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Preface

In this monograph, we present the known results and derive several new ones on the
boundedness, the global stability, and the periodicity of solutions of all rational difference
equations of the form

xn+1 =
α + βxn + γxn−1

A + Bxn + Cxn−1
, n = 0, 1, . . . (1)

where the parameters α, β, γ, A,B,C and the initial conditions x−1 and x0 are nonneg-
ative real numbers.

We believe that the results about Eq(1) are of paramount importance in their own
right and furthermore we believe that these results offer prototypes towards the devel-
opment of the basic theory of the global behavior of solutions of nonlinear difference
equations of order greater than one. The techniques and results which we develop in
this monograph to understand the dynamics of Eq(1) are also extremely useful in ana-
lyzing the equations in the mathematical models of various biological systems and other
applications.

It is an amazing fact that Eq(1) contains, as special cases, a large number of equations
whose dynamics have not been thoroughly understood yet and remain a great challenge
for further investigation. To this end we pose several Open Problems and Conjec-
tures which we believe will stimulate further interest towards a complete understanding
of the dynamics of Eq(1) and its functional generalizations.

Chapter 1 contains some basic definitions and some general results which are used
throughout the book. In this sense, this is a self-contained monograph and the main
prerequisite that the reader needs to understand the material presented here and to be
able to attack the open problems and conjectures is a good foundation in analysis. In an
appendix, at the end of this monograph, we present some global attractivity results for
higher order difference equations which may be useful for extensions and generalizations.

In Chapter 2 we present some general results about periodic solutions and invariant
intervals of Eq(1). In particular we present necessary and sufficient conditions for Eq(1)
to have period-two solutions and we also present a table of invariant intervals.

In Chapters 3 to 11 we present the known results and derive several new ones on the
various types of equations which comprise Eq(1).

Every chapter in this monograph contains several open problems and conjectures
related to the particular equation which is investigated and its generalizations.

ix





Acknowledgements

This monograph is the outgrowth of lecture notes and seminars which were given at the
University of Rhode Island during the last five years. We are thankful to Professors R.
D. Driver, E. A. Grove, J. Hoag, W. Kosmala, L. F. Martins, O. Merino, S. Schultz,
and W. S. Sizer and to our graduate students A. M. Amleh, W. Briden, E. Camouzis,
C. A. Clark, K. Cunningham, R. C. DeVault, H. El-Metwally, J. Feuer, C. Gibbons, E.
Janowski, C. Kent, L. McGrath, M. Predescu, N. Prokup, M. Radin, I. W. Rodrigues,
C. T. Teixeira, S. Valicenti, and K. P. Wilkinson for their enthusiastic participation and
useful suggestions which helped to improve the exposition.

xi





To

Senada and Theodora





Introduction and Classification of
Equation Types

In this monograph, we present the known results and derive several new ones on the
boundedness, the global stability, and the periodicity of solutions of all rational difference
equations of the form

xn+1 =
α + βxn + γxn−1

A + Bxn + Cxn−1
, n = 0, 1, . . . (1)

where the parameters α, β, γ, A,B, C are nonnegative real numbers and the initial con-
ditions x−1 and x0 are arbitrary nonnegative real numbers such that

A + Bxn + Cxn−1 > 0 for all n ≥ 0.

We believe that the results about Eq(1) are of paramount importance in their own
right and furthermore we believe that these results offer prototypes towards the devel-
opment of the basic theory of the global behavior of solutions of nonlinear difference
equations of order greater than one. The techniques and results which we develop in
this monograph to understand the dynamics of Eq(1) are also extremely useful in ana-
lyzing the equations in the mathematical models of various biological systems and other
applications.

It is an amazing fact that Eq(1) contains as special cases, a large number of equa-
tions whose dynamics have not been thoroughly established yet. To this end we pose
several Open Problems and Conjectures which we believe will stimulate further
interest towards a complete understanding of the dynamics of Eq(1) and its functional
generalizations.

Eq(1) includes among others the following well known classes of equations:
1. The Riccati difference equation when

γ = C = 0.

This equation is studied in many textbooks on difference equations, such as [1], [21],
[41], [42], etc. See Section 1.6 where, in addition to the basic description of the solutions

1



2 Introduction and Classification

of the Riccati equation, we introduce the forbidden set of the equation. This is the
set F of all initial conditions x0 ∈ R through which the equation

xn+1 =
α + βxn

A + Bxn
(2)

is not well defined for all n ≥ 0. Hence the solution {xn} of Eq(2) exists for all n ≥ 0,
if and only if x0 /∈ F.

The problem of existence of solutions for difference equations is of paramount
importance but so far has been systematically neglected. See [13], [18], [32], [69], and
Section 1.6 for some results in this regard.

Throughout this monograph we pose several open problems related to the existence
of solutions of some simple equations with the hope that their investigation may throw
some light into this very difficult problem.

An example of such a problem is the following:
Open Problem Find all initial points (x−1, x0) ∈ R×R through which the equa-

tion
xn+1 = −1 +

xn−1

xn

is well defined for all n ≥ 0. See [13].
2. Pielou’s discrete delay logistic model when

α = γ = B = 0.

See ([42], p. 75), [55], [66], [67], and Section 4.4.
We believe that the techniques which we develop in this monograph to understand

the dynamics of Eq(1) will also be of paramount importance in analyzing the equations
in the mathematical models of various biological systems and other applications. For
example, it is interesting to note the similarities of the dynamics of the population model

xn+1 = α + βxn−1e−xn , n = 0, 1, . . .

and the rational equation

xn+1 =
α + αxn + βxn−1

1 + xn
, n = 0, 1, . . . .

See [24] and Sections 2.7 and 10.2.
3. Lyness’ equation when

γ = A = B = 0.

See [42], [44], [49], [57], and Section 5.2. This is a fascinating equation with many
interesting extensions and generalizations. A characteristic feature of this equation is
that it possesses an invariant which can be used to understand the character of its



Introduction and Classification 3

solutions. Without the use of this invariant we are still unable to show, for example,
that every positive solution of the difference equation

xn+1 =
α + xn

xn−1
, n = 0, 1, . . .

where α ∈ (0,∞), is bounded.
It is an amazing fact that Eq(1) contains, as special cases, a large number of equations

whose dynamics have not been thoroughly established yet.
For convenience we classify all the special cases of Eq(1) as follows.
Let k and l be positive integers from the set {1, 2, 3}. We will say that a special case

of Eq(1) is of (k, l)-type if the equation is of the form of Eq(1) with k positive parameters
in the numerator and l positive parameters in the denominator.

For example the following equations

xn+1 =
xn

xn−1
, n = 0, 1, . . .

xn+1 =
α + βxn

γ + xn−1
, n = 0, 1, . . .

xn+1 =
1 + xn

xn−1
, n = 0, 1, . . .

xn+1 =
βxn + γxn−1

A + Bxn + Cxn−1
, n = 0, 1, . . .

are of types (1, 1), (2, 2), (2, 1), and (2, 3) respectively.
In this sense, Eq(1) contains 49 equations as follows:

9 equations of type (1, 1)
9 equations of type (1, 2)
9 equations of type (2, 1)
9 equations of type (2, 2)
3 equations of type (1, 3)
3 equations of type (3, 1)
3 equations of type (2, 3)
3 equations of type (3, 2)
1 equation of type (3, 3).

Of these 49 equations, 21 are either trivial, or linear, or of the Riccati type. The
remaining 28 are quite interesting nonlinear difference equations. Some of them have
been recently investigated and have led to the development of some general theory about
difference equations. See [7], [15], [28], [29], [42], [43], [45] and [52]-[54]. However to this
day, many special cases of Eq(1) are not thoroughly understood yet and remain a great
challenge for further investigation.

Our goal in this monograph is to familiarize readers with the recent techniques and
results related to Eq(1) and its extensions, and to bring to their attention several Open
Research Problems and Conjectures related to this equation and its functional
generalization.





Chapter 1

Preliminary Results

In this chapter we state some known results and prove some new ones about difference
equations which will be useful in our investigation of Eq(1).

The reader may just glance at the results in this chapter and return for the details
when they are needed in the sequel. See also [1], [4], [16], [21], [22], [33], [34], [41], [63],
and [68].

1.1 Definitions of Stability and Linearized Stability
Analysis

Let I be some interval of real numbers and let

f : I × I → I

be a continuously differentiable function.
Then for every set of initial conditions x0, x−1 ∈ I, the difference equation

xn+1 = f(xn, xn−1), n = 0, 1, . . . (1.1)

has a unique solution {xn}∞n=−1.
A point x ∈ I is called an equilibrium point of Eq(1.1) if

x = f(x, x);

that is,
xn = x for n ≥ 0

is a solution of Eq(1.1), or equivalently, x is a fixed point of f .

Definition 1.1.1 Let x be an equilibrium point of Eq(1.1).

5



6 Chapter 1. Preliminary Results

(i) The equilibrium x of Eq(1.1) is called locally stable if for every ε > 0, there
exists δ > 0 such that for all x0, x−1 ∈ I with |x0 − x|+ |x−1 − x| < δ,

we have
|xn − x| < ε for all n ≥ −1.

(ii) The equilibrium x of Eq(1.1) is called locally asymptotically stable if it is
locally stable, and if there exists γ > 0 such that for all x0, x−1 ∈ I with |x0 − x|+
|x−1 − x| < γ,

we have
lim

n→∞
xn = x.

(iii) The equilibrium x of Eq(1.1) is called a global attractor if for every x0, x−1 ∈ I
we have

lim
n→∞

xn = x.

(iv) The equilibrium x of Eq(1.1) is called globally asymptotically stable if it is
locally stable and a global attractor.

(v) The equilibrium x of Eq(1.1) is called unstable if it is not stable.

(vi) The equilibrium x of Eq(1.1) is called a source, or a repeller, if there exists r > 0
such that for all x0, x−1 ∈ I with 0 < |x0 − x| + |x−1 − x| < r, there exists N ≥ 1
such that

|xN − x| ≥ r.

Clearly a source is an unstable equilibrium.

Let
p =

∂f
∂u

(x, x) and q =
∂f
∂v

(x, x)

denote the partial derivatives of f(u, v) evaluated at the equilibrium x of Eq(1.1).
Then the equation

yn+1 = pyn + qyn−1, n = 0, 1, . . . (1.2)

is called the linearized equation associated with Eq(1.1) about the equilibrium point x.

Theorem 1.1.1 (Linearized Stability)

(a) If both roots of the quadratic equation

λ2 − pλ− q = 0 (1.3)

lie in the open unit disk |λ| < 1, then the equilibrium x of Eq(1.1) is locally
asymptotically stable.
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(b) If at least one of the roots of Eq(1.3) has absolute value greater than one, then the
equilibrium x of Eq(1.1) is unstable.

(c) A necessary and sufficient condition for both roots of Eq(1.3) to lie in the open
unit disk |λ| < 1, is

|p| < 1− q < 2. (1.4)

In this case the locally asymptotically stable equilibrium x is also called a sink.

(d) A necessary and sufficient condition for both roots of Eq(1.3) to have absolute value
greater than one is

|q| > 1 and |p| < |1− q| .

In this case x is a repeller.

(e) A necessary and sufficient condition for one root of Eq(1.3) to have absolute value
greater than one and for the other to have absolute value less than one is

p2 + 4q > 0 and |p| > |1− q| .

In this case the unstable equilibrium x is called a saddle point.

(f) A necessary and sufficient condition for a root of Eq(1.3) to have absolute value
equal to one is

|p| = |1− q|

or
q = −1 and |p| ≤ 2.

In this case the equilibrium x is called a nonhyperbolic point.

Definition 1.1.2 (a) A solution {xn} of Eq(1.1) is said to be periodic with period p
if

xn+p = xn for all n ≥ −1. (1.5)

(b) A solution {xn} of Eq(1.1) is said to be periodic with prime period p, or a
p-cycle if it is periodic with period p and p is the least positive integer for which
(1.5) holds.

1.2 The Stable Manifold Theorem in the Plane

Let T be a diffeomorphism in I × I, i.e., one-to-one, smooth mapping, with smooth
inverse.

Assume that p ∈ I × I is a saddle fixed point of T, i.e., T(p) = p and the Jacobian
JT(p) has one eigenvalue s with |s| < 1 and one eigenvalue u with |u| > 1.
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Let vs be an eigenvector corresponding to s and let vu be an eigenvector correspond-
ing to u.

Let S be the stable manifold of p, i.e., the set of initial points whose forward orbits
(under iteration by T)

p,T(p),T2(p), . . .

converge to p.
Let U be the unstable manifold of p, i.e., the set of initial points whose backward

orbits (under iteration by the inverse of T)

p,T−1(p),T−2(p), . . .

converge to p. Then, both S and U are one dimensional manifolds (curves) that contain
p. Furthermore, the vectors vs and vu are tangent to S and U at p, respectively.

The map T for Eq(1.1) is found as follows:
Set

un = xn−1 and vn = xn for n ≥ 0.

Then
un+1 = xn and vn+1 = f(vn, un) for n ≥ 0

and so

T
(

u
v

)

=
(

v
f(v, u)

)

.

Therefore the eigenvalues of the Jacobian JT

(

x
x

)

at the equilibrium point x of Eq(1.1)

are the roots of Eq(1.3).
In this monograph, the way we will make use of the Stable Manifold Theorem in our

investigation of the rational difference equation

xn+1 =
α + βxn + γxn−1

A + Bxn + Cxn−1
, n = 0, 1, . . . (1.6)

is as follows:
Under certain conditions the positive equilibrium of Eq(1.6) will be a saddle point

and under the same conditions Eq(1.6) will have a two cycle

. . . φ, ψ, φ, ψ, . . . (1.7)

which is locally asymptotically stable. Under these conditions, the two cycle (1.7) cannot
be a global attractor of all non-equilibrium solutions. See, for example, Sections 6.6 and
6.9.
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1.3 Global Asymptotic Stability of the Zero Equi-
librium

When zero is an equilibrium point of the Eq(1.6), which we are investigating in this
monograph (with β > 0), then the following theorem will be employed to establish
conditions for its global asymptotic stability. Amazingly the same theorem is a powerful
tool for establishing the global asymptotic stability of the zero equilibrium of several
biological models. See, for example, [31] and [48].

Theorem 1.3.1 ([31]. See also [48], and [70]) Consider the difference equation

xn+1 = f0(xn, xn−1)xn + f1(xn, xn−1)xn−1, n = 0, 1, . . . (1.8)

with nonnegative initial conditions and

f0, f1 ∈ C[[0,∞)× [0,∞), [0, 1)].

Assume that the following hypotheses hold:

(i) f0 and f1 are non-increasing in each of their arguments;

(ii) f0(x, x) > 0 for all x ≥ 0;

(iii) f0(x, y) + f1(x, y) < 1 for all x, y ∈ (0,∞).

Then the zero equilibrium of Eq(1.8) is globally asymptotically stable.

1.4 Global Attractivity of the Positive Equilibrium

Unfortunately when it comes to establishing the global attractivity of the positive equi-
librium of the Eq(1.6) which we are investigating in this monograph, there are not
enough results in the literature to cover all various cases. We strongly believe that the
investigation of the various special cases of our equation has already played and will
continue to play an important role in the development of the stability theory of general
difference equations of orders greater than one.

The first theorem, which has also been very useful in applications to mathematical
biology, see [31] and [48], was really motivated by a problem in [35].

Theorem 1.4.1 ([31]. See also [35], [48], and ([42], p. 53). Let I ⊆ [0,∞) be some
interval and assume that f ∈ C[I × I, (0,∞)] satisfies the following conditions:

(i) f(x, y) is non-decreasing in each of its arguments;
(ii) Eq(1.1) has a unique positive equilibrium point x ∈ I and the function f(x, x)

satisfies the negative feedback condition:

(x− x)(f(x, x)− x) < 0 for every x ∈ I − {x}.
Then every positive solution of Eq(1.1) with initial conditions in I converges to x.
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The following theorem was inspired by the results in [55] that deal with the global
asymptotic stability of Pielou’s equation (see Section 4.4), which is a special case of
the equation that we are investigating in this monograph.

Theorem 1.4.2 ([42], p. 27) Assume
(i) f ∈ C[(0,∞)× (0,∞), (0,∞)];
(ii) f(x, y) is nonincreasing in x and decreasing in y;
(iii) xf(x, x) is increasing in x;
(iv) The equation

xn+1 = xnf(xn, xn−1), n = 0, 1, . . . (1.9)

has a unique positive equilibrium x.
Then x is globally asymptotically stable.

Theorem 1.4.3 ([27]) Assume
(i) f ∈ C[[0,∞)× [0,∞), (0,∞)];
(ii) f(x, y) is nonincreasing in each argument;
(iii) xf(x, y) is nondecreasing in x;
(iv) f(x, y) < f(y, x) ⇐⇒ x > y;
(v) The equation

xn+1 = xn−1f(xn−1, xn), n = 0, 1, . . . (1.10)

has a unique positive equilibrium x.
Then x is a global attractor of all positive solutions of Eq(1.10).

The next result is known as the stability trichotomy result:

Theorem 1.4.4 ([46]) Assume

f ∈ C1[[0,∞)× [0,∞), [0,∞)]

is such that

x
∣

∣

∣

∣

∣

∂f
∂x

∣

∣

∣

∣

∣

+ y
∣

∣

∣

∣

∣

∂f
∂y

∣

∣

∣

∣

∣

< f(x, y) for all x, y ∈ (0,∞). (1.11)

Then Eq(1.1) has stability trichotomy, that is exactly one of the following three cases
holds for all solutions of Eq(1.1):

(i) limn→∞ xn = ∞ for all (x−1, x0) 6= (0, 0) .

(ii) limn→∞ xn = 0 for all initial points and 0 is the only equilibrium point of Eq(1.1).

(iii) limn→∞ xn = x ∈ (0,∞) for all (x−1, x0) 6= (0, 0) and x is the only positive equi-
librium of Eq(1.1).
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Very often the best strategy for obtaining global attractivity results for Eq(1.1) is
to work in the regions where the function f(x, y) is monotonic in its arguments. In this
regard there are four possible scenarios depending on whether f(x, y) is nondecreasing
in both arguments, or nonincreasing in both arguments, or nonincreasing in one and
nondecreasing in the other.

The next two theorems are slight modifications of results which were obtained in [54]
and were developed while we were working on a special case of the equation that we are
investigating in this monograph. (See Section 6.9.) The first theorem deals with the case
where the function f(x, y) is non-decreasing in x and non-increasing in y and the second
theorem deals with the case where the function f(x, y) is non-increasing in x and non-
decreasing in y. Theorems 1.4.8 and 1.4.7 below are new and deal with the remaining
two cases relative to the monotonic character of f(x, y). See Sections 6.4 and 6.8 where
these theorems are utilized. See also the Appendix, at the end of this monograph, which
describes the extension of these results to higher order difference equations.

Theorem 1.4.5 ([54]) Let [a, b] be an interval of real numbers and assume that

f : [a, b]× [a, b] → [a, b]

is a continuous function satisfying the following properties:
(a) f(x, y) is non-decreasing in x ∈ [a, b] for each y ∈ [a, b], and f(x, y) is non-

increasing in y ∈ [a, b] for each x ∈ [a, b];
(b) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

f(m,M) = m and f(M,m) = M,

then m = M .
Then Eq(1.1) has a unique equilibrium x ∈ [a, b] and every solution of Eq(1.1) con-

verges to x.

Proof. Set
m0 = a and M0 = b

and for i = 1, 2, . . . set

Mi = f(Mi−1,mi−1) and mi = f(mi−1,Mi−1).

Now observe that for each i ≥ 0,

m0 ≤ m1 ≤ . . . ≤ mi ≤ . . . ≤ Mi ≤ . . . ≤ M1 ≤ M0

and
mi ≤ xk ≤ Mi for k ≥ 2i + 1.

Set
m = lim

i→∞
mi and M = lim

i→∞
Mi.
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Then
M ≥ lim sup

i→∞
xi ≥ lim inf

i→∞
xi ≥ m (1.12)

and by the continuity of f ,

m = f(m,M) and M = f(M, m).

Therefore in view of (b),
m = M

from which the result follows. 2

Theorem 1.4.6 ([54]) Let [a, b] be an interval of real numbers and assume that

f : [a, b]× [a, b] → [a, b]

is a continuous function satisfying the following properties:
(a) f(x, y) is non-increasing in x ∈ [a, b] for each y ∈ [a, b], and f(x, y) is non-

decreasing in y ∈ [a, b] for each x ∈ [a, b];
(b) The difference equation Eq(1.1) has no solutions of prime period two in [a, b].

Then Eq(1.1) has a unique equilibrium x ∈ [a, b] and every solution of Eq(1.1) converges
to x.

Proof. Set
m0 = a and M0 = b

and for i = 1, 2, . . . set

Mi = f(mi−1,Mi−1) and mi = f(Mi−1, mi−1).

Now observe that for each i ≥ 0,

m0 ≤ m1 ≤ . . . ≤ mi ≤ . . . ≤ Mi ≤ . . . ≤ M1 ≤ M0,

and
mi ≤ xk ≤ Mi for k ≥ 2i + 1.

Set
m = lim

i→∞
mi and M = lim

i→∞
Mi.

Then clearly (1.12) holds and by the continuity of f ,

m = f(M,m) and M = f(m,M).

In view of (b),
m = M

from which the result follows. 2
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Theorem 1.4.7 Let [a, b] be an interval of real numbers and assume that

f : [a, b]× [a, b] → [a, b]

is a continuous function satisfying the following properties:
(a) f(x, y) is non-increasing in each of its arguments;
(b) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

f(m,m) = M and f(M,M) = m,

then m = M .
Then Eq(1.1) has a unique equilibrium x ∈ [a, b] and every solution of Eq(1.1) con-

verges to x.

Proof. Set
m0 = a and M0 = b

and for i = 1, 2, . . . set

Mi = f(mi−1,mi−1) and mi = f(Mi−1, Mi−1).

Now observe that for each i ≥ 0,

m0 ≤ m1 ≤ . . . ≤ mi ≤ . . . ≤ Mi ≤ . . . ≤ M1 ≤ M0,

and
mi ≤ xk ≤ Mi for k ≥ 2i + 1.

Set
m = lim

i→∞
mi and M = lim

i→∞
Mi.

Then clearly (1.12) holds and by the continuity of f ,

m = f(M,M) and M = f(m,m).

In view of (b),
m = M = x

from which the result follows. 2

Theorem 1.4.8 Let [a, b] be an interval of real numbers and assume that

f : [a, b]× [a, b] → [a, b]

is a continuous function satisfying the following properties:
(a) f(x, y) is non-decreasing in each of its arguments;
(b) The equation

f(x, x) = x,

has a unique positive solution.
Then Eq(1.1) has a unique equilibrium x ∈ [a, b] and every solution of Eq(1.1) con-

verges to x.
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Proof. Set
m0 = a and M0 = b

and for i = 1, 2, . . . set

Mi = f(Mi−1,Mi−1) and mi = f(mi−1,mi−1).

Now observe that for each i ≥ 0,

m0 ≤ m1 ≤ . . . ≤ mi ≤ . . . ≤ Mi ≤ . . . ≤ M1 ≤ M0,

and
mi ≤ xk ≤ Mi for k ≥ 2i + 1.

Set
m = lim

i→∞
mi and M = lim

i→∞
Mi.

Then clearly the inequality (1.12) is satisfied and by the continuity of f ,

m = f(m,m) and M = f(M, M).

In view of (b),
m = M = x,

from which the result follows. 2

1.5 Limiting Solutions

The concept of limiting solutions was introduced by Karakostas [37] (see also [40]) and
is a useful tool in establishing that under certain conditions a solution of a difference
equation which is bounded from above and from below has a limit.

In this section we first give a self-contained version of limiting solutions the way we
will use them in this monograph.

Let J be some interval of real numbers, f ∈ C[J × J, J ], and let k ≥ 1 be a positive
integer. Assume that {xn}∞n=−1 is a solution of Eq(1.1) such that

A ≤ xn ≤ B for all n ≥ −1,

where A,B ∈ J . Let L be a limit point of the solution {xn}∞n=−1 (For example L is the
limit superior S or the limit inferior I of the solution). Now with the above hypotheses,
we will show that there exists a solution {Ln}∞n=−k of the difference equation

xn+1 = f(xn, xn−1), n ≥ −k + 1, . . . (1.13)
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such that
L0 = L

and for every N ≥ −k, the term LN is a limit point of the solution {xn}∞n=−1.
The solution {Ln}∞n=−k is called a limiting solution of Eq(1.13) associated with the

solution {xn}∞n=−1 of Eq(1.1).
Karakostas takes k = ∞ and calls the solution {Ln}∞n=−∞ a full limiting sequence

of the difference equation
xn+1 = f(xn, xn−1), (1.14)

associated with the solution {xn}∞n=−1 of Eq(1.1). (See Theorem 1.5.2 below.)
We now proceed to show the existence of a limiting solution {Ln}∞n=−k.
Clearly there exists a subsequence {xni}∞i=1 of {xn}∞n=−1 such that

lim
i→∞

xni = L.

Next the subsequence {xni−1}∞i=1 of {xn}∞n=−1 also lies in interval [A,B] and so it has a
further subsequence {xnij

}∞j=1 which converges to some limit which we call L−1. There-
fore,

lim
i→∞

xnij
= L and lim

i→∞
xnij−1 = L−1.

Continuing in this way and by considering further and further subsequences we obtain
numbers L−2, L−3, . . . , L−k and a subsequence {xnj}∞n=−1 such that

lim
j→∞

xnj = L

lim
j→∞

xnj−1 = L−1

. . .

lim
j→∞

xnj−k = L−k.

Let {`n}∞n=−k be the solution of Eq(1.13) with `−k = L−k and `−k+1 = L−k+1.
Then clearly,

`−k+2 = f(`−k+1, `−k) = f(L−k+1, L−k)

= lim
j→∞

f(xnj−k+1, xnj−k) = lim
j→∞

xnj−k+2 = L−k+2.

It follows by induction that the sequence

L−k, L−k+1, . . . , L−1, L0 = L = `0, L1 = `1, . . .

satisfies Eq(1.13) and every term of this sequence is a limit point of the solution {xn}∞n=−1.
The following result, which is a consequence of the above discussion, is stated in the

way we will use it in this monograph:
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Theorem 1.5.1 Let J be some interval of real numbers, f ∈ C[J × J, J ], and let k ≥ 1
be a positive integer. Suppose that {xn}∞n=−1 is a bounded solution of Eq(1.1) with limit
inferior I and limit superior S, with I, S ∈ J . Then Eq(1.13) has two solutions {In}∞n=−k
and {Sn}∞n=−k with the following properties:

I0 = I, S0 = S

and
In, Sn ∈ [I, S] for n ≥ −k.

We now state the complete version of full limiting sequences, as developed by Karakostas.

Theorem 1.5.2 ([37]) Let J be some interval of real numbers, f ∈ C[Jν+1, J ], and let
{xn}∞n=−ν be a bounded solution of the difference equation

xn+1 = f(xn, xn−1, . . . , xn−ν), n = 0, 1, . . . (1.15)

with
I = lim inf

n→∞
xn, S = lim sup

n→∞
xn and with I, S ∈ J.

Let Z denote the set of all integers {. . . ,−1, 0, 1, . . .}. Then there exist two solutions
{In}∞n=−∞ and {Sn}∞n=−∞ of the difference equation

xn+1 = f(xn, xn−1, . . . , xn−ν) (1.16)

which satisfy the equation for all n ∈ Z, with

I0 = I, S0 = S, In, Sn ∈ [I, S] for all n ∈ Z

and such that for every N ∈ Z, IN and SN are limit points of {xn}∞n=−ν.
Furthermore for every m ≤ −ν, there exist two subsequences {xrn} and {xln} of the

solution {xn}∞n=−ν such that the following are true:

lim
n→∞

xrn+N = IN and lim
n→∞

xln+N = SN for every N ≥ m.

The solutions {In}∞n=−∞ and {Sn}∞n=−∞ of the difference equation (1.16) are called
full limiting solutions of Eq(1.16) associated with the solution {xn}∞n=−k of Eq(1.15).
See [23] and [25] for an application of Theorem 1.5.2 to difference equations of the form

xn+1 =
k

∑

i=0

Ai

xn−i
, n = 0, 1, . . .

which by the change of variables xn = 1
yn

reduce to rational difference equations of the
form

yn+1 =
1

∑k
i=0 Aiyn−i

, n = 0, 1, . . . .
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1.6 The Riccati Equation

A difference equation of the form

xn+1 =
α + βxn

A + Bxn
, n = 0, 1, . . . (1.17)

where the parameters α, β,A, B and the initial condition x0 are real numbers is called a
Riccati difference equation.

To avoid degenerate cases, we will assume that

B 6= 0 and αB − βA 6= 0. (1.18)

Indeed when B = 0, Eq(1.17) is a linear equation and when αB − βA = 0, Eq(1.17)
reduces to

xn+1 =
βA
B + βxn

A + Bxn
=

β
B

for all n ≥ 0.

The set of initial conditions x0 ∈ R through which the denominator A+Bxn in Eq(1.17)
will become zero for some value of n ≥ 0 is called the forbidden set F of Eq(1.17).

One of our goals in this section is to determine the forbidden set F of Eq(1.17). It
should be mentioned here that there is practically nothing known about the forbidden
set of Eq(1) (when the parameters α, β, γ, A, B, C and the initial conditions x−1, x0 are
all real numbers) other than the material presented here, which is extracted from [32].
(See also [13] and [69].)

The other goal we have is to describe in detail the long- and short-term behavior of
solutions of Eq(1.17) when x0 /∈ F.

The first result in this section addresses a very special case of Eq(1.17) regarding
period-two solutions. The proof is straightforward and will be omitted.

Theorem 1.6.1 Assume that (1.18) holds and that Eq(1.17) possesses a prime period-
two solution. Then

β + A = 0. (1.19)

Furthermore when (1.19) holds every solution of Eq(1.17) with

x0 6=
β
B

(1.20)

is periodic with period two.

In the sequel, in addition to (1.18), we will assume that

β + A 6= 0. (1.21)
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Now observe that the change of variable

xn =
β + A

B
wn −

A
B

for n ≥ 0 (1.22)

transforms Eq(1.17) into the difference equation

wn+1 = 1− R
wn

, n = 0, 1, . . . (1.23)

where
R =

βA− αB
(β + A)2

is a nonzero real number, called the Riccati number of Eq(1.17).
It is interesting to note that the four parameters of Eq(1.17) have been reduced to

the single parameter R of Eq(1.23). If we set

y = g(w) = 1− R
w

then we note that the two asymptotes

x = −A
B

and y =
β
B

of the function
y = f(x) =

α + βx
A + Bx

have now been reduced to the two asymptotes

w = 0 and y = 1

of the function
y = 1− R

w
.

Also note that the signum of R is equal to the signum of the derivative

f ′(x) =
βA− αB
(A + Bx)2 .

For the remainder of this section we focus on Eq(1.23) and present its forbidden set F
and the character of its solutions. Similar results can be obtained for Eq(1.17) through
the change of variables (1.22).

From Eq(1.23) it follows that when

R <
1
4
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Eq(1.23) has the two equilibrium points w− and w+ with

w− =
1−

√
1− 4R
2

<
1 +

√
1− 4R
2

= w+

and
|w−| < w+.

Also
w− < 0 if R < 0

and

w− > 0 if R ∈ (0,
1
4
).

When

R =
1
4
,

Eq(1.23) has exactly one equilibrium point namely,

w =
1
2
.

Finally, when

R >
1
4
,

Eq(1.23) has no equilibrium points.
Now observe that the change of variables

wn =
yn+1

yn
for n = 0, 1, . . .

with
y0 = 1 and y1 = w0

reduces Eq(1.23) to the second order linear difference equation

yn+2 − yn+1 + Ryn = 0, n = 0, 1, . . . (1.24)

which can be solved explicitly.
The forbidden set of Eq(1.23) is clearly the set of points where the sequence {yn}∞n=0

vanishes.
The next two theorems deal with the cases R < 1

4 and R = 1
4 , respectively, where

the characteristic roots of Eq(1.24) are real numbers. Note that in these two cases the
characteristic roots of Eq(1.24) are the equilibrium points of Eq(1.23).
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Theorem 1.6.2 Assume
R <

1
4
.

Then

w− =
1−

√
1− 4R
2

and w+ =
1 +

√
1− 4R
2

are the only equilibrium points of Eq(1.23).
The forbidden set F of Eq(1.23) is the sequence of points

fn =
(

wn−1
+ − wn−1

−
wn

+ − wn
−

)

w+w− for n = 1, 2, . . . . (1.25)

When w0 /∈ F, the solution of Eq(1.23) is given by

wn =
(w0 − w−)wn+1

+ − (w+ − w0)wn+1
−

(w0 − w−)wn
+ − (w+ − w0)wn

−
, n = 1, 2, . . . . (1.26)

It is now clear from Theorem 1.6.2 that

lim
n→∞

fn = w−,

and
fn < w− if R > 0

while
(fn − w−)(fn+1 − w−) < 0 if R < 0.

The equilibrium w+ is a global attractor as long as

w0 /∈ F ∪ {w−}

and the equilibrium w− is a repeller.

Theorem 1.6.3 Assume
R =

1
4
.

Then
w =

1
2

is the only equilibrium point of Eq(1.23).
The forbidden set F of Eq(1.23) is the sequence of points

fn =
n− 1
2n

for n = 1, 2, . . . , (1.27)
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which converges to the equilibrium from the left.
When w0 /∈ F, the solution of Eq(1.23) is given by

wn =
1 + (2w0 − 1)(n + 1)

2 + 2(2w0 − 1)n
for n = 0, 1, . . . . (1.28)

From Theorem 1.6.3 it follows that the equilibrium w = 1
2 of Eq(1.23) is a global

attractor for all solutions with w0 /∈ F but is locally unstable, more precisely, it is a sink
from the right and a source from the left.

Finally consider the case

R >
1
4
.

The characteristic roots of Eq(1.24) in this case are

λ± =
1
2
± i

√
4R− 1

2

with
|λ±| =

√
R.

Let
φ ∈ (0,

π
2
)

be such that

cos φ =
1

2
√

R
and sin φ =

√
4R− 1
2
√

R
.

Then
yn = R

n
2 (C1 cos(nφ) + C2 sin(nφ)), n = 0, 1, . . .

with
C1 = y0 = 1

and √
R(C1 cos φ + C2 sin φ) = y1 = w0.

It follows that
C1 = 1 and C2 =

2w0 − 1√
4R− 1

.

Hence

wn =
√

R
√

4R− 1 cos(n + 1)φ + (2w0 − 1) sin(n + 1)φ√
4R− 1 cos(nφ) + (2w0 − 1) sin(nφ)

, n = 0, 1, . . . (1.29)
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as long as the denominator is different from zero, that is,

w0 6=
1
2
−
√

4R− 1
2

cot(nφ) for n = 1, 2, . . . .

The following theorem summarizes the above discussion.

Theorem 1.6.4 Assume that
R >

1
4

and let φ ∈ (0, π
2 ) be such that

cos φ =
1

2
√

R
and sin φ =

√
4R− 1
2
√

R
.

Then the forbidden set F of Eq(1.23) is the sequence of points

fn =
1
2
−
√

4R− 1
2

cot(nφ) for n = 1, 2, . . . . (1.30)

When w0 /∈ F, the solution of Eq(1.23) is given by (1.29).

Clearly when R > 1
4 the character of the solution {wn} and the forbidden set F

depends on whether or not the number φ ∈ (0, π
2 ) is a rational multiple of π.

Let θ ∈ (−π
2 , π

2 ) be such that

cos θ =
√

4R− 1
r

and sin θ =
2x0 − 1

r

where
r =

√

(4R− 1)2 + (2x0 − 1)2.

Then we obtain,

wn =
√

R
cos(nφ + φ− θ)

cos(nφ− θ)
=
√

R
cos(nφ− θ) cos φ− sin(nφ− θ) sin φ

cos(nφ− θ)

=
√

R (cos φ− sin φ tan(nφ− θ))

and so

wn =
1
2
−
√

4R− 1
2

tan(nφ− θ), n = 0, 1, . . . (1.31)

from which the character of the solutions of Eq(1.23), when R > 1
4 , can now be easily

revealed.
For example, assume φ is a rational multiple of π, that is,

φ =
k
N

π ∈ (0,
π
2
) (1.32)
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for some
k, N ∈ {1, 2, . . .} with 2k < N.

Then

wN =
1
2
−
√

4R− 1
2

tan(kπ − θ) =
1
2
−
√

4R− 1
2

tan(−θ) = w0

and so every solution of Eq(1.23) is periodic with period N .
Equivalently assume that

A =
1

4 cos2 φ
with φ =

k
N

π

where
k, N ∈ {1, 2, . . .} and 2k < N,

then every solution of Eq(1.23) is periodic with period N .
The following theorem summarizes the above discussion.

Theorem 1.6.5 Assume that

φ =
k
p
π ∈ (0,

π
2
)

where k and p are positive comprimes and suppose that

cos φ =
1

2
√

R
and sin φ =

√
4R− 1
2
√

R
,

or equivalently

4R cos2(
k
p
π) = 1.

Then every solution of Eq(1.23) with

w0 6=
sin(nk

pπ)−
√

4R− 1 cos(nk
pπ)

2 sin(nk
pπ)

for n = 1, 2, . . . , p− 1

is periodic with period p.

When the number φ in Theorem 1.6.5 is not a rational multiple of π, then the
following result is true:

Theorem 1.6.6 Assume that the number φ in Theorem 1.6.5 is not a rational multiple
of π. Then the following statements are true:

(i) No solution of Eq(1.23) is periodic.
(ii) The set of limit points of a solution of Eq(1.23) with w0 /∈ F is dense in R.
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Proof. Statement (i) is true because,

wk = wl

if and only if
tan(kφ− θ) = tan(lφ− θ)

if and only if for some integer N

kφ− θ − (lφ− θ) = Nπ

if and only if
(k − l)φ = Nπ

that is,
φ is a rational multiple of π.

The proof of statement (ii) is a consequence of the form of the solution of Eq(1.23) and
the fact that when φ is not a rational multiple of π, then the values

(nφ− θ)(mod π) for n = 0, 1, . . .

are dense in the interval (−π
2 , π

2 ). 2

1.7 Semicycle Analysis

We strongly believe that a semicycle analysis of the solutions of a scalar difference equa-
tion is a powerful tool for a detailed understanding of the entire character of solutions
and often leads to straightforward proofs of their long term behavior.

In this section, we present some results about the semicycle character of solutions of
some general difference equations of the form

xn+1 = f(xn, xn−1), n = 0, 1, . . . (1.33)

under appropriate hypotheses on the function f .
First we give the definitions for the positive and negative semicycle of a solution of

Eq(1.33) relative to an equilibrium point x.
A positive semicycle of a solution {xn} of Eq(1.1) consists of a “string” of terms

{xl, xl+1, . . . , xm}, all greater than or equal to the equilibrium x, with l ≥ −1 and m ≤ ∞
and such that

either l = −1, or l > −1 and xl−1 < x

and
either m = ∞, or m < ∞ and xm+1 < x.
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A negative semicycle of a solution {xn} of Eq(1.33) consists of a “string” of terms
{xl, xl+1, . . . , xm}, all less than the equilibrium x, with l ≥ −1 and m ≤ ∞ and such
that

either l = −1, or l > −1 and xl−1 ≥ x

and
either m = ∞, or m < ∞ and xm+1 ≥ x.

Definition 1.7.1 (Oscillation)

(a) A sequence {xn} is said to oscillate about zero or simply to oscillate if the terms
xn are neither eventually all positive nor eventually all negative. Otherwise the
sequence is called nonoscillatory. A sequence {xn} is called strictly oscillatory
if for every n0 ≥ 0, there exist n1, n2 ≥ n0 such that xn1xn2 < 0.

(b) A sequence {xn} is said to oscillate about x if the sequence xn − x oscillates.
The sequence {xn} is called strictly oscillatory about x if the sequence xn − x
is strictly oscillatory.

The first result was established in [28] while we were working on a special case of the
equation we are investigating in this monograph. (See Section 6.5.)

Theorem 1.7.1 ([28]) Assume that f ∈ C[(0,∞)× (0,∞), (0,∞)] is such that:
f(x, y) is decreasing in x for each fixed y, and f(x, y) is increasing in y for each fixed

x.
Let x be a positive equilibrium of Eq(1.33). Then except possibly for the first semi-

cycle, every solution of Eq(1.33) has semicycles of length one.

Proof. Let {xn} be a solution of Eq(1.33) with at least two semicycles. Then there
exists N ≥ 0 such that either

xN−1 < x ≤ xN

or
xN−1 ≥ x > xN .

We will assume that
xN−1 < x ≤ xN .

All other cases are similar and will be omitted. Then by using the monotonic character
of f(x, y) we have

xN+1 = f(xN , xN−1) < f(x, x) = x

and
xN+2 = f(xN+1, xN) > f(x, x) = x.

Thus
xN+1 < x < xN+2
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and the proof follows by induction. 2

The next result applies when the function f is decreasing in both arguments.

Theorem 1.7.2 Assume that f ∈ C[(0,∞)×(0,∞), (0,∞)] and that f(x, y) is decreas-
ing in both arguments.

Let x be a positive equilibrium of Eq(1.33). Then every oscillatory solution of
Eq(1.33) has semicycles of length at most two.

Proof. Assume that {xn} is an oscillatory solution with two consecutive terms xN−1

and xN in a positive semicycle

xN−1 ≥ x and xN ≥ x

with at least one of the inequalities being strict. The proof in the case of negative
semicycle is similar and is omitted. Then by using the decreasing character of f we
obtain:

xN+1 = f(xN , xN−1) < f(x, x) = x

which completes the proof. 2

The next result applies when the function f is increasing in both arguments.

Theorem 1.7.3 Assume that f ∈ C[(0,∞)×(0,∞), (0,∞)] and that f(x, y) is increas-
ing in both arguments.

Let x be a positive equilibrium of Eq(1.33). Then except possibly for the first semi-
cycle, every oscillatory solution of Eq(1.33) has semicycles of length one.

Proof. Assume that {xn} is an oscillatory solution with two consecutive terms xN−1

and xN in a positive semicycle

xN−1 ≥ x and xN ≥ x,

with at least one of the inequalities being strict. The proof in the case of negative
semicycle is similar and is omitted. Then by using the increasing character of f we
obtain:

xN+1 = f(xN , xN−1) > f(x, x) = x

which shows that the next term xN+1 also belongs to the positive semicycle. It follows by
induction that all future terms of this solution belong to this positive semicycle, which
is a contradiction. 2

The next result applies when the function f(x, y) is increasing in x and decreasing
in y.
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Theorem 1.7.4 Assume that f ∈ C[(0,∞)× (0,∞), (0,∞)] is such that:
f(x, y) is increasing in x for each fixed y, and f(x, y) is decreasing in y for each fixed

x.
Let x be a positive equilibrium of Eq(1.33).
Then, except possibly for the first semicycle, every oscillatory solution of Eq(1.33)

has semicycles of length at least two.
Furthermore, if we assume that

f(u, u) = x for every u (1.34)

and
f(x, y) < x for every x > y > x (1.35)

then {xn} oscillates about the equilibrium x with semicycles of length two or three, except
possibly for the first semicycle which may have length one. The extreme in each semicycle
occurs in the first term if the semicycle has two terms, and in the second term if the
semicycle has three terms.

Proof. Assume that {xn} is an oscillatory solution with two consecutive terms xN−1

and xN such that
xN−1 < x ≤ xN .

Then by using the increasing character of f we obtain

xN+1 = f(xN , xN−1) > f(x, x) = x

which shows that the next term xN+1 also belongs to the positive semicycle. The proof
in the case

xN−1 ≥ x > xN ,

is similar and is omitted.
Now also assume that {xn} is an oscillatory solution with two consecutive terms

xN−1 and xN such that

xN−1 > xN ≥ x and xN−2 < x.

Then by using the increasing character of f and Condition (1.34) we obtain

xN+1 = f(xN , xN−1) < f(xN , xN) = x

which shows that the positive semicycle has length two. If

xN > xN−1 > x

then by using the increasing character of f and Condition (1.34) we obtain:

xN+1 = f(xN , xN−1) > f(xN , xN) = x
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and by using Condition (1.35) we find

xN+1 = f(xN , xN−1) < xN

and the proof is complete.
2

Condition (1.34) is not enough to guarantee the above result. If, instead of Condition
(1.35), we assume

f(x, y) > x for every x > y > x. (1.36)

then Eq(1.33) has monotonic solutions.

Theorem 1.7.5 Assume that f ∈ C[(0,∞)× (0,∞), (0,∞)] is such that:
f(x, y) is increasing in x for each fixed y, and f(x, y) is decreasing in y for each fixed

x.
Let x be a positive equilibrium of Eq(1.33). Assume that f satisfies Conditions (1.34)

and (1.36).
Then if x0 > x−1 > x, the corresponding solution is increasing.
If, on the other hand, f satisfies Condition (1.34), and

f(x, y) < x for every x < y < x (1.37)

then if x0 < x−1 < x, the corresponding solution is decreasing.

Proof. First, assume that Condition (1.36) is satisfied and that x0 > x−1 > x. Then
by the monotonic character of f and (1.34), we obtain

x1 = f(x0, x−1) > f(x−1, x−1) = x.

In view of Condition (1.36) we get

x1 = f(x0, x−1) > x0.

and the proof follows by induction.
The proof of the remaining case is similar and will be omitted. 2



Chapter 2

Local Stability, Semicycles,
Periodicity, and Invariant Intervals

2.1 Equilibrium Points

Here we investigate the equilibrium points of the general equation

xn+1 =
α + βxn + γxn−1

A + Bxn + Cxn−1
, n = 0, 1, . . . (2.1)

where
α, β, γ, A, B,C ∈ [0,∞) with α + β + γ, B + C ∈ (0,∞) (2.2)

and where the initial conditions x−1 and x0 are arbitrary nonnegative real numbers such
that the right hand side of Eq(2.1) is well defined for all n ≥ 0.

In view of the above restriction on the initial conditions of Eq(2.1), the equilibrium
points of Eq(2.1) are the nonnegative solutions of the equation

x =
α + (β + γ)x
A + (B + C)x

(2.3)

or equivalently
(B + C)x2 − (β + γ − A)x− α = 0. (2.4)

Zero is an equilibrium point of Eq(2.1) if and only if

α = 0 and A > 0. (2.5)

When (2.5) holds, in addition to the zero equilibrium , Eq(2.1) has a positive equilibrium
if and only if

β + γ > A.

29
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In fact in this case the positive equilibrium of Eq(2.1) is unique and is given by

x =
β + γ − A

B + C
. (2.6)

When
α = 0 and A = 0

the only equilibrium point of Eq(2.1) is positive and is given by

x =
β + γ
B + C

. (2.7)

Note that in view of Condition (2.2), when α = 0, the quantity β + γ is positive.
Finally when

α > 0

the only equilibrium point of Eq(2.1) is the positive solution

x =
β + γ − A +

√

(β + γ − A)2 + 4α(B + C)

2(B + C)
(2.8)

of the quadratic equation (2.4).
If we had allowed negative initial conditions then the negative solution of Eq(2.4)

would also be an equilibrium worth investigating. The problem of investigating Eq(2.1)
when the initial conditions and the coefficients of the equation are real numbers is of
great mathematical importance and, except for our presentation in Section 1.6 about
the Riccati equation

xn+1 =
α + βxn

A + Bxn
, n = 0, 1, . . . ,

there is very little known. (See [13], [18], [32], and [69] for some results in this regard.)
In summary, it is interesting to observe that when Eq(2.1) has a positive equilibrium

x, then x is unique, it satisfies Eqs(2.3) and (2.4), and it is given by (2.8). This ob-
servation simplifies the investigation of the local stability of the positive equilibrium of
Eq(2.1).

2.2 Stability of the Zero Equilibrium

Here we investigate the stability of the zero equilibrium of Eq(2.1).
Set

f(u, v) =
α + βu + γv
A + Bu + Cv

and observe that

fu(u, v) =
(βA− αB) + (βC − γB)v

(A + Bu + Cv)2 (2.9)
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and

fv(u, v) =
(γA− αC)− (βC − γB)u

(A + Bu + Cv)2 . (2.10)

If x denotes an equilibrium point of Eq(2.1), then the linearized equation associated
with Eq(2.1) about the equilibrium point x is

zn+1 − pzn − qzn−1 = 0

where
p = fu(x, x) and q = fv(x, x).

The local stability character of x is now described by the linearized stability Theorem
1.1.1.

For the zero equilibrium of Eq(2.1) we have

p =
β
A

and q =
γ
A

and so the linearized equation associated with Eq(2.1) about the zero equilibrium point
is

zn+1 −
β
A

zn −
γ
A

zn−1 = 0, n = 0, 1, . . . .

For the stability of the zero equilibrium of Eq(2.1), in addition to the local stability The-
orem 1.1.1, we have the luxury of the global stability Theorem 1.3.1. As a consequence
of these two theorems we obtain the following global result:

Theorem 2.2.1 Assume that A > 0. Then the zero equilibrium point of the equation

xn+1 =
βxn + γxn−1

A + Bxn + Cxn−1
, n = 0, 1, . . .

is globally asymptotically stable when

β + γ ≤ A

and is unstable when
β + γ > A.

Furthermore the zero equilibrium point is

a sink when A > β + γ
a saddle point when A < β + γ < A + 2β
a repeller when β + γ > A + 2β.
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2.3 Local Stability of the Positive Equilibrium

As we mentioned in Section 2.1, Eq(2.1) has a positive equilibrium when either

α = 0 and β + γ > A

or
α > 0.

In these cases the positive equilibrium x is unique, it satisfies Eqs(2.3) and (2.4), and it
is given by (2.8). By using the identity

(B + C)x2 = (β + γ − A)x + α,

we see that

p = fu(x, x) =
(βA− αB) + (βC − γB)x

(A + (B + C)x)2 =
(βA− αB) + (βC − γB)x

A2 + α(B + C) + (B + C)(A + β + γ)x

and

q = fv(x, x) =
(γA− αC)− (βC − γB)x

(A + (B + C)x)2 =
(γA− αC)− (βC − γB)x

A2 + α(B + C) + (B + C)(A + β + γ)x
.

Hence the conditions for the local asymptotic stability of x are (see Theorem 1.1.1) the
following:

|p| < 1− q (2.11)

and
q > −1. (2.12)

Inequalities (2.11) and (2.12) are equivalent to the following three inequalities:
[

A + β + γ + 2
βC − γB
B + C

]

x > −α− A2 + (βA− αB)− (γA− αC)
B + C

(2.13)

(A + β + γ)x > −α− A2 − (βA− αB)− (γA− αC)
B + C

(2.14)

[

A + β + γ − βC − γB
B + C

]

x > −α− A2 + (γA− αC)
B + C

. (2.15)

Out of these inequalities we will obtain explicit stability conditions by using the following
procedure:

First we observe that Inequalities (2.13)-(2.15), are equivalent to some inequalities
of the form

x > ρ
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and/or
x < σ

for some ρ, σ ∈ [0,∞).
Now if we set

F (u) = (B + C)u2 − (β + γ − A)u− α,

it is clear that
F (x) = 0

and that
x > ρ if and only if F (ρ) < 0

while
x < σ if and only if F (σ) > 0.

2.4 When is Every Solution Periodic with the Same
Period?

The following four special examples of Eq(2.1)

xn+1 =
1
xn

, n = 0, 1, . . . (2.16)

xn+1 =
1

xn−1
, n = 0, 1, . . . (2.17)

xn+1 =
1 + xn

xn−1
, n = 0, 1, . . . (2.18)

xn+1 =
xn

xn−1
, n = 0, 1, . . . (2.19)

are remarkable in the sense that all positive solutions of each of these four nontrivial
equations are periodic with periods 2, 4, 5, and 6 respectively.

The following result characterizes all possible special cases of equations of the form
of Eq(2.1) with the property that every solution of the equation is periodic with the
same period. (See also [75], [73], and [74].)

Theorem 2.4.1 Let p ≥ 2 be a positive integer and assume that every positive solution
of Eq(2.1) is periodic with period p. Then the following statements are true:

(i) Assume C > 0. Then A = B = γ = 0.

(ii) Assume C = 0. Then γ(α + β) = 0.
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Proof. Consider the solution with

x−1 = 1 and x0 ∈ (0,∞).

Then clearly
x0 = xp and xp−1 = x−1 = 1

and so from Eq(2.1)

xp =
α + β + γxp−2

A + B + Cxp−2
= x0.

Hence
(A + B)x0 + (Cx0 − γ)xp−2 = α + β. (2.20)

(i) Assume that C > 0. Then we claim that

A = B = 0. (2.21)

Otherwise A + B > 0 and by choosing

x0 > max
{

α + β
A + B

,
γ
C

}

we see that (2.20) is impossible. Hence (2.21) holds. In addition to (2.21) we now
claim that also

γ = 0. (2.22)

Otherwise γ > 0 and by choosing

x0 < min
{

α + β
A + B

,
γ
C

}

we see that (2.20) is impossible. Thus (2.22) holds .

(ii) Assume C = 0 and, for the sake of contradiction, assume that

γ(α + β) > 0.

Then by choosing x0 sufficiently small, we see that (2.20) is impossible.

The proof is complete. 2

Corollary 2.4.1 Let p ∈ {2, 3, 4, 5, 6}. Assume that every positive solution of Eq(2.1)
is periodic with period p. Then up to a change of variables of the form

xn = λyn

Eq(2.1) reduces to one of the equations (2.16)-(2.19) .
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2.5 Existence of Prime Period-Two Solutions

In this section we give necessary and sufficient conditions for Eq(2.1) to have a prime
period-two solution and we exhibit all prime period-two solutions of the equation. (See
[50].)

Furthermore we are interested in conditions under which every solution of Eq(2.1)
converges to a period-two solution in a nontrivial way according to the following con-
vention.

Convention Throughout this book when we say that “every solution of a certain
difference equation converges to a periodic solution with period p” we mean that every
solution converges to a, not necessarily prime, solution with period p and furthermore
the set of solutions of the equation with prime period p is nonempty.

Assume that
. . . , φ, ψ, φ, ψ, . . .

is a prime period-two solution of Eq(2.1). Then

φ =
α + βψ + γφ
A + Bψ + Cφ

and
ψ =

α + βφ + γψ
A + Bφ + Cψ

from which we find that
C(φ + ψ) = γ − β − A (2.23)

and when
C > 0 (2.24)

we also find that

(B − C)φψ =
αC + β(γ − β − A)

C
. (2.25)

One can show that when
C = 0 and B > 0 (2.26)

Eq(2.1) has a prime period-two solution if and only if

γ = β + A. (2.27)

Furthermore when (2.26) and (2.27) hold

. . . , φ, ψ, φ, ψ, . . .

is a prime period-two solution of Eq(2.1) if and only if

α + β(φ + ψ) = Bφψ with φ, ψ ∈ [0,∞) and φ 6= ψ
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or equivalently

φ >
β
B

, φ 6= β +
√

β2 + αB
B

, and ψ =
α + βφ
−β + Bφ

. (2.28)

Next assume that (2.24) holds and that Eq(2.1) possesses a prime period-two solution

. . . , φ, ψ, φ, ψ, . . . .

Then it follows from (2.23) and (2.25) that one of the following three conditions must
be satisfied:

B 6= C,α = β = 0, and φψ = 0; (2.29)
γ > β + A and B = C,α = β = 0, and φψ ≥ 0; (2.30)

B > C,α + β > 0, and φψ > 0. (2.31)

When (2.29) holds, the two cycle is

. . . , 0,
γ − A

C
, 0,

γ − A
C

, . . . .

When (2.30) holds, the two cycle is

. . . , φ,
γ − A

C
− φ, φ,

γ − A
C

− φ, . . . with 0 ≤ φ <
γ − A

C
.

Finally when (2.31) holds, the values φ and ψ of the two cycle are given by the two roots
of the quadratic equation

t2 − γ − β − A
C

t +
αC + β(γ − β − A)

C(B − C)
= 0

and we should also require that the discriminant of this quadratic equation be positive.
That is,

α <
(γ − β − A)[B(γ − β − A)− C(γ + 3β − A)]

4C2 . (2.32)

2.6 Local Asymptotic Stability of a Two Cycle

Let
. . . , φ, ψ, φ, ψ, . . .

be a two cycle of the difference equation (2.1).
Set

un = xn−1 and vn = xn for n = 0, 1, . . .
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and write Eq(2.1) in the equivalent form:

un+1 = vn

vn+1 = α+βvn+γun
A+Bvn+Cun

, n = 0, 1, . . . .

Let T be the function on [0,∞)× [0,∞) defined by:

T
(

u
v

)

=
(

v
βv+γu+α
Bv+Cu+A

)

.

Then
(

φ
ψ

)

is a fixed point of T 2, the second iterate of T . Furthermore

T 2

(

u
v

)

=
(

g(u, v)
h(u, v)

)

where

g(u, v) =
α + βv + γu
A + Bv + Cu

and h(u, v) =
α + β α+βv+γu

A+Bv+Cu + γv

A + B α+βv+γu
A+Bv+Cu + Cv

.

The two cycle is locally asymptotically stable if the eigenvalues of the Jacobian matrix

JT 2 , evaluated at
(

φ
ψ

)

lie inside the unit disk.

By definition

JT 2

(

φ
ψ

)

=







∂g
∂u(φ, ψ) ∂g

∂v (φ, ψ)

∂h
∂u(φ, ψ) ∂h

∂v (φ, ψ)





 .

By computing the partial derivatives of g and h and by using the fact that

φ =
α + βψ + γφ
A + Bψ + Cφ

and ψ =
α + βφ + γψ
A + Bφ + Cψ

we find the following identities:

∂g
∂u

(φ, ψ) =
(γA− αC) + (γB − βC)ψ

(A + Bψ + Cφ)2 ,

∂g
∂v

(φ, ψ) =
(βA− αB)− (γB − βC)φ

(A + Bψ + Cφ)2 ,

∂h
∂u

(φ, ψ) =
[(βA− αB)− (γB − βC)ψ][(γA− αC) + (γB − βC)ψ]

(A + Bφ + Cψ)2(A + Bψ + Cφ)2 ,
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∂h
∂v

(φ, ψ) =
[(βA− αB)− (γB − βC)ψ][(βA− αB)− (γB − βC)φ]

(A + Bφ + Cψ)2(A + Bψ + Cφ)2

+
(γA− αC) + (γB − βC)φ

(A + Bφ + Cψ)2 .

Set

S =
∂g
∂u

(φ, ψ) +
∂h
∂v

(φ, ψ)

and

D =
∂g
∂u

(φ, ψ)
∂h
∂v

(φ, ψ)− ∂g
∂v

(φ, ψ)
∂h
∂u

(φ, ψ).

Then it follows from Theorem 1.1.1 (c) that both eigenvalues of JT 2

(

φ
ψ

)

lie inside the

unit disk |λ| < 1, if and only if

|S| < 1 +D and D < 1.

See Sections 6.6, 6.9, and 7.4 for some applications.

Definition 2.6.1 (Basin of Attraction of a Two Cycle)
Let

. . . , φ, ψ, φ, ψ, . . .

be a two cycle of Eq(2.1). The basin of attraction of this two cycle is the set B of all
initial conditions (x−1, x0) through which the solution of Eq(2.1) converges to the two
cycle.

2.7 Convergence to Period-Two Solutions When
C = 0

In this section we consider the equation

xn+1 =
α + βxn + γxn−1

A + Bxn
, n = 0, 1, . . . (2.33)

where
α, β, γ, A, B ∈ [0,∞) with α + β + γ,A + B ∈ (0,∞)

and nonnegative initial conditions and obtain a signum invariant for its solutions which
will be used in the sequel (See Sections 4.7, 6.5, 6.7, and 10.2) to obtain conditions on
α, β, γ, A and B so that every solution of Eq(2.33) converges to a period-two solution.
That is, every solution converges to a (not necessarily prime) period-two solution and
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there exist prime period-two solutions. (See also Section 10.2 where we present the
complete character of solutions of Eq(2.33).)

Now before we see that when B > 0 every solution of Eq(2.33) converges to a period-
two solution if and only if (2.27) holds, we need the following result, the proof of which
follows by straightforward computations.

Lemma 2.7.1 Assume that (2.27) holds, and let {xn}∞n=−1 be a solution of Eq(2.33).
Set

Jn = α + β(xn−1 + xn)−Bxn−1xn for n ≥ 0. (2.34)

Then the following statements are true:

(a)

Jn+1 =
β + A

A + Bxn
Jn for n ≥ 0.

In particular, the sign of the quantity Jn is constant along each solution.

(b)

xn+1 − xn−1 =
Jn

A + Bxn
for n ≥ 0.

In particular, one and only one of the following three statements is true for each solution
of Eq(2.33):

(i)
xn+1 − xn−1 = 0 for all n ≥ 0;

(ii)
xn+1 − xn−1 < 0 for all n ≥ 0;

(iii)
xn+1 − xn−1 > 0 for all n ≥ 0.

Clearly (i) holds, if and only if, (β + A)J0 = 0. In this case, the solution {xn} is
periodic with period-two.

Statement (ii) holds if and only if J0 < 0 and β+A > 0. In this case the subsequences
{x2n}∞n=0 and {x2n−1}∞n=0 of the solution {xn}∞n=0 are both decreasing to finite limits and
so in this case the solution converges to a period-two solution.

Finally (iii) holds, if and only if J0 > 0 and β +A > 0. In this case the subsequences
{x2n}∞n=0 and {x2n−1}∞n=0 of the solution {xn}∞n=0 are both increasing and so if we can
show that they are bounded, the solution would converge to a period-two solution.

Now observe that

xn+1 − xn−1 =
β + A

A + Bxn
(xn − xn−2) for n ≥ 1
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and so

xn+1 − xn−1 = (x1 − x−1)
n

∏

k=1

β + A
A + Bxk

. (2.35)

We will now employ (2.35) to show that the subsequences of even and odd terms of
the solution are bounded. We will give the details for the subsequence of even terms.
The proof for the subsequence of odd terms is similar and will be omitted. To this end
assume, for the sake of contradiction, that the subsequence of even terms increases to
∞. Then there exists N ≥ 0 such that

ρ =
A + β

A + Bx2N+1

A + β
A + Bx2N

< 1.

Clearly for all n > N ,

A + β
A + Bx2n+1

A + β
A + Bx2n

<
A + β

A + Bx2N+1

A + β
A + Bx2N

= ρ.

Set
K = |x2N − x2N−2|.

Then
|x2N+2 − x2N | =

A + β
A + Bx2N+1

A + β
A + Bx2N

|x2N − x2N−2| < Kρ

|x2N+4 − x2N+2| =
A + β

A + Bx2N+3

A + β
A + Bx2N+2

|x2N+2 − x2N | < Kρ2

and by induction

|x2N+2m − x2N+2(m−1)| < Kρm for m = 1, 2, . . . .

But then
x2N+2m ≤ |x2N+2m − x2N+2m−2|+ . . . + |x2N+2 − x2N |+ x2N

≤ K
m

∑

i=1
ρi + x2N <

Kρ
1− ρ

+ x2N

which contradicts the hypothesis that the subsequence of even terms is unbounded.
In summary we have established the following result.

Theorem 2.7.1 Assume B > 0. Then the following statements hold:

(a) Eq(2.33) has a prime period-two solution if and only if (2.27) holds.

(b) When (2.27) holds all prime period-two solutions

. . . , φ, ψ, φ, ψ, . . .

of Eq(2.33) are given by (2.28).

(c) When (2.27) holds every solution of Eq(2.33) converges to a period-two solution.
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2.8 Invariant Intervals

An invariant interval for Eq(2.1) is an interval I with the property that if two con-
secutive terms of the solution fall in I then all the subsequent terms of the solution also
belong to I. In other words I is an invariant interval for the difference equation

xn+1 = f(xn, xn−1), n = 0, 1, . . . (2.36)

if xN−1, xN ∈ I for some N ≥ 0, then xn ∈ I for every n > N .
Invariant intervals for Eq(2.36) are determined from the intervals where the function

f(x, y) is monotonic in its arguments.
For Eq(2.1) the partial derivatives are given by (2.9) and (2.10) and are

fx(x, y) =
L + My

(A + Bx + Cy)2 and fy(x, y) =
N −Mx

(A + Bx + Cy)2 ,

where
L = βA− αB, M = βC − γB, and N = γA− αC.

The following table gives the signs of fx and fy in all possible nondegenerate cases.

Case L M N Signs of derivatives fx and fy

1 + + +
fx > 0
fy > 0 if x < N

M ; fy < 0 if x > N
M

2 + + 0 fx > 0 and fy < 0
3 + + − fx > 0 and fy < 0
4 + 0 + fx > 0 and fy > 0
5 + 0 0 fx > 0 and fy = 0

6 + − +
fx > 0 if y < − L

M ; fx < 0 if y > − L
M

fy > 0
7 0 + 0 fx > 0 and fy < 0
8 0 + − fx > 0 and fy < 0
9 0 − + fx < 0 and fy > 0
10 0 − 0 fx < 0 and fy > 0

11 − + − fx > 0 if y > − L
M ; fx < 0 if y < − L

M
fy < 0

12 − 0 0 fx < 0 and fy = 0
13 − 0 − fx < 0 and fy < 0
14 − − + fx < 0 and fy > 0
15 − − 0 fx < 0 and fy > 0

16 − − − fx < 0
fy > 0 if x > N

M ; fy < 0 if x < N
M

Using this table, we obtain the following table of invariant intervals for Eq(2.1).
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Case Invariant intervals

1

[0, N
M ] if αM+(β+γ)N

AM+(B+C)N < N
M

[ N
M , (β−A)M−CN+

√
((β−A)M−NC)2+4BM(αM+γN)

2BM ] if αM+(β+γ)N
AM+(B+C)N > N

M and B > 0
[ N
M , αM+γN

(A−β)M+CN ] if B = 0 and (A− β)M + CN > 0

2 [0, β−A+
√

(β−A)2+4Bα
2B ] if B > 0

[0, α
A−β ] if B = 0, α > 0 and A > β

3 [0, β−A+
√

(β−A)2+4Bα
2B ] if B > 0

[0, α
A−β ] if B = 0, α > 0 and A > β

4 [0, β+γ−A+
√

(β+γ−A)2+4α(B+C)
2(B+C) ] if B + C > 0

5 [ α
A , β−A+

√
(β−A)2+4αB
2B ] if B > 0

[ α
A , α

A−β ] if B = 0 and A > β

6

[0,− L
M ] if αM−(β+γ)L

AM−(B+C)L < − L
M

[− L
M , (A−γ)M−BL+

√
((A−γ)M−BL)2+4CM(αM−βL)

−2CM ] if C 6= 0 and βMK+αM−γL
BMK+AM−CL > − L

M
[− L

M , βL−αM
(γ−A)M+BL ] if C = 0, (γ −A)M + BL > 0 and −(βM + BL)K ≥ αM + AL

7
[ γ
C , β

B ] if B > 0
[ γ
C , γ2

C(γ−β) ] if B = 0 and β < γ

8
[0, β

B ] if B 6= 0
[ γ
C , αC+γ2

γ−βC ] if B = 0 and γ > βC

9
[0, γ

C ] if C > 0
[k, K] if C = 0 where k and K satisfy α + βk + (γ −A)K ≤ BkK ≤ α + βK −Ak

10
[ β
B , γ

C ] if C > 0
[ β
B , β2

B(β−γ) ] if C = 0 and β > γ

11
[ αM−L(β+γ)
AM−L(B+C) ,−

L
M ] if αM−L(β+γ)

AM−L(B+C) < − L
M

[− L
M , (β−A)M+LC+

√
((β−A)M+LC)2+4BM(αM−γL)

2BM ] if αM−βL+γMK
AM−BL+CMK > − L

M

12
[α(A+β)
A2+Bα , α

A ] if A > 0
[ β
B , β

B + α
β ] if A = 0 and β > 0

13
[0, α

A ] if A > 0
[k, K] if A = 0 where k and K satisfy α+(β+γ)k

B+C ≤ kK ≤ α+(β+γ)K
B+C

14
[0, γ

C ] if C > 0
[k, K] if C = 0 where k and K satisfy α + βk + (γ −A)K ≤ BkK ≤ α + βK −Ak

15
[0, γ

C ] if C > 0
[ β
B , αB+β2

B(β−γ) ] if A = 0 and β > γ

16
[ αM+(β+γ)N
AM+(B+C)N , N

M ] if αM+(β+γ)N
AM+(B+C)N < N

M

[ N
M , (γ−A)M−BN+

√
((γ−A)M−BN)2+4BM(αM+βN)

2CM ] if αM+βK+γNM
AM+BK+CNM > N

M
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2.9 Open Problems and Conjectures

What is it that makes all solutions of a nonlinear difference equation periodic with the
same period?

For a linear equation, every solution is periodic with period p ≥ 2, if and only if
every root of the characteristic equation is a pth root of unity.

Open Problem 2.9.1 Assume that f ∈ C1[(0,∞) × (0,∞), (0,∞)] is such that every
positive solution of the equation

xn+1 = f(xn, xn−1), n = 0, 1, . . . (2.37)

is periodic with period p ≥ 2.
Is it true that the linearized equation about a positive equilibrium point of Eq(2.37)

has the property that every one of its solutions is also periodic with the same period p?

What is it that makes every positive solution of a difference equation converge to a
periodic solution with period p ≥ 2 ?

Open Problem 2.9.2 Let f ∈ C1[[0,∞) × [0,∞), [0,∞)] and let p ≥ 2 be an integer.
Find necessary and sufficient conditions so that every nonnegative solution of the differ-
ence equation (2.37) converges to a periodic solution with period p. In particular address
the case p = 2.

Open Problem 2.9.3 Let p ≥ 2 be an integer and assume that every positive solution
of Eq(2.1) with

α, β, γ, A,B, C ∈ [0,∞)

converges to a solution with period p . Is it true that

p ∈ {2, 4, 5, 6}?

Open Problem 2.9.4 It is known (see Sections 2.7, 4.7, 6.5, and 6.7) that every pos-
itive solution of each of the following three equations

xn+1 = 1 +
xn−1

xn
, n = 0, 1, . . . (2.38)

xn+1 =
1 + xn−1

1 + xn
, n = 0, 1, . . . (2.39)

xn+1 =
xn + 2xn−1

1 + xn
, n = 0, 1, . . . (2.40)
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converges to a solution with (not necessarily prime) period-two:

. . . , φ, ψ, φ, ψ, . . . . (2.41)

In each case, determine φ and ψ in terms of the initial conditions x−1 and x0.
Conversely, if (2.41) is a period-two solution of Eq(2.38) or Eq(2.39) or Eq(2.40), de-

termine all initial conditions (x−1, x0) ∈ (0,∞)×(0,∞) for which the solution {xn}∞n=−1
converges to the period-two solution (2.41).

Conjecture 2.9.1 Assume

α, β, γ, A,B, C ∈ (0,∞).

Show that every positive solution of Eq(2.1) is bounded.

Open Problem 2.9.5 Assume

α, β, γ, A, B ∈ (0,∞) and γ > β + A.

Determine the set of initial conditions x−1 and x0 for which the solution {xn}∞n=−1 of
Eq(2.33) is bounded.

(See Sections 2.7, 4.7, 6.5, 6.7, and 10.2.)

Conjecture 2.9.2 Assume

α, β, γ, A, B, C ∈ (0,∞)

and that Eq(2.1) has no period-two solution. Show that the positive equilibrium is globally
asymptotically stable.

Conjecture 2.9.3 Assume

α, β, γ, A, B, C ∈ (0,∞)

and that Eq(2.1) has a positive prime period-two solution. Show that the positive equi-
librium of Eq(2.1) is a saddle point.
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Open Problem 2.9.6 Assume

α, β, γ, A, B,C ∈ [0,∞).

Obtain necessary and sufficient conditions in terms of the coefficients so that every
positive solution of Eq(2.1) is bounded.

Conjecture 2.9.4 Assume that

α, β, γ, A,B, C ∈ [0,∞).

Show that Eq(2.1) cannot have a positive prime two cycle which attracts all positive
non-equilibrium solutions.

Open Problem 2.9.7 Assume f ∈ C[(0,∞), (0,∞)]. Obtain necessary and sufficient
conditions on f for every solution of the difference equation

xn+1 =
f(xn)
xn−1

, n = 0, 1, . . .

to be bounded.

(See Section 5.2).

Open Problem 2.9.8 Assume f ∈ C[(0,∞), (0,∞)]. Obtain necessary and sufficient
conditions on f for every positive solution of the equation

xn+1 = 1 +
f(xn−1)

xn
, n = 0, 1, . . .

to converge to a period-two solution.

(See Section 4.7).

Open Problem 2.9.9 Extend Theorem 2.7.1 to third order difference equations

xn+1 =
α + βxn + γxn−1 + δxn−2

A + Bxn−1 + Dxn−2
, n = 0, 1, . . .

with nonnegative parameters and nonnegative initial conditions such that

γ = β + δ + A.

What additional conditions should the parameters satisfy?
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Open Problem 2.9.10 Extend the linearized stability Theorem 1.1.1 to third order dif-
ference equations

xn+1 = f(xn, xn−1, xn−2), n = 0, 1, . . . . (2.42)

For the equation
λ3 + aλ2 + bλ + c = 0

one can see that all roots lie inside the unit disk |λ| < 1 if and only if

|a + c| < 1 + b
|a− 3c| < 3− b
b + c2 < 1 + ac











.

But how about necessary and sufficient conditions for the equilibrium of Eq(2.42) to
be a repeller, or a saddle point, or nonhyperbolic?

Extend these results to fourth order difference equation

xn+1 = f(xn, xn−1, xn−2, xn−3), n = 0, 1, . . . .



Chapter 3

(1, 1)-Type Equations

3.1 Introduction

Eq(1) contains the following nine equations of the (1, 1)-type:

xn+1 =
α
A

, n = 0, 1, . . . (3.1)

xn+1 =
α

Bxn
, n = 0, 1, . . . (3.2)

xn+1 =
α

Cxn−1
, n = 0, 1, . . . (3.3)

xn+1 =
βxn

A
, n = 0, 1, . . . (3.4)

xn+1 =
β
B

, n = 0, 1, . . . (3.5)

xn+1 =
βxn

Cxn−1
, n = 0, 1, . . . (3.6)

47
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xn+1 =
γxn−1

A
, n = 0, 1, . . . (3.7)

xn+1 =
γxn−1

Bxn
, n = 0, 1, . . . (3.8)

and

xn+1 =
γ
C

, n = 0, 1, . . . . (3.9)

Please recall our classification convention in which all parameters that appear in these
equations are positive, the initial conditions are nonnegative, and the denominators are
always positive.

Of these nine equations, Eqs(3.1), (3.5), and (3.9) are trivial. Eqs (3.4) and (3.7)
are linear difference equation. Every solution of Eq(3.2) is periodic with period two and
every solution of Eq(3.4) is periodic with period four. The remaining two equations,
namely, Eqs(3.6) and (3.8), are treated in the next two sections.

3.2 The Case α = γ = A = B = 0 : xn+1 = βxn
Cxn−1

This is the (1, 1)-type Eq(3.6) which by the change of variables

xn =
β
C

yn

reduces to the equation

yn+1 =
yn

yn−1
, n = 0, 1, . . . . (3.10)

It is easy to see that every positive solution of Eq(3.10) is periodic with period six.
Indeed the solution with initial conditions y−1 and y0 is the six-cycle:

y−1, y0,
y0

y−1
,

1
y−1

,
1
y0

,
y−1

y0
, . . . .

It is interesting to note that except for the equilibrium solution y = 1, every other
solution of Eq(3.10) has prime period six.
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Bxn
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3.3 The Case α = β = A = C = 0 : xn+1 = γxn−1
Bxn

This is the (1, 1)-type Eq(3.8) which by the change of variables

xn =
γ
B

eyn

reduces to the linear equation

yn+1 + yn − yn−1 = 0, n = 0, 1, . . . . (3.11)

The general solution of Eq(3.11) is

yn = C1

(

−1 +
√

5
2

)n

+ C2

(

−1−
√

5
2

)n

, n = 0, 1, . . .

from which the behavior of solutions is easily derived.

3.4 Open Problems and Conjectures

Of the nine equations in this chapter we would like to single out the two nonlinear
equations, (3.2) and (3.6), which possess the property that every positive nontrivial
solution of each of these two equations is periodic with the same prime period, namely
two and six, respectively. Eq(3.3) also has the property that every nontrivial positive
solution is periodic with prime period four but this equation is really a variant of Eq(3.2).
Also every solution of Eq(3.7) is periodic with period two but this is a linear equation.

Eq(3.2) is of the form

xn+1 = f(xn), n = 0, 1, . . . (3.12)

where
f ∈ C[(0,∞), (0,∞)], (3.13)

while Eq(3.6) is of the form

xn+1 = f(xn, xn−1), n = 0, 1, . . . (3.14)

where
f ∈ C[(0,∞)× (0,∞), (0,∞)]. (3.15)

What is it that makes every solution of a nonlinear difference equation periodic with the
same period? We believe this is a question of paramount importance and so we pose the
following open problems.
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Open Problem 3.4.1 Let k ≥ 2 be a positive integer and assume that (3.13) holds.
Obtain necessary and sufficient conditions on f so that every positive solution of Eq(3.12)
is periodic with period k.

Open Problem 3.4.2 Let k ≥ 2 be a positive integer and assume that (3.15) holds.
Obtain necessary and sufficient conditions on f so that every positive solution of Eq(3.14)
is periodic with period k. In particular address the cases

k = 4, 5, 6.

Open Problem 3.4.3 Let k be a positive integer and assume that

α, β, γ ∈ (−∞,∞).

Obtain necessary and sufficient conditions on α, β, γ so that every solution of the equa-
tion

xn+1 = α |xn|+ βxn−1 + γ, n = 0, 1, . . .

with real initial conditions is periodic with period k. In particular address the cases:

k = 5, 6, 7, 8, 9.

(See [10], [17], and [59].)

Conjecture 3.4.1 Let f ∈ C1[[0,∞), [0,∞)] be such that every positive nontrivial so-
lution of the difference equation

xn+1 =
f(xn)
xn−1

, n = 0, 1, . . . (3.16)

is periodic with prime period six. Show that

f(x) = x.

Conjecture 3.4.2 Let f ∈ C1[[0,∞), [0,∞)] be such that every positive nontrivial so-
lution of the difference equation (3.16) is periodic with prime period five. Show that

f(x) = 1 + x.
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Open Problem 3.4.4 Obtain necessary and sufficient conditions on f ∈ C[[0,∞), [0,∞)]
such that every positive nontrivial solution of the equation

xn+1 =
f(xn)
xn−1

, n = 0, 1, . . . (3.17)

is periodic with prime period three.

Open Problem 3.4.5 Let {pn}∞n=0 be a sequence of nonzero real numbers. In each of
the following cases investigate the asymptotic behavior of all positive solutions of the
difference equation

xn+1 =
pnxn

xn−1
, n = 0, 1, . . . . (3.18)

(i) {pn}∞n=0 converges to a finite limit;

(ii) {pn}∞n=0 converges to ±∞;

(iii) {pn}∞n=0 is periodic with prime period k ≥ 2.





Chapter 4

(1, 2)-Type Equations

4.1 Introduction

Eq(1) contains the following nine equations of the (1, 2)-type:

xn+1 =
α

A + Bxn
, n = 0, 1, . . . (4.1)

xn+1 =
α

A + Cxn−1
, n = 0, 1, . . . (4.2)

xn+1 =
α

Bxn + Cxn−1
, n = 0, 1, . . . (4.3)

xn+1 =
βxn

A + Bxn
, n = 0, 1, . . . (4.4)

xn+1 =
βxn

A + Cxn−1
, n = 0, 1, . . . (4.5)

xn+1 =
βxn

Bxn + Cxn−1
, n = 0, 1, . . . (4.6)

53
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xn+1 =
γxn−1

A + Bxn
, n = 0, 1, . . . (4.7)

xn+1 =
γxn−1

A + Cxn−1
, n = 0, 1, . . . (4.8)

and

xn+1 =
γxn−1

Bxn + Cxn−1
, n = 0, 1, . . . . (4.9)

Please recall our classification convention in which all parameters that appear in these
equations are positive, the initial conditions are nonnegative, and the denominators are
always positive.

Two of these equations, namely Eqs(4.1) and (4.4) are Riccati-type difference equa-
tions. (See Section 1.6 in the Preliminary Results). Also Eqs(4.2) and (4.8) are essen-
tially Riccati equations. Indeed if {xn} is a solution of Eq(4.2), then the subsequences
{x2n−1} and {x2n} satisfy the Riccati equation of the form of Eq(4.1). Similarly, if {xn}
is a solution of Eq(4.8), then the subsequences {x2n−1} and {x2n} satisfy the Riccati
equation

yn+1 =
γyn

A + Cyn
n = 0, 1, . . . .

It is also interesting to note that the change of variables

xn =
1
yn

reduces the Riccati equation (4.4) to the linear equation

yn+1 =
A
β

yn +
B
β

, n = 0, 1, . . .

from which the global behavior of solutions is easily derived.
In view of the above, Eqs(4.2), (4.4), and (4.8) will not be discussed any further in

this chapter.

4.2 The Case β = γ = C = 0 : xn+1 = α
A+Bxn

This is the (1, 2)-type Eq(4.1) which by the change of variables

xn =
A
B

yn
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reduces to the Riccati equation

yn+1 =
p

1 + yn
, n = 0, 1, . . . (4.10)

where
p =

αB
A2 .

The Riccati number associated with this equation (see Section 1.6) is

R = −p < 0

and so the following result is a consequence of Theorem 1.6.2.

Theorem 4.2.1 The positive equilibrium

y =
−1 +

√
1 + 4p

2

of Eq(4.10) is globally asymptotically stable.

4.3 The Case β = γ = A = 0 : xn+1 = α
Bxn+Cxn−1

This is the (1, 2)-type Eq(4.3) which by the change of variables

xn =
√

α
yn

(4.11)

is transformed to the difference equation

yn+1 =
B
yn

+
C

yn−1
, n = 0, 1, . . . . (4.12)

Eq(4.12) was investigated in [65]. (See also [12].)
We will first show that every solution of Eq(4.12) is bounded and then we will use

the method of “limiting solutions” to show that every solution of Eq(4.12) converges to
its equilibrium

√
B + C.

Theorem 4.3.1 Every solution of Eq(4.12) is bounded and persists.

Proof. It is easy to see that if a solution of Eq(4.12) is bounded from above then it is
also bounded from below and vice-versa. So if the theorem is false there should exist a
solution {yn}∞n=−1 which is neither bounded from above nor from below. That is,

lim sup
n→∞

yn = ∞ and lim inf
n→∞

yn = 0.
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Then clearly we can find indices i and j with 1 ≤ i < j such that

yi > yn > yj for all n ∈ {−1, . . . , j − 1}.

Hence
yj =

B
yj−1

+
C

yj−2
>

B + C
yi

and
yi =

B
yi−1

+
C

yi−2
≤ B + C

yj
.

That is ,
B + C < yiyj ≤ B + C

which is impossible. 2

Theorem 4.3.2 The equilibrium y =
√

B + C of Eq(4.12) is globally asymptotically
stable.

Proof. The linearized equation of Eq(4.12) about the equilibrium y =
√

B + C is

zn+1 = − B
B + C

zn −
C

B + C
zn−1, n = 0, 1, . . . . (4.13)

and by Theorem 1.1.1, y is locally asymptotically stable for all positive values of B and
C.

It remains to be shown that y is a global attractor of all solutions of Eq(4.12). To
this end, let {yn}∞n=−1 be a solution of Eq(4.12). Then by Theorem 4.3.1 , {yn}∞n=−1 is
bounded and persists. Therefore there exist positive numbers m and M such that

m ≤ yn ≤ M for n ≥ −1.

Let
I = lim inf

n→∞
yn and S = lim sup

n→∞
yn.

We will show that
I = S.

By the theory of limiting solutions (see Section 1.5) there exist two solutions {In}∞n=−3
and {Sn}∞n=−3 of the difference equation

yn+1 =
B
yn

+
C

yn−1
, n = −3,−2, . . .

with the following properties:
I0 = I, S0 = S
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and
In, Sn ∈ [I, S] for n ≥ −3.

Then
S =

B
S−1

+
C

S−2
≤ B + C

I
and

I =
B
I−1

+
C
I−2

≥ B + C
S

.

Hence
B + C = SI.

Thus
B

S−1
+

C
S−2

= S =
B + C

I
=

B
I

+
C
I

from which it follows that
S−1 = S−2 = I. (4.14)

Therefore
B
S

+
C
S

= I = S−1 =
B

S−2
+

C
S−3

from which it follows that
S = S−2. (4.15)

From (4.14) and (4.15) we conclude that

S = I

and the proof is complete. 2

4.4 The Case α = γ = B = 0 : xn+1 = βxn
A+Cxn−1

- Pielou’s
Equation

This is the (1, 2)-type Eq(4.5) which by the change of variables

xn =
A
C

yn,

reduces to Pielou’s difference equation

yn+1 =
pyn

1 + yn−1
, n = 0, 1, . . . (4.16)

where
p =

β
A

.
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This equation was proposed by Pielou in her books ([66], p.22) and ([67], p.79) as a
discrete analogue of the delay logistic equation

dN
dt

= rN(t)
(

1− N(t− τ)
P

)

, t ≥ 0

which is a prototype of modelling the dynamics of single-species.
Eq(4.16) was investigated in [55]. (See also ([42], p.75).)
When

p ≤ 1,

it follows from Eq(4.16) that every positive solution converges to 0.
Furthermore, 0 is locally asymptotically stable when p ≤ 1 and unstable when p > 1.
So the interesting case for Eq(4.16) is when

p > 1. (4.17)

In this case the zero equilibrium of Eq(4.16) is unstable and Eq(4.16) possesses the
unique positive equilibrium

y = p− 1,

which is locally asymptotically stable.
In fact by employing Theorem 1.4.2, it follows that when (4.17) holds, x is globally

asymptotically stable.
We summarize the above discussion in the following theorem.

Theorem 4.4.1 (a) Assume
p ≤ 1.

Then the zero equilibrium of Eq(4.16) is globally asymptotically stable.
(b) Assume y0 ∈ (0,∞) and

p > 1.

Then the positive equilibrium y = p− 1 of Eq(4.16) is globally asymptotically stable.

4.5 The Case α = γ = A = 0 : xn+1 = βxn
Bxn+Cxn−1

This is the (1, 2)-type Eq(4.6) which by the change of variables

xn =
β

B + Cyn
,

reduces to the difference equation

yn+1 =
p + yn

p + yn−1
, n = 0, 1, . . . (4.18)
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where
p =

B
C

.

Eq(4.18) was investigated in ([42] Corollary 3.4.1 (e), p. 73) where it was shown that
its equilibrium one is globally asymptotically stable .

4.6 The Case α = β = C = 0 : xn+1 = γxn−1
A+Bxn

This is the (1, 2)-type Eq(4.7) which by the change of variables

xn =
γ
B

yn,

reduces to the difference equation

yn+1 =
yn−1

p + yn
, n = 0, 1, . . . (4.19)

where
p =

A
γ
∈ (0,∞).

Eq(4.19) was investigated in [28].
The following local result is a straightforward application of the linearized stability

Theorem 1.1.1.

Lemma 4.6.1 (a) Assume
p > 1.

Then 0 is the only equilibrium point of Eq(4.19) and it is locally asymptotically stable.
(b) Assume

p < 1.

Then 0 and y = 1 − p are the only equilibrium points of Eq(4.19) and they are both
unstable. In fact, 0 is a repeller and y = 1− p is a saddle point equilibrium.

The oscillatory character of the solutions of Eq(4.19) is a consequence of Theorem
1.7.1. That is, except possibly for the first semicycle, every solution of Eq(4.19) has
semicycles of length one.

It follows directly from Eq(4.19) (see also Section 2.5) that

yn+1 <
1
p
yn−1 for n ≥ 0

and so when
p > 1
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the zero equilibrium of Eq(4.19) is globally asymptotically stable. On the other hand
when

p = 1,

yn+1 < yn−1 for n ≥ 0

and so every positive solution of Eq(4.19) converges to a period-two solution

. . . , φ, ψ, φ, ψ, . . . .

Furthermore we can see that
φψ = 0

but whether there exists solutions with

φ = ψ = 0

remains an open question.
Finally when

p < 1

by invoking the stable manifold theory one can see that there exist nonoscillatory solu-
tions which converge monotonically to the positive equilibrium 1−p. It follows from the
identity

yn+1 − yn−1 =
(1− p)− yn

p + yn
yn−1, n = 0, 1, . . .

that every oscillatory solution is such that the subsequences of even and odd terms
converge monotonically one to ∞ and the other to 0.

4.7 The Case α = β = A = 0 : xn+1 = γxn−1
Bxn+Cxn−1

This is the (1, 2)-type Eq(4.9) which by the change of variables

xn =
γ

Byn

reduces to the difference equation

yn+1 = p +
yn−1

yn
, n = 0, 1, . . . (4.20)

where
p =

C
B
∈ (0,∞).

This equation was investigated in [7] where it was shown that the following statements
are true:
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(i) p ≥ 1 is a necessary and sufficient condition for every solution of Eq(4.20) to be
bounded;

(ii) When p = 1, every solution of Eq(4.20) converges to a period-two solution;
(iii) When p > 1, the equilibrium y = p + 1 of Eq(4.20) is globally asymptotically

stable.
We now proceed to establish the above results.
Clearly the only equilibrium point of Eq(4.20) is y = p + 1.
The linearized equation of Eq(4.20) about the equilibrium point y = p + 1 is

zn+1 +
1

p + 1
zn −

1
p + 1

zn−1 = 0, n = 0, 1, . . . . (4.21)

As a simple consequence of the linearized stability Theorem 1.1.1 we obtain the following
result:

Theorem 4.7.1 The equilibrium point y = p + 1 of Eq(4.20) is locally asymptotically
stable when p > 1 and is an unstable saddle point when p < 1.

The next result about semicycles is an immediate consequence of some straightfor-
ward arguments and Theorem 1.7.1.

Theorem 4.7.2 (a) Let {yn}∞n=−1 be a solution of Eq(4.20) which consists of at least
two semicycles. Then {yn}∞n=−1 is oscillatory. Moreover, with the possible excep-
tion of the first semicycle, every semicycle has length one.

(b) Let {yn}∞n=−1 be a solution of Eq(4.20) which consists of a single semicycle. Then
{yn}∞n=−1 converges monotonically to y = p + 1.

4.7.1 The Case p < 1

Here we show that there exist solutions of Eq(4.20) which are unbounded. In fact the
following result is true.

Theorem 4.7.3 Let p < 1, and let {yn}∞n=−1 be a solution of Eq(4.20) such that 0 <
y−1 ≤ 1 and y0 ≥ 1

1−p . Then the following statements are true:

1. lim
n→∞

y2n = ∞.

2. lim
n→∞

y2n+1 = p.

Proof. Note that 1
1−p > p + 1, and so y0 > p + 1. It suffices to show that

y1 ∈ (p, 1] and y2 ≥ p + y0

and use induction to complete the proof.
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Indeed y1 = p + y1
y0

> p. Also,

y1 = p +
y−1

y0
≤ p +

1
y0
≤ 1,

and so y1 ∈ (p, 1]. Hence y2 = p + y0
y1
≥ p + y0. 2

4.7.2 The Case p = 1

The following result follows from Lemma 2.7.1 and some straightforward arguments. See
also Section 2.5.

Theorem 4.7.4 Let p = 1, and let {yn}∞n=−1 be a solution of Eq(4.20). Then the
following statements are true.

(a) Suppose {yn}∞n=−1 consists of a single semicycle. Then {yn}∞n=−1 converges mono-
tonically to y = 2.

(b) Suppose {yn}∞n=−1 consists of at least two semicycles. Then {yn}∞n=−1 converges to
a prime period-two solution of Eq(4.20).

(c) Every solution of Eq(4.20) converges to a period-two solution if and only if p = 1.

4.7.3 The Case p > 1

Here we show that the equilibrium point y = p+1 of Eq(4.20) is globally asymptotically
stable. The following result will be useful.

Lemma 4.7.1 Let p > 1, and let {yn}∞n=−1 be a solution of Eq(4.20). Then

p +
p− 1

p
≤ lim inf

n→∞
yn ≤ lim sup

n→∞
yn ≤

p2

p− 1
.

Proof. It follows from Theorem 4.7.2 that we may assume that every semicycle of
{yn}∞n=−1 has length one, that p < yn for all n ≥ −1, and that p < y0 < p + 1 < y−1.

We shall first show that lim supn→∞ yn ≤ p2

p−1 . Note that for n ≥ 0,

y2n+1 < p +
y2n−1

p
.

So as every solution of the difference equation

ym+1 = p +
1
p
ym, m = 0, 1, . . .
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converges to p2

p−1 , it follows that lim supn→∞ yn ≤ p2

p−1 .
We shall next show that p + p−1

p ≤ lim infn→∞ yn. Let ε > 0. There clearly exists
N ≥ 0 such that for all n ≥ N ,

y2n−1 <
p2 + ε
p− 1

.

Let n ≥ N . Then

y2n = p +
y2n−2

y2n−1
> p + p

p− 1
p2 + ε

=
p3 + pε + p(p− 1)

p2 + ε
.

So as ε is arbitrary, we have

lim inf
n→∞

yn ≥
p3 + p(p− 1)

p2 = p +
p− 1

p
.

2

We are now ready for the following result.

Theorem 4.7.5 Let p > 1. Then the equilibrium y = p + 1 is globally asymptotically
stable.

Proof. We know by Theorem 4.7.1 that y = p + 1 is a locally asymptotically stable
equilibrium point of Eq(4.20). So let {yn}∞n=−1 be a solution of Eq(4.20). It suffices to
show that

lim
n→∞

yn = p + 1.

For x, y ∈ (0,∞), set
f(x, y) = p +

y
x
.

Then f ∈ C[(0,∞)× (0,∞), (0,∞)] , f is decreasing in x ∈ (0,∞) for each y ∈ (0,∞),
and f is increasing in y ∈ (0,∞) for each x ∈ (0,∞). Recall that by Theorem 4.7.4,
there exist no solutions of Eq(4.20) with prime period two. Let ε > 0, and set

a = p and b =
p2 + ε
p− 1

.

Note that

f
(

p2 + ε
p− 1

, p
)

= p + p
p− 1
p2 + ε

> p

and

f
(

p,
p2 + ε
p− 1

)

=
p3 + εp
p2 − p

=
p2 + ε
p− 1

.

Hence

p < f(x, y) <
p2 + ε
p− 1

for all x, y ∈
[

p,
p2 + ε
p− 1

]

.
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Finally note that by Lemma 4.7.1,

p < p +
p− 1

p
≤ lim inf

n→∞
yn ≤ lim sup

n→∞
yn ≤

p2

p− 1
<

p2 + ε
p− 1

and so by Theorem 1.4.6,
lim

n→∞
yn = p + 1.

2

4.8 Open Problems and Conjectures

Conjecture 4.8.1 Consider the difference equation

xn+1 =
A

xn−k
+

B
xn−l

, n = 0, 1, . . . (4.22)

where
A,B ∈ (0,∞) and k, l ∈ {0, 1, . . .} with k < l.

and where the initial conditions x−l, . . . , x0 are arbitrary positive real numbers.
Show that every solution of Eq(4.22) converges, either to the equilibrium or to a

periodic solution with period p ≥ 2 and that what happens and the exact value of p are
uniquely determined from the characteristic roots of the linearized equation

λl+1 +
A

A + B
λl−k +

B
A + B

= 0.

(See [19], [23], [25], [60], and [61].)

Open Problem 4.8.1 Let
. . . , φ1, φ2, . . . , φp, . . .

be a given prime period p solution of Eq(4.22). Determine the set of all positive initial
conditions x−l, . . . , x0 such that {xn}∞n=−l converges to this periodic solution.

Open Problem 4.8.2 (see [18]) Assume that A,B ∈ (0,∞).
(a) Find all initial conditions y−1, y0 with

y−1y0 < 0

for which the equation

yn+1 =
A
yn

+
B

yn−1
, (4.23)

is well defined for all n ≥ 0.
(b) Assume that the initial conditions y−1, y0 are such that y−1y0 < 0 and such that

Eq(4.23) is well defined for all n ≥ 0. Investigate the global behavior of the solution
{yn}. Is it bounded? Does limn→∞ yn exist? When does {yn} converge to a two cycle?
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Conjecture 4.8.2 Assume that p = 1. Show that Eq(4.19) has a solution which con-
verges to zero.

Open Problem 4.8.3 Assume that p < 1. Determine the set of initial conditions

y−1, y0 ∈ (0,∞)

for which the solution {yn}∞n=−1 of Eq(4.19) is bounded.

Open Problem 4.8.4 Determine the set G of all initial conditions (y−1, y0) ∈ R × R
through which the equation

yn+1 =
yn−1

1 + yn

is well defined for all n ≥ 0 and, for these initial points, investigate the global character
of {yn}∞n=−1.

Conjecture 4.8.3 Show that Eq(4.20) possesses a solution {yn}∞n=−1 which remains
above the equilibrium for all n ≥ −1.

Open Problem 4.8.5 (a) Assume p ∈ (0,∞). Determine all initial conditions y−1, y0 ∈
R such that the equation (4.20) is well defined for all n ≥ 0.

(b) Let y−1, y0 ∈ R be such that Eq(4.20) is well defined for all n ≥ 0. For such an
initial point, investigate the boundedness, the asymptotic behavior, and the periodic
nature of the solution {yn}∞n=−1 of Eq(4.20).

(c) Discuss (a) and (b) when p < 0.

Open Problem 4.8.6 (See [13]) Find the set G of all initial points (x−1, x0) ∈ R × R
through which the equation

xn+1 = −1 +
xn−1

xn
(4.24)

is well defined for all n ≥ 0.

Conjecture 4.8.4 Assume that (x−1, x0) ∈ R × R is such that the equation (4.24) is
well defined for all n ≥ 0 and bounded. Show that {xn}∞n=−1 is a three cycle.
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Open Problem 4.8.7 Let f ∈ C[(0,∞), (0,∞)]. Obtain necessary and sufficient con-
ditions on f for every positive solution of the equation

xn+1 =
f(xn)

xn + xn−1
, n = 0, 1, . . .

to be bounded.

Open Problem 4.8.8 Let a, ai ∈ (0,∞) for i = 0, . . . , k. Investigate the global asymp-
totic stability of the equilibrium points of the difference equation

xn+1 =
xn

a + a0xn + . . . + akxn−k
, n = 0, 1, . . .

with positive initial conditions.

Conjecture 4.8.5 (See [27]) Assume r ∈ (0,∞). Show that every positive solution of
the population model

Jn+1 = Jn−1er−(Jn+Jn−1), n = 0, 1, . . .

converges to a period-two solution.

Conjecture 4.8.6 (Pielou’s Discrete Logistic Model; see [55], [66], and [67].) As-
sume

α ∈ (1,∞) and k ∈ {0, 1, . . .}.
Show that the positive equilibrium of Pielou’s discrete logistic model

xn+1 =
αxn

1 + xn−k
, n = 0, 1, . . .

with positive initial conditions is globally asymptotically stable if and only if

α− 1
α

< 2 cos
kπ

2k + 1
.

Open Problem 4.8.9 (See [5]) For which initial values x−1, x0 ∈ (0,∞) does the se-
quence defined by

xn+1 = 1 +
xn−1

xn
, n = 0, 1, . . .

converges to two?
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(See also Section 4.7)

Open Problem 4.8.10 (See [31]) Consider the difference equation

yn+1 = yn−1e−yn , n = 0, 1, . . . (4.25)

with nonnegative initial conditions.
One can easily see that every solution {yn}∞n=−1 of Eq(4.25) converges to a period-two

solution
. . . , `, 0, `, 0, . . . .

More precisely, each of the subsequences {y2n}∞n=0 and {y2n+1}∞n=−1 is decreasing and

[ lim
n→∞

y2n][ lim
n→∞

y2n+1] = 0.

(a) Find all initial points y−1, y0 ∈ [0,∞) through which the solutions of Eq(4.25)
converge to zero. In other words, find the basin of attraction of the equilibrium of
Eq(4.25).

(b) Determine the limits of the subsequences of even and odd terms of every solution
of Eq(4.25), in terms of the initial conditions y−1 and y0 of the solution.

Open Problem 4.8.11 Assume p ∈ (0, 1).

(a) Find the set B of all initial conditions y−1, y0 ∈ (0,∞) such that the solutions
{yn}∞n=−1 of Eq(4.20) are bounded.

(b) Let y−1, y0 ∈ B. Investigate the asymptotic behavior of {yn}∞n=−1.

Open Problem 4.8.12 Let {pn}∞n=0 be a convergent sequence of nonnegative real num-
bers with a finite limit,

p = lim
n→∞

pn.

Investigate the asymptotic behavior and the periodic nature of all positive solutions of
each of the following difference equations:

yn+1 =
pn

yn
+

1
yn−1

, n = 0, 1, . . . (4.26)

yn+1 =
pnyn

1 + yn−1
, n = 0, 1, . . . (4.27)
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yn+1 =
pn + yn

pn + yn−1
, n = 0, 1, . . . (4.28)

yn+1 =
yn−1

pn + yn
, n = 0, 1, . . . (4.29)

yn+1 = pn +
yn−1

yn
, n = 0, 1, . . . . (4.30)

Open Problem 4.8.13 Let {pn}∞n=0 be a periodic sequence of nonnegative real numbers
with period k ≥ 2. Investigate the global character of all positive solutions of each of
Eqs(4.26) - (4.30).

Open Problem 4.8.14 For each of the following difference equations determine the
“good” set G ⊂ R × R of all initial conditions (y−1, y0) ∈ R × R through which the
equation is well defined for all n ≥ 0. Then for every (y−1, y0) ∈ G, investigate the long
term behavior of the solution {yn}∞n=−1 :

yn+1 =
yn

1− yn−1
, (4.31)

yn+1 =
1 + yn

1− yn−1
, (4.32)

yn+1 =
yn−1

1− yn
, (4.33)

yn+1 = −1 +
yn−1

yn
. (4.34)

For those equations from the above list for which you were successful, extend your result
by introducing arbitrary real parameters in the equation.



Chapter 5

(2, 1)-Type Equations

5.1 Introduction

Eq(1) contains the following nine equations of the (2, 1)-type:

xn+1 =
α + βxn

A
, n = 0, 1, . . . (5.1)

xn+1 =
α + βxn

Bxn
, n = 0, 1, . . . (5.2)

xn+1 =
α + βxn

Cxn−1
, n = 0, 1, . . . (5.3)

xn+1 =
α + γxn−1

A
, n = 0, 1, . . . (5.4)

xn+1 =
α + γxn−1

Bxn
, n = 0, 1, . . . (5.5)

xn+1 =
α + γxn−1

Cxn−1
, n = 0, 1, . . . (5.6)

69
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xn+1 =
βxn + γxn−1

A
, n = 0, 1, . . . (5.7)

xn+1 =
βxn + γxn−1

Bxn
, n = 0, 1, . . . (5.8)

and

xn+1 =
βxn + γxn−1

Cxn−1
, n = 0, 1, . . . . (5.9)

Please recall our classification convention in which all parameters that appear in these
equations are positive, the initial conditions are nonnegative, and the denominators are
always positive.

Of these nine equations, Eqs(5.1), (5.4) and (5.7) are linear. Eq(5.2) is a Riccati
equation and Eq(5.6) is essentially like Eq(5.2).

The change of variables

xn =
γ
B

yn,

reduces Eq(5.8) to Eq(4.20) with p = β
γ , which was investigated in Section 4.7.

Finally the change of variables

xn =
γ
C

+
β
C

yn,

reduces Eq(5.9) to Eq(4.18) with p = γ
β , which was investigated in Section 4.5.

Therefore there remain Eqs(5.3) and (5.5), which will be investigated in the next two
sections.

5.2 The Case γ = A = B = 0 : xn+1 = α+βxn
Cxn−1

- Lyness’
Equation

This is the (2, 1)-type Eq(5.3) which by the change of variables reduces to the equation

yn+1 =
p + yn

yn−1
, n = 0, 1, . . . (5.10)
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where

p =
αC
β2 .

The special case of Eq(5.10) where

p = 1

was discovered by Lyness in 1942 while he was working on a problem in Number Theory.
(See ([42], p. 131) for the history of the problem.) In this special case, the equation
becomes

yn+1 =
1 + yn

yn−1
, n = 0, 1, . . . (5.11)

every solution of which is periodic with period five. Indeed the solution of Eq(5.11) with
initial conditions y−1 and y0 is the five-cycle:

y−1, y0,
1 + y0

y−1
,
1 + y−1 + y0

y−1y0
,
1 + y−1

y0
, . . . .

Eq(5.10) possesses the invariant

In = (p + yn−1 + yn)
(

1 +
1

yn−1

) (

1 +
1
yn

)

= constant (5.12)

from which it follows that every solution of Eq(5.10) is bounded from above and from
below by positive constants.

It was shown in [30] that no nontrivial solution of Eq(5.10) has a limit.
It was also shown in [44] by using KAM theory that the positive equilibrium y of

Eq(5.10) is stable but not asymptotically stable. This result was also established in [49]
by using a Lyapunov function.

Concerning the semicycles of solutions of Eq(5.10) the following result was established
in [43]:

Theorem 5.2.1 Assume that p > 0. Then the following statements about the positive
solutions of Eq(5.10) are true:

(a) The absolute extreme in a semicycle occurs in the first or in the second term.

(b) Every nontrivial semicycle, after the first one, contains at least two and at most
three terms.

There is substantial literature on Lyness’ Equation. See [11], [42], [43], [57]-[59], [71],
and [72] and the references cited therein.
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5.3 The Case β = A = C = 0 : xn+1 = α+γxn−1
Bxn

This is the (2, 1)-type Eq(5.5) which by the change of variables

xn =
γ
B

yn

reduces to the equation

yn+1 =
p + yn−1

yn
, n = 0, 1, . . . (5.13)

where
p =

αB
γ2 .

Eq(5.13) was investigated in [28].
By the linearized stability Theorem 1.1.1 one can see that the unique equilibrium

point

y =
1 +

√
1 + 4p
2

of Eq(5.13) is a saddle point.
By Theorem 1.7.1 one can see that except possibly for the first semicycle, every

oscillatory solution of Eq(5.13) has semicycles of length one.
Concerning the nonoscillatory solutions of Eq(5.13) one can easily see that every

nonoscillatory solution of Eq(5.13) converges monotonically to the equilibrium y.
The global character of solutions of Eq(5.13) is a consequence of the identity

yn+1 − yn−1 =
yn−1 − yn−2

yn
for n ≥ 1.

From this it follows that a solution of Eq(5.13) either approaches the positive equilibrium
y monotonically or it oscillates about y with semicycles of length one in such a way that
{y2n} and {y2n+1} converge monotonically one to zero and other to ∞.

5.4 Open Problems and Conjectures

By using the invariant (5.12), one can easily see that every solution of Lyness’ Eq(5.10)
is bounded from above and from below by positive numbers. To this day we have not
found a proof for the boundedness of solutions of Eq(5.10) without using essentially the
invariant.

Open Problem 5.4.1 Show that every solution of Lyness’ Eq(5.10) is bounded without
using the invariant (5.12).
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Open Problem 5.4.2 Assume that f ∈ C[(0,∞), (0,∞)]. Obtain necessary and suffi-
cient conditions in terms of f so that every positive solution of the difference equation

xn+1 =
f(xn)
xn−1

, n = 0, 1, . . . (5.14)

is bounded.

What is it that makes Lyness’ equation possess an invariant? What type of difference
equations possess an invariant? Along these lines, we offer the following open problems
and conjectures.

Open Problem 5.4.3 Assume that f ∈ C[(0,∞), (0,∞)]. Obtain necessary and suffi-
cient conditions in terms of f so that the difference equation (5.14) possesses a (non-
trivial) invariant.

Conjecture 5.4.1 Assume that f ∈ C[(0,∞), (0,∞)] and that the difference equation
(5.14) possesses a unique positive equilibrium point x and a nontrivial invariant. Show
that the linearized equation of Eq(5.14) about x does not have both eigenvalues in |λ| < 1
and does not have both eigenvalues in |λ| > 1.

When we allow the initial conditions to be real numbers the equation

yn+1 =
p + yn

yn−1
(5.15)

may not even be well defined for all n ≥ 0. To illustrate, we offer the following open
problems and conjectures.

Open Problem 5.4.4 (See [26].) Assume p ∈ (−∞,∞). Determine the set G of all
initial conditions y−1, y0 ∈ (−∞,∞) through which Eq(5.15) is well defined for all n ≥ 0.

Conjecture 5.4.2 Let G be the set of initial conditions defined in the Open problem
5.4.4. Show that the subset of G through which the solutions of Eq(5.15) are unbounded
is a set of measure zero.
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Conjecture 5.4.3 Assume p ∈ (−∞,∞). Show that the set of points (y−1, y0) ∈
(−∞,∞) × (−∞,∞) through which Eq(5.15) is not well defined for all n ≥ 0, is a
set of points without interior.

Open Problem 5.4.5 Determine all positive integers k with the property that every
positive solution of the equation

yn+1 =
1 + . . . + yn−k

yn−k−1
, n = 0, 1, . . .

is periodic.

Conjecture 5.4.4 Show that every positive solution of the equation

yn+1 =
yn

yn−1
+

yn−4

yn−3
, n = 0, 1, . . .

converges to a period-six solution.

Conjecture 5.4.5 (See [20]) Show that every positive solution of the equation

yn+1 =
1

ynyn−1
+

1
yn−3yn−4

, n = 0, 1, . . .

converges to a period-three solution.

Conjecture 5.4.6 Show that the equation

yn+1 =
1 + yn−1

yn
, n = 0, 1, . . .

has a nontrivial positive solution which decreases monotonically to the equilibrium of the
equation.

Open Problem 5.4.6 Find the set G of all initial points (y−1, y0) ∈ R × R through
which the equation

yn+1 =
1 + yn−1

yn

is well defined for all n ≥ 0. Determine the periodic character and the asymptotic
behavior of all solutions with (y−1, y0) ∈ G.
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Conjecture 5.4.7 (May’s Host Parasitoid Model; see [59]) Assume α > 1. Show
that every positive solution of May’s Host Parasitoid Model

xn+1 =
αx2

n

(1 + xn)xn−1
, n = 0, 1, . . .

is bounded.

Conjecture 5.4.8 (The Gingerbreadman Map; see [59]) Let A ∈ (0,∞). Show that
every positive solution of the equation

xn+1 =
max{x2

n, A}
xnxn−1

, n = 0, 1, . . . (5.16)

is bounded.

Note that the change of variables

xn =















A
1+yn

2 if A > 1
e yn

2 if A = 1
A
−1+yn

2 if A < 1

reduces Eq(5.16) to
yn+1 = |yn| − yn−1 + δ, n = 0, 1, . . . (5.17)

where

δ =











1 if A < 1
0 if A = 1
−1 if A > 1.

When δ = 1, Eq(5.17) is called the Gingerbreadman Map and was investigated
by Devaney [17].
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(2, 2)-Type Equations

6.1 Introduction

Eq(1) contains the following nine equations of the (2, 2)-type:

xn+1 =
α + βxn

A + Bxn
, n = 0, 1, . . . (6.1)

xn+1 =
α + βxn

A + Cxn−1
, n = 0, 1, . . . (6.2)

xn+1 =
α + βxn

Bxn + Cxn−1
, n = 0, 1, . . . (6.3)

xn+1 =
α + γxn−1

A + Bxn
, n = 0, 1, . . . (6.4)

xn+1 =
α + γxn−1

A + Cxn−1
, n = 0, 1, . . . (6.5)

xn+1 =
α + γxn−1

Bxn + Cxn−1
, n = 0, 1, . . . (6.6)
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xn+1 =
βxn + γxn−1

A + Bxn
, n = 0, 1, . . . (6.7)

xn+1 =
βxn + γxn−1

A + Cxn−1
, n = 0, 1, . . . (6.8)

xn+1 =
βxn + γxn−1

Bxn + Cxn−1
, n = 0, 1, . . . . (6.9)

Please recall our classification convention in which all parameters that appear in these
equations are positive, the initial conditions are nonnegative, and the denominators are
always positive.

Eq(6.5) is essentially similar to Eq(6.1). In fact if {xn}∞n=−1 is a positive solution of
Eq(6.5) then {x2n}∞n=0 and {x2n−1}∞n=0 are both solutions of the Riccati equations

zn+1 =
α + γzn

A + Czn
, n = 0, 1, . . .

with
zn = x2n for n ≥ 0

and
zn+1 =

α + γzn

A + Czn
, n = −1, 0, . . .

with
zn = x2n+1 for n ≥ −1,

respectively.
Therefore we will omit any further discussion of Eq(6.5).

6.2 The Case γ = C = 0 : xn+1 = α+βxn
A+Bxn

- Riccati
Equation

This is the (2, 2)-type Eq(6.1) which is in fact a Riccati equation. See Section 1.6.
To avoid a degenerate situation we will assume that

αB − βA 6= 0.
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The Riccati number associated with this equation is

R =
βA− αB
(β + A)2

and clearly

R <
1
4
.

Now the following result is a consequence of Theorem 1.6.2:

Theorem 6.2.1 The positive equilibrium of Eq(6.1) is globally asymptotically stable.

6.3 The Case γ = B = 0 : xn+1 = α+βxn
A+Cxn−1

This is the (2, 2)-type Eq(6.2) which by the change of variables

xn =
A
C

yn

reduces to the equation

yn+1 =
p + qyn

1 + yn−1
, n = 0, 1, . . . (6.10)

where
p =

αC
A2 and q =

β
A

.

(Eq(6.10) was investigated in [42] and [43]. See also [36].)
Eq(6.10) has the unique positive equilibrium y given by

y =
q − 1 +

√

(q − 1)2 + 4p

2
.

By applying the linearized stability Theorem 1.1.1 we obtain the following result.

Lemma 6.3.1 The equilibrium y of Eq(6.10) is locally asymptotically stable for all val-
ues of the parameters p and q.

Eq(6.10) is a very simple looking equation for which it has long been conjectured
that its equilibrium is globally asymptotically stable. To this day, the conjecture has
not been proven or refuted.

The main results known about Eq(6.10) are the following:

Theorem 6.3.1 Every solution of Eq(6.10) is bounded from above and from below by
positive constants.
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Proof. Let {yn} be a solution of Eq(6.10). Clearly, if the solution is bounded from
above by a constant M , then

yn+1 ≥
p

1 + M
and so it is also bounded from below. Now assume for the sake of contradiction that the
solution is not bounded from above. Then there exists a subsequence {y1+nk}∞k=0 such
that

lim
k→∞

nk = ∞, lim
k→∞

y1+nk = ∞, and y1+nk = max{yn : n ≤ nk} for k ≥ 0.

From (6.10) we see that
yn+1 < qyn + p for n ≥ 0

and so
lim
k→∞

ynk = lim
k→∞

ynk−1 = ∞.

Hence, for sufficiently large k,

0 ≤ y1+nk − ynk =
p + [(q − 1)− ynk−1]ynk

1 + ynk−1
< 0

which is a contradiction and the proof is complete. 2

The oscillatory character of solutions for Eq(6.10) is described by the following result:

Theorem 6.3.2 Let {yn}∞n=−1 be a nontrivial solution of Eq(6.10). Then the following
statements are true:

(i) Every semicycle, except perhaps for the first one, has at least two terms.

(ii) The extreme in each semicycle occurs at either the first term or the second. Fur-
thermore after the first, the remaining terms in a positive semicycle are strictly
decreasing and in a negative semicycle are strictly increasing.

(iii) In any two consecutive semicycles, their extrema cannot be consecutive terms.

(iv) Assume
q ≤ p.

Then, except possibly for the first semicycle, every semicycle contains two or three
terms. Furthermore, in every semicycle, there is at most one term which follows
the extreme.

Proof. We present the proofs for positive semicycles only. The proofs for negative
semicycles are similar and will be omitted.
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(i) Assume that for some N ≥ 0,

yN−1 < y and yN ≥ y.

Then
yN+1 =

p + qyN

1 + yN−1
>

p + qy
1 + y

= y.

(ii) Assume that for some N ≥ 0, the first two terms in a positive semicycle are yN

and yN+1. Then
yN ≥ y, yN+1 > y

and
yN+2

yN+1
=

1
yN+1

p + qyN+1

1 + yN
=

p
yN+1

+ q

1 + yN
<

p
y + q

1 + y
= 1.

(iii) We consider the case where a negative semicycle is followed by a positive one. The
opposite case is similar and will be omitted. So assume that for some N ≥ 0 the
last two terms in a negative semicycle are yN−1 and yN with

yN−1 ≥ yN .

Then
yN+1 =

p + qyN

1 + yN−1
<

p + qyN+1

1 + yN
= yN+2.

(iv) Assume that for some N ≥ 0, the terms yN , yN+1, and yN+2 are all in a positive
semicycle. Then

yN+3 =
p + qyN+2

1 + yN+1
<

p + qyN+1

1 + yN+1
<

p + qy
1 + y

= y.

2

Theorem 6.3.3 The positive equilibrium of Eq(6.10) is globally asymptotically stable if
one of the following two conditions holds:

(i)
q < 1;

(ii)
q ≥ 1

and
either p ≤ q or q < p ≤ 2(q + 1).
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Proof.

(i) In view of Lemma 6.3.1, it remains to show that every solution {yn}∞n=−1 of Eq(6.10)
tends to y as n →∞. To this end, let

i = lim inf
n→∞

yn and s = lim sup
n→∞

yn

which by Theorem 6.3.1 exist and are positive numbers. Then Eq(6.10) yields

i ≥ p + qi
1 + s

and s ≤ p + qs
1 + i

.

Hence
p + (q − 1)i ≤ is ≤ p + (q − 1)s

and so because q < 1,
i ≥ s

from which the result follows.

(ii) The proof when
p < q

follows by applying Theorem 1.4.2. This result was first established in [43].

For the proof when
1 ≤ q ≤ p ≤ 2(q + 1)

see ([42], Theorem 3.4.3 (f), p. 71).

2

6.4 The Case γ = A = 0 : xn+1 = α+βxn
Bxn+Cxn−1

This is the (2, 2)-type Eq(6.3) which by the change of variables

xn =
β
B

yn

reduces to the difference equation

yn+1 =
yn + p

yn + qyn−1
, n = 0, 1, . . . (6.11)

where
p =

αB
β2 and q =

C
B

.

Eq(6.11) was investigated in [15].
The following result is a consequence of the linearized stability Theorem 1.1.1.
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Theorem 6.4.1 The unique positive equilibrium point

y =
1 +

√

1 + 4p(q + 1)

2(q + 1)

of Eq(6.11) is locally asymptotically stable for all values of the parameters p and q.

6.4.1 Invariant Intervals

The following result establishes that the interval I with end points 1 and p
q is an invari-

ant interval for Eq(6.11) in the sense that if, for some k ≥ 0, two consecutive values
yk−1 and yk of a solution lie in I, then ym ∈ I for all m > k.

Lemma 6.4.1 Let {yn}∞n=−1 be a solution of Eq(6.11). Then the following statements
are true:

(a) Assume p < q and suppose that for some k ≥ 0,

yk−1, yk ∈
[

p
q
, 1

]

.

Then

yn ∈
[

p
q
, 1

]

for all n > k.

(b) Assume p > q and suppose that for some k ≥ 0,

yk−1, yk ∈
[

1,
p
q

]

.

Then

yn ∈
[

1,
p
q

]

for all n > k.

Proof.
(a) The basic ingredient behind the proof is the fact that when u, v ∈ [p

q ,∞), the
function

f(u, v) =
u + p
u + qv

is increasing in u and decreasing in v. Indeed,

yk+1 =
yk + p

yk + qyk−1
≤ yk + p

yk + q p
q

= 1,

yk+1 =
yk + p

yk + qyk−1
≥

p
q + p
p
q + q

>
p
q

and the proof follows by induction.
(b) The proof is similar and will be omitted. 2
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6.4.2 Semicycle Analysis

Let {yn}∞n=−1 be a solution of Eq(6.11). Then observe that the following identities are
true:

yn+1 − 1 = q
p
q − yn−1

yn + qyn−1
for n ≥ 0, (6.12)

yn+1 −
p
q

=
(q − p) + pq(1− yn−1)

q(yn + qyn−1)
for n ≥ 0, (6.13)

and

yn − yn+4 =
(yn − 1)[qynyn+3 + yn+1yn+3] + qyn+1(yn − p

q )

q(p + yn+1) + yn+3(yn+1 + qyn)
for n ≥ 0. (6.14)

First we will analyze the semicycles of the solution {yn}∞n=−1 under the assumption
that

p > q. (6.15)

The following result is a direct consequence of (6.12)-(6.15):

Lemma 6.4.2 Assume that (6.15) holds and let {yn}∞n=−1 be a solution of Eq(6.11).
Then the following statements are true:

(i) If for some N ≥ 0, yN−1 < p
q , then yN+1 > 1;

(ii) If for some N ≥ 0, yN−1 = p
q , then yN+1 = 1;

(iii) If for some N ≥ 0, yN−1 > p
q , then yN+1 < 1;

(iv) If for some N ≥ 0, yN−1 ≥ 1, then yN+1 < p
q ;

(v) If for some N ≥ 0, yN−1 ≤ 1, then yN+1 > 1;

(vi) If for some N ≥ 0, yN ≥ p
q , then yN+4 < yN ;

(vii) If for some N ≥ 0, yN ≤ 1, then yN+4 > yN ;

(viii) If for some N ≥ 0, 1 ≤ yN−1 ≤ p
q , then 1 ≤ yN+1 ≤ p

q ;

(ix) If for some N ≥ 0, 1 ≤ yN−1, yN ≤ p
q , then yn ∈ [1, p

q ] for n ≥ N . That is [1, p
q ] is

an invariant interval for Eq(6.11);

(x)
1 < y <

p
q
.
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The next result, which is a consequence of Theorem 1.7.2, states that when (6.15)
holds, every nontrivial and oscillatory solution of Eq(6.11), which lies in the interval
[1, p

q ], oscillates about the equilibrium y with semicycles of length one or two.

Theorem 6.4.2 Assume that Eq(6.11) holds. Then every nontrivial and oscillatory
solution of Eq(6.11) which lies in the interval [1, p

q ], oscillates about y with semicycles
of length one or two.

Next we will analyze the semicycles of the solutions {yn}∞n=−1 under the assumption
that

q = p. (6.16)

In this case, Eq(6.11) reduces to

yn+1 =
yn + p

yn + pyn−1
, n = 0, 1, . . . (6.17)

with the unique equilibrium point
y = 1.

Also identities (6.12)-(6.14) reduce to

yn+1 − 1 = p
1− yn−1

yn + pyn−1
for n ≥ 0 (6.18)

and

yn − yn+4 = (yn − 1)
pyn+1 + pynyn+3 + yn+1yn+3

p(p + yn+1) + yn+3(yn+1 + pyn)
for n ≥ 0. (6.19)

and so the following results follow immediately:

Lemma 6.4.3 Let {yn}∞n=−1 be a solution of Eq(6.17). Then the following statements
are true:

(i) If for some N ≥ 0, yN−1 < 1, then yN+1 > 1;

(ii) If for some N ≥ 0, yN−1 = 1, then yN+1 = 1;

(iii) If for some N ≥ 0, yN−1 > 1, then yN+1 < 1;

(iv) If for some N ≥ 0, yN < 1, then yN < yN+4 < 1;

(v) If for some N ≥ 0, yN > 1, then yN > yN+4 > 1.

Corollary 6.4.1 Let {yn}∞n=−1 be a nontrivial solution of Eq(6.17). Then {yn}∞n=−1
oscillates about the equilibrium 1 and, except possibly for the first semicycle, the following
are true:
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(i) If y−1 = 1 or y0 = 1, then the positive semicycle has length three and the negative
semicycle has length one.

(ii) If (1− y−1)(1− y0) 6= 0, then every semicycle has length two.

Finally we will analyze the semicycles of the solutions {yn}∞n=−1 under the assumption
that

p < q. (6.20)

The following result is a direct consequence of (6.12)-(6.14) and (6.20).

Lemma 6.4.4 Assume that (6.20) holds and let {yn}∞n=−1 be a solution of Eq(6.11).
Then the following statements are true:

(i) If for some N ≥ 0, yN−1 < p
q , then yN+1 > 1;

(ii) If for some N ≥ 0, yN−1 = p
q , then yN+1 = 1;

(iii) If for some N ≥ 0, yN−1 > p
q , then yN+1 < 1;

(iv) If for some N ≥ 0, yN−1 ≤ 1, then yN+1 > p
q ;

(v) If for some N ≥ 0, yN−1 ≤ p
q , then yN+1 > p

q ;

(vi) If for some N ≥ 0, yN ≥ 1, then yN+4 < yN ;

(vii) If for some N ≥ 0, yN ≤ p
q , then yN+4 > yN ;

(viii) If for some N ≥ 0, p
q ≤ yN−1 ≤ 1, then p

q ≤ yN+1 ≤ 1;

(ix) If for some N ≥ 0, p
q ≤ yN−1, yN ≤ 1, then yn ∈ [p

q , 1] for n ≥ N . That is, [p
q , 1] is

an invariant interval for Eq(6.11);

(x)
p
q

< y < 1.

The next result, which is a consequence of Theorem 1.7.4, states that when (6.20)
holds, every nontrivial and oscillatory solution of Eq(6.11) which lies in the interval
[p
q , 1], after the first semicycle, oscillates with semicycles of length at least two.

Theorem 6.4.3 Assume that (6.20) holds. Then every nontrivial and oscillatory solu-
tion of Eq(6.11) which lies in the interval [p

q , 1], after the first semicycle, oscillates with
semicycles of length at least two.
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How do solutions which do not eventually lie in the invariant interval behave?
First assume that

p > q

and let {yn}∞n=−1 be a solution which does not eventually lie in the interval I = [1, p
q ].

Then one can see that the solution oscillates relative to the interval [1, p
q ], essentially in

one of the following two ways:
(i) Two consecutive terms in (p

q ,∞) are followed by two consecutive terms in (0, 1),
are followed by two consecutive terms in (p

q ,∞), and so on. The solution never visits
the interval (1, p

q ).
(ii) There exists exactly one term in (p

q ,∞), which is followed by exactly one term in
(1, p

q ), which is followed by exactly one term in (0, 1), which is followed by exactly one
term in (1, p

q ), which is followed by exactly one term in (p
q ,∞), and so on. The solution

visits consecutively the intervals

. . . ,
(

p
q
,∞

)

,
(

1,
p
q

)

, (0, 1),
(

1,
p
q

)

,
(

p
q
,∞

)

, . . .

in this order with one term per interval.
The situation is essentially the same relative to the interval [p

q , 1] when

p < q.

6.4.3 Global Stability and Boundedness

Our goal in this section is to establish the following result:

Theorem 6.4.4 (a) The equilibrium y of Eq(6.11) is globally asymptotically stable
when

q ≤ 1 + 4p. (6.21)

(b) Assume that
q > 1 + 4p.

Then every solution of Eq(6.11) lies eventually in the interval
[

p
q , 1

]

.

Proof.

(a) We have already shown that the equilibrium y is locally asymptotically stable so
it remains to be shown that y is a global attractor of every solution {yn}∞n=−1 of
Eq(6.11).

Case 1 Assume p = q. It follows from (6.19) that each of the four subsequences

{y4n+i}∞n=0 for i = 1, 2, 3, 4
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is either identically equal to one or else it is strictly monotonically convergent. Set

Li = lim
n→∞

y4n+i for i = 1, 2, 3, 4.

Thus clearly
. . . , L1, L2, L3, L4, . . . (6.22)

is a periodic solution of Eq(6.11) with period four. By applying (6.19) to the
solution (6.22) we see that

Li = 1 for i = 1, 2, 3, 4

and so
lim

n→∞
yn = 1.

Case 2 Assume p 6= q. First, we assume that p > q.

Recall from Lemma 6.4.2 that [1, p
q ] is an invariant interval. In this interval the

function
f(u, v) =

u + p
u + qv

is decreasing in both variables and so it follows by applying Theorem 1.4.7 that
every solution of Eq(6.11) with two consecutive values in [1, p

q ] converges to y. By
using an argument similar to that in the case p = q, we can see that if a solution is
not eventually in [1, p

q ], it converges to a periodic solution with period-four which
is not the equilibrium. By applying (6.14) to this period four solution we obtain a
contradiction and so every solution of Eq(6.11) must lie eventually in [1, p

q ].

Hence for every solution {yn}∞n=−1 of Eq(6.11)

lim
n→∞

yn = y

and the proof is complete.

Now, assume that p < q.

As in Case 2 we can see that every solution of Eq(6.11) must eventually lie in the
interval [p

q , 1]. In this interval the function

f(u, v) =
u + p
u + qv

is increasing in u and decreasing in v. Under the assumption that q ≤ 1 + 4p,
Theorem 1.4.5 applies and so every solution of Eq(6.11) converges to y.

(b) The proof follows from the discussion in part (a).

2
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6.5 The Case β = C = 0 : xn+1 = α+γxn−1
A+Bxn

This is the (2, 2)-type Eq(6.4) which by the change of variables

xn =
A
B

yn

reduces to the difference equation

yn+1 =
p + qyn−1

1 + yn
, n = 0, 1, . . . (6.23)

where
p =

αB
A2 and q =

γ
A

.

(Eq(6.23) was investigated in [28].)
The only equilibrium point of Eq(6.23) is

y =
q − 1 +

√

(q − 1)2 + 4p

2

and by applying the linearized stability Theorem 1.1.1 we obtain the following result:

Theorem 6.5.1 The equilibrium y of Eq(6.23) is locally asymptotically stable when

q < 1,

and is an unstable saddle point when

q > 1.

Concerning prime period-two solutions, the following result is a consequence of the
results in Section 2.7.

Theorem 6.5.2 (a) Eq(6.23) has a prime period-two solution

. . . , φ, ψ, φ, ψ, . . . (6.24)

if and only if
q = 1. (6.25)

(b) Assume (6.25) holds. Then the values φ and ψ of all prime period-two solutions
(6.24) are given by

{φ, ψ ∈ (0,∞) : φψ = p}.

(c) Assume that (6.25) holds. Then every solution of Eq(6.23) converges to a period
two solution.
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6.5.1 Semicycle Analysis

Our results on the semicycles of solutions for Eq(6.23) are as follows:

Theorem 6.5.3 Let {yn} be a nontrivial solution of Eq(6.23) and let y denote the
unique positive equilibrium of Eq(6.23). Then the following statements are true:

(a) After the first semicycle, an oscillatory solution {yn} of Eq(6.23) oscillates about
the equilibrium y with semicycles of length one.

(b) Assume p ≥ q. Then every nonoscillatory solution of Eq(6.23) converges mono-
tonically to the equilibrium y.

Proof. (a) This follows immediately from Theorem 1.7.1
(b) Let {yn} be a nonoscillatory solution of Eq(6.23). We will assume that there exists

a positive integer K such that yn−1 ≥ y for every n ≥ K. The case where yn−1 < y for
n ≥ K is similar and will be omitted. It is sufficient to show that {yn} is a decreasing
sequence for n ≥ K. So assume for the sake of contradiction that for some n0 ≥ K,

yn0 > yn0−1.

Clearly, the condition p ≥ q implies that the function

f(x) =
p + qx
1 + x

is decreasing. Then

yn0+1 =
p + qyn0−1

1 + yn0

= f(yn0 , yn0−1) < f(yn0 , yn0) < f(y, y) = y,

which is impossible. 2

6.5.2 The Case q < 1

The main result in this section is the following:

Theorem 6.5.4 Assume that
q < 1.

Then the positive equilibrium of Eq(6.23) is globally asymptotically stable.

Proof. Clearly

yn+1 =
p + qyn−1

1 + yn
< p + qyn−1, n ≥ 0. (6.26)

Set
M =

p
1− q

+ ε,
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where ε is some positive number.
From Eq(6.26) and Eq(6.23), it now follows that every solution of Eq(6.23) lies

eventually in the interval [0,M ].
Set

f(x, y) =
p + qy
1 + x

, a = 0, and b =
p

1− q
+ ε.

Then clearly,
a ≤ f(x, y) ≤ b,

for all (x, y) ∈ [a, b]× [a, b]. By applying Theorem 1.4.6 it follows that y is a global at-
tractor of all solutions of Eq(6.23). The local stability of y was established in Theorem
6.5.1. The proof is complete. 2

6.5.3 The Case q > 1

In this case we will show that there exist solutions that have two subsequences, one of
which is monotonically approaching 0 and the other is monotonically approaching ∞.
In fact this is true for every solution {yn}∞n=−1 whose initial conditions are such that the
following inequalities are true:

y−1 < q − 1 and y0 > q − 1 +
p

q − 1
.

To this end observe that

y1 =
p + qy−1

1 + y0
<

p + q(q − 1)
1 + y0

< q − 1

and
y2 =

p + qy0

1 + y1
>

p + qy0

q
= y0 +

p
q

and by induction,

y2n−1 < q − 1 and y2n > y0 + n
p
q

for n ≥ 1.

Hence
lim

n→∞
y2n = ∞

and
lim

n→∞
y2n+1 = lim

n→∞

p + qy2n−1

1 + y2n
= 0

and the proof is complete.
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6.6 The Case β = A = 0 : xn+1 = α+γxn−1
Bxn+Cxn−1

This is the (2, 2)-type Eq(6.6) which by the change of variables

xn =
γ
C

yn

reduces to the difference equation

yn+1 =
p + yn−1

qyn + yn−1
, n = 0, 1, . . . (6.27)

where
p =

αC
γ2 and q =

B
C

.

(Eq(6.27) was investigated in [45].)
Eq(6.27) has the unique positive equilibrium

y =
1 +

√

1 + 4p(1 + q)

2(1 + q)
.

The linearized equation associated with Eq(6.27) about y is

zn+1 +
q

1 + q
zn −

qy − p
(y + p)(1 + q)

zn−1 = 0, n = 0, 1, . . . . (6.28)

By employing Theorem 1.1.1 we see that y is locally asymptotically stable when

(q − 1)y < 2p (6.29)

and unstable (a saddle point) when

(q − 1)y > 2p. (6.30)

Clearly the equilibrium y is the positive solution of the quadratic equation

(1 + q)y2 − y − p = 0.

If we now set
F (u) = (1 + q)u2 − u− p,

it is easy to see that (6.29) is satisfied if and only if either

q ≤ 1

or

q > 1 and F
(

2p
q − 1

)

> 0.
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Similarly (6.30) is satisfied if and only if

q > 1 and F
(

2p
q − 1

)

< 0.

The following result is now a consequence of the above discussion and some simple
calculations:

Theorem 6.6.1 The equilibrium y of Eq(6.27) is locally asymptotically stable when

q < 1 + 4p (6.31)

and unstable, and more precisely a saddle point equilibrium, when

q > 1 + 4p. (6.32)

6.6.1 Existence and Local Stability of Period-Two Cycles

Let
. . . , φ, ψ, φ, ψ, . . .

be a period-two cycle of Eq(6.27). Then

φ =
p + φ
qψ + φ

and ψ =
p + ψ
qφ + ψ

.

It now follows after some calculations that the following result is true:

Theorem 6.6.2 Eq(6.27) has a prime period-two solution

. . . , φ, ψ, φ, ψ, . . .

if and only if
q > 1 + 4p.

Furthermore when (6.32) holds, the period-two solution is “unique” and the values of φ
and ψ are the positive roots of the quadratic equation

t2 − t +
p

q − 1
= 0.
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To investigate the local stability of the two cycle

. . . , φ, ψ, φ, ψ, . . .

we set
un = yn−1 and vn = yn, for n = 0, 1, . . .

and write Eq(6.27) in the equivalent form:

un+1 = vn

vn+1 = p+un
qvn+un

, n = 0, 1, . . . .

Let T be the function on (0,∞)× (0,∞) defined by:

T
(

u
v

)

=
(

v
p+u
qv+u

)

.

Then
(

φ
ψ

)

is a fixed point of T 2, the second iterate of T . By a simple calculation we find that

T 2

(

u
v

)

=
(

g(u, v)
h(u, v)

)

where
g(u, v) =

p + u
qv + u

and h(u, v) =
p + v

qg(u, v) + v
.

Clearly the two cycle is locally asymptotically stable when the eigenvalues of the

Jacobian matrix JT 2 , evaluated at
(

φ
ψ

)

lie inside the unit disk.

We have

JT 2

(

φ
ψ

)

=







∂g
∂u(φ, ψ) ∂g

∂v (φ, ψ)

∂h
∂u(φ, ψ) ∂h

∂v (φ, ψ)







where,

∂g
∂u

(φ, ψ) =
qψ − p

(qψ + φ)2 ,

∂g
∂v

(φ, ψ) = − (p + φ)q
(qψ + φ)2 ,



6.6. The Case β = A = 0 : xn+1 = α+γxn−1
Bxn+Cxn−1

95

∂h
∂u

(φ, ψ) = − q(p + ψ)(qψ − p)
(qφ + ψ)2(qψ + φ)2 ,

∂h
∂v

(φ, ψ) =
q2(p + φ)(p + ψ)

(qφ + ψ)2(qψ + φ)2 +
qφ− p

(qφ + ψ)2 .

Set
S =

∂g
∂u

(φ, ψ) +
∂h
∂v

(φ, ψ)

and
D =

∂g
∂u

(φ, ψ)
∂h
∂v

(φ, ψ)− ∂g
∂v

(φ, ψ)
∂h
∂u

(φ, ψ).

Then it follows from Theorem 1.1.1 that both eigenvalues of JT 2

(

φ
ψ

)

lie inside the

unit disk |λ| < 1, if and only if

|S| < 1 +D < 2. (6.33)

Inequality (6.33) is equivalent to the following three inequalities:

S < 1 +D (6.34)

−1−D < S (6.35)

D < 1. (6.36)

First we will establish Inequality (6.34).
To this end observe that (6.34) is equivalent to

(qψ − p)(qφ + ψ)2 + (qφ− p)(qψ + φ)2 + q2(p + ψ)(p + φ)− (qψ − p)(qφ− p)

< (qψ + φ)2(qφ + ψ)2

which is true if and only if

p
q − 1

(q3 + 2q2 − 4qp + 2q2p + 2p− 3q) + q − p + q2p2 + qp− p2 < (qψ + φ)2(qφ + ψ)2

which is true if and only if

−q3p + 7q2p− 8qp2 + 4q2p2 + 4p2 − 7qp + 2q2 − q + p− q3 < 0

which is true if and only if

−(p + 1)(q − 1)(q − p
p + 1

)[q − (1 + 4p)] < 0

which is true because q > 1 + 4p.
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Next we will establish Inequality (6.35). Observe that (6.35) is equivalent to

−(qψ + φ)2(qφ + ψ)2

< (qψ − p)(qφ + ψ)2 + (qφ− p)2(qψ + φ)2 + q2(p + ψ)(p + φ) + (qψ − p)(qφ− p)

which is true if and only if

−(qψ + φ)2(qφ + ψ)2 <
p

q − 1
(q3 + 4q2 − 4qp + 2q2p + 2p− 3q)− p + q2p2

which is true if and only if

q2 + 2pq + 2p2q2 − p2 + qp2 − q3 − 3q3p− 2q3p2 − p < 0

which is true if and only if

p2(−2q3 + 2q2 + q − 1) + p(−3q3 + 2q − 1)− q3 + q2 < 0

which is true because q > 1.
Finally, we establish Inequality (6.36). Observe that (6.36) is true if and only if

(qψ − p)(qφ− p) < (qψ + φ)2(qφ + ψ)2

which is true if and only if
p

q − 1
[q2 − (q − 1)(q − p)] < (pq − p + q)2

which is true if and only if

q(pq − p + q)(pq − 2p + q − 1) > 0

which is true because q > 1 + 4p.

6.6.2 Invariant Intervals

Here we show that the interval I with end points one and p
q is an invariant interval for

Eq(6.27). More precisely we show that the values of any solution {yn}∞n=−1 of Eq(6.27)
either remain forever outside the interval I or the solution is eventually trapped into I.

Theorem 6.6.3 Let {yn}∞n=−1 be a solution of Eq(6.27). Then the following statements
are true.

(a) Assume that p ≤ q and that for some N ≥ 0,
p
q
≤ yN ≤ 1.

Then p
q
≤ yn ≤ 1 for all n ≥ N.



6.6. The Case β = A = 0 : xn+1 = α+γxn−1
Bxn+Cxn−1

97

(b) Assume that p ≥ q and that for some N ≥ 0,

1 ≤ yN ≤ p
q
.

Then
1 ≤ yn ≤

p
q

for all n ≥ N.

Proof.

(a) Indeed we have

yN+1 =
p + yN−1

qyN + yN−1
≤ p + yN−1

p + yN−1
= 1

and

yN+1 =
p + yN−1

qyN + yN−1
=

p + yN−1
q
p(pyN + p

qyN−1)
≥

(

p
q

)

p + yN−1

p + yN−1
=

p
q

and the proof follows by induction.

(b) Clearly,

yN+1 =
p + yN−1

qyN + yN−1
≥ p + yN−1

p + yN−1
= 1

and

yN+1 =
p + yN−1

qyN + yN−1
=

(

p
q

)

p + yN−1

pyN + p
qyN−1

≤
(

p
q

)

p + yN−1

p + yN−1
=

p
q

and the proof follows by induction.

2

6.6.3 Semicycle Analysis

Here we present a thorough semicycle analysis of the solutions of Eq(6.27) relative to
the equilibrium y and relative to the end points of the invariant interval of Eq(6.27).

Let {yn}∞n=−1 be a solution of Eq(6.27). Then observe that the following identities
are true:

yn+1 − 1 = q
p
q − yn

qyn + yn−1
for n ≥ 0, (6.37)

yn+1 −
p
q

=
qyn−1(1− p

q ) + pq(1− yn)

q(qyn + yn−1)
for n ≥ 0, (6.38)

yn − yn+2 =
qyn−1(yn − p

q ) + (yn − 1)(yn−1yn + qy2
n)

q(p + yn−1) + yn(qyn + yn−1)
for n ≥ 0. (6.39)
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When
p = q

that is for the difference equation

yn+1 =
p + yn−1

pyn + yn−1
, n = 0, 1, . . . (6.40)

the above identities reduce to the following:

yn+1 − 1 = p
1− yn

pyn + yn−1
for n ≥ 0 (6.41)

and

yn − yn+2 = (yn − 1)
pyn−1 + yn−1yn + py2

n

p(p + yn−1) + yn(pyn + yn−1)
for n ≥ 0. (6.42)

The following three lemmas are now direct consequences of (6.37)-(6.42).

Lemma 6.6.1 Assume that
p > q

and let {yn}∞n=−1 be a solution of Eq(6.27). Then the following statements are true:

(i) If for some N ≥ 0, yN < p
q , then yN+1 > 1;

(ii) If for some N ≥ 0, yN = p
q , then yN+1 = 1;

(iii) If for some N ≥ 0, yN > p
q , then yN+1 < 1;

(iv) If for some N ≥ 0, yN ≥ 1, then yN+1 < p
q ;

(v) If for some N ≥ 0, yN ≥ p
q , then yN+2 < yN ;

(vi) If for some N ≥ 0, yN ≤ 1, then yN+2 > yN ;

(vii) If for some N ≥ 0, yN ≤ p
q , then yn ∈ [1, p

q ] for n ≥ N . In particular [1, p
q ] is an

invariant interval for Eq(6.27);

(viii)
1 < y <

p
q
.

Lemma 6.6.2 Assume that
p = q

and let {yn}∞n=−1 be a solution of Eq(6.27). Then the following statements are true:

(i) If for some N ≥ 0, yN < 1, then yN+1 > 1;
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(ii) If for some N ≥ 0, yN = 1, then yN+1 = 1;

(iii) If for some N ≥ 0, yN > 1, then yN+1 < 1;

(iv) If for some N ≥ 0, yN < 1, then yN < yN+2 < 1;

(v) If for some N ≥ 0, yN > 1, then yN > yN+2 > 1.

Lemma 6.6.3 Assume that
p < q

and let {yn}∞n=−1 be a solution of Eq(6.27). Then the following statements are true:

(i) If for some N ≥ 0, yN < p
q , then yN+1 > 1;

(ii) If for some N ≥ 0, yN = p
q , then yN+1 = 1;

(iii) If for some N ≥ 0, yN > p
q , then yN+1 < 1;

(iv) If for some N ≥ 0, yN ≤ 1, then yN+1 > p
q ;

(v) If for some N ≥ 0, yN ≤ p
q , then yN+1 ≥ 1;

(vi) If for some N ≥ 0, yN ≥ 1, then yN+2 < yN ;

(vii) If for some N ≥ 0, yN ≤ p
q , then yN+2 > yN ;

(viii) If for some N ≥ 0, yN ≤ 1, then yn ∈ [p
q , 1] for n ≥ N . In particular [p

q , 1] is an
invariant interval for Eq(6.27);

(ix)
p
q

< y < 1.

Note that the function

f(u, v) =
p + v
qu + v

is always decreasing in u but in v it is decreasing when u < p
q and increasing when u > p

q .
The following result is now a consequence of Theorems 1.7.1 and 1.7.2 and Lemmas

6.6.1-6.6.3:
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Theorem 6.6.4 Let {yn}∞n=−1 be a solution of Eq(6.27). Let I be the closed interval
with end points 1 and p

q and let J and K be the intervals which are disjoint from I and
such that

I ∪ J ∪K = (0,∞).

Then either all the even terms of the solution lie in J and all odd terms lie in K, or
vice-versa, or for some N ≥ 0,

yn ∈ I for n ≥ N. (6.43)

When (6.43) holds, except for the length of the first semicycle of the solution, if

p < q

the length is one, while if
p > q

the length is at most two.

6.6.4 Global Behavior of Solutions

Recall that Eq(6.27) has a unique equilibrium y which is locally stable when (6.31) holds.
When (6.32) holds, and only then, Eq(6.27) has a “unique” prime period-two solution

. . . , φ, ψ, φ, ψ, . . . (6.44)

with
φ + ψ = 1 and φψ =

p
q − 1

. (6.45)

Also recall that a solution {yn}∞n=−1 of Eq(6.27) either eventually enters the interval I
with end points 1 and p

q and remains there, or stays forever outside I.
Now when

q ≤ 1 + 4p

there are no period-two solutions and so the solutions must eventually enter and remain
in I and, in view of Theorems 1.4.6 and 1.4.7, must converge to y.

On the other hand when (6.32) holds, any solution which remains forever outside the
interval I = [p

q , 1] must converge to the two cycle (6.44)-(6.45). But this two cycle lies
inside the interval I. Hence, when (6.32) holds, every solution of Eq(6.27) eventually
enters and remains in the interval I.

The character of these solutions remains an open question.
The above observations are summarized in the following theorem:

Theorem 6.6.5 (a) Assume
q ≤ 1 + 4p. (6.46)

Then the equilibrium y of Eq(6.27) is global attractor.
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(b) Assume
q > 1 + 4p.

Then every solution of Eq(6.27) eventually enters and remains in the interval [p
q , 1].

6.7 The Case α = C = 0 : xn+1 = βxn+γxn−1
A+Bxn

This is the (2, 2)-type equation Eq(6.7) which by the change of variables

xn =
A
B

yn

reduces to the difference equation

yn+1 =
pyn + qyn−1

1 + yn
, n = 0, 1, . . . (6.47)

where
p =

β
A

and q =
γ
A

.

(Eq(6.47) was investigated in [52].)
The equilibrium points of Eq(6.47) are the solutions of the equation

y =
py + qy
1 + y

.

So y = 0 is always an equilibrium point, and when

p + q > 1,

y = p + q − 1 is the only positive equilibrium point of Eq(6.47).
The following result follows from Theorem 1.3.1 and the linearized stability Theorem

1.1.1:

Theorem 6.7.1 (a) Assume
p + q ≤ 1.

Then the zero equilibrium of Eq(6.47) is globally asymptotically stable.

(b) Assume
p + q > 1.

Then the zero equilibrium of Eq(6.47) is unstable. More precisely it is a saddle
point when

1− p < q < 1 + p

and a repeller when
q > 1 + p.
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(c) Assume
1− p < q < 1 + p.

Then the positive equilibrium y = p + q − 1 of Eq(6.47) is locally asymptotically
stable.

(d) Assume
q > 1 + p.

Then the positive equilibrium y = p+ q−1 of Eq(6.47) is an unstable saddle point.

Concerning prime period-two solutions it follows from Sections 2.5 that the following
result is true:

Theorem 6.7.2 Eq(6.47) has a prime period-two solution

. . . , φ, ψ, φ, ψ, . . .

if and only if
q = 1 + p. (6.48)

Furthermore when (6.48) holds, the values of φ and ψ of all prime period-two solutions
are given by:

{φ, ψ ∈ (p,∞) : ψ =
pφ

φ− p
6= 2p}.

6.7.1 Invariant Intervals

The main result here is the following theorem about Eq(6.47) with q 6= 1. The case

q = 1 (6.49)

is treated in Section 6.7.3.

Theorem 6.7.3 (a) Assume that
q < 1. (6.50)

Then every solution of Eq(6.47) eventually enters the interval (0, p
q ]. Furthermore,

(0, p
q ] is an invariant interval for Eq(6.47). That is, every solution of Eq(6.47)

with initial conditions in (0, p
q ], remains in this interval.

(b) Assume that
q > 1. (6.51)

Then every solution of Eq(6.47) eventually enters the interval [p
q ,∞). Further-

more, [p
q ,∞) is an invariant interval for Eq(6.47).
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The proof of the above theorem is an elementary consequence of the following lemma,
whose proof is straightforward and will be omitted.

Lemma 6.7.1 (a) Assume that (6.50) holds. Then for any k, m ∈ N,

yk ≤
p
q

=⇒ yk+2 ≤ p <
p
q

and
yk+2 ≥

p
qm =⇒ yk >

p
qm+1 > p.

(b) Assume that (6.51) holds. Then for any k, m ∈ N,

yk ≥
p
q

=⇒ yk+2 ≥ p >
p
q

and
yk+2 ≤

p
qm =⇒ yk >

p
qm+1 > p.

6.7.2 Semicycle Analysis of Solutions When q ≤ 1

Here we discuss the behavior of the semicycles of solutions of Eq(6.47) when

p + q > 1 and q ≤ 1.

Hereafter, y refers to the positive equilibrium p + q − 1 of Eq(6.47).
Let f : [0,∞)× [0,∞) → [0,∞) denote the function

f(x, y) =
px + qy
1 + x

.

Then f satisfies the negative feedback condition; that is,

(x− x)(f(x, x)− x) < 0 for x ∈ (0,∞)− {x}.

Consider the function g : [0,∞) → [0,∞) defined by

g(x) =
(p + q)x
1 + x

.

Observe that g(y) = y and that g increases on [0,∞).

Theorem 6.7.4 Suppose
p + q > 1 and q ≤ 1.

Let {yn}∞n=−1 be a positive solution of Eq(6.47). Then the following statements are true
for every n ≥ 0:
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(a) If y ≤ yn−1, yn, then y ≤ yn+1 ≤ max{yn−1, yn}.

(b) If yn−1, yn ≤ y, then min{yn−1, yn} ≤ yn+1 < y.

(c) If yn−1 < y ≤ yn, then yn−1 < yn+1 < yn.

(d) If yn < y ≤ yn−1, then yn < yn+1 < yn−1.

(e) If y < yk < y
2−q , for every k ≥ −1, then {yn} decreases to the equilibrium y.

Proof.

(a) Suppose y ≤ yn−1, yn. Then

yn+1 =
pyn + qyn−1

1 + yn
≤ (p + q) max{yn−1, yn}

1 + y
= max{yn−1, yn}.

Since the function
px + qx
1 + x

,

is increasing for y < p
q , which is equivalent to q ≤ 1, we obtain

yn+1 =
pyn + qyn−1

1 + yn
≥ pyn + qy

1 + yn
≥ g(y) = y.

Observe that all inequalities are strict if we assume that yn−1 > y or yn > y.

(b) Suppose yn−1, yn ≤ y. Then in view of the previous case

yn+1 =
pyn + qyn−1

1 + yn
≤ pyn + qy

1 + yn
< g(y) = y

and

yn+1 =
pyn + qyn−1

1 + yn
≥ (p + q) min{yn−1, yn}

1 + y
= min{yn−1, yn}.

Observe that all inequalities are strict if we assume that yn−1 < y or yn < y.

(c) Suppose yn−1 < y ≤ yn. Then

yn+1 =
pyn + qyn−1

1 + yn
<

(p + q)yn

1 + yn
=

(1 + y)yn

1 + yn
< yn.

Since q ≤ 1 and yn−1 < y,

p− qyn−1 > p− qy = (1− q)(p + q) ≥ 0.

Thus px+qyn−1
1+x increases in x and so

yn+1 =
pyn + qyn−1

1 + yn
>

pyn−1 + qyn−1

1 + yn−1
= g(yn−1) > yn−1.

The last inequality follows from the negative feedback property.
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(d) Suppose yn < y ≤ yn−1. Then

yn+1 =
pyn + qyn−1

1 + yn
>

pyn + qyn

1 + yn
= g(yn) > yn

by the negative feedback property.

To see that yn+1 < yn−1, we must consider two cases:
Case 1. Suppose p− qyn−1 ≥ 0. Then px+qyn−1

1+x increases in x and so

yn+1 =
pyn + qyn−1

1 + yn
≤ pyn−1 + qyn−1

1 + yn−1
< yn−1.

The last inequality follows from the negative feedback property.

Case 2. Suppose p− qyn−1 < 0. Then

yn+1 =
pyn + qyn−1

1 + yn
<

qyn−1(yn + 1)
1 + yn

≤ yn−1.

(e) Observe that

yn+1 =
pyn + qyn−1

1 + yn
> y = p + q − 1

and so
yn−1 ≥ qyn−1 > y + (q − 1)yn > yn

from which the result follows.

2

6.7.3 Semicycle Analysis and Global Attractivity When q = 1

Here we discuss the behavior of the solutions of Eq(6.47) when

q = 1.

Here the positive equilibrium of Eq(6.47) is

y = p.

Theorem 6.7.5 Suppose that q = 1 and let y−1 + y0 > 0. Then the equilibrium y of
Eq(6.47) is globally asymptotically stable. More precisely the following statements are
true.

(a) Assume y−1 ≥ p and y0 ≥ p. Then yn ≥ p for all n > 0 and

lim
n→∞

yn = p. (6.52)

(b) Assume y−1 ≤ p and y0 ≤ p. Then yn ≤ p for all n > 0 and (6.52) holds.
(c) Assume either y−1 < p < y0 or y−1 > p > y0. Then {yn}∞n=−1 oscillates about the

equilibrium p with semicycles of length one and (6.52) holds.
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Proof. (a) The case where y−1 = y0 = p is trivial. We will assume that y−1 ≥ p and
y0 > p. The case y−1 > p and y0 ≥ p is similar and will be omitted. Then

y1 =
py0 + y−1

1 + y0
≥ py0 + p

1 + y0
= p,

and
y2 =

py1 + y0

1 + y1
>

py1 + p
1 + y1

= p.

It follows by induction that yn ≥ p for all n > 0. Furthermore, y−1 ≥ p implies that

py0 + y−1 ≤ y−1y0 + y−1

and so
y1 =

py0 + y−1

1 + y0
≤ y−1y0 + y−1

1 + y0
= y−1.

Similarly, we can show that y2 < y0 and by induction

y−1 ≥ y1 ≥ y3 ≥ . . . ≥ p

and
y0 > y2 > y4 > . . . > p.

Thus, there exist m ≥ p and M ≥ p such that

lim
k→∞

y2k+1 = m and lim
k→∞

y2k = M.

As Eq(6.47) has no period-two solutions when q = 1, it follows that m = M = p and
the proof of part (a) is complete.

It is interesting to note that

y−1 = p ⇒ y2k+1 = p for k ≥ 0 and y0 = p ⇒ y2k = p for k ≥ 0.

(b) The proof of (b) is similar to the proof of (a) and will be omitted.
(c) Assume y−1 < p < y0. The proof when y0 < p < y−1 is similar and will be

omitted.
y1 =

py0 + y−1

1 + y0
<

py0 + p
1 + y0

= p,

and
y2 =

py1 + y0

1 + y1
>

py1 + p
1 + y1

= p.

It follows by induction that the solution oscillates about p with semicycles of length one.
Next, we claim that the subsequence {y2k+1}∞k=−1 is increasing, and so convergent. In
fact, since y−1 + py0 > y−1 + y−1y0 then

y1 =
py0 + y−1

1 + y0
> y−1
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and the claim follows by induction. In a similar way we can show that the subsequence
{y2k}∞k=0 is decreasing, and so convergent. Thus, there exist m ≤ p and M ≥ p such
that

lim
k→∞

y2k+1 = m and lim
k→∞

y2k = M

and as in (a), m = M . 2

6.7.4 Global Attractivity When q < 1

Here we consider the case where

1− p < q < 1,

and we show that the equilibrium point y = p + q − 1 of Eq(6.47) is global attractor of
all positive solutions of Eq(6.47).

Theorem 6.7.6 Assume
1− p < q < 1.

Then every positive solution of Eq(6.47) converges to the positive equilibrium y.

Proof. Observe that the consistency condition y ≤ p
q is equivalent to the condition

q ≤ 1. By Theorem 6.7.3 (a) we may assume that the initial conditions y−1 and y0 lie
in the interval I = (0, p

q ]. Now clearly the function

f(x, y) =
px + qy
1 + x

satisfies the hypotheses of Theorem 1.4.5 in the interval I from which the result follows.
2

6.7.5 Long-term Behavior of Solutions When q > 1

Here we discuss the behavior of the solutions of Eq(6.47) when

q > 1

which is equivalent to
y >

p
q
.

In this case, every positive solution of Eq(6.47) lies eventually in the interval [p,∞).
Concerning the long-term behavior of solutions of Eq(6.47) we may assume, without
loss of generality, that

y−1, y0 ∈ [p,∞).
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Then the change of variable
yn = un + p,

transforms Eq(6.47) to the equation

un+1 =
p(q − 1) + qun−1

1 + p + un
(6.53)

where un ≥ 0 for n ≥ 0.
The character of solutions of Eq(6.53) was investigated in Section 6.5. By apply-

ing the results of Section 6.5 to Eq(6.53), we obtain the following theorems about the
solutions of Eq(6.47) when q > 1:

Theorem 6.7.7 After the first semicycle, an oscillatory solution of Eq(6.47) oscillates
about the positive equilibrium y with semicycles of length one.

Theorem 6.7.8 (a) Assume
q = 1 + p.

Then every solution of Eq(6.47) converges to a period-two solution.

(b) Assume
1 < q < 1 + p.

Then every positive solution of Eq(6.47) converges to the positive equilibrium of
Eq(6.47).

(c) Assume
q > 1 + p.

Then Eq(6.47) has unbounded solutions.
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6.8 The Case α = B = 0 : xn+1 = βxn+γxn−1
A+Cxn−1

This is the (2, 2)-type Eq(6.8) which by the change of variables

xn =
γ
C

yn

reduces to the difference equation

yn+1 =
pyn + yn−1

q + yn−1
, n = 0, 1, . . . (6.54)

where
p =

β
γ

and q =
A
γ

.

(Eq(6.54) was investigated in [53].)
The equilibrium points of Eq(6.54) are the solutions of the equation

y =
py + y
q + y

.

So y = 0 is always an equilibrium point of Eq(6.54) and when

p + 1 > q,

Eq(6.54) also possesses the unique positive equilibrium y = p + 1− q.
The following result follows from Theorems 1.1.1 and 1.3.1.

Theorem 6.8.1 (a) Assume
p + 1 ≤ q.

Then the zero equilibrium of Eq(6.54) is globally asymptotically stable.

(b) Assume
p + 1 > q. (6.55)

Then the zero equilibrium of Eq(6.54) is unstable and the positive equilibrium
y = p + 1 − q of Eq(6.54) is locally asymptotically stable. Furthermore the zero
equilibrium is a saddle point when

1− p < q < 1 + p

and a repeller when
q < 1− p.

In the remainder of this section we will investigate the character of the positive
equilibrium of Eq(6.54) and so we will assume without further mention that (6.55) holds.
Our goal is to show that when (6.55) holds and y−1 + y0 > 0, the positive equilibrium
y = p + 1− q of Eq(6.54) is globally asymptotically stable.
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6.8.1 Invariant Intervals and Semicycle Analysis

Let {yn}∞n=−1 be a positive solution of Eq(6.54). Then the following identities are easily
established:

yn+1 − 1 = p
yn − q

p

q + yn−1
for n ≥ 0, (6.56)

yn+1 −
q
p

=
p2[yn −

(

q
p

)2
] + (p− q)yn−1

p(q + yn−1)
for n ≥ 0, (6.57)

and

yn+1 − yn =
(p− q)yn + (1− yn)yn−1

q + yn−1
for n ≥ 0. (6.58)

Note that the positive equilibrium

y = p + 1− q

of Eq(6.54) is such that:

y is











< 1 if p < q < p + 1
= 1 if p = q
> 1 if p > q.

When
p = q

that is for the difference equation

yn+1 =
pyn + yn−1

p + yn−1
, n = 0, 1, . . . (6.59)

the identities (6.56)-(6.58) reduce to the following:

yn+1 − 1 = (yn − 1)
p

p + yn−1
for n ≥ 0 (6.60)

and
yn+1 − yn = (1− yn)

yn−1

p + yn−1
for n ≥ 0. (6.61)

The following three lemmas are now direct consequences of the above identities.

Lemma 6.8.1 Assume that
p < q (6.62)

and let {yn}∞n=−1 be a positive solution of Eq(6.54). Then the following statements are
true:
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(i) If for some N ≥ 0, yN < q
p , then yN+1 < 1;

(ii) If for some N ≥ 0, yN = q
p , then yN+1 = 1;

(iii) If for some N ≥ 0, yN > q
p , then yN+1 > 1;

(iv) If for some N ≥ 0, yN >
(

q
p

)2
, then yN+1 < q

p ;

(v) If for some N ≥ 0, yN ≤ 1, then yN+1 < 1;

(vi) If for some N ≥ 0, yN ≥ 1, then yN+1 < yN .

Lemma 6.8.2 Assume that
p = q (6.63)

and let {yn}∞n=−1 be a positive solution of Eq(6.54). Then the following statements are
true:

(i) If y0 < 1, then for n ≥ 0, yn < 1 and the solution is strictly increasing;

(ii) If y0 = 1, then yn = 1 for n ≥ 0;

(iii) If y0 > 1, then for n ≥ 0, yn > 1 and the solution is strictly decreasing.

Lemma 6.8.3 Assume that
p > q (6.64)

and let {yn}∞n=−1 be a positive solution of Eq(6.54). Then the following statements are
true:

(i) If for some N ≥ 0, yN < q
p , then yN+1 < 1;

(ii) If for some N ≥ 0, yN = q
p , then yN+1 = 1;

(iii) If for some N ≥ 0, yN > q
p , then yN+1 > 1;

(iv) If for some N ≥ 0, yN >
(

q
p

)2
, then yN+1 > q

p ;

(v) If for some N ≥ 0, yN ≤ 1, then yN+1 > yN ;

(vi) If for some N ≥ 0, yN ≥ 1, then yN+1 > q
p and yN+2 > 1.
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6.8.2 Global Stability of the Positive Equilibrium

When (6.62) holds, it follows from Lemma 6.8.1 that if a solution {yn}∞n=−1 is such that

yn ≥ 1 for all n ≥ 0

then the solution decreases and its limit lies in the interval [1,∞). This is impossible
because y < 1. Hence, by Lemma 6.8.1, every positive solution of Eq(6.54) eventually
enters and remains in the interval (0, 1). Now in the interval (0, 1) the function

f(u, v) =
pu + v
q + v

is increasing in both arguments and by Theorem 1.4.8, y is a global attractor.
When (6.63) holds, it follows from Lemma 6.8.2 that every solution of Eq(6.54)

converges to the equilibrium y = 1.
Next, assume that (6.64) holds. Here it is clear from Lemma 6.8.3 that every solu-

tion of Eq(6.54) eventually enters and remains in the interval (1,∞). Without loss of
generality we will assume that

yn > 1 for n ≥ −1.

Set
yn = 1 + (q + 1)un for n ≥ −1.

Then we can see that {un}∞n=−1 satisfies the difference equation

un+1 =
p−q

(q+1)2 + p
q+1un

1 + un−1
, n = 0, 1, . . . (6.65)

with positive parameters and positive initial conditions. This (2, 2)-type equation was
investigated in Section 6.3 where we established in Theorem 6.3.3 that every solution
converges to its positive equilibrium

u =
p− q
q + 1

.

From the above observations and in view of Theorem 6.8.1 we have the following
result:

Theorem 6.8.2 Assume that p + 1 > q and that y−1 + y0 > 0. Then the positive
equilibrium y = p + 1− q of Eq(6.54) is globally asymptotically stable.
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6.9 The Case α = A = 0 : xn+1 = βxn+γxn−1
Bxn+Cxn−1

This is the (2, 2)-type Eq(6.9) which by the change of variables

xn =
γ
C

yn

reduces to the equation

yn+1 =
pyn + yn−1

qyn + yn−1
, n = 0, 1, . . . (6.66)

where
p =

β
γ

and q =
B
C

.

To avoid a degenerate situation we will also assume that

p 6= q.

(Eq(6.66) was investigated in [54].)
The only equilibrium point of Eq(6.66) is

y =
p + 1
q + 1

and the linearized equation of Eq(6.66) about y is

zn+1 −
p− q

(p + 1)(q + 1)
zn +

p− q
(p + 1)(q + 1)

zn−1 = 0, n = 0, 1, . . . .

By applying the linearized stability Theorem 1.1.1 we obtain the following result:

Theorem 6.9.1 (a) Assume that
p > q.

Then the positive equilibrium of Eq(6.66) is locally asymptotically stable.
(b) Assume that

p < q.

Then the positive equilibrium of Eq(6.66) is locally asymptotically stable when

q < pq + 1 + 3p (6.67)

and is unstable (and more precisely a saddle point equilibrium) when

q > pq + 1 + 3p. (6.68)
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6.9.1 Existence of a Two Cycle

It follows from Section 2.5 that when p > q, Eq(6.66) has no prime period-two solutions.
On the other hand when

p < q

and
q > pq + 1 + 3p,

Eq(6.66) possesses a unique prime period-two solution:

. . . , φ, ψ, φ, ψ, . . . (6.69)

where the values of φ and ψ are the (positive and distinct) solutions of the quadratic
equation

t2 − (1− p)t +
p(1− p)
q − 1

= 0. (6.70)

In order to investigate the stability nature of this prime period-two solution, we set

un = yn−1 and vn = yn for n = 0, 1, . . .

and write Eq(6.66) in the equivalent form:

un+1 = vn

vn+1 = pvn+un
qvn+un

, n = 0, 1, . . . .

Let T be the function on (0,∞)× (0,∞) defined by:

T
(

u
v

)

=
(

v
pv+u
qv+u

)

.

Then
(

φ
ψ

)

is a fixed point of T 2, the second iterate of T . One can see that

T 2

(

u
v

)

=
(

g(u, v)
h(u, v)

)

where

g(u, v) =
pv + u
qv + u

and h(u, v) =
ppv+u

qv+u + v

q pv+u
qv+u + v

.

The prime period-two solution (6.69) is asymptotically stable if the eigenvalues of the

Jacobian matrix JT 2 , evaluated at
(

φ
ψ

)

lie inside the unit disk. One can see that

JT 2

(

φ
ψ

)

=









− (p−q)ψ
(qψ+φ)2

(p−q)φ
(qψ+φ)2

− (p−q)2ψ2

(qψ+φ)2(qφ+ψ)2
(p−q)φ

(qφ+ψ)2

(

(p−q)ψ
(qψ+φ)2 − 1

)









.
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Set
P =

p− q
(qψ + φ)2 and Q =

p− q
(qφ + ψ)2 .

Then

JT 2

(

φ
ψ

)

=
(

−Pψ Pφ
−PQψ2 PQφψ −Qφ

)

and its characteristic equation is

λ2 + (Pψ + Qφ− PQφψ)λ + PQφψ = 0.

By applying Theorem 1.1.1 (c), it follows that both eigenvalues of

JT 2

(

φ
ψ

)

lie inside the unit disk if and only if

|Pψ + Qφ− PQφψ| < 1 + PQφψ < 2

or equivalently if and only if the following three inequalities hold:

Pψ + Qφ + 1 > 0 (6.71)

Pψ + Qφ < 1 + 2PQφψ (6.72)

and
PQφψ < 1. (6.73)

Observe that
φ > 0, ψ > 0, P < 0 and Q < 0

and so Inequality (6.72) is always true.
Next we will establish Inequality (6.71). We will use the fact that

φ + ψ = 1− p, φψ =
p(1− p)
q − 1

φ =
pψ + φ
qψ + φ

and ψ =
pφ + ψ
qφ + ψ

.

Inequality (6.71) is equivalent to

(p− q)ψ
(qψ + φ)2 +

(p− q)φ
(qφ + ψ)2 + 1 > 0

which is true if and only if

(q − p)[(qφ + ψ)2ψ + (qψ + φ)2φ] < (qψ + φ)2(qφ + ψ)2
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if and only if

(q − p)[(qφ + ψ)(pφ + ψ) + (qψ + φ)(pψ + φ)] < [(qφ + ψ)(qψ + φ)]2. (6.74)

Now observe that the lefthand side of (6.74) is

I = (q − p)[(qp + 1)(φ2 + ψ2) + 2(p + q)φψ]

= (q − p)[(qp + 1)(φ + ψ)2 − 2φψ(qp + 1− p− q)]

= (q − p)[(qp + 1)(1− p)2 − 2
p(1− p)
q − 1

(p− 1)(q − 1)]

= (q − p)(1− p)2(qp + 1 + 2p).

The righthand side of (6.74) is

II = [(qψ + φ)(qφ + ψ)]2

= [(q2 + 1)ψφ + q(φ2 + ψ2)]2

= [q(φ + ψ)2 + (q − 1)2φψ]2

= [q(1− p)2 + (q − 1)p(1− p)]2

= (1− p)2(q − p)2.

Hence, Inequality (6.71) is true if and only if (6.68) holds.
Finally, Inequality (6.73) is equivalent to

(p− q)2φψ < (qψ + φ)2(qφ + ψ)2

which is true if and only if

(q − p)
√

φψ < (qψ + φ)(qφ + ψ)

if and only if
(q − p)

√

φψ < (q2 + 1)φψ + q(φ2 + ψ2)

if and only if
(q − p)

√

φψ < (q2 + 1)φψ + q[(φ + ψ)2 − 2φψ]

if and only if
(q − p)

√

φψ < (q − 1)2φψ + q(φ + ψ)2

if and only if

(q − p)
√

φψ < (q − 1)2 p(1− p)
q − 1

+ q(1− p)2

if and only if
(q − p)

√

φψ < (1− p)(q − p)
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if and only if
p(1− p)
q − 1

< (1− p)2

if and only if q > pq + 1 which is clearly true.
In summary, the following result is true about the local stability of the prime period-

two solution (6.69) of Eq(6.66):

Theorem 6.9.2 Assume that Condition (6.68) holds. Then Eq(6.66) posseses the prime
period-two solution

. . . , φ, ψ, φ, ψ, . . .

where φ and ψ are the two positive and distinct roots of the quadratic Eq(6.70). Fur-
thermore this prime period-two solution is locally asymptotically stable.

6.9.2 Semicycle Analysis

In this section, we present a semicycle analysis of the solutions of Eq(6.66).

Theorem 6.9.3 Let {yn} be a nontrivial solution of Eq(6.66). Then the following state-
ments are true:

(a) Assume p > q. Then {yn} oscillates about the equilibrium y with semicycles of
length two or three, except possibly for the first semicycle which may have length one.
The extreme in each semicycle occurs in the first term if the semicycle has two terms
and in the second term if the semicycle has three terms.

(b) Assume p < q. Then either {yn} oscillates about the equilibrium y with semicycles
of length one, after the first semicycle, or {yn} converges monotonically to y.

Proof. (a) The proof follows from Theorem 1.7.4 by observing that the condition p > q
implies that the function

f(x, y) =
px + y
qx + y

is increasing in x and decreasing in y. This function also satisfies Condition (1.35).
(b) The proof follows from Theorem 1.7.1 by observing that when p < q, the function

f(x, y) is increasing in y and decreasing in x. 2

6.9.3 Global Stability Analysis When p < q

The main result in this section is the following

Theorem 6.9.4 Assume that
p < q

and (6.67) holds. Then the positive equilibrium y of Eq(6.66) is globally asymptotically
stable.
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Proof. Set
f(x, y) =

px + y
qx + y

,

and note that f(x, y) is decreasing in x for each fixed y, and increasing in y for each
fixed x. Also clearly,

p
q
≤ f(x, y) ≤ 1 for all x, y > 0.

Finally in view of (6.67), Eq(6.66) has no prime period-two solution. Now the conclusion
of Theorem 6.9.4 follows as a consequence of Theorem 1.4.6 and the fact that y is locally
asymptotically stable. 2

The method employed in the proof of Theorem 1.4.6 can also be used to establish
that certain solutions of Eq(6.66) converge to the two cycle (6.69) when instead of (6.67),
(6.68) holds.

Theorem 6.9.5 Assume that (6.68) holds. Let φ, ψ, φ, ψ, . . ., with φ < ψ, denote the
two cycle of Eq(6.66). Assume that for some solution {yn}∞n=−1 of Eq(6.66) and for
some index N ≥ −1,

yN ≥ ψ and yN+1 ≤ φ. (6.75)

Then this solution converges to the two cycle φ, ψ, φ, ψ, . . ..

Proof. Assume that (6.75) holds. Set

f(x, y) =
px + y
qx + y

.

Then clearly,
yN+2 = f(yN+1, yN) ≥ f(φ, ψ) = ψ,

yN+3 = f(yN+2, yN+1) ≤ f(ψ, φ) = φ

and in general
yN+2k ≥ ψ and yN+2k+1 ≤ φ for k = 0, 1, . . . .

Now as in the proof of Theorem 1.4.6

lim sup
n→∞

yn = ψ and lim inf
n→∞

yn = φ

from which we conclude that

limk→∞yN+2k = ψ and limk→∞yN+2k+1 = φ.

2

Next we want to find more cases where the conclusion of the last theorem holds. We
consider first the case where eventually consecutive terms yi, yi+1 lie between m and M .
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Lemma 6.9.1 Suppose that for some i ≥ 0,

m ≤ yi, yi+1 ≤ M.

Then yk ∈ [m,M ] for every k > i.

Proof. Using the monotonic character of the function f we have

m = f(M, m) ≤ f(yi+1, yi) = yi+2 ≤ f(m,M) = M,

and the result follows by induction. 2

If we never get two successive terms in the interval [m, M ] and if we never get two
successive terms outside of the interval [m,M ] (that is, for every i, either yi > M and
yi+1 < m or yi < m and yi+1 > M), then we have one of the following four cases:

(A) y2n > M and M ≥ y2n+1 > m for every n;
(B) y2n+1 > M and M ≥ y2n > m for every n;
(C) y2n < m and m ≤ y2n+1 < M for every n;
(D) y2n+1 < m and m ≤ y2n < M for every n.

Lemma 6.9.2 In all cases (A)-(D) the corresponding solution {yn} converges to the
two cycle

. . . φ, ψ, φ, ψ, . . . .

Proof. Since the proofs are similar for all cases we will give the details in case (A). By
our earlier observation we have that M ≥ lim supi→∞ yi, and so

M ≥ lim supn→∞y2n ≥ lim infn→∞y2n ≥ M.

Hence limn→∞ y2n = M . From Eq(6.66) we have

y2n+1 =
y2n − y2ny2n+2

qy2n+2 − p
.

and so

lim
n→∞

y2n+1 =
M −M2

qM − p
.

On the other hand by solving the equation

M = f(m, M) =
pm + M
qm + M

for m we find

m =
M −M2

qM − p
.

Thus, limn→∞ y2n+1 = m and the proof is complete. 2

Since the case in which the solution lies outside of the interval [m,M ] is answered by
Theorem 6.9.5, we are left with the case in which the solution lies eventually in [m,M ].
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Lemma 6.9.3 Suppose M ≥ yi+2 ≥ yi ≥ y ≥ yi+1 ≥ yi+3 ≥ m and not both yi+2 and
yi+3 are equal to y. Then {yn} converges to the two cycle

. . . φ, ψ, φ, ψ, . . . .

Proof. Here we have

yi+4 = f(yi+3, yi+2) ≥ f(yi+1, yi) = yi+2

and
yi+5 = f(yi+4, yi+3) ≤ f(yi+2, yi+1) = yi+3.

Induction on i then establishes the monotonicity of the two sequences. Thus, the se-
quence {yi+2k} is non decreasing and bounded above by M , and the sequence {yi+2k+1}
is a non increasing sequence and bounded below by m. Therefore, both subsequences
converge and their limits form a two cycle. In view of the uniqueness of the two cycle
and the fact that at least one of yi, yi+1 is different from y, the proof is complete.The
case M ≥ yi+3 ≥ yi+1 ≥ y ≥ yi ≥ yi+2 ≥ m is handled in a similar way. 2

Using a similar technique one can prove that if

M ≥ yi ≥ yi+2 ≥ y ≥ yi+3 ≥ yi+1 ≥ m

or
M ≥ yi+1 ≥ yi+3 ≥ y ≥ yi+2 ≥ yi ≥ m

we would get convergence to y , but this situation cannot occur, as the following results
show. Let us consider the first case. The second case can be handled in a similar way.
In this case we need to know more about the condition yi+2 = f(yi+1, yi) ≤ yi, so we are
led to the general equation

f(x, y) = y. (6.76)

It makes sense to consider this equation only for y ∈ (p
q , 1), in which case Eq(6.76) has a

unique positive solution for x, which of course depends on y. We denote this value by y?.
Thus f(y?, y) = y. The correspondence between y and y? has the following properties:

Lemma 6.9.4 (1) f(x, y) > y if and only if x < y?.

(2) x > y if and only if x? < y?.

(3) For y < y < M, f(y, y?) < y? and y > y??, and for m < y < y, f(y, y?) > y?

and y?? > y.

Proof.



6.9. The Case α = A = 0 : xn+1 = βxn+γxn−1
Bxn+Cxn−1

121

(1) Since f is decreasing in the first variable and f(y?, y) = y, x < y? if and only if
f(x, y) > f(y?, y) = y.

(2) Solving f(y?, y) = y for y? gives

y? = g(y) =
y − y2

qy − p
.

Computing the derivative of g we get

g′(y) = −p− 2y + qy2

(p− qy)2 .

The discriminant of the numerator is 4p2 − 4pq = 4p(p − q) < 0, so the roots of
the numerator are not real. For y ∈ (p

q , 1), g′(y) < 0, so y? is decreasing function
of y.

(3) Eliminating y? from the equations y = f(y?, y) and y? = f(y, y?) we get

x− x2

qx− p
=

px + x−x2

qx−p

qx + x−x2

qx−p

.

Simplifying this equation we get a fourth degree polynomial equation with roots
0, y,m, M . Thus each of these roots is simple and so f(y, y?)−y? changes sign as y
passes each of these values. Clearly as y approaches p

q y? approaches ∞. However
p
q < f(y, y?) < 1. Thus for y < m, f(y, y?) < y?. Hence

m < y < y ⇒ f(y, y?) > y?,

y < y < M ⇒ f(y, y?) < y?,

M < y <⇒ f(y, y?) > y?.

By (1) then, for m < y < y, y < y??, and for y < y < M, y > y??.

2

Now we will use this result to prove the following:

Lemma 6.9.5 Assume that for some i,

M ≥ yi ≥ yi+2 ≥ y ≥ yi+1 ≥ m.

Then yi+3 ≤ yi+1 with equality only in the case of a two cycle.
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Proof. To show yi+3 = f(yi+2, yi+1) ≤ yi+1, we must show yi+2 ≥ y?
i+1.

Since yi+2 = f(yi+1, yi) ≤ yi, we have yi+1 ≥ y?
i . Thus by (2) of the previous lemma

y??
i ≥ y?

i+1, and by (3) yi ≥ y??
i . Thus yi ≥ y?

i+1. Since f is increasing in the second
argument and yi ≥ y?

i+1 we get

yi+2 = f(yi+1, yi) ≥ f(yi+1, y?
i+1).

By (3) of the previous lemma, since m ≤ yi+1 ≤ y, f(yi+1, y?
i+1) ≥ y?

i+1. Thus yi+2 ≥ y?
i+1,

as required. To get equality we must have yi+1 = y?
i or equivalently yi+2 = yi, as well as

yi+3 = yi+1. Thus equality occurs only in the case of a two cycle. 2

The case
m ≤ yi ≤ yi+2 ≤ y ≤ yi+1 ≤ M

is similar.
We also obtain the following lemma:

Lemma 6.9.6 Unless {yn} is a period-two solution, there is no i such that either

M ≥ yi ≥ yi+2 ≥ . . . ≥ y ≥ yi+1 ≥ yi+3 ≥ . . . ≥ m,

or
M ≥ . . . ≥ yi+2 ≥ yi ≥ y ≥ . . . ≥ yi+3 ≥ yi+1 ≥ . . . ≥ m.

Proof. We will consider the first case; the second case is similar. Since {yi+2k+1} is a
bounded monotonic sequence it has a limit c. The value c will be one value in a two
cycle, so either c = y or c = m. If c = y, then yi+2n+1 = y for all n, and solving for yi+2n

we see yi+2n = y also. But then yi = yi+1 = y, and our solution is a two cycle.. If c = m,
solving for limn→∞ yi+2n gives limn→∞ yi+2n = M . This can only happen if yi+2n = M
for all n, in which case yi+2n+1 = m for all n, which also gives a two cycle. 2

The above sequence of lemmas leads to the following result:

Theorem 6.9.6 Assume that
p < q,

and that Eq(6.66) possesses the two-cycle solution (6.69). Then every oscillatory solution
of Eq(6.66) converges to this two cycle.

Remark. Since some of the oscillatory solutions of Eq(6.66) are generated by initial
values {y−1, y0} that are on opposite sides of the equilibrium y, it follows by Theorem
6.9.6 that all such pairs belong to the stable manifold of the two cycle.
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6.9.4 Global Stability Analysis When p > q

Here we have the following result:

Theorem 6.9.7 Assume that
p > q

and
p ≤ pq + 1 + 3q. (6.77)

Then the positive equilibrium y of Eq(6.66) is globally asymptotically stable.

Proof. We will employ Theorem 1.4.5. To this end, set

f(x, y) =
px + y
qx + y

,

and observe that when p > q, the function f(x, y) is increasing in x for each fixed y, and
is decreasing in y for each fixed x. Also

1 ≤ f(x, y) ≤ p
q

for all x, y > 0.

Finally observe that when (6.77) holds, the only solution of the system

M =
pM + m
qM + m

, m =
pm + M
qm + M

,

is
m = M.

Now the result is a consequence of Theorem 1.4.5. 2

6.10 Open Problems and Conjectures

Open Problem 6.10.1 (See [64]) Assume that

a, b, c, d ∈ R.

(a) Investigate the forbidden set F of the difference equation

xn+1 =
axn + bxn−1

cxn + dxn−1
xn, n = 0, 1, . . . .

(b) For every point (x−1, x0) /∈ F , investigate the asymptotic behavior and the periodic
nature of the solution {xn}∞n=−1.
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(See Section 1.6.)

Open Problem 6.10.2 Assume that

αn, βn, An, Bn ∈ R for n = 0, 1, . . .

are convergent sequences of real numbers with finite limits. Investigate the forbidden set
and the asymptotic character of solutions of the nonautonomous Riccati equation

xn+1 =
αn + βnxn

An + Bnxn
, n = 0, 1, . . . .

(See Section 1.6 for the autonomous case.)

Conjecture 6.10.1 Assume
p, q ∈ (0,∞).

Show that every positive solution of Eq(6.10) has a finite limit.

(Note that by Theorem 6.3.3, we need only to confirm this conjecture for p > 2(q+1)
and q ≥ 1. See also [36].)

Conjecture 6.10.2 Assume that

p, q ∈ (0,∞).

Show that every positive solution of Eq(6.11) has a finite limit.

(Note that by Theorem 6.4.4, this conjecture has been confirmed for q ≤ 1 + 4p.)

Conjecture 6.10.3 Assume p ∈ (0,∞). Show that the equation

yn+1 =
p + yn−1

1 + yn
, n = 0, 1, . . .

has a positive and monotonically decreasing solution.

(Note that by Theorem 6.5.2, every positive solution converges to a, not necessarily
prime, period-two solution.)
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Conjecture 6.10.4 Assume that

p, q ∈ (0,∞).

Show that every positive solution of Eq(6.27) either converges to a finite limit or to a
two cycle.

(See Section 6.6.)

Open Problem 6.10.3 Assume that

p, q ∈ (0,∞)

and
q > 1 + 4p.

Find the basin of attraction of the period-two solution of Eq(6.27).

Open Problem 6.10.4 Assume that

p, q ∈ (0,∞)

and
q > pq + 1 + 3p.

Find the basin of attraction of the period-two solution of Eq(6.66).

Conjecture 6.10.5 Assume
p > q.

Show that every positive solution of Eq(6.66) has a finite limit.

(Note that by Theorem 6.9.7, this conjecture has been confirmed for p ≤ pq+1+3q.)

Open Problem 6.10.5 Find the set of all initial conditions (y−1, y0) ∈ R×R through
which the solution of the equation

yn+1 =
yn + yn−1

1 + yn

is well defined and converges to 1, as n →∞.
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Open Problem 6.10.6 Find the set of all initial conditions (y−1, y0) ∈ R×R through
which the solution of the equation

yn+1 =
yn + yn−1

1 + yn−1

is well defined and converges to 1, as n →∞.

Open Problem 6.10.7 For each of the following difference equations determine the
“good” set G ⊂ R×R of initial conditions (y−1, y0) ∈ R×R through which the equation
is well defined for all n ≥ 0.Then for every (y−1, y0) ∈ G, investigate the long-term
behavior of the solution {yn}∞n=−1:

yn+1 =
1− yn

1− yn−1
(6.78)

yn+1 =
yn − 1

yn − yn−1
(6.79)

yn+1 =
1− yn−1

1− yn
(6.80)

yn+1 =
1− yn−1

yn − yn−1
(6.81)

yn+1 =
yn − yn−1

yn − 1
(6.82)

yn+1 =
yn − yn−1

1− yn−1
(6.83)

yn+1 =
yn + yn−1

yn − yn−1
. (6.84)

For those equations from the above list for which you were successful, extend your
result by introducing arbitrary real parameters in the equation.

Open Problem 6.10.8 Assume

α, β, γ, A, B, C ∈ (0,∞).

Investigate the asymptotic behavior and the periodic nature of solutions of the difference
equation

xn+1 =
αxn + βxn−1 + γxn−2

Axn + Bxn−1 + Cxn−2
, n = 0, 1, . . . .

Extend and generalize.
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Open Problem 6.10.9 Assume that {pn}∞n=0 and {qn}∞n=0 are convergent sequences of
nonnegative real numbers with finite limits,

p = lim
n→∞

pn and q = lim
n→∞

qn.

Investigate the asymptotic behavior and the periodic nature of all positive solutions of
each of the following eight difference equations:

yn+1 =
pn + yn

qn + yn
, n = 0, 1, . . . (6.85)

yn+1 =
pn + qnyn

1 + yn−1
, n = 0, 1, . . . (6.86)

yn+1 =
yn + pn

yn + qnyn−1
, n = 0, 1, . . . (6.87)

yn+1 =
pn + qnyn−1

1 + yn
, n = 0, 1, . . . (6.88)

yn+1 =
pn + yn−1

qnyn + yn−1
, n = 0, 1, . . . (6.89)

yn+1 =
pnyn + qnyn−1

1 + yn
, n = 0, 1, . . . (6.90)

yn+1 =
pnyn + yn−1

qn + yn−1
, n = 0, 1, . . . (6.91)

yn+1 =
pnyn + yn−1

qnyn + yn−1
, n = 0, 1, . . . . (6.92)

Open Problem 6.10.10 Assume that {pn}∞n=0 and {qn}∞n=0 are period-two sequences
of nonnegative real numbers. Investigate the global character of all positive solutions of
Eqs(6.85)-(6.92). Extend and generalize.

Open Problem 6.10.11 Assume q ∈ (1,∞).

(a) Find the set B of all initial conditions (y−1, y0) ∈ (0,∞) × (0,∞) such that the
solutions {yn}∞n=−1 of Eq(6.23) are bounded.

(b) Let (y−1, y0) ∈ B. Investigate the asymptotic behavior of {yn}∞n=−1.
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Open Problem 6.10.12 Assume q ∈ (1,∞).

(a) Find the set B of all initial conditions (y−1, y0) ∈ (0,∞) × (0,∞) such that the
solutions {yn}∞n=−1 of Eq(6.47) are bounded.

(b) Let (y−1, y0) ∈ B. Investigate the asymptotic behavior of {yn}∞n=−1.

Open Problem 6.10.13 (A Plant-Herbivore System; See [9], [3], and [2]) Assume

α ∈ (1,∞), β ∈ (0,∞), and γ ∈ (0, 1) with α + β > 1 +
β
γ

.

Obtain conditions for the global asymptotic stability of the positive equilibrium of the
system

xn+1 = αxn
βxn+eyn

yn+1 = γ(xn + 1)yn











, n = 0, 1, . . . . (6.93)

Conjecture 6.10.6 Assume x0, y0 ∈ (0,∞) and that

α ∈ (2, 3), β = 1 and γ =
1
2
.

Show that the positive equilibrium of System (6.93) is globally asymptotically stable.

Open Problem 6.10.14 (Discrete Epidemic Models; See [14].) Let A ∈ (0,∞).

(a) Determine the set G of initial conditions (y−1, y0) ∈ (0,∞)× (0,∞) through which
the solutions {xn}∞n=−1 of the difference equation

xn+1 = (1− xn − xn−1)(1− e−Axn), n = 0, 1, . . . (6.94)

are nonnegative.

(b) Let (x−1, x0) ∈ G. Investigate the boundedness character, the periodic nature, and
the asymptotic behavior of the solution {xn}∞n=−1 of Eq(6.94).

(c) Extend and generalize.
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Open Problem 6.10.15 (The Flour Beetle Model; See [48]). Assume

a ∈ (0, 1), b ∈ (0,∞), and c1, c2 ∈ [0,∞) with c1 + c2 > 0.

Obtain necessary and sufficient conditions for the global asymptotic stability of the Flour
Beetle Model:

xn+1 = axn + bxn−2e−c1xn−c2xn−2 , n = 0, 1, . . .

with positive initial conditions.

Open Problem 6.10.16 (A Population Model) Assume

α ∈ (0, 1) and β ∈ (1,∞).

Investigate the global character of all positive solutions of the system

xn+1 = αxne−yn + β

yn+1 = αxn(1− e−yn)











, n = 0, 1, . . . .

which may be viewed as a population model.

Open Problem 6.10.17 Assume that

p, q ∈ [0,∞) and k ∈ {2, 3, . . .}.

Investigate the global behavior of all positive solutions of each of the following difference
equations:

yn+1 =
p + qyn

1 + yn−k
, n = 0, 1, . . . (6.95)

yn+1 =
yn + p

yn + qyn−k
, n = 0, 1, . . . (6.96)

yn+1 =
p + qyn−k

1 + yn
, n = 0, 1, . . . (6.97)

yn+1 =
p + yn−k

qyn + yn−k
, n = 0, 1, . . . (6.98)

yn+1 =
yn + pyn−k

yn + q
, n = 0, 1, . . . (6.99)

yn+1 =
pyn + yn−k

q + yn−k
, n = 0, 1, . . . (6.100)

yn+1 =
pyn + yn−k

qyn + yn−k
, n = 0, 1, . . . . (6.101)
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Open Problem 6.10.18 Obtain a general result for an equation of the form

yn+1 = f(yn, yn−1), n = 0, 1, . . .

which extends and unifies the global asymptotic stability results for Eqs(6.11) and (6.27).

Open Problem 6.10.19 Assume that every positive solution of an equation of the form

xn+1 = f(xn, xn−1), n = 0, 1, . . . (6.102)

converges to a period-two solution. Obtain necessary and sufficient conditions on f so
that every positive solution of the equation

xn+1 = f(xn−2, xn−1), n = 0, 1, . . . (6.103)

also converges to a period-two solution.
Extend and generalize.

Open Problem 6.10.20 Assume that Eq(6.102) has a two cycle which is locally asymp-
totically stable. Obtain necessary and sufficient conditions on f so that the same two
cycle is a locally asymptotically stable solution of Eq(6.103).



Chapter 7

(1, 3)-Type Equations

7.1 Introduction

Eq(1) contains the following three equations of the (1, 3)-type:

xn+1 =
α

A + Bxn + Cxn−1
, n = 0, 1, . . . (7.1)

xn+1 =
βxn

A + Bxn + Cxn−1
, n = 0, 1, . . . (7.2)

and

xn+1 =
γxn−1

A + Bxn + Cxn−1
, n = 0, 1, . . . . (7.3)

Please recall our classification convention in which all the parameters in the above
(1, 3)-type equations are positive and that the initial conditions are nonnegative.

7.2 The Case β = γ = 0 : xn+1 = α
A+Bxn+Cxn−1

This is the (1, 3)-type Eq.(7.1) which by the change of variables

xn =
α
A

yn

reduces to the difference equation

yn+1 =
1

1 + pyn + qyn−1
, n = 0, 1, . . . (7.4)

where
p =

αB
A2 and q =

αC
A2 .
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One can easily see that the positive equilibrium of Eq(7.4) is locally asymptotically stable
for all values of the parameters and that Eq(7.4) has no prime period two solutions.

The following result is now a straightforward consequence of either the stability
trichotomy Theorem 1.4.4, or Theorem 1.4.7 in the interval [0, 1].

Theorem 7.2.1 The positive equilibrium of Eq(7.4) is globally asymptotically stable.

7.3 The Case α = γ = 0 : xn+1 = βxn
A+Bxn+Cxn−1

This is the (1, 3)-type Eq(7.2) which by the change of variables

xn =
A
C

yn

reduces to the difference equation

yn+1 =
yn

1 + pyn + qyn−1
, n = 0, 1, . . . (7.5)

where
p =

β
A

and q =
B
C

.

Eq(7.5) always has zero as an equilibrium point and when

p > 1

it also has the unique positive equilibrium point

y =
p− 1
q + 1

.

The following result is a straightforward consequence of Theorem 1.3.1.

Theorem 7.3.1 Assume
p ≤ 1.

Then the zero equilibrium of Eq(7.5) is globally asymptotically stable.

The following result is a straightforward consequence of Theorem 1.4.2. It also follows
by applying Theorem 1.4.5 in the interval [0, p

q ].

Theorem 7.3.2 Assume that y−1, y0 ∈ (0,∞) and

p > 1.

Then the positive equilibrium of Eq(7.5) is globally asymptotically stable.
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7.4 The Case α = β = 0 : xn+1 = γxn−1
A+Bxn+Cxn−1

This is the (1, 3)-type Eq(7.3) which by the change of variables

xn =
γ
C

yn

reduces to the equation

yn+1 =
yn−1

p + qyn + yn−1
, n = 0, 1, . . . (7.6)

where
p =

A
γ

and q =
B
C

.

Eq(7.6) always has the zero equilibrium and when

p < 1

it also has the unique positive equilibrium

y =
1− p
1 + q

.

The subsequent result is a straightforward application of Theorems 1.1.1 and 1.3.1.

Theorem 7.4.1 (a) The zero equilibrium of Eq(7.6) is globally asymptotically stable
when

p ≥ 1

and is unstable (a repeller) when
p < 1.

(b) Assume that p < 1. Then the positive equilibrium of Eq(7.6) is locally asymptot-
ically stable when

q < 1

and is unstable (a saddle point) when

q > 1.

Concerning prime period-two solutions one can see that Eq(7.6) has a prime period-
two solution

. . . , φ, ψ, φ, ψ, . . .

if and only if
p < 1.
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Furthermore when
p < 1 and q 6= 1

the only prime period-two solution is

. . . , 0, 1− p, 0, 1− p, . . . .

On the other hand, when
p < 1 and q = 1

all prime period-two solutions of Eq(7.6) are given by

. . . , φ, 1− p− φ, φ, 1− p− φ, . . .

with
0 ≤ φ ≤ 1− p and φ 6= 1− p

2
.

Theorem 7.4.2 Assume that

p < 1 and q > 1. (7.7)

Then the period-two solution

. . . , 0, 1− p, 0, 1− p, . . . (7.8)

of Eq(7.6) is locally asymptotically stable.

Proof. It follows from Section 2.6 that here

JT 2

(

0
1− p

)

=





1
p+q(1−p) 0
− q(1−p)

p+q(1−p) p





and in view of (7.7) both eigenvalues of JT 2

(

0
1− p

)

lie in the disk |λ| < 1. Therefore

the prime period-two solution (7.8) is locally asymptotically stable. 2

7.5 Open Problems and Conjectures

Conjecture 7.5.1 Assume
p, q ∈ (0, 1).

Show that every positive solution of Eq(7.6) has a finite limit.
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Conjecture 7.5.2 Assume
p < 1 and q ≥ 1.

Show that every positive solution of Eq(7.6) converges to a, not necessarily prime, period-
two solution.

Open Problem 7.5.1 Assume

p ∈ (0, 1) and q ∈ (1,∞).

Find the basin of attraction of the two cycle

. . . , 0, 1− p, 0, 1− p, . . .

of Eq(7.6).

Open Problem 7.5.2 Investigate the asymptotic character and the periodic nature of
all positive solutions of the difference equation

xn+1 =
xn−2

1 + pxn + qxn−1 + xn−2
, n = 0, 1, . . .

where
p, q ∈ [0,∞).

Extend and generalize.

Open Problem 7.5.3 For each of the equations given below, find the set G of all points
(x−1, x0) ∈ R×R through which the equation is well defined for all n ≥ 0:

xn+1 =
1

1 + xn + xn−1
(7.9)

xn+1 =
xn

1 + xn + xn−1
(7.10)

xn+1 =
xn−1

1 + xn + xn−1
. (7.11)

Now for each of the equations (7.9)-(7.11), let (x−1, x0) ∈ G be an initial point
through which the corresponding equation is well defined for all n ≥ 0, and investigate
the long term-behavior of the solution {xn}∞n=−1.
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Open Problem 7.5.4 Assume that {pn}∞n=0 and {qn}∞n=0 are convergent sequences of
nonnegative real numbers with finite limits,

p = lim
n→∞

pn and q = lim
n→∞

qn.

Investigate the asymptotic behavior and the periodic nature of all positive solutions of
each of the following three difference equations:

yn+1 =
1

1 + pnyn + qnyn−1
, n = 0, 1, . . . (7.12)

yn+1 =
yn

1 + pnyn + qnyn−1
, n = 0, 1, . . . (7.13)

yn+1 =
yn−1

pn + qnyn + yn−1
, n = 0, 1, . . . . (7.14)

Open Problem 7.5.5 Assume that {pn}∞n=0 and {qn}∞n=0 are period-two sequences of
nonnegative real numbers. Investigate the global character of all positive solutions of
Eqs(7.12)-(7.14). Extend and generalize.
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(3, 1)-Type Equations

8.1 Introduction

Eq(1) contains the following three equations of the (1, 3)-type:

xn+1 =
α + βxn + γxn−1

A
, n = 0, 1, . . . (8.1)

xn+1 =
α + βxn + γxn−1

Bxn
, n = 0, 1, . . . (8.2)

and

xn+1 =
α + βxn + γxn−1

Cxn−1
, n = 0, 1, . . . . (8.3)

Please recall our classification convention in which all parameters that appear in these
equations are positive, the initial conditions are nonnegative, and the denominators are
always positive.

Eq(8.1) is a linear difference equation and can be solved explicitly.
Eq(8.2) by the change of the variables

xn = yn +
β
B

,

is reduced to a (2, 2)-type equation of the form of Eq(6.4) (see Section 6.5), namely,

yn+1 =
(α + βγ

B ) + γyn−1

β + Byn
, n = 0, 1, . . . .

Eq(8.3) by the change of the variables

xn = yn +
γ
C

,
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is reduced to a (2, 2)-type equation of the form of Eq(6.2) (see Section 6.3) namely,

yn+1 =
(α + βγ

C ) + βyn

γ + Cyn−1
, n = 0, 1, . . . .

Hence there is nothing else remaining to do about these equations other than to pose
some Open Problems and Conjectures.

8.2 Open Problems and Conjectures

Open Problem 8.2.1 Assume γ > β. Determine the set of initial conditions (x−1, x0) ∈
(0,∞)× (0,∞) through which the solutions of Eq(8.2) are bounded.

Open Problem 8.2.2 (a) Assume γ = β and let

. . . , φ, ψ, φ, ψ, . . . (8.4)

be a period-two solution of Eq(8.2). Determine the basin of attraction of (8.4).

(b) Let {xn}∞n=−1 be a positive solution of Eq(8.2) which converges to (8.4). Determine
the values of φ and ψ in terms of the initial conditions x−1 and x0.

Conjecture 8.2.1 Show that every positive solution of Eq(8.3) converges to the positive
equilibrium of the equation.

Open Problem 8.2.3 Determine the set G of all initial points (x−1, x0) ∈ R × R
through which the equation

xn+1 =
1 + xn + xn−1

xn

is well defined for all n and for these initial points determine the long-term behavior of
the solutions {xn}∞n=−1.

Open Problem 8.2.4 Determine the set G of all initial points (x−1, x0) ∈ R × R
through which the equation

xn+1 =
1 + xn + xn−1

xn−1

is well defined for all n and for these initial points determine the long-term behavior of
the solutions {xn}∞n=−1.
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Open Problem 8.2.5 Assume that {pn}∞n=0 and {qn}∞n=0 are convergent sequences of
nonnegative real numbers with finite limits,

p = lim
n→∞

pn and q = lim
n→∞

qn.

Investigate the asymptotic behavior and the periodic nature of all positive solutions of
each of the following two difference equations:

yn+1 =
pn + xn + xn−1

qnxn
, n = 0, 1, . . . (8.5)

yn+1 =
pn + xn + xn−1

qnxn−1
, n = 0, 1, . . . . (8.6)

Open Problem 8.2.6 Assume that {pn}∞n=0 and {qn}∞n=0 are period-two sequences of
nonnegative real numbers. Investigate the global character of all positive solutions of
Eqs(8.5) and (8.6). Extend and generalize.





Chapter 9

(2, 3)-Type Equations

9.1 Introduction

Eq(1) contains the following three equations of the (2, 3)-type:

xn+1 =
α + βxn

A + Bxn + Cxn−1
, n = 0, 1, . . . (9.1)

xn+1 =
α + γxn−1

A + Bxn + Cxn−1
, n = 0, 1, . . . (9.2)

and

xn+1 =
βxn + γxn−1

A + Bxn + Cxn−1
, n = 0, 1, . . . . (9.3)

Please recall our classification convention in which all the parameters in the above
(2, 3)-type equations are positive and the initial conditions are nonnegative.

9.2 The Case γ = 0 : xn+1 = α+βxn
A+Bxn+Cxn−1

This is the (2, 3)-type Eq(9.1) which by the change of variables

xn =
A
B

yn

reduces to the difference equation

yn+1 =
p + qyn

1 + yn + ryn−1
, n = 0, 1, . . . (9.4)

where
p =

αB
A2 , q =

β
A

, and r =
C
B

.
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(Eq(9.4) was investigated in [51].)
Here we make some simple observations about linearized stability, invariant intervals,

and the convergence of solutions in certain regions of initial conditions.
Eq(9.4) has a unique equilibrium y which is positive and is given by

y =
q − 1 +

√

(q − 1)2 + 4p(r + 1)

2(r + 1)
.

By employing the linearized stability Theorem 1.1.1, we obtain the following result:

Theorem 9.2.1 The equilibrium y of Eq(9.4) is locally asymptotically stable for all
values of the parameters p, q and r.

9.2.1 Boundedness of Solutions

We will prove that all solutions of Eq(9.4) are bounded.

Theorem 9.2.2 Every solution of Eq(9.4) is bounded from above and from below by
positive constants.

Proof. Let {yn} be a solution of Eq(9.4). Clearly, if the solution is bounded from above
by a constant M , then

yn+1 ≥
p

1 + (1 + r)M

and so it is also bounded from below. Now assume for the sake of contradiction that the
solution is not bounded from above. Then there exists a subsequence {y1+nk}∞k=0 such
that

lim
k→∞

nk = ∞, lim
k→∞

y1+nk = ∞, and y1+nk = max{yn : n ≤ nk} for k ≥ 0.

From (9.4) we see that
yn+1 < qyn + p for n ≥ 0

and so
lim
k→∞

ynk = lim
k→∞

ynk−1 = ∞.

Hence for sufficiently large k,

0 < y1+nk − ynk =
p + [(q − 1)− ynk − rynk−1]ynk

1 + ynk + rynk−1
< 0

which is a contradiction and the proof is complete. 2

The above proof has an advantage that extends to several equations of the form
of Eq(9.1) with nonnegative parameters. The boundedness of solutions of the special
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equation (9.4) with positive parameters immediately follows from the observation that
if

M = max{1, p, q}

then
yn+1 ≤

M + Myn

1 + yn
= M for n ≥ 0.

9.2.2 Invariant Intervals

The following result, which can be established by direct calculation, gives a list of in-
variant intervals for Eq(9.4). Recall that I is an invariant interval, if whenever,

yN , yN+1 ∈ I for some integer N ≥ 0,

then
yn ∈ I for n ≥ N.

Lemma 9.2.1 Eq(9.4) possesses the following invariant intervals:

(a)


0,
q − 1 +

√

(q − 1)2 + 4p

2



 , when p ≤ q;

(b)
[

p− q
qr

, q
]

, when q < p < q(rq + 1);

(c)
[

q,
p− q
qr

]

, when p > q(rq + 1).

Proof.

(a) Set

g(x) =
p + qx
1 + x

and b =
q − 1 +

√

(q − 1)2 + 4p

2
and observe that g is an increasing function and g(b) ≤ b. Using Eq(9.4) we see
that when yk−1, yk ∈ [0, b], then

yk+1 =
p + qyk

1 + yk + ryk−1
≤ p + qyk

1 + yk
= g(yk) ≤ g(b) ≤ b.

The proof follows by induction.
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(b) It is clear that the function

f(x, y) =
p + qx

1 + x + ry

is increasing in x for y > p−q
qr . Using Eq(9.4) we see that when yk−1, yk ∈

[

p−q
qr , q

]

,
then

yk+1 =
p + qyk

1 + yk + ryk−1
= f(yk, yk−1) ≤ f

(

q,
p− q
qr

)

= q.

Also by using the condition p < q(rq + 1) we obtain

yk+1 =
p + qyk

1 + yk + ryk−1
= f(yk, yk−1) ≥ f

(

p− q
qr

, q
)

=
q(pr + p− q)

(rq)2 + rq + p− q
>

p− q
qr

.

The proof follows by the induction.

(c) It is clear that the function

f(x, y) =
p + qx

1 + x + ry

is decreasing in x for y < p−q
qr . Using Eq(9.4) we see that when yk−1, yk ∈

[

q, p−q
qr

]

,
then

yk+1 =
p + qyk

1 + yk + ryk−1
= f(yk, yk−1) ≥ f

(

p− q
qr

,
p− q
qr

)

= q.

Also by using the condition p > q(rq + 1) we obtain

yk+1 =
p + qyk

1 + yk + ryk−1
= f(yk, yk−1) ≤ f(q, q) =

p + q2

1 + (r + 1)q
<

p− q
qr

.

The proof follows by induction.

2

9.2.3 Semicycle Analysis

Let {yn}∞n=−1 be a solution of Eq(9.4). Then the following identitites are true for n ≥ 0:

yn+1 − q =
qr(p−q

qr − yn−1)

1 + yn + ryn−1
, (9.5)

yn+1 −
p− q
qr

=
qr

(

q − p−q
qr

)

yn + qr
(

yn−1 − p−q
qr

)

+ pr(q − yn−1)

qr(1 + yn + ryn−1)
, (9.6)

yn − yn+4 =



9.2. The Case γ = 0 : xn+1 = α+βxn
A+Bxn+Cxn−1

145

qr
(

yn − p−q
qr

)

yn+1 + (yn − q)(yn+1yn+3 + yn+3 + yn+1 + rynyn+3) + yn + ry2
n − p

(1 + yn+3)(1 + yn+1 + ryn) + r(p + qyn+1)
,

(9.7)

yn+1 − y =
(y − q)(y − yn) + yr(y − yn−1)

1 + yn + ryn−1
. (9.8)

The proofs of the following two lemmas are straightforward consequences of the Identities
(9.5)- (9.8) and will be omitted.

Lemma 9.2.2 Assume
p > q(qr + 1)

and let {yn}∞n=−1 be a solution of Eq(9.4). Then the following statements are true:

(i) If for some N ≥ 0, yN > p−q
qr , then yN+2 < q;

(ii) If for some N ≥ 0, yN = p−q
qr , then yN+2 = q;

(iii) If for some N ≥ 0, yN < p−q
qr , then yN+2 > q;

(iv) If for some N ≥ 0, q < yN < p−q
qr , then q < yN+2 < p−q

qr ;

(v) If for some N ≥ 0, y ≥ yN−1 and y ≥ yN , then yN+1 ≥ y;

(vi) If for some N ≥ 0, y < yN−1 and y < yN , then yN+1 < y;

(vii) q < y < p−q
qr .

Lemma 9.2.3 Assume
q < p < q(qr + 1)

and let {yn}∞n=−1 be a solution of Eq(9.4). Then the following statements are true:

(i) If for some N ≥ 0, yN < p−q
qr , then yN+2 > q;

(ii) If for some N ≥ 0, yN = p−q
qr , then yN+2 = q;

(iii) If for some N ≥ 0, yN > p−q
qr , then yN+2 < q;

(iv) If for some N ≥ 0, yN > p−q
qr and yN < q then q > yN+2 > p−q

qr ;

(v) p−q
qr < y < q.
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Lemma 9.2.4 Assume
p = q(qr + 1)

and let {yn}∞n=−1 be a solution of Eq(9.4). Then

yn+1 − q =
qr

1 + yn + ryn−1
(q − yn−1). (9.9)

Furthermore when qr < 1, then
lim

n→∞
yn = y. (9.10)

Proof. Identity (9.9) follows by straightforward computation. The limit (9.10) is a
consequence of the fact that in this case qr ∈ (0,∞) and Eq(9.4) has no period-two
solution. 2

Here we present a semicycle analysis of the solutions of Eq(9.4) when p = q(1 + rq).
In this case Eq(9.4) becomes

yn+1 =
q + rq2 + qyn

1 + yn + ryn−1
, n = 0, 1, . . .

and the only equilibrium point is y = q.

Theorem 9.2.3 Suppose that p = q + rq2 and let {yn}∞n=−1 be a nontrivial solution of
Eq(9.4). Then this solution is oscillatory and the sum of the lengths of two consecutive
semicycles, excluding the first, is equal to four. More precisely, the following statements
are true for all k ≥ 0:

(i)
y−1 > q and y0 ≤ q =⇒ y4k−1 > q, y4k ≤ 1, y4k+1 < q, and y4k+2 ≥ q;

(ii)
y−1 < q and y0 ≥ q =⇒ y4k−1 < q, y4k ≥ 1, y4k+1 > q, and y4k+2 ≤ q;

(iii)
y−1 > q and y0 ≥ q =⇒ y4k−1 > q, y4k ≥ 1, y4k+1 < q, and y4k+2 ≤ q;

(iv)
y−1 < q and y0 ≤ q =⇒ y4k−1 < q, y4k ≤ 1, y4k+1 > q, and y4k+2 ≥ q.

Proof. The proof follows from identity (9.5). 2
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9.2.4 Global Asymptotic Stability

The following lemma establishes that when p 6= q(qr + 1), every solution of Eq(9.4)
is eventually trapped into one of the three invariant intervals of Eq(9.4) described in
Lemma 9.2.1. More precisely, the following is true:

Lemma 9.2.5 Let I denote the interval which is defined as follows:

I =



































[0, q−1+
√

(q−1)2+4p
2 ] if p ≤ q;

[p−q
qr , q] if q < p < q(qr + 1);

[q, p−q
qr ] if p > q(qr + 1).

Then every solution of Eq(9.4) lies eventually in I.

Proof. Let {yn}∞n=−1 be a solution of Eq(9.4). First assume that

p ≤ q.

Then clearly, y ∈ I. Set

b =
q − 1 +

√

(q − 1)2 + 4p

2
and observe that

yn+1 − b =
(q − p)(yn − b)− r(p + qb)yn−1

(1 + yn + ryn−1)(1 + b)
, n ≥ 0.

Hence, if for some N , yN ≤ b, then yN+1 < b. Now assume for the sake of contradiction
that

yn > b for n > 0.

Then yn > y for n ≥ 0 and so
lim

n→∞
yn = y ∈ I

which is a contradiction.
Next assume that

q < p < q(qr + 1)

and, for the sake of contradiction, also assume that the solution {yn}∞n=−1 is not even-
tually in the interval I. Then by Lemma 9.2.3, there exists N > 0 such that one of the
following three cases holds:

(i) yN > q, yN+1 > q, and yN+2 < p−q
qr ;

(ii) yN > q, yN+1 < p−q
qr , and yN+2 < p−q

qr ;
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(iii) yN > q, p−q
qr ≤ yN+1 ≤ q, and yN+2 < p−q

qr .

Also observe that
if yN ≥ q, then yN + ry2

N − p > 0
and
if yN ≤ p−q

qr , then yN + ry2
N − p < 0.

The desired contradiction is now obtained by using the Identity (9.7) from which it
follows that for j ∈ {0, 1, 2, 3}, each subsequence {yn+4k+j}∞k=0 with all its terms outside
the interval I converges monotonically and enters in the interval I.

The proof when
p > q(qr + 1)

is similar and will be omitted. 2

By using the monotonic character of the function

f(x, y) =
p + qx

1 + x + ry

in each of the intervals in Lemma 9.2.1, together with the appropriate convergence
Theorems 1.4.7 and 1.4.5, we can obtain some global asymptotic stability results for the
solutions of Eq(9.4). For example, the following results are true for Eq(9.4):

Theorem 9.2.4 (a) Assume that either

p ≥ q + q2r,

or
p <

q
1 + r

.

Then the equilibrium y of Eq(9.4) is globally asymptotically stable.

(b) Assume that either
p ≤ q

or
q < p < q + q2r

and that one of the following conditions is also satisfied:

(i) q ≤ 1;

(ii) r ≤ 1;

(iii) r > 1 and (q − 1)2(r − 1) ≤ 4p.

Then the equilibrium y of Eq(9.4) is globally asymptotically stable.

Proof.
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(a) The proof follows from Lemmas 9.2.1 and 9.2.4 and Theorems 1.4.7 and 1.4.2.

(b) In view of Lemma 9.2.1 we see that when y−1, y0 ∈
[

0, q−1+
√

(q−1)2+4p
2

]

, then yn ∈
[

0, q−1+
√

(q−1)2+4p
2

]

for all n ≥ 0. It is easy to check that y ∈
[

0, q−1+
√

(q−1)2+4p
2

]

and that in the interval
[

0, q−1+
√

(q−1)2+4p
2

]

, the function f increases in x and

decreases in y.

We will employ Theorem 1.4.5 and so it remains to be shown that if

m = f(m,M) and M = f(M,m)

then M = m. This system has the form

m =
p + qm

1 + m + rM
and M =

p + qM
1 + M + rm

.

Hence (M −m)(1− q + M + m) = 0. Now if m + M 6= q − 1, then M = m. For
instance, this is the case if Condition (i) is satisfied. If m + M = q − 1 then m
and M satisfy the equation

(r − 1)m2 + (r − 1)(1− q)m + p = 0.

Clearly now if Condition (ii) or (iii) is satisfied, m = M from which the result
follows.

The proof when q < p < q + q2r holds follows from Lemma 9.2.1 and Theorem
1.4.5.

2

9.3 The Case β = 0 : xn+1 = α+γxn−1
A+Bxn+Cxn−1

This is the (2, 3)-type Eq(9.2) which by the change of variables

xn =
A
B

yn

reduces to the difference equation

yn+1 =
p + qyn−1

1 + yn + ryn−1
, n = 0, 1, . . . (9.11)

where
p =

αB
A2 , q =

γ
A

, and r =
C
B

.
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This equation has not been investigated yet. Here we make some simple observations
about linearized stability, invariant intervals, and the convergence of solutions in certain
regions of initial conditions.

Eq(9.11) has a unique equilibrium y which is positive and is given by

y =
q − 1 +

√

(q − 1)2 + 4p(r + 1)

2(r + 1)
.

By employing the linearized stability Theorem 1.1.1 we obtain the following result.

Theorem 9.3.1 (a) The equilibrium y of Eq(9.11) is locally asymptotically stable when
either

q ≤ 1

or
q > 1 and (r − 1)(q − 1)2 + 4pr2 > 0.

(b) The equilibrium y of Eq(9.11) is unstable, and more precisely a saddle point,
when

q > 1 and (r − 1)(q − 1)2 + 4pr2 < 0. (9.12)

9.3.1 Existence and Local Stability of Period-Two Cycles

Let
. . . , φ, ψ, φ, ψ, . . .

be a period-two cycle of Eq(9.11). Then

φ =
p + qφ

1 + ψ + rφ
and ψ =

p + qψ
1 + φ + rψ

.

It now follows after some calculation that the following result is true.

Lemma 9.3.1 Eq(9.11) has a prime period-two solution

. . . , φ, ψ, φ, ψ, . . .

if and only if (9.12) holds.
Furthermore when (9.12) holds, the period-two solution is “unique” and the values

of φ and ψ are the positive roots of the quadratic equation

t2 − q − 1
r

t +
p

1− r
= 0.
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To investigate the local stability of the two cycle

. . . , φ, ψ, φ, ψ, . . .

we set
un = yn−1 and vn = yn, for n = 0, 1, . . .

and write Eq(9.11) in the equivalent form:

un+1 = vn

vn+1 = p+qun
1+vn+run

, n = 0, 1, . . . .

Let T be the function on (0,∞)× (0,∞) defined by:

T
(

u
v

)

=
(

v
p+qu

1+v+ru

)

.

Then
(

φ
ψ

)

is a fixed point of T 2, the second iterate of T . By a simple calculation we find that

T 2

(

u
v

)

=
(

g(u, v)
h(u, v)

)

where
g(u, v) =

p + qu
1 + v + ru

and h(u, v) =
p + qv

1 + g(u, v) + rv
.

Clearly the two cycle is locally asymptotically stable when the eigenvalues of the

Jacobian matrix JT 2 , evaluated at
(

φ
ψ

)

, lie inside the unit disk.

We have

JT 2

(

φ
ψ

)

=







∂g
∂u(φ, ψ) ∂g

∂v (φ, ψ)

∂h
∂u(φ, ψ) ∂h

∂v (φ, ψ)





 ,

where

∂g
∂u

(φ, ψ) =
q − pr + qψ

(1 + ψ + rφ)2 ,

∂g
∂v

(φ, ψ) =
−p− qφ

(1 + ψ + rφ)2 ,
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∂h
∂u

(φ, ψ) =
(p + qψ)(pr − q − qψ)

(1 + ψ + rφ)2(1 + φ + rψ)2 ,

∂h
∂v

(φ, ψ) =
(p + qψ)(p + qφ)

(1 + ψ + rφ)2(1 + φ + rψ)2 +
q − pr + qφ

(1 + φ + rψ)2 .

Set
S =

∂g
∂u

(φ, ψ) +
∂h
∂v

(φ, ψ)

and
D =

∂g
∂u

(φ, ψ)
∂h
∂v

(φ, ψ)− ∂g
∂v

(φ, ψ)
∂h
∂u

(φ, ψ).

Then it follows from Theorem 1.1.1 that both eigenvalues of JT 2

(

φ
ψ

)

lie inside the

unit disk |λ| < 1, if and only if

|S| < 1 +D < 2. (9.13)

Inequality (9.13) is equivalent to the following three inequalities:

D < 1 (9.14)

S < 1 +D (9.15)

−1−D < S. (9.16)

First we will establish Inequality (9.14). This inequality is equivalent to

(q − pr + qφ) (q − pr + qψ)− (1 + ψ + rφ)2 (1 + φ + rψ)2 < 0.

Observe that,

(q − pr + qφ) (q − pr + qψ) = (q − pr)2 + q(q − pr)(φ + ψ) + q2φψ =

=
−2q2r + q2r2 + 3qpr2 − 2qpr3 − p2r3 + p2r4 − q3 + rq3 + q2 − pr2q2 − qpr

r (−1 + r)

and that
(1 + ψ + rφ)2 (1 + φ + rψ)2

=
(

1 + φ + rψ + ψ + ψφ + rψ2 + rφ + φ2r + r2φψ
)2

=
(

−pr2 + qr + pr − q + q2

r

)2

.

Thus
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(q − pr + qφ) (q − pr + qψ)− (1 + ψ + rφ)2 (1 + φ + rψ)2

=
−pr3q2 + 2q2r − q2r2 − q2 + 3p2r3 − 2p2r4 − 3rq3 + 3qpr3 − 5qpr2

r2 (1− r)

+
2qpr + 4pr2q2 + 2q3 + q4r − p2r2 − 2prq2 − q4 + r2q3

r2 (1− r)

=
(2r2p− rp + q − q2 − qr + q2r) (−r2p + rp− q + q2 + qr)

r2(1− r)
.

Note that

−r2p + rp− q + q2 + qr = rp(1− r) + q(q − 1) + qr > 0.

Also by using Condition (9.12) we see that

(r − 1)(q − 1)2 + 4pr2 = q2r − 2qr + r − q2 + 2q − 1 + 4r2p < 0

and so

2r2p− rp + q − q2 − qr + q2r < 2r2p− rp + q − qr + 2qr − r − 2q + 1− 4r2p

= −2r2p− rp− q + qr − r + 1 = −2r2p− rp + (r − 1) (q − 1) < 0

from which the result follows.
Next we turn to Inequality (9.15). This inequality is equivalent to

(q − pr + qψ)(1 + φ + rψ)2 + (p + qψ)(p + qφ) + (q − pr + qφ)(1 + ψ + rφ)2

− (q − pr + qφ) (q − pr + qψ)− (1 + ψ + rφ)2(1 + φ + rψ)2 < 0.

After some lengthy calculation one can see that this inequality is a consequence of
Condition (9.12).

Finally Inequality (9.16) is equivalent to

(q − pr + qψ)(1 + φ + rψ)2 + (p + qψ)(p + qφ) + (q − pr + qφ)(1 + ψ + rφ)2

+ (q − pr + qφ) (q − pr + qψ) + (1 + ψ + rφ)2(1 + φ + rψ)2 > 0.

After some lengthy calculation one can see that this inequality is also a consequence
of Condition (9.12).

In summary, we have established the following result:
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Theorem 9.3.2 Eq(9.11) has a unique prime period-two solution

. . . , φ, ψ, φ, ψ, . . .

if and only if (9.12) holds.
Furthermore when (9.12) holds, this period-two solution is locally asymptotically sta-

ble.

9.3.2 Invariant Intervals

The following result, which can be established by direct calculation, gives a list of in-
variant intervals for Eq(9.11).

Lemma 9.3.2 Eq(9.11) possesses the following invariant intervals:

(a)


0,
q − 1 +

√

(q − 1)2 + 4pr

2r



 when pr ≤ q;

(b)
[

pr − q
q

,
q
r

]

when 1 < q < pr < q +
q2

r
− q

r
;

(c)
[

q
r
,
pr − q

q

]

when pr ≥ q +
q2

r
.

Proof.

(a) Set

g(x) =
p + qx
1 + rx

and b =
q − 1 +

√

(q − 1)2 + 4pr

2r

and observe that g is an increasing function and g(b) ≤ b. Using Eq(9.11) we see
that when yk−1, yk ∈ [0, b], then

yk+1 =
p + qyk−1

1 + yk + qyk−1
≤ p + qyk−1

1 + ryk−1
= g(yk−1) ≤ g(b) ≤ b.

The proof follows by induction.
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(b) It is clear that the function

f(x, y) =
p + qy

1 + x + ry

is increasing in y for x > pr−q
q . Using Eq(9.11) we see that when yk−1, yk ∈

[

pr−q
q , q

r

]

,
then

yk+1 =
p + qyk−1

1 + yk + ryk−1
= f(yk, yk−1) ≥ f

(

q
r
,
pr − q

q

)

≥ pr − q
q

.

Now by using the monotonic character of the function f(x, y) and the condition
q < pr < q + q2

r we obtain

yk+1 =
p + qyk−1

1 + yk + ryk−1
= f(yk, yk−1) ≤ f

(

pr − q
q

,
q
r

)

=
q
r
.

The proof follows by induction.

(c) It is clear that the function

f(x, y) =
p + qy

1 + x + ry

is decreasing in y for x < pr−q
q . Using Eq(9.11) we see that when yk−1, yk ∈

[

q
r ,

pr−q
q

]

, then

yk+1 =
p + qyk−1

1 + yk + qyk−1
= f(yk, yk−1) ≥ f

(

pr − q
q

,
pr − q

q

)

=
q
r
.

By using the fact that f(x, y) is decreasing in both arguments and the condition
pr > q + q

r2 we obtain

yk+1 =
p + qyk−1

1 + yk + qyk−1
= f(yk, yk−1) ≤ f

(q
r
,
q
r

)

=
pr + q2

r + (r + 1)q
<

pr − q
q

.

The proof follows by induction.

2
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9.3.3 Convergence of Solutions

By using the monotonic character of the function

f(x, y) =
p + qy

1 + x + ry

in each of the intervals in Lemma 9.3.2, together with the appropriate convergence
theorem (from among Theorems 1.4.5-1.4.8) we can obtain some convergence results for
the solutions with initial conditions in the invariant intervals. For example, the following
results are true for Eq(9.11):

Theorem 9.3.3 Assume that
pr ≤ q

and that one of the following conditions is also satisfied:

(i) q ≤ 1;

(ii) r ≥ 1;

(iii) r < 1 and (r − 1)(q − 1)2 + 4pr2 ≥ 0.

Then every solution of Eq(9.11) with initial conditions in the invariant interval



0,
q − 1 +

√

(q − 1)2 + 4pr

2r





converges to the equilibrium y.

Proof. In view of Lemma 9.3.2 we see that when y−1, y0 ∈
[

0, q−1+
√

(q−1)2+4pr
2r

]

, then

yn ∈
[

0, q−1+
√

(q−1)2+4pr
2r

]

for all n ≥ 0. It is easy to check that y ∈
[

0, q−1+
√

(q−1)2+4pr
2r

]

and that in the interval
[

0, q−1+
√

(q−1)2+4pr
2r

]

the function f decreases in x and increases

in y. The result now follows by employing Theorem 1.4.6.
2

Theorem 9.3.4 (a) Assume that 1 < q < pr < q+ q2

r −
q
r and that one of the following

conditions is also satisfied:

(i) r ≥ 1;

(ii) r < 1 and (r − 1)(q − 1)2 + 4pr2 ≥ 0.
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Then every solution of Eq(9.11) with initial conditions in the invariant interval
[

pr − q
q

,
q
r

]

converges to the equilibrium y.

(b) Assume that pr > q + q2

r . Then every solution of Eq(9.11) with initial conditions
in the invariant interval

[

q
r
,
pr − q

q

]

converges to the equilibrium y.

Proof.

(a) In view of Lemma 9.3.2 we conclude that yn ∈
[

pr−q
q , q

r

]

for all n ≥ 0. It is easy to

check that y ∈
[

pr−q
q , q

r

]

and that the function f(x, y) decreases in x and increases
in y. The result now follows by employing Theorem 1.4.6.

(b) In view of Lemma 9.3.2 we conclude that yn ∈
[

q
r ,

pr−q
q

]

for all n ≥ 0. It is easy to

check that y ∈
[

q
r ,

pr−q
q

]

and that in the interval
[

q
r ,

pr−q
q

]

the function f decreases
in both x and in y. The result now follows by employing Theorem 1.4.7.

2

9.3.4 Global Stability

By applying Theorem 1.4.3 to Eq(9.11), we obtain the following global asymptotic sta-
bility result.

Theorem 9.3.5 Assume
r ≥ 1 and pr ≤ q.

Then the positive equilibrium of Eq(9.11) is globally asymptotically stable.

9.3.5 Semicycle Analysis When pr = q + q2

r

Here we present a semicycle analysis of the solutions of Eq(9.11) when pr = q + q2

r . In
this case Eq(9.11) becomes

yn+1 =
qr + q2 + qr2yn−1

r2 + r2yn + r3yn−1
, n = 0, 1, . . .

and the only positive equilibrium is y = q
r .
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Theorem 9.3.6 Suppose that pr = q + q2

r and let {yn}∞n=−1 be a nontrivial solution of
Eq(9.11). Then after the first semicycle, the solution oscillates about the equilibrium y
with semicycles of length one.

Proof. The proof follows from the relation

yn+1 −
q
r

= (
q
r
− yn)

qr2

r3(1 + yn + ryn−1)
.

2

9.4 The Case α = 0 : xn+1 = βxn+γxn−1
A+Bxn+Cxn−1

This is the (2, 3)-type Eq(9.3) which by the change of variables

xn =
γ
C

yn,

reduces to the difference equation

yn+1 =
pyn + yn−1

r + qyn + yn−1
, n = 0, 1, . . . (9.17)

where
p =

β
γ

, q =
B
C

, and r =
A
γ

.

This equation has not been investigated yet. Here we make some simple observations
about linearized stability, invariant intervals, and the convergence of solutions in certain
regions of initial conditions.

The equilibrium points of Eq(9.17) are the nonnegative solutions of the equation

y =
(p + 1)y

r + (1 + q)y
.

Hence zero is always an equilibrium point and when

p + 1 > r, (9.18)

Eq(9.17) also possesses the unique positive equilibrium

y =
p + 1− r

q + 1
.

The following theorem is a consequence of Theorem 1.1.1 and Theorem 1.3.1.
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Theorem 9.4.1 (a) Assume that
p + 1 ≤ r.

Then the zero equilibrium of Eq(9.17) is globally asymptotically stable.

(b) Assume that
p + 1 > r.

Then the zero equilibrium of Eq(9.17) is unstable. Furthermore the zero equilibrium
is a saddle point when

1− p < r < 1 + p

and a repeller when
r < 1− p.

The linearized equation associated with Eq(9.17) about its positive equilibrium y is

zn+1 −
p− q + qr

(p + 1)(q + 1)
zn −

q − p + r
(p + 1)(q + 1)

zn−1 = 0, n = 0, 1, . . . .

The following result is a consequence of Theorem 1.1.1.

Theorem 9.4.2 Assume that (9.18) holds. Then the positive equilibrium of Eq(9.17)
is locally asymptotically stable when

q + r < 3p + 1 + qr + pq, (9.19)

and unstable (a saddle point) when

q + r > 3p + 1 + qr + pq. (9.20)

Concerning prime period-two solutions for Eq(9.17), it follows from Section 2.5 that the
following result is true.

Theorem 9.4.3 Eq(9.17) has a prime period-two solution

. . . φ, ψ, φ, ψ, . . .

if and only if (9.20) holds. Furthermore when (9.20) holds there is a unique period-two
solution and the values of φ and ψ are the positive roots of the quadratic equation

t2 − (1− p− r)t +
p(1− p− r)

q − 1
= 0.
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9.4.1 Invariant Intervals

The following result, which can be established by direct calculation, gives a list of in-
variant intervals for Eq(9.17).

Lemma 9.4.1 Eq(9.17) possesses the following invariant intervals:

(a)
[

0,
p + q − r

q + 1

]

when p = q2 and q2 + q > r

and
[0, K] when p = q2 and q2 + q ≤ r,

where K > 0 is an arbitrary number;

(b)
[

0,
qr

p− q2

]

when q2 < p ≤ q2 + r and p + q > r,

[0, K] when q2 < p ≤ q2 + r and p + q ≤ r,

where K > 0 is an arbitrary number

and

[

qr
p− q2 , K1

]

when p > q2 + r

where

K1 =
(q − r)(p− q2)− qr +

√

((r − q)(p− q2) + qr)2 + 4q3r(p− q2)

2q(p− q2)
;

(c)
[

0,
pr

q2 − p

]

when q2 − qr ≤ p < q2 and p + q > r,

[0, K] when q2 − qr ≤ p < q2 and p + q ≤ r,

where K > 0 is an arbitrary number

and

[

pr
q2 − p

,K2

]

when q2 > p + qr,

where

K2 =
(q − r)(q2 − p) +

√

((q − r)(q2 − p))2 + 4p3qr2

2pqr
.
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Proof.

(a) It is easy to see that when p = q2 the function

f(x, y) =
px + qy

r + qx + y
is increasing in both arguments. Therefore for any K > 0,

0 ≤ f(x, y) ≤ f(K, K).

Now observe that the inequality f(K,K) ≤ K is equivalent to q2+q−r ≤ (q+1)K.
When q2 + q ≤ r, this inequality is satisfied for any K > 0, while when q2 + q > r
the inequality is true when

K ≥ p + q − r
q + 1

.

(b) It is clear that the function f(x, y) is increasing in both arguments for x < qr
p−q2 ,

and it is increasing in x and decreasing in y for x ≥ qr
p−q2 .

First assume that q2 < p ≤ q2 + r .

Hence for yk−1, yk ∈
[

0, qr
p−q2

]

we obtain

yk+1 = f(yk, yk−1) ≤ f(K, K) = (p + q)K
1

r + (q + 1)K
≤ K,

where we set K = qr
p−q2 . The last inequality is always satisfied when p + q ≤ r and

when p + q > r, it is satisfied under the condition r + q2 > p.

Second assume that p > q2 + r.

Then for yk−1, yk ∈
[

qr
p−q2 , K1

]

we can see that

f
(

qr
p− q2 , K1

)

≤ yk+1 = f(yk, yk−1) ≤ f(K1,
qr

p− q2 ) ≤ K1.

(c) It is clear that the function f(x, y) is increasing in both arguments for y < pr
q2−p ,

and it is increasing in y and decreasing in x for y ≥ pr
q2−p .

First assume that q2 − qr ≤ p < q2.

Then one can see that for yk−1, yk ∈
[

0, pr
q2−p

]

we obtain

yk+1 = f(yk, yk−1) ≤ f(K,K) = (p + q)K
1

r + (q + 1)K
≤ K,

with K = pr
q2−p .

Second assume that p < q2 − qr. Then for yk−1, yk ∈
[

pr
q2−p , K2

]

one can see that

f
(

pr
q2 − p

, K2

)

≤ yk+1 = f(yk, yk−1) ≤ f
(

K2,
pr

q2 − p

)

≤ K2.

2
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9.4.2 Convergence of Solutions

By using the monotonic character of the function

f(x, y) =
px + qy

r + qx + y

in each of the intervals in Lemma 9.4.1, together with the appropriate convergence
theorem (from among Theorems 1.4.5-1.4.8), we can obtain some convergence results
for the solutions with initial conditions in the invariant intervals. For example, the
following results are true for Eq(9.17):

Theorem 9.4.4 (a) Assume that p = q2 and q2 + q > r. Then every solution of
Eq(9.17) with initial conditions in the invariant interval

[

0,
q2 + q − r

q + 1

]

converges to the equilibrium y.

Assume that p = q2 and q2 + q ≤ r. Then every solution of Eq(9.17) with initial
conditions in the interval [0, K], for any K > 0, converges to the equilibrium y.

(b) Assume that q2 + r ≥ p > q2 and p + q > r. Then every solution of Eq(9.17) with
initial conditions in the invariant interval

[

0,
qr

p− q2

]

converges to the equilibrium y.

Assume that q2 + r ≥ p > q2 and p + q ≤ r. Then every solution of Eq(9.17) with
initial conditions in the interval [0, K], for any K > 0, converges to the equilibrium
y.

(c) Assume that q2− qr ≥ p < q2 and p+ q > r. Then every solution of Eq(9.17) with
initial conditions in the invariant interval

[

0,
pr

q2 − p

]

converges to the equilibrium y.

Assume that q2− qr ≤ p < q2 and p+ q ≤ r. Then every solution of Eq(9.17) with
initial conditions in the interval [0, K], for any K > 0, converges to the equilibrium
y.

Proof. The proof is an immediate consequence of Lemma 9.4.1 and Theorem 1.4.8.
2
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Theorem 9.4.5 Assume that
p > q2 + r

and that one of the following conditions is also satisfied:

(i) p ≤ q + r;

(ii) q ≥ 1;

(iii) q < 1 and p ≤ 3q2+q−qr+r
1−q .

Then every solution of Eq(9.11) with initial conditions in the invariant interval
[

qr
p−q2 , K1

]

converges to the equilibrium y.

Proof. The proof is a consequence of Lemma 9.4.1 and Theorem 1.4.5.
2

Theorem 9.4.6 Assume that q2 > p + qr and that Condition (9.20) is not satis-
fied. Then every solution of Eq(9.11) with initial conditions in the invariant interval
[

qr
p−q2 , K2

]

converges to the equilibrium y.

Proof. The proof is an immediate consequence of Lemma 9.4.1 and Theorem 1.4.6.
2

9.5 Open Problems and Conjectures

Conjecture 9.5.1 Assume
α, β,A, B, C ∈ (0,∞).

Show that every positive solution of Eq(9.1) has a finite limit.

Conjecture 9.5.2 Assume
α, γ, A,B,C ∈ (0,∞).

Show that every positive solution of Eq(9.2) is bounded.

Conjecture 9.5.3 Assume
β, γ, A, B, C ∈ (0,∞).

Show that every positive solution of Eq(9.3) is bounded.
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Conjecture 9.5.4 Assume
α, γ, A,B,C ∈ (0,∞)

and suppose that Eq(9.2) has no prime period-two solutions. Show that the positive
equilibrium of Eq(9.2) is globally asymptotically stable.

Conjecture 9.5.5 Assume that x−1, x0 ∈ [0,∞) with x−1 + x0 > 0 and that

β, γ, A, B,C ∈ (0,∞).

Suppose that Eq(9.3) has no prime period-two solutions. Show that the positive equilib-
rium of Eq(9.3) is globally asymptotically stable.

Open Problem 9.5.1 Determine the set G of all initial points (x−1, x0) ∈ R × R
through which the equation

xn+1 =
xn + xn−1

1 + xn + xn−1

is well defined for all n ≥ 0, and for these initial points investigate the long-term behavior
of the solutions {xn}∞n=−1. Extend and generalize.

Open Problem 9.5.2 Determine the set G of all initial points (x−1, x0) ∈ R × R
through which the equation

xn+1 =
1 + xn

1 + xn + xn−1

is well defined for all n ≥ 0, and for these initial points investigate the long-term behavior
of the solutions {xn}∞n=−1. Extend and generalize.

Open Problem 9.5.3 Determine the set G of all initial points (x−1, x0) ∈ R × R
through which the equation

xn+1 =
1 + xn−1

1 + xn + xn−1

is well defined for all n ≥ 0, and for these initial points investigate the long-term behavior
of the solutions {xn}∞n=−1. Extend and generalize.
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Open Problem 9.5.4 Assume that {pn}∞n=0, {qn}∞n=0, and {rn}∞n=0 are convergent se-
quences of nonnegative real numbers with finite limits,

p = lim
n→∞

pn, q = lim
n→∞

qn, and r = lim
n→∞

rn.

Investigate the asymptotic behavior and the periodic nature of all positive solutions of
each of the following three difference equations:

yn+1 =
pn + qnyn

1 + yn + rnyn−1
, n = 0, 1, . . . (9.21)

yn+1 =
pn + qnyn−1

1 + yn + rnyn−1
, n = 0, 1, . . . (9.22)

yn+1 =
pnyn + yn−1

rn + qnyn + yn−1
, n = 0, 1, . . . . (9.23)

Open Problem 9.5.5 Assume that {pn}∞n=0, {qn}∞n=0, and {rn}∞n=0 are period-two se-
quences of nonnegative real numbers. Investigate the global character of all positive
solutions of Eqs(9.21)-(9.23). Extend and generalize.

Open Problem 9.5.6 Assume that (9.12) holds. Investigate the basin of attraction of
the two cycle

. . . , φ, ψ, φ, ψ, . . .

of Eq(9.11).

Open Problem 9.5.7 Assume that (9.20) holds. Investigate the basin of attraction of
the two cycle

. . . , φ, ψ, φ, ψ, . . .

of Eq(9.17).

Conjecture 9.5.6 Assume that (9.20) holds. Show that the period-two solution

. . . , φ, ψ, φ, ψ, . . .

of Eq(9.17) is locally asymptotically stable.
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Open Problem 9.5.8 Assume that

p, q, r ∈ [0,∞) and k ∈ {2, 3, . . .}.

Investigate the global behavior of all positive solutions of each of the following difference
equations:

yn+1 =
p + qyn

1 + yn + ryn−k
, n = 0, 1, . . . (9.24)

yn+1 =
p + qyn−k

1 + yn + ryn−k
, n = 0, 1, . . . (9.25)

yn+1 =
pyn + yn−k

r + qyn + yn−k
, n = 0, 1, . . . . (9.26)



Chapter 10

(3, 2)-Type Equations

10.1 Introduction

Eq(1) contains the following three equations of the (3, 2)-type:

xn+1 =
α + βxn + γxn−1

A + Bxn
, n = 0, 1, . . . (10.1)

xn+1 =
α + βxn + γxn−1

A + Cxn−1
, n = 0, 1, . . . (10.2)

and

xn+1 =
α + βxn + γxn−1

Bxn + Cxn−1
, n = 0, 1, . . . . (10.3)

Please recall our classification convention in which all parameters that appear in these
equations are positive, the initial conditions are nonnegative, and the denominators are
always positive.

10.2 The Case C = 0 : xn+1 = α+βxn+γxn−1
A+Bxn

This is the (3, 2)-type Eq(10.1) which by the change of variables

xn =
A
B

yn

reduces to the difference equation

yn+1 =
p + qyn + ryn−1

1 + yn
, n = 0, 1, . . . (10.4)

where
p =

αB
A2 , q =

β
A

, and r =
γ
A

.

167
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(Eq(10.4) was investigated in [29].)
The linearized equation of Eq(10.4) about its unique equilibrium

y =
q + r − 1 +

√

(q + r − 1)2 + 4p

2

is

zn+1 −
q − p− ry
(1 + y)2 zn −

r
1 + y

zn−1 = 0, n = 0, 1, . . . .

By applying the linearized stability Theorem 1.1.1 we see that y is locally asymptot-
ically stable when

r < 1 + q

and is an unstable (saddle point) equilibrium when

r > 1 + q.

When
r = q + 1

Eq(10.4) possesses prime period-two solutions. See Sections 2.5 and 2.7. The main
result in this section is that the solutions of Eq(10.4) exhibit the following trichotomy
character.

Theorem 10.2.1 (a) Assume that

r = q + 1. (10.5)

Then every solution of Eq(10.4) converges to a period-two solution.

(b) Assume that
r < q + 1. (10.6)

Then the equilibrium of Eq(10.4) is globally asymptotically stable.

(c) Assume that
r > q + 1. (10.7)

Then Eq(10.4) possesses unbounded solutions.

The proof of part (a) of Theorem 10.2.1 was given, for a more general equation, in
Section 2.7. The proofs of parts (b) and (c) of Theorem 10.2.1 are given in Sections
10.2.1 and 10.2.2 below.
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10.2.1 Proof of Part (b) of Theorem 10.2.1

Here we assume that Eq(10.6) holds and we prove that the equilibrium of Eq(10.4) is
globally asymptotically stable. We know already that when Eq(10.6) holds the equilib-
rium is locally asymptotically stable so it remains to be shown that every solution of
Eq(10.4) is attracted to the equilibrium.

Observe that

yn+1 = q +
(p− q) + ryn−1

1 + yn
, n = 0, 1, . . .

and so when
p ≥ q (10.8)

we have
yn ≥ q for n ≥ 1.

Therefore the change of variables
yn = q + zn

transforms Eq(10.4) to the difference equation

zn+1 =
(p + rq − q) + rzn−1

(1 + q) + zn
, n = 1, . . . (10.9)

which is of the form of the (2, 2)-type Eq(6.23) which was investigated in Section 6.5
and therefore the proof is complete when (10.8) holds.

So in the remaining part of the proof we assume that

p < q.

Now observe that the solutions of Eq(10.4) satisfy the following identity

yn+1 − q =
r

1 + yn

(

yn−1 −
q − p

r

)

for n ≥ 0. (10.10)

Note that when
q =

q − p
r

that is when
p + qr − q = 0 (10.11)

the Identity (10.10) reduces to

yn+1 − q =
r

1 + yn
(yn − q) for n ≥ 0. (10.12)

Also in this case
0 < r = 1− p

q
< 1
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and the equilibrium of Eq(10.4) is equal to q.
It follows from (10.12) that

|yn+1 − q| < r|yn+1 − q|

and so
lim

n→∞
yn = q

which completes the proof when (10.11) holds.
Still to be considered are cases where

p + qr − q > 0 (10.13)

and
p + qr − q < 0. (10.14)

First assume that (10.13) holds. To complete the proof in this case it is sufficient to
show that eventually

yn ≥ q (10.15)

and then use the known result for Eq(10.9). To this end, note that now

q − p
r

< q

and employ (10.10). If (10.15) is not eventually true then either

y2n <
q − p

r
for n ≥ 0 (10.16)

or
y2n−1 <

q − p
r

for n ≥ 0. (10.17)

This is because when
yN−1 >

q − p
r

for some N ≥ 0,

then it follows from (10.10) that

yN+1+2K > q for all K ≥ 0.

We will assume that (10.16) holds. The case where (10.17) holds is similar and will be
omitted. Then we can see from (10.10) that

y2n+2 − q =
r

1 + yn+1

(

y2n −
q − p

r

)

> r
(

y2n −
q − p

r

)

and so
y2n+2 > ry2n + p for n ≥ 0. (10.18)
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This is impossible when r ≥ 1, because by (10.16) the solution is bounded. On the other
hand, when r < 1, it follows from (10.16) and (10.18) that

q − p
r

> y2n+2 > rn+1y0 + rnp + . . . + rp + p

and so
q − p

r
≥ p

1− r
which contradicts (10.13) and completes the proof when (10.13) holds.

Next assume that (10.14) holds. Now we claim that every solution of Eq(10.4) lies
eventually in the interval

[

0, q−p
r

]

. Once we establish this result, the proof that the
equilibrium is a global attractor of all solutions would be a consequence of Theorem
1.4.8 and the fact that in this case the function

f(x, y) =
p + qx + ry

1 + x

is increasing in both arguments. To this end assume for the sake of contradiction that
the solution is not eventually in the interval

[

0, q−p
r

]

. Then one can see from (10.10) and
the fact that now

q <
q − p

r
,

that either
y2n >

q − p
r

for n ≥ 0 (10.19)

or
y2n−1 >

q − p
r

for n ≥ 0. (10.20)

We will assume that (10.19) holds. The case where (10.20) holds is similar and will be
omitted. Then from (10.10) we see that

y2n+2 − q =
r

1 + y2n+1

(

y2n −
q − p

r

)

< r
(

y2n −
q − p

r

)

and so
y2n+2 < ry2n + p for n ≥ 0.

Note that in this case r < 1 and so

q − p
r

< y2n+2 < rn+1y0 + rnp + . . . + rp + p

which implies that
q − p

r
≤ p

1− r
.

This contradicts (10.14) and completes the proof of part (b) of Theorem 10.2.1.
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10.2.2 Proof of Part (c) of Theorem 10.2.1

Here we assume that (10.7) holds and show that Eq(10.4) possesses unbounded solutions.
To this end observe that

yn+1 = q +
p + r(yn−1 − q

r )
1 + yn

for n ≥ 0

and so when (10.7) holds the interval [q,∞) is invariant. That is when

y−1, y0 ∈ [q,∞),

then
yn ≥ q for n ≥ 0.

Now the change of variables
yn = q + zn

transforms Eq(10.4) to Eq(10.9) and the conclusion of part (c) follows from Section 6.5
for appropriate initial conditions y−1 and y0. More specifically the solutions of Eq(10.4)
with initial conditions such that

q ≤ y−1 < r − 1 and y0 > r−1 +
p + q(r − 1)
r − 1− q

have the property that the subsequences of even terms converge to ∞ while the subse-
quences of odd terms converge to q.

It should be mentioned that when (10.7) holds, the equilibrium of Eq(10.4) is a
saddle point and so by the stable manifold theorem, in addition to unbounded solu-
tions, Eq(10.4) possesses bounded solutions which in fact converge to the equilibrium of
Eq(10.4).

10.3 The Case B = 0 : xn+1 = α+βxn+γxn−1
A+Cxn−1

This is the (3, 2)-type Eq(10.2) which by the change of variables

xn =
A
C

yn

reduces to the difference equation

yn+1 =
p + qyn + ryn−1

1 + yn−1
, n = 0, 1, . . . (10.21)

where
p =

αC
A2 , q =

β
A

, and r =
γ
A

.
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This equation has not been investigated yet. Here we make some simple observations
about linearized stability, invariant intervals, and convergence of solutions in certain
regions of initial conditions.

The linearized equation of Eq(10.21) about its positive equilibrium

y =
q + r − 1 +

√

(q + r − 1)2 + 4p

2

is
zn+1 −

q
1 + y

zn +
p− r + qy
(1 + y)2 zn = 0, n = 0, 1, . . . .

By applying Theorem 1.1.1 we see that y is locally asymptotically stable for all values
of the parameters p, q, and r.

10.3.1 Invariant Intervals

The following result, which can be established by direct calculation, gives a list of in-
variant intervals for Eq(10.21).

Recall that I is an invariant interval, if whenever,

yN , yN+1 ∈ I for some integer N ≥ 0,

then
yn ∈ I for n ≥ N.

Lemma 10.3.1 Eq(10.21) possesses the following invariant intervals:

(a)
[

0,
p

1− q

]

when q < 1 and p ≥ r;

(b)
[

0,
r − p

q

]

when q < 1 and p ≥ r(1− q).

10.3.2 Global Stability When p ≥ r

Here we discuss the behavior of the solutions of Eq(10.21) when p ≥ r.
Observe that

yn+1 = r +
(p− r) + qyn

1 + yn−1
, n = 0, 1, . . .

and so when
p ≥ r
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yn ≥ r for n ≥ 1.

Therefore the change of variables
yn = r + zn

transforms Eq(10.21) to the difference equation

zn+1 =
p + qr − r + qzn

(1 + r) + zn−1
, n = 1, 2, . . .

which is of the form of the (2, 2)-type Eq(6.2) which was investigated in Section 6.3.
The following result is now a consequence of the above observations and the results

in Section 6.3.

Theorem 10.3.1 Assume
p ≥ r.

Then the following statements are true.
(a) Every positive solution of Eq(10.21) is bounded.
(b) The positive equilibrium of Eq(10.21) is globally asymptotically stable if one of

the following conditions holds:

(i) q < 1;

(ii)
q ≥ 1

and
either p + qr − r ≤ q or q < p + qr − r ≤ 2(q + 1).

10.3.3 Convergence of Solutions

Here we discuss the behavior of the solutions of Eq(10.21) when p < r.

Theorem 10.3.2 (a) Assume that

q < 1 and r ≥ p
1− q

.

Then every solution of Eq(10.21) with initial conditions in the invariant interval
[

0,
r − p

q

]

converges to the equilibrium y.
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(b) Suppose that either
0 ≤ q − 1 < r and p < r

or
q < 1 and p < r <

p
1− q

.

Set

K =
pq + r2 − pr

q + r − p− q2 .

Then every solution of Eq(10.21) with initial conditions in the invariant interval
[

r − p
q

,K
]

converges to the equilibrium y.

Proof.

(a) In view of Lemma 10.3.1 we see that when y−1, y0 ∈
[

0, r−p
q

]

, then yn ∈
[

0, r−p
q

]

for all n ≥ 0. It is easy to check that y ∈
[

0, r−p
q

]

and that in the interval
[

0, r−p
q

]

the function f(x, y) increases in both x and y. The result is now a consequence of
Theorem 1.4.8.

(b) In view of Lemma 10.3.1 we see that when y−1, y0 ∈
[

r−p
q , K

]

, then yn ∈
[

r−p
q , K

]

for all n ≥ 0. It is easy to check that y ∈
[

r−p
q , K

]

and that in the interval
[

r−p
q , K

]

the function f(x, y) increases in x and decreases in y. The result is now
a consequence of Theorem 1.4.5.

2

10.4 The Case A = 0 : xn+1 = α+βxn+γxn−1
Bxn+Cxn−1

This is the (3, 2)-type Eq(10.3) which by the change of variables

xn =
γ
C

yn

reduces to the difference equation

yn+1 =
r + pyn + yn−1

qyn + yn−1
, n = 0, 1, . . . (10.22)

where
p =

β
γ

, q =
B
C

, and r =
αC
γ2 .
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This equation has not been investigated yet. Here we make some simple observations
about linearized stability, invariant intervals, and the convergence of solutions in certain
regions of initial conditions.

The linearized equation of Eq(10.22) about its positive equilibrium

y =
(1 + p) +

√

(1 + p)2 + 4r(1 + q)

2(1 + q)

is

zn+1 −
(p− q)y − qr

(q + 1)(r + (p + 1)y)
zn +

(p− q)y + r
(q + 1)(r + (p + 1)y)

zn−1 = 0, n = 0, 1, . . . .

By applying Theorem 1.1.1 we see that y is locally asymptotically stable when either

q ≤ pq + 1 + 3p (10.23)

or

q > pq + 1 + 3p and F
(

2r
q − pq − 1− 3p

)

> 0

where
F (u) = (q + 1)u2 − (p + 1)u− r.

The second condition reduces to

q > pq + 1 + 3p. (10.24)

It is interesting to note that the above condition for the local asymptotic stability of y
requires the assumption that r > 0. When r = 0, as in Section 6.9, the inequality in
(10.23) is strict and Condition (10.24) is void.

Concerning prime period-two solution, it follows from Section 2.5 that a period-two
solution exists if and only if

p < 1, q > 1 and 4r < (1− p)(q − pq − 3p− 1). (10.25)

Furthermore in this case the prime period-two solution

. . . , φ, ψ, φ, ψ, . . .

is unique and the values φ and ψ are the positive roots of the quadratic equation

t2 − (1− p)t +
r + p(1− p)

q − 1
= 0.
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10.4.1 Invariant Intervals

Here we present some results about invariant intervals for Eq(10.21). We consider the
cases where p = q, p > q, and p < q.

Lemma 10.4.1 Eq(10.21) possesses the following invariant intervals:

(a)
[a, b] when p = q and

a and b are positive numbers such that

r + (p + 1)a ≤ (q + 1)ab ≤ r + (p + 1)b. (10.26)

(b)
[

p
q
,

qr
p− q

]

when p > q and
p2 − pq

q2 < r;

[

qr
p− q

,
p
q

]

when p > q and
p2 − pq

q2 > r.

(c)
[

1,
r

q − p

]

when p < q < p + r;

[

r
q − p

, 1
]

when q > p + r.

Proof.

(a) It is easy to see that when p = q the function

f(x, y) =
r + px + y

qx + y

is decreasing in both arguments. Hence

a ≤ r + (p + 1)b
(q + 1)b

= f(b, b) ≤ f(x, y) ≤ f(a, a) =
r + (p + 1)a

(q + 1)a
≤ b.

(b) Clearly the function f(x, y) is decreasing in both arguments when y < qr
p−q , and it

is increasing in x and decreasing in y for y ≥ qr
p−q .

First assume that p > q and p2−pq
q2 < r.
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Then for x, y ∈
[

p
q ,

qr
p−q

]

we obtain

p
q

= f
(

qr
p− q

,
qr

p− q

)

≤ f(x, y) ≤ f
(

p
q
,
p
q

)

=
qr + p(p + 1)

p(q + 1)
≤ qr

p− q
.

The inequalities

qr + p(p + 1)
p(q + 1)

≤ qr
p− q

and
p
q

<
qr

p− q

are equivalent to the inequality p2−pq
q2 < r.

Next assume that p > q and p2−pq
q2 > r.

For x, y ∈
[

qr
p−q ,

p
q

]

, we obtain

(qr + p)(p− q) + pq2r
q3r + p(p− q)

= f
(

qr
p− q

,
p
q

)

≤ f(x, y) ≤ f
(

p
q
,

qr
p− q

)

=
p
q
.

The inequalities

(qr + p)(p− q) + pq2r
q3r + p(p− q)

≥ qr
p− q

and
p
q

>
qr

p− q

follow from the inequality p2−pq
q2 > r.

(c) It is clear that the function f(x, y) is decreasing in both arguments for x < r
q−p ,

and it is increasing in y and decreasing in x for x ≥ r
q−p .

First, assume that p < q < p + r.

Using the decreasing character of f , we obtain

1 = f
(

r
q − p

,
r

q − p

)

≤ f(x, y) ≤ f(1, 1) =
r + p + 1

q + 1
≤ r

q − p
,

The inequalities

1 <
r

q − p
and

r + p + 1
q + 1

<
r

q − p
are equivalent to the inequality q < p + r.

Next assume that q > p + r.

Using the decreasing character of f in x and the increasing character of f in y, we
obtain

(p + r)(q − p) + r
q(q − p) + r

= f
(

1,
r

q − p

)

≤ f(x, y) ≤ f
(

r
p− q

, 1
)

= 1.
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The inequalities

(p + r)(q − p) + r
q(q − p) + r

≥ r
q − p

and
r

q − p
< 1

follow from the inequality q > p + r.

2

10.4.2 Convergence of Solutions

Here we obtain some convergence results for Eq(10.22).

Theorem 10.4.1 (a) Assume that p = q. Then every solution of Eq(10.22) with
initial conditions in the invariant interval [a, b], where 0 < a < b satisfy (10.26)
converges to the equilibrium y.

(b) Assume that p > q and r > p2−pq
q2 . Then every solution of Eq(10.22) with initial

conditions in the invariant interval
[

p
q ,

qr
p−q

]

converges to the equilibrium y.

(c) Assume that p < q < p+r. Then every solution of Eq(10.22) with initial conditions
in the invariant interval

[

1, r
q−p

]

converges to the equilibrium y.

Proof. The proof is an immediate consequence of Lemma 10.4.1 and Theorem 1.4.7.
2

Theorem 10.4.2 Assume that p > q, r < p2−pq
q2 , and that either

p ≤ 1

or
p > 1 and (q − 1)[(p− 1)2(q − 1)− 4q(1− p− qr)] ≤ 0.

Then every solution of Eq(10.22) with initial conditions in the invariant interval
[

qr
p−q ,

p
q

]

converges to the equilibrium y.

Proof. The proof is an immediate consequence of Lemma 10.4.1 and Theorem 1.4.5.
2

Theorem 10.4.3 Assume that p < q, p + r < q, and that Condition (10.25) is not sat-
isfied. Then every solution of Eq(10.22) with initial conditions in the invariant interval
[

r
q−p , 1

]

converges to the equilibrium y.

Proof. The proof is an immediate consequence of Lemma 10.4.1 and Theorem 1.4.6.
2



180 Chapter 10. (3, 2)-Type Equations

10.5 Open Problems and Conjectures

Open Problem 10.5.1 We know that every solution {yn}∞n=−1 of Eq(10.4) converges
to a not necessarily prime period-two solution

. . . , φ, ψ, φ, ψ, . . . (10.27)

if and only if
r = 1 + q.

(a) Determine the set of initial conditions y−1 and y0 for which φ 6= ψ.

(b) Assume (10.27) is a prime period-two solution of Eq(10.4). Determine the set of
initial conditions y−1 and y0 for which {yn}∞n=−1 converges to (10.27).

Open Problem 10.5.2 Assume
r > q + 1.

(a) Find the set B of all initial conditions (y−1, y0) ∈ (0,∞) × (0,∞) such that the
solutions {yn}∞n=−1 of Eq(10.4) are bounded.

(b) Let (y−1, y0) ∈ B. Investigate the asymptotic behavior of {yn}∞n=−1.

Conjecture 10.5.1 Every positive solution of Eq(10.21) converges to the positive equi-
librium of the equation.

Open Problem 10.5.3 For each of the equations listed below, determine the set G of
all initial conditions (x−1, x0) ∈ R×R through which the equation is well defined for all
n ≥ 0, and for these initial points investigate the long-term behavior of the corresponding
solution:

xn+1 =
1 + xn + xn−1

1 + xn
(10.28)

xn+1 =
1 + xn + xn−1

1 + xn−1
(10.29)

xn+1 =
1 + xn + xn−1

xn + xn−1
. (10.30)

Extend and generalize.
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Conjecture 10.5.2 Assume that

p, q, r ∈ (0,∞).

Then the following statements are true for Eq(10.22)

(a) Local stability of the positive equilibrium implies global stability.

(b) When Eq(10.22) has no prime period-two solutions the equilibrium y is globally
asymptotically stable.

(c) When Eq(10.22) possesses a period-two solution, the equilibrium y is a saddle
point.

(d) The period-two solution of Eq(10.22), when it exists, is locally asymptotically sta-
ble, but not globally.

Open Problem 10.5.4 Assume that {pn}∞n=0, {qn}∞n=0, and {rn}∞n=0 are convergent se-
quences of nonnegative real numbers with finite limits,

p = lim
n→∞

pn, q = lim
n→∞

qn, and r = lim
n→∞

rn.

Investigate the asymptotic behavior and the periodic nature of all positive solutions of
each of the following three difference equations:

yn+1 =
pn + qnyn + rnyn−1

1 + yn
, n = 0, 1, . . . (10.31)

yn+1 =
pn + qnyn + rnyn−1

1 + yn−1
, n = 0, 1, . . . (10.32)

yn+1 =
rn + pnyn + yn−1

qnyn + yn−1
, n = 0, 1, . . . . (10.33)

Open Problem 10.5.5 Assume that {pn}∞n=0, {qn}∞n=0, and {rn}∞n=0 are period-two se-
quences of nonnegative real numbers. Investigate the global character of all positive
solutions of Eqs(10.31)-(10.33). Extend and generalize.
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Open Problem 10.5.6 Assume that

p, q, r ∈ [0,∞) and k ∈ {2, 3, . . .}.

Investigate the global behavior of all positive solutions of each of the following difference
equations:

yn+1 =
p + qyn + ryn−k

1 + yn
, n = 0, 1, . . . (10.34)

yn+1 =
p + qyn + ryn−k

1 + yn−k
, n = 0, 1, . . . (10.35)

yn+1 =
p + qyn + ryn−1

qyn + yn−k
, n = 0, 1, . . . . (10.36)



Chapter 11

The (3, 3)-Type Equation
xn+1 = α+βxn+γxn−1

A+Bxn+Cxn−1

In this chapter we discuss the (3, 3)-type equation

xn+1 =
α + βxn + γxn−1

A + Bxn + Cxn−1
, n = 0, 1, . . . . (11.1)

Please recall our classification convention in which all coefficients of this equation are
now assumed to be positive and the initial conditions nonnegative.

This equation has not been investigated yet. Here we make some simple observations
about linearized stability, invariant intervals, and the convergence of solutions in certain
regions of initial conditions.

11.1 Linearized Stability Analysis

Eq(11.1) has a unique equilibrium which is the positive solution of the quadratic equation

(B + C)x2 − (β + γ − A)x− α = 0.

That is,

x =
β + γ − A +

√

(A− β − γ)2 + 4α(B + C)

2(B + C)
.

The linearized equation about x is (see Section 2.3)

zn+1 − (βA−Bα) + (βC −Bγ)x
A2 + α(B + C) + (B + C)(A + β + γ)x

zn

− (γA− Cα)− (βC − γB)x
A2 + α(B + C) + (B + C)(A + β + γ)x

zn−1 = 0, n = 0, 1, . . . . (11.2)

183
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The equilibrium x is locally asymptotically stable if Conditions (2.13), (2.14), and (2.15)
are satisfied.

Eq(11.1) has a prime period-two solution

. . . , φ, ψ, φ, ψ, . . .

if, see Section 2.5, Conditions (2.31) and (2.32) are satisfied; that is,

γ > β+A, B > C, and α <
(γ − β − A)[B(γ − β − A)− C(γ + 3β − A)]

4C2 . (11.3)

Furthermore, when (11.3), holds the values of φ and ψ are the positive roots of the
quadratic equation

t2 +
γ − β − A

C
t +

αC + β(γ − β − A)
C(B − C)

= 0. (11.4)

The local asymptotic stability of the two cycle

. . . , φ, ψ, φ, ψ, . . .

is discussed in Section 2.6.

11.2 Invariant Intervals

Here we obtain several invariant intervals for Eq(11.1). These intervals are derived by
analyzing the intervals where the function

f(x, y) =
α + βx + γy
A + Bx + Cy

is increasing or decreasing in x and y.
If we set

L = βA− αB, M = βC − γB, and N = γA− αC

then clearly

fx =
L + My

(A + Bx + Cy)2 and fy =
N −My

(A + Bx + Cy)2 .

Recall that an interval I is an invariant interval for Eq(11.1) if whenever,

yN , yN+1 ∈ I for some integer N ≥ 0,

then
yn ∈ I for n ≥ N.

Once we have an invariant interval for Eq(11.1) then we may be able to obtain a con-
vergence result for the solutions of Eq(11.1) by testing whether the hypotheses of one of
the four Theorems 1.4.5-1.4.8 are satisfied.
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Lemma 11.2.1 (i) Assume that

γ
C

=
β
B

>
α
A

.

Then
[

α
A , β

B

]

is an invariant interval for Eq(11.1) and in this interval the function
f(x, y) is increasing in both variables.

(ii) Assume that
β
B

>
γ
C

>
α
A

and
γ
C
≤ N

M
.

Then
[

α
A , γ

C

]

is an invariant interval for Eq(11.1) and in this interval the function
f(x, y) is increasing in both variables.

(iii) Assume that
γ
C

>
β
B

>
α
A

and
β + γ
B + C

≤ αB − βA
βC − γB

.

Then
[

α
A , β+γ

B+C

]

is an invariant interval for Eq(11.1) and in this interval the func-
tion f(x, y) is increasing in both variables.

(iv) Assume that
γ
C

=
β
B

<
α
A

.

Then
[

β
B , α

A

]

is an invariant interval for Eq(11.1) and in this interval the function
f(x, y) is decreasing in both variables.

(v) Assume that
γA− αC
βC − γB

≥ α
A

>
β
B

>
γ
C

.

Then
[

0, γA−αC
βC−γB

]

is an invariant interval for Eq(11.1) and in this interval the func-
tion f(x, y) is decreasing in both variables.

(vi) Assume that
β
B

<
γ
C

<
α
A

<
γA− αC
βC − γB

.

Then
[

0, α
A

]

is an invariant interval for Eq(11.1) and in this interval the function
f(x, y) is decreasing in both variables.

(vii) Assume that
α
A

=
β
B

>
γ
C

.

Then
[

0, α
A

]

is an invariant interval for Eq(11.1) and in this interval the function
f(x, y) is increasing in x and decreasing in y.
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(viii) Assume that
β
B

>
α
A
≥ γ

C
.

Then
[

0, β
B

]

is an invariant interval for Eq(11.1) and in this interval the function
f(x, y) is increasing in x and decreasing in y.

(ix) Assume that
α
A

=
β
B

<
γ
C

.

Then
[

0, γ
C

]

is an invariant interval for Eq(11.1) and in this interval the function
f(x, y) is increasing in y and decreasing in x.

(x) Assume that
β
B

<
α
A
≤ γ

C
.

Then
[

0, γ
C

]

is an invariant interval for Eq(11.1) and in this interval the function
f(x, y) is increasing in y and decreasing in x.

Proof.

(i) The condition γ
C = β

B > α
A is equivalent to M = 0 and L > 0, which in turn imply

that N > 0. Thus, in this case the function f is increasing in both variables for
all values of x and y and

α
A

= f(0, 0) ≤ f(x, y) ≤ f(
β
B

,
β
B

) ≤ β + γ
B + C

=
β
B

.

Here we used the fact that under the condition

γ
C

=
β
B

>
α
A

the function f(u, u) is increasing and consequently

f(u, u) ≤ β + γ
B + C

=
β
B

.

(ii) The condition β
B > γ

C > α
A is equivalent to M > 0, L > 0, and N > 0. Thus, in

this case the function f is increasing in x, for every x. In addition, this function
is increasing in y for x < N

M . Thus, assuming γ
C ≤

N
M we obtain

α
A

= f(0, 0) ≤ f(x, y) ≤ f(
N
M

,
N
M

) =
γ
C

,

for all x, y ∈
[

α
A , γ

C

]

.
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(iii) The condition γ
C > β

B > α
A is equivalent to M < 0 and L > 0, which in turn imply

that N > 0. Thus, in this case the function f is increasing in y, for every y. In
addition, this function is increasing in x for y < − L

M . Thus assuming β+γ
B+C ≤ − L

M ,
we obtain,

α
A

= f(0, 0) ≤ f(x, y) ≤ f
(

β + γ
B + C

,
β + γ
B + C

)

≤ β + γ
B + C

,

for all x, y ∈
[

α
A , β+γ

B+C

]

.

(iv) The condition γ
C = β

B < α
A is equivalent to M = 0 and L < 0, which in turn imply

that N < 0. Thus, in this case the function f is decreasing in both variables for
all values of x and y and

β
B
≤ f

(α
A

,
α
A

)

≤ f(x, y) ≤ f(0, 0) =
α
A

.

Here we used the fact that under the condition

γ
C

=
β
B

<
α
A

the function f(u, u) is decreasing and consequently

f(u, u) ≥ β + γ
B + C

=
β
B

.

(v) The condition α
A > β

B > γ
C is equivalent to M > 0 and L < 0, which imply that

N < 0. Thus, in this case the function f is decreasing in y, for every y. In addition,
this function is decreasing in x for y < − L

M . Thus assuming α
A ≤ − L

M , we obtain

0 ≤ f(x, y) ≤ f(0, 0) =
α
A
≤ − L

M
,

for all x, y ∈
[

0,− L
M

]

.

(vi) The condition α
A > γ

C > β
B is equivalent to M < 0, L < 0, and N < 0. Thus, in

this case the function f is decreasing in x, for every x. In addition, this function
is decreasing in y for x < N

M . Thus assuming α
A ≤

N
M , we obtain

0 ≤ f(x, y) ≤ f(0, 0) =
α
A

,

for all x, y ∈
[

0, α
A

]

.
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(vii) The condition α
A = β

B > γ
C is equivalent to M > 0 and L = 0, which in turn imply

that N < 0. Thus, in this case the function f is increasing in x and decreasing in
y for all values of x and y. Using this we obtain,

0 ≤ f(x, y) ≤ f
(α

A
, 0

)

=
α
A

,

for all x, y ∈
[

0, α
A

]

.

(viii) The condition β
B > α

A > γ
C is equivalent to M > 0, L > 0, and N < 0. Thus, in

this case the function f is increasing in x and decreasing in y for all values of x
and y. Using this we obtain,

0 ≤ f(x, y) < f
(

β
B

, 0
)

=
β
B

,

for all x, y ∈
[

0, β
B

]

.

(ix) The condition α
A = β

B < γ
C is equivalent to M < 0 and L = 0, which in turn imply

that N > 0. Thus, in this case the function f is decreasing in x and increasing in
y for all values of x and y. Using this we obtain,

0 ≤ f(x, y) ≤ f
(

0,
γ
C

)

=
γ
C

,

for all x, y ∈
[

0, γ
C

]

.

(x) The condition β
B < α

A ≤ γ
C is equivalent to M < 0, L < 0, and N ≥ 0. Thus, in

this case the function f is increasing in x and decreasing in y for all values of x
and y. Using this we obtain,

0 ≤ f(x, y) < f
(

0,
γ
C

)

≤ γ
C

,

for all x, y ∈
[

0, γ
C

]

. Here we use the fact that the function f(0, v) is increasing in
v when N > 0 and so

f(0, v) ≤ γ
C

= lim
v→∞

f(0, v),

for all v.

2

The next table summarizes more complicated invariant intervals with the signs of
the partial derivatives fx and fy.
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Case Invariant intervals Signs of derivatives

1
[0, N

M ] if αM+(β+γ)N
AM+(B+C)N < N

M

[ N
M ,K1] if αM+(β+γ)N

AM+(B+C)N > N
M

fx > 0
fy > 0 if x < N

M ; fy < 0 if x > N
M

2 [0, β−A+
√

(β−A)2+4Bα
2B ]

fx > 0
fy < 0

3 [0, β+γ−A+
√

(β+γ−A)2+4α(B+C)
2(B+C) ]

fx > 0
fy > 0

4
[0,− L

M ] if αM−(β+γ)L
AM−(B+C)L < − L

M

[− L
M ,K2] if βMK+αM−γL

BMK+AM−CL > − L
M

fx > 0 if y < − L
M ; fx < 0 if y > − L

M
fy > 0

5 [0, β
B ]

fx > 0
fy < 0

6 [0, γ
C ]

fx < 0
fy > 0

7
[ αM−L(β+γ)
AM−L(B+C) ,−

L
M ] if αM−L(β+γ)

AM−L(B+C) < − L
M

[− L
M ,K3] if αM−βL+γMK

AM−BL+CMK > − L
M

fx > 0 if y > − L
M ; fx < 0 if y < − L

M
fy < 0

8 [0, α
A ]

fx < 0
fy < 0

9
[ αM+(β+γ)N
AM+(B+C)N , N

M ] if αM+(β+γ)N
AM+(B+C)N < N

M

[ N
M ,K4] if αM+βK+γNM

AM+BK+CNM > N
M

fx < 0
fy > 0 if x > N

M ; fy < 0 if x < N
M

where

K1 =
(β − A)M − CN +

√

((β − A)M −NC)2 + 4BM(αM + γN)

2BM
,

K2 =
(A− γ)M −BL +

√

((A− γ)M −BL)2 + 4CM(αM − βL)

−2CM
,

K3 =
(β − A)M + LC +

√

((β − A)M + LC)2 + 4BM(αM − γL)

2BM
,

K4 =
(γ − A)M −BN +

√

((γ − A)M −BN)2 + 4BM(αM + βN)

2CM
.

11.3 Convergence Results

The following result is a consequence of Lemma 11.2.1 and Theorems 1.4.5-1.4.8.

Theorem 11.3.1 Let {xn} be a solution of Eq(11.1). Then in each of the following
cases

lim
n→∞

xn = x.
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(i)
γ
C

=
β
B

>
α
A

and x−1, x0 ∈
[

α
A

,
β
B

]

;

(ii)
β
B

>
γ
C

>
α
A

,
γ
C
≤ γA− αC

βC − γB
, and x−1, x0 ∈

[α
A

,
γ
C

]

;

(iii)
γ
C

>
β
B

>
α
A

,
β + γ
B + C

≤ αB − βA
βC − γB

, and x−1, x0 ∈
[

α
A

,
β + γ
B + C

]

;

(iv)
γ
C

=
β
B

<
α
A

and x−1, x0 ∈
[

β
B

,
α
A

]

;

(v)
γA− αC
βC − γB

≥ α
A

>
β
B

>
γ
C

and x−1, x0 ∈
[

0,
γA− αC
βC − γB

]

;

(vi)
β
B

<
γ
C

<
α
A

<
γA− αC
βC − γB

and x−1, x0 ∈
[

0,
α
A

]

;

(vii) At least one of the following three conditions is not satisfied and x−1, x0 ∈
[

0, α
A

]

:

β > γ + A,

B < C,

and
(C −B)[(C −B)(β − γ − A)2 − 4B(αB + γ(β − γ − A))] > 0,

or
α
A

=
β
B

>
γ
C

;

(viii) At least one of the following three conditions is not satisfied and x−1, x0 ∈
[

0, β
B

]

:

β > γ + A,

B < C,

and
(C −B)[(C −B)(β − γ − A)2 − 4B(αB + γ(β − γ − A))] > 0,

or
β
B

>
α
A
≥ γ

C
;
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(ix) Condition (11.3) is not satisfied,

α
A

=
β
B

<
γ
C

and x−1, x0 ∈
[

0,
γ
C

]

;

(x) Condition (11.3) is not satisfied,

β
B

<
α
A
≤ γ

C
and x−1, x0 ∈

[

0,
γ
C

]

.

Proof. The proofs of statements (i-iii) follow by applying Lemma 11.2.1 (i-iii) and
Theorem 1.4.8.

The proofs of statements (iv-vi) follow by applying Lemma 11.2.1 (iv-vi) and Theo-
rem 1.4.7.

The proofs of statements (vii) and (viii) follow by applying Lemma 11.2.1 (vii) and
(viii) respectively, Theorem 1.4.5, and by observing that the only solution of the system
of equations

m = f(m,M), M = f(M,m);

that is,

m =
α + βm + γM
A + Bm + CM

, M =
α + βM + γm
A + BM + Cm

is m = M .
The proofs of statements (ix) and (x) follow by applying Lemma 11.2.1 (ix) and (x)

respectively, Theorem 1.4.6, and by observing that Eq(11.1) does not possess a prime
period-two solution.

2

11.3.1 Global Stability

Theorem 1.4.2 and linearized stability imply the following global stability result:

Theorem 11.3.2 Assume that

γ
C

< min
{

β
B

,
α
A

}

.

Then the equilibrium x of Eq(11.1) is globally asymptotically stable.

By applying Theorem 1.4.3 to Eq(11.1) we obtain the following global asymptotic
result.
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Theorem 11.3.3 Assume that

B ≤ C, γB > βC, αB > βA, and γA > αC.

Then the equilibrium x of Eq(11.1) is globally asymptotically stable.

The following global stability result is a consequence of linearized stability and the
Trichotomy Theorem 1.4.4.

Theorem 11.3.4 (a) Assume that

αC ≥ γA, βA ≥ αB, and 3γB ≥ βC ≥ γB.

Then the equilibrium x of Eq(11.1) is globally asymptotically stable.

(b) Assume that
αB ≥ βA, γA ≥ αC, and 3βC ≥ γB ≥ βC.

Then the equilibrium x of Eq(11.1) is globally asymptotically stable.

11.4 Open Problems and Conjectures

Conjecture 11.4.1 Assume

α, β, γ, A, B,C ∈ (0,∞).

Show that every positive solution of Eq(11.1) is bounded.

Conjecture 11.4.2 Assume

α, β, γ, A,B,C ∈ (0,∞)

and that Eq(11.1) has no positive prime period-two solution. Show that every positive
solution of Eq(11.1) converges to the positive equilibrium.

Conjecture 11.4.3 Assume

α, β, γ, A,B, C ∈ (0,∞)

and that Eq(11.1) has a positive prime period-two solution. Show that the positive equi-
librium of Eq(11.1) is a saddle point and the period-two solution is locally asymptotically
stable.
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Conjecture 11.4.4 Assume

α, β, γ, A,B,C ∈ (0,∞).

Show that Eq(11.1) cannot have a prime period-k solution for any k ≥ 3.

Open Problem 11.4.1 Assume {αn}∞n=0, {βn}∞n=0, {γn}∞n=0, {An}∞n=0, {Bn}∞n=0, {Cn}∞n=0
are convergent sequences of nonnegative real numbers with finite limits. Investigate the
asymptotic behavior and the periodic nature of all positive solutions of the difference
equation

xn+1 =
αn + βnxn + γnxn−1

An + Bnxn + Cnxn−1
, n = 0, 1, . . . . (11.5)

Open Problem 11.4.2 Assume that the parameters in Eq(11.5) are period-two se-
quences of positive real numbers. Investigate the asymptotic behavior and the periodic
nature of all positive solutions of Eq(11.5).

Open Problem 11.4.3 Assume that

a,A, ai, Ai ∈ [0,∞) for i = 0, 1, . . . , k. (11.6)

Obtain necessary and sufficient conditions so that every positive solution of the equation

xn+1 =
a + a0xn + . . . + akxn−k

A + A0xn + . . . + Akxn−k
, n = 0, 1, . . . . (11.7)

has a finite limit.

Open Problem 11.4.4 Assume that (11.6) holds. Obtain necessary and sufficient con-
ditions so that every positive solution of Eq(11.7) converges to a period-two solution.

Open Problem 11.4.5 Assume that (11.6) holds. Obtain necessary and sufficient con-
ditions so that every positive solution of Eq(11.7) is periodic with period-k, k ≥ 2. In
particular, investigate the cases where 2 ≤ k ≤ 8.
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Open Problem 11.4.6 Let

α, β, γ, δ ∈ [0,∞) with γ + δ > 0.

Investigate the boundedness character, the periodic nature, and the asymptotic behavior
of all positive solutions of the difference equation

xn+1 =
αxn + βxn−1xn−2

γxnxn−1 + δxn−2
, n = 0, 1, . . . .

(See [8] and [61].)

Conjecture 11.4.5 Let k ≥ 2 be a positive integer. Show that every positive solution
of the difference equation

xn+1 =
xn + . . . + xn−k + xn−k−1xn−k−2

xnxn−1 + xn−2 + . . . + xn−k−2
, n = 0, 1, . . .

converges to 1. Extend and generalize.

(See [8], [47], and [60].)

Conjecture 11.4.6 Let

aij ∈ (0,∞) for i, j ∈ {1, 2, 3}.

Show that every positive solution of the system

xn+1 = a11
xn

+ a12
yn

+ a13
zn

yn+1 = a21
xn

+ a22
yn

+ a23
zn

zn+1 = a31
xn

+ a32
yn

+ a33
zn































, n = 0, 1, . . . (11.8)

converges to a period-two solution. Extend to equations with real parameters.

(See [32] for the two dimensional case.)

Conjecture 11.4.7 Assume that

p, q ∈ [0,∞).
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(a) Show that every positive solution of the equation

xn+1 =
pxn−1 + xn−2

q + xn−2
, n = 0, 1, . . .

converges to a period-two solution if and only if

p = 1 + q.

(b) Show that when
p < 1 + q

every positive solution has a finite limit.

(c) Show that when
p > 1 + q

the equation possesses positive unbounded solutions.

(See [62].)

Conjecture 11.4.8 Assume that

p ∈ (0,∞).

(a) Show that every positive solution of the equation

xn+1 =
xn−1

xn−1 + pxn−2
, n = 0, 1, . . .

converges to a period-two solution if

p ≥ 1.

(b) Show that when
p < 1

the positive equilibrium x = 1
1+p is globally asymptotically stable.

Conjecture 11.4.9 Assume that

p, q ∈ [0,∞).
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(a) Show that every positive solution of the equation

xn+1 =
xn−1 + p
xn−2 + q

, n = 0, 1, . . .

converges to a period-two solution if and only if

q = 1.

(b) Show that when
q > 1

the positive equilibrium of the equation is globally asymptotically stable.

(c) Show that when
q < 1

the equation possesses positive unbounded solutions.

(See [62].)

Conjecture 11.4.10 Show that every positive solution of the equation

xn+1 =
xn + xn−2

xn−1
, n = 0, 1, . . .

converges to a period-four solution.

(See [62].)

Conjecture 11.4.11 Show that the difference equation

xn+1 =
p + xn−2

xn
, n = 0, 1, . . .

has the following trichotomy character:

(i) When p > 1 every positive solution converges to the positive equilibrium.

(ii) When p = 1 every positive solution converges to a period-five solution.

(iii) When p < 1 there exist positive unbounded solutions.

(See [62].)



11.4. Open Problems and Conjectures 197

Conjecture 11.4.12 Show that every positive solution of the equation

xn+1 =
1 + xn

xn−1 + xn−2
, n = 0, 1, . . .

converges to a period-six solution of the form

. . . , φ, ψ,
ψ
φ

,
1
φ

,
1
ψ

,
φ
ψ

, . . .

where
φ, ψ ∈ (0,∞).

(See [62].)

Open Problem 11.4.7 Consider the difference equation

xn+1 =
α + βxn + γxn−1 + δxn−2

A + Bxn + Dxn−2
, n = 0, 1, . . . (11.9)

with nonnegative parameters and nonnegative initial conditions such that B+D > 0 and

A + Bxn + Dxn−2 > 0 for n ≥ 0.

Then one can show that Eq(11.9) has prime period-two solutions if and only if

γ = β + δ + A. (11.10)

(a) In addition to (11.10), what other conditions are needed so that every positive
solution of Eq(11.9) converges to a period-two solution?

(b) Assume
γ < β + δ + A.

What other conditions are needed so that every positive solution of Eq(11.9) con-
verges to the positive equilibrium?

(c) Assume
γ > β + δ + A.

What other conditions are needed so that Eq(11.9) possesses unbounded solutions?

(See [6].)
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Conjecture 11.4.13 Show that every positive solution of each of the two equations

xn+1 =
1 + xn−1 + xn−2

xn
, n = 0, 1, . . .

and
xn+1 =

1 + xn−1 + xn−2

xn−2
, n = 0, 1, . . .

converges to a period-two solution.

(See [6].)

Conjecture 11.4.14 Show that every positive solution of the equation

xn+1 =
1 + xn−1

1 + xn + xn−2
, n = 0, 1, . . .

converges to a period-two solution.

(See [6].)

Conjecture 11.4.15 Show that every positive solution of the equation

xn+1 =
xn−2

xn−1 + xn−2 + xn−3
, n = 0, 1, . . .

converges to a period-three solution.

Conjecture 11.4.16 Consider the difference equation

xn+1 =
p + qxn + rxn−2

xn−1
, n = 0, 1, . . .

where
p ∈ [0,∞) and q, r ∈ (0,∞).

(a) Show that when
q = r

every positive solution converges to a period-four solution.

(b) Show that when
q > r

every positive solution converges to the positive equilibrium.
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(c) Show that when
q < r

the equation possesses positive unbounded solutions.

(See [62].)

Open Problem 11.4.8 Determine whether every positive solution of each of the fol-
lowing equations converges to a periodic solution of the corresponding equation:

(a)

xn+1 =
xn−2 + xn−3

xn
, n = 0, 1, . . .

(b)

xn+1 =
1 + xn−3

1 + xn + xn−3
, n = 0, 1, . . .

(c)

xn+1 =
1 + xn + xn−3

xn−2
, n = 0, 1, . . .

(d)

xn+1 =
xn−1

xn + xn−2 + xn−3
, n = 0, 1, . . . .

Open Problem 11.4.9 Assume that k is a positive integer and that

A, B0, B1, . . . Bk ∈ [0,∞) with
k

∑

i=0
Bi > 0.

Obtain necessary and sufficient conditions on the parameters A and B0, B1, . . . Bk so
that every positive solution of the difference equation

xn+1 =
xn−k

A + B0xn + . . . + Bkxn−k
, n = 0, 1, . . .

converges to a period-(k + 1) solution of this equation.

(See [6].)
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Open Problem 11.4.10 Assume that k is a positive integer. Then we can easily see
that every nonnegative solution of the equation

xn+1 =
xn−k

1 + xn + . . . + xn−k+1
, n = 0, 1, . . . (11.11)

converges to a period-(k + 1) solution of the form

. . . , 0, 0, ..., 0
︸ ︷︷ ︸

k−terms

, φ, . . . (11.12)

with φ ≥ 0.

(a) Does Eq(11.11) possess a positive solution which converges to zero?

(b) Determine, in terms of the nonnegative initial conditions x−k, . . . , x0, the value of
φ in (11.12) which corresponds to the nonnegative solution {xn}∞n=−k of Eq(11.11).

(c) Determine the set of all nonnegative initial conditions x−k, . . . , x0 for which the
corresponding solution {xn}∞n=−k of Eq(11.11) converges to a period-(k+1) solution
of the form (11.12) with a given φ ≥ 0 ?

(See [6].)

Conjecture 11.4.17 Let k be a positive integer. Show that every positive solution of

xn+1 =
1 + xn + xn−k

xn−k+1
, n = 0, 1, . . .

converges to a periodic solution of period 2k.
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Global Attractivity for Higher
Order Equations

In this appendix we present some global attractivity results for higher order difference
equations which are analogous to Theorems 1.4.5-1.4.8. We state the results for third
order equations from which higher order extensions will become clear.

Let I be some interval of real numbers and let

f : I × I × I → I

be a continuously differentiable function.
Then for every set of initial conditions x0, x−1, x−2 ∈ I, the difference equation

xn+1 = f(xn, xn−1, xn−2), n = 0, 1, . . . (A.1)

has a unique solution {xn}∞n=−2.
As we have seen in previous chapters, very often a good strategy for obtaining global

attractivity results for Eq(A.1) is to work in the regions where the function f(x, y, z) is
monotonic in its arguments. In this regard there are eight possible scenarios depending
on whether f(x, y, z) is non decreasing in all three arguments, or non increasing in two
arguments and non decreasing in the third, or non increasing in one and non decreasing
in the other two, or non decreasing in all three.

Theorem A.0.1 Let [a, b] be an interval of real numbers and assume that

f : [a, b]3 → [a, b]

is a continuous function satisfying the following properties:
(a) f(x, y, z) is non-decreasing in each of its arguments;
(b) The equation

f(x, x, x) = x,

has a unique solution in the interval [a, b].
Then Eq(A.1) has a unique equilibrium x ∈ [a, b] and every solution of Eq(A.1)

converges to x.
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Proof. Set
m0 = a and M0 = b

and for i = 1, 2, . . . set

Mi = f(Mi−1,Mi−1, Mi−1) and mi = f(mi−1,mi−1,mi−1).

Now observe that for each i ≥ 0,

m0 ≤ m1 ≤ . . . ≤ mi ≤ . . . ≤ Mi ≤ . . . ≤ M1 ≤ M0,

and
mi ≤ xk ≤ Mi for k ≥ 3i + 1.

Set
m = lim

i→∞
mi and M = lim

i→∞
Mi.

Then
M ≥ lim sup

i→∞
xi ≥ lim inf

i→∞
xi ≥ m (A.2)

and by the continuity of f ,

m = f(m,m, m) and M = f(M,M, M).

In view of (b),
m = M = x,

from which the result follows. 2

Theorem A.0.2 Let [a, b] be an interval of real numbers and assume that

f : [a, b]3 → [a, b]

is a continuous function satisfying the following properties:
(a) f(x, y, z) is non-decreasing in x and y ∈ [a, b] for each z ∈ [a, b], and is non-

increasing in z ∈ [a, b] for each x and y ∈ [a, b];
(b) If (m, M) ∈ [a, b]× [a, b] is a solution of the system

m = f(m,m, M) and M = f(M,M, m)

then
m = M.

Then Eq(A.1) has a unique equilibrium x ∈ [a, b] and every solution of Eq(A.1) converges
to x.
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Proof. Set
m0 = a and M0 = b

and for each i = 1, 2, . . . set

Mi = f(Mi−1,Mi−1,mi−1)

and
mi = f(mi−1,mi−1, Mi−1).

Now observe that for each i ≥ 0

a = m0 ≤ m1 ≤ . . . ≤ mi ≤ . . .Mi ≤ . . .M1 ≤ M0 = b.

and
mi ≤ xk ≤ Mi for k ≥ 3i + 1.

Set
m = lim

i→∞
mi and M = lim

i→∞
Mi.

Then (A.2) holds and by the continuity of f ,

m = f(m,m, M) and M = f(M, M,m).

Therefore in view of (b)
m = M

from which the result follows. 2

Theorem A.0.3 Let [a, b] be an interval of real numbers and assume that

f : [a, b]3 → [a, b]

is a continuous function satisfying the following properties:
(a) f(x, y, z) is non-decreasing in x and z in [a, b] for each z ∈ [a, b], and is non-

increasing in y ∈ [a, b] for each x and z in [a, b];
(b) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

M = f(M,m, M) and m = f(m,M, m)

then
m = M.

Then Eq(A.1) has a unique equilibrium x ∈ [a, b] and every solution of Eq(A.1) converges
to x.
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Proof. Set
m0 = a and M0 = b

and for each i = 1, 2, . . . set

Mi = f (Mi−1,mi−1,Mi−1)

and
mi = f (mi−1,Mi−1,mi−1) .

Now observe that for each i ≥ 0

a = m0 ≤ m1 ≤ . . . ≤ mi ≤ . . .Mi ≤ . . . M1 ≤ M0 = b.

and
mi ≤ xk ≤ Mi for k ≥ 3i + 1.

Set
m = lim

i→∞
mi and M = lim

i→∞
Mi.

Then (A.2) holds and by the continuity of f ,

m = f (m,m, M) and M = f (M, M, m) .

Therefore in view of (b)
m = M

from which the results follows. 2

Theorem A.0.4 Let [a, b] be an interval of real numbers and assume that

f : [a, b]3 → [a, b]

is a continuous function satisfying the following properties:
(a) f(x, y, z) is non-increasing in x for each y and z ∈ [a, b] and is non-decreasing

in y and z for each x, y ∈ [a, b];
(b) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

M = f(m,M, M) and m = f(M, m, m)

then
m = M.

Then Eq(A.1) has a unique equilibrium x ∈ [a, b] and every solution of Eq(A.1) converges
to x.
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Proof. Set
m0 = a and M0 = b

and for each i = 1, 2, . . . set

Mi = f(mi−1,Mi−1,Mi−1)

and
mi = f(Mi−1,mi−1,mi−1).

Now observe that for each i ≥ 0

m0 ≤ m1 ≤ . . . ≤ mi ≤ . . .Mi ≤ . . .M1 ≤ M0 = b

and
mi ≤ xk ≤ Mi for k ≥ 3i + 1.

Set
m = lim

i→∞
mi and M = lim

i→∞
Mi.

Then (A.2) holds and by the continuity of f ,

M = f(m,M, M) and m = f(M, m, m).

Therefore in view of (b)
m = M

from which the results follows. 2

Theorem A.0.5 Let [a, b] be an interval of real numbers and assume that

f : [a, b]3 → [a, b]

is a continuous function satisfying the following properties:
(a) f(x, y, z) is non-decreasing in x for each y and z ∈ [a, b] and is non-increasing

in y and z for each x ∈ [a, b];
(b) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

M = f(M, m, m) and m = f(m,M, M)

then
m = M.

Then Eq(A.1) has a unique equilibrium x ∈ [a, b] and every solution of Eq(A.1) converges
to x.
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Proof. Set
m0 = a and M0 = b

and for each i = 1, 2, . . . set

Mi = f(Mi−1,mi−1,mi−1)

and
mi = f(mi−1, Mi−1,Mi−1).

Now observe that for each i ≥ 0

m0 ≤ m1 ≤ . . . ≤ mi ≤ . . .Mi ≤ . . . M1 ≤ M0 = b

and
mi ≤ xk ≤ Mi for k ≥ 3i + 1.

Set
m = lim

i→∞
mi and M = lim

i→∞
Mi.

Then (A.2) holds and by the continuity of f ,

M = f(M, m, m) and m = f(m,M, M).

Therefore in view of (b)
m = M

from which the results follows. 2

Theorem A.0.6 Let [a, b] be an interval of real numbers and assume that

f : [a, b]3 → [a, b]

is a continuous function satisfying the following properties:
(a) f(x, y, z) is non-decreasing in y for each x and z ∈ [a, b] and is non-increasing

in x and z for each y ∈ [a, b];
(b) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

M = f(m,M, m) and m = f(M,m, M)

then
m = M.

Then Eq(A.1) has a unique equilibrium x ∈ [a, b] and every solution of Eq(A.1) converges
to x.



Appendix 207

Proof. Set
m0 = a and M0 = b

and for each i = 1, 2, . . . set

Mi = f(mi−1,Mi−1,mi−1)

and
mi = f(Mi−1,mi−1, Mi−1).

Now observe that for each i ≥ 0

m0 ≤ m1 ≤ . . . ≤ mi ≤ . . . Mi ≤ . . . M1 ≤ M0 = b

and
mi ≤ xk ≤ Mi for k ≥ 3i + 1.

Set
m = lim

i→∞
mi and M = lim

i→∞
Mi.

Then (A.2) holds and by the continuity of f ,

M = f(m,M, m) and m = f(M,m, M).

Therefore in view of (b)
m = M

from which the results follows. 2

Theorem A.0.7 Let [a, b] be an interval of real numbers and assume that

f : [a, b]3 → [a, b]

is a continuous function satisfying the following properties:
(a) f(x, y, z) is non-decreasing in z for each x and y in [a, b] and is non-increasing

in x and y for each z ∈ [a, b];
(b) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

M = f(m,m, M) and m = f(M, M, m)

then
m = M.

Then Eq(A.1) has a unique equilibrium x ∈ [a, b] and every solution of Eq(A.1) converges
to x.
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Proof. Set
m0 = a and M0 = b

and for each i = 1, 2, . . . set

Mi = f(mi−1,mi−1,Mi−1)

and
mi = f(Mi−1,Mi−1,mi−1).

Now observe that for each i ≥ 0

m0 ≤ m1 ≤ . . . ≤ mi ≤ . . . Mi ≤ . . . M1 ≤ M0 = b

and
mi ≤ xk ≤ Mi for k ≥ 3i + 1.

Set
m = lim

i→∞
mi and M = lim

i→∞
Mi.

Then (A.2) holds and by the continuity of f ,

M = f(m,m, M) and m = f(M, M, m).

Therefore in view of (b)
m = M

from which the results follows. 2

Theorem A.0.8 Let [a, b] be an interval of real numbers and assume that

f : [a, b]3 → [a, b]

is a continuous function satisfying the following properties:
(a) f(x, y, z) is non-increasing in all three variables x, y, z in [a, b];
(b) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

M = f(m,m,m) and m = f(M, M,M)

then
m = M.

Then Eq(A.1) has a unique equilibrium x ∈ [a, b] and every solution of Eq(A.1) converges
to x.
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Proof. Set
m0 = a and M0 = b

and for each i = 1, 2, . . . set

Mi = f(mi−1,mi−1,mi−1)

and
mi = f(Mi−1,Mi−1,Mi−1).

Now observe that for each i ≥ 0

m0 ≤ m1 ≤ . . . ≤ mi ≤ . . . Mi ≤ . . .M1 ≤ M0 = b

and
mi ≤ xk ≤ Mi for k ≥ 3i + 1.

Set
m = lim

i→∞
mi and M = lim

i→∞
Mi.

Then (A.2) holds and by the continuity of f ,

M = f(m,m, m) and m = f(M, M,M).

Therefore in view of (b)
m = M

from which the results follows. 2

The above theorems can be easily extended to the general difference equation of order
p

xn+1 = f(xn, xn−1, . . . , xn−p+1), n = 0, 1, . . . (A.3)

where
f : Ip → I

is a continuous function. In this case, there are 2p possibilities for the function f to
be non decreasing in some arguments and non increasing in the remaining arguments.
This gives 2p results of the type found in Theorems A.0.1-A.0.8. Let us formulate one
of these results.

Theorem A.0.9 Let [a, b] be an interval of real numbers and assume that

f : [a, b]p → [a, b]

is a continuous function satisfying the following properties:
(a) f(u1, u2, . . . , up) is non decreasing in the second and the third variables u2 and

u3 and is non increasing in all other variables.
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(b) If (m, M) ∈ [a, b]× [a, b] is a solution of the system

M = f(m,M, M,m, . . . , m) and m = f(M, m,m, M, . . . ,M)

then
m = M.

Then Eq(A.3) has a unique equilibrium x ∈ [a, b] and every solution of Eq(A.3) converges
to x.
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[53] M. R. S. Kulenović, G. Ladas, and N. R. Prokup, On a rational difference equation,
Comput. Math. Appl. 41(2001), 671-678.
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