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Preface

As  physicists,  mathematicians  or  engineers,  we  are  all  involved  with

mathematical  calculations  in our  everyday work.  Most  of the laborious,

complicated, and time-consuming calculations have to be done over and

over  again  if  we  want  to  check  the  validity  of  our  assumptions  and

derive  new  phenomena  from  changing  models.  Even  in  the  age  of

computers,  we  often  use  paper  and  pencil  to  do  our  calculations.

However, computer programs like Mathematica  have revolutionized our

working  methods.  Mathematica  not  only  supports  popular  numerical

calculations  but  also  enables  us  to  do  exact  analytical  calculations  by

computer.  Once  we  know  the  analytical  representations  of  physical

phenomena,  we  are  able  to  use  Mathematica  to  create  graphical

representations  of  these  relations.  Days  of  calculations  by  hand  have

shrunk to minutes by using Mathematica. Results can be verified within

a few seconds, a task that took hours if not days in the past.

The  present  text  uses  Mathematica  as  a  tool  to  discuss  and  to  solve

examples from physics. The intention of this book is to demonstrate the

usefulness of  Mathematica  in everyday applications. We will not give a

complete  description of its  syntax but  demonstrate  by examples the use

of its  language.  In  particular,  we  show how this  modern tool  is  used to

solve classical problems. 



This  second  edition  of  Mathematica in  Theoretical  Physics  seeks  to

prevent  the  objectives  and  emphasis  of  the  previous  edition.  It  is

extended  to  include  a  full  course  in  classical  mechanics,  new examples

in  quantum  mechanics,  and  measurement  methods  for  fractals.  In

addition,  there  is  an  extension  of  the  fractal's  chapter  by  a  fractional

calculus.  The  additional  material  and  examples  enlarged  the  text  so

much  that  we  decided  to  divide  the  book  in  two  volumes.  The  first

volume covers classical mechanics and nonlinear dynamics. The second

volume  starts  with  electrodynamics,  adds  quantum  mechanics  and

general  relativity,  and  ends  with  fractals.  Because  of  the  inclusion  of

new  materials,  it  was  necessary  to  restructure  the  text.  The  main

differences are  concerned with the chapter on nonlinear dynamics.  This

chapter  discusses  mainly  classical  field  theory  and,  thus,  it  was

appropriate to locate it in line with the classical mechanics chapter.

The  text  contains  a  large  number  of  examples  that  are  solvable  using

Mathematica.  The  defined  functions  and  packages  are  available  on CD

accompanying  each  of  the  two  volumes.  The  names  of  the  files  on  the

CD carry the names of their respective chapters. Chapter 1 comments on

the basic properties of Mathematica using examples from different fields

of  physics.  Chapter  2  demonstrates  the  use  of  Mathematica  in  a

step-by-step  procedure  applied  to  mechanical  problems.  Chapter  2

contains  a  one-term  lecture  in  mechanics.  It  starts  with  the  basic

definitions,  goes  on  with  Newton's  mechanics,  discusses  the  Lagrange

and Hamilton representation of mechanics, and ends with the rigid body

motion. We show how Mathematica  is used to simplify our work and to

support  and  derive  solutions  for  specific  problems.  In  Chapter  3,  we

examine  nonlinear  phenomena  of  the  Korteweg–de  Vries  equation.  We

demonstrate that Mathematica  is an appropriate tool to derive numerical

and  analytical  solutions  even  for  nonlinear  equations  of  motion.  The

second  volume  starts  with  Chapter  4,  discussing  problems  of

electrostatics  and  the  motion  of  ions  in  an  electromagnetic  field.  We

further  introduce  Mathematica  functions  that  are  closely  related  to  the

theoretical  considerations  of  the  selected  problems.  In  Chapter  5,  we

discuss problems of quantum mechanics. We examine the dynamics of a

free particle by the example of the time-dependent Schrödinger equation

and  study  one-dimensional  eigenvalue  problems  using  the  analytic  and
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numeric capabilities of  Mathematica. Problems of general relativity are

discussed in Chapter 6. Most standard books on Einstein's theory discuss

the  phenomena  of  general  relativity  by  using  approximations.  With

Mathematica,  general  relativity  effects  like  the  shift  of  the  perihelion

can be  tracked  with  precision.  Finally,  the last  chapter,  Chapter  7,  uses

computer  algebra  to  represent  fractals  and  gives  an  introduction  to  the

spatial  renormalization  theory.  In  addition,  we  present  the  basics  of

fractional  calculus  approaching  fractals  from  the  analytic  side.  This

approach  is  supported  by  a  package,  FractionalCalculus,  which  is  not

included  in  this  project.  The  package  is  available  by  request  from  the

author.  Exercises  with  which  Mathematica  can  be  used  for  modified

applications.  Chapters  2–7  include  at  the  end  some  exercises  allowing

the reader to carry out his own experiments with the book.
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1
Introduction

This  first  chapter  introduces  some  basic  information  on  the  computer

algebra  system  Mathematica.  We  will  discuss  the  capabilities  and  the

scope  of  Mathematica.  Some  simple  examples  demonstrate  how

Mathematica is used to solve problems by using a computer. 

All  of  the  following  sections  contain  theoretical  background  information

on  the  problem and  a  Mathematica  realization.  The  combination  of  both

the  classical  and  the  computer  algebra  approach  are  given  to  allow  a

comparison  between  the  traditional  solution  of  problems  with  pencil  and

paper and the new approach by a computer algebra system.

1.1 Basics

Mathematica  is  a  computer  algebra  system  which  allows  the  following

calculations:

æ   symbolic



æ   numeric

æ   graphical

æ   acoustic.

Mathematica  was developed by Stephen Wolfram in the 1980s and is now

available  for  more  than  15  years  on  a  large  number  of  computers  for

different operating systems (PC, HP, SGI, SUN, NeXT, VAX, etc.).

The real  strength of  Mathematica  is  the capability of creating customized

applications  by  using  its  interactive  definitions  in  a  notebook.  This

capability allows us to solve physical and engineering problems directly on

the computer. Before discussing the solution steps for several problems of

theoretical physics, we will present a short overview of the organization of

Mathematica.

1.1.1 Structure of Mathematica

Mathematica  and  its  parts  consist  of  five  main  components  (see  figure

1.1.1):

æ   the kernel

æ   the frontend

æ   the standard Mathematica packages

æ   the MathSource library

æ   the programs written by the user.

The kernel is the main engine of the system containing  all of the functions

defined  in  Mathematica.  The  frontend  is  the  part  of  the  Mathematica

system  serving  as  the  channel  on  which  a  user  communicates  with  the

kernel.  All  components  interact  in  a  certain  way  with  the  kernel  of

Mathematica.
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Figure 1.1.1. Mathematica system

The  kernel  itself  consists  of  more  than  1800  functions  available  after  the

initialization  of  Mathematica.  The  kernel  manages  calculations  such  as

symbolic differentiations,  symbolic integrations, graphical representations,

evaluations of series and sums, and so forth.

The  standard  packages  delivered  with  Mathematica  contain  a

mathematical  collection of  special  topics  in  mathematics.  The  contents of

the packages range from vector analysis, statistics, algebra, to graphics and

so forth.  A detailed  description is  contained in the technical  report  Guide

to  Standard  Mathematica  Packages  [1.4]  published  by Wolfram Research

Inc.

MathSource  is  another  source  of  Mathematica  packages.  MathSource

consists  of  a  collection  of  packages  and  notebooks  created  by

Mathematica  users  for  special  purposes.   For  example,  there  are

calculations  of  Feynman  diagrams  in  high-energy  physics  and  Lie

symmetries  in  the  solution  theory  of  partial  differential  equations.

MathSource is available on the Internet via

http://library.wolfram.com/infocenter/MathSource/. 
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The  last  part  of  the  Mathematica  environment  is  created  by  each

individual  user.  Mathematica  allows  each  user  to  define  new  functions

extending  the  functionality  of  Mathematica  itself.  The   present  book

belongs to this part of the building blocks.

The  goal  of  our  application  of  Mathematica  is  to  show how problems of

physics,  mathematics,  and  engineering  can  be  solved.  We  use  this

computer program to support our calculations either in an interactive form

or by creating packages which tackle the problem. We also show how non

standard problems can be solved using  Mathematica.

However,  before diving into  the ocean of physical problems,  we will first

discuss some elementary properties of Mathematica  that are useful for the

solutions  of  our  examples.  In  the  following,  we  give  a  short  overview of

the  capabilities  of  Mathematica  in  symbolic,  numeric,  and  graphical

calculations.  The  following,  section  discusses  the  interactive  use  of

Mathematica.

1.1.2 Interactive Use of Mathematica

Mathematica  employs  a  very simple  and  logical  syntax.  All  functions are

accessible  by their  full  names describing the  mathematical  purpose  of  the

function.  The  first  letter  of  each  name  is  capitalized.  For  example,  if  we

wish to  terminate our  calculations and exit  the Mathematica  environment,

we  type  the  termination  function  Quit[].  This  function  disconnects  the

kernel from the frontend and deletes all information about our calculations. 

Any function under Mathematica  can be accessed by its name followed by

a  pair  of  square  brackets  which  contain  the  arguments  of  the  respective

function.  An  example  would  be  Plot[Sin[x],{x,0,p}] .  The  termination

function Quit[] is the one of the few functions that lacks an argument.

After  activating  Mathematica  on  the  computer  by  typing  math  for  the

interactive version or mathematica  for  the notebook version, or using just

a  double click on the Mathematica  icon,  we can immediately go to  work.

Let  us assume that  we need to calculate  the ratio of two integer  numbers.

To get the result, we simply type in the expression and press Return in the
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interactive  or  Shift  plus  Return  in  the  notebook  version.  The  result  is  a

simplified expression of the rational number.

69ê15

23
5

The  input  and  output  lines  of  Mathematica  carry  labels  counting  the

number of inputs and outputs in a session. The input label is In[no]:=  and

the  related  output  label  is   Out[no]=.  Another  example  is  the

exponentiation of a number. Type in and you will get

2^10

1024

The  two-dimensional  representation  of  this  input  can be  created  by using

Mathematica  palettes or by keyboard shortcuts. For example, an exponent

is generated by CTRL+6 on your keyboard

210

1024

Multiplication of two numbers can be done in two ways. In this book, the

multiplication sign is replaced by a blank:

2 5

10

You can also use a star to denote multiplication:

1.1 Basics 5



2 5

10

In  addition  to  basic  operations  such  as  addition  (+),  multiplication  (*),

division  (/), subtraction (-),  and exponentiation (^), Mathematica  knows a

large  number  of  mathematical  functions,  including  the  trigonometric

functions Sin[] and Cos[], the hyperbolic functions Cosh[] and Sinh[], and

many  others.  All  available  Mathematica  functions  are  listed  in  the

handbook  by  Stephen  Wolfram  [1.1].  Almost  all  functions  listed  in  the

work by Abramowitz and Stegun [1.2] are also available in Mathematica.

1.1.3 Symbolic Calculations

By symbolic  calculations  we  mean  the  manipulation  of  expressions  using

the  rules  of  algebra  and  calculus.  The  following  examples  give  a  quick

idea  of  how  to  use  Mathematica.  We  will  use  some  of  the  following

functions in the remainder of this book. 

A  function  consists  of  a  name  and  several  arguments  enclosed  in  square

brackets.  The  arguments  are  separated  by  commas.  One  function

frequently  used  in  the  solution  process  is  the  function  Solve[]. Solve[]
needs two arguments: the equation to be solved and the variable for which

the  equation  is  solved.  For  each  Mathematica  function,  you  will  find  a

short  description of  its  functionality and  its  purpose if  you type  the name

of the function preceded by a question mark. For example, the description

of Solve[] is

?Solve

Solve@eqns, varsD attempts to solve an equation or set
of equations for the variables vars. Solve@eqns,
vars, elimsD attempts to solve the equations
for vars, eliminating the variables elims. More…

A hyperlink to  the Mathematica  help  browser  is  available  via  the link on

More....  If  you  click  on  the  hyperlink,  the  help  browser  of  Mathematica
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pops up and delivers a detailed description of the function. Each help page

contains additional examples demonstrating the application of the function.

The  help  facility  of  Mathematica ?  or  ??  always  gives  us  a  short

description  of  any  function  contained  in  the  kernel.  For  a  detailed

description  of  the  functionality,  the  reader  should  consult  the  book  by

Wolfram [1.1].

Let us start with an example using Solve[]  applied to a quadratic equation

in  t:

Solve@t2 t + a == 0, tD

99t 1
2

I1 è!!!!!!!!!!!!!!!!
1 4 a M=, 9t 1

2
I1 +

è!!!!!!!!!!!!!!!!
1 4 a M==

It  is  obvious  that  the  result  is  identical  with  the  well-known  solutions

following from the standard solution procedure of algebra.

Next,  let  us  differentiate  a  function  with  one  independent  variable.  The

differential  is  calculated  by  using  the  derivative  symbol  Ñ,  which  is

equivalent  to  the  derivative  function  D[].  Both  functions  are  used  for

ordinary and partial differentiation:

t Sin@tD

cosHtL

The  inverse  operation  to  a  differentiation  is  integration.  Integration  of  a

function is executed by

Integrate@ta, tD

ta+1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a + 1
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The  same  calculation  is  carried  out  by  the  symbolic  notation  in  the

StandardForm:

‡ ta t

ta+1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a + 1

Mathematica  allows  different  kinds  of  input  style.  The  first  or  input

notation  is  given  by  the  spelled  out  mathematical  name.  The  second

standard form is a two-dimensional symbolic representation. The third way

to  input  expressions  is  traditional  mathematical  forms.  The  integral  from

above then looks like

‡ ta  ‚ t

ta+1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a + 1

Each input form has its pro and con. The spelled out input form is always

compatible  with  the  upgrading  of  Mathematica.  The  traditional  form has

some  features  which  prevents  the  compatibility  but  increases  the

readability  of  a  mathematical  text.  In  the  following,  we  will  mix  the

different  input  forms  and  choose  that  one  which  is  appropriate  for  the

representation.  For  interactive  calculations,  we  use  the  standard  or

traditional  form;  for  programming,  we  switch  to  input  notations.  The

different representations are also available in the output expressions. They

can be controlled by the Cell button in the command menu of Mathematica.

Next,  let  us examine  some operations from calculus.  The calculation of  a

limit is given by
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LimitA
Sin@tD

t
, t 0E

1

The expansion of a function f HtL in a Taylor series around t = 0 up to third

order is given by

Series@f@tD, 8t, 0, 3<D

f H0L + f £H0L t +
1
ÅÅÅÅÅÅ
2

f ££H0L t2 +
1
ÅÅÅÅÅÅ
6

f H3LH0L t3 + OHt4L

The calculation of a finite sum follows from

„
n=1

10
i
k
jjj

1
ÄÄÄÄÄÄ
2

y
{
zzz

n

1023
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1024

The  result  of  this  calculation  is  represented  by  a  rational  number.

Mathematica  is  designed  in  such  a  way  that  the  calculation  results  are

primarily  given  by  rational  numbers.  This  kind  of  number  representation

allows  a  high  accuracy  in  the  representation  of  results.  For  example,  we

encounter  no  rounding  errors  when  using  rational  representations  of

numbers.

The  Laplace  transform  of  the  function  Sin[t]  is  calculated  using  the

standard function LaplaceTransform[]:

LaplaceTransform@Sin@tD, t, sD

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s2 + 1

1.1 Basics 9



Ordinary  and  some  kind  of  partial  differential  equations  can  be  solved

using the function DSolve[]. A practical example is given by the relaxation

equation u ' + a u = 0. The solution of this equation follows from

DSolve@ t u@tD + u@tD 0, u, tD

88u Ø Function@8t<, ‰-t a c1D<<

In  addition  to  the  standard  functions,  Mathematica  allows  one  to

incorporate standard packages dealing with special mathematical tasks (see

Figure  1.1.1).  To  load  such  standard  packages,  we  need  to  carry  out  the

Get[]  function  abbreviated  by << followed  by the  package  name.  Such  a

standard  package  is  available  for  the  purpose  of  vector  analysis.

Calculations  of  vector  analysis  can  be  supported  using  the  standard

package  VectorAnalysis,  which  contains  useful  functions  for

cross-products  of  vectors  as  well  as  for  calculating  gradients  of  scalar

functions. Some examples of this kind of calculation follow:

<< Calculus`VectorAnalysis`

CrossProduct@8a, b, c<, 8d, e, f<D

8b f - c e, c d - a f , a e - b d<

A  more  readable  representation  is  gained  by  applying  the  function

MatrixForm[] to the result:

CrossProduct@8a, b, c<, 8d, e, f<D êê MatrixForm

i

k
jjjjjjjj

b f - c e

c d - a f

a e - b d

y

{
zzzzzzzz

The suffix  operator  //  allows  us  to  append  the  function  MatrixForm[]  at

the end of an input line. MatrixForm[]  generates a column representation
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of  a  vector  or  a  matrix.  The  disadvantage of  this  output  form is  that  it  is

not  usable  in  additional  calculations.  Another  function  available  in  the

package  VectorAnalysis  is  a  gradient  function  for  different  coordinate

systems  (cartesian,  cylindrical,  spherical,  elliptical,  etc.).  The  following

example  applies  the  Grad[]  in  cartesian  coordinates  to  a  function

depending on three cartesian coordinates x, y, and z:

Grad@f@x, y, zD, Cartesian@x, y, zDD êê MatrixForm

i

k

jjjjjjjjj
f H1,0,0LHx, y, zL
f H0,1,0LHx, y, zL
f H0,0,1LHx, y, zL

y

{

zzzzzzzzz

These  examples  give  an  idea  of  how  the  capabilities  of  Mathematica

support symbolic calculations.

1.1.4 Numerical Calculations

In  addition  to  symbolic  calculations,  we  sometimes  need  the  numerical

evaluations  of  expressions.  The  numerical  capabilities  of  Mathematica

allow  the  following  three  essential  operations  for  solving  practical

problems.

The  solution  of  equations,  for  example  the  solution  of  a  sixth-order

polynomial x6 + x2 - 1 = 0, follows by

NSolve@x6 + x2 1 == 0, xD

88x Ø -0.826031<, 8x Ø -0.659334 - 0.880844 Â<,
8x Ø -0.659334 + 0.880844 Â<, 8x Ø 0.659334 - 0.880844 Â<,
8x Ø 0.659334 + 0.880844 Â<, 8x Ø 0.826031<<

To  evaluate  a  definite  integral  in  the  range  x œ @0, ¶D,  you  can  use  the

numerical  integration  capabilities  of  NIntegrate[].  An  example  from

statistical physics is
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NIntegrateAx3 x4, 8x, 0, <E

0.25

Sometimes,  it  is  hard  to  find  an  analytical  solution  of  an  ordinary

differential equation (ODE). The problem becomes much worse if you try

to  solve  a  nonlinear  ODE.  The  function  NDSolve[]  may  help  you  tackle

such problems.  An example of a  second-order nonlinear ODE used in the

examination of nonlinear oscillators demonstrates the solution of the initial

value  problem  y ' ' - y2 + 2 y = 0,  yH0L = 0,  y ' H0L =
1
ÅÅÅÅ2 .  The  initial  value

problem describes  a  nonlinear  oscillator  starting at  t = 0 with  a  vanishing

elongation  and  an  initial  velocity  of  1
ÅÅÅÅ2 .  The  formulation  in  Mathematica

reads

NDSolveA9y''@tD y@tD2 + 2 y@tD == 0,

y@0D == 0, y'@0D ==
1

2
=, y@tD, 8t, 0, 10<E

88yHtL Ø InterpolatingFunction@H 0. 10. L, <>D@tD<<

The  result  of  the  numerical  integration  is  a  representation  of  the  solution

by means of an interpolating function.

The  above  three  examples  serve  to  demonstrate  that  Mathematica  is  also

capable of handling numerical evaluations. There are many other functions

which  support  numerical  calculations.  As  a  rule,  all  functions  which

involve numerical calculations start with a capital N in the name.

12 1. Introduction



1.1.5 Graphics

Mathematica  supports  the  graphical  representation  of  different

mathematical  expressions.  Mathematica  is  able  to  create  two-  and

three-dimensional  plots.  It  allows  the  representation  of  experimental  data

given  by  lists  of  points,  by  parametric  plots  for  functions  in  parametric

form, or by contour plots for three-dimensional functions. It further allows

the  creation  of  short  motion  pictures  by  its  function  Animation.  An

overview of these capabilities is given next.

As  a  first  example  of  the  graphical  capabilities  of  Mathematica,  let  us

show  how  simple  functions  are  plotted.  The  first  argument  of  the  plot

function  Plot[]  specifies  the  function;  the  second  argument  denotes  the

plot range. All other arguments are options which alter the form of the plot

in some way. A standard example in harmonic analysis is

Plot@Sin@xD, 8x, , <, AxesLabel 8"x", "Sin@xD"<D;

-3 -2 -1 1 2 3
x

-1

-0.5

0.5

1
Sin@xD

This  plot  can  be  improved  in  several  directions:  Sometimes  you  need  a

grid  or  other  fonts  for  labeling  or  you  prefer  a  frame  around  the  plot.

These  properties  are  accessible  by  specifying  the  appropriate  options  of

the following function:
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Plot@Sin@xD, 8x, , <,
AxesLabel 8StyleForm@"x", FontWeight "Bold",

FontFamily "Tekton"D, StyleForm@"Sin@xD",
FontWeight "Bold", FontFamily "Tekton"D<,

Frame > True, GridLines Automatic,

AxesStyle 8RGBColor@1, 0, 0D, Thickness@0.01D<,
TextStyle 8FontSlant "Italic", FontSize 12<D;

3 2 1 0 1 2 3
1

0.5

0

0.5

1

x

Sin@xD

In  three  dimensions,  we  use  Plot3D[]  to  represent  the  surface  of  a

function.  A following example showing the surface in a rectangular  water

tank.  The  arguments  of  Plot3D[]  are  similar  to  the  function  Plot[].  The

first specifies the function; the second and third specify the plot range; all

others are optional.
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Plot3D@Sin@xD Cos@yD, 8x, , <, 8y, 2 , 2 <,
AxesLabel > 8"x", "y", "z"<, PlotPoints > 35,

TextStyle 8FontSlant "Italic", FontSize 12<D;

2

0

2
x 5

0

5

y

1
0.5
0

0.5
1

z

2

0

2
x

Sometimes  you  may  know  a  solution  of  a  problem  only  in  a  parametric

representation.  Consider,  for  example,   the  motion  of  an  electron  in  a

constant  magnetic  field.  For  such  a  situation,  the  track  of  the  electron  is

described by a three-dimensional vector depending parametrically on time

t.  To  represent  such  a  parametric  path,  you  can  use  the  function

ParametricPlot3D[].  The  first  argument  of  this  function  contains  a  list

which describes the three coordinates of the curve. A fourth element of this

list,  which is optional,  allows you to set a color for the track. We used in

the  following  example  the  color  function Hue[].  The  second  argument  of

the function ParametricPlot3D[]  specifies the plot range of the parameter.

All  other  arguments  given  to  ParametricPlot3D[]  are  options  changing

the appearance of the plot.
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ParametricPlot3D@82 Sin@tD, 5 Cos@tD, t, Hue@0.4D<,
8t, 0, 4 <, Axes > FalseD;

Another  example  is  the  movement  of  a  planet  around  the  Sun,  for  which

the  solution  of  the  problem  is  in  implicit  form.  According  to  Kepler`s

theory (see  Chapter  2,  Section 2.5),  a  planet  moves  on  an elliptical  track

around  the  Sun.  The  path  of  the  planet  is  described  in  principal  by  a

formula  like  x2 + 2 y2 = 3.  To  graphically  represent  such  a  path,  we  can

use  a  function  known  as  ImplicitPlot[]  in  Mathematica.  This  function

becomes  available  if  we  load  the  standard  package

Graphics`ImplicitPlot`.  A representation  of  the  hypothetical  planet  track

in x and y follows for the range x œ @-2, 2D by

<< Graphics`ImplicitPlot`
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pl1 = ImplicitPlot@x2 + 2 y2 == 3,

8x, 2, 2<, PlotStyle > RGBColor@1, 0, 0DD;

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

The  color  of  the  curve  is  changed  from  black  to  red  by  the  option

PlotStyleÆRGBColor[1,0,0].

If you have a function which is defined over a large range in x and y, such

as in dynamical relaxation experiments, it is sometimes useful to represent

the function in a log-log plot. For example, to show the graph of a scaling

function  like  f HxL = x1.4  in  the  range  x œ @1, 103D,  we  can  use

LogLogPlot[]  from  the  standard  package  Graphics`Graphics`  to  show

the  scaling  behavior  of  the  function.  We  clearly  observe  in  the  double

logarithmic  representation  a  linear  relation  between  y  and  x  which  is

characteristic for scaling (see Chapter 7 for more details).
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<< Graphics`Graphics`;

LogLogPlot@x1.4,
8x, 1, 1000<, FrameLabel > 8"x", "y"<,
GridLines > Automatic, Frame > TrueD;

20 50 100 200 500 1000
x

100
200

500
1000
2000

5000
10000

y

If you have to handle data from experiments, Mathematica  can do much of

the work for you. The graphical representation of a set of data can be done

by the function ListPlot[].  This  function allows you to  plot  a list  of data.

The  input  here  is  created  by  means  of  the  function  Table[].  The  dataset,

which  we  will  represent  by  ListPlot[]  consists  of  pairs  8x, sinHxL e-
x
ÅÅÅÅ4 <  in

the  range  x œ @0, 6 pD.  The  data  are  located  in  the  variable  tab1.  The

graphical  representation of these pairs  of data  is  achieved  by the function 

ListPlot[] using the dataset tab1 as first argument. All other arguments are

used to set temporary options for the function.
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In[10]:= tab1 = TableA9x, Sin@xD
x
4 =, 8x, 0, 6 , 0.2<E;

ListPlot@tab1, PlotStyle >

8RGBColor@0, 0, 0.500008D, PointSize@0.015D<,
AxesLabel > 8"x", "y"<, PlotRange > AllD;

If you need to represent several sets of data in the same figure, you can use

the  function  MultipleListPlot[]  contained  in  the  standard  package

Graphics`MultipleListPlot` .  An  example  for  two  sets  of  data  tab1  and

tab2 is given below

<< Graphics`MultipleListPlot`

tab2 = TableA9x, Sin@xD
x
8 =, 8x, 0, 6 , 0.2<E;
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MultipleListPlot@tab1, tab2,

AxesLabel > 8"x", "y"<, PlotRange > AllD;

2.5 5 7.5 10 12.5 15 17.5
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y

Sometimes,  results  found by laborious calculations are  poorly represented

by simple  pictures  and  there  might  by a  way to  "dress  them up"  a  bit.  In

many  situations,  you  can  vary  a  parameter  or  simply  the  time  period  to

change  the  result  in  some  way.  The  output  of  a  small  variation  in

parameters  can  be  a  great  number  of  frames  which  all  show  different

situations. To collect all  of the different frames in a common picture,  you

can use the animation facilities of Mathematica.  The needed functions are

accessible  if  we  load  the  standard  package  Graphics`Animation`.  By

using the function Animate[] contained in this package, you can create, for

example,  a  flip  chart  movie  for  a  planet  moving  around  a  star.  The

following animation combines  two graphics  objects,  the first  contained  in

the  symbol  pl1   representing  the  track  of  the  planet  and  the  second

consisting of a colored disk the planet. 

<< Graphics`Animation`

pl2 = AnimateA9pl1, GraphicsA9RGBColor@0, 0, 1D,

DiskA9
è!!!!
3 Sin@xD,

è!!!!!!!!!!!
3ê2 Cos@xD=, 0.1E=E=, 8x, 0,

2 , 0.3<, PlotRange > 88 1.9, 1.9<, 8 1.5, 1.5<<E
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Note:  In  the  printed  version,  we  replace  the  animation  by  a  single  plot

containing the different plots distinguished by different colors. We use this

procedure to show the reader how an animation is generated and what kind

of plots are generated.

If Mathematica  does not provide you with the graphics you need, you are

free to create your own graphics objects. By using graphics primitives like

Line[], Disk[], Circle[],  and  so  forth,  you  can  create  any  two-  or

three-dimensional objects you can imagine. A simple example to combine

lines,  disks,  squares,  and circles for  depicting the scattering of a  particles

on a gold bar follows.
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<< Graphics`Arrow`;

Show@
Graphics@88RGBColor@0.976577, 0.949233, 0.0195315D,

Rectangle@8 2, 2<, 82, 2<D<,
Line@880, 0<, 8 12, 0<<D, Line@880, 0<, 85, 6<<D,
Line@880, 0<, 82, 0<<D, Line@880, 0<, 83.4, 6.5<<D,
Line@880, 0<, 86.8, 5.7<<D, 8RGBColor@0,
0.500008, 0D, Disk@8 10, 0<, 81, 2<D<,

8RGBColor@0.996109, 0.996109, 0.500008D,
Disk@8 10, 0<, 8.6, 1.5<D<, 8RGBColor@0,
0, 0.996109D, Disk@85, 6<, 81.6, 1.3<D<,

Arrow@8 12, 1.5<, 8 10, 1.5<D, Arrow@85, 6<,
87, 8<D, Text@"b", 8 11.88, 0.857724<D,
Text@"J", 8 11.4616, 2.392<D,
Text@"Au", 8 1.00059, 1.27616<D,
Text@"dN", 86.74052, 6.85534<D,
Text@"d ", 83.74171, 7.483<D,
Text@" ", 81.64952, 0.578765<D,
Text@"db", 8 8.88118, 0.997203<D,
Text@" ", 8 12.0892, 1.97356<D<D,

AspectRatio AutomaticD;

b

J
Au

dN
dW

q
db

a
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1.1.6 Programming 

Mathematica  not  only  is  an  interactive  system  but  also  allows  one  to

generate  programs  supporting  scientific  calculations.  By  solving  the

following  mathematical  conjecture,  we  simultaneously  demonstrate  the

creation  of  an  interactive  function  in  Mathematica.  The  iteration  of  the

relation

(1.1.1)fn+1 = fn-1 ‡ I fnÅÅÅÅÅÅÅÅÅÅfn-1
M2 dx

under  the  initial  conditions  f0 = cosHxL  and  f1 = sinHxL  results  in  a

polynomial  whose  coefficients  are  given  by  trigonometric  functions.  The

resulting polynomial can be represented in the form

(1.1.2)f¶ = cosHxL ⁄n=0
¶ an xn + sinHxL ⁄n=0

¶ bn xn.

The related  Mathematica  representation is  located in  the variable  poly.  It

reads

poly = Cos@xD ‚
n=0

a@nD xn + Sin@xD ‚
n=0

b@nD xn

Cos@xD ‚
n=0

a@nD xn + Sin@xD ‚
n=0

b@nD xn

The sums in the  representation of the polynomial  extend across the range

0 < n < ¶.  In  the  first  step  of  the  calculation,  we  introduce  a  list

containing the  initial  conditions  of the  iteration.  Lists  in Mathematica  are

represented by a pair of braced brackets which contain the elements of the

list  separated  by  commas.  To  save  the  list  for  future  use,  we  set  the  list

equal to the variable listf  by

listf = 8Cos@xD, Sin@xD<

8Cos@xD, Sin@xD<
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The first iteration step in Equation (1.1.1) is executed by the sequence

AppendToAlistf,

listfP1T IntegrateAi
k
jj
listfP2T

listfP1T
y
{
zz
2

, xEE êê Simplify

8Cos@xD, Sin@xD, x Cos@xD + Sin@xD<

in which we append the result from an integration of the iteration formula

to  listf by means of the function AppendTo[].  The next step just changes

the indices of the iteration and is given by

AppendToAlistf,

listfP2T IntegrateAi
k
jj
listfP3T

listfP2T
y
{
zz
2

, xEE êê Simplify

9Cos@xD, Sin@xD, x Cos@xD + Sin@xD,
1
3
x H 3 + x2 + 3 x Cot@xDL Sin@xD=

Here, we increase the indices of the list elements in listf  by one. The next

interactive step results in

AppendToAlistf,

listfP3T IntegrateAi
k
jj
listfP4T

listfP3T
y
{
zz
2

, xEE êê Simplify

9Cos@xD, Sin@xD, x Cos@xD + Sin@xD,
1
3
x H 3 + x2 + 3 x Cot@xDL Sin@xD,

1
45

x3 Hx H 15 + x2L Cos@xD + 3 H5 2 x2L Sin@xDL=

Applying the function Plus[]  to  listf adds all elements of the list together,

resulting in the representation of the polynomial in the form
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poly = Apply@Plus, listfD êê Simplify

i
k
jj1 x x2

x4

3
+

x6

45
y
{
zz Cos@xD +

i
k
jj2 + x

2 x5

15
y
{
zz Sin@xD

The  coefficients  of  the  trigonometric  functions  Cos[]  and  Sin[]  are

accessed by

Coefficient@poly, Cos@xDD

1 x x2
x4

3
+

x6

45

and

Coefficient@poly, Sin@xDD

2 + x
2 x5

15

verifying  the  conjecture  that  the  resulting  function  of  the  iteration  is  a

polynomial  with  coefficients  Cos[x]  and  Sin[x].  The  disadvantage  of  this

calculation is that we need to repeat the iteration. To avoid such repetition,

we  define  a  procedural  function  which  performs  the  repetition

automatically. Function Iterate[]  derives the polynomial up to an iteration

order n.
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Iterate[initial_List,maxn_]:=Module[
(* --- local variables --- *)
   {df={},dfh,f=initial,fh},
(* --- iterate the formula and collect the results 
--- *)
   Do[AppendTo[f,
      f[[n]] Integrate[(f[[n+1]]/f[[n]])^2,x]],
   {n,1,maxn}];
(* --- calculate the sum of all elements in f --- *)
   f = Expand[Apply[Plus,Simplify[f]]];
(* --- extract the coefficients from the polynom --- 
*)
   fh = {Coefficient[f,initial[[1]]]};
   AppendTo[fh,Coefficient[f,initial[[2]]]];
(* --- return the result --- *)
   fh
   ]

The  application  of  this  sequential  program  Iterate[]  to  the  starting

functions Cos[] and Sin[] delivers

Iterate[{Cos[x],Sin[x]},4]

91 x x2
x4

3
+

x6

45
x7

45
+
2 x9

945
,

2 + x
2 x5

15
+

x6

45
x8

105
+

x10

4725
=

The result is a list containing the polynomial coefficients of the Cos[]  and

Sin[] functions, respectively. A more efficient realization of the iteration is

given  by  the  following  functional  program.  The  first  part  defines  the

iteration step:

Iterator@8expr1_, expr2_<D :=

Expand@expr1 Integrate@Hexpr2êexpr1L^2, xDD

The second part extracts the last two elements from a list:

takeLastTwoElemets@l_ListD := Take@l, 2D
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The third part carries out the iteration:

Iterate1@input_, n_D :=

Block@8F = input, t1<, t1 = Apply@Plus, Flatten@
Simplify@Last@Table@Flatten@AppendTo@F, Expand@

Apply@Iterator@takeLastTwoElemets@#DD &,

8Flatten@FD<DDDD, 8n<DDDDD;
Map@Coefficient@t1, #D &, inputDD

The  results  of  the  two  functions  can  be  compared  by  measuring  the

calculation time:

Iterate1@8Cos@xD, Sin@xD<, 5D êê Timing

915.87 Second, 91 x x2
x4

3
+

x6

45
x7

45
+
2 x9

945
x11

4725
+

x13

42525
x15

4465125
,

2 + x
2 x5

15
+

x6

45
x8

105
+
2 x10

4725
4 x12

42525
+

x14

297675
==

Iterate@8Cos@xD, Sin@xD<, 5D êê Timing

95.82 Second, 91 x x2
x4

3
+

x6

45
x7

45
+
2 x9

945
x11

4725
+

x13

42525
x15

4465125
,

2 + x
2 x5

15
+

x6

45
x8

105
+
2 x10

4725
4 x12

42525
+

x14

297675
==

The finding is that the procedural implementation is more efficient than the

functional  implementation.  In  addition  to  the  efficiency,  the  two

realizations  of  the  programs  demonstrate  that  a  program  in  Mathematica

can  be  generated  in  different  ways.  Other  methods  to  implement

algorithms  are  object-oriented  programs,  l-calculus,  rule-based

programs,and so forth.

However, with Iterate[], we can change the mathematical conjecture in the

following way. Let us examine what happens if we use as initial conditions
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hyperbolic functions instead of trigonometric  functions. The result  is  easy

to derive if we use Iterate[] in the form of

Iterate[{Cosh[x],Sinh[x]},3]

: x6

ÅÅÅÅÅÅÅÅÅ
45

+
x4

ÅÅÅÅÅÅÅÅ
3

- x2 + x + 1, x -
2 x5

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
15

>

Again, we obtain a polynomial whose coefficients are given by hyperbolic

functions.  The  interchange  of  initial  conditions  demonstrates  that  the

iteration

Iterate@8Sinh@xD, Cosh@xD<, 3D

: x6

ÅÅÅÅÅÅÅÅÅ
45

+
x4

ÅÅÅÅÅÅÅÅ
3

- x2
+ x + 1, x -

2 x5

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
15

>

provides  the  same  result.  Meaning  that  the  function  is  symmetric  with

respect to the interchange of functions. However, the resulting polynomials

are different from the results gained from trigonometric functions:

Iterate@8Sin@xD, Cos@xD<, 3D

: x6

ÅÅÅÅÅÅÅÅÅ
45

-
x4

ÅÅÅÅÅÅÅÅ
3

+ x2 - x + 1,
2 x5

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
15

-
2 x3

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3

+ x>

This  small  example  demonstrates  the  capabilities  of  Mathematica  for

finding  solutions  to  a  specific  problem  allowing  us,  at  the  same  time,  to

modify  the  initial  question.  However,  the  iterative  solution  of  the

conjecture is not an exact proof. It only demonstrates the correctness of the

conjecture  empirically.  Yet,  the  empirical  proof  of  the  conjectured

behavior is the first step in proving the final result.

From  the  above  example,  we  have  seen  that  the  use  of  Mathematica

facilitates  our  work  insofar  as  special  functions  become  immediately

available to us,  not only analytically but also numerically and graphically.

This  notwithstanding,  we  first  need  to  be  able  to  understand  the  physical
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and mathematical relationships before we can effectively use Mathematica

as a powerful tool.

In the following chapters,  we will demonstrate how problems occurring in

theoretical physics can be solved by the use of Mathematica. Note that we

will  not  provide  the  reader  with  a  detailed  description  of  Mathematica.

Instead,  we  will  present  a  collection  of  mathematical  steps  gathered  in  a

package.  This  package  is  useful  for  solving  specific  physical  or

mathematical problems by applying Mathematica  as a tool.  For a detailed

description  of  the  Mathematica  functions,  we  refer  the  reader  to  the

handbook by Wolfram [1.1] or the book by Blachman [1.3]. However, we

hope that the reader will readily understand the solutions, because the code

corresponds to notations in theoretical physics.
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2
Classical Mechanics

2.1 Introduction

Classical mechanics denotes the theory of motion of particles and particle

systems  under  conditions  in  which  Heisenberg's  uncertainty  principle  has

essentially no  effect  on the  motion and,  therefore,  may be neglected.  It  is

the  mechanics  of  Galilei,  Newton,  Lagrange,  and  Hamilton  and  it  is  now

extended to include the mechanics of Einstein (Figure 2.1.1).

Figure 2.1.1. 
Galilei, Newton, Lagrange, Hamilton, and Einstein are the founding fathers of mechanics.
These theoreticans remarkably defined the current understanding of mechanics.

This book is an attempt to present classical mechanics in a way that shows

the  underlying  assumptions  and  that,  as  a  consequence,  indicates  the

boundaries  beyond  which  its  uncritical  extension  is  dangerous.  The



presentation is designed to make the transition from classical mechanics to

quantum mechanics and to relativistic mechanics smooth so that the reader

will  be  able  to  sense  the  continuity  in  physical  thought  as  the  change  is

made.

The  aim of  classical  mechanics  and  theoretical  physics  is  to  provide  and

develop  a  self-consistent  mathematical  structure  which  runs  so  closely

parallel  to  the  development  of  physical  phenomena  that,  starting  from  a

minimum number of hypotheses, it may be used to accurately describe and

even predict the results of all  carefully controlled experiments.  The desire

of  accuracy,  however,  must  be  tempered  by  the  need  for  reasonable

simplicity,  and the theoretical description of a physical situation is always

simplified  for  convenience  of  analytical  treatment.  Such  simplification

may be  thought  of  as  arising  both from physical  approximations  (i.e.,  the

neglect  of  certain  physical  effects  which  are  judged  to  be  of  negligible

importance)  and  from  mathematical  approximations  made  during  the

development  of  the  analysis.  However,  these  two  types  of  approximation

are not really distinct, for usually each may be discussed in the language of

the  other.  Representing  as  they  do  an  economy rather  than  an  ignorance,

such  approximation  may  be  refined  by  a  series  of  increasingly  accurate

calculations,  performed  either  algebraically  or  numerically  with  a

computer.

More  subtle  approximations  appear  in  the  laws  of  motion  which  are

assumed  as  a  starting  point  in  any  theoretical  analysis  of  a  problem.  At

present,  the  most  refined  form  of  theoretical  physics  is  called  quantum

field theory, and the theory most  accurately confirmed by experiment is  a

special  case  of  quantum  field  theory  called  quantum  electrodynamics.

According  to  this  discipline,  the  interactions  among  electrons,  positrons,

and  electromagnetic  radiation  have  been  computed  and  shown  to  agree

with  the results  of  experiment  with  an over  all  accuracy of  1  part  in  109.

Unfortunately,  analogous  attempts  to  describe  the  interactions  among

mesons, hyperons, and nucleons are at present unsuccessful.

These  recent  developments  are  built  on  a  solid  structure  which  has  been

developed  over  the  last  three  centuries  and  which  is  now called  classical

mechanics.  Figure  2.1.2  illustrates  how  classical  mechanics  is  related  to
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other  basic  physical  theories.  The  scheme  is  by  no  means  complete.  It

represents a rough sketch of a discipline with great diversity.

Figure 2.1.2. Classical mechanics as proof for other disciplines in physics.

A  theory  that  describes  the  motion  of  a  particle  at  any  level  of

approximation  must  eventually  reduce  to  classical  mechanics  when

conditions are such that relativistic, quantum, and radiative corrections can

be  neglected.  This  fact  makes  the  subject  basic  to  the  student's

understanding  of  the  rest  of  the  physics,  in  the  same  way  that  over  the

centuries  it  has  been  the  foundation  of  human  understanding  of  the

behavior of physical phenomena.

Classical  mechanics  accurately  describes  the  motion  of  a  material  system

provided  that  the  angular  momentum  of  the  system  with  respect  to  the

nearest  system which is  influencing its  motion is large compared with the

quantum unit  of  angular  momentum Ñ = 1.054 µ 10-27 g cm2 ê s.  Examples

of typical angular momentums are given in Table 2.1.1.
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System Approximate angular 
momentum in units of Ñ

Earth moving around 
the Sun

1064

Steel ball 1cm radius 
rolling at 10 cm/s 
along a plane

1029

Electron

moving in a circle

of radius 1 cm

at 108 cmês

108

Electron moving in an
atom

0,1,2,…

Table 2.1.1. Comparison of fundamental scales.

Clearly, in all  but the last case,  the existence of a smallest unit of angular

momentum  is  irrelevant,  and  the  error  introduced  by  using  the

approximation  of  classical  mechanics  will  be  small  compared  with  both

unavoidable  experimental  errors  and  other  errors  and  approximations

made  in  describing  the  actual  physical  situation  theoretically.  However,

classical  mechanics  should  not  be  studied  only  as  an  introduction  to  the

more  refined  theories,  for  despite  advances  made  during  this  century,  it

continues  to  be  the  mechanics  used  to  describe  the  motion  of  directly

observable  macroscopic  systems.  Although  an  old  subject,  the  mechanics

of  particles  and  rigid  bodies  is  finding  new  applications  in  a  number  of

areas,  including the  fields  of  vacuum and  gaseous electronics,  accelerator

design,  space  technology,  plasma  physics,  and  magnetohydrodynamics.

Indeed, more effort is being put into the development of the consequences

of classical  mechanics today than at any time since it  was the only theory

known.  A  recent  development  in  classical  mechanics  is  connected  with

chaotic  behavior.  Our  aim  is  to  provide  a  transition  from  traditional

courses  in  classical  mechanics  to  the  rapidly  growing  areas  of  nonlinear

dynamics and chaos and to present these old and new ideas in a broad and

unified perspective.
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2.2 Mathematical Tools

2.2.1 Introduction

This  section  introduces  some  of  the  mathematical  tools  necessary  to

efficiently  describe  mechanical  systems.  The  basic  tools  discussed  are

coordinates,  transformations,  scalars,  vectors,  tensors,  vector  products,

derivatives, and integral relations for scalars and vector fields.

Coordinates  are  the  basic  elements  in  mechanics  used  to  describe  the

location of a particle in space at a certain time. These numbers are changed

if we change the position in space. Thus, we need a procedure to describe

the transition from the original position to the new position. The process of

going from one location to  another  is  carried out  by a  transformation.  To

describe  the  single  elements  of  the  coordinates,  we  need  single  figures,

which  are  called  scalars.  If  we  arrange  two  or  more  of  the  scalars  in  a

column  or  row,  we  get   a  vector.  The  arrangement  of  scalars  in  a

two-dimensional  or  higher-dimensional  array  will  lead  us  to  tensors.

Among the scalars, vectors, and tensors there exist algebraic and geometric

relations  which  are  defined  in  vector  products,  special  derivatives,  and

integral relations.
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2.2.2 Coordinates

In order  to represent  points in space, we first  choose a  fixed point  O  (the

origin)  and  three  directed  lines  through  O  that  are  perpendicular  to  each

other, called the coordinate axes and labeled the x-axis, y-axis, and z-axis.

Usually, we think of the x- and y-axes as being horizontal and the z-axis as

being  vertical  and  we  draw the  orientation  of  the  axis  as  in  Figure  2.2.1.

Now,  if  P  is  any point  in  space,  let  a  be  the  (directed)  distance  from the

yz-plane to P, let b be the distance from the xz-plane to P, and let c be the

distance from the xy-plane  to  P.  We represent  the point  P  by the ordered

triple (a, b, c) of real numbers and we call a, b, and c the components of P;

a  is the x-component,  b  is  the y-component,  and c  is  the z-component.  At

the  same  time  a, b,  and  c  are  the  cartesian  coordinates  that  describe  the

position of the point P relative to the coordinate system. Later, we will see

that  there  exist  other  coordinates like  angles and  so forth.  Thus,  to  locate

the point (a, b,  c)  in space, we can start at the origin O  and move a  units

along the x-axis,  then b  units along the y-axis,  and then c  units parallel to

the z-axis. Coordinates are numbers in a system of reference. Usually, they

define a point with respect to the origin in a coordinate system.

Figure 2.2.1. Coordinate system with coordinates a, b, and c of a point P.

Very  often,  it  is  not  convenient  to  describe  the  position  of  even  a  single

particle  in  terms  of  rectangular  cartesian  coordinates  referred  to  a
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particular  set  of  coordinate  axes.  If  for  example,  the  particle  moves  in  a

plane under the influence of a force which is directed toward a fixed point

in the plane and which is independent of the azimuthal angle q, it is usually

more convenient to use plane polar coordinates

(2.2.1)q1 = r = Hx2 + y2L1ê2
and

(2.2.2)q2 = f = tan-1H y
ÅÅÅÅx L

or  if  the  force  is  spherically  symmetric  it  is  natural  to  use  the  spherical

coordinates

(2.2.3)

q1 = r = Hx2 + y2 + z2L1ê2
q2 = f = cot-1I z

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHx2+y2L1ê2 M
q3 = q = tan-1H y

ÅÅÅÅx L.
Here,  tan-1  and  cot-1  denote  the  inverse  functions  of  tan  and  cot,

respectively.  The  coordinates  (2.2.3)  are  also  used  if  the  particle  is

constrained to move on a fixed circle or fixed sphere.

Sometimes,  it  is  useful  to  look  at  the  motion  of  the  particle  from  the

moving frame. In such a coordinate system, the coordinates q1, q2, q3  is in

uniform  motion,  for  example,  with  respect  to  the  x  direction  having

velocity v relative to the system x, y, z

(2.2.4)

q1 = x - v t,

q2 = y, Hv = constL,
q3 = z

or from a uniformly accelerated system

(2.2.5)

q1 = x -
1
ÅÅÅÅ2 g t2 Hg = constL,

q2 = y,

q3 = z.

In general, each transformation of the coordinate system xi  to a new set qi

may be expressed as a set of three equations of the form

(2.2.6)xi = xiHq1, q2, q3, tL with i = 1, 2, 3.

For  the  stationary  coordinate  systems  (2.2.2)  and  (2.2.3),  the  relations

between xi and qi do not involve the time t.
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If equations (2.2.6) are such that the three coordinates qi  can be expressed

as functions of the xi, we have

(2.2.7)qi = qiHx1, x2, x3, tL with i = 1, 2, 3.

The qi  are  as effective  as  the xi  in describing the  position of  the particle.

The qi  are called generalized coordinates  of the particle.  The generalized

coordinates  may  themselves  be  rectangular  cartesian  coordinates  or  they

may be a set of any three variables,  not necessarily with the dimension of

length,  which  between  them  specify  unambiguously  the  position  of  the

particle relative to some set of axes.

2.2.3 Coordinate Transformations and Matrices

Let us consider a point P which has cartesian coordinates Hx1, x2, x3L with

respect  to  a  certain  coordinate  system.  Next,  consider  a  different

coordinate  system  that  can  be  generated  from  the  original  system  by  a

single  rotation;  let  the  coordinates  of  the  point  P  with  respect  to  the  new

coordinate  system  be  Hxè1, xè2, xè3L.  The  transformation  is  illustrated  for  a

two-dimensional case in Figure 2.2.2.

Figure 2.2.2. Rotation of the original coordinate axis.

The new coordinate xè1  is  the sum of the projection of x1  onto the xè1  axis

plus the projection of x2  onto the xè1-axis. The xè2-coordinate is determined

by similar  projections  of  x1  and  x2  onto  the  xè2-axis.  The  general  relation

for the coordinate transformation in three dimensions is given by

(2.2.8)xè i = ⁄ j li j x j      with i = 1, 2, 3,
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where the lij are the direction cosine of the xè i-axis relative to the x j-axis. It

is  convenient  to  arrange  the  lij  into  a  square  array  called  a  matrix.  The

symbol  l  will  be  used  to  denote  the  totality  o  the  individual  elements  lij

when arranged in the following manner:

(2.2.9)l =

i

k
jjjjjjjj

l11 l12 l13

l21 l22 l23

l31 l32 l33

y

{
zzzzzzzz.

Once  the  direction  cosines  which  relate  the  two  sets  of  coordinates  are

found, the general  rules for specifying the coordinates of a point in either

system. l is called a transformation matrix.

The  l  matrix  has  equal  numbers  of  rows  and  columns  and  is  therefore

called a square matrix.  It is not necessary that a matrix be square. In fact,

the coordinates of a point may be written as a column matrix:

(2.2.10)x”÷ =

i

k
jjjjjjjj

x1

x2

x3

y

{
zzzzzzzz

or as a row matrix

(2.2.11)x”÷ = H x1 x2 x3 L.
We  must  now  establish  rules  whereby  it  is  possible  to  multiply  two

matrices.  Let  us take a  column matrix for  the coordinates.  Then,  we have

the following equivalent expressions:

(2.2.12)xè i = ⁄ j lij x j,

(2.2.13)xè
”÷

= l x”÷
or in Mathematica notation

x =

i

k

jjjjjjj

11 12 13

21 22 23

31 32 33

y

{

zzzzzzz
.
i

k

jjjjjjj

x1
x2
x3

y

{

zzzzzzz
; x êê TableForm

x1 11 + x2 12 + x3 13

x1 21 + x2 22 + x3 23

x1 31 + x2 32 + x3 33

2. Classical Mechanics 39



This  relation  completely  specifies  the  operation  of  matrix  multiplication

for  the  case  of  a  matrix  of  three  rows  and  three  columns  operating  on  a

matrix  of  three  rows  and  one  column.  The  next  step  is  to  generalize  this

result to matrices of nän order.

The  multiplication  of  a  matrix  A  and  a  matrix  B  is  defined  only  if  the

number  of columns of A  is  equal  to  the number  of rows of B.  For  such a

case, the product A.B is given by

(2.2.14)
C = A.B,

Cij = ⁄k Aik Bkj.

It  is  evident  that  matrix multiplication is not commutative. Thus, if A  and

B are both square matrices, then the sums

⁄k Aik Bkj     and     ⁄k Bik Akj

are  both  defined,  but,  in  general,  they will  not  be  equal.  This  behavior  is

shown by the following example.

Example:

If A and B are the matrices

A = J
2 4

-5 1
N

i
kjjj

2 4

-5 1
y
{zzz

and

B = J
5 2
9 -4

N

i
kjjj

5 2

9 -4
y
{zzz
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then

A.B

i
kjjj

46 -12

-16 -14
y
{zzz

but

B.A

i
kjjj

0 22

38 32
y
{zzz

An  important  operation  on  a  matrix  is  the  transposition.  A  transposed

matrix  is  a  matrix  derived  from the  original  matrix  by the  interchange  of

rows  and  columns.  The  transposition  of  a  matrix  A  is  denoted  by  AT .

According to this rule, we have

(2.2.15)lij
T = l ji

If we define the l matrix by

l =

i

k

jjjjjjj

l11 l12 l13

l21 l22 l23

l31 l32 l33

y

{

zzzzzzz

i

k
jjjjjjjj

l11 l12 l13

l21 l22 l23

l31 l32 l33

y

{
zzzzzzzz

the transposed matrix is given by
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lT

i

k
jjjjjjjj

l11 l21 l31

l12 l22 l32

l13 l23 l33

y

{
zzzzzzzz

Another  property of  matrices  is  that  any matrix  multiplied by the identity

matrix is unaffected:

IdentityMatrix@3D.l

i

k
jjjjjjjj

l11 l12 l13

l21 l22 l23

l31 l32 l33

y

{
zzzzzzzz

or

lT .IdentityMatrix@3D

i

k
jjjjjjjj

l11 l21 l31

l12 l22 l32

l13 l23 l33

y

{
zzzzzzzz

Consider matrix l  to be known. The problem is to find the inverse matrix

l-1 such that

(2.2.16)l.l-1 = l-1.l = 1.

If Cij  is  the cofactor of l  (i.e.,  the minor  of l  with the sign H-1Li+ j),  then

the inverse is determined by

(2.2.17)lij
-1 =

C ji
ÅÅÅÅÅÅÅÅÅÅÅÅÅdetHlL

if detHlL 0. Note that in numerical work it sometimes happens that detHlL
is  almost  equal  to  0.  Then,  there  is  trouble  ahead.  In  Mathematica,  the

inverse of a matrix is calculated by the function Inverse[]. The application

of this function to the matrix l gives us
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InverseHlL

88H 22 33 23 32Lê H 13 22 31 + 12 23 31 +

13 21 32 11 23 32 12 21 33 + 11 22 33L,
H 13 32 12 33Lê H 13 22 31 + 12 23 31 +

13 21 32 11 23 32 12 21 33 + 11 22 33L,
H 12 23 13 22Lê H 13 22 31 + 12 23 31 +

13 21 32 11 23 32 12 21 33 + 11 22 33L<,
8H 23 31 21 33Lê H 13 22 31 + 12 23 31 +

13 21 32 11 23 32 12 21 33 + 11 22 33L,
H 11 33 13 31Lê H 13 22 31 + 12 23 31 +

13 21 32 11 23 32 12 21 33 + 11 22 33L,
H 13 21 11 23Lê H 13 22 31 + 12 23 31 +

13 21 32 11 23 32 12 21 33 + 11 22 33L<,
8H 21 32 22 31Lê H 13 22 31 + 12 23 31 +

13 21 32 11 23 32 12 21 33 + 11 22 33L,
H 12 31 11 32Lê H 13 22 31 + 12 23 31 +

13 21 32 11 23 32 12 21 33 + 11 22 33L,
H 11 22 12 21Lê H 13 22 31 + 12 23 31 +

13 21 32 11 23 32 12 21 33 + 11 22 33L<<

Knowing the inverse of l, we can check the definition (2.2.16) 

Simplify@l.l-1D

i

k
jjjjjjjj

1 0 0

0 1 0

0 0 1

y

{
zzzzzzzz

which, in fact, reproduces the identity matrix.

For  orthogonal  matrices,  there  exist  a  connection  between  the  inverse

matrix and the transposed matrix. This connection is

(2.2.18)l-1 = lT     only for orthogonal matrices!

We demonstrate  this  relation for  the 2ä2  rotation matrices.  A rotation by

an angle f in two dimensions is given by the matrix
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R = J
cosHfL sinHfL

-sinHfL cosHfL N

i
kjjj

cosHfL sinHfL
-sinHfL cosHfL

y
{zzz

The inverse of this matrix is

R-1 êê Simplify

i
kjjj

cosHfL -sinHfL
sinHfL cosHfL

y
{zzz

and the transpose is

RT

i
kjjj

cosHfL -sinHfL
sinHfL cosHfL

y
{zzz

obviously both matrices are  equivalent.  This result in two dimensions can

be generalized to higher dimensions and to the general representation of l.

To  demonstrate  the  relation  (2.2.16)  and  the  consequences   from  this

definition for the transposes matrix, we write

l.lT == IdentityMatrix@3D

88 11
2 + 12

2 + 13
2 ,

11 21 + 12 22 + 13 23, 11 31 + 12 32 + 13 33<,
8 11 21 + 12 22 + 13 23, 21

2 + 22
2 + 23

2 ,

21 31 + 22 32 + 23 33<, 8 11 31 + 12 32 + 13 33,

21 31 + 22 32 + 23 33, 31
2 + 32

2 + 33
2 << ==

881, 0, 0<, 80, 1, 0<, 80, 0, 1<<

We  observe  that  if  the  matrix  l  is  orthogonal,  the  off-diagonal  elements

have to vanish and the diagonal elements are identical to 1.  This property
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can  be  verified  if  we  replace  the  symbolic  values  lik  by  their

representations with directional cosines. If we can satisfy these conditions,

the transpose and the inverse of the rotation matrix l are identical. In fact,

the  transpose  of  any orthogonal  matrix  is  equal  to  its  inverse.  The  above

relation allows an equivalent representation in components

(2.2.19)⁄ j lij lkj = dik,

where dik is the Kronecker delta symbol

(2.2.20)dik = 9 0 if i k

1 if i = k.

This  symbol  was  introduced  by  Leopold  Kronecker  (1823–1891).  The

validity of  Equation (2.2.19)  depends on the fact  that  the coordinate axes

in each of the systems are mutually perpendicular. Such systems are said to

be orthogonal and Equation (2.2.19) is the orthogonality condition.

The  following  examples  demonstrate  how  rotations  act  on  coordinate

transformations. Let us first consider the case in which the coordinate axes

are rotated counterclockwise through an angle of 90°  about the x3-axis. In

such  a  rotation,  xè1 = x2, xè2 = -x1,  and  xè3 = x3.  The  only  nonvanishing

cosines are

(2.2.21)

cosHxè1, x2L = 1 = l12,

cosHxè2, x1L = -1 = l21,

cosHxè3, x3L = 1 = l33.

Thus the l matrix for this case is

x3 =

i

k

jjjjjjj

0 1 0
1 0 0
0 0 1

y

{

zzzzzzz

i

k
jjjjjjjj

0 1 0

-1 0 0

0 0 1

y

{
zzzzzzzz

The  multiplication  of  this  transformation  matrix  with  vectors  along  the

three coordinate  axes shows us how the coordinate axes are changed.  For

the x1-axis represented by
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x1 =

i

k

jjjjjjj

1
0
0

y

{

zzzzzzz;

we find

x1t = lx3 .x1

i

k
jjjjjjjj

0

-1

0

y

{
zzzzzzzz

which transforms the x1-axis to the -xè2-axis. In case of the x2-axis, we find

x2 =

i

k

jjjjjjj

0
1
0

y

{

zzzzzzz;

x2t = lx3 .x2

i

k
jjjjjjjj

1

0

0

y

{
zzzzzzzz

showing  us  that  the  x2-axis  is  transformed  to  the  xè1-axis.  Finally,  the

x3-axis remains unchanged:

x3 =

i

k

jjjjjjj

0
0
1

y

{

zzzzzzz;
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x3t = x3.x3

i

k
jjjjjjjj

0

0

1

y

{
zzzzzzzz

The  following  illustration  demonstrates  this  kind  of  coordinate

transformation:

Another transformation about the x1-axis is defined as follows:

lx1 =

i

k

jjjjjjj

1 0 0
0 0 1
0 -1 0

y

{

zzzzzzz

i

k
jjjjjjjj

1 0 0

0 0 1

0 -1 0

y

{
zzzzzzzz

In the next step, let us apply the two rotations about the x3- and the x1-axis

in  such  a  way  that  we  first  carry  out  the  rotation  around  the  x3-axis

followed by a rotation about the x1-axis. Defining the vector x”÷  by
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x”÷ =

i

k

jjjjjjj

x1

x2

x3

y

{

zzzzzzz;

we first transform this vector to an intermediate vector xh:

xh
”÷÷÷÷

= lx3 .x”÷

i

k
jjjjjjjj

x2

-x1

x3

y

{
zzzzzzzz

this vector is again used in the rotation around the x1-axis:

xf
”÷÷÷÷

= x1.xh
”÷÷÷÷

i

k
jjjjjjjj

x2

x3

x1

y

{
zzzzzzzz

which  results  in  a  final  vector  with  interchanged  coordinates.  This  final

state  of  the  vector  was  generated  by  two  transformations  lx1  and   lx3 ,

which can be verified by

x1. x3.x
”

i

k
jjjjjjjj

x2

x3

x1

y

{
zzzzzzzz

The result is the same as the sequential application of the rotations. Thus,

the complete rotation can be represented by single transformation
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lx2 = lx1 .lx3

i

k
jjjjjjjj

0 1 0

0 0 1

1 0 0

y

{
zzzzzzzz

which again delivers the same final state of the vector when applied to the

original vector:

lx2 .x”÷

i

k
jjjjjjjj

x2

x3

x1

y

{
zzzzzzzz

Note  that  the  order  in  which  the  transformation  matrices  operate  on  x”÷  is

important  since  the  multiplication  is  not  commutative.  Changing  the

product order, we find

lx3 .lx1 .x”÷

i

k
jjjjjjjj

x3

-x1

-x2

y

{
zzzzzzzz

which is different from the previous result because

x3. x1 x1. x3

True

Thus, an entirely different orientation results.

Next,  consider  a  coordinate  rotation  around  the  x3-axis  which  allows  to

continuously  vary  the  transformation  angle  f  around  the  x3-axis.  Such  a
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transformation  is  identical  with  a  rotation  in  the  x1- x2-plane.  We  denote

this kind of rotation by

Rx3 Hf_L :=

i

k

jjjjjjj

cosHfL sinHfL 0
-sinHfL cosHfL 0

0 0 1

y

{

zzzzzzz

The action of this transformation can be demonstrated by transforming an

arbitrary vector x”÷

x”÷ =

i

k

jjjjjjj

x1

x2

x3

y

{

zzzzzzz;

by  means  of  the  transformation  matrix  Rx3 .  The  result  of  such  a

transformation  is  given  by  a  vector  containing  the  original  coordinates

x1, x2, and x3:

rh = Rx3 HfL.x
”÷

i

k
jjjjjjjj

cosHfL x1 + sinHfL x2

cosHfL x2 - sinHfL x1

x3

y

{
zzzzzzzz

If  we  change  the  angle  f  continuously,  the  original  vector  undergoes  a

rotation around the x3-axis. This behavior is demonstrated in the following

illustration.

Map@HShow@Graphics3D@8RGBColor@0, 0, 0.996109D,
Line@880, 0, 0<, rh êê Flatten<D ê.
8x1 1, x2 1, x3 1, #<<D, PlotRange

88 1.5, 1.5<, 8 1.5, 1.5<, 80, 1.5<<DL &,

Table@i, 8i, 0, 2 , .3<DD;
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Another rotation frequently used in the theory of rigid bodies is a rotation

around the x2-axis. 

Rx2 Hq_L :=

i

k

jjjjjjj

cosHqL 0 -sinHqL
0 1 0

sinHqL 0 cosHqL

y

{

zzzzzzz

The application of this transformation matrix to the vector x”÷  gives us

x2r = Rx2 HqL.x
”÷

i

k
jjjjjjjj

cosHqL x1 - sinHqL x3

x2

sinHqL x1 + cosHqL x3

y

{
zzzzzzzz

The graphical representation for specific coordinates looks like

2. Classical Mechanics 51



Map@HShow@Graphics3D@8RGBColor@0, 0, 0.996109D,
Line@880, 0, 0<, x2r êê Flatten<D ê.
8x1 1, x2 1, x3 1, #<<D, PlotRange

88 1.5, 1.5<, 8 1.50, 1.5<, 8 1.5, 1.5<<DL &,

Table@i, 8i, 0, 2 , .3<DD;

These  two  rotation matrices  can be  used  to  generate  a  general  rotation in

three dimensions. The three angles f, q, and y are known as Euler angles.

Applications  of  this  kind  of  transformation  matrice  will  be  discussed  in

Section 2.10 on rigid body motion.
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genRot = Rx3 HyL.Rx2 HqL.Rx3 HfL

88Cos@ D Cos@ D Cos@ D Sin@ D Sin@ D,
Cos@ D Cos@ D Sin@ D + Cos@ D Sin@ D, Cos@ D Sin@ D<,

8 Cos@ D Sin@ D Cos@ D Cos@ D Sin@ D,
Cos@ D Cos@ D Cos@ D Sin@ D Sin@ D, Sin@ D Sin@ D<,

8Cos@ D Sin@ D, Sin@ D Sin@ D, Cos@ D<<

Our application here is just a general rotation in three dimensions:

MapAJShowAGraphics3DA9RGBColor@0, 0, 0.996109D,

Line@880, 0, 0<, genRot.x”÷ êê Flatten<D ê.

9x1 1, x2 1, x3 1,
3
,

4
, #==E,

PlotRange 88 1.5, 1.5<, 8 1.50, 1.5<,

8 1.5, 1.5<<EN &, Table@i, 8i, 0, 2 , .3<DE;

2. Classical Mechanics 53



2.2.4 Scalars

In the mathematical description of physical processes, the values of a great

many  quantities  can  be  specified  by  a  single  real  number.  For  example,

length,  time,  mass,  and  temperature  are  such  quantities.  The  values  of

these quantities can be arranged on a single scale. They are called scalars.

The scale on which we measure the scalars is connected with a measuring

unit.  For  the  sake  of  consistency,  we  cannot  always  choose  the  units

arbitrarily.  What  we  can  choose  are  a  few  so-called  fundamental  units.

Other  units  are  derived  from  this  basic  set  and,  thus,  are  uniquely

determined.  For  example,  if  we  choose  to  measure  the  length  in

54 2.2 Mathematical Tools



centimeters  (cm),  meters  (m),  or  kilometers  (km),  the  units  of  area  and

volume are already given.

The smaller  number  of necessary units  for  physical  quantities is  bound to

be  small.  There  is  an  agreement  that  a  number  smaller  than  3  is  of  no

practical interest. Historically, there are different systems of measurement,

the  cgs,  the  mks,  and  the  Giorgi  system.  The  cgs  system  uses  the

fundamental  units  length,  mass,  and  time  measured  in  centimeter,  gram

and  second.  Even  electrical  and  magnetic  units  are  derived  from  this

system. In the mks system, the units are meter, kilogram, and second. The

ampere is  taken to  be a  fundamental electric  unit in the mks system. This

additional unit turns the mks system into the mksa or the Giorgi system.

Scalars can be positive, as mass and volume, or both positive and negative

such as the density of electric charge. Every physical quantity has what is

called a given dimension  as defined by the measuring units. However,  the

ratio  between  two  quantities  of  the  same  kind  is  dimensionless  or  a  pure

number.

The  calculus  used  for  pure  numbers  is  valid  for  scalars.  However,  in

physics,  only  scalars  of  the  same kind  and  of  the  same dimension can be

added  or  subtracted.  By  multiplication  and  division,  we  get  quantities  of

different dimensions expressed in other units.

Let  us  examine  the  real  meaning  of  a  scalar.  For  this,  let  us  consider  an

array of particles with different masses. Each particle is labeled according

to  its  mass  (see  Figure  2.2.3).  The  coordinate  axes  are  shown so  that  t  is

possible to specify a particular particle by a pair of numbers Hx, yL.
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Figure 2.2.3. Change of coordinates and action on the scalar quantities.

The  mass  m  of  the  particle  at  Hx, yL  can  be  expressed  as  mHx, yL.  Now,

consider  the axes  rotated as  shown in Figure 2.2.3.  It  is  evident  that each

mass is  now located  at  Hxè, yèL.  However,  because the  masses itself  did  not

change during the transformation, we can state

(2.2.22)mHx, yL = mHxè, yèL
because  the  mass  of  any  particle  is  not  affected  by  a  change  in  the

coordinate axes. 

Quantities  which  have  the  property  that  they  are  invariant  under  coordi-
nate transformations are termed scalars.

Although  it  is  possible  to  give  the  mass  of  a  particle  relative  to  any

coordinate  system  by  the  same  number,  it  is  clear  that  there  are  some

physical  properties  associated  with  the  particle  which cannot  be specified

in  such  a  simple  manner.  For  example,  the  direction  of  motion  and  the

direction  of  force  are  such  quantities.  The  description  of  these  more

complicated quantities require the use of vectors.
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2.2.5 Vectors

Not all physical quantities can be characterized by a single number. There

are  a  large  number  of  quantities  which  need  two  or  more  numbers  to

provide  an  exact  description  of  the  quantity.  Simply  stated,  the

combination  of  two  or  more  numbers  in  an  array  are  called  vectors.

Vectors  consist  of  components  specifying  a  direction  in  space.  The  term

vector is used to indicate a quantity that has both magnitude (a scalar) and

direction.  A  vector  is  often  represented  by  an  arrow  or  a  directed  line

segment.  The  length  of  the  arrow represents  the  magnitude  of  the  vector

and the arrow points in the direction of the vector.

Physical quantities of the vector type are velocities, forces, torques, and so

forth.  Vectors  can be  two,  three,  or  n dimensional.  However,  in  this  text,

we consider vectors in three-dimensional Euclidian space. As an historical

aside, it  is  interesting to note that the vector quantities listed are all taken

from mechanics,  but that  vector analysis was not used in the development

of  mechanics  and,  indeed,  had  not  been  created.  The  need  of  vector

analysis  became  apparent  only  with  the  development  of  Maxwell's

electromagnetic theory and in appreciation of the inherent vector nature of

quantities such as electric field and magnetic field (see Chapter 4).

Vectors are characterized by a magnitude and a direction in space. As we

will  see  in  a  moment,  vectors  are  defined  by  their  transformation

properties. Consider a coordinate transformation of the type

(2.2.23)xè i = ⁄ j  lij x j

with

(2.2.24)⁄ j  lij lkj = dij.

If  under  such  a  transformation  a  quantity  f = fHx1, x2, x3L  is  unaffected,

then f is called a scalar.

If a set of quantities HA1, A2, A3L is transformed from the xi  system to the
xè i system by means of a transformation matrix l with the result

(2.2.25)A
è

i = ⁄ j lij A j,

then  the  quantities  Ai  transform  as  the  coordinates  of  a  point  and  the
quantity A

”÷÷
= HA1, A2, A3L is termed a vector.
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A  vector  can  be  conveniently  represented  by  an  arrow  with  length

proportional  to  the  magnitude.  The  direction  of  the  arrow  gives  the

direction  of  the  vector,  the  positive  sense  of  direction  being  indicated  by

the point. In this representation, vector addition, e.g.

C
”÷÷

= A
”÷÷

+ B
”÷

A
”÷÷

+ B
”÷

consists  in  placing  the  back  end  of  vector  B
”÷

 at  the  point  of  vector  A
”÷÷
.

Vector C
”÷÷
 is then represented by an arrow drawn from the back of A

”÷÷
 to the

point of B
”÷
. This procedure, the triangle law of addition, assigns meaning to

the Equation (2.2.25) and is illustrated in Figure 2.2.4.

A
”÷÷

B
”÷÷

C
”÷÷

Figure 2.2.4. Triangle law of vector addition.

By completing the parallelogram, we see that

C
”÷÷

== B
”÷

+ A
”÷÷

True

Note  that  the  vectors  are  treated  as  geometrical  objects  that  are

independent of any coordinate system. Indeed, we have not yet introduced

a coordinate system.
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A  direct  physical  example  of  this  triangle  addition  law  is  provided  by  a

weight suspended by two cords (Figure 2.2.5). If the junction point O is in

equilibrium, the vector  sum of the two forces F
”÷÷

1  and F
”÷÷

2  must  just  cancel

the  downward  force  of  gravity,  F
”÷÷

3.  Here,  the  triangle  addition  law  is

subject to immediate experimental verification.

F
”÷

1
F
”÷

2

F
”÷

3

0

Figure 2.2.5. Equilibrium of forces. F
”÷÷

1 + F
”÷÷

2 = F
”÷÷

3.

2.2.6 Tensors

Physical  quantities  can  be  of  still  higher  complexity  than  scalars  and

vectors.  For  example,  the inertia  of a  rigid  body is  described by a  tensor.

Tensors are distinguished by their rank. The combination of n vectors in an

array  generates,  in  general,  an  n-rank  tensor.  In  this  scheme,  scalars  are

tensors  of  rank  zero  and  vectors  are  first-rank  tensors.  A  tensor  of  the

second rank, for example, has 32 = 9 components. A tensor can usually be

said to define the dependence of a vector upon another vector.

In  Section  2.2.4,  a  quantity  that  did  not  change  under  rotations  of  the

coordinate  system  that  is,  an  invariant  quantity,  was  labeled  a  scalar.  A

quantity  whose  components  transformed  like  those  of  the  distance  of  a

point  from  a  chosen  origin  was  called  a  vector  (see  Section  2.2.5).  The

transformation  property  was  adopted  as  the  defining  characteristic  of  a

vector. There is a possible ambiguity in  definition (2.2.23)
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(2.2.26)xè i = ⁄ j  lij x j

in which lij is the cosine of the angle between the xè i-axis and the x j-axis.

If we start with our prototype vector x”÷ , then

(2.2.27)xè i = ‚
j

xè iÅÅÅÅÅÅÅÅx j
x j

by partial differentiation. If we set

(2.2.28)lij =
xè iÅÅÅÅÅÅÅÅx j

,

Equations  (2.2.26)  and  (2.2.27)  are  consistent.  Any  set  of  quantities  x j

transforming according to

(2.2.29)xè i = ‚
j

xè iÅÅÅÅÅÅÅÅx j
x j

is defined as a contravariant vector.

A  slightly  different  type  of  vector  transformation  is  encountered  by  the

gradient “f, defined by

(2.2.30)“ f = i
” f

ÅÅÅÅÅÅÅÅÅx1
+ j
” f

ÅÅÅÅÅÅÅÅÅx2
+ k
”÷ f

ÅÅÅÅÅÅÅÅÅx3
,

where  the  vectors  i
”
, j
”
,  and  k

”÷
 denote  the  unit  vectors  of  the  coordinate

system. The gradient transforms as

(2.2.31)
f
è

ÅÅÅÅÅÅÅÅxè i
= ‚

j

f
ÅÅÅÅÅÅÅÅx j

x j
ÅÅÅÅÅÅÅÅxè i

,

using  f = fHx1, x2, x3L  and  f
è

= fHxè1, xè2, xè3L  defined  as  a  scalar  quantity.

Notice  that  this  differs  from  Equation  (2.2.29)  in  that  we  have  x j ê xè i

instead  of  xè i ê x j.  Equation  (2.2.31)  is  taken  as  the  definition  of  a

covariant vector with the gradient as the prototype.

In cartesian coordinates,

(2.2.32)
x j

ÅÅÅÅÅÅÅÅÅxè i
=

xè iÅÅÅÅÅÅÅÅÅx j
= lij,

and  there  is  no  difference  between  contravariant  and  covariant

transformations.  In  other  systems,  Equation  (2.2.32),  in  general,  does  not

apply,  and  the  distinction between contravariant  and covariant  is  real  and

must  be  observed.  In  the  remainder  of  this  section,  the  components  of  a
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contravariant vector are denoted by a superscript, xi, whereas a subscript is

used for the components of a covariant vector xi.

To  remove  some  of  the  fear  and  mystery  from  the  term  tensor,  let  us

rechristen a scalar as a tensor of rank zero and relabel a vector as a tensor

of  first  rank.  Then,  we  proceed  to  define  contravariant,  mixed,  and

covariant tensors of second rank by the following equations:

(2.2.33)A
è ij

= ‚
kl

xè iÅÅÅÅÅÅÅÅÅxk

xè j
ÅÅÅÅÅÅÅÅÅxl

Akl,

(2.2.34)B
è

j
i

= ‚
kl

xè iÅÅÅÅÅÅÅÅÅxk

xlÅÅÅÅÅÅÅÅÅxè j
Bl

k ,

(2.2.35)C
è

ij = ‚
kl

xkÅÅÅÅÅÅÅÅÅxè i

xlÅÅÅÅÅÅÅÅÅxè j
Ckl.

We  see  that  Akl  is  contravariant  with  respect  to  both  indices,  Ckl  is

covariant  with  respect  to  both  indices,  and  Bl
k  transforms  contravariantly

with respect to the first index k  but covariantly with respect to the second

index l.  Once again,  if  we are using cartesian coordinates,  all  three forms

of the tensors of second rank, contravariant, mixed, and covariant,  are the

same.

The  second-rank  tensor  A  (components  Aij)  can  be  conveniently

represented by writing out its components in a square array (3ä3 if we are

in three-dimensional space):

(2.2.36)A =

i

k

jjjjjjjjj
A11 A12 A13

A21 A22 A23

A31 A32 A33

y

{

zzzzzzzzz.

This does not mean that any square array of numbers or functions forms a

tensor. The essential condition is that the components transform according

Equations (2.2.33–2.2.35).

This  transformation  requirement  can  be  illustrated  by examining in  detail

the two-dimensional tensor:
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T =
i
k
jjj

-x y - y2

x2 x y

y
{
zzz

i
k
jjjj -x y - y2

x2 x y

y
{
zzzz

In  a  rotated  coordinate  system  the  T
è 11

 component  must  be  -xè yè ,  as

discussed  for  vectors.  We  check  to  see  if  this  is  consistent  with  the

defining Equation (2.2.33):

(2.2.37)
T
è 11

= -xè yè = ‚
kl

xè1ÅÅÅÅÅÅÅÅÅÅxk

xè1ÅÅÅÅÅÅÅÅÅÅxl
Tkl

= ⁄kl l1 k  l1 l Tkl

setting i and j equal to 1. Then, with the rotation matrix given by

lam = J
cosHqL sinHqL

-sinHqL cosHqL N

i
kjjj

cosHqL sinHqL
-sinHqL cosHqL

y
{zzz

we can represent the original vector x”÷ = Hx, yL in the transformed system as

r” = FlattenAlam.J
x
y
NE

8x cosHqL + y sinHqL, y cosHqL - x sinHqL<

Combining the coordinates from the transformed vector and the right-hand

side of Equation (2.2.37), we end up with an identity:

r”P1T r”P2T == ‚
k=1

2

‚
l=1

2

lamP1, kT lamP1, lT TPk, lT êê Simplify

True
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Repetition  of  the  other  three  components  verify  that  all  transform  in

accordance  of  Equation  (2.2.33)  and  that  T  is,  therefore,  a  second-rank

tensor.

This transformation property is not something to be taken for granted. For

instance,  if  one  algebraic  sign  were  changed,  if  T22  were  -x y  instead  of

+x y, then the array is

T =
i
k
jjj

-x y - y2

x2 -x y

y
{
zzz;

and condition (2.2.33) reduces to

r”P1T r”P2T == ‚
k=1

2

‚
l=1

2

lamP1, kT lamP1, lT TPk, lT êê Simplify

2 x y sin2HqL == 0

which  states  that  the  equality  is  not  satisfied  and,  thus,  T  is  not  a  tensor

because it does not require the transformation properties.

The  addition  and  subtraction  of  tensors  is  defined  in  terms  of  the

individual elements just as for vectors. To add or subtract two tensors, the

corresponding elements are added or subtracted. If

(2.2.38)A + B = C,

then

(2.2.39)Aij + Bij = Cij.

Of course, A and B must be tenors of the same rank and both expressed in

a space of the same number of dimensions.
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2.2.7 Vector Products

Having  defined  vectors,  we  now proceed  to  combine  them.  The  laws  for

combining  vectors  must  be  mathematically  consistent.  From  the

possibilities that are consistent, we select two that are both mathematically

and physically interesting.

The combination of AB cosHqL, in which A and B are the magnitudes of two

vectors  and  q,  the  angle  between  them,  occurs  frequently  in  physics.  For

instance,

Work = Force * Displacement * cosHqL
is  usually  interpreted  as  displacement  times  the  projection  of  the  force

along the displacement. With such application in mind, we define

A
”÷÷
.B
”÷

== ‚
i
Ai Bi

as the scalar product of A
”÷÷
 and B

”÷
. We note that for this definition A

”÷÷
.B
”÷

= B
”÷
.A
”÷÷
.

We have  not  yet  shown that  the  word  scalar  is  justified  or  that  the  scalar

product is indeed a scalar quantity. First let us demonstrate that a vector A
”÷÷

multiplied by itself is a scalar. For example

A
”÷÷
.A
”÷÷

A
”÷÷
.A
”÷÷

Now, let us define a vector C
”÷÷
 that is the sum of two other vectors A

”÷÷
 and B

”÷
:

C
”÷÷

= A
”÷÷

+ B
”÷

A
”÷÷

+ B
”÷

The scalar product of C
”÷÷
 with itself is thus
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C
”÷÷
.C
”÷÷
êê Expand

IA”÷÷ + B
”÷ M.IA”÷÷ + B

”÷ M

Because the scalar product is commuting, we find with C
”÷÷
.C
”÷÷

= C2

A
”÷÷
.B
”÷

==
1
ÄÄÄÄÄÄ
2
H- A2 - B2 + C2L

A
”÷÷
.B
”÷

==
1
ÅÅÅÅÅÅ
2
H-A2

- B2
+ C2L

Because  the  right-hand  side  of  this  equation  is  invariant  (i.e.,  a  scalar

quantity),  the left-hand side, A
”÷÷
.B
”÷
,  must  also be invariant under  rotation of

the coordinate system. Hence, A
”÷÷
.B
”÷
 is a scalar.

Another property of the dot product is

IA
”÷÷

- B
”÷
M.IA

”÷÷
+ B

”÷
M

A2 - B2

We next  consider another  method for  the combination of two vectors,  the

so-called  vector  product  or  cross-product.  For  example,  the  angular

momentum of a body is defined as

Angular momentum = Radius arm ä Linear momentum

                                  = Distance * Linear momentum* sin(q)

First,  we  assert  that  this  operation  ä  does,  in  fact,  produce  a  vector.  The

product  considered  here  actually  produces  an  axial  vector,  but  the  term

vector  product  will  be  used  in  order  to  be  consistent  with  popular  usage.

The  vector  product  of  A
”÷÷

 and  B
”÷

 is  denoted  by  a  cross  ä;  older  notation

includes  AA”÷÷ B
”÷ E, AA”÷÷ .B

”÷ E,  and  AA”÷÷ fl B
”÷ E.  For  convenience  in  treating  problems

relating  to  quantities  such  as  angular  momentum,  torque,  and  angular

velocity, we define the cross-product as 
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C
”÷÷

= A
”÷÷

â B
”÷

A
”÷÷

äB
”÷

with

(2.2.40)C = AB sinHqL
and  where  C

”÷÷
 is  the  vector  that  we  assert  results  from this  operation.  The

components of C
”÷÷
 are defined by the relation

(2.2.41)Ci = ⁄k, j eijk A j Bk

where the symbol eijk  is the permutation symbol or Levi–Civita density and

has the following properties: 

eijk = 9
0, if any index is equal to any other

+1, if i, j, k, form an even permutation of 1, 2, 3

-1, if i, j, k form an odd permutation of 1, 2, 3.

We  note  that  A
”÷÷

äB
”÷

 is  perpendicular  to  the  plane  defined  by  A
”÷÷

 and  B
”÷

because

A
”÷÷
.IA
”÷÷

â B
”÷
M

0

and

B
”÷
.IA
”÷÷

â B
”÷
M

0

Since a plane area can be represented by a vector normal to the plane and

of magnitude equal to the area, evidently C
”÷÷
 is such a vector.  The positive

direction  of  C
”÷÷

 is  chosen  to  be  the  direction  of  advance  of  a  right-hand

screw when rotated from A
”÷÷
 to B

”÷
.
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We  should  note  the  following  properties  of  the  vector  product  which

results from the definitions:

A
”÷÷

â B
”÷

== -B
”÷

â A
”÷÷

but, in general,

C
”÷÷

=.

A
”÷÷

â IB
”÷

âC
”÷÷
M =!= IA

”÷÷
â B
”÷
MâC

”÷÷

True

meaning that the cross-product is not associative. Another important result

of the cross-product is

A
”÷÷

â IB
”÷

âC
”÷÷
M

A
”÷÷
.C
”÷÷

B
”÷

- A
”÷÷
.B
”÷

C
”÷÷

The scalar product of two cross-products is expressed by the difference of

two dot products

IA
”÷÷

â B
”÷
M.IC

”÷÷
â D
”÷÷
M

A
”÷÷
.C
”÷÷

B
”÷
.D
”÷÷

- A
”÷÷
.D
”÷÷

B
”÷
.C
”÷÷

The following identities useful  in simplifying some expressions are stated

without proof:
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A
”÷÷
.IB
”÷

âC
”÷÷
M

B
”÷

äC
”÷÷
.A
”÷÷

A
”÷÷

â IB
”÷

âC
”÷÷
M

A
”÷÷
.C
”÷÷

B
”÷

- A
”÷÷
.B
”÷

C
”÷÷

IA
”÷÷

â B
”÷
Mâ IC

”÷÷
â D
”÷÷
M

A
”÷÷

äIB”÷ .D
”÷÷ MC

”÷÷
- A

”÷÷
ä IB”÷ .C

”÷÷ MD
”÷÷

IA
”÷÷

â B
”÷
M.IA

”÷÷
â B
”÷
M

A2 B2 - IA”÷÷ .B
”÷ M2

The sum of a cyclic permutation of a triple cross-product vanishes:

A
”÷÷

â IB
”÷

âC
”÷÷
M + B

”÷
â IC

”÷÷
â A
”÷÷
M + C

”÷÷
â IA

”÷÷
â B
”÷
M

0

Applying  the  rules  from  above  to  the  following  example,  we  are  able  to

simplify this expression to 

IA
”÷÷

- B
”÷
MâIA

”÷÷
+ B

”÷
M

2 A
”÷÷

äB
”÷
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2.2.8 Derivatives

If  a  scalar  function  f = fHsL  is  differentiated  with  respect  to  the  scalar

variable  s,  then because neither  part  of  the derivative  can change under  a

coordinate  transformation,  the  derivative  itself  cannot  change  and  must

therefore be a scalar; that is, in the xi  and xè i  coordinate systems, f = f
è
 and

s = sè, so that df = d  f
è
 and ds = d sè. Hence,

(2.2.42)d f
ÅÅÅÅÅÅÅÅd s =

d f
è

ÅÅÅÅÅÅÅÅd sè = I d f
ÅÅÅÅÅÅÅÅds M

è

.

In a similar manner, we can formally define the differentiation of a vector

A
”÷÷
 with respect to a scalar s. The components of A

”÷÷
 transform according to

(2.2.43)A
è

i = ⁄ j  lij A j.

Therefore, upon differentiation, we obtain, since l is independent of sè,

(2.2.44)d A
è

iÅÅÅÅÅÅÅÅÅÅd sè =
d

ÅÅÅÅÅÅÅd sè H⁄ j  lij A jL = ‚
j

 lij
d A j
ÅÅÅÅÅÅÅÅÅÅd sè .

Since s and sè are identical, we have

(2.2.45)d A
è

iÅÅÅÅÅÅÅÅÅÅd sè = I d AiÅÅÅÅÅÅÅÅÅÅd s M
è

= ‚
j

 lij
d A j
ÅÅÅÅÅÅÅÅÅÅd s .

Thus,  the  quantities  dA j êds  transform  as  do  the  components  of  a  vector

and, hence, are the components of a vector which we can write as d A
”÷÷ êds.

The  derivatives  of  vector  sums  and  products  obey  the  rules  of  ordinary

vector calculus; for example,

IA
”÷÷
HsL + B

”÷
HsLM

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
s

A
”÷÷ £ HsL + B

”÷ £ HsL

The dot product differentiated gives

2. Classical Mechanics 69



IA
”÷÷
HsL.B

”÷
HsLM

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
s

A
”÷÷ HsL.B”÷ £ HsL + B

”÷ HsL.A”÷÷ £ HsL

Differentiation of a cross-product results in

IA
”÷÷
HsLâ B

”÷
HsLM

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
s

A
”÷÷ HsLäB

”÷ £ HsL + A
”÷÷ £ HsLäB

”÷ HsL

A product of a scalar and a vector yields

IfHsL A
”÷÷
HsLM

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
s

A
”÷÷ HsL f£HsL + fHsL A

”÷÷ £ HsL

Knowing that a vector depending on a scalar can be differentiated without

changing the  nature,  we  now turn to  the discussion of the most  important

member of a class called vector differential operators. The most important

operator of this class is the gradient operator.

Consider a scalar f which is an explicit function of the coordinates x j  and,

moreover,  is  a  continuous,  single-valued  function  of  these  coordinates

throughout  a  certain  region  of  space.  Then,  under  a  coordinate

transformation  that  carries  the  xi  into  the  xè i, f
è Hxè1, xè2, xè3L = fHx1, x2, x3L,

and by the chain rule of differentiation, we can write

(2.2.46)
f
è

ÅÅÅÅÅÅÅÅÅÅxè1
= ‚

j

f
ÅÅÅÅÅÅÅÅÅx j

x j
ÅÅÅÅÅÅÅÅÅÅxè1

.

Similarly, we obtain for f
è ê xè2 and f

è ê xè3, so that in general we have

(2.2.47)
f
è

ÅÅÅÅÅÅÅÅÅxè i
= ‚

j

f
ÅÅÅÅÅÅÅÅÅx j

x j
ÅÅÅÅÅÅÅÅÅxè i

.
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Now, the inverse coordinate transformation is

(2.2.48)x j = ⁄k  lkj xèk .

Differentiating this relation, we find

(2.2.49)
x j

ÅÅÅÅÅÅÅÅÅxè i
= ÅÅÅÅÅÅÅÅÅxè i

H⁄k  lkj xèkL = ‚
k

 lkj
xèkÅÅÅÅÅÅÅÅÅxè i

.

However, the term in the last expression is just dki, so that

(2.2.50)
x j

ÅÅÅÅÅÅÅÅÅÅxèi
= ⁄k  lkj dki = lij.

Substituting Equation (2.2.50) into Equation (2.2.47), we obtain

(2.2.51)
f
è

ÅÅÅÅÅÅÅÅÅxè i
= ‚

j

f
ÅÅÅÅÅÅÅÅÅx j

lij.

Because  it  follows  the  correct  transformation  equation,  the  function

f ê x j  is  the jth  component  of  a  vector  which is  termed  the gradient of

the function f.  Note  that  even though f  is  a  scalar,  the gradient of  f  is  a

vector. The gradient of f is written either as grad f or as “ f.

Since  the  function  f  is  an  arbitrary  scalar  function,  it  is  convenient  to

define  the  differential  operator  described  above  in  terms  of  the  gradient

operator

(2.2.52)HgradLi = “i = ÅÅÅÅÅÅÅÅÅxi

We can express the complete vector operator as

(2.2.53)grad = “ = ‚
i

e”i ÅÅÅÅÅÅÅÅxi
.

The  gradient  of  a  scalar  function  is  of  extreme  importance  in  physics

expressing the relation between a force field and a potential field.

Force = -“ potential

Thus,  we  can  state  that  the  gradient  operator  can  operate  directly  on  a

scalar function as “ f, be used in a scalar product with a vector function in

“ .A
”÷÷

 called  the  divergence  of  A
”÷÷
,  or  be  used  in  a  vector  product  with  a

vector function as in “ ä A
”÷÷
 which is known as the curl  of A

”÷÷
.

The successive operation of the gradient operator produces

(2.2.54)“ .“ = ‚
i

ÅÅÅÅÅÅÅÅxi
ÅÅÅÅÅÅÅÅxi

= ‚
i

2
ÅÅÅÅÅÅÅÅÅ

xi
2 .
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This important product operator is called the Laplacian and is also written

“2  = ‚
i

2
ÅÅÅÅÅÅÅÅÅ

xi
2 .

The following lines demonstrate some properties of the gradient. First, we

check  the  product  rule  on  scalar  functions.  Given  two  scalar  functions

f = fHx”÷ L and y = yHx”÷ L, we are interested in the action of “ on the product:

Nabla@ D

y “f + f “y

Another example is the calculation of the gradient for the function

S = Hx2 + y2 + z2L-3ê2

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHx2 + y2 + z2L3ê2

The gradient is a vector containing three components:

gr = GradHSL; gr êê MatrixForm

i

k

jjjjjjjjjjjjjjj

-
3 x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHx2+y2+z2L5ê2
-

3 y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHx2+y2+z2L5ê2

-
3 z

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHx2+y2+z2L5ê2

y

{

zzzzzzzzzzzzzzz

If we apply the divergence operator on this vector, we find

di = Simplify@DivHgrLD

6
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHx2 + y2 + z2L5ê2
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We are also able to determine the curl of the gradient field:

CurlHgrL êê MatrixForm

i

k
jjjjjjjj

0

0

0

y

{
zzzzzzzz

saying that  the curl of a gradient vanishes. This result,  demonstrated for a

specific example, has the generalization

Nabla@D Nabla@UD

0

Another  relation  combining  “  is  the  divergence  of  a  curl  applied  to  a

vector field:

Nabla@D.Nabla@D V
”÷

0

2.2.9 Integrals

The vector which results from the volume integration of a vector function

A
”÷÷

= A
”÷÷ Hx”÷ L throughout a volume V  is given by

(2.2.55)ŸV
A
”÷÷

dv = H ŸV
A1 dv, ŸV

A2 dv, ŸV
A3 dv L

Thus, the integration of the vector A
”÷÷
 throughout V  is accomplished simply

by performing three separate, ordinary integrations.

The  integral  over  the  surface  S  of  the  projection  of  a  vector  function

A
”÷÷

= A
”÷÷ Hx”÷ L onto that surface is defined to be

(2.2.56)ŸS
A
”÷÷
.d a”÷
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where d a”÷  is an infinitesimal element of area of the surface. We write d a”÷
as a vector quantity since we can attribute to it not only a magnitude da but

also a direction corresponding to  the normal to  the surface at the point in

question. If the unit normal vector is n”÷ , then

(2.2.57)d a”÷ = n”÷ da.

Therefore, we have

(2.2.58)ŸS
A
”÷÷
.d a”÷ = ŸS

A
”÷÷
.n”÷ da

or

(2.2.59)ŸS
A
”÷÷

d a”÷ = ŸS ⁄i Ai dai.

Equation  (2.2.58)  states  that  the  integral  of  A
”÷÷

 over  a  surface  S  is  the

integral of  the normal component of A
”÷÷
 over  this  surface.  The normal to a

surface  can  be  taken  to  lie  in  either  of  two  possible  directions  (up  or

down); thus, the sign of n”÷  is ambiguous. If the surface is closed, we adopt

the convention that the outward normal is positive.

The  line  integral  of  a  vector  function  A
”÷÷

= A
”÷÷ Hx”÷ L  along  a  given  path

extending  from the  point  B  to  the  point  C  is  given  by the  integral  of  the

component of A
”÷÷
 along the path:

(2.2.60)ŸBC
A
”÷÷

d s” = ŸBC ⁄i Ai dxi.

The  quantity  d s”  is  an  element  of  unit  length  along  the  given  path.  The

direction of d s” is taken to be positive along the direction in which the path

is traversed.

The  form  (2.2.60)  is  exactly  the  same  as  that  encountered  when  we

calculate the work done with a force that varies along the path,

(2.2.61)W = Ÿ F
”÷÷

 „ r”.
In this expression F

”÷÷
 is the force exerted on a particle. 

2.210 Exercises

1.  Show that the components of a vector a”÷  in the direction orthogonal
to a vector b

”÷
 is
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(2.2.62)a”÷ - Ia”÷ .b
”÷ M b

”÷
ÅÅÅÅÅÅÅb2 =

1
ÅÅÅÅÅÅÅb2 Ib”÷ µ Ia”÷ µ b

”÷ MM
2.  Show that  under  double  reflection  in  two  mirrors,  one  in  the  x - z
plane  and  te  other  in  the  x - y  plane,  a  axial  vector  transforms  in  the
same way as a polar vector.

3.  The  transformation  x
–

j = -x j H j = 1, 2, 3L  describes  a  reflection  in
the origin. Draw a diagram to illustrate how two radius vectors r”1  and
r”2 and their vector product r”1 µ r”2 transform under this reflection.

4. Prove the following identities:

a) “IB”÷ . A
”÷÷ M = 2 “.B

”÷
A
”÷÷

+ B
”÷
.“ A

”÷÷
+ 2 “.A

”÷÷
B
”÷

+ A
”÷÷
.“ B

”÷
b) “ µ I“ µ A

”÷÷ M " = A
”÷÷

“
2

+ “.A
”÷÷

“

c) “ µ H“ f L " = 0

2. Classical Mechanics 75



2.3 Kinematics

2.3.1 Introduction

Kinematics  is  concerned  with  the  motion  of  a  body.  We  assume  that  the

motion is in itself present. At the moment, we do not ask for the origin of

the  motion  (i.e.,  the  forces  causing  the  motion).  The  consideration  of  the

forces will be discussed in Section 2.4, where we discuss the dynamics of a

mass point.

Kinematics  is  concerned  with  the  mathematical  description  of  the  path  a

body  moves  along.  The  body  is  taken  as  a  mass  m  with  vanishing

extension. We call such an object a point mass or, in short, a particle. The

location  of  this  point  is  measured  with  respect  to  a  second  point,  a

reference point. This reference point is part of a fixed system. In practical

applications,  the  fixed system is  the Earth.  Defining on the surface of  the

Earth,  a  fixed point  allows us to  introduce coordinates x, y,  and z.  These

so-called  cartesian  coordinates  allow  us  to  locate  a  point  in  space  by

specifying the position by the triple Hx, y, zL  which may depend on time if

the  particle  moves  in  space.  In  such a  case,  the location of the  particle  is

given by a vector r” = r”HtL given by

(2.3.1)r”HtL =

i

k
jjjjjjjj

xHtL
yHtL
zHtL

y

{
zzzzzzzz.

For a certain time t,  the position of the point is given by Equation (2.3.1)

(see Figure 2.3.1)
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y
x

z

r”HtL

Figure 2.3.1. A track in a coordinate system. Time is used as a parameter of the motion.

If time t changes continuously, the point moves along a track.

To  characterize  the  particle  in  a  more  precise  way,  we  not  only need  the

position  but  also  other  quantities  like  the  velocity  or  acceleration  of  the

particle. The following subsections will discuss these terms in more detail.

2.3.2 Velocity

We already mentioned that the coordinates describing a particle may vary

with  time.  Let  us  consider  a  system  consisting  of  a  single  particle.  The

position  of  the  particle  is  described  by  the  values  of  its  cartesian

coordinates  xi  at  each  value  of  the  time  t.  The  rate  at  which  these

coordinates change with time gives the velocity of a particle. Denoting the

cartesian components of velocity by vi, we have

(2.3.2)vi =
dxiÅÅÅÅÅÅÅÅdt = xi

' .

This can be written in vector notation as

(2.3.3)v” =
d r”
ÅÅÅÅÅÅÅdt = r”'.

Velocity  can  be  described  in  terms  of  generalized  coordinates  of  Section

2.2. From Equation (2.2.6), we see that

(2.3.4)xi = xiHq1, q2, q3, tL.
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depend  on  the  qi  and  also  on  t.  Then,  the  temporal  change  of  the

coordinates is

(2.3.5)xi
' =

xiÅÅÅÅÅÅÅÅÅqm
qm

' +
xiÅÅÅÅÅÅÅÅt ,

where  we  used  the  Einstein  summation  convention  to  sum  over  the  m

components.  If  desired,  these equations can be solved for the qm
'  in terms

of  the  xi
'  even  though  the  number  of  equations  might  be  greater  than  the

number of unknowns, because the equations are not independent but must

satisfy the constraints.

The cartesian components of velocity are seen to be linear functions of the

generalized  velocity  components  and  are,  in  general,  nonlinear  functions

of  the  qi's  no  matter  how  the  generalized  coordinates  are  defined.  This

means that  it  is  easy to  express velocities in generalized coordinates.  The

term x j ê t appears only when there are moving constraints on the system

or in the rare cases where it  is convenient to introduce moving coordinate

axes.

Example 1: Coordinate Systems

We can apply the results from above to commonly used special coordinate

systems  defined  by  Equations  (2.2.1–2.2.3).  In  order  to  describe  the

motion of a particle in a plane, it is convenient to introduce the plane polar

coordinates  rand  q  defined  by  Equations  (2.2.1)  and  (2.2.2),  r  being  the

length  of  the  position  vector  of  the  particle  and  q  the  angle  between  the

position vector and the x-axis (see Figure 2.3.2).
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Figure 2.3.2. Polar coordinates.

We  solve  Equations  (2.2.1)  and  (2.2.2)  for  x  and  y  and  assume  that  all

coordinates depend on t. In Mathematica notation, we write

polar = 8xHtL == rHtL cosHqHtLL, yHtL == rHtL sinHqHtLL<; TableForm@polarD

xHtL == cosHqHtLL rHtL
yHtL == rHtL sinHqHtLL

The  velocity  components  are  found  by  differentiating  this  relation  with

respect to time:

velocity =
polar

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

; TableForm@velocityD

x£HtL == cosHqHtLL r£HtL - rHtL sinHqHtLL q£HtL
y£HtL == sinHqHtLL r£HtL + cosHqHtLL rHtL q£HtL

The terms in r ' give the velocity toward or away from the origin, and those

in q ' give the velocity around the origin. The equations can be solved for r '

and q '
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TableForm@Flatten@Simplify@PowerExpand@FunctionExpand@
Solve@velocity, 8r¢HtL, q¢HtL<D ê. Solve@polar, 8rHtL, qHtL<DP4TDDDDD

Solve::ifun : Inverse functions are being used by Solve, so some solutions may not be found.

r£HtL Ø
xHtL x£HtL+yHtL y£HtL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!!

xHtL2+yHtL2
q£HtL Ø

xHtL y£HtL-yHtL x£HtL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

xHtL2+yHtL2

Example 2: Moving Particle

For  a  particle  moving  under  the  influence  of  a  force  which  possesses

spherical symmetry (i.e., is directed toward a fixed point and depends only

on the distance of the particle from the point), it is convenient to introduce

the  spherical  coordinates  defined  by  Equation  (2.2.3).  We  solved  for  the

x's; these yield

spherical = 8xHtL == rHtL sinHqHtLL cosHfHtLL, yHtL == rHtL sinHqHtLL sinHfHtLL,
zHtL == rHtL cosHqHtLL<; TableForm@sphericalD

xHtL == cosHfHtLL rHtL sinHqHtLL
yHtL == rHtL sinHqHtLL sinHfHtLL
zHtL == cosHqHtLL rHtL

The geometrical significance of these coordinates is the following: r is the

length of the radius vector of the particle; q is the angle between the radius

vector  and  the  z-axis;  f  is  the  angle  between  the  plane  containing  the

radius  vector  and  the  z-axis  and  the  plane  containing  the  x-axis  and  the

z-axis.

The velocity components are found by differentiating with respect to t:
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velocity =
spherical

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

8x£HtL == cosHfHtLL sinHqHtLL r£HtL +

cosHqHtLL cosHfHtLL rHtL q
£HtL - rHtL sinHqHtLL sinHfHtLL f

£HtL,
y£HtL == sinHqHtLL sinHfHtLL r£HtL + cosHqHtLL rHtL sinHfHtLL q

£HtL +

cosHfHtLL rHtL sinHqHtLL f
£HtL, z£HtL == cosHqHtLL r£HtL - rHtL sinHqHtLL q

£HtL<

2.3.3 Acceleration

In general,  the components of the position vector  (as well  as velocity and

acceleration)  depend  on  the  generalized  coordinates  and  their  time

derivatives.  So,  the  velocity components  of  a  particle  can vary with time.

The  rate  of  change  of  the  velocity  components  gives  the  acceleration

components

(2.3.6)ai = vi
' = xi

''.

The acceleration in vector notation for a particle is

(2.3.7)a”÷ = v”'
= r”''.

Acceleration  components  can  be  given  in  terms  of  the  generalized

coordinates. From Equation (2.3.5), we obtain

(2.3.8)xi
'' =

xiÅÅÅÅÅÅÅÅÅqm
qm

'' +
2xiÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqm qn

qm
' qn

' + 2
2xiÅÅÅÅÅÅÅÅÅÅÅÅÅÅqm t qm

' +
2xiÅÅÅÅÅÅÅÅÅÅt2 .

If the transformation from the xi's to the qi's does not depend explicitly on

time, which is the usual situation, Equation (2.3.8) reduces to

(2.3.9)xi
'' =

xiÅÅÅÅÅÅÅÅÅqm
qm

'' +
2xiÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqm qn

qm
' qn

' .

The cartesian acceleration components are  nonlinear  functions of  the first

derivatives  of  the  generalized  coordinates  and  depend  linearly  on  the

second  derivatives  of  the  generalized  velocity components.  The  quadratic

dependence  on  the  generalized  velocity  coordinates  disappears  only if  all

of the second derivatives of the transformation function with respect to the

q's  vanish; that is,  only if the x's  are linear functions of the q's.  The terms

quadratic in the velocity components, which enter whenever the coordinate
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curves qi = const are not straight lines, represent effects like the centripetal

and Coriolis acceleration.

Higher derivatives of the coordinates with respect to time could be named

and  discussed.  However,  this  proves  unnecessary  because  the  laws  of

mechanics are stated in terms of the acceleration. Even the computation of

the  components  (2.3.8)  of  the  acceleration  in  terms  of  generalized

coordinates  can  become  tedious  for  relatively  simple  problems.  The

advantage  of  introducing  generalized  coordinates  would  then  seem  to  be

counterbalanced  by  the  algebraic  complexity  of  the  acceleration

components  which  are  to  be  inserted  in  the  dynamic  law  F
”÷÷

= m a”÷ .

Fortunately, a method due to Lagrange, discussed in Section 2.7, makes it

possible  to  avoid this  difficulty and to  write  down equations of motion in

terms  of  generalized  coordinates  without  ever  having  to  compute  the

second time derivatives of these coordinates.

2.3.4 Kinematic Examples

Having  the  fundamental  quantities  such  as  velocity  and  accelaration

available,  we  are  able  to  examine  physical  systems.  In  the  following  we

will  examine  two  examples  demonstarting  the  application  of  the  notons

introduced.

Example 1: Motion on a Helix

As a first example of kinematics, let us consider the motion of a bead with

constant  orbital  velocity  confined  to  a  helix.  This  motion  can  be  divided

into  two  parts.  First,  we  have  a  circular  motion  of  the  bead  in  the

Hx, yL-plane and a linear motion in the z-direction. The motion of the bead

can be described in a  parametric  way by using time t  as a  parameter.  For

example, the three coordinates are given by

coordinates = 8r sinHw tL, r cosHw tL, g t<

8r sinHt wL, r cosHt wL, t g<
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where r, w,  and g  are certain parameters determining the radius,  the time

of  revolution,  and  the  velocity  along  the  z-direction,respectively.  The

velocity of this track is given by

velocity =
coordinates

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

8r w cosHt wL, -r w sinHt wL, g<

The amount of the velocity is determined by the three parameters a, b, and

g:

SimplifyA
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

velocity.velocity E

è!!!!!!!!!!!!!!!!!!!!!!!!
g2 + r2 w2

The acceleration follows by

acceleration =

2 coordinates
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

t t

8-r w2 sinHt wL, -r w2 cosHt wL, 0<

which has a total amount

PowerExpandASimplifyA
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

acceleration.acceleration EE

r w2

independent of g.  If  we choose these parameters in a certain way, we can

plot  the  path  of  the  bead  in  cartesian  coordinates.  Let  us  take  a  circle  of

radius r = 1, w = 1 ê2, and the velocity along the z-direction g = 1 ê 10. 
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parameterRules = 9 1,
1

2
,

1

10
=

:r Ø 1, w Ø
1
ÅÅÅÅÅÅ
2

, g Ø
1

ÅÅÅÅÅÅÅÅÅ
10

>

With these values, the three coordinates of the bead simplify to

Coord = coordinates ê. parameterRules

:sinJ t
ÅÅÅÅÅÅ
2
N, cosJ t

ÅÅÅÅÅÅ
2
N, t

ÅÅÅÅÅÅÅÅÅ
10

>

The related velocity and acceleration are

vel = velocity ê. parameterRules;

accel = acceleration ê. parameterRules;

The  track  of  the  bead  can  be  displayed  by  plotting  the  coordinates  by

varying the parameter t:
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track = ParametricPlot3D@Coord, 8t, 0, 10 p<D;
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The  motion  of  the  bead  itself  follows  by  creating  a  table  containing  the

coordinates along the track. Again, for each point, we change the time t in

steps of 0.5:

points = Table@8RGBColor@0, 0, 0.996109D,
PointSize@.1D, Point@CoordD<, 8t, 0, 10 p, .5<D;

We also generate a table containing the velocity of the bead

li = Table@8RGBColor@0.996109, 0, 0D,
Line@8Coord, Coord + vel<D<, 8t, 0, 10 p, .5<D;

and the acceleration
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ac = Table@8RGBColor@0, 0.500008, 0D,
Line@8Coord, accel + Coord<D<, 8t, 0, 10 p, .5<D;

Combining  the  graphics,  the  track,  and  the  location  of  the  bead,  we  can

follow  the  movement  by  just  changing  the  time  t.  The  following

illustration shows the movement of the bead along the helix.  The velocity

of the bead is always tangential to the helix and the related acceleration is

perpendicular to the velocity:

HShow@Graphics3D@#1D, track,
PlotRange -> 88-1.2, 1.2<, 8-1.2, 1.2<, 8-.1, 3.<<D &L êû

Transpose@8li, ac, points<D;

The  illustration  demonstrates  that  the  bead  climbs  up  the  helix  with  a

constant speed and revolves around the center of the Hx, yL-plane. We can

check that v” is perpendicular to a”÷  by the scalar product:
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velocity . acceleration

0

At this stage of our understanding, we described a physical system (a bead)

by  means  of  a  parametric  description.  At  the  moment,  we  do  not

understand  what  kind  of  laws  this  motion  governs.  A  similar  situation  is

encountered if we describe the kinematic movement of a projectile. 

Example 2: Motion of a Projectile

The motion of a projectile was and is an example of importance because in

a baseball or golf play, we need to know where the ball touches down if we

give  it  a  strike.  Ancient  people  needed  also  to  know where  the  stones  or

bullets go if they are thrown by a bow. Applications for military purposes

are evident.

In  this  example  let  us  consider  the  motion of  a  projectile  or  a  ball  in  the

atmosphere.  In  our  considerations,  we  neglect  the  air  resistance.

Furthermore,  we  consider  only  kinematics;  we  also  demand  that  the

projectile follows a parabolic orbit with a vertical symmetry axis and with

constant  horizontal  velocity.  The  motion  of  the  ball  takes  place  in  a

three-dimensional space; thus, the velocity and the location of the ball is a

certain vector with three components,  respectively. These components are

independent  of  each  other  and,  thus,  can  be  considered  on  its  own.  Thus

we are able to separate each direction of the motion from the others. If we

assume  that  the  projectile  is  moving  in  a  plane,  we  only  need  two

coordinates  to  describe  the  motion.  Let  us  further  assume  that  the  ball  is

thrown with a finite velocity v”0  inclined by an angle a  with respect to the

horizontal direction. To simplify things, let us first define the origin as the

starting  point  of  the  ball.  Later,  we  will  generalize  this  to  the  situation

where the starting point does not coincide with the origin. The track of the

ball is defined by the parametric representation in t by
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track = 9t vx + x0,
1
ÄÄÄÄÄÄ
2
H- gL t2

+ vy t + y0=;

where x0 and y0 are the starting point and vx  and vy  are the velocities in x-

and y-direction, respectively. The assumption that the origin is the starting

point of the track causes the vanishing of x0 and y0.

cond1 = Solve@Thread@80, 0< == track ê. t 0, ListD,
8x0, y0<D êê Flatten

8x0 Ø 0, y0 Ø 0<

Inserting  these  initial  conditions  into  the  track,  we  find  a  simplified

representation by

tracS = track ê. cond1

:t vx, t vy -
g t2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

>

The  assumption  that  the  ball  is  thrown  in  a  certain  direction  with

inclination a to the horizon and initial velocity v allows us to determine the

parameters vx and vy in the track representation.

cond2 = FlattenA

SolveAThreadA8v cosHaL, v sinHaL< ==
tracS

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

ê. t Æ 0, ListE, 8vx, vy<EE

8vx Ø v cosHaL, vy Ø v sinHaL<

Again inserting  the  results  into  the  track coordinates,  we  end  up  with  the

final representation of the path by
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tracS1 = tracS ê. cond2

:t v cosHaL, t v sinHaL -
g t2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

>

This  representation  contains  two  parameters  v  and  a,  the  amount  of  the

velocity and the inclination, respectively. Choosing this parameters allows

us to plot the track of the ball:

BallTrack = ParametricPlotAEvaluateAtracS1 ê. 9v Æ 1, a Æ
p
ÄÄÄÄÄÄ
3

, g Æ 1=E,

8t, 0, 2<, AxesLabel Æ 8"x", "z"<E;
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The ball itself for different times can be represented by the coordinates

Ball = TableA9RGBColor@0, 0, 0.62501D, PointSize@.08D,

PointAtracS1 ê. 9v Æ 1, a Æ
p
ÄÄÄÄÄÄ
3

, g Æ 1=E=, 8t, 0, 1.8, .1<E;

Combining both sets of data allows us to display the movement of the ball.

The  illustration  shows  that  the  ball  moves  first  upward  and  then

downward, hitting the ground at a finite distance.

HShow@BallTrack, Graphics@#1D, PlotRange -> 8-0.2, 0.5<D &L êû Ball;
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This  sequence  of  pictures  was  generated  by  plotting  the  parametric

representation of the motion. The general equation of the path yHxL can be

obtained be eliminating the variable t in the track representation:

generalTrack =

Flatten@Simplify@Solve@Eliminate@Thread@8x, y< == track, ListD, tD, yDDD

:y Ø
2 y0 vx2 + 2 vy Hx - x0L vx - g Hx - x0L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 vx2
>

Writing out the velocity component yields

gTrack = Simplify@generalTrack ê. cond2D

:y Ø
2 v2 Hy0 + Hx - x0L tanHaLL - g Hx - x0L2 sec2HaL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 v2
>

for  the  ball's  path.  This  relation  is  of  the  form  of  a  parabola  passing

through the point Hx0, y0L. The following figure shows the path of a ball:
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PlotAy ê. gTrack ê. 9x0 Æ 1, y0 Æ 2, v Æ 2, a Æ
p
ÄÄÄÄÄÄ
5

, g Æ 9.81=,

8x, 1, 2.3<, AxesLabel Æ 8"x", "y"<,

PlotStyle Æ RGBColor@0, 0, 0.996109D, PlotRange Æ J
0 2.5`
0 2.5`

NE;
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The  range  of  the  flight  can  be  determined  from  the  condition  that  the  y

elevation vanishes. This condition serves to determine x from the relation

ranges = Simplify@Solve@gTrack ê. 8Rule Æ Equal, y Æ 0<, xDD

::x Ø
cosHaL sinHaL v2 + cos2HaL è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

2 g y0 sec2HaL + v2 tan2HaL v + g x0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

g
>,

:x Ø
cosHaL sinHaL v2 - cos2HaL è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

2 g y0 sec2HaL + v2 tan2HaL v + g x0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

g
>>

The solution of the quadratic equation in x delivers two solutions. Because

we are looking for positive ranges, we select the first solution:

range = rangesP1T

:x Ø
cosHaL sinHaL v2 + cos2HaL è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

2 g y0 sec2HaL + v2 tan2HaL v + g x0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

g
>
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The  total  flight  time  T  is  gained  by  inserting  this  result  into  the

x-component of the track and solving the resulting equation with respect to

t.

T = Flatten@
Simplify@Solve@Thread@8x< == trackP1T, ListD ê. range ê. cond2, tDDD

:t Ø

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 g y0 sec2HaL + v2 tan2HaL cosHaL + v sinHaL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
g

>

This  expression  shows  only  a  dependence  on  the  y  initial  condition,

meaning  that  the  total  flight  time  is  not  only  dependent  on  the  initial

velocity v and the inclination angle a but also on the height from which the

ball is thrown. With these two expressions, we are able to solve problems

of  the  following  kind.  Imagine  a  joyful  physics  student  throwing  his  cap

into  the  air  with  an  initial  velocity  of  24.5  m/s  at  36.9 °  from  the

horizontal.  Find  a)  the  total  time  the  cap  is  in  the  air  and  b)  the  total

horizontal distance traveled.

To solve this problem, we first have to convert the angle a given in degree

into radians:

= 36.9 2
360

;

The other parameters are given by

para = 8v Æ 24.5, a Æ b, g Æ 9.81, y0 Æ 0, x0 Æ 0<;

Inserting the values into the expression for the total time of flight, we get

T ê. para

8t Ø 2.99904<
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corresponding to approximately 3 s. The range the cap transverses is given

by

range ê. para

8x Ø 58.758<

in meters.

Another  problem of  the  same  kind  is  the  following.  A helicopter  drops  a

supply  package  to  soldiers  in  a  jungle  clearing.  When  the  package  is

dropped, the helicopter is 100 m above the clearing and flying at 25 m/s at

an angle  a = 36.9 °  above  the  horizontal.  The  question  is  how wide  must

the  clearing  extend  in  one  direction  that  the  package  is  available  for  the

soldiers and how long does it take to hit the ground?

We collect  the  numerical  data  in  the  list  paraHeli  and  apply this  rules  to

the expressions for the range and the total flight time derived above:

paraHeli = 9v Æ 25, a Æ
36.9 2 p
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

360
, g Æ 9.81, y0 Æ 100, x0 Æ 0=;

We find that the extension of the clearing should be

range ê. paraHeli

8x Ø 125.902<

in meters. The time to touch down is

T ê. paraHeli

8t Ø 6.29758<
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in  seconds.  The  following  figure  shows  a  graph  of  y  versus  x  for  supply

packages dropped  at  various initial  angles and with an initial  speed of 25

m/s.

Plot@Evaluate@Table@y ê. gTrack ê. a Æ i ê. paraHeli, 8i, .2, .7, .1<DD,
8x, 1, 130<, AxesLabel Æ 8"x", "y"<,
PlotStyle Æ Table@Hue@iD, 8i, .2, .7, .1<D, PlotRange Æ 80, 120<D;
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Note that the maximum range no longer occurs at 45 ° (verify this).

The examples demonstrate that once we know the path r”HtL of a particle as

a  function  of  time  t,  we  are  able  to  answer  any  question  related  to  the

motion of the particle. The following sections of this chapter deal with the

central  problem  of  classical  mechanics:  to  determine  the  path  of  one  or

more particles under the action of given forces.

2.3.5 Exercises

1. A particle is constrained to move with constant speed on the ellipse

aij xi x j = 1 Hi, j = 1, 2L.
Find the cartesian and polar components of its acceleration.

2.  In  Exercise  1,  introduce  as  a  generalized  coordinate  the  angle  q
between  the  radius  vector  of  the  particle  and  the  major  axis  of  the
ellipse, and find the velocity and acceleration in terms of q.
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3.  A particle  is  constrained  to  move  with  constant  speed  in  the  circle
r = a.  Find  the  cartesian  and  polar  coordinates  of  its  velocity  and
acceleration.

4. A gun is mounted on a hill of height h above a level plain. Assuming
that the path of the projectile is a parabola, find the angle of elevation
a for greatest horizontal range and given initial speed V,

cosec2HaL = 2 H1 + g h êV 2L.
What physical effects are neglected in the above approximation?
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2.4 Newtonian Mechanics

2.4.1 Introduction

The  science  of  mechanics  seeks  to  provide  a  precise  and  consistent

description  of  the  dynamics  of  particles  and  systems  of  particles;  that  is,

we attempt to discover a set of physical laws that provide us with a method

for  mathematically  describing  the  motion  of  bodies  and  aggregates  of

bodies.  In  order  to  do  this,  we  need  to  introduce  certain  fundamental

concepts. It is implicit in Newtonian theory that the concept of distance  is

intuitively  understandable  from a  geometric  viewpoint.  Furthermore,  time

is  considered  to  be  an  absolute  quantity,  capable  of  precise  definition  by

an arbitrary observer. In the theory of relativity, however, we must modify

these Newtonian ideas (see Chapter 6). The combination of the concepts of

distance  and  time  allows  us  to  define  the  velocity  and  acceleration  of  a

particle.  The  third  fundamental  concept,  mass,  requires  some  elaboration

which we will give in connection with the discussion of Newton's laws.

The physical laws that we introduce must be based on experimental facts.

A physical  law can  be  characterized  by  the  statement  that  it  "might  have

been  otherwise".  Thus,  there  is  no  a  priori  reason  to  expect  that  the

gravitational  attraction  between  two  bodies  must  vary  exactly  as  the

inverse square of the distance of them. However, experiment indicates that

this is so. Once a set of data has been correlated and a postulate has been

formulated regarding the phenomena to  which the data refer,  then various

implications  can  be  worked  out.  If  these  implications  are  all  verified  by

experiment,  there  is  reason  to  believe  that  the  postulate  is  generally  true.

The  postulate  then  assumes  the  status  of  a  physical  law.  If  some

experiments  are  found  to  be  in  disagreement  with  the  predictions  of  the

law,  then  the  theory  must  be  modified  in  order  to  be  consistent  with  all

known facts.
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Figure 2.4.1. Sir Isaac Newton born January 4, 1643; died March 31, 1727.

Newton  (Figure  2.4.1)  has  provided  us  with  the  fundamental  laws  of

mechanics.  We  will  state  these  laws  in  modern  terms  and  discuss  their

meaning and then proceed to derive the implications of the laws in various

situations.  It  must  be  noted,  however,  that  the  logical  structure  of  the

science of mechanics is  not  a straightforward issue.  The line of reasoning

that  is  followed  here  in  interpreting  Newton's  laws  is  not  the  only  one

possible. An alternate interpretation is given by Ernst Mach (1838–1916).
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Figure 2.4.2. Ernst Mach born February 18, 1838; died February 19, 1916.

Mach expressed his views in his famous book, The Science of Mechanics,

first published in 1883. We will not pursue in any detail the philosophy of

mechanics,  but  will  give  only  sufficient  elaboration  of  Newton's  laws  to

allow us to continue with the discussion of classical dynamics.

2.4.2 Frame of Reference

We start  out  by outlining  the  Newtonian  framework.  An event  intuitively

means  something  happening  in  a  fairly  limited  region  of  space  and  for  a

short duration in time. Mathematically, we idealize this concept to become

a  point  in  space  and  an  instant  in  time.  Everything  that  happens  in  the

universe is an event or collection of events. Consider a train traveling from

one station P  to another R,  leaving at  10 a.m. and arriving at 11 a.m. We

can illustrate  this  in  the  following way:  For  simplicity,  let  us  assume that

the motion takes place in a straight line, say along the x-axis; then, we can

represent  the  motion  by  a  space–time  diagram  in  which  we  plot  the

position  of  some  fixed  point  on  the  train  against  time.  The  curve  in  the

diagram is called  the history or world-line of the pointer.
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P 10.00 a.m R 11.00 a.m

We  will  call  individuals  equipped  with  a  clock  and  a  measuring  rod  or

ruler observers. Had we looked out of the train window on our journey at a

clock  in  a  passing  station,  then  we  would  have  expected  it  to  agree  with

our watch. One of the central assumptions of the Newtonian framework is

that  two  observers  will,  once  they have  synchronized their  clocks, always

agree about the time of an event, irrespective of their relative motion. This

implies that for all observers, time is an absolute quantity. In particular, all

observers can agree on an origin of time. In order to fix an event in space,

an observer may choose a convenient origin in space together with a set of

three coordinate axes as a frame of reference. Then, an observer is able to

locate events; that is, determine the time t  an event occurs and its position

Hx1, x2, x3L  relative  to  the  origin.  We will  refer  to  these  collectively as  a

frame of reference.

Newton  realized  that  in  order  for  the  laws  of  motion  to  have  meaning,  a

reference frame must be chosen with respect to which the motion of bodies

can be measured. A reference frame is called an inertial frame if Newton's

laws are valid in that frame; that is, if a body subject to no external force is

found  to  move  in  a  straight  line  with  constant  velocity  (or  to  remain  at

rest),  then  the  coordinate  system  used  to  establish  this  fact  is  an  inertial

reference frame. This is a clear-cut operational definition and one that also

follows from the general theory of relativity.

In  Newtonian  mechanics,  the  principle  of  relativity  plays  an  outstanding

role.  Two  bodies,  for  example,  fall  downward  because  they  are  attracted

toward the Earth.  Thus, position has a meaning only relative to the Earth,

or  to  some other  body.  In  just  the  same way,  velocity has  only a  relative

significance. Given two bodies moving with uniform relative velocity, it is

impossible to decide which of them is at rest and which is moving.

In view of the relativity principle, the frames of reference used by different

unaccelerated  observers  are  completely  equivalent.  The  laws  of  physics

expressed in terms of x1, x2, x3, and t must be identical with those in terms

2. Classical Mechanics 99



of  the  coordinates  of  another  frame,  x1
' , x2

' , x3
' ,  and  t',  respectively.  They

are  not,  however,  identical  with  the  laws  expressed  in  terms  of  the

coordinates  used  by  an  accelerated  observer.  The  frames  used  by

unaccelerated observers are called inertial frames.

We  have  not  yet  said  how  we  can  tell  whether  a  given  observer  is

unaccelerated.  We  need  a  criterion  to  distinguish  inertial  frames  from

others. Formally, an inertial frame can be defined to be one with respect to

which  an  isolated  body,  far  removed  from  all  other  matter,  would  move

with  uniform velocity.  This  is,  of  course,  an idealized  definition,  because

in practice we never can get infinitely far away from other matter.  For all

practical  purposes,  an  inertial  frame  is  one  whose  orientation  is  fixed

relative to  the fixed stars and in which the Sun (the center  of mass of the

solar system) moves with uniform velocity. It is an essential assumption of

classical mechanics that such frames exist. 

It  is  generally  convenient  to  use  only  inertial  frames,  but  there  is  no

necessity  to  do  so.  Sometimes,  it  proves  convenient  to  use  a  non  inertial

(e.g.,  rotating)  frame  in  which  the  laws  of  mechanics  take  on  a  more

complicated form.

2.4.3 Time

In  Newton's  theory,  time  is  an  absolute  quantity,  capable  of  precise

definition by an arbitrary observer. It exists and flows in a continuous way.

We assume further that there is a universal timescale in the sense that two

observers who have synchronized their clocks will always agree about the

time of any event.
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2.4.4 Mass

In order to understand the motion of a system of particles, it is necessary to

consider  the  environment  of  the  system  –  potentially  all  of  the  other

particles  in  the  universe  –  and  learn how that  environment  influences  the

motion  of  the  system in  question.  We  begin  by considering  two  particles

which influence each other's motion but which move in such a manner that

we  may  reasonably  expect  all  other  matter  in  the  universe  to  have

negligible  effect  on  their  relative  motion.  Thus,  for  example,  we  may

imagine  two  particles  connected  by a  small  spring and  free to  move on a

smooth  horizontal  table.  We  should  expect  that  the  matter  in  the  Earth

would not affect the motion of the masses in the plane of the table and that

extraterrestial  matter  would  be  too  far  away  to  have  anything  but  a

negligible  effect.  It  is  found  that  under  such  conditions,  if  a”÷ A  and  a”÷ B  are

the  accelerations  of  the  two  particles  A  and  B,  respectively,  then  these

vectors  are  parallel  and  in  the  opposite  sense  and  that  the  ratio  of  the

magnitudes  of  a”÷ A  and  a”÷ B  is  a  constant  for  a  given  pair  of  particles.  This

ratio is called the ratio of the masses of the two particles:

(2.4.1)
mAÅÅÅÅÅÅÅÅmB

=
»a”÷ B»ÅÅÅÅÅÅÅÅÅ»a”÷ A» .

It is also found that if mass C  is allowed to interact with A  in the absence

of  B,  not  only  is  it  true  that   a”÷ A  and  a”÷ C  are  parallel  and  in  the  opposite

sense but that 

(2.4.2)
mAÅÅÅÅÅÅÅÅmC

=
»a”÷ C»ÅÅÅÅÅÅÅÅÅ»a”÷ A» .

is identical with the ratio HmA êmBL ê HmC êmBL  determined by comparing A

and B in the absence of C, and C and B in the absence of A.

Thus, with each particle there may be associated a mass that has a unique

meaning no matter how many stages it goes through in being compared to

another and which may, therefore, eventually be compared with a standard

mass  of  platinum  called  the  international  prototype  kilogram,  which  is

preserved in Sèvres. If in an experiment the vectors a”÷ A  and a”÷ B  were found

not  to  be  parallel,  the  two  particles would  be considered as  not  acting on

each other alone, and the discrepancy would be attributed to the influence

of another particle or system.
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Another way to measure a mass is by a direct comparison using a balance

with arms of unequal lengths lA  and lB. The ratio of weights wA  and wB  is

given by

(2.4.3)
wAÅÅÅÅÅÅÅÅwB

=
lBÅÅÅÅÅÅlA

.

Because  the  weights  are  the  forces  exerted  by  gravity  on  the  masses

HwA = mA g, wB = mB g, etc.L  and  gravity  is  assumed  not  to  vary  across

the balance, we have

(2.4.4)
mAÅÅÅÅÅÅÅÅmB

=
lBÅÅÅÅÅÅlA

.

The  masses  compared  in  this  manner  are  sometimes  referred  to  as

gravitational  masses,  in  contrast  to  the  inertial  masses  defined  by

Equation  (2.4.1).   According  to  Newton's  law  of  gravitation,  the

gravitational attractive force between two masses mA  and mB  separated by

a distance r is

(2.4.5)F =
G mA mBÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅr2 ,

where G  is  the gravitational constant and mA  and mB  are the gravitational

masses.  If,  however,  the  masses  of  two  particles  attracting  each  other  by

gravity are  compared by the method discussed in Equation (2.4.1),  taking

the  ratio  of  their  accelerations,  then  it  is  the  masses  appearing  in  the

equation F
”÷÷

= m a”÷  which are compared. A priori there is no reason for these

to be identical with the masses appearing in Equation (2.4.4).

However, it has not proved possible to distinguish experimentally between

these  two  apparently  different  types  of  mass.  Galileo  was  the  first  to  test

the  equivalence  of  inertial  and  gravitational  mass  in  his  experiment  with

falling weights at the Tower of Pisa.  Newton also considered the problem

and  measured  the  periods  of  pendula  of  equal  lengths  but  with  bobs  of

different material.  Neither found any difference, but the method was quite

crude.  Later  experiments  are  due  to  R.V.  Eötvös,  L.  Southerns,   and  P.

Zeeman.  More  recent  experiments  by  R.H.  Dicke  have  improved  the

accuracy,  and  it  has  now  been  established  that  inertial  and  gravitational

mass are  identical to  within a  few parts  in 1011.  In Newtonian theory,  we

accept  this  result  as  an  empirical  fact  and  refer  to  the  mass  of  a  body

without  specifying  which  method  is  to  be  used  to  measure  it.  One

important  feature of the general  theory of relativity is  that from this point

102 2.4 Newtonian Mechanics



of view the distinction between the two types of mass loses its meaning so

that  they  become  automatically  identical.  The  assertion  of  the  exact

equality  of  inertial  and  gravitational  mass  is  termed  the  principle  of

equivalence.

2.4.5 Newton's Laws

Newton's laws of mechanics are stated as follows:

I. (lex prima)

A body remains at rest or in uniform motion unless acted upon by a force.

II. (lex secunda)

A body acted upon by a force moves in such a manner that the time rate of
change of momentum equals the force.

III. (lex tertia)

If two bodies exert forces on each other, these forces are equal in magni-
tude and opposite in direction.

These  laws  were  enunciated  by  Sir  Isaac  Newton  (1642–1727)  in  his

Philosophiae  naturalis  principia  mathematica  or,  in  short,  Principia,

1687.  Galileo  had  previously  generalized  the  results  of  his  mechanics

experiment  with  statements  equivalent  to  the  First  and  Second  Laws,

although  he  was  unable  to  complete  the  description  of  dynamics  because

he  did  not  appreciate  the  significance  of  the  Third  Law  and  therefore

lacked a precise meaning of force.

These  laws  are  so  familiar  that  we  sometimes  tend  to  lose  sight  of  their

true  significance  as  physical  laws.  The  First  Law,  for  example,  is

meaningless without the concept of force. In fact, standing alone, the First

Law conveys  a  precise meaning only for  zero  force;  meaning that  a  body

which  remains  at  rest  or  in  uniform  motion  is  subject  to  no  force

whatsoever. A body which moves in this manner is termed a free body or a

free particle.  We note that  the First Law by itself provides us with only a

qualitative notion regarding force.

An explicit  statement concerning force is provided by the Second Law, in

which force is related to the time rate of change of momentum. Momentum
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was  appropriately  defined  by  Newton.  He  called  momentum the  quantity

of  motion.  The  momentum  of  a  particle  acted  upon  by  mechanical,

gravitational,  or  electrical  forces  is  defined  to  be  the  product  of  its  mass

and its velocity:

(2.4.6)p”÷ = m v”.
The  force  F

”÷÷
 acting  on  a  particle  is  defined  by  the  rate  of  change  of

momentum it produces:

(2.4.7)F
”÷÷

=
d p”÷÷
ÅÅÅÅÅÅÅÅdt = p”÷ '.

The  definition  of  force  becomes  complete  and  precise  only when mass  is

defined.  Thus,  the First and  Second Laws are not  really laws in the usual

sense  of  the  term  as  used  in  physics;  rather,  they  can  be  considered  as

definitions. If the mass of the particle is constant in time, then

(2.4.8)p”÷ '
= m v”'

= m a”÷ ,

where  a”÷  is  the  acceleration  vector.  Thus,  in  this  case,  the  force  on  the

particle can be defined by

(2.4.9)F
”÷÷

= m a”÷ = m r”''.

Thus,  if  F
”÷÷

= 0,  the  velocity  of  the  particle  is  constant.  This  is  Newton's

First Law.

The  Third  Law,  on  the  other  hand,  is  indeed  a  law.  It  is  a  statement

concerning  the  real  physical  world  and  contains  all  of  the  physics  in

Newton's  laws  of  motion.  When  two  particles  exert  forces  on each other,

as they are made to do in the measurement of their mass ratio, we have

(2.4.10)mA a”÷ A = -mB a”÷ B.

Thus, when two particles exert forces on each other, these forces are equal

in magnitude  and  opposite  in direction.  This is  the Third  Law of  Newton

that action is equal and opposite to reaction.

We must hasten to add that the Third Law is not a general law of Nature.

The  law applies  only  in  the  event  that  the  force  exerted  by  one  body on

another  body  is  directed  along  the  line  connecting  the  two  objects.  Such

forces are called central forces. However, the Third Law applies whether a

central  force  is  attractive  or  repulsive.  Gravitational  and  electrostatic

forces  are  central  forces,  so  Newton's  Laws  can  be  used  in  problems
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involving these  types  of  force.  Sometimes,  elastic  forces  originating from

microscopic electrostatic forces are central in character. For example, two

point masses connected by a straight spring or elastic string are subject to

forces that obey the Third Law. Any force that depends on the velocities of

the interacting bodies is  non central  in character,  and the Third Law does

not  apply in such a  situation.  Velocity-dependent  forces are  characteristic

of interactions that propagate with finite velocity. Thus, the force between

moving  electric  charges  does  not  obey  the  Third  Law  because  the  force

propagates with the velocity of light. Even the gravitational force between

moving bodies is velocity dependent, but the effect is small and difficult to

detect;  the  only observable  effect  is  the precession  of  the  perihelia  of  the

inner  planets  (see  Chapter  6).  This  chapter  is  concerned  exclusively  with

gravitational  and  elastic  forces;  the  accuracy  of  the  Third  Law  is  quite

sufficient for all such discussions.

From definition (2.4.7) of F
”÷÷
,  it  follows that since p”÷  is a vector,  so also is

F
”÷÷
.  Thus, if the force F

”÷÷
 is the sum of two forces F

”÷÷
1  and F

”÷÷
2, this sum must

be understood as a vector sum. 

F
”÷

1

F
”÷

2

F
”÷

Figure 2.4.3. Parallelogram law for forces.

This  constitutes  the  parallelogram law for  the  composition  of  forces  (see

Figure  2.4.3).  However,  the  parallelogram  law  is  a  trivial  mathematical

fact.  It  acquires  physical  significance  in  those  cases  where  the  force

between  two  particles  is  independent  of  the  presence  of  other  particles.

The  parallelogram  law  is  valid  only  when  the  various  forces  are

independent.  This  independence  does  exist  for  most  of  the  forces  met

within  mechanics,  such  as  gravitation  and  the  forces  between  charged

particles.  It  does  not  exist  between  polarizable  molecules  moving  in
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electric  fields,  for  the induced  electric  moment  of  a  molecule  depends on

the field at that location of the molecules and the fields at those locations.

The  forces  between  nuclear  particles  can  be  of  this  many-body  character

rather than simple two-body forces.

The Second Law (2.4.7),  on the  other  hand,  is  central  in mechanics.  This

relation  constitutes  the  simplest  form  of  the  equations  of  motion  for  a

particle.  Equations  (2.4.7)  and  (2.4.9)  are  a  set  of  ordinary  differential

equations  of  the  second  order.  If  the  forces  are  given  as  functions  of

position  and  time,  the  values  of  the  coordinates  and  of  the  velocity

components  at  a  given  time  t0  determine  the  solution  of  the  equations

uniquely and thus determine the whole future course of the motion. We say

the  history  of  the  motion  is  deterministic.  However,  in  certain  cases,  the

motion  of  the  particle  can  be  very  complicated,  if  not  chaotic.  Chaotic

means here that the final state of the motion is not predictable if the initial

state is changed by a very small amount. In any case, the future states of a

system are determined by the state at any given time and by the equations

of motion.

2.4.6 Forces in Nature

The full power of Newton's second law emerges when it is combined with

the  force  laws  that  describe  the  interactions  of  objects.  For  example,

Newton's  law  for  gravitation  gives  the  gravitational  force  exerted  by  one

object  on  another  in  terms  of  the  distance  between  the  objects  and  the

masses  of  each.  This  combined  with  Newton's  second  law,  enables  us  to

calculate the orbits of planets around the sun, the motion of the moon, and

variations with altitude of g, the acceleration due to gravity.

2.4.6.1 The Fundamental Forces

All of the different forces observed in nature can be explained in terms of

four basic interactions that occur between elementary particles.

1. The Gravitational Force

106 2.4 Newtonian Mechanics



The  gravitational  force  between  the  Earth  and  an  object  near  the  Earth's

surface  is  the  weight  of  the object.  The gravitational  force exerted by the

Sun  keeps  the  planets  in  their  orbits.  Similarly,  the  gravitational  force

exerted  by  the  galaxies  in  the  universe  generates  a  certain  structure  or

distribution of galaxies. Figure 2.4.4 shows a group of galaxies interacting

with each other.

Figure 2.4.4. Group of galaxies in the cluster MS1054-03.

This  galaxy  cluster,  called  MS1054-03,  is  8  billion  light-years  away  —

one  of  the  most  distant  known  groups  of  galaxies.  Although  hundreds  of

galaxies  appear  in  this  NASA/ESA  Hubble  Space  Telescope  image,  a

European-led  team  of  astronomers  has  studied  in  detail  81  galaxies  that

certainly  belong  to  the  cluster,  13  of  which  are  remnants  of  recent

collisions or pairs of colliding galaxies. This is, by far, the largest number

of colliding galaxies ever found in a cluster. 
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Figure 2.4.5. Collisions of galaxies various stages.

A  gallery  of  HST  images  showing  distant  galaxies  in  various  stages  of

collision  (see  Figure  2.4.5).  The  merging  galaxies  have  weird,  distorted

shapes  unlike  normal  spiral  or  elliptical  galaxies.  Some  show  streams  of

stars  apparently  being  pulled  from  one  galaxy  into  another.  All  of  the

galaxy pairs shown here are located in a larger grouping of galaxies known

as MS1054-03. 

2. The Electromagnetic Force

The  electromagnetic  force  includes  both  the  electric  and  the  magnetic

force. A familiar example of the electric force is the attraction between bits

of  paper  and  a  comb  that  is  electrified  after  being  run  through  hair.  The

magnetic force between a magnet and iron arises when electric charges are

in  motion.  These  two  forces  were  recognized  in  the  19th  century  as

independent  forces  from  gravitation.  The  electromagnetic  force  between

charged  elementary  particles  is  vastly  greater  than  the  gravitational  force

between them. For  example, the electrostatic force repulsion between two
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protons is of order of 1036  times the gravitational attraction between them.

The  lightning  shown  in  Figure  2.4.6  is  the  result  of  the  electromagnetic

force.

Figure 2.4.6. Lightning in a thunder storm.

3. The Strong Nuclear Force (Also Called Hadronic Force)

The  strong  nuclear  force  occurs  between  elementary  particles  called

hadrons, which include protons and neutrons. The strong force results from

the  interaction  of  quarks,  the  building  blocks  of  hadrons,  and  is

responsible for holding nuclei together. The magnitude of the strong force

decreases  rapidly  with  distance  and  is  negligible  beyond  a  few  nuclear

diameters. The hydrogen bomb explosion shown in Figure 2.4.7 illustrates

the strong nuclear forces.
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Figure 2.4.7. Atomic explosion in 1951 at Eniwetok Atoll in the South Pacific.

In  1951,  a  test  at  Eniwetok  Atoll  in  the  South  Pacific,  demonstrated  the

release  of  energy  from  nuclear  fusion.  Weighing  65  tons,  the  apparatus

was  an  experimental  device,  not  a  weapon,  that  had  been  constructed  on

the  basis  of  the  principles  developed  by  Edward  Teller  and  Stanislaw

Ulam.  On  November  1,  1952,  a  10.4-megaton  thermonuclear  explosion

code-named  MIKE,  ushered  in  the  thermonuclear  age.  The  island  of

Elugelab in the Eniwetok Atoll was completely vaporized.

4. The Weak Nuclear Force

The  weak  nuclear  force,  which  also  has  a  short  range,  occurs  between

leptons (which include electrons and muons) and between hadrons (which

include  protons  and  neutrons).  The  bubble  chamber  photographs  (Figure

2.4.8) illustrate the weak interaction.

Figure 2.4.8. Bubble chamber photographs.
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2.4.7 Conservation Laws

We  now  turn  to  a  detailed  discussion  of  the  Newtonian  mechanics  of  a

single  particle  and  derive  the  important  laws  regarding  conserved

quantities. The background of the conservation laws are symmetries [2.9].

However,  at  this  stage  of  the  presentation,  we  do  not  go  into  a  detailed

examination  of  symmetries  but  use  physical  arguments  to  motivate  the

conserved  quantities.  We  are  merely  deriving  the  consequences  of

Newton's  laws  of  dynamics.  The  fact  that  these  conservation  laws  have

been found to be valid in many instances furnishes an important part of the

proof  for  the  correctness  of  Newton's  laws.  Today,  we  know  that  these

proofs are valid for nonrelativistic systems.

2.4.7.1 Linear Momentum

The  first  of  the  conservation  laws  concerns  the  linear  momentum  of  a

particle.  If  the  particle  is  free   (i.e.,  if  the  particle  experiences  no  force),

then Newton's second law (2.4.7) becomes

p”÷
ÄÄÄÄÄÄÄÄÄÄÄÄ

t
== 0

Therefore,  p”÷  is  a  vector  constant  in  time,  and  the  linear  momentum of  a

free particle is conserved. Associated with this conservation law is the fact

that  Newton's  equation  of  motion  for  a  free  particle  is  invariant  with

respect  to  translations  in  the  coordinates.  We  also  note  that  this  result  is

derived  from  a  vector  equation  t p”÷ = 0  and  therefore  applies  to  each

component of the linear momentum.

The derived result can be stated in other terms if we let s” be some constant

vector such that F
”÷÷
.s” = 0, independent of time. Then,

p”÷
ÄÄÄÄÄÄÄÄÄÄÄÄ

t
.s” == F

”÷÷
.s” == 0
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or, integrating with respect to time,

‡
p”÷ HtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

s” ‚ t == const

s” p”÷÷ HtL == const

which  states  that  the  component  of  linear  momentum  in  a  direction  in

which the force vanishes is constant in time.

2.4.7.2 Angular Momentum

The  angular  momentum  L
”÷

 of  a  particle  with  respect  to  an  origin  from

which r” is measured is defined by

L
”÷
HtL == r”HtLâ p”÷ HtL

L
”÷ HtL == r”HtLä p”÷÷ HtL

The  torque  or  moment  of  force  M
”÷÷÷

 with  respect  to  the  same  origin  is

defined to be

M
”÷÷÷
HtL == r”HtLâF

”÷÷
HtL == r”HtLâ

p”÷ HtL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

t

M
”÷÷÷ HtL == r”HtLäF

”÷÷ HtL == r”HtLä p”÷÷ £ HtL

Now,

momentum =
L
”÷
HtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

==
Hr”HtLâ p”÷ HtLL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

L
”÷ £ HtL == r”HtLä p”÷÷ £ HtL + r”£ HtLä p”÷÷ HtL
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but the product r”ÿ ä p”÷ = m r”ÿ är”ÿ = 0, so that

momentum ê. p”÷ HtL Æ m
r”HtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

L
”÷ £ HtL == r”HtLä p”÷÷ £ HtL

which is  the representation of the torque. If there is  no torque acting on a

particle (i.e., M
”÷÷÷

= 0), then L
”÷ '

= 0 and L
”÷
 is a vector constant in time. This is

the  second  important  conservation  law:  The  angular  momentum  of  a

particle  subject  to  no  torque  IM”÷÷÷ = 0M  is  conserved.  We  note  that  this

conservation law is associated with the symmetry of rotation. 

2.4.7.3 Work and Energy

Work  and  energy  are  important  concepts  in  physics  as  well  as  in  our

everyday life. In physics, a force does work when it acts on an object that

moves through a distance and there is a component of the force along the

line  of  motion.  For  a  constant  force  in  one  dimension,  the  work  done

equals  the  force  times  the  distance.  This  differs  somewhat  from  the

everyday  use  of  the  word  work.  When  you  study  hard  for  an  exam,  the

only work you do  as  the term is  understood in  physics is  in moving your

pencil or turning the pages of your book.

The concept of energy is closely associated with that of work. When work

is  done  by  one  system on  another,  energy is  transferred  between  the  two

systems.  For  example,  when  you  do  work  pushing  a  swing,  chemical

energy  in  your  body  is  transferred  to  the  swing  and  appears  as  kinetic

energy  of  motion  or  gravitational  potential  energy  of  the  Earth-swing

system. There are many forms of energy. Kinetic energy is associated with

the  motion  of  an  object.  Potential  energy  is  associated  with  the

configuration  of  a  system,  such  as  the  separation  distance  between  some

objects  and  the  Earth.  Thermal  energy  is  associated  with  the  random

motion of the molecules within a system and is closely connected with the

temperature of the system.
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If work is done on a particle by a force F
”÷÷
 in transforming the particle from

condition 1 to condition 2, then this work is defined to be

W12 = ‡
1

2

F
”@r”D r”

‡
1

2

F
”÷÷ Hr”L „ r”

Now,

F
”÷÷
Hr”LDifferentialDHr”L == m

v”HtL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

t
.

r”HtL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

t
DifferentialDHtL ==

m
v”HtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

.v”HtLDifferentialDHtL ==
1
ÄÄÄÄÄÄ
2

m
Hv”HtL.v”HtLL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

DifferentialDHtL

DifferentialDHr”L F
”÷÷ Hr”L == m DifferentialDHtL v”£ HtL.r”£ HtL ==

m DifferentialDHtL v”£ HtL.v”HtL == m DifferentialDHtL vHtL v£HtL

Therefore, the integrand is an exact differential and

W12 =
i
k
jj
1

2
m v2y

{
zz
ƒƒƒƒƒƒƒƒ
1
2 ==

1

2
m Hv22 v1

2L == T2 T1

where  T =
1
ÅÅÅÅ2 m v2  is  the  kinetic  energy  of  the  particle.  If  T1 > T2,  then

W12 < 0 and the particle has done work with a resulting decrease in kinetic

energy.

The  total  work  done  on  a  particle  is  equal  to  the  change  in  its  kinetic
energy:

Wtotal = DT =
1
ÅÅÅÅ2 m v2

2 -
1
ÅÅÅÅ2 m v1

2.

This  theorem  is  known  as  the  work–kinetic  energy  theorem.  It  holds

whether  the force is  constant  or  variable.  The theorem holds for  all  kinds

of  force.  The  theorem does  not  tell  anything  about  where  the  energy  DT

goes.
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2.4.7.4 Constant Forces

The work W  done by a constant force F
”÷÷
 whose point of application moves

through a distance d r” is defined to be

W == ‡ F
”÷÷

 ‚ r” == F
”÷÷

D r” == F cosHqLDx == Fx  Dx

where q is the angle between F
”÷÷
 and the x-axis, and Dx is the displacement

of the particle. 

Work is a scalar quantity that is positive if Dx and Fx  have the same signs

and negative if they have opposite signs. The dimensions of work are those

of  force  times  distance.  The  SI  unit  of  work  and  energy  is  the  Joule  (J),

which equals the product of a Newton and a meter: 1 J = 1 Nm.

When  there  are  several  forces  that  do  work,  the  total  work  is  found  by

computing the work done by each force and summing:

Wtotal == F1 x Dx1 + F2 x  Dx2 + …

When the forces do work on a particle, the displacement of the force Dxi is

the same for each force and is equal to the displacement of the particle Dx:

Wtotal == Dx F1 x + Dx F2 x + … == HF1 x + F2 x + …L Dx == Fnet Dx

Thus,  for  a  particle,  the  total  work  can  be  found  by  summing  all  of  the

forces to  find the  net  force  and then computing the work done by the net

force.

Let  us  now examine  the  work  integral  from a  different  point  of  view.  In

many  physical  problems,  the  force  F
”÷÷

 has  the  property  that  the  work

required  to  move  a  particle  from  one  position  to  another  without  any

change  in  kinetic  energy  is  dependent  only  on  the  original  and  final

positions and not upon the exact  path taken by the particle.  This property

is exhibited, for example, by a constant gravitational force field. Thus, if a
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particle  of  mass  m  is  raised  through  a  height  h,  then  an  amount  of  work

mgh  has been done on the particle  and the particle has the capacity to do

an equal amount of work in returning to its original position. This capacity

to do work is called then potential energy of the particle.

We  can  define  the  potential  energy  of  a  particle  in  terms  of  the  work

required to transport the particle from a position 1 to a position 2:

‡
1

2

F
”÷÷
Hr”L ‚ r” == U1 - U2

That  is,  the  work  done  in  moving  the  particle  is  simply the  difference  in

the potential energy U  at the two points. This equation can be written in a

different way if we represent F
”÷÷
 as the gradient of the scalar function U :

F
”÷÷
Hr”L == -—UHr”L

F
”÷÷ Hr”L == -“UHr”L

Then,

‡
1

2

F
”@r”D. r” == ‡

1

2

U@r”D. r” == U1 U2

In  most  systems  of  interest,  the  potential  energy is  a  function  of  position

and, probably, the time: U = U Hr”L or U = U Hr”, tL.
It is important to note that the potential energy is defined only to within an

additive constant;  that  is,  the force defined by -“U  is  not  different  from

that  definition  by  -“HU + const.L.  Therefore,  potential  energy  has  no

absolute  meaning;  only  differences  of  potential  energy  are  physically

meaningful.

Knowing  the  potential  and  kinetic  energy,  we  are  able  to  define  the  total

energy of a particle. The total energy of a particle is defined to be the sum

of the kinetic energy and the potential energies:
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H ä T + U

Assuming  that  H = H HtL,  we  can  ask  for  the  time  derivative  of  the  total

energy.  In  order  to  evaluate  the  time  derivatives  appearing  on  the

right-hand side of this equation, we first note that the time derivative of the

kinetic energy can be represented by

r1 =
THtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

Æ F
”÷÷
Hr”L

r”HtL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

t

T £HtL Ø F
”÷÷ Hr”L r”£ HtL

For the potential energy, we have

r2 =
UHtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

Æ
UHr”HtL, tL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

U £HtL Ø U H0,1LHr”HtL, tL + r”£ HtLU H1,0LHr”HtL, tL

Substituting these two expressions into the derivative of H , we find

HHtL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

t
==

HTHtL + UHtLL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

t
ê. 8r1, r2< ê. F

”÷÷
Hr”L Æ -

UHr”HtL, tL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

r”HtL

H £HtL == U H0,1LHr”HtL, tL

Since  the  force  can  be  represented  by  the  negative  gradient  of  the

potential,  we  are  able  to  simplify  the  result.  Now,  if  U  is  not  an  explicit

function  of  the  time,  then  the  force  field  represented  by  F
”÷÷

 is  said  to  be

conservative,  meaning  that  F
”÷÷

= -“U Hx”÷ L  and  that  U Hx”÷ L  exists.  This

condition  can  be  equivalently  stated  as  “ ä F
”÷÷ Hx”÷ L = 0.  Under  these

conditions, we have the third important conservation law: the total energy

H of a particle in a conservative force field is a constant in time.
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Note  that  the  general  law  of  conservation  of  energy  was  formulated  in

1847 by Hermann von Helmholtz (1821–1894). His conclusion was based

largely  on  the  calorimetric  experiments  of  James  Prescott  Joule

(1818–1889), which were begun in 1840.

2.4.8 Application of Newton's Second Law

Newton's equation F
”÷÷

= d p”÷ ê dt, can be expressed alternatively as

(2.4.11)F
”÷÷

=
d

ÅÅÅÅÅÅÅd t Hm v”L = m d v”
ÅÅÅÅÅÅÅÅd t = m r” ''

if we assume that the mass does not vary with time.  This is a second-order

differential equation for r” = r”HtL, which can be integrated if the function F
”÷÷

is known. The specification of the initial values of r” and r” ' = v” then allows

the evaluation of the two arbitrary constants of integration. The following

examples  will  demonstrate  how Newton's  equation  is  applied  to  different

physical systems.

2.4.8.1 Falling Particle

The  motion  of  a  particle  that  has  constant  acceleration  is  common  in

nature.  For  example,  near  the Earth's  surface,  all  unsupported  objects fall

vertically with constant acceleration (provided air resistance is negligible).

The  force  acting  on  a  falling  particle  is  governed  by  the  acceleration  of

gravity by

(2.4.12)F
”÷÷

g = m g”÷ ,

where  g”÷  is  the  acceleration  of  gravity.  Inserting  relation  (2.4.12)  into

Equation (2.4.11), we end up with the equation of motion:

(2.4.13)m g”÷ = m r” '' .

This  equation  contains  on  the  left-hand  side  a  vector  g”÷  with  its  direction

toward the center of the Earth. This is the one and only component of g”÷ . If

g”÷  and r” '' are parallel, then the direction of r” '' is the same as that of g”÷ . Thus,

the  vector  equation  is  reducible  to  a  single  component.  If  we  choose  the

coordinate r along the direction of g”÷ , we get
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equation8 = m g == m t,t r@tD

-g m == m r££HtL

defining  Newton's  equation  for  a  falling  particle.  This  second-order

ordinary differential  equation determines  the motion of  the particle.  If  we

can solve this equation, we gain information on the path rHtL. The solution

in Mathematica can be derived by

solution = DSolve@equation8, r, tD

::r Ø FunctionB8t<, -
g t2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

+ c2 t + c1F>>

The solution represented in a pure function form tells us that the path rHtL
of  the  particle  is  determined  by  the  acceleration  of  gravity  g  and  in

addition  by  two  constants  C@1D  and  C@2D.  These  two  constants  are

constants  resulting  from  the  integration  process  behind  the  function

DSolve[].  They  are  determined  by  initial  values  of  the  motion.

Incorporating the initial values of the motion right into the solution of the

equation of motion, we can write

solution = DSolve@
8equation8, r@0D == r0, r'@0D == v0<, r, tD êê Flatten

:r Ø FunctionB8t<, 1
ÅÅÅÅÅÅ
2
H-g t2 + 2 v0 t + 2 r0LF>

where r0 and v0 are the position and velocity at initial time, respectively. It

is obvious by comparing the two solutions that C@1D = r0 and C@2D = v0.

At  this  stage  of  our  examinations,  we  know  how  a  particle  behaves  if  a

constant acceleration is applied to it.  However,  if we want to examine the

motion of a particle starting at rest at a certain height,  we have to specify

the initial conditions that way. For example, let us assume that a ball starts
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from rest  at  a  height  of r0 = 100 m above  the surface  of  the Earth.  Under

these conditions, the path of the particle simplifies to

ssol = r@tD ê. solution ê. 8r0 100, v0 0, g 9.81<

1
ÅÅÅÅÅÅ
2
H200 - 9.81 t2L

This  special  solution  can  be  used  to  simulate  the  actual  motion  of  the

particle. To generate the animation, we have to know how long the particle

needs  to  go  before  it  touches  down  on  the  surface.  This  question  can  be

solved by solving the equation and selecting the positive solution:

end = Solve@ssol == 0, tD êê Flatten; Tend = t ê. endP2T

4.51524

The  result  for  the  total  time  is  used  to  generate  different  states  of  the

falling particle:

track = Table@8RGBColor@0.996109, 0, 0D,
Disk@80, ssol<, 5D<, 8t, 0, Tend, .2<D;

These states are displayed in the following sequence of pictures:

Map@Show@Graphics@#D, PlotRange 80, 105<,
AspectRatio AutomaticD &, trackD;
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The animation of  these states show how the particle  increases its  velocity

during  the  time.  The  analytic  expression  for  the  velocity  is  gained  by

differentiating  the  solution  with  respect  to  time.  The  following  plot

demonstrates that  the velocity v  linearly increases.  The negative sign of  v

indicates that the orientation of the velocity is parallel to the acceleration.
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Plot@Evaluate@ t ssolD,
8t, 0, Tend<, AxesLabel 8"t", "v"<,
PlotStyle RGBColor@0, 0, 0.996109DD;
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-40
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-10
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Up to  the present  stage of  our  discussion,  we  assumed that  the particle  is

falling in a vacuum, meaning there is no resistance if the particle moves in

the air.  If we consider a real falling particle, we have to take into account

that  in  addition  to  the  gravitational  force,  several  other  forces  act  on  the

particle.  For  example, in addition to F
”÷÷

g,  there are  drag forces which slow

down the motion of the particle. These forces are typically functions of the

velocity. Incorporating additional forces, the total force is then

(2.4.14)F
”÷÷

= F
”÷÷

g + F
”÷÷

dHv”L.
It is sufficient to consider that F

”÷÷
d  is simply proportional to some power of

the velocity. In general, real retarding forces are more complicated, but the

power-law approximation is useful in many instances in which the velocity

does not vary greatly. With the power-law approximation in mind, we can

then write

(2.4.15)F
”÷÷

= m g”÷ - m g vn v”
ÅÅÅÅv ,
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where  g  is  a  positive  constant  that  specifies  the  strength  of  the  retarding

force  and  v” ê v  is  a  unit  vector  in  the  direction  of  v”.  Experimental

observations indicate that for small objects moving at low velocities in air,

n º 1;  for  larger  velocities still  below the velocity of sound,  the retarding

force is approximately proportional to the square of the velocity.

The next step of our examination is the influence of the retarding force on

the path of the particle. Newton's equation for this case in one dimension is

given by

(2.4.16)-m g + m g I d rHtL
ÅÅÅÅÅÅÅÅÅÅÅÅd t Ln

= m r”÷.. .

In Mathematica notation, this equation is given by

equation11 = m g m H t r@tDLn == m t,t r@tD

-m g r£HtLn - g m == m r££HtL

The  solution  of  this  ordinary  differential  equation  under  the  initial

conditions rH0L = r0 and vH0L = v0 and n = 1 follows from

solutiond =

DSolve@8equation11, r@0D == r0, r'@0D == v0< ê. n > 1,

r, tD êê Flatten

:r Ø FunctionB8t<, ‰-t g H‰t g r0 g2 - ‰t g g t g + ‰t g v0 g - v0 g + ‰t g g - gL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

g2
F>

Using  the  same  initial  conditions  for  the  particle  as  in  the  case  without

drag, we find the solution

ssold = r@tD ê. solutiond ê.
8r0 100, v0 0, g 9.81, 1ê2<

4 ‰-tê2 H-4.905 ‰tê2 t + 34.81 ‰tê2 - 9.81L
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The total time of the particle needed to touch the ground is determined by

solving the above relation if the particle's position equals zero.

endd = Solve@ssold == 0, tD êê Flatten;

Tendd = t ê. enddP2T

7.03757

The result  is  that  the total  falling time increases, meaning that  the motion

of  the  falling  particle  is  slowed  down  by  a  certain  factor.  The  following

simulation  shows  that  the  motion  of  the  particle  at  the  end  of  the  path

reaches a constant velocity:

trackd = Table@8RGBColor@0, 0.500008, 0D,
Disk@812, ssold<, 5D<, 8t, 0, Tendd, .2<D;

Map@Show@Graphics@#D, PlotRange 80, 105<,
AspectRatio AutomaticD &, trackdD;
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The behavior that the velocity  becomes constant can be checked with 

Limit@ t ssold, t D

19.62

The plot of the velocity versus time shows the same result.
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Plot@Evaluate@ t ssoldD,
8t, 0, Tendd 2<, AxesLabel 8"t", "v"<,
PlotStyle RGBColor@0, 0, 0.996109DD;
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Our  general  observation  is  that  a  particle  accelerated  by  gravity  and

influenced by additional forces change the behavior of motion.

2.4.8.2 Harmonic Oscillator

Let  us  consider  the  oscillatory  motion  of  a  particle  that  is  constrained  to

move  in  one  dimension.  We  assume  that  there  exists  a  position  of  stable

equilibrium for the particle and we designate its point as the origin of our

coordinate  system.  If  the  particle  is  displaced  from  the  origin,  a  certain

force tends to  restore the particle  to  its  original  position.  This  force is,  in

general,  some  complicated  function  of  the  displacement  and  of  the

particle's  velocity.  We  consider  here  only  cases  in  which  the  restoring

force F is a function only of the displacement:

Force = F@xD;

We  will  assume  that  the  function  FHxL describing  the  restoring  force

possesses  continuous  derivatives  of  all  orders  so  that  the  function  can be

expanded in a Taylor series:
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f = Series@Force, 8x, 0, 2<D

FH0L + F£H0L x +
1
ÅÅÅÅÅÅ
2

F££H0L x2 + OHx3L

where FH0L  is the value of F  at the origin Hx = 0L,  and FHnLH0L  is the value

of the nth derivative at  the origin.  Because the origin is  defined to  be the

equilibrium point,  FH0L  must  vanish.  Then,  if  we  confine  our  attention  to

displacements of the particle that are sufficiently small, we can neglect all

terms  involving  x2  and  higher  powers  of  x.  We  have,  therefore,  the

approximate relation:

f = -k x

-k x

where  we  have  replaced  F ' H0L = -k.  Since  the  restoring  force  is  always

directed  toward  the  equilibrium  position,  the  derivative  F£H0L  is  negative

and,  therefore,  k  is  a  positive  constant.  Only  the  first  power  of  the

displacement  occurs  in  FHxL,  so  that  the  restoring  force  in  this

approximation is  a  linear  force.  Physical  systems that  can be described in

terms of linear forces are said to obey Hooke's law.

The equation of motion for the simple harmonic oscillator can be obtained

by  substituting  Hooke's  law  force  into  the  Newtonian  equation  F = m a.

Thus,

equation1 = m
2 xHtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t t

== -k xHtL

m x££HtL == -k xHtL

If we define w0
2 = k êm, the equation of motion becomes

2. Classical Mechanics 127



equation1 = Hequation1 ê. k Æ w0
2 mL êm

x££HtL == -w0
2 xHtL

The solution of this equation can be found by

solution1 = DSolve@equation1, x, tD

88x Ø Function@8t<, c1 cosHt w0L + c2 sinHt w0LD<<

where  C@1D  and  C@2D  are  constants  of  integration  determining  the

amplitude of the oscillation. Thus, the solution for the harmonic oscillator

are trigonometric functions with period T = 2 p êw0.

Plot@xHtL ê. solution1 ê. 8w0 Æ 2, c1 Æ 1, c2 Æ 1<, 8t, 0, 4 p<,
AxesLabel Æ 8"t", "x"<, PlotStyle Æ RGBColor@0, 0, 0.996109DD;
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The  relationship  between  the  total  energy  of  the  oscillator  and  the

amplitude  of  its  motion  can  be  obtained  as  follows.  Using  the  derived

solution, we find for the kinetic energy
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T = SimplifyA
1
ÄÄÄÄÄÄ
2

m
i
k
jjj

xHtL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

t

y
{
zzz

2

ê. solution1E

: 1
ÅÅÅÅÅÅ
2

m Hw0 c2 cosHt w0L - w0 c1 sinHt w0LL2>

The  potential  energy  for  the  harmonic  oscillator  can  be  calculated  in  the

same  way  following  the  definition  of  work;  that  is,  the  work  required  to

displace the particle a distance x is equivalent with the potential difference.

The incremental amount of work dW  that is necessary to move the particle

by an amount dx against the restoring force F is

dW = -k x ‚ x;

Integrating from 0 to x  and setting the work done on the particle equal to

the potential energy, we have

U = ‡
0

xHtL
k x ‚ x

1
ÅÅÅÅÅÅ
2

k xHtL2

Then,

U = Simplify@U ê. solution1D

: 1
ÅÅÅÅÅÅ
2

k Hc1 cosHt w0L + c2 sinHt w0LL2>

Combining the expressions for T  and U  to find the total energy E, we have
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Energy = Simplify@T + U ê. k Æ w0
2 mD

: 1
ÅÅÅÅÅÅ
2

m w0
2 Hc1

2
+ c2

2L>

so that the total energy is proportional to the square of the amplitude; this

is  a  general  result  for  linear  systems.  Notice  also  that  the  energy  is

independent  of  time;  that  is,  energy  is  conserved.  The  conservation  of

energy  must  be  expected  because  the  potential  U  does  not  depend

explicitly on time.

2.4.8.3 The Phase Diagram

So far,  few attempts have been made to visualize the nature of a solution.

We  only  plotted  the  position  variable x = xHtL  oscillating  periodically  in

time. A most valuable description of a solution is gained by examining its

behavior in the phase plane or, more generally, in phase space.

Returning  to  the  harmonic  oscillator,  the  state  of  motion  of  a

one-dimensional  oscillator  will  be  completely  specified  as  a  function  of

time  if  two  quantities  are  given:  the  displacement  xHtL  and  the  velocity

vHtL = x ' HtL.  The  quantities  xHtL  and  x ' HtL  can  be  considered  to  be  the

coordinates of a point in a two-dimensional space, called the  phase space.

As  the  time  varies,  the  point  Hx, x 'L,  which  describes  the  state  of  the

oscillating  particle,  will  move  along  a  certain  phase  path  in  the  phase

space.  For  different  initial  conditions  of the  oscillator,  the  motion will  be

described by different phase paths. Any given path represents the complete

time  history  of  the  oscillator  for  a  certain  set  of  initial  conditions.  The

totality  of  all  possible  phase  paths  constitutes  the  phase  portrait  or  the

phase diagram of the oscillator.

According to  the  results  of  subsection 2.4.8.2,  we  can represent  the  point

Hx, x 'L in the phase plane for the single harmonic oscillator by
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pt = FlattenA9xHtL,
xHtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

= ê. solution1E

8c1 cosHt w0L + c2 sinHt w0L, w0 c2 cosHt w0L - w0 c1 sinHt w0L<

This  point  is  a  two-dimensional  parametric  representation  of  the  path  for

all  initial  conditions.  The  initial  conditions  are  chosen  by  specifying  the

values  for  C@1D  and  C@2D.  Knowing  this,  we  can  plot  for  different  initial

conditions a phase portrait by continuously changing the time.

i
k
jjjParametricPlotAEvaluateATableApt ê. 9c1 Æ i, c2 Æ 1, w0 Æ

1
ÄÄÄÄÄÄ
2
=, 8i, 1, 5<EE,

8t, 0, #1<, AxesLabel Æ 8"x", "x'"<,
PlotStyle Æ RGBColor@0, 0, 0.996109D, AspectRatio Æ Automatic,

PlotRange Æ J
-7 7
-4 4

NE &
y
{
zzz êû Table@te, 8te, .5, 4.2 p, .5<D;

-6 -4 -2 2 4 6
x
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-3
-2
-1

1
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3
4

x'

The complete phase portrait is generated by
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ParametricPlotAEvaluateATableApt ê. 9c1 Æ i, c2 Æ 1, w0 Æ
1
ÄÄÄÄÄÄ
2
=, 8i, 1, 5<EE,

8t, 0, 4 p<, AxesLabel Æ 8"x", "x'"<,
PlotStyle Æ RGBColor@0, 0, 0.996109D, AspectRatio Æ AutomaticE;
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We are going to show that the paths in the phase plane are ellipses with the

center  as  origin.  The  graphical  representation  given  is  based  on  the

parametric representation of the curves.  The equation governing the paths

is  derived  from  this  parametric  representation  by  eliminating  the  time  t

from the defining equations:

curve = First@FullSimplify@Eliminate@Thread@8x, xd< == pt, ListD, tDDD

xd2
== w0

2 H-x2 + c1
2 + c2

2L

Since  the  energy  H  of  the  harmonic  oscillator  was  connected  with  the

initial  conditions,  we  can  use  this  connection  to  eliminate  them.  First,

solving the relation for  the energy with respect  to the integration constant

C@1D,

sh = SolveAH ==
1
ÄÄÄÄÄÄ
2

m Hc1
2 + c2

2L w0
2, c1E

::c1 Ø -
Â
è!!!!

2 "#################################1
ÅÅÅÅ2 m w0

2 c2
2 - H

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!
m w0

>, :c1 Ø
Â
è!!!!

2 "#################################1
ÅÅÅÅ2 m w0

2 c2
2 - H

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!
m w0

>>
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we are able to replace the two constants C@1D and C@2D by the energy H :

Union@Simplify@curve ê. shDD

:xd2
+ x2 w0

2 ==
2 H
ÅÅÅÅÅÅÅÅÅÅÅÅÅ

m
>

The result is the representation of an ellipses for the coordinates x  and x '.

Because  the  derived  expression  contains  the  total  energy  as  a  parameter,

we know that each phase path corresponds to a definite total energy of the

oscillator.  This result  is expected because the system is conservative (i.e.,

H = const.).

We observe that the phase paths do not cross. This is a general feature of

the  trajectories;  for  if  they could  cross,  this  would  imply that  for  a  given

set  of  initial  conditions  xHt0L  and  x ' Ht0L,  the  motion  could  proceed  along

different phase paths. However, this is impossible since the solution of the

equation of motion is unique.

2.4.8.4 Damped Harmonic Oscillator

The motion represented by the simple harmonic oscillator is termed a free

oscillation; once set into oscillation, the motion would never cease. This is,

of  course,  an  oversimplification  of  the  actual  physical  case  in  which

dissipative  or  frictional  forces  would  eventually  damp  the  motion  to  the

point that  the oscillations would no longer occur.  It  is possible to analyze

the motion in such a case by incorporating into the differential equation a

term  that  represents  the  damping  force.  It  is  frequently  assumed  that  the

damping  force  is  a  linear  function  of  the  velocity  F
”÷÷

d = -g v”.  In  this

subsection,  we will  consider  only one-dimensional damped oscillations so

that we can represent the damping term by -g x '. The damping  constant g

must be positive in order that the force indeed is resisting.

Thus,  if  a  particle  of  mass  m  moves  under  the  combined  influence  of  a

linear  restoring  force  -k x  and  a  resisting  force  -g x ',  the  differential

equation which describes the motion is
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(2.4.17)m x '' + g x ' + k x = 0,

which we can write as 

equation12 = xHtL w0
2 + 2 b

xHtL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

t
+

2 xHtL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

t t
== 0

xHtLw0
2 + 2 b x£HtL + x££HtL ã 0

Here,  b = g ê 2 m  is  the  damping  parameter  and  w0 = Hk êmL1ê2  is  the

characteristic  frequency  in  the  absence  of  damping.  The  solution  of  this

equation follows by

solution = Flatten@DSolve@equation12, x, tDD

:x Ø FunctionB8t<, ‰
t J-b-

"##################
b2-w0

2 N c1 + ‰
t J"##################

b2-w0
2 -bN c2F>

There  are  three  general  cases  of  interest  distinguished  by  the  radicand

b2 - w0
2:

a) Underdamping: w0
2>b2

b) Critical damping: w0
2= b2

c) Overdamping: w0
2<b2

As  we  shall  see,  only  the  case  of  underdamping  results  in  oscillatory

motion.

Underdamped Motion

For this case, it is convenient to define

(2.4.18)w1
2 = w0

2 - b2,

where w1
2 > 0;  then,  the exponents of the solution becomes imaginary and

the solution reduces to

134 2.4 Newtonian Mechanics



underdampedSolution = PowerExpand@xHtL ê. solution ê. w0
2 Æ b2 + w1

2D

‰t H-b-Â w1L c1 + ‰t HÂ w1-bL c2

We  call  the  quantity  w1  the  frequency  of  the  damped  oscillator.  Strictly

speaking, it is not possible to define a frequency when damping is present

because  the  motion  is  not  periodic  (i.e.,  the  oscillator  never  passes  twice

through a  given point  with  the  same velocity).  If  the  damping b  is  small,

then

SeriesA"###################
w0

2 - b2 , 8b, 0, 1<E

"#######
w0

2 + OHb2L

the  term  frequency  may  be  used,  but  the  meaning  is  not  precise  unless

b = 0. Nevertheless, for simplicity, we will refer to w1  as the frequency of

the  damped  oscillator,  and  we  note  that  this  quantity  is  less  than  the

frequency of the oscillator in the absence of damping.

The maximal elongation of the motion of the damped oscillator decreases

with time because of the factor ‰-b t, where b > 0, and the envelope of the

displacement versus time curve is given by 

envelope = underdampedSolution ê. w1 Æ 0

‰-t b c1 + ‰-t b c2

This envelope as well as the displacement curve is shown in the following

plot.
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Plot@Evaluate@
8envelope, envelope, underdampedSolution< ê.
8 1 1, 1ê7, C@1D 1, C@2D 1<D,

8t, 0, 15<, AxesLabel 8"t", "xHtL"<,
PlotStyle 8RGBColor@0, 0, 0.996109D,

RGBColor@0, 0, 0.996109D,
RGBColor@0.996109, 0, 0D<, PlotRange AllD;

2 4 6 8 10 12 14
t
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2
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In  contrast  to  the  simple  harmonic  oscillator,  the  energy  of  the  damped

oscillator is not constant in time. Rather, energy is continually given up to

the damping medium and dissipated as heat.

The "energy" of the damped oscillator is defined by

(2.4.19)H =
1
ÅÅÅÅ2 m Hx 'L2 +

1
ÅÅÅÅ2 k x2,

whereas the loss rate  of the energy is  dH êdt;  both quantities are given in

the following plot for a specific choice of parameters:
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PlotAEvaluateA9
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H t underdampedSolutionL2 +

1

2
H 1

2 + 2L underdampedSolution2,

t
i
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H t underdampedSolutionL2 +

1

2
H 1

2 + 2L underdampedSolution2y
{
zz= ê.
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8t, 0, 15<, AxesLabel 9"t", "H,
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"=,
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The rate of energy loss is proportional to the square of the velocity so the

decrease  of  energy does  not  take place  uniformly.  The loss  rate  will  be  a

maximum  when  the  particle  attains  its  maximum  velocity  near  the

equilibrium position and it will instantaneously vanish when the particle is

at maximum amplitude and has zero velocity.

The phase diagram for the damped oscillator can be generated by plotting

the  coordinates  x  and  x '  for  different  choices  of  the  integration  constants

C@1D and C@2D.
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ParametricPlotA

EvaluateATableARe
i
k
jjj9underdampedSolution,

underdampedSolution
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t
= ê.

9w1 Æ 1, b Æ
1
ÄÄÄÄÄÄ
7

, c1 Æ i, c2 Æ 1=y
{
zzz, 8i, 1, 5<EE, 8t, 0, 25<,

AxesLabel Æ 8"x", "x'"<, PlotStyle Æ RGBColor@0, 0, 0.996109D,
AspectRatio Æ Automatic, PlotRange Æ AllE;
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The above figure shows a spiral phase path for the underdamped oscillator.

The  continually  decreasing  magnitude  of  the  radius  vector  and  the

decrease  of  the  velocity  affect  the  path  in  such  a  way  that  the  terminal

point of the motion ends in the origin.
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Critically Damped Motion

In the case that the damping force is sufficiently large (i.e., if b2 > w0
2), the

system  is  prevented  from  undergoing  oscillatory  motion.  If  there  is  zero

initial  velocity,  the  displacement  decreases  monotonically  from  its  initial

value  to  the  equilibrium  position  x = 0.  The  case  of  critical  damping

occurs when b2  is just equal to w0
2. For this choice of parameters, we have

to solve the original equation of motion a second time because this special

choice of parameters generates a bifurcation of the solution. A bifurcation

of the solution means that the nature of the solution changes if we change

the parameters in a special way in the equation of motion. We note that the

reason  behind  this  bifurcation  is  a  change  of  the  symmetry  group  of  the

equations of motion.  The solution for  the critical  damping case is  derived

by

criticallydampedSolution = xHtL ê.
Flatten@DSolve@8equation12 ê. w0

2 Æ b2, xH0L == x0, x¢H0L == v0<, x, tDD

‰-t b Ht v0 + x0 + t x0 bL

where  x0  and  v0  are  the  initial  values  for  the  position  and  the  velocity,

respectively. Let us assume that the oscillator starts with a finite elongation

of x0 = 1 at a vanishing velocity v0 = 0; we get the displacement by
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plcritical =

PlotAEvaluateAcriticallydampedSolution ê. 9b Æ
1
ÄÄÄÄÄÄ
5

, x0 Æ 1, v0 Æ 0=E,

8t, 0, 25<, AxesLabel Æ 8"t", "x"<,
PlotStyle Æ RGBColor@0, 0, 0.996109DE;
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For  a  given  set  of  initial  conditions  a  critically  damped  oscillator  will

approach  equilibrium  at  a  rate  more  rapid  than  that  for  either  an

overdamped  or  an  underdamped  oscillator.  This  fact  is  of  importance  in

the  design  of  certain  practical  oscillatory  systems  when  it  is  desired  that

the system return to equilibrium as rapidly as possible.

Overdamped Motion

If  the  damping  parameter  b  is  even  larger  than  w0,  the  overdamping

results. Since b2 > w0
2,  it is convenient to define

(2.4.20)w2
2 = w0

2 + b2

where  w2
2 > 0;  then  the  exponents  of  the  solution  become  real  and  the

solution reduces to

overdampedSolution = PowerExpand@xHtL ê. solution ê. w0
2 Æ b2 - w2

2D

‰
t H-b-w2L c1 + ‰

t Hw2-bL c2
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The  solution  derived  from  the  calculation  contains  two  constants  of

integration  c1  and  c2,  which  are  connected  with  the  initial  values  for  the

elongation and the velocity by

gl1 = x0 == overdampedSolution ê. t Æ 0

x0 == c1 + c2

The defining equation for the velocity is

gl2 = v0 ==
overdampedSolution

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

ê. t Æ 0

v0 == c1 H- b - w2L + c2 Hw2 - bL

The solution of these two equations with respect to the constants c1  and c2

is given by

sh = Simplify@Solve@8gl1, gl2<, 8c1, c2<DD

::c1 Ø -
v0 + x0 b - x0 w2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 w2
, c2 Ø

v0 + x0 b + x0 w2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 w2
>>

Inserting this  relations into the solution for  the overdamped oscillator,  we

get

os = overdampedSolution ê. sh

: ‰t Hw2-bL Hv0 + x0 b + x0 w2L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 w2
-

‰t H-b-w2L Hv0 + x0 b - x0 w2L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 w2
>

Note  that  w2  does  not  represent  a  frequency  because  the  motion  is  not

periodic;  the  displacement  asymptotically  approaches  the  equilibrium

position as shown in the following plot:
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ploverd = PlotAEvaluateAos ê. 9b Æ
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Comparing  this  plot  with  the  plot  of  the  critical  damped  oscillator,  we

observe  that  the  displacement  of  the  overdamped  oscillator  is  always

greater  than  the  displacement  of  the  critically  damped  oscillator.  This

behavior  is  important  for  the  construction  of  certain  practical  oscillatory

systems (e.g., galvanometers).
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Show@plcritical, ploverdD;
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The case  of  overdamping results  in  a  non oscillatory asymptotic  decrease

of  the  amplitude  to  zero.  However,  depending  on  the  initial  value  of  the

velocity,  there  might  be  a  change  of  sign  of  x  before  the  displacement

approaches  zero.  If  we  limit  our  considerations  to  initial  positive

displacements xH0L = x0 > 0, there are three cases of interest for the initial

velocity x ' H0L = v0.

a) v0>0, so that x(t) reaches a 
maximum at some t>0 
before approaching zero.

b) v0<0, with x(t) monotonically
approaching zero.

c) v0<0, but sufficiently large so 
that x(t) changes sign, 
reaches a minimum value, 
  and then approaches 
zero.

These  three  cases  are  illustrated  in  the  following  plot  where  we  used  a

positive  initial  displacement  and  nine  different  initial  values  for  the

velocity. We observe that all three cases occur.
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The phase plane of the overdamped oscillator is constructed by plotting x '

versus  x.  This  is  possible  if  we  first  determine  the  velocity  of  the

overdamped oscillator:

dos =
os

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

: ‰t Hw2-bL Hw2 - bL Hv0 + x0 b + x0 w2L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 w2
-

‰t H-b-w2L H- b - w2L Hv0 + x0 b - x0 w2L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 w2
>

The  parametric  plot  of  the  displacement  and  the  velocity  for  different

values  of  the  initial  velocity  generates  a  characteristic  picture  for  the

damped oscillator.
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ParametricPlotAEvaluateA

TableAFlatten@8os, dos<D ê. 9b Æ
1
ÄÄÄÄÄÄ
5

, w2 Æ
1

ÄÄÄÄÄÄÄÄÄÄ
10

, x0 Æ 1, v0 Æ i=,

8i, -2, 2, .25<EE, 8t, 0, 25<, AxesLabel Æ 8"x", "x'"<,
PlotRange Æ All, PlotStyle Æ RGBColor@0, 0, 0.996109DE;
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2.4.8.5 Driven Oscillations

In  the  preceding  sections,  we  found  that  a  particle  undergoing  free

oscillations  would  remain  in  motion  forever.  In  every  real  system,

however, there is always a certain amount of friction that eventually damps

the  motion  to  rest.  This  damping  of  the  oscillations  may  be  prevented  if

there exists some mechanism for supplying the system with energy from an

external  source  at  a  rate  equal  to  that  at  which  it  is  absorbed  by  the

damping medium. Motions of this type are called driven oscillations.

The simplest case of driven oscillations is that in which an external driving

force varying harmonically with time is applied to the oscillator. The total

force on the particle is then

(2.4.21)F = -k x - g x ' + F0 cosHw tL
where we consider a linear restoring force and a viscous damping force in

addition to the driving force. The equation of motion becomes
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equation17 = g
xHtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

+ m
2 xHtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t t

+ k xHtL == F0 cosHw tL

k xHtL + g x£HtL + m x££HtL == cosHt wL F0

or using our previous notation

equation17 = 2 b
xHtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

+

2 xHtL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

t t
+ w0

2 xHtL == A cosHw tL

xHtLw0
2 + 2 b x£HtL + x££HtL == A cosHt wL

where A = F0 êm is the reduced amplitude of the driving force and w is the

frequency of that force. The solution of this equation follows by

solution17 = Flatten@FullSimplify@DSolve@equation17, x, tDDD

:x Ø FunctionB8t<, ‰
t J-b-

"##################
b2-w0

2 N c1 + ‰
t J"##################

b2-w0
2 -bN c2 +

J-A
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L "##################

b2 - w0
2 cosHt wL w

2
+

2 A b
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L "##################

b2 - w0
2 sinHt wLw +

A w0
2 è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L "##################

b2 - w0
2 cosHt wLN í

JHb - w0L Hb + w0L Jb - Â w -
"##################

b2 - w0
2 N Jb + Â w -

"##################
b2 - w0

2 N
Jb - Â w +

"##################
b2 - w0

2 N Jb + Â w +
"##################

b2 - w0
2 NNF>

We observe that the solution consists of two parts. The first part represents

the  complementary  solution  containing  initial  conditions  denoted  by  the

constants  of  integration  c1  and  c2.  The  second  part  is  the  particular

solution free of any constant of integration. This part is present in any case

independent of the initial conditions. To separate the two parts  from each

other, we first extract the particular solution from the total solution by 
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particularSolution = xHtL ê. solution17 ê. 8c1 Æ 0, c2 Æ 0<

J-A
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L "##################

b2 - w0
2 cosHt wLw2 +

2 A b
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L "##################

b2 - w0
2 sinHt wLw +

A w0
2 è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L "##################

b2 - w0
2 cosHt wLN í

JHb - w0L Hb + w0L Jb - Â w -
"##################

b2 - w0
2 N Jb + Â w -

"##################
b2 - w0

2 N
Jb - Â w +

"##################
b2 - w0

2 N Jb + Â w +
"##################

b2 - w0
2 NN

The complementary solution incorporating the initial conditions follows by

complementarySolution =

Simplify@HxHtL ê. solution17L - particularSolutionD

‰
-t Jb+

"##################
b2-w0

2 N Jc1 + ‰
2 t "##################

b2-w0
2

c2N

This solution is just the result derived for a damped oscillator. The general

solution for the driven oscillator is

(2.4.22)xHtL = xpHtL + xcHtL.
The  complementary solution containing the  initial  conditions  c1  and  c2  is

responsible for the transient effects in the solution (i.e., effects that depend

upon  the  initial  conditions).  The  complementary  solution  damps  out  with

time  because  of  the  factor  ‰- b t.  The  partial  solution  xp  represents  the

steady  state  effects  and  contains  all  of  the  information  for  time  t  large

compared  to  1 ê b.  For  this  reason  let  us  first  examine  the  particular

solution.

The important part of the particular solution xp  is its amplitude. To extract

the  amplitude  from  the  variable  particularSolution,  we  use  the  property

that the amplitude is independent of time. Thus we can set t Ø 0 and make

sure  that  the  radicand  b2 - w0
2  is  a  positive  quantity  (i.e.,  we  replace

w0
2 Ø b2 + w1

2  with  w1
2 > 0).  After  the  simplification  we  rewrite  the  result

in the original parameters b2 and w0
2.
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amplitude = HparticularSolution ê. 8t 0, 0
2 2 + 1

2< êê
PowerExpand êê SimplifyL ê.

9 1
2

0
2 2, 1

4 H 0
2 2L2= êê FullSimplify

A
è!!!!!!!!!!!!!!!!

b - w0
è!!!!!!!!!!!!!!!!

b + w0 Hw0
2 - w2L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L H4 b2 w2 + Hw - w0L2 Hw + w0L2L

The  result  shows  that  the  total  amplitude  D  of  the  particular  solution

depends  on  the  driving  frequency  w,  the  damping  constant  b,  the

frequency of the undamped oscillator w0, and on the reduced amplitude of

the applied driving force A. We can reduce this four parameter relations to

a three parameter expression if we introduce the scaled amplitude d = D ê A:

scaledAmplitude =
amplitude
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

A
êê PowerExpand êê Simplify

w0
2 - w2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 b2 w2 + Hw2 - w0

2L2

A  plot  of  this  relation  reveals,  that  the  scaled  amplitude  of  the  driven

oscillator encounters a zero at the frequency of the undamped oscillator.
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Plot@Evaluate@
Table@scaledAmplitude ê. 8A Æ 1, w0 Æ 1, b Æ i<, 8i, .1, 1.2, .1<DD,

8w, 0, 3<, AxesLabel Æ 8"w", "DêA"<,
PlotStyle Æ RGBColor@0, 0, 0.996109DD;
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w

-2
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DêA

This behavior  indicates that  the scaled amplitude is  a  combination of two

parts.  These parts are the amount of the amplitude and the phase factor F

of  the  amplitude.  The  phase  occurs  because  the  driving  frequency  w  is

different  from  the  frequency  of  the  undriven  oscillator  w0.  The  scaled

amplitude  contains  this  difference  in  the  numerator.  Dividing  the

numerator  by  the  square  root  of  the  denominator,  we  get  the  phase  shift

factor of the amplitude

phase =
Numerator@scaledAmplitudeD

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Denominator@scaledAmplitudeD

w0
2 - w2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"##############################################
4 b2 w2 + Hw2 - w0

2L2

The amplitude itself is given by the inverse square root of the denominator 
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amplitudeAmount =
1

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Denominator@scaledAmplitudeD

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"##############################################

4 b2 w2 + Hw2 - w0
2L2

Multiplication of both factors reveals the original expression for the scaled

amplitude

amplitudeAmountphase

w0
2 - w2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 b2 w2 + Hw2 - w0

2L2

Having  separated  the  two  parts  of  the  scaled  amplitude,  we  can  plot  the

two quantities for different values of the damping factor b. The amount of

the amplitude looks like

Plot@Evaluate@
Table@amplitudeAmount ê. 8A Æ 1, w0 Æ 1, b Æ i<, 8i, .1, 1.2, .1<DD,

8w, 0, 4<, AxesLabel Æ 8"w", "DêA"<,
PlotStyle Æ RGBColor@0, 0, 0.996109DD;
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w
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The graphical representation of the phase factor for different values of the

damping constant is given by

Plot@Evaluate@Table@phase ê. 8A Æ 1, w0 Æ 1, b Æ i<, 8i, .1, 1.2, .1<DD,
8w, 0, 4<, AxesLabel Æ 8"w", "F"<,
PlotStyle Æ RGBColor@0, 0, 0.996109DD;
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w
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That is, there is a real delay between the action of the driving force and the

response of the system. 

The amplitude, and therefore the energy,  of the system in the steady state

depends not only on the amplitude of the driver, but also on its frequency.

In  the  two  plots  above,  we  observe  that  if  the  driving  frequency  is

approximately equal to the natural frequency of the system, the system will

oscillate  with  a  very  large  amplitude.  This  phenomenon  is  called

resonance. When the driving frequency equals the natural frequency of the

oscillator,  the  energy  absorbed  by  the  oscillator  is  maximum.  Thus  we

have  to  distinguish  two  frequencies  when  resonances  occur:  First  the

amplitude  resonance  with  its  largest  elongation  and  second  an  energy

resonance with the largest energy transfer.

 In order to find the resonance frequency wR  at which the amplitude D ê A

is a maximum, we solve the defining equation for the maximal deviation
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wR = SolveA
amplitudeAmount

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
w

== 0, wE

:8w Ø 0<, :w Ø -
"######################

w0
2 - 2 b2 >, :w Ø

"######################
w0

2 - 2 b2 >>

The  result  contains  three  roots.  Only  the  positive  root  is  a  physical

realization  of  the  frequency wR  at  which  the  largest  displacement  occurs.

We  also  observe  that  the  resonance  frequency  wR  is  lowered  as  the

damping  coefficient  b  is  increased.  There  is  no  resonance,  of  course,  if

b
2

> w0
2 ê2, for then wR  is imaginary and D  decreases monotonically with

increasing w.

Energy  resonance  is  observed  when  the  kinetic  energy  becomes  a

maximum. The kinetic  energy for  the driven oscillator  is  governed by the

particular  solution  since  the  complementary  solution  dies  out  for  large  t.

The kinetic energy becomes

T = SimplifyA
1
ÄÄÄÄÄÄ
2

m
i
k
jjj

particularSolution
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

t

y
{
zzz

2

E

A2 m w2 H2 b w cosHt wL + Hw2 - w0
2L sinHt wLL2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 I4 b2 w2 + Hw2 - w0
2L2M2

In  order  to  obtain  a  value  of  T  which  is  independent  of  the  time,  we

compute the average of T  over one complete period of oscillation. Thus,

TMean =
w

ÄÄÄÄÄÄÄÄÄÄÄ
2 p

‡
0

2 p
ÄÄÄÄÄÄÄÄÄ

w

T  ‚ t êê Simplify

A2 m w2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 I4 b2 w2 + Hw2 - w0

2L2M

The value of w for  XT\ a maximum is labeled wE and is obtained from

152 2.4 Newtonian Mechanics



wE = SolveA
TMean

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
w

== 0, wE

88w Ø 0<, 8w Ø -w0<, 8w Ø -Â w0<, 8w Ø Â w0<, 8w Ø w0<<

Since  the  trivial,  negative,  and  complex  solutions  of  this  condition are  of

minor physical importance, we get as a result

E = 8 0<

8w Ø w0<

so that the kinetic energy resonance occurs at the natural frequency of the

system for undamped oscillations.

We  see  therefore  that  the  amplitude  resonance  occurs  at  a  frequency
"#####################

w0
2 - 2 b2  whereas the kinetic energy resonance occurs at w0. Since the

potential  energy  is  proportional  to  the  square  of  the  amplitude,  the

potential  energy  resonance  must  also  occur  at  "#####################
w0

2 - 2 b2 .  That  the

kinetic and potential energies resonate at different frequencies is a result of

the fact  that  the damped oscillator  is  not  a  conservative system; energy is

continuously  exchanged  with  the  driving  mechanism  and  energy  is  being

transferred to the damping medium.

Although  we  have  emphasized  the  steady-state  motion  of  the  driven

oscillator,  the  transient  effects  are  often  of  considerable  importance.  The

details of the motion during the period of time before the transient effects

have disappeared (i.e.,  td1/b)  are  strongly dependent  on the conditions of

the oscillator at the time that the driving force is first applied and also on

the  relative  magnitude  of  the  driving  frequency  w  and  the  damping

frequency "#################
w0

2 - b2 .
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2.4.8.6 Solution Procedures of Liner Differential Equations

This subsection discuses two methods useful  for  solving linear  ordinary a

well as partial differential equations. The discussed methods are especially

useful  for  solving  initial  value  problems.  The  presented  methods  are  the

Laplace transform method and the Green's function method. 

The Laplace Transform Method

In the preceding sections, we have mainly used straightforward methods in

solving  the  differential  equations  that  describe  oscillatory  motion.  The

procedure  has  been  to  obtain  a  general  solution  and  then  to  impose  the

initial  conditions  in  order  to  obtain  the  desired  particular  solution.  The

procedure  discussed  in  this  subsection  is  the  Laplace  transform  method.

This  technique,  which is  generally useful  for  obtaining solutions to  linear

differential equations, allows the reduction of a differential equation to an

algebraic  equation.  This  is  accomplished  by  defining  the  Laplace

transform f HpL of a function FHtL according to

(2.4.23)f HpL = Ÿ0

¶
 ‰- p t FHtL dt.

The  Laplace  transform  of  a  function  FHtL  exists  if  FHtL  is  sectionally

continuous in every finite interval 0 < t < ¶ and if FHtL  increases at a rate

less  than  exponential  as  t  becomes  infinitely  large.  In  general,  the

parameter  p  may  be  complex,  but  we  will  not  have  occasion  to  consider

such a case here. The Laplace transform of a function FHtL will be denoted

by t
p@F@tDD, where the lower index denotes the original variable t  and the

upper index refers to the Laplace variable p.

For example, if FHtL = 1, the Laplace transform is given by

t
p@1D

1
ÅÅÅÅÅÅ
p

Similarly, for FHtL = ‰-a t, we find
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t
p@„-a tD

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p + a

Some important properties of Laplace transforms are the following:

The Laplace transform is linear. If a and b are constants, then

t
p@a HHtL + b GHtLD

b t
p@GHtLD + a t

p@HHtLD

The Laplace transform of the derivative of H HtL is given by

t
pA

HHtL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

t
E

p t
p@HHtLD - HH0L

The  transforms  of  higher  derivatives  can  be  calculated  similarly;  for

example,

t
pA

2 HHtL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

t t
E

t
p@HHtLD p2 - HH0L p - H £H0L

The substitution of p + a for the parameter p in the transform corresponds

to multiplying FHtL by ‰-a t. For example,
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t
p@cosHw tLD

p
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p2 + w2

so that

t
p@„-a t cosHw tLD êê Simplify

p + a
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p2 + 2 a p + a2 + w2

Knowing  some  of  the  main  properties  of  the  Laplace  transform,  let  us

apply this method to solve the problem of a driven damped oscillator. The

equation  of  motion  is  just  equation17.  Let  us  assume  that  the  initial

conditions  are  xH0L = 0  and  x ' H0L = 0.  The  Laplace  transform  of  this

equation is

lpTr = t
p@equation17D

t
p@xHtLD p2 - xH0L p + w0

2
t
p@xHtLD + 2 b Hp t

p@xHtLD - xH0LL - x£H0L ==
A p

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p2 + w2

Applying the initial conditions to the Laplace representation

lpTr = lpTr ê. 8xH0L Æ 0, x¢H0L Æ 0<

t
p@xHtLD p2 + 2 b t

p@xHtLD p + w0
2

t
p@xHtLD ==

A p
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p2 + w2

we  get  a  simplified  version  of  the  Laplace  representation.  Solving  this

expression  with  respect  to  the  Laplace  representation  of  xHpL = t
p@xHtLD,

we find
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slpTr = Simplify@Solve@lpTr, t
p@xHtLDDD

:: t
p@xHtLD Ø

A p
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHp2 + w2L Hp2 + 2 b p + w0

2L >>

This  is  the  solution  of  our  initial  value  problem  represented  in  Laplace

space. The inversion of this expression will provide the solution

solution = InverseLaplaceTransform@slpTr, p, tD êê Simplify

::xHtL Ø

i
kjjA ‰

-t Jb+
"##################

b2-w0
2 N i

kjj-‰
2 t "##################

b2-w0
2

b w2 + b w2 + ‰
2 t "##################

b2-w0
2 "##################

b2 - w0
2 w2 +

"##################
b2 - w0

2 w2 + 4 ‰
t Jb+

"##################
b2-w0

2 N
b
"##################

b2 - w0
2 sinHt wLw -

‰
2 t "##################

b2-w0
2

b w0
2 + b w0

2 + 2 ‰
t Jb+

"##################
b2-w0

2 N "##################
b2 - w0

2 Hw0
2 - w2L

cosHt wL - ‰
2 t "##################

b2-w0
2

w0
2 "##################

b2 - w0
2 - w0

2 "##################
b2 - w0

2 y
{zz
y
{zzì

J2 "##################
b2 - w0

2 I4 b2 w2 + Hw2 - w0
2L2MN>>

The graphical  representation of this solution for different damping factors

b is given below
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Plot@Evaluate@
Table@xHtL ê. solution ê. 8A Æ 1, w0 Æ 2, b Æ i, w Æ 1<, 8i, .1, 4, .5<DD,

8t, 0.1, 25<, AxesLabel Æ 8"t", "xHtL"<,
PlotStyle Æ RGBColor@0, 0, 0.996109DD;
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Green's Method

Green's  method  is  generally  useful  for  the  solution  of  linear,

inhomogeneous  differential  equations.  The  main advantage  of  the method

lies  in  the  fact  that  Green's  function  GHt, tL,  which  is  the  solution  of  the

equation  for  an  infinitesimal  element  of  the  inhomogeneous  part,  already

contains the  initial  conditions.  To demonstrate  these facts,  let  us consider

the linear ordinary differential equation

(2.4.24)Lt@uD = f HtL
where Lt  is a linear differential operator. If this linear differential operator

has an inverse Lt
-1 = G, the solution can be written as

(2.4.25)uHtL = Ÿ-¶

¶
GHt, tL f HtL dt

where  the  integration  is  over  the  range  of  definition  of  the  functions

involved. Once we know GHt, tL,  Equation (2.4.25) gives the solution uHtL
in  an  integral  form.  However,  how  do  we  find  GHt, tL?  If  Lt  is  a  local

differential operator, we obtain

(2.4.26)Lt GHt, tL = dHt - tL.
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GHt, tL  is  called  Green's  function  for  the  differential  operator  Lt.  Thus,

Green's  function  is  nothing  more  than  the  solution  of  an  linear  ordinary

differential  equation  under  the condition that  at  t = t,  a  unique  force  acts

on  the  system.  Let  us  examine  this  behavior  for  the  damped  harmonic

oscillator. The linear operator Lt for this physical system is defined by

LHf_L := f w0
2 + 2 b

f
ÄÄÄÄÄÄÄÄÄÄÄÄ

t
+

2 f
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

t t

Taking this definition into account, Green's function follows from relation

(2.4.26) by

Green = LHGHt, tLL == DiracDelta@t - tD

GHt, tLw0
2 + 2 b GH1,0LHt, tL + GH2,0LHt, tL == dHt - tL

We assume that the system starts  from rest,  meaning GHt, tL = 0 for  t < t,

so that GHt, tL is the response of the system on a unit force action at t = t.

For  times  t > t,  there  is  no  force  acting  on  the  equation.  Thus,  Green's

function is determined by the homogeneous equation

Green = LHGHt, tLL == 0

GHt, tLw0
2 + 2 b GH1,0LHt, tL + GH2,0LHt, tL == 0

The  solution  of  this  equation  follows  by  applying  the  Laplace  transform

method to this equation. The Laplace transform is

lpGreen = t
p@GreenD

t
p@GHt, tLD p2

- GH0, tL p + w0
2

t
p@GHt, tLD +

2 b Hp t
p@GHt, tLD - GH0, tLL - GH1,0LH0, tL == 0

Solving  this  relation  with  respect  to  the  Laplace  variable  t
p@GHt, tLD,  we

get
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lpSolution = Solve@lpGreen, t
p@GHt, tLDD

:: t
p@GHt, tLD Ø

p GH0, tL + 2 b GH0, tL + GH1,0LH0, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

p2 + 2 b p + w0
2

>>

The inversion of the Laplace transform provides us with the solution

GreenF = InverseLaplaceTransform@lpSolution, p, tD êê FullSimplify

::GHt, tL Ø
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L
I‰-t b Iè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L coshIt è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L MGH0, tL +

sinhIt è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L M Hb GH0, tL + GH1,0LH0, tLLMM>>

A transformation to a pure function representation allows us to use Green's

function in symbolic expressions: 

r1 = G Æ Function@8t, t<, $wD ê. H$w Æ GHt, tL ê. GreenFL

G Ø FunctionB8t, t<, 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L

I‰-t b Iè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L coshIt è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L MGH0, tL +

sinhIt è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L M Hb GH0, tL + GH1,0LH0, tLLMMF

res = ‡
t-e

e+t

GreenP1T ‚ t == ‡
t-e

e+t

DiracDelta@t - tD ‚ t ê.

8GHt - e, tL Æ 0, GH1,0LHt - e, tL Æ 0<

‡
t-e

e+t HGHt, tLw0
2 + 2 b GH1,0LHt, tL + GH2,0LHt, tLL „ t == qHeL - qH-eL

To estimate the terms in the above relation, we assume that the maximum

of G is finite MaxH » G »L < ¶,  so that we can estimate the integral term by

I § MaxH » G »L 2 e,  meaning  that  for  e Ø 0,  the  integral  term  vanishes.  If
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we,  in  addition,  assume  that  the  time  derivative  of  G  is  finite,

MaxJ … Gÿ …N < ¶,  then we can estimate the  behavior  of  Green's  function as

… G … § MaxJ … Gÿ …N 2 e.  This  again  means  that  G  vanishes  if  e Ø 0.  These

two properties allow us to  define the following conditions for  the Green's

function:

(2.4.27)
G

ÿ Ht + 0, tL = 1,

GHt - 0, tL = 0.

These two conditions represent the behavior that the particle right after the

application  of  a  unit  force  stays  at  the  same  position  but  gets  a  unique

momentum.  Conditions  (2.4.27)  allow  us  to  determine  the  initial

conditions for Green's function. The first equation reads

eq1 = HGHt, tL ê. r1L ä 0

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L

I‰-b t Iè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L coshIt è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L MGH0, tL +

sinhIt è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L M Hb GH0, tL + GH1,0LH0, tLLMM == 0

The second Equation of (2.4.27) reads

eq2 =
i
k
jjj

GHt, tL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

t
ê. t Æ t ê. r1

y
{
zzz ä 1

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L

I‰-b t IHb - w0L Hb + w0LGH0, tL sinhIt è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L M +

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L coshIt è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L M
Hb GH0, tL + GH1,0LH0, tLLMM -

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L

I‰-b t
b Iè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L coshIt è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L MGH0, tL +

sinhIt è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hb - w0L Hb + w0L M Hb GH0, tL + GH1,0LH0, tLLMM == 1
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Solving these  two  equations  for  the  initial  conditions  of Green's  function,

we get

sol = Simplify@Solve@8eq1, eq2<, 8GH1,0LH0, tL, GH0, tL<DD

::GH1,0LH0, tL Ø ‰b t

i

k

jjjjjjjjjcoshJt "##################
b2 - w0

2 N +
b sinhJt "##################

b2 - w0
2 N

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"##################
b2 - w0

2

y

{

zzzzzzzzz,

GH0, tL Ø -
‰b t sinhJt "##################

b2 - w0
2 N

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"##################
b2 - w0

2
>>

Inserting  these  results  into  the  original  representation  of  the  solution,  we

gain

GreenF = Simplify@GHt, tL ê. r1 ê. solD

: ‰b Ht-tL sinhJHt - tL"##################
b2 - w0

2 N
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"##################

b2 - w0
2

>

representing the  Green's  function  for  t > t.  For  t § 0  the  Green's  function

vanishes.  Knowing  the  Green's  function,  we  are  able  to  solve  the

inhomogeneous  differential  equation  by  integrating  the  product  of  the

inhomogenity and the Green's function

lh = 9
„b Ht-tL sinhJI Ht - tL"#######################

- b2 + w0
2 N

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

I
"#######################

- b2 + w0
2

=

: ‰b Ht-tL sinJHt - tL"##################
w0

2 - b2 N
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"##################

w0
2 - b2

>

162 2.4 Newtonian Mechanics



Knowing the Green's function also allows us, for example, to calculate the

solution for a constant force of unit strength by

SimplifyA‡
0

t

PowerExpand@TrigReduce@lhP1TDD ‚ tE

-

‰-t b cosJt "##################
w0

2 - b2 N +
‰-t b b sinJt "##################

w0
2-b2 N

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"##################
w0

2-b2
- 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
w0

2

The  solution  for  a  harmonic  force  g cosHw0 tL  in  the  case  of  vanishing

damping is given by

solution =

SimplifyA‡
0

t

PowerExpand@TrigReduce@g cosHw0 tL lhP1T ê. b Æ 0DD ‚ tE

g t sinHt w0L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 w0

Another  example  is  an  exponential  decaying  force  for  the  damped

harmonic oscillator resulting in

h1 =

SimplifyA‡
0

t

PowerExpand@TrigReduce@h lhP1TDD E

J‰-t Hb+gL h J-‰t g "##################
w0

2 - b2 cosJt "##################
w0

2 - b2 N + ‰t g Hg - bL sinJt "##################
w0

2 - b2 N +

‰t b "##################
w0

2 - b2 NN í J"##################
w0

2 - b2 Hg2 - 2 b g + w0
2LN

All of these solutions are solutions free of any transient effects.
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 2.4.8.7 Nonlinear Oscillation

Solutions  of  certain  nonlinear  oscillation  problems  can  be  expressed  in

closed form in terms of elliptic integrals. The pendulum is one example of

a nonlinear model exhibiting elliptic functions as solutions. A pendulum is

a system with mass m  which is kept in orbit by a massless supporting rod

of  length  l  (see  Figure  2.4.9).  The  pendulum  moves  within  the

gravitational  field  of  the  Earth  and  is  thus  exposed  to  the  vertical

gravitational  force  mg.  The  dynamic  force  F  is  perpendicular  to  the

supporting rod and takes the form FHfL = -mg sinHfL.

Figure 2.4.9. Pendulum as a nonlinear system.

For  small  amplitudes,  we  can  model  the  pendulum  in  terms  of  a  linear

system which  is  equivalent  to  a  harmonic  oscillator.  The  accuracy of  this

approximation will be determined in the course of our calculations. Taking
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the angle of libration to be f (see Figure 2.4.9), the equation of motion for

an oscillating particle of unit mass is 

(2.4.28)f '' + w0
2 sinHfL = 0,

with w0
2 = g ê l  being the ratio between the gravitational acceleration g  and

the  length  of  the  pendulum  l.  If  the  amplitudes  around  the  equilibrium

position are small, then sinHfL in Equation (2.4.28) can be approximated by

sinHfL º f.

Series@sinHfL, 8f, 0, 1<D

f + OHf2L

  As  a  result,  the  equation  of  motion  is  reduced  to  an  equation  of  a

harmonic oscillator

(2.4.29)f'' + w0
2 f = 0.

Within  this  approximation,  the  oscillation  period  T  is  given  by

T = 2 p êw = 2 p 
è!!!!!!!!!

l ê g  and is independent of the amplitude.

If  we  wish  to  determine  the  oscillation  period  for  larger  amplitudes,  we

need to  start with Equation (2.4.28).  Since we have neglected damping in

our equations, the total energy of the system can be written as the sum of

the potential and kinetic energy (conservation of energy):

(2.4.30)Tkin + V = E = const.

This  formulation  allows  us  to  easily  construct  the  solution  to  Eqation

(2.4.28).  Equation  (2.4.30)  gives  a  first  integral  of  motion.   Due  to  the

explicit  time independence of the equation of motion (2.4.28),  the second

step of the integration process can be done by a quadrature.  The duration

of oscillation can be expressed in the form of an integral.

If we choose the origin of the potential energy to be at the lowest point in

the orbit, then we get for the potential energy
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V = m g l H1 Cos@ @tDDL

g l m H1 - cosHfHtLLL

(2.4.31)V = m g l H1 - cosHfLL.
A graphical representation of the potential energy is given in the following

plot.  In  addition  to  the  potential  energy,  we  also  plotted  three  different

energy values of the pendulum. As we will see, these values correspond to

three different kinds of motion of the pendulum.

PlotA91 Cos@ D,
4

3
, 2,

7

3
=,

8 , 2 , 2 <, AxesLabel 9" ", "
V@ D

m g l
"=,

PlotStyle 8Hue@0D, Hue@0.2D, Hue@0.4D, Hue@0.6D<E;

-6 -4 -2 2 4 6
f

0.5

1

1.5

2

V@fD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m g l

The kinetic energy is derived from the equation

Tkin =
1

2
m l2 H t @tDL2

1
ÅÅÅÅÅÅ
2

l2 m f
£HtL2

(2.4.32)Tkin =
1
ÅÅÅÅ2 m l2Hf'L2.
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The  total  energy  of  the  pendulum  then  follows  by  adding  up  the  kinetic

and potential energy as

H = Tkin + V

1
ÅÅÅÅÅÅ
2

l2 m f£HtL2 + g l m H1 - cosHfHtLLL

A phase space portrait of the pendulum is generated next by specifying the

parameters l, m, and g.

<< Graphics`ImplicitPlot ;̀

ImplicitPlotA

EvaluateATableAH == e ê. 8l 10, g 10, m > .01,

@tD , t @tD p<, 9e,
1

3
, 5,

1

3
=EE,

8 , 2 , 2 <, 8p, 7, 7<, PlotPoints 41,

AxesLabel 8" ", " '"<,

PlotStyle TableAHueA
i

20
E, 8i, 0, 15<EE;

-6 -4 -2 2 4 6
f

-3
-2
-1

1
2
3

f'

The  phase  space  diagram  shows  that  three  different  kinds  of  motion  are

possible.  Near  the  center,  there  exist  oscillations.  For  larger  energies,  we

find  revolutions,  and  for  a  certain  energy,  there  is  an  asymptotic  motion

starting  at  one  point  and  terminating  at  the  upper  turning  point  of  the

pendulum. This third kind of motion separates the two other motions. The

phase space curve is thus called a separatrix.
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Combining the energy plot with the phase space plot, we get an impression

of how the motion in the different region of the potential takes place.

<< Graphics`Graphics3D ;̀

ShadowPlot3D@Evaluate@
H ê. 8l 10, g 10, m > 0.01, @tD , t @tD p<D,

8 , 2 , 2 <, 8p, 3, 3<, PlotPoints 45,

AxesLabel 8" ", " '", "H"<, Axes True,

SurfaceMesh False, ShadowMesh False,

ViewPoint > 81.756, 2.089, 2.000<D;

-5

0

5

f

-2

0
2f'

-2.5

0

2.5

5

H

-5

0

5

f

-2

0
2f

If  we  designate  the  angle  at  the  highest  orbital  point  as  f1,  the  potential

and the kinetic energies at this point are given by

(2.4.33)V Hf = f1L = E = m g l H1 - cosHf1LL,
(2.4.34)TkinHf = f1L = 0.
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By means  of  the  trigonometric  identity  cosHfL = 1 - 2 sin2Hf ê 2L,  the  total

energy at the upper reversal point can be expressed in the form

(2.4.35)E = 2 m g l sin2 I f1ÅÅÅÅÅÅ2 M.
Because E  is constant in time, this expression is also valid for amplitudes

smaller than f1. The potential energy takes the form

(2.4.36)V = 2 m g l sin2 I f
ÅÅÅÅ2 M;

we used the trigonometric identity cosHfL = 1 - 2 sin2Hf ê2L  to simplify the

relation. In accordance with Equation (2.4.30),  the kinetic energy is given

as the difference between the total energy and the potential energy by

(2.4.37)1
ÅÅÅÅ2 m l2 f '2 = 2 m g l Isin2 I f1ÅÅÅÅÅÅ2 M - sin2 I f

ÅÅÅÅ2 MM.
In other words, we get

(2.4.38)f ' = 2 w0 Isin2 I f1ÅÅÅÅÅÅ2 M - sin2 I f
ÅÅÅÅ2 MM1ê2.

Separating the variables, we find

(2.4.39)dt =
d f

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 w0

"#########################################sin2H f1ÅÅÅÅÅÅÅ2 L-sin2H f
ÅÅÅÅ2 L

.

We can obtain the oscillation period T  of the pendulum by integrating both

sides over a complete period

(2.4.40)Ÿ0

T
dt = 4·

0

f1

d f
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 w0

"#########################################sin2H f1ÅÅÅÅÅÅÅ2 L-sin2H f
ÅÅÅÅ2 L

.

The left hand side of (2.4.35) can be directly integrated and we find

(2.4.41)T =
2

ÅÅÅÅÅÅÅ
w0 ·

0

f1

d f
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"#########################################sin2H f1ÅÅÅÅÅÅÅ2 L-sin2H f

ÅÅÅÅ2 L
.

Thus,  the  oscillation  period  is  reduced  to  a  complete  elliptic  integral.  By

substituting  z = sinHf ê 2L ê sinHf1 ê 2L  and  k = sinHf1 ê2L,  the  integral  on  the

right-hand side of Equation (2.4.41) is transformed to the standard form

(2.4.42)
T =

4
ÅÅÅÅÅÅÅ
w0 ‡

0

1
d z

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!H1-z2L H1-k2 z2L
=

4
ÅÅÅÅÅÅÅ
w0

K Hk2L .
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KHk2L  denotes  the  complete  elliptic  integral  of  the  first  kind  and

k2 = E ê H2 m g lL denotes the modulus of the elliptic function.

By calling EllipticK[], Mathematica  executes KHk2L. Integrate[]  executes

the integration of Equation (2.4.42): 

PowerExpandA‡
0

1 1
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

H1 - z2L H1 - k2 z2L
 ‚ zE

IfBImJ 1
ÅÅÅÅÅÅ
k
N 0 Î ImHkL 0 Î

1 +
1
ÅÅÅÅÅÅ
k

ã 0 ÌReJ 1
ÅÅÅÅÅÅ
k
N > 1 Î 1 +

1
ÅÅÅÅÅÅ
k

ã 0 Ì ReHkL < 0 Î
1
ÅÅÅÅÅÅ
k

ã 1 Ì ReHkL ¥ 0 Î 1
ÅÅÅÅÅÅ
k

ã 1 ÌReJ 1
ÅÅÅÅÅÅ
k
N + 1 < 0 Î

ReJ 1
ÅÅÅÅÅÅ
k
N > 1 ÌReHkL ¥ 0 ÎReJ 1

ÅÅÅÅÅÅ
k
N + 1 < 0 ÌReHkL < 0,

KHk2L, IntegrateB
è!!!!!!!!!!!!!!

z2 - 1
è!!!!!!!!!!!!!!!!!!!!

k2 z2 - 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHz2 - 1L Hk2 z2 - 1L , 8z, 0, 1<,

Assumptions Ø Ÿ JImJ 1
ÅÅÅÅÅÅ
k
N 0 Î ImHkL 0 Î

1 +
1
ÅÅÅÅÅÅ
k

ã 0 Ì ReJ 1
ÅÅÅÅÅÅ
k
N > 1 Î 1 +

1
ÅÅÅÅÅÅ
k

ã 0 ÌReHkL < 0 Î
1
ÅÅÅÅÅÅ
k

ã 1 ÌReHkL ¥ 0 Î 1
ÅÅÅÅÅÅ
k

ã 1 Ì ReJ 1
ÅÅÅÅÅÅ
k
N + 1 < 0 Î

ReJ 1
ÅÅÅÅÅÅ
k
N > 1 Ì ReHkL ¥ 0 ÎReJ 1

ÅÅÅÅÅÅ
k
N + 1 < 0 Ì ReHkL < 0NFF

Once  we  know  the  length  of  the  pendulum  and  its  initial  angular

displacement,  the  oscillation  period  is  completely  determined.  Since

Mathematica   recognizes  all  elliptic  integrals  as  well  as  all  Jacobian

elliptic  functions,  we  can  straightforwardly  determine  the  dependence  of

the period on the initial amplitude. A graphical representation of  KHkL via

f1  can be found in Figure 2.4.10. We are now able to evaluate the period

T  with the following function:
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T@omega_, phi1_D := BlockA8k, duration<,

k = SinA
phi1

2
E;

duration = 4 EllipticK@k2Dê omega
E

Our  input  values  are  the  angle  of  displacement  f1  and  the  frequency

w0 =
è!!!!!!!!!

g ê l .   We  first  calculate  the  modulus  k2  in  accordance  with  the

above  definition  and  then  determine  the  period  in  accordance  with

Equation  (2.4.42).   As  we  see  from Figure  2.4.10,  KHkL  with  k = 1  tends

toward ¶ (i.e., at the upper point of reversal f1 = p, the period is infinitely

large).

Approximated equations are often cited in the literature for the period. To

obtain  a  valid  comparison  between  exact  and  approximated  oscillation

periods,  we  use  the  approximation  procedure  described  below.  If  the

pendulum  oscillates,  we  know  that  k < 1.  Using  this  condition,  we  can

expand the second part of the integrand in Equation (2.4.42) into a Taylor

series:

(2.4.43)
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!
1-k2 z2

= 1 +
k2 z2
ÅÅÅÅÅÅÅÅÅÅÅ2 +

3 k4 z4
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ8 + ....

We execute this procedure using

res = SeriesA
1

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄè!!!!!!!!!!!!!!!!!!!!
1 - k2 z2

, 8k, 0, 8<E

1 +
z2 k2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

+
3 z4 k4

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8

+
5 z6 k6

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
16

+
35 z8 k8

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
128

+ OHk9L

We  have  expanded  the  expression  1 ëè!!!!!!!!!!!!!!!!!!!
1 - k2 z2  around  k = 0  up  to  the

eighth  order  by  calling  the  function  Series[],  which  yields  a  Taylor

expansion. The period is expressed by using the Taylor representation

(2.4.44)TN =
4

ÅÅÅÅÅÅÅ
w0 ·

0

1
1+

k2 z2
ÅÅÅÅÅÅÅÅÅÅÅ2 +

3 k4 z4
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ8 +...

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!H1-z2L dz,

which in Mathematica looks as follows:
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TN = ExpandA
4 ‡

0

1
Normal@resD
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄè!!!!!!!!!!!!!!

1-z2
 ‚ z

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
w

E

1225 p k8

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8192 w

+
25 p k6

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
128 w

+
9 p k4

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
32 w

+
p k2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 w

+
2 p
ÅÅÅÅÅÅÅÅÅÅÅ
w

By calling Normal[], we eliminate the symbol OHk9L from the variable res.

After  executing  the  integration  of  the  truncated  expression  res  with

Integrate[]  and applying  Expand[] to simplify the result, we get the same

result as given by Landau with respect to the first set of orders:

(2.4.45)TN º
2 p
ÅÅÅÅÅÅÅÅ
w0

J1 +
k2
ÅÅÅÅÅÅ4 +

9 k4
ÅÅÅÅÅÅÅÅÅÅ64 + ...N.

To  use  the  same  independent  variables  in  a  graphical  representation,  we

replace k  by sinHf1 ê 2L. Mathematica  executes such a replacement with the

operator ReplaceAll[] ( /.) .

tn = TN ê. k Æ sin
i
k
jjj

f1
ÄÄÄÄÄÄÄÄÄÄ
2

y
{
zzz

1225 p sin8H f1
ÅÅÅÅÅÅÅ2 L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8192 w

+
25 p sin6H f1

ÅÅÅÅÅÅÅ2 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

128 w
+

9 p sin4H f1
ÅÅÅÅÅÅÅ2 L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
32 w

+
p sin2H f1

ÅÅÅÅÅÅÅ2 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 w
+

2 p
ÅÅÅÅÅÅÅÅÅÅÅ
w

In  order  to  get  a  graphical  representation  of  this  approximation,  we  now

need  to  specify  a  value  for  w  in  TN  to  obtain  an  expression  void  of  any

parameter.  To  keep  it  simple,  we  choose  w = 4.  The  replacement  is

executed by

tn = tn /. 4;

T  and TN   can now be graphically presented as follows:
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Plot@8T@4, 1D, tn<,
8 1, 0, <, AxesLabel > 8" 1", "T,TN"<D;

0.5 1 1.5 2 2.5 3
f1

1.5

2.5

3

3.5

4

4.5

T,TN

Figure 2.4.10. 
 Comparison between the exact period T  (upper curve) and the approximation TN  with an
expansion up to the eighth order with w0 = 4.

Plot[]  here  is  used  together  with  a  list  of  functions  pertaining  to  the  first

argument. The second argument contains the range of representations. The

third argument contains the axis labels. 

Figure  2.4.10  shows  that  for  small  f1,  the  amplitudes  between  the  exact

period  and  its  approximations  are  negligible.  However,  the  difference

between the exact theory and the approximation becomes larger and larger

for  angular  displacement  larger  than  f1 º 2.  In  other  words,  for  large  f1

(i.e.,  for  large  amplitudes),  a  larger  number  of  higher-order  Taylor

components is needed to obtain an accurate representation of the period.

If,  however,  we make the period dependent  on the initial displacement f1

and  note  that  k  is  connected  to  the  initial  condition  via

k = sinHf1 ê 2L º f1 ê 2 - f1
3 ê 48. ..,  the  range  of  agreement  is  further

reduced by

(2.4.46)TN º
2 p
ÅÅÅÅÅÅÅÅ
w0

I1 +
1

ÅÅÅÅÅÅÅ16 f1
2 +

11
ÅÅÅÅÅÅÅÅÅÅÅÅ3072 f1

4 + ...M.
The steps in Mathematica for this formulation are
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sin = SeriesAsin
i
k
jjj

f1
ÄÄÄÄÄÄÄÄÄÄ
2

y
{
zzz, 8f1, 0, 4<E;

TN = TN ê. k Æ Normal@sinD;
Expand@TND

1225 p f124

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
230844665274826752 w

-
1225 p f122

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1202315964973056 w

+

8575 p f120

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
100192997081088 w

-
25625 p f118

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
6262062317568 w

+
4675 p f116

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
38654705664 w

-

8075 p f114

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3623878656 w

+
21773 p f112

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
905969664 w

-
757 p f110

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
6291456 w

+

9 p f18

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2097152 w

+
25 p f16

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
73728 w

+
11 p f14

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1536 w

+
p f12

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8 w

+
2 p
ÅÅÅÅÅÅÅÅÅÅÅ
w

Series[]  produces an expansion of  sin at f1 = 0 up to the fourth order.  In

the  second  step,  k  in  TN  is  replaced  by  the  series  expansion  sin  and  is

simplified by Expand[] in the last step.

Despite  the  limited  accuracy,  we  can  see  from  this  approximation

procedure  that  the  period  of  a  nonlinear  problem  depends  on  the  initial

conditions.  In  case  of  linear  approximation,  however,  the  period  is

independent of initial conditions.

Solutions for Different Values of Energy

When  we  look  at  the  potential  V HxL = 1 - cosHxL  for  the  mathematical

pendulum, we observe that three forms of motion are possible. For a total

energy  smaller  than  the  maximum  value  of  the  potential  energy,

oscillations occur  (bound motion).  For  energy values  of E > Vmax,  we get

rotations.  Finally,  for  E = Vmax,  we  get  the  asymptotic  behavior  of  the

pendulum  (see  Figure  2.4.11).  The  solutions  for  the  different  values  of

energy result from (2.4.38) in the form of

(2.4.47)f ' =
"#############################################################2

ÅÅÅÅÅÅÅÅÅÅm l2 HE - m l2 w0
2 H1 - cos fLL .
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Figure 2.4.11. Scaled potential VHxL for the mathematical pendulum.

Scaling the energy with E* = E ê Hm l2 w0
2L, we get

(2.4.48)f ' = w0
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

2 Hcos f - 1 + E*L .

Different forms of motion occur for different values of the scaled energy

(2.4.49)
E* > 2  rotation
E* = 2 asymptotic motion
0 § E* < 2 oscillations

In the following, we will investigate a case that is characterized by its fixed

energy E* = 2. For this case, Equation (2.4.48) takes the form

(2.4.50)f
°

= w0
è!!!!!!!!!!!!!!!!!!!!!!!!!!!

2 Hcos f + 1L .

Substituting cos f = y, we get

(2.4.51)
è!!!!

2  w0 Ÿ0

t
d t ' = ·

1

y

d y '
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"##################################H1-y '2L H1+y 'L

.

The integration of this equation yields

(2.4.52)w0
è!!!!

2 t = -
è!!!!

2 Arctanh
i
kjj
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!H1+y L H1-y 2L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!

2 H1+y L
y
{zz.

By inverting these functions, the solution for the angle f is obtained:

(2.4.53)f = arccosH1 - 2 tanh2
w0 t L.
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From Equation (2.4.48), we get for 0 < E* < 2,

(2.4.54)Ÿ0

t
d t ' =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!

2  w0
‡

0

f
d f'

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
cos f'-H1-E*L .

If we replace 1 - E* = cos f1  and k = sinH f1 ê 2L,  we can express Equation

(2.4.54) in the form

(2.4.55)w0 Ÿ0

t
d t ' = ·

0

y

d y '
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"##########################################H1-y '2L H1-k2 y '2L

= sn-1Hy, kL,

where  sn  is  the  inverse  function  of  the  Jacobian  elliptic  function,  in

Mathematica known as JacobiSN[], and leads to

(2.4.56)y = snHw0 t, kL.
Solving Equation (2.4.55) with respect to angle f, we get the expression

(2.4.57)f = 2 arcsinHk snHw0 t, kLL.
If  we  choose  E* > 2,  we  obtain  the  solution  for  the  angle  by  applying  a

similar strategy to the one above. The solution is

(2.4.58)f = 2 amI w0 t
ÅÅÅÅÅÅÅÅÅk , kM,

where am denotes the JacobiAmplitude[]. The course of the solutions for

the various k  values is  k = 80.1, 0.5, 0.9<;  different  initial  amplitudes  and

w0 = 4  are  shown  in  Figures  2.4.12,  2.4.13,  and  2.4.14.  The  figures  are

produced  with  Plot[]  as  well  as  with  ArcSin[], JacobiSN[],  and

JacobiAmplitude[]. The Jacobi elliptic functions have two arguments: the

independent variable w0 t and the modulus k.
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Figure 2.4.12. Solution for E* = 2.

1 2 3 4 5 6
t

-2

-1

1

2

f

Figure 2.4.13. 
Solutions for 0 < E* < 2.  The amplitudes of the solution increase by increasing the values
of the modulus k = 80.1, 0.5, 0.9<.
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Figure 2.4.14. 
Solutions of the mathematical pendulum for E* > 2. The slope of the solution decreases by
increasing the modulus k. The three values for k are 80.1, 0.5, 0.9<.

2.4.8.8 Damped Driven Nonlinear Oscillator

Another familiar example is the planar pendulum subject to a driving force

and  frictional  damping.  This  example  is  used  to  demonstrate  that  the

incorporation  of  nonlinearity  can  result  to  unpredictable  or  chaotic

behavior.  For  the  definition  of  chaos,  see  Section 2.9.  The  motion of  the

damped, driven pendulum is described by the equation

(2.4.59)x '' + ax' +
g
ÅÅÅÅl sin x = g cos w t.
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Apart  from  its  application  to  the  pendulum,  this  equation  is  used  to

describe  a  Josephson  tunneling  junction.  In  a  Josephson  junction,  two

superconducting  materials  are  separated  by  a  thin  nonconducting  oxide

layer.  Among  the  practical  applications  of  such  junctions  are

high-precision  magnetometers  and  standards  of  voltage  elements.  The

ability  of  these  Josephson  junctions  to  switch  rapidly  and  with  very  low

dissipation  from  one  current-carrying  state  to  another  might  provide

microcircuit  technologies  for,  say,  supercomputers,  which  are  more

efficient  than  those  based  on  conventional  semiconductors.  Hence,  the

nature  of  the  dynamic  response  of  a  Josephson  junction  to  the  external

driving force — the cos w t term — is a matter of technological as well as

of fundamental interest.

One  of  the  characteristics  of  this  equation  is  the  occurrence  of  chaotic

states.  These  states  depend  on  the  choice  of  parameters  for  damping  and

driving force. Since standard analytical techniques are of limited use in the

chaotic  regime,  we  demonstrate  the  existence  of  chaos  by  relying  on

graphical results from numerical simulations.

We  first  note  that  because  there  is  an  external  time  dependence  in  the

equation of motion, the system really involves three first-order differential

equations. In a normal dynamic system, each degree of freedom results in

two  first-order  equations  and  such  a  system  is  said  to  correspond  to

one-and-a-half degrees of freedom. To see this explicitly, we introduce the

variable z = w t and rewrite the equation of motion (2.4.59) resulting in

(2.4.60)x ' = vHtL,
(2.4.61)v ' = -a vHtL -

g
ÅÅÅÅl sinHxHtLL + g cosHzHtLL,

(2.4.62)z ' = w.

The  equations  show  how  the  system  depends  on  the  three  generalized

coordinates x, v,  and z.  Note further that the presence of damping implies

that  the  system is  no  longer  conservative  but  is  dissipative  and,  thus,  can

have attractors.

Analysis  of  the  damped  driven  pendulum  illustrates  two  separate  but

related  aspects  of  chaos:  first,  the  existence  of  a  strange  attractor  and,

second,  the  presence  of  several  different  attracting  sets  and  the  resulting

extreme sensitivity of the asymptotic motion to initial conditions.
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To  identify  the  signature  of  chaos,  we  use  the  Poincaré  technique  to

represent  a  section  of  phase  space.  A  Poincaré  section  is  a  plot  showing

only  the  phase  plane  variables  x  and  x '.  A  stroboscopic  snapshot  of  the

motion  is  taken  during  each  cycle  of  the  driving  force.  The  obtained

complicated  attracting  set  of  points  shown  in  Figure  2.4.20  is,  in  fact,  a

strange  attractor  and  describes  a  never-repeating,  non  periodic  motion  in

which the pendulum oscillates and flips over its pivot point in an irregular,

chaotic  manner.  Before  we  examine  this  chaotic  behavior,  let  us  first

discuss the regular motion of the system.

Regular Motion

We use for the numerical integration Equations (2.4.60) and (2.4.61). The

relevant system of equations reads

eq1 =
xHtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

== vHtL

x£HtL == vHtL

eq2 =
vHtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

== g cosHw tL - a vHtL + sinHxHtLL H-w0
2L

v£HtL == -sinHxHtLLw0
2 + g cosHt wL - a vHtL

where we abbreviated g ê l = w0
2, and a and g are the damping constant and

the amplitude of the driving force, respectively. Since we cannot access the

solution of  the  driven nonlinear  pendulum by analytic  procedures,  we  are

forced  to  carry  out  numerical  integrations.  For  that  reason,  we  have  to

select specific numerical values for the parameters:

parameterRules = 8w0 Æ 1, a Æ 0.2, g Æ 0.52, w Æ 0.694<

8w0 Ø 1, a Ø 0.2, g Ø 0.52, w Ø 0.694<
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To  generate  the  numerical  solution,  we  select  30  cycles  of  the  driving

frequency for the endpoint in time.

cycles = 30;

The numerical solution then follows from

pts = NDSolveA
8eq1, eq2, x@0D == 0.8, v@0D == 0.8< ê. parameterRules,

8x, v<, 9t, 0,
cycles H2 L

0.694
=, MaxSteps 20000E

88x Ø InterpolatingFunction@H 0. 271.607 L, <>D,
v Ø InterpolatingFunction@H 0. 271.607 L, <>D<<

The result of the integration procedure is now displayed in phase space by

a parametric plot (see Figure 2.4.15):

ParametricPlot@Evaluate@8x@tD, v@tD< ê. ptsD,
8t, 0, 271<, AxesLabel 8"x", "x'"<,
PlotStyle RGBColor@0, 0, 0.996109DD;
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Figure 2.4.15. Phae space representation of a trajectory for the driven pendulum.
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The solution we gain by NDSolve[] is in principle defined for any value of

x (i.e., x œ H-¶, ¶L). However, the real motion of a pendulum is restricted

to the range x œ H-p, pL. Thus, we can reduce the total integration time to

the interval (–p, p). To find the motion modulo 2p, we define the function

red[x_] :=  Mod[x,2 ]/; Mod[x,2 ] ;

red[x_] := (Mod[x,2 ]-2 ) /; Mod[x,2 ] > ;

Mapping this function onto the first argument of each of the solutions pts,

we  generate  a  reduced  representation  of  the  phase  space  modulo  2p  (see

Figure 2.4.16).

ParametricPlot@Evaluate@8red@x@tDD, v@tD< ê. ptsD,
8t, 0, 271<, AxesLabel 8"x", "x'"<,
PlotStyle RGBColor@0, 0, 0.996109DD;
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Figure 2.4.16. Reduced phase space for the driven pendulum.

Extending  the  plot  space  by  the  third  coordinate,  the  time  t,  we  get  a

three-dimensional representation of the track.
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ParametricPlot3D@
Evaluate@Flatten@8red@x@tDD, v@tD, red@0.694 tD,

RGBColor@0, 0, 0.996109D< ê. ptsDD,
8t, 0, 271<, AxesLabel 8"x", "x'", "t"<,
PlotPoints 1700D;
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To  show  the  oscillating  behavior  of  this  solution,  a  Poincaré  section  is

created by a  stroboscopic map (see Figure 2.4.17).  We extract  only those

points of the solution which are commensurate with the driving frequency:
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ListPlotATableAFlatten@8red@x@tDD, v@tD< ê. ptsD,

9t, 16, 271, 2 i
k
jj

2

0.694
y
{
zz=E,

PlotStyle 8RGBColor@1, 0, 0D, PointSize@0.025D<,
AxesLabel 8"x", "v"<E;

Figure 2.4.17. Poincaré section of the driven pendulum for a periodic solution.

Chaotic Behavior

If we change the model parameter in the equations of motion, the solution

of the driven nonlinear oscillator behaves differently from the result found

earlier.  Let  us  consider  the  damped  driven  pendulum  with  parameters

a =
1
ÅÅÅÅ2 , g = 1.15,  and  w =

2
ÅÅÅÅ3 .  Initial  conditions  are  the  same  as  in  the

previous calculation: xH0L = 0.8 and vH0L = 0.8.  The procedure to generate

the solution is the same as earlier. First, we define the parameters by

cycles = 300;
parameterRules = 8w0 Æ 1, a Æ 0.5, g Æ 1.15, w Æ 0.6666<

8w0 Ø 1, a Ø 0.5, g Ø 1.15, w Ø 0.6666<

The next step generates the numerical solution
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ptsChaos = NDSolveA
8eq1, eq2, x@0D == 0.8, v@0D == 0.8< ê. parameterRules,

8x, v<, 9t, 0, cycles i
k
jj

2

0.6666
y
{
zz=, MaxSteps 200000E

88x Ø InterpolatingFunction@H 0. 2827.72 L, <>D,
v Ø InterpolatingFunction@H 0. 2827.72 L, <>D<<

The representation of the solution in phase space is given by

ParametricPlot@
Evaluate@8x@tD, v@tD< ê. ptsChaosD, 8t, 0, 2827<,
AxesLabel 8"x", "x'"<, PlotPoints 120,

PlotStyle RGBColor@0, 0, 0.996109DD;
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Figure 2.4.18. Phase space representation of the driven pendulum in a chaotic state.

Comparing  Figure  2.4.18  with  Figure  2.4.15,  we  observe  that  the  phase

plane  picture  is  more  complicated.  A reduction  of  the  phase  space  to  the

interval  H-p, pL  reveals  the  impression  of  a  chaotic  entanglement  (see

Figure 2.4.19):
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ParametricPlot@
Evaluate@8red@x@tDD, v@tD< ê. ptsChaosD, 8t, 0, 2827<,
AxesLabel 8"x", "x'"<, PlotPoints 100,

PlotStyle RGBColor@0, 0, 0.996109DD;
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Figure 2.4.19. Chaotic behavior of the driven pendulum in the reduced phase space.

The  representation  of  the  solution  in  a  Poincaré  section  shows  that  the

intersecting points are not  randomly scattered in the plane but  are located

along  a  strange  entangled  curve.  We  observe  from Figure  2.4.20  that  the

motion in phase space takes place on a finite attracting subset. This subset

of  phase  space  has  a  characteristic  shape  depending  on  the  parameters

used in the integration process.  The complicated attracting set shown is in

fact  a  strange  attractor  and  describes  a  never  repeating,  non  periodic

motion in which the pendulum oscillates and flips over its pivot point in an

irregular, chaotic manner.
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ListPlotATableAFlatten@8red@x@tDD, v@tD< ê. ptsChaosD,

9t, 16, 2827, i
k
jj

2

0.6666
y
{
zz=E,

PlotStyle 8RGBColor@1, 0, 0D, PointSize@0.012D<,
AxesLabel 8"x", "v"<E;

Figure 2.4.20. Strange attractor of the driven pendulum.

A  convenient  way  to  delineate  the  dynamics  of  a  system  is  given  by  the

Poincaré  section.  The  Poincaré  section  represents  a  slice  of  the  phase

space  of  the  system.  For  the  three-dimensional  case  under  examination,  a

slice can be obtained from the intersection of a continuous trajectory with

a  two-dimensional  plane  in  the  phase  space.  One  method  of  creating  a

Poincaré  section  is  to  check  the  system  over  a  full  cycle  of  the  driving

frequency. If we are dealing with a periodic evolution of period n, then this

sequence  consists  of  n  dots  being  indefinitely repeated  in  the  same  order

(compare  Figure  2.4.17).  If  the  evolution  is  chaotic,  then  the  Poincaré

section  is  a  collection  of  points  that  show  interesting  patterns  with  no

obvious  repetition  (compare  Figure  2.4.20).  The  process  of  obtaining  a

Poincaré  section  can  be  compared  to  sampling  the  state  of  the  system

randomly instead of continuously. 
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2.4.9 Exercises

1. A system of particles moves in a uniform gravitational field g  in the
z-direction.  Show  that  g  can  be  eliminated  from  the  equations  of
motion by a transformation of coordinates given by

x
–

= x, y
–

= y, z
–

= z -
1
ÅÅÅÅ2 g t2.

2. A particle of mass m confined to the x-axis experiences a force -k x.
Find  the  motion  resulting  from  a  given  initial  displacement  x0  and
initial  velocity  v0.  Show  that  the  period  is  independent  of  the  initial
coordiates,  that  a  potential  energy function exists,  and  that  the energy
of the system is constant.

3.  An oscillator  moves under the influence of the potential function V
given by

V =
1
ÅÅÅÅ2 k x2 + k x4.

Find the period of the moton as a function of the amplitude and derive
an  approximate  expression  for  the  period  of  a  simple  pendulum  as  a
function of the amplitude.

4.  A  particle  is  attracted  toward  a  center  of  force  according  to  the
relation F = - m k2 ê x3. Show that the time required for the particle to
reach the force center from a distance d  is d2 ê k.

5.  A particle  is  projected  with  an  initial  velocity  v0  up  a  slope  which
makes an angle a  with the horizontal.  Assume frictionless motion and
find the time required for the particle to return to its starting position.

2.4.10 Packages and Programs

This  subsection  contains  some  declarations  for  notations  used  in  the  text.

We also made some extensions of functions Cross[] in connection with the

cross-product,  the  function  Dot[]  for  the  scalar  product,  the  function

Derivative[]  in  connection  with  vector  multiplications,  and  the  functions

Times[]  and  Equal[]  related  to  the  multiplication  of  equations.  The

definitions  introduced  below  allow  a  more  convenient  to  use  of

mathematical  expressions  in  the  text.  The  idea  was  to  generate  an

environment for the reader which is very similar to traditional textbooks.
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Notations

Symbolize@ 0D

Symbolize@w0 , WorkingForm Æ TraditionalFormD

Symbolize::bsymbexs :

Warning: The box structure attempting to be symbolized has a similar or identical

symbol already defined, possibly overriding previously symbolized box structure.

Symbolize@ R D

Symbolize@wR , WorkingForm Æ TraditionalFormD

Symbolize@ E D

Symbolize@we , WorkingForm Æ TraditionalFormD

LaplaceTransform

Notation@ x_
p_@f_D ñ LaplaceTransform@f_, x_, p_D,

WorkingForm Æ TraditionalFormD

Notation@H -1Lf_
p_@f_D ñ InverseLaplaceTransform@f_, x_, p_D,

WorkingForm Æ TraditionalFormD

Notation@ x_
p_@f_D LaplaceTransform@f_, x_, p_DD

Notation@
H 1Lx_

p_@f_D InverseLaplaceTransform@f_, x_, p_DD
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k

jjjjjjjjjj

É
É@ÉD

H -1LÉ

É@ÉD

y

{

zzzzzzzzzz

Integrate

Unprotect@IntegrateD;

Integrate@f_, 8x_, x0_, xe_<D :=

Map@Integrate@#, 8x, x0, xe<D &, fD ê; ! FreeQ@f, PlusD

Protect@IntegrateD;

Cross Product

a1 = Attributes@CrossD

8Protected, ReadProtected<

Unprotect@CrossD

8Cross<

ClearAttributes@Cross, a1D

Attributes@CrossD

8<
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Cross@a_, b_D := 0 ê;
a b fl ! FreeQ@a, OverVectorD fl ! FreeQ@b, OverVectorD

Cross@a_, b_OverVectorD := 0 ê; FreeQ@a, OverVectorD

Cross@b_OverVector, a_D := 0 ê; FreeQ@a, OverVectorD

Cross@c_ a_, b_D :=

c Cross@a, bD ê; FreeQ@c, OverVectorD fl
! FreeQ@a, OverVectorD fl ! FreeQ@b, OverVectorD

Cross@a_, c_ b_D :=

c Cross@a, bD ê; FreeQ@c, OverVectorD fl
! FreeQ@a, OverVectorD fl ! FreeQ@b, OverVectorD

Cross@b_, a_OverVectorD := Map@Cross@#, aD &, bD ê;
Head@bD Plus fl ! FreeQ@b, OverVectorD

Cross@a_OverVector, b_D := Map@Cross@a, #D &, bD ê;
Head@bD Plus fl ! FreeQ@b, OverVectorD

Cross@a_, b_D :=

Hc@x_D := Map@Cross@x, #D &, bD;
Fold@Plus, 0, Map@c@#D &, Level@a, 1DDDL ê;
Head@bD Plus fl Head@aD Plus fl

! FreeQ@b, OverVectorD fl ! FreeQ@a, OverVectorD

Cross@a_OverVector,
Cross@b_OverVector, c_OverVectorDD :=

Dot@a, cD b Dot@a, bD c

Cross@Cross@a_OverVector, b_OverVectorD,
Cross@c_OverVector, d_OverVectorDD :=

HDot@Cross@a, bD, dD c Dot@Cross@a, bD, cD dL
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SetAttributes@Cross, a1D

Attributes@CrossD

8Protected, ReadProtected<

Protect@CrossD

8<

Dot Product

a2 = Attributes@DotD

8Flat, OneIdentity, Protected<

Unprotect@DotD

8Dot<

ClearAttributes@Dot, a2D

Attributes@DotD

8<

Dot@a_, b_OverVectorD := 0 ê; FreeQ@a, OverVectorD

Dot@b_OverVector, a_D := 0 ê; FreeQ@a, OverVectorD
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Dot@a_OverVector, b_OverVectorD := HoldForm@Dot@a, bDD

Dot@a_, b_D := Ha ê. OverVector@x_D@y___D x@yD2L ê;
a b fl ! FreeQ@a, OverVectorD fl

! FreeQ@b, OverVectorD fl FreeQ@a, PlusD fl
FreeQ@b, PlusD fl FreeQ@a, CrossD fl FreeQ@b, CrossD

Dot@a_OverVector, b_OverVectorD :=

Ha ê. OverVector@x_D x2L ê; a b fl FreeQ@a, PlusD fl
FreeQ@b, PlusD fl FreeQ@a, CrossD fl FreeQ@b, CrossD

Dot@c_ a_, b_D := c Dot@a, bD ê; FreeQ@c, OverVectorD fl
! FreeQ@a, OverVectorD fl ! FreeQ@b, OverVectorD

Dot@a_, c_ b_D := c Dot@a, bD ê; FreeQ@c, OverVectorD fl
! FreeQ@a, OverVectorD fl ! FreeQ@b, OverVectorD

Dot@b_, a_OverVectorD := Map@Dot@#, aD &, bD ê;
Head@bD Plus fl ! FreeQ@b, OverVectorD

Dot@a_OverVector, b_D := Map@Dot@a, #D &, bD ê;
Head@bD Plus fl ! FreeQ@b, OverVectorD

Dot@a_, b_D :=

Hc@x_D := Map@Dot@x, #D &, bD;
Fold@Plus, 0, Map@c@#D &, Level@a, 1DDDL ê;
Head@bD Plus fl Head@aD Plus fl

! FreeQ@b, OverVectorD fl ! FreeQ@a, OverVectorD

Dot@Cross@a_OverVector, b_OverVectorD,
Cross@c_OverVector, d_OverVectorDD :=

Dot@a, Cross@b, Cross@c, dDDD
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Dot@a_OverVector, Cross@c_OverVector,
d_OverVectorDD := 0 ê; c == a fi a == d

SetAttributes@Dot, a2D

Attributes@DotD

8Flat, OneIdentity, Protected<

Protect@DotD

8<

Derivative

a3 = Attributes@DD

8Protected, ReadProtected<

Unprotect@DD

8D<

ClearAttributes@D, a3D

Attributes@DD

8<

D@Equal@a_, b_D, t_D := Equal@D@a, tD, D@b, tDD
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D@Cross@a_, b_D, t_D :=

Cross@D@a, tD, bD + Cross@a, D@b, tDD ê;
! FreeQ@a, OverVectorD fl ! FreeQ@b, OverVectorD fl

! FreeQ@a, tD fl ! FreeQ@b, tD

D@Times@c_, Cross@a_, b_DD, t_D :=

c HCross@D@a, tD, bD + Cross@a, D@b, tDDL ê;
! FreeQ@a, OverVectorD fl ! FreeQ@b, OverVectorD fl

! FreeQ@a, tD fl ! FreeQ@b, tD

D@Dot@a_, b_D, t_D := Dot@D@a, tD, bD + Dot@a, D@b, tDD ê;
! FreeQ@a, OverVectorD fl ! FreeQ@b, OverVectorD fl

! FreeQ@a, tD fl ! FreeQ@b, tD

D@f_, t_D := Map@D@#, tD &, fD ê;
H! FreeQ@f, CrossD fi ! FreeQ@f, DotDL fl

! FreeQ@f, OverVectorD fl Head@fD Plus

SetAttributes@D, a3D

Attributes@DD

8Protected, ReadProtected<

Protect@DD

8<
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Times

a4 = Attributes@TimesD

8Flat, Listable, NumericFunction, OneIdentity, Orderless, Protected<

Unprotect@TimesD

8Times<

ClearAttributes@Times, a4D

Attributes@TimesD

8<

Times@Dot@a_, b_D, c_D := Times@Dot@a, cD, bD ê;
! FreeQ@b, DotD fl ! FreeQ@c, OverVectorD

SetAttributes@Times, a4D

Attributes@TimesD

8Flat, Listable, NumericFunction, OneIdentity, Orderless, Protected<

Protect@TimesD

8<
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Equal

a5 = Attributes@EqualD

8Protected<

Unprotect@EqualD

8Equal<

ClearAttributes@Equal, a5D

Attributes@EqualD

8<
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H L
Equal ê: Integrate@left_ right_, limits__D :=

H L
Block@8lhs = Expand@leftD, H left hand side L

rhs = Expand@rightD H right hand side L<,
H hint:There is no other need of an

integration constant or LH of another

lower integration level instead of Zero: L
H

L
Off@Integrate::generD;

If@! AtomQ@lhsD, If@Head@lhsD === Plus,

lhs = Map@Integrate@#, limitsD &, lhsD;,
lhs = Integrate@lhs, limitsD;D;,

lhs = Integrate@lhs, limitsD;D;
If@! AtomQ@rhsD, If@Head@rhsD === Plus,

rhs = Map@Integrate@#, limitsD &, rhsD;,
rhs = Integrate@rhs, limitsD;D;,

rhs = Integrate@rhs, limitsD;D;
On@Integrate::generD;
H return result L
H L
lhs rhsD

Equal ê: Plus@left_ right_, term__D :=

Plus@left, termD == Plus@right, termD

Equal ê: Times@left_ right_, term__D :=

Times@left, termD == Times@right, termD

H Equalê:f_@left_ right_D:=

f@leftD==f@rightDê;Fold@And,True,Map@
FreeQ@f,#D&,8List,Rule,RuleDelayed,ToRules<DD L
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Fold@And, True,

Map@FreeQ@f, #D &, 8List, Rule, RuleDelayed, ToRules<DD

True

SetAttributes@Equal, a5D

Attributes@EqualD

8Protected<

Protect@EqualD

8<

RHSToLHS = Equal@a_, b_D Equal@a b, 0D

a_ ã b_ ß a - b ã 0

LHSToRHS = Equal@a_, b_D Equal@0, b aD

a_ ã b_ ß 0 ã b - a

Plus@a == b, cD

a + c == b + c

a + Hb == cL

a + b == a + c
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Times@a == b, cD

a c == b c

d Hc == bL

c d == b d

‡ Hf@xD == g@x2DL x

‡ H-k xL@xD „ x == ‡ gHx2L „ x

è!!!!!!!!!!!!!!!
a == b

è!!!!!!!!!!!!!!!!
a == b

Log@a == bD

logHaL == logHbL

f@a == bD

H-k xL@aD == H-k xL@bD
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2.5 Central Forces

2.5.1 Introduction

This section discusses the two-body problem in a central field. We restrict

our  discussion  mainly  on  planet  movements.  The  nonintegrable  problems

in central fields are briefly discussed and examined.

The  motion  of  a  two-body  problem  with  central  forces  is  important  with

respect to its applications. This kind of model is applicable to macroscopic

as  well  as  microscopic  systems.  An  important  macroscopic  example

governed  by  these  laws  is  the  motion  of  planets  around  the  Sun.  A

microscopic  example  from  atomic  physics  is  the  movement  of  electrons

around  a  nucleus.  An  example  in  between  the   macroscopic  and  the

microscopic range is the scattering of a-particles on gold atoms, so called

Rutherford scattering.

We mentioned in Section 2.4.6  that gravitation is the weakest force of the

four fundamental forces.  This kind of force is negligible in considerations

concerning nuclear components such as neutrons and protons. It also is of

no importance if we examine interactions of molecules and atoms.

In  our  daily  life,  gravitation  is  omnipresent  but  does  not  influence  our

actions.  For  example,  a  sky  scraber  with  its  mass  has  some  gravitational

influence  on  a  car  standing  in  front  of  such  a  building.  However,  the

strength with which the building interacts with the car is much smaller than

the interaction of the car with the Earth. Gravitation is an important factor

if we consider the interaction of planets. It is only gravitation which holds

us to Earth, which determines the movement of Earth around the Sun, and

which  determines  the  motion  of  planets  in  the  solar  system.  Gravitation

also  is  responsible  for  the  development,  creation,  and  history  of  stars,

galaxies,  and  the  whole  universe.  Gravitation determines  the  evolution  of

our life and the development of our universe.
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2.5.2 Kepler's Laws

The dark sky with  its  myriads  of  stars  always  impressed  mankind.  At  the

end of the 16th century, Tycho Brahe (1546–1601) examined the sky with

great  accuracy.  These  experimental  data  were  the  basis  for  his  co-worker

and  successor,  the  imperial  mathematician  Johannes  Kepler  (1571–1630)

(see Figure 2.5.1).

Figure 2.5.1. 
Johannes Kepler born December 27, 1571 in Leonberg/Württemberg and died Nvember 15,
1630 in Regensburg.

In  a  laborious  work,  Kepler  extracted  from  these  observations  his  three

general  planetary  laws.  In  his  famous  Rudolphine  tables,  he  summarized

his work, which took him 20 years to the completion. He demonstrated in

his Astronomia nova that the planetary tracks are ellipses slightly deviating

from a circle. Also in this work, he discussed the velocity of planets, which

is  highest  in  the  perihelion  and  lowest  in  the  aphelion.  In  his  extensive

calculations,  Kepler  derived  a  mathematical  expression  connecting  the

mean diameter of a track with the period of revolution around the Sun. The

last law was given by him in his 1619 published book  Hamonices mundi

10 years after the formulation of his first and second law. These three laws

were  the  basics  for  Newton's  theory  on  gravitation.  The  three  laws  by

Kepler read as follows:

I. All planets move on ellipses around the Sun.
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II. In equal times, equal areas are scanned by a planet.

III. The  square  of  the  period  is  proportional  to  the  third  power  of  
the mean radius. 

Kepler,  for  example,  determined  that  the  Earth's  track  is  nearly  circular

with  its  shortest  distance  in  the  perihelion  of  about  1.48 µ 1011m and  the

largest distance in the aphelion of about  1.52×1011m. The mean radius of

the  track  around  the  sun  is  approximately  1.5×1011m.  This  quantity  is

today defined as an astronomical unit (AU).

Later,  Newton  demonstrated  mathematically  that  the  planets  of  the  solar

system move on ellipses, parabolas, or hyperbolas in a r-2-force field. This

kind of curves also occur in conic sections. This is the reason why Kepler's

paths  are  also  called  conic  sections.  Figure  2.5.2  demonstrates  the  four

types of conic section.

Ellipse Circle

Hyperbola Parabola

Figure 2.5.2. 
Conic  sections.  The  sections  are  created  by  intersecting  a  cone  with  a  plane.  Different
section  angles  between  the  center  line  of  the  cone  and  the  plane  result  to  different
intersecting curves.

This  figure  demonstrates  that  circles  also  occur  as  a  deviation  from

ellipses.  Circles  and  ellipses  are  those  paths  on  which  planets  move
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periodically  around  the  Sun.  On  parabolas  and  hyperbolas,  objects  move

only  once  in  the  direction  of  the  force  center  and  then  depart  from  it  to

infinity.  Kepler  was  a  harmony-loving  man  who  connected  the  different

planet  paths  of  the  solar  system  with  the  platonic  bodies  known  at  that

time. His idea was that each platonic body is connected with the period of

a planet (see Figure 2.5.3).

Figure 2.5.3. Planet model by Kepler represented by the platonic bodies.

It is remarkable that Kepler was the one and the only at his time who could

calculate the exact  position of a planet with high accuracy. The main tool

for  his  calculations  was  his  collection  of  data  in  the  Rudolphin  tables.

These tables were published by Kepler after a long journey in 1628 to Ulm.

Later,  Newton  demonstrated  that  an  ellipse  is  a  possible  track  in  a  1 ê r2

potential.  The  first  law  by  Kepler  becomes  with  Newton's  theory  a

mathematical  basis.  The  second  law  by  Kepler  that  the  areas  of  scanned

arcs are equal is supported by the central action of forces between the Sun

and a planet. These forces are called central forces. 

The  following  illustration  shows  a  consequence  of  Kepler's  second  law.

The planet moves in the vicinity of the Sun faster than far away from it. As
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we  will  see,  this  behavior  is  closely  related  to  the  conservation  of  the

angular momentum.
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-0.2
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0.2
0.3

The  third  law  by  Kepler  relates  the  time  of  revolution  with  the  mean

distance between a planet  and the Sun. If we denote the mean distance of

the planet from the Sun by r and the time of revolution by T , we are able to

mathematically formulate the third Kepler law by

(2.5.1)T2 = C r3,

where  C  is  a  universal  constant  for  the  planet  system.  This  relation  is  a

direct consequence of the 1 ê r2 force law. If we are interested in the period

of revolution of Jupiter around the Sun, we can use Kepler's third law. The

unknown constant C is determined from the Earth's period of revolution by

c = Solve@TEr
2 == C rEr

3 , CD êê Flatten

:C Ø
TEr

2

ÅÅÅÅÅÅÅÅÅÅÅ
rEr

3
>

For Jupiter's period, we find

Solve@TJ
2 == C rJ

3 ê. c, TJ D

::TJ Ø -
rJ

3ê2 TEr
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

rEr
3ê2 >, :TJ Ø

rJ
3ê2 TEr

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
rEr

3ê2 >>

where we used C from the calculation for the Earth. This demonstrates that

the  knowledge  of  the  mean  distances  allows  us  to  determine  the  times  of
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revolution.  The  mean distances  for  our  solar  system in astronomical  units

(AU) are known to be 

planetList = 88Mercury, 0.387`<, 8Venus, 0.723`<,
8Eros asteroid, 1.45`<, 8Earth, 1<, 8Mars, 1.523`<,
8Ceres asteroid, 2.767`<, 8Jupiter, 5.2`<,
8Sarturn, 9.57`<, 8Uranus, 19.28`<,
8Neptune, 30.14`<, 8Pluto, 39.88`<<;

TableForm@planetListD

Mercury 0.387

Venus 0.723

asteroid Eros 1.45

Earth 1

Mars 1.523

asteroid Ceres 2.767

Jupiter 5.2

Sarturn 9.57

Uranus 19.28

Neptune 30.14

Pluto 39.88

A graphical  representation of  these  data  in connection with  Kepler's  third

law shows a linear dependence with slope a = 3 ê2 in a log-log plot:
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This  double  logarithmic  representation  of  data  shows  that  a  scaling  law

between time and distance exists. This characteristic behavior relates time

and distance via a finite transformation as 

(2.5.2)
t
è

= a t,

rè = a2ê3 r,

where a = const. Eliminating the constant a, it follows that

(2.5.3)t
è2

ÅÅÅÅÅÅ
rè3 =

t2
ÅÅÅÅÅÅr3 .

Scaling time by a  and  the  orbit  by a2ê3,  we  get  another  orbit  and another

time of revolution. Both orbits are related by the relation t
è2 ê rè3

= t2 ê r3. In

fact, this relation is, in essence, the third law by Kepler. 
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2.5.3 Central Field Motion

This  subsection  discusses  the  movement  of  two  bodies  interacting  via  a

gravitational  field.  We note that  all  central  force problems are integrable.

Our  system  consists  of  two  masses  m1  and  m2.  The  interaction  of  the

masses are described by an interaction potential U . The assumption here is

that  interaction  of  the  two  particles  only  depend  on  relative  coordinates

r”1 - r”÷ 2  or  velocities  r” '1 - r” '2  (prims  denote  differentiation with  respect  to

time).  Such  a  system  possesses  six  degrees  of  freedom  and,  thus,  six

generalized coordinates.  These six degrees of freedom are mathematically

represented by the center  of mass  R
”÷
 and the difference vector  r” = r”1 - r”2

(see Figure 2.5.4). 

center of mass

m1

m2

r
1

1

r
1

2

R
1

r
1

Figure 2.5.4. 
Characteristic  configuration of  a  two-body problem.  The  two masses  m1  and m2  are  a
distance r away from each other. The center of mass is given by R

”÷
.
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The center of mass in a two-body system moves like a single particle. The

forces acting on the single particles are transformed to the center of mass.

The equations of motion for the single particles with masses m1 and m2 are

given by

particle1 = m1

2 r”1HtL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

t t
== F

”÷÷
1HtL

m1 r”1
££ HtL == F

”÷÷
1HtL

and

particle2 = m2

2 r”2HtL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

t t
== F

”÷÷
2HtL

m2 r”2
££ HtL == F

”÷÷
2HtL

Adding up both equations, we find

cmMotion = Thread@particle1 + particle2, EqualD

m1 r”1
££ HtL + m2 r”2

££ HtL == F
”÷÷

1HtL + F
”÷÷

2HtL

Defining the center of mass by

cm = R
”÷
HtL ==

m1 r”1HtL + m2 r”2HtL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

M

R
”÷ HtL ==

m1 r”1HtL + m2 r”2HtL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

M

with M = m1 + m2  and replacing r”÷ 1  by IM R
”÷

- m2 r2
”÷÷ M ëm1 in  the center

of mass equation, we get
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cmMotion = cmMotion ê. 9r”1 Æ FunctionAt,
M R

”÷
HtL - m2 r”2HtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
m1

E=

M R
”÷ ££ HtL == F

”÷÷
1HtL + F

”÷÷
2HtL

Since  the  forces  in  the  system are central  forces  and since  the masses m1

and m2 are interchangeable, we must consider 

(2.5.4)F
”÷÷

1 = -F
”÷÷

2

by  Newton's  second  law.  Thus,  the  center  of  mass  moves  in  a  force-free

state:

cmMotion = cmMotion ê. F
”÷÷

1HtL Æ -F
”÷÷

2HtL

M R
”÷ ££ HtL == 0

Taking  into  account  Newton's  first  law,  the  center  of  mass  is  at  rest  or

travels with constant velocity.

On the other hand, subtracting both equations of motion, we get

rel = ThreadAHThread@#1, EqualD &L êû i
k
jjj

particle1
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

m1
-

particle2
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

m2

y
{
zzz, EqualE

r”1
££ HtL - r”2

££ HtL ==
F
”÷÷

1HtL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

m1
-

F
”÷÷

2HtL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

m2

We introduce the reduced mass m by 

reducedMass = m ==
m1 m2

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
m1 + m2

m ==
m1 m2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m1 + m2
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Here,  m  is  always  smaller  than  the  smallest  mass.  Inserting  this  relation

into the difference of the equations of motion and transforming to relative

coordinates r”, we find 

rel = SimplifyArel ê. 9r”1 Æ Function@t, r”HtL + r”2HtLD,

F
”÷÷

1 Æ FunctionAt, F
”÷÷
HtLE, F

”÷÷
2 Æ FunctionAt, -F

”÷÷
HtLE=E

r”££ HtL == J 1
ÅÅÅÅÅÅÅÅÅÅ
m2

+
1

ÅÅÅÅÅÅÅÅÅÅ
m1

N F
”÷÷ HtL

With the reduced mass replaced, we get

relEquation = Simplify@rel ê. Flatten@Solve@reducedMass, m1DDD

r”££ HtL ==
F
”÷÷ HtL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m

The introduction of center  of  mass and relative coordinates allowed us to

separate  the  two-body  problem into  two  independent  problems.  First,  the

center  of  mass  moves  force-free  and,  second,  the  fictitious  particle  with

mass m  is  governed  due  to  the  central  force  F
”÷÷

 in  direct  connection to  the

masses.  

The equation of motion for the center of mass delivers 

DSolveAcmMotion, R
”@tD, tE

99R”÷ HtL Ø c1 + t c2==

meaning  a  center  of  mass  at  rest  Hc2 = 0L  or  a  movement  with  a  constant

velocity  Hc2 0L.  The  constants  c1  and  c2  are  determined  by  the  initial

conditions of the motion. 

The  relative  movement  is  described  by  a  fictitious  particle.  The  force  F
”÷÷

governing this  movement can be directed toward the center  of  mass or  in
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the  opposite  direction.  The  direction  of  the  force  determines  some

properties of the movement.  The instrumental behavior is that the force is

a central force. The following observations summarize these properties.

First, we observe the following:

The  movement  under  the  action  of  a  central  force  always  is  bound  to  a
plane.

This  property  is  obviously  governed  by  the  direction  of  the  force,  the

direction of the location vector, and the acceleration. The central force and

the acceleration are parallel to the position vector r”.  Thus, r” '',  r” ',  and r” all

belong to the same plane. The particle will never leave this plane because

there is no force component directing outward this plane.

Second, we observe the following:

The angular momentum is a conserved quantity.

The angular momentum L
1

along the track is 

angularMomentum = L
”÷
HtL ä r”HtLâ p”÷ HtL

L
”÷ HtL == r”HtLä p”÷÷ HtL

with  p”÷  the  linear  momentum  given  by  p”÷ = m r”÷ '.  Replacing  p”÷  by  this

expression in the representation of the angular momentum, we obtain

angularMomentum = angularMomentum ê. p”÷ HtL Æ m
r”HtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

L
”÷ HtL == m r”HtLär”£ HtL

Differentiating this expression with respect to time, it follows that
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timeDerivativeOfL =
angularMomentum

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

L
”÷ £ HtL == m r”HtLär”££ HtL

Since r” is parallel to r” '' (i.e., r” '' = a r”) the temporal changes in L
”÷
 are thus

timeDerivativeOfL = timeDerivativeOfL ê.
2 r”HtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t t

Æ a r”HtL

L
”÷ £ HtL == 0

This relation shows that L
”÷
 is a conserved quantity:

DSolveAtimeDerivativeOfL, L
”÷
, tE

99L”÷ Ø Function@8t<, c1D==

L
”÷
 is fixed for all times in direction as well as in total.

These  two  properties  are  major  consequences  of  the  central  character  of

the  acting  force.  In  each  two-particle  system  with  central  forces,  these

properties hold.

Because  the  force  in  direct  connection  between  the  particles  is  only

dependent on the radial distance, we restrict our considerations to the case

where the interaction potential U = U HrL  is a pure function of the distance

r. Note that the force is derivable from U by the gradient. The behavior of

radial  dependence  only  establishes  a  spherical  symmetry  of  the  problem,

meaning  that  an  arbitrary  rotation  around  any  axis  will  not  change  the

solution  of  the  problem.  The  spherical  symmetry  simplifies  the  problem

because  there  are  conserved  quantities  related  to  this  symmetry.

Especially, the angular momentum is such a quantity. 
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1

r
1

p
1

Figure 2.5.5. Geometrical relations between momentum p”÷  and radius r” definig the angular momentum L
”÷
.

It is natural to use spherical coordinates Hr, q, yL for a spherical symmetric

problem.  r  is  the  radial  coordinate,  y  is  the  zenith  angle,  and  q  describes

the azimutal angle. If we chose the polar axis as the direction of L
”÷
, then the

movement always is perpendicular to L
”÷
 (see Figure 2.5.5). 

The mathematical  description of the  movement can be based on cartesian

coordinates. The position vector r” is represented by

x”÷ = 8xHtL, yHtL, zHtL<; x”÷ êê MatrixForm

i

k
jjjjjjjj

xHtL
yHtL
zHtL

y

{
zzzzzzzz

The kinetic energy in cartesian coordinates is given by

T =
1

2
 µ H t x

”L.H t x
”L

1
ÅÅÅÅÅÅ
2

m Hx£HtL2 + y£HtL2 + z£HtL2L
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Now, the transformation to spherical coordinates can be carried out by the

following transformations:

coordinates =

8x Function@t, r@tD Sin@ @tDD Cos@ @tDDD,
y Function@t, r@tD Sin@ @tDD Sin@ @tDDD,
z Function@t, r@tD Cos@ @tDDD<;

coordinates êê TableForm

x Ø Function@t, rHtL sinHqHtLL cosHyHtLLD
y Ø Function@t, rHtL sinHqHtLL sinHyHtLLD
z Ø Function@t, rHtL cosHqHtLLD

Since y is a fixed quantity Hy =
p
ÅÅÅÅ2 L, the kinetic energy is simplified to

kineticEnergy = SimplifyAT ê. coordinates ê. y Æ FunctionAt,
p
ÄÄÄÄÄÄ
2
EE

1
ÅÅÅÅÅÅ
2

m Hr£HtL2 + rHtL2 q
£HtL2L

This  expression  represents  the  kinetic  energy  in  polar  coordinates.  The

constant angular momentum pq = l is determined from this expression by

angularMomentum =
kineticEnergy

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
qHtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

== l

m rHtL2 q£HtL == l

The fact  that l  is a  constant has a  geometrical interpretation. The position

vector r” overrides in a time interval dt a certain area dA (see Figure 2.5.6):

dA = r2 dq
ÅÅÅÅÅÅÅÅÅÅÅÅ2
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1 Ht2L
r „q

„q

Figure 2.5.6. The position vector r” overrides in a time interval dt = t2 - t1 an area dA.

This expression divided by dt generates the area velocity:

‚ AHtL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

‚ t
==

rHtL2
‚ qHtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2 ‚ t

==
l

ÄÄÄÄÄÄÄÄÄÄÄÄ
2 m

A£HtL ==
1
ÅÅÅÅÅÅ
2

rHtL2 q£HtL ==
l

ÅÅÅÅÅÅÅÅÅÅÅ
2 m

We  observe  that  the  area  velocity  is  a  constant  of  motion.  This  relation

was  first  established  by  Kepler  in  1609.  He  derived  this  relation  on  an

empirical  basis  by  studying  Brahe's  (died  1601)  observations.  It  is  of

fundamental importance that the second law by Kepler is not related to the

1 ê r2 dependence of the Newtonian force field. However, it only resides on

the  existence  of  central  force.  Thus,  this  law  exists  for  any  central  force

problem independent of the structure of the force field.

I  addition  to  the  conservation  of  the  linear  momentum  of  the  center  of

mass and the conservation of the angular momentum, the kinetic energy of

the relative movement is conserved:
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totalEnergy = H == kineticEnergy + UHrHtLL

H == UHrHtLL +
1
ÅÅÅÅÅÅ
2

m Hr£HtL2 + rHtL2 q£HtL2L

or with 

sangular = FlattenASolveAangularMomentum,
qHtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

EE

:q
£HtL Ø

l
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m rHtL2 >

we find

totalEnergy = Expand@totalEnergy ê. sangularD

H == UHrHtLL +
1
ÅÅÅÅÅÅ
2

m
i
k
jjj l2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m2 rHtL2 + r£HtL2y{

zzz

2.5.3.1 Equations of Motion

Knowing  the  total  energy  and  the  interaction  potential  U HrL  of  the

two-body  problem  allows  us  to  derive  the  equations  of  motion.  The

equation depends on the two conserved quantities H  and l, the total energy

and  the  angular  momentum,  respectively.  Solving  the  total  energy  with

respect to r ', we find the equation of motion for the radial coordinate:
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eq1 =

Flatten@Simplify@Solve@totalEnergy ê. H t r@tDL2
Æ k, kDDD ê. k Æ H t r@tDL2 ê.

Rule Æ Equal êê Flatten@Solve@#, t r@tDDD &

:r£HtL Ø -

Â
è!!!!

2 $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%l2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m rHtL2 - H + UHrHtLL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!
m

,

r£HtL Ø

Â
è!!!!

2 $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%l2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m rHtL2 - H + UHrHtLL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!
m

>

We select the second solution because of the plus sign:

equationOfMotion = eq1P2T

r£HtL Ø

Â
è!!!!

2 $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%l2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m rHtL2 - H + UHrHtLL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!
m

Since  the  result  is  separable,  we  solve  this  expression  with  respect  to  dt

and carry out an integration on both sides:

‡ 1 ‚ t ==
è!!!!!

m ·
1

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%2 I- l2
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2 m r2 + H - UHrLM

 ‚ r

The above integral delivers an expression for t = tHrL as a function of time.

If we can invert this expression, we get the radial distance as a function of

time.  An  alternative  representation  is  gained  by  eliminating  time  as  an

parameter by the relation
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pathEquation = ‚ q ==
‚ q ‚ t ‚ r
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

‚ t ‚ r
==

qHtL
ÄÄÄÄÄÄÄÄÄÄÄÄÄ

t
‚ r

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
rHtL

ÄÄÄÄÄÄÄÄÄÄÄÄ
t

„ r q£HtL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r£HtL == „ q

Using  the  conservation  of  the  angular  momentum  by  the  definition

q ' = l ê Hm r2L, we can write

(2.5.5)dq =
l

ÅÅÅÅÅÅÅÅÅÅÅÅ
m r2 r° dr.

In addition, the total energy delivers r ' and thus we get

pathEquation ê. sangular ê. equationOfMotion ê. rHtL Æ r

-
Â l „ r

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

è!!!!
2 r2 è!!!!

m $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%l2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 r2 m

- H + UHrL
== „ q

Integrating both sides, we find

‡ 1 ‚ q == ·
l

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

è!!!!
2 r2

è!!!!!
m $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%-

l2
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2 r2 m

+ H - UHrL

 ‚ r

q ==

l · 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r2 $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%-
l2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 r2 m

+H-UHrL
 „ r

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!
2
è!!!!

m

Since  l  is  a  constant  of  motion,  the  sign  of  q '  cannot  change.  Thus,  the

angle qHtL is an monotonous increasing function in time.

So far, we gained a formal solution of the equation of motion. The explicit

solution  of  the  problem depends  mainly on  the  interaction  potential  U(r).

Such  solutions  are  symbolically  accessible  for  a  certain  kind  of  forces
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FHrL = - r U HrL.  In  cases  where  the  potential  U HrL ~ rn+1  is  represented

by  a  power  law  relation  with  n  an  integer  or  rational  expression  the

solution is given by elliptic integrals. For the specific cases n = 1, -2 and -

3 the solutions are known symbolically.

2.5.3.2 Orbits in a Central Force Field

The radial velocity of a fictitious particle with mass m is determined by the

relation

equationOfMotion ê. Rule Equal

r£HtL ==

Â
è!!!!

2 $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%l2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m rHtL2 - H + UHrHtLL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!
m

It is obvious that the radial velocity vanishes if the particle comes to rest.

This  situations  occurs  at  a  turning  point  when  the  particle  changes  its

direction.  If  the  radial  velocity  vanishes,  then the  following relation  must

hold:

turningPoints = -
l2

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2 m r2

+ H - UHrL == 0

-
l2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 r2 m

+ H - UHrL == 0

Because  this  relation  is  at  least  quadratic  in  r,  we  can  expect  that  under

certain conditions, there exist two turning points. These two points can be

finite  rmin  and  rmax  or  one  of  these  points  is  located  at  infinity.  Under

certain  conditions  determined  by  U HrL, H ,  and  l,  there  exists  only  one

turning point. A detailed discussion is given below. In such a case, we have

(2.5.6)r ' = 0

for any time t. This property means r = const. or the orbit is a circle.
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If the motion of the particle is periodic in the potential U HrL,  then we find

two  turning  points.  If,  in  addition,  the  radial  oscillations  are  rational

commensurable  with  the  angular  oscillations,  then  we  find  closed  orbits.

The following illustration shows two examples of such orbits.

If,  however,  the  radial  and  angular  frequencies  are  rational

incommensurable, then the orbits are not closed. The particle now sweeps

out the complete space without any recurrence of the orbit. Two examples

of this behavior are given in the following illustrations.

Mathematically, this behavior is determined by the formula
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Dq == -2 ‰ l

·
rmin

rmax

1
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

r2 $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%l2
ÄÄÄÄÄÄÄÄÄÄÄÄÄ
r2 m

-2 H+2 UHrL

 ‚ r

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄè!!!!!
m

(2.5.7)Dq = 9 2 p
m
ÅÅÅÅÅn , closed orbits

any, open orbits.

2.5.3.3 Effective Potential

Up to  now we discussed  different  principal  forms of  orbits.  However,  we

did not  solve the  problem by integration.  This subsection discusses under

which  conditions  a  solution  is  derivable  and  what  kinds  of  solution  are

allowed.

For example, we know that the radial velocity v  can be determined by the

total  energy H  and  the  angular  momentum l.  The  radial  velocity r ' = v  is

gained from energy conservation:

totalEnergy = H ==
m v2

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2

+ UHrL

H ==
m v2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

+ UHrL

or

velocity = Solve@totalEnergy, vD êê Flatten

:v Ø -

è!!!!
2
è!!!!!!!!!!!!!!!!!!!!!

H - UHrL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!

m
, v Ø

è!!!!
2
è!!!!!!!!!!!!!!!!!!!!!

H - UHrL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!

m
>

In the case of planetary motion, we already know the radial velocity:
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equationOfMotion ê. Rule Equal

r£HtL ==

Â
è!!!!

2 $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%l2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m rHtL2 - H + UHrHtLL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!
m

The  right-hand  side  of  this  expression  follows  from  the  total  energy.  In

addition  to  the  total  energy  H  and  the  potential  U HrL,  this  expression

contains a term expressed by

-
l2

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2 r2 m

==
1
ÄÄÄÄÄÄ
2

m r2 i
k
jjj

qHtL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

t

y
{
zzz

2

-
l2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 r2 m

==
1
ÅÅÅÅÅÅ
2

r2 m q£HtL2

This  relation  expresses  the  rotational  energy  on  the  orbit.  Because  the

left-hand  side  shows  a  radial  dependence,  we  can  interpret  this  term as  a

sort of effective potential. The part of the total potential is given by

Uc =
l2

2 µ r2

l2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 r2 m

The related force corresponding to the orbit potential is

cForce = r Uc

l2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
r3 m
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This  kind  of  force  is  known  as  centrifugal  force.  The  conventional

representation of this force is written as

(2.5.8)Fc = m r w2,

where m  is  mass and w  is  the frequency of revolution.  This kind of  force

was first introduced by Christian Huygens (1629–1695). If we identify w =

q ' and m = m, we are able to write

(2.5.9)Fc =
d

ÅÅÅÅÅÅdr I 1
ÅÅÅÅ2 m r2 q '2M = m r q '2.

This allows us to identify l2
ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 m r2  as a centrifugal potential. Because Uc  is a

pure function in r,  we can combine the interaction potential U HrL  with Uc

to an effective potential. This potential is

effectivePotential =
l2

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2 m r2

+ UHrL

l2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 r2 m

+ UHrL

The  effective  potential  is  an  fictitious  potential  consisting  of  the  real

interaction potential and a part containing the energy of rotation.

In Newton's theory of the two body problem the central force is assumed to

decrease quadratic in the radial coordinate

force = -
k

ÄÄÄÄÄÄÄÄ
r2

-
k

ÅÅÅÅÅÅÅÅ
r2

The related potential is thus given by
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UHrL = -‡ force ‚ r

-
k
ÅÅÅÅÅ
r

The effective potential Ueff  then takes the explicit form: 

effectivePotential

l2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 r2 m

-
k
ÅÅÅÅÅ
r

A graphical representation of the effective potential is given in figure 2.5.7.
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Figure 2.5.7. Effective potential for central forces.

In  this  representation  of  the  effective  potential  Ueff ,  we  assume  the

vanishing asymptotic behavior for  r Ø ¶.

Figure  2.5.8  shows  the  effective  potential  with  three  different  values  for

total  energy.  The  three  values  for  the  total  energy  H1, H2,  and  H3

characterize three different regimes of orbits.
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Figure 2.5.8. Three regimes of motion (circular, elliptic, hyperbolic).

First, if the total energy H1 r 0, then the motion on the orbit is infinite. In

this case, the fictitious particle moves in the direction of the force center at

r = 0  and  repells  at  r = r1at  the  force  wall.  The  vertical  distance  between

the  total  energy  H1  and  the  potential  U HrL  is  given  by  the  kinetic  energy

T =
1
ÅÅÅÅ2  m r '2. If the particle hits the potential wall, the total energy and the

potential energy become identical. At this point, the particle comes to rest

(i.e.,  r ' = 0).

The second case is  given where H2 < 0.  Here,  we find two turning points

located  at  r2 < r < r4.  Again,  in  r2  and  r4,  the  radial  velocity  vanishes;

that  is  r ' = 0  and  the  sign  in  front  of  r '  changes.  Since  we  have  two

changes of the sign, the particle oscillates between the two radii.

The  third  case  is  defined  by  H3.  In  this  case,  the  total  energy  H = H3  is

always  equal  to  the  potential  energy  at  the  potential  minimum

H3 = Ueff HrminL.  The radial velocity is always zero; that is  the radius is a

finite constant. Thus, the particle moves on a circle around the force center

at  r = 0.  Energies  smaller  than      Ueff HrminL = -m k2 ê H2 l2 L  are  of  no

physical relevance because here r '2 < 0 (i.e., imaginary velocities). 
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2.5.3.4 Planet Motions

Taking into account the forces derived in the previous subsections, we can

use Newton's equation of motion to write down the second-order equation

for the radial component: 

KeplersEquation = m

2 rHtL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

t t
== -

I l2
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2 rHtL2 m

-
k

ÄÄÄÄÄÄÄÄÄ
rHtL M

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
rHtL

m r££HtL ==
l2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m rHtL3 -

k
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
rHtL2

The  acting  forces  are  the  gravitation  force  and  the  centrifugal  force.  The

aim of this subsection is to solve this equation of motion. The equation of

motion  is  primarily  a  second-order  nonlinear  time-dependent  ordinary

differential equation. Our interest is to find the orbit of the particle defined

by the radial and angular coordinates. Our goal is to find a relation which

connects the radial  coordinate  with the angular coordinate;  that  is,  we are

looking  for  a  relation  r = rHqL.  In  a  first  step,  we  represent  the  angular

momentum  of  the  particle  on  the  orbit  by  q '.  The  total  energy  then

becomes 

kE = KeplersEquation ê. l Æ m rHtL2
qHtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

m r££HtL == m rHtL q£HtL2 -
k

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
rHtL2

This  equation  is  the  starting  point  of  our  examinations.  We  get  a

parameterization  of  the  orbit  by  q  if  we  introduce  the  following

transformation:
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trafo1 = uHqHtLL ==
1

ÄÄÄÄÄÄÄÄÄÄÄÄÄ
rHtL

uHqHtLL ==
1

ÅÅÅÅÅÅÅÅÅÅÅÅ
rHtL

Differentiation  of  this  transformation  with  respect  to  time  and  a  solution

for du êdq , we get 

sol1 = FlattenASolveA
trafo1

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

,
uHqHtLL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
qHtL

EE ê. Rule Æ Equal

:u£HqHtLL == -
r£HtL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
rHtL2 q£HtL >

On  the  other  hand,  we  know that  the  angular  momentum is  given  by  the

relation r2 q ' = l ê m. This provides the substitution

substitution2 =
qHtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

Æ
l

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
m rHtL2

q
£HtL Ø

l
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m rHtL2

With this relation, du ê dq  is represented by

sol2 = sol1 ê. substitution2

:u£HqHtLL == -
m r£HtL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l
>

Differentiating  a  second  time  with  respect  to  time  and  solving  for  r ''

delivers
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sol3 = FlattenASolveA
sol2

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

,
2 rHtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t t

EE

:r££HtL Ø -
l q£HtL u££HqHtLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

m
>

Now, replacing q ' and r by the above derived relations, we finally get

substitution3 = sol3 ê. substitution2 ê. rHtL Æ
1

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
uHqHtLL

:r££HtL Ø -
l2 uHqHtLL2 u££HqHtLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

m2
>

This relation can be simplified by applying the found substitutions for  r '',

r, and q '. The equation of motion now reads

kEu = kE ê. substitution3 ê. substitution2 ê. rHtL Æ
1

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
uHqHtLL

-
l2 uHqHtLL2 u££HqHtLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

m
==

l2 uHqHtLL3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

m
- k uHqHtLL2

A solution with respect to u '' gives

kEU = SolveAkEu,
2 uHqHtLL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
qHtL qHtL

E ê. 8Rule Æ Equal, qHtL Æ q<

J u££HqL == -
m J l2 uHqL3

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m

-k uHqL2N
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l2 uHqL2 N

This equation can be simplified again if we introduce a translation in u by

an  amount  of  k m ê Hl2L  providing  the  new  dependent  variable

y = u - k m ê Hl2L.  Applying  this  transformation  to  the  equation  of  motion

gives the simple equation
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kEUe = SimplifyAkEU ê. u Æ FunctionAq,
k m
ÄÄÄÄÄÄÄÄÄÄÄÄ
l2

+ yHqLEE

H yHqL + y££HqL == 0 L

However,  this  equation  is  identical  with  the  equation  of  motion  for  a

harmonic oscillator. We already know the solutions of this equation which

are  given  by  harmonic  functions  with  q  as  an  independent  variable.  The

solution of this equation follows using

solution = Flatten@DSolve@kEUeP1T, y, qDD

8y Ø Function@8q<, c1 cosHqL + c2 sinHqLD<

Here,  c1  and  c2  are  constants  of  integration.  c1  and  c2  are  determined  by

the  initial  conditions  (i.e.,  the  total  energy).  To  fix  c1and  c2,  we  multiply

the radial equation of motion by r ':

ke = KeplersEquation
rHtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

m r£HtL r££HtL ==
i
k
jjj l2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m rHtL3 -

k
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
rHtL2

y
{
zzz r£HtL

Integrating with respect to time delivers

totalEnergy = ‡ ke ‚ t ê. RHSToLHS ê. 0 Æ H

l2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m rHtL2 +

1
ÅÅÅÅÅÅ
2

m r£HtL2 -
k

ÅÅÅÅÅÅÅÅÅÅÅÅ
rHtL == H

Applying to this relation the transformations for r ', r, u, and q '  we gain
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tEnergy =

totalEnergy ê. rHtL Æ
1

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
uHqHtLL

ê.
rHtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

Æ -

l uHqHtLL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

qHtL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

m
ê. qHtL Æ q ê.

u Æ FunctionAq,
k m
ÄÄÄÄÄÄÄÄÄÄÄÄ
l2

+ yHqLE

l2 I k m
ÅÅÅÅÅÅÅÅl2 + yHqLM2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m

- k J k m
ÅÅÅÅÅÅÅÅÅÅÅ
l2

+ yHqLN +
l2 y£HqL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 m
== H

Inserting  the  solution  y = yHqL   into  this  relation  and  choosing c1 = 0,  we

find

Energy = tEnergy ê. solution ê. c2 Æ 0 êê Simplify

l2 c1
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m

==
m k2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 l2

+ H

This expression relates c1 with l and H . Solving with respect to c2 delivers

const = Simplify@Solve@Energy, c1DD

::c1 Ø -

è!!!!
m
"########################m k2

ÅÅÅÅÅÅÅÅÅÅÅl2 + 2 H
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l
>, :c1 Ø

è!!!!
m
"########################m k2

ÅÅÅÅÅÅÅÅÅÅÅl2 + 2 H
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l
>>

Inverting all transformations so far used, we find the final solution

qh = uHqL ==
k m
ÄÄÄÄÄÄÄÄÄÄÄÄ
l2

+ yHqL ê. solution ê. c2 Æ 0 ê. uHqL Æ
1

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
rHqL

ê. constP2T

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
rHqL ==

k m
ÅÅÅÅÅÅÅÅÅÅÅ
l2

+

"########################m k2
ÅÅÅÅÅÅÅÅÅÅÅl2 + 2 H cosHqL è!!!!

m
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l

The  representation  of  the  solution  can  be  improved  by  introducing  the

following expressions:
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qh = qh
i

k
jjjj
l2

k µ

y

{
zzzz êê Simplify

l2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
k m rHqL ==

l "########################m k2
ÅÅÅÅÅÅÅÅÅÅÅl2 + 2 H cosHqL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
k
è!!!!

m
+ 1

Coefficient@qhP2T, cosHqLD == e

l "########################m k2
ÅÅÅÅÅÅÅÅÅÅÅl2 + 2 H

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
k
è!!!!

m
== e

and

Coefficient@qhP2T, cosHqLD

l "########################m k2
ÅÅÅÅÅÅÅÅÅÅÅl2 + 2 H

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
k
è!!!!

m

sh = Flatten@Solve@Coefficient@qhP2T, cosHqLD == e, HDD

:H Ø
k2 He2 - 1L m
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 l2
>

Applying these substitutions to the original form of the solution, we obtain

shh = SimplifyAll@qh ê. sh ê. l2 Æ k m aD

a
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
rHqL == e cosHqL + 1

This relation is  known as the standard representation for  conical  sections.

Johann Bernoulli (1667–1748) was the first to demonstrate that orbits in a

1 ê r  potential  are  identical  with  conic  sections  (1710).  e  in  the  above
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expression  is  the  eccentricity  of  the  orbit  and  2a  determines  the  latus

rectum of the orbit.

The  above  equation  approaches  a  minimum  in  r  if  cosHqL  reaches  a

maximum (i.e., q = 0). Closely related to this behavior is the determination

of the integration constant c2; that is we measure q starting at rmin.

Since the eccentricity is closely related to the energy, the type of the orbit

can  be  determined  by  this  parameter.  The  following  table  collects  the

different types of orbit and connects them with the energy and eccentricity:

e > 1 H > 0 hyperbolas

e = 1 H = 0 parabolas

0 < e < 1 Umin< H < 0 ellipses

e = 0 H = Umin circle

e < 0 H < Umin not allowed

Table 2.5.1. Different motions in a central force field.

The  equation  for  conical  sections  is  also  graphically  accessible  if  we

represent  r  and  q  in  cartesian  coordinates.  The  equation  in  cartesian

coordinates reads

ck = shh ê. r@ D r ê. 9r
è!!!!!!!!!!!!!!!!
x2 + y2 , ArcTan@x, yD=

a
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!

x2 + y2
== e cosHtan-1Hx, yLL + 1

The Figure 2.5.9 contains the different types of orbit:
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Ellipse 0<e<1

Parabola e=1
Hyperbola e>1

Circle e=0

Figure 2.5.9. 
The  classification  of  the  orbits  by  means  of  the  eccentricity  e  is  equivalent  to  the
classification due to the energy values in an effective potential.

The  following  considerations  discuss  the  connections  among  energy,

angular  momentum,  and  the  parameters  of  the  orbit  (i.e.,  eccentricity,

mean  distances  of  the  ellipse  from  the  center,  etc.).  The  geometrical

notions are given in the Figure 2.5.10.
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Figure 2.5.10. 
Geometric relations for the two-body prolem. P denotes the focus of the track, a and b are
the principal axis of the ellipse. e and a denote the eccentricity and the latum rectum.

Figure  2.5.10  shows  that  the  larger  principal  axis  can  be  expressed  by

minimal and maximal radius of the ellipse:

(2.5.10)2 a = rmax + rmin.

By definition,  the  velocity vanishes  in  the  aphelion and  in  the  perihelion.

This behavior guaranties that  rmin  and  rmax  are solutions of the following

relation:

turningPoints = totalEnergy ê. 9
rHtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

Æ 0, rHtL Æ r=

l2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 r2 m

-
k
ÅÅÅÅÅ
r

== H

The two solutions are

st = Solve@turningPoints, rD

::r Ø
-
è!!!!

m k -
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!

m k2 + 2 H l2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 H
è!!!!

m
>, :r Ø

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!
m k2 + 2 H l2 - k

è!!!!
m

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 H

è!!!!
m

>>
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On the other hand,  the two extremas in r  are represented by e  and a  with

the help of 

rmax =
a

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
1 - e

a
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - e

and

rmin =
a

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
e + 1

a
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
e + 1

Both  relations  follow directly  from  the  orbit  geometry.  The  sum  of  both

relations connects e with a to

eq1 = Simplify@rmax + rmin == 2 aD

-
2 a

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
e2 - 1

== 2 a

which provides the representations for the eccentricity e:

sh = Solve@eq1, eD

::e Ø -

è!!!!!!!!!!!!!
a - a

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!
a

>, :e Ø

è!!!!!!!!!!!!!
a - a

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!
a

>>

Using the root with the plus sign and substituting a = l2 ê HkmL, we obtain
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e ê. shP2T ê. a Æ
l2

ÄÄÄÄÄÄÄÄÄÄÄÄ
k m

êê Simplify

$%%%%%%%%%%%%%%%%%a -
l2

ÅÅÅÅÅÅÅÅk m

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!
a

The major principal axis is thus represented by

majorAxis = SimplifyAa ==
1
ÄÄÄÄÄÄ
2
†Fold@Plus, 0, r ê. stD§E

a ==
† k
ÅÅÅÅÅÅ
H
§

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

The smaller principal axis follows:

b = SimplifyAll
i

k

jjjjj
a

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄè!!!!!!!!!!!!!!!
1 - e2

êê. FlattenA9a Æ
l2

ÄÄÄÄÄÄÄÄÄÄÄÄ
k m

, shP2T, a Æ

ƒƒƒ†
ƒƒƒ
-

k
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2 H

ƒƒƒ§
ƒƒƒ
=E
y

{

zzzzz

l "##########† k
ÅÅÅÅÅÅH §

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!
2
è!!!!

k
è!!!!

m

At  this  stage,  we  know  the  relations  among  energy,  angular  momentum,

and principal axes.

In the following, we will derive Kepler's laws from the orbit data. First, let

us  consider  the  temporal  change  of  the  area  swept  by  the  particle.  We

know that  this  law is  independent  of  the  interacting  forces.  The  temporal

change of the area is
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‚ AHtL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

‚ t
==

rHtL2
‚ qHtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2 ‚ t

==
l

ÄÄÄÄÄÄÄÄÄÄÄÄ
2 m

A£HtL ==
1
ÅÅÅÅÅÅ
2

rHtL2 q£HtL ==
l

ÅÅÅÅÅÅÅÅÅÅÅ
2 m

Because  the  total  area  of  the  ellipse  is  swept  out  by  the  particle  in  the

period t, we can write

‡
0

t

1 ‚ t == ‡
0

A 2 m
ÄÄÄÄÄÄÄÄÄÄÄÄ

l
 ‚ A

t ==
2 A m
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l

On the other hand, we know the relation for the total area of an ellipse:

A = p a b

a l p
"##########† k

ÅÅÅÅÅÅH §
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!

2
è!!!!

k
è!!!!

m

Thus, the period is given by

period = t ==
2 HA mL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

l

t ==

è!!!!
2 a p

è!!!!
m
"##########† k

ÅÅÅÅÅÅH §
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!

k

The total energy is related to the major principal axis by
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en = Solve@majorAxis, HD

Solve::ifun : Inverse functions are being used by Solve, so some solutions may not be found.

::H Ø -
k

ÅÅÅÅÅÅÅÅÅÅÅ
2 a

>, :H Ø
k

ÅÅÅÅÅÅÅÅÅÅÅ
2 a

>>

which allows a simplification of the period to 

prd = period ê. enP2T

t ==
2 a p

è!!!!
m
è!!!!!!†a§

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!
k

The fact that the period is proportional to a3ê2  is known as the third law by

Kepler. This result is valid for the fictitious one-particle problem. For this

simplification, the reduced mass m  is a combination of two parts.  Kepler's

original  formulation  of  this  law  was  that  the  square  of  the  period  of  a

single planet is proportional to the third power of the major principal axis

of this planet. A major assumption by Kepler was that the constant relating

the square  period  with the  third  power of a  is  a  universal  constant  for  all

planets.  Taking  the  mass  dependence  of  the  planet  into  account,  Kepler's

original  formulation  is  valid  within  this  correction.  Especially  for

gravitational forces, we have 

(2.5.11)FHrL = -G m1 m2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅr2 =
-k
ÅÅÅÅÅÅÅr2 ;

thus, the constant k is given by

r1 = k Æ G m1 m2

k Ø G m1 m2

The period can now be expressed as
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SimplifyAprd ê. r1 ê. m Æ
m1 m2

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
m1 + m2

E

t ==
2 a p

è!!!!!!†a§ "################m1 m2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅm1+m2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!

G m1 m2

If we assume m2 >> m1,we find

t == SeriesA
2 a p

è!!!!!!!
†a§ "#################m1 m2

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
m1+m2

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄè!!!!!!!!!!!!!!!!!!!!
G m1 m2

, 8m1, 0, 1<E

t ==
2 a p

è!!!!!!†a§
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!

G m2

-
a p

è!!!!!!†a§ m1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m2

è!!!!!!!!!!!!
G m2

+ OHm1
2L

Thus,  the  original  Kepler  formulation  is  valid  if  m1  is  much smaller  than

the mass m2 of the central star.

2.5.4 Two-Particle Collisions and Scattering

One  of  the  most  important  methods  to  gain  information  on  the  internal

structure  of  materials  is  the  application  of  scattering.  Scattering  is  tightly

connected  to  the  two-body  problem  and  Kepler's  law.  The  result  of  a

particle  bombardment  is  the  scattering  of  many  particles  in  different

directions.  The  distribution of  the particles  in  space depends on the  inner

structure  and  the  internal  forces  of  the  target  particle.  To  understand  the

experimental results and how the scattered particles are deflected, we must

examine  the  internal  interaction  of  the  target  particles  and  the  interaction

of  the  incoming  particles.  Our  main  goal  here  is  to  understand  how  the

internal structure influences the distribution of these particles.

If  two  particles  interact,  the  relative  motion  of  these  particles  are

influenced  by the  interaction  force.  This  interaction can  be  direct  as  with

two  billiard  balls  or  indirect  via  an  interaction  potential.  For  example,  a

comet  is  scattered  at  the  Sun  due  to  the  existence  of  the  gravitational
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potential.  a-Particles  are  scattered  due  to  electromagnetic  forces  near  the

core  of  the  atom.  We  demonstrated  earlier  that  in  case  of  known

interaction  laws,  the  movement  for  a  two-particle  system  is  completely

determined.  On  the  other  hand,  knowing  the  conservation  laws  such  as

conservation  of  energy  and  angular  momentum,  we  are  able  to  derive

valuable knowledge in lack of information on the interaction process.  The

knowledge  of  conservation  laws  allows  us  to  determine  the  final  state  of

the motion from the initial state.

Figures  2.5.11  and  2.5.12  show  characteristic  scattering  processes  on  a

microscopic and macroscopic scale.

Figure 2.5.11. Proton–proton scattering in a bubble chamber.
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Figure 2.5.12. Orbit of a falling star in the gravitation field of the Earth.

2.5.4.1 Elastic Collisions

A collision  usually  occurs  between  two  interacting  particles.  The  time  of

interaction is  very short  compared with  the total  flight  time.  On the other

hand,  during  the  collision,  the  external  forces  are  very  small  compared

with  the  internal  interaction  forces.   If  the  interaction  time  is  very  short,

then  we  can  assume  that  the  forces  are  central  and  in  the  opposite

direction.  This  property  guarantees  the  conservation  of  the  total

momentum of the two-particle system. The interaction time usually is very

short so that we can assume that the center of mass is at rest.

If  the  total  energy  before  and  after  the  collision  is  the  same  amount,  we

call  this  collision  elastic.  When  energy conservation  is  not  satisfied,  then

an inelastic collision occurred. A completely inelastic collision has occurs

if the two particles stick together and all of the kinetic energy is converted

to thermal or interaction energy.
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An example of an inelastic collision is shown in the Figure 2.5.13. A bullet

with initial velocity v = 850 m/s hits an apple which destroyed within a few

milliseconds. 

Figure 2.5.13. Inelastic collision of a bullet with an apple.

Our  interest  here  is  in  a  completely  elastic  collision.  We  restrict  our

discussion  to  this  kind  of  scattering  because  elastic  collisions  can  be

examined  by  the  use  of  conservation  laws.  We  also  know  from  the

discussions  in  the  previous  subsections  that  the  examination  simplifies  if

we assume that the center of mass is at rest. The standard situation of any

collision  is  that  a  moving  particle  hits  a  second  particle  at  rest.  A  real

collision  does  not  have  a  resting  center  of  mass.  Contrary  to  this

simplifying mathematical assumption, one of the two particles will move in

the  laboratory  and  the  other  will  be  at  rest.  After  the  collision,  both

particles will move in the same direction. It is essential for our discussions

that  we  distinguish  between descriptions  in  the  laboratory system and  the

center of mass system.

Figure 2.5.14 shows the geometry of a two particle collision for masses m1

and  m2.  Mass  m1  is  moving  with  velocity  u”÷ 1  toward  mass  m2.  The

movement of particle 1 is along the x-axis. The separation between the two

particles in a perpendicular direction to the movement is called the impact

parameter.
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Figure 2.5.14. Two particles in a central collision at the initial stage represented in the laboratory system.

After the collision, the masses m1  and m2  travel with velocities v”1  and v”2,

respectively.  The  angles  y  and  z  measured  with  respect  to  the  x-axis

determine the directions of the particles (see Figure 2.5.15). 

Figure 2.5.15. Two particles in a central collision at the final stage represented in the laboratory system.

The  velocity  V
”÷÷

 denotes  the  center  of  mass  velocity  in  the  laboratory

system.  The  following  illustration  shows  the  collision  in  the  laboratory

system:
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In  the  center  of  mass  system,  a  collision  is  represented  by  two  particles

moving in the opposite directions (see also Figures 2.5.16 and 2.5.17).

Figure 2.5.16. 
Two particles in a central collision at the initial stage represented in the center of mass
system.

Primed  symbols  denote  velocities  in  the  center  of  mass  system.  After  the

collision, we find the representation in Figure 2.5.17. 
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Figure 2.5.17. 
Two particles in a central collision at the final stage represented in the center of mass
system.

The following illustration shows the collision in the center of mass system:
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In  figure  2.5.18,  q  denotes  the  scattering  angle  in  the  center  of  mass

system. Up to now, we have distinguished four different situations: before

collision and  after  collision and the  two reference  systems center  of mass

and  laboratory  system.  These  four  situations  can  be  combined  in  a

common  figure.  We  combine  the  end  velocities  of  the  laboratory  system

and the center of mass system as a single vector.  

Figure 2.5.18. Representation of the initial and final states of a collision in a single diagram.

The interpretation of this diagram is the following: If we add to the center

of mass velocity V
”÷÷
 the end velocity  v”1

'  of the particle with mass m1, then

we  get  end  velocity  in  the  laboratory  system   v”1
' .  Dependent  on  the

scattering angle  q, v”1
'  terminates  on  a  circle  with  radius  v1

' .  The  center  of

this  circle  is  the terminal  point  of the center  of mass velocity V
”÷÷
.  We find

the scattering angle in the laboratory system by connecting the termination

point  of   v”1
'  with  the  origin  of  V

”÷÷
.  If  the  center  of  mass  velocity  V b v'

1,

then there exists a unique relation among the velocities  V
”÷÷
, v”1

' ,  and v”1
'  and

the  angle  q.  However,  if  V > v1
' ,  the  relation  is  note  unique.  In  this  case,

there  exist  two  scattering  angles  in  the  laboratory  system  Hqb, q f L,  a
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backward  and  a  forward  scattering  angle,  but  only  one  angle  y  in  the

laboratory system (see Figure 2.5.19).

Figure 2.5.19. 
Representation  of  the  initial  and  final  states  of  a  collision  in  a  single  diagram with
backward and forward scattering.

In a real experiment, the angle y is measured. In such a case, there are two

scattering angles in the center of mass system related to a single scattering

angle  in  the  laboratory  system.  So  far,  we  discussed  a  scattering  process

more  qualitatively.  The  following  examinations  give  a  more  quantitative

approach to a scattering process. First, we define the center of mass by

ceneterOfMass = M RHtL == m1 r1HtL + m2 r2HtL

M RHtL == m1 r1HtL + m2 r2HtL

Differentiation with respect to time gives

velocity = t ceneterOfMass

M R£HtL == m1 r1
£ HtL + m2 r2

£ HtL
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If we introduce the substitutions

velNam = 9
RHtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

Æ VHtL,
r1HtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

Æ u1HtL,
r2HtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

Æ u2HtL=;

velNam êê TableForm

R£HtL Ø VHtL
r1

£ HtL Ø u1HtL
r2

£ HtL Ø u2HtL

and consider the second particle at rest in the laboratory system

rule = 9M Æ m1 + m2,
r2HtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

Æ 0=;

then we can represent the center of mass velocity by

FlattenASolveAvelocity ê. rule,
RHtL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
t

EE ê. velNam

:VHtL Ø
m1 u1HtL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m1 + m2

>

Because mass m2 is at rest in the initial state, the center of mass velocity of

this  mass  is  V  (i.e.,  v2
' = V  because  the  two  masses  are  approaching  each

other).

A  potential  advantage  of  the  center  of  mass  system  is  that  the  total

momentum is  zero.  Consequently,  the  two  particles  are  approaching each

other in a straight line. After the collision, they depart from each other on

opposite  directions.  In  an  elastic  collision,  mass,  momentum,  and  energy

are  conserved  quantities.  These  conservation  laws  have  the  following

consequences in the center of mass system for the velocities:

(2.5.12)u1
' = v1

'   and u2
' = v2

' .

Since  u1  describes  the  relative  velocity  of  both  particles  in  the  center  of

mass or laboratory system, we have
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(2.5.13)u1 = u1
' .

Thus, the final velocity for m2 in the center of mass system is

(2.5.14)v2
' =

m1 u1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅm1+m2
,

(2.5.15)v1
' = u1 - u2

' =
m2 u1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅm1+m2

.

Referring to Figure 2.5.18 we find

(2.5.16)v1
' sinHqL = v1 sinHyL

and

(2.5.17)v1
' cosHqL + V = v1 cosHyL.

Division of both equations by each other gives

rel1 =
v1 sinHyL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
v1 cosHyL

==
vé1 sinHqL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
V + cosHqL vé1

tanHyL ==
sinHqL vè1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
V + cosHqL vè1

Thus, we get for V  and vi,

rule2 = 9V Æ
m1 u1

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
m1 + m2

, vé1 Æ
m2 u1

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
m1 + m2

=; rule2 êê TableForm

V Ø
m1 u1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅm1+m2

vè1 Ø
m2 u1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅm1+m2

Inserting this relation into the angle relation, we find

rel2 = Simplify@rel1 ê. rule2D

tanHyL ==
sinHqLm2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m1 + cosHqLm2
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We observe that the mass ration m1 êm2  determines which of the two cases

is realized in a collision. We also observe that for m1 ` m2, the center of

mass system is nearly identical with the laboratory system:  

rel2P1T == Series@rel2P2T, 8m1, 0, 0<D

tanHyL == tanHqL + OHm1
1L

This property means that the scattered particles do not influence the target

particle and, thus, we have

(2.5.18)y º q  for m1 ` m2.

On the other hand, for m1 = m2, we get

rel2 ê. m2 m1 êê Simplify

tanHyL == tanJ q
ÅÅÅÅÅÅ
2
N

and, thus, 

(2.5.19)y =
q
ÅÅÅÅ2   for m1 = m2.

The scattering angle in the laboratory system is twice as large as the angle

in the center of mass system. Since the maximal scattering angle in the lab

system is y = p, the scattering angle in the center of mass system can be, at

the utmost, p ê2.

Relations relating to the kinetic energy in a scattering process are

labEnergy = T0 ==
1
ÄÄÄÄÄÄ
2

m1 u1
2

T0 ==
1
ÅÅÅÅÅÅ
2

m1 u1
2

The same in the center of mass system
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T
é

0 =
1
ÄÄÄÄÄÄ
2
Im1 ué 1

2
+ m2 ué 2

2M

1
ÅÅÅÅÅÅ
2
Hm1 uè1

2
+ m2 uè2

2L

simplifies by applying the relations 

rule1 = 9ué 2 Æ
m1 u1

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
m1 + m2

, ué 1 Æ
m2 u1

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
m1 + m2

=; rule1 êê TableForm

uè 2 Ø
m1 u1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅm1+m2

uè 1 Ø
m2 u1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅm1+m2

to the kinetic energy

SimplifyAT
é

0 ê. rule1E ê. Flatten@Solve@labEnergy, u1DD

m2 T0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m1 + m2

The  result  demonstrates  that  the  kinetic  energy  T0
è

 in  the  center  of  mass

system is  always a  fraction m2 ê Hm1 + m2L < 1 of  the initial  energy in the

lab  system.  The  kinetic  energy  of  the  final  stage  in  the  center  of  mass

system is

T
é

1 =
1
ÄÄÄÄÄÄ
2

m1 ué 1
2 ê. rule1 ê. Flatten@Solve@labEnergy, u1DD

m2
2 T0

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHm1 + m2L2

and
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T
é

2 =
1
ÄÄÄÄÄÄ
2

m2 ué 2
2 ê. rule1 ê. Flatten@Solve@labEnergy, u1DD

m1 m2 T0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHm1 + m2L2

To express T1 by T0, let us consider the ratio

ratio =
T1
ÄÄÄÄÄÄÄÄÄÄ
T0

==
m1 v1

2

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2
ÄÄÄÄÄ
2
Hm1 u1

2L

T1
ÅÅÅÅÅÅÅÅÅ
T0

==
v1

2

ÅÅÅÅÅÅÅÅÅ
u1

2

v1 is connected with v1
è  and V via the law of cosines:

cosineLaw = vé1
2

== V2 - 2 v1 cosHyLV + v1
2

vè1
2

== V 2 - 2 cosHyL v1 V + v1
2

Introducing this relation into the energy ratio, we get

(2.5.20)T1ÅÅÅÅÅÅÅT0
=

- V2 2 v1 V cos y+vè1
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
U1

2 .

On the other hand, we know the relations
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rule2 = 9vé1 Æ
m2 u1

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
m1 + m2

, V Æ
m1 u1

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
m1 + m2

, v1 Æ
vé1 sinHqL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

sinHyL
,

y Æ tan-1
i

k

jjjjjjj
sinHqL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
cosHqL +

m1ÄÄÄÄÄÄÄÄÄ
m2

y

{

zzzzzzz=; rule2 êê TableForm

vè1 Ø
m2 u1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅm1+m2

V Ø
m1 u1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅm1+m2

v1 Ø cscHyL sinHqL vè1

y Ø tan-1i
kjj

sinHqL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
cosHqL+ m1ÅÅÅÅÅÅÅÅÅÅm2

y
{zz

Inserting all of these relations into the energy ratio, we find

enrat = ratio êê. rule2 êê Simplify

T1
ÅÅÅÅÅÅÅÅÅ
T0

==
m1

2 + 2 cosHqLm2 m1 + m2
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHm1 + m2L2

This  relation  allows  us  to  express  T1  by  T0.  For  identical  particles,  this

simplifies to

Simplify@enrat ê. m2 Æ m1D

T1
ÅÅÅÅÅÅÅÅÅ
T0

== cos2J q
ÅÅÅÅÅÅ
2
N

More relations for the second particle follow by similar considerations.
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2.5.4.2 Scattering Cross Section

From  a  historical  point  of  view,  the  theoretical  background  of  the

two-body problem was solved by discussing the planet's motion around the

Sun.  However,  the  two-body  problem  is  also  of  great  importance  if  we

consider  scattering  problems  in  the  atomic  region.  Scattering  by atoms  is

governed  by  electric  central  forces  determining  the  behavior  of  the

scattering process. 

The  scattering  problem  of  particles  is  governed  by  different  influences.

The main influence is defined by the central force acting on the particles.

We assume in the following that all scattered particles are of the same kind

of  material  (homogenous  beam).  All  scattered  particles  have  the  same

mass and the same energy.

In  addition,  we  assume  that  the  central  force  declines  very  fast  for  large

distances.  We  characterize  the  incoming  beam  by  his  intensity  .  The

beam intensity is a measure for the number of particles transmitted through

a  normal  unique  area  per  second.  If  a  particle  approaches  the  center  of

force,  it  either  is  attracted  or  repelled.  In  either  case  the  particle  is

deflected from his straight way toward the force center. If the particle has

passed the center of force, the interaction becomes smaller and smaller and

the  particle  gets  on  a  straight  track  again.  Thus,  the  scattering  process  is

characterized  by three  regions:  two  asymptotics  where  the  particle  moves

nearly on a straight track and the interaction where the particle is deflected

from  one  direction  to  another  one.  The  scattering  cross  section  for  a

certain direction in space is defined by

(2.5.21)

d s HW”÷÷ L =
d s
ÅÅÅÅÅÅÅÅÅd W

dW =

(Number of scattered particles per time into d W ) / 
(Number of incomming particles per time and per area) 
=

dN
ÅÅÅÅÅÅÅÅ .

Here, dW  denotes the solid angle in the direction W
”÷÷
. ds  is also called the

differential  scattering  cross  section.  In  case  of  central  forces,  there  exists

rotation  symmetry  along  the  incoming  beam.  Taking  this  symmetry  into

account, the solid angle dW  is given by

(2.5.22)d W
”÷÷

= 2 p sin HqL dq ,
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where q  denotes the angle between the initial and final direction. q  is also

called  the  scattering  angle.  For  an  elastic  scattering  process,  we  assume

conservation  of  energy and  momentum.  The  angular  momentum is  also  a

conserved  quantity.  It  is  of  great  advantage  to  express  the  angular

momentum  by  the  impact  parameter  b  and  the  initial  energy  T0.  The

impact  parameter  b  is  defined  as  the  perpendicular  distance  between  the

initial  direction  and  the  scatterer.  Let  u1  be  the  initial  velocity  of  the

incoming  particle.  The  angular  momentum of  the  particle  with  respect  to

the scattering center is then defined by

(2.5.23)L = m u1 b .

The initial velocity u1 is given by the initial energy T0 = m u1
2 ê 2 and, thus,

the angular momentum reads

(2.5.24)L = b
è!!!!!!!!!!!!!!!

2 m T0 .

As soon as b and T0  are fixed, the scattering angle q is uniquely fixed. Let

us for the moment assume that different b values will not result in a single

scattering angle.  The  number  of  scattered  particles  into  a  solid  angle  d  W
”÷÷

in  the  range  q  and  q + dq  is  given  by  the  incoming particles.  The  impact

parameter is the in the range b to b + db. The mathematical relation is

b

J

Au

dN
dW

q

dba

Figure 2.5.20. The parameters in a scattering process.

(2.5.25)2 p b » db » = 2 p sHW”÷÷ L sinHqL … dq ….
Since  the  differentials  can  change  sign,  we  introduced  the  amount  of  db

and dq .  The  number  of particles  and  all  other  quantities  are  positive.  Let
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us assume that the impact parameter is a function of the scattering angle q

and the energy H :

(2.5.26)b = bHq, H L.
The scattering cross section becomes a function of  the scattering angle 

(2.5.27)d sHqL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅd W

=
b

ÅÅÅÅÅÅÅÅÅÅÅÅÅsinHqL … db
ÅÅÅÅÅÅÅdq

….
The  derivation  of  this  formula  follows  from  the  assumption  of  particle

conservation; that is, elastic scattering satisfying

(2.5.28)HdNLv = HdNLn
The initial number of particles are given by

dNi = dA ê. dA Æ b db df

b db df

The number of particles after the scattering is

dNf = - ds dW ê. dW Æ sinHqL dq df

-dq df ds sinHqL

Conservation of particles implies

particleConservation = dNi == dNf

b db df == -dq df ds sinHqL

Thus, the scattering cross section follows as
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FlattenASolve@particleConservation, dsD ê. ds Æ
ds
ÄÄÄÄÄÄÄÄÄÄÄÄ
dW

E

: ds
ÅÅÅÅÅÅÅÅÅÅÅ
dW

Ø -
b db cscHqL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dq
>

A formal expression for the scattering angle q can be derived by symmetry

considerations.  Since  the  particle's  track  is  symmetric  with  respect  to  the

line focus scattering center, we can find from the geometry of the track the

relation

(2.5.29)q = p - 2 y

This relation follows from the geometry given in Figure 2.5.21

b
qy yy

y

q

Figure 2.5.21. Angular relations between the scattering angles and the impact parameter.

We already demonstrated that  the change in y  for  a  particle with reduced

mass m is given by

(2.5.30)Dy = ·
rmin

rmax

lêr2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%2 mIH -U-
l2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 m r2 M
dr.

In case of rmax Ø ¶ we gain for y
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(2.5.31)y = ·
rmin

¶

bêr2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"#####################################

1 -UêTè 0-b2ê r2
dr

with  T
è

0 =
m
ÅÅÅÅÅ2 uè1

2.  Concerning  the  energy,  we  find  for  r Ø ¶  that  H = T0

since  U Hr = ¶L = 0.  rmin  denotes  a  root  of  the  radicand  and  measures  the

shortest distance to the force center.

Since  y  depends  on  q  and  the  above  integral  is  a  function  of  b  only  for

given U HrL and T0, we find that the impact parameter b is a function of q:

b = bHqL.
This  discussion delivers  the  scattering cross  section in  the  center  of mass

system if we assume m2, the target, at rest. If m2 p m1, the scattering cross

section in the center of mass system is nearly the same as in the laboratory

system. If  this  mass relation is  not  satisfied,  a transformation between the

center of mass and the laboratory system must be used to convert y into q.

Because  the  number  of  scattered  particles  are  equal  in  the center  of  mass

and laboratory system, we find

(2.5.32)

d sHqL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅd W

dW ' =
d sHyL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅd W

dW ,

d sHqL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅd W

2 p sinHqL dq =
d sHyL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅd W

2 p sinHyL dy ,

with  q  and  y  the  scattering  angles  of  the  center  of  mass  and  laboratory

system. Thus the scattering cross section in the laboratory system is given

by 

(2.5.33)
d sHyL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅd W

=
d sHqL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅd W

sinHqL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅsinHyL dq

ÅÅÅÅÅÅÅÅdy
.

The derivation dq ê dy  is determined by the transformation

eh = tanHyL ==
sinHqHyLLm2

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
m1 + cosHqHyLLm2

tanHyL ã
sinHqHyLLm2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m1 + cosHqHyLLm2
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Differentiating this  relation with respect  to  y  and  solving for  dq ê dy ,  we

obtain

sb = FlattenASimplifyASolveA
eh

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
y

,
qHyL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
y

EEE

:q£HyL Ø
sec2HyL Hm1 + cosHqHyLLm2L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

m2 HcosHqHyLLm1 + m2L >

With  this  relation,  the  scattering  angle  q(y)  in  the  laboratory  system  is

given by

sh = Simplify@Solve@eh, qHyLDD

Solve::ifun : Inverse functions are being used by Solve, so some solutions

may not be found; use Reduce for complete solution information. More…

::qHyL Ø -cos-1i
kjjj-

1
ÅÅÅÅÅÅÅÅÅÅ
m2

2
Jcos2HyL Jm1 m2 tan2HyL +

cotHyL"###########################################################################sec2HyLm2
4 tan2HyL - m1

2 m2
2 tan4HyL NNy{zzz>,

:qHyL Ø cos-1i
kjjj-

1
ÅÅÅÅÅÅÅÅÅÅ
m2

2
Jcos2HyL Jm1 m2 tan2HyL +

cotHyL"###########################################################################sec2HyLm2
4 tan2HyL - m1

2 m2
2 tan4HyL NNy{zzz>,

:qHyL Ø -cos-1i
kjjj

1
ÅÅÅÅÅÅÅÅÅÅ
m2

2
Jcos2HyL JcotHyL"###########################################################################sec2HyLm2

4 tan2HyL - m1
2 m2

2 tan4HyL -

m1 m2 tan2HyLNNy{zzz>,

:qHyL Ø cos-1i
kjjj

1
ÅÅÅÅÅÅÅÅÅÅ
m2

2
Jcos2HyL JcotHyL"###########################################################################sec2HyLm2

4 tan2HyL - m1
2 m2

2 tan4HyL -

m1 m2 tan2HyLNNy{zzz>>

Inserting  this  expression  into  the  factor  Hsin q ê sin yL dq êdy ,  we  get  the

transformation
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vh = SimplifyAHPowerExpand êêû #1 &LA
sinHqHyLL qHyL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
y

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
sinHyL

ê. sb ê. shEE
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:-
i
kjjjcosHyL cotHyL Jm1 m2 - cotHyL"###########################################################################sec2HyLm2

4 tan2HyL - m1
2 m2

2 tan4HyL N2

-i
kjjj1 -

1
ÅÅÅÅÅÅÅÅÅÅ
m2

4
i
kjjjcos4HyL Jm1 m2 tan2HyL + cotHyL

"###########################################################################sec2HyLm2
4 tan2HyL - m1

2 m2
2 tan4HyL N2y{zzz

y
{zzz
y
{zzzì

Jm2 Jm2
3 - sin2HyLm1

2 m2 - cos2HyL cotHyLm1

"###########################################################################sec2HyLm2
4 tan2HyL - m1

2 m2
2 tan4HyL NN,

i
kjjjcosHyL cotHyL Jm1 m2 - cotHyL"###########################################################################sec2HyLm2

4 tan2HyL - m1
2 m2

2 tan4HyL N2

-i
kjjj1 -

1
ÅÅÅÅÅÅÅÅÅÅ
m2

4
i
kjjjcos4HyL Jm1 m2 tan2HyL +

cotHyL"###########################################################################sec2HyLm2
4 tan2HyL - m1

2 m2
2 tan4HyL N2y{zzz

y
{zzz
y
{zzzì

Jm2 Jm2
3 - sin2HyLm1

2 m2 - cos2HyL cotHyLm1

"###########################################################################sec2HyLm2
4 tan2HyL - m1

2 m2
2 tan4HyL NN,

-
i
kjjjcosHyL cotHyL J"###########################################################################sec2HyLm2

4 tan2HyL - m1
2 m2

2 tan4HyL cotHyL + m1 m2N
2

-i
kjjj1 -

1
ÅÅÅÅÅÅÅÅÅÅ
m2

4
i
kjjjcos4HyL Jm1 m2 tan2HyL - cotHyL

"###########################################################################sec2HyLm2
4 tan2HyL - m1

2 m2
2 tan4HyL N2y{zzz

y
{zzz
y
{zzzì

Jm2 Jm2
3 - sin2HyLm1

2 m2 + cos2HyL cotHyLm1

"###########################################################################sec2HyLm2
4 tan2HyL - m1

2 m2
2 tan4HyL NN,

i
kjjjcosHyL cotHyL J"###########################################################################sec2HyLm2

4 tan2HyL - m1
2 m2

2 tan4HyL cotHyL + m1 m2N
2

-i
kjjj1 -

1
ÅÅÅÅÅÅÅÅÅÅ
m2

4
i
kjjjcos4HyL Jm1 m2 tan2HyL -

cotHyL"###########################################################################sec2HyLm2
4 tan2HyL - m1

2 m2
2 tan4HyL N2y{zzz

y
{zzz
y
{zzzì

Jm2 Jm2
3 - sin2HyLm1

2 m2 + cos2HyL cotHyLm1

"###########################################################################sec2HyLm2
4 tan2HyL - m1

2 m2
2 tan4HyL NN>

The two solutions carry out the transformation from the center of mass to

the laboratory system.
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Let  us  consider  the  limiting  case  of  equal  masses  m1 = m2;  then,  this

formula reduces to 

vt = Simplify@HPowerExpand êêû #1 &L@
Simplify@HPowerExpand êêû #1 &L@Simplify@vh ê. m1 Æ m2DDDDD

80, 0, -4 cosHyL, 4 cosHyL<

Thus, the scattering cross section for equal masses is transformed by

(2.5.34)d s HyL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅd W

= 4 cos HyL d s HqL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅd W

…q = 2 y.

The general transformation between the center of mass and the laboratory

system is thus given by

sHyL == vhP2T sHqL

sHyL ã
i
kjjjcosHyL cotHyL Jm1 m2 - cotHyL"###########################################################################sec2HyLm2

4 tan2HyL - m1
2 m2

2 tan4HyL N2

-i
kjjj1 -

1
ÅÅÅÅÅÅÅÅÅÅ
m2

4
i
kjjjcos4HyL Jm1 m2 tan2HyL +

cotHyL"###########################################################################sec2HyLm2
4 tan2HyL - m1

2 m2
2 tan4HyL N2y{zzz

y
{zzz

sHqLy{zzzì Jm2 Jm2
3 - sin2HyLm1

2 m2 - cos2HyL cotHyLm1

"###########################################################################sec2HyLm2
4 tan2HyL - m1

2 m2
2 tan4HyL NN

For some experimental setups, it is more convenient to know the scattering

information  on  the  total  space.  In  such  cases,  we  can  calculate  the

so-called total scattering cross section by integrating over the total space:

(2.5.35)

st = Ÿ4 p
s HqL d  W

”÷÷

= 2 p Ÿo

p
 sHqL sinHqL dq .

Contrary  to  the  scattering  cross  section  the  total  cross  section  is

independent of the scattering system.

2. Classical Mechanics 263



Example 1: Hard Sphere Scattering

Let us consider  the  example of hard spheres scattered on each other.  The

geometry of the scattering process is represented in Figure 2.5.22.

Figure 2.5.22. Geometry of a hard-sphere scattering process.

Taking the geometric relations for the radii into account, we find

l = R1 + R2

R1 + R2

For the angles, we have

=
2 2

p
ÅÅÅÅÅÅ
2

-
q
ÅÅÅÅÅÅ
2

The impact parametr is given by
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b = l Sin@ D

cosJ q
ÅÅÅÅÅÅ
2
N HR1 + R2L

Differentiating the impact parameter b  with respect to the scattering angle

q gives

db = b

-
1
ÅÅÅÅÅÅ
2

sinJ q
ÅÅÅÅÅÅ
2
N HR1 + R2L

The scattering cross section thus becomes

d =
b

Sin@ D
db êê Simplify

1
ÅÅÅÅÅÅ
4
HR1 + R2L2

We  observe  that  the  scattering  cross  section  for  hard  spheres  is

independent  of  the  scattering  angle  q.  The  total  cross  section  of  this

example is

t = 2 ‡
0

d Sin@ D

p HR1 + R2L2
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2.5.4.3 Rutherford Scattering

One  of  the  most  important  applications  of  the  two-body  problem  is  the

scattering of  charged  particles  in  an electric  field.  The  electric  field  for  a

Coulomb scattering is U HrL = k ê r, where k  is a constant determined by the

charges  q1  and  q2 : k = q1 q2. k  may  be  a  constant  of  both  signs.  k > 0

resembles  a  repulsion  and  k < 0  an  attraction.  The  determining  equation

for the track and scattering angle q of a particle is determined by

(2.5.36)

y = ·
rmin

¶

bêr2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"#######################################

1 - UêTè 0 - b2êr2
dr =

·
rmin

¶

bêr2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"###########################################1 - këHTè 0 rL- b2êr2

dr

.

This integral  is  solved by the well-known substitution u = 1 ê r.  The result

of the integration is

(2.5.37)cosHyL =
HkêbL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"#####################
1+HkêbL2

,

where  k = k ê H2 T
è

0L.  Solving  this  equation  with  respect  to  the  impact

parameter b, we find

Remove@bD

impact = PowerExpandASimplifyASolveAcosHyL ==
k

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

b $%%%%%%%%%%%%%%%%%%%%%I k
ÄÄÄÄÄ
b
M2 + 1

, bEEE

::b Ø -k cotJ q
ÅÅÅÅÅÅ
2
N>, :b Ø k cotJ q

ÅÅÅÅÅÅ
2
N>>

The angle y is y = p ê 2 - q ê2, so we get
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imp = impact ê. y Æ
p
ÄÄÄÄÄÄ
2

-
q
ÄÄÄÄÄÄ
2

::b Ø -k cotJ q
ÅÅÅÅÅÅ
2
N>, :b Ø k cotJ q

ÅÅÅÅÅÅ
2
N>>

The derivation of the impact parameter with respect to the scattering angle

is given by

db =
Himp ê. b Æ bHqLL

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
q

::b£HqL Ø
1
ÅÅÅÅÅÅ
2

k csc2J q
ÅÅÅÅÅÅ
2
N>, :b£HqL Ø -

1
ÅÅÅÅÅÅ
2

k csc2J q
ÅÅÅÅÅÅ
2
N>>

Now, the scattering cross section follows from 

scatSection = SimplifyAs == -

b bHqL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

q
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
sinHqL

ê. Flatten@Join@db, impDDE

s ==
1
ÅÅÅÅÅÅ
4

k2 csc4J q
ÅÅÅÅÅÅ
2
N

or

sc = scatSection ê. k Æ
k

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

2 T
é

0

s ==
k2 csc4H q

ÅÅÅÅ2 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

16 T
è

0
2

This  formula  is  known  as  Rutherford's  scattering  formula.  This  relation

was experimentally verified for a-particles by Geiger and Marsden in 1913

[2.10].
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If the masses m1  and m2  or charges q1and q2  are equal,  we know that the

kinetic  energy  reduces  to  T
è

0 = T0 ê2.  In  this  case,  the  scattering  section

reduces to

scatSection ê.
k

2 T0
ê. T0

T0

2

s ==
k2 csc4H q

ÅÅÅÅ2 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

16 T0
2

The  transformation  of  the  scattering  section  for  equal  masses  (charges)

from  the  center  of  mass  to  the  laboratory  system  follows  from  the

following formulas:

(2.5.38)k =
k

ÅÅÅÅÅÅÅÅÅÅ
2 T

è
0

,

(2.5.39)
d s HyL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅd W

=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 cos y

d s HqL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅd W

…q = 2 y,

and

(2.5.40)T
è

0 =
T0ÅÅÅÅÅÅ2 .

The result of this transformation is

sc =

SolveAscatSection ê. 9k Æ
k

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2 T0

, s Æ
s

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
4 cosHyL

, q Æ 2 y= ê. T0 Æ
T0
ÄÄÄÄÄÄÄÄÄÄ
2

, sE

::s Ø
k2 sec3H q

ÅÅÅÅ2 L tanH q
ÅÅÅÅ2 L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
T0

2
>>

The  characteristic  of  Rutherford's  scattering  is  the  1 ê sin4  dependence  of

the  scattering cross  section.  This  dependence is  valid  in  the laboratory as

well  as in the center  of mass system. The experimental  verification of the

Rutherford  relation  was  carried  out  by  scattering  a-particles  on  gold

atoms.  Since  the  gold  particles  are  much  heavier  than  a-particles,

mAu p ma,  there  is  no  difference  between  the  center  of  mass  and  the

laboratory system. The scattering cross section is given by
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sc = scatSection ê. k Æ
k

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2 T0

s ==
k2 csc4H q

ÅÅÅÅ2 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

16 T0
2

Plotting this result in a log-log scale we get a nearly straight line for small

scattering angles. Figure 2.5.23 shows this relation

<< "Graphics`Graphics`";
LogLogPlotHs ê. Hsc ê. Equal Æ RuleL ê. 8k Æ 4, T0 Æ 1<,

8q, 0.2, p<, AxesLabel Æ 8"q", "s16T0
2êk2"<L;

0.2 0.5 1 2
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10

100

1000

10000
s16T0

2êk2

Figure 2.5.23. Rutherford's scattering cross section in a log-log plot.

From  the  derivation  of  the  scattering  cross  section,  we  know  the  total

number of particles conserved in the scattering process:

(2.5.41)HdNLn = -
ds
ÅÅÅÅÅÅÅÅdW

dW = -
ds
ÅÅÅÅÅÅÅÅdW

sin q dq dj ,

(2.5.42)dN
ÅÅÅÅÅÅÅÅdW

= -
ds
ÅÅÅÅÅÅÅÅdW

= const.

Measuring the particle number in a certain solid angle and multiplying this

quantity by ds êdW , we get a constant. This kind of check was applied by

Geiger  and  Marsden  to  their  experimental  data.  Geiger  and  Marsden

determined  for  the  (Au,  a)  system  scattering  angles  in  the  laboratory
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system,  the  number  of  a-particles  and  the  product  of  the  scattering  cross

section and the number of particles. In the following lines, we collect these

data in different lists:

l0 = 9 ,
1

Sin@
2
D
4
, J,

J

Sin@
2
D
4
=;

The scattering angles are

l1 = 815, 22.5, 30, 37.5, 45,

60, 75, 105, 120, 135, 150< 2
360.

80.261799, 0.392699, 0.523599, 0.654498, 0.785398,

1.0472, 1.309, 1.8326, 2.0944, 2.35619, 2.61799<

The cross section depends on the scattering angle as

l2 = MapA
1

SinA #
2
E
4
&, l1E

83445.16, 690.331, 222.851, 93.6706, 46.6274,

16., 7.28134, 2.52426, 1.77778, 1.37258, 1.14875<

The total number of scintillations N  for a given angle are

l3 = 8132000, 27300, 7800, 3300,

1435, 477, 211, 69.5, 51.9, 43, 33.1<

8132000, 27300, 7800, 3300, 1435, 477, 211, 69.5, 51.9, 43, 33.1<

The ratio of N  and the Rutherford characteristic is
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l4 = l3 êl2

838.3146, 39.5463, 35.0009, 35.2298, 30.7759,

29.8125, 28.9782, 27.5329, 29.1937, 31.3278, 28.814<

The following table collects all of these data:

lh = Prepend@Transpose@8l1, l2, l3, l4<D, l0D;
lh êê TableForm

q csc4H q
ÅÅÅÅ2 L J J csc4H q

ÅÅÅÅ2 L
0.261799 3445.16 132000 38.3146

0.392699 690.331 27300 39.5463

0.523599 222.851 7800 35.0009

0.654498 93.6706 3300 35.2298

0.785398 46.6274 1435 30.7759

1.0472 16. 477 29.8125

1.309 7.28134 211 28.9782

1.8326 2.52426 69.5 27.5329

2.0944 1.77778 51.9 29.1937

2.35619 1.37258 43 31.3278

2.61799 1.14875 33.1 28.814

If  we  plot  Hq, N ê sinHq ê 2L4L,  we  observe  that  the  experiment  is  in

accordance with the theoretical prediction.
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ListPlot@Transpose@8l1, l4<D,
PlotRange 880, 2.7<, 80, 39<<,
AxesLabel 8" ", "NêsinH ê2L4"<,
PlotStyle RGBColor@0.996109, 0, 0D,
Prolog 8PointSize@0.02D<D;

2.5.5 Exercises

1.  Show that  the  relative  motion  of  two  particles  is  not  affected  by  a
uniform gravitational field.

2.  Two  particles  connected  by  an  elastic  string  of  stiffness  k  and
equilibrium  length  a  rotate  about  their  center  of  mass  with  angular
momentum L. Show that their distance r1  of closest approach and their
maximum sparation r2 are related by 

r1
2 r2

2Hr1+r2-2 aL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅr1+r2

=
L2

ÅÅÅÅÅÅÅÅk m

where m is their reduced mass and r1 > a, r2 > a.

3.  Find  the  force  law  for  a  central  force  which  allows  a  particle  to
move  in  a  logarithmic  spiral  orbit  given  by  r = k q2,  where  k  is  a
constant.

4. A particle moves in a circular orbit in a force field given by

FHrL = -k ê r2.
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If suddenly k  decreases to half its original alue, show that the particle's
orbit becomes parabolic.

5. Discuss the motion of a particle in a central inverse square law force
field for the case in which there is a superimposed force whose magni-
tude  is  inversely  proportional  to  the  cube  of  the  distance  from  the
particle to the force center; that is

FHrL =
-k
ÅÅÅÅÅÅÅr2 -

l
ÅÅÅÅÅÅr3 , k, l > 0.

Show that the motion is described by a precessing ellipse. Consider the
cases l < L2 ê m, l = L2 ê m, and l > L2 ê m.

2.5.6 Packages and Programs

Programs

The  following  lines  are  used  to  load  special  commands  used  in  this

notebook.  The  commands  and  definitions  are  contained  in  the  file

NewtonsLaws.m.  Before  you  can  use  this  file,  you  should  set  the  path

where it is located. Change the following line in such a way that the file is

found.

SetDirectory@"C:\Mma\Book\ThPh1"D;

This line loads the contents of the file NewtonsLaws.m.

<< NewtonsLaws.m;

This line defines a  function which maps PowerExpand[]  to  each level of

an expression and simlifies the result by Simplify[].

SimplifyAll@x_D :=

MapAll@Simplify@PowerExpand@#DD &, xD
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2.6 Calculus of Variations

2.6.1 Introduction

The  term calculus  of  variations  was  first  coined  by  Leonhard  Euler  (see

Figure 2.6.1) in 1756. This kind of calculus introduces a special derivative,

the  variational  derivative.  We  call  this  derivative  the  Euler  derivative  in

honor  of  Euler's  achievements  in  this  field.  He  used  it  to  describe  a  new

method in mechanics which Lagrange had developed a year earlier. Thus,

the original application of the Euler derivative originates from mechanics.

In this context, Euler and Lagrange used this derivative to write down their

famous  equations,  the  Euler–Lagrange  equations.  Up  to  now,  the  main

application  of  this  derivative  in  physics  has  been  the  formulation  of

dynamical  equations.  Before  we  discuss  the  Euler  derivative  and  its

implementation,  we  briefly  recall  the  basic  properties  of  the  origin  in  the

calculus of variations.

Figure 2.6.1. 

Leonhard Euler (born April 15, 1707, died September 18, 1783) was Switzerland's foremost
scientist.  He  was  perhaps  the  most  prolific  author  of  all  time  in  any  field.  From 1727  to
1783, his writings poured out in a seemingly endless flood, constantly adding knowledge to
every  known  branch  of  pure  and  applied  mathematics,  and  also  to  many  that  were  not
known until he created them. Euler was a native of Basel and a student of Johann Bernoulli.

The calculus of variations was first used by Johann Bernoulli in July 1696

when  he  presented  the  brachystochrone  problem.  The  problem  can  be

formulated  as  follows:  A  point  mass  is  moving  frictionless  in  a
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homogenous  force  field  along a  path  joining two  points.  The  question  is,

Which  curve  connects  the  two  points  for  the  shortest  travel?  Johann

Bernoulli  announced  the  solution  of  the  problem,  but  did  not  present  his

findings  in  public.  He  preferred  to  first  challenge  his  contemporaries  to

also  examine  the  problem.  This  challenge  was  particularly  aimed  at  his

brother  and  teacher  Jakob  Bernoulli,  who  was  his  bitter  enemy.  Jakob

found  one  solution but  did  not  present  it  to  Johann.  It  was  only upon the

intervention of  Leibniz,  with  whom Jakob had  a  lifelong friendship and a

scientific  correspondence,  that  he  sent  the  solution  to  his  brother  in  May

1697.  The  most  fascinating  event  was  that  this  solution  was  a  cycloid,  a

curve also discovered at this time. 
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2.6.2 The Problem of Variations

As  mentioned,  the  main  idea  in  the  calculus  of  variations  arose  from the

work  of  Euler  and  Lagrange.  Later,  Hamilton  contributed  the  term

minimum principle to the theory, which is still in use today. The main idea

of  all  these  considerations  of  Euler,  Lagrange,  and  Hamilton  is  the

assumption that there exists a generating functional F. This functional F  is

responsible for the dynamical development of the motion. The key point in

the calculus of variations is to find a function which makes the functional

F an  extremum.  The  solution  of  this  issue  is  to  vary  the  function  by

introducing a test function. Thus, the variation of F  is actually carried out

by  replacing  the  function  u  by  a  slightly  changed  new  function  u + e w,

where e is a small parameter and w denotes an arbitrary test function. After

replacing u and all of its higher derivatives in the functional F, we have to

determine  the  extreme  values  of  F.  The  functional  in  this  representation

can be considered as a function of the parameter e. The extreme values of

F  are  found  if  we  use  the  standard  procedure  of  calculus  for  finding

extremums.  In mathematical terms, we need to calculate the derivative of

F with respect to e under the condition that e vanishes:

(2.6.1)
dFHeL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

d e

ƒƒƒƒƒƒƒƒe=0
= 0.

The basic  problem of the calculus of variations is to determine a function

u(x) such that the integral

(2.6.2)

F@uD = ‡
x1

x2

f Hx, u, ux, …L dx

= ‡
x1

x2

f Hx, uHkLL dx , k = 1, 2, …,

assumes  an  extreme.  f Hx, u, ux, …L  is  known  as  the  density  of  the

functional  F.  An  extremum  here  is  either  a  maximum  or  a  minimum.  In

Equation  (2.6.2),  ux = u ê x  denotes  the  partial  derivative  of  u with

respect to the independent variables x,  where x  is a vector of coordinates.

Let  us  assume  first  that  we  have  only  one  independent  variable  x.  This

assumption  will  make  it  easier  to  represent  and  discuss  the  theory.  A

generalization to more independent variables will be given next.
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The  expression  F@uD  given  in  Equation  (2.6.2)  is  called  a  functional

defined by an integral over a density f  which depends on the independent

variable  x  and  the  unknown  function  u.  In  general,  this  density  may also

depend  on  derivatives  of  u  up  to  a  certain  order  k, denoted  by  uHkL.  The

limits  in  the  integral  (2.6.2)  are  assumed  to  be  fixed.  We  note  that  fixed

limits are not necessary. If they are allowed to vary, the problem increases

in such a way that not only uHxL but also x1 and x2 are needed to bring F  to

an extreme value. The question is one of how to manage the functional F

in becoming an extremum. Let us assume that an extremum of F  exists if a

function  u = uHxL  makes  the  functional  F  a  minimum.  Then,  any

neighboring function,  no  matter  how close  it  approaches  uHxL,  must  make

F  increase.  The  definition  of  a  neighboring  or  test  function  may  be  as

follows.  We introduce a  parametric  representation of u = uHx; eL  in such a

way  that  for  e = 0  and  u = uHx; e = 0L = uHxL,  we  get  the  identity  and  the

functional yields an extremum. We write the small perturbation of u as

(2.6.3)uHx; eL = uHx; 0L + e wHxL,
where  wHxL  is  the  test  function  which  has  continuous  derivatives  and

vanishes at the endpoints x1 and x2.  We note that  the vanishing of wHxL  at

x1  and  x2 wHx1L = wHx2L = 0  is  one  of  the  basic  assumptions  of  the

calculus  of  variations.  The  above  considerations  are  graphically

represented in Figure 2.6.2.

x

u

uHxL
uHxL+e w2HxL

uHxL+e w1HxL

x1 x2
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Figure 2.6.2. 
Two variations of the solution uHxL  with two different test functions w1  and w2.  The test
functions vanish at the endpoints x1 and x2.

If  functions  of  the  type  given  in  Equation  (2.6.3)  are  considered  as

variations of u, the functional F becomes a function of e :

(2.6.4)F[u;e] =‡
x1

x2

f Hx, uHx; eL, uxHx, eL, …L dx.

The  condition  that  the  integral  has  a  stationary  value  (in  other  words,  an

extremum) is that F be independent of e in first order. This means that

(2.6.5)
F

ÅÅÅÅÅÅÅÅÅÅÅ
e

À
e=0

= 0

for  all  functions  wHxL.  This  is  a  necessary  condition  but  not  a  sufficient

one. We will not pursue the details of the sufficient conditions here.  They

were  extensively  discussed  by  Blanchard  and  Brüning  [2.11].  To

demonstrate how these formulas work in detail,  let us consider the simple

example  of  the  shortest  connection  between  two  points  in  an  Euclidean

plane.

Example 1: Shortest Connection

Let us consider the equation of a curve in an Euclidean space which yields

the  shortest  distance  between  two  points  in  the  plane.  The  geometrical

increment of distance ds in the Hu, xL-plane is given by

(2.6.6)ds =
"######################

dx2
+ du2

= $%%%%%%%%%%%%%%%%%%%%%%%1 +
i
kjj

du
ÅÅÅÅÅÅÅÅÅ
dx

y
{zz

2

dx.

The total length s of the curve between two points x1 and x2 is

(2.6.7)s = ‡
x1

x2 "##############1 + ux
2 dx ª F@uD.

We know that the shortest connection between two points in the Euclidean

plane is a straight line given by

(2.6.8)u(x)= a x + b,

where a  and b  are constants determining the slope and the intersection of

the line with the ordinate. Now, let us consider the line in the range x œ [0,

2p]. To demonstrate the numerical behavior of the functional F, we choose
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a special test function wHxL = sinH4 xL.  Using our representation of u  given

by  Equation  (2.6.8)  with  a=1  and  b=0  for  example,  we  get  for  the

derivative of u,

(2.6.9)ux = 1 + 4 e cosH4 xL.
Inserting this representation into Equation (2.6.7), we find

(2.6.10)F@eD = ‡
0

2 pè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 + 4 e cosH4 xL dx.

This relation represents our specific functional, now a function solely of e.

We are  looking  for  the  minimum of  this  function to  get  the  extremum of

the  functional.  Considered  as  a  function  of  e,  this  relation  cannot  be

explicitly solved  for  e.  However,  to  get  an idea of the dependence on the

parameter e, we can use Mathematica.  If we define Equation (2.6.10)  as a

function  depending  on  e,  we  can  use  the  numerical  capabilities  of

Mathematica  to  graphically represent  the dependence  of F  on e.  First,  let

us define Equation (2.6.10) by

F@ _D := NIntegrateA

"#####################################################
1 + H1 + 4 Cos@4 xDL2 , 8x, 0, 2 <E

We then use the defined function F[] in connection with Plot[] to represent

the value of the functional for certain values of e:
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Plot@Evaluate@F@ DD, 8 , 1, 1<, AxesLabel 8" ", "F"<,
PlotStyle RGBColor@1, 0, 0DD;

-1 -0.5 0.5 1
e

10

12

14

16

18

F

The  result  of  our  calculation  shows  that  the  value  of  the  functional  is

minimal  for  e=0  and  increases  for  all  other  values  of  e.  Thus,  we

demonstrated  numerically  that  the  minimum of  the  functional  exists.  In  a

second plot, we demonstrate the influence of e on the function  uHxL = x for

different  values  of  e.  This  shows  us  that  the  value  of  F@u; eD  is  always

greater than F@u; 0D, no matter which value (positive or negative) is chosen

for e.
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PlotAEvaluateA

9y@x, 0D, y@x, 1D, yAx,
1

2
E= ê.

y Function@8x, <, x + Sin@4 xDDE,
8x, 0, 2 <,
AxesLabel 8"x", "y"<,
PlotRange All,

PlotStyle 8RGBColor@0, 0, 0.996109D,
RGBColor@1.000, 0.000, 0.000D,
RGBColor@0.000, 0.251, 0.251D<E;

1 2 3 4 5 6
x
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y

From this  figure,  we can conclude that  the line uHxL = x  is  one realization

of the shortest connection between two points in the Euclidean plane. 

2.6.3 Euler’s Equation

In  this  section,  we  derive  the  analytical  representation  of  the  Euler

derivative. The construction of this sort of derivative is based on condition

(2.6.5).  If  we  carry  out  the  differentiation  with  respect  to  e,  Equation

(2.6.4) will provide

(2.6.11)
F

ÅÅÅÅÅÅÅÅÅÅÅ
e

= ÅÅÅÅÅÅÅÅÅ
e
‡

x1

x2

f Hx, u, ux, …L dx.
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Since the limits of the integral are fixed, the differentiation affects only the

density of the functional F. Hence,

(2.6.12)

F
ÅÅÅÅÅÅÅÅÅÅÅ

e
=

‡
x1

x2 i
k
jjj f

ÅÅÅÅÅÅÅÅÅÅÅ
u

u
ÅÅÅÅÅÅÅÅÅÅ

e
+

f
ÅÅÅÅÅÅÅÅÅÅÅÅÅ

ux

ux
ÅÅÅÅÅÅÅÅÅÅÅÅÅ

e
+

f
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

ux,x

ux,x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

e
+

y
{
zzz dx.

If we now use the representation of u = uHx; eL as given in Equation (2.6.3)

to introduce the e dependence for the variable u and the derivatives uHkL, we

get

(2.6.13)
u

ÅÅÅÅÅÅÅÅÅÅ
e

= wHxL, ux
ÅÅÅÅÅÅÅÅÅÅÅÅÅ

e
= wx,

ux,x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

e
= wx,x,x, ….

Using these relations in Equation (2.6.12), we find

(2.6.14)
F

ÅÅÅÅÅÅÅÅÅÅÅ
e

= ‡
x1

x2 i
k
jjj f

ÅÅÅÅÅÅÅÅÅÅÅ
u

wHxL +
f

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
ux

wx +
f

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
ux,x

wx,x +
y
{
zzz dx.

The result  so far  is that  the integrand contains derivatives of the density f

and  the  test  function  w.  Since  we  do  not  know  anything  about  the

derivatives  of  w,  we  need  to  reduce  (2.6.14)  in  such  a  way  that  it  only

contains  the  test  function  w.  The  reduction  can  be  obtained  by  an

integration of parts with respect to the test function. Additional use of the

conditions wHx1L = wHx2L = 0 simplifies expression (2.6.14) to

(2.6.15)

F
ÅÅÅÅÅÅÅÅÅÅÅ

e
= ‡

x1

x2

wHxL ik
jjj f

ÅÅÅÅÅÅÅÅÅÅÅ
u

-
d

ÅÅÅÅÅÅÅÅÅÅÅ
d x

i
kjj

f
ÅÅÅÅÅÅÅÅÅÅÅÅÅ

ux

y
{zz

+
d2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
d x2

i
k
jjj f

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
ux,x

y
{
zzz¡ y

{
zzz dx.

The integral in Equation (2.6.15)  seems to be independent of e.  However,

the function u = uHx; eL  and all derivatives of u  are still functions of e.  We

know from the representation of uHx; eL  that  this dependency disappears if

we  set  e = 0.  Before  we  start  this  calculation,  we  generalize  Equation

(2.6.15) to arbitrary orders in the derivatives:

(2.6.16)
F

ÅÅÅÅÅÅÅÅÅÅÅ
e

= ‡
x1

x
2

wHxL i
k
jjjjj‚

n=0

¶

H-1Ln dn

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
d xn

i
k
jjj f

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
uHnL

y
{
zzzy{
zzzzz dx,

where  uHnL = n u ê xn  denotes  the  nth  derivative  of  u  with  respect  to  x.

Our  aim  was  to  find  the  extremum  of  F.  A  necessary  condition  for  the
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existence  of  an  extremum  is  the  vanishing  of  the  derivative

F ê e »e=0 = 0.  In  our  calculations,  we  assumed  that  w  is  an  arbitrary

function.  Thus,  the  derivative  of  F  can  only  vanish  if  the  integrand

vanishes and so we end up with the result

(2.6.17)‚
n=0

¶

H-1Ln dn

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
d xn

i
k
jjj f

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
uHnL

y
{
zzz = 0,

where u and all the derivatives of u are now independent of e. This result is

known as Euler’s equation and it is a necessary condition for the functional

F  to allow an extremum. The Euler equation is reduced to the well-known

Euler–Lagrange  equation  if  we  restrict  the  order  of  the  derivatives  to  2.

Since  the  Euler  equation  is  needed  in  the  derivation  of  equations  of

motion, we define a special symbol for this operation and call it the Euler

operator.

2.6.4 Euler Operator

The Euler operator is also known as a variational derivative in the field of

dynamical  formulations  or  statistical  mechanics.  In  this  subsection,  we

define this operator as a special type of derivative.

Definition: Euler Operator

Let f = f Hx, u, ux, …L be the density of a functional F@uD. Then we call

dF
ÅÅÅÅÅÅÅÅÅÅ
du

:= ‚
n=0

¶

H-1Ln dn

ÅÅÅÅÅÅÅÅÅÅÅÅ
dxn

i
k
jjj f

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
uHnL

y
{
zzz

the functional derivative of F and

 :=‚
n=0

¶

H-1Ln Dn ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
uHnL

an Euler operator. Dn = dn êdxn denotes the nth-order total derivative.

The  actual  information  of  this  definition  is  that  the  functional  derivative

dF ê du  can be replaced by ordinary and partial derivatives if we know the

density  of  the  functional  F.  Consequently,  we  can  introduce  a  general
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derivative,  the  Euler  operator,  which  is  based  on  known  operations.  The

essential content of the above definition is that knowing the density f  of a

functional  F  is  sufficient  to  calculate  the  corresponding  functional

derivative.  The  functional  derivative  follows  just  by differentiation of  the

density f .  An additional  merit  is  the knowledge of the Euler equation for

this  functional  F.  The  above  definition  is  a  result  of  the  calculus  of

variations.  Thus,  the  Euler  derivative  can be  calculated by an algorithmic

procedure.

2.6.5 Algorithm Used in the Calculus of Variations

Our next goal is to define a Mathematica  function allowing the calculation

of  the  Euler  derivative.  Before  we  present  the  function,  we  briefly repeat

the  main  steps  of  the  calculus  of  variations.  These  steps  are  intimately

related to the definition of the Euler derivative and are thus the basis of the

calculation. The four main steps of the algorithm are as follows:

1. Replacement of the dependent function u by its variation       
u = u + e w.

2.  Differentiation of the functional density with respect to the parame-
ter e and replacement of e by zero after the differentiation.

3.  Use  the  boundary  conditions  for  the  test  function  to  eliminate  the
derivatives in w.

4. The coefficient of the test function w delivers the Euler equation. 

These  four  steps  define  the  calculation  of  the  Euler  derivative

algorithmically.  The  function  defined  in  Mathematica  is  based  on  these

four  steps.  When  looking  at  the  definition  of  the  Euler  derivative  ,  we

realize  that  we  need  at  least  three  pieces  of  information  to  carry  out  the

calculation. First,  we should know the density of the functional F,  second

the  dependent  variable,  and  third  the  name  of  the  independent  variable.

From our discussions of the algorithm, we expect that the highest order of

differentiation should be determined by the function itself. Thus, we define

the  function  EulerLagrange[]  with  three  necessary  arguments.  A  fourth

optional argument allows influencing the representation of the result of the

function. The following lines contain the definitions for EulerLagrange[]:
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H Euler derivative for L
H one dependent

and one independent variable L
Clear@EulerLagrangeD;
Options@EulerLagrangeD = 8eXpand False<;

EulerLagrange@density_, depend_, independ_,

options___D :=

Block@8f0, rule, fh, , w, y, expand<,
H check options L
8expand< = 8eXpand< ê. 8options< ê.

Options@EulerDD;
H rule for the variation of u L
f0 = Function@x, y@xD + w@xDD;
H rule for the replacement of

derivatives of w L
rule = b_. wHn_L@independD

H 1Ln HoldForm@ 8independ,n<bD;
H step of variation L
fh = density ê. depend f0 ê.

8x independ, y depend<;
H differentiation

with respect to L
fh = Expand@ fh ê. 0D;
H transformation to w L
fh = fh ê. rule ê. w@independD 1;

H Euler equations L
If@expand, fh = ReleaseHold@fhD, fhDD

This  function  is  part  of  the  Mathematica  package  EulerLagrange.  The

package  also  contains  functions  for  larger  numbers  of  independent  and

dependent  variables.  To  make  the  use  of  the  Euler  operator  more

convenient,  we  also  defined  a  single  symbol  for  the  Euler  operator.  This

symbol  looks  like  u
x@ f D,  where  u  denotes  the  dependent  variables,  x  the

independent  variables,  and f  the density of the  functional.  The symbol is

available  by  a  function  button  which  can  be  generated  by  the  following

pattern by using the menu command File+Generate Palette from Selection.
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@ D

Using  the  function  EulerLagrange[]  or  its  equivalent  operator  ,  it  is

straightforward  to  calculate  the  functional  derivative  of  any  density

containing  one  dependent  and  one  independent  variable.  We  demonstrate

the application of  this  function by discussing the famous brachystochrone

problem already mentioned earlier.

Example 1: Brachystochrone

Let  us  discuss  the  classical  problem  of  the  brachystochrone  solved  by

Johann Bernoulli in 1696. The physical content of this famous problem is

the  following:  Consider  a  particle  moving  in  a  constant  force  field.  The

particle with mass m starts at rest from some higher point in the force field

and moves to some lower point. The question is, Which path is selected by

the particle to finish the transit in the least possible time? Let us reduce the

problem  to  the  point  of  deriving  the  Euler  equation.  The  dimensionless

functional  density governing the movement  of  the particle  can be  derived

from the integral t = Ÿp1

p2 1 ê vds, where t is time, ds is the line element, and

v  is the velocity. Expressing the line element and the velocity in cartesian

coordinates, we can express the density of the functional by

(2.6.18)f Hx, u, uxL =
i
k
jjj 1 + ux

2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 g x

y
{
zzz

1ê2
,

where  u  describes  the  horizontal  coordinate  and  x  the  vertical  one.  The

application of our function EulerLagrane[] to this functional density

f = $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1 + H x u@xDL2

2 g x

$%%%%%%%%%%%%%%%%%%u£HxL2+1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅg x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!
2

286 2.6 Calculus of Variations



gives  us  by  applying  the  Euler  operator  to  the  density  f  a  second-order

nonlinear ordinary differential equation for the variable u.

brachystochroneEquation = Simplify@PowerExpand@ u
x@ f DDD

u£HxL3 + u£HxL - 2 x u££HxL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2
è!!!!

2
è!!!!

g x3ê2 Hu£HxL2 + 1L3ê2 == 0

This  equation  of  motion  determines  the  movement  of  the  particle.  To

understand  how this  equation  is  generated,  we  recall  Euler's  equation  for

the specific density f  Equation (2.6.18) by

(2.6.19)
f

ÅÅÅÅÅÅÅÅu -
d

ÅÅÅÅÅÅÅdx I f
ÅÅÅÅÅÅÅÅÅux

M == 0.

Since the density f  does not depend on u  but only on ux,  Euler's equation

reduces simply to

(2.6.20)d
ÅÅÅÅÅÅÅdx I f

ÅÅÅÅÅÅÅÅÅux
M == 0.

However,  relation  (2.6.20)  indicates  that  the  expression  H f ê uxL  is  a

constant with respect to x.  On the other hand, this means that our derived

second-order  nonlinear  ordinary  differential  equation

brachystochroneEquation can be integrated once. If we start the integration

we fail to get a satisfying result

Integrate@brEquationP1T, xD

Ÿ u£HxL3+u£HxL-2 x u££HxL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x3ê2 Hu£HxL2+1L3ê2  „ x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
è!!!!

2
è!!!!

g

meaning Mathematica  is, at the moment, unable to find first integrals of a

given second-order ordinary differential equation. However, we know that

the a first integral exists which, we denote by H4 a gL-1ê2 and represent as
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brachystochroneEquation2 =

Simplify@PowerExpand@ xu@xD HfLDD ==
1

è!!!!!!!!!!!!
4 a g

u£HxL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!

2
è!!!!

g
è!!!!

x
è!!!!!!!!!!!!!!!!!!!!!!

u£HxL2 + 1
==

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2
è!!!!!!!!

a g

Squaring both sides of this equation, we can derive a differential equation

which can be solved by integration:

dth = Thread@brachystochroneEquation22, EqualD

u£HxL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 g x Hu£HxL2 + 1L ==

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 a g

Solution with respect to first-order derivatives gives an first-order ordinary

differential equation which can be solved by separation of variables.

dthh = Solve[dth,u'[x]];dthh/.Rule->Equal

i

k
jjjjjjjj

u£HxL == -
è!!!!

x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!

2 a-x

u£HxL ==
è!!!!

x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!

2 a-x

y

{
zzzzzzzz

In  the  following  calculation,  we  use  the  second  equation,  which  can  be

formally integrated to

(2.6.21)u = ‡
è!!!!

x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!

2 a-x
dx.

The integrand of this relation is represented by 
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int = u'[x] /. dthh[[2]]

è!!!!
x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!
2 a - x

The derived expression represents the integrand of the action integral. We

simplify  the  integrand  to  a  more  manageable  form  for  Mathematica  by

substituting

subst1 = x a(1-Cos[ ]);

The  differential  dx  is  replaced  by  the  new  differential  q  multiplied  by  a

factor.

dx = q Hx ê. subst1L

a sinHqL

The integrand in the updated variables is given by 

ints = dx int/.subst1

a
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

a H1 - cosHqLL sinHqL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

2 a - a H1 - cosHqLL

This  expression is simplified by the following chain of functions to 

ints =
"############################################################################

ints2 êê PowerExpand êê Simplify êê PowerExpand

2 a sin2J q
ÅÅÅÅÅÅ
2
N

which can easily be integrated with the result
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u = ‡ ints êê Simplify

a Hq - sinHqLL

We now know that the path between p1  and p2  in a parametric form given

by  the  coordinates  x  and  y  depends  on  q. x  and  y  describe  the  fastest

connection between two points in a homogeneous force field. Parameter a

contained in the above representation has to be adjusted so that the path of

the particle passes point p2. The curve derived is known as a cycloid.

curve = {u,-x/.subst1}

8a Hq - sinHqLL, -a H1 - cosHqLL<

A  parametric  representation  of  the  solution  for  different  parameters  a  is

created by the function ParametericPlot[] and given as follows:
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k1 = curve /. a 1;
k2 = curve /. a 2;
k3 = curve /. a 1.25;
k4 = curve /. a 1.5;

ParametricPlot[{k1,k2,k3,k4},{ ,0,2 },AxesLabel->{"u"
,"x"}];

2 4 6 8 10 12
u

-4

-3

-2

-1

x

Example 2: Mechanical System

Another  example  of  the  application  of  the  function  EulerLagrange[]  is

the  derivation  of  the  Euler–Lagrange  equation  for  a  mechanical  system

with  one  degree  of  freedom.  For  a  detailed  discussion  of  the

Euler–Lagrange equation, see Section 2.7.  The functional density for such

a problem is generally given by the Lagrange function :

= l@t, q@tD, q'@tDD

lHt, qHtL, q£HtLL

where  q  denotes  the  generalized  coordinate  of  the  particle  and  t  denotes

the  time.  The  Euler–Lagrange  equation  for  the  general  Lagrangian  then

follows by
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SetOptions@EulerLagrange, eXpand TrueD;

q
t @ D

lH0,1,0LHt, qHtL, q£HtLL -
lH0,0,1LHt, qHtL, q£HtLL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
t

== 0

If  we  are  interested  in  the  explicit  form of  the  Euler–Lagrange  equation,

we can set the option eXpandØFalse. Then, the result reads

SetOptions@EulerLagrange, eXpand FalseD;

q
t @ D

-q££HtL lH0,0,2LHt, qHtL, q£HtLL + lH0,1,0LHt, qHtL, q£HtLL -

q£HtL lH0,1,1LHt, qHtL, q£HtLL - lH1,0,1LHt, qHtL, q£HtLL == 0

This  equation  is  the  general  representation  of  the  Euler–Lagrange

equation.

The  Euler  operator  defined  earlier  was  the  result  of  the  variation  of  a

functional.  We  demonstrated  the  calculation  for  a  single  dependent

variable u = uHxL which was a function of one independent variable x. The

generic case in applications is more complex. We rarely find systems with

only  one  dependent  variable.  Thus,  we  need  a  generalization  of  the

formulation  considering  more  than  one  dependent  variable  in  the

functional  F.  In  the  following  exposition,  we  assume  that  a  set  of  q

dependent  variables  ua  exists.  The  functional  F  for  such  a  case  is

represented by 

(2.6.22)F@u1, u2, u3, …D = ‡
x1

x2

f Hx, u1, …, ux
1, …L dx.

The variation of the dependent variables is now performed by introducing

a  set  of  test  functions  wa.  Using  this  set  of  auxiliary  functions,  we  can

represent the variation by
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(2.6.23)ua Hx; eL = ua Hx; 0L + e wa HxL , a = 1, 2, 3, … , q.

The derivation of the Euler  operator  proceeds in exactly the same way as

presented  earlier.  We  skip  the  detailed  calculations  and  present  only  the

result:

(2.6.24)
F

ÅÅÅÅÅÅÅÅÅÅÅ
e

= ‡
x1

x2‚
a=1

q

9‚
n=1

¶

H-1Ln DHnL
f

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
uHnLa

=wa HxL dx.

Since the individual variations wa HxL are all independent of each other, the

vanishing of Equation (2.6.24) when evaluated at e=0 requires the separate

vanishing of each expression in curly brackets.  Thus, we again can define

an Euler operator for each of the q dependent variables ua.

2.6.6 Euler Operator for q Dependent Variables

In this subsection, we extend the definition of the Euler derivative to a set

of  q  dependent  variables.  Let  f = f Hx, u1, u2, … , ux
1 , ux

2 , …L  be  the

density of the functional F@u1, u2,…].  Then,  we define the Euler operator

a as

(2.6.25)a := ‚
n=0

¶

H-1Ln DHnL ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
uHnLa

, a = 1, 2, …, q,

which will give us the ath Euler equation when applied to the density f :

(2.6.26)a f = 0.

The only difference between this  definition and the definition for  a single

variable  is  the  number  of  equations  contained  in  Equation  (2.6.26).  The

occurrence  of  the  q  equations  in  the  theoretical  formulas  must  now  be

incorporated  in  our  Mathematica  definition  for  the  Euler  derivative

EulerLagrange[].  The  theoretical  definition  (2.6.25)  only  alters  our

Mathematica  function in a way that, for several dependent variables, a set

of  Euler  equations  results.  Thus,  we  change  our  Mathematica  function  in

such  a  way  that  all  dependent  variables  are  taken  into  account  in  the

application  of  the  a  operator.  We  realize  this  by  including  a  loop

scanning  the  input  list  of  the  dependent  variables.  The  code  of  this

generalized Euler operator is
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EulerLagrange@density_, depend_List,

independ_, options___D :=

Block@8f0, fh, e, w, y, expand,

euler = 8<, wtable<,
8expand< = 8eXpand< ê. 8options< ê.

Options@EulerDD;
wtable = Table@w@iD,

8i, 1, Length@dependD<D;
f0 = Function@x, y@xD + e w@xDD;
rules@i_D :=

b_. wtablePiTHn_L@independD
H 1Ln HoldForm@ 8independ,n<bD;

Do@
fh = density ê. dependPjT f0 ê.

8x independ, y dependPjT,
w wtablePjT<;

fh = Expand@ e fh ê. e 0D;
fh = fh ê. rules@jD ê.

wtablePjT@independD 1;

AppendTo@euler, fhD,
8j, 1, Length@dependD<D;

If@expand,
euler = ReleaseHold@eulerD,
eulerDD

Let us demonstrate the application of this function by two examples.

Example 1: Two-Dimensional Oscillator System

Assume  that  we  know  the  functional  density  of  a  two-dimensional

oscillator  system.  Let  us  further  assume  that  the  two  coordinates  of  the

oscillators are  coupled by a  product.  We expect  that the two equations of

motion  follow by  applying  the  Euler  derivative.  The  Lagrange  density  of

the system reads

Clear@uD
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l = u@tD v@tD + H t u@tDL2 + H t v@tDL2 u@tD2 v@tD2

-uHtL2 + vHtL uHtL - vHtL2 + u£HtL2 + v£HtL2

The corresponding system of second-order equations follows by

8u,v<
t @lD

8-2 uHtL + vHtL - 2 u££HtL == 0, uHtL - 2 vHtL - 2 v££HtL == 0<

Note  that  we  used  the  same name,  EulerLagrange[],  for  the  operators  

and a. This sort of definition is possible and provides a great flexibility in

the application of a single symbol for different operations. Mathematica is

able to distinguish the two different functions by the different arguments.

Example 2: Two-Dimensional Lagrangian

Another  example  for  a  two-dimensional  Lagrangian  is  given  by  the

function

f = u@tD v@tD + H t u@tDL2 + H t v@tDL2 + 2 tu@tD t v@tD

u£HtL2 + 2 v£HtL u£HtL + v£HtL2 + uHtL vHtL

This  density  is  a  special  model  of  a  Dirac  Lagrangian  containing  the

derivatives  with  respect  to  time  as  a  binomial.  The  corresponding

Euler–Lagrange equations read

8u,v<
t @ f D

8vHtL - 2 u££HtL - 2 v££HtL == 0, uHtL - 2 u££HtL - 2 v££HtL == 0<
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representing  a  coupled  system  of  second-order  ordinary  differential

equations.

So far, we are able to handle point systems depending on one independent

variable.  However,  equations  occurring in real  situations  depend on more

than one independent variable. Thus, we need a generalization of our Euler

derivative to more than one independent variable. In fact, the definitions of

an Euler operator can be extended from the q+1-dimensional case to the q

+ p-dimensional case. We define this operator in the following section.

2.6.7 Euler Operator for q + p Dimensions

Here, we will discuss the general definition of an Euler operator. This sort

of  operator,  for  example,  is  used  to  write  down  field  equations  such  as

Maxwell’s  equations,  Schrödinger's  equation,  Euler's  equation  in

hydrodynamics, and many others.

Definition: (q, p)-Dimensional Euler Operator

Let  f = f Hx, uHnLL  be  the  density  of  the  functional  F[u]  with

x = Hx1, x2, …, xpL,  and  u = Hu1, u2, …, uqL  be  the  p-  and  q-dimensional

vectors  of  the  independent  and  dependent  variables,  respectively.  By  uHnL
we denote all the derivatives with respect to the independent variables. We

call

(2.6.27)a = ‚
J

H-DLJ ÅÅÅÅÅÅÅÅÅÅÅÅÅ
uJ

a

the general Euler operator in q dependent and p independent variables. J  is

a multi-index J = H j1, …, jkL with 1 § jk § p, k ¥ 0.à

Since  the  functional  densities  f  depend  on a  finite  number  of  derivatives

uJ
a,  the  infinite  sum in  Equation (2.6.27)  is  terminated at  this  upper  limit.

Again,  the  Euler  equations  for  a  given  functional  F@uD  follow  from  the

application of a to F:

(2.6.28)a F = 0 , a = 1, 2, …, q.

From a theoretical point of view, we know the general Euler operator. Our

next  step  is  to  make  this  operation  available  in  Mathematica.  We  define
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the  generalized  Euler  operator  by  taking  into  account  the  different

independent  variables.  The  corresponding  definition  of  EulerLagrange[]
for q + p dimensions is given by

EulerLagrange@density_, depend_List,

independ_List, options___D :=

Block@8f0, fh, e, w, y, x$m, expand,

euler = 8<, wtable<,
8expand< = 8eXpand< ê. 8options< ê.

Options@EulerDD;
wtable = Table@w@iD,

8i, 1, Length@dependD<D;
f0 = Function@x$m, y + e wD;
ruleg@i_D :=

b_. wtablePiTHn___L @@ independ

H 1LPlus@@8n<

HoldForm@ Delete@Thread@8independ,8n<<D,0DbD;
Do@

fh = density ê. dependPjT f0 ê.
8x$m independ,

y

dependPjT @@ independ,

w wtablePjT @@ independ<;
fh = Expand@ e fh ê. e 0D;
fh = fh ê. ruleg@jD ê.

wtablePjT @@ independ 1;

AppendTo@euler, fhD,
8j, 1, Length@dependD<D;

If@Not@expandD,
euler = ReleaseHold@eulerD,
eulerDD

We  demonstrate  the  application  of  the  function  EulerLagrange[]  to  the

wave  equation  in  2+1  dimensions  and  to  a  system  of  coupled  nonlinear

diffusion equations.
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Example 1: Quadratic Density 

Let us consider  a  functional in q = 1 and p = 3 variables and assume that

the density is quadratic in the derivatives given by

(2.6.29)F@uD =
1
ÅÅÅÅÅ
2 ‡ Hux1

2 Hx1, x2, x3L - ux2

2 - ux3

2 L dx1 dx2 dx3.

Calculating  the  variational  derivative,  we  immediately  find  that  the  Euler

equations are given by the Laplace equation

(2.6.30)-ux1 x1 + ux2,x2 + ux3,x3 = 0.

Using  the  generalized  definition  of  EulerLagrange[],  we  can reconstruct

the result of our pencil calculation. First, let us define the density by

f =
1

2
HH x1 u@x1, x2, x3DL2

H x2 u@x1, x2, x3DL2 H x3 u@x1, x2, x3DL2L

1
ÅÅÅÅÅÅ
2
I-uH0,0,1LHx1, x2, x3L2 - uH0,1,0LHx1, x2, x3L2 + uH1,0,0LHx1, x2, x3L2M

The application of the Euler operator to f gives

wave = 8u<
8x1,x2,x3<@ f D

8uH0,0,2LHx1, x2, x3L + uH0,2,0LHx1, x2, x3L - uH2,0,0LHx1, x2, x3L == 0<

The resulting equation is known as the wave equation in 2 + 1 dimensions.

Example 2: Diffusion of Two Components

In  this  example,  we  will  consider  a  system in  two  field  variables  Hq = 2L
and  two  independent  variables  Hp = 2L.  The  physical  background  of  this

model  is  the  diffusion  of  two  components  in  a  nonlinear  medium.  The

Lagrange density of this field model has the representation
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l = v@x, tD t u@x, tD +

x u@x, tD x v@x, tD + u@x, tD2 v@x, tD2

uHx, tL2 vHx, tL2 + uH0,1LHx, tL vHx, tL + uH1,0LHx, tL vH1,0LHx, tL

The related equations of motion follow by

cnondiffu = TableFormA 8u,v<
8x,t< @lDE

2 uHx, tL vHx, tL2 - vH0,1LHx, tL - vH2,0LHx, tL == 0

2 vHx, tL uHx, tL2 + uH0,1LHx, tL - uH2,0LHx, tL == 0

representing two coupled nonlinear diffusion equations for the variables u

and v. The same equations of motion can be derived from the functional l1
given by

l1 = u@x, tD t v@x, tD +

x u@x, tD x v@x, tD + u@x, tD2 v@x, tD2

uHx, tL2 vHx, tL2 - uHx, tL vH0,1LHx, tL + uH1,0LHx, tL vH1,0LHx, tL

The equations of motion follow then from

TableFormA 8u,v<
8x,t< @l1DE

2 uHx, tL vHx, tL2 - vH0,1LHx, tL - vH2,0LHx, tL == 0

2 vHx, tL uHx, tL2 + uH0,1LHx, tL - uH2,0LHx, tL == 0

This  behavior  demonstrates  that  field  equations  can  be  derived  from

different functionals.
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2.6.8 Variations with Constraints

This  section  deals  with  the  problem  of  having  a  standard  setup  for  a

problem in the calculus of variations and, in addition, some constraints on

the function for which we are looking. For example, we are looking for the

shortest  connection on a  curved surface.  The fact  that  the solution we are

looking for is part of the surface can be formulated in a condition such as

(2.6.31)g Hqi -, tL = 0

defining the surface itself. For a sphere, the condition g is given by 

(2.6.32)g = q1
2 + q2

2 + q3
2 - r2 = 0,

where r is the radius of the sphere. We call the functional relation g  also a

boundary condition for the problem of variation. 

For  the  first  approach  of  boundary  conditions  involved  in  a  variational

problem,  let  us assume  that  there  exist  two  coordinates  q1 = y  and  q2 = z

depending  on  each  other.  The  functional  density  depends,  in  addition  to

the  coordinates  q1  and  q2,  on  the  derivatives  of  the  coordinates  with

respect to t. The density of the functional then is

(2.6.33)f Ht, qi, q 'iL = f Ht, y, y ', z, z 'L .
The corresponding functional reads

(2.6.34)F@y, zD = Ÿt1

t2 f Ht, y, y ', z, z 'L dt.

If we carry out the variation of the two unknown function y and z, we get

(2.6.35)

F
ÅÅÅÅÅÅÅÅ
¶
…
¶=0

=

Ÿt1

t2 9I f
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHy + ¶ 1L -

d
ÅÅÅÅÅÅdt I f

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHy'+ ¶ '1L MM
Hy + ¶ 1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

¶
+

I f
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHz + ¶ 2L -

d
ÅÅÅÅÅÅdt I f

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHz'+ ¶ '2L MM
Hz + ¶ 2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

¶
= dt »

¶=0
.

In addition, we have the boundary condition in the form

(2.6.36)gHt, y, zL = 0.

Applying the variations also to this condition, we find

(2.6.37)gHt, y + ¶w1, z + ¶w2L = 0.
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This condition shows that the two independent variations (test functions w1

and w2) become dependent on each other. Differentiation g with respect to

the parameter e, we find

(2.6.38)

dg
ÅÅÅÅÅÅÅd¶ =

g
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHy + ¶w1L

Hy + ¶w1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
¶

+
g

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHz + ¶w2L
Hz + ¶w2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

¶
= 0

(2.6.39)ó
g

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHy + ¶w1L w1 +
g

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHz + ¶w2L w2 = 0

(2.6.40)ó w2 = - I g
ÅÅÅÅÅÅÅyè M w1

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH gê zèL .

Inserting this result into the functional F we get 

(2.6.41)

F
ÅÅÅÅÅÅÅÅ
¶
…
¶=0

= Ÿt1

t2 9I f
ÅÅÅÅÅÅÅy -

d
ÅÅÅÅÅdt I f

ÅÅÅÅÅÅÅÅy' M M w1

+ I f
ÅÅÅÅÅÅÅz -

d
ÅÅÅÅÅÅdt I f

ÅÅÅÅÅÅÅz' M M w2= dt

= Ÿt1

t2 9 f
ÅÅÅÅÅÅÅy -

d
ÅÅÅÅÅÅdt I f

ÅÅÅÅÅÅÅÅy' M
- I f

ÅÅÅÅÅÅÅz -
d

ÅÅÅÅÅÅdt I f
ÅÅÅÅÅÅÅz' M M I gê y

ÅÅÅÅÅÅÅÅÅÅÅÅÅgê z M = wi dt = 0.

Since the wj are arbitrary, we find

(2.6.42)
f

ÅÅÅÅÅÅÅÅy -
d

ÅÅÅÅÅÅdt I f
ÅÅÅÅÅÅÅÅy' M = I f

ÅÅÅÅÅÅÅÅz -
d

ÅÅÅÅÅÅdt I f
ÅÅÅÅÅÅÅÅz' M M gê y

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅgê z

(2.6.43)ó I f
ÅÅÅÅÅÅÅÅy -

d
ÅÅÅÅÅÅdt I f

ÅÅÅÅÅÅÅÅy' MM 1
ÅÅÅÅÅÅÅÅg
ÅÅÅÅÅÅÅy

= I f
ÅÅÅÅÅÅÅÅz -

d
ÅÅÅÅÅÅdt I f

ÅÅÅÅÅÅÅÅz' M M 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅgê z .

Since the left-hand side contains only derivatives of f  and g  with respect

to y and y ' and the right-hand side contains only derivatives with respect to

z and z ',  we can separate the relation by introducing a common function l

depending  only  on  the  independent  variable  t.  Thus,  the  resulting

determining equations for f and g are

(2.6.44)
f

ÅÅÅÅÅÅÅy -
d

ÅÅÅÅÅÅdt I f
ÅÅÅÅÅÅÅÅy' M + lHtL g

ÅÅÅÅÅÅÅy = 0,

(2.6.45)f
ÅÅÅÅÅÅÅz -

d
ÅÅÅÅÅÅdt I f

ÅÅÅÅÅÅÅz' M + lHtL g
ÅÅÅÅÅÅÅz = 0.

The  problem  is  solved  if  we  can  determine  the  three  unknown  functions

y = yHtL, z = zHtL, and l = lHtL. For these three unknowns, we know three

equations  first  the  two  Euler  equations  resulting  from  the  functional  F

(2.6.44) and (2.6.45), second the boundary condition g = 0. Thus, we have

a sufficient number of equations to determine the unknowns y, z, and l. l,

the additional unknown, is called a Lagrange multiplier, which Lagrange in

1788  originally  introduced  in  his   Mechanique  Analytique.  The
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generalization  from  two  variable  to  many  variables  and  many  boundary

conditions  is  now  obvious.  The  procedure  demonstrated  above  can  be

applied  to  a  more  complicated  problem.  The  resulting  determining

equations are 

(2.6.46)
f

ÅÅÅÅÅÅÅÅqi
-

d
ÅÅÅÅÅÅdt I f

ÅÅÅÅÅÅÅÅÅÅq'i
M + ‚

j=1

M
l jHtL g j

ÅÅÅÅÅÅÅÅÅq = = 0,

(2.6.47)g j Hqi, tL = 0,

with  i = 1, 2, ..., N  and  j = 1, 2, ..., M .  The  first  equation  represents  a

system  of  equations  consisting  of  N  equations  for  N + M  unknowns.  In

addition,  there  exist  M  boundary  conditions  which  allow  a  consistent

solution of the problem. For N + M  unknown functions, there exist N + M

equations.

In practical applications, the system of equations g j Hqi, tL = 0 is equivalent

to a system of M  differential equations

(2.6.48)
‚

i

g j
ÅÅÅÅÅÅÅÅÅqi

g qi = 0, i = 1, 2, ..., N ,

j = 1, 2, ..., M .

Mechanical  problems  are  usually  formulated  in  such  a  way  that  the  M

boundary conditions are represented by differential equations.

Example 1:  Rolling Wheel on an Inclined Plane

Figure 2.6.3. On a inclined plane, a wheel is rolling downward without any slip.

Let us consider a rolling wheel on an inclined plane (see Figure 2.6.3). The

y coordinate is then given by
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(2.6.49)y = R Q,

where  R  is  the  radius  of  the  wheel.  The  boundary  condition  for  the

movement is thus

gHy, QL = y - R Q = 0

and

g
ÅÅÅÅÅÅÅy = 1,

g
ÅÅÅÅÅÅÅÅ

Q
= R

are the quantities related to the Lagrange multiplier.

2.6.9 Exercises

1.  Show that  the shortest  distance  between two  points  in three-dimen-
sional space is a straight line.

2. Show that the geodesic on the surface of a right circular cylinder is a
helix.

3.  Find the dimensions of the parallelepiped of maximum volume that
is  circumscribed  by  1)  a  sphere  of  radius  R  and  2)  an  ellipsoid  with
semiaxes a, b, and c.

4.  Find  the  ratio  of  the  radius  R  to  the  height  h  of  a  right  circular
cylinder of fixed volume V  that will minimize the surface area A.

5.  A  disk  of  radius  R  rolls  without  slipping  inside  the  parabola
y = a x2.  Find  the  equaion  of  constraint.  Express  the  condition  which
allows the disk to  roll  so  that  it  contacts  the parabola at  one and only
one point, independent of its position.

2.6.10 Packages and Programs
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EulerLagrange Package

The EulerLagrange package serves to derive the Euler–Lagrange equations

from a given Lagrangian.

If@$MachineType == "PC",

$EulerLagrangePath = $TopDirectory<>

"êAddOnsêApplicationsêEulerLagrangeê";
AppendTo@$Path, $EulerLagrangePathD,
$EulerLagrangePath =

StringJoin@$HomeDirectory, "ê.Mathematicaê3.0ê
AddOnsêApplicationsêEulerLagrange", "ê"D;

AppendTo@$Path, $EulerLagrangePathDD;

The next line loads the package.

<< EulerLagrange.m

NotationA u_

x_

@den_D EulerLagrange@den_, u_, x_DE

@ D
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2.7 Lagrange Dynamics

2.7.1 Introduction

In  this  chapter,  we  discuss  one  of  the  fundamental  principles  of  classical

mechanics  –  the  Lagrangian  formulation  (see  Figure  2.7.1).  This

formulation  also  provides  the  necessary  background  to  learn  about  the

Hamiltonian formulation, which, in turn, provides the natural framework in

which  to  investigate  the  ideas  of  integrability  and  nonintegrability  in  a

wide class of mechanical systems. Many of the differential equations so far

discussed describe the motion of a particle moving in some force field and,

as  such,  they  are  examples  of  Newtonian  equations  of  motion.  Since

Newton's work, the Laws of Mechanics have been the subject of ever more

general and elegant formulations.

Figure 2.7.1. Joseph Louis Lagrange born January 25, 1736; died April 10, 1813.

In  order  to  circumvent  some  of  the  practical  difficulties  which  arise  in

attempts  to  apply  Newton's  equations  to  particular  problems,  alternative

procedures  can  be  developed.  All  such  approaches  are,  in  essence,  a

posteriori  because it is  known beforehand that the result equivalent to the

Newtonian  equations  must  be  obtained.  Thus,  in  order  to  effect  a

simplification, it is not required to formulate a new theory of mechanics —
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the Newtonian theory is  quite  correct  — but  only to  devise an alternative

method of dealing with complicated problems in a general manner. Such a

method  is  contained  in  Hamilton's  principle  and  the  equations  of  motion

which  result  from  the  application  of  this  principle  are  called  Lagrange's

equations.

General  equations of motion can be seductively derived by invoking such

fundamental  principles as  the homogeneity of  space and  time and  the use

of  an  almost  magical  variational  principle,  Hamilton's  principle,  to  the

extent that  the resulting laws would appear to have been determined from

purely deductive principles. In view of the wide range of applicability that

Hamilton's  principle  has  been  found  to  possess,  it  is  not  unreasonable  to

assert  that  Hamilton's  principle  is  more  fundamental  than  are  Newton's

equations.  Therefore,  we  will  proceed  by  first  postulating  Hamilton's

principle; we will then obtain Lagrange's equation and show that these are

equivalent to Newton's equations.

2.7.2 Hamilton's Principle Historical Remarks

Minimal  principles  in  physics  have  a  long  and  interesting  history.  The

search  for  such  principles  is  predicated  on  the  notion  that  Nature  always

acts in such a way that certain important quantities are minimized when a

physical  process  takes  place.  The  first  such  minimum  principles  were

developed in the field of optics.

Hero of Alexandria, in the second century BC, found that the reflection of

light is based on the shortest possible path of a ray.

In  1657,  Fermat  (see  Figure  2.7.2)  reformulated  the  principle  by

postulating that a light ray travels in such a way that on its path it requires

the least  time. Fermat's  principle  of least  time leads immediately not only

to the correct law of reflection but also to Snell's law of refraction.
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Figure 2.7.2. 
Pierre de Fermat (born August 17, 1601; died January 12, 1665), a French lawyer, linguist,
and amateur mathematician.

Newton,  Leibniz,  and  Bernoulli  discussed  the  problem  of  the

brachystochrone and the shape of a hanging chain (a catenary).

In  1747,  Maupertius  first  applied  the  general  minimum  principle  in

mechanics  (see  Figure  2.7.3).  He  asserted  that  dynamical  motion  takes

place  with  minimum  action.  His  theological  reasoning  was  that  action  is

minimized through the wisdom of God.

Figure 2.7.3. 

Pierre  de  Maupertuis  (born  September  28,  1698;  died  August  27,  1759),  a  French
mathematician  and  astronomer.  He  is  most  famous  for  formulating  the  principle  of  least
action.  The  first  use  to  which  Maupertius  put  the  principle  of  least  action  was  to  restate
Fermat's derivation of the law of refraction (1744).
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In  1760,  Lagrange  put  the  principle  of  least  action  on  a  firm  basis  (see

Figure  2.7.1).  However,  the  principle  of  least  action  is  less  general  than

Hamilton's principle.

In 1828, Gauss developed a method of treating mechanics by his principle

of least constraint;  a  modification was later  made by Hertz  and embodied

in his principle of least curvature. These principles, which were formulated

6  years  later  are  closely  related  to  Hamilton's  principle.  However,

Hamilton's more general formulation is still today in use.

Figure 2.7.4. 

Carl  Friedrich  Gauss  (born  April  30,  1777;  died  February  23,  1855),   worked  in  a  wide
variety  of  fields  in  both  mathematics  and  physics,  including  number  theory,  analysis,
differential  geometry,  geodesy,  magnetism,  astronomy,  and  optics.  His  work  has  had  an
immense influence in many areas. 

In  1834  and  1835  Hamilton  (see  Figure  2.7.5)  announced  the  dynamical

principle  upon  which  it  is  possible  to  base  all  of  mechanics  and,  indeed,

most of classical physics. Hamilton's principle reads:

Of all the possible paths along which a dynamical system can move from
one  point  to  another  within  a  specific  time  interval,  the  actual  path
followed  is  that  which  minimizes  the  time  integral  of  the  difference
between the kinetic and potential energies.

In terms of the calculus of variations, Hamilton's principle becomes

      d Ÿt1

t2 HT - V L „ t = 0.

This  variational  statement  of  the  principle  requires  only that  T - V  be  an

extremum,  not  necessarily  a  minimum,  but  in  almost  all  applications  of

importance in dynamics, the minimum condition obtains.
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Figure 2.7.5. 

Sir  William  Rowan  Hamilton  (born  August  04,  1805;  died  Septembe  02,  1865),  Scottish
mathematician  and  astronomer,  and  later,  Irish  Astronomer  Royal.  In  1843,  Hamilton
discovered  the  quaternions,  the  first  noncommutative  algebra  to  be  studied.  He  felt  this
would  revolutionize  mathematical  physics  and  he  spent  the  rest  of  his  life  working  on
quaternions. 

Let us consider a mechanical system consisting of a collection of particles

—  interacting  among  each  other  according  to  well-defined  force  laws;

experience has shown that  the state  of  the system  is  completely described

by the set of all the positions and velocities of the particles. The coordinate

frame  need  not  be  cartesian,  as  was  the  case  in  Newton's  work,  and  the

description  can  be  effected  by  means  of  some  set  of  generalized

coordinates qi, Hi = 1, …, nL and generalized velocities q 'i, Hi = 1, …, nL.
If  the  system  moves  from  a  position  at  some  time  t1,  labeled  by  the

coordinate  set  q”÷ H1L
= Hq1Ht1L, …, qnHt1LL,  to  a  position  q”÷ H2L

= Hq1Ht2L,
…, qnHt2LL  at  another  time  t2,  then  the  actual  motion  can  be  determined

from Hamilton's principle of least action. This requires that the integral of

the  so-called  Lagrange  function  takes  the  minimum  possible  value

between  the  initial  and  final  times.  For  the  moment,  we  treat  the

Lagrangian as a black box, merely stating that it can only be some function

of those variables on which the state of a system can depend, namely

(2.7.1)L = LHq1, …, qn, q '1, …, q 'n, tL.
The  famous  principle  of  least  action  or  Hamilton's  principle  requires  that

the action integral
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(2.7.2)W = Ÿt1

t2 LHq”÷ , q”÷ ', tL „ t

be a minimum. For the moment, we drop the subscript on the qi's and q 'i's

and  assume  a  single  degree  of  freedom.  The  positions  qH1L  and  qH2L  at  the

initial and final times t1  and t2, respectively, are assumed fixed. There can

be many different paths qHtL connecting qH1L  and qH2L, and the aim is to find

those that extremize the action (2.7.2). This is done by looking at the effect

of  a  first  variation,  that  is  adding  a  small  alteration along  the  path  which

vanishes  at  either  end.  A  remarkable  feature  of  this  procedure  is  that  we

are considering the effect of these variations about a path which we do not

yet know. The first variation of the action is then determined by

q
‡
t1

t2

L@q@tD, tq@tD, tD t

8t,1< LH0,1,0L@q@tD, q @tD, tD +

LH1,0,0L@q@tD, q @tD, tD == 0

This equation is known as Lagrange's equation.

For n degrees of freedom q1, q2, …, qn,  the variation must be effected for

each  variable  independently  (i.e.,  qi + e wi).  The  result  gained  is  a  set  of

equations

MapAi
k
jjj

#
‡
t1

t2

L@q1@tD, q2@tD, q3@tD, t q1@tD,

t q2@tD, t q3@tD, tD t
y
{
zzz &, 8q1, q2, q3<E

8 8t,1< LH0,0,0,1,0,0,0L@q1@tD, q2@tD, q3@tD, q1 @tD,
q2 @tD, q3 @tD, tD + LH1,0,0,0,0,0,0L@q1@tD,

q2@tD, q3@tD, q1 @tD, q2 @tD, q3 @tD, tD == 0,

8t,1< LH0,0,0,0,1,0,0L@q1@tD, q2@tD, q3@tD, q1 @tD,
q2 @tD, q3 @tD, tD + LH0,1,0,0,0,0,0L@q1@tD,

q2@tD, q3@tD, q1 @tD, q2 @tD, q3 @tD, tD == 0,

8t,1< LH0,0,0,0,0,1,0L@q1@tD, q2@tD, q3@tD, q1 @tD,
q2 @tD, q3 @tD, tD + LH0,0,1,0,0,0,0L@q1@tD,

q2@tD, q3@tD, q1 @tD, q2 @tD, q3 @tD, tD == 0<
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which  are  the  celebrated  Lagrange  equations.  If  the  explicit  form  of  the

Lagrangian  is  known,  then  the  set  of  equations  of  motion  are  a  set  of

second-order  equations.  If,  in  addition,  the  initial  dates  HqiH0L, q 'i H0L,
i = 1, 2, 3, …L are  given,  the  entire  history  of  the  system  is  determined.

For  Laplace,  this  deterministic  framework  appeared  so  powerful  that  he

claimed: We ought  then to  regard the present state  of the universe as the

effect of its preceding state and as the cause of its succeeding state.

At this point of the theory, we know how to derive the Lagrange equations

from a given Lagrangian. However, up to now, we did not discuss how we

can  find  the  Lagrangian.  In  determining  the  correct  form  for  the

Lagrangian function, it  is interesting to see how far one can go in making

this choice by invoking only the most basic principles. Landua and Lifshitz

[2.2]  argue  that  for  a  free  particle,  the  principles  of  homogeneity  of  time

and  isotropy  of  space  determine  that  the  Lagrangian  can  only  be

proportional to the square of the velocities. The two mentioned properties

ensure  that  the  motion  can  be  considered  in  the  context  of  an  inertial

frame,  (i.e.,  independent of its absolute position in space and time). If the

constant  of  proportionality  is  taken  to  be  half  the  particle  mass,  then  the

Lagrangian for a system of noninteracting particles is just their total kinetic

energy; that is,

(2.7.3)L = ‚
i=1

n 1
ÅÅÅÅ2 m q 'i

2 = T.

Beyond this,  experimental  facts have to be invoked in that  if the particles

interact  among  each  other  according  to  some  force  law  contained  in  a

potential  energy  function  V Hq1, q2, …, qnL,  then  Landau  and  Lifshitz  say

experience has shown that the correct form of the Lagrangian is

(2.7.4)L = T - V = ‚
i=1

n 1
ÅÅÅÅ2 m q 'i

2 - V Hq1, q2, …, qnL.
The potential energy function is such that the force acting on each particle

is determined by

(2.7.5)Fi
”÷÷÷

= - ÅÅÅÅÅÅÅÅqi
V Hq1, q2, …, qnL.

This  provides  a  definition  of  the  potential  energy  because  it  ensures  that

the  net  work  done  by  a  system  in  traversing  a  closed  path  in  the

configuration  space  is  zero.  For  velocity-independent  potentials,

Lagrange's equations become
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SetOptions@EulerLagrange, eXpand > FalseD;

q
‡
t1

t2i
k
jj
1

2
m H t q@tDL2 V@q@tDDy

{
zz t

V @q@tDD m q @tD == 0

which, in the case of cartesian coordinates, are just Newton's equations.

In  general,  the  Lagrange  equations  of  motion  are  a  set  of  n  ordinary

differential  equations  of  second  order.   A  complete  solution  will  contain

2 n  arbitrary  constants.  These  constants  are  usually  taken  to  specify  the

state of the system at some initial time. Instead of giving the initial state of

the  system,  one  might  give  the  initial  configuration  and  a  later

configuration.  These  conditions  might  not  be  self-consistent  because  the

second configuration might not result from the first one under the action of

the given forces, no matter how the initial velocity components are chosen.

One  of  the  most  useful  devices  for  solving  the  Lagrange  equations  of

motion is to discover the first integrals of the motion. A first integral of a

set  of  differential  equations  is  a  function  of  the  unknowns  and  contains

derivatives of  one  order  lower  than the order  of the differential  equations

themselves  and  remains  constant  by  virtue  of  the  differential  equations.

Examples  of  such  integrals  are  the  energy and  the  momentum of  isolated

systems.  The  advantage  of  having  an  integral  of  the  motion  is  that  it

reduces the order of the system of equations to be solved.
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2.7.3 Hamilton's Principle

To  see  how  Hamilton's  principle  works,  let  us  consider  a  mechanical

system consisting of N  interacting particles. As we noted in Section 2.7.2,

it  is  sufficient  to  introduce  a  functional  depending  on  coordinates  and

velocities.  The  choice  of  coordinates  and  velocities  only  is  a  matter  of

experience.  The  chosen  coordinates  must  not  be  cartesian  coordinates.

However,  Newton's  mechanics  is  based  on  cartesian  coordinates.  In

Hamilton's  principle,  it  is  sufficient  to  choose  so-called  generalized

coordinates  qi Hi = 1, 2, …, NL  and  generalized  velocities

q 'i Hi = 1, 2, …, NL.  These coordinates are chosen in such a way that  the

mathematical description of the problem is simplified.

The  choice  of  generalized  (appropriate)  coordinates  is  motivated  by  the

following  arguments.  A  point  system  consisting  of  N  points  has,  in

general, to satisfy a number r  constraints. These restrictions are given by

(2.7.6)
ga Hxb, tL = 0 a = 1, 2, ... r, b = 1, 2, ..., 3 N
                          

where xb denotes the 3N  cartesian coordinates. The degrees of freedom for

such  a  system  are  determined  by  f = 3 N - r.  Our  aim  is  to  replace  the

3N  cartesian  coordinates   xb  by  f  generalized  coordinates  qi.  These  f

generalized coordinates qi  are free of any constraints and allow a complete

description of the system. The physical meaning of the coordinates can be

different  from  the  cartesian  coordinates.  For  example,  the  generalized

coordinates  can  be  distances,  angles,  line  elements,  and  so  forth.  It  does

not matter how one interprets these coordinates, but it is important that the

number  of  the  coordinates  equal  the  degrees  of  freedom  of  the  system.

Such coordinates are optimized coordinates for the system. 

2.7.3.1 Classes of Constraints 

Constraints which are given by algebraic expressions like

(2.7.7)ga Hxb, tL = 0, a = 1,2,...,r,

with r < f = 3 N - r are called holonomic.
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Constraints  not  representable  by  algebraic  relations  are  called

nonholonomic.  Another  classification  of  constraints  is  based  on  the  time

dependence  or  independence.  Time-dependent  constraints  are  termed

rheonimic.  Constraints  independent  of  time  are  called  scleronomic.  The

following  table  summarizes  the  terms  used  to  classify  mechanical

constraints.

rheonom
with time

skleronom
without time

holonom gaHqi,tL=0 gaHqiL=0

nonholonom gaHqi,tLˆ0 gaHqiLˆ0

Table 2.7.1. Classification of constraints as rehonom, skleronom, holonon, and nonholonom conditions.

The  motion  of  a  particle  system  with  N  generalized  coordinates  from  a

position  q”÷ H1L
= Hq1 Ht1L, q2 Ht1L ... qN Ht1LL  at  t = t1  to  a  different  position

q”÷ H2L
= Hq1 Ht2L, q2 Ht2L ... qN Ht2LL  at  t = t2  is  governed  by  Hamilton's

principle. Hamilton's principle itself is governed by a functional called the

Lagrange functional whose density is a function of generalized coordinates

and velocities:

(2.7.8)= Hq1, q2, ... , qN , q '1 , q '2 , ... , q 'N , tL.
This kind of density takes on an extremal value in a time interval t1  to t2 if

the  right  path  is  chosen.  At  the  moment  we  assume  that  such  a  density

exists  and  ask  for  consequences  for  the  density.  If  the  density exists  then

we are able to write down the corresponding functional

(2.7.9)L @q1D = Ÿt1

t2 Hq1, q2, ..., qN , q '1 , q '2 , ... , q 'N , tL dt.

Calculus  of  variations  tells  us  that  this  functional  assumes  an  extremal

value if the Euler equations are satisfied; that is

(2.7.10)i = 0 =
d L
ÅÅÅÅÅÅÅÅÅ
d qi

, i = 1, 2, ... , N

or explicitly

(2.7.11)ÅÅÅÅÅÅÅÅq -
d

ÅÅÅÅÅÅdt I ÅÅÅÅÅÅÅÅq° M = 0.

In Mathematica, we get for a system with N  coordinates the expression
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SetOptions@EulerLagrange, eXpand > TrueD;

q@iD
t @ @q@iD@tD, t q@iD@tD, tDD

8t,1< H0,1,0L@q@iD@tD, q@iD @tD, tD +

H1,0,0L@q@iD@tD, q@iD @tD, tD == 0

which  is  identical  with  relation  (2.7.11).  This  kind   of  equation  is  also

known  as  Euler–Lagrange  equation.  The  Euler–Lagrange  equations  are

ordinary  differential  equations  of  second  order.  If  we  carry  out  the

differentiation explicitly, we get a second-order ODE.

SetOptions@EulerLagrange, eXpand > FalseD;

q@iD
t @ @q@iD@tD, t q@iD@tD, tDD

H0,1,1L@q@iD@tD, q@iD @tD, tD
q@iD @tD H0,2,0L@q@iD@tD, q@iD @tD, tD +

H1,0,0L@q@iD@tD, q@iD @tD, tD
q@iD @tD H1,1,0L@q@iD@tD, q@iD @tD, tD == 0

At this stage of our calculations we note that the order of differentiation of

Euler–Lagrange  equations  is  identical  with  the  order  of  differentiation  of

Newton's equation. 

If  Hamilton's  principle  has  a  real  physical  meaning,  then the equations  of

motion  must  be  identical  with  Newton's  equation  of  motion.  To  establish

this  connection,  we  define  a  Lagrange  density  which  separates  into  two

parts.  The  first  part  contains only velocity-dependent  components and the

second  part  contains  only  information  on  coordinates.  This  separation  is

motivated  by  the  two  energies  known  as  kinetic  energy  and  potential

energy. Let us first assume that both energies are linearly combined:

(2.7.12)= a T + bV.
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where  T  and  V  denote  kinetic  and  potential  energies,  respectively.  The

parameters  a  and  b  are,  up  to  now,  unknown.  The  kinetic  energy  is  a

function of generalized velocities q 'i given by

(2.7.13)T = T H q '1 , q '2 , ..., q 'N L = THq 'iL.
This function is defined in Mathematica by

T = @ t q@iD@tDD

@q@iD @tDD

The potential  energy is  a  function of the generalized coordinates qi  given

by

(2.7.14)V = V Hq1, q2, ..., qN L = V HqiL.
or in Mathematica by

V = @q@iD@tDD

@q@iD@tDD

The Lagrange density is the given by relation (2.7.12)

L = T + V

@q@iD @tDD + @q@iD@tDD

From  the  Euler–Lagrange  equations,  we  get  the  following  system  of

equations of motion 

(2.7.15)

ÅÅÅÅÅÅÅÅÅqi
-

d
ÅÅÅÅÅÅdt I ÅÅÅÅÅÅÅÅÅq° i

M =

b
V HqiLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqi

- a
d

ÅÅÅÅÅÅdt I T
ÅÅÅÅÅÅÅÅÅq° i

M = b
V HqiLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqi

- a
2T

ÅÅÅÅÅÅÅÅÅÅÅ
q2

°
i

qi
–

= 0

(2.7.16)ó -
b
ÅÅÅÅÅ
a

V
ÅÅÅÅÅÅÅÅÅqi

+
2T

ÅÅÅÅÅÅÅÅÅÅÅ
q2

°
i

qi
–

= 0 i = 1, 2, ..., N.

in Mathematica, it follows that
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SetOptions@EulerLagrange, eXpand > FalseD;

ElerLagrangeEquation = q@iD
t @LD

@q@iD@tDD @q@iD @tDD q@iD @tD == 0

Newton's theory provides for an N-particle system the following system of

equations

(2.7.17)mi q ''i = Fi, i = 1, 2, ... , N .

If  we,  in  addition,  assume  that  the  forces  Fi  can  be  represented  by  a

potential gradient 

(2.7.18)Fi = -
V HqiLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqi

, i = 1, 2, ..., N ,

then we get Newton's equation in the form

(2.7.19)
V HqiLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqi

+ mi q ''i = 0,

or in Mathematica,

NwtonsEquations =

q@iD@tD H @q@iD@tDDL + m@iD t,t q@iD@tD == 0

@q@iD@tDD + m@iD q@iD @tD == 0

If  both  systems  of  equations  are  identical,  the  difference  of  the  two

systems must vanish:

rel1 = NwtonsEquationsP1T
ElerLagrangeEquationP1T êê Simplify

H 1 + L @q@iD@tDD + Hm@iD + @q@iD @tDDL q@iD @tD
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Because  the  second-order  derivative  in  the  qi's  and  the  potential  gradient

are  not  equal  to  zero,  the  coefficients  of  these  terms  must  vanish.  The

coefficient with respect to the potential gives

r1 =

Solve@Coefficient@rel1, q@iD@tD @q@iD@tDDD == 0, D êê
Flatten

8 1<

The relation for a is gained by

r2 = Solve@
Coefficient@rel1, t,t q@iD@tDD == 0, D êê Flatten

9 m@iD
@q@iD @tDD =

If we, in addition, assume that the kinetic energy is a quadratic function in

the generalized coordinates, then the masses mi  are the front factors of the

quadratic term. Thus, we can set

r2 = r2 ê. q@iD'@tD,q@iD'@tD @q@iD'@tDD > m@iD

8 1<

Now, the two unknowns a and b are determined and the Lagrange density

becomes

= L ê. r1 ê. r2

@q@iD @tDD + @q@iD@tDD

In standard mechanics texts, the Lagrange density is defined by

(2.7.20)= T H q 'iL - V H qiL.
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However,  the  sign  does  not  matter  because  the  resulting  system  of

equations of motion is invariant with respect to a change of all signs. This

is demonstrated by the derivation of the equations of motion by

q@iD
t @ D

@q@iD@tDD + @q@iD @tDD q@iD @tD == 0

and

q@iD
t @ D

@q@iD@tDD @q@iD @tDD q@iD @tD == 0

The  major  assumption  in  the  derivation  of  the  Lagrange  density  was  that

the kinetic  energy is  a  quadratic  function in the generalized velocities q 'i.

A simple realization is given by 

(2.7.21)T H q 'iL =
miÅÅÅÅÅÅ2 q 'i

2
+ c1 q 'i + c2.

The simplest form of the kinetic energy for an N-particle system is thus

(2.7.22)T H q 'iL = ‚
i = 1

N miÅÅÅÅÅÅ2 q 'i
2.

In  general,  the  kinetic  energy  is  a  homogenous  quadratic  function  in  the

generalized velocities q 'i:

(2.7.23)T = ‚
j,k

a jk q ' j q 'k .

Differentiation of this relation with respect to q 'i delivers 

(2.7.24)

dT
ÅÅÅÅÅÅÅÅÅd q° i

=
d

ÅÅÅÅÅÅÅÅÅÅd q° i
9‚

k, j
a jk q ' j q 'k= = ‚

k, j
a jk

d
ÅÅÅÅÅÅÅÅÅd q° i

Hq ' j q 'kL
= „

k, j
d jk

dq' j
ÅÅÅÅÅÅÅÅÅÅÅÅÅdq'id ji

q 'k + q ' j
dq'kÅÅÅÅÅÅÅÅÅÅÅÅÅdq'idki

= ‚
k, j

a jk Hd ji q 'k + q ' j dkiL = ⁄k aik q 'k + ‚
j

a ji q ' j.

Multiplying this with q 'i and summing over i gives

(2.7.25)‚
i

q 'i
dT

ÅÅÅÅÅÅÅÅÅdq'i
= ⁄i,k aik q 'k q 'l + ‚

i, j
a ji q ' j q 'i

2. Classical Mechanics 319



which is equivalent to

(2.7.26)‚
i

q 'i
dT

ÅÅÅÅÅÅÅÅÅdq'i
= 2⁄i,k aik q 'k q 'i

because the indices in the second sum are changeable. Then, it follows that

(2.7.27)‚
i

q 'i
dT

ÅÅÅÅÅÅÅÅÅdq'i
= 2 T .

This  result,  however,  is  a  special  case of  the more  general  Euler  theorem

on homogenous functions f HykL given by

(2.7.28)‚
k

yk
f

ÅÅÅÅÅÅÅÅÅyk
= n f .

The  main  result  is  that  the  Lagrange  density  can  be  chosen  as  the

difference  of  kinetic  and  potential  energy  if  we  require  that  Newton's

equations  be  the  target  of  Hamilton's  principle.  We  also  realized  that  the

Lagrange density is gauge invariant with respect to a common factor which

does not alter the resulting equations of motion. We demonstrated that the

variation of 

(2.7.29)d
ÅÅÅÅÅÅÅd¶ Ÿt1

t2 H T H q 'i L - V HqiLL dt »¶=0 = 0

delivers the equations of motion, which is just Hamilton's principle.

Example 1: Harmonic Oscillator

As  a  first  example  let  us  examine  the  harmonic  oscillator.  This  kind  of

system is central in different fields of physics (e.g., in solid state physics to

describe  crystals,  in  quantum  physics  to  examine  harmonic  interactions).

The kinetic energy of a single harmonic oscillator in generalized velocities

is given by

T =
m

2
H t q@tDL2

1
2
m q @tD2

The potential energy is given by the harmonic function
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V =
k

2
q@tD2

1
2
k q@tD2

where m is mass and k is a force constant. The Lagrange density follows by

L = T V

1
2
k q@tD2 + 1

2
m q @tD2

Applying  the  Euler–Lagrange  operator  to  this  density,  we  find  the

governing equation of motion

harmonicOs = q
t@LD

k q@tD m q @tD == 0

The solution of this equation demonstrates that the motion is described by

harmonic functions:

DSolve@harmonicOs, q, tD êê Flatten

9q FunctionA8t<, C@1D CosA
è!!!!k t
è!!!!m E + C@2D SinA

è!!!!k t
è!!!!m EE=

Example 2: Rolling Wheel on an Inclined Plane

Let  us  consider  a  wheel  rolling  on  a  inclined  plane.  The  kinetic  energy

consists  of  two  parts.  The  first  part  is  purely translational  and the  second

purely rotational. The total kinetic energy is given by
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T =
1

2
m H t y@tDL2 +

1

2
H t @tDL2 ê. >

1

2
m R2

1
2
m y @tD2 + 1

4
m R2 @tD2

where m  is the mass, = m R2 ê2 is the moment of inertia with respect to

the center, and R is the radius of the wheel. The potential energy is mainly

generated by Earth's gravitation:

V = m Hl y@tDL Sin@ D

m Sin@ D Hl y@tDL

where  l  is  the  total  length  of  the  plane.  The  generalized  coordinates  here

are y and q. The origin of the potential is chosen in such a way that at the

bottom of the ramp, V = 0. The Lagrange density of the system is given by

L = T V

m Sin@ D Hl y@tDL +
1
2
m y @tD2 + 1

4
m R2 @tD2

representing a function in y, y ', and q '.

Figure 2.7.6. Wheel on a ramp. Definition of constraints and coordinates.
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In addition to the Lagrange density, the system has to satisfy the additional

constraint of nonslip; that is,

g = y@tD R @tD == 0

y@tD R @tD == 0

The degrees of freedom f  for the system is then determined by

(2.7.30)f = N - M = 2 - 1 = 1;

that  the  system  has  one  degree  of  freedom  if  the  wheel  rolls  without

slipping. Thus, we can use either y or q  as the generalized coordinate. Let

us choose y as the appropriate coordinate. Then, from the constraint g, we

get

gconst = > FunctionAt,
y@tD

R
E

FunctionAt, y@tD
R

E

Inserting this relation into the Lagrangian density, we get

Ly = L ê. gconst

m Sin@ D Hl y@tDL +
3
4
m y @tD2

If we prefer to chose q as the appropriate coordinate we find

L = L ê. y > Function@t, R @tDD

m Sin@ D Hl R @tDL +
3
4
m R2 @tD2
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Both  Lagrangians  are  equivalent  for  the  description  of  motion.  The

governing equation of motion follows for each case

eqy = y
t@LyD

m Sin@ D 3
2
m y @tD == 0

and

eq = t@L D

m R Sin@ D 3
2
m R2 @tD == 0

The solutions for each case follows by

soly = DSolve@eqy, y, tD êê Flatten

9y FunctionA8t<, C@1D + t C@2D +
1
3
t2 Sin@ DE=

sol = DSolve@eq , , tD êê Flatten

9 FunctionA8t<, C@1D + t C@2D +
t2 Sin@ D

3 R
E=

The  point  of  view  of  this  problem  is  to  assume  that  y  and  q  are

independent  of  each  other.  In  this  case,  we  have  to  carry  out  Hamilton's

principle  under  the  action  of  constraints.  The  constraints  are  used  to

determine the Lagrange multiplier. The Lagrange equations now read

el1 = y
t@LDP1T + @tD y@tDgP1T == 0

m Sin@ D + @tD m y @tD == 0
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el2 = t@LDP1T + @tD @tDgP1T == 0

R @tD 1
2
m R2 @tD == 0

In addition, the constraint gives

gconst

FunctionAt, y@tD
R

E

These three relations are the basis for the solution of the problem.

Let  us  first  differentiae  the  constraint  relation twice  with  respect  to  t  and

solve the resulting relation with respect to q '':

solconst = Solve@ t,t gP1T == 0, t,t @tDD êê Flatten

9 @tD y @tD
R

=

Then,  we  can  use  the  result  in  the  second  Euler–Lagrange  equation  and

solve for the Lagrange multiplier:

sol = Solve@el2 ê. solconst, @tDD êê Flatten

9 @tD 1
2
m y @tD=

Inserting the result into the first Euler–Lagrange equation, we find

eql1 = el1 ê. sol

m Sin@ D 3
2
m y @tD == 0
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which determines the Lagrange multiplier completely:

LagrangeMultiplier =

sol ê. Flatten@Solve@eql1, t,t y@tDDD

9 @tD 1
3
m Sin@ D=

The  Euler–Lagrange  equations  then  follow  by  inserting  the  Lagrange

multiplier:

el1f = el1 ê. LagrangeMultiplier

2
3
m Sin@ D m y @tD == 0

el2f = el2 ê. LagrangeMultiplier

1
3
m R Sin@ D 1

2
m R2 @tD == 0

The  integration  of  the  two  equations  with  initial  conditions  introduced

deliver

DSolve@Join@8el1f<, 8y@0D == y0, y'@0D == v0<D, y, tD êê
Flatten

9y FunctionA8t<, 1
3

H3 t v0 + 3 y0 + t2 Sin@ DLE=

DSolve@Join@8el2f<, 8 @0D == 0, '@0D == 0<D, , tD êê
Flatten

9 FunctionA8t<, 3 R 0 + 3 R t 0 + t2 Sin@ D
3 R

E=
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Example 3: Sliding Mass Connected to a Pendulum

Let us consider two mass points as a coupled pendulum. The first mass m1

is  sliding  on  a  horizontal  bar  in  the  x-direction.  The  second  mass  is

connected with the first one by a stiff rod. At each end of the rod, one mass

point  is  located  (see  Figure  2.7.7).  The  second  mass  m2  is  the  pendulum

mass. 

Figure 2.7.7. Sliding mass pendulum.

The movement of mass m1 is restricted to the x-direction. The second mass

m2  undergoes  translations  in  x  as  well  as  oscillations  around  its  support.

The total kinetic energy is generated by two parts:
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T1 =
m1

2
HH t x1@tDL2 + H t z1@tDL2L

1
2
m1 Hx1 @tD2 + z1 @tD2L

and

T2 =
m2

2
HH t x2@tDL2 + H t z2@tDL2L

1
2
m2 Hx2 @tD2 + z2 @tD2L

The potential energies of the two masses are

V1 = 0

0

and

V2 = m2 z2@tD

m2 z2@tD

The total kinetic and potential energies are

T = T1 + T2

1
2
m1 Hx1 @tD2 + z1 @tD2L +

1
2
m2 Hx2 @tD2 + z2 @tD2L

and
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V = V1 + V2

m2 z2@tD

To introduce generalized coordinates,  we have to take the constraints into

account.  The  following  rules  define  a  transformation  between  original

coordinates and generalized coordinates:

generalizedCoordinates =

8x1 > Function@t, x@tDD, z1 > Function@t, 0D,
x2 > Function@t, x@tD + l Sin@ @tDDD,
z2 > Function@t, l Cos@ @tDDD<

8x1 Function@t, x@tDD, z1 Function@t, 0D,
x2 Function@t, x@tD + l Sin@ @tDDD,
z2 Function@t, l Cos@ @tDDD<

The transformed kinetic energy follows with

= T ê. generalizedCoordinates êê Simplify

1
2

HHm1 + m2L x @tD2 +
2 l m2 Cos@ @tDD x @tD @tD + l2 m2 @tD2L

The potential energy is

= V ê. generalizedCoordinates êê Simplify

l m2 Cos@ @tDD

The Lagrangien density in x and f is given by
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L =

l m2 Cos@ @tDD +
1
2

HHm1 + m2L x @tD2 +
2 l m2 Cos@ @tDD x @tD @tD + l2 m2 @tD2L

From the Lagrange density, the two Euler–Lagrange equations are derived

via the application of the Euler operator:

el1 = x
t@LD

l m2 Sin@ @tDD @tD2 m1 x @tD
m2 x @tD l m2 Cos@ @tDD @tD == 0

el2 = t@LD

l m2 Sin@ @tDD l m2 Cos@ @tDD x @tD l2 m2 @tD == 0

A view at these two equations shows that the second-order derivative in x

can  be  used  to  decouple  the  two  equations.  Solving  for  the  generalized

acceleration x '', we find

sol2 = Solve@el2, t,t x@tDD êê Flatten

9x @tD Sec@ @tDD Hl m2 Sin@ @tDD + l2 m2 @tDL
l m2

=

This result is used to eliminate x in the first Euler–Lagrange equation:

el1 = el1 ê. sol2 êê Simplify

Hm1 + m2L Tan@ @tDD + l m2 Sin@ @tDD @tD2 +
l H m2 Cos@ @tDD + Hm1 + m2L Sec@ @tDDL @tD == 0
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The  resulting  equation  is  an  equation  containing  only  f  as  the  unknown

quantity.  Because  the  derived  equation  is  nonlinear,  there  is  no  direct

method  to  find  an  analytic  solution.  If  we  assume  that  f  and  the  first

derivatives  of  f  are  small  quantities,  we  are  able  to  Taylor  expand  the

equation around the equilibrium point f = 0. Because f is a small quantity,

squares of f  are even smaller than f  itself.  If we use these information in

the expansion, we get

linel1 = HSeries@el1 P1T, 8 @tD, 0, 2<D êê NormalL ê.
8H t @tDL2 0, @tD2 0<

Hm1 + m2L @tD + l m1 @tD

a linear harmonic equation. The solution of this equation follows with

sol = DSolve@linel1 == 0, , tD êê Flatten

9 FunctionA8t<,

C@1D CosA t è!!!!!!!!!!!!!!!!!!!!!!!!m1 + m2
è!!!!l è!!!!!!!m1

E + C@2D SinA t è!!!!!!!!!!!!!!!!!!!!!!!!m1 + m2
è!!!!l è!!!!!!!m1

EE=

Knowing the  solution for  f,  we  are  able  to  get  an equation for  x.  At  this

stage,  we  also  need to  approximate the  resulting equation under  the same

assumptions  as  for  f.  The  solution  of  the  equation  is  a  function  linear  in

time with oscillations around this trend.
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DSolve@x''@tD ==

Normal@Series@x''@tD ê. sol2, 8 @tD, 0, 1<DD ê.
sol êê Simplify, x, tD êê Flatten

9x FunctionA8t<,

C@3D + t C@4D 1
m1

i

k

jjjjjjj
i

k

jjjjjjj
è!!!!
l

è!!!!!!!
m1 C@1D CosA t è!!!!!!!!!!!!!!!!!!!!!!!!!!Hm1 + m2L

è!!!!l è!!!!!!!m1
E

i

k

jjjjjjj

è!!!!l è!!!!!!!m1 m2 C@2D CosA t
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hm1+m2Lè!!!!!

l
è!!!!!!!!
m1

E
è!!!!!!!!!!!!!!!!!!!!!!!!!!Hm1 + m2L

è!!!!l è!!!!!!!m1 m2 C@1D SinA t
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hm1+m2Lè!!!!!

l
è!!!!!!!!
m1

E
è!!!!!!!!!!!!!!!!!!!!!!!!!!Hm1 + m2L

y

{

zzzzzzz
y

{

zzzzzzz ì

i
k
jjjè!!!!!!!!!!!!!!!!!!!!!!!!!!Hm1 + m2L i

k
jjjC@2D CosA t è!!!!!!!!!!!!!!!!!!!!!!!!!!Hm1 + m2L

è!!!!l è!!!!!!!m1
E

C@1D SinA t è!!!!!!!!!!!!!!!!!!!!!!!!!!Hm1 + m2L
è!!!!l è!!!!!!!m1

Ey{
zzzy{
zzz +

i

k

jjjjjjj
è!!!!
l

è!!!!!!!
m1 C@2D SinA t è!!!!!!!!!!!!!!!!!!!!!!!!!!Hm1 + m2L

è!!!!l è!!!!!!!m1
E

i

k

jjjjjjj

è!!!!l è!!!!!!!m1 m2 C@2D CosA t
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hm1+m2Lè!!!!!

l
è!!!!!!!!
m1

E
è!!!!!!!!!!!!!!!!!!!!!!!!!!Hm1 + m2L

è!!!!l è!!!!!!!m1 m2 C@1D SinA t
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hm1+m2Lè!!!!!

l
è!!!!!!!!
m1

E
è!!!!!!!!!!!!!!!!!!!!!!!!!!Hm1 + m2L

y

{

zzzzzzz
y

{

zzzzzzz ì

i
k
jjjè!!!!!!!!!!!!!!!!!!!!!!!!!!Hm1 + m2L i

k
jjjC@2D CosA t è!!!!!!!!!!!!!!!!!!!!!!!!!!Hm1 + m2L

è!!!!l è!!!!!!!m1
E

C@1D SinA t è!!!!!!!!!!!!!!!!!!!!!!!!!!Hm1 + m2L
è!!!!l è!!!!!!!m1

Ey{
zzzy{
zzz
y

{

zzzzzzzE=

Thus, we derived a harmonic solution for f and an increasing solution with

oscillations  for  x.  The  question  arises  of  whether  this  kind  of  solution  is

also  observed  for  the  nonlinear  coupled  system  of  x  and  f.  To  find  an

answer  to  this  question,  we  first  have  to  specify  the  parameters  in  this
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model  (i.e.,  the  masses,  the  length  of  the  pendulum,  and  the  acceleration

). The following list contains one example for these parameters:

parameters = 8m1 > 1, m2 > .5, l > .7, > 9.81<

8m1 1, m2 0.5, l 0.7, 9.81<

The numerical  solution of the two Euler–Lagrange equations then follows

upon  specifying  the  initial  conditions  for  x, x ',  f,  and  f '.  The  following

line contains all of these steps:

nsol = NDSolve@
8el1, el2, x@0D == .1, x'@0D == 0.01, @0D == 0.1,

'@0D == 0.01< ê. parameters, 8x, <, 8t, 0, 13<D

88x InterpolatingFunction@880., 13.<<, <>D,
InterpolatingFunction@880., 13.<<, <>D<<

The  resulting  functions  can  be  represented  in  a  plot  showing  that  both

coordinates  oscillate  with  a  certain  frequency.  It  is  also  obvious  that  the

solution for x  increases in time as expected from the linear approximation

of the Euler–Lagrange equations.
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Plot@Evaluate@8x@tD, @tD< ê. nsolD, 8t, 0, 13<,
AxesLabel > 8"t", "x, "<, PlotStyle >

8RGBColor@1, 0, 0D, RGBColor@0, 0, 1D<D;

2 4 6 8 10 12
t

-0.1

0.1

0.2

0.3

x,f

The  solutions  gained  can  be  used  to  generate  a  flip-chart  movie  showing

the movement of the two masses

Thus, we get the information on how the two masses move under a specific

initial condition.
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Example 4: Sliding Mass on a Curve 

This example is an extension of the previous example. The change here is

the  movement  of  mass  m1.  We  assume  that  mass  1  can  move  in  the

x-direction and z-direction restricted by a given curve. The second mass is

again  connected  with  the  first  one  by a  stiff  rod.  At  each end  of  the  rod,

one  mass  point  is  located  (see  Figure  2.7.8).  The  second  mass  m2  is  the

pendulum mass. 

The movement of mass m1  is governed by a function of x. We assume that

this curve is given by a polynomial of order 8. A plot of the polynomial is

as follows:

-2 -1 1 2
x

-1

1

2

z

Figure 2.7.8. Sliding mass pendulum on a curve. Here we used the relation z = x8 - 2 x6 as an example.

The  second  mass  m2  undergoes  translations  in  x  as  well  as  oscillations

around its support. The total kinetic energy is generated by two parts:

T1 =
m1

2
HH t x1@tDL2 + H t z1@tDL2L

1
2
m1 Hx1 @tD2 + z1 @tD2L
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and

T2 =
m2

2
HH t x2@tDL2 + H t z2@tDL2L

1
2
m2 Hx2 @tD2 + z2 @tD2L

The potential energies of the two masses are

V1 = m1 z1@tD

m1 z1@tD

and

V2 = m2 z2@tD

m2 z2@tD

The total kinetic and potential energies are

T = T1 + T2

1
2
m1 Hx1 @tD2 + z1 @tD2L +

1
2
m2 Hx2 @tD2 + z2 @tD2L

and

V = V1 + V2

m1 z1@tD + m2 z2@tD
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To introduce generalized coordinates,  we have to take the constraints into

account.  The  following  rules  define  a  transformation  between  original

coordinates and generalized coordinates:

generalizedCoordinates = 8x1 > Function@t, x@tDD,
z1 > Function@t, x@tD8 2 x@tD6D,
x2 > Function@t, x@tD + l Sin@ @tDDD,
z2 > Function@t, x@tD8 2 x@tD6 l Cos@ @tDDD<

8x1 Function@t, x@tDD,
z1 Function@t, x@tD8 2 x@tD6D,
x2 Function@t, x@tD + l Sin@ @tDDD,
z2 Function@t, x@tD8 2 x@tD6 l Cos@ @tDDD<

The transformed kinetic energy follows by

= T ê. generalizedCoordinates êê Simplify

1
2

Im1 I1 + 16 x@tD10 H3 2 x@tD2L2M x @tD2 +
m2 IHx @tD + l Cos@ @tDD @tDL2 + H 12 x@tD5 x @tD +

8 x@tD7 x @tD + l Sin@ @tDD @tDL2MM

The potential energy is

= V ê. generalizedCoordinates êê Simplify

H l m2 Cos@ @tDD 2 Hm1 + m2L x@tD6 + Hm1 + m2L x@tD8L

The Lagrangian density in x and f is thus given by
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L =

H l m2 Cos@ @tDD 2 Hm1 + m2L x@tD6 + Hm1 + m2L x@tD8L +

1
2

Im1 I1 + 16 x@tD10 H3 2 x@tD2L2M x @tD2 +
m2 IHx @tD + l Cos@ @tDD @tDL2 + H 12 x@tD5 x @tD +

8 x@tD7 x @tD + l Sin@ @tDD @tDL2MM

From the Lagrange density, the two Euler–Lagrange equations are derived

via the application of the Euler derivative:

SetOptions@EulerLagrange, eXpand FalseD;

el1 = x
t@LD

12 m1 x@tD5 + 12 m2 x@tD5 8 m1 x@tD7
8 m2 x@tD7 720 m1 x@tD9 x @tD2 720 m2 x@tD9 x @tD2 +
1152 m1 x@tD11 x @tD2 + 1152 m2 x@tD11 x @tD2
448 m1 x@tD13 x @tD2 448 m2 x@tD13 x @tD2 +
l m2 Sin@ @tDD @tD2 + 12 l m2 Cos@ @tDD x@tD5 @tD2
8 l m2 Cos@ @tDD x@tD7 @tD2 m1 x @tD m2 x @tD
144 m1 x@tD10 x @tD 144 m2 x@tD10 x @tD +

192 m1 x@tD12 x @tD + 192 m2 x@tD12 x @tD
64 m1 x@tD14 x @tD 64 m2 x@tD14 x @tD
l m2 Cos@ @tDD @tD + 12 l m2 Sin@ @tDD x@tD5 @tD
8 l m2 Sin@ @tDD x@tD7 @tD == 0

el2 = t@LD

l m2 Sin@ @tDD + 60 l m2 Sin@ @tDD x@tD4 x @tD2
56 l m2 Sin@ @tDD x@tD6 x @tD2
l m2 Cos@ @tDD x @tD + 12 l m2 Sin@ @tDD x@tD5 x @tD
8 l m2 Sin@ @tDD x@tD7 x @tD
l2 m2 Cos@ @tDD2 @tD l2 m2 Sin@ @tDD2 @tD == 0
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The  derived  Euler–Lagrange  equations  are  a  set  of  coupled  nonlinear

second-order equations. It is likely that this set of equations does not allow

a  symbolic  solution  Thus,  we  switch  to  numerical  work  and  specify  the

values  for  parameters  as  well  as  initial  conditions.  The  following  list

contains one example for the parameters:

parameters = 8m1 > 1, m2 > 1.5, l > .7, > 9.81<

8m1 1, m2 1.5, l 0.7, 9.81<

The numerical  solution of the two Euler–Lagrange equations then follows

upon  specifying  the  initial  conditions  for  x, x ',  f,  and  f '.  The  following

line contains all these steps:

nsol = NDSolve@8el1, el2, x@0D == .01, x'@0D == 0.3,

@0D == 0.5, '@0D == 0.01< ê. parameters,
8x, <, 8t, 0, 43<, MaxSteps > 11000D

88x InterpolatingFunction@880., 43.<<, <>D,
InterpolatingFunction@880., 43.<<, <>D<<

The  resulting  functions  can  be  represented  in  a  plot  showing  that  both

coordinates oscillate.  It  is also obvious that  the solution for x  increases in

time. Thus, the presnt model shows similar behavior as the solution of the

original model. 
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Plot@Evaluate@8x@tD, @tD< ê. nsolD, 8t, 0, 43<,
AxesLabel > 8"t", "x, "<, PlotStyle >

8RGBColor@1, 0, 0D, RGBColor@0, 0, 1D<D;

10 20 30 40
t

10

20

30

40
x,f

The solutions obtained can be used to generate a flip-chart movie showing

the movement of the two masses:
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x
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0.5

1
z

340 2.7 Lagrange Dynamics



2.7.4 Symmetries and Conservation Laws

The  solution  of  equations  of  motion  are  tightly  connected  with

conservation  laws.  Conservation  laws  allow  to  reduce  the  number  of

integration  steps,  iff  they  are  known.  A  method  for  determining

symmetries of differential equations is given in the author's book [2.9]. We

start our examinations with the Euler–Lagrange equations

(2.7.31)ÅÅÅÅÅÅÅÅqi
-

d
ÅÅÅÅÅÅdt I ÅÅÅÅÅÅÅÅÅq'i

M = 0, i = 1, 2, ....

If  the  Lagrange  density  = Hqi, q 'i, tL  is  independent  of  a  coordinate

qi, that is

(2.7.32)ÅÅÅÅÅÅÅÅqi
= 0,

we  call  this  coordinate  cyclic  or  ignorable.  For  the  ith  Euler–Lagrange

equation, it immediately follows that

(2.7.33)-
d

ÅÅÅÅÅÅdt I ÅÅÅÅÅÅÅÅÅq'i
M = 0.

In other words,

(2.7.34)ÅÅÅÅÅÅÅÅÅq'i
= const.

representing  a  conserved  quantity.  If  a  Lagrangian  contains  cyclic

variables  (i.e.,  is  independent  of  this  variable),  then  the  derivative  with

respect to the generalized velocity is a conserved quantity. This conserved

quantity  represents  an  ordinary  differential  equation  of  first  order.  Thus,

the second-order  differential equation in the ith component is  replaced by

a first-order one.

The  cyclic  behavior  of  the Lagrangian is  mainly dependent  on the  choice

of  coordinates  for  the  problem.  Thus,  it  is  useful  to  choose  such

coordinates  that  generate  a  large  number  of  cyclic  coordinates.

Conservation  laws  are  thus  related  to  cyclic  coordinates.  On  the  other

hand,  conservation  laws  are  related  to  symmetries  allowed  by  the

Lagrangian.  For  example,  conservation  of  energy  is  connected  with  the

symmetry of translations with respect to time. Conservation of momentum

is  a  consequence  of  the  translation  symmetry  in  space.  Conservation  of

angular momentum follows from the rotation symmetry of the Lagrangian.
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All  of  the  mentioned  conservation  laws  can  be  represented  as  balance

equations.

2.7.4.1 Conservation of Energy and Translation in Time

To check conservation of energy, we examine the Lagrangian with respect

to  translations  in  time.  A  consistent  representation  of  the  formulas  is

gained by using the Euler–Lagrange equations:

Remove@LD

t L@qi@tD, t qi@tD, tD

LH0,0,1L@qi@tD, qi@tD, tD + qi@tD LH0,1,0L@qi@tD, qi@tD, tD +

qi@tD LH1,0,0L@qi@tD, qi@tD, tD

(2.7.35)

d
ÅÅÅÅÅÅdt Hqi, q 'i, tL = ‚

i
9 ÅÅÅÅÅÅÅÅqi

q 'i + ÅÅÅÅÅÅÅÅÅq'i
q ''i= + ÅÅÅÅÅÅÅt

= ‚
i
9 q 'i

d
ÅÅÅÅÅÅdt I ÅÅÅÅÅÅÅÅÅq'i

M + ÅÅÅÅÅÅÅÅÅq'i
q ''i = + ÅÅÅÅÅÅÅt

= ‚
i

d
ÅÅÅÅÅÅdt I ÅÅÅÅÅÅÅÅÅq'i

q 'i M + ÅÅÅÅÅÅÅt

=
d

ÅÅÅÅÅÅdt I ‚
i

ÅÅÅÅÅÅÅÅÅq'i
q 'i M + ÅÅÅÅÅÅÅt

Collecting the time derivatives to a total time derivative we obtain

(2.7.36)
d

ÅÅÅÅÅÅdt I - ‚
i

ÅÅÅÅÅÅÅÅÅq'i
q 'i M = ÅÅÅÅÅÅÅt ,

(2.7.37)
d

ÅÅÅÅÅÅdt I‚
i

ÅÅÅÅÅÅÅÅÅq'i
q 'i - M = - ÅÅÅÅÅÅÅt .

This relation represents the energy balance in terms of the Lagrangian and

the generalized coordinates.

Assuming scleronomic constraints, the cartesian coordinates  xb = xb HqiL
are  independent  of  time.  Thus,  the  kinetic  and  potential  energies  are  also

independent  of  time.  Consequently,  the  Lagrangian  is  a  pure  function  of

the coordinates independent of time (i.e., ê t = 0). Thus, we get 

(2.7.38)
d

ÅÅÅÅÅÅdt I‚
i

ÅÅÅÅÅÅÅÅÅq'i
q 'i - M = 0
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and

(2.7.39)‚
i

ÅÅÅÅÅÅÅÅÅq'i
q 'i - = const.

This  expression  is  a  conserved  quantity  remaining  constant  in  a  time

evolution.  Applying  Euler's  homogeneity  relation  on  the  sum  of  the

left-hand side, we get 

(2.7.40)‚
i

ÅÅÅÅÅÅÅÅÅq'i
q 'i = ‚

i

T
ÅÅÅÅÅÅÅÅÅq'i

q 'i = 2 T ,

and taking the Lagrangian as  = T - V  that it follows,

(2.7.41)2 T - T + V = T + V = const. = H .

Conservation  of  energy  is  guaranteed  if  the  Lagrangian  is  invariant  with

respect to time translations (i.e., independent of time). For such a case, the

Lagrangian does not change if we move in time. This behavior also means

that  the  total  number  of  possible  tracks  starting  at  a  fixed  time  are

independent of the initial time. Consequently, there is no way to determine

by observation of the tracks the initial time if the acting forces are known.

The  connection  between  conservation  laws  and  invariants  or  symmetries

are very important in all fields of modern physics.

The derived function H  is known as Hamilton's function and is also called

the Hamiltonian. The Hamiltonian in terms of the Lagrangian is given by

(2.7.42)H = ‚
i

ÅÅÅÅÅÅÅÅÅq'i
q 'i - .

Note: The Hamiltonian is identical to the total energy if the following two

requirements are satisfied: 

i) The kinetic energy is homogeneous of degree 2.

ii) The potential energy is independent of the velocity.
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2.7.4.2 Conservation of Momentum

Assuming that space is homogenous in an inertial system, we can conclude

that  the  Lagrangian  is  invariant  with  respect  to  spatial  translations  in  the

case  of  a  closed  system.  To  prove  this  conclusion,  let  us  consider  an

infinitesimal transformation of the coordinates: 

itrafo = q > Function@ , q + @qDD

q Function@ , q + @qDD

(2.7.43)qè i = qi + ¶ xi HqiL,
with ¶  an infinitesimal parameter and xiHqiL  as the infinitesimal element of

the global transformation:

Series@q@q, D, 8 , 0, 1<D

q@q, 0D + qH0,1L@q, 0D + O@ D2

(2.7.44)

qè i = qè i Hqi, ¶L
= qè i Hqi, ¶ = 0L +

qè iÅÅÅÅÅÅÅÅÅ
¶

À
¶= 0

+ 0 H¶2L
= qi + ¶ xi HqiL + 0 H¶2L

with xi = qè i ê ¶ »
¶=0

.

Consider  the  Lagrangian  as  a  function  of  the  new coordinates  qè i,  so  that
è

=
è H qè i, qè 'iL   represents  the  transformed  Lagrangian.  Expanding  this

new Lagrangian around the identity  ¶ = 0, we find 

(2.7.45)
è

=
è À

¶= 0
+ ¶

è

ÅÅÅÅÅÅÅÅÅ
¶

À
¶= 0

+ 0 H¶2L
with

(2.7.46)
è »¶= 0 = Hqi, q 'iL = .

Now, if we set 

(2.7.47)
è

- = d =

è

ÅÅÅÅÅÅÅÅÅ
¶

À¶= 0 ¶ + 0 H¶2L,
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where  terms  of  order  0 H¶2L  vanish.  If  we  assume that   is  invariant  with

respect to the infinitesimal transformation then, we find

(2.7.48)
è

=

and thus we get the sufficient condition 

(2.7.49)d = 0 =

è

ÅÅÅÅÅÅÅÅÅ
¶

À¶= 0 ¶ + 0 H¶2L.
In first-order ¶, we can set

(2.7.50)
è

ÅÅÅÅÅÅÅÅÅ
¶

À¶= 0 = 0.

Writing this formula explicitly, we find

(2.7.51)„
i

è

ÅÅÅÅÅÅÅÅÅqè i

qè iÅÅÅÅÅÅÅÅÅ
¶

ƒƒƒƒƒƒƒƒƒ¶= 0
+ „

i

è

ÅÅÅÅÅÅÅÅÅÅqè 'i

q'i
è

ÅÅÅÅÅÅÅÅÅÅ
¶

ƒƒƒƒƒƒƒƒƒ¶= 0
= 0

(2.7.52)
qè iÅÅÅÅÅÅÅÅÅ
¶

À
¶= 0

= xi HqiL;
q 'i
è ê ¶ = 0 since qè 'i = q 'i  velocities are not due to transformations and

thus, we can write

(2.7.53)„
i

è

ÅÅÅÅÅÅÅÅÅqè i

qè iÅÅÅÅÅÅÅÅÅ
¶

ƒƒƒƒƒƒƒƒ¶= 0
= 0 ó ‚

i
ÅÅÅÅÅÅÅÅqi

xi HqiL = 0

(2.7.54)ö ÅÅÅÅÅÅÅÅqi
= 0.

Taking the Euler–Lagrange equations into account, we get

(2.7.55)-
d

ÅÅÅÅÅÅdt I ÅÅÅÅÅÅÅÅÅq'i
M = 0

or

(2.7.56)ÅÅÅÅÅÅÅÅÅq'i
= const.

The  Lagrangian  is  assumed  to  be  expressed  by  the  difference  of  kinetic

and  potential  energy.  In  addition,  the  kinetic  energy  is  a  homogenous

function of degree 2. Taking these considerations into account, we get 

(2.7.57)ÅÅÅÅÅÅÅÅÅq'i
= ÅÅÅÅÅÅÅÅÅq'i

HT - V L =
T

ÅÅÅÅÅÅÅÅÅq'i
= mi q 'i = const.,

(2.7.58)ÅÅÅÅÅÅÅÅÅq'i
= pi HtL = pi H0L.

The total linear momentum thus becomes

(2.7.59)‚
i

ÅÅÅÅÅÅÅÅÅq'i
= ⁄i pi HtL = ⁄i pi H0L = PH0L.
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In  conclusion,  the  total  momentum  is  a  conserved  quantity.  This  result

holds for a spatial homogenous system. 

2.7.4.3 Conservation of Angular Momentum 

The  discussion  of  inertial  systems  revealed  that  the  related  space  is

isotropic,  meaning  that  the  mechanical  properties  are  independent  of  the

orientation in space. Especially the Lagrangian is invariant with respect to

an  infinitesimal  rotation.  We  restrict  our  considerations  to  infinitesimal

rotations  because  global  rotations  are  generated  by  many  infinitesimal

rotations. 

Rotation  of  a  system  by  an  infinitesimal  angle  dq  transforms  a  position

vector r” to another position vector r” + d r” (see Figure 2.7.9)

Figure 2.7.9. Rotation of a position vector r”.

The infinitesimal position vector is determined by 

(2.7.60)d r” = d q
”

ä r”.
In  addition  to  the  change  of  the  position  vector,  an  infinitesimal  rotation

changes the velocity also. The infinitesimal velocity change is determined

by 

(2.7.61)d r” ' = d q
”

ä r” '.
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Now, consider  a  single particle  in cartesian coordinates.  The infinitesimal

change of the Lagrangian in these coordinates is given by

(2.7.62)d = ‚
i

ÅÅÅÅÅÅÅÅxi
 d xi + ‚

i
ÅÅÅÅÅÅÅÅÅx'i

 d x 'i = 0.

On  the  other  hand,  the  linear  momenta  are  represented  by  means  of  the

Lagrangian by

(2.7.63)Pi = ÅÅÅÅÅÅÅÅÅx'i
.

The temporal change of the momenta are thus

(2.7.64)
dpiÅÅÅÅÅÅÅÅdt =

d
ÅÅÅÅÅÅdt I ÅÅÅÅÅÅÅÅÅx'i

M = ÅÅÅÅÅÅÅÅxi
.

This  relation  holds  because  the  Euler–Lagrange  equations  are  satisfied.

Thus, the infinitesimal change of the Lagrangian is given by

(2.7.65)d = ⁄i=1
3 p 'i dxi + ⁄i=1

3 pi dx 'i = 0.

The components can be replaced by the vectors and result in the relation

(2.7.66)p”÷ ' . d r” + p”÷ d r” ' = 0.

Using  the  infinitesimal  representations  of  the  position  vector  and  the

velocity, we obtain 

(2.7.67)p”÷ ' I d q
”

ä r” M + p”÷ I d q
”

ä r” ' M = 0.

A  cyclic  interchange  of  infinitesimal  vectors  and  vectors  provides  the

compact relation

(2.7.68)d q
” 8 H r” ä p”÷ 'L + H r” ' ä p”÷ L< = 0

(2.7.69)ñ d q
”

. d
ÅÅÅÅÅÅdt H r” ä p”÷ L = 0.

Since the infinitesimal change of the angle was arbitrary, we conclude that

the  temporal change of the cross-product vanishes:

(2.7.70)d
ÅÅÅÅÅÅdt H r” ä p”÷ L = 0,

meaning that the quantity 

(2.7.71)r” x p”÷ = const. = L
”÷

is  a  conserved  quantity.  The  presented  infinitesimal  changes  of  the

Lagrangian all  result  in  a  conserved  quantity.  In general,  the infinitesimal

changes are related to symmetries of the Lagrangian. The symmetries itself

are  determined  by  infinitesimal  transformations.  In  modern  physics,  this
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relation  between  symmetries  and  conserved  quantities  is  very  important.

Symmetries  determine  the  conserved  quantities  and  vice  versa.  In  the

above  discussions,  we  considered  the  simplest  symmetries  (translations

and rotations) under which a Lagrangian may be invariant. However, there

are  many  more  symmetry  transformations  related  to  other  conserved

quantities. The results so far derived are collected in the following table: 

Properties of the 
inertial system 

propeties of conserved quantity

homogenity in 
time

independent of 
time

total energy

homogenity in 
space

translation 
invariance

linear omentum

isotropy of space rotation 
invariance

angular momentum

Table 2.7.2. Lagrangian properties and conserved quantities.

The  symmetry  considerations  are  far  more  general  then  presented  above.

This  generalization  was  given  by  Emmy   Noether  (Figure  2.7.10)  in  her

famous theorem in 1915. 

Figure 2.7.10.  Emmi Noether born March 23, 1882; died April 14, 1935. 
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Theorem: Noether Theorem

Given the time-independent Lagrangian Hqi, q 'iL of an holonomic system

which is  invariant  with  respect  to  an  invertible  transformation  around  the

identity with ¶ = 0,

(2.7.72)qi Ø qè i = qè i Hq j, ¶L
with qè i Hq j, ¶ = 0L = qi, that is for all ¶, we have 

(2.7.73)
Hqi, q 'iL = J qi, Hqè j, ¶L, ‚

j=1

N qiÅÅÅÅÅÅÅÅÅq j
è qè j N

= Hqè i, qè 'i, ¶L = Hqè i, qè 'iL,
then the quantity 

(2.7.74)IHqi, q 'i L = „
j

ÅÅÅÅÅÅÅÅÅq' j

qè j Hqi,¶L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

¶
À
¶=0

is a conserved quantity of the Euler–Lagrange equations.à

The symmetries under which the Lagrangian is invariant are also known as

continuous  symmetries.  This  notion  was  introduced  because  ¶  is  a

continuous  parameter  determining  the  symmetries  of  the  corresponding

group.

In the following, we prove the Noether theorem. We start by checking the

invariance  of  the  Euler–Lagrange  equations  under  coordinate

transformations

(2.7.75)ÅÅÅÅÅÅÅÅqè i
-

d
ÅÅÅÅÅÅdt ÅÅÅÅÅÅÅÅÅqè 'i

= 0.

The check can be carried out by replacing q Ø Q; this is left as an exercise

for the reader. The derivation of the transformed equation with respect to ¶

gives us 

(2.7.76)
d Hqi, q'iLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅd¶ = 0 = ‚

i
ÅÅÅÅÅÅÅÅqè i

d qè iÅÅÅÅÅÅÅÅÅÅd¶ + ÅÅÅÅÅÅÅÅÅqè 'i

d qè 'iÅÅÅÅÅÅÅÅÅÅÅd¶ ;

again using the Euler–Lagrange equation, we find

(2.7.77)
0 = ‚

i

d
ÅÅÅÅÅÅdt I ÅÅÅÅÅÅÅÅÅqè 'i

M d qè iÅÅÅÅÅÅÅÅÅÅd¶ + ÅÅÅÅÅÅÅÅÅqè 'i
d

ÅÅÅÅÅÅdt
d qè iÅÅÅÅÅÅÅÅÅÅd¶

=
d

ÅÅÅÅÅÅdt J‚
i

ÅÅÅÅÅÅÅÅÅqè 'i

d qè iÅÅÅÅÅÅÅÅÅÅd¶ N.
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Thus, the expression 

(2.7.78)IHqi, q 'i, ¶L = ‚
i

ÅÅÅÅÅÅÅÅÅqè 'i

d qè iÅÅÅÅÅÅÅÅÅÅd¶

is a conserved quantity for any ¶.

The  resulting  integrals  are  linearly  dependent  on  each  other  for  different

¶'s. Thus, it is sufficient to consider only one value for ¶. We chose ¶ = 0

and get

(2.7.79)IHqi, q 'i, ¶ = 0L = ‚
i

ÅÅÅÅÅÅÅÅÅqè 'i

d qè iÅÅÅÅÅÅÅÅÅÅd¶ À
¶=0

= ‚
i

ÅÅÅÅÅÅÅÅÅq'i
 xi.

This is the conserved quantity given in the Noether theorem.

Example 1: Invariant Lagrangian

Let us consider the Lagrangian

(2.7.80)=
m
ÅÅÅÅÅ2 Hx '2 + y '2L - V HxL = Hx, x ', y 'L.

As a transformation consider

(2.7.81)X = x,
(2.7.82)Y = y + ¶,

with ¶  a constant.  Applying the transformation to the Lagrangian with ¶  a

constant, we find 

(2.7.83)

Hx, x ', y 'L = HX , X ', Y ' - ¶
° L

= HX , X ', Y ', ¶L
=

m
ÅÅÅÅÅ2 HX '2 + Y '2L - V HX L

= HX , X ', Y 'L.
Invariance  of  the  Lagrangian  guaranties  the  assumptions  in  the  Noether

theorem. The conserved quantity is thus given by

(2.7.84)

I = I ÅÅÅÅÅÅÅÅÅX '
x

ÅÅÅÅÅÅÅ
¶

+ ÅÅÅÅÅÅÅÅY '
Hy+¶L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
¶

M …
¶=0

= ÅÅÅÅÅÅÅÅY ' …¶=0

= m Y ' »¶=0

= m y '.

Thus, the y-component of the linear momentum is a conserved quantity.
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2.7.5 Exercises

1.  Show that the equations of motion derivable from a Lagrangian are
unchanged if to the Lagrangian there is added the total time derivative
of an arbitrary function of qm, and t.

2.  Write  down the  expressions  for  the  kinetic  energy of  the following
systems, using the minimum number of coordinates: (i) a free particle;
(ii)  a  particle  constrained  to  remain  on  a  sphere;  (iii)  a  particle  con-
strained to remain on a circular cylinder.

3.  Write  down  the  Lagrangian  for  a  particle  confined  to  a  horizontal
plane  in  cartesian  coordinates.  Introduce  the  additional  constraint
x2 + y2 = a2  by  means  of  a  Lagrange  multiplier  l  and  show that  l  is
proportional to the centripedal force exerted by the constraint upon the
particle.

2.7.6 Packages and Programs

Euler–Lagrange Package

The EulerLagrange package serves to derive the Euler–Lagrange equations

from a given Lagrangian.

If@$MachineType == "PC",

$EulerLagrangePath = $TopDirectory<>

"êAddOnsêApplicationsêEulerLagrangeê";
AppendTo@$Path, $EulerLagrangePathD,
$EulerLagrangePath =

StringJoin@$HomeDirectory, "ê.Mathematicaê3.0ê
AddOnsêApplicationsêEulerLagrange", "ê"D;

AppendTo@$Path, $EulerLagrangePathDD;

The next line loads the package.
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<< EulerLagrange.m

Get::noopen : Cannot open EulerLagrange.m. More…

$Failed

Options@EulerLagrangeD

8eXpand False<

SetOptions@EulerLagrange, eXpand TrueD

SetOptions::optnf :

eXpand is not a known option for EulerLagrange. More…

SetOptions@EulerLagrange, eXpand TrueD

Define some notations.

<< Utilities`Notation`

Define  the  notation  of  a  variational  derivative  connected  with  the

Euler–Lagrange function. 

NotationA
u_

‡
t1

t2

f_ t_ EulerLagrange@f_, u_, t_DE

To  access  the  variational  derivative,  we  define  an  alias  variable  var

allowing  us  to  access  the  symbolic  definition  by  the  escape  sequence  Â

var Â.

AddInputAliasA ‡
t1

t2

, "var"E

Here is an example for an arbitrary Lagrangian:
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u
‡
t1

t2

L@u@tD, t u@tDD t

8t,1< LH0,1L@u@tD, u @tDD + LH1,0L@u@tD, u @tDD == 0

We  also  define  an  Euler–Lagrange  operator  allowing  us  to  access  the

Euler–Lagrange functon as a symbol:

NotationA u_

x_
@den_D EulerLagrange@den_, u_, x_DE

Here is the alias notation for the Euler–Lagrange operator:

AddInputAliasA @ D, "ELop"E
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2.8 Hamiltonian Dynamics

2.8.1 Introduction

Hamiltonian  dynamics  is  an  alternative  formulation  of  the  Lagrangian

dynamics. In Lagrangian dynamics, we used the generalized coordinates qi

and velocities q 'i as basic variables. Hamilton's dynamic introduces a set of

canonical  variables  which  are  basically  the  coordinates  qi  and  the

generalized  momenta  pi.  We  defined  the  generalized  momenta  in

Lagrange's dynamic by the relation

(2.8.1)pi = ÅÅÅÅÅÅÅÅÅq'i
, i = 1, 2, ....

In a similar way, the generalized forces Fi were expressed by the relations

(2.8.2)Fi = ÅÅÅÅÅÅÅÅqi
, i = 1, 2, ....

If  the  generalized  coordinates  qi  are  identical  with  the  cartesian

coordinates,  we  can  identify  the  generalized  momenta  with  the  linear

momenta  pi  = mq 'i.  On the other hand, the Euler–Lagrange equations are

reduced to Newton's second law:

(2.8.3)p 'i = Fi, i = 1, 2, ..., N .

The main advantage of  the Hamilton formulation is  that different  theories

such  as  quantum  mechanics,  statistical  physics,  and  perturbation  theory

can  be  based  on  this  formulation.  Hamilton's  formulation  of  classical

mechanics  also  allows  a  natural  approach  to  chaotic  systems  and  the

question of integrability. The concept of a phase space opens the door for

an  efficient  study  of  integrability  and  nonintegrability.  However,

Hamilton's  formulation  of  classical  mechanics  introduces  nothing  new  in

physics  but  allows  an efficient  treatment  of  mechanical  systems.  The  two

formulations,  Lagrange's  and Hamilton's,  are  equivalent  to  each other  and

allow a direct transition between the two theories. 
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2.8.2 Legendre Transform

We  demonstrate  here  that  the  Hamilton  and  Lagrange  formulation  of

classical mechanics can be transformed into each other. Lagrange used for

his  formulation  of  mechanics  the  generalized  coordinates  and  velocities

Hqi, q 'iL  as  basic  quantities.  Contrary  Hamilton  decided  to  introduce  the

fundamental  coordinate  set  Hqi, piL  where  qi  are  the  generalized

coordinates  as  in  the  Lagrange  formulation  and  pi  are  the  generalized

momenta.  Already Euler  and  Leibniz  knew that  a  transformation between

such basic  quantities exists.  The two sets of coordinates can be converted

into each other by a so called Legendre transform. This transform uses the

property that a function f = f HxL can be either represented by the standard

set of coordinates Hx, f L or by the coordinate and the functions tangent. To

demonstrate these relations let us consider a function

(2.8.4)y = f HxL
under  the  restriction  that  2 f ê x2 > 0;  tat  is,  we  consider  convex

functions.  Under  this  assumption,  the  Legendre  transform  of  f  is  a  new

function g depending on a new variable s. The relations among f , g, and s

are defined in Figure 2.81.

Figure 2.8.1. Legendre transform of a function y = f HxL to its Legendre representation gHsL.
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Figure  2.8.1  shows  that  gHsL  counts  the  maximal  distance  between  the

inclined line y = s x and the function f HxL; that is,

(2.8.5)gHsL = sx - f HxL = GHs, xHsLL.
Since xHsL is defined as maximum of g, we find from this relation

(2.8.6)G
ÅÅÅÅÅÅÅÅx = s - f ' HxL = 0.

It  is  obvious  that  the  new variable  s  can be  identified with  the tangent  of

f HxL; that is,

(2.8.7)s = f ' HxL.
Since f  is convex, x = xHsL is uniquely determined.

Let us consider a mechanical example which allows a Hamilton function of

the  kind  H = H HpL.  We  also  state  at  this  moment  that  one  of  Hamilton's

equations is given by q ' = H ê p.  If we carry out the above construction

in the Hy, pL-plane and call the new function LHsL, we find

(2.8.8)LHsL = sp - H HpL.
The  new  variable  s  follows  now  from  the  extremal  condition  as

s = H ê p = q ' so that the Legendre transform becomes

(2.8.9)LHq 'L = q ' p - H HpL,
where p is a function of q ' defined by q ' = H ê p.

The  above  theoretical  steps  can  be  represented  in  Mathematica  by  the

following lines. First, define the Hamiltonian as a function of p:

H = h@pD

hHpL

Then, introduce the new function L as
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L = s p H

p s - hHpL

The extremal condition allows on to establish an equation which provides

the new variable s:

et1 = p L == 0

s - h£HpL == 0

If  we  solve  with  respect  to  s  and  take  into  account  one  of  Hamilton's

equations

subst = Flatten@Solve@et1, sDD ê. h'@pD > q'

8s Ø q£<

we  find  that  s  is  just  given  by  q '.  Substituting  this  knowledge  into  the

function L, we obtain

L ê. subst

p q£ - hHpL

as a function of q '. The procedure to carry out a Legendre transform is thus

algorithmic  and  can  be  implemented  in  a  single  function.  Before  we

implement  the  Legendre  transform,  let  us  consider  the  more  general  case

when the Hamiltonian is a function of several independent variables.

The generalization of this result to a Hamiltonian depending on a set of N

coordinates Hqi, piL is given by

(2.8.10)HHqi, piL = ⁄i=1
N pi q 'i - ;
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the corresponding Lagrangian is then defined by

(2.8.11)= ⁄i=1
N pi q 'i - H ,

where the generalized momenta pi are defined by the standard relation

(2.8.12)pi = ÅÅÅÅÅÅÅÅÅq'i
.

These  relations  are  valid  under  the  assumption  that  the  Jacobian

determinant 

(2.8.13)D = det J 2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅq'i q' j

N 0

does  not  vanish.  The  property  that  D 0  guarantees  that  the  generalized

velocities q 'i  can be uniquely solved for pi  and vice versa. This relation is

a generalization of the convexity.

As an example, let us consider the following Lagrange density:

(2.8.14)= ‚
i=1

N 1
ÅÅÅÅ2 mi q 'i

2
- V HqiL.

First, we determine the generalized moment by

(2.8.15)pi = ÅÅÅÅÅÅÅÅÅq'i
= mi q 'i.

The check of convexity shows

(2.8.16)
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅq'i q' j
= mi dij,

(2.8.17)det J 2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅq'i q' j

N = det Hmi dijL 0.

This relation guarantees that the generalized momenta can be expressed by

the generalized velocities; that is,

(2.8.18)q 'i =
piÅÅÅÅÅÅÅÅmi

.

Thus, the Hamiltonian in qi and pi is given by

(2.8.19)

HHqi, piL
= ‚

i=1

N
pi

piÅÅÅÅÅÅÅmi
- 9‚

i=1

N 1
ÅÅÅÅ2 mi I piÅÅÅÅÅÅÅmi

M2 - V HqiL=
= „

i=1

N
p2

iÅÅÅÅÅÅÅÅÅ2 m + V HqiL.
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The procedure  discussed  above  is  implemented in  the following function.

The  function  LegendreTranform[]  allows  one  to  transform  a  given

density to an alternate representation:

LegendreTransform@A_, x_List, momenta_List,

indep_: 8t<D := BlockA8momentaRelations<,
momentaRelations =

MapThread@ #1 A == #2 &, 8x, momenta<D;
sol = Flatten@Solve@momentaRelations, xDD;

SimplifyAExpandA ‚
i=1

Length@xD

xPiT xPiT A AE ê. solEE

The following  Lagrangian  density  with  two  degrees  of  freedom describes

two particles interacting by a general potential V :

Clear@VD

l =
m1

2
H t q1@tDL2 +

m2

2
H t q2@tDL2 V@q1@tD, q2@tDD

1
ÅÅÅÅÅÅ
2

m1 q1£HtL2 +
1
ÅÅÅÅÅÅ
2

m2 q2£HtL2 - V Hq1HtL, q2HtLL

The transformation to a Hamiltonian needs the Lagrangian and the sets of

original and final variables.

h = LegendreTransform@l,
8 t q1@tD, tq2@tD<, 8p1@tD, p2@tD<D

p1HtL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m1

+
p2HtL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m2

+ VHq1HtL, q2HtLL

The  result  is  a  representation  of  the  Hamiltonian  in  a  new  set  of

coordinates  Hqi, piL.  The  back  transformation  to  the  Lagrangian  uses  the

Hamiltonian as density,  the set  of  momenta as initial  coordinates,  and the

generalized velocities as target coordinates of the transformation:
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LegendreTransform@h,
8p1@tD, p2@tD<, 8 t q1@tD, t q2@tD<D

1
ÅÅÅÅÅÅ
2
Hm1 q1£HtL2 + m2 q2£HtL2 - 2 VHq1HtL, q2HtLLL

This simple example can be extended to a more complicated one.

Example 1: Moving Beat on a String

Let  us  consider  a  beat  (mass  point)  in  a  homogenous  gravitational  field.

The  beat  is  restricted  to  move  on  a  string  of  the  form  y = f HxL.  The

functional relation of the string acts as a constraint on the movement of the

mass point. Let us first discuss the movement without any constraint. Thus,

we have to use two coordinates in the Lagrangian. The kinetic energy for a

plane movement is given by

T =
1

2
m HH t x@tDL2 + H t y@tDL2L

1
ÅÅÅÅÅÅ
2

m Hx£HtL2 + y£HtL2L

The potential energy is

V = m g y@tD

g m yHtL

and, thus, the Lagrangian is

L = T V

1
ÅÅÅÅÅÅ
2

m Hx£HtL2 + y£HtL2L - g m yHtL
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If  we  now introduce  the  constraint  of  the  movement  by y = f HxL,  we  can

write the Lagrangian as

lconstr = L ê. y > Function@t, f@x@tDDD

1
ÅÅÅÅÅÅ
2

m H f £HxHtLL2 x£HtL2 + x£HtL2L - g m f HxHtLL

We observe that  the degree of freedom of this  problem reduces from two

to  one  if  the  constraint  is  introduced  in  the  Lagrangian.  The  Hamiltonian

for  this  Lagrangian  then  follows  by  applying  the  function

LegendreTransform[] to the Lagrangian:

ham = LegendreTransform@lconstr, 8 t x@tD<, 8p@tD<D

2 g f HxHtLL H f £HxHtLL2 + 1Lm2 + pHtL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 m H f £HxHtLL2 + 1L

The  result  is  a  nontrivial  expression  for  the  Hamiltonian  combining  the

coordinate  and  momenta  by  means  of  the  arbitrary  function  f .  To

understand  how  the  transformation  was  carried  out,  let  us  calculate  the

generalized momentum from the Lagrangian by

mom = tx@tDlconstr êê Simplify

m H f £HxHtLL2 + 1L x£HtL

The result shows that for this case, the generalized momentum is not only a

function  of  the  velocity  x '  but  also  a  function  of  the  coordinate  x.  The

generalized velocity thus is
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Solve@mom == p@tD, t x@tDD

::x£HtL Ø
pHtL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m H f £HxHtLL2 + 1L >>

These  two  relations  were  applied  to  the  transformation  from  the

Lagrangian  to  the  Hamiltonian.  Especially the  last  relation  was  necessary

to eliminate the velocity by means of the generalized momentum.

2.8.3 Hamilton's Equation of Motion

If  we  know  the  Lagrangian  of  a  mechanical  system,  the  equations  of

motion follow by the  application of  Hamilton's  principle.  Another  way to

derive the equations of motion is by applying Hamilton's formalism to the

Hamiltonian.  To  derive  Hamilton's  equations,  let  us  consider  the

Hamiltonian  as  a  function  of  generalized  coordinates.  On  the  other  hand,

the  same  Hamiltonian  can  be  derived  from  the  Lagrangian.  The

equivalence  of  both approaches  delivers  Hamilton's  equation.  First,  let  us

demonstrate  this  procedure  for  a  mechanical  system  with  one  degree  of

freedom.  The  Hamiltonian  for  this  case  can  be  derived  from  the

Lagrangian by means of the Legendre transform:

h = p v l@q, v, tD

p v - lHq, v, tL

where v  represents  the  generalized  velocity of  the system.  If  we  calculate

the  total  derivative  of  this  representation  of  the  Hamiltonian  and  use  the

Euler–Lagrange  equations  as  well  as  the  definition  of  the  generalized

momentum, we get

r1 = Dt@hD ê. 8 q l@q, v, tD > pp, v l@q, v, tD > p<

v „ p - pp „ q - „ t lH0,0,1LHq, v, tL
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On the other hand, let us consider the Hamiltonian as a function of the two

generalized  coordinates  Hq, pL.  Then,  the  total  derivative  of  this

representation is

r2 = Dt@H@q, p, tDD

„ t H H0,0,1LHq, p, tL + „ p H H0,1,0LHq, p, tL + „ q H H1,0,0LHq, p, tL

If  both  relations  describe  the  same  system,  we  are  able  to  extract  the

factors of the total differentials. The following line examines the difference

of both expressions and extracts the coefficients of the total differentials:

Map@# == 0 &,

Map@Coefficient@r1 r2, #D &, 8Dt@tD, Dt@pD,
Dt@qD<D ê. 8v > q', pp > p'<D êê TableForm

-H H0,0,1LHq, p, tL - lH0,0,1LHq, q£, tL == 0

q£ - H H0,1,0LHq, p, tL == 0

- p£ - H H1,0,0LHq, p, tL == 0

The  result  is  that  the  time  derivative  of  the  Hamiltonian  is  equal  to  the

negative  time  derivative  of  the  Lagrangian.  The  two  other  equations

represent the time derivative of the generalized coordinate and momentum.

The first of these relations state that the time evolution of the coordinate is

given by the derivative of the Hamiltonian with respect to the momentum.

The  evolution  of  the  momentum is  determined  by the  negative  derivative

of  the  Hamiltonian  with  respect  to  the  coordinate.  If  the  Hamiltonian  or

Lagrangian is independent of time, the first relation does not exist.

The same procedure as demonstrated above can be applied to a mechanical

system of more than one degree of freedom. First, let us calculate the total

derivative of the Hamiltonian in the Legendre representation. Carrying out

the calculation, we find

2. Classical Mechanics 363



(2.8.20)

dH = ⁄i pi dq 'i + q 'i dpi - ÅÅÅÅÅÅÅÅqi
dq 'i - ÅÅÅÅÅÅÅÅqi

dq 'i

- ÅÅÅÅÅÅÅÅt dt

= ⁄i q 'i dpi - ÅÅÅÅÅÅÅÅqi
dq 'i - ÅÅÅÅÅÅÅÅt dt.

The Euler–Lagrange equations provide

(2.8.21)ÅÅÅÅÅÅÅÅqi
=

d
ÅÅÅÅÅÅdt I ÅÅÅÅÅÅÅÅÅq'i

M = p 'i.

Thus, the total derivative of the Hamiltonian becomes

(2.8.22)dH = ⁄i q 'i dpi - p 'i dqi - ÅÅÅÅÅÅÅÅt dt.

On the other hand, the Hamiltonian is a function of the qi and pi, so that

(2.8.23)dH = ‚
i

H
ÅÅÅÅÅÅÅÅqi

dqi +
H

ÅÅÅÅÅÅÅÅpi
dpi +

H
ÅÅÅÅÅÅÅÅt dt.

Comparing both expressions, we gain the relations

(2.8.24)p 'i = -
H

ÅÅÅÅÅÅÅÅqi
,

(2.8.25)q 'i =
H

ÅÅÅÅÅÅÅÅpi
,

(2.8.26)ÅÅÅÅÅÅÅÅt = -
H

ÅÅÅÅÅÅÅÅt .

These  relations  are  Hamilton's  famous  equations.  Because  of  their

symmetrical  appearance,  these  equations  are  also  called  canonical

equations.  The  set  of  variables  Hqi, piL  are  known  as  canonical  variables.

The above system of equations is a first-order ordinary differential system

of 2N equations. This system of equation is equivalent to the second-order

equations resulting from Hamilton's principle.

The  above  system  of  equations  is  called  Hamilton's  equations  although

these  equations  are  known  since  1809  to  be  derived  by  Lagrange  and

Poisson.  However,  both  did  not  realize  the  importance  of  their  derived

results in mechanics. Until 1831, when Cauchy pointed out the importance

of  these  equations  for  mechanical  systems,  the  equations  were  applied  to

mechanical  problems.  Hamilton  derived  these  equations  in  1834  from  a

variational principle. He opened a wide field of applications with his work.

To  simplify  the  derivation  of  Hamilton's  equations  of  motion,  we  collect

the  necessary  steps  in  the  function  HamiltonsEquation[].  This  function

assumes that  the  Hamiltonian is  a  function of  the  generalized coordinates
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and momenta. It is also assumed that the coordinates are functions of time

by default:

HamiltonsEquation@hamiltonian_,
gcoordinates_List, gmomenta_List, indep_: tD :=

Block@8qp, pp<, qp = Map@ indep# &, gcoordinatesD;
pp = Map@ indep# &, gmomentaD; Flatten@
8MapThread@#1 == #2 hamiltonian &, 8qp, gmomenta<D,
MapThread@#1 == #2 hamiltonian &,

8pp, gcoordinates<D<DD

To see how this function works, let us examine an example.

Example 1: Hamilton's Equation for a Sliding Beat

We already know that the Hamiltonian of a sliding bead is given by

hamB =
pHtL2

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

2 m JI f HxHtLL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

xHtL M
2

+ 1N
+ g m f HxHtLL

pHtL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m H f £HxHtLL2 + 1L + g m f HxHtLL

Applying the above function to this Hamiltonian, we find

hamEqs = FullSimplify@HamiltonsEquationHhamB, 8xHtL<, 8pHtL<LD;
TableForm@hamEqsD

x£HtL ==
pHtL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m f £HxHtLL2+m

p£HtL ==
f £HxHtLL J pHtL2 f ££HxHtLL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH f £ HxHtLL2+1L2 -g m2N
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅm

These  two  equations  describe  the  time  evolution  of  the  coordinate  x  and

the  momentum  p.  The  constraint  of  the  movement  is  defined  by  the

arbitrary  function  f .  If  we  choose  this  function  in  a  specific  way,  for
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example  as  a  parabola,  we  find  the  explicit  representation  of  Hamilton's

equation:

hamEqs ê. f Æ Function@k, k2D êê TableForm

x£HtL ==
pHtL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 m xHtL2+m

p£HtL ==
2 xHtL J 2 pHtL2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH4 xHtL2+1L2 -g m2N
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅm

2.8.4 Hamilton's Equations and the Calculus of Variation

Hamilton's  principle  is  the  basis  for  the  derivation  of  Euler–Lagrange

equations.  The  mathematical  background  of  this  derivation  is  the

variational principle for the Lagrangian

(2.8.27)
d

ÅÅÅÅÅÅÅd¶ L @qiD …¶=0 =
d

ÅÅÅÅÅÅÅd¶ Ÿt1

t2 Hqi, q 'i, tL dt …
¶=0

= 0.

The  variation  of  the  coordinates  delivered  the  equation  of  motion  in  the

representation

(2.8.28)ÅÅÅÅÅÅÅÅqi
-

d
ÅÅÅÅÅÅdt I ÅÅÅÅÅÅÅÅÅq'i

M = 0, i = 1, 2, ….

We also  know that  the  Hamiltonian can be  obtained from the Lagrangian

by means of a Legendre transform by

(2.8.29)H = ⁄i pi q 'i - .

Since the Legendre transform is invertible, we find

(2.8.30)= ⁄i pi q 'i - H Hqi, - pi, tL.
The variational  principle  based on  from which the equations of motion

follow is represented by

(2.8.31)I dL
ÅÅÅÅÅÅÅd¶ M …¶=0 =

d
ÅÅÅÅÅÅÅd¶ Ÿt1

t2 H⁄i pi q 'i - HL dt …¶=0 = 0.

The  variation  here  means  that  all  variables  qi,q 'i  and  pi  take  part  in  the

variation of the functional. This is expressed by the following relations

(2.8.32)qè i = qi + ¶wi,
(2.8.33)pè i = pi + ¶vi.
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Inserting  this  representations  of  the  changed  functions  qi  and  pi  into  the

functional L, we find

     dL
ÅÅÅÅÅÅÅd¶ …¶=0 =

d
ÅÅÅÅÅÅÅd¶ Ÿt1

t2 H⁄i pè i qè 'i - H Hqè i, pè i, tLL dt …¶=0 = 0

     = ‡
t1

t2 ‚
i
Jqè 'i vi + pè i w 'i - J H

ÅÅÅÅÅÅÅÅqè i

d qè iÅÅÅÅÅÅÅÅÅd¶ +
H

ÅÅÅÅÅÅÅÅpè i

d pè iÅÅÅÅÅÅÅÅÅÅd¶ NN dt
ƒƒƒƒƒƒƒƒƒ¶=0

     = Ÿt1

t2 9⁄i Hq 'i, vi + pi w 'iL -⁄i I H
ÅÅÅÅÅÅÅÅqi

wi +
H

ÅÅÅÅÅÅÅÅÅpi
viM= dt

      = Ÿt1

t2 I⁄i Iq 'i -
H

ÅÅÅÅÅÅÅÅÅpi
M vi + ‚

i
I- p 'i -

H
ÅÅÅÅÅÅÅÅqi

M wiM dt.

If vi and wi are independent of each other, we get 

(2.8.34)q 'i =
H

ÅÅÅÅÅÅÅÅÅpi
,

(2.8.35)p 'i = -
H

ÅÅÅÅÅÅÅÅqi
.

This set of equations are Hamilton's equation of motion. Another example

demonstrating  the  application  of  Hamilton's  equations  is  the  motion  of  a

particle on a cylindric surface.

Example 1: Motion on a Cylinder

Let us assume that a mass point moves on the surface of a cylinder which

extends in, z-direction to infinity. For the geometry, see Figure 2.8.2.
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Figure 2.8.2. A beat on the surface of a cylinder. The cylinder is the surface of movement.

The surface of the cylinder is defined by

(2.8.36)x2 + y2 = R2.

In addition, we assume that the force on the particle is proportional to the

distance measured from the center of the cylinder. We assume

(2.8.37)F
”÷÷

= - k r”,
where k is a scalar constant. The potential related to this force is

V =
k

2
HR2 + z@tD2L

1
ÅÅÅÅÅÅ
2

k HR2
+ zHtL2L

The squared velocity of the particle in cylindrical coordinates is
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v2 = H t r@tDL2 + r@tD2 H t @tDL2 + H t z@tDL2

r£HtL2 + z£HtL2 + rHtL2 q£HtL2

Since the motion of the particle is restricted to the surface with r = R and R

is a constant, the kinetic energy becomes

T =
m

2
v2 ê. r > Function@t, RD

1
ÅÅÅÅÅÅ
2

m Hz£HtL2 + R2
q

£HtL2L

The Lagrangian then follows as

= T V

1
ÅÅÅÅÅÅ
2

m Hz£HtL2 + R2 q£HtL2L -
1
ÅÅÅÅÅÅ
2

k HR2 + zHtL2L

The  two  generalized  coordinates  of   are  q  and  z.  The  corresponding

generalized momenta are

p = t @tD

m R2 q£HtL

and

pz = tz@tD

m z£HtL

Since we are dealing with a conservative system and time is not explicitly

present  in  the  Lagrangian,  we  can  find  the  Hamiltonian  by  a  Legendre
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transform.  The  resulting  Hamiltonian  is  a  sum  of  kinetic  and  potential

energy. The Hamiltonian is calculated by

hamCyl = LegendreTransform@ ,

8 t @tD, tz@tD<, 8p @tD, pz@tD<D êê Expand

k R2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

+
pzHtL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 m
+

1
ÅÅÅÅÅÅ
2

k zHtL2 +
pqHtL2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m R2

Hamilton's equation of motion follow from

hEqs = HamiltonsEquation@hamCyl,
8 @tD, z@tD<, 8p @tD, pz@tD<D; hEqs êê TableForm

q£HtL ==
pqHtL
ÅÅÅÅÅÅÅÅÅÅÅÅm R2

z£HtL ==
pzHtL
ÅÅÅÅÅÅÅÅÅÅÅÅ

m

pq£HtL == 0

pz£HtL == -k zHtL

We observe that  the temporal  change  in the angular  momentum vanishes.

This property states that pq is a conserved quantity which is defined by

eq = p ==

m R2 q£HtL == k

This relation states that the angular momentum with respect to the z-axis is

a conserved quantity. We expect this result because the system is invariant

with  respect  to  rotations  around  the  z-axis.  If  we  use  the  second  of  these

equations  and  differentiate  with  respect  to  time  and  replace  the  temporal

changes of pz with the last equation, we find
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eqz = Map@ t # &, hEqsP2TD ê. HhEqsP4T ê. Equal > RuleL

z££HtL == -
k zHtL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

m

This  equation  is  a  harmonic  equation  for  the  z  coordinate.  Thus  the

movement along the z direction is harmonic. The solution is given by

solZ = DSolve@eqz, z, tD êê Flatten

:z Ø FunctionB8t<, c1 cos
i
k
jjjj
è!!!!

k t
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!

m

y
{
zzzz + c2 sin

i
k
jjjj
è!!!!

k t
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!

m

y
{
zzzzF>

The solution for the angular coordinate follows from

sol = DSolve@eq , , tD êê Flatten

:q Ø FunctionB8t<, t k
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m R2

+ c1F>

The track of the beat is generated by using the symbolic solutions.
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gra1 = ParametricPlot3D@
8R Sin@ @tDD, R Cos@ @tDD, z@tD< ê. solZ ê. sol ê.
8R > 1, m > 1, k > 0.1, > 2, C@1D > 0, C@2D > 1<,

8t, 0, 6 <, PlotPoints > 120D;
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To  see  how the  beat  is  moving  along  the  track,  we  generate  some  points

and collect them in a table.

points =

Table@8RGBColor@0, 0, 1D, PointSize@0.1D, Point@
8R Sin@ @tDD, R Cos@ @tDD, z@tD< ê. solZ ê. sol ê.
8R > 1, m > 1, k > 0.1, > 2, C@1D > 0,

C@2D > 1<D<, 8t, 0, 6 , 0.2<D;

These points are  used in sequenz of plots generating an illustration of the

motion.
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Map@Show@gra1, Graphics3D@#DD &, pointsD;
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2.8.5 Liouville's Theorem

A mechanical  system in Hamiltonian dynamics is  represented by two sets

of  canonical  coordinates:  the  generalized  coordinates  qi  and  the

generalized  momenta  pi.  Each  set  of  coordinates  is  the  basis  of  a  space.

Both spaces are completely independent of each other. The two spaces are

called the configuration space and the momentum space, respectively. The

union  of  both  spaces  allows  one  to  collect  the  total  information  on  the

mechanical  system  in  a  single  space,  the  so,  called  Hamiltonian  phase

space.
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Let us consider the example discussed in the last subsection. We examined

the motion of particle on an infinite cylinder. The phase space is generated

by the coordinates q, pq, z, and pz. Our examinations demonstrated that pq

is  a  conserved  quantity.  This  conservation  of  the  angular  momentum

reduces the number of independent directions in the phase space from four

to  three.  The  actual  phase  space  consist  only  of  the  coordinates  q, z,  and

pz. We know from the derived equations that the z-coordinate undergoes a

harmonic motion. On the other hand, we know that  from the conservation

of  angular  momentum,  the  rotation  frequency  q '  is  a  constant.  Thus,  the

angle q  increases linearly in time.  The temporal  change in the momentum

pz is given by

(2.8.38)p 'z = k z.

Since z oscillates harmonically, pz also shows a harmonic oscillation.

This  information  determines  the  structure  of  the  phase  space.  In  the

Hz, pzL-plane,  generally  the  motion  takes  place  on  an  ellipse.  Since  q

increase  linearly  in  time,  the  track of  a  particle  in  phase  space  lies  on  an

elliptic spiral. Figure 2.8.3 shows a single track of a particle in phase space.

z
q

Pz

Figure 2.8.3. Motion on a cylinder represented in phase space coordinates.

An orbit in phase space at constant energy H = const.  is an elliptic spiral.

If  we  know  the  initial  conditions  of  a  mechanical  system  (i.e.,

qi Ht = 0L, pi Ht = 0L), and if the system is conservative, then a unique orbit

in phase space is defined. The initial conditions determine the total energy.

This  kind  of  description  is  not  restricted  on  a  single  particle  but  can  be

extended  on  an  arbitrary  number  of  particles.  From  a  practical  point  of

view, we face the problem that each additional particle in the phases space
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extends its dimension by six coordinates. For example, if we want to treat

an ensemble of 1023  particles, we have a phase space of the same number

of  freedoms.  From  a  practical  point  of  view,  such  an  approach  is  not

efficient.

We need to introduce a method allowing us an appropriate description of a

large  number  of  particles.  One  such  method  is  to  measure  the  density  in

phase space. The number of particles in phase space dv is

(2.8.39)N = r dv,

with

(2.8.40)dv = dq1 dq2 ... dqk dp1 dp2 ... dpk,

where k is the dimensionality of the configuration space.

Let  us  consider  an  infinitesimal  volume  element  in  phase  space.  Because

the  underlying  dynamical  system  generates  continuous  changes  in  phase

space,  we  observe  that  a  certain  amount  in  the  coordinates  qi  and  pi  will

flow into the volume and another part will flow out of the volume.

Figure 2.8.4. Infinitesimal phase space volume. There is flow into and out of the volume.

For example, the inflow on the left surface of the volume is determined by

the density of particles in phase space at this location and by the temporal

change of the coordinate:

(2.8.41)r
dq'kÅÅÅÅÅÅÅÅÅÅdt dpk = r q 'k dpk .
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The inflow from the bottom is

(2.8.42)r
dp'kÅÅÅÅÅÅÅÅÅÅdt dqk = r p 'k dqk.

Thus, the total number of incoming particles are

(2.8.43)jin = r H q 'k dpk + p 'k dqkL.
The  drain  of  particles  from  the  volume  can  be  approximated  by  the

gradient in the coordinates:

(2.8.44)
jout = Ir q 'k + ÅÅÅÅÅÅÅÅÅqk

Hr q 'kL dqkM dpk +

I r p 'k + ÅÅÅÅÅÅÅÅÅpk
Hr p 'kL dpkM dqk .

The particle balance is thus given by

(2.8.45)jin - jout = 9- ÅÅÅÅÅÅÅÅÅqk
Hr q 'kL - ÅÅÅÅÅÅÅÅÅpk

Hr p 'kL = dqk dpk .

The sum balance currant must be equal the temporal changes in the density

for all possible configurations of the volumes

(2.8.46)

r
ÅÅÅÅÅÅÅt + ‚

k=1

r

ÅÅÅÅÅÅÅÅÅqk
Hr q 'kL + ÅÅÅÅÅÅÅÅÅpk

Hr p 'kL = 0

ñ
r

ÅÅÅÅÅÅÅt + ‚
k=1

r r
ÅÅÅÅÅÅÅÅÅqk

q 'k +
r

ÅÅÅÅÅÅÅÅÅpk
p 'k

+ ‚
k=1

r

r
q'kÅÅÅÅÅÅÅÅÅÅqk

+ r
p'kÅÅÅÅÅÅÅÅÅÅpk

r
ÅÅÅÅÅÅÅt

+ ‚
k=1

r r
ÅÅÅÅÅÅÅÅÅqk

q 'k +
r

ÅÅÅÅÅÅÅÅÅpk
p 'k

+ r ‚
k=1

r J q'kÅÅÅÅÅÅÅÅÅÅqk
+

p'kÅÅÅÅÅÅÅÅÅÅpk
N.

Hamilton's equations provide

(2.8.47)p 'k = -
H

ÅÅÅÅÅÅÅÅÅqk
,

(2.8.48)q 'k =
H

ÅÅÅÅÅÅÅÅÅpk
,

or

(2.8.49)
p'kÅÅÅÅÅÅÅÅÅÅpk

= -
2H

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqk pk

and

(2.8.50)
q'kÅÅÅÅÅÅÅÅÅÅqk

=
2H

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅpk qk

(2.8.51)ï -
p'kÅÅÅÅÅÅÅÅÅÅpk

=
q'kÅÅÅÅÅÅÅÅÅÅqk

.
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Thus, the equation for r reduces to

(2.8.52)
r

ÅÅÅÅÅÅÅt + ‚
k=1

k r
ÅÅÅÅÅÅÅÅÅqk

q 'k +
r

ÅÅÅÅÅÅÅÅÅpk
p 'k = 0.

This  formula  is  equivalent  to  a  total  temporal  change  of  r,  meaning  the

density r  in phase space is  a  conserved quantity.  This result  is equivalent

with  Liouville's  theorem that  the  density  of  the  phase  space  is  conserved

while  the  system  develops  dynamically.  This  result  was  published  by

Liouville  in  1838.  The  theorem  by  Liouville  is  a  special  case  of  a  more

general theory based on Poisson brackets.

2.8.6 Poisson Brackets

Let  us  consider  a  function  similar  to  the  phase  space  density  which

depends on phase space coordinates qk , pk, and t:

(2.8.53)f = f H qk , pk , tL.
The structure of the phase space is governed by Hamilton's equations

(2.8.54)q 'k =
H

ÅÅÅÅÅÅÅÅÅpk
,

(2.8.55)p 'k = -
H

ÅÅÅÅÅÅÅÅÅqk
.

The total temporal change of f  is given by

(2.8.56)
df
ÅÅÅÅÅÅÅdt =

f
ÅÅÅÅÅÅÅt + ‚

k=1

r f
ÅÅÅÅÅÅÅÅÅqk

q 'k +
f

ÅÅÅÅÅÅÅÅÅpk
p 'k .

Inserting Hamilton's equation of motion into this expression gives us

(2.8.57)
df
ÅÅÅÅÅÅÅdt =

f
ÅÅÅÅÅÅÅt + ‚

k=1

r f
ÅÅÅÅÅÅÅÅÅqk

H
ÅÅÅÅÅÅÅÅÅpk

-
f

ÅÅÅÅÅÅÅÅÅpk

H
ÅÅÅÅÅÅÅÅÅqk

.

On the phase space spanned by the coordinates qk  and pk , let us define an

abbreviation for the following expression:

(2.8.58)‚
k=1

r f
ÅÅÅÅÅÅÅÅÅqk

H
ÅÅÅÅÅÅÅÅÅpk

-
f

ÅÅÅÅÅÅÅÅÅpk

H
ÅÅÅÅÅÅÅÅÅqk

= 8 f , H<8q,p<,

known  as  Poisson's  bracket.  The  subscript  8q, p<  denotes  the  set  of

variables of the phase space. Inserting this bracket, the temporal change of

f  becomes

(2.8.59)df
ÅÅÅÅÅÅÅdt =

f
ÅÅÅÅÅÅÅt + 8 f , H<8q,p<.
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This relation allows us to calculate the temporal changes of any function f

depending  on  the  phase  space  variables.  The  Poisson  bracket  itself  has

some remarkable properties which will be discussed below.

We already encountered conserved quantities which have the property that

temporal changes of this quantity vanish. This vanishing can be expressed

by Poisson brackets in a very convenient way. Because the conservation of

a quantity f  assures that

(2.8.60)df
ÅÅÅÅÅÅÅdt = 0

which is identical with

(2.8.61)f
ÅÅÅÅÅÅÅt + 8 f , H<8q,p< = 0.

If the conserved quantity f  is independent of time, we find

(2.8.62)8 f , H<8q,p< = 0,

(i.e., the Poisson bracket of the conserved quantity f  and the Hamiltonian

vanishes).

Let  us  consider  two  functions  f  and  g  depending  on  the  phase  space

variables.  Using  these  functions  in  the  Poisson  bracket,  we  can  derive

some of the general properties of this kind of brackets

(2.8.63)8 f , g<8q,p< = ‚
k=1

s f
ÅÅÅÅÅÅÅÅÅqk

g
ÅÅÅÅÅÅÅÅÅpk

-
f

ÅÅÅÅÅÅÅÅÅpk

g
ÅÅÅÅÅÅÅÅÅqk

= 8 f , g<.
In  the  following,  we  use  also  the  short  notation  8 f , g<  for  the

representation of the Poisson bracket 8 f , g<8q,p<. This notation is used when

no confusion on the phase space variables is possible. The Poisson bracket

owns the following properties

(2.8.64)8 f , g< = -8g, f <        antisymmetry.

If one of the functions f  or g are constants the Poisson bracket vanishes

(2.8.65)8 f , c< = 0 = 8c, g<.
If  we  have  three  functions  f , g,  and  k  which  arepart  of  the  phase  space,

then, we can check the properties

(2.8.66)8 f + h, g< = 8 f , g< + 8h, g<          linearity
(2.8.67)8 f h, g< = f 8h, g< + h 8 f , g<     Leibniz's rule
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(2.8.68)ÅÅÅÅÅÅt 8 f , g< = 9 f
ÅÅÅÅÅÅÅt , g= + 9 f ,

g
ÅÅÅÅÅÅÅt =     differentiation rule

If  one  of  the  two  functions  f  or  g  reduces  to  a  phase  space  variable  the

Poisson  bracket  reduces  to  the  partial  derivative  of  the  function  with

respect to  the conjungate coordinate.  For example if g  equals either  qk  or

pk  the result of the Poisson bracket is

(2.8.69)8 f , qk< = -
f

ÅÅÅÅÅÅÅÅÅpk

(2.8.70)8 f , pk< =
f

ÅÅÅÅÅÅÅÅÅqk
.

If we chose for both f  and g  coordinates of the phase space then we gain

the fundamental Poisson brackets

(2.8.71)8qi, q j< = 0
(2.8.72)8pi, p j< = 0

(2.8.73)

8qi, pi< = ‚
k=1

s qiÅÅÅÅÅÅÅÅÅqk

p j
ÅÅÅÅÅÅÅÅÅÅpk

-
qiÅÅÅÅÅÅÅÅÅÅpk

p j
ÅÅÅÅÅÅÅÅÅÅqk

= ⁄k=1
s

dik d jk = dij.
                            

These  relations  of  the  fundamental  Poisson  brackets  are  the  basis  of

quantum mechanics.  For  three  functions  of  the  phase  space  there exists  a

special relation the so called Jacobi identity

(2.8.74)8 f , 8g, h<< + 8g, 8h, f << + 8h, 8 f , g<< = 0 .

The  above  properties  determine  the  algebraic  properties  of  the  Poisson

bracket. Especially,  linearity,  antisymmetry,  and the Jacobi identity define

the related Lie algebra of the bracket.

Another important property of the Poisson bracket is the ability to derive,

from two conserved quantities J1 and J2, another conserved quantity

(2.8.75)8J1, J2< = const.

This behavior  is known as Poisson's  theorem. A direct proof is feasible  if

we  assume  that  J1  and  J2  are  independent  of  time.  Let  us  replace  in  the

Jacobi  identity  the  third  function  by the  Hamiltonian  of  the  system;  then,

we get

(2.8.76)8H , 8J1, J2,<< + 8J1, 8J2, H<< + 8J2 8H , J1<< = 0.

Since 8J2, H< = 0 and 8H , J1< = 0, we find 

(2.8.77)8H , 8J1, J2<< = 0.
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Thus,  the  bracket  8J1, J2<  is  also  a  conserved  quantity.  We  note  that  the

application  of  Poisson's  theorem  will  not  always  provide  new  conserved

quantities  because  the  number  of  conserved  quantities  of  a  standard

mechanical system is finite. It is known that the total number of conserved

quantities is given by 2 n - 1 such quantities if n  is the degree of freedom

in  the  phase  space.  Thus,  Poisson's  theorem  sometimes  delivers  trivial

constants  or  the  resulting  conserved  quantity  is  a  function  of  the  original

conserved  quantities  J1  and  J2.  If  both  cases  fail,  we  obtain  a  new

conserved quantity.

The  main  application  of  Poisson  brackets  is  the  formulation  of  equations

of motion.  The derivation of  conserved  quantities is  a  special  property of

these  brackets.  To  see  how  equations  of  motion  follow  by  Poisson's

bracket,  let  us  consider  that  the  first  argument  is  one  of  the  phase  space

variables.  As  second  argument,  we  use  the  Hamiltonian.  The  resulting

relations are 

(2.8.78)
q 'k = 8qk, H< =

‚
i=1

s qkÅÅÅÅÅÅÅÅÅpi
-

qkÅÅÅÅÅÅÅÅÅpi

H
ÅÅÅÅÅÅÅÅqi

= ‚
i=1

s H
ÅÅÅÅÅÅÅÅpi

dki =
H

ÅÅÅÅÅÅÅÅÅpk
,

(2.8.79)
p 'k = 8pk , H< =

‚
i=1

s pkÅÅÅÅÅÅÅÅÅqi

H
ÅÅÅÅÅÅÅÅpi

-
pkÅÅÅÅÅÅÅÅÅpi

H
ÅÅÅÅÅÅÅÅqi

= -
H

ÅÅÅÅÅÅÅÅÅqk
.

However, these equations are Hamilton's equation of motion:

(2.8.80)q 'k = 8qk , H< =
H

ÅÅÅÅÅÅÅÅÅPk
,

(2.8.81)p 'k = 8pk , H< = -
H

ÅÅÅÅÅÅÅÅÅqk
.

Thus  the  dynamic  of  a  Hamiltonian  system  follows  by  means  of  the

Poisson bracket if we know the Hamiltonian

(2.8.82)q 'k = 8qk , H<,    k = 1, 2, …,
(2.8.83)p 'k = 8pk , H<.

This system of equations defines the phase space flow.

The following Mathematica  lines define the Poisson bracket in such a way

that some of the above properties are incorporated:

(2.8.84)8 f , g<8q,p< = ‚
k=1

s f
ÅÅÅÅÅÅÅÅÅqk

g
ÅÅÅÅÅÅÅÅÅpk

-
f

ÅÅÅÅÅÅÅÅÅpk

g
ÅÅÅÅÅÅÅÅÅqk

.
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First,  we  define  a  notation for  the Poisson bracket  in such a  way that  the

symbolic  use  in  Mathematica  is  related  to  the  use  in  the  text.  The

following line defines such a notation:

<< Utilities`Notation`

NotationA

8f_, g_<8q_,p_< PoissonBracket@f_, g_, q_, p_DE

The  next  few  cells  are  representations  for  the  bilinearity  of  the  Poisson

bracket. First, we define properties of the bracket for symbols occurring in

a product that are independent of the phase space variables.

PoissonBracket@a_ f_, g_,

coordinates_List, momenta_ListD :=

a PoissonBracket@ f, g, coordinates, momentaD ê;
HApply@And, Map@FreeQ@a, #D &, coordinatesDD fl

Apply@And, Map@FreeQ@a, #D &, momentaDDL

PoissonBracket@ f_, a_ g_,

coordinates_List, momenta_ListD :=

a PoissonBracket@ f, g, coordinates, momentaD ê;
HApply@And, Map@FreeQ@a, #D &, coordinatesDD fl

Apply@And, Map@FreeQ@a, #D &, momentaDDL

The next two cells define the linearity in the first and second argument of

the Poisson bracket (PB):

PoissonBracket@a_ + f_, g_,

coordinates_List, momenta_ListD :=

PoissonBracket@ a, g, coordinates, momentaD +

PoissonBracket@ f, g, coordinates, momentaD
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PoissonBracket@ f_, a_ + g_,

coordinates_List, momenta_ListD :=

PoissonBracket@ f, a, coordinates, momentaD +

PoissonBracket@ f, g, coordinates, momentaD

The following two cells stand for Leibniz` rule:

PoissonBracket@ f_ h_, g_,

coordinates_List, momenta_ListD :=

f PoissonBracket@ h, g, coordinates, momentaD +

h PoissonBracket@ f, g, coordinates, momentaD

PoissonBracket@ g_, f_ h_,

coordinates_List, momenta_ListD :=

f PoissonBracket@g, h, coordinates, momentaD +

h PoissonBracket@ g, f, coordinates, momentaD

The next cell is related to differentiations:

Unprotect@DD;
D@PoissonBracket@ f_, g_,

coordinates_List, momenta_ListD, indep1_D :=

PoissonBracket@D@f, indep1D, g, coordinates,

momentaD + h PoissonBracket@ f,
D@g, indep1D, coordinates, momentaD

Protect@
DD;

So far,  no specific  calculation was defined for the PB. The following cell

defines how the actual calculations are carried out in the PB:

PoissonBracket@f_, g_, coordinates_List, momenta_List,

indep_: tD := Block@8<, Fold@Plus, 0, MapThread@
H #1 f #2 g #2 f #1 gL &, 8coordinates, momenta<DDD
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Now, the application of the function demonstrates the action. Let us check

the  linearity  first.  Assume  that  we  have  three  functions  defined  on  the

phase space. Linearity is then demonstrated by

8 f@ @tD, p @tDD + g@ @tD, p @tDD,
h@ @tD, p @tDD<88 @tD<,8p @tD<<

a HhH0,1LHqHtL, pqHtLL f H1,0LHqHtL, pqHtLL - f H0,1LHqHtL, pqHtLL hH1,0LHqHtL, pqHtLLL +

b HhH0,1LHqHtL, pqHtLL gH1,0LHqHtL, pqHtLL - gH0,1LHqHtL, pqHtLL hH1,0LHqHtL, pqHtLLL

An example for Leibniz' rule is given next:

8 f@q@tDD h@q@tD, p@tDD, @q@tD, p@tDD
H g@p@tDD + H@q@tD, p@tDDL<88q@tD<,8p@tD<<

a HhHqHtL, pHtLL HzHqHtL, pHtLL Hb f £HqHtLL g£HpHtLL + g f £HqHtLLH H0,1LHqHtL, pHtLLL +

Hb gHpHtLL + g HHqHtL, pHtLLL f £HqHtLL zH0,1LHqHtL, pHtLLL +

f HqHtLL HzHqHtL, pHtLL Hb g£HpHtLL hH1,0LHqHtL, pHtLL + g HH H0,1LHqHtL, pHtLL
hH1,0LHqHtL, pHtLL - hH0,1LHqHtL, pHtLLH H1,0LHqHtL, pHtLLLL +

Hb gHpHtLL + g HHqHtL, pHtLLL HzH0,1LHqHtL, pHtLL hH1,0LHqHtL, pHtLL -

hH0,1LHqHtL, pHtLL zH1,0LHqHtL, pHtLLLLL

An example for the derivation rule is given by

t8f@q@tDD, h@q@tD, p@tDD<88q@tD<,8p@tD<<

q£HtL f ££HqHtLL hH0,1LHqHtL, pHtLL +

f £HqHtLL Hp£HtL hH0,2LHqHtL, pHtLL + q£HtL hH1,1LHqHtL, pHtLLL
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2.8.7 Manifolds and Classes

So far, we defined a few functions for the Poisson bracket. However, a PB

is an object possessing some properties and some methods. The properties

are  the  phase  space  variables  and  the  methods  are  the  algebraic  relations

defined in Section 2.8.6. From a theoretical point of view, a PB is part of a

dynamic  structure  incorporating  phase  space  properties  and  algebraic

methods.  We  already  know  that  a  PB  is  intrinsically  connected  with  the

phase space, which is, on its own, a differentiable manifold. The manifold,

respectively  the  phase  space,  is  defined  by  the  phase  space  variables  qk

and  pk .  In  this  phase  space,  there  are  functions  depending  on  the  phase

space  variables,  such  as  energy,  momentum,  angular  momentum,  and  o

forth.  The  PB  for  the  set  of  variables  qk  and  pk  generates  an  algebraic

structure  on  this  manifold.  Thus,  it  is  natural  to  separate  the  total  phase

space into the algebraic structure and the coordinates defined by the phase

space variables. This separation allows us to introduce a concept known as

object-oriented  representation.  Objects  in  this  representation  are  derived

from classes  that  define a  general  view of  the system. A class consists  of

properties  and  methods.  In  our  case,  the  properties  are  the  phase  space

variables  and  the  methods  are  the  algebraic  structure  of  the  manifold.

Thus,  we  can  use  an  object-oriented  representation  of  the  PB  which  is

defined by the class PoissonB:
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PB = Class@"PoissonB", Class@"Element"D,
8description = "Poisson Bracket",

8P = Null, Description "momentas"<,
8Q = Null, Description "coordinates"<,
8T = t, Description "independent variable"<,
8 = 8 <, Description "set of

parameters Hgiven by a list of rulesL"<<,
8H constant factor extraction L
PoissonBracket@a_ f_, g_D :=

a PoissonBracket@ f, gD ê;
HApply@And, Map@FreeQ@a, #D &, QDD fl

Apply@And, Map@FreeQ@a, #D &, PDDL,
H constant factor extraction L
PoissonBracket@ f_, a_ g_D :=

a PoissonBracket@ f, gD ê;
HApply@And, Map@FreeQ@a, #D &, QDD fl

Apply@And, Map@FreeQ@a, #D &, PDDL,
H Linearity L
PoissonBracket@a_ + f_, g_D :=

PoissonBracket@ a, gD + PoissonBracket@ f, gD,
H Linearity L
PoissonBracket@ f_, a_ + g_D :=

PoissonBracket@ f, aD + PoissonBracket@ f, gD,
H product relation L
PoissonBracket@ f_ h_, g_D :=

f PoissonBracket@ h, gD + h PoissonBracket@ f, gD,
H product relation L
PoissonBracket@ g_, f_ h_D :=

f PoissonBracket@g, hD + h PoissonBracket@ g, fD,
H Calculation of the bracket L
PoissonBracket@f_, g_D :=

Block@8<, Fold@Plus, 0, MapThread@
H #1 f #2 g #2 f #1 gL &, 8Q, P<DD ê. D,

PB@Pnew_List, Qnew_List, Tnew_Symbol, new_D :=

Block@8<, P = Pnew; Q = Qnew; = newD<
D

- Class PoissonB -
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The  class  PB  is  defined  by  means  of  the  software  package  Elements

allowing  one  to  generate  classes  for  objects.  An  object  here  is  a  specific

form of  PB  designed  for  a  specific  phase  space.  The  following  examples

demonstrate how this software concept can be used to efficiently carry out

calculations.  Before  we  give  some  examples,  let  us  define  a  simpler

notation for a PB.

Since  we  separated  the  phase  space  from  its  algebraic  structure,  we  are

able to replace the phase space coordinates by the phase space object. The

following  line  defines  a  template  for  the  Poisson  bracket  combining  the

poisson manifold as an object and the algebraic properties of the bracket:

NotationA

8f_, g_<obj_ Dot@obj_, PoissonBracket@f_, g_DDE

2.8.7.1 A Two-Dimensional Poisson Manifold

Let  us  first  examine  phase  spaces  with  two  dimensions  of  freedom.  For

such  a  case,  we  have  two  phases  space  variables:  the  coordinate  qHtL  and

the momentum pHtL. Functions in this manifold solely depend on these two

coordinates. 

The  following  line  defines  an  object  derived  from the  class  PB  for  these

two  coordinates.  The  coordinates  p  and  q  are  functions  of  time.  The

two-dimensional Poisson manifold is represented by the object pm:

pm = PB.new@8P 8p@tD<, Q 8q@tD<<D

- Object of PoissonB -

The  package  Elements   offers  a  function  GetPropertiesForm[]  to  check

the  properties  of  a  given  object.  The  properties  of  the  defined  Poisson

manifold are derived by
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GetPropertiesForm@pmD

Property Value

description Poisson Bracket

P 8pHtL<
Q 8qHtL<
T t

A 8a Ø a<

This table shows that the momenta are given by the functions pHtL and the

coordinates  by  qHtL.  In  addition,  the  manifold  may  depend  on  parameters

which can be collected in the variable A.

Let  us assume that  we have a  physical  system characterized by its  kinetic

energy Tand its potential energy V  given by

h =
pHtL2

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2 m

+ V HqHtLL

pHtL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m

+ V HqHtLL

This  is  a  Hamiltonian  existing  on  the  defined  Poisson  manifold.  Let  us

apply the Poisson manifold to the two functions pHtL and qHtL. The Poisson

manifold in the Poisson bracket is given as a subscript to the bracket.

8h, pHtL<pm

V £HqHtLL

8h, qHtL<pm

-
pHtL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m
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The following is another example for a general Hamiltonian H :

8HHpHtL, qHtLL, qHtL<pm

-H H1,0LHpHtL, qHtLL

A  third  example  deals  with  a  general  Hamiltonian  H  and  an  arbitrary

function f  depending on the two coordinates of the manifold. The Poisson

bracket of these two functions are

8a HHqHtL, pHtLL, f HqHtL, pHtLL<pm

a H f H0,1LHqHtL, pHtLLH H1,0LHqHtL, pHtLL - H H0,1LHqHtL, pHtLL f H1,0LHqHtL, pHtLLL

This relation represents Jacobi's identity for three functions H , f , and g :

SimplifyA8 f HqHtL, pHtLL, 8gHqHtL, pHtLL, a HHqHtL, pHtLL<pm<pm
+

8gHqHtL, pHtLL, 8a HHqHtL, pHtLL, f HqHtL, pHtLL<pm<pm
+

8a HHqHtL, pHtLL, 8 f HqHtL, pHtLL, gHqHtL, pHtLL<pm<pm
E

0

The next example represents linearity in the second argument:

8a HHqHtL, pHtLL, f HqHtL, pHtLL + gHqHtL, pHtLL<pm

a H-H H0,1LHqHtL, pHtLL f H1,0LHqHtL, pHtLL - H H0,1LHqHtL, pHtLL gH1,0LHqHtL, pHtLL +

f H0,1LHqHtL, pHtLLH H1,0LHqHtL, pHtLL + gH0,1LHqHtL, pHtLLH H1,0LHqHtL, pHtLLL
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2.8.7.2 A Four-Dimensional Poisson Manifold

The following  line  defines  a  second  Poisson manifold  for  two  coordinate

pairs qi and pi. The manifold is represented by the object

pm2 = PB.new@8P 8p1@tD, p2@tD<, Q 8q1@tD, q2@tD<<D

- Object of PoissonB -

The properties of this manifold is gained by

GetPropertiesForm@pm2D

Property Value

description Poisson Bracket

P 8p1HtL, p2HtL<
Q 8q1HtL, q2HtL<
A 8a Ø a<

Let  us  assume  that  we  know  a  Hamiltonian  in  this  four-dimensional

Poisson manifold given by

h4 =
p1HtL2
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2 m1

+
p2HtL2

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2 m2

+ V Hq1HtL, q2HtLL

p1HtL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m1

+
p2HtL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m2

+ VHq1HtL, q2HtLL

The Hamiltonian consists of two terms: the kinetic energies and a general

expression for  the  potential  V .  The Poisson brackets for  this  Hamiltonian

and the coordinates in this manifold follow from
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H8h4, #1<pm2 &L êû 8p1HtL, p2HtL, q1HtL, q2HtL<

:V H1,0LHq1HtL, q2HtLL, V H0,1LHq1HtL, q2HtLL, -
p1HtL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m1

, -
p2HtL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m2

>

Another two-dimensional Hamiltonian with a different potential V  gives

h41 =
p1HtL2

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2 m1

+
p2HtL2

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2 m2

+ V Hq1HtLL

p1HtL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m1

+
p2HtL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m2

+ VHq1HtLL

H8h41, #1<pm2 &L êû 8p1HtL, p2HtL, q1HtL, q2HtL<

:V £Hq1HtLL, 0, -
p1HtL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m1

, -
p2HtL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m2

>

The  following  is  an  example  incorporating  two  specific  functions  of  the

Poisson manifold:

9
p1HtL2

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2

+
p2HtL2

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2

+ VHq1HtLL, q1HtL2
- p1HtL q2HtL=

pm2

p1HtL p2HtL - 2 p1HtL q1HtL - q2HtLV £Hq1HtLL

This  example  demonstrates  that  the  Poisson  bracket  having  two  integrals

of motion as arguments vanishes:

9
p1HtL2

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2

+
p2HtL2

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2

+ VHq1HtLL,
p1HtL2

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2

+
p2HtL2

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2

+ V Hq1HtLL=
pm2

0
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2.8.7.3 Hamilton's Equations Derived from the Manifold

Having available  an object-based  reprsentation,  it  is  convenient  to  inherit

properties  of  one  class  to  another.  This  is  especially  useful  in  deriving

Hamilton's  equations  based  on  PBs.  In  the  previous  subsection,  we

introduced   class  PoissonB  collecting  all  properties  and  methods  of  a

Poisson  manifold.  This  class  can  be  used  by  the  class

HamltonianEquations  defined  by  the  phase  space  variables.  Those

variables are  the basis  of the Hamilton manifold.   The algebraic  structure

defined for the PBs is also used by this class.

It  is  convenient  here  to  define  a  class  for  Hamilton's  equations  which

inherits  the  properties  of  the  Poisson  bracket.  The  properties  of  the

Poisson manifold are equivalent to the properties of the Hamilton manifold.

The following lines define the class HamiltonEquations:

HamiltonEquations = Class@"HamiltonEquations", PB,

8description = "Hamilton's equations"<,
8HamEqs@H_, V_ ê; FreeQ@V, ListDD :=

T V PoissonBracket@H, VD,
HamEqs@H_, V_ListD := Map@HamEqs@H, #D &, VD,
HamEqs@H_D := Map@HamEqs@H, #D &, Flatten@8P, Q<DD,
HamiltonEquations@
Pnew_List, Qnew_List, Tnew_SymbolD :=

Block@8<, P = Pnew; Q = Qnew; T = TnewD<
D

- Class HamiltonEquations -

To  handle  the  class  for  Hamiltonian  equations  and  the  derived  objects  in

the  same  way  as  in  a  textbooks  or  in  case  of  Poisson  brackets,  we

introduce the notation

NotationA obj_@f_D Dot@obj_, HamEqs@f_DDE
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and define the corresponding palette

8 , <

@ D

Having these tools available, we can apply the classes to specific problems.

2.8.7.4 Hamilton's Equations Derived from the 
Hamilton–Poisson Manifold

As a first example, let us examine a Hamilton–Poisson (HP) manifold with

a  single  coordinate  and  a  single  momentum.  The  object  defining  the  HP

manifold is created by

ham1 = HamiltonEquations.new@8P 8p@tD<, Q 8q@tD<<D

- Object of HamiltonEquations -

Specifying a single-particle Hamiltonian by kinetic and potential energies,

we can derive the set of Hamilton's equations by applying the manifold to

the Hamiltonian:

GetPropertiesForm@ham1D

Property Value

description Hamilton' s equations

P 8pHtL<
Q 8qHtL<
T t

A 8a Ø a<
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ham1A
pHtL2

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2

+ V HqHtLLE

8p£HtL == V £HqHtLL, q£HtL == - pHtL<

The result is a system of equations defining the dynamic of this particle.

A second example is concerned with a four-dimensional HP manifold. The

generalized coordinates and the momenta are primarily given by q1, q2, p1,

and p2.

ham2 = HamiltonEquations.

new@8P 8p1@tD, p2@tD<, Q 8q1@tD, q2@tD<<D

- Object of HamiltonEquations -

As an example, let us consider the double pendulum. The Hamiltonian for

this system reads

HamDoublePendulum =

1

2 l1
2 l2

2 m2 Hm1 + m2 Sin@ 1@tD 2@tDD2L
Hl22 m2 p1@tD

2 + l1
2 Hm1 + m2L p2@tD2

2 m2 l1 l2 p1@tD p2@tD Cos@ 1@tD 2@tDDL
m2 g l2 Cos@ 2@tDD Hm1 + m2L g l1 Cos@ 1@tDD

-g cosHq2HtLL l2 m2 - g cosHq1HtLL l1 Hm1 + m2L +

l2
2 m2 p1HtL2 - 2 cosHq1HtL - q2HtLL l1 l2 m2 p2HtL p1HtL + l1

2 Hm1 + m2L p2HtL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 l1
2 l2

2 Hm2 sin2Hq1HtL - q2HtLL + m1Lm2
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where  pi Hi = 1, 2L  are  the  generalized  momenta,  li  and  mi  are  the  inertia

momenta and the masses of the particles,rspectively, and qi  are the angles

of  deviation.  The  HP  manifold  ham2  defined  above  does  not  exactly

correspond to the variables used in the Hamiltonian. However, we are able

to  change  the  coordinate  names  by  setting  the  properties  of  the  HP

manifold using

SetProperties@ ham2,
8P 8p1@tD, p2@tD<, Q 8 1@tD, 2@tD<<D

Now, the HP manifold is defined for the coordinates

GetPropertiesForm@ham2D

Property Value

description Hamilton' s equations

P 8p1HtL, p2HtL<
Q 8q1HtL, q2HtL<
T t

A 8a Ø a<

The four equations of motion can then be obtained using
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equationsOfMotion = ham2@HamDoublePendulumD

:p1
£ HtL == g sinHq1HtLL l1 Hm1 + m2L +

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 l1

2 l2
2 m2

i
k
jjj 2 sinHq1HtL - q2HtLL l1 l2 m2 p1HtL p2HtL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m2 sin2Hq1HtL - q2HtLL + m1

-

H2 cosHq1HtL - q2HtLL sinHq1HtL - q2HtLLm2 Hl22 m2 p1HtL2 -

2 cosHq1HtL - q2HtLL l1 l2 m2 p2HtL p1HtL + l1
2 Hm1 + m2L p2HtL2LL ë

Hm2 sin2Hq1HtL - q2HtLL + m1L2y{zzz, p2
£ HtL ==

g sinHq2HtLL l2 m2 +
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 l1

2 l2
2 m2

i
k
jjjH2 cosHq1HtL - q2HtLL sinHq1HtL - q2HtLL

m2 Hl22 m2 p1HtL2 - 2 cosHq1HtL - q2HtLL l1 l2 m2 p2HtL p1HtL +

l1
2 Hm1 + m2L p2HtL2LL ë Hm2 sin2Hq1HtL - q2HtLL + m1L2 -

2 sinHq1HtL - q2HtLL l1 l2 m2 p1HtL p2HtL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

m2 sin2Hq1HtL - q2HtLL + m1

y
{
zzz, q1

£ HtL ==

2 cosHq1HtL - q2HtLL l1 l2 m2 p2HtL - 2 l2
2 m2 p1HtL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 l1

2 l2
2 m2 Hm2 sin2Hq1HtL - q2HtLL + m1L ,

q2
£ HtL ==

2 cosHq1HtL - q2HtLL l1 l2 m2 p1HtL - 2 l1
2 Hm1 + m2L p2HtL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 l1

2 l2
2 m2 Hm2 sin2Hq1HtL - q2HtLL + m1L >

They  represent  the  dynamics  of  the  double  pendulum  in  the

Hamilton–Poisson  manifold.  This  example  demonstrates  that  an

object-oriented  approach  in  symbolic  computing  allows one  to  mimic  the

theoretical  background  as  close  as  possible.  It  is  natural  in  an

object-oriented  environment  to  use  the  mathematical  notions  in  a

one-to-one corespondence. Thus, symbolic computing becomes a basis for

theoretical  constructs.  The  ease  of  use  and  the  close  connection  to

textbook  presentations  allows  for  a  fast  manipulation  and  reliable

calculation  of  results.  In  addition  to  these  examples,  many  other

applications of Elements to similar subjects are ahead.
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2.8.8 Canonical Transformations

The  basic  idea  of  canonical  transformations  is  to  simplify  a  Lagrangian

system  of  equations.  Canonical  transformations  convert  a  Lagrangian  by

means  of  a  coordinate  change  to  a  simpler  representation  of  the

Lagrangian. In addition to  the simplification of the Lagrangian, it  is  often

observed  that  the  related  equations  of  motion  are  also  simplified.  The

coordinate  change is  given by means of a transformation of the following

kind:

(2.8.85)qi ö Qi = QHqi, q2, ..., qN L.
An  example  of  such  a  canonical  transformation  is  the  introduction  of

cylindrical coordinates if the problem allows a rotation symmetry around a

distinguished axis.

In the Hamiltonian description of mechanics, we not only have coordinates

but also generalized momenta to describe the motion of the system. Since

the  generalized  momenta  have  the  same  importance  in  phase  space  as

generalized  coordinates,  we  have  to  extend  the  transformation  from

coordinates to momenta as well. The new coordinates are thus given by

(2.8.86)qi öQi = QiHq1, q2 ..., qN , p1, ..., pN L,
(2.8.87)pi ö Pi = PiHq1, q2, ..., qN , p1, ..., pN L.

The  transformation  is  executed  in  such  a  way  that  the  new  coordinates

HQi, PiL  are  functions  of the old coordinates Hqi, piL, i, j = 1, 2, …, N.  If

the transformations simplify to the form

(2.8.88)Tk : 9 qi ö Qi = QiHqiL
pi ö Pi = PiHpiL,

where  the  coordinates  depend  only  on  coordinates  and  momenta  depend

only  on  momenta;  we  call  this  kind  of  transformation  a  point

transformation.  The  general  relation  of  a  transformation  for  Qi  and  Pi

incorporating  both  the  coordinates  and  the  momenta  are  called  canonical

transformations. A specific feature of canonical transformations is that the

Hamiltonian  equations  of  motion  are  invariant  with  respect  to  the

transformation; that is
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(2.8.89)

p 'i = -
H

ÅÅÅÅÅÅÅÅqi
q 'i = -

H
ÅÅÅÅÅÅÅÅpi

———ö
Tk

P 'i = -
H
è

ÅÅÅÅÅÅÅÅÅQi
Q 'i =

H
è

ÅÅÅÅÅÅÅÅPi

with H
è

= H
è HQi Hqk , pkL, Pi Hqk, qkLL as the new Hamiltonian.

The application of canonical transforms to a Hamiltonian always saves the

structure  of  the  Hamiltonian  equations  but  simplifies  the  resulting

representation  of  the  equations  of  motion.  This  simplification  aims  at  a

reduction of  the  equation in  such a  way that  a  straightforward  integration

of the equations  is  possible.  An optimum of a  canonical transformation is

gained  in  such  a  case  when  all  new  coordinates  are  cyclic;  that  is  there

exist a transformation of the kind

(2.8.90)HHp1, ..., pN , q1, ..., qN L ö H
è HP1, ... , PNL.

The Hamilton equations of motion are then given by

(2.8.91)P 'i = -
H
è

ÅÅÅÅÅÅÅÅÅQi
= 0 i.e.,  Pi = const. i = 1, ... , N

(2.8.92)Q 'i =
H
è

ÅÅÅÅÅÅÅÅPi
= fi HP1, ... , PN L,

where  fi  are  functions  depending  only  on  the  new  momenta  and  do  not

show  any  explicit  time  dependence.  The  consequence  of  this

representation  is  that  the  solution  for  the  generalized  coordinates  follows

by

(2.8.93)Qi = fi t + di, i = 1, ... , N ,

with di = QiH0L  the initial  condition for  the coordinates.  The momenta  are

just  conserved  quantities  in  this  representation.  If  we  are  able  to  uncover

these momenta or transformations, we are able to solve the corresponding

equations  of  motion.  The  Pi  and  di  are  then  integrals  of  motion.  The  N

momenta Pi  are the distinguished integrals of motion allowing us to carry

out a complete integration. The di  allow us to complete the integration and

terminate the  nontrivial  solution process.  If  we know the solution,  we  are

able to  invert the transformation and represent  the solution in the original

coordinates. For an optimal canonical transformation two facts must exist:
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1) Find the new variables

2) Transform the Hamiltonian to the new representation.

2.8.9 Generating Functions

Canonical  transformations  are  determined  by  generating  functions.  To

demonstrate the meaning of a generating function, let us consider again the

Liouville  theorem.  Simplifying  things,  we  consider  a  mechanical  system

with  a  single  degree  of  freedom.  The  original  canonical  variables  are

Hp, qL  and the target variables are HP, QL.  The theorem by Liouville states

the conservation of the phase space volume B

(2.8.94)ŸB Ÿ ap dq = ŸB Ÿ dP dQ.

From Stokes theorem on volume integrals it  is obvious that an integral on

the space B is replaced by a contour integral along  in such a way that we

have

(2.8.95)ö p dq = ö P dQ.

In addition, we assume that the target coordinates P  and Q  depend on the

original  coordinates  q  and  p;  that  is,  P = PHp, qL  and  Q = QHp, qL.  The

dependence  of  the  target  coordinates  on  the  original  coordinates  may  be

different  from this  assumption.  It  is  also  possible  that  we  have  a  relation

like P = PHQ, qL  and p = pHQ, qL  where now Q  and q  are the independent

variables.  If  we assume such a relation, we find from the line integral  the

following relation:

(2.8.96)ö 8 P HQ, qL dq - P HQ, qL dQ< = 0.

This  kind  of  representation suggests  that  the  integrand  is  given by a  total

differential of the  function F1 = F1 HQ, qL; that is,

(2.8.97)
ö Hp dq - P dQL = ö d F1 HQ, qL
= ö F1ÅÅÅÅÅÅÅÅÅÅQ dQ +

F1ÅÅÅÅÅÅÅÅÅÅq dq.

Comparing the coefficients of the total differentials, we find

(2.8.98)p =
F1ÅÅÅÅÅÅÅÅÅÅq ,

(2.8.99)P = -
F1ÅÅÅÅÅÅÅÅÅÅQ .
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The first of these equations provide a relation between p and Hq, QL which

must  be  inverted  to  gain  the  functional  dependence  of  Q = QHp, qL.  The

inversion is possible if

(2.8.100)
2F1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅq Q 0.

Inserting the derived relation Q = QHp, qL into the second equation, we get

an expression for the target momentum: P = PHq, pL.
The  first  example  deals  with  Hq, QL  as  independent  variables.  It  is  also

possible to  use other  combinations of variable pairs such as HP, qL, HQ, pL
and HP, QL for independent variables. Let us consider the case when HP, qL
are  independent  variables.  Then,  the  conservation  of  the  phase  space

volume provides

(2.8.101)ö Hp dq - P dQL = ö Hp dq + Q dPL
with Fd(PQ) = FPdQ + FQdP. On the other hand, the generating function

is now  F2 = F2 HP, qL; thus, the line integral is

(2.8.102)ö I F2ÅÅÅÅÅÅÅÅÅÅP dP +
F2ÅÅÅÅÅÅÅÅÅÅq dq M = ö p dq + Q dP.

From this relations, it follows that

(2.8.103)p =
F2ÅÅÅÅÅÅÅÅÅÅq ,

(2.8.104)Q =
F2ÅÅÅÅÅÅÅÅÅÅP .

An  example  for  this  kind  of  generating  function  is  F2 = pq,  which

simplifies the two determining transformations to identical transformations:

(2.8.105)p =
F2ÅÅÅÅÅÅÅÅÅÅq = P

(2.8.106)Q =
F2ÅÅÅÅÅÅÅÅÅÅP = q.

The combination of the independent variables allows two other generating

functions given by

(2.8.107)F3 = F3 HQ, pL
and

(2.8.108)F4 = F4 HP, pL.
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If  the  canonical  transformation  is  independent  of  time,  then  the

representation  of  the  Hamiltonian  is  gained  just  by  coordinate

transformations; that is,

(2.8.109)H
è

= H
è HP, QL = H Hp HP, QL, q HP, QLL.

As  an  example,  let  us  consider  the  harmonic  oscillator  with  its

Hamiltonian:

H =
p2

2 m
+
k

2
q2

p2

ÅÅÅÅÅÅÅÅÅÅÅÅ
2 m

+
k q2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

By substituting w2 = k êm, we get the representation

Ht = H ê. k > m 2

p2

ÅÅÅÅÅÅÅÅÅÅÅÅ
2 m

+
1
ÅÅÅÅÅÅ
2

m q2 w2

The  Hamiltonian  in  the  present  representation  suggests  that  the  canonical

transformation  is  designed  in  such  a  way  that  the  target  variable  Q  is  a

cyclic  variable.  We  assume  that  the  canonical  transformation  is  given  by

the following relation:

canonTrafo = 9p > f@PD Cos@QD, q >
f@PD

m
Sin@QD=;

canonTrafo êê TableForm

p Ø cosHQL f HPL
q Ø

f HPL sinHQL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅm w

where  f HPL  is  an  arbitrary function  of  P.  Applying  this  transformation to

the Hamiltonian, we get
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hth = Ht ê. canonTrafo êê Simplify

f HPL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 m

It is obvious that Q is a cyclic variable and, thus, P represents a conserved

quantity.  The  unknown  function  f HPL  is  determined  by  the  following

procedure.  First,  represent  the  canonical  transformation  for  the  original

momentum p by

s1 =
p

q
==

i
k
jj
p

q
ê. canonTrafoy

{
zz êê Solve@#, pD &

88p Ø m q w cotHQL<<

This  relation  suggests  that  the  generating  function  is  of  type

F = FHq, QL = F1 because we have

eq1 = q F@q, QD == Hp ê. Flatten@s1DL

FH1,0LHq, QL == m q w cotHQL

This relation can be solved to provide

s2 = DSolve@eq1, F, 8q, Q<D êê Flatten

:F Ø FunctionB8q, Q<, 1
ÅÅÅÅÅÅ
2

m w cotHQL q2 + c1@QDF>

The  simplest  solution  is  generated  by  setting  the  arbitrary  function  c1HQL
equal to zero  which allows us to write 

(2.8.110)F1 =
mw
ÅÅÅÅÅÅÅÅÅ2 q2 cot Q.

The  second  relation  defining  the  target  momentum is  solved  with  respect

to the old coordinate:
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solCoordinates = HSolve@P == Q F@q, QD ê. s2, qD ê.
C@1D > Function@Q, 0DL êê PowerExpand

::q Ø -

è!!!!
2
è!!!!!

P sinHQL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!

m
è!!!!!

w
>, :q Ø

è!!!!
2
è!!!!!

P sinHQL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!

m
è!!!!!

w
>>

(2.8.111)P = -
F1ÅÅÅÅÅÅÅÅÅÅÅQ =

mwq2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 sin2 Q

Using the ansatz for the canonical transformation and the gained results for

the  old  coordinate,  we  can  compare  the  two  results  to  determine  the

unknown function f HPL by

solF =

Solve@Hq ê. canonTrafoL == Hq ê. solCoordinatesP2TL,
f@PDD êê Flatten

9 f HPL Ø
è!!!!

2
è!!!!!

m
è!!!!!

P
è!!!!!

w =

The target Hamiltonian then becomes

targetHamiltonian = hth ê. solF

P w

Since Q is a cyclic variable, we immediately observe that P is a constant of

motion. The value of this constant is determined by the total energy E  and

the frequency w by

(2.8.112)P =
E
ÅÅÅÅÅ
w

The equation of motion for the Q coordinate reduces to

teqQ = t Q@tD == P targetHamiltonian

Q£HtL == w
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The solution of this equation is derived by

solQ = DSolve@teqQ, Q, tD ê. C@1D >

88Q Ø Function@8t<, a + t wD<<

where  a  is  the  constant  of  integration.  The  final  solution  for  the

coordinates  can  be  derived  by  inverting  the  transformations.  Using  the

introduced representations, we find

q = q ê. canonTrafo ê. Q > Q@tD ê. solQ ê. solF ê.

P > êê PowerExpand

:
è!!!!

2
è!!!!!

sinHa + t wL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!

m w
>

However,  this  solution  is  the  well-known  solution  of  a  harmonica

oscillator.  The  above  example  demonstrates  how  the  generating  function

can  be  determined  if  one  is  able  to  guess  a  basic  representation  of  the

canonical transformation.

2.8.10 Action Variables

The  method  used  in  the  previous  subsection  demonstrated  that  the

generating  function  is  the  basic  tool  to  determine  canonical

transformations. However,  the presented procedure in this section is not a

systematic  procedure  and  connected  with  guesswork.  This  section  is

concerned  with  a  systematic  approach  to  derive  and  determine  the

generating function in a systematic way. To demonstrate the method let us

consider  the  generating function of  the  type  F2 = F2 Hqi, PiL = F2 Hqi, aiL,
with ai = Pi. This generating function is denoted by S in the following:

(2.8.113)S = S Hqi, ..., qN , ai, ..., aN L = F2.
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This  kind  of  generating function defines the  momenta p j  and coordinates

Qi = bi in the known way by

(2.8.114)pi =
S Hqi,aiLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqi

,

(2.8.115)bi =
S Hqi,aiLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

ai
.

The  bi's  are  the  target  coordinates  conjungate  to  the  ai's.  The  relation

between the original and the target Hamiltonian is given by 

(2.8.116)H
è

= H
è HaiL = H Hqi, piL = H Iqi,

S
ÅÅÅÅÅÅÅÅqi

M.
Since  the  total  energy  is  a  conserved  quantity  for  standard  Hamiltonian

systems (i.e., H
è HaiL = const.), the relation 

(2.8.117)H
è HaiL = HIqi,

S
ÅÅÅÅÅÅÅÅqi

M
defines  a  hypersurface  in  phase  space.  On  the  other  hand,  this  relation

defines  the  generating  function.  The  relation  defining  the  S  function  is  a

partial  differential  equation  of  first  order.  The  generating  function  S

depends  on  N  independent  coordinates   qi Hi = 1, 2, ..., NL.  Relation

(2.8.117) is known as the time-independent Hamilton–Jacobi equations.

In  the  case  of  a  time-dependent  Hamiltonian,  the  Hamilton–Jacobi

equation also becomes time dependent and generalizes to

(2.8.118)
S

ÅÅÅÅÅÅÅt + H Iqi,
S

ÅÅÅÅÅÅÅÅqi
M = 0.

In  this  case,  the  generating  function  also  depends  on  the  time  t.  If  the

system is a conserved system, then the time is separated from the function

by 

(2.8.119)S = S Hqi, aiL - E t.

In this case, the time-dependent Hamilton–Jacobi equation reduces to 

(2.8.120)

S
ÅÅÅÅÅÅÅt + H Iqi,

S
ÅÅÅÅÅÅÅÅqi

M = -E + H Iqi,
S

ÅÅÅÅÅÅÅÅqi
M = 0

óH Iqi,
S

ÅÅÅÅÅÅÅÅqi
M = E = H

è HaiL.
It is well known that first-order partial differential equations (PDEs) of the

above  type  need  N  independent  integrals  of  motion  for  their  solution.

However,  this  integrals  are  given  by  the  target  momenta   Pi = ai

Hi = 1, 2, ..., NL,  which  are  constants  of  motion.  The  problem  of  finding
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the  generating  function  now  reduces  to  solving  the  Hamilton–Jacobi

equations, which is equivalent to the solution of the canonical equations of

motion.  The  derivation  of  an  explicit  solution  for  the  Hamilton–Jacobi

equations  in  its  most  general  form  is  a  very  difficult  task.  This  tasks

simplifies  if  we  prescribe  the  property  of  separation  to  the  Hamiltonian.

The functional dependence of S on the coordinates suggests

(2.8.121)dS = ‚
i=1

N S
ÅÅÅÅÅÅÅÅqi

dqi = ⁄i=1
N pi dqi,

which results in the general representation 

(2.8.122)S = Ÿq0

q
pi dqi,

where  q0 = Hq1 H0L, q2 H0L, ..., qN H0LL  are  the  initial  conditions  of  a

trajectory  in  phase  space.  If  the  quantities   ai  are  known,  the  trajectory

q = Hq1 HtL, q2 HtL, ..., qN HtLL for times greater than zero are also known. It

is obvious that for a determination of S, the trajectories  qi = qi HtL must be

known  beforehand.  At  this  point,  the  question  arises  of  whether  the

Hamilton–Jacobi  theory is  a  useful  theory to  derive practical results.  This

question will be resolved in the following subsections.

2.8.10.1 One-Dimensional Hamilton–Jacobi Equation

In  case  of  a  one-dimensional  Hamiltonian  system,  the  Hamilton–Jacobi

equation is solvable. Let us assume that we are dealing with a Hamiltonian

depending on the variables Hq, pL:
(2.8.123)H = HHq, pL.

The  target  Hamiltonian  H
è

 is  thus  a  function  in  a  single  variable:  the

canonical  momentum.  In  addition,  the  target  momentum  is  a  conserved

quantity:

(2.8.124)H
è

= H
è HaL.

For time-independent Hamiltonians, the solution step is the equivalence of

this conserved quantity with the Hamiltonian:

(2.8.125)H
è

= a.

Thus,  a  is  just  the  total  energy  of  the  system.  The  Hamilton–Jacobi

equation then becomes
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(2.8.126)HIq, S
ÅÅÅÅÅÅÅq M = a.

At the same time, the two relations for the generating functions hold:

(2.8.127)p =
SHq,aL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅq ,

(2.8.128)b =
SHq,aL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a

.

Since  the  transformation  are  canonical  transformations,  the  equations  of

motion in the target variables become

(2.8.129)a ' = -
H
è

ÅÅÅÅÅÅÅÅ
b

= 0,

(2.8.130)b ' =
H
è

ÅÅÅÅÅÅÅÅ
a

= 1.

These two equations can be solved by

(2.8.131)a = const. = H
è

,
(2.8.132)b = t - t0.

Knowing  the  solution  in  the  target  variables,  we  are  able  to  express  the

solutions in the original variables by

(2.8.133)t - t0 =
S Hq,aL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a

= ÅÅÅÅÅÅÅ
a Ÿq0

q
pHq, aL dq,

(2.8.134)t - t0 = Ÿq0

q p Hq,aL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

a
dq.

As  an  example,  let  us  examine  the  motion  of  a  particle  in  the  potential

V = V HqL. The Hamiltonian then becomes 

(2.8.135)HHq, pL =
p2

ÅÅÅÅÅÅÅÅÅ2 m + V HqL.
Since the Hamiltonian satisfies the relation 

(2.8.136)HHq, pL = H
è Ha = aL,

we find

(2.8.137)p2

ÅÅÅÅÅÅÅÅÅ2 m + V HqL = a

or 

(2.8.138)pHq, aL =
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

2 mHa - V HqLL .

The final solution of the problem thus results from 
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(2.8.139)

t - t0 = Ÿq0

q
ÅÅÅÅÅÅÅ

a
I è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

2 mHa - V HqLL M dq

= "#######m
ÅÅÅÅÅ2 ‡

q

q
dq

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!
a-V HqL .

Since  for  a  conserved  system,  a  is  equal  the  total  energy,  the  solution

reduces to a simple quadrature 

(2.8.140)t - t0 = "########m
ÅÅÅÅÅ2 ‡

q0

q
dq

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
q
è!!!!!!!!!!!!!!!!!!!

E-V HqL .

However,  this  result is  already known from the integration procedures we

discussed  in  Section  2.4.  The  question  of  what  is  the  advantage  of  this

procedure  compared  with  the  standard  quadrature  arises.  The  main

advantage  is  that  we  are  now in  a  position  to  introduce  variables,  action

angle variables, allowing us to simplify the problem.

2.8.10.2 Action Angle Variables for one Dimension

The examinations  so  far  demonstrated  that  the  trajectories  in phase  space

are  closed  curves.  The  period  a  particle  needed  to  traverse  the  complete

path  is  given  by  2 p êw,  where  w  denotes  the  cycle  frequency  of  a

trajectory. The idea here is  to use the periodicity to introduce coordinates

which  possess  this  2 p  periodicity.  We  are  looking  for  coordinates  which

increase  their  values  by  2 p  if  the  particle  traverses  the  total  path.  The

targeted variables are denoted by J  and q; J  is the conjungate momentum

to q. The set of defining equations for the generating function now reads

(2.8.141)p =
SHq,J L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅq ,

(2.8.142)q =
SHq,J L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅJ .

The related Hamilton–Jacobi equation is

(2.8.143)HIq, S
ÅÅÅÅÅÅÅq M = a = H

è HJ L.
For  a  trajectory  with  fixed  a  (i.e.,  fixed  J , a = H

è HJ L),  we  find  by

differentiating q with respect to q that

(2.8.144)
dq
ÅÅÅÅÅÅÅdq = ÅÅÅÅÅÅÅJ I S

ÅÅÅÅÅÅÅq M.
Our  assumption  on  q  is  that  it  should  increase  by  2 p  if  the  trajectory  is

completely traversed; that is,
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(2.8.145)2 p = ò dq = ÅÅÅÅÅÅÅJ ò I S
ÅÅÅÅÅÅÅq M dq = ÅÅÅÅÅÅÅJ ò p dq.

This condition is satisfied if 

(2.8.146)J =
1

ÅÅÅÅÅÅÅÅ2 p ò pHq, aL dq.

Relation  (2.8.146)  is  also  known  as  the  definition  of  the  action  variable.

The integration is carried out along the trajectory  , which is determined

by the total energy   a = H
è HJ L = E.

The related canonical equations of motion are 

(2.8.147)J ' = -
H
è HJ L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
q

= 0,

(2.8.148)q ' =
H
è HJ L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅJ = wHJ L.
The two equations are solved by 

(2.8.149)J = const.,
(2.8.150)q = wHJ L t + d,

where  wHJ L  is  the  characteristic  frequency  of  the  motion  and  d = qH0L  is

determined by the initial condition.

Example 1: Harmonic Oscillator

As an example,  let  us examine the harmonic oscillator to  demonstrate the

derivation of the action angle variables. The Hamiltonian is given by

H =
1
ÅÅÅÅ2 Hp2 + w2 q2L.

The Hamilton–Jacobi equation reads

(2.8.151)1
ÅÅÅÅ2 I S

ÅÅÅÅÅÅÅq M2 +
1
ÅÅÅÅ2 w2 q2 = a,

where  a  is  an  integration  constant  equal  to  the  total  energy  E = H .  The

action variable thus follows by 

(2.8.152)J =
1

ÅÅÅÅÅÅÅÅ2 p ´ "##################################2 HE -
1
ÅÅÅÅ2 w2 q2L dq,

with   the  closed  trajectory in  the  phase  space.  This  trajectory possesses

two turning points at q =
è!!!!!!!!

2 E ëw. A direct calculation shows
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(2.8.153)J =
E
ÅÅÅÅÅ
w

.

This  relation  connects  the  constant  of  integration  a = E  with  the  quantity

J; that is,

a = E H
è HJ L = J w.

The generating function S is then given as

SHq, J L = ‡
q0

q"######################################2 HJ w -
1
ÅÅÅÅ2  w2 q2L dq.

Using  the  original  coordinates,  we  can  represent  the  solution  for  the

generating function by 

(2.8.154)

q =
S

ÅÅÅÅÅÅÅJ = ÅÅÅÅÅÅÅJ ‡
q0

q "####################################2 HJw -
1
ÅÅÅÅ2  w2 q2L dq

= ·
q0

q

2 w
1
ÅÅÅÅ2

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"####################################2 HJw-

1
ÅÅÅÅ2  w2 q2L dq

= w ·
q0

q

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"####################################2 HJw-

1
ÅÅÅÅ2  w2 q2L dq

= $%%%%%%%%%%2 J
ÅÅÅÅÅÅÅÅ

w
sin Hq + dL,

where d = arc sin Iq0  w ëè!!!!!!!!
2 E M.

The  introduction  of  action  angle  variables  is  not  only  restricted  to  a

two-dimensional  phase  space.  This  concept  can  be  generalized  to  the

2 N-dimensional  case.   For  our  example,  it  was  essential  to  use  the  total

energy  as  a  conserved  quantity  in  the  calculations.  In  the  case  of  a

2 N-dimensional  Hamiltonian  system,  the  knowledge  of  N  integrals  of

motion allows one to separate the Hamiltonian in appropriate coordinates.

In  any  case  in  which  this  separation  exists,  the  solution  of  the  problem

simplifies dramatically. 
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2.8.10.3 Separation of Hamiltonians

Based on the Hamilton–Jacobi equation, we discuss here the separation of

Hamiltonian systems.  The  Hamilton–Jacobi  equation for  a  N-dimensional

system is

(2.8.155)HIq1, ... qN , S
ÅÅÅÅÅÅÅÅÅq1

, ..., S
ÅÅÅÅÅÅÅÅÅÅqN

M = H
è Ha1, ..., aN L

where  qi  are  the  generalized  coordinates  and  pi = S ê qi  are  the

generalized momenta generating the phase space. The ai  are the conserved

quantities  in  this  space.  Thus,  the  Hamilton–Jacobi  equation  is  the

determining equation of S in N  independent coordinates qi.

First-order  PDEs  allow  N  independent  integrals  of  motion  which

determine  the  solution.  We  will  show  that  these  constants  of  motion  are

related  to  the  ai ' s.  The  Hamilton–Jacobi  equation  in  general  is  not

solvable in a closed analytic form until the Hamiltonian is separable.

If the Hamiltonian separates, then the generating function S  also separates.

On  the  other  hand,  this  means  that  S  is  a  direct  sum  of  the  separated

components depending only on a single coordinate:

(2.8.156)S Hqi, aiL = ⁄k=1
N Sk Hqk , a1, ..., aN L.

A  simple  class  of  Hamiltonians  satisfying  this  condition  is  those  which

decay in N  subsystems by

H Hpi, qiL = ⁄k=1
N Hk Hpk, qkL

(i.e.,  a  system  of  N  decoupled  oscillators).  In  this  case,  the

Hamilton–Jacobi  equation  reduces  to  the  one-dimensional  case  discussed

earlier:

(2.8.157)Hk Iqk , S
ÅÅÅÅÅÅÅÅÅqk

M = ak k = 1, ..., N .

The integrals  ak  of  this  special  case are  connected to  the Hamiltonian by

the sum

(2.8.158)a = a1 + a2 + ... +aN = H
è

,

where  H
è

 is  the  transformed  Hamiltonian.  For  practical  cases,  this

separation is very seldom usd and thus it is very rare to apply this kind of
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theory  to  a  problem.  However,  if  we  are  able  to  introduce  appropriate

coordinate  transformations,  we  gain  a  representation  a  few  steps  apart

from the solution.

Let  us  assume  that  the  generating  function  separates;  then,  the  following

relations for generalized momenta hold:

(2.8.159)Pk =
S Hqk ,a1,... aN LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqk

.

The  meaning  of  this  relation  is  that  each  target  momentum  Pk  only

depends  on  a  single  coordinate  qk .  If  we  assume,  in  addition,  that  the

motion in qk is periodic, we can introduce a set of action variables Ik by

(2.8.160)Ik =
1

ÅÅÅÅÅÅÅÅ2 p ò
k

Pk Hqk , a1, ..., aN L dqk ,

where  k  is  a  closed  loop  in  phase  space.  This  relation  establishes  a

relation between the action Ik  and the integrals ak.  This relation is used to

replace  the  ak ' s  by the  actions  Ik  in  the  generating  function  S.  After  the

replacement,  we  can evaluate  the  two  relations  for  the  target  coordinates.

The angle variables follow from

(2.8.161)
qk =

S
ÅÅÅÅÅÅÅÅIk

= ‚
m=1

N SM Hqm, I1,..., IN LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅIk
.

By definition, the angles qk  are automatically conjungate to the actions Ik .

If we know the variables in the transformed phase space, we can derive the

canonical equations from the Hamiltonian H
è

= H
è HI1, ..., IN L by

(2.8.162)I 'k = -
H
è HI1,...,IN LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

qk
= 0,

(2.8.163)q 'k =
H
è

ÅÅÅÅÅÅÅÅIk
= wk HI1, ..., IN L,

where wk is  the cycle  frequency of the kth coordinate.  Since all  equations

are decoupled, the solution is accessible by an integration:

(2.8.164)Ik = const.,
(2.8.165)Qk = wk HI1, ..., IN L t + dk ,

where  dk  is  the  initial  condition  of  the  angles  at  t = 0.  Different

examinations demonstrate that the knowledge of the action angle variables

are a basic tool to solve the Hamilton–Jacobi equations. The main point of

this  procedure  is  the  uncovering  of  a  sufficient  number  of  integrals  of

motion.
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Let us assume that Ii Hpk, qkL  is an integral of motion; then, we know that

along a trajectory, the value of this integral does not change; that is,

(2.8.166)Ii Hpk , qkL = ai.

If we know, in addition, the total energy, then we have 

(2.8.167)8 Ii, H< = 0,

independent of the coordinates used. If we add H  to the set of integrals, we

can introduce the term  "completely integrable Hamiltonian systems". 

Definition: Complete Integrability

A  Hamiltonian  with  N  degrees  of  freedom  is  said  to  be  completely

integrable if N  integrals of motion, I1, I2, ..., IN ,  exist.  These integral of

motion are in involution with each other by 

(2.8.168)8 Ii, I j< = 0 for i, j = 1, 2, ..., N .à

The  meaning  of  this  definition  becomes  obvious  if  we  remember  the

meaning of an integral of motion. The existence of N  integrals of motion I j

restricts the motion to an N-dimensional manifold . The total motion in

the  2 N-dimensional  phase  space  is  restricted  to  an  N-dimensional

submanifold. An example was the harmonic oscillator which demonstrated

this  behavior  clearly:  that  is,.  the  motion  of  the  two-dimensional  phase

space  is  restricted  to  a  one-dimensional  curve.  Knowing  the  N  integrals,

we  are  able  to  show that  the  geometric  structure  of  the manifold    is  a

N-dimensional torus. 

Let us assume that one of the integrals is given by the Hamiltonian Ii = H .

Then,  we  know  that  the  equations  of  motion  follow  from  the  Poisson

brackets:

(2.8.169)q 'i = 8 qi, H<,
(2.8.170)p 'i = 8 pi, H<.

The  system of  equations defines  a  Hamiltonian flow in phase  space.  This

flow  is  restricted  to  the  manifold   because  there  are  I j  integrals  of

motion known. The velocity field of the flow is defined by 

(2.8.171)xi
”÷÷

= J . “ Ji i = 1, 2, ..., N
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where  “ = H q1 , q2 , ..., qN , p1 , ..., pN L  and  J  is  the  symplectic

matrix

(2.8.172)J =
i
kjjj

0 1

-1 0
y
{zzz

with  1  a  N x N  identity  matrix.  This  representation  of  the  equations  of

motion is possible by introducing a set of coordinates with equal standing

z”÷ = Hz1, z2, ..., zN L = Hq1, q2, ..., qN , p1, ..., pN L.  The  Hamiltonian  in

these coordinates is then

(2.8.173)H = HHqi, ..., piL = H HziL.
The Poisson bracket simplifies to 

(2.8.174)8 f , g<z = “ f .J .“g

and the equations of motion result from

(2.8.175)
z” ' = 8z”, H< = “z” . J . “H ,

z” ' = J . “H .

The  symplectic  formulation  of  the  equations  of  motion  simplifies  the

representation  but  not  the  physical  meaning.  The  mathematical

representation becomes more compact  and clear.  The velocity field of the

Hamiltonian system is then

(2.8.176)x
”

= J . “H .

The main property of the velocity field  or flow of the Hamiltonian is that

the  flow  is  always  tangential  to  the  manifold  .  For  each  of  the  N

integrals of motion, the flow is defined by 

(2.8.177)xi
”÷÷

= J . “i , i = 1, 2, ..., N .

Each  of  the  flow  fields  are  tangential  to  the  manifold  .  Because  the

completely integrable system is characterized by the independent integrals

I j.

Now,  we  switch  to  a  topology  argument  contained  in  the  Poincaré–Hopf

theorem. Each N-dimensional manifold  characterized by N  integrals of

motion with the related flows establishes the topology of a N-dimensional

torus.
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For two dimensions, we can plot such a torus with the flow fields on top of

the  surface.  In  this  case,  the  flows are  just  the  coordinates  on the surface

(see Figure 2.8.5). 

x1
x2

Figure 2.8.5. Flow fields on a two-dimensional torus. x1 and x2 are the two possible velocity fields.

A practical interpretation of the flow fields on a torus is that the fields can

be combed. In each direction of the flow, you can  pervade along the flow.

In contrast  to  a  torus,  a  sphere cannot  be combed (see Figure 2.8.6).  The

fields on the poles destroy this property on a sphere.

Figure 2.8.6. Flow fields on a sphere. Here, the flow field cannot be combed.
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On a  sphere  there is  always a  velocity field,  hair,  which prevents  a  comb

from moving on the  total  surface.  Knowing this  topological  interpretation

and  the  existence  of  integrals  of  motion  allows  us  to  present  a

coordinate-free definition of action angle variables.

An N-torus is  a natural  object which can be generated as a direct product

of N  independent  2 p  periodic  phase  space  curves  k  (see Figure  2.8.7).

The  phase  space  curves  are  designed  in  such  a  way  that  they  cannot  be

transformed to other curves or shrunk to a point. 

1

2

Figure 2.8.7. A two-dimensional torus as an example for 2p periodic phase space curves.

The set of action variables is thus defined by

(2.8.178)Ik =
1

ÅÅÅÅÅÅÅÅ2 p ò
k
⁄m=1

N pm dqm.

The related generating function 

(2.8.179)S = SHq1, ..., qN , I1, ..., INL
allows the derivation of the angle variables: 

(2.8.180)qk =
S Hq1,..., qN , I1,..., IN L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅIk
.

Both sets of variables are related to the Hamilton equations of motion:

(2.8.181)J 'k = -
H
~ HI1, ..., IN LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

qk
= 0,

(2.8.182)q 'k =
H
~ HI1, ..., IN LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅIk

= wk HI1, ..., INL.
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Knowing this set of equations, the solution for the problem can be derived.

Note  that  the  transformation  to  action  angle  variables  is  a  global

transformation;  that  is,  the  total  phase  space  is  covered  by  tori  and  the

trajectories are located on top of the surface. 

The  initial  conditions  Hq1 H0L, q2 H0L, ..., qN H0L, p1 H0L, ..., pN H0LL
determine the specific values of the integrals of motion:

(2.8.183)Ik Hpi H0L, qi H0LL = ak, k = 1, ..., N .

The Ik 's determine on which torus a trajectory is located. The value of the

angle  variable  determines  the  position  where  a  particle  is  located  on  the

torus for a two-torus see Figure 2.8.8.

I1
q1

q2 I2

Figure 2.8.8. Action angle variables on a 2-torus.

A conserved Hamilton system is determined by the dimensions collected in

Table 2.8.1.

Phase space 
dimension

2 N-DP

Hyper surface of the 
energy

2 N-1=DE

Tori dimension N=DT

Table 2.8.1. Definition of different dimensions.

Thus, for N-degrees of freedom, we get Table 2.8.2.
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N 1 2 3 4 5

DP 2 4 6 8 10

DE 1 3 5 7 9

DT 1 2 3 4 5

Table 2.8.2. Collection of different dimensions related to an N-degrees, of freedom, system.

The numbers given allow the following conclusions:

In  case  of  a  single  degree  of  freedom the  hypersurface  of  the  energy and

the torus surface are identical.

For  N = 2,  the  two-dimensional  tori  are  embedded  in  the

three-dimensional energy hypersurface. Especially the energy hypersurface

divides  the  phase  space  in  an  inner  and  outer  region.  If  there  is  a  gap

between these regions, a trajectory in this region will stay forever in

this gap. Gaps occur for nonintegrable Hamiltonians.  

For  N r 3,  trajectories  in  gaps  can  escape  into  other  portions  of  the

energy hypersurface. This phenomenon is known as Arnold diffusion.

The  Hamilton  equations  of  motion  show  that  the  motion  of  the  angle

coordinates is periodic:

(2.8.184)q 'k =
H
è

ÅÅÅÅÅÅÅÅIk
= wk .

For  a  multidimensional  Hamiltonian  system  there  exist  N  frequencies  of

revolution.  The  ratios  of  these  frequencies  determine  whether  the

trajectories in phase space have a closed rational ratio and thus the motion

is periodic, or the ratio is irrational and the motion is aperiodic. In the last

case,  the  tori  are  completely  covered  by  the  trajectories  and  there  is  no

return to  the starting point.  This case is  also  known as quasiperiodic.  If  a

trajectory completely covers a torus the system is denoted as ergodic. The

discussed  properties  are  obvious  for  a  two-dimensional  system.  In  such  a

case, we have two frequencies: w1 and w2.  If the ratio

(2.8.185)
w1ÅÅÅÅÅÅÅ
w2

= irrational,

then we have an ergodic system. In case of a rational ratio with

(2.8.186)
w1ÅÅÅÅÅÅÅ
w2

=
n
ÅÅÅÅÅm , with n, m e ,
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the trajectories are closed. This behavior is graphically represented by the

torus itself or by an angle chart containing the paths (Figure 2.8.9).

q1

q2

Figure 2.8.9. Path on a torus and the corresponding angle chart.

Up to now, we discussed completely integrable systems. In such cases, we

have N  integrals for N  degrees of freedom. All of the integrals of motion

are  in  involution  (i.e.,  8Ii, I j< = 0,   i, j = 1, ..., N).  For  a  nonintegrable

system,  the  question arises  of  what  happens if  a  single integral  of  motion

does  not  exist.  This  nonexistence  of  an  integral  causes  tremendous

problems in  the process  of integration.  The questions related to  this  topic

are  as  old  as  mechanics  itself.  Generations  of  physicists  and

mathematicians  are  hunting  for  the  facts  of  nonintegrable  systems.

However,  the  problem was  partially  solved  by  Kolmogorov,  Arnold,  and

Moser in 1960 by their famous theorem:

Theorem: KAM Theorem

If  the ration w1/w2  of two  frequencies w1  and w2  is  sufficiently irrational

(i.e., 

(2.8.187)… w1ÅÅÅÅÅÅÅ
w2

-
r
ÅÅÅÅs … >

c
ÅÅÅÅÅÅÅÅÅÅs2+d

with  fixed  c  and  d),  and  if  the  disturbance  of  the  Hamilton  system  is

sufficiently small, then there exists a torus which is the center for spinning

trajectories with w1  and w2.  If the disturbance of the Hamiltonian slightly

increases  ¶H1 = 0,  then  the  torus  is  twisted  and  exists  up  to  a  critical

value ¶max H1.à

However,  the  KAM  theorem  does  not  provide  an  upper  limit  for  the

critical  parameter  and  thus  only  delivers  a  qualitative  estimation.  Due  to

Henon  (1966),  the  disturbance  of  a  Hamiltonian  system  can  be  of  the

magnitude  ¶H1 = 10-48, where a Moser torus is dislocated.
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2.8.11 Exercises

1.  An  harmonic  oscillator  is  described  by  the  Lagrangian
L =

1
ÅÅÅÅ2 m Hx '2 - w2 x2L.  Construct  the  Hamiltonian  and  write  out  the

equations of motion.

2.  A  particle  moves  vertically  in  a  uniform  gravitational  field  g,  the
Lagrangien  being  L =

1
ÅÅÅÅ2 z '2 - g z.  Construct  the  Hamiltonian.  Hint:

Add  a  total  time  derivative  such  as  1
ÅÅÅÅ2 dHl z2L êdt = l z z '  to  the

Lagrangian.

3. A particle of mass m moves under the influence of gravity along the
spiral z = k q, r = const., where k  is a constant and z is vertical. Obtain
the Hamiltonian equations of motion.

4. A particle of mss m moves in one diimension under the influence of
a force

FHx, tL =
k

ÅÅÅÅÅÅx2 t-q,

where  k  and  q  are  positive  constants.  compute  the  Lagrangian  and
Hamiltonian functions. Compare the Hamiltonian and the total energy,
and discuss the conservation of energy for the system.

2.8.12 Packages and Programs

Elements Package

The  package  Elements  provides  an  object-oriented  environment.  The

notations and  definitions are  described  in the help  text  of the package.  In

short,  Elements allows one to define classes and derive objects from these

classes.  Each  class  is  divided  into  two  sections  containing  properties  and

methods.  Simply  speaking,  properties  are  parameters  of  the  class  and

methods  are  the  functions  used  to  calculate  some  mathematical

expressions.  Classes  are  able  to  inherit  properties  and  methods.  For  a

detailed discussion of the package, see the help text.
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AppendTo@$Path,
"C:\\Mma\\Work\\TUMObjects\\Elements05"D;

H change the path above to the location

where the package Elements is located L
<< Elements`

Off@General::spellD; Off@General::spell1D;

GetProperties@o_D :=

Thread@Map@ToExpression@#D &, Properties@oDD
Ho.# & ê@ Properties@oDLD

GetPropertiesForm@obj_D :=

DisplayForm@GridBox@Prepend@GetProperties@objD,
8StyleForm@"Property", FontWeight > BoldD,
StyleForm@"Value", FontWeight > BoldD<D,

RowLines True, ColumnLines True,

GridFrame True, ColumnAlignments 8Left<DD

<< Utilities`Notation`

Define some notations for Poisson brackets:

NotationA

8f_, g_<obj_ Dot@obj_, PoissonBracket@f_, g_DDE

NotationA

8f_, g_<obj_ Dot@obj_, PoissonBracket@f_, g_DD,

WorkingForm TraditionalFormE

Define some notations for Hamilton's operator:

NotationA obj_@f_D Dot@obj_, HamEqs@f_DDE
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NotationA obj_@f_D Dot@obj_, HamEqs@f_DD,

WorkingForm TraditionalFormE

Euler–Lagrange Package

The  Euler–Lagrange  package  allows  one  to  derive  the  Euler–Lagrange

equations for a given Lagrangian.

If@$MachineType == "PC",

$EulerLagrangePath = $TopDirectory<>

"êAddOnsêApplicationsêEulerLagrangeê";
AppendTo@$Path, $EulerLagrangePathD,
$EulerLagrangePath =

StringJoin@$HomeDirectory, "ê.Mathematicaê3.0ê
AddOnsêApplicationsêEulerLagrange", "ê"D;

AppendTo@$Path, $EulerLagrangePathDD;

Needs@"EulerLagrange`"D

LegendreTransform@A_, x_List, momenta_List,

indep_: 8t<D := BlockA8momentaRelations<,
momentaRelations =

MapThread@ #1 A == #2 &, 8x, momenta<D;
sol = Flatten@Solve@momentaRelations, xDD;

SimplifyAExpandA ‚
i=1

Length@xD

xPiT xPiT A AE ê. solEE
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2.9 Chaotic Systems

2.9.1 Introduction

We discussed the structure of the phase space in the last section. The main

structuring  component  was  the  existence  of  integrals  of  motion.  Each

integral added a certain amount to the tori representing the surfaces where

the regular solutions live. The trajectories in phase space exist on these tori

and  are  either  periodic  or  at  least  quasiperiodic.  A  fundamental

characteristic  of  a  trajectory  living  on  a  tori  is  that  it  intersects  a  plane

cutting the tori in a characteristic way. The closed or quasiclosed trajectory

generates  a  characteristic  pattern  on  this  plane.  Figure  2.9.1  demonstrates

the global behavior in phase space.

Figure 2.9.1. Phase space structure intersected with a plane.

The pattern generated on the intersecting plane will show dots representing

the  position  of  the  trajectory  of  the  torus.  If  the  trajectory  is  closed  and

thus  periodic,  the  pattern  will  consist  of  a  finite  number  of  points.  The

number  of points is  related to the frequency with which a  point cycles on

the trajectory on the torus.  If  the trajectory is not  closed (the trajectory is
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quasiperiodic), the points are continuously distributed on the surface of the

torus. The pattern then is given as a quasiconnected line on the intersecting

plane. Figure 2.9.2 shows a periodic trajectory on a torus.

Figure 2.9.2. Periodic trajectory projected on a phase space intersection.

Let us consider a single torus for a two-dimensional system. The geometric

structure of the torus is determined by the two action variables J1  and J2.

These  quantities  are  completely  determined  by  the  total  energy  fixed  by

the initial conditions for the system. The flow on the torus (the dynamics)

is  determined  by  the  two  conjugate  angle  variables  q1  and  q2(see  Figure

2.9.3). The evolution in time for these two quantities are given by

(2.9.1)q1 = w1 t + d1,
(2.9.2)q2 = w2 t + d2.

The  two  frequencies  w1  and  w2  are  determined  by  the  Hamiltonian

H
è

= H
è HI1, I2L by

(2.9.3)w1 =
H
è

ÅÅÅÅÅÅÅÅÅI1
,

(2.9.4)w2 =
H
è

ÅÅÅÅÅÅÅÅÅI2
.

The  time  T2  to  traverse  the  complete  angle  range  q2  given  by  2 p  is

determined by the relation

(2.9.5)T2 =
2 p
ÅÅÅÅÅÅÅÅ
w2

.

During this time interval, the angle q1changes by
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(2.9.6)

q1 Ht + T2L = q1 Ht L + w1 T2

= q1 Ht L + 2 p
w1ÅÅÅÅÅÅÅÅ
w2

= q1 Ht L + 2 p aHI1, I2L,
where a = a HI1L denotes the winding number of the trajectory defined by

(2.9.7)a =
w1ÅÅÅÅÅÅÅÅ
w2

.

The winding number  is  expressed as a  function of  I1  because it  is  always

possible to express I2 by I1 since the total energy E = H
è HI1, I2L establishes

a relation between the two quantities. If we now consider the HI1, q1L-plane

as the intersecting plane, the intersecting points are determined by 

(2.9.8)Pi = H q1 Ht + i T2L, I1L.

Figure 2.9.3. Intersection plane of a two-dimensional torus described in action angle variables.

The  intersecting plane is  also  known as  the Poincaré  plane.  The mapping

in this plane is represented by the following iterative mapping:

(2.9.9)qi+1 = qi + 2 p a HIiL,
(2.9.10)Ii+1 = Ii.

The  mapping  shows  that  the  action  variable  is  not  changed  during  the

iteration,  whereas  the  angle  continuously  increases  by  a  fixed  amount

given by the winding number. The map given is known as the twist map of

the  system.  A twist  mapping performs a  mapping of the  torus to  itself.  A

fundamental  property  of  the  twist  mapping  is  the  conservation  of  the

mapping  area.  This  property  is  closely  related  to  Liouville's  theorem,  the
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conservation  of  space  volume.  The  conservation  of  the  mapping  area

means that the Jacobi determinant has a fixed value:

(2.9.11)
Hqi+1 , Ii+1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH qi, IiL = 1.

Thus, we expect that the intersections with a torus are regular curves more

or less filled with points of the trajectory.

For  nonintegrable  Hamiltonians,  there  is  a  lack  of  integrals  that  fix  the

structure  in  phase  space.  For  such  systems,  there  is  the  common

assumption that the Hamiltonian is separated into an integrable and into an

nonintegrable part. The integrable part is denoted by  

(2.9.12)H
è

= H0
è HIiL.

The  total  system  consists  of  this  integrable  part  extended  by  a

nonintegrable  part  ¶H
è

1HI j, q jL,  which  is  considered  as  a  disturbance.  The

nonintegrable Hamiltonian thus becomes

(2.9.13)H
è

= H0
è HIiL + ¶H1

è HIi, qiL.
The  disturbance  ¶H1

è
 is  the  origin  of  the  nonexisting  integrals  which

suppress the integrability and, thus, the torus structure of the phase space.

The  missing  integrals  allow  a  more  flexible  choice  of  paths  for  the

trajectories.  In the case of the twist  mapping,  this  means that  both sets  of

variables are  disturbed.  The  angle as  well  as the action variables are  thus

given by 

(2.9.14)qi+1 = qi + 2 p a HIiL + ¶ f Hqi, IiL,
(2.9.15)Ii+1 = Ii + ¶ g Hqi, IiL.

The  functions  f  and  g  are  generated  by  the  Hamiltonian  ¶H1
è

.  The

functions  must  be  chosen  in  such  a  way  that  the  conservation  of  the

intersection area is guaranteed. 

An  example  for  an  area-conserved  twist  mapping  is  the  Henó  map

introduced in 1969 by Henó to examine a nonlinear oscillating system. The

Henó map is given by

(2.9.16)qi+1 = qi cos H2 p aL - HIi - qi
2L sin H2 p aL,

(2.9.17)Ii+1 = qi sin H2 p aL + HIi - qi
2L cos H2 p aL.
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The  parameter  a  denoting  the  winding  number  of  the  twist  map  is  the

critical  parameter.  We  can  check  the  area  conservation  by  defining  the

Jacobi matrix for the functions by

JacobiMatrix@fun_List, vars_ListD :=

Outer@D, fun, varsD

The Henó map is realized by 

Clear@HenonMapD

HenonMap@8 _, W_<, _D := Block@8<,
8 Cos@2 D HW 2L Sin@2 D,

Sin@2 D + HW 2L Cos@2 D<D

The Jacobi determinant is thus defined via the Jacobi matrix:

JacobiMatrix@HenonMap@8 , W<, D, 8 , W<D êê MatrixForm

i
kjjj

cosH2 p aL + 2 q sinH2 p aL -sinH2 p aL
sinH2 p aL - 2 q cosH2 p aL cosH2 p aL

y
{zzz

The determinant is calculated by 

JacobiMatrix@HenonMap@8 , W<, D, 8 , W<D êê Det êê
Simplify

1

demonstrating  that  the  Henó  map  is  an  area-conserving  map.  In  the

following we will use the Henó map to examine the structure of the related

phase  space.  In  a  first  step,  we  change  the  total  energy of  the  system by

changing  the  initial  angle  q  continuously.  An  increase  of  the  angle  gives

the following picture:
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initial = Table@8i, 0.0<, 8i, .1, .84, .015<D;

henonPlot = 8<;

The list of initial values are used to calculate the intersecting points in the

Poincaré  plane.  Each  initial  point  is  connected  with  a  series  of  point

represented in the Poincaré plane:

Do@AppendTo@henonPlot, ListPlot@
NestList@HenonMap@#, .2114D &, initialPkT, 255D,
PlotStyle Hue@kêLength@initialDD, Frame True,

AspectRatio 1, AxesLabel 8" ", "W"<,
PlotRange 88 1, 1<, 8 1, 1<<DD,

8k, 1, Length@initialD<D

The  generated  sequence  of  figures  allows  one  to  study  the  evolution

process  of  the  torus  by increasing  the  energy.  We observe  that  the  initial
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circular  torus  deforms  to  a  more  egg-shaped  structure.  At  a  very  low

energy, we observe a granular structure in the Poincaré plane. This discrete

structure  represents  periodic  solutions.  Increasing  the  energy,  the  discrete

structure  disappears  and  a  quasicontinuous  covering  of  the  torus  is

observed.  At  this  point,  we  reach  the  quasiperiodic  regime.  At  a  certain

threshold of the energy, the torus splits to five eggs. A single torus merges

to  a  fivefold  torus.  If  we  further  increase  the  energy,  the  fivefold  torus

again  becomes  a  single  torus  which  disintegrates  into  a  broad  band  of

points.  This  disintegration  is  the  start  of  the  torus  destruction.  The

disintegration of the torus also happens at lower energies, especially in the

neighborhood of so-called hyperbolic points. An overview of the different

kind of tory is given in the following:

Show@henonPlotD;

The  following  figure  shows  the  behavior  around  a  hyperbolic  fix  point.

Here,  the   disintegration of  the  tori  as  well  as  the  occurrence  of different

tory structures are seen.
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It  is  clearly  shown  that  the  torus  around  the  hyperbolic  fix  point  is

demolished.  The  destruction  of  the  tori  becomes  more  and  more  diluted.

We  also  realize  in  the  above  figure  that  in  the  neighborhood  of  the

hyperbolic fix point are several elliptic fixpoints.  The existence of elliptic

fix  points  indicates  that  the  tori  continue  to  exist  in  these  neigborhoods.

The  transition  between  the  regular  to  the  chaotic  state  seems  to  be  a

continuous  process.  The  transition  is  controlled  by  the  KAM theorem.  A

similar  picture  is  gained  at  each  hyperbolic  point  in  the  Poincaré  plane.

Hyperbolic  fix  points  occur  in  between  two  elliptic  fixpoints.  This

similarity  of  the  pictures  led  to  the  term  "self-similar  structure  of  the

Poincaré  plane".  Each  magnification  of  the  surrounding  of  a  hyperbolic

fixpoint  looks  similar  to  the  above  figure.  The  geometric  structure  of  the

Poincaré plane at these points will posses a scaling symmetry representing

the  self-similarity.  In  other  words,  the  neighborhood  of  hyperbolic

fixpoints shows the same structure on different scales.
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If  we  not  only  change  the  energy  but  also  the  winding  number  a,  we

observe that the torus cycles through different states. These states are also

determined by the KAM theorem:

henonPlot1 = 8<;

Do@AppendTo@henonPlot1, ListPlot@
NestList@HenonMap@#, kD &, 80.51, 0.165<, 255D,
PlotStyle Hue@kD, Frame True,

AspectRatio 1, AxesLabel 8" ", "W"<,
PlotLabel "k = " <> ToString@kD <> "\n",

PlotRange 88 1, 1<, 8 1, 1<<DD, 8k, 0.1, .85, .02<D

An overview of the different states is given in the following figure:
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Show@henonPlot1, PlotLabel > ""D;

The different colors are related to the different winding numbers.

2.9.2 Discrete Mappings and Hamiltonians

The  last  subsection  introduced  the  Henó  map.  Although  Henó's  map  is

area conserving, it is not derivable from a Hamiltonian. This subsection is

concerned  with  the  question  of  deriving  area-conserving  maps  from  a

Hamiltonian.  As  a  first  example,  let  us  consider  the  one-dimensional

Hamiltonian:

(2.9.18)H H p, qL =
1
ÅÅÅÅ2 p2 + V HqL.

The related Hamilton equations are

(2.9.19)q ' = p,

(2.9.20)p ' = -
V

ÅÅÅÅÅÅÅÅq .
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The  left-hand  side  of  the  differential  equation  can  be  approximated  by

introducing  first-order  discrete  approximations  by  a  difference  scheme  of

the first order: 

(2.9.21)q° =
qi+1 - qiÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

D t ,

where  qi+1 = qHt + DtL  and  qi = qHtL.  The  discrete  representation  of  the

Hamilton equations then follows by

(2.9.22)qi+1 = qi + pi Dt,

(2.9.23)pi+1 = pi - Dt I V
ÅÅÅÅÅÅÅÅq M …q=qi .

However, this system is not area conserving since the Jacobi determinant is

(2.9.24)

Hqi+1, pi+1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHqi,piL =

ƒƒƒƒƒƒƒƒƒƒƒ
1 - Dt I 2V

ÅÅÅÅÅÅÅÅÅÅq M …q = qi

Dt 1

ƒƒƒƒƒƒƒƒƒƒƒ
= 1 + HDtL2 J 2V

ÅÅÅÅÅÅÅÅÅÅq N
q=qi

1

The map can be transformed to  an area-conserving map if  we replace the

forces at time t by forces at time t + Dt; that is,

(2.9.25)qi+1 = qi + pi Dt,

(2.9.26)pi+1 = pi - Dt I V
ÅÅÅÅÅÅÅÅq M …q=qi+1 .

This  map  is  area-preserving.  A  second  possibility  to  represent  an  area

preserving map for the above Hamiltonian is

(2.9.27)qi+1 = qi + Dt pi+1,

(2.9.28)pi+1 = pi - Dt I V
ÅÅÅÅÅÅÅÅq M …q=qi

This representation is used in the following example.

Example 1: Mathematical Pendulum

Let us consider the example of a mathematical pendulum. The potential of

this system is given by

(2.9.29)V HqL =
k

ÅÅÅÅÅÅÅÅÅÅÅÅÅH2 pL2 H1 - cos H2 p qLL.
Assuming that the time step Dt = 1, we get the following map

(2.9.30)qi+1 = qi + pi+1,
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(2.9.31)pi+1 = pi +
k

ÅÅÅÅÅÅÅÅ2 p
sin H2 p qiL.

Both equations are examined on a restricted range modulo 1. The mapping

is known as the Taylor–Chiricov or standard mapping.

The  transition  from  regular  to  chaotic  behavior  discussed  earlier  for  the

Henó  map  can  be  examined  for  the  standard  map  on  a  Poincaré  section.

The mapping generates a discrete flow of the Hamilton system and can be

used to follow the temporal evolution of the system. First, let us define the

standard mapping by

Clear@StandardD

Standard@8xi_, yi_<, k_D := Block@8<,
y = Mod@yi k Sin@2 xiD êH2 L, 1D;

x = Mod@xi + y, 1D;
8x, y< D

The mapping is iterated for a certain amount of steps with different initial

conditions changing the total energy of the Hamiltonian.

Do@h = 80, .54<;
ListPlot@Table@h = Standard@h, kD, 8i, 1, 1000<D,

PlotRange 880, 1<, 80, 1<<, Frame True,

PlotStyle RGBColor@0.996109, 0, 0D,
AspectRatio 1D, 8k, .5, 2.8, .1<D
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The illustration of the results shows that different dynamical regimes exist.

The  patterns  range  from  discrete  points,  to  looped  curves,  to  scattered

points  in  the  Poincaré  section.  These  different  regimes  are  initiated  by

different  initial  energies.  It  is  clearly  seen  that  an  increase  of  the  energy

changes  the  dynamical  behavior  from  regular  to  chaotic  behavior.  The

following  subsection  discusses  the  different  regimes  in  connection  with  a

measure to quantify the different states. 
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2.9.3 Lyapunov Exponent

A basic behavior of the chaotic dynamic is that the infinitesimal change of

initial  conditions  results  in  an  unpredictable  state  for  long  times.  This

deviation of closely related initial trajectories is measured by the so-called

Lyapunov  exponent.  The  Lyapunov  exponent  represents  an  estimation  of

the  degree  of  divergence  of  initially  closely  related  trajectories.  The

exponential  increase  of  the  distance  of  neighboring  trajectories  is

measured  by  the  Lyapunov  exponent.  He  measured  the  mean  increase  of

the  enlargement  of  the  distance  between  the  trajectories.  The  Lyapunov

exponent  is  a  numerical  property  of  the  Hamiltonian  system  but  is  not

restricted  to  this  kind.  This  measure  can  be  also  applied  to

non-Hamiltonian systems or maps. To get some insight into the theoretical

background, let us consider an n-dimensional autonomous system

(2.9.32)dxiÅÅÅÅÅÅÅÅdt = FiHx1, …, xnL, i = 1, 2, …, n

Our aim is to estimate the rate of deviation for two initially closely related

trajectories.  To  accomplish  this  task,  we  linearize  the  system in  Equation

(2.9.32)  by  considering  an  infinitesimal  neighboring  trajectory

x
–

= Hx1
–

, …, xn
– L.  The  linearization  provides  the  tangent  representation  of

the equations of motion:

(2.9.33)
ddxiÅÅÅÅÅÅÅÅÅÅdt = „

i=1

n

 dx j J FiÅÅÅÅÅÅÅÅx j
N
x=x

–HtL.

The distance or norm of the distortion dxi is 

(2.9.34)d(t) = "########################⁄i=1
n

dxi
2HtL .

This  quantity is  the  basis  for  the  estimation of  the  Lyapunov exponent  l.

The  Lyapunov  exponent  measures  the  divergent  of  two  trajectories:  a

reference trajectory x
–
 and a neighboring trajectory x

–H0L + dxH0L. The mean

divergence rate is defined by

(2.9.35)l = lim
tØ¶
dH0LØ0

I 1
ÅÅÅÅt M lnI dHtL

ÅÅÅÅÅÅÅÅÅÅdH0L M,

where  d(0)  is  the  norm of  the  initial  state.  One  characteristic  property  of

the Lyapunov exponent is that l vanishes for a regular motion because dHtL
increases linearly or, at least, algebraically in time.
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The  relation  between  the  Lyapunov  exponent  and  the  trajectory  become

more obvious if we restrict our examinations to a one-dimensional map:

(2.9.36)xi+1 = f HxiL.
As  an example  for  f  let  us  take  the logistic  function f HxL =  4 s x H1 - xL.
The tangent maps defined in Equation (2.9.33) is given by

(2.9.37)dxi+1 = I df HxL
ÅÅÅÅÅÅÅÅÅÅÅÅdx M

x=xi
 dxi.

Assuming  that  the  distance  dxi  is  fixed  in  each  iteration,  we  can simplify

the relation to 

(2.9.38)dxi+1 = ¤ j=0
i f ' HxiL dx0,

where  f ' HxiL  is  the  derivative  of  f  at  x = xi.  The  related  Lyapunov

exponent (2.9.35) then is

(2.9.39)

l = lim
NØ¶

1
ÅÅÅÅÅÅN ln@¤ j=1

N f ' Hx jL dx0D

= lim
NØ¶

1
ÅÅÅÅÅÅN ⁄ j=0

N lnH f ' Hx jLL.
This  relation  demonstrate  that  the  Lyapunov  exponent  is  independent  of

the initial condition x0. The relation given is implemented as follows:

Clear@f, xD

f@x_, _D = 4 x H1 xL

4 H1 - xL x s

The derivation of the logistic function is

g@x_, _D = x f@x, D

4 H1 - xL s - 4 x s

Iterating relation (2.9.33) and calculating the derivative at xi  are the basic

calculations  for  determining  the  Lyapunov  exponent.  Since  the  logistic
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function depends on a parameter s, we are also able to study the influence

of s on l. The following figure shows this dependence:

logpl = ListPlot@ Table@
8 , Last@FoldList@Plus, 0, Map@Log@Abs@g@#, DDD &,

NestList@f@#, D &, .6, 250DDDDê252<,
8 , .01, 1, .005<D, PlotStyle

RGBColor@0.996109, 0, 0D,
PlotJoined True, AxesLabel 8" ", " "<D;

0.2 0.4 0.6 0.8 1
s

-3

-2

-1

l

The iteration of the logistic map is as follows:

logi = Flatten@
Table@Map@8 , #< &, Sort@Take@NestList@f@#, D &, .6,

115D, 825, 115<DDD, 8 , .01, 1, .005<D, 1D;
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pllogi = ListPlot@logi, AxesLabel 8" ", "x"<,
PlotStyle RGBColor@0, 0, 0.996109DD;

Our  interest  is  the  section  of  this  figure  marked  by  a  circle.  The

representation of this selected part in a magnification shows that  we get a

similar picture:
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A magnification around the second bifurcation shows

Show@pllogi, Graphics@8Circle@80.852, 0.469<, 0.1D<,
AspectRatio Automatic, Axes AutomaticDD;
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logi1 = Flatten@Table@Map@8 , #< &, Sort@
Take@NestList@f@#, D &, .6, 215D, 875, 215<DDD,

8 , 0.84, 0.91, .0005<D, 1D;

pllogi1 = ListPlot@logi1, AxesLabel 8" ", "x"<,
PlotStyle RGBColor@0.996109, 0, 0D,
PlotRange 880.84, 0.91<, 8.29, .69<<D;

Again, a selection and magnification marked by a circle
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Show@pllogi1, Graphics@8Circle@80.886, 0.528<, 0.01D<,
AspectRatio Automatic, Axes AutomaticDD;

shows  again  that  the  result  looks  similar  to  that  earlier.  We  observe

bifurcations  as  in  the  original  figure.  The  bifurcation  continues  and

transverses into an unstructured behavior. 

logi2 = Flatten@Table@Map@8 , #< &, Sort@
Take@NestList@f@#, D &, .6, 215D, 875, 215<DDD,

8 , 0.883, 0.896, .00005<D, 1D;
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pllogi2 = ListPlot@logi2, AxesLabel 8" ", "x"<,
PlotStyle RGBColor@0, 0.500008, 0D,
PlotRange 880.883, 0.896<, 80.429, 0.603<<D;

The repeated  pattern  indicates  that  the bifurcations occur  again and again

until  a  critical value sc  is  reached.  At this  value,  the bifurcating behavior

skips  to  chaos.  We  define  chaos  as  such  a  state  where  the  Lyapunov

exponent is positive. The different magnification ranges are summarized in

the following figure:

glist = 8pllogi, pllogi1, pllogi2<;
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Show@glistD;

A  combination  of  the  bifurcation  diagram  with  the  Lyapunov  exponent

demonstrates  that  the  bifurcation  regime  is  reached  at  the  border  of

sc ~ 0.9. It is also obvious that the chaotic regime is intermitted by regions

where a purely periodic behavior is recover.
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The different colors represent the regions of magnification. The following

illustration gives a dynamic view of the magnification.

Map@Show@#D &, glistD;
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Show@logpl, pllogi, PlotRange AllD;

In the  periodic regime,  the Lyapunov exponent  periodically increases and

decreases up to zero. At the critical value sc, l  transcends the border line

at  zero.  We  also  observe  that  the  Lyapunov  exponent  possesses

singularities  at  -¶.  These  singularities  are  supercyclic  periods  of  the

logistic map. Above the critical value sc, the Lyapunov exponent wobbles

between the chaotic and the periodic state in ever shorter cycles. However,

the  supercyclic  periods  also  exist  in  that  regime  above  sc.  The  transition

between  the  regular  and  chaotic  states  is  a  major  characteristic  of  a

nonlinear chaotic system. 

Feigenbaum  in  1975  extensively  studied  the  transition  to  chaos.  He

observed  that  the  period  doubling  skips  to  chaos  at  a  critical  value  of

sc = 0.892486 … .  Below  this  value,  he  demonstrated  that  the  ratio  of

interval lengths has a fixed value determined by the relation 

(2.9.40)d = lim
nØ¶

sn+2-sn+1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
sn+1-sn

= 4.669 …,
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which  is  now called  the  Feigenbaum constant.  The  ratio  d  exists  because

the bifurcations occur in decreasing s intervals. Such a bifurcation pattern

is the origin of a self-similar pattern. The bifurcation diagram derived is a

rich source  of  self-similar  structure and  a  repetition on ever  decreasing s

intervals.  Let  us measure the distance with respect  to the critical  point  sc

with Ds; then, the period T  doubles like T = 2n  if the distance s decreases

by d. Thus, the periods between two bifurcations are given by

(2.9.41)T I Ds
ÅÅÅÅÅÅÅÅ

d
M = 2 THDsL,

where  Ds  =  sc - s  and  1/d  =  0.21418….  The  period  T  as  a  function  of

Ds  shows  a  scaling  property.  The  solution  of  the  functional  relation

(2.9.41) is given by 

(2.9.42)THDsL = c0 Ds
n,

which provides the relation

skal = c0 == 2 c0

d-n Dsn c0 == 2 Dsn c0

The solution is given by

sskal = Solve@skal, D

::n Ø -
logH2L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
logHdL >>

The replacement of d by its numerical value provides the scaling exponent

as

sskal ê. 4.669

88n Ø -0.44982<<
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Exactly by this scaling law the period doubles. The relation can be seen as

a  self-similar  scaling  behavior  before  chaos  sets  in.  Since  the  scaling

exponent  is  a  fractional  value,  some  authors  call  the  periodic  regime  a

fractal. Despite the supercyclic periods, the Lyapunov exponent is positive

for s > sc. Huberman and Rudnick observed that the envelope l
è
 above sc

also follows a scaling law of the form

l
è

~ Hs - scL-n,

where,  again,  n = -lnH2L ê lnHdL.  Because  of  the  change  of  sign  at  sc  and

the  fact  that  the  increase  of  l
è

 is  given  by  a  power  law,  this  transition  is

called a phase transition of the second kind. The terms are borrowed from

the theory of critical phenomena and statistical physics. 

The  mathematical  relations  discussed  so  far  are  also  presentable  in

graphical  form.  The  main  feature  of  the  logistic  function  is  its

self-similarity  given  by  the  scaling  period  doubling.  The  self-similar

behavior  of  the  mapping  is  also  seen  in  its  algebraic  structure.  The

following  lines  show  different  state  of  iteration  and  the  generated

polynomial:

its = NestList@f@#, D &, x, 3D; TableForm@itsD

x

4 H1 - xL x s

16 H1 - xL x s2 H1 - 4 H1 - xL x sL
64 H1 - xL x s3 H1 - 4 H1 - xL x sL H1 - 16 H1 - xL x s2 H1 - 4 H1 - xL x sLL

where the first  item of this  table has no meaning other than to  initiate  the

iteration.  The  iteration  of  the  logistic  map  generates  at  each  step  a  new

value for  x.  This  value is  the starting point  for  the next  value in x  ans so

forth.  The  iteration  process  can  be  depicted  by  means  of  the  function

logistic[], which generates a mapping consisting of n iterations for a given

s and x0:
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logistic@ _, x0_, n_D := Block@8pl1, dli1, dlh<,
lh = f@x, D;
li1 = NestList@f@#, D &, x0, nD;
pl1 = Plot@Evaluate@8x, lh<D, 8x, 0, 1<,

PlotLabel " =" <> ToString@ D, AspectRatio 1,

PlotStyle 8RGBColor@0.996109, 0, 0D,
RGBColor@0.996109, 0, 0D<,

DisplayFunction IdentityD;
Show@pl1, Graphics@Table@8Line@

88li1PiT, li1Pi + 1T<, 8li1Pi + 1T, li1Pi + 1T<<D,
Line@88li1Pi + 1T, li1Pi + 1T<, 8li1Pi + 1T,

li1Pi + 2T<<D<, 8i, 1, Length@li1D 2<DD,
AspectRatio Automatic, PlotRange All,

DisplayFunction $DisplayFunctionD
D

To show the changes of fix points f Hx*L = x*, we change the parameter s:

Do@logistic@ , .01, 70D, 8 , .7, 1, .025<D
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The  result  of  the  generated  sequence  shows  how  a  series  of  fix  points

emerge  from  a  single  point.  The  creation  of  these  fixpoints  can  be

observed if  we plot  the higher iterations f HnL  of the logistic mapping.  The

intersection with  the  bisector  shows  how the  fixpoints  are  generated.  The

following illustration shows the iteration up to order n = 5 :

Do@Show@GraphicsArray@Partition@
Table@Plot@Evaluate@8itsP1T, itsPiT < ê. D,

8x, 0, 1<, PlotStyle RGBColor@0.996109, 0, 0D,
PlotRange All, PlotLabel "n = " <>

ToString@iD <> " " <> " = " <> ToString@ D,
AspectRatio 1, DisplayFunction IdentityD,

8i, 2, Length@itsD<D, 2DD,
DisplayFunction $DisplayFunctionD,

8 , .7, 1, .025<D;
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It  is  clearly  shown  that  the  number  of  fixpoints  increases  with  larger  s

values.

2.9.4 Exercises

1.  Calculate  the  Lyapunov  exponent  for  the  discrete  map  xi+1 = 2 xi.
Demonstrate that l=ln(2).

2. Examine the scaling properties of the logistic map.

3.  Examine  the  fix  points  and  stability  as  a  function  of  the  control
parameter l of the cubic map

xn+1 = l xnH1 - xn
2L.

4.  Consider  a  ball  bouncing  between  two  walls  (neglect  gravity)  for
which one wall has a small periodic motion. Show that the dynamics is
not governed by a linear operator.
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2.10 Rigid Body

2.10.1 Introduction

All bodies around us consist of atoms or molecules.  These basic elements

of  the  matter  are  either  in  a  regular  or  irregular  order  forming  the  rigid

bodies.  The  rigid  bodies  are  very  resistant  to  mechanical  loads.  The

diameter  of  atoms  and  molecules  in  a  solid  are  small  compared  with  the

interatom or intermolecular distances. To a good approximation, solids can

be represented as a collection of mass points with fixed distances between

atoms. Bodies with the property of fixed interatomic distances are defined

as rigid bodies.

To  describe  the  motion  of  a  rigid  body,  we  introduce  two  kinds  of

coordinate system:

1. An inertial coordinate system

2. A body-centered coordinate system

The  description  of  the  motion  is  related  to  six  coordinates.  These

quantities  are  the  coordinates  of  the  mass  center  and  three  angles

determining  the  orientation  with  respect  to  the  inertial  system.  For   the

three  angles,  we  choose  the  Euler  angles  already  introduced  in  Section

2.2.2.  Related  to  these  coordinates  are  two  basic  types  of  motion:  a

translation  and  a  rotation.  These  kinds  of  motion  can  be  motivated  by

considering infinitesimal small movements of the rigid body. In addition, if

we locate the center of mass in the origin of the coordinate system, we are

able  to  separate  the  energy  terms  by  translation  and  rotation  energy

components,  meaning  the  motion  is  separated  by  a  center  of  mass

movement and a movement around the center of mass.

If,  in addition,  the potential energy is  also separable,  the total  Lagrangian

splits  into  two  parts:  the  translation  and  the  rotation  parts.  Each  part  is

independent  of  the  other  and  determines  an  independent  solution  and,  as
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such,  an  independent  state  of  motion.  This  behavior  was  first  realized  by

Euler in 1749.

2.10.2 The Inertia Tensor

Let  us  examine  a  rigid  body  consisting  of  n  particles  with  masses  ma,

a = 1, 2, ..., n. Let us assume that this rigid body is rotating with angular

velocity  w”÷÷  around  a  fixed  point  with  respect  to  the  body-centered

coordinate  system.  In  addition,  let  us  assume  that  the  total  rigid  body  is

moving  with  a  velocity  V
”÷÷

 with  respect  to  the  inertial  coordinate  system.

Then,  the  velocity of  the ath particle  is  determined  by Equation (2.10.2).

For a rigid body, the coordinates are fixed in the rotating frame and thus

(2.10.1)v”r = I d r”
ÅÅÅÅÅÅÅdt M

r
= 0.

The  velocity  of  the  ath  particle  in  the  inertial  coordinate  system  is  thus

given by

(2.10.2)v”a = V
”÷÷

+ w
”÷÷

ä r”a.

The velocities are all measured in the inertial system because the velocities

in  the  rotating  system  are  zero  because  of  the  rigidity  of  the  body.  The

kinetic energy of the ath particle is thus determined by 

(2.10.3)Ta =
maÅÅÅÅÅÅÅÅ2 v”a

2

which  results  in  the  total  kinetic  energy,  including  translations  and

rotations of the rigid body, being

(2.10.4)T =
1
ÅÅÅÅ2 ‚

a=1

n
ma IV”÷÷ + w

”÷÷
ä r”aM2.

Expansion of the quadratic term results in 

(2.10.5)

T =
1
ÅÅÅÅ2 ‚

a=1

m
ma JV”÷÷ 2

+ 2 V
”÷÷
. Hw”÷÷ ä r”aL + Hw”÷÷ ä r”aL2N

=
1
ÅÅÅÅ2 ‚

a=1

m
ma V

”÷÷ 2
+

1
ÅÅÅÅ2 ‚

a=1

m
V
”÷÷

. Hw”÷÷ ä r”aLma +

1
ÅÅÅÅ2 ‚

a=1

n
ma Hw”÷÷ ä r”aL2 .

This  expression  represents  the  general  representation  of  the  total  kinetic

energy.  This  expression  is  valid  for  any  choice  of  origin  from which  the

location of the athe particle ra
”÷÷÷  is measured.
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Locating  the  origin  of  the  coordinate  system into  the  center  of  mass,  this

expression is  simplified to a  much shorter  expression.  The second term is

rewritten as

(2.10.6)‚
a=1

n
V
”÷÷

. Hw”÷÷ ä r”aLma = V
”÷÷

. w
”÷÷

ä ⁄a=1
n ma r”a.

With 

(2.10.7)⁄a=1
n ma r”a = M R

”÷
,

it follows that

(2.10.8)‚
a=1

n
V
”÷÷

. Hw”÷÷ ä r”aLma = V
”÷÷

. w
”÷÷

ä M R
”÷
.

Since the center of mass is located in the origin, we must set R
”÷

= 0, which

reduced the total kinetic energy to

(2.10.9)
T =

1
ÅÅÅÅ2 ‚

a=1

n
ma V

”÷÷ 2
+

1
ÅÅÅÅ2 ‚

a=1

n
ma H w

”÷÷
ä r”aL2

= Ttrans + Trot ,

with

(2.10.10)Ttrans =
1
ÅÅÅÅ2 V

”÷÷ 2
M

and 

(2.10.11)Trot =
1
ÅÅÅÅ2 ‚

a=1

n
ma Hw”÷÷ ä r”aL2.

Ttrans  and  Trot  are  expressions  for  the  translation  and  rotation  part  of  the

kinetic energy, respectively. 

In the following, we will specifically look at the rotation part of the motion:

(2.10.12)Trot =
1
ÅÅÅÅ2 ‚

a=1

n
ma Hw”÷÷ ä r”aL2 .

Applying  the  vector  identityIA”÷÷ ä B
”÷ M2 =IA”÷÷ ä B

”÷ M . IA”÷÷ ä B
”÷ M = A2 B2 - IA”÷÷ . B

”÷ M
to the rotation energy, we are able to write

(2.10.13)Trot =
1
ÅÅÅÅ2 ‚

a=1

n
ma 9w2 ra

2 - H w
”÷÷

ä r”aL2=.
Replacing  the  vectors  w”÷÷ =  (w1, w2, w3)  and  r”a  =  (xa1, xa2, xa3)  by  their

components, we get 

(2.10.14)
Trot =

1
ÅÅÅÅ2 ‚

a=1

n
ma H⁄i=1

3
wi

2L H⁄k=1
3 xak

2 L -

H⁄i=1
3

wi xai
2 L H⁄ j=1

3
 w j xaj

2 L.
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The frequencies wi are represented by introducing Kronecker's symbol

(2.10.15)wi = ⁄ j=1
3

dij w j.

The insertion of the frequencies in this form allows us to combine the sums

over i and j as a common sum and extract them from the expression

(2.10.16)

Trot =
1
ÅÅÅÅ2 ‚

a=1

n
ma ‚

i, j=1

3 8wi w j dij ⁄k=1
3 xak

2

- wi w j xai xaj<
= ‚

i, j=1

3
 wi w j 9‚

a=1

n
ma @ dij ⁄k=1

3 xak
2 - xai xaj D=.

If we introduce the definition 

(2.10.17)Qij = ‚
a=1

n
ma 8 dij ⁄k=1

3 xak
2 - xai xaj <,

then the rotation energy is the simple form

(2.10.18)Trot =
1
ÅÅÅÅ2 ⁄i, j=1

3
 wi Qi, j w j,

where  Qi, j   is  known as  the  inertia  tensor.  The  components  of  this  tensor

are

(2.10.19)

Q =

i

k

jjjjjjjjj
⁄a=1

n ma Hxa2
2 + xa3

2 L - ⁄a=1
n ma xa1 xa2 ⁄a=1

n ma xa2 xa3

- ⁄a=1
n ma xa2 xa1 ⁄a=1

n ma Hxa1
2 + xa3

2 L - ⁄a=1
n ma xa2 xa3

- ⁄a=1
n ma xa3 xa1 - ⁄a=1

n ma xa3 xa2 ⁄a=1
n ma Hxa1

2 + xa2
2 L

y

{

zzzzzzzzz

The  elements  on  the  diagonal  Qii  are  known  as  main  inertia  moments,

whereas  the  Qij  in  the  off-diagonal  elements  are  known  as  deviation

moments.  From the structure of the elements in Qij,  it  is  obvious that  this

tensor is a symmetrical tensor; that is,

(2.10.20)Qij = Q ji.

Taking  this  property  into  account,  it  is  clear  that  only six  components  of

the tensor are independent of each other. Another essential property of the

inertia  tensor  is  that  the  sum over  particles  is  extractable  from the  tensor

structure. In other words, we can replace the masses by a continuous mass

distribution r Hr”L = rHx1, x2, x3L  and replace  the sum by an integral  over

the  spatial  coordinates.  This  replacement  results  in  the  continuous

representation of the inertia tensor:

(2.10.21)Qij = ŸV
r Hr”L 8 dij ⁄k xk

2 - xi, x j< dx1 dx2 dx3,
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where V  is the total volume of the body under consideration. 

2.10.3 The Angular Momentum

The angular momentum of a rigid body with respect to a fixed point O in

the body-centered coordinate system is given by

(2.10.22)L
”÷

= ⁄a=1
n r”a ä p”÷ a.

Appropriate choices for such a point are as follws

1.  A  fixed  point  in  the  body  and  inertial  system  around  which  the  body

circles (top)

2. The center of mass

In the body-centered coordinate system, the momentum p”÷ a is

(2.10.23)p”÷ a = ma v”a = ma Hw”÷÷ ä r”aL.
Thus, the angular momentum becomes

(2.10.24)L
”÷

= ⁄a=1
n ma r”a ä Hw”÷÷ ä r”aL.

The  vector  identity A
”÷÷

ä I B
”÷

ä A
”÷÷ M = A2 B

”÷
- A

”÷÷
äI B

”÷
. A
”÷÷ M  allows  us  to

simplify L
”÷
 to

(2.10.25)L
”÷÷

= ‚
a=1

n
ma 9 r”a

2
w
”÷÷

- r”a H r”a . w
”÷÷ L=.

The  replacement  of  vectors  by  their  components  provides  the  ith

component of the angular momentum:

(2.10.26)

Li = ‚
a=1

n
ma 8 wi ⁄k=1

3 xak
2 - xai ⁄ j=1

3 xaj w j <
= ‚

a=1

n
ma ‚

j=1

3 8w j dij ⁄k=1
3 xak

2 - xai xaj w j<
= ‚

j=1

3
w j ‚

a=1

n
ma 8 dij ⁄k=1

3 xak
2 - xai xaj<

= ⁄ j=1
3

w j Qij .

In tensor notation, we write 

(2.10.27)L
”÷

= Q
êêê

. w
”÷÷ .
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Multiplying  the  ith  component  of  the  angular  momentum  by  1
ÅÅÅÅ2 wi  and

summing up the components, we get 

(2.10.28)‚
i=1

3 1
ÅÅÅÅ2  wi Li =

1
ÅÅÅÅ2 ⁄ j,i=1

3
wi w j Qij = Trot =

1
ÅÅÅÅ2  w

”÷÷ . L
”÷
.

2.10.4 Principal Axes of Inertia

If we consider the angular momentum and the kinetic energy as a function

of  the  inertia  tensor,  we  observe  that  these  expressions  simplify  if  the

inertia tensor takes on a special form such as

(2.10.29)Qij = Qi dij

or

(2.10.30)Q
êêê

=

i

k
jjjjjjjj

Q1 0 0

0 Q2 0

0 0 Q3

y

{
zzzzzzzz.

This  simplification  is  known  as  the  principal  axes  representation  of  the

inertial tensor. If we are able to write down the Q  tensor in such a way, it

follows for the angular momentum that

(2.10.31)Li = ⁄ j Qi dij w j = Qi wi,

and for the rotation energy,

(2.10.32)Trot =
1
ÅÅÅÅ2 ⁄i, j Qi dij wi w j =

1
ÅÅÅÅ2 ⁄i Qi wi

2.

This  simplification  only  occurs  if  we  are  able  to  find  a  body-centered

coordinate system in which the deviation moments Qij  vanish. In this case,

the  inertia  tensor  consists  of  three  independent  components:  the  principal

inertia moments.

Uncovering  this  special  coordinate  system  is  related  to  the  idea  that  the

rotation  around  a  principal  axes  is  characterized  by  the  alignment  of  the

angular momentum L
”÷
 and the angular frequency w”÷÷ ; that is,

(2.10.33)L
”÷

= Q
êêê

. w
”÷÷

The representation of the angular  momentum in the principal  axes system

and in the general system must be identical. This invariance of the physical

quantity L
”÷
 provides the following set of equations:
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(2.10.34)

L1 = Q w1 = Q11 w1 + Q12 w2 + Q13 w3,

L2 = Q w2 = Q21 w1 + Q22 w2 + Q23 w3,

L3 = Q w3 = Q31 w1 + Q32 w2 + Q33 w3,

(2.10.35)

ó HQ11 - QL w1 + Q12 w2 + Q13 w3 = 0,

Q21 w1 + H Q22 - QL w2 + Q23 w3 = 0,

Q31 w1 + Q32 w2 + HQ33 - QL w3 = 0,

(2.10.36)ó ⁄ j=1
3 HQij - Q dijL w j = 0, i = 1, 2, 3.

A condition to find non-trivial solutions of this system of equations is

(2.10.37)det HQij - Q dijL = 0,

which  represents  a  cubic  algebraic  relation  for  Q.  The  three  different

solutions for Q are related to the principal inertia moments Q1, Q2, and Q3.

Knowing these three quantities, it is possible to classify the behavior of the

rigid body or top.

With all three components different,

(2.10.38)Q1 Q2 Q3,

we call the top unsymmetrical. With two components equal to each other,

(2.10.39)Q1 = Q2 Q3,

we call the body a symmetric top. With all three components equal to each

other,

(2.10.40)Q1 = Q2 = Q3,

we have a spherical top.

The  steps  discussed  above  are  implemented  by  a  few  lines.  The  inertia

tensor with principal diagonal elements is

th = IdentityMatrix@3D 8 , , <

i

k
jjjjjjjj

q 0 0

0 q 0

0 0 q

y

{
zzzzzzzz
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The general inertial tensor is represented by a two-dimensional matrix:

theta = Table@ @i, jD, 8j, 1, 3<, 8i, 1, 3<D;
theta êê MatrixForm

i

k
jjjjjjjj

qH1, 1L qH2, 1L qH3, 1L
qH1, 2L qH2, 2L qH3, 2L
qH1, 3L qH2, 3L qH3, 3L

y

{
zzzzzzzz

The angular velocity w”÷÷  is given by the vector

= 8 1, 2, 3<

8w1, w2, w3<

The invariance condition for the angular momentum reads

Thread@th. == theta. , ListD êê TableForm

q w1 == w1 qH1, 1L + w2 qH2, 1L + w3 qH3, 1L
q w2 == w1 qH1, 2L + w2 qH2, 2L + w3 qH3, 2L
q w3 == w1 qH1, 3L + w2 qH2, 3L + w3 qH3, 3L

For  a  nontrivial  solution  of  this  set  of  equations,  the  following  relation

must  hold.  The  determinant  defines  the  third-order  polynomial  in  Q  and

allows three solutions depending on the components of the general  inertia

tensor.

Solve@Det@theta thD == 0, D êê Simplify

::q Ø
1
ÅÅÅÅÅÅ
6
I2 HqH1, 1L + qH2, 2L + qH3, 3LL -

22ê3 I-2 qH1, 1L3 + 3 HqH2, 2L + qH3, 3LL qH1, 1L2 +

3 HqH2, 2L2 - 4 qH3, 3L qH2, 2L + qH3, 3L2 - 3 qH1, 2L qH2, 1L -

3 qH1, 3L qH3, 1L + 6 qH2, 3L qH3, 2LL qH1, 1L -

2 qH2, 2L3 - 2 qH3, 3L3 + 3 qH2, 2L qH3, 3L2 +
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18 qH1, 3L qH2, 2L qH3, 1L -

27 qH1, 3L qH2, 1L qH3, 2L - 9 qH2, 2L qH2, 3L qH3, 2L -

9 qH1, 2L H3 qH2, 3L qH3, 1L + qH2, 1L HqH2, 2L - 2 qH3, 3LLL +

3 qH2, 2L2 qH3, 3L - 9 qH1, 3L qH3, 1L qH3, 3L -

9 qH2, 3L qH3, 2L qH3, 3L +,IH2 qH1, 1L3 - 3 HqH2, 2L + qH3, 3LL qH1, 1L2 + 3 H-qH2, 2L2 +

4 qH3, 3L qH2, 2L - qH3, 3L2 + 3 qH1, 2L qH2,

1L + 3 qH1, 3L qH3, 1L - 6 qH2, 3L qH3, 2LL
qH1, 1L + 2 qH2, 2L3 + 2 qH3, 3L3 -

3 qH2, 2L qH3, 3L2 - 18 qH1, 3L qH2, 2L qH3, 1L +

27 qH1, 3L qH2, 1L qH3, 2L + 9 qH2, 2L qH2, 3L
qH3, 2L + 9 qH1, 2L H3 qH2, 3L qH3, 1L +

qH2, 1L HqH2, 2L - 2 qH3, 3LLL -

3 qH2, 2L2 qH3, 3L + 9 qH1, 3L qH3, 1L qH3, 3L +

9 qH2, 3L qH3, 2L qH3, 3LL2 -

4 HqH1, 1L2 - HqH2, 2L + qH3, 3LL qH1, 1L + qH2, 2L2 +

qH3, 3L2 + 3 qH1, 2L qH2, 1L + 3 qH1, 3L qH3, 1L +

3 qH2, 3L qH3, 2L - qH2, 2L qH3, 3LL3MM^H1 ê3L -

I2è!!!!
2

3 HqH1, 1L2 - HqH2, 2L + qH3, 3LL qH1, 1L + qH2, 2L2 +

qH3, 3L2 + 3 qH1, 2L qH2, 1L + 3 qH1, 3L qH3, 1L +

3 qH2, 3L qH3, 2L - qH2, 2L qH3, 3LLM ë
II-2 qH1, 1L3 + 3 HqH2, 2L + qH3, 3LL qH1, 1L2 +

3 HqH2, 2L2 - 4 qH3, 3L qH2, 2L + qH3, 3L2 - 3 qH1, 2L qH2, 1L -

3 qH1, 3L qH3, 1L + 6 qH2, 3L qH3, 2LL qH1, 1L -

2 qH2, 2L3 - 2 qH3, 3L3 + 3 qH2, 2L qH3, 3L2 +

18 qH1, 3L qH2, 2L qH3, 1L -

27 qH1, 3L qH2, 1L qH3, 2L - 9 qH2, 2L qH2, 3L qH3, 2L -

9 qH1, 2L H3 qH2, 3L qH3, 1L + qH2, 1L HqH2, 2L - 2 qH3, 3LLL +

3 qH2, 2L2 qH3, 3L - 9 qH1, 3L qH3, 1L qH3, 3L -

9 qH2, 3L qH3, 2L qH3, 3L +,IH2 qH1, 1L3 - 3 HqH2, 2L + qH3, 3LL qH1, 1L2 +

3 H-qH2, 2L2 + 4 qH3, 3L qH2, 2L - qH3, 3L2 +

3 qH1, 2L qH2, 1L + 3 qH1, 3L qH3, 1L -

6 qH2, 3L qH3, 2LL qH1, 1L + 2 qH2, 2L3 +

2 qH3, 3L3 - 3 qH2, 2L qH3, 3L2 - 18 qH1, 3L
qH2, 2L qH3, 1L + 27 qH1, 3L qH2, 1L qH3, 2L +

9 qH2, 2L qH2, 3L qH3, 2L + 9 qH1, 2L H3 qH2, 3L
qH3, 1L + qH2, 1L HqH2, 2L - 2 qH3, 3LLL -

3 qH2, 2L2 qH3, 3L + 9 qH1, 3L qH3, 1L
qH3, 3L + 9 qH2, 3L qH3, 2L qH3, 3LL2 -

4 HqH1, 1L2 - HqH2, 2L + qH3, 3LL qH1, 1L +
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qH2, 2L2 + qH3, 3L2 + 3 qH1, 2L qH2, 1L +

3 qH1, 3L qH3, 1L + 3 qH2, 3L qH3, 2L -

qH2, 2L qH3, 3LL3MM^H1 ê3LMM>,

:q Ø
1

ÅÅÅÅÅÅÅÅÅ
12

I4 HqH1, 1L + qH2, 2L + qH3, 3LL +

22ê3
I1 -

Â
è!!!!

3 M
I-2 qH1, 1L3 + 3 HqH2, 2L + qH3, 3LL qH1, 1L2 +

3 HqH2, 2L2 - 4 qH3, 3L qH2, 2L + qH3, 3L2 - 3 qH1, 2L qH2, 1L -

3 qH1, 3L qH3, 1L + 6 qH2, 3L qH3, 2LL qH1, 1L -

2 qH2, 2L3 - 2 qH3, 3L3 + 3 qH2, 2L qH3, 3L2 +

18 qH1, 3L qH2, 2L qH3, 1L -

27 qH1, 3L qH2, 1L qH3, 2L -

9 qH2, 2L qH2, 3L qH3, 2L -

9 qH1, 2L H3 qH2, 3L qH3, 1L + qH2, 1L HqH2, 2L - 2 qH3, 3LLL +

3 qH2, 2L2 qH3, 3L - 9 qH1, 3L qH3, 1L qH3, 3L -

9 qH2, 3L qH3, 2L qH3, 3L +,IH2 qH1, 1L3 - 3 HqH2, 2L + qH3, 3LL qH1, 1L2 +

3 H-qH2, 2L2 + 4 qH3, 3L qH2, 2L - qH3, 3L2 +

3 qH1, 2L qH2, 1L + 3 qH1, 3L qH3, 1L -

6 qH2, 3L qH3, 2LL qH1, 1L + 2 qH2, 2L3 +

2 qH3, 3L3 - 3 qH2, 2L qH3, 3L2 - 18 qH1, 3L
qH2, 2L qH3, 1L + 27 qH1, 3L qH2, 1L qH3, 2L +

9 qH2, 2L qH2, 3L qH3, 2L + 9 qH1, 2L H3 qH2, 3L
qH3, 1L + qH2, 1L HqH2, 2L - 2 qH3, 3LLL -

3 qH2, 2L2 qH3, 3L + 9 qH1, 3L qH3, 1L
qH3, 3L + 9 qH2, 3L qH3, 2L qH3, 3LL2 -

4 HqH1, 1L2 - HqH2, 2L + qH3, 3LL qH1, 1L + qH2, 2L2 +

qH3, 3L2 + 3 qH1, 2L qH2, 1L + 3 qH1, 3L qH3, 1L +

3 qH2, 3L qH3, 2L - qH2, 2L qH3, 3LL3MM^H1 ê3L +

I2è!!!!
2

3 I1 + Â
è!!!!

3 M HqH1, 1L2 - HqH2, 2L + qH3, 3LL qH1, 1L +

qH2, 2L2 + qH3, 3L2 + 3 qH1, 2L qH2, 1L +

3 qH1, 3L qH3, 1L + 3 qH2, 3L qH3, 2L - qH2, 2L qH3, 3LLM ë
II-2 qH1, 1L3 + 3 HqH2, 2L + qH3, 3LL qH1, 1L2 +

3 HqH2, 2L2 - 4 qH3, 3L qH2, 2L + qH3, 3L2 - 3 qH1, 2L qH2, 1L -

3 qH1, 3L qH3, 1L + 6 qH2, 3L qH3, 2LL qH1, 1L -

2 qH2, 2L3 - 2 qH3, 3L3 + 3 qH2, 2L qH3, 3L2 +

18 qH1, 3L qH2, 2L qH3, 1L -

27 qH1, 3L qH2, 1L qH3, 2L - 9 qH2, 2L qH2, 3L qH3, 2L -

9 qH1, 2L H3 qH2, 3L qH3, 1L + qH2, 1L HqH2, 2L - 2 qH3, 3LLL +
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3 qH2, 2L2 qH3, 3L - 9 qH1, 3L qH3, 1L qH3, 3L -

9 qH2, 3L qH3, 2L qH3, 3L +,IH2 qH1, 1L3 - 3 HqH2, 2L + qH3, 3LL qH1, 1L2 +

3 H-qH2, 2L2 + 4 qH3, 3L qH2, 2L - qH3, 3L2 +

3 qH1, 2L qH2, 1L + 3 qH1, 3L qH3, 1L -

6 qH2, 3L qH3, 2LL qH1, 1L + 2 qH2, 2L3 +

2 qH3, 3L3 - 3 qH2, 2L qH3, 3L2 - 18 qH1, 3L
qH2, 2L qH3, 1L + 27 qH1, 3L qH2, 1L qH3, 2L +

9 qH2, 2L qH2, 3L qH3, 2L + 9 qH1, 2L H3 qH2, 3L
qH3, 1L + qH2, 1L HqH2, 2L - 2 qH3, 3LLL -

3 qH2, 2L2 qH3, 3L + 9 qH1, 3L qH3, 1L
qH3, 3L + 9 qH2, 3L qH3, 2L qH3, 3LL2 -

4 HqH1, 1L2 - HqH2, 2L + qH3, 3LL qH1, 1L +

qH2, 2L2 + qH3, 3L2 + 3 qH1, 2L qH2, 1L +

3 qH1, 3L qH3, 1L + 3 qH2, 3L qH3, 2L -

qH2, 2L qH3, 3LL3MM^H1 ê3LMM>,

:q Ø
1

ÅÅÅÅÅÅÅÅÅ
12

I4 HqH1, 1L + qH2, 2L + qH3, 3LL +

22ê3
I1 +

Â
è!!!!

3 M
I-2 qH1, 1L3 + 3 HqH2, 2L + qH3, 3LL qH1, 1L2 +

3 HqH2, 2L2 - 4 qH3, 3L qH2, 2L + qH3, 3L2 - 3 qH1, 2L qH2, 1L -

3 qH1, 3L qH3, 1L + 6 qH2, 3L qH3, 2LL qH1, 1L -

2 qH2, 2L3 - 2 qH3, 3L3 + 3 qH2, 2L qH3, 3L2 +

18 qH1, 3L qH2, 2L qH3, 1L -

27 qH1, 3L qH2, 1L qH3, 2L -

9 qH2, 2L qH2, 3L qH3, 2L -

9 qH1, 2L H3 qH2, 3L qH3, 1L + qH2, 1L HqH2, 2L - 2 qH3, 3LLL +

3 qH2, 2L2 qH3, 3L -

9 qH1, 3L qH3, 1L qH3, 3L -

9 qH2, 3L qH3, 2L qH3, 3L +,IH2 qH1, 1L3 - 3 HqH2, 2L + qH3, 3LL qH1, 1L2 +

3 H-qH2, 2L2 + 4 qH3, 3L qH2, 2L - qH3, 3L2 +

3 qH1, 2L qH2, 1L + 3 qH1, 3L qH3, 1L -

6 qH2, 3L qH3, 2LL qH1, 1L + 2 qH2, 2L3 +

2 qH3, 3L3 - 3 qH2, 2L qH3, 3L2 - 18 qH1, 3L
qH2, 2L qH3, 1L + 27 qH1, 3L qH2, 1L qH3, 2L +

9 qH2, 2L qH2, 3L qH3, 2L + 9 qH1, 2L H3 qH2, 3L
qH3, 1L + qH2, 1L HqH2, 2L - 2 qH3, 3LLL -

3 qH2, 2L2 qH3, 3L + 9 qH1, 3L qH3, 1L
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qH3, 3L + 9 qH2, 3L qH3, 2L qH3, 3LL2 -

4 HqH1, 1L2 - HqH2, 2L + qH3, 3LL qH1, 1L + qH2, 2L2 +

qH3, 3L2 + 3 qH1, 2L qH2, 1L + 3 qH1, 3L qH3, 1L +

3 qH2, 3L qH3, 2L - qH2, 2L qH3, 3LL3MM^H1 ê3L +

I2è!!!!
2

3 I1 - Â
è!!!!

3 M HqH1, 1L2 - HqH2, 2L + qH3, 3LL qH1, 1L +

qH2, 2L2 + qH3, 3L2 +

3 qH1, 2L qH2, 1L + 3 qH1, 3L qH3, 1L +

3 qH2, 3L qH3, 2L - qH2, 2L qH3, 3LLM ë
II-2 qH1, 1L3 + 3 HqH2, 2L + qH3, 3LL qH1, 1L2 +

3 HqH2, 2L2 - 4 qH3, 3L qH2, 2L + qH3, 3L2 - 3 qH1, 2L qH2, 1L -

3 qH1, 3L qH3, 1L + 6 qH2, 3L qH3, 2LL qH1, 1L -

2 qH2, 2L3 - 2 qH3, 3L3 + 3 qH2, 2L qH3, 3L2 +

18 qH1, 3L qH2, 2L qH3, 1L -

27 qH1, 3L qH2, 1L qH3, 2L - 9 qH2, 2L qH2, 3L qH3, 2L -

9 qH1, 2L H3 qH2, 3L qH3, 1L + qH2, 1L HqH2, 2L - 2 qH3, 3LLL +

3 qH2, 2L2 qH3, 3L - 9 qH1, 3L qH3, 1L qH3, 3L -

9 qH2, 3L qH3, 2L qH3, 3L +,IH2 qH1, 1L3 - 3 HqH2, 2L + qH3, 3LL qH1, 1L2 +

3 H-qH2, 2L2 + 4 qH3, 3L qH2, 2L - qH3, 3L2 +

3 qH1, 2L qH2, 1L + 3 qH1, 3L qH3, 1L -

6 qH2, 3L qH3, 2LL qH1, 1L + 2 qH2, 2L3 +

2 qH3, 3L3 - 3 qH2, 2L qH3, 3L2 - 18 qH1, 3L
qH2, 2L qH3, 1L + 27 qH1, 3L qH2, 1L qH3, 2L +

9 qH2, 2L qH2, 3L qH3, 2L + 9 qH1, 2L H3 qH2, 3L
qH3, 1L + qH2, 1L HqH2, 2L - 2 qH3, 3LLL -

3 qH2, 2L2 qH3, 3L + 9 qH1, 3L qH3, 1L
qH3, 3L + 9 qH2, 3L qH3, 2L qH3, 3LL2 -

4 HqH1, 1L2 - HqH2, 2L + qH3, 3LL qH1, 1L +

qH2, 2L2 + qH3, 3L2 + 3 qH1, 2L qH2, 1L +

3 qH1, 3L qH3, 1L + 3 qH2, 3L qH3, 2L -

qH2, 2L qH3, 3LL3MM^H1 ê3LMM>>

2.10.5 Steiner's Theorem

In  practical  calculations,  it  is  more  convenient  to  determine  the  inertia

tensor  with  respect  to  a  symmetry point  or  a  symmetry line.  The point  or

line of symmetry is usually defined by the rigid body itself. The geometric

shape distinguishes such points or  lines.  Let  us assume that  the symmetry
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point Q is in the direction a”÷  apart from the center of mass. Then, the inertia

tensor with respect to the point Q is given by

(2.10.41)Q
~

ij = ‚
a=1

n
ma 8 dij ⁄k=1

3 xèak
2

- xèai xèaj <,
where

(2.10.42)xèai = xai + ai.

Inserting the new coordinates into Q
è

ij, we get 

(2.10.43)

Q
è

ij = ‚
a=1

n
ma 8 dij ⁄k=1

3 Hxak + akL2 -

H xai + aiL H xaj + a j L <
= ‚

a=1

n
ma 8dij ⁄k=1

3 xak
2 - xai xaj < +

‚
a=1

n
ma 8dij ⁄k=1

3 2 xak +

ak + ak
2 - Hai xaj + a j xai + ai a jL <

(2.10.44)
Q
è

ij = Qij + ‚
a=1

n
ma 8 dij ⁄k=1

3 ak
2 - ai a j< +

‚
a=1

n
ma 8 2 dij ⁄k=1

3 xak ak - ai xaj - a j xai <
Terms containing sums of the type 

(2.10.45)⁄a=1
n ma xks = 0

vanish  because  we  are  in  the  center  of  mass  system.  Thus,  the  inertia

tensor reduces to 

(2.10.46)
Q
è

ij = Qij + ‚
a=1

n
ma 8 dij ⁄k=1

3 ak
2 - ai a j<

= Qij + M H dij a2 - ai a j L
with M = ⁄a=1

n ma and a2 = ⁄k=1
3 ak

2.

The  inertia  tensor  with  respect  to  the  center  of  mass  is  determined  with

respect to the symmetry point by 

(2.10.47)Qij = Q
è

ij - M H dij a2 - ai a j L
This relation is known as Steiner's theorem.
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2.10.6 Euler's Equations of Motion

Let  us  first  examine  the  motion  of  a  force-free  rigid  body.  As  already

discussed, the movement of the center of mass does not affect the spinning

portion  of  the  top.  Thus,  it  is  sufficient  to  consider  the  Lagrangian  as  a

function of the rotational components which are given by

(2.10.48)= Trot =
1
ÅÅÅÅ2 ⁄i Qi wi

2.

The  representation  of  the  rotation  is  efficiently  described  by  the  three

Euler  angles  j, q  and  y.  The  angular  velocity  w”÷÷  can  be   represented  by

these three angles as

(2.10.49)
w
”÷÷

=

i

k
jjjjjjjj

j ' sin q sin y + q ' cos y

j ' sin q cos y - q ' sin y

j ' cos q + y '

y

{
zzzzzzzz

= w
”÷÷ Hj, q, y, j ', q ', y 'L

.

The  Lagrangian  thus  depends  on  the  three  generalized  coordinates   j, q,

and y.  The  Euler–Lagrange  equations for  the rotating rigid  body are thus

given by

(2.10.50)ÅÅÅÅÅÅÅÅ
j

-
d

ÅÅÅÅÅÅdt I ÅÅÅÅÅÅÅÅ
j' M = 0,

(2.10.51)ÅÅÅÅÅÅÅÅ
q

-
d

ÅÅÅÅÅÅdt I ÅÅÅÅÅÅÅÅ
q' M = 0,

(2.10.52)ÅÅÅÅÅÅÅÅ
y

-
d

ÅÅÅÅÅÅdt I ÅÅÅÅÅÅÅÅ
y' M = 0.

Each  of  these  equations  determines  the  rotation  of  the  top.  We  note  that

the  Lagrangian  and  the  Lagrange  equations  are  set  up  in  different

coordinates. Since both coordinates are related by Equation (2.10.49), it is

obvious that the derivatives in the Euler–Lagrange equations are calculated

by the following rules. For example, the last equation provides

(2.10.53)ÅÅÅÅÅÅÅÅ
y

= ‚
i=1

3
ÅÅÅÅÅÅÅÅÅ

wi

wiÅÅÅÅÅÅÅÅÅ
y

,

and for the velocities, we have

(2.10.54)ÅÅÅÅÅÅÅÅ
y' = ‚

i=1

3
ÅÅÅÅÅÅÅÅÅ

wi

wiÅÅÅÅÅÅÅÅÅ
y' .

The total Euler–Lagrange equations then become

(2.10.55)‚
i=1

3 9 ÅÅÅÅÅÅÅÅÅ
wi

wiÅÅÅÅÅÅÅÅÅ
y

-
d

ÅÅÅÅÅÅdt I ÅÅÅÅÅÅÅÅÅ
wi

wiÅÅÅÅÅÅÅÅÅ
y' M = = 0.
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For  example,  let  us  demonstrate  the  calculations  for  the  y-coordinate.  A

differentiation  of  wi  with  respect  to  y  and  y '  delivers  the  following

relations:

(2.10.56)
w1ÅÅÅÅÅÅÅÅÅÅ
y

= j ' sin q cos y - q ' sin y = w2,

(2.10.57)
w2ÅÅÅÅÅÅÅÅÅÅ
y

= - j ' sin q sin y - q ' cos y = - w1,

(2.10.58)
w3ÅÅÅÅÅÅÅÅÅÅ
y

= 0,

and

(2.10.59)
w1ÅÅÅÅÅÅÅÅÅÅ
y
° = 0,

(2.10.60)
w2ÅÅÅÅÅÅÅÅÅÅ
y
° = 0,

(2.10.61)
w3ÅÅÅÅÅÅÅÅÅÅ
y
° = 1.

On the other hand, the Lagrange function provides

(2.10.62)ÅÅÅÅÅÅÅÅÅ
wi

=
TrotÅÅÅÅÅÅÅÅÅÅÅ
wi

= Qi wi.

From the Euler–Lagrange equation, we obtain

(2.10.63)
Qi w1 w2 + Q2 w2 H- w1L -

d
ÅÅÅÅÅÅdt Q3 w3 = 0

ó HQ1 - Q2L w1 w2 - Q3 w '3 = 0.

The other two equations are derived by similar calculations. However,  we

can short-cut the calculation by permuting the indices of w and Q because

the x3-axis was chosen arbitrarily as the rotation axis:

(2.10.64)
HQ3 - Q1L w1 w3 - Q2 w '2 = 0,

HQ2 - Q3L w3 w2 - Q1 w '1 = 0.

The three equations of motion can be amalgamated in a single relation by

using the Levi–Civita tensor ¶ijk and a index notation:

(2.10.65)HQi - Q jL wi w j - ⁄k Qk w 'k ¶ijk = 0.

The  derived  three  equations  are  also  known  as  Euler  equations.  Leonard

Euler derived these equations in 1758 for a force-free top.

To show how the Euler equations look for the Euler angles, let us carry out

the  same  calculations  as  above  in   Mathematica.  First,  let  us  define  the

angular velocity w”÷÷  as a vector using Equation (2.10.49):
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= 8 t @tD Sin@ @tDD Sin@ @tDD + t @tD Cos@ @tDD,
t @tD Sin@ @tDD Cos@ @tDD t @tD Sin@ @tDD,

t @tD Cos@ @tDD + t @tD<; êê MatrixForm

i

k
jjjjjjjj

cosHyHtLL q£HtL + sinHqHtLL sinHyHtLL f£HtL
cosHyHtLL sinHqHtLL f£HtL - sinHyHtLL q£HtL

f£HtL + cosHqHtLLy£HtL
y

{
zzzzzzzz

The inertia tensor with three different principal values are given by

th1 = IdentityMatrix@3D 8 1, 2, 3<; th1 êê MatrixForm

i

k
jjjjjjjj

Q1 0 0

0 Q2 0

0 0 Q3

y

{
zzzzzzzz

The Lagrangian for the force-free top follows by the relation

L =
1

2
.th1.

1
ÅÅÅÅÅÅ
2
HQ2 HcosHyHtLL sinHqHtLL f£HtL - sinHyHtLL q£HtLL2 +

Q1 HcosHyHtLL q£HtL + sinHqHtLL sinHyHtLL f£HtLL2 + Q3 Hf£HtL + cosHqHtLLy£HtLL2L

Applying  the  Mathematica  function  EulerLagrange[]  introduced  in

Section  2.7  on  Lagrange  dynamics,  we  find  three  coupled  nonlinear

ordinary differential equations of second order.  
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EulerLagrange@L, 8 , , <, tD

:-
HQ1 cosHyHtLL sinHqHtLL sinHyHtLL q£HtLL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
t

-

H-Q2 cosHyHtLL sinHqHtLL sinHyHtLL q£HtLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

t
-

HQ3 f£HtLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

t
-

HQ2 cos2HyHtLL sin2HqHtLL f£HtLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

t
-

HQ1 sin2HqHtLL sin2HyHtLL f£HtLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

t
-

HQ3 cosHqHtLLy£HtLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

t
== 0,

Q1 sinHqHtLL q£HtL f£HtL cos2HyHtLL - Q2 sinHqHtLL q£HtL f£HtL cos2HyHtLL -

Q1 sinHyHtLL q£HtL2 cosHyHtLL + Q2 sinHyHtLL q£HtL2 cosHyHtLL +

Q1 sin2HqHtLL sinHyHtLL f
£HtL2 cosHyHtLL -

Q2 sin2HqHtLL sinHyHtLL f£HtL2 cosHyHtLL -
HQ3 cosHqHtLL f£HtLL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
t

-

HQ3 cos2HqHtLLy£HtLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

t
- Q1 sinHqHtLL sin2HyHtLL q

£HtL f
£HtL +

Q2 sinHqHtLL sin2HyHtLL q
£HtL f

£HtL == 0,

Q1 cosHqHtLL sinHqHtLL sin2HyHtLL f£HtL2 + Q2 cosHqHtLL cos2HyHtLL sinHqHtLL f£HtL2 +

Q1 cosHqHtLL cosHyHtLL sinHyHtLL q£HtL f£HtL -

Q2 cosHqHtLL cosHyHtLL sinHyHtLL q£HtL f£HtL - Q3 sinHqHtLL y£HtL f£HtL -

Q3 cosHqHtLL sinHqHtLLy£HtL2 -
HQ1 cos2HyHtLL q£HtLL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
t

-

HQ2 sin2HyHtLL q£HtLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

t
-

HQ1 cosHyHtLL sinHqHtLL sinHyHtLL f£HtLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

t
-

H-Q2 cosHyHtLL sinHqHtLL sinHyHtLL f£HtLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

t
== 0>

The three equations contain the principal inertial moments Q1, Q2, and Q3

as parameters. A much simpler representation of these equations follows if

we  consider  the  top  to  be  a  spherical  top  for  which all  three  moments  of

inertia are equal. For this case, the equations of motion read

2. Classical Mechanics 465



EulerLagrange@
L ê. 8 1 > , 2 > , 3 > <, 8 , , <, tD

:-
HQ f£HtLL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
t

-
HQ cos2HyHtLL sin2HqHtLL f£HtLL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
t

-

HQ sin2HqHtLL sin2HyHtLL f£HtLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

t
-

HQ cosHqHtLLy£HtLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

t
== 0,

-
HQ cosHqHtLL f£HtLL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
t

-
HQ cos2HqHtLLy£HtLL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
t

== 0,

Q cosHqHtLL sinHqHtLL sin2HyHtLL f£HtL2 + Q cosHqHtLL cos2HyHtLL sinHqHtLL f£HtL2 -

Q sinHqHtLLy£HtL f£HtL - Q cosHqHtLL sinHqHtLLy£HtL2 -

HQ cos2HyHtLL q£HtLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

t
-

HQ sin2HyHtLL q£HtLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

t
== 0>

So far,  we examined the equations of motion for  a force-free top. In such

cases  when  the  top  is  moving  in  a  force  field,  the  equations  of  motion

change.  To  derive  the  equations  of  motion  for  a  top  spinning  in  a  force

field,  let  us  start  with  the  temporal  change  of  the  angular  moment  which

equals the force moment acting on the top:

(2.10.66)J d L
”÷

ÅÅÅÅÅÅÅÅdt N
fix

= M
”÷÷÷
,

where  M
”÷÷÷

 is  the  moment  generated  by  the  force.  However,  the  change  of

the angular moment in the inertial system is determined by the expressions

in the body system:

(2.10.67)J d L
”÷

ÅÅÅÅÅÅÅÅdt N
fix

= J d L
”÷

ÅÅÅÅÅÅÅÅdt N
body

+ w
”÷÷

ä L
”÷

or 

(2.10.68)d L
”÷

ÅÅÅÅÅÅÅÅdt + w
”÷÷

ä L
”÷

= M
”÷÷÷
.

The components along the x3-axis are given by 

(2.10.69)L '3 + w1 L2 - w2 L1 = M3.

Since we selected the coordinate system in such a way that the coordinate

axis is identical with the principal axis of the inertia tensor, we can express

the angular moments by 

(2.10.70)Li = Qi wi;
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then, it follows that

(2.10.71)Q3 w '3 - HQ1 - Q2L w1 w2 = M3.

The general case is expressed by the relation

(2.10.72)HQi - Q jL wi w j - ⁄k H Qk w 'k - MkL ¶ijk = 0.

Equations  (2.10.72)  are  the  equations  of  motion  for  a  top  moving  in  a

force field.

We note here that the motion of a top is mainly determined by its inertial

moments. Consequently, two tops with equal inertia moments but different

shapes  carry  out  the  same  motion.  This  behavior  was  first  realized  by

Cauchy in 1827. As a consequence of this observation, Cauchy introduced

the equivalent ellipsoid.

2.10.7 Force-Free Motion of a Symmetrical Top

Let  us  examine  the  motion  of  a  force-free  symmetrical  top.  For  a

symmetrical top, we have Q = Q1 = Q2 Q3. The three Euler equations

thus read

EulerEquations = 8H 3L 2@tD 3@tD t 1@tD == 0,

H 3 L 3@tD 1@tD t 2@tD == 0, 3 t 3@tD == 0<;
EulerEquations êê TableForm

Hq - q3L w2HtL w3HtL - q w1£HtL == 0

Hq3 - qL w1HtL w3HtL - q w2£HtL == 0

-q3 w3£HtL == 0

Let us, in addition, assume that the center of mass is at rest. This simplifies

the  motion  to  a  pure  rotation.  In  addition,  we  assume  that  the  angular

velocity w”÷÷  is not pointed in the direction of the principal inertia directions.

The  solution  of  the  third  equation  of  motion  shows  that  w3  is  a  constant

equal to k3:
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sol3 = DSolve@EulerEquationsP3T, 3, tD ê.
C@1D > 3 êê Flatten

8w3 Ø Function@8t<, k3D<

Thus, the first two Euler equations simplify to

EulerEquations12 = Take@EulerEquations ê. sol3, 81, 2<D;
EulerEquations12 êê TableForm

Hq - q3L k3 w2HtL - q w1£HtL == 0

Hq3 - qL k3 w1HtL - q w2£HtL == 0

The two first-order coupled equations can be solved by

sol12 =

DSolve@8EulerEquations12<, 8 1, 2<, tD êê Flatten

:w1 Ø FunctionB8t<, c1 cosJt k3 -
t q3 k3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

q
N + c2 sinJt k3 -

t q3 k3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

q
NF,

w2 Ø FunctionB8t<, c2 cosJt k3 -
t q3 k3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

q
N - c1 sinJt k3 -

t q3 k3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

q
NF>

where  c1  and  c2  are  constants  of  integration.  The  angular  velocity  then

becomes

= 8 1@tD, 2@tD, 3@tD< ê. sol3 ê. sol12

:c1 cosJt k3 -
t q3 k3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

q
N + c2 sinJt k3 -

t q3 k3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

q
N,

c2 cosJt k3 -
t q3 k3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

q
N - c1 sinJt k3 -

t q3 k3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

q
N, k3>

It is obvious that the length of the angular velocity vector remains constant

by checking
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è!!!!!!!!!!
. êê Simplify

"#############################
k32

+ c1
2 + c2

2

The three constants of integration c1, c2, and k3 fix the value of the angular

velocity. As defined in section 2.10.1, we are talking about a symmetrical

top with an inertia tensor:

= IdentityMatrix@3D 8 , , 3<; êê MatrixForm

i

k
jjjjjjjj

q 0 0

0 q 0

0 0 q3

y

{
zzzzzzzz

The corresponding angular momentum is given by the vector

L = . êê Simplify

:q Jc1 cosJ t Hq - q3L k3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

q
N + c2 sinJ t Hq - q3L k3

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
q

NN,
q Jc2 cosJ t Hq - q3L k3

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
q

N - c1 sinJ t Hq - q3L k3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

q
NN, q3 k3>

Examining the angular momentum in the inertial system, we have to check

the relation

Simplify@ L + t LD

80, 0, 0<

The  result  demonstrates  that  the  angular  momentum  is  a  conserved

quantity in the inertial system. Another conservation law is given by
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T =
1

2
. . êê Simplify

1
ÅÅÅÅÅÅ
2
Hq3 k32

+ q Hc1
2

+ c2
2LL

The kinetic  energy of the force-free top is  also  a quantity which is  purely

determined  by  the  constants  of  integration  and  the  values  of  the  inertial

tensor.

In conclusion,  our  observations  are  that  the value  of the  angular  velocity,

the  angular  momentum  in  the  inertial  system,  and  the  kinetic  energy  are

conserved  quantities.  The  conservation  of  angular  velocity  and  angular

momentum cause  the  projection  of  the  angular  momentum to  the  angular

velocity to  also  be  a  conserved  quantity.  Thus,  the  motion of  the  angular

velocity is  executed in  such a  way that  w”÷÷  precesses  with a  constant  angle

between  the  angular  momentum  around  the  x3-axis.  This  behavior  is

shown in the following illustration:
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The  red  line  is  related  to  the  angular  momentum,  whereas  the  blue  line

represents the angular velocity.

2.10.8  Motion of a Symmetrical Top in a Force Field

Let us examine the motion of a forced symmetrical top. The inertia tensor

of  a  symmetrical  top  is  characterized  by Q = Q1 = Q2 Q3.  We define

this tensor by

= IdentityMatrix@3D 8 , , 3<; êê MatrixForm

i

k
jjjjjjjj

q 0 0

0 q 0

0 0 q3

y

{
zzzzzzzz

The three Euler equations thus read

EulerEquations = 8H 3L 2@tD 3@tD t 1@tD == M1,

H 3 L 3@tD 1@tD t 2@tD == M2,

3 t 3@tD == M3<; EulerEquations êê TableForm

Hq - q3L w2HtL w3HtL - q w1£HtL == M1

Hq3 - qL w1HtL w3HtL - q w2£HtL == M2

-q3 w3£HtL == M3

where M1, M2, and M3 are the acting moments of the force. Let us assume

that  the  center  of  mass  is  at  rest.  This  simplifies  the  motion  to  a  pure

rotation. In addition, we assume that the angular velocity w”÷÷  is not pointed

in  the  direction  of  the  principal  inertia  directions.  The  solution  of  this

coupled system of equations is given by

sol = DSolve@EulerEquations, 8 1, 2, 3<, tD êê Flatten
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:w3 Ø FunctionB8t<, c1 -
M3 t
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

q3
F,

w1 Ø FunctionB8t<, c2 cos
i
k
jjjjjjj

t
"####################################

q2 - 2 q3 q + q32 H2 q3 c1 - M3 tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 q q3

y
{
zzzzzzz +

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

q
"####################Hq - q3L2

i
k
jjjjjjjcos

i
k
jjjjjjj

t
"####################Hq - q3L2 H2 q3 c1 - M3 tL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 q q3

y
{
zzzzzzz·

K$306

t

i
k
jjjjjjjM2 Hq - q3L sin

i
k
jjjjjjj

K$305
"####################Hq - q3L2 H2 q3 c1 - K$305 M3L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 q q3

y
{
zzzzzzz -

M1
"####################Hq - q3L2

cos
i
k
jjjjjjj

K$305
"####################Hq - q3L2 H2 q3 c1 - K$305 M3L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 q q3

y
{
zzzzzzz
y
{
zzzzzzz

„ K$305 +

i
k
jjjjjjj·

K$1694

t i
k
jjjjjjj-M2 Hq - q3L

cos
i
k
jjjjjjj

K$1693
"####################Hq - q3L2 H2 q3 c1 - K$1693 M3L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 q q3

y
{
zzzzzzz -

M1
"####################Hq - q3L2

sin
i
k
jjjjjjj

K$1693
"####################Hq - q3L2 H2 q3 c1 - K$1693 M3L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 q q3

y
{
zzzzzzz
y
{
zzzzzzz

„ K$1693
y
{
zzzzzzz sin
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where  c1, c2,  and  c3  are  constants  of  integration.  We  realize  that  the

solution  is  determined  up  to  an  integration.  The  angular  velocity  for  this

kind of motion is thus given by
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Contrary  to  the  force-free  case,  it  is  clear  that  the  length  of  the  angular

velocity  is  not  a  constant.  However,  the  value  of  the  length  is  now

determined  by  the  principal  values  of  the  inertia  tensor,  the  integration

constants, and the acting moments:
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The corresponding angular momentum is given by the vector

L = . êê Simplify
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Examining  the  angular  momentum in  the  inertial  system,  we  observe  that

the angular momentum equals the acting moments:

Simplify@ L + t LD

8-M1, -M2, -M3<

At  this  time,  the  angular  momentum  is  not  a  conserved  quantity  in  the

inertial system. Also the kinetic energy no more is conserved. 

T =
1

2
. . êê Simplify
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In  conclusion,  our  observations  are  that  neither  the  values  of  the  angular

velocity,  the  angular  momentum  in  the  inertial  system,  nor  the  kinetic

energy are conserved quantities. 

2.10.9 Exercises

1.  Investigate  the motion of a  symmetrical  top in a gravitational field,
one  point  on  th  axis  of  the  top  being  held  fixed.  Show that  the  total
energy  E  and  the  angular  momenta  pf  and  py  about  the  vertical  axis
and about the symmetry axis of the top are constants of the motion.

2.  Show that  none  of  the  principal  moments  of  inertia  can exceed  the
sum of the other two.

3.  Calculate  the  moments  of  inertia  I1, I2,  and  I3  for  a  homogenous
sphere of radius R and mass m.

4. A door is constructed of a thin homogenous slab of material; it has a
width of 1  m.  If the door is  opened through 90 ° it  is  found that  upon
release,  it  closes  itself  in  2  s.  Assume  that  the  hinges  are  frictionless
and show that the line of hinges must make an angle of approximately
3 ° with the vertical.

2.10.10 Packages and Programs

Euler–Lagrange Package

The  Euler–Lagrange  package  serves  to  derive  the  Euler–Lagrange

equations from a given Lagrangian:
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If@$MachineType == "PC",

$EulerLagrangePath = $TopDirectory<>

"êAddOnsêApplicationsêEulerLagrangeê";
AppendTo@$Path, $EulerLagrangePathD,
$EulerLagrangePath =

StringJoin@$HomeDirectory, "ê.Mathematicaê3.0ê
AddOnsêApplicationsêEulerLagrange", "ê"D;

AppendTo@$Path, $EulerLagrangePathDD;

The next line loads the package.

<< EulerLagrange.m

=================================================

EulerLagrange™ 1.0 HDosêWindows®L
© 1992-2003 Dr. Gerd Baumann

Runs with Mathematica® Version 3.0 or later

Licensed to one machine only, copying prohibited

=================================================

Options@EulerLagrangeD

8eXpand False<

SetOptions@EulerLagrange, eXpand TrueD

8eXpand Ø True<

Define some notations

<< Utilities`Notation`
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Define the notation of a variational derivative connected with the function

EulerLagrange:

NotationA
u_

‡
t1

t2

f_ t_ EulerLagrange@f_, u_, t_DE

To  access  the  variational  derivative,  we  define  an  alias  variable  var

allowing one to access the symbolic definition by the escape sequence Â

var Â.

AddInputAliasA ‡
t1

t2

, "var"E

The following is an example for an arbitrary Lagrangian:

u
‡
t1

t2

L@u@tD, t u@tDD t

8t,1< LH0,1L@u@tD, u @tDD + LH1,0L@u@tD, u @tDD == 0

We  also  define  an  EulerLagrange  operator  allowing  us  to  access  the

EulerLagrange functon as a symbol

NotationA u_

x_

@den_D EulerLagrange@den_, u_, x_DE

The following is the alias notation for the EulerLagrange operator:

AddInputAliasA @ D, "ELop"E
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3
Nonlinear Dynamics

3.1 Introduction

In  recent  years,  nonlinear  dynamics  became  an  actual  topic  of  research.

Nonlinear  models are  generic  of  all  sciences.  The exception in nature are

linear  models.  However,  linear  models  are  useful  for  examining

phenomena  with  a  direct  response.  A  principal  theme  of  the  preceding

chapter  has  been  nonlinear  systems  of  just  a  few  degrees  of  freedom

showing complex behavior. A natural question to ask is, "What happens to

this dynamical  systems in the limit of infinite degree of freedom?" In this

limit, the model become continuous and the discrete variables are replaced

by fields.  Thus, the description of a system in terms of a finite number of

ordinary differential equations (ODEs),  with time as the only independent

variable,  goes  over  to  a  partial  differential  equation  (PDE)  with  both

spatial  and  temporal  variables as  the  independent  variables.  If  only a  few

nonlinear  ODEs can display complex behavior,  it  might  be thought  that  a

continuum  of  them  could  only  display  more  complicated  behavior.  In

many  cases,  this  is  indeed  so,  and  nonlinear  PDEs  will  display  chaos  in

both time and space. However, there is also an important class of nonlinear



PDEs  whose  behavior  is  remarkably  regular.  This  regular  dynamic  is  the

subject of this chapter.

Here,  we  examine  a  nonlinear  field  model  by  means  of  purely  analytic

solution  procedures.  The  symbolic  approach  is  supported  by  numerical

calculations  which  demonstrate  the  findings  of  the  symbolic  calculations.

The  model  discussed  is  a  standard  models  in  nonlinear  dynamics.

However,  the  solution  procedures  are  applicable  for  different  model

equations  belonging  to  the  same  class  of  regular  models.  The  nonlinear

field  equation  we  are  going  to  examine  is  the  Korteweg–de  Vries  (KdV)

equation.  This  equation  is  a  model  with  many  physical  and  engineering

applications.  For  example,  shallow  water  waves  are  the  original  physical

system described by Korteweg and deVries in 1895. The derivation of the

KdV equation resolved a  long dispute on observations made by Russel in

1844 when he follows a solitary wave on horseback along the Union Canal

outside  Edinburgh.  After  Korteweg  and  deVries's  work,  the  problem

disappeared  and  it  was  not  until  the  early  1960s  that  the  KdV  equation

reappeared in certain plasma physics problems. A motivation for studying

the  KdV  equation  was  provided  by  the  work  of  Fermi,  Ulam,  and  Pasta

(FPU) in 1955 (Figure 3.1.1 and 3.1.2). 

Figure 3.1.1. Enrico Fermi born September 29, 1901; died November 29, 1954.
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Figure 3.1.2. Stanislaw Marcin Ulam born April 03, 1909; died May 13,1984.

The  question  of  FPU  was  the  energy  distribution  in  a  nonlinear  coupled

chain of oscillators. FPU initially assumed that a certain amount of energy

will  be  continuously  distributed  in  a  chain  after  a  certain  time.  However,

numerical  experiments  on  the  Los  Alamos  MANIAC  computer

demonstrated  that  this  assumption  was  wrong.  The  energy  periodically

cycled  through  the  initially  populated  modes  and  there  was  little  energy

sharing. A decade later  in 1965,  Kruskal and Zabusky picked up the FPU

contradiction  and  examined  the  discrete  FPU  model  in  the  continuous

limit.  One  result  was  that  the  FPU  model  can  be  reduced  to  the  KdV

equation if an asymptotic solution approach is used. They studied the KdV

equation  by  numerical  integration  and  observed  that  for  certain  initial

conditions,  stable  cycling  solutions  in  the  chain  exists,  which  they  called

solitary waves. The numerical results were derived by the development of

a  remarkable  new  solution  technique  by  Kruskal  and  co-workers  [3.3],

which led to the development of a whole new area of mathematical physics.

To  begin,  we  first  investigate  some  of  the  more  elementary properties  of

the KdV equation. The chapter is organized as follows. In Section 3.2, we

present  a  procedure  to  derive  nonlinear  field  models  starting  from  a

dispersion  relation.  Section  3.3  introduces  a  general  procedure  to

analytically access a nonlinear equation of motion by means of the inverse

scattering method. The method is based on the asymptotic behavior of the

solution and uses the Marchenko equation to derive the solutions. Section
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3.4  is  concerned  with  the  conservation  laws  for  the  KdV  equation.  This

section presents general procedures applicable also to other nonlinear field

equations. Section 3.5  discusses a  numerical procedure to solve the KdV

equation.  The  numerical  procedure  presented  is  used  to  simulate  the

collision  of  solitons.  We  demonstrate  that  the  solution  procedure  has  to

satisfy certain restrictions to gain reliable numerical results.

3.2 The Korteweg–de Vries Equation

Weak nonlinear waves can be described by an integro-differential equation

of the form

(3.2.1)ut - u ux + Ÿ-¶

¶
KHx - xL uxHx, tL dx = 0.

The  dispersive  behavior  of  the  waves  is  contained  in  a  kernel  K.  The

dispersion  relation  K  is  obtained  by  a  Fourier  transform  of  the  related

phase velocity cHkL = wHkL ê k by

(3.2.2)KHxL =
1

ÅÅÅÅÅÅÅÅ2 p Ÿ-¶

¶
cHkL e-i k x dk,

where wHkL  is  the dispersion relation of the wave.  The Korteweg–deVries

(KdV) equation was first derived at the end of the 19th century to describe

water  waves  in  shallow  channels.  Experimental  data  of  the  dispersion

relation  in  such  channels  show  that  the  square  of  the  phase  velocity  is

expressed by a hyperbolic relation:

(3.2.3)c2HkL =
g
ÅÅÅÅk tanh kh,

where h  is  the  mean  depth of  the channel  measured  from the  undisturbed

surface  of the  water  and g  is  the  acceleration of  gravity of  the Earth.  For

waves  with  large  wavelengths,  we  observe  that  the  argument  of  tanh  is

small.  Thus,  we  can  use  a  Taylor  expansion  to  approximate  the  phase

velocity by

(3.2.4)cHkL =
"########################g

ÅÅÅÅk tanh k h º
è!!!!!!!!

g h J1 -
h2 k2
ÅÅÅÅÅÅÅÅÅÅÅÅ6 + OHk4LN.

As a consequence, the kernel K  given in Equation (3.2.2) is represented by

an expansion in the form
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(3.2.5)
K HxL =

1
ÅÅÅÅÅÅÅÅ2 p ‡

-¶

¶ è!!!!!!!!
g h J1 -

h2 k2
ÅÅÅÅÅÅÅÅÅÅÅÅ6 N ei k x d k

=
è!!!!!!!!

g h JdHxL +
h2
ÅÅÅÅÅÅ6 d '' HxLN,

where dHxL  is  the  Dirac's  delta  function and the  primes denote  derivatives

with respect to the argument. If we consider these relations in our original

equation of motion (3.2.1), we get

(3.2.6)
ut - u ux +

è!!!!!!!!
g h ‡

-¶

¶

JdHx - xL +
h2
ÅÅÅÅÅÅ6 d '' Hx - xLN uxHx, tL d x

= ut - u ux +
è!!!!!!!!

g h Jux +
h2
ÅÅÅÅÅÅ6 uxxxN = 0

Transforming  Equation  (3.2.6)  to  a  moving  coordinate  system  by

X = x + v t for v = -
è!!!!!!!!

g h ,  scaling the time t and the wave amplitude u by

t = h2 v t ê 6  and   uè = u ê Hh2 vL,  respectively,  results  in  a  standard

representation of the KdV equation:

(3.2.7)ut - 6 u ux + uxxx = 0.

In Equation (3.2.7), we use the original variables to denote the transformed

quantities.

The derivation of the KdV equation can be supported by Mathematica  by

defining  the  related  functions  used  in  the  above  calculations.  First,  we

introduce a definition of the dispersion relation using Equation (3.2.4):

c@k_D := Block@8g, h<, Sqrt@g Tanh@k hDêkDD

which reproduces the square root of the tanh:

c@kD

$%%%%%%%%%%%%%%%%%%%%%%%%%%%g tanhHh kL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

k

The  linearized  dispersion  relation  necessary  for  the  kernel  definition

follows by a Taylor expansion with
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disperse@k_, n_D :=

Block@8<, Normal@Series@c@kD, 8k, 0, n<DDD

providing in fourth-order approximation:

disperse@k, 4D

19
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
360

h4 è!!!!!!!!
g h k4

-
1
ÅÅÅÅÅÅ
6

h2 è!!!!!!!!
g h k2

+
è!!!!!!!!

g h

The dispersion kernel (3.2.5) is defined by the inverse Fourier transform as

@xi_, n_D :=

BlockA8k, itrafo, dis, t<, dis = disperse@k, nD;

itrafo = SimplifyA

1 ë
è!!!!!!!!!!!
2 Pi InverseFourierTransform@dis, k, tDE;

itrafo = itrafo ê. t x xiE

providing for a second-order approximation of the dispersion relation:

@ , 2D êê Expand

1
ÅÅÅÅÅÅ
6
è!!!!!!!!

g h d
££Hx - xL h2

+
è!!!!!!!!

g h dHx - xL

The incorporation of  the integral  in Equation (3.2.6)  defines  the resulting

equation:

Equation@n_D :=

Block@8gl<, gl = Integrate@ @xi, nD D@u@xi, tD, xiD,
8xi, Infinity, Infinity<D;

gl = Simplify@glD;
gl = D@u@x, tD, tD u@x, tD D@u@x, tD, xD + glD

which, on application, gives

3.  Nonlinear Dynamics 490



KdV = Equation@3D

uH0,1LHx, tL - uHx, tL uH1,0LHx, tL +
1
ÅÅÅÅÅÅ
6
è!!!!!!!!

g h HuH3,0LHx, tL h2
+ 6 uH1,0LHx, tLL

We  can  use  this  function  to  derive  higher-order  dispersive  equations  by

increasing the approximation order. The following is an example for n = 5:

Equation@5D

uH0,1LHx, tL - uHx, tL uH1,0LHx, tL +

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
360

è!!!!!!!!
g h H19 uH5,0LHx, tL h4 + 60 uH3,0LHx, tL h2 + 360 uH1,0LHx, tLL

Since  only  the  dispersion  effects  are  used  in  the  calculation,  we  cannot

change  the  nonlinear  character  of  the  equation.  The  nonlinearity  in  the

present  form  is  crucial  for  the  application  of  the  following  solution

procedure.  The  standard  version  of  the  KdV  equation  follows  by  the

following transformation:

kd =
i

k

jjjjjjSimplifyAKdV ê. u > FunctionA8x, t<,

h2
è!!!!!!!!
g h uAx

è!!!!!!!!!
g h t, h2

è!!!!!!!!
g h

6
tEEE ê.

9x
è!!!!!!!!
g h t > x, h2

è!!!!!!!!
g h

6
t > t=

y

{

zzzzzz ì
i

k
jjjj
g h5

6

y

{
zzzz

uH0,1LHx, tL - 6 uHx, tL uH1,0LHx, tL + uH3,0LHx, tL

Here,  we  used  a  transformation  with  the  general  form

u = a U Hx + v t, h tL,  where a, v,  and h  are  constants to  be determined in

such a way that the equation simplifies.
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3.3 Solution of the Korteweg–de Vries Equation

In  this  section,  we  derive  the  analytical  solutions  of  the  KdV  equations

using certain  initial  and  boundary conditions.  The  KdV equation is  given

by

(3.3.1)ut - 6 u ux + uxxx = 0   with t > 0 and -¶ < x < ¶

and  the  initial  condition  uHx, t = 0L = u0HxL.  We  assume  natural  boundary

conditions; that is,  the solution of the KdV equation (3.3.1) is assumed to

vanish  sufficiently  fast  at  » x » Ø ¶.  To  arrive  at  our  solution,  we  us  the

inverse  scattering  theory  (IST).  This  procedure  is  closely  related  to  its

linear  counterpart,  the  Fourier  transform (FT).  In  Section 5.2,  we  use  the

Fourier  transform  technique  to  construct  solutions  of  the  Schrödinger

equation.  In  addition to  its  methodical  connection with  IST  and  FT,  both

IST and FT are also logically related to the Sturm–Liouville problem. The

main difference  between IST and FT is  that  the Fourier  transform is  only

capable of solving linear problems, whereas the IST can also be applied to

nonlinear differential equations. 

3.3.1 The Inverse Scattering Transform

The solution steps  for  the  inverse  scattering  transform are  summarized as

follows (see Figure 3.3.1):

Figure 3.3.1. 
 Solution procedure of the inverse scattering.  Start with a nonlinear PDE. Determine the
scattering data from the initial conditions. Carry out a time evolution of the scattering data.
Invert the scattering data to the original coordinates.
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1.  The starting point  is  a set  of nonlinear  partial differential  equations
(nPDEs) for a certain initial condition uHx, 0L.
2. By a scattering process, we get the scattering data SH0L  at the initial
time t = 0 from the initial data.

3.  Since the characteristic  data of the scattering process is  related to a
linear  problem,  we  can determine  the  time  evolution  of  the  scattering
data for the asymptotic behavior » x » Ø ¶.

4.  The  inverse  scattering  process  gives  us  the  solution   uHx, tL.  The
inverse scattering process is closely related to a linear integro-differen-
tial  equation,  the  Marchenko  equation,  well  known  in  the  theory  of
scattering.

Using  these  four  steps  in  the  solution  process,  we  get  a  large  number  of

solutions.  The  most  prominent  solutions  contained  in  this  set  are  for

solitons and  multisolitons.  We note that  the solution process discussed so

far  is  not  only applicable  to  the KdV equation but  also  delivers  solutions

for more complicated equations. A collection of equations solvable by IST

is given by Calogero and Degasparis [3.1]. Note that the IST procedure is

not  applicable  to  all  nonlinear  initial  value  problems.  There  exists,

however, a set of equations for which the IST procedure works very well.

One  of  these  equations  is  the  KdV  equation,  which  is  a  completely

integrable  equation.  Other  types  of  nonlinear  equation  can  be  solved  by

Lie's  symmetry  analysis  discussed  in  the  author's  book  on  symmetry

analysis of differential equations [7.21].

As mentioned  earlier,  the  starting point  of  the  IST  is  the  initial  condition

uHx, 0L = u0HxL. In close analogy to the example discussed in the chapter on

quantum  mechanics  (Section  5.5),  we  examine  here  a  scattering  problem

with  the  scattering  potential  uHx, 0L = u0HxL.  To  calculate  the  scattering

data SH0L, we consider the related Sturm–Liouville problem in the form

(3.3.2)yxx + Hl - u0HxLL y = 0, -¶ < x < ¶,

where l  represents the eigenvalue. The time-independent scattering data is

derived  from  the  asymptotic  behavior  of  the  wave  function  y.  Our

treatment of  Equation (3.3.2)  is  analogous to  our  calculations in  quantum

mechanics. The asymptotic behavior of the wave function is given by

(3.3.3)yHx; kL ~ 9 e-i k x + bHkL ei k x

aHkL e-i k x
= for

for

x Ø ¶

x Ø -¶,
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where  l > 0  and  k =
è!!!!

l  refer  to  the  case  of  a  continuous  spectrum  and

where

(3.3.4)ynHxL ~ cn e-kn x    for x Ø ¶      n = 1, 2, ..., N

for  l < 0  and  kn =
è!!!!!!!!

-l  refers  to  the  case  of  discrete  eigenvalues.  The

characteristic  data  of  the  scattering  process  is  the  set  of  reflection  and

transmission indices bHkL  and aHkL  and the normalization constant cn.  This

set  of  data  is  called  the  scattering  data  SH0L  and  is  collected  in  a  list

SH0L = 8aHkL, bHkL, cn<.  The  listed  data  support  the  theory.  The measurable

quantities  in  a  scattering  process  are  the  reflection  and  transmission

coefficients  bHkL  and  aHkL.  The  question  from  the  experimental  point  of

view is how the measurable quantities can be used to derive the interaction

potential.  Theoretically,  the   answer  is  given  by  Marchenko  [3.2].  He

demonstrated that knowledge of the scattering data and eigenvalues of the

Sturm–Liouville  problem are  sufficient  to  reconstruct  the  potential  of  the

scattering process by a linear integral equation of the form

(3.3.5)KHx, zL + M Hx + zL + Ÿz

¶
KHx, yL M Hy + zL dy = 0,

where M  is defined by the scattering data as

(3.3.6)M HxL = ⁄n=1
N cn

2 e-kn x +
1

ÅÅÅÅÅÅÅÅ2 p Ÿ-¶

¶
bHkL ei k x dk.

The  solution  KHx, zL  of  the  integral  equation  (3.3.5)  delivers  the

representation of the potential u0HxL:
(3.3.7)-2 d

ÅÅÅÅÅÅÅÅd x KHx, xL = u0HxL.
Knowing the scattering data, we are able to reconstruct the potential u0HxL
by means of the Marchenko equation (3.3.5).

Another  aspect  of  solving  the  KdV  equation  is  how  time  influences  the

scattering.  Up  to  now,  we  have  only  considered  the  stationary

characteristics  of  the  scattering  process.  We  now  consider  not  only  the

initial  condition  u = uHx, t = 0L  in  the  scattering  process  but  also  the  full

time-dependent  behavior  of  the  solution  uHx, tL.  We  assume  that  the

time-dependent  potential  uHx, tL  in  the  Sturm–Liouville  problem  satisfies

the  natural  boundary  conditions  requiring  that  for  » x » Ø ¶,  the  solution

vanishes  sufficiently  fast.  In  all  of  the  expressions,  the  time  variable  t  is

considered  as  a  parameter.  Because  of  the  parametric  dependency  of  the

Sturm–Liouville problem on t, we expect that all spectral data also depend
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on t.  We assume the eigenvalues l = lHtL  to include a time dependence in

the Sturm–Liouville problem which, in this case, reads

(3.3.8)yxxx + HlHtL - uHx; tLL y = 0,

where  uHx, tL  satisfies  the  KdV  equation  (3.3.8).  Differentiation  of

Equation (3.3.8) with respect to x as well as with respect to t gives us

(3.3.9)yxxx - ux y + Hl - uL yx = 0,
(3.3.10)yxxt + Hlt - utL y + Hl - uL yt = 0.

By introducing the expression

(3.3.11)RHx, tL = yt + ux y - 2 Hu - 2 lL yx,

we find that the current yx R - y Rx satisfies the relation

(3.3.12)ÅÅÅÅÅÅÅx Hyx R - y RxL = lt y
2,

which connects the time derivative of the eigenvalues l  to the gradient of

the  current.  To  derive  this  relation,  we  have  used  Equations  (3.3.9)  and

(3.3.10) as well as the KdV equation (3.3.1) itself.

If  the  eigenvalues  l  of  the  Sturm–Liouville  problem  are  discrete

Ikn =
è!!!!!!!!

-l M, an integration of Equation (3.3.12) with respect to x yields

(3.3.13)0 = yx R - y Rx

ƒƒƒƒƒƒƒƒƒ
¶

-¶
= lt Ÿ-¶

¶
 y2 dx.

Since  the  wave  function   y  and  its  derivatives  vanish  for  » x » Ø ¶,  the

left-hand  side  of  Equation  (3.3.13)  is  gone.  Normalizing  y  by

Ÿ-¶

¶
 y2 dx = 1 results in

(3.3.14)d kn
2

ÅÅÅÅÅÅÅÅÅÅd t = 0 or kn = const.

We  therefore  have  an  isospectral  problem.  We  now  can  use  Equation

(3.3.11) to determine directly the normalization constants cn.  On the other

hand, u and y vanish for x Ø ¶. Using the asymptotic representation of the

eigenfunctions y, we find, with the help of

(3.3.15)ynHx; tL ~ cnHtL e-kn x

and the asymptotic form (3.3.11)

(3.3.16)d cnÅÅÅÅÅÅÅÅÅÅd t - 4 kn
3 cn = 0.

Integrating this expression gives
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(3.3.17)cnHtL = cnH0L e4 kn
3 t, n = 1, 2, ..., N ,

where  cnH0L  are  the  normalization  constants  of  the  time-independent

Sturm–Liouville  problem.  Following these  steps,  we  see  how the  discrete

part  of  the  spectral  data  follows  from  the  time-independent  eigenvalue

problem.

The  continuous  part  of  the  spectral  data  is  derived  by  an  analogous

procedure.  The integration of  relation (3.3.12)  with  respect  to  x  produces

the continuous part of the eigenvalues:

(3.3.18)yx R - y Rx = gHt; kL.
The asymptotic representation of the eigenfunctions is now

(3.3.19)
yHx; t, kL ~ aHk; tL e-i kx

yHx; t, kL ~ e-i k x + bHk; tL ei k x

for

for

x Ø -¶

x Ø ¶.

In the limiting case of x Ø ¶, we find by using Equation (3.3.11)

(3.3.20)RHx; t, kL ~ I d a
ÅÅÅÅÅÅÅÅd t + 4 i k3 aM e-i k x

and thus we obtain

(3.3.21)yx R - y Rx Ø 0      for x Ø -¶.

This relation allows a further integration, which results in

(3.3.22)R = hHt; kL y.

Using Equation (3.3.22) we get the expression

(3.3.23)d a
ÅÅÅÅÅÅÅÅd t + 4 i k3 a = h a.

The corresponding relations for x Ø ¶ are expressed by

(3.3.24)d b
ÅÅÅÅÅÅÅÅd t ei k x + 4 i k3He-i k x - b ei k xL = h He-i k x + b ei k xL.

Since  the  trigonometric  functions  are  linearly  independent  functions,  we

can write

(3.3.25)d b
ÅÅÅÅÅÅÅÅd t - 4 i k3 b = h b,

(3.3.26)h = 4 i k3.

Equation (3.3.23) is thus reducible to

(3.3.27)d a
ÅÅÅÅÅÅÅÅd t = 0.
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A simultaneous integration of Equations (3.3.27) and (3.3.25) gives

(3.3.28)aHk; tL = aHk; 0L,
(3.3.29)bHk; tL = bHk; 0L e8 i k3 t.

For  times  t > 0,  we  obtain a  time-dependent  reflection index bHk; tL  and a

constant transmission rate aHk; tL.
The complete set of scattering data (discrete plus continuous data) for the

time-dependent  scattering problem of the KdV equation is summarized as

follows:

(3.3.30)SHtL = 8cnHtL = cnH0L e4 kn
3 t, aHk; 0L, bHk; tL = bHk; 0L e8 i k3 t<.

The assumption of a time-dependent potential is reflected in the scattering

data  through  both  the  time  dependent  normalization  constants  cn  in  the

discrete  spectrum  and  the  time-dependent  reflection  coefficients  b  in  the

continuous spectrum.

To  complete  the  solution  process  of  the  inverse  scattering  transform,  we

need  to  take  into  account  the  time-dependence  of  the  scattering  data  in

Marchenko's  integral  equation.  Since  time appears  only as  a  parameter  in

the  relations  of  the  scattering  data,  we  can  use  the  expression  from  the

stationary  part  of  the  scattering  process  and  extend  it  to  obtain  the

equations  of  the  time-dependent  scattering.  The  time-dependent  potential

and  the  solution  of  the  KdV  equation  follow  from  the  time-dependent

Marchenko  equation.  The  spectral  characteristics  are  contained  in  the  M

term.  If  we  generalize  relation  (3.3.6)  for  the  time-dependent  case  of

spectral data, we get

(3.3.31)M Hx; tL = ‚
n=1

N
cnH0L2 e8 kn

3 t +
1

ÅÅÅÅÅÅÅÅ2 p Ÿ-¶

¶
bHk; 0L ei H8 k3 t-k xL d k.

The original Marchenko equation then transforms to

(3.3.32)KHx, z; tL + M Hx + z; tL + Ÿx

¶
KHx, y; tL M Hy + z; tL dy = 0.

The solution of the KdV equation follows from

(3.3.33)uHx, tL = -2 ÅÅÅÅÅÅÅx KHx, x; tL.
In  principle,  Equation  (3.3.33)  gives  the  solution  for  the  KdV  equation

provided the spectral data are known. However, deriving the spectral data

is not simple, even for the KdV equation. Calculating the general solution
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of  the  Marchenko  equation  is  a  second  problem  in  the  solution  process.

This  situation  is  similar  to  the  Fourier  technique,  for  which  the  inverse

transformation is, at times, unrecoverable. Given a spectral density AHkL, it
is  sometimes  impossible  to  analytically  invert  the  representation  from

Fourier  space  into  real  space.  However,  since  our  main  problem  is  the

application  of  the  IST,  we  show in  the  following  subsection  that  the  IST

can be successfully applied to the solution of the KdV equation.

3.3.2 Soliton Solutions of the Korteweg–de Vries Equation

In  the  previous  subsection,  we  saw how nonlinear  initial  value  problems

can  be  solved  using  the  inverse  scattering  method.  In  this  subsection,  we

construct  the  solution  for  a  specific  problem.  As  an  initial  condition,  we

choose  the  potential  in  the  Sturm–Liouville  problem  to  be

u0HxL = -V0 sech2 x. This famous potential was used by Pöschel and Teller

for  an  anharmonic  oscillator.  We  will  discuss  this  type  of  potential  in

Section  5.5  when  examining  the  quantum  mechanical  Pöschel–Teller

problem.  We  observe  there  that  the  reflection  index  bHkL  vanishes  if  the

amplitude of the potential is given by V0 = N HN + 1L, with N  an integer. In

our  discussion  of  solutions  for  the  KdV  equation,  we  restrict  our

considerations to this case.

We  assume  that  N = 1.  The  initial  condition  is  thus  reduced  to

u0HxL = -2 sech2 x.  The  related  Sturm–Liouville  problem  (3.3.2)  for  this

specific case  reads

(3.3.34)yxx + Hl - 2 sech2 xL y = 0.

Equation  (3.3.34)  is  identical  to  Equation  (5.5.57)  of  Chapter  5  with

V0 = 2.  We  will  demonstrate  in  the  quantum mechanical  treatment  of  the

problem  that  in  this  case,  the  corresponding  eigenfunctions  are  given  by

the  associated  Legendre  polynomials  P1
1HxL = sechHxL ëè!!!!

2 .  The

corresponding  eigenvalue  is  k1 = 1.  The  normalization  constant  follows

from  the  normalization  condition  Ÿ-¶

¶
 y2 dx = 1.  According  to  our

considerations in the previous subsection, we can immediately write down

the time evolution of the normalization constant c1 as

(3.3.35)c1HtL =
è!!!!

2 e4 t.
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Since we are dealing with a reflectionless potential HbHkL = 0L, we can write

the M  term of the Marchenko equation as

(3.3.36)M Hx; tL = 2 e8 t- x.

The Marchenko equation itself reads

(3.3.37)KHx, z; tL + 2 e8 t- Hx+zL + 2 Ÿx

¶
KHx, y; tL e8 t- Hy+zL dy = 0.

Solutions of Equation (3.3.37) are derivable by a separation ansatz for the

function K  in the form KHx, z; tL = KHx; tL e-z.  Substituting this  expression

into Equation (3.3.37) gives us the relation

(3.3.38)K Hx; tL + 2 e8 t- x + 2 K Hx; tL Ÿx

¶
e8 t-2 y dy = 0.

We have thus reduced an integral equation to an algebraic relation for K .

The solution of Equation (3.3.38) is given by

(3.3.39)K Hx; tL = -
2 e8 t- x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+e8 t-2 x .

The unknown KHx, z; tL is thus represented by

(3.3.40)KHx, z; tL = -
2 e8 t-x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+e8 t-2 x e-z.

In fact, the solution of the KdV can be obtained using Equation (3.3.32) to

derive the time-dependent potential uHx, tL from  K:

(3.3.41)uHx, tL = 2 ÅÅÅÅÅÅÅx J 2 e8 t-2 x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+e8 t-2 x N = -2 sech2Hx - 4 tL.

This  type  of  solution is  known as  the soliton solution of the  KdV. It  was

first derived at the end of the 19th century by Korteweg and de Vries. The

solution  itself  describes  a  wave  with  constant  shape  and  constant

propagation velocity v = 4 moving to the right. By choosing the amplitude,

we  derive  one  solution  out  of  an  infinite  set  of  solutions  for  the  KdV

equation.  In the following,  we discuss more complicated cases where two

and more eigenvalues have to be taken into account for the calculation.

To  demonstrate  how IST  can  be  applied  to  more  complicated  situations,

consider  the  case  with  an  initial  condition  u0HxL = -6 sech2 x.  The

difference  between  this  case  and  the  case  discussed  earlier  appears  to  be

minor.  However,  as  we  will  see,  the  difference  in  the  solutions  is

significant.  The selected  initial  condition corresponds  to  a  Pöschel–Teller

potential with a depth of N = 2. The discussion of the eigenvalue problem
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in  Section 5.5  shows that  the  eigenvalues  are  given by k1 = 1  and  k2 = 2.

The corresponding eigenfunctions are

(3.3.42)y2
1 =

"######3
ÅÅÅÅ2 tanh x sech x

(3.3.43)y2
2 =

è!!!!!
3

ÅÅÅÅÅÅÅÅÅÅ2 sech2 x.

The normalization constants c1 and c2 for this case are given by

(3.3.44)c1 =
è!!!!

6 and c2 = 2
è!!!!

3 .

The time evolution of c is determined by

(3.3.45)c1HtL =
è!!!!

6 e4 t,
(3.3.46)c2HtL = 2

è!!!!
3 e32 t.

In close analogy to N = 1, we get the M  terms of the Marchenko equation

by using relation (3.3.31) in the form

(3.3.47)M Hx; tL = 6 e8 t-x + 12 e64 t-2 x.

The Marchenko equation itself is given by

(3.3.48)
KHx, z; tL + 6 e8 t-Hx+zL + 12 e64 t-2 Hx+zL +

Ÿx

¶
KHx, y; tL H6 e8 t-Hy+zL + 12 e64 t-2 Hy+zLL dy = 0.

We obtain the solution of Equation (3.3.48) in the form

(3.3.49)KHx, z; tL = K1Hx; tL e-z + K2Hx; tL e-2 z

by  again  using  a  separation  ansatz  for  K.  In  the  general  case  of  N

eigenvalues, we can use the ansatz

(3.3.50)KHx, z; tL = ⁄n=1
N

KnHx; tL e-n z

to reduce the integral equation to an algebraic relation. Since e-z  and e-2 z

are  linearly  independent  functions,  we  can  derive  from Equation  (3.3.48)

the following system of equations:

(3.3.51)K1 + 6 e8 t- x + 6 e8 t HK1 Ÿx

¶
e-2 y dy + K2 Ÿx

¶
e-3 y dyL = 0,

(3.3.52)
K2 + 12 e64 t-2 x +

12 e64 t HK1 Ÿx

¶
e-3 y dy + K2 Ÿx

¶
e-4 y dyL = 0.

Integrating  Equations  (3.3.51)  and  (3.3.52),  we  get  a  linear  system  of

equations for the unknowns Ki:

(3.3.53)
i
k
jjj1 + 3 e8 t-2 x 2 e8 t-3 x

4 e64 t-3 x 1 + 3 e64 t-4 x

y
{
zzz ikjjj

K1

K2

y
{zzz =

i
k
jjj -6 e8 t-x

-12 e64 t-2 x

y
{
zzz.
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For cases with N > 2, we get a general system of equations:

(3.3.54)A.K = B,

where

(3.3.55)An,m = dn,m +
cm

2 H0L
ÅÅÅÅÅÅÅÅÅÅÅÅm+n e8 m3 t-Hm+nL x

and

(3.3.56)Bn = -cn
2H0L e8 n3 t-n x.

The final solution reads

(3.3.57)uHx, tL = -2
2

ÅÅÅÅÅÅÅÅÅÅx2 log À A À.
Equation (3.3.57) is the general representation of the solution for the KdV

equation. For the specific case with N = 2, we get

(3.3.58)K1Hx; tL =
6 He72 t-5 x-e8 t-xL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅDHx,tL ,

(3.3.59)K2Hx; tL = -
12 He64 t-2 x-e72 t-4 xL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅDHx,tL .

The determinant DHx, tL = det A = » A » of Equation (3.3.53) is

(3.3.60)DHx, tL = 1 + 3 e8 t-2 x + 3 e64 t-4 x + e72 t-6 x.

The solution of the KdV equation then reads

(3.3.61)
u Hx, tL = -2 ÅÅÅÅÅÅÅÅx HK1 e-x + K2 e-2 xL

= -12 3+4 coshH2 x-8 tL+coshH4 x-64 tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH3 coshHx-28 tL+coshH3 x-36 tLL2 .

This type of solution is called a bisoliton solution in the theory of inverse

scattering. To make the term soliton more understandable, we examine the

behavior  of  solution  (3.3.61)  in  a  certain  time  domain.  Since  the  KdV

equation is invariant with respect to a Galilean transformation, we can use

t < 0  in  our  calculations.  A  sequence  of  time  steps  illustrating  Equation

(3.3.61) is presented in Figure 3.3.2-3.3.4. In order to give the impression

of a wave packet, we have plotted the negative amplitude of the solution u

in this  figure.  Initially,  there are  two separated peaks. As time passes,  the

two humps overlap and form a single peak at time t = 0, which represents

the initial solution u0HxL = -6 sech2 x.  For times t > 0, we observe that the

single peak located at x = 0 splits into two peaks with differing amplitudes.

We observe that wave packets with larger amplitudes split from those  with

smaller amplitudes. Larger wave packets travel faster than smaller ones. If
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we compare the soliton movement before and after the collision of pulses,

we  observe  during  the  scattering  process  that  neither  the  shapes  nor  the

velocities  of  the  pulses  change.  The  term  soliton  originates  from  its

insensitivity  to  any  variance  in  the  scattering  process.  This  phenomenon

was first observed by Zabusky and Kruskal [3.5]. Another characteristic of

solitons  is  that  larger  pulses  travel  faster  whereas  smaller  pulses  move

more  slowly.  This  means  that  larger  pulses  will  overtake  smaller  ones

during  the  evolution  of  motion.  We  can  understand  this  evolution  by

examining  the  propagation  velocity  with  respect  to  the  amplitude  of  the

solitons.

From  Figure  3.3.2,  we  note  that  for  times  » t » Ø ¶  the  shape  of  the

solitons  remains  stable.  As  already  mentioned,  the  shape  of  the  pulses  is

recovered  in  a  scattering  process.  However,  the  phase  of  the  pulses  does

not stay continuous. It  smoothly changes at the interaction of the solitons.

A  two-soliton  scattering  is  pictured  in  Figure  3.3.3,  created  with

ContourPlot[].  We  observe  in  this  plot  that  smaller  packets  retard

whereas larger ones advance.
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Figure 3.3.2. Soliton solution of the KdV equation. The initial condition is uHx, 0L = -6 sech2 x.

3.  Nonlinear Dynamics 502



-6 -4 -2 0 2 4 6

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Figure 3.3.3. 
Contour plot of the bisoliton solution. The space coordinate x  is  plotted horizontally and
time t  is  plotted vertically.  We  can clearly  detect  the  discontinuity of  the  phase  in  the
contour plot at t =0. The gap occurs in the spatial direction.
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Figure 3.3.4. 
Time series for a quartic soliton solution. The given time points are t  = -0.5, 0.00001, and
0.3.

The  Mathematica  functions  needed  to  create  the  figures  for  the  soliton

movement  are  collected  in  the  package  KDVAnalytic`.  The  function

needed to plot the solitons is Soliton[] and a graphical representation of an

N-soliton  solution  is  obtained  by  using  the  function  PlotKDV[].  An

example  of  a  quartic  soliton  solution  is  given  in  Figure  3.3.4,  created  by

calling  PlotKdV[-0.5,0.5,0.02,4] .  The  four  pictures  created  in  the  time

domain  ranging  from  t = -0.5  up  to  t = 0.5  in  steps  of  Dt = 0.02  are

collected  in  one  picture  by  using  Show[]  in  connection  with

GraphicsArray[].

To demonstrate the application of functions from KDVAnalytic`,  we first

calculate a one-soliton solution by
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Soliton@x, t, 1D

-
8 ‰8 t+2 x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH‰8 t + ‰2 xL2

Next, we generate a flip chart movie for a three-soliton collision by

PlotKdV@ 1, 1, 0.1, 3D
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-uHx,tL

3.4 Conservation Laws of the Korteweg–de 
Vries Equation

Conservation laws such as the conservation of energy are central quantities

in physics. The conservation of angular momentum is equally important to

quantum  mechanics  as  it  is  to  classical  mechanics.  Conservation  laws

imply  the  existence  of  invariant  quantities  (e.g.,  when  applied  to  the

scattering  of  molecules).  The  Boltzmann  equation  is  an  example,  as  the

particle  density  remains  constant,  since  particles  are  neither  created  nor

destroyed.
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3.4.1 Definition of Conservation Laws

Denoting  the  macroscopic  particle  density  with  rHx, tL  and  the  streaming

velocity with vHx, tL, we can express the conservation law in the differential

form of a continuity equation:

(3.4.1)t rHx, tL + x Hr vL = 0.

Assuming  that  the  current  j = r v  vanishes  for  » x » Ø ¶  and  integrating

over the domain x œ H-¶, ¶L, we get for the density r the relation

(3.4.2)
d

ÅÅÅÅÅÅÅd t HŸ-¶

¶
r dxL = - r v

ƒƒƒƒƒƒƒƒƒ
¶

-¶
= 0,

and thus

(3.4.3)Ÿ-¶

¶
r dx = const.

Equation (3.4.3) expresses the conservation of mass although the density r

follows the time evolution in accordance with Equation (3.4.1). The simple

idea  of  mass  conservation  in  fluid  dynamics  can  also  be  transformed  to

more  general  situations.  If  we  write  down for  a  general  density T  and  its

corresponding current J  a continuity equation such as

(3.4.4)t T + x J = 0,

we  find  the  related  conservation  law.  To  extend  the  formulation  of  the

general  continuity  equation  to  nonlinear  partial  differential  equations,  we

assume that T  and J  depend on t, x, u, ux, uxx,and so forth, but not on ut.

If we retain the assumption that J Hx Ø ¶L Ø 0, then Equation (3.4.4) can

be integrated over all space as was done for Equation (3.4.1), getting

(3.4.5)d
ÅÅÅÅÅÅÅd t Ÿ-¶

¶
T dx = 0

or

(3.4.6)Ÿ-¶

¶
T dx = const.

The  quantity  defined  by  Equation  (3.4.6)  is  an  integral  of  motion  in  the

theory of nonlinear PDEs.

As an example, we consider the KdV equation 

(3.4.7)ut - 6 u ux + uxxx = 0.
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The KdV equation already takes the form of a continuity equation. T1 = u

is the density and J = uxx - 3 u2 is the current. If the density T  is integrable

and x J  vanishes at the points x = ¶, we can write

(3.4.8)Ÿ-¶

¶
uHx, tL dx = const.

Equation  (3.4.8)  must  be  satisfied  for  all  solutions  of  the  KdV  equation

satisfying  the  conditions  listed  earlier.  However,  not  all  solutions  of  the

KdV  equation  satisfy  the  asymptotic  relations.  For  example,  the

conservation laws do not apply to periodic solutions of the KdV equation. 

Another  conserved  quantity  can  be  obtained  if  Equation  (3.4.7)  is

multiplied by u. In this case,

(3.4.9)t H 1
ÅÅÅÅ2 u2L + x Hu uxx -

1
ÅÅÅÅ2 ux

2 - 2 u3L = 0.

The  second  conserved  quantity  is  given  by  T2 = u2,  which  directly

integrates into

(3.4.10)Ÿ-¶

¶
u2 dx = const.

This  notation  holds  for  solutions  vanishing  sufficiently  rapidly  at

» x » Ø ¶.  The  physical  interpretation  of   these  equations  is  that  relation

(3.4.8)  represents  conservation  of  mass  and  that  Equation  (3.4.10)

represents  conservation  of  momentum  (compare  also  Section  3.2).  We

have thus derived two conserved quantities by simple manipulations of the

KdV equation. The question now is whether we can derive other conserved

quantities from the KdV and how these quantities are related to each other.

This question was first discussed by Miura et al. [3.3]. They observed that

there  are  a  large  number  of  conserved  quantities  for  the  KdV  equation.

They discovered that,  in fact,  there exists an infinite number of conserved

quantities for the KdV equation. For example,

(3.4.11)T3 = u3 +
1
ÅÅÅÅ2 ux

2,

(3.4.12)T4 = 5 u4 + 10 u ux
2 + uxx

2 .

T3  can  be  identified  as  the  energy  density.  The  higher  densities  Tn  for

n > 3 have no physical interpretation in terms of energy, momentum and so

forth.  Other  conserved  quantities  are  obtained  algorithmically.  In  the

following, we show how Miura et al. constructed the infinite hierarchy  of

constants of motion.
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3.4.2 Derivation of Conservation Laws

Miura  et  al.  [3.3]  made  an  important  step  in  understanding  the

phenomenon of  invariants  in  nonlinear  PDEs.  The  tool  they invented is  a

transformation  vehicle  which  linearizes  the  nonlinear  PDE.  Today,  this

tool  is  known  as  the  Miura  transformation  of  the  KdV  equation  to  the

modified KdV equation (mKdV):

(3.4.13)vt - 6 v2 vx + vxxx = 0.

By transforming the field v to the field u according to

(3.4.14)uHx, tL = v2Hx, tL + vxHx, tL,
solutions of  Equation (3.4.13) are also solutions of the KdV equation. The

Miura transformation v = yHx, tL êyxHx, tL  connects the KdV equation with

its related Sturm–Liouville  problem. The Miura transformation (3.4.14) is

primarily  used  for  the  construction  of  conservation  laws.  If,  for  example,

we replace field v in Equation  (3.4.14) by

(3.4.15)v =
1

ÅÅÅÅÅÅÅ2 ¶ + ¶w,

where ¶ is an arbitrary parameter, we get the Miura transformation for w in

the form

(3.4.16)u =
1

ÅÅÅÅÅÅÅÅÅ4 ¶2 + w + ¶2 w2 + ¶wx.

If  we  additionally assume  the  Galilean invariance  for  u  to  be  (uè = u + l),

we can simplify relation (3.4.16) to 

(3.4.17)u = w + ¶wx + ¶2 w2.

This  transformation  connecting  w  with  u  is  called  a  Gardner

transformation.  Substituting  the  transformation  (3.4.17)  into  the  KdV

equation (3.4.7) gives us

(3.4.18)

ut - 6 u ux + uxxx =

wt + ¶wxt + 2 ¶2 w wt -

6 Hw + ¶wx + ¶2 w2L Hwx + ¶wxx + 2 ¶2 w wxL +

wxxx + ¶wxxxx + 2 ¶ 2 Hw wxLxx =

H1 + ¶ ÅÅÅÅÅÅÅÅx + 2 ¶2 wL Hwt - 6 Hw + ¶2 w2Lwx + wxxxL.
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As  is  the  case  for  the  Miura  transformation,  u  is  a  solution  of  the  KdV

equation and thus w is also a solution of the KdV equation:

(3.4.19)wt - 6 Hw + ¶2 w2Lwx + wxxx = 0.

If we set the parameter to be ¶ = 0,  Equation (3.4.19) reduces to the KdV

equation.  For  this  case,  the  Gardner  transformation  yields  the  identity

transformation  u = w.  The  Gardner  transformation  is  closely  related  to  a

continuity equation of the form

(3.4.20)t w + x Hwxx - 3 w2 - 2 ¶2 w3L = 0.

Thus, we get

(3.4.21)Ÿ-¶

¶
w dx = const.

(i.e.,  another  conserved  quantity).  To  construct  the  conservation  laws  of

the KdV equation by an algorithm, we use the parameter ¶. The important

aspect of this operation is that for ¶Ø 0, w converges to u. For this reason,

we expand field w as a power series in  ¶:

(3.4.22)wHx, t; ¶L = ⁄n=0
¶
¶n wnHx, tL.

From Equation (3.4.21) it follows

(3.4.23)Ÿ-¶

¶
w dx = ⁄n=0

¶
¶n Ÿ-¶

¶
wnHx, tL dx = const. ,

or

(3.4.24)Ÿ-¶

¶
wn dx = const.  for n = 0, 1, 2, ... .

The expansion of the Gardner transformation (3.4.17) yields

(3.4.25)⁄n=0
¶
¶n wn = u - ¶⁄n=0

¶
¶n wnx - ¶2H⁄n=0

¶
¶n wnL2.

The conserved quantities resulting from the first terms of this expansion are

(3.4.26)w0 = u,                                                                   
(3.4.27)w1 = -w0 x = -ux ,                                              
(3.4.28)w2 = -w1 x - w0

2 = uxx - u2 ,                             
(3.4.29)w3 = -w2 x - 2 w0 w1 = -Huxx - u2Lx + 2 u ux .

The quantities w1  and w3  are  given by total  differentials and thus provide

new information on the conservation laws.

Since  the  construction  of  the  invariants  of  motion  follows  from  a

completely algorithmic procedure, Mathematica  can be used to derive the
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higher  densities  of  the  conservation  laws.  Indeed,  a  calculation  by  hand

immediately  shows  us  that  a  manual  approach  is  very  cumbersome.

However, Mathematica can do all the calculations for us.

The  algorithm  to  derive  the  conserved  densities  starts  out  from  a  power

series  expansion  of  the  field  w.  The  comparison  of  equal  powers  of  ¶  in

Equation (3.4.25)  gives  us  the  expressions  for  the  wn 's.  If  we  replace  the

wn 's by the wn-1's, we get a representation of function u. The steps used to

carry  out  the  calculation  are  summarized  in  the  package  KdVIntegrals`.

The Gardner[]  function activates our  calculation of conserved quantities.

Given an integer  as an argument,  Gardner[]  creates the first  n  conserved

densities.  These  densities  are  collected  in  a  list.  Applying  Integrate[]  to

the result of Gardner[],  all  even densities result in an integral  of motion.

Results of a calculation with n = 6 are as follows:

g6=Gardner[u,x,t,5]

9uHx, tL, -uH1,0LHx, tL, uH2,0LHx, tL - uHx, tL2, 4 uHx, tL uH1,0LHx, tL - uH3,0LHx, tL,
-5 uH1,0LHx, tL2 - 4 uHx, tL uH2,0LHx, tL - 2 uHx, tL HuH2,0LHx, tL - uHx, tL2L +

uH4,0LHx, tL, 14 uH1,0LHx, tL uH2,0LHx, tL + 4 uH1,0LHx, tL HuH2,0LHx, tL - uHx, tL2L -

2 uHx, tL H4 uHx, tL uH1,0LHx, tL - uH3,0LHx, tLL + 4 uHx, tL uH3,0LHx, tL +

2 uHx, tL HuH3,0LHx, tL - 2 uHx, tL uH1,0LHx, tLL - uH5,0LHx, tL=

After integrating the list, we obtain

Integrate@g6, xD

:‡ uHx, tL „ x, -uHx, tL, ‡ HuH2,0LHx, tL - uHx, tL2L „ x,

2 uHx, tL2 - uH2,0LHx, tL, ‡ I-5 uH1,0LHx, tL2 - 4 uHx, tL uH2,0LHx, tL -

2 uHx, tL HuH2,0LHx, tL - uHx, tL2L + uH4,0LHx, tLM „ x,

-
16
ÅÅÅÅÅÅÅÅÅ
3

uHx, tL3 + 8 uH2,0LHx, tL uHx, tL + 5 uH1,0LHx, tL2 - uH4,0LHx, tL>
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3.5 Numerical Solution of the Korteweg–de 
Vries Equation

Our considerations of the solutions of the KdV equations have so far been

restricted to reflectionless potentials and thus we have used a special type

of  potential  (Pöschel–Teller  potential)  in  the  analytic  calculations.  In  this

section, we examine solutions of the KdV equation for arbitrary potentials

uHx, 0L.  For  an  arbitrary  potential  uHx, 0L,  we  cannot  expect  the  reflection

coefficient  to  be  bHkL = 0.  For  a  reflectionless  potential,  we  solve  the

Marchenko equation by a separation ansatz. For bHkL 0, however, there is

no  analytic  procedure  available  to  solve  the  Marchenko  equation.  In  this

case,  the  KdV  equation  can  be  solved  numerically.  There  are  several

procedures  for  finding  numerical  solutions  of  the  KdV  equation.  An

overview  of  the  various  integrating  methods  is  given  by  Taha  and

Ablowitz [3.4].

Nonlinear evolution equations are solvable by a pseudospectral method or

by  difference  methods.  With  respect  to  the  difference  methods,  there  are

several  versions  of  the  standard  Euler  method  known  as  leap-frog  and

Crank–Nicolson  procedures.  For  our  numerical  solution  of  the  KdV

equation,  we  use  the  leap-frog  procedure  as  developed  by  Zabusky  and

Kruskal [3.5].

All  of the difference methods represent  the continuous solution uHx, tL  for

discrete points in space and time. In the process of discretization, the space

and time coordinates are replaced by x = m h and t = n k. m = 0, 1, ..., M ,

n = 0, 1, 2, ....,  h,  and  k  determine  the  step  lengths  in  the  spatial  and

temporal  directions.  Since  the  x  domain  of  integration  is  restricted  to  an

interval  of  finite  length,  we  choose  h = 2 p êM  for  the  step  length  in  the

x-direction.  The  continuous  solution  uHx, tL  is  approximated  for  each

integration  step  by  uHx, tL = um
n ;  that  is,  steps  h  and  k  have  to  be  chosen

properly to find convergent solutions as follows.

All  discretization  procedures  differ  in  the  representation  of  their

derivatives.  The  main  challenge  of  the  discretization  procedure  is  to  find

the proper representation of the needed derivatives. Errors are inevitable in
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this  step  and  we  have  to  settle  for  an  approximate  solution.  Various

representations of the derivatives give us a varying degree of accuracy for

the representation of the solution. The leap-frog method of

(3.5.1)ut - 6 u ux + uxxx = 0

by the formula

(3.5.2)
um

n+1 = um
n-1 +

6 k
ÅÅÅÅÅÅÅ3 k Hum+1

n + um
n + um-1

n L Hum+1
n - um-1

n L -

k
ÅÅÅÅÅÅh3 Hum+2

n - 2 um+1
n + 2 um-1

n - um-2
n L.

.

The first term on the right-hand side of Equaton (3.5.2) represents the first

derivative with respect to time. The second term gives a representation of

the  nonlinearity  in  the  KdV  equation.  The  last  term  in  the  sum  of  the

right-hand  side  describes  the  dispersion  term  of  third  order  in  the  KdV.

The  main  advantage  of  the  Zabusky  and  Kruskal  procedure  is  the

conservation  of  mass  in  the  integration  process  ⁄m=0
M-1 um

n .  Another  aspect

of  this  discretization  procedure  is  the  representation  of  nonlinearity  by
1
ÅÅÅÅ3 Hum+1

n + um
n + um-1

n L.  In this representation, the energy is conserved up to

second order:

(3.5.3)1
ÅÅÅÅ2 ‚

m=0

M -1 Hum
n L2 -

1
ÅÅÅÅ2 ‚

m=0

M -1 Hum
n-1L2 = OHk3L for k Ø 0

if  u  is  periodic  or  vanishes  sufficiently  rapidly  at  the  integration  end

points. Since the Zabusky and Kruskal procedure is a second-order method

in the time domain, we face the problem of specifying the initial conditions

for the terms um
n  and um

n-1. This problem can be solved if we use as a first

step of integration an Euler procedure given by

(3.5.4)
um

n+1 = um
n +

6 k
ÅÅÅÅÅÅÅ3 k Hum+1

n + um
n + um-1

n L Hum+1
n - um-1

n L -

k
ÅÅÅÅÅÅh3 Hum+2

n - 2 um+1
n + 2 um-1

n - um-2
n L.

To find stable solutions for this integration process, we have to choose the

time  and  space  steps  appropriately.  If  we  assume  linear  stability  of  the

solution procedure, we have to take the following relation into account:

(3.5.5)k §
h3

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4+h2 »u» ,

where  » u »  denotes  the  maximum  magnitude  of  u.  The  process  of

integration includes the following steps:

1. Create the initial conditions.
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2. Execute the first step of the integration by applying the simple Euler
procedure using relations (3.5.4).

3. Iterate the following steps by using Equation (3.5.2).

4.  Create  a  graphical  representation  of  the  results  for  equal  time
intervals.

The above four steps for integrating the KdV equation are contained in the

package  KdVNumeric`. KdVNIntegrate[]  activates  the  integration

process. KdVNIntegrate[]  needs steps h and k, the number of points used

in  the  x  domain,  and  the  initial  solution  for  t = 0  as  input  parameters.

Results of an integration with the initial condition uHx, 0L = -6 sech2 x are

given  in  Figure  3.5.1.  As  we  know from  our  analytical  considerations  in

the  previous  section,  we  expect  a  bisoliton  solution.  Choosing  a  larger

amplitude  in  the  initial  condition  uHx, 0L = -10 sech2 x,  we  get  two

solution  components.  In  addition  to  the  soliton  properties,  we  observe  a

radiation solution in Figure 3.5.2. The radiation part of the solution moves

in the opposite direction to that of the soliton and decreases in time.
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Figure 3.5.1. 

Numerical solution of the KdV equation for the initial condition uHx, 0L= - 6 sech x.  The
time  points  shown  from left  to  right  and  top  to  bottom are  t ={0,0.16,0.32,0.64}.  The
calculation is based on 128 points in the x domain corresponding to a step size of h = 0.2.
The steps in the time domain are k = 0.002.
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Figure 3.5.2. 
Numerical solution of the KdV equation for the initial condition uHx, 0L = - 10 sech x. The
time points shown from left to right and top to bottom are t ={0,0.16,0.32}. The calculation
is based on 128 points in the x-domain with a step size of h = 0.2.

The  following  cell  demonstarates  the  application  of  the  function

KdVNIntegrate[].  The  solution  of  the  KdV  equation  is  generated  on  a

spatial grid line with 256 points. The time step is 0.001 and the spatial step

is 0.2. The initial condition is given by the function -12 sechHxL.

KdVNIntegrate@ 12 Sech@xD, 0.2, 0.001, 256D
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We  observe  fom  the  results  that  a  four  soliton  plus  and  radiation  is

generated. The three solitons move to the right where the radiation moves

to the left.

3.6 Exercises

1.  Using  the  package  KdVEquation`,  find  the  type  of  differential
equation  for  approximating  orders  n ¥ 3.  Does  this  approximation
change the nonlinearity of the equation? What kinds of effect occur in
higher approximations?

2.  Change the package KdVEQuation`  so  that  you can treat  arbitrary
dispersion relations.Caution: Make a copy of the original package first!

3. Examine the motion of the four solitons of the KdV equation. Study
the phase gap in the contour plot of the four solitons.

4.  Demonstrate  that  the  odd  densities  of  the  conservation  laws  of  the
KdV equation w2 n+1 (n = 0, 1, 2, ...) are total differentials of the w2 n 's.

5.  Reexamine  the  determination  of  eigenvalues  for  the  anharmonic
oscillator.  Discuss  the  link  between  the  eigenvalue  problem  and  the
KdV equation.

6.  Derive  a  single  soliton  solution  by  using  the  inverse  scattering
method for the KdV equation.

7.  Examine  the  numerical  solution  of  the  KdV  equation  for  initial
conditions which do not satisfy bHkL = 0.
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8.  Change  the  step  intervals  in  the  space  and  time  parameters  of  the
numerical  solution  procedure  for  the  KdV  equation.  Examine  the
accuracy of the numerical  integration process.  Compare the numerical
solution to the analytical solution of the KdV equation.

9. Study the influence of the discretization number M  in the numerical
integration of the KdV equation.

3.7 Packages and Programs

3.7.1 Solution of the KdV Equation

The following package implements the solution steps for the KdV equation

discussed in Section 3.3:

BeginPackage["KdVAnalytic`"];

Clear[PlotKdV,c2,Soliton];

Soliton::usage = "Soliton[x_,t_,N_] creates the N 
soliton solution of the KdV
equation.";

PlotKdV::usage = "PlotKdV[tmin_,tmax_,dt_,N_] 
calculates a sequence of
pictures for the N soliton solution of the KdV 
equation. The time interval
of the representation is [tmin,tmax]. The variable 
dt measures the length
of the time step.";

Begin["`Private`"];

(* --- squares of the normalization constants c_n 
--- *)

c2[n_, N_] := Block[{h1,x},
    h1 = LegendreP[N, n, x]^2/(1-x^2);
    h1 = Integrate[h1, {x, -1, 1}]]

(* --- N soliton solution --- *)
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Soliton[x_,t_,N_] :=
  Block[{cn,A,x,t,deltanm,u},
(* --- calculate normalization constants --- *)
    cn = Table[c2[i, N], {i, 1, N}];
(* --- create the coefficient matrix A --- *)
    A = Table[

      If[n==m, deltanm = 1, deltanm=0];
      deltanm + (cn[[m]] Exp[8 m^3 t - (m + n) 

x])/(m + n),
      {m, 1, N}, {n, 1, N}];

(* --- determine the solution --- *)
    u = -2 D[Log[Det[A]],{x,2}];
    u = Expand[u];
    u = Factor[u]]

(* --- time series of the N soliton solution --- *)

PlotKdV[tmin_,tmax_,dt_,N_]:=Block[{p1,color,u},
(* --- create the N soliton --- *)
      u = Soliton[x,t,N];
(* --- plot the N soliton --- *)
      Do[

If[t>0,color=RGBColor[0,0,1],color=RGBColor[1,0,0]];
 Plot[-u,{x,-20,20},PlotRange->{0,15},
      AxesLabel->{"x","-u(x,t)"},
      DefaultColor->Automatic,
      PlotStyle->{{Thickness[1/170],color}}],
 {t,tmin,tmax,dt}]]

End[];
EndPackage[];

3.7.2 Conservation Laws for the KdV Equation

The  following  package  is  an  implementation  of  the  determination  of

conservation laws for the KdV equation discussed in Section 3.4:

BeginPackage["KdVIntegrals`"];

Clear[Gardner];

Gardner::usage = "Gardner[u_,x_,t_,N_] calculates 
the densities of the integrals of
motion for the KdV equation using Gardner's method. 
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The integrals are
determined up to the order N. u, x, t are the 
symbols for dependent and independet variables, 
respectively.";

Begin["`Private`"];

Gardner[u_,x_,t_,N_] :=
    Block[{expansion,eps,x,t,sublist 

={},list1={},list2},
    list2=Table[1, {i,1,N+1}];

(* --- representation of a Gardner expansion  --- *)
    expansion = Expand[

    Sum[eps^n w[x,t,n] - eps^(n+1) 
D[w[x,t,n],x],

    {n,0,N}] -
    eps^2 (Sum[eps^n w[x,t,n], {n,0,N}])^2 - 

u[x,t]
    ];

(* --- compare coefficients --- *)
     Do[AppendTo[list1,

Expand[Coefficient[expansion,eps,i]-w[x,t,i]]],
     {i,0,N}];
     list2[[1]] = -list1[[1]];

(* --- define replacements and application of the 
replacements --- *)
        Do[sublist={};

   
Do[AppendTo[sublist,w[x,t,i]->list2[[i+1]] ],

   {i,0,N}];
     

AppendTo[sublist,D[w[x,t,n],x]->D[list2[[n+1]],x]];
     list2[[n+2]] = list1[[n+2]] /. sublist,
     {n,0,N-1}];
     list2
     ];

End[];
EndPackage[];

3.7.3 Numerical Solution of the KdV Equation
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The following package provides functions for the numerical solution of the

KdV equation discussed in Section 3.5:

BeginPackage["KdVNumeric`"];

Clear[KdVNIntegrate];

KdVNIntegrate::usage = 
"KdVNIntegrate[initial_,dx_,dt_,M_] carries out a 
numerical
integration of the KdV equation using the procedure 
of Zabusky & Kruskal.
The input parameter initially determines the initial 
solution in the procedure;
e.g. -6 Sech^2[x]. The infinitesimals dx and dt are 
the steps with respect
to the spatial and temporal directions. M fixes the 
number of steps along
the x-axis.";

Begin["`Private`"];

KdVNIntegrate[initial_,dx_,dt_,M_]:=Block[
   {uPresent, uPast, uFuture, initialh, m, 

n},
(* --- transform the initial conditions on the grid 
--- *)
      initialh = initial /. f_[x_] -> f[(m-M/2) dx];
      h = dx;
      k = dt;
(* --- calculate the initial solutions on the grid 
--- *)
      uPast = Table[initialh, {m,1,M}];
(* --- initialization of the lists containing the 
grid points

 uPresent = present   (m)
 uFuture = future  (m+1)
 uPast = past      (m-1)        --- *)

      uPresent = uPast;
      uFuture = uPresent;
      ik = 0;
(* --- iteration for the first step --- *)
      Do[

 uPresent[[m]] = uPast[[m]] + 6 k (uPast[[m+1]] +
    uPast[[m]] + uPast[[m-1]])
    (uPast[[m+1]] - uPast[[m-1]])/(3 h) -

519 3.7 Packages and Programs



    k (uPast[[m+2]] - 2 uPast[[m+1]] + 2 
uPast[[m-1]] -

    uPast[[m-2]])/h^3,
      {m,3,M-2}];
(* --- iterate the time --- *)
      Do[
(* --- iterate the space points --- *)
        Do[

 uFuture[[m]] = uPast[[m]] + 6 k 
(uPresent[[m+1]] +

      uPresent[[m]] + uPresent[[m-1]])
      (uPresent[[m+1]] - uPresent[[m-1]])/(3 

h) -
      k (uPresent[[m+2]] - 2 uPresent[[m+1]] 

+
      2 uPresent[[m-1]] -
      uPresent[[m-2]])/h^3,

{m,3,M-2}];
(* --- exchange lists --- *)

uPast = uPresent;
uPresent = uFuture;

(* --- plot a time step --- *)
If[Mod[n,40] == 0,
   ik = ik + 1;

(*--- plots are stored in a[1], a[2], ... a[6] ---*)
   a[ik] = ListPlot[uFuture,

    AxesLabel->{"x","u"},
    Prolog->Thickness[0.001],
    PlotJoined->True,
    PlotRange->{-15,0.1}]],

      {n,0,500}]
      ];
End[];
EndPackage[];
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spectral method,  539
spherical coordinates, 42, 225
spherical symmetry, 88, 224
spherical top,  490
square matrix,  45
standard form,  12
standard map,  458
standard package,  14
standard packages,  7
StandardForm,  11
stationary characteristic,  521
stationary coordinate,  43
Steiner's theorem, 486–487

Stokes theorem,  421
strange attractor, 189, 196
strange entangled curve,  196
stroboscopic map,  193
stroboscopic snapshot,  189
strong nuclear force,  118
Sturm-Liouville problem, 518,
520–521
subtraction,  9
sum,  12
super cyclic,  468
surface,  18
symbolic calculation,  10
symmetrical tensor,  477
symmetries,  361
symmetry,  123
symmetry analysis,  520
symmetry group,  149
symmetry line,  486
symmetry point,  486
symplectic matrix,  436
syntax, 1, 8

T
tangent map,  461
tangent representation,  460
target coordinates,  421
Taylor series, 12, 136
Taylor-Chiricov map,  458
Teller,  525
temperature, 60, 123
temporal change,  86
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tensor, 66
rank, 66

tensors,  40
test function, 292–293
theoretical analysis,  36
theory of scattering,  520
thermal energy,  123
time, 60, 109
time,  104
time of revolution,  216
time-dependent potential,  521
top, spherical , 480

symmetric , 480
unsymmetrical, 480

topology,  436
tori,  446
torque,  122
torques,  63
torus,  437
total differential, 421, 538
total energy, 126, 138, 177, 233, 447
total kinetic energy,  475
total length,  294
traditional form,  12
trajectory, 430–431, 447
transformation matrix,  45
transformations, 40, 241
translation, 240, 474
translations,  121
translations in time,  362

transmission,  521
transmission coefficient,  521
transmission rate ,  523
transposed matrix, 47, 49
transposition,  47
triangle addition law,  65
triangle law,  64
trigonometric function,  27
trigonometric functions, 9, 138
tunneling junction,  189
turning points,  231
twist map,  449
twist mapping,  450
two body problem, 211, 222, 251
two particle collision,  251
two-body forces,  114
two-dimensional oscillator system,
310

U
Ulam,  511
underdamped motion,  145
uniform motion, 43, 112
uniformly accelerated,  43
units,  61
upper reversal point,  179

V
vacuum,  132
variation, 308, 329
variational derivative,  314
variational principle, 323, 388
vector, 63–64, 67, 83
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vector addition,  64
vector analysis, 14, 63
vector field,  40
vector product, 40, 71–72
vectors,  40
velocities,  63
velocity,  85
velocity,  104
velocity of sound,  133
Venus,  217
volume integration,  80

W
water waves,  514
wave,  511
wave function,  520
weak nuclear force,  119
winding number, 448, 450
work, 123, 139
world-line,  107

Z
Zabusky, 514, 540
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