapy of 
HL, along with the advances made in immuno-
therapeutic approaches, have been discussed.   

7.4     CD30 

 CD30, a member of TNF receptor superfamily, is 
expressed on active B and T lymphocytes and 
NK cells. In addition, it is considered a diagnos-
tic immunomarker for classical HL (cHL), as it 
contributes to the proinfl ammatory tumor micro-
environment [ 60 ]. Through interaction with the 
TNF receptor-associated factor 2 and 5 (TRAF 2 
and 5), activation of NF-kB is pursued. Thereafter, 
apoptosis and proliferative potential of autoreac-
tive T cells are regulated [ 55 ]. CD30 is expressed 
on the cell surface of HRS cells [ 61 ]. Due to the 
paucity of CD30 expression on nonimmune sys-
tem cells, it is considered a potential target for 
immunotherapeutic approaches for HL [ 62 ]. 
CD30-CD30 ligand interaction on the surface of 
HRS cells is recognized in the pathobiology of 
HL (Fig.  7.1 ) [ 27 ]. Under normal conditions, 
CD30 is solely expressed on activated NK cells, 

monocytes, eosinophils, and a small proportion 
of large lymphoid cells in sections of lymph 
nodes, tonsil, thymus, and endometrial cells. 
Serum CD30 level has been found to correlate 
with the prognosis of HL [ 63 ]. Due to the paucity 
of expression in nonneoplastic cells outside the 
immune system, it is regarded as an exquisite 
candidate for mAb therapy [ 64 ]. Nonetheless, the 
paucity of malignant CD30 +  (HRS) cells poses an 
additional level of complexity to CD30-targeted 
therapy [ 65 ]. The tumor mass in HL is defi ned as 
CD30 +  malignant cells surrounded by massive 
infi ltrations of immune effector cells, which 
apparently have failed to clear the cell mass in the 
involved lymph nodes [ 9 ]. Due to considerable 
differences between the ability of anti-CD30 Abs 
in interfering with NF-kB signaling pathway, 
their therapeutic effi cacy is variable [ 5 ]. MAP 
kinases and NF-kB are the hallmark events regu-
lated by CD30 signaling pathway [ 28 ,  29 ], lead-
ing to cell proliferation and survival, as well as 
induction of antiproliferative responses and cell 
death [ 30 ]. Activation of NF-kB leads to the 
expression of antiapoptotic genes such as cFLIP 
[ 31 ], XIAP [ 32 ], and Bcl X L  [ 33 ], hence posing 
an additional level of complexity to the treatment 
of HL [ 34 ]. 

 Various mAbs targeting CD30 have been eval-
uated in preclinical tumor models (Table  7.1 ) 
[ 75 – 78 ]. CD30 monoclonal Abs may trigger cell 
death directly or indirectly through ADCC or 

   Table 7.1    CD30-directed immunotherapy in HL   

 Drug  Study type   N  
 CR + PR
(%)  Reference 

 Murine anti-CD30- saporin conjugate (Ber-H2/SO6)  Pilot  4  75  [ 63 ] 
 Murine anti-CD16/CD30  Phase I/II  15  13  [ 66 ] 
 Murine anti-CD16/CD30 combined with IL-2, GM-CSF  Pilot  16  25  [ 67 ] 
 Anti-CD64/CD30  Phase I  10  40  [ 68 ] 
 Murine anti-CD30- ricin-A conjugate (Ki-4.dgA)  Phase I  17  7  [ 69 ] 
 Murine anti-CD30-131 iodine-conjugate  Phase I  22  27  [ 70 ] 
 Chimerized anti-CD30 mAb (cAC10, SGN-30)  Phase I  13  15  [ 5 ] 
 cAC10, SGN-30  Phase II  35  0  [ 71 ] 
 Humanized anti-CD30- mAb, (MDX-060)  Phase I/II  72  8  [ 72 ] 
 cAC10-auristatin conjugate (cAC10- vcMMAE, SGN-35)  Phase I  39  45  [ 73 ] 
 Humanized, effector cell-enhanced anti-CD30 mAb
(parental MDC-060, MDX-1401) 

 Phase II  72  8  [ 74 ] 

   CR  complete response,  PR  partial response  
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CDC or via Ag-dependent cellular phagocytosis 
(ADCP). Gerber et al. [ 5 ] described different 
physiobiochemical properties of various CD30 
mAbs, leading to the induction of unique set of 
pharmacodynamic responses, discrepancy in epi-
tope recognition, binding affi nities, and effector 
cell activation characteristics, only a few 
 outcomes to point to. Accordingly, various anti-
 CD30 Abs including AC10, Ki-1, 5F11, M67, 
and Ber-H2 demonstrated distinct domain recog-
nition during cross-blocking competition studies 
[ 75 ,  79 ]. Moreover, only 5F11 and AC10 are 
found to interfere with human HL cell line growth 
in culture [ 80 – 82 ]. More precise descriptions on 
each anti-CD30 Ab are provided below.

7.4.1       CD30 Monoclonal Antibodies 

7.4.1.1     MDX-060 (5F11) 
 5F11, a hybridoma-derived antihuman CD30 
IgG1 Ab, is a well-established inhibitor of the 
growth of cells expressing CD30,  in vitro , act-
ing via the induction of growth inhibitory cell 
signaling and ADCC pathways and eventually 
leading to effi cient cell apoptosis. It is gener-
ated in human transgenic mice, and its optimal 
anti-HL effect was established in disseminated 
and solid murine models with human HL [ 75 ]. 
Borchmann et al. demonstrated that treating 
mice implanted with solid or disseminated HD 
tumor cells (L540cy) leads to reduced tumor 
volume and increased survival [ 75 ]. Moreover, 
its additive effect was observed in combination 
with conventional cytotoxic drugs, particularly 
with gemcitabine and etoposide,  in vitro , lead-
ing to increased sensitivity to chemotherapy [ 78 ]. 
During a phase I clinical study on patients with 
refractory HL, a dose up to 15 mg/kg was proved 
to be safe [ 72 ]. However, further studies regard-
ing combination therapy with cytotoxic drugs 
seem mandatory.  

7.4.1.2     MDX-1401 
 MDX-1401, the non-fucosylated version of 
MDX-060, is superior to MDX-060 due to 
increased ADCC activity. Hence, lower doses are 
required to achieve the same ADCC activity [ 74 ].  

7.4.1.3     Chimeric-AC10 
 Chimeric-AC10, which is similar to human IgG1 
subclass in structure, promotes growth arrest and 
DNA fragmentation of CD30 positive tumor 
cells, thereby inducing its antitumor effects [ 83 ]. 
 In vitro  experiments revealed that ADCP plays a 
pivotal role in the antitumor activity of chimeric-
 AC10 [ 22 ]. Moreover, chimeric-AC10 was found 
to boost the antitumor activity of bleomycin in 
HL xenografts [ 84 ]. The domain on CD30 recog-
nized by AC10 differs from the domain bonded 
by Ki-11, 5F11, or Ber-H2 [ 75 ,  79 ].  

7.4.1.4     SGN-30 
 SGN-30, a chimeric IgG1 mAb derived from the 
murine AC10 anti-CD30 mAb, has demonstrated 
an antiproliferative effect  in vitro  and a potent anti-
HL effect in xenografts [ 83 ]. Macrophages play a 
critical role in the activity of SCN-30, proven by 
the abolished effect of SGN-30 in the absence of 
macrophages in experimental studies [ 83 ]. It has 
proved as a safe and well-tolerated mAb, yield-
ing adequate response in patients with HL during 
phase I and phase II [ 85 ,  86 ]. Remarkably, HL 
cell lines treated with SGN-30 were sensitized 
to conventional cytotoxic drugs, including bleo-
mycin and etoposide [ 84 ]. However, combination 
of SGN-30 with conventional chemotherapy in a 
phase III study led to development of pneumo-
nitis in a considerable proportion of patients, 
posing a potential limitation to its administra-
tion combined with chemotherapy. Particularly, 
FcgRIIIa-158 V/F polymorphism was associated 
with an increased risk [ 87 ].   

7.4.2     CD30 mAb-Drug Conjugates 

 The combination of chemotherapy with immuno-
therapy has revealed enhanced effi cacy and has 
been clearly effective in extending survival [ 88 ]. 
Some limitations to effective immunotherapy are 
overcome by applying antibody-drug conjugates 
(ADCs). Since ADCs apply their therapeutic effect 
independent of infl ammatory cells, immune eva-
sion mechanisms are not involved. Hence, lower 
exposure levels are required compared to 
naked Abs. In addition, restricted access of 
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 macromolecules to tumor cells has been overcome 
by combining ADCs to cytoreductive chemothera-
peutic agents. Interestingly, immense increase in 
the amount of local active drug in malignant cells 
is observed by applying ADCs, which could com-
pensate for the small fraction of malignant HRS 
cells in HL tumor mass [ 5 ]. ADCs have the appeal 
of being administered over a prolonged time with 
no treatment holidays, as their toxicity profi le has 
been reduced compared to cytotoxic drugs [ 5 ]. In 
the following CD30 mAb-drug conjugates, studies 
in HL are discussed. 

7.4.2.1     Brentuximab Vedotin 
 Brentuximab vedotin (SNG-35, ADCETRIS ™ , 
Seattle Genetics) was approved by the FDA for the 
treatment of cHL and ALCL in 2011. Brentuximab, 
a CD30 mAb, comprises the Ab section, whereas 
a microtubule-disrupting agent, monomethyl 
auristatin E (MMAE, three to fi ve units), com-
prises the drug section. Once brentuximab vedotin 
binds to the CD30 receptor on the cell surface, 
CD30-drug complex is internalized, and cytotoxic 
components are released as a consequence of pro-
teolytic cleavage in the lysosome. Remarkably, 
few brentuximab vedotin molecules are suffi cient 
to achieve clinical effi cacy, making it favorable for 
HLs with low CD30 expression [ 89 ]. Moreover, 
brentuximab vedotin leads to decreased levels of 
chemokines and cytokines (TARC), which resolve 
the infl ammatory infi ltrate and disrupt the micro-
environment, and in turn, facilitate the antitumor 
immune response [ 90 ]. It has been suggested that 
combining brentuximab vedotin with chemothera-
peutic regimens yields promising results.    

7.5     CD20 

 CD20, a protein of 297 amino acids with four 
transmembrane regions, is exclusively expressed 
on the lymphocytic and histiocytic cells of nodu-
lar lymphocyte predominant HL (NLPHL). The 
expression of CD20 in this subtype is recognized 
as a diagnostic hallmark, distinguishing it from 
cHL [ 91 ,  92 ]. Some studies have investigated its 
effi cacy in NLPHL, which would be briefl y dis-
cussed in the following. 

7.5.1     Rituximab 

 Wirth et al. have described benefi cial outcome 
with the administration of rituximab in patients 
with relapsed stage IA NLPHL. The GHSG 
and Stanford trials conducted on relapsed 
patients observed a 93 and 100 % ORR, respec-
tively. Four weekly administrations of ritux-
imab (375 mg/m 2 ) as a frontline therapy in the 
GHSG study on 28 patients yielded an ORR of 
100 % and an 86 % CR. As concluded in their 
study, rituximab-based combination treatment 
holds promising potential as the frontline treat-
ment [ 93 ]. Nineteen newly diagnosed NLPHL 
patients recruited in the study by the Stanford 
group manifested a 100 % ORR and a 63 % CR 
[ 93 ]. The study was extended to 2 years with 
repeated four weekly infusions every 6 months 
which improved CR to 88 %. In the same line, 
limited rituximab therapy in NLPHL patients 
in the GHSG study resulted in 94 % ORR and 
53 % CR [ 94 ]. Moreover, a phase one half trial 
has been conducted on relapsed NLPHL patients 
using tositumomab, a fi rst-generation type II 
CD20 mAb, and  131 I-tositumomab. Patients 
received 450 mg single dose, leading to CR in 
all patients. Cytopenia was regarded as the most 
common adverse event [ 95 ]. 

 Nonetheless, the application of CD20 mAbs is 
restricted in HL and is mainly specifi c to 
NHL. Accordingly, further description on the 
application of CD20 mAbs is provided in the 
next chapter.   

7.6     CD40 

 CD40, a member of the tumor necrosis factor 
receptor family, is highly expressed on neoplas-
tic B cells. Stimulation of CD40 leads to immu-
noglobulin isotype switching and activation of 
B cells, eventually resulting in enhanced prolif-
eration and survival. Remarkably, it is recog-
nized as an independent risk factor for some 
hematological malignancies [ 96 ]. Most studies 
in the literature are conducted on NHL patients, 
with only a handful of data available on its 
effect in HL. 
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7.6.1     Lucatumumab (HCD122) 

 Lucatumumab (HCD122), a CD40-targeted 
mAb, was studied in a phase IA/II study in order 
to determine its maximum tolerated dose (MTD) 
and activity. Escalating doses of lucatumumab 
administered intravenously once weekly for 
4 weeks of an 8-week cycle were administered in 
37 patients with relapsed HL. Finally a MTD of 
4 mg/kg and modest activity were manifested, 
necessitating further investigations to establish 
its benefi ts in the clinical setting [ 97 ].   

7.7     CD80 

 CD80 (B7-1) is a co-stimulatory molecule aber-
rantly expressed on HRS. Various anti-CD80 
mAbs have been developed, most of which have 
been studied in NHL, whereas only a few studies 
have addressed their implication in HL. 

7.7.1     Galiximab (IDEC-114) 

 Galiximab, a chimeric mAb against CD80, has 
manifested favorable toxicity profi le in NHL, 
while its activity in HL is rarely studied. Just 
recently, the Cancer and Leukemia Group B 
(CALGB) 50602 (Alliance) investigated its effi -
cacy in highly refractory HL patients who had 
previously received a median of three prior regi-
mens, 83 % failing after prior stem cell transplant. 
Disappointingly, an ORR as low as 10.3 % and 
only 1.6 months PFS was achieved, indicating its 
limited activity in heavily pretreated HL patients. 
However, galiximab was well tolerated [ 98 ].   

7.8     Therapeutic Effi cacy 
of Cytokines 

 Targeting cytokines in immunotherapy for HL is 
restricted due to a variety of challenges. Since 
structural properties, binding avidity, and reten-
tion time in the tumor tissue as well as the phar-
macodynamics and pharmacokinetics are all 
affected by the optimal design of each individual 

domain in the fusion protein, an optimized 
molecular design is mandatory for effi cient treat-
ment with antibody-targeted cytokines [ 7 ]. HL 
sheds the targeted cell surface antigen CD30 in 
substantial amounts which competes with the 
tumor cell-bound Ag in binding, leading to sub-
stantial rise in serum levels of soluble CD30 
(sCD30). Therefore, greater affi nity to the solid-
phase- bound Ag in the presence of high amounts 
of soluble Ag is needed. In addition, high sys-
temic toxicity is observed with the administration 
of some cytokines, hence limiting their applica-
tion for specifi cally targeted tumor tissues. As a 
result, when they are delivered by a targeting 
antibody fused to the cytokine, healthy tissues 
are left free from toxic cytokine concentrations. 
On the other hand, fusion to other protein 
domains may decrease functional properties of 
cytokines. Hence, the potentiality of the 
Ab-targeted cytokine depends on the binding 
avidity and the immunomodulatory capacity of 
the fusion protein [ 7 ]. Various cytokines are 
applied in this regard which are discussed herein. 

7.8.1     Interleukin-2 (IL-2) 

 The fi rst clinical trial on the administration of 
recombinant IL-2 (rIL-2) was conducted in 1984. 
Thereafter, several clinical trials have been con-
ducted to examine the effi cacy of rIL-2 with or 
without LAK cells in patients with refractory 
HL. Even though previous clinical trials have 
approached patients with relapsed or refrac-
tory HL which had poor prognosis, the results 
seemed promising. More recent studies have 
approached those requiring maintenance regi-
men alone or combined with other cytokines 
after high-dose chemotherapy. Intensifi cation 
of immune- mediated effector mechanism holds 
great potential in reducing relapse rates after 
peripheral blood stem cell transplantation. Side 
effects were those expected from IFN-α and IL-2 
when given as single agents, including fever, 
chills, fatigue, fl u-like symptoms, anorexia, nau-
sea, vomiting, and diarrhea which were transient 
and reversible. Prospective randomized studies 
are required to confi rm the promising results of 
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combined IFN- α/r-IL-2 maintenance therapy 
after autologous bone marrow transplantation. 
The application of low-dose IL-2 expands and 
activates NK cells in both animal models and 
cancer patients [ 99 ,  100 ]. 

 A therapeutic whole-cell vaccine consisting of 
IL-2 adsorbed onto aluminum hydroxide as 
cytokine- depot formulation exhibited potent anti-
tumor immunity, induced delayed tumor growth, 
controlled tumor dissemination, and led to longer 
survival in mice challenged with A20 lymphoma. 
It proved to overcome the adverse effects of intra-
tumoral Treg cells. However, clinical studies are 
mandated [ 101 ].  

7.8.2     An IL-2-IL-12 Fusion Protein 
Targeting Hodgkin 
Lymphoma 

 It is hypothesized that an IL-12 polymorphism 
concomitant with Th2 polarization leading to 
decreased IL-12 production is a determinant of 
increased susceptibility in young adult HL [ 102 ]. 
Low IL-12 levels lead to reduced cellular immune 
response during the disease [ 103 ]; therefore, tar-
geting IL-12 may reverse the situation locally in 
lymphoma lesions. In addition to the crucial role 
of IL-12 in stimulating cytotoxic T-cell and NK 
cell activities, it plays a predominant role in Ag 
processing and presentation. As a result, immu-
notherapies targeting IL-12 are considered to 
induce a strong cell-based immune response with 
enhanced tumor cell killing [ 104 ,  105 ] and an 
effi cient antitumor response [ 106 ,  107 ]. Since a 
major limitation of current immunotherapy regi-
mens is unintended activation of effector cells 
beyond target sites, attempts have been made to 
overcome this inadequacy. T and NK cells express 
upregulated amount of IL-2 and IL-12 receptors 
and transient CD30. Therefore, binding of anti-
CD30 fusion proteins and unintended off- target 
effector cell activation may occur. Remarkably, 
the Ab-binding domains of these proteins bind to 
tumor cells with higher avidity, and these specifi c 
bindings are more resistant to blocking by solu-
ble target Ag. Lines of evidence suggest that by 
simultaneous targeting of cooperating cytokines, 

a broad immune response is activated, hence pro-
viding a valuable response in cancer immuno-
therapy [ 7 ]. An overlapping activity in mustering 
T and NK cells has been described between IL-2 
and IL-12 [ 108 ]; IL-2 leads to potent prolifera-
tion induction, while IL-12 stimulates cytokine 
secretion including IFN-c. A synergic effect 
between these two cytokines with respect to 
these functions is manifested, resulting in more 
effi cient lysis of target cells [ 108 ]. In order to 
mobilize both adoptive and innate immune cells 
for an antitumor attack, IL-2 and IL-12 have been 
fused to an anti-CD30 scFv Ab; hence both cyto-
kines are accumulated on the malignant CD30 +  
HRS cells in the lymphoma lesion [ 7 ]. This dual 
cytokine-antibody fusion protein has revealed 
signifi cant activity and superior effi cacy in acti-
vating resting T and NK cells compared to the 
corresponding fusion proteins containing either 
IL-2 or IL-12 in mouse model [ 108 ]. Cytolysis in 
resting NK cells and reactivated IL-2-deprived T 
cells was induced by this dual cytokine protein, 
benefi ting immunotherapy of HL. Interestingly, 
simultaneous application of both single-cyto-
kine proteins was less effective in delivering 
both cytokines to the same cell at the same time. 
Using this technique facilitated dimerization of 
the molecule via integration of various domains, 
thus leading to favorable binding to solid-phase 
Ag, even in the presence of the soluble anti-
gen, as well as higher and specifi c retention in 
the targeted tissues and lower tissue penetration 
 in vivo  studies. Overall, dimerized fusion pro-
teins appear to be more suitable for site-specifi c 
immunotherapy compared to the corresponding 
monomeric proteins [ 7 ]. Due to the predominant 
expression of CD30 on activated Th2 cells [ 109 ] 
which are present in high numbers in the tissue 
of HL [ 110 ], the tumor environment of HL may 
be modulated by shifting T cells to Th1 reactivity 
by the application of anti-CD30- IL-12-IL-2 dual 
cytokine fusion protein. In addition, both types of 
cytolytic effector cells, T and NK cells, may be 
reactivated by simultaneous synergistic action of 
IL-2 and IL-12. It is hypothesized that IL-2 and 
IL-12 lead to NK and T-cell activation followed 
by increased IFN-c secretion and shift the Th2 
imbalance in the lymphoma lesion toward Th1 
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reactivity; therefore counteracting T-cell hypore-
sponsiveness in HL [ 111 ]. 

 After injection of tumor-targeted IL-12-IL-2 
to immune-competent mice with established 
antigen- positive tumors, it accumulated at the 
tumor site and induced a remarkable tumor 
regression in mice model [ 7 ]. 

 Even though antibody-cytokine fusion pro-
teins have demonstrated clinical effi cacy in phase 
II studies for the therapy of solid tumors [ 112 ], 
clinical trials on hematologic diseases are lack-
ing. Various cytokine fusion proteins have been 
studied in preclinical models for the immuno-
therapy of HL. 

 Improved antitumor activity was achieved by 
Abs targeting IL-2 in the lymphoma lesions after 
systemic application compared with unconjugated 
IL-2 [ 113 ]. In addition, the combination of ritux-
imab with the antibody-targeted IL-2 improved 
infi ltration and activation of immune effector cells 
in lymphoma lesions, leading to eradication of those 
lesions that were not cured with rituximab alone. 
This could be explained by the sustained anti-lym-
phoma activity of rituximab by targeting IL-2 which 
acts through promoting the recruitment of NK cells 
and macrophages into lymphoma [ 113 ].   

7.9     Bispecifi c Monoclonal 
Antibodies 

 Bispecifi c antibody-mediated activation of NK 
cells along with T cells in the lymphoma lesion 
has exhibited therapeutic effects [ 46 ]. It is well 
established that peripheral NK cells are inac-
tive in HL, resulting in elevated serum levels of 
ligands engaging NKG2D (MICA) and NKp30 
(BAG6/BAT3). Hence, immunotherapeutic strat-
egies targeting NK cells were proposed. NK cell 
activation by the bispecifi c construct has been 
exclusively observed in the CD30 +  target cells, 
which is recognized as an effi cient inducer of 
CD69 expression on NK cells. CD69 triggers 
cytotoxic activity and costimulates cytokine 
production via phosphotyrosine kinases of the 
Src family. Therefore, cytokines are activated 
toward HRS tumor cells by the application of 
antibody- cytokine fusion proteins. Bispecifi c 
 antibody- mediated activation of NK cells along 

with T cells in lymphoma lesions demonstrated 
relative therapeutic effect; hence, local reactiva-
tion of the immune response seems to be benefi -
cial in the therapy of HL [ 66 ,  67 ]. A recombinant 
bispecifi c antibody targeting CD30 on HL cells 
and the Fc receptor (CD64) on monocytes 
which triggers CD64-mediated effector func-
tions has been developed and proved promising 
results [ 114 ]. Reiners et al. [ 9 ] developed a tet-
ravalent bispecifi c Ab which targets CD30 on 
HRS cells and the activating receptor CD16A 
on NK cells, leading to selective cross-linking 
between tumor and NK cells. CD30xCD16A 
is a NKG2D/NKp30- independent bispecifi c 
antibody construct, which artifi cially links the 
tumor receptor CD30 with NK cells’ cytotoxic-
ity receptor, CD16A. Furthermore, it triggered 
activation of NK cells and restoration of cyto-
toxicity against HL target cells [ 9 ]. Moreover, 
AFM 13, another bispecifi c Ab construct which 
simultaneously targets CD16A on effector cells 
and CD30 on malignant cells, is proven to main-
tain NK cell function [ 66 ]. The tetravalent bind-
ing construction, consisting of two polypeptides 
pairing head-to- tail with each other, leads to a 
high avidity parallel to that of IgG. Fc-mediated 
side effects observed with HRS-3/A9, the previ-
ous CD30-CD16 targeting Ab, is circumvented 
by its distinctive nature, as it is solely comprised 
of variable domains. A favorable outcome in 
terms of restoring the function of NK cells has 
been observed with the administration of a biva-
lent CD16-CD30 mAb against xenotransplanted 
solid human HL [ 60 ]. CD16 is a low-affi nity IgG 
receptor on the surface of NK cells, which leads 
to ADCC through degranulation of NK cells and 
enhances target cell lysis [ 115 ] (Table  7.2 ).

7.10        Novel Immunotherapeutic 
Treatment Strategies in HL 

 It has been postulated that eradication of human 
cancers may be accomplished by combining can-
cer treatment modalities [ 117 ]. Lack of specifi c-
ity is acknowledged as the major shortcoming of 
conventional cancer therapies [ 118 ]. Promising 
results have been yielded by combined 
 immunotherapy and conventional treatment pro-
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cedures. Due to their different therapeutic mech-
anism, side effects differ, and toxicity is not 
elevated [ 119 ]. In addition, the combination is 
proven to yield a synergic effect [ 120 ]. 
Furthermore, Abs are considered ideal vehicles 
for drug and radionuclide delivery due to their 
high specifi city [ 120 ]. Multiple clinical trials 
have been conducted in this regard, yet their clin-
ical applications need to be established. 

7.10.1     Immunotoxins 

 In order to overcome the low specifi city of con-
ventional therapies, immunotoxins were devel-
oped, consisting of two sections: a cell-binding 
part combined with a cell death-inducing agent 
[ 118 ]. In the attempt to develop less immuno-
genic compounds, the fourth generation of immu-
notoxins were developed by Mathew and Verma 
in 2009. In this new generation, both comprising 
moieties (the cell-binding ligand and proapoptotic 
enzyme) are humanized [ 121 ]. Granzymes, which 
are effective serine proteases, are considered 
exquisite candidates for antitumor immunother-
apy. Granzyme B (GrB) is recognized as the most 
effective subtype [ 122 ]. It is found to effectively 
invade transformed tumor cells and virus- infected 
cells [ 123 ]; nonetheless, PI-9, co-expressed in a 
variety of cancer cells including cHL [ 124 ], is 
known to irreversibly inhibit its effect [ 125 ].   

7.11     Concluding Remarks  

 Overall, the emergence of immunotherapy and 
its ongoing development has resulted in immense 
improvement in the outcome of patients with 
HL. It has the potential to replace all other con-

ventional treatment modalities and has changed 
the insight to the prognosis of lymphomas. 
However, studies are ongoing and hold the hope 
to achieving optimal disease outcome in the near 
future.     
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8.1             Introduction 

 The majority of patients with early-stage non- 
Hodgkin lymphoma (NHL) experience recovery 
by conventional chemo- and/or radiotherapy, yet 
combined chemotherapy and radiotherapy pose a 
signifi cant morbidity to NHL patients. Cytotoxic 
chemotherapy cocktails were the treatment of 
choice in patients with NHL [ 1 ]. Disease relapse 
resulting from the development of resistant cell 
clones comprises a considerable proportion. 
Therefore, alternative techniques are warranted to 
overcome these limitations. Monoclonal antibod-
ies (mAbs) have emerged as promising anticancer 
therapies over the last several years [ 2 ,  3 ]. After the 
emergence of hybridoma technology by Köhler 
and Milstein [ 4 ], mAbs against B-cell-related 
antigens (Ags), including CD19 and CD20, were 
among the foremost mAbs developed [ 5 ]. Albeit 
their rapid move towards clinical studies, results 
were disappointing. In an attempt to overcome 
the encountered limitations, chimerized murine 
antibodies (Abs) were developed [ 4 ]. With respect 
to recruiting human effector cells for Antibody-
dependent cell-mediated cytotoxicity (ADCC) 
and triggering complement-dependent cytotoxicity 

(CDC), functional studies revealed that human Fc 
portion was signifi cantly more effective than most 
of their murine counterparts [ 6 ]. Their extended 
serum half-life compared to murine Abs could be 
explained by identifi cation of FcR and its function 
in IgG homeostasis [ 6 ]. Various effector functions 
including ADCC, CDC, and direct apoptosis induc-
tion are mediated by mAbs [ 7 ]. Novel therapies are 
hinting towards immunotherapy- based treatments. 
Various antigens expressed by the tumor have been 
targets of antibody-based immunotherapy, includ-
ing CD20, CD30, CD40, IL13 receptor, RANK 
ligand, and DR4 [ 8 ]. The effi cacy of antibody-
based  immunotherapy has been enhanced by a 
variety of approaches including radioimmuno-
conjugation and antibody–cytokine and  antibody–
toxin conjugation, in addition to biphasic Abs [ 9 ]. 

 The treatment paradigm of NHL has con-
siderably improved during the last two decades 
[ 10 ]. Among the four broad treatment modali-
ties, immunotherapy is gaining superiority [ 9 ], 
and active immunotherapy has yielded promis-
ing results [ 11 ], possibly explained by the exqui-
site specifi city of Abs in NHL. In this chapter, 
we aim to tackle immunotherapy and immuno-
pathology of the wide clinical continuum, that 
is, NHL. Since successful immunotherapy in 
NHL is hampered by the striking unresponsive-
ness of lymphoma-infi ltrating immune cells, the 
authors seek to discuss novel immunotherapeutic 
approaches developed to overcome the limita-
tions of previous therapies.  

8.2     Immunopathology of NHL 

 The majority of NHLs originate from clonal 
B-cell expansions; thus, they are potential Ag 
presenters [ 12 ]. Follicular lymphoma (FL) cells 
express cell surface molecules that can be tar-
geted by mAbs, including pan B-cell antigens: 
CD19, CD22, CD23, CD79a, and CD79b, as well 
as GC surface markers like CD10 and bcl-6 [ 13 ]. 

 In the clinical setting, MHC-II expression on 
diffuse large B-cell lymphoma (DLBCL) cells 
is correlated with higher numbers of tumor- 
infi ltrating lymphocytes and a signifi cantly 
prolonged survival rate [ 14 ,  15 ]. These results 
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suggest that MHC-II loss in B-cell lymphomas may 
be a pathway to tumor immune evasion, result-
ing in compromised patient survival. These co-
stimulatory signals are provided by the B7 family 
[B7-1 (CD80) and B7-2 (CD86)] expressed on 
antigen-presenting cells (APCs) [ 16 ]. In addi-
tion, CD40–CD40L interaction plays a critical 
role in the generation of effective T-cell- mediated 
immune response, as it upregulates CD80 and 
CD86 expression on B cells [ 17 ]. One report has 
demonstrated that CD40 expression on DLBCL 
tumors correlates with improved prognosis [ 18 ]. 
Another study identifi ed a correlation between 
loss of CD86 expression and decreased tumor-
infi ltrating lymphocytes in aggressive human 
B-cell lymphomas; however, the relationship 
between co-stimulatory molecule expression 
and prognosis in patients with B-cell malignan-
cies expressing MHC-II has not been extensively 
investigated [ 19 ]. Moreover, mAb- resistant 
tumor cells remain sensitive to ADCC. Hence, 
ADCC enhancement will improve the clini-
cal effi cacy of mAb-based anticancer therapies. 
Currently, nonfucosylated next- generation Ab 
ingredients that elicit high ADCC are being 
developed. However, effective antitumor immune 
response is absent as the expression of co-stim-
ulatory molecules which are essential for T-cell 
activation besides T-cell receptor (TCR) engage-
ment is lacking [ 16 ]. Tiemessen et al. indicated 
that Tcf12/2 mice normally have a very small 
thymus, as a result of the impairment in T-cell 
development. Inextricably, a considerable pro-
portion are doomed to spontaneous development 
of thymic lymphomas. Approximately 50 % of 
the mice population developed a thymic lym-
phoma/leukemia by the age of 16 weeks, confer-
ring to T-cell deregulation in the pathogenesis of 
lymphoma [ 20 ]. Anergy of TCR may result due 
to the absence of co-stimulatory signals [ 16 ]. 

 More recent studies have unveiled other mech-
anisms involved in the immunopathogenesis of 
lymphoma: Vera-Recabarren et al. demonstrated 
that the presence of anti-Ro⁄SS-A Abs, prevalent 
Abs among many autoimmune diseases, is asso-
ciated with 16.7- and 10.6-fold increased risk of 
T-cell lymphoma and NHL development, respec-
tively [ 21 ]. On the other hand, serum Abs derived 

from patients with hematological malignancies 
including lymphomas have been demonstrated 
to bind to DNA and several autoimmune dis-
ease nuclear Ags including Ro ⁄SS-A, possibly 
indicating its role in the immunopathogenesis of 
these malignancies. However, the exact mecha-
nism remains enigmatic [ 22 ]. 

 Herein, Abs targeted in the immunotherapy of 
NHL, along with the advances made, are discussed.  

8.3     CD20 

 CD20, a protein of 297 amino acids with four 
transmembrane regions, is the most prevalent 
monoclonal targeted Ag [ 36 ]. It is a unique mol-
ecule resistant to internalization. Human CD20 
molecule is exclusively expressed on the B lym-
phocyte lineage, which can be detected during all 
stages of maturation, from the pre-B-cell stage 
to the memory B-cell stage. Nonetheless, it is 
not expressed on very early pro-B-cell stage and 
plasma cells [ 37 ]. It is minimally modulated or 
shed from the cell surface of more than 95 % of 
B-cell lymphomas at high copy numbers. CD20 is 
also minimally internalized on binding Abs [ 38 ]. 
These characteristics make CD20 an attractive tar-
get for immunotherapy. Due to its stability, it has 
emerged as an ideal target for mAb therapy [ 39 ]. 
The CD20 Ag comprises only two extracellular 
loops [ 40 ]. CD20 mAbs are classifi ed into two 
groups based on their different binding character-
istics, altered lipid raft associations, and different 
modes of action [ 41 ]. Both types are known to 
trigger ADCC; however, type I Abs (e.g., ritux-
imab, ofatumumab) predominantly act through the 
CDC mechanism, whereas type II antibodies (e.g., 
tositumomab, obinutuzumab) preferentially exert 
their antitumor properties through apoptosis [ 42 ]. 

8.3.1     Effector Mechanisms 
of CD20 mAbs 

 CD20 mAbs act through Fab-mediated effector 
mechanisms including inhibition of proliferation 
and induction of apoptosis, as well as through 
Fc-mediated effector mechanisms such as CDC 
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and ADCC [ 41 ]. However, all potential effector 
mechanisms involved in vivo remain to be unveiled. 
As evident by tumor cell clearance associated by 
caspase activation in patients with B chronic lym-
phocytic leukemia, contribution of direct induction 
of apoptosis has been proposed as a possible mech-
anism [ 43 ]. As rituximab lost its therapeutic activ-
ity in C1q knockout mice in vivo studies, CDC is 
proposed as another important effector mechanism 
[ 44 ]; nonetheless, the contribution of CDC to the 
in vivo activity in patients still remains controver-
sial. Importantly, the critical role of Fc–Fc recep-
tor (FcR) interactions for the therapeutic activity of 
rituximab is well established [ 45 ]. ADCC is well 
described as an essential mechanism of action for 
CD20 Abs in the literature [ 46 ]. Experimental evi-
dence pointed to the important role of phagocytic 
cells in the clearance of B cells after CD20 Ab ther-
apy [ 47 ]; nevertheless, effector mechanisms vary 
in different compartments such as the blood, bone 
marrow, or lymph nodes [ 48 ].  

8.3.2     Rituximab 

 The chimeric CD20 Ab C2B8 (rituximab, 
Rituxan, Genentech, San Francisco, Calif) was 
the fi rst mAb to demonstrate consistent therapeu-
tic activity in clinical trials. It received FDA 
approval for the treatment of patients with 
relapsed low-grade follicular lymphoma (FL) on 
November 26, 1997, and is known as the fi rst 
FDA-approved mAb applied in cancer patients 
[ 49 ], which led to a new era in the treatment of 
NHL. Since its approval, it has fundamentally 
changed the treatment concepts of most B-cell 
lymphomas [ 48 ,  50 ,  51 ]. 

 The most effi cient chemotherapy regimens 
yield objective responses in about 50 % of the 
patients with FL. Interestingly, the addition of 
rituximab to chemotherapy improves the response 
rates to 80 % [ 52 ]. In addition, its effi cacy as a 
single agent in maintenance and re-treatment 
strategies with a favorable toxicity profi le has 
been well established [ 13 ]. 

 To develop murine anti-CD20 mAb, mice 
were immunized with human lymphoblastoid 
CD20 +  B cells [ 53 ]. Human antibody responses 

to rituximab were minimal, both due to the 
immunocompromised nature of NHL patients 
and the signifi cant effi cacy of rituximab [ 54 ]. It is 
the established standard therapy for B-cell NHL 
alone or as part of combination therapies [ 55 ]. 
The success of this therapy is far-reaching. Not 
only it has improved survival rates in lymphoma 
patients [ 56 ] but has also introduced a new para-
digm in the therapy of other diseases associated 
with lymphoid dysregulation such as autoim-
mune diseases and graft-versus-host disease 
(GVHD). Although rituximab is established to 
act through CDC, ADCC, induction of apoptosis, 
and antiproliferative effects in vitro, the relative 
value of these mechanisms in patients remains 
enigmatic. In addition, the ultimate mechanism 
of action depends on the localization of the tumor 
and its microenvironment [ 57 ]. 

8.3.2.1     Mechanisms of B-Cell 
Depletion by Rituximab 

 Rituximab-binding sites are located in close prox-
imity to the cell surface, contributing to the effi -
ciency of humoral and cellular effector cells in 
killing these cells [ 58 ]. Several mechanisms are 
involved in rituximab’s mechanism of action; how-
ever, ADCC is regarded as the major mechanism of 
action. Other modes including CDC and pro-
grammed cell death are also recognized [ 41 ]. 
Rituximab triggers and modifi es various intracellu-
lar signaling pathways in NHL B-cell lines, leading 
to apoptosis and chemosensitization. It downregu-
lates tumor-derived IL-10 transcription, followed 
by downregulation of Bcl-2 gene expression. In 
addition, it leads to the inhibition of STAT3 activity 
and Bcl-2 expression, as well as sensitization to the 
apoptotic effects of various chemotherapeutic 
drugs, through the p38 MAPK pathway [ 40 ]. 

 A plethora of different half-lives have been 
reported for rituximab. As measured by Maloney 
et al. via ELISA assay in a phase I study, the half- 
life of rituximab after fi rst infusion was 33.2 h, 
which increased to 76.6 h after the fourth infusion 
[ 59 ], whereas 445 ± 361 h (range: 0.5–58.5 days) 
was yielded by Japanese investigators in two 
groups of patients who received 250 and 375 mg/
m 2  [ 60 ,  61 ]. Technical and racial variations are rec-
ognized to contribute to this variation. It is 
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 understood that the effi cacy of B-cell depletion by 
rituximab is enhanced by persistence of the CD20–
Ab complex on the cell surface and long half-life 
of rituximab. Notably, the location of the B cells 
was found to have a considerable infl uence on the 
kinetics of B-cell depletion in a mouse model. 
Moreover, its surrounding microenvironment was 
suggested to contribute to its resistance [ 62 ]. In 
mouse model, the most effi cient B-cell depletion 
occurred in the circulating system where >90 % 
depletion reached within minutes, followed by 
slow rate of depletion in the lymph nodes and 
spleen (approximately 60–70 % depletion in 24 h) 
and the slowest depletion in the peritoneal cavity 
(signifi cant depletion after a week) [ 62 ,  63 ]. With 
respect to the lymphoid organs, the position of B 
cells in the organ itself also determines the rate of 
depletion by rituximab, which could explain for 
the relative resistance of mantle zone B cells [ 64 ]. 
Importantly, no dose-limiting toxicity at a single 
dose of 500 mg/m 2  was observed in a phase I clini-
cal study; moreover, weekly dose schedule of 
375 mg/m 2  was well tolerated [ 59 ,  65 ]. Despite 
successes obtained with rituximab therapy, resis-
tance still remains a challenging issue in FL, as 
disease relapse occurs in almost 60 % of patients 
during the fi rst 5 years and fi nally occurs in all 
patients with FL in the long term. The precise 
mechanism of resistance yet remains to be 
unveiled; nonetheless, it is postulated that it may 
be lymphoma related or host related. Low expres-
sion of CD20 on the cell surface [ 74 ], high expres-
sion of complement regulatory proteins [ 75 ], 
expression of anti-apoptotic genes, and blockade 
of effector cells due to the deposition of C3 frag-
ments of the complement system [ 76 ] are postu-
lated mechanisms which lead to resistance of 
lymphoma cells [ 13 ]. Furthermore, loss of  targeted 
CD20 epitope after rituximab infusion [ 77 ] or con-
sumption of the extracellular part of CD20 mAb 
complexes by phagocytic cells is also involved 
[ 45 ]. Survival signals secreted by the microenvi-
ronment may impede death of lymphoma cells 
induced by mAb [ 78 ]. A considerable difference 
in B-cell depletion by rituximab in the peripheral 
blood, lymph nodes, and spleen has been eluci-
dated; B cells in the lymph nodes were found more 
susceptible [ 79 ]. 

 Considerable progress has been made in the 
treatment of B-NHL; in addition, the outcome 
has improved by the use of rituximab either as a 
single agent or in combination with chemother-
apy. Nonetheless, relapse with loss of response to 
treatment is an inevitable fate in a considerable 
proportion of patients, evoking the need for new 
therapeutic modalities [ 80 ]. As revealed by 
genetic analysis of FcγR polymorphism in cancer 
patients treated with mAb-based rituximab and 
trastuzumab, ADCC is one of the critical factors 
responsible for the clinical effi cacy of therapeutic 
Abs [ 81 – 83 ].  

8.3.2.2     Rituximab in Diffuse Large 
B-Cell Lymphoma (DLBCL) 

 Initial clinical trials on relapsed or refractory 
DLBCL patients revealed that rituximab was 
well tolerated and resulted in complete or partial 
response (PR) in one-third of the patients [ 84 ]. 

 The addition of rituximab (R) to CHOP (cyclo-
phosphamide, doxorubicin, vincristine, predni-
sone) chemotherapy was regarded as a signifi cant 
breakthrough in the treatment of DLBCL. R-CHOP 
regimen has become widely accepted in this 
regard. The fi nal outcome is infl uenced by various 
pathways: the number of patients who reach high-
dose-therapy ASCT is increased with prior 
R-CHOP salvage therapy; moreover, the outcome 
is improved when used as posttransplantation 
maintenance therapy. Overall, rituximab salvage 
therapy for DLBCL is effective and well tolerated 
[ 94 ]. Coiffi er et al. [ 60 ] compared the effi cacy of 
CHOP and R-CHOP in elderly DLBCL and con-
cluded that the addition of 375 mg/m 2  rituximab 
on day 1 of each cycle signifi cantly improves CR/
Cru (73 % vs. 63 %,  P  = 0.005), leading to a sig-
nifi cantly greater EFS (47 % vs. 29 %,  P  = 0.00002), 
PFS (54 % vs. 30 %,  P  < 0.0001), disease-free sur-
vival (DFS) (66 % vs. 45 %,  P  < 0.00031), and OS 
(58 % vs. 45 %;  P  < 0.0037) after a medium of 
5-year follow- up [ 95 ]. The addition of rituximab 
didn’t signifi cantly add to the toxicity of the regi-
men, and no long-term toxicity was observed [ 60 , 
 95 ,  96 ]. The addition of rituximab to anthracycline- 
containing chemotherapy or CHOP is considered 
as the fi rst-line therapy in DLBCL in various 
stages [ 94 ].  
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8.3.2.3     Rituximab in Mantle 
 Lower response rates to rituximab have been 
observed in mantle cell lymphoma (MCL) com-
pared to other subtypes; only 27 % response rate 
with an event-free survival (EFS) of 6–12 in 
patients aged 41–83 years (median 65) was 
yielded in patients with newly diagnosed or 
relapsed/refractory MCL [ 85 ]. As a result, ritux-
imab isn’t routinely used as a single agent in 
MCL, whereas its benefi t in combination with 
chemotherapy has been demonstrated [ 86 – 88 ]. 
In a clinical study, the role of rituximab and che-
motherapy combination therapy as the fi rst-line 
therapy was evaluated in MCL patients over the 
age of 65 (median age 74) within 6 months of 
diagnosis, among whom 85 % had a perfor-
mance status of 0, 89 % had an NCI comorbidity 
index of 0–1, and 20 % were stage I or II. Median 
survival was 37 months, and the 2-year OS rate 
was 63 %, compared to 27 months and 52 % for 
chemotherapy alone. Nonetheless, no difference 
in the time to next treatment was observed [ 89 ]. 
Therefore, rituximab combined with chemother-
apy is recommended as the fi rst-line therapy in 
MCL, regardless of age [ 90 ].  

8.3.2.4     Rituximab in Follicular 
Lymphoma 

 The introduction of rituximab was considered 
a breakthrough with signifi cant effi cacy and an 
excellent toxicity profi le in FL [ 91 ]. CD20 is 
expressed in more than 90 % of FLs. Rituximab 
has displayed promising results when applied as 
a single agent [ 92 ] and in combination with dif-
ferent chemotherapy regimens (chemoimmuno-
therapy). Notably, the addition of rituximab to 
chemoimmunotherapy signifi cantly improved 
the ORR, PFS, and OS [ 93 ]. Rituximab main-
tenance therapy following fi rst-line induction 
with chemoimmunotherapy is currently being 
evaluated in international phase III randomized 
trials [ 91 ]. Signifi cant single-agent effi cacy with 
an overall response rate of 46 % was obtained 
during phase II clinical studies [ 50 ]. By applying 
the weekly dosing strategy, an overall response 
rate (ORR) of 48 and 47 % was achieved in con-
fi rmatory phase II studies by a multicenter inter-
national consortium and the German low-grade 

lymphoma study group (GLSG), respectively. 
Progression was observed after 13 and 7 months, 
respectively. Despite the desirable results, bone 
marrow involvement was found to contribute to 
poor response [ 49 ,  66 ,  67 ]. By the administra-
tion of the confi rmed weekly dose for 4-week 
cycles in patients with low disease burden 
advance stage NHL, ORRs of 47 and 73 % were 
achieved after one cycle in two different stud-
ies [ 68 ,  69 ]. Furthermore, a randomized three-
armed study by Ardeshna et al. in advanced low 
burden disease patients compared the outcome 
of (a) watchful waiting, (b) rituximab mono-
therapy (four weekly doses), and (c) one stan-
dard induction dose followed by maintenance 
therapy with rituximab given every 2 months. 
The primary endpoint, regarded as time to fi rst 
therapy, radiation, or chemotherapy, was fi rst 
met by arm a. After 7 months of randomization, 
rituximab single-agent plus maintenance therapy 
yielded an ORR of 85 %, with complete remis-
sion (CR) observed in 39 %, whereas 17 % had 
progressive disease in the watch and wait sub-
group. Surprisingly, in neither arm with single-
agent rituximab nor rituximab plus maintenance, 
the median time to fi rst chemotherapy was met 
in 4 years, whereas chemotherapy was started 
for patients in the watch and wait arm after 
33 months of randomization. Therefore, ritux-
imab was advocated as a promising therapy for 
patients with newly diagnosed disease who do 
not meet GELF criteria [ 70 ]. Prolonged overall 
survival (OS) has been observed in patients with 
FL receiving rituximab combined with chemo-
therapy [ 52 ,  71 ]. As proven in the literature, 
progression-free survival (PFS) in patients with 
a good initial response to immunochemotherapy 
is signifi cantly prolonged by rituximab mainte-
nance therapy [ 72 ,  73 ].  

8.3.2.5     Rituximab Incorporated 
with Carboplatin-/Cisplatin- 
Based Chemotherapy 

 Various studies have investigated the effi cacy and 
safety profi le of rituximab plus platinum-based 
chemotherapies in NHL. An ORR of 56–100 % 
and CR of 10–67 % have been achieved by 
adding rituximab to chemotherapies including 
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ifosfamide, carboplatin, and etoposide (ICE); 
cisplatin, high-dose Ara-C, and dexamethasone 
(DHAP); etoposide, doxorubicin, methylpred-
nisolone, cytarabine, and cisplatin (ESHAP); 
and dexamethasone and oxaliplatin, which make 
progression to autologous stem cell transplanta-
tion (ASCT) more likely. Notably, the response 
rate relies on several factors including previous 
rituximab therapy, relapse or refraction, and 
the international prognostic index (IPI) score at 
relapse [ 94 ]. 

 R-ICE has been evaluated in patients with 
relapsed or refractory DLBCL; after standard 
anthracycline-based therapies, an OR of 78 % 
and CR of 53 % have been yielded which were 
signifi cantly greater compared to the controls 
receiving ICE alone ( P  = 0.006) [ 97 ]. In addi-
tion, OR was remarkably higher in relapsed vs. 
refractory patients (96 % vs. 46 %) ( P  < 0.001) 
[ 98 ]. The addition of rituximab to DHAP led 
to a 62 % OR in refractory and relapsed NHL 
patients, with a more remarkable OR (82 %) 
in patients treated at the fi rst relapse. An over-
all OS of 8.2 months and 20.4 months was 
achieved in the overall patients and those pro-
ceeding to HDT- ASCT, respectively [ 99 ]. In the 
same line, a prospective randomized clinical 
trial on 225 patients with refractory or relapsed 
DLBCL exhibited a 75 % vs. 54 % PR/CR in 
the R-DHAP and DHAP arms, respectively, 
after two courses of chemotherapy. R-DHAP 
signifi cantly improved failure- free survival 
(FFS), 50 % vs. 24 % ( P  < 0.001) at 24 months 
follow-up, whereas OS did not improve signifi -
cantly (52 % vs. 59 %,  P  = 0.15). Finally, ritux-
imab treatment was found to have a signifi cant 
effect on FFS and OS when adjusted for age, 
performance status, time since treatment, and 
secondary age-adjusted IPI [ 100 ]. In addition, 
the effi cacy of R-EPOCH therapy was explored 
in a phase II clinical trial in NHL. By adding the 
standard dose of 375 mg/m 2  rituximab to the fi rst 
day of each cycle of the standard six cycles in 
patients with NHL (pretreated primary DLBCL, 
transformed DLBCL and MCL) an OR of 68 % 
and CR of 28 % were achieved, with 19/31 
patients under the age of 60 proceeding to HDT-
ASCT. In a study on patients with relapsed/refractory 

B-cell lymphoma, the effi cacy and safety of the 
combination of gemcitabine plus oxaliplatin, 
with and without rituximab, were studied in 
which an ORR and CR of 57 and 30 % (95 % CI, 
15–49) in the GEMOX and 78 and 50 % (95 % 
CI, 32–68) in the R-GEMOX arm were yielded. 
With respect to the safety profi le, grade 3/4 neu-
tropenia occurred in 57 and 47 % of cycles for 
GEMOX and R-GEMOX, respectively, while 
grade 3/4 thrombocytopenia was observed in 26 
and 17 % of courses in the same groups. The FFS 
was 7 % (95 % CI, 0–16) for GEMOX and 28 % 
(95 % CI, 9–47) for R-GEMOX ( P  = 0.014), with 
overall survivals of 7 (95 % CI, 0–16) and 37 % 
(95 % CI, 20–55), respectively ( P  = 0.016). Even 
though tolerability and appealing response rate 
were achieved by both regimens, FFS was more 
prolonged in R-GEMOX. However, continued 
relapse without a clear plateau on survival curves 
was seen [ 101 ]. The effi cacy and safety of the 
combination of dexamethasone, high-dose cyta-
rabine, and oxaliplatin combined with rituximab 
as salvage therapy in 70 patients with relapsed 
or refractory aggressive NHL and HL were stud-
ied. Notably, high-grade non-hematologic toxic-
ity and renal- or neurotoxicity weren’t observed. 
Overall, this combined therapy proved as an 
effective and feasible outpatient regimen for sal-
vage therapy in patients affected by relapsed or 
refractory lymphoma [ 102 ]. These studies high-
light the improvement in OR and CR with the 
addition of rituximab to platinum-based salvage 
chemotherapy [ 94 ,  103 ]. However, the most 
optimal chemotherapy regimen for rituximab to 
bind to needs to be defi ned [ 94 ]. 

 Since the presence of GC phenotype in 
DLBCL plays a prognostic role, it is used to 
divide chemotherapy-treated patients into low- 
and high-risk groups. A study on patients with 
DLBCL lymphoma treated with R-CHOP (cyclo-
phosphamide, doxorubicin, vincristine, and pred-
nisone), in which the presence of GC phenotype 
was evaluated immunohistochemically, demon-
strated that patients with a GC phenotype display 
a signifi cantly better outcome [ 104 ]. 

 A summary of studies on the combination of 
rituximab and chemotherapy are summarized in 
Table  8.1 .
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8.3.3         Targeting CD20 with New 
Anti-CD20 mAbs 

 Despite the promising results with rituximab, 
resistance is expected to be observed in about 
60 % of the previously responding FL patients, 
shedding light on the importance of developing 
other anti-CD20 mAbs [ 13 ]. To stem the tide of 
resistance to CD20 mAb, a new mind-set has 

been adopted, leading to the development of sec-
ond- and third-generation CD20 mAbs. The pres-
ence of humanized or completely human CDR 
in second-generation anti-CD20 mAbs leads to 
signifi cant reduction in the formation of human 
anti- chimeric Abs, preventing therapy resistance. 
Third-generation anti-CD20 mAbs are not only 
reinforced by a humanized CDR region, but 
also a modifi ed Fc region is present, leading to 

   Table 8.1    Rituximab in combination with chemotherapy   

 Regimen  Disease status   n   ORR  CR  Survival  Reference 

 R-GEM  High-grade 
B-NHL (elderly: 
64–78 years) 

 7 (1 
previously 
untreated) 

 71 %  29 %  PFS:10 m  [ 344 ] 
 OS:11 m 

 R-GEMOX  Aggressive NHL  46  83 % at the end 
of fourth cycle 

 50 %  OS: 66 %  [ 345 ] 

 74 % at the end 
of treatment 

 72 % at 
the end of 
treatment 

 EFS:43 % 
 FU:28 m 

 R-GIFOX  Aggressive NHL  13  77 %  54 %  EFS:80 %  [ 346 ] 
 FU: 6 m 

 GaRD  Aggressive NHL  19  79 %  42 %  NG  [ 103 ] 
 GaRD  Aggressive B-NHL  22  55 %  27 %  NG  [ 347 ] 
 R + E  DLBCL  6  67 %  50 %  NG  [ 348 ] 
 R + E  DLBCL  15  47 %  33 %  PFS:6 m  [ 139 ] 

 FU:11 m 
 R + CMD  DLBCL (elderly: 

65–79 years) 
 30  74 %  57 %  OS:45 %  [ 349 ] 

 PFS:37 % 
 FU:2 years 

 R + TTP  Aggressive NHL  71  70 %  25 % in 
primary 
refractory 

 DR:21 m  [ 350 ] 

 56% in 
relapsed 

 FU:26 m 

 R + TTP  DLBCL  10  60 %  30 %  NG  [ 351 ] 
 R + ADOX  DLBCL  20  70 %  25 %  Median survival: 11 m  [ 352 ] 
 R-CHOP  DLBCL  108  NG  NG  Signifi cant improvement 

vs. CHOP 
 [ 353 ,  354 ] 

 R-CHOP- 
like  

 DLBCL  194 (97 
GCB vs. 97 
bob-GCB) 

 NG  NG  OS (GCB: 70 % vs. 
non-GCB: 47 %) 

 [ 104 ] 

 FFS, 59 % vs. 30 %, 
 FU: 52 m 

 R-TCOP  DLBCL  38  NG  NG  OS and FS both 
signifi cantly greater 
compared to TCOP alone 

 [ 354 ] 

 R-CHOP- 
like  

 DLBCL  113  NG  NG  OS: 77 %  [ 355 ] 
 EFS:59 % 

 R-DHAOX  DLBCL  42  42.85 %  26.19 %  OS: 71 %  [ 102 ] 
 PFS: 44 % 
 FU:2 years 
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 stronger activation of the complement system or 
effector cells [ 13 ]. 

 The development of novel anti-CD20 Abs 
aims at constructing new Abs which exhibit sig-
nifi cant activity in patients with rituximab- 
resistant lymphoma or possess increased effi cacy 
in comparison with rituximab in head-to-head 
comparative trials. Nonetheless, available data in 
rituximab-refractory patients is scarce, and fur-
ther studies are needed to establish their clinical 
application. According to FDA guidelines, ritux-
imab resistance is defi ned as disease on progres-
sion during rituximab monotherapy or rituximab 
chemotherapy. Progressive disease or relapse less 
than 6 months after the last rituximab infusion or 
after the last course of rituximab chemotherapy is 
also considered as rituximab resistance. 

 Anti-CD20 mAbs are divided into two sub-
groups, types I and II. Type I anti-CD20 mAbs 
trigger the complement system through aggre-
gating CD20 molecules into lipid microdomains 
upon binding [ 74 ]. Conversely, type II antibod-
ies do not activate CDC. Instead, they lead to 
the induction of direct cell death, through homo-
typic adhesion and actin-dependent lysosome- 
mediated cell death [ 105 ]. In the following, brief 
description is provided on the new generations of 
CD20 mAbs applied in lymphoma. Comparison 
between CD20 mAb variants is provided in 
Tables  8.2  and  8.3 .

8.3.4         First-Generation 
Anti-CD20 mAb 

8.3.4.1     Reengineered Rituximab 
 A variety of reengineered rituximab variants have 
been developed recently. The triple variant, con-
structed by three-point mutations in the CDR 
region, targets the same epitope as rituximab. 
Nonetheless, it is more effi cient in the induction 
of apoptosis. In a rituximab-resistant lymphoma 
mouse model, the triple variant led to prolonged 
survival [ 106 ]. Furthermore, a genetically engi-
neered tetravalent version of rituximab has been 
constructed which possesses a stronger anti- 
lymphoma and antiproliferative effect in vitro 
and in a lymphoma mouse model [ 107 ].  

8.3.4.2     Tositumomab (B1) 
 Tositumomab, a clinically used type II murine 
IgG2a mAb with a covalently bound iodine-131 
radioisotope, has yielded promising results in 
the treatment of low-grade lymphoma. It is an 
effi cient caspase-independent mAb with antip-
roliferative effect. However, it acts through a 
non-apoptotic manner. The direct effect of anti-
body binding, as well as the cytotoxic effect of 
irradiation, has led to its potentiality [ 117 ]. 
Tositumomab proved more effi cacious in a 
mouse model compared to rituximab [ 118 ]. 
Even though tositumomab lacked rituximab’s 
effi ciency in CDC induction, it displayed the 
same ability in the activation of Fc-bearing 
effector cells, possessing the same binding 
affi nity and half-life in vivo. Furthermore, it 
signifi cantly surpassed rituximab in B-cell 
depletion from the periphery and from second-
ary lymphoid organs [ 118 ]. Its ability to directly 
induce nonclassical apoptosis can explain its 
superiority. In a clinical study, administration 
of 900 mg of unlabeled mAb prior to therapeu-
tic anti-CD20 radioimmunoconjugate exerted 
an effi cient tumor-reduction effect [ 117 ]. It has 
provided the opportunity to treat lymphoma 
through CDC-independent pathways [ 118 ]. 

 Low-dose type II antibody, GA101 (400 mg/
infusion on days 1, 8, and 22 and subsequently 
every 3 weeks for a total of nine infusions), yielded 
an ORR of 8 %. High-dose GA101 treatment 
(1,600 mg on days 1 and 8, followed by 800 mg 
thereafter) resulted in signifi cant activity (55 % 
ORR) in rituximab-refractory patients. Therefore, 
a dose–effect relationship is proposed [ 119 ].  

8.3.4.3     Veltuzumab (hA20, IMMU-106) 
 Veltuzumab, a mAb constructed on the frame-
work regions of the humanized anti-CD22 mAb 
epratuzumab, consists of CDRs taken from the 
murine A20 anti-CD20 mAb. During preliminary 
studies, no difference was observed between the 
effectiveness of rituximab and veltuzumab. 
Further studies demonstrated a slower off-rate 
with superior CDC and signifi cantly improved 
therapeutic outcomes with veltuzumab in differ-
ent lymphoma models, as well as potent anti-B- 
cell activity in cynomolgus monkeys [ 120 ]. 
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 Low doses of veltuzumab at short infusions 
were well tolerated with no serious adverse 
events in 55 pretreated patients with FL in a 
multicenter phase I/II trial [ 110 ], which were 
comparable with the ranges in rituximab re-treat-
ment in patients with relapsing disease [ 108 ]. 
Subcutaneous injection of veltuzumab resulting 
in a slow release pattern over several days with a 
rapid depletion of B cells was studied in a phase 
I/II study, yielding an OR of 55 % and a CR rate 
of 20 % [ 121 ]. A modifi ed hexavalent antibody 
named hex-hA20 has been developed with inter-
esting properties of both type I and II antibodies, 
capable of inducing lipid raft formation (type I), 
in addition to its antiproliferative and apoptotic 
properties and homotypical adhesion induction 
(type II); nonetheless, it has a shorter half-life in 
comparison with its origin [ 122 ].  

8.3.4.4     Ocrelizumab 
(PRO70769, rhuH27) 

 Ocrelizumab, a type I mAb with an IgG1 isotype 
generated from the murine 2H7 anti-CD20 Ab, 
predominantly acts through ADCC mechanism, 
while it has a reduced capacity of CDC compared 
to rituximab [ 123 ]. Its effi cient B-cell removal, 
from the periphery and to a lesser extent in sec-
ondary lymphoid organs, has been observed in 
monkeys achieving results comparable to ritux-
imab [ 79 ]. Even though it is postulated to be 
more effective than rituximab due to its enhanced 
ADCC capabilities, mild infusion-related toxic-
ity with doses up to 750 mg/m 2  was experienced 
in a phase I/II dose-escalating trial administered 
to previously rituximab-treated FL patients [ 109 ]. 
However, decreased intravascular complement 
activation was proposed to be attributable to the 
observed toxicity; moreover, the safety profi le 
was similar to rituximab [ 109 ].   

8.3.5     Second-Generation 
CD20 mAb 

 Second-generation type I anti-CD20 mAbs, 
including ofatumumab, veltuzumab, and ocreli-
zumab, have been constructed which are effec-
tive in patients with FL previously treated with 

rituximab. Nonetheless, in a comparison between 
the clinical responses to these mAbs with the 
responses of patients who received rituximab re- 
treatment or maintenance therapy, no signifi -
cantly improved survival was demonstrated. In 
comparable patient populations from different 
studies, the ORR for rituximab re-treatment was 
38 % [ 108 ], 38 % for ocrelizumab [ 109 ], 44 % 
for veltuzumab [ 110 ], and 42 % in those receiv-
ing ofatumumab [ 111 ]. 

8.3.5.1     Ofatumumab 
(Arzerra, HuMax-2F2) 

 Ofatumumab, a completely human anti-CD20 
mAb, is constructed in a human transgenic mouse. 
Remarkable activation of the complement system 
is its outstanding property. In addition, it is favored 
by the ability to kill target cells with much lower 
numbers of CD20 molecules on the cell surface, 
requiring less human serum, as it binds two to three 
times more than rituximab to C1q [ 112 ]. Binding 
of ofatumumab to the small 7-mer extracellular 
loop of the CD20 molecule close to the cell mem-
brane accounts for its exceptional effi ciency in 
complement fi xation [ 112 ]. Nonetheless, ritux-
imab is signifi cantly more effi cient in ADCC acti-
vation pathway in patients with NK cells expressing 
the FcγRIIIa-158V allotype than the low-affi nity 
receptor FcγRIIIa- 158F allotype [ 113 ]. Promising 
results were obtained with in vitro and in vivo 
administration of ofatumumab against rituximab-
resistant, as well as rituximab-sensitive models 
[ 114 ]. Heavily pretreated patients with relapsed/
refractory FL in the fi rst phase I/II clinical trial 
yielded an ORR of 42 %. In addition, it is consid-
ered as a safe agent [ 111 ]. These results were in the 
same range with rituximab re-treatment patients 
[ 108 ]. In addition, an 11 % OR with a mean dura-
tion of 6 months was achieved with ofatumumab 
monotherapy in 116 heavily pretreated FL patients 
refractory to rituximab; patients refractory to ritux-
imab monotherapy achieved a 22 % ORR [ 115 ]. 
Furthermore, promising results have been obtained 
with ofatumumab in combination with CHOP 
(cyclophosphamide, adriamycin, vincristine, and 
prednisone) chemotherapy. An ORR up to 100 % 
was achieved, as well a 69 % complete response 
with favorable toxicity profi les [ 116 ]. 
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 Overall, some studies have demonstrated an 
ORR of 11–17 % in rituximab-refractory patients 
with the application of novel type I antibodies, ofa-
tumumab and ocrelizumab, which is quite modest.   

8.3.6     Third-Generation CD20 mAb 

8.3.6.1     PRO131921 (RhumAb v114) 
 To    overcome the less favorable disease outcome 
in patients with low-affi nity receptor (FcγRIIIa) 
expressed on NK cells after rituximab monotherapy, 
a modifi ed version of ocrelizumab (PRO131921)
was developed; it achieved a 30-fold better bind-
ing to FcγRIIIa (FF or FV) than rituximab. An up 
to tenfold stronger ADCC was demonstrated in 
in vitro studies [ 124 ,  125 ]. Effi cient B-cell depletion 
in cynomolgus monkeys was observed in a dose-
escalating study. However, adverse events including 
dose-dependent reversible neutropenia and throm-
bocytopenia were also manifested [ 125 ]. In a dose-
escalating phase 1 trial on patients with relapsed or 
refractory indolent lymphoma who were previously 
treated with rituximab, single-agent administrations 
of PRO131921 were well tolerated [ 126 ].  

8.3.6.2     AME-133v (LY2469298) 
 AME-133v, a third-generation IgG1 anti-CD20 
mAb, was developed in an attempt to enhance 
ADCC of anti-CD20 mAb. It possesses increased 
affi nity to the FcgRIIIa on NK cells, as well as a 
ten times stronger B-cell killing. Targeted inser-
tion of a synthetic oligonucleotide pool into a 
human germ line sequence was used for the con-
struction of the CDRs. AME-133v proved as an 
effective activator of NK cells which induced the 
same degree of ADCC with lower doses as com-
pared to rituximab in in vitro studies [ 46 ].  

8.3.6.3     GA-101 (RO5072759, 
Obinutuzumab) 

 GA-101, derived from the murine IgG1-k antibody 
B-lyl, is the fi rst Fc-engineered type II anti- CD20 
mAb which mediates homotypic adhesion and does 
not relocate CD20 into lipid rafts after binding to 
CD20 [ 42 ]. In comparison with rituximab, a distinct 
but overlapping epitope on CD20 is recognized by 
GA-101; in addition, it binds in a different  orientation 

and on a larger surface area; additionally, it pos-
sesses increased induction of direct cell death after 
binding. GA-101 exhibited more effi cient direct cell 
death induction and nonclassical apoptosis in com-
parison with tositumomab. Signifi cantly more effi -
cient killing of lymphoma was observed in whole 
blood sample assays. In addition, GA-101 was more 
effi cient in killing normal and malignant B cells in 
several murine models and in monkeys, and contrary 
to rituximab, it proved capable in B-cell elimination 
from the spleen and lymph nodes [ 42 ]. During a 
dose-escalating phase 1 clinical trial in 25 patients 
with NHL, receiving 9 infusions of GA-101 starting 
at 50–2,000 mg per dose, promising results were 
obtained, with a toxicity profi le comparable to ritux-
imab and no dose-limiting toxicities. An ORR of 
36 % was achieved [ 127 ]. Likewise, doses up to 
2,000 mg of GA-101were well tolerated, and an 
ORR of 22 % was achieved in pretreated patients 
with NHL in a phase 1 clinical trial [ 128 ]. 
Furthermore, single-agent GA-101 had a high 
response rate in heavily pretreated patients with 
indolent NHL, which demonstrated a possible dose–
effect relation; an ORR up to 55 % was observed in 
patients with rituximab-refractory disease [ 129 ]. 
Obinutuzumab in combination with chlorambucil 
was compared with chlorambucil alone or rituximab 
and chlorambucil in a phase III randomized study in 
patients with previously untreated CLL. The median 
PFS was 23 months in patients treated with obinutu-
zumab plus chlorambucil and 11.1 months for 
patients treated with chlorambucil alone. This led to 
the FDA approval of obinutuzumab in CLL in 
November 2013. A survival advantage was also 
demonstrated in the obinutuzumab and chlorambu-
cil arm compared with rituximab and chlorambucil 
(Goed V et al., Abstrace #6, Blood, ASH conference 
2013).   

8.3.7     Small Modular 
Immunopharmaceutical 
Anti-CD20 Protein 

8.3.7.1     TRU-015 
 Small modular immunopharmaceuticals are 
encoded by a single-chain protein expressed as 
homodimers. TRU-015, a very small protein, is 
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generated from the heavy and light chain vari-
able regions from murine anti-CD20 mAb 2H7, 
which are linked to HuIgG1 CH2 and CH3 
domains [ 130 ]. TRU-015 manifests comparable 
ADCC and a reduced CDC activity compared to 
rituximab during in vitro studies. Noteworthy, 
it was found superior to rituximab in terms of 
reduction of tumor mass and prolonged survival 
of mice with human lymphoma. Moreover, a 
dose- dependent and durable B-cell depletion 
was experienced with escalating single-dose 
injections of TRU-015 in cynomolgus monkeys 
[ 130 ]. Remarkably, TRU-015 proved as a safe 
B-cell- depleting agent in patients with rheuma-
toid arthritis in a dose-dependent manner during 
a dose-escalating phase I/II trial [ 130 ]. However, 
its safety in lymphoma patients remains to be 
defi ned.    

8.4     CD22 

 CD22, a 135 kDa molecule, is exclusively 
expressed on the transmembrane of mature (IgM 
and IgG) B cells [ 131 ]. It plays a crucial role in 
the regulation of B-cell activation, survival, and 
BCR and CD19 signaling, after being phosphor-
ylated [ 132 ]. Prolonged contact hypersensitivity 
reactions have been observed in CD22-defi cient 
B cells, implying its inhibitory role within the 
immune system [ 133 ]. Apoptotic pathways are 
activated upon binding of an antibody or the nat-
ural ligands (sialylated glycans) to CD22 and its 
internalization [ 134 ]. CD22 is expressed on more 
than 90 % of the FLs. 

8.4.1     Epratuzumab 

 Epratuzumab is derived from the murine IgG2a 
LL2 anti-CD22 mAb, which was previously used 
for the radioimmunodetection of NHL. LL2 has 
been humanized by CDR grafting techniques, 
and the murine IgG2a has been replaced with 
human IgG1; hence, its immunogenicity is 
reduced, and an effi cient immunotherapeutic 
mAb is resulted. Epratuzumab and CD22 are rap-
idly internalized upon binding, possibly leading 

to its phosphorylation and downstream signaling 
[ 135 ]. In vitro studies have demonstrated no 
complement system activating capability, no 
clear direct cytotoxic effect, and only a modest 
ADCC activity. Nonetheless, signifi cant antipro-
liferative effect has been observed in vitro. 
Noteworthy, a stronger antiproliferative effect 
has been observed for the combination of epratu-
zumab and rituximab compared with rituximab 
alone [ 135 ,  136 ]. Single doses of epratuzumab 
were well tolerated and resulted in transient 
B-cell depletion in a dose-escalating phase I trial 
in patients with different subtypes of 
NHL. Patients with FL revealed the best clinical 
response (43 %) among other subtypes at a dose 
of 360 mg/m 2 /week [ 137 ]. A multicenter study in 
patients with various subtypes of refractory/
relapsed NHL assessed the effect of the combina-
tion of epratuzumab with rituximab; the injection 
of weekly doses of 360 mg/m 2  epratuzumab and 
375 mg/m 2  rituximab yielded promising results 
in the FL group (ORR, 54 %; CR/CRU, 24 %; 
median response duration, 13.4 months) [ 138 ]. In 
addition, a phase II clinical trial revealed similar 
results in patients with indolent lymphoma. 
Epratuzumab (360 mg/m 2 ) combined with ritux-
imab (375 mg/m 2 ) administered weekly for four 
consecutive weeks yielded comparable toxicities 
to rituximab alone with an ORR of 64 % (24 % 
CR/CRu) with a response duration of 14 months 
in patients with refractory/relapsed FL [ 139 ]. The 
combination of epratuzumab and rituximab with 
CHOP chemotherapy has been studied in a phase 
II study in patients with untreated DLBCL; six 
cycles of treatment obtained an OR of 87 % and 
CR/Cru of 67 % [ 140 ]. In a Raji lymphoma 
mouse model, the combination of anti-CD20 
mAb veltuzumab and epratuzumab obtained no 
signifi cantly different results compared to veltu-
zumab alone [ 141 ]. On the other hand, an anti-
 CD20/anti-CD22 bispecifi c mAb was developed, 
which obtained remarkable antiproliferative 
effects in in vitro, in contrast to the parental Abs 
(veltuzumab and epratuzumab or combined) 
[ 142 ]. Even though the cross-linking of CD20 
and CD22 does not lead to signifi cant activation 
of the complement system, marked ADCC activ-
ity is obtained. Moreover, the bispecifi c Ab was 
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demonstrated to be superior to anti-CD20 in a 
Daudi lymphoma model [ 143 ]. Hexavalent bispe-
cifi c anti-CD20/anti-CD22 antibody manifested 
similar results [ 142 ]. Due to its rapid internaliza-
tion after binding to CD22, epratuzumab is con-
sidered an ideal immunoconjugate for drug 
delivery, resulting in increased potency; nonethe-
less, increased toxicity may be incurred [ 144 ].  

8.4.2     Inotuzumab Ozogamicin 
(CMC-544) 

    Inotuzumab, an IgG4 humanized anti-CD22 mAb 
which is derived from the murine mG5/44 Ab, 
resides on to human acceptor frameworks. The 
antibody–antigen complex is internalized after 
binding to CD22 [ 144 ]. No toxic effect has been 
reported from CMC-544 [ 145 ]. By conjugation of 
inotuzumab to ozogamicin (calicheamicin), a 
potent antitumor antibiotic, growth of CD22 B 
cells has been inhibited in vitro. Moreover, dose-
dependent signifi cant anti-lymphoma effect has 
been attributed to this immunoconjugation in vivo 
[ 145 ]. In addition, it possessed greater cytotoxicity 
in comparison with rituximab conjugated to ozo-
gamicin [ 146 ]. On the other hand, an even stronger 
anti-lymphoma effect in similar B-cell lymphoma 
mouse models was attributed to the combination 
of rituximab and inotuzumab ozogamicin [ 147 ]. 
The safety and effi cacy of inotuzumab ozogamicin 
were studied in patients with pretreated NHL in a 
multicenter, dose-escalating (0.2–2.4 mg/m 2 ) 
phase I study; a maximum dose of 1.8 mg/m 2  was 
well tolerated. Moreover, adverse events consist-
ing of thrombocytopenia (90 %), asthenia (67 %), 
nausea (51 %), and neutropenia (51 %) were all 
reversible. Subgroup analyses on FL patients dem-
onstrated an objective response rate of 68 % with a 
32 % CR/CRu rate and a PFS of 10.4 months 
[ 148 ]. The combination of inotuzumab, ozogami-
cin, and rituximab in patients with FL resulted in 
similar reversible adverse events in another clini-
cal study [ 149 ]. The immunoconjugate inotu-
zumab ozogamicin (CMC544) with rituximab 
obtained an ORR of 87 % with a 23.6 months’ 
response duration in 38 patients with recurrent/
refractory lymphoma [ 149 ].   

8.5     CD19 

 CD19, a member of the immunoglobulin super-
family, consists of two extracellular 
immunoglobulin- like domains with an extensive 
cytoplasmic tail [ 158 ]. It is exclusively expressed 
on B-cell lineage from the very early B cell and is 
lost upon differentiation to plasma cells [ 158 ]. 
Due to its high, homogeneous expression in 
nearly all different subtypes of lymphoma, it is 
considered a potential target for immunotherapy 
[ 159 ]. Even though CD19 was one of the fi rst tar-
gets for immunotherapy [ 160 ] and its safety and 
effi cacy were approved, its development has been 
stagnated by the more promising results obtained 
by anti-CD20 mAbs [ 160 ]. 

8.5.1     XmAb5574 

 XmAb5574, a novel humanized anti-CD19 mAb, 
mediates signifi cantly higher ADCC compared 
with rituximab, owing to its engineered Fc domain 
[ 161 ]. It acts through modest induction of apopto-
sis and activation of the phagocytic system [ 161 , 
 162 ]. This mAb has excellent preclinical features, 
and further studies should be awaited.  

8.5.2     Blinatumomab (MT102/
MEDI-538) 

 Blinatumomab (MT102/MEDI-538), a new 
anti-CD19-CD3 bispecifi c Ab, which gathers lym-
phoma (CD19) and effector T cell (CD3) together, 
leads to effi cient elimination of lymphoma cells. 
Despite the promising clinical results of previous 
anti-CD19/CD3 bispecifi c Abs [ 163 ], they proved 
ineffective in clinical trials [ 164 ]. However, blinatu-
momab yielded promising results in a phase I clini-
cal study [ 165 ]. In vitro, it demonstrated effi cient 
anti-lymphoma cytotoxicity at extremely low doses 
(10 pg/ml, 100,000-folds lower than rituximab) and 
low effector/target cell (2:1) ratio [ 166 ]. Clinically, 
in 38 patients with relapsed NHL (FL, CLL, and 
MCL), doses ranging from 0.0005 to 0.06 mg/m 2 /
day were found safe and effective. Complete remis-
sion was achieved in four and seven patients with 
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doses starting at 0.015 mg/m 2 /day with 13 months’ 
duration of response in one patient [ 165 ].  

8.5.3     hu-DM4/SAR3419 

 Various phase I studies have evaluated the applica-
tion of anti-CD19 mAbs coupled to  immunotoxins. 
Binding of the tubulin inhibitor maytansinoid deri-
vate DM4 to the humanized IgG1 anti-CD19 mAb, 
huB4 (huB4-DM4/SAR3419), has yielded promis-
ing results. After binding to CD19, SAR3419 
undergoes internalization, resulting in intracellular 
release of DM4, eventually leading to cell death. 
SAR3419 was found superior to rituximab in pre-
clinical xenograft models [ 167 ]. In addition, its 
safety was proved in a dose-escalating phase I 
study in patients with different types of lymphoma. 
However, dose-limiting toxicities including severe 
transient blurred vision, associated with microcys-
tic epithelial corneal changes, were observed. 
Finally, 53 % of the patients refractory to rituximab 
experienced remission [ 168 ].   

8.6     CD30 

 CD30, a member of TNF receptor superfamily, is 
expressed on the cell surface of 10 % of NHLs 
[ 23 ]. It is considered a diagnostic immunomarker 

and a potential target for immunotherapeutic 
approaches for anaplastic large cell lymphoma 
(ALCL) [ 24 ]. The prognosis of ALCL is signifi -
cantly correlated to serum CD30 level [ 25 ]. Other 
NHL subtypes including DLBCL, primary medi-
astinal large B-cell lymphoma, FL, and Epstein–
Barr virus (EBV)-positive lymphomas express 
lower levels of CD30 expression [ 26 ]. A variety 
of CD30 mAbs are applied in the NHL including 
M67, SGN-30, Ki-1, M67, and Ber-H2 [ 27 ,  28 ], 
most of which are effective on ALCL cells. A 
summary of trials on the application of CD30 
mAbs in NHL is summarized in Table  8.4 .

8.6.1       M67 

 M67, a monoclonal anti-CD30 developed in 1994 
by Gruss et al., was established as an effi cient 
growth inhibitor of ALCL cell lines in vitro [ 29 , 
 30 ]. In addition, a signifi cant correlation was 
observed between its antitumor effects and the 
differences in the constitutive NF-kB signaling in 
ALCL and HD cell lines [ 31 ]. As evident in 
in vitro studies, ALCL cells undergo apoptosis in 
the presence of M67 due to their inability to acti-
vate the transcription factor NF-kB, whereas HD 
cell lines (L428, KM-H2, L591) were resistant to 
M67, attributed to constitutive expression of 
NF-kB [ 8 ].  

    Table 8.4    Anti-MHC-II monoclonal antibodies   

 Anti-MHC-II  Origin  Notable comments  Adverse events 

 Anti-CD74 
 Milatuzumab  Murine LL1  Acts through direct 

growth inhibition, 
apoptosis 

 No serious adverse event 

 No CDC or ADCC  Reversible T-cell reduction 
 HLA-DR 
 Apolizumab  Murine 1D10  Acts through APC, 

ADCC, apoptosis 
 No serious adverse event 
 Type I hypersensitivity 

 IMMU-114  Humanized IgG4  Leads to disease-free 
survival 

 No serious adverse event 

 LYM-1  Murine IgG2a  Acts through CDC  No serious adverse event 
 Dose-limiting thrombocytopenia 

 SHAL  Very rapid blood 
clearance 

 Non reported 

 Suitable carrier for 
radio-isotypes 

M. Ebadi et al.



151

8.6.2     SGN-30 

 SGN-30, a chimeric IgG1 mAb derived from the 
murine AC10 anti-CD30 mAb, was demonstrated 
an antiproliferative effect in vitro and a potent 
anti-HL effect in xenografts [ 32 ]. Macrophages 
play a critical role in the activity of SGN-30, 
proven by the abolished effect of SGN-30 in the 
absence of macrophages in experimental studies 
[ 32 ]. It has proved as a safe and well-tolerated 
mAb, yielding optimal results in patients with 
(cutaneous) ALCL [ 33 – 35 ].   

8.7     CD37 

 CD37, a heavily glycosylated 40–52 kDA glyco-
protein, is a member of the tetraspan transmem-
brane family of proteins [ 169 ,  170 ], which 
internalizes and displays modest shedding in 
transformed B cells expressing the Ag. It is 
expressed in cells progressing from pre-B to 
peripheral mature B cell. Nonetheless, it is lost 
during B-cell development in terminal differen-
tiation to plasma cells. It is considered an optimal 
target for immunotherapy in B-cell NHL and 
other B-cell malignancies, owing to its high 
selectivity [ 55 ]. 

8.7.1     Tetulomab (HH1) 

 Tetulomab (HH1), a murine IgG1 Ab, was the 
fi rst anti-CD37 developed in the 1980s [ 171 ]. 
The binding properties to various NHL subtypes 
of tetulomab has been compared with the chi-
meric IgG1 antibody rituximab, and signifi cant 
therapeutic effect of 177Lu-tetulomab was estab-
lished with tolerable toxicity [ 55 ].   

8.8     CD40 

 CD40, a member of the TNF receptor family, is 
constitutively expressed on antigen-presenting 
cells (B cells, dendritic cells, and macrophages), 
acting as a co-stimulatory molecule, which inter-
acts with CD40L (CD154) expressed by activated 

T cells. In addition, endothelial cells, smooth 
muscle cells, fi broblasts, and epithelial cells 
express CD40 on their membrane. In addition, 
malignant cells such as NHL, multiple myeloma, 
and various solid tumors express CD40 in con-
siderable amounts. Stimulation of CD40 leads to 
immunoglobulin isotype switching and activa-
tion of B cells. Expression of CD40L can also be 
found on activated B cells, NK cells, monocytes, 
dendritic cells, endothelial cells, and smooth 
muscle cells. CD40–CD40L interaction plays a 
general role in the immune regulation (apoptosis 
and enhancing cell survival) [ 150 ]. In addition, 
soluble CD40L (sCD40L) has been obtained 
from serum of patients with lymphoma, CLL, 
MM, and autoimmune diseases. It is recognized 
as an independent risk factor for some hemato-
logical malignancies [ 151 ]. Since CD40 and 
CD40L can be co-expressed on B-cell lym-
phoma, it is postulated that this system may act as 
an autocrine–paracrine survival loop of malig-
nant hematopoietic cells [ 152 ]. CD40 has the 
structure of a typical type I transmembrane mol-
ecule with a large extracellular part, acting as a 
binding side for anti-CD40 mAbs which acts as a 
target for Abs [ 150 ]. 

8.8.1     Dacetuzumab (SGN-40) 

 Dacetuzumab, a humanized mAb with CDRs 
of murine S2C6 in the human IgG1 frame-
work sequences, is found to have potent anti- 
lymphoma effects, including growth arrest upon 
cross- linking, induction of apoptosis, and ADCC 
that is Fc dependent in vitro assays [ 153 ,  154 ]. 
Dacetuzumab signifi cantly increased the sur-
vival of mice compared to controls in a Daudi 
mouse model [ 154 ]. It has been found to result 
in transient decrease of T cells and NK cells 
and a persistent decrease in CD20-positive 
cells, after injection into cynomolgus monkeys. 
Dacetuzumab was well tolerated in patients with 
CLL, MM, and relapsed/refractory NHL, as dem-
onstrated in different phase I studies conducted 
on different CD40-positive malignancies [ 155 ]. 
Nonetheless, no response was seen in patients 
with FL in a dose-escalating trial for NHL, 
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whereas an ORR of 12 % was maintained in 
patients with pretreated DLBCL [ 156 ].  

8.8.2     Lucatumumab (HCD122, 
CHIR-12.12) 

 Lucatumumab, a fully human anti-CD40 mAb, is 
generated in a human IgG1 transgenic mouse by 
immunizing mice with the extracellular domain 
of recombinant human CD40. Effector cells are 
more potently activated by Lucatumumab com-
pared to rituximab [ 157 ].   

8.9     CD52 

 CD52, a low molecular weight glycoprotein (21–
28 kDa) of unknown function [ 172 ], is exclu-
sively expressed on mature B and T lymphocytes, 
NK cells, monocytes, and dendritic cells and is 
absent on hematopoietic precursors. 

8.9.1     Alemtuzumab (CAMPATH-1H) 

 Alemtuzumab, a humanized rat IgG CD52 mAb, 
is created by transferring the antigen-specifi c 
CDRs of the rat mAb onto a human framework. It 
is known to act through CDC, ADCC, and apop-
tosis induction in in vitro, yet its exact mechanism 
for the in vivo killing remains to be unveiled 
[ 172 ]. Studies have revealed its effi cacy in cutane-
ous T-cell lymphoma and peripheral T-cell lym-
phoma [ 173 ]. Although CD52 is also expressed 
on FL cells, no clinical trials have been conducted 
in this regard [ 13 ]. It has proved as a competent 
mAb in combination with chemotherapy. In a 
recent study on patients with relapsed or refrac-
tory advanced T-cell NHL (age range: 11–65), 
who had previously received remission induction 
by cladribine, cytosine, arabinosine, and etopo-
side combined with granulocyte colony- 
stimulating factor support (CLAEG), patients 
received medium doses of alemtuzumab in com-
bination with carmustine, etoposide, cytosine, 
arabinoside, and melphalan (BEAM) treatment; 
BEAM and alemtuzumab appeared benefi cial in 

20 patients from the overall 21 patients receiving 
CLAEG induction therapy. Nine patients experi-
enced CR, and 50 % did not achieve CR by the 
time of hematopoietic stem cell transplantation 
(HSCT). After HSCT, 20 patients reached CR 
during a median follow-up of 11 months. Overall, 
this study revealed that reduced-intensity BEAM- 
alemtuzumab conditioning and allogeneic HSCT 
proceeding intense reinduction therapy provide 
curative potential in patients with advanced T-cell 
lymphomas, even for those not in remission [ 174 ].   

8.10     CD80 

 CD80 (B7-1), a protein expressed on NHL cells 
[ 175 ], is normally limited to the cell surface of 
activated antigen-presenting cells including B 
cells, dendritic cells, and monocytes [ 176 ]. It is 
considered as a co-stimulatory molecule for 
CD28 and is expressed on T cells. Since the 
extracellular part of CD80 contains two Ig-like 
domains, it is recognized as a suitable target for 
mAb therapy. CD80 together with CD86 stimu-
lates Cd28 and T-cell receptor, leading to the acti-
vation and clonal expansion of T cells. Moreover, 
the interaction between CD80 (and CD86) and 
CTLA-4 (CD152) expressed on activated T cells 
results in decreased T-cell response. Nonetheless, 
the intrinsic function of CD80 is unclear [ 176 ]. 

8.10.1     Galiximab (IDEC-114) 

 Galiximab, a chimeric IgG1 anti-CD80 mAb 
derived from the cynomolgus monkey and man, 
includes both human constant regions and mon-
key variable regions. Due to its structure similar-
ity to human Abs, an immune response in patients 
is less likely. Galiximab has demonstrated antip-
roliferative and anti-apoptotic properties, as well 
as a dose-dependent ADCC induction in in vitro 
studies [ 177 ]; galiximab prolonged survival in 
mice compared to controls, to the same degree 
as rituximab in in vivo human lymphoma mouse 
models. Furthermore, the combination of ritux-
imab and galiximab increased survival of mice 
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compared to rituximab alone [ 177 ]. After binding 
of galiximab to CD80, CTLA-4 is blocked, which 
may induce an anti-lymphoma environment [ 178 ]. 
A dose up to 1,200 mg/m 2  galiximab in monkeys 
for 5 months exhibited no adverse events [ 177 ]. 
In addition, its safety and effi cacy were evaluated 
in a multicenter, dose-escalating phase I clinical 
trial of 37 patients with relapsed or refractory FL 
who received four weekly infusions of galiximab. 
Even though it was well tolerated, it resulted in 
an ORR as low as 11 % with CR in only two 
patients. Remarkably, delayed response was 
observed in some cases. Despite its 2–4 weeks 
half-life, its effi cacy may last for years, conferring 
to its further immune response induction [ 179 ]. 
Safety and effi cacy of the combination of galix-
imab and rituximab were evaluated in 75 patients 
with relapsed or refractory FL, in which 500 mg/
m 2  of galiximab was recommended in combina-
tion with standard doses of rituximab. An ORR 
of 66 % (33 % CR/CRu; 33 % partial response) 
with a PFS of 12.1 months was achieved, and no 
adverse event was observed [ 85 ].   

8.11     CD74 and HLA-DR 

 CD74 and HLA-DR are both members of MHC 
class II. CD74, the cell surface form of the invari-
ant chain, acts as a chaperone molecule for MHC 
class II. CD74 binds to HLA-DR within the 
endoplasmic reticulum; the complex is then 
transferred to the late endosomal compartment, 
where CD74 is cleaved into peptide fragments 
and is dissociated from DR. Peptides form com-
plexes with DR and are transported to the cell 
surface for antigen presentation to T cells [ 180 ]. 
Besides aiding peptide presentation, CD74 func-
tions as a signaling molecule. Anti-CD74 mAbs 
have led to maturation of B cells through a direct 
signaling pathway involving NF-kB [ 181 ]. It also 
acts as a high-affi nity receptor for the proinfl am-
matory cytokine macrophage migration inhibi-
tory factor [ 182 ]. In addition to expression on 
APCs, CD74 is a marker on various tumor cells, 
including B-cell lymphomas, gastric cancer, 
renal cancer, and non-small cell lung cancer. Its 

expression has been found to contribute to poor 
prognosis, possibly explained by the suppressive 
effects on the immune system [ 180 ]. It is regarded 
as an effi cient target for mAb therapy, resulting in 
the development of different anti-CD74 Abs. 
Nonetheless, clinical experience is lacking. 
Various CD74 monoclonal antibodies are dis-
cussed below and summarized in Table  8.4 . 

8.11.1     Milatuzumab (IMMU-115, 
hLL1), Naked and Conjugated 

 Milatuzumab, an IgG1k anti-CD74 mAb, is 
derived from the murine LL1 and is humanized 
by CDR grafting. Rapid internalization is resulted 
in both CD74 and milatuzumab upon binding 
and is replaced by newly synthesized CD74. It 
has exhibited growth inhibition and apoptosis 
induction in in vitro, whereas no CDC or ADCC 
is exerted by milatuzumab. Signifi cant prolonged 
survival was observed in human Burkitt lym-
phoma xenograft mouse model compared to con-
trol mice by administrating milatuzumab [ 141 ]. In 
single-dose and multidose experiments, no seri-
ous adverse events were experienced with only a 
reversible decrease in T cells, B cells, NK cells, 
and monocytes in cynomolgus monkeys [ 180 ]. 
Due to its rapid internalization (106–107 mol-
ecules/cell/day), it is a perfect target for conjuga-
tion with radioisotopes, drugs, or toxins. In vitro 
studies on murine versions of milatuzumab conju-
gated to different radioisotopes revealed high effi -
ciency in eliminating B-cell lymphomas. Auger 
emitters (111In and 67Ga) demonstrated a potent 
anti-lymphoma effect and prolonged survival 
compared to unlabeled LL1. No signifi cant tox-
icity has been observed; however, further clinical 
trials are warranted to establish its effi cacy [ 180 ]. 
Milatuzumab (BR96-Dox, hLL1-Dox, IMMU-
110) combined to doxorubicin (dox) manifested 
as a lethal combination upon binding to CD74-
positive cells. A 100 % survival rate was exhibited 
by the administration of HLL1- Dox to mice bear-
ing Raji lymphoma; in addition, no toxicity was 
observed in mice models [ 180 ,  183 ]. Doses up to 
30 mg/kg were well tolerated in cynomolgus mon-
keys, and the fi rst signs of bone marrow toxicity 
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were observed with doses of 30 mg/kg [ 183 ]. The 
combination of  milatuzumab and the toxin ranpir-
nase, a frog RNase that results in the degradation 
of tRNA, yielded similar results, with respect to 
protein synthesis, inhibition, and apoptosis [ 184 ]. 
To reduce the effect of Fc-expressing cells, mil-
atuzumab was altered into IgG4 (2L-Rap-hLL1-
g4P), which manifested more potentiality in vitro. 
High remission rates were observed in Daudi and 
Raji mouse models. High doses of the conjugated 
antibody resulted in hepatotoxicity in mice. While 
highly effi cient anti-lymphoma effects have been 
observed in mice, clinical trials are needed to 
study its safety and effi cacy in clinic [ 184 ].  

8.11.2     Apolizumab (Hu1D10, 
Remitogen) 

 HLA-DR, a heterodimer comprising of DRa 
and DRb subunits, presents antigen to the 
TCR on CD4-positive T cells, hence initiat-
ing a humoral immune response. In addition 
to APCs, most neoplastic cells, including FL, 
express HLA-DR. Apolizumab is derived from 
the murine 1D10 mAb and is humanized by 
CDR grafting. The polymorphic determinant 
on HLA- DRb is the target of apolizumab; 
nonetheless, the HLA-DRb is not shed or 
internalized from the cell surface after bind-
ing [ 185 ]. Its capable mediation of CDC, 
ADCC, and apoptosis has been demonstrated 
in in vitro studies [ 186 ]. Bolus infusions in 
rhesus macaques resulted in type I hyper-
sensitivity reactions; nonetheless, no seri-
ous adverse event was experienced with slow 
infusions, except transient decrease in B cells 
[ 187 ]. Doses ranging from 0.15 to 15 mg/kg 
were found to be safe and were well tolerated 
in patients with relapsed NHL in a phase I 
dose- escalating study. Nevertheless, it showed 
no clinical effi cacy in relapsed/refractory FL 
[ 188 ]. In addition, it appeared more effective 
in combination with rituximab in a phase I 
study in 35 patients with relapsed/refractory 
NHL. An ORR of 28 % with 17 % CR/Cru 
was achieved. Toxicities were mostly minor 
and reversible, with atypical hemolytic uremic 

syndrome in some patients [ 189 ]. Overall, apo-
lizumab monotherapy seems clinically inef-
fective, while its effi cacy may be enhanced in 
combination with other mAbs [ 13 ].  

8.11.3     IMMU-114 (hL243g4P) 

 IMMU-114 is a novel humanized mAb devel-
oped with an IgG4 isotype, which targets the 
HLA-DRa chain, leads to direct binding, and 
eventually leads to antiproliferative effect and 
apoptosis induction [ 190 ]. An increased antipro-
liferative effect was observed with the combina-
tion of IMMU-114 and rituximab [ 191 ]. It 
revealed a disease-free survival in mice bearing 
CD20-resistant lymphoma cells in human lym-
phoma mouse models [ 192 ].  

8.11.4     LYM-1 

 LYM-1, a murine IgG2a mAb generated by 
immunizing mice with Raji Burkitt lymphoma 
cells, targets the polymorphic variants on the 
HLA-DR10 b chain, activates complement, 
effector cells and induces apoptosis in vitro [ 193 ]. 
In a study of ten patients with refractory NHL, 
limited results were obtained, with only small 
reduction in lymph node size in some patients but 
with good safety profi les [ 194 ]. LYM-1 conju-
gated to 131-iodide has been extensively tested in 
two phase I/II trials in patients with therapy 
refractory NHL in which unconjugated LYM-1 
was injected prior to the administration of esca-
lating doses of 131-I-LYM-1. Thrombocytopenia 
was the only dose-limiting toxicity. In the low-
dose trial, 85 % of patients obtained tumor regres-
sion with 10 % CRs. In the maximum tolerated 
dose trial, 52 % of the patients experienced 
remission, and 33 % achieved CR. A signifi cant 
correlation between the levels of human anti-
mouse antibodies which developed after the 
administration of LYM-1 and clinical response 
was observed [ 195 ]. LYM-1 combined with other 
radioisotopes including yttrium-90 [ 196 ] or cop-
per-67 [ 197 ] yielded similar results. A synergis-
tic anti-lymphoma effect was induced by adding 
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LY-M1, yttrium- conjugated Lym-1, and a chime-
ric form of LYM-1 to rituximab in vitro [ 193 , 
 198 ].  

8.11.5     Selective High-Affi nity 
Ligands (SHALs) 

 Small molecules, called selective high-affi nity 
ligands (SHALs) or antibodies, which mimic the 
binding of LYM-1 on HLA-DR, have been gen-
erated by linking two ligands (molecules) that 
recognize the LYM-1 epitope based on computa-
tional and experimental methods and are 50 times 
smaller than mAbs. Despite long residence time 
in the circulation and toxicities caused by their 
combination with radioisotopes, SHALs are 
favored by their very rapid blood clearance, mak-
ing them suitable carriers for radioisotopes [ 199 ]. 
Studies on mice have demonstrated that radioiso-
topes coupled to SHAL located and targeted the 
tumor cells with a rapid blood clearance and no 
toxicity [ 200 ]; yet, no direct anti-lymphoma 
effect has been attributed to SAH [ 201 ]. The pro-
duction and selection of SHALs need to be opti-
mized, and the anti-lymphoma activity of 
radioisotopes coupled to SHALs needs to be 
tested in in vivo models before drawing a com-
prehensive conclusion [ 13 ].   

8.12     CD1d and NK Cells 

8.12.1     CD1d 

 CD1d, normally expressed on hematopoietic 
cells of myelomonocytic and B-cell lineages, is a 
marker for malignancies originating from the 
corresponding tissues. 

 B-cell malignancies have also been found to 
display CD1d. Studies on murine models have 
demonstrated the expression of CD1d on many 
leukemia and lymphoma cell lines. Moreover, 
NKTs have exhibited a protective role in the A20 
murine B-cell lymphoma model [ 202 ], which is 
correlated to the level of CD1d expression on 
lymphoma cells and was lost in NKT-defi cient 
mice. Studies on human lymphomas have 

revealed that CD1d is expressed on the surface 
of Reed–Sternberg (RS) cells in half of the cHL 
cases and in 30 % NHLs [ 203 ]. Notably, NKTs 
were present at high frequencies in primary cHL 
tumors and reactive lymph nodes irrespective of 
CD1d expression on tumor cells. However, the 
functional role of tumor-infi ltrating NKTs in 
cHL biology and disease outcome is yet to be 
determined. It is postulated that NKTs may co- 
localize with CD1d-positive tumor-associated 
monocytes/macrophages (TAMs) in the micro-
environment of CD1d-negative tumors [ 204 ]. In 
addition, the increased number of TAMs is sig-
nifi cantly correlated to decreased survival rates in 
patients with cHL [ 205 ]. Targeting both RS cells 
and TAMs for immunotherapy with NKTs and/or 
their ligands seems a promising approach [ 206 ].  

8.12.2     Function of NK Cells in NHL 

 The strongest known risk factor for the develop-
ment of lymphoma is immunosuppression, pre-
dominantly NK cell dysfunction. NK cells are 
critical effectors in tumor immunology and were 
usually regarded as effector cells of innate immu-
nity. However, more recently it has been shown 
that they attribute to both innate and adaptive 
immunity, playing a regulatory role in shaping 
antigen-specifi c T- and B-cell responses [ 207 ]. 
A study evaluating NK cell activity in patients 
with NHL and HL prior to therapy applied lactate 
acid dehydrogenase (LDH) release cytotoxicity 
assay and revealed that decreased NK cell activ-
ity in NHL patients is signifi cantly correlated to 
unfavorable histology, with the lowest activity in 
very aggressive forms. The clinical stage of the 
disease also contributed to the degree of NK cell 
dysfunction. NK cell activity is signifi cantly 
impaired in HL compared to controls, irrespec-
tive of histological type and clinical stage. 
Notably, the most profound NK cell dysfunction, 
present and persistent in HL and present in very 
aggressive NHL, is associated with increased 
LDH release activity from peripheral blood 
mononuclear cells. NK cell function is greatly 
impaired in HL and in very aggressive NHL; in 
addition, impaired NK cell activity is associated 
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with increased spontaneous release activity of 
LDH from patients’ PBL, which is indicative of 
cell membrane damage, followed by the release 
of cytotoxic proteins, and eventually impaired 
NK cell activity [ 7 ].  

8.12.3     Adoptive Transfer of Highly 
Cytotoxic NK Cells 

 ADCC is considered one of the major effector 
functions of mAbs, which is triggered following 
the binding of the antibody Fc region to the Fcγ 
receptor (FcγR) on effector cells. Most NK cells 
express CD16 (FcγRIII), a receptor that binds to 
the Fc region of IgG1, and are the major effector 
cells related to ADCC [ 208 ]. Given the capabil-
ity of NK cells in controlling tumor growth and 
metastatic dissemination [ 209 – 213 ], novel NK 
cell- based cancer immunotherapies are promis-
ing [ 214 ]. The adoptive transfer of highly cyto-
toxic NK cells has emerged as a promising 
strategy in immunotherapy, which have been 
expanded from peripheral blood mononuclear 
cells (PBMC) by a feeder-cell-free expansion 
method [ 215 ]. Given the absence of cancer 
feeder cells or genetically modifi ed cells, it is 
considered a safe method [ 216 ,  217 ]; in addition, 
greater NK cell enrichment and higher expan-
sion fold than other reported methods [ 218 – 220 ] 
are achieved. T lymphocytes expansion is also 
accomplished. Lines of evidence suggest that the 
effi cacy of cancer treatment is enhanced by com-
bining mAb drugs with adoptively transferred 
 ex vivo  expanded NK cells [ 221 ]. Cytotoxicity 
and ADCC functions of expanded NK cells in 
combination with rituximab against CD20 +  lym-
phoma cell lines were compared with that of 
freshly isolated NK cells, which revealed that 
expanded NK cells  ex vivo  are signifi cantly more 
effi cient in the induction of activating receptor 
expression, production of IFN-γ and TNF-α, as 
well as cytotoxicity against various cancer cell 
lines including CD133 +  primary cancer cells, as 
compared to freshly isolated NK cells [ 215 ]. The 
emergence of other therapeutic mAbs including 
trastuzumab [ 222 – 224 ], cetuximab [ 225 ], and 
alemtuzumab [ 226 ] and their potential combina-

tions with expanded NK cell therapy are hypoth-
esized to be broadly applicable to a wide range 
of malignancies [ 215 ].   

8.13     Therapeutic Effi cacy 
of Antibody-Targeted 
Cytokines 

 Various limitations have led to trivial application 
of antibody-targeted cytokines in NHL. Some 
cytokines possess high systemic toxicity, hence 
limiting their application for specifi cally targeted 
tumor tissues. On the other hand, decreased func-
tion is observed when fused to other protein 
domains. Therefore, the potentiality of the 
antibody- targeted cytokine depends on the bind-
ing avidity and the immunomodulatory capacity 
of the fusion protein [ 10 ]. Various cytokines have 
been applied in the treatment of NHL, as dis-
cussed in the following. 

8.13.1     Interferon-α (IFN-α) 

 IFN, a natural glycoprotein, is subdivided into 
three subgroups of IFN-α, IFN-β, and IFN-γ; 
IFN-α is produced by leukocytes, whereas fi bro-
blasts secrete IFN-β, and IFN-γ is a product of 
activated T and NK cells. They are described 
to have immunoregulatoy activity combined 
with antiproliferative effects [ 227 ]. Monoclonal 
immunotherapy with IFN-α has yielded promis-
ing results in considerable number of patients 
with low-grade lymphoma [ 228 ]. Pilot studies 
were designed to assess the effi cacy of IFN-α in 
low-grade lymphomas [ 229 ]. It yielded partial 
remission in one patient among four in a clinical 
trial. Another clinical trial resulted in 4 remis-
sions among 13 patients [ 230 ]. A phase II trial 
studied the safety and effi cacy of rituximab and 
IFN-α-2a in 38 patients with relapsed or refrac-
tory low-grade or follicular B-cell NHL. A dose 
of 2.5 MIU of IFN-α-2a, three times weekly 
for 12 weeks, combined with 375 mg/m 2  ritux-
imab starting at week 5, yielded an OR of 45 %, 
with CR in 11 %. No toxicities were observed. 
Adverse events included asthenia, chills, fever, 
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headache, nausea, and myalgia [ 231 ]. The 
GELA- GOLELAMS FL2000 study investi-
gated the effi cacy of rituximab combined with 
CHVP (cyclophosphamide, adriamycin, etopo-
side, and prednisolone) chemotherapy and IFN 
in patients with FL as the fi rst-line treatment. 
An EFS of 53 % was achieved which was sig-
nifi cantly greater than those receiving the same 
regimen without rituximab [ 232 ]. Moreover, 
a meta- analysis investigated the effect of add-
ing IFN-α2 to chemotherapy in patients with 
newly diagnosed FL.    The regimen was found 
to be most effi cacious when relatively intensive 
initial chemotherapy was applied, when doses 
≥5 MIU with a cumulative dose ≥36 MIU per 
month were applied, and when it was applied 
in combination with chemotherapy rather than 
as maintenance therapy. In addition, remission 
duration was signifi cantly greater when IFN-α2 
was added to the regimen [ 233 ].  

8.13.2     Interleukin-2 (IL-2) 

 The pleiotropic cytokine, interleukin-2, a 15–17 kd 
glycoprotein, is secreted by T lymphocytes and 
plays a crucial role in their proliferation. Three 
types of membrane components, the α, β, and γ 
chains, comprise the receptor. A variety of recep-
tor types with different binding affi nities are 
formed by different combinations of the α chain 
(CD25, 55 kd glycoprotein), the β chain (75 kd), 
and the γ chain (50–64 kd). Remarkably, hemato-
poietic malignancies have been described to 
express a high level of IL-2 receptor [ 234 ]. 
Therefore, it was among the initial immunothera-
peutic agents. It plays a crucial role in the augmen-
tation NK cell cytotoxicity, induction of 
lymphokine-activated killer (LAK) cells, and acti-
vation of T and B lymphocytes, as well as mono-
cytes. Serum-soluble interleukin-2 (sIL- 2R) level 
has been found to possess a prognostic value in 
patients with DLBCL [ 235 ] and T-cell lymphoma 
[ 236 ]. In addition, its correlation with the tumor 
burden at diagnosis and during the clinical course 
of therapies in patients has been recently estab-
lished [ 237 ]. Notably, it has been mostly studied in 
HL patients as discussed in the previous chapter.  

8.13.3     Tumor Necrosis Factor- 
Related Apoptosis-Inducing 
Ligand (TRAIL) 

 TRAIL (Apo-2), a member of the TNF super-
family, consists of 28 receptors and 18 ligands. 
Similar to all other members of the TNF super-
family, it regulates cell survival and cell death 
upon infection or malignant transformation. A 
death-inducing signaling complex is formed, 
and eventually apoptosis is triggered after bind-
ing of TRAIL to its death-containing trans-
membrane receptor [ 240 ]. As explained by 
differential expression of its receptors and the 
absence of TRAIL-R1 and TRAIL-R2 on nor-
mal cells, they are spared, while cancer cells 
including lymphoma cells are selectively killed. 
As demonstrated in in vitro studies, triggering 
death receptors with TRAIL or agonistic anti-
bodies activates both extrinsic and intrinsic 
intracellular death signaling pathways [ 241 –
 243 ]. Various TRAIL mAbs are developed 
which are discussed below. 

8.13.3.1     Mapatumumab (HGS- ETR1, 
TRM-1) 

 Mapatumumab, an agonistic mAb directed 
against TRAIL-R1, is a fully human IgG1 
mAb activating both intrinsic and extrinsic 
apoptotic pathways upon binding. By using a 
single-chain variable fragment (scFv) human 
antibody phage library, the domain TRAIL-
R1-fl ag fusion protein is isolated, and its 
potent apoptosis induction in vitro and in vivo 
is established. In addition, it enhances the anti-
tumor effect of chemotherapy in mouse models 
[ 241 ]. It exerts its antitumor effect on different 
lymphoma cell lines through apoptosis induc-
tion, ADCC, and CDC. Notably, signifi cantly 
increased effi cacy was demonstrated when 
combined with rituximab in mouse models 
[ 244 ]. Doses up to 40 mg/kg every 10 days for 
6 months were well tolerated in chimpanzees 
[ 245 ]. During phase I/II trials on different solid 
tumors, mapatumumab was well tolerated, no 
patient required maximum tolerated dose, and 
a clinical response was reported in some cases 
(8 %) [ 245 ].  
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8.13.3.2     Lexatumumab (HGS-ETR2) 
 Lexatumumab, a human IgG1 anti-TRAIL-R2 
mAb, is constructed under the same conditions as 
mapatumumab, by making use of a human phage 
display library [ 241 ]. Even though it was found 
effi cient in apoptosis induction and growth inhi-
bition in NHL cell lines after cross-linking, no 
survival gain was reached with lexatumumab or 
with the combination of lexatumumab plus ritux-
imab in mice bearing human lymphoma [ 244 ]. It 
yielded no objective response in a phase Ib study 
in patients with solid tumors; however, stable 
disease was observed [ 246 ]. Overall, lexatu-
mumab has proved less benefi cial in the clinical 
setting, compared with mapatumumab. Further 
preclinical studies on different tumors need to 
be conducted to evaluate the effect of targeting 
TRAIL-R2 receptors [ 13 ].  

8.13.3.3     Conatumumab (AMG 655) 
 Conatumumab, a fully human IgG1 monoclonal 
agonist antibody targeting human TRAIL-R5 
upon binding, induces apoptosis via caspase acti-
vation [ 247 ]. The addition of recombinant TRAIL 
(rhApo2) to rituximab was found to induce a 
strong clinical effect; it was well tolerated in 
patients with low-grade lymphoma who previ-
ously failed therapy with rituximab, and a CR of 
25 % and PR 13 % were obtained [ 248 ]. The com-
bination of rhApo2L/TRAIL with rituximab led to 
increased survival rates in subcutaneous and dis-
seminated tumors in a xenograft model [ 249 ].    

8.14     Novel Immunotherapeutic 
Treatment Strategies 

 It has been postulated that eradication of human 
cancers may be accomplished by combining cancer 
treatment modalities [ 250 ]. The lack of specifi city is 
acknowledged as the major shortcoming of conven-
tional cancer therapies [ 251 ]. Promising results 
have been yielded by combining immunotherapy 
and conventional treatment procedures. Due to their 
different therapeutic mechanism, side effects differ, 
and toxicities are manageable [ 252 ]. In addition, the 
combination is proven to yield a synergic effect 
[ 54 ]. Furthermore, antibodies are considered ideal 

vehicles for drug and radionuclides delivery, due to 
their high specifi city [ 54 ]. Multiple clinical trials 
have been conducted in this regard, yet their clinical 
applications need to be established. 

8.14.1     Molecular Engineered 
Antibodies 

 Despite signifi cant improvement in the survival 
of lymphoma patients by the development of 
fi rst-generation mAbs, particularly rituximab, 
various limitations are encountered; hence, 
attempts have been made to overcome these con-
straints. The development of humanized or fully 
human next-generation antibodies demonstrated 
reduced immunogenicity, which made them more 
applicable in certain patient populations. More 
recently, novel technologies of antibody engi-
neering have been developed, which offer the 
potential to tailor antibody effector functions. 
Peipp et al. demonstrated that glycoprotein engi-
neering of the Fc region of the antibody yields 
promising activity in preclinical models. 
However, these novel molecules are still in their 
infancy, and further clinical studies are required 
to determine their effi cacy in improvement lym-
phoma treatment [ 48 ]. 

 Antibody engineering [ 10 ] is on the progress, 
and it is hoped to overcome some of these limita-
tions. Various novel techniques are discussed below. 

8.14.1.1     Target Antigen and Epitope 
Selection 

 Clonal idiotypes which have been developed 
recently ideally fulfi ll the abovementioned condi-
tions, and striking results have been obtained by 
the application of idiotype-specifi c antibodies in 
clinical studies. Since each antibody employed in 
this technique needs to be patient specifi c, it 
poses particular challenges. Currently, B-cell 
idiotype is mainly employed for tumor vaccina-
tion strategies [ 48 ]. Notably, none of the avail-
able antigens fulfi ll all the requirements for an 
ideal target antigen. Results from recent preclini-
cal studies demonstrated that the fi ne specifi city 
of the targeted epitope may critically affect effec-
tor mechanisms of particular antibodies.   
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8.14.2     Radioimmunoconjugates 

8.14.2.1     Radioimmunotherapy 
for Follicular Lymphoma 

 Complexing radioisotope to a monoclonal anti-
 CD20 has emerged as a promising treatment 
approach in patients with advanced FL. The two 
radioimmunoconjugates currently approved by the 
US FDA (Food and Drug Administration) are 
90Y-ibritumomab tiuxetan and 131I-tositumomab 
which combine the antitumor activity of rituximab 
with the cell-killing activity of radioisotopes [ 253 ]. 
High response, OS, and PFS rates have been yielded. 
Hematologic toxicity (neutropenia, thrombocytope-
nia) has been observed as the most common adverse 
event [ 254 ]. The effi cacy of 90Y-ibritumomab tiux-
etan consolidation therapy with no further therapy in 
patients who at least achieved PR after different 
induction chemotherapy regimens was studied in 
phase III trial (FIT trial) which yielded a high 
PR-to-CR conversion rate and a signifi cantly pro-
longed median PFS by 2 years. Interestingly, in the 
subgroup of patients who received rituximab-based 
induction chemotherapy, PFS was not different 
between treatment arms [ 255 ].  

8.14.2.2     CD20-Directed 
Radioimmunotherapy 

 Signifi cant antitumor activity has been observed by 
applying beta-emitting radioimmunoconjugates in 
patients with relapsed or refractory B-cell lym-
phoma [ 256 ,  257 ], comprising both patients refrac-
tory to mAbs [ 258 ,  259 ] and chemotherapy [ 260 ]. 
To reduce antibody binding to normal B cells by 
depleting peripheral blood B cells and lymph node 
B cells, radioimmunotherapy (RIT) is administered 
with large quantities of unlabeled “cold” antibodies 
to CD20, 1 week and 4 h prior to the administration 
of radiolabeled antibodies to CD20 [ 50 ,  261 ]. 
Therefore, suffi cient amounts of radiolabeled anti-
body bypass these sites and eventually penetrate 
less accessible compartments including the lymph 
nodes and target tumor cells. Nonetheless, clinical 
and experimental studies in mice have revealed that 
even low blood rituximab concentrations lead to 
reduction in tumor cell targeting, followed by 
impairment in the clinical effi cacy of CD20- directed 
RIT [ 262 ]. On the other hand, several cycles of 

“cold” rituximab may lower the effect of subse-
quent treatment [ 263 ,  264 ]. Due to the competition 
for the CD20 target, RICs targeting CD20 are not 
commonly used in medical practice. 

 CD20-directed RIT treatment in lymphoma 
patients is challenging in those previously treated with 
rituximab, as explained by the antigenic drift and pos-
sible blockage of the CD20 antigen. Therefore, RIT 
targeting other antigens seems intriguing. 

   131I-Tositumomab 
 131I-tositumomab (Bexxar) is a radioimmunocon-
jugate consisting of the radioisotope 131I and the 
murine CD20 mAb, tositumomab. 131I is both a 
beta and gamma emitter; therefore, it can be used for 
imaging and dosimetry. Initial clinical trials have 
been conducted by Kaminski et al. using either non-
myeloablative or myeloablative doses [ 254 ]. An 
ORR of 50–70 %, with 20–40 % CR (in a pooled 
analysis of 250 patients with relapsed indolent or 
transformed lymphoma treated in fi ve phase I/II tri-
als), and a 5-year PFS of 17 % were achieved when 
used as monotherapy in the relapsed setting [ 257 ]. 
Surprisingly, durable responses are observed in 
complete responders. An overall of 32 % of com-
plete responders including heavily pretreated 
patients with bone marrow infi ltration, histologic 
transformation, and bulky disease yielded a PFS of 
1 year or longer; in addition, approximately 17 % of 
the original treated population was still alive and 
disease-free in the 5-year follow-up [ 265 ]. Overall, 
131I-tositumomab has proved effective in ritux-
imab-refractory patients [ 257 ] and achieved signifi -
cant results in terms of OR and CR rates in 
comparison with the unlabelled parent mAb tositu-
momab. In addition to experiences in refractory 
patients, 131I-tositumomab has also been applied in 
the front-line setting: An ORR of 95 %, CR of 75 %, 
and a median time to tumor progression (TTP) of 
>5 years were achieved in a clinical study on 76 pre-
viously untreated patients with FL. Nonetheless, the 
low tumor burden in the patient population might 
have biased the results [ 266 ].  

   90Y-Ibritumomab Tiuxetan Monotherapy 
 90Y-ibritumomab tiuxetan consists of the pure 
beta-emitter, yttrium-90 isotope. Due to its 
nature, it cannot be applied in imaging; in 
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 addition, densitometry is not routinely required, 
and dosing is done on the basis of body weight, 
with dose adjustment in patients with mild throm-
bocytopenia. It has the appeal of being adminis-
tered on an outpatient basis, and no isolation 
measures are required. Promising results in the 
treatment of NHL, specifi cally FL, have been 
obtained, with an ORR of 50–80 % and CR of 
20–30 %. It has been effective in rituximab-
refractory patients [ 267 ]. In comparison with 
rituximab, 90Y-ibritumomab tiuxetan led to a 
higher ORR (80 vs. 56 %) and CR (30 vs. 16 %). 
However, no remarkable differences were 
observed in PFS or response duration [ 257 ]. A 
study demonstrated a long-term response exceed-
ing 1 year, with a median duration of 21 months 
in 25 % of the treated population. Durable 
responses were mostly observed in complete 
responders, in patients with stage I/II or non-
bulky disease [ 268 ].   

8.14.2.3     CD37-Directed RIT 
 CD37-directed 177Lu-tetulomab demonstrated 
signifi cantly enhanced inhibition of cell growth as 
compared with CD20-directed 177Lu-rituximab. 
177Lu-tetulomab vs. 177Lu-rituximab revealed 
a growth delay factor of 1.6. 177Lu-tetulomab 
showed lower or similar uptake in lymphoma 
cells compared to 177Lu-rituximab. Notably, as 
explained by higher internalization of tetulomab 
compared to rituximab (almost ten times), the 
differences in cell growth inhibition were higher 
for 18-h than for 2-h incubation with the RICs. In 
SCID mice, the intravenously injection of Daudi 
cells was more effective when combined with 
50 and 100 MBq/kg 177Lu-tetulomab vs. unla-
beled tetulomab. CD37-targeted RIT has been 
previously studied with 131I-labeled murine 
monoclonal antibody (MB-1), both in mouse and 
human models [ 269 – 271 ]. In comparison with 
CD20, CD37 yielded a higher grade of internal-
ization and de-halogenation of 131I-labeled RIC 
[ 269 ]. Despite clinical responses observed in that 
study, CD20 was chosen for further development. 
No subsequent efforts have been made to target 
CD37 with RICs. Initial studies with CD37 RIT 
used the chloramine-T method for 131I labeling 
[ 269 ]. However, the application of 131I-labeled 

Abs with the iodogen or the chloramine-T 
method is limited as they lack maintenance in the 
cells after internalization of the antigen–antibody 
complex [ 272 ]. Remarkably, metallic radionu-
clides labeled to antibodies with chelators are 
better preserved intracellularly after internaliza-
tion [ 273 ]. Several metallic nuclides are applied 
for RIT against CD37. As indicated by clinical 
studies, NHLs are responsive to low linear energy 
transfer (LET) β-emitters [ 256 ,  274 ]; therefore, 
177Lu has been chosen in clinical studies [ 55 ]. 
In addition, it is favored by its availability, suit-
able radiochemistry and half-life, and promising 
radiation properties. In another study conducted 
by Gethie et al. in [ 275 ] 177Lu-tetulomab dem-
onstrated relatively high toxicity in SCID mice. 
It was postulated that the unusual biodistribu-
tion, as well as the high radiosensitivity of these 
DNA double-strand repair- defective mice (due 
to the SCID mutation), has led to high toxicity 
level. Yet, in line with the previous study, thera-
peutic effect of 177Lu-tetulomab was signifi -
cantly greater than the unlabeled antibody [ 276 ]. 
125I-labeled tetulomab and rituximab have also 
been compared which revealed similar antigen-
binding properties for tetulomab and rituximab 
(Kd: 2.7–12.7 for tetulomab and 4.8–12 for 
rituximab, depending on the applied cell line). 
The variance in the obtained Kd for different 
cell lines could be explained by the possible bias 
caused by the curve-fi tting method, as the param-
eters measured may infl uence each other. On the 
other hand, differences in antigen expression in 
various cell lines due to mutations or posttrans-
lational changes could be involved [ 55 ]. Overall, 
tetulomab antibody was described as an appro-
priate candidate for RIT for CD37- expressing 
lymphoma cells. However, future clinical inves-
tigations are warranted [ 55 ]. Remarkable results 
have been obtained with anti- CD20 mAbs con-
jugated to radioisotopes. Patients refractory 
to rituximab who received Zevalin–rituximab 
combination achieved an ORR of 74 % with a 
duration of response of 8.7 months [ 257 ]. As 
demonstrated in the FIT trial, a single injection 
of Zevalin in fi rst remission FL led to 3-year 
increase in PFS with reversible tolerable toxicity 
[ 255 ]. In conclusion, radioimmunotherapy has 
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emerged as the most effective single agent in the 
treatment of FL; in addition it has proved ben-
efi cial in other lymphoma subtypes. Nonetheless, 
the need to logistic procedures has limited its 
application in the clinical setting [ 13 ].   

8.14.3     Immunotherapy 
with Genetically Modifi ed 
T Cells  

 Adoptive immunotherapy with genetically modi-
fi ed T cells expressing chimeric T-cell receptors, 
which target lymphoma-associated antigens, has 
become an interesting approach [ 38 ]. It is based on 
grafting cytotoxic T lymphocyte with chimeric 
antigen receptors consisting of a tumor-specifi c 
single- chain antibody (scFv) and a cellular activa-
tion intracellular signaling domain [ 277 ]. Evidence 
shows that genetically modifi ed T cells with inte-
gral membrane scFv chimeric signaling receptors 
react with tumor-associated antigens in a non-
MHC-restricted manner, thereby bypassing the 
MHC–peptide complex loss, which is a signifi cant 
escape mechanism for most tumors [ 277 – 279 ]. 
The intracellular signaling domain, which induces 
cellular activation, is derived from the cytoplasmic 
part of a membrane-bound receptor and induces 
cellular activation. The CD3ζ chain has manifested 
as the most potent and suffi cient T-cell activation 
mediator [ 280 ]. The introduction of a chimeric 
T-cell antigen receptor gene, consisting of an extra-
cellular scFv and an intracellular part of a signaling 
molecule (CD3ζ), has led to the construction of 
tumor-specifi c cytotoxic T lymphocyte [ 281 ]. To 
elicit substantial lymphocyte activation, adequate 
co-stimulatory signals are required [ 38 ]. T cells 
modifi ed with chimeric antigen receptors incorpo-
rating a CD28 signaling domain have been found 
much more active when tested in in vitro and in 
murine models [ 277 ,  279 ,  280 ]. 

8.14.3.1     Engineered CD20- Specifi c 
T Cells 

 Adoptive immunotherapy with T cells express-
ing CD20-specifi c chimeric T-cell receptors has 
led to immense improvement in the treatment of 
lymphoma patients. However, modifi cation of 

the  cellular signaling pathways in target tumor 
cells by treatment with engineered CD20-specifi c 
T cells has yet to be fully elucidated [ 282 ]. 
Engineered T cells, expressing a single-chain 
anti-CD20 Ab, are fused to the T-cell recep-
tor complex CD3ζ chain and MHC-unrestricted 
cytolysis of CD20-specifi c lymphoma cells [ 283 ]. 
The CD3ζ chain has been shown to result in suf-
fi cient T-cell activation signals [ 284 ]. In addition, 
CD3 and CD28 signals have revealed fundamental 
roles in cellular proliferation and antigen-induced 
IL-2 secretion of grafted T cells in an anti-CEA 
scFv-mediated T-cell adoptive immunotherapy 
study [ 280 ]. Therefore, both signals are elucidated 
by one recombinant receptor [ 280 ,  285 ]. NHL 
Raji cell lines were co-cultured with genetically 
modifi ed T cells with anti- CD20scFvFc/CD28/
CD3ζ or anti-CD20scFvFc gene, and the cytolytic 
activity of this engineered CD20-specifi c T cells 
was assessed. It was shown that treatment of Raji 
cells with T cells genetically modifi ed with anti-
CD20scFvFc/CD28/CD3ζ chimera (compared to 
anti-CD20scFvFc) yields a higher cytotoxicity 
against Raji cells. Additionally, engineered CD20-
specifi c T cells led to a decrease in IL-10 secre-
tion, as well as inhibition of phosphor-STAT3 and 
Bcl-2 expression in Raji cells, possibly through 
the downregulation of p38 MAPK and NF-κB 
activity. Thus, it was concluded that treatment of 
Raji cells with engineered CD20-specifi c T cells 
enhances its antitumor activities against CD20 +  
tumor cells through the inhibition of cellular p38 
MAPK  signaling pathways [ 282 ]. Furthermore, 
engineered CD20-specifi c T cells were shown 
to particularly lyse CD20 +  target tumor cells and 
secrete IFN-γ and IL-2 after binding to their tar-
get cells. A recombinant anti-CD20scFvFc/CD28/
CD3ζ gene has provided both primary and co- 
stimulatory signals to T cells through one chimera. 
It was revealed that engineered CD20-specifi c T 
cells specifi cally lysed CD20- positive target tumor 
cells and produced IFN-γ and IL-2 cytokines after 
binding to their target cells. Additionally, they sig-
nifi cantly inhibited IL-10 secretion. Serum IL-10 
is elevated in a number of patients with NHL, and 
a high IL-10 is associated with poor survival rate 
[ 286 ]. In addition exogenous IL-10 signifi cantly 
increases NHL tumor cell proliferation [ 287 ]. 
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It enhances growth progression and aids in the 
pathogenesis of NHL through autocrine–paracrine 
loops [ 287 ,  288 ]; hence, its inhibition seems cru-
cial in the treatment of NHL. Engineered CD20-
specifi c T cells were found to inhibit p-Lyn and 
p38 MAPK activities and decrease Sp1 and IL-10 
levels in targeted Raji cells. In addition, genetically 
modifi ed T cells reduced NF-κB DNA-binding 
activities and downregulated p-STAT3 and Bcl-2 
expression levels. 

 It has been established that the downregulation 
of NF-κB activity induced by rituximab is medi-
ated through the p38 MAPK signaling pathway 
and that phosphor-Lyn and p38 MAPK activities 
are inhibited by rituximab, resulting in the inhibi-
tion of IL-10 transcription via Sp1. Consequently, 
downregulation of the autocrine–paracrine loop of 
IL-10/IL-10R signaling leads to partial inhibition 
of p-STAT3 and Bcl-2 expression. Sp1 transcrip-
tion factor is activated by p38 MAPK, and Sp1 is 
involved in the regulation of IL-10 expression in a 
number of cell lines [ 289 ]. Engineered T cells 
expressing anti-CD20scFvFc/CD28/CD3ζ have 
displayed stronger inhibition of p38 MAPK activ-
ity, downregulation of Bcl-2 expression, and IL-10 
secretion, compared to the engineered T cells 
expressing anti-CD20scFvFc. It confers to 
increased cytotoxicity via inhibition of p38 MAPK 
activity and decrease in IL-10 secretion in the tar-
get tumor cells. Therefore, it is postulated that 
modifi cations of the cellular p38 MAPK signaling 
pathways in target cells hold potential in the anti-
tumor effect of adoptive T-cell therapy [ 282 ].   

8.14.4     Genetic Augmentation 
of Adoptive T Cells 

 Various challenges are encountered during the 
development of T-cell cancer immunotherapy; 
since T-cell therapy targets are mostly self- 
proteins, developing tolerance and weak anti-
genic properties, their cytotoxic activity is limited 
[ 290 ]. In addition, the immune system may be 
antagonized by the expression of inhibitory 
ligands and secreted factors. Thus, genetic modi-
fi cation of adoptively transferred T cells has been 
developed to overcome these evasive mechanisms. 

By redirecting T cells to tumor antigens through 
the expression of transgenic TCRs or chimeric 
antigen receptors (CARs), negative selection can 
be bypassed, and much higher levels of tumor-
specifi c cells, with reduced dependence on co-
stimulation and target cell MHC expression, are 
yielded. Transgenic expression of activating 
cytokines such as IL-2 and IL-15 can restore 
lymphocyte activity; in addition, suppressive fac-
tors can lead to T-cell resistance through overex-
pression of dominant-negative receptors [ 291 ]. 
Transgenic expression of receptors for tumor-
secreted chemokines is believed to improve the 
localization of T cells at tumor site [ 292 ]. On the 
other hand, genetic modifi cation may success-
fully result in T-cell resistance to immunosup-
pressive drugs [ 293 ]. 

8.14.4.1     Redirecting T-Cell Specifi city 
with Transgenic TCRs 

 Given that tumor antigens are typically recognized 
as “self,” tumor-specifi c T cells are negatively 
selected during development, which have low-affi n-
ity TCRs, are often anergic, and consequently have 
poor tumor-killing activity. However, large numbers 
of highly active tumor- specifi c T cells can be gener-
ated in a short period of time by expression of trans-
genic TCRs which are specifi c for antigens 
expressed on tumor cells, conferring to tumor speci-
fi city on non-tumor- specifi c T cells. Typically, 
transgenic TCRs are generated by cloning a and b 
subunits of class I (HLA)-restricted TCRs from 
tumor-reactive cytotoxic T-cell clones. Then inte-
grating retroviral or lentiviral vectors or plasmids 
are used for transferring the cloned TCR into patient 
T cells,  ex vivo . Transgenic TCR expression is 
favored by the ability to optimize affi nity between 
TCRs and their target antigens, hence improving 
activation. Since cancer-specifi c T cells are HLA 
dependent, their treatment scope is limited to MHC-
matched tumors, as well as tumors in which HLA 
antigens haven’t been downregulated [ 294 ].  

8.14.4.2     Redirecting T-Cell Specifi city 
with CARs 

 Transgenic CARs have been developed to tackle 
the limitations of TCRs. CARs are synthetic 
constructs which have the appeal of conferring 
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 target antigen specifi city without HLA restric-
tion. It consists of an extracellular antigen-
binding domain, a transmembrane region, and a 
signaling endodomain. The extracellular domain, 
typically a single-chain variable fragment (scFv), 
is derived from a tumor-specifi c monoclonal 
antibody. The hinge/spacer region between the 
binding and transmembrane domains provides 
fl exibility and increased access to antigens [ 295 ]. 
The application of an antibody-derived domain 
for antigen recognition facilitates the recogni-
tion of both protein-derived peptides and surface 
proteins with varying degrees of posttranslational 
modifi cation [ 296 ]. In addition, greater affi nity to 
antigens are observed compared with TCRs, lead-
ing to more stable immunological synapse [ 297 ]. 
Three groups of CARs have been developed to 
date, which maintain progressively increasing 
co-stimulatory activity. First- generation CARs, 
which contain a single signaling unit derived 
from the CD3z chain or Fc1RIg IgG receptor, 
have yielded modest clinical response when 
transferred to adoptively transferred lymphocytes 
for treatment of lymphoma [ 298 ]. However, they 
have been inadequate in achieving full T-cell 
activation. In an attempt to overcome this limi-
tation, tumor-specifi c CAR was expressed on 
Epstein–Barr virus (EBV)-specifi c T cells [ 299 ]. 
An additional co- stimulation was observed 
when T-specifi c cells encountered EBV anti-
gens in vivo. EBV-specifi c cytotoxic T lympho-
cytes (CTLs) yielded greater response rates and 
revealed tumor regression or necrosis in four out 
of eight patients with active disease. 

 Since full activation and proliferation of T 
cells require signaling through the CD28 receptor, 
the CD28 intracellular domain is inserted proxi-
mal to the CD3z endodomain in the second gen-
eration; thus, its stimulatory effects are enhanced 
[ 300 ]. The combining of two signaling domains 
results in increased proliferation, decreased acti-
vation-induced apoptosis, and increased cyto-
kine secretion [ 296 ]. In addition, other signaling 
sequences such as CD137 (4-1BB) and CD134 
(OX40) have been included in third-generation 
CARs, and T-cell function is improved [ 301 ]. 
Anti-CD19 CAR (FMC63 antibody- CD28-
CD3z) yielded complete response in a patient 

with high-grade progressive follicular lymphoma 
[ 302 ]. Other active clinical trials involving all 
three generations of CARs have been reviewed, 
by Cooper and colleagues [ 303 ], and second- and 
third-generation CARs were found to be superior 
[ 304 ], yet their potentially supraphysiological 
signal is a matter of concern [ 305 ]. Events such 
as acute respiratory distress syndrome have been 
reported in a patient with metastatic colon cancer 
rapidly after infusion of autologous T cells trans-
duced with an ERBB2-specifi c CAR (herceptin-
CD28-CD137- CD3z); in addition fever and 
hypotension with elevated cytokine levels within 
24 h have been reported in a patient with bulky 
chronic lymphocytic leukemia after receiving T 
cells transduced with a CD19-28z CAR. Notably, 
more studies are mandated to reveal their adverse 
events in lymphoma patients [ 306 ].   

8.14.5     Genetic Modifi cations 
of NK Cells  

 NK cells as targets for cancer immunotherapy 
have drawn attention in recent years. Contrary to 
T cells, NK cells are not antigen specifi c, and their 
cytotoxicity is directed at a number of targets on 
cells expressing low levels of MHC class I [ 307 ]. 
Studies on CD20+ lymphoma have revealed that 
genetic modifi cation with CARs can retarget NK 
cells specifi cally to tumor antigens [ 308 ]. A recent 
comparison between the classical CAR endodo-
main of CD28-CD3z vs. 2B4 (CD244), an impor-
tant regulator of NK cell activation, revealed that 
the addition of the 2B4 endodomain proximally to 
CD3z signifi cantly enhances NK cell activation as 
well as cytokine secretion in a tumor-specifi c 
manner [ 309 ]. Genetic modifi cations in the pro-
duction of cytokines (IL-2, IL-12, and IL-15) can 
increase survival, as well as the antitumor activity 
of NK cells in vivo [ 310 ]. Remarkably, the lower 
potential of NK cells in GvHD induction com-
pared to T cells renders them more suitable targets 
for redirecting antigen specifi city modifi cation 
after allogeneic transplant; however, more studies 
in this regard seem mandatory [ 303 ]. Overall, 
genetic modifi cations of adoptively transferred 
cells seem to improve the clinical outcome of 
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lymphoma patients. However, further clinical 
studies are required to ensure the long-term safety 
of adoptively transferred lymphocytes [ 290 ].   

8.15     Vaccines 

 Targeting the immune system with inactivated 
tumor cell vaccines, which provides several 
tumor-specifi c and associated antigens as targets 
for the immune system, has emerged as an attrac-
tive therapeutic option [ 11 ]. Therapeutic vaccina-
tion has been recognized as potential 
complementary treatment for NHL. Due to the 
lack of co-stimulatory molecules in B-NHL, it 
cannot elicit proper antitumor responses. Various 
approaches have been developed to increase the 
immunogenicity of the tumor cells to be applied 
in the construction of cellular vaccines. Gene 
transfection of co-stimulatory molecules into 
tumor cells has been proposed to enhance their 
immunogenicity [ 311 ]. Genetic modifi cation of 
tumor B cells with CD40L has been employed in 
this regard. Nonetheless, many diffi culties are 
encountered in gene transfer-based immunother-
apy, which is explained by the presence of tumor 
cells refractory to transfection, leading to low 
transfer effi ciency and transgene expression 
level. Moreover, it is time consuming and has 
biosafety concerns. Therefore, attempts have 
been made to develop a simple method that 
allows the enhanced expression of several co- 
stimulatory molecules in recent years. It has been 
reported that a therapeutic whole-cell vaccine 
formulated with IL-2 adsorbed onto aluminum 
hydroxide as cytokine-depot formulation exerts 
potent antitumor-specifi c immunity, induces 
delayed tumor growth, controls tumor dissemina-
tion, and eventually leads to longer survival in 
mice with A20-lymphoma [ 238 ]. 

8.15.1     Salmonella Vaccine 

 A novel approach to design improved whole 
tumor cell vaccines for B-NHL was developed 
using salmonella (SL) infection. Salmonella 
infection is found to upregulate CD80, CD86, 

CD40, and MHC-II expression in lymphoma 
cells. In addition, strong antitumor-specifi c 
immunity and extended survival in lymphoma- 
bearing mice is observed with the administration 
of therapeutic vaccination with infected and then 
irradiated lymphoma cells combined with IL-2. 
It is considered to be the basis of an effective 
immunotherapy against B-NHL [ 12 ]. Infection 
of tumor cells with well-characterized, attenu-
ated bacteria strains is proposed to upregulate 
the co- stimulatory molecules on the cell surface 
within a short period of time, hence modifying 
the immunogenicity of such cells in a simpler and 
faster way [ 12 ]. The therapeutic effect of a vac-
cine formulated with whole tumor cells combined 
with IL-2 adsorbed onto aluminum hydroxide as 
a depot formulation in an aggressive lymphoma 
murine model has been reported, which resulted 
in strong antitumor immunity, associated with 
delayed tumor growth and longer survival in A20-
bearing mice [ 238 ]. Using salmonella infection 
improves the immunogenicity of tumor cells by 
modifying their phenotype. In addition, extended 
survival in lymphoma-bearing mice was induced, 
and an additive effect is obtained by combin-
ing these cells to the IL-2 depot system [ 12 ]. 
Attenuated strains of salmonella have clearly 
shown to be safe in preclinical models, as well 
as in several phase 1 and 2 clinical trials [ 312 –
 314 ]. It is well established that B-cell malignan-
cies can function as effective APCs, presenting 
tumor antigens directly to T cells. Tumor cell 
transfection with co-stimulatory molecules has 
been applied to achieve this. However, the pres-
ence of CD80 or CD86 on tumor cells is found to 
induce CD8+ T-cell-mediated rejection in many 
animal models, in addition to memory response 
induction. Infection of lymphoma cells results in 
rapid upregulation of CD80, CD86, and CD40 
as well as MHC-II in these cells, thus increasing 
their immunogenicity and APC function in both 
mouse lymphoma cell line and primary human 
lymphoma cells isolated from patients with differ-
ent B chronic lymphoproliferative disorders [ 12 ]. 
Many pathogen-associated molecular patterns 
(PAMPs) are recognized in salmonella which 
are considered as agonist of TLRs and other pat-
tern recognition receptors (PRRs) [ 315 ,  316 ]. 
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They are known to potently induce B-cell activa-
tion, increase the production of proinfl ammatory 
cytokines, and upregulate co- stimulatory mol-
ecule expression [ 317 ]. Specifi cally, TLR-7 and 
TLR-9 agonists cause an increased expression of 
MHC-I and co- stimulatory molecules on B cells 
[ 318 ,  319 ]. In addition, TLR agonists induce 
the upregulation of co-stimulatory molecules by 
normal and clonal B cells, which partly explains 
for the effect of salmonella infection vaccine on 
lymphoma cells. LPS or fl agellin stimulation is 
also known to increase CD80, CD86, CD40, and 
MHC-II expression in A20 cells. However, they 
are less effective than salmonella infection. Since 
salmonella infection stimulates different PRRs 
at the same time, a greater intracellular signal is 
produced compared with those generated by a 
single TLR agonist. The authors of the study pro-
posed salmonella-modifi ed A20 cells as the only 
effi cient inductor of the recruitment of activated 
CD8+ T cells to the tumor [ 12 ]. As observed 
in the clinical setting, MHC-II expression on 
DLBCL cells is correlated with higher num-
bers of tumor-infi ltrating lymphocytes and pro-
longed survival. Therefore, it is hypothesized that 
MHC-II loss in B-cell lymphomas leads to tumor 
immunoevasion followed by decreased patient 
survival. CD40 expression on DLBCL tumors has 
been associated with improved prognosis [ 18 ]. 
In addition, a correlation between loss of CD86 
expression and decreased tumor- infi ltrating lym-
phocytes in aggressive human B-cell lymphomas 
has been observed. Nonetheless, further investi-
gations are mandated to establish the relationship 
between co-stimulatory molecule expression and 
prognosis of patients with B-cell malignancies 
expressing MHC-II [ 19 ]. A strong Th1-type IFN-
mediated tumor antigen-specifi c cellular response 
elicited at both local and systemic levels com-
bined with a strong recruitment of neutrophils 
and NK cells to the tumor as well as activated 
NKT and CD8+ T cells explains the benefi ts of 
combined treatment [ 320 ]. Overall, the feasibil-
ity of designing a cell-based immunotherapy 
against human lymphoma using lymphoma cells 
modifi ed  ex vivo  by salmonella infection in com-
bination with a system for in vivo slow release of 
IL-2 should be taken into consideration for more 

effi cient immunotherapy in lymphomas; in addi-
tion further clinical trials are necessitated before 
its clinical application [ 12 ]. However, a few stud-
ies on animal models are available. Houghton 
et al. reported marked increase in tumor-asso-
ciated neutrophils (TANs) in animals receiving 
the salmonella-activated lymphoid tumor cells. 
In addition, they described a pro-tumoral as well 
as an antitumoral role for neutrophils [ 321 ]. In 
the same line, Fridlender et al. indicated that 
TAN can possess an antitumorigenic (N1) or a 
pro-tumorigenic (N2) phenotype. Cytokine and 
chemokine secretion, download of arginase, and 
killing tumor cells are the recognized antitumor 
mechanism; moreover, they are potential pro-
ducers of reactive oxygen species by which the 
growth and invasiveness of tumor cells are modi-
fi ed [ 322 ]. Marked increase in tumor-associated 
neutrophils (TANs) was demonstrated in animal 
models, receiving the salmonella-activated tumor 
cells [ 321 ]. TANs are shown to possess both an 
antitumorigenic (N1) and a pro-tumorigenic (N2) 
phenotype [ 322 ]. Secretion of cytokines and 
chemokines, download levels of arginase, and 
enhanced capability of killing tumor cells in vitro 
are the recognized antitumor mechanisms of N1 
TANs [ 322 ]. Reactive oxygen species and pro-
teinases capable of modifying tumor growth and 
invasiveness are known to be produced by killer 
tumor cells [ 322 ,  323 ].  

8.15.2     DNA Vaccines 

 In an attempt to develop innovative approaches 
for cancer immunotherapy, DNA vaccines were 
constructed which offer a great therapeutic 
potential [ 324 ]. Plasmid DNA containing a DNA 
sequence coding for an antigen and a promoter 
for gene expression in the mammalian cell is 
applied. Since plasmid DNA does not require 
formulation or a viral vector for delivery, it is 
considered a safe and stable approach which 
sustains the expression of Ag in cells for lon-
ger durations compared to RNA or protein vac-
cines. Some strategies are used for enhancing 
the effi cacy of DNA vaccines to overcome their 
weak immunogenicity [ 325 ]. DNA vaccines are 
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novel genetic vaccines which deliver antigens 
and engage in multiple routes to activate innate 
immunity as well as adaptive immunity against 
cancer antigens. 

 The molecular format of antigen to select the 
desired effector pathway can be modifi ed by the 
vaccine design [ 326 ]. Small amounts of antigen 
produced by DNA vaccines lead to effective 
priming, since amplifi cation of antigen levels is 
obtained by the “prime/boost” strategies [ 327 ]. 
Electroporation is an effi cient technique used 
during boosting which increases both antigen 
levels and infl ammatory activity [ 327 ,  328 ]. In 
order to maximize epitope-specifi c immunity 
during engineering DNA vaccine design, T-cell 
epitope-driven vaccine design was developed.  

8.15.3     Epitope-Driven Vaccine 
Design 

 Antitumor vaccination is favored by its poten-
tial in harnessing the full power of the immune 
system [ 324 ]. Induction of antitumor CD8 +  T 
cells, which exhibit cytolytic activity towards 
tumor cells expressing tumor-specifi c or tumor- 
associated Ags, is the mainstay of most immuno-
therapeutic approaches. Despite the key role of 
cytotoxic T lymphocytes (CTLs) in the genera-
tion of antitumor therapeutic effects, immuniza-
tion strategies solely emphasizing on CTLs often 
prove suboptimal. The generation and mainte-
nance of CTLs response are dependent on CD4 +  
T cells through the supply of cytokines or by the 
major pathway, including dendritic cell (DC) 
licensing [ 329 – 331 ]. In addition, CD4 +  T helper 
(Th) lymphocytes promote B-cell activation and 
proliferation to produce neutralizing antibod-
ies [ 332 ]. Considering the critical role of CD4 +  
T cells, inclusion of effi cient CD4 +  T-cell epit-
opes seems an interesting approach to enhance 
vaccine effi cacy. The identifi cation of peptide 
sequences recognized by CD8 +  or CD4 +  T cells 
on antigenic proteins has been feasible by T-cell 
epitope mapping. 

 Detection of T-cell epitopes is recognized to 
benefi t the design of prophylactic, diagnostic, 
and therapeutic vaccines [ 333 ]. The aim of thera-

peutic vaccines is to intensify an existing immune 
response. Hence, identifi cation of epitope targets 
in a given antigen capable of eliciting a T-cell 
response remains the cornerstone. In the T-cell 
epitope-driven vaccine design immunoinformat-
ics are employed for the identifi cation of poten-
tial targets against cancer [ 334 ], as well as for the 
development of “in silico DNA vaccines.”  

8.15.4     Preclinical Effi cacy 
of Epitope- Driven DNA 
Vaccines Against B-Cell 
Lymphoma 

 Gene-based vaccines and immunoinformatics 
lead to the exploration of epitope-based DNA 
vaccines against B-cell lymphoma by providing 
molecular precision tools offered. Since idiotypic 
immunoglobulin (Ig)M expressed by B-cell 
 lymphoma is a clonal marker and a tumor-spe-
cifi c antigen, it is considered an ideal target for 
immunotherapy. The hypervariable regions and 
mainly the complementarity-determining regions 
contain the idiotypic antigenic determinants. 
Therefore, specifi c immunogenic epitopes identi-
fi ed from these tumor antigens can be used as 
vaccines to activate an immune response against 
tumor cells [ 335 ]. DNA immunization of outbred 
mice with different patient-derived epitopes 
encompassing the variable heavy (VH) CDR3 
region has been demonstrated to trigger a specifi c 
antibody immune response able to recognize 
native idiotypic immunoglobulins expressed on 
the surface of individual patient’s tumor B cells 
[ 336 ]. Specifi c immune response through 
plasmid- based gene transfer is induced by the 
“molecular rescue” of the short VHCDR3 region 
of the idiotypic Ig, expressed on B cells of chronic 
lymphoproliferative disorders. Therefore, effec-
tive specifi c antibody response was achieved by 
signifi cant matching potential of individual 
VHCDR3 peptides. By specifi c targeting of the 
individual CDR3 region, xenogenic or allogeneic 
epitopes contained in the variable and constant 
regions of the idiotypic Ig are excluded; there-
fore, the safety margin is enhanced when trans-
ferred in a syngeneic context. Rinaldi et al. 
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investigated the potential in vivo immunogenicity 
and safety of CDR3-based genetic immunization 
in the murine 38 C13 B-cell lymphoma tumor 
model. Therefore, epitope-based DNA vaccines 
were developed and investigated in murine B-cell 
lymphoma models by Rinaldi et al.; all three epi-
topes had low dissociation half- life and a low 
score for ligation strength value range [ 328 ]. 
Lines of evidence also confi rm that the majority 
of the clonal Ig-derived peptides have a low pre-
dicted binding affi nity [ 337 ,  338 ]. T-cell epitope 
prediction analysis is routinely performed using 
currently in progress predictive tools available at 
the Immune Epitope Database and Analysis 
Resources (IEDB) website (  http://www.
immuneepitope.org    ) [ 361 ,  362 ]. Various methods 
have been applied to modify the poor immunoge-
nicity of a “self”-tumor-associated epitope, 
including alteration of the amino acid residues 
that interact with the MHC class I molecules at 
the peptide-binding cleft, possibly leading to the 
generation of potential agonist or “heteroclitic” 
epitopes resulting in enhanced binding to MHC 
class I [ 339 ]. Substituting suboptimal primary 
anchors with more optimal amino acids in “het-
eroclitic” peptides, in which enhanced stability of 
the peptide–MHC complex compared to native 
peptides is observed leading to improved immu-
nogenicity [ 340 ]. Remarkably, “heteroclitic” 
peptides are found to trigger T-cell responses 
against the native peptide which they were origi-
nated, in addition to the altered peptides [ 338 ]. 
The potential in vivo immunogenicity of CDR3-
based genetic immunization in the murine 38C13 
B-cell lymphoma tumor model has been investi-
gated, in which the variable light (VL) and heavy 
(VH) chain amino acid sequences of the idiotypic 
IgM 38C13 (38C13-Id) were used for the con-
struction of two synthetic mini-genes [ 328 ]. The 
MHC class I-binding epitope, VHCDR3 
sequence specifi ed the 8-mer H-2KK “anchor-
modifi ed” YEGYFDYI109–116 epitope, was 
used. Moreover, the VLCDR3 sequence 
expressed the 11-mer peptide starting with the 
cysteine (Cys) 88 (i.e., Cys104 in the IMGT 
unique numbering) and encompassing the CDR3 
plus the conserved phenylalanine (Phe), and gly-
cine (Gly) residues of framework (FR) four were 

employed. To evaluate the potentiality of CDR3-
based DNA vaccines in the induction of an 
immune response and protection against a subse-
quent lethal tumor challenge, two plasmid con-
structs independently expressing VH and VL 
determinants were developed. Finally, the tumor-
protective effect recruited by CDR3-based vac-
cination in the poorly immunogenic, highly 
aggressive murine 38C13 B-cell lymphoma was 
observed. Experiments were performed to indi-
cate the optimal immunization regimen, which 
revealed that injection of two plasmid DNAs at 
3-week intervals, combined in a single vaccine 
formulation, led to immense suppression of 
tumor growth and yielded a long-term tumor-free 
survival in 57 % of syngeneic mice C3H/HeN 
(H-2KK haplotype) [ 328 ]. The combined CDR3-
based vaccines displayed in vitro specifi c reactiv-
ity against peptides encompassing the CDR3 
sequences after humoral immune response acti-
vation. Moreover, the native idiotypic Ig exposed 
on malignant lymphoma cells were specifi cally 
targeted by the induced antibodies [ 328 ]. In the 
same line, “heteroclitic” peptides were found to 
elicit signifi cant immune responses against the 
native peptide from which they were derived 
from. Lines of evidence have described the 
prime/boost vaccination protocol as an effective 
strategy for enhancing the antigen-specifi c 
immune response. To further enhance the effi -
cacy of this vaccination platform with the empha-
sis on immune response and tumor protection, a 
DNA fusion vaccine design encoding tumor Ags 
linked to pathogen-derived sequences was devel-
oped which demonstrated promising results and 
confi rmed the effi cacy of the foreign protein as 
an effective adjuvant. Once the antigen is fused to 
the foreign universal T helper epitope, the exist-
ing immune tolerance to the self-antigen is 
demolished, resulting in increased immunogenic-
ity of a weak tumor antigen [ 341 ]. Since CD4 +  Th 
cells play a crucial role in coordinating innate 
and adaptive immune responses [ 326 ], the devel-
opment of fusion vaccine incorporating a patho-
gen-derived sequence to activate 
tolerance-breaking CD4 +  Th cells plays a pre-
dominant role in tumor antigen- specifi c B- and 
T-cell activation. It was revealed that by placing 
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the candidate MHC-I binding “anchor-modifi ed” 
VHCDR3109–116 tumor epitope at the 3′-termi-
nus of the selected TTFrC 933–1126 sequence, 
optimal processing and presentation were 
achieved [ 342 ]. Overall, it is observed that by 
applying the epitope-driven vaccine design, 
immune response is focused onto the candidate 
tumor epitope, and CD4 +  T helper cells are 
employed from the antimicrobial repertoire 
[ 326 ]. In this model, gene delivery is accom-
plished using the nuclear targeting sequence 
(NTS)-harboring pRC110 vector combined with 
electroporation [ 328 ]. Moreover, plasmid-driven 
TTVHCDR3 (pTTVHCDR3) immunization is 
known to trigger IFN-γ-producing CD8 +  T-cell 
precursors immensely, which indicates the acti-
vation of CD8 +  T lymphocytes by vaccination 
with the fusion vaccine [ 327 ]. Rinaldi et al. dem-
onstrated that intramuscular injection of pTT-
VHCDR3 DNA vaccine in combination with 
electroporation strongly affected the onset of 
highly aggressive 38C13 B-cell lymphoma and 
led to signifi cant and long-lasting protection 
from tumor in syngeneic mice with about 85 % 
surviving, compared to naïve animals or those 
given the control vaccine. It is well established 
that the DNA vaccination strategy achieves pro-
tective tumor immunity. By using this strategy in 
which an exogenous protein is fused to tumor- 
specifi c epitope, a weak Ag can be converted into 
a vaccine with considerable activity. The effi cacy 
of the VHCDR3 and VLCDR3 peptides fused to 
TT933–1126 FrC portion has been further 
assessed in a therapeutic setting. Tumorigenic 
dose of 38C13 cells was injected to syngeneic 
mice followed by electrotransfer with DNA 
fusion vaccines or with control plasmid after 
4 days and repeated 11 days later. DNA vaccine 
fusion prolonged death to day 35 post tumor 
challenge, compared to days 18–22 post tumor 
challenge in control mice. However, differences 
were not statically signifi cant [ 327 ]. Remarkably, 
the application of the TTFrC933–1126 peptide 
sequence proved as an effective adjuvant to over-
come the intrinsic weakness of the epitope 
DNA- based vaccines [ 328 ]. Moreover, the com-
bined TT933–1126-VL-AAY-VH plasmid-based 

vaccine demonstrated antitumor effects and 
 conferred a prolonged animal survival rate. The 
application of FrC933–1126 as a peptide 
sequence is known to improve the effi cacy of 
epitope-based vaccines [ 343 ]. 

 Efforts towards developing improved treat-
ment strategies including chemotherapy followed 
with radioimmunotherapy are recommended [ 55 ].   

8.16     Concluding Remarks 

 Overall, the emergence of immunotherapy for 
NHL has the potential to replace all other con-
ventional treatment modalities and has led to bet-
ter outcome of the disease. Signifi cant advances 
have been made in the past decade with improve-
ment in survival as evidenced by the declining 
rate of lymphoma-related death. Extensive clini-
cal studies, however, are warranted before 
 applying the novel immunotherapies in clinic.     
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9.1             Introduction 

 Esophageal cancer affects more than 450,000 peo-
ple worldwide and its incidence is rapidly increas-
ing [ 1 – 5 ]. The 5-year survival rate for patients 
with advanced esophageal cancer ranges from 15 
to 25 %. Although early diagnosis is associated 
with favorable clinical outcomes [ 1 ,  6 ], esopha-
geal cancer is often diagnosed at late stages of the 
disease, usually following the onset of metastasis 
[ 7 ]. Therefore, these patients are subjected to a 
myriad of treatments that help to prolong their 
lives and maximize their quality of life. Depending 
on the condition of the disease, patients with 
advanced or recurrent esophageal cancer can 
undergo chemotherapy [ 8 – 14 ], chemoradiother-
apy [ 15 ], or endoscopic therapy [ 16 – 19 ]. 

 Gastric cancer affects more than 980,000 peo-
ple worldwide, with higher incidence in develop-
ing countries [ 20 ]. Despite signifi cant progress in 
diagnosing and treating gastric cancer, the 5-year 
survival rate is only 20 % [ 20 ]. Treatments such 
as salvage surgery [ 21 ,  22 ] and chemotherapy 
[ 23 – 26 ] can improve the outcome. In particular, 
trastuzumab in combination with chemotherapy 
improved the clinical outcome for patients with 
HER2-positive gastric or gastroesophageal junc-
tion cancer [ 27 ]. 

 Infi ltration of distinct immune cells, including 
lymphocytes, macrophages, dendritic cells (DCs), 
and granulocytes, as well as immune- related 
microenvironments can foster or inhibit tumor 
progression and/or metastatic potential in various 
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cancers [ 28 ,  29 ]. In gastrointestinal cancers, 
including esophageal and gastric cancers, the pres-
ence of tumor-infi ltrating CD8 +  cytotoxic T lym-
phocyte and/or CD4 +  T cells has been associated 
with favorable patient prognoses [ 30 ,  31 ]. These 
fi ndings have provided the rationale for the devel-
opment of novel immune-based therapeutics. 
Here, we summarize the current status of immuno-
therapies against esophageal and gastric cancers.  

9.2     Current Immunotherapeutic 
Strategies for Esophageal 
and Gastric Malignancies 

9.2.1     Monoclonal Antibody 
Therapy 

 The strategy of using monoclonal antibodies 
(mAbs) to target cancer cells has been well tested 
over the last several decades. The mechanisms of 
action of mAb therapy include blocking growth fac-
tor/receptor interactions, downregulating proteins 
required for tumor growth, and activating effec-
tor mechanisms of the immune system (including 
complement-dependent cytotoxicity (CDC) and 
antibody-dependent cell-mediated cytotoxicity 
(ADCC)) [ 32 ]. While conventional chemothera-
peutic agents destroy neoplastic cells, they can also 
target normal cells which are mitotically active. In 
contrast, mAbs have the distinct advantage of being 
highly specifi c and therefore have fewer and less 
severe adverse effects. Antibodies can be used in all 
patients who express the specifi c antigen on their 
tumor. Their ability to mediate target-specifi c inhi-
bition and immune- mediated tumor suppression 
confers signifi cantly improved effi cacy over stan-
dard chemotherapy regimens. 

 Despite the long-standing promise of mAb 
therapies, esophageal and gastric cancers (EGCs) 
are only recently being explored in the context of 
immunotherapy. Since 1997, the US Food and 
Drug Administration (FDA) has approved 12 
mAbs for clinical use including four that target 
EGC: bevacizumab, cetuximab, panitumumab, 
and trastuzumab [ 32 ]. However, only the human-
ized IgG1 trastuzumab has been approved for 
treating human epidermal growth factor receptor 

2 (HER2)/ERBB2-positive gastric cancer or gas-
troesophageal junction carcinoma in combina-
tion with chemotherapies. 

 The frequency of HER2/neu-positive esopha-
geal squamous cell carcinoma (SCC: mean 23 %, 
range 0–52 %) and GE junction adenocarcinoma 
(mean 22 %, range 0–43 %) is varied [ 33 ,  34 ]. In 
esophageal SCC, HER2/neu overexpression has 
been correlated with extramural invasion and poor 
response to neoadjuvant chemotherapy [ 35 ]. 
Similarly, HER2/neu overexpression in gastric and 
gastroesophageal junction adenocarcinoma has 
been correlated with increasing invasion, distant 
organ metastasis, and poor overall survival [ 36 ]. 
Early-phase studies recently demonstrated that 
trastuzumab combined with chemotherapy, radia-
tion, and standard surgery improves clinical 
responses and overall survival rates for patients with 
grade 2+ or 3+ HER2/neu-positive tumors [ 27 ,  37 ]. 
Another randomized phase III trial (Trastuzumab 
for Gastric Cancer [ToGA] trial) showed that trastu-
zumab in combination with chemotherapy signifi -
cantly improved overall survival in patients with 
HER2/neu-positive advanced gastric or gastro-
esophageal cancers, being particularly effi cacious 
in patients with high HER2/neu expression [ 38 ]. 
Moreover, trastuzumab co-treatment did not exac-
erbate the adverse effects of chemotherapy, includ-
ing symptomatic heart failure. 

 In EGCs, EGFR overexpression occurs in 
30–90 % of tumors and is correlated with increased 
invasion and poor prognosis [ 39 ]. In general, EGFR 
overexpression is more common in SCC than gas-
tric adenocarcinomas [ 40 – 42 ]. Currently, mAbs tar-
geting EGFR signaling in gastroesophageal cancers 
are being developed. Notably, the effi cacy of the 
EGFR inhibitor cetuximab has yet to be explored in 
esophageal adenocarcinoma or SCC. Other trials 
examining cetuximab and trastuzumab alone or in 
combination with radiation or chemotherapy have 
been performed (Table  9.1 ) [ 43 – 53 ].

   VEGF (vascular endothelial growth factor) spe-
cifi cally induces division and proliferation of angio-
genic endothelial cells. In esophageal cancer, VEGF 
overexpression occurs in 30–60 % of patients and 
has been correlated with advanced stages of cancer 
(occurrence of nodal and distant metastases) and 
poor survival rates [ 54 – 57 ]. Similarly, increased 
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VEGF levels in tumors and sera have been corre-
lated with poor prognoses in gastric cancer [ 54 ,  58 ]. 

 Therapies directed against VEGF have been 
effective in many types of cancers including EGCs. 
Bevacizumab (Avastin), a humanized IgG1 mAb 
against VEGF, has been tested in various solid 
tumors. Early- and late-phase II clinical studies have 
indicated that bevacizumab in combination with che-
motherapy can signifi cantly improve Time to tumor 
progression (TTP) and overall survival [ 59 – 61 ]. 

 Although novel mAb therapies are currently 
being explored for esophageal and gastric malig-
nancies, administration of mAbs carries the risk 
of undesirable immune reactions such as acute 
anaphylaxis, serum sickness, and production of 
neutralizing antibodies. Chimerization and 
humanization of mAbs help to overcome some of 
these problems. Other adverse effects related to 
mAb therapy include infections, tumorigenesis, 
autoimmune disease, and organ-specifi c toxicity 
such as cardiotoxicity [ 62 ].  

9.2.2     Adoptive Cell Therapy 

 Adoptive cell therapy (ACT) involves the transfer 
of antitumor lymphocytes into a tumor-bearing 

host. It is a potent and feasible immunotherapy 
for certain advanced or relapsed malignancies, 
although it requires signifi cant front-end “per-
sonalization” for each patient [ 63 ]. ACT was ini-
tially developed to generate lymphokine-activated 
killer (LAK) cells, which could directly lyse 
tumor cells [ 64 ,  65 ]. Then, strategies to isolate 
and expand tumor antigen-specifi c T cells were 
developed. Specifi cally, tumor-infi ltrating lym-
phocytes (TILs) were isolated from resected 
tumors and expanded  ex vivo  by coculturing them 
with patient tumors and the IL-2 cytokine. TILs 
in combination with IL-2 had about a 50 % objec-
tive tumor response in patients with metastatic 
melanoma [ 66 – 69 ]. Moreover, TILs expanded 
from EGCs may provide a new and promising 
approach for patients with metastatic esophageal 
and gastric cancers [ 38 ]. 

 The authors conducted a phase I/II trial for 
esophageal SCC with adoptive cell therapy [ 70 ]. 
Peripheral blood mononuclear cells were stimu-
lated  in vitro  with autologous tumor cells. T cells 
were directly injected into primary tumors, meta-
static lymph nodes, pleural spaces, or ascites in 
combination with IL-2. The objective tumor 
responses were achieved in half of the patients. 
Four of 11 patients (36 %) had confi rmed 

   Table 9.1    Clinical trials using monoclonal antibodies for patients with esophageal and gastric cancer in neoadjuvant 
and metastatic setting   

 Treatment 
 Disease of 
EGC 

 No. of 
enrolled 
patients 

 Clinical 
response 
(CR/PR) 

 Median 
survival 
(mos)  References 

 Cetuximab + FOLFOX/RT + surgery  E, ESCC  41  8/12  17  [ 43 ] 
 Cetuximab + cisplatin/docetaxel/RT 
+ surgery 

 E, ESCC  28  9/10  NA  [ 44 ] 

 Cetuximab + carboplatin/paclitaxel/
RT ± surgery 

 E, G, ESCC  60  13/NA  NA  [ 45 ] 

 Trastuzumab + paclitaxel/cisplatin/
RT + surgery 

 E (HER2 
positive) 

 19  3/1  24  [ 46 ] 

 Cetuximab  E, GEJ, G  35  0/1  3.1  [ 47 ] 
 Cetuximab  E, GEJ  55  0/3  4.0  [ 48 ] 
 Cetuximab + FOLFOX  GEJ, G  52  4/26  9.5  [ 49 ] 
 Cetuximab + cisplatin/docetaxel  GEJ, G  72  1/27  9.0  [ 50 ] 
 Cetuximab + FOLFOX  G  40  0/21  9.9  [ 51 ] 
 Cetuximab + 5-FU/cisplatin vs. 
5-FU/cisplatin 

 ESCC  32 vs. 30  0/11 vs. 1/8  9.5 vs. 5.5  [ 52 ] 

   E  esophageal adenocarcinoma,  ESCC  esophageal squamous cell carcinoma,  G  gastric adenocarcinoma,  HER2  human 
epidermal growth factor receptor 2,  FOLFOX  5-fl uorouracil, leucovorin, oxaliplatin,  FOLFIRI  5-fl uorouracil, leucovo-
rin, irinotecan,  5-FU  5-fl uorouracil,  NA  not available,  RT  radiation therapy  
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 complete or partial response. Furthermore, one 
patient with recurrent esophageal SCC had a par-
tial response to the therapy [ 71 ]. 

 Adoptive cell therapy has also had some suc-
cess in patients with gastric cancer. Expanded T 
cells, called cytokine-induced killer (CIK) cells, 
were found to have appreciable antitumor activ-
ity against human gastric cancer [ 72 ]. At an 
effector to target cell ratio of 30:1, CIK cells were 
able to destroy 58 % of MKN74 human gastric 
cancer cells, suggesting that CIK cells can be 
developed for ACT. CIK cells combined with 
chemotherapy in postoperative stage III–IV gas-
tric cancer patients signifi cantly improved overall 
survival time and disease-free survival time com-
pared to conventional chemotherapy alone [ 73 ]. 
In other nonrandomized or randomized trials, 
patients treated with chemotherapy combined 
with CIK cells had increased survival rates com-
pared to those who received chemotherapy alone 
[ 74 ,  75 ]. In addition to CIK cells,  ex vivo  
expanded human NK cells can acquire cytolytic 
activity against gastric tumor cells [ 76 ]. Currently, 
there is no FDA-approved ACT protocol for the 
treatment of cancer; however, the recent explo-
sion of data regarding ACT should usher these 
novel strategies into daily clinical practice. To 
bolster this transition from the bench to the clinic, 
future trials need to address the barriers raised by 
Tregs, the use of engineered culture systems, and 
the genetic modifi cation of T cells [ 77 – 80 ]. 
Moreover, clinical data concerning the effi cacy 
of ACT in EGCs are insuffi cient and additional 
trials are required.  

9.2.3     Dendritic Cell (DC) 
Vaccination for Esophageal 
and Gastric Cancers 

 DCs are antigen-presenting cells that most effec-
tively activate the adoptive immune response. 
Antigen presentation by DCs is critical for the 
induction of antitumor T-cell immunity. Gastric 
cancer patients with high levels of infi ltrated DCs 
had a lower frequency of lymphatic invasion and 
had increased 5-year survival rates. Therefore, 
DC-based vaccinations could provide a novel 

immunotherapeutic approach for advanced gas-
trointestinal cancer patients [ 81 ,  82 ]. 

 Several clinical studies have investigated 
DC-based vaccinations in patients with esopha-
geal and gastric cancers (Table  9.2 ). In a clinical 
study of 12 patients with advanced gastrointes-
tinal carcinoma (6 stomach, 3 esophagus, and 
3 colon), Sadanaga et al. reported that  ex vivo  
generated autologous DCs pulsed with MAGE-3 
peptide were an effective and safe antitumor 
vaccine [ 83 ]. In this study, patients were immu-
nized every 3 weeks for 3 months without expe-
riencing toxic side effects. Peptide-specifi c 
CTL responses were detected in four of eight 
patients. Tumor markers decreased in seven 
patients, and tumors regressed (evidenced by 
imaging studies) in three patients, suggesting 
that DCs are safe and promising components 
for vaccine development. Kono et al. published 
a phase I vaccination trial in nine gastric cancer 
patients using DC pulsed with immunodominant 
HLA-A2-restricted HER2/neu (p369) peptides 
[ 84 ]. There were no adverse effects noted in the 
immunized patients. HER2/neu peptide-specifi c 
immune responses were detected in six of nine 
immunized patients (67 %), and peptide-specifi c 
hypersensitivity responses occurred in three of 
nine patients (33 %). One of the patients under-
went PR response concurrent with a decrease in 
tumor markers, and another patient demonstrated 
SD for a period of 3 months.

   Homma et al. generated a vaccine with fused 
autologous DCs and tumor cells (DC/tumor- 
fusion vaccine) [ 85 ]. The study consisted of 22 
patients with advanced cancer, including 3 with 
gastric cancer. One gastric cancer patient had 
signifi cantly elevated levels of serum antinuclear 
antibodies following treatment, which might have 
resulted from the immune response induced by 
the vaccine. Malignant ascitic effusion eventu-
ally was resolved in this patient, and their serum 
levels of tumor markers decreased. Fujiwara et al. 
performed a pilot study involving the intratumoral 
administration of  111 In-labeled DC in combination 
with chemotherapy (Adriamycin, cisplatin, and 
5-FU) before surgical treatment in fi ve esophageal 
cancer patients [ 86 ]. No adverse effects directly 
related to the intratumoral DC  administration 
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were observed. None of the antibodies against the 
28 tumor antigens were upregulated. Moreover, 
enhancement of NY-ESO-1-specifi c cellular 
immune response was not observed. According 
to scintigraphic images obtained after treating 
each patient, DCs remained at the injection sites 
and did not drain in lymph nodes, suggesting that 
intratumoral DC administration does not elicit an 
optimal clinical response.  

9.2.4     Protein or Peptide 
Vaccination for Esophageal 
and Gastric Cancer 

 The fi eld of cancer immunotherapy has signifi -
cantly progressed ever since Boon and his col-
leagues made the observation in 1991 that a 
tumor-associated antigen (TAA) can be targeted 
by cytotoxic T lymphocytes [ 87 – 90 ]. Since then, 
technical advances have facilitated the identifi -
cation of many TAAs and peptide epitopes that 
can be targeted for cancer immunotherapy [ 91 ]. 
For example, esophageal and gastric cancers 
express a variety of TAAs as potential targets 
for immunotherapies, and several clinical trials 
involving these TAAs have had promising results 
(Table  9.3 ) [ 92 – 99 ,  100 ,  101 ].

   HLA-A24-binding peptides derived from tes-
ticular cancer-specifi c antigens have been 
employed in vaccines against esophageal cancer 
[ 94 ,  96 ,  97 ]. A phase II clinical trial of a vaccine 
comprised of three HLA-A24-binding peptides, 
TTK protein kinase (TTK), lymphocyte antigen-
 6 complex locus K (LY6K), and insulin-like 
growth factor-II mRNA binding protein (IMP3), 
in combination with incomplete Freund’s adju-
vant (Montanide ISA51) which were adminis-
tered in 60 advanced esophageal cancer patients 
who were either HLA-A24 +  ( n  = 35) or HLA- 
A24  -  ( n  = 25) [ 96 ,  97 ]. The study showed that 
HLA-A24 +  patients had better progression-free 
survival (PFS) ( p  = 0.032). In particular, patients 
having specifi c CTL responses to the vaccine 
peptides had better overall survival. In a similar 
study, Iwahashi et al. performed a phase I clinical 
trial of a vaccine derived from two HLA-A24- 
binding peptides, TTK and LY6K, in combination 

with the Toll-like receptor 9 agonist, CpG-7909, 
in 9 HLA-A24 +  patients with advanced esopha-
geal cancer [ 94 ]. The result of this study under-
scored the safety and feasibility of this vaccine 
and found that a strong immune response to 
tumor-specifi c antigens was achieved. 

 Vaccination against another testicular cancer 
antigen, NY-ESO-1, was tested in esophageal can-
cer patients [ 92 ,  95 ,  99 ]. In one study, a vaccine 
was formulated with a NY-ESO-1 recombinant 
protein and a cholesterol-bearing hydropho-
bized pullulan (CHP) (CHP-NY- ESO-1) and 
tested in eight patients with advanced esopha-
geal cancer [ 99 ]. The induction of antibody and 
CD4 and CD8 T-cell responses were observed 
in seven, seven, and six patients, respectively, 
and one partial regression (PR) and four stable 
diseases (SDs) were observed in six evaluable 
patients. Similarly, another study using a vaccine 
made from CHP-NY-ESO-1 and the truncated 
146HER2 protein complexed with CHP (CHP-
HER2) in combination with immune- adjuvant 
OK-432 found that 6 (75 %) and 5 (63 %) patients 
responded to NY-ESO-1 and HER2, respectively 
[ 92 ]. After six rounds of vaccinations, 3 patients 
(38 %) maintained SD and 5 (63 %) developed 
progressive disease (PD) with a median PFS of 
1.5 months (range, 1–5 months). Another phase 
I clinical trial tested a vaccine that is comprised 
of a 20-mer NY-ESO-1f peptide (NY-ESO-1 
91-110) in combination with OK-432 and incom-
plete Freund’s adjuvant (Montanide ISA51) in 
ten patients with advanced esophageal ( n  = 6), 
lung ( n  = 3), or gastric ( n  = 1) cancer [ 95 ]. In this 
case, vaccination induced antibody production 
and CD4/CD8 +  T-cell responses to NY-ESO-1 in 
nine of ten patients. Moreover, two lung can-
cer patients and one esophageal cancer patient 
showed SD. 

 For gastric cancer, two clinical trials using 
either protein- or peptide-based vaccines have 
been conducted. The fi rst is a phase II clinical trial 
testing a gastrin-17-diphtheria toxoid (G17DT), 
which was shown to induce antibodies that block 
gastrin-stimulated tumor growth [ 93 ]. This study 
included 52 gastric cancer patients (stage I–III, 
 n  = 36; stage IV,  n  = 16). The vaccine induced 
functional antibodies in 6 of 12 (50 %), 7 of 11 
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(64 %), and 11 of 12 (92 %) patients at doses of 
10, 100, and 250 μg, respectively, in stage I–III 
gastric cancer patients. Furthermore, 8 of 14 
(57 %) stage IV patients dosed at 250 μg 
responded. G17DT was well tolerated in 47 of 52 
patients, but 2 patients suffered signifi cant adverse 
reactions including injection site pain and abscess. 
The other study was a highly effective and well-
tolerated phase I/II trial to evaluate the safety and 
effi cacy of a vaccine made from HLA-A24-
restricted peptides derived from human vascular 
endothelial growth factor receptor 1 (VEGFR1) 
and VEGFR2 in combination with chemotherapy 
(S-1 and cisplatin) [ 98 ]. Of the 22 patients with 
advanced gastric cancer, 12 (55 %) experienced 
PR and 10 (45 %) experienced SD, with a disease 
control rate of 100 % after two cycles. The median 
PFS and OS were 9.6 and 14.2 months, respec-
tively. CTL responses specifi c to the VEGFR1- 
and VEGFR2-derived peptides were apparent in 
18 (82 %) patients, suggesting that signifi cant 
antigen-specifi c CTL responses can be induced 
under chemotherapy. Based on this study, cancer 
vaccination combined with standard chemother-
apy should be further developed for the treatment 
of advanced gastric cancer.  

9.2.5     Personalized Peptide 
Vaccination (PPV) 
for Gastric Cancer 

 The antitumor immune response might differ 
widely among vaccinated cancer patients. This is 
due to the heterogeneity of tumor cells and host 
immune systems, even in patients with identical 
HLA or disease states [ 102 – 105 ]. The multiplic-
ity of immune responses and tumor cell charac-
teristics necessitates tailored vaccinations for 
individual patients. To aid in the rational design 
of patient-specifi c vaccines, the authors devel-
oped a novel immunotherapeutic approach called 
personalized peptide vaccine (PPV). This 
approach helps select patient-specifi c HLA- 
matched vaccine peptides and factors in preexist-
ing host immunity [ 106 ,  107 ]. 

 A series of phase I and phase II clinical trials 
have corroborated the utility of PPV in patients 
with various types of advanced cancers [ 100 ]. The 

authors conducted a phase I clinical trial of PPV in 
13 HLA-A2 +  or HLA-A24 +  patients with advanced 
gastric cancer (non-scirrhous,  n  = 9; scirrhous 
types,  n  = 4) [ 108 ]. A maximum of four peptides 
were selected and screened for immunoreactivity 
to each of 14 HLA-A24-restricted peptides or 16 
HLA-A2-restricted peptides. The selected pep-
tides (3 mg/each peptide) were emulsifi ed in 
incomplete Freund’s adjuvant (Montanide ISA51) 
and subcutaneously administrated every 2 weeks. 
This regimen was generally well tolerated. 
Increased cellular and humoral immune responses 
to the vaccinated peptides were observed in 
peripheral blood mononuclear cells in four of eight 
patients and in the sera of 8 (80 %) patients. These 
treatments led to increased survival, particularly in 
the four patients with scirrhous-type gastric can-
cer. These results reinforce the need for further 
development of personalized peptide-based immu-
notherapy for gastric cancer patients. 

 In addition, a phase I/II clinical trial of PPV was 
performed by the authors to investigate the safety 
and effi cacy of combined treatment with varying 
doses (20, 40, or 80 mg/m 2 /day) of orally adminis-
tered S-1, a 5-fl uorouracil derivative. There were 
11 HLA-A2 +  or HLA-A24 +  advanced gastrointesti-
nal cancer patients (4 gastric and 7 colon cancer) 
who were refractory to S-1-based chemotherapies 
[ 101 ]. A maximum of four peptides were selected 
and injected biweekly in combination with S-1. 
Although some patients experienced grade 3 toxic-
ity, including anemia (one patient) and neutropenia 
(one patient), this therapy was generally well toler-
ated. An increase in peptide-specifi c IgG after vac-
cination was observed in 9 of 11 patients (82 %) 
irrespective of the dose of S-1. Notably, an increase 
in peptide- specifi c IFN-γ production by CTL was 
most evident in patients taking the highest dose of 
S-1. This study suggests that the combined admin-
istration of PPV with the standard dose (80 mg/m 2 /
day) of S-1 did not interfere with the immune 
response to vaccination.   

9.3     Concluding Remarks 

 Several clinical trials involving immunothera-
pies for esophageal and gastric cancers have 
been conducted with promising results. Further 
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randomized trials are essential to prove the clinical 
benefi ts of these novel therapies. Therapies that 
combine vaccinations with immune checkpoint- 
blocking agents can activate coordinated immune 
mechanisms, including the removal of suppres-
sor cells, and enhance the therapeutic effects of 
cancer immunotherapies [ 109 ,  110 ]. Additional 
chemotherapies in combination with immuno-
therapies could produce synergistic effects in the 
treatment of advanced esophageal and gastric 
cancers.     
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10.1            Introduction 

 Hepatobiliary tumors are a diverse group of 
tumors that arise from the hepatobiliary tract 
including the liver, gallbladder, and bile tract. 
Accordingly, based on the sites of origin, hepato-
biliary tumors can be categorized into liver 
tumors and bile duct tumors. 

 Liver cancer or hepatocellular carcinoma 
(HCC) is the most common (80–90 %) primary 
tumor in the liver. The most common cause of 
this disease is cirrhosis (irreversible scarring) of 
the liver, due to alcohol abuse, hepatitis B or C, a 
variety of autoimmune diseases, or in rare 
instance, from iron overload. The mainstay treat-
ment modality includes surgery, interventional 
therapy, and chemotherapy. Patients with HCC 
have a poor prognosis, even exacerbated by the 
background liver disease in the majority of 
patients. 

 The biliary tract includes the gallbladder and 
both the intra- and extrahepatic bile ducts. The 
biliary tract cancers are generally rare diseases. 
They are diffi cult to diagnose, and have overall 
poor prognosis. Even more confusing is the ana-
tomic segmentation of the bile duct cancer (chol-
angiocarcinoma). Cholangiocarcinoma should be 
differentiated as intrahepatic, hilar, and distal 
cholangiocarcinoma, among which the hilar 
cholangiocarcinoma is the most common type. 
Biliary tract cancer is usually worsened by com-
plications such as obstruction of bile drainage 
and the subsequent risk of cholangitis and liver 
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failure; therefore, the management of the disease 
is complex and a skilled multidisciplinary medi-
cal team with ample experience is needed for 
effective management. 

 Histologically, gallbladder cancer was grouped 
together with cholangiocarcinoma and was consid-
ered as the same disease. Nevertheless, today it is 
understood that this is an oversimplifi cation of the 
situation. Gallbladder cancer has a distinct epide-
miology, clinical presentation, staging, and surgical 
treatment, which separate it from cholangiocarci-
noma. Gallbladder cancer tends to spread both by 
lymphatic or hematogenous metastasis, direct inva-
sion into the liver and seed on the peritoneal sur-
faces. The 5-year survival is less than 5 %, and the 
median survival is less than 6 months [ 1 ].  

10.2    Epidemiology 

 Hepatocellular carcinoma is the third most com-
mon cause of death from cancers, with estimated 
700,000 deaths each year. Male takes a prepon-
derant role with a male-to-female ratio of 2–4:1. 
In China, the most common predisposing factor 
for the development of HCC is chronic hepatitis 
B virus (HBV) infection. The HBV integrates 
into the genome of host and induces carcinogen-
esis of HCC even without evidence of cirrhosis. 
Additionally, long-term exposure to fungal afl a-
toxins signifi cantly increases the incidence of 
HCC. HCC is closely related to hepatitis C virus 
(HCV) infection outside China. 

 Gallbladder cancer is not so common in clini-
cal practice, and it is estimated that gallbladder 
cancer comprises about 0.8–1.2 % of all cancers 
[ 2 ]. The incidence varies geographically, and the 
high prevalence is reported in areas including 
South America and middle Europe. However, it is 
less common in areas such as west Europe, North 
America, and Oceania. In China, the estimated 
incidence is about three to fi ve cases per million 
[ 3 ]. Gallbladder cancer is also related to racial-
ethnic groups. Data from the National Cancer 
Institute of America showed that the disease is 
mainly related to the Mexican origin. Although 
low in incidence, gallbladder cancer has a high 
mortality, which almost equals its incidence. 

 Although the incidence of cholangiocarci-
noma is relatively low, the disease is on a rapid 
rise nowadays. In America, cholangiocarcinoma 
constitutes about 15–20 % of all hepatobiliary 
cancers [ 4 ]. Likewise, the incidence of cholan-
giocarcinoma is increasing in China. Most cases 
of cholangiocarcinoma (about two-thirds) are 
located in the hilar area, about one-fourth is in the 
distal segment, and the rest occur in the intrahe-
patic bile tract. Cholangiocarcinoma is the most 
common cancer in the hepatobiliary tract second-
ary to HCC. The etiology of cholangiocarcinoma 
remains largely unknown, with recognized risk 
factors such as sclerosing cholangitis, liver fl uke 
infections, and intrahepatic biliary stones.  

10.3    Histology 

 Tumors in the liver could be those that arise spon-
taneously in the liver (primary tumors) or metas-
tases from other types of tumors including colon 
cancer, lung cancer, breast cancer, etc. This chap-
ter is mainly focused on the primary tumor of the 
liver. Either benign or malignant tumor is 
observed in the liver, although most primary 
tumors belong to the malignant type. 
Histologically, liver tumors develop from mesen-
chymal tissue, or more frequently from epithelial 
tissue. Histological classifi cation of malignant 
liver tumors is listed as follows:
    1.     Epithelial:

•    Hepatocellular carcinoma (HCC)  
•   Intrahepatic cholangiocarcinoma  
•   Bile duct cystadenocarcinoma  
•   Combined hepatocellular and cholangio-

carcinoma  
•   Hepatoblastoma  
•   Undifferential carcinoma      

   2.     Nonepithelial:
•    Epithelioid hemangioendothelioma  
•   Hemangiosarcoma  
•   Embryonic sarcoma  
•   Rhabdomyosarcoma  
•   Others        
 The most frequently seen liver tumor is the 

malignant epithelial tumor (HCC), which con-
stitutes 85–95 % of all tumors of the liver. Only 
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1–3 % of liver tumors are malignant mesenchy-
mal tumors. HCC is either macroscopically soli-
tary massive, or appears as multiple nodes in the 
background of cirrhosis. The tumor nodules are 
usually round in shape, with gray or green color, 
sometimes infi ltrating into portal veins as 
thrombus. Microscopically, the HCC could be 
 classifi ed as fi brolamellar, pseudoglandular 
(adenoid), pleomorphic (giant cell), and clear 
cell. 

 The most common type of cholangiocarci-
noma is the adenocarcinoma (more than 90 %); 
other types such as squamous cell carcinoma, 
sarcoma, and small cell cancer are less common 
[ 5 ]. The histological classifi cation of commonly 
seen malignant tumors of the gallbladder and 
extrahepatic bile duct is listed as follows:
    1.     Epithelial:

•    Adenocarcinoma  
•   Papillary adenocarcinoma  
•   Adenocarcinoma, intestinal type  
•   Adenocarcinoma, gastric foveolar type  
•   Mucinous carcinoma  
•   Clear cell adenocarcinoma  
•   Signet ring cell carcinoma  
•   Adenosquamous carcinoma  
•   Squamous carcinoma  
•   Small cell carcinoma  
•   Large cell neuroendocrine carcinoma  
•   Undifferentiated carcinoma  
•   Carcinoid  
•   Others      

   2.     Nonepithelial:
•    Granulous cell tumor  
•   Leiomyoma  
•   Leiomyosarcoma  
•   Kaposi sarcoma  
•   Lymphoma  
•   Rhabdomyosarcoma       
  Cholangiocarcinoma is further divided into 

three types including sclerosing, nodular, and 
papillary. Similar to cholangiocarcinoma, the 
most common histological type of gallbladder 
cancer is adenocarcinoma. But other types of 
malignant tumors have been described in the lit-
erature such as rhabdomyosarcoma, leiomyosar-
coma, malignant fi brous histiocytoma, and 
angiosarcoma.  

10.4    Immunopathology 

 The enigma of cancer has been elucidated to a 
great extent, and several hallmarks of cancer have 
been described [ 6 ]. In addition to the classical 
characteristics such as sustained proliferative sig-
naling, cell death resistance, angiogenesis, repli-
cative immortality, activating invasion and 
metastasis, and growth suppressor evasion, now-
adays the abnormal disruption of the interaction 
of cancer cells and its surrounding microenviron-
ment has been especially emphasized [ 7 ]. The 
cancer microenvironment is constituted of non-
transformed host stromal cells such as endothe-
lial cells, fi broblasts, a complex extracellular 
matrix secreted by both the normal and neoplas-
tic cells, and especially various immune cells that 
are believed to have complex interactions with 
cancer cells in the process of carcinogenesis and 
progression (Fig.  10.1 ). The signifi cant role 
played by the cancer microenvironment in cancer 
biology and cancer therapy is just to be 
understood.  

 In the setting of hepatocarcinogenesis, the 
most important predisposing factor is chronic 
HBV infection. The genome of HBV alters the 
expression profi le of the host liver, resulting in 
the discordant proliferation of cells, and fi nally 
contributing to the onset of HCC. Recently, the 
paradigm is shifting and the role played by its 
immunopathology is being taken into account. 
Accumulating data indicate that chronic HBV 
infection induces long-lasting infl ammation, 
which is considered as both innate and adaptive 
immunoresponses against the virus from the host 
[ 8 ]. The infl ammation alone could induce the for-
mation of HCC, even without evidence of pro-
ductive viral infection [ 9 ]. Immune cells, 
cytokines, and growth factors in the infl amma-
tion lead to rapid turnover of liver cells and fi nally 
malignant transformation. Relevant participants 
have been extensively studied. Factors such as 
lymphotoxins (LT) are known to be related to the 
hepatocarcinogenesis [ 10 ]. Lymphotoxins and 
their receptors are up-regulated in hepatitis and 
HCC, and LT expression induces liver infl amma-
tion and HCC. Therefore, a causal link exists 
between LT overexpression to hepatitis and 
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HCC. Sustained LT signaling represents a path-
way involved in hepatitis-induced HCC. Toll-like 
receptors (TLR) are a broad family of proteins 
that recognize a broad spectrum of molecules 
shared among pathogens and referred to pattern 
recognition receptor. They play a key role in the 
pathogenesis of antimicrobe infl ammation [ 11 ], 
supporting a role for chronic infl ammation in 
hepatocarcinogenesis [ 12 ]. Besides, interleukin-
 6 (IL-6) is believed to contribute to the HCC for-
mation. IL-6 binds to its specifi c receptor complex 
including the ligand-binding protein (gp80) and 
signal transduction protein (gp130) and regulates 
important signals such as JAK/STAT, ras/MAPK, 
and PI3K/AKT pathways [ 13 ]. Increased serum 
IL-6 level is reported in HCC patients compared 
to healthy controls, and positively related to larger 
tumor mass, more advanced stages, and more 
aggressiveness [ 14 – 16 ]. STAT3 is the most impor-
tant mediator for the carcinogenesis activity of 
IL-6. STAT3 regulates the expression of impor-
tant factors in the apoptosis, senescence, cell 
cycle, and angiogenesis [ 17 ]. Recently it was 
reported the STAT3 was constitutively activated 
in the HCC, but not in adjacent normal tissue 
[ 18 ]. The most direct link between infl amma-
tion and malignant transformation results from 
the activation of NF-κB pathway. It is well doc-
umented that NF-κB plays a critical role in 
infl ammation, and recent lines of evidence 
show that it contributes to tumorigenesis, inva-
sion, metastasis, and angiogenesis [ 19 ]. 

Overexpression of NF-κB is frequently 
observed in liver cancer tissues and HCC cell 
lines [ 20 ,  21 ]. NF-κB acts as a central link 
between hepatic injury, fi brosis, and HCC, and 
it may represent a target for the prevention or 
treatment of liver fi brosis and HCC. 

 Besides cytokines, immune cells involved in 
the infl ammatory process contribute to carcino-
genesis. Neutrophils are important in the infl am-
mation response. They play paradoxical roles of 
both promoting cancer destruction and inducing 
the growth of cancer cells [ 22 ]. Cancer cells are 
known to produce chemokines, which act on 
CXCR2 receptors on neutrophils, and this ligand- 
receptor interaction leads to the release of 
VEGF-A by neutrophils that promotes tumor 
angiogenesis [ 22 ,  23 ]. Then, the neutrophils are 
recruited and induced to release VEGF or MMP, 
and both chemokines contribute to the invasion 
of endothelial cells and vessel formation. Then, 
angiogenesis follows and cancer progression is 
enhanced. The same principle applies to the 
HCC. Neutrophils in the HCC samples predict a 
shorter recurrence-free survival for HCC patients 
after liver resection [ 24 ,  25 ]. The number of neu-
trophils among the tumor margin strongly corre-
lates with tumor angiogenesis and tumor 
progression [ 26 ]. 

 Tumor-associated macrophage (TAM) is gain-
ing focus in the immunopathology of cancer [ 27 ]. 
Growing evidence suggests that TAM promotes 
tumor growth and progression, instead of fi ghting 

  Fig. 10.1    Schematic 
presentation of immune 
cells in the cancer 
microenvironment       
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against tumor as considered previously [ 28 ]. In a 
certain instance such as hypoxia, the TAM polar-
izes to a type 2 macrophage (M2)-like type [ 29 ]. 
M2-like TAM exerts a profound immunosuppres-
sive effect by secreting and releasing cytokines 
such as CCL17, CCL22, or CCL24; then 
 regulatory T (Treg) cells are recruited to the local 
milieu by these cytokines. In HCC, the intratu-
moral prevalence of regulatory T cells was cor-
related with the density of TAM [ 30 ]. TAM 
expresses programmed cell death (PD-1) ligand, 
which is considered as one of the most critical 
suppressive factors for immunity [ 31 ]. 
Additionally, M2-like TAM promotes angiogen-
esis through the production of VEGF or EGF 
[ 32 ]. In HCC, the TAM count was signifi cantly 
correlated with microvessel density [ 33 ]. TAM 
was believed to be involved in the different prev-
alence of HCC between genders, where estrogen 
(E2) suppressed the macrophage alternative acti-
vation by inhibiting the JAK-STAT pathway [ 34 ]. 
TLR on the surface of HCC cancer cells recog-
nizes and interacts with TAM, leading to recruit-
ment of regulatory T cells in the microenvironment 
[ 35 ]. Recent studies suggested that the TAMs, 
together with regulatory T cells and hepatic stel-
late cells provided an immunosuppressive envi-
ronment closely related to HCC recurrence [ 36 ]. 

 Regulatory T cells (Tregs) are a unique subset 
of T cells with characteristic phenotype of CD4 + , 
CD25 + , and FOXP3 + . Accumulating evidences 
suggest that Tregs play a prominent role in 
immune tolerance with the aim to prevent auto-
immunity [ 37 ]. However, the shut-down of auto-
immunity is at a price, and the tumor formation is 
facilitated at the same time. Recently, efforts 
have been put to elucidate the relationship 
between Tregs and hepatocarcinogenesis. Direct 
evidence comes from clinical observations. A 
high concentration of tumor-infi ltrating Foxp3 
Tregs in HCC is associated with high-grade and 
poorly differentiated tumors and signifi es an 
unfavorable prognosis [ 38 ]. Tregs were reported 
to be associated with poor post-cryoablation 
prognosis in patients with hepatitis-B-virus- 
related HCC [ 39 ]. The number of Treg cells in 
HCC tissues could be used as a potential poor 
prognostic indicator for HCC patients after resec-

tion [ 40 ]. The prevalence of Treg cell was signifi -
cantly higher in the peripheral blood and in tumor 
tissue compared with those in normal donors. 
The increased prevalence and expanded function 
of Treg cells in the tumor microenvironment of 
HCC were correlated to the cancer stage [ 41 ]. In 
order to provide the mechanistic explanation for 
the tumor-promoting activity of Tregs, one paper 
reported Tregs induced by HBV infection could 
suppress the antitumor immune response to HCC 
tumor antigen. This report therefore suggested 
that Tregs were involved in the immunopatho-
genesis of HCC [ 42 ]. Another report found that 
Tregs in the peripheral blood, pritumor, or intra-
tumor sites of HCC patients exhibited different 
functional status. A higher prevalence and more 
suppressive phenotype suggested a critical role 
for intratumoral Tregs in the formation of multi-
cellular immunosuppressive networks [ 43 ]. Yet 
another report examined the relation between γδ 
T cells and Tregs. The effector function of γδ T 
cells was substantially impaired in HCC, which 
is partially mediated by Treg cells [ 44 ]. 
Interestingly, not only classic CD25 + FoxP3 +  
Tregs, but also noncanonical CD25 − FoxP3 −  Tregs 
were found to have suppressive activities and 
were believed to take part in the liver cancer for-
mation [ 45 ]. 

 Compared to HCC, the immunopathology of 
cholangiocarcinoma and gallbladder cancer is less 
extensively studied. IgG4-related diseases consist 
of a broad spectrum of diseases with characteris-
tics of marked infi ltration by immunoglobulin G4 
(IgG4)-positive plasma cells in affected organs 
[ 46 ]. Extrahepatic cholangiocarcinoma may be 
one of them. One study detected high prevalence 
(43 %) of IgG4 abundance in a total number of 54 
cases with cholangiocarcinoma and gallbladder 
cancer [ 47 ]. The same study also suggested that 
cholangiocarcinoma cells could play the role of 
nonprofessional APCs and Foxp3 +  regulatory 
cells. Another study examined the infi ltration of 
IgG4-positive cells in 68 surgical specimens from 
patients with extrahepatic cholangiocarcinoma. 
Their results showed that ≥10 and ≥50 IgG4-
positive cells per high-power fi eld were found in 
37 and 6 % of cases, respectively. In addition, the 
IgG4-positive cells showed a positive and negative 
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correlation with FoxP3 +  and CD8 +  cells, respec-
tively. Therefore, the study provided evidence that 
IgG4-positive cells in extrahepatic cholangiocar-
cinoma induced the evasion of immune surveil-
lance associated with CD8 +  cytotoxic T 
lymphocyte via the regulatory  function of regula-
tory T cells [ 48 ]. B7-H1/PD-1 axis has been 
intensively studied as an important negative regu-
lator for various cancers including HCC [ 49 ]. In 
the case of cholangiocarcinoma, although not so 
many, preliminary data showed that this axis 
played a role in its immunopathology. Totally, 31 
intrahepatic cholangiocarcinoma specimens were 
examined by immunohistochemistry. Expression 
of B7-H1 and PD-1 was found to be up-regulated 
in cancer tissues compared with cancer adjacent 
tissues. Tumor-related B7-H1 expression was sig-
nifi cantly correlated with both tumor differentia-
tion and pTNM stage and was inversely correlated 
to CD8 +  T cells [ 50 ]. 

 The role played by TAM in cholangiocarci-
noma was also explored. CD68 +  and CD163 +  
macrophage infi ltration was analyzed in paraffi n- 
embedded tissue samples from 39 patients with 
intrahepatic cholangiocarcinoma where CD163 
was used as a marker of M2 macrophages. The 
number of CD68 +  and CD163 +  macrophages was 
positively correlated with the numbers of vessels 
and regulatory T cells. Patients with high counts 
of CD163 +  macrophages showed poor disease- 
free survival ( p  = 0.0426). The  in vitro  study sug-
gested that STAT3 pathway was important for 
TAMs to facilitate tumor progression [ 51 ].  

10.5    Current Therapies 

 The clinical management of HCC is the state of 
the art, especially given the insensitive nature of 
HCC to conventional chemotherapy or radiother-
apy, with complicating underlying liver disease. 
A multidisciplinary medical team including 
experts of surgeons, pathologists, radiologists, 
and medical oncologists is required to provide 
care to patients with HCC effi ciently and 
effectively. 

 Small, localized tumors are potentially cur-
able. Patients with early-stage HCC (tumor size 

≤5 cm, or ≤3 tumor with each ≤3 cm in size 
and without evidence of gross vasculature 
involvement) should be considered as potential 
candidates to receive curative partial hepatec-
tomy [ 52 ,  53 ]. According to Milan criteria pro-
posed in 1996, patients with small (tumor size 
≤5 cm, or ≤3 tumor with each ≤3 cm in size 
and without evidence of gross vasculature 
involvement), unresectable HCC should be 
considered for liver transplantation [ 54 ]. Liver 
transplantation gives a 4-year overall survival 
and recurrence-free survival of 85 and 92 %, 
respectively. 

 For those who are not amenable to surgery, 
locoregional therapies should be considered. The 
latter modality contains two categories: ablation 
and embolization. For ablation, tumor control is 
achieved by exposure of the tumor to chemical 
substances (ethanol, acetic acid, etc.) or altera-
tion of temperature (radiofrequency ablation, 
microwave ablation, etc.). Embolization refers to 
selective catheter-based infusion of particles to 
the arterials feeding the tumor, and this is 
achieved either by transarterial embolization, 
chemoembolization, or radioembolization. The 
expert panel from the American National 
Comprehensive Cancer Network of America rec-
ommends ablation alone for the small solitary 
tumor with tumor size ≤3 cm, and combination 
of ablation and embolization, embolization for 
lesions between 3 and 5 cm (  www.nccn.org    ). 
With the rapid progress in radiotherapy tech-
niques, adaptive external beam radiotherapy has 
been available for the treatment of HCC. The cur-
rent radiotherapy such as stereotactic radiother-
apy is capable of providing radiation beam to the 
tumor bed, while sparing the surrounding normal 
liver tissue. Radiotherapy has become an addi-
tional modality in the locoregional therapy of 
HCC. For the majority of patients with advanced 
disease, curative therapies are currently unavail-
able, and a palliative systemic therapy is pre-
ferred. Despite ample reports in the literature, the 
effi cacy of cytotoxic chemotherapy is still in a 
state of debate. Sorafenib, an oral multi-kinase 
inhibitor, is the only agent for HCC which was 
evaluated in randomized control phase III trials 
[ 55 ,  56 ].  
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10.6    Progress in Immunotherapy 

 Although much effort has been devoted, the 
progress in therapy for HCC and biliary tract can-
cer remains limited and unfortunately, patients 
still have a disappointing prognosis. Only a minor 
proportion (approximately 20 %) of patients with 
HCC have the opportunity to get defi nite surgery, 
and others with advanced disease have to receive 
palliative therapy. With sorafenib, the only con-
fi rmed systemic agent, the overall survival in 
patients with advanced HCC improves by 2.3–
2.8 months [ 55 ,  56 ]. The overall survival for 
patients with advanced-stage HCC is less than 
1 year [ 57 ]. The prognosis of patients with 
advanced biliary tract cancer remains poor and 
the median survival time for those undergoing 
supportive care alone is short [ 58 ]. Given the dis-
appointing effi cacy of the currently available 
therapies, new therapeutic strategies are highly 
needed. 

 Cancer immunotherapy aims to treat cancer by 
eliciting anticancer immunity of the hosts to reject 
the cancer. Cancer immunotherapy is achieved by 
either cancer vaccine (active specifi c immuno-
therapy) or adoptive transfer of antibodies (anti-
body therapy) or immune cells (cell therapy). 
Serious doubts existed for many years as to 
whether the immune system is capable of elimi-
nating human cancer. The effort was mostly in 
vain until the elucidation of mechanisms behind 
the immune recognition of tumor cells at the 
molecular level. T cells, through their T-cell 
receptors, specifi cally recognize tumor antigens 
that are processed and presented as small peptides 
in the groove of surface human leukocyte antigen 
molecules [ 59 ,  60 ]. Later came the milestone dis-
covery when the fi rst tumor-specifi c antigen 
MAGE-1 was discovered in the 1990s. Now, can-
cer immunotherapy is considered to specifi cally 
target tumor antigens and therefore is both effi -
cient and safe. Since the report by Rosenberg and 
colleagues [ 61 ], our knowledge in the fi eld of can-
cer immunotherapy has been rapidly increasing, 
and cancer immunotherapy will surely expand our 
armamentarium against cancer. 

 Although HCC was not considered “immuno-
genic,” lines of evidence indicates that the 

immune system plays a role in the formation and 
progression of the tumor (please refer to the 
immunopathology section). Also, preliminary 
observations suggest that the immune factor may 
help to suppress the tumor in vivo. For example, 
one preliminary study showed that lymphocyte 
infi ltration in tumors was a favorite prognostic 
factor for patients with HCC [ 62 ]. Also, dimin-
ished frequency and impaired function of natural 
killer (NK) cells were described in HCC patients 
compared with healthy controls [ 63 ]. Not surpris-
ingly, immunotherapy has been tested for HCC, 
and some of the protocols have been conducted 
in clinical trials. The following sections will dis-
cuss the immunotherapy at both preclinical and 
clinical levels. 

10.6.1    Cancer Vaccines 

 Cancer vaccine aims at eliciting specifi c antitumor 
humoral and cellular immunity to eradicate the 
tumor or prevent their progression and spread. 
Promising progress has been achieved. The list of 
tumor vaccines includes protein/peptide vaccine, 
nucleic acid vaccine, anti-idiotype vaccine, recom-
binant virus vaccine, genetically modifi ed tumor 
cell vaccine, and dendritic cell (DC) vaccine. 
Moreover, other novel types of tumor vaccines are 
emerging. They are mainly designed for specifi c 
antigens on the tumor cells or tumor- associated 
microenvironment. Accordingly, numerous stud-
ies have been performed with different cancer vac-
cines targeting different antigens on HCC. 

 The transmembrane 4 superfamily member 5 
protein (TM4SF5) induces growth of HCC cells 
through the loss of contact inhibition and has 
been recognized as a potential antigen for 
HCC. Researchers formed a complex consisting 
of TM4SF5R2-3 epitope peptide and a special 
liposome complex as a vaccine [ 64 ]. 
Immunization with this vaccine in mice HCC 
models reveals both prophylactic and therapeutic 
effects. The results of this study suggested that 
this vaccine technology might be promising for 
future HCC patients with M4SF5-positive HCC. 

 Stem cells have received a great deal of atten-
tion for their clinical and therapeutic potential in 
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cancer treatment. Researchers genetically modi-
fi ed stem cells to express cytosine deaminase 
(CD) and interferon-β and tested these stem cells 
as a vaccine to treat mice with HCC tumor bur-
den. In the presence of the prodrug 
5- fl uorocytosine, the vaccine signifi cantly inhib-
ited the growth of the tumor mass [ 65 ]. 

 The fi eld of cancer immunotherapy has been 
strengthened by the discovery of vaccination 
with DC pulsed with tumor antigens is a potent 
strategy to elicit antitumor immunity (Fig.  10.2 ). 
DC is recognized as the most potent and effi cient 
professional antigen-presenting cell identifi ed so 
far, capable of activating both resting and naïve T 
cells. The ability to isolate and expand DC  in 
vitro  overcomes the previous obstacles in produc-
tion. DC-based cancer vaccine has been consid-
ered as an attractive therapeutic approach. 
However, clinical trials often failed to confi rm 
the effi cacy of DC vaccine in patients, and this 
implied more dedicated modifi cation needed to 
improve current strategy. Gao J et al. prepared a 
DC vaccine by pulsing DC with heat shock pro-
tein 70 from Mycobacterium tuberculosis with 
H22 tumor-peptide complexes and soluble 
CD40L [ 66 ]. Up-regulation of CD40, CD80, 
CD86, and HLA-DR expression was found, with 
higher level of T-helper type 1 cytokine secretion, 

such as IL-12p70, and resulted in the induction of 
H22-specifi c CTLs. Therapeutic administration 
of the vaccine signifi cantly reduced progression 
of HCC tumors in mice.  

 For the design and development of cancer vac-
cine, the most important issue is the selection of a 
suitable tumor antigen as the therapeutic target. 
After decades of exploration, several tumor anti-
gens have been proposed as potential targets for 
the development of cancer vaccines. These anti-
gens are listed in Table  10.1 . Among the antigens, 
Alpha-fetoprotein (AFP) may be one of the most 
well studied and promising. AFP is expressed 
during fetal development, but disappears shortly 
after birth. The relative unique distribution of AFP 
in HCC in an adult has long been harnessed for 
diagnosis of HCC. T cell epitopes were described 
in AFP. In a pioneer study, DC genetically modi-
fi ed to express AFP was capable of generating 
AFP-specifi c T cell response in peripheral blood 
mononuclear cells and transgenic mice [ 67 ]. 
Importantly, a 9-mer peptide (542–550) derived 
from AFP was identifi ed as a potential A2.1-
restricted peptide epitope. Later on, more epitopes 
from AFP were proved to induce AFP-specifi c T 
response in patients suffering from HCC [ 68 ]; 
these evidences strongly argue that AFP may 
serve as a therapeutic tumor antigen.

   Another potential antigen with promising 
prospects is Glypican-3 (GPC3). GPC3 belongs 
to a family of heparan sulfate proteoglycans, and 
it functions to bind growth factor and promote 
tumor growth [ 69 ]. GPC3 was found to be specifi -
cally expressed in HCC, and may serve as a diag-
nostic marker [ 70 ]. It indicated poor  prognosis in 
HCC patients [ 71 ]. Later, the HLA-A24- restricted 
CTL epitopes were reported from GPC3 and indi-

  Fig. 10.2    Tumor antigen presented by DC and activation 
of T cells       

   Table 10.1    Potential tumor antigens for immunotherapy 
of HCC   

 Tumor 
antigens 

 Expression 
frequency (%)  Detection methods 

 AFP  ~80  ELISPOT and 
tetramer 

 GPC3  ~70  Cytotoxicity assay 
 NY-ESO-1  ~50  ELISPOT 
 MAGE-A  ~80  Tetramer 
 TERT  ~80  ELISPOT 
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cated GPC3 was a possible tumor antigen for 
immunotherapy [ 72 ]. Based on these preclinical 
studies, a phase I clinical trial was conducted in 
Japan [ 73 ]. This registered trial (UMIN-
CTR-000001395) recruited an overall of 33 
patients with advanced HCC and escalating doses 
of GPC3 vaccines were administered. The GPC3 
peptide vaccine was well tolerated. One patient 
achieved partial response and 19 patients had sta-
ble disease. Given the resistant nature of HCC and 
the small sample size in the phase I trial, results 
were promising. And shortly later, a phase II trial 
(UMIN-CTR-000002614) was performed. In this 
trial, the GPC3-derived peptide vaccine was used 
in the adjuvant setting. The primary endpoints 
were 1- and 2-year recurrence rate [ 74 ]. The 
authors are awaiting the results of this trial. 

 MUC-1 is another potential antigen which was 
proposed for cancer vaccine. In a study performed 
by Japanese researchers, a 100-mer MUC1 pep-
tide consisting of the extracellular tandem repeat 
domain and incomplete Freund’s adjuvant were 
administered to several patients including three 
bile duct cancer patients [ 75 ]. The study showed 
that the vaccine was safe and well tolerated; how-
ever, no other conclusion was drawn due to the 
small sample of the phase I trial. However, no 
sequelae study was reported for this vaccine. 

 DC vaccines were tested in clinical trials. In 
one recently published report, DC vaccine pre-
pared by pulsing DC with a liver cancer cell line 
lysate was administered to 15 patients with 
advanced HCC [ 76 ]. The vaccine achieved two 
cases of partial response and nine cases of stable 
disease. Both cellular and humoral immunity 
were elevated after DC vaccine inoculation. 
Another similar study was performed in China. 
In this trial, DC was pulsed with synthesized 
α1,3-galactosyl epitope modifi ed tumor cells, 
and totally nine patients received the DC vaccine 
[ 77 ]. The vaccine signifi cantly prolonged the sur-
vival of patients as compared with the controls 
(17.1 ± 2.01 months vs. 10.1 ± 4.5 months, 
 P  = 0.00121). Elevated level of interferon was 
detected after DC vaccine inoculation. These 
pilot studies indicated the possibility of translat-
ing the success of DC vaccine in preclinical stud-
ies to human subjects.  

10.6.2    Cell Therapy 

 Adoptive cell therapy involves the transfer of 
immune cells with antitumor reactivity. Adoptive 
cell therapy aims at tumor elimination through 
direct or indirect effects of repairing or enhanc-
ing the immune function. Early studies involved 
the transfer of lymphokine-activated killer (LAK) 
cells with nonspecifi c ability to recognize and 
lyse tumor cells  in vitro  to cancer patients [ 78 ]. 
The use of T cells for adoptive therapy may be 
more attractive, because of their ability to specifi -
cally target tumor cells, besides long clonal life 
span. This strategy of adoptive cell therapy 
achieved some success in pilot studies where 
patients with melanoma or renal carcinoma were 
treated [ 79 ]. Further trials concentrated on isola-
tion, propagation, and activation of highly active 
and avid tumor-specifi c T cell clones and adop-
tive transfer for cancer patients. T cell expression 
of inhibitory proteins can be a critical component 
for the regulation of immunopathology, but it 
may also limit T cell responses to malignancies. 
In a recent report, researchers abrogated the 
expression of the Src homology region 2 domain- 
containing phosphatase-1 (SHP-1) in tumor- 
reactive CD8 +  T cells [ 80 ]. Following in vivo 
transfer, the SHP-1(−/−) effector T cells exhib-
ited enhanced short-term accumulation, followed 
by greater contraction, and ultimately formed 
similar numbers of long-lived, functional mem-
ory cells. The increased therapeutic effectiveness 
of SHP-1(−/−) effector cells was also observed in 
recipients that expressed the tumor Ag as a self- 
antigen in the liver. In another report, it was 
attempted to improve the effi cacy of cytokine 
activated cells (CAK) in HCC by combining 
them with the chemotherapy agent gemcitabine 
[ 81 ]. In this study, gemitabine treatment led to 
increased expression of MHC class I chain- 
related A and B on the surface of HepG2 HCC 
tumor cells, both of which were recognized as 
ligands for activating receptors on NK cells. 
Pretreatment with gemcitabine and CAK cells 
induced greater cytotoxicity than either treatment 
alone. 

 An important randomized control study per-
formed in Japan strongly argued for adoptive 
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immunotherapy for postsurgical HCC patients 
[ 82 ]. In this trial, a total 150 patients who under-
went curative surgery for HCC were enrolled. 
Half of them ( n  = 76) were assigned to receive 
adoptive transfer of IL-12 and anti-CD-3 
antibody- activated lymphocytes, and the other 
patients received no adjuvant therapy. Adoptive 
immunotherapy decreased the frequency of 
recurrence by 18 % compared to the control 
group. The immunotherapy group had signifi -
cantly longer recurrence-free survival ( p  = 0.01) 
and disease-specifi c survival ( p  = 0.04) than the 
control group. In support of this study, a system-
atic review was recently published where the 
authors evaluated the effi cacy of adjuvant adop-
tive immunotherapy for postsurgical HCC 
patients [ 83 ] in which four randomized control 
trials with 423 patients were eligible. All trials 
reported signifi cantly improved disease-free sur-
vival rate or reduced recurrence rate after treating 
with adjuvant adoptive transfer of cells ( p  < 0.05). 
This study adds to the evidence that postoperative 
HCC patients treated with adjuvant cell therapy 
show improvement in disease-free survival rate 
or recurrence rate. In another study, CAK cell 
therapy was combined with microwave ablation 
therapy for HCC [ 84 ]. In a phase I study, adop-
tive transfer of DC, CAK, and CTL cells was 
conducted together with microwave ablation. The 
aim of this study was to observe the viral load 
before and after the combination therapy. After 
therapy, the viral load was signifi cantly lower, the 
number of Tregs decreased, and effector T cells 
increased. However, this study did not report the 
clinical effi cacy of the combinatory regimen.  

10.6.3    Antibody Therapy 

 An important aspect of immunotherapy is anti-
body therapy. Antibody therapy is in the rapid 
boosting stage these days, and the list of novel 
antibody therapies is rapidly increasing. Among 
the antibodies available for cancer immunother-
apy, bevacizumab is recognized as one of the 
most important for its unique inhibitory effects 
on tumor vasculature but not on tumor cells. 
Tumor angiogenesis has been proved to be criti-

cal for a panel of tumors, including HCC [ 6 ]. 
HCC is among the highly angiogenic cancers; 
disorganized and tortuous vasculature was 
reported in HCC [ 85 ]. The poor vasculature led 
to insuffi cient infi ltration of nutrition, oxygen, 
therapeutic drugs, as well as lack of immune 
active cells. The concept of anti-angiogenic ther-
apy was tested in HCC. In a preliminary study, a 
segment of oligodeoxynucleotides with cytosine-
guanine- rich (CpG) motifs was used according to 
a classical vaccination protocol [ 86 ]. This kind of 
vaccine led to vasculature remodeling, rendered 
tumor permissive for infi ltration of immune cells, 
and demonstrated antitumor effi cacy. Given that 
the small molecular anti-angiogenic agent, 
sorafenib, is confi rmed to possess antitumor effi -
cacy for HCC, then how about bevacizumab? 
Several studies tried the bevacizumab for HCC 
patients. In a recently published phase II trial, 43 
patients received bevacizumab [ 87 ]. Of the 
patients, six (14 %) achieved a partial response. 
The disease control rate at the time point of 
16 week was 42 % (95 % confi dence interval, 
27–57 %). In addition, circulating endothelial 
cells were found to be associated with response, 
while interleukin-8 and -6 were negatively related 
to the therapeutic effi cacy. A systematic review 
analyzed the effi cacy of bevacizumab for HCC, 
although all trials eligible were phase II trials 
[ 88 ]. Eight trials involving 300 patients were 
included. The results favored the use of beci-
zumab either alone or in combination with other 
agents. Phase III trials are warranted to compre-
hensively examine the effi cacy and safety of bev-
acizumab for treatment of advanced HCC. 

 Recently, the immune regulatory mechanism 
becomes the focus of cancer immunotherapy. 
Tumor harnesses numerous regulatory pathways 
to evade immune surveillance, but these negative 
regulatory mechanisms provide additional thera-
peutic targets. The proof-of-concept evidence 
comes from the anti-Cytotoxic T-Lymphocyte 
Antigen 4 (CTLA-4) antibody. CTLA-4 is a cell 
surface molecule expressed almost exclusively on 
CD4 +  and CD8 +  T cells, and is important for the 
maintenance of T cell homeostasis [ 89 ]. CTLA4 
on the surface of T cells binds to CD80 and CD86 
on antigen-presenting cells, and transmits an 
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inhibitory signal to T cells. The CTLA-4 antibody 
ipilimumab is proved to be capable of inducing 
objective response in variant tumors, especially 
melanoma [ 90 ]. In one study, the effects of 
CTLA-4 blocking antibody were tested  in vitro  
[ 91 ]. Along with a panel of tumor- associated anti-
gen peptide vaccine, ipilimumab resulted in 
unmasking of immune responses by changing 
cytokine or chemokine profi les in peripheral 
blood mononuclear cells. These results suggested 
that ipilimumab had a role in the immunotherapy 
of HCC, but further studies are needed to confi rm 
this hypothesis. 

 The antibody induces the glomerization of 
series of complements. The complex formed by 
complements has a direct tumoricidal effect by 
attacking the cell membrane or releasing a signal 
for other effector cells (opsonizing). Fc fragment 
also binds specifi c receptors on the surface of 
effector cells like NK cells or T cells, and this 
antibody-dependent cytotoxicity (ADCC) effect 
plays an important role in the antitumor effect of 
the antibody. Equally promising is the use of con-
jugate antibody (Fig.  10.3 ). Conjugated antibody 
comprises two parts: the conjugates and the anti-
body. The antibody itself does not possess antitu-
mor activity, but rather performs to carry the 
conjugate (“magic bullet”) such as isotope (for 
instance, Tuxuetan), toxin, or chemotherapy 
agent to the tumor site.  

 Because of its great therapeutic and economi-
cal potential, efforts have been devoted to the 
research and design of novel antibody agents, 

and a radio-labeled antibody- 131 I labeled 
Metuximab injection (Licartin) for treatment of 
HCC has been developed and become commer-
cially available in China. 

 In a pilot study, the researcher recruited 24 
HCC patients and randomly divided them into 
three groups to receive 18.5, 27.75, and 37 MBq/
kg of Licartin per kilogram of body weight, 
respectively. Licartin was injected by hepatic 
artery intubation. The positive imaging result of 
monoclonal antibody (mAb) scanning in 24 
patients showed that Licartin was apparently 
accumulated more in hepatoma. These data sup-
ported that  131 I-labeled Metuximab could deliver 
relatively selective radiation to tumor tissues 
[ 92 ]. They also carried clinical trials to demon-
strate that Licartin was safe and active for HCC 
patients. In the phase I trial, 28 patients were ran-
domly assigned to receive the injection in 9.25-, 
18.5-, 27.75-, or 37-MBq/kg doses by hepatic 
artery infusion. In a multicenter phase II trial, 
106 patients received the injection (27.75 MBq/
kg) on Day 1 of a 28-day cycle. Response rate 
and survival rate were the endpoints. No life- 
threatening toxic effects were found. The safe 
dosage was 27.75 MBq/kg. The blood clearance 
fi tted a biphasic model, and its half-life was 
90.56–63.93 h. In the phase II trial, the injection 
was found to be targeted and concentrated to 
tumor tissues. Of the 73 patients completing two 
cycles, 6 (8.22 %) had a partial response, 14 
(19.18 %) minor response, and 43 (58.90 %) had 
stable disease (SD). The 21-month survival rate 

Growth factor
receptor

Tumor cell

T cell

Complements

Fv fragment

Fc fragment

Growth inhibition
apoptosis

  Fig. 10.3    Mechanisms of 
antitumor effi cacy of 
antibodies       
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was 44.54 %. The survival rate of progression- 
free patients was signifi cantly higher than that of 
patients with progressive disease after either one 
or two cycles ( p  < 0.0001 or  p  = 0.0019) [ 93 ]. 

 The antibody Licartin was also shown to be 
effective in preventing hepatoma recurrence after 
liver transplantation in a randomized controlled 
trial. This trial was to assess the post-orthotopic 
liver transplantation (OLT) anti-recurrence effi -
cacy of Licartin in advanced HCC patients. Sixty 
post-OLT patients with HCC, who were at tumor 
stage three-fourth and outside the Milan criteria 
before OLT, were randomized into two groups. 
Three weeks after OLT, the treatment group 
received 15.4 MBq/kg of Licartin, while the con-
trol group received placebo intravenously for 
three times with 28-day intervals. At 1-year fol-
low- up, the recurrence rate signifi cantly decreased 
by 30.4 % ( p  = 0.0174) and the survival rate 
increased by 20.6 % ( p  = 0.0289) in the treatment 
group, compared with those in the control group. 
For the control group versus the treatment group, 
the hazard ratio for recurrence was 3.60 (95 % 
confi dence interval [CI], 1.50–8.60) and that for 
death was 3.87 (95 % CI, 1.23–12.21). Licartin 
treatment also resulted in an earlier decreased 
AFP level and a longer time of normal AFP level 
than placebo ( p  = 0.0016). No Licartin-related 
toxic effects were observed. The authors con-
cluded that Licartin is a promising drug for pre-
venting post-OLT tumor recurrence in advanced 
HCC patients excluded by the currently strict cri-
teria for OLT [ 94 ]. However, human anti-mouse 
antibody (HAMA) response in some patients after 
administration limited its clinical use of Licartin. 
Therefore, attempts were made to develop a more 
effi cient antibody fragment with less immunoge-
nicity. To reduce the immunogenicity of murine 
antibody, they attempted to humanize HAb18 by 
variable domain resurfacing based on the three- 
dimensional structure of Fv fragment. They fabri-
cated a humanized version of HAb18scFv, 
HAb18-huscFv, to the human IgG1Fc fragment to 
form (HAb18-huscFv)(2)-Fc. The reactivity of 
(HAb18-huscFv)(2)-Fc to the serum of patients 
with HAMA response was decreased, while its 
specifi city and similar binding activity remained 
intact [ 95 ].   

10.7    Prospect 

 The past century has witnessed rapid progress in 
the therapy of hepatobiliary tract cancer. 
Surgery, ablation, embolization, and radiother-
apy have become mainstays for the treatment of 
locoregional disease, followed by increasingly 
effective targeted therapy or chemotherapy for 
disseminated disease. However, despite the 
great effort devoted, these cancers continue to 
exert a great threat to humans. The prognosis is 
still discouraging for most patients. Therefore, 
there is a high but unmet need to develop and 
implement innovative approaches for hepatobi-
liary cancers. Fortunately, in recent years, our 
treatment armamentarium has expanded beyond 
conventional treatment modalities to include 
immunotherapy, which acts against cancer in a 
more specifi c way [ 96 ]. 

 A great increase of our knowledge about the 
cancer immunogenicity and the immune response 
of our body has been achieved, and the leap has 
been translated into the development of new can-
cer immune therapies. Great progress has been 
achieved in cancer immunotherapy [ 97 ]. For 
example, Trastuzumab, the mAb against the 
tumor antigen HER2 overexpressed in breast 
cancer or gastric cancer has been widely used in 
clinical practice. Additional therapeutic antibod-
ies include Rituximab against CD20 in B-cell 
lymphoma and Cetuximab against overexpressed 
EGFR in colon cancer, head and neck cancer, or 
lung cancer. Also numerous clinical trials began 
to evaluate the effi cacy of adoptive T cell transfer 
for a panel of tumors [ 98 ,  99 ]. Maybe in the 
future not so far, some of the immune cell thera-
pies will become a part of the bed-side practice. 
Not to mention the numerous cancer vaccines 
that are being developed and some are in the late 
stages of clinical trial or already available for the 
clinicians (Table  10.2 ).

   Although decades have passed, cancer immu-
notherapy is still generally at its early stages. 
Most studies have been conducted at the preclini-
cal stage, with limited number of clinical trials. It 
seems a long way to go for immunotherapy. We 
believe this process can be accelerated if the fol-
lowing issues are improved. 
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 The immune capabilities of biliary tract can-
cer patients especially those with advanced can-
cer are often compromised by the cancer or poor 
nutritious status (cachexia). It is optimal for the 
immunotherapy to be administered on patients at 
earlier stage. For instance, the current ongoing 
trials that target antigen MAGE (MAGRIT) or 
MUC1 (INSPIRE) on lung cancer are both per-
formed in patients with postoperative or local 
advanced lung cancer. We suggest that the earlier 
stages of hepatobiliary cancer should be put at 
priority for immunotherapy. 

 The real problem is the lacking of an effi cient 
and easy way to measure the specifi c antitumor 
immunity in vivo. Currently, the methods most 
widely accepted include the ELISPOT to mea-
sure the humoral response or the MHC-peptide 
tetramer analysis to measure the T cell response. 
These techniques are diffi cult, time-consuming, 
and hard to be performed in everyday practice. 
Detection methods need to be expanded, and new 
methods need to be developed to detect these 
immune changes. For example, now we use the 
Positron Emission Tomography to scan the whole 
body for the foci of abnormal metabolism, which 
usually stands for cancer. Can new ways such as 
functional imaging be adopted to monitor the 
real-time antitumor immunity? The concept will 
come into reality for hepatobiliary cancer, given 
a suitable tracer is available. 

 Another hurdle is to look for suitable surro-
gate markers or biomarkers that predict the effi -
cacy of the immunotherapy. From the authors 
past experience, the success of targeted therapies 
is known to always depend on the existence of 

suitable targets. For instance, without the guid-
ance of epithelial growth factor receptor (EGFR) 
gene mutation status, clinical trials with EGFR 
tyrosine kinase inhibitors (TKIs) most often 
ended up with negative results. Now lung cancer 
patients harboring the EGFR mutation are 
selected for the administration of TKIs. In this 
population, the TKIs far outperform chemother-
apy. But for the most of the immunotherapies, we 
still do not have appropriate biomakers to select 
suitable patients. The defects in our knowledge 
will undoubtedly exert impacts on the develop-
ment of immunotherapy. Clinical trials conducted 
in unselected patients will probably veil the suc-
cess in certain subgroups of patients and mislead 
us to the wrong conclusion.  

10.8    Concluding Remarks  

 In summary, hepatobiliary tumors are a diverse 
group of tumors that arise from the hepatobiliary 
tract including the liver, gallbladder, and bile tract. 
Cancer from the hepatobiliary tract has poor prog-
nosis and high mortality rate. Even worse, the 
treatment modality is very limited for this disease. 
Therefore, a novel effective and specifi c therapy is 
highly required for hepatobiliary tract cancer. In 
this sense, immunotherapy may provide an addi-
tional therapeutic opportunity for this notorious 
disease. Immunotherapy of cancer has been gradu-
ally established as one of the treatment modalities. 
Adoptive transfer of mAbs has achieved defi nite 
effects in clinics and it is believed that the booming 
of mAbs will persist. To some extent, cell therapy 

   Table 10.2    Vaccines in the late stage of development   

 Vaccine  Component  Cancer type  Clinical trial phase 

 Vitespen (Oncophage)  Autologous, tumor-derived heat shock 
protein gp96 peptide complexes 

 Melanoma  Phase 3 

 –  gp1: 209–217(210M)  Melanoma  Phase 3 
 TroVax  Modifi ed vaccinia Ankara encoding the 

tumor antigen 5T4 (MVA-5T4) 
 Renal cell cancer  Phase 3 

 –  Bec2/bacille Calmette- Guerin (BCG)  Small cell lung cancer  Phase 3 
 Provenge (Sipuleucel-T)  Antigen-presenting cells pulsed with a fusion 

protein which consists of PAP and GM-CSF 
 Prostate cancer  On the market 

 GVAX  GM-CSF transduced allogeneic prostate 
cancer cells 

 Prostate cancer  Phase 3 
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has unique mechanisms of action and has achieved 
amazing effects in some cases. As far as the cancer 
vaccine is considered, it is in the stage of rapid 
rise. Several cancer vaccines have been approved, 
especially for patients with melanoma or prostate 
cancer. Given the rapid progress in the fi eld of can-
cer immunotherapy, it is believed to provide an 
additional opportunity to the therapy of liver and 
biliary tract cancer.     
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11.1             Introduction 

 When activated, infl ammation and immunity 
induce repair mechanisms to recover tissue func-
tion and integrity in addition to the elimination, 
or at least the control of dissemination or sys-
temic colonization, of pathogens. These 
responses are essential for the survival of the 
organism. 

 Almost 2,000 years ago, the Greek physician 
Galenus [ 1 ] had already described the similarity 
between cancer and infl ammation. More than a 
century ago, Dvorak [ 2 ] observed that infl amma-
tion and cancer share some basic developmental 
mechanisms (angiogenesis) and tissue- infi ltrating 
cell types (lymphocytes, macrophages, and mast 
cells), and that tumors act like “wounds that do 
not heal.” The close relationship between carci-
nogenesis and infl ammation, which can be sec-
ondary to infection, has recently been the subject 
of many studies at the molecular, cellular, animal, 
and clinical levels. 
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 Some of the most intriguing clinical evidence 
in humans regarding the association between 
chronic infl ammation and cancer derives from 
the fi nding that regular use of aspirin or other 
nonsteroidal anti-infl ammatory drugs (NSAIDs) 
decreases the incidence of cancer. More recently, 
G. Trinchieri [ 3 ] reviewed the systemic role of 
commensal microbiota in the infl ammatory con-
dition of cancer, particularly important in the 
CRC case.  

11.2     Infection and Infl ammation 

 Hanahan and Weinberg [ 4 ] in their 2011 update of 
the “Hallmarks of Cancer” introduced the immune 
hallmark of cancer focusing on immunosuppres-
sion on the one hand and tumor promoting infl am-
mation as an enabling characteristic on the other. 
Both are two sides of the same coin because the 
class of infl ammation and immunity responsible 
for tumor initiation and early progression is of the 
same class that prevents the immune system from 
eliminating tumors [ 3 ]. In fact, when tumors 
escape immunosurveillance, they are not immu-
nologically silent, as indicated by the roles of 
infl ammation and immunity in editing the tumor 
cell phenotype [ 4 ], or the evidence that, even in 
progressing tumors, the nature of immunological 
infi ltrates correlates with prognosis [ 5 ]. 

 When transformed cells are not killed by the 
immune response and the tumor starts to grow in 
an organism, tumor mass is not an extraneous 
parasitic body, but a complex organized tissue 
formed by both transformed as well as normal 
stromal cells in a symbiotic relationship that sus-
tains the growth of the tumor and eventually 
favors its dissemination to distant tissues. This is 
reminiscent of an organism’s relationship with 
infectious pathogens that, in the case of chronic 
infections, establishes a near symbiotic relation-
ship with the reactive surrounding tissues, often 
reorganized in specifi c anatomical structures 
such as the granulomas. As for pathogens, the 
organism does not ignore the presence of the 
tumor, but instead triggers tissue and infl amma-
tory responses. Indeed, successful malignant 
cells coevolve with their environment, and 

 conversely, the microenvironment can restrain 
cancer progression [ 6 ]. Clinical examples are 
provided by the observation of frequent subclini-
cal prostate and breast tumors identifi ed during 
autopsy in young individuals deceased from 
noncancer- related causes [ 7 ]. 

 Up to 15 % of tumors can be attributed to an 
infection [ 8 ]. Some pathogens that infect humans 
directly induce cell transformation such as herpes 
virus, Epstein Barr virus (EBV), or Human 
T-Lymphotropic virus-I (HTLV-I). Other viruses 
(e.g., hepatitis viruses) favor carcinogenesis by 
inducing chronic infl ammation in the infected tis-
sues (in fact, a tumor-promoting effect of infl am-
mation is now suspected also for transforming 
viruses). Nonetheless, most human tumors origi-
nate from tissues with sterile chronic infl amma-
tion. Infl ammation can start due to mechanical, 
chemical, irradiation and other types of injury, or 
to genetic syndromes. For example, bladder car-
cinoma is associated with chronic indwelling uri-
nary catheter (mechanical) [ 9 ], lung cancer and 
mesothelioma is associated with asbestosis 
(chemical) [ 10 ], and pancreatic carcinoma in 
patients with pancreatitis is due to a mutation in 
the tryspinogen gene (genetic) [ 11 ]. 

 The infl ammation associated with cancer ini-
tiation is defi ned as intrinsic when the mecha-
nisms that are involved in cell transformation, 
most typically oncogene (in particular Ras, Myc, 
Src, RET, and microRNAs such as mi-R155) [ 3 , 
 12 ] overexpression, mutation, DNA damage, or 
mitochondrial reactive oxygen species (ROS), 
are also responsible for the activation of a proin-
fl ammatory program in the altered cell. 

 By contrast, extrinsic infl ammation is activated 
by the tissue’s response to the malignant cells, and 
is most prominently mediated by the infi ltrating 
infl ammatory cells [ 3 ,  12 ]. Stressed cells produce 
pro-infl ammatory factors (cytokines, chemokines, 
interferons (IFNs), tissue rearranging enzymes) in 
response to DNA damage, mitochondrial damage, 
endoplasmic reticulum (ER) stress, oxidative 
damage, hypoxia, excessive temperature, exces-
sive nutrients, senescence, or oncogene activa-
tion. The tissue- intrinsic infl ammatory responses 
recruit hematopoietic infl ammatory cells. These 
infl ammatory cells express specialized innate 
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receptors, such as Toll-like receptors (TLRs). 
Other families of cytoplasmic pattern recognition 
receptors (PRRs) more recently identifi ed - like 
Nod (Nucleotide binding oligomerization 
domain)-like receptors (NLRs), C-type lectin 
receptors, RIG-I (retinoic acid inducible gene-I)- 
like receptors (RLRs), or DNA sensors - identify 
pathogen-associated molecular patterns (PAMPs,  
associated with microbial pathogens or cellular 
stress and diet-induced infl ammation), and also 
damage-associated molecular patterns (DAMPs, 
associated with endogenous components released 
during cell damage) [ 13 – 15 ]. By defi nition, these 
receptors are very promiscuous; the same or very 
similar ligand can bind different receptors in the 
same cell or in a different population. Many of 
these receptors have the same signal transduction 
pathways, adaptor protein MyD88. 

 Moreover, tumor cells secrete several cyto-
kines and chemokines that attract blood leuko-
cytes. The leukocyte population present on a 
developing cancer is quite diverse and includes 
neutrophils, dendritic cells, macrophages, and 
lymphocytes, all of which are capable of secreting 
a series of cytokines, ROS, membrane perforating 
agents or IFNs. These secreted molecules contrib-
ute to the infl ammatory milieu present in a devel-
oping tumor, which may contribute to the growth 
and dissemination of transformed cells [ 16 ]. For 
example, although tumor-associated macrophages 
contribute to the elimination of transformed cells 
once activated by cytokines [ 17 ], they also pro-
duce potent angiogenic and growth factors such 
as VEGF-C and –D that potentiate neoplastic pro-
gression [ 18 ]. The hypothesis that transformed 
cells arising from areas of infection and infl am-
mation are part of a normal host response is based 
on several observations [ 19 ]. 

 The effect of the commensal fl ora on local 
infl ammation and on carcinogenesis at interfaces 
between the organism and the outside environment 
(not only in the gut, but also in the upper gastroin-
testinal tract, oral mucosa, bronchioalveolar 
mucosa, and skin) can be now readily explained by 
the direct interaction of the bacteria or their prod-
ucts with those innate receptors or sensors in 
 epithelial cells or in the most superfi cial cell  layers. 
Increasing evidence indicates that these interac-

tions can have additional deep systemic effects 
through the immune system cells and alteration of 
the infl ammatory environment. How exposure to 
the developing commensal fl ora affects the matu-
ration of the immune system after birth has been 
extensively studied. Other mechanisms affecting 
metabolic processes or genetic stability remain 
uncertain, but several animal models of autoim-
munity and immunity to pathogens are beginning 
to unravel the important effects of commensal 
fl ora on the systemic infl ammation/immunity. For 
example, syngeneic graft versus host disease 
(GVHD) and type 1 diabetes (T1D) in mouse 
models are regulated by the gut microbiota [ 20 , 
 21 ]. In addition, there is a bi-directional relation-
ship between the central nervous system and the 
intestinal microbiota. The central nervous system 
infl uences the intestinal microbiota in several 
pathways of the gastrointestinal physiology such 
as epithelial functions, permeability, or the pro-
duction of mucus and antibacterial peptides. 
Conversely, gut microbiota interacting with local 
and systemic infl ammatory and immune responses 
activate the production of several metabolites 
including infl ammatory cytokines that affect brain 
and behavior [ 22 ,  23 ]. 

 Finally, chronic infl ammation affects all phases 
of carcinogenesis. Infl ammation favors the initial 
genetic mutation, functional protein modifi ca-
tions, or epigenetic mechanisms that drive cell 
transformation and cancer initiation [ 24 ,  25 ]: 
ROS and reactive nitrogen species (RNS) can 
induce DNA strand breaks, single base or more 
complex DNA mutations, as well as epigenetic 
modifi cations in proto-oncogenes, tumor-sup-
pressor genes, and other genes encoding proteins 
that control apoptosis, survival, DNA repair, and 
cell-cycle checkpoints [ 24 ,  26 ]. Nuclear factor-κB 
(NF-κB) and signal transducer and activator of 
transcription-3 (STAT-3) are among the best char-
acterized of the transcription factors induced by 
the infl ammatory mediators [ 27 ,  28 ]. Activation 
of NF-κB in response to chronic infl ammation is 
of particular relevance to gastrointestinal cancer 
development, especially in colitis-associated can-
cer (CAC). Activated NF-κB was detected in 
 lamina propria macrophages and epithelial cells 
from biopsies or cultured cells of IBD patients 
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and the number of cells showing NF-κB activa-
tion correlated with the degree of mucosal infl am-
mation [ 29 ]. Many factors released by the tumor 
and by the tumor stroma, such as VEGF, interleu-
kin-6 (IL-6), IL-10, IL-11, and IL-23, activate 
STAT-3 in tumor and stromal cells. Several of 
these factors are transcriptionally regulated by 
STAT-3, thus creating a positive-feedback loop 
[ 30 ]. These factors also act as tumor promoters by 
establishing a tissue microenvironment (e.g., 
angiogenesis) that allows the tumor to progress 
and metastasize, as well as prevents the effec-
tive immune response against the tumor by 
 establishing immunosuppressive mechanisms. 
Infl ammation also causes systemic metabolic 
alterations such as cachexia that often represent 
the primary cause of morbidity and mortality in 
cancer patients. In all these ways, infl ammation 
also affects the response to therapy.  

11.3     Infl ammation, Gut 
Microbiota, and Colorectal 
Cancer 

 CRC develops from malignant lesions originated 
by genetic alterations that affect primarily genes 
encoding either intestinal homeostatic regulators 
or DNA-mismatch-repair factors. 

 It is also known that infl ammatory bowel dis-
ease (IBD) patients have a several-fold increased 
susceptibility to cancer. IBDs—both Crohn’s dis-
ease and ulcerative colitis—are the major risk 
factors for CRC. Therefore, colorectal cancers in 
IBD patients are considered typical examples of 
infl ammation-related or CAC. However, the rela-
tive increased risk for colorectal cancer in these 
patients is not higher than threefold compared 
with healthy controls, and the tumors usually 
appear after many years of intestinal pathology, 
with a cumulative lifetime risk of 18 % [ 31 ,  32 ]. 

 Interestingly, IBD patients also have an 
increased susceptibility to lymphomas/leukemias, 
hepatocarcinomas, and other tumors, suggesting 
that the intestinal infl ammation due to the patho-
logical immune responsiveness to the  commensal 
microbiota is responsible for both local and 
 systemic tumor-promoting effects. Alternatively, 

the same genetic alterations that affect infl amma-
tory and immune intestinal homeostasis also pre-
dispose an individual to carcinogenesis in other 
tissues [ 31 ,  32 ]. The immunosuppressive agents 
used in IBD therapy could also explain this 
increased susceptibility; however, the types of 
tumors increased in the IBD patients are different 
from that observed in patients that had used that 
therapy in transplants [ 33 ]. 

 Thus, most CRCs develop without any obvious 
preexisting intestinal infl ammatory pathology. 
However, the other known main risk factors includ-
ing obesity, lack of exercise, fat-rich diets, and use 
of alcohol and tobacco [ 19 ,  34 ], and particularly 
those related to nutrition, are environmental agents 
that affect the commensal microbiota. As the gut 
infl ammatory tone and the development of muco-
sal innate and adaptive immunity are regulated by 
the commensal fl ora, alterations in the percentages 
of fl ora composition or changes in the presence of 
specifi c bacterial species can modulate that envi-
ronment, with pro- or anti-infl ammatory effects. 
Also, the gut microbiota may affect gastrointestinal 
cancer through the catabolism of natural mutagens 
and carcinogens that require or are regulated by 
specifi c enzymatic activity provided by the com-
mensal fl ora [ 35 ]. 

 Very likely those agents are responsible for 
the geographical variation in the incidence of 
colorectal cancer since these wide geographical 
variations are lost in migrating populations that 
acquire the same risk than the host populations 
within one generation [ 36 ,  37 ]. 

 Nowadays, many data support that interaction 
between risk factors and commensal fl ora coop-
erates with colorectal carcinogenesis initiated by 
genetic predisposition or environmental causes. 
First, several rodent experimental models mim-
icking human CRC have been used to study the 
role of infl ammation in the development of CAC, 
clearly establishing that innate and immune cells, 
cytokines such as TNF, IL-1, IL-6, IL-10, IL-11, 
IL-17, IL-22, and IL-23, and the STAT-3-NF-κB 
axis all participate in the induction of infl amma-
tory colitis (predisposing an individual to cancer 
development) [ 38 ]. 

 Later, the role of the gut commensal fl ora in 
colon cancer was demonstrated by the lack of 
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tumor development in germfree animals. For 
example, germfree or mono-associated with the 
mildly colitogenic bacterium  Bacteroides vulga-
tus  azoxymethane (AOM)-treated  Il10  −/−  mice, 
did not develop colitis nor tumors [ 39 ]. Lack of 
tumor formation in germfree mice was also 
observed in several cancer models in genetically 
engineered mice ( Il10  −/− ,  Gpx1 / Gpx2  −/− , and 
 Tcrb / p53  −/− ) that mimic clinical colorectal carci-
noma [ 40 ]. Similarly, carcinogenesis induced by 
AOM and promoted by bile injection was pre-
vented in rats grown germfree [ 41 ]. On the 
 contrary, in immunodefi cient  Tbet  −/−  and  Rag2  −/−  
ulcerative colitis (TRUC) mice, induced colitis 
spontaneously progresses to colonic dysplasia 
and rectal adenocarcinoma [ 42 ]. At least two 
enterobacterial species,  Klebsiella pneumoniae  
and  Proteus mirabilis , were responsible for coli-
tis and cancer in TRUC mice [ 43 ], although colo-
nization of germfree mice with those two species 
alone was insuffi cient to induce colitis, indicating 
that either they modify the gut physiology and 
the normal fl ora composition or act in synergy 
with the normal components of the gut fl ora in 
activating colon infl ammation. Also, a patho-
genic human bacterium, the enterotoxigenic 
 Bacteroides fragilis , activated the Wnt and 
NF-κB signaling pathways and promoted colon 
cancer in adenomatosis polyposis coli (APC)  min/+  
mice (a mouse model of inherited intestinal can-
cer). Interestingly, activation through the T helper 
17 (Th17) cell response was demonstrated [ 44 , 
 45 ]. In a similar way, intestinal infection with 
 Helicobacter hepaticus  enhanced small intestine 
and colon cancer and also mammary adenocarci-
noma in APC min/+  mice [ 46 ], or chemical or virus 
transgene-induced hepatocarcinomas [ 47 ]. 

 In another model,  Myd88  −/−  mice have been 
used to induce colitis under dextran sulfate 
sodium (DSS) and irradiation therapy [ 48 ]. 
Unlike what occurs in most other tumor models, 
MyD88 has a protective role in the development 
of the colonic tumors that develop following 
AOM/DSS treatment [ 49 ]. Some mice defi cient 
for single TLRs also display increased suscepti-
bility to colitis, though never so dramatic as the 
susceptibility to AOM/DSS carcinogenesis 
observed in the  Myd88  −/−  mice [ 36 ]. Supporting 

these fi ndings, under AOM/DSS treatment, mice 
lacking IL-18 and IL-18 receptor (IL-18R) also 
display an increased susceptibility to CAC with a 
molecular profi le similar to that observed in 
 Myd88  −/−  mice since signaling through the 
IL-18R also requires MyD88, as most TLRs [ 13 , 
 49 ]. However, other studies showed that IL-18 
protects from colitis and carcinogenesis [ 50 ]. 

 In  Nlrp6  −/−  mice, the expansion of bacterial 
phyla  Bacteroidetes  ( Prevotellaceae ) and  TM7  in 
the fecal microbiota correlated with susceptibil-
ity to colitis [ 51 ], thus another innate system 
receptor of the infl ammasome [ 13 – 15 ], NLRP6 
(1 of 14 pyrin domain containing members of the 
NLR family out of PRRs), also regulates colonic 
microbial ecology. 

 In this sense, humans infected with  Helicobater 
pylori  are an example that an infection by a single 
bacterial species develops in gastric cancer. Even 
 Escherichia coli  is associated with an increased 
risk of colorectal carcinoma by downregulating 
mismatch-repair genes  in vitro  [ 52 ].  

11.4     Obesity, Metabolic 
Syndrome, Cancer Cachexia, 
and Infl ammation 

 Modern lifestyle and diet, although responsible 
for an overall improvement in health and life 
expectancy, have also brought a substantial 
worldwide increase in overweight (body-mass 
index (BMI) of 25–30 kg/m 2 ) or obese 
(BMI > 30 kg/m 2 ) individuals, affecting approxi-
mately half of the population in developed coun-
tries. Three recent studies [ 53 – 55 ] show that 
obesity, in addition to cancer susceptibility, may 
also affect survival after detection, in particular 
in endometrial, postmenopausal breast, and CRC 
cancers. 

 More than total BMI, visceral adipose tissue 
has been referred to as the metabolic syndrome 
[ 56 ]. Adipose tissue actively secretes adipokines 
and cytokines responsible for the induction of a 
pro-infl ammatory, insulin-resistant, and pro- 
coagulant environment. These mediators are not 
only restricted to adipose tissue, but also affect 
infl ammation and immune responsiveness, oxi-
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dative metabolism and energy balance ubiqui-
tously [ 57 ]. These factors altogether associated 
with excessive weight are the probable cause of 
the increased incidence of cancers associated 
with obesity [ 19 ]. 

 This metabolic infl ammatory state, also 
termed  metafl ammation , is a low-grade, chronic 
infl ammation elicited not only by adipocytes, 
but also by the stromal and infl ammatory cells 
of the tissue in response to excess nutrients and 
energy [ 58 ,  59 ]. The infl amed adipose tissue has 
resident cells, adipocytes, and fi broblasts, as 
well as infi ltrating innate and immune cells such 
as lymphocytes and macrophages. The infl am-
matory response determines the type and class 
of the infl ammatory infi ltrate and does not 
resolve unless the nutrient levels are dramati-
cally altered. 

 Excess of nutrients induce an increased pro-
duction of mitochondrial ROS. ROS induces 
pro- infl ammatory transcriptional factors such 
as NF-κB and activating protein-1 (AP-1) 
through the activation of their upstream kinases 
IκBα and JNK [ 60 ,  61 ]. Adipocytes also 
express TLR 2 and 4. In addition to the non-
bacterial agonists of these receptors such as 
diet saturated fatty acid or lipopeptides, the 
commensal fl ora or their bacterial products 
such as LPS and lipopeptides may reach cells 
in adipose tissues and activate TLRs. Studies 
in humans and mice have confi rmed that obe-
sity is associated with several changes in the 
composition of the commensal fl ora. Overall, 
obese individuals exhibit reduced bacterial 
diversity associated with changes at the phy-
lum level (an increase in Firmicutes and a cor-
responding decrease in Bacteroidetes) and an 
altered representation of bacterial genes and 
metabolic pathways that favor energy harvest 
[ 62 – 64 ]. 

 The first pro-inflammatory cytokine found 
to be produced by the adipose tissue was 
TNF, which was identified in a search for a 
soluble factor able to suppress insulin signal-
ing and to maintain type 2 diabetes [ 65 ]. 
Other cytokines identified in the adipose tis-
sue include IL-6, IL-1β, IL-18, CCL2 (mono-
cyte chemotactic  protein- 1, MCP-1), etc. 

[ 58 ]. Markers such as IL-6 and C-reactive 
protein (CRP) not only are present in the 
inflamed adipose tissue, but also are  elevated 
in circulation. More restricted to the adipose 
tissues are adipokines such as leptin (involved 
in appetite control), adiponectin (an insulin 
sensitizer and anti-inflammatory mediator), 
as well as other molecules such as lipocalin 2 
and resistin—produced by adipocytes and 
inflammatory cells—that have both pro- 
inflammatory and chemotactic functions and 
promote insulin resistance [ 66 ]. 

 Another important link between infl amma-
tion and energy metabolism is the wasting syn-
drome, termed cancer cachexia, observed in 
most patients with advanced cancers of certain 
types, up to 80 % of patients with pancreas or 
other upper gastrointestinal cancers and 60 % of 
lung cancer patients, and in a proportion of 
patients with other chronic diseases, for exam-
ple, kidney diseases, but it is less common in 
other cancers [ 67 ]. Weight loss in adults and 
growth failure in children are the main manifes-
tations of cachexia, although anorexia, infl am-
mation, insulin resistance, and muscle protein 
atrophy are also usually associated with this syn-
drome. It has a profound effect on patients’ mor-
bidity and mortality, with a decreased quality of 
life due to decreased physical activity, ability to 
interact socially, and perception of body image 
[ 3 ]. The pathology of cancer cachexia is more 
signifi cantly associated with infection rather 
than malnutrition due to starvation. Association 
between systemic infl ammation and cancer 
cachexia both in patients and in experimental 
animal models was confi rmed by these evi-
dences: circulating CRP levels correlate with the 
grade of cachexia in patients as well as with the 
risk of death, and cytokines such as TNF, IL-1β, 
and IL-6 are elevated either systemically or in 
the tumor microenvironment of cachectic 
patients [ 67 ]. These immune alterations are 
likely to alter the innate responses to pathogens 
and to the commensal fl ora, therefore modifying 
the infl ammatory environment both in the tumor 
microenvironment and systemically, with the 
consequent feedback loop, affecting the energy 
metabolism.  
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11.5     CRC Prevention by 
Nonsteroidal Anti- 
infl ammatory Drugs 

 Cyclooxygenases (COX)-1 and COX-2 enzymes 
catalyze the production of prostaglandins from 
fatty acids. The  COX1  gene is constitutively 
expressed; its product induces basal levels of 
prostaglandins and contributes to the homeosta-
sis of the gastrointestinal mucosa. The inducible 
 COX2  gene is predominantly expressed in stro-
mal cells such as fi broblasts and macrophages. 
When TNF or IL-1 regulates this gene in pro- 
infl ammatory conditions, its product catalyzes 
the production of much higher concentrations of 
prostaglandins compared to COX-1 [ 68 ]. 

 It was initially described that CRC highly 
expresses COX-2, whereas COX-1 is not overex-
pressed in tumoral tissues [ 69 ,  70 ]. Overexpression 
of COX-2 protein is observed in 80 % of CRCs 
and in 40 % of adenomas but not in the normal 
mucosa. In addition, COX-2 may have a prognos-
tic value in human colorectal cancer [ 71 ]. 
Although a causative link between COX-2 expres-
sion and colon cancer was experimentally demon-
strated by the reduced but not eliminated incidence 
of polyposis in  COX2 -defi cient APC  min/+  mice 
[ 72 ], COX-2 was found upregulated at early 
stages of tumorigenesis in most tumor types. 

 Prostaglandin E2 (PGE2) directly affects 
innate and immune adaptive cells and also pro-
motes infl ammation, in part by dilating blood 
vessels and allowing immune cells to migrate 
from blood into tissues. PGE2 also regulates 
angiogenesis and enhances hematopoietic cell 
homing, directing progenitor cells to damaged 
tissue in order to differentiate into the many 
immune cell types needed for tissue repair. In 
carcinogenesis, the effects of COX-2 and prosta-
glandins are complex, affecting both transformed 
epithelial cells and the infl ammatory microenvi-
ronment [ 68 ]. 

 In summary, PGE2 (1) promotes epithelial 
cell proliferation through at least Ras-Erk signal-
ing pathways and glycogen synthase kinase-3β 
[ 73 ,  74 ]; (2) promotes epithelial survival via the 
induction of bcl-2 and the activation of the PI3K-
AKT- PPAR δ    cascade, proteins implicated in the 

apoptotic process [ 61 ]; (3) promotes  angiogenesis 
by enhancing endothelial cell mobility and 
upregulating VEGF and fi broblast growth factor 
2 (basic) (FGF2) production [ 75 ,  76 ]; (4) regu-
lates tumor and infl ammatory cell migration, 
affecting chemokine production and tissue rear-
rangement, in part mediated by activation of 
EGFR signaling [ 68 ]. 

 In addition, although prostaglandins stimulate 
the immune response, PGE2 enhances IL-23 
while inhibits IL-12 production by antigen pre-
senting cells (APCs) facilitating tumor progres-
sion through the development of tumor-promoting 
Th17 responses rather than tumor-preventing 
Th1 responses [ 77 ]. 

 Nonsteroidal anti-infl ammatory drugs 
(NSAIDs) such as aspirin and ibuprofen inhibit 
both COX-1 and COX-2 and consistent with the 
research mentioned above, many studies showed 
that daily use of aspirin (after at least 5 years of 
aspirin use) and other NSAIDs for extended peri-
ods reduced the risk of colorectal cancer or polyp 
recurrence (both individuals with reoccurring 
polyps or genetic predisposition but also the risk 
for sporadic colon cancer), and also partially, 
30 % lower, the 20-year risk of cancer death for 
all solid cancers (e.g., lung or brain) and, 60 % 
lower, gastrointestinal cancers (e.g., esophageal, 
pancreatic, stomach) (reviewed by Rothwell 
et al. [ 78 ]). These data came from trials originally 
planned for prevention of cardiovascular diseases 
in which patients took aspirin daily. However, 
these drugs are very toxic and induced a consid-
erable damage to stomach and intestinal lining, 
or brain hemorrhage [ 79 ,  80 ]. 

 The logical next step was to develop selective 
COX-2 inhibitors. Since these drugs only inhibit 
the inducible COX-2 enzyme, which is activated 
only during infl ammation, they do not affect the 
gastrointestinal homeostasis and were expected 
to be much safer. In clinical trials, COX-2 inhibi-
tors increased both overall and recurrence-free 
survival following surgical resection, particularly 
in the percentage of colorectal cancer patients 
who overexpressed  COX2  or had mutated forms 
of the gene [ 81 ,  82 ]. Interestingly, COX-2 inhibi-
tors not only prevented cancer formation, but also 
decreased the number of already established 
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 polyps in patients with familial adenomatous 
 polyposis, an inherited disorder characterized by 
the early onset of colon cancer [ 83 ]. However, 
later clinical trials based on these promising 
results had to be discontinued due to cardiovas-
cular and cerebrovascular toxicity of COX-2 
inhibitors [ 84 ,  85 ]. It was discovered that the 
COX-2 substrate—arachidonic acid—shunted 
into the 5- lipooxygenase pathway, generating 
leukotrienes rather than prostaglandins, which 
suppresses prostacyclin production from the 
endothelium [ 79 ]. 

 Overall, the data from all these clinical trials 
of cancer prevention using NSAIDs support that 
infl ammation is an underlying cause of cancer 
even in some tumor types that had not been tradi-
tionally considered to originate within chroni-
cally infl amed tissues (like lung or prostate). As a 
consequence, other anti-infl ammatory drugs tar-
geting different infl ammatory pathways, or in a 
different way, may play an important role in pre-
venting the initiation and progression of both 
gastrointestinal and other solid organ cancers.  

11.6     Cancer Microenvironment 
and Immunosuppression 

 Histopathological studies of solid tumors have 
demonstrated that the immune system of the host 
is activated by human colorectal cancer cells, 
and, both, cells of the innate immune system such 
as neutrophils [ 86 ], macrophages [ 87 ], natural 
killer (NK) cells [ 88 ] or DCs [ 89 ], and cells of 
the adaptative immune system such as CD4 +  
helper and CD8 +  cytotoxic T lymphocytes [ 90 , 
 91 ] accumulate in sites of tumor development. 

 The role of this complex microenvironment is 
less clear. Immune cells can release infl ammatory 
mediators with proangiogenic and prometastasic 
effects [ 16 ]. At the same time, tumor-infi ltrating 
lymphocytes in CRC have been shown to inhibit 
tumor growth and are associated with improved 
prognosis [ 91 – 93 ]. However, despite immune 
surveillance tumors develop in the presence of a 
completely functional immune system. The con-
cept of cancer immunoediting arised to explain 
this apparent paradox [ 94 ], and try to make prog-

ress on new cancer immunotherapies. This con-
cept has been divided into three phases, namely, 
elimination, equilibrium, and escape [ 95 ]. The 
elimination phase is what has been historically 
designated cancer immunosurveillance, whereby 
immune cells detect and eliminate transformed 
cells with failed intrinsic cell development sup-
pression mechanisms. This elimination could be 
incomplete, in which case some tumor cells 
remain either dormant or continue to evolve 
accumulating further changes that can modulate 
the expression of tumor-associated antigens 
(TAAs) or other factors that increase their fi tness. 
During this time, the immune system continues 
to exert a selective pressure eliminating some 
transformed clones but if this elimination is again 
incomplete, the process results in the selection of 
tumor cell variants that are able to resist, avoid, 
or suppress the antitumor response, leading to the 
escape phase [ 95 ]. Regarding CRC, it has been 
clearly demonstrated that these cancer cells are 
immunogenic [ 96 ] and that host immune 
responses can infl uence patient survival [ 97 ] and 
these data hold the promise of specifi cally target-
ing tumor cells, provided the mechanisms of 
immune escape and tumor-induced immune sup-
pression are overcome. 

 It has been shown that CRC induces an immu-
nosuppression state in patients marked by 
reduced secretion of several cytokines by mono-
cytes/macrophages such as IFN-γ or TNF-α, 
which is reversible after resection of the affected 
tissue [ 98 ]. 

 During an immune response, CD4 +  T lympho-
cytes can differentiate into two broad phenotypic 
subtypes: T helper 1 (Th1) or Th2. These two dif-
ferent subtypes secrete different types of cyto-
kines, and consequently, activate different types 
of immune responses. Th1 lymphocytes secrete 
IFN-γ and TNF-α, which produce the activation 
of CD8 +  cytotoxic T lymphocytes (CTLs), NK 
cells, macrophages, and monocytes, all of which 
contribute to a cellular immune response that is 
effective against tumor cells. However, Th2 lym-
phocytes secrete a different set of cytokines such 
as IL-4, IL-5, IL-10, or IL-13, all of which devi-
ate the response to a humoral immune response, 
and this kind of immune response is less effective 
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at eliminating cancer cells [ 99 ]. A shift toward a 
Th2 response has been shown in CRC patients, 
with reduced levels of Th1 cytokines and normal 
or elevated levels of Th2 cytokines, an imbalance 
that becomes more signifi cant the further the 
 disease progresses, with levels of the Th1 cyto-
kines having a prognostic value in terms of 
patient survival [ 100 – 103 ]. The mechanism 
through which CRC cells can shift the T-cell 
immune response could be due in part to the 
secretion of cytokines that inhibit the develop-
ment of Th1 responses, such as the transforming 
growth factor-β (TGF- β) and IL-10, by the CRC 
cells themselves or other cancer-associated cells 
such as fi broblasts [ 104 ]. 

 TGF-β plays pivotal roles in wound healing, 
fi brosis, angiogenesis, carcinogenesis, cell differ-
entiation, and immune responses [ 105 ,  106 ]. 
Patients with high TGF-β protein levels in their 
primary CRC site are more likely to experience 
tumor recurrence compared to patients with low 
levels [ 107 ]. TGF-β levels correlates with Duke’s 
stage and plasma levels of active, too, and TGF-β 
return to normal levels after a curative resection 
[ 108 ]. Many epithelial-derived tumor cells 
become resistant to the growth-inhibitory effects 
of TGF-β, including CRC cells, due to mutations 
in the SMAD proteins or the TGF-β receptors 
[ 109 ]; on the contrary, TGF-β is able to stimulate 
the same cancer cells to proliferate [ 110 ]. 

 In addition, TGF-β contributes to CRC devel-
opment through immunosuppression, predomi-
nantly through effects on T lymphocytes and 
APCs: TGF-β inhibits the proliferation and dif-
ferentiation of T lymphocytes preventing naïve T 
cells from acquiring effector functions [ 111 ], and 
inhibits the ability of tumor-infi ltrating lympho-
cytes (TILs) to kill cancer cells as well as tumor- 
specifi c CD8 +  cytotoxic responses [ 112 ]. TGF-β 
on APCs, such as macrophages, inhibits secre-
tion of TNF-α, IL-1α and IL-1β [ 113 ]. 

 Although the role played by IL-10 in cancer 
development has been extensively studied, the 
ultimate role of this cytokine remains somehow 
controversial. The most controversial topic is the 
effect that this cytokine has on the immune 
response against tumor cells. As a result of its 
ability to inhibit key stages of the adaptative 

immune response, the mainstream idea is that 
IL-10 is an immunosuppressive molecule 
secreted by tumor cells as well as tumor- 
infi ltrating immune cells, allowing transformed 
cells to escape immunosurveillance [ 114 ]. CRC 
tumor cell lines are able to secrete IL-10 [ 115 ] 
and are able to induce the secretion of this cyto-
kine by other immune cells such as monocytes 
and lamina propria mononuclear cells [ 116 ]. 
Also, elevated levels of plasma IL-10 have been 
associated with bad prognosis and their levels 
return to normal in resected patients [ 117 ,  118 ]. 
This immunosuppressive effect of the IL-10 is 
mainly indirect and mediated by DCs and Treg 
lymphocytes (see below). 

 Dendritic cells are key APCs that play a central 
role in the induction of immune responses includ-
ing antitumor responses [ 119 ,  120 ]. Immature 
DCs present self-antigens to both CD4 +  and CD8 +  
T cells leading to tolerance of those lymphocytes 
[ 121 ]. On the contrary, activated and matured 
DCs loaded with antigens induce an antigen-spe-
cifi c response leading to T-cell proliferation and 
differentiation into helper and effector lympho-
cytes [ 122 ]. It has been shown that CRC patients 
have DCs infi ltrating the tumor or the surrounding 
tissue forming clusters with T lymphocytes [ 123 ] 
and that this infi ltration seems to correlate with a 
better prognosis [ 124 ]. However, the role played 
by DCs in CRC is controversial due to the fact 
that some studies have found that tumor cells are 
able to impair the function of these cells in induc-
ing an effective immune response capable of 
eliminating transformed cells. In this direction, 
tissue culture media from CRC explants inhibit 
DC maturation with reduced levels of CD54, 
CD86, HLA-DR, and CD83, and induce IL-10 
secretion while inhibiting secretion of IL-12p70, 
factors that inhibit Th1 immune responses and 
probably protect the tumor from a potent immune 
response [ 125 ]. Moreover,  in vivo  DCs infi ltrating 
the tumor show an immature phenotype [ 126 ] and 
those immature DCs correlate with infi ltration by 
Treg cells and with no detectable tumor- associated 
antigen systemic response [ 89 ]. However, as men-
tioned before, increased DCs tumor infi ltration 
shows a positive correlation with survival 
in CRC. 

11 Immunology and Immunotherapy of Colorectal Cancer



226

 A classical mechanism of transformed cells to 
avoid the host immune response is the combina-
tion of downregulation of key soluble or 
membrane- associated molecules implicated in 
the immune response and the upregulation of 
other molecules that actively inhibit a protective 
response. In this sense, it has been shown that 
alterations in the expression of class I human leu-
kocyte antigens (HLA) is frequent in many can-
cers and related to cancer survival by enabling 
tumor cells to escape cytotoxic T-cell-mediated 
responses [ 127 ]. Activation of antitumor CTL 
responses requires the recognition of immuno-
genic epitopes presented on various types of 
HLA class I molecules on the tumor [ 128 ]. CRC 
tumors show high levels of HLA class I altera-
tions due to multiple mechanisms such as muta-
tions on the β2-microglobulin chain or defects in 
the peptide transporters associated with antigen 
processing [ 129 ,  130 ]. Although expression of 
HLA class I antigens is associated with poor 
prognosis in many cancers, there are confl icting 
results regarding CRC [ 131 ], probably indicating 
that NK cells are important effectors in the anti-
tumor response [ 132 ] against CRC.  

11.7     Infi ltrating T Cells 
and Tumor-Associated 
Antigens 

 As previously mentioned, human CRC tissue is 
infi ltrated by a variety of immune cells, often in 
the margins of the transformed tissue. This lym-
phocytic infi ltration is antigen-specifi c and is an 
independent survival prognostic factor. Several 
studies have characterized the lymphocyte infi l-
tration of CRC and confi rmed the concept of 
prognostic impact of these TILs [ 90 ,  133 ]. In 
most cases, the lymphocytes infi ltrating the can-
cer tissue, and most frequently the area along the 
invasive margin, are either CD4 +  and/or CD8 +  T 
cells [ 134 ]. Despite their low numbers, CD8 +  T 
lymphocytes infi ltrating the neoplastic epithe-
lium have been positively correlated with longer 
disease-free survival time [ 135 ,  136 ]. 

 All these data suggest that TILs have antitumor 
activity and are activated by TAAs so the identifi -

cation of those TAAs is essential for the develop-
ment of an antigen-specifi c cancer vaccination 
directed to class I and class II peptides’ epitopes. 
Many of the TAAs in CRC identifi ed so far was 
done by the identifi cation of autoantibodies pres-
ent in the plasma of cancer patients compared to 
healthy donors, and although the clinical signifi -
cance of those serologically defi ned antigens still 
have to be demonstrated, several are attractive 
candidates for cancer vaccines. Moreover, anti-
body responses against some TAAs correlate with 
CD8 +  responses in those patients [ 137 ,  138 ] sup-
porting the idea that the immune response taking 
place in CRC patients requires coordinated CD4 + , 
CD8 + , and B-cell responses. 

 Some TAAs have been identifi ed as potential 
targets of cytotoxic CD8 +  T lymphocyte 
responses. By detecting the secretion of IFN-γ by 
ELISPOT it has been demonstrated a natural 
response against peptides derived from the epi-
thelial cell adhesion molecule (ep-CAM), her- 
2/ neu , and the carcinoembryogenic antigen 
(CEA) in approximately one half of CRC patients 
with involvement of lymph nodes or distant 
metastases [ 139 ]. There are also cases where 
CD8+ T-cell responses against mutated normal 
antigens have been detected, Ags such as p21-
Ras- derived peptide expressing a single amino 
acid mutation in a colon carcinoma patient [ 140 ]. 
There are many other studies where TAAs have 
been only identifi ed serologically [ 141 ,  142 ] and 
the signifi cance of those TAAs regarding their 
recognition by either T helper CD4 +  or cytotoxic 
T CD8 +  cells is still a matter of study.  

11.8     Regulatory Cells and CRC 

 Nowadays, it has been clearly demonstrated that 
Treg cells characterized by the expression of 
CD25 and the transcription factor Foxp3 are criti-
cal for the prevention of autoimmunity and the 
regulation of immune responses to foreign and 
self antigens [ 143 ]. Tregs are often found at high 
frequencies in the peripheral blood and tumors of 
cancer patients, and for many of those human 
cancers high densities of such Tregs in the tumor 
correlates with poor disease outcome [ 144 ]. 
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 However, confl icting data have accumulated 
suggesting that high densities of Tregs in the tumor 
is not always associated with poor  prognosis, but 
on the contrary, can be associated with a favorable 
survival of CRC patients [ 144 ,  145 ]. These results 
raise the question whether those tumor-infi ltrating 
Foxp3 +  cells are really functional and very few 
studies have examined this question in human 
CRC, but when such analysis has been performed 
on Foxp3 +  cells sorted from CRC, it has been 
shown that those cells have the capacity to sup-
press T-cell proliferation and IFN-γ secretion 
[ 146 ]; even the CD8 + Foxp3 +  cells have this capac-
ity [ 147 ]. A hypothesis has been put forward to 
explain this apparent contradiction indicating that 
those Foxp3 +  Tregs may infi ltrate the tumor mass 
to suppress infl ammation and immune responses 
resulting from the commensal microfl ora [ 148 ]. 

 Alternatively, the presence of other regulatory 
populations may explain it, since the nature of the 
regulatory cell types, Tregs, natural killer T 
(NKT) cells, immature myeloid DCs, plasmacy-
toid DCs, or Bregs that dominate in any given 
tumor is not understood at present [ 149 ,  150 ]. 
Addressing this question for Tregs and also regu-
latory type I and II NKT cells in mice syngeneic 
models of colorectal and renal cancer, those mice 
with both type I and II NKT cells, or those mice 
with neither type of NKT cell, Treg depletion 
was suffi cient to protect against tumor outgrowth, 
but in those mice lacking type I NKT cells only, 
Treg blockade was insuffi cient for protection, 
that is, type II NKT cells could suppress tumor 
immunity even when Tregs were blocked [ 150 ].  

11.9     Immunotherapy 
for Colorectal Cancer 

 Summarizing, the immunosuppressive strategies 
mediated by tumor cells are as follows: (a) impair-
ment of antigen presentation by APCs (DCs, 
macrophages, B cells), (b) activation of negative 
costimulatory signals, (c) elaboration of immu-
nosuppressive network, and (d) recruitment of 
regulatory cell populations such as Tregs, NKT 
cells, etc. [ 149 ,  151 ]. Therefore, the countermea-
sures immunologists have thought to fi ght cancer 

are, apart from the possible preventive use of 
anti-infl ammatory drugs (in preclinical stages) 
mentioned before, different procedures to acti-
vate the immune reactivity once damage has 
occurred in one or more of those branches. 

11.9.1     Lymphodepletion 
and Adoptive Cell Transfer 

 To block immunosuppressive mechanisms by 
depletion of suppressive populations, early 
approaches used lymphodepleting chemotherapy 
before adaptive cell transfer of stimulated cells 
[ 152 ]. Although adoptive cell therapy (ACT) using 
tumor-specifi c T cells is a promising modality for 
the treatment of cancer [ 152 ,  153 ], generation of 
autologous tumor-specifi c T cells able to induce 
cancer regression in each individual patient is 
logistically and economically challenging. 
Redirection of T cells through an antibody-based 
chimeric antigen receptor (CAR) can potentially 
create “universal effector T cells” capable of recog-
nizing targets independent of MHC restriction. 
Nonetheless, recent developments [ 153 ] to avoid 
the limits of this approach, the host-versus-graft 
(HVG) rejection, on the one hand, and the graft-
versus-host (GVH) response, on the other, have not 
been tested in humans. 

 New approaches of depletion try to target spe-
cifi c immunosuppressive populations, having 
accumulated knowledge for the case of Tregs in 
many cancers [ 154 ], including CRC in patients 
with liver metastasis [ 155 ] or with high-level 
microsatellite-unstable (MSI-H) colorectal carci-
nomas, which represent a distinct subtype of 
tumors commonly characterized by dense infi l-
tration with cytotoxic T lymphocyte [ 156 ]. In this 
case, depletion of Treg cells increased the fre-
quency of effector T-cell responses specifi c for 
MUC1/CEA-derived peptides [ 156 ]. As men-
tioned, as FoxP3 +  T cells were associated with 
generally good prognosis in colorectal cancer 
[ 144 ,  145 ], may be this approach must be person-
alized in humans according to their specifi c regu-
latory cells network. 

 Interestingly, since it is related to the infl amma-
tory origin of CRC, pepducin-mediated chemokine 
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receptor CXCR2 inhibition reduced tumorigenesis 
in APC min/+  mice. As Ly6G +   neutrophils are the 
dominant source of CXCR2 in blood, Ly6G +  cell 
depletion purged CXCR2- dependent tumor-associ-
ated leukocytes, suppressing established skin 
tumor growth and colitis-associated tumorigenesis, 
and reducing APC min/+  adenoma formation [ 157 ]. 

 Also, it has been recently shown that bacteria- 
induced colon cancer is accompanied by differ-
ential accumulation of IL-17 + IL-22 +  colonic 
innate lymphoid cells (cILCs), which are pheno-
typically distinct from LTi and NK-22 cells [ 158 ]. 
Their depletion in mice with dysplastic infl am-
mation blocks the development of invasive colon 
cancer. As IL-22 + CD3 +  and IL-22 + CD3 −  cells 
were detected in human CRC, this activity of 
IL-22 in the colon is a nonredundant mediator of 
the infl ammatory cascade required for perpetua-
tion of CRC [ 158 ]. This IL-22 axis may be then a 
novel therapeutic target in colon cancer.  

11.9.2     Monoclonal Antibodies 

 Several tools are available to block negative 
costimulatory signals or the immunosuppressive 
network. In addition to COX inhibition already 
discussed, and indoleamine 2,3-dioxygenase 
(IDO) inhibition, monoclonal antibodies (mAbs) 
that block cytotoxic T-lymphocyte antigen-4 
(CTLA-4) in T cells, TGF, IL-10, VEGF, galectin-
 1, and other signaling molecules [ 149 ] have been 
studied. During the past 15 years, FDA has 
approved some of these mAbs for cancer therapy 
[ 159 ]. mAbs currently approved by EMA 
[European Medicine Agency] for the treatment of 
colorectal cancer are cetuximab, panitumumab, 
and bevacizumab. Bevacizumab is an mAb that 
blocks the vascular endothelial growth factor, 
VEGF, as well as interferes with the tumor–stroma 
interaction, thereby indirectly inhibiting tumor 
growth. It is also currently employed for the ther-
apy of breast, renal, and lung cancer [ 160 – 162 ]. 

 In addition to activating the immune system 
against tumor cells (through blocking suppression 
in the case of bevacizumab), other mAbs have 
been designed to (1) inhibit cancer- cell- intrinsic 
signaling pathways, (2) bring toxins in the close 

proximity of cancer cells, or (3) interfere with the 
tumor–stroma interaction. Cetuximab and panitu-
mumab are mAbs that directly inhibit tumor-cell 
autonomous pro- survival cascades through epider-
mal growth factor receptor, EGFR, blocking [ 163 ]. 

 Other mAbs in phase I/II for colorectal cancer 
[ 159 ] are conatumumab and tigatuzumab (also 
known as AMG 655 and CS-1008, respectively), 
which target the TNF-related apoptosis-inducing 
ligand receptor 2 (TRAILR2), a member of the 
death receptor protein family also known as death 
receptor 5 (DR5). Both operate as agonists, acti-
vating TRAILR2 signaling and inducing the 
apoptotic demise of TRAILR2-expressing cancer 
(but not normal) cells. Although the exact mecha-
nism of action is not yet known, conatumumab 
exhibited promising safety and effi cacy profi les 
in preclinical tests and in initial phase I–II stud-
ies. Several other immunoconjugates carry radio-
active isotopes: T84.66 and M5A mAbs 
specifi cally bind to the tumor-associated CEA, 
while TF2 is a bi-specifi c mAb that simultane-
ously targets CEA and a heterologous hapten 
peptide (IMP-288). 

 The immune system can be stimulated either 
directly (lymphocyte stimulation) or indirectly 
through the stimulation of APCs or other subsets. 
Preclinical models approaching the concept of 
vaccination [ 159 ,  164 ] also use immunostimula-
tory mAbs, that is, mAbs that facilitate the devel-
opment of a tumor-specifi c immune response by 
targeting the cancer cell/immune system cross 
talk and the signaling pathways associated to that 
cross talk, for example, delivering tumor proteins 
(or protein epitopes) to DCs [ 159 ].  

11.9.3     Vaccines 

 APCs, in particular DCs, have been used in the 
development of antitumor vaccines for a long 
time [ 164 ]. The concept of therapeutic vaccina-
tion is to generate an antitumor response in the 
body by injecting the Ag, or to boost the DCs 
 in vitro , before adoptive cell transfer. However, 
inadequate DCs activation—the blockade of 
 differentiation of mature DCs and accumulation 
of immature DCs and plasmacytoid DCs—is the 
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dominant mechanism underlying the develop-
ment of T-cell tolerance; therefore, traditional 
Ag-based (such as CEA) vaccination may gain 
prolonged survival only in some cancer patients, 
but it fails to eradicate the tumor in most cases, 
owing partly to the immunosuppressive effects 
exerted by the tumor microenvironment [ 165 ]. 
Among the approaches to stimulate APCs, inhi-
bition of suppressor mechanisms (silencing RNA 
or tyrosine kinases inhibitors (ITKs)), blocking 
CD40, and the use of cytokines, are included 
[ 149 ]. A classical approach to metastatic renal 
cell carcinoma used  in vitro  monocyte-derived 
DCs, autologous tumor lysate, and IL-2 plus 
IFNα2 [ 166 ], while a novel one approaching met-
astatic breast cancer abrogated Tregs with cyclo-
phosphamide, used trastuzumab (an Ab that 
activates antibody-dependent cell-mediated cyto-
toxicity (ADCC) and inhibits growth factor 
VEGF at the same time), and fi broblasts trans-
fected with plasmids expressing recombinant 
oncoantigen and cytokine (HER-2 and GM-CSF) 
to activate DCs  in vivo  [ 167 ]. This comparison 
clearly indicates the evolution of these 
approaches. In 2010, this branch of clinical 
research culminated with the FDA approval of a 
DC-based therapeutic vaccine (sipuleucel-T, 
Provenge®) for use in patients with asymptom-
atic or minimally symptomatic metastatic 
hormone- refractory prostate cancer. 

 Three types of strategies for DC-based anti-
cancer vaccination exists: In the fi rst, DCs are 
generated by culturing patient-derived hemato-
poietic progenitor cells or monocytes with spe-
cifi c cytokine combinations, loaded with TAAs 
 ex vivo  in the presence of an adjuvant or cyto-
kines that promote DC maturation and are even-
tually reinfused into the patient, usually 
intradermally in combination with adjuvant. 
Among the several means to load the antigens 
tested are the coincubation of DCs with whole 
tumor cell lysates or with apoptotic tumor cell 
corpses, with purifi ed TAAs (encompassing both 
full-length proteins and short peptides), with 
tumor cell-derived mRNA, with different trans-
fection approaches, or by fusion of tumor and 
DCs. In the second strategy, TAAs are  delivered 
to DCs  in vivo , for example, with mAbs (as previ-

ously mentioned) [ 159 ] or DNA (plasmids or 
other vectors), which also requires the codelivery 
of DC maturation signals. The third class of 
DC-based immunotherapeutic interventions 
against cancer includes approaches based on 
DC-derived exosomes. DC-derived exosomes are 
fully capable of activating adaptive immune 
responses once loaded with TAAs and inoculated 
 in vivo  in suitable animal models [reviewed 
in  168 ]. 

 Among the wide array of phase I/II clinical tri-
als been launched to test the safety and effi cacy of 
these therapeutic strategies in cancer patients [ 168 ], 
there are only two active phase II trials for CRC 
(references NCT01348256 and NCT01413295) 
using DCs pulsed with tumor cell lysates. 

 When generally talking about vaccines, the 
knowledge gained during several decades indi-
cates that most antigens are not immunogenics 
per se and that several considerations should be 
made for a right formulation, such as the size, the 
dose, and the route of application or the use of 
adjuvants. The latter has been the dirty little 
secret of vaccines. Although the composition of 
the most used adjuvants is well known, their 
mechanism of action was unknown for a long 
time and its use was empiric. For example, the 
long-known adjuvant system 04 (AS04), which 
consists of lipid A and alum, is a component in 
two licensed prophylactic vaccines against can-
cer, Cervarix™ and Fendrix™, against human 
papillomavirus (HPV) and hepatitis B virus 
(HBV), respectively. As04 was approved in 
humans before it was realized to be a Toll-like 
receptors (TLR) ligand. 

 The importance of this discovery was high-
lighted 2 years ago with the Nobel Prize to Beutler 
and Hoffmann for the discovery of TLR and their 
role in the activation of innate immunity; and to 
Steinman for the discovery of DCs and their role 
in adaptive immunity. Out of PRRs families, 
already mentioned, TLRs are transmembrane pro-
teins in the plasma membrane and endosomes 
mainly expressed by cells of the innate immune 
system, which serve as receptors for diverse 
ligands including bacterial, fungal, yeast, or viral 
components (PAMPs). These ligands activate 
 signaling pathways that launch immune and 
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infl ammatory responses to destroy the invaders. 
In humans, the TLR family includes 11 proteins 
(TLR1−TLR11). Most PRRs have the same sig-
nal transduction pathways but some of them, such 
as TLR4, have various signal transduction path-
ways. In addition, in many cases, such as TLR4, 
the receptor is a complex with different compo-
nents participating in the binding event. Triggering 
of distinct TLRs on DCs and on other leukocyte 
populations that also express different TLR/PRR 
combinations, elicits different cytokine profi les 
and different immune responses [ 169 ]. 

 Obviously, this fact led to an explosion of 
interest in the natural or synthetic agonists for 
TLRs, resembling PAMPs, and hundreds of 
clinical trials are currently being carried out for 
cancer [ 170 ]. When these molecules, PAMPs 
and DAMPs are used alone or as monotherapy, 
they are called cytokine-like or cytokines, 
whereas if they are used in combination with 
antigens, they are called adjuvants [ 14 ]. For 
colorectal cancer, most are used as adjuvants, 
for example, Poly- ICLC targets TLR-3 as an 
adjuvant to MUC1 peptide vaccination (refer-
ence NCT00773097 in phase II) or IMA910 
(targets TLR-7/8) plus GM-CSF with cyclo-
phosphamide (reference NCT00785122 in 
phase I/II). For TLR-9, out of four studies in 
phase I, one used a TLR9 agonist as an adjuvant 
of autologous tumor cells (reference 
NCT00780988), while the others used them 
directly or in therapeutic combinations: IMO- 
2055 versus cetuximab or FOLFIRI (reference 
NCT00719199), MGN-1703 alone (reference 
NCT01208194), or ISS1018 plus irinotecan 
plus cetuximab (reference NCT00403052). 

 Still in experimental settings, DAMPs are 
already been tested. High mobility group box 1 
(HMGB1) is a DNA-binding nuclear protein 
actively released, following cytokine stimulation 
or other ways, as well as passively during cell 
death. This protein can bind different molecules, 
like IL-1, a chemokine, or LPS, molecules that 
have distinct receptors accordingly. On the con-
trary, different DAMPs can also bind the same 
receptor [ 171 ]. Some studies use plasmids 
expressing HMGB1 to improve DNA vaccines 
because they trigger the production of antibodies 

[ 172 ], and the generation of a B-cell response to 
tumors, knowing the success of many mAbs used 
in antitumor immunotherapy, can be relevant 
[ 169 ]. Others build recombinant fusion proteins 
of antigen and DAMP, immunizing with the plas-
mid plus different adjuvants depending on the 
type of response required [ 173 ].   

11.10     Concluding Remarks  

 Nowadays, it is clear that tumor development and 
spread not only depends on the capacity of trans-
formed cells to grow uncontrollably but also on 
the contribution of the immune system to inter-
vene in the development of cancer cells. It is 
somehow controversial the role that the immune 
system plays in the development of CRC, since 
infl ammation seems to contribute to the tumori-
genesis. In fact, anti-infl ammatory drugs prevent 
CRC. However, CRC is an example of the cross 
talk between the immune system, infl ammation 
and cancer because of the specifi city of the gut 
microfl ora in the primary niche of cancer. The 
increasing knowledge in this fi eld is already used 
to develop new treatments based not only in 
monoclonal antibodies but also a diversity of ther-
apeutic vaccines and the depletion of certain 
immunosuppressive populations, all capable of 
blocking and/or killing of CRC transformed cells.     
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12.1             Introduction 

 Patients with pancreatic cancer have a very poor 
prognosis with it being the fourth leading cause 
of cancer-related death in men and women in the 
USA [ 1 ]. In developing countries, there were an 
estimated 165,100 new cases and 161,800 esti-
mated deaths in 2011 [ 2 ]. In 2010, in the USA, 
36,800 deaths were attributed to pancreatic can-
cer and a 5-year survival <5 % [ 1 ]. 

 The management of patients with pancreatic 
cancer depends on the extent of disease at diagno-
sis. Surgical resection with negative margins with 
no lymph node involvement is the only chance for 
cure. The use of adjuvant chemotherapy improved 
survival in early-stage pancreatic cancer. The major-
ity of patients present with locally advanced unre-
sectable disease or distant disease, most commonly 
to the liver or peritoneal surface. Survival for meta-
static pancreatic cancer remains poor and less than 
20 % survive at the end of 1 year. There are only few 
chemotherapy agents that have shown an effect in 
pancreatic cancer including single agent gem-
citabine, nab- paclitaxel with gemcitabine, and a 
new combination of 5-fl uorouracil, leucovorin, 
oxaliplatin, and irinotecan (FOLFIRINOX) [ 3 ,  4 , 
 113 ]. Chemoradiation has shown some benefi t 
in locally advanced unresectable pancreatic can-
cers; however, it is minimal. Survival of patients 
with unresectable disease with these modalities is 
marginal, which warrants further investigation of 
other therapies. Immunotherapy might be an alter-
native treatment modality to this deadly disease.  
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12.2     Evidence that Pancreatic 
Adenocarcinoma Elicits 
Immune Response 

 Immune-based therapy for pancreatic cancer has 
gained attention in every decade and, as such, gen-
erates short-lived enthusiasm. Pancreatic cancer is 
characterized by a highly immunosuppressive 
environment, with multiple components and path-
ways that inhibit effective pancreatic cancer- 
targeted immune responses. Therefore, there is 
great potential to target these mechanisms of 
immunosuppression and reverse them to create an 
environment that supports the infi ltration of antitu-
mor immune responses and enables the generation 
of T cells capable of killing pancreatic tumor cells. 
Each of these components and pathways repre-
sents a potential target for pancreatic cancer 
immunotherapy based on the supposition that the 
immune system can discriminate tumor cells from 
normal cells [ 5 ]. The data suggest that cancer 
patients generate B and T cells that recognize anti-
gens expressed on autologous pancreatic tumor 
cells [ 6 – 12 ]. In addition, the animal models 
showed that mice defi cient in genes associated 
with immunity (e.g.,  IFN  [ 13 ] and  perforin  [ 14 ]) 
are susceptible to cancer development. Moreover, 
the analysis of immune infi ltrates in human tumors 
has revealed a strong association between progno-
sis and the presence of a humoral response to pan-
creatic tumor antigens, such as MUC-1 and 
mesothelin, and of tumor-infi ltrating cytotoxic T 
lymphocyte and Th1 cells [ 11 ,  12 ,  15 ,  16 ]. On the 
other hand, in a mouse model in which an activat-
ing K-Ras mutation is expressed in the pancreas, 
preinvasive pancreatic lesions are characterized by 
the infi ltration of immune suppressor cells rather 
than immune effector cells, suggesting that tumor 
immunity may be blocked from the inception of 
pancreatic cancer development [ 17 ]. All mice with 
the K-Ras mutation develop pancreatic adenocarci-
noma and eventually die of cancer. Another fi nding 
that antagonism of negative T-cell regulators, such 
as cytotoxic T-lymphocyte-associated (CTLA) pro-
tein- 4 and B- and T-lymphocyte attenuator (BTLA) 
can augment the antitumor immune response fur-
ther confi rms that patients produce an immune 
response to the tumor [ 18 ,  19 ]. 

 Despite the presence of the above data that 
underlines the fact that an antitumor immune 
response is elicited in cancer patients, unfortu-
nately this response is ineffective and does not 
result in the killing of the tumor. Given that most 
tumor antigens are self- or mutated self-antigens 
and that the pancreatic tumor microenvironment 
is immunosuppressive, this is not surprising [ 20 ]. 
Interestingly, both the prevalence of Treg in 
peripheral blood and tumor, and the expression 
level of programmed cell death ligand 1 (PD-L1) 
in tumor independently predict a poor survival in 
pancreatic cancer [ 21 ,  22 ]. Tregs that constitute 
5–10 % of CD4 +  T cells induce immune tolerance 
by suppressing host immune responses against 
self- and nonself-antigens [ 23 – 28 ], hence play-
ing a crucial role in tolerance and the immune 
response to cancer. These fi ndings strengthen the 
notion that pancreatic cancers induce antitumor 
immune responses. Therefore, attempts to 
improve the clinical effi cacy of immunotherapy 
should involve strategies to neutralize or over-
come immune suppression.  

12.3     Cellular Targets 
in Pancreatic Cancer 

 The expression of an antigen – either mutated or 
unaltered self – must be restricted to the tumor or 
only minimally expressed elsewhere in the body to 
be considered an ideal tumor vaccine candidate. 
Table  12.1  enumerates a limited list of tumor anti-
gens that fulfi ll this criterion for pancreatic cancer.

12.4        Immunotherapies 
in Pancreatic Cancer 

 Both active and passive immunity have been tested 
in pancreatic cancer (PC) to elicit immune 
responses to tumor cells. Targeting active immu-
nity through vaccines attempts to induce long- term 
cellular (T-cell) immunity against cancer cells, 
whereas antibody-based immunotherapy targets 
PC cells, but does not stimulate long-term immu-
nity. Recent active and passive immunotherapies in 
PC will be discussed in this section. 

R. Stevenson et al.



239

12.4.1     Active Immunotherapy 

 The goal of tumor-specifi c vaccines is to present 
tumor-associated antigens (TAA) to immune 
cells and produce potent and lasting cytotoxic 
effects against tumor cells. Antigen presenting 
cells (APC) such as dendritic cells (DCs) and T 
cells (CD4/CD8) are the targets and effectors of 
this immune response. Different types of vac-
cines have been developed and specifi c examples 
are reviewed below. 

12.4.1.1     Whole Cell Vaccines 
 Using irradiated tumor cell vaccines can produce 
potent immune responses to multiple TAAs pres-

ent on pancreatic tumor cells. Allogeneic or 
autologous tumor cells can be used to develop 
vaccines. Advantages of whole cell vaccines 
include tumor cells can be grown  in vitro , specifi c 
TAAs do not need to be identifi ed, polyclonal 
tumor specifi c T cell populations are generated, 
and cells can be altered to express surface pro-
teins or secretable factors that induce strong 
immune responses [ 53 ]. 

 One such example is granulocyte-macro-
phage colony stimulating factor (GM-CSF) 
secreting tumor cells. Dranoff has previously 
shown that GM-CSF secreting cells induce long-
lasting immunity in melanoma models [ 54 ]. A 
phase I study by Jaffee et al. took 14 patients 

   Table 12.1    Candidate pancreas cancer-associated antigens for immune targeting [ 29 – 52 ]   

 Antigen  Location  Expression in tumor  Prevalence (%)  Description 

 CEA  Cell surface 
(GPI-linked) 

 Overexpressed  30–100  Glycoprotein, normally expressed only on 
oncofetal tissues. Functions as cell-adhesion 
molecule. First tumor antigen to be described 

 Her2-neu  Transmembrane  Overexpressed  >50  A receptor tyrosine kinase, member of the 
EGF−receptor family, involved in cell growth 
and differentiation 

 K-Ras  Intracellular  Mutated self  90  Mutated form of ras, a GTPase important for 
cell proliferation, differentiation, and survival 

 Mesothelin  Cell surface 
(GPI-linked) 

 Overexpressed  ~100  GPI-linked glycoprotein normally expressed 
on the surface of mesothelial cells lining the 
pleura, peritoneum, and pericardium at low 
levels. Binding partner of CA125/MUC16 

 MUC-1  Transmembrane  Overexpressed, 
hypoglycosylation 

 90  Type 1 transmembrane glycoprotein, 
expressed on apical surface of ductal and 
glandular epithelial cells at low levels. 
Extracellular domain has a polypeptide core 
with multiple tandem repeats of 20 amino 
acids 

 p53  Intracellular  Mutated self  50–70  Tumor suppressor that regulates cell cycle. 
Normally inhibits survivin at the transcription 
level and can initiate apoptosis if DNA 
damage is unrepairable 

 Survivin  Intracellular  Overexpressed  80  Member of IAP family. Inhibits caspase 
activation; is found in most human tumors 
and fetal tissue, but is completely absent in 
terminally differentiated cells 

 Telomerase  Intracellular  Overexpressed  95  Ribonucleoprotein that is responsible for 
RNA- dependent synthesis of telomeric 
DNA. TERT is its catalytic subunit 

 VEGFR2  Transmembrane  Overexpressed  64  A tyrosine kinase and member of platelet- 
derived growth factor family. Receptor for 
VEGF with functions in blood vessel 
development 

   CEA  carcinoembryonic antigen,  GPI  glycosylphosphatidylinositol,  IAP  inhibitor of apoptosis protein,  MUC  mucin, 
 TERT  telomerase reverse transcriptase,  VEGFR  VEGF receptor  
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with PC and inoculated variable doses of GM-CSF 
secreting allogeneic tumor cells 8 weeks after 
pancreaticoduodenectomy. Three patients devel-
oped delayed-type hypersensitivity responses and 
remained disease free at 25 months [ 55 ]. 

 A phase II, single-institution study treated 60 
patients after surgical resection (R0 or R1) with 
5 × 10 8  GM-CSF secreting tumor cells 8–10 weeks 
after surgery [ 56 ]. Patients then received 5 FU 
chemoradiotherapy and up to four more vaccina-
tions. Median disease-free survival and overall 
survival were 17.3 and 24.8 months, respectively. 
The most common side effects were erythema, 
induration and pain at the vaccination site, and the 
only grade 3–4 side effect was eosinophilia in two 
patients (1 %). Disease-free survival was corre-
lated with the induction of mesothelin- specifi c 
CD8 +  T cells. Mesothelin is a membrane- bound 
protein that is highly expressed in pancreatic can-
cer cells, but has low expression in normal tissue, 
making it a possible target of immune therapy 
[ 39 ] Laheru and colleagues showed that in meta-
static cancer, a GM-CSF tumor cell vaccine given 
with cyclophosphamide also induces a mesothe-
lin-specifi c CD8 +  T-cell response [ 57 ]. 

 Cell surface molecule expression can be mod-
ifi ed to induce immune responses. The most suc-
cessful model exploits hyperacute rejection due 
to alpha-galactosyl (αGal). Nonprimate mam-
mals express αGal, but humans have a nonfunc-
tional gene. Repeated exposure by gut fl ora to 
αGal epitopes leads to high expression of anti- 
αGal antibodies, which constitutes up to 1 % of 
circulating IgG [ 58 ]. The hyperacute antibody- 
mediated rejection leads to cell-mediated immu-
nity against TAA in murine models of melanoma 
[ 59 ]. A phase II open-label multi-institutional 
trial evaluated algenpantucel-L with adjuvant 
gemcitabine and 5-FU-based radiotherapy after 
surgical resection [ 60 ]. Adjuvant therapy was 
the same as the RTOG-9704 study protocol [ 61 ]; 
73 patients were enrolled and 69 received 100 
million or 300 million cells per injection and a 
median of 12 vaccinations. The primary end-
point of 1-year disease-free survival was 62 % 
and secondary endpoint of 1-year overall sur-
vival was 86 % with no serious side effects 
attributed to immunotherapy. Survival with the 

addition of algenpantucel-L compared favorably 
with RTOG-9704 study. A phase III multicenter 
randomized controlled trial to evaluate adjuvant 
gemcitabine alone or with 5-FU-based radiother-
apy with or without algenpantucel-L was com-
pleted in January 2014 [ 62 ].  

12.4.1.2     Peptide Vaccines 
 Small antigenic protein fragments are used to 
develop peptide vaccines. These peptides can 
be produced economically and safely with no 
risk of infectious material. In addition, no 
autologous tissue is required. The drawbacks 
are that they can be poorly immunogenic and 
adjuvants may be required to induce a meaning-
ful response [ 63 ]. Multiple peptide vaccines 
have been developed to target PC and have 
shown promising results.  

12.4.1.3    KRAS Vaccines 
 The v-Ki-ras2 Kristin rat sarcoma ( KRAS ) viral 
oncogene encodes a GTPase important for signal 
transduction. Mutations can be found in the 
majority of pancreatic cancers as well as in lung 
and colon cancers [ 36 ] In 1995, Gjertsen showed 
that T-cell response could be activated using a 
Kristin rat sarcoma mutant (codon 12) peptide 
vaccine [ 64 ]. A follow-up phase I/II study exposed 
autologous APCs to Kristin rat sarcoma peptide 
vaccine  ex vivo , then reinfused the activated APCs 
in fi ve patients. Two out of fi ve produced immune 
responses to ras [ 65 ]. To improve immunogenic-
ity of the vaccine, GM-CSF was used as an adju-
vant to the K-Ras vaccine in 48 patients with 
PC. The vaccine was well tolerated and patients 
who showed an immune response had superior 
survival compared to nonresponders (148 days  vs.  
61 days) [ 66 ]. Unfortunately, a follow-up study 
showed the safety of k-Ras/GM-CSF vaccine, but 
did not produce an immune response [ 67 ]. 

 Weden and colleagues were able to induce 
immune responses using Kristin rat sarcoma vac-
cines prepared with long synthetic peptides. 
These peptides require processing and presenta-
tion by APC and induce polyclonal T cells that 
have specifi city to mutated Kristin rat sarcoma 
[ 68 ]. In 23 patients who were vaccinated after 
surgical resection (20 evaluable), 4/20 (20 %) 
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were alive at 10 years, whereas 0/87 in a cohort 
of nonvaccinated patients during that same period 
were alive [ 69 ].  

12.4.1.4    VEGF Vaccines 
 Vascular endothelial growth factor (VEGF) 
is a key signaling protein in angiogenesis. 
Overexpression of VEGF is seen in pancre-
atic cancers and is associated with larger tumor 
size and enhanced local spread [ 52 ]. A phase I 
study used VEGFR2-169 epitope, a peptide vac-
cine for VEGF receptor 2, in combination with 
gemcitabine in advanced PC (unresectable or 
metastatic disease). Of the 18 patients receiv-
ing at least 1 vaccination, 61 % developed cyto-
toxic T lymphocytes specifi c to VEGFR2 and 
median survival was 8.7 months [ 70 ]. Recently, 
the results of a phase II/III randomized placebo 
controlled study of gemcitabine +/−VEGFR2 
vaccine showed no survival advantage [ 71 ].  

12.4.1.5    Telomerase Vaccines 
 Telomeres are nucleotide sequence repeats at the 
ends of chromatid that help maintain chromo-
somes. Telomerase helps to maintain the telo-
meres, and is reactivated in 85 % of pancreatic 
cancers [ 72 ]. A phase I/II trial looking at GV1001, 
a peptide vaccine based on the catalytic subunit 
of telomerase was tested in 48 patients with unre-
sectable pancreatic cancer who were injected 
with one of three dose levels. The intermediate 
dose group (300 nmol) showed a median survival 
of 8.6 months, signifi cantly higher than other 
groups, and a 1-year survival of 25 % [ 73 ]. 
Follow-up phase III trial did not show a survival 
advantage of GV1001 versus gemcitabine, but 
other phase III trials evaluating combination ther-
apy are ongoing [ 74 ].  

12.4.1.6    Recombinant Vaccines 
 To increase antigenicity, viral and bacterial anti-
gens can be added to cancer vaccines to induce a 
more potent immune response. These infectious 
antigens can activate the innate immune system, 
thereby recruiting APC to the site [ 72 ]. One 
example is the TRICOM vaccine [ 75 ]. This 
poxvirus- based vaccination uses B7-1, ICAM-1, 
and LFA-3 to enhance T-cell stimulation. 

Kaufman combined CEA and MUC1 antigens 
with TRICOM expressing vaccinia (PANVAC-V) 
or fowlpox (PANVAC-F) in a phase I trial. Ten 
patients with advanced PC were primed with 
PANVAC-V, and then given three boosters of 
PANVAC-F monthly up to 12 months. Antibodies 
to vaccinia were seen in all ten patients and fi ve 
of eight evaluable patients developed antigen- 
specifi c T-cell responses. Median overall sur-
vival was 6.3 months and signifi cant prolonged 
survival was seen in patients who developed 
anti- CEA and anti-MUC1 immune responses 
(15.1 months versus 3.9 months) [ 76 ]. 

 Listeria vaccines have also been combined 
with TAA in cancer vaccines. A trial of 28 
patients looked at patients with hepatic metasta-
ses from four primary tumors (pancreatic, meso-
thelioma, ovarian, and nonsmall-cell lung 
cancer). Patients were administered live attenu-
ated listeria vaccine expressing mesothelin, 
which is expressed on the cell surface of the 
tumors. An overall of 37 % of subjects lived 
>15 months with minimal adverse events; half of 
these patients had PC [ 77 ].  

12.4.1.7    DNA Vaccines 
 Vaccines using DNA encoding TAAs have also 
shown some effi cacy in murine models of 
PC. MUC-1 DNA vaccine was injected in mice 
along with pancreatic cancer cells expressing 
MUC-1 (panc02-MUC1) or no MUC-1 (panc02). 
Vaccinated mice developed cytotoxic T-cell 
responses to MUC-1 and tumor shrinkage and 
improved survival was seen in mice with panc02- 
MUC1 cells. Mice injected with panc02 cells did 
not show any therapeutic benefi t [ 78 ]. 

 Survivin has also been tested as a DNA vac-
cine. A member of the inhibitor apoptosis family, 
survivin expression is found in PC cells, but not 
normal pancreatic tissue [ 48 ]. Zhu and colleagues 
inoculated mice with a survivin DNA vaccine or 
control vector followed by panc02 cells. Survivin 
inoculated mice showed increased lymphocyte 
infi ltration of tumors compared with control 
mice. Increased survival and decreased tumor 
size was also seen in the Survivin group [ 79 ]. 
These fi ndings need to be tested further in human 
subjects.  
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12.4.1.8    Antigen-Pulsed Dendritic 
Cells 

 Antigen presenting cells (APC) acquire and pro-
cess antigens to present to T-cells on MHC class 
I and II molecules. Dendritic cells (DC) are the 
most important APC, often referred to as “profes-
sional APC.” Multiple DC vaccines have been 
developed and sipuleucel-T is known as the most 
successful that improved overall survival in 
castration- resistant prostate cancer versus pla-
cebo in a phase III trial [ 80 ]. Multiple DC vac-
cines have been tested in pancreatic cancer with 
encouraging results. A phase I/II study took 
autologous DC pulsed with MUC1 peptide and 
treated 12 patients with resected pancreatic and 
biliary tumors. No signifi cant toxicity was seen 
and four patients were alive at 4 years [ 81 ]. 
MUC1-pulsed DC have also been tested in 
advanced stage PC in a recent pilot study [ 82 ]. 
The vaccine was well tolerated in all seven 
enrolled patients with no signifi cant side effects. 
This phase I study did not show a clinical benefi t, 
but confi rmed the safety of the vaccine and needs 
further study. 

 Another study looked at DC pulsed with carci-
noembryonic antigen (CEA) mRNA. Patients 
with resected PC following neoadjuvant chemo-
radiotherapy were given autologous DC vaccine 
for 6 months. All three patients treated were alive 
2.5 years after diagnosis with no evidence of dis-
ease [ 83 ].   

12.4.2     Passive Immunotherapy 

12.4.2.1    Antibody-Based Therapies 
 Monoclonal antibodies (mAbs) can affect tumor 
cells by a number of different mechanisms. 
Cytotoxic effects including Antibody-dependent 
cell-mediated cytotoxicity (ADCC), complement- 
mediated cytotoxicity (CMC), and antibody- 
dependent cellular phagocytosis leading to 
apoptosis as well as blockade of cellular receptors- 
growth factor/cytokine interaction inhibiting 
growth and survival can be exploited by antibody 
therapy [ 84 ]. Immunoglobulins can also be conju-
gated to radioisotopes or cytotoxic agents (che-
motherapeutic agents, or toxins) and target-specifi c 

cellular targets to limit side effects. Numerous 
studies have evaluated the role of mAb in pancre-
atic cancer. 

 Various proteins expressed by PC cells have 
been targeted by mAb. One such protein 
expressed by multiple cancer cells is mesothelin. 
The vast majority of adenocarcinoma of the pan-
creas express mesothelin, but it is not seen in nor-
mal pancreatic tissue or chronic pancreatitis [ 38 ]. 
A phase I study involving 24 patients with meso-
thelioma, ovarian and pancreatic cancer testing 
an mAb to mesothelin (MORAb-009) was 
reported in 2010. MORAb-009 was well toler-
ated at 200 mg/m 2  weekly and 11 patients showed 
stable disease. One pancreatic cancer patient who 
progressed on gemcitabine had stable disease for 
6 months [ 85 ]. A recent phase II study looking at 
MORAb-009 with gemcitabine versus gem-
citabine alone has now been completed and 
results are pending [ 112 ]. 

 Epidermal growth factor receptor (EGFR) is a 
glycoprotein receptor key in signaling cell prolif-
eration and has been a successful target in numer-
ous cancers including lung, head, and neck 
cancers. Multiple trials have tested addition of 
EGFR inhibition to standard chemotherapy in 
pancreatic cancer. Erlotinib, a small molecule 
tyrosine kinase inhibitor of EGFR has shown 
improved survival, but immunotherapy trials 
have not been as successful [ 86 ]. Cetuximab, a 
chimeric mAb was tested in a large phase III trial 
run by SWOG comparing gemcitabine with 
cetuximab versus gemcitabine alone in advanced 
pancreatic cancer patients. No improvement in 
progression-free or overall survival was seen 
with the addition of cetuximab [ 87 ]. A fully 
humanized antibody to EGFR, matuzumab, has 
also been tested in pancreatic cancer. A phase I 
study combining matuzumab with gemcitabine 
was well tolerated and 67 % (8/12 patients) 
showed partial response or stable disease [ 88 ]. 

 Trastuzumab is an mAb that binds epidermal 
growth factor receptor 2 (HER2), a tyrosine 
kinase receptor that is part of the EGFR family. It 
has been effective in both breast and gastric can-
cers, and is expressed in a signifi cant percent of 
pancreatic tumors [ 53 ]. Treatment with trastu-
zumab in mouse models has shown effi cacy. 
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Nude mice injected with human pancreatic tumor 
cells showed prolonged survival and decreased 
metastasis when treated with trastuzumab [ 89 ]. 
Combination therapy has also shown benefi t. 
Larbouret showed that trastuzumab combined 
with cetuximab resulted in superior survival in 
mice with human pancreatic cancer xenografts 
compared to gemcitabine [ 90 ]. A phase I/II trial 
of trastuzumab and cetuximab as second-line 
therapy in metastatic PC has been completed, but 
results are not published [ 91 ]. 

 Angiogenesis has also been a target of passive 
immunotherapy, specifi cally antibodies to vascu-
lar endothelial growth factor (VEGF). As noted 
previously, VEGF and its receptors are often over-
expressed in PC [ 52 ], and a phase II study showed 
partial response (21 %) and stable disease (46 %) 
in metastatic PC patients treated with bevaci-
zumab (anti-VEGF Ab) and gemcitabine [ 92 ]. 
Benefi t was not seen in the phase III follow- up 
study by the Cancer and Leukemia group B 
(CALGB80303). Overall, 602 patients with 
advanced PC (85 % metastatic disease) were ran-
domly assigned to gemcitabine+bevacizumab or 
gemcitabine+placebo. No statistical difference in 
progression-free or overall survival was seen with 
the addition of bevacizumab [ 93 ]. Bevacizumab 
has also been tested in combination with gem-
citabine and erlotinib in the AVITA study. The 
addition of bevacizumab increased progression-
free survival, but not overall survival [ 94 ].    

12.5     Radioimmunotherapy 

 Delivery of radioactive substances by tumor- 
specifi c antibodies has produced promising results. 
Anti-Muc-1 antibody, PAM4, is expressed in 85 % 
of pancreatic cancers, but not in normal pancreatic 
tissue [ 95 ]. Humanized PAM4 (clivatuzumab tet-
raxetan) conjugated with yttrium-90, a beta-emit-
ting nucleotide with a radiation path length of 
5 mm ( 90 Y-hPAM4), was studied in a phase I trial 
of 38 untreated patients with advanced PC (86 % 
stage IV disease). Weekly gemcitabine was used 
as a radiosensitizer and  90 Y-hPAM4 was given 
weekly starting week 2 on 4 week cycles. Six 
patients had partial responses (16 %) and 16 (42 % 

showed stable disease). Median survival was 
7.7 months. Grade 3–4 thrombocytopenia or neu-
tropenia developed in 20/38 treated patients after 
cycle 1. The authors concluded that  90 Y-hPAM4 
has promising therapeutic activity with manage-
able side effects [ 96 ].  

12.6     Immunoconjugates 

 Antibodies conjugated to cytotoxic agents can 
concentrate chemotherapy or other toxins at 
tumor sites and spare normal tissue. CEA has 
been the target of early immunoconjugate studies 
in PC. CEA is frequently overexpressed in gas-
trointestinal tumors including PC. hMN-14 or 
labetuzumab is an anti-CEA antibody that 
induces ADCC  in vitro  in murine colon cancer 
models [ 97 ]. In a pilot study, Labetuzumab was 
conjugated to SN-38 and infused to mice with 
human colon and pancreatic cancer xenografts. 
SN-38 is the active metabolite (two to three times 
potency) of irinotecan. Improved survival and 
decreased tumor size was observed in both colon 
and pancreatic cancer xenografts compared to 
controls [ 98 ].  

12.7     Pancreatic Neuroendocrine 
Immunotherapy 

 Pancreatic neuroendocrine (pNET) or islet cell 
tumors comprise 2–3 % of primary pancreatic 
tumors with increasing incidence over the past 
30 years [ 99 ,  100 ]. Early-stage disease is treated 
with surgical resection, but until recently few 
options were available for metastatic or unresect-
able disease. Cytotoxic agents such as streptozo-
cin, dacarbazine, and temozolomide have shown 
activity, but their application has been limited 
due to side effects. 

 Immunotherapy has also been previously 
studied with interferon. Antitumor effects with 
interferon alpha include T-cell stimulation as 
well as cell cycle arrest [ 101 ]. Retrospective 
studies have reported improvement in symptoms 
and tumor stabilization, but two prospective trials 
comparing somatostatin analogs with or without 
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interferon therapy did not show any signifi cant 
difference in tumor response rates or progression- 
free survival [ 102 ,  103 ]. A large multicenter trial 
evaluating octreotide with either interferon or 
bevacizumab is currently enrolling [ 104 ]. 

 New targeted therapies including everolimus 
(mTOR inhibitor) and sunitinib, along with octreo-
tide have shown improvement in progression- free 
survival [ 105 – 107 ]. Sunitinib is a multikinase 
inhibitor that binds to various tyrosine kinase recep-
tors including VEGF receptor. VEGF expression 
has been associated with risk of metastasis in low-
grade neuroendocrine tumors [ 108 ]. Anti-VEGF 
antibody bevacizumab has shown activity in combi-
nation with gemcitabine and S1 in PC mouse mod-
els [ 109 ]. A phase II study by Chan and colleagues 
looked at 34 patients with gastroenteropancreatic 
neuroendocrine tumors (44 % pNET, 56 % carci-
noid) treated with bevacizumab plus temozolomide. 
Overall response rate was 15 %, but 33 % of pNET 
patients (5/15) had a response compared to 0/19 
with carcinoid tumors. Both median progression- 
free (14.3 months  vs.  7.3 months) and overall sur-
vival (41.7 months vs. 18.8 months) were higher in 
pNET versus carcinoid [ 110 ]. 

 Little research has been pursued in vaccine 
development for pancreatic neuroendocrine 
tumors. A case report using autologous DCs 
pulsed with tumor cell lysate was delivered sub-
cutaneously to a patient with metastatic pNET. A 
DTH reaction developed and specifi c T-cell 
response was noted. The patient had stable dis-
ease at 20 months after starting therapy [ 111 ].  

12.8     Concluding Remarks 

 Pancreatic cancer continues to be a highly lethal 
disease in which new therapeutics are desperately 
needed. Immunotherapy in pancreatic cancer is in 
its infancy, but gives new targets and new ways to 
deliver therapeutics to the tumor. Vaccines, mAbs 
and drug- or radioimmunotherapy has shown 
promising results in multiple preclinical models 
and numerous therapies are currently in clinical 
trials. Although no current immunotherapy is stan-
dard of care in pancreatic cancers, they may prove 
to be key components of treatment in the future.     
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13.1             Introduction 

 Infl ammation, lifestyle, and other high-risk fac-
tors infl uence development of cancers in the 
Western world. Cancers are often associated with 
deregulated immune balances and responses, 
which may lead to immune tolerance helping the 
tumor growth. Recently, a lot of interest is shown 
towards developing safe and effective drugs/
agents which can modulate immune disorders, 
break down tolerance mechanisms developed by 
the growing tumor, and effectively inhibit tumor 
growth. Immune modulation for prevention and 
treatment of cancers opens novel avenues and 
holds promise to control and optimally reverse 
important pathologic processes which play key 
roles in driving cancer growth and development. 
Although our increasing knowledge of biology of 
immune responses has led to development of new 
targets for cancers, still there is a need to under-
stand how best these responses can be altered by 
different classes of safe agents to modify or 
enhance the immune responses against the 
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tumors. Few studies showed immune modulation 
in mouse models of colon and pancreatic cancers 
and are tried in human clinical trials for 
treatment. 

 In this chapter, we will examine strategies of 
immune modulation and effi cacies shown by 
agents in preclinical studies of colon and pancre-
atic cancers and also in human clinical trials and 
future prospects of these agents in inhibiting 
colon and pancreatic cancers in prevention and 
treatments by immune modulation.  

13.2     Colorectal and Pancreatic 
Cancers Remain as Unsolved 
Health Problems 

 Colorectal cancer (CRC) cancer is the fourth 
most common cancer among men and women in 
the USA; it accounted for 9 % of all cancer deaths 
in 2012 [ 1 ]. Surgical techniques for CRC and sur-
vival after surgery have improved over the past 
15 years. Surgery can cure approximately 90 % 
of CRCs when they are diagnosed without 
 metastatic disease. The number of new cases and 
deaths from CRC in 2013 are estimated to be 
142,820 and 50,830, respectively [ 2 ]. The 10-year 
survival rate for CRC limited to the mucosa is 
90 %; with extension through the bowel wall, it is 
70–80 %; with positive lymph nodes, it is 
30–50 %; and with metastatic disease, it is 
<20 %. Most patients are diagnosed at late stages. 
If trends in reducing risk factors, increasing 
screening, and improving prevention and treat-
ment strategies continue, CRC mortality could 
decline by a further 36 % by 2020. The predicted 
decline in CRC-associated mortality is contin-
gent upon full delineation of the genetic and 
immunological changes associated with tumor 
initiation and progression. A complete genetic 
and immunological profi le of CRC cells is 
expected to identify biological markers and 
molecular targets that guide disease prevention 
and treatment. 

 Despite recent advances in the use of genomic 
and proteomic analysis and in biomarker identifi -
cation, these methods are yet to produce reliable 
candidate markers or targets for CRC. The cur-

rent treatment modalities for CRC that has spread 
to lymph nodes include surgery and chemother-
apy (predominantly with 5-fl uorouracil, bevaci-
zumab, and cetuximab). Despite their effi cacy in 
increasing overall survival, the toxicity of che-
motherapeutic drugs limits their use in combina-
tion with other agents (capecitabine, irinotecan, 
and oxaliplatin) and often makes surgery the only 
option. Additionally, the cancer cells may have 
intrinsic or acquired resistance towards these 
drugs. Therefore, there is an urgent need for 
development of improved prevention and treat-
ment options for CRC. 

 Pancreatic cancer (PC) is the fourth leading 
cause of cancer deaths in both men and women in 
the USA. It is expected that in 2013, more than 
45,000 Americans over 65 years old will be diag-
nosed with pancreatic cancer [ 3 ]. The Pancreatic 
Action Network estimates that by 2020, PC will 
become the second leading cause of cancer- 
related deaths in the USA. Pancreatic cancer is 
often diffi cult to diagnose and usually is identi-
fi ed at later stages, when it cannot be surgically 
resected. Even if the tumor is resected, recur-
rence of PC occurs in the majority of patients, 
and the median survival of these patients is only 
18 months. Overall, the 1-year survival rate of 
people with PC is 26 %, and the 5-year survival 
rate is only 6 %. The lifetime risk of developing 
PC is 1.47 %. The high mortality rate is because 
of the usual presence of metastatic disease at the 
time of diagnosis. The cancer drugs approved for 
the treatment of PC are fl uorouracil, erlotinib, 
gemcitabine, and mitomycin. Usually these drugs 
help in delaying cancer recurrence up to 6 months. 
The benefi t of combining other drugs (cisplatin, 
irinotecan, paclitaxel, docetaxel, capecitabine, or 
oxaliplatin) with these standard drugs is very 
minimal [ 4 – 7 ]. Despite continued research, lim-
ited progress has been made in the prevention and 
treatment of PC. 

 In this chapter, the immunomodulatory effects 
of commonly used anticancer agents that have 
shown effi cacy in preclinical models of CRC and 
PC and also in clinical studies will be discussed. 
In addition, antitumor and pro-tumorigenic 
immune cell functions will be briefl y discussed, 
and the current status of agents that modify those 
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functions and the future prospects for the use of 
these agents in immunomodulation in standard 
prevention and treatment will be outlined. 
Moreover, the effi cacy and toxicity patterns of 
various agents that belong to different classes 
including nonsteroidal anti-infl ammatory drugs 
(NSAIDs), statins, selective estrogen receptor 
modulators (SERMs), rexinoids, antidiabetic, 
and natural anticancer agents will be discussed. 
Finally, strategies to select and develop agents to 
reduce immune cell toxicities and to improve 
natural killer (NK) cell cytotoxicity towards 
tumor cells and reduce regulatory T cell (Treg) 
functions for preventive effi cacy in CRC and PC 
will be discussed.  

13.3     Immunotherapy: 
Unsuccessful in Regressing 
Colorectal Tumors 
and Pancreatic Tumors 

 Many clinical trials have been carried out using 
therapeutic vaccine strategies (with tumor cells, 
specifi c tumor proteins, monoclonal antibodies 
(mAbs), multi-peptides, viral vectors, anti- 
idiotypes, naked DNA, and dendritic cells (DC)) 
alone or in combination with standard treatments 
for CRC; but unfortunately, none of the patients 
with metastatic disease has shown tumor regres-
sion. The reasons for failure to achieve retarda-
tion of tumor growth include tumor tolerance and 
immune suppression by tumor cells [ 8 – 10 ]. 
However, it is possible that immunotherapy may 
be more successful in patients with early stages 
of the disease when there is less tumor-induced 
immunosuppression. An in-depth understanding 
of the interactions between immune cells and 
tumor growth will help in better design and 
development of agents that augment antitumor 
immune responses or block or overcome resis-
tance that is due to immune destruction, for pre-
vention and treatment of CRC. Attempts at 
immunotherapy for PC treatment have been made 
over the past 30 years. However, trials to date 
have targeted tumors that are well established 
and already induce suppression of immune 
responses against PC [ 11 ,  12 ]. Unfortunately, 

these methods have been unsuccessful in regress-
ing PC, with very few successes in other cancers. 
It is evident that most clinically apparent tumors 
have escaped adaptive immunity and developed 
resistance to immune pressure. To overcome 
these immunosuppressive factors, development 
of novel immune modulatory agents that can 
break immune tolerance against tumors alone or 
in synergy with standard preventive therapies is 
necessary.  

13.4     Immune Surveillance 
and Tolerance During 
Initiation and Progression 
of Tumors 

13.4.1     Tumor Microenvironment 

 The tumor microenvironment consists of normal 
epithelial cells, fi broblasts, infi ltrating immune 
cells, extracellular matrix (protein fi bers that hold 
cells together), cytokines, chemokines, oxygen, 
and nitrogen species. It is this tumor microenvi-
ronment that infl uences the growth, invasion, and 
metastasis of the tumor cells. Immune surveil-
lance is a process that helps in destruction/elimi-
nation of the tumor cells before they can establish 
a tumor, progress, and metastasize. In a process 
called cancer immune editing, the tumors induce 
immune tolerance and suppression, which results 
in an increase in pathogenic behavior of tumor 
cells in the presence of immune effectors and 
leads to loss of immunogenicity. The immune 
editing involves the phases of elimination (initia-
tion of antitumor responses), equilibrium (tumor 
cells that survive elimination will be stable, at 
peace with the immune system, and under con-
trol), and eventually an escape phase, in which 
the tumor cells overcome immune defenses, 
progress into invasive cancer, and metastasize. 
The immune surveillance theory, suggesting that 
a natural function of the immune system is to 
destroy dysfunctional or aberrant cells, was sup-
ported by observations of the infi ltration of lym-
phocytic cells such as NK and natural killer T 
(NKT) cells into tumors; these infi ltrates were 
taken to be a sign of good prognosis [ 13 ]. On the 
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other hand, lymphatic cell inactivation, immune 
escape, and the presence of high numbers and 
activity of Tregs are usually associated with poor 
prognosis and an indication of metastases [ 14 ]. 
Interactions between cytokines and chemokines 
produced by these immune cells, stromal cells, 
and tumor cells also play important roles and 
result in a balance between tumor promotion and 
tumor controlling effects. However, in a commit-
ted tumor cell, one cannot expect to have antitu-
mor responses due to the presence of altered 
genomic status and tumor microenvironment that 
favor tumor growth.  

13.4.2     Antitumor Innate 
and Adaptive Immunity 

 Naturally, the immune system detects and elimi-
nates tumor cells, preventing them from estab-
lishing tumors. Various cells such as T cells and 
NK cells play vital roles in controlling the 
development of lesions  in vivo . Cell-mediated 
immunity is provided by CD4 +  T cells, which 
identify peptides presented and activated by 
major histocompatibility complex (MHC) II 
molecules, and by CD8 +  T cells, which recog-
nize peptides presented and activated by MHC I 
molecules and play an important role in adap-
tive anticancer immunity [ 15 ]. CD4 +  T cells, 
through T helper (Th) type 1 responses, includ-
ing production of the cytokines interferon 
(IFN)-γ, tumor necrosis factor (TNF)-α, and 
interleukin (IL)-2, can boost the functions of 
cells such as macrophages and NK cells and 
also support the clonal expansion of other cells 
like Cytotoxic T lymphocytes (CTLs). NK cells 
respond to the cytokines IFNs, IL-2, IL-12, and 
IL-15 with increased cytolytic, secretory, prolif-
erative, and antitumor functions. 

 Dendritic cells play a central role in initiating 
and coordinating immune responses to tumor- 
associated antigens (Ag). Immature DCs actively 
internalize exogenous Ag by endocytosis, pino-
cytosis, and phagocytosis, resulting in the intra-
cellular proteolytic processing of tumor-derived 
Ag into peptides that can be loaded onto MHC 
molecules. The majority of exogenous Ag-derived 

peptide associates with MHC II and is trans-
ported to the DC surface wherein it is engaged by 
MHC II/peptide-specifi c T-cell Ag receptors on 
the surface of CD4 +  class II-restricted T cells. 
DCs prime CD4 +  T cells, which subsequently 
develop into helper T cells skewed towards pro-
duction of Th1 cytokines (IFNg, IL-12, IL-18), 
Th2 cytokines (IL-4, IL-10, IL-13), Th17 cells 
(IL-17, IL-23), and to regulatory T cells (Treg) 
[ 16 ]. Different CD4 +  T-cell subsets can therefore 
exert distinct effector functions towards tumors, 
promoting either tolerance or immune responses 
that destroy the tumor. Usually, Th1 responses 
provide antitumor functions, and any signifi cant 
increase in Th2 responses leads to inhibition of 
tumor rejection. The tumorigenic cells can escape 
or develop tolerance against the immune surveil-
lance through various mechanisms. Activated 
NK cells infl uence development of adaptive 
immune responses by regulating activation and 
maturation of DCs during tumorigenesis [ 17 ]. 
Also, DC cells are reported to trigger NK cell 
antitumor responses [ 18 ]. Despite this immune 
surveillance by various components of immune 
system, the preneoplastic lesions establish and 
develop into tumors that are clinically 
detectable.  

13.4.3     Immune Responses 
During CRC 

 In CRC, chronic infl ammation plays a vital 
role during transformation from a preneoplas-
tic stage to adenomas and then into carcinomas, 
wherein cell-mediated immunity involving NK 
and CTLs is diminished and an increase in 
immune suppressing cells like Tregs and Th2 
cytokines is observed as the disease progresses 
[ 13 ] (Fig.  13.1 ). The importance of activated 
tumor- specifi c CD8 +  cytotoxic T lymphocytes 
in tumor inhibition is supported by several 
reports [ 19 – 22 ]. Colorectal cancer patients 
with no signs of metastatic spread (vascular 
emboli, lymphatic invasion, or perineural inva-
sion) had increased infi ltration by immune cells 
(CTLs) with increased content of cytotoxins 
[ 23 ]. An improved survival was observed with 
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 gastrointestinal cancer patients having granu-
locytes, lymphocytes, and macrophages mobi-
lized at the invasive cancer border [ 24 ,  25 ]. 
There is a growing consensus based on vaccine 
trials that cooperation between CD4 +  Th1 cells 
and activated CD8 +  cytotoxic T lymphocytes 
is necessary for adequate antitumor immune 
responses. A very recent report suggested that 
NK cells can recognize and kill colorectal car-
cinoma-derived cancer-initiating cells through 
the natural cytotoxicity receptors Nkp30 and 
Nkp44 [ 26 ]. It is interesting to note that human 
tumors frequently lose expression of HLA mol-
ecules, and reduction or total loss has been 
confi rmed in colorectal carcinoma [ 27 – 29 ]. 
Immune cells fail to recognize and exert func-
tion on the tumor cells because of defi cient 
MHC signaling, whereas NK cells may recog-
nize MHC class I-negative tumor cells. Thus, 
immunomodulatory agents that decrease num-
ber and activity of Tregs and restore NK cells 
may favor inhibition of CRC.   

13.4.4     Immune Responses 
During PDAC 

 In pancreatic ductal adenocarcinoma (PDAC), a 
decreased number of NK and NKT cells are 
observed in patients with more aggressive tumor 
growth, and the numbers of these cells are 
inversely correlated with disease progression. 
Clinical samples of PDAC showed no NK cell 
infi ltration, but signifi cantly high numbers of 
macrophages were observed in patients with met-
astatic disease spreading to lymph nodes 
(Fig.  13.2 ). The presence of infl ammatory cells 
contributes to the angiogenic phenotype in 
PDAC. Preclinical  in vivo  and  in vitro  studies 
have shown that IFN-α has a direct toxic effect on 
PC cells. A phase III trial combining chemora-
diotherapy with IFN-α showed immediate activa-
tion of antigen-presenting cells (APCs) and NK 
cells followed by antigen-specifi c activation [ 30 ]. 
It is evident from these reports that restoration of 
NK cells and their functions by administration of 
immunomodulatory agents leads to enhanced 
cellular immune response against PC in clinical 
and preclinical models. PC cells can produce 
cytokines (including transforming growth 
factor-β (TGF-β), IL-10, and IL-6) and express 
surface antigens, such as programmed death-1 
(PD1), indoleamine 2,3-dioxygenase (IDO), vas-
cular endothelial growth factor (VEGF), and 
Fas-L that suppress immune responses against 
PC. Immune cell infi ltrates consisting of tolero-
genic DCs, tumor-associated macrophages 
(TAMs), and Tregs facilitate tumor growth and 
metastasis [ 31 ,  32 ] (Fig.  13.2 ).  

 CD8 +  T cells are the predominant immune 
cells found in pancreatic cancer. However, down-
regulation of activation markers on CD8 +  T cells 
is reported to reduce their cytotoxic effects 
towards tumor cells, suggesting that these cells 
become ineffective against tumors. Tregs, IL-6, 
and transforming growth factor (TGF)-β1 levels 
are high in locally advanced metastatic pancre-
atic cancer patients, and an increased number of 
Tregs was observed in peripheral blood of 
patients who had progressive pancreatic tumor 
growth. Hence, in PDAC, a high prevalence of 
Tregs seems to be a marker of poor prognosis 

ACF

NK cells
CTLs

Tregs
Th2 cytokines

COX-2
5-LOX

Adenoma

Adenocarcinoma

  Fig. 13.1    A stepwise development of CRC includes 
ACF, adenoma, and adenocarcinoma formation which 
eventually metastasize. ACFs preneoplastic lesions are 
develop when an insult occurs in the colonic mucosa upon 
carcinogen treatment in rodents, and few of these develop 
into adenomas and adenocarcinomas. During this process, 
the NK cells activity towards tumor cell is inhibited by 
increased number and activity of Tregs with increased 
activity of COX-2 and 5-LOX       
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[ 33 ]. These cells also were observed among 
tumor-infi ltrating cells during multistage devel-
opment of PDAC. In general, naturally occurring 
(n)Tregs help in developing self-antigen toler-
ance by suppressing NK cells, NKT cell activa-
tion, and maturation of DCs. DCs help to balance 
tolerance to self with elicitation of immunity 
towards tumors. DCs are reported to activate 
 pancreatic stellate cells by increasing their che-
mokine production [ 34 ,  35 ], migration, and 
expression of toll-like receptors (TLRs). 
Infi ltrating DCs in chronic pancreatitis exacer-
bate infl ammation, which can lead to PC. Induced 
Tregs (iTregs) are responsible for regulating 
immunity against foreign (microbial) and tissue 
antigens. Tumor cells induce cytokines (IL-2, 
IL-10, TGF-β) and other enzymes (cyclooxygen-
ase (COX)-2, 5-lipoxygenase (LOX), IDO) that 
can enhance production of Tregs and, thus, help 
the tumor escape from immune surveillance 

(Fig.  13.2 ). The observation of depleted Tregs 
helps to provide a mechanism for preexisting 
immune suppression by them against the tumor 
despite the presence of tumor antigens. The evi-
dence from both preclinical and clinical studies 
supporting a critical role of Tregs in immune sup-
pression and evasion by tumors suggests the 
importance of targeting Tregs or modulating their 
functions with preventive and therapeutic agents.  

13.4.5     Immunomodulatory Effects 
of NSAIDs 

 Multiple endogenous mediators regulate differ-
entiation, maturation, and activation of various 
immune cells. These include various cytokines 
and chemokines, bioamines, purines, and COX-/
LOX-mediated production of lipid mediators 
derived from arachidonic acid (AA) such as pros-

  Fig. 13.2    Immune cell modulation during PanINs pro-
gression to PC. During stepwise PanIN 1 progression to 
PanIN 2, Treg number and activity increase, along with 
other immune cells such as tumor-associated macro-
phages, which makes Dcs tolerogenic towards PanIN 3 
into PC progression. During this tumor initiation process, 

NK cell activity and number decrease which eventually 
helps the lesions to progress to PC. Also arachidonic acid 
metabolites, angiogenic factors, and cytokines (COX-2, 
VEGF, IL-10, IL-6 and IDO) are highly expressed and 
cooperate during PanINs progression to PC       
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taglandins (PGs) and leukotrienes (LTs) that are 
recognized to have immune regulatory effects. 
NSAIDs, including salicylates (aspirin), propi-
onic acid derivatives (ibuprofen, naproxen), ace-
tic acid derivatives (sulindac), enolic acid 
derivatives (piroxicam), and selective COX-2 
inhibitors (celecoxib), inhibit COX-1 and/or 
COX-2 and LOX pathways. Thus, they inhibit the 
production of PGs that contribute to pain and 
infl ammation and are widely used for treating 
arthritis. They function as anti-infl ammatory 
agents, but they may exert immune modulatory 
effects differentially on macrophages and 
lymphocytes. 

 COX-1 and COX-2 act on unsaturated 20 car-
bon essential fatty acids such as AA and generate 
prostaglandin H2 (PGH 2 ). Cell-specifi c PG syn-
thases catalyze the conversion of PGH 2  to fi ve 
primary bioactive prostanoids PGD 2 , PGE 2 , 
PGF 2α , PGI 2 , and thromboxane A2 (TXA 2 ). Each 

of these prostanoids is generated in macrophages 
and DCs. The prostanoids that are downstream of 
the COX-2 pathway infl uence many functions of 
cells involved in the immune system such as 
macrophages, DCs, NKs,  and T and B cells and 
play an important role in the physiology and 
pathology of immunologic responses during 
infl ammation, tumor growth, and development 
[ 36 ,  37 ]. The role of PGE 2  in these responses is 
prominent; it reduces activity of NK cells and 
CTLs by decreasing IL-2, IL-15, and, most likely, 
IL-2 production and expression of the IL-2 recep-
tor on effector cells [ 36 ,  38 ,  39 ] (Fig.  13.3 ). It 
also reduces expression of IFN-γ by NK cells, 
thereby abrogating the NK cell helper function in 
mediating DC-induced Th1 responses [ 40 ]. 
Reduced NK cell function in response to PGE 2  
increases establishment of metastases in preclini-
cal animals [ 41 ]. PGE 2  also promotes the produc-
tion of pro-angiogenic and immunosuppressive 

  Fig. 13.3    Arachidonic acid ( AA ) metabolites are very 
well known for their tumor-promoting effects in colon and 
pancreatic cancer. Notably COX downstream molecule 
PGE-2 is reported to enhance tumor growth by helping in 
the development of tolerogenic DCs and Tregs and 
decrease NK cell activity. 5-LOX metabolites involve 4 
series leukotrienes ( LTs ) which play vital role during 
tumor growth and progression. Formation of NO favors 

infl ammatory conditions and helps in tumor growth and 
development. NSAIDs, COX-LOX inhibitors, and natural 
agents (triterpenoids, curcumin) are reported to inhibit 
COX-LOX activities and PGE-2 levels and inhibit tumor 
formation. Also, omega-3 fatty acids, EPA and DHA, 
modulate the COX-LOX activities by forming less potent 
metabolites such as three series PGEs and fi ve series LTs       
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VEGF and monocyte chemotactic protein 1 
(MCP-1) by mast cells [ 37 ,  42 ] and leads to an 
increase in Tregs (Fig.  13.3 ).  

 Roles of COX and LOX are well established 
in CRC, wherein generated PGs and other media-
tors may initiate and promote cancer by sup-
pressing immune responses, triggering cell 
proliferation, inhibiting apoptosis, and stimulat-
ing angiogenesis. These enzymes are also respon-
sible for increased production of the Th2 
cytokines IL-14 and IL-10, which help to increase 
Treg number and activity (Fig.  13.3 ). In tumor- 
bearing mice, Tregs can help switch Th functions 
and contribute to the increased infl ammatory 
conditions promoting cancer in polyposis condi-
tions. 5-LOX metabolites such as LTB 4  increase 
the activity of immune suppressor cells and 
increase growth of tumors. 

 Aspirin has received a lot of appreciation in 
preventive and therapeutic uses for its traditional 
anti-infl ammatory properties and for having life-
saving activity against cardiovascular events such 
as heart attacks. In a retrospective cohort study, 
aspirin use was associated with reduced cancer 
risk in a subgroup of patients whose colon tumors 
were expressing COX-2. However, aspirin inhib-
its both COX-1 and COX-2 (Fig.  13.3 ) and can 
lead to gastrointestinal (GI) ulceration, bleeding, 
and hemorrhagic stroke. The GI risk lies between 
0.1 % and 1 %. Modifi ed forms of aspirin, includ-
ing nitric oxide derivatives such as NO aspirin, 
are gaining much attention due to their gastro- 
protective effects. Inhibition of COX pathways 
may cause an increase in LOX catalytic path-
ways, and LOX metabolites may cause deleteri-
ous effects and may stimulate cell proliferation in 
tumors. It has been established that low doses of 
aspirin trigger synthesis of factors that promote 
resolution of infl ammation, called aspirin- 
triggered lipoxins (APLs), such as 15R-epilipoxin 
A4. Several large epidemiological studies have 
shown that long-term, frequent aspirin intake is 
associated with a 50–60 % reduction in the risk 
of colorectal adenomas and carcinomas [ 43 – 45 ]. 
The authors’ preclinical results are consistent 
with inhibition of COX-2-mediated PGE 2  synthe-
sis by aspirin; NO aspirin resulted in inhibition of 
CRC in both mice and rats [ 46 ]. 

 Aspirin may also have some additional immu-
nopharmacological properties, although avail-
able information is limited. An  in vitro  study 
demonstrated no effect of aspirin on spontaneous 
or INF-β-stimulated NK cell activity [ 47 ]. 
Therapeutic doses of aspirin have been shown to 
increase selectively nTreg number and function 
in mice [ 48 ,  49 ]. Various preclinical evidence has 
shown that aspirin may have profound effects on 
maturation and differentiation of different DC 
phenotypes, causing DC tolerance and impairing 
antigen presentation by these cells. Aspirin- 
induced tolerogenic DCs may help in de novo 
generation of Tregs or in induction of regulatory 
functions in naïve T cells. These reports suggest 
that aspirin may cause immune suppression by 
directly enhancing Treg activity or indirectly by 
generating tolerogenic DCs. Hence, aspirin has 
potential to suppress immune responses in cer-
tain diseases such as autoimmunity. The authors 
and others have demonstrated the existence of 
Tregs in CRC during initial stages of the disease 
progression. Thus, although, meta-analyses and 
systematic reviews suggest that aspirin use is 
associated with a decreased incidence of colonic 
adenomas, colorectal cancer, metastatic colorec-
tal cancer, and death due to colorectal cancer [ 50 , 
 51 ], one needs to be cautious with the use of aspi-
rin for cancer treatment in cases where immuno-
suppression by Tregs is observed. The potential 
benefi t of aspirin in cancer is dependent on dose, 
timing, and number of years of use [ 44 ]. At least 
7–10 years of aspirin use at 325 mg daily has 
been shown to decrease cancer. Similar estimates 
were made in a later meta-analysis of four 
placebo- controlled trials of aspirin; the benefi cial 
effects of aspirin in reducing cancer risks were 
very consistent in various clinical trials [ 52 ]. 
Several intervention trials have evaluated the 
benefi ts of aspirin in prevention trials, and aspirin 
showed modest benefi t on reducing recurrence of 
colorectal adenomas. These studies were con-
ducted in patients already at the adenoma or can-
cer stages and not simply in patients having a risk 
of developing adenomas. Two meta-analyses 
have been published which suggest that the risk 
of recurrent adenomas is reduced by about 
13–18 % [ 51 ,  52 ]. Trials focusing on prevention 
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of colon cancer by preventing adenoma recur-
rence did not show consistent results with the use 
of aspirin [ 43 ,  53 – 59 ]. A recent report on regular 
use of aspirin in a cancer screening trial showed a 
reduced risk of hyperplastic and adenomatous 
polyps, with a slightly greater risk reduction in an 
age group of 70–74 compared with the 55–69 age 
group [ 60 ]. Overall, these trials suggest that 
 prolonged use of aspirin reduces the risk of colon 
cancer. A recent study in 904 pancreatic cancer 
patients and 1,223 similarly matched healthy 
controls suggested that regular use of aspirin at 
least once a month resulted in 29 % reduced risk 
of developing PC. Those who took low-dose 
aspirin regularly had a greater 35 % risk reduc-
tion for PC. In a preclinical study, LsL- 
KrasG12D;LsL-Trp53R172H;Pdx1-Cre 
transgenic mice were randomly assigned to 
receive mock treatment, gemcitabine, or a combi-
nation of gemcitabine and aspirin; results showed 
suppression of Tregs in the mice receiving the 
combination treatment [ 61 ], which, in part, may 
have affected the increase in survival of diseased 
animals. 

 Ibuprofen shares with other NSAIDs such as 
aspirin the ability to inhibit the activity of COX-1 
and COX-2, thus reducing the generation of pro- 
infl ammatory stimuli. Lower ibuprofen drug con-
centrations act as activators of splenocyte 
proliferation, possibly through inhibition of 
thromboxane (TX)/hydroperoxyeicosatetraenoic 
acid (HETE) synthesis. Higher drug concentra-
tions also activate splenocyte proliferation 
through inhibition of PGE2 and PGI2 [ 62 ]. Thus, 
both high doses and low doses of ibuprofen are 
able to regulate PG synthesis in cells (Fig.  13.3 ). 
Dietary administration of ibuprofen at 400 ppm 
resulted in a 41 % reduction of azoxymethane 
(AOM)-induced colon tumor incidence in F344 
rats [ 63 ]. Ibuprofen caused a signifi cant growth 
inhibition of HT29 xenografts overexpressing 
Rac1b (as occurs in serrated tumors having 
BRAF mutations), but the growth inhibition was 
independent of COX inhibition [ 64 ]. These fi nd-
ings indicate that the benefi cial effect of NSAIDs 
in CRC may not rely solely on an anti- 
infl ammatory response. Cameron et al. [ 65 ] 
reported that ibuprofen transformed noncytotoxic 

macrophages into cytotoxic ones and also 
enhanced the cytotoxic activity of macrophages 
in colon cancer patients [ 65 ]. A case-controlled 
study showed that, as with low-dose aspirin, 
intake of one or more pills per week of regular 
ibuprofen (200 mg) was associated with a signifi -
cant (~68 %) reduction in the risk of colon cancer 
[ 66 ,  67 ]. A study in a large general risk popula-
tion supports previous work showing that recent 
use of ibuprofen is associated with a decreased 
risk of colorectal adenomas [ 60 ]. Ibuprofen also 
shares with aspirin similar GI toxicity, which 
restricts the use of this drug to patients suffering 
from ulcerative colitis. Hence, a derivative of ibu-
profen, phospho-ibuprofen, was designed and 
tested by the authors and others in AOM-induced 
colon cancer in F344 rats and was observed to 
have better effi cacy in inhibiting development of 
aberrant crypt foci (ACF) and colon cancer com-
pared with ibuprofen. The authors also tested 
phospho-ibuprofen in a transgenic mouse model 
of PC and found that it signifi cantly inhibited 
progression from pancreatic intraepithelial neo-
plasias (PanINs) to PDAC. 

 NSAIDs have been shown to reduce spleen 
lymphocyte proliferation and to inhibit T-cell 
proliferation [ 68 – 70 ]. The S enantiomer of 
naproxen was shown to cause apoptosis of poly-
morphonuclear neutrophils (PMNs), which is a 
crucial mechanism for PMN, removal while 
resolving infl ammation [ 71 ]. Immunotoxicology 
studies to assess the effects of naproxen on cell- 
mediated immunity showed no effect on NK cell 
activity [ 72 ]. Although high (supra- 
pharmacologic) concentrations of these drugs 
have been shown to induce some  in vitro  immu-
nomodulatory effects on the innate immune sys-
tem, they failed to show any effects  in vivo . More 
detailed studies of naproxen effects  in vivo  are 
therefore needed to understand how it infl uences 
immunity in cancer patients. 

 Anti-infl ammatory NSAIDs releasing NO 
(NO-NSAIDs) are a new class of anti- 
infl ammatory drugs to which an NO-releasing 
moiety is added. NO-naproxen was developed 
with the goal of reducing the gastrointestinal tox-
icity associated with regular use of NSAIDs. 
These compounds have been shown to retain the 
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anti-infl ammatory, analgesic, and antipyretic 
activity of the parent compound but to be devoid 
of gastrointestinal (GI) toxicity [ 73 ]. Naproxen 
was reported to reduce IL-1β, but NO-naproxen 
reduced both IL-1β and TNF-α plasma levels 
[ 74 ]. NO-naproxen and naproxen both reduced 
the proliferation of T cells, whereas naproxen 
needed double the dose of NO-naproxen to show 
a similar function (Fig.  13.3 ). NO-naproxen has a 
greater effect on T-cell responses due to the pres-
ence of the NO moiety [ 74 ]. Both agents showed 
potent anti-infl ammatory and antitumor proper-
ties in preclinical animal models of CRC. 

 Apc Min/+  mice genetically predisposed to spon-
taneous development of colon tumors who were 
fed low-dose naproxen for 45 days had 70.3 % 
fewer small tumors than the control animals, and 
mice fed low-dose NO-naproxen had 64.0 % 
fewer tumors than control animals. An 89.3 % 
reduction in microadenomas was observed when 
mice were fed high-dose naproxen. Relevant 
human serum concentrations of naproxen (1 μg/
mL) were found to have chemopreventive effects 
in human colon polyp cells and to reduce the 
expression of signaling pathway genes (Ras, Fos, 
Myc, Jun, Vav1, ELK1, ELK4, multiple map 
kinases, and TGFB receptor (R) 1) implicated in 
cancer and growth [ 75 ]. Sulindac and naproxen, 
individually and in combination with atorvas-
tatin, caused signifi cant reduction in AOM-
induced colon tumors in F344 rats and inhibited 
key infl ammatory markers such as inducible 
nitric oxide synthase (iNOS), COX-2, and phos-
pho-p65 as well as the infl ammatory cytokines 
TNF-α, IL-1β, and IL-4. These studies also pro-
vided evidence for a strategy of NSAID combi-
nation with statins for reduced GI toxicity. 

 Sulindac has long been used to help prevent 
the development of intestinal polyps that can 
lead to colon cancer and is well established as a 
chemopreventive agent for CRC. Min mice 
receiving sulindac had fewer intestinal tumors 
[ 76 ]. In a randomized, placebo-controlled, dou-
ble-blind study, administration of sulindac at 
dose of 300 mg/day for 6–12 months resulted in 
complete eradication of polyps in patients with 
familial adenomatous polyposis (FAP) [ 77 ]. 
Sulindac and several other NSAIDs were able to 

control growth of desmoid tumors in patients 
affected by FAP or Gardner’s syndrome [ 45 , 
 78 – 80 ]. A signifi cant reduction in the size of 
adenomas was reported in FAP patients after 
long-term therapy with sulindac [ 77 ,  79 – 81 ]. As 
in animal studies, sulindac was more effective 
when given at early stages of tumor develop-
ment. Preclinical  in vivo  studies showed that 
sulindac inhibits dimethylhydrazine (DMH)-
induced colon tumor incidence and multiplicity 
in mice when administered in the diet through-
out the period of carcinogen administration, but 
not when given 17 weeks after DMH administra-
tion [ 82 ,  83 ]. In another study, sulindac (10 mg/
kg body weight administered twice daily by 
gavage) inhibited DMH- induced primary colon 
tumor development and growth in rats. Ahnen 
et al. [ 84 ] showed that dietary administration of 
sulindac and its metabolite sulindac sulfone sig-
nifi cantly inhibited AOM-induced colon carci-
nogenesis in F344 rats [ 84 ]. Sulindac inhibits 
COX activities as well as polyamine synthesis, 
for which it has been combined with the orni-
thine decarboxylase inhibitor DFMO in a large 
clinical trial for chemoprevention of sporadic 
colorectal adenocarcinoma [ 85 ,  86 ]. A striking 
chemopreventive effect was observed in the 
combination arm, with a 95 % decrease in 
advanced adenomas, which are most likely to 
progress to carcinoma [ 87 ]. Sulindac inhibition 
of COX resulted in inhibition of β-catenin sig-
naling by enhancing its degradation in colon 
cancer [ 88 ]. Several studies have demonstrated 
the effectiveness of sulindac in reducing the size 
and number of adenomas in familial polyposis 
[ 77 ,  89 ]. Recently Stein et al. [ 90 ] reported that 
sulindac was a potent inhibitor of metastatic 
tumors in colon cancer [ 90 ]. There is a possibil-
ity that sulindac may exert an inhibitory effect 
on IFNγ-inducible chemokine expression and 
thus reduce the host immune response against 
tumorigenesis. Sulindac was shown to inhibit 
selectively IFNγ-induced expression of the che-
mokine CXCL9 in mouse macrophage 
RAW264.7 cells without affecting IFNγ-induced 
signal transducer and activator of transcription 1 
(STAT1) activation [ 91 ]. The mechanism for the 
selective inhibition of CXCL9 is not yet known. 
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 Many studies have shown that several PG syn-
thesis inhibitors, such as indomethacin and 
piroxicam, suppress colon carcinogenesis in lab-
oratory animal models [ 92 – 98 ]. Piroxicam was 
found to be an effective chemopreventive agent 
when administered in the diet during the initia-
tion, post-initiation, and progression stages of 
colon carcinogenesis in laboratory rodents [ 92 , 
 93 ]. Piroxicam at 200 and 400 ppm caused a 
dose-dependent decrease (45–64 %) in colon 
tumor incidence in F344 rats [ 93 ]. At a dose of 
20 mg/day, it reduced mean rectal prostaglandin 
concentration by 50 % in individuals with a his-
tory of adenomas [ 99 ]. Bayer et al. [ 69 ] and 
Muller et al. [ 100 ] reported decreased expression 
of Treg-associated molecules such as forkhead 
box P3 (FOXp3) and IL-10 in indomethacin- 
treated tumors (Fig.  13.3 ). Based on evaluation of 
various immune cell markers [(HLA-DM, 
HLA-DO (peptide loading), HLA-DP, HLA-DQ, 
HLA-DR (antigen presentation), granzyme B, H, 
perforin and FCGR3A (CD16) (cytotoxicity), 
CD8 +  cytotoxic T lymphocyte and CD4 +  T helper 
cells]. Lonroth et al. [ 101 ] suggested that specifi c 
and nonspecifi c NSAIDs (indomethacin and 
celecoxib) alter colorectal cancer progression by 
affecting immune surveillance. They showed that 
indomethacin treatment increased in the infi ltra-
tion of B cells, macrophages, CD4 +  T helper 
cells, and CD8 +  cytotoxic T lymphocyte and 
reduced Foxp3 expression in tumor tissue [ 101 ]. 
These NSAIDs have immunomodulatory effects 
in addition to their effects on AA metabolism that 
contribute to tumor inhibition. 

 Specifi c COX-2 inhibitors were designed to 
achieve greater effi cacies and reduce GI toxicity. 
These drugs showed consistent strong chemo-
preventive effects in preclinical animal models 
[ 102 ,  103 ]. However, even the nonspecifi c COX 
inhibitor aspirin showed risk reductions similar 
in magnitude to specifi c COX-2 inhibitors. 
Studies by Talmadgea et al. [ 104 ] reported a sig-
nifi cant expansion of immature myeloid sup-
pressor cells (IMSCs) (phenotype Gr1 + CD11b +  
cells) and a reduction in CD4 +  lymphocytes in 
the spleen during growth of 1,2-DMH-induced 
intestinal tumors in mice. The tumor-bearing 
mice showed increased expression of infl amma-

tory molecules such as COX-2, iNOS, and argi-
nine. Therapy with clinically relevant doses of 
celecoxib resulted in a reduced number of colon 
tumors and delayed tumor development by 
reducing immunosuppressive IMSCs. This study 
supports the role of COX-2 in inducing immuno-
suppressive activity during tumor development 
by causing apoptosis of CD4 +  T cells. A popula-
tion-based retrospective cohort study of individ-
uals aged 65 years and older suggested that 
long-term use of non-aspirin NSAIDs was asso-
ciated with reduced risk of CRC [ 105 ]. A ran-
domized clinical trial with celecoxib showed 
signifi cant reduction in the incidence of colonic 
adenomas [ 106 ,  107 ]. 

 Chemopreventive effects of celecoxib and 
rofecoxib with daily standard dosages (200 and 
25 mg, respectively) were demonstrated as a 
69 % decrease in CRC. These drugs were 
approved in 1999; however, rofecoxib was with-
drawn from the market in 2004 due to increased 
risk of cardiovascular events [ 108 – 110 ]. During 
this very short window of usage, both of these 
drugs showed signifi cant reductions in CRC, but 
their associated risk of cardiotoxicity resulted in 
new searches for better COX inhibitors that retain 
potent preventive properties without the toxic 
effects. Signifi cant inhibition of PanIN progres-
sion to PC in transgenic KrasG12D/+ mice upon 
dietary administration of the dual COX-LOX 
inhibitor licofelone has been reported by the 
authors [ 111 ] (Fig.  13.3 ). This study suggests the 
use/development of agents that can show well- 
balanced inhibition of COX and 5-LOX activi-
ties, with high effi cacy in tumor inhibition and 
less or no toxicity. A complete blockade of pro-
gression of PanINs to PC was observed when 
licofelone was combined with gefi tinib in trans-
genic KrasG12D/+ mice [ 112 ]. Hence, targeting 
multiple pathways with low nontoxic doses of 
potent agents is encouraging in prevention of PC. 

 Immunological effects of NSAIDs or non- 
NSAIDS in PC have not been studied much. The 
available literature on risk reduction in CRC and 
PC with NSAID usage suggests that chronic 
unresolved infl ammation involving immune cells 
plays a critical role in tumor initiation, growth, 
and development. A thorough understanding of 
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the functions of NKs, T cells, macrophages, and 
their related cytokines during different stages of 
tumor development is needed to help fi nd effec-
tive approaches and to establish appropriate 
doses and administration schedules to suppress 
the tumors.   

13.5     Immunomodulatory Effects 
of Statins 

 Since their discovery in 1976, statins have been 
in use for their benefi cial effects in reducing 
serum cholesterol, low-density lipoprotein (LDL) 
and triglyceride levels and for increasing high- 
density lipoprotein (HDL) cholesterol [ 113 ]. 
Statins exhibit these effects by inhibiting HMG- 
CoA reductase in the cholesterol synthesis path-
way (Fig.  13.4 ). Downstream metabolites of this 

pathway regulate posttranslational prenylation of 
Rho and Ras. Statins inhibit isoprenylation of 
Rho and Ras, which inhibits function of these 
proteins in cell mobility, shape, proliferation, dif-
ferentiation, and survival. Since HDLs enhance 
anti-infl ammatory responses by reducing cyto-
kines (TNF-α, IL-1), statins also exhibit anti- 
infl ammatory effects and are effective against 
infl ammation and CRC in preclinical animal 
models. Although the benefi cial effects of statins 
are predominantly via their lipid-lowering prop-
erties, they recently have been noted to have 
additional immunomodulatory actions that might 
exert benefi cial effects. There is ample evidence 
that they exert anti-infl ammatory and anti- 
oxidative actions and can induce tumor suppres-
sors in colorectal cancer. A trial of statin therapy 
was conducted in Northern Israel between 1998 
and 2004 in a population-based, case-controlled 

  Fig. 13.4    Statins inhibit the cholesterol metabolite path-
way and reduce the activation of Rho and Rac family pro-
teins which are involved during tumor formation. Also, 
statins help in modulation of CD4 +  T cells towards Th1 

differentiation in the presence of CD56 +  DCs that will 
activate NK cells which help in eliminating tumor cells. 
Further statins inhibit formation of pro-infl ammatory 
cytokines       
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study of patients with a diagnosis of CRC. A 
modest reduction in CRC was shown in the gen-
eral population without infl ammatory bowel dis-
ease (IBD), but a substantial 94 % risk reduction 
was observed in a small number of IBD patients 
in a subset analysis [ 114 ]. A recent meta-analysis 
of 16 studies involving 1,692,863 participants 
and 7,807 PC cases showed no association 
between statin use and PC [ 115 ]. However, in a 
transgenic KrasG12D/+ mouse model, the 
authors and others have shown delayed progres-
sion of pancreatic lesions PanIN 1, PanIN 2, and 
PanIN 3 to PDAC in atorvastatin-treated mice 
compared with untreated controls via modulation 
of phosphatidylinositol 3-kinase (PI3K)/AKT 
signaling molecules [ 116 ]. Since the Akt path-
way regulates Foxp3 expression and Treg devel-
opment in the thymus, atorvastatin may have 
delayed PC development by decreasing Treg 
development [ 117 ,  118 ] (Fig.  13.4 ). Another 
study reported that fl uvastatin and lovastatin 
reduced liver tumor formation and growth of 
established liver metastases in PC [ 119 ].  

 Although there are studies suggesting immu-
nosuppressive function of statins, it was shown 
that statins act cooperatively with IL-2 to induce 
IFN-γ production in CD56dim NK cells [ 120 –
 122 ] (Fig.  13.4 ). Previously, it was reported that 
statin effects on NK cells were inhibitory, but all 
of those studies focused on NK cell-target cell 
interactions with purifi ed NK cells in co-culture 
with target cells [ 123 – 126 ]. In contrast, 
Gruenbacher et al. [ 121 ] reported that statins 
enhanced tumor death by increasing NK cell 
activity against tumor cells and increasing INF-γ 
production, effects mediated by CD56 + HLA- 
DR  + CD14 +  DC-like accessory cells (Fig.  13.4 ). 
Atorvastatin and pravastatin showed anti- 
infl ammatory properties by attenuating T-cell 
activation and proliferation [ 127 ,  128 ]. Mausner- 
Fainberg et al. [ 129 ] reported that treatment of 
human peripheral blood mononuclear cells 
(PBMCs) with atorvastatin, but not with mevas-
tatin or pravastatin, increased the number of 
CD4 + CD25high and CD4 + CD25 + Foxp3 +  cells 
[ 129 ]. No difference was seen in Tregs in 
C57BL/6 mice with these agents. This report 
suggests that each statin is different in its mode of 

function. In trials of statin treatment for CRC, we 
showed decreased expression of COX-2 by rosu-
vastatin in AOM-induced colon tumors in rats, 
suggesting anti-infl ammatory effects. Simvastatin 
was reported to reduce expression of the chemo-
kines MCP1, MIP1α, and MIP1β as well as of the 
chemokine receptors CCR1, CCR2, CCR4, and 
CCR5 in human macrophages [ 130 ]. A clinical 
trial showed blocked expression of T-cell activa-
tion markers by atorvastatin [ 131 ]. A recent study 
showed that atorvastatin signifi cantly decreased 
the expression of six cytokines (IL-6, IL-8, IL-1, 
plasminogen activator inhibitor type (PAI-1), 
TGF-β1, TGF-β) and fi ve chemokines (CCL2, 
CCL7, CCL13, CCL18, CXCL1) and affected 
the expression of many infl ammatory genes, as 
analyzed via DNA microarray analysis of human 
peripheral blood lymphocytes from normal sub-
jects [ 132 ]. 

 Fluvastatin demonstrated inhibitory activity 
against colitis and carcinogenesis in a mouse 
model, and it reduced oxidative DNA damage 
and activity of the DNA-synthesizing enzyme 
thymidine kinase in colorectal tissues [ 133 ]. 
Simvastatin was reported to cause signifi cant 
reduction of tumor development by induction of 
apoptosis and suppression of angiogenesis in 
another colitis-associated CRC model. It also 
suppressed tumors by inhibiting VEGF and 
inducing apoptosis of tumor cells in a colon can-
cer xenograft model. Pitavastatin was effective in 
inhibiting AOM- and dextran sulfate sodium 
(DSS)-induced colitis-related colon carcinogen-
esis and signifi cantly inhibited multiplicity of 
colon adenocarcinoma through modulation of 
mucosal infl ammation, oxidative and nitrosative 
stress, and cell proliferation [ 134 ]. A 3-month 
treatment with 80 mg per day of atorvastatin 
resulted in reduced plasma chemokine CXCL10 
levels and infl ammation in Crohn’s disease 
patients [ 135 ]. Atorvastatin therapy was shown to 
reduce infl ammation by reducing monocyte 
migration [ 136 ,  137 ]. The authors recently pre-
sented evidence for chemopreventive effects of 
rosuvastatin in AOM-induced colon tumors, with 
signifi cant inhibition of the transformation from 
adenoma to adenocarcinoma [ 138 ]. Although this 
statin has the greatest lipid-lowering effect, con-
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cerns about its safety have been raised. It is evi-
dent from all these reports that considerable 
progress has been made in our understanding of 
some of the mechanisms underlying the benefi -
cial effects of statins and that these include some 
actions besides inhibition of HMG-CoA reduc-
tase. The available preclinical animal data are 
supportive of chemopreventive properties of 
statins [ 133 ,  134 ,  138 ], but very little is known 
about the effects of these agents in high-risk sub-
groups, such as patients with resected colon can-
cer, and the effectiveness of statins as 
chemopreventive agents remains to be estab-
lished in prospective randomized trials. Design 
and development of new statins and improved 
understanding of how statins manipulate immune 
cell functions is warranted to inhibit pro- 
infl ammatory conditions in CRC and PC.  

13.6     Immunomodulatory Effects 
of Selective Estrogen 
Receptor Modulators 

 17β-Estradiol is the most potent endogenous 
ligand for the estrogen receptor (ER)-β, but it 
binds equally well with ER-α and ER-β. The dis-
tribution and also the functions of these receptors 
are different in different tissues, and these features 
were behind the drive to identify or design selec-
tive ligands or selective estrogen receptor modula-
tors (SERMS). Evidence gathered in recent years 
demonstrates roles for sex hormones in immunity. 
A 17β-estradiol- dependent increase in FOXp3 
and PD1 expression with expansion of 
CD4 + CD25+ T cells in mice has been suggested 
[ 139 ,  140 ]. And an enhanced functional activity of 
Tregs in suppressing immunity was observed upon 
17β-estradiol treatment in mice [ 140 ]. It is evident 
that high Treg numbers and associated PD1 
expression in CRC and PDAC are associated with 
poor prognosis. In ER-α knockout (KO) (Esr1–/–, 
ERKO) and ER-β KO (Esr2–/– (BERKO)) mice, 
Treg functional capacity and PD1 expression were 
signifi cantly reduced compared with wild-type 
mice [ 140 ] (Fig.  13.5 ). Pretreatment with 
17β-estradiol partially restored the functional Treg 
suppression of PD-1 KO mice [ 140 ].  

 17β-Estradiol is reported to enhance metasta-
sis of both syngeneic and allogenic tumors in 
nude mice [ 141 ]. A link between female hor-
mones and PC has been controversial. ERs were 
observed in both PC and normal pancreas [ 142 ], 
but a higher level of estrogen binding was 
reported in patient PC tissues compared with 
controls [ 142 ]. High ER-β RNA levels were 
reported in PC [ 143 ]. Specifi cally, ER-β2 mRNA 
was observed to play a more important role than 
ER-α in PC. However, a weak or no association 
of PC risk with the use of hormone replacement 
therapy (HRT) or contraceptives was reported in 
fi ve cohort studies [ 144 ]. A similar result was 
reported in fi ve case-controlled studies [ 144 ]. 
There is not much convincing data for a hormone 
dependence of PC, arguing against a role of 

  Fig. 13.5    Increased endogenous estrogen levels are 
linked to formation of more colonic tumors. They are 
reported to decrease the NK cell activating cytokines and 
chemokines and increase Tregs by increasing PD1 expres-
sion. Selective estrogen receptor modulators are reported 
to decrease formation of Tregs and CRC       
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estrogens or their antagonists in preclinical or 
clinical prevention or treatment of PC. 

 In nude mice with colon cancer xenografts, pro-
longed systemic administration of 17- estradiol 
suppressed NK activity resulting in frequent and 
large metastases to the liver and lungs and the mes-
enteric, omental, and mediastinal lymph nodes, 
supporting the role of NKs in controlling meta-
static potential of primary tumors [ 145 ]. We have 
observed increased Ccl6 and Cxcr3, indicating 
increased NK cell activity, with suppressed colon 
tumor formation by decreasing endogenous estro-
gen production through desensitization of luteiniz-
ing hormone (LH) receptors in an Apc Min/+  mouse 
intestinal tumorigenesis model [ 146 ] (Fig.  13.5 ). 
Hence, the use of SERMs may provide protection 
in CRC by enhancing NK cell activity against 
tumor growth and suppressing Treg functions. 

 Anti-infl ammatory properties of estrogens 
have been studied extensively [ 147 ]. Estrogen 
therapy lowers cytokine levels in postmenopausal 
women [ 148 ]. Estrogens modulate infl ammatory 
genes through ER-α and ER-β. Since the discov-
ery of ER-β, scientists have made enormous prog-
ress in understanding its biology. Its role is well 
established in the ovary, cardiovascular system, 
and brain, as well as in several animal models of 
infl ammatory diseases, but less is known of its 
role in CRC and PC. Estrogens and their receptors 
are important regulators of colon physiology, but 
the roles in colonic epithelial cells are not well 
understood, and there is controversy about the 
role of ERs in infl ammation and CRC [ 149 ]. One 
study reported that loss of ER-β did not cause any 
colonic tumor formation, suggesting that it is not 
associated with colonic neoplasia, nor were any 
signifi cant differences found in colonic tumor for-
mation in ApcMin/+ and ER-β−/− compound 
mice [ 150 ]. Some studies have indicated that ERs 
can suppress pro- infl ammatory genes such as  IL-6  
and TNF- α  [ 151 – 153 ], whereas both ER-α and 
ER-β have been implicated in repression of 
infl ammatory genes by 17β-estradiol, with ER-β 
ligands exhibiting more potency in repressing 
genes induced by TNF-α [ 154 ]. 

 Menopausal HRT use has been associated 
with a decreased colorectal cancer risk, suggest-
ing that estrogen signaling is involved in colon 

physiology and cancer etiology. However, a 
French E3N prospective cohort study suggested 
that while menopausal HRT was not associated 
with signifi cant colorectal adenoma or adenocar-
cinoma risk, any use of estrogens alone was asso-
ciated with the risk of colorectal adenoma and 
cancer in opposite directions [ 155 ]. A very recent 
report suggests that estrogens promote tumor 
development in the context of infl ammatory dam-
age in a DSS-AOM mouse model. In this study, 
estrogen-treated animals had formation of inva-
sive adenocarcinomas as compared with untreated 
animals. The pro-tumorigenic effect of estrogen 
was related to both ER-α and ER-β. A preclinical 
AOM-induced colitis model in an ER-β knockout 
mice revealed that ER-β-defi cient animals had 
greater numbers and sizes of colon polyps with 
increased expression of IL-6, IL-17, and TNF-α. 
These results suggest that, in the presence of car-
cinogen insult, ER-β may provide protection 
against infl ammatory conditions by healing 
mucosal damage. However, there is evidence 
suggesting a positive role of ER in enhancing 
colon tumor formation. The authors have reported 
an effect of the phytoestrogen genistein in 
enhancing AOM-induced colon carcinogenesis 
[ 156 ]. This result is consistent with evidence of 
the association of ER-β expression with elevated 
cell proliferation markers in tumors [ 157 ]. Data 
represented by the authors suggest that raloxi-
fene, an ER-β antagonist, signifi cantly inhibits 
AOM-induced formation total ACF (31–40 %) 
and multicrypt ACF (23–50 %) and suppresses 
colon adenocarcinoma multiplicity (to 3.28 ± 0.31 
with 1.5 ppm raloxifene; to 2.96 ± 0.30 with 
3 ppm raloxifene) in F344 rats [ 158 ,  159 ]. It is 
also observed >70 % fewer polyps with sizes of 
>1 mm upon raloxifene treatment in Apc Min/+  
mice [ 16 ], and a signifi cant decrease in AOM- 
induced colonic adenocarcinomas associated 
with inhibition of the Th2 cytokine IL-4 is found 
with raloxifene treatment [ 159 ] (Fig.  13.5 ). 

 Our fi ndings and others suggest that modulation 
of immune cells by suppressing endogenous estro-
gen levels in CRC and targeting ERs may be useful 
as a potential preventive approach to modulate 
infl ammatory responses in CRC [ 160 ]. Although 
the precise clinical indications still are being 
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defi ned, the reported mechanistic and animal stud-
ies suggest that ER-modulating agents might repre-
sent a new class of drugs to prevent and treat 
infl ammatory disorders. Ultimately, clinical trials 
with synthetic as well as natural plant-derived 
ER-β-selective compounds are needed to assess the 
potential translation of drugs that target ER-β for 
the prevention and treatment of human CRC asso-
ciated with infl ammatory disorders. No preclinical 
data exist on the use of SERMs in immunomodula-
tion or prevention of PC.  

13.7     Immunomodulatory Effects 
of Rexinoids 

 Retinoid X receptors (RXRs) and their rexinoid 
ligands regulate a family of genes having RXR 
receptor elements. They control differentiation, 
growth, and, in certain situations, induce apopto-
sis in tumor cells [ 161 ]. Rexinoids can cause cell 
differentiation and proliferation in T lymphocytes 
and inhibit activation and prevent apoptosis in B 
cells [ 162 ]. These effects are predominantly 
through the IL-2R in T and B cells; rexinoids may 
induce expression of IL-2Rα [ 163 ]. The RXR 
agonist AGN194204 enhanced Th2 development 
upon antigenic stimulation with splenic APCs 
[ 164 ] (Fig.  13.6 ). RXRα1/− mice were more sus-
ceptible to infl ammation than are wild- type mice, 
and the RXR agonist LG101305 reduced IL-1β 
expression, providing genetic evidence that RXRs 
are protective and have anti- infl ammatory func-
tions [ 165 ]. A chemopreventive property of the 
rexinoid bexarotene in an Apc Min/+  colon cancer 
model is previously reported by the authors. It 
decreased the infl ammatory cytokines granulo-
cyte-macrophage colony- stimulating factor 
(GM-CSF) and IL-2 and IL-12, increased RXRα 
levels, and suppressed total intestinal polyps and 
colon tumors in male and female mice, by 38.2–
9.9 % ( P  < 0.015 to  P  < 0.0001) or 8.5–36.9 %, 
respectively ( P  < 0.007) [ 166 ] (Fig.  13.6 ). A sig-
nifi cant inhibition of colonic adenocarcinomas 
was observed with bexarotene alone and in com-
bination with raloxifene treatment administered 
in the diet to F344 rats 8 weeks after AOM treat-
ment [ 159 ]. Bexarotene-treated colonic tumors 

exhibited decreased IL-6 expression [ 159 ]. A 
recent study by Liby et al. [ 167 ] reported that the 
rexinoid LG100268 (LG268), alone or in combi-
nation with triterpenoids, increased survival in a 
 LSL - Kras G12D  /+ ;LSL-Trp53 R172H/+ ;Pdx-1 -Cre  (KPC) 
triple mutant mouse model of PC. Collectively, 
these observations support a role for RXRs in 
immune cells, but, to our knowledge, there are no 
reports on the specifi c functions of RXRs in 
immune cells such as NKs, DCs, and Tregs in 
CRC and PC.   

13.8     Immunomodulatory Effects 
of Antidiabetic Agents 

 Many genes involved in diabetes play a role in 
cancer progression. There is mounting data sug-
gesting that diabetics are more prone to certain 

  Fig. 13.6    Decreased expressions of RXRs are observed 
in CRC. Rexinoids increase RXR expression and decrease 
pro-infl ammatory cytokines and increase the Th2 cyto-
kine productions which will help in immunity develop-
ment against tumor formation       
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cancers [ 168 ]. The antidiabetic drug metformin 
activates AMP kinase (pAMPK) in liver cells and 
inhibits production of glucose. Thus, it affects 
insulin signaling, whole body metabolism, and 
energy balance. Metformin was reported to 
increase immune memory cells and CD8 +  T cells 
and to enhance tumor regression [ 169 ]. The use 
of metformin has been linked to a reduction in 
overall cancer incidence and specifi cally to 
reduction of breast cancer and PC. A report by 
Bodmer et al. [ 170 ] suggested that metformin 
was associated with a slightly increased risk of 
colon cancer (observed risk 1.43; 1.81 in men  vs.  
1.00 in women), and our results with metformin 
in CRC and PC are similar. In contrast, Hosono 
et al. [ 171 ] tested metformin for the inhibition of 
intestinal ACFs in BALB/c mice, where ACFs 
were formed after 6 weeks of AOM treatment and 
polyps after 32 weeks, and found a signifi cant 
inhibitory effect on ACFs and a modest effect on 
polyps, suggesting that metformin may possess 
chemopreventive properties. The same group 
showed an inhibitory effect of metformin 
(250 mg/day) on preneoplastic ACF lesions in 
patients [ 172 ]. Another study in the Apc  Min/+  
mouse model observed that administration of 
metformin at 250 mg/kg in the diet signifi cantly 
reduced the number of large polyps [ 173 ]. 
Metformin effi ciently inhibited colon tumor 
growth in nude mice [ 174 ], and a signifi cant 
decrease in PanINs and PDAC was observed in 
metformin-treated transgenic LSL-Kras mice 
[ 175 ,  176 ]. However, we observed a nonsignifi -
cant increase in AOM-induced CRC in 
metformin- treated F344 rats. Metformin-treated 
PC tissues had an increase in CD8 +  T cells and a 
decrease in Tregs compared with control PC tis-
sues. No effect of metformin on NK cell numbers 
or INFγ production in PC tissues was observed 
by the authors. Currently, a phase III clinical trial 
is recruiting patients for a study in which metfor-
min plus modifi ed FOLFOX 6 will be used in 
patients with metastatic PC. The primary out-
come of this study will be to determine whether 
this treatment will have any effect on median sur-
vival (ClinicalTrials.gov ID-NCT01666730). 
The authors’ preclinical data in CRC suggest the 
need to evaluate metformin doses thoroughly and 

establish the mechanisms for its pro-tumorigenic 
effects in CRC and the conditions under which it 
may have any inhibitory effect in CRC. Studies 
of metformin in PC suggest that its tumor inhibi-
tory action is based on pAMPK activation, 
reduced activity of mTOR, and immune- 
modulating effects. The potential inhibitory 
effects of metformin in PC support its further 
evaluation.  

13.9     Immunomodulatory Effects 
of Natural Agents 

 The source of most biologically active com-
pounds is plants. Not only are 25 % of all medi-
cines derived from plants, but the starting material 
for many semisynthetic drugs is obtained from 
plant components. The compounds derived from 
plants are not only considered safer but are also 
cost-effective. Immunomodulatory functions of 
natural agents such as curcumin on T cells, DCs, 
and NKs have been investigated via cellular, 
immunological, biochemical, and molecular 
technologies and with the use of mouse models. 

 Curcumin has been shown to exhibit antitu-
mor effi cacy; however, clinical studies did not 
support adequate bioavailability with oral doses 
due to its poor absorption [ 177 ]. Effective deliv-
ery methods are under investigation to improve 
the effi cacy of curcumin against CRC. High 
doses of curcumin (10 or 12 g/day) did result in a 
signifi cant increase in serum levels in a clinical 
toxicology study [ 178 ], and some studies reported 
that 4 g/day of curcumin showed similar results 
[ 179 ]. In a double-blind study for ulcerative coli-
tis, continuous consumption of 2 g/day curcumin 
with a standard diet provided signifi cant protec-
tion against infl ammation [ 180 ]. Fewer relapses 
were seen in the group taking curcumin. Similar 
effects were observed in ulcerative colitis and 
Crohn’s disease in another study [ 181 ]. These 
studies suggest that curcumin was able to reach 
the colonic tissue to exert its effects. 
Administration of 3.6 g/day of curcumin orally 
resulted in effective concentrations of 7.7 +/− 
1.8 nmol/g in normal colorectal tissue and 12.7 
+/− 5.7 umol/L in malignant tissue [ 182 ]. 

13 Immune Modulation by Agents Used in the Prevention and Treatment of Colon and Pancreatic Cancers



266

Curcumin was effective in modulating TNF-α, 
COX-2, and 5-LOX activities [ 183 ,  184 ]. Oral 
administration of curcumin (2–4 g per day for 
30 days) in an open-label clinical trial in 44 eli-
gible smokers with eight or more ACF on 
 screening colonoscopy was found to reduce the 
number of ACFs signifi cantly (40 %); however, a 
lower dose was ineffective [ 185 ]. This study sug-
gests that, although systemic bioavailability is a 
problem, a signifi cant inhibitory effect of cur-
cumin at high concentrations was observed on 
ACF. Curcumin did not show any effect on prolif-
eration markers or on AA metabolism. Immune 
modulatory effects of curcumin were not ana-
lyzed in this study. 

 A few reports on the immune-modulating 
effects of curcumin are available, but the mecha-
nisms of action are not yet fully understood 
[ 186 ]. Available reports suggest that curcumin 
restores progenitor and effector circulating T 
cells. In an Apc Min/+  mouse model, curcumin 
injections led to an increase in intestinal CD4 +  T 
cells and retarded growth of adenomas [ 187 ]. 
Varalakshmi et al. [ 188 ] reported that curcumin 
injections enhanced the mitogen- and antigen- 
induced proliferation potential of T cells, but did 
not impair or increase the cytotoxic potential of 
NK cells or Th1 regulatory cytokine production. 
However, it still is not clear whether curcumin 
functions similarly to provide stronger immune 
responses in the pathological conditions of CRC 
and PC. It has been previously reported that 
dietary administration of curcumin at different 
stages of colon tumor development had signifi -
cant inhibitory effects on CRC. In CF1 mice, 
dietary administration of curcumin showed sig-
nifi cant suppression of chemically induced fore-
stomach, duodenal, and colon tumors when given 
during initiation and/or post-initiation periods of 
tumor development [ 189 ]. Curcumin also reduced 
early preneoplastic lesions, dysplasia, and ACF 
in the colons of rodents [ 189 ,  190 ]. In another 
study, administration of 0.8 and 1.6 % curcumin 
continuously during the initiation and post- 
initiation phases of tumor formation signifi cantly 
reduced AOM-induced adenomas in rats [ 191 ]. A 
study by the authors showed similar results; con-
tinuous administration of 0.25 % curcumin dur-

ing the initiation and post-initiation stages of 
tumor formation signifi cantly inhibited both inci-
dence and multiplicity of AOM-induced colon 
adenocarcinomas and the tumor burden in F344 
rats [ 192 ]. Although preclinical effi cacy data 
with curcumin have shown signifi cant inhibitory 
effects in CRC, achieving clinically effi cacious 
doses is still a challenge. Hence, combinations of 
curcumin with other natural agents including pip-
erine or omega 3 fatty acids, or with agents that 
can enhance the uptake of curcumin to increase 
its bioavailability, may provide greater benefi t 
against CRC. 

 Triterpenoids, another unique group of 
phytochemicals among the terpenoids [ 193 ], 
are present in common edible foods such as 
apples and olives. These triterpenoids have 
been reported to possess anticancer activi-
ties in preclinical studies. Chemopreventive 
effects of oleanolic acid and its synthetic ana-
log 18α-olean-12-ene-3β- 23,28-triol (OT) on 
AOM-induced ACFs in F344 rats have been 
reported by the authors. The synthetic analog 
OT (250 ppm) exhibited similar effi cacy against 
ACFs at half the dose of olelonic acid (500 ppm) 
[ 194 ]. The chemopreventive effect was accom-
panied by decreased expression of COX-2 in 
colon cancer cells. Synthetic triterpenoids 
also decreased expression of pro- infl ammatory 
COX-2 and iNOS [ 195 ] (Fig.  13.3 ). Other 
investigators reported that dietary administra-
tion of crude oleanolic acid extract (200 ppm) 
had inhibitory effects on formation of ACF in 
F344 rats [ 196 ]. A synthetic triterpenoid, C-28 
methyl ester of 2-cyano-3,12-dioxooleana-1,9,-
dien-28-oic acid (CDDO-Me; bardoxolone 
methyl), suppressed myeloid-derived suppres-
sor cell (MDSC) activity and inhibited tumor 
growth in an MC38 colon carcinoma cell line 
xenograft model [ 197 ,  198 ]. MDSCs have been 
recently shown to induce CD8 +  T-cell tolerance, 
causing a nonspecifi c immune suppression, 
which may enhance tumor promotion, vascu-
larization, and invasion. CDDO-Me and gem-
citabine improved T-cell immune responses in 
patients with stage II–III or IV PC [ 198 ]. Since 
MDSCs play a role during initial stages of 
tumor formation and growth, triterpenoids may 
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have more benefi ts if given at the early stages 
of cancer development. The data available so 
far strongly support the potential chemopre-
ventive and immunomodulatory properties of 
triterpenoids and make them promising agents 
for CRC and PC. Considerable work remains to 
be done to identify the target proteins, immune 
cells, and pathways through which these triter-
penoids may function in CRC and PC. Long-
term preclinical and clinical effi cacy studies are 
warranted as well as better characterization of 
immune-modulating function. 

 Fish oil is a rich source of omega-3 (n-3) 
polyunsaturated fatty acids (PUFAs), of which 
there are two important types: eicosapentaenoic 
acid (EPA) and docosahexaenoic acid (DHA). 
N-3 PUFAs compete for the same binding site on 
the COX enzymes as do PUFAs like AA, but 
they generate biologically less potent pros-
tanoids of the three series [ 198 ]. Metabolism of 
omega-3 PUFAs by the LOX pathway leads to 
generation of fi ve series LTs, which are less 
potent than type 4 LTs [ 199 ,  200 ] (Fig.  13.3 ). 
The compounds formed from n-3 PUFAS have 
been shown to possess anti-infl ammatory prop-
erties. N-3 PUFAs have anti-infl ammatory 
effects in both animals and humans [ 201 ], and 
they modulate both NK cells and T cells [ 202 ]. 
Dietary supplementation with fi sh oil alters cyto-
kine functions, T-cell proliferation, and T-cell-
mediated cytotoxicity [ 203 ]. However, Treg 
functions were reported to be suppressed by 
DHA [ 204 ]. 

 Quite a few studies have reported on the use of 
omega-3 fatty acids and colon cancer risk. Reddy 
[ 205 ] reviewed various epidemiological, preclin-
ical, and clinical studies describing effects of 
nutrients and dietary constituents and the poten-
tial of n-3 FAs in prevention of CRC. Woodworth 
et al. [ 206 ] studied a smad3−/− mouse model of 
colitis in which mice infected with  Helicobacter 
hepaticus  had high FoxP3 +  CD25 +  CD4 +  Treg 
cell frequency, FoxP3 expression, and altered 
L-selectin expression. Administration of fi sh oil 
enriched with DHA to the mice induced severe 
colitis and adenocarcinoma formation. Although 
results using n-3 PUFAs are controversial, most 
evidence from epidemiological, preclinical, and 

clinical studies suggests that PUFAs, especially 
those of the n-3 type, are benefi cial in gastroin-
testinal infl ammation [ 203 ,  207 – 209 ]. EPA and 
DHA seem to exert protective immunomodula-
tory effects under chronic infl ammatory condi-
tions. The dosage and timing for the use of these 
PUFAs need to be evaluated for better protective 
effects. 

 A single-arm, phase II trial in Leicester, UK, 
showed that treatment of patients with advanced 
pancreatic adenocarcinoma with a weekly 
ω-3FA-rich intravenous infusion plus gem-
citabine was safe. Further investigations are 
needed to determine whether ω-3FA contributed 
to low manose binding activity along with gem-
citabine. The authors have recently reported 
decreased PanIN 3 lesion formation and inci-
dence of pancreatic ductal adenocarcinoma in 
Fat-1.p48 Cre/+ .LSL-Kras G12D/+  transgenic mice 
[ 210 ]. This study suggests that increased omega-3 
fatty acids in tissues may help in preventing PC 
progression. Further studies are warranted to 
identify the potent metabolites and targets of 
these natural dietary agents for designing better 
prevention modalities.  

13.10     Concluding Remarks  

 It is evident from the gathered literature that most 
diseases with an infl ammatory component, 
including CRC and PC, are initiated by chronic 
unresolved infl ammation driven by certain 
immune cells. A lot of information is accumulat-
ing on how the immune cells battle the tumor 
cells and on how the tumor cells overcome the 
immune responses to grow and metastasize. 
However, we still need to understand better the 
interactions and mutual regulation between the 
tumor cells, the tumor microenvironment, and the 
various cells in immune response networks in 
order to develop better strategies for modulating 
the immune response without incurring toxici-
ties. The tumor-promoting role of Tregs during 
initial stages of tumor growth remains elusive in 
both CRC and PC, and the regulatory interactions 
between NK cells and Tregs in these cancers 
remain to be elucidated. Available data suggest 
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that Tregs suppress NK cell activity during tumor 
formation and lead to tumor growth and metasta-
ses. However, experimental evidence is needed to 
support this notion. It is clear from various vac-
cine trails that chemotherapy is often associated 
with side effects on immune cells and immune 
suppression. Drugs that do not exhibit such tox-
icities on immune cells or that selectively inhibit 
or activate certain immune cells need to be devel-
oped and tested for CRC and PC prevention and 
treatment. Selection of safe drug doses should 
enable initiation or extension of the antitumor 
immune responses rather than termination of the 
response in a tumor-bearing host. AA metabo-
lites play important roles in creating pro- 
tumorigenic conditions, and COX and LOX 
activities have critical functions, as evident from 
effi cacy of NSAIDs and coxibs in various infl am-
matory conditions. Although human studies sup-
port the use of these NSAIDS in reducing the risk 
of CRC and PC, many of these agents, other than 
aspirin, have not been tested for their effects on 
modulation of immune responses nor have dos-
ages or duration of administration been opti-
mized for better outcome in tumor inhibition. 
The role of statins in lowering blood lipids is well 
known, and its role in infl ammation is emerging. 
A few studies suggest modulatory effects of 
statins on various cells of the immune system. 
The preclinical chemopreventive effects of statins 
are very consistent, but clinical studies are needed 
to confi rm the results obtained in preclinical 
studies. Large-scale trials and preclinical evalua-
tion of statins for immune modulatory effects and 
for their use as preventive agents alone or in com-
bination with vaccines are needed. SERMs and 
rexinoids have been shown to possess anti- 
infl ammatory and cancer-preventive effects in 
CRC and PC, and they also have been shown to 
affect cytokines and infl ammatory markers in 
tumor tissues. However, very little to no data 
exist on how these agents may modulate immune 
cells involved in the pathology of CRC and 
PC. Many natural agents known from ancient 
times have been found recently to induce immune 
modulation of NK cells in animal models. How 
these agents function under conditions of tumor 
initiation and growth in CRC and PC needs to be 

studied in depth in clinical trials to establish 
proper dosage and administration schedules and 
to elucidate the mechanisms for their inhibitory 
effects on tumor formation. In some cases, low 
doses are immunostimulatory, and high doses are 
immunosuppressive. Anticancer agents need to 
be used judiciously to retain benefi cial immune 
responses and to avoid loss of the effi cacy against 
CRC and PC. Very little work has been done in 
humans to verify the immune-modulating effects 
of the agents reviewed. Although immunother-
apy has not been that effective, especially when 
administered in the setting of advanced cancers, 
immune responses in patients suggest that tumor- 
associated antigens exist and this information can 
be used for the development of immunomodula-
tory agents in combination with vaccines for the 
prevention of CRC and PC.     
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14.1             Introduction 

 The skin-resident immune cells and relevant 
 signaling pathways render the skin liable to the 
essential immunological functions. The skin 
immune system deregulation contributes to 
bridging the gap between the non-tumoral and 
tumoral skin. This issue is more complicated by 
the fact of the paradoxical behavior of the 
immune system in developing cancers. However, 
the relative clinical effi cacy of current immuno-
therapies for melanoma skin cancers demands to 
make absolutely decisive immunotherapy-based 
interventions. 
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 There is a rapidly growing incidence rate of 
melanoma and non-melanoma skin cancers 
(NMSC) [ 1 – 3 ]. Nonmelanoma skin cancer 
(NMSC) was identifi ed as the most common 
cancers in white-skinned populations with the 
high standardized incidence rate of 154 per 
100,000 person-years (2000–2006) in the 
southwest of England and the age-adjusted 
incidence rate of approximately 693 per 
100,000 persons in 2010 in the USA [ 4 ,  5 ]. 
Melanoma, the most lethal skin malignancy, is 
diagnosed as the third most common cancer in 
the USA (after male/female genital system can-
cers and lymphoma) with the frequency of 17 
and 15 % in males and females, respectively, at 
the age of 15–29 years [ 6 ]. The American Joint 
Committee on Cancer (AJCC) Melanoma 
Staging Database anatomically classifi es cuta-
neous melanoma based on the clinical and 
pathologic staging of tumor thickness (T), 
number of metastatic nodes (N), and site (M). 
According to this classifi cation (TNM), disease 
stage is considered as the best prognostic factor 
of survival in patients with primary cutaneous 
melanoma in the way that 10-year survival rate 
rapidly declines from 93 % in melanoma 
patients at T1aN0M0 to 39 % in patients at 
T4bN0M0 stage [ 7 ,  8 ]. However, another prog-
nostic model of 10-year metastasis including 
growth rate, mitotic rate, and sex factors is pro-
posed for melanoma patients with thin lesions 
and at the high risk of metastasis [ 9 ]. 

 Inevitably, the prophylactic settings,  diagnostic 
guidelines, and cost-effective therapeutic approaches 
should be depicted while recognizing the genetic 
and environmental risk factors. Notwithstanding 
the therapeutic options include surgery, photo-
dynamic therapy, systemic chemotherapy, 
immunotherapy, and combinational  protocols 
are practically available, the permanently opti-
mal effi cacy has not been obtained yet [ 10 – 13 ].  

14.2     Skin Immune System 

 On one hand, the simple epidermis, papillary and 
reticular dermis, and subcutaneous fat architec-
tures superbly engineer the normal skin as the 

primary interface between the body and environ-
ment [ 14 ]. In a depth view, the skin’s microvas-
cular, cutaneous venules, small lymph capillaries, 
cutaneous appendages, and sweat glands as well 
as the cellular structures organize the normal 
human skin as the crucial multifunctional organ 
[ 14 ]. On the other hand, an immune response can 
be potentially elicited ubiquitously as the only 
necessary condition for that is antigen availabil-
ity in the lymph organs in a dose- and time- 
dependent manner [ 15 ]. Hence, it is not surprising 
that the skin functions as an immune organ with 
respect to the variety of reasons including the 
presence of lymphoid organizations in addi-
tion to the various skin-resident immune cells 
 [ 16 – 18 ]. However, it is surprising how this pri-
mary immune system demonstrates disregard of 
highly antigenic tumors. The underlying mecha-
nisms could be justifi ed on the grounds of  “cancer 
immunoediting” hypothesis [ 19 ].  

14.3     A Dual Perspective: Tumor 
Immunity 

 The “cancer immunoediting” hypothesis illus-
trates both benefi cial and detrimental roles of the 
immune system and its immune cells in the tumor 
developing process [ 19 – 21 ]. In accordance with 
this model, the process of evading immune sys-
tem takes place over the three key periods of elim-
ination, equilibrium, and escape (three “E”s) 
known as the cancer immunosurveillance, cancer 
protection, and cancer progression stages, respec-
tively [ 19 ]. The role of immune system in the pro-
tection against tumor development has led to a 
dramatic decrease of approximately 100 % in can-
cer immunosurveillance and cancer progression 
phases [ 22 ]. In a dual sequential process, the 
adaptive and innate immune cells including NK, 
MΦ, CD4 + , and CD8 +  T cells try to abolish 
tumoral cells and tumor formation during the 
elimination phase while protecting less immuno-
genic tumoral cells with the immune selection 
mechanism during the equilibrium phase [ 21 ,  20 ]. 
Hence, a list below comprising the main tumor-
derived cells or factors involved in the immunol-
ogy of skin tumorigenesis was compiled. 
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14.3.1     Tumor-Associated 
Macrophages (TAMs): 
Cause or Effect? 

 TAMs, the most common immune cell population 
within the tumor microenvironment, comprise 
“classically activated” M1- and “alternatively 
activated” M2-polarized macrophages. The tumor 
stage is the main determinant of the TAM pheno-
type [ 23 ]. M1 macrophages have the violent urge 
to produce an overwhelming infl ammation stands 
in stark contrast to M2 macrophages which 
endeavor to moderate this aggressive behavior of 
M1 macrophages [ 24 ]. Both M1 and M2 macro-
phages accompany tumorigenesis during the early 
stages of tumor progression and the stages of 
tumor malignancy, respectively. M2 polarization 
encompasses the recruitment of peripheral mono-
cytes by VEGF and differentiation into M2 mac-
rophages by IL-4 and IL-10 [ 25 ,  26 ]. 

 On one hand, inhibition of macrophage- 
derived NO synthesis takes part in tumor growth 
and delayed tumor rejection immune response; as 
a matter of fact, macrophage depletion disturbs 
immune response against highly antigenic 
UV-induced skin tumors [ 27 ]. On the other hand, 
macrophages constitute the principal fertile 
source of MMP-12 [ 28 ]. The expression of 
MMP-12 by keratinocytes and macrophage-like 
cells extracted from squamous cell carcinoma 
(SCC) and basal cell carcinoma (BCC) and its 
association with tumor aggressiveness bespeak 
the pro-tumor role of macrophages [ 29 ]. 
According to the estimates of human skin can-
cers, either NMSC or melanoma, there was a cor-
relation between the number of infi ltrating TAMs 
and the invasion depth of tumor [ 30 ,  31 ]. It seems 
that the correlation between TAMs and invasion 
depth of human BCC is mediated by COX-2, 
which, in turn, might be activated by TAMs [ 30 ]. 
Likewise, the number of infi ltrating CD163 +  
TAMs may predict the survival of stage I/II mela-
nomas [ 32 ]. It appears that the macrophage 
migration inhibitory factor (MIF) provides the 
defense mechanism against UVB-induced 
NMSC whereby VEGF and ensuing angiogene-
sis in company with the infl ammatory response 
are upregulated [ 33 ]. Thus, MIF makes an 

impression on the initiation and progression of 
NMSCs following chronic UVB irradiation, due 
to a decrease of 45 % in the incident rate of UVB- 
induced NMSC in MIF-defi cient mice [ 33 ]. 

 As explained above, the “macrophage bal-
ance” hypothesis [ 24 ] remains constant in skin 
cancers. This dual and confusing behavior of 
TAMs is not improbable to be explained under 
the impression of their origins as well as their 
activating factors. For instance, macrophage 
chemotactic proteins (MCPs) resulted in mela-
noma clones with some paradoxical features 
including a twofold number of TAMs, more 
tumorigenic melanoma cells, and fewer response 
rates to IL-2 immunotherapy, whereas slower 
tumor growth rate, in comparison with normal 
melanoma clones [ 34 ]. The roles of TAMs have 
been comprehensively reviewed by several arti-
cles [ 35 ,  36 ]. 

 As we are aware that the tumor microenviron-
ment is dynamic as well as that TAMs belong to a 
heterogeneous constitution of surface markers [ 37 , 
 38 ], the urgent need to exactly determine the “cause 
and effect” between two variables, the dynamicity 
of tumor microenvironment, and the dynamicity of 
markers expressing on TAMs during skin tumor 
progression as well as to draw the “cause-and-
effect” diagram is felt.  

14.3.2     Dendritic Cells (DCs): ADL 
Triangle 

 The triangle of “ADL” can be defi ned by three 
vertices of antigens, lymphocytes, and DCs; 
thereby, an immune response will be scattered 
over the area of this triangle dependent on its 
three sides [ 39 ]. A heterogeneous collection of 
up- and downregulatory immune responses have 
been attributed to a wide variety of DCs, which 
can be readily assigned to tolerogenic non-full 
mature and immunogenic full mature categories 
[ 40 – 42 ]. Langerhans cells in the skin act as 
APCs in the face of antigens and triggers such as 
local infl ammation, pathogens, and tissue dam-
age [ 43 ]. As a result of IL-10 effect, skin-resi-
dent Langerhans cells become capable of 
inducing Th2 cells, but not Th1 cells [ 44 ]. 
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Indeed, it is not false to draw a positive feedback 
loop between immature DCs and IL-10, as DCs 
induce immunological tolerance via IL-10 pro-
duction; IL-10 impedes the progress of DC mat-
uration [ 43 ,  45 ]. 

 The Th1 and Th2 patterns are perfectly fi tted 
to govern responding and progressing melanoma 
metastases, respectively, by producing their spe-
cifi c cytokines, e.g., IL-2, IL-12, and IFN-γ for 
Th1 pattern and IL-10 for Th2 pattern [ 46 ]. This 
is a justifi able interpretation of the stimulation of 
both alloantigen- and melanoma antigen-specifi c 
anergy in CD8 +  CTLs by IL-10-treated DC which 
could be inversed by IL-2 [ 47 ]. Furthermore, 
IL-10 and IL-4 have been agreed on downregula-
tion of DC-produced IL-12, whose stimulation is 
dependent on CD40 ligation [ 48 ]. It is interesting 
to compare rDCs and pDCs, derived from 
responding and progressing melanoma metasta-
ses. First, the CD86 expression is signifi cantly 
higher in rDCs. Second, the DC-induced alloge-
neic T cell proliferation is signifi cantly more in 
rM than pM [ 46 ]. 

 The survival rate of patients with primary 
cutaneous melanoma was also delineated to be 
under the infl uence of peritumoral extent of 
mature DCs, which per se was positively corre-
lated with lymphocyte infi ltration [ 49 ].  

14.3.3     Lymphocytes: Hero or 
Bystander or Antihero? 

 T cell subpopulations hold opposing functions 
categorized in one heterogeneous T cell popula-
tion. In the light of evidence of skin tumorigene-
sis, γδ T cells stand guard on the body against 
tumor progression, whereas αβ T cells are more 
likely to behave as an antihero [ 50 ]. This fi nding 
is in parallel with the fact that natural killer T 
cells (NKTCs), which enormously express 
TCRαβ, appear to be potentially involved in the 
suppression of “tumor rejection” immune 
response to UV-induced skin carcinogenesis 
probably via a secretion wave of IL-4 [ 51 ]. 
A body of evidence emerged suggesting that skin 
tumors, either NMSC or primary cutaneous mel-
anoma, may sometimes regress spontaneously 

[ 52 – 55 ]. The principal mechanisms including 
apoptosis of tumoral cells and infi ltration of 
 lymphocytes, especially CD4 +  T cells, underlie 
this process [ 55 ,  54 ]. Thus, spontaneous regres-
sion of skin tumors is known for its symphonious 
orchestration of two immunological processes. 

 The stimulatory and co-stimulatory signaling 
pathways are the precursors of T cell activation. 
The co-stimulatory signal is emitted dependent 
on the binding of CD28 to B7-1 (CD80) or B7-2 
(CD86) mediated by APCs [ 56 ]. CTLA-4, 
known as CD152 and counter-receptor of B7 
family, is believed to inhibit T cell activation and 
thereby to demonstrate disregard of recognized 
tumor antigens [ 57 ,  58 ]. Furthermore, IL-2 has 
also been known as one of the mediators, if not 
the only one, of the CD28-dependent CTLA-4 
expression [ 59 ]. Overall, as well expected, an 
approximately 7-year follow-up study recently 
recommended that the therapeutic strategy with 
the design of ipilimumab, as the CTLA-4 
blocker, in combination with IL-2 achieves a 
17 % complete clinical response rate in patients 
with metastatic melanoma [ 60 ]. CTLA-4 has 
been proven as strategically vital in inducing and 
sustaining immunosuppression via infl uencing 
Foxp3+CD4+ regulatory T cells [ 61 ]. The local 
recurrence of cutaneous melanoma over 2 years 
led to substantial rise in the extent of 
CD25 + FOXP3 +  T regulatory cells, either in the 
tumor parenchyma or among melanoma cells or 
TILs [ 62 ]. 

 Interestingly, the prognostic models of sur-
vival rate and sentinel lymph node (SLN) positiv-
ity in patients with primary cutaneous melanoma 
have been proposed [ 63 ,  64 ]. Accordingly, the 
patterns of tumor-infi ltrating lymphocytes 
(TILs), e.g., brisk, nonbrisk, and absent, have 
been correlated with the survival rate of patients 
with primary cutaneous melanoma as the maxi-
mum and minimum 5-year survival of 77 and 
37 % belong to the brisk and absent TIL catego-
ries, respectively [ 63 ]. Further, male melanoma 
patients with ulceration and increased Breslow 
thickness and without TILs pose a higher risk of 
SLN metastasis [ 64 ]. The aforementioned pat-
terns of TILs were defi ned by Clark et al. [ 65 ] 
and can be defi nitely recommended due to 
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 satisfactory agreement between observers (kappa 
value >0.6) [ 65 ,  66 ]. 

 The role of B lymphocytes in recruitment of 
innate immunity makes impossible to ignore their 
importance in the epithelial carcinogenesis. It 
became perfectly plain where the recruitment of 
innate immune cells and subsequent chronic 
infl ammation have been provided via adoptive 
transfer of B lymphocytes from HPV16 mice 
into T and B cell-defi cient/HPV16 mice [ 67 ]. 
However, virtually no importance places per se on 
B cells in melanoma vaccination, which is fully 
assembled into T cell population [ 68 ]. Indeed, B 
cells act as bystanders and their aforementioned 
detrimental role is the bystander effect.   

14.4     Tumor Antigens 

 Antigens, exogenous or endogenous substances, 
can evoke immune responses. Based on their 
expression on tumoral cells solely or both tumoral 
and normal cells, tumor antigens can be either 
specifi c or associated with tumors, respectively 
[ 69 ]. A hypothesis emerged suggesting that cen-
tral and peripheral tolerance is an obstructive ele-
ment of host immune responses against tumors 
due to recognizing tumor-associated antigens as 
“self” antigens [ 70 ,  42 ]. Based on the administra-
tion of antitumoral antibodies or specifi c tumoral 
antigens and/or nonspecifi c proinfl ammatory 
molecules or adjuvants, cancer immunotherapeu-
tic strategies involve passive or active immunity, 
respectively [ 71 ]. Altogether, early recognition 
of all tumor antigens is essential for the design of 
cancer immunotherapy-based approaches. 

14.4.1     Tumor Antigens of Melanoma 

 Cytotoxic T lymphocytes (CTLs) have been used 
to determine melanoma-specifi c antigens as well 
as melanoma-associated antigens such as MZ2E, 
MZ2D, gp100, gp75, CDK4, GAGE family, 
MAGE family, and MART-1 [ 72 – 81 ]. However, 
the central focus of debate surrounding mela-
noma antigen-targeted immunotherapies is on 
antigens with the highest expression in metastatic 

melanoma, e.g., tyrosinase, Melan-A/MART-1, 
and gp100 [ 82 ]. 

14.4.1.1     Vascular Endothelial Growth 
Factor (VEGF) 

  VEGF , also known as vascular permeability fac-
tor ( VPF ), gene encodes a signal protein affect-
ing endothelial cells and mediating several 
functions, such as increasing vascular permeabil-
ity; inducing angiogenesis, vasculogenesis, and 
endothelial cell growth; promoting cell migra-
tion; and inhibiting apoptosis ( NCBI  Gene 
Database). Upregulation of VEGF-A can be 
detectable in various infl ammatory diseases 
including delayed-type hypersensitivity reactions 
(DTH) and rheumatoid arthritis as well as chronic 
infl ammatory conditions in the skin [ 83 ]. 
Overexpression of both VEFG/VPF and their 
specifi c receptors at the neo-vessel formation 
sites led to recognition of VEGF/VPF as a proan-
giogenic factor [ 84 ]. The epidermis and 
keratinocyte- derived VEGF are known as the 
major productive sources for VEGF and angio-
genic factor for the skin, respectively [ 85 ]. VEFG 
family directly induces angiogenesis and lym-
phangiogenesis, which are prerequisites for 
tumor enlargement and metastasis to distant sites. 

 The tumor is alive and kicking; there is a 
demand for the expression of VEGF due to 
genetic and epigenetic factors, e.g., lack of ade-
quate amount of glucose and oxygen as well as 
 Ras  oncogene activation, UV radiation, TGF-α, 
and keratinocyte growth factor [ 86 ]. Together, 
VEGF-A can substantially contribute toward 
tumorigenesis through providing cancerous 
growth and infl ammatory conditions. 

 Mouse skin carcinogenesis involves increase 
in mRNA expression and protein level of VEFG/
VPF (VEFG-A) in a tumorigenicity-dependent 
manner [ 85 ,  87 ]. Further, it was suspected that 
VEGF is the key modulator in transition from 
epidermal hyperplasia to papilloma occurrence 
[ 85 ]. The minor problems of tumor-induced 
VEGF and subsequent angiogenesis can be 
solely solved. However, the main issue is caused 
by the major infl uence of VEGF-A on macro-
phages in the setting of skin carcinogenesis. The 
possible reasons include (a) the chemoattractive 

14 Immunology of Cutaneous Tumors and Immunotherapy for Melanoma



282

effect of VEFG-A on macrophages due to the 
presence of VEGFR-1; (b) lower level of tumor 
progression, invasion, proliferation, and angio-
genesis following macrophage depletion; and 
(c) macrophage- activated COX-2-dependent 
VEGF-A secretion [ 25 ,  30 ]. High stress levels 
accelerate the progression of SCC, which 
was escorted by higher immunosuppression 
and higher VEGF levels [ 88 ]. VEGF-C and 
VEGF-D, two structurally and functionally sim-
ilar growth factors, lead to and accelerate the 
process of skin carcinogenesis in mice probably 
through mediating the  proinfl ammatory micro-
environment [ 89 ]. 

 Indeed, like animal studies, VEGF expres-
sion is dependent on skin cancer tumorigenicity 
in humans. This notion is supported by more 
VEGF expression in SCC than BCC and signifi -
cant positive correlation between the progres-
sion of melanoma and VEGF expression 
(distribution, intensity, and index) [ 90 – 92 ]. The 
roles of VEGF in NMSC are adopted to act in 
both autocrine and paracrine manner including 
directly affecting keratinocyte, tumoral cells 
and chemoattracting monocytes and macro-
phages [ 86 ]. However, Doppler ultrasound pre-
viously established the tumor blood fl ow in 
primary melanomas (thickness >1.2 mm) pro-
voking to suggest the cutoff point for melanoma 
progression [ 93 ]. Recently, the three-dimensional 
model of melanoma fi rmly verifi ed angiogenesis 
as a vital prerequisite in the process of melanoma 
dissemination [ 94 ]. These fi ndings draw an inter-
esting parallel with the fact of melanoma-derived 
proangiogenic cytokines, e.g., VEGF-A, FGF-2, 
TGF-1, PGF-1, and IL-8 (reviewed in [ 95 ]). 
Moreover, the VEGF genotypes were found to 
correlate with prognostic variables of cutaneous 
malignant melanoma, as the -1154 AA genotype 
was negatively associated with thickness of pri-
mary tumors in the vertical growth phase, 
whereas the GG genotype showed a positive 
correlation [ 96 ]. 

 Undoubtedly, VEGF fuels skin tumorigenesis. 
Like a car, tumor progression without its fuel even-
tually stops. The VEGF-based anti- angiogenesis 
therapeutic approaches seem to be reasonably 
encouraging [ 97 ].    

14.5     Immunosuppression 
and Skin Tumors 

 There is a devastating positive feedback loop 
between immunosuppression and tumori- 
genesis. 

14.5.1     Skin Tumor-Induced 
Immunosuppression 

 Tumoral cells tend to progress steadily. The spe-
cifi c immune cells, relevant signaling pathways, 
and subsequent responses oppose to the progres-
sion plan of tumoral cells. Thus, the obvious 
alternative route is to suppress specifi c immune 
responses to tumoral antigens. All main immuno-
suppressive factors derived from skin tumors 
were previously mentioned under the “tumor 
immunity” heading.  

14.5.2     Immunosuppression-Induced 
Skin Tumors 

 UV, the most important extrinsic risk factor for 
skin cancers, can induce specifi c immunological 
unresponsiveness, leading to specifi c immuno-
suppression, which, in turn, can cause tumorigen-
esis [ 98 ]. Moreover, it is found that long-term 
immunosuppressive therapeutic conditions in 
transplant recipients or in patients with bowel 
infl ammatory disease (BID) lead to higher over-
all risk of developing malignant cancers particu-
larly skin cancers [ 99 – 101 ]. 

 The incidence of skin cancers, the second 
most common cancers in children, was correlated 
with immunosuppression, which was correlated 
with the time and stage of disease, age at trans-
plantation, recipient sex, extent of sun exposure 
after and/or before transplantation, graft relation, 
and CD4 +  T cell lymphopenia [ 99 ,  102 ,  103 ]. Of 
those, a 42 % increase in the cumulative incident 
rate during a 20-year postrenal transplantation 
highlighted the impact of long-term immunosup-
pression on skin tumorigenesis [ 103 ]. Although 
various skin tumors can develop following organ 
transplantation, the most common ones are SCC 
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and BCC [ 99 ]. Interestingly, the incidence of 
SCC and BCC in recipients is respectively higher 
and lower compared to the general population. 
The underlying reason for this difference could 
be explained by the more powerful role of the 
immune system in the management of SCC rather 
than BCC [ 104 ]. In 2004 in the USA, the inci-
dence rates of melanoma and NMSC in kidney 
recipients compared to the general population 
were fi vefold and 20-fold, respectively [ 105 ]. 
Nonetheless, the aforementioned statistics were 
less and nonsignifi cant in the other cohort stud-
ies, which is partly due to registering recipients 
of different transplanted organs including the 
heart, pancreas, liver, and lungs [ 106 ,  107 ]. 

 Although some primary predictive programs 
including patient education about the risk of skin 
cancers and the use of sunscreens as well as regu-
lar skin examinations are currently executed for 
high-risk patients, there are inevitable challenges 
to the existing aggressive early skin cancer thera-
peutic protocols such as electrodesiccation and 
curettage, excision, and radiotherapy [ 108 ]. 
Therefore, a special need for a bilateral alterna-
tive approach for tumorigenesis inhibition in uni-
son with suppressing immunity exists [ 109 ]. 

 Now that the possible pathway from UV irra-
diation to skin tumorigenesis is explained, the 
following paragraph tends to discuss the major 
mediators of this pathway, both concerning 
immunity and skin immune system.   

14.6     Photoimmunology 

 As previously mentioned, the question of how the 
primary immune system demonstrates disregard 
of highly antigenic cancers was generally under 
consideration for all cancers; now photoimmu-
nology needs to be addressed in order to answer 
a more specifi c question of how the primary skin 
immune system demonstrates disregard of 
UV-induced highly antigenic skin cancers. 

 UV radiations are categorized under three 
headings according to their wavelength. As we 
are not threatened by short-wavelength UVC due 
to complete fi ltration by the atmosphere, the 
main attention should be given to medium- and 

long-wavelength UV radiations (World Health 
Organization:   http://www.who.int    ). The surface 
of the earth receives the solar radiation contain-
ing about 90–99 % long-wavelength UVA 
 (315–400 nm) and 1–10 % medium-wavelength 
UVB (280–315 nm) [ 110 ]. 

 UV radiation leads to the formation of a milieu 
with the antigen-presenting cell (APC) pheno-
type in the epidermis and dermis [ 111 ,  112 ]. The 
APC phenotype is mainly expressed by neutro-
phils, macrophages, and monocytes, of course, 
separately from Langerhans cells [ 111 ,  112 ]. The 
hairless mouse model proposes the association of 
UV radiation with skin carcinogenesis in a dose-, 
wavelength-, and time-dependent manner [ 113 ]. 
There is a twofold increase in the incidence rate 
of UV-induced NMSCs [ 114 ]. 

 It is plausible to suppose that the immune sys-
tem responses are selectively and maybe under 
the impression of UV irradiation. There are two 
reasons behind two main keywords of this state-
ment, selectively and maybe. First, UV radiation 
alters some immune responses including tumor 
rejection, delayed hypersensitivity, and common 
hypersensitivity (CHS), while some others such 
as graft rejection and antibody production appar-
ently remain intact [ 115 ]. Second, there are the 
proposed genetic models for susceptibility to 
UV-induced immunosuppression and the risk of 
skin carcinogenesis [ 116 – 118 ]. Local nonspecifi c 
and systemic specifi c models for UV-induced 
immunosuppression have been suggested. UV 
radiation hinders the immune effector functions 
inside the UV-irradiated skin and immune 
responses to antigens triggered outside the 
UV-irradiated skin within a critical time post-UV 
irradiation, known as the local nonspecifi c and 
systemic specifi c models, respectively [ 115 ,  119 ]. 

 The primary translator of UVA radiation into 
intracellular pathways seems to be reactive oxy-
gen species (ROSs) products rather than DAN 
damage as in UVB, while conceding the possibil-
ity of ROS-related point mutations, particularly 
tandem C → T mutations, for both UVA and 
UVB [ 110 ,  120 ,  121 ]. However, the pattern of 
form- and level-dependent acting makes ROSs 
permanently dance to a different tune. Generally, 
ROSs trigger the pathways of apoptosis and 
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 transcriptional factors [ 122 ,  123 ]. The important 
signaling pathways under the impression of UV 
are briefl y explained in the following. 

14.6.1     BRAF-MAPK 

 Among all ROSs, UVA is more likely to generate 
singlet oxygen terminating in the activation of 
mitogen-activated protein kinases (MAPKs) 
[ 110 ]. Thus, the cardinal importance should be 
placed on the MAPK signaling cascade, whereby 
signals of vital cellular processes, e.g., prolifera-
tion, differentiation, and apoptosis, as well as the 
signals of mitogenic oncogenes are emitted [ 124 ]. 

 The contribution of MAPK to melanoma 
tumorigenesis is not restricted to the evasion step, 
but to the melanoma initiation due to carrying 
BRAF mutations in approximately two-thirds of 
malignant melanomas [ 125 ]. It is recognized that 
ATP-competitive RAF inhibitors can inhibit 
MAPK pathway leading to the decline in pro-
gression of melanomas with BRAF mutation 
[ 126 ]. However, it is not easy to recognize that 
the same inhibitors can induce RAF-MEK-ERK 
pathway leading to the increase in the progres-
sion of melanomas with KRAS mutation or RAS/
RAF wild type [ 126 ]. 

 The MAPK signaling pathway with the escort 
of STAT-3 facilitates the BRAF mutant mela-
noma escape from the immune system by means 
of producing immunosuppressive cytokines, e.g., 
IL-6, IL-10, and VEGF [ 127 ]. 

 There is a proposal concerning that MAPK 
pathway can be induced dependent on or inde-
pendent of BRAF in melanoma progression. Its 
dependency has been proven by some animal 
studies demonstrating the inhibition of MAPK 
pathway by means of BRAF inhibitors [ 127 ]. Its 
independency has been suggested as the reason 
behind the crux of the matter, lack of long-term 
therapeutic responses to BRAF inhibitors in 
mutant malignant melanomas [ 128 ]. However, 
therapeutic response rates to the selectively 
BRAF or MEK inhibitors (e.g., vemurafenib, 
dabrafenib, or trametinib) in patients with malig-
nant melanoma and BRAFV600E mutation have 
been proved to be generally satisfactory; the 

combinational strategy with both BRAF and 
MEK inhibitors produced more desirable clinical 
outcome [ 129 – 134 ]. Melanoma patients with 
BRAFV600E mutation treated with vemurafenib 
are more likely to contain mutations in RAS 
along with activation of MAPK pathway and 
ERK-mediated transcription, which, in turn, pre-
disposes the patient to future SCC and keratoac-
anthomas [ 135 ]. Meanwhile, the therapeutic 
effect of BRAF inhibitors for melanoma exerted 
form is achieved by the elimination of immuno-
suppressive cytokines and enhancing infi ltration 
by both CD4 +  and CD8 +  lymphocytes [ 136 ].  

14.6.2     NF-κB 

 NF-κB pathway, induced by many tumor-induced 
stimuli, regulates the expression of genes con-
trolling infl ammation, cell proliferation, and 
apoptosis [ 123 ]. Proinfl ammatory cytokines 
induce the inhibition of the NF-κB pathway ter-
minating the infl ammation-related tumorigenesis 
[ 137 ]. In touch with skin tumors, both UVA and 
UVB radiation can activate NF-κB leading to the 
increase in the extent of proinfl ammatory cyto-
kine, IL-6, in human keratinocytes [ 138 ]. 
Accordingly, loss of bcl-2 goes hand in hand with 
stimulation of Fas-l to witness the UV-induced 
apoptosis event [ 138 ].   

14.7     Immunogenetics of Skin 
Tumors 

 Evolution is proceeding apace the possibility of 
genomic alterations contributing to tumorigenesis. 
These mutations consist of oncogenes with domi-
nant gain of function and tumor-suppressor genes 
with recessive loss of function resulting in the per-
ception that tumorigenesis is a sequential process 
involving many genomic mutations in cancer cells 
[ 139 ,  140 ]. Nevertheless, discoveries of these can-
cerous genes which yielded an invaluable insight 
into tumorigenesis cannot be denied, yet it is unde-
niable that this tumoral genetic model is strongly 
inattentive to the tumoral microenvironment [ 141 , 
 142 ]. However, it has been established that the 
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dynamic tumor microenvironment and its interac-
tions with genetically unstable primary tumoral 
cells are the main determinants of cancer tumor 
staging and malignancy progression [ 143 ,  144 ]. 
For instance, the HaCaT/HaCaT-ras human skin 
carcinogenesis model traced that there was no 
tumor progression from selectively recultured 
benign and malignant cell lines with H-ras status 
to late-stage malignant clones [ 145 ]. 

 The primary causes of NMSC comprise high 
sun exposure, vitamin D defi ciency, and ultraviolet 
(UV) overexposure [ 146 ,  147 ]. The highly anti-
genic UV-induced NMSCs including BCC, SCC, 
and UV-induced more lethal melanoma as well as 
UV-produced tandem mutations underlie the 
importance of acquiring and applying the immu-
nogenetic knowledge of skin tumors [ 148 – 151 ]. 

14.7.1     p53 

 One of the mechanisms underlying UV-induced 
apoptosis is held by the expression of p53. The 
abnormally detectable accumulation of p53, a 
chiefl y negative regulator of cell cycle and a nor-
mal tumor-suppressor protein, may contribute to 
the development of skin tumors including kerato-
acanthomas and solar keratoses [ 152 ,  153 ]. 
However, it is ambiguous to hypothesize the asso-
ciation between positive immunostaining and 
detectable mutations for p53 in patients with 
NMSC or melanoma [ 150 ,  152 ,  154 ,  155 ]. 
Hopefully, experimental studies indicated that sun-
screens provide some degrees of protection against 
p53 mutations for UV-irradiated animals [ 156 ]. 

 The expression of p63 along with REDD1, a 
direct transcriptional target of p53, is able to 
upregulate the production of ROSs [ 157 ]. The 
cultural model of human keratinocytes demon-
strates that SCCs survive in a p63-dependent 
manner, which is also explained by the overex-
pression of p73 [ 158 ].  

14.7.2     MMP 

 Matrix metalloproteinase-9 (MMP-9), mainly pro-
duced by neutrophils, macrophages, and mast cells, 

can shift to proangiogenic factors such as VEGF, 
ensuing an “angiogenic switch” during tumorigen-
esis [ 30 ,  159 – 161 ]. However, generally, the acti-
vated stromal cells attached to both animal and 
human cancer models provide the major source of 
MMPs [ 162 ]. MMPs make substantial contribu-
tions to skin tumorigenesis, particularly BCC and 
SCC [ 30 ,  163 ,  164 ,  165 ]. These contributions still 
remain outstanding in skin tumorigenesis induced 
by HPV8 and HPV16 [ 163 ,  166 ,  167 ]. Thus, it is 
not surprising that the genetic polymorphisms of 
MMPs could be associated with the risk of skin 
carcinogenesis (reviewed in [ 28 ,  168 ]).   

14.8     Infl ammation and Skin 
Cancers 

 Establishing the connection between infl amma-
tion and cancers was done over a long period of 
time. This connection was pioneered by 
Virchow’s hypothesis based on the presence of 
leukocytes in malignant tissues in the nineteenth 
century [ 169 ]. However, cancer-related infl am-
mation (CRI) is now recently established as the 
seventh hallmark of cancer after sustaining pro-
liferative signaling, evading growth suppressors, 
activating invasion and metastasis, enabling rep-
licative immortality, inducing angiogenesis, and 
resisting cell death [ 170 ,  171 ]. 

 There is a chain reaction, known as the infl am-
matory cascade, between the immune cells in 
order to produce an infl ammatory reaction, clas-
sifi ed as either acute or chronic models. The acti-
vation energy of both models is determined by 
infl ammatory conditions provided in the body 
including infections, chemical and physical cir-
cumstances, and autoimmune diseases [ 169 ,  172 ]. 
The infl ammatory conditions, chiefl y comprised 
of TAMs and T cells, may lead to increase in the 
promotion, progression, and metastasis risk of 
different malignancies [ 37 ,  169 ]. Infl ammation 
serves as a trustee in the wound healing process. 
Infl ammatory cells continue to serve their func-
tions in chronic skin wounds providing chronic 
infl ammation and ROS products, which, in turn, 
lead to the development and progression of skin 
cancers [ 173 ,  174 ]. 
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 Two possible intrinsic and extrinsic pathways 
connecting infl ammation and cancer exist which 
are derived from oncogenes and the microenvi-
ronment, respectively [ 172 ]. Previously in this 
chapter, some infl ammation-related compart-
ments of the microenvironment of skin tumors 
were discussed; here, myeloid-derived suppres-
sor cells and cytokines are briefl y explained. 

14.8.1     Myeloid-Derived Suppressor 
Cells (MDSCs) 

 The hypoxia-inducible factor (HIF) 1α-related 
hypoxia in the tumoral microenvironment makes 
tumor-derived MDSCs functionally different 
from peripheral-derived MDSCs [ 175 ]. Of those, 
the main differences are rapid differentiation into 
macrophages and inhibition of both antigen- 
specifi c and antigen-nonspecifi c T cells [ 175 ]. 
Tumor-derived soluble factors (TDSFs) includ-
ing chemokines, cytokines, and growth factors 
allow MDSCs to accumulate at the tumor site in 
aid to the tumor escape [ 176 ]. 

 The experimental melanoma model illustrates 
that the chronic infl ammation-related MDSC- 
dependent immunosuppression is a simple state-
ment of fact that tumor-derived MDSCs lead to a 
decrease in T cell proliferation and TCR ζ-chain 
expression in company with increases in the level 
of proinfl ammatory molecules, e.g., IL-1β, IFN- 
γ, and GM-CSF [ 177 ,  178 ].  

14.8.2     Cytokines 

 UVB causes a temporary increase in IL-4 neutro-
phils resulting in Th2 responses [ 179 ]. This is 
justifi ed by the observation of CD15 and CD11b 
markers on IL-4 +  cells and CD15 +  depletion- 
induced inhibition of Th2 responses [ 179 ]. 
However, protein levels of other cytokines includ-
ing IL-6, IL-8, and TNF-α were also increased 
[ 179 ]. The role of IL-6 in aid to tumor cell prolif-
eration is transmitted via STAT3 pathway [ 137 ]. 
UV-induced immunosuppression is mediated by 
the interaction between CD11b and its ligand, 
iC3b, which enforces the upregulation of an 

 anti- infl ammatory cytokine, IL-10, and down-
regulation of an anti-angiogenic cytokine, IL-12 
[ 180 ]. The plan of IL-10 upregulation and IL-12 
downregulation is initiated from the dermis and 
transmitted to the epidermis [ 181 ]. As TNF-α is 
localized in a pattern similar to iC3b which is the 
infi ltrating site of CD11b monocytes/macro-
phages, a synergic effect between TNF-α and 
iC3b is present [ 180 ]. The proposed mechanism 
underlying the preventive effect of selenium 
against melanoma dissemination is based on the 
inhibition of IL-18 expression [ 182 ]. It is well 
understood that the proinfl ammatory cytokine, 
IL-17, contributes to skin tumorigenesis in a 
STAT3 pathway-dependent manner, which is 
induced by IL-23 [ 137 ,  183 ]. IL-17 is acknowl-
edged due to its capability to provide an infl am-
matory condition via eliciting the proinfl ammatory 
cytokines including TNF-α, IL-1β, and IL-6 
[ 137 ]. Apparently, IL-1α and TNF-α conduce to 
angiogenesis and tumorigenesis of human mela-
noma via increasing VEGF and IL-8 [ 31 ]. 

 Here, the role of cytokines taking part in skin 
cancers is briefl y described. Lin and Karin have  
reviewed the role of cytokines in detail [ 137 ]. 

 Both therapeutic and preventive approaches 
could be designed in light of the current knowl-
edge on the link between infl ammation and can-
cer as well as underlying molecular mechanisms; 
it is not the time to reap the ripe fruits.   

14.9     Immunotherapy 
for Melanoma 

 From the fi rst description of melanoma provided 
by John Hunter in 1787 to the recent mutation 
discoveries owing to Watson and Crick’s model 
of DNA in the current century, surgical therapeu-
tic strategies have been refi ned, while notable 
advances in immunotherapeutic strategies for 
melanoma have been made [ 184 ]. Challenges in 
estimating the surgical margins and resistance to 
cytotoxic standard therapies, as well as under-
standing the main immunologic properties of 
melanoma skin cancer as an immunologic tumor, 
explain the utmost importance of immunothera-
peutic strategies for melanoma [ 185 ,  186 ]. 
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14.9.1     Adoptive (Passive) 
Immunotherapy 

 As previously mentioned, tumor-infi ltrating lym-
phocytes (TILs) receive the focal attention in 
immune-based therapeutic approaches due to the 
involvement in the regression of metastatic mela-
noma. It is suffi cient to have an overview of the 
literature demonstrating the substantially clinical 
benefi t and response rate (RR) of combinational 
strategies of TILs and IL-2 for patients with met-
astatic melanoma [ 187 – 189 ]. Consequently, it 
was highlighted that the objective response rates 
directly refl ect the impacts of transferred cell- 
related factors, such as the number of CD8 + CD27 +  
cells and the telomerase length [ 189 ]. 

 Moreover, it has been notched up to another 
success in patients with advanced melanoma who 
had received gene-modifi ed TIL [ 190 ]. 

 Lymphokine-activated killer cells (LAK), 
activated by IL-2  in vitro , can substantially abol-
ish pulmonary melanoma metastases [ 191 ]. 
A 4-year follow-up study on metastatic mela-
noma patients spotted the statistically signifi cant 
difference in objective response rate between 
patients receiving gp100 209–217  peptide-pulsed 
IL-2 and IL-2 alone. Interestingly, no signifi cant 
difference in objective response rate was made 
between patients receiving IL-2 alone and differ-
ent melanoma vaccines [ 192 ]. Overall, these 
lines of evidence convey two important notions. 
The fi rst is that gp100 antigens stand actively to 
catch the undivided attention span in our mela-
noma immunotherapeutic approaches. The sec-
ond is to identify the individual role of IL-2 by its 
outstanding infl uence in melanoma treatments.  

14.9.2     Active Immunotherapy 

14.9.2.1     Vaccination Therapy: 
A Surefi re Therapy 
for Melanoma? 

 The fi eld of cancer vaccination, an active cancer 
immunotherapy, is taken seriously as a therapeutic 
option, particularly in the last three decades 
 predominantly for melanoma probably due to 
exhibiting all the main tumor immunologic  features 

[ 186 ,  193 ,  194 ]. Overall, vaccines contain two 
compartments, antigens and adjuvants. The thera-
peutic effi cacy of cancer vaccines can be explained 
by two main immunological events, which both of 
them are related to T cell population somehow: 
induction of tumor antigen-specifi c effector T cells 
and tumor antigen-specifi c memory T cells [ 68 ]. 
Even though the exact mechanism leading to the 
superiority of vaccines over other more successful 
procedures against tumors remains unknown, some 
convincing reasoning has been unveiled including 
the consideration of benefi cial cancer vaccines as 
well as viral vaccines, easy administration of vac-
cines, and taking precedence of subjective end-
points over objective achievements [ 195 ]. 

 Generally, autologous vaccines, made from 
tumoral cells derived from the patient’s own 
tumor, constitute the major part of tumor vaccines 
[ 194 ]. The autologous whole-cell tumor vaccines, 
consisting of all the relevant tumor- associated 
antigens, have been considered for their clinical 
effi cacy on the treatment of some cancers such as 
colorectal, melanoma, and renal cell cancer [ 196 ]. 
Choosing an autologous vaccine is challenged by 
the autologous tumor, which is occasionally the 
main challenge per se due to unresectable or 
unavailable melanoma lesions [ 197 ]. 

 Allogeneic vaccines, made from intact and 
modifi ed tumoral cells derived from the patient’s 
tumor, can be effi ciently administered to a subset 
of patients with similar tumor-associated 
 antigens [ 194 ]. 

   Melanoma Cell-Based Vaccines 
 Melacine, an allogeneic immunologic adjuvant, 
contains melanoma cell lines and an immuno-
logic adjuvant, DETOX. The evidence emerged 
by phase I and phase II trials suggesting 
 15.5–47 % clinical benefi ts of Melacine [ 185 , 
 198 ,  199 ]. The objective response rate of patients 
between 10 and 35 % resulted from Melacine in 
combination with IFN-α [ 185 ].  

   Melanoma Antigen-Specifi c Peptide- 
Based Vaccines 
 The MPS160 vaccine is a gp100-derived mela-
noma peptide which contains overlapping human 
leukemic antigen-restricted T cell epitopes. 
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Several therapeutic arms including MPS160 alone 
or in combination with various doses of GM-CSF 
have been administrated to patients with meta-
static melanoma; nonetheless, there was no sig-
nifi cant clinical effi cacy at all [ 200 ]. However, that 
was noted for antitumor immune response of lym-
phocytes to gp100-based peptide vaccine in 
PBMCs derived from melanoma patients [ 201 ]; 
unfortunately, high levels of antitumor antigen-
specifi c T cells do not guarantee the progression of 
melanoma. This fact was ascertained when there 
was no observation of any correlation between the 
levels of tumor antigen- reactive CD8 +  T cells and 
clinically tumor regression following modifi ed 
gp100-based vaccinations [ 70 ]. On the other hand, 
a 5-year follow-up study of melanoma patients at 
stages IIb–IV compiled the recognized antitumor 
immune response rate to gp100 280  peptide- targeted 
vaccines, thereby the unchallenged overall sur-
vival of 75 % [ 202 ]. Just to complicate matters, 
there was no substantial immunological or clinical 
response in patients with metastatic melanoma 
who received plasmid DNA encoding the gp100 
melanoma antigen [ 203 ]. 

 The MART-1 and Melan-A/MART-1 DNA 
plasmid-based vaccines have failed to achieve 
desired antitumor immunological responses and 
subsequent clinical responses in patients with 
melanoma at stages IIb, III, and IV [ 204 ,  205 ]. 
As illustrated further in the chapter, it was not 
diffi cult to believe that these vaccines could be 
more effi cient when combined with DCs [ 206 ]. It 
was gaining importance when exosome-based 
cell-free vaccines comprising tumor antigen- 
specifi c peptide-pulsed DCs had been remedied 
[ 207 ]. However, the immunological and clinical 
success rate has not been achieved by the 
endeavor of phase I clinical trial of autologous 
DC-derived exosome vaccination for metastatic 
melanoma patients at stages IIIb and IV [ 208 ].  

   IFN-α Adjuvant Therapy 
 IFN-α exerts antitumoral effects through direct 
induction of apoptosis in SCC [ 209 ]. To preserve 
the role of IFN-α in melanoma vaccines, it is suf-
fi cient to defi ne its course of action in the “V” 
manner explaining the downregulation of IFN-α 
and upregulation of CD8 +  T cell-dependent 
 antitumor immunity mediated by CD4 +  T cells 

and IFN-α, respectively [ 210 ]. Since a series of 
randomized- controlled trials (RCTs) considering 
the effect of IFN-α adjuvant treatment  vs.  obser-
vation for patients with high-risk malignant mel-
anoma at different stages following nodal 
dissection surgery did not achieve statistically 
signifi cant outcomes including overall survival 
(OS), distant-metastasis-free interval (DMFI), 
disease-free survival (DFS), and relapse-free sur-
vival (RFS) stand in stark contrast to another 
series of such studies [ 211 – 218 ]. The effi cacy of 
low-dose IFN-α2a was evidenced for high-risk 
melanoma patients, of course, without clinical 
diagnosis of metastatic nodes [ 219 ]. In contrast, 
however, the RFS benefi t was dependent upon 
the IFN-α2b dose, and it was declared indepen-
dent of the presence of lymph nodes [ 220 ]. 
Consequently, the statistically signifi cant RFS 
benefi t of adjuvant pegylated IFN-α2b, consisted 
of IFN-α2b, in addition to polyethylene glycol 
molecules to make more stable adjuvant, was 
reaped for stage III melanoma [ 221 ]. The evi-
dence does not support the clinical effi cacy of 
low-dose recombinant IFN-γ for high-risk mela-
noma [ 218 ]. 

 Interestingly, although a meta-analysis 
(2010) of 14 RCTs comparing the clinical ben-
efi t of IFN-α adjuvant treatment with observa-
tion or any other adjuvant treatments (GM2 
vaccination [ 222 ]) recently demonstrates statis-
tically signifi cant improvement in DFS and OS 
of patients with high-risk cutaneous melanoma, 
no survival benefi ts accrued from a systematic 
review and a meta-analysis of 9 and 12 RCTs, 
respectively, both of which were published in 
2003 [ 223 – 225 ]. 

 Altogether, the clinical effi cacy of adjuvant 
IFN for melanoma is dependent on the therapeu-
tic dose, duration of therapy, and clinical stage of 
tumors, and it cannot be recommended yet, due 
to the long-running controversies on this issue.  

   Dendritic Cell-Based Vaccines 
 The DC-based vaccination was designed to 
induce specifi c antitumor responses, favorably 
tumor antigen-reactive CD8 +  CTLs, in aid to 
repress the melanoma progression. 

 A collection of clinical trials and experimental 
studies were delineated to investigate the clinical 
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responses and immunological responses to 
immunotherapy or immuno-gene therapy with 
DC-based vaccines, either DCs only or in combi-
nation with killed melanoma cells or specifi c 
tumor antigens selected according to the HLA 
haplotype among patients with melanoma, either 
at early or late stages. DCs could be derived from 
the bone marrow, CD34 +  hematopoietic progeni-
tor cells (HPCs), and monocytes [ 226 – 236 ]. The 
immunological and clinical responses comprised 
the induction of specifi c delayed-type hypersen-
sitivity (DTH) reactions, rising reactive CD8 +  
CTLs, producing IFN-γ, regressing metastasis, 
and completely or partially controlling tumor 
progression. Accordingly, there is no doubt that 
clinical responses rely heavily on the postvacci-
nation immune responses to melanoma-specifi c 
antigens; however, it was clearly obvious in the 
case of complete clinical response to MART-1 
vaccines along with spreading immune responses 
to melanoma antigens except for MART-1 [ 233 ]. 
The follow-up study of peptide-pulsed CD34- 
derived DC vaccine on patients with metastatic 
melanoma provided the medians of 20 and 
7 months for two clinical outcomes of overall 
survival and event-free survival, respectively 
[ 231 ]. No more signifi cant effi cacy was obtained 
for autologous peptide-pulsed DC vaccination 
compared to dacarbazine chemotherapy in mela-
noma patients at stage IV [ 237 ]. 

 A comprehensive review study on 38 articles 
assessing the infl uence of different vaccine 
parameters of investigated DC-targeted vac-
cines on the clinical effi cacy of patients with 
melanoma revealed that peptide antigens, adju-
vants, and antigen-specifi c T cell responses 
exert signifi cant effects on clinical responses, 
but not on objective responses [ 238 ]. The murine 
melanoma model indicated a vast mass of DCs 
in the T cell nest sites of lymph nodes post-SC 
DC vaccination, thereby a favorable antitumor 
immune response, which was against amassing 
DCs in the spleen post-IV DC vaccination [ 239 ]. 
This experiment and parallel jobs served to 
appreciate the importance that lies in the route 
of DC-based melanoma vaccine administration 
to induce  antitumor immunological responses. 
Accordingly, the magnetic resonance imaging 
(MRI) could bring success in need of pursuing 

DCs in the body [ 240 ]. Also, the stark contrast 
in migration of DCs between the IV and SC 
administration of DC-based vaccines is simi-
larly offered between immature and mature 
DCs, respectively [ 241 ]. 

 Immuno-gene therapy with vaccine containing 
autologous DCs and tumor mRNA failed to achieve 
a signifi cant response rate or clinical benefi t among 
patients with malignant melanoma [ 229 ]. 

 The possible mechanism underlying the clini-
cal effi cacy of GM-CSF-secreting melanoma vac-
cines is probably in relation to recruiting APCs, 
mainly DCs and macrophages, albeit along with 
increasing melanoma antigen-specifi c reactive 
CD4 +  and CD8 +  T cells (reviewed in [ 242 ]). 

 Generally, there were few and promising clinical 
trials on DCs up to the year 2000 [ 243 ], which 
quickly resulted in the great deal of attention to DC 
vaccination. However, to our knowledge, the 
DC-targeted vaccines for melanoma patients can be 
preferred to other treatments with a view of facilitat-
ing the treatment process, but not in the regard of 
overall clinical effi cacy. This debate is open amid 
suggestions which may be constructive in the near 
future such as up- and/or downregulating expres-
sion of some target points including infl ammatory 
cytokines/chemokines, potential immunosuppres-
sor factors, and angiogenic factors in aid to antitu-
mor response in  ex vivo  DC generation and 
subsequently  in vivo  application [ 244 ,  245 ].     

14.10     Concluding Remarks 

 As some scholars believe that we are at the bottom 
of the ladder of “melanoma vaccination” [ 246 ], in 
this chapter, confl icting evidences were brought 
up, which made it confusing and ambiguous to 
decide whether the overall clinical benefi t of mela-
noma vaccines can push scientists into aspiring 
them as the epigraph of current  therapeutic 
approaches. Notwithstanding, this question mark 
has been established since the fi rst melanoma vac-
cine was examined, and as well we know that the 
therapeutic window in patients with melanoma 
can accommodate vaccination. Even though suffi -
cient ways and means are partway developed, the 
current traditional approaches should be used to 
the promised day of “melanoma vaccination.”     
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15.1             Introduction 

 Squamous cell carcinoma of the head and neck 
(HNSCC) is the sixth most common type of 
malignancy with over 650,000 new cases and 
350,000 deaths worldwide each year [ 1 ]. Current 
treatments for HNSCC including surgery, radia-
tion, and chemotherapy are of limited effi ciency 
in preventing local and regional recurrences and 
distant metastases. Despite recent therapeutic 
improvements, long-term survival rates in 
patients with advanced-stage HNSCC have not 
signifi cantly increased in the past 30 years [ 1 ]. 

 Molecular studies suggest that HNSCC is 
either caused by spontaneous accumulation of 
multiple epigenetic and genetic alterations modu-
lated by genetic predisposition and chronic 
infl ammation and enhanced by environmental 
infl uences such as tobacco and alcohol abuse or 
by infection with oncogenic human papillomavi-
rus (HPV) [ 1 ]. In recent years, the incidence of 
HPV-related head and neck cancer is rising and 
shows a distinctly different biology from head 
and neck cancer caused by other etiologies. Thus, 
two main etiologies can be defi ned: tumors 
induced by toxic substances or by the activity of 
the viral oncogenes of HPV. Both etiologies 
involve a multistep process and result in altera-
tions affecting two large groups of genes: onco-
genes and tumor suppressor genes. In addition, 
there is the notion of immune selection. This is 
related to major histocompatibility complex 
(MHC)-involved immune response mechanisms. 
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For example, HPV16 E7 contributed to reduced 
MHC class I expression in HPV-associated 
malignancies [ 2 ]. MHC class II defi ciency 
patients are at a risk of oral HPV infection [ 3 ]. 
These observations are important because they 
show that immune recognition is relevant and 
probably a force driving selection in the tumor 
toward immune-resistant variants. It is therefore 
essential to develop a deeper understanding of 
the biology of this disease for more effective 
alternative therapies such as immunotherapy. 

 Host immune reactions against tumors have 
long been a subject of laboratory and clinical 
investigations. On one hand, it has been shown 
that a naturally induced T cell response recogniz-
ing HNSCC-derived antigens exists that could 
potentially target and kill tumor cells. On the 
other hand, this process also exerts an immune 
selection pressure on tumor cells. Surviving 
tumor cells show a variety of mechanisms to 
escape immunosurveillance [ 4 ]. In this respect, 
immunological approaches promoting effective 
host responses and reversing immunosuppression 
would hopefully lead to successful immunother-
apy against tumors. 

 The identifi cation and characterization of a 
variety of human tumor antigens with possible 
use for immunotherapy and immunomonitoring 
[ 5 ] and expectations triggered by successful 
 in vitro  tests and therapeutic results in animal 
models have led to rapid translation of these 
experimental fi ndings into clinical testing. 
A rather large number of patients with various 
types of malignant diseases including HNSCC 
have been enrolled in clinical trials of T cell-
based immunotherapy (Table  15.1 ). In many 
cases tumor antigen-specifi c CTL immune 
responses could be achieved and successfully 
monitored, but unfortunately these fi ndings did 
not correlate with clinical responses [ 6 ]. True 
clinical responses attributable to immunotherapy 
have been sparse so far. Recently, it was reported 
that anti-CTLA4 (CTL-associated antigen-4) 
antibody ipilimumab achieved a signifi cant 
increase in overall survival for patients with met-
astatic melanoma [ 7 ]. In a recent clinical trial 
reported by Schaefer et al., the functional status 
but not the frequency or phenotype of melanoma 
peptide- specifi c CD8 +  T cells correlated with sur-
vival to the multi-epitope peptide-based vaccine 
[ 8 ]. This discrepancy has initiated investigations 
into mechanisms underlying the failure of tumor 
antigen- specifi c CTLs to control tumor growth in 
cancer patients, especially those treated with 
immunotherapies. The mechanisms responsible 
for this impairment may vary depending on the 
nature of the tumor milieu and manifestation in 
the tumor microenvironment as well as in the 
periphery [ 9 ,  10 ].

   In the past decade, tumor heterogeneity has 
been redefi ned by the hypothesis of cancer 
stem(-like) cells (CSCs). As a subpopulation of 
tumor cells, CSCs have been identifi ed in many 
types of solid tumors including HNSCC. CSCs 
present stem cell characteristics with the ability 
to generate tumor, develop metastasis, and dis-
play increased resistance against current modes 
of therapies. This might explain the phenome-
non that the response to immunotherapy may be 
delayed by a period of apparent tumor growth 
or the fi nal failure of treatment. Therefore, the 
underlying mechanisms of interaction between 
CSC and the host immune system may present 

   Table 15.1    Studies of immunotherapy in HNSCC   

 Approach of immunotherapy  Model  Reference 

 Alpha-galactosylceramide- 
pulsed antigen-presenting cells 

 Human  [ 93 ] 

 Anti-CD3/CD28 monoclonal 
antibody 

 Human  [ 94 ] 

 CSC-based vaccination  In vivo, 
in vitro 

 [ 89 ,  95 ] 

 DNA-Hsp65 (a DNA vaccine)  Human  [ 96 ] 
 Epstein-Barr virus-associated 
AdE1-LMP poly vaccine 

 Human  [ 97 ] 

 Interferon-alpha  Human  [ 98 ] 
 Interleukin-12  Human  [ 99 ] 
 Interleukin-2  Human  [ 100 ] 
 Irradiated autologous tumor 
cells + granulocyte- 
macrophage colony-stimulating 
factor 

 Human  [ 101 ] 

 IRX-2 (cytokines)  Human  [ 102 ] 
 Invariant natural killer T cells  In vitro  [ 93 ] 
 Virus-modifi ed autologous 
tumor cell vaccine 

 Human  [ 103 ] 

 Wild-type p53 peptide  In vitro  [ 104 ] 
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a therapeutic challenge. Recent developments 
in immunotherapy may allow identifi cation and 
targeting of CSC specifi cally. 

 In this chapter, the mechanisms of tumor- 
mediated interference with the host immune sys-
tem and CTLs, in particular, concerning HNSCC 
will be summarized. Tumor-escape mechanisms 
from the immune system at the tumor site and in 
the periphery will be discussed and fi nally strate-
gies to redirect the immune system to a more 
effective antitumor response.  

15.2     Immune Responses 
in HNSCC 

 Effective antitumor responses in individuals with 
HNSCC depend on the ability of immune cells to 
recognize and eliminate tumor cells. These tumor 
antigen-specifi c T cells like CD8 +  CTLs or CD4 +  
T-helper lymphocytes (Th) are known to be pres-
ent in the peripheral circulation and the tumor 
site of patients with HNSCC [ 9 – 14 ]. Staining T 
cells with a tetrameric peptide-MHC complex 
monitored by multicolor fl ow cytometry were 
developed and frequently used for directed iden-
tifi cation and phenotyping of antigen-specifi c T 
cells. These engineered tetrameric peptide-MHC 
complexes were able to bind more than one T cell 
receptor (TCR) on a specifi c T cell. These stain-
ings are combined with T cell markers (CD3, 4, 
8, etc.) and if desired with makers for the differ-
entiation (CCR7, CD45RO, CD45RA, etc.) and 
the functional (CD107a, IFN-gamma, TNF- 
alpha, perforin, granzyme B, etc.) or dysfunc-
tional (annexin, 7-AAD, CD3-zeta-chain, etc.) 
status of these cells [ 15 – 18 ]. 

15.2.1     Wt p53-Specifi c T Cells 

 Overexpression and/or accumulation of mutated 
p53 protein was reported in the majority of 
human cancers, including HNSCC. Therefore, T 
cells reactive against p53-derived epitopes by 
human leukocyte antigen (HLA) class I and II 
were investigated and described in various 
studies. 

 Wild-type (wt) sequence p53 peptides like 
other tumor epitopes are processed and presented 
to the host immune cells either directly by the 
tumor cells or by professional antigen-presenting 
cells (APCs) such as dendritic cells (DCs). This 
results in an increased number of wt p53 peptide- 
specifi c T cells and, in some instances, p53- 
specifi c antibodies [ 19 – 21 ]. 

 Wt p53 epitope-specifi c T cells were reported 
signifi cantly higher in the peripheral circulation 
and enriched in tumor-infi ltrating lymphocytes 
(TILs) of patients with head and neck cancer than 
that in normal donors [ 9 ,  21 ]. These fi ndings 
demonstrated that wt p53 epitope-specifi c T cells 
were not only present in the peripheral circula-
tion but also at the tumor site or in tumor-involved 
lymph nodes. Interestingly, the presence and fre-
quency of wt p53 epitope-specifi c effector T cells 
among TILs did not correlate with tumor stage. 
This implies that the frequency of tetramer + /
CD8 +  effector cells alone has no effect on tumor 
progression. In one of the studies performed by 
the authors, two patients with suffi cient numbers 
of TILs were available to test  in vitro  responsive-
ness after polyclonal stimulation with anti-CD3 
monoclonal antibody (mAb). Only a low inter-
feron (IFN)-γ expression of the CD3 + /CD8 +  T 
cells could be measured indicating a poor respon-
siveness to this stimulus. At the same time, a sig-
nifi cantly increased number of regulatory T cells 
(Tregs) were found at the tumor site compared to 
the periphery [ 9 ]. It has been well accepted that 
the presence and accumulation of Tregs inhibits 
T cell responses  in vivo  and may be responsible, 
in part, for the downregulation of antitumor 
immune responses in patients with head and neck 
cancer [ 22 ]. Tregs are likely to mediate suppres-
sive effects directed at self-reactive T cells [ 23 ]. 
This immunosuppressive mechanism may be 
particularly relevant to T cells that recognize self-
peptides such as wt p53 epitopes; thus they are 
likely to be tolerized, especially at the sites of 
their accumulation in tumor tissues. Other data 
also confi rm the depressed functionality or even 
spontaneous apoptosis of CD8 +  tumor-specifi c T 
lymphocytes [ 10 ]. 

 Although CTLs are considered to play the 
primary role in tumor eradication, it is also 
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hypothesized that the participation of tumor anti-
gen-specifi c CD4 + Th cells may be required for 
optimal antitumor effects by generating and 
maintaining antitumor immune responses 
through interactions with CTLs and other cells 
[ 24 ,  25 ]. Current evidence indicates that CD4 +  
Th cells play an important role in generating and 
maintaining antitumor immune responses [ 26 –
 28 ]. Chikamatsu et al. demonstrated the identifi -
cation and ability of anti-wt p53 110–124  CD4 +  T 
cells to enhance the  ex vivo  generation and anti-
tumor functions of CD8 +  effector cells [ 14 ]. 
Later, Ito et al. reported that the presence of anti-
 p53 25 –35  CD4 +  Th cells was shown to enhance the 
 in vitro  generation/expansion of HLA-A2- 
restricted, anti-wt p53 264–272  CD8 +  T cells, which 
from one donor were initially “nonresponsive” 
to the wt p53 264–272  peptide [ 29 ]. Recently, 
Chikamatsu et al. demonstrated that wt p53 108–122  
and p53 153–166  peptides stimulate both Th1- and 
Th2-type CD4 +  cell responses in patients with 
head and neck cancer [ 30 ]. These results suggest 
that future vaccination strategies targeting tumor 
cells should incorporate helper and cytotoxic T 
cell-defi ned epitopes [ 29 ].  

15.2.2     HPV-Derived Antigen-Specifi c 
T Cells 

 HPV-related HNSCC defi nes a different entity when 
compared to HPV-unrelated HNSCC. Therefore, 
immune responses to a persistent HPV infection 
were explored recently. Virus-derived antigens 
are considered superior targets for T cells than 
tumor-associated self- antigens because they have 
higher affi nity to MHC and are more immuno-
genic [ 31 ]. HPV- encoded oncogenic proteins, 
such as E6 and E7, are promising tumor-specifi c 
antigens in addition to the fact that they are con-
sidered obligatory for tumor growth. In HNSCC, 
two studies showed an increased frequency of 
CD8 +  T lymphocytes directed against HPV E7 
epitopes, documenting a natural immune 
response [ 11 ,  32 ]. These HPV- specifi c T cells 
were able to recognize and kill a naturally HPV-
16-transformed HNSCC cell line after IFN-γ 
treatment that enhanced antigen processing and 

presentation by the tumor cells. Further pheno-
typic characterization of the HPV- specifi c T cells 
revealed an increase in terminally differentiated/
lytic T cells (CD8 + CD45RA + CCR7 − ). This popu-
lation was also characterized by a high frequency 
of staining for the degranulation marker CD107a 
in E7 tetramer +  T cells, compared with bulk CD8 +  
T cells, consistent with their terminally differen-
tiated lytic, degranulated status. These cells may 
account for the unsuccessful antiviral immune 
response [ 24 ] to these tumors, indicating that 
incomplete activation of tumor-specifi c T cells or 
suboptimal target recognition may enable tumor 
progression  in vivo . On the other hand, if such T 
cells could be adequately activated and expanded, 
these cells could provide a valuable source of 
effectors for cancer vaccination. Williams et al. 
used a mouse model to investigate whether HPV- 
specifi c immune mechanisms can result in tumor 
clearance [ 33 ]. They found an  in vivo  antigen- 
specifi c antitumor response that is generated 
against HPV + -transformed cells and that this 
response requires CD4 +  and CD8 +  cells to mount 
this antitumor response.   

15.3     Mechanisms of Tumor 
Immune Evasion 

15.3.1     Suppression of T Cells 
in the Cancer-Bearing Host 

 Several mechanisms by which tumors escape 
from the host immune system have been identi-
fi ed in patients with head and neck cancer. One of 
them is the induction of apoptosis by Fas/FasL 
signaling pathways in effector T cells [ 34 ]. It was 
shown that a proportion of CD3 + /Fas +  T cells in 
the peripheral circulation of tumor patients were 
in the process of apoptosis. This indicates that the 
Fas/FasL pathway is involved in spontaneous 
apoptosis of circulating CD95 (Fas + ) T lympho-
cytes [ 24 ]. Hoffmann et al. showed that Fas/FasL 
interactions might lead to increased turnover of T 
cells in the circulation and, consequently, to 
reduced immune competence in patients with 
HNSCC [ 13 ]. This may be explained by an 
imbalance in the absolute count of T-lymphocyte 
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subsets and an overall decreased absolute T cell 
count in patients not treated with cytotoxic agents 
[ 35 ,  36 ]. The rapid turnover mostly affects T cells 
with effector phenotype [ 37 ] that also show 
defects in signaling [ 24 ]. Preferentially tumor- 
specifi c T cells are affected by apoptosis indicat-
ing a tumor-related effect [ 10 ]. This observation 
can be explained further by the analysis of TCR 
Vbeta profi les of CD8 +  T cells in patients with 
HNSCC that were altered relative to normal con-
trols. This may refl ect increased apoptosis of 
expanded or tumor-contracted CD8 +  T cells, 
which defi ne the TCR Vbeta profi le of antigen- 
responsive T cell populations in patients with 
cancer [ 12 ]. Reports on T cell apoptosis at the 
tumor site and in the peripheral circulation [ 38 ] 
support these observations and suggest that 
induced death of TILs, generally considered to 
represent tumor-associated antigen-specifi c 
effector cells, is driven by the tumor or tumor- 
derived factors. 

 Tregs were also reported to be involved in Fas/
FasL-mediated apoptosis. FasL is upregulated 
exclusively on Tregs isolated from patients with 
no evidence of disease after receiving cancer 
therapy [ 39 ]. These FasL-expressing Tregs are 
resistant to apoptosis themselves, but strongly 
suppress and kill CD8 +  effector cells, adverting 
the cancer community that traditional cancer 
therapy might contribute to tumor progression by 
collaborating with the peripheral tolerance pro-
cess. In addition, Tregs in patients with HNSCC 
kill CD4 +  T effector cells via granzyme B in the 
presence of IL-2 [ 39 ]. 

 Signaling defects in the TCR as well as 
nuclear factor (NF)-β activation pathways in 
TILs have been described in comparison to T 
cells infi ltrating infl ammatory noncancerous 
sites. These defects appear to be responsible for 
their loss of function [ 40 ]. Patients with tumors 
infi ltrated by TILs expressing normal levels of 
CD3-zeta chain were found to have a better 
5-year survival than those showing loss of CD3-
zeta-chain expression [ 40 ,  41 ]. This protein is a 
signal adaptor of the T cell receptor and only 
when present the T cell can be activated. A high 
rate of apoptosis in TILs is considered to be a 
factor for poor prognosis [ 42 ]. 

 Taken together it appears that apoptosis of 
lymphocytes in the periphery as well as at the 
tumor site leads to rapid and selective tumor- 
specifi c lymphocyte turnover followed by a loss 
of effector cells and thus failure to control tumor 
growth in cancer patients.  

15.3.2     Role of Regulatory T Cells 

 By the identifi cation of the expression of inter-
leukin (IL)-2 receptor α and the forkhead-box 
transcription factor (Foxp3) as an essential tran-
scription factor, CD4 +  Tregs have been character-
ized as a distinct lineage of T cells [ 43 ]. It has 
been documented in the past that Treg frequency 
increases in peripheral blood, lymph nodes, and 
tumors of patients with several types of cancer 
[ 44 ], including HNSCC [ 45 ,  46 ]. This correlates 
with HNSCC tumor progression [ 47 ,  48 ], but 
their relationship to patient prognosis was not 
established [ 49 ,  50 ]. Suppressor capacity and 
suppressor phenotype of Tregs isolated from 
HNSCC cancer patients are signifi cantly 
increased in comparison to Tregs isolated from 
healthy subjects [ 45 ,  46 ], suggesting that 
enhanced function and survival of suppressor 
cells might constitute one of the mechanisms 
responsible for the immunosuppression of adap-
tive and innate immunity in these patients. Tregs 
could suppress the activity of CD4 +  and CD8 +  
effector T cells, decrease antigen presentation, 
and promote the immunosuppressive functions of 
DCs, monocytes, and macrophages [ 51 ]. The 
blockade of Tregs was found to improve tumor 
immunosurveillance in a variety of tumor models 
[ 52 – 55 ]. Removing Tregs has also been shown to 
increase tumor immunity elicited by vaccination 
[ 56 – 58 ]. 

 Thus, one therapeutic possibility for restoration 
of antitumor immunity in patients with cancer is to 
eliminate tumor antigen (TA)-specifi c Tregs and to 
boost simultaneously TA-specifi c T helper and 
CTL responses. The fact that Tregs and activated T 
effector cells share receptors and common metab-
olites in their differentiation, function, survival, 
and expansion (i.e., IL-2) suggests that regulation 
of the effector and suppressor compartment is 
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dichotomic. Thus, one new challenge in modern 
immunotherapy is to understand the signaling 
pathways which command the interplay of effec-
tor and suppressor responses in physiologic condi-
tions and in infl ammation. A detailed knowledge 
of these pathways might enable us to design 
immunotherapeutic strategies that selectively pro-
mote expansion, survival, and function of effector 
T cells or Treg responses in pathologies where one 
of the two compartments is in disadvantage result-
ing in autoreactive killer responses in the absence 
of Tregs or in immunosuppression in the case of an 
excessive Treg response. Revert immunosuppres-
sion in cancer to antitumor immunity is essential 
to increase the quality and success rate of tradi-
tional cancer therapy as well as the response to 
tumor vaccines.  

15.3.3     Tumor Immune Escape 

 Collectively, downregulation of MHC class I or II 
and co-stimulatory molecules, which compro-
mised tumor-associated antigen processing and 
presentation, and overexpression of immunosup-
pressive molecules (i.e., TGF-beta, PGE2, IL-4, 
IL-10) lead to a selection pressure on tumor cells 
[ 59 – 61 ]. This selection process and the resulting 
immune escape variants in the tumor indicate that 
an effective CTL response must have taken place 
during the development of the malignancy. The 
CTL-mediated cytolysis of immunogenic tumor 
cells is the driving force of the selection process 
toward CTL-resistant tumor cell variants. The 
immune-evaded tumor cells have several features 
making them resistant to further natural CTL 
attack. 

 With regard to the two different etiologies of 
HNSCC, more detailed studies are needed to 
investigate if this dysregulation can be observed 
in tumors with both etiologies. Whether this is a 
general phenomenon, as reported in other tumor 
types without viral etiologies, or if it is due to 
HPV-specifi c factors, as suggested in HPV6- and 
HPV11-associated laryngeal papilloma [ 62 ], 
remains to be clarifi ed. However, it is becoming 
evident that virally induced tumors succeed in 
escaping the host immune system [ 63 ].   

15.4     Reversing Immune Escape 

 Current immunotherapy is insuffi cient by the fact 
that immunosuppressive mechanisms are pro-
nounced and relevant effector cells are sup-
pressed in patients with HNSCC. Thus, enhancing 
the specifi c antitumor immune response and 
reversing the tumor-mediated immunosuppres-
sion is the primary goal of immunotherapy. One 
approach is the development of prophylactic 
HPV vaccines to prevent formation of malignan-
cies or therapeutic HPV vaccines to treat patients 
in combination with other therapies [ 64 ]. Two 
studies have investigated if an endogenous T cell 
immunity to HPV-encoded oncogenes E6 and 
E7 in HNSCC patients exists [ 11 ,  65 ]. This group 
of T cells would have the potential to specifi cally 
identify and target the tumor upon appropriate 
activation. Therefore, these cells are a critical 
prerequisite for the development of vaccine- 
based strategies for enhancing antitumor immu-
nity in patients with HPV +  tumors. Indeed, in 
both studies it was found that infection with 
HPV16 (as compared to uninfected control indi-
viduals) signifi cantly alters the frequency and 
functional capacity of virus-specifi c T cells in 
HNSCC patients. In addition to the presence of 
HPV-specifi c effector T cells, successful tumor 
elimination requires that HPV-infected tumor 
cells function as appropriate targets for cytotoxic 
T-lymphocyte recognition and elimination. 
Immunohistochemistry of HPV16 +  HNSCC 
tumors showed that the antigen-processing 
machinery components are downregulated in 
tumors compared to adjacent normal squamous 
epithelium [ 11 ]. Thus, immunity to HPV16 E7 is 
associated with the presence of HPV16 infection 
and presentation of E7-derived peptides on 
HNSCC cells, suggesting immune escape mech-
anisms comparable to cervical cancers [ 66 ]. 
These fi ndings suggest that development of 
E7-specifi c immunotherapy in HPV-related 
HNSCC should be combined with strategies to 
enhance the antigen-processing machinery com-
ponent expression and function [ 11 ]. Patients 
with HPV-unrelated HNSCC have a high inci-
dence of p53 mutations. A number of p53-
derived epitopes that can be used for the design 
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of vaccines have been identifi ed [ 67 ,  68 ]. Since 
mutations in the p53 sequence are frequent, epi-
topes incorporating these mutations would have 
to be tailored specifi cally to each patient. 
Therefore, epitopes composed of the wt sequence 
are especially attractive, since they are shared 
among the same HLA type, and are therefore not 
patient specifi c. 

 Except specifi c immune stimulation of cyto-
lytic CD8 +  T cells, nonspecifi c immune activation 
on MHC class I or II molecules, lymphocytes, and 
NK cells is also aimed to reverse the suppressive 
effects [ 69 – 71 ]. Downregulation of dysfunction 
of antigen-processing machinery (APM) compo-
nents by the tumor may disturb both the induction 
of tumor-specifi c T cells in the initial phase of the 
immune response and subsequently during the 
effector phase the proper recognition of the tumor. 
This effect is augmented by absence or reduced 
expression of MHC class I molecules on the cel-
lular surface. These cells are considered to have a 
more aggressive phenotype [ 72 ] which may also 
be the result of immunoselection of tumor cells 
able to evade the immunosurveillance. The result 
can be seen by a low number of tumor-infi ltrating 
lymphocytes and ineffective generation, activa-
tion, or even enhanced apoptosis of tumor-specifi c 
T cells [ 9 ,  10 ]. In experimental systems, incuba-
tion of HNSCC cell lines with IFN-γ was able to 
restore T cell recognition and killing [ 11 ,  62 ]. 
These preliminary data should inspire more basic 
and clinical research to better understand and fur-
ther refi ne and develop such adjuvant strategies 
for clinical application. From the current point of 
view, it seems indispensable to combine APM and 
MHC class I restoration with induction of tumor-
specifi c immune responses. 

 Tumors can also interfere with the immune 
system by the production and release of numer-
ous factors that modulate functions of immune 
cells or directly induce apoptosis. These factors 
take action in the tumor microenvironment and 
beyond. Accumulation of Treg cells in the tumor 
microenvironment could suppress effector T 
cell responses. Pharmacologic inhibitors can be 
used to eliminate Treg cells and reiterate antitu-
mor functions of effector T cells [ 73 ,  74 ]. 
Studies showed that myeloid-derived suppres-

sor cells (MDSCs) play a role in suppressing 
immune responses in conjunction with Tregs in 
HNSCC [ 75 ,  76 ]. Chikamatsu et al. reported 
that CD14 +  HLA-DR- MDSCs contribute to 
immune suppression in HNSCC [ 76 ]. These 
MDSCs expressed a higher level of CD86 and 
PD-L1. Blocking CD86 or PD-L1 could par-
tially restore T cell proliferation and IFN-γ pro-
duction. Chemotherapeutic drugs such as 
5-fl uorouracil (5-FU) or gemcitabine are 
reported selectively cytotoxic on MDSCs, 
whereas no signifi cant effect on T cells, NK 
cells, and DC cells was observed. The elimina-
tion of MDSC by 5-FU increased IFN-γ produc-
tion by tumor-specifi c CD8 +  T cells infi ltrating 
the tumor and promoted T cell-dependent anti-
tumor responses  in vivo  [ 77 ].  

15.5     T Cell Therapies Directed 
to Cancer Stem Cells 

 In previous  in vitro  studies, we have shown that 
a small population of the HNSCC tumor cells 
known as CSCs exhibited properties like self- 
renewal, invasion capacity, and epithelial- 
mesenchymal transition (EMT) [ 78 ]. Later, in 
formalin-fi xed paraffi n-embedded HSNCC tis-
sues, CSC populations were found related to 
poor differentiation of tumors and high nodal 
status. Compared to primary tumors, the propor-
tion of aldehyde dehydrogenase-1 (ALDH1)-
expressing CSCs was signifi cantly increased in 
the corresponding metastases [ 79 ]. These fi nd-
ings suggested that CSCs were able to complete 
the metastatic cascade. Studies from other 
groups addressed the radio- and chemoresistance 
of CSCs and their ability to initiate tumor in 
HNSCC [ 80 ,  81 ]. Due to these properties, CSCs 
have been moved into the focus of targeted 
therapies. 

 Due to a relative resistance of the CSCs, estab-
lished therapeutic modalities such as radiation 
and chemotherapy more preferentially kill the 
bulk of the tumor; hence, it is being envisioned 
that targeting CSCs with these therapies may 
decrease the frequency of recurrences and 
enhance the patient’s long-term survival. 
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Therefore, the development of strategies that tar-
get the CSC subpopulation directly is highly 
desirable. Since radio- and chemotherapies have 
already been optimized toward the limits of clini-
cal benefi t and yet tolerable side effects, a very 
attractive alternative approach of specifi cally tar-
geting CSCs is to develop antitumor T cell vac-
cines. One of the possible reasons that these 
therapies lacked effi cacy in past clinical trials 
could be attributed to the fact that rather bulk 
tumor than CSCs has been targeted. This may 
change with the identifi cation of tumor-specifi c 
epitopes derived from CSC markers. One such a 
CSC model target for head and neck cancer and 
others is a recently described CD8-defi ned T cell 
epitope of ALDH1 [ 82 ]. Examples of other such 
CD8-defi ned T cell epitopes are available for 
prostate stem cell antigen [ 83 ]. Less well-defi ned 
approaches include the development of a CSC- 
dendritic cell vaccine [ 84 ]. Studies in animal 
models for prostate cancer and malignant glioma 
demonstrated the potential of different vaccina-
tion strategies (DCs, gene gun, and virus) target-
ing CSCs in cancer immunotherapy [ 85 ,  86 ]. It 
was recently suggested that stemness-related pro-
teins expressed in CSCs might also be a source 
for tumor antigens. Tumor types most dependent 
on CSC for their growth kinetics were named to 
be the best suited for approaches targeting stem 
cell genes [ 87 ]. 

 The authors recently reported that in HNSCC 
cell lines, ALDH +  CSC populations were less 
sensitive to MHC class I-restricted alloantigen- 
specifi c CD8 +  CTL lysis as compared to 
matched monolayer-derived cells. When treated 
with IFN- γ, its sensitivity was upregulated. 
ALDH high - expressing CSCs presented more 
sensitivity than the ALDH low  CSCs toward 
CD8 +  CTL killing [ 88 ]. Visus et al. investigated 
the ability of ALDH1-specifi c CD8 +  T cells to 
eliminate ALDH bright  CSCs and control tumor 
growth and metastases. They found that 
ALDH bright  CSCs isolated from HLA-A2 +  
human HNSCC were tumorigenic in immuno-
defi cient mice and could be recognized by 
ALDH1-specifi c CD8 +  T cells  in vitro . The 
antitumor activity of adoptive immunotherapy 
with ALDH1-specifi c CTLs  in vitro  and  in vivo  

showed its effect on the inhibition of tumor growth 
and metastases or prolonged survival of xenograft-
bearing immunodefi cient mice. Ning et al. suc-
cessfully demonstrated the vaccination effects 
after inoculation of ALDH +  CSC populations from 
mouse models of squamous cell carcinoma and 
melanoma into different syngeneic immunocom-
petent hosts [ 89 ]. They found that CTLs generated 
from peripheral blood mononuclear cells or sple-
nocytes harvested from CSC-vaccinated hosts 
were capable of killing CSCs  in vitro . 

 Therefore, the classifi cation of conclusive CSC 
markers followed by the identifi cation of defi ned T 
cell-recognized CSC epitopes in the future may 
lead to the clinical application of anti- CSC vacci-
nation strategies. Whether targeted therapies 
directed against stem cell-associated signaling 
pathways, which may be activated in CSCs, will 
be of clinical use or be limited by undesirable side 
effects  in vivo  remains unresolved so far. It will be 
necessary to carefully monitor the effects of CSC-
based vaccines on normal stem cells.  

15.6     Current Vaccination 
Strategies 

 HPV-associated HNSCC may be prevented by 
the existing prophylactic HPV vaccines or treated 
by vaccines designed to induce an appropriate 
antitumor immune response against HPV-specifi c 
tumor antigens [ 11 ,  12 ]. Prophylactic HPV vac-
cines have been developed via virus-neutralizing 
antibodies targeting the L1 capsid antigen. 
However, this capsid protein is not expressed in 
persistently HPV-infected basal epithelial cells 
and transformed cells in infected mucosa and is 
therefore useless for therapeutic vaccination. 
Accordingly, prophylactic vaccines have not 
shown any therapeutic activity [ 90 ]. Thus, vac-
cines with therapeutic potential must target the 
two HPV oncogenic proteins, E6 and E7, as anti-
gens that are important in the induction and 
maintenance of cellular transformation and are 
co-expressed in the majority of HPV-associated 
carcinomas. Peptide vaccination in patients with 
cervical cancer as well as HNSCC is still under 
investigation but generally has failed so far. 
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 p53 may serve as a model antigen for the 
development of broadly applicable antitumor 
vaccines in HNSCC. In vitro stimulation of CD8 +  
T cells with wt p53 peptide-pulsed autologous 
DCs can be used to induce either HLA-A2- 
restricted, wt p53 149–157  and/or wt p53 264–272  
peptide- specifi c responses from epitope-specifi c 
precursors. Interestingly, using these single epit-
opes, wt p53 peptide-specifi c CD8 +  T cells were 
generated in only a third of healthy donors or 
subjects with cancer [ 21 ]. Others have reported 
comparable fi ndings [ 91 ,  92 ]. The limited respon-
siveness of healthy donors may be explained by 
negative thymic selection of T cells with recep-
tors specifi c for self-antigens. It can be expected 
that especially T cells with high-affi nity  receptors 
are eradicated. The observed limited responsive-
ness to HLA class I-restricted wt p53 peptides 
among HLA class I-compatible healthy donors 
and subjects with cancer suggests that multiple 
wt p53 peptides are needed in order to maximize 
donor responsiveness. The underlying causes can 
only be suspected and may partly be due to the 
mechanisms of tumor immune evasion discussed 
above. Since it may prove diffi cult to determine 
the responsiveness pre-vaccination in an individ-
ual case, a vaccine consisting of more than one 
epitope may be the more promising approach. 

 Despite the current immune-based therapy for 
HNSCC, which is using bulk tumor masses with 
heterogeneous populations of cancer cells as a 
source of antigen either to generate effector T 
cells or to prime DC vaccines, the inability to tar-
get CSCs may be a signifi cant factor for treat-
ment failures. Therefore, CSC-targeted 
vaccine-based immunotherapy should be 
included in the current investigation.  

15.7     Concluding Remarks 

 The rapid progress in understanding the molecu-
lar biology of malignancies of HNSCC has not 
been matched by impressive progress in cancer 
therapies. Therapeutic strategies should consider 
that HNSCC has at least two distinct etiologies 
with HPV-related and HPV-unrelated cancer. 
Both etiologies will differ signifi cantly in the 

antigenic makeup of the tumor cells based on the 
presence of self or viral antigens, respectively. As 
a result, immunotherapeutic approaches should 
aim at induction of adequate antigen processing 
and presentation by the tumor cells to become 
visible for the immune system as target. 
Furthermore, tumor-induced immune dysregula-
tion should be redirected in favor of tumor rejec-
tion, and fi nally an adequate stimulation of 
effector T cells capable of  in vivo  expansion and 
survival in the tumor microenvironment is 
thought critical for improving clinical results. In 
addition, by the identifi cation of the human CSC 
compartment, studies indicated that CSCs could 
potentially be specifi cally identifi ed and targeted. 
It will be necessary to develop new strategies to 
target the CSCs to improve the outcome of those 
individuals with HNSCC.     
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16.1            Introduction 

 The development of oral cancer and the process 
of malignant cell transformation have to be con-
sidered in context with immunosuppressive 
mechanisms and relevant effector cells sup-
pressed in their function [ 1 ]. Therefore, one of 
the objectives of immunological interventions is 
activation of effective mechanisms such as matu-
ration of dendritic cells (DCs) [ 2 ,  3 ]. There is 
some evidence that mistletoe lectins stimulate 
maturation and activation of DCs [ 4 ,  5 ], possibly 
inducing cytotoxic effects [ 6 ]. Lymph node 
metastasis is seen in accordance with the inabil-
ity of DCs due to the undifferentiated tumor to 
maturate, hence providing a peripheric kind of 
tolerance. PHA reactivity is serving as an impor-
tant factor for DC maturation [ 7 ,  8 ] and mono-
cytes which are considered the early stages of 
DCs and stimulated to maturize by transducing 
factors. In general, mistletoe therapy in oncol-
ogy has to be considered in a very careful 
approach [ 9 ]. The cytostatic effect of mistletoe 
lectins in individually cultivated oral cavity car-
cinoma stem cells is well documented since long 
time ago [ 10 ]; however, it needs some differen-
tiation [ 11 ]. A systemic review on controlled 
clinical trials using mistletoe in cancer has been 
published by Kienle and co-workers [ 12 ]. There 
are some data showing that extracts from Viscum 
and Crataegus are cytotoxic against larynx can-
cer cells [ 13 ], demonstrating the infl uence of 
complimentary  Viscum album  administration on 

        H.-R.   Metelmann ,  MD, DDS, PhD      (*) 
   F.   Podmelle ,  MD, DDS    
  Department of Oral and Maxillo-Facial 
Surgery/Plastic Surgery ,  Greifswald University , 
  Ferdinand-Sauerbruch- Strasse DZ , 
 Greifswald   17475 ,  Germany   
 e-mail: metelman@uni-greifswald.de   

    T.   von   Woedtke ,  PhD    
  Department of Plasma Medicine , 
 Leibniz Institute for Plasma Science 
and Technology, INP Greifswald e.V. , 
  Felix-Hausdorff-Str. 2 ,  Greifswald   17489 ,  Germany     

    K.   Masur ,  PhD   
  ZIKplasmatis ,  Leibniz Institute for Plasma Science 
and Technology, INP Greifswald e.V. , 
  Felix-Hausdorff-Str. 2 ,  Greifswald   17489 ,  Germany    

    P.   Hyckel ,  PhD em, MD, DMD    
  Department of Oral and Maxillo-Facial 
Surgery/Plastic Surgery ,  Jena University , 
  Erlanger Allee 101 ,  Jena   07749 ,  Germany    

  16      Immunotherapy 
and Immunosurveillance of Oral 
Cancers: Perspectives of Plasma 
Medicine and Mistletoe 

           Hans-Robert     Metelmann     ,     Thomas     von     Woedtke    , 
    Kai     Masur    ,     Peter     Hyckel     , and     Fred     Podmelle    

Contents

16.1  Introduction .................................................  313

16.2  Trapping an Advanced Squamous 
Cell Carcinoma of the Tongue 
by Continuously Repeated 
Peritumoral Injection 
of Mistletoe Preparation .............................  314

16.3 Concluding Remarks ..................................  317

References ...............................................................  317

mailto:metelman@uni-greifswald.de


314

microcirculation and immune system of ear, 
nose, and throat carcinoma patients treated with 
radiation and chemotherapy [ 14 ]. Steuer-Vogt 
and co- workers [ 15 ] have published a random-
ized controlled clinical trial, concerning the 
effect of an adjuvant mistletoe treatment pro-
gram in resected head and neck cancer patients. 
However, there is only a single report in the lit-
erature that is presenting a trapping effect of 
mistletoe injections on an advanced oral cavity 
carcinoma of a patient that did not receive any 
other tumor treatment at all [ 16 ].  

16.2     Trapping an Advanced 
Squamous Cell Carcinoma 
of the Tongue by 
Continuously Repeated 
Peritumoral Injection 
of Mistletoe Preparation 

 A 66-year-old Caucasian man presented to his 
doctor in May 2007 with the complaints of itch-
ing and burning at the lower tongue while drink-
ing juices, attacks of night sweat, and signs of 
listlessness. Bad smell of the breath was present 
(foetor ex ore). 

 The local examination and MRI scan showed 
an exophytic tumor at the base of the tongue with 
palpable and massively enlarged lymph nodes on 
both sides of the neck (Fig.  16.1 ). Histological 
examination of the tumor area revealed a poorly 
differentiated squamous cell carcinoma with a low 
tendency of keratosis. Summarizing all the fi nd-
ings demonstrated a carcinoma of the oropharynx 
and hypopharynx at the dorsal border of the right 
side of the tongue in stage cT 4a–b , cN 2b , cM 0 .  

 The patient refused any kind of surgery or 
radiotherapy, fearing the side effects and compli-
cations. Following a series of consultations with 
several oncologists and head and neck surgeons, 
the patient fi nally agreed to take a treatment pro-
tocol combining peritumoral injections of a mis-
tletoe preparation (abnobaVISCUM Abietis 
0.2 mg) every 2 weeks, applied by a specialist in 
maxillofacial surgery at the university hospital in 
combination with injection of additive compo-
nents (Silicea Comp-Wala) applied by a medical 

practitioner and specialist in advanced cancer 
treatment. This fourth-line treatment (being sur-
gery, radiotherapy, and cytostatic chemotherapy, 
the three main lines of cancer therapy in the head 
and neck area) was started in November 2007. 

 As an absolutely surprising result and against 
the expectations of the treating medical doctors 
but fully in line with the conviction of the patient, 
the tumor has stopped its growth since November 
2007 and presented reduction of size. Comparing 
the MRI of May 2008 and January 2009 
(Fig.  16.2 ), lymph node metastasis at the neck 
site does not show any progressive disease, and 
even the primary tumor at the tongue is becoming 
smaller. The histological examination of the pri-
mary tumor (May 2009) is presenting squamous 
carcinoma cells imbedded in major epithelial 
cells together with some spots of keratinizations 
and surrounded by a local infl ammatory reaction 
(Fig.  16.3 ). The general condition of the patient 
at this time is excellent. There is no weight loss. 
The patient is continuously active in his normal 

  Fig. 16.1    MRI scan, horizontal layer at the level of the 
basis of the tongue, presenting the tumor area at the right 
site and a group of lymph nodes at the left side of the 
hypopharynx (May 2008)       
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social life. The situation might be described from 
a clinical point of view as trapping of a tumor 
disease by nothing else than peritumoral injec-
tions of mistletoe preparations.   

 With the tumor of the tongue still in partial 
remission, the patient is presenting in June 2009 a 
second malignant tumor, now located within the 
right kidney. Retrospective investigation of previ-
ous MRT imaging is revealing that in May 2007, 
there was already a tiny irregularity visible at the 
site of the now second tumor that remains without 
histological specifi cation, since the patient is 
refusing taking a biopsy. Further treatment follows 
continuously the protocol of peritumor injections 
of mistletoe preparations intraorally. By applying 
this method, the tumor of the tongue is still under 
control. The second tumor in the area of the kidney 
not treated by peritumor injections is rapidly grow-
ing, limiting the survival of the patient. 

 The impact observed in this case seems to be 
caused by a concentration of mistletoe lectins in 
the tumor periphery. Braun and co-workers [ 17 ] 
have published that mistletoe lectins in low doses 
do not provoke and increase secretion of TNF 
alpha and IL6. However, cytotoxic concentra-
tions however do exactly this on a very signifi -
cant level, leading to the assumption that placing 

  Fig. 16.2    MRI scan, horizontal layer at the level of the 
basis of the tongue, presenting the tumor area at the right 
side and a group of lymph nodes at the left side of the 
hypopharynx with signs of fi brosis of tumor and lymph 
node area (January 2009)       

  Fig. 16.3    Histological 
result of mistletoe injection 
(HE staining)       
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the mistletoe lectins peritumorally has provoked 
exactly this cytotoxic effect. A peritumoral con-
centration of mistletoe lectins is not achievable 
by application p.o., because the substances are 
not stable and absorb badly within the gastroin-
testinal system [ 18 ]. 

 Since the development of immature DCs is 
bound to P13K/Akt expression, it is interesting to 
raise the question whether the instillation of mistle-
toe preparations makes sense in highly differenti-
ated small tumors in terms of prophylactic support, 
since in cases of a non-disturbed immune system, 
additional maturation of the DCs might lead to a 
limited surgical treatment, due to the treatment 
recommendations in context with PHA reactivity 
published by Hyckel and co-workers [ 19 ]. This 
case study impressively supports the hypothesis 
of immunosurveillance [ 20 ,  21 ]. Mistletoe leads to 
the upregulation of IL12 and TNF alpha in macro-
phages [ 22 ]. IL12 and TNF alpha expressions are 
characteristic for the classically activated or M1 
tumor-related macrophage (TAM) related to tumor 
rejection [ 23 – 25 ]. In contrast, tumor progression 
is associated with the occurrence of M2 macro-
phages. The immunosuppressive reactivity of M2 
macrophages corresponds to a reduced response 
to mitogens, e.g., PHA [ 19 ]. The hypothesis of 
the therapeutic effect of mistletoe: application of 
a switch from tolerogen M2 to proinfl ammatory 
M1 macrophages is induced [ 26 ] by peritumoral 
mistletoe. As a result of M1 activation, there is a 
maturation of DCs leading to tumor antigen pre-
sentation and subsequently to a suppression of 
tumor growth and metastasis (Fig.  16.4 ). In con-
clusion, the impact of mistletoe extracts injected 
in the periphery of the tumor might be explained 
as the activation of macrophage polarization (M1). 
Maturation of DCs is going along with an induced 
cytotoxicity and the performance of antigen pre-
senting cells.  

 As part of the interactions between epithelial 
cells and mesenchymal cells in the periphery of 
the tumor, the ongoing growth of tumor is lim-
ited. Lymph node metastasis maturation of DCs 
is cutting of further spread of carcinoma cells 
that is otherwise only possible under the infl u-
ence of immature DCs, known as tolerance in 
the  periphery [ 27 ]. Since lymph node metastases 

limit  themselves by central necrosis, additionally 
leading to the reduction of PHA reactivity (lec-
tin activity) [ 19 ], further development of lymph 
node metastasis has a poor basis [ 28 ]. 

 Concerning immunology and immunotherapy 
of oral cavity carcinoma, there is so far no clini-
cal basis for standard interventions with the aim 
to inhibit tumor growth. Hoffmann and Schuler 
have reviewed current studies in patients with 
head and neck squamous cell carcinoma includ-
ing vaccination, virus injection, and stimulation 
of epidermal growth factor receptors [ 1 ]. The 
authors conclude that some vaccination strategies 
are regarded as most promising or are resulting in 
a positive clinical response of vaccinated patients. 

 However, there is a new promising technology 
on the horizon in order to manipulate cell activi-
ties. Physical cold atmospheric-pressure plasmas 
(partially ionized gases close to body temperature) 
are able to infl uence cells on a molecular level. 
Bekeschus and co-workers used an argon- based 
plasma to investigate the plasma effects on immune 
cells isolated from human blood and found a treat-
ment time-dependent increase in apoptotic cells 
[ 29 ]. The plasma device named kINPen (neoplas 
GmbH, Greifswald, Germany) is a bullet-type 
atmospheric-pressure argon plasma jet in MHz 
operating regime [ 30 ]. By applying this argon 
plasma, Bekeschus and co- workers showed that 
PHA-pretreated human PBMCs display a signifi -
cant higher survival rate than non-stimulated 
immune cells – while  surviving cells still displayed 

  Fig. 16.4    A hypothetical pattern of change of immuno-
phenotype forced by the treatment       
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unchanged ability to proliferate [ 29 ]. However, 
there was also a cell-type- specifi c difference 
between the investigated PBMC subtypes. This is 
in accordance with another study using a different 
type of plasma source developed at the INP 
Greifswald, Germany. Haertel and co-workers 
[ 31 ] also found different sensitivities of plasma-
treated mononuclear cells isolated from rat spleen 
(without PHA stimulation). For this study, surface 
dielectric barrier discharge plasma using atmo-
spheric air as working gas has been used. It has to 
be clarifi ed in future studies whether these changes 
can be used to generate regulatory T cells to sensi-
tize immune cells or to modify homing of lympho-
cytes [ 31 ]. On the other hand, Schmidt and 
 co- workers showed that human skin cell activity 
was also altered on a transcriptomic level in a 
treatment time- and incubation time-dependent 
manner, when treated with an argon plasma gener-
ated by the plasma source kINPen [ 32 ]. Another 
study also using the kINPen device showed similar 
effects on human cancer cells. Partecke and co- 
workers have investigated the effect of argon 
plasma on the human metastatic pancreatic cancer 
cell line Colo-357 in an in vivo tumor chorioallan-
toic membrane (TUM-CAM) assay. TUNEL 
staining showed plasma-induced apoptosis up to a 
depth of tissue penetration of 48.8 ± 12.3 μm [ 33 ]. 
Therefore, all studies proofed a possible applica-
tion of different physical cold atmospheric- 
pressure plasmas – either working with air or 
noble gases – in order to manipulate the fate of dif-
ferent types of cells.  

16.3    Concluding Remarks 

 Continuously repeated peritumoral injection of 
mistletoe preparation is a novel method in the 
immunotherapy of oral cancers; nonetheless, fur-
ther studies are mandated to explore its various 
applications.     
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17.1             Introduction 

 Despite being grouped together and labeled “sar-
comas,” bone and connective tissue cancers rep-
resent a diverse, heterogeneous collection of 
tumor types. Their clinical behavior in terms of 
aggressiveness, risk for metastases, and response 
to therapies are equally diverse. Common to all 
sarcomas, however, is their potential ability to be 
recognized by the immune system. The principle 
of immune-mediated antitumor responses has 
long been recognized, and the current fi eld has 
evolved to leverage the immune system in both 
preclinical and clinical settings. Novel approaches 
to sarcoma treatment that utilize the immune sys-
tem are actively being explored.  

17.2     Coley’s Toxin and Toll-Like 
Receptors 

 William B. Coley is referred to as the “Father of 
Immunotherapy” for his pioneering and innova-
tive treatment of sarcoma. Observing that patients 
with metastatic bone sarcoma had few treatment 
options, he scoured the literature and found a 
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connection between bacterial infection and tumor 
regression. In particular, he noted that high fever 
due to erysipelas infection was followed by an 
unexpected regression of tumor burden in several 
patients with sarcoma. Convinced that severe 
infection could induce regression of cancer, in 
1891 he injected patients with streptococcal 
organisms in order to induce a tumor response. 
Although two of his fi rst three patients died of 
sequelae from infection, there was noted shrink-
age of their malignant tumors [ 1 ]. By 1893 Coley 
had treated ten patients with a heat-killed strepto-
coccal organism combined with a second organ-
ism:  Serratia marcescens . This combination 
became known as Coley’s toxin [ 2 ]. Over the 
next 20 years, Coley’s toxin was used to treat 
patients with inoperable sarcomas. Treatment 
with Coley’s toxin grew out of favor due to 
unpredictable side effects and toxicities. His 
work was criticized as inconsistent with the use 
of different bacterial preparations and poor docu-
mentation and patient follow-up. Notably, over a 
thousand patients treated with Coley’s toxin 
demonstrated near-complete regression in almost 
half of the cases [ 3 ]. Despite these results, the use 
of Coley’s toxin was abandoned, and the use of 
radiation and chemotherapy became more promi-
nent for the treatment of sarcomas as they had 
predictable and controllable toxicities. 

 Concerning the mechanism of action, Coley’s 
toxin contained unmethylated deoxycytidyl- 
deoxyguanosine dinucleotides (CpGs), lipotei-
choic acid, and bacterial lipopolysaccharide 
(LPS), all of which have been shown to stimulate 
Toll-like receptors (TLRs) [ 4 ,  5 ]. TLRs are a type 
of binding pattern recognition receptor. As mem-
brane proteins expressed on immune cells such as 
macrophages and dendritic cells (DCs), they rec-
ognize structurally conserved molecules typi-
cally derived from microbes. These molecules, 
collectively referred to as pathogen-associated 
molecular patterns (PAMPs), include bacterial 
lipopolysaccharide (LPS), fl agellin, and unmeth-
ylated CpG DNA from bacteria and some viruses 
[ 6 ]. Additionally, TLRs recognize a variety of 
molecules released from stressed and/or dying 
cells referred to as damage-associated molecular 
patterns (DAMPs). DAMPs include heat shock 

proteins (HSPs), fi bronectin, and extracellular 
membrane proteins [ 6 ]. 

 TLR signaling activates the innate as well as 
the adaptive immune system. Activation results 
in an infl ammatory cascade with cytokine secre-
tion and immune responses including dendritic 
cell (DC) maturation, antigen presentation, and 
CD8 +  T-cell cytotoxicity [ 7 ]. These responses not 
only impede microbial infection but are also 
capable of generating an antitumor immune 
response [ 8 ]. Tumor cells evolve to evade immune 
detection and immune-mediated clearance. TLR 
activation of downstream immunologic processes 
may overcome tumor-induced immune tolerance 
and was the likely mechanism of Coley’s toxin 
success. 

 In response to TLR activation, macrophages 
secrete chemokines and proinfl ammatory cyto-
kines including TNF-α and interleukin-1β, trig-
gering local and systemic infl ammatory responses 
[ 9 ]. Dendritic cells secrete IL-12 and mature into 
antigen-presenting cells as part of the adaptive 
immune response [ 10 ]. Dendritic cells present 
antigens to lymphocytes as part of the adaptive 
immune response but also are capable of activat-
ing cancer-specifi c natural killer (NK) and NKT 
cells [ 11 ]. 

 TLR expression, however, is not limited to 
immune cell subsets as tumor cells express TLRs 
and activation may lead to tumor growth and 
immune evasion. Therefore, TLRs have the dual 
potential to mediate both anti- and pro- 
tumorigenic pathways [ 12 ]. Activation of TLRs 
on tumor cells can lead to upregulation of NF-κB 
signaling and antiapoptotic proteins. DAMP acti-
vation of TLRs on tumor cells leads to signaling 
cascades associated with the release of pro- 
angiogenic mediators, tumor-promoting growth 
factors, cytokines, and chemokines which recruit 
cellular inhibitors of the immune response [ 13 ]. 

 TLRs are expressed on a variety of cancer 
types and the behavior of TLR subtypes vary in 
different settings. Activation of one TLR on a 
particular tumor type may induce cell death, 
whereas stimulation of the same TLR on a differ-
ent tumor type might promote survival and/or 
induce proliferation. Identifying the optimal TLR 
agonist for cancer immunotherapy is not straight-
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forward and requires consideration of the down-
stream effects of TLR engagement on both 
specifi c tumor cells and immune cells within the 
tumor microenvironment. 

 TLR3 and TLR5 show the most promising 
results for eliciting direct antitumor effects, 
whereas TLR4, TLR7, TLR8, and TLR9 display 
primarily pro-tumor properties when directly stim-
ulated on tumor cells [ 14 ]. Currently TLR agonists 
approved by the FDA for use in cancer treatment 
include bacillus Calmette-Guerin (BCG), mono-
phosphoryl lipid A (MPL), and imiquimod. BCG is 
an attenuated strain of  Mycobacterium bovis , used 
to successfully treat bladder cancer. BCG stimu-
lates TLR2, TLR3, TLR4, and TLR9, leading to 
DC maturation in a TLR-dependent manner [ 15 ]. 
MPL is a component of lipopolysaccharide iso-
lated from  Salmonella minnesota , which acts as a 
TLR4 agonist with lower toxicity compared to 
LPS. MPL functions as a vaccine adjuvant and has 
been evaluated in several human clinical trials [ 16 ]. 
Imiquimod is a TLR7 agonist approved for the 
topical treatment of virally associated skin patholo-
gies as well as superfi cial skin cancers. As a TLR7 
agonist, imiquimod may be effective in a wide 
spectrum of tumor types and has demonstrated effi -
cacy in Kaposi’s sarcoma [ 17 ]. Table  17.1  summa-
rizes the known TLR agonists as well as existing or 
potential therapeutic agents. While the broad activ-
ity of TLR manipulation in sarcoma has therapeu-
tic potential, it is the identifi cation of unique 
sarcoma antigens which serves as the basis for con-
temporary and focused immunotherapy approaches 
as discussed below.

17.3        Sarcoma Antigens as Targets 
for Immunotherapy 

 Like other cancers, sarcoma cells possess unique 
tumor antigens that may serve as targets for 
immunotherapy strategies. Many of the current 
immunogenic tumor markers have been discov-
ered via serological analysis of recombinant 
cDNA expression libraries (SEREX). This assay 
is used to fi nd antigens that have elicited an 
immune response in their respective hosts [ 18 ]. 
The tumor antigen family of “cancer-testis anti-
gens” (CTAs) was originally discovered using 
this method and has several notable targets for 
immunotherapy. Well-known CTAs include 
NY-ESO-1 and the SSX and MAGE family of 

   Table 17.1    Summary of the known TLR agonists and 
existing or potential therapeutic agents   

 TLR  Ligand/agonist 
 Potential therapeutic 
agents 

 TLR1  Triacylated 
lipoproteins, 
lipoteichoic acid, 
peptidoglycans 

 PAM3CSK4 [ 93 ] 
 BCG 

 TLR2  Endogenous DAMPs 
(HSP, HMGB1, uric 
acid, fi bronectin, 
ECM proteins) [ 5 ] 

 PAM3CSK4 [ 94 – 96 ] 
 BCG [ 97 ] 
 HSP60 [ 98 ] 

 TLR3  Viral dsRNA, 
synthetic analogs of 
dsRNA 

 Poly-I:C [ 99 ] 
   Ampligen (AMP- 

516) [ 100 ] 
 IPH3102 [ 101 ] 
 Poly-A:U [ 102 ] 

 TLR4  LPS, various 
DAMPs [ 5 ] 

 Eritoran [ 103 ] 
 BCG [ 97 ] 

 TLR5  Bacterial fl agellin  Flagellin, CBL502 
[ 104 ] 

 TLR6  Diacylated 
lipopeptides and 
endogenous DAMPs 
(HSP, HMGB1, uric 
acid, fi bronectin, 
ECM proteins) 

 MALP-2 [ 105 ,  106 ] 
 CBLB613 [ 107 ] 

 TLR7  Viral ssRNA  Imiquimod [ 108 ] 
 Imidazoquinoline 
852A [ 109 ] 
 IPH 3201 [ 110 ] 
 SC-1, SC-2 [ 111 ] 

 TLR8  Viral ssRNA  Imiquimod [ 108 ] 
 IPH 3201 [ 110 ] 
 SC-2 [ 111 ] 

 TLR9  Unmethylated CpG 
DNA from bacteria 
and viruses [ 5 ,  93 ] 

 BCG 
 CpG-ODNs [ 112 ] 
   IMO-2055 [ 113 ] 
   ISS1018 [ 114 ] 
   PF-3512676 [ 115 ] 

   BCG  bacillus Calmette-Guerin,  CPG ODN  CpG oligode-
oxynucleotides,  DAMPs  damage-associated molecular 
patterns,  ECM  extracellular matrix,  HMGB1  high- 
mobility group box 1,  HSP  heat shock protein,  LPS  lipo-
polysaccharide,  MALP - 2  macrophage-activating 
lipopeptide,  Poly - A : U  polyadenylic-polyuridylic acid, 
 Poly - I : C  polyinosinic-polycytidylic acid  
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proteins [ 19 ]. These proteins are grouped together 
into the subclass of CT-X genes as they are all 
located on the X chromosome and are preferen-
tially expressed in the testis as opposed to other 
normal tissues. Importantly, these proteins have 
been found to be expressed in a variety of malig-
nancies and have been associated with immune 
reactivity. These characteristics make this family 
of tumor antigens ideal targets of immune-based 
therapy, given its limited expression on normal 
tissues and degree of immune recognition. 

17.3.1     NY-ESO-1 

 One of the best characterized CTAs is NY-ESO-1, 
a 180 amino acid intracellular protein that also 
belongs to the CT-X familial subgroup which is 
normally only expressed on testis tissues [ 20 ]. As 
a CTA it is expressed sporadically on soft tissue 
sarcomas as well as other malignancies but has a 
high incidence of expression on synovial sarcomas 
as well as myxoid/round cell sarcomas [ 21 ,  22 ]. 
NY-ESO-1 is most frequently expressed heteroge-
neously within tumors but is known to be highly 
immunogenic. As evidence of its immunogenicity, 
NY-ESO-1-specifi c antibodies are frequently 
found in patients with corresponding antigen-
expressing tumors. In certain cancers it has been 
observed that as the stage of the disease increases, 
so does both the frequency and intensity of the 
immune response to NY-ESO-1. Despite the 
detection of antibodies, there has been no evidence 
that the presence of these antibodies confers a sur-
vival benefi t. However, when antibodies to 
NY-ESO-1 are detected, a higher likelihood of 
response to ipilimumab (a CTLA-4- blocking anti-
body discussed in proceeding sections) has been 
observed [ 23 ]. Whether or not this is due to an 
enhanced immune response due to ipilimumab or 
if antibodies to NY-ESO-1 serve as a marker for a 
response has yet to be determined.  

17.3.2     SSX 

 The pathognomonic characteristic of synovial 
sarcoma is a specifi c translocation between SYT 

(synovial sarcoma translocation) gene, currently 
also known as SS18 (synovial sarcoma gene of 
chromosome 18), and SSX (synovial sarcoma X 
chromosome breakpoint) [ 24 ]. There are now 
over ten known members of the SSX gene fam-
ily; however, only SSX 1, SSX2, and SSX4 are 
known to occur in the setting of synovial sar-
coma with translocations of SSX 1 and SSX2 
representing the majority. This mutation occurs 
in greater than 95 % of all synovial sarcomas and 
as such this mutation can be utilized to help con-
fi rm the diagnosis [ 25 ]. Generally, the last 8 
amino acids of SYT are replaced by the 78 amino 
acids from the C-terminus end of SSX to gener-
ate the fusion protein SYT-SSX [ 26 ]. While SYT 
overexpression alone does not lead to tumor for-
mation, this specifi c combination with SSX does 
lead to activation and subsequent tumor forma-
tion [ 27 ]. Unfortunately, expression of SSX is 
seen intensely in only a subset of tumor cells 
with the majority of cells having little or no 
expression. Despite this, given the immunoge-
nicity of SSX, it remains a potential target for 
immunotherapy.  

17.3.3     ALK 

 Anaplastic lymphoma kinase (ALK) is a receptor 
tyrosine kinase (RTK) and was fi rst described as 
an oncogene in 1994 in anaplastic large-cell lym-
phoma [ 28 ]. It has since been found to have a 
high occurrence rate in infl ammatory myofi bro-
blastic tumors (IMTs) as well as sporadic asso-
ciation with other sarcomas including multiple 
forms of lipomatous tumors/sarcomas, alveolar 
rhabdomyosarcoma, Ewing sarcoma/primitive 
neuroectodermal tumors, leiomyosarcomas, and 
extraskeletal myxoid chondrosarcomas [ 29 ]. The 
relevance of ALK expression in non-IMTs is 
unclear, but there is an approximately 50 % inci-
dence of clonal rearrangement of the ALK gene 
in association with IMTs. Given the current 
enthusiasm for tyrosine kinase inhibitors (TKIs), 
ALK represents a promising target. The TKI 
crizotinib, which is a competitive inhibitor of 
both the ALK and MET tyrosine kinases, has 
been extensively evaluated in ALK-expressing 
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lung cancer but has also been reported as a 
 therapy for IMT [ 30 ]. However, similar to other 
TKIs, crizotinib treatment resistance appears to 
be a limiting factor [ 31 ].  

17.3.4     HHV8 

 The role of the immune system is clearly evi-
denced in Kaposi’s sarcoma (KS), a low-grade 
vascular neoplasm that involves the epithelium. 
From an epidemiologic standpoint, KS can be 
grouped into four forms: classic KS in elderly 
men of European Jewish or Mediterranean 
descent, endemic KS in Central and Eastern 
Africa not associated with HIV, iatrogenic KS in 
the setting of immunosuppression for organ 
transplantation, and epidemic/AIDS-KS [ 32 ]. 
Human herpesvirus 8 (HHV8), also known as 
Kaposi’s sarcoma herpesvirus (KSHV), is the 
causative agent for the development of KS; the 
rate of HHV8 infection directly correlates to 
the incidence of KS. 

 KS tumor cells arise from lymphatic endo-
thelial cells, with HHV8 playing a critical role 
in the neoplastic transformation of these cells. 
Several factors are upregulated by HHV8 
including vascular endothelial growth factor 
receptor 3, lymphatic vessel endothelial recep-
tor 1, latency-associated nuclear antigen, and 
podoplanin [ 33 ]. Additionally, activation of the 
phosphatidylinositol 3-phosphate kinase/Akt/
mammalian target of rapamycin pathway also 
plays a role in development of tumor formation 
[ 34 ]. Despite multiple upregulated genes, HHV8 
infection does not usually lead to development 
of KS in immunocompetent individuals. KS 
tumor cells are unique from other tumors in that 
they do not generate tumors in nude mice, nor 
will they grow  in vitro  as they require cytokines 
for continued growth [ 32 ]. In addition to these 
factors, host immunosuppression is a key com-
ponent to the development of clinical disease. 

 Initiation of highly active antiretroviral 
treatment (HAART) for HIV-associated KS or 
reduction of immunosuppression in organ-
transplanted patients can lead to regression of 
KS, likely by increasing immune system activ-

ity against HHV8 but also possibly by reducing 
HIV-associated infl ammation and associated 
cytokines. Initiation of HAART within the 
HIV population has been associated with a 
concurrent decrease in the incidence of 
KS. Prospective trials of HAART in patients 
with KS have shown decreases in both HIV and 
HHV8 viral loads and were subsequently asso-
ciated with regression of the KS [ 35 ,  36 ]. 
Recently, a trial of rapamycin in combination 
with HAART showed some increased effec-
tiveness in inducing a clinical response in KS 
tumors [ 34 ]. The use of antiviral agents, such 
as ganciclovir, may prevent the development of 
KS, but specifi c agents which take advantage 
of HHV8 once tumors are established are being 
explored [ 37 ].   

17.4     Preclinical Models 
of Immunotherapy 
for Sarcoma 

 The ability to treat sarcomas by taking advantage 
of TLR agonists or immune-targeting of sarcoma- 
associated antigens has been enhanced by the use 
of preclinical animal models. Several models 
exist with distinct advantages and characteristics 
that allow for the testing of novel immunotherapy 
strategies. The simplest and classic animal model 
for sarcoma is using established  in vitro  sarcoma 
cell lines and immunocompromised mice. Cells 
cultivated  in vitro  could then be transplanted 
either subcutaneously or implanted as an ortho-
topic xenograft [ 38 ]. While important work has 
been done using this model, it has inherent fl aws 
as the tumors develop without the selective pres-
sures of an intact host immune system and vari-
ous forms of immunotherapy are diffi cult or 
impossible to evaluate [ 39 ]. Additionally, serial 
passages of tumor cell lines in tissue culture can 
introduce mutations, favor cells that are capable 
of growing  in vitro , and represent cells from a 
diverse patient population. Finally, there are a 
myriad of interactions between the mouse stroma 
and the human tumor cells that can affect aspects 
of tumor progression and experimental 
treatments. 
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17.4.1     Methylcholanthrene (MCA) 

 The classic model for spontaneous induction of 
sarcoma in a murine model is the injection of 
3-methylcholanthrene (MCA), fi rst described in 
1943 by Gross [ 40 ]. Since that time, the complex 
mechanism of MCA-associated tumorigenesis 
has been elucidated. The process begins with the 
binding of MCA to cytochrome P450 and other 
enzymes [ 41 ]. The subsequent metabolites react 
with guanine, producing DNA adducts that lead 
to mutations in p53 [ 42 ]. MCA also becomes 
hydroxylated, ultimately forming a reactive car-
bonium ion that is highly mutagenic and carcino-
genic, with these mutations ultimately leading to 
the development of a spindle cell sarcoma. MCA 
has been applied to various strains of mice to 
establish multiple  in vitro  sarcoma cell lines, thus 
allowing a homogenous population of tumor 
cells to be examined repeatedly  in vivo . Since its 
fi rst description, this model has been used exten-
sively to further elucidate properties of soft tissue 
sarcomas. This model is characterized by the fact 
that the tumors which develop after administra-
tion of MCA are diverse and mimic clinical con-
ditions but may make immunologic experimental 
design more complicated. For tumor grafts estab-
lished by injection of an isolated, clonal cell line 
grown in culture, experimental design may favor 
immunologic therapy testing but have limited 
translation clinically.  

17.4.2     p53 and Nf1 

 In an effort to further defi ne the role of p53 in 
tumorigenesis, chimeric mice for wild-type and 
null p53 (p53 +/− ) were generated. When these chi-
meric mice were crossed, it was found that the 
majority of mice that were homozygous for mutant 
p53 developed spontaneous tumors, namely, lym-
phomas and sarcomas, by 6 months of age [ 43 ]. In 
this model it was noted that common tumors in the 
original strain of mice (i.e., lymphomas and tes-
ticular tumors) developed spontaneously in the 
p53 −/–  mice at a much younger age, leading to the 
conclusion that loss of p53 function accelerates 
the development of predisposed tumors. 

 Similarly, a murine model of neurofi bromato-
sis was attempted to be created; however, periph-
eral nerve sheath tumors were unable to be 
generated in the heterozygote model using the 
Nf1 gene. As germ line homozygosity (Nf1 −/− ) 
was found to be lethal at day 14 of gestation, a 
chimeric mouse model was generated that was 
partially composed of Nf1 −/−  [ 44 ]. These mice 
were then crossed with the p53 null mice to gen-
erate p53 −/+ ; Nf 1−/+ . Mice that had a loss of hetero-
zygosity (LOH) of only one of these genes 
survived for about 10 months. However, mice 
that lacked both functional copies of p53 and Nf1 
on chromosome 11 survived for only 5 months 
and had a much higher predisposition for the 
development of soft tissue sarcomas. The tumors 
that develop in these mice are consistent with 
malignant peripheral nerve sheath tumors and 
serve as a useful platform for preclinical 
experimentation.   

17.5     Undifferentiated 
Pleomorphic Sarcoma 

 Undifferentiated pleomorphic sarcoma (UPS), 
previously known as malignant fi brous histiocy-
toma (MFH), is a common soft tissue sarcoma 
with a high incidence of subsequent lung metas-
tasis. No specifi c cell line or genetic mutation has 
been identifi ed as the defi ning characteristic of 
UPS, and it is not known whether these tumors 
have a common cell line or if they represent a 
more diverse group of tumors arising from vari-
ous mesenchymal cells [ 41 ]. As such, an animal 
model that adequately recapitulates this disease 
has been diffi cult to generate. Given the known 
role of both the tumor suppressor gene p53 and 
the oncogene Kras in the oncogenesis of various 
sarcomas, a mouse model was made with condi-
tional mutations in both of these genes. 

 This model is based on the site-specifi c recom-
binase Cre, which removes DNA bracketed by the 
loxP sequence. Transcription of a gene can be 
 initiated by removing a stop sequence before 
the gene or the entire gene itself can be 
removed. In this instance, mice heterozygous for 
wild-type and mutant Kras (G12D) are used [ 45 ]. 
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A  loxP-stop- loxP sequence which normally pre-
vents the transcription of the mutant Kras is 
removed by Cre, thus allowing the transcription of 
the oncogene. These mice are also homozygous 
for loxP-p53- loxP. With administration of Cre, 
both p53 genes are removed. In this model  Cre  is 
delivered by injecting an adenovirus bearing  Cre  
(Ad-Cre), such that the fi nal result is that Kras is 
activated, while p53 is suppressed. 

 The Kras/p53 model allows tumors to develop 
at specifi c anatomic sites in a defi ned amount of 
time as tumors develop in 2–3 months at the site 
of the Ad-Cre injection. Additionally, these 
tumors resemble human UPS in that there is an 
incidence of lung metastasis in approximately 
50 % of mice. Compared to other animal models, 
tumors which arise most closely mimic human 
tumors and possess aggressive spontaneous met-
astatic potential.  

17.6     Clinical Applications 
of Immunotherapy 
for Sarcoma 

 To take advantage of unique tumor antigens and 
the animal models described previously, a basic 
understanding of tumor immunology is neces-
sary. To determine self from nonself, nucleated 
cells display type I major histocompatibility 
complexes (MHC I) and present a repertoire of 
cellular proteins. Immune surveillance by CD8 +  
T cells can detect nonself proteins in the context 
of MHC I by interactions with unique T-cell anti-
gen receptors (TCRs). TCRs confer specifi city 
for a particular target antigen and allow clonal 
expansion of CD8 +  T cells [ 46 ]. Activated CD8 +  
T cells differentiate into cytotoxic T-cell lympho-
cytes (CTL). Target cell destruction is then 
induced through the release of infl ammatory 
cytokines such as tumor necrosis factor (TNF) 
and interferon gamma (IFNγ), the induction of 
TNF-related apoptosis-inducing ligand (TRAIL), 
and cytotoxic degranulation which leads to 
perforin- mediated lysis as an adaptive immunity 
to intracellular infections [ 47 ]. By the expression 
of specifi c co-stimulatory molecules, antigen- 
presenting cells (APCs), such as DCs, are  capable 

of stimulating naive T cells to proliferate and dif-
ferentiate in response to antigens and are power-
ful tools for manipulating the immune system 
[ 48 ]. As clinical evidence of the potency of DCs 
to infl uence immune responses, a set of ten pedi-
atric patients with solid tumors underwent a DC 
vaccination protocol [ 49 ]. DCs were pulsed with 
tumor cell lysates and the immunogenic protein 
keyhole limpet hemocyanin, which generated 
signifi cant regression of multiple metastatic sites 
in one patient and stable disease in fi ve patients. 

 Unfortunately, tumor cells often lose MHC 
class I molecules from their cell surface, thereby 
escaping recognition by CD8 +  T cells [ 50 – 52 ]. 
While loss or downregulation of MHC I should 
lead to poorer clinical outcomes, results are 
mixed. When prognostic signifi cance of MHC I 
expression was analyzed, patients with osteosar-
coma and high expression of MHC class I showed 
signifi cantly better overall and event-free sur-
vival, but no prognostic signifi cance was found in 
patients with malignant fi brous histiocytoma 
[ 53 ]. In contrast, in patients with Ewing sarcoma 
family of tumors, downregulation or negative 
expression of MHC class I was associated with 
poorer survival [ 54 ]. 

17.6.1     Adoptive Cell Therapy 

 Adoptive cell therapy (ACT) harnesses a cancer 
patient’s own antitumor T lymphocytes, which 
are expanded  ex vivo  into large numbers. These 
expanded cells are then reinfused back into the 
patient to achieve an antitumor effect. ACT allows 
several opportunities for immune modulations 
that can feasibly be applied to any tumor, includ-
ing sarcoma, but have been most successfully 
applied to melanoma. Immune modulations 
include the selection of highly active, tumor- 
reactive lymphocyte cultures with optimal charac-
teristics, rapid expansion of  ex vivo  lymphocyte 
cultures which circumvent immune regulatory 
mechanisms and the potentially suppressive 
tumor environment, and host systemic immuno-
suppression prior to cultured lymphocyte infusion 
to further enhance activity [ 55 ]. The discovery 
that normal human lymphocytes can be  genetically 
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engineered to recognize cancer antigens and 
mediate cancer regression  in vivo  has opened 
opportunities for improving and extending the 
ACT approach to patients with a wide variety of 
cancer types [ 56 ]. The potential success of this 
approach for sarcomas has been evident for 
decades. In an early study, tumor-infi ltrating lym-
phocytes (TILs) from transplantable mouse sarco-
mas were cultured in high levels of IL-2 where 
they showed specifi c lytic activity toward the cog-
nate tumor cells  in vitro  and also mediated tumor 
regression when transferred into tumor-bearing, 
cyclophosphamide- conditioned mice [ 57 ]. 

17.6.1.1     Lymphokine-Activated 
Killers (LAKs) 

 In 1982, Grimm et al. demonstrated that IL-2 
could activate peripheral blood lymphocytes to 
generate lymphokine-activated killer (LAK) 
cells capable of lysing human tumor cell lines 
[ 58 ]. The culture of peripheral blood lympho-
cytes (PBLs) with IL-2 generates NK cells, non-
specifi c T cells, and LAKs. While there has been 
moderate success with decreased size and num-
ber of pulmonary sarcoma metastases in a 
murine model, the limited  ex vivo  expansion and 
the cytolytic activity  in vivo  represent signifi cant 
barriers [ 59 – 61 ]. The fi rst clinical study combin-
ing LAK cells and IL-2 was initiated by 
Rosenberg and colleagues in 25 patients with 
advanced cancer [ 62 ]. By the end of the 1990s, 
all published phase II and phase III randomized 
trials using LAK therapy in cancer showed a 
clinical response rate of about 15–20 %, not 
superior to IL-2 monotherapy or IL-2 combined 
with IFN-α [ 63 ,  64 ].  

17.6.1.2     Cytokine-Induced Killers 
(CIKs) 

 Cytokine-induced killer (CIK) cells are a heteroge-
neous population of effector CD8 +  T cells with 
diverse TCR specifi cities, possessing non-MHC- 
restricted cytolytic activities against tumor cells 
[ 65 ]. CIKs are generated by the addition of IFNγ 
and IL-1α to IL-2 in culture. Human CIK cells have 
been shown to have enhanced cytotoxicity and to 
proliferate more rapidly than lymphokine- activated 
killer (LAK) cells by both  in vitro  and  in vivo  stud-

ies. CIKs have been characterized as having a 
higher lytic activity when compared to LAKs, 
mainly due to the higher proliferation of CD3 + CD56 +  
cells and to the increased cytotoxic activity of TCR-
alpha/beta +  cells in CIK cell cultures [ 66 ].  

17.6.1.3     Natural Killers (NKs) 
 Natural killer (NK) cells are lymphocytes important 
to the innate immune responses, especially against 
bacteria and viruses. Unlike T or B cells, they do not 
require clonal expansion and differentiation and use 
cytokines to induce apoptosis. NKs are typically 
stimulated by distressed cells by the release of IL-12, 
IL-15, IL-18, and type I interferons, while MHC 
type I is often responsible for inhibition of NKs. To 
allow inhibition and activation of NKs, surface 
receptors such as Killer-cell immunoglobulin-like 
receptor (KIR) are used, as seen when MHC-
expressing cells suppress NK [ 67 ,  68 ]. The loss of 
MHC antigen expression in a mouse lymphoma and 
the loss of MHC in human tumors were fi rst recog-
nized in the 1970s, where 25–75 % of tumor cells 
had MHC downregulation or losses and normal cells 
remained expressive [ 69 ]. Based on their “missing-
self hypothesis,” Ljunggren and Kärre hypothesized 
that NKs could target and lyse lymphoma cells due 
to the absence of or reduced MHC expression [ 70 ]. 
Therefore, it is conceivable that NK cells function 
not only as part of the innate immune system but 
also in adaptive immune responses against tumors 
that lack MHC expression. 

 In the development of a novel pediatric ther-
apy, NKs collected from peripheral blood of 
healthy adult patients were sensitized with Ewing 
sarcoma, rhabdomyosarcoma, neuroblastoma, 
and osteosarcoma cell lines [ 71 ]. After  in vitro  
studies, Ewing sarcoma and rhabdomyosarcoma 
cells appeared to be sensitive to the cytotoxicity 
of expanded and activated NK cells. Interestingly, 
as another example of NK cell activity in human 
sarcomas, it was observed that the tyrosine kinase 
inhibitor imatinib showed clinical benefi t in gas-
trointestinal stromal tumors (GISTs) that lacked 
the mutant isoforms of KIT and PDGRF recep-
tors. It was found that imatinib acted on DCs to 
promote NK cell activation  in vitro  and  in vivo , 
where NKs generated an enhanced tumor 
response  in vivo  [ 72 ].  
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17.6.1.4     Engineered T Cells 
 Another approach to ACT involves genetically 
engineered T cells to express a specifi c tumor 
antigen-recognizing TCR. While several studies 
showed that transfer of TCR-engineered periph-
eral blood lymphocytes allowed recognition of 
tumor cells, these studies were mainly for the 
treatment of melanoma [ 73 – 75 ]. However, one 
unique study focused on sarcoma. NY-ESO-1, a 
cancer-testis antigen previously discussed, is 
expressed in 80 % of synovial cell sarcomas [ 76 ]. 
Using autologous T cells transduced against met-
astatic synovial cell sarcoma expressing 
NY-ESO-1, an objective clinical response was 
seen in four of six patients and a partial response 
lasting 18 months in one patient following adop-
tive transfer [ 77 ].  

17.6.1.5     Chimeric Antigen Receptors 
(CARs) 

 The production of T cells expressing chimeric 
antigen receptors (CARs) is a novel treatment for 
osteosarcoma [ 78 ]. CARs were generated to 
enable T cells to overcome mechanisms by which 
tumors escape from immune surveillance includ-
ing tumor cell MHC I downregulation or loss 
[ 79 ]. The structure of the CAR is comprised of an 
exodomain, typically derived from the antigen- 
binding portion of a monoclonal antibody linking 
the VH and VL domains to construct a single- 
chain fragment variable region. By doing so, 
CARs are highly targeted and allow antigen rec-
ognition even in tumors with MHC loss [ 78 ]. 
Using human epidermal growth factor receptor 2 
(HER2)-specifi c CARs to overcome low expres-
sion of HER2 in a locoregional and metastatic 
mouse model, these genetically modifi ed T cells 
demonstrated the ability to mediate regression of 
osteosarcoma tumors [ 80 ].   

17.6.2     Sarcoma Immunotherapy 
of the Future: CTLA-4 
and PD-1 Manipulation 

17.6.2.1     CTLA-4 
 Found on the surface of activated and regulatory 
T cells and located on chromosome 2q33 is cyto-

toxic T-cell lymphocyte antigen-4 (CTLA-4), 
also known as cluster of differentiation 152 
(CD152). While it is known that CD28 is an acti-
vator of T cells, CTLA-4 is a known inhibitory 
receptor. Both CTLA-4 and CD28 bind to CD80 
and CD86, also called B7-1 and B7-2 respec-
tively, on antigen-presenting cells. Early preclini-
cal testing in colon carcinoma as well as 
fi brosarcoma suggested that blockade of CTLA-4 
can lead to tumor cell recognition and elimina-
tion [ 81 ]. This led to successful clinical testing 
for metastatic melanoma where clinical responses 
were seen in 13–21 % of patients [ 82 ,  83 ]. 
Unfortunately, testing of anti-CTLA-4 monoclo-
nal antibodies for various other cancers has yet to 
be as successful. In an  in vivo  mouse lymphoma 
model, CTLA-4 blockade enhanced the priming 
of T cells from vaccination, but did nothing to 
prevent the tolerance to tumor cells [ 84 ]. 
Similarly, a recent phase II trial of a CTLA-4- 
blocking antibody in patients with synovial sar-
coma showed no clinical responses, nor was there 
a clinical benefi t of antitumor antigen serological 
responses [ 85 ]. While data are mixed regarding 
the use of CTLA-4 blockade and antitumor activ-
ity, it is possible that blockade alone may not be 
adequate for continued tumor control. 

 Combination therapies that include CTLA-4 
may have a greater clinical impact. In a mouse 
model of osteosarcoma, tumor lysate-pulsed 
DCs were used in combination with CTLA-4 
blockade [ 86 ]. This combination resulted in a 
reduced number of regulatory T lymphocytes 
with increased CD8 +  T lymphocytes within met-
astatic deposits. These fi ndings were associated 
with a reduction in metastases and improved 
survival. 

 Interestingly, CTLA-4 mutations have been 
related to increased risk of sarcoma development 
which further supports the critical role of the 
immune system. CTLA-4 +49G/A polymor-
phisms and GTAG haplotype are associated with 
increased risk of osteosarcoma when detected by 
polymerase chain reaction compared to controls 
in the Chinese population [ 87 ]. In addition, 
CTLA-4 +  49G/A polymorphisms appear to be 
associated with an increased susceptibility to 
Ewing sarcoma [ 88 ] in the same population.  
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17.6.2.2     PD-1 
 Programmed death-1 (PD-1) is another immune 
checkpoint located on T and B cells, NKT cells, 
activated monocytes, and DCs. Its ligands PD-L1 
and PD-L2, or B7–H1 and B7–H2, are expressed 
on APCs, tumor cells, and placental and non- 
hematopoietic cells that infi ltrate tumors [ 89 ]. 
PD-L1 is the principal ligand of PD-1, and its 
expression has been found on a variety of tumors. 
IFNγ has been reported to upregulate the expres-
sion of PD-L1 in tumor cells  in vitro . In preclini-
cal  in vivo  experiments, it has been shown that 
blockade of the PD-1 checkpoints during cellular 
adoptive immunotherapy increases IFNγ pro-
duced by T cells as well as PD-L1 tumor expres-
sion, leading to an improved antitumor response 
[ 90 ]. Similarly, blockade of PD-L1 during DC 
vaccination has been shown to have a better ther-
apeutic effect than DC vaccination alone by 
delaying tumor growth and prolonging survival 
times in a breast tumor-bearing hu-SCID model 
[ 91 ]. To determine synergy, dual blockade of 
PD-1 and CTLA-4 has resulted in the reversal of 
CD8 +  TIL dysfunction which led to tumor rejec-
tion in two-thirds of colon- and ovarian-bearing 
mice [ 92 ]. Currently, PD-1 blockade and its syn-
ergy with CTLA-4 blockade have yet to be exten-
sively evaluated in preclinical or clinical studies 
for the treatment of sarcoma but have a strong 
rationale for application.    

17.7     Concluding Remarks 

 Current understanding of the immune system 
combined with the identifi cation of novel anti-
gens expressed on sarcoma cells has created a 
renewed optimism for the immunotherapy of sar-
coma. Active and passive immunotherapy 
approaches have been recently reported and serve 
as a foundation for further clinical study. In the 
near future, immunotherapy may become a stan-
dard treatment modality for the treatment of bone 
and connective tissue cancers.     
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18.1             Introduction 

 The immunopathology of central nervous system 
(CNS) cancers is unique; hence, they pose vari-
ous challenges to designing effective immune- 
based therapeutic strategies. Considering the 
modest effi cacy of current CNS cancer treatment, 
developments in preclinical and early clinical 
investigations of immune-based therapies appear 
promising. Cancers of the brain, spinal cord, and 
surrounding structures are diagnosed in approxi-
mately 9–11 per 100,000 people in the United 
States per year and effect an age-adjusted mortal-
ity rate of 4.3 per 100,000 per year [ 1 ], under-
scoring the general lethality of these tumors. 
Current treatments are rarely curative and often 
aimed primarily at reducing short-term mortality 
while minimizing neurological morbidity. 
Generally, these tumors are treated through a 
combination of cytoreductive surgery, chemo-
therapy, and radiation therapy, although excep-
tions exist for particular tumors. These treatments 
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are largely nonspecifi c to cancer cells and there-
fore may be damaging to bystander neurological 
tissue while achieving only modest therapeutic 
benefi ts. For instance, in a recent series, treat-
ment of glioblastoma multiforme (GBM) with 
surgery, radiation therapy, and chemotherapy 
with temozolomide led to an overall 2-year sur-
vival in only 27 % [ 2 ]. The vital functions and 
poor resiliency of neurologic tissue and the often 
diffusely infi ltrating nature of CNS cancers pose 
a signifi cant challenge to current therapies. 

 Antineoplastic properties of the immune sys-
tem are well documented and known to be dys-
regulated in many human cancers, including 
those of the CNS [ 3 ]. Understanding the mecha-
nisms by which immune cells may prevent CNS 
tumor development or by which these cells may 
contribute to tumor-mediated immune evasion is 
of key importance to combat cancer on a cell- 
specifi c level. Appreciation of the distinct fea-
tures of immune activation and modulation 
within the CNS will be fundamental to the devel-
opment of any immune-based therapy for brain 
tumors. 

 This chapter provides an overview of the intri-
cacies of the immune system in the context of the 
CNS. The potential interactions between the 
immune system and a developing CNS tumor 
will be discussed. Additionally, some interesting 
immunotherapeutic approaches currently under 
development in the setting of CNS cancer will be 
discussed.  

18.2     Antitumor Mechanisms 
of the Immune System 

 Generally, antitumor immune surveillance is 
thought to occur in three different circumstances. 
First, eradication of pathogens that cause chronic 
infl ammation is believed to prevent the develop-
ment of some cancers. The proposed explanation 
for this principle involves the infl ammatory 
milieu, which contains free radicals and geno-
toxic agents that act as carcinogenic stimuli. 
Barricaded as a sterile space, immune mediators 
of the CNS are not routinely exposed to patho-
gens. Nevertheless, evidence from parenchymal 

infection or infarction and from autoimmune dis-
ease such as multiple sclerosis demonstrates the 
capacity to initiate classical infl ammatory cas-
cades within the CNS upon exposure to patho-
gens [ 4 ,  5 ]. Second, control of oncogenic viral 
infections through Cytotoxic T lymphocytes 
(CTLs) and natural killer (NK) cell immunity is 
key to prevention of viral induced transforma-
tion. Examples of viral induced cancers include 
some lymphomas caused by Epstein-Barr virus 
[ 6 ] and cervical carcinoma caused by papilloma 
virus [ 7 ]. Regarding CNS tumors, this principle 
may be relevant in the context of cytomegalovi-
rus (CMV), which is hypothesized to underlie the 
development of gliomas. This highly controver-
sial hypothesis is mainly supported by associa-
tion studies, none of which have provided 
scientifi c evidence of causality. One of the most 
notable reports founding this hypothesis consists 
of a study in which CMV antigens were detected 
in glioma tissue specimen [ 8 ]. Lastly, CTLs and 
NK cells are capable of recognizing and elimi-
nating tumor cells that overexpress developmen-
tal or tumor-specifi c antigens derived from 
cancer-related genetic alterations. Accumulating 
evidence suggests that immune mediators are 
capable of eliciting this mechanism for combat-
ing CNS cancers. Yet, additional evidence sug-
gests that these effector immune cells are limited 
in doing so, that there is a scarcity of tumor anti-
gens capable of being specifi cally recognized, 
and that these effector cells are overcome by 
tumor-derived immunosuppressive infl uences. A 
focus of ongoing CNS cancer immunotherapeu-
tic research is the investigation of the limitations 
to antitumoral immunity and the design of strate-
gies to enhance it.  

18.3     Immune Compartment 
of the CNS 

 In the past, the CNS was perceived to possess 
little immunologic potential to resist tumor devel-
opment [ 9 ]. 

 This idea was based on a perceived lack of 
specialized antigen-presenting cells (APCs), 
restriction from circulating lymphocytes and 
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other immune mediators by the blood-brain 
 barrier (BBB), and absence of lymphatic drain-
age in the CNS. However, evidence accumulated 
over the last 20 years has largely debunked this 
view of the CNS by demonstrating distinct 
immune activation cascades in response to cere-
bral ischemia, traumatic brain injury, and autoim-
mune diseases such as multiple sclerosis [ 5 ,  10 ]. 
In each of these pathological states, immune 
competence is contingent upon the activation of 
resident microglia and infi ltrating macrophages 
capable of effective antigen presentation and 
lymphocyte activation, all permissible through 
inducible permeability of the BBB to leukocytes 
and immune mediators [ 4 ,  11 ]. Activated microg-
lia have been shown to phenotypically resemble 
both macrophages and dendritic cells (DCs), 
capable of presenting antigens and activating 
T-cell lymphocytes [ 12 ]. Following activation, 
CNS APCs are capable of returning to the sys-
temic circulation through drainage via perivascu-
lar Virchow-Robin spaces and the nasal mucosa 
as conduits to cervical lymph nodes [ 13 – 15 ]. 
Subsequently, both activated and naive T cells 
responding to chemotactic signals have been 
shown to traverse the BBB and engraft into sites 
of infl ammation [ 16 ]. Activated T cells remain in 
the CNS, as demonstrated in tumor extracts from 
multiple CNS cancer types which display tumor 
antigen-specifi c CTLs and helper T cells capable 
of tumoricidal immune function  in vitro  [ 17 – 19 ]. 
Additionally, circulating CNS antigen-specifi c 
antibodies and CTLs have been isolated from the 
peripheral blood of patients with CNS cancer, 
further indicating the potential for competent 
tumor-specifi c responses within the CNS [ 20 , 
 21 ]. 

 On the other hand, opposing immunosuppres-
sive phenomena have been described in the set-
ting of CNS cancer. A series of reports have 
demonstrated anergy and apoptosis following 
TCR stimulation in CNS cancer-infi ltrating T 
cells (reviewed in [ 18 ]), as well as an overwhelm-
ing presence of suppressive regulatory T cells 
(Tregs) within high-grade CNS tumors (reviewed 
in [ 22 ]). Furthermore, tumor-infi ltrating macro-
phages have been shown to possess immunosup-
pressive and tumorigenic phenotypes in the 

setting of glioma [ 23 ,  24 ]. Understanding the 
forces driving lymphocyte activation  vs.  suppres-
sion following stimulation with tumor antigens 
within the CNS is imperative to the success of 
CNS cancer immune-based therapies.  

18.4     CNS Tumor-Derived 
Immunosuppression 

 Suppression of both CNS immune surveillance 
and activated tumoricidal immune cells by tumor 
cells is a fundamental feature of tumor develop-
ment. Unfolding evidence implicates many cel-
lular participants in this process, including 
resident microglia, peripherally invading macro-
phages, and lymphocytes, most notably Tregs. 
Interactions among these players are believed to 
underlie the state of generalized immunosuppres-
sion observed in many patients with CNS can-
cers, likely extending systemically from the 
potently immunosuppressive local tumor micro-
environment at the interface of tumor and 
immune cells. A brief overview of the main cel-
lular players for CNS tumor-induced immuno-
suppression is provided here. 

18.4.1     Tumor Cells 

 Transformed cells are clear targets for CNS 
immune sentinels responding to the expression of 
aberrant or mutated antigens, as well as to cellu-
lar stress antigens which are associated with 
cancer- induced cell proliferation and stromal 
remodeling. These antigens activate immune sen-
tinel cells through stimulation of major histo-
compatibility complex (MHC) class I and II 
molecules, in coordination with co-stimulatory 
signals including B7 isoforms 1 and 2 (CD80/86) 
[ 25 ,  26 ]. As a principal means of evading tumori-
cidal immune activation, CNS tumor cells mark-
edly downregulate expression of both MHC I and 
II proteins. In malignant glioma, the most exten-
sively studied CNS cancer, an inverse correlation 
has been observed between the extent of MHC 
expression and tumor lymphocyte infi ltration. 
MHC expression demonstrated an inverse corre-
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lation with tumor grade [ 27 ], suggesting its 
downregulation as an immune-evasion mecha-
nism for tumor cells. Additionally, through a 
potent cocktail of secreted mediators, glioma 
cells induce the downregulation of co- stimulatory 
molecules B7-1 and B7-2 on both tumor cells and 
surrounding APCs, most notably tumor- 
associated macrophages (TAM), removing a nec-
essary signal for proper T-cell activation [ 28 – 30 ]. 
Furthermore, glioma cells can express immuno-
suppressive molecules such as the co-stimulatory 
molecule homologue B7-H1 [ 31 ], the expression 
of which is normally limited to Gemcitabine and 
carboplatin at the end of immune responses. 
B7-H1 expression has been demonstrated both 
on glioma cells themselves and on TAMs and 
functions to induce apoptosis in activated T cells 
[ 31 ,  32 ]. 

 Upregulation of secreted molecules and cell 
surface proteins by glioma cells also contributes 
to potent immunosuppression and tumor propaga-
tion. Among the most extensively documented are 
transforming growth factor beta (TGF-β), prosta-
glandin E2 (PGE2), Fas ligand (FasL), vascular 
endothelial growth factor (VEGF), epidermal 
growth factor (EGF), and the immunomodulatory 
cytokines IL-4, IL-6, and IL-10 (reviewed in 
[ 33 ]). TGF-β is also known to inhibit the develop-
ment and activation of APCs, repress activation of 
NKs, and prevent the activation and differentia-
tion of CTL [ 34 ]. PGE2 is associated with sup-
pression of T-cell activation and proliferation and 
has been demonstrated to induce the production 
of Tregs [ 35 ]. Among the main pathways mediat-
ing programmed cell death in a variety of effector 
immune cell types is the cell surface protein FasL, 
which has been detected on the surface of tumor 
cells isolated from gliomas, as well as in multiple 
CNS cancer cell lines [ 36 ]. Both microglia and T 
cells express its receptor, Fas, and therefore may 
be susceptible to the death signal provided by 
FasL expressed on CNS tumor cells. Indeed, mul-
tiple studies have demonstrated that FasL was 
responsible for the death of T lymphocytes when 
cocultured with glioma cells  in vitro  and that the 
downregulation of FasL on tumor cells enhances 
tumor infi ltration by T cells, reducing tumor 
growth  in vivo  [ 37 ]. Increased expression of the 

immunomodulatory cytokines IL-4, IL-6, and 
IL-10 has been demonstrated in high-grade glio-
mas, most notably GBM [ 38 ]; these cytokines 
limit infl ammation, reduce immune activation, 
and drive the expression of immunosuppressive 
mediators such as TGF-β and PGE2 [ 39 ]. 

 Recently, expression of indoleamine 
2,3- dioxygenase (IDO) in gliomas has been 
implicated in the recruitment of immunosuppres-
sive CD4 + CD25 + FOX-P3 Tregs and the subse-
quent ablation of antitumoral immunity. A series 
of  in vivo  experiments showed that IDO-derived 
Treg tumor infi ltration led to a decrease of CD8 +  
cytotoxic T-cell tumor infi ltration and, in con-
trast, IDO silencing on tumor cells led to an 
increase in CD8 +  tumor infi ltration and an 
increase in overall survival for mice bearing gli-
oma xenografts. Interestingly, Wainwright et al. 
demonstrated that tumor cell-specifi c expression 
of IDO, rather than peripheral expression of this 
enzyme, is critical for maintaining this immuno-
suppressive state [ 40 ]. IDO might have a clinical 
and translational therapeutic potential, as its 
expression correlates with tumor grade and has a 
negative impact on overall survival for patients 
with gliomas [ 40 ,  41 ]. 

 In addition to the mechanisms discussed 
above, cell-cell interactions might play a role in 
the complex local microenvironment involving 
tumor and immune cells, which are both potently 
immunosuppressive and tumorigenic [ 18 ].  

18.4.2     Glioma Cancer Stem Cells 

 Cancer stem cells (CSCs) are a heterogeneous 
group of undifferentiated tumor cells which pos-
ses an enhanced capacity for self-renewal, multi-
potency, and tumorigenicity at low cell numbers 
and during isolation [ 42 ]. 

 Some evidence suggests the implication of 
gCSC in tumor-mediated immunosuppression; 
gCSCs isolated from human glioma specimens 
and grown  in vitro  were shown to have reduced 
expression of MHC and co-stimulatory molecule 
expression but demonstrated high levels of 
expression of immune-inhibitory molecules [ 43 ]. 
Additionally, coculture experiments have shown 
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that gCSCs induced apoptosis of both naïve and 
activated T cells through secretion of galactin-3. 
In addition, gCSCs also inhibited phagocytosis 
and expression of tumor necrosis factor alpha 
(TNF-α) in macrophages through secretion of 
macrophage inhibitory cytokine 1 (MIC-1) [ 44 ]. 
Finally, gCSCs are believed to confer radiation 
and chemotherapeutic resistance [ 44 ,  45 ]. The 
near inevitability of glioma recurrence following 
standard treatments may result from recalcitrant 
gCSCs, which escape the therapeutic targeting 
and regenerate the parent tumor. Any therapeutic 
strategy designed to affect a lasting tumor remis-
sion should therefore target gCSCs.  

18.4.3     Tumor-Associated 
Macrophages/Microglia 

 Tumor-associated macrophages/microglia (TAMs) 
are the predominant infi ltrating immune cells in 
malignant glioma and can account for up to 40 % 
of the tumor cell mass [ 23 ]. Though phenotypi-
cally indistinguishable following activation, TAMs 
are derived both from resident CNS microglia and 
from bone marrow mononuclear cells that colo-
nize the CNS under pathological conditions [ 36 ]. 
A series of studies have shown that in the case of 
gliomas, TAMs under the infl uence of tumor cells 
can acquire a phenotype that contributes to the 
immunosuppressive and tumor- promoting local 
tumor microenvironment [ 24 ]. 

 Characterization of TAMs in glioma has led to 
delineation between classically activated infl am-
matory M1-type TAMs with tumoricidal poten-
tial and alternatively activated immunosuppressive 
M2-type TAMs, which are predominant in the 
CNS tumor microenvironment. Classically acti-
vated M1-type TAMs participate in the coordi-
nated response to immunogenic antigens 
primarily through production of proinfl ammatory 
and tumoricidal mediators such as NO, TNF-α, 
IL-1Β, and IL-12, upregulation of MHC and co- 
stimulatory molecules necessary for antigen pre-
sentation, and an overall enhanced ability to 
phagocytose pathogenic material (reviewed in 
[ 18 ]). Conversely, M2-type TAMs exert immune 
modulation through secretion of potent immuno-

suppressive mediators including IL-10, IL-6, and 
TGF-β. In addition to this cytokine cocktail, 
M2-type TAMs downregulate MHC and co- 
stimulatory molecules, show a decreased phago-
cytic capability, and upregulate the cell surface 
antigens FASL and B7-H1. The upregulation of 
these two molecules leads to the induction of 
anergy and apoptosis in effector T cells, which 
express Fas ligand. Thus, M2-type TAMs appear 
to play a role in the immunosuppressive environ-
ment seen on gliomas (Fig.  18.1 ).  

 Alternatively activated M2-type TAMs are the 
predominant immune cell type in malignant gli-
oma, and their presence has been shown to cor-
relate with histological grade [ 46 ]. A recent 
investigation revealed increased expression of the 
M2 markers CD163 and CD204 by TAMs in 
WHO grade IV gliomas, compared to WHO 
grades II and III gliomas [ 47 ]. The perverse 
polarization of TAM precursors, both resident 
microglia and peripheral derived monocytes, to 
the alternative M2 state is generally believed to 
occur as these cells encounter the myriad cyto-
kines, growth factors, and surface antigens of the 
tumor microenvironment. Among the factors 
implicated in the active recruitment and altered 
polarization of monocytes by CNS tumor cells, 
monocyte chemoattractant proteins 1 (MCP-1/
CCL-2) and monocyte colony-stimulating factor 
(M-CSF) are believed to drive local recruitment 
and proliferation of TAM precursors, while TGF- 
β, IL-4, IL-10, and IL-13 together orchestrate 
polarization to the alternative M2 phenotype [ 47 , 
 48 ]. Importantly, this polarization toward a M2 
TAM phenotype takes place in the absence of 
IFN-γ, a potent driver of the classical M1 pheno-
type [ 49 ]. 

 The absence of IFN-γ is likely due to the sup-
pression of its principle source, activated type 1 
T-helper cells (discussed below).  

18.4.4     Myeloid-Derived 
Suppressor Cells  

 Recent refi nements of the M1/M2 TAM charac-
terization scheme describe a more heterogeneous 
population of systemically distributed M2 
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 TAM- like myeloid-derived immunosuppressive 
cells at intermediate stages of maturation, which 
are able to suppress multiple phases of the 
immune response [ 50 ]. These myeloid-derived 
suppressor cells (MDSCs) have been shown both 
to perpetuate tumor-promoting microenviron-
ments and to distribute peripherally to hinder 
lymphocyte activation in immune organs. 
MDSCs are therefore implicated in the general 
systemic immunosuppression observed in 
patients with malignant gliomas [ 48 ]. Recent evi-
dence suggests that MDSC precursors must be 
exposed to the concentrated cocktail of immuno-
modulatory mediators and cell-cell interactions 
in the tumor microenvironment to become 

MDSCs [ 48 ]. These observations suggest that 
naïve monocyte traffi c to the tumor microenvi-
ronment, mature into immunosuppressive 
MDSCs, and then redistribute systemically [ 48 ]. 
Systemically circulating MDSCs present a poorly 
understood hurdle to remediating CNS cancer 
immune suppression. Their heterogeneous 
expression profi le and systemic distribution allow 
a potentially broad and widespread armament of 
immunosuppressive functions. If indeed these 
cells are generated by local tumor-derived factors 
of the microenvironment, as in the more clearly 
defi ned M2 TAM phenotype, then disabling the 
local “monocyte- educating” mechanisms of 
tumor cells may reduce the generation of MDSC.  
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  Fig. 18.1    Polarization of tumor-associated macrophages in glioma. Notice the distinct M1 and M2 phenotypes 
(Reprinted from Li and Graeber [ 18 ], with permission)       
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18.4.5     Lymphocytes and Regulatory 
T cells 

 Lymphocyte effector cells are major players in 
antineoplastic immunity, yet lymphocytes which 
traffi c to cancers of the CNS are disabled, repro-
grammed to immunosuppressive phenotypes, 
and subsequently permitted to remain within 
tumor through failure of natural anergic cell dele-
tion. As discussed above, the process of T-cell 
activation by APCs is severely hindered in CNS 
cancers by reductions in MHC and co- stimulatory 
molecules on both tumor cells and surrounding 
APCs and by the milieu of T-cell-deactivating 
mediators within the tumor microenvironment. 
NK cells are known to initiate deletion of T cells 
with reduced expression of MHC or co- 
stimulatory molecules, releasing TNF-α and 
IFN-γ (reviewed in [ 50 ]). This fail-safe mecha-
nism is believed to be disabled by the immuno-
suppressive milieu of the local tumor 
microenvironment, most notably by IL-10, and 
by activation of the NK cell inhibitory receptor 
KIR2DL through the ligand HLA-G, which is 
expressed on Tregs [ 51 ]. Through these mecha-
nisms, T lymphocytes that are polarized to immu-
nosuppressive phenotypes are permitted to 
remain within CNS tumors. 

 Ongoing research implicates Tregs as a major 
lymphocyte player in CNS tumor immune biol-
ogy. An increased systemic prevalence of Tregs 
among T cells has been observed in malignant 
glioma, consistent with their role in suppressing 
the immune rejection of neoplastic cells [ 52 ]. In 
addition, Treg infi ltration of brain tumors has 
also been demonstrated, and in the case of glio-
mas, the fraction of Treg correlates with tumor 
grade [ 52 ,  53 ]. These observations refl ect the sig-
nifi cant role Tregs play as a negative immune 
modulator of lymphocytes both within the tumor 
and peripherally in lymphoid organs, leading to 
immune evasion by tumor cells. 

 Investigation of the origin, recruitment, expan-
sion, and immunomodulatory effect of Tregs in 
malignant gliomas is an active effort within the 
tumor immunology fi eld. Recent evidence shows 
that T cells may be converted to CD4 + /Foxp3 + -
induced Tregs (iTregs) peripherally through 

exposure to APCs or suboptimal TCR stimulation 
in the presence of high levels of TGF-β, as is 
present in the tumor microenvironment [ 40 ]. 

 Both iTregs and thymus-derived natural Tregs 
(nTregs) have been shown to infi ltrate and prolif-
erate within CNS tumors. These cells migrate in 
response to tumor-secreted MCP-1, which binds 
CCR4, a receptor highly expressed on Tregs and 
their precursors [ 51 ]. The mechanisms by which 
Tregs elicit immunosuppression involve Foxp3- 
mediated expression of the immunosuppressive 
cell surface ligands glucocorticoid-induced 
tumor necrosis factor receptor (GITR), cytotoxic 
T-lymphocyte antigen (CTLA-4), and human 
leukocyte antigen G (HLA-G), as well as through 
the contribution of immunosuppressive cytokines 
TGF-β and IL-10 into the microenvironment 
[ 54 ]. This inhibitory signal replaces the stimula-
tory interaction between T-cell protein CD28 and 
APC co-stimulatory molecules B7-1 and B7-2 to 
prevent activation. HLA-G on placental cells has 
been shown to contribute immune tolerance in 
pregnancy by binding the KIR2DL receptor of 
NK cells, blocking activation in the presence of 
cells lacking MHC or co-stimulatory molecules. 
By this mechanism, Tregs are hypothesized to 
disable NK cell surveillance.   

18.5     STAT3 Pathway 

 As discussed, many soluble mediators and cell 
surface molecules expressed by tumor cells, 
TAMs, and Tregs participate to establish a 
potently immune-disabling microenvironment. 
Expression profi les across these various cellular 
players are similar, raising suspicion for unifying 
mediators of signal transduction or gene expres-
sion common to these shared phenotypes. Signal 
transducer and activator of transcription protein 3 
(STAT3), a transcription factor active in both 
glioma cells and TAMs, has been shown to infl u-
ence multiple immunosuppressive signaling 
pathways implicated in CNS tumor-induced 
immunosuppression [ 55 ]. 

 Furthermore, considering the myriad targets of 
STAT3 modulation, activation of this intracellular 
mediator may also augment CNS tumor 

18 Immunopathology and Immunotherapy of Central Nervous System Cancer



340

 angiogenesis and stromal remodeling [ 56 ]. STAT3 
activation in glioma TAMs is induced downstream 
of many mediators known to constitute the local 
microenvironment such as IL-10, IL-6, EGF, and 
FGF [ 57 ]. In both tumor cells and TAMs, STAT3 
decreases the expression of surface molecules 
necessary for antigen presentation such as MHC 
II, B7-1, and B7-2 and upregulates M2-specifi c 
immunomodulatory mediators including IL-10, 
EGF, VEGF, and various matrix metalloprotein-
ases (MMPs) (reviewed in [ 18 ]). Experiments 
blocking the activation of STAT3 in gCSCs cocul-
tured with allogeneic T-cell precursors demon-
strate reduced Treg differentiation and reduced 
overall T-cell apoptosis [ 58 ]. Therefore, STAT3 
may serve as a critical “molecular hub” linking 
multiple immunosuppressive pathways in CNS 
tumor cells and M2 TAMs. STAT3 target mole-
cules such as IL-10 and IL-6 have been shown to 
subsequently trigger STAT3 activation [ 59 ], lead-
ing authors to propose a feedforward mechanism 
of reinforced STAT3 activation, which may 
account for its constitutive activation in both gli-
oma cells and glioma- infi ltrating TAMs.  

18.6     Cytomegalovirus in Glioma 

 Accumulating evidence demonstrating an asso-
ciation between active human CMV infection 
and malignant glioma has inspired exciting inno-
vations to current treatment strategies. A recent 
investigation reported the presence of CMV- 
associated nucleic acids and proteins in over 
90 % of  ex vivo  GBM specimens analyzed. 
Neither HCMV-associated nucleic acids nor pro-
teins were present in surrounding normal brain 
specimens, and over 80 % of recently diagnosed 
GBM patients also demonstrated CMV DNA in 
peripheral blood samples [ 60 ]. Though CMV is 
known to infect 50–80 % of the American popu-
lation, effective immune control typically limits 
active disease to the immunosuppressed [ 61 ]. It 
remains unclear if the high prevalence of active 
CMV infection in glioma patients plays any role 
in tumor pathogenesis or if tumor growth simply 
provides an environment permissive of local 
reactivation and propagation of the virus. 

Regardless, the presence of CMV in these tumors 
may be important considering its known poten-
tial to modulate growth, invasiveness, and immu-
nological recognition of infected cells (reviewed 
in [ 62 ]). Indeed, active CMV infection has been 
shown in astrocytes to reduce expression of mol-
ecules necessary for antigen presentation, 
increase the expression of TGF-β and IL-10, and 
limit the susceptibility of infected cells to apop-
totic pathways [ 63 ,  64 ]. Elucidation of the impact 
CMV virus has on the immunosuppressive phe-
notypes of CNS tumor cells will require exten-
sive investigation. The presence of viral antigens 
specifi cally in tumor cells may allow for tumor 
cell-specifi c targeting through the use of CMV 
antigens in CNS tumor vaccines. If in fact active 
CMV activation contributes to cellular transfor-
mation or malignant behavior, then vaccination 
strategies against its antigens could additionally 
provide a functionally disabling therapy toward 
preventing recurrence.  

18.7     Immunoediting in CNS 
Cancer 

 As most human CNS tumor analysis is conducted 
on  ex vivo  specimens acquired from surgical 
excision following presentation of clinical defi -
cits, the data and conclusions may not be repre-
sentative of earlier stages of immune system and 
tumor interaction. Thus, whereas it is possible to 
study the immunosuppressive environment pres-
ent in a malignant tumor, the sequence of events 
that leads to this state remains obscure. The the-
ory of tumor immunoediting has emerged as a 
paradigm for understanding the dynamics of 
tumor progression and immunosuppression. The 
hypothesis proposes three distinct phases: an ini-
tial elimination, a period of equilibrium, and, 
fi nally, cancer cell immune escape [ 65 ] (tumor 
immunoediting is summarized in Fig.  18.2 ). Due 
to genetic instability and rapid proliferation, 
tumor cells are generated with different immuno-
genic antigens in a developing tumor. In the ini-
tial elimination phase, cytotoxic immune cells 
target and eliminate those cancer cells that are 
highly recognizable and lack immune-evasion 
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mechanisms, leading to the selection of poorly 
immunogenic and/or immunosuppressive tumor 
cells. Elimination is limited, and some tumor 
cells are not eradicated, either due to their anti-
genic or immunosuppressive-related gene expres-
sion profi le, allowing these cells to survive the 
initial immune surveillance and enter an equilib-

rium phase. In this phase, there is a dynamic bal-
ance between the antitumoral immunity and 
tumor cell expansion. During this long phase, 
there is no clinical tumor burden. The prolonged 
latency period during equilibrium is thought to 
constitute an editing state in which neoplastic 
cells that are susceptible to the host immunity are 

Transformed
cells

Elimination

Cancer Immunoediting

Tumor growth
promotion

Equilibrium

Tumor dormancy
and editing

Escape

Normal
tissue

“Danger”
signals Tumor

antigens
NKR

ligands

Intrinsic tumor suppression
(senescence, repair,

and/or apoptosis)

Carcinogens
Radiation

Viral infections
Chronic inflammation

Inherited genetic mutations

TGF-β
IDO

IL-6,IL-10
Galectin-1PD-L1

IL-12

IFN-γ

Antigen loss

CTLA-4

PD-1

CTLA-4

PD-1

MHC loss

Innate &
adaptive
immunity

Extrinsic tumor
suppression

Normal cell

Highly immunogenic
transformed cell

Poorly immunogenic
and immunoevasive
transformed cells

IFN-γ
IFN-α / β

IL-12
TNF

NKG2D
TRAIL

Perforin

  Fig. 18.2    Cancer immunoediting paradigm, highlighting the three proposed phases of immunoediting: elimination, 
equilibrium, and escape (Reprinted from Schreiber et al. [ 65 ], with permission of AAAS)       

 

18 Immunopathology and Immunotherapy of Central Nervous System Cancer



342

eradicated, and those that are not recognized are 
selected to survive. Finally, the escape phase 
occurs when those tumor cells that are not detect-
able or have developed mechanisms to avoid 
immune recognition are selected and grow into a 
symptomatic lesion (Fig.  18.2 ).  

 Considering the competence of immune sur-
veillance and activation within the CNS, the prin-
ciples of tumor immunoediting are believed to 
apply to CNS cancers. Support for the paradigm 
of immunoediting in CNS cancers comes from 
few transplant studies, citing the transmission of 
glioma tumors from liver and kidney organ 
donors to transplant recipients and from observa-
tions in ongoing immunotherapy trials. The fi rst 
report of this phenomenon involved a 44-year-old 
woman with primary biliary cirrhosis who 
received an orthotopic liver transplant from a 
14-year-old brain-dead donor with a glial tumor 
that had infi ltrated the pons, pituitary, and spinal 
cord. Following 9 months of immunosuppres-
sion, the recipient developed several liver lesions 
that appeared histopathologically similar to that 
of the donor’s glial tumor, suggesting immune 
escape of glioma cells maintained in quiescent 
immune equilibrium prior to transplantation [ 65 ]. 

 A similar report documented two recipients 
who each received a kidney from a deceased 
donor with GBM. Both recipients developed 
renal masses after approximately 18 months, 
which upon organ removal were pathologically 
consistent with GBM [ 66 ]. Further evidence 
comes from current GBM vaccine trials (detailed 
below). Analysis of recurrent GBM specimens 
following use of a vaccine targeting the highly 
expressed variant EGFRvIII in GBM demon-
strated a paucity of EGFRvIII expression, sug-
gesting successful elimination of the 
EGFRvIII-expressing cells, followed by equilib-
rium and subsequent escape of cancer cell sub-
populations which did not express EGFRvIII 
[ 67 ]. Ongoing investigation of the dynamic inter-
actions between immune cells and tumor cells 
throughout the multiphasic progression of CNS 
tumors will test this theory of immunoediting in 
CNS cancers and potentially elucidate opportuni-
ties to enhance elimination and redirect the even-
tual failure of equilibrium.  

18.8     Immunotherapy 

 In general terms, the CNS tumor immunotherapy 
strategies are focused on two goals: to direct the 
recognition of CNS cancer cells by immune 
effector cells necessary for a tumoricidal response 
and to counteract tumor-derived immunosup-
pression, thus leading to an effective antitumor 
activation state. A growing appreciation of the 
necessity for multimodal immune modulation in 
achieving durable control of CNS tumors through 
immune-based therapy has led to the combina-
tion of both strategies in preclinical and early 
clinical trials. 

 In efforts to enhance tumor detection by the 
immune system, antigen-specifi c vaccinations 
and primed dendritic cell-based infusions have 
both demonstrated promising results. With regard 
to efforts aimed at disabling immunosuppressive 
mechanisms, those targeting Tregs and immuno-
modulatory cytokines have shown preliminary 
success. 

 Some authors argue that surgery offers a 
means for disabling tumor-related immunosup-
pression by removing the bulk of immunosup-
pressive cells and mediators within the tumor 
[ 44 ]. Additionally, elimination of the mass effect 
and edema caused by a large tumor allows for 
discontinuation of steroids, which confer an iat-
rogenic immunosuppressive state to the patient. 
An example of the benefi t of resection in the con-
text of immunotherapy has been shown in post- 
resection GBM patients who, without a signifi cant 
tumor mass and actively progressing disease, 
responded better to dendritic cell-based vaccines 
than did those who had received biopsy alone 
[ 68 ]. For this reason, many recent clinical trials 
of immune-based therapy in GBM patients are 
focused on patients who fi rst receive a surgical 
resection of their tumor. 

18.8.1     Adoptive Therapy 

 Considering the potent tumoricidal properties of 
activated lymphocyte effector cells, an obvious 
strategy toward overcoming the  in vivo  hin-
drances to adaptive immune activation utilizes 
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infusion of  in vitro  activated autologous lympho-
cytes back into patients. Lymphokine-activated 
killer (LAK) cells are populations of autologous 
peripheral lymphocytes that can be reinfused into 
tumor-bearing hosts either peripherally or intra-
operatively into post-resection surgical cavities 
following  in vitro  culture in the presence of IL-2 
[ 69 ]. Multiple phase I clinical trials have investi-
gated LAKs in patients with high-grade gliomas 
and medulloblastomas (reviewed in [ 70 ,  71 ]. The 
most promising of these trials included 40 GBM 
patients treated with intratumoral LAKs and 
demonstrated a slight but signifi cant increase in 
median survival in the absence of any toxicity 
[ 69 ]. Unfortunately, additional trials could not 
reproduce these effects and were further hindered 
by variant levels of toxicity as the reinfused 
LAKs demonstrated cytotoxic properties that 
were not specifi c to tumor cells. Lower cellular 
doses of intralesional LAK are under continued 
investigation as adjuvant treatment of GBM [ 69 ]. 

 An extension of LAK strategies to direct 
more tumor-specifi c targeting involved the col-
lection of lymphocytes from the lymph nodes or 
peripheral blood of patients with CNS tumors 
after peripheral injection of irradiated autolo-
gous tumor cells (ATCs) and granulocyte/macro-
phage colony-stimulating factor (GM-CSF). The 
harvested lymphocytes were then stimulated 
 in vitro  with IL-2 and subsequently reintroduced 
into the tumor-bearing host [ 72 ]. Variations in 
this scheme include additional  ex vivo  exposure 
to ATCs [ 72 ] or tumor-infi ltrating lymphocytes 
isolated from resection specimens [ 19 ] during 
 in vitro  stimulation. Despite reduced toxicity and 
more objective tumor-specifi c targeting as com-
pared to LAKs stimulated with IL-2 alone, 
effects on clinical outcome were minimal across 
these trials [ 19 ,  73 ].  

18.8.2     Vaccination Strategies 

 Cancer vaccination strategies utilize tumor 
antigen- driven stimulation of host immune pro-
cesses to target transformed cells. Cancer vac-
cines are designed to direct tumor-specifi c 
cellular immunity by stimulating the prolifera-

tion of high-avidity T cells capable of homing to 
and selectively attacking transformed cells within 
a tumor. Some of the major challenges to this 
strategy include failure of the delivered stimulus 
to adequately activate T cells, relative lack of 
tumor-specifi c antigens that are expressed by a 
large fraction of tumor cells, nonspecifi c target-
ing by stimulated T cells of healthy bystander 
cells resulting in toxic autoimmunity, and dis-
abling of activated tumor cell-specifi c T cells by 
the local microenvironment. To overcome these 
issues, some vaccination strategies utilize reinfu-
sion of autologous tumor material following 
 ex vivo  manipulation [ 74 ], as well as the use of 
non-antigen-specifi c tumor lysate preparations 
[ 75 ]. More recently, purifi ed tumor antigen for-
mulations have also been attempted as direct pep-
tide infusions and as a priming stimulus to DCs 
prior to their infusion. 

18.8.2.1     Autologous Tumor Material 
 ATCs may be harvested from  ex vivo  tumor 
resection specimens and used to generate direct 
CNS vaccination formulations. Subcutaneous or 
intradermal injection of autologous tumor mate-
rial is believed to circumvent the immune- 
disabling tumor microenvironment by providing 
specifi c immune-stimulating material to periph-
eral DCs. Prior to their use in vaccination strate-
gies, this tissue is processed to isolate whole 
tumor cells, parts of cells, or simply protein 
extracts and often inactivated by radiation or 
genetic modifi cation. Eight trials have employed 
such strategies to treat GBM, including one phase 
I clinical trial [ 74 ], two case reports [ 76 ,  77 ], and 
fi ve pilot vaccination studies (reviewed in [ 70 ]). 
In three of the pilot studies, processed cells were 
delivered concomitantly with adjuvant com-
pounds, including IL-2 [ 76 ], IL-4 [ 77 ], and B7-2 
plus GM-CSF infusions [ 78 ]; the amount of cells 
delivered varied across trials. 

 The induction of an immune response was 
demonstrated in over half the patients enrolled in 
each trial, with evidence both in peripheral blood 
[ 79 ] and at the tumor site [ 80 ]. Toxicity was mini-
mal and no patient demonstrated severe adverse 
effects. Furthermore, clinical benefi t was 
 demonstrated with nearly 50 % overall survival 
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across fi ve studies, which recorded three com-
plete responses, four partial responses, two minor 
responses, and six cases of stable disease in 48 
total GBM patients [ 74 ,  76 – 78 ]. The phase I clin-
ical trial of ATC vaccination included a concomi-
tant infusion of GM-CSF through a programmable 
pump and effected a signifi cant increase in sur-
vival in three of the fi ve patients who demon-
strated a postvaccination immune response, out 
of a total of nine who were treated [ 74 ].  

18.8.2.2     Dendritic Cell-Based 
Vaccination Strategies 

 As discussed, activation of T cells that specifi -
cally target brain tumor cells is limited by a 
reduction in the expression of molecules neces-
sary for effective antigen presentation, including 
MHC class I/II and co-stimulatory molecules 
[ 28 ]. To overcome this limitation, DCs from 
patients with malignant brain tumors may be 
extracted, activated  in vitro  with tumor-derived 
antigens favoring APC maturation, and reintro-
duced as potent activators of tumor-specifi c T 
cells. This approach can lead to the generation of 
tumor-specifi c T-helper cells (Th) capable of 
altering the composition of the microenviron-
ment through expression of immune-activating 
mediators and, subsequently, the activation of 
CTLs and NK cells capable of selectively elimi-
nating tumor cells. Furthermore, the generation 
of memory T cells following introduction of 
tumor antigen-primed DCs presents the potential 
for lasting immunity to counter the recurrent pro-
liferation of residual cancer cells. Indeed, cocul-
ture of glioma-associated antigen-primed DCs 
with undifferentiated lymphocytes has been 
shown to induce activation of T cells and subse-
quently T-cell cytotoxicity when autologous gli-
oma cells were introduced [ 81 ,  82 ]. Furthermore, 
a robust cytotoxic (CTL) and memory T-cell lym-
phocyte infi ltration into intracranial tumors was 
observed in murine models of glioma following 
vaccination and peripheral infusion of tumor 
antigen-primed DCs, favoring a Th1 lymphocyte 
activation state, capable of homing to and expand-
ing within tumor tissue [ 83 ]. 

 Though many investigative protocols for 
DC-based vaccination of malignant glioma differ 

with regard to protocol specifi cs, most involve 
extraction of DC precursors in the form of periph-
eral blood mononuclear cells (PBMCs); exposure 
to tumor-associated formulation in the presence 
of GM-CSF and IL-4, both known to direct APC 
maturation; and reintroduction though subcuta-
neous, intradermal, intranodal, or intratumoral 
injection. 

 The mechanism by which tumor-associated 
antigens are loaded  in vitro  into DCs is of critical 
importance. Multiple DC-loading strategies have 
been employed, including the use of autologous 
tumor lysates, formulations of apoptotic material 
following ATC irradiation, and purifi ed or syn-
thetic tumor-associated peptide antigens 
[ 84 – 86 ]. 

 A potential advantage of loading strategies 
which do not isolate individual antigens, such as 
the use of autologous tumor lysates, is the induc-
tion of an immune response against multiple 
tumor epitopes, though likely at the expense of 
non-tumor-specifi c cross-reactivity and subse-
quent autoimmune toxicity. Those strategies 
using distinct and tumor-specifi c antigens, either 
purifi ed or synthetic, limit the activation of cross- 
reactive lymphocytes, allowing for the escape of 
non-expressing clonal populations. 

 To date, 15 clinical trials including 316 total 
patients have evaluated the use of DC-based vac-
cination in the treatment of malignant gliomas 
including primary and recurrent GBM, anaplastic 
astrocytoma (AA), anaplastic oligoastrocytoma 
(AOA), and anaplastic oligodendroglioma (AO) 
(reviewed in [ 70 ]): eight phase I trials, six phase 
I/II trials, and one phase II trial. Table  18.1  sum-
marizes the vaccination details and clinical 
results of these trials. Across all included in these 
trials, only one patient suffered grade IV neuro-
toxicity resulting from a large residual tumor and 
perilesional edema [ 90 ], highlighting the safety 
and feasibility of antigen-primed DC vaccina-
tions for CNS cancers. Immune response was 
largely evaluated by delayed-type hypersensitiv-
ity (DTH); increased proportions of CTLs, NKs, 
and memory T cells both in peripheral blood and 
as infi ltrating lymphocytes in subsequent tumor 
resections; increased tumor cell reactivity of 
postvaccination extracted PBMCs exposed to 
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ATC  in vitro ; and increased presence of IFN-γ 
both peripherally and within the tumor- infi ltrating 
lymphocytes. Over half of the patients enrolled in 
these trials demonstrated some evidence of an 
immune response following vaccination, and all 
15 studies reported a survival benefi t following 
vaccination (Table  18.1 ). Moreover, two of these 
trials focusing on patients with GBM demon-
strated an improved response to chemotherapy 
delivered in a second phase following DC-based 
vaccination, suggesting an exciting potential for 
synergy with these treatments [ 85 ,  96 ].

   Despite the variability across these trials, 
salient insights include the safety of DC-based 
approaches to CNS tumor vaccination and the 
feasibility of these immune strategies as some 
features of an elicited immune response were 
demonstrated in over half of all patients enrolled. 
Other interesting results include the improved 
success of matured DC vaccinations generated by 
combining antigen priming with maturation fac-
tors such as TNF-α, Toll-like receptor (TLR) 
ligands, or IFN-γ and the potentially synergistic 
effect of DC-based vaccination and chemother-
apy in treating brain tumors. Details regarding 
precise protocols for loading of DCs, amount and 
site of injection, and composition of accompany-
ing adjuvants remain to be optimized. 

 An additional trial evaluated the use of 
DC-based immunotherapy in 45 pediatric patients 
with high-grade glioma, medulloblastoma, prim-
itive neuroectodermal tumors (PNETs), ependy-
moma, and atypical teratoid-rhabdoid tumors 
(ATRTs) [ 97 ]. The authors utilized autologous 
tumor lysates to load PBMC-derived DCs and 
delivered these by intradermal injections fol-
lowed by two subsequent boost vaccinations of 
tumor lysate. No severe adverse effects occurred 
in those patients with high-grade gliomas and 
ATRTs, and additionally, overall survival was 
increased compared to historical controls in those 
two tumor types. In those patients with PNET 
and medulloblastoma tumors, vaccinations were 
discontinued due to adverse effects. These fi nd-
ings show the potential of the DC-based immu-
notherapy to pediatric brain tumors, but data 
regarding effi cacy remains preliminary and 
poorly controlled. 

 The optimization of tumor-associated antigen- 
loading strategies is under active exploration. A 
recent study compared specifi c antigenic peptide- 
loaded  vs.  autologous tumor lysate-loaded DC 
vaccines for treating malignant glioma [ 98 ]. 

 Twenty-eight patients were treated with autol-
ogous tumor lysate-pulsed DC vaccines, whereas 
six patients were treated with glioma-associated 
antigen peptide-pulsed DCs, utilizing a synthetic 
formulation of four epitopes known to be 
expressed on malignant gliomas. These antigens 
included survivin, HER-2/neu, gp100, and TRP- 
2, which are present in approximately 60, 80, 60, 
and 50 % of malignant gliomas specimens, 
respectively [ 27 ]. No adverse events were 
reported in either study group. The median sur-
vival of patients on the autologous tumor lysate-
 DC trial was 34.4 months, whereas that of 
patients on the synthetic glioma-associated anti-
gen- DC group was signifi cantly different with a 
median survival of 14.5 months [ 27 ]. Though 
limited to small cohorts under individual proto-
cols, these results support the use of autologous 
tumor lysate preparation in priming DCs for vac-
cination in CNS cancer. The authors also noted a 
signifi cant correlation between decreased Treg 
ratios (pre-  vs.  postvaccination) and overall sur-
vival, evident in both study groups.  

18.8.2.3     Antigen-Specifi c Peptide 
Strategies 

 In contrast to the DC-based techniques discussed 
above, direct peptide vaccines rely on the ability of 
host APCs in the periphery to process, migrate, 
and present the introduced antigens. Extensive 
preclinical analysis has demonstrated the ability of 
peripheral APCs to activate T cells within lymph 
nodes regional to the site of injection in animal 
models of brain tumors [ 70 ,  99 ]. Refi nements to 
direct antigen vaccination strategies have demon-
strated the utility of adjuvant compounds such as 
keyhole limpet hemocyanin (KHL) as an immuno-
genic peptide carrier protein [ 100 ] and GM-CSF 
as a mitogenic stimulus for APCs [ 101 ], both of 
which ultimately augment antigen presentation. 

 The selection of tumor-associated peptides to 
enable selective tumor cell targeting with mini-
mal secondary autoimmunity is critical to the 
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success of any vaccination utilizing target pep-
tide sequences, both in direct peptide injection 
and in specifi c antigen-primed DC infusion. 
Considerable effort has been expended in identi-
fying antigens differentially or exclusively 
expressed in CNS tumors, including genes only 
normally expressed during embryological devel-
opment, differently spliced or mutated genes, and 
genes giving rise to fusion proteins, which result 
from the general genetic instability of trans-
formed cells, as well as housekeeping or meta-
bolic pathway antigens which may be exclusive 
to tumor cells [ 90 ]. Nevertheless, an increasing 
appreciation of intratumor clonal heterogeneity 
[ 102 ] complicates effective targeting of a clini-
cally signifi cant proportion of tumor cells through 
a specifi c antigen vaccination strategy. 

 The National Cancer Institute (NCI) recently 
performed an in-depth review of 75 general tumor-
associated antigens to evaluate their potential as 
targets for immunotherapy [ 103 ]. The potential of 
tumor antigens to serve as targets for immunother-
apy was graded according to the following criteria: 
therapeutic function, immunogenicity, oncogenic 
function, specifi city, expression level in tumors, in 
cancer stem cells, percentage of tumors that 
express it and cellular localization of the protein. 
Based on this, the antigens that showed the most 
potential for immunotherapy where. The highest-
ranked antigens included WT-1, MUC1, LMP2, 
HPV E6/E7, HER2/neu, EGFRvIII, melanoma 
antigen-encoding (MAGE)-A3, and NY-ESO-1. 
While expression of some of these antigens in 
CNS cancer is well established, such as the expres-
sion of EGFRvIII in GBM [ 104 ], the presence or 
absence of others in CNS cancers warrants future 
investigation. Additional insight into CNS cancer-
specifi c antigen targets for immune-based therapy 
has come from tumor antigen investigations in 
melanoma [ 105 ]. The genes MAGE-1 [ 106 ], 
MAGE-E1 [ 107 ], MAGE-3, and glycoprotein-240 
(a cell surface glycoprotein of 240,000 molecular 
weight present in most melanomas) [ 108 ] were 
expressed in many different glioma subtypes but 
never in normal brain tissue and therefore present 
as potential targets for CNS tumor-specifi c immu-
notherapy. Many additional CNS cancer-associ-
ated antigens have been described as potential 

tumor-selective targets for immunotherapy in a 
variety of CNS tumor types; these include but are 
not limited to tenascin, homo sapiens testis (HOM-
TES)-14 (also known as stromal cell-derived pro-
tein (SCP)-1), HOM-TES-85, synovial sarcoma X 
chromosome breakpoint (SSX)-1, SSX-2, GAGE-
1, SRY-related high-mobility group (HMG)-box-
containing gene (SOX)-5, cancer testis antigen 6, 
IL-13 receptor a2, ephrin (Eph) A2, antigen iso-
lated from immunoselected melanoma (AIM)-2, 
squamous cell carcinoma antigen recognized by T 
cells (SART)1, SART3, and kinesin superfamily 
protein (KIF)1C and KIF3C [ 70 ]. See Table  18.2  
for a list of GBM-associated antigens under pre-
clinical or clinical investigation in tumor vaccines. 
Ongoing effort to characterize these many relevant 
antigens in various CNS cancer subtypes will 
hopefully yield fi rm footing of which to launch 
future antigen-specifi c immune-based therapies.

   Following promising preclinical results, a 
number of clinical trials utilizing direct vaccina-
tion with some of the aforementioned peptides 
are currently underway for cancers of the 
CNS. Among those under most active vaccine 
developments are the IL-13 receptor a2 (IL-13Ra) 
[ 73 ,  113 ] and EphA2 [ 109 ,  142 ] though dispro-
portionate attention and success have come from 
vaccination strategies against EGFRvIII. A 
potent mitogenic signaling motif, stimulation of 
the EGF receptor, is believed to play a signifi cant 
role in the development of malignant glioma; 
approximately 50–60 % of glial tumors overex-
press EGFR, and 24–67 % express the most com-
monly mutated form, EGFRvIII [ 143 ]. The 
functional relevance of EGFRvIII for malignant 
gliomas is also suggested by the fact that pres-
ence of EGFRvIII is associated with reduced sur-
vival on multivariate analysis [ 144 ] and also may 
confer malignant cells with resistance to radia-
tion and chemotherapy [ 145 ]. The amino acid 
sequence obtained from the fusion of the remain-
ing exons 1 and 8 includes the addition of a gly-
cine residue at the junctional site 
(LEEKK G NYVVTDH), rendering a totally 
novel peptide [ 143 ]. Consequently, the resultant 
protein is unique to glioma cells and therefore 
may allow for the generation of an immune 
response which does not cross-react with wild- 
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   Table 18.2    List of glioma-associated antigens (GAAs) which may serve as immunotherapeutic targets   

 GAA  Characteristic/potential function  References 

 AIM2: absent in melanoma 2  AIM2 could be used as a tumor antigen target for 
monitoring vaccine trials or for developing antigen-
specifi c active immunotherapy for glioma patients 

 Okada (2009), Liu 
(2004) 

 BMI1: BMI1 polycomb ring 
fi nger oncogene 

 Expressed in human GBM tumors and highly enriched 
in CD133+ GSC cells 

 Abdough (2009) 

 COX-2: cyclooxygenase-2  Overexpressed in many tumors including CD133+ 
GSC cells; COX-2 inhibitor celecoxib will become a 
nice weapon for GBM therapy 

 Shono (2001) 

 TRP-2: tyrosinase-related protein 
2 

 Highly expressed in GSCs  Saikali (2007), 
Driggers (2010) 

 GP100: glycoprotein 100  Melanocyte lineage-specifi c antigen, expressed in 
GSCs as well 

 Saikali (2007), 
Driggers (2010) 

 EGFRvIII: epidermal growth 
factor receptor variant III 

 EGFRvIII is the most prevalent of several EGFR 
mutations found in human gliomas and is expressed in 
20–25 % of GBM. GSC-associated antigen 

 Saikali (2007), 
Driggers (2010) 

 EZH2: enhancer of zeste 
homologue 2 

 Upregulated in malignant gliomas in GSC cells  Orzan (2011) 

 LICAM: human L1 cell adhesion 
molecule 

 Highly expressed in GSCs. Invasion- associated 
proteins 

 Cheng (2011) 

 Livin and Livin β  Livin β was more related with the high survival rate. It 
is a cancer-associated member of the inhibitor of 
apoptosis protein (IAP) 

 Jin (2010) 

 MRP-3: multidrug-resistance 
protein 3 

 GBMs overexpress MRP-3 at both mRNA and protein 
levels. Multidrug- resistance protein 3 has potential 
correlation with survival. Highly expressed in GSC 
cells as well 

 Driggers (2010), Kuan 
(2010) 

 Nestin  Nestin plays important roles in cell growth, migration, 
invasion, and adhesion to extracellular matrices in 
glioma cells. Overexpressed in GSCs 

 Ishiwata (2011) 

 OLIG2: oligodendrocyte 
transcription factor 2 

 GSC marker, OLIG2 is highly expressed in all diffuse 
gliomas. Immunohistochemistry and microarray 
analyses demonstrated higher OLIG2 in anaplastic 
oligodendrogliomas versus glioblastomas, which are 
heterogeneous with respect to OLIG2 levels 

 Ligon (2004) 

 SOX2: SRY-related HMG-box 2  SOX2 expression and amplifi cation in gliomas and 
GSC cell lines 

 Xu (2009) 

 ART1: antigen recognized by T 
cells 1 

 Pediatric GBM express ART1, ART4, SART1, SART2, 
and SART3; they were identifi ed within GBM cell 
lines as well 

 Zhang (2008), 
Driggers (2010) 

 ART4: antigen recognized by T 
cells 4 
 SART1: squamous cell carcinoma 
antigen recognized by T cells 1 
 SART2: squamous cell carcinoma 
antigen recognized by T cells 2 
 SART3: squamous cell carcinoma 
antigen recognized by T cells 3 
 β-Catenin  β-Catenin and Gli 1 are prognostic markers in GBM  Rossi (2011) 
 Gli 1: glioma-associated oncogene 
homologue 1 

 Gli 1 is correlated with glioma recurrence after 
chemotherapy; Gli 1 plays a dominant role in 
chemoresistance of glioma cells. Located nuclear, might 
be fl uctuating between the cytoplasm and the nucleus 

 Rossi (2011), Cui 
(2010) 

 Cav-1: caveolin-1  Expressed in most HGG, correlated with proliferation 
and invasive potential of tumor 

 Senetta (2011) 
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Table 18.2 (continued)

 GAA  Characteristic/potential function  References 

 Cathepsin B  Overexpression of cathepsin B during the progression 
of human gliomas 

 Sivaprvathi (1995) 

 CD74: cluster of differentiation 74  Contribute to TMZ resistance. Also known as HLA 
class II histocompatibility antigen gamma chain 

 Kitange (2010) 

 E-cadherin: epithelial calcium-
dependent adhesion 

 Expression in gliomas correlated with an unfavorable 
clinic outcome 

 Lewis-Tuffi n (2010) 

 EphA2/Eck: EPH receptor A2/
epithelial cell kinase 

 Overexpressed in both pediatric and adult GBM. Used 
as a novel target for glioma vaccines 

 Okada (2009), 
Driggers (2010) 

 Fra-1/Fosl 1: Fos-related antigen 1  Plays an important role in maintenance/progression of 
various cancers, including GBM. Highly expressed in 
pediatric GBM 

 Driggers (2010), 
Wykosky (2008) 

 GAGE-1: G antigen 1  A potential target for specifi c immunotherapy and 
diagnostic markers in high-grade brain tumors 

 Scarcella (1999) 

 Ganglioside/GD2  Expression in astrocytic tumors  Mennel (2005) 
 GnT-V, β 1, 6-N: 
acetylglucosaminyltransferase-V 

 Plays an important role in regulating invasivity of 
human glioma 

 Driggers (2010), 
Yamamoto (2000) 

 Her2/neu: human epidermal 
growth factor receptor 2 

 A tumor-associated antigen that is expressed by up to 
80 % of GBMs but not by normal postnatal neurons or 
glia 

 Driggers (2010), Xu 
(2009) 

 Ki67: nuclear proliferation-
associated antigen of antibody 
Ki67 

 Prognostic marker for glioma, especially for the lower 
grades 

 Kogiku (2008) 

 Ku70/80: human Ku heterodimer 
protein subunits (molecular 
weight: 70 kDa/80 kDa) 

 A therapeutic potential target antigen. Highly expressed 
in GBM 

 Persson (2010) 

 IL-13Ralpha2: interleukin-13 
receptor subunit alpha-2 

 Overexpressed in GBM but diminished in several GSC 
cell lines 

 Saikali (2007), 
Driggers (2010) 

 MAGE-A: melanoma-associated 
antigen 1 

 MAGE-A1, MAGE-A3, and NY-ESO-1 can be 
upregulated in neuroblastoma cells to facilitate 
cytotoxic MAGE-A3: melanoma-associated antigen 3 
T-lymphocyte-mediated tumor cell killing 

 Bao (2011) 

 MAGE-A3: melanoma-associated 
antigen 3 
 NY-ESO-1: New York esophageal 
squamous cell carcinoma 1 
 MART-1: melanoma antigen 
recognized by T cells 

 Melanoma antigen also associated with glioma  Jian (2007) 

 PROX1: prospero homeobox 
protein 1 

 Strongly expressed in GBM, frequently coexpress early 
neuronal proteins MAP2 and β III-tubulin but not the 
mature neuronal marker NeuN 

 Elsir (2010) 

 PSCA: prostate stem cell antigen  GPI-anchored cell surface protein, represented as a 
novel GAA 

 Geiger (2011) 

 SOX10: SRY-related HMG-box 
10 

 The SOX10 expression was restricted to gliomas and 
melanomas. All glioma types expressed SOX10, and 
tumors of low-grade glioma had a much broader 
distribution of SOX10 compared with high-grade gliomas 

 Ferletta (2007) 

 SOX11: SRY-related HMG-box 
11 

 The transcription factor SOX11 is with highly specifi c 
overexpression in human malignant gliomas 

 Schmitz (2007), 
Driggers (2010) 

 Survivin  Quantitatively determined survivin expression levels 
are of prognostic value in human gliomas 

 Kogiku (2008), 
Driggers (2010) 

 UPAR: urokinase-type 
plasminogen activator receptor 

 UPAR and cathepsin B, known to be overexpressed in 
high-grade gliomas and strongly correlated with 
invasive cancer phenotypes 

 Gondi (2004) 

 WT-1: Wilms’ tumor protein 1  A transcription factor overexpressed in glioma  Ueda (2007) 

   GBM  glioblastoma,  TMZ  temozolomide,  GSC  glioma stem cells  
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type EGFR protein. See Fig.  18.3  for a synopsis 
of a vaccination strategy developed to target 
EGFRvIII.  

 An early phase I trial to evaluate the safety of 
GBM vaccination against EGFRvIII was per-
formed in which treatment with an intradermal 
KLH-conjugated EGFRvIII-based peptide 
(PEPvIII) was utilized. No serious adverse effects 
were reported, and immunological responses 
were detected  ex vivo  [ 12 ]. Subsequently, a multi-

center phase II trial, entitled “A Complimentary 
Trial of an Immunotherapy Against Tumor 
Specifi c EGFRvIII” (ACTIVATE), was per-
formed, in which 19 patients with GBM were 
treated with PEPvIII and adjuvant GM-CSF fol-
lowing tumor resection and standard radiation 
plus chemotherapy [ 146 ]. Importantly, EGFR 
amplifi cation and EGFRvIII expression were not 
criteria for enrollment. No patient experienced 
adverse effects aside from local injection site 

  Fig. 18.3    Schematic of EGFRvIII-targeted vaccination. Notice the formation of EGFRvIII-specifi c antibodies, which 
selectively target tumor cells (Reprinted from Sonabend et al. [ 54 ], with permission)       
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reactions, and both humoral and delayed-type 
hypersensitivity immune responses specifi c to 
EGFRvIII were observed in the majority [ 147 ]. 
Furthermore, in the patients who demonstrated an 
immune response to vaccination, median time to 
tumor progression (TTP) and overall survival 
were signifi cantly increased when compared to 
historical controls (TTP 12 months  vs.  7.1 months, 
 p  < 0.05, with a median survival of over 32 months 
 vs.  14 months in historical controls  p  < 0.01). 
Interestingly, histological analysis of recurrent 
tumor specimens revealed complete absence of 
EGFRvIII expression in all patients demonstrat-
ing an immune response. Though pretreatment 
EGFRvIII expression was not published, this 
fi nding may suggest successful targeting of 
antigen- bearing tumor cells. 

 The promising results of this trial were further 
extended in a subsequent phase II trial which 
enrolled 21 GBM patients in a similar KLH- 
conjugated PEPvIII plus GM-CSF vaccination 
schedule, concurrent with two different temo-
zolomide (TMZ) chemotherapeutic dosing 
schedules [ 148 ]. 

 Although grade II TMZ-associated lymphope-
nia was observed in nearly all treated patients, 
immune responses specifi c to EGFRvIII were 
documented in the majority of patients. 
Unexpectedly, antigen-specifi c immune 
responses were observed to be either sustained or 
enhanced with successive TMZ treatments. 
Follow-up investigations, including an ongoing 
randomized phase III clinical trial, hope to vali-
date this observation and to further elucidate 
optimal vaccination regimens. The possibility of 
synergy between immunotherapy and chemo-
therapy in CNS cancer is promising. Together, 
these trials suggest that vaccination with a pep-
tide containing an EGFRvIII tumor epitope 
safely elicits a specifi c immune response against 
EGFRvIII and that this approach might be effec-
tive against cancers bearing the variant antigen.  

18.8.2.4     Heat Shock Protein Peptide 
Complex 96 

 An exciting new frontier of immune-based ther-
apy for CNS cancers involves the use of heat 
shock protein peptide complexes (HSPPCs). 

HSPs are known to lead to “chaperone” protein 
folding and protein-protein interactions and are 
unregulated in states of cellular stress [ 149 ]. 
Certain HSPs have been shown to play instrumen-
tal roles in the delivery and intracellular process-
ing of antigens in APCs and are therefore an 
attractive target for exploitation in immunother-
apy [ 150 ]. HSPPC-96 is composed of HSP gp-96 
and a wide array of bound chaperoned proteins, 
including antigenic peptides. This protein com-
plex can be easily purifi ed from solid tumor speci-
mens of patients with a variety of solid tumor 
types [ 151 ]. Immunization strategies with 
HSPPC-96 work by interacting with APCs via 
specifi c receptors, including CD91 [ 152 ]. After 
binding to CD91, the HSPPC-96 complex is inter-
nalized, and the chaperoned peptides are pre-
sented by class I and class II MHC molecules. 
The highly specifi c nature of the interaction 
between HSPPC-96 and APCs may present an 
advantage over the aforementioned vaccine 
approaches and has been shown to facilitate robust 
T-helper cell and CTL immune responses [ 153 ]. 

 Vaccination with HSPPC-96 was recently 
extended to patients with CNS tumors: 12 patients 
with recurrent high-grade gliomas were treated with 
autologous HSPPC-96 vaccines derived from 
resected tumor tissue [ 154 ]. No toxicity attributable 
to HSPPC-96 was observed in any of the 12 patients 
treated. In 11 of the 12 patients, a signifi cant 
immune response was demonstrated, as indicated 
by robust activation of peripheral blood leukocytes 
isolated postvaccination, when exposed to antigenic 
peptides carried on the HSPPC-96 complex (gp-
96). Vaccination led to a signifi cant increase in 
IFN-γ expression as compared to peripheral blood 
leukocytes isolated prior to vaccination. 
Furthermore, an increase in IFN-γ-positive T-helper 
cells, CTL, and NK cells accompanied a decrease in 
Tregs in biopsy specimens from all 11 patients who 
responded, whereas these fi ndings were not 
observed in the one patient who did not respond. 
The 11 responders had an overall survival of 
47 weeks compared with 16 weeks in the one non-
responder. Collectively, these results suggest the 
safety, feasibility, and potential therapeutic benefi t 
of autologous HSPPC-96 vaccination in patients 
with high-grade gliomas.   
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18.8.3     Immunotherapy Targeting 
CNS Cancer-Induced 
Immunosuppression 

 In addition to directed activation of immune 
mediators against tumor-specifi c antigens, paral-
lel efforts to counteract CNS cancer-induced 
immunosuppression have gained attention. A 
comprehensive inventory of ongoing efforts is 
beyond the scope of this chapter, but cytokine 
therapy and antibody-mediated neutralization of 
Tregs will be discussed as two notable examples 
of this therapeutic principle. 

 As key transmitters of cellular communica-
tion, cytokines are known to play predominant 
roles both in proper immune cell activation 
schemes and in the irregular immunosuppressive 
milieu of the CNS tumor microenvironment. 
Cytokines direct the phenotypic fate of stimu-
lated monocytes and lymphocytes and are 
involved in signaling exchanges upon encounter-
ing pathogenic or neoplastic stimuli. Thought to 
precipitate escape from immune equilibrium, the 
aberrant cytokine expression profi le of trans-
formed CNS cells eventually acts to alter the 
cytokine expression profi les of resident (microg-
lia) and infi ltrating (monocytes) myeloid cells, 
and subsequently lymphocytes, which thereafter 
collude to construct potent local immunosuppres-
sion. The therapeutic introduction or inhibition 
of immune-modulating cytokines is hypothesized 
to reorient M2 TAMs back to tumoricidal effector 
phenotypes [ 24 ]. Among the cytokines identifi ed 
for such efforts, TGF-β, IL-2, IL-4 [ 41 ,  155 ], 
IL-12 [ 156 ,  157 ], and IFN-γ [ 158 ,  159 ] have 
received the most attention, both as principal 
treatment and as adjuvants in combination with 
the antigen-based strategies discussed earlier. 

 As discussed above, TGF-β plays a prominent 
role in the multiple pathways implicated in CNS 
tumor-induced immunosuppression, prolifera-
tion, angiogenesis, and invasion-permitting stro-
mal remodeling. TGF-β expression is observed to 
increase following radiation treatment in both in 
vitro [ 160 ] and in vivo [ 161 ], raising the possibil-
ity of a therapeutic benefi t derived from TGF-β 
modulation in conjunction with radiation treat-
ments in patients with GBM. Trabedersen 

(AP12009) is an antisense molecule consisting of 
18 DNA oligonucleotides which specifi cally tar-
gets TGF-β2 mRNA, inhibiting its protein syn-
thesis [ 162 ]. Trabedersen’s utility in AA was 
recently investigated in a phase IIb clinical trial 
which reported signifi cantly improved 14-month 
tumor control rates evaluated by the presence of 
recurrent tumor on MRI ( p  < 0.05) when com-
pared to standard chemotherapy [ 152 ]. Overall, 
patients with GBM in this trial did not demon-
strate the same tumor control benefi t, though a 
subgroup analysis of young GBM patients with 
good performance status did suggest a trend 
toward improved 2- and 3-year survival ( p  = 0.08). 
Trabedersen is currently in phase III clinical tri-
als for treatment of AA [ 155 ]. 

 IL-2 is known to be an essential stimulus for 
the proliferation and differentiation of both Th 
type 1 cells and CTL following TCR antigen rec-
ognition, and it has been shown to abrogate the 
immunosuppressive effects of TGF-β [ 163 ]. 
Commonly used to stimulate the expansion and 
maturation of PBMCs in the development of 
LAK, multiple investigators have attempted to 
use IL-2 as an immunotherapeutic agent in CNS 
cancer. Early clinical trials with high-dose IL-2 
delivered intratumorally or intraventricularly 
were discontinued on account of signifi cant 
adverse effects resulting from local edema [ 164 ]. 
An  IL-2  transgene was delivered into the tumors 
of 12 patients with recurrent GBM, followed by 
systemic treatment with acyclovir. In this trial, a 
retroviral vector was used as a vehicle for IL-2 
and herpes simplex virus thymidine kinase 
(HSV-tk), which helped the selective elimination 
of infected cells with acyclovir [ 164 ]. None of 
these patients demonstrated adverse effects to 
treatment, and although no complete response 
was recorded, two experienced a partial response, 
four a minor response, and four stable disease. 
Additionally, expression analysis on posttreat-
ment biopsies in three of the patients with a par-
tial or minor response demonstrated increased 
expression of TNF-α, IFN-γ, IL-2, IL-1B, and 
IL-10, suggesting the induction of a local Th1 
immune response. Together, these fi ndings sug-
gest that local IL-2 transgene delivery may be a 
safe and at least a modestly effective therapeutic 
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strategy for further development in CNS cancer. 
Efforts to integrate IL-2 into combination strate-
gies for the treatment of CNS cancers are ongo-
ing [ 165 ]. 

 The immunotherapeutic potential of IL-2 
manipulation extends further through its impact 
on the potently immunosuppressive Tregs. 
Defi ned by a set of constitutively expressed anti-
gens which include the high-affi nity IL-2 recep-
tor alpha chain (IL-2Rα/CD25), Tregs may be 
selectively targeted and functionally impaired by 
interventions specifi c for this component of the 
IL-2 receptor complex. Indeed, blockage of the 
IL-2Rα in murine models of glioma was observed 
to deactivate Treg-induced suppression through 
functional inhibition as well as depletion [ 165 , 
 166 ]. Still, as discussed above, IL-2-mediated 
stimulation of the IL-2 receptor (heterotrimer of 
α, β, γ chains) is necessary for the proliferation 
and differentiation of Th1 cells and CTLs, par-
ticularly following the administration of thera-
peutic vaccines designed to stimulate a tumor 
antigen-specifi c lymphocyte response. Thus, 
blockage of IL-2 signaling, though it may hinder 
the expansion of immunosuppressive Treg, may 
also limit the production of tumoricidal immune 
effector cells and therefore be of limited benefi t. 

 Initial investigations into the use of the human-
ized anti-IL-2Rα monoclonal antibody (mAb) 
daclizumab for the treatment of malignant mela-
noma demonstrated this suspicion. Though tumor 
infi ltration and peripheral Treg populations were 
effectively depleted, the functionality of vaccine- 
induced tumor-specifi c T cells was impaired, and 
the formation of vaccine-induced humoral immu-
nity was minimal [ 167 ]. Still, attempts to use 
daclizumab in the treatment of malignant cancers 
were not abandoned, largely as a result of the 
observation of different IL-2 signaling responses 
in Tregs as compared to mature effector T cells 
during times of lymphopenia, such as is induced 
by chemotherapy. A preclinical investigation 
attempting to exploit this discrepancy delivered 
daclizumab during TMZ-induced lymphopenia 
in a murine model of glioma and demonstrated an 
effective depletion of Treg populations while 
sparing tumor-specifi c vaccine-activated effector 
cells [ 60 ]. The authors additionally reported an 

increased reduction in tumor growth in the vac-
cinated mice given daclizumab after TMZ as 
compared to those treated with TMZ followed by 
vaccination alone. These encouraging fi ndings 
were extended in a pilot clinical trial of six 
patients with recently diagnosed EGFRvIII- 
expressing GBM, undergoing standard TMZ 
treatment followed by a single-dose infusion of 
daclizumab concurrent with a course of PEPvIII 
peptide EGFRvIII-targeting vaccination [ 168 ]. 
No adverse events were reported beyond minor 
irritation at the vaccine injection site. Peripheral 
lymphocyte analysis demonstrated a signifi cant 
reduction in circulating Tregs in the group treated 
with daclizumab without a corresponding deple-
tion of overall CD4 +  or CD8 +  T cells, suggesting 
a Treg-specifi c inhibition of proliferation under 
lymphopenic circumstances. Furthermore, 
increases in vaccination-induced anti-PEPvIII 
antibodies directly correlated with reductions in 
Tregs and with increases in effector cell to Treg 
ratios. Together, these results suggest that mAb 
blockade of IL-2Rα in TMZ-treated malignant 
glioma may create an environment conducive to 
further immunotherapeutic intervention. 
Moreover, these encouraging fi ndings underscore 
the potential benefi t of multimodal combinations 
of immune-modulating therapies in treating CNS 
cancers.   

18.9     Concluding Remarks 

 A comprehensive understanding of the dynamic 
balance between tumoricidal immunity and 
tumor-derived immunosuppression that take 
place during CNS cancer development is essen-
tial for successful immunotherapy for this dis-
ease. As this chapter highlights, ever-unfolding 
insight into CNS-distinct immune mechanisms 
and their derailment by transformed tumor 
cells has already allowed for innovative, safe, 
and therapeutically promising techniques. The 
feasibility of individual immune-altering thera-
pies is leading to a combination of strategies 
for achieving the ultimate goal of synergistic 
tumoricidal immunity. Such efforts might rely 
on use of DC- or peptide-based vaccines with 
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either chemotherapy or biological therapy. The 
fi nal goal of these interventions is augmenting 
lymphocyte and NK cell activation or disabling 
tumor-derived immunosuppressive barriers. 
Additionally, recent insight into the clonal het-
erogeneity of CNS tumors, the presence of 
recalcitrant gCSCs, and the expression of CMV 
antigens in a majority of transformed cells in 
some CNS cancers have spurred new and inno-
vative strategies that are being evaluated to fur-
ther enhance antitumoral immunity.     
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19.1             Introduction 

 Lung tumors are one of the most common 
tumors worldwide in both incidence and mortal-
ity. The estimated worldwide incidence was 1.7 
million cases in 2011. Lung cancer creates a dif-
fi cult fi nancial burden even for developed coun-
tries; however, for the developing countries, it is 
particularly different because of relatively 
costly adjuvant chemotherapy or even surgery. 
The main treatment method of lung tumors is 
still surgery, but chemotherapy and immuno-
therapy have become quite robust in the last 
decade. Throughout this chapter, of particular 
observation that we have to make are the shift 
and emphasis on non-small cell lung tumors 
which have become more common in the last 
25 years with the introduction of low-tar ciga-
rettes and the lower incidence of small cell lung 
carcinomas (SCLCs) as compared to non-small 
cell lung carcinomas (NSCLCs). This has been 
particularly signifi cant because SCLCs are clas-
sifi ed as central tumors which present quite late 
and are not amenable to extensive intervention, 
whereas peripheral tumors are at least amenable 
to surgical resection if detected early and hence 
are more prone to be investigated further with 
immunotherapy. A brief description of lung 
demographics is displayed in Table  19.1  fol-
lowed by key features about lung cancer in 
Tables  19.2  and  19.3 . Finally, Table  19.4  gives a 
comparative analysis between SCLCs and 
NSCLCs.
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19.2           Why Immunotherapy? 

 Chemotherapy regimens have yielded roughly 
the same results no matter what the combina-
tion albeit the fact that the introduction of tyro-
sine kinase inhibitors has extended the overall 
survival of EGFR mutant tumors, as described 
in Fig.  19.1  [ 1 ], hence grew the need for immu-
notherapy, which started with dendritic cell 
(DC) therapies. Dendritic cells or antigen-pre-
senting cells (APC) are well known for their 
plasticity, but the use of dendritic cell immuno-
therapy has at best yielded only 15 % success 
rate. This has been due to several factors mainly 
maturity, timing, antigenic dose, anergy, and 
several other receptor-ligand interactions. Of 
particular note has been the recent paradigm 
shift with the introduction of ipilimumab 
(Yervoy ® ) which has boosted the success rates 
of immunotherapy to well above 20 %, whereby 
combined with surgery, tissue specifi c chemo-
therapy, and immunotherapy, patients have a 
higher chance of being in remission or possibly 
cure. Our discussion will henceforth focus on 
humoral as well as targeted cellular modalities 
which have been successfully implemented for 
the last decade.   

19.3     Antiangiogenic Agents 
and Monoclonals 

19.3.1     Ziv-Afl ibercept (Zaltrap®) 

  Ziv - Afl ibercept  ( Zaltrap  ® ) is a recombinant 
fusion protein that binds (scavenges) to 
VEGF-A, VEGF-B, and placental growth factor 
and hence does not allow the binding of VEGF 
to its receptors as shown in Fig.  19.2 . This rela-
tively new agent has been randomized in one 
trial for NSCLC. The VITAL study is a random-
ized multinational double-blind trial that 
enrolled 913 patients with  non - squamous  
NSCLC (adenocarcinoma making 80 % of 
the NSCLC) who have already failed one plati-
num doublet therapy. The randomization was 
1:1 with one subgroup receiving docetaxel 
(75 mg/m 2 ) and afl ibercept (6 mg/kg) every 

   Table 19.1    Brief overview of lung cancer demography 
as described by WHO in 2009   

 Lung cancer demography 

 85 % of lung tumors are NSCLCs 
 15 % of lung tumors are SCLCs 
 45 % of NSCLC cases are adenocarcinoma 
 45 % of NSCLC are squamous cell carcinoma 
 10 % of NSCLC are large cell 

   Table 19.2    Displays the key facts about lung tumors   

 Key facts about lung tumors 

 Peak incidence between 40 and 70 
 Four main types: squamous, small cell anaplastic, 
adenocarcinoma, and large cell anaplastic 
 Clinical division into small cell (SCLC) and non-small 
cell (NSCLC) 
 TNM staging used for NSCLC while either limited or 
extensive staging for SCLC stages 
 Small proportion are operable due to late and advanced 
presentation 
 Tumors can be central or peripheral (more shift lately 
toward peripheral) 
 Overall survival 5–30 % at 5 years depending on 
histology and stage 

   Table 19.3    Describes features of lung tumors that are 
amenable for surgery   

 Key features of lung tumors that make them amenable 
to surgery 

 Tumors <3 cm 
 Tumors at least 2 cm distal to the carina 
 No contralateral nodal involvement (T3) 
 No effusion 
 No distant metastasis 
 No obstruction of bronchi or pulmonary atelectasis 
 No involvement of trachea, great vessels, pericardium, 
vertebrae, esophagus, diaphragm, or pericardium 

   Table 19.4    Comparing the key features of SCLC and 
NSCLC   

 SCLC (small cell lung 
cancer) 

 NSCLC (non-small cell lung 
cancer) 

 Previously called oat cell  Arise from alveolar cells 
 Arise from 
neuroendocrine cells 
(Kulchitsky) 

 Include adenocarcinomas, 
squamous and large cell 
tumors 

 Secrete peptides  Nonsecretory 
 Can cause SIADH 
(syndrome of 
inappropriate secretion 
of ADH) 

 Adenocarcinomas arise from 
basal bronchial cells and 
type II pneumocytes 
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3 weeks, while the control subgroup received 
docetaxel only. The primary endpoint was over-
all survival (OS) and the secondary endpoints 
were progression-free survival (PFS) and over-
all response rate (ORR). A total of 12.3 % of the 
patients had already received prior bevacizumab 
therapy. The OS in the treatment subgroup was 
10.1 months, while it was 10.4 months in the 
placebo group. PFS and ORR were 5.2 % versus 
4.1 % and 23.3 % versus 8.9 % in the treatment 
and placebo subgroup, respectively [ 2 ]. This 
pioneering study did not show any advantage of 
scavenger fusion proteins in the treatment of 
NSCLC.   

19.3.2     Bevacizumab 

 Bevacizumab or Bev is a humanized monoclonal 
antibody aimed against VEGF-A, developed by 
Genentech/Roche, and marketed as Avastin ® . 
VEGF-A is one of the key components in promoting 
de novo angiogenesis. Bev has been recommended 
in renal cell carcinoma, carcinoma of the breast (in 
some countries), glioblastoma  multiforme, colonic 
cancer, and advanced stages of NSCLC. Recent evi-
dence in using Bev has been counterbalanced by the 
unpredictable nature of the response. This is due to 
the neutralizing effect of another isoform of VEGF-
165b which is an antiangiogenic form of VEGF-A 
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  Fig. 19.1    ( a ,  b ) Showing 
a Kaplan-Meier curve 
showing the probability of 
progression-free survival 
( PFS ) and overall survival 
( OS ) in patients with 
carboplatin and paclitaxel 
(arm  a ) vs. carboplatin and 
gemcitabine (arm  b ). The 
survival clearly demon-
strates that the overall 
benefi ts are roughly the 
same with no statistically 
signifi cant difference 
(Image courtesy of BMC 
Res Notes, Permission 
Free Open Access 
Journal [ 1 ])       
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and neutralizes the effect of Bev [ 3 ]. This has 
prompted the development of scavenger agents: ziv-
afl ibercept and VEGF-receptor inhibitors. So far, 
none of the VEGFR inhibitors have undergone any 
clinical trials in relation to pulmonary tumors. 

 One the fi rst clinical trials employing Bev was 
E4599 (Eastern Cooperative Oncology Group) 
which randomized 878 patients with recurrent or 
advanced non-squamous NSCLC (IIIB or IV) to 
receive either paclitaxel or carboplatin ( N  = 444) 
versus the same therapy plus bevacizumab 
( N  = 434). Chemotherapy was given for 3 weeks for 
six cycles, while Bev was given every 3 weeks until 

disease progression or increased toxicity. The pri-
mary endpoint was overall survival. The overall 
difference between the two groups was 2 months in 
favor of the chemotherapy+Bev group ( p  = 0.003). 
Progression-free survival was 6.2 months in the 
chemotherapy+Bev versus 4.5 months in chemo-
therapy alone [ 4 ]. This trial subsequently led to the 
European AVAiL trial which confi rmed the positive 
results of adding bevacizumab (7.5 or 15 mg/kg) to 
gemcitabine and cisplatin in treating non-squa-
mous NSCLC tumors. The results showed a sig-
nifi cant benefi t in progression-free survival (PFS) 
(6.7 months in the low-dose group vs. 6.1 for the 
placebo group and 6.5 months for the high-dose 
group vs. 6.1 months for the placebo). 

 Two additional complimentary trials with 
Bev have emerged as maintenance therapies 
after  chemotherapy. These are AVAPERL and 
POINTBREAK trials. AVAPERL was a European 
phase III trial that randomized 362 patients previ-
ously treated with pemetrexed, cisplatin, and 
bevacizumab. The patients were further random-
ized to receive either maintenance Bev or Bev + 
pemetrexed every 3 weeks until progression. The 
trial demonstrated the superiority of maintenance 
therapy with combined medications (PFS of 
10.2 months vs. 6.6 months) but contrasted the 
futility of having bevacizumab alone in any treat-
ment modality. Finally, POINTBREAK as 
referred in Fig.  19.3  is a very recent North 
American trial which was primarily powered for 

  Fig. 19.2    VEGF-Trap/afl ibercept is a fully human fusion 
protein made from a human IgG1 Fc fragment ( orange ) 
and domain 3 of VEGFR-2 (Ig) ( dark red ) as well as an 
apical VEGFR-1 portion ( blue ) capable of trapping VEGF 
( green ) and PIGF       

  Fig. 19.3    Maintenance 
phase q21d. Demonstrating 
the randomization protocol 
of POINTBREAK trial, 
both subgroups were given 
chemotherapy as described 
in the induction phase for 
four cycles and then 
subsequently were 
maintained on 
Bev+permetrexed or Bev 
alone. The maintenance 
phase was administered 
every 21 days until disease 
progression       

 

 

S. Boghossian



367

overall survival and PFS as well as RR as second-
ary endpoints (see below). It proved to be a nega-
tive study with absolutely no difference in overall 
survival between the two arms of the study 
(13 months) and very similar progression-free 
survival, but it did show that maintenance therapy 
was tolerable with signifi cantly higher level of 
thrombocytopenia in the combined arm.   

19.3.3     PD-1 Monoclonal 

 The birth of the monoclonal antibody against pro-
grammed death and its ligand PD1/PD1-L was 
heralded as a great leap in immunotherapy. PD-1 
is a member of the CD28 family. It is expressed 
on T cells, memory cells, and regulatory T cells. 
The binding of PD-1 to its corresponding ligand 
PD-1L downregulates the activity of the T cell 
and inhibits it. The expression of PD-1L heralds 
poor tumor prognosis. PD1/PD-1L is regarded as 
a secondary signal after the initial interaction of 
T-cell receptor with antigen and MHC—Fig.  19.4 . 
This secondary signaling pathway acts as an 
inhibitor of death. Henceforth, an antibody block-

ing the PD1 motif will cause cell death. BMS-
936558 is an IgG4 monoclonal that blocks the 
docking of PD-1L and PD-2L onto PD-1. The 
current literature demonstrates good safety and 
effi cacy in a preliminary phase I study by Brahmer 
and colleagues, whereby 39 patients with 
advanced solid tumors were given dose-escalating 
infusions of 0.3, 1, 3, and 10 mg/kg. The patient 
pool contained melanoma, renal cell carcinoma 
(RCC), colorectal carcinoma, NSCLC, and 
castration- resistant prostatic carcinoma (CRPC). 
The treatment was well tolerated; however, in 
nine patients observed, the success of the treat-
ment was correlated with PD-1L expression [ 5 ]. 
Yet, in another study, SL Topalian and colleagues 
recruited 296 patients with advanced solid tumors 
who were given anti-PD-1 antibody at doses from 
0.1 mg/kg up to 10 mg/kg every 2 weeks. 
Response was assessed after 8 cycles, but patients 
were given up to 12 cycles of therapy until com-
plete response or disease progression. Of the 236 
assessed, objective responses were more common 
in patients with NSCLC, melanoma, and RCC; 
this was further refl ected with the response rate of 
PD-1L- expressing tumors which was 36 % (9 out 

Inhibition CTLA4

CD28

PD-1

TCR

T-cell APC/DC

Antigen

B7.1/2

B7.1/2

PD-1L/B7-H1

MHC

TNFR family

Inhibition

Activation

Activation

Activation TNFRSF1

  Fig. 19.4    Demonstrates the interaction of T cell with 
antigen-presenting cell. The antigen ( yellow ) is sand-
wiched between the MHC and the T-cell receptor. 
Secondary activating signals between CD28 and B7.1 are 
important in consolidating an immune response. Inhibitory 
responses mainly between PD-1 and PD-1L as well as 

CTLA4 and B7.1 are important in the abrogation of the 
immune response. In this representation, BMS936558 
( purple ) and ipilimumab ( black ) inhibit these inhibitory 
interactions and thus cause an inhibition of inhibitory 
stimuli, therefore priming the T cell       
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of 25) and totally negative in the tumors not 
expressing PD-1L (Fig.  19.5 ). Overall response 
rate in the NSCLC subgroup was 18 % (14 out of 
76), 28 % in the melanoma subgroup, and 27 % in 
the RCC subgroup [ 6 ]. Although this was not a 
randomized trial, it did prove the principle that in 
tumors expressing PD-1L, it is well worth exam-
ining the option of using anti-PD1 antibodies. 
Another phase II multicenter trial (CA 209-063) 
with BMS 936558 will be looking into patients 
with advanced squamous cell NSCLC who have 
received at least two prior chemotherapy regi-
mens. The study is still recruiting patients and 
should be fi nished by 2014. Thus, although we do 
not have a large well-powered randomized trial 
with BMS 936558, this relatively new monoclo-
nal antibody could hold much promise in the 
future.    

19.3.4     Cetuximab 

 Cetuximab is a monoclonal antibody that targets 
epidermal growth factor receptor (EGFR), which 
is an extracellular receptor with complex down-
stream signaling. Cetuximab is an IgG1 chimeric 
antibody that prevents the dimerization of its 
receptor with fi ve- to tenfold affi nity compared to 
its native ligand, thus preventing further receptor 
action. It also mediates antibody-dependent 

 cell- mediated cytotoxicity (ADCC) and downreg-
ulation of the extracellular receptor. The dogma of 
using cetuximab in NSCLC is based upon the fact 
that 80 % of the diagnosed patients have high 
expression of EGFR extracellularly on immuno-
histochemical analysis. However, further analysis 
in colorectal cancer (CRC) and squamous cell car-
cinoma of the head and neck (SCCHN), whereby 
cetuximab and another antibody, panitumumab, 
are used to treat advanced stage disease, revealed 
that mutational variations in K-ras, a further down-
stream GTPase, have a signifi cantly different out-
come. Colorectal cancer and squamous cell 
carcinoma of the head and neck patients treated 
with EGFR monoclonal antibodies against wild-
type K-ras have a signifi cantly better outcome than 
those harboring mutations as demonstrated from 
the phase III CRYSTAL and EXTREME trials, 
respectively. In diametric contrast, analysis of 
K-ras mutations in NSCLC, whether wild type or 
mutated, this correlation has not been demon-
strated, thus suggesting that further biomarkers are 
required in the determination of prognosis. Crucial 
to the use of cetuximab in NSCLC has been the 
FLEX trial which has shown that the addition of 
cetuximab to fi rst-line chemotherapy in advanced 
NSCLC signifi cantly improved survival in patients 
as compared to chemotherapy alone. In 1,121 
patients with positive immunohistochemistry for 
EGFR staining that were further subdivided into 

  Fig. 19.5    ( a ) Shows PD-1-receptor occupancy by anti-
PD-1 antibody. The graph at the left shows PD-1-receptor 
occupancy on circulating T cells in 65 patients with mela-
noma after one cycle (8 weeks) of treatment at a dose of 
0.1–10.0 mg per kilogram every 2 weeks.  Bars  indicate 
median values. The graphs at the  right  show the fl ow cyto-
metric analysis of PD-1-receptor occupancy on CD3-
gated peripheral blood mononuclear cells from a patient 
with melanoma who received 0.1 mg per kilogram, before 
treatment ( top ) and after one treatment cycle ( bottom ). 
 Dashed lines  indicate isotype staining controls, and  solid 
lines  antihuman IgG4. Panel ( b ) shows the correlation of 
pretreatment tumor cell- surface expression of PD-1 ligand 
(PD-L1), as determined with immunohistochemical anal-
ysis of formalin-fi xed, paraffi n- embedded specimens, 
with an objective response to PD-1 blockade in 42 patients 
with advanced cancers: 18 with melanoma, 10 with non-
small cell lung cancer, 7 with colorectal cancer, 5 with 
renal cell cancer, and 2 with castration- resistant prostate 

cancer. Tumor cell-surface expression of PD-L1 was sig-
nifi cantly correlated with an objective clinical response 
(graph at the  left ). No patients with PD-L1-negative 
tumors had an objective response. Of the 25 patients with 
PD-L1-positive tumors, two who were categorized as not 
having had a response at the time of data analysis are still 
under evaluation. Shown at the right are immunohisto-
chemical analysis with the anti-PD-L1 monoclonal anti-
body 5H1 in a specimen of a lymph node metastasis from 
a patient with melanoma ( top ), a nephrectomy specimen 
from a patient with renal cell cancer (RCC) ( middle ), and 
a specimen of a brain metastasis from a patient with lung 
adenocarcinoma ( bottom ). The  arrow  in each specimen 
indicates one of many tumor cells with surface membrane 
staining for PD-L1. The  asterisk  indicates a normal glom-
erulus in the nephrectomy specimen, which was negative 
for PD-L1 staining (Images and data reproduced from 
Topalian et al. [ 6 ], with permission from the Massachusetts 
Medical Society)       

 

S. Boghossian



369

high (345) and low (776), the overall survival in 
the high EGFR- expressing chemotherapy plus 
cetuximab group versus the chemotherapy alone 
group was signifi cantly higher (12.0 months vs. 
9.6 months), whereas the low EGFR-expressing 
subgroup showed no overall benefi t (9.8 cetux 

+chemo. vs. 10.3 months for chemotherapy alone) 
[ 7 ]. However, there has been some reluctance in 
using cetuximab in some communities due to high 
cost and availability of oral tyrosine kinase inhibi-
tors that act further downstream from EGFR 
receptor. 
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19.3.4.1     The EGFR Inhibitor Rash 
 A well-known dermatitic rash develops with 
use of EGFR inhibitors as demonstrated in 
Fig.  19.6 . The rash develops in almost two 
thirds of patients using EGFR inhibitors. The 
association of the rash with anticancer activity 
was observed by Saltz and colleagues with 
increasingly apparent association between 
cutaneous toxicity and favorable EGFR activ-
ity. Almost all clinical trials report a positive 
association; nonetheless, there is a signifi cant 
reporter bias. The underlying mechanism of 
action is diffi cult to interpret as clinicians have 
aimed to relate tumor EGFR with skin 
EGFR. However, unlike other tumor predictors 
of EGFR (mutant/amplifi cation), the same can-
not be said about the skin. Additionally, the 
tumor mutations are somatic mutations and do 
not involve the skin. Alternatively, a much 
pragmatic explanation would be that the rash is 
a clear indication of adequate drug exposure 
whether it is EGFR inhibitors or tyrosine 
kinase inhibitor (TKI) like gefi tinib. To sim-
plify matters, two mechanisms have been pos-
tulated: one is the inhibition of the skin itself 
and the second one is the result of systemic 
immunologic reaction. The last fi nding is based 
upon the fact that in some patients, the rash is 
self-limiting in a small number of patients and 
improves over time while being managed with 
steroids. While the inhibitor- associated rash is 
clinically related to anticancer activity, the 
treatment of this rash will permit more patients 
to benefi t from inhibitor treatment [ 8 ].  

    

19.3.4.2         The Measurement 
of Immune Response 
in Monoclonals 

 Before undertaking the discussion of the next 
monoclonal antibody, I would like to take the 
opportunity to explain the major differences 
between standardized response rates as classifi ed 
by the World Health Organization and the 
immune-related criteria (IRC). Traditional dogma 
dictates that the response to chemotherapy should 
be evident in a few weeks. However, immuno-
therapy does not obey those rules; it requires the 
activation of T cells and their proliferation, but 
for this to achieve clinically measurable antitu-
mor effect, it takes a few months, and fi nally, the 
ultimate outcome on survival is possibly looking 
at a few years. 

 Wolchok and colleagues elegantly described 
the patterns of response in ipilimumab which is 
clearly shown in Fig.  19.7  and Table  19.5 . This 
describes the patterns of response and warrants 
clinicians and immunologists that albeit the 
fact that tumors might eventually decrease in 
overall size, there can be an initial increase; 
this is termed pseudoprogression which might 
be evident for up to 6 months in some cases 
[ 9 ]. It is important to appreciate the clinical 
signifi cance of pseudoprogression as modern-
day biologicals are likely to have a delayed 
onset of action and possibly a longer duration 

  Fig. 19.6    Showing a patient receiving with rash after 
receiving four cycles of cetuximab (The permission was 
granted by the patient. Copyright of the chapter author)       
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of action. Additionally, these new agents might 
prompt clinicians to terminate therapy early, 
although it might be that the immune response 
is just starting to recruit the necessary reactive 
cells. 

19.3.5          Ipilimumab 

 Ipilimumab is another monoclonal antibody tar-
geted against CTLA-4. Ipilimumab (Ipb) has 
been recently used against prostatic carcinoma, 
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  Fig. 19.7    Showing the patterns or response to ipilim-
umab which were observed in advanced melanoma. Four 
patterns of response have been observed in advanced mel-
anoma patients treated with ipilimumab at 10 mg/kg in the 
CA184-008 and CA184-022 trials. ( a ) Immediate 
response; ( b ) “stable disease” with slow, steady decline in 
total tumor volume; ( c ) response after initial progression; 
( d ) initial mixed response.  SPD  sum of the product of per-

pendicular diameters,  N  tumor burden of new lesions 
( c ,  d ). Panel ( d )  top line , total tumor burden;  middle line , 
tumor burden of baseline lesions;  bottom line , tumor bur-
den of new lesions.  Triangles  on the x-axis: ipilimumab 
dosing time points;  dashed lines , thresholds for response 
or progressive disease/immune-related progressive dis-
ease [ 9 ] (Reprinted by permission from the American 
Association for Cancer Research: Wolchok et al. [ 9 ])       

   Table 19.5    Displaying the differences between WHO and immune-related response criteria (irRC)   

  CR    PR    SD    PD  
 WHO criteria  All lesions gone  SPD of index lesions 

decreases ≥50 % 
 SPD of index lesion of 
neither CR, PR, nor PD 

 SPD of index lesion 
increases by 25 % 
and/or new lesions 
develop 

 New lesions not allowed 

  irCR    irPR    irSD    irPD  
 Immune-related 
response criteria 
(irRC) 

 All lesions gone  SPD of index and any new 
lesion decreases by 
≥50 % 

 SPD of index and any 
new lesions but neither 
irCR, irPR, nor irPD 

 SPD of index lesion 
and any new lesions 
increases by 25 % 

 New lesions are allowed 

  With clear differences in the partial response (irPR/PR) and stable disease (irSD/SD) 
  CR  complete response,  PD  progressive disease  
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melanoma, as well as NSCLC. Ipilimumab is a 
fully human IgG1 isotype, whereas its sister anti-
body tremelimumab is an IgG2 isotype. The key 
to understanding of the mechanism of action of 
this antibody is the  inhibition  of inhibitory sig-
nals from the dendritic cells (DCs) or antigen- 
presenting cell (APC) to the T cell or the cytotoxic 
T lymphocyte (CTL) upon antigen presentation 
or tumor peptide presentation. This inhibition 
will naturally create a state of anergy and subse-
quently lead to the apoptosis of activated T cells. 
Thus, blocking this inhibition allows CTLs to 
destroy tumor cells. 

 Initial trials with Ipb were focused against 
melanoma; however, it soon was evident that it 
was effective against other solid tumors includ-
ing castration-resistant prostate cancer and 
NSCLC. Ipb has been approved for use by the 
FDA and the UK for use in advanced melanoma. 
The current literature holds one crucial clinical 
trial CA 184-041 described in Table  19.6 . The 
objective of the study was to evaluate the safety 
and effi cacy of ipilimumab in combination with 
chemotherapy (carboplatin, AUC = 6, and pacli-
taxel 175 mg/m 2 ) with primary endpoint being 
immune-related progression-free survival 
(irPFS). The study was also intended to addition-

ally evaluate two different schedules: concurrent 
(started at the same time of chemotherapy) and 
phased (give chemotherapy for two cycles). To be 
included in the trial, the patients were meant to be 
chemotherapy naive with Eastern Cooperative 
Oncology Group 0–1 performance status without 
any brain metastasis or autoimmune disease. The 
results of this phase II study were quite valuable 
and positive. With respect to immune-related 
progression-free survival, the results were 
5.5 months ( p  = 0.094) for the concurrent group 
versus 5.7 (0.026) months for the phased group 
and 4.6 months for the placebo group. As for 
overall survival, the results were 11 months 
( p  = 0.429) versus 11.6 months ( p  = 0.104) for the 
concurrent and phased groups, respectively. The 
overall survival for the placebo group was 
10 months. Thus, looking back at these results, 
although they do not show a dramatic difference, 
they will defi nitely herald newer trials with Ipb 
and NSCLC [ 10 ].   

19.3.6     Talactoferrin 

 Talactoferrin is a new development by Agennix ®  
which is based on lactoferrin, a breast milk pro-

   Table 19.6    CA 184-41, ipilimumab in combination with carboplatin and paclitaxel as fi rst-line treatment in stage III/
IV NSCLC showing the randomization and treatment protocol of CA 184-041       

  Three subgroups are randomized into concurrent (Ipb plus chemotherapy), followed by maintenance doses of ipilim-
umab, phased, chemotherapy fi rst, and then chemotherapy plus ipilimumab. The placebo group was given chemother-
apy only 
  Ipb  ipilimumab,  C  chemotherapy,  P  placebo  

CA 184-041 Trial
Treatment phase (n = 203) 

Dosed every 3 weeks

Maintenance phase

Dosed every 12 weeks

C      C      C      C      C      C

Ipb  Ipb  Ipb  Ipb    p       p

Ipb           Ipb

C      C      C      C      C      C  

p     p      Ipb  Ipb   Ipb    Ipb

Ipb            Ipb

C      C      C      C      C      C

p     p      p      p      p      p

P                p

Randomise
203 patients

into 3
subgroups

(1:1:1)

Subgroup A
Chemo+Ipb
Concurrent 

Subgroup B
Chemo+Ipb
Phased

Subgroup C
Chemo only
Placebo
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tein secreted in cycles during puerperium. The 
orally available talactoferrin has been geneti-
cally modifi ed to bypass the gastric mucosa and 
is given twice a day for 2 weeks and then 
2 weeks off. It is an 80 kDa protein synthesized 
in  Aspergillus niger  strains. The exact mecha-
nism of action is poorly understood, but it is 
postulated to stimulate the dendritic cells in the 
gut (GALT) and prime the T cells against tumors 
or immunopotentiate them as shown in Fig.  19.8 . 
The crucial trial that upholds the credibility of 
talactoferrin is the FORTIS-M trial which has 
just been completed. In an effort aimed at over-
all survival (OS) after successful phase II trials 
[ 11 ], FORTIS-M was a randomized double-
blind multicenter trial that recruited 742 previ-
ously treated, stage IIIb/IV NSCLC patients to 
receive either talactoferrin or placebo. 
Unfortunately, the results were negative with 
OS being 7.5 months versus 7.7 months for 
talactoferrin and placebo, respectively (data 
from Agennix). However, committing this agent 
to the shelf is very early, and the possibility of 

combining this agent early on in chemotherapy 
might be another useful alternative.   

19.4     Peptide-Based Vaccines 

19.4.1     MAGE-3 

 Known as melanoma antigen-3, MAGE is also 
defi ned as a cancer-testis antigen protein (cancer- 
testis database). Its exact function in normal somatic 
cells is unknown; neither is their embryonal role. 
The  MAGE  groups of genes are clustered on the 
Xq28. The MAGE proteins bind to E3 ubiquitin 
ligases and inhibit the interaction of p53 with their 
cognate receptors on chromatin. MAGE is highly 
expressed in NSCLC, melanomas, and myelomas 
by well over 50 %, making them ideal targets for 
immunotherapy. The recent vaccine used in clinical 
trials for immunotherapy is MAGE-A3 fused with 
 Haemophilus infl uenzae  protein D along with a 
 proprietary adjuvant. Expression of MAGE-A3 and 
other cancer-testis antigens are more common in 

Leukocyte
Released
Lactoferrin

Lactoferrin

Lactoferrin Receptor

PI3K

JNK/SRC
CCR7

CXCR4
CD86
CD80

HLA2 CD83
IL8/CXCL10 (Stimulates the release)

IL6/CCL20/IL10 (Inhibitory signals)

Antigen Presenting Cell

  Fig. 19.8    The immunobiology 
of talactoferrin and its immunos-
timulatory and inhibitory  
mechanisms of action       
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squamous cell subtypes and are associated with 
embryologically earlier stages of maturity making 
them less amenable to standard chemotherapy or to 
host immune responses [ 12 ]. 

 The use of MAGE-A3 as an immunotherapeu-
tic agent was based on solid evidence from phase 
II trials and high expression in more than 50 % of 
cases of NSCLC as demonstrated in Figs.  19.9  
and  19.10 . Additionally, being a cancer-testis 
antigen, autoimmunity would not have been a 
problem. In the phase II trial for NSCLC, 182 
patients with MAGE-A3-positive stage Ib and II 
tumors were randomized (2:1) to receive either 
the vaccine or placebo after curative surgery (122 
receiving MAGE vs. 60 receiving placebo). As 
described earlier, it consisted of full length 
MAGE-A3 with  H. infl uenzae  protein D mixed 
with saponin and monophosphoryl lipid A. The 
vaccine (300 μg) was administered intramuscu-
larly every 3 weeks for fi ve doses and then once 
every 3 months for a total period of 2 years. The 
primary endpoint was disease-free interval (DFI) 

with secondary endpoints being disease-free sur-
vival and overall survival safety. The vaccine 
proved to be effective and heralded a new phase 
III trial—MAGRIT. The MAGRIT trial is based 
on the successes of its predecessor; in addition to 
using MAGE whole protein, the adjuvant activity 
was potentiated with the addition of TLR9 
 agonist, CpG7909, which is known to be effec-
tive in hepatitis B vaccines. MAGRIT started 
recruiting in 2007 and intends to recruit almost 
2,300 patients from 150 centers worldwide. 
Unfortunately, the results of the trial did not meet 
the primary endpoint of disease-free survival as 
well as the secondary endpoint which was gene 
signatures that allow response to MAGE-A3.    

19.4.2     EGF Vaccines 

 Epidermal growth factor plays a key role in cancer 
development. EGFR tyrosine kinase inhibitors and 
EGFR-targeted monoclonals are well- established 
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  Fig. 19.9    Disease-free 
survival after 42 months of 
follow-up demonstrating a 
hazard ratio of 0.73 in 
favor of MAGE vaccine 
with a 27 % risk reduction 
of cancer recurrence 
(Adapted from 
Vansteenkiste et al. [ 33 ], 
with permission of ASCO)       
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  Fig. 19.10    Demonstrating the randomization and 
recruitment criteria for MAGRIT, with a primary endpoint 
being disease-free survival while the secondary endpoints 

are lung cancer-specifi c survival; OS; 2-, 3-, 4-, and 5-year 
DFS; anti-MAGE and anti-protein D seropositivity; as 
well as safety profi le and serious adverse events       
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modalities. Initial studies with recombinant EGF 
conjugated with P64K from  Neisseria meningiti-
dis  along with alum and Montanide™ were evalu-
ated in 3 pooled studies totaling 83 patients with 
stage III/IV NSCLC. After vaccination with EGF, 
the majority of patients at least doubled their anti-
EGF titer (83 %) described as seroconversion. 
Good seroconversion was described as titer more 
than 1:4,000 and termed as good antibody response 
(GAR). Survival was better in good antibody 
responders versus poor responders (mean of 
12.2 months vs. 8.07 months, respectively). 
Neninger Vinageras et al. conducted a phase II 
trial in patients with stage III/IV NSCLC 
(CimaVax ® ) who have already completed chemo-
therapy. The vaccine contained 50 μg equivalents 
of EGF given on days 1, 7, 14, and 28 and monthly 
thereafter. Comparing vaccinated patients ( n  = 37) 
with non-vaccinated ( n  = 37), there was a nonsig-
nifi cant advantage in overall survival in favor of 
vaccinated patients (median of 6.5 vs. 5.3 months; 
 p  = 0.098). However, interestingly, those under the 
age of 60 showed a signifi cant advantage in sur-
vival (11.6 months vs. 5.3 months;  p  = 0.0124). 
There was a signifi cant correlation between over-
all survival and good antibody response as well as 
drop in EGF levels [ 13 ]. These studies prompted 
further studies by the Cuban teams with higher 
recruitment numbers.  

19.4.3     MUC1 and Stimuvax® 

 MUC1 or mucin 1 is an extracellular glyco-
protein found on the surface of normal cells 
and cancer cells. It normally lines the apical 
epithelium of lungs, intestines, stomach, and 
many other organs. It plays a crucial role in the 
defense against pathogenic infections mainly 
by keeping the bacteria away from the sur-
face. MUC1 has a core protein mass of 120–
220 KDa which increases to 250–500 kDa upon 
glycosylation. The extracellular domain con-
tains 20-amino-acid variable number of tandem 
repeats (VNTR). The number of repeats var-
ies from 20 to 120 with serine, threonine, and 
proline being the most common, thus allowing 
extensive O-glycosylation. Overexpression, 

aberrant intracellular localization, and defective 
glycosylation have been crucial to tumor prop-
agation. Glycosylation creates a hydrophilic 
tumor microenvironment allowing growth fac-
tors (IGF) to stay in the vicinity, but it also cre-
ates extensive steric hindrance for immune cells 
as well as hindering the action of hydrophobic 
chemotherapeutic agents [ 14 ]. The identifi ca-
tion of cancer-specifi c immunodominant epit-
ope (HGVTSAPDTRPAPGSTAPPA), each of 
which has 5 O-glycosylation motifs [ 15 ], her-
alded the development of further studies and 
prompted the design of Stimuvax ® .

  Stimuvax ® , also known as L-BLP25, was 
developed based on the tandem repeat motifs 
mentioned earlier. The motif used is 
S TA P PA H G V T S A P D T R PA P G S TA P P - 
Lys(PAL)G lipopeptide. The adjuvant is mono-
phosphoryl lipid A, while the liposomal 
components are cholesterol, dimyristoyl phos-
phatidylglycerol, and dipalmitoylphosphatidyl-
choline. The mechanism of action of BLP25 is 
postulated to be through the uptake of the lipo-
peptide by DCs and further presentation to TCR 
either through MHC I or II with further augmen-
tation of its effect via the recruitment of cytotoxic 
T lymphocyte, release of cytokines, humoral fac-
tors, and NK cells as shown in Fig.  19.11  (data 
provided by Serono).  

 The clinical trials of Stimuvax ®  have been 
pioneered after successful open-label phase II 
study was conducted to evaluate the safety of 
BLP25. Twenty-two patients with unresectable 
stage IIIA/IIIB NSCLC received 1,000 μg every 
week for 8 weeks plus best supportive care. The 
vaccination continued for 13 weeks after the 
start of the trial and was given every 6 weeks 
until disease progression. After median follow-
up of 26.7 months, the 1-year survival rate was 
82 % (95 % CI, 66–98 %), while the 2-year sur-
vival rate was 64 % (95 % CI, 44–84 %) [ 16 ]. 
This heralded two further phase III clinical trials 
START and INSPIRE. START is a multicenter, 
randomized, double-blind, placebo-controlled 
phase III trial aimed at unresectable stage III 
NSCLC patients with previous exposure to plati-
num chemotherapy and radiotherapy. START 
recruited 1,500 patients in 33 countries. 
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Unfortunately, the trial was stopped due to fail-
ure of reaching primary endpoint of overall sur-
vival (Merck KGaA/Oncothyreon). The 
INSPIRE trial [ 17 ] is a similar trial aimed at 
patients with Asian background, aimed at recruit-
ing 420 patients with unresectable IIIA/IIIB 
NSCLC who have at least responded with two 
cycles of platinum chemotherapy or have stable 
disease. The trial fi nished recruiting; however, 
yet again, the trial failed to reach signifi cance. 
Another trial, the STOP trial, randomized 532 
patients with stage III/IV NSCLC to receive vac-
cine versus placebo after doublet chemotherapy. 
The trial yet again did not show any benefi t in 
terms of primary endpoint of overall signifi -
cance. However, a subgroup of patients that had 
received chemotherapy 12 weeks earlier did ben-
efi t as well as those who had received chemora-
diotherapy. Despite these setbacks, Stimuvax 
might still have a role to play if tailored 
appropriately.  

19.4.4     Polyclonal Tumor Vaccines 

19.4.4.1     IDM-2101 
 IDM-2101 is a ten-epitope T-cell vaccine com-
posed of several tumor-associated antigens 

(TAAs). The concept behind this vaccine was 
based on the fact that tumors have multiple 
tumor-associated antigens with multiple epit-
opes. The main TAAs of NSCLC are carcinoem-
bryonic antigen, p53, MAGE-2, HER2/neu, and 
MAGE-3. The epitopes are composed of ten pep-
tides of the abovementioned antigens, nine of 
which are CTL epitopes while the tenth epitope is 
HLA-DR which is intended to augment the CTL 
response. A recent phase II study by Barve and 
colleagues with 63 HLA-A2-positive patients 
with NSCLC demonstrated no signifi cant adverse 
events. A total of 13 doses was administered over 
a period of 2 years. One-year survival was 60 % 
and median survival was 17.3 months. Among 
the responders, there were one complete response 
and one partial response. A phase III trial if any is 
awaited [ 18 ].   

19.4.5     Whole-Cell Tumor Vaccines 

19.4.5.1     GVAX® 
 GVAX ®  is a vaccine composed of whole-cell 
tumors transfected with a non-replicating adeno-
viral vector engineered to secrete GM-CSF. In 
phase I studies with patients with stage IV 
NSCLC, the vaccine showed only grade 1 and 2 
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toxicities. During the initial phase I trial, seven 
patients with stable disease achieved a durable 
remission of more than 40 months. This prompted 
a further cohort study with stage IB, II, II, or IV 
NSCLC. In the 33 patients with advanced dis-
ease, only 3 had durable complete response last-
ing more than 6, 18, and 22 months. Of particular 
note was longer survival in patients secreting 
GM-CSF more than 40 ng/24 h/10 6  (median 
 survival of 17 months, 95 % CI, 6–23 months) 
 compared to those secreting less GM-CSF 
(median survival 7 months, 95 % CI, 4–10 months) 
( p  = 0.028) [ 19 ]. This clearly suggested an 
increased advantage in survival with increased 
secretion of GM-CSF. A subsequent trial 
 evaluated unmodifi ed tumor cells combined with 
genetically modifi ed allogenic human erythro-
leukemia cell lines (K562). This combination is 
referred to as bystander GVAX. Forty-nine 
patients with advanced NSCLC received the vac-
cine; however, unlike the previous vaccine, none 
of the patients achieved a partial or complete 
response. It was postulated that the GM-CSF 
prompted the growth of myeloid-derived stem 
cells and impaired antigen presentation of anti-
gen to T cells. Further studies with other tumors 
did not demonstrate improved survival, thus con-
fi ning this treatment modality to obscurity.  

19.4.5.2     Belagenpumatucel-L 
  Belagenpumatucel - L , also marketed as Lucanix ®  
by NovaRx, is an allogenic whole tumor cell vac-
cine isolated from four irradiated and cryopre-
served cell lines. The cells have been modifi ed 
with antisense TGF-β2, thus causing an abroga-
tion in the secretion of TGF which acts as a local 

immunosuppressant. The cell lines are NCI-
H- 460, NCI-H-520, SK-LU-1, and RH2. The ini-
tial success of the phase II trial heralded further 
analysis into Lucanix ® . The phase II trial ran-
domized three cohorts to receive three separate 
doses of treatment as shown in Fig.  19.12 .  

 The results have been quite satisfying; 75 
patients received a total of 550 vaccine doses as 
described above. The pooled stage IIIB and IV sub-
group achieved an overall 5-year survival of 19 %, 
while stages II and IIIA reached a survival of 23 % 
( n  = 61) [ 20 ]. Additionally, among the responders, 
there was an increased release of interferon gamma 
as demonstrated by ELISA or ELISPOT reactions 
to belagenpumatucel. Within the advanced stage 
subgroup ( n  = 61), there was increase in the overall 
survival as well as in the high-dose subgroups (2.5 
and 5.0 × 10 7 ) [ 20 ]. In a comparative data from 
NovaRx, between Lucanix ®  and historic survivors 
matched to the same disease progression, the 1-year 
disease survival comparing Lucanix ®  versus topote-
can as second-line single-agent maintenance ther-
apy was 55 % versus 9 %, while the 5-year survival 
was 10 and 0 %, respectively, in favor of Lucanix ®  
(analysis by Daniel Shawler, vice president of 
NovaRx operations) [ 21 ]. These results further 
prompted the phase III STOP trial which has already 
randomized 504 patients to receive either Best 
Medical Therapy (placebo) or 2.5 × 10 7  cells of 
belagenpumatucel. The injection protocol will 
involve once-monthly treatment intradermally for 
18 months and then once at 21 and 24 months in the 
absence of disease. The primary endpoint is overall 
survival with several secondary endpoints including 
PFS, QOL, time to tumor progression (TTP), 
best tumor response, and immunological parameters 

Randomise

N = 75

Cohort 1: 1.25 × 107 cells/injection

Cohort 2: 2.5 × 107 cells/injection

Cohort 3: 5.0 × 107 cells/injection

Upto16 monthly intradermal
injections
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with tumor stages ranging II–IV.

Tumor burden <125 ml.

Performance status ≤2.
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including cytokines (IFN-γ ELISPOT CD8), che-
mokines, and in vitro proliferation assays 
(ClinicalTrial.gov identifi er NCT00676507). The 
study is still open; however, there have been con-
fl icting information coming out from unblinding of 
some of the data which does not favor or disfavor 
the treatment yet.   

19.4.6     TGFβ2-Antisense+rhGMCSF 

 This genetically designed vaccine is not unique 
for lung tumors only; however, the vaccine’s 
unique design would defi nitely prompt mention-
ing in this chapter. The design of this vaccine is 
based upon the fact that silencing TGFβ2 and 
enhancing the release of GM-CSF would allow 
the tumor to break tolerance and allow native 
CTL to identify tumor cells. The vaccine was 
constructed from autologous tumor cells, har-
vested and disaggregated, and then electrocorpo-
rated with plasmid gene [ 24 ]. The resulting 
vaccine was subsequently irradiated and then 
preserved until the time of injection. Of 38 
patients harvested for vaccine injection, eventu-
ally 23 patients got treated with no grade 3 or 4 
adverse events. Of the ten alive patients, eight 
have stable disease (SD) while one patient with 
metastatic malignant melanoma had complete 
response (CR) and one patient was deemed not fi t 
for evaluation. Additionally, the vaccine effec-
tively knocked down TGFβ2, but not TGFβ1 with 
consistent expression of GM-CSF [ 22 ].   

19.5     Other Treatment Modalities 

19.5.1     Dendritic Cells 

 There are numerous articles that have used DC 
therapy as a mechanistic action in priming T cells 
as described in Table  19.7 . In this chapter, I will 
not discuss each and every one of them. The mech-
anism of antigen uptake and display by MHC II 
and cross presentation to a more robust MHC I/
CD8 system has already been well discussed (see 
cross presentation in previous chapters). Of par-
ticular note has been one trial undertaken by 
Hirschowitz et al. which demonstrated a non-con-
clusive correlation between immune response and 
tumor progression in a group of 16 patients with 
stage I–III NSCLC which proves the complexity 
of DC trials. To improve the clinical outcomes, 
DCs have been loaded with peptides specifi c to the 
expression profi le of tumors: MUC1 in MUC1-
expressing tumors or adding TRICOM (triad of 
co- stimulatory molecules; B7.1, ICAM-1, and 
LFA- 3) or the use of co-inhibitory molecule inhib-
itors (PD-1 and CTLA-4).

19.6         Mutations 

 Genetic mutations in NSCLC are becoming more 
recognizable. Roughly 50 % of lung tumors have 
been attributed to a mutation, which leaves a size-
able portion of tumors still without a genetic driver 
mutation. This research is based from data pro-

   Table 19.7    Demonstrating some dendritic cell vaccine trials in NSCLC   

 Author  Trial design  Result 

 Morisaki et al. [ 23 ]  Polyvalent, multiple-epitope vaccine 
against multiple tumors, RCC, NSCLC, 
myeloma, melanoma 

 Good release of interferon by ELISPOT 

 Hao et al.[ 24 ]  Dendritic cell-based exosomes  Proliferation-based assay shows a good CD8 
titer 

 Hirschowitz et al. [ 25 ]  Immunization of NSCLC patients with 
antigen-pulsed immature DC cells 

 Good immune responses yet the outcome was 
anecdotal 

 Chiappori et al. [ 26 ]  Dendritic cell-based p-53 vaccine against 
SCLC 

 Good immune response and enhanced 
sensitivity to chemotherapy 

 Perroud et al. [ 27 ]  Dendritic cell-based vaccine against 
NSCLC 

 The lymphoproliferation assays were 
satisfactory; the response was not durable 
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duced by Massachusetts General Hospital which 
demonstrated out of 550 NSCLCs, the majority are 
adenocarcinomas with an identifi able mutation. 
A further replication of data is being undertaken by 
the Lung Cancer Mutation Consortium (LCMC) 
which aims at looking into 1,000 adenocarcinoma 
specimens. 

 The identifi cation of a driver mutation is what 
makes NSCLCs or SCLCs more amenable to tar-
get therapies and hence could potentially render 
an unresectable tumor into a stable progression- 
free status and hence gives immunotherapy an 
opportunity. The incidence of driver mutations is 
shown in Fig.  19.13 .   

19.7     Chemoprevention 

 There have been several attempts to develop 
immunomodulatory agents, but the majority has 
not gone past the phase II level of investigation. 
In this chapter, we will focus on specifi c agents 
that have undergone at least phase III trials. 

 The chapter will not be able to detail the vast 
amount of literature relating to chemoprevention; 
however, I think a brief scholarly discussion will 

prompt the reader to look into this interesting 
topic further. 

 Chemoprevention is described as a strategy 
aimed at preventing tumor progression before irre-
versible changes to the proteome are in full prog-
ress [ 28 ]. Primary chemoprevention is defi ned 
as intervention intended to delay or  prevent the 
development of cancer in healthy individuals. 
Secondary chemoprevention is aimed at patients 
who have been diagnosed with premalignant or 
dysplastic lesion, whereas tertiary chemopreven-
tion is targeted against patients who have been 
diagnosed and treated for lung tumors. So far, we 
do not have an exact mechanistic view of tumori-
genesis for lung tumors similar to colorectal carci-
nomas, and certainly the adenoma- carcinoma 
sequence or the Vogelstein model [ 29 ] would not 
hold in this respect. However, the evidence that 
substantiates the role of cigarette smoking is clear 
albeit not in all cases. Surrogate endpoint bio-
markers as described in Table  19.8  have been 
described by some authors as potential niches or 
key markers which can be statistically measured, 

Incidence of driver mutations (%)
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13 %

5 %

5 %
4 %
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1 %
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0.50 %
0.50 %

No mutation
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PIKC3CA

CTNNBl
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  Fig. 19.13    A pie chart showing the incidence of driver 
mutations.  ALK  anaplastic lymphoma kinase,  PIKC  phos-
phoinositol kinase C,  EGFR  epidermal growth factor 
receptor,  IDH  isocitrate dehydrogenase,  Her2  human epi-
dermal growth factor receptor,  NRAS  neuroblastoma RAS 
oncogene, Kirsten RAS GTPase,  CTTNB1  beta- catenin 
gene,  BRAF  B-raf,  TP53  tumor protein 53       

   Table 19.8    Classifi es the surrogate endpoints according 
to biochemical, genetic, cellular, histopathologic, and 
molecular classes. These key features could be further 
used for disease modulation   

  Biochemical  
 IGF1 levels 
  Genetic  
 KRAS mutations, EGFR expression, HER2 expression, 
c-myc, p53, chromosomal loss or gain 
(3p,5q,11q,13q,17p) 
  Cellular  
  Proliferation markers : Ki-67 
  Differentiation markers : retinoic acid receptor, lectin, 
loss of high molecular weight cytokeratins, 
heterogeneous nuclear ribonucleoprotein A2/B1 
 Apoptosis markers: Bcl-2/Bax 
  Histopathologic  
 Carcinoma in situ, squamous dysplasia, other atypical 
features 
  Molecular  
  DNA methylation : promoter CpG island methylation 
(p16, ECAD, DAPK, MGMT, GSTP1) 

   ECAD  E-cadherin,  DAPK  death-associated protein kinase, 
 MGMT  methylguanine-DNA-methyltransferase,  GSTP1  
glutathione S-transferase P1,  EGFR  epidermal growth 
factor  
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and hence, interventions can be made to modulate 
disease progression [ 30 ]. These key endpoints are 
not necessarily chemopreventive agents or pro-
teins, but their expression profi le, whether genomic 
or proteomic, will give clues about the mechanism 
of tumor behavior and will promote the develop-
ment of targeted therapies. The NSAIDs have 
become more or less consolidated in colorectal 
chemoprevention but that cannot be said about 
lung tumors.

   It is worth noting that the only trial that 
 confi rms the use of chemopreventive agents is by 
Pastorino and colleagues, whereby 307 patients 
with early-stage lung tumors were randomly 
assigned to receive either 300,000 IU of retinyl 
palmitate or no treatment. After a median 
46-month follow-up, the rate of second primary 
lung tumors (SPTs) was 39 % in the treatment 
group versus 48 % in the no-treatment group 
( p  = 0.045 in favor of treatment progression) [ 31 ]. 
This further heralded the EUROSCAN trial with 
vitamin A and N-acetylcysteine in patients with 
resected pulmonary tumors, the results of which 
were disappointing. However, yet again, these tri-
als were all secondary and tertiary chemopreven-
tion trials which give us an idea that the 
mechanism of injury from dysplasia/metaplasia 
to carcinoma of the lung is a result of multiple 
prolonged insults across time. However, it might 
be that a cocktail of drugs might be required to 
prevent chemoprevention [ 32 ].  

19.8    Concluding Remarks 

 This chapter will not cover the entire clinical tri-
als that have been performed so far, but the dis-
cussion is just enough to understand the main 
treatment modalities that are being pioneered. As 
we speak, there are three major clinical trials that 
are awaiting results to be published. However, 
compared to the early days of dendritic cell ther-
apy in the late 1990s and the current trends, we 
have at least two monoclonal antibodies—ipilim-
umab and BMS 936558—that have changed the 
clinical outcome of at least some cancers. 

Revisiting this chapter, we can clearly say that 
lung  cancer arises from a series of insults super-
imposed on background mutations, treatment of 
which will involve tackling the mutational cas-
cade and mounting an immune response. It is the 
immune response that we are focused upon, but 
maybe we should be expanding our search fur-
ther in combining our treatment with surgery and 
mutation-specifi c chemotherapy, similar to what 
we do in  estrogen-positive breast cancer and 
anastrozole therapy and obviously polyfactorial 
immunotherapy that involve not only the tumor 
cells but also the microenvironment and the 
immune cells. Finally, I would urge the readers to 
follow up on the clinical trials and possibly try to 
educate themselves from other tumors.     
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20.1             Introduction 

    Urothelial carcinoma of the bladder leads to 
signifi cant morbidity and mortality worldwide, 
accounting for about 5 % of all cancer deaths 
in humans [ 1 ]. Immunotherapy with Bacillus 
Calmette-Guérin (BCG) has become a fi rst-line 
treatment after performing transurethral resec-
tion (TUR) on high-grade, nonmuscle, inva-
sive bladder cancer (NMIBC) [ 2 ]. In addition, 
BCG reduces the risk of progression in high-
risk NMIBC [ 3 ]. Moreover, immunotherapeutic 
approaches involving cytokines are being used to 
treat renal cancer. 

 Nonetheless, the effi cacy of immunotherapy 
in the treatment of both renal and bladder cancer 
is variable. In this chapter, after briefl y discussing 
the subtypes and staging of bladder cancers in 
addition to renal cancer, attention is given to the 
role of immunotherapy in the treatment of blad-
der and renal cancer and the challenges involved 
are discussed.  
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20.2     Histological subtypes and 
staging 

 Approximately 90 % of bladder tumors are transi-
tional cell carcinoma (TCC), 5–10 % are squamous, 
and less than 2 % are adenocarcinoma. Bladder car-
cinomas are heterogeneous, ranging from superfi -
cial papillary tumors to invasive carcinomas. 

20.2.1     Nonmuscle Invasive Bladder 
Tumor 

 Nonmuscle invasive bladder tumors are carcino-
mas that do not infi ltrate the bladder muscle and 
represent 70–80 % of bladder tumors. They consist 
of stage Ta or T1 papillary tumors and carcinoma 
in situ (CIS). Stage Ta tumors reach the epithelial 
layer of the bladder, while T1 stage tumors slightly 
infi ltrate the lamina propria. T1 stage tumors are of 
greater concern than Ta stage, especially stage T1 
grade 3 tumors, which are likely to recur quickly 
and move to a higher stage at recurrence. The CIS 
shows a high recurrence rate and is often a sign of 
rapid progress toward infi ltration. CIS is in fact 
known as the superfi cial type, the most damaging 
of all types of non- muscle, invasive bladder cancer 
(NMIBC). However, it is rare and accounts for less 
than 10 % of NMIBCs diagnosed.  

20.2.2     Invasive Bladder Tumor 

 These tumors invade the lamina propria and reach 
at least the bladder muscle (stage T2). They can 
extend to the perirenal fat bladder (stage T3), or 
even invade nearby organs such as the prostate 
(stage T4). They require more aggressive therapeu-
tic measures, such as radical cystectomy with or 
without systemic chemotherapy. Immunotherapy 
has no valid effect on this type of tumor.   

20.3     Clinical Use of BCG 
Immunotherapy for NMIBC 

 Bacillus Calmette–Guerin (BCG) is the most 
common intravesical therapy for treating 
NMIBC. BCG is a live attenuated strain of 

 Mycobacterium bovis  developed in 1921 as a 
vaccine for tuberculosis, and BCG has since been 
given to people as vaccination against tuberculo-
sis. Since its fi rst use in 1976,  Mycobacterium 
bovis  BCG has been established as the most 
effective adjuvant treatment for preventing local 
recurrence and tumor progression, following 
transurethral resection (TUR) of NMIBC. 
However, its effectiveness has been both variable 
and unpredictable. Despite nearly 40 years of 
clinical use, the mechanism(s) by which the 
intravesical administration of BCG results in 
elimination of bladder tumors remains undefi ned. 
Although BCG is currently regarded as the most 
effective treatment available for the management 
of NMIBC, up to 40 % of patients do not respond 
to treatment and are at risk of disease recurrence 
and progression. Unfortunately, predictive mark-
ers for recurrence and progression are lacking. In 
patients with intermediate to high-risk bladder 
cancer, such as those with high-grade Ta/T1 or 
CIS, BCG is often given due to the higher risk of 
disease recurrence and progression. The clinical 
effi cacy of BCG has been demonstrated in a 
number of randomized trials and meta-analyses. 
Adjuvant administration of BCG after TUR has 
been shown to prevent both recurrence and pro-
gression compared with TUR alone or TUR with 
intravesical chemotherapy. 

20.3.1     History 

 Bacillus Calmette–Guérin was used for the fi rst 
time in 1921 as a vaccine against tuberculosis, 
and its mycobacterial antitumor effect was 
observed in 1929 by Pearl [ 4 ]. In fact, TB patients 
developed fewer malignancies than the general 
population. Coe and Feldman in 1966 [ 5 ] showed 
that the bladder might be the site of delayed 
hypersensitivity reactions in addition to the skin. 

 In 1970, BCG was used to treat cases of meta-
static melanoma [ 6 ]; then, in 1974, Hanna et al. 
[ 7 ] demonstrated the antitumor effect of BCG on 
the hepatocarcinoma. They defi ned the founda-
tions of local immunotherapy: a suffi cient quan-
tity of live bacilli; direct and prolonged contact 
between BCG and the tumor; the tumor volume 
after resection should be as small as possible. 
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 In 1975, by using local BCG therapy, 
deKernion reported the fi rst treatment of a 
bladder tumor, a metastatic malignant mela-
noma. This result led Morales et al. [ 8 ] and 
Martinez- Pineiro et al. [ 9 ] in 1976 to test the 
prophylactic effect of BCG on superfi cial blad-
der tumors. 

 These encouraging results were confi rmed by 
a study by a group of doctors from Laval 
University [ 10 ]. The fi rst controlled study con-
fi rming the effi cacy of BCG was reported by 
Lamm et al. [ 11 ]. Since then, treatment with 
intravesical instillation of BCG has proved to be 
the most effective therapeutic agent in treating 
superfi cial bladder tumors, especially carcinoma 
in situ (CIS) [ 12 ]. This effi ciency has led its 
approval by the US Food and Drug Administration 
agency in 1990. 

 Arbitrarily, it was decided to perform this 
treatment as six weekly intravesical instillations. 
The mode of administration of the treatment has 
been constantly optimized; nonetheless, the 
ideal mode has not yet been determined. In addi-
tion, it was found that the peak of the immune 
stimulation was located after the fourth week of 
instillation, also suggesting that cycles of four 
instillations might be suffi cient instead of six 
[ 13 ]. Maintenance treatment, adding cycles of 
three instillations every 6 months after the fi rst 
normal cycle of six instillations showed good 
results on both progression and recurrence [ 14 , 
 15 ].  

20.3.2     Effectiveness 

 Bacillus Calmette–Guérin immunotherapy has 
particularly improved disease-free survival time 
and reduced tumor progression, but a subset of 
patients remains refractory. In these patients, 
treatment with BCG has no effect on relapse or 
progression and may instead be a source of lost 
time in the indication of cystectomy. BCG is a 
complex organism whose introduction into the 
body leads to a signifi cant and nonspecifi c stimu-
lation of the immune system. Viability, the 
instilled dose, and the schedule of instillations all 
have an impact on the immune response after 
BCG administration. 

 Six independent studies involving a total of 
585 patients showed that the recurrence was less 
frequent among those who had undergone resec-
tion and treatment with BCG compared with 
those who have had a resection (a recurrence rate 
of 29 % instead of 67 %) [ 16 ]. 

 A study by Lamm [ 17 ] comparing the response 
to treatment according to BCG strain, comprising 
1,496 patients with CIS, showed a complete 
response to 1,082 of these (72 %). A controlled 
study by the South West Oncology Group 
(SWOG), comparing the use of doxorubicin and 
BCG, showed that progression was reduced by 
the latter from 37 to 15 % [ 18 ]. 

 A long-term study lasting 10 years [ 17 ] showed 
that the increase went from 63 % for the group 
treated only by TUR to 38 % for the group treated 
with the TUR combined with BCG ( p  = 0.0063) 
group. Mortality among these same groups 
decreased from 45 to 25 %    ( p  = 0.03) [ 19 ].  

20.3.3     Side Effects 

 Bacillus Calmette–Guérin consists of a patho-
genic strain, which, although attenuated, causes 
an infection that has mainly mild or moderate 
side effects such as cystitis (67 %), hematuria 
(23 %), moderate fevers (25 %), and high and 
increased urinary frequency (71 %) [ 16 ]. 

 A study by Lamm [ 20 ] on 1,278 patients 
treated with BCG, reported a frequency of acute 
cystitis of 91 %; side effects can be serious and in 
rare cases cause a systemic infection, especially 
if instillation is administered in the presence of 
residual sores from the TUR that have not com-
pletely healed. Granulomatosis, multivisceral, 
lung, liver, kidney, or otherwise, may occur on 
rare occasions. It is not known whether this 
refl ects a real bacillary sepsis infection or if it is 
the refl ection of an immunological reaction of 
delayed hypersensitivity. 

 A clinical phase III study comparing treat-
ment response depending on the dose of BCG (75 
or 150 mg) showed that a lower dose led to a 
similar antitumor effect, while minimizing side 
effects [ 21 ,  22 ]. In the same vein, Lamm et al. 
[ 23 ] showed that increasing the dose of BCG was 
accompanied by a decrease in the antitumor 

20 Immunotherapy of Renal and Bladder Cancers



386

effect in a murine model; therefore, the relation-
ship between the dose of BCG and the antitumor 
effect was bell-shaped. 

 In summary, the current consensus indicates 
that BCG is administered as primary treatment 
for CIS, which are the most aggressive superfi cial 
bladder tumors, but against which treatment with 
BCG gives the best results. For tumors with a low 
risk of recurrence and progression, including low 
tumor grade and stage, TUR is the best treatment, 
with or without intravesical instillation of mito-
mycin C or adriamycin in the hours after TUR. 

 In the event of recurrence, BCG treatment is 
recommended, especially when accompanied by 
a maintenance cycle of three instillations every 
3 months. For potentially recurrent tumors, treat-
ment with BCG still yields better results than 
intravesical chemotherapy, but the side effects 
are more pronounced.  

20.3.4     Mechanism of the Antitumor 
Effect 

 The BCG infection causes the sloughing of 
superfi cial cells off both the normal and the can-
cerous bladder. It has now been agreed to take 
into consideration that the antitumor activity of 
BCG is run by the local nonspecifi c immune 
response of immunocompetent cells [ 24 ]. Several 
immunogenic aspects have been studied after 
BCG instillations, such as infi ltration of the cell 
wall by the effector cells [ 25 ], the involvement of 
Cytotoxic T lymphocytes [ 26 ], the major histo-
compatibility complex or expression of adhesion 
molecules on the urothelial cells [ 27 ], and the 
secretion of cytokines. None has been clearly 
implicated in the antitumor activity of BCG. 

 Instillation of BCG results in an increase in 
the granulocytes in the bladder wall followed by 
the T cells, mainly CD4 +  T cells. The proinfl am-
matory phenotype of Thl (IL-2, IL-12, IFN) dom-
inates after stimulation with BCG [ 27 ] and it is 
assumed that this phenotype accompanies a 
favorable response [ 28 ]. Macrophages and other 
antigen-presenting cells are stimulated after 
treatment with BCG; it appeared that urothelial 
cells also internalize mycobacteria and were 

involved in antigen presentation and cytokine 
secretion [ 29 ]. 

 Another study evaluating the lymphocyte 
response after instillation of a high or low dose of 
BCG, or low, but accompanied by IFN-α-2b, 
showed no difference in the quality or quantity of 
the immune response driven by these three types 
of treatment [ 30 ]. Forty percent of people who do 
not respond to BCG have been successfully 
treated with instillation of IFN-α-2b [ 31 ] and 
more side effects brought about by this type of 
treatment are less pronounced with the addition 
of BCG [ 32 ]. 

 All cytokines produced after treatment are of 
the IL-6 type, TNF-α, and IL-1-P, a chemokine 
(IL-8), and a growth factor (granulocyte macro-
phage colony-stimulating factor [GM-CSF]). 
On the other hand, no cytokine associated with 
the Th pathway was constitutively produced 
after stimulation. This is because the Th cyto-
kines are produced mainly by immune cells 
after stimulation. BCG and IFN-α-2b seem to 
have different and independent stimulatory 
effects on cytokine production by tumor cells in 
the bladder [ 33 ]. 

 In the mouse model, activated macrophages 
from the strain susceptible to BCG infection, pro-
duce more IL-10 than macrophages activated in 
the strain resistant to infection. The induction of 
IL-10 by the pathogen is likely to reduce its 
immunogenic response to the infected host [ 34 ]. 
In addition, a synergistic effect was observed in 
the antitumor effect when immunotherapy was 
performed with BCG/IFN-α blending (murine 
model). While both types of treatment led to 
increased levels of CD4 +  and CD8 +  T cells, the 
mixture resulted in the most signifi cant increase 
in αβ T cells [ 30 ]. 

 In addition, Hara et al. [ 35 ] showed that the 
antitumor effect was canceled in a mouse model 
defi cient in CD4 +  T cells, but not in CD8 +  T cell- 
defi cient models, implying that CD4 +  T cells are 
absolutely necessary, unlike CD8 +  T cells. In 
addition, BCG increases the production of the 
chemokines MCP-1 and RANTES, two chemo- 
attractants that stimulate the cytostatic response 
of memory T cells against tumor and the release 
of lysosomal enzymes [ 36 ].  
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20.3.5     Action of BCG 

 The interaction of BCG with the luminal surface of 
the urothelium is the fi rst stage of infection. 
Accumulation of BCG near the bladder wall and its 
adhesion factors limit an adequate clinical response. 
Modulation of the adhesion of BCG to the bladder 
infl uences the response induced in mice [ 37 ]. 

 This membrane adhesion may be due to non-
specifi c physicochemical interactions between 
the wall of the urothelium and BCG or involving 
specifi c interactions between receptors and their 
ligands, such as fi bronectin and glycosaminogly-
cans. For example, the attachment of BCG to the 
bladder involving fi bronectin was blocked by 
antifi bronectin antibodies or by the addition of 
soluble fi bronectin [ 38 ]. When adhesion is 
blocked, there are no hypersensitivity reactions 
and no tumor rejection. From this contact, myco-
bacteria are either phagocytosed by macrophages 
or internalized in tumor or urothelial cells [ 29 ]. 

 The local immune response is closely related 
to the interaction of three systems: the host (the 
patient), BCG (mycobacteria), and tumor. This 
interaction leads to a cascade of immunological 
events, some of which are essential for the pro-
tective effect of BCG against recurrence and pro-
gression. It is currently thought that there are 
three phases in the immune response to BCG.  

20.3.6     The Role of the Host 

 The immune response to infection by intracellu-
lar germs such as BCG varies and is probably 
related to the host. In mice, a resistance gene to 
BCG vaccination has been identifi ed. This natu-
ral resistance-associated macrophage protein 
(Nramp 1) gene is involved in T cell response to 
vaccination by mycobacteria [ 39 ]. The product of 
this gene expressed by the macrophages plays a 
role in molecular expression, MHC class II, 
antigen- presenting in humans and potentially in 
the infl ammatory response    [ 39 ,  40 ]. In addition, 
Nramp1 could control the replication of intracel-
lular bacteria through the cell produced by 
infected phagosomes [ 41 ]. It may also inhibit the 
development of mycobacteria by promoting the 

production of nitric oxide (NO), a potent antimy-
cobacterial agent [ 42 ]. 

 In humans, the functions encoded by Nramp 1 
in the mice would be under the control of many 
genes, some of which have been isolated on the 
short arm of chromosome 2 (2q35) [ 43 ]. The 
identifi cation of these genes and their polymor-
phism may be useful in the future for the 
 prediction of response to BCG. This polymor-
phism is interesting, as HLA class II antigens are 
involved in the response to mycobacteria    [ 44 ].  

20.3.7     The Immune Response 
to Mycobacteria and BCG 

 The immune response to mycobacteria is related 
to infection of antigen-presenting cells (mono-
cytes, macrophages, DCs) and is associated with 
the production of cytokines such as IFN, IL-12, 
and IL-15. These cytokines are involved in the 
activation of T helper cells (CD4 + ) and may be 
involved in the production of T cell helper 1 
(Th1) cells (producing IFN and IL-2) associated 
with a localized form of TB or T helper 2 (Th2) 
cells (producing IL-4 and IL-10) and associated 
with a generalized form of the disease [ 45 ]. 
During intravesical BCG instillation, three phases 
can be distinguished: initiation, the internaliza-
tion phase of antigen presentation, and the cyto-
toxic phase. These last two correspond to the 
effector phase. 

 The induction phase is characterized by the 
contact between BCG and the urothelium. The 
increased binding to fi bronectin may increase the 
activity of BCG. This mycobacteria adhesion can 
also be carried out by glycosaminoglycans. From 
this contact, the bacteria may be phagocytosed by 
macrophages that belong to the group of antigen- 
presenting cells or internalized in urothelial cells 
or tumor cells [ 46 ]. This stage involving the adhe-
sion, penetration, and activation of antigen- 
presenting cells is an important step in the response 
to mycobacteria and the response to BCG [ 47 ]. 

 The effector phase is characterized by the pre-
sentation by antigen-presenting cells (APC) to T 
helper cells, certain proteins of BCG produced by 
degradation (immunogenic protein), followed by 
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the activation of cytotoxic cells. After mycobac-
teria infection, macrophages associated with 
other antigen-presenting cells, which include the 
urothelial cells [ 47 ,  48 ], manufacturent antigens 
and a number cytokines (IL-1, IL-6, IL-8, IL-10, 
IL-12, TNF, IFN) are activated [ 49 ,  50 ]. These 
cytokines are critical to the recruitment of 
immune cells (T lymphocytes, macrophages, and 
neutrophils), which infi ltrate the bladder wall in 
large numbers during instillation [ 51 ] in parallel 
with the over-expression of adhesion molecules 
(ICAM-1) and co-stimulatory B7 molecules. 
These cytokines probably amplify the phenom-
ena of antigen presentation. Soluble forms of 
these adhesion molecules (ICAM-1) are also 
found in the urine after instillation of BCG, in 
addition to the over-expression of molecules of 
major histocompatibility complex (MHC) class I 
and II by urothelial cells [ 52 ]. The MHC class I 
and II molecules are involved in the phenomena 
of antigen presentation, as exogenous antigens 
are usually presented by MHC molecules and 
class II antigens are expressed by endogenous 
molecules of MHC class I. The MHC class II 
molecules are expressed only by APC (macro-
phages, monocytes, B lymphocytes, DCs, endo-
thelial cells), while MHC class I molecules are 
expressed by all other cells (except red blood 
cells and oocytes). These exogenous antigens are 
degraded by lysosomes and then present on the 
surface of antigen-presenting cells, bound to the 
MHC class II molecules. This antigen peptide 
and MHC class II molecules are then presented to 
CD4 +  (T helper) [ 53 ]. 

 In this system, IFN stimulates the power of 
phagocytosing macrophages and their production 
of endotoxins. These phenomena are associated 
with the over-expression of adhesion molecules 
ICAM-1, LFA3 (APC) and co-stimulatory B7-1 
and B7-2 (APC), CD28 (T cells); they probably 
amplify the response associated with the phe-
nomena of antigen presentation [ 54 ]. The anti-
gens are linked to endogenous MHC class I 
molecules after being prepared in the endoplas-
mic reticulum and sent to the cell surface, where 
they are recognized by CD8 lymphocytes [ 55 ]. 
Cytokines thus promote the cytotoxic action of 
lymphocytes [ 56 ], and, in addition to the cyto-

toxic activity, they protect lymphocytes against 
tumor cells [ 57 ,  58 ]. 

 Mycobacteria preferentially induces cytokine 
responses corresponding to a Th1 (IL-2, IL-12, 
IFN), which is a favorable response to the devel-
opment of cellular immunity [ 59 ,  60 ]. The Th1 
promotes the expansion and proliferation of cyto-
toxic cells and is characterized by the expression 
of certain cytokines such as IL-2 or IFN. This 
Th1 (IL-2, IFN) was detected in the urine of 
patients after intravesical BCG instillation and is 
related to the prognosis of the disease [ 51 ]. 
Similarly, after intravesical BCG instillation, 
overproduction of the RNA messenger for IL-2 
occurs in peripheral cells, a phenomenon  which 
correlates with good response to BCG [ 61 ]. 
However, the response to BCG is probably not 
linear. In addition, it probably not only correlates 
with instillation doses, but is also related to the 
instillation protocol. 

 Some animal experiments suggest that high 
doses might be capable of inducing immunosup-
pression and production of Th2-type cytokines 
[ 14 ]. Experimentally, the increase doses cause an 
inversion of the response, probably associated 
with the suppressive response of Th2 cells char-
acterized by the production of IL-4, IL-10, IL-5, 
and IL-6, an immune response to favorable 
humoral immunity [ 61 ]. Also, the production of 
IL-4 could promote the growth of B  lymphocytes, 
activate complement (C3a, C5), and reduce the 
expression of IL-1 and TNF. 

 Cytokines induced by BCG regulate cellular 
response to cytotoxic vocation, wish is an inte-
gral part of the effector phase. Cytotoxic cells 
most frequently described in the bladder wall 
after intravesical instillations are CD8 +  T cells. 
Experimentally, lymphocytes (CD4 +  and CD8 + ) 
are essential to the development of a response 
against mycobacteria [ 62 ]. CD8 +  cells seem to 
have a cytotoxic effect through adhesion mole-
cules (ICAM-1) and/or via the Fas system pres-
ent on target tumor cells. The population of 
CD4 + /CD8 +  was increased in the bladder after 
intravesical instillation, with a predominance of 
CD4 +  T cells. CD4 +  lymphocytes produce cyto-
kines capable of inducing the maturation of 
Cytotoxic T lymphocytes. The antitumor activity 
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is related to CD4 +  and the interaction between 
Fas and CD40 ligands. Indeed, the interaction 
between CD40 (membrane glycoprotein of the 
TNF receptor family) and its ligand may play a 
major role in the activation of cytotoxic T lym-
phocytes and promote the Th1 response [ 63 ]. 
Expression of the CD40 ligand on the surface of 
T lymphocytes may increase monocyte survival 
by protecting apoptotic phenomena at sites of 
infl ammation [ 63 ]. Moreover, the expression of 
CD40 at the tumor cell surface could act as a 
replacement to antigen-presenting cells by pro-
moting apoptosis induced by CD4 +  cells express-
ing CD40 ligand on its surface. Similarly, the 
expression of Fas ligand on the surface of CD4 +  
lymphocytes is able to induce tumor apoptosis. 

 Several other cytotoxic cells have been obvi-
ous: neutrophils, NK cells, BAK, LAK cells, and 
gamma delta ( ). Neutrophils are the cells that 
are more abundant in the bladder wall after intra-
vesical instillation of BCG [ 64 ]. These cells are 
capable of producing cytokines or soluble cyto-
kine receptors, such as interleukin 1. Soluble 
IL-1 receptor is capable of reducing the produc-
tion of IL-1, IL-8, and TNF-α; therefore, the 
immune response is decreased [ 64 ]. Other cells 
(BAK, LAK) play a direct cytotoxic role against 
urothelial tumor cells in vitro [ 65 ]. These cells 
co-expressed CD8 +  and CD56 +  markers on their 
surface with the possibility of producing IL-12 
and initiating an effective antitumor response. 
Their mechanism of action may involve the 
Fas-L/Fas system or perforin/granzyme A and B. 

 In vitro study of the urothelium after BCG 
treatment has highlighted the role of NK cells 
and has led to the hypothesis that cytotoxic effec-
tor cells are probably of a different nature [ 66 ]. 
Thus, lymphocytes, which are specifi cally acti-
vated by mycobacteria and have cytolytic activity 
against tumor cells in vitro, could play this role 
[ 67 ]. These lymphocytes do not usually express 
the CD4 +  or CD8 +  phenotype and their ability to 
recognize the antigen is not restricted by MHC. 
This cytolytic activity seems to be reactivated in 
a second contact with BCG and may be involved 
in the quality of response to BCG by a memory- 
associated phenomenon. In addition, these cells 
have the ability to stimulate other lymphocyte 

populations (CD4 + , CD8 + ) in response to anti-
genic stimulation [ 68 ]. Some authors have shown 
that BCG was able to induce the maturation of 
DCs from circulating mononuclear cells and 
modulate the expression of the CD40 molecule 
on the cell surface of urothelial tumors [ 69 ]. The 
expression of CD40 participates in the activation 
of T helper cells and sensitizes tumor cells to 
apoptosis via mechanisms involving the Fas-L/
Fas system; over-expression of CD40 and activa-
tion of the CD40/CD40-L system may also con-
tribute to the activation of B lymphocytes and 
NK cells.  

20.3.8     The Role of Tumors 

 There are probably resistance mechanisms devel-
oped by the tumor, allowing it to escape immune 
host surveillance, and also treatment with BCG. 
In a functional immune system, Cytotoxic T lym-
phocytes (NK, CTL, CD8 LAK, CD4) are capa-
ble of inducing tumor apoptosis through the 
perforin and granzyme A or B systems via the 
Fas-L/Fas system. These systems are sometimes 
nonfunctional. Thus, Cytotoxic T lymphocytes 
may have perforin, granzyme A or B, and Fas-L/
Fas system defi ciency and may not be active 
against the tumor [ 70 ]. The tumor can also escape 
from this system by reducing the co-stimulation 
 molecules (B7) or accession (ICAM-1) on its 
surface molecules required for tumor antigen 
presentation to Cytotoxic T lymphocytes. It can 
also escape the lower antigen MHC class I sys-
tem at its surface (abnormal transport proteins 
TAP-1), depriving cells of their cytotoxic potency. 
The loss of normal function of P53 involved in 
cell apoptosis and DNA damage repair [ 71 ] can 
also prevent the natural phenomena of apoptosis 
initiated by Cytotoxic T lymphocytes and inter-
fere with the activity of BCG. Nonetheless, the 
tumor may also attack the immune system. The 
production of immunosuppressive cytokines 
such as IL-10 or TGF-β1 or molecules such as 
Fas ligand, which are capable of inducing apop-
tosis of activated T cells could promote tumor 
growth [ 70 ]. This is a better understanding of the 
principles and mechanisms involved in the 
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 antitumor response of BCG, which can help to 
guide the clinician toward local immunotherapy.  

20.3.9     Scheme of Optimal Therapy 

 The optimal treatment BCG scheme remains to be 
defi ned. Indeed, many protocols have been pro-
posed (six instillations, eight instillations, 6 + 6, 
and fi nally the use of maintenance therapy). There 
are more variations owing to the additional routes 
of administration (intradermal) or related to the 
different BCG strains used. Initial studies seeking 
to validate the interest in maintenance therapy did 
not show any signifi cant difference. They were 
involved low numbers or had a period of poor 
monitoring. The results reported by Dr Lamm 
have reignited the debate on maintenance therapy 
and confi rm that treatment with six weekly instil-
lations is not the optimal scheme. The use of 
maintenance therapy with three additional weekly 
instillations added at 3, 6, 12, 18, 24, 30, and 
36 months may improve the outcome in terms of 
survival without recurrence. This effect is mainly 
discernible in the mean time until recurrence 
(36 months without maintenance therapy and 
77 months with maintenance therapy) [ 72 ].  

20.3.10     Predictors of the Outcome 
of Nonmuscle Invasive 
Bladder Cancer 

 Nonmuscle invasive bladder cancer carries a high 
risk of recurrence and a 10–30 % disease progres-
sion rate. Multiplicity, tumor size, and prior recur-
rence rates are the most important  predictors of 
recurrence, while tumor grade, stage, and CIS are 
the most important predictors of progression. 
Although BCG is currently regarded as the most 
effective treatment available for the management 
of NMIBCs, up to 40 % of patients do not respond 
to treatment and are at risk of disease progression. 
Unfortunately, predictive markers for recurrence 
and progression are lacking. Prediction of recur-
rence or progression would be of great clinical 
benefi t. It is the combination of clinical, pathologi-
cal, molecular, and immunological markers that 

will allow us to more accurately predict the risk of 
BCG failure before commencing treatment.  

20.3.11     The Clinicopathological 
Factors Predicting 
Recurrence and Progression 

 Although tumor grade and stage are the most accu-
rate prognostic factors in the evaluation of NMIBCs, 
they cannot always predict the true biological 
potential of the tumor, as superfi cial tumors of the 
same stage and grade may have completely differ-
ent clinical courses. The European Organisation for 
Research and Treatment of Cancer (EORTC) scor-
ing system and the risk tables were adopted by the 
European Association of Urology (EAU) guidelines 
to better stratify the patients at risk of recurrence 
and progression and to aid future treatment options 
by using factors that can be easily applied clinically. 
The risk calculator is available at the EORTC web-
site at   www.eortc.be/tools/bladdercalculator    . The 
EORTC scoring system gives scores to factors such 
as the number of tumors, tumor size, the prior recur-
rence rate, stage, the presence of CIS, and grade, 
and then totals the scores. Efforts have been made to 
identify other potential prognostic markers that may 
better stratify and identify the true malignant poten-
tial of bladder cancer.  

20.3.12     Grade 

 Although high tumor grade has always been asso-
ciated with worse outcome after BCG immuno-
therapy, in most reports this factor did not correlate 
with the time to tumor recurrence or progression 
in either univariate or multivariate analysis [ 73 , 
 74 ]. On the other hand, Ajili et al. [ 75 ] failed to 
fi nd a signifi cant association between grade and 
response to BCG immunotherapy.  

20.3.13     Stage 

 Several studies, both univariate and multivariate 
analyses, have shown that high tumor stage is 
associated with a poor BCG immunotherapy 
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response. Some authors showed a correlation with 
time to recurrence [ 76 ]. Other studies showed a 
correlation with time to tumor progression (TTP) 
[ 77 ]. However, other large studies failed to fi nd 
any association between tumor stage and the BCG 
immunotherapy response [ 73 ,  78 ]. Ajili et al. [ 79 ] 
showed that high tumor stage is signifi cantly asso-
ciated with a worse BCG immunotherapy response 
in univariate analysis ( p  = 0.009). In addition, 
Kaplan–Meier survival curves show reduced 
relapse-free survival (RFS) for patients with a pT1 
tumor (log-rank test  p  = 0.004).  

20.3.14     Multiplicity 

 Multiplicity is a classical prognostic factor for 
the recurrence of NMIBCs, but its predictive 
value for BCG immunotherapy response is con-
troversial. Some studies, including Ajili et al. [ 75 , 
 80 ,  81 ], have suggested that multiplicity might be 
an independent factor for recurrence after BCG 
treatment. However, most studies that showed no 
correlation were probably underpowered [ 82 ].  

20.3.15     Gender 

 Several studies with larger cohorts have suggested 
an association between male gender and a more 
favorable response to BCG immunotherapy, but 
the gender difference was never statistically sig-
nifi cant [ 81 ]. However, Fernandez-Gomez et al. 
[ 83 ] found an association between gender and 
BCG response in multivariate analysis, in such a 
way that male patients had a signifi cantly longer 
time before recurrence than female patients.  

20.3.16     Age 

 Although age has been the patient characteristic 
most frequently associated with BCG immunother-
apy response [ 84 ], several studies have not shown 
any infl uence of age [ 80 ,  85 ]. Joudi et al. [ 86 ] 
reported that aging appears to be associated with a 
decreased response to BCG immunotherapy and is 
particularly apparent in patients older than 80 years. 

Cho et al. [ 87 ] have maintained that younger 
patients appear to have a more favorable prognosis.   

20.4     Markers Predicting 
Response to BCG 

20.4.1     Cell Cycle Regulators 

20.4.1.1     P53 Protein 
 The most frequent molecular events in human 
NMIBC are mutations of the  p53  gene. The p53 
protein plays a vital role in the regulation of the 
cell cycle and is important for genetic stability, cell 
proliferation, apoptosis, and angiogenesis [ 88 ]. 
A defect in p53 leads to the loss of p53-dependent 
apoptosis and gives a proliferative advantage. 
Some studies found that altered p53 gradually 
increased from normal urothelium to NMIBC to 
CIS to MIBC [ 89 ,  90 ]. However, there are some 
contradictory reports regarding the prognostic 
value of p53 in bladder cancer [ 91 ,  92 ]. Moreover, 
p53 expression was signifi cantly associated with 
tumor stage, grade, and disease recurrence.  

20.4.1.2     P27 Protein 
 The cyclin-dependent kinase (Cdk) inhibitor p27 
(also known as KIP1) regulates cell proliferation, 
cell motility, and apoptosis. In cancers, p27 is inac-
tivated through impaired synthesis, accelerated 
degradation, and by mislocalization. Moreover, 
studies on several tumor types have indicated that 
p27 expression level has both prognostic and thera-
peutic implications. In patients with NMIBCs, p27 
has limited predictive value [ 93 ,  94 ].  

20.4.1.3     The Retinoblastoma 
 The retinoblastoma protein (pRB) is a tumor 
suppressor involved in cell cycle control. The 
 predictive power of pRB may be inferior to 
other cell cycle regulators in NMIBCs [ 94 ]. 
Esuvaranathan et al. [ 95 ] found that the low 
expression of pRB in patients treated with BCG 
and IFN-α is associated with a high recurrence 
rate. In a homogeneous population of T1G3 
patients, Cormio et al. [ 96 ] demonstrated that an 
altered RB was associated with decreased pro-
gression-free and disease- free survival. Overall, 

20 Immunotherapy of Renal and Bladder Cancers



392

altered RB expression may serve as a predictive 
maker of BCG treatment outcome.   

20.4.2     Apoptotic Markers 

 Apoptosis is the distinctive form of programmed 
cell death that complements cell proliferation in 
maintaining normal tissue homeostasis. Several 
proteins are involved in the regulation of apoptosis 
and their abnormal expression is associated with an 
altered balance between cell growth and cell death. 
The signifi cance of constitutive apoptosis in the 
recurrence of NMIBCs has yet to be investigated. 
So far, little attention has been paid to the potential 
role of apoptotic protein  expression in superfi cial 
bladder tumors treated by BCG immunotherapy. 

20.4.2.1     Bcl-2 Protein 
 Bcl-2 is an apoptotic marker that controls ion 
channels, caspase status, and cytochrome c loca-
tion. Bcl-2, caspase-3, p53, and survivin have a 
cooperative effect on the progression of bladder 
cancer. In published urothelial carcinoma data, the 
expression of Bcl-2 varies considerably. Its inci-
dence ranges from 69 % to less than 2 % in some 
studies, including muscle-invasive tumors [ 97 ]. 
Taking into consideration the association between 
the over-expression of this anti- apoptotic protein 
and the tumor characteristics, including stage and 
grade, the reported data are contradictory [ 25 ,  26 , 
 30 ]. Gonzalez-Campora et al. [ 98 ] found that Bcl-2 
over-expression was associated with low-grade 
NMIBCs, while none of the high- grade superfi cial 
tumors expressed Bcl2. On the other hand, in mul-
tivariate Cox regression analysis, Bcl-2 was found 
to be an independent factor for recurrence [ 99 ].  

20.4.2.2     Bax Protein 
 Bax protein is known to play a pro-apoptotic role. 
Its expression varies considerably in human 
tumors and the signifi cance of its role in tumor 
progression and outcome remains generally 
unknown. In nonmuscle invasive bladder cancer, 
it was shown that Bax over-expression was an 
independent predictor of overall survival [ 98 ]. 
No data are available on the clinical outcome of 
NMIBCs with regard to the Bax status in tumor 

urothelial cells treated by local immunotherapy. 
In univariate analysis, Ajili et al. [ 99 ] showed that 
decreased or absent Bax expression was associ-
ated with low-grade tumors and a favorable out-
come after treatment. To select the best predictors 
of recurrence among all the aforementioned vari-
ables, multivariate Cox regression analysis was 
performed. It showed that decreased or absent 
Bax expression was a signifi cantly favorable 
independent factor for response to BCG therapy.  

20.4.2.3     Survivin 
 Survivin is an important apoptotic marker. Some 
authors found that survivin expression analysis 
might identify patients with NMIBC at high risk 
of disease recurrence and progression [ 100 ]. 
Moreover, survivin over-expression increased 
gradually from NMIBC to advanced bladder can-
cer to metastatic lymph node tissue [ 100 ].   

20.4.3     Angiogenesis Markers 

 Angiogenesis is the formation of new capillaries 
from the existing vascular network and is essen-
tial for tumor growth. This process is tightly reg-
ulated by angiogenic stimulators, such as 
fi broblast growth factor, and some angiogenic 
inhibitors. In various tumor types, angiogenesis 
is a prognostic factor determining the biological 
behavior. Indeed, various mechanisms are 
involved in the angiogenic process, with conver-
gence of these signals permitting transduction 
and subsequent activation of pathways that pro-
mote tumor proliferation, migration, invasion, 
and ultimately, survival and metastasis. 

 Several angiogenic markers, including thrombo-
spondin- 1 (TSP-1), CD34, and  vascular  endothelial 
growth factor (VEGF), are currently thought to be 
of clinical importance for bladder cancer. 

20.4.3.1     Vascular Endothelial Growth 
Factor 

 Vascular endothelial growth factor promotes 
endothelial mitogenesis and migration, extracel-
lular matrix remodeling, increased vascular per-
meability, and the maintenance of newly formed 
vasculature. Higher VEGF expression was 
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 associated with increasing tumor stage, grade, 
progression, and recurrence in patients treated 
with TUR [ 101 ]. These fi ndings support the role 
of VEGF in bladder tumorigenesis and further 
support it as a potential target for therapy [ 102 ].  

20.4.3.2     Thrombospondin-1 
 Thrombospondin-1 is a potent inhibitor of angio-
genesis that is independently associated with dis-
ease recurrence [ 101 ,  102 ]. Grossfeld et al. [ 103 ] 
previously reported that tumors with p53 altera-
tions are associated with low TSP-1 expression, 
and that these tumors are more likely to demon-
strate high microvessel density (MVD) counts.  

20.4.3.3     Platelet/Endothelial 
Adhesion Molecule 

 Platelet/endothelial adhesion molecule, also known 
as CD34, is an endothelial antigen that has been 
used to highlight the density of intra- tumorous ves-
sels as a direct marker of the degree of MVD of 
neoangiogenesis. It has been investigated in many 
other malignancies and is thought to be an impor-
tant prognostic factor in some locations; however, 
there are only a few studies dealing with it in uro-
thelial carcinoma. In bladder urothelial carcino-
mas, most reports are related to muscle-invasive 
tumors. Indeed, MVD has been extensively investi-
gated in these tumors as a prognostic tool and has 
been associated with a poor outcome. Ajili et al. 
[ 79 ] showed that MVD was a signifi cantly unfavor-
able independent factor for response to BCG 
immunotherapy. Indeed, recurrence was lowest for 
those with the lowest MVD count and highest for 
those with the highest MVD. MVD, a surrogate 
marker for angiogenesis, has been demonstrated to 
be a prognostic marker associated with the highest 
risk of recurrence and failure of BCG immunother-
apy in patients with NMIBCs.   

20.4.4     Infl ammatory Markers 

20.4.4.1     Dendritic Cells 
 Dendritic cells have been suggested to play an 
important role in the response to mycobacteria. 
Indeed, BCG provokes infl ammation involving the 
contribution of cells associated with the innate 

immune response. A high number of urinary DCs 
seem to have a positive effect on the outcome of 
BCG treatment [ 104 ]. On the other hand, the risk of 
recurrence decreases with high RNA expression of 
antigen-presenting molecules in normal urothelial 
cells [ 105 ]. In patients with a weak initial immune 
response, determined by low levels of CD83 +  tumor-
infi ltrating DCs, maintenance BCG proved to be 
highly effective by activating immune cells [ 106 ].  

20.4.4.2     Tumor-Infi ltrating 
Macrophages 

 Extensive infi ltration of tumor-infi ltrating macro-
phages has been reported to correlate with a good 
prognosis in various types of cancer [ 107 ] and in 
nonmuscle invasive bladder cancer. High num-
bers of TAMs seem to play a negative role in BCG 
response [ 106 ]. Ajili et al. [ 108 ] showed that the 
increased TAM was a signifi cantly unfavorable, 
independent factor of response to BCG immuno-
therapy. Indeed, patients with a high TAM count 
showed a higher risk of recurrence than those with 
a low TAM count. These data suggest that deter-
mination of TAM count might be of value for pre-
dicting clinical outcome or prognosis, and that 
patients with NMIBCs expressing a high TAM 
count might be less sensitive to BCG immuno-
therapy. On the other hand, other studies have 
reported that patients with a high level of infi ltra-
tion by CD68 +  TAMs do not respond to BCG 
immunotherapy either [ 106 ].    

20.5     Immunotherapy of Renal 
Cancer 

 Immunotherapy has provided the basis for exper-
imental strategies that have introduced new indi-
cations for cytoreductive surgery in patients with 
metastatic renal cell cancer. 

20.5.1     General Treatments for 
Metastatic Renal Cancer 

 Considering the low effi ciency of even aggressive, 
local treatments, improvement in the prognosis of 
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metastatic renal cancer is inevitably highlighted by 
the development of treatments with a general aim. 

20.5.1.1     Hormonotherapy 
 The therapeutic option of hormonotherapy is 
based on experimental fi ndings obtained by using 
progesterone to block kidney tumors induced in 
hamsters. Apart from a few isolated results [ 109 ], 
hormonal treatment using progesterone has been 
proven ineffective as adjunctive therapy for meta-
static kidney cancer [ 110 ].  

20.5.1.2     Chemotherapy 
 Up to now, no cytotoxic chemotherapy has 
revealed regular effi ciency, either as mono- or as 
chemotherapy [ 111 ]. Current efforts tend to 
reduce the toxicity of chemotherapies, as well as 
to increase their effectiveness. The issuance of 
chemotherapy through implantable pumps may 
be programmed to limit toxic effects [ 112 ]. Based 
on the principles of chronobiology, this method 
has been used in the treatment of metastasized 
kidney cancer with encouraging results: 7.1 % 
complete response and 12.5 % partial response in 
a series of 56 patients, confi rming the effi cacy of 
treatment with continuous systemic infusion of 
fl oxuridine (FUDR), with few side effects.  

20.5.1.3     Traditional Immunotherapy 
 The importance of the relationship between the 
host and the tumor has long been emphasized in 
kidney cancer, in particular because of evidence 
of the spontaneous regression of metastases. 

 These relationships play prominent roles leading 
to the development of therapeutic immunotherapy. 
Traditional immunotherapy is active in that it exog-
enously stimulates the host immune system. This 
type of immunotherapy may be specifi c, directed 
against a tumor-specifi c antigen, or nonspecifi c. 

 To increase nonspecifi c host immunity, sev-
eral molecules have been used on metastasized 
kidney cancer. The main, active, nonspecifi c 
immunotherapy trials have mostly used BCG 
[ 113 ]. Other molecules that have immunomodu-
latory action were used with polyinosinic- 
polycytidylic acid (poly I:C), which increases the 
cytotoxicity of lymphocytes by inducing the pro-
duction of interferon [ 10 ], or with coumarin, 

which affects mitogen on lymphocytes, and 
cimetidine, which has an inhibitory effect on T 
lymphocyte suppressor [ 114 ]. The results of this 
active immunotherapy do not vary depending on 
the specifi c molecules used: little effect for some 
(poly I:C) or few answers for others (BCG). 

 Good results have been obtained with the cou-
madin–cimetidine combination, with 3 complete 
responses and 11 partial responses in a series of 
42 patients (33 % overall response), but the 
results obtained in this preliminary study have 
not been confi rmed by other teams, and seem to 
have no impact on survival, as in all cases, this 
tumor regression is transient [ 114 ]. 

 Specifi c active immunotherapy seems very 
effective. However, confl icting results were 
obtained. A signifi cant gain in survival was shown 
in a group of 71 patients who had nephrectomy 
followed by monitored tumor vaccinations associ-
ated with particular dietary supplementation 
[ 115 ], but these results have not been confi rmed, 
and other studies have shown ineffi ciency in terms 
of immunotherapy-specifi c active survival. 

 Among them, in a study involving 33 patients 
receiving tumor vaccines in the form of injec-
tions of irradiated tumor cells, either autologous 
or not, no difference in survival was shown 
between the two groups of patients, i.e., respond-
ers (24 % partial response, no response com-
plete), and nonresponders [ 116 ]. Thus, whether 
specifi c or nonspecifi c, traditional immunother-
apy can be considered an effective treatment for 
metastasized kidney cancer.  

20.5.1.4     New Developments in 
Immunotherapy 

 New approaches to the immunotherapy of metas-
tasized kidney cancer apply cytokines, which are 
molecules involved in the regulation of the 
immune system. They may be in the form of 
monokines (such as TNF or IL-1), or lympho-
kines (ITN and IL-2). These cytokines can be 
used alone, or in synergistic associations with cer-
tain chemotherapeutics: vinblastine [ 117 ], 5-fl uo-
rouracil and mitomycin [ 118 ], or VP16 [ 119 ]. 

 Adoptive immunotherapy uses the lympho-
cytes activated by the patient in in vitro IL-2. It 
may be circulating lymphocytes (lymphokine 
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activated killer) or intra-tumor lymphocytes 
(tumor infi ltrating lymphocyte).   

20.5.2     Prognostic Systems in 
Metastatic Kidney Cancer 

 Different prognostic models developed as predic-
tive models are mainly based on response to immu-
notherapy. One model that has proved its usefulness 
is that of the French Immunotherapy Group. It is 
schematically based on circulating neutrophils, the 
interval between the initial diagnosis and the onset 
of metastases, the presence of liver metastases, and 
the number of metastatic sites. The main utility of 
this model was to classify the fi rst patients for clini-
cal immunotherapy trials and it has clearly. It dem-
onstrated that patients with poor or intermediate 
prognosis do not benefi t from receiving IFN and 
IL-2. Objectively, this model is mostly considered 
as a tool for evaluating reply to immunotherapy, 
rather than a prognostic model.   

20.6    Concluding Remarks 

 Signifi cant advances have been made in introduc-
ing novel immunotherapeutic approaches, but 
future studies are warranted.     
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21.1             Introduction 

 It is now recognized that human carcinogenesis 
is a dynamic process that depends on a large 
number of variables and is regulated at multiple 
 spatial  and  temporal  scales [ 1 – 4 ]. Cancer is a 
highly heterogeneous disease: more than 100 dis-
tinct types of human cancer have been described, 
and various tumor subtypes can be found within 
specifi c organs. In addition, tumors have somatic 
mutations and epigenetic changes, many of which 
are specifi c to the individual neoplasm [ 5 ]. It is 
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accepted that this genetic and phenotypical vari-
ability  primarily determines the  self- progressive 
growth, invasiveness and metastatic potential of 
neoplastic cells, and their response or resistance 
to therapy, and it seems that the “multilevel com-
plexity” of cancer explains the clinical diversity 
of histologically similar neoplasia [ 6 ,  7 ]. It is 
known that cancer therapy is designed to spe-
cifi cally integrate distinct treatment modalities in 
the most effective way to achieve the highest cure 
rate. Surgery and radiation therapies are mainly 
applied for locoregional disease control, whereas 
systemic therapies are used to treat micrometa-
static or widespread metastatic cancers and hema-
tologic malignancies. While systemic therapies 
have historically been given after local measures 
have been undertaken to eradicate the primary 
tumor, they are increasingly used prior to defi ni-
tive local treatment both to achieve systemic 
disease control earlier and to evaluate the respon-
siveness of the tumor to treatment. Therapies 
that induce an immune response to tumors – 
immunotherapies – have been investigated for 
over 100 years as attractive strategies for cancer 
treatment. While initially tested alone, newer 
researches demonstrate that immunotherapy can 
complement standard cancer treatments. A new 
era of effectively exploiting the immune system 
to treat and prevent cancer has begun. Two dis-
tinct immune-based therapies are now approved 
for cancer treatment: the fi rst cancer vaccine for 
advanced prostate cancer, and the fi rst immune 
checkpoint inhibitor for advanced melanoma. 
These early successes have led to heightened 
interest and activity in developing new strategies 
for tipping the balance of the host- tumor inter-
action toward defi nitive tumor rejection. It is 
clear that strategically integrating immune-based 
therapies with current cancer treatments, mainly 
chemotherapy and radiotherapy, have the poten-
tial to reengineer the overall host  milieu  and the 
tumor microenvironment to disrupt pathways of 
immune tolerance and suppression [ 8 ]. Here, the 
clinical experiences and results achieved with 
immunotherapy for treating prostate and cervical 
cancers, two of the most signifi cant malignan-
cies in human male and females, respectively, are 
briefl y reviewed.  

21.2     Prostate Cancer: Past, 
Present, and Future 

 Prostate cancer is the most prevalent malignancy 
in men worldwide and is a leading cause of cancer 
death [ 9 ,  10 ]. Several men with localized prostate 
cancer will never suffer any symptoms or adverse 
effects of the disease, but because of the diffi -
culties in identifying this subgroup of patients, 
the majority receive radical local treatment, 
which can mainly result in erectile dysfunction, 
incontinence, and other subsequent impairments 
[ 11 ,  12 ]. The still open question for clinicians 
is deciding which men have “fast- growing” or 
aggressive cancers that need essential treatment 
and which men have insignifi cant or “slow-
growing” cancers that will never become symp-
tomatic [ 13 ]. Prognostic markers may help to 
avoid unnecessary invasive procedures or treat-
ments and identify patients who would benefi t 
from more aggressive therapies [ 14 – 17 ]. Based 
on the exponential aging of the population and 
the increasing life expectancy in industrialized 
Western countries, prostate cancer in elderly men 
is becoming a disease of increasing signifi cance 
[ 18 – 20 ]. 

 It has been ascertained that the human prostate 
is the site of origin for the two most prevalent 
diseases: benign prostatic hyperplasia and pros-
tate cancer [ 21 ,  22 ]. Benign prostatic hyperplasia 
is a more common form of lower urinary tract 
symptoms and is due to the excessive growth of 
both stromal and epithelial cells of the prostate. 
Prostate cancer is a highly heterogeneous disease 
encompassing a wide variety of pathological 
entities and a range of different clinical behaviors 
[ 23 ]. This is underpinned at the molecular level by 
a complex array of genetic alterations that affect 
cell processes, thus determining the dynamic pro-
gression of neoplastic disease [ 24 ,  25 ]. Genomic 
alterations with a potential involvement in prostate 
cancer include somatic mutations, gene deletions 
or amplifi cations, and chromosomal rearrange-
ments [ 25 – 29 ]. Epigenetic changes, more spe-
cifi cally DNA methylation, are the most common 
alterations in prostate cancer [ 30 ]. These changes 
are associated with transcriptional silencing of 
genes,  leading to an altered cellular behavior. 
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The glutathione S-transferase p1 gene ( GSTP1 ) 
has been proposed for the early diagnosis and 
prognosis of prostate cancer. Other markers have 
a strong body of scientifi c data  supporting their 
role in prostate cancer diagnosis, most notably 
 Adenomatosis polyposis coli (APC), retinoic 
acid receptor beta (RARB), RAS  association 
domain family protein 1 (RASSF1), CDH1, 
CDKN2A (p16), and the O(6)-methylguanine-
DNA  methyltransferase (MGMT) [ 30 ,  31 ]. 
Prostate cancer clinical phenotypes range from 
indolent or  clinically insignifi cant to locally 
aggressive or metastatic [ 32 – 34 ]. A high num-
ber of gene expression profi ling studies have 
been carried out to attempt the establishment of 
a “molecular” staging system, but the identifi ca-
tion of genetic markers that predict aggressive 
disease has not yet been clinically demonstrated 
[ 35 – 40 ]. The optimal treatment for localized 
prostate cancer remains unknown, and various 
reports concerning the best treatment modality 
are still confl icting [ 32 ]. Histopathologic exami-
nation reveals that like other tumors, prostate 
cancer is associated with diverse immune cell 
infi ltrates and that in the cancer context epithelial 
cells coexist with extracellular matrix compo-
nents and nonneoplastic cell types, which col-
lectively form the tumor stroma [ 41 – 43 ]. Several 
lines of evidence support the concept that tumor 
stromal cells are not merely a scaffold, but rather 
they infl uence growth, survival, and invasiveness 
of cancer cells, dynamically contributing to the 
tumor microenvironment, together with immune 
cells [ 42 ,  44 – 47 ]. It is known that  interactions 
between epithelium and the surrounding stroma 
are required to maintain organ function and 
that these interactions provide proliferative 
and migratory restraints that defi ne anatomical 
and positional information, mediated by several 
growth factors and extracellular matrix compo-
nents [ 48 ]. When cancer develops, transformed 
cells lose these constraints, while stroma adapts 
and coevolves to support the “function” of the 
tumor [ 42 ]. The prostate represents an example 
of an organ that relies on its surrounding stroma 
during normal development and cancer progres-
sion [ 42 ]. Jia et al. [ 49 ] compared Affymetrix 
gene expression profi les in stroma near tumor 

and identifi ed a set of 115 probe sets for which 
the expression levels were signifi cantly corre-
lated with time to relapse. The authors compared 
patients that relapsed shortly after prostatectomy 
(<1 year) and patients that did not relapse in 
the fi rst 4 years after prostatectomy and identi-
fi ed 131 differentially expressed microarray 
probe sets between these two  categories. They 
concluded that tumor-adjacent prostate can-
cer stroma contains numerous changes in gene 
expression at the time of diagnosis that correlate 
with the chance of relapse following prostatec-
tomy [ 49 ]. It is likely that the differences in RNA 
expression are often refl ected in differences in 
chromatin modifi cation, DNA methylation, and 
protein levels, which could also serve as stromal 
markers for progression [ 50 ]. In an  in vitro  study, 
Reinertsen et al. [ 51 ] showed that cocultivation 
with the human prostate cancer PC-3 cells seems 
to make the cancerous and hyperplastic fi bro-
blasts more alike each other, as the number of 
differentially expressed genes decrease [ 51 ]. The 
cells of the immune system that are commonly 
found infi ltrating prostate cancer include IL-17 +  
macrophages [ 52 ,  53 ], neutrophils [ 54 ], mast 
cells [ 55 ], and natural killer (NK) cells [ 56 ], as 
well as cells associated with an adaptive immune 
response, i.e., T and B lymphocytes [ 57 – 61 ]. 
Although it is thought that an immune response 
localized to the tumor  inhibits cancer growth, it 
is now clear that some types of tumor-associated 
infl ammatory cells may also exert an opposite 
action, at least at some point of prostate cancer 
natural history [ 62 ].  

21.3     Immunotherapy of Prostate 
Cancer 

 The goals of any cancer therapy are to improve 
disease control, palliate pain, and improve overall 
survival [ 63 ]. In 2010, the American Food and 
Drug Administration (FDA) approved the fi rst 
therapeutic cancer vaccine, called sipuleucel-T, 
for the treatment of castration refractory prostate 
cancer [ 64 ,  65 ]. Different from the currently 
adopted chemotherapy drugs that produce wide-
spread cytotoxicity to kill tumor cells, anticancer 
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vaccines and immunotherapies focus on empow-
ering the immune system to overcome the tumor. 
It has been shown that prostate cancer is an ideal 
model for cancer vaccine development. This is 
mainly due to its humoral and cellular immunity 
to a range of cancer antigens, which are good can-
didates for vaccine therapy to generate a robust 
antitumor response. Recently, Cheema et al. sug-
gested the potential applications of BORIS (i.e., a 
cancer-testis antigen normally present at high lev-
els in the testis and aberrantly expressed in vari-
ous tumors and cancer cell lines) as a biomarker 
for prostate cancer diagnosis, an immunotherapy 
target, and, potentially, a prognostic marker of 
aggressive prostate cancer [ 66 ]. Additionally, the 
ability of BORIS to activate the androgen receptor 
gene indicates its involvement in the growth and 
development of prostate tumors [ 66 ]. Chiriva-
Internati et al. fi rst reported the aberrant expres-
sion of the cancer-testis antigen A-kinase anchor 
protein 4 (AKAP4) in prostate cancer, which will 
potentially be developed as a biomarker in pros-
tate cancer. They also provide evidence that 
AKAP4 is a potential target for prostate cancer 
adoptive immunotherapy or antitumor vaccina-
tion [ 67 ]. Beginning in the early 1990s, several 
tumor-associated antigen genes including the 
 cancer-testis antigens were identifi ed that exhib-
ited tumor-specifi c expression. Cancer-testis anti-
gens are a group of proteins that are typically 
restricted to the testis in the normal adult but are 
aberrantly expressed in cancers of unrelated histo-
logic origin [ 68 ]. Hudolin et al. observed 
MAGE-A1 in 10.8 % of carcinoma samples, 
whereas multi-MAGE-A and NY-ESO-1/LAGE-1 
stained 85.9 and 84.8 % of samples using immu-
nohistochemistry, suggesting that a panel of CT 
antigens rather than individual ones may be more 
valuable biomarkers [ 69 ]. Smith et al. suggested 
that multiple synovial sarcoma X chromosome 
breakpoint (SSX) proteins are expressed in meta-
static prostate cancers, which are amenable to 
simultaneous targeting [ 70 ]. 

 Enzalutamide, a second-generation andro-
gen antagonist, has recently been approved by 
the FDA for castration-resistant prostate cancer 
treatment. Ardiani et al. showed that enzalu-
tamide mediated immunogenic  modulation in 

TRAMP-C2 cells.  In vivo , enzalutamide medi-
ated reduced genitourinary tissue weight, 
enlargement of the thymus, and increased levels 
of T-cell excision circles. Because no changes 
were seen in T-lymphocyte function, as deter-
mined by CD4 +  T-lymphocyte proliferation and 
Treg functional assays, enzalutamide was deter-
mined to be immune inactive [ 71 ]. They con-
cluded that the combination of enzalutamide and 
immunotherapy is a promising treatment strategy 
for castration-resistant prostate cancer. Recently, 
there is a renewed interest in prostatic acid phos-
phatase (i.e., a nonspecifi c phosphomonoesterase 
synthesized in prostate epithelial cells, which 
level proportionally increases with prostate can-
cer progression) because of its usefulness in 
prognosticating intermediate- to high-risk pros-
tate cancers and its success in the immunotherapy 
of prostate cancer [ 72 ]. Based on the good prog-
nostic value of prostatic acid phosphatase and the 
potential usefulness of prostatic acid phospha-
tase as an antigen, an immunotherapy employ-
ing autologous prostatic acid phosphatase-loaded 
dendritic cells was initiated [ 73 ]. Wada et al. used 
a well-described genetically engineered mouse, 
autochronous prostate cancer model to explore 
the relative sequencing and dosing of anti- 
cytotoxic T-lymphocyte-associated  antigen-4 
(CTLA-4) antibody when combined with a 
cell- based, granulocyte macrophage colony- 
stimulating factor (GM-CSF)-secreting vaccine 
[ 74 ]. These experiments corroborate recent clini-
cal data, which suggest that the combination of 
CTLA-4 blockade and cell-based, GM-CSF- 
secreting vaccines may have signifi cant antitu-
mor effects in men with prostate cancer. These 
data also indicate that the “therapeutic window” 
of such an approach may be maximized through 
meticulous study of various dosing regimens. 
Additionally, future clinical studies may fi nd that 
the addition of cyclophosphamide to this treat-
ment strategy allows for reduction in the dose of 
anti-CTLA-4, potentially limiting autoimmune 
toxicity. In a recent phase I trial, Perez et al. 
demonstrated that the AE37 vaccine is safe and 
induces HER-2/neu-specifi c immunity in a het-
erogeneous population of HER-2/neu +  prostate 
cancer patients [ 75 ]. Clusterin is a  cytoprotective 
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chaperone protein that is overexpressed in many 
tumor types and is upregulated in response to 
cellular stress caused by cancer treatments, 
including hormonal manipulation, radiation, and 
chemotherapy. Custirsen is a second-generation 
antisense oligonucleotide that is complemen-
tary to clusterin mRNA and potently suppresses 
clusterin expression in preclinical models of 
prostate cancer as well as in clinical trials. The 
innovative fi rst-in-human phase I neoadjuvant 
trial demonstrated dose-dependent plasma and 
prostate tissue concentrations of custirsen, which 
was well tolerated at all dose levels [ 76 ]. Results 
from the clinical trials (i.e., sipuleucel-T-based 
vaccine, GVAX-PCa, viral prostate cancer vac-
cines, DNA-based vaccines, and gene-mediated 
cytotoxic immunotherapy) indicate that prostate 
cancer vaccines are generally safe and, encour-
agingly, capable of generating tumor-specifi c 
T-lymphocyte responses. It is becoming evident 
that prostate cancer patients with early-stage dis-
ease may be those who obtain the main benefi ts 
from vaccines.  

21.4     Cervical Cancer: What 
We Know and What We Need 
to Know 

 Female genital tract malignancies have world-
wide distribution but vary from one region to 
another. The acquired immune defi ciency syn-
drome has considerably altered the pattern of 
female genital cancers [ 77 ]. Studies have found 
that human immunodefi ciency virus (HIV)-
seropositive women are at least fi ve times as 
likely to be infected with human papillomavirus 
(HPV) as seronegative controls. In immunocom-
promised HIV-seropositive women, the risk of 
cervical intraepithelial neoplasia (CIN) is almost 
as high as in women with squamous intraepithe-
lial lesions on their Pap smear. Cervical cancer 
is the second most common malignant tumor 
among women worldwide [ 78 ]. In developed 
countries, the introduction of routine screen-
ing and treatment for premalignant lesions of 
the cervix has lead to a dramatic fall in the inci-
dence and mortality of cervical cancer over the 

past fi ve decades [ 79 ]. Cervical cancer is the most 
common female genital cancer in the develop-
ing countries. Its distribution and presentation is 
unique in the developing countries because most 
cases present at the advanced stages of the dis-
ease. The initiating event of cervical cancer is 
the infection with certain types of HPV. Rössler 
et al. investigated 290 cases of high-grade cer-
vical intraepithelial neoplasia (CIN2, CIN3) or 
adenocarcinoma in situ of the cervix and clearly 
showed that HPV 16 is the predominant type in 
high- grade CIN, the immediate precursor lesions 
of cervical cancer [ 80 ]. More than 60 % of the 
lesions were associated with HPV 16 and 18 and 
more than 85 % with HPV 16, 18, 31, 33, or 45 
[ 80 ]. The prevalence of adenocarcinoma in situ 
is underestimated, since its detection is diffi cult 
with current cytology screening. The infection is 
usually clinically silent with an absence of com-
mon genital symptoms, but it can manifest with 
a spectrum of lesions from genital warts to inva-
sive cancer [ 81 ].  In vivo , the virus does not bind 
directly to the cells, but it requires contact with 
the basement membrane. This contact can be 
accomplished by microabrasions in the cervical 
surface, which reveal the basement membrane 
[ 81 ]. It is well known that the most vulnerable 
sites to tumorigenesis are where cell transforma-
tion occurs. Both cervix and anus belong to this 
category in contrast to the vulva and vagina where 
no metaplasia occurs. The transformation zone is 
the most common site of squamous intraepithelial 
lesion. Many researchers have tried to clarify the 
differences in the milieu and the immunosurveil-
lance between the transitional zone and the exo-
cervix [ 82 ]. In the transformation zone compared 
to the exocervix, signifi cantly decreased numbers 
of Langerhans cells are observed. Dendritic cells 
recognize special patterns on the pathogens uti-
lizing their Toll-like receptors and use major his-
tocompatibility complex (MHC) to present the 
antigens to the T lymphocytes, sometimes assisted 
by infl ammatory agents such as chemokines 
and cytokines. However, even in the absence of 
lesions, Langerhans cells of the epidermis do not 
produce a suffi cient T-cell response, compared to 
the  dendritic cells of the dermis, due to the lack 
of appropriate  co-stimulatory  microenvironment. 
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Consequently, Langerhans cells may be unable to 
elicit a successful immune response and become 
a part of the virus tolerance tactics. Accordingly, 
potential vaccines should avoid using Langerhans 
cells as a presenting agent without using co- 
stimuli. Interestingly, viral oncogene expression 
is necessary but not per se suffi cient to promote 
cervical cancer, and other factors are involved 
in neoplastic progression. Thus, major research 
efforts should be focused to identify novel cocar-
cinogenic factors and to understand the mecha-
nisms played into tumor development. Besides 
HPV, multiple additional risk factors related to 
the onset of cervical cancer are early-age sexual 
activities, high numbers of sexual partners (which 
is the most salient risk factor), suppression and 
alteration of the immune status, long-term use 
of oral contraceptives, and other hormonal infl u-
ences [ 83 ,  84 ]. Although cervical screening pro-
cedures have been successful in reducing the 
disease burden associated with HPV infection 
because of a lack of resources or inadequate infra-
structure, many countries have failed to reduce 
cervical cancer mortality. Therefore, preven-
tion may be a valuable strategy for reducing the 
economic and disease burden of HPV infection. 
Although the diagnosis and treatment of cervi-
cal cancer has been developed recently, there are 
important consequences from the disease and its 
treatment among survivors, especially the impact 
on quality of life. Also, functional disorders may 
result from therapies such as surgery, which could 
involve the female genital anatomy; radiotherapy 
which could damage the vaginal mucosa and epi-
thelium; and chemotherapy which could induce 
some side effects like nausea, vomiting, diarrhea, 
constipation, microsites, weight changes, and 
hormonal changes [ 85 ]. The classical manage-
ment of invasive cervical cancer involves evaluat-
ing tumor extent which includes tumor size, depth 
of invasion, microvascular space tumor invasion, 
spread to regional lymph nodes, and grade of dif-
ferentiation [ 86 ]. The treatment of cervical can-
cer is predicated on the evaluation of the clinical 
stage of tumor according to the classifi cation of 
the International Federation of Gynecology and 
Obstetrics (FIGO). For early stages (FIGO  I–
IIA), either surgery or radiotherapy is employed, 

whereas for late stages (FIGO IIB–IV), chemo-
therapy is indicated [ 86 ]. However, clinical stag-
ing has certain limitations due to variables such 
as interobserver variability. Imaging technologies, 
such as computed tomography and ultrasound, 
have been adopted to improve the clinical staging 
accuracy of cervical cancer. Metastatic disease 
or recurrent lesions not amenable to radical local 
excision or regional radiation have a poor progno-
sis and are treated with palliative platinum-based 
chemotherapy. A thorough molecular character-
ization of cervical cancer remains crucial for a 
rationale implementation of targeted agents and 
companion biomarkers [ 87 ]. Alternative clinical 
trial designs may also be necessary to optimize 
the clinical development of new drugs for cervi-
cal cancer.  

21.5     The Immunotherapy 
of Cervical Cancer 

 Given that cervical cancers are caused by HPV, 
the prospect of therapeutic vaccination to treat 
existing lesions and prophylactic vaccination to 
prevent persistent infections with the virus is 
high and may be implemented in the near future 
[ 77 ,  88 – 90 ]. Powell et al. have recently reported 
that prophylactic vaccines targeting HPV types 
16 and 18 could potentially prevent up to 80.9 % 
of invasive cervical cancers and that cancers 
associated with HPV types 16, 18, and 45 were 
diagnosed at younger ages, supporting the 
hypothesis of faster progression than for tumors 
caused by other HPV types [ 91 ]. Several strate-
gies of HPV therapeutic vaccines have been eval-
uated to reverse the effect of immunosuppression 
in the tumor microenvironment, including inhibi-
tion of HPV oncoproteins, activation of the host- 
specifi c immune response against HPV antigens 
by co-stimulatory molecule expression, and 
administration of T-lymphocyte helper 1 cyto-
kines to activate the T-lymphocyte-mediated 
immune response [ 92 ]. Preventive vaccination 
against high-risk HPV types 16 and 18 is of 
widespread use. Current vaccines utilize the 
major capsid protein L1 and minor capsid protein 
L2 on virus-like particles [ 93 ,  94 ]. It has been 
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ascertained that L1-overexpressed proteins spon-
taneously self-assemble into virus-like particles 
that resemble the conformation of authentic viri-
ons, are neither infectious nor oncogenic, and 
induce high levels of type-specifi c neutralizing 
antibodies. A number of therapeutic vaccines are 
now in clinical trials all over the world. In con-
trast to preventive vaccines, therapeutic ones tar-
get the oncogenetic proteins E6 and E7, which 
are continuously expressed in cells throughout 
the HPV infection [ 95 – 97 ]. Contrary to the stim-
ulation of humoral immunity by prophylactic 
vaccines, therapeutic vaccines develop cell- 
mediated immunity in order to control the infec-
tion. An approach is the use of viral or bacterial 
live vectors, like  Listeria monocytogenes , adeno-
virus, and vaccinia virus, which are highly immu-
nogenic and broadcast the antigens to many 
APCs for process, stimulating activation of both 
CD4 +  and CD8 +  T lymphocytes through MHC II 
and MHC I, respectively [ 98 – 101 ]. Although 
long-term protection is a key point in evaluating 
HPV vaccines over time, there is currently inad-
equate information on the duration of HPV 
vaccine- induced immunity and on the mecha-
nisms related to the activation of immune mem-
ory [ 102 ]. As reported by Mariani et al. [ 102 ], the 
importance of vigorous and prolonged immune 
protection over time is related to the following: 
(a) the risk of HPV infection remains as long as 
women remain sexually active, (b) it is crucial to 
test the utility of HPV vaccination programs as 
public health interventions, and (c) it displays the 
maximum benefi ts of cervical cancer and other 
HPV-related cancers. Nevertheless, it should also 
be highlighted that long-term protection is not 
fully predictable at the introduction of any vac-
cine, because it varies according to many vari-
ables that are not strictly related to immune 
response only [ 102 ]. Recently, Zhang et al. [ 103 ] 
provides insights for further development of 
CD146 (i.e., endothelial cell adhesion molecule 
which is overexpressed in various types of malig-
nant cancer) monoclonal antibodies in the detec-
tion of gynecological malignant cancer types and 
implies that a combined treatment strategy of 
anti-CD146 immunotherapy with other tradi-
tional chemo- or radiotherapy treatments may be 

a promising approach against cervical cancer. 
Agarwal et al. reported that  AKAP4  gene and pro-
tein expression was detected in 86 % of total 
patients with cervical cancer [ 104 ]. They con-
cluded that  AKAP4  has a putative role in early 
tumorigenesis and may be implicated as a bio-
marker and immunotherapeutic target for cervi-
cal cancer. Sperm protein 17, a member of the 
cancer-testis antigens, has been found highly 
expressed in human cervical cancers in a hetero-
geneous pattern [ 105 ]. Although the expression 
frequency of Sp17 is not correlated with the his-
tological subtype, the staining pattern may help 
to defi ne cervical cancers. As stated by the 
authors themselves, Sp17 targeted immunother-
apy of tumors needs more accurate validation. 
Previously, the  SSX  genes (i.e., members of the 
cancer-testis antigens family) were found by 
serological analysis of antigens by recombinant 
expression cloning (SEREX) in gynecological 
malignancies, including cervical cancer [ 106 ].  

21.6     Concluding Remarks 

 An effective immune response to cancers should 
result in the regression of established tumors and 
should also be able to prevent recurrence [ 8 ]. 
However, multiple factors present a barrier to the 
antitumor immune response. Because tumors are 
frequently perceived by the immune system as 
“self,” the mechanisms that control the develop-
ment of autoreactive immune responses (and 
thus, autoimmune disease) also serve to preclude 
the development of an effective immune response 
to cancer [ 8 ]. A variety of immune cells that pro-
mote tumor growth and inhibit tumor-associated 
immune responses, or both, accumulate within 
the tumor and its locoregional draining lymph 
nodes. In particular, these include 
CD4 + CD25 + FOXP3 +  regulatory T lymphocytes, 
CD4 +   interleukin-17-producing T helper lym-
phocytes, myeloid-derived suppressor cells 
(MDSCs), and tumor-associated macrophages 
(TAMs). Additional features of the tumor micro-
environment further silence the antitumor 
immune response, including high levels of sup-
pressive intra-tumoral  cytokines, including 

21 Immunopathology and Immunotherapy of Specifi c Cancers in Males and Females



408

transforming growth factor-β (TGF-β), tumor 
necrosis factor (TNF), and interleukin-10 (IL-
10), the constitutive or induced expression of 
immune checkpoint molecules by the tumor 
cells, and various other phenotypic alterations 
that lead to immune escape (the loss of tumor 
antigens and other molecules essential for anti-
gen processing and presentation). Because sur-
gery, radiotherapy, chemotherapy, and targeted 
therapies are widely used to treat most estab-
lished cancers, the optimal integration of 
immune-based therapies with these standard 
modalities to minimize antagonistic interactions 
between different treatment modalities is of great 
importance. Immunotherapy approaches have, 
for several decades, been tested against several 
tumors, most often against malignant melanoma 
[ 107 ]. The development of molecular methods 
and an improved understanding of tumor immu-
nosurveillance have led to novel immunotherapy 
approaches in the last few years. Randomized 
phase III trials have proven that immunotherapy 
can prolong the survival of patients with meta-
static melanoma or prostate cancer [ 107 ]. The 
concept that elements of the immune system 
contribute to cancer control was already pro-
posed more than 100 years ago by the German 
immunologist and Nobel Prize winner Paul 
Ehrlich. Immunotherapy is now a routine part of 
the treatment of some tumors, and novel immu-
notherapies against cancer will be available soon. 
New developments are expected in the fi eld of 
modulating T-cell activity by interfering with co-
stimulatory or co-inhibitory pathways and in 
adoptive immunotherapy using CAR T cells. 
Treatment options for advanced prostate cancer 
have improved considerably in the last 2 years. 
The immunotherapy sipuleucel-T, the cytotoxic 
cabazitaxel, the androgen biosynthesis inhibitor 
abiraterone acetate, the radioisotope radium-223, 
and the antiandrogen enzalutamide have all been 
shown to improve survival in randomized phase 
III studies for patients with metastatic castration- 
resistant prostate cancer [ 108 ]. It is also clear 
that in the future, radiation therapy approaches 
designed to optimize immune stimulation at the 
level of dendritic cells (DC), lymphocytes, 
tumor, and stroma effects could be evaluated 

specifi cally in clinical trials. High prevalence 
and mortality rates of cervical cancer create an 
imperative need to clarify the uniqueness of HPV 
infection, which serves as the key causative fac-
tor in cervical malignancies. Currently, immuno-
therapeutic strategies include vaccination with 
peptide, viral vectors, carbohydrates, and anti-
idiotypic antibodies. HPV infection alone is not 
enough to induce cervical cancer, and so other 
risk factors also have a role such as smoking, 
prolonged oral contraceptive use, coinfections, 
multiparity, and immune-related factors which 
appear to lead the way on the path toward carci-
nogenesis. Understanding the immunological 
details and the microenvironment of the infec-
tion can be a useful tool for the development of 
novel therapeutic interventions.     
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22.1             Introduction 

 Tumors are able to escape from the host immuno-
surveillance due to a wide spectrum of mecha-
nisms which actively disturb process of tumor 
immunological recognition. Besides change of 
tumor immunogenicity, two other mechanisms 
play a pivotal role in cancer growth, namely, pro-
duction of tumor-derived regulatory molecules 
and interaction of cancer cells with tumor- 
infi ltrating immune cells. According to the 
“immunoediting” hypothesis, initial elimination 
of tumor cells by host immune system “shapes” 
tumor phenotype and allows for survival of 
immuno-resistant cancer cells [ 1 ,  2 ]. This pro-
cess is further augmented by both chemotherapy 
and immunotherapy used in the management of 
the disease, which usually kill only sensitive cells 
and spare resistant ones. Genetic instability of 
the tumor additionally contributes to the creation 
of cells resistant to immune eradication [ 3 ]. From 
an opposite point of view, tumor itself is not only 
a passive member of immunological interplay 
with the host but actively “shapes” the pattern 
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and intensity of host immune response [ 4 ]. 
Vascularization of the tumor, production of 
metastases, and existence of pro-infl ammatory 
environment inside and next to the tumor are very 
important components of tumor propagation. All 
of them are regulated by cytokines originated 
from tumor cells or tumor-infi ltrating immune 
cells which are forced functionally to favor can-
cer growth.  

22.2     The Role of Cytokines 
in Neovascularization 
of Epithelial Ovarian 
Cancer (EOC)  

22.2.1      Characterization of VEGF 
Function 

 Initially, cancer grows as an avascular tumor 
which takes nutrients from surrounding tissue; 
however, its enlargement is dependent on cre-
ation of new vessels. They usually have irregular 
shape and disturbed morphology and their wall 
may be partly composed of cancer cells (vascular 
mimicry). “Vascular switch” is a very important 
step to increase both proliferative and metastatic 
potential of the tumor [ 5 – 7 ]. A large number of 
tumor-derived proangiogenic factors have been 
identifi ed: basic fi broblast growth factor (bFGF), 
fi broblast growth factor (FGF), platelet-derived 
growth factor (PDGF), platelet-derived endothe-
lial cell growth factor (PDEGF), epidermal growth 
factor (EGF), angiopoietin-1,  transforming 
growth factor-β (TGFβ), and vascular endothe-
lial growth factor (VEGF) [ 5 ,  8 ]. Tumor environ-
ment also contains angiogenesis inhibitors which 
counteract the action of proangiogenic stimulants. 
Among the most important inhibitors are cyto-
kines, mainly interferon (IFN)-α and interferon-γ, 
interleukin (IL)-12, IL-10, as well as angiostatin 
and endostatin [ 9 ,  10 ]. The proteins belonging 
to VEGF family (VEGF-A, VEGF-B, VEGF-C, 
VEGF-D) are extensively studied due to their key 
role in tumor neoangiogenesis. The dominant role 
for VEGF-A in tumor vascularization is medi-
ated through binding to VEGFR-2 (KDR/Flk-1) 
receptor, being expressed on both endothelial 

and tumor cells [ 11 ]. Receptor VEGFR-1 (Flt-1) 
 functions as a decoy receptor [ 12 ]. Induction of 
VEGF in the cancer cells is regulated by different 
signals, including mutant  p53 ,  PTEN ,  Ras  and  Raf  
genes, hypoxia- inducible factor (HIF)-1α, growth 
factors (PDGF, EGF), and cytokines (TGFβ, pros-
taglandin PGE 2 , and interleukin IL-1β). IL-12 and 
IFN-γ are potent inhibitors of VEGF-dependent 
angiogenesis [ 13 ]. Secretion of VEGF initiates 
endothelial cell growth and increases expres-
sion of matrix metalloproteinases (MMPs) which 
stimulate endothelial cell division and spread [ 5 , 
 14 – 17 ]. More importantly, overactivity of MMPs 
secondary to VEGF augments tumor invasive-
ness and potential to metastasize [ 18 ], as imma-
ture new capillaries with defective wall allow 
greater accessibility for migrating tumor cells 
[ 19 ]. VEGF also enhances tumor invasion by 
direct autocrine effect on tumor cells, as well as 
indirectly by inhibiting the functional matura-
tion of the host dendritic cells (DCs) [ 20 ,  21 ]. 
Besides the tumor itself, there are also tumor-
associated macrophages (TAMs) and CD11 + Gr1 +  
myeloid- derived suppressor cells (MDSC), as 
well as cancer- associated fi broblasts (CAFs) 
which actively regulate neovascularization of the 
tumor. According to their function, tumor-asso-
ciated macrophages are divided to either M1 or 
M2 type. Macrophages of M1 type could effec-
tively destroy tumor cells through production of 
Th1 cytokines and stimulation of T CD8 +  CTLs. 
Conversely, macrophages of M2 type mainly 
produce IL-6, IL-10, TGFβ, and VEGF [ 22 –
 24 ]. Hypoxic environment inside solid tumors 
resulting in VEGF and HIF-1α expression are 
the stimuli for macrophage recruitment into the 
tumor and contribute to proangiogenic and pro- 
metastatic TAMs activity [ 4 ,  25 – 28 ]. From the 
other side, M2-type TAMs enhance intratumor 
angiogenesis by secretion of VEGF, TGFβ, and 
FGF and infl uence extracellular matrix remodel-
ing by MMP production [ 23 ]. Myeloid-derived 
suppressor cells (MDSCs) of CD11b + /Gr-1 +  phe-
notype are a population of cells which links the 
mechanisms of chronic infl ammation and tumor 
progression [ 29 ]. Besides suppressing host anti-
tumor responses, MDSCs are also capable of 
augmenting both the formation of new blood 
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 vessels and tumor  metastatic potential [ 29 ]. CAFs 
are the residents of tumor stroma and exert their 
tumor-promoting activity by secretion of growth 
factors, including VEGF [ 30 ,  31 ,  32 ]. The popu-
lation of CAFs also expresses some chemokines 
(CCL5, CXCL12, and CXCL14), which enhance 
tumor angiogenesis and metastatic potential [ 33 , 
 34 ]. Cytokines, like TNF-α, IL-4, and IL-10, 
are candidates for inhibitors of proangiogenic 
signals originating from cancer-associated fi bro-
blasts (CAFs) and tumor-associated macrophages 
(TAMs),  respectively [ 35 ].  

22.2.2     VEGF in Ovarian Cancer 
Patients 

 Cytokine VEGF is not only engaged in nor-
mal ovarian function but is also implicated in 
the growth of highly vascularized EOC [ 36 ]. 
Abnormal expression of certain cytokines, 
including VEGF, was confi rmed in many stud-
ies on EOC lines and cell cultures in vitro [ 37 ]. 
Transformation of normal ovarian epithelium into 
neoplastic tissue has been shown to be connected 
to the VEGF overexpression [ 36 ,  38 ]. Borderline 
ovarian tumors indicated variable VEGF mRNA 
expression, while all malignant tumors were 
characterized by strong VEGF mRNA expres-
sion. Higher expression of mRNA for VEGF 
receptors was also observed in endothelial cells 
lining the vessels of both borderline and malig-
nant tumors [ 39 ]. Expression of VEGF depends 
also on the histological type of the tumor, serous 
tumors having the strongest level of expression 
[ 40 ,  41 ]. Increased concentration of VEGF (and 
IL-8) has been described in cystic fl uid and serum 
of patients with ovarian endometriosis and EOC, 
compared to patients with serous and follicular 
benign cysts [ 42 ]. Most patients with EOC are 
diagnosed at late stages of the disease, when peri-
toneal dissemination of the tumor and ascites are 
already present. The role of VEGF has also been 
proved both in the tumor peritoneal dissemina-
tion and the subsequent development of malig-
nant ascites [ 43 – 45 ]. Preoperative serum VEGF 
levels were raised in patients with EOC compared 
to those with benign mass and those with tumors 

of low-malignancy potential. Patients presenting 
with ascites had similarly signifi cantly increased 
VEGF serum levels [ 46 ]. Patients with higher 
serum VEGF concentration had signifi cantly 
shorter overall and disease-free survival [ 47 ]. It 
seems that VEGF serum concentration is an indi-
cator of tumor proliferative activity rather than its 
dimension [ 19 ]. Studies on VEGF concentration 
in peritoneal fl uid of patients with malignant and 
benign ovarian disease indicated that malignant 
ascites contained signifi cantly higher concen-
trations of VEGF (together with IL-6) [ 37 ]. In 
addition, malignant ovarian tissue is character-
ized by abnormal expression of VEGF receptors 
[ 39 ]. Moreover, genetic studies on  VEGF  gene 
polymorphisms in EOC patients indicated that 
simultaneous carriage of three homozygous gen-
otypes ( VEGF  634C/C,  VEGF  1154G/G,  VEGF  
2578C/C) was associated with increased tumor 
VEGF expression and had prognostic value [ 48 ].  

22.2.3     Role of VEGF for Ovarian 
Cancer Growth, 
Dissemination, 
and Metastases 

 The main regulatory pathways of VEGF expres-
sion in EOC appear to be the same in general as 
those described in Sect.  22.2.1 . It was revealed 
that the most important inducers of VEGF expres-
sion in ovarian tumors were growth factors (like 
EGF, IGF-1, PDGF), cytokines (TGF-β, TNF-α, 
IL-6), prostaglandins (PGE-2), factor HIF-1α, 
cyclooxygenase (COX), or metalloproteinases 
(MMPs) [ 49 – 58 ]. Production of VEGF is also 
regulated by oncogenes, i.e., HER-2/neu, which 
the defective function was confi rmed in EOC 
cells [ 59 ]. VEGF-dependent angiogenesis is an 
early, crucial, and indispensable step in ovarian 
carcinogenesis [ 39 ,  60 ]. VEGF and its two recep-
tors VEGFR-1 and VEGFR-2 were detected at 
both mRNA and protein levels in ovarian tumors 
[ 39 ,  61 – 65 ]. Cancer cell-derived VEGF shows 
stimulatory action directed toward host vessels 
which are remodeled in order to support tumor 
growth. This stimulation is mediated by upreg-
ulation of angiopoietin-2 on endothelial cells 
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[ 66 ]. Moreover, autocrine loop based on VEGF–
VEGFR-2 interactions and synergy between 
VEGF and CXCL12 together augment neovas-
cularization of ovarian tumor [ 49 ,  62 ]. The role 
of VEGF is not restricted to pro- vascularization 
activity, as it was shown that VEGF directly 
stimulates proliferative activity of tumor cells 
[ 67 ], and a signifi cant correlation between the 
expression of VEGF/VEGF receptors and the 
activation status of signal transducer and acti-
vator of transcription pathway (STAT3, STAT5) 
was evidenced in EOC cells [ 68 ]. Besides pro-
liferation, VEGF contributes to EOC metastasis 
by reprogramming the metastatic profi le of tumor 
cells, stimulating the migration of those cells and 
performing a direct suppression of host antitu-
mor cytotoxic activity [ 69 – 71 ]. The migration of 
cancer cells is enhanced by the fact that newly 
formed vessels are structurally and functionally 
abnormal, which results in the increase of vas-
cular permeability. VEGF-mediated activation 
of ovarian cancer Src-family kinases [ 72 ] and 
metalloproteinases (MMP-2, MMP-7, MMP- 
9) is responsible for this phenomenon [ 73 ,  74 ]. 
Cancer growth and metastatic potential corre-
late with its VEGF-producing capacity and are 
inhibited by the suppression of VEGF function 
[ 72 ,  75 ]. Other components of the pro-metastatic 
tumor environment are TAM and CAF cells 
capable of extracellular matrix degradation [ 76 ]. 
Synergy exists between VEGF and growth fac-
tors, like PDGF or bFGF, according to the pro-
liferative and metastatic abilities of EOC cells. 
Inhibition of bFGF and VEGF activities sup-
pressed the growth and metastases production 
in vivo in murine model of ovarian cancer [ 52 , 
 60 ,  77 ]. Similar mechanisms are responsible for 
VEGF-mediated intraperitoneal dissemination of 
EOC, development of peritoneal carcinomatosis, 
and fi nally for ascites production [ 61 ,  78 ,  79 ]. In 
all those pathologies, VEGF plays a pivotal role, 
as it was shown that growth of new peritoneal 
implants and production of ascitic fl uid clearly 
depend on neovascularization and increased ves-
sel permeability produced by VEGF, even in the 
areas of unchanged peritoneum [ 80 – 83 ]. Both 
ovarian cancer cells and mesothelial cells of the 
peritoneum were identifi ed as VEGF producers 

[ 84 ]. It was shown that expression of VEGF in 
omental metastases correlated with preoperative 
CA125 levels, the extent of omental infi ltration 
and patient’s outcome [ 85 ]. Confi rmation of the 
key role of VEGF in ascites formation comes 
from the studies which found that ascitic VEGF 
concentration correlated with fl uid production 
and VEGF inhibition both hampered implant 
growth and decreased malignant ascites [ 86 , 
 87 ]. Regulation of VEGF function in the perito-
neal cavity is quite complex, and it seems that at 
least MMPs (MMP-2, MMP-9) and TGF-β could 
stimulate or inhibit VEGF expression, respec-
tively [ 53 ,  57 ,  88 ]. Extraperitoneal metastases of 
EOC to the lymph nodes are also VEGF depen-
dent (VEGF-C), and it seems that VEGF contrib-
utes to EOC metastases to the lungs and liver [ 72 , 
 77 ,  89 ]. Despite the fact that VEGF is responsible 
for neovascularization, attempts for combining 
VEGF concentration with microvessel density 
(MVD) in the tumors have so far given confl ict-
ing results. While in some studies the correla-
tion between VEGF and MVD was confi rmed 
for VEGF-rich malignant tumors [ 90 ], results of 
other studies showed that VEGF immunostain-
ing was not signifi cantly stronger in high-MVD 
regions of malignant compared to borderline 
tumors [ 91 ]. The last studies seem to support the 
notion that no correlation exists between MVD 
and VEGF expression, as well as between MVD 
and patient’s clinicopathologic parameters [ 92 ]. 
Therefore, although VEGF controls the tumor 
angiogenesis, it does not consistently contribute 
to higher MVD values observed in the ovarian 
tumors.   

22.3     The Role of Pro- 
infl ammatory Cytokines 
in Ovarian Cancer 

22.3.1     Infl ammation and Cancer: 
General Remarks 

 It is now an unquestionable opinion that an asso-
ciation exists between infl ammation and cancer 
development [ 93 ,  94 ]. It was found that chronic 
infl ammation may account for about 15 % of 
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 cancers. Molecules produced by infection-acti-
vated infl ammatory immune cells, like TNF-α, 
could initiate tumor growth by stimulation of 
nitric oxide and ROI, both being capable of DNA 
damage [ 95 ,  96 ]. Cytokine TNF-α is also capable 
of DNA repair inhibition [ 97 ,  98 ]. Current data 
support the opinion that during later steps of 
tumor development, chronic infl ammation result-
ing from tumor-infi ltrating immune cells does 
not enhance cancer eradication, but instead con-
tributes to cancer progression [ 99 ,  100 ]. 

 Activation of TLR receptors which are present 
on the surface of innate immune cells, mainly 
macrophages but also on cancer cells themselves, 
enhances tumor growth by various mechanisms 
like stimulation of growth-promoting cytokines or 
protection against apoptosis [ 101 – 103 ]. Genetic 
studies confi rm the importance of TLRs for cancer 
development, as polymorphisms in the group of 
genes encoding TLR6 and TLR10 positively infl u-
enced the risk of some cancers [ 104 ]. One of the 
pro-infl ammatory cytokines stimulated by TLRs is 
TNF-α which promotes tumor survival by stimula-
tion of NF-κB-dependent antiapoptotic molecules, 
inhibiting antitumor cytotoxic reactions and aug-
menting tumor proliferation, neoangiogenesis, and 
metastatic properties [ 105 ,  106 ]. Genetic poly-
morphisms that enhance TNF-α production were 
connected with both greater risk of cancer and 
poor prognosis [ 107 ], while in mice defi cient for 
TNF receptors, reduced incidence of tumors was 
noted [ 108 ]. However, high-dose management of 
tumors with TNF-α kills the cells and disrupts 
tumor vasculature [ 109 ]. Tumor necrosis factor 
(TNF)-related apoptosis-inducing ligand (TRAIL) 
is one of the inducers of apoptosis in tumor cells. 
However, its effects could be abrogated by TNF-α-
mediated activation of NF-κB pathway in cancer 
cells [ 105 ]. TRAIL-defi cient animals presented 
with greater predisposition to induced and sponta-
neous cancers [ 110 ]. In some tumors, resistance 
against the TRAIL-dependent apoptosis evolved, 
based on the lack of caspase expression, inactiva-
tion of proapoptotic proteins, overexpression of 
mutant  PTEN  gene, and upregulation of Akt/
NF-κB intracellular pathway [ 111 ,  112 ]. 

 Interleukin (IL)-6 is a pro-infl ammatory cyto-
kine which through activation of intracellular 

STAT3 pathway infl uences the function of genes 
engaged in cell proliferation and resistance to 
apoptosis [ 111 ,  113 ]. Genetic studies have 
revealed that some polymorphisms of the  IL6  
gene promoter region could interfere with the 
IL-6 production, thus changing the risk of certain 
tumors and patients’ prognosis [ 114 ]. In vitro 
studies showed that IL-6 augmented growth of 
colon carcinoma cells in a dose-dependent man-
ner, which was further confi rmed in vivo by an 
evidence that IL-6 serum levels correlated with 
the dimensions of the tumor in colon cancer 
patients [ 115 ,  116 ]. The IL-6-mediated signaling 
in colon cancer occurs mainly by soluble IL-6 
receptors (sIL-6Rs) [ 117 ]. 

 Clinical observations on prophylactic use of 
nonsteroid anti-infl ammatory drugs in colorec-
tal cancer and confi rmation of antitumor effects 
which resulted from the application of selective 
cyclooxygenase (COX)-2 inhibitors have turned 
the attention to COX-2–PGE 2  tumor development 
pathway [ 14 ,  73 ]. Cyclooxygenase-2 is upregu-
lated by pro-infl ammatory cytokines, HIF-1α, and 
tumor promoters followed by a higher expression 
of PGE 2  which in turn activates EGF receptor and 
interacts with different intracellular pathways, 
including Ras/MAPK signaling pathway, PI3K/
Akt pathway, and NF-κB-mediated pathway 
[ 14 ,  73 ]. Overexpression of COX-2 also stimu-
lates VEGF, which through a positive feedback 
loop enhances autocrine PGE 2  secretion [ 118 ]. 
It was shown that COX-2 overexpression infl u-
ences tumor neoangiogenesis and predicts poor 
survival in some cancer patients [ 75 ,  119 ,  120 ]. 
Prostaglandin PGE 2  indicates multidirectional 
infl uence on tumor immunological environment. 
It decreases homing of immune cells into the 
tumor by changing tumor chemokine expression, 
inhibits DCs maturation and migration toward 
tumor-draining lymph nodes, upregulates Th2 
(IL-4, IL-10) cytokines, and increases tumor 
migratory and metastatic potential [ 14 ,  29 ,  121 ]. 

 The relationship between the cancer and 
infl ammation is also documented by results of 
studies on pro-infl ammatory cytokine IL-23, 
which is physiologically secreted from activated 
DCs and macrophages upon bacterial stimulation 
and exerts functional effects on many immune cell 
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populations, including memory IL-17- secreting 
Th17 cells [ 122 ]. Upon stimulation by IL-23, IL-6 
and TGFβ are produced by tumor cells and Th17 
cells release IL-17 and other infl ammatory media-
tors like IL-1, IL-8, TNF-α, PGE 2 , as well as che-
mokines which produce a pro-tumor infl ammatory 
environment. The increased expression of both 
IL-23 and IL-17 was observed in many malignant 
tumors and correlated with angiogenesis, expres-
sion of MMPs, and decrease of cytotoxic antitu-
mor immune response [ 3 ,  123 ]. 

 Interleukin-10 is considered to mainly have 
antitumor activity, as many studies revealed that 
IL-10-mediated inhibition of VEGF, TNF-α, 
and IL-6 resulted in tumor growth restriction 
[ 35 ,  124 ,  125 ]. It was also shown that IL-10-
stimulated Treg cells with anti-infl ammatory phe-
notype triggered and stimulated by recognition of 
gut bacteria are able to control the colon cancer 
initiation [ 126 ]. However, the biological effects of 
IL-10 are much more complex and in part are 
responsible for promotion of tumor growth. 
Activation of the STAT3 pathway by IL-10 in 
tumor cells upregulates  Bcl - 2  gene and protects 
cancer cells from apoptosis [ 127 ]. IL-10 was also 
shown to upregulate HLA-G molecule which pro-
tects the tumor from immuno-recognition by host 
cells, thus enhancing “escape” stage of the tumor 
growth [ 128 ]. Hypoxic environment inside solid 
tumors provokes cancer cells to generate free adenos-
ine which protects the tumor from cytotoxic T lym-
phocyte by IL-10-mediated activity of TAMs [ 129 , 
 130 ]. Immunosuppressive IL-10 was shown to be 
secreted directly by tumor cells [ 131 ], thus skew-
ing the intratumor and peripheral blood milieu for 
immunosuppressive phenotype (M2-type TAMs 
and Th2-type lymphocytes). Moreover, immuno-
regulatory Tr1/Th3 and CD4 + CD25 + Foxp3 +  Tregs 
produce IL-10 which inhibits host antitumor cyto-
toxic reactions [ 132 – 134 ]. Defect of Th1 activity 
was shown in peripheral blood of cancer patients 
and was correlated with tumor progression 
[ 135 – 137 ]. Expression of IL-10 was found to be 
increased in metastatic tumors [ 138 ]. 

 Similar to IL-10, bidirectional activity of TGF-β 
for both cancer regression and promotion was 
shown in many studies. Cytokine TGF-β exerts 
direct suppressor activity against colon cancer cells 

and shows anti-infl ammatory properties on immune 
cells, in part by inhibition of IL-6 secretion by Th1 
cells [ 117 ,  139 ]. Despite antitumor activity in early 
tumors, TGF-β might also enhance tumor growth 
in later stages. The source of TGF-β could be both 
tumor cells and M2-type TAMs [ 22 ,  23 ,  131 ]. 
Tumor-derived TGFβ facilitates the recruitment of 
regulatory cells secreting IL-10 and TGF-β which 
further suppress host immunity [ 140 ]. It was con-
fi rmed that in advanced tumors, TGF-β is engaged 
in many mechanisms of “tumor escape,” including 
Th17 cell differentiation, inhibition of DC matura-
tion, and stimulation of VEGF production, generat-
ing the CD4 + CD25 + Foxp3 +  Tregs and decreasing 
the activity of NKT, T CD8 + , and NK cytotoxic 
cells [ 132 ,  134 ].  

22.3.2     Infl ammatory Reaction 
and the Risk of Ovarian 
Cancer 

 Epidemiological data suggest that the overall 
risk reduction for EOC could be attributed to 
increased parity, prolonged breast-feeding, and 
use of oral contraceptives, all of them acting 
as protective factors against frequent ovulation 
[ 141 – 144 ]. Exposure to toxic pro-infl ammatory 
agents like talc or asbestos which could enter 
the peritoneal cavity through the tubes increases 
the risk of EOC, while hysterectomy and tubal 
ligation seem to reduce that risk [ 145 ,  146 ]. 
Therefore, local infl ammation existing in the 
pelvic macroenvironment may increase the risk 
of EOC. The greater risk for ovarian carcino-
genesis observed in patients with PID (particu-
larly chronic PID with coexistence of infertility) 
supports these observations [ 147 ,  148 ]. On the 
contrary, prolonged use of nonsteroid anti-infl am-
matory drugs and acetylsalicylic acid has a pro-
tective action against EOC [ 149 ]. Ovulation 
traditionally considered as a major risk factor for 
ovarian carcinogenesis is also an infl ammatory 
process. Preovulatory follicles contain TNF-α 
and metalloproteinases (MMP-1, MMP-2) which 
are responsible for cellular death and proteolysis 
leading to thinning and consecutive rupture of the 
follicular wall [ 150 ]. Reparation and  proliferation 
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of ovarian surface epithelial cells during forma-
tion of corpus luteum depend on expression of 
growth factors (EGF, PDGF), toll-like receptors 
(TLR2, TLR4), and pro-infl ammatory cytokines, 
including IL-1, IL-6, IL-8, TNF-α, COX, and 
prostaglandins, while TGF-β counteracts their 
function and exerts antiproliferative effects. 
Inadequate repair of the ovarian epithelium at 
the site of ovulation may facilitate the damage 
of DNA and initiate carcinogenesis [ 151 – 153 ]. 
According to “gonadotropin hypothesis,” pitu-
itary hormones could further stimulate the prolif-
eration and malignant transformation of ovarian 
epithelium [ 154 ]. Similarly, endometriosis with 
its well-recognized infl ammatory background is 
a risk factor for ovarian carcinogenesis, as it was 
found that women suffering from long-term ovar-
ian endometriosis had 2.5–4.0-fold greater risk of 
EOC (especially of endometrioid and clear-cell 
types) compared to healthy subjects [ 155 ,  156 ]. 
It is a common knowledge that implants and 
peritoneal fl uid of endometriotic patients contain 
pro- infl ammatory cytokines (PGE 2 , COX, IL-1β, 
IL-6, IL-8, TNF-α, and TGF-β) produced by acti-
vated macrophages [ 157 ,  158 ]. The concentration 
of MMP-1 and MMP-9 both in peritoneal fl uid 
and implants was found to be elevated and corre-
lated with VEGF expression [ 159 ,  160 ]. M2-type 
macrophages and pro-infl ammatory cytokines 
are orchestrated to stimulate endometrial implant 
growth and augment their vascularization. The 
possible role of infl ammation in origin of tubal 
intraepithelial carcinoma (TIC) which has been 
recently considered as a preclinical step for a 
high-grade serous EOC in women carriers of 
BRCA mutation and in a subset of nonfamilial 
serous cancer patients has been strongly sug-
gested [ 161 ]. Infl ammatory episodes inside the 
tubes could result from retrograde menstrua-
tion or chronic infl ammation caused by bacterial 
agents including  Chlamydia trachomatis  [ 162 –
 164 ]. Endometrial fl uid in the cases of retrograde 
menstruation contains infl ammatory mediators 
like IL-8, TNF-α, and GM-CSF, which are also 
elevated in EOC [ 165 ]. Moreover, epithelium of 
tubal fi mbriae exposed to oxidative stress and 
cytokines produced by peritoneal macrophages 
activated by menstrual blood might be subjected to 

infl ammation-dependent mutagenesis [ 166 ,  167 ]. 
Epidemiologic studies indicate that chronic 
infl ammation from hepatitis, human papilloma 
virus infection, or ulcerative colitis may be con-
nected to increased risk of tubal cancer [ 162 ].  

22.3.3     Infl ammation and Ovarian 
Cancer Growth 
and Dissemination 

 Although genetic mutations are the crucial ini-
tial step in ovarian carcinogenesis, this is an 
infl ammation that plays a key role as a shap-
ing environmental factor. The biochemical and 
immunological features of particular cancer cell 
populations indicate that infl ammatory pathways 
inseparably infl uence their phenotype. Ovarian 
cancers are a heterogenic group of tumors which 
are characterized not only by a different histol-
ogy but also because of existence of high/low 
malignancy potential tumors as well as by the 
presence of different populations of tumor cells 
based on their chemoresistance. Mutations of  K - 
ras    ,  BRAF , and  PTEN  genes are observed mainly 
in low-malignancy potential ovarian tumors 
(classifi ed as type I tumors), while  p53  mutations 
are typical for high-malignancy potential type II 
tumors [ 161 ]. Moreover, type II cancers have dif-
ferent patterns of biological behavior character-
ized by overexpression of HLA-G molecule and 
infl ammatory mediators (iNOS, COX, GLUT-1) 
[ 168 ,  169 ]. Based on the chemoresistance, two 
populations of cancer cells coexisting inside the 
tumor were identifi ed, type I chemoresistant and 
type II chemosensitive cells. Type I cells are a 
slow-growing population, having constitutive 
pro-infl ammatory phenotype with NF-κB activity 
and IL-6, IL-8, MCP-1, and GRO-1/α secretion 
and stemlike properties, while type II cells rep-
resent classical tumor cells with high prolifera-
tive activity and fast growth [ 170 ]. Proliferation 
and cytokine secretion of type I cells depend on 
a TLR-4 pathway [ 171 ] and may result in their 
differentiation to type II cells. Activation of 
TLR-4 pathway by cells disintegrated after sur-
gery or chemotherapy may thus initiate the tumor 
renewal from stemlike type I cancer cells [ 170 ]. 
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 Moreover, TLR-4 expression in EOC cells 
was connected with resistance to paclitaxel ther-
apy [ 172 ]. Some other TLRs were detected on 
malignant ovarian epithelial cells, including 
TLR-2, TLR-3, TLR-5, and TLR-9 [ 173 ]. Studies 
on their function for EOC promotion revealed 
that TLR-3 signaling can contribute both to 
tumor eradication and to its progression and neo-
vascularization, dependent on the intracellular 
signaling via RIP-1/FADD or NF-κB pathways, 
respectively [ 174 ]. In addition, it was demon-
strated that TLR-9 overexpression is associated 
with poor differentiation and high metastatic 
potential of the EOC [ 175 ]. 

 There are strong suggestions that stromal 
senescent ovarian fi broblasts are capable of pro-
moting ovarian carcinogenesis by creation of a 
pro-infl ammatory network [ 176 ]. Upon senes-
cence, aged fi broblasts acquire “senescence- 
associated secretory phenotype” (SASP) 
characterized by activation and production of pro-
infl ammatory molecules including interleukins 
(IL-6, IL-1β), chemokines (IL-8, MCP-1, GRO-
1/α), MMPs, adhesion molecules, and integrins 
[ 176 ,  177 ]. It was shown that GRO-1/α- mediated 
senescence of ovarian fi broblasts was a tumor-
promoting factor for ovarian epithelial cancer in 
nude mice [ 178 ]. In humans, the senescent stromal 
fi broblasts were detected in specimens of ovarian 
tumors in areas adjacent to malignant epithelium 
[ 178 ]. Cellular senescence could be triggered 
in vivo by both physiological (i.e., ovulation) and 
pathological (i.e., infection) infl ammatory stimuli 
existing in tubal and/or peritoneal macroenviron-
ment and microenvironment [ 176 ]. 

 Interleukin-6 produced either by tumor cells 
themselves or by M2-shifted tumor-associated 
macrophages is one of the most important pro- 
infl ammatory mediators in EOC patients [ 179 ]. 
Interaction of EOC cells and host immune cells 
produces a cooperative network (together with 
IL-1, TNF-α, VEGF, and chemokines) at the 
tumor site, responsible for its growth and progres-
sion in which IL-6 seems to be the most important 
[ 55 ,  180 ]. In vitro investigations showed that  p53  
overexpression observed in EOC tumors could 
regulate IL-6 secretion [ 181 ,  182 ]. Genetic stud-
ies on G/C polymorphism at the position −174 

of  IL6  gene brought the conclusion that patients 
possessing −174 G/G phenotype presented with 
early diagnosis and had better disease-free and 
overall survival [ 183 ,  184 ], indicating the key 
role for IL-6 in EOC. In women with advanced 
cancer, signifi cantly higher IL-6 levels both in 
the serum and ascites were observed [ 185 – 187 ]. 
In vitro studies showed that the contact of EOC 
cells with autologous peripheral blood mono-
nuclear cells (PBMC) altered the pattern of 
produced cytokines into pro-infl ammatory pro-
fi le, including increased IL-6 secretion [ 188 ]. 
Moreover, IL-6 was able to reciprocally stimulate 
in vitro EOC cell proliferation [ 189 ]. Although 
the action of IL-6 is mediated by membrane-
bound IL-6R receptor, the presence of highly 
infl ammatory conditions in the case of EOC 
forces the use of an alternative IL-6-signaling 
pathway based on soluble (“shedded”) sIL-6R 
variant. This is the major IL-6- signaling path-
way for migrating cancer cells [ 190 ,  191 ]. It was 
demonstrated that IL-6 was engaged in many 
aspects of EOC growth in vivo, starting from 
promotion of angiogenesis through stimulation 
of peritoneal metastases and fi nally by initiation 
of ascites production [ 190 ,  192 ]. Interaction of 
IL-6 with receptors leads to activation of intra-
cellular STAT3 transcription factor, which is 
overexpressed in EOC tissue, thus resulting in 
increased tumor proliferative capacity. The cor-
relation between STAT3 activation and both 
tumor-aggressive phenotype and disease advance 
was observed in EOC patients [ 193 ,  194 ]. In vitro 
studies indicated that treatment of EOC lines with 
EGF or exogenous IL-6 stimulated STAT3 activ-
ity and induced epithelial–mesenchymal transi-
tion and appearance of cell migratory phenotype 
[ 193 ]. This observation also suggests that STAT3 
activation in EOC could be obtained by different 
pathways [ 195 ]. Paracrine effects of IL-6 could 
induce suppressive Th2 phenotype in tumor-
infi ltrating immune cells and inhibit cytotoxic 
T-cell activation by induction of lymphocyte 
apoptosis [ 196 ]. Immunosuppressive properties 
of ascites environment were confi rmed by obser-
vation of a high CD4/CD8 ratio, reduced IL-2, 
and increased IL-6 and IL-10 concentrations 
promoting Th2  lymphocyte activity [ 197 ]. The 
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lower proliferative response and IL-2  production 
capacity observed in PBMC of advanced EOC 
patients may be a consequence of JAK3, STAT3, 
and CD3-ζ signaling abnormalities resulting 
from a suppressive cytokine environment [ 198 ]. 
Many studies confi rm that notion that despite 
the presence of intratumoral immune cell infi l-
trate, the observed anticancer host response is 
ineffi cient and correlates with the stage of EOC 
[ 199 ,  200 ]. One of the most typical mechanisms 
observed in EOC immunoediting is facilitat-
ing of TAMs M2-type activity by tumor- derived 
cytokines. IL-6 and LIF present in high concen-
trations in EOC ascites are key players in this 
mechanism [ 201 ]. The multidirectional activ-
ity of IL-6 on several genes in advanced EOC 
results in cachexia, anemia, depressive behavior, 
and tumor multidrug resistance [ 166 ]. The pro-
infl ammatory environment produced by both 
tumor and activated immune cells, especially 
TAMs, results in chronic overactivity of IL-6, 
IL-1, and TNF-α and cancer-related anorexia/
cachexia (CACS) [ 202 ,  203 ]. In this context, a 
very important observation is that of negative 
correlation between serum leptin concentrations 
and both IL-6 levels and stage of the EOC [ 204 ]. 
As leptin controls energy metabolism and weight 
balance, its function impairment associated with 
chronic infl ammation results in development of 
CACS in EOC patients [ 166 ]. The administration 
of anti-IL-6 antibody inhibits the development 
of most cachectic changes which demonstrates 
the central role of this cytokine in the pathogen-
esis of CACS [ 205 ]. Pro- infl ammatory status in 
EOC is also responsible for anemia observed in 
the patients, as the low hemoglobin concentra-
tion correlates with serum IL-6 and leptin levels, 
as well as with IL-6 concentration in malignant 
ovarian cysts [ 206 ,  207 ]. Moreover, chronic 
infl ammation is associated with disturbed func-
tion of hypothalamic–pituitary axis and second-
ary hypercortisolemia observed in depression. 
It was shown that EOC patients with depressive 
symptoms were characterized by IL-6 serum ele-
vations [ 208 ]. IL-6- mediated STAT3 activation in 
EOC is responsible for tumor chemoresistance, 
as STAT3 antagonists were able to decrease EOC 
invasiveness and enhanced sensitivity to pacli-

taxel [ 194 ]. The mechanism of chemoresistance 
induction is probably mediated also by IL-6-
dependent activation of apoptosis-inhibitory pro-
teins [ 190 ]. 

 A cytokine that is actively involved in immu-
noregulation in EOC patients is also TGF-β. 
Genetic studies indicated that age-related epi-
genetic modifi cations could lead to suppres-
sion of TGF-β signaling and thus contribute to 
ovarian carcinogenesis [ 209 ]. Similarly, pro-
moter hypermethylation of transforming growth 
factor-β- inducible gene-h3 (TGFBI) was fre-
quently observed in EOC and associated with 
paclitaxel resistance [ 210 ]. Mutations of the 
TGF-β- receptor type I and II genes ( TGF - β RI , 
 TGF - β RII ) and variants of  Smad2  gene engaged 
in TGF-β- mediated signal transduction path-
way were identifi ed in EOC and associated with 
reduced TGF-β RI and p53 protein expression 
[ 211 ]. In gene-based analysis of the TGF-β-
signaling pathway,  SMAD6  was identifi ed as the 
most signifi cant gene associated with ovarian 
cancer risk [ 212 ]. Resistance to TGF-β-signaling 
observed in most EOC means that contrary to 
normal ovarian epithelium, tumor cells acquire 
genetic changes which in early steps of carcino-
genesis help them to escape the antiproliferative 
effects of TGF-β (Yamada et al.  1999 ). TGF-β1 
was detected at the mRNA level in EOC cell cul-
tures in vitro, and TGF-β1 levels were elevated 
in vivo in the plasma and peritoneal fl uid of ovar-
ian cancer patients [ 213 – 215 ]. Overexpression 
of TGF-β isotypes on the EOC cells was con-
fi rmed and connected to more aggressive tumor 
behavior [ 216 ,  217 ], the fact which supports the 
TGF-β meaning for EOC growth, angiogenesis, 
and suppression of the host immunity. Tumor-
derived TGF-β may contribute to peritoneal dis-
semination of EOC, as in vitro studies revealed 
that TGF-β enhanced specifi cally plasminogen 
activator inhibitor type 1 (PAI-1) upregulation 
in mesothelial cells, thus increasing the cell–cell 
interactions [ 218 ]. Moreover, TGF-β isotypes 
induced MMP secretion in EOC cell cultures, fol-
lowed by loss of cell–cell junctions, downregula-
tion of E-cadherin, upregulation of N-cadherin, 
and acquisition of a fi broblastoid phenotype, 
consistent with an epithelial- to-mesenchymal 
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transition. These changes were abrogated by use 
of  Smad3  siRNA transfection, indicating that 
TGF-β/Smad3 pathway positively regulates EOC 
metastatic potential. The correlation between 
high tumor Smad3 expression and poor patients’ 
survival was a  clinical confi rmation of that state-
ment [ 214 ]. Animal studies on nude mice showed 
that TGF-β blockade impaired tumor growth by 
decreasing its proliferation and angiogenesis. 
Additionally, TGF-β blockade abolished VEGF-
dependent ascites formation and improved asci-
tes drainage [ 53 ,  88 ]. TGF-β was shown to have 
an immunosuppressive effect on TILs from 
patients with ovarian cancer and to convert effec-
tor T cells into Tregs [ 219 – 221 ]. Tumor-derived 
TGF-β, together with TNF-α, induced functional 
alterations in tumor- associated plasmacytoid 
dendritic cells (TApDCs) which produced less 
pro-infl ammatory cytokines compared to pDCs 
found in ascites or peripheral blood and thus cre-
ated local immune tolerance for the tumor [ 222 ]. 

22.3.3.1     Tumor Necrosis Factor-α 
 The role of TNF-α for the promotion of EOC was 
widely studied. Both serum and cyst fl uid levels 
of TNF-α were reported to be higher in women 
with ovarian carcinoma compared to healthy sub-
jects and women with benign ovarian cysts [ 223 , 
 224 ]. Similarly, increased TNF-α concentra-
tions were observed in cancer tissues and ascites 
[ 225 ]. Cancer patients were also characterized by 
overexpression of receptor TNF-R2, which was 
further correlated with tumor stage and patient 
prognosis [ 226 ]. TNF-α is produced by tumor 
cells, and studies devoted to EOC indicated its 
multidirectional activity, as an autocrine stimu-
lator of tumor progression and neovasculariza-
tion as well as a downregulator of Tregs and 
enhancer of the host immunity against tumor [ 54 , 
 227 – 229 ]. In a tumor xenograft model, TNF-α 
treatment converted EOC xenograft tumors to 
peritoneal masses with well-developed stroma 
[ 230 ]. According to some opinions, TNF-α 
together with IL-6 and stromal cell-derived fac-
tor- 1 (CXCL12) induced by pro-infl ammatory 
milieu creates an autocrine/paracrine “TNF net-
work” functioning as a regulator of tumor growth 
[ 180 ]. The members of this network were consti-

tutively expressed and co-regulated in EOC cells, 
and the dependency of the whole network from 
TNF-α was proved by downregulation obtained 
by the use of anti-TNF antibodies [ 54 ,  180 ]. 
Some other cytokines/chemokines like macro-
phage migration inhibitory factor (MIF), VEGF, 
and monocyte chemotactic protein-1 (MCP-1, 
CCL2) belong to that regulatory network [ 54 ]. 
The function of the CXCL12 was based on the 
interactions with its receptor CXCR4 and upreg-
ulated by TNF-α through a NF-κB-dependent 
pathway [ 231 ]. Ovarian cancers also indicated 
higher TRAIL expression compared to normal 
ovaries, and the highest TRAIL expression was 
correlated with favorable survival and better 
chemosensitivity [ 232 – 234 ]. A very interesting 
problem is an existence of functional connections 
between coagulation pathway and infl ammation. 
It is a well-known fi nding that patients with can-
cer, especially in advanced stages, present with 
hemostatic abnormalities and pro-coagulatory 
state [ 189 ,  235 ]. TNF-α, a stimulator of tissue 
factor (TF) production by TAMs, upregulates 
the cell surface leukocyte adhesion molecules 
and downregulates thrombomodulin [ 236 – 238 ]. 
Ovarian cancer cells may also express TF and 
other coagulation components that generate local 
thrombin [ 239 ]. Tissue factor plays an impor-
tant role in both coagulation-dependent and 
coagulation- independent pathways, which result 
not only in clot formation but could contribute to 
tumor progression [ 189 ]. TF was shown to pro-
mote tumor angiogenesis by activation of MAPK 
and protein C kinase-dependent signaling [ 50 , 
 240 ]. The TF/PAR-2 pathway synergizes the 
function of growth factors to enhance the forma-
tion of metastases, and TF via activation of P21 Ras  
and P42/P44 MAPK pathway mediates inhibition 
of EOC cell apoptosis and overexpression of che-
mokines [ 241 – 243 ].  

22.3.3.2     Interleukin-10 
 Interleukin-10 secretion occurs predominantly 
in the tumor environment, EOC cells and host 
immune cells being the main sources of IL-10 
[ 215 ,  244 ,  245 ]. Inside the tumor, the main secre-
tors of IL-10 are endothelial cells, characterized 
by high expression of both IL-10 and its recep-
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tor IL-10R mRNAs, which means that this cell 
 population is also the main responder for IL-10 
autocrine actions [ 246 ]. Another cell population 
secreting IL-10 are myeloid-derived suppressor 
cells (MDSC). In normal ovaries, IL-10 acts as 
cytokine synthesis inhibitor, but in ovarian can-
cer, IL-10 seems to favor tumor progression and 
protect EOC from cell-mediated host immunity 
[ 246 – 251 ]. Consistent with these observations, 
IL-10 concentrations in peritoneal fl uid and 
serum of ovarian cancer patients were found to be 
higher than in patients with benign ovarian dis-
eases, and the IL-10 levels in ascites were higher 
compared to serum [ 186 ,  252 ,  253 ]. Moreover, 
the expression of IL-10 was found to correlate 
with tumor aggressiveness, thus being the high-
est in malignant compared to borderline tumors, 
and IL-10 was concomitantly overexpressed with 
VEGF in all tumor tissues [ 254 ]. IL-10 pres-
ent in malignant ascites of EOC patients was 
shown to promote antiapoptotic activity prob-
ably by inhibition of TRAIL-mediated apoptosis 
of cancer cells. Clinical studies confi rmed that 
patients with higher IL-10 levels in ascites had 
shorter progression-free survival [ 255 ]. In vitro 
studies on EOC cell lines indicated that VEGF 
and TGF- β1 strongly interfered with DC matu-
ration and consequently led to immature DCs, 
which secreted high levels of IL-10 accumulat-
ing around the tumor site. TGF-β1 and IL-10 
induced Treg generation without antigen presen-
tation in DCs [ 254 ]. In vitro and in vivo animal 
studies indicated, however, that IL-10 should not 
be considered only as a tumor-promoting factor, 
as IL-10 had suppressive effects on angiogene-
sis, tumor growth, and peritoneal dissemination 
of VEGF-producing ovarian cancer cells [ 256 ]. 
Clinical studies also indicated that only about 
55 % of specimens from EOC patients expressed 
IL-10 [ 254 ]. Therefore, it seems reasonable to 
conclude that the presence of IL-10 overactivity 
and a precise mechanism of IL-10 action may 
depend on the tumor phenotype.  

22.3.3.3     COX and PGE 2  
 Several in vivo and in vitro studies suggest 
that using nonsteroid anti-infl ammatory drugs 
(NSAIDs) reduces the proliferative activ-

ity, MMP-dependent metastasis potential, and 
VEGF-dependent vascularization of EOC [ 58 , 
 257 – 260 ]. Therefore, the role of COX and PGE 2  
in ovarian tumors has been extensively studied. 
COX exists in two isoforms (COX-1 and COX- 2). 
COX-1 is constitutively expressed in most tis-
sues and plays a role in various physiologic 
functions, whereas COX-2 is transiently induc-
ible by infl ammatory cytokines, growth fac-
tors, oncogenes, and hormones [ 261 – 264 ]. The 
expression of both COX isoforms was observed 
in the epithelial lining of inclusion cysts of nor-
mal ovaries. The appearance of COX-2 in this 
localization might indicate an alteration of epi-
thelial cell phenotype; as for COX-2 expression, 
the upregulation of C/EBPβ transcription factor 
is required, the phenomenon which similarly was 
noted in EOC and correlated with tumor malig-
nancy [ 73 ,  265 – 267 ]. Upregulation of C/EBPβ 
transcription factor, probably initiated by some 
pro-infl ammatory stimuli existing in the ovarian 
microenvironment, induces the activity of  cox2  
gene which is one of the participants of ovarian 
carcinogenesis, as was proved by in vitro stud-
ies [ 265 ,  268 ]. Moreover, appearance of COX-2 
accompanied to the loss of epithelial basal 
membrane in ovarian specimens from BRCA1/
BRCA2 mutation carriers [ 269 ]. Overexpression 
of COX-2 in EOC was confi rmed and correlated 
with resistance to platinum-based chemotherapy 
and short survival, while upregulation of COX-1 
was suggested to enhance neovascularization [ 58 , 
 270 – 275 ]. An increase of COX-2 expression was 
observed in malignant compared to borderline 
and benign tumors, while COX-1, microsomal 
prostaglandin E synthase-1 (mPGES-1), and 
prostaglandin E receptor-1 (EP1) were upregu-
lated exclusively in highly malignant tumors 
[ 265 ]. The immunohistological staining revealed 
that COX-1, COX-2, mPGES-1, and EP1 were 
positive not only in tumor epithelial cells but 
also in the tumor stroma, indicating that stromal 
fi broblasts and/or immune cells participate in the 
paracrine COX/PGE 2 -mediated signaling [ 265 ]. 
The expression of COX-1 was signifi cantly 
higher in non-mucinous compared to mucinous 
tumors [ 276 ]. Tumors presenting with expres-
sion of both COX-1 and COX-2 simultaneously 
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with low density of T CD8 +  cytotoxic cells and 
high density of CD1a +  DCs were characterized 
by the worst prognosis [ 277 ]. This means that the 
COX upregulation may infl uence the pattern of 
tumor infi ltration by immune cells. Some studies 
postulate that COX-1, but not COX-2, is exclu-
sively expressed on human EOC cells, as well 
as on genetically engineered tumors studied on 
murine model [ 257 ,  270 ]. In murine EOC model, 
COX-1 inhibitors administered together with 
Taxol decreased the expression of VEGF mRNA 
levels, reduced microvessel density (MVD), and 
enhanced cellular apoptotic index [ 278 ]. The 
observed effects of COX inhibition on EOC 
proliferation and apoptosis were synergistic, 
while using together COX-1 and COX-2 inhibi-
tors compared to selective use of either COX-1 
or COX-2 inhibitors [ 279 ] which supports the 
opinions of both COX-1 and COX-2 mean-
ing for EOC. Peroxisome proliferator- activated 
receptor-γ (PPARγ), which activation has been 
linked to cellular differentiation, apoptosis, and 
anti-infl ammatory reaction, is engaged in regu-
lation of COX [ 280 ]. PPARγ activation could 
inhibit COX-2 expression in EOC cells via NF-κB 
pathway [ 281 ]. The xenografted mice treatment 
of EOC with COX-2 inhibitor and PPARγ stimu-
lator resulted in decrease of serum and ascites 
PGE 2  levels, reduction of MVD, enhanced tumor 
apoptosis, and prolonged survival [ 282 ]. Another 
regulatory possibility is based on COX-1/PPARδ/
ERK pathway. Peroxisome proliferator-activated 
receptor-δ (PPARδ) was found on the surface of 
EOC cells, and its inactivation resulted in tumor 
growth restriction. Aspirin that preferentially 
inhibits COX-1 could compromise PPARδ func-
tion and tumor growth by inhibition of extra-
cellular signal- regulated kinase 1/2 (ERK1/2) 
signaling [ 283 ]. The next regulatory mechanism 
is associated with the function of insulin-like 
growth factors (IGFs) and their binding pro-
teins (IGF-BPs) which were identifi ed in ovarian 
tumors [ 284 – 288 ]. Increased serum concentra-
tions of IGF-BP-2 were observed in EOC patients 
and correlated with aggressiveness of the tumor 
[ 289 ]. In vitro studies indicated that treatment of 
the cells with IGF-BP-2 stimulated their growth 
and COX-2 (but not COX-1) expression through 

multiple ways, namely, ERK 1/2 pathway, the 
stress-activated protein kinase/c-Jun N-terminal 
kinase (SAPK/JNK) pathway, and the p38 MAP 
kinase pathway, which mediates infl ammatory 
and stress responses [ 290 ]. Similarly, induction 
of COX-2 expression in EOC cells mediated by 
IGF-I is dependent on PI3K, MAPK, and PKC 
pathways [ 291 ]. The elevated levels of lysophos-
phatidic acid (LPA) were detected in serum and 
ascites of EOC patients, and it was shown that 
LPA was responsible for enhancement of migra-
tion and invasion of cancer cells via stimulation 
of MMP-2 [ 292 – 296 ]. It was shown that LPA- 
mediated MMP-2 activation resulted from the 
COX-2 expression induction in EOC lines by 
transactivation of EGF receptor and Ras/MAPK 
pathway [ 259 ]. Prostaglandin E 2  (PGE 2 ) pro-
duced upon activation of COX enzymes was 
found in increased amounts in ovarian tumors 
and was recognized as a positive regulator of pro-
liferation and angiogenesis [ 297 ,  298 ]. The back-
ground for COX-dependent neovascularization 
of the ovarian tumors was the observation that 
treatment of EOC cells with endothelin-1 (ET-
1) induced COX-1 and COX-2 expression, fol-
lowed by PGE 2  production and interaction with 
EP2 and EP4 receptors that fi nally resulted in 
stimulation of VEGF [ 299 ]. The effects of ET-1 
were mediated by endothelin A receptor (ET A R), 
activation of p42/44 MAPK and p38 MAPK 
signaling pathways, and transactivation of EGF 
receptor [ 300 ]. Concurrent with “gonadotropin 
hypothesis” postulating that FSH/LH hormones 
can promote ovarian cancer, a recent study dem-
onstrated that FSH/LH can upregulate COX-1 
and COX-2 via PI3K/AKT signaling pathway. 
Upregulation of both COX isoforms was critical 
for gonadotropin- induced production of PGE 2  
and expression of MMP-2 and MMP-9 in EOC 
cells [ 301 ].  

22.3.3.4     Interleukin-23 and Th17 
Cells 

 The IL-23 and its receptor IL-23R have been 
engaged in carcinogenesis, and  IL - 23R  gene poly-
morphism analysis revealed that the frequency of 
C and A alleles in rs10889677 position differed 
between EOC patients and controls, as well as 

J.R. Wilczyński and M. Nowak



425

between advanced and less-advanced tumors 
[ 194 ]. Ovarian cancer samples particularly 
showed high level of expression of genes encod-
ing members and cooperates of  TNF- signaling 
pathway, including IL-23, TGF-β, and NF-κB 
system [ 302 ]. Tumor cells, cancer- associated 
fi broblasts, TAMs, T cells, and APCs produce 
pro-infl ammatory cytokines (IL-1β, IL-6, IL-23, 
TNF-α) that facilitate the expansion of Th17 cells 
in tumor environment [ 302 ,  303 ]. High numbers 
of Th17 cells have been identifi ed among ovarian 
tumor TILs, and IL-17 was consistently detect-
able in both serum and ascites of EOC patients 
[ 302 – 304 ]. Using a murine model of EOC, it was 
found that TNF-α/TNF-R1 signaling maintained 
IL-17 secretion by T CD4 +  cells and led to 
myeloid cell recruitment into the tumor. Consistent 
with this observation, treatment with anti-TNF 
antibody reduced serum IL-17 levels in EOC 
patients and downregulated expression of IL-1R 
and IL-23R in T CD4 +  CD25 -  cells isolated from 
tumor ascites [ 302 ]. Similarly, treatment with 
anti-IL-1 antibody alone or a combination of anti-
IL-1 and anti-IL-6 antibodies reduced the ability 
of tumor cells to expand memory Th17 cells 
[ 303 ]. It seems that chronic infl ammation in tumor 
localization contributes to tumor-promoting 
actions mediated by IL-17. However, IL-17, due 
to its functional ambiguity, could also contribute 
to the effective host antitumor immune response. 
In tumors characterized by abundant TIL infi l-
trate, it was shown that Th17 cells secreting IFN-γ 
and IL-17 were able to upregulate CXCL9 (mono-
kine induced by interferon-γ, MIG) and CXCL10 
(interferon-γ- induced protein-10, IP10) chemo-
kines, thus leading to chemoattraction of NK and 
T cytotoxic cells. It was correlated with patients’ 
better prognosis [ 305 ].  

22.3.3.5     Macrophage Migration 
Inhibitory Factor 

 Macrophage migration inhibitory factor (MIF) 
was originally described as a product of activated 
T cells capable of inhibition of macrophage 
migration [ 306 ]. Further studies revealed that 
MIF is a potent inducer of pro-infl ammatory cyto-
kines TNF-α and IL-10 in macrophages and could 
be produced by a variety of tissues including EOC 

cells [ 307 ,  308 ]. MIF could also protect both 
tumor cells and macrophages from apoptosis by 
suppressing the p53-dependent pathway [ 309 , 
 310 ]. MIF is overexpressed in borderline and 
malignant ovarian tumors and is present in asci-
tes-derived tumor cells, as well as in ascitic fl uid 
[ 311 ,  312 ]. The main source of MIF in cancer 
patients is EOC cells, while contribution of MIF 
originating from TAMs appears to be small. 
Overexpression of MIF correlates with tumor 
invasiveness, and higher levels are associated with 
bad prognosis [ 312 ]. Murine studies indicated 
that knockdown of MIF in EOC cells resulted in 
decreased proliferation and increased cancer cell 
apoptosis and downregulation of TNF-α, IL-6, 
and IL-10 in the ascitic environment. It also 
reduced the expression of VEGF. The results of 
these investigation sustain the statement that auto-
crine production of MIF by EOC cells promotes 
creation and neovascularization of peritoneal 
implants [ 311 ]. Paracrine functions of MIF con-
centrate on downregulation of NKG2D receptor 
expression on NK and CD8 +  T cytotoxic cells, the 
fact which was proved by in vitro experiments 
using recombinant human MIF and by blocking 
of cytotoxic NK cells and T lymphocytes with 
serum and ascites of EOC patients [ 312 ].  

22.3.3.6     Macrophage Colony- 
Stimulating Factor 

 Macrophage colony-stimulating factor (CSF-1) was 
originally described as a stimulator of macrophage 
differentiation, and it was shown that its activity 
was mediated through a tyrosine kinase recep-
tor encoded by c- fms  proto-oncogene [ 313 ,  314 ]. 
Compared to benign and  low-malignancy poten-
tial ovarian tumors, CSF-1/c- fms  is abundantly 
expressed by the malignant EOC epithelium 
[ 315 ,  316 ]. Extremely high expression of both 
CSF-1 and c- fms  was observed in EOC metas-
tases and was a sign of poor prognosis [ 315 ]. 
Elevated serum and ascites fl uid CSF-1 levels 
were described in EOC patients and were con-
nected to shortened survival [ 317 – 319 ]. CSF-1 
signaling was correlated with invasion of extra-
cellular matrix by EOC cells, and it was discov-
ered that CSF-1-stimulated invasiveness was 
mediated by interactions of urokinase plasmin-
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ogen activator (uPA) with its receptor (uPAR) 
[ 320 ]. Overexpression of uPA was demonstrated 
in EOC and was found to be a bad prognostic 
factor [ 321 – 323 ]. The CSF-1-dependent uPA/
uPAR pathway can enhance the EOC metastasis 
formation potential. It was shown by in vivo ani-
mal studies that intraperitoneal injection of CSF-
1- overexpressing EOC cells produced a robust 
disease dissemination [ 313 ,  324 ]. CSF-1 also 
stimulated TAMs from EOC patients to secrete 
IL-8, IL-6, and TNF-α [ 325 ].  

22.3.3.7     Chemokines 
 Chemokines are key mediators of infl ammation 
and in EOC are responsible for two main func-
tions: mediation of proangiogenic and prolifera-
tive signals and recruitment and activation of 
immune cells toward tumor and ascites. 

 Interleukin-8 (IL-8, CXCL8) is a chemo-
kine secreted by macrophages, neutrophils, 
and endothelial and tumor cells. It possesses 
proangiogenic activity and acts through bind-
ing to CXCR1 and CXCR2 receptors present 
on both tumor and endothelial cells [ 86 ,  326 , 
 327 ]. Increased IL-8 levels in ovarian cyst fl uid, 
ascites, and serum from ovarian cancer patients 
were associated with decreased patient survival 
[ 42 ,  328 – 331 ]. Overexpression of IL-8 was con-
fi rmed on EOC cells and attributed to advanced 
and high-grade tumors; in addition, it was associ-
ated with increased tumor vascularity and tumor 
cell proliferation both in vivo and in vitro [ 73 , 
 86 ,  332 ]. Secretion of IL-8 seems to be the indis-
pensable feature of EOC cells, as genetic modifi -
cation of ovarian epithelial cells by disruption of 
the p53, retinoblastoma (Rb), and RAS signaling 
pathways produced functional cancer cells that 
showed elevated expression of several infl amma-
tory cytokines and IL-8 [ 333 ]. A potent stimula-
tor of IL-8 expression on EOC in ovarian cancer 
is hypoxia [ 334 ]. The mechanism of hypoxia- 
induced IL-8 upregulation depends on the  Ras  
oncogene overexpression and activation of PI3K/
Akt and p38 MAPK pathways which enhance 
 IL - 8     gene transcription [ 335 ]. Transcription fac-
tor NF-κB also participates in regulation of IL-8 
expression, as NF-κB signaling blockade sig-
nifi cantly inhibited in vitro and in vivo expres-

sion of VEGF and IL-8 in cultured cells and in 
cells implanted into the peritoneal cavity of nude 
mice [ 336 ]. In murine EOC model,  IL - 8  gene 
silencing with liposome-encapsulated siRNA 
led to the reduction of mean tumor weight and 
decrease of MVD of the tumors, while com-
bination of liposome- encapsulated siRNA and 
docetaxel resulted in reduction of tumor growth 
and proliferation [ 332 ]. IL-8 is a participant of 
an intraperitoneal regulation network which aug-
ments neoangiogenesis and peritoneal spread-
ing of EOC. Studies on murine model of EOC 
discovered that activation of protease-activated 
receptor- 1 (PAR-1) by MMP-1 stimulated tumor 
angiogenesis and metastases through paracrine 
regulation of IL-8 and GRO-1/α (CXCL1) which 
bound to CXCR1 and CXCR2 receptors and 
caused endothelial cell proliferation, vessel for-
mation, and migration [ 337 ]. Moreover, IL-8 and 
CXCR1 receptor were co-expressed on perito-
neal macrophages and T CD3 +  cells suggesting 
that IL-8 is engaged in recruiting certain immune 
cells into the peritoneum, where they contribute 
to tumor spread and formation of ascites [ 73 ]. 
Ascites of EOC patients also contained plasmacy-
toid dendritic cells (PDCs) attracted by CXCL12 
and showing proangiogenic activity through 
upregulated production of IL-8 and TNF-α [ 338 ]. 
The role of CXCR receptors in ovarian tumori-
genesis is supported by animal studies showing 
that knockdown of CXCR2 expression reduced 
tumor growth. CXCR2 acted as an inhibitor of 
EOC cell apoptosis by suppression of p53 and 
Bcl-xS and simultaneous activation of Bcl-xL 
and Bcl-2 proteins [ 339 ]. IL-8 was also shown 
to block TRAIL-induced cancer cell apoptosis 
[ 340 ]. Signaling through CXCR2 also increased 
expression of VEGF on tumor cells. CXCR2 was 
found to be highly expressed in EOC patients 
and served as a bad prognostic factor [ 339 ]. The 
antiapoptotic IL-8 action is probably engaged in 
chemoresistance of ovarian cancer. In vitro stud-
ies on isolated EOC cell lines indicated that che-
moresistant populations were characterized by 
increased expression of IL-6 and IL-8 [ 341 ]. 

 Stromal cell-derived factor-1 (SDF-1, 
CXCL12) belongs to chemokines and interacts 
with its receptor CXCR4. Human EOC expresses 
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CXCL12 following exposure to hypoxia [ 49 ]. 
Both CXCL12 and CXCR4 were also expressed 
in malignant ascites [ 342 ]. Functional network 
of CXCL12/CXCR4 is important for migration 
of cells in the tumor environment. The CXCL12/
CXCR4 network is involved in the formation 
of intraperitoneal and lymph node metastases 
[ 343 – 345 ] and an enhancement of integrin β 1  and 
VEGF expression on EOC [ 346 ]. CXCL12 also 
mediates the traffi cking of plasmacytoid DCs into 
the tumor [ 347 ]. The relevant role for CXCL12/
CXCR4 pathway in EOC was further confi rmed in 
immune-competent mice with peritoneal ovarian 
cancer. The studies found that siRNA-mediated 
knockdown of CXCL12 resulted in reduced EOC 
proliferation in vitro and in vivo. Moreover, the 
use of a selective CXCR4 antagonist increased 
tumor cell apoptosis and, more interestingly, 
caused reduction of Tregs in tumor environment, 
thus enhancing host T-cell-mediated antitumor 
response [ 348 ]. However, according to other 
studies, blocking of CXCR4 was not suffi cient to 
completely prevent Tregs traffi cking into a tumor. 
This could be accomplished by blocking macro-
phage-derived chemoattractant CCL22 chemo-
kine, which was shown to be produced by cancer 
cells and TAMs [ 338 ]. Tumors characterized by 
upregulation of CXCL12/CXCR4 pathway and 
CXCL22 and consecutive high Treg infi ltrations 
are characterized by negative patient outcomes 
[ 305 ,  349 ]. Similarly, the overexpression of 
CXCL12/CXCR4 together with CXCL16 (small 
inducible cytokine subfamily B member 16 – 
SCYB16) and its receptor CXCR6 was related 
to formation of ascites and was considered as a 
poor prognostic factor [ 350 ]. On the contrary, 
chemokines CXCL10 and CXCL11 (interferon-
inducible T-cell α-chemoattractant, I-TAC) and 
their receptor CXCR3 (G protein-coupled recep-
tor 9, GPR9) were shown to be upregulated on 
high- grade serous EOC possessing “immunore-
active” phenotype. They function as regulators 
of Th1 CD4 +  T cells and also CD8 +  T cells and 
NK cells traffi cking into the infl ammatory tumor 
environment and inhibit endothelial cell migra-
tion and proliferation affecting neoangiogen-
esis [ 351 ,  352 ]. Increased expression of CXCL9 
and CXCL10 was positively correlated with the 

intensity of TILs infi ltration and better survival 
[ 66 ,  305 ,  353 ,  354 ]. CXCL9 and CXCL10 could 
also be secreted by TAMs and similarly could 
positively affect patients’ survival [ 305 ]. 

 Both CCR9 receptor and its ligand, thymus- 
expressed chemokine (CCL25), are expressed in 
normal ovaries; however, their overexpression 
by serous, endometrioid, and to a lesser extent 
by mucinous ovarian cancer has been confi rmed. 
CCR9 upregulation was also observed in EOC cell 
lines. Expression of a broad spectrum of MMPs, 
including MMP-1, MMP-2, MMP-3, MMP-8, 
MMP-9, MMP-10, MMP-11, and MMP-13, was 
demonstrated to be modulated by the CCL25/
CCR9-dependent pathway. Therefore, it is a rea-
sonable assumption that CCL25/CCR9 pathway 
contributes to migration and invasion of ovarian 
cancer cells [ 355 ]. It was also shown that CCR6, 
receptor for macrophage infl ammatory protein-3 
(MIP-3α, CCL20), was overexpressed by liver 
metastases of EOC, suggesting that CCL20/
CCR6 interactions promote creation of metasta-
ses to the liver [ 356 ]. 

 The profi le of chemokines differs between ovar-
ian tumor and ascites, what may be attributable to 
immunological differences in both environments 
according to the role of two main chemokine stimu-
lants – TNF-α and hypoxia. Solid ovarian tumors 
are highly hypoxic and oversecrete TNF-α, whereas 
ascites is mostly normoxic and characterized by 
lower TNF-α concentrations [ 357 ]. The study on 
CC chemokine proteins and their receptors in ovar-
ian cancer ascites revealed the existence of a com-
plex network regulating the cell–cell interactions 
and the composition of immune cells. Immune cells 
isolated from ascites were found to produce mRNA 
for CCL2, CCL3, CCL4, CCL5, CCL8, and CCL22 
chemokines, as well as mRNA for the following 
chemokine receptors: CCR1, CCR2a, CCR2b, 
CCR3, CCR4, CCR5, and CCR8. Variable concen-
trations of chemokine molecules were also found 
in ascitic fl uid. Macrophages CD14+ isolated from 
ascites consistently expressed CCR1 (receptor for 
macrophage infl ammatory protein-1α – MIP-1α), 
RANTES (Regulated on Activation, Normal T-cell 
Expressed and Secreted, CCL5), monocyte che-
moattractant protein-3 (MCP-3), myeloid progeni-
tor inhibitory factor-1 (MPIF-1), CCR2 (receptor 
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for MCP-1), and CCR5 (receptor for RANTES, 
MIP-1α, and MIP-1β), whereas T CD4 +  lympho-
cytes expressed CCR2 and CCR5. Correlation 
existed between CCL5 (RANTES) concentration in 
ascitic fl uid and T-cell count [ 357 ].    

22.4     Regulatory 
and Infl ammatory Cells 
in Ovarian Cancer 

 Solid tumors including EOC contain many popu-
lations of infi ltrating immune cells, and tumor 
TILs, TAMs, DCs, and MDSCs are all of the 
great relevance for both anticancer actions and 
tumor promotion. The presence and composition 
of TILs infi ltrate could be a prognostic factor in 
EOC patients [ 358 ]. It was shown that the density 
of T CD3 +  lymphocytes, especially T CD8 +  cells, 
was correlated with favorable response to chemo-
therapy and better survival [ 66 ,  359 ]. A consider-
able part of T CD3 +  cells belongs to TCRγδ 
population [ 359 ]. There are suggestions, based 
on the studies of T CD4+ cells and their TCR Vβ 
profi les, that TILs show evidence of clonal 
expansion, thus recognizing the common tumor- 
associated antigens [ 360 ]. However, there is no 
simple correlation between the expression of 
tumor-associated antigens and the intensity of 
TILs infi ltrate inside the tumor [ 353 ]. It rather 
seems that the composition and activation status 
of TILs depends on the expression of chemokines 
and cytokines originating from both cancer and 
immune cells in tumor environment. It was 
shown that many regulatory cytokines present in 
the tumor and ascites, including IL-10, TGF-β, 
TNF-α, and VEGF, indicate immunosuppressive 
actions against TILs [ 361 ]. Contrary to that 
observation, tumors with signifi cantly increased 
T-cell density were shown to overexpress chemo-
kines CCL2, CCL5, CXCL9, and CCL22 and 
activatory cytokines IL-2 and IFN-γ, whereas 
concentrations of VEGF were low [ 361 ,  362 ]. 
The great importance of tumor environment on 
the TILS was further confi rmed in other studies. 
During in vitro experiments, TILs were capable 
to secrete cytokines, showed the expression of 
activation marker (HLA-DR) and co-stimulatory 

molecules (CD28, CD80, CD86), and indicated 
cytotoxicity against cultured EOC cells [ 215 , 
 363 – 366 ]. However, inside the tumor, TILs are 
functionally impaired as was indicated by down-
regulation of CD3ζ chain, which plays an impor-
tant role in coupling antigen recognition to 
several signal-transduction pathways [ 367 ]. The 
similar conclusions can be drawn from the stud-
ies showing decreased proliferation and expres-
sion of activation antigens (CD25, CD69, 
HLA-DR) on TILs, as well as low secretion of 
stimulatory cytokines, like IL-2, IL-4, and IFN-γ 
[ 215 ,  367 ,  368 ]. The mechanisms of effector 
TILs inhibition also include tolerance-inducing 
plasmacytoid DCs, B7 - H4 +  macrophages, TAMs, 
and MDSCs [ 369 – 372 ]. 

 On the contrary to the CD8 +  T cells, high num-
bers of CD4 + CD25+FoxP +  Tregs accumulating 
inside EOC tumors were considered to be a sign 
of poor prognosis [ 338 ]. Expression of indole-
amine 2,3-dioxygenase (IDO) by both EOC cells 
and myeloid DCs can contribute to recruitment 
of Tregs and is associated with poor clinical 
outcomes in ovarian cancer [ 373 – 377 ]. Ovarian 
tumors with increased Tregs infi ltrate were char-
acterized by TGF-β upregulation and functional 
impairment of both T CD8 +  and T CD4 + 25 -  cell 
activity which was shown by low secretion of 
IL-2, IFN-γ, and TNF-α [ 349 ,  378 ]. The spatial 
proximity of Tregs and T effector cells suggested 
inhibition of cell cytotoxicity by Tregs by a direct 
cell–cell contact [ 378 ]. Consistently with these 
observations, it was revealed that the T CD8 + -
to-Tregs ratio was the most appropriate predic-
tor of patient survival, whereas the density of 
either T CD3 +  or T CD4 +  cells alone had a lower 
prognostic value [ 353 ]. One of the features sub-
jected to discussion is a meaning of TILs local-
ization in tumor epithelial vs. stromal part. The 
studies showed that while increased intraepithe-
lial T CD8 +  lymphocyte density was correlated 
with better prognosis, the intensity of stromal T 
CD8 +  infi ltrate did not indicate such correlation. 
This observation points out the fact that distinct 
regulatory mechanisms are probably engaged in 
control of TIL function in different intratumor 
localizations. The  mechanism of possible impor-
tance for intraepithelial T CD8 +  depletion and 
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deactivation is overexpression of PD-L1, a ligand 
for programmed death-1 (PD-1) inhibitory mol-
ecule, on EOC epithelial cells [ 379 ]. Analogical 
situation like inside the tumor has been noted in 
ascitic environment, where high concentrations 
of CD3 + CD56 +  NKT cells and TNF-α cytokine 
were correlated with better prognosis for the 
patients, whereas abundance of Tregs and raised 
VEGF were observed in patients with poor prog-
nosis [ 361 ]. However, in recent studies of familial 
ovarian cancer, the high Treg density inside the 
tumor was found to correlate with better progno-
sis, despite the fact that it was observed mainly in 
the high-grade tumors [ 380 ]. It is consistent with 
clinical observation that patients with familial 
ovarian cancer and carriers of BRCA mutations 
have better outcome although their tumors are 
usually more aggressive. These observations sug-
gest that different genetic determination of tumor 
growth may infl uence the immunoregulatory 
network in different ways, thus pointing out the 
necessity of identifi cation of ovarian cancer types 
of certain genotypes and immune phenotypes in 
order to individualize therapy and enhance its 
effi cacy. 

 In addition to Tregs, ovarian tumor environ-
ment contains another immune cell indicating 
potent regulatory properties, including TAMs, 
and DCs. Tumor-associated macrophages have 
been considered as promoters of both cancer 
growth and angiogenesis and correlated with 
poor prognosis in EOC patients [ 181 ,  381 ,  382 ]. 
High-grade tumors were characterized by more 
abundant CD68 +  and CD163 +  TAM populations, 
and a correlation between CD68 +  macrophages 
and Tregs was noted, suggesting the cooperation 
between both populations existing on the regu-
latory level [ 380 ]. Tregs can induce expression 
of B7 - H4 +  regulatory molecule on TAMs, thus 
inducing TAM-mediated inhibition of T effec-
tors in tumor [ 370 ,  371 ]. Accordingly, the nega-
tive correlation between CD68 +  macrophages and 
T CD8 +  cells was observed [ 383 ]. Some studies 
suggest that the number of CD68 +  macrophages 
may be different depending on the histologi-
cal type (serous/mucinous) of the tumors [ 383 ]. 
The precursors for tumor TAMs are peripheral 
blood monocytes recruited preferentially to the 

stroma–tumor interface by monocyte  chemotactic 
 protein- 1 (CCL2) [ 384 ,  385 ]. The recruited 
 macrophages are further trapped by tumor- 
mediated downregulation of CCR2 receptors in 
the tumor environment, particularly in the hypoxic 
areas of the tumor, and shaped into tumorigenic 
TAM phenotype [ 386 ,  387 ]. Similarly, the TAMs 
are the most abundant mononuclear cell popula-
tion in the ascites of EOC patients, where they 
contribute to suppression of T effector cells by 
secretion of IL-10 and TGF-β [ 244 ,  325 ]. The 
infl uence of EOC cells on macrophage functional 
phenotype was demonstrated by in vitro studies 
which revealed that coculture of macrophages 
with cancer cells upregulated mRNA for a broad 
spectrum of genes, including those responsible 
for expression of CCL2, CCL4, CCL22, CXCR4, 
CXCL12, TNF-α, TGF-β, MMP-7, CSF-1, and 
VEGF. The secretory function of macrophages 
cocultured with EOC cells changed compared to 
control cultures and indicated increase of IL-10, 
TNF-α, IL-1β, IL-6, and IL-8 with concur-
rent IL-12 decrease [ 388 ]. Moreover, com-
pared to normal macrophages, TAMs isolated 
from EOC patients had signifi cantly lower 
 antibody-dependent cell- mediated cytotoxicity 
and phagocytic activity [ 325 ]. The paracrine regu-
latory signals are not only directed from EOC cells 
toward TAMs but also in the opposite direction, as 
in vitro studies demonstrated that TAM-dependent 
TNF-α secretion upregulated NF-κB and JNK 
pathways and EMMPRIN and MIF expression in 
cocultured EOC cells, thus increasing their inva-
sive  capacity [ 389 ]. Animal studies provided an 
observation that TAM-mediated infl ammation 
facilitates EOC metastases by a VEGF-dependent 
 mechanism [ 390 ]. TAMs are also capable to regu-
late the function of both ovarian cancer cells and 
host immune cells by expression of COX-2 and 
iNOS suppressor molecules [ 391 ]. 

 Another cell population relevant for tumor 
spread are myeloid DCs, met abundantly in 
advanced human and experimental tumors and 
represented in the ascites, however, in lower 
density compared to TAMs. Patients with ovar-
ian cancer show progressive depletion of cir-
culating mDCs indicating that mDCs in the 
tumor environment originate from periph-
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eral blood [ 222 ]. Myeloid DCs isolated from 
 ovarian tumors exhibit  expression of indole-
amine 2,3- dioxygenase (IDO) and programmed 
cell death-1 ligand 1 (PD-L1, B7-H1) suppres-
sor molecules. IDO is responsible for recruit-
ment of Tregs and direct inhibition of T effectors 
[ 349 ]. Accumulation of PD-1 + B7-H1 +  DCs in 
the tumor was associated with suppression of 
TCD4 +  helper, T CD3 + CD8 +  cytotoxic/regulatory 
cell activity, and decreased infi ltration of T cells 
[ 392 ]. Murine studies revealed that blockade of 
PD-L1 enhanced T-cell activation, increased 
secretion of IL-2 and IFN-γ, decreased secretion 
of IL-10, and augmented antitumor immunity 
[ 392 ,  393 ]. Murine studies found the presence 
of functionally immature CD11c +  DCs express-
ing low levels of co-stimulatory CD86 and CD40 
molecules in tumor and tumor-draining lymph 
nodes. It was shown that acceleration of tumor 
growth occurred parallelly to rapid increase of 
DC infi ltration and was accompanied by loss 
of DC immunostimulatory activities and PD-L1 
upregulation. Tumor-derived PGE 2  and TGF-β 
were found to be indispensable promoters of 
DC immunosuppressive actions. Consistent 
with these observations, depletion of DCs in 
tumor- bearing mice signifi cantly retarded tumor 
progression [ 394 ]. Due to the gross abundance 
of mDCs in the tumor, suppression mechanism 
based on PD-1/B7-H1 interactions may be one of 
the most important promoters of EOC growth. As 
a confi rmation of that assumption, it was found 
that 5-year survival was signifi cantly shorter for 
patients whose tumors expressed high levels of 
B7-H1 [ 379 ]. Murine studies demonstrated that 
a population of immature mDCs which acquired 
a proangiogenic CD11c + DEC205 + VE-cadherin +  
phenotype upon VEGF stimulation migrated to 
perivascular areas of the tumor and maintained its 
vasculogenesis. Depletion of this mDCs popula-
tion abrogated tumor growth in that experimental 
model (Huarte et al.  2008 ; Coukos et al.  2005 ). 
This means that mDCs play a multidirectional 
role in ovarian cancer development, and their tar-
geting by immunotherapy might be an effective 
option in EOC treatment. 

 Plasmacytoid DCs accumulate in tumor envi-
ronment, preferentially in ascites [ 338 ,  347 ,  395 ]. 

Chemoattraction of pDCs into the tumor 
 environment depends on CXCL12 expression 
and produces depletion of pDCs in peripheral 
blood of EOC patients, especially in advanced 
disease. Chemotherapeutic treatment partially 
restores pDCs in peripheral blood of patients 
with complete remission [ 222 ]. Similar to mDCs, 
ascitic pDCs have immature phenotype. 
Plasmacytoid DCs promote the generation of 
immunoregulatory IL-10 +  T CD8 +  suppressors, 
which independent from T CD4 + CD25 + FoxP3 +  
Tregs downregulate IFN-γ secretion mediated by 
T effectors and prevent them from proliferation 
[ 347 ,  396 ]. They also secrete TNF-α and IL-8, 
thus being capable of promoting angiogenesis 
[ 338 ]. Population of pDCs homing into the tumor 
(tumor-associated pDCs) was found to have dif-
ferent phenotypes compared to ascitic pDCs. 
This population of cells was identifi ed as CD11 - 
CD4  + CD123 +  cells and expressed semi-mature 
phenotype with higher level of CD86 and CD40 
expression, thus being capable of partial activa-
tion in tumor localization. Tumor-associated 
pDCs produced lower amounts of IFN-γ, TNF-α, 
IL-6, CCL3, and CCL5 upon TLR stimulation 
compared to ascitic pDCs and induced IL-10 
secretion from naïve T CD4 +  cells. Function of 
tumor-associated pDCs was modulated by tumor- 
derived TNF-α and TGF-β [ 222 ]. The correlation 
was found between the concentration of tumor- 
associated pDCs and shorter progression-free 
survival, as well as early relapse [ 222 ]. 

 Myeloid-derived suppressor cells (MDSC) 
characterized by CD11b + /Gr-1 +  phenotype are 
a multifunctional population of cells which is 
engaged in both chronic infl ammation and tumor 
progression [ 29 ,  121 ]. MDSCs are capable of 
suppressing DC maturation and host antitumor 
responses mediated by CD8 +  T cytotoxic cells, 
NK, and NKT cells [ 397 – 400 ]. Animal stud-
ies showed that targeted elimination of MDSCs 
resulted in signifi cant decrease of IL-10 in 
ascites and tumor regression [ 401 ,  402 ]. The 
role of IL-10 for MDSC function is crucial, as 
MDSCs are both main producers and key auto-
crine responders for IL-10. Blockade of IL-10 
function with antibodies disrupted the MDSC-
mediated immunosuppression and resulted in 
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partial restoration of host antitumor activity and 
thus improved survival [ 401 ]. It was shown that 
attraction of MDSCs into the ascites environ-
ment in EOC patients depended on PGE 2,  which 
shaped the CXCL12/CXCR4 interactions. PGE 2  
was responsible for the expression of CXCR4 
receptor on MDSCs and for production of 
CXCL12 ligand on ascites cancer cells. MDSC 
migrated toward ascites in a CXCR4-dependent 
manner and required COX-2 activity and PGE 2  
autocrine stimulation for obtaining functionality 
[ 403 ]. This mechanism could be relevant for cre-
ating immunosuppressive environment augment-
ing intraperitoneal cancer propagation.  

22.5     Cytokines in Diagnosis 
and Prognosis of Ovarian 
Cancer 

22.5.1     Diagnosis 

 Ovarian cancer is often called a “silent killer” 
since approximately 75 % of patients are diag-
nosed in the advanced stage of the disease due 
to the absence of or nonspecifi c clinical symp-
toms at the beginning and the lack of screen-
ing methods for diagnosis. Up till now, the gold 
standard in the diagnosis of pelvic masses is still 
a bimanual gynecological examination supple-
mented by transvaginal sonography (with color 
Doppler) and serum markers (CA125, eventually 
combined with HE4 and calculated ROMA). In 
the last few decades, many serologic biomarkers 
based on tumor–host immunologic interactions 
(various cytokines and antibodies) have been 
evaluated in the diagnosis of ovarian cancer, but 
up till now, none of them have been applied to the 
general practice. 

 Gorelik et al. [ 187 ] used multianalyte 
LabMAP profi ling technology for early detection 
of ovarian cancer. A panel of 24 serologic mark-
ers (CA 125, cytokines, chemokines, growth and 
angiogenic factors) was analyzed in the blood 
of women with early ovarian cancer and benign 
pelvic masses and healthy individuals. They con-
structed a classifi cation tree consisting of CA 
125, G-CSF, IL-6, EGF, and VEGF for compari-

son of benign tumors and cancer which resulted 
in a sensitivity of 84.1 % and specifi city of 75.7 % 
(80.2 % of patients were correctly classifi ed). For 
comparisons of early stages of ovarian cancer vs. 
healthy controls, the classifi cation tree was com-
posed of CA 125, EGF, VEGF, IL-6, and IL-8. 
It resulted in 91 % sensitivity and 96 % specifi c-
ity (93 % of subjects correctly classifi ed) and the 
area under the ROC curve was 0.966 [ 187 ]. The 
combination of serum IL-8, anti-IL-8 antibod-
ies, and CA 125 had a sensitivity of 87.5 % and 
specifi city of 98 % for ovarian cancer detection 
(compared to healthy controls); this three-marker 
composite panel resulted in 98 % specifi city but 
only 42 % sensitivity in distinguishing between 
malignant and benign ovarian tumors [ 404 ,  405 ]. 
Lambeck et al. [ 405 ] reported the use of cyto-
kine bead array for the simultaneous analysis of 
14 serum cytokines in sera of women with ovar-
ian cancer, benign ovarian tumors, and healthy 
controls. They found that serum CA 125, IL-6, 
IL-7, and IL-10 were elevated in ovarian cancer 
patients and had the highest diagnostic value in 
discriminating between malignant and benign 
lesions or healthy controls (AUC were 0.7–0.88), 
and the highest predictive value was achieved by 
combining IL-7 and CA 125. Bertenshaw et al. 
[ 406 ] analyzed serum concentrations of 204 
analytes representing 104 antigens and 44 auto-
immune and 56 infectious disease molecules 
measured using a set of proprietary multiplexed 
immunoassays in patients with ovarian cancer. 
The control group was not homogenic and con-
sisted of women with benign ovarian conditions 
(71 %) and other gynecologic cancers (10 %) and 
healthy individuals (19 %). The highest discrimi-
natory power for ovarian cancer was noted for CA 
125 (AUC = 0.966), C-reactive protein (0.756), 
epidermal growth factor receptor (0.733), IL-10 
(0.725), and IL-8 (AUC = 0.715). The use of 
serum IFN-γ, TNF-α, IL-2, IL-10, IL-6, IL-8, 
and TGF- β1 concentrations was also determined 
to discriminate between malignant and benign 
ovarian conditions in cases of tumors clinically 
and  sonographically assessed as “suspected” 
[ 188 ]. The highest accuracy was for IL-10, IL-6, 
and IL-8 (AUC for IL-6 was 0.87, 0.84 for IL-10, 
and 0.8 for IL-8).  
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22.5.2     Prognosis 

 The role of TIL, TAL, and their specifi c subsets 
in prognosis of patients with ovarian cancers was 
discussed in the previous part of our article. 

 Many cytokines have also been investigated as 
prognostic factors in these patients – measured in 
serum and/or ascites or cyst fl uid before and dur-
ing treatment and follow-up. Understanding the 
biology of ovarian cancer is a rationale for spe-
cial attention which was focused on pro-infl am-
matory and proangiogenic factors. 

 IL-6 is elevated in serum of patients with ovar-
ian cancer, and it was shown that elevated serum 
IL-6 levels were correlated with poor prognosis 
and decrease of overall survival [ 407 ]. Increased 
IL-8 levels in serum, ovarian cyst fl uid, and asci-
tes from ovarian cancer patients were associated 
with poor prognosis and decreased patient sur-
vival [ 42 ,  328 – 331 ]. Serum IL-8 is also impor-
tant for the follow-up of patients treated with 
paclitaxel – decreasing IL-8 levels pointed on 
decreasing tumor burden and the effectiveness 
of chemotherapy [ 330 ,  331 ]. Canadian stud-
ies reported that high IL-6 but not IL-8 levels 
in ascites were correlated with shorter progres-
sion-free survival (PFS); IL-6 was an indepen-
dent marker of poor prognosis of ovarian cancer 
patients [ 179 ]. Moreover, they found that also 
high levels of IL-10, leptin, and osteoprotegerin 
in ascites were connected with shorter PFS [ 255 ]. 
The study analyzing serum and ascites levels of 
IL-1 α, β and IL-1 RA in ovarian cancer patients 
showed that IL-1 RA levels below 695.6 pg/ml in 
ascites were associated with signifi cant improve-
ment in PFS [ 408 ]. 

 In a univariate analysis, the use of cytokine 
bead array for the simultaneous measurement of 
14 serum cytokines in the sera of women with 
ovarian cancer revealed that serum levels of 
CA-125, IL-6, IL-7, IL-8, IL-10, MCP-1, and 
IP-10 above the median were associated with a 
shorter progression-free and lower overall sur-
vival [ 405 ]. Moreover, a combination of CA-125, 
IL-7, and IP-10 with serum levels higher than the 
median gave the best association with overall sur-
vival, with a hazard ratio of 5.77. Multivariate 
analysis of the results revealed that IL-7 and IP-10 

were independent predictors of overall  survival, 
and CA-125 and IP-10 were independent predic-
tors of progression-free survival [ 405 ]. 

 Several studies were conducted to assess the 
prognostic value of VEGF levels in serum and 
ascites of ovarian cancer patients. Serum preop-
erative VEGF levels >380 pg/ml were an inde-
pendent predictor of poor prognosis and were 
connected with eightfold increased risk of cancer- 
related death [ 46 ]. Multivariate analysis of data 
from fi ve studies (314 EOC patients) showed that 
high preoperative serum levels of VEGF were 
correlated with poor overall survival [ 409 ]. 
Ascites VEGF levels >1,900 pg/ml were associ-
ated with decreased survival of patients with 
ovarian cancer [ 361 ,  410 ]. 

 Other clinical studies showed that such cyto-
kines as interleukin-18 (IL-18) and Stromal cell-
derived factor-1 (SDF-1) were correlated with poor 
prognosis in ovarian cancer patients [ 411 ,  412 ]. By 
contrast, the increased levels of intereukin-12 in 
both serum and ascites were correlated with better 
outcome and response to treatment of patients with 
advanced ovarian cancer [ 413 ]. TNF- α  has also 
been studied as a prognostic factor, but reports on 
whether it is connected with poor or good progno-
sis are inconsistent [ 410 ,  414 ]. 

 Studies on tissue samples of ovarian cancer by 
means of RT-PCR revealed that patients with 
high levels of IFN-γ expression showed signifi -
cantly longer progression-free and overall sur-
vival [ 415 ].   

22.6     Immunotherapy of Ovarian 
Cancer 

 Actually, the standard treatment of ovarian can-
cer consists of primary surgery regarding optimal 
cytoreduction (leaving no macroscopic residual 
disease) followed by chemotherapy (paclitaxel or 
docetaxel with carboplatin or cisplatin). However, 
the results of treatment, especially advanced 
ovarian cancers, are still unsatisfactory. Thus, 
novel therapeutic strategies are urgently needed. 
One of them is immunotherapy. 

 The potential use of immunotherapy for ovar-
ian cancer is based on immunogenicity of ovarian 
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cancer cells (to evoke or enhance antitumor 
response) and the dynamic interactions between 
host immunologic system and cancer (to move 
the balance toward elimination of cancer cells). 

 Ovarian cancer cells differ from normal human 
cells. On their surface tumor antigens are 
expressed, which can be the targets for humoral or 
cellular response. Initially, tumor antigens were 
divided to tumor-specifi c antigens (TSA) present 
only on cancer cells and tumor- associated antigens 
(TAA) found also on noncancer cells. However, 
during subsequent investigations, antigens primar-
ily thought as TSA have been found also on nor-
mal cells. Actually, the classifi cation of tumor 
antigens is based on their molecular structure and 
origin. Thus, there are differentiation antigens, 
mutational antigens, cancer testis antigens, oncofe-
tal antigens, and viral antigens [ 416 ]. At present, 
more than 1,000 human tumor antigens have been 
described (Cancer Immunome Database). The 
most important tumor antigens in ovarian cancer 
(targets for immunotherapy) are MUC-16, MFRs, 
HER-2/neu, MUC-1, OA3, TAG-72, NY-ESO-1, 
and sialyl-Tn [ 417 – 425 ]. Moreover, ovarian can-
cer cells express peptide/MHC complexes which 
can be recognized by CD8 +  T cells. 

 The main strategies for immunotherapy of 
ovarian cancer implement mAbs, cytokines, pep-
tide vaccines, adoptive cell transfers, inverting 
immunological dysfunctions, and some other 
approaches. 

22.6.1     Monoclonal Antibodies 

22.6.1.1     Bevacizumab 
 Bevacizumab (Avastin) is a monoclonal recombi-
nant, humanized anti-VEGF antibody used in the 
treatment of some types of solid cancers like 
colorectal cancer, non-small cell lung cancer, and 
renal cell cancer. Recently, bevacizumab has 
been also registered in the EU for the treatment of 
advanced epithelial ovarian , fallopian tube, or 
primary peritoneal cancer. Bevacizumab reaches 
its antiangiogenic effects by blocking the binding 
of VEGF to its receptors (VEGFR 1 and 2) and 
thus neutralizes VEGF biologic activity [ 426 ]. 
The role of VEGF in ovarian cancer has been 

described previously in this chapter. Blocking 
VEGF, bevacizumab inhibits and regresses neo-
vascularization and so suppresses tumor growth 
and metastasizing, also in cisplatin refractory 
tumors [ 427 ,  428 ]. Moreover, it probably sensi-
tizes tumors to chemotherapy by normalization 
of the network of tumor vessels leading to 
decrease of intratumoral pressure, increase of 
oxygenation, and drug perfusion [ 429 ]. 

 The use of bevacizumab in the treatment of 
ovarian cancer was investigated since 2007 in 
phase II trials assessing Avastin in monotherapy 
[ 430 ,  431 ] or in combination with standard cyto-
static chemotherapy [ 432 – 434 ]. The investiga-
tors showed promising results leading to 
conducting phase III trials. 

 The effi cacy of bevacizumab in combination 
with standard chemotherapy (paclitaxel with car-
boplatin) for the fi rst-line treatment of ovarian 
cancer was studied in two randomized phase III 
trials: ICON7 [ 435 ] and GOG-218 [ 436 ]. 

 In ICON7 (International Collaboration on 
Ovarian Neoplasms 7) trial, 1,528 women with 
newly diagnosed epithelial ovarian, fallopian tube, 
or primary peritoneal cancer were randomized to 
two arms: chemotherapy alone (paclitaxel + car-
boplatin for 6 cycles every 3 weeks) or chemother-
apy + bevacizumab (7.5 mg/kg) in 6 cycles (every 
3 weeks) and 12 cycles of maintenance with beva-
cizumab (every 3 weeks) [ 435 ]. The latest updated 
results showed the signifi cantly prolonged pro-
gression-free survival (PFS) in the bevacizumab 
group (24.1 vs. 22.4 months,  p  < 0.005), but the 
overall survival (OS) remained the same in both 
arms [ 435 ]. Final analysis is expected – up till 
now, the results of quality of life (QoL) were pub-
lished [ 437 ]. The authors stated that bevacizumab 
continuation treatment seemed to be associated 
with a small but clinically signifi cant decrement in 
QoL compared with standard treatment for women 
with ovarian cancer, so the trade-off between the 
prolongation of progression-free survival and the 
quality of that period of time needs to be consid-
ered in clinical practice when making treatment 
decisions [ 437 ]. 

 The next clinical phase III trial was GOG-218 
[ 436 ]. An overall of 1,873 women with stage III 
or IV epithelial ovarian cancer or fallopian tube 
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or primary peritoneal cancer were randomized 
to three arms: chemotherapy alone (paclitaxel + 
carboplatin), 6 cycles; chemotherapy + bevaci-
zumab (15 mg/kg), 6 cycles; and chemotherapy + 
bevacizumab (6 cycles) + additionally 16 cycles 
of maintenance with bevacizumab (other arms 
were given placebo). The updated results showed 
the improvement in PFS in patients receiving 
additional maintenance therapy with bevaci-
zumab compared to chemotherapy alone (median 
prolongation was 3.8 months). Median PFS did 
not differ signifi cantly between the group receiv-
ing bevacizumab plus chemotherapy followed 
by placebo maintenance and the group receiving 
standard chemotherapy. OS remained the same in 
all three groups of patients [ 436 ]. 

 Other phase III clinical trials of bevacizumab 
especially for recurrent disease are still ongoing. 

 OCEANS is a randomized, multicenter, 
blinded, placebo-controlled phase III trial testing 
the effi cacy and safety of bevacizumab (BV) with 
gemcitabine and carboplatin (GC) compared with 
GC in platinum-sensitive 484 women with recur-
rent ovarian, primary peritoneal, or fallopian tube 
cancer (ROC) [ 438 ]. Patients with platinum- 
sensitive ROC and measurable disease were ran-
domly assigned to GC plus either BV or placebo 
(PL) for six to ten cycles. BV or PL was then con-
tinued until disease progression. Results showed 
that GC plus BV followed by BV until progres-
sion resulted in a statistically signifi cant improve-
ment in PFS when compared with GC plus PL in 
platinum-sensitive ovarian cancer patients (12.4 
vs. 8.4 months,  p  < 0.0001) [ 438 ]. The data about 
overall survival has not been published yet. 

 In patients with platinum-resistant recurrent 
ovarian, primary peritoneal, or fallopian tube 
cancer, there is also an ongoing phase III clinical 
trial – AURELIA (  http://clinicaltrials.gov/show/
NCT00976911    ). Patients are still recruited (tar-
get: approximately 500 patients) and randomized 
to two arms: chemotherapy (paclitaxel, topote-
can, or liposomal doxorubicin) against chemo-
therapy plus bevacizumab (10 mg/kg every 
2 weeks or 15 mg/kg every 3 weeks). 

 Bevacizumab is quite well tolerated and the 
side effects are related to its unique mechanism of 
action. In monotherapy studies, the most common 

adverse effects were hypertension and proteinuria 
(1.6–16 %) and additionally, hemorrhage, throm-
boembolism, complicated wound healing, and 
gastrointestinal tract perforations [ 430 ,  431 ]. 
Meta-analysis of 16 randomized controlled trials 
including 10,217 patients with solid tumors treated 
with bevacizumab revealed 2.9 % of fatal adverse 
events [ 439 ]. The most common fatal adverse 
events were bleeding (23.5 %), neutropenia 
(12.2 %), and gastrointestinal tract perforations 
(7.1 %). Bevacizumab increased the risk of fatal 
adverse events in patients treated with taxanes or 
platinum – its addition to the standard chemother-
apy increased the relative risk to 1.33 [ 439 ].  

22.6.1.2     Catumaxomab 
 Catumaxomab (Removab) is a trifunctional, 
monoclonal bispecifi c (anti-EpCAM x anti-CD3) 
antibody which has been approved in the EU for 
the intraperitoneal treatment of malignant ascites 
in patients with EpCAM-positive carcinomas 
where standard therapy is not available or no lon-
ger feasible (Removab 2013). Malignant ascites 
is usually a manifestation of advanced epithelial 
cancer and is connected with poor prognosis and 
is mainly caused by ovarian cancer (37 % of 
patients with malignant ascites), pancreatobiliary 
cancers (21 %), and gastric cancer (18 %) fol-
lowed by esophageal cancer (4 %), colorectal 
cancer (4 %), and breast cancer (3 %) [ 440 ]. 

 The trifunctional mode of action of catumax-
omab includes: (1) fi rst, antigen-binding site (the 
mouse IgG2a) binds to the tumor-associated anti-
gen EpCAM; (2) second, antigen-binding site (rat 
IgG2b) binds to CD3, part of the T-cell receptor 
complex; and (3) third, Fc fragment binds to FcγR 
type I and III positive cells like macrophages, 
dendritic cells, and natural killer cells [ 441 – 444 ]. 
EpCAM is a good target for immunotherapy with 
antibodies since it is expressed only in epithelial 
cells and cancers of epithelial origin [ 445 ], has 
direct positive effect on cell cycle and prolifera-
tion, and upregulates proto-oncogene c-myc and 
cyclin A/E [ 446 ]. Catumaxomab, by blocking of 
EpCAM, decreases the metabolism and prolifera-
tion of cancer cells and by stimulating T cells and 
accessory immune cells leads to elimination of 
cancer cells by induction of apoptosis, release of 
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cytokines and perforins, and antibody- dependent 
cytotoxicity [ 441 – 444 ]. In fact, catumaxomab 
has shown antitumor activity in vitro, by elimina-
tion of EpCAM-positive tumor cells from asci-
tes fl uid samples which were associated with a 
signifi cant increase in the secretion of IFN-γ, 
TNF-α, IL-2, and IL-6, indicating immune cell 
activation and self-supporting T-cell proliferation 
[ 441 ,  442 ]. Clinical effi cacy, side effects, and 
immunological impact of catumaxomab were 
studied in a pivotal phase II/III trial in patients 
with symptomatic recurrent malignant ascites 
resistant to standard chemotherapy requiring 
therapeutic paracenteses [ 447 – 450 ]. In this trial, 
258 patients were enrolled and randomized to two 
arms: intraperitoneal catumaxomab and paracen-
tesis (170 patients) and paracentesis alone (88 
patients). From the whole enrolled group, 129 
patients suffered from ovarian cancer, and 129 
patients from nonovarian cancer, mostly gastric 
cancer ( n  = 66). Results of immunomonitoring of 
the trial revealed that catumaxomab eliminated 
EpCAM-positive tumor cells and putative can-
cer stem cells, activated peritoneal T cells, and 
reduced VEGF levels [ 449 ]. Clinical outcome 
showed a signifi cant prolongation of puncture-
free period in the overall catumaxomab and para-
centesis group and both subgroups of cancers 
vs. paracentesis alone (52 vs. 11 days in ovar-
ian and 37 vs. 14 days in nonovarian subgroup, 
 p  < 0.0001). The median overall survival was not 
prolonged signifi cantly in the overall catumax-
omab group (72 vs. 68 days,  p  = 0.08) except the 
subgroup restricted to gastric cancer patients (71 
vs. 44 days,  p  < 0.05) [ 448 ]. However, in a post 
hoc analysis, after removing 13 patients from the 
catumaxomab + paracentesis group who did not 
receive the catumaxomab dose, improvement in 
overall survival rates (1 year: 12 % vs. 3.4 %, 
 p  < 0.05) in the catumaxomab group [ 451 ] was 
observed. Moreover, the addition of catumax-
omab resulted in the reduction of signs of ascites 
and its symptoms like anorexia, nausea, dys-
pnea, abdominal pain, and swelling [ 448 ]. Side 
effects of catumaxomab were as expected and 
mostly consisted of cytokine- release-like symp-
toms (pyrexia (60 %), nausea, vomiting, chills, 
tachycardia, hypotension), hematological side 

effects (anemia, leukocytosis), and others such 
as abdominal pain, fatigue, diarrhea, and ileus 
(6.4 %) [ 447 ,  448 ].  

22.6.1.3     Oregovomab 
and Abagovomab 

 Oregovomab (OvaRex) is a mAb-binding main 
TAA of ovarian cancer – CA125 (MUC-16) 
forming immunogenic complexes for T and B 
lymphocytes. Immunological monitoring of 
patients treated with oregovomab revealed that 
proliferation and activation of T cells and the 
induction of anti-CA-125 antibodies correlate 
with longer survival [ 452 ,  453 ]. The treatment 
was well tolerated with mild and transient side 
effects such as nausea [ 452 ]. In fact, results of a 
phase II randomized trial conducted in patients 
with recurrent ovarian cancer showed that 58 % 
of patients generated the response to oregovomab 
(anti-CA-125 antibodies and specifi c T cells) but 
in only 23 % of cases stabilization of the disease 
was observed [ 454 ]. Berek et al. in 2004 [ 117 ] 
enrolled 145 women with advanced ovarian can-
cer to a randomized placebo-controlled study to 
estimate the safety and effi cacy of oregovomab 
in a maintenance therapy. The results after a 
5-year follow-up revealed that patients from the 
oregovomab and placebo groups had similar 
progression- free survival (57 vs. 48.6 months, 
 p  = 0.28) [ 455 ]. Final analysis from this study 
was reported in 2009 [ 456 ]. A total of 371 
patients with advanced ovarian cancer after stan-
dard chemotherapy were recruited at more than 
60 centers; 251 patients received oregovomab 
in a maintenance monoimmunotherapy and 120 
patients were given placebo. There were no dif-
ference in the clinical outcomes between both 
groups. The authors stated that although orego-
vomab had demonstrated bioactivity, the strat-
egy of monoimmunotherapy was not effective 
as maintenance therapy after frontline treatment 
of a favorable subset of patients with advanced 
ovarian cancer [ 456 ]. 

 Thus, some investigators tried to use anti- 
idiotype antibodies to increase immunogenicity. 

 Abagovomab (formerly ACA-125) is a 
mouse anti-idiotype monoclonal antibody 
whose  variable epitope mirrors CA125. In the 
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initial phase I/II studies and in a preliminary 
report of the randomized phase III MIMOSA 
trial, abagovomab induced a specifi c anti-idiot-
ypic antibody (Ab3) response in 68.1–100 % of 
treated patients and also cellular immunity in 
some of them; moreover, it was well tolerated 
[ 457 ,  458 ]. However, the fi nal results of phase 
III MIMOSA trial conducted in 888 patients 
with advanced ovarian cancer in complete clini-
cal remission after primary surgery and plati-
num- and taxane-based chemotherapy showed 
that abagovomab administered as repeated 
monthly injections is safe and induces a mea-
surable immune response, but administration as 
maintenance therapy for patients with ovarian 
cancer in fi rst remission does not prolong PFS 
or OS [ 459 ].  

22.6.1.4     Trastuzumab 
and Pertuzumab 

 The epithelial growth factor receptor (  EGFR    ) is a 
family of tyrosine kinase receptors: ErbB1/HER1 
(commonly referred to as EGFR), ErbB2/HER2 
(commonly referred to as HER2), ErbB3/HER3, 
and ErbB4/HER4. Their activation mediates a 
variety of cellular responses, including cancer cell 
proliferation, survival, and invasion. They are 
overexpressed in many solid tumors and promis-
ing targets for cancer immunotherapy [ 460 ]. 

 Trastuzumab (Herceptin) is humanized mAb 
specifi c to the extracellular domain of HER2. It is 
registered for the treatment of breast cancer. In a 
phase II clinical trial, only 11 % of patients with 
recurrent ovarian cancer overexpressed HER-2, 
and the response for monotherapy with trastu-
zumab was very low (7 %) with a median 
progression- free interval of 2 months [ 461 ]. 

 Pertuzumab (Omnitarg) is another anti-HER-2 
mAb with a different binding site than trastu-
zumab and not requiring HER-2 overexpression 
to exert cytotoxic effects [ 462 ,  463 ]. In a phase II 
clinical trial of pertuzumab performed on patients 
with advanced ovarian cancer refractory to che-
motherapy, the response rate and stabilization of 
disease were only about 5 %, and the patients 
reported some serious side effects [ 452 ]. Another 
phase II randomized trial evaluating the use of 
gemcitabine with or without pertuzumab in the 

group of platinum-refractory patients showed 
moderate advantage of combined protocol over 
gemcitabine monotherapy [ 464 ].  

22.6.1.5    Farletuzumab 
 Farletuzumab is a humanized immunoglobulin 
G mAb targeting human folate receptor α (FRα). 
Folate receptor α is a tumor-associated antigen 
that is overexpressed in many cancers including 
ovarian cancer but largely absent on normal tis-
sue [ 465 ]. Farletuzumab has shown safety and 
effi cacy (prolongation of PFS) in phase I and II 
trials in the treatment of ovarian cancer patients 
[ 466 ,  467 ]. Armstrong et al. in 2013 published the 
results of the study on clinical activity of farletu-
zumab, alone and combined with chemotherapy, 
in women with fi rst-relapse, platinum-sensitive 
ovarian, fallopian tube and primary peritoneal 
cancers. It was well-tolerated as a single agent 
and also when administered with standard che-
motherapy. Farletuzumab with carboplatin and 
taxane enhanced the response rate and duration 
of response in platinum- sensitive ovarian cancer 
patients with fi rst relapse [ 468 ].   

22.6.2     Cytokines 

 In vitro studies showed that interferons exert 
cytotoxic activity against ovarian cancer cells 
[ 469 ,  470 ]. Several phase I, II, and III trials were 
conducted regarding intraperitoneal or subcuta-
neous administration of IFN-α and IFN-γ in 
monotherapy or with platinum during fi rst-line 
therapy or afterwards and showed no benefi ts of 
IFN with high incidence of side effects 
[ 471 – 478 ]. 

 Interleukin-2 (IL-2) activates T cells and was 
tested as an anticancer agent. High doses of IL-2 
were connected with severe toxicity (hypoten-
sion, kidney necrosis) and only low doses were 
tested in clinical trials [ 479 ,  480 ]. Pilot studies 
and phase II trials in patients with platinum 
refractory ovarian cancer showed no satisfactory 
effects or stabilization of the disease or partial 
response in about 40 % patients, but the number 
of cases was very limited and fi rm conclusions 
could not be drawn [ 479 – 482 ]. 
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 The other cytokines like TNF, IL-1, and IL-12 
were also tested, but besides anticancer activity, 
they exert pro-infl ammatory and proangiogenic 
effects and may stimulate neoangiogenesis and 
metastases.  

22.6.3     Dendritic Cells 

 Dendritic cells (DCs) are bone marrow-derived 
leukocytes playing a crucial role in the initiation 
of T-cell-mediated immunity – they present anti-
gens to T cells [ 483 ,  484 ]. The idea for immuno-
therapy was to isolate DCs from the cancer 
patient, sensitize them with tumor cells or tumor 
antigens, and infuse them back to the patient. DCs 
were obtained from peripheral blood monocytes 
or directly from mDCs or from tumor or ascites 
TAMs. In fact, DCs fused with patient- derived 
ovarian cancer cells induced cytotoxic T lympho-
cyte against autologous cancer cells [ 485 ,  486 ]. 

 Clinical trials performed on patients with 
advanced ovarian cancer, using HER-2/MUC-1 
pulsed DCs, showed induction of immunologi-
cal response but no satisfactory clinical benefi ts 
[ 487 – 489 ]. However, there are some promising 
data from case studies. The case study on a vac-
cination regimen created with autologous den-
dritic cells engineered with mRNA-encoded 
 α -FR indicated 50 % regression of para-aortic 
lymph node metastases and decrease of CA-125 
serum levels 16 months after DC vaccination 
[ 490 ]. Bernall et al. in 2012 published the results 
of a treatment with hematopoietic stem cells col-
lected of a patient with advanced ovarian cancer 
(with progression besides multiple courses of 
chemotherapy) induced into dendritic cell differ-
entiation and fused with liposomal constructs of 
autologous ovarian cancer antigens. The liposo-
mal preparations of DCs were injected monthly. 
Following DC treatment, the metastatic lesions 
progressively decreased in size to the point of 
being undetectable by serial CT scans. After 
7 years, the patient remains to be free of disease. 

 The other strategies of immunotherapy like 
adoptive T-cell transfers, inverting immunologi-
cal dysfunctions, Treg depletion, activating toll- 
like receptors, oncolytic viruses, and many others 

are tested but are still far for clinical use in 
patients suffering from ovarian cancer. 

 Up till now from the whole spectrum of immu-
notherapeutic approaches, only mAbs bevaci-
zumab and catumaxomab are registered for the 
treatment of patients with ovarian cancer (catu-
maxomab is restricted to certain cases of malig-
nant ascites).   

22.7     Concluding Remarks  

 The growing knowledge concerning the immuno-
pathologic background of ovarian cancer has 
expanded the spectrum of new diagnostic and 
therapeutic possibilities. However, the progress 
in clinical management is still unsatisfactory, 
despite some improvements in patients’ survival 
brought by the use of bevacizumab and catumax-
omab. We believe that the marriage of basic 
investigations on the fi eld of both immunology 
and genetics, including epigenetics, will open the 
new horizons and bring effective treatment 
options for ovarian cancer patients.     
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23.1             Introduction 

 Breast cancer has not traditionally been consid-
ered an “immunogenic” tumor type. While 
immunosurveillance mechanisms do not seem to 
have an effect on the growth of primary breast 
tumors (transplant patients receiving immuno-
suppressants do not have an increased incidence 
of breast cancer), immunosuppression does seem 
to adversely affect metastases growth [ 1 ]. 

 Immune cells can exhibit pro- or antitumor 
effects and affect therapeutic resistance. Avoiding 
“immune destruction” is now considered an 
emerging hallmark of cancer [ 2 ]. It is now gener-
ally accepted that lymphocytic infi ltrates, espe-
cially consisting of CD8 +  T cells, are associated 
with a better cancer prognosis [ 3 ]. The analysis 
of location, density, and type of tumor-infi ltrating 
immune cells – termed the “immune contex-
ture” – offers the hope of prognostic information 
and the identifi cation of patients most likely to 
respond to immunotherapies [ 4 ]. As well as this, 
standard therapies in breast cancer, for example, 
anthracyclines and trastuzumab, have been 
shown to modulate immunity as part of their 
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mechanism of action, though not conventionally 
considered “immunotherapy.” In this review, the 
role of different immune cell populations in the 
progression of breast cancer and how these could 
be harnessed or inhibited in the treatment of 
breast cancer would be discussed.  

23.2     CD8 +  T Cells 

 Over the past recent years, it has become increas-
ingly evident that tumor-infi ltrating lympho-
cytes (TIL) can control the clinical progression 
of epithelial cancers [ 5 ]. In breast cancer, two 
large series in newly diagnosed or early-stage 
breast cancer reported a signifi cant correla-
tion between increased lymphocytic infi ltration 
and better clinical outcomes. Denkert et al. [ 6 ] 
analyzed tumor- infi ltrating lymphocytes (TILs: 
using hematoxylin/eosin sections and immu-
nohistochemistry [IHC]) of pretherapeutic core 
biopsies from over 1,000 breast cancer patients. 
Mahmoud et al. [ 7 ] analyzed tumor-infi ltrating 
CD8 +  T cells (by IHC) in 1,334 breast cancer 
patients. In both studies, high lymphocytic infi l-
trates or CD8 +  T cell counts were associated 
with improved patient outcome, independent of 
standard prognostic and predictive factors. In 
2009 high risk, newly  diagnosed breast cancer 
patients, TILs were also evaluated using the same 
method as Denkert et al. but this time on full-face 
H&E sections taken from surgical removal of 
the primary tumor [ 8 ]. In this study it was found 
that the prognostic benefi t of TILs was largely 
restricted to the triple-negative breast cancer 
subtype (TNBC: negative for expression of estro-
gen receptor [ER], progesterone receptor [PR], 
and Human epidermal growth factor receptor 2 
[HER2]). While TNBC patients usually have a 
worse, women with TNBC and high TILs had a 
numerically better disease-free outcome than the 
women with ER + /HER2 −  negative tumors who 
usually have the best prognoses. These data sug-
gest that some patients have preexisting antitu-
mor immunity at diagnosis and this is associated 
with improved long-term clinical outcomes. The 
reasons why some breast cancers are associated 
with TILs and others are not are unclear. 

 Also in support of a role for tumor-infi ltrating 
CD8 +  T cells in controlling breast cancer pro-
gression, unsupervised gene expression profi ling 
of breast cancer-associated stroma has revealed 
an immune gene signature enriched for CD8 +  T 
cell genes associated with good prognosis [ 9 ]. 
Interestingly, Mahmoud et al. [ 7 ] reported a posi-
tive correlation between CD8 +  T cells and high 
histological grade, younger patient age, and neg-
ative estrogen receptor (ER) status. Two other 
studies found a similar correlation between intra-
tumoral CD8 +  T cell counts and negative ER sta-
tus [ 10 ,  11 ]. The underlying mechanisms for this 
observation are unclear (and discussed below).  

23.3     CD4 +  and FOXP3 +  T Cells 

 In contrast to intratumoral CD8 +  T cells, analysis 
of CD4 +  T cells on clinical outcomes in breast 
cancer has resulted in inconsistent results. In 
general, the presence of CD4 +  T cells in tumors 
has been associated with worse prognosis. For 
instance, IHC analysis of tissue microarrays 
derived from 179 treatment-naïve breast tumors 
revealed that high levels of CD4 +  T cells and 
macrophages were correlated with reduced over-
all survival (OS). In contrast, high levels of CD8 +  
T cells combined with low levels of CD4 +  T cells 
were correlated with improved OS [ 12 ]. 

 The association between CD4 +  T cell infi ltrates 
and poor prognosis is generally attributed to CD4 +  
FOXP3 +  T regulatory cells (Tregs). Tregs were 
fi rst described as a population of T cells capable 
of suppressing immune responses in mice and 
were originally defi ned by the surface markers 
CD4 and CD25 [ 13 ]. Further investigation 
revealed that Tregs express and functionally 
depend on the transcription factor FOXP3 [ 14 –
 16 ]. Given its essential role in Treg development, 
FOXP3 has become a popular marker of Tregs in 
cancer studies. Intriguingly, studies of the prog-
nostic value of FOXP3 +  T cells in cancer patients 
have led to discrepant fi ndings. Tissue microarray 
analysis of FOXP3 +  cells in 1,445 cases of pri-
mary invasive breast cancer revealed that the 
number of FOXP3 +  cells was associated with a 
worse outcome, but was not an independent 
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 prognostic factor in multivariate analysis [ 17 ]. On 
the other hand, Liu et al. [ 18 ] reported that intra-
tumoral FOXP3 +  cells was an independent predic-
tor of poor prognosis in 1,270 breast cancer cases. 
Other studies have assessed the impact of FOXP3 +  
cells on neoadjuvant breast cancer chemotherapy. 
One study reported that high infi ltration of 
FOXP3 +  cells after neoadjuvant chemotherapy 
was an unfavorable and independent predictor of 
relapse-free survival (RFS) and overall survival 
(OS) [ 19 ]. Likewise, Ladoire et al. [ 20 ] reported 
that a high CD8/FOXP3 ratio was an independent 
predictive factor of RFS and OS in HER2-
overexpressing breast cancer following neoadju-
vant chemotherapy. In contrast, Oda et al. [ 21 ] 
reported that a high level of FOXP3 +  cells before 
neoadjuvant chemotherapy was an independent 
predictor of pathological complete responses. 
Others have also reported a positive correlation 
between high levels of FOXP3 +  T cells and good 
prognosis [ 22 ,  23 ]. Taken together, the role of 
FOXP3 +  cells in breast tumors still remains 
unclear and warrants further investigation.  

23.4     CD4 +  Follicular Helper T Cells 

 Interestingly, a recent publication reported a favor-
able role for CD4 +  T cells [ 24 ]. For the fi rst time, 
CD4 +  follicular helper T (Tfh) cells were found in 
tumor-infi ltrating T cell populations, and their 
presence was associated with better prognosis. 
Accordingly, human breast tumors with high TILs 
were found to have higher frequency of CXCL13-
producing Tfh cells. Notably, Tfh cells were found 
associated with tertiary lymphoid structures. 
Tertiary lymphoid structures (TLS) had been pre-
viously identifi ed in lung and colorectal cancers, 
and their presence linked with better prognosis. It 
is now clear that Tfh cells are an important con-
stituent of TLS in human breast tumors.  

23.5     B Cells in BC 

 Intratumoral B cells have been associated with a 
favorable prognosis in breast cancer patients. An 
early gene expression study of 200  consecutive 

lymph node-negative cases reported a B cell 
 metagene primarily formed by immunoglobulin 
heavy- and light-chain genes that was associated 
with metastasis-free survival in highly proliferat-
ing breast tumors [ 25 ]. Interestingly, immunoglob-
ulin κ C (IGKC) as a single marker has also been 
shown to have similar predictive and prognostic 
value compared to the entire B cell metagene [ 26 ]. 
Building up of these fi ndings, Mahmoud et al. 
[ 27 ] recently analyzed the density and localiza-
tion of B cells in 1,470 breast cancer cases using 
IHC. Consistent with previous studies, increased B 
cell infi ltration was associated with improved sur-
vival. Notably, B cell infi ltration correlated with 
hormone receptor negativity and basal phenotype.  

23.6     Macrophages and MDSC 
in BC 

 Macrophage infi ltrates in breast cancer often 
correlate with a worse clinical outcome. Tumor- 
associated macrophages have been associated 
with suppressed antitumor CD8 +  T cells, increased 
angiogenesis, and increased metastasis. The pres-
ence of CD68 +  macrophages is generally inversely 
correlated with CD8 +  T infi ltrates in human breast 
tumors [ 12 ]. Interestingly, tumor-associated mac-
rophages were found signifi cantly increased after 
chemotherapy with paclitaxel and in patients who 
had received neoadjuvant chemotherapy com-
pared to surgery alone. Using transgenic mouse 
models of breast cancer, Coussens and col-
leagues also demonstrated that tumor-associated 
macrophages can directly promote breast cancer 
metastasis, via IL-4 producing CD4 +  T cells [ 28 ]. 
Other myeloid cells composed of incompletely 
differentiated cells, termed myeloid-derived sup-
pressor cells (MDSC), have also been shown to 
enhance breast tumor growth in mice [ 29 ]. Human 
equivalents of MDSC have been identifi ed [ 30 ]. 
Recently, Sceneay et al. [ 31 ] demonstrated that 
tumor hypoxia, via MDSC recruitment, can alter 
the lung microenvironment to make them more 
permissive for metastasis, thereby driving the 
formation of a pre-metastatic niche. Furthermore, 
increase in circulating MDSC in human cancer 
has been associated with stage 4 disease [ 32 ].  

23 Immunology and Immunotherapy of Breast Cancer



460

23.7     Immune Infi ltrates, Gene 
Signatures, and BC Subtypes 

 The correlation between lymphocytic infi ltrates 
and clinical outcomes in breast cancer varies 
across molecular subtypes. In 2011, DeNardo 
et al. [ 12 ] performed a meta-analysis of  CD68  
and  CD8  gene expression in 4,000 breast can-
cer cases and reported that a CD68high/CD8low 
immune gene signature correlated with reduced 
OS for basal or HER2 +  breast cancer subtypes, 
but not for luminal breast cancers. Similarly, a 
metagene of STAT1 signaling – a surrogate of 
interferon response – was associated with better 
outcome in triple-negative breast cancer (TNBC) 
and HER2 +  breast cancers, but not in luminal 
cases [ 33 ,  34 ]. Another independent group iden-
tifi ed an immune response prognostic gene mod-
ule in ER −  , but not ER +  breast cancers [ 11 ]. 

 Among ER −  breast cancers, accumulating evi-
dence suggests that basal or TNBC breast cancers 
are particularly associated with lymphocytic infi l-
tration. In 2012, Liu et al. [ 35 ] performed a large-
scale IHC analysis of CD8 expression on 3,400 
breast cancer cases representing different subtypes 
and reported that only core basal TNBC demon-
strated a signifi cant correlation between intratu-
moral CD8 staining and favorable prognosis. 

 A B cell metagene has also been associated 
with good outcome in TNBC. In a gene expres-
sion analysis of 579 TNBC, Rody et al. [ 36 ] 
revealed that a ratio of high B cell and low IL-8 
metagenes was identifi ed in 32 % of TNBC 
patients with good prognosis. Taken together, 
these studies suggest that clinical outcomes in 
ER −  breast cancers, especially TNBC, are partic-
ularly infl uenced by tumor immune responses. 

 Why immune infi ltration appears more rel-
evant for breast cancers which are ER negative or 
overexpress HER2 as opposed to other subtypes 
is unknown. We speculate that it could be due to 
the poorly differentiated nature and high genomic 
instability of these subtypes. In TNBC, the intrin-
sic nature of the tumor cells may help explain 
its propensity for infl ammatory responses. For 
instance, signaling pathways able to downregu-
late ER and HER2 expression may be associated 
with increased pro-infl ammatory activity. This 

is supported by the identifi cation of lactoferrin 
as a repressor of hormone receptors and HER2 
expression in breast cancer cells [ 37 ]. Lactoferrin 
concomitantly induces the production of cyto-
kines and chemokines, including MIP-1, MIP-2, 
IL-10, and IL-4. Increased immune infi ltration 
in TNBC may also be associated with increased 
genetic instability due to p53 loss of function and 
BRCA1/2 disruption, which are common fea-
tures of this molecular subtype. In line with this 
model, a recent study in high-grade serous ovar-
ian cancer revealed an important positive correla-
tion between BRCA1 disruptions and high levels 
of TILs [ 38 ]. 

 Among TAA, cancer-testis (CT) antigens 
represent potential antitumor antigens since 
they are not shared with normal somatic cells. 
Interestingly, analysis of CT antigens in human 
breast cancer revealed higher expression in ER -  
 vs.  ER +  breast cancers and co-expression with 
basal cell markers [ 38 ]. Similar fi ndings were 
reported by Curigliano et al. [ 39 ]. Consistent 
with these two studies, IHC analysis of eight CT 
antigens revealed signifi cantly more frequent 
expression in ER −   vs.  ER +  human breast cancers 
[ 40 ]. In a study of genes differently expressed 
in TNBC, Karn et al. [ 41 ] further reported that 
among genes showing no correlation with known 
markers of TNBC, the most prominent group of 
genes encoded for CT antigens. Taken together, 
these studies suggest that CT antigen expression 
is a common feature of TNBC.  

23.8     Effect of Chemotherapy 
on Tumor Immunity 

 In addition to being involved in the natural pro-
gression of cancer, immunity can affect the activ-
ity of various anticancer agents. Recent evidence 
suggests that some chemotherapeutic drugs, such 
as anthracyclines and oxaliplatin, rely on the 
induction of anticancer immune responses. In 
mouse models of cancer, chemotherapy with 
anthracyclines or oxaliplatin requires priming of 
IFN-γ-producing CD8 +  T cells for optimal treat-
ment response. In cancer patients, high levels of 
interferon (IFN)-gamma and CD8 +  T cells are 
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predictive of a good clinical response to anthracy-
clines. The immune-stimulating property of 
anthracyclines and oxaliplatin was shown to 
require preapoptotic translocation of calreticulin 
(CRT) on the tumor cell surface, post-apoptotic 
release of the chromatin-binding protein high- 
mobility group B1 (HMGB1), and extracellular 
release of adenosine triphosphate (ATP). CRT, 
HMGB1, and ATP act in concert to promote 
tumor antigen presentation by dendritic cells 
(DCs) via activation of CD91, TLR-4, and puri-
nergic P2X7 receptors, respectively. It was 
recently demonstrated that chemotherapy- induced 
autophagy is essential for the release of ATP and 
subsequent anticancer immunity. Accordingly, 
autophagy-defi cient tumor cells are unable to 
release ATP in response to anthracyclines or 
oxaliplatin and fail to elicit CD8 +  anticancer T 
cells. This suggests that patients with autophagy-
defi cient tumor cells might benefi t from therapeu-
tic strategies designed to compensate this process 
in order to trigger immunogenic signaling. 

 Extracellular ATP appears as a central activator 
of chemotherapy-induced antitumor immunity. 
However, tumors can overexpress ecto-nucleo-
tidases, which catabolize the hydrolysis of extra-
cellular ATP into adenosine. Expression of these 
ecto-nucleotidases, such as CD39 and CD73, has 
two major consequences: decreasing the concen-
tration of pro- infl ammatory ATP and increasing 
the concentration of immunosuppressive adenos-
ine. Notably, while the catabolism of ATP into 
adenosine monophosphate (AMP) is revers-
ible, catalyzed by membrane- bound kinases, the 
conversion of AMP into adenosine by CD73 is 
irreversible. This places CD73 at a crucial check-
point in the conversion of immune-activating 
ATP into immunosuppressive adenosine. Several 
groups have now demonstrated the importance 
of CD73 in the suppression of anticancer immu-
nity. In breast cancer, CD73 is overexpressed in 
response to loss of ER expression [ 42 ]. Studies 
undertaken by the authors and confi rmed by oth-
ers revealed that targeted blockade of CD73 can 
effectively reduce tumorigenesis and metastasis 
of breast cancer in mice [ 43 – 47 ]. Furthermore, 
the authors recently demonstrated that CD73 
expression is signifi cantly associated with worse 

prognosis in TNBC patients and that the CD73- 
adenosinergic pathway promotes chemoresis-
tance to anthracycline in mice [ 48 ]. Targeting 
CD73 therefore represents a novel approach with 
the potential to enhance the effi cacy of chemo-
therapy for treatment of breast cancer.  

23.9     Targeted Therapies 
(Including Trastuzumab 
and Tyrosine Kinase 
Inhibitors) 

 Antitumor immunity also plays a major role in 
the effi cacy of targeted therapies. Tumor-targeted 
monoclonal antibodies (mAbs), such as trastu-
zumab, rely in part on immune-mediated killing 
[ 48 ]. While innate immune responses, in par-
ticular via Antibody-dependent cell-mediated 
cytotoxicity (ADCC), appear to be important for 
trastuzumab activity [ 49 ], recent studies suggest 
that trastuzumab also stimulates adaptive anti-
tumor immunity. Two studies in mice showed 
that trastuzumab-like therapy requires adaptive 
CD8- dependent immune responses to mediate 
optimal activity [ 50 ,  51 ]. These studies support 
a model whereby trastuzumab activates MyD88- 
dependent Toll-like receptors – most likely via the 
release of high-mobility group box 1 (HMGB1) 
following ADCC – stimulates the release of type 
I interferons (IFNs), and primes adaptive IFN-
γ-producing CD8 +  T cells. These studies raise 
the possibility that combination strategies may 
be used to capitalize on the adaptive tumor-spe-
cifi c immunity generated by anti- ErbB2 mAbs. 
Consistent with this notion, Stagg et al. [ 51 ] dem-
onstrated that anti-PD-1 and anti- CD137 mAbs 
can each synergize with anti- ErbB2 mAb therapy. 
This data advocates that enhancement of T cell 
antitumor immunity should be evaluated in the 
clinical setting in combination with trastuzumab. 

 Data also exists suggesting that preexisting 
immunity could be important for trastuzumab 
effi cacy. Evaluation of TILs in baseline primary 
tumor specimens before treatment found that 
those patients with high levels of TILs derived 
more benefi t from trastuzumab added to their 
cytotoxic chemotherapy [ 52 ]. This data suggested 
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that though trastuzumab has been thought to act 
primarily through inhibition of cell  signaling, it 
may also serve to relieve tumor-mediated immu-
nosuppression through yet undefi ned mecha-
nisms. This data also supports that some breast 
cancer subtypes may be more amenable to immu-
notherapeutic approaches.  

23.10     Immunotherapy of Breast 
Cancer 

23.10.1     MUC-1 Vaccines 

 A promising candidate antigen for breast cancer 
vaccination is the MUC-1 antigen. Both nor-
mal and cancerous breast cells express MUC-1. 
However, breast cancer cells often express an 
aberrantly glycosylated form of MUC-1 [ 53 ]. 
The presence of circulating antibodies against 
MUC-1 at the time of breast cancer diagnosis 
has been correlated with a favorable outcome 
[ 54 ]. In addition to stimulating humoral immune 
responses, aberrantly glycosylated MUC-1 can 
also stimulate CD8 +  T cells [ 55 ]. While early 
MUC-1 vaccines failed to elicit effective antitu-
mor immune responses in clinical trials, a glyco-
sylated MUC-1-derived glycopeptide covalently 
linked to a Toll-like receptor (TLR) agonist has 
been recently shown to elicit potent humoral 
and cellular immune responses [ 56 ], highlight-
ing the importance of maintaining conforma-
tional elements of MUC-1 to achieve successful 
vaccination.  

23.10.2     HER2 Vaccines 

 Several clinical trials have investigated the use of 
immunogenic peptides derived from the HER2 
protein in order to induce therapeutic vaccination 
against HER2 +  breast cancer. Different trials 
were conducted with increasing doses of peptide 
(AE37 or E75 or GP2 peptide) and varying 
amounts of the immune adjuvant granulocyte- 
macrophage colony-stimulating factor (GM-CSF) 
injected intradermally. All three peptide vaccines 
have been well tolerated [ 57 ]. Interestingly, the 

combination of trastuzumab and HER2 vaccine 
has also been recently investigated [ 58 ]. In a 
phase I/II study, 22 patients with advanced meta-
static HER2 +  breast cancer already receiving 
trastuzumab were vaccinated with six inocula-
tions of a HER2 peptide-based vaccine. The 
study revealed that preexisting immunity specifi c 
for HER2 (possibly as a result of previous trastu-
zumab therapy) could be signifi cantly augmented 
with vaccination.  

23.10.3     MAGE-A3 Vaccines 

 Vaccines targeting CT antigens, such as 
MAGE-A3, are also being tested in clinical 
studies. In a phase II trial of non-small cell lung 
cancer (NSCLC), it was reported that patients 
whose tumors had been removed by surgery 
experienced 25 % fewer recurrences following 
vaccination against MAGE-A3. A phase III 
trial involving 2,300 NSCLC patients positive 
for MAGE-A3 antigen is currently underway 
[ 59 ]. The outcome of this phase III clinical trial 
could be decisive in the development of tumor 
vaccines targeting MAGE-A3 or other CT anti-
gens in breast cancer.  

23.10.4     Targeting Immune 
Checkpoints 

 While correlative studies suggest that antitumor 
immunity can control breast cancer progression 
and patient outcome, tumors persist despite being 
infi ltrated with tumor-specifi c CD8 +  T cells. This 
apparent paradox is at least partly due to the 
exhausted nature of tumor-infi ltrating T cells and 
the presence of immunosuppressive factors in the 
tumor microenvironment. One of the most impor-
tant means of immune regulation is a process 
known as “T cell exhaustion,” which results from 
chronic exposure to antigens and is character-
ized by the upregulation of inhibitory receptors. 
Blocking of one or several of these inhibitory 
receptors, also known as “immune checkpoints,” 
with mAbs has been the mainstay of recent 
 developments in cancer immunotherapy.  
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23.10.5     Anti-CTLA-4 

 The fi rst immune checkpoint inhibitor to be 
tested in clinical trial was ipilimumab (Yervoy, 
Bristol-Myers Squibb), an anti-CTLA-4 mAb. 
CTLA-4 belongs to the immunoglobulin super-
family of receptors, which also includes PD-1, B 
and T lymphocyte attenuator (BTLA), T cell 
immunoglobulin- and mucin domain-containing 
protein 3 (TIM-3), and V-domain immunoglobu-
lin suppressor of T cell activation (VISTA). In 
2011, the US Food and Drug Administration 
approved the use of ipilimumab for treatment of 
unresectable or metastatic melanoma, either as 
initial therapy or after relapse. 

 The mechanism of action of ipilimumab 
includes enhanced antitumor function of effec-
tor T cells, increased ratio of CD8 +  T cells to 
Foxp3 +  T regulatory cells (Tregs), and interfer-
ence with the suppressive function of Tregs 
[ 60 ]. CTLA-4 blockade has been shown to 
expand a subpopulation of tumor-infi ltrating 
CD4 +  T cells that express high levels of ICOS 
and secrete IFN-γ [ 61 ]. These CD4 +  ICOS +  T 
cells might play a role in the therapeutic activ-
ity of anti-CTLA-4 mAb therapy, as there fre-
quency correlates with survival in treated 
melanoma patients. Nevertheless, it is still not 
clear whether the activity of ipilimumab is 
dependent on the blockade of CTLA-4- 
mediated negative regulatory signal in effector 
T cells or to its interference with Treg function. 
Another potential mechanism of action includes 
Antibody-dependent cell-mediated cytotoxicity 
(ADCC) of CTLA-4-expressing cells. The 
major drawback to anti-CTLA-4 mAb therapy 
is the generation of immune-related toxicities 
due to on-target effects. It has been reported 
that up to 25 % of patients treated with ipilim-
umab developed serious grade 3–4 adverse 
events [ 62 ], refl ecting the importance of 
CTLA-4 in maintaining immune homeostasis. 
Unfortunately, toxicity is not always associated 
with therapeutic benefi t. Thus, a major chal-
lenge in the use of anti-CTLA-4 mAb is to 
defi ne favorable clinical settings that strike an 
optimum balance between tumor immunity and 
autoimmunity.  

23.10.6     Anti-PD-1 

 PD-1 is another inhibitory co-receptor expressed 
on activated and exhausted T cells. Its ligand, 
PD-L1, is often found overexpressed in various 
types of cancer. Administration of mAbs block-
ing anti-PD-1/anti-PD-L1 enhances adaptive 
antitumor immune responses by preventing T cell 
exhaustion [ 63 ]. Anti-PD-1 mAb blocks interac-
tions between PD-1 and its ligands, PD-L1 and 
PD-L2, whereas anti-PD-L1 mAb blocks interac-
tions between PD-L1 and both PD-1 and CD80. 
PD-1 is expressed by activated CD4 +  and CD8 +  T 
cells, B cells, monocytes, and NKT cells. It has 
two ligands, PD-L1 and PD-L2, with distinct 
expression profi les. Expression of PD-L1 has 
been shown to be associated with poor prognosis 
in melanoma and hepatocellular carcinoma [ 64 , 
 65 ]. Notably, cytotoxic chemotherapeutics such 
as paclitaxel, etoposide, and 5-fl uorouracil have 
been shown to upregulate PD-L1 expression on 
breast cancer cells [ 66 ]. 

 There are currently six agents blocking the 
PD-1/PD-L1 pathway in clinical evaluation: 
MDX-1106/BMS-936558/ONO-4538 (fully 
human IgG4 from BMS), CT-011 (humanized 
IgG1 from CureTech/Teva), MK-3475 (human 
IgG4 from Merck), MPDL3280A/RG7446 (from 
Genentech), BMS-936559 (fully humanized 
IgG4), and AMP-224 (a B7-DC/IgG1 fusion pro-
tein licensed to GSK) [  www.clinicaltrials.gov    ]. 
Two phase I trials recently reported clinical 
responses with anti-PD-1 or anti-PD-L1 mAb in 
pretreated patients with diverse tumor types [ 67 , 
 68 ]. Anti-PD-1 mAb therapy was associated with 
objective responses in 18 % of patients with 
NSCLC (14 of 76 patients), 28 % of patients 
with melanoma (26 of 94 patients), and 27 % of 
patients with renal cell cancer (9 of 33 patients) 
[ 68 ]. Anti-PD-L1 mAb therapy was associated 
with objective responses in 17 % of patients with 
melanoma (9 of 52), 12 % of patients with renal 
cell cancer (2 of 17), 10 % of patients with 
NSCLC (5 of 49), and 6 % of ovarian cancer 
patients (1 of 17) [ 67 ]. Notably, anti-PD-1 and 
anti-PD-L1 mAb therapy caused drug-related 
grade 3 or 4 adverse events in 14 and 9 % of 
patients, respectively. Strikingly, in the context of 
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anti-PD-1 mAb therapy, objective responses 
occurred only in PD-L1 +  tumors (36 % response 
rate) compared to no clinical responses in PD-L1- 
negative tumors. 

 Recent safety and effi cacy data from the phase 
I/II study using another anti-PD-1 antibody 
called lambrolizumab have been published [ 69 ]. 
A total of 135 patients with advanced melanoma 
were treated in a dose escalation followed by 
cohort expansion. Common adverse events attrib-
uted to treatment were fatigue, rash, pruritus, and 
diarrhea, all of which were low grade, with hypo-
thyroidism, transaminitis, and pneumonitis also 
occurring (all grades, but <10 %). The confi rmed 
response rate across all dose cohorts (RECIST 
1.1) was 38 % (95 % confi dence interval [CI] 
25–44), with the highest response rate seen in the 
highest dose (10 mg/kg every 2 weeks). 
Responses were durable, with 81 % of patients 
who had a response (42 of 52) still receiving 
treatment (median progression-free survival was 
longer than 7 months). The majority of responses 
were seen at the time of fi rst imaging at 12 weeks. 
Some patients with stable disease at fi rst imaging 
also showed objective responses with further 
time, these being durable as well. Biopsies of 
regressing lesions revealed infi ltration by CD8 +  T 
lymphocytes, consistent with the mode of action 
of the drug. 

 Recently, Muenst et al. [ 70 ] investigated the 
prognostic value of PD-1 expression in human 
breast cancer TILs. Using IHC analysis of a tis-
sue microarray of 660 breast cancer cases, the 
study revealed that the presence of PD-1 expres-
sion on breast cancer TILs was associated with 
signifi cantly worse overall survival in luminal B 
and basal-like breast cancer, but not in luminal A 
or HER2 +  breast cancer. 

 PD-L1 expression using IHC has also been 
examined in breast cancer. Expression was found 
in the tumor but also in the surrounding TILs. 
Tumoral expression was associated with high 
histologic grade and ER negativity, whereas 
PD-L1 expression in TILs was associated with 
larger tumor size, HER2 positivity, and high his-
tologic grade [ 71 ]. Expression at the mRNA level 
is higher in breast cancer subtypes that are 
ER-negative and HER2-amplifi ed compared with 

ER-positive tumors (unpublished data). PD-L1 in 
TILs in breast cancer may also present an 
exhausted T cell response resulting from chronic 
antigen exposure, suggesting that TILs represent 
previous activation of antitumor immunity with 
subsequent suppression. This suppression may 
also be enhanced by the tumor.  

23.10.7     Combination of Checkpoint 
Inhibitors 

 While inhibition of a single immune checkpoint 
can prolong the survival of cancer patients, an 
important question that remains is whether com-
binatorial checkpoint blockade can be synergistic 
in promoting anticancer activity. The fi rst combi-
nation of immune checkpoint inhibitors to be 
tested in mice was the combination of anti-CTLA-
 4 and anti-PD-1 mAbs. Curran et al. [ 70 ] demon-
strated that blockade of CTLA-4 and PD-1 in 
mice allows CD8 +  and CD4 +  T cells to survive in 
the tumor microenvironment, proliferate, and 
carry out effector function. More recently, com-
bination of anti-CTLA-4 and PD-1 in metastatic 
melanoma showed impressive tumor regressions 
and durable responses providing proof-of- 
concept of this hypothesis. 

 More recently, TIM-3 has been identifi ed as 
another important inhibitory receptor expressed 
by exhausted CD8 +  T cells. In mouse models of 
cancer, it was shown that the most dysfunctional 
tumor-infi ltrating CD8 +  T cells actually co- 
express PD-1 and TIM-3 [ 72 ]. Based on these 
fi ndings, a direct comparison of the therapeutic 
activity of anti-CTLA-4, anti-PD-1, and anti-
TIM- 3 mAbs was made in various mouse models 
of cancer [ 73 ]. It was observed that the combina-
tion of anti-PD-1 and anti-TIM-3 mAbs had the 
most potent anticancer effect against well- 
established experimental and carcinogen-induced 
tumors. From a molecular point of view, a recent 
paper by Kuchroo and colleagues identifi ed Bat3 
as a key regulator of TIM-3 activity on T lympho-
cytes [ 74 ]. Bat3, through its binding to the intra-
cellular tail of TIM-3, prevents TIM-3- mediated 
cell death or exhaustion in T  lymphocytes. 
Interestingly, the authors demonstrated that Bat3 
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is highly downregulated in TIM-3 + /PD-1 +  TILs 
and that this downmodulation is associated with a 
decreased cytotoxic potential as revealed by a 
reduced secretion of IFN-γ and TNF-α. 

 In addition to its inhibitory role on CD8 +  T 
cells, TIM-3 has also been reported as a key 
regulator of nucleic acid-mediated antitumor 
immunity. In a very recent paper, TIM-3 was 
shown to be upregulated on tumor-associated 
dendritic cells (TADCs) extracted from both 
mouse and human tumors [ 75 ]. The authors 
identifi ed IL-10, VEGF-A, and arginase I as the 
main tumor- released immunosuppressive factors 
responsible for TIM-3 upregulation on TADCs. 
TIM-3 expression in TADCs was linked to an 
impaired nucleic acid-mediated innate immune 
response as revealed by a reduced secretion of 
cytokines such as IFN-β or IL-12. Accordingly, it 
was proven that anti-TIM-3 mAb therapy greatly 
enhanced the antitumor effi cacy of nucleic acid- 
based adjuvants in a B16F10 mouse melanoma 
model and that this synergistic activity depended 
on IFN-β and IL-12 secretion. More importantly, 
using a CD11c DTR mouse strain (in which 
CD11c can be depleted upon diphtheria toxin 
administration), it was demonstrated that TIM-3 
expression on TADCs (and not on CD8 T cells) 
was the main limit to the triggering of a nucleic 
acid-mediated antitumor immune response. From 
a mechanistic point of view, TIM-3 limited DC 
innate immune response in a HMGB1-dependent 
fashion, restraining the HMGB1-mediated trans-
port of nucleic acid into endosome and thus limit-
ing the activation of cytosolic sensors responsible 
for nucleic acid-mediated immune response. 
Finally, the authors extend the relevance of their 
study showing that TIM-3 mAb therapy strongly 
synergizes with standard chemotherapy in a sub-
cutaneous colon tumor model, which reinforces 
the rational for combining “immunogenic cell 
death” inducing chemotherapeutic agents with 
immune checkpoint inhibitors for cancer therapy. 

 LAG-3 is another recently identifi ed inhibi-
tory receptor that acts to limit effector T cell 
function and augment the suppressive activity of 
Tregs. Woo et al. [ 76 ] recently revealed that PD-1 
and LAG-3 are extensively co-expressed by 
tumor-infi ltrating T cells in mice and that 

 combined blockade of PD-1 and LAG-3  provokes 
potent synergistic antitumor immune responses 
against mouse models of cancer. These studies 
suggest that combined blockade of immune 
checkpoint inhibitors may represent a promising 
strategy for cancer immunotherapy.  

23.10.8     Agonistic of TNF Receptor 
Superfamily 

 Members of the TNF receptor superfamily also 
play an important role as regulators of T cell func-
tion [ 77 ]. Activation of these co-stimulatory recep-
tors may further enhance the generation of 
tumor-reactive T cells in the context of cancer ther-
apy. Co-stimulatory receptors of the TNF receptor 
family are composed of OX40 (CD134), 4-1BB 
(CD137), CD27, CD30, and HVEM. When acti-
vated, each of these receptors can enhance cytokine 
production and T cell proliferation in response to 
TCR signaling. OX40 and CD137 activation are 
particularly effective at allowing activated T cells 
to survive and proliferate in the late phase of 
immune responses. The administration of agonistic 
mAbs against OX40 or CD137 has been shown to 
enhance tumor immunity and induce regression of 
established mouse models of cancer [ 78 – 80 ]. 
Taken together, the use of agonists to co-stimula-
tory receptors or antagonists to inhibitory receptors 
may provide effi cient means to rescue or enhance 
the activity of tumor- reactive T cells.  

23.10.9     Blocking 
the Immunosuppressors 

 Targeting immunosuppression by soluble media-
tors is another attractive approach for cancer 
immunotherapy. A plethora of immunosuppressive 
factors has been associated with tumorigenesis, 
including TGF-β, indoleamine 2,3-dioxygenase 
(IDO), arginase, prostaglandin- E2 (PGE2), and 
extracellular adenosine [ 3 ]. Determining which 
immunosuppressive factors are minimally required 
for maintaining tumor tolerance in a given patients 
population remains a great challenge. Recent 
studies in mouse  models of cancer and clinical 
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 correlative studies suggest that IL-23 may be a key 
cytokine governing the balance between pro- and 
anti-tumorigenic immune responses [ 81 – 83 ]. In 
support of this model, mice genetically defi cient 
in IL-23 are signifi cantly protected against a wide 
range of malignancies, and mice treated with a 
blocking antibody against IL-23 have a decreased 
risk of tumor formation and a faster elimination of 
transplanted tumor cells [ 82 ]. 

 Enzymes that metabolize  l -arginine (such as 
arginase I), the tryptophan-catabolizing enzyme 
IDO, and enzymes that regulate extracellular 
adenosine levels (such as the ecto-nucleotidases 
CD39 and CD73) also signifi cantly contribute to 
the inhibition of anticancer immune responses 
[ 43 ,  84 ]. CD73 is at a critical checkpoint in the 
conversion of immune-activating ATP into 
immunosuppressive adenosine, making it a 
potential therapeutic target. Tumors often over-
express CD73 as a consequence of tissue hypoxia 
or, in the case of breast cancer, consequent to the 
loss of ER expression. CD73 expression on tumor 
cells and host cells (including FOXP3 +  Tregs) is 
a signifi cant contributor to immune escape. Given 
the promising results of anti-CD73 targeted ther-
apy in mice [ 43 – 45 ] and the prognostic impor-
tance of CD73 in TNBC [ 48 ], future studies 
aimed at translating this approach into the clinic 
are warranted. Inhibitors of IDO1 are also cur-
rently in phase I/II testing in metastatic breast 
cancer in combination with docetaxel (clinicaltri-
als.gov identifi er NCT 01792050)  

23.10.10     Adoptive T Cell Therapy 

 Another promising immunotherapy consists of 
the adoptive transfer of tumor-specifi c T cells. 
Work pioneered by the Rosenberg lab estab-
lished that autologous tumor-infi ltrating lym-
phocytes (TIL) can be isolated from primary 
tumors, expanded  ex vivo  and adoptively trans-
ferred back to patients following lymphodeple-
tion. For metastatic melanoma patients capable 
of withstanding treatment, TIL therapy combined 
to IL-2 is the best available option, with response 
rates ranging from 49 to 72 % [ 85 ]. TIL therapy, 
however, has not proven to be readily applicable 

in most clinical settings, and, to date, only mela-
noma patients have consistently demonstrated 
 favorable outcomes. 

 Building up from the successes of TIL therapy 
in melanoma patients, the past decade has seen 
an emerge of a novel form of adoptive cell ther-
apy based on the transfer of genetically engi-
neered T cells expressing a single-chain antibody 
structure fused to an intracellular T cell receptor 
signaling domain called chimeric antigen recep-
tor (CAR) [ 86 ]. The inclusion of CD28 and 
CD137 co-stimulatory signaling in the intracel-
lular domain of CAR has substantially improved 
their therapeutic effi cacy. The therapeutic poten-
tial of CAR-expressing T cells for treatment of 
Chronic lymphocytic leukemia (CLL) was 
recently revealed in a clinical study where infu-
sion of autologous T cell genes modifi ed to 
express a CD19-specifi c CAR induced complete 
regression of a patient with refractory disease 
[ 87 ]. In a breast cancer clinical trial, T cells 
genetically engineered to target HER2 +  tumors 
resulted in the death of patients presumably due 
to the cross- reactivity of CAR T cells with nor-
mal cells expressing low levels of HER2 [ 88 ]. 
CAR T cell therapy is also being investigated for 
treatment of TNBC. A search for tumor antigens 
associated with TNBC identifi ed mesothelin as a 
potential target antigen [ 89 ]. While mesothelin is 
rarely found expressed in ER +  or HER2 +  breast 
cancers, 67 % (29 out of 43) TNBC samples have 
been found to express mesothelin in at least 5 % 
of the tumor, with 19 % of TNBC samples 
expressing mesothelin in over 50 % of the tumor. 
In proof- of-concept experiments, it was shown 
that cytotoxicity of mesothelin-positive breast 
cancer cells can be successfully achieved by 
CAR T cells specifi c for mesothelin. While fur-
ther validation is needed, this study suggests that 
mesothelin might represent a valid target for 
adoptive T cell therapy of TNBC.   

23.11     Concluding Remarks 

 In conclusion, data have been presented 
here to demonstrate that  immunomodulatory 
approaches are worth investigating in  certain 
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types of breast cancer. Particularly, the 
ER-negative and HER2- amplifi ed breast 
 cancers seem to employ tumor- mediated immu-
nosuppression to facilitate their growth. This is 
evident by the large amount of preclinical and 
correlative data that associates immune infi l-
trates, cells, and signatures with prognosis and 
therapeutic effi cacy in ER -  and HER2 +  breast 
cancer, as well as demonstrating the effi cacy of 
T cell enhancement in combination with trastu-
zumab in HER2 +  disease. 

 The presence of TILs in primary breast tumors 
is intriguing and may identify a population most 
amendable to some immunomodulatory 
approaches, such as T cell checkpoint inhibition. 
Current data suggests that its evaluation is war-
ranted in clinical samples due to its association 
with improved prognosis. Further work will need 
to be done between pathologists to ensure repro-
ducibility and robustness of TILs measurement 
prior to widespread clinical implementation. 
Understanding why some patients have TILs at 
diagnosis and others do not could be critical to 
improved outcome in TNBC, which currently has 
a dearth of treatment options, as well as HER2 +  
disease. While TILs may not be able to mediate 
primary tumor regressions, this could be due to 
other reasons such as the effector response was 
too late, not durable, or too weak, particularly if 
the primary tumor is of a large size. Furthermore, 
it could be that the breast is a site that is not well 
served by the immune system (unlike sites such as 
lung or skin). However, the generation of immune 
memory in these patients may suppress the devel-
opment of microscopic metastatic cells at other 
sites. Further research is warranted to functionally 
delineate the key players in breast cancer in order 
to develop suitable immune therapies, as well as 
clinical trials evaluating immunocombination 
approaches in breast cancer.     
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24.1             Introduction 

 Allogeneic hematopoietic stem cell transplanta-
tion (HSCT) is often the last resort for treatment 
of patients with different malignant diseases as 
well as inherited immune disorders and autoim-
mune diseases, for example, leukemia, lym-
phoma, sickle cell anemia, and multiple sclerosis. 
A common complication is graft-versus-host dis-
ease (GVHD) which accounts for a major cause 
of morbidity and mortality after HSCT [ 1 ]. 
GVHD can occur whenever immunologically 
competent cells are transferred into an immune- 
incompetent recipient where they attack specifi c 
tissues of the host, mainly the gut, skin, and liver. 
This multistep infl ammatory response is directed 
against HLA disparities between donor and 
recipient and involves a network of cellular play-
ers which, after activation, release a surge of 
cytokines with detrimental effects for the patient. 

 Although the current management of GVHD 
starts already at the time of HSCT with preemp-
tive immunosuppression, this treatment cannot 
prevent the onset of GVHD in all patients. After 
diagnosis of GVHD, the immunosuppressive 
therapy is further intensifi ed. Different regimens 
contain steroids and calcineurin inhibitors which 
lead to the broad suppression necessary to stop 
the ongoing infl ammation. However, none of the 
drugs or combinations currently in use is com-
pletely effi cient in abrogating GVHD, but all 
increase the risk of life-threatening infections, 
sepsis, and recurrence of the underlying disease. 
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Novel strategies to prevent and treat GVHD 
therefore target more specifi c mechanisms in the 
pathogenesis of GVHD without affecting general 
immunity and if possible antitumor responses.  

24.2     GVHD 

 Not all patients have the same risk of developing 
GVHD. Apart from genetic differences in path-
ways involved in the pathogenesis, the main risk 
factors include the source and composition of the 
stem cells transferred, the degree of discrepancy 
for both major and minor histocompatibility anti-
gens (MHC/MiHA) between donor and recipient, 
the conditioning treatment, as well as the age of 
the recipient [ 2 ]. 

 Two separate forms of GVHD have been 
described with different implications for patients. 
Traditionally, acute GVHD is defi ned by the 
early occurrence within the fi rst 100 days after 
HCST, while the chronic form develops later. 
However, the preventive treatment with potent 
immunosuppressive drugs can complicate the 
diagnosis by delaying the onset of acute GVHD 
beyond this threshold. Still there are distinct 
histopathological characteristics of acute and 
chronic GVHD. While acute GVHD is mainly 
considered a TH1- and TH17-type infl ammatory 
condition [ 3 ] which is described in detail in the 
following paragraphs, chronic GVHD resembles 
more a TH2-infl icted autoimmune disease which 
often succeeds the acute form of GVHD. In addi-
tion to the organs involved in classical acute 
GVHD – skin, liver, and gut – also the lung, eyes, 
and mucous membranes are typically affected 
by chronic GVHD [ 4 ]. Several symptoms have 
been linked to autoantibodies [ 5 ,  6 ]. In general, 
chronic GVHD leads to an imbalance of the 
immune system with an increase in serious infec-
tions [ 7 ]. This has fundamental impact on the 
long-term management of patients. 

 Acute GVHD is usually diagnosed fi rst by 
skin lesions in the form of rashes that can develop 
into generalized erythroderma and bullous for-
mation in severe cases. The second organ affected 
by acute GVHD is the liver with patients present-
ing with jaundice and increased bilirubin levels. 

Differential diagnosis is important in these cases 
as these symptoms can also be caused by chemo-
therapy, immunosuppression, or infections. 
GVHD of the gut occurs with symptoms like 
cramps and diarrhea. Especially the latter can be 
severe and life-threatening due to immense loss 
of fl uids. All these manifestations require symp-
tomatic treatment in addition to suppressing the 
causative GVHD [ 2 ]. 

 According to the severity of symptoms in the 
organs affected, acute GVHD is graded into 
stages I–IV, with grade I only affecting the skin 
and grade IV showing severe manifestations in 
two or more organs [ 8 ].  

24.3     Pathogenesis of Acute GVHD 

 Acute GVHD is a multistep process that involves 
different cell types as well as soluble factors. 
Already in 1966, Billingham formulated three 
factors that defi ne the development of GVHD:
    1.    The graft contains immunocompetent cells 

which are able to elicit an allogeneic response.   
   2.    There are genetic difference between donor 

and recipient.   
   3.    The host is unable to reject the donor cells [ 9 ].     

 Three decades later, Ferrara described the 
pathogenesis of GVHD in three phases [ 10 ] 
(Fig.  24.1 ): The fi rst phase is induced by the con-
ditioning treatment that prepares the patient for 
HSCT and lays the ground for a general infl am-
mation. In phase II, allogeneic cells of the trans-
plant are activated in the host and migrate to the 
target tissues of GVHD. Here effector cells, 
mainly T cells and natural killer (NK) cells, exe-
cute their cytotoxic function in the third phase.  

24.3.1     Phase I: Conditioning 

 The fi rst phase of GVHD started already before 
the actual HSCT with the conditioning regime. 
This treatment depletes the patient’s own 
bone marrow cells to allow engraftment of the 
donor’s stem cells and prevent their rejection. It 
also aims at clearing any remaining pathological 
cells in the patient. The myeloablation is either 
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done by total-body irradiation or high-dose che-
motherapy. However, neither strategy is targeted 
and causes also injury to other tissues, particu-
larly the gut mucosa, skin, and liver. The dam-
aged cells in response secrete a massive amount 
of cytokines, especially interleukin (IL)-1, IL-6, 
interferon (IFN)-γ, and tumor necrosis factor 
(TNF)-α [ 11 ]. 

 Several polymorphisms for genes of these cyto-
kines have been associated with an increased risk 
for GVHD. While polymorphisms for TNF- α, 
IFN-γ, IL-6, IL-10, and a natural occurring IL-1 
receptor antagonist were associated with severity 
of acute GVHD [ 12 – 15 ], IL-6 also correlates with 
the incidence of chronic GVHD [ 16 – 18 ]. 

 Not only cytokines but also other danger sig-
nals contribute to the proinfl ammatory environ-
ment. One molecule that is released from dying 
cells and has been implicated in the pathogenesis 
of GVHD is ATP [ 19 ]. It can itself induce the 
secretion of the proinfl ammatory cytokines IFN- 
γ, TNF-α, and IL-6 and activate antigen- 
presenting cells (APC). Also the ATP receptor 
P2X7 is upregulated during GVHD, leaving cells 
more susceptible to the effects of ATP and creat-
ing a positive feedback loop. Thus, blocking of 
P2X7 as well as reduction of ATP concentration 
can improve GVHD symptoms. Even increased 
numbers of regulatory T (Treg) cells, which are 
known to control GVHD, are detected. Notably, 
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  Fig. 24.1    Pathogenesis of graft-versus-host disease 
( GVHD ) can be divided into three phases. In the fi rst 
phase, the host is conditioned by myeloablative treatment. 
This leads to tissue damage with the release of proinfl am-
matory cytokines and the danger signals LPS and 
ATP. The stem cell transplant induces phase II, when 
these molecules activate the transferred allogeneic donor 
cells. In phase III, donor NK cells, macrophages, and neu-
trophils directly attack host tissues by triggering apoptosis 
and releasing additional cytokines which leads to a cyto-

kine storm. Both host and donor APC in their turn activate 
T cells which then exert their cytotoxic activity causing 
the typical symptoms of GVHD. All three phases are tar-
geted by approaches to treat GVHD. Blocking antibodies 
against cytokines, co-stimulation molecules, and activa-
tion markers interfere with specifi c activation pathways of 
GVHD. Cell therapy with Treg cells, mesenchymal stem 
cells ( MSC ), and NK cells suppresses additional 
mediators       
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Treg cells are also one of the main populations 
expressing the ATP-hydrolyzing enzyme CD39 
on their surface [ 20 ] as they are particularly sen-
sitive to ATP [ 21 ]. 

 In the intestine, the tissue damage leads to the 
release of microbial lipopolysaccharides (LPS) 
which is recognized by Toll-like receptors (TLR) 
on APC. Polymorphisms in genes for several of 
these TLR, namely, TLR4, TLR7, and TLR9, were 
described to infl uence the incidence and severity of 
GVHD [ 22 – 24 ]. Furthermore, fl agellin, an agonist 
for TLR5, was able to reduce GVHD in a mouse 
model [ 25 ]. Although the TLR/APC axis undoubt-
edly plays an important role in the onset of GVHD, 
it also develops without intact TLR signaling [ 26 ]. 

 The presence this plethora of cytokines 
and danger signals present at these sites of 
acute infl ammation leads to the activation of 
APC. These comprise dendritic cells (DC), 
monocytes, macrophages, and B cells which 
present antigens to T lymphocytes and activate 
these. APC and other local cells upregulate the 
MHC (major histocompatibility complex) and 
co-stimulatory and adhesion molecules [ 27 ] and 
thereby set the stage for the next phase of GVHD.  

24.3.2     Phase II: Activation 

 The second phase is initiated when donor stem 
cells are transferred into this proinfl ammatory 
setting. They are attracted by the presence of 
cytokines, chemokines, and adhesion molecules 
at the sites of tissue injury. Here they come into 
contact with the activated host APC that present 
both MHC molecules and self-antigens. Any 
self-antigen derived from a protein that is differ-
ent between donor and recipient can give rise to 
minor histocompatibility antigens (MiHA). 
Allogeneic donor cells recognize disparities in 
MHC for HLA mismatched donor/patient pairs 
or in MiHA with their T-cell receptor (TCR) [ 28 ]. 
In addition, also non-hematopoietic host tissue 
cells [ 29 ,  30 ] and donor APC [ 31 ,  32 ] can be 
involved in the presentation of host antigens. As 
all of these cell types are involved in the presenta-
tion of alloantigens, targeting only one cell type 
is not suffi cient in abrogating GVHD [ 33 ,  34 ]. 

 In addition to TCR engagement, alloreactive 
T cells require co-stimulatory signals for their 
activation; these are also provided by activated 
APC. The main pathway for this co-stimulation 
involves the engagement of CD28 on T lympho-
cytes by its B7 ligands CD80 and CD86 on APC 
[ 35 ]. Also CD40 and its ligand CD40L play a 
role in providing positive co-stimulation for T 
cells [ 36 ]. 

 After activation by antigen recognition plus 
co-stimulation, allogeneic T cells differentiate 
into effector cells [ 37 ] and secrete TH1 cyto-
kines, mainly IFN-γ, IL-2, and TNF-α, as well as 
the TH17 cytokine IL-17 [ 38 ], and thereby exe-
cute phase III of GVHD.  

24.3.3     Phase III: Effector Phase 

 The clinical symptoms of acute GVHD are 
mainly caused by the action of T cells. It was 
shown that only the naïve pool of donor T cells is 
responsible for the development of GVHD but 
not transplanted effector and central memory T 
cells [ 39 ]. Other important cell subsets responsi-
ble for the tissue damage in the effector phase of 
GVHD are natural killer (NK) cells, macro-
phages, and neutrophils [ 40 ]. Also B cells were 
reported to play a role [ 41 ]. 

 Alloreactive CD8 +  T cells use two main mecha-
nisms for their cytotoxic action, both of which 
induce the activation of the caspase cascade in tar-
get cells by direct cell contact. One pathway induces 
the release of perforin and granzymes which trigger 
cell lysis [ 42 ]. The other mechanism requires 
engagement of the death receptor, Fas, with the Fas 
ligand (FasL) leading to apoptosis [ 43 ]. 

 Tissue damage is also induced indirectly by 
the cytokines present in abundance from the pre-
conditioning (TNF-α, IFN-γ and IL-1). 

 These cytokines themselves trigger the release 
of a surge of additional cytokines from allogeneic 
donor cells in a self-amplifying cycle that can 
lead to a cytokine storm [ 44 ] with deleterious 
effects on the patient. 

 TNF-α is the key cytokine involved in all three 
phases of the pathogenesis of GVHD [ 45 ]. It was 
reported as an independent predictor of GVHD as 
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it correlates with its severity, time of onset, and 
mortality when measured with the help of the sur-
rogate marker TNF receptor 1 (TNFR1). TNFR1 
binds TNF-α and is shed into the plasma where it 
can easily be measured [ 46 – 49 ]. Another member 
of the tumor necrosis factor receptor family, CD30, 
has been described as a marker for GVHD. Higher 
levels of CD30 were found both in plasma and on 
CD8 +  T cells of patients with acute GVHD [ 50 ]. A 
more comprehensive combination of the four bio-
markers IL-8, hepatocyte growth factor, TNFR1, 
and IL-2 receptor-α was suggested to predict the 
occurrence of GVHD [ 51 ].   

24.4     Natural Control of GVHD 

 Natural suppression of GVHD is conferred by 
Treg cells. These cells regulate both innate and 
adaptive immune responses and confer peripheral 
tolerance by suppressing activated T cells [ 52 , 
 53 ]. Their modes of action include a variety of 
mechanisms involving both soluble factors and 
direct cell-cell contact [ 54 ,  55 ]. In mouse models, 
depletion of Treg cells exacerbated GVHD, while 
infusion of these cells improved its outcome [ 56 , 
 57 ]. However, in the overwhelming infl ammation 
during GVHD, the balance of the immune system 
is grossly shifted toward the proinfl ammatory 
response and apparently leaves Treg cells insuffi -
cient. Nevertheless, Treg cells have been associ-
ated with the outcome of GVHD [ 57 ,  58 ]. Even 
specifi c markers in the transcriptome of Treg cells 
were able to predict both acute and chronic 
GVHD, among these were activation markers 
(PIP5Kγ, FAS, CD44, CD69), cyclins, and the 
transcription factor Eos which is important for the 
suppressive capacity of Treg cells [ 59 ].  

24.5     Graft-Versus-Tumor Effect 

 The undesirable graft-versus-host syndrome is 
closely intertwined with the graft-versus-tumor 
(GVT) response, which is part of the curative 
effect of stem cell transplantation especially 
in patients with malignancies. T cells from the 
graft not only recognize alloantigens but also 

tumor antigens and are thus able to act against 
leukemia or tumor cells that escaped the condi-
tioning regime. Also NK cells [ 60 – 62 ] and NKT 
cells were implicated in the GVT activity [ 63 ]. 
The greater the MHC mismatch between donor 
and patient, the stronger the GVT response is. 
This explains the advantage of allogeneic over 
autologous HSCT and the higher relapse rate of 
patients receiving HSCT from a related donor 
[ 1 ]. Especially after non-myeloablative pretreat-
ment of the patient, GVT is indispensable to clear 
any remaining malignant cell. The strong general 
immunosuppression as well as T-cell depletion to 
prevent GVHD also inhibits GVT [ 64 ]. Thus, the 
challenge is to fi nd a balance between the nega-
tive impact of GVHD and the positive effects of 
GVT. The incidence of GVHD is considered as 
an indication of an ongoing GVT activity and was 
shown to correlate with a reduced risk of relapse 
[ 65 ,  66 ]. An option to treat cancer relapse after 
HSCT is donor lymphocyte infusion which has 
a high risk of GVHD but also a highly effective 
GVT response [ 67 ]. 

 Approaches to separate GVHD from GVT are 
diffi cult as both share similar mechanisms. 
However, attempts are being made to interfere 
with differences in the organ-specifi c proinfl am-
matory environment, specifi c cells involved, and 
selective migration of effector cells to the target 
tissues [ 68 ].  

24.6     Prevention of GVHD 

 Without any preventive treatment, acute GVHD 
would occur in practically every patient receiving 
allogeneic HSCT. Even with preemptive general 
immunosuppression, acute GVHD is still a major 
complication after HSCT. The standard treatment 
includes corticosteroids, cyclosporine A, and 
methotrexate (MTX). The combination of these 
has proven to be most effective [ 2 ]. Most novel 
approaches for the treatment of GVHD discussed 
below are also tested for its prevention. 

 A non-pharmacological approach to prevent 
the occurrence of GVHD is depletion of T cells, 
either  ex vivo  from the graft or  in vivo . This deple-
tion can be achieved by different methods, like 
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anti-thymocyte globulin (ATG) or monoclonal 
antibodies (mAbs) directed against CD4, CD5, 
CD8, and/or CD52 (Campath/alemtuzumab) 
[ 69 ,  70 ]. Although depletion of lymphocytes was 
shown to reduce GVHD, it also increases the risk 
of graft rejection by the  recipient’s T cells and of 
recurrence of the underlying disease as also GVT 
responses are diminished. It needs to be shown 
whether the attempts to selectively deplete allo-
reactive T cells can provide a tool to reduce the 
incidence and severity of GVHD.  

24.7     Treatment of Acute GVHD 

 Even with these comprehensive measures of preven-
tion, between 10 and 50 % of patients still develop 
forms of GVHD severe enough to require additional 
treatment. The fi rst-line therapy remains administra-
tion of steroids, in particular methylprednisolone. 
However, the high doses necessary to abrogate the 
ongoing immune reaction lead to a generalized 
immunosuppression with the risk of opportunistic 
infections [ 2 ]. 

 Other routine medications like the calcineurin 
inhibitor cyclosporine A inhibit T-cell activation 
and block IL-2 transcription [ 71 ]. The macrolide 
antibiotic tacrolimus or FK-506 also interferes 
with IL-2 production [ 72 ,  73 ] but appears to have 
less toxic side effects [ 74 ]. A different pathway is 
targeted by mycophenolate mofetil, which inhib-
its activation and proliferation of lymphocytes by 
blocking their purine synthesis [ 75 ]. These stan-
dard drugs, even in combination, are not suffi -
cient for all patients and have serious side effects 
in addition to the immunosuppression [ 76 – 78 ]. 
Often renal and other toxicities limit their use. 

 Another approach is the depletion of T lym-
phocytes by the polyclonal anti-thymocyte glob-
ulin (ATG). A meta-analysis of six prospective 
randomized controlled trials found that ATG was 
able to lower incidence of grade II–IV GVHD 
with a stronger effect seen for rabbit compared to 
equine ATG but no impact on overall GVHD, 
survival, or relapse [ 79 ]. Higher doses of ATG 
can further decrease incidence of GVHD, but 
with a higher risk of serious infections [ 80 ]. A 
more recent study with a different ATG prepara-

tion could confi rm the reduction in GVHD and 
reported a reduction in tumor relapse and infec-
tions [ 81 ]. Also a reduction of chronic GVHD 
was reported [ 82 ]. 

 An interesting therapeutic modality is the 
extracorporeal photochemotherapy (ECP), a com-
bination of a photosensitizing drug with exposure 
to UVA light. This has been demonstrated to inac-
tivate lymphocytes although the mechanism still 
needs to be elucidated. However, in several clini-
cal trials, symptoms of both acute and chronic 
GVHD were improved without negatively affect-
ing GVT or relapse incidence [ 83 ,  84 ]. 

 Also statins were shown to have an immuno-
modulatory effect by reducing cytokine secretion 
and T-cell activation [ 85 ]. In a mouse model, they 
reduced GVHD incidence [ 86 ]. A correlation 
study in patients could attribute a decreased risk 
for acute GVHD to the use of statins by the donor 
[ 87 ]. The risk for chronic GVHD was diminished 
if the recipient took statins [ 88 ]. 

 A novel mechanism is targeted by the protea-
some inhibitor bortezomib which is approved for 
treatment of myeloma. In a mouse model, early 
administration promoted the apoptosis of allore-
active T cells and thus prevented acute GVHD 
[ 89 ]. These results could be corroborated in a 
small clinical trial which also suggested an 
improvement of immune reconstitution [ 90 ]. 
However, timing is crucial as delayed and contin-
ued administration enhanced GVT but also 
aggravated GVHD symptoms [ 89 ].  

24.8     Targeted Approaches 

 GVHD is well known as a multifactorial process 
with a variety of players involved, and most of these 
have been targeted in mouse models. However, not 
all could be transferred into clinical applications. 
Therefore, this chapter will focus on approaches for 
which clinical trials have been reported. 

24.8.1     Targeting Cytokines 

 One approach is targeting the cytokines involved 
in the pathogenesis of GVHD. Best studied is 
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TNF-α, a cytokine implicated in all three stages 
of GVHD. Antibodies against TNF-α or other 
neutralizing reagents are used routinely to treat 
infl ammatory autoimmune disease. One of them, 
etanercept, is a TNF-α receptor 2 fusion protein 
that competes for binding with TNF-α. In com-
bination with steroids, it elicited good response 
rates in two studies without increased incidence 
of infections or relapse [ 91 ,  92 ]. The neutralizing 
TNF-α antibody, infl iximab, showed effi cacy in 
several studies, although this was accompanied 
by a high incidence of infections [ 93 – 97 ]. This 
can be attributed to the ability of infl iximab to 
additionally deplete monocytes and macrophages 
that present membrane bound TNF-α [ 98 ]. 
However, it needs to be noted that none of the 
antibodies was superior to steroids alone [ 99 ]. 

 Another critical cytokine in GVHD is IL-2. Its 
receptor α-chain, CD25, is upregulated on acti-
vated CD4 +  T cells. IL-2 is indispensable for the 
survival and proliferation of these cells. 
Therefore, CD25 is an interesting molecule to 
specifi cally target effector T cells. A monoclonal 
CD25 antibody, daclizumab, proved to be effi -
cient in fi rst clinical trials [ 100 ,  101 ]. However, a 
larger multicenter trial was halted due to lower 
survival in the daclizumab arm [ 102 ]. This could 
be due to the fact that Treg cells constitutively 
express high CD25 levels and could be preferen-
tially depleted by the antibody. Treg cells are able 
to control GVHD by conferring tolerance after 
HSCT [ 103 ], and the depletion of benefi cial Treg 
cells might outweigh the positive effects of deple-
tion of effector T cells. 

 The receptor for IL-6 has been targeted by the 
mAb tocilizumab and could improve GVHD by 
shifting the balance of the immune response from 
proinfl ammatory effector cells toward the sup-
pressive Treg cells [ 104 ]. The fi rst clinical studies 
in patients with steroid refractory GVHD have 
promising results [ 105 ].  

24.8.2     Targeting Co-stimulation 

 Specifi city for the allogeneic responses in GVHD 
can be achieved by interfering with the activation 
of effector cells. Apart from engagement of the 

T-cell receptor by alloantigens, co-stimulation is 
essential for T cells to become activated and to 
prevent anergy and apoptosis. 

 The main co-stimulatory molecules expressed 
on T cells are the activating CD28 and its inhibi-
tory counterpart CTLA4 (cytotoxic T-lymphocyte 
antigen 4). Their B7 ligands, CD80 and CD86, 
are provided by APC. But blocking the CD28-B7 
axis affects not only the co-stimulation but also 
the inhibition pathway affecting Treg cells and 
thus exacerbating GVHD. Instead, one trial tar-
geted CTLA4-mediated inhibition in a small 
group of patients and showed low incidence of 
GVHD. However, the procedure requires cocul-
turing of donor and patient cells in the presence 
of a CTLA4-immunoglobulin fusion protein to 
induce tolerance of alloreactive donor cells and 
thus is not feasible for a larger cohort of patients 
[ 106 ]. Abatacept, a CTLA4-immunoglobulin 
fusion protein that acts  in vivo , has shown effi -
cacy in autoimmune disease [ 107 ] but has yet to 
be tested in GVHD. 

 The second important co-stimulatory pathway 
CD40/CD40L can be blocked by an antibody 
directed against CD40L. This was able to reduce 
GVHD and has a benefi cial effect on Treg cells 
[ 108 ]. Unfortunately, clinical studies with a 
CD40L antibody had to be halted due to serious 
thrombotic side effects [ 109 ].  

24.8.3     Targeting Cell Subsets 

24.8.3.1     B Cells 
 The role of B cells in the pathogenesis of 
GVHD is not yet fully understood. They play an 
important role not only in the humoral immune 
response but also act as antigen-presenting cells 
and produce cytokines, thereby modulating 
GVHD [ 41 ]. Treatment of B-cell malignancies, 
one indication for HSCT, includes depletion of B 
cells with the mAb rituximab. In one study, high 
doses of rituximab given before HSCT were cor-
related with a reduced incidence of acute GVHD 
[ 110 ]. However, these fi ndings could not be con-
fi rmed by all studies [ 111 – 114 ]. Also the effect 
of rituximab on chronic GVHD is controversial 
as two studies showed a decrease in the incidence 
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of chronic GVHD [ 111 ], while one group even 
reported an increase. However, this was blamed 
on additional donor lymphocytes given to a 
 subset of these patients [ 112 ,  115 ]. In summary, 
it seems that B-cell depletion with high doses of 
rituximab prior to HSCT is effective and does 
not affect engraftment, although it delays B-cell 
recovery [ 41 ].  

24.8.3.2     NK Cells 
 A novel strategy to treat GVHD is the adoptive 
transfer of immune cells. Natural killer (NK) 
cells are one of the main effectors of GVHD and 
GVT. Therefore, they were successfully used in 
clinical trials to treat patients suffering from can-
cer relapse [ 116 – 118 ]. Surprisingly, in addition 
to promoting GVT, they were also able to abro-
gate GVHD [ 119 ,  120 ] and improved engraft-
ment [ 62 ] by killing recipient APC which are 
implicated in the induction of GVHD [ 121 ]. The 
benefi cial effect of NK cells is most profound in 
an unrelated donor/recipient setting [ 122 ].  

24.8.3.3     Mesenchymal Stem Cells  
 The most straightforward approach of cell therapy 
is the adoptive transfer of inhibitory cells that are 
able to suppress the ongoing infl ammatory process. 
One subset suggested for this strategy is mesenchy-
mal stem cells (MSC). This immunomodulatory 
cell type can induce a tolerogenic phenotype in 
other immune cells [ 123 ,  124 ] and increase Treg 
numbers [ 125 ]. As they act in an MHC-independent 
manner and do not induce alloreactive responses, 
they were considered an ideal target for cell therapy 
[ 126 ]. MSC could indeed inhibit GVHD in one 
mouse model [ 127 ]. But although another model 
could confi rm the suppressive function of MSC, no 
effect on GVHD was observed [ 128 ]. A canine 
GVHD model was also unable to detect any benefi t 
of treatment with MSC [ 129 ]. Several small clini-
cal trials confi rmed that MSC can improve GVHD 
[ 130 – 132 ] with pediatric patients in general 
responding better to the treatment. However, a 
large phase III trial failed to show any benefi t of 
MSC transfer in GVHD patients. Further studies 
need to demonstrate whether optimizing the dos-
age and timing of treatment with MSC can provide 
more reliable data [ 133 ].  

24.8.3.4     Treg Cells 
 Treg cells are the main suppressors of the 
immune system and have been implicated in 
the control of GVHD. Transfer of Treg cells can 
rescue GVHD while maintaining the GVT effect 
[ 56 ,  134 ,  135 ]. The main problem for employ-
ing Treg cells for clinical application is that their 
only lineage- specifi c marker, the intracellular 
transcription factor FoxP3 [ 136 ], cannot be used 
for isolation of live cells. Thus, Treg cells have 
to be selected by surrogate surface markers. First 
studies used expression of CD25 for enrichment 
[ 137 ]. Although Treg cells express high levels 
of CD25, also activated T-effector cells upregu-
late CD25 and are thus indistinguishable from 
their regulatory counterparts. Nevertheless, the 
fi rst phase I clinical trial was performed with 
cells from apheresis blood that were positively 
selected for CD25 after depletion of CD19+ B 
cells. This study with nine patients confi rmed 
that adoptive transfer of these Treg cells is safe 
and feasible [ 138 ]. Another group used a similar 
approach to isolated Treg cells. These cells were 
administered as sole prevention measure against 
GVHD in 28 patients with high-risk malignan-
cies who had received HLA-haploidentical 
HSCT. In these patients, a reduction in GVHD 
and CMV reactivation without loss of GVT was 
reported [ 139 ]. 

 Another approach is the isolation of Treg cells 
not from adults but from umbilical cord blood. 
As those T cells are mainly in an antigen inexpe-
rienced naïve state, the majority remains CD25 
negative [ 140 ]. Thus, selection of CD25-positive 
cells yields a relatively pure population of Treg 
cells. The drawback of the usage of cord blood 
is the low number of cells available in one unit. 
Therefore, the isolated cells were expanded to 
obtain suffi cient numbers. Transfer of these cord 
blood-derived Treg cells into patients who had 
previously received a transplant of cord blood 
stem cells resulted in a reduction in GVHD inci-
dence [ 141 ]. However, the low yield of Treg 
cells from umbilical cord blood and the need for 
cell expansion make the application for a larger 
patient cohort challenging. 

 The report that the IL-7 receptor, CD127, is 
expressed on all effector T cells but Treg cells 

D. Haase



479

lack its expression [ 142 ] suggested a different 
strategy for isolation. Depletion of CD127- 
expressing cells followed by positive selection 
of CD25 cells yields functionally suppressive 
Treg cells. In a case study, these cells were 
expanded and transferred into one patient with 
acute and one with chronic GVHD. In both, 
symptoms of GVHD improved at least tran-
siently [ 143 ]. 

 Combination with a second marker that is 
selectively absent on Treg cells, namely, 
CD49d, the α-chain of the integrin VLA-4, 
allows the isolation of untouched Treg cells. 
Single-step depletion of all CD127- and 
CD49d-expressing cells yields highly pure 
functional Treg cells [ 134 ]. A trial using these 
cells is in preparation. 

 Apart from adoptive transfer of Treg cells, 
several attempts have been made to target these 
cells  in vivo . The cytokine IL-2 is indispensible 
for the function and survival of these cells, and 
they express high levels of its receptor CD25. 
This distinguishes them from CD4 effector cells 
which only after activation upregulate CD25. 
However, they require much higher concentra-
tions of IL-2 than Treg cells. To exploit this dif-
ference, in two human trials, patients were treated 
with low-dose IL-2. Both studies detected 
increased numbers of Treg cells [ 144 ], and in one 
of them, symptoms of chronic GVHD were alle-
viated [ 145 ]. 

 Treg and T-effector cells also use different sig-
naling pathways. Sirolimus or rapamycin is an 
immunosuppressant that blocks the mammalian 
target of rapamycin (mTOR) and thereby cyto-
kine secretion of T cells. Treg cells instead signal 
via STAT3 and STAT5 after activation and are 
spared from the suppressive effect of sirolimus. 
Some reports even fi nd a preferential expansion 
of Treg cells in its presence [ 146 ,  147 ]. Clinical 
trials have confi rmed the effi cacy of sirolimus to 
prevent GVHD although toxicities limit its usage 
[ 148 ,  149 ]. 

 A combination of sirolimus and IL-2 was 
reported as particularly effi cient in promoting 
Treg cells by enhancing proliferation of natural 
Treg cells and conversion of induced Treg cells in 

a mouse model [ 150 ], but clinical data are still 
pending.    

24.9     Concluding Remarks  

 Hematopoietic stem cell transplantation is often the 
last resort for patients with malignancies although 
the long-term outcome is still disappointing. One 
major complication is GVHD, a fulminant infl am-
matory response that is diffi cult to treat with con-
ventional immunosuppression. New approaches 
target the different pathways involved in 
GVHD. Results of fi rst clinical trials are promis-
ing, but no therapy is effi cient for all patients. 
Heterogeneous patient cohorts and concomitant 
treatments make it diffi cult to compare results from 
different studies. The networks involved in the 
pathogenesis of GVHD are complimentary, and it 
is unlikely that targeting only one pathway will be 
suffi cient. It is also possible that certain pathways 
are more important in one patient group than in 
others. In addition, genetic differences contribute 
to this heterogeneity and might be responsible for 
discrepancies observed in many trials. A more 
thorough selection of patients for specifi c therapies 
might give clearer results in the future. It might also 
prove helpful to identify relevant pathways to pro-
vide a more tailored therapy for individual patients 
which would not only improve effi cacy of the ther-
apy but also help to reduce side effects which are a 
huge problem with current medications. An addi-
tional challenge is to specifi cally prevent GVHD 
without affecting general immunity and the GVT 
effect. Eventually, combination of different thera-
peutic strategies and more individualized treatment 
of patients could improve the outcome and there-
fore boost the success story of HSCT.     
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