

Springer Series in Advanced Manufacturing

Other titles in this series

Effective Resource Management in Manufacturing Systems:
Optimization Algorithms in Production Planning
Caramia and Dell’Olmo

Advances in Design
H.A. ElMaraghy and W.H. ElMaraghy (Eds.)

Condition Monitoring and Control for Intelligent Manufacturing
Wang and Gao (Eds.)
Publication due: January 2006

Brahim Rekiek and Alain Delchambre

Assembly Line Design
The Balancing of Mixed-Model Hybrid
Assembly Lines with Genetic Algorithms

With 95 Figures

123

Brahim Rekiek
Alain Delchambre

Université Libre de Bruxelles
CAD/CAM Department
50 av. F. D. Roosevelt
CP 165/14 1050 Brussels
Belgium

Series Editor:
Professor D. T. Pham
Intelligent Systems Laboratory
WDA Centre of Enterprise in
Manufacturing Engineering
University of Wales Cardiff
PO Box 688
Newport Road
Cardiff
CF2 3ET
UK

British Library Cataloguing in Publication Data
Rekiek, Brahim

Assembly line design : the balancing of mixed-model hybrid
assembly lines with genetic algorithms. - (Springer series
in advanced manufacturing)
1. Assembly-line methods 2. Genetic algorithms
I. Title II. Delchambre, A.
670.4’2

ISBN-10: 1846281121

Library of Congress Control Number: 2005933477

Springer Series in Advanced Manufacturing ISSN 1860-5168
ISBN-10: 1-84628-112-1 e-ISBN 1-84628-114-8 Printed on acid-free paper
ISBN-13: 978-1-84628-112-9

© Springer-Verlag London Limited 2006

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the infor-
mation contained in this book and cannot accept any legal responsibility or liability for any errors or
omissions that may be made.

Printed in Germany

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springeronline.com

This book is dedicated to my parents,
to my wife Aaida, and

to my children Saad and Inas.

Dr B. Rekiek

Foreword

This new book ‘Assembly Line Design’ by Dr Brahim Rekiek and Professor
Alain Delchambre is an important contribution in this domain. Its interest is
in an integrated approach to the preliminary design of assembly lines (ALs).
This approach is based on the grouping genetic algorithm (GGA), where the
logical layout (LL) is designed to consider all the constraints and specifici-
ties of real-life manual and hybrid multi-product ALs. The LL is defined as
the balancing and the resource planning. In addition, a new approach based
on multi-objective GGAs is developed which includes the branch-and-cut al-
gorithm combined with a multi-criteria decision-aid method. In this book,
the logical and physical layouts are treated simultaneously. First, tasks (that
perform activities) are grouped together in workcentres. Second, tasks are as-
signed to stations. The new concept of ‘balance for operation’ is introduced
to deal with the changes during the operation phase of ALs. This concept
permits one to treat balancing and scheduling at the design stage.

The authors have a great experience in practical AL design and balanc-
ing. Their scientific publications are well known and widely cited. Undeniably,
this new book offer new vision and perspectives for development of industrial
research and engineering methods for AL design. It provides a systematic
analysis, efficient engineering concepts, and techniques to handle this design
problem. It is a pleasure to foreword this excellent book as an important
source for researcher, industrial engineer, faculty staff and graduate students
in industrial engineering, management science, operations research and me-
chanical engineering.

Professor Alexandre Dolgui
Ecole des Mines de Saint Etienne, France

May, 2005

vii

Preface

The design process is traditionally a time-consuming and an iterative busi-
ness. First, a preliminary design is created, analysed, and then experimented
to determine its quality. The process of search and evaluation is repeated un-
til the design is viewed as being acceptable. Computer-aided design (CAD)
software, simulation and analysis tools are widely used today. In contrast,
automatic design techniques are less common. The recent success in design
is due to the adaptive search techniques, in particular the genetic algorithms
(GAs). GAs are powerful and broadly applicable stochastic search and opti-
misation techniques. They are the most widely known kind of evolutionary
computation methods.

Assembly lines (ALs) are production systems composed of a succession of
stations, connected by a conveyor, performing a set of tasks on the product
passing through them. A production workshop can be set up following various
topologies (e.g. lines, cells, combination of several lines, etc.) The line layout
problem is composed of a logical and physical layout. The logical layout is de-
fined as the AL balancing (ALB) and the resource planning (RP) problems.
The ALB is used for manual ALs and it aims to balance loads of stations. For
hybrid ALs (manual, robotic and automatic tasks), RP assigns resources to
tasks and assigns tasks to stations. The physical layout determines the space
requirements taking into account station dimensions, material storage, etc.
The aim is to minimise the total cost of the line by integrating design (space,
cost, etc.) and operation issues (cycle time, precedence, availability, etc.).

AL design (ALD) problems often have a complex structure due to multiple
components (e.g. tooling, material handling facility, line efficiency, cost, im-
balance, reliability, stations space, etc.). A number of design alternatives may
exist. The problem can easily become unmanageable if the designer has to
consider all these alternatives. Thus, many practical search and optimisation
problems are considered as multiple objective problems (MOPs) and require
a compromise among conflicting objectives. Since it is impossible to replace

ix

x Preface

designers experience and creativity, it is important to support them with a
set of tools to investigate and propose solutions. Using this information, the
designer tests some alternatives and makes his decisions. Owing to the diffi-
culty of ALD problems, metaheuristics are often used.

In applying GAs to solve MOPs one has to deal with the twin issues of
searching a large and complex solution space and at the same time dealing
with multiple and conflicting objectives. Selection of a solution from a set of
possible solutions on the basis of several criteria is considered as a difficult
task. Some methods reduce the problem to a mono-criterion one (weighted-
sum approach). Other studies adopted the Pareto-based GA technique. The
main drawback of Pareto approaches is the number of solutions the decision
maker (DM) has to choose among them. The user cannot easily decide among
more than a few solutions.

We present a new multiple objective grouping GA (MO-GGA) which is
based on the GGA and multi-criteria decision-aid (MCDA) method called
PROMETHEE II. The GA iteratively samples the trade-off surface (Pareto)
while the MCDA method narrows the search. The choice of a solution over the
others requires knowledge of the problem. It is the task of the DM to adjust
the weights for guiding the algorithm to find good solutions. Optimising a set
of objectives has the advantage of producing a single solution, without any
further interaction by the DM.

In order to deal with line balancing, a new algorithm called ‘equal piles’
for ALs based on the so-called ‘boundary stones’ is introduced. The hard con-
straint is the fixed number of stations (piles) and the aim is to find the best
balanced assembly system. In the case of the RP, the aim is to select equipment
to carry out the assembly tasks. We present a new method which is based on
the MO-GGA, the branch-and-cut algorithm followed by the MCDA method.
To deal with the changes during operation phase of ALs, a new concept of
balance for operations is introduced. The balancing of ALs is mostly uncou-
pled from the facility layout problem which yields sub-optimal line layouts.
An iterative procedure is proposed to treat the two problems partially at the
same time. First, tasks that perform similar activities are grouped together in
a workcentre. Then, for each workcentre, tasks are assigned to stations. The
main concern of this approach is the quality of the resulting line in terms of
balancing and its suitability to the material flow requirements of the produc-
tion system.

The last part of this book is dedicated to an integrated method of designing
ALs. The software OptiLine is developed at the CAD/CAM Department of
the Université Libre de Bruxelles, Belgium.

Acknowledgements

Several people contributed to this work. Many thanks to Dr E. Falkenauer,
Dr F. Pellichero, Dr P. De Lit, A. Rekiek, Dr H.A. Saleh and Dr O. Bouhali.

Special thanks to Professors A. Dolgui (Ecole des Mines de Saint Etienne,
France), P. Gaspart (Université Libre de Bruxelles, Belgium), J.-M. Henri-
oud (Laboratoire d’automatique de Besanon, France), B. Raucent (Univer-
sité Catholique de Louvain, Belgium), and B. Mareschal (Université Libre de
Bruxelles, Belgium) for their fruitful comments.

Our thanks to Dr E. Falkenauer, General Manager of the Optimal Design
company. He provided us a real-world case study illustrating the concepts de-
scribed in this book. The case study has been optimised using the OptiLine

software package which has been developed by Optimal Design.

The financial support of the Région Wallonne through a project entitled
CISAL is acknowledged. My thanks to the Université Libre de Bruxelles, Bel-
gium, especially to the staff of Service de Mécanique analytique et CFAO.

To our families with ultimate respect and gratitude for their continuous
support. Many thanks also to the many interested readers of our research pa-
pers for some stimulating discussions at conferences, workshops and over the
Internet.

Dr B. Rekiek
Professor A. Delchambre

xi

Contents

Part I Assembly Line Design Problems

1 Designing Assembly Lines . 3
1.1 Introduction . 3
1.2 Assembly Line Design . 3
1.3 Designing or Optimising? . 5
1.4 Layout of the Book . 6

2 Design Approaches . 7
2.1 Introduction . 7
2.2 Why the Design is Difficult? . 8
2.3 Design and Search Approaches . 8
2.4 The Gap Between Theory and Practice . 8

2.4.1 Input Data . 9
2.4.2 Multiple Objective Problem . 9
2.4.3 Variability . 9
2.4.4 Scheduling . 9
2.4.5 Layout . 10

2.5 About the Quality of a Design . 10
2.6 Assembly Line Design Evolution . 10

3 Assembly Line: History and Formulation 13
3.1 Introduction . 13
3.2 Evolution of Today’s Manufacturing Issues 13

3.2.1 First Metals . 13
3.2.2 Carpenters and Smiths . 13
3.2.3 Cottage Industries . 14
3.2.4 Factory System . 14
3.2.5 Mass Production . 14
3.2.6 Computers in Manufacturing . 15

3.3 Assembly Line Systems . 15

xiii

xiv Contents

3.4 Notation and Definitions . 16
3.5 Assembly Line Balancing Problems . 19

3.5.1 Assembly Line Models . 19
3.5.2 Variability of Tasks Process Time 20
3.5.3 Line Configuration . 21
3.5.4 Additional Constraints . 23
3.5.5 Assembly Line Design Problems . 25

3.6 Why is the Balancing Problem Hard to Solve? 27

Part II Evolutionary Combinatorial Optimisation

4 Evolutionary Combinatorial Optimisation 31
4.1 Introduction . 31
4.2 System Organisation . 31
4.3 How Do Genetic Algorithms Work? . 32

4.3.1 Representation . 33
4.3.2 Initialisation of the Population . 34
4.3.3 Sampling Mechanism . 35
4.3.4 Genetic Operators . 36

4.4 Landscapes and Fitness . 38
4.5 Population . 38
4.6 Simple... but it Works! . 38

5 Multiple Objective Grouping Genetic Algorithm 39
5.1 Introduction . 39
5.2 Multiple Objective Optimisation . 39
5.3 The State of the Art . 40

5.3.1 The Use of Aggregating Functions 41
5.3.2 Non-Pareto Approaches . 41
5.3.3 Pareto-based Approaches . 42
5.3.4 Preferences and Local Search Methods 42
5.3.5 Constrained Problems. 43

5.4 Grouping Problems and the Grouping Genetic Algorithm 44
5.4.1 Encoding Scheme . 44
5.4.2 Crossover Operator . 45
5.4.3 Mutation Operator . 46
5.4.4 Inversion Operator . 46

5.5 Multiple Objective Grouping Genetic Algorithm 46
5.5.1 Control Strategy . 47
5.5.2 Individual Construction Algorithm 48
5.5.3 Overall Architecture of the Evolutionary Method 48
5.5.4 Branching on Populations . 49

5.6 The Detailed Example . 51

Contents xv

Part III Assembly Line Layout

6 Equal Piles for Assembly Line Balancing 59
6.1 Introduction . 59
6.2 The State of the Art . 59

6.2.1 Exact Methods . 59
6.2.2 Approximated Methods . 61

6.3 Equal Piles for Assembly Line Balancing 62
6.3.1 Motivation and Inspiration From Nature 63
6.3.2 Input Data . 64
6.3.3 Customising the Grouping Genetic Algorithm to the

Equal Piles Assembly Line Problem. 64
6.3.4 Experimental Results . 69

6.4 Extension to Multi-product Assembly Line 71
6.4.1 Multiple Objective Problem . 71
6.4.2 Overall Architecture . 72

7 The Resource Planning for Assembly Line 77
7.1 Introduction . 77
7.2 The State of the Art . 78
7.3 Dealing with Real-world Hybrid Assembly Line Design 79

7.3.1 Cost . 79
7.3.2 Process Time . 80
7.3.3 Availability . 82
7.3.4 Station Space . 83
7.3.5 Incompatibilities Among Several Types of Equipment . . 84

7.4 Input Data . 84
7.5 Overall Method . 85

7.5.1 Distributing Tasks Among Stations 85
7.5.2 Selecting Equipment . 86
7.5.3 Heuristics . 89
7.5.4 Dealing with a Multi-product Assembly Line 90
7.5.5 Complying with Hard Constraints 91

7.6 Application of the Method . 92

8 Balance for Operation . 93
8.1 Introduction . 93
8.2 Multi-product Assembly Line . 93
8.3 The State of the Art . 94

8.3.1 Classical Methods . 94
8.4 Heuristics . 95
8.5 Ordering Genetic Algorithm . 95

8.5.1 Algorithm . 95
8.5.2 Heuristics . 97

xvi Contents

8.6 Balance for Operation Concept . 99
8.6.1 Non-fixed Number of Stations . 100
8.6.2 Fixed Number of Stations . 102

Part IV The Integrated Method

9 Evolving to Integrate Logical and Physical Layout of
Assembly Lines . 105
9.1 Introduction . 105
9.2 The State of the Art . 105
9.3 Assembly Line Design . 106
9.4 Integrated Approach . 106

9.4.1 Development of the Interactive Method 108
9.4.2 Global Search Phase . 115

9.5 Application . 116

10 Concurrent Approach to Design Assembly Lines 121
10.1 Introduction . 121
10.2 Concurrent Approach . 121
10.3 Assembly Line Design . 122

10.3.1 Data Preparation Phase . 123
10.3.2 Optimisation Phase . 124
10.3.3 Mapping Phase . 124

10.4 Case Studies . 124
10.4.1 Assembly Line Balancing Application: Outboard Motor 125
10.4.2 Resource Planning Application: Car Alternator 128

11 A Real-world Example Optimised by the OptiLine Software137

12 Conclusions and Future Work . 145
12.1 We Attained... 145
12.2 Tendencies and Orientations . 145
12.3 Data Collection . 146
12.4 Model Formulation . 146
12.5 Validation and Output Analysis . 146
12.6 The Proposed Approach . 147

References . 149

Index . 159

List of Abbreviations

AI Artificial intelligence
AL Assembly line
ALB Assembly line balancing
ALD Assembly line design
B&B Branch and bound
B&C Branch and cut
BD Balance delay
BFO Balance for operation
BPP Bin packing problem
CAD Computer aided-design
CE Concurrent engineering
CISAL Outils d’aide à la conception interactive des produits

et de leur ligne d’assemblage
CM Cellular manufacturing
COP Combinatorial optimisation problem
CS Capacity supply
DFA Design for assembly
DM Decision maker
DP Dynamic programming
E Line efficiency
EPALP Equal piles for assembly line problem
ES Evolutionary strategies
FABLE Fast algorithm for balancing line effectively
FFD First fit decreasing
FG Functional group
GA Genetic algorithm
GC Goal chasing method
GGA Grouping genetic algorithm
GT Group technology
HAL Hybrid assembly line
I Line idle time

xvii

xviii List of Abbreviations

IB Imbalance
ICA Individual construction algorithm
JIT Just in time
LL Logical layout
LP Linear programming
MAL Manual assembly line
MCDA Multi-criteria decision-aid
ML Model launching
MOALBP Multiple objective ALBP
MOB-ES Multiple objective evolution strategy
MOEA Multiple objective evolutionary algorithm
MOGLS Multiple objective genetic local search
MOGA Multiple objective genetic algorithm
MOGGA Multiple objective grouping genetic algorithm
MOP Multiple objective problem
MPAL Multi product assembly line
MWkCALB Multiple workcentres ALBP
NPGA Niched pareto genetic algorithm
NSGA Non-dominated sorting genetic algorithm
OGA Ordering genetic algorithm
OMT Operating modes and techniques
OV Ordering variants
OX Order crossover
PBX Position based crossover
PG Precedence graph
PL Physical layout
PMX Partially mapped crossover
PROMETHEE Preference ranking organisation Method

for Enrichment evaluations
PSGA Problem space genetic algorithm
RD-MOGLS Random directions multiple objective genetic local search
RP Resource planning
RPW Ranked positional weight
RRPW Reversed ranked positional weight
RWS Roulette wheel selection
SA Simulated annealing
SALBP Simple ALBP
SMCT Scheduling method choice tool
SPAL Simple assembly line balancing
SPEA Strength pareto evolutionary algorithm
ST Station time
SX Smoothness index (SX)
TALB Tree assembly line balancing
TS Tabu search
TVR Time variability ratio
VEGA Schaffer’s vector evaluated GA

Part I

Assembly Line Design Problems

1

Designing Assembly Lines

1.1 Introduction

Many attempts have been made in the last few years to investigate the use of
semi-automatic methods of design as human design is time consuming. The
term design implies a systematic planning processes prior to the execution of
a plan in order to solve problems. Design is distinguished from other forms
of planning by the level of precision used, expertise and care. It involves the
consideration of many factors that may affect or be affected by the execution
of a given plan. Many designers have the impression that the design is a ‘cut-
and-paste from old design’ activities. This is not the case, as the creativity
has a major role in design.

Assembly lines (ALs) are the most commonly used method in a mass pro-
duction environment. They allow the assembly of products by workers with
limited training and by dedicated machines and/or by robots. The main objec-
tive of assembly systems is to increase the efficiency of the line by maximising
the ratio between throughput and cost. AL design (ALD) involves the design
of products, processes and plant layout before the construction of the line
itself. These different modules interact at the different stages of ALD [35].
The product analysis proposes a product design review based on the classical
d̀esign for assembly’ (DFA) rules and precedence constraints between tasks.
The operating modes and techniques module proposes an assembly technique
and the possible modes (manual, automated, robotic) for each task. The line
layout (LL) module assigns tasks to a set of stations and decides on the po-
sition of stations and the resources on the plant floor (Figure 1.1).

1.2 Assembly Line Design

The design of efficient assembly workshops is a problem of considerable in-
dustrial importance. ALs are production systems composed of a succession of

3

4 Assembly Line Design

Product
analysis

Operating
modes &

techniques

Transfer select
&

line layout

Sub-assemblies, parts and
precedence graph

Operations,
equipment and

precedence graph

Assembly line

Data base

Figure 1.1. Methodology and information flow of the ALD [36]

stations performing a set of tasks on the product passing through them. The
assembled product takes its shape gradually starting with one part (the base
part), with the remaining parts being attached at the various stations which
are visited by the product. A paced AL is a usual topology for medium and
high production volumes [39]. In general, for simple products a single linear
AL with possibly parallel stations can do the job. For complex products, the
assembly system is mostly decomposed into sub-systems with their own cycle
time, reliability, and stations requirements.

Many successful companies have adopted several working practices and
tools known as concurrent engineering (CE) to improve their products’ devel-
opment. The main aim of CE is to integrate product and process development
in order to reduce the design lead-time and to improve its quality and cost.
The LL problem is known as logical and physical layout [39]. The elabora-
tion of the logical layout of the line consists of distributing the tasks among
stations along the line, while the physical layout decides on the disposition
of stations, resources, conveyors, buffers, etc. on the shop floor. The logical
LL is composed of AL balancing (ALB) and resource planning (RP) problems
(Figure 1.2). The balancing used for manual ALs aims to balance the sta-
tions’ workloads. For hybrid ALs (HALs) (where operations can be executed
manually using robots or automated equipment) the RP assigns resources to
tasks and tasks to stations. The objective is to minimise the total cost of the
line by simultaneously integrating design (e.g. station space, cost, etc.), op-
eration issues (e.g. cycle time, precedence constraints, availability, etc.) and
designer desires (e.g. tasks complexity, etc.). Figure 1.3 shows the main fea-
tures (blocks) of the concurrent ALD approach that will be discussed in detail
in Chapter 10.

1 Designing Assembly Lines 5

Figure 1.2. LL problem

A line design problem often has a complex structure due to multiple com-
ponents (e.g. tooling, operators, material handling facilities, etc.). For a single
product, a number of design alternatives may exist. The problem can easily
become highly complicated if the designer has to consider all the possible com-
binations of these alternatives. Therefore, the problem must be solved with a
structured approach. For a given product and a manufacturing environment,
the design objective and constraints should be defined. A computer system
which is inspired by nature (Darwinian evolution) is presented to design new
ALs starting from a set of specifications. The designer system is generic (i.e.
it has to be capable of evolving a wide range of different line designs with
minimal reconfiguration by a designer).

Cost and reliability

Equipment selection

Operating modes

Scheduling

Tasks complexity
Linked tasks and

fixed stations

Assembly line
design

Precedence
constraints

Physical layout
premises

Figure 1.3. Concurrent design of an AL

1.3 Designing or Optimising?

The complexity of design is not due to the physical, material or procedural fac-
tors; rather, it depends on understanding a problem and making well-founded
decisions. There are some general design steps that the designer has to follow
[106]. These steps are: (1) formulating the problem to be solved, (2) break-
ing it down into sub-problems, (3) grouping ideas that must be discussed,
(4) evaluating and redesigning (if needed) the current design, and finally (5)
implementing the proposed model. In general terms, design is the process of

6 Assembly Line Design

specifying a description of an object (product, program, etc.) that satisfies a
collection of constraints. The term ‘constraint’ usually means something which
is either satisfied or not. It is a characteristic of many design problems that
new constraints emerge as decisions are made [14, 54].

The combinatorial optimisation problems (COPs) are characterised by a
finite number of feasible solutions. Although the optimal solution of such
problems can be found by an enumeration, especially for practical problems.
We can observe a tendency to use heuristics rather than exact methods. A
metric is needed to identify a successful search (i.e. indicate if the goal looking
for was reached or not). This metric could be binary (‘found’, ‘not found yet’)
or be information on the proximity of the current solution in relation to the
best solution. In many discrete-space problems, there is no better or worse
solution, but the solution is either wrong or right. The aim is rather to find a
solution that satisfies different constraints [54, 90, 152, 155].

1.4 Layout of the Book

This book is divided into four parts as follows:

Part 1 deals with ALD problems and consists of Chapter 2 which intro-
duces design problems, and Chapter 3 which recalls the history of ALs and
summarises the principal concepts of assembly.

Part 2 deals with evolutionary combinatorial optimisation and consists of
Chapter 4 which gives an overview on genetic algorithms (GAs), and Chapter
5 which considers the multiple objective design problem and introduces some
improvements made to GAs.

Part 3 deals with AL layout: Chapter 6 is devoted to the manual ALB
problem and explains the new method ‘the equal piles for ALs’, and Chapter
7 is devoted to RP for HALs and shows how to tighten the gap between the
academic and real-world design methods.

Part 4 deals with the Integrated Method: the new concept of balance
for operation (BFO) is described in Chapter 8. Chapter 9 introduces a new
approach to using the premises of the physical layout as input data for the
logical layout. The concurrent approach to ALD is presented in Chapter 10.
Chapter 11 presents the OptiLine software, which is the result of many years
of research at the Université Libre de Bruxelles, Belgium, and implemented by
the software company Optimal Design (www.optimaldesign.com). Chapter 12
outlines a final summary to assess the significance of what has been covered
in this book and suggests new lines for future work.

2

Design Approaches

2.1 Introduction

Designing of manufacturing systems involves the design of products, processes
and plant layout before physical construction [35]. CE, which is known as si-
multaneous engineering, allows an interaction among different levels of the
design of flexible manufacturing systems. This approach is intended to force
the developers and designers, to consider all elements of the product life cycle
from conception through disposal, including quality, cost, schedule, and user
requirements, etc. Concurrent engineering is getting the right people together
at the right time to identify and resolve design problems [37]. Figure 2.1 shows
the modules composing the CE concept, which can be divided as follows:

Product analysis (PA) is based on classical design for assembly (DFA)
rules and proposes a first product design review and a first decomposition of
the product into sub-assemblies [18]. It yields a precedence graph between the
functional components of the product.

Operating modes and techniques (OMT) proposes an assembly tech-
nique (screwing, force fit, etc.) for each attachment between the parts, and
possible modes (manual, automated, robotic) for each operation [92]. Then,
the process time and cost are computed for each chosen technique.

LL assigns tasks to stations and decides on the position of the stations
and conveyors.

In this chapter, Section 2.2 explains the difficulty of design, while the
design and search approach is presented in Section 2.3. The gap between
theory and practice of ALD is discussed in Section 2.4. An approach for the
quality of a solution is presented in Section 2.5, and Section 2.6 is devoted to
ALD evolution.

7

8 Assembly Line Design

Product analysis

Line layout Operating modes
and techniques

Figure 2.1. Flow chart of the CE

2.2 Why the Design is Difficult?

Design is a prescience phase and it must go through several stages before
it constitutes a natural science. In mechanical engineering, a product or a
component is evaluated under numerous interrelated criteria, such as quality,
reliability, assembly, and maintenance, etc. Then, one or more approximate
solutions to the problem are selected. Thus, design is very subjective and
depends on the background of the designer [106, 108].

2.3 Design and Search Approaches

Design has not always been a rational process; it is often a chaotic affair where
consultation and consensus are scarcely evident. The work of participants in
the process is often departmentalised, each one with its specific expertise.
Participants always explore their ideas unilaterally through virtue of their
‘expertise’, imposing constraints upon all others. The process begins with the
identification and analysis of a problem and proceeds through a structured
sequence in which information is researched and ideas are explored and eval-
uated until the ‘optimum’ solution to the problem is reached. As we glance
through a number of design methods presented in the literature, many circles,
arrows, paths, boxes, charts and diagrams can be observed [106, 108].

2.4 The Gap Between Theory and Practice

The operation research community has developed several algorithms to tackle
the ALB and RP problems [12, 146]. The adaptation of such algorithms to
real-world problems would yield very useful tools, since they are able to pro-
pose ‘optimal’ solutions for benchmarks. Only a few companies use published
techniques to balance their ALs because they suffer from substantial loss of
information [89, 129, 135]. In fact, little work has been done to model the full

2 Design Approaches 9

range of practical ALD considerations. Generally, we tackle linear ALs with-
out separation into sub-lines. The common performance indices are the cycle
time and the number of stations. In fact, other factors (e.g. traffic problems,
station space, transportation networks, etc.) may also heavily affect the sys-
tem performance. The following sections present some reasons which render
the difficulties for academic methods to be applied to real-world problems.

2.4.1 Input Data

Most of the industrial approaches applied to design problems suffer from the
amount of data the designer has to introduce. On the other hand, existing aca-
demic algorithms require small amounts of input data and cannot be applied
to industrial problems [113]. They suffer from substantial loss of informa-
tion, leading to solving fictitious problems rather than real (industrial) ones.
Therefore, there is a clear need to overlap the two concepts and deal with
more real constraints of the design problem, rather than spending time on a
benchmarking fight.

2.4.2 Multiple Objective Problem

The ALD must be formulated as a multiple objective problem rather than
minimising the number of stations or the imbalance between stations. Efficient
ALD methods should be able to deal with conflicting objectives and consider
the user’s preferences. They should be quick enough to allow the designer to
test as many alternatives as possible (see Chapter 5).

2.4.3 Variability

Most of the ALD parameters that can be accurately estimated by engineers
are available in terms of their average values (e.g. the mean process time,
the average cycle time, and the mean reliability of equipment). In some cases,
assigning a fast operator, in the case of manual AL, to the operation with high
variability may help to increase line productivity. Stochastic methods must
be integrated into ALD approaches to deal with these types of problem (see
Chapter 6).

2.4.4 Scheduling

Most research on ALs considers scheduling problems. The ALB and the vari-
ant ordering for mixed production have been considered as two separate but
related problems. By separating the two problems, sub-optimal solutions are
often obtained. Chapter 8 introduces a new concept, called the BFO to treat
both problems simultaneously.

10 Assembly Line Design

2.4.5 Layout

The design problem of organising an assembly system into workcentres in a
plant is the well-known facilities layout problem. The position of each work-
centre determines the costs of transportation and storage. Better solutions
can be found by using the premises of the physical layout (PL) as input data
for the LL and vice versa (see Chapter 9).

2.5 About the Quality of a Design

Performance evaluation generally involves two steps: (1) mathematical model
and (2) model solution. Because of the large number of these components,
it is difficult to find a simple model to describe a studied system. For this
reason, simulation is frequently considered, where the purpose is to develop
a mathematical model that resembles as near as possible the real decision
situation. Then, a computer is used for solving the problem under various
decision circumstances. It is highly important to take into account the oper-
ators knowledge (the person who really does the job), about the complexity
of the tasks, the grouping of tasks, the process time, and all their experience
on all the assembly methods. Thus, interactive and iterative methods have to
be developed in order to introduce such knowledge to computer-aided design
(CAD) tools. The designers propose a set of AL alternatives, while operators
give their experience and criticism of the proposed solutions (Figure 2.2). The
aim is to shorten the gap between frequent talks about human factors in ALs
and the actual reality of things.

Workers

Designers

Propositions Experience

Figure 2.2. Interaction between designers and workers

2.6 Assembly Line Design Evolution

The introduction of new products and the modifications in the product yield
frequent redesigns of the AL. Thus, with the increased diversified demand,

2 Design Approaches 11

manufacturers use multi-model ALs. In batch production, only one product is
produced over a certain period, while in mixed production several variants of
the product family are produced all the time. In the case of ALD, only a little
research has been done on the methods that help to improve existing designs.
The aim is to enable a computer to create new designs, with some preliminary
or existing designs being supplied. The evolution of complex assembly systems
at the same time seems to be more complex, and requires more reflections. As
constraints and preferences evolve with time, the progress of design methods
has to run parallel to them.

3

Assembly Line: History and Formulation

3.1 Introduction

Assembly work has a long history, and ancient peoples know how to create
useful objects composed of multiple parts. However, the objective of modern
ALs is to produce high-quality and low-cost products. Manufacturing evolved
from single hunter–gatherer to present-day architectures. This chapter starts
with the history of the evolution of manufacturing. Next, the ALB problem
is introduced. Thereafter, a classification of the ALD problems is given. The
question ‘why is the balancing problem hard to solve?’ is discussed.

3.2 Evolution of Today’s Manufacturing Issues

One of the things that distinguishes humans from the higher primates is the
ability to fashion tools to find and process food supplies and make the world a
better place to live. The evolution of manufacture has passed through distinct
stages at various periods of history [81, 153]. This section examines some
stages of the evolutionary cycle of manufacturing and assembly process (see
Figure 3.1).

3.2.1 First Metals

From the earliest days, organised manufacturing began to appear. Hunter–
gatherers originally formed a simple society that exploited the resources found
around them, but they did not attempt to process them. Manufacturing
as a specialisation developed first to provide simple hand-tools to hunter–
gatherers.

3.2.2 Carpenters and Smiths

As people gathered around the places where surpluses were brought to be
traded, towns developed, and this led to the beginning of a middle class. The

13

14 Assembly Line Design

First
metals

Carpenters and
smiths

Past 10 000 years
ago

1000 years
ago

100 years
ago

10 years
ago

Now Future

Cottage
industries

First
factories

Mass
production

Computers in
manufacturing

Tele-working
and

the new cottage
industries

?

Figure 3.1. Evolution of manufacturing

independent burgesses who traded these surpluses and transporting them from
the production place to the use. Manufacturing was concentrated in a number
of specialised areas, but it was totally based on skills of individual artisans;
(the person who started to make something, had to finished it).

3.2.3 Cottage Industries

The next stage in the evolution of manufacturing was the development of
cottage industries (artisan or home industry). Then, the cottage industry
entrepreneurs saw the opportunities of the factory system. However, it was not
the skilled cottage industry workers, but the land-less peasants who eventually
went into the factories. Manufacture could have remained with artisans in
towns for much longer, but several things happened which precipitated the
emergence of the factory system.

3.2.4 Factory System

A factory is a set of people and resources in a place used for manufactur-
ing of products for competitive advantage and superior quality. The rise of
factories was dictated by the need for specialisation and concentration. The
four prerequisites which were necessary for factories to develop came together
in England during the late eighteenth and early nineteenth centuries (Figure
3.2).

3.2.5 Mass Production

The end of the nineteenth century represented an era of good and bad events
(mass production and interchangeable parts begun). This was as a conse-

3 Assembly Line: History and Formulation 15

First factories

Abundant
labour

Availability
of capital

Scientific
discovery

Transport
infrastructure

Figure 3.2. Four prerequisites for the development of the factory system

quence of the economic and technological developments. However, mass pro-
duction focused on managing tiny slices of the work, as managing the whole
was not an issue. The emergence of TV advertising increased the demand for
mass-produced goods. Customers were introduced to the new world via a tiny
screen in their homes. People wanted to choose between 36 different models
with a variety of features in different sizes and colours. Manufacturers were
confronted with the need to offer a variety of features and to find a way to
react quickly to market trends or lose market shares. Mass production and di-
vision of labour made it necessary to invent the concept of work measurement.
Management determined the standard number of hours needed to complete
the work and the productivity is measured by man-hours, or by piece-work.

3.2.6 Computers in Manufacturing

The need to superimpose flexibility and variety on a system based on mass
production and economies of scale began to cause problems. Confronted with
these circumstances, manufactures started to look around to see how they
could improve their flexibility and responsiveness. Approaches like flexible
manufacturing, just-in-time, and group technology arose at that moment. This
speeded up the introduction of computers in manufacturing [81].

3.3 Assembly Line Systems

The automobile industry is a result of a combination of technologies devel-
oped by many people over the time. Henry Ford invented the AL, which
revolutionised the way cars are made and how much they cost. He was the
first to introduce a moving belt in the factory. Employees were able to build
cars one piece at a time instead of one car at a time. This principle, which is
called ‘division of labour’, allowed workers to focus on doing one thing very

16 Assembly Line Design

well rather than being responsible for a number of tasks.1 Charlie Chaplin
immortalised in his film ‘Modern Times’ the way the workers try to repeat
themselves on an AL in a factory.

The concept of a paced line is quite simple: a number of stations (four, in
the figure: WS1 through WS4) are connected by a conveyor and each station
performs one or more tasks (addition of components, inspection, etc.) on the
partially finished product in front of it (Figure 3.3). Tasks are accomplished
by a group of trained workers using machines or robots. After a lapse of time
called the cycle time (C), the conveyor moves, thus positioning each product
in front of the next station in the line. The product that is completed at the
last station leaves the line. Operations are subjected to certain precedence
constraints that have predecessors (i.e. they can only be performed after one
or more other ones have been completed).

A B C D

WS1

WS2

WS3

WS4Conveyor

Stations
Finished
product

Unfinished
product

Flow

Figure 3.3. AL concept

3.4 Notation and Definitions

In this section, some definitions and notation to describe the ALB problem
(ALBP) will be given.

Assembly. This is the process of fitting together various parts in order
to create a finished product. Parts may be subdivided into components and
sub-assemblies. The unfinished units of the product are called work in progress.

1 It takes several hours to assemble an automobile; how can a car assembly plant
produce a car every few minutes? They use an AL with many stations: each
station adds one part or many to the frame in a few minutes and then sends
the frame to the next station. After a warm-up period, it may take several hours
for one given frame to go through the whole AL, but every few minutes the line
produces another car. A few minutes rather than several hours of work: kind of
magic...!

3 Assembly Line: History and Formulation 17

AL. This is a flow-line production system composed of a number of stations
(n) arranged along a conveyor system. The pieces are consecutively launched
down the system and are moved from one station to another.

Task. This is a portion of the total work content in an assembly process.
The necessary time to perform task is called the task process time. Tasks are
considered indivisible and they cannot be split into smaller work elements
without unnecessary additional work.

Precedence Constraints. These are the order in which tasks must be
performed (technological restrictions). The partial ordering of tasks can be
illustrated by means of a precedence graph [142]. The nodes represent tasks
and the directed arcs (i, j) constitute precedence relationships. For example,
in Figure 3.4 task 4 is preceded by tasks 1 and 2.

1

4

3
5

2

6

Figure 3.4. Precedence graph

Cycle Time (C). This is the time between the exit of two consecutive
products from the line. It represents the maximal amount of work processed
by each station. The desired C is what the planning department asks for,
while the effective C (EC) is the real C by which the line will operate.

Capacity Supply (CS). The capacity supply CS = nC is defined as the
total time available to assemble each product. The CS is greater or equal to
the sum of process time of all tasks’ work content. It depends on the transfer
system of the AL (free or linked transfer).

Makespan. This is the maximum completion time required to process all
operations for a given set of products.

Maximum Peak Time. This is introduced to deal with multi-product
ALs and allows some variants process time to lie in the interval [C, 2C]. It
may not be exceeded by any variant process time on a given station, while
the cycle time must not be overstepped by the average working time.

Imbalance. The multi-product ALs are in balance on average. Thus, the
process time of each station depends on the variant-product. The imbalance
(IB) is measured by the difference between C and the total duration of tasks
concerning a given variant on each station (Figure 3.5).

18 Assembly Line Design

Imbalance for
one variant

Max peak time

Working time
on one station

Cycle time

Variant

Figure 3.5. Task duration is variable according to the variant

Time Interval. The Time Interval TI = [tmin/C, tmax/C] ∈ [0, 1] mea-
sures the interrelation between the cycle time and the task times. Problems
are expected to be relatively complex if TI is close to 1 (where tmin is the
minimum process time and tmax is the maximum process time).

Time Variability Ratio. This is defined by TV R = tmax/tmin and small
values of TVR indicate that the operation times vary only in a small range.

Work Content. This is the sum of process time (Ti) of all tasks:

WC =
∑

i=1..n

Ti

Station Time. The work content of a station is referred to as station
load, the total process time as Station Time (ST). The sum of station times
of the whole assembly line is the total assembly time. The process time of
tasks belongs to the interval [tmin, tmax].

Line Efficiency (E). This is defined by: E = WC/CS measures the ca-
pacity utilisation of the line. The unused (idle) capacity is reflected by the
balance delay time, which is defined by BD = CS − WC.

Station Idle Time. This is the positive difference between the cycle time
and the station time. The sum of stations idle time is given by I = CS−WC.
The sum of idle times of all stations is called the delay time.

Throughput Time. This denotes the average time interval between
launching a work-piece down the line and removing the finished product from
it.

3 Assembly Line: History and Formulation 19

Smoothness Index (SX). This measures the standard deviation of the
distribution of work among the stations.

SX =

√√√√i=n∑
i=1

(C − ST (i))2

3.5 Assembly Line Balancing Problems

Many classifications of AL problems are given in the literature [12, 55, 131,
146]. In this section, some classification schemes of ALBP will be presented.

3.5.1 Assembly Line Models

The demand forecast in assembly and manufacturing may depend generally on
the number of product units to be made at each period. Meeting this demand
generates requirements for people, equipment, and other resources. Therefore,
a demand forecast helps to develop appropriate plans for production. There
are three types of production: single product line, family of products line, and
multiple products line. The main factors that influence the choice among the
three approaches are summarised below.

Single Product AL. The single product line is used to produce only one
product. If dynamic phenomena are neglected, the workload of all stations
remains constant over time. It is better to use a single AL if the following
conditions are true:

• The demand of the product is constant and allows absorption of line cost.
• The product must be delivered in a very short time (no delivery delays).
• The product has a structure which is different from other products.
• The cost of product interdict mistakes during production (made of gold).
• The assembly of the product needs heavy and bulky machines (resources).
• The setup time of the dedicated assembly line (several shifts).

Mixed-Production AL. A family of products is a set of distinguished
products (variants), whose main functions are preferably similar. A typical
example is a family of cars with different options: some of them will have a
sunroof, some will have ABS, etc. [153]. These lines can be used in these cases:

• The cycle time is greater than a minute.
• The line price cannot be amortised by a single product.
• The product must not be delivered in a short time.
• Each product is quite similar to others (they constitute a product family).
• The same resources are needed to assemble all the products.
• The setup time of the assembly line needs to be short.

20 Assembly Line Design

Typically, the products being made on the AL tend to have very simi-
lar tasks and precedence diagrams. While designing such ALs, the ‘operation
stage’ must be taken into account.

Batch Production Line. The batch production line is used in the case
of multiple different products, or family of products, which presents signif-
icant differences in the production processes. Using batch production leads
to scheduling and lot-sizing problems. The problem seems to be solved: each
product may have its assembly line and the cost will be too high. Thus, design-
ers tend to redesign and reuse existing ALs to produce the different products
(batch). The main factors that make the difference compared to the family of
products line are:

• The demand of products changes slowly.
• The product must be delivered in a short time.
• The assembly of some products needs heavy and bulky machines.
• The setup time of the assembly line is short.

3.5.2 Variability of Tasks Process Time

The task process time is an essential parameter in the ALB. Simple tasks may
have a small process time variance, while complex and unreliable tasks may
have highly varying execution times. In the case of human workers, some fac-
tors (e.g. skills, motivation and communication among the group, etc.) have
a great influence on the whole AL.

Deterministic Time. In the case of manual ALs, the task time is constant
only in the case of highly qualified and motivated workers. More advanced ma-
chines and robots are able to work permanently at a constant speed. One can
reduce the task time variation by increasing the line’s automation degree.

Stochastic Time. In automated flow line, varying production rates may
result from machine breakdowns. Furthermore, significant variation may re-
sult from non-qualified workers, motivations of the employees, lack of training,
etc. In the case of a HAL, humans may be hung up by the machine, since a
dedicated machine or a robot has the same throughput over time, while hu-
man effort varies.

The varying process times of ALs, lead to buffer sizing problems and re-
sources duplication, etc. The fuzzy logic2 concept can be used to tackle the
stochastic nature and the variability of process time [174].

2 Fuzzy logic is a form of knowledge representation suitable for notions that cannot
be defined precisely, but which depend upon their context. It enables comput-
erised devices to reason more like humans.

3 Assembly Line: History and Formulation 21

Hidden Times. In the case of automated stations, it is often difficult to
determine the operating time of a complex task (two or more grouped tasks).
Indeed, the process time of a station is not always the sum of the operating
times of each equipment in the group because of the so-called hidden times
(see Chapter 7).

Dynamic Time. In the case of human workers, systematic reductions
are possible due to the learning effects or successive improvements of the
production process. For new tasks, operators take longer times to execute the
operation than after becoming familiar with them.

3.5.3 Line Configuration

In the plant layout problem, emphasis is often put on material flow between
departments. Ideally, the preliminary analysis of the product and the plant
shape leads to a global layout of the AL (several configurations are possible).

Serial Lines. Single stations are arranged in a straight line along a con-
veying system (Figure 3.6). Each station perform one or more tasks on the
partially finished product and can be a simple unit of a complex system [12].

Station i - 1 Station i Station i + 1

Figure 3.6. Serial line configuration

U-shaped Lines. As a consequence of introducing the JIT production
principle, it has been recognised that arranging the stations in a U-line has
several advantages over the traditional configuration (see Figure 3.7). Work-
ers are placed in the centre of the ‘U’ and can monitor each other’s progress
and collaborate easily whenever required [95]. Thus, workers acquire multiple
skills leading to higher motivation, improved quality of products and increased
flexibility.

Parallel Stations. With high production rates, the longest task time
sometimes exceeds the specified cycle time. A common remedy is to create
stations with parallel or serial posts, where two or more workers perform an
identical set of tasks. This procedure reduces the average value of the task du-
ration proportionally to the number of workers on the station (see Figure 3.8).

Parallel Lines. It is common to duplicate the entire AL when the demand
is high enough. This has the advantage of shortening the AL, but may require
more equipment and tooling. Also, if failure occurs at a given station, other
lines can continue to run. These units are organised as autonomous work
teams (Figure 3.9).

22 Assembly Line Design

Group i - 2

Group i + 1Group i + 2

Group i - 1

Group i

Station

Figure 3.7. U-shaped line configuration

Station

Post Post
Post

Post

Station

Figure 3.8. Parallel and serial stations

Station i - 1 Station i Station i + 1

Station i - 1 Station i Station i + 1

Figure 3.9. Parallel assembly lines

Workcentres. For complex products, the assembly system is most of the
time decomposed into sub-systems (workcentres) which are easier to manage
than the entire system (see Figure 3.10). The routing of a product between
workcentres is fixed, as it works according to a flow topology (see Chapter 9).

Main workcentre

Workcentre

Figure 3.10. Example of plant topology

3 Assembly Line: History and Formulation 23

3.5.4 Additional Constraints

Two types of operation are introduced to deal with these kinds of user pref-
erence.

Fixed Operations on Stations. Some operations have to be fixed on
a given station (e.g. control station, paint station, etc.) and no additional
operation can be added to it. Figure 3.11 shows two different layouts where
the content and the position of the fixed station remain constant. The station
occupies the second position.

Fixed station

WS1 WS2 WS3 WS4
(b)

WS1 WS2 WS3 WS4
(b)

WS1 WS2 WS3 WS4
(a)

WS1 WS2 WS3 WS4
(a)

Figure 3.11. Two positions of the fixed station

Linked Operations. A set of operations must be grouped on the same
station, but additional operations can be added. In Figure 3.12, a set of linked
tasks occupies the fourth position in the first layout, and the third position
in the second layout.

WS1 WS2 WS3 WS4

Linked tasks

WS1 WS2 WS3 WS4
(a) (b)

Figure 3.12. Two positions of a set of linked tasks

Must Directly Precede. In order to install safe, non-expensive and sta-
ble ALs, designers have to think about the stability of the product being
assembled. This leads us to include a ‘must directly precede’ relation, which
means presence of a direct precedence between tasks rather than an indirect
one, as illustrated in Figure 3.13. In Figure 3.13(a), task 1 must only precede
task 5. Thus, the acceptable solution consists of the first station which con-
tains task 1, the second tasks {3, 4} and the third one, task 5. Figure 3.13(c)
depicts a valid solution where task 1 must directly precede task 5. Indeed,

24 Assembly Line Design

task 1 is directly followed by task 5. Figure 3.13(b) shows a non-valid solution
in which stations containing tasks 1 and 5 are separated by a station which
contains tasks {3, 4}.

directly precedes1

4

3
5

(1) precedes (5) (1) must directly precede (5)

1

4

3

5

1 3,4 5 1 3,4 5 3 4,1 5

(b) (c)(a)

Figure 3.13. Precedence and must-directly precedence relations

Associative and Dissociative Constraints. Three possible modes for
each operation (manual, robotic and automated) are considered. This yields a
set of associative preferences (manual operations have to be grouped together
and the robotic or automated operations have to be grouped together) and
dissociative preferences (manual operations cannot be grouped with robotic or
automated operations). The operating mode of tasks will be fixed by the line
balancing to obtain the best logical layout. Suppose that, when considering
the case where X is manual, the best configuration that can be obtained for
the global line is the one represented in Figure 3.14(a) and that case X is
automated when the best configuration is the one shown in Figure 3.14(b).
In this example, it is clear that the second solution is the best one, if the
equipment cost is ignored.

• Operations (A, B, C, D) have to be executed manually.
• Operation (E) has to be executed with a robot.
• Operation (X) has to be executed manually or automatically.

Station 2
 automated/robotic

Station 1
manual

X(M/A)

B(M)

A(M)
E(R)

C(M)

D(M)
X(M /A)

B(M)

A(M)
E(R)

C(M)

D(M)

Station 3
manual

Station 2
robotic

Station 1
manual

(a) (b)

Figure 3.14. Result (a) when X is manual and (b) when X is automated

3 Assembly Line: History and Formulation 25

Positions of Operations. Five positions were introduced to deal with
automotive industry: (C: operation on the centre of the car; R: operation on
the right side; F: operation on the front; L: operation on the left side; B:
operation on the rear). Thus, station duration will be composed of the sum
of the operations duration and (1) operator moves, and (2) reading code of
different variants.

3.5.5 Assembly Line Design Problems

The ALD comprises the logical (ALB, RP) and the PL problems. The PL fixes
the space requirements taking into account station dimensions and material
storage, etc. The ordering variants (OVs) allow to consider the operation phase
of the line during the design phase.

Line Balancing

The definition of the simple ALB specifies the following assumptions [12]:

1. All the parameters relating to the line must be known with certainty.
2. An operation cannot be divided between two or several stations.
3. Tasks cannot be treated in an arbitrary order due to precedence.
4. All the tasks of an AL must be carried out.
5. All the stations can carry out any task.
6. Process time is independent of the station in which it will be carried out.
7. Any operation can be executed on any station.
8. The AL is serial and does not contain a parallel feeding system.
9. The AL is to be designed for a unique model of a single product.

10. Minimise the number of stations for a fixed cycle time or minimise the
cycle time for a fixed number of stations.

Six types of ALBP are proposed. The mathematical formulation of these
problems is given below. Let us have a directed acyclic graph G = (T, P)
where the nodes T represent the tasks, the arrows P represent the precedence
constraints, and a constant Li (task length) is assigned to each node Ti.

Simple ALBP-1 (ALBP-1). SALBP-1 consists in assigning tasks to sta-
tions so that the number of stations is minimised. It is dedicated to a single
product with deterministic process times and serial line. Given C (the cycle
time) and N as constant, can the T be partitioned into N or less sub-sets
Sj (the jth station’s tasks) in such a way that: (1) for each of the subsets
(the sum of Li associated with the nodes in the subset does not exceed C);
(2) there exists an ordering of the subsets such that whenever two nodes in
distinct subsets are jointed by an arrow in G, the arrow goes from a high
ordered (earlier) to a lower ordered (later subset)?

26 Assembly Line Design

SALBP-2. SALBP-2 aims to minimise the sum of the idle times for a
given number of stations. It is used in the case of single product, determinis-
tic process times and serial line. Given N stations, can T be partitioned into
the N subsets Sj? Since N is fixed, the aim is to minimise the cycle time of
the AL.

SALBP-E. SALBP-E aims to minimise the sum of the idle times with a
fixed production rate and a fixed number of stations. It is the generalisation
of the SALBP-1 and SALBP-2. Given N and C as constant, can T be parti-
tioned into N subsets Sj?. The aim is to find a solution where the sum of the
Li associated with the nodes of the N subset does not exceed C.

Equal Piles for ALBP (EPALP). Given N stations, can T be parti-
tioned into the N subsets Sj? The SALBP-2 minimise the cycle time while
EPALP equalise the station loads [125]. The first may lead to unbalanced
lines (by minimising the maximal idle time), whereas the second one leads to
balanced lines.

ALBP with a fixed number of stations (ALBPF). Given a distri-
bution frequency and an average duration of each task Li, assigned to each
node Ti, and N stations can T be partitioned into the N subsets Sj?

Multiple Workcentres ALBP (MWkCALBP). Given a set of W di-
rected non-cyclic graphs Gi = (Ti, Pi), a set of Ni, a set of links between these
graphs Ti of each graph can be partitioned into the Ni subsets Smi. The aim
is to balance a set of workcentres using the different links between them.

Multiple Objective ALBP (MOALBP). AL designers deal with ob-
jectives such as line efficiency, smoothness index, and imbalance [27], and the
aim is to optimise a set of these objectives.

Resource Planning

Each Ti is characterised by a set of couples {Li,j , Ci,j} (Li,j is a possible
duration of the task and Ci,j the cost of the corresponding resource used).
Let N, C, and COST be three constants. We define the cost of a subset of T
as the sum of Ci,j of the nodes belonging to this subset. The question then
is how is it possible to find a partition into N subsets of the set of operations
and for each of them select a couple (Li,j , Ci,j) so that, in this case, the sum
of Li,js in a partition is less than or equal to C, and the sum of all subsets
costs less than or equal to COST?

Ordering Variants

The aim of multi-product ALB is to provide a unique AL valid for all the
variants of the product. The variability of the duration of work at each sta-

3 Assembly Line: History and Formulation 27

tion arises due to the fact that some operations are missing for some variants;
stations are balanced on average. The aim is to minimise the imbalance mea-
sured by the difference between the average cycle time and the total duration
of operations concerning a variant on each station. A large imbalance of the
workload among different variants has to be avoided [121, 128, 133]. ALB and
OV are interrelated because the balancing solution affects the determination
of the launching model.

3.6 Why is the Balancing Problem Hard to Solve?

A special case was considered to show the computational difficulty of the ALB
problem using these assumptions: there are no precedence and no grouping
preferences. The resulting problem is reduced to packing the tasks into the
few number of stations. This is the well-studied ‘bin-packing problem’ (BPP)
which is known as NP-hard problem [171]. Since these problems have been
studied for several decades without yielding an easy method, it is widely
believed that no such method exists. Therefore, several methods will be used
in this book (e.g. enumerative methods, evolutionary approaches, heuristics,
etc.) [123]. As classical methods are quite time consuming for larger problems,
our emphasis was on GAs (see Chapters 4 and 5).

Part II

Evolutionary Combinatorial Optimisation

4

Evolutionary Combinatorial Optimisation

4.1 Introduction

There are several reasons for using GAs for design problems. GAs are just
one of many methods known in computer science [116]. It is not easy to de-
fine exactly which of these methods is best for which problem. However, it is
possible, for a given problem, to identify methods that consistently produce
better results compared to those produced by other techniques. Rather than
spending time, and effort developing new specialised techniques for new prob-
lems, most developers prefer to reuse proven algorithms.

Since the 1960s there has been an increasing interest in imitating living
beings to develop powerful algorithms for optimisation problems. The term
evolutionary computation is now in common use to refer to such techniques.
Many attempts have been made to understand the adaptive processes of nat-
ural systems. Holland [69] attempted to explain the adaptive processes of
natural systems. He designed a GA which is an artificial system based upon
these natural systems. At the same time, Fogel et al. [48] introduced evolu-
tionary programming, and Schwefel [149] proposed evolution strategies. The
first objective of this chapter is to make the reader familiar with the GA
technique by introducing its origin and concepts.

4.2 System Organisation

Search algorithms define a design problem in terms of a search problem where
the search space is a space filled with a set of points. Each point in that space
defines a solution. The design problem is then transformed into the problem
of searching for the best solutions somewhere in the space of valid ones. The
whole procedure is composed of three steps, which are (1) define the problem,
(2) fix the goal and (3) use a method to reach this goal. In tackling a search
problem over some space of possible solutions, it is necessary to construct a

31

32 Assembly Line Design

representation of the possible solutions for manipulation and storage. Thus,
before applying a GA to any design problem, a certain mapping between hu-
man design and the evolutionary method must be made. In order to facilitate
the use of GAs, some terminologies must be introduced (e.g. gene, allele and
locus). The points in the search space are known as phenotypes, while their
representatives in the solution space are known as genotypes. The structures
used to represent genotypes are known variously as genomes or chromosomes.
The genotype specifically refers to an individual’s genetic structure. The phe-
notype refers to the observable appearance of an individual (pheno in Greek
means ‘to show’). The process of producing a phenotype from a genotype is
known as morphogenesis (see Figure 4.1).

Decoding

Encoding

Coding space

genotypes

genetic
operations

Solution space

phenotypes

evaluation
and selection

Figure 4.1. Mapping between solution space and search space

Generally, the standard chromosome used to represent a solution typically
takes the form of a simple string of values called a gene. More formally, a
gene can be identified as an equivalence relation over the search space. The
particular values that each gene can take are called alleles. For example, if the
‘eye colour’ gene can take values ‘blue’, ‘green’ and ‘brown’ then these are its
three possible alleles. The position of a gene in its chromosome is its locus.

4.3 How Do Genetic Algorithms Work?

GAs are a stochastic search technique based on the mechanism of natural
selection and natural evolution [57]. All the variations of standard GAs are
united by a common thread. The GAs work in parallel with a certain num-
ber of chromosomes. The set of individuals (solutions, chromosomes) of each
generation is called a population. Chromosomes are characterised by their
fitness and evolve through successive iterations (generations). A population
of solutions is maintained and the evolution plays the role of adaptation of
a population to its environment. This adaptation causes the creation of in-
dividuals of increasingly higher ‘fitness’. The best solutions are favoured for
reproduction every generation and the offspring are then generated from these
fit parents using crossover and mutation. Thus, evolution drives the popula-
tion of better individuals [69].

4 Evolutionary Combinatorial Optimisation 33

The standard GA can be summarised by the following steps:

1. The GA can operate on any data type (representation) which determines
the bounds of the search space. It is desirable that the representation
can only encode feasible solutions, so that the objective function (fitness)
measures only optimality and not feasibility.

2. The initial population is created during an initialisation phase and it is
often generated at random. Generally, some knowledge is used by the GA
to start the search from promising regions of the search space.

3. Every member of the population is then evaluated and a fitness value is
given according to how well it fulfils the objectives. If there is no clear
way to compare the quality of different solutions, then there can be no
clear way for the GA to allocate more offspring in the fitter solutions.

4. The GA favours individuals with a higher overall fitness when picking
‘parents’ from the population. The fitness function allows the evaluation
of solutions. Then, these scores are used to determine which individuals
will participate in creating the new population.

5. Based on the fitness values, the GA selects candidate solutions and com-
bines (crossover) the best traits of the parents to produce superior chil-
dren.

6. A small part of the population is mutated. Single existing individuals are
modified to produce a single new one. It is more likely to produce harmful
or even destructive changes than beneficial ones.

7. Natural selection ensures that the weakest creatures die, or at least do
not reproduce as successfully as the stronger ones. In the same way, a
population is maintained with the fittest solutions being favoured for re-
production. New generations are formed by selecting some parents and
offspring and rejecting the less-fit ones.

8. A generation is a population at a particular iteration of the loop. This
iterative process (selection, crossover, etc.) continues until the specified
number of generations is passed, or an acceptable solution has emerged.

In the next sections, the existing similarities between natural evolution
and GAs are introduced.

4.3.1 Representation

The first step in designing a GA for a particular problem is to devise a suitable
representation. For instance, it is quite natural to represent an n-dimensional
vector as a string of n values (genes), while it is difficult to represent a graph
without introducing extra information (e.g. labelling of the nodes).

Encoding

In order to achieve an efficient use of GAs, the encoding must be adapted
to the particular search problem at hand. Using a good representation is the

34 Assembly Line Design

first step to narrow the gap between theory and practice in the context of
engineering optimisation [30].

Feasibility

GAs may employ four basic strategies to deal with infeasible solutions: rejec-
tion, repair, modifying the genetic operator, and assigning penalties [54]. The
rejection strategy simply discards all infeasible individuals, while the repairing
strategy attempts to create only feasible solutions. For some problems, genetic
operators can be modified so that they create only feasible solutions. Finally,
penalty functions can be used when infeasible solutions can be recombined to
form feasible ones (see Figure 4.2).

Coding
Space

Solution
Space

Illegal

Feasible area

Infeasible

Feasible

Figure 4.2. Feasibility of solutions

Chromosomes and Solution Spaces

GAs manipulate a coding of the solutions and not the solutions themselves
[57]. It is clear that the 1-to-1 mapping is the best used one in which each solu-
tion is represented by exactly one chromosome and each chromosome decodes
exactly one solution of the original problem. Such an encoding is redundant
and its redundancy is a major blow to the efficiency of a GA. The n-to-1 map-
ping suffers from a lack of detail because some information is hidden from the
GA (see Figure 4.3). For infeasible solutions, many approaches tend to at-
tribute a fitness and an unfitness terms to each genotype. Infeasible solutions
tend to have higher unfitness scores [28].

4.3.2 Initialisation of the Population

When initialising GAs with random values, the evolution makes extremely
rapid progress at first. Indeed, most solutions are largely different and belong
to different areas of the search space. Over time, the population begins to
converge, with the separate individuals resembling each other more and more
[33]. The GA narrows its search in the solution space and reduces the changes

4 Evolutionary Combinatorial Optimisation 35

Coding
space

Solution
space

1 to 1

n to 1

1 to n

Figure 4.3. Mapping from the encoding to solutions

made by evolution until eventually the population converges to a single solu-
tion. The mutation aims to create diversity1 inside the population.

4.3.3 Sampling Mechanism

Darwin defined natural selection or survival of the fittest as ‘the preserva-
tion of favourable individual differences and variations, and the destruction
of those that are injurious...’ [23]. When selection is the only mechanism at
work, the best individual is eventually selected to completely take over the
population. The selection mechanism determines which individuals will have
all or some of their genetic material passed to the next generation. The most
commonly used selection schemes are reviewed below.

Roulette Wheel Selection (RWS). the RWS technique works like a
roulette wheel in which each slot on the wheel is paired with an individual
of the population. The size of each slot is proportional to the corresponding
individual fitness. The maximisation problems fit directly into the paradigm
‘larger slot implies larger fitness’ [57].

Elitist Models. the first variation is called the elitist model and enforces
preserving the best solution. The expected value model reduces the stochastic
errors of the selection mechanism. This is done by introducing a count for
each solution s, initially set to the f(s)/f value (f(s) is the fitness value of
solution s and f is the average fitness of the population) and decreased by
0.5 or 1 each time the solution is selected for reproduction with crossover or
mutation respectively. Thus, when a chromosome count falls below zero, the
solution is no longer available for selection [34].

1 The process of diversity loss is often the cause of premature convergence, which is
the early convergence on an inferior local maximum. A large number of existing
techniques are used to maintain diversity in GAs. These include maintaining
large population sizes, employing low reproductive or parent-selection pressures,
applying mutation, restarting the GA, employing parallel populations, and niche-
formation techniques.

36 Assembly Line Design

Stochastic Methods. techniques like deterministic sampling, remainder
stochastic sampling, and stochastic tournament have demonstrated their su-
periority on simple selection methods. Baker [8] provided a theoretical study
of these methods and presented a method called Stochastic Universal Sam-
pling . This method uses a single wheel spin which is spun with a number of
equally spaced markers equal to the population size. This method gives each
individual the proper number of trials to eliminate selection noise.

Tournament Selection. at each iteration the method selects a number k
(tournament size) of individuals and selects the best one from this set into the
next generation. This process is repeated P times (where P is the population
size). It is clear that the large values of k increase the selective pressure of
this procedure.

Ranking selection. the solutions are selected proportionally to their rank
rather than to their evaluation (Pareto optimality). The population is sorted
from the best to the worst one, and each individual is copied as many times
as possible, and then the proportionate selection is performed. Such methods
are more suited for multiple objective problems [49].

The trade-off between exploitation and exploration is generally viewed as
one of the key features in an effective search. It is widely accepted that a higher
selection pressure leads to fast convergence, but also increases the likelihood
of premature convergence. On the other hand, very low selection pressure
increases the run-time and can causes the failure to improve solutions [54].

4.3.4 Genetic Operators

The selection mechanism does not introduce any new solutions for considera-
tion from the search space. It just copies some solutions to form an interme-
diate population. The second step of the evolution cycle is the recombination
which takes the responsibility of introducing new individuals into the popula-
tion. This is done by the genetic operators: crossover, mutation and inversion.
Thus, together, crossover, mutation and inversion allow GAs to discover fit,
short and low-order schemata over time.

Crossover

The most popular mechanisim is where two individuals are selected and are
crossed over in order to produce offspring. The aim of crossover is to produce
new solutions in regions of search space where successful ones have already
been found. There are many variations of the crossover operator, and the
most common ones are the ‘P-point crossover’ and the ‘uniform crossover’
[57]. In the P-point crossover, each parent is divided at P locations into P+1
contiguous sections, numbered 1 through P+1. Two offspring are created by

4 Evolutionary Combinatorial Optimisation 37

exchanging every odd section between the two parents. The uniform crossover
can be thought of as P-point crossover, where P+1 is the number of genes in
each parent. Therefore, each gene is a section and every section is probabilis-
tically interchanged between the two parents. Other recombination operators
take many shapes and forms, including crossover operators that use more
than two parents to generate a single offspring. The crossover gives GAs an
advantage to perform better than other metaheuristics. Without crossover,
GAs lack the additional instruments of the simulated annealing (SA)2 or the
tabu search (TS) like temperature, tabu list [56, 166].

Mutation

Mutation is a mechanism that has only a small chance of occurring. The stan-
dard mutation operator randomly perturbs offspring composition by changing
a small number of alleles. Unlike crossover, mutation is a unary operator, and
only acts on a single individual at a time. Some GAs use only the mutation
operator and do not perform any recombination. These GAs are roughly equiv-
alent to running many SA algorithms in parallel and are therefore mutation-
based methods. Other mutation-based algorithms include the evolution strat-
egy which utilises the deterministic competitions that are always won by the
competitor of higher fitness [13]. Mutation maintains diversity in the popula-
tion and can be an answer to the question ‘why do children sometimes differ
from their parents?’.

Inversion

Inversion is used to mitigate a drawback of the crossover operator. Since the
crossing sites are picked at random, longer schemata are disrupted more of-
ten than shorter ones. Whenever one of the crossing sites falls between the
genes which define the schema,3 a child will inherit only a part of the schema
(unless the other part of the schema is inherited from the other parent). The
main drawback is that with the fixed position of loci on the chromosome, it is
always the same schemata which are normally subjected to disruption. Inver-
sion allows shortening of long schemata by rearranging the positions of loci
on the chromosome. In the standard inversion operator, two sites are selected
at random and the order of the loci between the sites is reversed.

2 In SA [80], the winner of each tournament is not necessarily the highest fitness
individual. This allows for ‘stochastic backtracking’, where the algorithm can ex-
tract itself from dead-ends. The probability of accepting a lower fitness individual
over a higher fitness individual can be made to decrease over time.

3 The schema theorem of Holland [69] shows that the parts of solutions that are
observed to perform well (i.e. are parts of good solutions) will be sampled with
an increasing frequency.

38 Assembly Line Design

4.4 Landscapes and Fitness

GAs work on a population of candidate solutions using an objective function.
Applying a fitness function to each one of these chromosomes permits to
measure the quality of the solution performance. A fitness landscape is a set
of points in n-dimension space (hyper-surface) obtained by applying the fitness
function to every point in the search space. To optimise a function efficiently,
the fitness function must be clearly defined and higher fitness individuals must
be explicitly promoted. As a result, if any other ability besides propagative
success is desired, GAs must directly encourage the formation of individuals
with the desired ability.

4.5 Population

A number of population updating modes are used in GAs. The main ap-
proaches are the steady-state update and generational update. A generational
update scheme is a population maintenance mechanism in which N children
are produced from a population with size N to form the population at the
next time-step. This new population of children completely replaces the par-
ent population. In contrast, in the steady-state approach, a single child is
produced at each time-step which replaces a single member of the old popu-
lation. The most straightforward way to maintain population diversity is to
increase the population size. In large problems, however, restrictions on the
computer resources, such as time and memory, make it infeasible to run GAs
with the population size needed to maintain the required diversity.

4.6 Simple... but it Works!

The transition rules applied by the GAs occasionally allow the search to ‘back-
up’ to get past local optima and find better solutions. In addition, GAs only
use the pay-off information of the objective function to determine which re-
gions to explore, so no other information about the search space is needed.
Generally, GAs have two primary tasks, to: (1) explore sufficiently a search
space in order to locate promising regions, and (2) exploit promising regions
of the search space in order to focus the search towards the global optimum.
Several applications of GAs to real-world COPs lead us to believe that GAs
are good optimisation methods. Indeed, the reason why we prefer GAs over
other heuristics is due to the concept of combining (crossover) parts of good
solutions to produce new ones. But there is of course a catch. Falkenauer [45]
showed that the encoding and the genetic operators must be adapted to a
particular optimisation task. In order to comply with the necessity in prac-
tice, we pledge to abandon functions as targets of GA optimisation in profit
of optimisation problems [45].

5

Multiple Objective Grouping Genetic

Algorithm

5.1 Introduction

Multiple objective optimisation problems (MOOPs) involve two ’quasi insep-
arable’ difficulties: search and the multi-criteria decision aid (MCDA). The
space to be searched can be too large and complex to be explored by simple
search methods. Section 5.2 outlines the MOOPs, while the related work on
MOP is reviewed in Section 5.3. Section 5.4 describes the GGA, while Sec-
tion 5.5 presents its adaptation to multiple objectives problems. Section 5.6
outlines a case study.

5.2 Multiple Objective Optimisation

In single objective optimisation problems, the feasible set is totally ordered
according to the objective function f . For two solutions s1 and s2 one has
either f(s1) > f(s2) or f(s1) ≤ f(s2). In contrast, mumtiple objective prob-
lems (MOPs) present a set of optimal solutions which are quite difficult to
order. Once, the solutions have evaluated, a vector whose components rep-
resent the trade-off in the decision search space will be produced. Then a
decision maker (DM) implicitly chooses an acceptable solution by selecting
one of these vectors. The concept of Pareto optimum was formulated by Vil-
fredo Pareto in 1896 and constitutes the origin of research on MOOP [107]. A
solution S1 is Pareto optimal if there exists no feasible vector S2 which would
decrease some criterion without causing a simultaneous increase in at least
one criterion. The two classic strategies that were applied with the traditional
separation of search and MCDA can be described as follows:

1. Make a multi-criteria decision to aggregate objectives, then apply a search
method to optimise the resulting figure of merit. The different objectives
are combined to form a scalar objective function, usually through a linear

39

40 Assembly Line Design

combination of the attributes. The approach is well suited to proportional
non-competing objectives.

2. Conduct the search using different objectives at the same level of impor-
tance. In the case of such a MOP, a more satisfactory approach is to
search for a set of solutions that represents the ‘best possible trade-off’.
This leads to a set of alternative solutions and the search phase is fol-
lowed by making a multi-criteria decision to choose among the reduced
set. This approach yields the Pareto frontier [127]. Referring to Figure
5.1, O is unique among A, B, C, and D: its corresponding decision vector
O = (O1, O2) is not dominated by any other decision vector. That means,
O is optimal in the sense that it cannot be improved by any objective
without causing a degradation in at least one objective. This approach is
generally considered to represent a ‘best practice’.

DD

A

B

O

C

OA

BC

Pareto-optimal

front

Feasible

space

Dominated

by A

Dominate A

f1

f2

f1

f2

(1) (2)

Figure 5.1. Pareto optimality (1) and dominance relations in objective space (2)

Our novel approach is to integrate together decision and search and per-
mit one to deal with user preferences. In the next section, the evolutionary
methods for MOPs are described.

5.3 The State of the Art

Rosenberg’s [138] study contained a suggestion that would have led to multi-
criteria optimisation if he had carried it out as presented. While covering the
existing literature [38] it seems that the main difference among the methods
cited is the way solutions are ranked. There are three ranking methods: the ag-
gregating approaches, the non-Pareto approaches, and the Pareto approaches.
Three other derivations are the local search approach, methods dealing with
preferences and methods dealing with constrained search spaces.

5 Multiple Objective Grouping Genetic Algorithm 41

5.3.1 The Use of Aggregating Functions

Many techniques combine several functions in different ways as follows.

Weighted Sum Approach. This approach is used for determining
weights when the information about the problem is not enough [49].

Reduction to a Single Objective. The main drawback of this approach
is that it is time consuming and the coding of the objective functions may be
difficult or even impossible for certain problems [136].

Goal Attainment. In this method, a vector of weights relating the rela-
tive under- or over-attainment of the desired goals must be elicited from the
DM in addition to the goal vector [173]. In the case of under-attainment of
desired goals, a smaller weighting coefficient is associated with a more impor-
tant objective. For over-attainment of desired goals, a smaller coefficient is
associated with a less important objective.

Use of Penalty Functions. This method is based on both ‘constraints
satisfaction’ method and ‘weighting objectives’ method. The basic idea is to
‘punish’ the fitness value of a solution whenever it violates some constraints.

5.3.2 Non-Pareto Approaches

These methods are used to overcome difficulties and the limitations involved
in the aggregating approaches.

Vector Evaluated Genetic Algorithm. Schaffer [145] developed an ap-
proach approach to use an extension of the simple GA (called vector evaluated
GA, ‘VEGA’). It was recognised that this would favour solutions with extreme
performance in at least one objective.

Lexicographic Ordering. Fourman [50] introduced a lexicographic or-
dering in which the basic idea is that the designer ranks the objectives in
order of importance. In his algorithm, objectives were assigned different pri-
orities by the user and each pair of individuals was compared according to the
objective with the highest priority.

Evolutionary Strategies. A multiple objective version is formulated for
evolutionary strategies (ESs) [83, 148]. At each step, one of these objectives
was selected randomly according to a probability vector and used to delete a
fraction of the current population.

Weighted Sum. Hajela and Lin [63] included the weights of each ob-
jective in the chromosome and promoted their diversity in the population

42 Assembly Line Design

through fitness sharing. The approach belongs to the category of aggregation
selection with parameter variation.

5.3.3 Pareto-based Approaches

In MOPs, there is a set of alternative trade-offs, generally known as Pareto-
optimal solutions. In the following, we will review some of the main Pareto-
based approaches.

Pareto-based Fitness Assignment. Goldberg [57] suggested the use
of non-domination ranking and selection to move a population toward the
Pareto front in a MOP. The author suggested the use of some kind of niching
(maintain individuals along the non-dominated frontier) to keep GAs from
converging to a single point on the front.

Multiple-objective Genetic Algorithm. Fonseca and Fleming [49] pro-
posed a scheme in which the rank of a certain individual corresponds to the
number of chromosomes in the current population by which it is dominated.
This type of blocked fitness assignment is likely to produce a large selection
pressure that might produce premature convergence. To avoid that, the au-
thors use a niche-formation method to distribute the population over the
Pareto-optimal region.

Non-Dominated Sorting Genetic Algorithm. Srinivas and Deb [156]
proposed the non-dominated sorting GA (NSGA), which is based on several
layers of classifications of the individuals. Each individual is assigned a dummy
fitness value which is proportional to the population size. In order to main-
tain diversity of the population, these classified individuals are shared with
their dummy fitness values. The process continues until all individuals in the
population are classified.

Niched Pareto Genetic Algorithm. Horn and Nafpliotis [70] used a
Pareto domination tournament (a niched Pareto GA, NPGA) instead of a non-
dominated sorting and ranking selection method. Two random individuals are
picked to select a winner in a tournament selection. If one of them is non-
dominated and the other is dominated, then the non-dominated individual
is selected. If both are either non-dominated or dominated, a niche count is
found for each individual in the entire population.

5.3.4 Preferences and Local Search Methods

Multi-objective Genetic Local Search. Murata et al. [102] proposed
a specification method of the local search direction for each solution in the
multiple objective genetic local search (MOGLS) algorithm for finding a set
of Pareto-optimal solutions. They used a weighted sum of multiple objectives

5 Multiple Objective Grouping Genetic Algorithm 43

as a fitness function for selecting a pair of parents solutions. The main fea-
ture of the selection procedure is that the weights attached to the multiple
objective functions are not constant, but randomly specified for each selection.

Local Search. Jaszkiewicz [73] presented a random directions multiple
objective genetic local search metaheuristic (RD-MOGLS). This method is
based on the idea of simultaneous optimisation of all possible utility functions.

Preferences for Multiple-objective Genetic Algorithm. Cvetković
and Parmee [31] presented a method based on preference relations transform-
ing qualitative relationships between objectives into quantitative attributes.
This method is integrated in the weighted sum of a GA and a combination of
Pareto and a weighted GA. A modified Pareto method for MOPs is presented
to yield a Pareto front dealing with preferences.

5.3.5 Constrained Problems

The presence of ‘hard’ constraints in a MOP may cause extra difficulties. It
is sure that the success of a Multiple-objective genetic algorithm (MOGA) in
tackling these problems depends on the constraint-handling technique used.
Penalty function methods require an appropriate choice of a penalty parame-
ter of each constraint.

Multi-objective Evolution Strategy for Constrained Optimisa-
tion Problems. To and Korn [163] presented a multiobjective evolution
strategy (MOB-ES) method for solving MOPs subjected to linear and non-
linear constraints. The method is based on the concept of C-(constraints),
F-(objective function) and N-(niche) fitness, which allows one to handle con-
straints and (in)feasible individuals. The authors provided new ideas for han-
dling (in)feasible individuals, since some niche infeasible individuals can be
better than some feasible ones.

Strength Pareto Evolutionary Algorithm. Ziztler [175] introduced
an evolutionary approach to multi-criteria optimisation, called the strength
Pareto evolutionary algorithm (SPEA). The method performs a clustering
procedure to reduce the number of individuals externally stored without de-
stroying the characteristics of the trade-off front.

Constraints Handling Through a Multiple-objective Technique.
Coello [29] proposed a population-based approach similar to VEGA to handle
constraints. The VEGA approach [145] is known to have difficulties in MOPs,
since it aims to find individuals that excel only in one dimension regardless of
the others. For a comprehensive review, the reader is referred to [29, 38, 49,
167].

44 Assembly Line Design

5.4 Grouping Problems and the Grouping Genetic

Algorithm

Our main objective is to design ALs which are problems of assignment of tasks
to stations. These problems can be easily transformed to grouping problems.
Falkenauer [44] pointed out the weaknesses of standard GAs when applied
to grouping problems and introduced the grouping GA (GGA) to match the
structure of grouping problems. The GGA’s operators (crossover, mutation
and inversion) are group-oriented aimed to follow the structure of grouping
problems.

5.4.1 Encoding Scheme

The most distinctive feature of the GGA is the use of a special solution en-
coding. Falkenauer [44] indicated several drawbacks of standard GAs when
applied to grouping problems. These drawbacks, due to the fact that the
schemata processed by either the classic GA of Holland [69] or the ordering
GA of Goldberg [57], do not represent meaningful regularities of the search
space of grouping problems.

Given the fact that schemata processed by a GA are defined over the
genes in the chromosomes, it thus follows that a GA adapted for grouping
problems must cast groups as genes in its chromosomes. Consequently, the
genes in the chromosomes of a GGA encode groups of objects rather than
the objects themselves, as illustrated in Figure 5.2. The objects in the upper
part of the figure are grouped into six groups of various sizes. Likewise, the
corresponding chromosome depicted in the lower part of the figure features
six genes and each of them encodes a group of one more objects.

1
23

4 5 6

7 8
910 11

12 13

2,5,8 9,13,10 12 3,4,7 1,6112,5,8 9,13,10 12 3,4,7 1,611

Figure 5.2. A grouping and the corresponding GGA chromosome

5 Multiple Objective Grouping Genetic Algorithm 45

5.4.2 Crossover Operator

The GGA crossover proceeds as follows (see Figure 5.3).

1. Select randomly two crossing sites and delimit the crossing section in each
of the two parents.

2. Inject the contents of the crossing section of the first parent at the first
crossing site of the second parent. Recall that this means injecting some
of the groups from the first parent into the second one.

3. Eliminate all objects which occur twice from the groups that they were
members in the second parent. In this case the ‘old’ membership of
these objects gives way to the membership specified by the ‘new’ injected
groups. Consequently, some of the ‘old’ groups coming from the second
parent are altered: they do not contain all the objects anymore, since some
of those objects had to be eliminated.

4. If necessary, adapt the resulting groups according to hard constraints of
the problem and optimise the cost function. At this stage, local problem-
dependent heuristics can be applied.

5. Apply the points 2 through 4 to the two parents with their roles reversed
in order to generate the second child.

Figure 5.3. The GGA crossover operator

Note that the child inherits genes from the first parent (its crossing section
injected in point 1) as well as from the second parent (the genes not affected by
the elimination in point 3). Since the genes encode groups, the child inherits
groups from both parents, as required by the structure of grouping problems.

46 Assembly Line Design

5.4.3 Mutation Operator

According to the nature of the particular grouping problem, one or more of
the following three operators can be applied: create new group(s) from ran-
domly selected objects; eliminate a randomly selected group by distributing
the objects it contains over the other groups; and shuffle a small number of
objects among groups.

5.4.4 Inversion Operator

The inversion operator serves to shorten promising schemata made of co-
adapted genes. In the GGA, the mechanism is the same as the operator of
Holland [69] (i.e. a segment on the chromosome is selected at random and the
order of genes in that segment is inverted). For more details about the GGA
and its applications, the reader is referred to [44].

5.5 Multiple Objective Grouping Genetic Algorithm

Figure 5.4(a) presents the most used approach to MOPs in which a GA gen-
erates a set of Pareto solutions and the DM uses his preferences to choose
the best solution. The approach proposed in this book is based on a merge
of a search and an MCDA, as illustrated in Figure 5.4(b). Indeed, in order to
come out of the MOP stated by the cost function, the MCDA method called
PROMETHEE II is used as a ranking technique [20]. However, it is important
to know that this method computes a net flow φ which is a kind of fitness of
each solution. This ‘fitness’ gives a ranking between the different solutions of
the population [122]. ELECTRE [139] and PROMETHEE are the most used
methods in the MCDA field. It is preferable to use PROMETHEE because
it is simpler to use than ELECTRE and easier to understand and manipulate.

Given a set of n potential alternatives (a1, a2, ... ai, ... an) and k evalua-
tion criteria (f1, f2, ... fj , ... fk), each evaluation fj(ai) is a real number. This
set of data can be presented in a matrix format as shown in Table 5.1. In the
case of a GA, each potential alternative ai is an individual of the population
and the evaluation criteria fj(ai) is the value of objective j for individual
ai. The ranking of a given population starts when the evaluation matrix is
available. Then, PROMETHEE computes the ‘net flow’ φi for each individual
i. Weights (associated with each objective) are involved in the computation
of the φ number and represent the relative influence of each objective. Thus,
solutions are not compared according to a cost function yielding an absolute
fitness of individuals as in a classical GA, but are compared with each other
depending on the current population.

5 Multiple Objective Grouping Genetic Algorithm 47

Population
initialisation

Evaluation &
stop criterion

Genetic
operators

Population
initialisation

Multi-criteria
decision-aid

Genetic operators

Solution
Solution

Set of solutions

Multi-criteria
decision-aid

Reconstruct changed
individuals

(a) (b)

User’s
preferences

User’s
preferences

Cost
function

Integration

Figure 5.4. Integrating search and decision making into the GA

Table 5.1. PROMETHEE II evaluation matrix

f1(.) f2(.) ... fj(.) ... fk(.)

a1 f1(a1) f2(a1) ... fj(a1) ... fk(a1)
a2 f1(a2) f2(a2) ... fj(a2) ... fk(a2)
...

ai f1(ai) f2(ai) ... fj(ai) ... fk(ai)
...

an f1(an) f2(an) ... fj(an) ... fk(an)

φ1 φ2 φj φk

In each generation, a ranking changes the fitness of individuals with their
environment. In classical GAs, the fitness of an individual is independent
of the other individuals that constitute the population. There is no direct
feedback from the environment to the fitness of the individual, which remains
constant and unaffected by their environment. This is a weak point of GA-
based methods in the case of MOPs. The values of the φ are context related
and have no absolute meaning. Hence, it becomes impossible to fix a stop
criterion for GAs. The optimisation is stopped at the user’s request, or if no
better solution has been found for a given number of generations.

5.5.1 Control Strategy

In each generation, a set of old and new individuals as well as the best-ever
solution are involved in the evaluation of the whole population (Figure 5.5).
The MCDA method ranks the individuals taking into account the presence

48 Assembly Line Design

of the others. This fitness allows GAs to choose the best solution simply by
looking for the individuals having the maximum value of φ.

Current best solution

B
et

te
r

so
lu

ti
on

s

Ranking at generation i Ranking at generation i+1

PROMETHEE II

Old
individuals

New
individuals

Figure 5.5. Control strategy of the MO-GA

5.5.2 Individual Construction Algorithm

For a given problem, the individual construction algorithm (ICA) is used
to create individuals. In the case of an ALB problem, an ICA called ‘equal
piles’ is proposed in Chapter 6, while the ‘equal piles/branch and cut’ ICA is
presented for the RP problem in Chapter 7.

5.5.3 Overall Architecture of the Evolutionary Method

Optimising a combination of the objectives has the advantage of producing
a single solution, requiring no further interaction with the DM. For a given
user’s preferences and a given design problem, the following MOGA is imple-
mented.

The initial population is generated using an ICA. The individuals are then
ranked using PROMETHEE II. At each iteration of the main loop, the better
solutions are selected from the current population. Recombination produces a
number of new individuals. The mutation is used to explore the search space
and then the offspring is incorporated into the original population. Again,
individuals are ranked using the MCDA and the loop finishes when the termi-
nation criteria are satisfied. The basic features of the MO-GGA are presented
in the following pseudo-code.

5 Multiple Objective Grouping Genetic Algorithm 49

Generate an initial population with an individual construction algo-
rithm; Order individuals using PROMETHEE II;
repeat
Select parents;
Recombine best parents of the population;
Mutate children;
Reconstruct individuals using the ICA;
Replace individuals of the population by children;
Use PROMETHEE II to order the new population;
until a satisfactory solution has been found.

5.5.4 Branching on Populations

The method is inspired from the work of Steinberg and Rasheed in their op-
timisation method by searching a tree of populations [157]. The idea is based
on artificial intelligence search techniques like branching and backtracking, as
illustrated in Figure 5.6. Each criterion is attributed a triplet (w, p, q), where:

p is the preference threshold – if the absolute value of the difference
between two solutions is higher than p, then this difference is significant and
the solution representing the highest performance is better than the other.

q is the indifference threshold – if the absolute value of difference be-
tween two solutions is lower than q, then this difference is not significant and
the two solutions are practically equivalent.

w is the weight – the weight w means that if a criterion is attributed a
weight of 3, and another a weight of 2, that means that two points (respec-
tively three) gained with the first criterion can be compensated by four points
(respectively 5.5) gained in the second. It is assumed that the values p and q
are the same for the two criteria. Let

• tgi = (pg
i , q

g
i , wg

i) be the triplet (p, q, w) of objective i at the generation g;

• T j = (tj1, t
j
2, t

j
3, ..., t

j
N) be a set of triplets at generation j;

• N be the number of objectives.

The procedure starts by assigning a triplet to each criterion (T a set of
triplets at generation i); the GA is then run for a certain number of iterations
gi. The population obtained after gi iterations is then analysed by the user
(quality of the objectives, the global quality of the best solution, ...). If the user
is unsatisfied with the solution, the triplets assigned to the different criterion
can be modified. The GA is re-run using the new values of the triplets (T i+1).
This technique of branching on populations helps to guide the GA to deal
with MOPs looking for the compromise between objectives. A set of triplets
at generation j is obtained by applying the function M j

i on the set of triplets
at generation i:

50 Assembly Line Design

00

3

0

2

0

1 ,...,,, Ntttt

11

3

1

2

1

1 ,...,,, Ntttt

22

3

2

2

2

1 ,...,,, Ntttt
33

3

3

2

3

1 ,...,,, Ntttt

i

N

iii tttt ,...,,, 321

Population
Set of objectives

),,(g

i

g

i

g

i

g

i wqpt =

The triplet preference, indifference

thresholds and weights of objectives

Figure 5.6. Branching on population

tj1, t
j
2, t

j
3, ..., t

j
N = M j

i (ti1, t
i
2, t

i
3, ..., t

i
N)

For instance, suppose we have two objectives and the two triplets at gen-
eration 0 are t01 = (1, 0, 1), t02 = (1, 0, 0). Also, by assuming the modifying
function M1

0 which transforms the triplets of generation 0 to those of gener-
ation is 1: t11 = (1.0, 0.5), t12 = (1.0, 0.5). Then, the population at generation
j is obtained by running the GA and using its corresponding set of triplets
tj1, t

j
2, t

j
3, ..., t

j
N , as illustrated in Figure 5.7.

P j = M j
i (P)

where:

• M j
i is the function for modifying triplets of generation i to triplets of

generation j,
• P i is the population at generation i,
• M j

i (P i) transforms population of generation i using triplets tj1, t
j
2, t

j
3, ..., t

j
N .

11

3

1

2

1

11 ,...,,, NttttT = 22

3

2

2

2

12 ,...,,, NttttT =

P1P1
P2P2

)(1
2

12 TMT =

Figure 5.7. Evolving from generation 1 to generation 2

The term generation refers to the order of the modification which is set
by the DM after analysing the quality of the best solution for the given set

5 Multiple Objective Grouping Genetic Algorithm 51

of triplets. The whole process of optimisation is composed of a set of R runs
of GAs using different sets of triplets. If the results of a modification cannot
be accepted due to an inappropriate setting of the triplets, the DM has the
choice between starting the run from the beginning or returning to the last
triplets and restarting from the last population.

0T

),...,,,(321

m

N

mmmm ttttt =

1T

2T

iT

kT

3T

rT

Figure 5.8. Cycling approach

The modification function must be reversible (i.e. the given set of triplets
yield the same population regardless of the stochastic behaviour of GAs). Ab-
straction is done from the initial starting population (i.e. results obtained
using a given set of triplets are independent of the starting population) as
illustrated in Figure 5.8. The population obtained using the triplets T 0 must
be close to the population obtained using the sequence of triplets T 0 T 1 T 2

...T i... T k... T 0. The set of triplets allows one to guide the GA during the
search phase.

The branching factor (the number of changes of a given number of triplets)
in the case of k objectives is N = 23k − 1 (64 in the case of two objectives). It
is the number of different groups composed of n objects (the factor 3 is due to
the fact that for each objective we have a triplet p, q, w). These changes are
not always possible and are far from realistic. In the next section, a detailed
example is introduced to demonstrate the above concepts.

5.6 The Detailed Example

A set of N objects have to be grouped in a set of groups. Let Objsi = {i/i ∈
[0..N]} be the set of objects in group i and the size of each object is equal to

52 Assembly Line Design

its identity. A graphical representation of the problem is given in Figure 5.9.
In the first solution each object 1, 2, 3, 4 is put in its own group, while in
the second solution all objects are grouped in the same group. Each group is
characterised by its average and standard deviation. The average of a given
group is the sum of the ID of its objects divided by the number of its items
(size). For instance, in Figure 5.9(a) the average of group 4 is 4 since it is
composed only by the object 4, while its standard deviation is null. The aim
is to optimise the two following objectives:

• minimise the standard deviation on the average of groups;
• minimise the average of the standard deviations.

Group4

Avg4=4
Std_div4=0

1 2

34

1 2

343

21

4

(a) (b)

Group1

Avg1=1
Std_div1=0

Group3

Avg3=3
Std_div3=0

Group2

Avg2=2
Std_div2=0

Group1

Avg1=2.5
Std_div1=1.18

Objective1=1.18
Objective2=0

Objective1=0
Objective2=1.18

3

21

4
Group1
Avg1=3.5

Std_div1=0.5

Group2
Avg2=1.5

Std_div2=0.5
Objective1=1

Objective2=0.5

(c)

Figure 5.9. One object by group (a) and one group for all objects (b) and two
objects by group (c) solutions

Let NbGrp be the number of groups of a given solution, and sizei is the
size of each group. The average of a group i is the sum of the size of objects
of the group divided by its size and is given by

Avgi =

∑sizei

j Objsi[j]

sizei

The average of a given solution is the sum of the average of groups divided
by the number of groups and is given by

5 Multiple Objective Grouping Genetic Algorithm 53

AV G =

∑NbGrp

i=0 Avgi

NbGrp

The standard deviation of a group indicates how closely the size of objects
are clustered around the average:

Std divi =

√∑sizei

i=0 (Objsi[j] − Avgi)2

sizei

The first objective is the standard deviation of the standard deviation of
the groups:

Minimize : objective1 =

√∑NbGrp

i=0 (Avgi − AV G)2

NbGrp

The second objective is the average of the different standard deviation:

Minimize : objective2 =

∑NbGrp

i=0 (Std divi)
2

NbGrp

The formulation of the two objectives shows that (see Figure 5.9):

• The first objective takes the value ‘0’ if there is only one group and at the
same time the second objective takes its maximal value.

• The second objective takes the value ‘0’ if there only one object by group
while the first objective takes its maximal value.1

Figure 5.10 presents the evolution of the two objectives where the second
objective is neglected (w1=1.0, w2=0.0). The word ‘neglected’ means that the
weight or the preference attributed to the given objective is set to zero. This
figure shows that the method tends to minimise objective 1 and ignores the
other.

Figure 5.11 represents the evolution of the two objectives where objective
1 is neglected. The weight attributed to objective 1 is null (w1=0.0, w2=1.0).
The figure shows that the method tends to minimise objective 2 and pays less
attention to the evolution of objective 1. When the weight of an objective is
set to zero, the MO-GGA will ignore the importance of this objective. Thus,
minimising objective 2 tends to maximise objective 1 and vice versa. When
optimising the two objectives, a simple way is to set the weights to (w1=0.5,
w2=0.5). Figure 5.12 shows that after few generations the two objectives con-
flict with each other (i.e. minimising one objective tends to maximise the
other).

1 Note that a solution composed of two groups where the first group contains objects
{1, 4} and the second {2, 3} takes the value ‘0’ for the first objective and the
value ‘1’ for the second. This solution is not optimal in the case where the aim is
to find the minimum value of objective 1 and the maximal value of objective 2.

54 Assembly Line Design

Generation

Figure 5.10. Evolution of objective 1 in the case that objective 2 is neglected

Generation

Figure 5.11. Evolution of objective 2 in the case that objective 1 is neglected

Generation

Figure 5.12. Evolution of two objectives having the same preference

5 Multiple Objective Grouping Genetic Algorithm 55

Figure 5.13. Evolution of objective 1 with preferences of the two objectives

The evolution of objectives 1 and 2 for different values of w1 and w2 (as
shown in Figure 5.13 and Figure 5.14 respectively) shows that the weights
given to the different objectives can guide the algorithm. The figures show
that, for small values of w1, the algorithm tends to optimise objective 2 and
for small values of w2 the algorithm tends to optimise objective 1. For similar
values of w1 and w2, the algorithm simultaneously optimises the two objec-
tives.

Figure 5.14. Evolution of objective 2 with preferences of the two objectives

The following test was done to verify the idea of branching on popula-
tion. For the same problem, we started with the given preferences (w1=1.0,
w2=0.0). The algorithm was stopped after 180 generations, then the prefer-

56 Assembly Line Design

ences were set to (w1=0.0, w2=1.0). Again, the algorithm was stopped at
generation 570, the preferences were set to (w1=1.0, w2=0.0) (see Figure 5.15
and Table 5.2). The graphic representation shows that the best solution of
the population and the search direction changes once the preferences given
to the objectives change. The fact that the population switches quickly from
one direction to another is attributed to the mutation, which makes a kind
of diversity in the population. These results show that the proposed method
satisfies the user’s preferences with regard to the optimisation objective.

Generation

Figure 5.15. Changing the search direction by changing preferences

Table 5.2. Critical values of the two objectives

generation objective 1 objective 2 generation objective 1 objective 2
2 1.59 7.92 291 8.87 0.38
3 1.59 7.92 368 9.1 0.11
4 1.02 8.78 420 8.89 0.06
5 1.02 8.78 462 9.11 0.03
6 0.56 8.51 504 9.23 0
18 0.22 8.71 570 5.4 7.27
78 0.06 9.21 572 0.75 9.19
177 4.67 4.19 589 0.32 7.3
183 4.67 4.19 655 0.12 9.81
184 6.67 1.75 772 0.07 9.35
245 9.21 0.62 896 0 9.02
290 9.21 0.62

Part III

Assembly Line Layout

6

Equal Piles for Assembly Line Balancing

6.1 Introduction

The assembly activities performed within the assembly system not only de-
termine the final qualities of the products, but also affect time-to-market, de-
livery, etc. For manual ALs the most interesting performance index is station
workloads’ balancing. In this chapter we focus on single and multi-problem
ALB (MPALB) problems. Section 6.2 is dedicated to the ALB, and Section 6.3
describes the proposed method of ‘equal piles’ for ALs. Section 6.4 introduces
the MPALB problem.

6.2 The State of the Art

Related AL design (ALD) problems and issues are characterised in the liter-
ature as the ALB problem, which usually refers to a single product AL. Most
of this literature deals with the maximisation of the line efficiency through
minimisation of idle time. In the following, a review of existing methods is
presented.

6.2.1 Exact Methods

Several approaches for determining lower bounds on the number of stations (n)
in the case of SALBP-1 (the cycle time in the case of SALBP-2) are proposed
in the literature. The lower bounds are obtained by solving problems which are
derived from the considered problem by omitting or relaxing constraints. Most
of these techniques fall into two categories, which are dynamic programming
and branch and bound methods. A good introduction to optimal approaches of
the ALB problem can be found in [12], while a good survey on exact methods
for the ALB problem can be found in [146].

59

60 Assembly Line Design

Dynamic Programming

The dynamic programming (DP) method is applied to the most COPs and
involves the optimisation of multi-stage decision procedures. A given problem
is divided into sub-problems which are sequentially solved until the initial
problem is finally solved. States at a particular stage s are transformed to
states at the subsequent stage s + 1 by a decision. The generation of states
is described by transformation functions which depend on the current state
and the decision taken. A sequence of decisions, which transforms a state at
a stage s to a stage s′ > s, is called policy. DP is a solving approach rather
than a technique, and the following approaches are linked to this technique.

Salveson [143] empirically addressed the ALB problem by formulating
SALB as a linear programming (LP) problem including all possible combi-
nation of station assignments. Bowman [19] provided a ‘non-divisibility’ con-
straint by changing the LP formulation to zero–one integer programming.
Patterson and Albracht [109] used the integer programming search technique
which was efficiently computational more than some of the earlier ones. Jack-
son [72] proposed an algorithm for SALBP-1 using the notion of a tree. The
SALBP was represented by a tree in which each path corresponds to a fea-
sible solution with each arc representing a station. The method starts by
generating all feasible assignments to the first station (one of these feasible
assignments will obviously be part of the optimal solution). Then it gener-
ates all feasible assignments to the second station and giving the first station
assignments. Then, for each first–second station combination, all feasible so-
lutions are constructed for the third station, and this process is repeated each
time by adding one station. For more information about DP, the reader is
referred to [1, 62, 111, 151].

Branch and Bound

The branch and bound (B&B) algorithm consists of two main components:
the branching and the bounding. The initial solution is developed into sev-
eral sub-problems (branching). A multi-level enumeration is constructed by
continuously developing such sub-problems for which the optimal solution is
already known and need not be branched. These sub-problems are referred
to as leaf nodes. A path from the root node to any other node of the tree
is called a branch. Bounding is applied to reduce the size of the enumeration
trees. This is achieved by computing lower bounds (the cycle time in the case
of SALBP-2) at least necessary for a feasible solution in each node. An optimal
solution is found if the ‘global’ lower bound is found. For more information
about B&B, the reader is referred to [16, 68, 74, 146, 147, 171].

6 Equal Piles for Assembly Line Balancing 61

Graph Search Technique

Johnson [74] proposed a depth-first-search method called ‘fast algorithm for
balancing line effectively’ (FABLE). Sub-problems are constructed by adding
an assignable task to the currently considered station k (starting with station
1). If no such tasks exists, the current station load is maximal and the con-
secutive station k + 1 is opened. In each of the n iterations (i = 1, ..n), one
non-marked task with the largest process time (which has no predecessor or
only marked predecessors) gets the number i and is marked. Whenever a sta-
tion is opened, the task with the smallest number among the assignable tasks
is added. Any further tasks in the station must have a larger number than the
task assigned in the ancestor node. Then, the current branch is traced back
by removing tasks assignments until an alternative branch can be followed.

6.2.2 Approximated Methods

Talbot et al. [161] divided heuristics for ALBP into four categories: single-
pass, composite, backtracking and time trapped optimising approaches. In
this section, some well-known heuristics will be considered. These methods
are divided into simple heuristics and metaheuristics.

Simple Heuristic Methods

One of the first proposed heuristics was the ranked positional weight (RPW)
[65]. The main idea is to assign the tasks which have long chains of succeeding
tasks. The length of the chain can be measured either by the number of suc-
cessor tasks or the sum of the task times of the successor tasks. The sum of
the task process time and the process times of the successor tasks is defined as
the positional weight of the task. The tasks are ranked in descending order of
the positional weights with arbitrarily broken ties. The tasks are then picked
up in their ranked order and assigned to stations if: (1) all predecessors of the
task have already been assigned, and (2) the task fits in the remaining time
on the station. If a task does not fit in the remaining time on a station, it is
skipped and the next task in the ranked order is selected. If no task fits in
the station, the station is closed and a new station is opened. The ‘reversed
RPW’ (RRPW) is the RPW method applied to the problem with the reversed
precedence constraints. After a balance is found for the reversed problem, the
problem is ‘un-reversed’ to get a balance solution for the original problem [65].

On the side of interactive and iterative methods (balancing and simula-
tion), Praça and Ramos [118] proposed an architecture based on multi-agent
simulation called (SimBa). The balancing module, which implements three
heuristic rules from [17] and [65], allows one to obtain different line configura-
tions, while the simulation module evaluates the performance of the proposed
configurations. Many heuristics proposed in literature are a combination of

62 Assembly Line Design

the following methods [161]: greater number of immediate successors, greater
number of successors, smallest upper bound, smallest upper bound divided
by the number of successors, greatest processing time divided by the upper
bound, smallest lower bound, minimum slack time, and minimum number
of successors divided by task slack, etc. For more information about these
heuristics, the reader is referred to [6, 17, 52, 67, 68, 78, 101, 119, 150, 154].

Metaheuristics

Garey and Johnson [53] proposed the simple ‘first fit descending’ (FFD)
heuristic for the BPP. The idea is to start with one empty bin, take the
items one by one (classified in decreasing size order) and, for each of them,
first to search the bins that have so far been used for a space large enough
to accommodate the item. If such a bin can be found, put the item there;
if not, request a new bin. Putting the item into the first available bin found
yields the ‘first fit’ (FF) heuristic. Searching for the most filled bin still hav-
ing enough space for the item yields the ‘best fit’ (BF) heuristic which can
perform as well (as bad) as the FF, while being slower. Fitted with acyclic
precedence constraints [142], the BPP becomes the ALBP. A modification of
the FFD heuristic (augmenting the size of objects with the size of all their
predecessors) yields a simple heuristic whose its performance is similar to the
FFD heuristic [27].

On the evolutionary algorithm side, to the best of our knowledge, the first
attempts were by Falkenauer and Delchambre [46], who used a GGA. They
generalised their bin-packing GGA to obtain a fast algorithm supplying high-
quality approximated solutions of the ALBP. One advantage of their method
was the ability to handle problems with sparse, even empty precedence con-
straints. Note that the mechanism of complying with precedence constraints
proposed in [46] applies equally well to the hybrid GGA of [43], leading to an
equally powerful algorithm for SALBP-1. For more information about meta-
heuristics, the reader is referred to [4, 6, 24, 52, 56, 79, 80, 85, 88, 94, 99, 101,
112, 117, 141, 159, 160, 161].

6.3 Equal Piles for Assembly Line Balancing

When focusing on cycle time, an imbalanced allocation of tasks among stations
will typically occur [119]. Thus, using the word balancing when cycle time is
regarded as a constraint is not appropriate. Indeed, SALBP-1 or SALBP-2
methods do not minimise the imbalance between stations. When dealing with
manual multi-product ALs in a batch-oriented approach, most of the time the
designer tends to reuse and rebalance the same line for the different batchs.
As the allocated space to the AL (number of stations, heavy machines, etc.)
is generally fixed, designers have to deal with these constraints. This also

6 Equal Piles for Assembly Line Balancing 63

may occur when the designer has to reuse existing stations to assemble new
products. We propose the equal piles approach to balance ALs which seeks to
assign tasks to a fixed number of stations in such a way that the workload of
each station is nearly equal.

6.3.1 Motivation and Inspiration From Nature

The simple equal piles problem (which does not take precedence constraints
into account) was first defined by Jones and Betramo [76]. This problem can
be introduced as follows: given a set of N objects of various sizes (one dimen-
sion), distribute the objects into K ‘piles’ in such a way that the ‘heights’
of the piles are as equal as possible. To solve this problem, Falkenauer [42]
presented a GGA combined with the FFD heuristic. Having initialised the
required number of groups at random, the remaining items are sorted in de-
creasing size order and successively added to the ‘smallest pile’.

The method presented in this book is based on observing the boundary
stones along the motorway (Figure 6.1). Indeed, the distance between two
cities is fixed by the number of boundaries (which is equivalent to the number
of kilometres). In the case of a flat motorway and fixed speed, the time to
cover the distance between two adjacent boundaries is roughly the same (well
balanced). It is known that, in order to reduce the time to cover the distance
between two cities, the speed must be increased. Moreover, to have an average
speed equal to the theoretical one, the safe way is (1) to get back missed time
between two boundaries by speeding up between others, or (2) to lose time
earned between two boundaries by reducing the speed between others.

Station
i - 2

Station
i - 1

Station
i + 2

Station
i + 1

Station
i

i - 2 i - 1 i + 1i i + 2 i

Boundary stones Motorway

Assembly
line

Figure 6.1. Correspondence between an assembly line and a motorway

In the case of an AL, the space is fixed by the designer and the speed of
the line depends on the desired throughput of the line and the process time
of the tasks. In this case, the distance between two boundaries is equivalent
to the process time of a station. Thus, the product has to cross the line in a
duration fixed by the desired cycle time and the number of stations. Moreover,
to keep the real throughput as close as possible to the desired one, a practical
way is (1) to get back missed process time on a given station by speeding up

64 Assembly Line Design

the others, or (2) to lose time earned on a given station by reducing the speed
of the others. The hard constraint is no longer the cycle time, but the number
of stations.

6.3.2 Input Data

The approach needs the following input data as illustrated in Figure 6.2:

• the desired number of stations;
• the duration of each operation;
• the assembly plan (precedence graph) of the product;
• the user’s preference constraints (associative and dissociative).

GGA
EPAL

Equalised
stations

+ Tasks duration
+ Number of stations
+ Precedence graph
+ Preferences

Figure 6.2. Data flow for EPAL

The two first input data are used to estimate the desired cycle time of
the AL, while the others allow one to deal with the user’s needs (sequence of
operations, separate some operations and group some others, etc.).

6.3.3 Customising the Grouping Genetic Algorithm to the Equal
Piles Assembly Line Problem

The proposed heuristic method is based on the GGA which was introduced
in Chapter 5. The structure of the proposed EPAL-GGA is as follows:

Generate an initial population with an ICA;
repeat

Select parents;
Recombine best parents from the population;
Mutate children;
Reconstruct individuals using the ICA;
Replace individuals of the population by children;

until a satisfactory solution has been found.

The purpose of the ICA (EPAL) heuristic is to allocate tasks to a fixed
number of stations. The EPAL approach is embedded in the GGA and is used
to construct individuals of the population at each generation. The essential
and distinct concepts adopted by the method will be described below, along
with step-by-step execution procedure and an illustrated example.

6 Equal Piles for Assembly Line Balancing 65

Boundary Stones Algorithm

The proposed approach is based on boundary stones. These boundaries will
be used as seeds to fill stations and the following steps are used:

Step 1. This begins by detecting if the precedence graph is cyclic [151].

Step 2. This orders the operations using the labels defined below. The
labels of tasks depend on the numbers of their predecessors and successors
using

label1i = nbpredsi − nbsuccsi (6.1)

where label1i is the ordering criteria of operation i (it depends heavily on the
precedence graph), nbpredsi is the total number of predecessors of operation i,
and nbsuccsi is its total number of successors. This formulation of labels does
not take into account the operation durations. For complex graphs (presenting
several sprays), Equation (6.1) falls in a trap (yielding a poor balancing). The
more sprays the graph contains the more its ordering becomes difficult (for
a graph having a diagonal adjacency matrix the labelling is very easy, since
the graph is ‘dense’ and uniform). Equation (6.1) was completed to avoid this
pitfall as follows:

labeli = nbpredsi − nbsuccsi + followsi (6.2)

where followsi is the maximal label1i value of the direct successors of oper-
ation i in the precedence graph. Table 6.1 gives the application of Equations
(6.1) and (6.2) to the precedence graph illustrated in Figure 6.3.

For instance, operation 1 has zero predecessors and four successors; thus,
label1(1) = 0 − 4 = −4. The direct successors of 1 are {3, 4} and their
respective labels are {−1, 0}; thus, the maximal value is (Follow(1) = 0).
The label of operation 1 according to Equation (6.2) is −4.

1

4

3
5

2

61

4

3
5

2

6

Figure 6.3. Example of precedence graph

This method permits one to order operations by finding the probable first
and last operations on the product and permits one to choose the possible
seeds of stations (the boundary stones).

66 Assembly Line Design

Table 6.1. Example of applications of Equations (6.1) and (6.2)

Operation Duration nbpreds nbsuccs label1 Follows label

1 4 0 4 −4 0 −4

2 2 0 3 −3 0 −3

3 3 1 2 −1 3 2

4 3 2 2 0 3 3

5 1 4 1 3 5 8

6 5 5 0 5 61 11

Step 3. Boundary stones are chosen using the sequence obtained at the
second step. The number of stones is equal to the number of stations. This
step allows one to find seeds of piles (stones or stations). In this example,
the boundary stones are determined to group operations in three clusters
corresponding to the three stations. The first operation in the precedence
graph of the product is 1 (it has no predecessor and gets the minimal label).
The last operation is 6 (having no successor and corresponding to the maximal
label). According to their labels {−4, −3, 2, 3, 8, 11}, operations are ordered
as follows {1, 2, 3, 4, 5, 6} (refer to Table 6.1). The first boundary stone is
the label corresponding to the first operation:

stone1 = min(label) (6.3)

The boundary stone i is defined as

stonei+1 = stonei + gap (6.4)

where

gap =
maxi(labeli) − mini(labeli)

N
(6.5)

In this example, gap = 5 and the boundary stones are {−4, 1, 6}.

Step 4. Once the boundary stones have been fixed, the labels are grouped
into as many clusters as stations. The seed seedi (which corresponds to the
first operation) of cluster i will be a label close to stonei; for the first station,
seed1 = label1 is fixed. To this seedi will also correspond an operation which
will be the seed of station i. Note that there can be several possible seeds
(operations) for each cluster, which adds randomness to the procedure. Once
the seeds have been selected, each cluster i is completed by adding label(s) to
it in an increasing order, so that

1 There are no successors for this operation, and it is the last operation in the
precedence graph, so the total number of operations is taken as the value of the
label.

6 Equal Piles for Assembly Line Balancing 67

∀clusteri,∀j ∈ [1, nop], seedi ≤ labelj < seedi+1 (6.6)

where nop is the total number of operations. The clustering fixes the possible
insertion positions (stations) of the remaining unassigned operations. Oper-
ations of clusteri (the one corresponding to the seedi and the operations in
the last cluster excepted) may be assigned to station i or i + 1. For example,
suppose the chosen cluster seeds are {−4, 2, 8} and the corresponding label
clusters are {−4, −3}, {2, 3} and {8, 11}. Thus, operation 1 will be assigned
to station 1, operation 3 to station 2 and operation 5 to station 3. Among the
remaining operations, forming the three clusters {2}, {4}, and {6} operation 2
may be assigned to stations 1 or 2, operation 4 to station 2 or 3, and operation
6 to station 3, as illustrated in Figure 6.4. The operations already assigned
are the station seeds. The arrows starting from the clusters (cl1, cl2, and cl3)
point to the station which the remaining operations can be assigned to.

Step 5. Once the clustering has been done the algorithm assigns the re-
maining operations to stations according to the rules exposed at step 4, taking
into account the precedence constraints and the user’s preferences (see Section
6.3.3).

Owing to the precedence constraints of the product, some station loads
will exceed the desired cycle time (the maximum stations process time). A
local improvement phase attempts to equalise those stations again by mov-
ing operations along the line or exchanging operations between stations (see
Section 6.3.3).

1

2

53

4 6

WS1 WS2 WS3

cl1 cl2 cl3

Figure 6.4. Operation clustering and assignment

Steps 4 and 5 are repeated each time to construct a new solution (e.g. at
the population initialisation) or complete an existing one (e.g. after a crossover
or during the mutation).

68 Assembly Line Design

Dealing with Precedence Constraints

At each time, an operation is assigned to a station as follows:

1. Look for the ‘boundary stone’ that corresponds to the given operation.
2. Have ‘X’ be the station where to insert the operation. If the stations

correspond to the already assigned successors of the given operation that
precedes ‘X’, another station is required in which to insert the operation
and to avoid the violation of precedence constraints.

Heuristics

Two heuristics are used to improve the solutions obtained by the boundary
stones algorithms: the simple wheel and the multiple wheels.

Simple Wheel. this heuristic tries to move a set of operations from the
first station to the second one. Then, it tries to move a set of operations
from the new second station to the third one, and so on until the last station
is reached. The move will be accepted automatically if the process time of
the destination station added to the processing time of the moved operations
does not exceed the cycle time. If it exceeds, the move is accepted with some
probabilities. Next, it begins moving operations from the last station toward
the last but one, and so on until the first station is reached (see Figure 6.5).

1 2

4 3

Figure 6.5. Simple wheel heuristic

Multiple Wheel. the idea in this heuristic is to exchange operations
between two adjacent stations at a time (Figure 6.6). All the possible ex-
changes (which do not violate precedence constraints) are executed. The first
exchange is made between the first and second station, while the second one
is performed between the second and the third station, and so on.

The first heuristic gives the best results, while the second one is used only
if the algorithm is stuck in local optima and fails to improve the solution.

6 Equal Piles for Assembly Line Balancing 69

1 2

Figure 6.6. Multiple wheel heuristic

Cost Function

The cost function is simply the sum of the differences between the stations,
operating times and the desired cycle time. Indeed, a solution where the dura-
tion of half the number of stations exceeds the cycle time and the duration of
the second half is below the cycle time seems to be a good one, as illustrated
in Figure 6.7.

Cycle time

Figure 6.7. Badly balanced line with ‘negative’ imbalance equal to ‘positive’ one

The following is proposed to minimise the cost function (balance index):

fEP =
∑

i=1..N

(filli − cycletime)2 (6.7)

where N is the number of stations, filli is the sum of working times on station
i, timei is the process time of task i, and cycletime is the desired cycle time,
defined as

cycletime =

∑nop

i=1 timei

N
(6.8)

6.3.4 Experimental Results

In order to assess the merit of the proposed algorithm, many tests have been
carried out using standard benchmarks [146]. The proposed metaheuristic was
tested on a set of instances (BUXEY, GUNTHER, HAHN, KILBRIDGE,

70 Assembly Line Design

LUTZ, WARNEKEE, WEE-MAG) taken from the benchmarks2 proposed by
[146]. The EPAL-GGA used in the experiments is a steady-state group-based
GA using a population of 36 individuals. Seven instances were used to test
the method and the EPAL-GGA was applied five times on each instance. For
each instance the results are given in tabular and graphical forms. Table 6.2
gives the maximal and the minimal process time of each solution. Table 6.3
summarises the balancing of the solution.

Table 6.2 summarises the results corresponding to the ‘BUXEY’ instance.
The BUXEY instance is composed of 29 operations and the total process
time is 324. CT represents the theoretical cycle time corresponding to a given
number of stations. For a given number of stations N, CT is the sum of
processing time of all tasks divided by N. Min (Max) represents the minimal
(maximal) process time of stations of a given solution.

Table 6.2. BUXEY’s minimal/maximal workload of stations

N CT Min 1 Max 1 Min 2 Max 2 Min 3 Max 3 Min 4 Max 4 Min 5 Max 5

7 46.2857 45 48 45 48 44 47 44 47 45 48
8 40.5000 40 41 40 41 40 41 40 41 40 41
9 36.0000 32 38 32 38 32 38 32 38 32 38
10 32.4000 27 35 30 34 26 35 27 35 30 35
11 29.4545 20 34 20 33 20 34 20 34 20 33
12 27.0000 23 29 24 29 24 29 24 29 25 28
13 24.9231 20 28 20 28 20 28 20 28 20 28
14 23.1429 20 26 15 26 14 27 20 26 20 26

Table 6.3 gives the balancing which corresponds to the five runs of the best
solutions (the balance index was obtained using Equation (6.7) (see Section
6.3.3). The last two columns represent respectively the average run time (on
a Pentium II 333 MHz) and the standard deviations of the values. Figure
6.8 represents the balancing versus the number of stations. The balancing
obtained is generally less than 1 (1 corresponds to a highly imbalanced AL).
Also, the results obtained show that the balancing decreases with the number
of stations (non-balanced stations). The bigger the number of stations, the
smaller is the cycle time and the smaller is the number of tasks. Thus, the
balancing becomes complicated. This shows the complexity of the balancing,
as for 14 stations the balancing values are very big, as shown in Figure 6.8. The
results obtained using these benchmarks show that the standard deviations
are high and the average run time still reasonable, and this proves that the
algorithm behaves uniformly.

2 The benchmark suite is accessible via the Web at
http://www.bwl.tu-darmstadt.de/bwl3/forsch/projekte/alb/index.htm

6 Equal Piles for Assembly Line Balancing 71

Table 6.3. BUXEY’s balancing

N Balance1 Balance2 Balance3 Balance4 Balance5 Avg Runtime Std Dev.

7 0.0503 0.0503 0.0589 0.0589 0.0503 29.16 14.774
8 0.0349 0.0349 0.0349 0.0349 0.0349 4.0600 0.171
9 0.1470 0.1470 0.1470 0.1521 0.1470 2.7400 0.475
10 0.2147 0.1525 0.2438 0.2191 0.1757 26.5400 3.087
11 0.3970 0.4168 0.4277 0.4462 0.4140 33.1000 9.507
12 0.2029 0.1737 0.1889 0.1737 0.1283 38.9400 8.911
13 0.3784 0.3654 0.3654 0.3426 0.3698 46.7400 13.073
14 0.3339 0.4567 0.5034 0.3449 0.3225 59.7600 10.598

B
al

an
ci

n
g

Number of stations

Figure 6.8. The balancing versus the number of stations (BUXEY)

6.4 Extension to Multi-product Assembly Line

6.4.1 Multiple Objective Problem

The multi-product ALB with a fixed number of stations may have two con-
flicting objectives as follows:

1. equalise the average station load (EPAL);
2. minimise the difference between variants’ workload on each station.

The results obtained using one of these objectives are generally different.
To illustrate this, suppose we have M = 4 operations and N = 2 stations and
two variants. Suppose the following variant operation’s duration ({0, 5},{4,
4},{5, 0},{6, 6}), and the two solutions are given in Table 6.4. The first solu-
tion presents a good balancing of the stations on average and a great difference

72 Assembly Line Design

between variants’ process times. On the other hand, the second one presents a
bad average balancing among the stations but no difference between the two
variants’ process times. The choice among these two solutions becomes hard
and depends on the preferences of the designer.

Table 6.4. Two groupings and their corresponding process times

op pt ws pt var1 pt var2
Ws1 1,2 6.5 4 9
Ws2 3,4 8.5 11 6

op pt ws pt var1 pt var2
Ws1 1,3 5 5 10
Ws2 2,4 10 5 10

WsX : Station X,
Op : list of operations,
pt ws : station process time,
pt varY : process time on variant Y,

6.4.2 Overall Architecture

The line balance efficiency is impacted by the average process time of each
station along the line, as well as the imbalance between variants’ process times
on each station. Normally, the fewer the number of stations in the line and the
less the idle time is, the more efficient is the line. The proposed algorithm is
based on the EPAL approach and the MO-GGA (see Chapter 5). This method
will be applied each time when constructing or completing the construction
of an individual in the GGA. The main steps of the algorithm that serve to
generate possible solutions to the problem are summarised below.

1. Create a population of individuals using EPAL (see Section 6.3).
2. Use PROMETHEE II to order individuals in the population.
3. Recombine (mate) best individuals (parents) to produce children.
4. Mutate children.
5. Use PROMETHEE II to order the new population.
6. Replace the worst individuals of the population by the new children.
7. If a satisfactory solution is found stop. Else go to 3.

6 Equal Piles for Assembly Line Balancing 73

Input Data

The EPAL for MPAL algorithm needs the following input data, as illustrated
on Figure 6.9:

• desired number of stations;
• duration of each operation;
• list of variant products;
• precedence graph of the product family;
• user’s preferences.

The first two input data are used to estimate the average cycle time of the
assembly line while the third one deals with the mixed-production problem.
On the other hand, the last two deal with the user’s needs.

MOGGA
EPAL

List of
stations

+ Number of stations
+ Number of variants
+ Tasks duration
+ Precedence graph
+ List of variant products
+ User’s preferences

Figure 6.9. Data flow for EPAL

Performance of the Solutions

The two conflicting objectives used to design MPALs are as follows:

Process Time Divergence Among Products Variants. The process
time of station w on variant i is given by Equation (6.9). This process time is
the sum of the process time of the tasks j of station w on variant i (Ptime(i, j)
is the process time of task j on variant i). The number of tasks of each station
w is set to Mw.

V ariant P time(i, w) =
∑

j=1..Mw

Ptime(i, j) (6.9)

The process time of operation j is the ratio between the sum of process
time of task j and the different variants on the number of variants.

Operation Ptime(j) =

∑
i=1..Nb V ariant(Ptime(i, j))

Nb V ariant
(6.10)

The process time of station w is the sum of the process time of the tasks
that belong to station w.

74 Assembly Line Design

Ws Ptime(w) =
∑

i=1..N

(Operation Ptime(i)) (6.11)

Equation (6.12) presents the standard deviation of the process time on
station w.

Std div(w)2 =

∑
i=1..Nb V ariant(Ws Ptime(w) − V ariant P time(i, w))2

Nb V ariant
(6.12)

The line standard deviation of the process time is the ratio between the
sum of standard deviations of the different stations and the number of stations.

Line Std Div =

∑
i=1..N (Std div(i))

N
(6.13)

Imbalance of the Line. The imbalance of the AL is the ratio of the sum
of the square of the difference between the desired cycle time and the process
time of stations and the cycle time.

Line Imbalance =

∑
i=1..N (CT − Ws Ptime(i))2

CT
(6.14)

The ideal cycle time CT is the ratio of the sum of the process time of tasks
and the number of tasks N .

CT =

∑
i=1..N (Operation Ptime(i))

N
(6.15)

where

N Number of stations.
Mw Number of operations of station w.
CT Desired AL cycle time.
Nb V ariant Number of variants.
Line Std Div The standard deviation of the AL.
Line Imbalance The imbalance among station.
Std Div(i) The standard deviation of station i.
V ariant P time(i, w) Process time of station w on variant i.
Ws Ptime(w) Station process time.
Ptime(i, j) Process time of operation i on variant j.
Operation Ptime(i) Process time for operation i.

The cost function3 is as follows:

CostFunction = PROMETHEE(Line Std div, Line Misbalance)

3 Where PROMETHEE(x1, x2, ...) means we use the MCDA method
PROMETHEE II, and the objectives are x1, x2, etc.

6 Equal Piles for Assembly Line Balancing 75

A large imbalance of the workload among different variants has to be
avoided. Indeed, even when the load of the stations is balanced on average, the
production can easily be faced with work overflow or starvation on individual
stations (see Chapter 8).

7

The Resource Planning for Assembly Line

7.1 Introduction

In general, the AL dedicated to small-sized products may be hybrid, in which
the operations can be executed either manually or automatically (see Figure
7.1). Therefore, these lines are called HALs [130]. Given a list of candidate
equipment available to complete the operations, the design problem thus be-
comes to decide which resources to select and which tasks to assign to each
resource in order to meet the production requirements at a minimum cost.
Many nominations can be found in the literature and the best known are line
balancing with processing alternatives, and assembly system design or assem-
bly process planning with resource assignment. The remainder of this chapter
is structured as follows. We briefly review the work conducted in Section 7.2.
Section 7.3 is devoted to the explanation of the RP, while Section 7.4 is de-
voted to the input data of the problem. A detailed description of the proposed
method is detailed in Section 7.5, and a case study is presented in Section 7.6.

Figure 7.1. HAL illustration

77

78 Assembly Line Design

7.2 The State of the Art

Graves and Withney [60] presented a method for the single product equip-
ment selection problem which was solved by a B&B procedure. Graves and
Lamar [59] extended the work of Graves and Withney [60] and developed an
integer programming cost-based model to the automated system design prob-
lem. The approach used a fixed assembly sequence,1 and the main limitation
was that the non-serial line-layouts were permitted [60]. As a result of allow-
ing unrestricted floor layouts for the problem, the solutions found were not
necessarily physically realisable. Gustavson [61] developed heuristic methods
for solving both the single and multiple product equipment selection problem.
Graves and Holmes [58] developed their optimisation method to evaluate the
effectiveness of the Gustavson heuristic [61]. The method guarantees the fea-
sibility of the layout by restricting the system to a linear floor layout [62].

Faaland et al. [41] also used Gutjahr and Namhauser’s heuristic for the
ALBP [62]. The authors also proposed two other heuristic adaptations of the
shortest path procedure that are capable of solving large problems. Pinto et
al. [115] discussed processing alternatives in a manual AL (MAL) as an ex-
tension of SALB by relaxing the assumption that all stations are identical.
The authors proposed a B&B algorithm in which an SALB problem is solved
in every node of the tree. This study presented the interesting advantage of
working on a set of precedence constraints instead of a fixed sequence. Lee
and Johnson [86] proposed an iterative method for MPAL based on integer
programming, depth-first B&B and queuing network analysis. The objective
was to minimise the cost of work-in-process inventory, machine investment
and maintenance and material handling. For more information the reader is
referred to [9, 22, 87, 91, 94, 98, 103, 105, 113, 114, 140, 165].

To the best of our knowledge, Falkenauer [42] proposed the first GA for
ALB with a ‘resource-dependent task times’ algorithm based on the GGA
and the B&B algorithm. This method was able to supply a well-balanced and
cheap AL. The minimal and maximal number of stations was computed by
solving the classical ALBP with respectively the fastest and slowest resource
assigned to all tasks. The GGA distributed the tasks onto stations, while the
B&B algorithm selected the optimal resource for each station. In the next
section a method to treat the RP for the AL problem will be presented and
MOGGA based on the ‘equal piles’ approach will be introduced.

1 An assembly sequence is an ordering of m operations to assemble a product; m

is the number of components of the product.

7 The Resource Planning for Assembly Line 79

7.3 Dealing with Real-world Hybrid Assembly Line

Design

A set of possible groups of equipment (feeders, handlers, insertion devices)
are called ‘functional groups’ (FGs) [110]. In the remainder of this chapter a
set of FGs are associated to each ‘task’ and the term ‘equipment’ means a set
of elementary2 equipment.

The HAL design problem can formulated as follows:

• given a set of tasks and for each task a set of possible resources charac-
terised by their price, reliability, processing time, space, etc.

• given the constraints of cycle time and maximum peak time3 (for variants),
possible, precedence among some tasks,

we have to find:

• the resources to be allocated to each task among the possible ones;
• an assignment of tasks to stations along the line, such that:

– no precedence constraint is violated;
– the station’s workload is as equal as possible to the cycle time of the

line;
– in the case of multiple products the average process time of each station

does not exceed the maximum peak time.

The following objectives have to be met (not necessarily all together):

• The total price of resources allocated to tasks is minimal.
• A maximal reliability of the line is attained.
• The surface occupied by the equipment fits the station space.
• The workload of the stations is as balanced as possible.

A set of features is associated with each task ‘FG’, a cost, a process time,
an availability, a space and a list of incompatible tasks.

7.3.1 Cost

The cost of an FG will be given by the sum of the cost of each of its pieces
of equipment. The price of a resource is its price over the expected lifespan
of the line and it includes: the purchase cost, the exploitation cost added to
the maintenance cost, the cost of manpower necessary to use the equipment
(including training, etc.), and the consumption cost.

2 Elementary equipment can be any feeding, handling or insertion equipment or
any auxiliary operation one can find in ALs (checking, adjusting, cleaning, etc.).

3 This maximum peak time may not be exceeded by any variant process time on
a station, while the cycle time must not be overstepped by the average working
time on a station.

80 Assembly Line Design

Only the purchase cost is fixed. The three other costs are variable. In order
to evaluate them correctly, it is thus necessary to compute them for a given
period of time (a year for instance).

7.3.2 Process Time

There is still a lack of reliable tools for the estimation of process time [18].
Owing to the possible hidden times, it is known that the global duration of
an operation is not always the sum of the process times of the equipment in
the FG. In order to deal with these kinds of exception, only an interactive
constitution of FGs can yield their correct processing time [110]. There are
two kinds of hidden times: inside a FG and among several FGs.

Hidden Time Inside a Functional Group

Suppose that we have a group that consists of picking up a part with a ma-
nipulator and placing it on a hole where a press will insert it, as illustrated
in Figure 7.2. The complete process time of the operation can be sub-divided
into:

• visible time – the parts which cannot be executed simultaneously,
• hidden time – the parts which can be executed in parallel.

In this example, the picking up of the part by the manipulator from its
storage location can be done simultaneously with the insertion of another
part. The insertion phase can begin only when the manipulator can pick up
a new part.

The total visible process time should be the sum of the visible time of the
two equipments, i.e. 6 s + 3 s = 9 s as shown in (Table 7.1) and illustrated
in Figure 7.2. This duration of 9 s being greater than 8 s is necessary for the
manipulator to accomplish a complete operating cycle. The actual operating
time of the group to consider when balancing the line will thus be 9 s.

Table 7.1. Subdivision of the operating times

Press Manipulator

Visible time (s) 3 6

Hidden time (s) 0 2

Total Time (s) 3 8

The operating time of a given group will thus be given by the sum of the
visible times of each equipment or by the largest total operating time of a
piece of equipment in the group if it is larger than that sum [110].

7 The Resource Planning for Assembly Line 81

4s

2s
3s2s

Manipulator visible time = 4s + 2s = 6s

Manipulator
hidden time = 2s

Press visible time = 3sManipulator total time = 2s + 4s + 2s= 8s

Figure 7.2. Illustration of the process times decomposition [110]

Hidden Times Between Functional Groups

Figure 7.3 shows two different FGs (FG1 and FG2) coupled on the same
station which could simultaneously execute their corresponding operations.
The process time of the station will therefore not be equal to the sum of the
process time of the FGs, but rather to the larger process time of the two
FGs. The designer usually uses Gantt diagram, as illustrated in Figure 7.4 to
estimate the resulting process time. Indeed, in this example, FG2 starts 2 s
after FG1 (i.e. 1 s before the end of the process cycle of FG1). Therefore,
it seems obvious that the exact process time of the two FGs cannot be au-
tomatically pre-determined using simple rules is as the case for the first kind
of hidden times. Figure 7.4 shows an example in which the exception list is
{(FG1, FG2), 6}. Thus, if a station contains FG1 and FG2 the process time
is set to 6 and not the sum of their process time which is 8 (2 + 6).

FG2FG1

Product

Dedicated feeding
with rail

2 axes manipulator
Screwing machine

Vibratory bowl
feeder

Figure 7.3. The coupling of FGs on the same station [110]

82 Assembly Line Design

FG1

Time

0s 2s 3s 6s

FG2

Figure 7.4. An example of Gantt diagram

7.3.3 Availability

The availability of a piece of equipment is defined as the proportion of total
time that is available for use. Therefore, the availability of a repairable piece
of equipment is a function of its failure rate and of its repair or replacement
rate [104]. Figure 7.5 shows the evolution of the failure rate during the lifetime
of the equipment, which is defined by the so-called bath-tub curve [120]. It is
clear that the failure rate depends on the lifetime t. Three periods can be
distinguished from this curve:

1. the infant mortality period, in which the failure rate drops;
2. the constant failure rate period, in which accidental failures occur;
3. the wear-out period, in which the failure rate rises due to technical age.

Time t

F
ai

lu
re

 r
at

e

Infant mortality
period

Constant failure
rate period

Wear-out period

Figure 7.5. Failure rate as a function of time

Assume a constant failure rate is equivalent to considering that the equip-
ment is in its normal functioning period corresponding to the vast majority
of its lifetime. The availability of the FG will be computed by a combination
of the availabilities of its pieces of equipment. It will generally be the product
of the availability of the pieces of equipment that belong to the FG as they
have a serial configuration (Figure 7.6). The availability of the FG is equal
to Av1 × Av2 × Av3. The dependence between these pieces of equipment was
neglected. This assumption can correspond to the large majority of cases, but

7 The Resource Planning for Assembly Line 83

we are aware of its limitations. Thus, further research on the way to model
such systems will be fully encouraged.

Av1 Av2 Av3Av1 Av2 Av3

Figure 7.6. Representation of an FG as an serial system

7.3.4 Station Space

Station space is proportional to the space for storage of parts used in the
station as well as the space occupied by the equipment. The storage space
(Storage Space) is the space needed to store the parts before being assembled.
A constant Ci is assigned to each equipment and it is proportional to the
space that it occupies. Figure 7.7 shows a simple representation of the space
occupied by a set of equipment. Suppose that the station is composed of k
equipment units, then the station space (Station Space) is given by

Station Space = (

k∑
i=1

Ci) + Storage Space

(1,C1)

Transport
system

Before After

Resources

Station

Flow

(4 ,C4)

(3 ,C3)

(2 ,C2)

Storage space

Product flow

Figure 7.7. Station space

In order to really estimate the space occupied by a set of equipment, more
information is needed on the shape of the equipment as well as the shape of
the station. In this case, the ‘2D-bin packing’ problem arises, and this leads
to the physical layout problem which is one step more in the design of AL,
namely layout.

84 Assembly Line Design

7.3.5 Incompatibilities Among Several Types of Equipment

Another element that has to be considered is the possible incompatibility be-
tween certain kinds of equipment. Indeed, it can happen that two categories of
equipment cannot be grouped on the same station. A matrix of incompatibil-
ities called I is introduced to deal with this problem, as shown in Figure 7.8.
The size of the symmetric matrix I is equal to N ×N , where N is the number
of equipments and each Iij element of that matrix will have the following
value:

• Iij = 0 if equipment i is compatible with equipment j;
• Iij = 1 if equipment i is not compatible with equipment j.

1011

1110

1110

1001

L

MOMMM

L

L

L

Eq NEq 3Eq 2Eq 1 ...

Eq N

Eq 3

Eq 2

Eq 1

M

Figure 7.8. Matrix of incompatibilities between equipments

7.4 Input Data

As illustrated in Figure 7.9, the following data are nedeed to design an HAL:

• the desired number of stations;
• the desired cycle time;
• the precedence constraints between operations;
• operation mode (manual, automated and/or robotic);
• the list of exceptions to deal with hidden times;
• an equipment database which yields the features of the different resources

(cost, reliability, process time, equipment space);
• the list of its incompatible equipment.

The preparation of data, and especially the ‘equipment selection’ step,
yields to a set of equipment that can perform the given set of operations.
Economic criteria are used in the evaluation of the equipment selection process
[110].

7 The Resource Planning for Assembly Line 85

GGA
HAL

Stations &
resources

Equipment DB

+ Cost
+ Process time
+ Availability
+ Space

+ Cycle time
+ Number of stations
+ Precedence graph
+ Mode preferences
+ Exception list (hidden

times)

List of incompatible
equipment units

Figure 7.9. Data flow for an HAL

7.5 Overall Method

The following algorithm is proposed to generate possible solutions of the prob-
lem [122]. The ICA is used each time when constructing a solution for a prob-
lem as follows:

1. Assign tasks to the stations (using the process time corresponding to the
fastest equipment) according to an equal piles strategy.

2. Generate all possible resource combinations using a branch & cut (B&C)
algorithm.

3. Select the best equipment combination using PROMETHEE II.

Since the objective is to deal with many conflicting objectives, the MOGGA
approach is adopted (Figure 7.10), as explained in Chapter 5.

7.5.1 Distributing Tasks Among Stations

In this section we recall the strategy used to group tasks and introduce the
operating mode as a new constraint.

Equal Piles Algorithm

In order to assign operations to stations, the EPAL is used. At the operations-
to-stations stage, a minimum cycle time min ct is used. This min ct is the
ratio between the sum of minimum process times of the operations and the
desired number of stations (see Section 6.3).

Mode Preferences

The associative constraints can be defined as ‘The manual tasks have to be
grouped together, and the robotic or automated tasks have to be grouped to-
gether ’, while the dissociative preference constraints can be defined as ‘The
manual tasks cannot be grouped with robotic or automated tasks’. Those con-
straints are said to be hard because they cannot be violated.

86 Assembly Line Design

Create a first population
using the ICA

Create a first population
using the ICA

Rank individuals with
PROMETHEE II

Rank individuals with
PROMETHEE II

Recombine best individuals to produce
children

Recombine best individuals to produce
children

Mutate childrenMutate children

Use the ICA to reconstruct individualsUse the ICA to reconstruct individuals

Replace the worst individuals of
the population by the new children

Replace the worst individuals of
the population by the new children

YESNO
EndSatisfactory

solution ?

Rank individuals with
PROMETHEE II

Rank individuals with
PROMETHEE II

Figure 7.10. Steps of the MOGGA

7.5.2 Selecting Equipment

Owing to the cycle time constraint, the resources must be fast enough to per-
form all the tasks on time. This allows one to define a B&C procedure that
efficiently explores the ‘huge’ search space. Consequently, even for large prob-
lem instances, the B&C typically handles only a small number of tasks even
with the fastest resources. Thus, the size of the B&C problem stays reasonably
small and leads to an acceptable speed of the method. The MCDA method
of PROMETHEE II is used to deal with the different objectives addressed by
the designer. The main features of the algorithm can be summarised in the
following steps:

develop the first node (task) level i=0;
verify the validity of the offspring nodes;
repeat

if there is no valid nodes then stop;
generate all the offspring(s) of all valid nodes : create level i+1;
verify the validity of the offspring’s nodes of level i+1;

until the last level is attained;
use PROMETHEE II to choose the best solution among the valid ones.

7 The Resource Planning for Assembly Line 87

Branch and Cut Algorithm

The B&C method consists of two fundamental procedures: branching and
cutting. Branching is used to divide a large problem into two or more sub-
problems that are usually mutually exclusive. A branch is associated with
each sub-problem. These can be partitioned in a similar way, yielding new
branches. The partitioning process stops if it represents only one solution,
or if it can be shown that the node does not contain an optimal solution.
The B&C algorithm is used to assign equipment to operations. Each node
corresponds to a piece of equipment and each level to one task. On the graph
presented in Figure 7.11, each couple (a, b) corresponds to an equipment and
the sum of process times of this branch at a given level. For example, the
couple (5, 11) means that, by selecting equipment 5 to realise operation 2, the
total process time of the station is 11. At each level, all possible equipment of
the given operation is generated, but only the valid branches respecting the
constraints of the problem are developed further. For instance, selection of
equipment 2 for operation 1 and equipment 6 for operation 2 yields a process
time of 16. Since the cycle time is set to 15, this branch will not be developed
further. Once all the levels (valid branches) have been developed, only valid
solutions are kept. Valid solutions are the solutions that verify the following
constraints:

• the sum of process times of operations for the selected equipment must
not exceed the cycle time;

• the list of equipment used at each station must not be incompatible.

Suppose we have n tasks and each task i has bi possible pieces of equip-
ment. The number of levels equals n, which is the number of tasks, while the
number of nodes is given by

NbNods =

n∑
j=1

(

j∏
i=0

bi) × bj with b0 = 1;

The number of end-leafs is equal to

NbEndLeaf =

n∏
i=0

bi

For instance, in the case n = 3 and bi = 2 for i = {0, 1, 2}, the number
of nodes is 14 and the number of end-leafs is 8. The cutting mechanism is
used to save time while exploring the tree. The following decisions have a
great influence on the run time of the cutting algorithm: How the tasks are
assigned to the different levels. How the equipment is ordered for each task.
Since there is a set of tests of validity of the solution to be done, deciding
which one to begin with.

88 Assembly Line Design

1, 6

0

2, 9

1

3, 8

2

5, 11

0

Op1 : 1(6), 2(9), 3(8)

Op2 : 5(5), 4(4), 6(7)

Op3 : 7(5), 8(3)

CT : 15

4, 10

1

6, 13

2

5, 14

0

4, 13

1

6, 16

2

5, 13

0

4, 12

1

6, 15

2

7, 15

0

4, 13

1

7, 16

0

4, 14

1

7, 20

0

4, 18

1

7, 19

0

4, 17

1

7, 18

0

4, 16

1

7, 18

0

4, 16

1

7, 17

0

4, 15

1

Accepted solutions

Non-
developed
nodes

Equipment id

Process time

Figure 7.11. Tree generated by the B&C algorithm

How and Where Does the User Intervene?

The criteria adopted during the selection of equipment is as follows:

• Process time for each station should not require more than a cycle time
to perform all the tasks.

• Minimise cost of the resources allocated to the stations.
• Maximise reliability on each station.
• Reduce space proportional to the space occupied by the station.

Thus, once all the end-leafs of the tree have been found, the time comes to
choose the best solution among the valid ones. Since each solution is charac-
terised by its cost, process time, and reliability, classical pairwise methods to
compare solutions cannot be used. The different solutions found by the B&C
algorithm serve as input data for the PROMETHEE II method to choose
the best equipment taking into account the different criteria. Afterwards, re-
sources are assigned to each task of a given station. A non-valid solution can
be:

• a solution in which the sum of process times of the fastest equipment
exceeds the cycle time;

• a solution which is composed by only incompatible equipments;
• a solution in which the desired cycle time is incompatible with the fixed

number of stations;
• a solution in which too many tasks are grouped on a given station.

7 The Resource Planning for Assembly Line 89

If there is no possible solution among the nodes developed, the solution
which corresponds to the fastest equipment will be selected.

7.5.3 Heuristics

Two new heuristics are introduced to deal with the hard constraint of oper-
ating mode of the tasks. These heuristics are (1) the merge and split, and (2)
the pressure difference heuristic.

Merge and Split. Figure 7.12(a) presents the situation when dealing with
the operating mode of HAL. Suppose there are two non-filled adjacent manual
stations and an over-filled automated one. In order to find a good balancing,
one way is to merge the two manual stations and to split the automated
one. Figure 7.12(b) presents the solution obtained after the merge and split
procedure. The result is one manual and two automated stations. From the
balancing point of view, the second solution is better than the first one. Note
that the sum of the process times of the two new automated stations (70%
and 90%) is not necessarily the process time of original (130%).

Manual
60%

Manual
30%

Automated
130%

Cycle time

Idle time Exceed time

Stations to group
Station to split

A B C

Automated
90%

Manual
90%

Automated
70%

Idle time

A B C

(a) (b)

Figure 7.12. Solution before (a) and after (b) the merge and split heuristic

Pressure Difference. The goal is to start the search at a station that
exceeds the cycle time (the high pressure) as well as the station that is less
filled (less pressure). The goal is to move the excesive process time of station C
in Figure 7.13(a) to fill the gap (idle time) existing in station A. The operating
mode and the precedence constraints of the tasks have to be verified. In this
case, a task i to be moved from station C must have all its predecessors in
station A (or before). If the move from A to C, all the successors of task i
would have to be in C or later. Figure 7.13(b) presents the solution obtained
after executing the procedure. The kind and the number of stations obtained
is the same as before the application of the heuristic. The simple wheel and
multiple wheel heuristics cannot improve such a solution, since the two manual
stations are separated by an automated one. It is clear that the second solution
is better balanced than the first one.

90 Assembly Line Design

Manual
110%

Manual
80%

Automated
100%

Cycle time Exceed time Idle time

A B C

Manual
100%

Manual
90%

Automated
100%

A B C

(a) (b)

Figure 7.13. Solution before (a) and after (b) the pressure difference heuristic

7.5.4 Dealing with a Multi-product Assembly Line

In this section, the method used to deal with multi-product resource planning
is developed. The main goal is to find the cheapest assembly system. A max-
imum peak time parameter fixed by the designer is introduced to allow some
variants’ process times to exceed the desired cycle time. This maximum peak
time may not be exceeded by any variant process time of any station, while
the desired cycle time must not be overstepped by the average working time
on any station. The classical case is the one where the maximum peak time
is equal to the cycle time (single product RP) [132].

On the graph presented in Figure 7.14, in each box, the couple (a, b) corre-
sponds to equipment, and the average process time among all variants in that
branch at this level. For example, the couple (2, 4.5) at level 1 means that, by
selecting equipment 2 to realise operation 1, the average process time is 4.5.
At each level, all possible equipment of the given operation is generated, but
only the valid branches respecting the constraints of the problem (cycle time,
maximum peak time, compatibility, etc.) are developed further. For instance,
selecting equipment 1 for operation 1 and equipment 6 for operation 2 yields
an average process time of 9.5 and a process time of 13 on variant 1 and a
process time of 6 on variant 2. Even if the average process time (9.5) is less
than the cycle time (10), since the process time of variant (13) exceeds the
maximum peak time, this branch is not valid. Using equipment 1 for operation
1 and equipment 4 or 5 for operation 2 leads to a valid solution. In order to
select the best set of resources, once again the PROMETHEE II method will
be used. Valid solutions are the solutions that verify the following constraints:

• the average process time of operations of the selected equipment must not
exceed (on average) the cycle time;

• the process time of operations of any of the variants for the selected equip-
ment must not exceed the ‘maximum peak time’;

• the equipment used at each station must not be incompatible.

7 The Resource Planning for Assembly Line 91

1, 6

0

2, 4.5

1

3, 8

2

5, 8.5

0

Variants : 2

Tasks : 2

CT : 10

MPT: 12 (120 %)

4, 10

1

6, 9.5

2

5, 9.5

0

4, 8.5

1

6, 8

2

5, 10.5

0

4, 12

1

6, 11.5

2

Accepted solutions

6 6 9 0 8 8

11 6 10 10 13 6 14 5 13 4 16 0 13 8 12 12 15 8

Process time

Op1 : 1(6,6), 2(9,0), 3(8,8)

Op2 : 5(5,0), 4(4,4), 6(7,0)

Figure 7.14. Multi-products tree generated by the B&C algorithm

7.5.5 Complying with Hard Constraints

The GGA developed deals only with valid solutions that were tested at each
level (i.e. constraints and preferences introduced in Section 7.3). The method
verifies incompatibilities among equipment, and updates the process time of
the stations using the hidden times, etc. The main features of the method can
be summarised in the following steps.

repeat for each level
- evaluate the process time of each variant, the average process time of
station,
- evaluate cost, reliability, stations space;

repeat for all nodes
- cut the branch if the used equipment are incompatible;
- update the process time using the masked time;

+ if the average process time exceeds the cycle time, cut the
branch;

+ if the process time of a given variant exceeds the maximum
process time, cut the branch;

until the last node is attained;
until the last level is attained.

92 Assembly Line Design

7.6 Application of the Method

The proposed case study is adapted from a problem proposed in the line bal-
ancing benchmark suite4 of [146] and is called ‘BUXEY’. It considers 29 tasks
with precedence constraints illustrated in Figure 7.15. For each operation,
three possible pieces of equipment (and operating times) are proposed and
this equipment has the same reliability (99%) and same space factor (1). The
proposed algorithm was tested for several numbers of stations (N) and several
desired cycle times (C). The results obtained of the GGA are presented in Ta-
ble 7.2. This shows the total cost of the line (arbitrary units), and the loads
of stations (ratio of the sum of process times and the cycle time). As can be
seen, the line will generally be less expensive as the cycle time constraint is
relaxed (cycle time augments).

11

6

8

9 10

12

20

1
2

3 4 5

7

14

13

15

16

17

18

19
21

22

23 24

25

26

27

28

29

Figure 7.15. Precedence graph of the problem

Table 7.2. Results of the HAL balancing algorithm

N, C Cost Station loads

6, 44 3340 1.00, 1.00, 1.05, 1.07, 1.05, 1.00

6, 45 3340 1.00, 1.00, 1.00, 1.00, 1.00, 1.00

6, 46 3280 1.00, 1.00, 1.00, 1.00, 1.00, 1.00

7, 38 3230 1.00, 1.05, 1.03, 0.97, 1.05, 1.08, 1.00

7, 39 3240 1.00, 1.03, 1.03, 1.00, 1.03, 1.00, 1.00

7, 40 3270 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00

8, 34 3280 1.00, 1.00, 1.03, 1.00, 1.03, 1.00, 1.00, 1.00

8, 35 3240 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00

8, 36 3030 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00

4 The benchmark suite can be accessed via the Web at
http://www.bwl.tu-darmstadt.de/bwl3/forsch/projekte/alb/index.htm

8

Balance for Operation

8.1 Introduction

Producing multiple products in a single line yields at least two major problems
that have to be solved: getting the right input to the right place at the right
time, and determining the best production run to match supply with demand.
Several technical problems are associated with the design and operation of
an MPAL; the most important ones consist of generic product modelling,
operating modes and assembly techniques, line layout and model launching
(ordering variants) [27]. Model launching (ML) is concerned with scheduling
the different models to be produced during a given work shift. In this chapter, a
concurrent strategy for product family and assembly system development will
be presented. Section 8.2 presents general features of the mixed-production
AL design problem. Related studies concerning design of a multi-product AL
are presented in Section 8.3. The essentials of ordering GAs (OGAs) are given
in Section 8.4. The general architecture of the balance for operation concept
is introduced in Section 8.5.

8.2 Multi-product Assembly Line

Local buffers are introduced in order to maintain the pace of the line as even
as possible. Each station has a local buffer1 (upstream). Stations process one
unit at time and are linked to buffers by conveyors. When a station completes
a process, a product is moved to a downstream buffer if possible (sufficient
place); in the other case it remains at the station until it can move. Once a
station is free, it takes a product from the upstream buffer (if it is possible)

1 Buffers allow stations to operate independently, cushioning against machine fail-
ure, worker or part shortage, and production rate difference. Large buffers in-
crease throughput time, space requirements, material handling costs, etc. Thus,
the buffer size must be reduced as much as possible.

93

94 Assembly Line Design

and processes a new job. The ordering variants problem occurs when a num-
ber of products (variants) are produced on an AL at the same time. Each job2

must be processed by each station exactly once. Furthermore, all jobs have
the same routing (i.e. they must visit the stations in the same order). With-
out loss of generality, we can number the stations so that station 1 is first,
station 2 is second, and so forth. A job cannot be processed on the second
station until it has completely processed on the first station. The objective is
to determine the sequence of variants which maximises the utilisation of the
assembly stations.

Chevalier et al. [25] pointed out that there is a strong link between how
a line is designed and how it can be operated. The authors investigated how
models from the mechanical engineering literature can be combined with mod-
els originating from the management science literature. In its most general
form, the ML problem is defined by the following: products to be produced,
tasks that must be executed on the different products, stations on which a set
of tasks have to be performed, constraints which must be satisfied, and the
measures to judge the schedule performances. Off-line scheduling (called sta-
tic scheduling) refers to the formation of a complete schedule before launching
production. On-line scheduling (called dynamic scheduling) is performed in-
crementally while the facility is operating. As each decision problem arises,
the results are immediately evaluated and a choice is made [137].

8.3 The State of the Art

It is usual to find MPALs in industry in which the sequencing of models is done
without applying any of the heuristics introduced below. Instead, simple rules-
of-thumb and experience factors influence selection of the model sequence. For
example, if the total production is 100 units per day, and includes 20 units of
variant V1, 10 units of variant V2, and so forth, then every fifth unit launched
will be a variant V1, every tenth unit will be a variant V2, and so on. The
first research that addressed the MPAL sequencing problem was apparently
presented in [172]. Most scheduling problems belong to the class of NP-hard
problems. Most research has been focused on either simplifying the scheduling
problem or devising efficient heuristics for finding acceptable (not necessarily
optimal) solutions.

8.3.1 Classical Methods

Monden [100] introduced a goal chasing (GC) method which is based on the
part usage goal. The objective was to keep a constant speed in the consump-
tion of each part on the MPAL. Berger et al. [15] developed a B&B algorithm

2 A job is defined as an activity that transforms inputs (a set of requirements) to
outputs (products to meet those requirements).

8 Balance for Operation 95

for solving a tree3 ALB problem (TALB) which is a special case of the MPALB
problem. The precedence graph is not necessarily a forest,4 but may be any
directed acyclic graph. The aim is to minimise the number of stations neces-
sary to manufacture all products. Bard et al. [10] formulated the sequencing
problem as an integer programming method in order to establish a common
mathematical framework that might be applicable to various MPAL configu-
rations. For more information the reader is referred to [3, 82, 96, 100, 144].

8.4 Heuristics

Driscoll and Abdel-Shaffi [40] presented an integrated line balancing and
simulation based evaluation technique to address the ALB problem taking
into account stochastic task durations, mixed-model processing, task times
greater than cycle time, and zoning requirements. The technique first per-
forms a line balance using the RPW technique [65]; it then performs simula-
tions to assess the performance of the layout. Wang and Wilson [170] com-
pared several AL designs in terms of station idle time, incomplete units, and
production rate. They proposed a sequencing heuristic, while a simulation
was used to evaluate the performance of the different solutions. Fernandez
and Groover [47] proposed a mixed-ML algorithm. The objective is to min-
imise the sum of squares of the deviations from a perfect model sequence
in which idle time and work congestion are both zero. The principal prob-
lems in the design and operation of ALs are discussed, in addition to the
methods for their solutions. For more information, the reader is referred to
[5, 11, 21, 26, 64, 71, 93, 99, 137, 146, 162, 168].

8.5 Ordering Genetic Algorithm

The ordering variants problem occurs when a number of products (variants)
are produced at the same time. In the following, a GA for the multi-product
scheduling problem is presented.

8.5.1 Algorithm

The OGA is used to schedule variants on an MPAL; different heuristics are
also used as initialisation techniques.

3 Trees are the nontrivial recursively defined objects: a tree is either empty or a
root node connected to a sequence (or a multi-set) of trees.

4 A forest is a number of disjoint trees.

96 Assembly Line Design

Encoding Scheme

Because the ordering variants problem is essentially a permutation problem,
the permutation of jobs is used as a representation scheme of solutions, which
is the natural representation5 for sequencing problems. For example, let the
genes of the given chromosome be C = [1 2 1 3 1 2]. This means that the job
sequence is v1, v2, v1, v3, v1, v2 (see Figure 8.1).

21 1 3 1 2

Variant 3Variant 1

Figure 8.1. An ordering of variants and the corresponding OGA chromosome

Crossover

Various techniques are known from the literature, like partially mapped
crossover (PMX) [57], order crossover (OX) [32] and position based crossover
(PBX) [54]. In this book, the PMX and the modified PBX are used, as they
suit the constraints of the problem.

Mutation

According to the nature of the ordering problem, one or more of the following
operators can be applied as follows:

• Shift the place of a randomly selected jobs.
• Invert a place of two selected jobs.
• Shift a selected job from position 1 to position 2.
• Select a job and find a place to insert it so as to minimise the makespan.

Inversion

The inversion serves to shorten promising schemata made of co-adapted genes.
A segment on the chromosome is selected at random and the order of genes
in that segment is inverted [69].

5 The choice of representation controls the size of the search space. If one chooses a
very general representation, more types of problem may be solved at the expense
of searching a larger space. Conversely, one may choose a very specific representa-
tion that significantly reduces the size of the search, but much will work on only
a single problem instance [30].

8 Balance for Operation 97

Evaluation

Since the aim is to minimise the total production time, a simple way to de-
termine the fitness for each chromosome is to use the makespan:

Eval(chromosome) = makespan

A fast simulation procedure (algorithm) is used to estimate the total as-
sembly time (makespan) of a given mix (permutation of variants). Variants
are introduced in the order given by their corresponding chromosome (first
in, first out). Set-up time is taken into account while estimating production
time of each variant (i.e. if variant 1 is followed by variant 2, set-up time is
added to operating time of variant 2). The total production time is reached
when the last operator (last station) finishes its job on the last variant of the
mix. Idle time is the time lost by operators (machines or robots) waiting for
jobs, and it is calculated as follows:

IdleT imei,j = Begini,j − Endi,j−1

where IdleT imei,j is time lost by operators waiting for job j at station i,
Begini,j is the beginning production time of variant j on station i, and Endi,j

is the end production time of variant j on station i.

The makespan is given by

Makespan = Endlw,lj − Begin1,1

where Makespan is total production time of the mix, Endlw,lj is the end
production time of the last station on the last job, lw is last station of the
assembly line, and lj is last job of the mix of products.

8.5.2 Heuristics

Several heuristics are used to construct valid solutions. They are used each
time when constructing new solutions or to improve the quality of existing
ones.

Random. Jobs are inserted randomly in chromosomes. This permits one
to avoid local optima.

Batch by batch. If the total production is 100 units per day, which in-
cludes 20 units of variant V1, 10 units of variant V2, and so forth, the 20 units
of type V1 will be launched, then the 10 units of type V2, and so on.

Mix percent. If the total production is 100 units per day, which includes
20 units of variant V1, 10 units of variant V2, and so forth, every fifth unit

98 Assembly Line Design

will be launched a job of type V1, every tenth unit will be a job of type V2,
and so on.

Slope order index. The idea is to give higher priority to jobs with
processing times that tend to increase from station to station, while jobs with
processing times that tend to decrease from station to station will receive
lower priority [54]. The slope index si for job i is calculated as

si =

m∑
j=1

(2j − m − 1)tij

where tij is the process time of station j on task i, m the number of stations
and n number of jobs. A permutation schedule is contructed by sequencing
the jobs in a non-increasing order of si, such as si1 ≥ si2 ≥ ... ≥ sin.

Gupta’s heuristic. Is similar to the slope order index heuristic, except
that it takes into account some interesting facts about optimality of Johnson’s
[75] rule for the three-station problem [54]. The slope index si for job i is
calculated as follows:

si =
ei

min1≤k≤m−1{ti,k + ti,k+1}
where ei =

{
1 if ti1 < tim

−1 if ti1 > tim

Thereafter, the jobs are sequenced according to the slope index si.

The multi-product AL has the following features:

• Each task is assigned to one station.
• Production is composed of a mix of variants. The quantity of each variant

is known at the beginning (i.e. we have to produce 20 products of variant
type 1 and 50 products of variant 2, and so forth).

• Process time of variants can exceed cycle time, but the average on all
variants cannot (maximum peak time constraint).

• The job sequence at the entry of stations is the same (first in, first out).
When tasks are performed on manual ALs, times to perform each task
vary from cycle to cycle. Experience indicates that task times can be ap-
proximated by a normal distribution when operators work under paced
conditions.

• A fast simulation algorithm is used to evaluate a makespan of solutions.
• The size of buffers is finite.

The schedule is represented using a ‘Gantt chart’ (Figure 8.2). The x axis
corresponds to the time and each horizontal bar corresponds to a station.
When a job is processed on a station, a rectangle is placed on the horizontal
bar, which begins at the start time of the job and ends at its completion time.

8 Balance for Operation 99

Time

Idle time

Figure 8.2. Gantt chart for schedule

8.6 Balance for Operation Concept

The BFO concept is introduced to tackle the operation phase problems (or-
dering) at the design stage. The balancing of the line is realised using the
desired cycle time C (production forecast). The effective cycle time CE of an
MPAL is defined as

CE = average(
makespan

size of mix
)

where the size of the mix is the total number of variants produced in a given
period. This balancing phase is iterative, since it is difficult to find a good
maximum peak time for a given AL due to the problem’s constraints. The
ordering algorithm aims to minimise the makespan, and consequently the ef-
fective cycle time CE . The balance for operation is an iterative and interactive
procedure used to balance the MPAL, taking the scheduling into account, as
illustrated in Figure 8.3. The whole procedure of the BFO for the two ap-
proaches is described in the next section.

Scheduling

Line
efficiencyBalancing

Assembly
line

architecture

Figure 8.3. General architecture of the BFO concept

100 Assembly Line Design

8.6.1 Non-fixed Number of Stations

The main steps of this concept can be summarised in the following points:

1. Set a desired cycle time C.
2. Set the maximum peak time to (cycle time × var), where var ∈ [1, 2].
3. Balance the line (see Chapter 6).
4. If satisfying balancing, then continue; else return to 2.
5. Test the corresponding AL using the OGA. Evaluate the efficiency of

the corresponding line (makespan and idle time). Is the effective cycle
time CE close to the desired one?

6. If satisfying solution, then assembly line architecture for the family of
products found; else return to 1 to try another desired cycle time C.

The method has been tested on randomly generated problems. The opera-
tion durations were generated randomly according to a continuous distribution
in the range [5..100]. The number of variant operations is generated uniformly
in the range [10 .. (number of operations)/3]. An operation is called variant
if its duration is null for at least one variant of the product family. For each
operation, the number of precedence constraints is generated randomly in the
range [0..8]. The percentage of production requirements is the same for all
the variants. The program was executed for a number of operations varying
from 50 to 500 and for a number of variants varying from 1 (single product)
to 505. For each instance, the optimal number of stations Nopt is known. The
stopping criterion for the balancing is attained when the number of stations
N is equal to Nopt. The program was executed more than 25 times (for each
instance of the problem) and the optimum solution was found every time. It
takes less than a minute for small size instances and less than 2 minutes for
large size instances (tests were done on a Pentium II 333 MHz). The method
use a population of 50 individuals. As the optimal solution of the ordering
problem which results from the balancing is unknown, the stopping criterion
for the ordering was fixed to 5 minutes. Table 8.1 presents the results obtained.
A set of instances where the maximum peak time is less than the cycle time
was allowed to explore the search space. The corresponding solutions are char-
acterised by a high number of stations and reduced makespan.

Note that, as the mix will change with the consumer’s demand, it is im-
portant to simulate several mix for a given AL.6 The designer will choose a
line that yields similar results for different mixes. To obtain a feasible MPAL,
the variants (models) must have some similarities. If the models are signifi-
cantly different, it is difficult for stations to cope with the differences during
assembly. Also, if the set-up time is not negligible, the strategy of changing

6 The simulated mix has to be as close as possible to the future mix generated by
the consumer’s demand.

8 Balance for Operation 101

Table 8.1. Results of multi-product AL (BFO)

CT MPT MS SN CT MPT MS SN CT MPT MS SN
7 7 149 8 8 7 149 8 9 7 149 8
7 8 167 7 8 8 180 7 9 8 180 7
7 9 172 6 8 9 179 6 9 9 203 5
7 10 172 6 8 10 191 5 9 10 199 5
7 11 172 6 8 11 191 5 9 11 199 5
7 12 172 6 8 12 191 5 9 12 199 5
7 14 192 6 8 14 191 5 9 14 227 4
7 16 192 6 8 16 191 5 9 16 227 4
7 20 169 6 8 20 208 5 9 20 227 4

CT MPT MS SN CT MPT MS SN CT MPT MS SN
10 7 149 8 11 7 149 8 12 7 149 8
10 8 180 7 11 8 180 7 12 8 180 7
10 9 203 5 11 9 203 5 12 9 203 5
10 10 218 5 11 10 218 5 12 10 218 5
10 11 216 5 11 11 241 4 12 11 241 4
10 12 218 4 11 12 243 4 12 12 243 4
10 14 218 4 11 14 248 4 12 14 264 4
10 20 218 4 11 20 248 4 12 16 264 4

CT MPT MS SN CT MPT MS SN
13 7 149 8 14 7 149 8
13 8 180 7 14 8 180 7
13 9 203 5 14 9 203 5 CT : Cycle time
13 10 218 5 14 10 218 5 MPT : Max peak time
13 11 241 4 14 11 241 4 MS : Makespan
13 12 243 4 14 12 243 4 SN : station number
13 13 273 3 14 14 298 3
13 14 281 3 14 16 291 3
13 16 281 3 14 20 303 3

variants must be discarded. The main factors influencing the successful design
and efficient operation of a MPAL are the following:

• The line length increases as balancing efficiency decreases.
• The greater the number of stations the easier it is to find a good scheduling.
• A small number of stations yield a high ratio of reliability and a high idle

time.
• The complexity of sequencing increases with the number of variants.
• Sensibility to production demands deviation for each variant.
• Process time deviation due to variants of each station (use of maximum

peak time parameter).
• Operator task time variation (use of stochastic duration time).

102 Assembly Line Design

• The optimum depends on the cycle time and maximum peak time (Figure
8.4). It corresponds to the solution having the minimum number of stations
and the minimum makspan.

• The use of simulation algorithms to validate results.
• The use of buffers to solve starving and blocking problems of the line.
• Take into account set-up time and operator moves to evaluate process time

of stations.

Max peak time Cycle tim
e

Optimum

M
akesp

an

Figure 8.4. Distribution of makespan versus cycle time and maximum peak time

8.6.2 Fixed Number of Stations

The main features of the approach are presented below.

1. Set preferences of the ‘variant process time standard deviation’ and of the
‘station misbalance’ (see Chapter 6).

2. Balance the line (see Chapter 6).
3. If the balancing is satisfied, then continue; else return to 1.
4. Test the corresponding AL using an OGA. Evaluate efficiency of the cor-

responding line.
5. If the solution is satisfied, then AL architecture for the family of products

found; else return to 1 and try other preferences.

The objective of the method is to balance the average workload among
the stations and the process among the variants. In this case the scheduling
module serves as a validation technique of the balancing module. Some results
of the proposed approach will be detailed in Chapter 10.

Part IV

The Integrated Method

9

Evolving to Integrate Logical and Physical

Layout of Assembly Lines

9.1 Introduction

ALD is well known as the elaboration of the LL and the PL of the line. The LL
consists of the distribution of tasks among stations along the line, while the PL
decides about the disposition of some variants (e.g. the stations, conveyor(s),
etc.) on the shop floor. The goal of most approaches consists of the equalisation
of the workload of stations to the cycle time or the minimisation of the number
of stations, whereas other factors (such as traffic problems, station congestion,
transport network, etc.) may also heavily affect the system. A new method is
proposed for an LL taking the topology of the line (facility) into account. This
architecture represents a rough idea of the PL of the future line. Background
and motivations of the approach presented are briefly described in Section 9.2,
while the AL layout problem is presented in Section 9.3. The concentration
is focused on the utility of the workcentres clustering phase and the benefits
of the proposed architecture are fully explained. The integrated approach is
presented in Section 9.4, where the interactive and the optimisation phases
are detailed. Results of the approach on an industrial case study are presented
and discussed in Section 9.5.

9.2 The State of the Art

Several studies have been published about facilities planning [7], [51], [158]
and [164]. However, bridging the gap between the LL and PL is completely
neglected. The authors also tackled the cell formation problem in various ways
[35], [84] and [97], but these approaches are more focused on cellular manu-
facturing (CM), group technology (GT), and material flows, and are not able
to deal with the LL. A global approach which was a result of the SCOPES
project [39] considers the main factors that affect the performances of the
AL. The PL module, which is based on a simulation package, is executed af-
ter the LL. Lucertini et al. [89] presented a unified framework for designing

105

106 Assembly Line Design

production plant and its corresponding network of material flow. For more
information, the reader is referred to [2, 66, 77, 81]. Different philosophies of
layout are appropriate for different manufacturing environments:

Fixed Position Layouts. Some products are too big to be removed, so
that the product remains fixed and the layout is based on the product size
and shape (e.g., airplanes, ships and rockets).

Product Layouts. The product layout is typically of high-volume stan-
dardised production. An AL is product layout, because assembly facilities are
organised according to the sequence of steps required to produce the item.
Product layouts are desirable for flow-type mass production.

Process Layouts. Process layouts are mostly effective when there is a
wide variation in the product mix. Each product has a different routing se-
quence associated with it. Process layouts have the advantage of minimising
machine idle time.

GT Layouts. The GT concept seems to be best suited for large firms that
produce a wide variety of parts in moderate to high volume. The GT layouts
are product family oriented, while the process layouts are machines functions
oriented.

9.3 Assembly Line Design

The main idea behind the design of ALs is that, for complex products, the
assembly system must be decomposed into subsystems which are easier to
manage than the entire one. The line is decomposed into several linked sub-
lines (called workcentres in the remainder of this chapter), with their own
cycle time, reliability, and station requirements. Each sub-line is attributed to
one or many sub-assemblies. The routing of a product from one workcentre to
another is fixed according to a line flow topology. The main topology of the
line is not necessarily a linear one. With classical line balancing techniques,
a way to tackle the line balancing problem would be to balance each work-
centre separately. But in real conditions, some operations allocated to a given
workcentre could be affected by another one and linked to the former.

9.4 Integrated Approach

Several attempts have been made in the field of assembly to give assembly
workshops a general structure and identical to that of machining systems.
ALs still retain a linear structure due to the supply, high robustness, and
ease of management. The drawbacks may be poor fault tolerance and routing

9 Evolving to Integrate Logical and Physical Layout of Assembly Lines 107

flexibility [2]. The main task of the proposed line layout integrated method is
to cluster twice the tasks (two levels)(Figure 9.1).

1. workcentre clustering: partition a set of tasks performing alike activities
together. This leads to a number of workcentres.

2. Station clustering: assign tasks to stations. This leads to a number of
stations in each workcentre.

This assignment has to take into account precedence, transportation, and
synchronisation of the sub-assemblies in order to find the best value of ratio
between clustering and transportation index. The second phase permits the
design of a workcentre dealing with objectives like workload balancing, cost,
reliability, imbalance between variants, etc. The problem is composed of three
interdependant sub-problems: workcentre clustering, station clustering, and
workcentre synchronisation [126, 134].

Workcentres

clustering

Tasks
Workcentres

Stations

Sta
tio

ns
cl

us
te

ri
ng

Precedence

Figure 9.1. Integrated approach of the line layout

The results obtained using the balancing module permit one to know the
distribution of tasks and resources along the AL. The PL module determines
the space requirements taking into account congestion and material storage,
handling systems, and so on (Figure 9.2). The whole methodology can be
described as follows:

• Set the desired workcentres, and for each of them assign tasks into work-
centres, dealing with precedence graphs, set the desired number of stations,
and set the desired cycle time.

• Set the desired links between workcentres.

108 Assembly Line Design

Figure 9.2. LL and PL interaction

• Balance the whole plant (set of workcentres).
• Position workcentres and stations.
• Evaluate the efficiency of the corresponding plant layout using a simulation

package. Check the congestion of the plant, analyse the flow, the material
handling, and storage area requirements, etc.

• If no satisfying solution is found, exchange the tasks (without violating
precedence constraints) and change the links between workcentres.

The overall architecture of the LL module is illustrated in Figure 9.3.
The main aim is to balance a set of workcentres using the different links
between them. The clustering (local optimisation) is then followed by a global
design phase. For each workcentre, this permits one to assign tasks to different
stations.

9.4.1 Development of the Interactive Method

The principal goal of the interactive method is to divide the whole manufac-
turing facility into small manageable groups of workcentres (cells), each cell
being dedicated to a specified set of part or sub-assemblies. In the following
sections the concentration will be on the different architectures of ALs and
on the flow of materials and products through the assembly facility. Vari-
ous strategies for organising resources are described and some techniques to
help designers to interact1 with the system are presented. Simple indexes to
evaluate the performance of these configurations are discussed.

Workcentre Clustering

The aim of this phase is to cluster tasks among workcentres. In Figure 9.4 the
left top (a) represents the precedence graph of product, while the right top

1 It makes no sense to ask the computer to find a solution for something which is
obvious, e.g. the tasks that the human can do better. It is also a waste of time to
solve problems for which the computer needs a lot of data to find simple solutions
while the human can find them without any difficulty.

9 Evolving to Integrate Logical and Physical Layout of Assembly Lines 109

Assign tasks to

workcentres

Link the different

workcentres

Workcentres

balancing

Modify clusters

and links

Tasks Workcentre

Figure 9.3. Overall architecture of the line layout module

(2) (1)

(3)(5)
(4)

(6)

Workcentres

Precedence

(2) (1)

(5)
(4)

(3)

(6)

(c) (d)

Tasks

Precedence

(a) (b)

Clusters

(2)
(1)

(3)
(5) (4)

(6)

Figure 9.4. workcentre clustering phase

110 Assembly Line Design

(b) represents one possible clustering. In the same figure, the bottom (c) and
(d) represent two possible configurations (sets of workcentres) of the proposed
clustering. In (c) each cluster is assigned to its own workcentre, while in (d)
the clusters (3) and (4) are assigned to one workcentre. The only hard con-
straint that must be satisfied is the precedence constraints between clusters.
The precedence graph between clusters decides on the position of workcen-
tres. In contrast, the arc between workcentres defines the flow of products
between them. As can be observed from (c) and (d), the precedence between
the different clusters is preserved. The criteria and constraints that influence
the choice of a given graph clustering are described in the following points:

• One of the first pieces of information provided to designers is the desired
throughput of the given product; this leads to the desired cycle time of the
line. The desired cycle time can help to estimate the number of workcentres
needed to assemble the product.

• Generally, designers never start from scratch to design an AL. One of the
most important constraint is the space of the plant and the space of each
sub-plant, each workcentre, and so on. Thus, the number of stations of
each workcentre is more-or-less known in advance.

• Since the line must operate according to a line flow topology, only clusters
that can satisfy the precedence constraints between tasks are valid.

• When analysing the precedence graph of a given cluster, one can have an
idea about the production stage of the given product. Thus, designers have
an idea on the stability states of a given product. This information will
help in deciding if the product at a given stage can or cannot be transferred
from one workcentre to another. It is possible that the product at the end
of cluster (2) in Figure 9.4 is unstable and this clustering is less acceptable
in comparison with the cluster composed of clusters (2) and (4).

• The work level and the work position of tasks in the case of bulky products
can help to decide about the way to cluster tasks.

• Each time we have a well-defined sub-assembly, one should dedicate it a
cluster.

• Given a set of tasks executed on all the variants of a given product family,
if these tasks have similar features, they may belong to the same cluster.

• Generally, the higher the number of variants of a given family, the higher is
the imbalance between the variants and the less clusters one has to make.
Making a high number of clusters can lead to high imbalance between
variants along the AL.

• Depending on the type of production (batch or mixed production), the
clustering may not be the same. The type of production may also change
the clustering, since the transfer system may be affected by the choice.

On the other hand, the main parameters that influence the workcentre
clustering can be summarised as follows:

9 Evolving to Integrate Logical and Physical Layout of Assembly Lines 111

• The importance of the human is often disregarded while evaluating the
AL performance. In order to deal with human behaviour, a close interac-
tion between designers and workers can define useful clusters that satisfy
workers desires and enhance job quality.

• One of the basic pieces of information to the clustering phase is ‘how far
geographically the different workcentres are’. Indeed, the transfer system
depends on the distance between the workcentres.

• Components storage space is one of the hard constraints in AL designs.
Since each assembly task is linked to a given component, it is quite easy
to detect if the storage space needed for a given set of tasks exceeds the
storage space of a given workcentre.

• The feeding system of the different components can help to decide about
the grouping or not of a set of tasks. In the case of the ‘kiting’ philosophy,
the feeding has only a minor influence on the choice of the clustering.

• The plant layout, its obstacles (walls, paths), the specific stations (quality
control cells, and painting stations, etc.) may introduce constraints on the
position of workcentres and their links.

• The number of operators permits one to define the number of workcentres.
• Indeed, it makes no sense to introduce a transfer system between two

workcentres, as each one contains only one task. Techniques like ‘cell for-
mation’ and flow matrix can help to decide about the acceptance or not
of a proposed clustering.

It is important to note that the results of this phase constitute a local
optimisation of the line layout problem. Indeed, this clustering permits one
to narrow the search space, whereas the results of the LL module constitute
a global optimisation.

Workcentre Links

Some workcentres may serve to assemble a subassembly which is injected as
a whole in the main line. Some stations, like packaging, which may be used
for several products in the same facility, are at the confluence of two or more
ALs. Thus, different lines or workcentres are linked to yield several line topolo-
gies, as illustrated in Figure 9.5. Four workcentres are linked to a main line
according to a ‘fishbone’ topology, and the main line separates into two others
at its end. Different links (if they exist) represent just a logical link between
workcentres, as shown in the example of Figure 9.5 (the workcentre (4) is
linked to the station (5) of the main workcentre). This means that the trans-
fer system has to put the product leaving workcentre (4) on station (5) of the
main workcentre.

There are two general kinds of link: links with operations exchange and
links without operations exchange. The possible links between workcentres
are described in the following sections.

112 Assembly Line Design

Main workcentre

Link position

Workcentre

1 5 61

3
7

2

5

4
6

Figure 9.5. Example of plant topology

Link Without Operation Exchange. A simple link is when two work-
centres are linked logically without any exchange of tasks. Such links only
help to decide about the flow among workcentres. There are three possible
configurations (Figure 9.6). The arrows represent just the flow of the product
inside the workcentre.

WkC1

WkC1

WkC1

WkC2

WkC2

WkC2

Flow Flow

(a)

(b)

(c)

Figure 9.6. Possible links between workcentres

• Physically, the two workcentres may be put in parallel; this means that
the two sub-assemblies start at the first station of each workcentre.

• The last station of workcentre WkC1 is linked to the first station of work-
centre WkC2. Once WkC1 finishes its work on the product, it transfers it
to WkC2.

• The last station of workcentre WkC1 is linked to the last station of work-
centre WkC2. In this case there are two possibilities.

1. WkC1 finishes its work on the product and transfers it to WkC2, or
WkC2 finishes its work on the product and transfers it to WkC1.

2. Suppose there is another workcentre WkC3 connecting the two work-
centres. Thus, the sub-assemblies assembled on workcentres WkC1 and
WkC2 are transferred into WkC3. Then, the two sub-assemblies may
be assembled together on WkC3.

9 Evolving to Integrate Logical and Physical Layout of Assembly Lines 113

Sharing Stations. The second kinds of link correspond to a set of work-
centres sharing physically one station (see Figure 9.7). The product passing
through the different workcentres has to visit the shared station. This kind of
station can be found in the following situations:

• In the contact point of many parallel workcentres. Suppose there exist a
set of tasks done by a robot. Note, that the cost of a robot is generally
high and it is more beneficial to share it to execute the same task relative
to the different workcentre. For two ‘paced’ workcentres, the process time
of the shared station may not exceed half of the cycle time.

• The contact point belongs to the main workcentre. Each workcentre as-
sembles a sub-assembly relative to a variant and the main workcentre
integrates the different sub-assemblies to the main product.

Flow

Station

WkC1

WkC2

Shared station
PT(w1)

PT(w2)

Figure 9.7. workcentres sharing station

The hard condition to share an operator between many stations is that∑
w=1..NbLinks

PT (w) ≤ Minimum(CycleT ime) (9.1)

where PT (w) is the process time of the shared station on the product passing
through workcentre w, NbLinks is the number of workcentres sharing this
station, and Minimum(CycleT ime) is the cycle time corresponding to the
fastest workcentre.

For each cycle time, the shared station has to work on the products relative
to the different workcentres. This means that on each period equal to the cycle
time this station has to handle each of the NbLinks products. Suppose that
the process time of the given station relative to each workcentre is equal to the
minimum cycle time, then the process time of the station must be less than
or equal to the corresponding cycle time. By the way, the sum of the process
times corresponding to the different workcentres must be less than or equal to
the minimum cycle time. The upper bound is then Minimum(CycleT ime).
Thus, the theoretical maximum process time of the shared station must verify
the inequality in Equation (9.1). This upper bound is relative to the synchro-
nised model: the station always begins with the product passing through the

114 Assembly Line Design

fast workcentre (corresponding to the minimum cycle time). Many other com-
binations (synchronisation) are possible, especially in the case of MPALs [146].

Link With Operator Move. The third kind of link corresponds to the
case where two physical stations of two different workcentres belong to the
same logical station (Figure 9.8). Logically, there is only one station, but
physically one part of the job is done on WkC1 and the rest of the job is done
on WkC2. One operator (machine, or robot) is used to work on station ws1
and to transport the product from WkC1 to WkC2 (station ws2). The latter
continues assembling the product. This can be the case if a heavy equipment
Eqp1 is installed on ws1 and another Eqp2 is installed on ws2, and the product
has to go successively from WkC1 to WkC2. The main condition to do such
an allotment is that the process time on the two stations must verify the
following assignment:

WkC1 WkC2

Move directions

ws2ws1
Flow

Figure 9.8. workcentre link with operator move

PT (ws1) + PT (ws2) + 2 × Mvt < Minimum(CycleT ime) (9.2)

where PT (w) is the process time of the station w, Mvt is the duration of the
movement between the two workcentres, and Minimum(CycleT ime) is the
cycle time corresponding to the fast workcentre.

Note that the same product passes through the two workcentres: the oper-
ator (or robot) transfers the product from the first workcentre to the second.
Thus, the flow of the two workcentres must be the same, otherwise there is
no need for such configuration.

Link With Operations Exchange. Finally, the most interesting kinds of
link between workcentres are those where tasks are exchanged among workcen-
tres. This exchange can help to balance the workload of two adjacent workcen-
tres if the surplus of process time on one station is transferred to its neighbour.
Note that the exchange of tasks is done in only one direction, not in both.
The surplus of process time on the overloaded workcentre is transferred into
the other. Otherwise, the product has to be transferred twice between the two
workcentres. Figure 9.9 represents two linked workcentres which are able to
exchange tasks between the linked stations: the second station of workcentre
A and third station of workcentre B.

9 Evolving to Integrate Logical and Physical Layout of Assembly Lines 115

3

A

B

(LWS (2, A), LWS (3, B))

or

2
Exchange

tasks between

the two stations

Figure 9.9. workcentre links with tasks exchange

Note, that the links are not mandatory and a workcentre may be isolated
from the rest of the line.

9.4.2 Global Search Phase

Figure 9.10 illustrates the input data of this module which helps to balance lo-
cally a given workcentre (using only the tasks that belong to this workcentre).
The balancing of the line is done using the EPAL heuristic which was intro-
duced in Chapter 6. In order to take advantage of the links between stations,
another heuristic has been developed. The ‘link node’ is the set of stations
by which a set of workcentres is linked. For instance, suppose that the link
(end(WkC1), end(WkC2)) has been set (i.e. the end of WkC1 is linked to the
end of WkC2), the link node will be the last station of each workcentre.

GGA

LL && PL

- Balanced workcentres

- First disposition of

workcentres

Workcentre

- station number

- cycle time

- process time

- precedence graph

- mode preferences

Link

- workcentre 1

- workcentre 2

- link type

- Set of workcentres

- Links between

workcentres

Figure 9.10. Input data of the problem

The two stations in the link node are chosen and all possible exchanges
between them (which do not violate precedence constraints and cycle time) are
executed, as shown in Figure 9.11. These kinds of move permit one to balance
two adjacent workcentres by exchanging tasks between them. The objective
is to equalise station durations under a fixed number of station constraints.
The following cost function is adopted:

116 Assembly Line Design

minimise fEP =
∑

j=1..w

(
∑

i=1..Nj

(filli − cycletimej)
2) (9.3)

cl11 cl21 cl31

WS1 WS2 WS3

cl32 cl22 cl12

WS1 WS2 WS3

FlowFlow

Figure 9.11. Linked wheels heuristic

In other words, for each workcentre, this function minimises the square of
the difference between the workload of stations and the desired cycle time,
where w is the number of workcentres, Nj is the number of stations of each
workcentre, filli is the sum of working times on station i, and cycletimej is
the ideal cycle time of workcentre j. This can defined as follows:

cycletimej =

∑
(j=1..nbopj)

timei

Nj

(9.4)

The cycle time of each workcentre is the sum of the process time of its
tasks divided by the number of stations.

9.5 Application

The case study is adapted from a problem proposed in the line balancing
benchmark suite of [146]. The benchmark considers 29 tasks with precedence
constraints and operating times as illustrated in Figure 9.12. Table 9.1 sum-
marises the process time and the precedence constraints of each operation, as
well as their prefered workcentre. We decide to create two workcentres, with
the link (end(WkC A), begin(WkC B)).

First, the two workcentres are balanced without using any link. Table 9.2
presents a set of solutions for a given number of stations without cycle time
restriction and according to an equal piles strategy. NbS X denotes the de-
sired number of stations, while WkC X represents the process time of stations
for workcentre X. Finally, the link represents the station by which the two
workcentres are connected.

9 Evolving to Integrate Logical and Physical Layout of Assembly Lines 117

11

6

8

9 10

12

20

1
2

3 4 5

7

14

13

15

16

17

18

19
21

22

23 24

25

26

27

28

297
19

15 5 12

10

8

16

2 6

21

10

9

4

14

7

14

17

10

16

1 9

25

14

14

2

10

7

20

A B

BA

Figure 9.12. Precedence graph of the problem

Table 9.1. workcentre, duration and precedence constraints of each task

Op WkC Duration Preds Op WkC Duration Preds

1 A 7 16 A 7 8, 14
2 A 19 17 B 14 11, 13
3 A 15 1 18 B 17 16
4 A 5 3 19 B 10 15
5 A 12 4 20 B 16 17
6 A 10 2 21 B 1 19
7 A 8 22 B 9 18, 21
8 A 16 5, 6 23 B 25 20, 22
9 A 2 7 24 B 14 23
10 A 6 9 25 B 14 1, 7
11 A 21 8 26 B 2 2
12 A 10 7 27 B 10 26
13 A 9 5 28 B 7 23
14 A 4 10 29 B 20 24, 25, 27, 28
15 A 14 10, 12

118 Assembly Line Design

Table 9.3 shows the composition of the different stations in the case where
the two workcentres are connected (at the left-side) and not connected (at
the right-side). Note that the operation exchange between workcentres is only
allowed at the connection station node. Operations from workcentre A mixed
with some operations of workcentre B are written in bold font.

Table 9.2 shows that using the link (i.e. ‘operations exchange link’) be-
tween the two workcentres improves the quality of balancing (see Section
9.4.1). Table 9.3 presents the results for the case when the desired number
of stations of WkC A and WkC B are equal to 3. If the two workcentres
are disconnected, the cycle time of each one is equal to the process time of
its corresponding tasks divided by its desired number of stations. Thus, cycle
time is set to 60 units for WkC A and to 49 units for WkC B. In contrast,
if they are connected, the cycle time is then set to the process time of all the
tasks divided by its sum of the desired number of stations. In this case, the
cycle time was set to 54 units.

Table 9.2. Results of the algorithm, with and without links between workcentres

(NbS A, NbS B) Link WkC A WkC B

(3, 3) 61, 60, 58 49, 48, 48
(3, 3) (3, 1) 56, 54, 52 54, 55, 53
(4, 3) 39, 46, 45, 49 49, 48, 48
(4, 3) (4, 1) 47, 46, 47, 42 46, 48, 48
(4, 4) 43, 47, 45, 44 27, 38, 39, 41
(4, 4) (4, 1) 41, 43, 41, 43 38, 38, 39, 41
(5, 3) 35, 37, 36, 37, 34 49, 48, 48
(5, 3) (5, 1) 38, 44, 42, 41, 37 40, 41, 41
(5, 4) 35, 37, 36, 37, 34 27, 38, 39, 41
(5, 4) (5, 1) 37, 35, 36, 36, 31 33, 36, 39, 41
(6, 3) 30, 34, 30, 30, 30, 25 49, 48, 48
(6, 3) (6, 1) 35, 37, 36, 37, 34, 37 28, 39, 41

Table 9.3. Process time and list of tasks of each station with (NbS A=3, NbS B=3)

WkC PT Ops (without link) PT Ops (with link)

A 61 0, 2, 6, 8, 1, 5 56 0, 6, 1, 11, 5, 8
A 60 9, 11, 13, 3, 14, 4, 12 54 9, 2, 3, 4, 7
A 58 7, 10, 16, 15 52 13, 15, 14, 17, 18
B 49 17, 20, 21, 18, 25, 26 54 12, 10, 20, 21, 16
B 48 19, 22, 27 55 22, 19, 23
B 48 23, 24, 28 53 25, 24, 28, 26, 27

9 Evolving to Integrate Logical and Physical Layout of Assembly Lines 119

Table 9.4 shows that the balancing obtained using the link between the two
workcentres (connected by the fourth station of WkC A and the first station
of WkC B) is better than the first one. The results show that the links allow
to smooth the workload of the different stations along the two workcentres.
Indeed, the maximum difference is not more than 6 (48 − 42) in the second
case (with link), while it is equal to 10 (49 − 39) in the first case (without
link).

Table 9.4. Process time and list of tasks of each station with (NbS A=4, NbS B=3)

WkC PT Ops (without link) PT Ops (with link)

A 39 0, 2, 3, 4 47 0, 2, 3, 6, 4
A 46 1, 12, 6, 5 46 8, 9, 11, 12, 1
A 45 7, 8, 11, 9, 13, 15 47 5, 7, 10
A 49 10, 16, 14 42 13, 16, 15, 17
B 49 17, 18, 20, 21, 25, 26 46 18, 20, 21, 25, 26, 14
B 48 19, 22, 27 48 19, 22, 27
B 48 23, 24, 28 48 23, 24, 28

10

Concurrent Approach to Design Assembly

Lines

10.1 Introduction

The integrated method is composed of three independent modules, namely the
PA, the OMT and the LL. Designers always have an idea on how to design
the product. At the same time, the proposed line designs are most of the time
influenced by the way the product will be assembled (PA and OMT outputs).
In fact, there is a simultaneous design of the product and its line, such that
fixing the product structure limits the possibilities of the line architecture.
This chapter is organised as follows. In Section 10.2, a brief description of the
ALD problem and its constraints and objectives are discussed. The integrated
approach is introduced in Section 10.3. Results of two industrial case studies
are presented in Section 10.4.

10.2 Concurrent Approach

The principal features of the line layout module were introduced in previous
chapters. That is, the LLs for ALB and RP were presented respectively in
Chapters 6 and 7. The balance for operation concept was presented in Chap-
ter 8.

The following steps are adopted when executing ALD: (1) fix on the as-
sembly type, (2) draw the precedence graph, (3) describe the whole process,
(4) decide about the line speed, the cycle time and number of stations, (5)
use the integrated approach, and finally (6) evaluate the efficiency of the line
obtained (see Figure 10.1). If the proposed design is not satisfactory, the op-
erating modes or precedence graph will be modified. Product modifications
can also be envisaged at a late stage, but only if other modifications are inef-
fective. A feedback to previous steps of the process is always possible. In the
next section, a framework of the proposed AL layout is presented.

121

122 Assembly Line Design

Product analysis
operating modes
and techniques Operating modes

Physical layout
premises

Linked tasks and
fixed stations

Logical assembly line

Logical layout
(ALB and RP)

Balance for
operation

Physical layout
and simulation

Physical assembly line

Equipment selection

Precedence graph
between components

Operations’ precedence graph

Scheduling

Product
modifications

Layout
modifications

Modifications
due to operation

Figure 10.1. Concurrent design of AL

Thus, the integrated ALD approach is illustrated in the following pseudo-
code:

repeat
Fix the operating modes and techniques of tasks;
Select the equipments for each task;
Cluster tasks between workcentres;
Impose grouped tasks and fixed stations to recover existing stations;
Balance for operation the line;

repeat
Propose the LL of the AL;
Test the operating efficiency of the AL;

until satisfactory solution has been found;
Decide about the disposition of the stations, conveyors, buffers, on the shop
floor;
Simulate the AL to investigate the impact of architecture obtained;

until a satisfactory AL architecture has been found;

10.3 Assembly Line Design

The proposed method is built upon many collaborations with industry [124].
Its main steps can be summarised as follows (see Figure 10.2):

10 Concurrent Approach to Design Assembly Lines 123

• Preparation. The designer introduces the input data (tasks, resources,
constraints, preferences, etc.);

• Optimisation. The optimisation method proposes a line architecture (sta-
tions contents, their order, etc.);

• Mapping. This allows the designer to analyse and test the results using
a simulation package.

• Set of tasks
• Set of resources
• Set of constraints
• Set of preferences

• Set of expert rules
• Experience
•

•

Optimisation method

Input

Output

• Stations contents
• Stations order

Mapping
Assembly line

installation

Feedback from
simulation

Embedded in

Figure 10.2. Design method

10.3.1 Data Preparation Phase

Once the product and the existing resources of the enterprise have been
analysed, a set of assembly plans is proposed, as well as their preferable re-
sources [110]. The method gives the following input for the optimisation phase,
as illustrated in Figure 10.3: the desired number of stations, the desired cy-
cle time, and for each task the precedence constraints and the user’s mode
preferences.

Logical layout Stations &
resources

DB equipment

+ Cost
+ Process time
+ Reliability
+ Occupied area

+ List of tasks
+ Cycle time
+ Number of stations

For each task :

+ precedence constraints
+ user’s mode preferences
+ position

Figure 10.3. Data flow of the ALD method

124 Assembly Line Design

10.3.2 Optimisation Phase

This phase constitutes the evolutionary computation part of the methodol-
ogy. The approach is based on GAs, and many industrial designers’ ideas are
embedded in the method as heuristics.

10.3.3 Mapping Phase

The optimisation module yields an LL of the line. A solution contains the
following information: cycle time, number of stations, and for each station the
process time, a list of tasks, and a list of resources.

This information only constitutes the LL of the AL presented on the left
side of Figure 10.4. The right part shows a real installation of an AL and
its relative representation, which comes from the optimisation module. The
missing step of the PL is replaced by an interactive method. Each station is
represented by an object (square) and is defined by a list of tasks, a list of
resources, its order among the other stations, etc. The mapping phase helps
the designer to make a first drawing of the AL. The optimisation module has
to save the AL architecture obtained in a specified format, which is then used
by the simulation software package (Automod) [169]. The Automod input
data needed to design the system are:

• locations – they correspond to real location of stations;
• entities – they represent pallets, parts, and all items which are moving

between different locations;
• resources – they describe operators, conveyors, machines which are able to

move entities between two locations, or can execute an operation;
• tasks – the description of tasks as well their order on each station;
• path network – this consists of paths followed by resources and/or entities

in the real system;
• processing – this allows one to define possible destinations of an entity

leaving a location. The station’s duration spent on each product is deduced
using a matrix of processing times.

Figure 10.5 shows the virtual representation of an AL as done in Auto-

modD software [169]. It represents four stations connected by a conveyor.
Tasks are accomplished by one operator, two dedicated machines, and one
robot.

10.4 Case Studies

The following sections present the application of the EPAL and RP approaches
using two industrial case studies.

10 Concurrent Approach to Design Assembly Lines 125

Automatic station

Robot

Manual
station

Conveyor

Real installation

R A A

M M M R A

AR

M: manual

A: automatic

R: robotic

Flow

Stations

+ list of tasks
+ list of equipments
+ process time
+ tasks order

Representation

Figure 10.4. Relationship between the real architecture of the line and its repre-
sentation

Figure 10.5. An Automod representation of an AL

10.4.1 Assembly Line Balancing Application: Outboard Motor

The product studied is an ‘outboard motor marine’ engine. The aim is to bal-
ance the workload for a fixed number of stations. The line produces between
9 and 11 engines per hour depending on the period of year. Table 10.1 sum-
marises the tasks performed on the product and shows the workcentre, the
process time (tenths of an hour) and the precedence constraints for each task.
The tasks (155 in total) whose number id is less than 450 belong to the first
workcentre (the remaining ones belong to the second workcentre). The plant
in this case is composed of two workcentres to balance the workload of the AL
using different numbers of stations. The first configuration assumes that there
is no link between workcentres, while in the second one the workcentres are
linked by their last stations. The two workcentres are linked by an ‘operations
exchange’ link (for more details see Chapter 9).

126 Assembly Line Design

The number of stations of each workcentre was set between one and four.
Table 10.2 summarises the results of EPAL for different configurations of the
AL. These results show that the method presented can deal with the multiple
workcentre ALB (MWkCALB) problem (see Chapter 3). That is, it allows one
to balance the workload of the two workcentres using (or not) the different
links between them. The approach presented is a first step towards integrating
the LL and PL of ALs.

Flow

3

1

4

2

3

1

4

2

WkC_1
W

kC_2

2

1

3

2

1

3

1

Station

Figure 10.6. Plant configuration corresponding to (NbS 1=4, NbS 2=3)

The results, presented in Table 10.2, represent a set of solutions for a
given number of stations according to an equal piles strategy. (NbS 1, NbS 2)
denotes the desired number of stations of workcentre 1 and 2 respectively.
The link represents the stations by which the two workcentres are connected.
WkC 1 (or WkC 2) represents the process time of stations for workcentre
1 (or 2). Here, the results corresponding to (NbS 1 = 4, NbS 2 = 3) are
given. The results show that by adding the link between the two workcentres
the whole line may be better balanced. For instance, the stations workloads
obtained in the case of (NbS 1 = 4, NbS 2 = 3) are

• without link {WkC 1 : 82, 82, 82, 82 and WkC 2 : 73, 68, 58}
• with link {WkC 1 : 75, 76, 75, 75 and WkC 2 : 76, 76, 74}.

Table 10.3 shows the results obtained for the two workcentres, where the
number of stations is set to four for the first workcentre (and three for the
second). This table shows for each workcentre the process times of the differ-
ent stations and their corresponding tasks. The first solution corresponds to
the case where the two workcentres are disconnected. The second workcentre
is badly balanced because of the hard precedence constraints between tasks
and the process time of the different tasks attributed to this workcentre. The
architecture where the two workcentres are connected yields the second solu-
tion. The following tasks {127, 420, 427, 425, 292, 237, 395, 400, 402, 405} were
transferred from the first workcentre to the second one. The second solution is
better balanced over the two workcentres. These results show that taking into

10 Concurrent Approach to Design Assembly Lines 127

Table 10.1. workcentre, duration and precedence constraints of operations

Op WkC Duration Preds Op WkC Duration Preds

12 0 0.1 307 0 3.1

15 0 0.5 310 0 1.2

17 0 1 312 0 3.6 225

20 0 0.5 317 0 2.2

22 0 0.7 320 0 1.5

25 0 0.3 22 322 0 3.2

27 0 3 325 0 1.3

30 0 3.6 27 327 0 1.3

32 0 3.6 330 0 1.2

35 0 0.3 332 0 1.2

37 0 3.5 335 0 5

40 0 3.5 337 0 1

42 0 5.1 40, 35 338 0 1.7

45 0 5.1 339 0 4.4 185

47 0 5 347 0 3.6 185

50 0 5 40 350 0 1.7

52 0 0.8 355 0 4.8 240

55 0 0.6 357 0 1.1 310

60 0 2.8 367 0 0.6

62 0 0.9 372 0 3.8 355

65 0 1.3 60 380 0 6 355

67 0 2.5 62, 65 387 0 0.6

70 0 4.6 62, 65 395 0 1.7 357, 339, 312,

75 0 10 62, 65, 70 350, 265, 292,

87 0 1.8 75 237, 243, 247,

90 0 3.3 372, 380, 252,

97 0 1.7 367, 280, 387,

100 0 0.7 282, 338

102 0 5.5 397 0 2.2 185

106 0 2.4 400 0 6 395, 397, 67

110 0 4.2 106, 122 402 0 1 400

112 0 2.4 110 405 0 3.6 402

115 0 2.6 410 0 4.2

117 0 4 415 0 3 410

120 0 1.1 417 0 4.4

122 0 2.2 420 0 4 415

125 0 1.7 120 425 0 1.4 415

127 0 0.6 47, 90, 125 427 0 5.5 415

130 0 4.4 430 0 3.8 417

132 0 4 130 450 1 4 420, 425, 427, 430

135 0 1.2 452 1 1

137 0 3.5 135 455 1 3.4

140 0 5.5 137 457 1 5.5 455

147 0 5.5 460 1 2.5 455

152 0 3.3 147 462 1 4.5 457, 460

155 0 3.3 152 465 1 10 462

157 0 3.3 155 467 1 4.5

160 0 2.2 470 1 7

162 0 2 475 1 4.5

165 0 1.5 162 477 1 5

167 0 3.3 480 1 3.4

170 0 1 482 1 8

172 0 5.5 170 485 1 4.5

180 0 3.3 487 1 2

182 0 4.2 180 490 1 3.3

185 0 4.4 182 507 1 1

190 0 1.8 512 1 5

193 0 2.5 185 515 1 4.8

297 0 1.6 185 516 1 1.2

225 0 2.4 190, 193, 197 517 1 3.3

227 0 9.5 520 1 8.5

237 0 7.2 522 1 5

240 0 1.5 525 1 4

241 0 2.2 240 527 1 5

243 0 3.3 530 1 6.6

245 0 5.7 240 532 1 5.5

247 0 1.2 535 1 6

252 0 0.4 537 1 8.5

257 0 5 185 540 1 4.4

265 0 0.6 542 1 2.5 540

280 0 2.4 545 1 5

282 0 3.3 547 1 3.4

285 0 6 185 550 1 4.2 547

287 0 4 552 1 7.5 550

292 0 1.7 555 1 13.5

297 0 2.4 556 1 6.2 550

300 0 1.2 297 557 1 1.5 556

301 0 1.2 300 559 1 4

302 0 3.7 560 1 6.5 516

305 0 4 562 1 4.5 560

128 Assembly Line Design

Table 10.2. Station’s workload for different line configurations

(NbS 1, NbS 2) Link WkC 1 WkC 2

(1, 1) no 329.6 200.7
(1, 1) 265.4 264.9

(1, 2) no 329.6 100, 100
(1, 2) 176.8 178, 175.5

(2, 1) no 164.8, 164.8 200
(2, 1) 176.8, 176.7 176.8

(2, 2) no 164.9, 164.7 100, 100
(2, 2) 132.8, 132.4 141.9, 123.2

(2, 3) no 194, 164 73, 68, 58
(2, 3) 106, 106 94, 106, 117

(3, 1) no 109.9, 109.9, 109.8 200.7
(3, 1) 132.6, 132.6, 132.4 132.7

(3, 2) no 109.9, 109.9, 109.8 100, 100
(3, 2) 106.3, 106.3, 105.8 107.5, 104.6

(3, 3) no 110.3, 109.8, 109.5 67.7, 53.3, 79.7
(3, 3) 88, 88, 88 88, 89, 87

(4, 1) no 82, 82, 82, 82 200
(4, 1) 106, 106, 106, 105 106

(4, 2) no 82, 82, 82, 82 100, 100
(4, 2) 88, 87, 88, 88 92, 84

(4, 3) no 82, 82, 82, 82 73, 68, 58
(4, 3) 75, 76, 75, 75 76, 76, 74

(4, 4) no 82.3, 82.4, 82.5, 82.4 56.8, 31.5, 68.7, 43.7
(4, 4) 66.3, 66.3, 66.4, 68.9 65.2, 55.8, 75.2, 66.2

account the architecture of the AL can help to balance different workcentres.
The idea is to analyse the flow of products between workcentres and to use
the links between them to allow transferring some tasks. This helps to smooth
the station’s workload.

10.4.2 Resource Planning Application: Car Alternator

The chosen product is a car alternator, which corresponds to a real industrial
case (Figure 10.7). The desired cycle time of the AL is fixed to 15 seconds.

10 Concurrent Approach to Design Assembly Lines 129

Table 10.3. Stations workload (NbS 1=4, NbS 2=3)

no link

WkC PT Ops

0 82 180, 182, 185, 347, 257, 60, 240, 197, 193, 310, 410, 147, 297, 120,
135, 62, 22, 106, 417, 170, 122, 40, 190, 35, 252, 285, 65, 241,
355, 245

0 82 415, 152, 300, 125, 155, 157, 70, 27, 225, 110, 130, 172, 430, 50,
162, 42, 312, 75, 112, 30, 132, 165, 87

0 82 47, 90, 127, 280, 247, 367, 237, 350, 243, 265, 292, 387,
282, 338, 357, 420, 425, 305, 52, 137, 320, 337, 97, 335,
12, 117, 45, 301, 17, 55, 102, 332, 325, 302, 327

0 82 427, 372, 380, 339, 397, 32, 67, 167, 307, 37, 20, 115, 15, 317,
287, 160, 322, 330, 100, 227, 140, 25, 395, 400, 402, 405

1 73 450, 452, 455, 517, 520, 522, 525, 527, 530, 532, 535, 537,
540, 460, 457

1 68 462, 465, 467, 470, 475, 477, 480, 482, 485, 487, 490, 507, 512,
515, 516

1 58 550, 556, 557, 559, 562, 552, 555, 560, 542, 545, 547

with link

WkC PT Ops

0 75 180, 182, 185, 60, 240, 147, 135, 297, 417, 130, 152, 137, 40,
245, 197, 27, 32, 397, 132, 355, 310, 252, 50

0 76 193, 120, 62, 170, 190, 122, 162, 430, 155, 140, 115, 106, 227,
300, 287, 97, 327, 167, 320, 305, 65, 257, 285, 241, 325, 70

0 75 330, 110, 165, 225, 322, 37, 372, 337, 243, 47, 90, 280, 247, 350,
282, 100, 75, 301, 67, 335, 317, 347, 367, 117, 410, 22

0 75 338, 357, 415, 339, 332, 160, 17, 125, 52, 15, 20, 102, 172, 25, 302,
45, 307, 55, 265, 387, 30, 157, 112, 312, 380, 87, 12, 35, 556, 42

1 76 450, 452, 455, 517, 520, 522, 525, 527, 530, 532, 535, 537, 540,
542, 545, 547

1 76 457, 465, 467, 470, 475, 477, 480, 482, 485, 487, 490, 507, 512,
515, 516, 460, 462

1 74 550, 557, 559, 560, 562, 552, 555, 127, 420, 427, 425, 292, 237,
395, 400, 402, 405

A description of the operations performed on the product is summarised in
Tables 10.5, 10.6 and 10.7. Table 10.4 presents the precedence constraints
between tasks. Table 10.5 presents for each task the possible resources needed
to accomplish this task and the operating mode (M: manual; R: robotic; A:
automated) associated with each piece of equipment. For instance, task 1 can
use one of the three pieces of equipment {0, 1, 2}, 0 being done manually,
whilst 1 and 2 are automated FGs. Table 10.6 shows the process time and the
cost of each piece of equipment associated with a given operation. The last
column in the table shows for each piece of equipment the number of necessary
operators (one operator for manual tasks and none in the case of machines

130 Assembly Line Design

or robots). The input data were prepared and structured using the SELEQ
software package [110]. Only two criteria were optimised in this example:

• imbalance of workload – the imbalance between the process time of the
stations has to be minimised;

• cost – the price of the AL has to be minimised.

Figure 10.7. A view of the car alternator

Table 10.4. Precedence constraints of the product

Op Preds Op Preds Op Preds

1 4 17 16 33 32
2 1 18 6 34 31
3 2 19 17 35 33, 34
4 - 20 19 36 35
5 3 21 20 37 22
6 10 22 21 38 31
7 - 23 17 39 36, 38, 46, 47, 48
8 - 24 17 40 39
9 - 25 18 41 40
10 7, 8, 9 26 16 42 41
11 10 27 44 43 42
12 10 28 45 44 29, 30
13 11, 12 29 28 45 20, 23, 24, 25
14 13 30 28 46 35
15 14 31 27 47 35
16 15 32 31 48 35

Note that the real number of stations cannot be determined by computing
the ratio between the sum of the operating times and the cycle time. Indeed,

10 Concurrent Approach to Design Assembly Lines 131

Table 10.5. Operating mode and possible resources associated with each task

Op MODE EQUIP Op MODE EQUIP

1 M 0 24 M 35
A 1 25 A 36
A 2 M 37

2 M 3 26 A 38
A 4 A 39
R 5 27 M 41

3 A 6 28 M 42
M 7 29 A 43

4 M 8 A 44
5 M 9 30 A 45
6 M 10 A 46
7 M 11 31 M 47
8 M 12 32 M 48
9 M 13 33 A 49
10 A 14 A 50
11 A 15 A 51
12 A 16 34 A 52
13 R 17 A 53

R 18 35 A 54
14 R 19 36 A 55

R 20 37 M 56
15 A 21 38 A 57

A 22 39 M 58
16 A 23 40 M 59

24 A 60
17 R 25 A 61

R 26 A 62
R 27 41 A 63

18 M 28 42 M 65
19 M 29 43 M 66
20 A 30 44 M 67
21 A 31 45 A 68

M 32 46 A 69
22 M 33 47 A 70
23 M 34 48 A 71

that number constitutes the theoretical minimum number of stations without
considering the precedence constraints and the operating mode of the opera-
tions. The cycle time constraint is complied with by observing that there is a
minimal/maximal duration for each task. The theoretical minimal (maximal)
number of stations is the sum of the duration of the fastest (slowest) resource
of each task over the cycle time. For the case presented here, the theoretical
minimum number of stations is equal to 22, while the maximal number is 25.

132 Assembly Line Design

In order to generate possible solutions, the ICA presented in Chapter 7 is
used. The MOGGA was applied to this example for several user preferences.
The results of the method are examined for different weight combinations
corresponding to the relative importance one might give to each objective.

Table 10.6. Process time, cost (arbitrary units) and number of operators required
by each piece of equipment

Equip Time Cost NB OP Equip Time Cost NB OP

0 800 1712023 1 35 900 1700000 0
1 700 118396 0 36 400 80687 0
2 800 131218 0 37 500 1835082 0
3 400 1700000 1 38 1500 99613 0
4 200 100484 0 39 1400 476287 0
5 200 344492 0 40 900 1775000 1
6 400 466587 0 41 1500 1700000 1
7 1500 1795355 1 42 600 92387 0
8 300 1700000 1 43 700 468292 0
9 300 1700000 1 44 800 90403 0
10 300 1700000 1 45 800 468292 0
11 300 1700000 1 46 300 1700000 1
12 300 1700000 1 47 300 1700000 1
13 300 1700000 1 48 600 114550 0
14 1500 125000 0 49 600 488751 0
15 0 83931 0 50 700 198341 0
16 0 83931 0 51 400 10424 0
17 600 35915 0 52 400 45570 0
18 700 328029 0 53 1500 75000 0
19 600 18926 0 54 300 70000 0
20 700 471996 0 55 300 1700000 1
21 200 6473 0 56 1400 75000 0
22 300 384361 0 57 300 1700000 1
23 800 77318 0 58 1000 1700000 1
24 900 231324 0 59 500 79298 0
25 500 27659 0 60 500 81960 0
26 700 271667 0 61 600 457187 0
27 600 172932 0 62 1400 25000 0
28 400 1700000 0 63 1500 1700000 1
29 800 1700000 0 64 1500 1700000 1
30 800 45570 0 65 300 1700000 1
31 400 80687 0 66 1400 37500 0
32 500 1835082 0 67 400 70000 0
33 500 1700000 0 68 400 70000 0
34 500 1700000 0 69 400 70000 0

Table 10.7 summarises the results obtained. It presents the process times
on the different stations and the total cost of the line according to the different

10 Concurrent Approach to Design Assembly Lines 133

optimisation strategies. The number of stations is given by N , the cost of the
line by ‘Cost’ and the balancing by ‘Bal.’. The columns labelled from 1 to 25
represent the workload of the different stations. Bold numbers represent sta-
tions where the cycle time is exceeded. The weight attributed to the balancing
is B and the one for cost being C. The weights (B,C) represent the relative
importance given to each criterion. In this case, three pairs of preferences,
i.e. {(0, 1), (1, 0), (0.5, 0.5)}, were used. The pair (0, 1) means that the cost is
the only important objective; no care is given to the imbalance of the line. In
contrast, the pair (1, 0) means the opposite. Finally, the pair (0.5, 0.5) means
that the same importance is given to the two objectives.

Table 10.7. Process time of each station according to the different weights (B, C)

N B C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Bal. Cost

22 0 1 23 22 15 12 15 13 13 12 14 15 14 18 14 5 15 15 14 16 15 14 15 15 254 22148352

22 0.5 0.5 15 15 15 15 14 13 14 12 12 14 15 14 18 14 15 15 14 21 15 14 15 15 74 23848352

22 1 0 15 15 15 15 15 15 14 12 13 14 15 15 18 14 15 15 15 21 15 14 15 15 62 29197448

23 0 1 23 22 15 14 13 4 4 8 12 14 14 15 14 23 10 15 15 14 16 15 14 15 15 513 22148352

23 0.5 0.5 10 14 15 12 15 14 13 13 12 14 14 15 14 18 14 10 15 15 16 15 14 15 15 93 24068032

23 1 0 15 15 15 15 15 15 12 16 14 14 15 15 12 15 14 11 15 15 14 13 14 15 15 44 28657204

24 0 1 15 9 18 15 14 13 14 12 12 14 15 12 6 18 10 15 15 14 15 11 5 14 15 15 312 22437168

24 0.5 0.5 10 14 15 12 15 14 13 9 13 12 14 15 14 12 14 10 14 15 15 15 13 14 15 15 132 25768032

24 1 0 15 15 15 15 14 15 14 12 13 14 15 13 7 15 11 11 15 15 14 13 15 14 15 15 122 30675056

25 0 1 12 9 21 15 4 14 13 9 13 12 14 15 14 18 4 5 14 10 15 15 16 15 14 15 15 516 22355208

25 0.5 0.5 14 7 15 9 15 14 13 13 13 12 14 15 14 12 4 14 10 14 15 15 13 15 14 15 15 287 27248352

25 1 0 14 8 15 12 15 14 12 12 9 13 13 14 15 15 11 15 11 15 15 14 13 15 14 15 15 161 33150960

The algorithm was run 12 times using four different ‘number of stations’
N (N varying from the theoretical minimum number of stations to the theo-
retical maximal number) and three combinations of preferences. The results
show that the proposed method satisfies the user’s preferences with regard to
the optimisation objective. Figure 10.8 shows the cost of the line according
to the number of stations for several preferences. This demonstrates that the
increase of the cost with the number of stations is not a general behaviour.
For instance, the cost of a line with 23 stations is less than with 22 stations
(for weights set to (1, 0)). For a given number of stations, the cost of the line
corresponding to (1, 0) is high in comparison with (0.5, 0.5), which is higher
than the cost corresponding to (0, 1).

The results corresponding to the solutions with 24 stations allow one to
make the following comments:

• The couple (B = 1, C = 0) yields a minimal process time of 7 (station 13),
a maximal process time of 15 and a cost of 30675056.

• The couple (B = 0.5, C = 0.5) yields a minimal process time of 9 (station
8), a maximal process time of 15 and a cost of 25768032.

• The couple (B = 0, C = 1) yields a minimal process time of 5 (station 21),
a maximal process time of 18 (station 3) and a cost of 22437168.

134 Assembly Line Design

Preferences

C
o

st

Figure 10.8. Cost (arbitrary units) of the line according to three preferences

The preference (1, 0) yields an expensive but well-balanced line in compar-
ison with other preferences (see Table 10.7). In contrast, the results obtained
using the preference (0.5, 0.5) show clearly that setting an equal weight to the
two objectives does not mean that one will obtain the line with the lowest
cost and the lowest imbalance simultaneously, but rather the best compro-
mise between the two objectives. Finally, the pair (0, 1) leads to a cheapest
(minimal cost) and a less-balanced line. Figure 10.9 shows that the preference
(1, 0) leads to a good balancing in comparison to the other ones.

Preferences

B
al

an
ce

Figure 10.9. Balancing of the line according to the preferences set for different
number of stations

10 Concurrent Approach to Design Assembly Lines 135

The station load can exceed the cycle time in some cases. This means that
the desired cycle time cannot be held for the selected number of stations. The
line will generally be less expensive as the cycle time constraint is relaxed.
These results show that a solution using 22 stations leads to the cheapest cost
if the balancing is not important. The choice of a solution is user dependent. A
good compromise between the balancing and the cost of the line corresponds
to a solution with 24 stations using the (0.5, 0.5) preference.

The analysis of the three combinations of weights clearly demonstrated
that considering each criterion separately leads to very bad results according
to the other ones. Given the same preference for the two objectives leads to
solutions where the values obtained for each criterion lead to good compro-
mises between them.

The main advantage of such a computer-aided tool is that it allows one to
try a lot of different combinations for a lot of different sets of data. This is
almost impossible to realise manually due to the very large amount of possible
solutions. An important aspect of this approach is that the DM controls the
optimisation process.

11

A Real-world Example Optimised by the

OptiLine Software

The concepts presented in this book are illustrated in the following case study,
which is supplied by a major European car manufacturer. The production
involved two different cars (Model1 and Model2), each with various options,
making up 10 different car models, with the percentages of occurrence in the
total production being as shown in Figure 11.1

Figure 11.1. Production models

As can be seen in the third column (percentage) of Figure 11.1, some of
the models make up a very small part of the whole production, giving rise to
the difficult phenomenon of ‘rare models’; clearly, line balancing ‘on average’
would not do, and care will have to be taken of peak times.

137

138 Assembly Line Design

The precedence graph of the whole production is depicted in Figure 11.2,
with operations pertaining to specific options in different shades. The two cars
are in the upper and lower parts of the graph respectively. Many operations
are common to all models in the same car, while others pertain to the various
options. The similarity of the graphs for the two cars is no coincidence, as the
structure of the cars is basically identical, while involving mounting different
parts for each of the cars, yielding operations of different durations. There is,
nevertheless, a small subset of the operations that are carried out whatever
car or model is being assembled – these are in the middle-right of the figure
in grey. As pointed out earlier, the automotive industry makes extensive use
of ergonomic constraints, and this dataset was no exception to that rule. All
operations had some ergonomic constraint imposed on them, as can be seen
in the far right column of the operation list in Figure 11.3.

For most of the operations, two station-level ergonomic constraints (WLECs,
depicted in circles) were specified: the elevation of the vehicle and its tilt,
as was the case for instance for operation 73 in the figure (first line of the
table); that operation could only be executed with the car elevated to the
medium height, and tilted. Some operations had only the elevation specified,
e.g. operation 76 in Figure 11.3; that operation could be carried out in the
high elevation of the vehicle, whatever the tilt. Nearly all operations also had
operator-level ergonomic constraints (OLECs, depicted in squares) specified:
operation 73 required an operator positioned on the left of the vehicle, while
operation 91, for example, required an operator in the centre (i.e. cabin) of
the vehicle.

The ergonomic constraints imposed on the operations presented a diffi-
culty, since no corresponding constraints were specified for the stations: the
optimization algorithm in OptiLine was required to assign the correspond-
ing constraints to stations automatically, in such a way that the resulting
line is optimal. In other words, it was left up to the optimizing algorithm to
decide where (at which station) the car should be elevated to which height,
and whether it should be tilted in that station or not. As can also be seen
in Figure 11.3, the dataset contained drifting operations. The figure shows
two of them (76 through 78, and 106 plus 107), but in fact there were four
of them, two for each of the cars. Since these operations (namely mounting
the air conditioning and the sunroof respectively) required specific equipment,
they were linked together, thus ensuring they would be carried out (the airco,
and the sunroof) on the same stations. However, the actual identity of the
stations carrying them out was once again not imposed; this was left to the
algorithm to find out for itself, so the resulting line would be optimal.

Some operations were subject to zoning constraints, e.g. as was the case
for operations 93 and 94 in Figure 11.3; these operations could only be placed
on a specified subset of the station. For operations 93 and 94, that subset was

11 A Real-world Example Optimised by the OptiLine Software 139

Figure 11.2. The precedence graph

the ‘end’ of the line, as depicted in Figure 11.4; these operations were allowed
to be placed by the algorithm only onto stations 12 through 20.

Some operations required the simultaneous cooperation of two operators,
e.g. operations 100 and 101 in Figure 11.3. In nearly all cases the positions
of the operators were also imposed on the operation (left and right of the car
for operations 100 and 101), as illustrated for the first of the two operators in

140 Assembly Line Design

Figure 11.3. The line and the operations list

Figure 11.4. Zoning constraints

11 A Real-world Example Optimised by the OptiLine Software 141

Figure 11.5. This meant that the algorithm was required to allocate at least
those two operators in the station that would carry out those operations.

Figure 11.5. Specifying ergonomic constraints

The presence of the numerous constraints made this a very difficult dataset
to solve. Nevertheless, OptiLine’s optimizing algorithm supplied in a few
minutes a solution compliant with all of them; this is depicted in the top
panel of Figure 11.3. Note the circles in the stations: their shade indicates
that the particular ergonomic constraints were not specified a priori by the
user, but supplied automatically by the algorithm.

That panel shows the average behaviour of the line, confirming that all
stations are, on average, well within the cycle time (the spare time is depicted
by a green segment in the top of the station bar). Some of the stations were
given two operators, which is depicted in Figure 11.3 by their bars having
double the height of the single-operator stations.

Although it is reassuring to have the average behaviour of the line within
the cycle time, it is not enough for a well-managed line, as discussed earlier.
It is therefore reassuring that the solution supplied by OptiLine also took
care of peak times. This is illustrated in Figure 11.6, where the time taken by
each model assembled on the line is computed for each station.

As can be seen in the figure, the solution supplied by OptiLine kept the
total station time for any model being assembled within the cycle time. Con-
sequently, no stoppage should occur if the line is fed the product mix specified
in Figure 11.1, provided the models are scheduled to accommodate the four

142 Assembly Line Design

Figure 11.6. The transitory behaviour (peak times)

drifting operations discussed above. Needless to say, that result took into ac-
count the fact that, in stations having more than one operator, the execution
time is the result of a fully fledged within-station scheduling, rather that a
simple sum of operation durations. In addition, that scheduling must comply
with any ergonomic constraints imposed on the operation, as well as prece-
dence constraints.

An example of such a scheduling is given in Figure 11.7, showing the
scheduling for one model inside a station featuring two operators. The arrow
indicates a precedence constraint among the operations. The figure depicts
the operations that will be carried out by the station each time a car model
‘Model2DeLuxe’ is assembled by that station. The different shades of the
operations in the bars relate to the different options of the car features. The
operations barred in the bottom table are the operations that are also carried
out in that station, but do not pertain to the particular ‘Model2DeLuxe’ being
shown.

11 A Real-world Example Optimised by the OptiLine Software 143

Figure 11.7. Within-station scheduling

12

Conclusions and Future Work

12.1 We Attained...

In order to deal with ALB, a new algorithm called EPAL is introduced. The
hard constraint of the problem is the fixed number of stations and the aim is
to find the best balanced assembly system. The proposed approach is based
on the so-called ‘boundary stones’. Also, several heuristics are embedded in
a GGA. In order to deal with the changes during the operation phase of the
AL, a new concept of BFO is introduced. This concept allows the user to treat
the balancing and the scheduling model at the design phase. In the case of
an HAL, the RP aims to select equipment to carry out the assembly tasks. A
new method is presented which is based on the MOGGA and PROMETHEE
II method. The focus is on how to deal with a user’s preferences in design
problems.

12.2 Tendencies and Orientations

Billions of dollars have been spent annually on the construction of new facili-
ties. It is estimated that the layout of most facilities is modified approximately
every 2 to 5 years. This continuous change is required to keep pace with
changes in demand, new product introductions, process changes, improved
tooling and technology, new legislation, etc. With the increased diversified
demand in production, manufacturers tend, depending on the type of pro-
duction, to use mixed-model ALs or batch production. The evolution of the
demand forces designers to reconfigure their ALs. Techniques that allow one
to deal with the evolution of the architecture of ALs over the time are required
more than the methods that propose designs from scratch. This involves an
increasing need for fast computer-aided design tools to follow the frequent
changes. The aim is to develop ALD tools which allow one to consider this
evolution. In order to design ALs efficiently, knowledge about task complex-
ity, preferences on task grouping, and the process time must be taken into

145

146 Assembly Line Design

account. An interactive and iterative method ‘design for humans’ can allow
the introduction of such knowledge to computer-aided design methods. The
designers propose a set of alternatives of the AL, while operators give their
experience and criticism on the proposed solutions.

12.3 Data Collection

Most of the industrial approaches for design problems suffer from the amount
of data to be used. On the other hand, existing academic algorithms require
little input data and cannot be applied to industrial problems. Thus, there is
a great demand to combine both approaches. An intensive collaboration with
industry is required to collect the data needed to model the full real-world AL
design problem.

12.4 Model Formulation

The line layout module assigns tasks to stations and decides about the po-
sition of stations and resources on the plant floor. The LL assigns tasks to
stations, while the PL module determines the space requirements taking into
account station dimensions and material storage, handling systems, etc. The
line layout problem is an iterative and interactive procedure; this is illustrated
in Figure 12.1 and can be described as follows:

• The production approach helps to decide about batch and mixed produc-
tion.

• The line description is the input data of the design method. It allows one
to describe the problem, preferences, and constraints.

• The design objectives allow one to express the criteria to optimise, as well
as designer’s desiderata.

• The design tool proposes the AL architecture taking into account designer
preferences.

• The simulation module permits the verification of the proposed design.

12.5 Validation and Output Analysis

Performance evaluation generally involves two steps: (1) the mathematical
model and (2) the model solution. Since it is difficult to find a simple model
to describe a studied system, a simulation method must be used. A standard-
isation of performance indices of line layout design must be defined, as well
as the factors that may affect the performance of the system.

12 Conclusions and Future Work 147

Simulation tools

Production approaches

Design objectives

Assembly lines
design tools

Assembly line
input data

- tasks attributed to
each station

- resources
assigned to each
task

- tasks attributed to
each station

- resources
assigned to each
task Proposition

of designsValidation

Soft
constraints

Reformulated
objectives

Figure 12.1. An integrated method to AL design

12.6 The Proposed Approach

A project composed of seven phases with the following structure is proposed
(Figure 12.2) as follows.

Line Evolution. The objectives of this task are the identification and the
modelling of the evolution of the AL. Line designers and resource planners can
help to understand the phenomenon. This phase will reduce the gap between
design industries’ approaches and academic ones.

Design Constraints. The aim of this task is the interaction between de-
signers and workers. Human factors (like task complexity, reliability, worker’s
experience, human skills) must be studied and integrated into the design
process. Depending on the production approaches, objectives, and constraints,
the complexity to find a good solution may vary.

Database Enrichment. The aim of this task is to describe efficiently the
line design problem. An enrichment of a database with information to help
design tools is required. Useful information must be stored in database, while
useless information must be discarded. Also, research in the field of graphical
representation of graphs for complex products has to be done. The aim is to
help designers to get an idea quickly of the implication of these graphs on the
possible balancing.

148 Assembly Line Design

Implantation and monitoring

Tendencies and orientation

Assembly line design
problem definition

Assembly line data collection

Design model formulation

Solution: the methodology

Validation and output analysis

Evaluation

Line Evolution

Design constraints

Database enrichment

The model

Line performances

Figure 12.2. Development of an approach to design of ALs

The Model. Once all the input data of the AL design have been collected
and verified, the next step is to model the design tool: the output data, the
interaction between the different modules, the methods to develop, etc. The
model has to consider the results of the tasks cited above.

Line Performances. The aim of this task is to define the performance
indices of line layout design. Since ALD is a multiple objective search problem,
the goal is to define an easy way to select the best line design from existing
ones. The method will be based on MCDA methods. The aim is to exploit
the features of GAs to allow designers to deal effectively with user preferences.

Evaluation. A user-friendly interface must be developed in order to facil-
itate the access to the AL data stored in many different databases. In order
to validate the different algorithms and methods, design tools have to be in-
tegrated in these design packages, such as Catia v5, and simulation models,
such as Automod.

References

1. A. Agnetis and C. Arbib. ‘concurrent operations assignment and sequencing
of particular assembly problems in flow lines’. Annals of Operations Research,
69:1–31, 1997.

2. A. Agnetis, A. Ciacimino, M. Pizzichella, and M. Lucertini. ‘task synchro-
nization in flexible system for car components assembly’. In ‘Optimization in
industry 2’, Edited by Ciriani T.A. and Leachman R.C., John Wiley & Sons
Ltd, 1994.

3. A. Agnetis, F. Nicolò, C. Arbib, and M. Lucertini. ‘task assignment and sub-
assembly scheduling in flexible assembly lines’. IEEE Transactions on Robotics
and Automation, 11(1):1–20, 1995.

4. E. J. Anderson and M. C. Ferris. ‘genetic algorithms for combinatorial optimi-
sation: the assembly line balancing problem’. ORSA Journal on Computing,
6:161–173, 1994.

5. C. Arbib, G. Ciaschetti, and F. Rossi. ‘distributing material flows in a manu-
facturing system with large product mix: two models based on column genera-
tion’. Lecture Notes in Economics and Mathematical Systems, Springer-Verlag,
480:235–249, 1999.

6. A. L. Arcus. ‘comsoal: a computer method of sequencing operations for assem-
bly lines’. International Journal of Production Research, 4:259–277, 1966.

7. R. G. Askin and C. R. Standridge. ‘modelling and analysis of manufacturing
systems’. John Wiley & Sons Inc., New York, 1993.

8. J. Baker. ‘reducing bias and inefficiency in the selection algorithm’. Proceedings
of the second international conference on genetic algorithms, San Mateo, July,
1987.

9. J. F. Bard. ‘assembly line balancing with parallel stations and dead time’. Int.
J. Prod. Res., 27(6):1005–1018, 1989.

10. J. F. Bard, E. Dar-El, and A. Shtub. ‘an analytic framework for sequencing
mixed model assembly lines’. Int. J. of Prod. Res., 30(1):35–48, 1992.

11. J. J. Bartholdi and Eisenstein D. D. ‘a production line that balances itself’.
Operations Research, 44(1):21–34, 1996.

12. I. Baybars. ‘a survey of exact algorithms for the simple assembly line balanc-
ing’. Management Science, 32:909–932, 1986.

149

150 References

13. T. Bäck. ‘evolutionary algorithms in theory and practice: evolution strategies,
evolution programming, genetic algorithms’. Oxford University Press, New
York, 1996.

14. P. J. Bentley. ‘Generic evolutionary design of solid objects using a genetic
algorithm’. PhD thesis, Division of Computing and Control Systems, School
of Engineering, University of Huddersfield, 1996.

15. I. Berger, J-M. Bourjoully, and G. Laporte. ‘branch and bound algorithms
for the multi-product assembly line balancing problem’. European Journal of
Operational Research, 58:215–222, 1992.

16. S. Bock and O. Rosenberg. ‘a new distributed fault-tolerant algorithm for the
simple assembly line balancing problem 1’. Technical report TR-RSFB-97-040,
University of Paderborn, 1997.

17. F. F. Boctor. ‘a multiple-rule heuristic for assembly line balancing’. J. of Oper.
Res. Society, 46(1):62–69, 1995.

18. G. Boothroyd. ‘assembly automation and product design’. Marcel Dekker Inc.,
New York, 1992.

19. E. H. Bowman. ‘assembly line balancing by linear programming’. Oper. Res.,
8(3):385–389, 1960.

20. J.-P. Brans and B. Mareschal. ‘the promcalc & gaia decision support system
for multicriteria decision aid’. Decision Support Systems, 12:297–310, 1994.

21. J. Bukchin. ‘a comparative study of performance measures for throughput of
a mixed model assembly line in a JIT environment’. Int. J. of Prod. Res.,
36(10):2269–2685, 1998.

22. J. Bukchin and M. Tzur. ‘design of flexible assembly line to minimise equipment
cost’. IIE Transactions, 32(7):585–598, 2000.

23. J. W. Burrow. ‘darwin the origin of species’. Pelican classics, Middlesex,
England, 1979.

24. B. J. Carnahan, M. S. Redfen, and B. A. Norman. ‘incorporating physical
demand criteria into assembly line balancing’. Internal Report TR99-8, Pitts-
burgh University, Department of Industrial Engineering, 1999.

25. P. Chevalier, B. Raucent, and P. Semal. ‘optimizing the design of an assembly
line’. Proceeding of FAIM’99, Tilburg, Netherlands, pages 415–424, 1999.

26. W. Choi and Y. Lee. ‘line balancing of mixed-model assembly lines. Proceedings
of EDA’98 (CD-ROM), Hawaii, 1998.

27. W.-M. Chow. ‘assembly line design methodology and applications’. Marcel
Dekker Inc., New York, 1990.

28. P. C. H. Chu. ‘A genetic algorithm approach to combinatorial optimisation
problems’. PhD thesis, The Management School, Imperial College of Science,
Technology and Medicine, London, England, 1997.

29. C. A. C. Coello. ‘a comprehensive survey of evolutionary-based multiobjective
optimization’. Knowledge and Information Systems, 1(3):129–156, 1999.

30. J. C. Culberson. ‘on the futility of blind search: an algorithmic view of “no
free lunch”’. Evolutionary Computation, 6(2):109–127, 1998.

31. D. Cvetković and I. C. Parmee. ‘use of preferences for GA-based multi-objective
optimisation’. Proceedings of GECCO’99, Orlando USA, pages 1504–1509,
1999.

32. L. Davis. ‘applying adaptive algorithms to domains’. Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, pages 162–164, 1985.

33. L. Davis. ‘handbook of genetic algorithms’. Van Nostrand Reinhold, New York,
1991.

References 151

34. A. K. De Jong. ‘An analysis of the behavior of a class of genetic adaptive
systems’. PhD thesis, University of Michigan, 1975.

35. P. De Lit and A. Delchambre. ‘integrated design of a product family and its
assembly system’. Kluwer Academic Publishers, Norwell, Massachusetts, First
Edition, 2003.

36. P. De Lit, B. Rekiek, F. Pellichero, A. Delchambre, J. Danloy, F. Petit,
A. Leroy, J.-F. Marée, A. Spineux, and B. Raucent. ‘a new philosophy of
design of a product and its assembly line’. Proceedings of ISATP’99, Porto,
Portugal, pages 381–386, 1999.

37. E. B. Dean and R. Unal. ‘elements of designing for cost’. Presented at The
AIAA Aerospace Design Conference, Irvine CA, AIAA-92-1057, 1992.

38. K. Deb. ‘multi-objective genetic algorithms: problem difficulties and construc-
tion of test problems’. Evolutionary Computation, 7(3):205–230, 1999.

39. A. Delchambre. ‘CAD method for industrial assembly: concurrent design of
products, equipment and control systems’. John Wiley & Sons Inc., Chichester,
England, 1996.

40. J. Driscoll and A. Abdel-Shaffi. ‘a simulation approach to evaluating assembly
line balancing solutions’. Int. J. of Prod. Res., 23(5):975–985, 1985.

41. B. H. Faaland, T. D. Klastorin, T. G. Schmitt, and A. Shtub. ‘assembly line
balancing with resource dependent task times’. Decision Sciences, 23:343–364,
1992.

42. E. Falkenauer. ‘solving equal piles with a grouping genetic algorithm’. Eshel-
man L.J. (Ed.), Proceedings of the Sixth International Conference on Genetic
Algorithms (ICGA95), Morgan Kaufmann Publishers, San Francisco, pages
492–497, 1995.

43. E. Falkenauer. ‘a hybrid grouping genetic algorithm for bin packing’. Journal
of Heuristics, 2(1):5–30, 1996.

44. E. Falkenauer. ‘genetic algorithms and grouping problems’. John Wiley &
Sons Inc., Chichester, First Edition, 1998.

45. E. Falkenauer. ‘applying evolutionary algorithms to real-world problems’. In
L.D. Davis, K. De Jong, M. Vose and L.D. Whitley (Eds.) Evolutionary Algo-
rithms, IMA Volumes in Mathematics and its Applications, Springer Verlag,
111, 1999.

46. E. Falkenauer and A. Delchambre. ‘a genetic algorithm for bin packing and line
balancing’. Proceedings of the IEEE International Conference on Robotics and
Automation (RA92), IEEE Computer Society Press, pages 1186–1192, 1992.

47. C. J. L. Fernandez and M. P. Groover. ‘mixed-model assembly line balancing
and sequencing: a survey engineering’. Design and Automation, 1(1):33–42,
1995.

48. L. J. Fogel, A. J. Owens, and M. J. Walsh. ‘artificial intelligence through
simulated evolution’. New York: Wiley, 1966.

49. C. M. Fonseca and P. J. Fleming. ‘an overview of evolutionary algorithms in
multiobjective optimization’. Evolutionary Computation, 3(1):1–16, 1995.

50. M. P. Fourman. ‘compaction of symbolic layout using genetic algorithms’. In
Genetic Algorithms and their Applications: Proceedings of the First Interna-
tional Conference on Genetic Algorithms, Lawrence Erlbaum, pages 141–153,
1985.

51. R. L. Francis, L. F. McGinnis, and J. A. White. ‘facilities layout and location:
an analytical approach’. Prentice Hall International Series in Industrial and
Systems Engineering, 1996.

152 References

52. N. Gaither. ‘production and operations management’. Belmon, CA: Duxbury,
1996.

53. M. R. Garey and D. S. Johnson. ‘computers and intractability – a guide to the
theory of NP completeness’. Freeman, San Francisco USA, 1979.

54. M. Gen and R. Cheng. ‘genetic algorithms & engineering design’. John Wiley
& Sons Inc, First Edition, Canada, 1997.

55. S. Ghosh and R.J. Gagnon. ‘a comprehensive literature review and analysis
of the design, balancing and scheduling of assembly systems’. Int. J. of Prod.
Res., 27:637–670, 1989.

56. F. Glover and M. Laguna. ‘tabu search’. Kluwer Academic Publishers, Boston,
1997.

57. D. E. Goldberg. ‘genetic algorithms in search, optimization and machine learn-
ing’. AddisonWesley Publishing Company Inc., 1989.

58. S. C. Graves and R. C. Holmes. ‘equipment selection and task assignment
for multiproduct assembly system design’. International Journal of Flexible
Manufacturing Systems, 1:31–50, 1988.

59. S. C. Graves and B. W. Lamar. ‘an integer programming procedure for assem-
bly system design problems’. Operations Research, 31(3):522–545, 1983.

60. S. C. Graves and D. E. Withney. ‘a mathematical programming procedure
for equipment selection and system evaluation in programmable assembly’.
Proceedings of the IEEE Decision and Control, pages 531–536, 1979.

61. R. E. Gustavson. ‘design of cost-effective assembly systems’. C.S. Draper
Laboratory Report, N. P-2661, Cambridge, 1986.

62. A. L. Gutjahr and N. K. Nemhauser. ‘an algorithm for the line balancing
problem’. Management Science, 11(2):308–315, 1964.

63. P. Hajela and C. Y. Lin. ‘genetic search strategies in multicriterion optimal
design’. Structural Optimisation, 4:99–107, 1992.

64. D. W. He and A. Kusiak. ‘design of assembly systems for modular products’.
IEEE Transactions on Robotic and Automation, 13(5):646–655, 1997.

65. W. B. Helgeson and D. P. Birnie. ‘assembly line balancing using the ranked
positional weight technique’. J. Ind. Engng, 12(6):394–398, 1961.

66. S. S. Heragu. ‘group technology and cellular manufacturing’. IEEE Transac-
tions on Systems, Man, and Cybernetics, 24(2), 1994.

67. T. R. Hoffmann. ‘assembly line balancing with precedence constraints’. Man-
agement Science, 9:551–562, 1963.

68. T. R. Hoffmann. ‘eureka: A hybrid system for assembly line balancing’. Man-
agement Science, 38:39–47, 1992.

69. J. H. Holland. ‘adaptation in natural and artificial systems’. University of
Michigan Press, Ann Arbor, 1975.

70. J. Horn and N. Nafpliotis. ‘multiobjective optimisation using the niched Pareto
genetic algorithm’. Technical Report, IlliGAL Report 93005, University of Illi-
nois, Urbana, Illinois, USA, 1993.

71. C. J. Hyun, Y. Kim, and Y. K. Kim. ‘a genetic algorithm for multiple objec-
tive sequencing problems in mixed assembly lines’. Computers and Operations
Research, 25(7-8):675–690, 1998.

72. J. R. Jackson. ‘a computing procedure for the line balancing problem’. Man-
agement Science, 2:261–271, 1956.

73. A. Jaszkiewicz. ‘genetic local search for multiple objective combinatorial opti-
mization’. Research report, Institute of Computing Science, Pozna? University
of Technology, RA-014/98, 1998.

References 153

74. R. V. Johnson. ‘optimally balancing large assembly lines with “fable”’. Man-
agement Science, 34:240–253, 1988.

75. S. Johnson. ‘optimal two- and three-stage production schedules with setup
times included’. Naval Research Logistics Quarterly, 1:61–68, 1954.

76. D. R. Jones and M. A. Beltramo. ‘solving partitioning problems with genetic
algorithms’. Proceedings of the 4th International Conference on Genetic Algo-
rithms, Morgan Kaufmann, pages 442–449, 1991.

77. A. K. Kamrani, H. R. Parsaei, and D. H. Liles. ‘planning, design, and analysis
of cellular manufacturing systems’. Elsevier Science B.V., Holland, 1995.

78. M. D. Kilbridge and L. Wester. ‘a heuristic method for assembly line balancing’.
Journal of Industrial Engineering, 12:292–298, 1961.

79. Y. K. Kim, Y. J. Kim, and Y. Kim. ‘genetic algorithms for assembly line balanc-
ing with various objectives’. Computers & Industrial Engineering, 30(3):397–
409, 1996.

80. S. Kirkpatrick, C. D. Jr. Gelatt, and M. P. Vecchi. ‘optimisation by simulated
annealing’. Science, 220:671–680, 1983.

81. J. Kirton and E. Brooks. ‘cells in industry: managing teams for profit’.
McGraw-Hill, Berkshire, England, 1994.

82. K. Kurashige, Y. Yoshinari, S. Miyazaki, and Y. Kameyama. ‘sequencing
method for products in consideration of assembly time’. Int. J. Prod. Eco.,
60-61:565–573, 1999.

83. F. Kursawe. ‘a variant of evolution strategies for vector optimisation’. In
Parallel Problem Solving from Nature. 1st Workshop, PPSN I, Lecture Notes
in Computer Science, Berlin, Germany, Springer-Verlag, 496:193–197, 1990.

84. A. Kusiak and W. S. Chow. ‘decomposition of manufacturing systems’. IEEE
Journal of Robotics and Automation, 4(5):457–471, 1988.

85. C. Y. Lee, M. Gen, and Y. Tsujimura. ‘multicriteria assembly line balancing
problem with parallel workstations using hybrid gas’. In: Proceedings of the
3rd International Conference on Design and Automation (EDA99). Vancouver,
Canada, pages 115–122, 1999.

86. H. F. Lee and R. V. Johnson. ‘a line-balancing strategy for designing flexible
assembly systems’. International Journal of Flexible Manufacturing Systems,
3:91–120, 1991.

87. H. F. Lee and K. E. Stecke. ‘an integrated design support method for flexible
assembly systems’. Journal of Manufacturing Systems, 15(1):13–32, 1996.

88. Y. Y. Leu, L. A. Matheson, and L. P. Rees. ‘assembly line balancing us-
ing genetic algorithms with heuristic-generated initial population and multiple
evaluation criteria’. Decision Sciences, 25(4):581606, 1994.

89. M. Lucertini, D. Pacciarelli, and A. Pacifici. ‘modeling an assembly line for
configuration and flow management’. Computer Integrated Manufacturing sys-
tems, 11:15–24, 1998.

90. K. Mainzer. ‘thinking in complexity: the complex of dynamics of matter, mind,
and mankind’. Springer-Verlag, Berlin Heidelberg, 1994.

91. B. Malakooti and A. Kumar. ‘a knowledge-based system for solving multi-
objective assembly line-balancing problems’. Int. J. Prod. Res., 34(9):2533–
2552, 1996.

92. J.-F. Mare, B. Raucent, and A. Spineux. ‘selection of assembly technique and
equipment’. Proceedings of ISATP’99, Porto, Portugal, pages 393–398, 1999.

154 References

93. P. R. McMullen and G. V. Frazier. ‘a heuristic for solving mixed-model line
balancing problems with stochastic task durations and parallel stations’. Int.
J. Prod. Eco., 51:177–190, 1997.

94. P. R. McMullen and G. V. Frazier. ‘using simulated annealing to solve a
multiobjective assembly line balancing problem with parallel workstations’.
International Journal of Production Research, 36(10):2717–2741, 1998.

95. G.J. Miltenburg and J. Wijngaard. ‘the u-line balancing problem’. Manage-
ment Science, 40:1378–1388, 1994.

96. J. Miltenburg. ‘level schedules for mixed-model assembly lines in JIT produc-
tion systems’. Management Science, 35(2):192–207, 1998.

97. J. Miltenburg and W. Zhang. ‘a comparative evaluation of nine well-known
algorithms for solving the cell formation problem in group technology’. Journal
of Operational Management, 10(1):44–72, 1991.

98. V. Minzu and J.-M. Henrioud. ‘approche systématique de structuration
en postes des systèmes d’assemblage monoproduits’. RAIRO-APII-JESA,
31(1):57–78, 1997.

99. V. Minzu and J.-M. Henrioud. ‘assignment stochastic algorithm in multi-
product assembly lines’. In: Proceedings of the 1997 International Symposium
on Assembly and Task Planning (ISATP97), Marina del Rey, California, pages
109–114, 1997.

100. Y. Monden. ‘toyota production system: practical approach to production man-
agement’. Industrial Engineering and Management Press, Atlanta, 1983.

101. C. L. Moodie and H. H. Young. ‘a heuristic method of assembly line balancing
for assumptions of constant or variable work element times’. J. Ind. Eng.,
16(1):23–29, 1965.

102. T. Murata, H. Ishibuchi, and M. Gen. ‘specification of local search directions
in genetic local search algorithms for multi-objective optimisation problems’.
Proceedings of GECCO’99, Orlando USA, pages 441–448, 1999.

103. J. L. Nevins and D. E. Withney. ‘concurrent design of products and processes’.
McGraw-Hill, New York, 1989.

104. P. D. T. O’Connor. ‘practical reliability engineering’. Third edition revised,
John Wiley & Sons, 1995.

105. A. Okano. ‘computer-aided assembly process planning with resource assign-
ment’. Proceedings of the International IEEE Conf. on Robotics and Automa-
tion, Atlanta-Georgia, pages 301–306, 1993.

106. G. Pahl and W. Beitz. ‘engineering design: a systematic approach’. Springer-
Verlag, Berlin Heidelberg, 1996.

107. V. Pareto. ‘cours d’economie politique’. F. Rouge, Lausanne, I and II, 1988.
108. H. R. Parsaei and W. G. Sullivan. ‘concurrent engineering: contemporary issues

and modern design tools’. Chapman and Hall, London, England, 1993.
109. J. H. Patterson and J. J. Albracht. ‘assembly line balancing: zero one pro-

gramming with Fibonnaci search’. Oper. Res., 23:166–172, 1975.
110. F. Pellichero. ‘Computer-aided choice of assembly methods and selection of

equipment in production line design’. PhD thesis, Université Libre de Bruxelles,
1999.

111. Y. Peng. ‘the algorithms for the assembly line balancing problem’. Internal
Report, CRIF Industrial Automation, Belgium, 1991.

112. C. Peterson. ‘a tabu search procedure for the simple assembly line balancing
problem’. Proceedings of the Decision Science Institute Conference, Washing-
ton, DC, pages 1502–1504, 1993.

References 155

113. F. Petit. ‘Interactive design of a product and its assembly system’. PhD thesis,
Université Catholique de Louvain, 1999.

114. A. Pinnoi and W. E. Wilhelm. ‘assembly system design: a branch and cut
approach’. Management Science, 44(1):103–118, 1998.

115. P. A. Pinto, D. G. Dannenbring, and B. M. Khumalawa. ‘assembly line bal-
ancing with processing alternatives: an application’. Management Science,
29(7):817–830, 1983.

116. M. Pirlot. ‘general local search in combinatorial optimization: a tutorial’. Bel-
gian Journal of Operations Research, Statistics and Computer Science, 32(1):7–
67, 1993.

117. S. G. Ponnambalam, P. Aravindan, and N. G. G. Mogileeswar. ‘assembly
line balancing using multi-objective genetic algorithm’. In: Proceedings of
CARS&FOF98. Coimbatore, India, pages 222–230, 1998.

118. I. C. Praça and C. Ramos. ‘multi-agent simulation for balancing of assembly
lines’. Proceedings of ISATP’99, pages 459–464, 1999.

119. R. Rachamadugu and B. Talbot. ‘improving the equality of workload assign-
ments in assembly lines’. Int. J. Prod. Res., 29(3):619–633, 1991.

120. H. K. Rampersad. ‘integrated and simultaneous design for robotic assembly’.
John Wiley & Sons, London, 1994.

121. B. Rekiek, P. De Lit, and A. Delchambre. ‘designing mixed-model assembly
lines’. Special Issue of the IEEE Transactions on Robotics and Automation,
16(3):268–280, 2000.

122. B. Rekiek, P. De Lit, and A. Delchambre. ‘hybrid assembly line design and
user’s preferences’. International Journal of Production Research, 40(5):1095–
1111, 2002.

123. B. Rekiek, P. De Lit, and A. Delchambre. ‘evolutionary approach to design
assembly lines’. Submitted to Global Optimization Selected Case Studies edited
volume, 2006.

124. B. Rekiek, P. De Lit, A. Delchambre, F. Pellichero, E. Falkenauer, T. L’Eglise,
and P. Fouda. ‘concurrent engineering approach to design of assembly lines’.
Proceedings of CARS & FOF’2000, Port of Spain, Trinidad Tobago, 1:333–340,
2000.

125. B. Rekiek, P. De Lit, F. Pellichero, E. Falkenauer, and A. Delchambre. ‘ap-
plying the equal piles problem to balance assembly lines’. Proceedings of the
ISATP’99, Porto, Portugal, pages 399–404, 1999.

126. B. Rekiek, P. De Lit, F. Pellichero, T. L’Eglise, P. Fouda, E. Falkenauer, and
A. Delchambre. ‘evolving to integrate logical and physical layout of assembly
lines’. Proceeding of the 4th International Conference on Engineering Design
and Automation (EDA’2000), Orlando, USA, 2000.

127. B. Rekiek, P. De Lit, F. Pellichero, T. L’Eglise, P. Fouda, E. Falkenauer, and
A. Delchambre. ‘a multiple objective grouping genetic algorithm for assembly
lines design’. Journal of Intelligent Manufacturing, 12(6):467–485, 2001.

128. B. Rekiek and A. Delchambre. ‘ordering variants and simulation in multi-
product assembly lines’. Proceedings of the VR-Mech’98, Brussels, Belgium,
pages 49–54, 1998.

129. B. Rekiek and A. Delchambre. ‘assembly line balancing and resource planning:
what is done and what is still missing’. Proceedings of CARS & FOF’2001,
Durban, South Africa, pages 86–93, 2001.

130. B. Rekiek and A. Delchambre. ‘hybrid assembly line design’. Proceedings of
ISATP’2001, Fukuoka, Japan, pages 73–78, 2001.

156 References

131. B. Rekiek, A. Dolgui, A. Delchambre, and A. Bratcu. ‘state of art of op-
timization methods for assembly line design’. Annual Reviews in Control,
26(2):163–174, 2002.

132. B. Rekiek, E. Falkenauer, and A. Delchambre. ‘multi-product resource plan-
ning’. Proceedings of the ISATP’97, Marina del Rey California, USA, pages
115–121, 1997.

133. B. Rekiek, E. Falkenauer, and A. Delchambre. ‘two problems in design and op-
eration of multi-product assembly lines: line balancing and ordering variants’.
Proceedings of the CARS & FOF’98, Coimbatore, India, pages 234–250, 1998.

134. B. Rekiek, F. Pellichero, P. De Lit, E. Falkenauer, and A. Delchambre. ‘to-
wards physical layout of assembly lines’. Published as paper in the book entitled
‘Progress in Simulation, Modeling, Analysis and Synthesis of Modern Electri-
cal and Electronic Devices and Systems’, World Scientific Engineering Society,
pages 307–312, 1999.

135. B. Rekiek, F. Pellichero, P. De Lit, T. L’Eglise, E. Falkenauer, and A. Delcham-
bre. ‘balancing and resource planning for assembly lines: the gap between the-
ory and practice’. Proceedings of the CPI’99, Tangier, Morocco, pages 239–248,
1999.

136. B.J. Ritzel, J. W. Eheart, and S. Ranjithan. ‘using genetic algorithms to
solve a multiple objective groundwater pollution containment problem’. Water
Resources Research, 30:1589–1603, 1994.

137. R. Romanowicz. ‘A tool for an efficient comparison of scheduling methods’.
PhD thesis, Swiss Federal Institute of Technology of Lausanne (EPFL), 1997.

138. R. S. Rosenberg. ‘Simulation of genetic populations with biochemical proper-
ties’. PhD thesis, University of Michigan, Ann Harbor, Michigan, 1967.

139. B. Roy. ‘classement et choix en présence de points de vue multiples (la méthode
electre)’. Revue Franaise d’Informatique et de Recherche Oprationnelle, 8:57–
75, 1968.

140. J. Rubinovitz and J. Bukchin. ‘ralb a heuristic algorithm for design and bal-
ancing of robotic assembly lines’. Annals of the CIRP, 42:497–500, 1993.

141. I. Sabuncuoglu, E. Erel, and M. Tanyer. ‘assembly line balancing using genetic
algorithms’. Journal of Intelligent Manufacturing, 11:295–310, 2000.

142. E.D. Sacerdoti. ‘a structure for plans and behavior’. Stanford Research Insti-
tute, Elsevier, Amsterdam, Netherlands, 1977.

143. M. E. Salveson. ‘the assembly line balancing problem’. J. Ind. Engng., 6(3):18–
25, 1955.

144. B. R. Sarker and H. Pan. ‘designing a mixed-model assembly line to minimise
the costs of idle and utility times’. Computers Ind. Engng., 34(3):609–628,
1998.

145. J. D. Schaffer. ‘multiple objective optimisation with vector evaluated genetic
algorithms’. In Genetic Algorithms and their Applications: Proceedings of the
First ICGA, Lawrence Erlbaum, pages 93–100, 1985.

146. A. Scholl. ‘balancing and sequencing of assembly lines’. Heidelberg: Physica,
Second edition, 1999.

147. A. Scholl and R. Klein. ‘salome: a bidirectional branch and bound procedure
for assembly line balancing’. INFORMS Journal on Computing, 9:319–334,
1997.

148. H.-P. Schwefel. ‘numerical optimisation of computer models’. Great Britain:
John Wiley & Sons, 1981.

References 157

149. H.-P. Schwefel. ‘evolution and optimum seeking’. New York, NY: John Wiley,
1995.

150. G. A. Süer. ‘designing parallel assembly lines’. Computers Ind. Eng., 35(3-
4):467–470, 1998.

151. R. Sedgewick. ‘algorithms’. Addison-Wesley Publishing, 1984.
152. P. Sen and J-B. Yang. ‘multiple criteria decision support in engineering design’.

Springer-Verlag, 1998.
153. K. Shimokawa, U. Jrgens, and T. Fujimoto. ‘transforming automobile assem-

bly: experience in automation and work organization’. Springer-Verlag, Berlin
Heidelberg, Germany, 1997.

154. A. Shtub and El E. M. Dar. ‘an assembly chart oriented assembly line balancing
approach’. Int. J. of Prod. Res., 28(6):1137–1151, 1990.

155. H. A. Simon. ‘the sciences of the artificial’. The MIT Press, Cambridge, MA,
3rd ed., 1981.

156. N. Srinivas and K. Deb. ‘multiobjective optimisation using nondominated
sorting in genetic algorithms’. Evolutionary Computation, 2:221–248, 1994.

157. L. Steinberg and K. Rasheed. ‘optimizing by searching a tree of populations’.
Proceedings of GECCO’99, Orlando USA, pages 1723–1730, 1999.

158. D. R. Sule. ‘manufacturing facilities location, planning and design’. PSW
Publishing Company, 1994.

159. G. Sureh and S. Sahu. ‘stochastic assembly line balancing using simulated
annealing’. International Journal of Production Research, 32(8):1801–1810,
1994.

160. G. Sureh, V. V. Vinod, and S. Sahu. ‘a genetic algorithm for assembly line
balancing’. Production Planning and Control, 7:38–46, 1996.

161. F. B. Talbot, J. H. Patterson, and W. V. Gehrlein. ‘a comparative evaluation
of heuristic line balancing techniques’. Management Science, 32:430–454, 1986.

162. T. Tamura, W. Wang, S. Fujita, and K. Ohno. ‘line balancing for mixed-
model assembly line with bypass sub-line’. Proceedings of ICED‘99, Munich,
Germany, 2:965–968, 1999.

163. T. B. To and U. Korn. ‘mobes: a multiobjective evolution strategy for con-
strained optimisation problems’. The Third International Conference on Ge-
netic Algorithms Mendel’97, Brno Czech Republic, pages 176–182, 1997.

164. J. A. Tompkins, J. A. White, Y. A. Bozer, E. H. Frazelle, J. M .A. Tanchoco,
and J. Trevino. ‘facilities planning’. John Wiley & Sons Inc., 1996.

165. D. M. Tsai and M. J. Yao. ‘a line-balanced-base capacity planning procedure
for series-type robotic assembly line’. Int. J. of Prod. Res., 31:1901–1920, 1993.

166. P. J. Van Laarhoven and E. H. Aarts. ‘simulated annealing: theory and appli-
cations’. D. Reidel, Dordrecht, 1987.

167. D. A. Van Veldhuizen. ‘Multiobjective evolutionary algorithms: classifications,
analyses, and new innovations’. PhD thesis, Department of Electrical and
Computer Engineering. Graduate School of Engineering. Air Force Institute of
Technology, Wright-Patterson AFB, Ohio, 1999.

168. M. B. Wall. ‘A Genetic algorithm for resource-constrained scheduling’. PhD
thesis, Massachusetts Institute of Technology, 1996.

169. V. Wanet. ‘Développement d’une bibliothéque de simulations d’eléments d’une
ligne d’assemblage’. PhD thesis, Travail de fin dtudes prsent en vue de lobten-
tion du grade dingnieur civil mcanicien, Universit Libre de Bruxelles, Brussels,
Belgium, 1999.

158 References

170. F. Z. Wang and R. C. Wilson. ‘comparative analyses of fixed and removable
item mixed-model assembly lines’. IIE Transactions, 18(3):313–317, 1986.

171. T. S. Wee and M. J. Magazine. ‘assembly line balancing as generalized bin
packing’. Operations Research letters, 1:56–58, 1982.

172. L. Wester and L. Kilbridge. ‘the assembly line model-mix sequencing problem’.
Proceedings of the 3rd International Conference on Operations Research, Oslo,
pages 247–260, 1964.

173. P. B. Wilson and M. D. Macleod. ‘low implementation cost IIR digital filter
design using genetic algorithms’. IEE/IEEE Workshop on Natural Algorithms
in Signal Processing, Chelmsford, U.K., 4:1–8, 1993.

174. L. Zadeh. ‘fuzzy sets’. Information and Control, 8:338–353, 1965.
175. E. Ziztler. ‘Evolutionary algorithms for multiobjective optimization: methods

and applications’. PhD thesis, Swiss Federal Institute of Technology (ETH),
Zurich Switzerland, 1999.

Index

AL, see Assembly lines
Artificial intelligence, 49
Assembly lines, 3–6, 10, 13, 15–21, 25,

26, 44, 71, 73, 79, 90, 95, 97, 105,
106, 121, 122, 147

Assembly lines balancing, 4, 6, 13, 16,
19, 20, 25, 26, 48, 59, 62, 121

Assembly lines design, 3, 9, 10, 25

B&C, see Branch and cut
Balance for operation, 6, 9, 93, 99, 121,

122
Batch, 62, 97, 110, 145
Batch production, 11, 20
BF, 62
BFO, see Balance for operation
Bin packing problem, 27, 62
Boundary stones algorithms, 65, 66, 68,

145
BPP, see Bin packing problem
Branch and bound, 59, 60
Branch and cut, 48, 85–87
Branching on population, 49

Capacity supply, 17
Cellular manufacturing, 105
Clustering, 67, 105, 107, 108, 110, 111
Combinatorial optimisation problems,

6, 60
Computer-aided design, 10, 145, 146
Concurrent engineering, 4, 7, 8, 100
Constraint, 23, 24, 60, 85, 87, 90, 110
Cost function, 69, 74, 115
Crossover, 32, 33, 35–38, 44, 45, 67, 96

Cycle time, 67–70, 73, 74, 79, 86, 88, 92,
98–100, 102, 107, 110, 113, 114,
116, 118, 121, 123, 131, 133, 141

Decision maker, 39, 46, 51, 135
Design for assembly, 3
Deterministic time, 20
DFA, see Design for assembly
Diversity, 35, 37, 38, 41, 42, 56
DP, see Dynamic programming
Dynamic programming, 59, 60
Dynamic time, 21

Elitist model, 35
Equal piles, 6, 26, 48, 59, 62, 63, 78, 85,

116, 126
Evolutionary strategies, 41
Exact methods, 59

Feasibility, 34, 78
FF, 62
FFD, see First fit descending
FG, see Functional groups
First fit descending, 62, 63
Fixed operations on stations, 23
Functional groups, 79, 81, 82

GA, see Genetic algorithms
Genetic algorithms, 34, 36, 70, 78, 95,

148
Genetic operator, 34, 36, 38
Graph search, 61
Group technology, 15, 105
Grouping, 72, 111, 145

159

160 Index

Grouping GA, 62–64, 78, 91, 92, 145
Grouping genetic algorithm, 45

HAL, see Hybrid assembly line
Heuristics, 61, 78, 89, 95, 97, 115, 124,

145
Hidden time, 21, 80, 81, 84, 91
Hybrid AL, 79
Hybrid assembly line, 4, 89

ICA, 48, see Individual construction
algorithm

Idle time, 18, 59, 89, 97, 106
Imbalance, 17, 74
Individual construction algorithm, 49,

85
Input data, 73, 88, 115, 123, 146
Integrated approach, 105, 106, 121
Inversion, 36, 37, 44, 46, 96

JIT, 21
Just in time, 21

Line configuration, 21, 61
Line efficiency, 18, 26, 59
Linear programming, 60
Local search, 40, 42, 43
Logical layout, 105, 108, 111, 121, 124,

126
Logical line layout, 4

Max peak time, 79, 100, 102
MCDA, see Multi criteria decision aid
Metaheuristic, 61, 62, 69
Mixed production, 11, 146
Model launching, 93, 94
MOGA, see Multiple objective GA
Multi criteria decision aid, 39, 40,

46–48, 74, 86, 148
Multi objectives, 71, 132, 145, 148
Multiple objective GA, 39, 42, 43, 46
Mutation, 32, 35, 36, 44, 48, 56, 67, 96

Natural evolution, 32, 33

OGA, 93, 95
OptiLine, 6, 138, 141
Optimisation, 60, 78, 105, 108, 111, 123,

124, 133, 135
Order crossover, 96

Ordering variants, 25, 26, 93–96
OV, see Ordering variants

Parallel lines, 21
Parallel stations, 4, 21
Partially mapped crossover, 96
Physical layout, 4, 6, 10, 25, 83, 105,

107, 124, 126
Population, 32, 35, 38, 41, 42, 46, 47,

49, 50, 64, 67, 72, 100
Precedence constraints, 3, 4, 16, 17,

25, 61–63, 67, 68, 78, 79, 84, 89,
92, 100, 108, 110, 115–117, 123,
125–127, 129–131, 142

Precedence graph, 64
Process time, 7, 10, 17, 18, 20, 21, 25,

61, 63, 80, 85, 88, 90, 98, 102, 113,
114, 116, 125, 129, 132, 145

Product analysis, 3, 7
PROMETHEE II, 46, 48, 49, 72, 74, 85,

86, 88, 90, 145

Resource planning, 4, 6, 8, 25, 26, 48,
90, 121, 124, 128

Robot, 3, 4, 16, 20, 24, 97, 124
RP, see Resource planning

Scheduling, 9, 20, 93, 94, 99, 142, 145
Serial lines, 21
Simulated annealing, 37
Single product line, 19
Smoothness index, 19
Stochastic time, 20
Stochastic universal sampling, 36

Tabu search, 37
TALB, 95
Throughput, 3, 18, 20, 63, 93, 110
Time interval, 18
Time variability ratio, 18

Variant, 9, 11, 19, 72, 79, 90, 94, 107,
110

Vector evaluated genetic algorithm, 41
VEGA, see Vector evaluated genetic

algorithm, 43

Work content, 18
Workcentre, 10, 22, 26, 106–108,

110–116, 122, 125, 126

	Preliminaries
	Preface
	Acknowledgements
	Contents
	1 Designing Assembly Lines
	2 Design Approaches
	3 Assembly Line History and Formulation
	4 Evolutionary Combinatorial Optimisation
	5 Multiple Objective Grouping Genetic Algorithm
	6 Equal Piles for Assembly Line Balancing
	7 The Resource Planning for Assembly Line
	8 Balance for Operation
	9 Evolving to Integrate Logical and Physical Layout of Assembly Lines
	10 Concurrent Approach to Design Assembly Lines
	11 A Real-world Example Optimised by the OptiLine Software
	12 Conclusions and Future Work
	References
	Index

